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ABSTRACT 

This study investigates the extent of final-year preservice teachers’ understanding and 

development of the mathematics knowledge for teaching in trigonometry. Teachers’ lack 

of adequate mathematics knowledge to teach mathematics effectively is one of the major 

source of low mathematics attainment in South Africa. On this basis, the readiness of 

prospective teachers to teach mathematics must be established at the point of exit. The 

purpose of the present research study is to explore preservice teachers’ understanding 

and development of content knowledge and pedagogical content knowledge in teaching 

trigonometry. The review of literature revealed that many preservice teachers lack the 

conceptual understanding of school mathematics. Thus, preservice teachers exit teacher 

education and enter the world of teaching with limited skills and abilities of teaching 

mathematics. The content test, task-based interview, lesson planning and lesson 

observations were used to gather data on preservice teachers’ understanding of content 

knowledge in trigonometry in response to three research questions. The sample of the 

study was composed of fifteen mathematics final-year preservice teachers who were 

registered for a Bachelor of Education degree programme at a rural-based institution of 

higher learning in South Africa. The sample was selected purposively. The mathematics 

knowledge for teaching conceptual framework by Ball, Thames and Phelps was used to 

structure the present study and provided lens for data analyses. The analysis of the 

content test results revealed that preservice teachers’ mastery of content knowledge in 

trigonometry was inadequate. The results from the task-based interview, lesson plan and 

lesson observation analyses indicated that the preservice teachers’ mastery of 

pedagogical content knowledge in trigonometry was limited. Moreover, the extent of 

preservice teachers’ development of mathematical knowledge for teaching based on 

results from classroom practices was sub-standard. The traditional teaching methods and 

learner-misconceptions never left preservice teachers all through the four years of 

teacher education. Therefore, more needs to be done by the higher education institution 

to accelerate growth of content knowledge and pedagogical content knowledge through 

the provisions of methodology, content and teaching practices courses. The interplay of 

the three, methodology courses, content courses and teaching practice form the basis of 

an ideal preservice teacher.  
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I-ABSTRACT 

Lolu cwaningo luphenya ubungako bokuqonda kothisha wokugcina umsebenzi 

wokugcina kanye nokuthuthukisa ulwazi lwezibalo lokufundisa nge-trigonometry. 

Ukuntuleka kothisha kolwazi lwezibalo okwanele ukufundisa izibalo ngempumelelo 

kungenye yomthombo omkhulu wokutholwa kwezibalo okuphansi eNingizimu Afrika. 

Ngalesi sisekelo, ukulungela kothisha abazoba abafundisi bezibalo kumele kusungulwe 

lapho bezophuma khona. Inhloso yocwaningo olukhona manje ukuhlola ukuqonda 

kwabafundisi abasebenza ngokuthile kanye nokuthuthuka kolwazi lokuqukethwe kanye 

nolwazi lokuqukethwe okuzenzakalelayo ekufundiseni i-trigonometry. Ukubuyekezwa 

kwezincwadi kuveze ukuthi othisha abaningi abasebenza ngezinsizakusebenza 

abanakho ukuqonda okuqondakalayo kwemathematics esikole. Ngakho-ke, othisha 

abazisebenzelayo baphuma emfundweni yothisha futhi bangene ezweni lokufundisa 

ngamakhono alinganiselwe namakhono wokufundisa wezibalo. Ukuhlolwa 

kokuqukethwe, inhlolokhono esekwe emisebenzini, ukuhlelwa kwezifundo nokubukwa 

kwezifundo kusetshenziselwe ukuqoqa imininingwane ekuqondeni kothisha okuhlinzeka 

ngemininingwane yokuqukethwe kwe-trigonometry ukuphendula imibuzo emithathu 

yocwaningo. Isampula yalolu cwaningo belakhiwa othisha abasebenza iminyaka 

eyishumi nantathu ababhaliselwe uhlelo lweBachelor of Education esikhungweni 

esisebenza emaphandleni semfundo ephakeme eNingizimu Afrika. Isampula lakhethwa 

ngamabomu. Ulwazi lwezibalo lokufundisa uhlaka lwangempela lweBall, iThames 

nePhelps lwalusetshenziselwa ukwakha lolu cwaningo lwamanje futhi lwahlinzeka 

ngelensi yokuhlaziya idatha. Ukuhlaziywa kwemiphumela yokuhlolwa kokuqukethwe 

kuveze ukuthi ukuphathwa kahle kothisha okuhlinzeka ngemininingwane yokuqukethwe 

kwe-trigonometry bekunganele. Imiphumela evela kwinhlolokhono esekwe emisebenzini, 

uhlelo lwezifundo kanye nokuhlaziywa kokubuka izifundo, iveze ukuthi ukuphatha othisha 

abalungiselela kakhulu ulwazi lokuqukethwe okuphathelene ne-trigonometry 

kukhawulelwe. Ngaphezu kwalokho, ubukhulu bokuthuthukiswa kothisha abalungiselela 

ulwazi lwezibalo ngokufundisa okusekelwe kwimiphumelo evela ekilasini okwakwenziwa 

kungaphansi. Izindlela zokufundisa zendabuko kanye nemibono eyiphutha yabafundi 

ayikaze ibashiye othisha abafundile kuyo yonke le minyaka emine yokufundisa kothisha. 

Ngakho-ke, kuningi okudingeka kwenziwe yisikhungo semfundo ephakeme ukusheshisa 
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ukukhula kolwazi lokuqukethwe kanye nolwazi lokuqukethwe okufundwayo 

ngezinhlinzeko zendlela yokufundisa, okuqukethwe nokufundisa ngezifundo. 

Ukudidiyelwa kwezifundo ezintathu, izindlela zokufundisa, izifundo zokuqukethwe kanye 

nokuzijwayeza ukufundisa kuyisisekelo somfundisi ofanelekile wokuphakelwa. 
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Key words: mathematics knowledge for teaching, pedagogical content knowledge, initial 

teacher education, trigonometry, lesson plan analysis, video-teaching episodes, task-

based interview, content test. 
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DEFINITION OF TERMS 

Preservice teacher: denotes a student studying towards a teaching qualification at a 

teacher-training institution that makes him/her eligible to join the teaching profession. It is 

synonymous with prospective teacher. 

Higher education institution: is a place where people of all ages acquire post-school 

education in a designated field of study, which is usually a university or college in most 

countries. 

Pedagogical content knowledge: it represents a special integration of skills of teaching 

and subject-matter expertise that teachers need to teach different topics in a curriculum. 

Content knowledge: refers to the concepts and facts that learnt and taught in a given 

field of study. 

Mathematics knowledge for teaching: represents a combination of content and 

pedagogical knowledge skills which mathematics teacher need to teach mathematics 

concepts in ways best understood by learners. 

Teacher education: is the formal instruction of procedures and procedures designed to 

equip prospective teachers with necessary skills required to become qualified teachers. 

It is synonymous with teacher training. 

Initial teacher education: it is a post-school training offered to candidates who are 

working towards a first qualification in teaching. 

Task-based interview: is defined as a scenario where the interviewee talks during or 

immediately after answering a question on paper, whereupon the interviewer can probe 

to seek further clarifications if necessary. 

.  



ix 
 

TABLE OF CONTENTS 

DECLARATION ........................................................................................... i 

DEDICATION ............................................................................................. ii 

ACKNOWLEDGEMENTS ......................................................................... iii 

ABSTRACT ............................................................................................... iv 

I-ABSTRACT .............................................................................................. v 

DEFINITION OF TERMS .......................................................................... viii 

LIST OF FIGURES .................................................................................. xiv 

LIST OF TABLES .................................................................................... xvii 

CHAPTER 1: INTRODUCTION .................................................................. 1 

1.1. Background of the study ............................................................................................................ 1 

1.1.1. Key role of teachers in the classroom ............................................................................ 1 

1.1.2. Teacher knowledge .............................................................................................................. 2 

1.1.3. Performance of learners in mathematics ....................................................................... 4 

1.1.4. The state of trigonometry knowledge in South Africa ................................................ 6 

1.1.5. Preservice teachers’ mastery of mathematics knowledge for teaching ................ 7 

1.1.6. Initial teacher education in South Africa ........................................................................ 8 

1.2. Statement of the problem ......................................................................................................... 10 

1.3. Research questions ................................................................................................................... 12 

1.4. The purpose of the study ......................................................................................................... 12 

1.5. Delimitations of the study ........................................................................................................ 13 

1.6. Significance of the study.......................................................................................................... 13 

1.7. Justification of the study.......................................................................................................... 17 

1.7.1. Personal ................................................................................................................................. 17 

1.7.2 Teacher knowledge.............................................................................................................. 18 

1.7.3. Trigonometry ........................................................................................................................ 18 

1.8. Overview of chapters ................................................................................................................ 19 

1.9. Chapter conclusion ................................................................................................................... 19 



x 
 

CHAPTER 2: LITERATURE REVIEW ...................................................... 21 

2.1. Introduction ................................................................................................................................. 21 

2.2. Pedagogical content knowledge in mathematics teaching ............................................ 22 

2.3. The role of teacher knowledge in the classroom............................................................... 24 

2.4. Initial teacher education in South Africa and other countries ....................................... 27 

2.5. The scope of trigonometry in the South African curriculum .......................................... 30 

2.6. A chronicle of teacher education in South Africa ............................................................. 33 

2.7. Preservice teachers’ mathematics knowledge of teaching ............................................ 35 

2.7.1. Preservice teachers’ knowledge transformation geometry ..................................... 38 

2.7.2. Preservice teachers’ perceptions and knowledge of trigonometry ...................... 39 

2.7.3. Preservice teachers’ level of content knowledge of radians .................................. 40 

2.7.4. Preservice teachers’ understanding of diagonals of quadrilaterals ..................... 41 

2.7.5. Preservice teachers’ understanding of problem-solving techniques ................... 42 

2.7.6. Instructional explanation .................................................................................................. 43 

2.7.7. Preservice teachers’ critical thinking skills ................................................................. 44 

2.7.8. Preservice teachers’ strategies in solving limits ....................................................... 45 

2.7.9. Implications of literature to the present study ............................................................ 46 

2.8. Conclusion ................................................................................................................................... 48 

CHAPTER 3: THE CONCEPTUAL FRAMEWORK .................................. 49 

3.1. Chapter introduction ................................................................................................................. 49 

3.2. The teacher knowledge conceptual framework ................................................................. 50 

3.2.1. Conceptual framework definition ................................................................................... 50 

3.2.2. The mathematics knowledge for teaching framework .............................................. 51 

3.3. Models of teacher knowledge ................................................................................................. 52 

3.3.1. Shulman’s (1986) teacher knowledge model ............................................................... 53 

3.3.2. The model for mathematics knowledge for teaching ................................................ 60 

3.4. Overview of teacher knowledge models .............................................................................. 63 

3.5. Conclusion ................................................................................................................................... 66 

CHAPTER 4: THE RESEARCH DESIGN AND METHODOLOGY ........... 68 

4.1. Introduction ................................................................................................................................. 68 

4.2. The research paradigm ............................................................................................................. 68 

4.3. The research design .................................................................................................................. 70 



xi 
 

4.4. Research methodology ............................................................................................................. 72 

4.5. Data collection instruments .................................................................................................... 74 

4.5.1. The content test ................................................................................................................... 75 

4.5.2. The task-based interview .................................................................................................. 76 

4.5.3. Preparation and analyses of lessons ............................................................................ 77 

4.5.4. Classroom observations ................................................................................................... 78 

4.6. The Pilot Study ............................................................................................................................ 79 

4.6.1. Definition ............................................................................................................................... 79 

4.6.2. Value and purpose of pilot study .................................................................................... 79 

4.6.3. The setting ............................................................................................................................ 80 

4.6.4. Procedure .............................................................................................................................. 80 

4.6.5. Results of the pilot study .................................................................................................. 81 

4.7. Research procedure .................................................................................................................. 82 

4.7.1. The research site ................................................................................................................. 83 

4.7.2. Participants ........................................................................................................................... 84 

4.7.3. Sampling ............................................................................................................................... 85 

4.7.4. Administration of data collection instruments ........................................................... 86 

4.7.5. Role of the researcher ....................................................................................................... 89 

4.7.6. Minimisation of research bias ......................................................................................... 90 

4.8. The data analysis plan .............................................................................................................. 90 

4.8.1. Quantitative analysis.......................................................................................................... 93 

4.8.2. Qualitative analyses of data ............................................................................................. 93 

4.9. Measures of quality criteria ..................................................................................................... 95 

4.10. Ethical issues ............................................................................................................................ 98 

4.11. Conclusion ................................................................................................................................. 99 

CHAPTER 5: INTERPRETATION AND ANALYSIS OF RESULTS ....... 101 

5.1. Introduction ............................................................................................................................... 101 

5.2. Phase one results ..................................................................................................................... 101 

5.2.1. Biographical information ................................................................................................ 102 

5.2.2. Quantitative analysis of content test data .................................................................. 102 

5.2.3. Qualitative analysis of content test data .................................................................... 105 

5.2.4 Overview of the content test qualitative and quantitative analysis ...................... 111 

5.3. Phase two results ..................................................................................................................... 112 



xii 
 

5.3.1. Task-based interviews ..................................................................................................... 113 

5.3.2. Lesson plan analyses ...................................................................................................... 128 

5.3.3. Video-recorded lesson analyses .................................................................................. 139 

5.4. Tracking of participants’ performance in the four data instruments ......................... 157 

5.5. Conclusion ................................................................................................................................. 167 

CHAPTER 6: DISCUSSION OF RESULTS ............................................ 168 

6.1. Introduction ............................................................................................................................... 168 

6.2. Subject matter knowledge discussion ............................................................................... 168 

6.3. Pedagogical content knowledge discussion .................................................................... 173 

6.3.1. Types of pedagogical content knowledge ................................................................. 174 

6.3.2. Components of pedagogical content knowledge ..................................................... 176 

6.4. The development of mathematics knowledge for teaching .......................................... 187 

6.4.1. Participant track in all data collection instruments ................................................. 187 

6.4.2. Implication of mathematics knowledge for teaching .............................................. 191 

6.5. Overall discussion of findings .............................................................................................. 198 

6.6. Conclusion ................................................................................................................................. 201 

CHAPTER 7: SUMMARY, CONCLUSION, RECOMMENDATIONS AND 

IMPLICATIONS ...................................................................................... 203 

7.1. Introduction ............................................................................................................................... 203 

7.2. Summary of the study ............................................................................................................. 203 

7.3 Conclusion of the study .......................................................................................................... 209 

7.3.1. Preservice teachers’ subject matter knowledge....................................................... 210 

7.3.2. Preservice teachers’ pedagogical content knowledge ........................................... 212 

7.3.3. The extent of development of mathematics knowledge for teaching ................. 215 

7.3.4. Resolving the conundrum .............................................................................................. 217 

7.4 Future research .......................................................................................................................... 220 

7.5. Limitations of the study .......................................................................................................... 221 

7.6 Implications of the study ......................................................................................................... 222 

7.7 Chapter conclusion ................................................................................................................... 223 

REFERENCES ....................................................................................... 224 

APPENDICES ........................................................................................ 251 



xiii 
 

 



xiv 
 

 LIST OF FIGURES 

Figure 3.1. Three types of teacher knowledge according to Shulman’s (1986) model. . 54 

Figure 3.2. Model of teacher knowledge proposed by Ball, Thames and Phelps (2008).

 ...................................................................................................................................... 61 

Figure 4.1. The steps in the research design for conducting this research study. ......... 72 

Figure 4.2. Stages in the data analysis process, modified from a model by Creswell 

(2009). ........................................................................................................................... 92 

Figure 5.1. Bar graph showing participants’ percentage scores in the content test. .... 105 

Figure 5.2. Box-and-Whisker diagram showing participants’ percentage scores. ....... 105 

Figure 5.3. Correct sketches of 𝑓(𝑥) and 𝑔(𝑥) but with incorrect solution set for 𝑓(𝑥) <

𝑔(𝑥). ............................................................................................................................ 108 

Figure 5.4. A correct attempt at applying the area rule but left incomplete. ................. 109 

Figure 5.5. Partially correct solutions to the trigonometric equations. ......................... 109 

Figure 5.6. Correct solutions of the undefined values of 𝑓𝑥 = −4𝑡𝑎𝑛2𝑥. ..................... 110 

Figure 5.7. Correct approach to undefined values of 𝑓𝑥 = −4𝑡𝑎𝑛2𝑥 marred by 

misunderstanding of transformation of functions. ........................................................ 110 

Figure 5.8. A correct attempt at solving an equation but aborted due to conceptual 

challenges. .................................................................................................................. 111 

Figure 5.9. An error of misrepresenting 𝑠𝑖𝑛𝛼 = 45.   .................................................... 111 

Figure 5.10. Using specific values to prove a general statement. ............................... 114 

Figure 5.11. Correct solution to proving an identity by rationalisation. ........................ 115 



xv 
 

Figure 5.12. The effects of 𝑎 and 𝑏 in changing the amplitude of a trigonometric 

function. ....................................................................................................................... 120 

Figure 5.13. Correct handling of the negative sign in odd trigonometric ratios. ........... 121 

Figure 5.14. A common learner-misconception in solving quadratic trigonometric 

equations. .................................................................................................................... 126 

Figure 5.15. An overloaded lesson plan on the reduction formula. ............................. 129 

Figure 5.16. Assessment question unrelated to the application of the reduction formula.

 .................................................................................................................................... 130 

Figure 5.17. Lesson plan lacking sufficient details in the lesson development stage. . 131 

Figure 5.18. An assessment activity with an error. ...................................................... 131 

Figure 5.19. A unique way of concluding a lesson of giving a problem to summarise. 133 

Figure 5.20. Lesson development portraying progression from simple to complex. .... 134 

Figure 5.21. Teacher’s activities addressing two anticipated learners’ misconceptions.

 .................................................................................................................................... 134 

Figure 5.22. Lesson conclusion planned as answering homework problems. ............. 135 

Figure 5.23. Lesson topic header showing weakness in lesson topic and objectives. 136 

Figure 5.24. Lesson introduction focussing entirely on prior knowledge. .................... 136 

Figure 5.25. Lesson plan header showing lesson topic, objectives, teaching resources 

and teaching methods. ................................................................................................ 137 

Figure 5.26. The introduction was made up of prior knowledge only. ......................... 138 

Figure 5.27. Conceptual errors in the cofunction’s formulae by a participant. ............. 148 



xvi 
 

Figure 5.28. Memorisation of facts and formula using the mnemonics taken from two 

different classes. ......................................................................................................... 148 

Figure 5.29. An undetected error in an assessment activity. ....................................... 151 

Figure 5.30. The preservice teacher granting the entire feedback to learners. ........... 152 

Figure 5. 31.A lesson topic misrepresented from two instances. ................................ 153 

Figure 5.32. A general lesson topic on the reduction formula. .................................... 153 

Figure 5.33. Minor errors in sketching of the functions 𝑓𝑥 = 1 + 𝑠𝑖𝑛(𝑥) and 𝑔𝑥 =

𝑐𝑜𝑠(2𝑥). ....................................................................................................................... 166 

Figure 7.1. The triadic model showing the place of an ideal preservice teacher. ........ 218 



xvii 
 

LIST OF TABLES 

Table 2.1. The concepts under trigonometry to be covered in Grade 10 – 12 

mathematics. ................................................................................................................. 31 

Table 4.1. The analogous measures of quality criteria for quantitative and qualitative 

research designs. .......................................................................................................... 95 

Table 5.1. The distribution of participants’ ages. ......................................................... 102 

Table 5.2. A generalised rubric for scoring items on the content test. ......................... 103 

Table 5.3. Modified rubric for item 1 on drawing and labelling special triangles. ......... 103 

Table 5.4. Scores per item of each participants’ performance. ................................... 103 

Table 5.5. Illustration of the distribution of subject matter knowledge subdomains. .... 106 

Table 5.6. Participants’ performance per item in each sub-category of subject matter 

knowledge. .................................................................................................................. 106 

Table 5.7. Distribution of frequencies of participants’ performance per item. .............. 107 

Table 5.8. The distribution of rubric participants’ scores based on the rubric criteria. . 111 

Table 5.9. Distribution of participants’ performance selected for the second phase of 

data collection. ............................................................................................................ 113 

Table 5.10. Analysis of participant 1’s summary of video lesson analysis. .................. 140 

Table 5.11. Analysis of participant 2’s classroom observation findings. ...................... 141 

Table 5.12. Analysis of participant 3’s classroom observation details. ........................ 142 

Table 5.13. Analysis of participant 4’s video lesson analysis. ..................................... 143 

Table 5.14. Summary of analysis of participant 5’s classroom observations. .............. 144 

Table 5.15. The summary of the classroom observation analysis of participant 6. ..... 145 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1. Background of the study 

Mathematics is a high-status subject in the South African curriculum which is done by all 

learners except at the Further Education and Training phase where they have an option 

between mathematics and mathematical literacy. Mathematics is a gateway subject for 

professions in health sciences, science, engineering and technology. To be relevant in 

the modern technologically- and scientifically-oriented world, children need to be taught 

and learn mathematics concepts competently. The success of learning mathematics is 

reflected in the pass-rate of learners who are doing the subject. As in any other 

educational undertaking, many players are involved in achieving that success. The 

following will be considered in this background section; the crucial role played teachers 

and teacher knowledge in classroom practice, the performance of South African learners 

in mathematics and the teaching and learning of trigonometry. The state of preservice 

teachers’ current mathematical knowledge for teaching and the description of the initial 

teacher education brings the background of the study to an end. 

1.1.1. Key role of teachers in the classroom 

As classroom practitioners, the role of teachers in the classroom is irreplaceable. 

Teachers have the noble role to mould and organise the classroom learning context, 

which places them at the centre stage of what must be taught and learnt in the classroom 

(Cross, 2009). Teachers are the catalysts to teaching and learning upon whom the 

education system and reform depends. The ability of a teacher to breakdown content 

knowledge in meaningful chunks and engage it in the classroom in such a way to enhance 

learner understanding of mathematics has been a central theme in mathematics 

education (Kulm, 2008).  

It was noted that teachers play an important role of helping learners to overcome 

problems in learning mathematics, and this forms the starting point for current reform 

efforts in the South African education system (Dooren, Verschaffel & Onghena, 2002; Hill, 

Blunk, Charalambous, Lewis, Phelps, Sleep & Ball, 2008). However, with the full 

knowledge of supposed key teacher-role, the teaching and learning of subjects such as 

science and mathematics is still of poor quality and below par (Sayed, 2002). The learning 
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of mathematics in particular is in such a critical state (Jansen, 2011) that memorisation of 

facts and other procedural teaching strategies dominate the classroom teachings (Jansen 

& Christie, 1999). Sometimes mathematics teachers lack confidence in some aspects of 

subject-matter, which lead them to skip certain topics completely which they feel are too 

challenging. 

1.1.2. Teacher knowledge 

The art of teaching is an intricate activity that is built on the diverse kinds of knowledge, 

which are, knowledge of school contexts, pedagogical content knowledge, curriculum 

knowledge, content knowledge and knowledge of learners’ misconceptions. The 

uncertainty in the right kind of knowledge needed for teaching has given rise to much 

research on teacher knowledge since the 1800s. In the 1870s, the knowledge of 

pedagogy was essentially ignored to the extent that teachers were assessed for their 

teaching competence based only on content knowledge. There was a turnaround in the 

1980s wherein concerns of teacher competency were judged through pedagogical 

knowledge assessment only. Shulman, together with his colleagues started the 

“Knowledge Growth in Teaching” project 1986, in which they queried the basis of teacher 

knowledge by posing questions such as, “Where do teachers explanations came from? 

How do teachers decide what to teach? What are the sources of knowledge?” (Shulman, 

1986, p.8). The result of their project was to open a debate as to what constitutes the vital 

elements of teachers’ knowledge and how teachers’ knowledge is organised (Gess-

Newsome, 1999a; Fennema & Franke, 1992). 

Up to now there is no theory on teacher knowledge, but a plethora of models of teacher 

knowledge were born. Teacher knowledge is a broad system which fundamentally 

renders its components difficult to study in isolation (Fennema & Franke, 1992). After 

considerations about the diverse kinds of knowledge that inhabit teachers’ minds, 

Shulman (1986) came up with three key categories of teachers’ knowledge, which are, 

content, curricular and pedagogical content knowledge. Content knowledge was the basic 

knowledge of facts of a content area that teachers are required to teach, as well as the 

knowledge of the underlying structures of those facts. Curricular knowledge was defined 

as the various specific teaching and learning resources made available by the teacher to 
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teach the given content. Curriculum knowledge also encompasses the knowledge of 

where the current content fits into the broad scope of an educational program.  

What is striking in Shulman’s (1986) work was the novel knowledge type which he termed 

the pedagogical content knowledge, which is the overlap of the pedagogical and content 

knowledge domains. Shulman (1986) perceived pedagogical content knowledge as the 

“special amalgam of content and pedagogy that is uniquely the province of teachers, their 

own special form of professional understanding” (Shulman, 1987, p.8). Pedagogical 

content knowledge then became the start of a new way of thinking about knowledge for 

teaching which took the scope of teacher knowledge a step beyond both content and 

pedagogical knowledge that constitute it (Chick & Harris, 2007). Ball, Phelps and Thames 

(2008) refined Shulman’s teacher knowledge model and came up with what is termed the 

mathematics knowledge for teaching framework. Of all the diverse teacher knowledge 

types, two of these, the pedagogical content knowledge and content knowledge have 

direct bearing on learner achievement. These two constitute what is termed the 

mathematics knowledge for teaching in this study. It is expected that the pedagogical 

content knowledge and content knowledge of qualified teachers be adequate for effective 

teaching to take place. 

Ever since the times of Shulman (1986) and Ball, Thames and Phelps (2008), teacher 

knowledge research has undergone enormous growth. The strategies and methods for 

studying the teachers’ mathematics knowledge for teaching have broadened and 

developed, to include lesson plan studies, lesson observations, content tests, interviews 

and video-teaching analysis (Borko & Livingston, 1989; Kieran, 2007; Wilson, Floden & 

Ferrini-Mundy, 2002). This study used a content test to assess preservice teachers’ 

content knowledge. Pedagogical content knowledge was assessed through task-based 

interviews, lesson plan analyses and video-teaching analyses. From this section, the 

researcher concludes that Shulman (1986) and Ball (1991) broadly categorised teachers’ 

knowledge into pedagogical content knowledge, content knowledge and curriculum 

knowledge. These three teacher knowledge types underscore all efforts to create a fruitful 

classroom instruction and learning situation. The present study explored pedagogical 

content knowledge and content knowledge with a specific focus on preservice teachers, 
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as the chief determinants of effective mathematics teaching. Curriculum knowledge was 

dropped in this study since in the South African context, detailed work schedules are 

unilaterally supplied to all schools and all teachers which embodies all the curricular 

matters for each subject in all the grades. 

It is true some aspects of teacher knowledge are assumed to be developed as teachers 

gain more experience (Borko & Putnam, 1996). However, the undergraduate modules 

and teaching practice that preservice teachers undertake at university should equip them 

with rudiments of mathematics knowledge for teaching to be ready for their first year of 

teaching (Kilić, 2007). In other words, the initial teacher education is the formal and 

rational source of teacher knowledge. It can be seen that teachers need to acquire deep 

understanding of mathematics knowledge for teaching during their training because 

teacher knowledge is key to learner-achievement. Currently, products of the South 

African teacher education institutions in mathematics and science do not meet the 

standards of the Department of Basic Education. Newly qualified teachers are obliged to 

have adequate content knowledge and the necessary instructional skills to teach that 

content. 

1.1.3. Performance of learners in mathematics 

There is growing evidence that the low learner-performance in mathematics in both 

primary and secondary schools is attributed to limited mathematics knowledge for 

teaching amongst South African teachers (Howie, 2002). In an investigation of the 

persistent low-level of mathematics performance among South African primary school 

learners, it was discovered that good quality teaching is favourable to good learner-

achievement (Carnoy, Chisholm & Chilisa, 2008). Also, poor teaching is the main cause 

of low learner-achievement in mathematics and science in South Africa and so many 

current teachers are not teaching mathematics well (Centre for Development and 

Enterprise, 2011). According to Ball, Lubienski and Mewborn (2001), primary and 

secondary experienced teachers and preservice teachers have general weaknesses in 

understanding the basic concepts in mathematics and South African mathematics 

teachers were found to have inadequate pedagogical content knowledge (Brijlall & 
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Maharaj, 2015; Bansilal, Brijlal & Mkhwanazi, 2014). Given the key role played by 

teachers in the classroom, the future of mathematics teaching in South Africa is at stake. 

Studies to this effect partly ascribe this scenario to inadequate training of teachers, 

especially in the previous political era of white minority rule (Fiske & Ladd, 2004; Howie 

& Plomp, 2002). Other factors of learners’ poor mathematics attainment have been 

inappropriate teaching methods, poor infrastructure in some schools and lack of 

adequately trained mathematics teachers (Spreen & Vally, 2006; Stols, Kriek & 

Ogbonnaya, 2008). Thus, the mathematics knowledge for teaching is fundamental to their 

ability to teach effectively (Ball, Hill & Bass, 2005; Kreber, 2002). Hence, learners’ poor 

performance in mathematics is mostly linked to teachers’ inadequate knowledge to help 

the learners learn meaningfully. It is of interest to investigate preservice teachers to 

determine if teachers’ challenges to teaching originate in teacher education (Mudaly, 

2016). 

During high school mathematics teaching, teachers often do not put emphasis on the 

conceptual skills. Routine application of algorithmic procedures is favoured, thus, when 

the prospective teachers enter teacher education, their mathematics background is often 

not well-formed (Nicol, 2002). Pournara (2005) asserts that the most mathematics 

preservice teachers might not have been accepted into a science degree programme 

mainly because their matriculation mathematics results would have been quite low. The 

implication of this is that many prospective teachers enrol for teacher education studies 

with meagre conceptual understanding of school mathematics. This, according to the 

Department of Education (2001), continuously produces teachers who perpetuate the 

cycle of mediocrity as their future learners would also enter teacher education upon the 

same basis. As a result of the poor quality of current teachers, the South African education 

system is under pressure, particularly in terms of science and mathematics attainment in 

the National Senior Certificate examinations (Centre for Development and Enterprise, 

2011). The South African government’s expenditure on education at all levels is one of 

the highest amongst less developed countries. However, the education output in terms of 

learners’ performance results does not match the expenditure committed, as compare to 

less developed countries. Thus, there is need to conduct studies of this fashion to check 
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if the education woes in South Africa commence in teacher-training, one of the 

instrumental sources of teacher knowledge development and production. 

1.1.4. The state of trigonometry knowledge in South Africa 

South Africa needs teachers with strong pedagogical content knowledge and content 

knowledge in all the mathematics topics, especially in the concept of trigonometry. 

Trigonometry forms an integral part of Grade 10 to 12 mathematics which make use of 

algebraic, graphical and geometric reasoning when solving problems involving 

trigonometric expressions, triangles and real-life application of trigonometry (Nabie, 

Akayuure, Ibrahim-Bariham & Sofo, 2018). Full understanding of trigonometry at high 

school forms a foundation for conceptual learning of many other concepts at higher 

education institutions. Trigonometry is all over in differential and integral calculus, linear 

algebra, real analysis, geometry and differential equations. Nevertheless, it was observed 

that find learners grapple with trigonometry, whereby they find trigonometry 

predominantly abstract, hence challenging relative to other mathematics concepts (Gür, 

2009; Weber, 2005).  

A study of mathematics topics which South African learners find most challenging to learn 

revealed that even though many of them find many topics difficult to learn, the largest 

group (46 percent of the learners in the sample) reported that they find learning the topic 

of trigonometry quite difficult to grasp (Atagana, Mogari, Kriek, Ochonogor, Ogbonnaya 

& Makwakwa, 2009). As some of these learners progress to teacher education, their ill-

formed ideas of trigonometry cause them to fare less in their understanding of 

undergraduate and school trigonometry. Hence, literature reports that say preservice 

teachers lack adequate knowledge of trigonometry (Fi, 2003). Dündar and Yaman (2015) 

observed that preservice teachers’ procedural trigonometry knowledge was high at the 

expense of conceptual knowledge. Frequently, preservice teachers discuss the concept 

of trigonometry from its algorithmic standpoint but lack the strong mastery of the meaning 

of those concepts. Conceptual knowledge is required when transforming a problem 

situation into mathematical notation.  
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1.1.5. Preservice teachers’ mastery of mathematics knowledge for teaching 

The current state of mathematics teachers is that they lack adequate mathematics 

knowledge for teaching, as was explained in section 1.1.2. An investigation of preservice 

teachers of mathematics might inform the policy makers of the future state of mathematics 

teachers. Once prospective teachers get their mathematics knowledge for teaching in 

order whilst in teacher education, then they would be able to play their expected 

classroom roles without difficulty. Preservice teachers must acquire knowledge in school 

mathematics and advanced undergraduate mathematics in the initial teacher education 

programmes. Advanced mathematics is good, but it is not directly connected to classroom 

teaching and learning, hence the mathematical knowledge for teaching focusses 

exclusively on school mathematics. In South Africa, most prospective teachers possess 

inadequate school mathematics content knowledge (Biyela, 2012).  

Studies have even demonstrated that preservice teachers possess inadequate 

conceptual understanding of the mathematics content they would be expected to teach 

upon qualification (Southwell & Penglase, 2005; She, Matteson, Siwatu & Wilhelm, 2014). 

Prospective teachers enrol in teacher education programmes to gain teaching skills by 

means of content, pedagogy and methodology modules, and teaching practice. 

Nevertheless, preservice teachers often leave these programmes with more or less the 

same knowledge base as when they first entered with regard to school mathematics 

(Benken & Brown, 2008; Seaman, Szydlik, Szydelik & Beam, 2006). Thus, it implies that 

not much is done by teacher training institutions to advance preservice teachers’ 

knowledge of school mathematics. Though it is difficult to measure the extent of change 

brought about by the exposure of preservice teachers to teacher training programmes, 

research results reveal that some initial teacher programmes are hardly able to equip 

preservice teachers with essential mathematics knowledge skills to become fully-fledged 

teaching professionals (Barnes, 2009).  

As such, it is of necessity to conduct research studies to assess the level of preservice 

teachers’ understanding of mathematics knowledge for teaching as they exit higher 

education institutions. Instead of taking mathematics knowledge for teaching as 

supposed, there is need to carefully measure it and map it. Such attempts have been 
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made in this study by means of multiple tools, which are content tests, pre- and post-

observation interviews, lesson plan analyses and classroom observation. The shortage 

of studies that evaluate the preservice teachers’ level of mathematics knowledge at the 

point of exit and the alleged failure of some programmes to equip preservice teachers 

with adequate mathematics knowledge necessitated the present study. Hence in this 

study the researcher sought to investigate the preservice teachers’ perceived 

understanding of mathematics knowledge for teaching in response to pleas of repeated 

production of teachers who seem to be inadequately trained to teach school mathematics.  

1.1.6. Initial teacher education in South Africa 

The misconstrued interpretation of the findings from the National Teacher Education Audit 

of 1995 resulted in the improper perception that they were too many teachers in South 

Africa. This duly led to the closure of all teacher education colleges, but then the initial 

teacher education deteriorated. There was now a shortage of teachers, and more 

pronounced in the gateway subjects such as mathematics, science and accounting. 

Higher education institutions solely took over all initial teacher education concerns, which 

guaranteed that all new teachers graduate with a Bachelor of Education or a Post-

Graduate Certificate qualification upon completion of teacher training which was initiated 

on a large scale. University graduates seemingly are considered better qualified than the 

diploma-holder teachers who used to be produced by the old system of colleges of 

education. Still preservice teachers did not perform well in the mastery of teacher 

knowledge and other teaching skills. It remains the responsibility of universities to change 

the mediocre mathematics teaching and learning standards by providing the preservice 

teachers with strong mathematical content and pedagogical content knowledge (Sam, 

2005).  

In South Africa there has been some criticism on the role played by the current teacher 

education programmes in reforming mathematics education (Biyela, 2009). However, the 

critics are oblivious to the fact that teacher education institutions have challenges too, for 

example the difficulties they encounter in recruiting mathematically competent learners 

into teacher education and inclement financial budgets. Operational challenges of hosting 

practising teachers and the financial constraints limit the teacher education institutions' 
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capacity to train in-service teachers. Teachers’ content and pedagogical content 

knowledge is also acquired through workshops and seminars, and from on-the-job 

experience. But this route has financial repercussions for the service providers and 

sometimes it takes time. An imbalance in financial resources at most education 

departments in the country's universities makes it difficult to prepare confident and 

competent prospective teachers. Thus most higher education institutions are heavily 

funded by the state so that they can offer quality initial teacher education to prospective 

teachers.  

Teacher education has the potential to influence teacher knowledge growth in preservice 

teachers (Ijeh, 2012). Preservice teachers occupy the link between teacher education and 

teacher knowledge. Teacher education imparts pedagogical content knowledge and 

content knowledge through undergraduate instruction and school practice teaching as 

part of the initial teacher education training. This is the feasible way to produce effective 

future teachers. Attempts to redress the inadequacies of teacher knowledge for qualified 

teachers is not without challenges.  

Now that teachers’ lack mathematics knowledge for teaching, it is best to address this 

issue in teacher education (Aslan-Tutak & Adams, 2015), the fundamental and formal 

source of teacher knowledge. Mastery of the mathematics knowledge for teaching is a 

function of the quality of initial teacher education received, thus the the notion of teacher 

knowledge was brought up in this study on preservice teachers. In-service training could 

be used too, to advance teachers' pedagogical content and content knowledge, but, 

according to Carnoy, Chisholm and Chibisa (2012), that does not lead to much 

improvement in the overall quality of teachers' knowledge. Practising teachers usually 

develop a teaching philosophy which naturally resists any attempt to change. That being 

the case, the focus of teacher quality improvements turns out to be the initial training of 

preservice teachers. Therefore, it lies upon the heart of teacher training institutions to 

thoroughly prepare preservice teachers in terms of their knowledge in subject-matter and 

the skills of how to teach it. The investigation of mathematics knowledge for teaching 

centred on the final-year preservice teachers’ who represents the end product or climax 

of teacher education. 
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In mathematics teaching, besides knowing the content, it is critical for a teacher to know 

how to impart content knowledge to learners. There are some studies indicating that 

pedagogical content knowledge is also related to the quality of the preservice teacher 

education received (Auliffe, 2013). It is the right time to start asking ourselves why our 

teacher education courses are not having the desired improved effect on the mathematics 

performance of our learners. According to the model by Fennema and Frenke (1992) on 

teacher knowledge, effective teaching of mathematics occurs when the content 

knowledge, pedagogy knowledge of teachers and context-specific knowledge form an 

integral part of the teacher-preparation programmes. Thus, these components of 

Fennema and Franke’s (1992) model of teachers’ knowledge need to be advocated when 

the universities implement teacher training programmes (Mohr, 2006). In normal 

classroom situations, teachers have the duty to decide on the teaching strategy and what 

to teach. The syllabus and other policy documents act as guides within which teachers 

plan their lesson to achieve learning goals. Teacher's pedagogy and content knowledge 

skills thus play a major role, which guides teachers’ decisions about the correctness or 

falsity of learners’ responses. Consequently, this study reckons that it is frequently the 

unsuitable and insufficient preparation and training of teachers which leads to learners 

failing to understand mathematical concepts. Teachers normally resort to the easy route 

of direct transmission of knowledge to learners through teacher-centred teaching 

methods if they are faced with limited teacher knowledge.  

1.2. Statement of the problem 

Teachers are the key players of classroom learning and their knowledge on teaching and 

learning is the most reliable predictor of learner achievement. Darling-Hammond (2000) 

posited that the missing link to learners’ academic success in the modern-day classroom 

is teacher knowledge. According to the model of teacher knowledge by Ball, Thames and 

Phelps (2008), teachers need to be in possession of two knowledge domains in order to 

be successful and contribute to the improvement of mathematical thinking of learners. 

These two are pedagogical content and content knowledge domains. The National Policy 

Framework for Teacher Education and Development envisage equipping South African 

teachers with all the necessary skills and knowledge for them to face the current demands 

for better education (Department of Education, 2006). Furthermore, the Department of 
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Higher Education and Training developed an instrument called the Minimum 

Requirements for Teacher Education Qualifications policy. This instrument advocates 

that teacher candidates and beginning teachers should be in possession of robust content 

knowledge and to know how to teach that content (Department of Higher Education and 

Training, 2011b). They should also be able to select, sequence and allot topics in tune to 

the demands of the syllabus of each of the subjects they will be teaching. Thus, the initial 

teacher education ought to instil competency in preservice teachers for a successful 

school teaching journey upon completing their studies (Gierdien, 2012). Preservice 

teachers ought to have an in-depth knowledge of the mathematics content they will soon 

teach for them to be competent future mathematics teachers (Ball, Thames & Phelps, 

2008). This includes topics like trigonometry, which improves the reasoning capacity of 

learners and whose properties constitute many aspects of calculus, including curve-

sketching, limits, continuity, differentiation and integration.  

In South Africa, some higher education institutions tend to comply with the government’s 

policy requirements on the initial teacher education superficially (Department of Higher 

Education and Training, 2010). This compromises production of new teachers who are 

competent to teach. As a result, there is a serious challenge facing education whereby 

teachers have limited conceptual understanding of content they are expected to teach 

(Department of Higher Education and Training, 2011b; Brodie, 2004). These are some of 

the teachers who passed through the same teacher education system Ihave today. The 

prospective teachers who are still under training did not fare any better. Their pedagogical 

content knowledge is not robust; it was revealed that novice teachers and preservice 

teachers often resorted to factual and closed questions in their teaching and also 

administer lower-order tasks which mainly focus on procedures and rote memorisation 

(Lloyd, 2006; Crespo, 2003). Moreover, preservice teachers were observed to lack the 

depth and breadth in the mathematics content knowledge they are required to teach 

(Wilburne & Long, 2010) and they have insufficient knowledge of learners’ mathematics 

conceptions (Ball, 1990; Kilič, 2011). As for trigonometry, preservice teachers’ 

understanding was found to be at insufficient levels (Fi, 2003). It was also shown that 

there is ineffective vetting of applicants prior to admission in teacher education due to 

weak passes of those who decide to train as teachers (Department of Higher Education 
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and Training, 2010). Hence, preservice teachers enter and exit teacher education with 

meagre conception of mathematics.  

If mathematics educators wish to improve the mathematics knowledge for teaching of 

preservice teachers, then the first step is to explore their current knowledge levels. Only 

after an assessment of the extent of their current level of knowledge can plans for 

modifications to the initial teacher education be hatched. Hence, the present study 

purposed to investigate final-year preservice teachers’ mathematics knowledge for 

teaching in trigonometry at a South African higher education institution, to see if the 

current production of mathematics teachers meets the expectations of the Department of 

Higher Education and Training, the Department of Basic Education and other interested 

parties. This in turn hopefully would enlighten our quest for optimum training of 

mathematics preservice teachers and help to curtail the alarming low performance of 

mathematics amongst South African school learners.  

1.3. Research questions 

The present study attempted to answer the following research questions:  

1.3.1.  What is the level of preservice teachers’ understanding of trigonometric concepts? 

1.3.2. What pedagogical content knowledge do preservice teachers possess in 

trigonometry? 

1.3.3.  To what extent do preservice teachers develop the mathematics knowledge for 

teaching of trigonometry in initial teacher education? 

1.4. The purpose of the study 

The intention of the present research study was to explore preservice teachers’ 

understanding of pedagogical content knowledge and content knowledge in teaching 

trigonometry and to determine the extent of their development in teacher-training. This 

was accomplished by assessing the depth of preservice teachers’ mathematics 

knowledge for teaching in trigonometry as they exit teacher training.  
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1.5. Delimitations of the study 

The selection of participants was confined to rural preservice teachers studying at a rural-

based higher education institution in South Africa. The institution consists of a wide range 

of students from diverse ethnic and impoverished backgrounds. For some consecutive 

weeks in the last two years of their four-year study, preservice teachers go for home-

based teaching practice. The rural areas where preservice teachers hail from were limited 

to Limpopo and Mpumalanga provinces. The exploration of preservice teachers’ 

knowledge in this study was limited to trigonometry.  

1.6. Significance of the study 

Even though based on a cohort of final-year preservice teachers at one higher education 

institution, the findings of the present research study have far-reaching contributions, 

potential benefits and prize to the mathematics education community. This study has 

shown that the training and preparation of preservice teachers is two-faced. One facet is 

that preservice teachers receive training that make them fully competent by the time they 

graduate from teacher education institutions. This is the stance taken by policy makers 

who sponsor and expect teacher candidates to possess knowledge of content and 

knowledge of how to teach that content by the time they complete their studies 

(Department of Higher Education and Training, 2011b). Upon that basis, the exploration 

of preservice teachers’ mastery of mathematics knowledge for teaching was conducted, 

such knowledge which they would need to put into practice when they are beginner-

teachers. On the other hand, some argue that preservice teachers acquire knowledge of 

teaching through actual teaching practice experience. Teacher education therefore only 

provides a framework and structure, to which novice teachers complement by their 

individual experiences. Kilić (2009) concurs by stating that preservice teachers should 

possess the basic pedagogical content knowledge at teacher-training, which they would 

later improve as they gain actual field experience. Thus, both preservice teachers and 

teacher educators should strike a balance on the two facets teacher-training. 

Curriculum planners of teacher education also stand to benefit from the findings of this 

study. As those responsible for drafting university programmes realise that teacher 

candidates exit the system with scant knowledge of content knowledge they are expected 
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to teach, adjustments can be done to their curricula in order to optimise mastery of content 

knowledge in teacher education programmes of study. Sometimes it does not make much 

sense for preservice teachers to do advanced undergraduate mathematics content in 

applied mathematics, statistics, calculus, analysis and linear algebra, yet lack knowledge 

in school mathematics. According to Kilpatrick, Swartford and Findell (2011), it is a 

problem if preservice teachers learn highly abstract concepts in university-level 

mathematics yet they are unable to unpack the same concepts in ways understandable 

to learners. Preservice teacher education should strive at its best to prepare prospective 

teachers for school teaching (Gierdien, 2012). Teacher education should bridge the divide 

between university-level mathematics and school mathematics to empower preservice 

teachers with skills and expertise to teach mathematics when they begin their teaching 

career.  

Most higher education institutions, including the research site for this study, design all the 

first-year mathematics modules to be a re-cap of selected Grade 12 mathematics 

concepts and topics and for a long time trigonometry has been one of them. In addition 

to content knowledge modules, methodology modules at all levels of study impart 

pedagogical content knowledge skills to preservice teachers by referring to appropriate 

secondary school mathematics concepts. Teaching practice at all levels of study is at 

hand to apply in the real classroom situation all the theory of teacher knowledge which 

preservice teachers have been taught in teacher education. These measures ensure 

prospective teachers’ mastery of the mathematics knowledge for teaching is well-

grounded in the minds as part of their training.  

This study is important in the sense that it reveals the need to give due support to novice 

and beginning teachers. Many new teachers to the profession are given full responsibility 

to teach and left to figure out their own way into effective teaching ways because they are 

holders of a university teaching qualification. To most of the preservice teachers, real 

support to teaching ends with supervised teaching practice, both from the university 

supervisors and school-based mentors. New teachers still need teacher-mentors for 

support in their early years of teaching. Weak mathematics knowledge for teaching for 
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both in-service and qualified teachers is a clear testimony that continued support is a 

necessity.  

The knowledge which preservice teachers get from teacher education is not enough to 

face the reality of school teaching, but it has the potential to shape their future teaching if 

given necessary support from universities, schools and Departments of Higher Education 

and Training and Basic Education (Bailey, 2014). Many inexperienced teachers of 

mathematics do not know how to develop, adapt and employ pedagogical content 

knowledge in their teaching (Halim & Meerah, 2002). Consequently, they may start to 

dislike and skip teaching certain topics. This is something that is avoidable if necessary 

support is rendered to teachers’ weaknesses in content and pedagogical content 

knowledge. Moreover, the chief factor attributed to the South African learners’ under-

performance in mathematics is the lack of teachers’ knowledge and experience (Howie, 

2002; Department of Basic Education, 2012). The findings of this aspect of the research 

will help generate valuable input for novice teachers to be given continual professional 

development, this time as in-service teachers through continuous professional 

development.  

This study contributes by highlighting many issues and perspectives related to challenges 

faced by preservice teachers as they undergo training to teach mathematics. Preservice 

teachers face serious challenges of understanding some topics of mathematics which 

they would teach. Trigonometric functions are one such area of school mathematics that 

learners often find specifically difficult to comprehend (Akkoć, 2008; Tuna, 2013; Weber, 

2005). Having been learners themselves, preservice teachers enrol at teacher education 

institutions with the same difficulties in understanding trigonometry. In this respect, it was 

noted that preservice teachers experienced problems in conceptualising and teaching 

trigonometry and many of the issues centred on preservice teachers’ own inadequacies. 

One reason for the lack of comprehension is that basic concepts making up trigonometry 

call upon learners’ reasoning skills, especially in the aspect of shifting from algebra to 

geometry (Tuna, 2013). Instead, this study revealed that most preservice teachers 

exhibited strong elements of procedural instruction of trigonometry such as the 

SOHCAHTOA acronym, CAST diagram and memorization of ratio of sides of special 
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angles (Berenson, van Der Valk, Oldham, Runesson, Moreira, Berenson & Laurie, 2005). 

This obviously counteracts attempts of getting learners to develop reasoning skills in 

trigonometry. More so, there has been little research on final-year preservice teachers’ 

understanding of trigonometry (Akkoć, 2008).  

The other significance of this study rests on the premise that it will shed light on the 

shortcomings of mathematics education programmes in the teacher-training institutions. 

From the onset of democratic rule in 1994, the South African national departments of 

education and higher education have invested heavily in training and re-training of 

teachers. These measures were taken in order to improve this country’s education system 

and the training of teachers (van der Sandt & Nieuwoudt, 2005). However, it is surprising 

that despite these efforts, the status of education in South Africa has not yet shown 

remarkable improvements (Brodie, 2004), notably in science and mathematics. 

Therefore, it is of necessity at this point to find out the current status quo of teacher 

candidates who are on the verge of becoming novice teachers whether they have a good 

command of mathematics knowledge for teaching.  

The level of teacher knowledge informs classroom instructional strategies, which 

sequentially leads to improved learner-achievement (Cunningham, 2005). Teacher 

knowledge is acquired mostly in preservice and in-service teacher education, hence the 

national government willingness to fund it. This study and others reveal that preservice 

teachers leave teacher education with inadequate knowledge of content and how to teach 

it (Fi, 2003; Mudaly, 2016; Carnoy, Chisholm & Chilisa, 2008). If that is the case, then 

there are some shortcomings in the current teacher education system and value for the 

money invested into it is not realised. It is true some aspects of teacher knowledge are 

assumed to be developed as teachers gain more experience (Borko & Putnam, 1996). 

However, the undergraduate modules and teaching practice that preservice teachers 

undertake at university should equip them with rudiments of mathematics knowledge for 

teaching to be ready for their first year of teaching (Kilić, 2007).  

Lastly, investigation of preservice teachers’ content knowledge of mathematics is 

relatively easy. Most studies highlighted in the literature review chapter, as well as this 

study relied on using a content test instrument. The writing of the test is always supervised 
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and then scored objectively. On the contrary, it is a mammoth task to measure preservice 

teachers’ pedagogical content knowledge, which is by nature unique, specialised and 

develops in cycles rooted in classroom practice (Miller, 2006). In brief, pedagogical 

content knowledge varies among individuals (Jong, Van Driel & Verloop, 2005), hence 

not comparable across the breadth of participants. To alleviate that, three instruments 

were used to gain insight into preservice teachers’ pedagogical content knowledge, which 

were lesson plan analyses, classroom observations and task-based interviews. The 

contribution of this study was to show that pedagogical content knowledge is nebulous 

and difficult to isolate from other domains of teacher knowledge. Notwithstanding, 

gauging preservice teachers’ pedagogical content knowledge is necessary and provides 

a good starting point in gaining insight into the dynamics of teacher knowledge. Such 

knowledge is vital for in-service teachers too and is a headway to discovering new and 

improved methods of teaching problematic topics in mathematics. This helps to bridge 

the gap between teachers’ classroom practices and teacher knowledge domains. 

1.7. Justification of the study 

1.7.1. Personal 

The rationale for this study was multi-faceted, spanning personal interests, limited teacher 

knowledge, learners' under-achievement in mathematics and need for improvements in 

the training of new teachers of mathematics. The experience of the researcher in training 

and working with preservice teachers revealed their lack of confidence to explain 

trigonometric concepts. The core of teacher education programmes is to empower 

preservice teachers with requisite knowledge needed for classroom instruction by the end 

of their teacher education studies. Though it is not easy to measure the degree of 

transformation brought about by the exposure of preservice teachers to the teacher-

training system, some programmes leave preservice teachers ill-equipped with essential 

teaching skills. Consequently, preservice teachers were found to possess inadequate 

mathematical content knowledge and pedagogical content knowledge (Fi, 2003; Mudaly, 

2015).  Thus, I have come to realise the need to add accountability to the production of 

new teachers coming through higher education institutions. One way of doing that was to 

conduct studies of this nature so that researchers can have a glimpse of the state of 

teacher knowledge in the products of higher education institutions. This would give a 
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glimpse to the shortcomings of the current initial teacher education programmes and also 

preservice teachers would perform in their initial years of school teaching. All these 

personal dispositions have been made possible by the existence of a research gap in 

literature on preservice teachers' mathematics knowledge for teaching in trigonometry in 

poor ethnic students at a rural-based higher education institution. 

1.7.2 Teacher knowledge 

There is necessity to delve into the depths of the domains of teacher knowledge, since it 

is key to classroom instruction and possible improvements in learner-achievement. By 

means of well-mastered mathematics knowledge for teaching, teachers would be able to 

choose the best possible manner of delivery of content to their classes. This places the 

mathematics knowledge for teaching at the fore of what takes place in the classroom. 

According to Ball (1990), effective teaching of mathematics rests squarely on the 

teachers’ mastery of content and pedagogical content knowledge. It also influences both 

lesson planning and other classroom practices. Also learner performance has been 

observed to be favourably high when a teacher has robust disciplinary knowledge they 

are supposed to teach (Hill, Rowan & Ball, 2005). Frequently, learners fail to grasp 

mathematics concepts due to inefficient preparation and training of teachers. For 

example, once a teacher dislikes or lacks confidence in teaching a particular topic, he/she 

may skip it or be selective in what he/she teaches in that topic (Furner & Robison, 2004). 

In a way, teachers pass down their own weaknesses in certain topics along to their 

learners. One such area of study of mathematics which teachers are not comfortable with 

is trigonometry, as explained in the next section. The discussion above justifies a careful 

consideration of knowledge domains of teachers as they apply to teachers and teacher-

candidates. The mere possession of a qualification in mathematics teaching does not 

transform to effective teaching. Some of the results of effective teaching reflect in learner-

performance results, which are currently below expectations in South Africa.  

1.7.3. Trigonometry 

Trigonometry is an important concept in school mathematics which has the potential to 

improve learners’ reasoning capabilities (Dündar & Yaman, 2015). It is also a topic which 

many learners dislike and grapple with (Gür, 2009). One of the reasons cited for the 
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perceived difficulties in trigonometry is that most trigonometric concepts are usually 

taught from the algorithmic approach, without necessary emphasis on the conceptual 

understanding (de Villiers & Jugmohan, 2012). In addition to that, teachers’ knowledge of 

trigonometry has not received enough attention among mathematics education 

researchers (Akkoč, 2008) in a way to identify their weaknesses and possible channels 

of assisting them. Preservice teachers too were found to lack knowledge of trigonometry 

(Fi, 2003; Čižmešija & Milin Šipuš, 2013). Thus, there is need to tap into the preservice 

teachers’ understanding of mathematics knowledge for teaching in trigonometry to check 

their readiness to teach it when they complete training. Having such knowledge would go 

a long way in enabling teacher education institutions to better equip future teachers of 

mathematics. In conclusion, a mixture of my personal experiences as a mathematics 

education lecturer, the knowledge domains of teacher knowledge and the poor teacher 

and learner-understanding of trigonometry is the justification of the present study.  

1.8. Overview of chapters 

In order to situate this study in the broader perspective of existing research, an in-depth 

literature study was done and reported in Chapter 2. Following on that, Chapter 3 

expounds the underpinning conceptual framework of this study, which is the mathematics 

knowledge for teaching by Ball, Thames and Phelps (2008). Chapter 4 addresses the 

manner wherein this research study was conducted, that is, its design as well as other 

methodological issues to collect and analyse data. Chapter 5 inter-mixes the presentation 

and analysis of research data from the four data collection instruments. Chapter 6 

presents the discussion of findings of the study based on the analysis of data. Finally, 

Chapter 7 presents the summary, conclusion and recommendations for future research, 

as well as the limitations of the study.  

1.9. Chapter conclusion 

The chapter started by indicating that the background to this study was rooted in the 

concern about the South African learners’ under-achievement in mathematics and the 

need for effective teaching to redress this situation. The inadequate preservice teachers’ 

understanding of the mathematics knowledge for teaching and the prominent role played 

by the initial teacher education in the training of new teachers also formed part of the 
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background. The problem statement highlighted the ideal situation where preservice 

teachers are expected to possess competence of teaching school mathematics as they 

graduate from training institutions. However, literature reports that preservice teachers 

lack the depth and breadth of the knowledge of school mathematics. Hence, the goal of 

this research study was to explore preservice teachers’ understanding of the mathematics 

knowledge for teaching and the extent of the development of the same in classroom 

teaching in trigonometry, in the sample of participants chosen from a rural-based higher 

education institution in South Africa.  

The significance of the study was that it can inform teacher education programmes for 

improved preservice and in-service teacher training on how best their programmes can 

be structured to engender competent mathematics teachers. The study also will bring to 

the fore the South African state of teacher education, in tune with the efforts by the 

Department of Basic Education and the Department of Higher Education and Training to 

produce competent future teachers. The rationale of the study was the quest for quality 

mathematics teaching, especially in topics like trigonometry, which pose challenges to 

both learners and teachers.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

The various aspects of literature that informed this study are explained in this chapter. 

The next section (2.2) of this chapter deals with the constructs of teacher knowledge by 

highlighting their meaning and importance, as well as the critical role played by the 

mathematics knowledge for teaching in classroom practice. The discussion on teacher 

knowledge is centred on the ground-breaking work by Shulman (1986, 1987) and other 

studies which later built on Shulman’s work. Section 2.3 discusses qualified teachers' 

mastery of pedagogical content knowledge in selected topics. This was done as a 

reference point for an investigation into preservice teachers’ pedagogical content 

knowledge. Practising teachers experience the growth of pedagogical content knowledge 

as they gain experience of teaching, whereas preservice teachers lack the exposure of 

such growth of pedagogical content knowledge.  

The section 2.4 places the significance of appropriate teacher knowledge for the success 

of classroom teaching practices. It will be shown that if teachers keep their role in the 

classroom through the knowledge which they have, learners' performance is bound to 

improve. Section 2.4 takes further the notion of teacher knowledge by narrowing it down 

to preservice teacher knowledge in the South African context, followed by other contexts 

from all over the world. Section 2.5 highlights the qualification route for new teachers in 

South Africa, as well as explaining the guidelines to be met by successful prospective 

teachers. The Minimum Requirements for Teacher Education Qualifications policy 

embodies mathematics knowledge for teaching by specifying that new teacher graduates 

ought to have rigorous subject knowledge and the know-how of teaching it. Thereafter, 

section 2.6 deals with the topic of trigonometry, by tracing its origin and providing the 

rationale for its inclusion in the secondary school mathematics curriculum, especially in 

South Africa. Coming after this is an explanation of the challenges of teaching and 

learning of trigonometry in schools.  

Section 2.7 highlights literature of the extent to which preservice teachers' content 

knowledge on selected school mathematics topics fare, in a way to explore their 

preparedness as mathematics teachers. Teachers can only teach meaningfully what they 
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know. Section 2.8 focusses on literature on explaining preservice teachers' understanding 

of pedagogical content knowledge. Prospective teachers' perceptions on teaching 

specific topics, explanations and critical thinking skills will be discussed. The subsequent 

section (2.9) gives an overview of preservice teachers’ mathematics knowledge for 

teaching, which they acquire in teacher training institutions. This section lays background 

for the upcoming two sections, which highlight literature on preservice teachers' mastery 

of content knowledge, followed by one on preservice teachers' pedagogical content 

knowledge. Finally, the chapter conclusion is presented in section 2.10, whereby it will be 

shown the importance of teachers' successful mastery of the different types of teacher 

knowledge in order to be effective teachers. 

2.2. Pedagogical content knowledge in mathematics teaching 

Mastery of pedagogical content knowledge by teachers of mathematics is key to the 

teaching and learning process that it was observed that teachers with inadequate 

mathematics knowledge find it difficult to appropriately sequence or connect topics 

(Hristovitch & Mitcheltree, 2004). This study has shown that pedagogical content 

knowledge is nurtured in accordance to growth of job experience, hence some studies 

focussed on exploring qualified teachers’ potentially shifting knowledge. While the present 

study focuses on prospective teachers, this study benefits from the insight drawn from 

the studies conducted on qualified teachers’ mathematics knowledge for teaching.  

The study by Hristovitch and Mitcheltree (2004) reported of a professional development 

programme designed to improve teachers’ pedagogical skills and content knowledge. The 

first phase of the project focused on identifying the areas in which teachers’ knowledge 

needed improvement and the second phase focused on the issues of the content that 

should be made aware to teachers so that learners’ achievements in mathematics can be 

realised. Three teachers participated in the study where they were observed teaching 

fractions and decimals in primary schools. It was evident from this study that while 

teachers tried to use innovative approaches like problem-solving in their teaching 

strategies, the instructional activities employed did not lead to learner-conceptual 

understanding and the expected connections of ideas. These teachers failed in organising 

and sequencing mathematics concepts in a way that would present mathematical ideas 
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coherently. The consequence of such teachers’ failure to organise and coherently 

sequence mathematics concepts was to teach them as isolated bits of information. The 

topics were also taught devoid of real-world application which is known to aid learners to 

conceptualise mathematics concepts (Lott & Souhrada, 2000). Sufficient mastery of 

mathematical knowledge for teaching goes a long way to help teachers address teaching 

and learning issues highlighted above.  

In cases where teachers had challenges with the mathematical knowledge for teaching, 

teaching was characterised by rigid teaching methods, which predominantly relied on 

textbooks as the sole source of instructional knowledge (Lott & Souhrada, 2000; Turnuklu 

& Yesildere, 2007). The then Department of Education perceived mathematics as a 

process- and concept-driven subject that requires learners to authentically connect and 

apply its concepts in the real-world context (Department of Education, 2005). This 

requirement cannot be fully achieved if teachers do not possess adequate pedagogical 

knowledge and content knowledge. Furthermore, the study by Hristovitch and Mitcheltree 

(2004) indicated that teachers had problems explaining mathematical ideas. For instance, 

some teachers had difficulties in relating fractions to division of whole numbers and to 

explicitly show the transition from fractions to decimal fractions.  

A study by Yusof and Zakaria (2010) sought to explore and describe the extent of 

pedagogical content knowledge held by three mathematics teachers when teaching 

functions at secondary school level. That study endeavoured to explore the components 

of pedagogical content knowledge and to determine the three teachers’ mastery of 

pedagogical content knowledge in the concept of functions. The research was qualitative 

in nature and conducted as a case study design. Data collection instruments used were 

interviews, classroom observations and document analyses. The pedagogical content 

knowledge components which they found were the use of analogies, symbolic 

representations and instructional strategies. These were found to have been used by the 

three teachers to stimulate the learning process. The three teachers’ lessons were found 

to lack accuracy and instructional clarity for the learners due to lack of adequate 

conceptual knowledge of functions. 
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In a study by Chick, Baker, Pham and Cheng (2006), the theme of the study was the 

exploration of the primary school teachers’ pedagogical content knowledge as they taught 

subtraction in the lower grades. The research design was qualitative and the case study 

methodology was employed in that study. Data were collected by interviews, lesson 

observations and questionnaires. Chick, Baker, Pham and Cheng (2006) created three 

distinct projections in their study. Firstly, if teachers had sufficient subject matter 

knowledge, this would have been evident through teachers’ exhibition of thorough and 

deep conceptual understanding of concept taught. Secondly, if teachers had adequate 

knowledge of instructional methods, it would have been evident in their use of appropriate 

activities during the instruction phase. Lastly, if teachers had ample knowledge of 

learners’ conceptions, evidence would have been obvious if they displayed interest in the 

learners’ prior knowledge and dealt with learners’ difficulties and misconceptions on the 

concept taught. The findings were that teachers in the study lacked firm content 

knowledge on subtraction. The teachers were also observed to rely on a sole teaching 

method, and that method did not connect to the learners’ known environment. The 

teachers had ostensibly good lesson presentations, but they lacked knowledge of how to 

identify and correct learners’ misconceptions. 

In all, the literature presented above indicates that qualified teachers had inadequate 

mastery of pedagogical content knowledge, for example, their sequencing of topics was 

lacking, prior knowledge was not squarely placed where it belonged and insufficient 

attention was paid to addressing learners’ difficulties and misconceptions. Teachers’ 

difficulties with content knowledge were observed in the teaching of subtractions, 

functions and sequences topics. Teachers’ application of instructional strategies was 

mediocre, which could have been higher since the focus was on qualified teachers with 

many years of teaching experience. Resorting to sole teaching strategies is a sign of weak 

mastery of pedagogical content knowledge. Thus, for these teachers, their mathematics 

knowledge for teaching was inadequate. 

2.3. The role of teacher knowledge in the classroom 

Though it is commonly agreed that the teacher factor has a direct influence on learners’ 

educational attainment (National Council for Teacher of Mathematics, 2000), the extent 
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of that influence and the kind of knowledge structure that produces effective teaching has 

been in the spotlight of researchers. Teacher knowledge is pivotal in teachers’ execution 

of their duties and this critical role of teachers’ knowledge was acknowledged from time 

immemorial. Shulman (1986) concurred by saying that successful teachers require a 

highly organised and extensive body of knowledge of their respective disciplines. The 

National Council for Teacher of Mathematics also asserted the significant role of teacher 

knowledge when they stated that effective teaching requires understanding and knowing 

mathematics and commensurate pedagogical strategies to teach that content (National 

Council for Teacher of Mathematics, 2000). Nothing can surpass the role played by 

teacher knowledge in the classroom. Challenges to teaching and learning are 

encountered if the role of teacher knowledge is compromised, say, by lack of adequate 

mathematical knowledge for teaching. Hence, this study advocates assessing current 

preservice teachers’ state of teacher knowledge so that they are not found embroiled in 

perpetuating the cycle of learner mathematics underperformance in South Africa when 

they eventually join the teaching service.  

Globally, there is an outcry about low learner achievement in science and mathematics 

subjects (Moloi & Strauss, 2005; Howie, 2003; van der Walt & Maree, 2007).  While the 

cause of poor achievements in mathematics is multi-faceted, many researchers attributed 

it to lack of mathematics knowledge among teachers, teaching of mathematics by 

unqualified or under-qualified teachers and outdated teaching practices (Pournara, 2005; 

Mji & Makgato, 2006; van der Walt & Maree, 2007). This implies that despite the existence 

of other teaching and learning considerations, the teacher factor remains the fundamental 

determinant of effective learning in the classroom. Mudaly (2016) posited that if teachers’ 

levels of knowledge are poor, then it may be argued that teacher education programmes 

are to blame. In the South African landscape, preservice teacher-training was designed 

and developed in accordance with the guidelines set out in the Minimum Requirements 

for Teacher Education Qualifications policy document, to which all higher education 

institutions must comply with (Department of Higher Education and Training, 2011c). The 

guidelines spelled out in the Minimum Requirements for Teacher Education Qualifications 

outlines the kind of teacher that South Africa ought to have. Notwithstanding, the quality 

management approach of preservice teachers cannot guarantee that the end product is 
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ready and capable to teach, as is the case with assembly-line products. These are human 

beings who have different temperaments and behave in a unpredictable ways. The 

challenge facing South Africa is how to ascertain that preservice teachers are fully 

equipped for the world of teaching at the point of exit from teacher-training institutions. 

The Department of Higher Education and Training has acknowledged that poor content 

and conceptual knowledge is rife among practising teachers (Department of Higher 

Education and Training, 2011b). Thus, something needs to be done to identify and 

possibly rectify these teacher deficiencies in the grassroots. Teacher education is one 

such place of doing that. A good foundation in mathematics knowledge for teaching is a 

springboard for a successful career in mathematics teaching. According to McAuliffe 

(2013), there are some knowledge domains connected to the acquisition and application 

of mathematical knowledge for teaching purposes, namely: disciplinary, pedagogical and 

practical. Discipline knowledge is the study of specialised content that is related to an 

academic discipline sustaining the teaching of a learning area. Pedagogical knowledge 

incorporates general methodologies of teaching, such as knowledge of understanding the 

curriculum, the learners, the learning process, instruction and assessment. Practical 

knowledge is the application of theories of teaching and learning identified in pedagogical 

knowledge, thus creating a platform for future improved practice. These domains 

resonate to the teacher knowledge domains by Shulman (1986), which are content 

knowledge, pedagogical content knowledge and curriculum knowledge. Each type of the 

previously knowledge domains is pertinent to the development of teachers’ mathematics 

knowledge for teaching to produce capable teachers who are geared towards teaching 

mathematics.  

This is in line with the Minimum Requirements for Teacher Education Qualifications 

policy, which states that new teacher graduates ought to have rigorous subject knowledge 

and the knowhow of teaching it (Department of Higher Education and Training, 2011b). 

Selecting, sequencing and pacing content to suit the needs of the learners and 

requirements of a discipline are some of the expected outcomes of recently qualified 

teachers. While there are other fundamental competences that prospective and beginner 

teachers might need, Shulman’s knowledge domains highlighted above link seamlessly 
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to the focus of this research study, that of an exploration of prospective teachers’ 

mathematics knowledge for teaching in trigonometry. Although the preservice teacher is 

not yet a beginner teacher, the undergraduate courses that they take at higher education 

institutions and the school teaching practicals are intended to build their competencies 

towards becoming a fully-fledged teacher. A recent South African government plan to 

address the challenges in teacher education has been the Integrated Strategic Planning 

for Teacher Education and Development for 2011 to 2025 period (Department of Higher 

Education and Training, 2011a). It is a long term and ambitious set of recommendations 

to turn around the South African education system. The plan was compiled with inputs 

from a range of stakeholders from across teacher education and provides a detailed set 

of strategies outcomes and outputs. 

From above, it is evident that teachers need to acquire deep understanding of 

mathematics knowledge for teaching during their training because teachers are key to 

learner achievement. Currently, products of the South African teacher education 

institutions in mathematics and science do not meet the standards of the Department of 

Basic Education. Newly qualified teachers are obliged to have adequate content 

knowledge and the necessary instructional skills to teach that content. Teacher education 

institutions refuse to take the blame by citing operational challenges due to stringent 

budget provisions from the fiscus. 

2.4. Initial teacher education in South Africa and other countries 

With universities honoured with the sole responsibility of bringing forth future teachers in 

South Africa, one wonders if all higher education institutions are adequately equipped to 

achieve that. Not all institutions, especially those which were historically disadvantaged, 

could offer the same levels of training, engagement or support to prospective teachers. 

Lecturers too at these institutions often must tolerate lack of support in teaching and 

resources. Preservice teachers complained of large class sizes, reduced teaching 

practice supervision by lecturers and lack of facilities as some of the factors that inhibit 

possible growth of mathematics knowledge for teaching at the higher education institution 

where the data was collected. It is one of the historically disadvantaged institutions in 
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South Africa, which is still rural-based in terms of its location, source of its enrolment and 

deployment of its graduates.  

In high school teaching, teachers often strive for scores and grades as the current 

matriculation standards are examination-oriented. Hence, learners who would have 

passed high school mathematics having no conceptual understanding of mathematics 

when they get to tertiary education. Faced with learners who enter teacher education with 

mediocre knowledge of mathematics, higher education institutions must find the best 

common ground. Consequently, some South African higher education institutions end up 

adjusting their academic standards down accordingly, which is an unpleasant way to 

accommodate the rising tide of incoming ill-prepared prospective teachers (Jansen, 

2018). If higher education institutions do not compensate for the weak incoming students, 

they might be faced with high failure rates rising out of the matriculants who passed well. 

Because government subsidies and funding to higher education institutions are based on 

comfortable pass-rates and enrolments, in most cases, institutions trade-off quality 

education for government funding. They must deliver tertiary education and break-even 

at the end of the financial year. 

Currently, are two possible routes of qualification to becoming a teacher in South Africa, 

which is graduating with an appropriate undergraduate degree with teaching modules 

coupled with a Post-Graduate Certificate in Education or an undergraduate four-year 

Bachelor of Education degree. These qualification routes came to be known as the Initial 

Professional Education of Teachers which indeed makes preservice teachers become 

qualified teachers (Department of Education, 2006). Ideally, by attaining a qualification in 

education, one becomes sufficiently qualified as a teacher. These newly qualified 

teachers are naturally expected to become good teachers through their post-qualification 

experience. However, a study by Mudaly (2016) revealed that the South African initial 

teacher education was on a downward trend, as evidenced by the production of teachers 

who are not adequately trained for school teaching. In fact, the Department of Basic 

Education consequently recommended that current approaches to teacher education 

must be reviewed and bolstered. To make matters worse, state-funded South African 

teacher education institutions operate under a stringent budget allocation, which 
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adversely affects provision of human and economic resources. Without sufficient 

resources at hand to work, these higher education institutions grapple to give meaningful 

education to the preservice teachers. This leads to inadequate training of new teachers 

in initial teacher education.  

If preservice teachers are expected to make a difference in the mathematics classroom, 

then they must show a deep understanding of school mathematics concepts they will be 

required to teach. Normally, this deep understanding is the result of their schooling 

experience and university undergraduate degree tuition. Notwithstanding, instances 

abound where preservice teachers who have just completed their teaching degree 

possess meagre understanding of basic mathematical concepts needed at secondary 

school (Taylor, 2011). Both the Department of Basic Education and the Department of 

Higher Education and Training corroborated that frequently higher education institutions 

deliver the initial teacher education programmes that do not meet required standards 

(Council of Higher Education, 2010). The undergraduate degree courses which 

preservice teachers take in the initial teacher education programmes unfortunately fails 

to fill the conceptual gaps that the prospective teachers take along to teacher education. 

Teacher-trainers oftentimes assume that prospective teachers possess the basic 

understanding of the school mathematics concepts, when in fact they may not. 

The study conducted by Kayhan and Argun (2009) compared the performance of 

preservice teachers on the two assessments conducted during the first and tenth weeks 

of their final year of study. The scores obtained in the tenth week by preservice teachers 

were better than the scores obtained during the first week. The preservice teachers 

showed improvement in the performance of content knowledge, the teaching process and 

communication of ideas. It is also the same period where preservice teachers embark on 

supervised teaching practice. The study conducted by Crespo (2003) tracked changes in 

the way thirty-four preservice teachers posed questions to primary school learners in a 

period of eleven weeks. It was noted that preservice teachers’ later problem-posing 

practices were significantly better than the earlier ones. Instead of posing traditional 

single-step and computational problems, they ventured into posing problems that were 

open-ended and exploratory. Hereby is highlighted the importance of teaching practice 
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experience in developing the pedagogical content knowledge of preservice teachers. The 

testimony here is that preservice teachers’ understanding of knowledge for teaching 

develops as they experience teacher training. It may be a matter of the magnitude of the 

development that may vary across individuals. 

Consequently, undergraduate modules on content and methodology, as well as teaching 

practice are universally agreed as key to initial teacher education (Ashby, Hobson, 

Tracey, Malderez, Tomlinson, Roper, Chambers & Healy, 2008; Department of Basic 

Education, 2013). And one of the best place for preservice teachers to grow in teacher 

knowledge is during their supervised teaching practice. It is during this time that 

preservice teachers grow a repertoire of pedagogical content knowledge to teach 

mathematics appropriately (Makonye, 2017). During teaching practice, they also learn 

first-hand how to teach and apply what they have learnt in theory at teacher education in 

a real classroom situation, which enhances the pedagogical content knowledge. 

2.5. The scope of trigonometry in the South African curriculum 

Trigonometry is a branch of mathematics that focus on the ratio of angles and sides of 

different kinds of triangles. The development of trigonometry as the study of triangles 

commenced with the early Egyptians, but Leonard Euler is credited as the founding father 

of the current form of trigonometry. Studying trigonometry happens to be useful as a 

foundation for future mathematics knowledge to other topics and in professions like 

engineering and architecture (Beyers, 2010). Being foundation to other mathematical 

knowledge domains, trigonometry has connections to several other mathematical 

concepts and structures, for example algebra of functions, proving formulae and 

identities, solving equations, periodicity, inverse functions and the Cartesian plane. 

Trigonometry normally commences at middle secondary school level of education in most 

countries. In South Africa, trigonometry’s maiden appearance in the mathematics 

curriculum is at Grade 10. At that level of education, children are generally able to think 

rationally according to Piaget’s formal stage of cognitive development. The content of the 

South African Grade 10 to 12 curriculum was reconfigured in the recent Curriculum and 

Assessment Policy Statements document and the main theme was now placed on the 

mathematical content aspect (Department of Education, 2011), a move meant to 
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transform the new curriculum to match international standards (Adler, 2011). Shown in 

Table 2.1 are the key sections of trigonometry that are currently covered in the South 

African curriculum.  

Table 2.1. The concepts under trigonometry to be covered in Grade 10 – 12 
mathematics. 

Grade Aspect of trigonometry 

10 (a) Define trigonometric ratios cos 𝜃, sin 𝜃 and tan 𝜃 in right-angled triangles. 

(b) Extend the definitions of cos 𝜃, sin 𝜃 and tan 𝜃 to 00 < 𝜃 < 3600. 

(c) Derive and use values of the trigonometric ratios (without using a 

calculator for the special angles 𝜃 ∈  {00;  300;  450;  600;  900}) 

(d) Define the reciprocals of trigonometric ratios. 

(e) Solve two-dimensional problems. 

11 (a) Derive and use the identities: tan 𝜃 =
sin 𝜃

cos 𝜃
 and sin2 𝜃 + cos2 𝜃  =  1. 

(b) Derive and use the reduction formulae. 

(c) Determine the general solution and/or specific solutions of trigonometric 

equations. 

(d) Establish the cosine, sine and area rules. 

(e) Solve two-dimensional problems. 

12 (a) Proof and use of the compound angle and double angle identities. 

(b) Solve two-and three-dimensional problems. 

 

As can be seen from Table 2.1, most of the ground-work on trigonometry is covered in 

Grades 10 and 11, while Grade 12 aspects mainly focus on compound and double angles 

formulae, as well as the three-dimensional application of trigonometry. Furthermore, 

current key exit-level outcomes for South African secondary school trigonometry topic are 

knowing:  

 Definitions of cosine, tangent and sine, as well as their corresponding inverses, for 

all angles in the domain −3600 ≤ 𝑥 ≤ 3600.  

 How to solve any triangle if given necessary sides and angles? 

 The standard trigonometry identities. 
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 How to simplify complicated expressions in trigonometry involving arbitrary 

positive or negative angles, double angle and compound angles formulae by using 

the standard trigonometry identities? 

 How to sketch and interpret graphs of trigonometry graphs? 

 How to solve trigonometric equations? 

 How to compute height and length of mountains, buildings, and so on, by using 

horizontal and vertical distances, and angles of depressions and elevations? 

The outcomes above compare well with the expectations of other countries also at 

secondary school level. As a study of the ratio of sides and angles, trigonometry is known 

to improve learners’ cognitive understanding by effecting a transition from algebra to 

geometry (Tuna, 2013). The introduction of trigonometry at Grade 10 has engendered 

mixed feelings; for the first time, learners come across new types of functions which are 

represented by a name, rather than in symbols, as in polynomials. This poses a challenge 

to learners as they must, for the first time, establish a relationship of given triangles to 

numbers and then manipulate the symbols in the form of trigonometric ratios. These 

challenges in the underlying principles of trigonometry, denote that South African learners 

unilaterally resorted to memorisation and procedural learning (de Villiers & Jugmohan, 

2012). By promoting memorisation of formula of trigonometric ratios in a bid to inculcate 

learner-understandings, teachers exacerbate learners’ woes in trigonometry. They 

frequently resort to mnemonics such as the CAST diagram and SOHCAHTOA in a bid to 

help learners to remember signs of each trigonometric ratio in different quadrants and 

formula for trigonometric ratios respectively (Brown, 2005). This detaches learners from 

the reality of trigonometry as there seemingly appears to be an easy and simple rule to 

apply in order to conceptualise trigonometric concepts (Cavanagh, 2008; Wongapiwatkul, 

Laosinchai & Panijpan, 2011).  

Learners unfortunately find trigonometry baffling as they consider it abstract rather than 

practical. The theory of trigonometrical ratios, their reciprocals and their inverses are 

unfortunately not part of learners’ and teachers’ everyday lives per se. To some extent, 

the application of trigonometry, like the 2-dimensional is rather superficial because no 



33 
 

person will ever get to calculate the altitude of a plane as observed by an observer on 

horizontal ground at a given angle of elevation. Satellite imaging and other machines in 

construction use the concept of trigonometry, but none is used in learners’ everyday life. 

Teachers are uneasy teaching trigonometry too, having passed through the same 

education system their learners are. Thus, procedural approach dominates the teaching 

of trigonometry at both secondary and tertiary levels. This creates a revolving door effect, 

where prospective teachers with abstract understanding of trigonometry pass it to their 

future learners.  

2.6. A chronicle of teacher education in South Africa 

This study has shown that teacher knowledge is instrumental in children’s learning and 

this section places teacher training as a necessary foundation for competent practice in 

teaching. The importance of training competent teachers in South Africa has been in 

cognisance since the crafting of the Norms and Standards for Educators of 2001. 

However, the Norms and Standards for Educators initiative was not a success in the 

production of well-trained teachers because it lacked clear goals of the process of 

producing competent teachers. Initially, the Norms and Standards for Educators intended 

to achieve competence in teacher-training through an integration of fundamental, 

practical and reflexive competence, but that was inadequate to prepare new teachers 

(Sibaya & Sibaya, 2008). It turned out that it was unfruitful on beginning teachers because 

the focus of teacher-training during those days was mainly on the teaching methodology 

and the nature of the school curriculum. This was at the expense of the underlying content 

and conceptual knowledge needed for teaching (Brodie, 2004). Designers of teacher 

education programmes were oblivious to the fact that prospective teachers were not 

taking enough mathematics at high school. Consequently, Lloyd (2006) went on to say 

that preservice teachers ended up having weak mathematics knowledge and a narrow 

view of mathematics. This would set a wrong footing for their teaching career. 

In South Africa, preservice teacher education and continuous professional development 

for practising teachers are substantially funded by the state at all levels of education. But 

the outputs of such teacher education efforts are not commensurate with the capital 

investment pumped into it (National Planning Commission, 2010). In-service training, 
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workshops and seminars are conducted regularly which focus on mathematics content, 

mathematics curriculum, improvement of critical thinking, instruction and assessment. 

Comparatively, workshop attendance is more pronounced in South Africa than in other 

African countries (Reddy, 2006). These measures are taken to improve the level of 

education and training. However, it is surprising that despite these efforts, the status of 

mathematics education in South Africa has not yet shown conspicuous improvement 

(Brodie, 2004). This has conscientised the Department of Basic Education to start 

investing in teacher education in a way to improve future teachers of mathematics and 

science, having seen the weaknesses of training practising teachers. They have been 

doing that through student bursaries and research support into teacher education. 

However, in the face of all these efforts, preservice teachers’ knowledge of teaching is 

still weak.  

The seriousness of teachers’ deficiency in mathematical knowledge for teaching is well 

pronounced among preservice and novice teachers. Usually, novice teachers lacking the 

skills to solve classroom mathematical problems in more than one way (Leikin & Levav-

Waynberg, 2007). This is the result of the historical trend in mathematics education where 

the methods of teaching had preference over mathematics content knowledge (Onwu & 

Mogari, 2004; Mji & Makgato, 2006; Taylor, 2009). Despite of the pedagogy and the 

content modules taken by preservice teachers during their training, they frequently leave 

teacher-training institutions with more or less the same knowledge base as when they 

first entered (Benken & Brown, 2008). This assertion is supported by the findings of 

Sibaya and Sibaya (2008), who said that novice teachers who are the product of the 

bygone Norms and Standards for Educators did not master the content of the subjects 

they were expected to teach upon completion of their training. Consequently, these 

novice teachers felt less competent regarding their command of the subject matter, thus 

lacked the confidence to teach effectively. This meant teachers lacked adequate content 

knowledge in mathematics, as well as the confidence to teach proficiently (Even & Ball, 

2009; Taylor, 2008; Crespo, 2003). Moreover, both the Departments of Higher Education 

and Training and Basic Education have recognised that many programmes of the initial 

teacher education of most South African higher education institutions are of poor quality 

(Council on Higher Education, 2010). This has then led to new minimum requirements 
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being initiated for all initial teacher education programmes offered at higher education 

institutions (Centre for Development Enterprise, 2014). 

Kilpatrick, Swartford and Findell (2011) went on to say that for the successful learning of 

mathematics, mathematical proficiency is highly needed. Subject knowledge makes it 

possible for teachers to be proficient in teaching mathematics, hence preservice teachers 

must train and specialise in mathematics (Benken & Brown 2008; Hill & Ball, 2004).  

Proficiency of preservice teachers in school content knowledge is acquired through 

teaching practice experience, content and methodology modules (Kayhan & Argun, 

2009). The mathematics proficiency of preservice teachers has a direct effect on the 

quality of mathematics education in their learners (Kayhan & Argun, 2009). Preservice 

teachers’ proficiency also reflects the effectiveness of the teacher education programme 

that they have experienced (Tatto, Schwille, Senk, Ingvarson, Rowley, Peck, Bankov, 

Rodriguez & Reckase, 2012).  

2.7. Preservice teachers’ mathematics knowledge of teaching 

Oftentimes, that preservice teachers take many rigorous mathematics modules in teacher 

education, yet they struggle with understanding school mathematics content. This is the 

content they will be teaching during teaching practice and later when they qualify. Rather, 

mathematics undergraduate modules being studied by preservice teachers must at least 

align to the school mathematics curriculum. Many preservice teachers find themselves 

unable to study school mathematics in depth at teacher training institutions. This has 

undesired effects to preservice teachers’ efforts to teach with meaning, during teaching 

practice and upon qualification. Consequently, many preservice teachers still have 

content gaps in knowing how to teach and apply the mathematics encountered in the 

school mathematics curriculum. If preservice teachers’ content knowledge in 

mathematics is weak, they will not be able to explain and connect mathematical concepts 

necessary for learners to understand the content.  

Having been learners themselves at some stage, there is a tendency for preservice 

teachers to teach the same way they have been taught by their teachers. To break that 

tradition, teacher education ought to challenge and extend preservice teachers’ content 

knowledge and pedagogical knowledge of school mathematics. Many preservice 
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teachers enrol at teacher training institutions with inadequate grasp of school 

mathematics (Conference Board of Mathematical Sciences, 2001). Additionally, they 

receive little mathematics knowledge for teaching and upon completion of their studies, 

they find themselves unprepared to teach mathematics to the next generation of learners. 

Later, some of these learners enter teacher-training institutions, thus perpetuating the 

vicious cycle of school mathematics inadequacy. In respect of this, there is a call for 

reforms in teacher education programmes so that they at least close the school-university 

divide. A balance of the two kinds of mathematics prepares prospective teachers well in 

the content aspect of mathematics teaching.  

According to the Conference Board of Mathematical Sciences (2001), the pertinent 

challenge for teacher-trainers is to foster preservice teachers’ knowledge of basic 

concepts in school mathematics. Even experienced teachers themselves do admit they 

never got to really understand the school mathematics they are supposed to teach during 

training, until they have gained experience through teaching it later. Hence, preservice 

teachers need rigorous post-school study of school mathematics in order to have 

confidence and competence to teach it. Preservice teachers were complacent to 

improving their school mathematics knowledge and teaching to break away from the 

traditional teaching of mathematics into meaningful content-rich teaching strategies.  

One such study on school mathematics was conducted by Even (1993), who investigated 

teacher candidates’ content knowledge of functions and its relationship to their 

pedagogical content knowledge. Data for that study were collected by means of 

questionnaires which were completed by 152 preservice teachers. Interviews were also 

conducted with ten of the initial 152 participants. Even discovered that preservice 

teachers tended to rely mainly on their previous learning about functions instead of mixing 

their prior knowledge of functions with the new knowledge they have learnt in teacher 

education. As a result, preservice teachers could not master the modern test of functions, 

but they relied solely on the “vertical-line test” to tell if given relations were functions or 

not. The modern definition of functions would have enabled them to recognise that some 

relations are still valid functions even though they fail the “vertical-line test”. Thus, when 
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preservice teachers teach functions, they would likely mislead learners about what a 

function is, especially in cases where the “vertical-line test” fails.  

Avalos, Telez and Navarro (2010) sought to find the mathematical knowledge base 

possessed by preservice teachers in six Chilean teacher-training institutions. A 

questionnaire was administered, which contained both content and pedagogy. The results 

of that study indicated that, for the final year preservice teachers, 50 percent correctly 

answered the mathematics content questions and only thirty-two of them managed to 

correctly answer the questions on the pedagogy of mathematics. These results indicated 

that the preservice teachers might encounter difficulties of effectively teaching 

mathematics when they finally enter the world of teaching (Avalos, Telez & Navarro, 

2010). 

Another study indicated that preservice teachers had difficulties unpacking mathematical 

ideas, which in turn influenced their abilities to teach those ideas meaningfully (Kinach, 

2002). She noted that the preservice teachers were successful at teaching execution of 

rules and formula but could not explain in clear terms why those rules work. Preservice 

teachers viewed teaching as giving rules, demonstrating to learners how to apply them in 

examples and then giving an activity to perfect the skill. By limiting teaching to identifying 

and applying algorithms, preservice teachers deprive learners the skill of decoding and 

proving conjectures.  

Furthermore, Ball (1990) investigated elementary preservice teachers’ knowledge of 

division of fractions, on the basis of the data collected for the Teacher Education and 

Learning to Teach study. She realised that preservice teachers in that study had some 

difficulties to explain the skill of division of fractions to learners, even though they could 

easily perform the procedures of division of fractions. Preservice teachers often are 

limited to the traditional and procedural teaching of school mathematics, at the cost of 

conceptual teaching. Ball’s (1990) study illuminated conceptual and instructional 

challenges that many preservice teachers have with the aspect of division of fractions. 

Preservice teachers’ knowledge of mathematics was procedural; hence they could not 

explain reasons behind their calculations. The limitations of procedural fluency of 

mathematics are that it cannot be transferred to similar situations. According to Ball 
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(1990), preservice teachers’ beliefs and preconceptions led them to perceive 

mathematics as consisting of rules and facts, and doing mathematics is following 

procedures intending to arrive at an answer. Teaching mathematics is to successfully 

teach learners how to repeat algorithms, rather than teach them about the underlying 

reasoning that makes such algorithms work the way they do. The following are recent 

studies on preservice teachers’ understanding of the mathematics knowledge for 

teaching.  

2.7.1. Preservice teachers’ knowledge transformation geometry 

Exploration of preservice teachers’ mathematics knowledge for teaching has been under 

investigation for a long time, spanning diverse topics and countries. Noto, Priatna and 

Dahlan (2019) undertook an investigation into the Indonesian preservice teachers’ 

mastery of content knowledge only in proofs under the topic of transformation geometry. 

The research purposed to identify learning obstacles that preservice teachers’ encounter 

in executing mathematical transformation geometry proofs. The study was qualitative in 

nature and the design was a case study on a group of nine purposively chosen 

mathematics preservice teachers at an Indonesian state university. Just like the current 

study, data collection were done in the form of a content test and an interview task-sheet. 

A total of four problems on proving transformational geometry concepts constituted items 

in both instruments for that study. The analysis of data was done, and the findings 

revealed a plethora of obstacles that inhibit preservice teachers from effective mastery of 

the concepts which have been duly taught to them at teacher education. Two outstanding 

categories were identified, that is, understanding the concept and understanding the 

problem. Under obstacles of understanding the problem, the following were identified, 

namely, not knowing how to start the proof, not knowing how to use the definition to 

construct the proof, inability to state a definition, and not knowing the use of technical 

language and mathematical notation. Under obstacles of understanding the concept, they 

identified inability to visualise the geometrical object and not knowing how to determine 

the required principle. As a result of these observed obstacles, the content knowledge of 

those preservice teachers was thin and shaky (Ball, 1991). 
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2.7.2. Preservice teachers’ perceptions and knowledge of trigonometry 

In a quest to determine what causes learners’ fears and failures in trigonometry in Ghana, 

a study by Nabie, Akayuure, Ibrahim-Bariham and Sofo (2018) explored preservice 

teachers’ perceptions of trigonometry. The way teachers think determines their classroom 

instructional actions, which in turn influences the way learners understand concepts being 

taught. Coupled with exploring preservice teachers’ perceptions on trigonometry, Nabie, 

Akayuure, Ibrahim-Bariham and Sofo (2018) also sought preservice teachers’ conceptual 

knowledge of trigonometry in order to get a clear picture of how they view teaching 

trigonometry. Their quest was to yield results of what preservice teachers require for them 

to become competent future mathematics teachers. A convenient sampling technique 

came up with 119 second-year college of education students who completed a 

questionnaire on their perceptions of trigonometry teaching. To explore conceptual 

knowledge, a one-hour long assessment test on trigonometry was administered to the 

sample of preservice teachers.  

A thematic analysis of data was performed on the nature of errors committed by 

preservice teachers in the assessment test, while the Statistical Package for Social 

Sciences was used to analyse the responses from the Likert-questions on the 

questionnaire. The result of that study unearthed that the preservice teachers in that study 

had serious difficulties in almost all school trigonometric concepts. In the example given, 

it was revealed that none of the 119 participants could honestly derive that the square 

identity, sin2 𝑥 + cos2 𝑥 = 1. The poor performance was in part a result of the negative 

perception towards trigonometry registered by the participants.  

Though the participants admitted that learning trigonometry increases analytical and 

reasoning skills, they perceived that it was tedious and too abstract for them to 

understand. Their relational skills of trigonometric concepts were not good either, as they 

grappled with application of basic trigonometric concepts. They lacked the crucial link 

between basic concepts and their application. For instance, most prospective teachers 

had clear realisation of the connection between the sine and cosine ratios, however, they 

could not tell why tan 𝑥 is positive in the third quadrant. Thus, despite the initial teacher 

education that prospective teachers receive, they still have inadequate conceptualisation 
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of relational knowledge of trigonometry, coupled with negative perceptions of learning 

trigonometry. The same would be passed down to their future learners when they start 

teaching many years later. This result in learners failing and fearing trigonometry too. 

2.7.3. Preservice teachers’ level of content knowledge of radians 

An examination of preservice teachers’ understanding of measures of angle under 

trigonometry, with a particular interest on the radian measure was the object of Tuna’s 

(2013) study. Tuna (2013) was interested in preservice teachers’ levels of understanding 

on the radian measure, in conjunction with the degree measure amongst third- and fourth-

year teacher candidates. Akkoç (2008) also investigated in-service and preservice 

teachers’ content knowledge of the radian in Turkey. Both researchers made use of a 

content knowledge test, followed by a written one-to-one task-based interview as data 

collection instruments. Both instruments were administered under the researchers’ 

supervision so a specific amount of time was spent on them. From those who sat for the 

content test, a few were sampled for the interview based on their initial performance in 

the test. For the content test, data analysis was performed by means of descriptive data 

analysis where correctness of the responses was key. This was followed by content 

analysis to unpack error patterns and sources in participants’ responses in the task-based 

interviews.  

The prominent result from the two studies was that preservice teachers’ understanding of 

the radian measure was not robust. Their understanding of radians was rather dwarfed 

by the understanding of the degree measure. All angle measures were treated as degree 

measures, even if the domain of that trigonometric ratio was given as real numbers. For 

example given the mapping, 𝑓: ℝ → ℝ and 𝑓(𝑥) = 𝑥 sin 𝑥, results show that 𝑓(𝑥) was 

erroneously stated as 300 × sin 300. The misunderstanding was further exacerbated by 

the fact that 300 is not a real number, thus it is not possible to find the product of it with 

sin 300, which is real. The concept image of degree measure dominated the preservice 

teachers’ understanding, where degree measures were treated as real numbers. 

Radians, being the proportion of two lengths, do not carry a unit measure. They are just 

real numbers in the true sense. Very few of the preservice teachers could figure this out. 

Asked to define radians, none could give a correct and full definition thereof. Their 
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attempts to define radians evolved around the use of 𝜋, which they treated to be different 

from the normal 𝜋, a real number. Fi (2003) discovered that preservice teachers were 

versatile with converting radians to degrees and vice-versa but failed to precisely define 

radians as a proportion of two lengths. Therefore, if the preservice teachers harbour 

negative perceptions about trigonometry (Nabie, Akayuure, Ibrahim-Bariham & Sofo, 

2018) and possess inadequate content knowledge of the radian measure, their future 

learners will have difficulties too.  

2.7.4. Preservice teachers’ understanding of diagonals of quadrilaterals 

Several investigations of preservice teachers’ level of knowledge in this study have been 

on concepts covered in the secondary school curriculum. This was the case since some 

topics like trigonometry and calculus are a domain of the middle to senior secondary 

mathematics curriculum only. That aroused mathematics education researchers’ interest 

to explore also prospective primary school teachers’ level of knowledge in the content 

they would be teaching too. Naturally serious challenges of mastery of primary school 

mathematics concepts are not expected since the concepts are at the foundation level. 

However, this was not the case as it was reported that primary school teachers find some 

topics difficult to teach (Salman, 2009) and that primary school teachers lack the 

necessary depth of primary content knowledge (Long & Dunne, 2014). Considering this, 

Ayvaz, Gündüz and Bozkuş (2017) sought to determine the level of understanding 

amongst primary preservice teachers on the concept of diagonals of common 

quadrilaterals covered in the primary school curriculum.  

In that study, the research methodology was a case study. Criterion sampling was used 

to select seven second year preservice teachers on the basis that they have successfully 

completed a course in geometry. They sat a diagnostic test which consisted of questions 

on the concept of diagonals and their associated properties. After initial analysis of test 

results, a further four preservice teachers were selected from the initial seven for a 25-

minute one-to-one interview. The interview prompted further explanations from the 

participants, in line with the answers they provided in the diagnostic test. Thematic data 

analysis was used in the final data analysis where associated concepts based on 
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participants’ responses to each question were used to formulate categories. The data 

obtained from the interviews were analysed under these categories.  

The findings revealed that preservice teachers in that study had basic knowledge about 

what a diagonal is, but they could not define it succinctly. The conceptual knowledge of 

preservice teachers regarding the diagonals of rectangles, rhombuses, squares, 

parallelograms and kites was inadequate. In other cases, preservice teachers could state 

claims about diagonals well, however, they could not prove those claims (Almeida, 2000). 

This meant that they had poor reasoning skills, which later affected their ability to prove 

statements. Similarly, Bukova-Güzel (2010) investigated preservice teachers’ 

pedagogical content knowledge as they taught solid objects. Lesson plan analyses and 

video-recordings of instructional implementations, as well as semi-structured interviews 

were the data collection instruments used. The pre-determined pedagogical content 

knowledge components that were used in data analysis of that study were knowledge of 

teaching strategies, knowledge of learners and curriculum knowledge. The findings of that 

study were that the scope of participating teachers’ teaching strategies was narrow and 

they did not pay particular attention to possible learner difficulties and misconceptions. 

2.7.5. Preservice teachers’ understanding of problem-solving techniques 

The study by Avcu and Avcu (2010) explored the performance of preservice teachers on 

problem solving. Preservice teachers were given five problems to solve using different 

problem-solving strategies. Some of the strategies inferred were drawing a diagram, 

creating a model, visualising the problem, identifying key elements and working 

backwards. The findings of that study were that prospective teachers could follow a single 

routine of problem solving meaningfully, while the use of different problem-solving 

techniques was limited. Avcu and Avcu (2010) further concluded that the limited 

understanding of preservice teachers in problem-solving techniques was attributed to the 

lack of pedagogical knowledge.  

Among the studies in preservice teachers’ understanding of content knowledge, Peressin, 

Borko, Romagnano, Knuth and Willis (2004) conducted a research study that traced the 

development of teacher knowledge of preservice teachers from two reform based teacher 

education programmes all the way into their early teaching careers. From their study they 
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concluded that preservice teachers enter and exit teacher education programmes with 

insufficient content knowledge needed to provoke reflective teaching. Similarly, 

Schoenfeld’s (1987) study which concluded that despite numerous mathematics content 

modules undertaken by preservice teachers, they still have rule-bound knowledge of 

mathematical concepts they are expected to teach. Thus, according to Peressin, Borko, 

Romagnano, Knuth and Willis (2004), teacher-training institutions have the responsibility 

to design teacher preparation and teacher development programmes that model good 

mathematics teaching, which enable preservice teachers to develop mastery of both 

content and pedagogical skills. 

2.7.6. Instructional explanation 

Preservice teachers manifest pedagogical content knowledge in different measurable 

traits. In this study, teacher explanation is one of the pedagogical content knowledge 

components that was evident under both the task-based interviews and video-lesson 

analyses. Thus, this section is about literature on the preservice teachers’ explanation 

skills during both the school teaching practice and in the interview. Teachers’ abilities to 

explain an idea to a class is a prized possession. A study by Murtafiah, Sa’dijah, Chandra, 

Susiswo and As’ari (2018) sought to explore the different types of instructional 

explanations instituted by preservice teachers on a learning activity during the time they 

were doing school practice teaching. The learning activity involved in the explanation was 

on computing limits and derivatives of given functions. The research sample was five 

mathematics education undergraduate students drawn from two universities in Indonesia. 

The sampling technique was purposive and the five participants were carefully chosen to 

include those who were good in content knowledge of limits. Data were collected through 

observation, semi-structured interviews and video-recorded lesson analysis.  

The collected data were analysed by means of deductive data condensation to 

concurrently give meaning to data and allow drawing of conclusions. Information from the 

three instruments of data collection were processed to fit into one of the categories. 

Among others, three types of instructional explanations were pre-determined, which 

became the focal point of data analysis based on data from the three instruments used. 

Of the three types of explanations, namely, descriptive, interpretive and reason-giving, it 
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was noted that descriptive explanations were the most prevalent of the three. These 

featured mainly in the description of mathematical processes and procedures as a 

response to the “how” questions. Already the results show that the preservice teachers 

predominantly taught for mastery of rules and procedures, with little regard to deriving the 

procedures, and why the procedures work. They leaned more towards teacher-centred 

instruction which does little to promote learners’ construction of knowledge. This happens 

to be an obvious weakness of novice and prospective teachers. Reason-giving 

explanations were chiefly used to elucidate reasons based on mathematical principles in 

response to the “why” questions, whilst the interpretative explanations were used to 

expound concepts and facts of mathematics based on the “what” question types. 

Nevertheless, it was noted that instructional explanation is part and parcel of pedagogical 

content knowledge, which, according to the present study, is one of the predetermined 

pedagogical content knowledge component.  

2.7.7. Preservice teachers’ critical thinking skills 

It was agreed that teachers’ content and pedagogical knowledge are instrumental to 

learners’ academic success in the modern-day classroom (Darling-Hammond, 2000). In 

South Africa, learners study secondary school mathematics for the development of 

mental processes which help to augment critical thinking skills, computational accuracy 

and problem-solving skills. These in turn build individual learners’ decision-making 

capabilities (Department of Basic Education, 2011). Furthermore, the Grades R-12 

National Curriculum Statement sought to produce learners who can make decisions using 

critical and creative thinking (Department of Basic Education, 2011). Now for teachers to 

assist learners develop these skills, teachers need to possess them first before they think 

of imparting them to learners. That being the case, a qualitative case study by As’ari, 

Mahmudi and Nuerlaelah (2017) sought to explore the level and readiness of critical 

thinking proficiencies of preservice teachers specialising in mathematics. The participants 

were third year undergraduate and some postgraduate preservice teachers at the 

Universitas Negeri in Indonesia. Each of these groups of participants were given a non-

routine general mathematical problem to solve. Data were collected by observations as 

participants worked through the problem, and also by means of one-to-one interviews. 

The interviews were to probe the extent of the participants’ critical skills potential.  
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The research findings for the study by As’ari, Mahmudi and Nuerlaelah (2017) revealed 

that preservice teachers did not have exposure to hone their critical skills because the 

undergraduate curriculum places emphasis on routine problems. By modifying Paul and 

Elder’s (2008) six stages of critical thinking development, these authors created a four-

stage classification of critical thinking. The categories are non-critical, emergent critical, 

developing critical and mastering critical thinkers. All the participants’ responses were 

categorised into one of the four stages, making the analysis of data deductive in nature. 

The research findings were that in all the cases that were considered, the critical thinking 

expectations of preservice teachers was at the basic stage. Whether these preservice 

teachers would be able to help learners to surpass the basic level of critical thinking when 

they hardly possess any themselves is anyone’s guess.  Thus, learners end up not having 

a role model to guide their critical thinking skills. As a result, they too operate at the non-

critical thinker level stage (Dam & Volman, 2004). It is the responsibility of teacher 

education institutions to improve preservice teachers’ critical thinking skills through 

instructional practices that prioritise non-routine problems in preservice teachers training. 

2.7.8. Preservice teachers’ strategies in solving limits 

In calculus, calculating limits of a function is one of the fundamental concepts. The 

teaching and learning of the concept of limits has attracted the attention of mathematics 

education researchers. According to Kim, Kang and Lee (2015) and Row (2007), learners 

find it problematic to prove and apply the concept of intuitive definition of limits. What 

often happens is that learners end up memorising the algorithmic processes in proving 

the formal definition of limits, without full understanding of the procedures. In advanced 

calculus at universities, preservice teachers are taught skills of solving and proving limits 

using the formal definition of limits. In that regard, Oktaviyanthi, Herman and Dahlan 

(2018) sought to investigate preservice teachers’ strategies when solving limits using the 

intuitive method and also explore their common mistakes when constructing proofs of 

limits.  

The purposive sampling technique was used to come up with twenty preservice teachers 

who sat a one-hour mathematics content test on evaluating limits using the formal 

definition. This was done under the supervision of the researcher. Based on the initial 
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analysis of test results, a further nine preservice teachers were selected for the one-to-

one task-based interview. The interview task items were the same as the written test so 

that the participants could provide more explanation into their earlier responses as the 

researcher poses probing questions. Inductive analysis of data was carried out, whereby 

preservice teachers’ answering processes and mistakes were classified into respective 

categories. The findings were that teacher candidates could use various strategies to 

solving limits by the formal method. Most of the preservice teachers used the strategies 

of preparation of proof and the algebraic techniques in the actual proving and these 

formed a framework for correct solving of limits. Nonetheless, these correct strategies 

were fraught with numerous errors so that the preservice teachers could not arrive at the 

accurate final solution. Their common mistakes in proving limits by the formal definition 

were many, which impacted their ability to sequence steps of proving. The other common 

mistake was the inaccuracies in simplifying algebraic expressions, thus obstructing the 

proving process. The last common mistake was the limited experience in proving limits 

by the formal definition method. Hence, knowing the strategy of solving a problem must 

be accompanied by accuracies in handling the key skills of key stages in the solution 

process. 

2.7.9. Implications of literature to the present study 

The focus of the present study was to investigate preservice teachers’ understanding of 

content knowledge and pedagogical content knowledge in trigonometry. In the literature 

given above, some studies were investigating pedagogical content knowledge, some on 

content knowledge, whilst others focussed on both. For example, exploring instructional 

explanation, examining critical thinking skills and determining teaching strategies and 

common preservice teachers’ mistakes constituted pedagogical content knowledge. 

Content knowledge was reported in literature on preservice teachers’ knowledge of 

diagonals and transformation geometry. Some studies looked at both content and 

pedagogical content knowledge, like preservice teachers’ perceptions and content 

knowledge on trigonometry, and preservice teachers’ perceptions and knowledge of 

radians. This study investigated both types of teacher knowledge on trigonometry and 

attempted to draw a common conclusion.  
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Two instruments of data collection were generally used; a content test to assess mastery 

of content and interview or questionnaire to capture pedagogical content knowledge. This 

study followed a similar plan but went further and assessed pedagogical content 

knowledge by means of lesson plans and video-teaching analyses. Under interviews, 

task-based semi-structured interviews were widely used, as in the present study. The 

order of implementation of instruments was that a timed content test was administered 

first under the supervision of the researcher. After an initial analysis of test results, fewer 

participants were then selected to go for the interview based on the test results. Usually 

the participants for the test were selected based on the purposive or criterion sampling 

techniques. Those selected for the subsequent tools of data collection were based on 

performance in the initial tool(s), for instance, a balance of least- and best-performers. In 

other words, no new participants were considered.   

Data analysis fell into three broad categories; deductive, inductive and descriptive. 

Deductive analysis was common for qualitative data in pedagogical content knowledge 

data analysis where analysis criteria was pre-determined from literature, and all 

participants’ performances fitted into one of the criteria. Inductive analysis was common 

again for qualitative data under pedagogical content knowledge, where common 

categories start to emerge as data is analysed. These categories led to themes in the 

analysis, on which the discussion of data and conclusion of the study was based on. 

Descriptive analysis was widely used in quantitative data analyses whereby data was 

described, sometimes with the aid of statistical analysis in order to arrive at justifiable 

findings of the study. The present study made use of all these types of data analyses, 

each appropriately applied to the type of data under consideration. Form the presented 

literature and other studies (Ball, 1991; Fi, 2003), the discussion of results led to the 

conclusion that preservice teachers’ mastery of content knowledge was inadequate, as 

evidenced in knowledge of radian measure, diagonals and transformation geometry. The 

preservice teachers’ understanding of pedagogical content knowledge was limited, 

dogged by many common mistakes, lack of critical thinking, negative perceptions of 

trigonometry and radians, and teacher-centred instructional explanations. 
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2.8. Conclusion 

From the above deliberations, it can be concluded that the performance of preservice 

teachers in mathematics knowledge for teaching depends on the quality of teacher-

training they received and the type of knowledge they possess, which can be traditional, 

pedagogical and reflective. It was also shown that proficiency of preservice teachers in 

mathematical knowledge for teaching grows as they experience school teaching 

practices. This was supported by the evidence where preservice teachers’ later problems 

posing strategies were better previously.  

The literature review addressed three important aspects within this study, namely, teacher 

knowledge, teacher education and related research on preservice teachers. The first 

aspect of this review starts with the ground-breaking work by Shulman’s (1986) types of 

teacher knowledge. Other researchers linked this concept of teacher knowledge to 

subsequent research within the field of mathematics education (Ball, Thames & Phelps, 

2008; Davis & Renert, 2009; Rowland, Thwaites, Huckstep & Turner, 2009; Watson & 

Barton, 2011). It was highlighted that teacher knowledge is pivotal in teachers’ practice 

and continuous professional development. However, it was noted in literature that both 

preservice and qualified teachers lacked conceptual knowledge to teach specific topics 

in mathematics, hence the pivotal role of teacher knowledge loses its appeal. In the South 

African context, it was observed that initial teacher education is not really producing the 

teachers that are required in schools (Department of Basic Education, 2013), thus not 

helping the challenge of teachers’ lack of conceptual knowledge. Hence, topics like 

trigonometry are in limbo, with learners finding them difficult to learn and teachers find 

them difficult to teach. Finally, South African learners are not achieving in subjects like 

mathematics and science, in part due to the limited ways wherein teachers conduct 

classes.  
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CHAPTER 3: THE CONCEPTUAL FRAMEWORK 

3.1. Chapter introduction 

This chapter is a description of the conceptual framework of teacher knowledge, based 

on Shulman’s (1986) work. The mathematics knowledge for teaching conceptual 

framework was used to anchor discussions on the types and relationships between 

different knowledge types for mathematics teacher education (Ball, Thames and Phelps, 

2008). Other models of teacher knowledge were briefly explained to give an enhanced 

perception of the categories and nature of teacher knowledge, though they were not to 

be used in the analysis of data and discussion of findings. This chapter presents identified 

frameworks of teacher knowledge in order to provide a conceptual base for exploring and 

establishing the existence of the teacher knowledge domains of the preservice teachers 

in this study.  

This study starts by presenting an overview and justification of using a conceptual 

framework of teacher knowledge under section 3.2. Though there are several relevant 

teacher knowledge models, only two have been considered in this study. Thus section 

3.3 elucidates the models of teacher knowledge which underlie this study, starting with 

Shulman (1986) who was the first to investigate the modern view of types of teacher 

knowledge. Shulman’s model was generic to all content areas, as he did not satisfactorily 

expound the variables that may affect teachers’ knowledge in specific content areas. As 

a result, this has led to some modifications to Shulman’s model of teacher knowledge to 

accommodate different content areas. Ball, Thames and Phelps (2008) proposed the 

mathematics knowledge for teaching framework as a modification to Shulman (1986), 

which entirely focussed on mathematics teaching amongst primary school preservice 

teachers. An overview of the models of teaching has been presented in section 3.4, which 

includes ideas from other models of teacher knowledge other than the stated two. The 

chapter ends with a chapter conclusion in section 3.5 by citing the purpose of a conceptual 

framework in a study. It also highlighted the chosen model of teacher knowledge which 

will be used as lenses in data analysis in this study.  
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3.2. The teacher knowledge conceptual framework 

Teacher knowledge has been under study by academics for as long as there was teacher 

education, but there has been no theory developed on it up to now. The absence of a 

theory of teacher knowledge has engendered multiple conceptual frameworks which 

attempt to give structure to the study of teacher knowledge. Researchers contemplated 

various concepts and created relationships with them in order to find answers to research 

problems. A framework in research is a well-structured resource that portrays and 

identifies key research concepts and how the concepts are connected to each other. Such 

a structure would be used to develop data analysis procedures and draw conclusions. 

3.2.1. Conceptual framework definition 

A conceptual framework consists of a collection of logical and interrelated concepts that 

guides one's research study, determines the premise one will measure and the kind of 

relationships one will look for. The purpose of a conceptual framework is to describe and 

support the concept of teacher knowledge by explaining phenomena as well as providing 

a context for analysing data. In some cases, where there is an existing theory, then a 

theoretical framework is the one to be used to direct the conduct of the study, effectively 

leading to generalisable results. However, if the proposed theory does not fully address 

the research problem, then it may be adjusted, giving rise to a conceptual framework.  

The teacher knowledge conceptual framework is comprised of several models that 

explain it. Models are defined as simplified and schematic forms of symbolic 

representations of phenomena which assists researchers to express concepts that may 

be abstract in nature. Models are also used to determine the possible interrelationships 

of concepts. In this study, Shulman’s model was considered as the default model, being 

the starting point of the modern view of teacher knowledge constructs. However, 

Shulman’s model was not used in this study for the following reasons: his contributions 

were broad-based to fields of psychology, medicine and science, and the pedagogical 

knowledge domain encompasses generic teaching knowledge that is not focussed on 

content needed in mathematics teaching.  
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3.2.2. The mathematics knowledge for teaching framework 

The mathematics knowledge for teaching framework is the most appropriate framework 

for informing and analysing teacher preparation programmes for preservice and in-service 

teachers (Gess-Newsome & Lederman, 1999). It is a framework that has been widely 

used to categorise knowledge domains needed for mathematics teaching, as well as to 

determine their existence in data analysis. It is a practice-based approach, which means 

it focusses on teaching mathematics teaching. It is based on the premise that teachers 

are required to possess content knowledge of the mathematics concepts and knowledge 

of how engaging these concepts in teaching mathematics. The mathematics knowledge 

for teaching framework also expertly expounds the processes by which content 

knowledge and pedagogical content knowledge are established and situated in a normal 

learning environment. Oftentimes, prospective teachers of mathematics might indeed 

know subject matter, however, transforming that knowledge into meaningful instructional 

knowledge understandable to learners is something different.  

Earlier, it was shown that a conceptual framework may consists of models which are 

appropriately used to facilitate understanding of concepts and variables in a particular 

study. Secondly, because a conceptual framework is specific to a unique research study, 

it is something that may not be readily found in literature. Modifications to existing models 

may have to be done to create a fitting conceptual framework. The model by Ball, Thames 

and Phelps (2008) was used as the prominent conceptual framework in this thesis after 

careful examination of my thesis title and research problem, as well as identifying key 

variables in the concept of teacher knowledge. These variables are content and 

pedagogical content knowledge, both of which play a vital role in moulding competent 

preservice teachers for classroom teaching. A well-managed conceptual framework goes 

a long way to strengthen the structure of a given research study in terms of data collection 

aspects and the scope of data analysis. This is achieved by connecting the researcher to 

an existing body of knowledge. A focus on specific concepts properly defines the scope 

of data, which reduces the possibility of generalisation of results. The next section gives 

a detailed account of the models of teacher knowledge, as well as the illustrations of 

models by Shulman (1986) and Ball, Thames and Phelps (2008). 
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3.3. Models of teacher knowledge 

The conceptual framework of teacher knowledge has been explained through many 

established models, and all these elaborate on Shulman’s (1986) ground-breaking work 

(Fennema & Frank, 1992; Gess-Newsome, 1999a; Grossman, 1990; Banks, Leach & 

Moon, 1999; Ball, Thames & Phelps, 2008). It is noteworthy that the models by Fennema 

and Frank (1992), Gess-Newsome (1999a), Banks, Leach and Moon (1999) and 

Grossman (1990) had one thing in common: pedagogical content knowledge is the 

culmination of the three knowledge domains of content knowledge, knowledge of context 

and pedagogical knowledge. The way these three were intermixed leading to pedagogical 

content knowledge depends on what Gess-Newsome’s (1999a) explained as the dual 

taxonomies: integrative and transformative models. The integrative taxonomy places 

pedagogical content knowledge at the intersection of the three knowledge types. A good 

teacher in this category is one who possesses well-organised individual knowledge to 

which he/she can effortlessly tap into during the lesson. In the transformative taxonomy, 

the knowledge of pedagogy, context and content are infused into pedagogical content 

knowledge, which then becomes the new and sole knowledge type to be used in 

instruction. Under the transformative taxonomy, a competent teacher should have well-

developed pedagogical content knowledge for every concept that they must taught, 

without explicit reference to the original constituents of teacher knowledge.  

 Neagoy (1995) had a different perception of pedagogical content knowledge from others. 

Indeed, he identified fairly the usual three teacher knowledge types of pedagogical, 

content and learners (akin to context), but he treated pedagogical content knowledge 

itself to be on par with teacher knowledge. She stated that, “pedagogical content 

knowledge is not one among these sets of knowledge, but rather, contains them all” 

(Neagoy, 1995, p.19). This study does not dispute Neagoy’s (1995) standpoint about the 

central and absolute role of pedagogical content knowledge, but there are still other 

knowledge types which exist independent of pedagogical content knowledge. These are 

knowledge of students, knowledge of curriculum and knowledge of school contexts, 

among others.  
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The models by Shulman (1986) and Ball, Thames and Phelps (2008) are slightly different 

and do not fit into the preceding descriptions as they excluded general pedagogical 

knowledge as one of the knowledge types. Moreover, even though pedagogical content 

knowledge results from the intercourse of pedagogy and content, it is still treated as one 

of the types of teacher knowledge just like content knowledge. This fact is unique to 

Shulman (1986) and Ball, Thames and Phelps (2008) models only. In this study, 

pedagogical content knowledge does not occupy the central part of all knowledge types. 

Also, general pedagogical knowledge was excluded since teaching is rooted in content-

specific pedagogy, which is pedagogical content knowledge. The purpose of presenting 

these models in this section was to create a firm foundational base to explore the 

mathematics knowledge for teaching of preservice teachers in this study. By addressing 

the two models of Shulman and Ball, Thames and Phelps, the intention was to draw the 

similarities between them so that the researcher can understand the conceptual base of 

this study as a basis for analysis of data. The next sub-section is a presentation of 

Shulman’s (1986) model. 

3.3.1. Shulman’s (1986) teacher knowledge model 

The skills and knowledge that teachers use in the classroom is a major contributor to 

effective teaching and learning. Thus, in 1986, Shulman claimed that the emphasis on 

mastery of pedagogical and content knowledge was addressed unconnectedly. He was 

of the idea that the thrust of teacher education should be to approach pedagogical and 

content knowledge jointly. Out of this quest, pedagogical content knowledge was born, 

which represented a special mixture of pedagogy and content. His initial description of 

teacher knowledge included seven types: knowledge of learners; knowledge of 

educational contexts; knowledge of educational ends, values and purposes; pedagogical 

knowledge; pedagogical content knowledge; curriculum knowledge; and content 

knowledge. As explained, the first four knowledge categories under Shulman were 

concerned with general forms of knowledge of teachers that dominated the 1980s teacher 

education programmes. Shulman dropped them in his later work because they were 

generally applicable to a wide educational setting. He put emphasis on the last three 

knowledge types, which had something to do with content and referred to them as the 

pre-determined domains in teacher education study, “a blind spot with respect to content 
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that characterises most research on teaching” (Shulman, 1986, p.7). It is these three 

types of knowledge that Shulman incorporated into his teacher knowledge model, 

illustrated in Figure 3.1. 

 

Figure 3.1. Three types of teacher knowledge according to Shulman’s (1986) model. 

Below each type of knowledge in Figure 3.1 are some (and not all) of the sub-types of 

teacher knowledge, though it is not exhaustive. A full description of each of these three 

types and their sub-types are alluded to in the next three sections. 

Content knowledge 

At higher education institutions, prospective teachers are taught advanced mathematics, 

some of which have direct connections to what they will teach after qualification, and 

some do not. The former is mathematics content knowledge for teachers, while the latter 

is content knowledge for mathematicians. Shulman also classified the underlying 

structures of mathematics in its entirety by saying content knowledge for teachers 

transcends mere mastery of the basic facts and concepts in any given topic (Shulman, 

1986, 1987; Grossman, Wilson & Shulman, 1989). Shulman (1986) further posited that 

knowledge of the subject content knowledge supersedes knowing facts and concepts. 

Teachers need to figure out the principles and salient underlying structures of each topic. 

Knowing mathematics topics should be accompanied with an understanding of why these 
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concepts are so. Ideally, to show understanding of content knowledge, teachers are 

expected to justify inclusion or exclusion of certain topics in a given discipline. Hence, it 

can be inferred that the classification of content knowledge is composed of teachers’ 

knowledge of what to teach. In literature, it has been shown that content knowledge is 

necessary for effective teaching as it affects lesson planning and assessment and 

feedback thereof (Baumert, Kunter, Blum, Brunner, Voss & Jordan, 2010; Shulman, 

1987). 

To preservice teachers, content knowledge is useful for the selection of relevant learning 

materials and textbooks (McNamara, 1991). Furthermore, McNamara posited that 

teachers with low content knowledge may sometimes avoid teaching topics they perceive 

difficult. This is what Shulman (1987) defined as content knowledge. Content knowledge 

instruction gets emphasis in teacher-training, on the basis that teachers cannot teach 

what they do not know in reality. A preservice teacher who apparently lacks subject matter 

knowledge finds it hard to cope with other knowledge types during teacher-training 

(Brown & Borko, 1992). In some countries, new teachers are required by law to sit a 

qualifying examination in content knowledge as a pre-requisite for getting a position to 

teach. The mastery of content knowledge, or lack of it, is often acute and prevalent among 

novice and preservice teachers. This comes about when teacher education focuses on 

the pedagogy and methods of teaching relative to content knowledge, especially in 

mathematics education (Onwu & Mogari, 2004; Benken & Brown, 2008; Mji & Makgato, 

2006).  

Preservice teachers rely mostly on the content knowledge they acquire in the 

undergraduate mathematics content modules and their own schooling mathematics 

experience. According to Sam (2005), if teacher candidates exit teacher education with 

inadequate mathematics content knowledge, it will not be easy to gain it when they start 

practicing. Pedagogical content knowledge no doubt can be acquired as teaching 

experience increases. Nevertheless, there is some truth that teaching experience indeed 

brings about positive effects on content knowledge (Banks, Leach & Moon, 1999). Hence, 

a balanced view is that novice teachers build on the fundamental content knowledge 

which they acquire in teacher education to enrich this content knowledge as years of 
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teaching goes by. Thus, beginning teachers ought to commit themselves to keep current 

with changes in content knowledge in their respective disciplines.  

The performance of teachers in mathematics especially, depends on degree of mastery 

of subject knowledge in their possession. As for preservice teachers, their fluency in 

content knowledge reflects the teacher training which they underwent (Tatto, Schwille, 

Senk, Ingvarson, Rowley, Peck, Bankov, Rodriguez & Reckase, 2012). When school 

principals seek to engage newly qualified mathematics teachers for instance, they look 

for those who have specialised in the subject and are able to use content knowledge to 

become proficient in teaching school mathematics (Hill & Ball, 2004; Benken & Brown, 

2008).  

Pedagogical Content Knowledge 

A unique and personal way of mixing pedagogical and content knowledge gave rise to a 

new knowledge type which Shulman (1986) termed pedagogical content knowledge. It is 

defined as the teachers’ specialised knowledge concerned with how to teach specific 

topics in a way that is understandable to learners being taught that topic.  Teachers can 

facilitate children’s learning of a concept by using appropriately selected instructional 

strategies and vivid explanations that counteract learners’ challenges to learning.   

Pedagogical content knowledge identifies the distinctive bodies of knowledge for 

teaching. It represents the blending of content and pedagogy into an 

understanding of how particular topics, problems or issues are organised, 

represented, and adapted to the diverse interests and abilities of learners, and 

presented for instruction. (Shulman, 1987, p.4).  

Pedagogical content knowledge is more than an integration of pedagogy and content but 

is a unique type of knowledge quite different from its constituents. Pedagogical content 

knowledge is contextualised to each topics and specific to individual teachers and 

represents teachers’ smart ways of expressing concepts in comprehensible way to the 

ones taught. On the other hand, good content knowledge makes knowledge 

comprehensible to teachers themselves. In reality, the pre-requisite to a well-developed 

pedagogical content knowledge is good content knowledge. Pedagogical content 
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knowledge understanding hangs on a deep understanding of content knowledge (Nathan 

& Petrosino, 2002; Hill & Ball, 2004; Piccolo, 2008). Nevertheless, content knowledge on 

its own is insufficient for good teaching. For instance, teacher candidates who have 

already earned mainstream Bachelor of Science degrees were observed to have 

difficulties connecting their rich content knowledge to classroom practice (Nicol, 2002). 

Teachers ought to be skilled at interpreting concepts to their learners and that skill is 

rooted in the knowledge of how topics are connected and how they anticipate learners’ 

challenges to learning (Ball & Bass, 2000 cited in Davis & Simmit, 2006). Moreover, 

pedagogical content knowledge also encompasses teachers’ understanding as to what 

renders the teaching and learning of certain topics to become difficult or easy, and the 

anticipation of misconceptions that learners bring to class in the teaching and learning of 

those topics. By being a metamorphoses of content and pedagogy, pedagogical content 

knowledge encompasses knowledge of instructional strategies, knowledge of teacher 

explanations, knowledge of assessment, knowledge of learners’ difficulties and 

misconceptions and knowledge of subject matter.  

One of the debates in literature pertains to how and under what circumstances teachers 

acquire pedagogical content knowledge. Borko and Putman (1996) posited that 

pedagogical content knowledge is experiential knowledge, which is directly related to the 

practice of teaching. Contrary to this, is the theoretical view, which claims that 

pedagogical content knowledge is acquired through structured in-service and preservice 

teacher training. By the time preservice teachers exit teacher education, they would have 

amassed meaningful pedagogical content knowledge through school teaching practicals, 

methodology modules, general pedagogy modules and several years of their own school 

learning (Bailey, 2014). This study acknowledges the theoretical development of 

pedagogical content knowledge thus; this study has attempted to explore the pedagogical 

content knowledge of preservice teachers at the point of exit from teacher training. This 

is corroborated by Carnoy, Chisholm and Chilisa (2012) who said emphasis should be 

placed on preservice teacher-training so that they develop pedagogical content 

knowledge before they qualify. 
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Curricular Knowledge 

Knowledge of the curriculum is the last sub-domain of teacher knowledge under 

pedagogical content knowledge, which Shulman (1986) defined as follows:  

… represented by the full range of programs designed for the teaching of particular 

subjects and topics at a given level, the variety of instructional materials available 

in relation to those programs, and the set of characteristics that serve as both the 

indications and contraindications for the use of particular curriculum or program 

materials in particular circumstances (p.10).  

The content knowledge in any discipline must find a place in the broader perspective of 

a program of study. In brief, curriculum knowledge is what teachers ought to teach at a 

certain level of study, which requires a good realisation of learners’ espoused potential 

and the national policy expectations. Teachers teach based on the curriculum of a 

particular grade and program of study which they interpret and contextualise. Curriculum 

knowledge also includes the various teaching and learning resources which teachers 

make available to teach specific mathematics content. Shulman’s (1986) description of 

curriculum knowledge also encompasses identifying relevant materials and textbooks 

specific to teaching given content areas. There exist two categories of curriculum 

knowledge that Shulman considered important for teaching, which are vertical and lateral 

curriculum. Lateral curriculum entails content knowledge of the curriculum in one situation 

relating to other topics or subjects being taught to learners (Shulman, 1986). Vertical 

curriculum infers to familiarity with what learners are taught in one topic or course which 

should connect their knowledge to grades and topics already been taught or are yet to be 

taught in later years in the same content area (Shulman, 1986).  

Through the passage of time, what contributes to curriculum knowledge may change as 

new curricula are implemented by the policymakers. In the South African education 

landscape since independence in 1994; there was the Outcome Based Outcomes 

philosophy from 1994 up to 2005. Thereafter, the Curriculum 2005 was introduced, 

followed by the National Curriculum Statement in 2007. At present South Africa has the 

Curriculum Assessment Policy Statement which began in 2012 which went beyond 
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defining what is to be taught by also setting out how teachers should plan, teach and 

assess.  

Overview of the types of teacher knowledge by Shulman (1986) 

Shulman (1986), just like Ball, Thames and Phelps (2008), focussed the basis of their 

quest for teacher knowledge domains on the preservice teachers. Both were involved in 

teacher education at their respective universities in psychology and mathematics 

respectively. Thus, there are many references were made to preservice teachers’ 

knowledge in their models. Shulman commented that preservice teachers lack the know-

how of using curriculum material and lack the necessary skills in interpreting and 

engaging curriculum demands. Inadequate curriculum knowledge implies limited 

pedagogical content knowledge in mathematics, as the two are closely related (Beyer & 

Davis, 2012; Roselle & Wilson, 2012). Analysing curricula material for planning lessons 

is instrumental in teaching, which is initially learnt in methodology modules at higher 

education institutions. Knowledge of curricula is needful in the South Africa context where 

curriculum-planners occasionally change, and at short notice. This often leads to some 

mathematics topics coming and going with the curriculum changes, for example, 

mathematical induction gave way to calculus at high school with the introduction of the 

National Curriculum Statement of 2007. Already we perceive a close connection between 

curriculum knowledge and content knowledge. New topics may be added to the current 

curriculum which teachers must be able to teach. Either teachers receive training, or they 

do self-adjustments to accommodate the new topics.  

The three categories of knowledge are tightly interwoven, such that the development of 

one supports or depends on mastery of another. Pedagogical content knowledge is 

known to support both curriculum and content knowledge development. Knowing how to 

teach certain concepts leads to better interpretation of the curriculum and content 

included in that curriculum. Also, pedagogical content knowledge is based upon having a 

broad and deep understanding of mathematics content and the curriculum (Plotz, 

Froneman & Nieuwoudt, 2012). Lastly, once teachers can fit the current topics into the 

broader spectrum of an educational program, teachers close in on those concepts, 

thereby leading to improved practices in content and how to teach that content.  
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In this sub-section, it was shown that curriculum knowledge requires teachers to be skilled 

in identifying resources necessary for teaching specific mathematics content and where 

that content fits into the broader scope of learners’ program of study. With curriculum 

policies changing with such rapidity, teachers need to keep pace and remain current with 

the expectations of the policy-planners. Teacher-trainers need to make necessary 

adjustments in teaching prospective teachers, by addressing the current curriculum 

practices in the teaching of methodology modules. According to a study by Beyer and 

Davis (2012), preservice teachers lack experience in using and implementing curriculum 

materials when they begin their teaching career, as a result of inadequate training. Thus, 

under Shulman’s model, successful school teaching commences with the teacher 

recognising what is to be learnt in a particular program of study, how the identified content 

is to be taught and the manner in which teaching with meaning has to take place. 

3.3.2. The model for mathematics knowledge for teaching 

From the inception, many researchers have taken Shulman’s (1987) model of teacher 

knowledge to describe specific content knowledge of teachers in diverse disciplines. One 

such model was developed by Ball, Thames and Phelps (2008) which deals with teaching 

school mathematics. The model was developed by investigating the actual work of 

teaching mathematics in primary schools and each component in their framework has 

been empirically tested in classroom practice. This model came to be known as the 

mathematics knowledge for teaching, which helped in identifying the elements that were 

fundamental to mathematics teaching. Ball, Thames and Phelps (2008) studied the 

knowledge of teaching mathematics in classroom practice instead of studying it in theory, 

in order to analyse the mathematical knowledge demands of teaching. Figure 3.2 

illustrates the agreed domains in this model (Ball, Thames & Phelps, 2008; Hill, Rowan & 

Ball, 2005). The mathematics knowledge for teaching model features only two knowledge 

domains in its structure, which are the subject matter knowledge and pedagogical content 

knowledge.  
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Figure 3.2. Model of teacher knowledge proposed by Ball, Thames and Phelps (2008). 

The common content knowledge, the specialised content knowledge and the horizon 

knowledge are the three sub-domains identified in this model under the category of 

subject matter knowledge. Common content knowledge refers to the mathematics skills 

and knowledge pertinent to all mathematicians in mathematics-related professions. 

Mathematics teachers possess it too, but then this knowledge type is not confined to 

teaching only. It is commonly used by other mathematicians, for example, solving a 

mathematics problem using a particular algorithm and defining a mathematics concept. 

The specialised content knowledge is denoted by mathematical skills and knowledge that 

only mathematics teachers use for teaching and learning purposes. Teachers portray 

specialised content knowledge skills in instances where they must identify learners’ error 

patterns or assess the logic of learners’ non-routine solutions. Only teachers possess this 

type of knowledge, hence it plays a key role in teachers’ overall mastery of content 

knowledge required for teaching. Specialised content knowledge is the most significant 

of the three, thus Ball, Thames and Phelps (2008) allocated a very large area to this 

domain in their diagrammatic representation of teacher knowledge categories. The third 

sub-domain, horizontal knowledge, is the teachers’ awareness of the salient relations 

among mathematics topics within a grade. The connection of topics across grades in a 

program of study also forms part of horizontal knowledge (Ball, Phelps & Thames, 2008). 

Horizontal knowledge is about teachers’ realisation of what mathematics knowledge they 

are currently teaching looks like in grades above or below.     
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Together with subject matter knowledge, pedagogical content knowledge is the other type 

of teacher knowledge according to the model by Ball, Thames and Phelps (2008). 

Pedagogical content knowledge has three sub-domains, which are knowledge of content 

and students, knowledge of content and teaching, and knowledge of content and 

curriculum. The knowledge of content and students is a conglomeration of teachers’ 

knowledge of subject matter and of learners. Mainly this know-how equips teachers’ to 

be familiar with how children learn and think for any given topic, as well as a sound 

anticipation of learners’ challenges to learning (misconceptions, possible errors and 

difficulties). Knowledge of content and teaching treads on the grounds of teachers’ 

knowhow of appropriate teaching strategies are commensurate with the topic under 

consideration and learners’ calibre. Teachers obviously evaluate instructional strategies 

used to teach specific topics to be able to identify appropriate methods and procedures 

(Ball, Thames & Phelps, 2008). These two previously mentioned sub-domains square up 

to Shulman’s (1986) precepts of pedagogical content knowledge: “the conceptions and 

preconceptions that students of different ages and backgrounds bring with them to the 

learning of those most frequently taught topics and lessons” as well as, “the ways of 

representing and formulating the subject that make it comprehensible to others” (p.9).  

Finally, knowledge of content and curriculum is about teachers’ knowhow of mathematics 

as it is taught in the broader context of the national curriculum. Included also is knowledge 

of how different teaching and learning support materials could be employed to teach 

different aspects of the curriculum (Mudaly, 2016). The curriculum knowledge category 

of Shulman (1986) is subsumed into the knowledge of content and curriculum in the 

mathematics knowledge for teaching model (Ball, Thames & Phelps, 2008). It is worth 

noting that in South Africa, the provincial governments supply schools with annotated 

work schedules and pacesetters for each grade level. These provide in detail the topics 

to be covered, their duration and sequencing. What would remain then is for teachers to 

plan daily lessons within the ordered topics in a coherent and conceptual manner. The 

idea behind studying these knowledge domains was to establish the basis for effective 

mathematics teaching and teachers ought to be well-versed in all the knowledge types 

under the model by Ball, Thames and Phelps (2008). 
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As much as these sub-divisions of teacher knowledge exists on paper, in reality, it may 

be difficult at times to isolate them from each other. More so, the distinction between the 

knowledge of content and students, and the specialised content knowledge is rather 

arbitrary. Both involve teachers having a unique mathematical interpretation to assist 

learners to understand the concepts being taught to clear any difficulties of learning if they 

exist. An example is best suited to highlight what one is trying to portray. In teaching the 

concept of special angles in trigonometry to learners, a smooth transition happens across 

all knowledge types, except for horizontal and curriculum knowledge. Stating the values 

of the special angles calls upon teachers’ command of the common content knowledge, 

whilst recognizing learners’ errors as they relate to the special triangles requires 

specialised content knowledge. Teachers’ recognition about which initial special angles 

would expose learners’ challenges to derive further special angles entails good mastery 

of knowledge of content and students. Finally, teachers’ decisions about what to do in 

order to alleviate or rectify the identified learners’ errors and misconceptions to learning 

special angles involve the use of knowledge of content and teaching.  

A salient distinction is observable too between horizontal knowledge and the knowledge 

of content and curriculum. Both speak about the need for teachers to understand the span 

of particular mathematics content in the context of the given curriculum in a program of 

study. However, unlike horizontal knowledge, knowledge of content and the curriculum 

spells out teachers’ knowledge of teaching materials that teachers make available when 

teaching given topics contained in the current curriculum. In this study, the focus was on 

specialised content knowledge, common common knowledge, knowledge of content and 

students, and knowledge of content and teaching in the teaching of trigonometry. 

Knowledge of content and curriculum and horizon knowledge were omitted as they do not 

reflect individual teacher efforts since they are unilaterally supplied by the Department of 

Basic Education. 

3.4. Overview of teacher knowledge models 

In this chapter considering Shulman’s (1986) model of teacher knowledge was an obvious 

choice as it is the foundation upon which other models were built. Based on Shulman’s 

(1986) model, Ball, Thames and Phelps (2008) developed the mathematics knowledge 
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for teaching model, in order to improve researchers’ understanding of teacher knowledge 

at that time. To situate data collection and analysis and the discussion of findings, the 

present study used the conceptual framework by Ball, Thames and Phelps (2008). As it 

was in the original consideration of the model by Ball, Thames and Phelps (2008), this 

study has also investigated university preservice teachers’ understanding of the 

mathematics knowledge for teaching in a specific topic in mathematics.  

Nevertheless, the two models discussed in this chapter have not been without perceived 

weaknesses. These frameworks exclusively focussed on studying individual teachers 

without accounting for the roles played by school teaching contexts and culture in teacher 

knowledge study (Ellis, 2007). Also, teachers’ thinking, learners’ temperaments in the 

learning process and culture have not received satisfactory exploration. All these 

contextual factors have the potential to influence teacher’s knowledge from time to time, 

and if not given due consideration, the perceived teacher knowledge is superficial. 

Furthermore, teacher knowledge was handled as if it is real and static, when yet it is 

known to be fluid and dynamic (Hashweh, 2005). Teacher knowledge changes constantly 

through a teacher’s career, but Shulman viewed it as externally determined and fixed. 

Banks, Leach and Moon (1999) differed from Shulman in this regard by acknowledging 

that teacher knowledge is dynamic. Also, the model of mathematics knowledge for 

teaching was highly contextualised and culturally specific to America, hence the 

proponents of that model did not guarantee results to other unknown cultural groups. 

School contexts and teachers’ beliefs still do not have a spot in the mathematics 

knowledge for teaching model up to now, although, as suggested by other researchers, 

teacher beliefs do influence the way teachers make decisions in teaching (Fennema & 

Franke, 1992; Grossman, 1990).  

In response to the previously mentioned shortcomings of the Shulman (1986) and Ball, 

Thames and Phelps (2008) models of teacher knowledge, other researchers effected 

slight changes to their models, but were still based on Shulman’s model. Two of these by 

Grossman (1990) and Fennema and Frank (1992) included aspects of teacher beliefs as 

being instrumental to pedagogical content knowledge. But beliefs as a teacher knowledge 

type was not directly connected to the centralised pedagogical content knowledge, hence 
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the link was not robust. School context knowledge was one of the three types of teacher 

knowledge introduced in the models by Fennema and Franke (1992) and Grossman 

(1990), together with other models by Banks, Leach and Moon (1999), Gess-Newsome 

(1999a) and Neagoy (1995). Context knowledge influences teachers’ instructional 

practices through teachers’ experience in teaching, school settings and learners’ thinking 

and learning processes. For Shulman (1986) and Ball, Thames and Phelps (2008), their 

closest to context knowledge is teachers’ knowledge of the curriculum.  

The common defining feature for the five previously mentioned models was the fact that 

pedagogical content knowledge was central, being a culmination of pedagogical, context 

and content knowledge types. Pedagogical content knowledge represents teachers’ 

unified conceptualisation of distinct and diverse teacher knowledge categories. These 

categories are only useful to instruction when they are transformed to pedagogical 

content knowledge. Banks, Leach and Moon (1999) used the term teachers’ personal 

constructs to refer to the same pedagogical content knowledge, which underpins 

teachers’ unique and dynamic professional knowledge. By so doing, they differed 

immensely from Shulman (1986) and Ball, Thames and Phelps (2008) in that the latter 

never considered pedagogical content knowledge to be the ultimate, but just as one of 

the types of teacher knowledge. Furthermore, general pedagogical knowledge does not 

feature as a stand-alone type of teacher knowledge but is embodied in pedagogical 

content knowledge. In the present study, the conceptual framework chosen is the model 

of Ball, Thames and Phelps (2008), with minor variations. This model portrays 

pedagogical content knowledge as a stand-alone entity, on par with content knowledge. 

Knowledge of the curriculum and other contextual factors are loosely classified under the 

sub-domains of subject matter knowledge and pedagogical content knowledge. 

Knowledge of school contexts and of learners were excluded from this conceptual 

framework by virtue of preservice teachers having no consistent and full-time school 

teaching experiences. 

However, researchers feel Shulman (1986) and Ball, Thames and Phelps (2008), were 

justified in their consideration of teacher knowledge types, as they were based on the 

context of preservice teachers. The other mentioned researchers’ constituents of 
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pedagogical content knowledge clearly display that they focussed on practising teachers, 

thus their mention of culture, school contexts and knowledge of learners. 

3.5. Conclusion 

This chapter attempted to highlight what a conceptual framework is, its composition, its 

difference with theoretical framework and how it strengthens a research study. If there 

exists an adequate theory covering a study, then researchers make use of a theoretical 

framework. If not, theory exists, researchers rely on concepts to create a relationship with 

them, leading to the use of a conceptual framework. This study saw that a conceptual 

framework consists of models used for a particular study which facilitates the 

understanding of concepts and variables in that study. Then, since a conceptual 

framework is specific to a particular research study, it is something that is not readily 

found in literature. The conceptual framework is engendered through a literature review. 

Hence this chapter was preceded by a chapter on literature review and the scope of the 

thesis study. This conceptual framework has been developed after careful examination 

of my research title and research problem, as well as key variables in the concept of 

teacher knowledge. A conceptual framework is made up of one or more models which 

attempt to describe it in a symbolic way. 

After careful consideration of Shulman’s (1986) framework, this study settled for the 

model by Ball, Thames and Phelps (2008), which is termed the mathematics knowledge 

for teaching. This study has focussed our investigation of preservice teachers’ knowledge 

in trigonometry on the two knowledge bases of subject matter knowledge and 

pedagogical content knowledge, which is based on the model by Ball, Thames and 

Phelps (2008). These are known to be instrumental to preservice teachers who are still 

undergoing teacher-training. General pedagogy, knowledge of learners, curriculum 

knowledge, school contextual factors and teachers’ beliefs were excluded from this study 

as they have not been part of frameworks by Shulman (1986) and Ball, Thames and 

Phelps (2008) on preservice teachers too. These are the domains of practicing teachers 

too, hence falls outside the scope of this study. For preservice teachers, only school 

practical teaching, content modules, methodology modules and their content knowledge 

as learners themselves are the major contributing factors to their knowledge of teaching 
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development. An overview of the models of teacher knowledge was presented, from 

which some striking differences and similarities among them. The placing of pedagogical 

content knowledge as being central or not is one such difference. Teachers’ beliefs, 

experience, knowledge of learners and other school contextual factors were included in 

some and excluded in others. Shulman (1986) and Ball, Thames and Phelps (2008) had 

a similar approach to teacher knowledge where general pedagogical knowledge was not 

part of the final framework. Other proponents of teacher knowledge had similar 

conceptions of teacher knowledge types, whereby the climax of all teacher knowledge 

comprehensions was pedagogical content knowledge (Neagoy, 1995; Banks, Leach & 

Moon, 1999; Gess-Newsome, 1999a; Grossman, 1990; Fennema & Franke, 1992). This 

pedagogical content knowledge was a product of general pedagogical and content 

knowledge domains. However, even though other researchers developed their own 

models which differed from those of Shulman (1986), they all used his work as a 

springboard for their studies.  
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CHAPTER 4: THE RESEARCH DESIGN AND METHODOLOGY 

4.1. Introduction 

This chapter presents an outline of the research plan that was applied to realise the 

purpose of this study. This chapter begins with an explanation of the research paradigms, 

which informs the three research designs that exist in educational research. Then the 

qualitative research design was identified as the one which sufficiently describes the 

present study. A description of the research design chosen for this study follows, which 

highlights the unit of analysis, sources of data, the pilot study undertaken and the rest of 

the general research procedures. These research procedures included sampling 

techniques, administration of data collection instruments and the role of the researcher in 

order to minimise bias. An explanation of the research methodology is given next, which 

specifies the context within which the research procedures are conducted. This is 

followed by measures of quality which make the study trustworthy to the reader and the 

ethical considerations that were put in place to safeguard the participants against abuse 

of their personal rights. 

4.2. The research paradigm 

A paradigm is a pattern or a set of practices and beliefs that guide a field of study (Morgan, 

2007). The term paradigm originated from the Greek word “paradeigma” which means 

pattern. Specifically, research paradigms are the various approaches to conducting a 

research that have been verified and practiced by researchers for many years. The 

paradigm in which the researcher operates in, whether consciously or subconsciously, 

set the expectations of a research study. All researches make use of at least one research 

paradigm as a rigorous guideline to conduct the research and to take on the research 

venture in a manner that is most valid and appropriate. Attempt to categorise researches 

into types of paradigms led to three major paradigms that clearly stand out: interpretivism, 

positive and pragmatism. Each of these can be categorised further by examining their: 

ontology, epistemology and methodology. Positivism and interpretivism are like two 

extrema on the paradigm continuum to which many research topics broadly fall into. The 

occasional need by seasoned researchers to amend their philosophical assumptions over 
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time leads to pragmatism, which lies on the middle of the positivism-interpretative 

continuum.  

Interpretivism is paradigm that seeks to understand the ever-changing social order. The 

interpretive paradigm construe that each individual constructs his/her own view of the 

world based on experiences and perceptions. Researchers tend to “rely more upon the 

participants’ views of the situation being studied and recognises the impact on the 

research of their own background and experiences” (Creswell, 2003, p8). Krauss (2005) 

refers to the interpretivist researcher as most likely to rely on the use of qualitative 

methodologies and analyses, and in some cases, the mixed-methods inquiry. Positivism 

dominates in the natural and physical sciences by assuming that phenomena consists of 

independent facts about a single perceivable reality. Positivists perceive knowledge 

acquisition to describe the phenomena where observation and measurement are central 

scientific endeavour (Krauss, 2005). To the researcher, observable reality out there is 

orderly and predictable, waiting to be discovered.  

Pragmatist researchers are process- and semantic-driven in their pursuit of answers to 

the research questions by focussing on the ‘how’ and ‘what’ of a research problem 

(Creswell, 2003). The pragmatic researcher takes the lead in research by deciding what 

he/she wants to research on, guided by his/her personal value systems. Appropriate 

research methods are those that help to answer the research question at hand and which 

leads to action being effected. Pragmatists differ with the positivist position in that truth 

about the real world can be investigated solely by the scientific method. To interpretivism, 

pragmatism differs by limiting the nature of subjectivity of this approach and the overmuch 

research bias thereof. In most cases, pragmatists may combine both the positivist and 

interpretivist paradigms within the scope of a single research study in response to the 

research questions. 

This study was framed within the interpretivist paradigm, as it assists in our understanding 

of the contemporary social world of preservice teachers’ mathematics knowledge for 

teaching. Interpretivist paradigm acknowledges the subjective nature of human action and 

understanding which is required to explore preservice teachers’ knowledge mastery. This 

study taps on benefit of interpretivism that allows the use of researchers’ experiences to 
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construct and interpret phenomena. This paradigm enables researchers to view reality 

through the experiences and perceptions of the participants.  In seeking the answers to 

the research questions, the researcher who follows interpretive paradigm uses those 

experiences to construct and interpret his understanding from gathered data. Specifically, 

the interpretivist paradigm support researchers to explore the world by interpreting the 

understanding of individuals. This study sought to explore preservice teachers’ 

understanding and development of the mathematics knowledge for teaching in 

trigonometry at a rural-based university in South Africa. 

4.3. The research design 

A research design describes the proposed plan of action for conducting a research study. 

It encompasses procedures that provide details of the planned activities of the various 

stages within a research study (Creswell, 2009; Yin, 2009). The research design guides 

the researcher with the preliminary research, collection of data, the sampling techniques 

and the analysis of results. The three categories of research methodologies are 

quantitative, qualitative and mixed methods. Though these three are treated as disjoint in 

their approach to guiding a research study, they should not be perceived as polar 

opposites. They are best viewed as the extreme terminals on a continuous line. Some 

studies tend to be more quantitative relative to qualitative in varying degrees and vice-

versa. It is rare to find studies that are purely quantitative or qualitative. This gives rise to 

mixed methods research design, which integrates both aspects of quantitative and 

qualitative approaches and straddles the median of the said continuous line. The 

quantitative research design concentrates on theory testing through cross-checking the 

behaviour of variables that explain substances or social behaviour. Social context is seen 

as objective, quantifiable and external to the social phenomena. This makes it possible 

to manipulate variables in order to achieve desired research goals. According to Creswell 

(2009, p.4), a qualitative design seeks “exploring and understanding the meaning 

individuals or groups ascribe to a social or human problem”. The variables in each and 

every research study are best examine in their natural settings as much as possible. The 

world is not ‘out there’ and separate from those involved in its construction. People are 

creators of their “social world rather than passive objects” under the qualitative research 

design (Bryman, 2008, p.34).  
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This study is an exploratory research geared at investigating final year preservice 

teachers’ mathematics knowledge for teaching the topic of trigonometry, which fits well 

with qualitative research design. This study is a qualitative research design which uses 

both quantitative and qualitative data analyses to reach the conclusion of the extent of 

preservice teachers’ understanding of the mathematics knowledge for teaching 

trigonometry for selected final-year preservice teachers. Quantitative data emanated from 

participants’ scores from the content test, which were to “yield specific numbers that can 

be statistically analysed” (Creswell, 2005, p.510). Qualitative data were obtained from 

task-based interviews, lesson plan analyses and classroom observations. In brief, the 

design for this study took this form: develop data collection instruments; do a pilot test of 

the instruments; administer the instruments in the natural setting of events; ascertain the 

quality of data collected; perform data analysis; discuss the findings; and draw the 

conclusion of the research problem. Figure 4.1 gives an illustration of these procedures. 
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Figure 4.1. The steps in the research design for conducting this research study. 

The sketch in Figure 4.1 is a simplified framework of the qualitative research adopted for 

this study. It is simplified in the sense that in reality the stages may not happen in a linear 

fashion as shown. Qualitative research designs are highly flexible as initial plans at each 

stage are likely to change as the study progresses. It is also notable that there is an 

iteration between analysing data and the discussion of findings. After initial analysis of 

data, new insights often crop up whenever another analysis of data is performed in 

qualitative research designs, which in turn effects a corresponding change in the 

discussion of results. This obviously hinges on the type of the analysis of data as well as 

the researchers’ subjective viewpoint in the analysis of data. That makes data analysis a 

process. 

4.4. Research methodology 

Qualitative research designs that were explained in section 4.2 offer diverse strategies of 

inquiry towards a research problem. These approaches to inquiry are called research 

methodologies, such as narrative research, ethnography, case studies, grounded theory 

and others. The case study research methodology was employed to achieve the research 

purpose of this study. A case study research methodology is defined as an in-depth 

exploration of a well-defined phenomenon in a population within a space of time. This is 

made possible by collecting detailed information of a setting using multiple data collection 

procedures in a confined setting (Creswell, 2009). Thus, case studies make it possible 

for a researcher to focus on specific phenomena, which was, in this case, the mastery of 

mathematics knowledge for teaching in trigonometry in a well-defined population of 

preservice teachers at a higher education institution in South Africa. Moreover, case study 

methodologies can be used in studying many situations (Merriam, 2001) and “virtually 

any phenomenon can be studied by means of the case study methodology” (Gall, Borg & 

Gall, 1996, p.544). The unit of analysis is the major entity that frames what is being 

studied of analysed. It is the subject of study upon which a researcher may generalise. In 

this study, my unit of analysis are the preservice teachers from which I will obtain their 

level of understanding of the mathematics knowledge for teaching. Preservice teachers 

are the main focus of this study and the conclusion of this study shall say something about 
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preservice teachers’ degree of mastery the mathematics knowledge for teaching. The unit 

of observation is preservice teachers’ understanding of mathematics knowledge for 

teaching. The research questions played a major role in determining the unit of analysis 

for this study, while the unit of observation is determined by the data collection methods. 

Case studies come in different styles and types. Yin (2003) provides a classification of 

case studies based on their purpose. He identified three case study categories, which 

are, descriptive, exploratory and explanatory. The descriptive case study gives a narration 

of phenomena in a research study, as well as the contextual factors in which the 

phenomena occurred (Yin, 2003). The exploratory case study seeks to reveal situations 

in which the case being evaluated has not been investigated before and could possibly 

lead to further research. The exploratory case study was applied to this study, as the 

researcher sought to investigate the preservice teachers’ understanding of mathematics 

knowledge for teaching in trigonometry at a particular point in time. According to de Vos 

(2000), case studies are useful tools of exploratory studies, hence researchers still use 

exploratory case studies in well-planned empirical and real-life situations (Soy, 2006). An 

explanatory case study seeks to give details of what happens in a particular case, why it 

happens and often involves verifying existing theory. Furthermore, case study 

methodologies can also be classified according to the number of cases involved. Yin 

(2003) differentiates between single case studies where only one phenomenal setting is 

considered and multiple case studies, in which many variables in different settings are 

under consideration at the same time in order to address a research problem. This study 

was a single case study as only the preservice teachers’ mathematics knowledge for 

teaching at one research site was used to find answers to the research problem. 

A case study methodology has many positive implications to the researcher and 

contextual settings. It promotes collaboration between the participants and the 

researcher, which leads to a better realisation of the actions and perceptions of 

participants (Baxter & Jack, 2008). Cordial working relations were established between 

the researcher and the participants as I was both a researcher and lecturer at the research 

site. This allowed for comprehensive investigation of phenomena within natural settings, 

as well as to obtain in-depth data from multiple sources. The study took place in 2016 
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and 2017, a sufficiently long period of time during which I was able to collect data from 

different sources, that is, content tests, task-based interviews, lesson planning analyses 

and video-lesson analyses. These provided rich and in-depth information of the context 

and phenomenon. The long period was able to cultivate trust and build good working 

relations between participants and the researcher.  

Critics of the case study are sceptical that a single case study may not adequately offer 

a platform for establishing reliability and generality of research conclusions (Yin, 2009). 

Also, case studies cannot be replicated, therefore research results are not easy to 

corroborate. And because of that, it implies that data and results remain valid for only that 

time-bounded phenomenon. Case studies provide slim basis for generalisation since the 

study is only focussing on a sole case, which is bound by locality and time. Again, case 

study reports are frequently lengthy and detailed to sufficiently read and decode data. 

Case studies can be time consuming due to intensive data collection procedures and 

subsequent data analysis. While Yin (2009) acknowledges that using case studies is 

associated with possible challenges, he argues that each of these weaknesses can be 

overcome if researchers plan their work well. He suggests that researchers using case 

study methodology should report fairly and without bias, and case studies are not 

formulated for generalisations across populations. Rather, case studies seek to 

understand a particular behaviour and establish the value of that case to literature. 

4.5. Data collection instruments 

In any research study, data provides the researcher with the necessary primary evidence 

to effectively provide the credible findings to a research study, as opposed to speculating 

what the findings could be. According to Altricher, Feldman, Posch and Somekh (2008), 

data are immutable, thus the researcher can safely interpret what has been transcribed 

onto a paper. Usually, three processes in qualitative research are involved in data 

collection. Firstly, the researcher observes research participants under natural settings. 

Then he communicates with the participants to find meaning into why they act and behave 

in a certain way. Thereafter, the researcher attempts to ascribe meaning to the data which 

were collected. Contrary to quantitative methodologies where data are collected in 

controlled settings, the researcher has no control over the actions and behaviours of the 
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participants under a qualitative research methodology (Yin, 2009). It is therefore 

imperative for the researcher to connect the study of participants’ everyday lives to the 

demands of the overall proposed plan of data collection.  

As seen earlier, the use of multiple data collection techniques is a defining property of 

case studies. For instance, Li and Smith (2007) used survey questionnaires and 

mathematics content tests to investigate a group of prospective teachers’ knowledge of 

mathematics and pedagogy acquired during the time they spent in a teacher education 

programme. The study conducted by Benken and Brown (2008) used survey 

questionnaires, content examination and interviews to investigate the effects of 

integrating mathematics content, general pedagogy and methodology courses on 

preservice teachers’ mastery of pedagogical content knowledge. It has been common 

practice to assess teachers’ competence in content knowledge using paper-and-pencil 

content tests. Pedagogical content knowledge at its best has been commonly investigated 

through lesson delivery in a real classroom. Thus, in addition to content tests, the present 

study used task-based interviews, lesson plan analyses and classroom observations to 

investigate preservice teachers’ mastery of pedagogical content knowledge in 

trigonometry. The reason for incorporating lesson planning and presentation was that the 

researcher wanted to get data based on what preservice teachers do during teaching 

practice in order to illuminate their existing knowledge of content and pedagogical content 

knowledge. It is fitting to explore pedagogical content knowledge from diverse stand-

points due to the complexity of assessing it. Above all, pedagogical content knowledge is 

unique to each teacher and implicitly expressed. Hence, surety of capturing its presence 

or absence is by means of dissimilar instruments. Each of the four instruments for this 

study are presented in the next sub-sections. 

4.5.1. The content test 

A test on trigonometric knowledge was developed to investigate preservice teachers’ 

understanding and knowledge of selected concepts in high school trigonometry. Paper-

and-pencil tests can tap into preservice teachers’ mathematics content knowledge much 

better than other instruments. The conceptual understanding of trigonometry was in line 

with the perceived conception of teaching and learning of mathematics geared for 
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optimising learner understanding. The content test was intended to elicit the information 

on the level of subject matter knowledge which preservice teachers have acquired by the 

time that they exit their training. Content tests are the most profound instrument used to 

examine teachers’ mastery of subject matter knowledge in literature. Furthermore, 

experts in mathematics education evaluated the test and suggested necessary 

improvements of the items. The final form of the test is attached in the Appendices section 

(Appendix E).  

Aspects of trigonometry knowledge that were assessed in the content test were: special 

angles diagrams; deriving and proving identities; solving trigonometric equations; 

applying the reduction formula; sketching trigonometric functions; and identifying solution 

sets of inequalities. The content test was formulated by adapting problems from textbooks 

and past examination papers, as well as some identified school trigonometry problems 

from literature. In that regard, most of the problems from textbooks and past examination 

papers comprised the items for this test. Our desire was for participants to handle 

problems in trigonometry that would be analogous to those they would encounter when 

they would be teaching the topic in schools. 

4.5.2. The task-based interview 

Ideally, task-based interviews are defined as a scenario where the interviewee talks 

during or immediately after answering a question on paper, whereupon the interviewer 

can probe to seek further clarifications if necessary. In a task-based interview, the 

interviewer and the participant interact on a given task at hand. Pioneered by Piaget in 

the 1970s, task-based interviews have evolved by taking the form of structured think-

aloud protocols and open-ended prompting (Clement, 2000). Evidence exists testifying 

that task-based interviews have the potential to reveal the state of participants’ ways of 

thinking and understanding as they solve given tasks in mathematics (Schoenfeld, 1985). 

That gives rise to a unique interviewer and participant interaction over the given 

mathematics problem. This type of data collection relies on the participants’ capabilities 

to think aloud and verbalise as they respond to given questions which requires minimal 

intervention from the researcher, and therefore prevents any of the interviewer-imposed 

bias. The researcher should also try to minimise interfering with the participants’ solution 
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process. It is advisable to wait until the respondent has finished responding before the 

interviewer intervenes for clarity-seeking. Task-based interviews have for long gained 

popularity among mathematics education researchers (Boris & Guershon, 2007).  

In the preparation of the tasks for the interview, care was taken to avoid compound 

questions that tend to confound respondents. If that happens, faulty data is generated 

(Merriam, 2001). Other question-types avoided were leading questions that obviously pre-

empt participants’ responses. Yes-or-no question types were avoided too since they do 

not generate much meaningful information, but guesses and thoughtless responding. As 

such, the interview was composed of eight problems ranging from proving identities, 

identifying learners’ errors, providing expected explanations and anticipating learners’ 

challenges to learning certain concepts. Some of the items in the interview were 

hypothetical scenarios of learners' experiences in the learning concepts of trigonometry, 

which participants were then required to construe. This was felt necessary for an 

instrument that was designed to measure participants’ pedagogical content knowledge 

skills. Task-based interviews may open the door to obtain information on what preservice 

teachers practically do to give insight into their perceived knowledge of pedagogical 

content knowledge. Appendix F gives the task-based interview instrument used in this 

study. 

4.5.3. Preparation and analyses of lessons 

Lesson plans are defined as teacher’s step-by-step intended plan of teaching and 

learning activities for a particular lesson. As a research instrument, lesson plans have 

been necessitated by the fact that a lesson plan is an important component of teaching 

and learning. The design and development of lesson plans have been a feature of teacher 

education for a long time and have been key in assessing preservice teachers’ 

understanding of knowledge of teaching (Murphy, 2009). The preparation and analyses 

of lesson plans have been used to investigate the extent of pedagogical content 

knowledge development amongst preservice teachers since the days of Shulman (1986, 

1987). Lesson plans can be an effective indication of the preservice teacher’s perceptions 

of teaching (Murphy, 2009). Preservice teachers should engage in cycles of lesson 

planning, lesson implementation and lesson reflections in order to improve their 
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knowledge of instruction beyond the current lesson under consideration (Fernandez, 

2005). The importance of lesson planning is that it gives focus to a lesson by ensuring 

that teachers teach the right content in the appropriate ways in the given time period.  

Six preservice teachers in their final year of study were tasked with planning a 30-minute 

lesson during the time they were doing school practice teaching. The participants were at 

liberty to use any of the resources they usually use to assist them do the lesson-planning, 

which includes the research site’s School of Education lesson plan template (see 

Appendix H). This was an attempt to make the act of lesson planning as natural as it could 

be. The drafted lesson plans were analysed for components of pedagogical content 

knowledge and that information constituted data for the present study. The School of 

Education’s lesson evaluation form was used, with which all participants were familiar 

(see Appendix I).  

4.5.4. Classroom observations 

In addition to task-based interviews and lesson plan analyses, one of the best instruments 

to assess teachers’ pedagogical content knowledge is video-lesson observation and 

analyses (Kapyla, Heikkinen & Asunta, 2009; Ijeh & Onwu, 2013; Rollnick, Bennett, 

Rhemtula, Dharsey & Ndlovu, 2008; McConnell, Parker & Eberhardt, 2013). Video-

recorded lessons have proven to be a valuable tool for capturing teaching episodes and 

many benefits of using video reviews in teacher education researches have been reported 

(Coffey, 2014). Video-recordings as data collection tools are reliable because they have 

the potential and capacity to capture rich and complex events of what happens in the 

classroom. Investigating pedagogical content knowledge by video-recorded lesson 

analyses enables the researcher to delineate elements of pedagogical content knowledge 

that are difficult to document by other means (Janik, Najvar, Slaviik & Trna, 2009). In 

addition to capturing the complexities of teaching on a permanent electronic record, 

video-recordings can store the original voice and non-verbal cues of a teaching scenario 

for a long time without deterioration of quality. Researchers can at any time replay the 

video-recordings as often as they wish in the analysis of data process. They can also 

rewind, fast-forward and annotate the video to observe events and elements that might 

otherwise have eluded them in the initial views.  
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Based on their planned lessons mentioned in section 4.4.3, the six preservice teachers 

were tasked to implement the lesson to a real class of learners under video recording. 

The researcher also took observation notes in each class to complement the video-

recordings. These field notes and video recording analyses were the fourth and last data 

collection instruments for this study. The lesson evaluation schedule for the School of 

Education was used and is attached as Appendix I. 

4.6. The Pilot Study 

4.6.1. Definition 

In qualitative research, a pilot study is miniature research conducted before the full-scale 

research project in order to evaluate the feasibility of such a study in terms of cost, time 

and other things like ethics. It can also be a means to pre-test the structure and 

administration of instruments of data collection before the main study. It is common 

practice that a pilot study be conducted only after the researcher has tabulated all the 

necessary procedures for a research study. These procedures are the research problem, 

research questions, the research methodology and instrumentation which are to be 

applied to a research study. The instruments which were trialled for this study were the 

task-based interview and content test. The other two, lesson plan analysis and classroom 

observations could not be piloted, as it was not possible to take the chosen participants 

to the real classrooms where the main study would take place. A thought came to me 

about making use of peer-group teaching to pilot the two instruments, but I realised that 

it would be superficial since peers will never behave in any way close to school learners. 

As an advantage, the official School of Education templates for lesson planning and 

classroom evaluation tool were to be used to collect data during the formal teaching 

practice session. Data collection was intended to be done in the participants’ natural 

setting of teaching practice.  

4.6.2. Value and purpose of pilot study 

The pilot study in this study was conducted in order to shape two of the data collection 

instruments. Major precepts that were trialled were the time estimates, number of items 

to be included, the level of difficulties of the items, a balance in the types of questions and 

bringing clarity to the terminologies used in the two instruments. There was need to 
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identify potential defects in the measurement procedures of the instruments and to detect 

ambiguous questions in the items of both instruments. Other important issues like ethical 

consideration were highlighted in the pilot study so that necessary steps could be taken 

to minimise discomfort or embarrassment that may be experienced as a result of the 

contents of the instruments. In brief, the pilot study served the purpose of assessing the 

practicality as well as the appropriateness of the research instruments before the main 

study was administered.  

Pilot studies are valuable in this regard: “You may think that you know well enough what 

you are doing, but the value of pilot research cannot be overestimated. Things never work 

quite the way you envisage, even if you have done them many times before, and they 

have a nasty habit of turning out very differently than you expected” (Blaxter, Hughes & 

Tight, 1996, p.122). Even though similar research may exist in literature, each study is 

unique under qualitative research designs, making a pilot study to be a priority. A pilot 

study bring harmony to the ideal scenario on paper to the practical research environment 

which exists in reality by bringing to the fore probable challenges that could lead to the 

demise of the main research. It is a fact that pilot research may not in earnest guarantee 

the success in main study, however, it has the potential to increase the probability of 

success. This was the main reason for conducting the pilot study prior to the main study. 

The pilot study setting, procedure and outcomes are outlined in the next sections. 

4.6.3. The setting 

Four preservice teachers were selected to take part in the pilot study based on their 

willingness to participate. However, to avoid possible contamination of data in the 

potential pool of participants, participants in the pilot study were not the same as those 

who will be selected for the main research study. They were selected from the then fourth-

year students, who, by virtue of pressure of work to complete their studies, were not going 

to be able to volunteer for participation in the main study.  

4.6.4. Procedure 

After the participants were briefed of the activity which they were about to undertake, they 

signed the consent forms. Then the four were gathered in a quiet environment to respond 

to the content test questions under the supervision of the researcher. Supervision of the 
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administration of the content test was to ensure that only what they have mastered in 

trigonometry goes on paper, instead of what their colleagues, textbooks, YouTube or 

Google has to say. Thus, they were not supposed to discuss, consult their notes or share 

ideas. Calculators were not used in some items, in line with typical questions in school 

trigonometry where calculators are not to be used in certain concepts. The completed 

question papers were collected and marked objectively using a marking guide. Based on 

their performance in the content test, the best- and least-performing participants were 

called in for the task-based interviews on a one-to-one basis on the following day. The 

aim was to attain maximum variation in the participants for the interviews. The two 

instruments were intentionally not timed so that the participants responded until they 

finished, thus providing a clue to the approximate time to be used for the actual study. A 

brief analysis of data was carried out after the two interviews to check for elements of 

pedagogical content knowledge. As explained before, the other two instruments were not 

piloted as the tools from School of Education teaching practice unit were going to be used.  

4.6.5. Results of the pilot study 

This section presents the analyses and findings that were obtained from both instruments 

of the pilot study. Information gained from the content test and how it brought about 

changes to the instrument were presented first, followed by the interview information and 

the changes thereof to that instrument. 

Content knowledge test 

Several adjustments were effected to the content test emanating from the pilot study 

findings. A challenge was discovered with the duration of the test. The longest participant 

took over two hours to complete. As a result, the items in this instrument were curtailed 

so that it could be completed in about one hour. Hence, a total of five items which were 

duplicating ideas that were already assessed were removed. Most of the items were 

unaltered, signifying the wording and the structure was above board. The angles in the 

items of solving trigonometric equations which were initially stated in radian measures 

were changed to degrees, in accordance with the requirements of mathematics covered 

at high school in South Africa. Participants had difficulty with applying the reduction 

formula and expansion of compound angles, however, no adjustments were made to 
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these items because the questions were deemed relevant. The sketching of graphs and 

solving equations were underperformed as well, but the items were again maintained as 

such. Two-dimensional and three-dimensional applications of trigonometry were removed 

outright to reduce the test load. Lastly, space to write down responses to the questions 

was provided just below the item on the question paper after realising that separate 

answer sheets were difficult to account for. 

Task-based interview 

The duration for both interviews was about 40 minutes for both participants. Though this 

was considered adequate, the duration was changed to 45 minutes for the main study. 

The number of items was adjusted up from eight to nine. The ninth item was on the 

definition of a negative angle, which I felt ought to be included in the interview to increase 

items on common content knowledge. It was also observed that there was no space for 

participants’ written explanations to each item, hence that space was created just below 

each item. Under questions 5 and 8, the participants had difficulty with vocabulary, thus 

the following words were altered: plausible to possible; support and refute changed to 

agree and disagree respectively. In both cases the theme of the question remained the 

same after the words were changed. Again, question 8 initially had four parts, but these 

were reduced to two in order to minimise unnecessary duplication of the transformation 

of function for 𝑦 = sin 𝑏𝑥 for 0 < 𝑏 < 1 and −1 < 𝑏 < 0. The coefficients 𝑏 < −1 and 

𝑏 > 1 were omitted. The closing comment part was broad and general, thus, to 

minimise confusion to participants, the comment specified that the comments 

should relate to the interview and trigonometry. The pilot research for this present 

research study was necessary to guide the refining of the two instruments and to 

increase the likelihood of success of the main study. 

4.7. Research procedure 

This section presents the research procedure for the main research study, which is also 

called the research process. It is defined as an orderly and systematic way of conducting 

a research study. The researcher commences with an overview of issues related to the 

research site, the population, the sample and the sampling techniques. The explanation 
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of the data collection processes and the description of the data analysis plan follows next. 

The identification of the role of the researcher to minimise research bias, the quality 

criteria measures and ethical considerations takes the rear. Having explained and put in 

perspective the research problem, the review of relevant literature and the conceptual 

framework in the first three chapters of this study, what needs to be explained now are 

the specifics of where to start our research and how to go about doing it.  

The first step in embarking on this project was seeking permission from the research site 

to collect data. This was duly obtained in 2016, and the ethics clearance certificate is 

attached as Appendix A. However, the research study started in earnest with the approval 

of research proposal by the Human and Social Science Research ethics committee at the 

University of KwaZulu-Natal in June 2016 (see Appendix B). The pilot research was 

actioned in August of 2016 after obtaining the consent of the participants. The intention 

of the research was explained to the potential participants for the main study during the 

same month of August 2016. The briefing of information was effectively done both in 

writing and verbally. The following were explained to the potential participants: purpose 

of the study, type of instruments to be used, procedures to be utilised, expected duration 

of participation, any risks of the study and potential benefits of the study. The prospective 

participants were given two copies of a consent document, one from the university where 

the researcher is registered for his studies and the other one from the ethical clearance 

committee at the research site. Both copies of the information letter and the consent 

document may be found in Appendices C and D.  

4.7.1. The research site 

The research site was a higher education institution in South Africa which came into being 

in 1959 as a result of the extension of the then University Education Act of 1959. The Act 

made provisions for the establishment of rural-based ethnic black population universities 

for the majority black South Africans. Hence, from its humble beginnings, this institution 

remained historically disadvantaged and situated in the densely populated areas that 

used to be called homelands. Even now, one of the institution's chief aims is to be a 

leading rural-based university catering for the disadvantaged and ethnic communities. 

The Faculty of Humanities with a student enrolment of about two thousand is one of the 
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four faculties at the site.  The School of Education is the largest of the three schools under 

the Humanities faculty, where all students enrol for a teaching undergraduate degree in 

languages, commerce, humanities, and science and mathematics. The Department of 

Mathematics, Science and Technology Education is the popular and pride of the School 

of Education, having a huge responsibility of churning out mathematics and science 

teachers, who are still in short supply in South Africa (Zezekwa, Mudau & Nkopodi, 2013). 

Preservice teachers in the Department of Mathematics, Science and Technology 

Education have a common curriculum for the first two years of their Bachelor of Education 

Senior Phase and Further Education and Training degree. At third-year, they chose two 

majors amongst Physical Science, Mathematics, Life Sciences and Technology. The 

researcher was a member of the teaching staff in the Department of Mathematics, 

Science and Technology Education at that time. The next section elaborates on the 

participants for this study. 

4.7.2. Participants 

The subjects of this study were the third-year preservice teachers who had elected to take 

mathematics as one of their majors of specialisation. About 250 were third year students 

who were registered for a four-year teaching qualification at the institution of higher 

learning on full-time basis. The participants were aged between 21 and 28 years, and 

they all came from the provinces of Limpopo and Mpumalanga, except one who hailed 

from Gauteng. They all spoke an African home language and English was a second 

language. The majority of students at this higher education institution come from rural 

and impoverished communities, and would most probably return and teach in those same 

communities upon qualification.  

The preservice teachers in this study were a cohort, meaning that during their 

participation in the program they all took the same courses at each particular point of the 

program, which ensured that they had at least comparable academic experiences. These 

participants had also completed teaching practice in schools from the time they were in 

first year. Teaching practice equips preservice teachers to the basics of instructional 

strategies, the learners’ challenges to learning in certain concepts and to the reflection on 

mathematics teaching skills. Hence, preservice teachers had developed the essentials of 
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pedagogical content knowledge through real classroom teaching experiences, which 

exposes them to the three phases of teaching, which are planning the lesson, 

implementing the lesson and reflecting on the lesson. In all, the participants possessed 

typical experiences and attributes of preservice teachers in their late years of teacher 

education just prior to beginning school teaching as qualified teachers.  

In particular, the participants for this study had opportunities to develop an understanding 

of the Grade 10 – 12 mathematics Curriculum and Assessment Policy Statement syllabus 

through interactions with curricula materials in methods modules and teaching practice. 

The participants had also intricate notions about mathematics first as learners during their 

schooling years and as students in the first- and second-year undergraduate content 

modules. Such pedagogical, content and curriculum capabilities of mathematics would 

have an impact on their mastery of knowledge of mathematical teaching (Fennema & 

Franke, 1992).  

4.7.3. Sampling 

A sample is a group of subjects that are taken from a larger population for purposes of 

measuring certain attributes of a research study. Sampling is the procedure of choosing 

a small group of participants from the larger population. The population was all the 250 

third-year student teachers registered for a mathematics major degree at the higher 

education institution of learning. Researchers chose to study a sample rather than the 

entire population because it is sometimes impractical and not important to consider all the 

population. Kumar (2005) emphasises that the accuracy of the results in any given 

research study depends to a large extent upon the sampling technique and not on the 

quantity of participants. In case studies, a relatively small number of units are selected to 

achieve in-depth study of a phenomenon. The small sample in this case provided a close 

representation of the population which is being studied.  

The researcher therefore chose to employ non-random sampling techniques for this 

research study since the study was not working towards representativeness or 

generalisability (Kumar, 2005). Cohen, Manion and Morrison (2005) point out that in a 

non-probability sampling, subjects of the population do not have the same likelihood of 

becoming part of the sample. The researcher used judgemental sampling where the chief 
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concern was the judgement of the researcher on the selection of subjects from whom rich 

data can be measured. To select a sample, the researcher therefore goes to those 

members of the population who, according to his/her perception, are likely to yield the 

expected information and be able to communicate it (Kumar, 2005). Some of those 

approached by the researcher were unwilling to participate due, in part, to the recording 

format of some of the data collection procedures. Thus, a combination of judgemental 

and willingness to participate were eventually used to select fifteen preservice teachers 

for the content test, which was phase one. The selection of four males and two females 

chosen for phase two data collection, that is, the task-based interviews, lesson 

preparation and video-teaching episodes was based on their performance in the initial 

analyses of the content test data. There were supposed to have been two low performers, 

another two average performers and the last two were good performers. However, after 

the best performed participant showed no interest for the phase two data collection, the 

researcher was left with one high-performer, three medium-level performers and two low-

content performers. This was done to bring to effect the maximum variation type of 

sampling (Creswell, 2007), which brings a balance in the range of capabilities of 

participants.  

4.7.4. Administration of data collection instruments 

This study was an exploratory case study intended to investigate the preservice teachers’ 

command of the mathematics knowledge for teaching in trigonometry. It is known that 

case studies make use of many data collection methods carefully selected to give a 

detailed exploration of the case under consideration. The conceptual framework of the 

research informed the choice of data collection instruments. The subject matter 

knowledge was assessed objectively using a content test, which yielded quantitative data. 

The pedagogical content knowledge, which is not easy to measure, was assessed by 

three data collection instruments, and these gave rise to qualitative data. These three 

were task-based interviews, lesson plan analyses and lesson analyses using video 

recordings. This research study uses quantitative data from the content test that were 

statistically analysed in conjunction with qualitative data in the form of interviews, lesson 

plan and lesson observation analyses (Creswell, 2005). Data collection began in August 
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2016 and ended in May 2017. Each of these four instruments is explained in detail in the 

coming sub-sections.  

The content test 

After the consent forms were read, understood and signed, the participants were gathered 

in a lecture hall where they sat for the content test at one sitting under the supervision of 

the researcher. Different terminologies have been used for this instrument, for example 

task-sheet (Mudaly, 2016), questionnaire (Akkoč, 2008) and test of trigonometric 

knowledge (Fi, 2003). But the goal is the same; to explore preservice teachers’ common 

content knowledge in a given content area. Marks were not allocated to the questions, 

but a marking rubric was used since the interest was not just scores. There were seven 

questions (some with part questions) which were supposed to be completed in one hour. 

Most of the questions on special angles and the reduction formula do not require the use 

of a calculator, thus their use was not envisaged. The participants’ identities on the 

content test were needed since selection for phase two of data collection rested on the 

preliminary analyses of data from the content test. A copy of this instrument is attached 

in the appendices section (see Appendix E).  

Task-based interviews 

After the initial analysis of data from the content test, a further six participants were 

selected for the one-to-one task-based interview. A quiet place devoid of interruptions 

was selected for the interviews. The interviews were captured on audio-recordings, as 

well as written responses which were done in the spaces provided below each question 

on the paper. These responses were collected to support what was captured on audio-

recordings. Each interview was about 40 minutes long and they were conducted 

sequentially, until all the participants had their chance. An attempt was made to transcribe 

interview audio-recordings at the earliest possible time.  

The interviews attempted to uncover possible interrelationships between the content 

knowledge and knowledge of teaching of trigonometry. As participants tackled the written 

problems contained in the instrument one at a time, the researcher came in with probing 

questions to bring out the intricacies of mathematics knowledge for teaching. That made 

the interviews to be semi-structured. The participants faced problems which required 
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some explanations, proofs of identities, sketching of graphs and definitions of key 

concepts in trigonometry. Some tasks in the interviews were made up of constructed 

hypothetical scenarios based on learners’ thinking and calculations. Participants were 

then required to refute or validated those scenarios, some of which were rife with common 

misconceptions and errors. Appendix F illustrates a copy of the task-based interview.   

Preparation and analysis of lesson plans 

All the six participants who participated in the interviews proceeded to the next stage of 

data collection, lesson planning and lesson analyses. These were tasked to prepare a 

30-minute lesson plan on any concept in trigonometry using the institution’s School of 

Education lesson plan template (see Appendix H). Trigonometry starts at Grade 10, so 

the participants planned for Grade 10 or 11 classes. As student teachers, school 

principals do not often trust them with Grade 12 classes. Usually, by the month of May, 

Grade 12 learners would be in high gear for preparation of the national examinations, 

hence they need minimum interruptions. Lesson plans are effective indicators of 

preservice teacher’s mastery of the mathematics knowledge for teaching. Lesson 

planning was done as part of the preservice teachers’ roles as they engage in normal 

school teaching practice, thus they could use any material they deemed necessary from 

the schools where they were practicing. The copies of lesson plans were submitted to the 

researcher for evaluation and analyses on the day of the school visit by the researcher. 

A copy of the instructions to plan a lesson and teach it under observation is given in 

Appendix G. 

Video-lesson analyses 

Following the lesson plans which they developed in the preceding section, the six 

preservice teachers went on to deliver those lessons to the classes for which they had 

planned. The length of each lesson was 30 minutes, which was in line with most school 

timetable durations. The whole teaching episodes were captured on video-recordings. 

This exercise was successfully conducted in April and May 2017 during the time when 

the fourth-year students went out to schools for practicals for a period of six weeks. When 

the preservice teachers were teaching their planned lessons in schools, the researcher 

was present as an observer and only wrote down observation notes while the lessons 
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were video recorded. A brief post-observation discussion followed the implementation of 

the lesson plans to give reasons behind some of the actions that would have been 

observed during the lesson. The video-recordings were transcribed soon after the lesson 

presentation with the help of the School of Education teaching practice evaluation form 

(see Appendix I). 

Of significance was the need to find means whereby prospective teachers’ subject matter 

knowledge and pedagogical content knowledge interplayed in the real classroom setting 

(Rowland, Thwaites, Huckstep & Turner, 2009). Mathematics knowledge for teaching is 

an intricate combination of pedagogical content knowledge and subject matter knowledge 

as they intermix in the course of teaching of mathematics. Teachers require knowledge 

in several different domains, but this research supports the belief that mathematics 

knowledge for teaching is not only located in the mind but also through the practice of 

teaching.  

4.7.5. Role of the researcher 

As is common in most qualitative studies, researchers are the key players for all the 

research processes, for example, collection of data, analysing and discussing the findings 

(Merriam, 1998). The researcher for this study had to oversee the implementation of each 

stage of the research design for this study. Hence, it is important to state the researcher's 

position in the study to minimise possible bias that could negatively affect the research 

results. My role in the study was both practitioner and researcher. As a lecturer at the 

higher education institution, I taught entry-level mathematics content modules, thus I was 

not directly responsible for teaching final-year students. However, I was an active 

participant in the teaching practice evaluation for both Bachelor of Education and Post-

Graduate Certificate of Education students. The subjectivity of the researcher is an 

inevitable part of case study research methodologies and I did not take it as a weakness. 

Rather, it gave me first-hand detailed and rich knowledge of what was happens in the 

classrooms while the preservice teachers delivered their lessons (Simons, 2009). This 

was done in a friendly and cooperative environment since the participants were familiar 

with the researcher. Hence, instead of perceiving researchers’ contributions to the entire 

research process as detrimental, it could be made positive and useful. 
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4.7.6. Minimisation of research bias 

Research bias stands for any interfering factors that provides a distortion of truth or 

accuracy of information in any part of the processes of research (Polit & Beck, 2014). The 

risk of bias exists in all components of qualitative research, but normally arises in the data 

instruments, the respondents and the researcher. Researchers in qualitative designs are 

an integral part of the methodology and final product, and any attempts to separate the 

two may not be possible nor desirous. The concern instead should be whether the 

researcher has been transparent about the processes by which data have been collected, 

presented and analysed. Thus, the goal of reducing bias is not to have a flawless research 

report, but to make sure that respondents do reveal their true feelings without distortions 

and researchers analyse data without prejudice. To address potential bias, the researcher 

piloted the research instruments and part of the methodology to see if the planned data 

collection and research procedures reflect the research problem. Then, the researcher 

attempted to triangulate data collection for the pedagogical content knowledge to reduce 

the risk of the limitations and biases of a single data source (Cohen, Manion, & Morrison, 

2005).  

In designing the instruments, the researcher was careful to avoid leading questions in the 

content test and task-based interview, as well as to minimise probing and follow-up 

questions as these are prone to bias. Some critics say a researcher probing data is like 

he is mining for data that will affirm his own preconceptions. The wording of questions 

was carefully chosen to avoid confusion and ambiguity. There was not much which the 

researcher could do to minimise bias emanating from participants, except to create a 

conducive environment where they feel free to express their ideas without fear or favour. 

There was not much risk of acquiescence or social desirability bias because the 

researcher made it clear that there was no material gain in participating in the study. The 

researcher-participant relationship was not social but professional.  

4.8. The data analysis plan 

This section presents the proposed data analysis plan for this study. The full-scale data 

analysis appears in Chapter 5, where this analysis plan stated here was applied to the 

collected data.  Qualitative analysis is a well-structured spectrum of processes and 
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procedures which leads to some form of interpretation or explanation of the phenomena 

under investigation, based on the raw data that have been collected. The procedure of 

data analysis transforms information collected during research into findings. The analysis 

of data for phase two was done through the lens of the identified conceptual framework 

in order to confirm presence or absence of established elements of pedagogical content 

knowledge established. The content analysis of the content test responses sought to 

establish themes in the data. A theme is a pattern that is considered significant to describe 

a phenomenon which transcends all data sets. Thematic analysis is a common form of 

data analysis in qualitative research which attempts to pinpoint, examine and record 

notable patterns within a data set.  

Like most research methodologies, the data analysis can be inductive or 

deductive. Thematic analysis of data is an induction approach, where patterns identified 

are strongly data-driven and the researcher knows little about the outcome of the 

phenomenon. It is data-driven by identifying emerging themes in the data in order to 

develop explanations for social behaviour. Induction is not based on a structured on pre-

existing frameworks. Deductive approaches are based on a structure predetermined by 

the guidance of the theoretical framework. Predetermined frames render deductive 

analyses less descriptive. These one or two specific aspects of data that were determined 

prior to data analyses then became the focus of analyses. The research design governs 

the choice between the inductive and deductive approaches. In this study both were 

applied to data analysis; deduction based on the predetermined categories of teacher 

knowledge as informed by the conceptual framework. Induction was used to identify 

emerging patterns within each predetermined strand of teacher knowledge and from the 

content analyses of the content test responses. For a single case only, deductive analysis 

can be pertinently used in a case study methodology and facilitates confirming certain 

traits in data without necessarily leading to generating new generalisations. Figure 4.2 

shows the overview of the data analysis plan. 

The data analysis plan was descriptive statistics for the phase one quantitative data from 

the paper-and-pencil content test since it “yields specific numbers that can be statistically 

analyzed” (Creswell, 2005, p.510). The content test data was subjected to content 
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analyses too so that the researcher can delve into participants’ nature of understanding 

of trigonometry. The content analysis was done in an inductive perspective by means of 

thematic analyses of data. This study is qualitative in design, which used quantitative data 

as part of collected data. Quantitative analyses of data were followed by qualitative 

analyses to obtain detailed and specific information the results of statistical tests. 

Deductive analysis was used on phase two qualitative data, which was based on the 

predetermined elements of pedagogical content knowledge components. Deductive 

analyses of data checks for established generalisations in the phenomena and efforts 

were done to identify the generalisation in the collected data. The quantitative analysis is 

explained first, followed by qualitative analyses in the following sub-sections. 

 

Figure 4.2. Stages in the data analysis process, modified from a model by Creswell 

(2009). 
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4.8.1. Quantitative analysis 

In the first phase of data collection, both qualitative and quantitative data were gathered 

and analysed to respond to research question one, “What is the level of preservice 

teachers’ understanding of trigonometric concepts?” Fifteen participants took part in this 

phase. Primarily, descriptive statistics shed light on the extent to which preservice 

teachers understand the concepts of trigonometry based on the content test data. Thus, 

the content knowledge of preservice teachers was determined through their scores in the 

content test. A preservice teachers’ understanding to an item was regarded as robust if 

the response was correct, otherwise it was considered weak. In addition to quantitative 

data, item analysis of content test data was explained and supplemented the initial 

quantitative results. The completed content tests were collected and each question was 

scored using a rubric with scores ranging from 0 to 3, since no marks were allocated to 

the questions. The total score for each preservice teacher was recorded. However, due 

to the nature and requirements of each question, the general rubric at times was modified 

to suit individual questions. Thus, for all the 13 questions, each participant was rated on 

a scale of zero to a possible 39 marks. The percentages of participants who reached a 

certain level of performance were calculated. To summarize the overall performance, 

average scores per participant were reported. Furthermore, the percentage of participants 

who demonstrated mastery of a given level of performance on all the items were reported. 

Further qualitative analysis in the form of item analysis were conducted to highlight any 

discernible patterns of understanding in the participants’ responses from the data.  

4.8.2. Qualitative analyses of data 

Qualitative analysis was done to address the second research question, “What 

pedagogical content knowledge do preservice teachers possess in trigonometry?” 

Pedagogical content knowledge was explored through three data instruments and all the 

six participants took part in the data collection activities. The task-based interview 

consisted of nine open-ended questions and the responses were analysed in order to 

understand the nature and structure of preservice teachers’ responses to trigonometry 

teaching. Data were described on preservice teachers’ understanding of pedagogical 

content knowledge under three elements, namely, knowledge of explanation, knowledge 

of learners’ possible misconceptions and knowledge of content. The interviews were 
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audio-taped and the analysis began by listening to the audio-taped interviews and 

transcribing them. Each interview transcription was analysed item by item and by the 

category of element of pedagogical content knowledge. Transcribed notes were 

summarized to avoid many pages of transcription if each interview were to be transcribed 

word for word for each of the six participants. The verbal transcripts were merged with 

the participants’ written responses for each question.  

The lesson plan analysis sought the preservice teachers’ skills in pedagogical content 

knowledge. Five elements of pedagogical content knowledge that were predetermined 

under lesson plan analyses were content knowledge, knowledge of learners’ 

misconceptions, knowledge of instructional strategies, knowledge of assessment and 

knowledge of lesson plan structure. Lesson planning was done by the six participants 

using a lesson plan template (see Appendix H). The completed lesson plans were 

completed and evaluated using the lesson evaluation sheet (see Appendix G). The extent 

of preservice teachers’ understanding under each element were recorded as part of 

analyses.  

Lesson observations were done in class by the researcher, coupled with the analyses of 

video-recordings of the six preservice teachers done using the lesson evaluation form 

(see Appendix H). The six predetermined elements for video-teaching episodes were: 

knowledge of teaching strategies, of content, of learners’ misconceptions, of assessment, 

of lesson structure and questioning techniques. A brief post-observation discussion was 

conducted with each participant after the lesson delivery to substantiate the participants’ 

intentions for both lesson planning and video-recorded lesson presentation. 

The third research question, “To what extent do preservice teachers’ develop the 

mathematics knowledge for teaching of trigonometry in the initial teacher education?” was 

responded to through the qualitative analyses of the four data sets. The tracking of each 

of the six preservice teachers’ understanding across the four data sets were also done... 

However, even though predetermined themes were used in analysis, a door was left open 

for possible themes that may arise based on participants’ responses. The content 

knowledge element featured in all the three of pedagogical content knowledge 
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instruments because pedagogical content knowledge is all about teachers’ art of teaching 

specific topics, and this hinges on the level of mastery of teachers’ content knowledge.  

4.9. Measures of quality criteria 

The term quality criteria refers to the efforts and procedures that researchers put in place 

to ensure the integrity and accuracy of data collected, following a chosen research 

methodology. Attention has been aimed at the quality of qualitative research designs in 

recent years. Lincoln and Guba (1985) consequently proposed four measures of quality 

which feature prominently in the criteria used to assess integrity of both the qualitative 

and quantitative research. These are objectivity, reliability, external and internal validity. 

However, these criteria for measures of quality are not readily applicable to qualitative 

research, hence alternative qualitatively oriented criteria were crafted. These are 

credibility, transferability, dependability and confirmability. These four reflect better the 

tenets of qualitative research designs. A comparison is illustrated in Table 4.3 to relate 

the quantitative and qualitative measures of quality. 

Table 4.1. The analogous measures of quality criteria for quantitative and qualitative 
research designs. 

Quantitative researches Qualitative researches 

Internal validity  Credibility 

External validity  Transferability 

Reliability Dependability 

Objectivity Confirmability 

 

Trustworthiness is a term referring to establishing all the four measure of criteria in 

qualitative data. Credibility, a parallel to internal validity under quantitative design, is 

concerned with the researcher checking and verifying the accuracy and appropriateness 

of the results of a qualitative research study (Creswell, 2009). It is the most important 

aspect in establishing trustworthiness as it links the findings with reality. Triangulation of 

methods of collection of data was one of the techniques of establishing credibility that 

was employed in this study. Four methods were used to collect information on preservice 

teachers’ understanding of mathematics knowledge for teaching to ensure that the 



96 
 

findings are robust and well-developed (Bryman, 2008). Secondly, member-checking to 

the six preservice teachers was used also to establish credibility of the data collected. 

Findings emerging from the data were shared with the participants which gave them an 

opportunity to clarify what their intentions really were and provide additional information 

in some instances. Also, the interviews and the lessons that were observed were 

recorded electronically so that the researcher could re-visit them at any time with ease to 

ensure that the reality that the researcher had recorded was not a fabrication. However, 

credibility should not be seen as absolute in qualitative research due to the subjectivity 

and attitudes of respondents which would be difficult to guarantee in this case. Should 

the instruments be re-administered to the same participants, it would be human nature to 

try and answer the questions differently if the participants felt that their initial response 

was incorrect. Thus, the honesty, depth of the data collected, and the objectivity of the 

researcher can only establish credibility of results of a study. 

Transferability, the alternative to external validity, is the extent to which results from a 

research study can be applied to a research in another context. Transferability rests in 

the hands of the interested parties; readers can then decide on their own whether the 

results of the study could be applicable to their own research contexts or not. However, 

the researcher enhanced transferability by giving thick description of the setting with 

sufficient details of the findings which make the results richer and more realistic (Creswell, 

2009). As this was a qualitative study, no substantive generalisations are expected. 

Nevertheless, Yin (2003) posited that for case study research, there is room for 

generalisation to other settings in the same broader theory. As this study focusses on 

teacher knowledge theory of preservice teachers, other applicable settings could be on 

novice or experienced teachers. 

Dependability, a parallel of reliability in quantitative research, pertains to the degree of 

consistency of results and the possible replicability in measuring a construct. The 

researcher’s approach to creating findings should be consistent across different settings 

and different researchers (Gibbs, 2007).  Care must be exercised to avoid measuring the 

same construct twice and expecting to get uniform results. Research subjects tend to give 

different responses to the same question as they feel their initial response was not correct. 
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Also, measuring a construct the second time in human sciences may not necessarily 

mean the scenarios are the same. If one cannot guarantee perfectly matching settings, 

one is bound to get different results. To enhance the dependability of the data collection 

instruments for this study, the content test and task-based interview were piloted to the 

participants. The instruments which were not piloted were standard institutional tools for 

teaching practice, and their use was an effort by the researcher to situate this study in 

preservice teachers’ natural setting of operation. Multiple revisions were carried out based 

on the pilot study feedback, leading to the final versions of the content test and task-

based interview. Secondly, triangulation of methods enhances dependability; in this study 

task-based interviews, lesson plan analyses and video lesson analyses were used to try 

to figure out preservice teachers’ understanding of pedagogical content knowledge. The 

results obtained from the three instruments were similar, an affirmation that triangulation 

serves its purpose. Furthermore, validation of the content test and task-based interview 

instruments of data collection were done by experts in mathematics education at the 

research site.  

Lastly, confirmability refers to the degree of confidence that the research results are a 

true reflection of the respondents’ perceptions, rather than shaped by the researcher’s 

opinion. If not careful, researchers can have bias, which has the potential to mar the 

confirmability of research results of that study. Confirmability can be established by good 

data management, so that results can be traced back to the data. In this study, 

confirmability was enhanced by keeping safe the collected data that was used for 

interpretation safely, so that any interested parties can access the same data for 

inspection and confirmation. Also, in what is called the audit-trail, the researcher detailed 

the processes of data collection, data analysis and discussion of findings. Confirmability 

criterion was one of the simplest to establish, as it was just a matter of explaining in detail 

the decisions that were made in the research methodology. The details from the four 

quality criteria alluded to previously, were worthy steps taken to improve the 

trustworthiness of this study by providing valuable insight for readers to understand how 

the research results emerged from the data. 
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4.10. Ethical issues 

Ethics is a philosophy branch which involves the dynamics of societal values and norms 

that are regarded as wrong and right. Human science is to some extent governed by laid 

down societal values and a set of written and unwritten rules (Fouka & Mantzorou, 2011). 

Research ethical committees govern how research is performed at most research 

institutions such as universities and how findings are to be published in a way that protects 

the dignity of human and animal participants and the environment. According to Creswell 

(2009), ethical issues transcend all the major stages of conducting a research study. 

Thus, researchers talk of ethical issues in the problem statement, in the purpose of study, 

in the collection of data, in data interpretation, in discussion of results and in the 

dissemination of research results. Research ethical considerations are important for the 

following reasons: they hold researchers accountable for their actions; they uphold 

community moral values and standards; they build public trust research-work; and they 

give meaning to collaborative work through mutual respect and fairness. 

A request to collect data from the higher education institution’s School of Education was 

submitted to the Ethics Research committee through the offices of the Director of School 

and the Dean of Faculty of Humanities. Approval to collect data was duly granted (see 

Appendix A). The Ethics Committee at the University of KwaZulu -Natal’s Humanities and 

Social Sciences Research also approved the application for ethical clearance (see 

Appendix B). When the preservice teachers were recruited, two informed consent letters 

were provided to the participating volunteers (see Appendices C and D). Consent to 

audio-tape interviews and video-record the lesson presentations was duly obtained from 

the participants. Issues of voluntarily participating in the study were explained in the 

consent forms, as well matters of harm, adverse effects and personal gain. For lesson 

plan analyses and observations in schools, participants were assured that their 

participation was not to influence their performance in teaching practice evaluations by 

the same researcher. I had the privilege of visiting all the participants during their 

April/May 2016 teaching practice sessions in the schools from where they were practising.  

There was no ethical clearance from any of the learners or schools for the classes that 

were taught under video recording because they were not the focus of the study. The 
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transcribed information from the video recordings was mute on information that could 

identify the participants, the learners or the schools where preservice teachers were 

practising. In addition, the name of the institution where the participants attended was not 

disclosed, but was referred to as a higher education institution.  

All the participants in the study were assigned pseudonyms for confidentiality. Protecting 

the identity of participants is what researchers call confidentiality. On the other hand, 

anonymity grants absolute protection of participants’ identities from all interested parties, 

including the researcher himself/herself. Hence anonymity supersedes confidentiality in 

all respects. However, participants were not anonymous in this study because the 

researcher had to further select six participants for the task-based interviews based on 

their performances in the content test. Also respective participants took part in the four 

instruments of data collection, thus there was need to identify each one of them in order 

to trace their performance. The only way that could be possible was by using some form 

of identification which was known to the researcher alone. Cohen, Manion and Morrison 

(2005) argue that a respondent consenting to a face-to-face interview can be assured of 

confidentiality, but cannot expect anonymity. Even though the researchers can identify 

participants from the given information, or may know very well who has provided particular 

data, they will not disclose the information publicly.  

The limits of confidentiality were also made clear to the participants before data collection 

commenced. By this, it was clarified that their data would be used for the purposes of this 

research only. The data collection materials, it was explained again, would be kept in a 

secure place with the researcher and the copies thereof with the supervisor for five years. 

These include the answers to the content test, audio-recordings of interviews, lesson 

plans and the analyses, and video-recordings of lesson presentations and evaluation 

sheets. Thereafter, they would be destroyed completely. All these deliberations on ethical 

issues bring to the fore the idea that researchers are unilaterally accountable for the moral 

integrity of the entire research process. 

4.11. Conclusion 

The qualitative research design as it was used in this thesis was outlined in this chapter. 

To address the research problem and provide answers to the research questions, an 
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exploratory qualitative design was employed. A case study methodology was enacted to 

explore preservice teachers' mathematics knowledge for teaching. A preliminary study 

was conducted which paved way for improvements in data collection instruments. The 

research procedure for the main study was given after the pilot study, which highlighted 

the research site, participants, sampling techniques, collection and analysis of data. 

Judgemental sampling was used to select fifteen final-year preservice teachers for this 

study and the concept of maximum variation sampling was used to select six participants 

from the initial fifteen for the second phase of data collection. A content test was 

constructed and used to assess preservice teachers’ understanding of content knowledge 

in trigonometry. The task-based interviews, lesson plan analyses and video lesson 

analyses were used to explore preservice teachers’ mastery of pedagogical content 

knowledge in trigonometry. The description of the data analysis procedures came next, 

which was carried out to answer the research questions through the lens of the conceptual 

framework. Both the inductive and deductive approaches to the analysis of data were 

explained.  

The researcher’s role in this study was given, in line with the efforts made to eliminate 

research bias. Quality control issues in qualitative studies of trustworthiness of this study 

were elaborated and explained, and how to enhance each one of the four measures of 

quality criteria. The chapter ends with a consideration and expounding of research ethical 

issues pertaining to social science research. These included participants’ voluntary 

participation, informed consent and the confidentiality of responses of participants and of 

the institution the preservice teachers attended. The identity of learners and the schools 

they attended were also kept confidential. The interpretation of data and discussion of 

findings will be explained and unpacked in the next two chapters respectively. 
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CHAPTER 5: INTERPRETATION AND ANALYSIS OF 

RESULTS 

5.1. Introduction 

This chapter endeavours to organise and arrange the results from the four data collection 

instruments. A detailed analysis of the fifteen participants’ understanding of trigonometry 

in the content test is presented first under phase one data analysis in section 5.2. 

Quantitative data analysis was performed on the content test scores followed by a content 

analysis on the same data set. Statistical presentations were performed in the quantitative 

analysis whilst the content analysis was done thematically since it was qualitative in 

nature. Thereafter, section 5.3 elaborates on phase two qualitative data analysis of six 

participants who respectively participated in the task-based interviews, lesson plan 

analyses and video-recorded lesson presentations. The qualitative analysis was both 

inductive and deductive. Section 5.4 gives a traverse of the performance of each of the 

six participants across the four data sets. The process of data analysis rested on four key 

activities: data reduction, data presentation, discussion of findings and drawing of 

conclusions. Data reduction is akin to transcription of data and was done continuously 

and in most cases soon after the administration of the data collection instruments. 

Statistical diagrams, tables and screenshots of participants’ work are part of the 

presentation of data. The discussion of findings will be done in Chapter 6 and drawing of 

conclusions in Chapter 7. The chapter conclusion, section 5.5 culminates this chapter on 

the analysis of data. 

5.2. Phase one results 

The content test was the first instrument to be administered, which sought to explore 

preservice teachers’ understanding of content knowledge in various aspects of the topic 

of trigonometry. The results for this study have been organized into demographics data, 

quantitative data from participants’ scores and qualitative data from content analyses. 
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5.2.1. Biographical information 

Demographic data were collected on a variety of variables including gender, location of 

high school attended, province of origin and subject majors. These data were presented 

to give an indication of the nature of the participants for this study. Concerning the gender 

of the participants, five were females and ten were males. For the participants’ age 

groups, most belonged to the 22 to 24-year age group and only one was above 28 years, 

as shown in Table 5.1. The information in Table 5.1 represents typical prospective 

teachers in South Africa, who normally commence tertiary education at an average age 

of 19 years. All of them hailed from the rural provinces of Limpopo and Mpumalanga, 

while only one had a suburban background from Gauteng province. The participants last 

attended high schools were all rural based, except one who attended a suburban school 

in Gauteng. This was in line with the vision of the higher education institution where data 

was collected, which was to be a leading rural African university epitomising global 

competitiveness and academic excellence in addressing the needs of rural communities 

through innovation. Concerning the subject majors, mathematics was done by all and the 

numbers registered for the second major subject were distributed as follows: technology 

were two, physical sciences were eight and life sciences were five. The male participants 

dominated in physical sciences and technology, while females were more populous in life 

sciences.  

Table 5.1. The distribution of participants’ ages. 

Age (years) 19 – 21 22 – 24 25 – 27 Above 27 

Frequency 2 10 2 1 

 

5.2.2. Quantitative analysis of content test data 

The section of the content test, which was composed of objective items yielded 

quantitative data, which were the percentage scores of the participants. A rubric was used 

to mark the questions and each item had a maximum score of 3, with partial credit 

awarded as shown in Table 5.2. 
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Table 5.2. A generalised rubric for scoring items on the content test. 

Score Criteria 

0 Did not understand the problem, no answer provided, or inappropriate solution was 

provided.  

1 Serious and major errors in the solution process but shows an understanding of the 

question. 

2 Slight errors in solving the problem which leads to a partial answer. 

3 The solution and the procedure are precise and appropriate.  

 

Modifications to the holistic rubric were done where necessary in order to reflect the 

specific and individual structures of the items. For example, the rubric for item 1 on 

sketching and labelling the two special triangles commonly used in trigonometry is shown 

in Table 5.3. 

Table 5.3. Modified rubric for item 1 on drawing and labelling special triangles. 

Score Criteria 

0 Incorrect triangles drawn or no answer given. 

1 Angles correct but with wrong ratio of sides on both diagrams. 

2 Only one diagram is correct. 

3 Both diagrams are correct for both angles and ratio of sides. 

 

The fifteen participants’ percentage scores were recorded and displayed in Table 5.4, as 

well as the participants’ scores for each item. The total score is the sum of the individual 

thirteen items in the content test. The names of the participants have been changed to 

hide their identities. Remember the highest possible score was 39 marks since the 

highest possible per item was 3. 

Table 5.4. Scores per item of each participants’ performance. 

Partici

pants 

Sex Items Total % 

  1 2 3a 3b 4 5.1 5.2 6.1 6.2 6.3 7.1 7.2 7.3   

Koka F 3 3 3 3 0 3 2 3 3 1 3 3 2 32 82 
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Shab M 3 3 2 2 3 2 3 3 2 3 2 3 0 31 79 

Mahl M 3 3 1 1 3 3 3 3 2 0 2 0 1 25 64 

Mhla F 3 1 1 1 3 3 0 1 3 3 2 3 0 24 62 

Sell F 3 3 1 1 0 1 0 3 3 0 1 3 3 22 56 

Deli F 0 3 1 1 0 1 3 0 2 2 2 3 0 18 46 

Tume M 2 3 0 1 0 0 2 0 0 1 1 3 1 14 36 

Mupa M 2 3 0 1 0 1 0 0 0 2 1 3 0 13 33 

Rach M 1 0 0 0 0 1 0 1 1 0 1 3 3 11 28 

Malu M 1 0 1 1 0 1 0 1 1 0 1 2 0 9 23 

Mohu M 1 0 0 0 0 1 2 0 1 0 2 2 0 9 23 

Modi M 1 0 0 0 0 1 2 0 0 0 1 3 0 8 21 

Moga M 1 0 0 1 0 1 0 3 0 0 1 1 0 8 21 

Leng M 0 0 2 0 0 2 0 0 0 0 0 3 0 7 18 

Maka F 0 0 0 0 2 1 0 1 1 0 1 0 0 6 15 

Averag

e 

                                                    41 

 

As can be seen from Table 5.4, the highest mark recorded was 82 percent which came 

from a female participant Koka and the lowest was 15 percent, which came from a male 

participant Maka. The average performance per participant was 41 percent. The same 

participants’ scores have been displayed in the grouped bar graph shown in Figure 5.1. 

The modal class as can be seen is the 20-29 percent category.  
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Figure 5.1. Bar graph showing participants’ percentage scores in the content test. 

The median score, which gives a better measure in this particular case due to the 

presence of outlier scores of 82 percent and 79 percent, was 33 percent. Concerning the 

spread of the scores, the range was 67 percent and the standard deviation was 24 

percent, portraying a large spread of participants’ percentage scores. Also, the data were 

skewed to the right, as can be seen in the five-number summary in Figure 5.2. 

 

Figure 5.2. Box-and-Whisker diagram showing participants’ percentage scores. 

With the lower quartile of 21 percent and the upper quartile of 62 percent, the inter-quartile 

range was 41 percent, which again portrayed a large spread of scores. This shows lack 

of consistency in preservice teachers’ level of understanding of trigonometry. 

5.2.3. Qualitative analysis of content test data 

The construction of the content test was in line with the model of teacher knowledge 

adopted in this study. The test was measuring preservice teachers’ subject matter 

knowledge, which is known to have the subdomains of specialised content knowledge, 

common content knowledge and horizon knowledge. It is noteworthy that all teachers 

need to know specialised content knowledge (Mudaly, 2015), hence a total of seven items 

in the content test were devoted to it. These seven assessed preservice teachers’ abilities 

on giving justifications, explaining and general problem-solving skills. The specialised 

content knowledge type is specifically related to teachers’ everyday mathematics 

instruction (Mudaly & Moore-Russo, 2011; Ball, Thames & Phelps, 2008). Specialised 

content knowledge was followed by six items on the common content knowledge, since 

it is less specific to teach but still important. These items focussed on preservice teachers’ 

skills on drawing diagrams and sketches, proving identities and computing exact values 

of trigonometric ratios. No items were made available for horizon knowledge, which is 

less applicable to the South African educational landscape by virtue of policy documents 
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to which teachers must adhere. The sequencing of topics and concepts, recommended 

textbooks and formal assessment tasks are unilaterally provided by the Department of 

Basic Education. Table 5.5 illustrates the distribution of items in the content test. 

Table 5.5. Illustration of the distribution of subject matter knowledge subdomains. 

Content 

knowledge type 

Specialised content 

knowledge 

Common content 

knowledge 

Horizon 

knowledge 

Total 

Items 2, 3(a), 3(b), 4, 6.1, 

6.2 and 6.3 

1, 5.1, 5.2, 7.1, 7.2 

and 7.3 

None 13 

 

The qualitative data analysis under the content test was done to complement the 

quantitative data analysis done in section 5.3.2. Content analysis was the strategy used 

to qualitatively analyse data from the items in the content test. Under content analysis, 

attempts were made to make valid inferences from data to the context in which it is 

situated in, to provide new insights and a representation of facts and figures. The content 

analysis commenced with the tabulation of participants’ performance per item according 

to the sub-type of subject matter knowledge have been tabulated in Table 5.6. 

Table 5.6. Participants’ performance per item in each sub-category of subject matter 
knowledge. 

Type of subject matter 

knowledge 

Item 

number 

Performance 

per item (%) 

Average score per 

knowledge type (%) 

Specialised content 

knowledge 

2 49  

 

34 

3(a), 3(b) 28 (average) 

4 24 

6.1, 6.2, 6.3 35 (average) 

Common content 

knowledge 

1 53  

48 5.1, 5.2 44 (average) 

7.1, 7.2, 7.3 49 (average) 

Horizon knowledge - - - 
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From Table 5.6, common content knowledge recorded the greatest percentage score, 

measuring 48 percent. Specialised content knowledge came next with an average 

percentage score of 34 percent.  

The question-by-question analysis revealed that participants’ performances were not all 

the same. For example, question 7.2 which was on curve sketching saw ten out of fifteen 

participants getting it all correct (67 percent). In contrast, question 7.3, which was on 

interpreting the solution set of an inequality statement was only managed by two of the 

fifteen participants (13 percent). The results of participants who scored all the marks, 

partial marks and no marks on each item are displayed below in Table 5.7.  

Table 5.7. Distribution of frequencies of participants’ performance per item. 

Item  1 2 3a 3b 4 5.1 5.2 6.1 6.2 6.3` 7.1 7.2 7.3 Average 

Frequency 

of score 3 

5 7 1 1 3 3 3 5 3 2 1 10 2  

Percentages 33 47 6 7 20 20 20 33 20 13 6 67 13 23 

Frequency 

of score 1 

or 2 

7 1 7 9 1 11 4 4 7 4 13 3 3  

Percentage 47 6 47 60 7 73 27 27 47 27 87 20 20 28 

Frequency 

of score 0 

3 7 7 5 11 1 8 6 5 9 1 2 10  

Percentage 20 47 47 33 73 7 53 40 33 60 7 13 67 39 

 

From Table 5.7, on average, there was a chance of 23 percent for the participants to get 

all the thirteen items perfectly correct. The likelihood of obtaining partial marks, that is, a 

1 or a 2 of the items was 28 percent.  The probability of failing to get a single mark in any 

of the items in the content test was 39 percent. Participants had challenges to solve 

connected problems. For example, ten participants got the correct sketches of 𝑓(𝑥) and 

𝑔(𝑥) but of those, only two managed to get the correct solution set for the regions where 

f(x) < g(x), in item 7.3. As a result of failing to read-off the solution set from the graph, 

item 7.3 was the least performed, with ten participants getting no mark or skipping it 

completely. It was not difficult to simply read-off values of the required regions from a 
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perfectly correct sketch, but many participants failed to do that, as shown in one 

participant’s attempts in Figure 5.3. 

 

Figure 5.3. Correct sketches of 𝑓(𝑥) and 𝑔(𝑥) but with incorrect solution set for 𝑓(𝑥) <

𝑔(𝑥). 

Also poorly performed was item 4 where eleven participants had serious challenges to 

the extent that they left the item completely unanswered, an indication that they could not 

carry out the required proof. One of their challenges was that a sketch was not provided 

for this question, which could have made their life much easier if it had been. The two 

participants who got this correct had to produce their own sketches first before proceeding 

to prove. The concept of area rule which was under the spotlight here eluded many 

participants. Exactly one participant saw the need to use the area rule, however, she 

failed to get to the required result as she abruptly stopped, as shown in Figure 5.4. Only 

one stage of re-arranging the last equation was left to show the expected result. 
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Figure 5.4. A correct attempt at applying the area rule but left incomplete. 

Similarly, the other two proving items (2 and 5.1) were not satisfactorily done due to lack 

of understanding of the necessary underlying concepts. These were the square identity 

and the reduction formula respectively. Those who performed well, like Koka and Shab 

easily got the proof in 5.1 correct, but it was a heavy struggle for the rest. Also, the solution 

of equations registered low performance (items 3(a), 3(b), 5.2 and 7.1). Interestingly, 

though the procedures were known to participants, they could not go all the way to the 

final answer as expected. Most erroneously thought that supplying only the reference 

angle was sufficient, as illustrated in Figure 5.5. 

 

 

 

Figure 5.5. Partially correct solutions to the trigonometric equations. 

As for item 5.2, all participants managed to realise that undefined values for the identity 

easily come from the expression appearing on the right-hand side of the identity 

(−4 tan 2𝑥), rather than the complicated expression on the left-hand side. Deli got both 

solutions correct by dividing the undefined values of tan 𝑥 in the given domain (900 and 

2700) by 2 to get correct values of 450 and 1350 (as shown in Figure 5.6). This attempt 

was successful even though item 5.1 of proving the identity was poorly done. Deli was a 

mediocre performer. 
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Figure 5.6. Correct solutions of the undefined values of 𝑓(𝑥) = −4 𝑡𝑎𝑛 2𝑥. 

Koka, a high performer in the content test, tried and missed the solution due to the 

misunderstanding of transformation of trigonometric functions. Koka’s solution is 

illustrated in Figure 5.7 which was in the backdrop of a correct proof in item 5.1. 

 

Figure 5.7. Correct approach to undefined values of 𝑓(𝑥) = −4 𝑡𝑎𝑛 2𝑥 marred by 

misunderstanding of transformation of functions. 

The problem of rounding-off is well-pronounced in Figure 5.5 (a) where accuracy was lost 

by rounding-off tan 300 to two decimal places. Rounding-off marred an otherwise correct 

solution. As for item 7.1, 13 participants knew very well they must equate the two 

equations in order to find the intersection points, but some could not successfully simplify 

and solve the resulting equation, as can be seen in Figure 5.8. 
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Figure 5.8. A correct attempt at solving an equation but aborted due to conceptual 

challenges. 

On a different note, it was notable that some participants displayed unwarranted errors in 

simplifying trigonometric expressions using knowledge of quadrants and the Pythagoras 

theorem. They repeated the error of saying that if it is given that sin 𝛼 =
4

5
, then 𝛼 =

4

5
, 

as is evident in Figure 5.9. 

 

Figure 5.9. An error of misrepresenting 𝑠𝑖𝑛 𝛼 =
4

5
.   

The downside of preservice teachers harbouring such errors is that they may pass them 

to their learners when they begin teaching or during school teaching practicals 

(Haciömeroglu, 2009). From the deliberations above, it can be seen that the participants 

may have forgotten much concerning trigonometry which they last encountered many 

years back during high school days or sometimes in undergraduate classes, or else it 

was just poor understanding of those concepts, which they were obviously taught at some 

point. 

5.2.4 Overview of the content test qualitative and quantitative analysis 

The quantitative scoring of the instrument was done using a rubric with scores from 0 to 

3. Of that, 24 percent of the participants managed to score a three, that is, 24 percent of 

the participants obtained certain items perfectly correct. Next, 13 percent had minor errors 

in some of the items (scored a 2 in the rubric). Then, 25 percent of the participants 

performed major errors in certain items (obtained a score of 1). Finally, 38 percent of the 

participants left some items undone at some stage or had no outright idea of the solution 

process as is illustrated in Table 5.8.  

Table 5.8. The distribution of rubric participants’ scores based on the rubric criteria. 
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Score 3 2 1 0 

Percentage 24 13 25 38 

 

The concepts which were poorly performed in the content test were proving statements, 

the solution set to inequalities and solving trigonometric equations. On the other hand, 

labelling special triangles, sketching graphs and proving identities were well-performed. 

Minor errors were registered in finding intersection points of equations. Major errors were 

identified in applying the reduction formula and simplifying trigonometric expression using 

knowledge of quadrants. 

Concerning the individual participants’ performance, Leng had serious difficulties to the 

extent that ten out of the thirteen items were not attempted at all. He only managed to get 

full marks in sketching of functions and minor errors were recorded in applying the 

reduction formula and solving the equation involving tangent ratio. Two more participants, 

Madi and Malu each left as many as eight items unattempted. These two had full marks 

in sketching graphs and computing intersection points of two functions. A female 

participant, Koka staged the best performance by registering nine out of thirteen perfect 

solutions. Her only serious problems were in proving a given statement based on the area 

rule. She had minor problem in simplifying the statement sin(𝛼 − 45) given the value of 

sin(𝛼) and the solution set of inequalities.  

5.3. Phase two results 

Maximum variation sampling technique was use to select a further six participants as a 

sub-sample for the case study (van Putten, 2011) from the initial 15 for the second phase 

of data collection. This was chosen in order to address the diversity of preservice 

teachers’ performances in the content test (SükrüBellibas, Özaslan, Gümüs, & Gümüs, 

2016). A wide range of extremes need to be captured so that by collecting data from a 

very different selection, their aggregate answers can approximate the entire population’s. 

The sample of 15 participants was not big enough to warrant use of other sampling 

techniques, for instance, random sampling. The characteristic which differed in the initial 

analysis was scores in the content test. To achieve a maximum variation type of sampling 

according to Creswell (2007), two low-scoring and one high-scoring preservice teachers 
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were selected from the initial group of 15, as well as three participants that scored near 

the mean. These are referred to as the medium in this study (Brown, 2011). The sub-

sample is shown in Table 5.9. 

Table 5.9. Distribution of participants’ performance selected for the second phase of data 

collection. 

Position Participant Gender Score (%) Category 

1 Mahl M 62 Medium 

2 Mhla F 62 Medium 

3 Leng M 18 Low 

4 Shab M 77 High 

5 Sell F 56 Medium 

6 Malu M 23 Low 

 

Leng and Malu were classified as low content-knowledge performers. Mahl, Mhla and 

Sell were regarded as medium performers and only Shab was regarded as a high 

performer. Some of the participants who did very well in the content test such as Koka 

chose not to participate in phase two since it was within the participants’ discretion to 

participate. And because of similar reasons, only two female participants were willing to 

participate further than the content test, Mhla and Sell. The selected participants all took 

part in the three categories of data collection under the second phase, namely, task-

based interview, lesson planning and video-recorded lesson presentation. The three 

instruments gathered data on preservice teachers’ competence in pedagogical content 

knowledge and all the data generated were qualitative in nature. 

5.3.1. Task-based interviews 

This section presents overall results for the six interviewees. Data for the interview were 

made up of the transcribed audio-recordings coupled with participants’ written responses 

to the tasks during the interview process. The transcriptions of the audio-recordings and 

written responses of the task-based interviews were coded and analysed in line with the 

multiple predetermined dimensions of pedagogical content knowledge. The three 

dimensions that were applicable to this instrument were knowledge of learners’ difficulties 
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and misconceptions, knowledge of content of trigonometry and teacher explanation. This 

was done to adhere to the precepts of deductive analysis of data, which is often used 

when the researcher wishes to test an earlier model in a new context (Marshall & 

Rossman, 1995). Being based on an earlier model, a deductive approach to analysis of 

data in this study was inevitable. The general model of teacher knowledge was a transition 

to get to specific results for this study (Burns & Grove, 2005). The general conceptual 

framework of teacher knowledge by Ball, Thames and Phelps (2008) from the conceptual 

orientation discussed in Chapter 3 was the lens used to focus data analysis in this chapter 

and the next one on discussion of findings.  

Task-based interview analyses per question  

In this section, the researcher checked how the participants’ performed in each of the 

three elements of pedagogical content knowledge identified above.  

Item 1 

All the participants except one managed to give a good explanation of expansion of 

compound angles under sine and were precise at pinpointing learners’ difficulties in 

compound expansion of sine. The one participant who could not explain the proof that 

sin(𝑎 + 𝑏) ≠ sin 𝑎 + sin 𝑏 used particular values to verify (illustrated in Figure 5.10).  

 

Figure 5.10. Using specific values to prove a general statement. 

Mastery of content knowledge was the least performed in this item, as a result of 

participants failing to perform the correct expansion of sin(𝑎 + 𝑏). Overall participants’ 

performance on this item was satisfactory. 
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Item 2 

All participants easily identified possible learners’ misconceptions correctly, as well as 

explaining the correct way of doing the proof of that fashion. However, mastery of content 

knowledge for the same participants was mediocre, as three out of six of the participants 

could not perform the correct proof themselves. They could not tell that the best way to 

prove 
cos 𝜃

1+sin 𝜃
=

1−sin 𝜃

cos 𝜃
 was by rationalising the denominator, as what was correctly done 

by one of the participants in Figure 5.11. 

 

Figure 5.11. Correct solution to proving an identity by rationalisation. 

Item 3 

This item specifically required participants’ knowledge in content and explanation. 

Knowledge of learners’ difficulties and misconceptions was inapplicable. All except one 

used the graphical approach to explain that at 900, the tangent function is undefined. In 

the explanation, mention was made to the existence of an asymptote at 900. Sell was the 

only participant who could not get this task correct. He was of the idea of using the 

calculator to show the fact that tan 900 is undefined, shown in the following dialogue.  

Participant:  [Reads the question aloud] [after some silence] Uhhh, how can I 

explain it that tan 90 is undefined? 

Researcher:  Ok. Let me hear from you. But first of all do you agree that tan 90 is 

undefined? 
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Participant:  Yeah! 

Researcher:  Verify with a calculator [handing it to him]. 

Participant:  [silence] Yeah, its undefined. So, the way to explain this... 

Researcher:  Uh huh. 

Participant:  Without the use of a calculator... 

Researcher:  Eeh. Yeah, obvious without using a calculator. 

Participant:  [silence] 

Researcher:  [interjecting] So would they understand that tan 90  is undefined? 

Participant:  [more silence] 

Researcher:  [interjecting] How can you explain it to them? Yes, they have 

calculators, but now the calculator won't help with the explanation. 

Participant:  [silence] 

Researcher:  Or should we go to the next? 

Participant:  Yeah, let’s move to the next. This one I don’t know how to explain it. 

Researcher:  Ok [Dialogue duration: 1 minute 23 seconds] 

As can be seen, the participant had no clue of where to start, other than using the 

calculator. 

Item 4 

Four participants managed to draw a diagram from which they established the 

trigonometric ratios of sine and cosine. In possession of that, a connection was 

established between the trigonometric ratios to the Pythagoras theorem, which completes 

the proof. All except one had good explanation of how to derive the trigonometric identity 

sin2 𝑥 + cos2 𝑥 = 1. The odd participant, Leng, just knew that the identity is correct but 

he could not explain its derivation. The following dialogue gives a highlight of what took 

place: 
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Participant:  [reads question aloud] First of all I do agree that this identity is true.  

Researcher:  Uh huh. 

Participant:  Sin squared 𝑥 plus cos squared 𝑥 is equal to one. 

Researcher:  [silence] 

Participant:  Yeah, my question is ... I mean, the question is how do I explain this? 

Researcher:  Yes. 

Participant:  [silence] 

Researcher:  Where do you start so that you convince your learners that this 

identity is always true? 

Participant:  [silence] 

Researcher:  We know it’s true, but, uh huh, learners: they want an explanation 

why is it true?  

Participant:  [silence] 

Researcher:  Then you have to explain as educators to those learners. 

Participant:  [silence] 

Researcher:  Jump to the next. 

Participant:  This one I know also that it is true, but I do not know how to explain 

it. 

Researcher:  That’s why I am suggesting we jump question 5. [Dialogue duration: 

1 minute 33 seconds] 

The participant here just claimed to know the identity is true without being able to explain 

it. No attempt was done at all to show some clues of his purported understanding. The 

researcher wonders if he really knew what he claimed to know.  

Item 5 
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Four of the participants could not identify the possible error whereby learners divide both 

sides of the equation by the function cos(𝑥). Doing so does not only lead to a loss of set 

of solutions but violates a known mathematics rule of division by zero, for those instances 

where function is zero. These participants were trapped into the misconception which 

they were supposed to identify. Only two managed to recognise that the correct method 

to solve the equation cos2(𝑥) = cos(𝑥) is by the factorisation method. Thus, for this item, 

participants’ identification of learners’ misconceptions was limited, as well as their content 

knowledge of solving these kind of equations. Their explanations were not satisfactory 

either, which centred on solving for cos 𝑥 = 1 after dividing by cos 𝑥 on both sides. One 

participant suggested that learners can make a mistake of saying cos2(𝑥) − cos(𝑥) =

cos(𝑥). This kind of error amongst learners is uncommon since they know well that cos2 𝑥 

and cos 𝑥 are not like times. The following dialogue depicts the situation where participant, 

Sell, repeats learners’ misconception of dividing both sides by a function. 

Participant:  [Reads aloud the question] 

Researcher:  Yes. 

Participant:  [re-reads portion of the question] Possible errors... 

Researcher:  Or let do it this way! Can you solve that equation, perhaps in the 

process of solving you will be able to see those possible errors? 

Participant:  That 𝑐𝑜𝑠 squared 𝑡ℎ𝑒𝑡𝑎 is equal to 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎. 

Researcher:  Yes. 

Participant:  Here the question is actually ... we are solving for what? 

Researcher:  We are looking for 𝑡ℎ𝑒𝑡𝑎. 

Participant:  Oh, we are looking for 𝑡ℎ𝑒𝑡𝑎. 

Researcher:  Eeeh. 

Participant:  Ok. 

Researcher:  That’s the unknown. 
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Participant:  Alright. First of all, I would divide both sides by the 𝑐𝑜𝑠 of 𝑡ℎ𝑒𝑡𝑎. 

Researcher:  Uh huh 

Participant:  And then here at the left-hand side the 𝑐𝑜𝑠 squared is going to divide 

𝑐𝑜𝑠 and I am left with 𝑐𝑜𝑠 is equal to the right-hand side 𝑐𝑜𝑠 divide 

by 𝑐𝑜𝑠 is 1. And then 𝑡ℎ𝑒𝑡𝑎 is going to be the 𝑎𝑟𝑐𝑐𝑜𝑠 of one. And 

then ... [using calculator] of which is, eeh, is zero meaning the angle 

here is 0. 

Researcher:  Uh huh. Alright. 

Participant:  [silence] 

Researcher: So, the question I think is still; learners can make errors in the 

process of doing that. Where can they go wrong? 

Participant:  [silence] 

Researcher:  It could be a misconception? It could be a misunderstanding? 

Participant:  Aaah. Let me... 

Researcher:  Uh huh 

Participant:  Ok, I think ... I think if they can use this ... take 𝑐𝑜𝑠 to the other side  

Researcher:  Then. 

Participant:  They might have a challenge or might commit errors whereby they 

will say 𝑐𝑜𝑠 squared of 𝑡ℎ𝑒𝑡𝑎 minus 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎 and they are saying 

𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎 is equal to 0 because the other side is zero. And then from 

there they will find the 𝑎𝑟𝑐𝑐𝑜𝑠 of 0. 

Researcher:  But wait a minute? Where is this 0 coming from? 

Participant:  Here, the question, the the... The original question was 𝑐𝑜𝑠 squared 

𝑡ℎ𝑒𝑡𝑎 is equal to 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎. So now you jump… take 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎 to the 
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other side. So, meaning you are going be left with 𝑐𝑜𝑠 squared 𝑡ℎ𝑒𝑡𝑎 

minus 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎 is equal to one. 

Researcher:  One. Yeah, we are together. No, there is no 1. It’s zero. 

Participant:  Is equal to zero. It’s the equation. So now 𝑐𝑜𝑠 squared 𝑡ℎ𝑒𝑡𝑎 minus 

𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎 they might say its 𝑐𝑜𝑠 𝑡ℎ𝑒𝑡𝑎. [Continues] 

The participants’ performance on this item was below average and many insightful 

observations were noted. 

Item 6 

In this item the learner-misconception was pre-identified. Participants were only required 

to explain using the correct content knowledge that the amplitude of all trigonometric 

functions is not always ±1. Half of the participants remembered that in all trigonometric 

functions, amplitude is determined by the value of 𝑎 as in 𝑦 = 𝑎 sin 𝑥 and 𝑎 ∈ ℝ. And these 

three managed to give an accurate explanation of the concept of amplitude of any 

trigonometric function, which is half of the range. One participant, in addition to 

highlighting the effect of the coefficient 𝑎, also brought in the idea of shifting of the function 

up or down, as shown in Figure 5.12. The linear analogy was also given to further explain 

the concept of change in amplitude. 

 

Figure 5.12. The effects of 𝑎 and 𝑏 in changing the amplitude of a trigonometric function. 

From the explanation, it was clear that it is not always the case that the range is -1 to +1. 

Counter-examples were provided to further clarify the misconception, for example the 

function 𝑓(𝑥) = tan 𝑥 whose amplitude goes up to infinity at certain values of 𝑥. The other 

three, after some attempts, could not give meaningful explanation and subsequently gave 

up. 
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Item 7 

All participants managed to pinpoint the learner difficulty of omitting the negative sign in 

simplifying the odd function tan(−𝑥). Even those who had changed  tan(−𝑥) to 
sin(−𝑥)

cos(−𝑥)
, 

they still managed to pinpoint the missing negative sign emanating from sin(−𝑥), as 

shown in Figure 5.13. 

 

Figure 5.13. Correct handling of the negative sign in odd trigonometric ratios. 

However, only four participants managed to explain using the appropriate content 

knowledge for odd functions, −tan(𝑥) = tan(−𝑥). Two participants made errors 

themselves in simplifying the odd functions tangent and sine so that they could not get 

the correct statement on the right -hand side. Consequently, the explanation of those two 

was not satisfactory to justify the omitted negative sign on the right -hand side.  

Item 8 

Only one participant got both parts (a) and (b) correct, where the positive fractional 

coefficient of 𝑥 in 0 < 𝑏 < 1 has the effect of expanding the graph whilst the negative 

coefficient of 𝑥 in −1 < 𝑏 < 0 causes the graph to shrink in the opposite direction. The 

following dialogue highlights how he did it: 

Participant:  [Reads aloud the question] 

Researcher:  Yes. 

Participant:  Can I draw the graph? 

Researcher:  Yes. The space is yours. Write as much as you want. 

Participant:  I am trying the graph of 𝑦 = sin 𝑥. [Drawing] Then from there, let’s 

check the argument of the learner. From 0 going to 1. 
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Researcher:  Uh uuh that one is for (b). They are saying 𝑏 lies between 0 and 1.  

Participant:  (Interjecting) Oh 𝑏 is the coefficient of 𝑥! 

Researcher:  And remember 𝑏 is the coefficient of 𝑥. Inside the bracket. 

Participant:  Inside the brackets. OK, I get the point.  

Researcher:  In other words, we are factoring 𝑏𝑥. 

Participant:  We have to factor out this one. But then, eeh, first thing 𝑏 has to give 

us the period of the graph if I am not mistaken. [Reading question 

aloud] There is a horizontal shift because 𝑏𝑥 is smaller that 𝑥. 

Researcher:  In other words, can you see 𝑏 is going to a fraction here.  

Participant:  Yah. 

Researcher:  A number between 0 and 1 is a fraction 

Participant:  is a fraction [interrupting]. Meaning it’s going to be smaller. 

Researcher:  Yah. That’s what the learning is arguing.  

Participant:  Oh 

Researcher:  In other words, the bracket is less than 𝑥. Remember the standard is 

here [pointing to 𝑦 = sin 𝑥]. 

Participant:  Oooh ok 

Researcher:  So, the learner is arguing that that 𝑏𝑥 is going to be smaller, because 

we are multiplying by a fraction. And 𝑏𝑥 is now smaller, he is saying 

the graph is now going to shrink horizontally. Not vertically. 

Participant:  Yah, it’s going to shrink horizontally because the the … 

Researcher:  Or sometimes it expands. 

Participant:  Ok if the value of  

Researcher:  It depends on the value of the period.  
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Participant:  Yah, it depends on the value of the period. If the value of 𝑏 is smaller, 

then the period is going to be bigger. 

Researcher:  Ok. 

Participant:  Meaning the graph … If the value of 𝑏 is smaller, then the graph is 

going to-to stretch. Then if the value of 𝑏 is greater is going to shrink. 

Researcher:  So now let’s come to the answer. Remember you are choosing.  

Participant:  Eh I have to agree. I think I have to disagree with the shrink because 

it’s supposed to stretch. Because the value of 𝑏 is smaller. 

Researcher:  Ok fine. Next question. 

The rest of the participants could not identify the misconception that for fractional 

coefficients of 𝑥, the graph does not shrink. They explained that for 0 < 𝑏 < 1, the period 

of the standard function is divided by the value of 𝑏, causing the graph to shrink. One 

participant in particular said that, for, 𝑦 = sin (
𝑥

2
), every point of 𝑥 is halved, therefore the 

graph shrinks. For example, what was sin 450 now becomes sin 22.50, and the latter is 

smaller in value that the former. However, the shrinkage of the graph is in terms of the 

period, not the amplitude. The only consolation was that for −1 < 𝑏 < 0, they concurred 

that the graph is opposite to that of 0 < 𝑏 < 1. Thus, all participants except one displayed 

complete lack of understanding of transformation of functions. All participants except one 

had flawed explanation and content knowledge, as they fell for the misconception that 

they were supposed to have identified.  

Item 9 

Exactly three of the participants displayed good understanding of what is meant by a 

negative angle. They explained well, some supporting with diagrams. These three’s 

explanations managed to clarify what learners normally find difficult in understanding 

angle measures. The other three participants did not realise that a negative angle denotes 

measurement in the clockwise direction, in contrast to the normal angles which are 

measured in an anticlockwise direction. Two of these participants attempted to explain 
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the definition of a negative angle but eventually gave up. One had a correct idea about 

negative angles but then lacked confidence to express himself fully. Herein, mastery of 

content knowledge of negative angles was successfully used by half of the participants in 

teacher explanations, while the other half could not.  

Analysis of interview results per participant 

Descriptions are given for each of the six participants concerning their performance in the 

three pre-determined elements of pedagogical content knowledge.  

Participant 1 Mahl 

This participant had low mastery of subject matter knowledge in the task-based interview, 

which was contrasted with his mediocre performance in the content test. He attempted to 

explain without success that the amplitude of trigonometric functions which are bigger 

than 1, proving identities and defining the negative angle measure. He was rather weak 

in teacher explanations, though he was good at using examples in his explanations. He 

used the concept of distributive law 𝑥(𝑎 + 𝑏) = 𝑥𝑎 + 𝑥𝑏 to contrast sin(𝑎 + 𝑏) =

sin 𝑎 + sin 𝑏. Identifying learner difficulties and/or misconceptions was weak, as he found 

he committed common learner-errors he was supposed to pinpoint. He commented that 

questions on trigonometry were difficult for him in general because he lacks sufficient 

knowledge on it. His overall performance in the tasks for the interview was mediocre. 

Participant 2 Mhla 

She was weak in subject matter knowledge, as she could not give the correct compound 

expansion of sin(𝑎 + 𝑏).  Her performance of content knowledge was medium. Her 

explanations were good as she could follow correct procedures to prove identities and 

solve equations. She was weak in identifying learner difficulties and misconceptions, as 

she unknowingly fell into the learner-misconceptions herself unknowingly. Thus, she 

mentioned the importance of practice of trigonometry in order to get a better performance.  

Participant 3 Leng 

This participant’s overall performance in the interview was above average when it came 

to explaining concepts in trigonometry. However, his content knowledge was just below 
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average, which tallies with his low performance in the content test. He suffered greatly in 

solving equations, transformation of graphs and definition of negative angles, 

identification of learner difficulties and misconceptions was doubtful as he could not 

identify them in context but exposed his own misconceptions.  

Participant 4 Shab 

His overall performance in the interview was brilliant. All the content knowledge, 

knowledge of learner difficulties and misconceptions, and explanations were perfect. He 

was a high performer in the content knowledge test. He was the only one who could 

accurately solve trigonometric equations and describe the transformation of trigonometric 

functions. This tallies well with the good performance which he registered in the content 

test. The only flaw in his explanation and content knowledge was in suggesting the use 

of a calculator to enter specific values of 𝑎 and 𝑏 in sin(𝑎 + 𝑏) as proof of sin(𝑎 + 𝑏) ≠

sin 𝑎 + sin 𝑏. Unfortunately, this approach may be true for the specific values entered but 

may not necessarily be true for any other angle.  

Participant 5 Sell 

She managed to achieve a mediocre overall performance in the interview, but her content 

knowledge was low. In the content test, her content knowledge was medium. She only 

performed well in the definition of a negative angle and dealing with odd functions sin 𝑥 

and tan 𝑥. Her explanations were not good as she grappled with the square identity, 

asymptotes at 90 degrees for the tangent function and amplitude of a trigonometric 

functions. Sometimes she could manage to explain a procedure but due to lack of 

sufficient content knowledge, she could not execute the procedure (as in proving 

identities). She also seriously got trapped in the learner-misconceptions. Thus, she 

commented that trigonometry is a challenging topic which teachers needs to approach 

with caution as they teach it to learners. 

Participant 6 Malu 

Good overall performance by this participant as all three elements of pedagogical content 

knowledge were performed equally well. This was contrasted to the low performance in 

the content test. All proofs of identities were explained and performed well. He had some 
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problems though with explanations and the mastery of content knowledge when it came 

to solving equations and understanding the transformation of graphs. This led him to 

commit common learner-misconceptions himself in both concepts. He made use of 

examples and diagrams to aid his explanations. He commented that lack of practice is 

the main reason participants do not fare well in trigonometry. 

Overview of elements of pedagogical content knowledge under interviews 

Knowledge of learner difficulties and misconceptions 

All participants managed to identify possible learner difficulties for the compound 

expansion of sin(𝑎 + 𝑏). All the participants managed to identify the missing negative sign 

emanating from the concept of odd functions, which says that tan(−𝑥) = − tan 𝑥. It is 

common practice for learners to miss the negative sign in odd trigonometric functions. On 

the contrary, all participants except one fell for the learner misconception that for 𝑦 =

sin 𝑏𝑥, for 0 < 𝑏 < 1, the period decreases by a factor of 𝑏 in comparison to that of the 

standard function 𝑦 = sin 𝑥. A further four did not know the effect of the negative sign to 

the coefficient of 𝑥 in 𝑦 = sin(𝑏𝑥) for −1 < 𝑏 < 0. Four participants fell for the learner 

misconception that if given cos2 𝑥 = cos 𝑥, then divide both sides of the equation by cos 𝑥 

to yield cos 𝑥 = 1 (illustrated in Figure 5.14). 

 

Figure 5.14. A common learner-misconception in solving quadratic trigonometric 

equations. 

It can be deduced that preservice teachers’ ability to anticipate learner misconceptions 

was inadequate, as most of them ended up trapped in learners’ misconceptions 

themselves. That implies preservice teachers will end-up perpetuating misconceptions to 
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the learners. As for learner difficulties, participants’ explanations managed to show that 

they were somehow knowledgeable about them. 

Subject matter knowledge 

As in the content test, the participants had some serious challenges with the mastery of 

content knowledge. Only one out of six of the participants managed to identify that for 

0 < 𝑏 < 1, the sketch of the function 𝑦 = sin(𝑏𝑥) expands relative to the standard function  

𝑦 = sin 𝑥. The rest thought that the transformed graph shrinks as if every point in the 

domain is multiplied by the fractional coefficient of 𝑥. Four participants realised that a 

negative sign in the coefficient of 𝑥 in 𝑦 = sin(−𝑏𝑥) has the effect of reversing the graph 

in the 𝑥-axis plane. Also, two participants used factorisation to solve the quadratic 

equation cos2 𝑥 = cos 𝑥, while the rest divided both sides by cos 𝑥. Exactly half of the 

participants could correctly expand sin(a + b). In proving the identity 
(1−cos 𝑥)

cos 𝑥
=

cos 𝑥

(1+sin 𝑥)
, 

only three participants managed to do so. Even though all the participants knew that the 

identity sin2 𝑥 + cos2 𝑥 = 1 is always true, only half of them knew how to derive it.  

Moving on to the next question, half of the participants got the correct interpretation of 

amplitude of trigonometric functions, some by using the equation like 𝑦 = 𝑎 sin 𝑥 where 𝑎 

is the amplitude and others using a sketch. Three participants knew the correct 

understanding of what is meant by a negative angle. Four participants managed to 

express − tan 𝑥 = tan(−𝑥) in order to account for the missing negative sign on the right-

hand side of tan(−𝑥) cosec 𝑥 =
sin 𝑥

cos 𝑥
×

1

sin 𝑥
 . Five out of six participants used graphical 

explanation to show that tan 900 is undefined. None of the participants got everything 

correct in the tasks covered under the interview regarding content knowledge mastery. In 

some cases, participants resorted to the use of a calculator to prove certain statements.  

Knowledge of explanations 

All the participants could explain the correct way of proving identities, that is, the left-hand 

and right-hand sides should be equal. All managed to recognise the property of odd 

functions that  − tan 𝑥 = tan(−𝑥). Five out of six participants got the right explanation of 

the compound angle sin(𝑎 + 𝑏). The only exception was when a calculator was used to 
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verify the compound angle using only specific values. Five out of six of the participants 

gave the correct explanation of the square identity 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1. The idea of an 

asymptote at tan 900 was well explained by all participants except one. The exceptional 

participant preferred to use a calculator to show that tan 900 is undefined. Four 

participants explained well the misconception that all trigonometric function have an 

amplitude of ±1 by citing counter examples where the amplitude is something other than 

1 or −1. Sketches were used too to add clarity to the explanations. Also, four participants 

provided the correct explanation of the effect of the negative sign on 𝑏 in the function 𝑦 =

sin(−𝑏𝑥), by saying it is opposite that of 𝑦 = sin(𝑏𝑥). But only one got the correct 

explanation that the period of a trigonometric function 𝑦 = sin(𝑏𝑥) increases for 0 < 𝑏 <

1 by means of a formula 
360

𝑏
. The rest believed the period shrinks by a factor 𝑏. Half of the 

participants got the accurate explanation of a negative angle by correctly stating that it is 

measured in the clockwise direction. Half managed to give the correct explanation of the 

solution to cos2 𝜃 = cos 𝜃. 

5.3.2. Lesson plan analyses 

A total of six participants were tasked with the job to prepare a detailed lesson plan using 

the familiar School of Education template at a time when they were doing school-based 

teaching practice. Again, the School of Education lesson evaluation form was used to 

assess the six lesson plans. Five elements of pedagogical content knowledge were 

assessed, which are knowledge of content, teaching strategies, learner misconceptions, 

assessment and lesson plan structure. The lesson plan analyses constituted the third 

data collection instrument in this study. The analyses of these five elements per each 

participant are detailed below. 

Participant 1 Mahl 

This participant planned for the concept of reduction formula at Grade 11 level. The goal 

of the lesson was stated, however, the challenge was that the participant seemingly 

planned too much for the lesson. He tried to encompass all the formulas for each of the 

quadrants in one lesson, as shown in Figure 5.15. Examples of problems similar to 

planned assessment were not provided. 
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Figure 5.15. An overloaded lesson plan on the reduction formula. 

In the prior knowledge section, there was mention of revising the square and quotient 

identities, but, the link between this and the current concept was weak, if not non-existent. 

The teacher explanation method was planned for and it fitted well with the content being 

taught. The teacher had so many explanations to do in this overloaded lesson. Other 

methods were also stated, which were question-and-answer and discussion. No 

anticipation of possible learner difficulties and misconceptions were stated. Assessment 

was planned, however, no similar examples were in place to make it easy for the learners 

to do the activity. Moreover, question two of the assessment item had nothing to do with 

application of the reduction formula, as shown in Figure 5.16.  It is on the concept of 

simplifying trigonometric expressions. 

It appears this participant intended to teach the square and reciprocal identity in this 

particular lesson as well, and besides overloading the lesson plan, these are unrelated to 

the lesson topic. No resources were planned for, save the usual chalkboard and 

sometimes textbooks. The lesson topic was stated as just “Trigonometry (Reduction 

formula)”, which show that the participant lacked skills in coming up with a proper lesson 

topic. The lesson plan was concluded well, though learners were required to take down 

notes in the conclusion. No new knowledge is to be introduced in the conclusion section. 
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Figure 5.16. Assessment question unrelated to the application of the reduction formula. 

Participant 2 Mhla 

This participant planned a lesson on the application of trigonometric ratios at Grade 10 

level for 30 minutes. Prior knowledge was presented in the introduction, but the concept 

of Pythagoras Theorem was not addressed, which was key to achievement of the lesson 

objective. The lesson plan clearly lacks examples of the key concept taught as none 

appears in the lesson development stage as can be seen in Figure 5.17. The participant 

went on to administer an activity without referencing relevant examples, which puts 

cognitive pressure on learners.  
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Figure 5.17. Lesson plan lacking sufficient details in the lesson development stage. 

Moreover, the activity planned contained a flaw which led to the square root of a negative 

number after applying the Pythagoras theorem, as shown in Figure 5.18. It is assumed 

the participant meant to say cos 𝜃 =
5

13
. The screenshot in Figure 5.18 immediately 

followed the section shown in Figure 5.17. 

 

Figure 5.18. An assessment activity with an error. 
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The teacher demonstration method was dominant in the lesson plan; though other 

methods were planned, like teacher explanation and question-and-answer. Thus, the 

lesson plan appeared more teacher-centred as can be seen in Figure 5.16 where the 

teacher is at the helm of the lesson. 

Potential learner difficulties and misconceptions for this lesson were not planned for as 

anticipated. The teachers’ explanations do not feature in the lesson plan so that it is not 

known if they addressed succinctly potential learner-difficulties. The lesson plan was 

unfortunately written in structure form; no details of what to be covered in the lesson is 

conspicuous. No resources were planned for this lesson, save the chalkboard. There was 

a mix-up in the lesson plan as some aspects of assessment featured in the conclusion, 

like marking of class-activity and the corrections thereof. The lesson plan was concluded 

on a high note with real-life examples of the application of trigonometric ratios, as in 

navigation of ships and aeroplanes to determine their location.  

Participant 3 Leng 

This participant planned a lesson on deriving the reduction formulae and their application 

to simplifying trigonometric expressions to a Grade 11 class. The lesson topic was stated 

“Trigonometry” only and coupled with a broad objective, this lesson was overloaded for a 

30-minute presentation. All the formula for quadrants 2, 3 and 4 for the three trigonometric 

ratios were planned in one lesson. The reduction formula was not addressed in the lesson 

introduction; only identities were deliberated on. There was no indication of how the 

teacher was going to demonstrate and explain the derivation of all the stated reduction 

formulae. The question-and-answer and explanation methods were stated, and they 

seem fitting to the details of the lesson plan. There was no identification of possible 

learners’ conceptualisation challenges, hence no remediation plans were put in place.  

The planned assessment activity covered the major facets of the reduction formula as 

expected. However, similar problems to what is assessed do not feature in the lesson 

development stage. No background was given for application problems similar to the last 

one in the class-activity: 
cos 100∙cos 1200

cos 800∙sin 1500. The lesson was concluded with a problem as a 

wrap-up, thereafter a homework activity was to be given. The homework problems were 
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not stated, so it is not evident how they would fit into the lesson conclusion as can be 

seen in Figure 5.19. 

 

Figure 5.19. A unique way of concluding a lesson of giving a problem to summarise. 

No teaching resources were planned, other than the usual chalkboard and textbook. The 

lesson lacked details of what would take place in class but is given in skeleton format.   

Participant 4 Shab 

The participant prepared a lesson plan for Grade 11 for a duration of 30 minutes. The 

lesson objective addressed the transformation of graphs in the form 𝑦 = sin(𝑘𝑥) and 𝑦 =

sin(𝑥 + 𝑝), and extended to other trigonometric ratios. It appeared the lesson plan was 

overloaded for all the concepts to be covered in one lesson, regardless of the lesson 

duration.  It was stated that prior knowledge would be discussed but the full details were 

missing. The learners’ and teachers’ activities were detailed but the teaching strategy to 

bind these together was omitted. The sequencing of the concepts was fine, with some 

evidence of progressing from simple to complex, as can be seen in Figure 5.20.  

The possible learner-misconception on the period of transformation of trigonometric 

functions was dealt with by means of a formula, as shown in Figure 5.21. Learners 

commonly think the graph stretches for 𝑦 = sin(𝑘𝑥) for 𝑘 > 1. Another misconception 

amongst learners is that they assume the graph shifts to the right if it is transformed by 

the function 𝑦 = sin(𝑥 + 𝑝), relative to the standard function 𝑦 = sin(𝑥). 
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Figure 5.20. Lesson development portraying progression from simple to complex. 

 

Figure 5.21. Teacher’s activities addressing two anticipated learners’ misconceptions.  
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No assessment activity was visible in the lesson plan. The conclusion section does not 

wrap-up the whole lesson, but only administers a homework task, as illustrated in Figure 

5.22. The fact that the conclusion has been allocated ten minutes denotes that it was to 

be covered during lesson time. However, it defies logic to administer a homework activity 

during class time. 

 

Figure 5.22. Lesson conclusion planned as answering homework problems. 

The participant did not plan for resources to use in the lesson other than textbooks and 

the usual chalkboard. The lesson topic just appears as “Trigonometry”, which is a chapter 

topic on its own. 

Participant 5 Sell 

This participant planned to teach transformation of graphs to a Grade 11 class. The lesson 

objective was stated but it focussed entirely on learners’ prior knowledge, that is, learners’ 

ability to sketch the function 𝑦 = cos 𝑥, which was learnt in Grade 10 (see Figure 5.21). 

The checking of pre-knowledge during introduction confirmed the same, from which the 

participant linked with current focus, 𝑦 = 𝑎 cos 𝑥 + 𝑞. Two teaching methods were stated; 

discussion and question-and-answer. However, the discussion method was not used in 

the entire lesson. The nature of the lesson may have been better addressed by other 

methods, for example, teacher demonstration. There was no prior plan for anticipated 

learner difficulties and misconceptions, though so many conceptual problems abound for 

this concept. A quick glance at the lesson topic revealed that the participant did not 

understand how to write a lesson topic. The lesson topic was just stated as “Trigonometric 

Functions” as shown in Figure 5.23.   
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Figure 5.23. Lesson topic header showing weakness in lesson topic and objectives. 

A single problem was planned for the assessment activity, which unfortunately did not 

capture the effect of 𝑞 on the standard function. The usual teaching and learning 

resources of chalkboard and textbooks were the only ones stated. The introduction 

section was entirely devoted to prior knowledge; no mention of the current concept was 

done (see Figure 5.24).   

 

Figure 5.24. Lesson introduction focussing entirely on prior knowledge. 

Participant 6 Malu 

This participant planned a Grade 11 lesson and the key concept was clearly stated, which 

was investigating the effects of 𝑎 and 𝑞 in the function 𝑦 = 𝑎 sin 𝑥 + 𝑞. The effects of 𝑞 

and 𝑎 were investigated in a learner-centred approach. Prior knowledge was blended well 

in the introduction, which took the form of the basic definition of graph terminology and 

sketches of standard functions. As for the teaching strategies, many were stated and the 

main one, discovery, had been effectively used throughout the lesson plan. Several 

questions to be asked were written down, confirming the stated question and answer 

method. The snapshot in Figure 5.25 captures it all. 
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Figure 5.25. Lesson plan header showing lesson topic, objectives, teaching resources 

and teaching methods. 

The lesson was well-detailed with sufficient information on the teachers’ and learners’ 

activities. This had the effect of addressing possible learner difficulties. The assessment 

task was planned as an investigation exercise, in line with the discovery teaching strategy 

planned. As for the lesson plan structure, a good attempt was made in the lesson plan. 

Graph papers were planned for this lesson to maximise learner involvement when 

sketching the trigonometric graphs. The objectives were well stated, but the lesson topic 

was misunderstood; a chapter topic appears instead of the current lesson topic. Finally, 

the conclusion of the lesson was provided as a wrap-up of the whole lesson, alongside 

expanded opportunities for learners arising from this lesson.   

Overview of the lesson plan analysis 

The accuracy of the concepts planned for was good since they were self-chosen in line 

with Department of Basic Education work schedules to plan their lessons. Generally, 

procedures for lesson development were given in detail and the sequencing of concepts 

were performed well. The normal starting point for most of the lessons was a re-cap of 

prior knowledge. Nevertheless, a notable challenge concerning checking prior knowledge 

was that most of the time allocation for the lesson introduction was spent on prior 

knowledge, as shown in the sample of lesson plan in Figure 5.26.  
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Figure 5.26. The introduction was made up of prior knowledge only. 

In other words, due to lengthy pre-knowledge checking, the introduction of the current 

concept did not receive enough attention. Lesson plans were developed from simple to 

complex for some participants. Others brought in unrelated concepts in the same lesson 

plan. Assessment activities were present in all the lessons, but one participant planned 

an assessment activity with an error which would lead to undefined results. The level of 

assessment was fair except for some participants whose assessment tasks contained 

questions of concepts not planned. Learners should be prepared for the assessment 

tasks through similar examples in the lesson development stage. Another skill lacking in 

the participants was that of giving learners insufficient examples which match planned 

assessment problems. This has the effect of demotivating the learners as they struggle 

and take longer to accomplish the activities. All the participants had serious problems with 

drafting a lesson topic; since they were planning to teach trigonometry, to them 

“Trigonometry” was their favoured lesson topic. It turns out that they would keep on writing 

the topic “Trigonometry” every day until they finish the topic on trigonometry, which takes 

a total of at least six weeks at Grade 11. 

Concerning planned teaching strategies, multiple strategies were identified by each 

participant and the evidence of their application was present. The dominant strategy was 

teacher explanation for the concept of reduction formula and sketching of functions, which 

was used by four out of six participants. The drawback was that this led to a teacher-

centred learning environment. Only one did very well by using the discovery method to 

teach sketching graphs. Lesson plans were concluded in most cases, and two were 

exceptional in that they incorporated real-life examples as part of their conclusion; 

navigation for trigonometric rations and life-support machines for sinusoids.  
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Concerning addressing learners’ difficulties and misconceptions, none of the participants 

explicitly noted and anticipated them, thus, no intervention or remediation were put in 

place to address such. However, two of the participants addressed this by giving well-

detailed teachers and learners’ activities which would somehow counteract possible 

learner difficulties. It was unfortunate preservice teachers did not pay attention to the need 

to gather, devise or improvise teaching and learning resources. Only the chalkboard and 

textbooks were the easy pickings. The Grade 10s and 11s learners are still at a stage 

where they greatly benefit from seeing and interacting with teaching and learning 

resource materials. Finally, participants had no problem with situating the planned 

concepts into the broader curriculum. All the concepts planned were well suited to the 

relevant grades taught, mainly because the education system in South Africa provides 

schools with the work schedules to be adhered to for the whole year. All the content and 

the sequencing wherein teachers are to cover the content identified in the teaching plan 

are provided by the Department of Basic Education. The content indicated within the 

teaching plan for each quarter is the minimum content that must be covered in that 

particular term, thus ambitious teachers, if they so wish, have some flexibility.  

5.3.3. Video-recorded lesson analyses 

The same six participants took part in the process of delivering the lesson plans which 

they had prepared earlier. Classroom observation notes and subsequent video analyses 

of the lessons constituted the fourth data set for the present study. Using video recordings 

made it possible to re-analyse the data repeatedly. Classroom teaching was considered 

the best form of exploring preservice teachers’ pedagogical content knowledge in 

trigonometry. The School of Education lesson evaluation form was also used. The 

following six pedagogical content knowledge criteria were considered in video-lesson 

analyses: knowledge of subject matter, instructional strategies, learners’ difficulties and 

misconceptions, assessment, lesson management and questioning techniques. 

Knowledge of learners and school contextual factors were excluded based on the premise 

that the preservice teachers were in schools for only a couple of weeks, thus they were 

not well positioned to understand the learners or the school context. Some knowledge 

types are best suited for investigating practising teachers, for example, knowledge of 

teachers’ beliefs, culture, learners and school contexts. These do not apply to study of 
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preservice teachers, as such Shulman (1986) and Ball, Thames and Phelps (2008) did 

not include them in their models. Each participant’s results from the video-lesson 

analyses is presented below.  

Results of video-recorded lesson presentations 

This summary of analysis is that of participant 1 Mahl, a male preservice teacher who 

was teaching the introduction of reduction to a group of Grade 11 learners at a rural school 

(illustrated in Table 5.10). 

Table 5.10. Analysis of participant 1’s summary of video lesson analysis. 

Elements of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

subject matter 

The participant’s mastery content knowledge was fine but it was tainted 

by errors of formulae on the chalkboard, for example he wrote on the 

chalkboard, cos(90 ± 𝜃) = sin(𝜃) and sin(90 ± 𝜃) = − cos(𝜃). Poor 

sequencing of concepts was observed when preservice teachers stated 

some identities not needed for this lesson, like the quotient and square 

identities. There was still over reliance on memorisation of formula in the 

form of SOHCAHTOA and the CAST diagram. The linking of prior 

knowledge to the current lesson was done well. 

Knowledge of 

teaching strategies 

The question-and-answer and explanation methods used were fitting for 

the reduction formula. The stated discussion strategy was not used. No 

learner participation during lesson development was observed, except 

for occasional chorus answers.  

Knowledge of 

learners’ 

conceptions 

No difficulties or misconceptions were identified for this lesson.  

Knowledge of the 

assessment 

There was no feedback to the assessment activity done, as the 

assessment came late and assessed skills not taught in this lesson. 

Knowledge of 

lesson 

management 

Teacher facilitation was lightly done during the assessment activity. No 

instructional resources were used, save the chalk-and-talk. The 

participant took too long to get to the reduction formula, until expressions 
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like 180 + 𝜃, 360 −  𝜃 were eventually not taught, though they were 

planned. The reduction formula did not get enough time thus left hanging. 

Also, the class-activity took extra-long, hence the lesson was not 

concluded, and no feedback given to learners. 

Questioning 

techniques 

Good presentation and communication of ideas were observed. The 

questioning technique was poor, characterised by a series of incomplete 

statements which learners finished in a chorus row. 

 

As in task-based interviews and lesson plan analyses, participant 2 Mhla was a lady who 

taught a 30-minute lesson on the application of trigonometric ratios to a Grade 10 class 

at a rural secondary school. The summary of results is shown in Table 5.11. 

Table 5.11. Analysis of participant 2’s classroom observation findings. 

Element of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

content 

There was good mastery of subject matter knowledge since the participant 

chose her own lesson topic. However, a serious error in the assessment 

spoiled the remainder of the lesson. The teacher did not recognise that if 

cos 𝜃 =
13

5
 , it is impossible to evaluate sin 𝜃. Prior knowledge was well-

linked at the right moment. Strong elements of memorisation of formula 

was evident, with heavy reliance on SOHCAHTOA and the CAST 

diagram. 

Knowledge of 

teaching 

strategies 

A fitting strategy of teacher demonstration was chosen, which was then 

solely used throughout the lesson. Consequently, the lesson was more 

teacher-centred, with little class discussion or learner-engagement taking 

place.  

Knowledge of 

learners’ 

conceptions 

The participant was aware of possible difficulties, for example, the solution 

to 𝑥2 = 16 was correctly given as 𝑥 = ±4. She then led learners to 

eliminate the inappropriate solution where it was inapplicable.  

Knowledge of the 

assessment 

A single problem was administered, but it was fraught with errors which 

confounded learners. 
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Knowledge of 

lesson 

management 

No teaching and learning resources were used. Facilitation was done but 

it was not thorough since an error was not detected in the process of 

assessment. No real-life examples were given to support learner 

understanding. Pacing was not good to the extent that the class-activity 

took too long, hence the lesson was not concluded nor was feedback 

given to learners.  

Knowledge of 

questioning 

techniques. 

The questions asked were never directed at individuals, thus they elicited 

chorus answers, for example, “You all understand?” Hence no 

reinforcement, probing nor scaffolding were made possible. 

 

The participant 3 Leng’s summary of analysis was that of a male preservice teacher who 

was teaching the introduction of reduction formula to a class of Grade 11 learners at a 

rural school (illustrated in Table 5.12). 

Table 5.12. Analysis of participant 3’s classroom observation details. 

Elements of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

subject matter 

The sequencing of concepts was not good, evidenced by lengthy 

explanation of identities and reciprocal functions, which had no 

coherence with the rest of the lesson. The participant went to a greater 

extent to derive the square identity and most of the trigonometric ratios 

per each quadrant. There was no good linkage because of the emphasis 

on reciprocal ratios which were not needed in reduction formula. Prior 

knowledge was merged well with the current lesson. 

Knowledge of 

teaching strategies 

A single teaching strategy was used throughout the lesson, which was 

teacher explanation. However, that strategy led to serious teacher 

domination of the lesson proceedings. Learners were reduced to 

spectators. Not much class discussion took place in the classroom. 

Knowledge of 

learners’ 

conceptions 

The participant was careful that the solution to 𝑥2 + 52 = 132 was ±12. 

He explained that the third side of triangle was ±12, of which the negative 

value was the one used for the second quadrant calculation. However, 
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no other difficulties or misconceptions were identified or addressed in 

class. 

Knowledge of 

assessment 

No assessment was administered in class at all, though it was planned. 

The supposed classwork was withdrawn and a quick look portrayed that 

it was going to be difficult for learners since no similar problems were 

addressed in class.  

Knowledge of 

lesson structure 

No instructional resources were used, save the chalk-and-talk. Teacher 

facilitation was almost nil because no assessment was given, and no 

meaningful teacher-learner interaction took place as a result. 

Knowledge of 

questioning 

techniques 

Low-order questions were asked which only elicited factual information.  

The participant 4 Shab’s summary of results was for a male preservice teacher who was 

teaching the sketching of transformation of trigonometric graphs in Grade 11 and the 

details are given in Table 5.13. 

Table 5.13. Analysis of participant 4’s video lesson analysis. 

Elements of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

subject Matter 

The concepts were well-taught, and procedures were provided, though 

the teacher did everything for the learners. The sequencing of concepts 

was good, and those concepts were well-linked. The participant knew 

well what was to be taught and he presented facts accurately. He had 

good mastery of subject matter knowledge, like he expertly distinguished 

amplitude from range when there was a query of such from the class.  

Knowledge of 

teaching strategies 

The discussion method was mentioned, but mainly teacher explanation 

strategy dominated the lesson. It was fitting but the drawback was the 

lesson ended up being teacher-centred. The participant lacked strong 

teacher-learner interaction due to dominant teacher-talk. A single 

teaching strategy used throughout the lesson.  
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Knowledge of 

learners’ 

conceptions 

No learner difficulties nor misconceptions were anticipated, thus it was 

no surprise that one of the learners interjected; “That period of 1800 for 

the tangent function, where does it come from?” The misconception of 

the behaviour of the two functions 𝑦 = sin(1

2
𝑥) and 𝑦 = sin(2𝑥) was 

planned and clarified, where the former doubles and the latter halves the 

period.  

Knowledge of 

assessment 

No assessment task was given in class even though it was planned. 

Learners were told to sketch 𝑦 = sin(2𝑥) without scaffolding during 

lesson development, hence they took extra-long to complete the task, 

squeezing out time for assessment. 

Knowledge of 

lesson 

management 

There were no instructional resources used, save the usual chalk-and-

talk. Pacing was fine, though the practice activities took longer, choking 

the lesson conclusion. The function 𝑦 = sin(𝑥 + 𝑝) was planned but was 

not addressed also due to time constraints. 

Knowledge of 

questioning 

techniques 

Poor questioning techniques were executed, for example, “Anyone with 

a different idea?”, “Who is going to tell …” There was no reinforcement 

of learners’ answers, and no probing was done to clear learner 

difficulties. 

 

Participant 5, Sell, was a female who taught Grade 11s transformation of trigonometric 

graphs and their sketching at a rural school (illustrated in Table 5.14). 

Table 5.14. Summary of analysis of participant 5’s classroom observations. 

Elements of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

subject matter 

A narrow concept was considered for this lesson which excluded the sine 

and tangent functions. Good mastery of content knowledge was 

displayed, but the procedures were rather imposed to learners instead of 

being derived. The checking of prior knowledge took a bit longer than 

necessary.  
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Knowledge of 

teaching strategies 

The teacher demonstration method was used fittingly, but it was 

overused. Discussion and question-and-answer were also planned but 

were never put into practice. A single teaching strategy was used 

throughout the lesson.  

Knowledge of 

learners’ 

conceptions 

No misconception or difficulties were identified thus no intervention was 

suggested. She failed to connect with what was covered previously about 

effect of q (shifting up or down). The effect of 𝑎 was imposed on learners 

as it not derived and done inductively. 

Knowledge of the 

assessment 

An assessment task with one problem was administered. However, the 

teacher gave feedback of the entire solution to the learners on the 

chalkboard without involving learners.  

Knowledge of 

lesson 

management 

No teaching and learning resources were used, save the chalk-and-talk 

and board ruler. The participant did not facilitate during the class-activity 

but instead went on to grant learners the solutions on the board. Lesson 

pacing suffered, as the activity took too long, hence the lesson was not 

concluded. 

Knowledge of 

questioning 

techniques 

Some leading questions were posed which elicited chorus answers from 

learners in most cases, for example, “Do you all understand?” There was 

no varying of order of questions types asked. 

 

The participant 6, Malu’s summary of analysis was that of a male preservice teacher who 

taught sketching of transformation of trigonometric graphs to a Grade 11 class (illustrated 

in Table 5.15). 

Table 5.15. The summary of the classroom observation analysis of participant 6. 

Elements of 

pedagogical 

content 

knowledge 

Details 

Knowledge of 

subject Matter 

The key concepts were well-taught, namely, domain, range, amplitude 

and period. The lesson procedure was sketching of graphs using table of 

values. He started with standard trigonometric functions and built onto 
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the transformation 𝑦 = 𝑎𝑠𝑖𝑛 𝑥 + 𝑞. There was good mastery of content 

knowledge.  

Knowledge of 

teaching strategies 

The discovery method was used to determine the effects of 𝑎 and 𝑞 which 

helped learners to master the effects by themselves, rather than the 

teacher imposing information. The question-and-answer method was 

also used effectively so that the lesson was more learner-centred. Group-

work at some stage was introduced, even though it was not used 

effectively since individual work was still promoted. There was good 

learner involvement and lively class discussions. The participant 

managed to draw learners’ attention and addressed them individually by 

name.  

Knowledge of 

learners’ 

conceptions 

No misconceptions or difficulties were identified by the participant; thus, 

no interventions were put in place beforehand. However, he handled 

learners’ difficulties well, for example, learners had different opinions to 

the value of sin 00 at some stage. 

Knowledge of 

assessment 

Part of the assessment was testing prior knowledge, for example, the 

sketch of 𝑦 = sin 𝑥. Multiple problems were posed covering the scope of 

the lesson. 

Knowledge of 

lesson 

management 

Graph papers were used for accurate sketching by the learners, but no 

other resources were used. The lesson was completed and concluded, 

spiced by real world examples of trigonometric graphs in the lesson wrap-

up. Pacing was fine, though checking prior knowledge took too long. 

Knowledge of 

questioning 

techniques 

The participant did not follow-up learners’ answers, for example, a 

learner responded to the question, “What is an angle?” by saying, “An 

angle is a measure where two lines meet.” This was not followed up to 

qualify it as expected. Higher-order questions were asked, and learners 

gave sensible answers to these. 

 

Overview of video-recorded lesson analyses 

All the concepts which were taught were well-fitting to the relevant grades mainly because 

the education system in South Africa provides schools with the proposed work schedule 

for the whole year. One of the strengths of the Curriculum and Assessment Policy 

Statement is the clarity within which it indicates the content and the sequencing wherein 
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teachers are supposed to cover the content identified in the teaching plan.  This is 

achieved by means of a teaching plan per term for each grade. The content indicated 

within the teaching plan for the term is the minimum content that must be covered in that 

particular term, thus giving ambitious teachers some flexibility to cover more if they so 

wish. The participants just fitted into the system without much personal thought to the 

knowledge of the curriculum. Hence, knowledge of content and curriculum was not 

emphasised under the sub-categories of pedagogical content knowledge in this study. 

The researcher also find that the participants possessed good communication and 

presentation of ideas to their classes. All the lessons were taught in English and code-

switching was only introduced when addressing individual learners at a personal level. 

The researcher now focus on each of the six components of pedagogical content 

knowledge in the following sections as part of the pedagogical content knowledge 

overview. The researcher commences with preservice teachers’ understanding of content 

knowledge. 

Mastery of content knowledge 

The participants had the liberty to choose their own concepts to teach, hence all of them 

had good mastery of content knowledge in the aspects they addressed. Incidentally, most 

chose to teach aspects with which they were comfortable. However, for two of the 

participants, this good mastery was marred by some errors in the assessment activity and 

lesson development, both of which went undetected to the eye of the concerned 

participants. In one, cos 𝑥 =
13

5
  was planned in one of the class-activities by a participant. 

Another participant made a slip in the cofunction’s formulae. It is not entirely true that 

cos(90 ± 𝜃) = sin(𝜃) and also sin(90 ± 𝜃) = − cos(𝜃) as was engraved on the 

chalkboard, as shown in Figure 5.27. 
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Figure 5.27. Conceptual errors in the cofunction’s formulae by a participant. 

There were some elements of promotion of memorisation of facts and formulae, as were 

in the use of mnemonics like SOHCAHTOA and the CAST diagram, shown in Figure 5.28. 

 

Figure 5.28. Memorisation of facts and formula using the mnemonics taken from two 

different classes.  

If teachers are not careful, the nature of most concepts in trigonometry lean towards 

memorisation of facts and it would appear as if learners have mastered those concepts, 

when they might not have. The sequencing of concepts was mixed-up by two participants, 

evidenced by the unrelated concepts being bundled in the same lesson. The derivation 

of the square identity was taught in a lesson for the reduction formula. The results show 

that preservice teachers planned much more than what a single lesson can handle, 

regardless of the duration of the lesson period. As a result, the lesson would end up being 

rushed through, and assessment and the lesson conclusion suffer the most. All 

participants blended well the prior knowledge to the current, adding coherence to their 

lessons.  

Knowledge teaching strategies 

Many eye-opening experiences were observed under teaching strategies. Five out six of 

the participants used a sole strategy throughout the lesson, and that strategy was a blend 

of teacher explanation and demonstration. Consequently, the preservice teachers 

dominated the lesson, leaving little room for learner involvement. The lessons observed 

lacked substantial teacher-learner interaction due to the dominant teacher talk. Moreover, 

during feedback to class activities, learners hardly went to the chalkboard to present an 

answer, even in cases where they could contribute meaningfully. Only one participant 
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managed to include multiple strategies, namely discovery, question-and-answer and 

group-work, which rendered the lesson fully learner-centred.  

Learners’ difficulties and misconceptions 

In planning a lesson, teachers need to take into consideration what the learners can do 

with or without difficulty, as well as identify possible misconceptions. Two of the 

participants handled the common error in solving quadratic equations where only the 

positive root is considered, as in 𝑥2 + 52 = 132 and 𝑥2 − 16 = 0, and subsequently helped 

the learners to select the appropriate solution where applicable. Another participant 

handled well the misconception amongst learners concerning the change in period of a 

trigonometric function 𝑦 = sin(𝑏𝑥) where 0 ≤ 𝑏 ≤ 1. By making use of the formula 
360

𝑏
, he 

managed to clarify the misconception that the period of the function 𝑦 = sin (
𝑥

2
) doubles 

relative to the standard function. In the class of one of the participants, a learner raised a 

hand and inquired about the origins of 1800 as the period the function of 𝑦 = tan 𝑥. The 

participant had not expected this and obviously he had not explained that idea well in 

class. The preservice teacher did not respond to this question well either, but imposed 

that fact to the class (See the dialogue).  

Teacher:  Our amplitude for this graph is going to be infinity. Now let’s check 

the period of the tan graph. Period of the tan graph? 

Learners:  180. 

Teacher:  Someone says the period of tan graph is always 180. 180 degrees, 

Neh. Ok, can we move on. Is there anyone who is left behind?  

Learners:  Eeh. 

Teacher:  Yeah, question? 

Learner W:  Period of 180, where does it come from? 

Teacher:  Right. 270+90? 

Learners:  360. 
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Teacher:  Sorry. 

Learners:  360. 

Teacher:  Eeeeeh. Aaaaah. Say 270+180. We need to check from here up to 

there [pointing]. Check the other asymptote. Say tan 270. Tan 270? 

Learner X:  [short silence] It’s undefined 

Teacher:  It’s undefined. Right. So, it’s going to be undefined. Say tan 360. 

Learners:  [silence] 

Teacher: I need to show you how we are going to develop the next asymptote. 

Learners: Its zero. 

Teacher: Its zero right. Say 360+90. It’s going to give you 450 right. Tan 450? 

Learners: [silence] 

Teacher: tan 450? 

Learners: Undefined. 

Teacher: Undefined neh. 450 is going to be undefined [drawing on the axes]. 

I need to answer this question of why are saying our period is 180. 

Right. 

Learners: [silence]  

Teacher: Then now we are going to introduce our, … another graph here. 

[Drawing]. This function is going to be on this fashion. So now we 

have our full graph here. Right. And our full graph here. So, if we 

have to take … From here going to that side it’s going to be just 180. 

You know why we are adding this half side here? If we are going to 

continue we are going to have our … another asymptote being minus 

90. Right. It’s going to be in this fashion. The graph is going to behave 

in this fashion. Are you covered? So, a tan graph must be involve 

this 90. Are you covered?  
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Learners: Yes. 

Teacher: tan graph is from, eeeh… Just check the distance [mumbled] to cover 

145. These are the tan graphs. It has to cover 180. 

In addition, many concepts in trigonometry were imposed upon the minds of learners, 

without any derivation performed. For example, no derivation was done for the effect of 𝑎 

in the function 𝑦 = 𝑎 sin 𝑥 + 𝑞. No other misconceptions in trigonometry were evident and 

observed to which the participants could have pinpointed and addressed accordingly.  

Knowledge of assessment 

Insufficient examples were given during lesson development stage to thoroughly prepare 

learners for the coming assessment activities to follow. As a result, most of the problems 

were quite difficult for the learners, hence learners struggled and took extra-long to 

complete the tasks. Four of the participants gave out a classwork activity to assess lesson 

objectives, while two did not do any form of assessment. Other forms of assessment were 

not attempted by the participants. Some find it easy to sacrifice assessment if they are 

under the pressure of time. In one extreme case, an error in the assessment activity 

(shown in Figure 5.29) went undetected during planning and administration of the 

assessment activity. 

 

Figure 5.29. An undetected error in an assessment activity. 

The participant meant to say cos 𝜃 =
5

13
 since the hypotenuse is the longest side in a 

triangle. Also, part (c) of the question was extraneous, because it was given in the opening 

statement. In all the four cases where an activity was given, two did not give feedback to 
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the learners. One of the two who did give the activity and the feedback, went straight to 

provide solutions to the activity without any learner involvement. Figure 5.30 illustrates a 

situation where the teacher did all the stages of the corrections by herself; drawing and 

completing the table of values, plotting points and sketching the graph. 

  

Figure 5.30. The preservice teacher granting the entire feedback to learners. 

Knowledge of lesson management 

Not all the participants made use of any instructional resources during their lesson 

presentations but resorted to the usual chalkboard and sometimes textbooks. There were 

situations where participants could have devised or improvised resources, yet they did 

not. For example, a chart could have been used to summarise key points in the reduction 

formula. Teacher facilitation during answering of practice examples and in the 

assessment task was absent in three participants, and it was not thoroughly done by 

those who did some facilitation. Learners grappled with tasks when the preservice teacher 

could have made it easy for them if facilitation was thorough. Also, mistakes in 

assessment tasks could have been easily identified timeously before learners got so 

confused in attempting to solve a problem with an error. Two participants did not 

administer an assessment activity at all, which necessarily meant facilitation was reduced 

to minimal levels.  
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Lesson pacing was a challenge for many participants. Half of the participants 

administered class activities which took too long to complete, until there was no time left 

for feedback or lesson conclusion. The two who never administered class activities still 

hurried through the lesson, suffocating the lesson conclusion. Only one participant 

completed the lesson on time, gave feedback to the learners and concluded the lesson 

well by incorporating some real-world examples. All participants had a tough time creating 

a lesson topic. Most just wrote on the chalkboard “Trigonometry” or “Trigonometric 

functions” as the lesson topic, as shown in Figure 5.31. They failed to realise the 

distinction between a lesson topic and a chapter topic. A lesson topic is specific to the 

current lesson of 30 or so minutes, whilst the chapter topic of trigonometry is taught in a 

span of four weeks apiece for all Grades 10 to 12 (Department of Basic Education, 2011).  

 

Figure 5. 31.A lesson topic misrepresented from two instances. 

Figure 5.32 depicts a situation where the participant tried to narrow down the lesson topic 

from “Trigonometry” to “Reduction formula”. But the narrowed down topic was still too 

broad and generalised; there is no way everything under the reduction formula can be 

covered in one lesson.  

 

Figure 5.32. A general lesson topic on the reduction formula. 

The same general lesson topics were also written the same way in the respective lesson 

plans, to show that it was not just an error. This led to overloaded lesson, because the 

lesson topic was not specific. The lesson pacing, was not planned sufficiently to cover up 
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for the extra content matter to be taught in one lesson. Uncompleted lessons were a 

common feature. Some participants could argue and say time allocated was not enough 

for them.  Preservice teachers should develop skills to plan effective lessons for any given 

duration, great or small. When they complete training they would encounter different 

school environments which may call for such skills.  

Knowledge of questioning techniques 

Lower-order question types were the order of the day in all the classrooms; consequently, 

there was no probing or scaffolding of learners’ responses to clear any learning 

difficulties. Open questions (not directed at specific individuals) and non-specific group 

questions answers were quite common as well, which elicited group answers. Only one 

out of the six had the ability to pose both lower- and higher-order questions. That one 

also was in the habit of calling learners by name as they responded to the teacher’s 

questions. It was observed that whenever participants mix English and the vernacular 

language in instruction, it oftentimes invoked leading questions. The Sesotho term akere 

(which loosely mean isn’t it?) was the norm, which was responded to by a huge yes by 

the class. Some poor questioning techniques were common, for instance, a series of 

incomplete statements which learners finish in a chorus note. For example, “The formula 

for sine of is …”. Participants lacked the capacity to create dialogue, discussion and 

reinforcement of learners’ answers. Learners, on the other hand, did not pose clarification 

questions to the teacher either. This was captured in the dialogue shown here. 

[The teacher completing the sides of the triangle given sin 𝜃 =
3

5
 on the sketch] 

Teacher:  But we are not given the value of 𝑥. To be able to answer the question 

we have to first determine the value of 𝑥. To find the value of 𝑥, what 

rule are we supposed to use? 

Learners:  [Chorus] Theorem of Pythagoras.  

Teacher:  Theorem of Pythagoras. Which states? 

Learners:  𝑟 squared is equals to 𝑥 squared plus 𝑦 squared. [chorus] 
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Teacher:  Then this is a matter of just substituting what we are given. We know 

that 𝑟 is …  

Learners:  Five. 

Teacher:  And not the forgetting the square. And we are not given 𝑥 so we leave 

it as it is. Plus 𝑦 is … 

Learners:  Three. 

Teacher:  Squared. What is five squared? 

Learners:  Twenty-five. 

Teacher:  And three squared? 

Learners:  Nine. 

Teacher:  If we want to find the value of 𝑥 squared, … If we want to find the 

value of 𝑥 squared we transpose the value of nine to the … 

Learners:  Left-hand side. 

Teacher:  Then we are gonna have twenty-five minus nine, which is equal to 

… 

Learners:  Sixteen. 

Teacher:  We are not looking for 𝑥 squared but 𝑥, then what do we do? 

Learners:  We square both sides. 

Teacher:  We square both sides. And attention on this one. 𝑥 will be equal to 

plus or minus … 

Learners: Four.   

Teacher:  The reason 𝑥 equals plus or minus four is because if we multiply 

positive four by positive four we get positive 16. And we if multiply 

negative four by negative four we still get a positive sixteen. 



156 
 

Learners:  [Together with the teacher] A positive sixteen.  

Teacher:  Then you make a choice. You make a choice. You make a choice 

with respect to what? The horizontal axis is in the quadrant that you 

are working on. Here we are working on the first quadrant. The 

horizontal axis in this quadrant is … 

Learners:  [Chorus but not all learners] Positive. 

Teacher:  Positive right. 

Learners:  Yah. 

Teacher:  This means here when you make a choice you look at the quadrant 

you are working on and the horizontal and vertical axes. This means 

you are gonna pick a positive value. Which is … 

Learners:  Four. 

Teacher:  Then, now we answer the question. The question says, with the aid 

of a sketch, find the values of cos theta and tan theta. Now here we 

have a sketch that has all the sides. Now let’s answer the question. 

Find cos theta with respect to theta. What is this cos theta? 

Learners:  [Again not all learners] Four over five.  

Teacher:  Cos theta we are saying it is the adjacent over … 

Learners:  The hypotenuse. 

Teacher:  Which is what on the triangle? 

Learners:  Four over five. 

Teacher:  And the tan of theta? 

Learners:  Opposite over the adjacent. 

Teacher:  Which is what on the triangle? 

Learners:  Three over four. 
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Teacher:  Simple right.  

Learners:  Yes 

Teacher:  This is just a matter of system of angles and if you know how to do 

the … You remember the CAST which I told you use all All Students 

Take Coffee. If you remember the CAST rule and you know the trig 

ratios and you are able to define quadrants and the horizontal and 

vertical axes and the signs. You won’t be able to face problems when 

answering the questions. Right. 

Learners:  Yes. 

Teacher:  Now here is a class-activity. Oh any questions before I continue? 

Anyone with a question? 

Learners:  No. 

Teacher: Did you all understand? 

Learner:  Yes. 

Teacher: Here is a class-activity. 

5.4. Tracking of participants’ performance in the four data instruments 

This section is a record of the tracking of the six participants’ performance in all the four 

data collection procedures that were conducted for this study. The intention was to reveal 

the implication and growth of the mathematical knowledge for teaching to classroom 

practice, in response to research question three.  

Participant 1 Mahl 

This participant’s performance was 64 percent for the content test and was selected for 

the second phase of data collection under the category of medium performing. He 

managed to score full marks in six out of the thirteen items and obtained zero marks in 

two of the items, which were in simplifying the compound angle sin(𝛼 − 45) and curve-

sketching. His best performance was in the concepts of special triangles, proving the 

modified square identity, application of the area rule and the reduction formula. Major 
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errors were identified in solutions of trigonometric equations and inequalities. Some minor 

errors were noted in simplifying cos 𝛼 given the value of sin 𝛼 and computing the values 

of 𝑥 where 𝑓(𝑥) = 𝑔(𝑥).  

Concerning the interview results, this participant got trapped in the two misconceptions; 

that of dividing both sides of cos2 𝜃 = cos 𝜃 by the function cos 𝜃. The same misconception 

was highlighted in the 2013 Diagnostic report, “Learners should be made aware that it is 

not possible to divide an equation by a trigonometric ratio, as there is a possibility that 

one is dividing by zero. Division by zero yields a meaningless or undefined result.” 

(Department of Basic Education, 2014, p.148). The other was on the transformed function 

of 𝑦 = sin (
1

2
𝑥), which stretches the sketch, relative to that of the standard function 𝑦 =

sin 𝑥. The 2015 Diagnostic report on mathematics pointed out that high school learners 

are not aware of transformations of trigonometric functions and the resulting impact they 

have on these functions (Department of Basic Education, 2016). Thus, this preservice 

teacher’s knowledge of anticipation of learners’ misconceptions and difficulties was at low 

levels as he thought and made errors as learners do. Concerning the mastery knowledge 

of content knowledge, the participant had problems with negative angles, which he could 

not define and explain well. However, he managed to identify the important property of 

odd functions; sin(−𝑥) = − sin 𝑥. Finally, his explanations were quite good, which he 

oftentimes supported with examples, for example, he used the analogy of the algebraic 

expansion of 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 to contrast the compound angle expansion of 

sin(𝑎 + 𝑏) ≠ sin 𝑎 + sin 𝑏. 

For the lesson planning, this participant apparently planned too much for a 30-minute 

lesson so that other parts of that lesson plan were not consummated. No feedback to the 

class-activity was given to the class and the lesson was not concluded as a result. The 

teacher demonstration strategy was well fitting to the lesson taught; however, it was 

overly and solely used to the extent that the lesson was teacher-centred. The concept of 

the reduction which was planned and taught was characterised by gross memorisation 

and facts and formulae, with the SOHCAHTOA and CAST acronyms heavily relied on. 

The mix-up in this lesson took another dimension when ideas which were not planned 

and taught under the reduction formula, suddenly featured in the class-activity. These 
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included the concepts of 180 + 𝜃 and 360 − 𝜃. Consequently, learners struggled a lot with 

the activity and the teacher’s facilitation, which was insufficient, did not help the learners 

much. This was a good sign that the participant did not anticipate learners’ difficulties, to 

which he would have planned and implemented intervention strategies to rescue the 

situation. Finally, the participant’s questioning techniques were poor, as only lower-order 

questions were posed. 

There was no change in content knowledge from the content test to the task-based 

interview and classroom practice. Presumably, he entered teacher education with 

average performance in mathematics, which remained at that level all through teacher 

education. Misconception from school mathematics remained firm in him. His teaching 

style was teacher-centred which relied greatly on teacher explanation of ideas. This 

inevitably promoted memorisation of facts and formulae. The teacher-learner involvement 

was low, epitomised by lack of meaningful facilitation of learning during the lesson. 

Finally, he resorted to teaching the reduction formula to which he was particularly good 

at in the content test, thereby shunning concepts with which he was not conversant. 

Teacher education, by all intents does not promote such teaching etiquettes, which 

means preservice teachers cling to old habits of teaching from past experiences as 

learners.  

Participant 2 Mhla 

This participant obtained a score of 62 percent in the content test and was selected for 

the second phase of data collection as a medium performing participant. Out of the 

thirteen items in the content test, she scored full marks in six items. These items included 

labelling special triangles, the application of the area rule and the reduction formula, 

simplifying trigonometric ratios and curve sketching. Minor errors were identified in solving 

equation and proving identities. Lastly, the participant was quite weak in finding solution 

sets to trigonometric inequalities.  

In the interview, her explanation and identification of learner difficulties were fine, but her 

content knowledge was shaky. She could not expand sin(𝑎 + 𝑏) correctly nor could she 

attempt to explain that the range of trigonometric functions is not always +1 or -1. The 

participant unknowingly chose to divide both sides of the equation cos2 𝜃 = cos 𝜃 by cos 𝑥 
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in the process of solving the equation. Furthermore, she erroneously deduced that the 

sketch function 𝑦 = sin (
𝑥

2
) shrinks compared to the standard function 𝑦 = sin 𝑥, because 

every point of 𝑥 is divided by two. Her understanding of negative angles was partial, in 

that she managed to explain well that the effect of the negative sign on the function 𝑦 =

sin (−
𝑥

2
), but could not define a negative angle. Moreover, she could not justify the idea 

that for odd functions, tan(−𝑥) = − tan 𝑥, so as to account for the missing negative sign 

on the right-hand side of tan(−𝑥) cosec 𝑥 =
sin 𝑥

cos 𝑥
×

1

sin 𝑥
 . Lastly, the participant obtained the 

correct proof of the square identity 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1 only after probing by the interviewer. 

The teacher demonstration strategy was planned and used in the lesson development; 

however, it was over-used so that there was no notable class discussion and learner 

engagement. A glance at the lesson plan of this participant revealed that the lesson 

development stage was devoid of examples. During the administration of the class 

activity, facilitation was done but was not thorough since a flaw in the activity was not 

picked up. Real-life examples were stated in the lesson plan but were not enacted in the 

lesson delivery. This was in part due to poor lesson pacing, which led to insufficient time 

being devoted for completing the class-activity and concluding the lesson. There was 

evidence in lesson delivery of memorisation of formula, marked by heavy reliance the 

SOHCAHTOA and CAST acronyms. The participant made efforts to anticipate possible 

learner difficulties, for instance, she highlighted that for 𝑥2 = 16, it implies that 𝑥 = ±4. 

The importance of this aspect was that the true answer was 𝑥 = −4 since the angle was 

in the second quadrant. No teaching and learning aids were planned nor implemented in 

class, save the usual chalkboard and textbook. There was good clarity in the participant’s 

explanation of concepts to the class. Finally, the questioning technique was mainly 

composed of low-order questions which at times invoked chorus answers. Thus, there 

was no evidence of probing, scaffolding and reinforcement as a follow-up to learners’ 

responses. 

From the content test to the task-based interviews, the mastery of content knowledge 

deteriorated. She faced interview tasks that were more classroom-based than the stand-

alone one in the content test leading to a reduced performance. She taught what she had 



161 
 

relatively done better in the content test, which does not show knowledge growth. At the 

end of the day she will be faced with teaching all the topics in her class. Traces of 

traditional teaching feature often, as observed in teacher-domination, at the expense of 

learner-involvement and facilitated learning. She failed to adopt modern teaching styles 

which promotes learner-involvement in the creation of their own knowledge.  

Participant 3 Leng 

With a performance of 18 percent in the content test, this participant went on to the second 

phase of data collection under the low-performing category. Indeed, in the content test, 

his content knowledge was basic, evidenced by the fact that ten of the thirteen items were 

not attempted, and in cases when they were attempted, the score obtained was zero. 

These zero-score items encompassed identifying special triangles, proving the square 

identity, solving inequalities and simplifying trigonometric ratios. He managed to score full 

marks in only one item, which was on sketching trigonometric functions. Some minor 

errors were made in two items, namely, solving trigonometric equations and application 

of the reduction formula. In the task-based interview, the participant had difficulties with 

correct handling of misconceptions, as he made committed both misconceptions; dividing 

by a functions when solving equations and that the transformation of functions for 

standard functions shrink for 0 < 𝑏 < 1 in  

𝑦 = sin (
𝑥

2
). The participant could explain most concepts covered in the interview, but his 

proofs were not accurate. For instance, he could explain the correct procedure of proving 

identities, but could not give the correct proof of the identity 
(1−cos 𝑥)

cos 𝑥
=

cos 𝑥

(1+sin 𝑥)
. He also 

explained well that tan 900 is undefined and that the range for trigonometric functions is 

not necessarily ±1. These required the participant to explain only, without involving 

proofs.  

Concerning the lesson planning and presentation, this participant inadvertently planned 

more than enough for a 30-minute lesson on the reduction formula concept. The checking 

of pre-knowledge took longer than necessary so that in the end, the lesson was hurried 

through. The assessment task which was duly planned for was not actioned and the 

conclusion for the lesson was not carried out. A sole teaching strategy, teacher 
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explanation, was used throughout the lesson, though others had been planned for in the 

lesson plan. That teaching strategy, though suitable for reduction formula at Grade 11 

level, rendered learners to spectators. The lesson was devoid of learner involvement and 

any form of discussion. The participant had some anticipation of possible learner 

misconception when solving quadratic equations, thus he went to some extent to highlight 

that if 𝑥2 + 52 = 132, then the solutions are 𝑥 = ±12, instead of just 𝑥 = 12. Some 

formulae were derived but those that were derived had no linkage to the lesson topic. 

Finally, the questioning technique centred on low-order questions which then lacked 

reinforcement or probing aspects. 

Some improvements to content knowledge from the content test to classroom teaching 

practice were observed. He did not just follow the routine of teaching their best-performed 

concepts, but he, having scored high marks in sketching graphs, chose to teach the 

reduction formula. However, there was no development in skills of identifying and dealing 

with misconceptions as he progressed through teacher education. Again, he felt that 

teaching rests on good explanation of concepts and procedures. Unfortunately, some 

procedures lacked substance as he fails to execute those procedures in full, as in proving 

identities. This he did through a sole teaching strategy of teacher explanation.  

Participant 4 Shab 

This participant’s performance in the content knowledge test was one of the best in the 

group, with the score of 79 percent. He scooped full marks for over half of the thirteen 

items. His only major weakness was on finding the solution set of the inequality 𝑓 > 𝑔. 

Minor errors were identified in solving trigonometric equation equations and the 

application of the reduction formula. In the interview, the participant could not explain 

algebraically the expression sin(𝑎 + 𝑏); rather he chose to use specific values of 𝑎 and 𝑏 

to verify that the sin(𝑎 + 𝑏) ≠ sin 𝑎 + sin 𝑏. Other than that, his proofs of identities were 

above-board, coupled with clear explanations. He also expertly identified learners’ 

misconceptions and gave the correct explanations thereof, frequently supported by 

sketches.  

As for lesson planning and presentation, the lesson objectives were stated clearly. No 

prior knowledge was stated in the lesson plan nor actioned in class. Discussion teaching 
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method was stated in the lesson plan, but teacher demonstration and explanation 

dominated the lesson presentation. The result was a teacher-centred lesson, with had 

little or nil learner involvement. No teaching and learning resources were planned for the 

lesson nor used in lesson delivery. A remarkable observation was that the participant did 

not anticipate learner difficulties, thus, it came as shock to him when a learner asked from 

nowhere why the period of the tangent function is 180 degrees. The possible learner-

misconception as to which transformation stretches the sketch of the standard function 

𝑦 = sin(𝑥) between the two functions 𝑦 = sin(2𝑥) and  

𝑦 = sin (
𝑥

2
), was handled well by this participant. An assessment task was planned but 

was not administered, partly due to time constraints as the lesson was rushed through 

towards the end. Finally, the participant’s questioning was composed of low-order 

questions which did not bare any probing or reinforcement element.  

This participant had good understanding of content in all the data collection instruments. 

However, the delivery of mathematics concepts was done in a teacher-centred 

environment. All learner-to-learner, learner-to-teacher and learner-to-resources forms of 

interactions were absent. Surprisingly, he consciously planned discussion as a teaching 

strategy in the lesson plan but did not enact it in the classroom practice. Therefore, he 

needs skills in linking lesson plans to lesson implementation on some of the expected 

teaching practices.  

Participant 5 Sell 

With a score of 56 percent in the content test, this participant was classified as medium 

performing. She registered impeccable performance in six out of the thirteen items and 

her strengths were in identifying special triangles, handling the square identity, curve 

sketching, simplifying trigonometric ratios and the solution set of the inequality 𝑓 > 𝑔. She 

encountered major errors in solving equations and applying the reduction formula. Finally, 

she did not completely understand three of the 13 items, which were the application of 

the area rule proof, the solution set of a function where it is undefined and simplifying the 

compound angle 𝑠𝑖𝑛(𝛼 − 45).  
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In the interview outcomes, she had a good explanation of concepts but lacked the 

necessary content to substantiate it. For example, when asked to explain the sin(𝑎 + 𝑏) ≠

sin(𝑎) + sin (𝑏), she started well by contrasting the algebraic expansion 𝑎(𝑏 + 𝑐) = 𝑎𝑏 +

𝑎𝑐 to that of sin(𝑎 + 𝑏). However, she could not expand the compound function sin(𝑎 + 𝑏) 

correctly. Furthermore, she could identify well the correct way of proving identities, that 

is, equating the right-hand side and the left-hand side, but could not prove the identity 

given as 
1−sin 𝜃

cos 𝜃
=

cos 𝜃

1+sin 𝜃
. At one stage she resorted to the use of a calculator to verify the 

identity above, which signifies the lack of cognitive understanding. As for the 

misconceptions in trigonometry, she also made the two learners’ possible 

misconceptions; division by a function cos 𝜃 and the transformation of standard functions. 

The participant managed to handle the effect of the negative sign on trigonometric graphs 

well, as depicted in tan(−𝑥) = − tan(𝑥) and 𝑦 = sin (−
𝑥

2
), as well as the general definition 

of a negative angle.  

The lesson planned by the participant was of a narrow focus whereby she looked at the 

sketching of the function 𝑦 = 𝑎 cos 𝑥 + 𝑞 only. There was no transfer learning to other 

functions like tangent and sine. The teacher demonstration method was solely used 

throughout the lesson to the detriment of class discussion and the question-and-answer 

methods that were stated in the lesson plan. The checking of baseline knowledge took a 

bit longer, reducing the rest of lesson in terms of pacing. As a result, learners were not 

involved in feedback to the activity and the lesson was not concluded. There was no 

clarity in the lesson plan whether 𝑞 in 𝑦 = 𝑎 cos 𝑥 + 𝑞 was classified as prior knowledge 

or part of the current lesson. Thus, the effect of 𝑞 on the standard function of cos 𝑥 was 

imposed on the learners, rather than derived. Only one problem was posed for the class-

activity which was fitting for a 30-minute lesson. There was no evidence of anticipation of 

learner difficulty and misconceptions. There was good presentation and communication 

of ideas. Leading questions featured quite often and there was no varying of the order of 

question types. 

The scale of this participant’s development of knowledge of teaching was hampered by 

lack of adequate content knowledge. Her preferred teaching method of teacher 
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explanation lacked substance, as some of the explanations required good mastery of 

content knowledge to give them substance. This was seen in processes of solving 

equations and proving of identities. Thus, she resorted to teaching only the concepts she 

felt she knew- the content. Even her own misconceptions were common as a result of low 

content knowledge mastery.  

Participant 6 Malu 

With a score of twenty-three in the content test, this participant was selected for the 

second phase of data collection as a low-content performer. No full marks were scored in 

any of the thirteen items under consideration. He made minor errors in curve-sketching, 

which was his best, as shown in Figure 5.33. The function 𝑔(𝑥) was done well, but some 

confusion hit him when it came to 𝑓(𝑥). Major errors were made in solving equations and 

inequalities, labelling special triangles, computing intersection points of two functions and 

the application of the reduction formula. Nevertheless, the interview performance was 

quite good for this participant. He could easily identify learner difficulties and provide 

possible solutions himself. The only serious concern was on learner-misconceptions; he 

got trapped in the misconception he was supposed to identify. He effortlessly divided both 

sides by a function cos 𝜃 and suggested that the sketch of the transformation of 𝑦 = sin (
𝑥

2
) 

shrinks compared to that of the standard function 𝑦 = sin(𝑥). He portrayed good 

understanding of the meaning of negative angles and their application to transformation 

of functions as in 𝑦 = sin (−
𝑥

2
). 
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Figure 5.33. Minor errors in sketching of the functions 𝑓(𝑥) = 1 + 𝑠𝑖𝑛(𝑥) and 𝑔(𝑥) =

𝑐𝑜𝑠(2𝑥). 

His lesson plan was well-written and detailed. All the planned teaching strategies were 

well-implemented in the lesson presentation – group-work was used for maximum learner 

involvement and the discovery method was used to teach transformation of graphs, 

starting from the simple to complex problems. The question-and-answer method was 

effectively used to grip the attention of the learners. The participant’s mastery of content 

knowledge was good. Variation of question types was clear though no follow-ups were 

done to the learners’ responses. He seemed to lack the skill to build-up on learners’ partial 

answers. He completed the lesson within time and managed to provide feedback to the 

class-activity. The conclusion was spiced with real-life examples of common occurrence 

of graphs. Graphs papers were sought and used in class for accurate sketching, which 

was done as a group activity. 

This participant defied all odds of low-content performance to stage a good performance 

in classroom practice. His lesson planning and implementation were informed by modern 

teaching propositions whereby the interests of the learners were put first. He made 

content knowledge so simple to learners that they were highly engaged throughout the 

lesson. It was only his level of mastery of misconceptions that took a knock from low-

content mastery, as he repeated most of the learner-misconceptions himself.  
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5.5. Conclusion 

This chapter was a presentation and interpretation of data from the four data collection 

instruments, namely, the content test, task-based interview, lesson plan analysis and 

video recorded lesson analysis. From the content test, quantitative data in the form of 

participants’ percentage scores were obtained, as well as qualitative data which arose in 

the content analysis. In all, fifteen participants took part on the content test and the 

average performance per participant was 41 percent. After the initial analysis of content 

test scores, one high-performer, three mediocre-performers and two low-performers were 

selected to take part in the second phase of qualitative data collection, which was the 

task-based interview, lesson planning and video-recorded lesson presentation. In the 

interview results, participants could easily explain the concepts under consideration but 

could not conduct accurate proof of identities in the same concepts. Regarding 

misconceptions, preservice teachers’ thinking was at the level of learners as results depict 

them committing errors reported in the Diagnostic reports for Grade 12 national 

examinations. 

In the lesson plan analyses, it was observed that the participants could not frame a lesson 

title appropriately, planned too much for a thirty-minute lesson and planned insufficient 

examples for their lessons. The analyses of video classroom observations revealed that 

participants employed a sole teaching strategy and some of them were trapped in the 

learners’ misconceptions they were supposed to identify. Thus, the content and pedagogy 

that the preservice teachers were able to remember and use in dealing with trigonometric 

concepts was limited. A trace of the six participants’ performance in the four data 

instruments was done, which portrayed stagnated growth in content and pedagogical 

content knowledge. The discussion of the research findings is reported next in Chapter 6 

of this study whilst Chapter 7 deals specifically with the drawing of conclusions and the 

generation of new knowledge.  



168 
 

CHAPTER 6: DISCUSSION OF RESULTS 

6.1. Introduction 

This chapter attempted to discuss the findings of this study in line with the literature review 

and the conceptual framework. The researcher starts with the discussion in section 6.2 

with a review of research question one, which hinges on the findings from the content 

test. Section 6.3 is a discussion of the research question two, whereby the pedagogical 

content knowledge elements are explained in the light of findings from the task-based 

interviews, lesson plan analyses and video-teaching observations. The subsequent 

section focusses on the discussion of research question three, the extent of development 

of the mathematical knowledge for teaching based on classroom practice, in the light of 

the results from all the data collection instruments. All the discussions were done in 

cognisance of the conceptual framework that guided the study. Section 6.5 presents an 

overview of the discussion of findings considering all the data sources. The chapter 

conclusion (section 6.6) consummates the chapter by a wrap-up of the key ideas in the 

findings. 

6.2. Subject matter knowledge discussion 

Subject matter knowledge was investigated using the content test. The content test 

analysis, both qualitative and quantitative, formed the basis for the discussion that follows. 

This discussion addressed the first research question, “What is the level of preservice 

teachers’ understanding of trigonometric concepts?” The participants were typical South 

African preservice teachers with a rural background who were studying for a mathematics 

and science teaching degree. In South Africa, several preservice teachers are dogged by 

weak mathematics content knowledge background (Biyela, 2012), and most of these 

preservice teachers come from under-resourced rural schools. On this basis, teacher 

education institutions may still produce teachers of mathematics enshrined with 

mathematics content incompetence (Brodie, 2004). The quality of teaching is rooted in 

teacher education, thus, to improve standards of mathematics teaching, there is need to 

investigate current teacher preparation programmes.  

The Minimum Requirements for Teacher Education Qualification implores recent teacher 

graduates to possess robust subject matter knowledge in order to have a lasting impact 
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on children’s learning (Department of Higher Education and Training, 2011b). 

Mathematics and numeracy performance of South African learners has been under the 

spotlight for a long time, especially among the disadvantaged and rural populace (Jansen, 

2011; Howie, 2002; Reddy, 2006). Thus, preservice teachers enter teacher education 

with meagre understanding of school mathematics. If preservice teachers do not happen 

to receive sufficient undergraduate instruction in school mathematics they will teach, they 

qualify and enter the classroom ill-prepared to teach mathematics to the next generation 

of learners. This perpetuates a vicious cycle of poor school mathematics mastery 

(Department of Education, 2001; Conference Board of Mathematical Sciences, 2001). 

Both Shulman (1986) and Ball, Thames and Phelps (2008) investigated the types of 

teacher knowledge based on preservice teachers.  

The quantitative findings revealed small measures of central tendencies but high 

measures of spread. This was an indication of low mastery in content knowledge by the 

participating preservice teachers. From the data, only five of the fifteen participants 

obtained an overall mark of at least fifty percent. Combined with the other descriptive 

statistics mentioned above, it suggests that the participating preservice teachers 

possessed insufficient understanding of trigonometry. This was tantamount to probable 

weak performance in the preservice teachers' future early years of teaching (She, 

Matteson, Siwatu & Wilhelm, 2014).  

The study by Ogbonnaya and Mogari (2014) did show that teachers’ subject matter 

knowledge on trigonometry directly influences learners’ achievements at Grade 11 level. 

Therefore, it implies that if there must be an improvement in performance by learners in 

mathematics, a good foundation is to strengthen the teachers’ content knowledge base. 

If preservice teachers are to be productive in the mathematics classroom, they must show 

good mastery of the school mathematics concepts they are going to teach upon qualifying 

as mathematics teachers. This mastery is perfected by their schooling years, as well as 

the undergraduate degree studies. Howald (1998) discovered that trigonometry was one 

of the least understood topics by the prospective teachers and experienced mathematics 

teachers. Also, Lloyd (2006) went on to say that preservice teachers often have weak 

mathematics knowledge and a narrow view of mathematics they are required to teach. 
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Furthermore, Dündar and Yaman (2015) revealed teacher candidates similarly displayed 

serious lack of knowledge of trigonometry. In all, available research findings on in-service 

and preservice teachers give an indication that their mastery of content knowledge of 

school mathematics is not connected and robust in accordance to the earnest expectation 

of mathematics education community (Ball, Lubienski, & Mewbom, 2001).  

Finer details on preservice teachers’ performance in content knowledge become more 

evident when the researcher considers each of the two types of content knowledge 

according to the model by Ball, Thames and Phelps (2008). The third category, horizon 

knowledge was dropped in this study. The specialised content knowledge type which 

should be possessed by all mathematics teachers was allocated seven out of the thirteen 

items. However, preservice teachers’ success rate in the items on specialised content 

knowledge was 34 percent, denoting limited mastery of specialised content knowledge 

for many preservice teachers (Mudaly, 2015). Teachers use specialised content 

knowledge in the everyday tasks of teaching when they give explanations, chose relevant 

examples to support conceptualisation, handle learners’ questions appropriately and 

responses and pose questions to probe and scaffold learning. Thus, if the preservice 

teachers’ unique knowledge to teaching show weak conceptualisation, it implies that their 

teaching capabilities of these concepts is under jeopardy.  

The items were devoted to exploring the preservice teachers’ common content knowledge 

in the content test. Preservice teachers’ performance on these stood at an average score 

of 48 percent. This denotes that preservice teachers had a mediocre understanding on 

the content knowledge needed to solve and compute general mathematical problems. 

The preservice teachers did not appear to have much difficulty with common content 

knowledge: solving problems, recognising incorrect answers and using mathematical 

terms and notation (Ball, Thames and Phelps, 2008). Preservice teachers thus were 

relatively better in mathematics knowledge where explanations, justifications or reasoning 

were not necessary. Similarly, Mudaly and Moore-Russo (2011) investigated in-service 

teachers’ common content knowledge of gradient of a straight line and discovered that it 

was weak for some and strong for others. Mathematics teacher educators must contend 

with teacher candidates who enter teacher education institutions with inadequate or non-
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existent common content knowledge. Common content knowledge ought to have been 

performed better since it is a springboard upon which specialised content knowledge and 

horizon knowledge develops (Mudaly & Moore-Russo, 2011).    

This study also uncovered the fact that many participating preservice teachers could not 

fully apply known algorithms or given conditions flexibly into the various contexts given 

due to their lack of content knowledge in trigonometry. This conclusion was drawn based 

on the preservice teachers’ poor performance in both items 3 on solving trigonometric 

equations and item 6 on proving identities. They knew well the procedures to solve and 

prove, but they could not precisely execute them all the way to the required end. This 

brings to the fore elements of procedural knowledge being put into practice but with 

underlying conceptual gaps or complications. In most cases South African learners tend 

to resort to applying rules and procedures whenever they do not fully understand the 

underlying principles in topics like trigonometry (de Villiers & Jugmohan, 2012). Having 

been learners themselves in the same education system, preservice teachers still harbour 

the same over-reliance of procedural learning of concepts, upon which they now base 

their teaching (Baturo & Nason, 1996). Ball (1990) posited that preservice teachers are 

frequently limited to algorithmic understanding of school mathematics, in particular 

trigonometry. Trigonometry is mostly taught in schools from a procedural perspective, 

which in turn causes its conceptual aspects to be neglected (Dündar & Yaman, 2015; Li 

& Smith, 2007).  

Generally, preservice teachers’ mastery of content knowledge was below 50 percent for 

most of the concepts addressed in the content test, except for sketching trigonometric 

functions. Interestingly, one of the low-performing participants who scored no marks in 

eleven of the thirteen items scored full marks in curve-sketching. Thus, curve sketching 

was independent on the performances in other items. Item analysis indicated that there 

were more zero marks scored than any other; zero scores appeared 38 percent in the 

participants’ responses relative to 24 percent who obtained full marks in their responses. 

Most of the participants chose to leave items unanswered when they had severe 

challenges.  
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Similar studies involving other knowledge domains by Mudaly (2015), Brijlall and Maharaj 

(2015), and Fi (2003) also arrived at the same conclusion, that preservice teachers’ 

content knowledge is inadequate. The Department of Higher Education and Training 

(2011b) indeed acknowledged that teachers’ content and conceptual knowledge are poor. 

Measures to address this challenge have been put in place, starting with preservice and 

in-service teacher education. What is evident in this study is a remarkable dearth of 

knowledge of trigonometry by participating preservice teachers. A conjecture for the weak 

conceptual understanding of trigonometry was a result of information-loss over time. 

Preservice teachers last encountered trigonometry at high school or sometimes in entry-

level modules at university (Fi, 2003), which transforms to be at least two years prior. 

Upon further inquiry, preservice teachers lamented on the necessity to delve deeper into 

the fundamental ideas of trigonometry in their undergraduate mathematics content 

modules, which they did not adequately learn or understand when they covered these at 

high school. It is of notable concern that teacher educators need to take into 

consideration. There is need for a re-examination of school mathematics content from an 

advanced platform in higher education institutions (Usiskin, Peressini, Marchisotto & 

Stanley, 2003). Teacher education programmes should acknowledge the necessity to re-

refresh preservice teachers to the foundational mathematics content concepts which they 

will happen to teach upon completion of their studies. Hence, Ball (1990) suggesting that 

content knowledge should be the principal focus of teacher education instruction so that 

novice teachers may be able to teach mathematics effectively.  

In conclusion, the results emanating from this study highlight the fact that preservice 

teachers generally lack school mathematics content knowledge. They notably have 

insufficient knowledge of mathematics up to the point of exit from teacher-training 

institutions (Even & Ball, 2009). This finding affirms the previous results of similar studies 

and existing theories that preservice teachers’ understanding of mathematics they have 

acquired from teacher education is inadequate for school mathematics teaching (Mji & 

Makgato, 2006). As for trigonometry, most concepts encountered in teacher education 

modules are well covered in school mathematics. Thereby, preservice teachers have an 

opportunity to consolidate what they have learnt in school and gain additional 

understanding of the trigonometry concepts connected to what they have already 
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covered. This was supposed to boost preservice teachers’ chances to excel in 

trigonometry, however, preservice teachers still experience some difficulties in grasping 

trigonometry concepts. As for them being able to teach effectively, the answer depends 

on preservice teachers’ mastery of the pedagogical content knowledge, which is the 

subject under discussion in the next section.  

6.3. Pedagogical content knowledge discussion 

This discussion on exploring preservice teachers’ pedagogical knowledge was in 

response to the second research question, “What pedagogical content knowledge do 

preservice teachers possess in trigonometry?” Pedagogical content knowledge, unlike 

content knowledge, is elusive to researchers on the premise that it is a unique and 

isolated teacher construct, which makes it difficult to assess. While having no standard 

instrument for measuring teachers’ pedagogical content knowledge, researchers and 

other interested parties could well learn about the nature and extent of pedagogical 

content knowledge using different instruments such as interviews, preparation and 

analysis of lesson plans, and video-recorded classroom observations (An, Wu & Kahn, 

2004; Ijeh, 2012). Notwithstanding, evidence exists to the effect that pedagogical content 

knowledge is a function of the quality of initial teacher education which preservice 

teachers receive during training (McAuliffe, 2013).   

In this study, task-based interviews with hypothetical instances of learners’ work, lesson 

plan analyses and classroom observations were used to evaluate preservice teachers’ 

pedagogical content knowledge. The best acknowledged means to evaluate pedagogical 

content knowledge is through observing classroom practices because pedagogical 

content knowledge has its deep roots in classroom practice (Toerien, 2011; Lee & Luft, 

2008; Gess-Newsome & Lederman, 2001; Bütün, 2005). The researcher has divided the 

discussion of pedagogical content knowledge into two parts; one dealing with types of 

pedagogical content knowledge according to the theoretical framework and the other 

based on the pre-determined components of pedagogical content knowledge. 
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6.3.1. Types of pedagogical content knowledge 

The discussion below is based on the results from the task-based interviews, lesson plan 

analyses and lesson observations, as the results of this study are discussed according to 

Ball, Thames and Phelps’s (2008) categories of pedagogical content knowledge.  

Knowledge of content and students  

In the interviews, preservice teachers had some insight into the reasons for learners’ 

mistakes in the given hypothetical situations. Thus, even with low mastery of content 

knowledge, good identification of learner difficulties was possible. In the lesson planning 

and presentation, preservice teachers did not make an effort to anticipate learners’ 

potential difficulties and possible sources of learners’ errors. In simple terms, there was 

no prediction of learners’ thinking, though some difficulties were fairly handled as they 

cropped up in the lesson presentations. Also, the lesson plans and presentations lacked 

enough practice examples designed to make it easy for learners to understand the 

concept at hand.  

On the other hand, identification of learners’ misconceptions was poorly performed by 

almost all the preservice teachers in the task-based interviews. The fact that preservice 

teachers committed the same learners’ misconceptions was a clear testimony to this 

(Haciömeroglu, 2009). The implication is that preservice teachers’ thinking was at the 

level of learners, and as a result, preservice teachers might unknowingly exacerbate 

learners’ misconceptions. Inadequate mastery of content knowledge was one of the 

reasons for preservice teachers to be incognisant of pertinent learners’ misconceptions. 

Similarly, incorrect teacher explanation was also associated with poor identification of 

learner-misconceptions. Hence, the preservice teachers’ mastery of knowledge of 

content and students was below expectation. 

Knowledge of content and teaching  

The pedagogical content knowledge sub-domain of knowledge of content and teaching, 

which identifies what teachers do about learners’ errors and misconceptions, was typified 

by teachers’ explanations in the interviews. Even though preservice teachers had insight 

into learners’ challenges to learning in trigonometry, they could not give clear-cut 
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explanations as to how best they should help the learners who had such challenges. The 

preservice teachers only managed to identify and address learners’ errors and 

misconceptions of the content with which they were familiar (Moru & Qhobela, 2013). For 

example, identification of misconceptions in solving trigonometric equations and 

transformation of functions was at its worst because the preservice teachers’ content 

knowledge was bad in these concepts. Furthermore, preservice teachers’ explanations 

based on learners’ errors were done relatively well, in contrast to the flawed explanations 

emanating from learners’ misconceptions. Thus, preservice teachers lack understanding 

in identifying and rectifying learners’ misconceptions to some concepts in school 

mathematics. 

In the lesson planning and lesson presentation, teacher explanation was the teaching 

strategy of choice to most of the preservice teachers. Teacher explanation strategy, as 

the oldest and most commonly used teaching strategy (Odora, 2014), was solely used by 

most of the preservice teachers. As a result, teacher-centred strategies were promoted, 

to the detriment of other inquiry-based learning strategies. Consequently, memorisation 

of facts and formulae was prevalent in the lesson delivery, epitomised by the 

SOHCAHTOA and CAST diagram repertoires. Ordinarily, mathematics teachers’ 

perception of concepts influences the teaching strategy which they are to employ in 

classroom teaching of a particular idea. Preservice teachers felt that being able to explain 

well makes them effective teachers, as most of them were taught through teacher 

explanation during school days. Frequently, preservice teachers resort to direct 

instruction whenever they are not sure of an appropriate strategy to use at a particular 

time (Ozden, Usak, Ulker & Sorgo, 2013). Hence, preservice teachers lacked knowledge 

of instructional strategies in both lesson planning and implementation stages.  

In the lesson plans, preservice teachers planned concepts were planned from the known 

to unknown by means of commencing with baseline knowledge. This was in line with the 

constructivists’ view of teaching and learning asserts that children start the learning 

process by refining and converting that which they already know into advanced 

knowledge. Thus, preservice teachers realised the main source of new knowledge 

development is prior knowledge. As for the teaching and learning resources, none was 
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planned for and used in actual lesson delivery by all the participating preservice teachers. 

During teaching practice, all preservice teachers taught either Grades 10 or 11, who still 

operate at the concrete level of Piaget’s stages of cognitive development. Teacher-

centred instruction which advocated for teacher explanation which was favoured by 

preservice teachers does not advocate for the use of teaching and learning support 

materials in instruction. The support materials help to create interaction between learners 

and the materials, learner-to-learner and learner-to-teacher. Learner-interaction was 

absent in most of the classrooms observed. Use of learning aids is highly recommended 

at that stage in order to achieve effective teaching and learning.  

In addition to absence of teacher-learner interaction, facilitation of learning during the 

assessment and lesson development stages was not thoroughly done. Hence, fewer 

examples were given in class. Also, some errors in the class-activity went undetected by 

the teacher. Moreover, two preservice teachers did not even administer their planned 

assessment activities to their classes, hence no facilitation was possible. Preservice 

teachers are challenged with pacing of the lesson so much that class-activities feedback 

and lesson conclusions became victims of time. Finally, teachers use varied and effective 

questions to analyse the depth of learners’ ideas and to evaluate the learning process 

during lesson delivery (Tanisli & Kose, 2013). Unfortunately, only one of the preservice 

teachers was able to engage varied instructional type questions, while the rest resorted 

to lower-order question types only. Thus, preservice teachers’ command of knowledge of 

content and teaching was weak. 

6.3.2. Components of pedagogical content knowledge 

Pre-determined components of pedagogical content knowledge, which spanned the three 

instruments, were analysed individually to evaluate preservice teachers’ understanding 

of pedagogical content knowledge in trigonometry. These were knowledge of content, 

instructional strategies, learners’ misconceptions, assessment, questioning techniques, 

lesson management, lesson plan structure and explanation. Each of these pedagogical 

content knowledge components are explained in the next sub-sections.  

Content knowledge 
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In section 6.2 the results of a quantitative assessment of preservice teachers’ subject 

matter knowledge in trigonometry were discussed. Though this was enough to give an 

understanding of preservice teachers’ academic knowledge, it does not give an 

assessment of the quality of preservice teachers’ knowledge. This can only be determined 

through analysis of data from classroom practice (Ball, Thames & Phelps, 2008; Capraro, 

Capraro, Parker, Kulm & Raulerson, 2005). In reality, “teaching necessarily begins with a 

teacher’s understanding of what is to be learned and how it is to be taught” (Shulman, 

1987, p.7). Thus, the discussion which follows is on preservice teachers’ understanding 

of mathematics concepts in the context of classroom practice. Preservice teachers’ 

content knowledge understanding is part of pedagogical content knowledge in that 

without having a deep knowledge of content, it may not possible to teach mathematics 

effectively (Turnuklu & Yesildere, 2007). 

The discussion was based on results from task-based interviews, lesson planning 

analysis and classroom observations. Generally, the component of content knowledge in 

the interview was not done well, as key constructs like transformation of functions, solving 

quadratic trigonometric equations and proving identities were badly performed. All these 

constructs are part of school mathematics syllabus, hence it’s a sign that the preservice 

teachers did not understand or had forgotten knowledge of trigonometry since their school 

days and undergraduate courses (Fi, 2003). Factual knowledge like the definition of 

negative angles were performed well by some preservice teachers. Also, preservice 

teachers could tell that a given statement was incorrect, but could not supply the corrected 

one, as in the expansion of sin(𝑎 + 𝑏).  The findings indicate that despite the existing 

commonality in trigonometric concepts covered by teacher education and school 

mathematics, preservice teachers still find it hard to grasp some concepts in trigonometry 

(Biyela, 2012).  

The analysis of content knowledge in the lesson plan analyses revealed that most 

preservice teachers were aware of good sequencing of lesson content and addressed 

relevant prior knowledge appropriately in the introduction of the lesson. All preservice 

teachers found it easy to present concepts with accuracy, because they had the liberty to 

choose a concept of their choice for the lesson plan. It is human nature for one to go for 
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what one is comfortable with, if given the chance. Hence, problematic concepts like 

transformation of functions, solving equations and inequalities and proving identities were 

never planned for this classroom observations. 

Notably, one lesson plan was marked by a flaw in the assessment activity, whereby it was 

stated that, “Given cos 𝜃 =
13

5
, determine the sin 𝜃.” The flaw obviously led to undefined 

solutions, to the amazement of the learners. The reasons for this error may include 

negligence, a lack of knowledge of the mathematical concepts or the preservice teachers 

not comprehending what is expected in designing a mathematics task (Swan, 2001). This 

is reflected in Brodie’s (2014) research, in which teachers are held responsible for 

learners’ subsequent errors. As most of the learners struggled with the activity, some 

prudent learners when faced with this error had a shrewd way of dealing with it to get the 

expected answer of sin 𝜃 = 12

13
. In the post-observation discussion, the participant admitted 

that she saw the error when it was too late, so she chose to let it continue.  

In the video-teaching episodes, most of the key concepts for the lesson were precise and 

well-taught by all participants, mainly because these concepts were self-chosen by the 

participants. Two of the participants’ committed errors which went undetected; one was 

an error in the class-activity emanating from the lesson plan and the other was done on 

the chalkboard, where the participant hastily indicated that cos(90 ± 𝑥)  =  sin 𝑥. Unlike 

some errors in mathematics which are part of the learning process (Rach, Ufer & Heinze, 

2013), these unintended teacher-made errors were disastrous to learners in that they 

added more confusion to the learning process. 

Just like their limited content knowledge in the content test, the quality of preservice 

teachers’ content was moderate in the classroom practice. The participants had the 

benefit of choosing their own concepts to plan and teach, and so they naturally avoided 

concepts they were weak at. The future is bleak for these preservice teachers because 

without sufficient subject matter knowledge, many of pedagogical processes are thwarted 

(Southwell & Penglase, 2005). Content knowledge is instrumental to teaching and 

learning and limited content knowledge hinders the development of the processes of 

lesson planning, instruction, assessment and learner’ conceptualisation (Shulman, 1987; 

Brown & Borko, 1992). In South Africa, initial teacher education programmes are inclined 
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towards pedagogy and methodology rather than content knowledge (Brodie, 2004), when 

content knowledge should be the focal point for all teacher education endeavours. Hence, 

South African preservice teachers have a weak content knowledge background in 

mathematics (Biyela, 2012).  

Ostensibly, trigonometry has always been a problematic area in high school mathematics 

(Gür, 2009; Breidenbach, Dubinsky, Hawks & Nichols, 1992), denoting that current 

preservice teachers also had the same challenges when they were still at high school.  

Trigonometry should be one of the priority mathematics sections for preservice teachers 

as one would expect them to compensate for the gaps left by their own high school 

experience (Biyela, 2012). 

Instructional strategies 

The second component of pedagogical content knowledge in this study was instructional 

strategies (Grossman, 1990). Results from lesson plan analyses and lesson observations 

form the basis for this discussion. Preservice teachers must consider appropriate 

teaching strategies for the trigonometry concepts they have chosen to teach based on 

available resources and specific learners. The pedagogical content knowledge 

component of teaching strategies was fairly done by all participants, with at least one 

strategy being mentioned in the lesson plans. Not only were the teaching strategies 

stated, but there was evidence of their use in the rest of the lesson plan. Two dominant 

strategies emerged from those listed by the participants, namely teacher demonstration 

and teacher explanation. Now, these two alone lead to teacher domination of the lesson. 

Furthermore, it appears that most of the preservice teachers used teacher-centred 

instructional strategies despite widespread promotion of learner-centred strategies taught 

to them in methodology and pedagogy modules. Teacher explanation represents direct 

teacher instruction of knowledge and preservice teachers resorted to it whenever they 

were unsure of an instructional strategy to use. 

In the lesson plans, multiple teaching strategies were stated, however, during lesson 

implementation, most of the participants displayed a sole strategy throughout. The 

combination of teacher explanation and teacher demonstration was the dominant 

strategy, used by five out of six participants. That meant that almost all the lessons taught 
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leaned more towards a teacher-centred environment, which is known to inhibit learners’ 

educational growth (Ahmed, 2013). Only one participant explicitly used learner-centred 

strategies in the form of discovery, which relied heavily on hands-on activities and small 

groupwork. Thus, for most of the participants, special learning techniques like class 

discussion or inquiry-based learning were hardly used throughout the lessons.  

From the deliberations above, it is evident that preservice teachers’ application of the 

knowledge of instructional practices was limited. A study by Ozden, Usak, Ulker and 

Sorgo (2013) reached the same conclusion that preservice teachers lacked appropriate 

pedagogical content knowledge of teaching strategies that are related to a given topic. 

One can argue that knowledge of instructional strategies is tied to classroom experiences, 

to which preservice teachers do not happen to have any. However, they do receive 

instruction on these in methodology modules, which they then enact in actual classroom 

teaching environments during teaching practice sessions. From both the lesson plans 

analyses and lesson observations, findings show that most preservice teachers leaned 

more towards teacher-centred instructional strategies, which is consistent with findings 

from other related studies (Ball, 1990, 1991; Fi, 2003). Constructivist teaching strategies 

like cooperative learning, discovery learning and learner-demonstration were 

conspicuous by their absence. Neither was there varied use of instructional strategies in 

a single lesson, which is known to assist learners to anchor mathematical knowledge 

while avoiding pertinent challenges to learning (Gersten & Benjamin, 2012).  

Inadequate and sometimes unsuitable preparation and training of teachers have future 

classroom repercussions whereby learners end up not grasping the concepts they are 

taught. This happens as the teachers take comfort in straight transmission of knowledge, 

by which they may have been taught themselves when they were still learners. They live 

the adage, “teach the way you were taught” (Grossman, 1990, p.170). Many concepts in 

trigonometry are frequently taught from their procedural aspects, which may lead to the 

conceptual dimension being abandoned (Dündar & Yaman, 2015). Ball (1990) alluded 

that preservice teachers are confined to a limited understanding of school mathematics, 

which obviously leads them to put emphasis on rules and how to execute procedures 

without a clear explanation of why the algorithms work (Kilić, 2009). Incidentally, the 
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procedural success coming from repeating algorithms and applying formulae masks 

underlying conceptual difficulties or gaps (de Villiers & Jugmohan, 2012).  Findings show 

heavy use of acronyms for trigonometric ratios and quadrants in the lesson presentations. 

In summary, preservice teachers were inadequate in their pedagogical content 

knowledge and more so, they appeared to possess insufficient knowledge about 

instructional strategies (Shulman, 1986; Ozden, Usak, Ulker & Sorgo, 2013). 

Learners’ misconceptions 

An understanding of common learners’ misconceptions and difficulties to learning and the 

subsequent strategies put in place by teachers to combat such misconceptions are 

examples of pedagogical content knowledge. Hence, the knowledge of anticipating and 

dealing with learners’ misconceptions was included herein as a component of 

pedagogical content knowledge. Discussion of learners’ misconceptions are based on the 

findings from the task-based interviews, lesson plan analyses and lesson observations. 

Moreover, teachers need to be able to determine the source of learners’ misconceptions 

and errors in order to correct them meaningfully (Kiliḉ, 2011). Teachers should be able to 

eliminate learning difficulties and misconceptions by using appropriate tasks or asking 

probing questions. 

An important finding of this study was that two-thirds of the preservice teachers 

themselves had misconceptions about some of the key concepts in the interviews, for 

example, solution of trigonometric equations and transformation of trigonometric 

functions. Like the findings by Stephen (2006), the weak preservice teachers’ content 

knowledge is the likely cause for the difficulty in identifying and anticipating learners’ 

misconceptions in trigonometry. According to Turnuklu and Yesidere (2007), if teachers 

have inadequate mathematics content knowledge, they may not see the relationship 

between the simple concepts such as solving equations and transformation of sinusoids. 

On the other hand, five out of six preservice teachers managed to precisely identify 

learners’ difficulties and errors in the given hypothetical cases in the interview. This was 

evident when they identified correctly learners’ erroneous way of proving identities and 

manipulating the negative sign in odd trigonometric functions. Preservice teachers were 

relatively good in questions which involved learner-errors, but their performance was low 
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in questions involving learner-misconceptions. Preservice teachers have misconceptions 

themselves, hence they tend to repeat them, instead of identifying and challenging them. 

The unfortunate part is their misconceptions are bound to end up as learners’ 

misconceptions in future, completing a vicious cycle of misconceptions (Tanisli & Kose, 

2013). 

One of the findings from the lesson plan analysis was that prospective teachers had weak 

insight of learners’ misconceptions in the topic of trigonometry. No anticipation for 

learners’ misconceptions were put in place in the lesson plan, which according to Hill, 

Blunk, Charalambous, Lewis, Phelps, Sleep and Ball (2008), should be detected at the 

beginning to lead to simple understanding of the concept being taught. This in turn 

adversely affected the way in which they chose to address the important concepts. 

Learners with difficulties fared better as results show them addressing prior knowledge 

and getting the correct sequencing of concepts in the lesson plan analyses. However, in 

studies by Shulman (1986, 1987) and Usak (2009), preservice teachers were not 

cognisant of learners’ conceptual difficulties, especially when they had problems in 

mastery of content. Lesson plans not only demonstrate the preservice teachers’ intended 

plan of action for the day, but can be an indication of the preservice teachers’ perceptions 

of the topics which they plan to teach (Murphy, 2009). If they are not careful, preservice 

teachers might transmit to learners their own misconceptions whenever they do not 

possess adequate content knowledge (Even, 1993; Özden, 2008). Thus, it is essential to 

commit preservice teachers to the repertoire of lesson planning, lesson implementation 

and lesson reflections to improve their knowledge of learners’ challenges to learning a 

particular concept (Haciömeroglu, 2009). 

As for the anticipation of learners’ misconceptions in learning the selected trigonometric 

concepts, none was explicitly evident from the data transcribed from the video-lesson 

analyses. No misconceptions were observed in the lesson delivery on the part of learners 

or teachers. Nevertheless, some difficulties featured in the lesson, arose from the way 

the lessons were taught (Penso, 2002). For example, learners struggled to solve an 

impossible situation of finding sin 𝜃 given cos 𝜃 =
13

5
. Because they had understood that 

well-taught concept, learners had a shrewd way of getting the required answer of 
12

13
. They 
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had difficulties not from the concept being taught, but from an unnoticed error in the 

assessment task.  

Assessment 

Preservice teachers’ knowledge of assessment featured in this study as pedagogical 

content knowledge component. The discussion of assessment is based on the results 

from the lesson plan analyses and video-lesson observations. Preparation of assessment 

activities was fairly done by most of the participants as five participants planned fitting 

class-activities. This contrasted with a study by Bukova-Güzel (2010), which revealed that 

preservice teachers had some difficulties in creating appropriate assessment activities. 

Items were appropriately kept to the minimum due to tally with available time of the 

planned lessons. One participant had a mishap of planning for a homework within the 

lesson timeframe. This defies logic in the sense that homework is supposedly done after 

class, thus it should appear as an extra activity after the lesson has been concluded. 

Furthermore, one participant prepared a class-activity for Grade 10 learners, but the 

activity contained an error which rendered the problem unsolvable. At that level, learners 

cannot easily pick up the teacher’s error, thus in attempting to solve the flawed problem, 

learners exacerbate their own errors.  

Mixed performances were observed in assessment among preservice teachers’ lesson 

presentations. Firstly, two participants did not give assessment activities at all, even 

though they happened to be present in their lesson plans. By this, it meant preservice 

teachers were unaware that learning also occurs during assessment (Kornell & Bjork, 

2007). Also, assessment can fruitfully promote and inform subsequent action by teachers 

and learners (Clarke, 1996). Some preservice teachers administered class-activities 

which were too long, so that learners had difficulty completing them on time. As a result, 

no assessment feedback was given to the class, which is equally significant for successful 

teaching. Preservice did not vary the modes of assessments in both the lesson planning 

and lesson implementation, which is profitable in an environment of mixed-ability learners 

(Bukova-Güzel, 2010). Only class-activities were administered. One class-activity had a 

flaw which went undetected in class, thus the solutions to that problem were undefined. 
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This is corroborated by Reyneke, Meyer and Nel (2010) who commented that teachers 

appear to be lacking in designing quality assessment items.  

Questioning techniques 

The art of posing instructional questions in a lesson is important so that teachers can 

gauge the depth of learners’ ideas and direct their thinking towards achieving learning 

goals (Moyer & Milewicz, 2002). As such, questioning techniques found their way into 

pedagogical content knowledge studies. Analyses results from the lesson observations 

formed the base for the discussion that follows. Firstly, even though question-and-answer 

as an instructional strategy featured in some lesson plans, no participant used it during 

lesson delivery. Less confident teachers dread the task of devising the necessary and 

appropriate questions which are to drive the learning process (Haciomeroglu, 2009).  

In this study, the participants had weaknesses in questioning skills regarding types and 

levels of questions required to build conceptual understanding of trigonometric functions 

(Auliffe, 2013). Lower-order question types were the order of the day in all the classrooms; 

it was mainly the what-questions that were posed to the learners (Lloyd, 2006). For 

example, “What is the amplitude?” “What is the range?” There was no posing of higher-

order question types involving the why or how. Higher-order questions create room for 

teacher reinforcement of what learners already know and scaffolding of learners’ ideas 

from the particular to the general. Also, the tasks preservice teachers administered to the 

learners in examples and assessment were of low cognitive demand, which mostly 

focussed on procedures and memorisation of facts and formula (Crespo, 2003). It was 

observed that leading questions were invoked whenever participants mixed English and 

the vernacular language.  For example, in teaching the transformation of graphs, one 

participant had to code-switch and asked, “Do you see gore o tšhentšitše only the 

amplitude, akere?” (Do you see that what has changed is only the amplitude, isn’t it?” 

Thus, teacher questioning was insufficient as an instruction cue to convey concepts to 

learners. Questioning was supposed to unravel the directions of what learners are to do 

at a particular time and also how they are to do it.  
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Lesson management and control 

Lesson control and management reflects preservice teachers’ grasp of how to teach, 

hence, it has been included here as a component of pedagogical content knowledge. 

Results from the video classroom observations were the source of data for discussion 

herein. None of the participants used teaching and learning aids, except, in some cases, 

save the usual chalkboard and textbooks. Preservice teachers sometimes teach junior 

classes which are still at a stage where they stand to benefit from use of such resources. 

As a result, the lesson was steered away from learner-centred to more of teacher 

explanation. Another observation was that participants took longer to get to the concept 

under consideration, as a result of lengthy prior knowledge checking. This had the effect 

of choking the lesson, thereby leaving insufficient time towards the end of the lesson for 

feedback to assessment and conclusion. Another important aspect of lesson structure 

was teacher facilitation. Three participants did not facilitate classroom learning, especially 

during assessment activities. One did not administer an assessment activity at all, thus 

there was not much to facilitate anyway, while the other two simply stood idle as learners 

sweated out on the assessment task. According to Ball and Bass (2000), one of the 

principal things that make teachers better positioned to teach is the extent to which they 

facilitate the learning process. To those who facilitated, it was seemingly not thorough 

enough, to the extent that one participant did not detect a technical error in the 

assessment items in the process.  

Lesson plan structure 

Shulman (1986) was led to introduce the concept of pedagogical content knowledge 

having seen that the then current research on teacher knowledge was ignoring issues 

dealing with the contents of a lesson. Contents of the lesson are visible in the lesson plan 

structure thus, lesson plan structure as a component of pedagogical content knowledge 

is included. This discussion is based on the results from the lesson plan analyses. All 

participants addressed the issue of prior knowledge well as a foundation to concepts in 

the introduction. Four of the participants provided lesson conclusions, some even spiced 
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with real-life applications of the concepts taught. However, two participants had no 

conclusions at all, and because a template was used to draft the lesson plan, a homework 

activity was planned in the space of conclusion by one. In addition to that, four participants 

did not know how to frame a specific lesson topic; they simply stated the lesson topic in 

its broad sense as “Trigonometric functions”. The lesson plan template which they used 

required a lesson topic for that particular lesson only, not the broad textbook chapter. 

None of the participants planned for teaching and learning resources, save the usual 

chalkboard. Prospective teachers lacked appropriate pedagogical content knowledge of 

using materials related to the lesson concept under consideration (Ozden, Usak, Ulker & 

Sorgo, 2013). Preservice teachers should appropriately use learning materials and 

instructional designs in their lessons to assist learners with realising the goals of the 

lesson (Bukova-Güzel, 2009; Department of Basic Education, 2014). Finally, five 

participants did not include some examples to build the lesson towards the assessment 

activity. Learners may not be able to obtain correct answers to mathematical problem due 

to lack of sufficient knowledge of the concept(s) under consideration (Gardee & Brodie, 

2015).  

Explanation 

The last component of pedagogical content knowledge in this section is teacher 

explanation. The task-based interviews and classroom observations results form the 

basis for the discussion hereunder. The capacity to explain well is quite significant as it 

leads to good teaching (Havita, 2000). Teachers' explanations are reflective of what they 

know and, hence, of what their learners will eventually learn (Ball, 1990). Having relied 

on teacher- centred teaching techniques in lesson planning and implementation, 

preservice teachers banked on good explanation skills to deliver content and this they did 

quite well. Over reliance on the teacher explanation method became counter-productive 

in this study.  The participants all possessed good expression of ideas and a good level 

of communication skills of content material to learners. This was made easy by the fact 

that four participants planned and used teacher explanation as their main method of 

instruction. 
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Four participants gave correct explanations wherein they were asked how they would 

react to some hypothetical teaching situations. In all, good explanations came from 

concepts where preservice teachers had good content knowledge, which confirmed that 

teacher explanation is directly connected to level of content knowledge. However, some 

participants managed to explain concepts for which they did not have sufficient content 

knowledge as all participants were asked to explain the correct way of proving identities 

but were unable to do the actual proof the correct way. Moreover, teacher explanation 

was above board where there was involvement of identifying learner errors, otherwise, 

there was a plethora of incorrect explanations where learners’ misconceptions were 

involved. Thus, ability to explain eloquently will not necessarily make preservice teachers 

good teachers. This affirms the notion that content knowledge on its own is not a 

prerequisite to effective teaching (Barker, 2007; Kahan, Cooper & Bethea, 2003).  

6.4. The development of mathematics knowledge for teaching  

This section expounds the intricacies of the development of mathematics knowledge for 

teaching, especially in the light of classroom practices, in response to the third research 

question, which asks, “To what extent do preservice teachers develop the mathematics 

knowledge for teaching of trigonometry in the initial teacher education?” The basis for this 

discussion is the results from all the data collection procedures in this study. Attempts 

were made to unravel the application, implications, impact and extent of preservice 

teachers’ development of mathematics knowledge for teaching. The Curriculum and 

Assessment Policy Statement emphasises the content and instructional processes 

involved in teaching must be entrenched in appropriate contexts that are bound to 

enhance the application of mathematics (Department of Education, 2011). Thus problem 

solving contexts cannot exist in isolation. 

6.4.1. Participant track in all data collection instruments 

This section tracks the performance of individual participants as they experienced the four 

data collection instruments. This would portray a wholesome picture of participants’ 

performance, and growth in knowledge of teaching, by examining the preservice teachers’ 

content knowledge and pedagogical content knowledge. 
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Participant 1 Mhla 

This participant was a medium performer in phase one of data collection. She was strong 

in identifying special triangles, applying the area rule, simplifying trigonometric ratios and 

sketching trigonometric functions. Her serious weaknesses were in solving inequalities 

and equations in the form 𝑓 > 𝑔 and 𝑓 = 𝑔 respectively. In the interview and lesson 

presentation, her explanations of concepts were adequate, but her command of content 

knowledge in the same concepts was medium, in line with the content test outcomes. For 

instance, she could explain well that sin(𝑎 + 𝑏) ≠ sin 𝑎 + sin 𝑏, but could not give the 

expansion of the expression sin(𝑎 + 𝑏) precisely. Also, her content knowledge was 

dampened by an undetected flaw in one of the assessment items for the lesson plan and 

presentation.  

The limited content knowledge resulted in her making misconceptions that learners often 

make in the change in period of transformation of trigonometric functions. Thus, this 

preservice teacher would invariably pass on this misconception to her learners 

(Haciömeroglu, 2009). Because she was good at explanations, the teacher explanation 

method, which is the oldest method of teaching (Odora, 2014), was the chosen teaching 

strategy for both the lesson plan and presentation. For the lesson plan, this participant 

chose to teach on the simplification of trigonometric ratios, to which she was particularly 

good at from the content test results. Her questioning techniques were generalised in that 

they were never directed at individual learners thus it was difficult for her to make follow-

ups to learners’ responses.  

Participant 2 Mahl 

This participant was chosen for phase two data collection as a medium performing 

preservice teacher in the content test. His best performances in the content test were in 

identifying special triangles, proving the square identities and the application of the 

reduction formula. His weaknesses were in solving equations, simplifying trigonometric 

expressions and curve sketching. In the interview, he also displayed mediocre mastery 

of content knowledge, which led him to commit two misconceptions he was supposed to 

identify, in solving equations and transformation of functions. Based on his strengths and 

weaknesses in content knowledge, he chose to plan and teach the reduction formula, at 
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which he was particularly good.  Teacher explanation, the most commonly used teaching 

method (Odora, 2014), was solely planned and used in the lesson presentation. This was 

detrimental in that the lesson ended up being predominantly teacher- centred. 

Furthermore, there was over-reliance on memorisation of formula rather than of active 

learner-involvement in knowledge building, a bad tendency noticeable in many teachers 

of mathematics. For a 30-minute lesson, too much on the reduction formula was planned, 

so that the lesson was left incomplete.  

Participant 3 Leng 

With quite a low performance in the content test, this participant struggled a lot on content 

knowledge both in the content test and the task-based interview. He performed poorly in 

all the concepts covered in the content test save the sketching of graphs of functions. In 

the interview, though his explanations were good, they were marred by lack of 

competence in content knowledge. This participant was not good at identifying 

misconceptions and difficulties thus he fell for the all the learner misconceptions posed to 

him. He chose to plan and teach the concept of reduction formula, which he had 

performed relatively well in the content test. However, due to the nature of the reduction 

formula in different quadrants and on different trigonometric ratios, this participant ended 

up planning too much for the 30-minute lesson. As a result, the lesson was not concluded 

nor was the planned assessment activity administered due to time constraints. Another 

effect of low mastery of content knowledge was that this participant spent some time on 

reciprocal identities which had no bearing on the current lesson topic. In line with that, 

only lower-order questions were posed to the class, which failed to challenge learners. 

He did pose expected higher-order questions due to his weak content knowledge 

(Haciömeroglu, 2009).  

Participant 4 Shab 

This participant registered fairly good scores in the content test on content knowledge. 

He only had some difficulties with the solution of the inequality in the form 𝑓 > 𝑔. His 

explanations were above board, as well as his identification of learners’ difficulties and 

misconceptions. Thus, good mastery of content gave meaning to teacher explanations. 

But his questioning techniques lacked specificity and were never directed at individual 
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learners. Insufficient and insignificant questions were posed, so the preservice teacher 

could not analyse learners’ thoughts and the learning process effectively. His pacing was 

not good to the extent that the lesson was not concluded nor was the planned assessment 

task administered. A sole teaching strategy was used in the lesson presentation, which 

was teacher demonstration. He did not plan to use teaching and learning resources for 

the lesson.  

Participant 5 Sell  

This participant’s performance in the content knowledge test was mediocre, but she was 

the only participant to obtain the correct solution set of the inequality 𝑓 > 𝑔. She managed 

to solve the inequality graphically, for she had an advantage in curve-sketching in the 

content knowledge test, in addition to identifying special triangles and simplifying 

trigonometric expressions. Thus, she chose to teach a lesson on sketching trigonometric 

functions, at which she was good. She had weaknesses in solving equations, application 

of the reduction formula and proof of the area rule.  

In the interview, her explanations were good, though she lacked sufficient content 

knowledge to substantiate it. For instance, she could tell the correct procedure of proving 

identities, but she failed to prove a given identity in one of the tasks. She portrayed that 

she was not good at identifying learners’ misconceptions, since she committed two of the 

learners’ misconception herself in the interview tasks. The stated teacher demonstration 

method was solely used during the lesson which led to the participant providing solutions 

to the assessment activity herself, with no apparent involvement of learners at all. Lower-

order and leading questions were common during the lesson presentation, which did 

provoke learners’ reasoning capacity well. In addition, no resources were used in the 

lesson presentation, save the chalkboard ruler.  

Participant 6 Malu 

This participant was a low performer in the content knowledge assessment in the content 

test. His only remarkable strength was in curve-sketching, while he was weak in solving 

equations and inequalities, labelling special triangles, application of the reduction formula 

and computing the intersection points of two functions. He was seemingly good at 

establishing learner difficulties but had challenges with identifying learner 



191 
 

misconceptions. In marked contrast to the low content test performance, his explanations 

and content knowledge mastery in the interview was superb. He was the only participant 

who had the know-how to use multiple learner-centred teaching strategies, which were 

question-and-answer, class discussion and discovery methods. The sitting arrangement 

of the learners was in small groups of about five for a greater part of the lesson, and the 

learners were actively involved in investigating graphs of functions hands-on. The 

questioning technique was varied throughout the lesson, which also included higher-order 

question types. However, the lesson was devoid of follow-up to learners’ responses in 

order to qualify them when it was necessary to do so. 

Across all the tracking of participants, there was no obvious cause-effect relationship 

observed between performance in content knowledge and preservice teachers’ 

instructional capabilities. The majority indeed portrayed a scenario where poor content 

knowledge adversely affected subsequent pedagogical processes like explanations, 

instructional strategies, recognising learners’ misconceptions and assessment in both the 

lesson plan analyses and lesson observations. However, they were exceptions to this. 

Findings show that Shab was fairly good in mastery of content knowledge in all the data 

sources, but his classroom practice skills were unimpressive. His teaching methods and 

questioning techniques were inadequate, and he did not even administer the planned 

assessment activity as pacing of the lesson failed him. On the other hand, Malu indeed 

grappled with content knowledge in the content test and interview but could not allow 

himself to be handicapped by this. He managed to exercise excellent classroom practice 

skills in instructional skills which intermixed question-and-answer and discovery learning 

performed in small groups. Learner-involvement was high in the lesson and feedback to 

assessment activities. This confirms that content knowledge is necessary to becoming a 

teacher but is not sufficient for pedagogical content knowledge processes (Ball & Bass, 

2000; Borko & Putnam, 1996). 

6.4.2. Implication of mathematics knowledge for teaching 

The discussion of the implications commences with the development of mathematics 

knowledge for teaching. Such understanding of how mathematics knowledge for teaching 

is developed in practice would facilitate planning of workable teacher education 
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programmes for preservice teachers.  To describe how the mathematics knowledge for 

teaching develops, this study starts by identifying possible sources that add value to 

mathematics knowledge for teaching development (Haston & Leon-Guerrero, 2008; 

Evens, Elen & Depaepe, 2015; Kind, 2009). Afterwards, this study focuses our attention 

on the application of content knowledge and pedagogical content knowledge to classroom 

practice as preservice teachers taught real classes during their school teaching practice.  

Development 

During their time as learners, prospective teachers garner perceptions of what is 

mathematics and how to teach it. "Long before they enrol in their first education course 

or math methods course, they have developed a web of interconnected ideas about 

mathematics, about teaching and learning mathematics, and about schools" (Ball, 1988, 

p.13). It is upon these interconnected ideas that each preservice teacher meticulously 

constructs his or her mathematics teaching skills (Uusimaki & Nason, 2004). Thus, 

prospective teachers enter teacher education with rudimentary mathematics knowledge 

for teaching. Oftentimes teachers have been observed to base their mathematics 

knowledge for teaching skills upon memories of experiences in teaching and learning 

(Haston & Leon-Guerrero, 2008). These form a platform for the development of the 

mathematics knowledge for teaching. Unfortunately, these memories may also limit 

teachers who become rigid on their reliance on preconceptions. What prospective 

teachers bring into teacher education is a good starting point to isolate subsequent 

mathematics knowledge for teaching development. To be admitted in teacher education, 

prospective teachers must have a compulsory pass in mathematics with 50 percent or 

better at matriculation. However, the objective test results did not give a promising picture. 

With a 41 percent and a 33 percent average score and median score in school 

mathematics respectively, their content knowledge growth was somehow adverse. These 

content knowledge results came about after four years of entry-level and advanced 

mathematics courses.  

Now the major driving force of mathematics knowledge for teaching for preservice 

teachers in teacher education programmes, is the graded modules in methodology and 

content they are formally taught from year one to four. Grossman (1990) investigated the 
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bearing of formal teacher training on the growth of knowledge for teaching and discovered 

that it contributes to the knowledge growth of teachers. As this study was conducted 

towards the end of preservice teachers’ programme of study, it duly gives us a better 

picture of growth of knowledge as a result of exposure to teacher education. 

Concerning pedagogical content knowledge, so much was noted which did not portray 

remarkable development. Procedural practices in some aspects of trigonometry took the 

place of the expected learners’ conceptual understanding of those concepts. This was 

portrayed in the lesson plan analyses and classroom observations. An important 

observation is that participants had some good ideas but could not make necessary 

connections to complete the solution process to the final stage. This was echoed by Tatto 

and Senk (2011) who remarked that teachers may be well-versed with procedures and 

facts on some mathematics content they are expected to teach, but they would be weak 

in conceptual understanding of the same matter. A deep conceptual understanding is 

essential for the mathematics which preservice teachers will teach when they graduate 

(Conference Board of Mathematical Sciences, 2001). For instance, the teaching of 

reduction formula was highly procedural. Coupled with procedural teaching was the 

dominant use of teacher-centred strategies. Most preservice teachers were taught by 

their teachers that way and not much has changed despite learner-centred approaches 

which are promoted in teacher education.  

Large measures of spread of data indicated that preservice teachers’ content knowledge 

of trigonometry was uneven and that several fundamental ideas of trigonometry were 

poorly understood (Fi, 2006). Combined with the other descriptive statistics, it suggests 

that the participating preservice teachers possessed insufficient understanding of 

trigonometry. Thus, after four years of teacher training, preservice teachers’ mathematics 

knowledge for teaching was not fully developed and more needs to be done to redress 

this scenario in teacher education. 

Moreover, the preservice teachers’ need for improvement in their content knowledge 

hampered them from effectively identifying learner thinking processes and 

misconceptions (Tanisli & Kose, 2013). The unfortunate thing was that whenever 

preservice teachers have limited content knowledge on certain concepts or maybe 
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misconceptions, learners are bound to inherit such misconceptions (Haciomeroglu, 

2009). It is the responsibility of teacher education instruction to break this perpetuity of 

misconceptions before they get to the classroom. If it gets there, it creates a vicious cycle 

of misconceptions in trigonometry. Lesson objectives would be difficult to achieve if 

learners’ difficulties and preconceptions are not addressed by the teacher during planning 

and implementation stages. This leads to poor delivery of subject matter in classroom 

practice (Penso, 2002; Carzola, 2006; Westwood, 2004). Teachers can obtain possible 

learners’ misconceptions from the learners’ responses from the learners’ solutions of 

exercises and during oral probing. It is an essential aspect of teaching for teachers to 

expertly recognise and then address learners’ misconceptions. The way in which teachers 

plan their lessons reflects those misconceptions that would be addressed during the 

lesson. The lesson plan analyses, classroom observations and task-based interviews 

corroborated that preservice teachers in this study knew little about learners’ 

misconceptions and difficulties in trigonometry. Hence, the preservice teachers’ 

development of mathematics knowledge for teaching was not robust in this regard, as 

most of the learner misconceptions appeared in secondary school. Preservice teachers, 

after four years, cannot think higher than the learners they are supposed to teach.  

Another source of mathematics knowledge for teaching is teaching practice experience. 

Any research into teachers’ understanding of mathematics knowledge for teaching that 

excludes lesson observations with real learners might not fully convey the required 

information (Ball, Thames & Phelps, 2008). For final-year preservice teachers, yearly 

teaching practice sessions provide the much-needed teaching experience for significant 

mathematics knowledge for teaching development. Data for this study on pedagogical 

content knowledge was collected in actual school settings when the preservice teachers 

were doing their teaching practice. All the yearly teaching practice sessions did not lead 

to much realisation of the mathematics knowledge for teaching as it was seen that the 

teachers’ questioning techniques, quality of assessment tasks and teaching methods 

were not done at their best. It appears that preservice teachers need more time in field 

experiences to master the art of classroom teaching.  
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Furthermore, the development in framing a lesson topic was problematic to the preservice 

teachers. The result was that more than necessary was planned, owing to the broad 

lesson topics. The use of teaching and learning aids in class was limited. Preservice 

teachers failed to break away from the traditional methods of teaching to which they 

themselves experienced.  Not a single example was provided by all the participants in the 

lesson development stages in lesson plans and lesson presentations. Preservice 

teachers are expected to develop their knowledge of instruction beyond the particular 

lesson and content as they engage in lesson plan preparation (Fernandez, 2005). This 

confirms the notion that indeed formal tuition at teacher education and teaching practices 

has the potential to contribute to the development of preservice teachers’ pedagogical 

content knowledge (Kilić, 2011). Preservice teachers unfortunately, did not gain much 

from these which explains why some preservice teachers had under-developed 

knowledge of teaching. 

Implications 

Herein is discussed the implication of results of this study to classroom teaching practice 

in the South African mathematics education landscape. The results that came from 

obtained from the task-based interview informed us about the misnomer of dividing an 

equation by a term containing a function. More than half of the preservice teachers in the 

study effortlessly resorted to division by a function cos 𝑥, a common fallacy amongst 

learners. The Diagnostic Report of the 2013 national examination in mathematics 

emphatically states that learners should be made aware to avoid dividing both sides of 

an equation by a trigonometric function (Department of Basic Education, 2014) or any 

other function in general. If that function is not confirmed to be non-zero at every point in 

the domain, there is a possibility that one is dividing by zero at one or more points. This 

is known to be undefined, according to the rules of mathematics. Many of the preservice 

teachers often harbour these misconceptions from their high school days when they were 

still learners. If that is the case, then the four years of teacher education could not 

untangle this idea. And they would pass this on to the next generation of learners during 

teaching practice and early years of teaching. This unfortunately creates a revolving door 

effect, which is self-sustaining to doom.   
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Preservice teachers in this study demonstrated that the instructional strategy which they 

find comfortable with is the lecture method, another term for teacher explanation. This 

traditional method of teaching features a teacher directing children to learn via recitation 

and memorisation of facts and formulae techniques.  This deprives learners the skills to 

learn independently and develop critical thinking capabilities. This violates one of the 

tenets of the Curriculum and Assessment Policy Statement, which advocates 

“encouraging an active and critical approach to learning, rather than rote and uncritical 

learning of given truths” (Department of Basic Education, 2011, p.4). The traditional 

approach to teaching was a dominant feature of classroom instruction until the 1980s 

educational reforms. Preservice teachers ditched the diverse modern teaching strategies 

which they are taught in undergraduate studies. The understanding of facts suffered in 

favour of memorisation of principles, hence preservice teachers could well explain how 

to prove identities but were unsuccessful in application of such knowledge to a given 

problem.  

To give relevance and meaning to the concepts being taught, teachers ought to give 

examples at different stages of the lesson are that are drawn from learners’ familiar world. 

Real-world contexts render mathematics non-abstract and more connected to the 

learners’ world (Hill, Blunk, Charalambous, Lewis, Phelps, Sleep & Ball, 2008). Only two 

out of the six participants coined some real -world applications of the trigonometrical 

concepts they were addressing at that time. The Curriculum and Assessment Policy 

Statement categorically states that mathematical concepts do not exist in isolation 

somewhere out there but should lead to the required acquisition and application of 

knowledge in ways that are meaningful to learners’ everyday way of life (Department of 

Education, 2011).  

Five preservice teachers never gave examples of problems similar to what learners would 

encounter in the assessment activity. Class-activities must be administered in every 

lesson to consolidate what has been learnt in that lesson. Learning by following examples 

works best in mathematics. Consequently, learners were observed to struggle with class-

activities tasks upon which they never had seen how similar problems have been solved 

by the teacher. In support of that, the 2014 Diagnostic Report for Mathematics advised 
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teachers to give learners sufficient examples to practice upon to empower them to 

develop competence in the manipulation and simplification of trigonometric expressions 

(Department of Basic Education, 2015). If preservice teachers had a good command of 

specialised content knowledge, they would have no challenges of choosing examples 

and representations that support effective teaching.  

The utilisation of learning and teaching support materials also revealed that preservice 

teachers could not relate their knowledge of pedagogical content knowledge to classroom 

practice. According to Bukova-Güzel (2010), preservice teachers should devise and 

utilise instructional designs and materials for each topic in normal classroom contexts. In 

this study, none of the preservice attempted to use ready-made or commercial resources 

to facilitate teaching and learning, which happens to be a relic of the past traditional 

teaching methods, where the lecture method was the obvious choice among teachers. 

The Diagnostic Report of 2014 on mathematics advocated for improvements in the 

utilisation of learning and teaching support materials to help learners understand the 

concepts they are taught (Department of Basic Education, 2015). In some cases, learners 

had some difficulties with certain concepts simply because there were no materials used 

in the lesson for them to visualise the ideas presented (Bukova-Güzel, 2010). The 

preservice teachers lacked appropriate pedagogical content knowledge skills of using 

technology or other resources. Only the chalk-and-talk and textbooks were used. 

Preservice teachers should see and harness the world outside the traditional classroom 

from a mathematical viewpoint. Resources, if utilised in a group-work environment 

provides collaborative learning, interactive engagement and sustains learners’ interest in 

learning mathematics.  

Learners’ prior knowledge to specific concepts must be considered during lesson delivery. 

This effectively forearms the teacher to be wary of challenges to learning a particular topic 

that could crop up in the learning process (Penso, 2002). The process of teaching and 

learning is compromised if the pre-knowledge of learners’ is not identified at the onset of 

the lesson. This accords the teacher the opportunity to effectively address challenges to 

learning that learners might encounter during teaching (Hill, Blunk, Charalambous, Lewis, 

Phelps, Sleep & Ball, 2008). In this study, most preservice teachers were aware of the 
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need to address learners’ pre-knowledge first before getting into the content for the day. 

Upon the basis of full knowledge of baseline knowledge, preservice teachers safely 

proceeded with their lessons. The obvious drawback to this procedure was that too much 

time was then spent on checking prior knowledge to the detriment of other stages of the 

lesson. Some lessons ended abruptly as shortage of time squeezed out feedback to 

assessment and conclusion. The pacing skills of the lesson need to be inculcated in the 

preservice teachers, especially in terms of curtailing prior knowledge in the introduction. 

Though Gür (2009) found out that preservice teachers did not cite the Pythagoras 

theorem before teaching trigonometry. In this study, some preservice teacher aptly 

derived the square identity as a precursor to trigonometry teaching. Thus, prospective 

teachers made some attempts to relate their pedagogical content knowledge to 

classroom practice.    

6.5. Overall discussion of findings 

The knowledge domains that have been well-recognised in the works of Shulman (1986, 

1987) and Ball, Thames, and Phelps (2008) are subject matter knowledge and 

pedagogical content knowledge. The two subject matter knowledge sub-types that were 

considered in this study were specialised content knowledge and common content 

knowledge. A very low performance in specialised content knowledge meant that 

preservice did not possess adequate knowledge that is uniquely needed for teaching, 

which includes identifying and interpreting the causes of learners’ errors. An 

unsatisfactory performance in common content knowledge showed that preservice 

teachers were to some extent capable of knowing how to define concepts, perform 

calculations and identify patterns. Preservice teachers had notable challenges in both 

types, indicating that their acquisition of content knowledge in trigonometry was 

inadequate. Similarly, mastery of content knowledge in the interview was shaky. Thus, at 

the point of exit from teacher education, preservice teachers had forgotten so much of 

what they did on trigonometry from their high school and teacher education experiences. 

If left unattended, such low performances in content knowledge would have an adverse 

effect on their future years of classroom practice.  
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However, in the lesson plan and lesson presentation, preservice teachers displayed good 

content knowledge skills through good sequencing of concepts, good use of prior 

knowledge in the lesson foundation and precision in computations. This could be 

attributed to the fact that preservice teachers had the liberty to choose their own concepts 

in trigonometry to plan and teach. As such, preservice teachers chose to plan and teach 

concepts in trigonometry with which they had no content challenges to in the content test 

and the task-based interview. Curve sketching was the best-performed concept in the 

content test and results showed that three preservice teachers chose to plan and teach 

on it as a result. Trigonometric equations and inequalities were the least performed and 

no preservice teacher chose to plan and teach them. Unrelated concepts brought in by 

the preservice teachers, and errors in the assessment activities and in teacher 

explanations dampened some preservice teachers’ content knowledge mastery. 

Frequently, teacher errors are the source of subsequent learner errors (Moru, Qhobela, 

Poka & Nchejane, 2014). Moreover, even though preservice teachers could explain the 

correct procedure of answering some mathematical questions like proving identities, they 

could not give the correct prove of the given identities themselves. This typifies a scenario 

where the preservice teachers’ content knowledge on trigonometry was inadequate. 

Without a firm grasp of content knowledge, many pedagogical processes are negatively 

affected. Thus, in a way content knowledge is necessary but is not enough in teaching 

(Moru, Qhobela, Poka & Nchejane, 2014). Shulman (1986) suggested that content 

knowledge symbolised a person who is training to be a mathematician, whereas 

pedagogical content knowledge represents a person who is training to be a mathematics 

teacher. Knowledge and anticipation of learners’ misconceptions and difficulties is the 

driving in of the knowledge of content and students. Preservice teachers’ knowledge on 

misconceptions was lacking as findings showed that they repeated learners’ supposed 

misconceptions, especially in the task-based interviews. Their own misconceptions would 

prevent them from knowledge of learners’ thinking, errors and misconceptions (Tanisli & 

Kose, 2013).  

The dominant feature under the knowledge of content and teaching is the teachers’ 

mastery of instructional strategies. In this study we found that preservice teachers did not 
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display sufficient knowledge in this regard. They failed to engage multiple teaching 

methods in a single lesson. As if that was not enough, their favoured teaching method, 

teacher explanation, was not appropriate in efforts to create an enabling learning 

environment to which learners endeavour constructing their own knowledge. Direct 

instruction and procedural teaching were observed in the classroom discourses. 

Consequently, preservice teachers could not help learners overcome learning challenges 

which they encountered. In the interviews, preservice teachers managed to identify 

learner-difficulties, but they could not meaningfully address those them.  

No meaningful contribution was noted under the knowledge of content and curriculum; 

the preservice teachers simply adhered to the provincial government’s provided work 

schedules and pacesetters. These contain detailed sequencing of topics and their 

durations for each grade and each learning area. Teachers often are bound to these 

settings because common end of term tests would be based on the specified topics that 

are assumed to have been covered up to the time of the test based on the work 

schedules. And when preservice go to schools for teaching practice, they are encouraged 

to blend in with what their teacher mentors would be dealing with at that particular time.   

The tracking of each participant’s performance in the four data sets was aimed at 

presenting the progression of teacher candidates’ mathematical knowledge for teaching 

in trigonometry teaching. The progression of preservice teachers’ pedagogical content 

knowledge emanates from strong content knowledge; they chose to plan and teach 

concepts in trigonometry to which they were obviously good at if given the choice. When 

teachers are well-versed with the subject matter they are supposed to teach, they appear 

confident teaching the content, thereby design effective lessons (Wilburne & Long, 2010). 

Otherwise, they end up being selective in what they teach, which may entail eliminating 

a certain concept completely (Furner & Robison, 2004).  

Preservice teachers could explain concepts well whereto they had good content 

knowledge. Hence, teacher explanation was the dominant teaching strategy. In cases 

where their content knowledge was poor, incorrect explanations were common and 

learners’ misconceptions were not identified. In the task-based interviews, the three 

components of pedagogical content knowledge; content knowledge, knowledge of 
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instructional explanation and knowledge of learners’ misconceptions were interwoven. 

Instructional explanation and the identification misconceptions hinged on good command 

of content knowledge. Good explanation led to good identification of learners’ challenges 

to learning. Then, if a preservice teacher could explain and understand learners’ 

challenges to learning mathematics, this led to good mastery of content knowledge. 

6.6. Conclusion 

Chapter 6 was a narration of discussion on the mathematical knowledge for teaching of 

preservice teachers based on the results from all the four data instruments of this study. 

Firstly, a discussion of results on preservice teachers’ mastery of content knowledge 

based on quantitative analyses of the content test data was presented. That which the 

preservice teachers were able to recall on trigonometric concepts was limited. They 

displayed serious problems in solving trigonometry equations and proving identities which 

calls for need to stress understanding of school mathematics in high schools and in 

undergraduate education courses.  

The discussion on pedagogical content knowledge came next, and the main divisions of 

this were the components and types of pedagogical content knowledge. The performance 

on instructional strategies and questioning techniques, which fall in the category of 

knowledge of content and teaching was quite weak. Preservice teachers’ performance on 

the knowledge of content and students, epitomised by skills in anticipation of learners’ 

misconceptions and assessment, was inadequate. Knowledge of content and curriculum 

was indecisive in this study because all teachers are encouraged to comply with the 

government provided annual work-plans for each level of study, with the effect of masking 

teachers’ true skills in curriculum interpretation.  

The response to research question three was drawn from findings from all the data 

sources to assess the development of the mathematics knowledge for teaching in 

preservice teachers' classroom practice. This illustrated that deep conceptual 

understanding of mathematics content is necessary for effective classroom teaching. In 

this study, just because preservice teachers' content knowledge was shallow, other 

elements of teaching such as instructional methods, resolving learners' misconceptions 

and questioning techniques were ill-achieved. The teacher explanation approach to 
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teaching implied that teaching of concepts was procedural, which did not transform into 

conceptually inclined classroom teaching practices.  
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CHAPTER 7: SUMMARY, CONCLUSION, 

RECOMMENDATIONS AND IMPLICATIONS 

7.1. Introduction 

This chapter concludes this study in seven sub-divisions. The first section introduces the 

chapter by presenting the outline of the chapter. The abridged summary of the entire 

study is given in the second section of this chapter. Of interest was the omission of horizon 

knowledge and the knowledge of content and curriculum since they do not have direct 

teacher efforts in the South African context. The third section gives the conclusion of the 

study in response to the study research questions and highlights the new knowledge 

generated in this study. The fourth section narrates the recommendation for future 

studies. Several limitations of the study in the way the study was conducted were noted 

and presented in the fifth section. Implications of the study in the classroom, on research 

and teacher training make up section six. Finally, the chapter conclusion is given in the 

last section. 

7.2. Summary of the study 

Preservice teachers acquire mathematics knowledge for teaching in teacher education 

through an interplay of teaching practice, methodology and content modules. If teacher 

knowledge is key to the success of learning and teaching of mathematics, then it is 

paramount that preservice teachers master and continue developing the mathematics 

knowledge necessary for teaching in specific content areas. The present study purposed 

to explore the preservice teachers’ understanding of content knowledge and pedagogical 

content knowledge of final-year preservice teachers in trigonometry. Trigonometry was 

chosen because its concepts improve preservice teachers’ reasoning ability and occupies 

a unique transitional position from algebra to geometry (Tuna, 2013; Dündar & Yaman, 

2015).  

Prospective teachers bring to teacher education rudiments of knowledge of teaching of 

school mathematics which higher education institutions should develop through the initial 

teacher education programmes. Owing to low and varied quality of the initial teacher 

education programmes in South Africa, it cannot be taken for granted that preservice 

teachers have all the skills to teach school mathematics upon completion of their 
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undergraduate degree programmes. Ever since colleges of education were shut down 

after the controversial 1995 National Teacher Education Audit, there was a marked 

reduction in enrolments at teacher-training institutions (Centre for Development and 

Enterprise, 2015). Consequently, the supply of teachers could not match the demand. In 

the course of attempting to meet the growing demand of teachers, higher education 

institutions went into mass production of teachers, leading to reduced compliance with 

government policy requirements by some higher education institutions. Thus, the initial 

teacher education is to some extent compromised, which has led to situations where 

teachers have limited conceptual understanding of the subject matter knowledge they are 

required to teach (Department of Higher Education and Training, 2011b).  

There were three research questions that underlined this study, which were: “What is the 

level of preservice teachers’ understanding of trigonometric concepts?”, “What 

pedagogical content knowledge do preservice teachers possess in trigonometry?” and 

“To what extent do preservice teachers develop the mathematics knowledge for teaching 

of trigonometry in initial teacher education?” Participants of this study were confined to 

rural prospective teachers who were approaching the end of their teacher education 

studies at a rural-based institution of higher learning. This study is significant in that it 

reveals the need to render necessary support to beginning teachers, since from anecdotal 

knowledge, holding a teaching qualification is not a passport to good teaching.  

The literature review of this study centred on three key constructs, which were teacher 

knowledge, teacher education and preservice teachers’ mathematics knowledge for 

teaching in particular school mathematics topics. The work by Shulman (1986) formed 

the basis of the modern understanding of teacher knowledge. Other researchers further 

developed the concept of teacher knowledge by refining Shulman’s seminal work. The 

concept by Ball, Thames and Phelps (2008) is one such development which was 

instrumental in shaping this study. Teacher education as a source of teacher knowledge 

and cradle of new teachers was highlighted mainly in the South African context. It is 

acclaimed that new teachers need to acquire a deep understanding of mathematics 

knowledge for teaching during their training because teachers are key to learner 

achievement. Currently, products of South African teacher education institutions in the 



205 
 

category of mathematics and science fail to meet the expectations of the Department of 

Basic Education. By analysing teacher education, researchers get to know if challenges 

of inadequate teacher knowledge emanate from teacher-training. Trigonometry was 

chosen for this study as one of the school mathematics topics which learners encounter 

for the first time at Grade 10 level and has the potential to develop learners’ rational skills. 

That late start in the curriculum may be the reason learners find trigonometry challenging 

which is coupled with teachers who find it difficult to teach trigonometry. Related research 

on preservice teachers’ understanding of both the pedagogical content and subject matter 

knowledge of school mathematics concluded the review of literature.  

The review of literature revealed that many preservice teachers lack the conceptual 

understanding of school mathematics (Ball, 1990; Vaiyavutjamai, Ellerton & Clements, 

2005) and the processes needed to teach it (Ball, 1988a; Ball, Thames & Phelps, 2008; 

Masingila, Olanoff & Kwaka, 2012). Thus, preservice teachers exit teacher education and 

enter the world of teaching with limited skills and abilities in teaching school mathematics. 

Although it is well known that teachers acquire and perfect pedagogical content 

knowledge as they gain classroom experience, it is felt that teacher candidates ought to 

have the basics of pedagogical content knowledge developed in the initial teacher 

education programmes. Preservice teachers should try to grasp pedagogical content 

knowledge in their undergraduate content, methodology and through practical teaching 

engagements to prepare for their initial years of school teaching experiences (Borko & 

Putnam, 1996). 

After the literature review, the conceptual framework was presented, which gave this 

study a sturdy foundation. The framework also served as a window through which the 

analysis of data and discussion of results were done. Shulman’s (1986) conception of 

teacher knowledge, later refined by Ball, Thames and Phelps (2008), was the chosen 

conceptual framework for this study. The two types of teacher knowledge according to 

the model proposed by Ball, Thames and Phelps (2008) are pedagogical content 

knowledge and subject matter knowledge. The analysis of data was to investigate the 

depth of these two types of knowledge in a different context as to that of the proponents 

of teacher knowledge framework. The zenith of this study, therefore, was to explore 
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preservice teachers’ competence in these two key types of knowledge, as well as their 

implication to classroom practice.    

The research paradigm and how the study was conducted were elaborated in the 

research design. The qualitative research design was applied to this study, whereby 

preservice teachers’ mathematics knowledge for teaching was explored at best in the 

normal classroom situation. A single case of preservice teachers at a higher education 

institution was studied in-depth complemented the qualitative research design. The case 

study research methodology was appropriate for this study as a well-defined population 

of preservice teachers and a specific topic of school mathematics were explored. 

Data collection for this study comprised four instruments. The first to be administered was 

the content test, which was designed to assess preservice teachers’ content knowledge 

of trigonometry, in response to research question one. The next three instruments to be 

administered were the task-based interview, lesson plan analyses and classroom 

observations, all addressing research question two. The third research question, which 

was on preservice teachers’ development of pedagogical content knowledge, was 

addressed by findings from all the four data collection instruments. Even though it is 

known that pedagogical content knowledge of teachers is not easy to isolate and study 

from other teacher knowledge bases (Miller, 2006), in this study, attempts were made to 

map it in the context of classroom practice. This in part provides a starting point for 

collecting and analysing data regarding other aspects of teacher knowledge (Miller, 

2007).  

The sample of the study was composed of fifteen mathematics final year preservice 

teachers doing a Bachelor of Education degree programme at an institution of higher 

learning in South Africa. The sample was selected based on the purposive sampling 

technique. Before data were collected, ethical clearance was obtained from both the 

research site and the institution where the study is registered. Moreover, informed 

consent to audio- and video-record the task-based interviews and classroom teaching 

episodes respectively was obtained from the fifteen participants who participated in the 

study.  
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A preliminary study was conducted with fourth-year preservice teachers who were not 

going to be part of the sample for the actual study. Only the content test and the interviews 

were trialled, which was conducted on campus. Adjustments to the duration of the two 

instruments were duly done, as well as some changes to the items. Adjustments were 

done to strike a balance to the specialised content and common content knowledge items 

in the content test. Re-phrasing of some terms in the interview was performed to minimise 

ambiguities emanating from grammar or vocabulary. The pilot study was in August 2016 

and it paved the way for the real study research procedures to begin. For the other two 

instruments, templates from the School of Education at the institution were to be used so 

that preservice teachers’ experiences during teaching practice were as natural as 

possible. Thus, there was no need to pilot the lesson plan template, lesson plan 

evaluation sheet and the classroom observation schedule as all participants were already 

used to them by that time.  

After the pilot study was concluded data collection for the actual study commenced in 

earnest. The content test and interviews were conducted on campus towards the end of 

2016 and the classroom practice instruments implemented during the April/May 2017 

teaching practice sessions. The same subjects took part in all the data collection stages. 

The administration of the content test had an obvious advantage of being applied to a 

large sample compared to interviews or lesson presentations (Pino-Fan, Godino, Font & 

Castro, 2012). Thus, more participants in the content test and fewer in the other modes 

of data collection.  

The role of the researcher at the institution as a lecturer and supervisor of teaching 

practice was made clear. However, instead of witnessing unwanted research bias, the 

study benefitted from the cordial working relations between the researcher and the 

participants. Participants’ cooperation was noble as a result. In any case, research bias 

in qualitative research is never an issue since researchers are an integral part of the 

research design and the final research study. Researchers therefore strive for 

transparency of the research processes so that participants may reveal their true feelings 

and data is to be analysed without prejudice, to lead to credible research results. 

Conducting a pilot study and triangulating data collection of pedagogical content 
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knowledge were attempts to reduce research bias. Still on the integrity and accuracy of 

research data, four measures of data quality were explained and applied to enhance 

quality. For qualitative research studies, these are credibility, transferability, dependability 

and confirmability, and these four measures are collectively called trustworthiness. The 

final concern intended to give trust to this research study was ethical considerations. To 

all the key processes of this study, that is, data collection, analysis, interpretation and 

reporting, the dignity of human subjects was respected, and the researcher assumed 

accountability for all his actions. This was accomplished by initially getting permission to 

conduct the study from responsible authorities. Even though the participants were known 

to the researcher, their consent to involve them in the study was formally sought and 

confidentiality in terms of their identity and responses was actioned.  

Due to the volume of data, the analysis of data was spread over three chapters. Chapter 

5 took care of the interpretation and presentation of what emerged from the data from all 

the sources only. Chapter 6 presented the discussion of the findings from the data 

interpretation in the context of the broader literature. In Chapter 7 section 7.3, the 

conclusion of the study was detailed, in response to the research questions of this study. 

The three stages of analysis were in a linear fashion; data presentation informed the 

discussion of results, and discussion led to the research conclusion. In all, the conceptual 

framework was the lens through which data was analysed. The content test was 

presented in three parts; biographical, brief statistical analysis and the content analysis 

under qualitative analyses. The content test was poorly performed, with an average score 

of 41 percent. There were four items devoted to specialised content knowledge and three 

on common content knowledge. No items were assessed on preservice teachers’ horizon 

knowledge. The preservice teachers’ overall performance in subject matter knowledge 

was not robust. 

The second domain of teacher knowledge, pedagogical content knowledge, was 

interpreted and analysed deductively. Some key components of pedagogical content 

knowledge were pre-determined based on literature. The presence or absence and the 

degree of mastery of each of these components constituted the analysis of data. This was 

done corresponding to the pedagogical content knowledge sub-categories as spelled out 
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in the conceptual framework. These were knowledge of content and students and 

knowledge of content and teaching. The third one, knowledge of content and curriculum 

did not render meaningful contribution to the study, hence, it was omitted. The results 

from the three data sources for pedagogical content knowledge all contributed to the 

analysis, especially lesson planning and class observations which were practice-based. 

The mastery of preservice teachers’ pedagogical content knowledge in trigonometry was 

limited. 

The third research question was addressed by a consideration of the results from the four 

data sources. Preservice teachers’ high school experiences on what to teach and how to 

teach did not build much into what they were to learn from teacher education. The 

traditional ways of teaching and learning never left them up to the point of exit from 

teacher education, militating possibilities of positive development of mathematics 

knowledge for teaching. The implication for classroom practice was that teacher-centred 

teaching strategies were dominant, and no resources were engaged in lesson delivery.  

7.3 Conclusion of the study 

To bring this study to an end, the researcher summarised the discussion of the findings 

in the perspective of the conceptual framework. In the process, responses to the study 

research questions were made available, since the conceptual framework was in 

synchronisation with the research questions. The subject matter knowledge correlates to 

the research question number and pedagogical content knowledge connects with 

research question two. The implications of mathematics knowledge for teaching on 

preservice teachers’ classroom practice relates to research question three. The idea of 

preservice teachers’ mathematical knowledge has been well-studied starting with the 

ground-breaking work by Shulman (1986), hence, the original contribution of this study 

emerged from small gaps within that saturated area of study. The established models of 

teacher knowledge were taken and applied to a novel context. This study confirmed or 

refuted what is already known about preservice teachers’ mathematics knowledge for 

teaching in school mathematics in a specific population at a higher education institution 

in South Africa. This created an extra pane in a window through which reserchers can 

explore what preservice teachers know and how they teach it (Fi, 2003).  
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7.3.1. Preservice teachers’ subject matter knowledge 

The findings from the analysis of the content test results revealed that preservice 

teachers’ content knowledge in school mathematics was inadequate. This was in line with 

the findings from other studies in South Africa and worldwide (Ball, 1990, 1991; Fi, 2003; 

Mudaly, 2015; Biyela, 2012). These findings held true for several school mathematics 

topics, including trigonometry, which was the focus for this study. Preservice teachers 

have a serious lack of knowledge of trigonometry (Dündar & Yaman, 2015). In all, 

available research findings on in-service and preservice teachers give an indication that 

their content knowledge of school mathematics is not connected and robust in 

accordance with the expectations of the mathematics education community (Ball, 

Lubienski, & Mewbom, 2001). With such limited content knowledge, preservice teachers 

may not be able to adequately answer the questions found in the subjects they are 

responsible to teach (Centre for Development and Enterprise, 2013). Even many 

experienced teachers in a report by Spaull (2013) cited in Mudaly (2016) were unable to 

respond to questions intended for the learners who they are teaching.  

A closer look at the results of the two sub-domains of subject matter knowledge revealed 

varying participants’ performance per each. As was explained in Chapter 3, two sub-

domains of subject matter knowledge were applied, that is, specialised content 

knowledge and common content knowledge. Horizon knowledge was later dropped 

because the proponents of the model of mathematical knowledge for teaching left it 

hanging, promising to return and explore it theoretically and empirically. No mention was 

made concerning horizon knowledge, especially in its application to teacher-training 

studies. Knowledge of the awareness of how topics or concepts are related over the span 

of mathematics prior or future to what is being taught is subsumed in specialised content 

knowledge (Ball, Thames & Phelps, 2008).  

Items 1, 5 and 7 focussed on drawing sketches, proving identities and computing values 

were classified under common content knowledge. From Section 5.2.3, result showed 

that the preservice teachers’ average performance in these items was 47 percent. Items 

2, 3, 4 and 6 featured on giving justifications and explanations, and solving problems 

intuitively. These were categorised under specialised content knowledge. The average 
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preservice teachers’ performance on these items stood at 34 percent, according to the 

explanation in section 5.2.3. These two statistics testify that all was not well with 

preservice teachers’ performance in subject matter knowledge. Findings also showed that 

performance was relatively better in common content knowledge where prospective 

teachers answer problems without necessarily providing any justifications or using 

representations. But anyone who knows mathematics can do the same. The 

mathematical knowledge unique to teaching, which involved interpretations in diverse 

ways, flexible thinking and drawing generalisations based on valid justifications, was less 

performed. Most of the teachers’ everyday tasks rest on their competence in specialised 

content knowledge (Ball, Thames & Phelps, 2008). With the content test items drawn from 

Grade 12 past examination papers and textbooks, prospective teachers were unable to 

answer with meaning questions in the curriculum they are training to teach (Centre for 

Development and Enterprise, 2013). Frequently, poor learner performance in 

mathematics in most schools is largely due to the poor subject knowledge of teachers. 

The exploration of preservice teachers’ content knowledge crossover into the second data 

collection instrument were the task-based interviews. Task-based interviews were 

conducted on a one-to-one basis, which turned out to be a good tool to also capture 

preservice teachers’ performance in content. Of interest were items that dealt with 

identifying learners’ errors and defining terms. Exactly three out of six preservice teachers 

were unable to give the correct definition of a negative angle measure. Also, on being 

asked to perform certain mathematical calculations, some preservice teachers expressly 

failed to do so. This was true for proving identities, solving quadratic equations in 

trigonometry and conceptualising horizontal transformations of trigonometric functions.  

This study has shown that teachers’ skill of identifying learners’ errors in a mathematical 

computation or explanation is part of common content knowledge. In this study, most 

preservice teachers were able to pinpoint with accuracy some of the errors in the 

hypothetical situations presented in the task-based interviews. However, the same errors 

that they successfully identified, the way in which preservice teachers explained, 

corrected and justified those errors was not matching. If a teacher manages to identify an 

error but fails to render the correct solution to the same problem, then his or her mastery 
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of common content knowledge is questionable. How preservice teachers handled the 

errors in terms of explanations, correcting and justifications are part of knowledge of 

content and students, to be covered in the next section. This study disagrees with Ball, 

Thames and Phelps (2008, p.400) who placed looking for patterns in learners’ errors and 

“sizing up the nature of an error” as a type of specialised content knowledge. This study 

has classified knowing the nature of learners’ errors as a skill under specialised content 

knowledge, but it does not have much to do with interpreting the errors in the light of 

content material. Thus, the poor mastery of common content knowledge and specialised 

content knowledge by the preservice teachers in this study denotes that their 

mathematics content knowledge was weak. In South Africa, many teachers have a poor 

grasp of the knowledge they are required to teach (Deacon, 2012). Thus, it could be that 

these teachers were inadequately equipped in content knowledge in various aspects of 

school mathematics during their training (Centre for Development and Enterprise, 2014). 

7.3.2. Preservice teachers’ pedagogical content knowledge 

The climax of our exploration of preservice teachers’ pedagogical content knowledge was 

attained during the classroom-based practices. This was done in real classrooms during 

formal teaching practice sessions. Lesson observations were conducted at a time when 

preservice teachers went out for their routine teaching practice. From this study, the 

knowledge of content and curriculum did not contribute much in our exploration of 

preservice teachers’ mathematics knowledge for teaching. The provincial Departments of 

Basic Education have taken upon themselves to annually supply all schools with the list 

of recommended textbooks, assessment plans and work schedules. Work schedules 

encompass the ideal, which encompasses ideal sequencing and duration for all the topics 

for each grade and subject. The best teachers can do faced with this is to simply adhere 

and comply with the policy recommendations for teaching and learning. Non-compliance 

to work schedules may have negative implications on learners’ readiness for common 

assessment tasks which are drawn in accordance with the work schedule. Hence, there 

was no chance of variability in preservice teachers’ knowledge of curriculum who were 

using the same working documents. Some of the aspects of curricular knowledge, such 

as crafting appropriate teaching methods to match the goals of the curriculum (Ijeh, 2012) 
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have been categorised under knowledge of content and teaching, which is the subject of 

discussion in the upcoming paragraph.  

Under the exploration of pedagogical content knowledge, the premise was that what 

teachers know is central to teaching, thus hereunder, focus is placed on what teachers 

can do with what they know. With common content knowledge, teachers can define, solve 

mathematical problems and identify learners’ possible errors. Building on common 

content knowledge, specialised content knowledge takes teachers’ knowledge a step 

further by enabling them to solve mathematical problems by using different 

representations, understanding unfamiliar solution processes to problems and explaining 

with justifications their chosen approaches to mathematics phenomena.  

Then teachers are expected to recognise content material that likely cause learners great 

difficulties under the category of knowledge of content and students. The manner wherein 

teachers prepare and deliver their lessons must reflect possible learners’ difficulties and 

misconceptions. These then should be addressed during the lesson to successfully 

achieve learning goals. Possible learners’ difficulties can be obtained from the learners’ 

responses during oral probing and from the learners’ solutions of exercises that are 

carefully presented. Sometimes, if difficulties and misconceptions concerning a specific 

concept are not apparent, teachers may have to anticipate them as they prepare to teach 

a lesson. This is one thing which was not consummated by preservice teachers in this 

study. No difficulties or misconceptions were explicitly addressed and anticipated, even 

in cases where they existed. In fact, as preservice teachers worked through the 

hypothetical cases of learners’ work laden with probable errors and/or misconceptions in 

the task-based interviews, they instead revealed their own misconceptions (Fi, 2003). In 

more serious cases, there is a high likelihood of teachers passing down their own 

misconceptions and difficulties to their learners. Misconceptions emanating from high 

school when preservice teachers were still learners inherently follow them all through 

teacher education. This was the case in division by a non-zero function and in the 

horizontal transformations of trigonometric functions. Though preservice teachers had no 

serious problems in identifying learners’ errors in computations, they had challenges of 
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handling and anticipating those errors in task-based interviews and actual classroom 

practice.    

Knowledge of content and teaching is concerned with how to address learners’ 

misconceptions and difficulties in order to achieve effective teaching and learning. 

Knowledge of content and teaching is concerned with planning to teach and implementing 

intricate teaching strategies so that teachers can unpack mathematical knowledge to help 

learners to understand. Preservice teachers in this study unfortunately took great comfort 

in the traditional teaching approaches in the lesson plans and in video-teaching episodes. 

The traditional method of teaching is when a teacher directs learners to learn through 

explanation and memorisation techniques. This in effect deprives the learners of much-

needed development in decision-making and critical thinking skills. The choice of 

preservice teachers’ methods of teaching in the lesson plans and lesson implementation 

bore testimony to this. Five out of six of the preservice teachers chose to use the teacher 

explanation method in their lessons. Explanation as a teaching method is akin to lecturing, 

which obviously is not the best way of teaching. Modern teaching methods are proponents 

of “working with the learner” and learners working in small groups to create an enabling 

environment for learner participation and interaction (Somayajulu, 2012). These two 

facets are essential for fostering good learning.  

The discussion on the elements of pedagogical content knowledge revealed that at the 

end of their undergraduate studies, preservice teachers still had challenges with 

necessary skills needed for classroom practice. No teaching and learning resources were 

planned for or used in the lesson delivery, which confirms that the hands-on approaches 

just mentioned in the preceding paragraph were not part of the lessons. This is 

reminiscent of past teaching practices which dominated classrooms until the 1980s until 

educational reforms were introduced. Thus, the traditional mode of teaching never left the 

preservice teachers despite four years of undergraduate studies which they undertook, 

whereby emphasis was placed on the constructivist learning paradigm.  

The level and order of questions that were planned and executed in class were of lower-

order, to the extent that they invoked factual and definitions of terms. Higher-order 

question types were not actioned at all. Preservice teachers grappled with framing a 
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lesson topic for the lesson plan and lesson implementation. Lesson topics for more than 

half of them were just textbook chapter topics, though the lesson objectives were truly 

specific. Regarding assessment, two preservice teachers saw no need to assess the work 

they taught. It could have been due to time constraints because both had something on 

class-activities planned. Indeed, with few worked examples given during lesson 

presentation, some of the planned assessment activities took up so much lesson time as 

learners struggled with them. Also, during lesson observations, teacher facilitation to 

learning during assessments was below expectation as half of the preservice teachers 

stood aloof as if they were administering a test, when in fact it was class-activity time.  

Again, from the discussion, it was shown that given a chance, preservice teachers would 

plan and teach concepts with which they are familiar. This confirms that content 

knowledge is necessary but not sufficient for pedagogical content knowledge. The 

concept of trigonometric graphs was one of the best performed in the content test, hence 

three out of the six preservice teachers chose to plan and teach sketching of trigonometric 

functions for the purpose of this study. On the other hand, none opted to teach concepts 

such as proving of identities or solving trigonometric equations, which were poorly done 

in the task-based interviews. Preservice teachers, even though they follow work 

schedules and pacesetters in their daily practice teaching, still had a choice on what 

aspect of trigonometry to address on the day of the class observation visit by the 

researcher-supervisor. Thus, some topics and concepts are omitted or taught in a 

haphazard way whenever teachers feel they do not fully understand the content. Only 

when teachers work as teams can they inter-teach classes as per their capabilities or else 

teachers pass down their own weaknesses to their learners.  

7.3.3. The extent of development of mathematics knowledge for teaching  

Prospective teachers do not go to teacher education empty-handed but have some ill-

formed ideas of mathematics and how to teach. Deacon (2012) posited that a very strong 

influence on prospective teachers' preconceptions of mathematics for knowledge 

teaching is the way in which they themselves were taught when they were still learners. 

In any case, learners’ long years of observations during their schooling years may have 

a greater influence on them than their subsequent formal preparation from teacher 
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education. However, the ill-formed ideas of what to teach and how to teach it may militate 

future attempts by teacher education to train preservice teachers in other ways. Teacher-

centred approaches to learning, non-usage of learning and teaching support materials 

and the dearth of real-world application of the concepts taught were all hard-wired relics 

of preservice teachers’ schooling days.  

Furthermore, regarding responding to content knowledge items in the task-based 

interviews and the content test, many preservice teachers relied on their shaky high 

school mathematics knowledge to guide them on how to answer and to explain 

misconceptions. Ideally, they were supposed to draw on the recent experiences in 

undergraduate mathematics courses in responding to subject matter-related questions in 

the content test and during the task-based interviews. In cases where some school 

mathematics topics were not part of the teacher-training curriculum, preservice teachers 

resorted to high school conceptualisations without properly filtering faulty dispositions as 

expected. As a result, certain aspects like misconceptions and the traditional teaching 

methods followed them from high school through to consummation of teacher education. 

The misnomer of dividing both sides of an equation by a function is a classic example of 

a misconception which the 2013 national Diagnostic Report alluded to (Department of 

Basic Education, 2014). It could also be the fact that preservice teachers may not have 

co-opted teaching practice experiences and the methodology modules as tools for 

mathematics knowledge for teaching (Gess-Newsome, 1999b). Some preservice 

teachers may still need more exposure to teaching practice in order to transfer what they 

have learnt in teacher education to classroom teaching. Having relied a lot on high school 

mathematics knowledge on trigonometry, there was no meaningful development of 

mathematics knowledge for teaching as a result of initial teacher education exposures.  

Attracting increasing numbers of high-achieving matriculants into teacher education 

programmes has always been tricky for education departments in higher education 

institutions (Centre for Development and Enterprise, 2015). Most high-performing 

learners in the science stream opt for other high-status programmes such as health 

sciences, engineering and technology. At the higher education institution where the data 

was collected, a minimum of 50 percent is needed to secure a place of study for the 
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Bachelor of Education degree programme while medical science degree programme had 

a minimum of 60 percent for mathematics. Preservice teachers enrolled with basic passes 

in mathematics, and that performance plummeted as they progressed through teacher 

education. In the content test, participating preservice teachers scored an average of 41 

percent in trigonometry. Hence, there is no evidence of marked development of 

preservice teachers’ mathematics knowledge for teaching from commencement of 

teacher education all the way to the exit of the same. Lowrie and Jorgensen (2016) 

concurred and further said that preservice teachers’ school mathematics content 

knowledge might remain unchanged throughout the duration of their teacher training 

period, even though the pedagogical content knowledge may develop during the same 

period. This is a result of the exposure to teaching practice experiences and methodology 

modules. However, the development of pedagogical content knowledge again was 

mediocre, as preservice teachers demonstrated traditional teaching approaches and 

displayed their own misconceptions in understanding some trigonometry concepts. 

Ideally, content knowledge alone is not sufficient for pedagogical processes to take place. 

The tracking of each preservice teacher’ performance in the four data sources yielded no 

commonalities of facts. It was seen that the only teacher candidate who planned and 

employed good learner-centred teaching strategies had performed very badly in the 

content test. To the contrary the teacher candidate who performed very well in the content 

test and content components of the task-based interview later settled for mediocrity in the 

lesson plan and video-teaching episode. Based on the findings of this research, it is 

important to note that preservice teachers commence in earnest their teaching careers 

with inadequate mathematics knowledge needed for teaching mathematics. Most of the 

preservice teachers seemingly appear to be at the same level as high school learners in 

terms of mathematics knowledge. Consequently, one cannot expect meaningful 

improvement in South African learners’ results for mathematics (Biyela, 2012).  

7.3.4. Resolving the conundrum  

The preceding subsections have shown that based on the results of this study, 

mathematics preservice teachers at the higher education institution investigated 

portrayed lack of mathematics knowledge for teaching in trigonometry. The rationalisation 
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from the four data sources also revealed that even the growth and connectedness of 

mathematics knowledge for teaching in school mathematics is not robust amongst final-

year preservice teachers. This has happened in disregard of concerted efforts by teacher 

education programmes at the higher education institution, which are enshrined in the 

noble role of inculcating and refining preservice teachers’ mathematics knowledge for 

teaching. This undesired status quo has the likelihood of negatively impacting preservice 

teachers’ future classroom practice when they complete training and enter the world of 

work. 

Teacher education programmes duly render much general pedagogy, content, teaching 

practice and content-specific methods modules geared to support the growth and 

development of professional knowledge for teaching. In the quest to develop knowledge 

to teach a particular content area, general pedagogy modules get relegated in the 

development of an ideal mathematics teacher. Therefore, the interplay of content, 

methodology and teaching practice modules contributes to the development of 

mathematics knowledge for teaching. This happens at the intersection of the three 

sources of preservice teachers’ knowledge, as illustrated in Figure 7.1. 

 

Figure 7.1. The triadic model showing the place of an ideal preservice teacher. 
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Hence, I believe at the higher education institution and other similar institutions in South 

Africa should strive to develop initial teacher education programmes that look at teaching 

practice, methodology and content knowledge as part of a triadic model where the ideal 

teacher is situated at the intersection of all three.  

Content knowledge is important in that teachers by nature teach what they know 

successfully and knowledge of content forms the basis of many pedagogical processes 

such as lesson planning, questioning techniques, correcting learners’ misconceptions 

and errors and assessment. Again, preservice teachers need good grounding in content 

knowledge as they interact with learners in the real classroom situation during teaching 

practice. Of importance is the need for discovering pertinent ways to bridge the university-

school mathematics divide. Advanced undergraduate mathematics is acceptable in 

teacher education, but too much of it is not suitable as a base for mathematics 

(Department of Higher Education and Training, 2010). The content test attempted to 

uncover the extent to which preservice teachers in the study knew about the mathematics 

content that is informed by the mathematical knowledge for teaching, which is specific to 

teaching school mathematics (Morrow, 2007). 

Methods modules came into prominence when criticisms were levelled against teacher 

education programmes in South Africa when they then construed teaching and learning 

as generic activities, “with scant reference to the content of what is being taught or 

learned” (Gierdien, 2012, p.140). In mathematics methods modules, preservice teachers 

are instructed how to teach mathematics that is embedded in content-specific contexts 

instead of generic teaching methods. For instance, preservice teachers are presented 

with carefully selected samples of learners’ misconception riddled work and required to 

analyse the learners’ thinking and possibly generate ways of eradicating such 

misconceptions (Kiliç, 2011). These skills are put to test and internalized in real 

classrooms when the preservice teachers go to schools for formal teaching practice. The 

task-based interview in this study addressed the aspects of methods modules in 

investigating preservice teachers’ mathematics knowledge for teaching.  

Finally, teaching practice accords preservice teachers the opportunity to learn first-hand 

how to teach and apply knowledge and understanding learnt in theory during university-
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based undergraduate classes to challenges encountered in real classrooms. However, 

there are disparities in the length and quality of school teaching practice of teacher 

candidates in the various teacher education institutions. On the duration of teaching 

practice, the Minimum Requirements for Teacher Education Quality emphatically states 

that preservice teachers should spend not less than sixteen weeks and not more than 

twenty-four weeks on supervised school- based practice over the four years of their 

degree programmes. Supervisor visits to schools should be sufficient, which normally is 

a financial hiccup to historically disadvantaged institutions as the one in this study.  There 

should be common understanding among teacher education institutions, schools and 

teacher-mentors in terms of their mutual role in the development of prospective teachers. 

School teaching practice by virtue of its significance should become central and integral 

to the teacher education curriculum, instead of adjunct to the curriculum as in some cases. 

The lesson planning and video-teaching episodes which were practice-based in this study 

took care of the teaching practice experiences of preservice teachers. 

7.4 Future research  

There are many possible recommendations for future research and extensions based on 

this study. More in-depth explorations of the growth of preservice teachers’ mathematics 

knowledge for teaching in trigonometry can be done. This can be in the form of a 

longitudinal study where a snapshot of preservice teachers’ knowledge of trigonometry is 

done at the beginning. Possible interventions are conducted in between in methodology 

modules, content modules and teaching practice to increase preservice teachers’ 

knowledge throughout the preservice years. Another snapshot is taken at the end of their 

studies and these two are compared for possible growth of mathematics knowledge for 

teaching. Also, the present study focused on the mathematics knowledge for teaching of 

trigonometry only. Similar studies could investigate mathematics knowledge for teaching 

other significant topics of school mathematics, which would benefit our understanding of 

the extent of prospective teachers’ knowledge in mathematics. 

There is a need to investigate the reason preservice teachers still experience weak 

performances in school mathematics, after having been in the higher education 

institutions for four years. Are these institutions doing justice when teaching mathematics 
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content to the preservice teachers? Or do they assume that preservice teachers know the 

mathematics they will be teaching upon completion of their training? Alternatively, one 

can explore the mathematics knowledge for teaching for qualified teachers in specific 

topics of school mathematics. Other future studies could compare relative understandings 

of knowledge of teaching trigonometry by preservice teachers and qualified teachers. The 

mathematics knowledge for teaching of the in-service teachers could be investigated and 

then contrasted with the preservice teachers’ mathematics knowledge for teaching. 

Moreover, future researchers can study and focus on pedagogical content knowledge 

and content knowledge separately. Finally, because this study was not representative of 

all the higher education institutions in South Africa, more research could be conducted, 

which focuses at other South African higher education institutions to broaden the scope 

of studies like these. 

7.5. Limitations of the study 

Analysing preservice teachers’ classroom behaviours and practices, and then 

categorising them into pre-determined components of pedagogical content knowledge is 

not without challenges. Pedagogical content knowledge is by nature unique, specialised 

and develops in cycles rooted in classroom practice (Miller, 2006). Time allotted for the 

classroom observations was seemingly insufficient since the lessons were timed. The 

normal running of the school timetable and of the teaching practice programme had to be 

factored in. However, that limitation was accounted for in the task-based interviews and 

lesson planning, where the participants directed the pace and time required. Moreover, 

this study was conducted with final year preservice teachers at a rural-based university. 

However, the exploration was restricted to one particular year group and it is not known 

what the understanding would be for other year groups doing the same programme at the 

same higher education institution and other institutions of higher learning in South Africa 

(Dos Reis, 2012). 

The act of teaching practice does not provide irrefutable evidence of the preservice 

teacher's mathematics knowledge for teaching because the preservice teacher would be 

someone’s classroom, the school mentor. The classes they teach belong to the mentor-

teacher, and they teach under the mentor's expectations and work with learners who are 
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used to the teaching ways of their “teacher”. However, the teacher-mentor scenario is the 

way it is done in all teacher education programmes and preservice teachers benefit from 

that mentorship relationship. Mentors do have formal roles assigned to them such as 

lesson evaluation and writing reports at the end of the teaching practice session. 

Preservice teachers do not assume full responsibility of a class during their practicals. 

Also, only one lesson was taught under observation by the teacher candidates when the 

researcher visited them at their practicing schools, and it is highly likely that under these 

circumstances, impressions may be given which are not true in everyday teaching 

experiences. Secondly, watching a preservice teacher teaching for just a single lesson 

does not allow for the full spectrum of classroom behaviours to be observed. Some 

classroom etiquette is known to occur over a period of time in the mathematics classroom, 

with which the teacher has to cope appropriately as time passes (van Putten, 2011). 

7.6 Implications of the study 

Preservice teachers commented that they were not taught trigonometry conceptually at 

school, which to some extent effected the weaknesses that were revealed. The 

undergraduate content modules which preservice teachers take at teacher education 

institutions still leave the content gaps un-filled in some school mathematics topics. This 

argument is a worthy criticism that the mathematics education community needs to take 

seriously. Key school mathematics topics should be well detailed at higher education 

institutions before advanced undergraduate mathematics take the stage. In some 

countries, training of mathematics teachers has already started to move towards 

providing content modules that re-capitulate school mathematics at a higher level 

(Conference Board of the Mathematical Sciences, 2001). Having seen that developing 

the mathematics knowledge for teaching of preservice teachers is central to all initial 

teacher education programmes, checks and balances should be put in place before 

preservice teachers begin full-time teaching. There was a call for all teacher-graduates to 

sit an assessment-of-competency examination as a requirement for employment in public 

schools (Centre for Development and Enterprise, 2014).  
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7.7 Chapter conclusion  

This chapter provided a synopsis of the entire research study and answers to the research 

questions. The findings of this study shed some light on the extent and development of 

preservice teachers’ understanding of school mathematics. Preservice teachers' content 

knowledge was inadequate for trigonometry because they were not properly taught when 

they were learners themselves and teacher education programmes scarcely address high 

school mathematics concepts. Their pedagogical content knowledge competency was 

also limited mainly due to weak content knowledge and over-reliance on the traditional 

way of instruction. There was no smooth development of mathematics knowledge for 

teaching based on what preservice teachers brought to teacher education from high 

school; they were still inclined to teach the way they were taught. The undergraduate 

studies and teaching practice experiences were necessary but not enough to effectively 

empower teacher candidates with skills for their future teaching job. Some facets of their 

subject matter and pedagogical content knowledge were still inadequate, even after many 

years of undergraduate studies.  

The limitation of this study was that the content test and task-based interviews data 

sources were not based on classroom practice and mapping preservice teachers’ 

pedagogical content knowledge was not easy since it is a teacher’s personal construct. 

The study has implications on teacher education by advocating that school mathematics 

needs to get more coverage at teacher training in order to equip preservice teachers with 

necessary skills and knowledge to effectively teach high school mathematics. Exploring 

content knowledge separate from pedagogical content knowledge and comparing 

preservice and in-service teachers’ performance in mathematics knowledge for teaching 

were some of the recommendations of this study.  
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