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Prenatal nicotine exposure and maternal separation alter the α7 and α4 nicotinic 

acetylcholine receptors in mice 

General abstract of the thesis 

Maternal cigarette smoking during pregnancy has been associated with long term cognitive 

dysfunction. The harmful behavioural effects of cigarette smoking have been shown to be 

primarily due to nicotine. While the mechanism of nicotine’s harmful actions remain unclear, 

studies have shown a link to the hypothalamus–pituitary–adrenal (HPA) axis. HPA axis 

dysfunction as a consequence of exposure to perinatal stressors such as maternal separation 

results in major long-term systemic and neurological disruptions and malfunction. Using a 

mouse model we showed that prenatal nicotine exposure (PNE) resulted in 

hyperlocomotivity. There are also long-term increases of the α7 nicotinic acetylcholine 

receptor (n-AChR) expression while the α4 n-AChR expression was decreased. 

Glucocorticoid receptor (GR) expression varied in the PNE groups by brain location, while 

no changes were found in dopamine concentration in the hippocampus or striatum. 

Maternally separated animals exhibited anxiety-like behaviour in the open field test. There 

were also significant changes in the hippocampal expression of n-AChRs, specifically 

decreased α4 expression and increased α7 expression of the maternally separated animals 

suggesting a link between HPA dysfunction and cholinergic signalling. Animals exposed to 

both stress and nicotine insults however show no significant difference in α7 nAChR, GR or 

dopamine levels when compared to the control. However, α4 nAChR expression was 

significantly different in the hippocampus but not the striatum of animals who experienced 

both insults when compared to the control. This suggests that this may be due to competitive 

inhibition as a result of the link between nicotine exposure in utero and HPA axis 

dysfunction. 
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Chapter 1: Introduction 

The harmful effects of cigarette smoking during pregnancy for both the mother and foetus are 

common knowledge (England et al., 2017). However approximately 10% of women continue 

smoking during pregnancy and that number is estimated to be higher in third world countries 

(Tong et al., 2013). Maternal tobacco smoking has been established to have negative effects 

on birth weight, cognitive development and behaviour, and increases the risks of foetal 

morbidity and mortality (Wickstrom, 2007, Huizink and Mulder, 2006, Sexton and Hebel, 

1984) . While cigarettes contain up to 400 toxic ingredients, the harmful behavioural effects 

seen in cigarette smoking are considered to be primarily due to nicotine’s actions on both the 

mature and developing brain (Aoyama et al., 2016, Slotkin et al., 1990,). Prenatal nicotine 

exposure (PNE) has been linked to multiple neurodevelopmental disorders such as anxiety, 

ADHD, depression, addiction, conduct disorder and schizophrenia (Tiesler and Heinrich, 

2014, Brown et al., 2000). 

Nicotine exerts its effects via the cholinergic signalling pathway in the brain. It binds to 

acetylcholine receptors, specifically the nicotinic acetylcholine receptors (nAChR). 

Cholinergic signalling has effects on the regulation of neurogenesis, neuronal differentiation 

and migration through the other neurotransmitters, including dopamine (Bryden et al., 2016, 

Zhu et al., 2012). Therefore, nicotine exposure to the foetus results in more than just 

cholinergic dysfunction, specifically, it alters dopaminergic (DA) and other neurotransmitter 

signalling that is responsible for brain development in the foetus (Bryden et al., 2016, Zhu et 

al., 2012). Alterations of the DA system during foetal development have also been shown to 

change the responsiveness of the hypothalamus–pituitary–adrenal (HPA) axis during stress 

(Uban et al., 2013).  

Stress during critical developmental stage of the brain in early life may cause long-lasting 

alterations that result in neurological disorders such as anxiety, addiction and depression 

(Lundberg et al., 2017, Popoli et al., 2012). Stress results in increased glucocorticoids in the 

general circulation as an effect of continuous stimulation of the HPA axis from the 

hypothalamus (Turecki and Meaney, 2016). The paraventricular nucleus in the hippocampus 

secretes CRH (corticotropin releasing hormone) which stimulates the anterior pituitary to 

release Adrenocorticotropic hormone (ACTH). This promotes cortisol release from the 

adrenal cortex which binds to glucocorticoid receptors to exert its effects (Lundberg et al., 

2017, Popoli et al., 2012) . Cortisol is a steroid glucocorticoid hormone in humans with the 
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equivalent in rodents being corticosterone (Kanatsou et al., 2016). Animals exposed to 

developmental stress, such as maternal separation, show altered neurobehavioural effects 

such as anxiety-like behaviour and are more prone to addiction (Kanatsou et al., 2016). 

Exposure of an offspring to maternal separation results in excessively increased ACTH and 

corticosterone levels causing anxiety-like behaviour as well as cognitive impairment and 

structural changes in neuronal dendrites and spines in the hippocampus and prefrontal regions 

of the brain involved in emotion and behaviour control (Kanatsou et al., 2016). 

Conversely, nAChRs themselves have also shown involvement in the stress response in the 

mature brain. A non-selective nAChR antagonist, mecamylamine, prevents CRH-induced 

rises in plasma corticosterone (Okada et al., 2008) and nicotine-induced increases in urinary 

corticosterone (Loomis and Gilmour, 2010). However, it remains unknown which types of 

nAChRs and how their location within the brain controls this process (Holgate and Bartlett, 

2015). The α4 nAChR subunit plays a prominent role in alcohol consumption driven by stress 

and genetic studies in humans have pointed to mutations in gene encoding the α4 subunit 

being responsible for an increased susceptibility to depression (Reuter et al., 2012). A 

developmental stressor in the form of prenatal stress has also been shown to alter both α4β2 

and α7 nAChR expression in the hippocampus (Baier et al., 2015, Schulz et al., 2013). 

Therefore, one of the possible deleterious effects of PNE is a dysregulation of the foetal 

HPA-axis (Huizink et al., 2004). Glucocorticoid receptors (GR) control the organism’s 

response to stress and control the programming of the HPA axis (Slone and Redei, 2002). It 

has been shown that PNE results in foetal rats being over-exposed to maternal GCs, which 

can inhibit the development of the foetal HPA axis (Zhang et al., 2014). The expression level 

of foetal GR was increased due to PNE while the activity of the foetal HPA axis was 

inhibited (Xu et al., 2012, Chen et al., 2007). 

Multiple animal models of developmental nicotine exposure exist, however it is essential to 

consider the administration route and dose of nicotine consumed (Alkam et al., 2013). 

Injections of nicotine at doses mimicking human consumption induce maternal stress and 

high plasma concentrations of nicotine immediately post injection (Slotkin et al., 1987). 

These transient elevated concentrations of nicotine cause hypoxia in the foetus (Slotkin et al., 

1987). The implantation of a mini-osmotic pump, while getting rid of plasma concentration 

differences, changes nicotine concentration in plasma during non-active parts of the day and 

adds a stress. 
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Nicotine in the drinking water eliminates the variables of stress and hypoxia and mimics the 

periodic consumption of nicotine in smoking during active hours of the day by the general 

human population (Alkam et al., 2013). This model also allows the animal to have three 

weeks of prior consumption to nicotine for them to acclimatise to its taste. It also mimics the 

maternal plasma concentrations of nicotine seen in human maternal smoking prior to 

pregnancy i.e. women who smoke, are trying nicotine replacement therapy or are exposed to 

second hand smoke during pregnancy do not begin exposure when they fall pregnant (Alkam 

et al., 2013). The exact timing of when nicotine exposure begins to alter development has 

also not been fully clarified therefore making maternal nicotine plasma concentration an 

important variable. 

1.1 Prenatal nicotine exposure (PNE) 

Nicotine acts as an exogenous agonist of Ach, with the ability to bind to nAChRs. These 

receptors are pentameric ligand-gate cation channels consisting of homomeric or heteromeric 

subunit combinations, and are widely present in the mature and developing nervous system. 

The agonism of nAChRs is extended by nicotine in comparison to ACh as there are 

differences in concentrations and clearance mechanisms between the two compounds (Tiesler 

and Heinrich, 2014, Moylan et al., 2013). Overstimulation of nAChRs by nicotine may have 

varied developmental influences that are dependent on the pharmacological properties and 

localisation of the receptors. Nicotine has been known to cross the placental barrier, 

concentrate in foetal blood and amniotic fluid, and is present in breast milk when taken by 

pregnant women (Archer et al., 2014). Nicotine is usually present in high concentrations in 

utero which consequentially allows enhanced activation of nAChRs, allowing modifiable 

effects such as receptor desensitisation (Moylan et al., 2013). As neurotransmitters act as 

trophic factors and play a role in both the architectural and cellular development within the 

developing central nervous system, activation of their receptors exert different effects than it 

would in a fully developed nervous system (Wickstrom, 2007). It has been suggested that 

through its receptors, specifically nAChRs, ACh plays a role in brain maturation in both 

foetuses and infants up to adolescence (Tiesler and Heinrich, 2014).  

Nicotinic receptors are considered neuroprotective particularly in circumstances contesting 

neuronal survival (Winzer-Serhan, 2007), the heteromeric α4/β2 nAChR functions to increase 

neuronal survival. While the homomeric α7 receptor can stimulate the increase of cell death 

in developing neurons. As nAChR are area specific in the foetal brain, the particular effects 
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could result in decreased or increased neuronal vulnerability depending on the subtype 

expression (Winzer-Serhan, 2007). Nicotine could therefore have neurotoxic effects, to which 

immature neurons are particularly vulnerable. 

Nicotine has an additive effect of alteration of neurotransmitters and their systems, possibly 

via a modulatory effect of presynaptic nAChR (Figure 1). Studies have shown elevated 

presynaptic release of ACh, DA, glutamate and GABA (Tiesler and Heinrich, 2014). 

Receptor mediated signalling pathways have similarly been shown to be altered 

postsynaptically. This cellular development disruption, by means of neurotransmission, 

would likely further alter synaptic function (Tiesler and Heinrich, 2014). Catecholamines 

have exhibited this synaptic hypoactivity in the postnatal period and into adolescence (Chen 

et al., 2017). Consequently, as a result of both neurotransmitter dysfunction and 

developmental disruption, nicotine exposure during the developing period has been shown to 

elicit long lasting abnormal behaviours such as impairment of emotion, cognitive function, 

attention, anxiety and hyperlocomotion (Tiesler and Heinrich, 2014). 

 

Figure 1: Cholinergic signalling altering the dopaminergic system via glutamatergic and 

GABA-ergic neurons (Adapted from Markou (2008)) 

1.2 Stress 

Stress can be defined as exposure to any environmental condition that disturbs the 

homeostasis of an organism (Kagias et al., 2012, Charmandari et al., 2005). This exposure 

stimulates the brain to initiate a chain of adaptive physiological responses that results in the 
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release of neurotransmitters, peptides, and hormones throughout the body as the homeostatic 

control of stressful situations (Joëls and Baram, 2009). Early life stress exposure has been 

shown to be a contributing factor in cognitive impairment (Maccari and Morley-Fletcher, 

2007; Ruiz and Avant, 2005) . The period of the stress experience is also of significance as a 

determining factor both structurally and functionally in the severity of cognitive impairment.  

1.2.1 Postnatal stress exposure 

Postnatal or postpartum stress is exposure of an infant to stressful or adverse life events after 

birth, which can lead to a number of neurological and behavioural disorders such as learning 

deficits, ADHD and anxiety disorders (Zalosnik et al., 2014). Exposure to postnatal stress 

results in increased glucocorticoids in the general circulation as an effect of continuous 

stimulation of the HPA axis from the hypothalamus (Popoli et al., 2012).  

Stressful experiences during the developmental stage of the brain in early life can induce 

numerous changes in the HPA axis, neurotransmitter and neurotrophin levels (Zalosnik et al., 

2014). This causes long-lasting alterations in structure and function of the hippocampus as 

well as synaptic plasticity resulting in deficits of learning and memory in an offspring 

(Lupien et al., 2009).  

Immediately after birth, offspring have elevated resting corticosterone levels which 

progressively decline and remain low from postnatal day 4 (P4) until P14 which is called the 

stress-hyporesponsive period (Mabandla and Russell, 2010, Meaney and Aitken, 1985). The 

period is characterised by low circulating corticosterone levels due to the insensitivity of 

adrenal glands to the low levels of circulating ACTH and a low glucocorticoid receptor 

concentration in the hippocampus as well as the inability of mild stressors to induce a 

corticosterone response (Mabandla and Russell, 2010, Schmidt, 2010,). The stress-

hyporesponsive period is critical in protecting the developing brain from the impaired neural 

and behavioural development that accompanies excessively high glucocorticoid levels  

(Sapolsky and Meaney, 1986). Offspring exposed to postnatal stress in the form of maternal 

separation results in markedly increased ACTH and corticosterone levels causing anxiety-like 

behaviour (Daniels et al., 2004). This increase also results in cognitive impairment and 

structural changes in neuronal dendrites and spines in the striatum which is involved in 

emotion, behaviour control and movement (Zalosnik et al., 2014, Aisa et al., 2009, Matthews 

et al., 1996) . 
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1.3 Effect of nicotine on HPA axis 

Studies conducted in rats illustrate the relationship as nicotine and smoking stimulate the 

HPA axis and continue via a central mechanism stimulating CRH which results in the release 

of ACTH from the anterior pituitary (Tweed et al., 2012). Smoking cigarettes containing 

higher nicotine content also leads to increased peak nicotine levels followed by an increase of 

HPA axis hormones (ACTH and cortisol). 

Interestingly, the use of nicotine replacement reduced affective withdrawal symptoms in 

dependent smokers who recently quit (Tweed et al., 2012). And dependent smokers who 

report that smoking helps cope with stress found that smoking cessation is accompanied with 

reduction of stress (Tweed et al., 2012). Wong et al. (2014) also found decreased levels of 

cortisol in regular smokers that abstained from smoking. Therefore, despite the acute effects 

smoking may have on perceived stress, it appears the long-term effect of smoking may 

worsen stress levels (Hajek et al., 2010). This elevated stress in smokers, reflects a 

dysregulated HPA axis. 

1.3.1 Prenatal Nicotine Exposure and HPA Axis 

One possible mechanism that PNE could harm development is a dysregulation of the HPA-

axis (Huizink and Mulder, 2006). The characteristics and specific mechanisms regarding the 

effects on the HPA axis during different periods and the long-term detrimental effects have 

not been fully elucidated (Zhang et al., 2014). However, GC and their receptors are the final 

effectors of the HPA axis and participate in the control of whole body homeostasis and the 

organism’s response to stress as well as the programming of the HPA axis (Joëls and Baram, 

2009). 

As such, PNE has resulted in foetal rats being over-exposed to maternal GCs, which can 

inhibit the development of the foetal HPA axis (Zhang et al., 2014). It has also been indicated 

that the dysfunction of the HPA axis developmentally is caused by GCs along with alterations 

of GCs receptor density in regions including the prefrontal cortex and hippocampus. It has 

also been demonstrated that prenatal nicotine exposure resulted in over-exposure to maternal 

GC, and the expression levels of foetal hippocampal 11-hydroxysteroid dehydrogenase-1 (11-

HSD-1) and glucocorticoid receptor (GR) were increased while the activity of the foetal HPA 

axis was inhibited (Figure 2) (Liu et al., 2012, Xu et al., 2012,Chen et al., 2007). 
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Furthermore, increased stress-induced GC release has been shown to stimulate the dopamine 

pathway (Zhang et al., 2014). 

 

 

Figure 2: Nicotine results in overexposure of the foetus to maternal glucocorticoids (Adapted 

from Zhang et al. (2014)) 

1.4 Stress and dopamine 

Although cortisol acts at GR and mineralocorticoid receptors (MR), it has been hypothesised 

that GC/GR could affect the synthesis and metabolism of DA and NE which are systems that 

are disturbed by PNE (Chen et al., 2017). Previous studies suggested that GC/GR could affect 

not only the synthesis and metabolism of DA and NE but also the function of DA system 

(Chen et al., 2017).  

To further illustrate the relationship, Chen et al. (2017) showed a GR agonist can reduce the 

expression of dopamine transporter (DAT) in the brain of ADHD rats, while the GR inhibitor 

did the opposite. The GR agonist also led to the levels of DA and NE increasing. It has been 

shown that the activated GR bounded to glucocorticoid response element (GRE) affects the 

production and survival of DA neurons and regulates the activity and secretion of DA which 

disrupts the DA system’s function to maintain the normal functioning of the body (Yang et 

al., 2007). 
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With regard to the MR receptor, de Oliviera et al. (2017) recently showed that the ventral 

tegmental area (VTA) upregulates the dopaminergic system. This points to regional specific 

actions of the HPA receptors being influenced and further altering the DA systems, 

summarised by Figure 3. 

 

 

Figure 3: Relationship between nicotine and HPA axis via the dopaminergic system (Adapted 

from Wand (2008)) 

 

While there have been many studies exploring the effects of PNE on the HPA axis, the results 

have not yet fully elucidated the relationship. Additionally, many studies have explored the 

effect of stress exposure in adulthood on nAChRs, but few have looked at developmental 

stress.  

1.5 Aims of the present study: 

Our study aims to further elucidate the relationship between:  

i. Early stress exposure, in the form of maternal separation, and the cholinergic system 
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ii. a double insult induced by the prenatal nicotinic exposure and a subsequent exposure 

to maternal separation in the brain. Specifically, to understand how this double insult 

may affect the nicotinic and glucocorticoid receptors 
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Chapter 1 reviewed the literature regarding the cholinergic system and perinatal stressors and 

how these affects are long lasting and affect behaviour later in life. Chapter 2 is a study 

investigating the effect of postnatal stress in the form of maternal separation on the receptors 

of the cholinergic system. 

Chapter 2 has been submitted to ‘Behavioural and Brain Functions’ and uses the Vancouver 

style of formatting.  
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Early postnatal stress exposure alters nicotinic acetylcholine receptor expression in the 

hippocampus leading to anxiety-like behaviour later in life 

Abstract 

Exposure to early developmental stressors have been shown to lead to neurobehavioural 

disorders such as depression and anxiety as a consequence of long term hypothalamus–

pituitary–adrenal (HPA) axis dysfunction. This dysfunction often leads to major systemic and 

neurological malfunctions and disruptions of neurotransmitter signalling pathways such as 

the cholinergic system. Disruption of cholinergic innervation and receptors has been linked to 

cognitive impairment, and often plays a role in both depression and anxiety disorders. While 

the effect of prenatal stressors on the cholinergic receptors has been studied, the effect of 

postnatal stress has not. Using a mouse model of maternal separation, a model of postnatal 

stress, we assessed anxiety-like behaviour in the elevated plus maze and the open field 

apparatus. We also measured hippocampal expression of the nicotinic acetylcholine receptors 

(n-AChRs), α7 and α4. Glucocorticoid receptor expression and dopamine concentration were 

also measured. Exposure to maternal seperation resulted in increased anxiety-like behaviour 

in both the elevated plus maze and open field test. The expression of α7 nicotinic 

acetylcholine receptors (n-AChRs) was increased in the maternally separated group while the 

α4 n-AChRs was decreased. No changes were observed in glucocorticoid receptor and 

dopamine concentration in the groups. The result suggests a long term connection between 

HPA axis and cholinergic signalling as well as species specific responses to stress. These 

receptors have never been observed before in postnatal stress exposure and supports further 

research into cholinergic networks in relations to both anxiety and depressive disorders as 

well as developmental cognitive functioning. 

Key words: postnatal stress, maternal separation, n-AChR, dopamine, glucocorticoid 

receptors, HPA axis  
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1. Introduction 

Early life stress exposure has been shown to be a contributing factor in cognitive impairment 

(1, 2). Perinatal stress is exposure of the foetus or infant to stressful or adverse life events 

before or after birth and can lead to a number of neurological and behavioural disorders such 

as anxiety disorders, learning deficits, schizophrenia and depression (3). The aetiology of 

these disorders is also linked to a dysfunction in the cholinergic system, specifically the 

nicotinic acetylcholine receptors (n-AChR) (4). The cholinergic network in the central 

nervous system modulates plasticity, neuroprotection and neurodegeneration (5).  

The most abundant n-AChRs in the brain are the α7 n-AChR and α4β2 n-AChR subtypes. 

Loss of cholinergic innervation and n-AChRs is a normal result of aging and has been widely 

linked to the development of cognitive impairments (6). It has been shown that hippocampal 

concentration of the acetylcholine precursor, choline, increases with corresponding 

alleviation of a patient’s depression symptoms (7). Furthermore, in animal studies, drugs 

targeting either n-AChR subtype modulate depressive-like symptoms (8, 9). In addition, 

activation of hippocampal α7 n-AChR changes anxiety-like behaviour in a social anxiety 

paradigm (10). Interestingly having both anxiogenic and anxiolytic effects depending on dose 

and route of nicotine administered (10).  

The link between developmental stressors and the n-AChRs has been studied using prenatal 

restraint stress which has shown to increase α4β2 n-AChR in the hippocampus, while the 

hippocampal α7 n-AChR increases were gender dependant (11). Baier et al. (12) found that 

α7 n-AChR was increased in the hippocampus of rats restrained prenatally. While these 

studies tested the effect of prenatal stress, the influence of postnatal stress on the n-AChRs 

remain unexplored. 

Established by a similar link in neurobehavioural disorder aetiology and strengthened by the 

results of prenatal restraint stressors on the n-AChRs, we aimed to explore whether exposure 

to postnatal stress in the form of maternal separation will change the expression of the most 

abundant n-AChRs in the hippocampus and whether this can be linked to behavioural 

changes in these mice.  
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2. Materials and methods 

2.1 Animals 

Five male and ten female C57BL/6 mice were acquired from the Biomedical Resource Centre 

(BRC) of the University of KwaZulu- Natal. The animals were housed at room temperature 

(± 22˚C) and 70 % humidity (standard BRC conditions). A 12hr light/dark cycle (lights on at 

06h00) was maintained and food and water were available ad libitum. All experimental 

procedures were approved by the Animals Ethics Research Committee of the University of 

KwaZulu-Natal in accordance with the guidelines of the National Institute of Health, USA 

(Ethics clearance number AREC/076/015D). 

2.1.1 Prenatal handling and mating 

The female mice were allowed to synchronize there oestrus cycles by placing them in pairs 

before mating commenced. 

2.1.2. Postnatal Handling 

Following birth, the litters were divided into a stressed and non-stressed groups. Birth was 

termed postnatal day 0 (PND 0) and on PND 2 the stressed group underwent maternal 

separation until PND 14. The pups stayed in the home cage until PND 21 when they were 

weaned.  

2.1.3. Maternal separation 

The dams were removed from their pups and taken to a separate room for 3 hours once a day 

from 09h00 to 12h00. 

2.2. Grouping and study design 

2.2.1 Grouping 

Sixteen C57BL/6 male mice were used for this study and were grouped (n=8) as follows: 

Group one: control not stressed (W); Group 2: antenatal stress in the form of maternal 

separation (S). 

2.2.2. Study design 
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After the animals were obtained, the female mice were allowed to synchronise their oestrus 

cycle before a male was placed in the cage for mating. After birth, the pups were divided into 

stressed and non-stressed groups. Those that were stressed were separated from their dams as 

described above. After weaning on PND 21, only males were kept for this study.Following 

weaning, mice were housed eight per cage and had access to food and water ad libitum. On 

PND 35 the elevated plus maze test was carried out. This was followed three weeks later 

(PND 58) by assessment using the open field after which the animals were sacrificed on PND 

59. 

2.3. Behavioural tests 

2.3.1. Elevated plus maze 

The elevated plus maze is used to measure anxiety-like as well as locomotor activity (Elliot, 

Faraday 2006). It involves placing the animal in a cross shaped apparatus, with two open and 

two closed arms, for five minutes. The arms’ measurements are width:  10 cm, length: 50 cm, 

height: 30 cm, elevation height from floor: 55 cm. The animal’s aversion to exploration 

(anxiety-like behaviour) and movement are measured by counting arm entries and the amount 

of time spent in the closed arm.  

2.3.2. Open field test 

The open field apparatus was used to further assess the activity and exploratory behaviour of 

the animals. Each animal was placed in a 40× 60 × 50 cm arena,  

which had 12 identical rectangular grids. The total time spent in the inner zone of the field 

was recorded for a period of 5 minutes. Both behavioural tests were video recorded. 

2.4. Decapitation 

A day following the open field test, the animals were sacrificed by decapitation. The striatum 

and hippocampus were dissected out for neurochemical analysis. The samples were stored in 

a biofreezer at -80°C until neurochemical analysis was performed. 

2.5. Western blot 

The western blot was used to quantify the expression of α4 n-AChR and α7 n-AChR 

expression in the hippocampus. 



17 
 

Hippocampal and striatal tissue were thawed on ice and the homogenate was prepared in a 

ratio 10% w/v for protein determination using the Bradford Reagent (Bradford, 1976). After 

measuring protein concentration, the samples were diluted with B-mercaptoethanol to the 

required amount of protein, and topped with sample buffer to have equal volume. Samples 

were then boiled at 95 ºC for 5 min and stored. 

Ten percent resolving gel and 4% stacking gel was prepared prior to loading samples for the 

western blot. Samples where then subjected to electrophoresis before being electro-

transferred to a polyvinylidene diflouride (PVDF) membrane. Phosphate-buffered saline 

(PBS) blocking buffer (Li-Cor, Nebraska, USA) was used to block the membrane for 1 hour 

after which the membrane was left overnight in blocking buffer containing the primary 

antibodies (α7 n-AChR 1:3000; α4 n-AChR 1:800, Elabscience, Johannesburg, South Africa). 

After the overnight incubation, the membrane was washed 3 times for 5 minutes using 

phosphate-buffered saline containing tween 20 (PBS-T) then left to incubate again for 1 hour 

in secondary antibody (goat anti rabbit 1:10 000; Bio-rad, Johannesburg, South Africa). This 

was followed by washing 3 more times for a further 5 minutes using PBS-T after which the 

membrane was immediately read using the Immune-star™ HRP substrate kit (Bio-Rad, 

Johannesburg, South Africa). Chemiluminescent signals were detected using the Chemi-doc 

XRS gel documentation system and analysed with quantity one software (BioRad, 

Johannesburg, South Africa). Samples were then normalised using the loading standards (β-

actin 1:5 000). 

2.6. ELISA  

Hippocampal and striatal tissue were thawed on ice and then homogenised in a solution 

containing HCl (0.01 N, Sigma, South Africa) and 1mM EDTA (Sigma, South Africa) 

solution using a sonicator. After tissue preparation, the concentration of DA and GR in 

hippocampal tissue was evaluated using Dopamine (eLabScience, Texas, USA) and 

Glucocorticoid receptor (eLabScience, Texas, USA) ELISA kits according to the 

manufacturer’s instructions. 

2.6.1. Glucocorticoid receptors 

Standard or sample (50 μL) was loaded in duplicate to each well of the 96 well ELISA plate. 

The liquid was then removed before adding Biotinylated Detection Ab (100 μL). This was 

followed by incubation for 1 hour at 37℃. The plate was then aspirated and washed 3 times 
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in wash buffer. HRP Conjugate (100 μL) was added before further incubation for 30 minutes 

at 37℃. The plate was then aspirated and washed 5 times in wash buffer. Substrate Reagent 

(90 μL) was added before incubation for 15 minutes at 37℃. Lastly, Stop Solution (50 μL) 

was added before using a plate reader (Optical Density at 450 nm) immediately thereafter. 

2.6.2. Dopamine receptors 

The instructions for the Dopamine ELISA kit were as follows. Firstly, 50 μL of standard or 

sample was added in duplicate to each well of the 96 well ELISA plate. Immediately after, 50 

μL Biotinylated Detection Ab was added to each well. This was followed by incubation for 

45 minutes at 37℃. The plate was then aspirated and washed 3 times in wash buffer. HRP 

Conjugate (100 μL) was then added to each well before further incubation for 30 min at 37℃. 

The plate was then aspirated and washed 5 times in wash buffer. A further 90 μL of Substrate 

Reagent was added before incubation for 15 min at 37℃. Lastly, 50 μL of Stop Solution was 

added before using a plate reader (OD at 450 nm) immediately thereafter.  

2.7. Statistical Analysis  

Data was analysed using the software program GraphPad Prism 5. The values were expressed 

as mean ± SEM. After normality was tested, unpaired t-tests with Welch’s correction were 

used. A probability of p<0.050 was considered statistically significant. 
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3. Results 

3.1 Time spent and activity in the closed arm of the elevated plus maze (EPM) 

The time spent and number of entries into the closed arms by the non-stresssed (W) and 

maternally separated (S) groups are depicted in Figure 1. Maternally separated animals spent 

significantly more time in the closed arm of the EPM *(W V S, p=0.0430, Figure 1A). 

Figure 1B showed no significant differences in number of entries into the closed arms 

between the groups. 

 

 

Figure 1(A). Time spent in the closed arm of the elevated plus maze and (B) number of 

entries into the closed arms by non-stressed (W) and stressed (S) animals (n=8/group). All 

data presented as mean ± SEM.*p<0.05.  

3.2. Effect of maternal separation on the activity in the open field apparatus 

Figure 2 depicts the number of lines crossed and time spent in the inner zone by the two 

groups. Figure 2A showed no significant differences in number of lines crossed in the open 

field between the groups. 

Animals exposed to stress preferred the outer zone than the inner zone when compared to the 

control group *(W V S, p<0.0001, Figure 2B). 
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Figure 2(A). Time spent in the closed arm of the elevated plus maze and (B) number of 

entries into the inner zone by non-stressed (W) and stressed (S) animals (n=8/group). All data 

presented as mean ± SEM.*p<0.05.  

3.3 Hippocampal and striatal expression of α7 nicotinic-Acetylcholine Receptor (n-AChR) 

Figure 3 shows the effects of maternal separation on the expression of α7 n-AChR in the 

hippocampus and striatum of stressed and non-stressed mice. The hippocampal expression of 

α7 n-AChR was increased in the stressed group *(W V S, p<0.05, Figure 3A). 

Figure 3B shows no significant differences in expression were found in the striatum.  

 

Figure 3. (A) Hippocampal and (B) striatal expression of α7 n-AChR in non-stressed (W) and 

stressed (S) animals. (n=4/group). All data presented as mean ± SEM. *p<0.05. Unpaired t-

test with Welch’s correction. 
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3.4 Hippocampal and striatal expression of α4 nicotinic-Acetylcholine Receptor (n-AChR) 

Figure 4 illustrates the changes in hippocampal expression of α4 n-AChR following maternal 

separation. The expression of α4 n-AChR was decreased in the stressed group *(W V S, 

p=0.0081, Figure 4A). 

α4 n-AChR expression was not significantly different in the striatum (figure 4b). 

 

 

 

 

 

Figure 4. (A) Hippocampal and (B) striatal expression of α4 n-AChR in non-stressed (W) and 

stressed (S) animals. (n=4/group). All data presented as mean ± SEM. *p<0.05. Unpaired t-

test with Welch’s correction. 

3.5. Glucocorticoid receptor concentration in the hippocampus and striatum 

The changes in glucocorticoid receptor concentration were not affected by maternal 

separation (Figure 5a and b).  
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Figure 5. (A) Hippocampal and (B) striatal concentration of glucocorticoid receptor in non-

stressed (W) and stressed (S) animals. (n=4/group). All data presented as mean ± SEM. 

Unpaired t-test with Welch’s correction. 

 

3.6. Hippocampal and striatal dopamine concentration 

The changes in dopamine concentration were not affected by maternal separation (Figure 6a 

and b).  

 

Figure 6. (A) Hippocampal and (B) striatal concentration of dopamine in non-stressed (W) 

and stressed (S) animals. (n=4/group). All data presented as mean ± SEM. Unpaired t-test 

with Welch’s correction. 
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Discussion 

Exposure to early life maternal separation has been shown to result in the development of 

anxiety-like and depression-like behaviour later in life (13-15). While prenatal stress models 

have looked at the cholinergic receptors, the effects of postnatal stress exposure has not been 

catalogued. Our study aimed to assess the effects of maternal separation (MS) on anxiety-like 

behaviour in mice and assess the involvement of cholinergic receptors (α7 n-AChR and α4 n-

AChR) as well as glucocorticoid receptor and dopamine concentration in the hippocampus 

which showed no significant changes. 

As expected, our results showed that maternally separated (MS) animals preferred spending 

time in the closed arms of the elevated plus maze suggesting anxiety-like behaviour (16, 17). 

However, there was no significant difference in the number of entries into the closed arms 

between the two groups. 

Similarly in the open field test, the MS group generally avoided spending time in the inner 

zone. It has been suggested that avoidance of the inner zone is a sign of fearfulness and 

anxiety-like behaviour (18). Immediately after birth, the offspring have elevated resting 

corticosterone concentration which progressively declines and remains low between postnatal 

day 4 (P4) and P14; this period is called the stress-hyporesponsive period (19, 20). Stressful 

experiences during neuronal pathway development in early life can induce changes in the 

HPA axis as well as in the concentration of neurotransmitters and neurotrophin factors (3). 

This causes long-lasting alterations in the structure and function of the hippocampus as well 

as synaptic plasticity resulting in deficits in learning and memory in the offspring (21). 

The expression of the α7 n-AChR in the hippocampus was increased in the MS group. This is 

a novel finding as studies have only focused on cholinergic receptor expression following 

exposure to prenatal stress where it has been shown that α7 receptor expression in the 

hippocampus was reduced in male but not female rats (12). In our study, we used male mice. 

It has been suggested that exposure to MS may lead to network malformation that could 

increase acetylcholinesterase (AChE) activity which may then affect receptor expression 

(22). Benetti, Mello (23) found that maternal deprivation resulted in increased AChE activity 

with resultant neurobehavioural deficits. Administration of AChE inhibitors resulted in the 

reversal of the neurobehavioural deficits. The α7 n-AChR can stimulate increase in cell death 

and points to a mechanism by which stress can use n-AChRs in effecting neurodegeneration 

(10). The mechanism could either be due to oxidative stress or excitotoxicity (24). Increased 
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levels of the receptor have been linked to increased oxidative stress following chemical 

exposure specifically in the hippocampus (24). 

On the other hand, α4 n-AChR expression was decreased in the stressed animals. It has been 

previously shown that exposure to prenatal stress leads to an increase α4 n-AChR expression 

in rats while the changes in the α7 receptor are gender dependant, impairing α7 expression in 

male rats (12). Our results show that in the MS group, an increase in the α7 n-AChR 

expression was linked to a decrease in α4 n-AChR. The α4 n-AChR expression result is 

consistent with Schulz et al. (11) who hypothesised that an increase in α4 expression 

contributes to anxiety and depression-like behaviour. 

While there is an MS effect on cholinergic receptor expression, we did not find changes in 

glucocorticoid receptor (GR) concentration in both the hippocampus and striatum. Studies 

have shown that developmental stressors lead to a decrease in hippocampal GR concentration 

(21, 25). This decrease has been linked to a decrease in GR messenger RNA (26). The 

C57BL/6 mouse strain has had inconsistent results in multiple studies of neurobehavioural 

disorders in comparison to rat models (27). It has been suggested that conventional strategies 

have to be altered for anxiety-like behaviour to be displayed in mice due to the literature 

being largely rat based (17). Veenema, Bredewold (28) also noted that in a maternal 

separation model, aggressive behaviour of the C57BL/6 mouse conflicted with the behaviour 

and hypothalamic vasopressin and oxytocin levels expected in terms of the literature. Paylor, 

Tracy (29) found that behaviour was species dependant even between mice when comparing 

the DBA/2 and C57BL/6 strains.  

Dopamine concentration was not significantly different between the groups in the 

hippocampus and striatum. It has been shown that in early developmental stress models, there 

needs to be a further insult for there to be any changes in dopamine concentration (30). 

Therefore we suggest that in our study, there needed to be a further insult/stressor to the brain 

for significant changes to be observed in DA neurotransmission.  

In conclusion, our results show that MS results in long term changes to the α7 and α4 

nicotinic acetylcholine receptors in mice. This supports the hypothesis that HPA axis 

disturbances results in dysfunction of the cholinergic system, specifically the nAChRs. These 

receptors have never been observed before in postnatal stress exposure and supports 

cholinergic network malformation in relation to both anxiety and depressive disorders and 
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possibly developmental cognitive functioning. Our results also point to species and strain 

specific responses that further the understanding of the response to stress. 
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Chapter 2 found changes of the cholinergic receptors in a maternal separation model with 

increased anxiety and depression-like behaviour. Chapter 3 investigates in what way a double 

insult of prenatal nicotine exposure and maternal separation alters the systems of stress and 

neurotransmission to determine the outcomes behaviour later in life. Chapter 3 will be 

submitted to a journal once chapter 2 has been accepted. 
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Abstract  

Maternal smoking during pregnancy is associated with long term cognitive dysfunction. 

Harmful behavioural effects of smoking have been shown to be primarily due to exposure to 

nicotine. While the mechanism of nicotine’s harmful actions remain unclear, studies have 

shown a link to the hypothalamus–pituitary–adrenal (HPA) axis. HPA axis dysfunction due 

to exposure to perinatal stressors such as maternal separation (MS) results in major long-term 

systemic and neurological disruptions and malfunction. Using a mouse model we showed that 

prenatal exposure to nicotine (PNE) resulted in hyperlocomotivity, chronic increase in 

hippocampal α7 nicotinic acetylcholine receptor (n-AChR) expression and a decrease in α4 n-

AChR expression. Glucocorticoid receptor (GR) expression varied in the PNE groups by 

brain location while no changes were found in dopamine concentration in the hippocampus or 

striatum. Maternal separation resulted in anxiety-like behaviour in the open field test, 

decreased α4 n-AChR and increased α7 expression in the hippocampus, suggesting a link 

between HPA dysfunction and cholinergic signalling. Exposure to both stress and nicotine 

attenuated changes in hippocampal α7 n-AChR and GR expression but resulted in elevated 

dopamine concentration. In this study, we were able to show that the PNE effects on nicotinic 

receptors were similar to those found in MS animals which have been shown to be due to 

HPA dysregulation. Therefore, our results suggest that cognitive dysfunction following PNE 

may be due to dysregulation in the cholinergic system that affects expression of α4 and α7 n-

AChR and this effect may affect HPA axis function.  

Key words: prenatal nicotine exposure, maternal separation, nicotinic acetylcholine receptors, 

glucocorticoid receptors, HPA axis, hippocampus 
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Introduction 

The harmful effects of cigarette smoking during pregnancy for both the mother and foetus are 

common knowledge (England et al., 2017). Approximately 10% of women continue smoking 

during pregnancy and that number is estimated to be higher in third world countries (Tong et 

al., 2013). Maternal tobacco smoking has been shown to have negative effects on birth 

weight, cognitive development and behaviour as well as increased risk in foetal morbidity 

and mortality (Wickstrom, 2007, Huizink and Mulder, 2006, Sexton and Hebel, 1984).While 

cigarettes contain up to 400 toxic ingredients, the harmful behavioural effects associated with 

cigarette smoking are considered to be primarily due to the effect of nicotine in both the 

mature and developing brain (Aoyama et al., 2016, Slotkin et al., 1990). Prenatal nicotine 

exposure (PNE) has been linked to multiple neurodevelopmental disorders such as anxiety, 

ADHD, depression, addiction, conduct disorder and schizophrenia (Tiesler and Heinrich, 

2014, Brown et al., 2000). While there are considerable variations in tobacco use in countries 

around the world, nicotine’s effect is likely the highest adjustable neuropharmacological 

exposure to the foetus and an increasingly crucial issue (Aoyama et al., 2016, Niemelä et al., 

2016, Wickstrom, 2007).  

Nicotine exerts its effects via the cholinergic signalling pathway in the brain. It binds to 

acetylcholine receptors, specifically the nicotinic acetylcholine receptors (n-AChR) (Bryden 

et al., 2016). Cholinergic signalling has effects on the regulation of neurogenesis, neuronal 

differentiation and migration which also involves neurotransmitters such as dopamine 

(Bryden et al., 2016, Zhu et al., 2012). Therefore, foetal exposure to nicotine results in more 

than just cholinergic dysfunction as it also alters dopaminergic and other neurotransmitter 

signalling involved in brain development (Bryden et al., 2016, Zhu et al., 2012). Alterations 

of the dopaminergic system during foetal development have also been shown to change the 

responsiveness of the hypothalamus–pituitary–adrenal (HPA) axis during stress (Uban et al., 

2013).  

Stress during the critical stage of neuronal pathway formation in the brain in early life may 

cause long-lasting alterations that result in neurological disorders such as anxiety, addiction 

and depression among others (Lundberg et al., 2017, Popoli et al., 2012). Stress results in 

increased glucocorticoid concentration in circulation as an effect of continuous stimulation of 

the hypothalamo-pituitary-adrenal (HPA) axis (Turecki and Meaney, 2016). Animals exposed 

to developmental stress such as maternal separation, show altered neurobehavioural effects 
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such as anxiety-like behaviour and are more prone to addiction (Kanatsou et al., 2016). 

Exposure of an offspring to maternal separation results in excessively increased 

corticosterone concentration causing anxiety-like behaviour as well as cognitive impairment 

and structural changes in neuronal dendrites and spines in the hippocampus and prefrontal 

regions of the brain involved in emotion and behaviour control (Kanatsou et al., 2016). 

Conversely, n-AChRs have also shown involvement in the stress response in the mature brain 

(Holgate and Bartlett, 2015). However, it remains unknown which types of n-AChRs and 

how their location within the brain controls this process (Holgate and Bartlett, 2015). The α4 

n-AChR subunit has been shown to play a role in stress driven addiction (Kim et al., 2004) 

and depression (Reuter et al., 2012). A developmental stressor in the form of prenatal stress 

has also been shown to alter both α4β2 and α7 nAChR expression in the hippocampus (Baier 

et al., 2015, Schulz et al., 2013). 

Therefore, one of the possible deleterious effects of prenatal nicotine exposure (PNE) is a 

dysregulation of the foetal HPA-axis (Huizink et al., 2004). Glucocorticoid receptors are the 

final effectors of the HPA axis and participate in the control of whole body homeostasis and 

the organism’s response to stress as well as the programming of the HPA axis (Slone and 

Redei, 2002). It has been shown that PNE results the over-exposure of foetal rats to maternal 

glucocorticoids, which can inhibit the development of the foetal HPA axis (Zhang et al., 

2014). It has also been indicated that the dysfunction of the HPA axis developmentally is 

caused by the high concentration of glucocorticoids as well as alterations in glucocorticoid 

receptor density in regions of the brain such as the prefrontal cortex, hippocampus, amygdala 

and pituitary (Zhang et al., 2014). These areas are important for the negative feedback 

regulation and activation of the HPA axis. The expression of foetal hippocampal 11-

hydroxysteroid dehydrogenase-1 (11-HSD-1) and glucocorticoid receptors (GR) have been 

shown to be increased following PNE while the activity of the foetal HPA axis is inhibited ( 

Chen et al., 2017, Xu et al., 2012). 

Multiple animal models of developmental nicotine exposure exist with the two most common 

being nicotine administration via injection and implantation of mini-osmotic pumps. These 

models have resulted in functional changes of the n-AChR, cholinergic, dopaminergic and 

serotonergic signalling disruptions and increased behavioural stimulation (Muneoka et al., 

1997, Olale et al., 1997, Ksir et al., 1987).  
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Nicotine in drinking water eliminates the stress and hypoxia variables associated with the 

models above and mimics the periodic consumption of nicotine through smoking by the 

general human population (Alkam et al., 2013).  

While there have been many studies exploring the effects of PNE on the HPA axis, the results 

have not yet fully elucidated the relationship. Additionally, many studies have explored the 

effect of stress exposure in adulthood on nAChRs, but few have looked at developmental 

stress.  

Therefore, our aim was to further elucidate the mechanism behind a double insult induced by 

prenatal nicotinic exposure and a subsequent exposure to maternal separation in the brain. We 

aimed to investigate the effect this double insult may have on nicotinic and glucocorticoid 

receptor expression in the hippocampus as well as effects on dopamine concentration in the 

hippocampus and striatum. 
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2. Materials and methods 

2.1 Animals 

Ten female and five male C57BL/6 mice were obtained from the Biomedical Resource 

Centre (BRC) of the University of KwaZulu-Natal. The animals were housed at room 

temperature (± 22˚C) and 70 % humidity (standard BRC conditions). A 12hr light/dark cycle 

(lights on at 06h00) was maintained and food and water were available ad libitum. All 

experimental procedures were approved by the Animals Ethics Research Committee of the 

University of KwaZulu-Natal in accordance with the guidelines of the National Institute of 

Health, USA (Ethics clearance number AREC/076/015D). 

2.1.1 Prenatal handling and mating 

Three weeks prior to mating, female mice were divided into 2 groups: a non- nicotine and a 

nicotine exposed group. The nicotine was dissolved in the drinking water. The non-nicotine 

mice were given normal drinking water. Mating occurred 3 weeks after exposure to nicotine. 

2.1.2. Postnatal Handling 

Following birth, the litters were further subdivided into stressed and non-stressed groups. 

Birth was termed postnatal day 0 (PND 0) and on PND 2 the stressed group underwent 

maternal separation until PND 14.   

2.1.3. Maternal separation 

The dams were removed from their pups and taken to a separate room for 3 hours once a day 

from 09h00 to 12h00 until PND 14. Following exposure to the maternal separation protocol, 

the pups stayed with their dams until PND 21 when the pups were weaned. 

2.2. Grouping and study design 

2.2.1 Grouping 

Forty-eight C57BL/6 male mice were used for this study and were grouped (n=8, PER 

GROUP) as follows: Group one: control exposed to normal water and not stressed (W); 

Group 2: exposed to nicotine prenatally (N); Group 3: antenatal stress in the form of maternal 

separation and exposed to normal water (S); Group 4: prenatally exposed to nicotine and 

antenatal stress in the form of maternal separation (NS). 
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2.2.2. Study design 

After the animals were obtained, the female mice were divided into nicotine and non-nicotine 

exposed groups. The mice in the nicotine exposed group were GIVEN a dose of 0.1 mg/ml 

nicotine ((-)-Nicotine ditartrate, Alomone Labs, Jerusalem, 

Israel) dissolved in the drinking water (Zhu et al., 2012) for 3 weeks. The water for both 

groups was measured and changed every 3 days (Seckar et al., 2008). After 3 weeks of 

exposure to nicotine or water, these animals were mated with non-nicotine exposed males. 

The nicotine exposed animals continued to be exposed to nicotine in their drinking water 

throughout pregnancy. After birth of the pups, all dams were exposed to normal drinking 

water.  

The pups were then sub divided into stressed and non-stressed groups. Those in the stressed 

group were separated from their dams as described above. After weaning on PND 21, only 

males were kept for the study. On PND 35, the elevated plus maze test to measure anxiety 

and locomotivity was carried out. This was followed three-weeks later (PND 58) by an 

assessment of both anxiety and locomotivity using the open field after which the animals 

were sacrificed on PND 59. 

2.3. Behavioural tests 

2.3.1. Elevated plus maze 

The elevated plus maze assesses the animal’s state of anxiety and locomotivity (Elliott et al. 

2004). It consists of placing the animal in a plus shaped apparatus, with two open and two 

closed arms, for five minutes. The arms’ measurements are width:  10 cm, length: 50 cm, 

height: 30 cm, elevation height from floor: 55 cm. The animal’s aversion to exploration and 

activity are assessed using the entries and amount of time spent in the closed arm.  

2.3.2. Open field 

The open field was used to measure the activity and exploratory behaviour of the animals. 

The animal was placed in a 40 × 60 × 50 cm arena,  

which was divided into 12 identical rectangles with grids. Animals were video recorded and 

the number of grid lines crossed and amount of time spent in the centre of the field were 

recorded for a period of 5 min.  

Both behavioural tests were video recorded. 
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2.4. Decapitation 

A day following the behavioural tests, the animals were sacrificed by decapitation. The 

striatum and hippocampus were dissected out for neurochemical analysis. The samples were 

stored in a biofreezer at -80°C until neurochemical analysis. 

2.5. Western blot 

Hippocampal and striatal tissue were thawed on ice and homogenate was then prepared in a 

ratio 10% w/v and used for protein determination using the Bradford Reagent (Bradford, 

1976). After measuring protein concentration, the samples were diluted to the required 

amount of protein and topped with sample buffer and B-mercaptoethanol to have equal 

protein concentration and volume. Samples were then boiled at 95 ºC for 5 min and stored. 

The 10% resolving gel and 4% stacking gel WERE prepared for the western blot subsequent 

to loading samples. Samples were subjected to electrophoresis before being electro-

transferred to polyvinylidene diflouride (PVDF) membrane. The membrane then exposed for 

1 hour in phosphate-buffered saline (PBS) blocking buffer (Li-Cor). This was followed by 

exposing the membrane overnight in blocking buffer containing the primary antibodies (α7 

nAChR 1:3000; α4 nAChR 1:800, Elabscience, USA). After the overnight incubation, the 

membrane was washed 3 times for 5 minutes using PBS containing tween 20 (PBS-T) then 

incubate again for one hour with the secondary anti-body (goat anti rabbit 1:10 000; Bio-

Rad). After incubation, the membrane was washed 3 times for a further 5 minutes using PBS-

T after which it was immediately prepared using the Immune-star™ HRP substrate kit (Bio-

Rad, Johannesburg, South Africa). Chemiluminescent signals were detected using the Chemi-

doc XRS gel documentation system and analysed with quantity one software (BioRad, 

Johannesburg, South Africa). Samples were then normalised using the loading standards (β-

actin 1:5 000). 

2.6. ELISA  

Hippocampal and striatal tissue were thawed on ice and then homogenised in HCl (0.01 N), 

1mM EDTA solution using a sonicator. After tissue preparation, the concentration of DA and 

GR in the hippocampus and striatal tissue was evaluated using dopamine (eLabScience, 
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USA) and glucocorticoid receptor (eLabScience, USA) ELISA kits according to the 

manufacturer’s instructions.  

2.6.1. Glucocorticoid receptor concentration 

As per the instructions of the GR ELISA kit, 50 μL of standard or sample was added in 

duplicate to each well of the 96 well plate. The liquid was then aspirated before adding 100 

μL Biotinylated Detection Antibody. This was followed by incubation for 1 hour at 37℃. The 

plate was then aspirated and washed 3 times in wash buffer. HRP Conjugate (100 μL) was 

added before further incubation for 30 min at 37℃. Following aspiration, the plate was 

washed 5 times in wash buffer. Substrate Reagent (90 μL) was added before incubation for 

15 min at 37℃. This was followed by the addition of a Stop Solution (50 μl). The plate was 

then read using a plate reader at an optical density (OD) of wavelength 450 nm. 

2.6.2. Dopamine concentration 

The instructions for the Dopamine ELISA kit were as follows. Firstly, 50 μL of standard or 

sample was added to each well in duplicate. Immediately thereafter, Biotinylated Detection 

Antibody (50 μL) was added to each well. This was followed by incubation for 45 minutes at 

37℃. The plate was then aspirated and washed 3 times in wash buffer. HRP Conjugate (100 

μL) was added to each well before further incubation for 30 min at 37℃. The plate was then 

aspirated and washed 5 times in wash buffer. Substrate Reagent (90 μL) was added before 

incubation for 15 min at 37℃. Lastly, 50 μL of Stop Solution was added before using a plate 

reader (OD at 450 nm) immediately thereafter. 

2.7. Statistical Analysis  

Data was analysed using the software program GraphPad Prism 5. The values were expressed 

as mean ± SEM. After normality was tested, Two-way ANOVA followed by Newman-Keuls 

post-hoc test was used. A probability of p<0.05 was considered statistically significant.  
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3. Results 

3.1 Effect of prenatal nicotine exposure and maternal separation on the time spent and 

number of entries in the closed arms of the elevated plus maze (EPM) 

The time spent and number of entries into the closed arms are depicted in Figure 1. The four 

groups being assessed are: the control (W), animals exposed to nicotine prenatally (N), 

animals exposed to maternal separation (S) and those that experienced both prenatal nicotine 

and postnatal stress (NS) exposure. Exposure to a combined nicotine and stress insult, 

attenuated the stress effect on time spent in the closed arms *(S VS NS, [F(3,31) = 5.350; 

p=0.0049], Figure 1A).  

Exposure to nicotine resulted in an increase in the number of entries into the closed arms 

###(W vs N, [F(2,23) = 25.96; p<0.0001], Figure 1B). Similarly, nicotine attenuated the stress 

effect on the number of entries into the closed arms ***(S VS NS, [F(2,23) = 40.87; p<0.0001], 

Figure 1B).   

I 

 

Figure 1. Effect of prenatal nicotine exposure and maternal separation on behaviour in the 

elevated plus maze. (A) Time spent in the closed arms. (B). Number of entries into the closed 

arms (n=8/group). All data presented as mean ± SEM. *p<0.01; ***p<0.001; ###p<0.001 as 

compared to N. Two-way ANOVA followed by Newman-Keuls post hoc analysis. 

3.2. Effect of prenatal nicotine exposure and maternal separation in the open field 

Figure 2 depicts the effect of prenatal exposure to nicotine and postnatal maternal separation 

on the number of line crossings (hyperlocomotivity) and time spent in the inner zone by the 

different groups assessed in the open field. There was a nicotine effect on hyperlocomotivity 
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***(W vs N, [F(2,23) = 10.98; p=0.0005], Figure 2A) and  ###(S vs NS, [F(2,23) = 15.27; 

p<0.0001], Figure 2A).  

Figure 2B depicts the time spent in the inner zone by the different groups. The was a stress 

only effect on time spent in the inner zone #(W vs S, [F(2,23) = 38.24; p<0.0001], Figure 2B). 

We also found a nicotine effect for both nicotine groups on time spent in the inner zone ***(W 

vs N, [F(2,23) = 28.78; p<0.0001], Figure 2B) and *** (S vs NS, [F(2,23) = 117.2; p<0.0001], 

Figure 2B).  

II 

 

 

Figure 2. Effect of prenatal nicotine exposure and maternal separation on anxiety and 

locomotor behaviour in the open field test. (A) Represents the number of lines crossed. (B) 

Time spent in the inner zone. (n=8/group). All data presented as mean ± SEM. ***p<0.01; 

***p<0.001 compare to S; #p<0.001 compare to W. Two-way ANOVA followed by 

Newman-Keuls post hoc test.  

3.3 Effect of prenatal nicotine exposure and maternal separation on hippocampal and striatal 

expression of α7 nicotinic-Acetylcholine Receptor (n-AChR) 

Figure 3 shows the effects of PNE and maternal separation on the expression of α7 n-AChR 

in the hippocampus and striatum. Figure 3A illustrates hippocampal expression of α7 n-

AChR among the groups. There was both a prenatal (N) as well as a postnatal (S) stress effect 

on hippocampal α7 n-AChR expression a(W vs N, [F(2,11) =6.299; (p=0.0195)], Figure 3A) 

and #(W vs S, [F(3,14) =4.726; (p=0.0236)], Figure 3A). A combined nicotine and stress 
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exposure attenuated the effects of prenatal stress *(N vs NS, [F(3,12) =4.952; (p=0.0207)], 

Figure 3A). 

Figure 3B illustrates the striatal expression of α7 n-AChR among the groups. There was a 

nicotine effect on the expression of α7 n-AChR #(W vs N, [F(3,14) =5.417; (p=0.0137)], Figure 

3B). In the nicotine exposed animals, co-exposure with stress attenuated increase in α7 n-

AChR expression a(N vs NS, [F(3,11) =5.274; (p=0.0305)], Figure 3B).  

III 

 

Figure 3. Effect of prenatal nicotine exposure and maternal separation on the concentration 

of α7 nicotinic-Acetylcholine Receptor (n-AChR). (A) Hippocampal concentration of α7 n-

AChR. (B) Striatal concentration of α7 n-AChR. (n=4/group). All data presented as mean ± 

SEM.#p<0.05 compare to W; *p<0.05 compare to S; a p<0.05 compare to NS. Two-way 

ANOVA followed by Newman-Keuls post hoc analysis.  

W= Prenatal exposure to Water; N: Prenatal exposure to Nicotine; S= Postnatal stress 

exposure (maternal separation); NS: exposure to nicotine prenatally and maternal separation 

postnatally. 

3.4 Effect of prenatal nicotine exposure and maternal separation on hippocampal and striatal 

expression of α4 nicotinic-Acetylcholine Receptor (n-AChR)  

Figure 4 illustrates the changes in hippocampal and striatal expression of α4 n-AChR 

following exposure to PNE and maternal separation. Figure 4A illustrates hippocampal 

expression of α4 n-AChR among the groups. Exposure to prenatal as well as postnatal stress 

individually and combined had an effect on α4 n-AChR expression #(W vs N; S; NS, [F(3,15) = 

7.179; p=0.0051, Figure 4A). Figure 4B depicts the α4 n-AChR striatal expression in the 
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different groups. There was a nicotine effect on striatal α4 n-AChR #(W vs N, [F(2,11) = 4.433; 

p=0.0457], Figure 4B).  

 

 

IV 

 

Figure 4. Effect of prenatal nicotine exposure and maternal separation on the concentration 

of α4 nicotinic-Acetylcholine Receptor (n-AChR). (A) Hippocampal concentration of α4 n-

AChR. (B) Striatal concentration of α4 n-AChR. (n=4/group). All data presented as mean ± 

SEM. #p<0.05 compare to W; #p<0.05 compare to N. Two-way ANOVA followed by 

Newman-Keuls test.  

W= Prenatal exposure to Water; N: Prenatal exposure to Nicotine; S= Postnatal stress 

exposure (maternal separation); NS: exposure to nicotine prenatally and maternal separation 

postnatally. 

3.5. Effect of prenatal nicotine exposure and maternal separation on glucocorticoid receptor 

(GR) expression in the hippocampus and striatum 

The changes in GR expression due to PNE and maternal separation are shown in Figure 5. 

Figure 5A illustrates hippocampal expression of GR among the groups while figure 5B 

depicts striatal expression.   
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Figure 5. Effect of prenatal nicotine exposure and maternal separation on the concentration 

of Glucocorticoid receptor (GR). (A) Hippocampal concentration of GR. (B) Striatal 

concentration of GR. (n=4/group). All data presented as mean ± SEM. 

W= Prenatal exposure to Water; N: Prenatal exposure to Nicotine; S= Postnatal stress 

exposure (maternal separation); NS: exposure to nicotine prenatally and maternal separation 

postnatally. 

3.6. Effect of prenatal nicotine exposure and maternal separation on striatal and 

hippocampal dopamine concentration 

The differences in dopamine concentration due to PNE and maternal separation are shown in 

Figure 6. Figure 6A illustrates hippocampal dopamine concentration. Nicotine and stress co-

exposure exacerbated dopamine concentration *(N vs NS [F(2,11) = 5.675; p=0.0254], Figure 

6A).  

There were no changes in dopamine concentration in the striatum figure 6B. 
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Figure 6. Effect of prenatal nicotine exposure and maternal separation on dopamine 

concentration. (A) Hippocampal dopamine concentration. (B) Striatal dopamine 

concentration. (n=4/group). All data presented as mean ± SEM. *p<0.05 compare to S. Two-

way ANOVA followed by the Newman Keuls post hoc test.  

W= Prenatal exposure to Water; N: Prenatal exposure to Nicotine; S= Postnatal stress 

exposure (maternal separation); NS: exposure to nicotine prenatally and maternal separation 

postnatally. 

  

W N S NS
900

950

1000

1050

1100

*

A

D
o

p
a
m

in
e

 p
g

/m
l/
 m

g
 o

f 
ti

s
s
u

e

W N S NS
950

1000

1050

1100

B

D
o

p
a
m

in
e

 p
g

/m
l/
 m

g
 o

f 
ti

s
s
u

e



45 
 

Discussion 

Prenatal nicotine exposure (PNE) has been linked to multiple neurodevelopmental disorders 

such as anxiety, depression, ADHD and schizophrenia; while maternal separation (MS) has 

been shown to increase anxiety and depression-like behaviour as well as hyperactivity (Aya-

Ramos et al., 2017, Kwak et al., 2009, Tiesler and Heinrich, 2014). Our study aimed to 

investigate the effects of PNE on cholinergic receptors and whether PNE may have the same 

behavioural effects as another perinatal stressor, MS. To this effect, we assessed the effects of 

exposure to nicotine prenatally or in combination with MS, a postnatal stress, on locomotor 

activity as well as anxiety-like behaviour in mice. We further assessed the involvement of the 

nicotinic acetylcholine receptors (n-AChRs) such as the α7 n-AChR and α4 n-AChR, as well 

as glucocorticoid receptor and dopamine concentration on the behavioural changes observed.  

We found that animals exposed to NS (combined nicotine and maternal separation exposure) 

showed decreased anxiety-like behaviour as they spent less time in the closed arm. This result 

suggests that exposure to MS in these mice attenuated anxiety-like behaviour.  

The number of entries into the arms of the EPM was used as a measure of locomotor activity. 

The relative immobility displayed by MS animals was attenuated in animal exposed to both 

MS and PNE. This suggests that NS animals showed less anxiety-like behaviour. This 

decrease in anxiety-like behaviour supports previous studies that have shown a similar effect 

in both rats and mice that were exposed to nicotine in utero (Zhu et al., 2012, Tizabi et al., 

1997). Animals exposed prenatally to nicotine showed increased activity in the elevated plus 

maze. This effect has been previously reported as hyperactivity (Tizabi et al., 1997). Nicotine 

acts as a stimulant and exposure in utero has shown to result in altered neurotransmission that 

continues following birth (McCarthy et al., 2018, Pauly and Slotkin, 2008). While exposure 

to MS may have resulted in increased anxiety-like behaviour, exposure to both stress and 

nicotine attenuated this effect suggesting that the two stresses cancel each other out hence 

limiting the associated disruption in HPA axis function.  

Nicotine exposure in utero has been shown to alter the HPA axis thereby allowing for 

multiple pathways to possibly be affected by way of the disrupted cholinergic network. 

Cholinergic signalling has effects on the regulation of neurogenesis, neuronal differentiation 

and migration through other neurotransmitters, including dopamine (Bryden et al., 2016, Zhu 

et al., 2012). Therefore, foetal exposure to nicotine results in more than just cholinergic 

dysfunction, specifically, it alters dopaminergic and other neurotransmitter signalling that is 
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responsible for brain development in the foetus (Zhu et al., 2012, Bryden et al., 2016). 

Alterations of the DA system during foetal development have also been shown to change the 

responsiveness of the HPA axis during stress (Uban et al., 2013). Additional parameters 

investigating the exploratory behaviour of the animals were measured by the amount of time 

spent in the centre of the open field apparatus. Exposure to maternal separation, as seen in our 

study, results in animals avoiding the inner zone of the open field apparatus and this has been 

deemed as an indication of fearful or anxiety-like behaviour (Kulesskaya and Voikar, 2014). 

The PNE groups however, spent more time in the centre of the open field suggestive of 

increased exploratory behaviour and lack of anxiety which were comparable to behaviour 

observed in the EPM test. PNE has been shown to cause alterations in neuroendocrine 

programming resulting in HPA-axis hypersensitivity (He et al., 2017, Zhang et al., 2014). He 

et al. (2017) found that not only was HPA-axis hypersensitivity present, but imbalanced 

afferent outputs of glutamate and GABA, with enhanced expression of glutamic acid 

decarboxylase 67 (GAD67) in the hippocampus was related to PNE. However, the possible 

involvement of nicotinic receptors in that alteration in relation to PNE was not explored. 

We assessed nicotinic receptor function in the hippocampus and striatum. PNE resulted in an 

increased α7 n-AChR expression in the hippocampus and striatum. Tizaby et al. (1997) 

hypothesised that an initial upregulation of nicotinic receptors, due to PNE, caused 

hypersensitivity of the receptor which resulted in a functional downregulation of the receptor. 

Interestingly, this increased receptor expression is attenuated in PNE animals exposed to MS. 

This decrease may be due to the fact that MS as a second stressor following nicotine exposure 

induced a desensitisation of the receptors leading to down-regulation.  

It has been suggested that the increase in α7 n-AChR expression following exposure to 

nicotine is responsible for the increased activity of these animals in the EPM and OFT (Zhu 

et al., 2012). The stimulatory effects of nicotine on the cholinergic system during 

development seem to be chronic resulting in altered receptor activity later in life. It has also 

been postulated that cholinergic ligands of the n-AChR may be used to treat psychotic and 

neurodegenerative diseases (Feuerbach et al., 2010). The increased activity in a novel 

environment could also be translated as maldevelopment of the cholinergic system. 

Hippocampal and striatal expression of α4 n-AChRS was lower in the stressed animals than 

in the non-stressed animals. Avraam et al. (2016) has postulated that the decrease in α4 n-

AChR expression is either due to disinhibition or a change in expression of other n-AChR 
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subunits. In our study, we found an increase in α7 n-AChR and a decreased α4 n-AChR 

expression thus supporting Avraam et al. (2016). Schulz et al., (2013) has shown that 

exposure to prenatal restraint stress resulted in decreased α4 n-AChR expression. The 

difference between Schulz et al. (2013) and our study was the period of stress which is a vital 

variable. Another study investigating the α4 n-AChR in a prenatal stress model showed no 

difference in the protein levels of the receptor, but changes in the mRNA levels in the 

prefrontal cortex without exploring the changes of the receptor in the hippocampus (Baier et 

al., 2015). 

Glucocorticoid receptor (GR) expression was also evaluated in the hippocampus and 

striatum. No changes were seen in GR expression between the groups. While early life stress 

effects in rats are prominent, a systematic review found that in mice, findings are more 

inclined to non-significant results which they attributed to species specificities during 

development and behavioural maternal care (Tractenberg et al., 2016). Zhang et al. (2014) 

showed that prenatal exposure to nicotine in rats leads to overexposure to maternal 

glucocorticoids which can inhibit the development of the HPA axis. This over exposure 

during development could be due to long term downregulation of GR, in favour of 

mineralocorticoid receptors (MR) as is the case with developmental stressors (Lupien et al., 

2009). It has been shown that exposure to MS in rats results in decreased cholinergic function 

(Aisa et al., 2009). It has also been suggested that the HPA axis changes that follow PNE are 

epigenetic thus resulting in HPA axis dysfunction (Zhang et al., 2014). Interestingly, GR 

expression in the striatum of the PNE group was higher than in other groups; however this 

was attenuated by exposure to MS. This could be due to normal functioning of the HPA axis 

whereby a shift to MR has not been made (Aisa et al., 2009). 

DA concentration in the hippocampus of the PNE mice exposed to NS was higher than in the 

other mice. This effect was not present in the striatum. Studies have shown a notable change 

in DA concentration in early developmental stress models only following an insult e.g. a 

lesion (Mpofana et al., 2016). Exposure to NS resulted in an increase in DA concentration 

when compared to animals exposed to a single stressor. This may suggest that the dual stress 

exposure has an effect of cancelling out the deleterious effects of exposure to either prenatal 

or postnatal stress. It must be noted that exposure to both PNE and MS in this study coincided 

with the period of rapid neural pathway formation in the brain (Chocyk et al., 2010). It 

therefore could stand to reason that if the co-exposure to PNE and MS stress cancels the 

stress effect, neural pathway formation will be less compromised.   
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Our results show that PNE results in long term changes to the α7 and α4 nicotinic 

acetylcholine receptors. We have also shown that MS alone affects α7 and α4 n-AChR 

expression, which supports the hypothesis that PNE results in dysfunction of the HPA axis, 

and that the dysfunction caused by early life stress also results in changes of the cholinergic 

system, specifically the n-AChRs. Animals exposed to the double insult of prenatal (PNE) 

and postnatal (MS) stress exhibited behaviour suggesting a cancellation of the effects of 

perinatal stress (when the stressors are applied individually) on the HPA axis. 

Conclusion 

Our results have shown that PNE alters neurodevelopment resulting in changes to functional 

regions of the brain, neurotransmission and behaviour into adulthood. With regard to MS, our 

results display that species specificities play a role in determining the outcomes of exposure 

to early life stressors. Our results show that exposure to perinatal stress affects n-AChR 

expression. This suggests that cholinergic signalling could be targeted for therapeutic 

intervention in anxiety- and depression-like disorders.  
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4 Summary and Recommendations 

The results of both our studies have shown a link in developmental cholinergic signalling and 

the HPA axis. Whether the HPA axis is influenced by or influences this signalling has not 

been fully elucidated. Therefore, recommendations for studying the relationship further 

would be to introduce another prenatal stressor or have the nicotine exposure at a different 

timepoint of development. Other neurotransmitters such as glutamate and GABA could also 

be tested as they may have possible linkage in the connection of the HPA axis and 

cholinergic signalling. 
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