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Abstract

The prevalence and the incidence are two primary epidemiological pa-
rameters in infectious disease modelling. The incidence is also closely re-
lated to the force of infection or the hazard of infection in survival analysis
terms. The two measures carry the same information about a disease be-
cause they measure the rate at which new infections occur. The disease
prevalence gives the proportion of infected individuals in the population at
a given time, while the incidence is the rate of new infections.
The thesis discusses methods for estimating HIV prevalence, incidence
rates and the force of infection, against age and time, using cross-sectional
seroprevalence data for pregnant women attending antenatal clinics. The
data was collected on women aged 12 to 47 in rural KwaZulu-Natal for each
of the years 2001 to 2006.
The generalized linear model for binomial response is used extensively.
First the logistic regression model is used to estimate annual HIV preva-
lence by age. It was found that the estimated prevalence for each year
increases with age, to peaks of between 36% and 57% in the mid to late
twenties, before declining steadily toward the forties. Fitted prevalence for
2001 is lower than for the other years across all ages.
Several models for estimating the force of infection are discussed and ap-
plied. The fitted force of infection rises with age to a peak of 0.074 at age
15, and then decreases toward higher ages. The force of infection measures
the potential risk of infection per individual per unit time. A proportional
hazards model of the age to infection is applied to the data, and shows that
additional variables such as partner’s age and the number of previous preg-
nancies do have a significant effect on the infection hazard.
Studies for estimating incidence from multiple prevalence surveys are re-
viewed. The relative inclusion rate (RIR), accounting for the fact that the
probability of inclusion in a prevalence sample depends on the individual’s
HIV status, and its role in incidence estimation is discussed as a possible
future approach of extending the current work.
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Chapter 1

Introduction

1.1 Background

1.1.1 HIV in the World

The human immunodeficiency virus (HIV) is a retrovirus that infects cells of

the immune system, destroying or impairing their function. As the infection

progresses the immune system weakens, making the infected individual in-

creasingly susceptible to opportunistic infections. The onset of acquired im-

munodeficiency syndrome (AIDS), the most severe stage of the HIV infection,

occurs when the numbers of healthy cells of the immune system are very low

and virus population grows without bound.

Transmission of HIV occurs through unprotected sexual intercourse, transfu-

sion of contaminated blood and sharing of contaminated needles. The virus

may also be transmitted from a mother to her infant during pregnancy, child-

birth and breastfeeding. This mode of transmission is known as mother to

child transmission (MCT). The majority of HIV infections among adults in Sub-

Saharan Africa are transmitted through heterosexual intercourse. In other

parts of the world, in particular North America and Europe, homosexual trans-

mission among men is a significant transmission mode.

According to UNAIDS (2010) an estimated 33.3 million people worldwide are

living with HIV. A staggering 68% of the global HIV infected population reside

in Sub-Saharan Africa. Women account for a much higher proportion of all

adults living with HIV worldwide.

The extent of the epidemic within Sub-Saharan Africa varies by region, with

1



1.1. Background

Southern Africa carrying a particularly high proportion of the disease burden.

UNAIDS (2010) estimates that in 2009 34% of all people living with HIV glob-

ally resided in the ten countries of Southern Africa, namely Angola, Botswana,

Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia, and

Zimbabwe. Swaziland has the highest adult HIV prevalence in the world, at an

estimated 25.9%. Relatively lower prevalence rates are estimated in West and

Central Africa, with Cameroon (5.3%) and Gabon (5.2%) having the highest

prevalence rates in these regions. Lower prevalence is also estimated for East

Africa, where the epidemics in many countries show signs of stabilising. Kenya

and Uganda have had stable prevalence levels of around 5% and 7% respec-

tively in the last few years.

1.1.2 HIV in South Africa

An estimated 5.6 million people are living with HIV in South Africa, making it

the country with the highest number of HIV positive people in the world. Ap-

proximately 3.3 million of these people are women aged 15 and older (UNAIDS,

2010). The HIV prevalence rate, which gives the proportion of HIV positive in-

dividuals out of all the individuals in the population, was 17.8% [17.2% - 18.3%]

for 2009 as estimated by UNAIDS (2010).

There have been two major sources of data for monitoring the HIV epidemic in

South Africa: seroprevalence surveys among women attending antenatal clin-

ics and national population-based household surveys.

Data from antenatal surveillance

In many African countries, including South Africa, surveillance among preg-

nant women attending sentinel antenatal clinics (ANC) has been the primary

source for estimating HIV prevalence in the general population and monitoring

HIV trends over time. Pregnant women are seen to represent the general het-

erosexually active adult population. Furthermore, antenatal clinic surveys are

relatively low cost and convenient, for developing countries in Africa, to conduct

and the attendees serve as an easily accessible and stable population.

2



1.1. Background

Figure 1.1: HIV prevalence trends among antenatal women, South Africa, 1990 to 2009.
Source: Department of Health (2010).

South Africa’s National HIV and syphilis antenatal seroprevalence survey has

been conducted annually since 1990. Participants in this cross-sectional survey

are pregnant women who are attending public health antenatal clinic services

for the first time during a pregnancy. ANC attendees undergo routine syphilis

testing. Thus syphilis screening is used as an entry point for HIV testing using

anonymous unlinked procedures. Since 2006, the survey’s target sample size

was expanded to increase geographical coverage down to district level. It now

includes over 30 000 participants from 1457 clinics. This has allowed for esti-

mates of prevalence to be calculated for each health district in each of the nine

provinces.

The national HIV prevalence estimated from the annual ANC surveys rose

sharply in the 1990’s. Figure 1.1 shows that from 0.8% in 1990, the prevalence

quickly grew to rates of over 20% in the following eight years. HIV prevalence

reached a peak of 30.2% in 2005. For the four years thereafter, the national

HIV prevalence has remained stable. The most recently published prevalence

estimate is for the year 2009, and is estimated at 29.4% (Department of Health,

2010).

The HIV epidemic has progressed at a different pace in each province. The low-

3



1.1. Background

Figure 1.2: HIV prevalence trends among antenatal women, KwaZulu-Natal 1990 to 2009.
Source: Department of Health (2010).

est HIV provincial prevalence rates in 2009 were observed in the Western Cape

(16.9%) and the Northern Cape (17.2%). These two provinces have recorded

consistently lower prevalence than the other provinces over time. KwaZulu-

Natal has consistently recorded the highest provincial prevalence since 1990.

In 2009 the estimated prevalence of 39.5% in KwaZulu-Natal far exceeded the

national rate. Figure 1.2 shows the prevalence curve for KwaZulu-Natal. It can

be seen that the prevalence increased steadily to a peak of 40.7% in 2004 before

leveling off in the past few years. Results by district showed that in 2009 five

of the eleven districts in KwaZulu-Natal, namely Ugu, Uthukela, eThekwini,

ILembe and Umgungundlovu, produced very high HIV prevalence estimates of

above 40% (Department of Health, 2010).

Table 1.1: HIV prevalence (%) among antenatal women by age group, South Africa 2001 to
2009.

Age Group 2001 2002 2003 2004 2005 2006 2007 2008 2009
<20 15.4 14.8 15.8 16.1 15.9 13.7 13.1 14.1 13.7
20-24 28.4 29.1 30.3 30.8 30.6 28.0 28.0 26.9 26.6
25-29 31.4 34.5 35.4 38.5 39.5 38.7 37.5 37.9 37.1
30-34 25.6 29.5 30.9 34.4 36.4 37.0 39.6 40.4 41.5
35-39 19.3 19.8 23.4 24.5 28.0 29.3 33.0 32.4 35.4

From 2001 to 2009 the prevalence among women aged 30 and older showed a

general increasing trend. For the past seven years women in the age groups 25-

4



1.1. Background

29 and 30-34 showed consistently higher HIV prevalence than those in other

age groups. For the past three years the prevalence was highest among women

in the 30-34 year age group, rising from 39.6% in 2007 to 40.4% in 2008 and

41.5% in 2009. Prior to this the 25-29 year age group had the highest prevalence

rates with a peak rate of 39.5% in 2005 for this age group. In recent years the

HIV prevalence among women under 30 years has gradually declined while the

prevalence for the over 30’s has continued to increase. The prevalence among

women aged 35-39 increased by 6% over a period of four years, from 29.3% in

2006 to 35.4% in 2009. However, much of the increases in prevalence in recent

years could be attributed to the increases in survival of those on antiretroviral

treatment (ART) (Department of Health, 2010). Table 1.1 summarises the es-

timated annual prevalence rates by age group from 2001 to 2009. Data used is

from the Department of Health National HIV and syphilis antenatal seropreva-

lence survey reports for the years 2004, 2007 and 2010. It is evident from the

above information that HIV prevalence and incidence vary from place to place,

by gender and over different time periods.

Data from population-based surveys

Many countries have recently conducted national population-based surveys for

surveillance of the HIV epidemic in the general population. The South African

National HIV Prevalence, Incidence, Behaviour and Communication Survey,

2008 was the third in a series of population-based household surveys designed

for estimating HIV prevalence and incidence as well as HIV-related behaviour

in South Africa (Shisana et al, 2009). The previous two surveys were conducted

in 2002 and 2005. The survey sample included individuals aged 2 years and

up. The multi-stage stratified sampling approach was designed to produce a

nationally representative sample.

The overall estimated HIV prevalence rates for the South African population

changed little across survey years - 11.4% in 2002, 10.8% in 2005 and 10.9% in

2008. The highest provincial prevalence in 2008 was found in KwaZulu-Natal

(15.8%) and the lowest in Western Cape (3.8%). Females recorded dispropor-

tionately higher rates than males, with larger disproportions in the younger

age groups. In the 15-19, 20-24 and 25-29 year age groups prevalence rates

among females were more than 2 times higher than that of males. In 2008

5



1.2. Thesis Objectives

prevalence among females was highest in the 25-29 year age category with a

rate of 32.7%, while prevalence among males was highest in the 30-34 year age

category with a rate of 25.8%. A decline in prevalence was found among youth

aged 15-24, from 10.3% in 2005 to 8.6% in 2008. This can be attributed to sev-

eral factors, among them the impact of education, which has a direct outcome

of reducing new infections.

It should be noted that national population based surveys provide HIV preva-

lence data that is representative of the national population. These surveys

are however very costly to conduct on an annual basis, and response rates can

be low, particularly among specific demographic or socioeconomic population

groups. Antenatal clinic surveillance, on the other hand, reflects the HIV preva-

lence of pregnant women attending public health antenatal clinics. It does not

include males, non-pregnant women, or pregnant women who are not consult-

ing public health antenatal clinics. However antenatal clinic surveys are rel-

atively low cost to conduct, and antenatal clinic attendees serve as an easily

accessible population. For these reasons antenatal surveys are able to be con-

ducted on an annual basis in many low and middle income countries, providing

prevalence data on large numbers of individuals.

1.2 Thesis Objectives

The objectives of the thesis are to:

- Model cross-sectional prevalence data

- Estimate HIV prevalence

- Estimate the force of infection for HIV

- Model the effect of covariates

The theoretical methods for implementing these objectives are explained and

then applied using data recorded on women attending antenatal clinics in Vulindlela,

a rural area of KwaZulu-Natal.

6



1.3. Thesis Overview

1.3 Thesis Overview

The thesis discusses the estimation of key measures of disease with reference to

the HIV infection. The data used in this thesis is described in detail in Chapter

2. Exploratory analyses, examining the observed HIV prevalence by age group,

as well as by other covariate groups, such as partner age group and the number

of previous pregnancies, are also presented. Chapter 3 explains the generalized

linear model and its use in modelling binary data. Logistic regression is then

applied to the Vulindlela data, to model age-specific prevalence by year. Chap-

ter 4 reviews methods for estimating the incidence of a disease from prevalence

data. The usefulness of these methods in the context of HIV in South Africa is of

importance, since the HIV epidemic may be reaching maturity in the country.

A mature epidemic is one where the proportion of HIV infected people in the

population levels off. The force of infection gives the rate at which individuals

become infected with a disease, and the estimation of this important measure

is discussed in Chapter 5. Some well known functions for the force of infection

are illustrated using the Vulindlela antenatal data. The proportional hazards

model is used in Chapter 6 to investigate the effect of explanatory variables,

such as the number of previous pregnancies and the age of the participants’

male partners, on the hazard of HIV infection, for women attending antenatal

clinics in Vulindlela. SAS Version 9.2 was used for all the analyses in the cur-

rent thesis.
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Chapter 2

Exploratory Data Analysis

2.1 Data

The data was obtained from CAPRISA (Centre for AIDs Programme of Research

in South Africa). It is in the form of serial cross-sectional prevalence data, ob-

tained from anonymous HIV prevalence testing of pregnant women attending

eight public health antenatal clinics in Vulindlela, an area of rural KwaZulu-

Natal. The data was collected annually for each of the years 2001 to 2006.

There are 2245 observations in total. The minimum and maximum age of preg-

nant women included in the study is 12 and 47 respectively.

The variables in the dataset are listed below.

• ID (each participant was allocated a unique identification number)

• Year (ranging from 2001 to 2006)

• Age (age of the participant at the time of testing)

• HIV status (either positive or negative)

• Partner Age (the age of each participant’s male partner)

• Clinic (the name of the antenatal clinic attended by each participant)

• Previous Pregnancies (the number of previous pregnancies of each partic-

ipant and the year in which each previous pregnancy occurred)

Note that the additional variables Partner Age, Clinic, and Previous Pregnan-

cies were not recorded in the datasets for all of the survey years. Partner Age
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2.2. Description of the sample

was recorded for participants in survey years 2003-2006. The clinic attended

was recorded in the years 2002-2005 and Previous Pregnancies was recorded in

years 2004-2006.

Vulindlela is a rural community in the KwaZulu-Natal midlands, situated about

150 km west of Durban. It has a population of approximately 400 000. Accord-

ing to sources at CAPRISA, a large proportion of this population is unemployed.

Peripheral blood specimens collected from women attending the antenatal clin-

ics are routinely tested for syphilis, rhesus factor and ABO blood grouping,

to detect and prevent haemolytic disease in the newborn babies. After re-

moving personal identifiers, these blood specimens were then couriered to the

CAPRISA research laboratories in Durban. HIV testing was performed using

the standard enzyme linked immunosorbent antibody assay (Enzygnost, Dade

Behring), (sensitivity: 100, specificity: 99.3). Reactive samples were confirmed

using the Abbott Determine TM HIV -1/2 (Abbott Laboratories), (sensitivity:

100, specificity: 99.91).

The study comprised all pregnant women consulting any of the eight public

health antenatal clinics in Vulindlela. However, only women attending these

clinics for their first antenatal visit of their current pregnancy were included

in the study, to prevent the same woman being included more than once in a

specific year’s dataset. The HIV status data from the above study leads to what

is referred to as current status data. The data reports the age as well as the

values of other covariates recorded for an individual at a given calender time,

together with the disease status, here the HIV status.

2.2 Description of the sample

The total number of individuals observed in each year varied from 234 in 2003

to 552 in 2004. From Table 2.1 we see that the majority of individuals in each

year (between 55% and 65%) were under 25 years of age. The proportion of

25-34 year olds ranged from 26.9% to 31.7%. Less than 12% of the individuals

in each year were older than 35, with a very low proportion aged 40-47.
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Table 2.1: Description of the sample for each of the years 2001-2006

2001 2002 2003 2004 2005 2006
% (n) % (n) % (n) % (n) % (n) % (n) p-value

Age Group
12-19 24.6% (41) 38.9% (159) 31.2% (73) 36.7% (202) 30.2% (109) 31.6% (96) 0.111
20-24 32.3% (54) 26.2% (107) 28.2% (66) 28.9% (159) 31.0% (112) 32.2% (98)
25-29 19.2% (32) 20.5% (84) 21.4% (50) 15.1% (83) 16.9% (61) 15.5% (47)
30-34 12.6% (21) 8.8% (36) 9.4% (22) 11.8% (65) 12.2% (44) 11.5% (35)
35-39 8.4% (14) 3.9% (16) 7.3% (17) 5.6% (31) 6.4% (23) 6.9% (21)
40-47 3.0% (5) 1.7% (7) 2.6% (6) 1.8% (10) 3.3% (12) 2.3% (7)

Partner’s age
6 19 9.6% (22) 12.4% (66) 10.6% (38) 10.3% (31) 0.348
20-24 31.3% (72) 34.7% (185) 32.5% (117) 31.6% (95)
25-29 27.0% (62) 22.7% (121) 21.9% (79) 25.9% (78)
30-34 15.7% (36) 13.7% (73) 15.6% (56) 15.9% (48)
35-39 10.4% (24) 7.3% (39) 13.1% (47) 9.0% (27)
> 40 6.1% (14) 9.2% (49) 6.4% (23) 7.3%(22)

Partner Age
Difference
Younger partner 5.2% (12) 4.7% (25) 7.2% (26) 5.3% (16) 0.848
0-3 years older 51.7% (119) 51.6% (275) 48.9% (176) 48.5% (146)
4-7 years older 32.6% (75) 30.6% (163) 30.6% (110) 34.2% (103)
8-11 years older 7.8% (18) 8.4% (45) 9.2% (33) 9.0% (27)
> 12 years older 2.6% (6) 4.7% (25) 4.2% (15) 3.0% (9)

Clinic Attended
Mafakhathini 11.1% (46) 11.1% (26) 5.1% (28) 16.3% (59) 0.000∗

Mpumuza 17.4% (72) 9.8% (23) 12.1% (67) 26.3% (95)
Mpophomeni 18.2% (75) 28.6% (67) 11.4% (63) 22.2% (80)
Taylors 10.7% (44) 12.4% (29) 21.4% (118) 10.8% (39)
Songonzima 14.0% (58) 15.0% (35) 20.5% (113) 12.2% (44)
Elandskop 26.2% (108) 18.8% (44) 10.5% (58) 10.0% (36)
Sondelani - 4.3% (10) 19.0% (105) 2.2% (8)
Ntembeni 2.4% (10) - - -

Number of
previous pregnancies
None 59.8% (312) 48.6% (171) 52.0% (168) 0.014∗

One 25.1% (131) 33.0% (116) 30.0% (97)
Two 10.3% (54) 10.5% (37) 9.9% (32)
Three 3.1% (16) 6.0% (21) 4.0% (13)
Four 1.7% (9) 2.0% (7) 4.0% (13)

Total 100% (349) 100% (413) 100% (234) 100% (552) 100% (362) 100% (335)

The variable Partner’s age was recorded in the survey years from 2003 onwards.

In each year, more than half of the individuals had partners aged between

20 and 29, while around a quarter had partners aged 30-39. The age differ-

ence between a woman and her male partner was calculated by subtracting the

woman’s age from that of her partner. A relatively low proportion of the individ-
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2.2. Description of the sample

uals had partners who were younger than them. The most commonly observed

age difference was 0-3 years, with around half of the individuals having part-

ners up to three years older than them. Between 10% and 14% reported having

a partner eight or more years their senior.

The name of the clinic attended by each individual was recorded only in years

2002-2005. The distribution of individuals by clinic seems to vary with each

year, with the lowest proportions of individuals selected from the Sondelani

and Ntembeni clinics. Cells containing a “ - ” indicate that there were no ob-

servations (i.e. n = 0) in those cells. For example the “ - ” corresponding to

Sondelani in year 2002 means that there were no individuals who were tested

at the Sondelani clinic in year 2002.

The variable Previous Pregnancies was recorded in the dataset from 2004 on-

wards. Note that this variable refers to the number of pregnancies experienced

by an individual prior to their current pregnancy. The majority of the individ-

uals in each year had never been pregnant before. Between a quarter and a

third had experienced one previous pregnancy, and a lower proportion (15-18%)

reported having had 2-4 previous pregnancies.

Chi-square tests were performed to test for significant associations between the

year of observation and each of the explanatory variables. A “ ∗ ” next to each

p-value indicates a significant association, that is, where p < 0.05. A signifi-

cant association was found between clinic and year (p = 0.000), meaning that

the distribution of individuals attending each clinic varied significantly by year.

Similarly there was a significant association between the number of previous

pregnancies and year (p = 0.014).

2.2.1 Description of the sample by age category and the number
of previous pregnancies

The characteristics of the combined 2001-2006 sample by age category are pre-

sented in Table 2.2. Age was dichotomized into three groups, namely younger

than 22 years, 22-31 years, and older than 31 years. These age groups were

chosen in consultation with experts in the field of HIV prevalence data. There
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were significant associations between the women’s age group and each of the

variables partner’s age, partner age difference and the number of previous preg-

nancies (p < 0.05 for all).

The age of the women’s male partners generally increased with the women’s

ages. However, large age differences between women and their partners were

more common among those older than 31 years. The prevalence of having a

partner eight or more years their senior was higher among those aged 31 and

older (23.2%) than those aged 22-31 years (13.0%) and younger than 22 years

(8.9%). In addition, more individuals aged 31 and older had partners younger

than themselves compared to those aged 22-31 and less than 22 years.

Older women tended to have more previous pregnancies. Two thirds of the

individuals aged 32 and older had experienced two or more previous pregnan-

cies, while the majority (89.6%) of the individuals younger than 22 years had

never been pregnant before.

Table 2.2: Description of the sample by age category

< 22 years 22 - 31 years > 31 years
% (n) % (n) % (n) p-value

Partner’s age
19 & younger 22.6% (156) 0.2% (1) - 0.000∗

20-24 57.3% (395) 14.1% (74) -
25-29 17.7% (122) 40.6% (213) 2.4% (5)
30-34 1.9% (13) 31.1% (163) 17.5% (37)
35-39 0.3% (2) 11.3% (59) 36.0% (76)
40 or older 0.1% (1) 2.7% (14) 44.1% (93)

Partner-age difference
Younger partner 1.6% (11) 7.4% (39) 13.7% (29) 0.000∗

0-3 years older 53.4% (368) 48.5% (254) 44.5% (94)
4-7 years older 36.1% (249) 31.1% (163) 18.5% (39)
8-11 years older 7.0% (48) 8.8% (46) 13.7% (29)
> 12 years older 1.9% (13) 4.2% (22) 9.5% (20)

Number of previous pregnancies
0 89.6% (510) 28.6% (122) 4.4% (8) 0.000∗

1 10.0% (57) 54.0% (230) 28.7% (52)
2 or more 0.4% (2) 17.4% (74) 66.9% (121)

The partner’s age and partner-age difference characteristics of the women ac-

cording to the number of previous pregnancies experienced are presented in
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Table 2.3, with significant associations found in each case (p < 0.05 for all). The

data shows that the women who had multiple pregnancies tended to have older

partners. The majority of those who had no previous pregnancies had partners

aged below 30 years, the majority of those with one previous pregnancy had

partners aged 20-34, and of those with two or more previous pregnancies the

majority had partners aged 30 and above. Note however that this reflects the

effect of the woman’s age, because as shown in Table 2.2, partner’s age tended

to increase with the woman’s age, and the older the woman the greater the

number of previous pregnancies.

With regard to partner-age difference, a large partner-age difference was more

common among those with multiple previous pregnancies. The proportion of

individuals who had a partner eight or more years older than them was higher

for those with one previous pregnancy and two or more previous pregnancies

than for women who had never been pregnant before.

Note that in Table 2.3 as well as Table 2.2 above, blank (“-”) values indicate

that there were no observed individuals (i.e. n = 0) in those cells.

Table 2.3: Partner-age difference and partner age characteristics of the sample by the num-
ber of previous pregnancies

Number of previous pregnancies None One Two or more
% (n) % (n) % (n) p-value

Partner’s age
19 & younger 20.5% (130) 0.6% (2) - 0.000∗

20-24 50.0% (317) 20.7% (70) 0.5% (1)
25-29 21.9% (139) 31.7% (107) 11.3% (22)
30-34 5.2% (33) 26.9% (91) 26.8% (52)
35-39 1.4% (9) 14.8% (50) 26.3% (51)
40 or older 0.9% (6) 5.3% (18) 35.1% (68)

Partner-age difference
Partner < 8 years older than participant 90.9% (576) 87.0% (294) 76.3% (148) 0.000∗

Partner > 8 years older than participant 9.1% (58) 13.0% (44) 23.7% (46)

Total 100.0% (634) 100.0% (338) 100.0% (194)
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2.3 Observed HIV prevalence by year

The observed HIV prevalence in each year was 27.5% in 2001, 34.2% in 2002,

40.9% in 2003, 42.6% in 2004, 37.3% in 2005 and 37.4% in 2006. Tables 2.4 to

2.8 present the observed HIV prevalence percentage and corresponding sam-

ple size by year, for each category of the explanatory variables. The estimated

prevalence for a given year and a given level of an explanatory variable, is ex-

pressed as a percentage, and is calculated by p̂ti = zti/nti x 100, where zti is

the observed number of individuals testing HIV positive in year t and variable

group i and nti is the total number of individuals observed in year t and variable

group i. Many cell sample sizes are particularly small, for example, there are

only between 5 and 12 individuals who are aged 40-47 (Table 2.4). One should

exercise caution when making inferences based on results where the sample

size (n) is too small, that is, when n < 35.

Chi-square tests were used to test for significant associations between HIV

prevalence and the explanatory variables in each year. Significant associa-

tions between the the women’s age group and the observed HIV prevalence

were found in each of the years 2001-2006 (Table 2.4). Prevalence rates by age

group showed a similar trend in each year. The observed HIV prevalence rose

with age, then peaked in one of the age groups between ages 20 and 35, before

declining towards the 40-47 year age group. In 2001 and 2002 HIV prevalence

was highest in the 20-24 year age group, reaching rates of 44.4% and 45.8%;

while in 2003 and 2004 the prevalence peaked in the 25-29 year age group,

with rates of around 66% being observed. Note that the sample sizes in the two

oldest age groups, 35-39 and 40-47, are fairly small. Therefore the calculated

prevalence in these groups are less reliable than the prevalence obtained for

the younger age groups, which contain large sample sizes.

In each year a significant association between HIV prevalence and partner’s age

was found (Table 2.5). The highest HIV prevalence was observed in individuals

with partners in the 25-29 or 30-34 year age category, with the exception of year

2005, in which the highest prevalence was observed in the 35-39 year partner’s

age category. Relatively lower prevalence rates were observed for individuals

whose partners were aged 19 and younger.

Observed HIV prevalence across the partner age difference categories are dis-
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played in Table 2.6. In survey years 2004-2006, the prevalence appears to in-

crease with age difference, from age differences of 0-3 years, 4-7 years, to 8-11

years. Although the prevalence rates for individuals with younger partners and

those with partners 12 or more years older are very high, these estimates may

not be reliable due to very small sample sizes for these groups.

Table 2.7 shows no clear pattern of prevalence rates by clinic. As a result no

significant association was found between the clinic attended and the observed

HIV prevalence (p > 0.05) in each year. The “-” in cells of Table 2.7 indicate

that there were no observations (i.e. n = 0) in each of those cells, from which to

calculate the prevalence. Table 2.8 shows that in each of the years 2004, 2005

and 2006, the HIV prevalence varies significantly by the number of previous

pregnancies (p < 0.05). In 2004 and 2005 the prevalence appears to be highest

for those individuals who have had one previous pregnancy, while in 2006 the

prevalence is highest for those with three previous pregnancies.

Table 2.4: Observed HIV Prevalence (%) by age group for each year, 2001-2006

2001 2002 2003 2004 2005 2006
Age Group % Prev (n) % Prev (n) % Prev (n) % Prev (n) % Prev (n) % Prev (n)
12-19 14.6% (41) 25.8% (159) 19.4% (67) 26.7% (202) 22.0% (109) 16.7% (96)
20-24 44.4% (54) 45.8% (107) 44.6% (65) 54.7% (159) 37.8% (111) 48.5% (97)
25-29 31.3% (32) 42.9% (84) 66.0% (50) 66.3% (83) 50.8% (61) 51.1% (47)
30-34 14.3% (21) 22.2% (36) 42.9% (21) 53.8% (65) 56.8% (44) 51.4% (35)
35-39 14.3% (14) 31.3% (16) 37.5% (16) 12.9% (31) 39.1% (23) 25.0% (20)
40-47 20.0% (5) 14.3% (7) 33.3% (6) 0.0% (10) 25.0% (12) 57.1% (7)
p-value 0.012∗ 0.003∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗

Table 2.5: Observed HIV Prevalence (%) by partner age group for each year, 2003-2006

2003 2004 2005 2006
Partner Age Group % Prev (n) % Prev (n) % Prev (n) % Prev (n)
619 5.3% (19) 16.7% (66) 10.5% (38) 9.7% (31)
20-24 40.0% (70) 34.1% (185) 31.9% (116) 27.4% (95)
25-29 46.7% (60) 65.3% (121) 38.0% (79) 51.9% (77)
30-34 63.9% (36) 63.0% (73) 46.4% (56) 54.2% (48)
35-39 22.7% (22) 41.0% (39) 59.6% (47) 34.6% (26)
>40 35.7% (14) 26.5% (49) 39.1% (23) 36.4% (22)
p-value 0.001∗ 0.000∗ 0.000∗ 0.000∗
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Table 2.6: Observed HIV Prevalence (%) by partner-participant age difference for each year,
2003-2006

Partner Age 2003 2004 2005 2006
Difference Category % Prev (n) % Prev (n) % Prev (n) % Prev (n)
Younger partner 75.0% (12) 52.0% (25) 50.0% (26) 56.3% (16)
0-3 years older 41.6% (113) 40.0% (275) 27.8% (176) 29.9% (144)
4-7 years older 41.1% (73) 42.9% (163) 43.1% (109) 38.8% (103)
8-11 years older 11.8% (17) 53.3% (45) 51.5% (33) 55.6% (27)
> 12 years older 33.3% (6) 44.0% (25) 53.3% (15) 55.6% (9)
p-value 0.018∗ 0.434 0.006∗ 0.026∗

Table 2.7: Observed HIV Prevalence (%) by Clinic for each year, 2002-2005

2002 2003 2004 2005
Clinic % Prev (n) % Prev (n) % Prev (n) % Prev (n)
Mafakhathini 34.8% (46) 30.8% (26) 35.7% (28) 39.0% (59)
Mpumuza 40.3% (72) 47.6% (21) 34.3% (67) 45.3% (95)
Mpophomeni 38.7% (75) 50.7% (67) 34.9% (63) 35.4% (79)
Taylors 38.6% (44) 37.9% (29) 43.2% (118) 30.8% (39)
Songonzima 31.0% (58) 39.3% (28) 53.1% (113) 29.5% (44)
Elandskop 28.7% (108) 31.8% (44) 43.1% (58) 36.1% (36)
Sondelani - 40.0% (10) 41.9% (105) 25.0% (8)
Ntembeni 10.0% (10) - - -
p-value 0.364 0.443 0.169 0.525

Table 2.8: Observed HIV Prevalence (%) by the number of previous pregnancies for each
year, 2004-2006

Number of previous 2004 2005 2006
pregnancies % Prev (n) % Prev (n) % Prev (n)
0 36.2% (312) 26.5% (170) 29.2% (168)
1 61.8% (131) 49.1% (116) 45.8% (96)
2 46.3% (54) 43.2% (37) 45.2% (31)
3 12.5% (16) 47.6% (21) 53.8% (13)
4 0.0% (9) 28.6% (7) 46.2% (13)
p-value 0.000∗ 0.002∗ 0.033∗

2.4 Observed HIV prevalence by age category

The observed HIV prevalence by the number of previous pregnancies, partner’s

age and partner-age difference, for each of the age groups <22 years, 22-31

years and >31 years are presented in Table 2.9.

Observed HIV prevalence in the combined sample was highest (52.7%) among

22-31 years olds. The results suggest that for very young individuals (<22

years) and much older individuals (>31 years) the observed HIV prevalence
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Table 2.9: Observed HIV Prevalence (%) by the number of previous pregnancies, partner’s
age and partner-age difference, for each of the age groups < 22 years, 22 − 31 years and
> 31 years

< 22 years 22-31 years > 31 years
% Prev (n) % Prev (n) % Prev (n)

Partner’s Age
19 & younger 12.4% (153) 0.0% (1) -
20-24 28.8% (392) 55.4% (74) -
25-29 43.8% (121) 56.9% (211) 80.0% (5)
30-34 46.2% (13) 58.3% (163) 54.1% (37)
35-39 50.0% (2) 55.9% (59) 32.9% (73)
40 or older 0.0% (1) 64.3% (14) 28.0% (93)
p-value 0.000∗ 0.870 0.006∗

Partner Age Difference
Younger partner 9.1% (11) 66.7% (39) 58.6% (29)
0-3 years older 23.9% (364) 53.2% (252) 30.4% (92)
4-7 years older 31.6% (247) 58.3% (163) 36.8% (38)
8-11 years older 44.7% (47) 58.7% (46) 34.5% (29)
> 12 years older 38.5% (13) 72.7% (22) 25.0% (20)
p-value 0.008∗ 0.251 0.066

Number of
previous pregnancies
None 26.5% (509) 56.6% (122) 12.5% (8)
One 33.3% (57) 59.4% (229) 48.1% (52)
Two or more 100.0% (2) 50.0% (74) 33.3% (120)
p-value 0.039∗ 0.364 0.064

Total 27.9% (970) 52.7% (751) 32.2% (292)

for those who have had at least one previous pregnancy is higher than for those

who have not been pregnant before. However this association is only statisti-

cally significant for those in the <22 year age category (p = 0.039). For individ-

uals aged 22-31 years, the HIV prevalence does not differ significantly across

the number of previous pregnancies. The HIV prevalence in this age group was

highest for those who have had one previous pregnancy (59.4%).

The observed HIV prevalence varied significantly across the partner age groups

for women aged either below 22 years or older than 31 years, while HIV preva-

lence varied significantly across partner age difference categories only for women

aged below 22 years. Among the individuals aged below 22 years, high HIV

prevalence rates (between 43.8% and 50.0%) were observed for those with part-

ners aged 25-39. For those aged 22-31 years however, prevalence remained high

(above 50%) across all the partner age categories from 20-24 years and up.
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Among individuals aged 22 and younger and 22-31 years, prevalence appears

to be higher for those with partners either 8-11 years or 12 or more years older

than themselves.
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Chapter 3

The Generalized Linear Model
(GLM)

Generalized linear models, first introduced by Nelder and Wedderburn (1972),

are a class of statistical models that is a natural generalization of classical lin-

ear models. They allow for the modelling of response variables from a variety of

distributions, when the relationship between the response and the explanatory

variables is not of the simple linear form (Dobson, 1990). Generalized linear

models include linear regression and ANOVA models, logit and probit models,

log-linear and multinomial response models for counts and models used in sur-

vival analysis, which were previously studied as individual special topics. The

above models share a number of properties which enable us to study them as a

single class and to apply a common method for parameter estimation (McCul-

lagh and Nelder, 1989).

Unlike using linear combinations such as Xβ to relate the mean of the distribu-

tion to the explanatory variables, as with linear regression, generalized linear

models instead make use of general functions of linear combinations h(Xβ).

In so doing, they can be applied to models where the relationship between the

mean of the response variable and the explanatory variables is non-linear.

One of the key components in the development of generalized linear models is

their link to the Exponential family of distributions. They exploit the fact that

many of the properties of the Normal distribution were shared by this wider

class of distributions. This allowed for a unified theory of extending the regres-

sion model to all distributions in the exponential family other than the normal

distribution.
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3.1 Exponential family of distributions

All response variables Y to which generalized linear models can be applied be-

long to the exponential family of distributions, which have the general form

fY (y; θ, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)} (3.1)

for some specific functions a(.), b(.) and c(.).

The function a(φ) has the form a(φ) = φ/w where φ is the dispersion or scale pa-

rameter which is constant over all observations and w is a known prior weight

which varies with each observation. The parameter θ is known as the canonical

parameter.

It can be shown that if a response Y has a distribution in the exponential family

then it has mean and variance

E(Y ) = µ = b′(θ) (3.2)

V ar(Y ) = a(φ) b′′(θ) (3.3)

where b′(θ) and b′′(θ) denote the first and second derivatives of b(θ).

The function b′′(θ) is a function of the mean and hence, of θ. It is called the vari-

ance function, denoted by V (µ). Thus from (3.3), we have V ar(Y ) = a(φ)V (µ).

Members of the exponential family include the Normal, binomial, Poisson, Gamma,

exponential and inverse Gaussian distributions.

3.2 The GLM Model

Let Yi, i = 1, ..., n denote n independent observations of a random variable, not

necessarily normally distributed. From McCullagh and Nelder (1989), a gener-

alized linear model (GLM) has the following three components:

The random component
It is assumed that the responses Yi (i = 1, ...., n) are independent random vari-

ables sharing the same distribution from the exponential family, with E(Yi) =

µi and a constant scale parameter. Thus Yi satisfies equation (3.1) so that

f(yi; θi, φ) = exp{(yi θi − b(θi)) / a(φ) + c(yi, φ)}
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The systematic component
A set of p+1, (usually) unknown parameters, βi (i = 0, 1, 2, ...., p), and the design

matrix of known explanatory variables Xn x (p+1), define a linear predictor η

given by

η = Xβ

where the i′th row of X is given by xi = (1, xi1, ....., xip)′ with xij , i = 1, ..., n;

equal to the value of the j′th predictor or explanatory variable xj , j = 1, . . . , p

and β′ = (β0, β1, ..., βp) is a vector of regression coefficients including the con-

stant β0 corresponding to X0 = 1.

The link function
The link function, g(.), gives the relationship between the mean of the i′th ob-

servation and its linear predictor, so that

ηi = g(µi)

= x′i β

The link function must be monotonic and differentiable. The canonical link
function is that function which makes the linear predictor ηi the same as the

canonical parameter θi from the exponential family member. With the canoni-

cal link function, all unknown parameters in β have sufficient statistics if the

response distribution is a member of the exponential family with known scale

parameter (Lindsey, 1997).

A normally distributed random variable therefore has a generalized linear model

of the form ηi = µi = x′iβ, where the canonical link is the identity. Thus the GLM

is a unified approach which brings linear models under the same structure.

3.3 Parameter estimation

Maximum Likelihood estimation forms the theoretical basis for parameter es-

timation in generalized linear models. From (3.1) the log likelihood for a single

observation in canonical form is given by

`i = (yiθi − b(θi))/a(φ) + c(yi, φ).
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3.3. Parameter estimation

The maximum likelihood estimate β̂j is the solution to the score equation ∂`i
∂βj

=

0. Note that since Y1, Y2, ..., Yn are independent the combined log likelihood is

` =
n∑

i=1

`i.

By the chain rule,

∂`i

∂βj
=

n∑
i=1

∂`

∂θ

dθi

dµi

dµi

dηi

∂ηi

∂βj
.

From ηi =
∑

βjxij we have ∂ηi/∂βij = xij , and from b′(θi) = µi and b′′(θi) = Vi,

we have dµi/dθi = Vi, where Vi is the variance function.

Therefore

∂`

∂βj
=

n∑
i=1

yi − µi

a(φ)
1
Vi

dµi

dηi
xij

=
n∑

i=1

1
a(φ)

Wi (yi − µi)
dηi

dµi
xij (3.4)

where

Wi =
(

dµi

dηi

)2

V −1
i . (3.5)

Hence the parameter estimates β̂j are given by the solutions to the maximum

likelihood equations
n∑

i=1

Wi (yi − µi)
dηi

dµi
xij = 0 (3.6)

where
∑

denotes summation over all units and xij is the j′th covariate.

The vector ∂`/∂β is called the score vector, denoted by U. It has expected value

E(U) = 0 and variance-covariance matrix

 = E

(
− ∂2`

∂β2

)
=

1
a(φ)

X′WX, (3.7)

where W is the weight matrix with diagonal elements given by (3.5).  is re-

ferred to as the Information matrix. Its elements are the expected values of

minus the second derivatives of the log likelihood. The information matrix will
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3.3. Parameter estimation

be referred to in the next subsections when we discuss the estimation algo-

rithms.

The likelihood equations in (3.6) are non-linear functions of β. Solving them

for β therefore requires iterative methods, whereby an initial approximation of

the parameters is used and iterations proceed until the algorithm converges,

that is, until the difference between successive approximations is sufficiently

small. The three commonly used estimation approaches are outlined below.

3.3.1 The Newton-Raphson Method

The Hessian is the matrix of second derivatives of ` and is given by

H =
∂2`

∂βjβk
.

Let β(m) denote the approximation for β at the m′th iteration. Then the (m+1)′st

approximation for β̂ is

β(m+1) = β(m) − (H(m))−1U(m) (3.8)

where H(m) and U(m) are the Hessian, H and the score vector, U, evaluated at

β(m). The term β(0) denotes the initial estimate of β̂. At each iteration β(m) is

used to obtain H(m) and U(m), which are then used in (3.8) to estimate β(m+1).

In the next iteration β(m+1) is used to obtain β(m+2), and this process continues

until convergence.

3.3.2 Fisher Scoring

An alternative procedure first suggested by Fisher is to replace minus the Hes-

sian by its expected value, the information matrix. Therefore, the Fisher scor-

ing formula for the (m + 1)′st estimate of β̂ is

β(m+1) = β(m) + ((m))−1U(m) (3.9)

where (m) and U(m) are the information matrix  and the score vector U eval-

uated at β(m).
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3.3. Parameter estimation

Multiplying both sides of equation (3.9) by (m) we obtain

(m)β(m+1) = (m)β(m) + U(m) (3.10)

It can be shown that the right hand side of (3.10) is

X′W(m)z(m)

where W(m) is the weight matrix W with diagonal elements given in (3.5) eval-

uated at β(m) and z(m) has elements

z
(m)
i =

∑
j

xijβ
(m)
j + (yi − µ

(m)
i )(∂η

(m)
i /∂µ

(m)
i )

= η
(m)
i + (yi − µ

(m)
i )(∂η

(m)
i /∂µ

(m)
i ) (3.11)

Therefore the (m + 1)′st approximation of β̂ is

β(m+1) = (X′W(m)X)−1X′W(m)β(m). (3.12)

3.3.3 Iterative reweighted least squares

The representation in equation (3.12) shows that each iteration of Fisher scor-

ing for numerical evaluation of the maximum likelihood estimate is a weighted

least squares regression of the “working” or “adjusted” response variable z on

the model matrix X, with working weight matrix W. This is a process known

as iterative reweighted least squares, and, as shown in the steps leading up to

(3.12), it is equivalent to Fisher scoring.

The vector z is a linearized form of the link function at µ, evaluated at y,

g(y) ≈ g(µ) + (y − µ)g′(µ) = η + (y − µ)
dη

dµ
= z.

The process is iterative because both z and W depend on the fitted values, for

which only current estimates are available (McCullagh and Nelder, 1989).

In the normal linear model z is equal to y and W is the identity matrix, so

that no iterations are required.
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3.3. Parameter estimation

The parameter estimates β̂ are asymptotically normally distributed with mean

β and variance-covariance matrix, −1 = a(φ)(X′WX)−1, which is the inverse

of the information matrix.

3.3.4 Simplifications for the canonical links

Use of the canonical link results in simplification of the likelihood equations.

With the canonical link the linear predictor is equal to the canonical parameter

θi,

ηi = θi =
∑

j

βjxij . (3.13)

For this model,
dµi

dηi
=

dµi

dθi
=

d b′(θi)
dθi

= b′′(θi).

Recall that b′′(θi) is the variance function, denoted by Vi. Hence (3.4) simplifies

to
∂`

∂βj
=

n∑
i=1

yi − µi

a(φ)
1
Vi

Vi xij =
n∑

i=1

yi − µi

a(φ)
xij .

The second derivatives of the log likelihood then take the form

∂2`

∂βj ∂βh
= − xij

a(φ)

(
∂µi

∂βh

)
.

These do not depend on the observations yi, i = 1, ..., n, so

∂2`

∂β2
= E

(
∂2`

∂β2

)
.

Therefore, under the canonical link, H = − and the Newton-Raphson and

Fisher Scoring algorithms are identical. Since a(φ) is constant for all observa-

tions, the likelihood estimating equations are

n∑
i=1

yixij =
n∑

i=1

µixij .
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3.4. Inference

3.4 Inference

3.4.1 Measures of goodness of fit

The deviance was introduced by Nelder and Wedderburn (1972) as a measure

of discrepancy or goodness of fit. It takes the form

D = 2[`(y,y)− `(µ̂,y)] ,

where `(y,y) is the maximum log likelihood achievable in the saturated model

allowing one parameter per observation, and `(µ̂,y) is the log likelihood eval-

uated in the model under consideration with p + 1 parameters (p < n). The

deviance is a measure of the distance between the saturated model and the re-

duced model under investigation.

The scaled deviance D∗ is the deviance expressed as a multiple of the dispersion

parameter, φ, (assuming φ is known) so that

D∗ =
D

φ
= 2[(`(y,y)− `(µ̂,y)]/φ.

The deviance for the Normal-theory linear model is the residual sum of squares,∑
(y − µ̂)2.

The deviance (φ = 1) or scaled deviance (φ 6= 1, but known) measures the close-

ness of the fit of a model to the data. If a model describes the data well, then

its log likelihood will be very close to `(y,y), resulting in a small deviance.

Similarly, a large deviance indicates a poor fit to the data. The deviance has

an approximate χ2 distribution with n − p − 1 degrees of freedom, where p

is the number of explanatory variables in the linear predictor. Generally, if

D 6 χ2
α,n−p−1 the fitted model is considered adequate. One may also divide the

deviance by its degrees of freedom n− p− 1. If the ratio D/(n− p− 1) is close to

1 we may conclude that the fitted model is adequate. A large value of this ratio

could mean an incorrectly specified model.

The deviance may also be used for comparing nested models. This method uses

deviances in a similar manner to the sums of squares in analysis of variance.

It examines the change in deviance or scaled deviance (φ is known) between

two nested models, therefore providing a useful guide for model selection. The

procedure is detailed in McCullagh and Nelder (1989) and can also generally be
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3.4. Inference

viewed as the method of conditional deviance. Note that if φ is replaced by its

unbiased estimate φ̂ when calculating D∗, the resulting scaled deviance is no

longer useful as a means of checking the goodness of fit of a given model. How-

ever, the change in deviance or scaled deviance for model comparison works

well both when φ is known as well as when it is replaced by its unbiased esti-

mate, φ̂.

An alternative measure of discrepancy is the generalized Pearson chi-square
statistic

χ2 =
n∑

i=1

(yi − µ̂i)2

V (µ̂i)
,

where V (µ̂i) is the estimated variance function for the distribution concerned.

For the Normal-theory linear model χ2 is again the residual sum of squares,

since V (µ̂i) is aprior generally equal to one.

Both the deviance and the generalized Pearson χ2 - statistic have exact χ2 dis-

tributions with n − p − 1 degrees of freedom for Normal-theory linear models.

For the other distributions, however, the deviance and the generalized Pearson

χ2 have asymptotic χ2
n−p−1 distributions.

It is important to note that asymptotic results may not be relevant to statis-

tics calculated from limited amounts of data, and in these cases either D or χ2

may be a superior measure of discrepancy. Although χ2 is sometimes preferred

for its more direct interpretation, a general advantage of the deviance as a mea-

sure of discrepancy is that it is additive for nested sets of models if maximum

likelihood estimates are used (McCullagh and Nelder, 1989).

3.4.2 Hypothesis testing

Likelihood ratio test

The likelihood ratio test is used to compare the fit of two models when one model

is nested within the other, that is, when one model has parameters that are a

subset of the other model (Cox and Hinkley, 1974). This test makes use of the

difference or change in the deviances of the two models.
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3.4. Inference

To see this consider two competing models with corresponding linear predic-

tors given by

η1 = X1β1 + X2β2 Model 1

η2 = X1β1 Model 2

Clearly Model 2 is nested within Model 1. Both models must have the same

distribution and the same link function, and should only differ in their number

of parameters. Because Model 2 has a reduced number of parameters it will

almost always fit the data less well (have a lower log likelihood) than Model 1.

However, it is necessary to test whether this difference in model fit is statisti-

cally significant, to avoid fitting a complex model unnecessarily. Therefore we

shall test H0 : β2 = 0 versus Ha : β2 6= 0.

The deviance for Model 1 is D1 = 2[`(y,y) − `(µ̂1,y)] and for Model 2 it is

D2 = 2[`(y,y)− `(µ̂2,y)].

We use

D2 −D1 = 2[`(y,y)− `(µ̂2,y)]− 2[`(y,y)− `(µ̂1,y)]

= 2[`(µ̂1,y)− `(µ̂2,y)]

= 2 ln

[
L(µ̂1)
L(µ̂2)

]
. (3.14)

The statistic in (3.14) is the likelihood ratio statistic, which is also the differ-

ence in observed deviances. It has an asymptotic χ2 distribution with degrees

of freedom equal to p1 − p2, the difference in the number of explanatory vari-

ables between the two models. The distribution of χ2 is exact in the case of the

Normal-theory linear model.

If 2 ln
[L(µ̂1)

L(µ̂2)

]
is greater than the corresponding value from the chi-square ta-

ble with appropriate degrees of freedom, then one would reject H0 and conclude

that the full model has a significantly smaller deviance than the reduced model,

Model 2. We would then choose to fit Model 1 with the additional β2 parameter.

Otherwise we would choose the reduced Model 2.

If φ 6= 1 then the change in deviance no longer matches the likelihood ratio

statistic, but one need only to divide it by φ for it to be valid. Using the defini-
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tion of the scaled deviance to compare Models 1 and 2 we would use the statistic

T =
D(y, µ̂2)−D(y, µ̂1)

φ
,

which is asymptotically χ2 with q degrees of freedom, where q is the dimension

of the sub-vector β2. If φ is unknown it is common practice to use an estimated

value.

Wald test

The Wald test, like the likelihood ratio test, is used to assess the significance of

each regression coefficient, βj , in the model. The test statistic is

zw =
β̂j

s.e.(β̂j)
.

As mentioned in subsection 3.3 the variance-covariance matrix of the parame-

ter vector β̂ is the inverse of the information matrix given by (3.7). The square

roots of the diagonal elements of the inverse information matrix are the stan-

dard errors of the regression coefficients.

The zw statistic follows an approximate standard Normal distribution N(0, 1).

Many computer packages, including SAS, square the zw statistic and compare it

to a chi-square distribution with one degree of freedom. If z2
w > χ2

α,1 one would

reject the null hypothesis H0 : βj = 0 and conclude that the predictor variable

associated with βj is significant to the model.

Wald inference may be used to construct confidence intervals for individual re-

gression coefficients. An approximate 100(1 - α)% confidence interval for the

j′th regression coefficient is

β̂j − zα/2 s.e.(β̂j) < βj < β̂j + zα/2 s.e.(β̂j).
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Score test

An alternative to the Wald test is the score test. The score statistic correspond-

ing to the j′th regression coefficient is the derivative of the log likelihood, `, with

respect to βj . That is

Uj =
∂`

∂βj
.

The test statistic takes the form

zs =
Ûj

s.e.(Ûj)
,

where the square root of the diagonal elements of the information matrix are

the standard errors of the score statistics. The reference distribution for zs is

the standard Normal distribution.

3.4.3 Diagnostics

Goodness-of-fit statistics provide an overall measure of the adequacy of a model.

Specific aspects of model adequacy, however, are examined by a number of spe-

cialized techniques which are collectively referred to as diagnostics. These spe-

cific aspects include the choice of variance function and link function and terms

in the linear predictor, as well as the identification of outlying values requiring

further investigation. The analysis of residuals is central to diagnostics.

3.4.3.1. The hat matrix

The estimate of the expected value of the response in a generalized linear model

is

Ê(Yi) = µ̂i

= ŷi

This is commonly known as the fitted value. It can be shown that

ŷ = Hy

where H is called the hat matrix. This matrix is symmetric and idempotent. Its

elements cannot exceed 1 and its trace is equal to p, the number of explanatory
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variables in the fitted model. It is explicitly given by

H = W1/2X(X′WX)−1X′W1/2
.

In the above expression W is the weight matrix with elements given by (3.5)

and X is the n by p + 1 design matrix of explanatory variables. The diagonal

elements of H, denoted by hii, are called the leverage measures. They are used

to detect influential observations.

3.4.3.2. Types of residuals

Raw residual

The i′th raw residual, yi − µ̂i, is the crude difference between the i′th obser-

vation and its fitted value. It therefore indicates how well the model fits each

observation. Raw residuals are not easily comparable however, because each of

the observed values, yi, has a different standard error.

Pearson residual

Raw residuals are made more comparable by dividing them by the estimated

standard deviation of yi, so that we have

rPi =
yi − µ̂i√

V (µ̂i)
.

This is called the Pearson residual, since the sum of the squares of these resid-

uals form the Pearson χ2-statistic.

Pearson residuals do not possess approximate unit variance, and so they must

be standardized further. A better standardization is achieved by dividing the

raw residual by its standard error, s.e.(yi − µ̂i) =
√

V (µ̂i)(1− hii), where hii are

the diagonal elements of the hat matrix.

Hence the standardized Pearson residual is

rPi =
yi − µ̂i√

V (µ̂i)(1− hii)
.
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Deviance residual

Each observed value of the response contributes a component deviance di to

the (scaled) deviance, so that D =
∑

di. For each observation yi we define

di = 2
∫ yi

µ̂i

yi − s

V (s)
ds

Then the standardized deviance residual is defined as

rDi =
sign(yi − µ̂i)

√
di√

1− hii
.

The deviance is a measure of the overall goodness-of-fit of a model, and the

deviance residuals are a means of identifying which individual observations

contribute most to the lack of fit.

Deviance residuals approximate the normal distribution better than Pearson

residuals, and are therefore better suited to check agreement to distributional

assumptions in model checking statistics.

Other types of residuals also exist and two of them are briefly described be-

low.

Anscombe residual

In order to make residuals of non-Normal distributions have similar properties

to those of the Normal-theory residuals, Anscombe (1953) suggested defining a

residual using a function A(yi) instead of yi, where A(.) is chosen so as to make

the distribution of A(Y ) approximately Normal (McCullagh and Nelder, 1989).

An Anscombe residual takes the form

rAi =
A(yi)−A(µ̂i)

s.e.[A(yi)−A(µ̂i)]
.

According to Barndorff-Nielsen (1978), the function A(.) for a generalized linear

model is given by

A(.) =
∫

dµ

V 1/3(µ)
.
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The standard error of A(yi) can be expressed as A′(µi)
√

V (µi). McCullagh and

Nelder (1989) provide further detail on Anscombe residuals for various distri-

butions.

Likelihood residual

Comparing the deviance for a model fitted for the complete set of observations

with the deviance when each observation, in turn, is omitted, gives rise to the

likelihood residual,

rLi = sign(yi − µ̂i)
√

hii r2
Pi

+ (1− hii)r2
Di

,

a weighted combination of the deviance and Pearson residuals (Collett, 1991).

Studies by Williams (1984) and Pierce and Schafer (1986) suggest that the val-

ues taken by the standardized deviance residuals, the likelihood residuals and

the Anscombe residuals are usually very similar. Based on these studies Collett

(1991) suggests that, since Anscombe residuals require more difficult computa-

tion, there is no great advantage in using them. Pearson residuals often have

a skewed distribution and so may fail to have similar properties to those of

Normal-theory residuals (McCullagh and Nelder, 1989). In addition they may

not rank extreme observations appropriately. Collett (1991) therefore advises

using either standardized deviance residuals or likelihood residuals for routine

model checking and diagnostics.

3.4.3.3. Residual plots and model adequacy

Residuals can be plotted against a variety of statistics and other indices, each

providing information on specific aspects of model adequacy. Lindsey (1997)

suggests that the analysis of residuals is useful for relatively small sample sizes

of at most 100 observations, and when the model fitted is far from being satu-

rated.

There are a number of residual plot types but the most commonly used type

is the normal probability plot defined below. To use the normal probability plot
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an assumption is made that the residuals follow the normal distribution.

A Normal probability plot shows the standardized residuals arranged in as-

cending order against an approximation to their expected values, under the as-

sumption that they are normally distributed. These expected values are given

by Φ−1[(i − 3
8)/(n + 1

4)], where i = 1, ..., n. If the model fits well the plot should

show a scatter of points around a straight line at 45o. Any curvature or system-

atic deviations from the straight line indicate that the residuals do not have an

approximate Normal distribution.

There are other methods of assessing model adequacy, as explained below.

Checking the form of the linear predictor may be done by plotting the standard-

ized residuals against the fitted values µ̂i. If the model fits well there should

be no pattern in the plot. The occurrence of a systematic pattern indicates a

poor choice of explanatory variables or incorrect functions of the explanatory

variables in the model, including missing interaction terms. This can be fur-

ther investigated by plotting the residuals against the explanatory variables. A

plot of residuals against a particular explanatory variable will determine if that

variable needs to be transformed. For example, X2 might contribute to a better

model fit than X. Residuals may also be plotted against potential explanatory

variables not included in the model. A trend in the plot shows that the explana-

tory variable in question does influence the response and should therefore be

included in the model.

Outliers are an important reason for checking model fit or lack of fit. Obser-

vations which are surprisingly distant from the remaining observations in the

data are known as outliers (Collett, 1991). They can either be the result of mea-

surement error or they can just be naturally occurring rare values. Outliers

can be detected using an index plot, which shows the residuals against their

corresponding observation number or index. When outliers are detected their

effect on the results of the analysis are determined by re-fitting the model after

excluding them. If the results do not differ substantially for models with and

without the outliers, then one need not be too concerned about them. However,

if the outliers do affect inferences drawn from the data, an in-depth investiga-

tion is required into the cause of these extreme observations. Based on this one
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3.5. Modelling binomial data

can decide on whether to include them, to revise the model or to omit them.

The analysis of influential observations is an important aspect of assessing or

finding the best model. An observation is said to be influential if, when omitted

or changed by a small amount, will substantially change the parameter esti-

mates and, hence, the model fit. An influential observation may not necessarily

be an outlier because it may be close to the main body of the data and thus have

a small residual. When dealing with outliers it is important to pay attention to

outliers that are influential than those which are not.

There are several measures of influence. Two of these are given below.

Leverage is a measure of how influential an observation is. The diagonal el-

ements of the hat matrix, hii, are the leverage measures for the observation in

a model. A plot of hii against index values indicates influential observations

which require further investigation.

Cook’s Distance (Cook, 1977) is a statistic which indicates how each observa-

tion affects the complete set of parameter estimates. It measures the squared

distance between β̂, the estimated full parameter vector, and β̂i, the estimated

parameter vector with the i′th observation removed. Cook’s Distance is approx-

imated by

Ci =
1
p

rDi

hii

1− hii
.

Plots of Cook’s distance against index number are also useful in locating obser-

vations with high influence.

3.5 Modelling binomial data

This thesis is based on the analysis of binary and binomial type data. Due to the

heavy reliance on the binomial model in the current thesis we briefly review the

GLM for a binomial response. The type of data that is considered in the thesis

is current status data, giving the HIV disease status of an individual at a given

age ai at the time of testing; implying that if a test is positive then the actual

age at infection is a∗i 6 ai. The aim is to use the data to model the prevalence of

HIV and other disease rates.
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3.5.1 Distinguishing between binary and binomial data

Consider the case where the response, Y , on an experimental unit can take on

only one of two possible values. For example, the outcome can either be a ‘suc-

cess’, denoted by 1 or a ‘failure’ denoted by 0. Let πi and 1−πi be the probabilities

of ‘success’ and ‘failure’ respectively, on the i′th (i = 1, ...., N) experimental or

observational unit. We may write this as

Pr(Yi = 1) = πi and Pr(Yi = 0) = 1− πi .

The response on a single individual or experimental unit is a Bernoulli outcome.

Ungrouped data which lists observations by individual experimental unit are

known as binary data.

Associated with a response variable is a set of explanatory variables x1, ...., xp.

Each possible combination of values of the explanatory variables is called a co-

variate class. When binary data are grouped by covariate class, the responses

0 6 yi 6 mi are then the number of ‘successes’ among the mi subjects in the i′th

covariate class. Then yi/mi denotes the observed response probability of ‘suc-

cess’ in each covariate class. The number of subjects per covariate class sum up

to the total number of subjects in the study, so that m1 + m2 + ..... + mn = N .

This form of grouped data is referred to as binomial data. It is then merely

the sum of independent and homogeneous Bernoulli trials grouped by covariate

class. The responses yi follow a binomial distribution with probability function

P (Yi = yi) =
(

mi

yi

)
πyi

i (1− πi)mi−yi yi = 0, 1, ....., mi (3.15)

where πi is the true probability of success in the i′th covariate class.

It is important to distinguish between grouped (binomial) data and ungrouped

(binary) data when conducting analysis. Methods of analysis involving the Nor-

mal approximation can be applied to binomial data, but not to binary data. In

addition, for models of binomial data, asymptotic approximations are based on

either of the asymptotes, m → ∞ or N → ∞, whereas for binary data only the

latter asymptote applies (McCullagh and Nelder, 1989).
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3.5.2 The model

Models for binary or binomial variables are used to describe the effect of a set

of explanatory variables (x1, ...., xp) on the response probability π.

They are generalized linear models of the form

g(π) = η =
p∑

j=1

xjβj i = 1, ...., N (3.16)

The three possible choices of link function g(π) are:

• Logit or logistic function, g(π) = log
(

π
1−π

)
.

• Probit function, g(π) = Φ−1(π)

• Complementary log-log function, g(π) = log[−log(1− π)]

3.5.3 Fitting the linear logistic model to binomial data

Suppose the responses yi, i = 1, 2, ......, n, are the observed values of independent

random variables Y1, Y2, ...., Yn, where Yi has the binomial distribution with in-

dex mi and parameter πi.

We want to fit a generalized linear model of the form given in (3.16) with the

logit link g(πi) = log(πi / (1− πi)).

The binomial distribution B(mi, πi) belongs to the exponential family of Nelder

and Wedderburn (1972) because the binomial probability distribution function

(pdf) in (3.15) is equivalent to

fY (yi;πi) = exp

(
yi log

(
πi

1− πi

)
+ mi log(1− πi) + log

(
mi

yi

))
(3.17)

which has the general exponential form given in (3.1).

From the coefficient of yi we see that the canonical parameter is the logit of

πi, namely

θi = log

(
πi

1− πi

)
.
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3.5. Modelling binomial data

Solving for πi in terms of θi leads to the solution

πi =
eθi

1 + eθi
and 1− πi =

1
1 + eθi

.

The cumulant function b(θi) is −mi log(1 − πi) or equivalently mi log(1 + eθi).

The remaining term is c(yi, φ) = log
(
mi
yi

)
. Note that a(φ) = 1, so that φ = 1.

It follows that the mean and variance relationship is given by

µi = b′(θi) = mi
eθi

1 + eθi
= miπi

V ar(yi) = a(φ) b′′(θi) = mi
eθi

(1 + eθi)2
= miπi(1− πi) ;

which is in agreement with the mean and variance of a binomial distribution

B(mi, πi).

3.5.4 Parameter estimation

We will follow the method for parameter estimation in a generalized linear

model, as outlined in Section 3.3.

From (3.17) we conclude that the log likelihood for n independent binomial ob-

servations is given by

`(π;y) =
n∑

i=1

[
yi log

(
πi

1− πi

)
+ mi log(1− πi)

]
.

The constant function
∑

log
(
mi
yi

)
does not include πi and is omitted from the ex-

pression as it plays no role in the estimation of model parameters.

Then the derivative of the log likelihood with respect to βj is

∂`

∂βj
=

n∑
i=1

(
∂`

∂πi

dπi

dηi

∂ηi

∂βj

)
.

Now
∂`

∂πi
=

yi −miπi

πi(1− πi)
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3.5. Modelling binomial data

and
∂ηi

∂βj
= xij ,

so that
∂`

∂βj
=

n∑
i=1

yi −miπi

πi(1− πi)
dπi

dηi
xij . (3.18)

The Fisher information for β is

−E

[
∂2`

∂βj ∂βk

]
=

n∑
i=1

mi

πi(1− πi)
∂πi

∂βj

∂πi

∂βk

=
n∑

i=1

mi

πi(1− πi)

(
dπi

dηi

)2

xij xik

=
n∑

i=1

wi xij xik

or in matrix notation, the information matrix is X′WX where

W = diag
(

mi

(
dπi

dηi

)2 1
πi(1− πi)

)
. (3.19)

The logit link is the canonical link for the binomial distribution. When this link

is used we have θi = ηi = log(πi/1− πi), and therefore

∂ηi

∂πi
=

1
πi(1− πi)

.

Thus in the case of the linear logistic model (3.18) reduces to

∂`

∂β
= X′(Y − µ)

in matrix notation, and the weight matrix in the Fisher information reduces to

W = diag (miπi(1− πi)).

Maximum likelihood estimates of the parameters β can then be calculated through

an iterative procedure, using

β(k+1) = (X′W(k)X)−1X′W(k)z(k) ;
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3.6. Application to Vulindlela antenatal clinic data

where W(k) is W evaluated at the k′th iteration and the adjusted variate z(k)

has elements

z
(k)
i = log

(
π

(k)
i

1− π
(k)
i

)
+

yi −miπ
(k)
i

miπ
(k)
i (1− π

(k)
i )

.

3.6 Application to Vulindlela antenatal clinic data

Generalized linear models for binomially distributed variables were fitted to the

data collected from pregnant women attending antenatal clinics in Vulindlela,

KwaZulu-Natal. The response variable for each subject was the HIV status,

which can take on only one of two values, either 1 if the subject tested HIV pos-

itive or 0 if HIV negative. The response probability is therefore the probability

of a subject being ever HIV positive by that age and time. The subjects’ age,

the year in which they were tested, the antenatal clinic they attended, their

partners’ age and their number of previous pregnancies were the explanatory

variables in the data. A detailed description of the data is given in Chapter 2.

When the subjects are grouped by covariate class the responses, yi, are then the

number of HIV positive subjects out of the mi subjects in the i′th covariate class.

The response probability yi/mi is the estimated proportion of HIV positive sub-

jects in the i′th covariate class. In other words it is the estimated prevalence
rate for this covariate class. Note that yi/mi estimates the true prevalence rate

πi. In other words π̂i = yi/mi, i = 1, . . . , k, where k is the number of covariate

classes.

3.6.1 Grouped data

The subjects were grouped by individual age-year combinations. A total of 177

age-year covariate classes were formed. Figure 3.1 shows the observed preva-

lence rates, given by yi/mi, plotted against age.

A linear logistic model of the form

g(πi) = log

(
πi

1− πi

)
= β0 + β1age + β2year (3.20)
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3.6. Application to Vulindlela antenatal clinic data

Figure 3.1: Scatter plot of the observed prevalence rates by age for all years

was fitted. Both age and year were assumed to be continuous variables. Results

showed that the intercept as well as the model coefficients for age and year were

all significant at α = 0.05. The fitted prevalence rates against age for each year

were graphed. The resulting logistic curves were straight lines which increased

with age. The slopes for each year were the same, with each year’s fitted values

being proportionally higher than the previous year’s.

The deviance and the Pearson chi-square statistic for the model in equation

(3.20) is 356.6 and 310.08 respectively. The Deviance/df value of 2.0494 is far

greater than 1, indicating that the model is not a very good fit to the data.

Models with the probit and complementary log-log link functions yielded sim-

ilar linear slopes. From Figure 3.1 it is evident that a more curvilinear model

would fit the data better.

We noted that the best fitting linear predictor required that we take log and

square root transformations of some covariates (age and time) rather than leav-

ing them in their original scale. This is probably due to the complex dependance

of the probability of being HIV positive on age and time.
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3.6. Application to Vulindlela antenatal clinic data

Several models using various transformations of the age and year covariates

were fitted. Likelihood ratio and Wald tests were used to determine the statis-

tical significance of each covariate in a model, and the deviance, Pearson Chi-

square statistic and the analysis of residuals was used to compare the goodness-

of-fit between models.

The model found to be the best fit to the data is given by

g(πi) = log

(
πi

1− πi

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5

where age and year are assumed to be continuous and

X1 = year

X2 = log(year)

X3 = log(age)

X4 =
√

age

X5 = age x year (the interaction between age and year).

From the output shown in Table 3.1, we see that the deviance is 191.0438 and

the deviance/df = 1.1172, which is very close to 1. All the model coefficients βi

are statistically significant at the 5% significance level. Their estimates, stan-

dard errors and confidence limits are displayed in Table 3.2.

Table 3.1: Criterion for assessing goodness of fit for the prevalence model with logit link and
transformations of the age and year covariates

Criterion DF Value Value/DF
Deviance 171 191.0438 1.1172
Scaled Deviance 171 191.0438 1.1172
Pearson Chi-Square 171 190.4962 1.1140
Scaled Pearson X2 171 190.4962 1.1140
Log Likelihood -1243.5653

The fitted prevalence rates by age for each of the years 2001 to 2006 are graphed

in Figure 3.2. These parabolic slopes show that the prevalence in each year in-

creases with age to peaks at 36% − 57% in the mid to late twenties and then

steadily declines toward the early forties. The prevalence rates in 2001 are no-

tably lower than those of the other years across all ages. For ages up to about
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3.6. Application to Vulindlela antenatal clinic data

Table 3.2: Parameter estimates for the prevalence model with logit link and transformations
of the age and year covariates

Parameter DF Estimate Std Error Wald 95% Upper Wald 95% Lower Chi-Square Pr>ChiSq
Intercept 1 -42.4957 3.7824 -49.9091 -35.0824 126.23 <.0001
Year 1 -0.8110 0.1876 -1.1787 -0.4433 18.69 <.0001
log year 1 1.3919 0.3876 0.6322 2.1516 12.90 0.0003
log age 1 36.3169 3.3020 29.8451 42.7887 120.96 <.0001
Sqrt(age) 1 -14.9170 1.4106 -17.6818 -12.1522 111.82 <.0001
Year x Age 1 0.0177 0.0056 0.0068 0.0286 10.19 0.0014
Scale 0 1.0000 0.0000 1.0000 1.0000

30 the prevalence slopes are very similar in all the years, and after age 30 the

prevalence in the latter years is higher than those in the earlier ones. There

also seems to be a shift in the peak prevalence over age. The 2001 peak is

sooner in age than the subsequent years.

The parabolic prevalence curves in Figure 3.2 are similar in shape to those

of Gouws (2006), who modelled HIV prevalence among women attending ante-

natal clinics using data from the national ANC surveys between 1995 and 2004,

as well ANC data from Hlabisa, a rural district of Northern KwaZulu-Natal, for

the years 1997, 1998, 1999 and 2001. The estimated prevalence from national

antenatal clinics between 2001 and 2004, rose with age to highs of between

31.4% and 37.1% in the mid-twenties, and then declined to values of below 18%

in the age group 40-49. The age at which the peak prevalence occurred had

shifted over the study period, from around 23 years in 1995, to 25.4 years in

2001 and then to 26.7 years in 2004. Estimated prevalence for the Vulindlela

antenatal data also shows a shift in the peak prevalence over age. In 2001 the

prevalence estimates peak at age 24, whereas in 2005-2006 prevalence peaks at

around the ages 27-28 (as shown in Figure 3.2). A possible explanation for this

shift is due to easy access to antiretroviral treatment (ARV’s) for HIV infected

individuals as from 2004, when the South African government implemented a

massive ARV roll out policy.

The prevalence curves for the Hlabisa district showed similar trends with age.

Prevalence estimates for each year peaked at around the ages 22-26, with a

shift in peak prevalence over age for each subsequent year. In 2001, the esti-

mated prevalence for Hlabisa rose to a high of 51% at around age 25, before

declining to around 16% in the late forties (Gouws, 2006). The estimated preva-

lence rates for Hlabisa, as well as the estimates obtained in this thesis for the
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Figure 3.2: Fitted prevalence rates by age for each of the years 2001 to 2006, using a model
with logit link and transformations of the age and year covariates.

Vulindlela area, are both higher than the prevalence estimates from the na-

tional antenatal surveys, for all age groups prior to age 40. This reflects the

high HIV prevalence in the KwaZulu-Natal province.

Alternative models with year being treated as a categorical variable were also

fitted. Age and transformations of the age variable were still treated as contin-

uous. We then have five βi coefficients, one for each of the years 2001 to 2005

with 2006 being the reference category. However, results showed that the coeffi-

cients corresponding to each year were not statistically significant (p > 0.05%),

with the exception of year 2001. The intercept, age and log(age) were however

statistically significant.
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Chapter 4

Methods for estimating
incidence and prevalence

The prevalence of a disease is the proportion of all disease cases within a pop-

ulation at a given time. The incidence is the rate at which new cases of the

disease occur. It is given by

Incidence rate =
No. of new cases of the disease during a given time period

No. of uninfected individuals in the population x Time period of observation
.

(4.1)

Prevalence includes both new and existing cases of the disease. There is there-

fore a strong interrelation between the prevalence and incidence, since any

prevalent case means that a new infection has occurred before.

Both incidence and the force of infection are parameters used to describe the

rate of new infections of a disease. The force of infection is defined as the rate

(per unit time) at which susceptible individuals become infected with the dis-

ease.

This chapter will review some of the well-known methods for estimating the

incidence of a disease from cross-sectional prevalence data. Note that all the

methods discussed assume the disease to be irreversible.

4.1 Relation between incidence and prevalence

Freeman and Hutchison (1980) showed that when a population is in the steady-
state, the prevalence, incidence and the duration of the disease are interrelated
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4.1. Relation between incidence and prevalence

in such a way that any two of these measures may be used to calculate the third.

A steady-state population is defined as one in which: 1) Incidence and the

distribution of durations of the disease remain constant over time; and 2) the

population of affected and unaffected individuals remains constant over time

(Freeman and Hutchison, 1980). The second steady-state assumption means

that new individuals are added to the susceptible population at the same rate

at which they are removed from the susceptible population, and that new cases

are added to the diseased population at the same rate at which they are re-

moved from the diseased population.

If D denotes the duration of the disease i.e. the length of time from infection

with the disease to death (in the case of irreversible diseases), then the total

number of infected individuals in the population is given by

PN = P. N = I. E(D) , (4.2)

where P is the prevalence or proportion of infected individuals, N is the total

population size, I is the number of incident cases per unit time and E(D) is the

expected value of disease duration from a distribution of durations.

The interrelation of the prevalence, P , and the incidence rate, i, is given by

P =
i. E(D)

1 + i. E(D)
⇔ P

1− P
= i. E(D) . (4.3)

The term P/(1 − P ) is the prevalence odds, the odds of having the disease. It

gives the probability of being disease prevalent relative to being disease free.

From equation (4.3) we see that the prevalence odds can be expressed as the

product of the incidence rate and the expected duration of disease. We can then

obtain the incidence rate as

i =
P

(1− P ). E(D)
. (4.4)

Hence, under the assumption of a steady-state population, incidence can be

obtained from prevalence data, when the expected duration of the disease is

known. Equation (4.2) is exact when steady-state assumption (1) is met, that

is, when the incidence and the distribution of disease durations remain constant
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4.2. Age specific incidence and the effect of disease specific mortality

over time. Furthermore, the constancy of both these quantities must have held

for at least as long as the longest disease duration included in the distribution.

This is because the number of infected individuals in a time period could be

made up of incident cases only. Equations (4.3) and (4.4) are exact when both

the steady-state assumptions are met.

The interrelations above were used by Brookmeyer and Quinn (1995) to esti-

mate HIV incidence from a cross-sectional prevalence survey in India. Over

1900 individuals were tested for HIV, and the seronegatives were then tested

for the p24 antigen. This antigen is detected in individuals in the preantibody

or window period (the time from HIV infection to seroconversion). The prean-

tibody period is relatively short and thus individuals in this period are likely

to have been infected recently. The expected value of the duration of the p24

antigen period before seroconversion is then estimated from the data. This ex-

pected duration, along with the prevalence of the p24 antigenemia, are used in

the above equations to estimate HIV incidence.

The models of Freeman and Hutchison (1980) do not model incidence as a func-

tion of age. However, the equations relating incidence, prevalence and duration

may be applied to different age intervals. An extension of these models may be

found in Alho (1992), for the case of exponentially growing populations.

4.2 Age specific incidence and the effect of disease
specific mortality

4.2.1 Equal mortality for infected and uninfected individuals

Under the assumption of equal mortality for infected and uninfected individu-

als, Leske et al (1981) proposed a deterministic method to estimate incidence

from age-specific prevalence data. An additional assumption of the model is

that the disease incidence and the population composition (regarding disease

risk factors) remain constant over time.

Consider the total number of disease prevalent individuals in a population at

the beginning of age interval k + 1. This number includes (i) the individuals
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4.2. Age specific incidence and the effect of disease specific mortality

who were already infected with the disease at the beginning of age interval k

and who survive to the end of the interval, plus (ii) those who become infected

with the disease during interval k (incident cases) and survive to the end of the

interval. This is expressed as

Nk+1 Pk+1 = NkPk(1− qk) + Ik(Nk −NkPk)(1− qk) (4.5)

= NkPk(1− qk) + IkNk(1− Pk)(1− qk)

= Nk[Pk(1− qk) + Ik(1− Pk)(1− qk)]

where

Nk = population size at the beginning of age interval k

Pk = prevalence (proportion infected) at beginning of age interval k, 0 6 Pk 6 1

qk = probability of dying during age interval k, 0 6 qk 6 1

Ik = probability of becoming infected with the disease during age interval k,

0 6 Ik 6 1

The term Nk − NkPk represents the number of susceptible or uninfected indi-

viduals at the beginning of age interval k while NkPk represents the number of

disease prevalent individuals at the beginning of age interval k. The proportion

who survive to the end of the k′th age interval is represented by (1− qk).

Then by rearranging (4.5) and solving for Ik we have

Ik =
Nk+1Pk+1 − NkPk(1− qk)

(Nk −NkPk)(1− qk)
.

If mortality risk is assumed equal for infected and uninfected individuals, then

Nk+1 = Nk(1− qk), and hence

Ik =
Pk+1 − Pk

1− Pk
. (4.6)

For diseases with very low prevalence the denominator in (4.6) will be close

to 1, so that in these cases Ik can be approximated by simply subtracting the

prevalence proportions of successive age intervals.

The probability of being infected with the disease during age interval k, Ik,
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4.2. Age specific incidence and the effect of disease specific mortality

is also sometimes referred to as the cumulative incidence (Langohr, 1999). It is

a probability and not a rate and hence differs from the incidence rate, ik (Leske

et al, 1981). Cumulative incidence may be viewed as the crude probability of

developing the disease, as it does not account for the probability of dying. The

incidence rate, on the other hand, is the net risk of developing the disease in

the presence of competing mortality (Ederer, 1964), and it is therefore the pa-

rameter of greater epidemiological interest. The incidence rate, ik, can however

be estimated from Ik.

By definition, ik is the number of new cases of disease in age interval k divided

by the average population at risk (Elandt-Johnson, 1975). Then the incidence

rate, ik, is given by

ik =
Ik(Nk −NkPk)(1− qk) + Ik(Nk −NkPk) qk fk

Nk −NkPk − [(Nk −NkPk)1
2qk]

, (4.7)

where fk is the proportion of new cases in age interval k who do not survive the

interval.

Thus the numerator in (4.7) includes new cases of the disease in age inter-

val k who survive to the end of the interval and the new cases in age interval

k who die during the interval. It is in this way that ik accounts for compet-

ing mortality, and differs from the cumulative incidence, Ik, in that Ik includes

only those new cases of the disease who are alive at the end of the age interval

(i.e. those surviving the interval). The denominator in (4.7) implies that periods

from the beginning of the age interval until death follow a uniform distribution.

Equation (4.7) can be simplified so that

ik =
Ik[1− qk(1− fk)]

1− 1
2qk

. (4.8)

When estimating ik two alternative assumptions can be made, regarding the

distributions of the times until death and until acquiring infection:

1. If the times until death and until infection with the disease are assumed

equal, then fk = 1
2 ; and the incidence rate equals the cumulative inci-

dence, ik = Ik. In this case, the incidence rate can then be estimated using
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(4.6). However, as explained earlier, there are conceptual differences be-

tween Ik and ik.

2. Alternatively, if the times until death and until infection are assumed to

follow independent exponential distributions, then ik takes the form

ik =
ln(1− Ik)

ln(1− qk) + ln(1− Ik)

[
1− (1− Ik)(1− qk)

1− 1
2qk

]
. (4.9)

Details on the derivation of (4.9) can be found in Leske et al (1981). The delta

method, also explained in Leske et al (1981), is used to obtain variance esti-

mates of îk.

Thus, Leske et al (1981) showed that depending on the assumptions made about

the survival times and disease-free times, the incidence rate, ik, can be esti-

mated using age-specific prevalence only, or using both age-specific prevalence

and mortality.

Leske et al (1981) and Podgor et al (1983) applied these methods to age-specific

prevalence data for various eye diseases, such as open angle glaucoma, in areas

of the United Kingdom and the United States respectively.

4.2.2 Differential mortality for infected and uninfected individ-
uals

Consider the case of differential mortality for infected and uninfected individu-

als (q′k and qk respectively). Then, from equation (4.5), the number of infected

individuals in the population at the beginning of age interval k + 1 is given by

Nk+1 Pk+1 = Nk[Pk(1− q′k) + Ik(1− Pk)(1− q′k)] (4.10)

Similarly, the total number of uninfected individuals at the beginning of age

interval k + 1 is

Nk+1 −Nk+1Pk+1 = (Nk −NkPk)(1− Ik)(1− qk) (4.11)

= Nk(1− Pk)(1− Ik)(1− qk)
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Now consider three types of time periods; from the beginning of age interval k

to:

− death in the absence of disease;

− infection with the disease; and

− death in the presence of disease.

Podgor and Leske (1986) assumed that these three time periods followed inde-

pendent exponential distributions with parameters λ1, λ2 and λ3 respectively.

The parameter λ2 is equivalent to the disease incidence rate, ik. Similarly, λ3

may be interpreted as the disease-specific mortality rate and λ1 as the mortal-

ity rate for uninfected individuals i.e. the background mortality rate.

Transforming equations (4.10) and (4.11) gives

1− Pk

1− Pk+1
Pk+1 e−(λ1+λ2) = Pk e−λ3 +(1−Pk)[e−λ3− e−(λ1+λ2)]

λ2

λ1 + λ2 − λ3
(4.12)

It then follows that, for age interval k, if λ1 and λ3 are known, then the esti-

mates for Pk and Pk+1 may be used to estimate λ2. Equation (4.12) is non-linear

in λ2, and can therefore be solved by standard methods such as the Newton-

Raphson algorithm. The estimated variances of λ2 are obtained by the delta

method (Podgor and Leske, 1986).

If λ1 = λ3 and substituting Ik = 1− e−λ2 , the model reduces to (4.6):

Ik =
Pk+1 − Pk

1− Pk
,

which is the cumulative incidence under the model which assumes that disease

does not affect mortality risk. The cumulative incidence is seen as the crude

probability of acquiring infection as it does not account for mortality risk. Un-

der the above parametrization, the incidence rate is given by

λ2 = ik = −ln

[
1− Pk+1

1− Pk

]
.

Podgor and Leske (1986) developed and applied this approach to estimate the

incidence of various eye diseases in the United Kingdom. In terms of modelling
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disease progression λ2 = ik is also known as the hazard of infection or the force
of infection. Methods of estimating the force of infection from prevalence data

are presented and applied in Chapter 5.

4.3 Probability framework for studying age-specific
incidence and prevalence

This section describes the basic probability framework for studying the relation

between age-specific incidence and prevalence in a cross-sectional sample. The

framework, which is based on a simple three-state process, was discussed by

Keiding (1991) in his much cited paper “Age-Specific Incidence and Prevalence:

A Statistical Perspective” in the Journal of the Royal Statistical Society. This

probability framework forms the basis of many of the methods developed for

estimating incidence from prevalence data.

Let H denote the healthy state, or equivalently the susceptible state, when an

individual is alive and disease-free, I the disease state and D dead (see Figure

4.1). Individuals are born into the healthy state. Then, during their lifetimes

individuals can transit out of the healthy state either into state I, and then to

state D, or directly to state D. The rates or intensities associated with the H →
I and H→ D transitions are θ(a, t) and µ(a, t) respectively, which are dependent

on age and calendar time, while the rate v(a, t, d) associated with the I → D

transition is additionally dependent on the duration in state I. The transition

intensity µ(a, t) can also be viewed as the natural mortality rate. The transi-

tion intensity v(a, t, d) combines natural mortality and excess mortality due to

disease.

Consider the following transition periods:

A1 = time to death in the absence of disease (time of transition from state H

directly to state D)

A2 = time to infection (time of transition from state H to state I)

A3 = time from infection to death (time of transition to state D, after entry to I)
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Figure 4.1: The three-state model for studying age-specific incidence and prevalence, where
H=healthy, I=disease and D=death, with µ(a, t), θ(a, t) and v(a, t, d), the rates or intensities
corresponding to each transition time.

Then the rates or intensities associated with the first two transition periods

are µ(a, t) and θ(a, t) respectively, which are dependent on age and calendar

time, while the rate v(a, t, d) associated with the third transition period is addi-

tionally dependent on disease duration d. The rate θ(a, t) is the incidence rate,

or the rate of new infections.

Under this model, there are two potential times to death. If entry to the disease

state, I, occurs, the time to death is A2 + A3. Otherwise the time to death is A1.

It is assumed that A1 is independent of A2 and A3, so that we have a model of

independent competing risks.

Consider the simple case of an exponential distribution: A ∼ exp(λ), where

f(a) = λe−λa a > 0

If A = age to the occurrence of an event, then

P (A 6 a) = F (a) = 1− e−λa = P (experiencing the event before age a)

P (A > a) = 1− F (a) = S(a) = e−λa = P (escaping or avoiding the event to beyond age a)

Now if λ is a function of a, then

1− e−
R a
0 λ(u) du = P (experiencing the event before age a)

e−
R a
0 λ(u) du = P (escaping or avoiding the event to beyond age a)
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4.3. Probability framework for studying age-specific incidence and prevalence

Let us apply this result in the context of cross-sectional current status sero-

prevalence survey data, where an individual aged a is tested for disease at cal-

endar time t. Note that the calendar time of birth for this individual is then t−a.

Hence the corresponding ‘survival’ times for A1, A2 and A3 are:

P (A2 > a) = P (escaping infection to beyond age a)

= exp

(
−

∫ a

0
θ(u, t− a + u) du

)
(4.13)

P (A1 > a) = P (surviving to beyond age a in the healthy state)

= exp

(
−

∫ a

0
µ(u, t− a + u) du

)
(4.14)

and

P (A3 > d|A2 = a− d) = P (surviving to beyond age a in the disease state|infection at a− d)

= exp

(
−

∫ a

0
v(u, t− a + u, u− a + d) du

)
, (4.15)

for an individual infected at age a− d.

In the current work we refer to the function θ(a, t) in equation (4.13) as the

hazard or force of infection. This is because (4.13) is a type of survival function,

where θ is its corresponding hazard rate.

Note that Keiding (1991) assumed that entry into state H, the alive-death tran-

sition and the onset of infection were all Poisson point processes, each with their

own intensity function.

4.3.1 The prevalence odds

We shall now derive the prevalence odds, the ratio of the probability to be dis-

ease prevalent and the probability to be disease free.

The probability for an individual to be alive and in state I at age a and time
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4.3. Probability framework for studying age-specific incidence and prevalence

t is

k1(a, t, d) =
∫ a

0
[P (escaping infection until a− d, t− d) x P (infection at a− d, t− d)

x P (survival in state I to a, t)] dd

=
∫ a

0

{
exp

[
−

∫ a−d

0
{µ(u, t− a + u) + θ(u, t− a + u)}du

]
θ(a− d, t− d)

x exp

[
−

∫ a

a−d
v(u, t− a + u, u− a + d) du

]}
dd (4.16)

This is therefore the probability of an individual aged a tested at time t, who

was infected at some age a − d, and then survived in the disease state for the

next d years until point of testing (a, t).

Note that 0 6 d < a, assuming that vertical transmission or infection at birth

is not possible, otherwise 0 6 d 6 a. The integral is taken over all possible

age-times (a− d, t− d) at which infection may have occurred.

The probability for an individual to be alive and in the healthy state, H, at

age a and time t is

k2(a, t) = P (escaping infection to beyond (a, t) and being tested at (a, t))

= exp

[
−

∫ a

0
{µ(u, t− a + u) + θ(u, t− a + u)}du

]
(4.17)

This probability corresponds to an individual aged a and tested at time t, hav-

ing not experienced infection with the disease.

The prevalence odds are given by

π(a, t) =
Pat

1− Pat
,

where Pat is the age specific prevalence at age a and time t, and can be expressed

as

Pat =
P(an individual aged a is alive and diseased at time t)

P(an individual aged a is alive at time t)
.

Then π(a, t) has the form

π(a, t) =
k1(a, t, d)
k2(a, t)

(4.18)
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4.4. Estimating the age and time incidence of HIV from antenatal seroprevalence data

where k1(a, t, d) and k2(a, t) are defined in equations (4.16) and (4.17).

The prevalence odds, rather than the actual prevalence function, is often used

in maximum likelihood procedures for estimating the parameters of interest.

4.4 Estimating the age and time incidence of HIV from
antenatal seroprevalence data

We shall discuss the methods of Ades and Medley (1994) and Sakarovitch et al.

(2007) for the estimation of age and time incidence of HIV based on seropreva-

lence data from women attending antenatal clinics. The methods used will be

explained by referring to the data obtained from the Vulindlela antenatal clinic

study.

The seroprevalence data contains observations from women aged 12 and above,

attending antenatal clinics, in the rural area of Vulindlela in KwaZulu - Natal.

The data were collected from 2001 to 2006.

The prevalence data consists of Nat, the number of individuals aged a (a =

12, 13, . . . , 47) included in the survey at calendar time t (t = 2001, 2002, . . . , 2006),

and to Zat, the number of HIV prevalent individuals at age a and calendar time

t. The variable Zat is assumed to be binomially distributed with size Nat and

probability Pat. Pat denotes the probability that an individual aged a is HIV

positive at time t. Hence Pat is the prevalence at age-time point (a, t).

Our aim is to estimate the age- and time-specific HIV incidence, denoted by

θ(a, t). The seroprevalence odds, π(a, t) are the odds of being HIV prevalent

at (a, t). They are calculated as the probability of testing HIV-positive divided

by the probability of testing HIV-negative, at a particular age and time. i.e.

π(a, t) = Pat
1−Pat

.
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According to Sakarovitch et al. (2007), the seroprevalence odds are given by

π(a, t) =

∫ a
0 {[exp(−

∫ a−d
0 θ(u, t− a + u)du)] θ(a− d, t− d) φ(a, t, d)}dd

exp(−
∫ a
0 θ(u, t− a + u)du)

(4.19)

The numerator equates to Pat. The term φ(a, t, d) is the Relative Inclusion Rate

(RIR), the probability of being included in the study for an individual aged a at

calendar time t and infected d years before, relative to an uninfected individual

aged a at time t. The details of this RIR parameter are described in Section

4.4.1. The term [exp(−
∫ a−d
0 θ(u, t − a + u)du)] is the probability of escaping in-

fection by the age-time point (a − d, t − d). θ(a − d, t − d) is the HIV incidence

rate, at age at infection a − d and time at infection t − d. The denominator

exp(−
∫ a
0 θ(u, t − a + u)du) is an expansion of (1 − Pat). It is the probability of

escaping infection or not being infected by age-time point (a, t).

Note that the seroprevalence odds in (4.19) is similar in form to the expression

for the prevalence odds used by Keiding (1991), given in equation (4.18). It dif-

fers from (4.18) in that it does not include the survival probabilities correspond-

ing to the natural mortality rate µ(u, t−a+u) and the disease specific mortality

rate v(u, t− a + u, u− a + d). Instead the seroprevalence odds in (4.19) accounts

for background mortality and disease specific mortality through φ(a, t, d), its

Relative Inclusion Rate parameter. This parameter will be explained further in

the text.

In the current work we refer to θ(a, t) as the hazard or force of infection.

The discrete version of equation (4.19) is

πk =
∑
m

(exp(−
∑

q<m θqXqk))[1− exp(−θmXmk)]φ(ak, tk, Dqk)
exp(−

∑
q θqXqk)

(4.20)

where Xqk is the time spent in age-time interval q by persons in group k. We

assume that the annual incidence rate θq is constant on each age-time interval

q = (ai, ti). If q refers to individual age-year periods, then only one year is spent

in each interval q, and thus Xqk is equal to 1 for all q and k. Dqk is the time

between survey date tk and the time of HIV infection.

We can see that (exp(−
∑

q<m θqXqk)) is the probability of escaping infection by
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4.4. Estimating the age and time incidence of HIV from antenatal seroprevalence data

age-time interval q for all q < m (Refer to the simpler example of the exponen-

tial distribution in Section 4.3). The term [1−exp(−θmXqk)] is the probability of

being infected by age-time point m.
∑

m implies that these infection probabil-

ities are summed over all the possible age-time points at which infection may

have occurred. This is because an individual aged a and tested at time t could

have been infected at any age-time point (ai, ti) back up until age 12 or year

1984 i.e.(12 6 ai 6 a, 1984 6 ti 6 t).

For example, the seroprevalence odds for an individual aged 14 and tested in

year 2001 are

π14,01 =
(1− e−θ14,01)e−(θ13,00+θ12,99)φ(A > 14) + (1− e−θ13,00)e−θ12,99φ(A > 13) + (1− e−θ12,99)φ(A > 12)

e−(θ14,01+θ13,00+θ12,99)
.

The form of the numerator can be explained as follows:

The individual could have been infected at age 14 in 2001 (i.e. θ14,01) and not at

age 13 in 2000 and at age 12 in 1999, and then survived AIDs related mortality

to be tested and hence included in the study at age-time point (14, 2001);

or the individual could have been infected at age 13 in 2000 (i.e. θ13,00) and

not at age 12 in 1999, and then survived AIDs related mortality to be tested at

age 14 in 2001;

or the individual could have been infected at age 12 in 1999 (i.e. θ12,99) and

then survived AIDs related mortality to be tested at age 14 in 2001.

4.4.1 The Relative Inclusion Rate

The Relative Inclusion Rate (RIR) takes into account the fact that the probabil-

ity of being included in the sample depends on the HIV status. It is denoted by

φ(a, t, d), which is the probability of being included in the sample at time t for

an individual aged a and infected d years before, relative to the probability of

being included in the sample for an uninfected individual aged a at time t.
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4.4. Estimating the age and time incidence of HIV from antenatal seroprevalence data

According to Sakarovitch et al. (2007), the RIR is a product of three functions:

φ(a, t, d) = f(t).g(a).h(d, a− d)

We shall discuss each of these three functions in detail.

f(t)

The function f(t) is the change in the Relative Inclusion Rate over calendar

time. The goal of this function is to take into account changes in the popula-

tion, or changes in testing procedures or approaches to combating the disease

over calendar time. This includes government policy on disease control.

We let f be a piecewise linear function, of the form

f(t) = (1 + β1(t− t0)/100)It6t0 + (1 + β2(t− t0)/100)It>t0

This function has two slopes, β1 and β2, for before and after time t0, and is equal

to 1 at t0. In the context of South Africa t0 can be chosen to represent mid-2004.

This is because in the year 2004 mass roll-out of antiretroviral drugs began

in South Africa, particularly in the rural areas. This was a major change in

the approach to combating the AIDs epidemic in the country. Therefore, in the

Vulindlela study, β1 is the slope from the beginning of the observation period to

mid-2004 and β2 is the slope from mid-2004 to 2006.

If no external information is available to help decide what values to set β1 and

β2 to, then these two parameters must be estimated from the model. In the

study by Sakarovitch et al. (2007) the two slopes were bounded between -10

and 10 per cent.

g(a)

The function g(a) is the change in the RIR according to women’s age. It takes

into account the large number of HIV infected women among young pregnant

women relative to young non-pregnant women. This is due to the fact that

young pregnant women, say less than 20 years old, are likely to have entered

sexual life earlier than non-pregnant women of the same age, and therefore to

have been more exposed to HIV sexual transmission.
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4.4. Estimating the age and time incidence of HIV from antenatal seroprevalence data

g is modelled as a piecewise linear function, which decreases toward one be-

fore age 20 and is equal to one thereafter, that is

g(a) = 1− α(a− 20) if a 6 20

= 1 if a > 20

According to Carpenter (1997) the ‘fertility risk ratio’ for infected women com-

pared to uninfected women is 1.35 for women between 15 and 19 years old.

Therefore the parameter α may be fixed so that g(17) = 1.35 and g(20) = 1.

h(d, a-d)

The function h is the change in the RIR according to time since infection d and

age at infection a − d. It accounts for the under-representation of HIV-infected

women among pregnant women. The chances of an infected woman falling preg-

nant decline as the woman’s and her partner’s HIV infection progresses. This

is due to a number of reasons. One major reason for this is that fertility de-

clines as a woman’s HIV infection progresses (Carpenter, 1997; Lewis et al,

2004). Infected women are also more likely to have infected partners, who will

have a reduction in spermatozoid production (Krieger et al, 1991; Martin et al,

1992). Infected women may have sexual intercourse less often, due either to

partner illness or that their partners have died from AIDs, and may therefore

have lower chances of falling pregnant. Even a suspicion of HIV infection could

make it difficult for an infected women to marry (or re-marry) and then have

children (Ntozi, 1997).

We can therefore say that the probability of an infected woman becoming preg-

nant decreases as the number of years since infection (d) increases. The prob-

ability of becoming pregnant equals zero when the woman becomes infertile.

This ‘point of infertility’ may occur with the onset of AIDs or a certain number

of years before the onset of AIDs. Thus in order to model the time to infertility

we need to first model the time to AIDs. This is done using a two parameter

Weibull distribution with median µ and shape γ.

The parameters µ and γ were expressed as functions of age at infection a − d,
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4.4. Estimating the age and time incidence of HIV from antenatal seroprevalence data

so that µ = µ0 + (a− d)µ1 and γ = γ0 + (a− d)γ1. The parameters µ0, µ1, γ0 and

γ1 can be estimated from the model.

We will look at some properties of the Weibull distribution in order to further

understand the function h(d, a− d).

The Weibull distribution

The Weibull distribution is popular for modelling survival times or time-to-

event data. In this case we will be modelling the time to AIDs i.e. the time

from HIV infection to the onset of AIDs. This is also known as the AIDs incu-

bation period.

The two parameter pdf of a Weibull distribution is given by

f(t) =
γ

η

(
t

η

)γ−1

exp

[
−

(
t

η

)γ]
(4.21)

where γ = the shape (slope) parameter, η = the scale parameter and T = the

time to AIDs.

The cumulative distribution function (cdf) of the Weibull distribution is

F (t) = P (T 6 t) = 1− exp

[
−

(
t

η

)γ]
. (4.22)

The cdf gives the probability that the time to AIDs, T , is less than or equal

to a specified time t.

The reliability function gives the probability that the time to AIDs T is greater

than a specified time, t. That is:

R(t) = 1− F (t) = exp

[
−

(
t

η

)γ]
. (4.23)
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4.5. Summary

Sakarovitch et al. (2007) define the function h(d, a− d) by

h(d, a− d) = exp

[
−

(
d

µ0 + µ1(a− d)

)γ0+γ1(a−d)]
. (4.24)

This function gives the probability of developing AIDs either now or some time

in the future, for a person infected d years before and at the age a − d. We can

see that h(d, a − d) is actually an adaptation of the Reliability function R(t).

Note that the random variable T being the time to AIDs is now D, the num-

ber of years since HIV infection, and d is a particular realization or value of D.

Thus in this sense the function h(d, a − d) does suffice in modelling the time to

AIDs.

In order to determine whether the time to infertility decline occurs either at

the onset of AIDs or 1, 2, 3 or more years before the onset of AIDs we express

the median parameter µ = µ0 + µ1(a− d) as a linear function of the lag a− d.

4.5 Summary

This chapter discussed methods of estimating age specific incidence assuming

equal and differential mortality for infected and uninfected individuals. The re-

lationship between the incidence rate and the hazard of infection or the force of

infection were discussed using approaches by Keiding (1991) and Sakarovitch

et al (2007). Part of the aim of the current work is to estimate the rate of new

infections using seroprevalence data. We use the force of infection or the haz-

ard of infection as a measure of new infections. This task is accomplished in

Chapter 5.
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Chapter 5

Estimation of the force of
infection

The force of infection, or hazard of infection, describing the rate at which sus-

ceptible individuals acquire infection, is one of the primary epidemiological

parameters in infectious disease modelling. For many infectious diseases the

force of infection is assumed to be age-dependent. Although the methods for

estimating the force of infection can be applied to case notification data (re-

ported cases of the disease in a specific time period), it is more common to have

cross-sectional seroprevalence data from which the prevalence and the force of

infection are estimated. The force of infection has the same interpretation as

the incidence rate ik in equation (4.7).

Let q(a, t) be the proportion of susceptible individuals at age a and time t. Then

the partial differential equation describing the change in the susceptible pro-

portion at age a and time t is given by

∂

∂a
q(a, t) +

∂

∂t
q(a, t) = −`(a, t) q(a, t) (5.1)

where `(a, t) is the force of infection. Note that in (5.1) it is assumed that the

disease is irreversible, which we know to be the case for HIV infection, and that

the mortality caused by the infection is negligible (Shkedy et al, 2006). In the

case of HIV, we can assume negligible mortality at early stages of the disease

which has a long incubation period.

In the steady state, under the time homogeneous assumption, we have (∂/∂t) (q(a, t)) =

0 and (5.1) reduces to
d

da
q(a) = −`(a) q(a). (5.2)
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The equation above describes the change in the susceptible proportion with age,

and `(a) denotes the age-dependent force of infection. The prevalence is given

by π(a) = 1− q(a).

Muench (1959) first proposed the concept of estimating the force of infection,

using a catalytic model on summation data. In this model, the time spent in

the susceptible class is exponentially distributed with rate β. The susceptible

proportion was given by q(a) = e−
R a
0 β ds = e−βa and (d/da)q(a) was given by

−βe−βa. Hence Muench’s model assumed a constant force of infection, `(a) = β,

which is independent of age. This clearly was quite a strong assumption which

many researchers later sought to relax. Griffiths (1974) suggested a model for

measles in which the force of infection increases linearly with age over the age

range 0− 10 years. The model was extended further by Grenfell and Anderson

(1985) who used polynomial functions to model changes in the force of infection

with age. The model assumed that q(a) = e−
P

βia
i resulting in a force of infec-

tion of the form `(a) =
∑

βiia
i−1. The general solution for (5.2) is q(a) = e−γ(a),

where γ(a) =
∫ a
0 `(s)ds is the cumulative force of infection or hazard of infection.

When higher order polynomials are fitted estimates of the force of infection can

be negative for some age values. Models resulting in the force of infection turn-

ing negative are those in which the estimated prevalence is a non-monotone

function. Farrington (1990) addressed this problem by constraining the force of

infection to be non-negative i.e. `(a) > 0. He developed a non-linear model for

π(a) which he applied to data on measles, mumps and rubella.

The models proposed by Muench (1959), Griffiths (1974), and Grenfell and An-

derson (1985) may be fit as generalized linear models (GLMs) with binomial

error and log link. Since then other models fitted within the framework of

GLMs with binomial error have been considered, using different link functions.

Becker (1989) and Diamond and McDonald (1992) parameterized the preva-

lence and force of infection as a Weibull model, using the complementary log-

log link. Grummer-Strawn (1993) proposed a log-logistic model with logit link

function as well as a Weibull proportional hazards model with complementary

log-log link.

Keiding (1991), who was the first to explicitly use a non-parametric technique
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to estimate the force of infection, used isotonic regression models to estimate

the prevalence and kernel smoothers to estimate the force of infection. More re-

cently Shkedy et al (2003) proposed using local polynomials to model the preva-

lence and the force of infection.

Semi-parametric models were proposed by Shiboski (1998), Hastie and Tib-

shirani (1990) as well as Rossini and Tsiatis (1996), in which the age-specific

prevalence is modelled non-parametrically and possible covariate effects are in-

cluded in the parametric component of the model.

In order to better understand the models used to estimate the force of infec-

tion, we need to gain an understanding of survival analysis methods. We give

a brief background to survival analysis, then discuss how these methods can

be applied to current status data to estimate the prevalence and the force of

infection. We then present commonly used models of the force of infection, and

apply them to the Vulindlela antenatal clinic data used in the current thesis.

5.1 Background to survival analysis

Survival analysis is the term used to describe the analysis of time to event data,

where the variable of interest is the time from a well defined time origin until

the occurrence of a particular event or endpoint. In the context of infectious

disease data the survival time is the time that elapses before an individual is

infected with the disease. The time origin may be birth or the date of entry into

the study. A measurement scale for the passage of survival times should be well

defined, and in most studies calendar time serves as a common and meaningful

measure. When the time origin is birth the survival time is equal to the age of

the individual, as is the case in the current application.

Standard statistical procedures are not appropriate in the analysis of survival

data, as data of this type are generally not symmetrically distributed and tend

to be positively skewed. It is therefore unreasonable to assume that the data

have a normal distribution (Collett, 2003). Examples of distributions that are

better suited to survival data are the Weibull, exponential and gamma distri-

butions. The use of the exponential distribution, however, may be unrealistic in

many applications, as it results in a constant hazard rate.
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A main feature of survival data is censoring. A censored survival time occurs

when the event or endpoint of interest is unknown or has not been observed for

an individual. This could be because the individual has not yet experienced the

event at the point of observation or because he or she has been lost to follow-up.

Right censoring occurs when the actual survival time is after (or to the right of)

the last known or observed survival time while left censoring occurs when the

actual survival time is less than (or to the left of) the last known survival time.

In current status data all the observations are censored (Namata et al, 2007).

The Vulindlela antenatal clinic data is cross sectional data where the current

HIV status of each individual is determined at a particular age-time point, ei-

ther 1 for infected or 0 for uninfected. At the time of HIV testing each individ-

ual’s time to infection is unknown. The only available information is the age

and time at which they are tested, which becomes their censored survival time.

Suppose an HIV test for individual i is done at age ai. If the test is positive

then the actual age at infection is a∗i 6 ai, hence the age at infection is left-

censored. On the other hand if the test is negative then we know that the age

at infection is some future age a∗i > ai and in this case the age at infection is

right censored.

Another type of censoring is interval censoring, where the actual age at in-

fection a∗i is known to lie between two age points a1
i and a2

i , that is a1
i < a∗i < a2

i .

The current data however does not present the problem of interval censored

data because the individuals in the study were not tested at two time points.

5.2 The survival function and the hazard function

Suppose t1, t2, ...., tn are observed survival times of the continuous random vari-

able T , which has probability density function f(t). The cumulative distribution

function of T , F (t), is given by

F (t) = P (T 6 t)

=
∫ t

0
f(u) du,
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which represents the probability of survival time being less than some value t.

The survival function gives the probability of an individual surviving to beyond

time t, i.e. the individual experiences the event or endpoint after time t, and is

given by

S(t) = P (T > t)

= 1− F (t). (5.3)

The hazard function is the instantaneous rate of occurrence of the event of

interest at time t, given survival to time t. It is defined by

h(t) = limδt→0
P (t 6 T 6 t + δt | T > t)

δt

By the laws of conditional probability it can be shown that

h(t) = lim δt→0
P (t 6 T 6 t + δt)

δt P (T > t)

= lim δt→0

(
F (t + δt)− F (t)

δt

)
1

P (T > t)

=
F ′(t)

1− F (t)
(5.4)

=
f(t)
S(t)

. (5.5)

The derivations imply that

S(t) = e−
R t
0 h(u) du = e−H(t) (5.6)

where H(t) is called the cumulative or integrated hazard function.

5.3 Current status data - The force of infection and
the prevalence

In the context of current status infectious disease data, the event/endpoint is

infection with the disease and survival time is the time to infection.

If the time origin is at birth, then the observed survival time is the age of an
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individual at the time of testing for infection. Then the survival function S(a)

gives the probability of an individual escaping infection to beyond age a, i.e.

the individual is infected with the disease after age a. Note that from equation

(5.6), S(a) is a function of h(a), the hazard of infection. At a particular age a

the survival function gives the probability to be uninfected, or susceptible to the

disease.

Hence

S(a) = q(a),

where q(a) is the proportion of susceptible individuals at age a.

The proportion of infected individuals, or the prevalence, at age a is given by

π(a) = 1− q(a) = 1− S(a).

From (5.3) we see that the prevalence is equivalent to the cumulative distribu-

tion function F (a) of the age to infection variable.

Using infectious disease data we equate the hazard function to the force of in-
fection, the rate at which susceptible individuals become infected. It can be seen

from (5.2) that the force of infection is represented as

`(a) =
π′(a)

1− π(a)
(5.7)

where π(a) is the age-specific prevalence.

5.4 Models for the force of infection using different
link functions

Consider a cross-sectional prevalence sample of size N and let ai be the age of

the i′th subject. We observe the binary variable Yi such that

Yi =
{

1 if subject i experienced infection before or at age ai

0 otherwise

Let π(ai) = P (Yi = 1) and suppose π(ai) is a function of a vector valued pa-

rameter β.
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The log likelihood for β is then given by

`(β) =
N∑

i=1

Yi log{π(ai)}+ (1− Yi) log{1− π(ai)} (5.8)

with π(ai) = 1− q(ai) being the probability to be infected before or at age ai.

A generalized linear model for a binomial response takes the form

g(π(a)) = η(a)

where η(a) is the linear predictor and g is the link function. Then the value of

π(a) is found by π(a) = g−1(η(a)).

The models in which the force of infection was constant (discussed by Muench

(1959)), linear (Griffiths, 1974) and flexible (Grenfell and Anderson, 1985) all

assume that g is the log link function for (1 − π) and that η(a) =
∑k

i=0 βia
i,

where k is equal to 1 (constant), 2 (linear) and K (flexible). In these models

π(a) = 1 − e−η(a), and using the definition for the force of infection in (5.7), we

have

`(a) =
π′(a)

1− π(a)
=

η′(a) e−η(a)

e−η(a)
= η′(a). (5.9)

Therefore when using a model with the log link the force of infection is simply

the first derivative of the linear predictor. This means that the linear predictor

η(a) is the cumulative hazard function.

When a link function other than the log link is used, the force of infection may

still be derived from (5.7). It can be shown that for the binomial distribution,

the force of infection is expressed as

`(a) = η′(a) δ(η(a)) (5.10)

The form of δ(.) is dependent on the link function g. We see that when g is the

log link the value of δ(η(a)) is equal to 1. Table 5.1 shows the structural forms

of the force of infection, π(a) and δ(η(a)) associated with the three commonly

used link functions in models with binomial error.
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Table 5.1: Structural forms of the force of infection for commonly used link functions

Link function π(a) `(a) δ(η(a))

log 1 − e−η(a) η′(a) 1

complementary log-log 1 − e−eη(a)
η′(a) eη(a) eη(a)

logit eη(a)

1 + eη(a) η′(a) eη(a)

1 + eη(a)
eη(a)

1 + eη(a)

Using the Vulindlela antenatal clinic data, we will illustrate three well known

examples of generalized linear models for the force of infection, which assume

that the time to infection follows either an exponential, Weibull or log-logistic

distribution. The variables used are participant’s age ai and post-test HIV sta-

tus (infected or uninfected), Yi. Model fitting was conducted using SAS Proc

Genmod.

5.4.1 Exponential distribution

Survival analysis

If the age to infection a is exponentially distributed, we have probability density

function

f(a) = λe−λa.

The survival function or probability to be susceptible is given by

S(a) = e−λa

and the hazard function is given by

f(a)
S(a)

=
λe−λa

e−λa
= λ.

Current status data

The proportion of susceptible individuals q(a) is the survival function, so that

q(a) = S(a) = e−λa.

The prevalence is then given by

π(a) = 1− q(a) = 1− e−λa.
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The force of infection is the hazard rate, l(a) = λ. We can show this directly

using equation (5.7) by

`(a) =
π′(a)

1− π(a)
=

λe−λa

e−λa
= λ.

Hence the force of infection is a constant value which does not depend on age.

Model fitting and parameter estimation

We fit a generalized linear model with the complementary log-log link function,

of the form

g(π(a)) = log(−log(1− π(a))),

using the log(age) as an offset variable.

Substituting for π(a) we have

g(π(a)) = log(λ) + log(a). (5.11)

Table 5.2 below shows the deviance and Pearson Chi-square statistics for the

fitted model, as well as the minimised value of the log likelihood. The parameter

estimates for the fitted model are displayed in Table 5.3.

Table 5.2: Fit statistics from the exponential model for the force of infection

Criterion DF Value Value/DF
Deviance 32 219.7307 6.8666
Scaled Deviance 32 219.7307 6.8666
Pearson Chi-Square 32 234.3620 7.3238
Scaled Pearson X2 32 234.3620 7.3238
Log Likelihood -1350.6600

Table 5.3: Parameter estimates from the exponential model for the force of infection

Parameter DF Estimate Standard Error Wald 95% Lower Wald 95% Upper Chi-Square Pr > ChiSq
Intercept 1 -3.2165 0.0367 -3.2885 -3.1445 7672.57 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

The intercept µ = −3.2165 in Table 5.3 gives the value of log(λ) in (5.11) above,
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so that the true parameter λ can be found by exponentiating the intercept. That

is,

g(π(a)) = µ + log(a) ⇒ λ = eµ.

The force of infection rate is therefore λ = e−3.2165 = 0.0401 or 4.01%.

As per the invariance property the lower and upper 95% confidence limits for λ

are given by

LCL = eµ̂−1.96 x s.e.(µ̂) = e−3.2165−1.96 x 0.0367 = 0.0373

UCL = eµ̂+1.96 x s.e.(µ̂) = e−3.2165+1.96 x 0.0367 = 0.0431

Figure 5.1 and Figure 5.2 respectively show the plotted prevalence and force of

infection rates against age. Prevalence of HIV infection rises with age toward a

maximum of 0.73 or 73% in the mid-forties.

Recall that the prevalence π(a) corresponds to F (a), the cumulative distribu-

tion function of a survival time, in this case the age to infection. This means

that π(a) is a cumulative prevalence. It represents the probability to be infected

before age a. For example, π(20) gives the probability to be infected before age

20, i.e. the probability of an individual having been infected at age 19 or 18 or

17 or..., in other words at any age less than 20. The cumulative prevalence at

the highest age is an estimate of the prevalence rate in the total sample. This

is due to the fact that the probability to be infected before this age is the overall

probability to be infected in the sample of individuals ranging in age from 12 to

47.

The force of infection in Figure 5.2 is constant at 0.0401 for all ages and implies

a force of infection that is independent of age. While this may be appropriate in

the case of some diseases such as Rubella (Hens et al, 2010), a constant force of

infection for HIV may not be realistic.

The interpretation of the force or hazard of infection λ = 0.0401 is that given a

participant had not tested positive before age a the probability that the individ-

ual will test positive at age a is 0.0401. The disadvantage with the exponential

model is that it assumes that the rate of new infections is constant over all ages.
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Figure 5.1: The fitted prevalence function for the exponential model

In this case a rate of approximately 4 per hundred at every age, which is quite

unrealistic as shown in Figure 5.2.

5.4.2 Weibull distribution

Survival analysis

If we assume that the age A spent in the susceptible class before infection (HIV

positive test) follows a Weibull distribution, then A has probability density func-

tion

f(a) = αλaα−1 e−λaα
.

The probability of infection beyond age a, given by the survival function, is

S(a) = e−λaα
,

and hence the hazard (or force of infection) takes the form

f(a)
S(a)

=
αλaα−1 e−λaα

e−λaα = αλaα−1.
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Figure 5.2: The fitted force of infection function for the exponential model

Current status data

The proportion of susceptible individuals is given by the survival function,

q(a) = e−λaα
.

The prevalence is therefore

π(a) = 1− q(a) = 1− e−λaα

and the force of infection is the hazard rate

`(a) = αλaα−1,

which may be verified using the formula in (5.7). The Weibull force of infection

is therefore age-dependent and monotone (either increasing or decreasing), de-

pending on the sign of α. Note that when α = 1 the Weibull model is an expo-

nential model.

Model fitting and parameter estimation

A generalized linear model with the complementary log-log link function, of the

form

g(π(a)) = log(−log(1− π(a)))
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is fit to the data. Log(age) instead of age is used as the independent variable. By

substituting π(a) = 1 − e−λaα into the equation above, the model then equates

to

g(π(a)) = log(λ) + α log(a). (5.12)

The Weibull model was fit to the antenatal clinic data from Vulindlela. The re-

sulting prevalence function rises monotonically with age, with the slope or rate

of increase becoming flatter towards higher ages. The Weibull force of infection

decreases monotonically with age with its slope levelling off towards higher age

values. The fitted prevalence and force of infection functions for the Weibull

model were very similar in form to that of the log- logistic model, which is dis-

cussed next. The goodness of fit however proved to be slightly better for the

log-logistic model, and therefore we shall present the results of the log logistic

model.

5.4.3 Log-logistic distribution

Survival analysis

Let us assume that the age to infection A has a log-logistic distribution, with

probability density function

f(a) =
λαaα−1

(1 + λaα)2
.

Then, the survival function is

S(a) =
1

1 + λaα

and the hazard function takes the form

f(a)
S(a)

=
λαaα−1

1 + λaα
.
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Current status data

The proportion of susceptible individuals is equivalent to the survival function,

so that we have

q(a) =
1

1 + λaα

The prevalence is given by

π(a) = 1− q(a)

= 1− 1
1 + λaα

=
λaα

1 + λaα
.

The force of infection is the hazard rate,

`(a) =
λαaα−1

1 + λaα
.

To verify this using the formula in (5.7), we have

`(a) =
π′(a)

1− π(a)

=

d
da

(
λaα

1+λaα

)
(

1− λaα

1+λaα

)
Using the quotient rule for differentiation,

`(a) =
[λαaα−1(1 + λaα)− λαaα−1(λaα)]/(1 + λaα)2

1/(1 + λaα)

=
λαaα−1(1 + λaα − λaα)

1 + λaα

=
λαaα−1

1 + λaα
.

Model fitting and parameter estimation

A generalized linear model is fit to the data using a logit link function and with

log(age) as the independent variable. The model takes the form

g(π(a)) = logit(π(a)) = log

(
π(a)

1− π(a)

)
.
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The right hand side of g(π(a)) equates to

g(π(a)) = log(λaα)

= log(λ) + α log(a). (5.13)

The goodness of fit statistics in Table 5.4 show that the deviance, the Pear-

son Chi-square and the log likelihood are smaller than those of the exponential

model, and marginally smaller than those of the Weibull model.

It can be seen from Table 5.5 that the estimate of the intercept is −1.8878.

Due to functional form of the intercept in (5.13), the estimate of λ is derived by

exponentiating the intercept, so that λ = eµ = e−1.8878 = 0.1514. The coefficient

of log(age) is α, and is estimated to be 0.5859.

Figure 5.3 and 5.4 shows the fitted prevalence and force of infection functions

against age. The prevalence increases monotonically with age, from 0.09 to 0.54

over the age range, and with a slope that becomes flatter with increasing age.

As discussed before, the prevalence at the highest age is an estimate of the

overall prevalence in the sample.

The force of infection declines with age, from 0.108 at age 12 to 0.01 in the mid

to late forties. The slope becomes flatter with increasing age.

Table 5.4: Fit statistics from the log-logistic model for the force of infection

Criterion DF Value Value/DF
Deviance 31 142.9536 4.6114
Scaled Deviance 31 142.9536 4.6114
Pearson Chi-Square 31 137.3814 4.4317
Scaled Pearson X2 31 137.3814 4.4317
Log Likelihood -1312.2715

Table 5.5: Parameter estimates from the log-logistic model for the force of infection

Parameter DF Estimate Standard Error Wald 95% Lower Wald 95% Upper Chi-Square Pr > ChiSq
Intercept 1 -1.8878 0.2129 -2.3050 -1.4705 78.62 <.0001
lage 1 0.5859 0.0869 0.4156 0.7562 45.46 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000
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Figure 5.3: The fitted prevalence function for the log-logistic model

Figure 5.4: The fitted force of infection function for the log-logistic model
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Figure 5.5: The fitted prevalence functions for each year from the log-logistic model

Fitting the model separately by year (Figure 5.5) shows that the prevalence is

highest in years 2003 and 2004 for all ages 20 and older. The prevalence in-

creases with age in all the years from 2002 - 2006, while in 2001 the prevalence

shows a slight decline with age. The slopes for the latter years, 2003-2006,

are notably steeper than in 2002, indicative of a higher rate of increase in the

prevalence with age in these latter years.

Figure 5.6 shows the corresponding force of infection functions for each year

using the log logistic model. In 2001 the force of infection remains almost con-

stant, showing a very slight increase over age. The force of infection is lowest

in 2001 across all age values. The force of infection functions for the other years

decrease with age. In 2002 the force of infection has a steep decline from 0.094

at age 12 to 0.02 at age 15. For ages 15 and older the force of infection for years

2003, 2004, 2005 and 2006 all have similar slopes, and are notably higher than

the rates for 2002. The disadvantage with the log-logistic model is that it as-

sumes a declining rate of new infections with age, which is not realistic for a

disease such as HIV. Thus more realistic models are preferred.
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Figure 5.6: The fitted force of infection functions for each year from the log-logistic model

5.5 Non-linear models

The following models for the force of infection do not assume that the age to in-

fection a follows a specific distribution. However an assumption is made about

the form of the force of infection `(a). They are non-linear models. Hence we

use SAS Proc NLMIXED to fit these models to the data.

5.5.1 Linear force of infection

A model in which the force of infection increases linearly with age was first in-

troduced by Griffiths (1974). This model specifies the prevalence so that the

linear predictor is a quadratic function of age.

The linear force of infection has the form

`(a) = β1 + 2β2a

and the prevalence is given by

π(a) = 1− exp(β0 + β1a + β2a
2). (5.14)
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Note that this model can be seen in the context of survival analysis where π(a)

is the cumulative distribution function of the time to infection or alternatively,

1− survival time, and where `(a) is the corresponding hazard rate. The function

λ(a) =
∫ a
0 `(a) da gives the cumulative hazard function.

Model fitting and parameter estimation

A model for the linear force of infection is fit using SAS Proc NLMIXED. The

functional form of the prevalence in (5.14) must be specified in NLMIXED and

initial values are required for β0, β1 and β2.

Note that within the framework of generalized linear models for binary data,

the model for the linear force of infection can be fitted using a log link. The

model takes the form

g(π(a)) = log(1− π(a))

= β0 + β1a + β2a
2,

where the number of susceptible individuals is the response. This model leads

to a linear force of infection, increasing or declining with age, and therefore un-

realistic in relation to the HIV infection process.

5.5.2 Farrington’s model

Farrington (1990) proposed a non-linear model for the force of infection, defined

by

`(a) = (α1a− α3) e−α2a + α3 .

To ensure that the force of infection satisfies `(ai) > 0, i = 1, 2, ...., n the pa-

rameter space was constrained to be non-negative (αj > 0, j = 1, 2, 3).

The model assumes that the force of infection is zero at birth, then increases

linearly to a peak before decreasing exponentially. The age at which the force

of infection reaches a peak corresponds to the maximum contact rate of suscep-

tibles with infectious individuals.
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The parameter α3 is referred to as the long term residual value of the force

of infection. When α3 = 0 the force of infection decreases to 0 as age tends to

infinity. This results in the 2− instead of 3−parameter model.

Farrington (1990) defined the prevalence by

π(a) = 1− exp

(
α1

α2
ae−α2a +

1
α2

(
α1

α2
− α3

)
(e−α2a − 1)− α3a

)
. (5.15)

This type of function is more realistic for a disease such as HIV, and hence it is

discussed and applied below.

Model fitting and parameter estimation

I. Farrington’s 3-parameter model

The model is fit using SAS Proc NLMIXED, where initial estimates of α1, α2

and α3 are required. The expression for prevalence in (5.15) must be specified

and the binomial distribution must be specified in the model statement.

There are several optimization techniques in Proc NLMIXED, and since the de-

fault technique, the Dual Quasi-Newton method, could not achieve convergence

after a large number of iterations, the other non-linear optimization techniques

were tried. The Newton-Raphson Ridge Optimization (NRRIDG) method was

used, as it achieved convergence of the algorithm while yielding the lowest val-

ues of the fit statistics, when compared to the other optimization techniques.

The fitted model resulted in a monotonically decreasing force of infection. How-

ever, the Farrington’s 2-parameter model, discussed next, produced a better fit

to the data.

II. The 2-parameter model (α3 = 0)

When α3 = 0, Farrington’s model for the force of infection reduces to a 2-

parameter model, where

`(a) = α1ae−α2a
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and

π(a) = 1− exp

(
α1

α2
ae−α2a +

1
α2

(
α1

α2

)
(e−α2a − 1)

)
SAS Proc NLMIXED is again used to fit the model above and the resulting fit

statistics as well as parameter estimates are displayed in Tables 5.6 and 5.7

below.

Table 5.6: Fit statistics from Farrington’s 2-parameter model for the force of infection

Criterion Value
-2 Log Likelihood 223.2
AIC 227.2
AICC 227.6
BIC 230.2

Table 5.7: Parameter estimates from Farrington’s 2-parameter model for the force of infection

Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper Gradient
alpha1 0.06432 0.008626 33 7.46 <.0001 0.05 0.04677 0.08187 -0.00004
alpha2 0.3180 0.02675 33 11.89 <.0001 0.05 0.2636 0.3725 0.00002

Fitted prevalence (Figure 5.7) rises monotonically with age, with a slope that

becomes flatter toward higher ages. The prevalence increases from almost zero

at age 12 to 0.47 in the mid forties. The force of infection (Figure 5.8) on the

other hand increases from age 12 to a peak of 0.074 at age 15 then decreases

toward zero beyond age 35.

Analysis by year (Figure 5.9) shows that the estimated prevalence functions all

rise steeply toward the early twenties and then level off, with the slopes for

years 2003-2006 being much steeper than those for 2001 and 2002. For ages 22

and above, the prevalence is highest in 2003 and 2004.

The force of infection functions for each year are plotted in Figure 5.10. The

functions rise to a peak at around age 16 and decline thereafter, tending to-

wards zero in the mid to late forties. The slope for 2001 does not rise toward a

peak, as it simply decreases monotonically from 0.055 at age 15 toward zero in

the higher age groups. The slope for 2002 increases toward age 15 at a much
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Figure 5.7: The fitted prevalence function for Farrington’s 2-parameter model i.e. when α3 =

0.

Figure 5.8: The fitted force of infection function for Farrington’s 2-parameter model i.e. when
α3 = 0.
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Figure 5.9: The fitted prevalence functions for each year using the Farrington’s 2-parameter
model.

Figure 5.10: The fitted force of infection functions for each year using the Farrington’s 2-
parameter model.
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higher rate than the other years and has a notably steeper decline than the

other years.

The results show that both the log-logistic model and the Farrington’s 2-parameter

model estimate the HIV prevalence and the force of infection relatively well,

when applied to the Vulindlela antenatal clinic data. The Farrington’s 2-parameter

model does seem to produce more realistic prevalence and force of infection

curves. Using this model, the force of infection is particularly high at lower

age values, being above 0.04 between ages 14 and 20. A peak of 0.074 at age

15 is observed. The force of infection then declines with age, becoming very

low from age 30 onwards. Thus in the context of HIV among pregnant women,

these trends of the force of infection with age result in a more epidemiologically

plausible curve, making the Farrington’s 2 parameter model a more preferable

fit to the Vulindlela antenatal data.

Recall that in cross sectional prevalence data, all the observations are cen-

sored. For an HIV infected individual the true age at infection would have

occurred some time before the age at testing, in which case the age at testing

is left censored. In the case of right censored individuals, infection may occur

at some age beyond the age at testing. Interval censoring occurs when the true

age at infection is known to lie between two observed testing ages. It is thus

important to develop models which account for the different types of censoring.
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Chapter 6

Covariate dependence on the
hazard of a positive HIV test

6.1 Introduction

The proportional hazards regression model, introduced by Cox (1972), has be-

come by far the most widely used procedure for modelling the relationship of

many explanatory variables on survival times. The model assumes a paramet-

ric form for the effects of the explanatory variables but no specified form of

probability distribution is assumed for the survival times. Cox’s model is there-

fore a semiparametric model.

The model is however based on the assumption of proportional hazards, which

refers to the fact that the ratio of hazard functions for any two individuals

will be constant over the survival time, but only depend on measured subject-

specific explanatory variables.

6.2 The general proportional hazards model

Suppose we wish to examine the relationship of a set of explanatory variables

on the hazard of a particular event of interest. Let x1, x2, ...., xp be the values of

p explanatory variables X1, X2, ..., Xp observed for each of n individuals. These

observed values form the covariate vector x = (x1, x2, ...., xp)′. Let h0(t) be the

hazard function for an individual for whom the values of all the explanatory

variables in x are zero. The function h0(t) is an unspecified nonnegative func-

tion and is known as the baseline hazard.
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The hazard for the i′th individual is then given by

hi(t) = eβ′xi h0(t)

= exp(β1x1i + β2x2i + .... + βpxpi) h0(t), (6.1)

where β is a p x 1 vector of coefficients corresponding to the explanatory vari-

ables.

The term eβ′xi is called the hazard ratio or relative hazard. It gives the haz-

ard at time t for an individual with vector of observed explanatory variables xi

relative to the hazard for an individual with x = 0.

The hazard ratio cannot be negative and the exponential in (6.1) plays an im-

portant role in ensuring that this is indeed the case.

To better understand the concept of proportional hazards, consider the ratio

of hazards for two individuals with fixed vectors of explanatory variables xi

and xj ,

hi(t)
hj(t)

=
eβ′xih0(t)
eβ′xjh0(t)

=
eβ′xi

eβ′xj
. (6.2)

Taking the log of this hazard ratio gives ln[hi(t)/hj(t)] = β′(xi − xj), which is

constant over time. In other words, the hazard for one individual is a fixed pro-

portion of the hazard for the other individual. A graph of the log hazards for

the two individuals would therefore show parallel curves over time.

It is important to note that h0(t) cancels out of the numerator and denomi-

nator in (6.2). Furthermore, no functional form for h0(t) was specified. We will

see in Section 6.3 that the β-coefficients of a proportional hazards model can be

estimated without specifying the functional form of h0(t).

6.2.1 The survivor function

The survivor function for the i′th individual is given by

Si(t) = [S0(t)]exp(β′xi), (6.3)
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where xi is the vector of observed explanatory variables for the i′th individual.

S0(t) is the baseline survivor function and can be expressed as

S0(t) = exp(−H0(t)) = exp

(
−

∫ t

0
h0(t) dt

)
(6.4)

where H0(t) denotes the cumulative baseline hazard function.

6.3 Fitting the proportional hazards model

The unknown parameters β1, β2, . . . , βp of the proportional hazards model are

estimated using the method of maximum likelihood. Cox (1972) proposed the

partial likelihood function, which depends only on the parameters of interest.

This partial likelihood allows for estimation of the model parameters without

having to specify the baseline hazard function h0(t).

The resulting parameter estimates have similar distributional properties to full

maximum likelihood estimates. In particular, they are asymptotically normal

and approximately unbiased (Allison, 1995). While there is some loss of in-

formation about β in using the partial likelihood instead of the full likelihood

function, so that the resulting estimates are not fully efficient, Efron (1977)

shows that the loss of efficiency is very small.

Another interesting property of the partial likelihood estimates is that they

depend only on the ranks of the event times, rather than their numerical val-

ues. Thus any monotonic transformation of the event times will not alter the

parameter estimates (Allison, 1995).

6.3.1 The partial likelihood function

Suppose that in a sample there are n observed individuals, n− r right-censored

survival times and r event times. We assume for the moment that only one

event occurs at any one time. The r event times are ordered so that t(1) < t(2) <

. . . < t(r) and t(j) is the j′th ordered event time. The set of individuals who are

at risk of experiencing the event at a time just prior to t(j) is called the risk set,
denoted by R(t(j)).
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Then the partial likelihood function proposed by Cox (1972) is

L(β) =
r∏

j=1

exp(β′x(j))∑
l∈R(t(j))

exp(β′xl)
, (6.5)

where x(j) is the vector of explanatory variables for the individual who experi-

ences the event at time t(j).

The denominator in (6.5) is the sum of values of exp(β′x) over all individuals

who are at risk at time t(j). It thus includes both right-censored individuals and

those who experience the event at t(j). In other words censoring occurs after ob-

served event times. Note that the product in the partial likelihood is taken

only over the individuals who experience the event, whereas a full likelihood

function takes the product over all the individuals in the sample. Therefore, a

right-censored individual (i.e. one who does not experience the event at t(j) or

any time prior to t(j)) will not feature in the numerator, but will be included in

the summation over the risk sets in the denominator.

Furthermore, we see that the partial likelihood depends only on the ranking

of event times, as this is what determines the risk set at each event time t(j).

Cox (1972) argued that the intervals between successive event times carry no

information about β. Hence, since h0(t) has no specified functional form, it is

possible that h0(t) and thus h(t) is zero in these intervals.

Let us look briefly at how Cox’s partial likelihood function in equation (6.5)

is derived.

Deriving the partial likelihood function

Consider the probability that an individual experiences an event at time t(j),

given that only one event may occur at any one time;

P (individual with explanatory variables x(j) has an event at t(j)|one event at t(j)).

(6.6)

By the law of conditional probability P (A|B) = P (A and B)/P (B), so that (6.6)
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becomes

P (individual with explanatory variables x(j) has an event at t(j))
P (one event at t(j))

.

Event times are assumed to be independent of each other. Hence the denomi-

nator in the above expression is the sum of the probabilities of experiencing an

event at time t(j) over all individuals who are at risk for the event at t(j). The

expression above then equates to

P (individual with explanatory variables x(j) has an event at t(j))∑
l∈R(t(j))

P (individual l has an event at t(j))
.

The single time point t(j) is replaced with the interval (t(j), t(j) + δt), and by

dividing the numerator and denominator by δt we have

P [individual with explanatory variables x(j) has an event in (t(j), t(j) + δt)]/δt∑
l∈R(t(j))

P [individual l has an event in (t(j), t(j) + δt)]/δt
.

By taking limits as δt → 0 and by the definition of a hazard function, this

expression becomes
hi(t)∑

l∈R(t(j))
hl(t(j))

,

for the i′th individual. Substituting (6.1) into this expression gives

h0(t) exp(β′x(j))∑
l∈R(t(j))

h0(t) exp(β′xl)
.

The baseline hazard cancels from the numerator and the denominator, so that

we have
exp(β′x(j))∑

l∈R(t(j))
exp(β′xl)

.

Taking the product of these probabilities over all event times j = 1, ..., r we ob-

tain the partial likelihood function as given in equation (6.5).
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6.4 Estimation of the β coefficients

Following the method of maximum likelihood, the first derivatives of the log

likelihood with respect to βk, k = 1, ..., p are equated to zero, and solving these

equations yields the parameter estimates β̂k. The vector of parameters is de-

noted as β = (β1, β2, . . . , βp)′. From equation (6.5) the log partial likelihood is

given by

`(β) =
r∑

j=1

(
β′x(j) − ln

[ ∑
l∈R(t(j))

exp(β′xl)
])

(6.7)

The first derivative of the log partial likelihood with respect to βk is then

∂`(β)
∂βk

=
r∑

j=1

(
x(jk) −

∑
l∈R(t(j))

xlk exp(β′xl)∑
l∈R(t(j))

exp(β′xl)

)

=
r∑

j=1

(
x(jk) −

∑
l∈R(t(j))

wjl(β) xl

)
(6.8)

where

wjl(β) =
exp(β′xl)∑

s∈R(t(j))
exp(β′xs)

.

The term x(jk) in (6.8) denotes the value of the explanatory variable Xk for the

individual who has an event at time t(j).

We need to find the set of first derivatives for all p explanatory variables, that

is (∂`(β)/∂β1), (∂`(β)/∂β2), . . . , (∂`(β)/∂βp). Setting (∂`(β)/∂βk) = 0 for each βk,

k = 1, ..., p gives rise to the score equations, which when simultaneously solved,

give the vector of parameter estimates β̂ = (β̂1, β̂2, . . . , β̂p)′.

To estimate the variance of β̂ consider the second derivative of the log partial

likelihood in equation (6.7) with respect to βk, which is given by

∂2`(β)
∂β2

k

= −
r∑

j=1

(( ∑
l∈R(t(j))

exp(β′xl)
)( ∑

l∈R(t(j))
x2

lkexp(β′xl)
)
−

( ∑
l∈R(t(j))

xlkexp(β′xl)
)2( ∑

l∈R(t(j))
exp(β′xl)

)2

)

= −
r∑

j=1

(∑
l∈R(t(j))

x2
lk exp(β′xl)∑

l∈R(t(j))
exp(β′xl)

−
(∑

l∈R(t(j))
xlk exp(β′xl)∑

l∈R(t(j))
exp(β′xl)

)2)
. (6.9)

92



6.5. Handling ties

The p x p information matrix takes the form

(β) = −∂2`(β)
∂β2

,

thereby including all second-order partial derivatives of `(β).

The variance-covariance matrix of β̂ is the inverse of the observed information

matrix evaluated at β̂,

V̂ ar(β̂) = −1(β̂).

The vector of parameter estimates β̂ is consistent and asymptotically normally

distributed with mean β, the true parameter vector, and variance [E((β̂))]−1,

the inverse of the expected information matrix.

Many statistical packages, including SAS, use the Newton-Raphson algorithm

to fit a proportional hazards model. This algorithm is remarkably robust for the

Cox partial likelihood (Therneau and Grambsch, 2000). Details of the Newton-

Raphson estimation procedure are discussed in Chapter 3 Section 3.3.1.

6.5 Handling ties

Up until now we have assumed that only one event can occur at any one time.

Tied event times are the result of more than one event taking place at a time

t(j).

The proportional hazards model assumes that the hazard function is contin-

uous, and therefore tied event times are not possible (Collett, 2003). However,

event times are often recorded to the nearest day, month or year, and ties are

therefore likely to be present as a result of these imprecise measurement units.

If many events can occur at a time t(j), then it is also possible for there to

be more than one censored observation at that time t(j). When there are both

events and censored observations at any time point, the censoring is assumed

to occur after the events. This eliminates any uncertainty about which individ-

uals are included in the risk set at that time point.
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In order to incorporate tied event times into a proportional hazards model, the

likelihood function in (6.5) must be modified. The exact expression for the par-

tial likelihood for tied data is given by

L(β) =
r∏

j=1

( ∫ ∞

0

∏
k∈D(t(j))

[
1−exp

(
− exp(β′sj)∑

l∈R(t(j))
exp(β′sl)

t

)]
exp(−t) dt

)
, (6.10)

where sj is the vector of sums of each of the p explanatory variables for all in-

dividuals who experience an event at t(j), j = 1, ..., r . D(t(j)) denotes the set of

all individuals who experience an event at t(j).

The basis for constructing the exact partial likelihood is to assume that the

dj tied events at time t(j) are due to imprecise measurement of time, and that

there is a true ordering of the dj events. Thus the tied events could have oc-

curred in any one of the dj ! possible arrangements of their values. The denom-

inator in the exact partial likelihood is modified so as to include each of these

arrangements.

Computation of the exact partial likelihood can be very time consuming, partic-

ularly when there are a large number of ties at one or more event times (Collett,

2003). Approximations to the likelihood function that are less computationally

intensive and that still account for the presence of tied event times were pro-

posed by Breslow (1974) and Efron (1977).

The simpler approximation of the two was given by Breslow (1974), who pro-

posed the approximate partial likelihood

L(β) =
r∏

j=1

exp(β′sj)[∑
l∈R(t(j))

exp(β′xl)
]dj

(6.11)

where dj is the number of events occurring at time t(j) and sj is the vector of

sums of each of the explanatory variables for all individuals who experience the

event at time t(j). The dj events are assumed to be distinct and to occur sequen-

tially. The denominator in (6.11) is the summation over all possible sequences

of the events. The Breslow approximation is relatively straightforward to com-

pute and is an adequate approximation when the number of tied observations

at any one time is not too large.
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The approximation proposed by Efron (1977) uses as the partial likelihood

L(β) =
r∏

j=1

exp(β′sj)∏dj

k=1

[∑
l∈R(t(j))

exp(β′xl)− (k − 1)d−1
j

∑
l∈D(t(j))

exp(β′xl)
] . (6.12)

This yields a closer approximation to the exact partial likelihood than that pro-

posed by Breslow. However, in practise the two approximations often give sim-

ilar results (Collett, 2003).

The exact, Efron and Breslow methods for handling tied observations are all

available in the SAS software package. The Breslow method is the default

method for handling ties in many statistical software packages, including SAS.

Cox (1972) introduced an alternative approximation for the model where the

time-scale is viewed as being discrete, so that under this model tied observa-

tions are permissable. The approximation is given by

L(β) =
r∏

j=1

exp(β′sj)∑
l∈R(t(j);dj)

exp(β′sl)
, (6.13)

where R(t(j); dj) is a set of dj individuals drawn from R(t(j)), the risk set at time

t(j). The proportional hazards model with discrete time-scale takes the form

hi(t)
1− hi(t)

= exp(β′xi)
h0(t)

1− h0(t)
,

with corresponding partial likelihood function given by equation (6.13). Under

this model, the hazard function, hi(t), for an individual with explanatory vari-

ables xi, is the probability of experiencing the event in the interval (t, t + 1)

given survival to time t. When the width of the time intervals tends to zero the

model tends to the proportional hazards model in equation (6.1).

When there are no tied observations (i.e. dj = 1 at each time t(j)) then equa-

tions (6.10), (6.11), (6.12) and (6.13) all reduce to the partial likelihood function

in equation (6.5).
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6.6 Estimating the survivor and hazard functions

The survivor function for the i′th individual in a proportional hazards model,

found in (6.3) and repeated here for convenience, is

Si(t) = [S0(t)]exp(β′xi). (6.14)

This equation indicates that once we have estimates of the regression coeffi-

cients, all we need is an estimate of the baseline survivor function S0(t), in

order to produce estimates of the survival probability at each time t(j) and for

different values of the explanatory variables. Similarly, the hazard function in

(6.1) for the i′th individual can only be estimated once an estimate of h0(t) has

been found.

It is assumed that the hazard is constant between adjacent event times. The

estimated baseline hazard function at time t(j) has the form

ĥ0(t(j)) = 1− α̂j , (6.15)

where α̂j is the solution of the equation

∑
l∈D(t(j))

exp(β̂′xl)

1− α̂
exp(β̂′xl)
j

=
∑

l∈R(t(j))

exp(β̂′xl) (6.16)

for j = 1, ..., r. D(t(j)) in (6.16) denotes the set of all individuals who experience

an event at time t(j) and R(t(j)) is the set of all individuals (both censored and

uncensored) who are at risk at t(j).

When there are no tied event times D(t(j)) contains only one individual, and

the solution to (6.16) is

α̂j =
(

1−
exp(β̂′x(j))∑

l∈R(t(j))
exp(β̂′xl)

)exp(−β̂′x(j))

When there are tied event times, iterative methods are required for obtaining

a solution to equation (6.16).

The estimator of the baseline survivor function is then given by

Ŝ0(t) =
k∏

j=1

α̂j (6.17)
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for t(k) 6 t < t(k+1), k = 1, ..., r − 1, and where α̂j is the solution to (6.16). This

is the estimator for αj used in several statistical packages including SAS. An

alternative estimator for αj due to Breslow (1974) has the form

α̂j = exp

(
−dj∑

l∈R(t(j))
exp(β̂′xl)

)
,

where dj is the number of individuals who have an event at t(j). Using this

estimator, Ŝ0(t) is again given by (6.17).

The estimate of the survivor function in (6.14) is then obtained by substitut-

ing the estimated baseline survivor function as well as the maximum partial

likelihood parameters β̂k and the observed values of the explanatory variables,

so that

Ŝi(t) = [Ŝ0(t)]exp(β̂′xi).

It is then also possible to estimate the baseline hazard at time t(j) using equa-

tion (6.15). However, Hosmer and Lemeshow (1999) show that individual point-

wise estimates of the baseline hazard function are typically too unstable or

“noisy”. When these estimates are graphed against time it is difficult to iden-

tify the general shape of the underlying baseline hazard.

The baseline cumulative hazard function, H0(t), on the other hand, gives more

stable estimates. Using the relationship Ŝ0(t) = exp(−Ĥ0(t)), the estimated

baseline cumulative hazard is

Ĥ0(t) = −ln[Ŝ0(t)].

The cumulative hazard for the i′th individual with explanatory variables xi is

then

Ĥ(t) = exp(β̂′xi) Ĥ0(t),

which when plotted against time may provide a useful graphical descriptor of

the “risk experience” (Hosmer and Lemeshow, 1999). Note that if the estimated

survivor function for individual i, Ŝi(t), has been obtained, then one can also

use Ĥi(t) = −ln[Ŝi(t)] to obtain the cumulative hazard for this individual.

97



6.7. Application to Vulindlela antenatal clinic data

6.7 Application to Vulindlela antenatal clinic data

This section discusses the fitting of a proportional hazards model to the Vulindlela

antenatal clinic data, to examine the effect of explanatory variables such as

partner’s age and the number of previous pregnancies on the hazard of an HIV

positive test.

Besides an individual’s age and HIV status, additional variables recorded in

the dataset are partner’s age, number of previous pregnancies and antenatal
clinic attended. These additional variables are discussed in Chapter 2. How-

ever not all three of these variables were recorded in each year’s data. The

variables captured in each year are:

2001 - age status

2002 - age status clinic

2003 - age status clinic partner’s age

2004 - age status clinic partner’s age previous pregnancies

2005 - age status clinic partner’s age previous pregnancies

2006 - age status partner’s age previous pregnancies

Hence, a different proportional hazards model was fitted for each year, due to

the different combinations of variables recorded in each year’s data.

The individual’s age is the time to event or survival time, and infection with

HIV is the event of interest. The censored event times are the ages of those

individuals who are found to be uninfected (i.e. those whose HIV status = 0 at

the time of testing). This is because these individuals had not yet experienced

the event of interest at the time of testing. Note that we really need not know

the exact age at infection but rather we are using the age at the time of HIV

testing as a proxy for the actual time to event.

Recall that because we are using cross-sectional data; for uncensored individ-

uals the age at testing is not necessarily the age at which the individual was

infected. An individual who tests HIV positive at age a could have been infected

at any age prior to a.

The proportional hazards model will examine the effect of explanatory vari-
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ables, such as partner’s age and the number of previous pregnancies, on the

hazard of HIV infection, with the age at HIV testing as the time to event.

6.7.1 Model fitting

SAS Proc Phreg was used to fit a series of proportional hazards regression mod-

els to the Vulindlela antenatal clinic data. The Phreg procedure readily incor-

porates explanatory variables that are measured on a continuous scale, such

as partner’s age. Categorical explanatory variables (those with three or more

finite response categories) must be specified using the class statement in Proc

Phreg. Each response category or level is then compared to a reference cate-

gory. SAS uses the last category as its reference category by default, unless

otherwise specified.

The number of previous pregnancies experienced by an individual took on one

of five values (0, 1, 2, 3 or 4). These five categories were collapsed to create a

variable defined as follows:

Previous pregnancies =


0 if the individual has never been pregnant before
1 if the individual has had 1 previous pregnancy
2 if the individual has had > 2 previous pregnancies

This variable was specified as categorical. Note that previous pregnancies

refers to the number of pregnancies experienced by the individual prior to their

current pregnancy. The first category (no previous pregnancies) was used as

the baseline or reference category for the analysis. Therefore, the hazard of in-

fection corresponding to individuals having either 1 or >2 previous pregnancies

would each be interpreted relative to those who had never been pregnant before.

The variable clinic is also categorical. It has eight categories, representing any

one of the antenatal clinics an individual attended.

The age of each individual’s male partner was recorded under the variable Part-
ner age, which was treated as a continuous variable when fitting the model. To

investigate the effect of a large age difference between an individual and her

male partner, the binary variable Agediff eight was created, so that
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Agediff eight =
{

1 if the individual’s partner is > 8 years older than the individual
0 if age difference between the individual and her partner is < 8 years

The Efron method was used for handling ties. Analyses using the exact, Efron

and Breslow methods showed that estimates produced using the Efron method

were closer to those of the exact method, than the Breslow method.

6.7.2 Results

A model was fitted to the combined data for years 2004-2006, using the explana-

tory variables Partner age, Previous pregnancies and Agediff eight. Observa-

tions for years 2001-2003 could not be used as they do not have values for all

of these explanatory variables. A total of 1180 observations were used of which

469 were events (HIV positive individuals) and 711 were censored (HIV nega-

tive individuals). The percentage of censored individuals is 60.25%. Table 6.1

shows the model fit statistics from the SAS output. The lower the values of AIC,

SBC and -2 log likelihood the better the fit of the model to the data. The output

shows that inclusion of the above-mentioned explanatory variables results in

lower values of these fit statistics.

Table 6.1: Model fit statistics for the proportional hazards model of combined 2004-2006 data

Criterion Without covariates With covariates
-2 log L 5665.641 4978.527
AIC 5665.641 4986.527
SBC 5665.641 5003.129

Table 6.2: Testing Global Null Hypothesis: BETA=0 for the proportional hazards model of com-
bined 2004-2006 data

Test Chi-Square DF Pr > Chi-Sq
Likelihood ratio 687.1138 4 <.0001
Score 527.1107 4 <.0001
Wald 485.0505 4 <.0001
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Table 6.3: Parameter estimates for the proportional hazards model of combined 2004-2006
data

Parameter DF Estimate Std Err Chi-Square Pr > ChiSq HR
Partner age 1 -0.25978 0.01341 375.1616 <.0001 0.771
Prev preg - One 1 -0.42583 0.11278 14.2552 0.0002 0.653

Two or more 1 -1.25147 0.16817 55.3789 <.0001 0.286
Agediff eight 1 2.46719 0.16976 211.2174 <.0001 11.789

The Global Null Hypothesis H0 : β = 0 is used to test if the overall effect of

all the explanatory variables is significant. Table 6.2 shows that using the like-

lihood ratio, score or Wald tests, we can reject H0 and conclude that the overall

model is significant.

Of greater interest, however, is the effect of each individual explanatory vari-

able, given by the table of parameter estimates (Table 6.3). Values under the

column labeled ‘Estimate’ give the estimates of βk for the k′th explanatory vari-

able and ‘Std Err’ gives the standard error of each estimate, s.e.(β̂k). It can be

seen that all the explanatory variables do each have a significant effect on the

hazard of infection (p < 0.05).

The hazard ratio (labeled HR) is the value of exp(β̂k). For example, the param-

eter estimate associated with having one previous pregnancy is β̂k = −0.42583,

with hazard ratio exp(−0.42583) = 0.653. Therefore an individual who has had

one previous pregnancy has a hazard rate that is about two thirds of that of

an individual who has had no previous pregnancies (i.e. who has never been

pregnant before). Hazard ratios lower than 1 can be better interpreted by their

inverse, in this case 1/0.653 = 1.531. A better interpretation is that the hazard

of infection for an individual who has had no previous pregnancies is 1.53 times

higher than for an individual who has had one previous pregnancy. The hazard

ratio associated with having two or more previous pregnancies is 0.286, which

is lower than the hazard ratio for having had one previous pregnancy. In other

words, the hazard of infection for an individual who has had no previous preg-

nancies is 1/0.286 = 3.5 times higher than for an individual who has had two

or more previous pregnancies. In summary, having one previous pregnancy is

associated with a lower hazard of infection than having had no previous preg-

nancies, but having had two or more previous pregnancies is associated with

an even lower infection hazard. The results therefore suggest that the greater

the number of previous pregnancies the lower the hazard rate. One would then
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expect individuals who have never been pregnant before to have the highest

infection hazard, and those who have experienced two or more previous preg-

nancies to have the lowest.

The hazard ratio corresponding to the variable Partner age is less than 1, mean-

ing that an increase in partner’s age by one year results in a decreased hazard

of infection. An individual whose partner is aged a + 1 has a hazard of infection

that is 0.771 of that of an individual whose partner is aged a. Alternatively, in

terms of its inverse, the hazard of infection for an individual with partner aged

a is 1.3 times higher than for an individual with partner aged a + 1. A high

hazard ratio was observed for the binary variable Agediff eight. Hence the haz-

ard of infection for individuals whose partners were older than them by eight or

more years was 11.8 times higher than for those who had a partner either less

than eight years older than them or younger than them.

In summary, the results from fitting this proportional hazards model show

that the age of an individual’s partner, the number of previous pregnancies

and whether a partner was older than an individual by eight or more years, all

do have a significant effect on the hazard of HIV infection. When interpreting

these results one should bear in mind, however, that strictly speaking we are

referring to the hazard of a positive HIV test. The results showed that the older

the partner, regardless of the age of the individual, the lower the hazard rate.

However, when a partner was eight or more years older than an individual, this

resulted in a much higher hazard relative to cases when the age difference be-

tween a partner and individual was less than eight years.

The hazard was lower for individuals who had one previous pregnancy than

for those who had never been pregnant before, and even lower for those who

had two or more previous pregnancies. A possible reason for this is that women

who have many children are likely to be more responsible, more focused in tak-

ing care of their children and more careful to avoid engaging in behaviours that

would place themselves at risk for HIV infection.

Proc Phreg produces estimates of the survivor function S(t) either for specified

values of the explanatory variables, or for their mean values. Figure 6.1 shows

the estimated survival curves for each of the years 2004, 2005 and 2006, for
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Figure 6.1: The estimated survivor functions for each of the years 2004, 2005 and 2006 for
individuals with no previous pregnancies and whose partners’ ages do not exceed theirs by
eight or more years.

individuals who have experienced no previous pregnancies and whose partners’

ages do not exceed theirs by eight or more years. This was done by fitting a

proportional hazards model for each year, using only the explanatory variables

Previous pregnancies and Agediff eight. The baseline survivor functions in Fig-

ure 6.1 were then obtained by setting the values of both of these variables to be

equal to 0. It can be seen that the slopes of the estimated survivor functions do

not differ substantially by year.

In order to examine the effect of sets of explanatory variables on the hazard

rate for each year, a proportional hazards model was fitted for each of the years

2003, 2004, 2005 and 2006. The analysis of parameter estimates for each year

are presented in Table 6.4.

The model for year 2003 shows that Agediff eight and Partners age do have a

significant effect on the hazard of infection. The effect of the variable Clinic

was not found to be significant in the models for each year. The hazard rate

did not differ significantly across the antenatal clinics attended by participants
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Table 6.4: Parameter estimates for the proportional hazards models for each of the years
2003-2006

2003
Parameter DF Estimate Std Err Chi-Sq Pr > ChiSq HR
Partner age 1 -0.33576 0.03515 91.2672 <.0001 0.715
Agediff eight 1 1.61693 0.59313 7.4317 0.0064 5.038
2004
Parameter DF Estimate Std Err Chi-Sq Pr > ChiSq HR
Partner age 1 -0.30334 0.02172 195.1163 <.0001 0.738
Prev preg - One 1 -0.39679 0.16506 5.7788 0.0162 0.672

Two or more 1 -1.18753 0.25795 21.1940 <.0001 0.305
Agediff eight 1 2.63795 0.25957 103.2801 <.0001 13.984
2005
Parameter DF Estimate Std Err Chi-Sq Pr > ChiSq HR
Partner age 1 -0.23447 0.02658 77.8132 <.0001 0.791
Prev preg - One 1 -0.41037 0.22689 3.2713 0.0705 0.663

Two or more 1 -1.11460 0.30632 13.2401 0.0003 0.328
Agediff eight 1 2.47434 0.32884 56.6181 <.0001 11.874
2006
Parameter DF Estimate Std Err Chi-Sq Pr > ChiSq HR
Partner age 1 -0.22694 0.02534 80.2263 <.0001 0.797
Prev preg - One 1 -0.50343 0.23162 4.7240 0.0297 0.604

Two or more 1 -1.28087 0.35657 12.9039 0.0003 0.278
Agediff eight 1 2.16740 0.33191 42.6407 <.0001 8.736

(p > 0.05 for all). The Clinic variable was therefore excluded from the models

for years 2003, 2004 and 2005, the years in which this variable was recorded.

The analysis by individual year showed similar results to that of the overall

model for the combined 2004-2006 data. Partners age and Agediff eight have

a significant effect on the hazard of infection in each year. An individual with

a partner of age a + 1 has a hazard of infection that is roughly 0.7 of that of

an individual with partner aged a. Individuals whose partners were older than

them by eight or more years are expected to have a much higher hazard of in-

fection than those with a smaller partner-individual age difference. The effect

of having experienced previous pregnancies was significant in each of the years,

except that in 2005 the hazard associated with having had one previous preg-

nancy did not significantly differ from that associated with having no previous

pregnancies (p = 0.0705). The hazard ratios associated with having had one

previous pregnancy or two or more previous pregnancies were similar to that

observed in the combined model (see Table 6.3). In each year the hazard rate

was lower for those who had one previous pregnancy relative to those who had

no previous pregnancies, and even lower for those who had two or more previ-

ous pregnancies relative to those who had no previous pregnancies.
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6.7. Application to Vulindlela antenatal clinic data

In understanding why women with previous pregnancies have a lower hazard

rate than those who have never been pregnant before, an analysis of the demo-

graphic and behavioural characteristics of women who have multiple pregnan-

cies is required. Tables 2.2 and 2.3 show the age distribution, partner age dis-

tribution and the partner-age difference among individuals having one, two or

more, or no previous pregnancies. It can be seen that individuals with previous

pregnancies tended to be older women. This may be indicative of stable rela-

tionships, which are associated with higher age. Those with two or more pre-

vious pregnancies were also more likely to have older partners. Hence, women

having multiple pregnancies are likely to be older more mature women, in sta-

ble relationships with one partner. These women could be more responsible,

and less prone to engaging in behaviours that would place themselves at risk

for HIV infection.

Table 2.9 suggests that for very young women (<22 years old) and much older

women (>31 years old) the observed HIV prevalence is higher for those with

either one or two or more previous pregnancies than for those who have had no

previous pregnancies. This could be in disagreement with the results of the pro-

portional hazards models in this chapter. These results show that women with

one or at least two previous pregnancies have a lower hazard rate than those

who have had no previous pregnancies. It is important to note that the assump-

tion of age at testing as the time to event should be interpreted with caution.

This is because the actual age at infection is left censored, namely lower than

the age at which the HIV test was performed. Therefore the true time to event

is not correctly captured and this may introduce a bias in either direction. In

fact in the current analysis the data can be both left and right censored. In

survival analysis we assume right censoring. A more robust analysis should

therefore account for both left and right censored data. However the problem of

interval censored data is not present in the current thesis because HIV testing

per individual was not carried out between two different age points. Future

extensions of this model in the case of antenatal clinic data would thus need to

account for the error arising from the fact that the actual age at infection is not

accurately known.
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Chapter 7

Conclusion

The prevalence, incidence and the force of infection are well known and very

useful measures of disease. They play an important role in quantifying the

burden of disease within a population at a given time or over a specified time

period. The prevalence gives the probability to be diseased at a given time. It

is the proportion of existing cases of the disease in the population, and thus in-

cludes both new and pre-existing cases of the disease, that is, those individuals

who have acquired infection during the given time interval, as well as those

who were infected prior to this time interval. Incidence, on the other hand,

refers to the rate of new infections. Prevalence and incidence rates are there-

fore strongly related, since any prevalent case means that a new infection has

occurred before. The force of infection, also referred to as the hazard of infec-

tion, is closely related to the incidence, in that both measures quantify the rate

of new infections. Information on the rate and number of new infections is espe-

cially important, as it aids in evaluating interventions and disease prevention

strategies, and in determining the rate at which treatment is to be supplied.

Data from pregnant women attending antenatal clinics has been the primary

source for assessing HIV trends in South Africa. Antenatal clinic attendees

serve as a large and easily accessible population. This thesis discusses methods

for modelling the HIV prevalence, incidence and the force of infection, by age

and time, for women of child bearing age using cross-sectional seroprevalence

data. The data used is from pregnant women attending antenatal clinics in

Vulindlela, an area of rural KwaZulu-Natal, in each of the years 2001-2006.

Logistic regression was used to model the HIV prevalence across time and age.

The fitted prevalence slopes for each year showed a similar trend, with esti-
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mated prevalence rates rising with age to peaks of between 36% and 57% in the

mid to late twenties and then steadily declining toward the early forties. There

seems to be a shift in the peak prevalence over age, as the 2001 peak occurs at

an earlier age than the other years. Furthermore, prevalence estimates in 2001

were notably lower than those of the subsequent years across all ages.

The simple interrelation of prevalence and incidence P = I.E(D), as given by

Freeman and Hutchison (1980), can be applied to many diseases including HIV.

However information on the distribution of disease durations is needed. The

early method of Leske et al (1983), which assumes equal mortality for infected

and uninfected individuals, may not model HIV incidence sufficiently well, due

to the high mortality rates among HIV infected individuals relative to unin-

fected individuals. Keiding (1991) provides the basis for studying prevalence

and incidence within a probability framework. Keiding’s expression for the

prevalence odds was later used and adapted in subsequent studies of incidence

estimation, including Sakarovitch et al. (2007).

Pregnant women attending public health antenatal clinics are generally not

representative of all adult women. The antenatal samples do not include non-

pregnant women, or pregnant women who are not consulting a public health

antenatal clinic. The risk profiles and prevalence rates for these individuals

may differ from those who are included in the antenatal samples. Hence, the

Relative Inclusion Rate (RIR) is a valuable parameter of interest to take into

account when modelling HIV incidence, as it adjusts for the probability of an

infected woman being included in the sample relative to an uninfected woman.

Application of various well known models for the force of infection to the Vulindlela

antenatal data showed that the log-logistic and the Farrington’s 2-parameter

model both fit the data reasonably well. The Farrington’s 2-parameter model

was chosen as the preferred model, since it seemed to give a more realistic re-

flection of the rate of new infections over age. The estimated force of infection

functions for each year rise to peaks of between 0.055 and 0.109 at around age

16 and decline thereafter, tending toward zero in the mid to late forties. Beyond

age 30 the force of infection is estimated at less than 0.01 for each year.

The proportional hazards regression model was used to determine the effect
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of additional explanatory variables in the dataset on the hazard of HIV infec-

tion. Note that this actually refers to the hazard of a positive HIV test, since

the age at testing occurs either at or some time after the age at infection. The

age of a woman’s male partner, a large partner-participant age difference, and

the number of previous pregnancies experienced all had a significant effect on

the hazard rate. An individual with a partner of age a+1 had a hazard rate that

was roughly 0.7 of that of an individual with partner aged a. Thus an increase

in partner’s age was associated with a decrease in the hazard rate. Women

whose partners were eight or more years older than themselves had a much

higher hazard rate than those whose partners were either younger than them

or older by less than eight years. The hazard was lower for women who had one

previous pregnancy relative to those who had never been pregnant before, and

even lower for those who had two or more previous pregnancies than for those

who had never been pregnant before. The models used the age at testing as a

proxy for the age at infection, the latter being the true time to event. Future

extensions of this model in the case of antenatal clinic data could explore in-

corporating both left and right censored observations. This future work would

need to account for possible bias arising from the fact that the actual age at

infection is not accurately known.
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