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Abstract

Teenage pregnancy is a challenge that society at large is faced with. This challenge is

experienced primarily in developing countries, where an estimated 21 million girls

aged between 15 and 19 years old become pregnant, with approximately 12 million

giving birth in 2020. In 2018, the estimated average adolescent birth rate globally

was 44 births per 1000 girls aged 15 to 19 years old. However, this rate in Malawi

is significantly higher at 141. There are high health, social and economic costs of

teenage pregnancy, and childbearing can lead to short and long term adverse con-

sequences for the teen parents, the child and the community. Teenage pregnancies

are more likely to occur in marginalized communities, commonly driven by poverty

and a lack of education and employment opportunities.

This study aimed at investigating the factors associated with pregnancy among young

sexually active girls between the ages of 15 and 19 years old in Malawi. The study

made use of data from a nationally representative survey, which resulted in an ob-

served prevalence of pregnancy of 57.7% among the sexually active teenagers. Three

statistical approaches were applied, namely a survey logistic regression model, a

generalised linear mixed model and a spatial generalised linear mixed model. These

approaches accounted for the complex survey design that was implemented during

the data collection.The findings of the study outlined that age, the event of hearing

of family planning on the radio, union type, socio-economic status, contraceptive

use, and education level, among others, had a significant association with teenage

pregnancy in Malawi. Such insight into the factors associated with and contribut-
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ing to teenage pregnancy in Malawi can help all stakeholders develop policies and

interventions that will address this challenge.
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Chapter 1

Introduction

Teenage pregnancy, also known as adolescent pregnancy, occurs in females under

the age of 20 (Organization et al., 2004). After her first menstrual period, a fe-

male can get pregnant by involving herself in unprotected sexual intercourse. In

well-nourished females, menstrual periods often take place around the age of 12

to 13 years (Gita D., 2009). Teenage pregnancy is a global problem faced by high-

, middle-, and low-income countries. However, this challenge is experienced pri-

marily in developing countries, where an estimated 21 million girls aged between

15 and 19 years old become pregnant, with approximately 12 million giving birth

(WHO, 2020). In 2018, the estimated average adolescent birth rate globally was 44

births per 1000 girls aged 15 to 19 years old (UNICEF, 2019). However, Malawi’s

rate is significantly higher at 141 due to the high rate of pregnancies among teenage

girls, currently at just over 29% (Office/Malawi & ICF, 2015-16). The high rate of

teenage pregnancies and adolescent births contribute to Malawi’s persistently high

fertility rates. Coupled with decreasing mortality, it creates a large portion of youth

dependents and a high population growth in the country (International Bank for

Reconstruction and Development / The World Bank, 2016).
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There are high health, social and economic costs associated with teenage pregnancy

and childbearing, as they can lead to short and long-term adverse consequences for

the teen parents, the child, and the community. Globally, the second leading cause

of mortality among 15 to 19-year-old females is pregnancy and childbirth complica-

tions (WHO, 2020). Teenagers who fall pregnant are also less likely to complete their

secondary education. While having a child poses numerous challenges to school

continuation, in Malawi, these are exacerbated by policies enacted in 1993 by the

Ministry of Education, Science and Technology. Girls who become pregnant and

boys who are found to impregnate a girl are required to withdraw from school, and

they are only allowed to seek re-admission six months after the child’s birth and

re-enroll one year after the birth (Chalasani et al., 2012). However, the teen girl is

often required to drop out of school to care for their baby, thus contributing to youth

unemployment. In addition to being unable to work and contribute to the econ-

omy, the teen may also become reliant on a child support grant, therefore costing

the government. Teenage pregnancy is also associated with higher risks of HIV in-

fection. Malawi is considered an HIV hotspot with one of the world’s highest HIV

rates (Avert, 2019).

Numerous factors contribute to teenage pregnancies. In many cultures, girls are

often subjected to the pressures of early marriage and childbearing. Limited knowl-

edge and financial resources, as well as misconceptions on how to obtain and use

contraceptives correctly, hinder sexually active adolescents from avoiding unplanned

pregnancies (WHO, 2020). In some societies, teen girls may choose to become preg-

nant as they have limited educational and employment prospects. The limited stud-

ies on teenage pregnancy have found various individual-, household- and community-

level factors associated with it. However, teenage pregnancy rates vary across dif-

ferent regions, and thus these factors may differ for different countries (Habitu et al.,

2018). Hence, it is crucial to understand these factors in a local context.
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1.1. Literature Review

1.1 Literature Review

This section gives an overview of common factors associated with and contributes

to teenage pregnancy based on other research findings. Such factors include knowl-

edge of contraceptive use among teenagers, sex education, sexual behaviour, first

sex debut (age at first sex), peer influence, socio-economic status, cultural influence

and religion, relationship dynamics among teenagers, and substance use.

Contraceptive Use

Many reasons influence teenagers to not use contraceptives, which includes the

fear that parents will discover they involve themselves in sexual activities. Many

teenagers do not want to admit that they are sexually active and therefore do not use

contraceptives (Maharaj, 2006). A study found that health facilities had an adequate

stock of family planning contraceptive supplies in rural Malawi, however, they were

not being used. Reasons include a lack of contraceptive knowledge, beliefs, and at-

titude. Family planning methods were perceived to have side effects, such as pro-

longed menstruation, men’s concerns about impotence and genital sores, weight loss

or gain, and infertility (Maharaj, 2006). Traditional family planning methods were

used for infertility problems. Studies show that despite knowing different types of

family planning methods and awareness of their availability, use is low because con-

siderable misinformation still prevails regarding contraceptive methods’ side effects

(Chipeta et al., 2010). Traditional contraceptive methods (TCMs) have been used by

their ancestors for a long time in child spacing before the advent of the modern con-

traceptive methods. However, even with the introduction of modern methods, some

women prefer and are still using TCMs, according to Rabiu et al. (2018).

A study examining factors associated with teen mothers’ use of modern contracep-

tives after giving birth in Malawi found that 54.8% of teenage mothers are still at risk

of having a repeat teenage pregnancy due to their non-use of contraceptives. This

implies that less than 50% of teen mothers use contraceptives after experiencing teen
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1.1. Literature Review

birth. It is noted that health care factors such as the use of antenatal care, aware-

ness of pregnancy complications, attainment of primary education, and exposure to

media predict teen mothers’ use of modern contraceptives (Machira & Palamuleni,

2017).

A study conducted on more than 5500 males and females aged 12-24 years in Nigeria

on sexual behaviour, reproductive knowledge, and contraceptive use among urban

Nigerians demonstrated that sexual intercourse appears to be sporadic and unsta-

ble. The majority of these young people, mainly males, had more than one sexual

partner. Only 15% of these young adults used contraceptives. They also had little

information about reproductive biology. About 3 in 5 never knew that pregnancy

could occur at the first sexual intercourse, and few knew that a woman’s pregnancy

risk varies during the menstrual cycle (Makinwa-Adebusoye, 1992).

A study on factors affecting British teenagers and contraceptive use at the first in-

tercourse states that the age of a man at first intercourse only significantly impacts

the odds of using a modern method at first intercourse. A young man’s ability to

communicate about contraception significantly increased those odds of contracep-

tive use (Stone & Ingham, 2002).

Sexual Behaviour

Being sexually active starts for most men and women in the later teenage years.

For women, the median age at first intercourse is low, in which early marriage is

the norm and high in Latin America and some countries of the Middle East and

Southeast Asia. For men, age at first intercourse, in general, is not linked to the age

at marriage in most African and Asian countries. Men start to have sex later than

women (Wellings et al., 2006). Gender differences are most pronounced in the less

industrialised countries.
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1.1. Literature Review

Factors that determine variations and trends in sexual behaviour are environmen-

tal. They include shifts in poverty, education and employment, demographic trends

such as the changing age structure of population and trends towards later marriage,

increased migration between and within countries, globalisation of mass media ad-

vances in contraceptives, access to family planning services and public-health, and

sexually transmitted disease prevention strategies (Blanc & Way, 1998).

Sex Education

A study that was conducted on evaluating the need for sex education in developing

countries found that key characteristics like school attendance and literacy are cru-

cial consideration in providing adequate knowledge that will protect teenage girls’

sexual health (Singh et al., 2005). It also influences the choice of the most effective

means or the channels through which such education can be delivered and there-

fore has relevance for the design and implementation of an intervention. The study

further concludes that there was evidence on key behavioural indicators. It showed

that a high proportion of young people initiate sexual activity during their teenage

years, and there were gaps in knowledge about contraceptives and other protective

behaviours. A substantial number of young people engage in risky behaviours. The

findings provide insight into the extent of the need for comprehensive sex education

starting in the early teenage years. Contextual factors such as the relatively high

proportion of young people in sub-Saharan Africa who do not attend school, harder

to reach, and the substantial proportions who do not have media exposure, have

implications for determining how sex education can reach and benefit young people

(Singh et al., 2005).

A study in South Africa points out that sex education is essential in schools to delay

an early sexual debut, which contributes to early pregnancy among young people.

Teenage girls who can complete school without being involved in sexual activities

can make rational decisions about their sexual behaviour and possibly delay preg-

5



1.1. Literature Review

nancy. Also, girls who have been in school but choose not only to delay pregnancy

but also their first sexual debut, can protect themselves. Studies show that sex edu-

cation is imperative in the curriculum as it introduces the topic of sexuality, delays

an early sexual debut, and promotes safer sex. Early pregnancy disrupts schooling,

whereby a teenage mother will spend more time on antenatal care visits. Compre-

hensive sex education can delay the first sex debut and early pregnancy and promote

the use of contraceptives in teenagers, according to (Mjwara, 2014).

First Sex Debut

Studies in South Africa and some countries in Africa have discovered that young

people involve themselves in sexual activities at an early age (Mjwara, 2014). The

age at which a young person has sex for the first time is essential because it usually

marks the beginning of exposure to the risk of getting pregnant. Also, it increases

the chance of getting STIs and HIV/AIDs. Studies globally have shown that young

people are engaging in risky sexual behaviour. Risky sexual behaviours start to

show at the young ages among teenagers, where sexual debut is often unprotected

(Mjwara, 2014). A study focusing on community factors shaping early age at first

sex among adolescents in Burkina Faso, Ghana, Malawi, and Uganda mentions that

nearly 60% of young women in sub-Saharan Africa and 45% of young men have had

sex before the age of 18 years. There is a widening gap between initiation of sexual

act and marriage, resulting in a more extended period of pre-marital sexual activity.

Early initiation of the sexual act and an increased period of sexual activity before

marriage can lead to increased risk of both HIV and unintended pregnancies among

the youths (Stephenson et al., 2014).

Peer Influence

It is believed that young people have inadequate sexual knowledge due to incor-

rect information or misconception about sexual relations. Peer influence and peer

pressure are often cited as the most influential factors affecting adolescents’ sexual
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1.1. Literature Review

decisions. Teenagers happen to share information that is not always accurate about

sex, thus, the transfer of inadequate knowledge could lead to inaccurate informa-

tion, which contributes to early pregnancy. Previous research suggested that their

peers’ perceptions have a substantially consistent impact on young people’s sexual

behaviour (Mjwara, 2014).

Cultural Influence and Religion

A study in Malawi focused on the role of stigma and investigated the social con-

sequences of unwanted pregnancy and unsafe abortion (Levandowski et al., 2012).

It had the following findings of cultural influence: Malawian women in all social

sectors experience social implications of unwanted pregnancy and unsafe abortion.

Unwanted pregnancy often occurs in women who have limited access to contra-

ceptives and safe abortion, negatively influencing them and their families. It was

found that the impact of unwanted pregnancy and unsafe abortion was high on

young women. The role of initiation ceremonies in introducing sexuality education

to young people in rural areas was linked to unwanted pregnancy among young

people. The Malawian census identified about 85% of Malawi as rural, showing the

significance of adolescent initiation ceremonies.

The messages of engaging in sexual practices after initiation conflict with cultural

taboos of pregnancy outside marriage, creating a challenging environment for young

people to negotiate as they find their role as adults in the community. Abortion

stigma has been found as a negative attribute ascribed to women who seek to termi-

nate a pregnancy that marks them internally or externally inferior to ideal woman-

hood (Levandowski et al., 2012).

Socio-Economic Status

A study conducted in Malawi on risk factors for unwanted teenage pregnancy in

Zomba points out that teenage girls’ socio-economic status may lead them to involve

7



1.1. Literature Review

themselves in sexual intercourse. It revealed that 66% of adolescents had accepted

money or gift in exchange for sex (Kaphagawani, 2006). In some cases, it is believed

that parents may encourage their daughter into relationships with men for consumer

goods, or a girl may go out with a man because her parents cannot give her the basic

needs. Teenagers with unplanned pregnancies are more likely to come from a low

socio-economic status than those with planned pregnancies. The parents’ education

level also plays a significant role, especially a mother, as she plays a role in being a

role model to a teenage girl (Kaphagawani, 2006).

A study conducted in Zimbabwe on factors contributing to teenage pregnancy in

a rural community mentions that financial inadequacies and social customs induce

girls to stay out of school and enter into early sexual relationships. The study’s find-

ings revealed that the socio-economic background is a significant factor contributing

to teenage pregnancies in the rural community of Zimbabwe (Mutara, 2015). This

finding agrees with the observation by Jovbert (2008), who discusses the impact of

economic challenges in developing countries. Those who live in poverty are often

exposed to more “live” sexual activities due to living in small houses where there is

a distinct lack of privacy for parents. Children exposed to this situation can easily

engage themselves in sexual activity as soon as they enter the puberty stage (Mutara,

2015).

Relationship Dynamics

A study conducted in South Africa on relationship dynamics and teenage pregnancy

focused on their association with pregnancy risk (Jewkes et al., 2001). Both groups of

teenagers had been in a relationship for about two and half years and were still with

their first sexual partner. The pregnant teenagers’ partners were significantly older,

less likely to be in school, and less likely to have other girlfriends. The pregnant

teenagers were significantly more likely to have experienced forced sexual initiation

and were beaten more often. They were not able to confront their partners when
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1.2. Problem Statement

they discovered that he had other girlfriends.

A study revealed a relationship between forced sexual initiation and unwillingness

to confront an unfaithful partner, strongly associated with pregnancy. The gender

power imbalance is a vital issue for many challenges that a woman usually faces

in the relationship. The low level of control that young women have over their own

lives has a critical consequence for their reproductive and sexual health. Discrimina-

tion against teenage girls places them at a disadvantage in deciding the relationship

regarding contraceptives and childbearing and how their earnings must be spent. In

such circumstances, the teenagers may find it difficult to express their interest and

views in the relationship, hence pregnancy prevention strategies often fail (Jewkes

et al., 2001).

Substance Use

The use of substances including alcohol, marijuana, and other drugs are risk-taking

behaviours associated with unplanned teenage pregnancy. Teenagers drink alcohol

to get drunk, to forget about their stress, and to feel good. Drug users tend to be

at a greater risk for unwanted teenage pregnancy than non-drug users as they may

be more sexually active, less likely to use contraceptives, and fail to make the right

decisions about sex. Furthermore, teenagers who use drugs are more exposed to

becoming pregnant, and are four times more likely than those who have never taken

drugs, specifically in Malawi (Cavazos-Rehg et al., 2011).

1.2 Problem Statement

Teenage pregnancy is associated with multiple adverse consequences, such as higher

health risks, lower educational attainment, and a lower socio-economic status. The

current teenage pregnancy rate in Malawi exacerbates the country’s already high

birth rate, contributing to its rapid population growth. This puts additional strain
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1.3. Thesis Objectives

on the economy and perpetuates the cycle of poverty. More insight into the fac-

tors associated with and contributing to teenage pregnancy in Malawi can help all

stakeholders develop policies and interventions that will address this challenge.

1.3 Thesis Objectives

This thesis aimed at investigating the factors associated with pregnancy in young

sexually active girls between the ages 15 and 19 years old in Malawi, herein referred

to as teenage pregnancy. The specific objective are:

• to investigate the prevalence of teenage pregnancy according the different re-

gions of Malawi as well as according to various factors of interest.

• to determine the factors that are significantly associated with teenage preg-

nancy in Malawi, and to determine which factors contribute to an increased

likelihood of teenage pregnancy using the most recent data available.

1.4 Thesis Structure

Chapter 1 provides an introduction to the thesis, outlines the significance of the

study and presents the aims and objectives. Chapter 2 introduces the variables

of interest and describes the data set used in this thesis, as well as presents some

exploratory data analysis. Chapter 3 gives an overview of the generalised linear

model, which is then extended to the survey logistic regression model. The chapter

also presents the results of the application of the survey logistic regression model.

Chapter 4 further extends the generalised linear model to a generalised linear mixed

model and provides the results of it applied to the data used in this thesis. Chapter 5

briefly describes the spatial generalised linear mixed model with its application. Fi-

nally, chapter 6 discusses the results of the three approaches, gives conclusions and

recommendations for future studies, as well as presents the limitations of the study.
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Chapter 2

Data Description and Exploration

This chapter provides an overview of the study area and introduces the data set and

variables of interest as well as explore the data.

2.1 Study Area

This study focuses on Malawi, a landlocked country in sub-Saharan Africa. Malawi

is divided into three regions: Northern region, Central region and Southern region,

which are further divided into 28 districts (Kauye & Mafuta, 2007). The country is

bordered by Mozambique to the South and East, Tanzania to the East and North,

and Zambia to the West (Figure 2.1). It has total area of 119,140 Kilometres Squared,

of which 20% is accounted for by water bodies (Moyo & Sill, 2014).

Malawi’s population stood at 17.2 million in 2016. The average household size is 4.5

members, and in three in ten households, women are head of the family. Nearly half

of the Malawian population is under age 15, making it one of the region’s youngest

populations (National Statistical Office , Malawi; NSO). Also, nearly half of the pop-

ulation lives below the poverty line, most of whom live in rural areas, where 90% of

households depend on rain-fed subsistence farming.

11



2.2. Data Description

Figure 2.1: Map of Malawi. Source: http://hdl.handle.net/2263/20903

2.2 Data Description

The thesis’s data set is based on the Malawi Demographic and Health Survey (MDHS)

performed between October 2015 to February 2016. The survey’s primary objective

was to provide up to date estimates of fundamental demographic and health indica-

tors. The survey was nationally represented and implemented a complex design for

data collection, which involved a stratified multi-stage cluster sampling technique.

12
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2.3. Study Variables

Specifically, the 2015-16 MDHS sample was stratified and selected in two stages.

Each of the districts were stratified into urban and rural areas, from which the stan-

dard enumeration areas (SEAs) were selected with a probability proportional to their

size. This was the first stage of selection. In the second stage of selection, a fixed

number of 30 households per urban cluster and 33 per rural cluster were selected

with an equal probability systematic selection. All women aged 15 to 49 years old

who were either permanent residents of the selected households or visitors who

stayed in the household the night before the survey were eligible to be interviewed.

The data for MDHS 2015-16 was collected using questionnaires that were based on

the DHS program’s standard Demographic and Health Surveys (Office/Malawi &

ICF, 2015-16). The MDHS 2015-16 had a response rate of 99%, from all households

that participated in the survey.

2.3 Study Variables

Based on the MDHS data, all females between the ages of 15 and 19 years old who

had ever been pregnant or who were currently pregnant were categorised as having

experienced teenage pregnancy. This forms the response variable which is binary,

indicating whether or not the female experienced teenage pregnancy.

The independent variables considered in this thesis comprise of a range of individ-

ual, household and geographical level factors. These variables are based on that in

the literature as well as the availability in the data. These variables are as follows

• Region of Malawi

• Age

• Type of residence (Rural or Urban)

• Age at first sex

13
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• Total number of partners

• Heard of family planning on the radio

• Union type

• Use of contraceptives

• Socio-economic status

• Education level

• Religion

• Head of household’s gender

• Tested for HIV

2.4 Data Exploration

Exploratory data analysis provides a better understanding of data before any ad-

vanced statistical modelling. This section provides information regarding the sam-

ple as well as some graphical displays of the independent variables in relation to the

response.

A total of 5251 females between the ages 15 to 19 years old were interviewed during

the 2015-2016 MDHS, of which 29.10% had experienced pregnancy. However, 50.4%

of this sample were sexually active at the time of the survey, and thus this study will

only consider the event of teenage pregnancy among these sexually active females.

Therefore, the final data set used in the thesis comprises of 2648 females between the

ages of 15 and 19 years old. Table 2.1 displays how this sample is distributed accord-

ing to the different independent variables of interest. The majority of the sample

resided in the Southern region of Malawi (51.6%) and were from rural places of res-

idence (80.7%).
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Table 2.1: Distribution of the sample according to the independent variables of interest

Variable %

Regions Northern Region 17.4
Central Region 31.0
Southern Region 51.6

Type of Residence Rural 80.7
Urban 19.3

Age 15 years 9.5
16 years 12.9
17 years 18.3
18 years 28.4
19 years 30.8

Education Level No Education 3.3
Primary 70.7
Secondary and Higher 26.0

Heard of Family Planning on the Radio Yes 36.2
No 63.8

Age at First Sex Less than 13 years 4.2
13 to 15 years 47.5
16 to 19 years 48.3

Contraceptives Use Yes 29.8
No 70.2

Total Number of Partners 4+ 4.0
1 to 3 96.0

Union Type Never in union 49.3
Formerly in union 6.1
Currently in union 44.6

Tested for HIV Yes 73.1
No 26.9

Socio-Economic Status Poor 40.0
Middle 18.9
Rich 41.1

Religion Catholic 18.3
Christian 41.3
Muslim 12.5
Other 27.9

Head of Household’s Gender Male 67.8
Female 32.2

15



2.4. Data Exploration

The two oldest age groups (18 and 19 years) contained more than half of the sample

(59.2%), while only 26% of the sample had completed a secondary or higher educa-

tion level (Table 2.1). When asked whether they had heard about family planning

on the radio within a few months prior to the survey, 63.8% of the sample said no.

Only 4.2% of the sample had their first sexual debut under 13 years of age, with the

majority (48.3%) indicating that their first sexual debut was between the ages of 16

and 19 years. An overwhelming proportion of the sample indicated they were not

on any contraceptive (70.2%). However, only 26.9% indicated that they had never

undergone an HIV test prior to the survey. Most of the sample (96%) indicated that

they had only had between 1 and 3 sexual partners. In addition, most of the sample

had never been in a union (49.3%), while 44.6% were in a union at the time of the

survey. Socio-economic status was based on the household’s wealth quintile, where

the category ’poor’ corresponds to those in the two poorest quintiles, the category

’middle’ corresponds to the third quintile, and the category ’rich’; corresponds to

the two richest quintiles. The majority of the sample came from poor (40.0%) or rich

(41.1%) socio-economic backgrounds. The primary religion in the sample was Chris-

tianity (41.3%). Furthermore, the majority resided in households headed by males

(67.8%).

The overall observed prevalence of teenage pregnancy among the sexually active

females in this sample was 57.7%. Figure 2.2 shows how this observed prevalence

varies according to the three regions of Malawi. The Northern region had the highest

prevalence at 62.3%. Not much difference is observed in the prevalence between

the Central and Southern regions. Figure 2.3 presents the observed prevalence of

teenage pregnancy according to the type of place of residence. The prevalence of

teenage pregnancy was highest among those residing in rural areas (59.9%). While

the prevalence among those in urban areas was a lot lower, it was still alarmingly

high at 48.4%.
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Figure 2.2: Observed prevalence of teenage pregnancy according to the regions of Malawi

Figure 2.3: Observed prevalence of teenage pregnancy according to type of residence

17



2.4. Data Exploration

Figure 2.4 below clearly demonstrates that as age increased, there was an increase

in the observed prevalence of teenage pregnancy, with the oldest age group having

a substantially high prevalence of 74.4%. It must be noted however that these ages

represent the age of the participant at the time of the survey, and not the age at which

they fell pregnant. This information was not available in the data.

Figure 2.4: Observed prevalence of teenage pregnancy according to age in years

Figure 2.5 presents the observed prevalence of teenage pregnancy according to age

at first sex, contraceptive use, total number of partners and union type. Girls whose

sexual debut was between the ages of 13 and 15 years had the highest prevalence

of 58.5%, which is followed by girls whose sexual debut was in the older age group

(57.9%). Unsurprisingly, the observed prevalence of teenage pregnancy among those

who had four or more sexual partners was highest at 61.7%. What is surprising

however, is the observed prevalence among those who indicated they use contra-

ceptives (78.5%), which is substantially higher compared to that among those who

indicated they do not use contraceptives (48.9%). However, we are reminded that

less than 30% of the sample indicated they were on contraceptives (Table 2.1). This

high prevalence of pregnancy among those on contraceptives may indicate either a

lack of knowledge of how to correctly use them or that these girls have a false sense
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of security against unplanned pregnancy. The observed prevalence of teenage preg-

nancy among those who had been previously tested for HIV was at a staggering

71.3% compared to only 20.8% among those who had not been previously tested.

However, this may be a consequence of HIV testing during antenatal care. No infor-

mation regarding whether HIV testing was performed before, during or after preg-

nancy was available in the data. The highest prevalence was observed among those

who were currently or formally in a union, at 86.8% and 91.4%, respectively. This

suggests that many of these pregnancies may have been planned.

Figure 2.5: Observed prevalence of teenage pregnancy according to age at first sex, contra-
ceptive use, total number of partners and union type
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Figure 2.6 below gives the observed prevalence of pregnancy according to the in-

dividual’s religion, highest education level and socio-economic status. The highest

prevalence was observed among the Muslim and Christian religions at 63.9% and

60.8%, respectively. This may be due to the customs of early marriage in these reli-

gions, Although Catholics and Christians are widely known as religions with com-

mon or similar practices, in the context of the MDHS data they are classified as sepa-

rate religions. Those without formal education had the highest observed prevalence

of 78.2% and those who had completed secondary school or higher had a substan-

tially lower observed prevalence of 39.3%. This indicates how education may play

a role in making more informed decisions that do not lead to teenage pregnancy.

The prevalence was highest among those from low socio- economic backgrounds

(69.5%).

Figure 2.6: Observed prevalence of teenage pregnancy according to religion, highest educa-
tion level and socio-economic status

Figure 2.7 presents the observed prevalence of teenage pregnancy according to the

gender of the head of household. There was a higher prevalence among those re-

siding in households headed by males (60.3%). Lastly, Figure 2.8 illustrates the ob-
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2.4. Data Exploration

served prevalence of teenage pregnancy according to whether or not family plan-

ning was heard on the radio. There was no substantial difference in these preva-

lences, however the prevalence was higher among those who had not recently heard

about family planning on the radio (60.3%).

Figure 2.7: Observed prevalence of teenage pregnancy according to the gender of the head
of household

Figure 2.8: Observed prevalence of teenage pregnancy according to whether or not family
planning was heard on the radio
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2.5. Summary

2.5 Summary

This chapter investigated patterns in the data regarding teenage pregnancy among

the sexually active females in the sample. Several individuals, household, and geo-

graphical level factors were considered. These same factors present the independent

variables considered in the statistical models to follow.

The next three chapters present an overview of the statistical approaches used. Three

approaches were considered: a design-based approach, a model-based approach,

and a model-based approach accounting for spatial variation. All of these approaches

account for the complex survey design used to obtain the data. The design-based

approach uses the sampling weights to obtain the parameter estimates and their

variance estimates, where the weights are equal to the inverse of the probability of

selection. The model-based approach accounts for the clustering in the data, where

possible correlations may exist in the observations. Individuals in the same cluster

may tend to be more alike than those from different clusters. The extension of the

model-based approach to account for spatial variation further accounts for possible

correlations based on the observations’ proximity.
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Chapter 3

Generalised Linear Models

The general linear model is commonly used to model a continuous response that

assumes a normal distribution. Thus, the linear model is not appropriate in the case

of a discrete, binary outcome as predictions using this model can fall outside the

range of the response variable. Rather, a generalised linear model (GLM) is used

to model a non-normal response through a transformation function called a link

function (Nelder & Wedderburn, 1972).

3.1 The Model

The GLM assumes the response variable Yi, i = 1, . . . , n, follows a distribution that

belongs to the exponential family with the following general form

f(yi; θi, φ) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
(3.1)

where θi is referred to as a natural or canonical parameter and ai(φ), b(θi) and c(yi, φ)

are known functions. ai(φ) has the form ai(φ) = φ/wi , where wi is a known weight

depending on whether the data is grouped and φ is referred to as the dispersion or

scale parameter. For a response Yi with a distribution belonging to the exponential
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3.1. The Model

family, its mean and variance are given by

E(Yi) = µi = b′(θi) (3.2)

V ar(Yi) = ai(φ) b′′(θi) (3.3)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi) with respect to θi

respectively, b′′(θi) is a function of the mean and is referred to as the variance func-

tion, denoted by v(µi).

Equation 3.3 can therefore be expressed in the form

V ar(Yi) = ai(φ) v(µi) (3.4)

=
φ

wi
v(µi) since ai(φ) = φ/wi (3.5)

This means that another property of the GLM is that of a non-constant variance

where the variance may vary across the responses. When ai(φ) > 1 the model is

said to be overdispersed since V ar(Yi) > v(µi). Similarly, the model will be under-

dispersed when ai(φ) < 1. Therefore, standard errors calculated on the assumption

ai(φ) = 1 would be incorrect when ai(φ) 6= 1.

The GLM consists of the following three components:

• The Random Component:

It is assumed that y1, . . . , yn are samples of independent random variables

Y1, . . . , Yn, respectively. The response variable Yi belongs to the exponential

family with probability distribution in the form given in Equation 3.1.

• The Systematic Component:

This component relates a vector η = (η1, η2, ..., ηn)′ to a set of explanatory vari-

ables through a link function. Let xi = (1, x1i, ..., xpi)
′ be a (p+ 1)-dimensional

vector of covariates and β = (β0, β1, ..., βp)
′ be a vector of the unknown regres-
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sion coefficients. Then, the distribution of Yi depends on xi through the linear

predictor, ηi, such that

ηi = β0 + β1x1i + β2x2i + ...+ βpxpi

= x′iβ

• The Link Function:

This component is a monotonic and differentiable function, g, which links the

mean response µi = E(yi) to the linear predictor ηi = x′iβ as follows

ηi = g(µi) = x′iβ

The exponential family comprised of numerous distributions, such as the Binomial,

Poisson, Gamma and Chi-Square distribution, each of which has its own unique

canonical link function. Binomial distribution has a logit link function. A GLM with

a logit link is referred to as a logistic regression model, which will be discussed in

Section 3.3.

3.1.1 Parameter Estimation

The method of maximum likelihood is used for the parameter estimation in GLMs.

The log-likelihood function for a single observation is given by

`i = ln f(yi; θi, φ) =
yiθi − b(θi)
ai(φ)

+ c(yi, φ) (3.6)

Since Yi, i = 1, . . . , n, are independent, the joint log-likelihood function is

`(β,y) =
n∑
i=1

`i (3.7)
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The ML estimate of βj , j = 0, . . . , p, is the solution to the score equation

∂`i
∂βj

= 0

To obtain this solution, we use the chain rule

∂`i
∂βj

=
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

From Equation 3.6, we get

∂`i
∂θi

=
yi − b′(θi)
ai(φ)

=
yi − µi
ai(φ)

Since µi = b′(θi), V ar(Yi) = ai(φ)v(µi), and ηi =
∑

j βjxij , it follows that

∂µi
∂θi

= b′′(θi) = v(µi) and

∂ηi
∂βj

= xij

Thus,

∂`(β,y)

∂βj
=

n∑
i=1

yi − µi
ai(φ)

1

v(µi)

∂µi
∂ηi

xij

=
n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij

where Wi is referred to as the iterative weights, which is given by

Wi =
1

ai(φ)

(
∂µi
∂ηi

)2

v−1i

=
1

V ar(Yi)

(
∂µi
∂ηi

)2
(3.8)

where vi = v(µi) is the variance function,
∂µi
∂ηi

depends on the link function of the

model as ηi = g(µi). Therefore, solving for the equation below will give the ML

estimate for β
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n∑
i=1

(yi − µi)Wi
∂ηi
∂µi

xij = 0 (3.9)

The above equation is a non-linear function of β. Therefore, iterative procedures

such as Newton Raphson and Fisher Score are required to solve this equation.

The Newton Raphson iterative equation is given by

β̂ (t+1) = β̂ (t) − (H(t)) −1U (t) (3.10)

and the Fisher Score iterative equation is given by

β̂ (t+1) = β̂ (t) + (I(t)) −1 U (t) (3.11)

with information matrix

I = −E(H) (3.12)

= −E
(

∂2`

∂β ∂β′

)
(3.13)

= X ′W X (3.14)

where W is known as the weight matrix with diagonal elements given in Equation

3.8. Equation 3.11 can also be represented as

I(t) β̂ (t+1) = I(t) β̂ (t) +U (t) (3.15)

It can be shown that the right hand side of Equation 3.15 can be written as

X ′W (t) z(t)

where W (t) is weight matrix evaluated at β̂ (t), and z(t) has the following elements
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evaluated at β̂ (t)

zi = ηi + (yi − µi)
(
∂ηi
∂µi

)
(3.16)

This variable zi is often called the adjusted dependent variable or the working vari-

able. Therefore, we can obtain

β̂ (t+1) = (X ′W (t)X)−1X ′W (t) z(t) (3.17)

Thus, each iteration step is the result of a weighted least squares regression of the

adjusted variable zi on the predictors xi with working weight Wi. Fisher scoring can

therefore be regarded as iteratively reweighted least squares (IRWLS) carried out on

a transformed version of the dependent variable (Bates, 2010).

It follows that the asymptotic variance of this estimate of β is the inverse of the

information matrix given in Equation 3.14 and can be estimated by

V̂ ar(β̂) = (X ′ Ŵ X)−1 (3.18)

where Ŵ is W evaluated at β̂ and depends on the link function of the model. The

dispersion parameter φ, in function ai(φ) that is used in the calculation of Wi, gets

cancelled out of the IRWLS procedure, thus the value of β̂ is the same under any

value of φ. However, the value of φ is required for the calculation of the variance

of β̂, therefore when φ is unknown, it can be estimated using a moment estimator

(McCulloch & Searle, 2001), given by

φ̂ =
1

n− p− 1

n∑
i=1

wi (yi − µ̂i)2

v(µ̂i)
(3.19)

where wi is the weight defined in Equation 3.1.
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3.1.2 Measure of Fit

Measures of fit assists in assessing the goodness-of-fit of the model that is used in

statistical analyses. The deviance is commonly used for the goodness-of-fit in a GLM.

The deviance is a measure of discrepancy between the predicted values from the fitted

model and the actual values from the data set. Suppose for the fitted model with p+1

parameters, `(µ̂, φ,y) is the log-likelihood function maximized over β̂ for a fixed

value of the dispersion parameter φ, and `(y, φ,y) is the maximum log-likelihood

achievable under the saturated model where the number of parameters equals the

number of observations, the scaled deviance is

Ds =
−2[`(µ̂, φ,y)− `(y, φ,y)]

φ
(3.20)

If φ = 1, the the deviance is defined as

D = −2[`(µ̂, φ,y)− `(y, φ,y)] (3.21)

The (scaled) deviance converges asymptotically to a χ2 distribution with n−p−1 de-

grees of freedom. Thus, when testing at a level of significance of α, the fitted model

is rejected if the calculated deviance is greater than or equal to χ2
n−p−1;α

Another often applied measure of goodness-of-fit is the generalised Pearson’s chi-

square statistic given by

χ2 =
n∑
i=1

(yi − µ̂i)2

v(µ̂i)
(3.22)

where v(µ̂i) is the estimated variance function for the distribution in question. This

statistic also asymptotically follows a χ2 distribution with n− p− 1 degrees of free-

dom. Similar to the deviance, the smaller the value of the χ2 statistic, the better the

fit of the model. The scaled Pearson’s χ2 statistic is
χ2

φ
(Wu, 2005).
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3.1.3 Likelihood Ratio Test

If the objective is to determine whether a particular variable in the model has no

effect on the response variable, given the other variables in the model, we can test

if the corresponding regression parameter is equal to zero. This can be done by

comparing the deviances of the full model and the reduced model. Thus, the test

statistic is calculated using the following

Dreduced −Dfull (3.23)

Since both the deviances above involve the log-likelihood for the saturated model,

this gets cancelled out resulting in the following test statistic

χ2 = −2[log-likelihood(reduced model)− log-likelihood(full model)] (3.24)

This test statistic has an asymptotic χ2 distribution with degrees of freedom equal to

the difference in the number of parameters fitted in the full model and the reduced

model. This test is referred to as a Likelihood Ratio Test.

If φ 6= 1, it was seen in Section 3.1.2 that a scaled deviance can be used. Thus,

using this definition of the scaled deviance, the test statistic in Equation 3.24 would

become

T =
−2[log-likelihood(reduced model)− log-likelihood(full model)]

φ
(3.25)

When φ 6= 1 and unknown, the value of φ can be estimated using Equation 3.19.
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3.1.4 Wald Test

When a hypothesis test on a single parameter, βj , is to be carried out, a commonly

used method is the Wald test. The test statistic for this test is

z0 =
β̂j

se(β̂j)
(3.26)

The standard error of β̂j is the square root of the diagonal elements in the inverse of

the information matrix given in Equation 3.14. This test statistic follows an approxi-

mate standard normal distribution. Some software packages square this value of the

Wald test statistic and thus compare it to a chi-square distribution with 1 degree of

freedom (Heeringa et al., 2010). Therefore, for large values of the test statistic, one

would reject the null hypothesisH0 : βj = 0 and conclude its corresponding variable

is significant to the model.

3.2 Quasi-Likelihood Function

The method of maximum likelihood needs the probability distribution of Y to be

known in advance. Sometimes there is not enough information about the data for a

probability distribution to be specified (McCullagh & Nelder, 1989). For such a case,

the quasi-likelihood (QL) function can be used to estimate the parameters. Wedder-

burn (1974) showed that only the relationship between the mean and variance of

the observations needs to be specified in order to define the quasi-likelihood func-

tion for the data. Thus, it allows relaxation of the usual assumptions, for example

overdispersion, which may be caused by correlated data (Agresti, 2007).

In determining the QL function for the data, only the first and second moments

of Yi are needed (McCullagh, 1983). It is also assumed that for each observation, µi

can be represented in terms of some known function of the explanatory variables

x′i and regression parameters β. The following relation is used to determine the
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quasi-likelihood (specifically the quasi-log likelihood) function Q(yi;µi) for each

observation
∂Q(yi;µi)

∂µi
=
wi (yi − µi)
φ v(µi)

(3.27)

where wi is the known weight associated with observation Yi.

Therefore, from the above equation, we can obtain

Q(yi;µi) =

∫ µi

yi

wi (yi − t)
φ v(t)

dt+ some function of yi (3.28)

The maximum quasi-likelihood estimates of β can then be obtained from Equation

3.28 using Fisher Scoring. The estimate of φ can be obtained using Equation 3.19.

3.3 Ordinary Logistic Regression

Suppose we have a binary response variable given by

Yi =

 1 if an event is observed, e.g. teenage pregnancy has been experienced

0 if an event is not observed, e.g. teenage pregnancy has not been experienced

It then follows that Yi has a Bernoulli distribution with P (Yi = 1) = πi and P (Yi =

0) = 1− πi. Therefore,

E(Yi) = πi and (3.29)

V ar(Yi) = πi(1− πi) (3.30)

πi is a probability, therefore it is limited by 0 ≤ πi ≤ 1. Thus, using a model forE(Yi)

that restricts its values between 0 and 1 is required. Such a model is the logistic

regression model, given by

logit(πi) = ln

(
πi

1− πi

)
= x′iβ (3.31)
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The left hand side of Equation 3.31 is referred to as the logit link, denoted by ηi

in the GLM. This represents the log of the odds of an event of interest occurring,

where
πi

1− πi
is the odds of the event occurring. So, taking eβj gives the odds ratio

corresponding to a one unit increase in the corresponding explanatory variable, xij ,

while all of the other explanatory variables remain the same. In general, for a k unit

change in the explanatory variable, the odds ratio is ek βj . This provides how much

more likely an event of interest is to occur when one explanatory variable changes

(Kutner et al., 2005).

It then follows that E(Yi) is given by

πi =
exp(x′iβ)

1 + exp(x′iβ)
(3.32)

This ordinary logistic regression model is a class of the GLM with a logit link. The

value of the link ηi is allowed to range freely while restricting that ofE(Yi) = πi = µi

between 0 and 1. The maximum likelihood estimates of β can be found using the

iterative equations discussed in Section 3.1.1.

3.4 Survey Logistic Regression

Ordinary logistic regression is a widely used approach to model a binary response.

However, this approach is only valid for data that comes from a simple random sam-

ple. In the case of a complex survey design, ordinary logistic regression may result in

overestimation of standard errors, thus leading to incorrect results (Heeringa et al.,

2010). This can be avoided by making adjustments to the ordinary logistic regression

model in order to account for the survey design. The resulting model is referred to

as the survey logistic regression (SLR) model and is commonly used in the analysis

of a binary response using data emanating from a complex survey design (Heeringa

et al., 2010).
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3.4.1 The Model

Consider the survey logistic regression model for a binary response where Yhij , j =

1, . . . , nhi; i = 1, . . . , nh; h = 1, . . . ,H is an observation for the jth individual in

the ith cluster within the hth stratum. Therefore, πhij = P (Yhij = 1) represents the

probability of an event of interest occurring for the jth individual in the ith PSU

within the hth stratum. Thus, the survey logistic regression model is

logit(πhij) = x′hijβ (3.33)

with

πhij =
exp(x′hijβ)

1 + exp(x′hijβ)
(3.34)

where xhij is the row of the design matrix corresponding to the response of the jth

individual in the ith cluster within the hth stratum, and β is the vector of unknown

parameters to be estimated. This survey logistic regression model is in the same

form as the ordinary logistic regression model from Section 3.3. Thus, it follows that

the probability distribution of the response variable is given by

f(yhij) = π
yhij
hij (1− πhij)1−yhij (3.35)

with

E(Yhij) = πhij

=
ex

′
hijβ

1 + ex
′
hijβ

and

V ar(Yhij) = πhij(1− πhij)

=
ex

′
hijβ(

1 + ex
′
hijβ
)2
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Therefore, the log-likelihood function is

` = ln L(y) =
H∑
h=1

nh∑
i=1

nhi∑
j=1

ln f(yhij) (3.36)

The log-likelihood function above does not take the sampling weights into account,

so the ML estimates of the model’s parameters found using this function are only

valid for simple random samples where observations are unweighted (Heeringa

et al., 2010). In the case of more complex designs which include sampling weights

and clustering, the ML estimates of the parameters and their standard errors are not

consistent (Chandra, 2014). Hence, the traditional ML method has to be modified

to account for weighted observations. The traditional likelihood function is based

on standard distributional assumptions about the response variable, although, for

complex survey designs, no convenient likelihood functions are available (Chan-

dra, 2014). Such a likelihood function that incorporates the sampling weights is

called pseudo-likelihood function. The method of estimation that uses this pseudo-

likelihood function is known as pseudo-maximum likelihood (PML) estimation.

3.4.2 Pseudo-Likelihood Function

The PML method requires knowledge of the distribution of the response variable,

similar to the ML method, although it accounts for the sampling weights as follows:

P` =
H∑
h=1

nh∑
i=1

nhi∑
j=1

whij ln f(yhij) (3.37)

where whij is the weight associated with observation Yhij and P` represents the

pseudo-log likelihood function.

For the survey logistic regression model, the pseudo-log likelihood function is

P` =
H∑
h=1

nh∑
i=1

nhi∑
j=1

whij [yhij ln(πhij) + (1− yhij) ln(1− πhij)]
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To get the parameter estimates, the above equation is maximized with respect to β.

It can be shown that this results in the following estimating equations

S(β) =
H∑
h=1

nh∑
i=1

nhi∑
j=1

whij(yhij − πhij)x′hij = 0 (3.38)

These estimating equations are nonlinear functions of β, and therefore require iter-

ative procedures such as Newton-Raphson and Fisher Scoring to be solved. It has

been shown that the parameter estimates based on the PML method of estimation

are consistent (Heeringa et al., 2010).

The incorporation of the sampling weights in the SLR model also adds to the com-

plexity of obtaining the variance estimates for the estimated parameters. Commonly

used methods of variance estimation for the SLR model includes Taylor series ap-

proximation, Jackknife repeated replication (JRR) and balanced repeated replication

(Heeringa et al., 2010). However. only the Taylor series approximation method will

be considered in this thesis.

3.4.3 Taylor Series Approximation

The estimated variances of the PML parameter estimates are no longer simply equal

to the inverse of the information matrix as given in Section 3.1.1 for the GLM. This

is as a result of weighting and clustering. Thus, in order to obtain these variance

estimates, Binder (1983) proposed the Taylor series approximation method, which is

based on a linearization technique.

Since the parameter estimates, β̂, are defined by the solution to

S(β̂) = 0 (3.39)

the first order Taylor expansion of S(β̂) at β̂ = β, the population parameter value,
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is

0 = S(β̂) ' S(β) +
∂S(β)

∂β
(β̂ − β) (3.40)

Therefore,

S(β) ' −∂S(β)

∂β
(β̂ − β) (3.41)

After applying the Delta method, the following result is obtained in the limit

V ar
[
S(β̂)

]
=

[
∂S(β)

∂β

]
V ar(β̂)

[
∂S(β)

∂β

]′
(3.42)

or equivalently

V ar(β̂) =

[
∂S(β)

∂β

]−1
V ar

[
S(β̂)

] [∂S(β)

∂β

]−1
(3.43)

This leads to a sandwich-type variance estimator

V̂ ar(β̂) =
[
I(β̂)

]−1
V ar

[
S(β̂)

] [
I(β̂)

]−1
(3.44)

where I(β̂) =
∂S(β)

∂β
=

∂2P`

∂β ∂β′
is the information matrix evaluated at β = β̂

and V ar
[
S(β̂)

]
is the variance-covariance matrix for the p+ 1 estimating equations.

Since each of the estimating equations is a sample total of the individual scores for

the n survey respondents, obtained by making use of stratified and cluster sampling,

standard formulae to estimate the variances and covariances of the estimating equa-

tions can be used (Heeringa et al., 2010).

Thus, it follows

V ar
[
S(β̂)

]
=

n

n− p− 1

H∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(shi. − s̄h..)′(shi. − s̄h..) (3.45)
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where

shi. =

nhi∑
j=1

shij =

nhi∑
j=1

whij(yhij − π̂hij)x′hij (3.46)

and

s̄h.. =
1

nh

nh∑
i=1

shi. (3.47)

and the quantity (1− fh) is the finite population correction factor, where fh =
nh
Nh

is

the sampling rate for stratum H with Nh as the the total number of PSUs in stratum

h and nh is the number of sampled PSUs. If Nh is unknown, it is common to assume

that it is large enough such that fh is very small, which results in the correction factor

equalling one (Hosmer et al., 2013). The value of π̂hij is calculated by substituting

the parameter estimate β̂ into Equation 3.34. For large n, Equation 3.45 reduces to

V ar
[
S(β̂)

]
=

H∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(shi. − s̄h..)′(shi. − s̄h..) (3.48)

The variance estimator in Equation 3.44 is a consistent estimator for the asymptotic

variance of β̂ (Lipsitz et al., 1994).

3.4.4 Assessing the Model

Goodness-of-Fit

After fitting a model, a test of goodness-of-fit is used to assess whether the model

used is the best for fitting the data. This test measures the discrepancy between ob-

served values in the data and expected values based on the fitted model. Common

methods for assessing the goodness-of-fit of a fitted GLM is the log-likelihood ra-

tio (deviance) and the Pearson Chi-square statistics. These goodness-of-fit tests are

based on independent observations that are identically distributed. In many cases,

however, the observations are not i.i.d. Specifically, in the case of a complex survey

design, observations that are in the same cluster may be more homogenous than

observations from different clusters. A goodness-of-fit test in this situation is an
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adaptation to the Hosmer-Lemeshow goodness-of-fit test which accounts for the de-

sign of a study, thus making it appropriate in measuring the fit of the survey logistic

regression model (Archer & Lemeshow, 2006).

The Hosmer-Lemeshow goodness-of-fit test is based on grouping the observations in

”deciles of risk”, where the observations are partitioned into 10 equal-sized groups

based on their ordered estimated probabilities, π̂i. The Hosmer-Lemeshow test statis-

tic is given by

Ĉ =
10∑
k=1

(Ok − Ek)2

Ek

(
1− Ek

nk

) (3.49)

where

• nk is the number of observations in the kth decile.

• Ok =
∑
i
yi = observed number of cases in the kth decile.

• Ek =
∑
i
π̂i = expected number of cases in the kth decile.

This test statistic has a chi-square distribution with 8 degrees of freedom (Hosmer &

Lemeshow, 1980). The extension of this Hosmer-Lemeshow goodness-of-fit test is re-

ferred to as the F-adjusted mean residual test, also called the Archer and Lemeshow

goodness-of-fit test, which is estimated as follows.

Suppose the design of the study is such that there is a total of m clusters, each con-

taining a total of ni observations. Then using the fitted survey logistic regression

model, the residual for the jth observation in the ith cluster is calculated as follows

r̂ij = yij − π̂(xij) (3.50)

Applying the grouping strategy, the observations are grouped into deciles of risk

according to their residuals and weights (Archer & Lemeshow, 2006). The size
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of the first decile group will be equal to number of observations with the small-

est residuals such that the sum of the corresponding weights represent one tenth

of the total weights of all the observations. In a similar manner, the size of the

rest of the decile groups can be calculated. The mean residuals by decile of risk

M̂ ′ = (M̂1, M̂2, . . . , M̂10) are obtained where

M̂g =

∑
i

∑
j

wij r̂ij∑
i

∑
j

wij
(3.51)

is the mean residual for the gth percentile of the weighted residual values for g =

1, . . . , 10 and wij is the sampling weight associated with observation yij .

The Wald test statistic for testing g categories is given by

Ŵ = M̂ ′
[
V̂ ar(M̂)

]−1
M̂ (3.52)

where V̂ ar(M̂) is the variance-covariance matrix of M̂ , obtained using variance

estimation methods such as the Taylor series approximation (Archer et al., 2007).

This test statistic is approximately chi-square distributed with g − 1 = 9 degrees of

freedom as g = 10 in this regard. Although, this chi-square distribution has been

shown to not be an appropriate reference distribution. Instead, the F-corrected Wald

test statistic has been suggested (Archer & Lemeshow, 2006). This test statistic given

by

F =
(f − g + 2)

fg
W (3.53)

which is approximately F-distributed with g − 1 numerator degrees of freedom and

f − g + 2 denominator degrees of freedom, where f is the number of clusters in the

sample less the number of strata and g is the number of categories. This means that,
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based on this test statistic, the F-adjusted mean residual test statistic is

Q̂m =
(f − 8)

10f
M̂ ′

[
V̂ ar(M̂ )

]−1
M̂ (3.54)

as g = 10 deciles of risk.

Testing Model Parameters

Inferences about the parameters in a SLR model cannot be based on likelihood ratio

tests as a pseudo-likelihood function is used for parameter estimation, which is an

approximate to the true likelihood (Hosmer et al., 2013). Therefore, it is more appro-

priate to use Wald tests instead. The general form of the null hypothesis for this test

is H0 : Cβ = 0 where C is a matrix of constants that defines the hypothesis to be

tested. The Wald test statistic is given as follows:

W = (Cβ̂)′
[
C V̂ ar(β̂)C ′

]−1
(Cβ̂) (3.55)

where V̂ ar(β̂) is the estimated variance-covariance matrix for β̂ using variance es-

timation methods. Under the null hypothesis, this test statistic follows a chi-square

distribution with q degrees of freedom, where q is the rank or the number of inde-

pendent rows of the matrix C. It is common to approximate this Wald test statistic

to an F-distribution using Equation 3.53, where g = q.

3.5 Survey Logistic Regression Model Applied to MDHS Data

The statistical analysis for this study was performed using SAS software version 9.4.

Specifically, to fit a SLR model, the SAS procedure PROC SURVEYLOGISTIC was

used. The sampling weights were adjusted for non-response and to represent the

teenage girls included in the data set used in this study. These sampling weights

were utilised in fitting the SLR model. The Taylor series approximation method was

used for variance estimation of the model. All the independent variables of inter-
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est were incorporated in the SLR model to assess their association with the event of

teenage pregnancy. All two-way interaction effects were explored in order to con-

trol for possible effects of confounding between the factors. Only statistically signif-

icant two-way interactions that substantially decreased the model’s deviance were

included in the final SLR model.

The final SLR model’s predictive accuracy can be assessed by making use the Con-

cordance Index (c) which is based on the following calculation:

c = [nc − 0.5(t− nc − nd)]t−1

where nc is the number of concordant pairs (a pair of observations with different ob-

served responses is concordant if the observation with the lower ordered response

value, y = 0, has a lower predicted mean score than the observation with the higher

ordered response value, y = 1), nd is the number of discordant pairs (the opposite

to concordant pairs), N is the sum of observation frequencies in the data and t is

the total number of pairs. The paired observations with different responses that are

neither concordant nor discordant are said to be tied and is given by t − nc − nd.

The concordance index c is also equal to the area under the receiver operating char-

acteristic (ROC) curve and ranges from 0 to 1. A value of 0 implies that there is no

association. The predictive accuracy is poor if c is between 0.5 and 0.6, moderate be-

tween 0.6 and 0.7, acceptable between 0.7 and 0.8 and excellent if c is greater than 0.8.

Table 3.1 provides the final SLR model. The following variables had a significant

effect on the likelihood of teenage pregnancy at a 5% significance level: region of

residence, age, hearing of family planning on the radio, age at first sex, union type,

socio-economic status, contraceptive use, education level and tested for HIV. In ad-

dition, the interaction between region and education level as well as the interaction

between age at first sex and union type had a significant effect on the likelihood of
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teenage pregnancy. The final SLR model resulted in a Concordance Index (c) of 0.90,

which indicates that the model has a high predictive accuracy.

Table 3.1: Type III analysis of effects for the final SLR model.

Effect F-Value P-Value

Region 2.84 0.0442

Age 29.63 <.0001

Type of Residence 0.15 0.7020

Family Planning via Radio 4.39 0.0365

Age at First Sex 5.19 0.0058

Total number of Partners 0.02 0.8931

Union Type 10.40 <.0001

Socio-Economic Status 3.02 0.0494

Contraceptive Use 28.44 <.0001

Head of Household gender 3.33 0.0686

Religion 1.68 0.1695

Education Level 9.11 0.0010

Tested for HIV 158.20 <.0001

Region∗Education Level 48.11 <.0001

Age at First Sex∗Union Type 1.69 0.0150

Table 3.2 presents the odds ratios and their 95% confidence intervals for the vari-

ables that were not included in the interaction effects. The significance of the factors

was assessed based on the inclusion of 1 in the 95% confidence interval for the odds

ratio. No significant difference in the odds of teenage pregnancy was observed for

the total number of partners, type of residence and head of household gender. As a

girl’s age increased by one year, their odds of pregnancy significantly increases by

40.1% (95% CI: 1.240; 1.582). There was a significantly higher likelihood of teenage

pregnancy for those who had not recently heard about family planning on the radio

(OR = 1.382, 95% CI: 1.020; 1.870) than those who heard about family planning on

the radio. In addition, those with a middle socio-economic status had a significantly

higher odds of teenage pregnancy (OR = 1.609, 95% CI: 1.101; 2.353) than those with
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a rich socio-economic status. There was a significantly lower odds of teenage preg-

nancy for those that were not on a contraceptive compared to those that were on

a contraceptive (OR = 0.445, 95% CI: 0.330; 0.599). Furthermore, the likelihood of

teenage pregnancy was significantly higher among the Muslim religion compared to

the Christian religion (OR = 1.572; 95% CI: 1.410; 2.374). Those that had not under-

gone an HIV test prior to the survey were 0.111 times less likely to have experienced

pregnancy compared to those who had undergone an HIV test (95% CI: 0.079; 0.157).

Table 3.2: Estimated odds ratios (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the SLR model

Variables Odds Ratio (95% CI)

Age 1.401 (1.240; 1.582)∗

Type of Residence (Ref=Urban)

Rural 0.918 (0.591; 1.426)

Family Planning via Radio (Ref=Yes)

No 1.382 (1.020; 1.870)∗

Total number of partners (Ref=4+)

1 to 3 0.935 (0.352; 2.486)

Socio-economic status (Ref=Rich)

Middle 1.609 (1.101; 2.353)∗

Poor 1.254 (0.902; 1.745)

Contraceptive use (Ref=Yes)

No 0.445 (0.330; 0.599)∗

Head of household gender (Ref=Male)

Female 1.323 (0.979; 1.789)

Religion (Ref=Christian)

Muslim 1.572 (1.410; 2.374)∗

Catholic 1.201 (0.792; 1.822)

Other 1.053 (0.746; 1.487)

Tested for HIV (Ref=Yes)

No 0.111 (0.079; 0.157)∗

∗significant at 5% level of significance
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Figures 3.1 and 3.2 present the estimated effects of the interaction between age at

first sex and union type, and region and education level, respectively. Among those

that were never in a union, the likelihood of teenage pregnancy was highest for those

whose sexual debut was between the ages 13 and 15 years old. However, those that

were formally in a union and whose sexual debut was between the ages 16 and 19

years had the highest likelihood of teenage pregnancy.

Figure 3.1: The estimated log-odds of teenage pregnancy associated with Age at first sex and
Union Type for the SLR model

Considering Figure 3.2, the likelihood of teenage pregnancy was fairly similar across

the different regions of Malawi for the different education levels, except for those

with no education in the Northern region, where they had a substantially higher

likelihood of teenage pregnancy.
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Figure 3.2: The estimated log-odds of teenage pregnancy associated with Region and Edu-
cation level for the SLR model

3.6 Summary

In this chapter, an overview of the generalised linear model for modelling a non-

normal response was presented. The survey logistic regression model, which is an

extension to this class of models, was introduced and applied to the MDHS data.

Such an approach is considered a design-based approach as it accounts for the com-

plex survey design utilised to obtain the data, where survey weights are used in

parameter estimation and inference. However, this model does not account for the

effects of clustering where observations may be correlated. Thus, the next chapters

considers such an approach.
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Chapter 4

Generalised Linear Mixed Models

As previously mentioned in Chapter 3, the GLM assumes that observations are in-

dependent. However, cluster sampling may yield correlated observations, and thus

the GLM would not be suitable. In addition, the clusters included in the sample

represent only a random sample from a population of clusters. Accounting for this

clustering effect can be done via the inclusion of a random effect. This leads to the

generalised linear mixed model (GLMM) which is an extension of the GLM. The

GLMM is a model-based approach where interest is not only on inference regarding

the fixed effects, but also on estimating the proportion of variation in the response

that is attributable to the multiple levels of sampling (Heeringa et al., 2010). Thus,

inference on the variance components of the GLMM may also be of interest.

4.1 The Model

Suppose Yij is the jth response, j = 1, . . . , ni, from the ith cluster, i = 1, . . . ,m. Thus,

yi is the ni × 1 vector of responses for the ith cluster. In the GLMM, responses Yij

in yi are assumed to be conditionally independent given a vector of random effects,

γi which are normally distributed. It is also assumed that all Yij have a density
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belonging to the exponential family with the following form

f(yij|θij, φ) = exp

{
yij θij − b(θij)

φ
+ c(yij, φ)

}
(4.1)

which follows the same form as Equation 3.1 in Chapter 3, and thus the parameters

in the above equation are similar.

The mean µij is the conditional mean of Yij that is modelled through a linear predic-

tor, ηij , containing fixed regression parameters β, as well as subject-specific param-

eters γi. Thus, the linear predictor is given by

ηij = g(µij) = g [E(yij|γi)]

= x′ijβ + z′ijγi (4.2)

or in matrix form

g(µ) = Xβ +Zγ (4.3)

where g(.) is the known link function that links the conditional mean of y and the

linear form of the predictors,X is the n× (p+ 1) design matrix for fixed effects, β is

a (p+1)×1 vector of regression coefficients for the fixed effects,Z is the n×q design

matrix for the random effects and γ is a q × 1 vector of random effect coefficients. It

is assumed that γ ∼N(0,G) whereG depends on unknown variance components.

A Bayesian approach and a maximum likelihood approach are the two methods of

estimation for a GLMM. This thesis will focus on the maximum likelihood (ML)

method, which is widely used and has a variety of optimality properties (Searle

et al., 2006).
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4.2 Maximum Likelihood Estimation

In order to get ML estimates in the generalised linear mixed model, the marginal

likelihood is maximized, which is obtained by integrating over the distribution of

the q-dimensional random effects. The contribution of the ith cluster to the likelihood

is given by

fi(yij |β,G, φ) =

∫ ni∏
j=1

fij(yij |γi,β, φ)f(γi |G) dγi (4.4)

where f(γi |G) is the distribution of the random effects.

Thus, the complete likelihood function for β,G and φ is given by

L(β,G, φ) =
m∏
i=1

fi(yij |β,G, φ)

=
m∏
i=1

∫ ni∏
j=1

fij(yij |γi,β, φ)f(γi |G) dγi (4.5)

Estimation of the fixed effects in a GLMM using the method of maximum likelihood

is identical to that for a linear mixed model in the case of a normal response. How-

ever, for non-normal responses, the likelihood function generally does not have a

closed-form expression (Jiang, 2007). This is due to the likelihood involving high-

dimensional integrals that cannot be evaluated analytically. Thus, approximation

methods are required to evaluate the likelihood function given in Equation 4.5. The

various methods involve approximation of the integrand, approximation of the in-

tegral itself or approximation of the data (Hedeker, 2005). This thesis will focus on

an approach to approximate the integrand, such as Laplace Approximation, which

allows for model comparisons using information criteria such as Akaike’s Informa-

tion Criteria (AIC). Furthermore, Laplace approximation is computationally less de-

manding compared to other approximation methods.
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4.3 Laplace Approximation

Laplace approximation is a common method of approximation of the integrand,

which is used when the exact likelihood function is difficult to evaluate (Jiang, 2007).

Suppose the integral in the following form is to be approximated

∫
eQ(x)dx (4.6)

where Q(x) is a known and unimodal function, and x is a q × 1 vector of variables.

If x̂ is such that Q(x̂) is minimized, then the second-order Taylor series expansion of

Q(x) around x̂ is

Q(x) ≈ Q(x̂) +
1

2
(x− x̂)′Q′′(x̂)(x− x̂) (4.7)

where Q′′(x̂) is the Hessian of Q evaluated at x̂.

This yields the following approximation to Equation 4.6:

∫
eQ(x)dx ≈ (2π)

q
2 |Q′′(x̂)|−

1
2 e−Q

′(x̂) (4.8)

The approximation to this integral uses as many different estimates of x̂ as necessary

according to the different modes of function Q. Since the γ ∼ N(0,G), it can be

shown that the integral in the likelihood Equation 4.5 is proportional to the integral

in Equation 4.6, where the function Q is given by

Q(γ) = φ−1
ni∑
j=1

[
yij(x

′
ijβ + z′ijγ)− b(x′ijβ + z′ijγ)

]
− 1

2
γ ′Gγ (4.9)

such that Laplace’s method can be applied. This approximation method tends to be

better for large cluster sizes and can be improved by adding higher-order terms to

the Taylor series expansion.
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4.4 Model Selection

The likelihood ratio test and the Wald test (F-test) described in Chapter 3 can be

used for inference concerning the fixed effect parameter estimates obtained through

numerical approximations, such as Laplace approximation. The likelihood ratio test

can be applied to the data in comparing two nested models that have different mean

structures, however consisting of the same variance-covariance structure. In a sim-

ilar manner, the likelihood ratio test can be used in comparing nested models that

have unique covariance structures, however consisting of the same mean, and in-

ferences of variance-covariance components remain valid for the Wald test approx-

imation. However, if the variance parameter that is being tested takes values on

the boundary of the parameter space, the normal approximation fails. This means

that the test statistics for these tests will not have the traditional Chi-square distri-

bution under the null hypothesis (Zhang & Lin, 2008). However, when testing the

null hypothesis of no random effects, the test statistic will be a mixture of Chi-square

distributions, rather than the classical single Chi-square distribution (Zhang & Lin,

2008).

4.5 Generalised Linear Mixed Model Applied to MDHS Data

The GLMM was fitted to the MDHS data using the SAS procedure PROC GLIM-

MIX with a Laplace approximation method and a logit link function. In addition,

the RANDOM statement was used to account for the effect of clustering in the

data. Specifically, a random intercept that varied at cluster level was included in

the model. The need for this random intercept was assessed using the COVTEST in

SAS, which tests if the corresponding covariance parameter should be equal to zero.

Table 4.1 below illustrates the result of this test. The null hypothesis of the covari-

ance parameter equal to zero was rejected, hence it was necessary to account for the

random cluster effect in the model.
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Table 4.1: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-value

No G - side effects 1 2059.61 29.17 <0.0001

Prior to obtaining the final GLMM, the model was fitted with different covariance

structures for G in order to find the most suitable structure. Four common covari-

ance structures were considered: Variance Components (VC), Unstructured (UN),

Compound Symmetry (CS) and AR(1) (SAS & Guide, 1999) The VC Structure is

where the correlation of errors within a subject are presumed to be zero. While

CS is a covariance structure that includes within-subject correlated errors. For CS,

errors are correlated between time points within the subjects and the correlations

are presumed to be identical for each set of time, regardless of how distant in the

time the repeated measures are made. AR(1) considers correlation to be highest for

adjacent times, and systematically decreases correlation with increasing distance be-

tween time points. The UN structure estimates unique correlations for each pair of

time points (PennState, 2020). The differences in these covariance structures is that

CS means that all variances are equal to each other and all covariances are equal to

each other, however for VS, each variance is different and covariances are equal to

zero. For UN, each variance and each covariance is different and do not relate to

each other (Karen Grace-Martin, 2011). In this analysis, VC yielded the lowest AIC

value, thus it was selected. The final GLMM was fitted using the same variables as

those in the final SLR model. The variance component for the cluster effect was es-

timated at 0.6534 with a standard error of 0.1808. This estimate is relatively far from

zero, thus again confirming the need for this random effect in the model. It should

be noted that the SAS GLIMMIX procedure can include a weight statement so that

the parameter estimates are weighted, just as in the case of the SLR model. However,

upon attempting to incorporate the sampling weights in the GLMM, the model was

highly overdispersed. Thus, the final results are based on the unweighted GLMM,

which did not suffer from residual overdispersion.
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Table 4.2 presents the final GLMM. The results of the GLMM largely agreed with that

of the SLR model, where the variables age, hearing of family planning on the radio,

union type, socio-economic status, contraceptive use, education level and tested for

HIV were significantly associated with the likelihood of teenage pregnancy at a 5%

level of significance. However, the GLMM indicated that the gender of the head

of household was significantly associated with teenage pregnancy at a 5% level of

significance when the SLR indicated this factor was only significant at 10%. Unlike

the SLR model, the GLMM did not indicate a significant association between age at

first sex and the likelihood of teenage pregnancy, as well as the region of residence

and the likelihood of pregnancy. Furthermore, the interaction between region and

education level as well as the interaction between age at first sex and union type

were no longer significant at a 5% level of significance.

Table 4.2: Analysis of effects for the final GLMM

Effect F-Value P-Value

Region 0.15 0.8625

Age 37.28 <0.001

Type of Residence 0.30 0.5816

Family Planning via Radio 5.85 0.0157

Age at First Sex 1.57 0.2077

Total number of Partners 0.00 0.9467

Union Type 60.69 < 0.001

Socio-Economic Status 3.93 0.0198

Contraceptive Use 28.73 <0.001

Head of Household gender 4.73 0.0298

Religion 2.86 0.0358

Education Level 7.20 0.0008

Tested for HIV 229.81 <0.001

Region∗Education Level 1.16 0.3261

Age at First Sex∗Union Type 2.20 0.0673
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Table 4.3 presents the estimated odds ratios (OR) and their 95% confidence intervals

(CI) for the variables that were not included in the interaction effects. Similar to the

SLR model, the GLMM indicated that there was an increased likelihood of teenage

pregnancy with an increase in age (OR = 1.436, 95% CI: 1.278; 1.613). In addition,

there was a significantly higher likelihood of teenage pregnancy among those who

had not heard about family planning on the radio (OR = 1.391, 95% CI: 1.064; 1.819),

those with a middle socio-economic status compared to a rich socio-economic status

(OR = 1.687, 95% CI: 1.170; 2.434), those residing in households headed by females

(OR = 1.354, 95% CI: 1.030; 1.780), and those in the Muslim religion compared to

the Christian religion (OR = 1.793, 95% CI: 1.170; 2.748). In addition, there was a

significantly lower likelihood of teenage pregnancy for those who were no on a con-

traceptive (OR = 0.447, 95% CI: 0.333; 0.600) and well as those who had not been for

an HIV test prior to the survey (OR = 0.083, 95% CI: 0.060; 0.114). No significant

difference in the odds of teenage pregnancy was seen based on the type of place of

residence and total number of partners.

Figure 4.1 presents the estimated log-odds of teenage pregnancy for the interaction

between age at first sex and union type based on the fitted GLMM. Similarly, Figure

4.2 presents the results of the interaction between the region of residence in Malawi

and education level. Both of these interaction effects display similar patterns to those

in the SLR model. The likelihood of teenage pregnancy was highest for those whose

sexual debut was between the ages 13 and 15 years old and were never in union

(Figure 4.1). Those with no education in the Northern region of Malawi had a sub-

stantially higher likelihood of teenage pregnancy (Figure 4.2).
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Table 4.3: Estimated odds ratios (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the GLMM

Variables Odds Ratio (95% CI)

Age 1.436 (1.278; 1.613)∗

Type of Residence (Ref=Urban)

Rural 0.889 (0.585; 1.351)

Family Planning via Radio (Ref=Yes)

No 1.391 (1.064; 1.819)∗

Total number of partners (Ref=4+)

1 to 3 0.978 (0.515; 1.858)

Socio-economic status (Ref=Rich)

Middle 1.687 (1.170; 2.434)∗

Poor 1.259 (0.900; 1.760)

Contraceptives (Ref=Yes)

No 0.447 (0.333; 0.600)∗

Head of household gender (Ref=Male)

Female 1.354 (1.030; 1.780)∗

Religion (Ref=Christian)

Muslim 1.793 (1.170; 2.748)∗

Catholic 1.346 (0.943; 1.922)

Other 1.080 (0.789; 1.479)

Tested for HIV (Ref=Yes)

No 0.083 (0.060; 0.114)∗

∗significant at 5% level of significance
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Figure 4.1: The estimated log-odds of teenage pregnancy associated with Age at first sex and
Union Type for the GLMM model

Figure 4.2: The estimated log-odds of teenage pregnancy associated with Regions and Edu-
cation Level for the GLMM model
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4.6 Summary

This chapter gave a brief overview of the GLMM and presented the results of its

application to the MDHS data. A generalised linear mixed model extends the gen-

eralised linear model by the inclusion of a random effect. A random effect aids in

accounting for possible correlations in the data that may be present due to multiple

stages of sampling. In this thesis, the random effect was incorporated into the model

to account for the effect of clustering. The test of covariance parameters indicated

that the clustering effect was significant and necessary to account for. The results of

the GLMM fitted to the MDHS data revealed similar factors associated with teenage

pregnancy as what the SLR model revealed in the previous chapter. However, both

the GLMM and SLR model do not account for spatial variation in the observations.

The next chapter discusses the concept of spatial variation and describes the appro-

priate technique of accounting for it.
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Chapter 5

Accounting for Spatial Variation

5.1 Introduction

Spatial variation occurs when the observations are separated or dispersed over space,

where spatial dependence can be explained as objects that are close together in a

space being more similar than objects which are further apart (Lloyd, 2010). In the

case where data values are not spatially dependent, many forms of spatial analy-

sis are pointless. The term positive spatial autocorrelation refers to the correlation

of observations with itself and where neighbouring values tend to be similar. This

means that the data are spatially dependent. In the case where neighbouring values

tend to be dissimilar, this is termed negative spatial autocorrelation (Lloyd, 2010).

There are two classifications of spatially dependent data: isotropic or anistropic.

Isotropy is defined as a property of either a process or data, where autocorrelation

changes only with distance between two locations. Anistropy is defined as the prop-

erty of either a process or data, where spatial autocorrelation depends on both the

direction and the distance between two locations (Reade et al., 2016). Spatial data can

be further subdivided into geostatistical data, lattice data, areal data and point pat-

terns. Geostatistical data are collected over a continuous space, often from randomly

selected sites, and using this data the aim is to predict the value of the property at
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other, unsampled, locations. Lattice data pertain to equally spaced locations. Areal

data involves aggregated quantities for each areal unit within some relevant spa-

tial partition of a given region, where the neighbourhood structure of the regions is

used in assessing or accounting for spatial variation. Lastly, point patterns involves

the locations of events/responses of interest, and concern is usually to analyse the

spatial configuration of the data/responses, rather than the values attached to them

(Lloyd, 2010).

There are two processes that can be followed in dealing with spatially dependent

data; one can characterize the spatial covariance parameters and describe the nature

of spatial correlation, and then one can further adjust for the presence of spatial

variation when modelling some event/response of interest (Reade et al., 2016). In

this chapter, we consider methods for both processes and discuss their application to

the MDHS data in modelling the likelihood of teenage pregnancy. For this purpose,

we make use of the geographical coordinates of the clusters in the MDHS data and

we assume that the data is isotropic.

5.2 Measures of Spatial Autocorrelation

In Chapter 4, the generalised linear mixed model was considered in order to account

for a cluster effect where possible correlations may exist within the clusters. How-

ever, an implicit assumption behind this model is that the residuals do not vary as a

function of space. Strongly correlated data reduces the statistical power of inference

making a model untrustworthy. This assumption may be checked using various

methods discussed below. There are two types of measures that can be used to as-

sess spatial autocorrelation: Moran’s I and Geary’s C.
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Moran’s I

This was the first measure of spatial autocorrelation introduced by Moran (1950) to

study stochastic phenomena which are distributed in space in two or more dimen-

sions. Moran’s I, also known as Moran’s I Index, simultaneously measures spatial

autocorrelation based on both feature locations and feature values. Given a set of

features and an associated attribute, it evaluates whether the pattern expressed is

clustered, dispersed, or random. Moran’s I statistic is based on cross-products of the

deviations from the mean and is calculated as follows for n observations for variable

x at locations i and j:

I =
n
∑n

j=1wij(xi − x̄)(xj − x̄)

W
∑n

i=1(xi − x̄)2
(5.1)

where wij is a spatial weight between location i and j, W =
∑n

i=1

∑n
j=1wij and x̄ is

the mean of variable x (Cliff & Ord, 1972). The weight reflects the spatial influence

of i on j, where options for this weight includes:

• Binary:

wij =



1 if sites i & j pertains to distance class h,

0 if i & j are in different distance class h,

0 if i = j

• Power distance weight:

wij = 1/dαij typically α = 1 or 2

where dij is the distance between spatial locations i and j and α is a pre-

specified parameter that determines the centre of the spatial location and de-

fines the degree to which the two locations are deemed close.
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• Exponential distance weight:

wij = exp (−αdij)

• General for non-binary:

wij = scale/(1 + hpower), scale, power > 0

• Measure on lattices:

wij =


1 if sites i & j are connected,

0 if sites i & j are not connected.

• Distance Weight:

If the spatial weights are set to zero beyond a radius d and decrease monotoni-

cally to zero with increasing distance, dij , then the distance weighting function

is given by

wi(j) =



(
1−

d2ij
d2

)2

if dij ≤ d,

0 if dij > d

The null hypothesis states that feature values are randomly distributed across the

study area. A Z-score and p-value are calculated to indicate whether to reject the

null hypothesis or not. A Moran’s I value near +1.0 indicates clustering while a

value near -1.0 indicates a dispersed pattern (Cliff & Ord, 1972).

Geary’s C

Geary’s C statistic is another measure of spatial autocorrelation, originally proposed

by Geary (1954). It is based on the deviations in responses of each observation with

one another:
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C =
n− 1

2W

(∑n
i=1

∑n
j=1wij(xi − xj)2∑n
i=1(xi − x̄)2

)
(5.2)

This statistics ranges from 0 (maximal positive autocorrelation) to a positive value

for high negative autocorrelation. Its expectation is 1 in the absence of autocorrela-

tion, regardless of the specified weight matrix (Cliff & Ord, 1972).

Moran’s I is a more global measurement it has been shown to be more consistent

and powerful than Geary’s C. However, Geary’s C is more sensitive to differences

in smaller neighbourhoods (Leung et al., 2000). These statistics can be used to assess

spatial autocorrelation in a fitted GLMM’s residuals. This then gives an indication

that there is spatial variability in the data that needs to be taken into considera-

tion in the statistical model. If significant spatial autocorrelation is detected, then

the GLMM can be extended to the spatial generalised linear mixed model (spatial

GLMM) in order to account for such spatial autocorrelation. This model is discussed

in the next section.

5.3 Spatial Generalised Linear Mixed Models

The spatial GLMM takes on the same form as the non-spatial GLMM presented in

Chapter 4:

g(µ) = Xβ +Zγ (5.3)

As similarly defined in Equation 4.3 for the GLMM, g(.) is the known link function

that links the conditional mean of y and the linear form of the predictors. However,

the response vector is now spatially indexed such that y = [y(s1), . . . , y(sn)], for

spatial locations si, i = 1, . . . , n, and it is further assumed that s ∈ D, if D is some

d-dimensional Euclidean space. X is the n × (p + 1) design matrix for fixed effects,

β is a (p+ 1)× 1 vector of regression coefficients for the fixed effects, Z is the n× q

design matrix for the random effects and γ is a q × 1 vector of random effect coeffi-

cients. However, now for the spatial GLMM, γ ∼N(0,G) whereG is a q× q spatial
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covariance matrix, with q being the number of spatial locations.

Finding an appropriate covariance function to account for spatial autocorrelation is

an important procedure in fitting a spatial GLMM. In general, it is assumed that

spatial autocorrelation does not depend on the location of responses y(si) and y(sj),

but rather the distance between them (Cressie, 1991). Thus, the covariance between

two responses at different sites is given by cov(y(si), y(sj)) = c(.), where c(.) is

a function of the distance, h, between the locations. In addition, there are two

underlying assumptions regarding this covariance: (i) there is a constant mean:

E[y(si)] = E[y(sj)], and (ii) it is second order stationary (Cressie, 1991). There are

various spatial covariance structures that exist. The most common structures include

the exponential, Gaussian, Matérn, power and spherical structures.

Spatial dependency may be described by a range of functions. One such function

is the semivariogram, also simply referred to as the variogram. In geostatistics, the

variogram is a useful function used to fit a model for the spatial correlation in the

data. It is considered essential to first examine the empirical semivariogram before

fitting a spatial covariance structure in a spatial GLMM (Reade et al., 2016). The

semivariogram measures spatial variability as a function of distance between two

locations. Specifically, it is defined as one-half the variance of the difference between

two observations, made at different locations (Littell et al., 2006).

The empirical semivariogram gives us a visual depiction of the actual spatial vari-

ability of the data. The basic elements of a semivariogram are the nugget, sill and

range, as illustrated in Figure 5.1. The nugget can be defined as the intercept of the

semivariogram where d = 0. In addition, the nugget effect illustrates errors that are

spatially independent or, the variance occurring at a particular location. The sill is

the value that the semivariogram tends towards for large values of d. At large dis-

tances, variables cease to be correlated (Littell et al., 2006). Therefore, it is inferred
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that when d is very large, the sill corresponds to the variance of an observation (Lit-

tell et al., 2006). From Figure 5.1, one can also see that the range can be defined as the

value of d at which the semivariogram reaches the sill. This then informs us that for

all distances less than this value of d, observations are spatially correlated. While, at

distances greater than or equal to this value of d, observations are no longer spatially

correlated (Littell et al., 2006).

Figure 5.1: The nugget, sill and range parameters illustrated on a idealized variogram func-
tion (Google Earth Engine, 2020).

5.4 Examining Residual Autocorrelation in the MDHS data

Prior to fitting the spatial GLMM, it must first be established whether there is au-

tocorrelation present in the MDHS data by detecting the presence of spatial auto-
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correlation in the residuals. In addition to the Moran’s I and Geary’s C statistics,

the variogram procedure also aids in establishing whether there is autocorrelation

found in the data by detecting the presence of spatial autocorrelation in the resid-

uals. For the purpose of this, the residuals were extracted from the fitted GLMM

presented in Section 4.5. The average residual was then calculated for each cluster,

as the geographical coordinates (latitude and longitude) were provided at cluster

level for the MDHS data. This process of constructing and examining the structure

of the empirical semi-variogram is then followed based on these average residuals.

In doing this process, one needs to first group the spatial locations into intervals

in-line with a common distance between them. In SAS, the PROC VARIOGRAM

procedure is used, which produces the empirical semivariogram and determines

the distance between each spatial location using the uniqueness of the geographical

coordinates for a particular cluster. The procedure also requires that one specifies

the size of the lag class and maximum number lags via LAGDISTANCE (lagd) and

Maxlag commands, respectively in SAS.

In order to make these specifications, the pairwise distribution of the data using a

variety of class numbers was examined. Specifying the appropriate number of inter-

vals is based on the researcher’s discretion. However, Journal & Huijbregts (1978)

have recommended that the lag classes be specified such that each class contains a

minimum of 30 location pairs and only lags up to approximately half of the extreme

distance between points be considered. To start off with, we chose to group our lo-

cations across 50 classes. Based on the resulting pairwise distribution, the following

information was obtained and presented in Table 5.1.
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Table 5.1: Pairwise Information for 50 classes

Number of lags 51

Lag Distance 0.16

Maximum Data in Latitude 7.63

Maximum Data in Longtitude 3.00

Maximum Data Distance 8.20

This information in Table 5.1 was used to construct the empirical semivariogram.

Using the common lag distance of 0.16 and the maximum data distance of 8.20, it

was determined that the maximum number of classes should be 26 (max class =

(8.20÷ 2)÷ 0.16 ≈ 26). Figure 5.2 displays the resulting empirical semivariogram.

Figure 5.2: Empirical semivariogram for the MDHS data

Figure 5.2 indicates that as the distance between clusters increases, the semivari-

ogram fluctuates. This may be an indication that spatial autocorrelation is present.
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However, to confirm this, we make use of the Moran’ I and Geary’s C statistics. Table

5.2 below presents the results of these two autocorrelation tests. While Moran’s I in-

dicates that there is no significant spatial autocorrelation (P-value = 0.7782), Geary’s

C indicates otherwise (P-value = 0.0028). This suggests that there is spatial autocor-

relation on a more local scale compared to a global scale. In addition, the positive

statistic for Geary’s C indicates that there is possibly a clustering of high residual

values with reference to their average.

Table 5.2: Autocorrelation test results

Assumption Coefficient Observed Expected Std. Dev. Z P-value

Normality Moran’s I -0.00539 -0.00127 0.0146 -0.282 0.7782

Normality Geary’s C 0.89276 1 0.0359 -2.987 0.0028

Now that we have observed the presence of residual spatial autocorrelation, it is

necessary to follow a modelling procedure that will allow one to account for this

spatial autocorrelation. This will be done by fitting a spatial GLMM to the MDHS

data. However, prior to fitting this model, we need to determine a spatial covariance

structure that best suits the data. We do this by specifying a range of variogram mod-

els in the PROC VARIOGRAM procedure and examine the AIC, making use of the

small-is-better criterion. Table 5.3 below represents the results of this process along

with the corresponding AICs. Based on this, the spherical variogram is the most ap-

propriate structure and thus will be selected as the spatial covariance structure for

the cluster random effect in the spatial GLMM, the results of which are discussed in

the next section.

Table 5.3: Fit of the spatial covariance structure for the variogram

Spatial Model Spherical Exponential Power Matérn Gaussian

AIC 32.73140 32.73143 32.73485 34.73376 32.73289
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5.5 Spatial Generalised Linear Mixed Model Applied to MDHS

Data

To fit the spatial GLMM, a similar procedure that was used to fit the GLMM in Sec-

tion 4.5 was followed, where the PROC GLIMMIX procedure in SAS was used.

Once again, a cluster-level random effect was incorporated into the model as a

random intercept. However, a spherical spatial covariance structure was specified

for G. This accounted for not only possible correlations between the observations

within a cluster, but also spatial autocorrelation between the clusters. Based on the

COVTEST procedure, the null hypothesis of the covariance parameters equal to

zero was rejected (Table 5.4). This indicates that the cluster random effect was sig-

nificant in the model. The ratio of the Pearson Chi-square statistic to its degrees of

freedom was 0.86, this illustrates that the variability in the data is well modelled and

that there were no consequences of residuals overdispersion.

Table 5.4: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-value

No G - side effects 2 2059.61 29.69 <0.0001

The estimated variance component for the cluster effect was 0.6661, which repre-

sents the partial sill. The estimated range, based on the spherical covariance struc-

ture, was 22.0000. This implies that observations than 22 units apart are not spatially

correlated.

The final spatial GLMM is presented in Table 5.5, where the fixed effects including

the two-way interactions explored as per the SLR model and GLMM were exam-

ined. These results largely concurred with that of the non-spatial GLMM, where the

variables age, hearing of family planning on the radio, union type, socio-economic

status, contraceptive use, the gender of the head of household, education level and

tested for HIV were significantly associated with the likelihood of teenage preg-
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nancy at a 5% level of significance. The effect of accounting for spatial autocorre-

lation resulted in slightly lower P-values for some of the effects, however this did

not have any consequences in the significance of the effects when compared to the

results of the non-spatial GLMM.

Table 5.5: Analysis of effects for the final spatial GLMM

Effect F-Value P-Value

Region 0.15 0.8584

Family Planning via Radio 5.84 0.0157

Age 37.18 < 0.001

Type of Residence 0.31 0.5796

Age at First Sex 1.57 0.2075

Total number of Partners 0.00 0.9537

Union Type 60.79 <0.001

Socio-Economic Status 3.95 0.0195

Contraceptive Use 28.66 <0.001

Head of Household gender 4.68 0.0307

Religion 2.87 0.0354

Education Level 7.17 0.0008

Tested for HIV 229.48 <0.001

Region∗Education Level 1.16 0.3249

Age at First Sex∗Union Type 2.21 0.0659

Table 5.6 presents the estimated odds ratios (OR) and their 95% confidence intervals

(CI) for the variables that were not included in the interaction effects in the spatial

GLMM. As expected after considering the results of the analysis of fixed effects in

Table 5.5 above, the results of the odds ratios and confidence intervals almost mimic

that of the non-spatial GLMM. In addition, the estimated log-odds of teenage preg-

nancy based on the two interaction effects given in Figures 5.3 and 5.4 demonstrate

the same findings as those from the non-spatial GLMM. Therefore, it is clear that

accounting for spatial autocorrelation in the GLMM did not greatly alter the main

findings of the non-spatial GLMM. It is necessary to consider the principle of par-
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simony, this advocates choosing the simplest scientific explanation that fit the evi-

dence. For this reason, the results of the fixed effects for the spatial GLMM will not

be further discussed, as the same conclusions can be made to that of the non-spatial

GLMM.

Table 5.6: Estimated odds ratios (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the spatial GLMM

Variables Odds Ratio (95% CI)

Age 1.436 (1.278; 1.613)∗

Type of Residence (Ref=Urban)

Rural 0.888 (0.584; 1.352)

Family Planning via Radio (Ref=Yes)

No 1.392 (1.064; 1.820)∗

Total number of partners (Ref=4+)

1 to 3 0.981 (0.517; 1.863)

Socio-economic status (Ref=Rich)

Middle 1.690 (1.171; 2.439)∗

Poor 1.260 (0.901; 1.763)

Contraceptives (Ref=Yes)

No 0.447 (0.333; 0.600)∗

Head of household gender (Ref=Male)

Female 1.352 (1.028; 1.778)∗

Religion (Ref=Christian)

Muslim 1.795 (1.171; 2.753)∗

Catholic 1.350 (0.945; 1.928)

Other 1.080 (0.789; 1.479)

Tested for HIV (Ref=Yes)

No 0.082 (0.059; 0.113) ∗

∗significant at 5% level of significance
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Figure 5.3: The estimated log-odds of teenage pregnancy associated with Age at first sex and
Union type for the spatial GLMM model

Figure 5.4: The estimated log-odds of teenage pregnancy associated with Regions and edu-
cation level for the spatial GLMM model
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5.6. Summary

5.6 Summary

The main objective for the application of spatial analysis of the MDHS data was to

account for spatial autocorrelation in the observations between the clusters. Spatial

autocorrelation was assessed in the residuals of the non-spatial GLMM presented in

Section 4.5 by making use of the semivariogram as well as the Moran’s I and Geary’s

C statistics. Geary’s C statistic, which was positive, indicated significant spatial au-

tocorrelation in the residuals at a local level, which means there may be hot spots or

clusterings of high residual values in close proximity to each other. A spatial GLMM

was then fitted to the MDHS data, where a spherical spatial covariance structure was

specified for the cluster random effect. This spatial covariance structure made use of

the cluster’s geographical coordinates provided with the MDHS data. The results of

this model were almost identical to that of the non-spatial GLMM.
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Chapter 6

Discussion and Conclusion

The main objective of this thesis was to investigate the factors associated with teenage

pregnancy among 15 to 19 year old females in Malawi. This was done by consider-

ing a design-based approach, where a survey logistic regression model that uses

the survey weights during parameter estimation was employed, as well as a model-

based approach that accounts for the effect of clustering. The model-based approach

involved fitting a non-spatial and spatial generalised linear mixed model that in-

corporated a random effect at cluster level. The survey logistic regression model

assumed independence in the observations, however the generalised linear mixed

model allowed for possible correlations among the observations within the same

cluster. Further extending the generalised linear mixed model to the spatial case

aided in accounting for spatial autocorrelation between the clusters. Similarities in

the observations between neighbouring clusters may be due shared resources. For

example, individuals residing in neighbouring clusters may attend the same educa-

tional institution, or have the same access to health care services, or the same expo-

sure and knowledge on how to prevent teenage pregnancies. In addition, individu-

als residing in neighbouring clusters may have similar cultural practices and beliefs.

These shared characteristics can contribute to spatial variation and autocorrelation

in the observations. While the result of Geary’s C statistic indicated significant local

spatial autocorrelation in the residuals of the non-spatial GLMM, the results of the
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spatial GLMM were almost identical to that of the non-spatial GLMM. Therefore,

it did not warrant the additional complexity of the spatial covariance structure into

the GLMM.

This thesis used data from 2648 sexually active females between the ages of 15 and

19 years old obtained during the 2015-16 Malawi Demographic and Health Survey.

The overall observed prevalence of teenage pregnancy among the sample was 57.7%.

However, this prevalence varied between 56.7% and 62.3% based on the region of

residence in Malawi, where the Northern region experienced the greatest burden.

All three of the statistical models revealed that a female’s age, the event of hearing

of family planning on the radio, their union type, socio-economic status, contracep-

tive use, education level and the event that they have tested for HIV were signifi-

cantly associated with the likelihood of teenage pregnancy. In addition, the GLMM

revealed that the gender of the head of household was significantly associated with

teenage pregnancy and the SLR revealed that the age at first sex and the region of

residence had a significance association with teenage pregnancy.

Some of the important findings of this study include an increased likelihood of

teenage pregnancy with an increase in age, however it is noted that we do not know

the age at which the individual experienced pregnancy. The likelihood of teenage

pregnancy was significantly higher for those who had not recently heard about fam-

ily planning on the radio. In addition, the likelihood of teenage pregnancy was

highest among those with no formal education, especially in the Northern region

of Malawi. These two findings are in agreement with other studies which have

highlighted the need for education and awareness of family planning, which can

go hand in hand with sex education within schools (Mjwara, 2014). In general, indi-

viduals who complete school are better equipped to make rational decisions about

their sexual behaviour, possibly avoiding pregnancy. While this study revealed a

lower likelihood of teenage pregnancy among those who do not use contraceptives,
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this may be an indication of a low level of knowledge of the correct use of contracep-

tives to avoid pregnancies, as also found in other studies (Maharaj, 2006; Makinwa-

Adebusoye, 1992). Those with a middle socio-economic background were associ-

ated with an increased likelihood of teenage pregnancy compared to those with a

rich socio-economic background. This result is consistent with that of Kaphagawani

(2006) and Mutara (2015), where a lower socio-economic status has been shown to

contribute to teenage pregnancy in multiple ways. Financial inadequacies can influ-

ence a young girl to leave school early and enter into a sexual relationship, therefore

making them more at risk for pregnancy. In addition, this study revealed that fe-

males in the Muslim religious group were significantly more likely to experience

teenage pregnancy compared to those in the Christian religious group. However,

this could be as a result of early marriage practises in the Muslim religion. The in-

teraction between type of union and age at first sex revealed a higher likelihood of

teenage pregnancy among those who were currently or formerly in union regardless

of the age at first sex. This suggests that a fair number of the teenage pregnancies

may have been planned due to marriage.

There are numerous limitations associated with this study. Firstly, the cross-sectional

nature of the data means we cannot establish a causal effect between teenage preg-

nancy and the factors considered or effect over time. In addition, the results of the

survey were based on self-reporting, which can lead to under-reporting of certain

important but sensitive information. This study was also not able to consider the

effect of other factors that have been shown to be associated with teenage preg-

nancy, such as abuse, parents’ education level, and whether or not the pregnancy

was planned, among others, as this information was not available in the data. Data

on substance abuse among the participants was collected, however substance use

was extremely low among the sample and thus was not considered in this study.

Data on religion had Christianity and Catholicism classified as separate religions

groups, although this is widely considered as one religion, hence the likelihood that
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respondents were confused was high.

In light of the findings in this study, it is recommended that appropriate educational

programmes regarding family planning be prioritised. Such programmes should

educate young girls on the benefits, and correct and safe use of contraceptives as

well as encourage them to complete their schooling. In addition, programmes that

empower young girls against the pressures of early marriage or early sexual activi-

ties would also support the endeavour of lowering the burden of teenage pregnancy.

While this study considered the spatial autocorrelation in the observations based on

the geographical coordinates of the clusters, the method of kriging to predict the

likelihood of teenage pregnancy at unmeasured locations was not considered. This

presents an extension to the spatial analysis already performed in this study and

a possible future direction. Spatial modelling can also aid in identifying the geo-

graphical areas of Malawi that experience the highest burden of teenage pregnancy.

This will assist in developing a more targeted approach to interventions, which will

enable a more effective delivery system of limited resources in the country.
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Appendix

SAS Codes

The following presents the key for each variable used in the models:

V781 Testing for HIV

SES Socio-Economic Status

ReligionNew Religion

FamilyPlanningRadio Family Planning Radio

TypeOfRes Type Of Residence

AgeFirstSex Age at First Sex

TotalPartners Total number of Partners

UnionType Union Type

SexHeadHouse Head of Household gender

EduLevel Education Level

Survey Logistic Regression Codes

Final SLR MODEL Applied to MDHS Data

proc surveylogistic data=sandile;

class FamilyPlanningRadio(ref=’Yes’) Region(ref=’Southern region’) TypeOfRes (ref=’Urban’)
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AgeFirstSex (ref=’Less than 13 years old’) V781 (ref=’Yes’) TotalPartners (ref=’4+’)

UnionType (ref=’Never in union’) SES (ref=’Rich’) ContraUse (ref=’Yes’)

SexHeadHouse (ref=’Male’) EduLevel (ref=’Secondary and Higher’) ReligionNew (ref=’Christian’)/

param=reference;

model TeenagePregnancy (descending)= Age TypeOfRes FamilyPlanningRadio TotalPart-

ners SES

ContraUse SexHeadHouse ReligionNew V781 EduLevel|Region AgeFirstSex|UnionType ;

strata Strata;

cluster Cluster;

weight SamplingWeight;

run;

Generalised Linear Mixed Model codes

Final Generalised Linear Mixed Model

proc glimmix data =sandile method=laplace;

class FamilyPlanningRadio(ref=’Yes’) Region(ref=’Southern region’) TypeOfRes(ref=’Urban’)

AgeFirstSex(ref=’Less than 13 years old’)

V781(ref=’Yes’) UnionType(ref=’Never in union’) TotalPartners(ref=’4+’) SES(ref=’Rich’)

ContraUse (ref=’Yes’)

SexHeadHouse (ref=’Male’) EduLevel (ref=’Secondary and Higher’) ReligionNew

(ref=’Christian’) ;

model TeenagePregnancy (descending) = Age FamilyPlanningRadio TypeOfRes To-

talPartners SES

ContraUse SexHeadHouse ReligionNew V781 EduLevel|Region AgeFirstSex|UnionType

/ link=logit dist=binary oddsratio solution ;

random int / subject=Cluster type=VC ;

covtest zerog ;

run;
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Spatial Generalised Linear Mixed Model codes

Variogram code

proc variogram data=sandile plots(only)=semivar;

compute autocorrelation lagd=0.16 maxlag=26;

coordinates xc=longitude yc=latitude;

model form=(sph);

var Residuals;

run;

Final Spatial Generalised Linear Mixed Model

proc glimmix data=sandile method=laplace;

class FamilyPlanningRadio(ref=’Yes’) Region(ref=’Southern region’) TypeOfRes(ref=’Urban’)

AgeFirstSex(ref=’Less than 13 years old’)

V781(ref=’Yes’) UnionType(ref=’Never in union’) TotalPartners(ref=’4+’) SES(ref=’Rich’)

ContraUse (ref=’Use Contraceptives’)

SexHeadHouse (ref=’Male’) EduLevel (ref=’Secondary and Higher’) Religion (ref=’Christian’);

model TeenagePregnancy (descending) = Age FamilyPlanningRadio TypeOfRes To-

talPartners SES

ContraUse SexHeadHouse ReligionNew V781 EduLevel|Region AgeFirstSex|UnionType

/ link=logit dist=binary oddsratio solution ;

random int / subject=Cluster type=sp(sph)(longitude latitude);

covtest zerog ;

run;
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