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Abstract

We present Southern African Large Telescope (SALT) follow-up observations of seven massive

clusters detected by the Atacama Cosmology Telescope (ACT) using the Sunyaev-Zel’dovich ef-

fect (SZE). We conducted multi-object spectroscopic observations with the Robert Stobie Spec-

trograph (RSS) in order to measure galaxy redshifts in each cluster field, determine the cluster

line of sight velocity dispersions, and infer the cluster dynamical masses. This programme forms

part of the larger ACT effort to measure the SZE-signal-to-mass relation using a mass proxy

which is independent of cluster gas properties. While all of the clusters in this work have pre-

viously been identified in optical surveys within the Sloan Digital Sky Survey footprint, none of

them have been studied in this way before. We find that the clusters range in mass from (0.26

- 2.6) × 1015 M� and span the redshift range 0.3 < z < 0.55. The spectrum of the Brightest

Cluster Galaxy (BCG) in ACT-CL J0320.4+0032 shows strong emission line features indicating

the presence of an Active Galactic Nucleus (AGN), potentially providing feedback within a very

massive cluster.

iii



Contents

Declaration i

Abstract iii

Contents iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

1.1 Introduction to Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Expansion of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dark Matter and its Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Big Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Galactic Rotation Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.3 X-ray Gas of Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.4 Gravitational Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

iv



1.6 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 The Evolution of Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7.1 Evolution of Dark Matter Halos . . . . . . . . . . . . . . . . . . . . . . 10

1.7.2 Evolution of the Baryonic Matter . . . . . . . . . . . . . . . . . . . . . 10

1.8 Predicting Large-Scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Detecting Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9.1 X-ray Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9.2 Optical Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9.3 Microwave Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Tracing Cosmic Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The Sunyaev-Zel’dovich Effect 15

2.1 Introduction to the Sunyaev-Zel’dovich Effect . . . . . . . . . . . . . . . . . . . 15

2.2 The SZE-Mass Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 X-ray Pressure Profiles and the SZE-Mass Relation . . . . . . . . . . . . 17

2.2.2 Gravitational Lensing and the SZE-Mass Relation . . . . . . . . . . . . 19

2.2.3 Dynamical Measurements and SZE-Mass Relations . . . . . . . . . . . . 20

2.2.4 Simulations of SZE Relations . . . . . . . . . . . . . . . . . . . . . . . 22

3 SALT Observations of ACT SZ Clusters 23

3.1 ACT Maps and Cluster Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 SALT Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 PySALT Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 IRAF Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Cross correlation for redshifts . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 SALT RSS Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Cluster Redshift Measurements . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Determining Cluster Membership . . . . . . . . . . . . . . . . . . . . . 31

v



3.3.5 Determining Velocity Dispersion and Mass . . . . . . . . . . . . . . . . 31

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Discussion 39

4.1 Previous Dynamical Mass Results . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 SZE-Mass Scaling Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 43

A Appendix 44

A.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 PySALT Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 IRAF Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68

vi



List of Tables

3.1 Observing log of SALT observations . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 SZE-derived mass estimates for the ACT selected clusters. The numbers listed in

brackets in the Members column are those added from the DR10 data. The Y500c

values are from Hasselfield et al. (2013). Note: the mass quoted for ACT-CL

J0156.4-0123 is stated only for completeness. . . . . . . . . . . . . . . . . . . . 33

A1 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0045.2-0152

measured using SALT RSS; mr is the SDSS r-band magnitude of the object; z

is the redshift; Q is the redshift quality flag (see Section 3.3.1); Em. Lines?

indicates objects which show emission lines in their spectra (e.g., OII 3727 AA);

Member? indicates objects which are determined to be cluster members (see

Section 3.3.4); r (Mpc) indicates the projected distance from the ACT cluster

position as given by Hasselfield et al. (2013). . . . . . . . . . . . . . . . . . . . 44

A2 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0156.4-0123

measured using SALT RSS; see Table A1 for an explanation of the table columns. 46

A3 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0219.9+0129

measured using SALT RSS; see Table A1 for an explanation of the table columns. 47

vii



A4 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0320.4+0032

measured using SALT RSS; see Table A1 for an explanation of the table columns. 47

A5 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0342.7-0017

measured using SALT RSS; see Table A1 for an explanation of the table columns. 49

A6 Spectroscopic redshifts of galaxies in the direction of ACT-CL J0348.6-0028

measured using SALT RSS; see Table A1 for an explanation of the table columns. 50

A7 Spectroscopic redshifts of galaxies in the direction of ACT-CL J2058.8+0123

measured using SALT RSS; see Table A1 for an explanation of the table columns. 51

viii



List of Figures

1.1 Figure taken from https://astronomy.swin.edu.au/cosmos/R/Rotation+Curve. A

rotation curve is a plot showing how orbital velocity, V , varies with distance from

the centre of the object, R. Rotation curves can be determined for any rotating

object. They are generally used to show how mass is distributed in the Solar

System (Keplerian Rotation curves) or in spiral galaxies (galactic rotation curves). 6

1.2 Figure taken from http://www.arturostabile.com/publications.html. A diagram

showing the expected rotation curve for a galaxy and the actual rotation curve

from observational data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Figure taken from Riess et al. (1998). Multicolor Light Curve Survey (MLCS)

SNe Ia Hubble diagram. The upper panel shows the Hubble diagram for the

low-redshift and high-redshift SNe Ia samples with distances measured from the

MLCS method. Overplotted are three cosmologies: ”low” and ”high” ΩM with

Ω∆ = 0 and the best fit for a flat cosmology, ΩM = 0.24, Ω∆ = 0.76. The bottom

panel shows the difference between data and models with ΩM = 0.20, Ω∆ = 0.

The open symbol is SN 1997ck (z = 0.97), which lacks spectroscopic classifica-

tion and a color measurement. The average difference between the data and the

ΩM = 0.20, Ω∆ = 0 prediction is 0.25 mag. . . . . . . . . . . . . . . . . . . . . . 9

ix



2.1 Figure from Ned Wright (www.astro.ucla.edu/ wright/SZ-spectrum.html). The

blackbody (black line) and distorted spectrum (blue line) on a log-log scale show-

ing the Sunyaev-Zel’dovich-effect . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The percent of spectra resulting in a Q = 3 or greater out of all observed galaxies

for given magnitude and exposure time. . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The z = 0.38 cluster ACT-CL J0320.4+0032. The left hand panel shows a 9

by 9 arcmin false color SDSS optical image (g, r, i). Objects highlighted in

cyan are spectroscopically confirmed members (see Section 3.3.4; spectra for

objects marked with ID numbers are shown in the right hand panel); red circles

mark non-members and interloper galaxies with confirmed redshifts. Only ob-

jects with secure redshifts (Q = 3 or greater; see Section 3.3.1) are plotted. In

the right hand panel, black lines correspond to SALT RSS spectra, while red

lines show the best match redshifted SDSS spectral template in each case. The

displayed object spectra span a representative range in r-band magnitudes, as

indicated in the figure, and the spectrum for the brightest object is that of the BCG. 34

3.3 The z = 0.35 cluster ACT-CL J0348.6-0028 (see Fig. 3.2 for an explanation of

symbols and colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 The z = 0.30 cluster ACT-CL J0342.7-0017 (see Fig. 3.2 for an explanation of

symbols and colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 The z = 0.33 cluster ACT-CL J2058.8+0123 (see Fig. 3.2 for an explanation of

symbols and colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The z = 0.36 cluster ACT-CL J0219.4+0129 (see Fig. 3.2 for an explanation of

symbols and colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 The z = 0.55 cluster ACT-CL J0045.2-0152 (see Fig. 3.2 for an explanation of

symbols and colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 The z = 0.46 cluster ACT-CL J0156.4-0123 (see Fig. 3.2 for an explanation of

symbols and colors) The unlabeled galaxy is from SDSS DR10. . . . . . . . . . 37

x



4.1 Plot of SALT derived masses and Sifón et al. (2012) masses over SZE scaling

relations. Estimators have been scaled as indicated in the axis labels. The x-axis

is the correlated Y -value for a cluster at R500c. The y-axis is M500c. Sifon et

al’s cluster results are circles and SALT-observed cluster results are black dots.

Previous estimates of the Y −M scaling relation are shown with dashed, blue,

and red lines (see text for details). . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



CHAPTER 1

Introduction

1.1 Introduction to Cosmology

In this work, clusters of galaxies are studied with a view to use them for cosmological studies. In

the first section, I outline the standard cosmological framework, discussing observations that can

be used to test and refine the model. The second chapter focuses on previous observations that

use clusters of galaxies as a probe of cosmology and motivates the study described in Chapter

3. Data from the Southern African Large Telescope is then presented and analyzed, leading to

the discussion in Chapter 4, where we compare our results with previous work and discuss the

relevance for future studies.

The discipline of cosmology is the study of the Universe as a whole. Physical laws dictate the

evolution of the Universe, allowing us to understand its past and predict its future. The first set

of descriptive equations about the Universe came from Einstein’s General Theory of Relativity.

Einstein assumed the Universe was unchanging in time and in his equations, to counter-balance

the attractive force of gravity, he introduced a term to represent a sort of ”anti-gravity”. He called
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the term the ”cosmological constant” and nowadays it is typically represented by lambda, or Λ.

Shortly after, Friedmann solved Einstein’s equations (Friedmann, 1924), without the assump-

tion of a static Universe, and produced a set of equations in which the Universe expanded from

a single point. In Friedmann’s models, the expansion of the Universe is slowed by the gravita-

tional force of matter within the Universe. If the density of matter (Ω) in the Universe exceeded

a critical amount, it would be sufficient enough to stop expansion and cause the Universe to

fall back in on itself; this is called a ”closed” Universe. If the amount of material in the Uni-

verse was less than the critical amount the Universe would continue to expand forever, called an

”open” Universe. In the case where the amount of matter matches the critical amount, the rate

of expansion would fall to zero after infinite time. The currently accepted model of the Universe

extends Friedmann’s model to include a ”dark energy” contribution like Einstein’s cosmological

constant.

1.2 Expansion of the Universe

In the late 1920s observations of galaxies using optical spectroscopy had allowed the calcula-

tion of their velocities as compared to Earth. These measurements were combined with their

distances, as determined using standard candles like Cepheid variable stars, to create a plot of

speed versus distance. Aside from our closest galactic neighbors, it was shown that the further

away a galaxy was the faster its rate of recession. Hubble’s Law was derived from this relation in

which the speed of recession and distance are directly proportional and are related by Hubble’s

constant (Ho) (Hubble, 1929). This type of linear relationship is a consequence of observing a

Universe that is uniformly expanding. If you assume the Universe has expanded at this uniform

rate throughout its existence, then it is possible to rewind time and discover a moment when the

Universe would have had no size.

When a photon travels through space its properties change due to this expansion. In par-

ticular, when a photon is emitted (with wavelength λrest) it will undergo an elongation of its

wavelength as it travels through space. This elongation is due to the expansion of the Universe

while the photon is traveling. The amount of expansion that has occurred in the Universe while
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the photon has been traveling is exactly the same ratio in which the photon wavelength will been

elongated. When the photon reaches us we observe it with wavelength λobserved. This elongation

of the wavelength is called, ”cosmological redshift”. It is possible to characterize the recession

(redshift) or approach (blueshift) of a galaxy by the relative difference between the observed

wavelength that we see on Earth, here and now, and the wavelength that was emitted from an ob-

ject (there will be a difference due to the expansion of space). This is given by the dimensionless

quantity z

z =
λobserved−λrest

λobserved
. (1.1)

1.3 The Cosmic Microwave Background

Gamow (Gamow, 1948) was the first to predict the earlier Universe should have left radiation

that could still be detected today. This radiation was initially in the form of high energy gamma

rays and became less energetic as the Universe expanded and cooled. Up to the first 380,000

years after the beginning of the Universe the photon energy was high enough to prevent any

formation of light atoms in the Universe and therefore it was composed of hydrogen and helium

nuclei and free electrons; it was a plasma. These free electrons scattered the photons before they

could travel far and thus the Universe was opaque. As the Universe cooled, the photons became

decoupled and could free-stream through space unimpeded. This coupling between matter and

radiation in the early Universe has two important observable ramifications: first, the radiation

should have a black body spectrum (spectrum of a heated, opaque object) which corresponds

to the temperature of the Universe right before the photons could travel free (approximately

380,000 years after the start): and secondly, the distribution of the nuclei and electrons (baryonic

matter) would have been related. This radiation remaining from the Big Bang is known as the

cosmic microwave background (CMB). It is called ”microwave” because the wavelengths (of

maximum intensity) have been stretched into to the microwave-wavelength range. This was

proved observationally in 1965 (Penzias & Wilson, 1965). However, incontrovertible proof as

to its origin came in 1992 when the Cosmic Background Explorer (COBE) satellite showed the
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background radiation had the precise black body spectrum that was hypothesized (Smoot et al.,

1992). COBE’s measurements verified the CMB had the precise spectrum that would result from

a Big Bang scenario.

1.4 Inflation

Given the Big Bang’s observational success, there were still some problems with the theory.

One is that the Universe appears to have exactly the same temperature in opposing directions.

In a standard Big Bang model with uniform expansion there hasn’t been enough time to allow

radiation to travel from one region of the sky to the other. The consequence is these regions

cannot exchange their properties with one another to become exactly the same; energy cannot

travel faster than the speed of light. Secondly, observations show the Universe is very close to

being flat, Ω∼ 1, and the Big Bang theory gives no particular reason why this should be the case.

This issue was reconciled with an idea of ”inflation”, first proposed by Alan Guth (Guth,

1981). In his theory, the volume of space expanded exponentially. Before this, the volume of

space was small enough that radiation could travel across and give it a uniform temperature.

Inflation also ensures the exponential expansion of space would force the geometry of space to

become flat.

1.5 Dark Matter and its Evidence

Inflation predicts that space has zero curvature (flat) and the required mass-energy for this to be

true is larger than the mass-energy apparently available in baryonic matter. This provided motiva-

tion for the presence of non-baryonic dark matter (DM), matter not detectable by electromagnetic

radiation, hence ”dark”. Observational evidence supporting the presence of non-baryonic dark

matter is discussed below.
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1.5.1 Big Bang Nucleosynthesis

The density of baryonic matter in the Universe is highly constrained by nucleosynthesis in the

early Universe. A few minutes after the Big Bang, one would expect conditions in the Universe

to allow nucleosynthesis (the fusion of protons to elements with larger nuclei, coined Big Bang

nucleosynthesis (BBN)). The light elements created this way are very sensitive to the baryon-

photon ratio. These elements can be detected in regions where no star formation has occurred

and therefore the region is close to primordial composition. Observations of H, He, Li and their

isotopes in these regions provide a measurement of the baryon-photon ratio in the early Universe

and put an upper limit on baryonic matter at about 4% (Gamow, 1948).

1.5.2 Galactic Rotation Curves

The observed rotation velocities of baryonic matter (stars and gas) are measured as a function of

their distance from the center of rotation of a galaxy. Kepler’s law gives

Vr =

√
GMr

r
, (1.2)

which gives velocity as a function of the gravitating mass Mr at each radius r (see Fig 1.1).

If most of the mass in galaxies was luminous, one would expect Vr to decrease as one moved out

into the lower-luminosity parts of the outer disk. However, Vr is observed to stay constant re-

gardless of distance (Fig 1.2). These studies reveal (a) the DM considerably exceeds the amount

of visible baryonic mass, and (b) the invisible DM, responsible for the rotation velocities, is

distributed in a much larger halo than the luminous baryonic matter (Sofue & Rubin, 2001).

1.5.3 X-ray Gas of Galaxy Clusters

Clusters of galaxies are filled with extremely hot gas that is 107-108 K. At this temperature the

kinetic energy of the gas particles are too great to be bound by the mass of the baryonic matter

within the cluster. For these gas particles to remain in the vicinity of the cluster the total mass of

the system has to be many times the known luminous mass (Voit, 2005).
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Figure 1.1: Figure taken from https://astronomy.swin.edu.au/cosmos/R/Rotation+Curve. A ro-

tation curve is a plot showing how orbital velocity, V , varies with distance from the centre of

the object, R. Rotation curves can be determined for any rotating object. They are generally

used to show how mass is distributed in the Solar System (Keplerian Rotation curves) or in spiral

galaxies (galactic rotation curves).
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Figure 1.2: Figure taken from http://www.arturostabile.com/publications.html. A diagram show-

ing the expected rotation curve for a galaxy and the actual rotation curve from observational data.

1.5.4 Gravitational Lensing

Predictions from Einstein’s General Theory of Relativity (Einstein, 1916) states that mass distorts

the geometry of spacetime, causing even light to ”bend” near a massive object. Therefore, the

mass of a cluster of a galaxies can distort the photon paths of more distant objects. The light

rays coming to us from a distant object along a path which passes near some foreground massive

object of mass M are expected to be deflected slightly by the latter, by an angle

α =
4GM
c2b

≡ 2RS

b
, (1.3)

where b is the ”impact parameter” (the minimum distance of approach of the light ray to the

mass M) and RS = 2GM
c2 is the Schwarzschild radius. This leads to a distortion in the shapes of

background galaxies. The total mass of the foreground cluster can be estimated from the amount

of distortion of the background galaxies. The total mass of galaxy clusters detected this way

show there is vastly more mass than the luminous mass seen in stars and gas and thus provides

strong evidence for the existence of dark matter.
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1.6 Dark Energy

In the 1990’s observations of another type of standard candle, Type 1a supernovae, allowed for

testing of the Hubble expansion relation. These objects, which are much further away than

previous standard candles, like Cepheid variable stars, allowed the Hubble plot, relating distance

and speed, to be extended. Given a specific distance one could predict the speed at which the

object should be receding. Contrary to the accepted belief, it was found that these objects were

receding faster than predicted. This implies that the expansion rate of the Universe is increasing

- not decreasing (as expected) - and thus evidence for an additional component of the energy-

density in the Universe, often called dark-energy, with a similiar effect as Einstein’s Λ (Riess

et al., 1998) (Fig 1.3).

A positive Λ term in Einstein’s cosmological equations can be described as a fixed positive

energy density. This positive energy-density exists within the fabric of space and is unchanging

with time. This is often called the ”cosmological constant” and successfully explains a variety

of observations. It has become an accepted constant in the current standard model of cosmology,

the lambda-cold dark matter model (ΛCDM), which incorporates both cold dark matter (Section

1.8) and the cosmological constant.

The amount of baryonic matter makes up ∼4% of the total mass-energy content and dark

matter makes up ∼23% of the total mass-energy content of the Universe. Thus, some 73%, is

thought to be a form of energy that is uniform throughout space (Perlmutter et al., 1999).

The density in different components is usually expressed in terms of the critical density (the

density required to make the Universe spatially flat) ie. Ωmatter = ρmatter/ρcritical , and ΩΛ =

ρΛ/ρcritical . In the standard model Ωtotal = Ωmatter + ΩΛ = 1, ie the Universe is spatially flat.

1.7 The Evolution of Structure

The Universe contains regions of denser mass-energy content (stars, galaxies, clusters of galax-

ies, etc), which evolve and become increasingly more compact and complex as time goes on. It is

thought that these density inhomogeneities originated from small perturbations (from quantum

8



Figure 1.3: Figure taken from Riess et al. (1998). Multicolor Light Curve Survey (MLCS) SNe

Ia Hubble diagram. The upper panel shows the Hubble diagram for the low-redshift and high-

redshift SNe Ia samples with distances measured from the MLCS method. Overplotted are three

cosmologies: ”low” and ”high” ΩM with Ω∆ = 0 and the best fit for a flat cosmology, ΩM =

0.24, Ω∆ = 0.76. The bottom panel shows the difference between data and models with ΩM =

0.20, Ω∆ = 0. The open symbol is SN 1997ck (z = 0.97), which lacks spectroscopic classification

and a color measurement. The average difference between the data and the ΩM = 0.20, Ω∆ = 0

prediction is 0.25 mag.
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fluctuations), where the density is slightly above average: ρ = ρaverage + ρ∆, where ρaverage is

the average density and ρ∆ is the density excess; ρ∆ is much smaller than the average (to start).

Under the action of gravity these small density excesses grow larger, until eventually the ex-

cesses become significant compared to the average density, ρ∆ > ρaverage, described by saying

that the excesses have become ”non-linear”. The process involves a hierarchy of semi-chaotic

sub-structures existing in a continuum of mass scales. These excess-density, or over-dense, re-

gions arrange themselves under the action of gravity into ever larger regions (Peebles, 1980).

1.7.1 Evolution of Dark Matter Halos

Dark matter, being collision-less, passes through itself and re-expands until it reaches its approx-

imate virial equilibrium configuration. Within the ΛCDM scenario outlined above, large scale

structures in the Universe such as galaxies and clusters of galaxies form hierarchically. Small

DM halos tend to occur inside an underlying larger scale over-density region, which gives the

small DM halo an extra boost, a ”biasing” in the formation process. In the course of time the

smaller DM halos are expected to merge, before or after stars formed in them, giving rise to

larger DM halos and larger galaxies. Even later, the underlying larger scale over-density regions

themselves would become ”non-linear”, giving rise to a distinct cluster of galaxies.

1.7.2 Evolution of the Baryonic Matter

As the various mass scales collapse the baryons represent a minor constituent that falls into the

potential wells provided by the associated dark matter. The baryonic gas is dominated by the

gravitational field of the DM. Thus, the baryons initially follow the DM during the early phases

of the collapse. As the collapse proceeds, the volume occupied by the DM and the gas decreases

and both are adiabatically heated. However, unlike the DM, the baryonic gas has a significant

”cross-section” for interacting and can’t pass through itself. This gives rise to a further heating

caused by collisions. The increased motions of the gas (higher temperature) excite their electrons

to higher quantum energy levels which are followed by radiative de-excitation. Therefore, the

photons carry away much of the acquired thermal energy of the gas, and cools the gas, allowing
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it to settle into more compact configurations than the parent dark matter halo in which it nests.

1.8 Predicting Large-Scale Structure

The full details of the growth of structure are complicated and only approximately understood.

For example, it is possible to calculate how density fluctuations will evolve when they are in the

linear regime but to understand non-linear evolution large simulations are required.

To understand these processes we use observational and theoretical techniques. We can mea-

sure the constants of cosmology such as: Hubble’s constant (H0), Ωmatter and ΩΛ. The values

of these constants determine how rapidly the Universe expanded. The more rapidly the Uni-

verse is expanding the more difficult it is for gravity to pull material together into galaxies and

larger-scale structures.

The available observations and measured constants of cosmology become inputs to theoreti-

cal models and supercomputer simulations. The simulations model the formation and evolution

of dark matter halos, small and large galaxies, and galaxy groups and clusters. The simulations

seek to approximate what the Universe should look like at different times (different redshifts)

and can then be compared to the observations. The abundance and distribution of large scale

structure can provide strong constraints on cosmological parameters (Bahcall & Fan, 1998) and

(Viana & Liddle, 1999).

1.9 Detecting Galaxy Clusters

Simulations have shown that the number counts of galaxy clusters, among other things, is sensi-

tive to cosmological parameters (Haiman et al., 2001). Simulations also predict specific masses

for galaxy clusters at different times in the Universe. To be able to test these predictions and

constrain measurements of the cosmological constants, it is required that we know the mass and

redshift distributions of clusters with good precision. To do that we need to find galaxy clus-

ters and measure their masses. This can be done by exploiting some of the properties of galaxy

clusters discussed earlier in proving dark matter’s existence.
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1.9.1 X-ray Observations

As we have seen in Section 1.5.3, galaxy clusters contain extremely hot gas. An optically thin,

hot gas primarily emits spectral lines. However, if the gas is a plasma, with its temperature on

the order of millions of degrees, then all the atoms are broken up and the radiation is produced

only when charged particles in the plasma are decelerated due to mutual Coulomb interactions

amongst themselves. Such radiation, called bremsstrahlung or free-free radiation, is emitted.

This type of radiation can be detected in the X-ray part of the spectrum. There are multiple space-

based instruments (XMM-Newton, Chandra, ROSAT, etc.) conducting surveys (REXCESS, All-

Sky-Surveys, etc.) to detect such phenomenon (Polletta et al., 2007; Romer et al., 2001; Sahlén

et al., 2009). In the case of a galaxy cluster, X-ray luminosity is related to the temperature of

the gas and can be used to infer how much mass is present in the system. Alternatively, the

temperature of the gas can be estimated directly using the features in the X-ray spectra.

1.9.2 Optical Observations

Optical surveys, such as the Sloan Digital Sky Survey (SDSS), can also be used to detect galaxy

clusters (Popesso et al., 2005; Yang et al., 2008). Optical surveys map large portions of the sky

to obtain positional information (RA, Dec, and z) of astronomical objects. There are different

ways to locate galaxy clusters in optical surveys. One example is red-sequence studies (Zehavi

et al., 2011), which evaluate if there is a certain density of red objects within a given radius. By

collecting dynamical information on the galaxies within a cluster you can determine mass from

the virial theorem (discussed below). Observations indicate clusters are gravitationally bound

(Sofue & Rubin, 2001). Peculiar velocities of galaxies within a cluster can be determined via

∆vi = c
(zi− z̄)
(1+ z̄)

, (1.4)

where ∆vi is the peculiar velocity of the ith galaxy, zi is its redshift, and z̄ is the redshift of the

cluster. If the peculiar velocities are found, it is possible to estimate the total mass of the cluster

from the virial mass, given by the equation
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M =

(
5
3

)
< v2 > R

G
, (1.5)

where G is the gravitational constant, v is velocity, and R is the given radius.

1.9.3 Microwave Observations

Observations of the CMB can also reveal large scale structure. The COBE spacecraft observa-

tions showed the CMB did not have a perfectly uniform temperature and, since then, observa-

tions from Wilkinson Microwave Anisotropy Probe (WMAP) and Plank spacecraft, etc. have

been able to map these inhomogeneities in the CMB temperature (fluctuations in the observed

temperature of typically 60 µK).

Temperature anisotropies trace density fluctuations in the early Universe. This effect is

caused by the radiation wavelength being stretched by the gravitational potential well created

from the DM. This is called, ”gravitational redshift”. The photons leaving from areas that were

DM dominated would have longer wavelengths than photons leaving areas with less dark matter.

Since the spectra from these two regions differ, the black body temperature from these regions

differ, explaining the temperature differences that are observed. Observations of the CMB pro-

vide a direct probe of density fluctuations in the early Universe but they can also be used to detect

clusters of galaxies at lower redshifts, via the Sunyaev-Zel’dovich-effect described in Chapter 3

ie. CMB observations can also be used to probe large scale structure at low redshift.

1.10 Tracing Cosmic Evolution

Studies of clusters of galaxies have had a wide impact on our understanding of galaxy formation

and cosmology (Voit, 2005). The number counts of clusters and their distribution in redshift

is sensitive to cosmological parameters: the variance in density in eight Mpc spheres (σ8), the

mass-energy density in baryons (Section 1.5.1), dark matter and dark energy (Section 1.5, 1.6),

and the equation of state of the latter. (Bahcall & Fan, 1998; Evrard et al., 2008; Mantz et al.,
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2010; Rozo et al., 2010; Vikhlinin et al., 2009). Studying cluster counts as a function of redshift

is thus a useful probe of cosmological parameters.
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CHAPTER 2

The Sunyaev-Zel’dovich Effect

2.1 Introduction to the Sunyaev-Zel’dovich Effect

As we have seen in Section 1.3, the CMB radiation appears isotropic. However, observations

reveal small anisotropies in the CMB. Some of these anisotropies have primordial origin but

others are due to secondary effects. The secondary effects are produced by structure along the

line of sight to the CMB. One source of anisotropy is the the Sunyaev-Zel’dovich effect which has

to do with the interaction between the CMB photons and the clusters of galaxies it passes through.

The interaction is with the hot, low density intracluster gas. The background radiation interacts

with the electrons in the gas via inverse Compton scattering. In Compton scattering, the photon

initially has more energy than the electron, some energy is transferred from the photon to the

electron. Since the photon loses energy, the wavelength increases (energy decreases). However,

it is also possible for the electron to start out with more energy than the photon. In this case,

called inverse Compton scattering, energy is transferred from the electron to the photon. The

wavelength of the photon decreases (energy increases). The electrons in the intracluster gas have

high energies, and low-energy photons get a large boost in energy, going in as radio wavelength
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Figure 2.1: Figure from Ned Wright (www.astro.ucla.edu/ wright/SZ-spectrum.html). The black-

body (black line) and distorted spectrum (blue line) on a log-log scale showing the Sunyaev-

Zel’dovich-effect

photons and coming out at shorter wavelengths. This means that if we look in the directions of

clusters of galaxies at microwave wavelengths, some of the background CMB radiation will have

been removed since some of the radio photons have been shifted to higher energy. This is called

the thermal Sunyaev-Zel’dovich effect (Fig 2.1).

More quantitatively, when the temperature of the electrons are much greater than the Comp-

ton temperature, there is a net transfer of energy from electrons to photons, by a factor of

1+
4kT
mec2 , (2.1)

where the magnitude of this effect is proportional to the Compton parameter, y, a measure of

the gas pressure integrated along the line-of-sight

y =
σT

mec2

∫
Pdl, (2.2)

where σT is the Thomson cross-section, c the speed of light, me the electron rest mass, and

P = neT is the product of the electron number density and temperature. The total SZE signal,
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integrated over the cluster extent, is proportional to the integrated Compton parameter YSZ where

YSZ D2
A = (

σT
mec2 )

∫
PdV, (2.3)

where DA is the angular distance to the system.

2.2 The SZE-Mass Relations

The SZE surface brightness, in principle, is independent of the redshift. SZE surveys operate

on a different observed effect, resulting in a different selection function of clusters, resulting in

different redshift and mass ranges than X-ray and optical cluster surveys do. SZE surveys are

generally more sensitive to higher redshift and more massive clusters. The combination of these

characteristics make it more robust, being able to put tight constraints on cosmological param-

eters (Battaglia et al., 2012) (this makes it an ideal probe for mass evolution). Within the last

few years, blind identification of clusters has begun. The identification of massive, rare clusters

enables us to probe the current cosmological parameters. To do this we need to accurately deter-

mine the mass of these clusters. Direct measurement of mass would be ideal, but mostly, mass

is inferred indirectly from optical, X-ray, and microwave observations; each method having its

own complications. A thermal Sunyaev-Zel’dovich measurement directly observes the cluster’s

total gas heat-energy content, a volume average of the thermal gas pressure, and therefore its

gravitational energy through the virial relation (Section 1.5), so it is expected to provide a robust

probe of cluster mass.

A handful of recent studies have attempted to correlate the SZE with other cluster observables

in order to determine a precise relationship between the two observables and apply the correlation

to other clusters. Below, I summarize some of these studies.

2.2.1 X-ray Pressure Profiles and the SZE-Mass Relation

Arnaud et al. (2010) studies the pressure profiles of nearby cluster systems. Their study is based

on the concept that the gas pressure of the system is directly linked to the gravitational potential
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well and therefore the mass of the system. This is supported by the work of numerical simula-

tions (Bonaldi et al., 2007) and analytical models (Reid & Spergel, 2006). The numerical and

analytical simulations show that the dynamical state of the cluster and gas introduce little scatter

into the YSZ - M relation. However, they do point out the normalization of the relation and the

amount of intrinsic scatter does depend on the gas physics (Bonaldi et al., 2007; Vikhlinin et al.,

2006). It is the goal of Arnaud et al. (2010) to understand the pressure profiles that give rise to

this relation and calibrate these quantities with observational data.

Arnaud et al. (2010) sets out to derive pressure profiles based on an X-ray analogue of the

integrated Compton parameter, YX . This is an important physical parameter as it is the product

of M500 and the spectroscopic temperature outside the core, TX . However, this relation does

depend on cluster structure

YSZD2
A

YX
=

σT

mec2
1

µemp

< neT >

< ne >R500 TX
, (2.4)

where YSZD2
A is the SZE integrated over a given area, YX is defined as the product of M500, the

gas mass within R500 and TX , the spectroscopic temperature outside the core. R500 is the radius

at which the mean density is 500 times the critical density of the Universe. M500 is the amount

of mass inside R500. σT is the Compton-temperature, me is the electron mass, mp is the proton

mass, ne is the number of electrons, TX is the X-ray luminosity, and the angle brackets represent

volume averaged quantities.

By understanding the radial pressure distribution they can probe the intra-cluster gas prop-

erties of the system. Arnaud et al’s analysis is done by studying cluster pressure profiles of 33

local (z < 0.2) clusters drawn from the REXCESS catalog and observed with XMM−Newton.

Arnaud et al (Arnaud et al., 2010) combined observational data and simulation data to derive

a universal pressure profile (UPP). The combined data is generated from their simulations, in-

dependent simulations, observed data from this study, and archival data of clusters in a similar

thermodynamical state. This approach gives robustness to their UPP. Their UPP provides SZE

decrement information and relations for the Compton parameter in various apertures. They show

that varying the profile shapes do not introduce extra scatter into the Y500 - M500 relation (unlike
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the YX - M500). Their derived relation

h(z)−2/3YSZ,R500 = 10−4.739×
[

M500

3×1014h−1
70 M�

]1.79

h−5/2
70 Mpc2. (2.5)

Arnaud et al. (2010) states they were not able to explore pressure evolution with their given

cluster sample. Since their data was composed solely of local clusters they had to assume stan-

dard self-similar evolution. They express optimism in the ability of Atacama Cosmology Tele-

scope (ACT) and the South Pole Telescope (SPT) surveys to detect massive, high z, clusters,

allowing the study of the evolution of pressure profiles and to probe the evolution of the YSZ -

M500 relation.

2.2.2 Gravitational Lensing and the SZE-Mass Relation

Marrone et al. (2012) present the first weak-lensing based scaling relation between galaxy cluster

mass, MWL , and integrated Compton parameter YSZ . Weak lensing probes the gravitational

potential of the cluster without using gas-physics, providing a way to test for mass biases in

other mass estimators. Marrone et al. (2012) observed 18 galaxy clusters at z = 0.2 with the

Subaru 8.2 m telescope and the Sunyaev-Zel’dovich Array. These clusters were selected from

the Local Cluster Substructure Survey (LoCuSS), a multi-wavelength survey of galaxy clusters

selected from the ROSAT All-Sky Survey (Okabe et al., 2010). The clusters were drawn from

the LoCuSS ”high-Lx” sample which were selected from the ROSAT survey.

The weak-lensing measurements are based on data from the Subaru/Suprime-Cam23. They

selected weakly-lensed background galaxies based on a minimum color offset from the clus-

ter red-sequence. The background galaxy shapes were measured in accordance with the KSB

method (Kaiser et al., 1995) and the number density of galaxies used in the analysis was v10-30

per arcmin2. Their derived relation is

M(r∆)

1014M�
= 10A×

[
YSZD2

AE(z)−2/3

10−5Mpc2

]B

, (2.6)

where B is 0.44 and A is 0.367 assuming a flat λ-CDM cosmology: ΩM = 0.27, Ω∆ = 0.73,

and H0 = 73 km s−1 Mpc−1.
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They examine their derived Y -MWL relation and its scatter, along with the possibility of

biases in the mass estimates relating to cluster morphology. Marrone et al. (2012) reports their

scaling relations are subject to some bias because of the Lx selection method of the ”high-LX ”

sample. Their results are consistent to within 1σ of (Bonamente et al., 2008) at R2500 but are less

consistent with Andersson et al. (2011) values at R500.

In their Ysph-MWL relations they indicate large intrinsic scatter that may be related to cluster

morphology. They detect a significant difference in the normalization of the self-similar Ysph-

MWL relations between disturbed and undisturbed clusters (which they determine by measuring

a centroid shift of the X-ray peak compared to the centroid of emission) at all three overden-

sity radii they study. However, this systematic effect has not been seen in simulations. It has

been found that the SZE signal is a robust mass proxy even during periods of mass accretion

(Motl et al., 2005). The scatter in Marrone et al’s signal is larger than predicted in simulations

of the SZE signal, although this is not unanticipated. They reason most of the scatter comes

from calculating spherical masses from the intrinsically two-dimensional measurements. Much

of the segregation they see between disturbed and undisturbed clusters is explained by modeling

spheroidal halos as spheres when determining masses. This explanation is supported by show-

ing the similarity between their measurements and predictions of projection-induced scatter for

weak-lensing data of similar quality. I compare their Ysph-MWL derived relation to our data in

Section 4.2.

2.2.3 Dynamical Measurements and SZE-Mass Relations

The most used method for determining cluster mass comes from optical spectroscopy. These

observations allow for velocity dispersions of the cluster to be measured and therefore mass.

This method doesn’t require one to observe from space and is another way to measure the mass

variable independently of the gas properties. The fundamental underlying assumption is that the

galaxy cluster is virialized; it is not undergoing merging.

Sifón et al. (2012) presents the first dynamical mass estimates and YSZ−M scaling relations

for a sample of SZE selected galaxy clusters. Their sample consists of 16 clusters detected with
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the ACT in a 455 deg2 area of the southern sky. These clusters were observed by ACT in its

2008 southern sky survey at 148 GHz (Marriage et al., 2011), and were optically confirmed by

(Menanteau et al., 2010). The spectroscopic redshift range covered by the sample is 0.28 < z <

1.07 with a median redshift z = 0.50. On average, 60 galaxies were used in the analysis of each

cluster.

The spectroscopic observations were carried out at VLT and Gemini South in Chile. They se-

lected their targets by constructing a photometric redshift-selected catalog and included galaxies

within ±0.1 of the redshift of the BCG. Galaxies within this subset were then visually selected

based on their g,r, and i colors, with preference given to bright galaxies. All their spectroscopic

observations cover the wavelength range v 4000 - 8000 Å. In this range several spectral features

are observable at the median photometric redshift of 0.54 (Menanteau et al., 2010). These are

mainly the CaII K-H absorption doublet (at a rest-frame wavelength λ0 v 3950 Å), which is the

spectral signature of elliptical galaxies, plus other absorption lines.

In this work, they restricted themselves to a power-law relation between dynamical mass

and each SZE estimator measured from the ACT data. We are most concerned with the M200

estimator of the form

M200c

h−1
70 M�

= 10A
[

Y200cDA(z)2E(z)−2/3

5×10−5h−2
70 Mpc2

]B

. (2.7)

Here, DA(z) is the angular diameter distance in Mpc, M200c is in units of h−1
70 M�, E(z) =

[ΩM(1+z)3+ΩΛ]1/2, and A and B are the fit parameters for the slope and the normalization, re-

spectively. They use the Bivariate Correlated Errors and intrinsic Scatter (BCES) algorithm for

the linear regression (Akritas & Bershady, 1996). This method accounts for correlated measure-

ment errors in both variables. We compare our results to this relation in Section 4.2.

From the available 3-d information they divided the sample into relaxed and disturbed clus-

ters. There were three different tests to see if a cluster was determined as relaxed or disturbed.

The factors considered were the peculiar BCG velocity, the projected BCG-SZE offset, and the

Dressler & Shectman substructure test (Dressler & Shectman, 1988). Clusters were determined

as merging if they met at least two of these conditions (a more quantitative explanation of each
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test is available in Sifón et al. (2012)). Sifón et al. (2012) find that v50% of the clusters are

disturbed. Given the large number of disturbed clusters, they call for further studies to assess

the morphological impact on their relation. Regardless, they report their scatter is within that of

other self-similar evolution simulations of clusters and their scaling relation is in good agreement

with previous results.

2.2.4 Simulations of SZE Relations

The use of SZE surveys for determining cosmological parameters from cluster abundances is

limited by the theoretical uncertainties in the Y −M relation. Battaglia et al. (2012) investigate

how non-thermal pressure and irregular shapes of the gas distribution of the intra cluster medium

(ICM) effects Y −M scaling. They aim to identify other observable parameters that would mimic

internal gas flows in effort to reduce Y-M scatter. Battaglia et al’s study investigates the influence

of various physical effects on the Y-M scaling relation. Characterization of these effects would

allow for tighter constraints on cosmological parameters. This is done with hydrodynamic sim-

ulations of the cosmic web.

They investigate the effects of varying radiative cooling, supernova feedback, star formation,

AGN, cosmic rays, and other entropy injection and transport mechanisms. Using the Y∆ values

they calculated from modeling various systems, they fit an average scaling relation

Y∆ = 10B
[

M∆

3×1014h−1
70 M�

]A

h−1
70 Mpc2, (2.8)

where A and B are the fit parameters for the slope and the normalization, respectively. They

weight each cluster by its Y∆ value when fitting for A and B to keep the low-mass clusters from

dominating the fit. They note this could lead to potential biasing of parameters since Y∆ is the

dependent variable in the Y−M relation. They test for this by weighting each cluster by M5/3
∆

, the

scaled independent variable and only found negligible difference between the weighting schemes

for amplitude and slope. We compare our results to the Battaglia et al. (2012) relation in Section

4.2.
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CHAPTER 3

SALT Observations of ACT SZ Clusters

Sehgal et al. (2011) and others have shown that without an accurate calibration of the scaling

relation between cluster mass and SZE signal, the 2008 ACT southern cluster sample is un-

able to constrain cosmological parameters to much better precision than the WMAP7 CMB data

alone. However, with a well characterised Y-M relation (i.e., the aim of this project to aid in

that goal), the ACT+WMAP7 constraints will be significantly improved, assuming cluster mass

errors of 25%. As we have seen with Sifón et al. (2012), dynamical mass estimates from SZE-

selected clusters from ACT have produced results instrumental for a well-characterised Y-M

relation. Their results show that masses determined from dynamical measurements provide a

sound method for relating the SZE to cluster masses. This method, in combination with other

mass proxies, will tighten constraints on cosmological parameters. In Hasselfield et al. (2013),

they find that including dynamical mass data for only seven clusters in the cosmological analysis

resulted in a significant improvement in the measurement of cosmological parameters.

We present Southern African Large Telescope follow-up observations of seven massive clus-

ters detected by the Atacama Cosmology Telescope using the Sunyaev-Zel’dovich effect. We

conducted multi-object spectroscopic (MOS) observations with the Robert Stobie Spectrograph
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(RSS) in order to measure galaxy redshifts in each cluster field, determine the cluster line of

sight velocity dispersions, and infer the cluster dynamical masses. We have supplemented our

data with redshifts from the Sloan Digital Sky Survey (SDSS) archival data with approximately

20 percent of our identified cluster members coming from SDSS.

3.1 ACT Maps and Cluster Detection

The ACT maps and cluster identification are provided by the ACT team. The Atacama Cosmol-

ogy Telescope is a six-metre telescope on Cerro Toco in the Atacama Desert. It resides at an

altitude of 5200 m and is designed to make high-resolution microwave-wavelength surveys to

study the CMB. Observations are made in three different frequencies: 148 GHz, 218GHz, and

277 GHz. Each frequency is measured by a total of 1024 transition-edge sensors which allow

measurements of the CMB to within a few millionths of a degree (Fowler et al., 2007). In 2009

and 2010, ACT observed the celestial equator. The region observed overlaps 270 square degrees

with SDSS, including SDSS’s deep (r v24) Stripe 82 region. This region is the lowest noise

area in the ACT equatorial maps. The ACT team has identified and optically confirmed 69 clus-

ters from S82 with S/N > 4 ((Menanteau et al., 2013), (Hasselfield et al., 2013)), spanning the

redshift range 0.2 < z < 1.4, with a median z = 0.5.

3.2 SALT Observations

Observations of seven ACT clusters were conducted with the RSS in multi-object spectroscopy

(MOS) mode, which uses custom designed slit masks. The slit masks and SALT Phase 1 and

2 proposals were designed and written by Dr Matthew Hilton and Susan Wilson. Given that

SALT is located at Sutherland where the median seeing is 1.3’ (Catala et al., 2013), slitlets

with dimensions of 1.5’ width and 10’ length were used. This was chosen to ensure reasonably

accurate sky subtraction given the seeing conditions. The RSS has an 8’ diameter circular field

of view, and with these slit dimensions, able to target 19-26 galaxies in each cluster field per slit

mask. Three to four bright (15−17.5 magnitude in the r band) stars per cluster were chosen in
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the field for alignment of the slit masks during acquisition.

The slit masks were designed in regards to the catalogs extracted from the 7th data release

of the Sloan Digital Sky Survey (Abazajian et al., 2009). For each cluster, the Brightest Cluster

Galaxy was identified from visual inspection of the SDSS images, and the color of the red-

sequence was identified from visual inspection of color-magnitude diagrams. This information

was used to define target galaxy samples for each cluster, prioritizing the selection of galaxies

with magnitudes fainter than the BCG and with color bluer than the estimate of the red-edge

of the red-sequence (note that these color - magnitude cuts vary from cluster-to-cluster due to

their slightly different redshifts). Target galaxies were assigned slits in an automated fashion

using an algorithm that prioritized objects closer to the cluster center (in practice, this ensured

that the number of objects whose spectra were centered horizontally on the detector array was

maximized). The final masks were made using the PYSLITMASK tool, part of the PYSALT

software package (Crawford et al., 2010). Three masks per target were designed, although not

all masks were observed.

The SALT observations were carried out by the on-duty SALT astronomer on the given night

of observation. These RSS observations were conducted using the pg0900 Volume Phase Holo-

graphic (VPH) grating. All observations were conducted with the RSS camera station set to

28.75◦ and the grating angle set to 14.375◦. This set up was chosen to center the wavelength

coverage on D4000 at z≈ 0.3 (i.e., the approximate redshift of the clusters) and results in disper-

sion 0.49 Å with 4000−7000 Å wavelength coverage. The design of SALT limits observations of

objects on the celestial equator to approximately 3200 sec long intervals (referred to as observing

blocks). At the start of each observing block the position of the tracker must be reset and the

object re-acquired, incurring significant overheads. The on-duty astronomer obtained 2×975 sec

RSS exposures per observing block for our first observations in July-September 2012. For some

subsequent observations, 4× 975 sec exposures were obtained by observing each mask in two

observing blocks. Note that SALT is a queue-scheduled telescope and observations were ob-

tained (sometimes of the same mask) on different nights throughout each observing semester.

Table 3.1 presents a summary of the observations.
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Table 3.1: Observing log of SALT observations
Program Target Mask Number Frames Airmass Date

of slits (sec) (UT)

2012-1-RSA UKSC RU-001 J2058.8+0123 1 23 2×975 1.8 2012 Jul 16

. . . J2058.8+0123 2 22 2×975 1.3 2012 Jul 24

. . . J2058.8+0123 3 22 2×975 1.3 2012 Sep 06

2012-2-RSA UKSC RU-001 J0320.4+0032 1 25 2×975 1.3 2012 Nov 10

. . . J0320.4+0032 2 26 4×975 1.3,1.3 2012 Nov 13, 15

. . . J0320.4+0032 3 22 4×975 1.3 2012 Nov 16

. . . J0219.9+0129 1 22 4×975 1.3,1.3 2012 Nov 15, 16

2013-1-RSA RU-001 J0045.2-0152 1 26 4×975 1.2,1.2 2013 Sep 01, 05

. . . J0045.2-0152 2 25 2×975 1.2 2013 Sep 25

2013-2-RSA RU-002 J0156.4-0123 1 25 2×975 1.2 2013 Nov 02

. . . J0156.4-0123 3 21 2×975 1.3 2014 Jan 03

. . . J0348.6-0028 1 25 2×975 1.2 2013 Nov 03

. . . J0348.6-0028 2 23 2×975 2.0 2014 Jan 01

. . . J0348.6-0028 3 23 4×975 1.3,1.2 2013 Nov 04, 08

. . . J0348.6-0028 4 19 4×975 1.3,1.3 2013 Dec 29, 30

. . . J0342.7-0017 1 22 2×975 1.2 2014 Jan 03
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3.2.1 PySALT Processing

PYSALT1is a suite of PYRAF tools for the reduction and analysis of data obtained from the

RSS instrument mounted on SALT. More information on PySALT can be found in (Crawford

et al., 2010). The PYSALT tasks consist of: preparing the image headers for the pipeline, apply-

ing a CCD amplifier gain and crosstalk correction, bias frame subtraction, cosmic-ray cleaning,

flat-field corrections, mosaic image creation from multiple CCD extensions, and extraction of

aperture slits based on slit geometry. All the tasks are available to use in PyRAF and the basic

data reductions for SALT are done using the SALTRED package. I ran each step of the PySALT

pipeline and a step-by-step guide is available in the appendix.

3.2.2 IRAF Processing

After PySALT processing I continued the reduction with IRAF2. The IRAF tasks are used to:

determine a wavelength dispersion function from a calibration lamp (Xenon or Argon), fit and

transform the arc dispersion to the science frames, apply a background subtraction of a constant

value determined locally within each slitlet, combine images (where available), and extract one

dimensional sums across the apertures. A step-by-step guide is available in the appendix.

3.3 Analysis

3.3.1 Cross correlation for redshifts

After PySALT and IRAF processing were complete I analyzed the data. To determine the red-

shifts of our galaxies I used another IRAF task called XCSAO, which is located in the RVSAO

package (Kurtz & Mink, 1998). This task computes a redshift by using the cross-correlation tech-

nique (Tonry and Davis 1979). In brief, the cross-correlation technique assumes that a galaxy

spectrum is simply the convolution of a stellar spectrum with a Gaussian distribution which de-

scribes the line-of-sight velocity dispersion of the galaxy’s constituent stars. The object you

1http://pysalt.salt.ac.za/
2http://iraf.noao.edu/
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want to determine the redshift of and a spectral template (of that class of object at rest frame) are

filtered in Fourier space and multiplied together to form the transform of the cross-correlation

function. This transform of the cross-correlation function is then transformed back into real

space. Cross-correlating a template spectrum with the galaxy spectrum produces a function with

a peak at the redshift of the galaxy with a width related to the dispersion of the galaxy. A de-

scription and summary of settings for this task are in the appendix.

I used six different SDSS DR2 galaxy templates to cross-correlate3. I ran the cross-correlation

repeatedly, with starting redshifts spanning 0.0 < z < 1 in intervals of δz = 0.0001 for each tem-

plate. The redshift with the highest correlation coefficient was selected as the best measurement

for that template. This method provided six possible redshifts (one from each template). These

six highest-correlation-redshifts were manually inspected by myself and two or more other re-

viewers to select the optimal redshift. The spectral features in the object spectrum were con-

firmed in the 2d spectral image by visual inspection. Note the the errors reported in XCSAO are

not stated here since they are known to be severely underestimated. To get a true error we would

need to measure the same galaxy z multiple times (which is currently unavailable). However, the

z values reported here are certainly accurate to the 3rd decimal place.

I defined a quality rating system (Q) to describe the confidence level of each redshift mea-

surement (Wirth et al., 2004). Galaxies exhibiting multiple absorption and (or) emission features

were given a Q = 4 rating; galaxies exhibiting a single, strongly detected feature were a Q = 3

rating; galaxies showing the proper z range but exhibiting no strong features were Q = 2; and

galaxies showing erroneous z values and no strong features were rated Q = 1.

3.3.2 SALT RSS Performance

Only those redshift measurements rated Q = 3 or greater were selected for cluster analysis and

therefore were considered a successful observation (Fig 3.1).

Of all the observed galaxies, only those with a Q ≥ 3 were included in the sample used to

measure cluster velocity dispersions, as described in Section 3 below. These galaxies account

3http://www.sdss.org/dr7/algorithms/spectemplates/index.html
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Figure 3.1: The percent of spectra resulting in a Q = 3 or greater out of all observed galaxies for

given magnitude and exposure time.

for 205 of the 373 observed galaxies, which represents 55 per cent of all targeted objects. These

targets spanned the r-band magnitude range of 17 - 22.5. In our observing program we used

multiple integration times. Our 2×975s exposures have a 54 per cent success rate spanning the

r-band magnitude range of 17 - 22.3 while the 4×975s exposures resulted in a 56 per cent success

rate spanning the r-band magnitude range of 18 - 22.5.

3.3.3 Cluster Redshift Measurements

In order to determine the cluster redshift I only considered those galaxies with rating Q = 3 or

greater to be in the sample. To determine the cluster redshift I used the biweight location method

proposed by Beers et al. (1990). The biweight location estimator is used for non-Gaussian or
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contaminated norma distributions, and comes from the broad family of estimators known as

M estimators of location. The defining characteristic of M estimators is the minimization of a

function of the deviates of each observation from the estimate of location. The median absolute

deviation (MAD) is a measure of statistical dispersion that is resilient to outliers in a data set. In

the standard deviation, the distances from the mean are squared, so large deviations are weighted

more heavily, and thus outliers can heavily influence it. In the MAD, the deviations of a small

number of outliers are irrelevant. The MAD is defined as

MAD = median(|xi−M|). (3.1)

Therefore the definition of the biweight location estimator is

CBI = M+
Σ|ui|<1(xi−M)(1−u2

i )
2

Σ|ui|<1(1−u2
i )

2
, (3.2)

where M is the sample median and ui are given by

ui =
(xi−M)

cMAD
. (3.3)

The constant c is known as the ”tuning constant” and is chosen to give CBI high efficiency for

a broad range of distributions. The best balance of efficiency for location estimation is found for

c = 6.0, which includes data up to four standard deviations from the central location (Mosteller

& Tukey, 1977).

Since all of our clusters are located within the SDSS footprint, we added SDSS DR10 (Ahn

et al., 2014) redshifts for galaxies located within a 12’ search box centred on each cluster position.

We took care to ensure that we did not include SDSS redshifts that were duplicated in our SALT

observations. There were 11 such galaxies that had SDSS redshifts, when compared to SALT

redshifts the median δz = 3 × 10−5.

I took the biweight location (Beers et al., 1990) of the sample and removed any obvious

foreground and background galaxies by applying a 3000 km s−1 cut relative to the biweight

location. I removed any cluster interlopers (as explained below) and the biweight location was

then recalculated from the remaining galaxies. The whole sample of Q = 3 or greater galaxies
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was measured again relative to the new biweight location. This process was repeated until the

z value for the cluster converged. I use this value as the new redshift around which to calculate

peculiar velocities of possible cluster members. We adopt the coordinates of the BCG as the

position of the cluster center.

3.3.4 Determining Cluster Membership

Not all of the galaxies targeted in the SALT RSS field of view are identified as cluster members.

For this work, I used an adaptation of the fixed-gap method to identify members. This is similar

to the procedure used by (Fadda et al., 1996) and further refined in (Crawford et al., 2014). I

define the peculiar velocity of a galaxy within a cluster as

∆vi = c
(zi− z̄)
(1+ z̄)

(3.4)

where ∆vi is the peculiar velocity of the ith galaxy, zi is its redshift, and z̄ is the redshift of

the cluster as estimated using the biweight location. To find the interlopers I sorted all galaxies

by their velocities and identified any adjacent galaxies (in velocity space) with gaps greater than

1000 km s−1 4. I iteratively remove galaxies with gaps of greater than 1000 km s−1 compared

to their neighbor until the number of galaxies in the cluster remains constant. Any galaxies that

fall outside R200c, the radius at which the mean density is 200 times the critical density of the

Universe, were not considered as part of the virialized cluster and therefore rejected. The R200c

radius is calculated using M200c and assumes spherical clusters (i.e, M200c = 200ρc× 4π R3
200c/3).

.

3.3.5 Determining Velocity Dispersion and Mass

The galaxies remaining at this point were considered members of the cluster. I used the biweight

scale estimator of (Beers et al., 1990) to calculate the cluster velocity dispersion from the galaxies

selected as members. With the velocity dispersions in hand, I calculated the dynamical masses.

4De Propris et al. (2003) argue that galaxy clusters correspond to well-defined peaks with respect to recessional

velocity and that gaps between successive galaxies of more than 1000 km s−1 indicate interlopers)
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Following Sifón et al. (2012), I estimated the dynamical masses of the clusters by applying the

scaling relation of Evrard et al. (2008), which is derived from cosmological, dark matter only,

N-body simulations. These massive dark matter halos adhere to a virial scaling relation of the

form

σDM(M,z) = σDM,15

[
h(z)M200c

1015M⊙
]α

, (3.5)

where

h(z) =
H0
√

Ωm(1+ z)3 +ΩΛ

100
. (3.6)

M200c (M500c) is mass measured within R200c (R500c), which is the radius at which the

mean density is 200 (500) times the critical density of the Universe at the cluster redshift.

H0 = 70 km s−1 Mpc−1, σDM,15 is the normalization at mass 1015h−1 M⊙, and α is the log-

arithmic slope; σDM,15 = 1082.9 ± 4.0 km s−1 and α = 0.3361 ± 0.0026 ((Evrard et al., 2008)).

All errors have been estimated by the bootstrap re-sampling technique with 5000 iterations. We

assume these galaxies are unbiased tracers of the mass in the cluster. While this is probably a

reasonable assumption we have not investigated possible biases between the dark matter and the

galaxies as velocity tracers. Others (e.g., Old et al., 2013) are currently investigating this using

numerical simulations.

3.4 Results

The results for the clusters are shown in Table 3.2. Table 3.2 lists the cluster ID, number of

members, redshifts, velocity dispersion, r200c, and M500c.

A sample of spectra and their respective templates can be seen in Figures 3.2 - 3.7. In these

figures the left hand panel shows a 9x9 arcmin false color SDSS optical image (g, r, i). Objects

highlighted in cyan are confirmed members for which a selection of the corresponding spectra are

shown in the right hand panel; red circles mark all other spectroscopically confirmed galaxies that

have been identified as non-members or interlopers. Only objects with secure redshifts (Q = 3
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Table 3.2: SZE-derived mass estimates for the ACT selected clusters. The numbers listed in

brackets in the Members column are those added from the DR10 data. The Y500c values are from

Hasselfield et al. (2013). Note: the mass quoted for ACT-CL J0156.4-0123 is stated only for

completeness.

Cluster ID Members [DR10] z σv R200c M200c Y500c

(km s−1) (Mpc) (1014 M�) (10−4 arcmin2)

ACT-CL J0320.4+0032 27 [5] 0.3838 1432 ± 157 2.5 26.9 ± 7.6 2.8 ± 0.9

ACT-CL J0348.6-0028 22 [0] 0.3451 866 ± 152 1.6 6.1 ± 2.1 2.6 ± 1.0

ACT-CL J0342.7-0017 16 [7] 0.3069 1057 ± 168 1.9 11.4 ± 4.5 3.2 ± 1.2

ACT-CL J2058.8+0123 14 [0] 0.3273 936 ± 115 1.7 7.8 ± 2.5 7.8 ± 1.4

ACT-CL J0219.9+0129 13 [5] 0.3655 900 ± 210 1.6 6.8 ± 4.7 2.3 ± 0.9

ACT-CL J0045.2-0152 12 [4] 0.5493 1068 ± 266 1.7 10.2 ± 5.5 4.8 ± 0.9

ACT-CL J0156.4-0123 4 [1] 0.4569 660 ± 134 1.1 2.6 ± 1.2 2.1 ± 0.8

or greater; see Fig 3.1) are plotted. In the right hand panel, a selection of spectra spanning

the magnitude range of the members are shown as indicated in the figure, and the spectrum

for the brightest object is that of the BCG. The black line is the SALT RSS spectra and the

red line is the SDSS spectral template. We find the spectrum of the Brightest Cluster Galaxy

in ACT-CL J0320.4+0032 shows strong emission line features and therefore suggests an active

galactic nucleus (AGN) is present. Spitzer’s Infrared Array Camera (IRAC) has magnitudes of

the BCG at 3.6 and 4.5 microns with AB magnitude values of 17.724± 0.004 and 17.850± 0.004

respectively (measured by Dr Matthew Hilton). These AB magnitudes are aperture corrected; for

more information on the data processing and photometry refer to Hilton et al. (2013). The [3.6]-

[4.5] micron colour of the BCG is −0.13± 0.06, hence these data further supports the idea the

BCG contains an active galactic nucleus (see Figure 6 of Hilton et al. 2010). This may be an

example of a very massive cluster in which AGN feedback is taking place.

In the Appendix the individual SALT galaxy ID’s, RA, Dec, magnitude, spectroscopic z, Q-

rating, emission line status, membership status, and distance from the BCG can be seen for each
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Figure 3.2: The z = 0.38 cluster ACT-CL J0320.4+0032. The left hand panel shows a 9 by 9

arcmin false color SDSS optical image (g, r, i). Objects highlighted in cyan are spectroscopically

confirmed members (see Section 3.3.4; spectra for objects marked with ID numbers are shown

in the right hand panel); red circles mark non-members and interloper galaxies with confirmed

redshifts. Only objects with secure redshifts (Q = 3 or greater; see Section 3.3.1) are plotted.

In the right hand panel, black lines correspond to SALT RSS spectra, while red lines show the

best match redshifted SDSS spectral template in each case. The displayed object spectra span a

representative range in r-band magnitudes, as indicated in the figure, and the spectrum for the

brightest object is that of the BCG.
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Figure 3.3: The z = 0.35 cluster ACT-CL J0348.6-0028 (see Fig. 3.2 for an explanation of sym-

bols and colors).
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Figure 3.4: The z = 0.30 cluster ACT-CL J0342.7-0017 (see Fig. 3.2 for an explanation of sym-

bols and colors).
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Figure 3.5: The z = 0.33 cluster ACT-CL J2058.8+0123 (see Fig. 3.2 for an explanation of

symbols and colors).
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Figure 3.6: The z = 0.36 cluster ACT-CL J0219.4+0129 (see Fig. 3.2 for an explanation of

symbols and colors).
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Figure 3.7: The z = 0.55 cluster ACT-CL J0045.2-0152 (see Fig. 3.2 for an explanation of sym-

bols and colors).
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Figure 3.8: The z = 0.46 cluster ACT-CL J0156.4-0123 (see Fig. 3.2 for an explanation of sym-

bols and colors) The unlabeled galaxy is from SDSS DR10.

37



galaxy.
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CHAPTER 4

Discussion

4.1 Previous Dynamical Mass Results

We compare our results with those from (Sifón et al., 2012). Sifón et al. (2012) estimated dy-

namical masses on a sample of 16 clusters also detected by ACT, with a procedure very similar

to ours. R200c, the radius at which the overdensity in the cluster is 200 times the critical density,

was estimated from their dynamical mass and used to measure Y200. Their sample ranges from

0.28≤ z≤ 1.07 with a median redshift of z = 0.50, where each cluster has≈ 60 galaxy members

(Section 2.2.3). We compare our cluster results to those in (Sifón et al., 2012); when comparing

we converted Sifon’s cluster values from M200c (R200c) to M500c (R500c). For the conversion we

assumed the concentration-mass relation from (Duffy et al., 2008) and integrated over a Navarro-

Frenk-White (NFW) profile (Navarro et al., 1997). The mass values derived in this work are in

good general agreement with the cluster values of (Sifón et al., 2012) given the scatter. A plot

of our results and the values from (Sifón et al., 2012) can be seen in Figure 4.1. It is worth

mentioning the most-massive SALT cluster in our sample is ACT-CL J0320.5+0032, host to the

AGN discussed earlier in this section.
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4.2 SZE-Mass Scaling Relations

Given an accurate calibration of the SZE-Mass scaling relation Vanderlinde et al. (2010) and

Sehgal et al. (2011) have shown the inclusion of the ACT cluster samples can lead to significant

improvements in the uncertainties of cosmological parameters, particularly Ωmass and σ8 , over

WMAP-7-only constraints. Y-M relations from the work discussed in Section 2 are show in

Figure 4.1.

The two relations based on data come from Sifón et al. (2012) and Marrone et al. (2012).

Sifón et al. (2012) present a scaling relation from comparing SZE fluxes and masses derived

from dynamical information. Their sample has a median redshift of z = 0.50 and median mass

of M200c ' 12× 1014h−1
70 M�. I note that the Sifon line has been shifted from the Y200-M200

relation and is somewhat sensitive to the assumptions about the relationship between Y200 and

Y500.

Marrone et al. (2012) present the second data-derived Y-M relation. Their relation is based

on weak-lensing measurements of a sample of 18 galaxy clusters from the LoCuSS ”high-Lx”

sample (a sub-sample of the ROSAT survey). The Marrone et al. (2012) fit from weak lensing

results is somewhat lower than that obtained from other methods. For a direct comparison to our

study, this offset is possibly due to our limited spatial coverage of galaxy redshifts. This limited

coverage only allows us to measure galaxies near the cluster center which inevitably have higher

velocities and therefore higher mass. Marrone et al. (2012) also note the uncertainties in calcu-

lating spherical masses from their 2-dimensional weak lensing measurements. This introduces

bias to their weak-lensing masses and therefore their relations.

The simulation derived relation came from Battaglia et al. (2012). They present a hydrodynamical-

simulation-based scaling relation between mass and SZE. The relation is based on the self-similar

scaling relation of the idealized case of a cluster in virial equilibrium: shock heating, radiative

cooling, and AGN feedback are not taken into account in the chosen relation. The values for

the latter are the results at z = 0.5, which corresponds closer to the characteristic redshift of

our sample. It is possible that given that our sample of clusters includes emission line galaxies

and at least one cluster with on-going feedback the idealized relation may not be an adequate
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assumption for our sample.

Arnaud et al. (2010) present an X-ray-temperature-based scaling relation between X-ray lu-

minosity and SZE. The SZE signal is calculated from X-ray gas properties and is not a scaling

law derived from data. Their sample consists of 33 clusters from the REFLEX catalogue and

are observed with XMM-Newton. The sample spans a mass range of 1014 M� < M500c < 1015

M� within z < 0.2. It has been noted in Marrone et al. (2012) that X-ray scaling relations

are typically constructed from hydrostatic-equilibrium-based masses. These HSE-based mass

scaling relations are plagued by varying degrees of correlation that depend on the details of the

measurement methods Mantz et al. (2010).

The masses calculated from our observations and Sifon’s study both generally lie above the

relations derived by (Marrone et al., 2012), (Arnaud et al., 2010), and (Battaglia et al., 2012).

Since a similar offset is apparent in both dynamical mass measurements we speculate this dif-

ference is related to the observing properties the cluster mass (and relations) are derived from.

As previously stated, for dynamical measurements, limited spatial coverage of galaxy redshift

measurements only allows for members near the cluster center to be observed. This effect biases

the velocity dispersions to be higher and therefore biases the mass to be higher. The ideal scaling

relations measurement would be one that compares two observables that have been derived in-

dependently. By combining multiple approaches one can understand the underlying systematics

and tighten the Y-M relation, leading to more powerful constraints on cosmological parameters.
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Figure 4.1: Plot of SALT derived masses and Sifón et al. (2012) masses over SZE scaling rela-

tions. Estimators have been scaled as indicated in the axis labels. The x-axis is the correlated

Y -value for a cluster at R500c. The y-axis is M500c. Sifon et al’s cluster results are circles and

SALT-observed cluster results are black dots. Previous estimates of the Y −M scaling relation

are shown with dashed, blue, and red lines (see text for details).
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CHAPTER 5

Conclusion

We have conducted a spectroscopic follow-up program of clusters of galaxies discovered via

the Sunyaev-Zel’dovich effect by the ACT in its equatorial strip survey. We used multi-object

spectroscopic observations from the Southern African Large Telescope. From our SALT spec-

troscopic data we have: (i) extracted individual galaxy redshifts, (ii) determined which galax-

ies are cluster members, and from the members we have (iii) measured the cluster redshifts,

(iv) measured the cluster velocity dispersions and hence (v) determined the cluster dynamical

masses. The dynamical masses have been estimated from the radial velocity dispersions using

the (Evrard et al., 2008) simulation based σ - M200c scaling relation. These clusters range in

masses from 2.6×1014 M� to 2.6×1015 M� and span a redshift range of z = 0.3 to z = 0.55. Our

results, and those from (Sifón et al., 2012), will be added to the future Sifón et al. (in prep.) to

present an updated measurement of the Sunyaev-Zel’Dovich-mass scaling relation. This study

has also proved to be a successful early use of SALT for extragalactic astronomy. These results,

as well as continued efforts to improve the telescope and instrument performance, justify a more

extensive use of SALT in the future for exploring higher z clusters.
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APPENDIX A

Appendix

A.1 Tables

Table A1: Spectroscopic redshifts of galaxies in the direction of ACT-

CL J0045.2-0152 measured using SALT RSS; mr is the SDSS r-band

magnitude of the object; z is the redshift; Q is the redshift quality flag

(see Section 3.3.1); Em. Lines? indicates objects which show emission

lines in their spectra (e.g., OII 3727 AA); Member? indicates objects

which are determined to be cluster members (see Section 3.3.4); r (Mpc)

indicates the projected distance from the ACT cluster position as given

by Hasselfield et al. (2013).

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

399 1 00h45m13.s586 −01◦53′20.′′61 20.75 0.554 4 X X 0.15

418 1 00h45m14.s607 −01◦52′42.′′69 21.98 0.548 4 ... X 0.16

374 1 00h45m12.s499 −01◦52′31.′′65 19.22 0.549 4 ... X 0.18

438 1 00h45m15.s359 −01◦53′09.′′28 20.66 0.546 4 X X 0.22

326 2 00h45m10.s374 −01◦53′04.′′29 21.70 0.565 3 ... ... ...

Continued on next page...
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Table A1 – continued from previous page

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

440 2 00h45m15.s476 −01◦53′29.′′43 21.38 0.488 4 X ... ...

451 1 00h45m15.s949 −01◦53′40.′′05 19.88 0.553 4 ... X 0.38

306 2 00h45m09.s483 −01◦53′17.′′99 21.47 0.990 4 ... ... ...

376 1 00h45m12.s645 −01◦53′57.′′37 21.48 0.557 3 ... X 0.39

446 1 00h45m15.s661 −01◦52′08.′′31 21.99 0.550 4 ... X 0.39

485 2 00h45m17.s147 −01◦52′17.′′38 21.82 0.528 3 X ... ...

335 2 00h45m10.s733 −01◦53′59.′′12 21.66 0.628 4 ... ... ...

509 1 00h45m18.s228 −01◦52′19.′′59 21.93 0.710 4 X ... ...

486 2 00h45m17.s187 −01◦51′57.′′75 21.66 0.549 4 ... X 0.54

434 2 00h45m15.s222 −01◦51′18.′′97 21.33 0.572 3 ... ... ...

387 1 00h45m13.s094 −01◦51′04.′′19 21.45 0.513 4 X ... ...

251 2 00h45m06.s334 −01◦53′46.′′27 21.34 0.642 3 X ... ...

400 1 00h45m13.s59 −01◦54′56.′′36 20.47 0.367 3 ... ... ...

439 1 00h45m15.s372 −01◦50′28.′′54 21.44 0.657 4 X ... ...

240 2 00h45m05.s910 −01◦51′05.′′14 21.50 0.944 4 ... ... ...

555 1 00h45m21.s277 −01◦51′15.′′53 21.57 0.689 4 X ... ...

407 1 00h45m13.s979 −01◦55′36.′′78 20.98 0.672 3 ... ... ...

510 2 00h45m18.s243 −01◦55′20.′′68 21.61 0.528 3 X ... ...

415 1 00h45m14.s368 −01◦49′53.′′20 20.15 0.243 4 X ... ...

207 1 00h45m03.s524 −01◦50′51.′′21 20.18 0.473 4 ... ... ...

293 2 00h45m08.s572 −01◦56′02.′′23 21.79 0.295 3 ... ... ...

363 1 00h45m12.s009 −01◦49′37.′′58 21.18 0.543 4 ... ... ...

355 1 00h45m11.s751 −01◦56′24.′′72 21.26 0.552 4 X ... ...

343 1 00h45m11.s012 −01◦56′39.′′24 21.58 0.201 4 ... ... ...

371 2 00h45m12.s315 −01◦56′48.′′94 19.37 0.827 4 ... ... ...
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Table A2: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J0156.4-0123 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

320 1 01h56m24.s297 −01◦23′17.′′32 17.88 0.453 4 ... X 0.01

317 1 01h56m24.s192 −01◦23′35.′′61 20.34 0.438 4 ... ... ...

246 3 01h56m20.s883 −01◦23′55.′′64 21.45 0.597 3 ... ... ...

268 1 01h56m21.s674 −01◦22′12.′′07 21.08 0.444 4 X ... ...

239 1 01h56m20.s400 −01◦22′24.′′40 20.78 0.569 4 ... ... ...

403 1 01h56m28.s970 −01◦22′46.′′03 20.22 0.458 4 X X 0.45

310 1 01h56m23.s810 −01◦21′57.′′79 19.71 0.277 4 ... ... ...

410 1 01h56m29.s305 −01◦23′59.′′72 20.69 0.456 4 ... X 0.51

243 1 01h56m20.s696 −01◦21′30.′′28 19.90 0.560 4 X ... ...

195 3 01h56m17.s450 −01◦22′06.′′30 21.92 0.599 3 X ... ...

186 3 01h56m16.s882 −01◦21′51.′′12 20.06 0.568 4 ... ... ...

361 1 01h56m26.s472 −01◦25′33.′′21 18.22 0.137 4 X ... ...

419 1 01h56m30.s384 −01◦21′07.′′92 20.60 0.680 4 X ... ...

164 1 01h56m15.s462 −01◦24′47.′′50 20.03 0.606 4 X ... ...

355 1 01h56m26.s243 −01◦25′57.′′64 19.66 0.340 4 X ... ...

393 1 01h56m28.s181 −01◦20′43.′′36 20.68 0.394 4 ... ... ...

142 3 01h56m13.s247 −01◦22′40.′′53 19.98 0.771 3 X ... ...

350 3 01h56m25.s923 −01◦20′21.′′53 18.60 0.381 4 X ... ...

468 3 01h56m34.s261 −01◦21′38.′′25 19.58 0.340 4 ... ... ...

123 3 01h56m12.s040 −01◦23′23.′′13 19.12 0.477 4 X ... ...

337 1 01h56m25.s235 −01◦20′12.′′52 20.15 0.039 4 ... ... ...

335 1 01h56m25.s171 −01◦26′31.′′22 20.65 0.455 4 ... ... ...

426 1 01h56m30.s748 −01◦26′19.′′24 20.93 0.450 4 ... ... ...

340 1 01h56m25.s337 −01◦26′46.′′89 21.09 0.736 4 X ... ...

385 3 01h56m27.s728 −01◦19′40.′′68 21.59 0.385 3 ... ... ...

127 3 01h56m12.s255 −01◦20′47.′′78 19.70 0.421 3 X ... ...
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Table A3: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J0219.9+0129 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

397 1 02h19m52.s975 +01◦29′35.′′03 21.29 0.364 4 ... X 0.12

434 1 02h19m54.s222 +01◦29′20.′′51 21.01 0.364 4 ... X 0.15

370 1 02h19m52.s155 +01◦29′52.′′19 17.96 0.365 4 ... X 0.15

410 1 02h19m53.s386 +01◦30′31.′′71 21.22 0.368 4 ... X 0.21

390 1 02h19m52.s668 +01◦29′06.′′20 21.01 0.358 4 ... X 0.25

508 1 02h19m55.s973 +01◦31′07.′′71 21.23 0.365 4 ... X 0.40

395 1 02h19m52.s931 +01◦31′22.′′76 20.08 0.354 4 ... X 0.47

379 1 02h19m52.s348 +01◦28′17.′′92 20.17 0.350 4 ... ... ...

447 1 02h19m54.s580 +01◦27′59.′′68 20.91 0.369 4 ... X 0.55

407 1 02h19m53.s365 +01◦31′48.′′61 19.11 0.239 4 ... ... ...

309 1 02h19m49.s797 +01◦31′35.′′97 20.67 0.349 4 ... ... ...

274 1 02h19m48.s609 +01◦27′46.′′90 18.53 0.367 4 ... X 0.74

428 1 02h19m53.s908 +01◦32′35.′′19 21.45 0.560 4 ... ... ...

450 1 02h19m54.s615 +01◦26′53.′′96 20.06 0.370 4 ... X 0.87

663 1 02h20m02.s912 +01◦27′08.′′25 21.69 0.358 3 ... ... ...

229 1 02h19m46.s790 +01◦26′39.′′57 21.61 0.786 4 X ... ...

299 1 02h19m49.s495 +01◦26′20.′′61 20.68 0.531 4 X ... ...

Table A4: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J0320.4+0032 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

311 2 03h20m29.s130 +00◦32′34.′′61 21.02 0.379 4 X X 0.07

324 2 03h20m29.s602 +00◦32′03.′′99 21.73 0.388 4 ... X 0.10

356 3 03h20m30.s772 +00◦31′59.′′27 21.92 0.394 4 ... X 0.15

330 1 03h20m29.s788 +00◦31′53.′′60 18.54 0.384 4 ... X 0.16

Continued on next page...
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Table A4 – continued from previous page

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

286 2 03h20m28.s141 +00◦31′43.′′24 22.06 0.472 3 ... ... ...

360 1 03h20m30.s907 +00◦31′37.′′50 21.75 0.383 3 ... X 0.26

319 1 03h20m29.s372 +00◦33′21.′′18 19.86 0.392 4 ... X 0.30

396 3 03h20m32.s770 +00◦31′44.′′87 20.32 0.384 4 ... X 0.31

282 2 03h20m28.s066 +00◦31′26.′′50 19.71 0.378 4 ... X 0.32

238 3 03h20m25.s962 +00◦32′58.′′63 20.62 0.379 4 ... X 0.35

320 2 03h20m29.s449 +00◦31′14.′′78 20.28 0.374 4 ... X 0.36

251 3 03h20m26.s561 +00◦31′33.′′46 21.44 0.384 4 X X 0.36

303 3 03h20m28.s853 +00◦31′08.′′07 20.42 0.387 4 ... X 0.40

271 1 03h20m27.s617 +00◦33′34.′′10 20.30 0.375 4 ... X 0.40

272 2 03h20m27.s678 +00◦33′35.′′89 20.21 0.375 4 ... X 0.41

262 2 03h20m27.s178 +00◦33′55.′′14 21.92 0.473 3 X ... ...

323 1 03h20m29.s571 +00◦30′30.′′98 20.50 0.383 4 ... X 0.59

368 2 03h20m31.s339 +00◦30′27.′′66 21.22 0.379 3 X X 0.62

376 3 03h20m31.s809 +00◦30′28.′′95 20.80 0.387 4 ... X 0.62

421 2 03h20m33.s887 +00◦30′42.′′03 21.36 0.329 4 X ... ...

375 2 03h20m31.s666 +00◦30′03.′′86 20.37 0.195 4 X ... ...

348 1 03h20m30.s356 +00◦34′47.′′85 20.64 0.394 4 ... X 0.75

387 3 03h20m32.s391 +00◦30′03.′′50 20.12 0.381 4 ... X 0.76

329 1 03h20m29.s739 +00◦29′38.′′15 21.15 0.385 4 ... X 0.86

427 3 03h20m34.s181 +00◦34′56.′′24 19.36 0.325 4 ... ... ...

419 3 03h20m33.s764 +00◦29′47.′′60 22.29 0.374 4 X X 0.87

351 2 03h20m30.s469 +00◦29′35.′′85 21.94 0.383 4 X X 0.88

249 2 03h20m26.s460 +00◦29′21.′′87 22.22 0.326 4 X ... ...

199 1 03h20m23.s492 +00◦35′13.′′97 21.79 0.483 4 X ... ...

411 2 03h20m33.s504 +00◦35′32.′′84 18.59 0.183 4 ... ... ...

252 3 03h20m26.s596 +00◦35′39.′′38 18.38 0.196 4 ... ... ...

98 1 03h20m16.s227 +00◦32′05.′′75 21.33 0.369 4 ... ... ...

236 2 03h20m25.s752 +00◦28′40.′′00 20.47 0.390 4 ... ... ...

364 1 03h20m31.s016 +00◦28′32.′′55 19.95 0.391 4 ... ... ...

246 2 03h20m26.s385 +00◦28′21.′′69 22.24 0.393 4 X ... ...
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Table A5: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J0342.7-0017 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

413 1 03h42m44.s804 −00◦17′18.′′92 20.25 0.301 4 X X 0.04

432 1 03h42m45.s707 −00◦17′37.′′69 20.47 0.166 4 ... ... ...

362 1 03h42m42.s346 −00◦17′01.′′28 20.58 0.305 4 ... X 0.16

364 1 03h42m42.s414 −00◦16′42.′′67 20.21 0.304 4 ... X 0.22

409 1 03h42m44.s651 −00◦18′14.′′94 19.81 0.311 4 ... X 0.23

474 1 03h42m47.s751 −00◦17′51.′′14 20.56 0.165 4 ... ... ...

429 1 03h42m45.s595 −00◦16′22.′′35 21.00 0.311 4 ... X 0.29

374 1 03h42m42.s883 −00◦16′09.′′36 20.86 0.301 4 X X 0.34

407 1 03h42m44.s546 −00◦18′40.′′94 20.95 0.302 4 ... X 0.35

363 1 03h42m42.s387 −00◦15′54.′′14 20.23 0.557 4 ... ... ...

400 1 03h42m44.s194 −00◦15′36.′′13 20.57 0.238 4 X ... ...

473 1 03h42m47.s601 −00◦19′18.′′95 20.62 0.286 4 X ... ...

436 1 03h42m45.s840 −00◦15′18.′′69 19.50 0.239 4 ... ... ...

216 1 03h42m35.s633 −00◦18′02.′′22 20.77 0.366 4 X ... ...

428 1 03h42m45.s590 −00◦19′50.′′29 20.61 0.112 4 X ... ...

260 1 03h42m37.s754 −00◦19′30.′′24 19.15 0.303 4 ... X 0.71

274 1 03h42m38.s579 −00◦15′00.′′56 20.70 0.019 3 ... ... ...

430 1 03h42m45.s654 −00◦20′12.′′98 20.77 0.309 4 ... X 0.76

468 1 03h42m47.s405 −00◦20′24.′′07 19.67 0.366 4 ... ... ...

498 1 03h42m48.s728 −00◦20′44.′′52 20.80 0.287 4 X ... ...

521 1 03h42m50.s300 −00◦20′58.′′49 21.30 0.462 4 ... ... ...
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Table A6: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J0348.6-0028 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

252 4 03h48m38.s726 −00◦28′07.′′42 18.13 0.138 4 ... ... ...

246 1 03h48m38.s378 −00◦28′23.′′21 20.49 0.344 4 ... X 0.09

274 3 03h48m39.s545 −00◦28′16.′′90 19.22 0.345 4 ... X 0.10

229 4 03h48m37.s682 −00◦28′20.′′77 20.07 0.139 4 ... ... ...

218 2 03h48m37.s125 −00◦27′48.′′38 18.17 0.160 4 ... ... ...

230 1 03h48m37.s699 −00◦28′36.′′14 20.40 0.342 4 ... X 0.16

207 1 03h48m36.s300 −00◦27′49.′′82 20.50 0.340 4 ... X 0.18

232 3 03h48m37.s909 −00◦28′46.′′75 21.04 0.345 3 ... X 0.21

219 1 03h48m37.s131 −00◦27′25.′′16 20.84 0.325 3 ... ... ...

303 1 03h48m41.s534 −00◦28′07.′′50 19.87 0.344 4 ... X 0.22

304 2 03h48m41.s593 −00◦27′35.′′15 19.48 0.547 4 ... ... ...

215 1 03h48m36.s792 −00◦27′12.′′79 20.54 0.350 4 ... X 0.29

264 1 03h48m39.s134 −00◦29′05.′′30 21.02 0.350 4 ... X 0.30

315 3 03h48m42.s291 −00◦28′29.′′17 21.08 0.349 4 ... X 0.30

312 1 03h48m42.s151 −00◦28′48.′′76 19.76 0.346 4 ... X 0.34

239 1 03h48m38.s081 −00◦29′18.′′25 20.68 0.348 4 ... X 0.36

165 3 03h48m33.s621 −00◦28′04.′′90 20.68 0.345 4 ... X 0.36

308 3 03h48m42.s024 −00◦28′58.′′10 21.09 0.342 4 ... X 0.37

255 4 03h48m38.s949 −00◦26′50.′′01 21.29 0.344 4 ... X 0.37

330 3 03h48m43.s143 −00◦27′31.′′36 20.92 0.345 4 ... X 0.38

237 1 03h48m37.s972 −00◦26′40.′′69 20.56 0.346 4 ... X 0.42

181 4 03h48m34.s662 −00◦29′07.′′57 21.34 0.357 4 ... ... ...

272 2 03h48m39.s430 −00◦26′39.′′99 20.69 0.180 3 X ... ...

324 3 03h48m42.s877 −00◦27′08.′′04 22.05 0.325 4 ... ... ...

350 1 03h48m44.s405 −00◦27′37.′′55 20.98 0.340 4 ... X 0.46

153 2 03h48m32.s984 −00◦27′17.′′87 22.25 0.489 3 ... ... ...

358 3 03h48m45.s127 −00◦27′45.′′73 20.81 0.291 4 X ... ...

305 1 03h48m41.s623 −00◦26′27.′′56 20.32 0.183 4 ... ... ...

206 1 03h48m36.s276 −00◦30′01.′′29 20.94 0.346 4 ... X 0.60

Continued on next page...
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Table A6 – continued from previous page

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

378 4 03h48m46.s494 −00◦27′42.′′89 19.60 0.190 4 ... ... ...

169 3 03h48m33.s978 −00◦30′01.′′20 20.46 0.296 4 ... ... ...

320 1 03h48m42.s708 −00◦25′44.′′78 20.20 0.360 3 ... ... ...

270 4 03h48m39.s412 −00◦25′30.′′78 19.13 0.352 4 ... X 0.77

98 3 03h48m28.s95 −00◦29′10.′′64 20.20 0.341 4 ... X 0.78

107 3 03h48m29.s523 −00◦29′31.′′57 20.86 0.308 4 ... ... ...

149 4 03h48m32.s871 −00◦30′22.′′95 21.29 0.340 4 ... X 0.80

231 1 03h48m37.s854 −00◦25′21.′′24 20.67 0.351 4 ... X 0.81

371 3 03h48m45.s867 −00◦30′25.′′66 21.75 0.334 4 ... ... ...

410 3 03h48m49.s289 −00◦26′44.′′32 20.30 0.282 4 X ... ...

136 1 03h48m32.s246 −00◦25′03.′′39 20.76 0.341 3 ... ... ...

258 1 03h48m39.s012 −00◦31′35.′′60 20.27 0.389 4 ... ... ...

141 1 03h48m32.s555 −00◦31′24.′′45 19.99 0.295 4 ... ... ...

99 3 03h48m29.s063 −00◦25′15.′′83 20.34 0.342 3 ... ... ...

401 1 03h48m48.s183 −00◦31′03.′′08 20.82 0.458 4 ... ... ...

285 2 03h48m40.s530 −00◦24′16.′′09 21.34 0.379 4 ... ... ...

174 2 03h48m34.s196 −00◦31′48.′′88 21.63 0.417 3 X ... ...

Table A7: Spectroscopic redshifts of galaxies in the direction of ACT-CL

J2058.8+0123 measured using SALT RSS; see Table A1 for an explana-

tion of the table columns.

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

184 1 20h58m53.s730 +01◦23′36.′′04 20.83 0.315 4 ... ... ...

194 1 20h58m54.s089 +01◦22′24.′′07 20.71 0.323 3 ... X 0.17

173 2 20h58m52.s683 +01◦22′14.′′21 19.86 0.204 4 ... ... ...

219 2 20h58m56.s777 +01◦22′47.′′58 19.66 0.338 4 ... ... ...

157 2 20h58m51.s547 +01◦23′54.′′82 21.00 0.326 4 ... X 0.29

177 1 20h58m53.s056 +01◦24′10.′′76 18.13 0.330 4 ... X 0.33

137 3 20h58m50.s390 +01◦23′56.′′26 19.60 0.327 4 ... X 0.34

Continued on next page...
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Table A7 – continued from previous page

ID Mask RA (J2000) Dec. (J2000) mr z Q Em. Lines? Member? r (Mpc)

164 2 20h58m52.s060 +01◦21′40.′′62 19.50 0.333 4 ... X 0.39

200 1 20h58m54.s514 +01◦24′26.′′77 20.55 0.332 4 ... X 0.40

225 3 20h58m57.s187 +01◦21′51.′′00 19.72 0.321 4 ... X 0.41

166 2 20h58m52.s163 +01◦24′30.′′79 20.38 0.324 4 ... X 0.43

162 2 20h58m51.s745 +01◦24′45.′′88 20.97 0.328 4 ... X 0.51

211 1 20h58m55.s861 +01◦21′03.′′94 20.73 0.327 3 ... X 0.57

201 2 20h58m54.s572 +01◦20′59.′′56 20.54 0.329 4 ... X 0.57

190 1 20h58m53.s906 +01◦25′24.′′84 19.60 0.186 4 X ... ...

213 1 20h58m56.s096 +01◦20′41.′′27 20.44 0.329 4 ... ... ...

203 2 20h58m54.s836 +01◦20′35.′′18 18.00 0.331 4 X ... ...

146 2 20h58m50.s917 +01◦25′22.′′66 19.69 0.323 4 X X 0.69

90 3 20h58m46.s076 +01◦24′52.′′59 18.14 0.293 4 X ... ...

153 1 20h58m51.s408 +01◦25′57.′′05 19.66 0.332 4 ... X 0.83

136 1 20h58m50.s317 +01◦26′09.′′59 21.34 0.325 4 X X 0.91

165 3 20h58m52.s163 +01◦26′23.′′63 17.86 0.134 4 ... ... ...

210 2 20h58m55.s832 +01◦26′29.′′51 20.27 0.135 4 ... ... ...

150 1 20h58m51.s379 +01◦19′14.′′61 19.92 0.322 4 X ... ...

A.2 PySALT Processing

PYSALT is a suite of PYRAF tools for the reduction and analysis of data obtained from the

RSS instrument mounted on SALT. More information on PySALT can be found in (Crawford

et al., 2010). It is important to note that the following methodology/instructions are installation

dependent and not universal; some of the settings and options may change over time. It is also

worth noting that in the case of SALT RSS spectra some parameters have been carefully derived

and should be fixed parameters. Those parameters are listed in the SALT data reduction wiki. The

package can be loaded by starting PYRAF. We will now go through each step of the PYSALT

data pipeline. The packages can be loaded by starting PYRAF in the terminal (for convention,
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the ”->” symbol means the terminal prompt):

->pyraf

And we want to enter the PySALT package:

->pysalt

From here we want to go into the ’saltred’ (SALT reduction) package.

->saltred

If the package has successfully been installed, you should see the pysalt and saltred packages

load and print out onto the screen. All of the tasks can be run from the command line or from

’epar’ (edit parameters) and then executed. Using the ’epar’ command and then the task name

will bring up a GUI interface to use and see the various parameters for the given task. Help files

are also available for each of the tasks as well and can be found in the GUI. The first step is to

prepare the raw data. This tasks checks for necessary keywords and adds them. These keywords

are not written to the file at the telescope but are required in order to improve efficiency in the

data reduction pipline and retain consistency with the IRAF-based tools. We use the ’saltprepare’

task for this and our settings are as follows:

-> epar saltprepare

saltred - saltprepare task

Parameter: Setting: Description:

images ”P*.fits” Input raw images or list of images

outimages ”” Output images or list of output images

outpref ”p” Prefix for output images

createvar no Create Variance Frame?

badpixelimag ”” Badpixel image?

clobber yes Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Would you like to see script output?

mode ”al”

The next step is to correct for the gain of the different CCDs. The RSS instrument has a three-

CCD mosaic. Each amplifier has a specific gain factor which varies slowly over time but which

is constant across the amplifiers. Gain values depend on the readout speed and gain setting

of the CCD. For all possible permutations, gains are stored in an ascii table which is updated
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periodically. The saltgain task extracts gains from the ascii table and applies them to raw data.

We use the task ’saltgain’ to perform this correction:

-epar saltgain

saltred - saltgain task

Parameter: Setting: Description:

images ”pP*.fits” Input raw images or list of images

outimages ”” Output images or list of output images

outpref ”g” Prefix for output images

gaindb ”your/filepath.dat” Gain data from database in given location

usedb yes Use gain database?

mult yes Multiply images by gains?

clobber yes Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

The next step is to correct for amplifier crosstalk. Each SALTICAM and RSS CCD has

two readout amplifiers. There is crosstalk between them at the level of 0.1% which results

in faint ghost sources across the image. Ghosts appear as faint mirror images across amplifier

boundaries of bright sources. Provided images are not saturated or non-linear, crosstalk can be

mostly removed by simple subtraction of a scaled image of one amplifier from its neighbour.

The scaling facrtors are supplied as an ascii table through the xtalkfile argument or in the header

keywords. To perform this correction we use the ’saltxtalk’ task. The parameters used are as

follows:

-> epar saltxtalk

The next step is to create a bias frame and subtract the bias from the images. Since the

’saltbias’ task performs two separate functions it must be called twice to perform them both.

Firstly, saltbias can create a master bias frame. This is typically an average of multiple bias

images which have been subtracted by the row-dependent overscan level and trimmed in size by

the removal of the overscan region itself. Secondly saltbias will debias science and calibration

images using a combination of overscan and masterbias subtraction. To correct for CCD bias we

only used the overscan region at the time.
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saltred - saltxtalk task

Parameter: Setting: Description:

images ”g*.fits” Input images or list of images

outimages ”” output images or list of output images

outpref ”x” prefix for output images

xtalkfile ”” crosstalk coefficient data

logfile ”salt.log” Logfile

usedb no Use xtalkfile

clobber no Overwrite existing files?

verbose yes Verbose?

mode ”al”

-> epar saltbias

saltred - saltbias task

Parameters: Setting: Description:

images ”x*.fits” Input images or list of images

outimages ”” output images or list of output images

outpref ”b” Prefix for output images

subover yes Subtract overscan region?

trim yes Trim underscan and overscan?

subbias no subtract master bias frame?

masterbias ”bias.fits” Master bias frame

median no Use median instead of mean in image statistics?

function ”polynomial” Overscan fit function

order 3 Polynomial order for overscan fit

rej lo 3.0 Low rejection threshold (sigma) for overscan fit

rej hi 3.0 High rejection threshold (sigma) for overscan fit

niter 10 Number of rejection iterations for overscan fit

plotover no Plot overscan fit?

turbo no Fast SLOT mode reduction?

clobber no Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

The next task, ’saltcrclean’, cleans multiple CCD extensions of cosmic rays. This task is

capable of cleaning cosmic rays from single or multi-extension fits data. The task gives users a

choice of three different methods of cleaning cosmic rays that profice different levels of perfor-
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mance. The three choices the user has are between fast, median, and edge cosmic ray detection.

For our purposes we used ’fast’.

saltred - saltcrclean task

Parameters: Setting: Description:

images ”b*.fits” Input images or list of images

outimages ”” output images or list of output images

outpref ”c” Prefix for output images

crtype ”fast” Type of cosmic ray cleaning

thres 5.0 Threshold above sigma for cosmic ray detection

mbox 5 Window size for searching for cosmic rays

bthresh 3.0 Threshold for sigma clipping background

flux ratio 0.2 Flux ratio to identify cosmic rays (fast only)

bbox 11 Window size for background statistics (median only)

gain 1.0 Gain of the image (edge only)

rdnoise 5.0 Readnoise of the image (edge only)

fthresh 5.0 Threshold for excluding compact sources (edge only)

bfactor 2 Factor to sub-pixel sample the images (edge only)

gbox 3 Window size to grow; gbox = 0 for no growth of cosmic rays

maxiter 5 Max number of iterations to search for cosmic rays

multithread no Use multithreading to process the data?

clobber no Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

Next we want to apply a flatfield correction but to do this we need to create a master flatfield.

We will use the task ’saltcombine’ to put together the five flatfields we have to create a master-

flat. The separate flatfield images will come with the rest of your raw data. The flatfields have

gone through all the previous steps (along with your science and calibration files). To run a list

of images you need to put ’@’ before the file list name. The settings we used in ’saltcombine’

are below:

-> epar saltcombine

Before we can use the master flat we need to apply an illumination correction to it. This can

be done using the ’saltillum’ task.

-epar saltillum
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saltred - saltcombine task

Parameters: Settings: Description:

images ”@flat list.txt” Input images or list of images

outimages ”master flat.fits” output images or list of output images

combine ”average” Type of combine operation

reject ”None” Type of rejection

mask no Use BPM Frame in combining the data

weight no Use Inverse Variance frames as weights

blank 0.0 Value if there are no pixels

scale ”None” Method for scaling the images

statsec ”” Image section for computing statistics

lthresh Lower Threshold

hthresh Upper Threshold

clobber no Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

saltred - saltillum task

Parameters: Settings: Description:

images ”master flat.fits” Input images

outimages ”” Output images or list of output images

outpref ”illum” Prefix for output images

mbox 11 Median smoothing box size

clobber yes Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

Once this task is complete we can apply the illumination-corrected master flat to the rest of

the data (only needed on the science and calibration files). We will use the task ’saltflat’. This

task will correct SALT images for flatfield variations.

->epar saltflat

Raw SALT data is stored in FITS files using separate file extensions for each amplifier image.

Each CCD has two redout amplifiers and each detector has multiple CCDs. Hence a single RSS

exposure is stored in a 2x3 FITS extension. The ’saltmosaic’ task combines a set of amplifier

images, obtained during the same exposure, into a single mosaiced image, sorted in a single
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saltred - saltflat task

Parameters: Settings: Description:

images ”cbxgpP...” Input images

outimages ”” Output images or list of output images

outpref ”f” Prefix for output images

flatimage ”illumaster flat.fits” Flatfield image

minflat 1.0 Minimum flatfield value

allext yes Normalize using all extensions

clobber yes Overwrite existing files?

logfile ”salt.log” Logfile

verbose yes Verbose?

mode ”al”

extension of the output FITS file. Saltmosaic task performs its task in three steps: (1) For each

CCD in the array, stitch the two amplifiers together (2) rotate and translate CCD images with

respect to the reference CCD using the data stored in the geometry file, ”geomfile” (this is located

within the pysalt/data/rss/ filepath when PySALT is installed) (3) For each exposure, stitch the

CCDs together to form a single image, written to a file with the specified output name. The task

settings for ’saltmosaic’ are as follows:

-> epar saltmosaic

saltred - saltmosaic task

Parameters: Settings: Description:

images ”fcbxgpP...” Input images

outimages ”” Output images or list of output images

outpref ”m” Prefix for output images

geomfile ”/file/path/RSSgeom.dat” File path to CCD geometry definition file

interp ”linear” Pixel interpolation function

logfile ”salt.log” Logfile

geotran yes Use geotran for transforming files?

cleanup yes Delete temporary files?

clobber yes Overwrite existing files?

verbose yes Verbose?

mode ”al”

This marks the end of all the tasks needed in the ’saltred’ package. We now need to switch

to the ’saltspec’ (SALT spectroscopy) package. We will be using the ’specslit’ task within the
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saltspec package. This task allows us to separate each aperture in the multi-object spectoscopy

image into a separate image extension. The slitfile that is needed to run this task is located

on the SALT WebManager. From the WebManager you need to select your project, night of

observation, and specific mask (in our case). Go to the RSS Science Configuration section and

there will be a link that says, ”Download XML”. For the given object you can copy the contents

of that page into a .xml file and save it as your slitmask whatever.xml file.

-> epar specslit

saltspec - specslit task

Parameters: Settings: Description:

images ”mfcbxgpP...” Input images

outimages ”” Output images or list of output images

outpref ”s” Prefix for output images

exttype ”rsmt” Type of extraction file, RSMT, FITS, ASCII, AUTO

slitfile ”slitmask2.xml” RSMT, FITS or ASCII file to be used for slit detection

outputslitfile ”mask2” Output ASCII file that contains slit positions

sections 3 Image sections used to sum up columns. Not smaller than 3.

width 25.0 Width in pixels of Gaussian convolved with edge detected array

sigma 2.2 Sigma used for Gaussian convolution of edge detected array

thres 6.0 Threshold used for edge detection

order 2 Order used for spline fitting

padding 5 Padding to extracted slits

yoffset -12.0 Offset between mask center and center of CCD

inter yes Plot the detected slits on the screen for inspection by user

clobber yes Overwrite existing files

logfile ”salt.log” Logfile

verbose yes If verbose=n, log messages will be suppressed.

mode ”al”

This marks the end of the tools used in PySALT for the basic processing. Now we will move

onto the IRAF tasks that were used for processing.

A.3 IRAF Processing

IRAF tasks are used to determine a wavelength dispersion function from a calibration lamp

(Xenon or Argon), fit and transform the arc dispersion to the science frames, apply a background
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subtraction of a constant value determined locally within each slitlet, combine images (where

available), and extract one dimensional sums across the apertures. We will now go through each

step of the IRAF data pipeline. It is important to look at your images after each step of the

process (if applicable) in Ds9 or something similar. You do not want to get to the end to find

a skewed spectrum and then have to guess where it went wrong. The packages can be loaded

by starting IRAF in the terminal (for convention, the ’->’ symbol means the terminal prompt).

Most of the tasks we need are located inside the NOAO - TWODSPEC - LONGSLIT package;

we will start there.

-> ecl -> noao -> twodspec -> longslit

The first task we will use is ’identify’. This will be run on your calibration images (your ref-

erence lamps images). This task is used to: measure positions of features in an image, determine

dispersion solutions for spectra, and to identify features in two and three dimensional coordinate

transformation. Features in the input images (the calibration images) are identified interactively

and the features are assigned coordinates by the user. A coordinate function is created from the

identified features that maps pixel coordinates to the ’user coordinates’. A ’user coordinate’ list

may be defined to automatically identify additional features (this is typically a line list). This task

is changing your calibration image from pixel space to wavelength space. Note: it is important

the spectrum of the calibration lamp is extracted the same way as the one of the object frame so

the calibration is applicable.

->epar identify

The next task we will use is ’reidentify’. This task is used for transferring dispersion solu-

tions in the calibration spectra (the one that was just identified) and for mapping the dispersion

distortion in the two dimensional image. Reidentify takes the initial dispersion solution you just

found in one line (middle line) with the ’identify’ task and extends (in vertical space) that fit over

the entire spatial dimension of the image (by step size set in settings).

If you’ve run reidentify interactively you will be prompted to adjust the dispersion calculated

in the new line. You can look at the RMS value of the new dispersion and decide or not whether

to adjust it. If you decide yes it will take you back to and ’identify’ looking GUI for you to mark

features and adjust the dispersion solution. You will be prompted as many times as the number

60



longslit - identify

Parameters: Settings: Description:

images calibration file.fits Images containing features to be identified

section middle line Section to apply to two dimensional images

database database Database in which to record feature data

coordlist argon lines.txt User coordinate list

units ”” Coordinate units

nsum 10 Number of lines/columns/bands to sum in 2D images

match -3. Coordinate list matching limit

maxfeat 50 Maximum number of features for automatic identification

zwidth 100. Zoom graph width in user units

ftype emission Feature type

fwidth 7.5 Feature width in pixels

cradius 5. Centering radius in pixels

thresho 10. Feature threshold for centering

minsep 2. Minimum pixel separation

functio spline3 Coordinate function

order 1 Order of coordinate function

sample * Coordinate sample regions

niterat 1 Rejection iterations

low rej 3. Lower rejection sigma

high re 3. Upper rejection sigma

grow 0. Rejection growing radius

autowri no Automatically write to database

graphic stdgraph Graphics output device

cursor ”” Graphics cursor input

crval ”” Approximate coordinate (at reference pixel)

cdelt ”” Approximate dispersion

aidpars ”” Automatic identification algorithm parameters

mode ql

of steps you have chosen. The number of lines you sum in the ”nsum” parameter can save you a

lot of toil. It sums that number of lines together to search for features. Parameters like step and

nsum can be changed depending on how much curvature is in your image (step) and how much

signal is in your spectrum (nsum). If there is a lot of curvature you want a smaller step value so

you can sample the vertical space of the spectrum more often - this information will be used later

to straighten out the curve. If your signal is weak you can use the ”nsum” parameter to stack

multiple lines together to build up signal, making it easier to identify features.
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longslit - reidentify

Parameters: Settings: Description:

referenc calibration file.fits Reference image

images calibration file.fits Images to be reidentified

(interac yes Interactive fitting?

(section middle line Section to apply to two dimensional images

(newaps yes Reidentify apertures in images not in reference?

(overrid no Override previous solutions?

(refit no Refit coordinate function?

(trace yes Trace reference image?

(step 3 Step in lines/columns/bands for tracing an image

(nsum 10 Number of lines/columns/bands to sum

(shift INDEF Shift to add to reference features (INDEF to search)

(search 100. Search radius

(nlost 20 Maximum number of features which may be lost

(cradius 5. Centering radius

(thresho 0. Feature threshold for centering

(addfeat yes Add features from a line list?

(coordli argon lines.txt User coordinate list

(match -3. Coordinate list matching limit

(maxfeat 50 Maximum number of features for automatic identification

(minsep 2. Minimum pixel separation

(databas database Database

(logfile logfile List of log files

(plotfil ”” Plot file for residuals

(verbose yes Verbose output?

(graphic stdgraph Graphics output device

(cursor ”” Graphics cursor input

answer yes Fit dispersion function interactively?

crval ”” Approximate coordinate (at reference pixel)

cdelt ”” Approximate dispersion

(aidpars ”” Automatic identification algorithm parameters

(mode al

Fitcoords

After the reidentify task we will run the ’fitcoords’ task. This task is run on the calibration file

that you just processed through identify and reidentify. This task takes the feature coordinates

determined by the user from the previous steps and maps them to the image’s coordinates.

-epar fitcoords
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longslit - fitcoords

Parameters: Settings: Description:

images lamp.file Images whose coordinates are to be fit

fitname ”” Name for coordinate fit in the database

interac yes Fit coordinates interactively?

combine no Combine input coordinates for a single fit?

databas database Database

deletion deletions.db Deletion list file (not used if null)

function legendre Type of fitting function

xorder 5 X order of fitting function

yorder 3 Y order of fitting function

logfile STDOUT,logfile Log files

plotfil plotfile Plot log file

graphic stdgraph Graphics output device

cursor ”” Graphics cursor input

mode ql

It is correct to not include the ”.fits” in listing the filename in the images parameter. Running

this will open up an interactive window where you can check residuals of your data and fits and

if there is any systematics in the data. The graph you first see will be a little intimidating. You

can view the data in various ways by typing ’xxyyr’ which is saying x-axis=x, y=axis=y, redraw.

Another example is ’xryyr’ which is plotting x-axis=residuals, y-axis-y, redraw. You can do

various combinations of plotting schemes to show residuals in either x or y and you can change

the function and order of the function (by typing ”func:func order#” in the window). You can

delete single points, rows, or columns of data if they are bad. Once you are satisfied you can

press ’q’ and it will write out the solution to your database.

Now that we have a solution that maps the users coordinates (which were marked in wave-

length) to the image’s coordinates (of pixels) we want to use the task ’transform’ to transform

the science images (that are in pixel space) to the user’s coordinates (which are in wavelength

space).

-epar transform

NOTE: the parameter ’fitnames’, the names of coordinate fits in the database, has to be the

name of the file you created in the previous fitcoords step. It will not have a .fits at the end of it
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longslit - transform

Parameters: Settings: Description:

input science.fits Input images

output science.trans.fits Output images

minput ”” Input masks

moutput ”” Output masks

fitnames lamp.file Names of coordinate fits in the database

(databas database Identify database

(interpt linear Interpolation type

(x1 INDEF Output starting x coordinate

(x2 INDEF Output ending x coordinate

(dx INDEF Output X pixel interval

(nx INDEF Number of output x pixels

(xlog no Logarithmic x coordinate?

(y1 INDEF Output starting y coordinate

(y2 INDEF Output ending y coordinate

(dy INDEF Output Y pixel interval

(ny INDEF Number of output y pixels

(ylog no Logarithmic y coordinate?

(flux yes Conserve flux per pixel?

(blank INDEF Value for out of range pixels

(logfile STDOUT,logfile List of log files

(mode ql

and shouldn’t be listed with a .fits in this step. It is very important to do things correctly in the

previous steps as any errors will propagate through and your transformations will be wrong.

Now that we have transformed the science image(s) into wavelength space we can subtract

the background contamination from the image. What the task background does is remove the

skylines from your image. For each line or column in the input images a function is fit to the

columns or lines specified by the sample parameter. This function is then subtracted from the

entire line or column to create an output line or column. The function fitting parameters may be

set interactively. This task is a script using fit1d. For more discussion about the parameters see

the help text for icfit and fit1d.

For our specific spectra where the spectrum is horizontal, you will mark out two regions

(above and below) where the galaxy spectra lies in the 2-d image. The counts from those two

sampled regions will be averaged, meaned, or added to give a single value - that will be the
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value subtracted from that given column you chose to look at. You want to chose a function

(polynomial, chebyshev, legendre) and two regions above and below the galactic spectrum that

gives accurate readings for every column along the image (that means it doesn’t sample the

galaxy spectra or the sampling region doesn’t sample the edge of the image which is 0 and could

throw off your average/sum for that column). You’ll want to look at different columns of the

image to make sure your sample areas are correct, for example looking at column 0, 100, 500,

1000, 2000, 3100, etc. This function and these sampling regions will be applied to every column

in our 2-d image (in our case there is 3175 columns). The point of fitting the background is to

trace the strength of the flux of the sky lines as they span the chip. You want to be able to use a

consistent measuring tool across every column and therefore it’ll apply the same method across

varying amounts of background. For example if it comes across a bright sky line you want it

to subtract more from that column than the other column without any sky lines. The way you

measure the counts for that column will be consistent but the counts themselves will not be the

same. This will insure you are extracting the maximum amount of real signal from your image.

-> epar transform

longslit - background

Parameters: Settings: Description:

input science.trans.fits Input images to be background subtracted

output science.tran back.fits Output background subtracted images

(axis 2 Axis along which background is fit and subtracted

(interac yes Set fitting parameters interactively?

(sample * Sample of points to use in fit

(naverag 1 Number of points in sample averaging

(functio legendre Fitting function

(order 1 Order of fitting function

(low rej 3. Low rejection in sigma of fit

(high re 3. High rejection in sigma of fit

(niterat 5 Number of rejection iterations

(grow 0. Rejection growing radius

(graphic stdgraph Graphics output device

(cursor ”” Graphics cursor input

(mode ql

If you have multiple exposures of the same object you can combine them after all the other
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previous steps have been performed to increase signal strength. This task is called ’imcombine’

(image combine). Images are combined by weighted averaging, medianing, or summing. Pix-

els may be rejected from the combining by using pixel masks, threshold levels, and rejection

algorithms (this can be exploited to remove any left-over cosmic ray contamination).That can be

done by adjusting ’hthreshold’ values - it adjusts the level of allowed pixels with certain strengths.

The images may be scaled, before rejections, multiplicatively, additively, or both based on image

statistics, image header keywords, or text files. The images may be combined with integer pixel

coordinate offsets. You need to list each image in the input parameter seperated by a comma.

-epar imcombine

We are now ready to extract the processed spectrum. For the next and final step we will have

to switch packages. We will be running the ’apall’ (aperture all) task from the noao - twodspec

- apextract package. This is a task that has a lot of functionality which we will not be going

into. There are many manuals online that can describe it to the full extent but we will only be

concerned with the settings for our specific data. We will be using it to extract one dimensional

sums across our 2-d image. What that means is we will it the number of lines our galaxy spectrum

spans (remember, our spectrum is horizontal), say rows 15-25 of the full image width of 0-40

rows, and it will sum up the counts between row 15-25 for each column in the image (all 3175

in our case). This will return a ”1-dimensional sum” for each column in the image. If you plot

this result you will get a plot of your spectrum.

-> noao -> twodspec -> apextract -> epar apall

There are A LOT of settings in apall and it is worth while to read Users Guide to Reducing

Slit Spectra with IRAF to understand and tailor the routine to your data. Keep in mind if you

want to run this in a script and not interactively a lot of these settings will change. You can check

what your spectrum looks like by using the ’splot’ command.

A.4 Cross-Correlation

Peaks in the cross-correlation function are identified and fit by a parabola, quartic, or function

of the form cos(x)(1+x2) to obtain their position and width and hence the redshift and velocity
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longslit - imcombine

Parameters: Settings: Description:

input sci1.fits,sci2.fits List of images to combine

output science combined.fits List of output images

headers ”” List of header files (optional)

bpmasks ”” List of bad pixel masks (optional)

rejmask ”” List of rejection masks (optional)

nrejmas ”” List of number rejected masks (optional)

expmask ”” List of exposure masks (optional)

sigmas ”” List of sigma images (optional)

imcmb $I Keyword for IMCMB keywords

logfile STDOUT Log file

combine median Type of combine operation

reject sigclip Type of rejection

project no Project highest dimension of input images?

outtype real Output image pixel datatype

outlimi ”” Output limits (x1 x2 y1 y2 ...)

offsets none Input image offsets

masktyp none Mask type

maskval 0 Mask value

blank 0. Value if there are no pixels

scale none Image scaling

zero none Image zero point offset

weight none Image weights

statsec ”” Image section for computing statistics

expname ”” Image header exposure time keyword

lthresh INDEF Lower threshold

hthresh 100 Upper threshold

nlow 1 minmax: Number of low pixels to reject

nhigh 1 minmax: Number of high pixels to reject

nkeep 1 Minimum to keep (pos) or maximum to reject (neg)

mclip yes Use median in sigma clipping algorithms?

lsigma 3. Lower sigma clipping factor

hsigma 3. Upper sigma clipping factor

rdnoise 0. ccdclip: CCD readout noise (electrons)

gain 1. ccdclip: CCD gain (electrons/DN)

snoise 0. ccdclip: Sensitivity noise (fraction)

sigscal 0.1 Tolerance for sigma clipping scaling corrections

pclip -0.5 pclip: Percentile clipping parameter

grow 0. Radius (pixels) for neighbor rejection

mode ql
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dispersion of the galaxy. The fitted parameters are saved, and a summary output is produced for

each object. In this summary, the redshift is corrected for the velocity of the template object.

The redshift is given as cz in km/sec. The quoted errors are one sigma on each parameter. To do

this we used the SDSS DR2 galaxy templates. We used 6 different galaxy templates from SDSS

DR2 with which to compare each one of our galaxies to. The steps are as follows:

-> rvsao -> epar xcsao
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apextract - apall

Parameters: Settings: Description:

input science combined.fits List of input images

output science.apall.fits List of output spectra

apertur ”” Apertures

format onedspec Extracted spectra format

referen ”” List of aperture reference images

profile ”” List of aperture profile images

interac yes Run task interactively?

find yes Find apertures?

recente yes Recenter apertures?

resize no Resize apertures?

edit yes Edit apertures?

trace yes Trace apertures?

fittrac yes Fit the traced points interactively?

extract yes Extract spectra?

extras yes Extract sky, sigma, etc.?

review yes Review extractions?

line INDEF Dispersion line

nsum 100 Number of dispersion lines to sum or median

APERTURE

lower -4. Lower aperture limit relative to center

upper 4. Upper aperture limit relative to center

apidtab Aperture ID table (optional)

BACKGROUND

b funct chebyshev Background function

b order 1 Background function order

b sampl -25:-7,7:25 Background sample regions

b naver -100 Background average or median

b niter 0 Background rejection iterations

b low r 3. Background lower rejection sigma

b high 3. Background upper rejection sigma

b grow 0. Background rejection growing radius

CENTERING

width 8. Profile centering width

radius 8. Profile centering radius

thresho 0. Detection threshold for profile centering

FINDING

find ”” Number of apertures to be found automatically

minsep 5. Minimum separation between spectra

maxsep 1000. Maximum separation between spectra

order increasing Order of apertures

RECENTERING

aprecen ”” Apertures for recentering calculation

npeaks INDEF Select brightest peaks

shift yes Use average shift instead of recentering?69



RESIZING

llimit INDEF Lower aperture limit relative to center

ulimit INDEF Upper aperture limit relative to center

ylevel 10. Fraction of peak or intensity for automatic width

peak yes Is ylevel a fraction of the peak?

bkg yes Subtract background in automatic width?

r grow 0. Grow limits by this factor

avglimi no Average limits over all apertures?

TRACING

t nsum 10 Number of dispersion lines to sum

t step 10 Tracing step

t nlost 3 Number of consecutive times profile is lost before quitting

t funct legendre Trace fitting function

t order 10 Trace fitting function order

t sampl * Trace sample regions

t naver 1 Trace average or median

t niter 1 Trace rejection iterations

t low r 3. Trace lower rejection sigma

t high 3. Trace upper rejection sigma

t grow 0. Trace rejection growing radius

EXTRACTION PARAMETERS

backgro none Background to subtract

skybox 1 Box car smoothing length for sky

weights none Extraction weights (none—variance)

pfit fit1d Profile fitting type (fit1d—fit2d)

clean no Detect and replace bad pixels?

saturat INDEF Saturation level

readnoi 0. Read out noise sigma (photons)

gain 1. Photon gain (photons/data number)

lsigma 4. Lower rejection threshold

usigma 4. Upper rejection threshold

nsubaps 1 Number of subapertures per aperture

mode ql
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rvsao - xcsao

Parameters: Settings: Description:

spectra spectrum.fits List of input spectra

specnum 0 Spectrum aperture range if multispec or 2-D file

(specban 0 Spectrum band if multispec file

(specdir ”” Directory for input spectra

(correla wavelength Cross-correlate spectrum (velocity wavelength pixel no)

(templat lrg temp lin.fits List of template spectra

(tempnum 0 Template aperture range if 2-D or multispec file

(tempban 0 Template band if template is multispec file

(tempdir ”” Directory for template spectra

(echelle no Echelle spectra (template tracks spectrum) (yes or no)

(st lamb 5125. Starting wavelength in Angstroms or pixels to correlate

(end lam 5780. Ending wavelength in Angstroms or pixels to correlate

(obj plo no Plot the raw object data

(xcor pl no Plot the filtered correlation function

(xcor fi no Write the filtered correlation function to a file

(fixbad yes Eliminate portions of spectrum with bad lines (yes or no)

(badline badlinestID153.dat Lines to eliminate from spectrum

(s emcho no Remove emission or absorption lines (yes,no,tempfile)

(t emcho no Remove emission or absorption lines (yes,no,tempfile)

(s abs r 100. Spectrum absorption line rejection in sigma of fit

(s em re 2. Spectrum emission line rejection in sigma of fit

(t abs r 100. Template absorption line rejection in sigma of fit

(t em re 2. Template emission line rejection in sigma of fit

(bell wi 0.05) Fraction of spectrum to taper

(renorma yes Renormalize spectrum before transform (yes or no)

(ncols 1024 Number of cols into which to rebin

(interp spline3) Rebin interpolation mode

(zeropad yes Pad transforms with zeroes to lower noise (yes, no, tempfile)
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rvsao - xcsao (Continued from previous page...)

Parameters: Settings: Description:

(low bin 5 Bin number of low frequency cutoff

(top low 10 Bin number where low frequency reaches one

(top nru 80 Bin number where high frequency starts to slope off

(nrun 140 Bin number of high frequency cutoff

(vel ini zguess Initial velocity source (zero guess zguess corr em comb)

(czguess 0.33185 Initial velocity guess in km/sec or z

(nzpass 2 Number of times template is shifted to match object velocity

(tshift 0. night to night zero point velocity shift

(svel co barycentric Spectrum velocity correction(none,file,helio,bary,hfile)

(tvel co none Template velocity correction (none,file,helio,bary,hfile)

(pkmode 1 Peak-fitting mode (1-parabola 2-quartic 3-cosx/1+x2̂)

(pkfrac 0.5 Fraction of peak or number of points for peak fitting (0=FWHM)

(pksrch 25 Half-width of search region for graphically set peak

(minvel -30000. Minimum allowable velocity in km/sec

(maxvel 30000. Maximum allowable velocity in km/sec

(report 1 Report mode (1=normal 2=one-line)

(logfile STDOUT,xcsao.log) List of log files

(save ve no Save result in IRAF data file header (yes or no)

(rvcheck no Enable header update if not correlate=no (yes or no)

(archive no Save results in binary archive record (yes or no)

(nsmooth 30 Smooth displayed spectrum (0=no else number of times)

(cvel INDEF Center velocity of output graph

(dvel INDEF Velocity half-width of output graph

(ablines ablines.dat Absorption line list
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