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ABSTRACT 

The impacts of plant species invasion in natural ecosystems have attracted geo-scientific 

studies globally. Several studies have demonstrated that the effects of invasive species can 

permanently alter an ecosystem structure and affect its provision of goods and services, e.g. 

the provision of food and fibre, aesthetics, recreation and tourism, and regulating the spread of 

diseases. Plant invasion causes transformation of ecosystems including replacement of native 

vegetation. This study focuses on invasive plant impacting on grasslands called Seriphium 

plumosum. The plant is known to have allelopathic effects, killing grass species and turning 

grazing lands into degraded shrublands. The major challenge in grassland management is the 

eradication and management of S. plumosum. Central to this challenge is locating, mapping 

and estimating the invasion status/cover over large areas. Remote sensing based earth 

observation approaches offer a viable method for invasion plants mapping. Moreover, mapping 

of vegetation requires robust statistical analysis to determine relationships between field and 

remotely sensed data. Such relationships can be achieved using spatial autocorrelation. In this 

study, Getis statistics transformed images and geostatistical techniques, which involve 

modelling the spatial autocorrelation of canopy variables have been used in mapping S. 

plumosum.  Getis statistics was used to transform SPOT (Satellites Pour l’Observation de la 

Terre)-6 image bands into spatially dependent Getis indices layer variables for mapping S. 

plumosum. Stepwise multiple Regression, ordinary kriging and cokriging were used to evaluate 

the cross-correlated information between SPOT6-derived Getis indices transformed layer 

variables and field sampled S. plumosum canopy density and percentage. To select the best 

SPOT6-derived Getis indices to map S. plumosum, 308 spectral Getis indices transformed layer 

variables were statistically evaluated. Results indicated that Rook, Positive and Horizontal 

Getis indices are most suitable for mapping S. plumosum with 0.83, 0.828 and 0.828 

importance. The most accurate Getis index obtained using 5x5 (Lag 5) moving window yielded 

0.83 mapping importance. Cokriging with the most important Getis index yielded the best in 

S. plumosum density prediction with root mean square error (RMSE) of 25.8 compared to 

ordinary kriging with RMSE of 26.1 and regression with RMSE of 35.6. This study 

demonstrated that Getis statistics and geostatistics were successful in mapping and predicting 

S. plumosum. The current study provides insights critical for developing sound framework for 

planning and management of S. plumosum in agro-ecological systems. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Invasive plant species are defined as plants occurring outside their natural environmental range 

(Turlings et al., 2001).  Invasive plant species affect a wide range of ecosystem goods and 

services that underpin human wellbeing, e.g. provision of food, aesthetics, recreation and 

tourism (Brooks et al., 2004). Plant invasions also compromise ecosystem stability and threaten 

agricultural productivity (Devine and Fei, 2011).  Several literature on the effects of plant 

invasions (Brooks et al., 2004, Richardson et al., 2000, Le Maitre et al., 2000, Dogra et al., 

2010, Richardson and Van Wilgen, 2004) suggests that most invasive plant species transform 

ecosystems by excessive water, light and oxygen usage. Furthermore, plant invasion transform 

ecosystems through the addition of nitrogen to the soil, promote or suppress fires, induce soil 

erosion, or accumulate and redistribute salts (Richardson et al., 2000).  Such changes may alter 

the flow, availability and/or quality of nutrient resources in biogeochemical cycles, modify 

trophic resources within food webs, and alter physical resources such as living space or habitat, 

sediment distribution, light and water (Vitousek, 1990).  According to Pyšek and Richardson 

(2010), invasion causes a wide range of socio-economic and ecosystem impacts that include a 

decline in the population of threatened and endangered species, habitat alteration and loss, 

shifts in food webs and nutrient cycling and loss of agricultural crops and productive lands.  

 

To date, mitigating impacts of plant species invasion remains a challenge (Richardson and Van 

Wilgen, 2004).  In the United States of America for instance, the cost of alien plant species 

mitigation is estimated to be about USD137 billion per year, a cost that excludes the monetary 

value of native species extinctions, biodiversity reduction, ecosystem services and aesthetics 

(Pimentel et al., 2001).  In other parts of the world, about 80% of the endangered species are 

threatened by pressure from invasive species (Pimentel et al., 2005). Pimentel et al. (2005) 

further noted that the global monetary losses accruing from invasive species amount to USD1.5 

trillion per annum. In China, for instance, the total economic losses caused by invasive alien 

species are estimated to be USD14.45 billion, with direct and indirect economic losses 

accounting for 16.59% and 83.41% of total economic losses respectively (Xu et al., 2006).  
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According to Richardson and Van Wilgen (2004), South Africa has been identified as one of 

the countries most vulnerable to alien plant invasions in the world. A survey by the Southern 

African Plant Invader Atlas (SAPIA) project in South Africa, Lesotho and Swaziland, 

identified 548 alien plant species, with most invasion recorded in the fynbos, forests, the moist 

eastern grassland and savannah biomes (Henderson, 2007).  The Seriphium plumosum (also 

known as Slangbos or Bankrupt bush), though indigenous to Western Cape Province of South 

Africa, has been identified as one of the biggest shrub that threatens the savanna and grassland 

biomes in Free State, North West, Mpumalanga, Eastern Cape and Gauteng Provinces.  The 

shrub mainly invades bottom and mid slope terrains (Jordaan, 2009). It is a small multi-

stemmed woody shrub that grows to an average height of 60 cm and a width of 60 cm. 

According to Snyman (2009), the shrub's light colour reflects sun light and it's wholly covering 

and small leaves reduce plant water loss, making it highly adaptive to the long dry summer 

seasons. The shrub is known to reduce grazing capacity by displacing grass species and 

excretes volatile oil which makes it unpalatable to livestock and wildlife (Jordaan, 2009).  

Furthermore, the plant is a strong competitor for soil moisture, light, space and nutrients and 

commonly out-competes grass species. It produces millions of seeds which contaminate wool 

on sheep and it is highly flammable during winter, altering fire regimes (Jordaan and Jordaan, 

2007).  

The S. plumosum's ecological and agricultural impacts necessitate a determination of its 

geographical extents for mitigation purposes. Studies have demonstrated that the effect of 

invasive species is multi-scale, in which invasive impact is a product of the potential 

geographical range of the invader, its density, and the measurable impacts at the smallest spatial 

scale (Richardson and Van Wilgen, 2004). This information is valuable in quantifying the 

impacts of invasion. 

Traditionally, land surveys and analysis of aerial photographs (also a remote sensing technique) 

have been used in vegetation mapping. However, these survey techniques are labour intensive 

and time consuming, while aerial photograph acquisition is expensive for large areas, 

particularly when analysing and mapping large areas. However, satellite-based remote sensing 

approaches have become popular in vegetation mapping (Madden, 2004). Unlike traditional 

approaches, satellite data offer quick, reliable and relatively economical mapping, particularly 

for large areas. The selection of remote sensing data to be used is dependent on the spatial, 

spectral and radiometric characteristics, availability, cost, technical image interpretation and 

mapping objective and climatic conditions (Xie et al., 2008).  Due to S. plumosum's large patch 
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sizes, affordable remote sensing data from sensors with moderate spatial resolution (Ground 

Sampling Distance of 2.0 m to 30 m) for instance are useful for its modelling.  

Whereas several studies (Hudak and Brockett, 2004, Hudak and Wessman, 1998, Mutanga and 

Skidmore, 2004, Wessels et al., 2006, Adjorlolo and Mutanga, 2013) have investigated the 

value of image spectral characteristics for estimating vegetation distribution and density, 

identification of image characteristics such as spatial dependence that best correlate with 

invasive shrubs canopy cover or density have not been well-established. It is, therefore, 

essential to explore the techniques accounting for additional image characteristics in estimating 

canopy cover and density. Spatial dependence is the spatial relationship of variable values or 

locations. Spatial dependence is measured as the existence of statistical dependence in a 

collection of random variables (Anselin, 1995). Spatial autocorrelation is the measure of the 

degree of spatial dependence (Bannari et al., 2005). Spatial autocorrelation within remotely 

sensed imagery occurs in terms of the variable (i.e. S. plumosum) location represented as the 

pixel location and variable information as the reflectance value within that pixel (Wulder and 

Boots, 1998). The remote sensing data represents continuous landscapes in a form of regularly 

spaced grid showing positive spatial autocorrelation (Wulder and Boots, 1998). Remote 

sensing data is inherently spatially autocorrelated and S. plumosum, like other natural 

vegetation, also depict spatial interdependency (Mutanga and Rugege, 2006, Adjorlolo and 

Mutanga, 2008). Autocorrelation represents information which can be exploited as image 

characteristic and can be integrated with spectral information to enhance mapping and 

estimating canopy density (Wulder and Boots, 1998). To date, various image transformation 

techniques have been tested for the purpose of estimating vegetation distribution and canopy 

volume (Hudak and Brockett, 2004, Hudak and Wessman, 1998, Mutanga and Skidmore, 2004, 

Wessels et al., 2006, Adjorlolo and Mutanga, 2013).  However, few studies have used the 

spectral-spatial approach using spectrally derived and spatially dependent statistics in 

landscape mapping.  On the other hand, geostatistical techniques have been adopted for 

vegetation estimation (Adjorlolo and Mutanga, 2013), however, there is paucity in the literature 

on integration of spatial dependence and geostatistics for vegetation mapping. In this study, we 

integrate spectral data with spatial dependence to map and quantify S. plumosum invasion.  

 

Spatial dependence and the neighbourhood context can be used to supplement the spectral 

information in land-cover characterisation to reduce the high intra-class variability (Ghimire et 

al., 2010). In this study, Getis statistics was adopted as it takes into account the spatial 
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dependence of remotely sensed image pixels in clustering pixels that belong to a particular 

feature. This characteristic provides information in addition to the spectral reflectance 

information of earth features with remote sensing data (Wulder and Boots, 1998).  The Getis 

statistics used to describe spatial information has a distinct advantage over conventional 

contextual texture-based classification approaches because, unlike the standard contextual 

methods that consider only values at a given neighbourhood of each pixel, the Getis statistics 

is a ratio of values of the neighbourhood for each pixel versus values of the entire image 

(Ghimire et al., 2010). The selection of the most suitable remotely sensed vegetation variable 

is critical for the reliability of vegetation density modelling. Hence this study incorporates the 

identification of the best performing Getis statistics index in mapping S. plumosum geographic 

extent and establishes statistical relationships between mapping and density estimation using 

geostatistical kriging and cokriging methods of interpolations.  

Geostatistics was selected for modelling canopy cover/density because of the robustness of its 

interpolation kriging and cokriging techniques. These techniques enable prediction using 

multiple input variables and incorporate spatial autocorrelation into the prediction model 

(Eldeiry and Garcia, 2010). Spatial autocorrelation is the degree of dependence between values 

of the same environmental variable associated with a location close to each other. It arises when 

the value of an environmental variable recorded at a location on the earth surface is related to 

values of the same environmental variable at nearby locations (Bannari et al., 2005) 

Geostatistical techniques which take spatial autocorrelation of sparsely (e.g. canopy cover and 

density) and intensively sampled variables into consideration can be used to combine field and 

remote sensing data and model their interdependence simultaneously through cokriging. The 

cokriging technique was selected because it allows for the integration of secondary (2nd, 3rd, 

and 4th) input information into the interpolation model and applies spatial autocorrelation 

during modelling. Therefore, integrating remotely sensed data with geostatistics can improve 

our understanding of the spatial dynamics of vegetation spatial distribution in heterogeneous 

natural environments (Adjorlolo and Mutanga, 2008). Whereas the approach has been applied 

to model herbaceous biomass distribution in the African savannah woodland (Mutanga and 

Rugege, 2006, Adjorlolo and Mutanga, 2013), to date, the technique has not been tested for 

mapping shrub cover and density distribution.  

The modelling of ecological systems requires the application of methods for identifying 

statistical relationships between field and remotely sensed data. Generally, regression is applied 

to field and remotely sensed data for the spatial estimation of canopy vegetation variables. 
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However, ordinary regression methods do not make maximum use of field and remotely sensed 

data because they ignore the spatial dependence of the two datasets and do not account for the 

interdependence of the field and remotely sensed data (Mutanga and Rugege, 2006).  Since 

ordinary regressions do not consider the spatial autocorrelation in the vegetation and its 

radiation (Atkinson et al., 1994, Mutanga and Rugege, 2006), the technique commonly 

underestimates or overestimates vegetation cover (Mutanga and Rugege, 2006).  It is thus 

important for vegetation modelling to consider the fundamental practical principle that 

vegetation natural groupings depict spatial distribution and spatial interdependence, and the 

radiation of vegetation derived from remote sensing data are also spatially correlated both to 

themselves and to one another (Mutanga and Rugege, 2006, Adjorlolo and Mutanga, 2008). 

Variogram or semivariance modelling is used to establish a relationship between field and 

remote sensing data demonstrating the spatial dependence of the data for use in kriging and 

cokriging interpolation.  

 

This study, therefore, investigates the utility Getis statistic transformed variables from the 

SPOT-6 multispectral image and geostatistical techniques for mapping S. plumosum spatial 

extents and predict density.  

 

1.2 Aim and objectives of the study 

The aim of this study was to investigate the Getis based image transformations applied to high-

resolution SPOT 6 multispectral imagery and integration with geostatistical analysis for 

mapping and estimating S. plumosum canopy density and percentage. The study focused on the 

use of geostatistical techniques: kriging (i.e. ordinary kriging of sampled field data) and 

cokriging (i.e. interpolation of field data combined with Getis statistics transformed SPOT6 

data) to estimate the density and percentage cover of S. plumosum.  

 

1.3 Specific objectives 

 To evaluate the performance of different Getis-statistic indices in mapping spatial 

distribution of S. plumosum in grasslands. 

 To estimate S. plumosum canopy density and percentage cover by integrating field data 

with best performing Getis statistics transformed index through geostatististical 
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cokriging technique, and compare ordinary kriging with cokriging, and simple linear 

regression.  

 

1.4 Key research questions 

 Which Getis image transformation index performs better in mapping spatial distribution 

of invasive plant species S. plumosum? 

 To what level can geostatistical technique, cokriging, improve mapping and estimate 

canopy cover density and percentage of S. plumosum? 

 

1.5 Organisation of the thesis 

This study is organised in two major sections. The first section deals with SPOT 6 image 

processing to create Getis variables. These layers serve as input variables for the mapping of 

S. plumosum. The analysis of field sampled data and identification of the best performing Getis 

index layer variable are also established in this section. The identification of the best 

performing Getis index layer variable is evaluated through statistical variable selection. The 

second section of the study integrates the best Getis statistic index layer variable (identified in 

section one) with field sampled data parameters (i.e. canopy density and percentage cover) in 

a geostatistical technique cokriging to estimate canopy density of S. plumosum. An 

interpolation of field data through kriging, linear regression of field data combined with SPOT 

6 band ratios, image bands was also executed. The section also dwells on modelling S. 

plumosum canopy density using regression, ordinary kriging and cokriging in the entire study 

area. The analysis in this section is done in three ways: 1) ordinary kriging using field data 

parameters alone for quantitative prediction of S. plumosum canopy density and percentage 

cover. 2) cokriging with the S. plumosum plant field data parameters serving as input primary 

variables and the best Getis indices layer variable as input secondary independent variable, 3) 

linear regression of field and SPOT 6 data and band ratios not accounting for spatial 

dependence. In order to draw conclusions, the results obtained from cokriging are compared to 

those obtained from kriging and regression. The conceptual workflow of the study is illustrated 

in Figure 2. 
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Figure 1: Flowchart for the methods followed and outputs in the study.  
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1.6 Study area 

The study area is located in the Senekal area of the Free State province of South Africa. The 

area is located in the eastern parts of Free State province with heights exceeding 1000 meters 

above sea level. The area has rich soil and favourable climate, which allows for a thriving 

agricultural industry. Rainfall is received in summer with an annual rainfall of 477 mm and 

average daily temperatures range between 16 to 28 oC. The area consists of grasslands and 

shrub-tree natural ecosystems which are infested with S. plumosum. The landscape is 

characterised by both flat and mountainous surfaces and high mountains that dominate the 

eastern part of the study area (see Figure 3). The farms visited for the study lie east of Senekal 

town.   

 

Figure 2: Study area demonstrating farms surveyed. 
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CHAPTER TWO 

LITERATURE REVIEW 

Plant species invasion into foreign environments has become a significant problem in South 

Africa. Among them is the S. plumosum which encroaches grasslands, turning them into less 

productive shrubby grasslands (Snyman, 2010). Jordaan (2009) notes that the encroachment of 

S. plumosum in the natural veld, grasslands and cultivated pastures is a serious problem in the 

North West, Mpumalanga, Gauteng, Free State and Eastern Cape provinces of South Africa. 

Consequently, it is essential to establish the geographical distributions of the species over large 

areas for eradication and management. 

Remotely sensed imagery has increasingly become popular in vegetation mapping. Hence we 

utilised optical remotely sensed data in this study to investigate approaches for mapping and 

estimating S. plumosum cover and density. Remotely sensed data is inherently spatially auto-

correlated; it is this spatial autocorrelation that we explore for the mapping of S. plumosum. 

Futhermore, we integrate the optical remote sensing data with field sampled physical canopy 

parameter data to estimate the quantity of in-situ canopy using geostatistical kriging and 

cokriging techniques. Therefore, this chapter reviews literature on three main approaches 

which are addressed in this study: 1) remote sensing of shrub vegetation and potential to map 

S. plumosum, 2) Image transformation techniques and Getis statistics, and 3) geostatistical 

techniques of interpolation.  

 

2.1 Applications of optical remote sensing for mapping shrub invasion 

Invasive plant species and their densities vary from field to field, hence the uniform application 

of invasive plant control measures over an entire field is neither cost effective nor 

environmentally friendly (Goel et al., 2002).  Mapping invasive plants using ground surveys is 

often time consuming and labour intensive, however remotely sensed data offer a viable option 

for invasion mapping.  Remotely sensed imagery covers a large geographical area and is not 

restricted to fence boundaries. Furthermore remotely sensed data offers access to areas which 

may otherwise not be accessible on the ground due to terrain (e.g. mountainous areas), 

authoritative (e.g. owner restrictions), political (e.g. differing political regimes) and safety (e.g. 

protected areas with wildlife) limitations.  Although remotely sensed imagery has many 

advantages over traditional ground surveys, it is commonly limited to delivering information 
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on vegetation structure in two dimensions (i.e. location and reflectance information) (Hantson 

et al., 2012). Furthermore, remote sensing mapping of specific plant species in forests, 

rangelands, natural landscapes and riparian areas has proved to be a challenge (Evangelista et 

al., 2009). For example, different invasive plants may have similar spectral reflectance to other 

vegetation or may be mixed with other vegetation within optical remote sensing data, resulting 

in incorrect classification and mapping (Shafii et al., 2004).  

A number of studies have used remotely sensed data in vegetation mapping. Müllerová et al. 

(2013) for instance tested the effects of remotely sensed data resolution and image 

classification approaches for detection of Heracleum mantegazzianum (giant hogweed). In the 

study, high accuracies were achieved using high resolution data. Using high spatial resolution 

imagery and field data, Sanchez-Flores et al. (2008) used predictive skill of combined genetic 

algorithm ruleset-production and change analysis models to model plant invasion in dynamic 

desert landscapes. Their models identified areas vulnerable to Brassica tournefortil and 

Schismus arabicus invasion. The models representing most dynamic landscapes with high 

probability of invasion showed good spatial agreement with the distribution of invasions. Peters 

et al. (1992) identified infestations of broom snakeweed (Gutierrezia sarothrae) using 

advanced very high resolution radiometer (AVHRR) and normalised difference vegetation 

index (NDVI) data while Evangelista et al. (2009) used Landsat 7 ETM+ to map the invasive 

species tamarisk (Tamarix). Using varied approaches, studies above provide an indication of 

the potential of remotely sensed data in invasive species mapping. 

 

2.2 Potentials of mapping S. plumosum using remote sensing 

S. plumosum is a woody dwarf shrub that thrives during summer rainfall of approximately 620-

750 mm (Snyman, 2009), thus dominant in mesic and semiarid grasslands.  Grasslands are a 

major component of the natural vegetation, with the biome comprising about 295 233 km2 of 

the central regions of South Africa and extending into most of the adjoining biomes such as 

forest, savannah, thicket, Nama-karoo. S. plumosum commonly occur in vast patches. It has 

previously been mapped through traditional field based survey methods which are limited to 

small scale, easily accessible areas. These methods require locality GPS coordinates, collecting 

encroachment information detailing extent and density of encroachment (Avenant, 2015). 

Remote sensing, conversely, provides an opportunity for mapping encroacher shrubs over large 

area.  
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Vegetation mapping using remotely sensed data is a process of extracting vegetation 

information by interpreting satellite image using features like image texture, colour, tone, 

pattern and association information (Xie et al., 2008).  Successful delineation of vegetation 

components is dependent on the differences in reflectance properties (within the 

electromagnetic spectrum) of each vegetation species and their phonological differences at the 

time of image acquisition (Mirik and Ansley, 2012).  

Furthermore, remote sensing sensors commonly used for vegetation mapping are those 

equipped with the green band (wavelength 530 nanometres (nm) – 590 nm), near-infrared band 

(wavelength 760 nm – 890 nm), red band (wavelength 625 nm – 695 nm) (Mutanga and 

Skidmore, 2004, Cho et al., 2013). Additionally, the general rule of thumb for mapping 

vegetation using remote sensing data is that the object mapped must at least be twice or three 

times the size of the pixel of used remote sensing data.  

Whereas the adoption of remotely sensed data in vegetation assessment has been hugely 

successful, literature on canopy mapping and estimation, particularly in areas characterised by 

multiple vegetation structures remain limited. Consequently, a number of studies have adopted 

a number of approaches that include spectral assessments, rationing and texture techniques in 

vegetation mapping and modelling (Yang and Prince, 1997, Hudak and Brockett, 2004, 

Adjorlolo and Mutanga, 2008). These techniques are discussed in detail in section 2.3. 

 

2.3 Image transformation techniques used in remote sensing of vegetation 

Whereas remotely sensed data can be efficiently used to assess vegetation cover, it is 

characterised by inherent error as it relies on the regression of spectral responses of vegetation 

signal between ground data and the measured vegetation radiation (Adjorlolo and Mutanga, 

2008). Remote sensing data is also subject to radiation scatter which influence spectral 

information of features recorded by sensors. Generally, methods for land cover characterisation 

using medium to high spatial resolution are well established, but the size of pixels is often 

larger than the land cover feature of interest, resulting in class mixing within pixels (Blaschke 

et al., 2004).  Several studies have applied spectral assessments, rationing (vegetation indices) 

and texture techniques for vegetation mapping.  Adjorlolo and Mutanga (2013), for instance, 

assessed vegetation indices, texture properties and geostatistics to quantify woody cover. Using 

probability occurrence of indicator values, Roelofsen et al. (2014) used remotely sensed 

vegetation characteristics from the visible near-infrared and shortwave infrared to map 
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vegetation.  Gil et al. (2013) used the very high resolution remote sensing IKONOS 

multispectral imagery to map the invasive woody plants through object based image techniques 

while Wang et al. (2015) applied a combination of spectral, spatial, texture and local statistical 

analysis Getis statistic to IKONOS multispectral imagery to map forest health. Therefore, 

integrating spatial information in vegetation mapping models could provide additional 

information for the discrimination of vegetation. These studies demonstrate the work done for 

the utilisation of remote sensing techniques in vegetation mapping. This study aims to integrate 

spatial dependence techniques (i.e. Getis statistics) with geostatistics to map and predict density 

and percentage cover of woody shrub S. plumosum, a methodology combination that have not 

been tested for woody shrub mapping. Bannari et al. (2005) in their study to determine the 

potential of Getis statistics to characterise radiometric uniformity and stability of test sites, 

found Getis statistics to provide an excellent spatial analysis for calibration. Getis showed to 

have good potential for the extraction of radiometric heterogeneities for surfaces. This potential 

application of extracting radiometric heterogeneity present advantages in image spatial analysis 

for all landcover, including vegetation.  

 

2.4 SPOT 6 data derived Getis statistics 

Remotely sensed imagery consists of digital numbers presented as pixels which represent 

earth’s surface. This data is highly spatially auto-correlated. The characterisation and 

integration of this spatial autocorrelation into mapping models can provide valuable 

information for applied and theoretical remote sensing (Wulder and Boots, 1998). As a result, 

various techniques of local spatial association have been developed. These techniques focus on 

variations within regions of spatial dependence, known as Getis statistics. Spatial dependence 

and the neighbourhood context can be used to supplement spectral information in land-cover 

characterisation to reduce the high intra-class variability (Ghimire et al., 2010). It can also 

describe the local spatial structure and variability of land cover categories, hence can be used 

to improve mapping accuracies in heterogeneous landscapes. In a remotely sensed image, Getis 

statistics determines spatial dependence for each pixel while also indicating the relative 

magnitude of the digital numbers/reflectance in the neighbourhood of the pixel (Wulder and 

Boots, 2001).  Typically, the Getis statistics measures the degree of association that results 

from the concentration of weighted points and all other weighted points included within a 

distance from the original weighted point and can be applied at different levels of spatial scales. 

On remotely sensed imagery, three types of relationships can be detected; 1) structural trend, 
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2) correlated variation, and 3) uncorrelated variation or noise.  Although inclusion of spatial 

dependence in classification can be used to increase land cover classification accuracies, most 

existing classification approaches do not include spatial dependence to neighbouring pixels. 

Spatial autocorrelation is the degree of dependence between values of the same variable 

associated with a location close to each other. Spatial autocorrelation arises when the value of 

a variable (S. plumosum) recorded at a location on the earth surface is related to values of the 

same variable at nearby locations (Wulder and Boots, 1998). In image processing, the locations 

are the pixel coordinates and the attributed data are the reflectance values within the image. It 

can be expected that pixels from similar land covers will generate clusters in image feature 

space that differ from other land cover types (Bannari et al., 2005). This clustering will translate 

into a positive spatial autocorrelation when there are similar reflectance values and a negative 

autocorrelation when there is a cluster of dissimilar values.  Spatial autocorrelation can be 

measured by using global or local statistics, one of these being Getis statistics.  Getis and Ord 

(1992) have demonstrated the potential of these statistics to identify significant spatial 

dependency in remotely sensed imagery. The Getis statistics describing spatial information has 

a distinct advantage over conventional contextual texture-based classification approaches 

because, unlike the standard contextual methods that consider only values at a given 

neighbourhood of each pixel, the Getis statistics is a ratio of values of the neighbourhood for 

each pixel versus values of the entire image resulting in a new layer.  The measurement of 

spatial autocorrelation thus involves the simultaneous consideration of both the locational and 

attributes information (Wulder and Boots, 1998).  The processing of image scenes allows for 

the use of the statistic in a more exploratory manner by providing each pixel with a spatial 

dependency value based upon processing pixel with a series of windows (3x3, 5x5), a new 

layer of information is derived (Wulder and Boots, 2001).  This new layer of information is 

inherently spatially dependent and expected to give a proper examination of properties of local 

spatial dependence and provide insights into spatial autocorrelation characteristics of image 

data not revealed by traditional image analysis (Wulder and Boots, 2001).  This means 

landcover types such as S. plumosum with similar image attributes will be grouped together 

and be easier to discriminate from other landcover types.   

This study focuses on the evaluation of the Getis statistics for mapping S. plumosum and 

identifying the best Getis indices to achieve the highest accuracies. The Getis statistics is 

applicable in the study of S. plumosum mapping because the S. plumosum canopy grows in 
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patches, and its weights in one spatial location are expected to be similar to those in nearby 

locations.  

 

2.5 Getis statistics and classification techniques 

Imagery covering large geographic areas with high temporal resolution offers an opportunity 

for mapping surfaces through image interpretation and classification. Image classification is a 

process of grouping pixels of similar values into meaningful categories (Abburu and Golla, 

2015). To date, a variety of pixel based classification techniques categorised as supervised (i.e. 

Maximum likelihood, artificial neural network, support vector machine, random forest, and 

decision tree), unsupervised (i.e. k-means and ISODATA) and hybrid (semi-supervised, of 

supervised and unsupervised learning) have been developed (Alajlan et al., 2012).  These 

classification techniques have limitations when applied to imagery with heterogeneous 

landscapes as the size of objects may be smaller than the pixel size, and the pixel may contain 

information about a mixture of land-cover types. Additionally, land-use and land-cover types 

are not effectively separated using spectral information, resulting in less accuracy (Li et al., 

2014). Limitations of supervised classification include its unsuitability for big data as it is time-

consuming and requires area expert knowledge. Limitation of unsupervised classification is 

that no training data can be incorporated. The supervised and unsupervised classification 

techniques utilize spectral variables and generally ignore spatial information which is inherent 

in real-world remote sensing (Li et al., 2014). This is problematic as with higher spatial 

resolutions, images are likely to have higher within-class spectral variability (Li et al., 2014), 

resulting in less than satisfactory results reached with spectral classifiers (Myint et al., 2011).  

With the development of very high resolution remote sensing data, object base image analysis 

(OBIA) classification methods that offer new classification abilities have been developed. 

These object based methods group pixels with homogeneous properties into objects which are 

considered as a basic unit for analysis (Nussbaum and Menz, 2008).  Object-based image 

classification techniques incorporate spectral and spatio-contextual information in the 

classification process and are considered superior when compared to traditional pixel-based 

techniques (Blaschke, 2010). This spatio-contextual information is incorporated in the image 

segmentation process grouping similar pixels into objects (i.e. S. plumosum patches). This 

method of classification was selected for classifying the SPOT 6 Getis transformed spatially 

dependent data. Recent studies (Su et al., 2008, Blaschke, 2010, Gianinetto et al., 2014) have 
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achieved highly accurate classification results when applying OBIA to high-spatial-resolution 

for land use land cover mapping.  

 

2.6 Geostatistics and remote sensing of vegetation 

Geostatistics is the term applied to a group of spatial statistical techniques which describes the 

correlation of spatial data by exploration, modelling and surface generation of local variables 

and their estimation at un-sampled locations (Curran and Atkinson, 1998).  According to Hengl 

(2007), geostatistics can be described as a collection of numerical techniques that are used for 

the characterisation of spatial attributes employing random models that may include spatial 

interpolation. Geostatistical techniques are centred on the regionalised variable theory which 

states that interpolation from points in space should not be based on a smooth continuous 

object, it should be based on a stochastic model that takes into consideration the various trends 

in the original set of points (Hengl, 2007). This approach offers a way of describing the spatial 

continuity of natural phenomenon and provides adaptations of classical regression techniques 

to take advantage of this continuity (Hengl, 2007). Studies on invasive plants and ecology 

assessment have investigated the applicability of integrating remote sensing and geostatistical 

techniques for spatial estimation of vegetation resources (Mutanga and Rugege, 2006, 

Adjorlolo and Mutanga, 2013).  

The combination of remote sensing with geostatistics can improve our understanding of spatial 

dynamics of vegetation spatial distribution in heterogeneous natural environments (Adjorlolo 

and Mutanga, 2013). Optical remote sensing data application studies on vegetation need to take 

advantage of the spatial factors of vegetation density and distribution when making quantitative 

estimates of vegetation cover (Adjorlolo and Mutanga, 2008). It is important to consider the 

spatial aspects because the assessment of sample data from the patches of vegetation is spatially 

dependent on natural groupings of the vegetation species. S. plumosum for instance is assumed 

to have a spatial dependent characteristic.  

Spatial interpolation is the process of using points with known values to estimate values at 

other points (Hengl, 2007).  Spatial interpolation is, therefore, a means of creating continuous 

surface data from sample points so that the surface data from sample points can be used for 

analysis and modelling (Hengl, 2007).  Fortunately, remote sensing allows for the integration 

of empirical and physical methods in which statistical methods of interpolation can combine 
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limited field data with remote sensing data to estimate and map vegetation quantity (Ferwerda 

and Skidmore, 2007, Liang, 2005).   

 

In geostatiscs, kriging techniques can spatially provide quantitative measures in estimating S. 

plumosum cover based on the regionalized variable theory. In this study, we use kriging and 

cokriging to interpolate the availability of S. plumosum in areas with no data including farms 

which we did not get authorization to survey. These interpolations are based on the assumption 

that S. plumosum is available everywhere within the study area and only attempts to estimate 

the density quantity. In this subsection literature on geostatistical kriging and cokriging are 

reviewed. 

 

2.6.1 Kriging technique and application to S. plumosum mapping 

Kriging is a technique for estimating the value of a regional variable from adjacent variable 

values while considering the dependence expressed in the variogram (Webster and Oliver, 

2007). Kriging assumes that spatial variations of natural variables are spatially correlated, 

regionalised and represent a trend with an inherent error. Kriging differs from other 

conventional interpolation methods (e.g. Trend surface models, linear regression, Thiessen 

polygons, Inverse Distance Weighting) in that it can assess the quality of prediction and 

estimate prediction errors. For instance, the conventional approach to spatial predictions 

combines classical estimation with spatial information to overcome their weaknesses. S. 

plumosum is natural vegetation with its growth dependent on random natural processes making 

its occurrence random and spatially autocorrelated within landscapes. This motivated for the 

use of kriging and co-kriging techniques of interpolation. Kriging provides a solution to the 

problem of estimation based on a continuous model of stochastic spatial variation. It makes the 

best use of existing knowledge by accounting for the way that a property varies in space through 

the variogram model. There are linear and non-linear kriging techniques. Linear kriging 

estimates are weighted linear combinations of the data while non-linear kriging estimates 

whether or not variable estimates exceed or are below a particular set threshold (Webster and 

Oliver, 2007). In this study, we explored linear kriging estimates. The weights allocated to the 

sample data within the neighbourhood of the points or block to be estimated are in such a way 

as to minimise the estimation or kriging variance, and the estimates thus become unbiased. A 

semi-variogram is applied to measure spatially correlated components for estimation using 

kriging models (Webster and Oliver, 2007). Whereas there are many types of kriging methods 
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(Webster and Oliver, 2007), we chose ordinary kriging for this study due to its popularity. In 

this study, kriging was used to estimate the value of a random variable, S. plumosum at 

unsampled locations from sample field data and SPOT 6 Getis statistics transformed data.  

 

Kriging has been applied in several studies to estimate vegetation. Adjorlolo and Mutanga 

(2013) for instance used kriging and co-kriging to estimate woody tree cover. Dwyer (2011) 

applied cokriging to estimate herbaceous biomass in savannah environments. Miller and 

Franklin (2002) used indicator kriging to model the distribution of vegetation alliances. While 

Valley et al. (2005) evaluated interpolation techniques for mapping the distribution of 

vegetation. Valley et al. (2005) found kriging to be interpolating vegetation better than ordinary 

interpolation methods which do not account for spatial dependence such as IDW and spline. 

Miller et al. (2007) also investigated the incorporation of spatial dependence in predictive 

vegetation models in which spatial clustering and geostatistics were applied and results 

demonstrated improvement in predictions.  

 

2.6.2 Co-kriging techniques and application to S. plumosum mapping 

Cokriging is an extension of kriging, it takes advantage of correlation that may exist between 

the variable of interest and other more easily measured variables. It allows for the addition of 

secondary variable information to assist in improving the model for estimating values at 

unsampled locations. Many studies (Odeh et al., 1995, Ver Hoef and Barry, 1998, Pan et al., 

1993, Laurenceau and Sagaut, 2008) showed the superiority of cokriging to ordinary kriging. 

To ensure the validity of the estimates made by kriging and cokriging, the semivariogram and 

cross-semivariogram of the variables must accurately describe the spatial structures. 

Regression kriging involves spatially interpolating the residuals from a non-spatial model using 

kriging and adding the results to the prediction obtained from the non-spatial model.  Cokriging 

equations for estimating a primary variable from a set of variables are extensions of those for 

kriging.  Cokriging works best where the primary variable of interest is less densely sampled 

than the others (Eldeiry and Garcia, 2010).  
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2.7 Accuracy assessment 

Any map is a model or generalized representation of reality and it contains some level of error 

(Brown et al., 1999, Dicks and Lo, 1990, Smits et al., 1999). Generally, thematic maps provide 

a simplification of reality and therefore often have flaws (Woodcock and Gopal, 2000).  It is 

important that the quality of thematic maps derived from remotely sensed data be assessed and 

expressed in a meaningful way. This is important in providing a guide to the quality of a map 

and its relevance to a particular purpose, and also in understanding the error and its likely 

implications on map analyses (Arbia et al., 1998, Janssen and Vanderwel, 1994).  Generally, 

classification accuracy assessment is widely accepted as a fundamental component of thematic 

mapping investigations (Cihlar, 2000, Cohen and Justice, 1999, Justice et al., 2000, Merchant 

et al., 1993).  

In remote sensing thematic mapping, the term accuracy is used to express the degree of 

‘correctness’ of a map or classification and typically means the degree to which the derived 

image classification agrees with reality (Janssen and Vanderwel, 1994, MALING, 1989, Smits 

et al., 1999). Accuracy is a difficult property to determine as it comprises bias and precision 

(Campbell, 1996, MALING, 1989). Commonly, a classification error is regarded as some 

discrepancy between the situation depicted on the thematic map and reality (Foody, 2002).  In 

this research, accuracy assessment is used to understand the errors of thematic maps generated 

from classification and geostatistical regression.  
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2.8 Lessons learnt from literature review 

This section reviewed the literature on the use of remote sensing, Getis statistics and 

geostatistics for mapping of invasive woody shrub S. plumosum. It has been outlined in 

literature that challenges in mapping S. plumosum can be resolved using remote sensing and 

field data. Remote sensing has been identified as an efficient method for obtaining spatial 

information about the location, extent and distribution of S. plumosum.  As the remote sensing 

data is reliant on regression of spectral information, some misclassifications accrue from the 

application of traditional methods. This motivates for an exploration of other techniques in 

remote sensing data transformation for vegetation analysis.  

Although several studies (Mutanga and Rugege, 2006, Adjorlolo and Mutanga, 2013, Miller et 

al., 2007, Valley et al., 2005) have demonstrated that vegetation and its radiation are spatially 

related and the spatial characteristics of vegetation traits can be estimated from its spectral 

reflectance properties, regression techniques e.g., (Gong et al., 2003, Wessels et al., 2006) have 

been the typical method used in evaluating the relationship between spectral data and 

vegetation parameters.  Generally, whereas geostatistical techniques and spectral data contain 

information that captures spatial autocorrelation, which is significant in improving the accuracy 

of spatial estimation of vegetation resources, their potential remain largely unexplored. As a 

result, this study investigates the use of geostatistical techniques (kriging and co-kriging) to 

estimate the density and spatial distribution of S. plumosum cover. 
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CHAPTER THREE 

MATERIALS AND METHODS 

The methods section provides the theoretical considerations integrated into the techniques used 

for the study. The fundamental principle is that vegetation and its radiation at any given time 

or season are correlated (Adjorlolo and Mutanga, 2008). Therefore it is important that the time 

for field data collection must coincide with the dates in which images were acquired with 

minimum time lapses. Also taking into account that land-use changes rapidly in the farms 

surveyed, for example, when in the field, it was realised that some of the areas have been newly 

cleared of vegetation and others newly cultivated. This poses a threat that field data can be 

collected which indicate there is S. plumosum infestation in a particular location, however, by 

the time the satellite acquire an image the area might have been cleared off S. plumosum. It was 

therefore very desirable to have field data collection date to be as close as possible to the 

SPOT6 image acquisition date.  

 

3.1 Field sample plot survey and structural data collection 

Remote sensing and geographic information systems (GIS) applications for vegetation studies 

require that pre-fieldwork be carried out, the pre-fieldwork for this study consisted of GIS 

operations on auxiliary datasets. This involved analysis of shapefiles consisting of farm 

boundaries layers and 2014 SPOT5 satellite image were assessed. To ensure the best accuracy 

and avoid any spatial or geometric distortions in the GIS data, all shapefiles and imagery were 

geo-referenced. Assessment of appropriate sampling design (e.g. optimum sample size, plot 

size and the stratified random locations of the sample plots) before commencing fieldwork was 

also done. This assisted in addressing any foreseen sampling difficulties and established an 

unbiased fieldwork sampling criteria. 

 

Field data for the study was collected from 23rd to 27th February 2015 and was used to process 

remotely sensed Getis transformed variables derived from SPOT6 multispectral data, acquired 

on 13th March 2015. Thirty-one farms previously surveyed (formally and informally) in 

Senekal indicated large S. plumosum infestation.  

 

Since the S. plumosum is a small shrub (60 cm by 60 cm) which occurs in patches, plots of 

20x20 meters (m) were used in the field. This plot size was selected because it can 
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accommodate a minimum of 3x3 pixels of the SPOT6 multispectral image, essential for 

identifying a land-cover feature. Furthermore, observed field patches were generally larger than 

20 metres in diameter. The size of the sampling plots conformed to the general guideline that 

the spatial scale of an object on the ground must be at least twice the spatial resolution of the 

remote sensing sensor (Cowen and Consortium, 2002). All S. plumosum canopy completely 

inside the plots were identified, counted and structurally assessed. Since a square plot has 

greater perimeter compared to circular plots, the chances that maximum canopy cover can fall 

completely within the plot was likely. Additionally, the square plots coincide with the square 

shaped remotely sensed image pixels, which enhance computational efficiency. The 20x20m 

plot was considered large enough to represent the surrounding S. plumosum plant properties, 

as well as optimum to retrieve spatial information contained in the SPOT6 6m multispectral 

spatial resolution images. The overall distribution of the sample plots is presented in Figure 3. 

Because the SPOT6 image coverage was over the entire study area, the selected image for 

cokriging was sampled at the predetermined lag size (2429 m) using a semivariogram model 

parameter (Detailed explanation on this is presented in the geostatistical analysis section of this 

chapter). The S. plumosum variables information on canopy diameter, canopy height, the 

number of canopy per 20x20m plot, the distance between canopies, and percentage observation 

were measured to evaluate how they relate to the remotely sensed SPOT6 derived Getis indices. 

 

Georeferenced field data was collected at stratified randomly selected locations. This approach 

was followed to ensure spatial consistency. However, because the distance between plot sites 

in farms are large (Figure 3), they do not represent the range of spatial influence in the 

surrounding vegetation community, thus spatial interpolation of the field data alone will not 

provide reliable spatial S. plumosum density maps. The plot locations were loaded into a GPS 

and used to navigate to plot locations. Measurements are outlined in Table 1. Due to the survey 

team’s inability to access some of the farms within the study area, high resolution data captured 

on a date closer to the field work date was utilised to collect more sample plot data to 

supplement field data. These sample plots filled the large gap distance among the sparse farms 

surveyed. Figure 3 demonstrate the distribution of the plots collected.  



25 

 

 

Figure 3: Surveyed and high resolution image S. plumosum plots. 

The identification of S. plumosum species was done with assistance from local farmers. The 

data sheet (Appendix 1), was used to record S. plumosum canopy structural parameters and the 

total number of canopy per plot. The field work focused on S. plumosum canopy variables 

considered for spatial estimation of canopy cover and density mapping. But because canopy 

density and cover variables relate to other canopy parameters namely: canopy diameter, canopy 

height, and spacing, these variables were also measured (see Table 1).   

Table 1: Plot canopy measurements and observations 

Number. Measurements of S. plumosum canopy per plot 

1. Count number of canopy per plot and estimate percentage cover 

2. Measure length, height and width of the canopy 

3. Measure the canopy spacing 

4. Take GPS coordinate at the centre of the plot 

5.  Observe and record soil colour and soil type 

6. Observe and record surrounding land features and take picture of the plot 
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3.2. Data processing and analysis 

3.2.1  Field data processing 

Field variables (Table 1) measured at each sample plots were processed according to the study 

objectives. The field data comprised of 241 records of stratified random 20x20 meter plots, and 

additional point data records. The plot data was collected in the farms which the survey team 

had authorisation from landowners.  

 

3.2.2. SPOT 6 multispectral image processing 

 SPOT 6 image pre-processing 

The information extracted through the remote sensing of plant patches is dependent on the 

spatial resolution of the data collected (Wulder and Boots, 1998). When the objects of interest 

are composed of a number of pixels, the imagery is considered to be high resolution, when 

multiple objects compose one pixel the imagery is considered a low resolution (Woodcock and 

Strahler, 1987). In the case of the S. plumosum, SPOT6 six meter spatial resolution was a low 

spatial resolution for individual 0.6x0.6 m canopy, however, the SPOT6 image was high 

resolution for the sensing of S. plumosum plant patches. In addition, SPOT 6 data was easily 

accessible to the author, covers large areas, satisfy cost, temporal, spatial and spectral 

requirements for use in the study. When considering imagery in terms of plant canopy patches, 

neighbouring image pixels may be expected to display some degree of spatial dependence 

which can serve as a source of information or a form of noise and error which must be 

accounted for when classical statistical analyses of dependence are applied to the data. This 

motivated for the use of SPOT 6 multispectral data as the data resolution is ideal to minimise 

noise and also provide high resolution information about the canopy patches of S. plumosum. 

The data consisted of nine (9) SPOT 6 scenes mosaicked together to cover an area of 27639 

hectares. This mosaicked data was georeferenced and radiometrically corrected to top-of-

atmospheric reflectance. Specifications of the remote sensing data are tabulated in Table 2.  
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Table 2: Specifications of the SPOT 6 multispectral imagery 

Band Wavelength 

range (um) 

Spectral 

location 

Spatial 

resolution 

(m) 

Characteristics 

1 0.455 - 0.525 Blue 6 Water penetration, differentiates 

between vegetated and non-

vegetated 

2 0.530 – 0.590 Green 6 Visible vegetation features 

3 0.625 – 0.695 Red 6 Discerning between soil and 

vegetation 

4 0.760 – 0.890 Near infrared 6 Discrimination of differing 

vegetation and varieties and 

conditions 

 

 

 SPOT 6 image Getis statistics transformations 

The mosaicked and radiometrically corrected SPOT6 multispectral image was used to compute 

Getis statistics indices. These indices are seven in total and are discussed in sub-section 3.3.2. 

Getis’s local spatial statistics look for specific areas in an image that have clusters of similar 

or dissimilar values (Getis and Ord, 1992). The statistics output image layers for each index 

calculated each image layer contains a measure of autocorrelation around that pixel.  This is 

useful for determining clusters of similar values, where concentrations of high values result in 

a high Gi value and concentrations of low values result in a low Gi value. This image processing 

was carried out using a 3x3 and 5x5 moving windows which generated twelve and twenty 

layers respectively per each Getis index. The moving window indicates that spatial dependency 

is confined to a very localised region while large distance indicates more spatially extensive 

spatial dependence (Bannari et al., 2005). A total of 308 layers were computed.  From this total, 

140 layers were computed through a 5x5 moving window and 84 from 3x3 moving window.  
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3.3. Getis statistics methods 

3.3.1. Local indicator of spatial association 

Local indicators of spatial association (LISA) Getis (Gi*) statistics measurements evaluate the 

extent and nature of concentration in the values of a particular variable in a local region within 

the imaged area. The Getis statistics achieve this by expressing the sum of the weighted variate 

values within a specified distance of a particular observation as a proportion of the sum of the 

variate values for the entire study area. The distance is called the “lag” which is defined by the 

ground sampling distance and quantity in a remote sensing data. This value can be compared 

with the statistics expected value under a hypothesis of no local spatial autocorrelation to 

indicate if the degree of clustering of variable values in the vicinity of distance is greater or 

less than chance would dictate (Anselin, 1995).  

 

3.3.2. Getis image transformations  

The Getis statistic is a local indicator of spatial dependence describing local variability in 

spatial dependence (Getis and Ord, 1992). The Getis (Gi) index identifies hot spots which are 

areas of very high or very low values that occur near one another. This is used in the clustering 

of similar values within an image where concentrations of high values result in a high Gi value 

and concentrations of low values result in a low Gi value.  The Getis statistics is used to identify 

clusters of high values clusters of S. plumosum and low values which represent other land-

cover types. 

The improved approach to incorporate spatial dependence in land-cover classification is 

through the Getis statistics. This statistic behaves similarly to a moving filter in a remote 

sensing context by considering values within a local neighbourhood of the focus pixel. This 

helps to remove labelling errors caused by noisy data and or complex spectral measurements 

while simultaneously accommodating the values in the entire image reflecting global landscape 

heterogeneity characteristics (Wulder and Boots, 1998). 

Conceptually, Getis behaves similar to a moving filter window and can be computed for each 

pixel of a given spectral band as the ratio of the sum of radiometric values in the image. The 

different moving windows are used to investigate the influence of different spatial scales on 

the classification accuracy. A window comprises of a specified block of pixel with a lag, for 

example, a lag3 window comprises 3x3 pixels. The application of Getis statistics result in the 
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creation of a new image band representing the spatial structure of a given spectral image 

(Wulder and Boots, 1998). The Getis statistic provides a measure of spatial dependence for 

each pixel while also indicating the relative magnitudes of the reflectance value in the 

neighbouring pixels.  

There are two versions of the Getis statistic, Gi and Gi* (Wulder and Boots, 2001). In the Gi, 

the value of the variable at a specified distance is excluded from the local sum, while in the 

Gi* it is included. Gi* is more appropriate for remote sensing applications as it allows for the 

computation of the statistics with a window of user-defined dimensions (3x3, 5x5,). The 

statistic Gi*(d) for variable x at specified distance d is defined as:  

𝐺𝑖
∗(𝑑) = 

∑ 𝑊𝑖𝑗(𝑑)𝑗 𝑥𝑗−𝑊𝑖
∗𝑥̅

𝑠[(𝑤𝑖
∗(𝑛−𝑤𝑖

∗))/(𝑛−1)]1/2     equation 1 

Where wij(d) is a spatial weights matrix with ones assigned to all locations within 

distance d of observation i, including at i (i.e. wij=1), and zero otherwise. In remote 

sensing data, a window can be specified around an observation i by specifying the value 

of d.  

High Gi* values denote a cluster of high reflectance values, and low Gi* denote a cluster of 

low reflectance. It can be expected that pixels from similar land covers will generate clusters 

in image features space that differ in intensity compared to pixel clusters from other land-cover 

types, this clustering translates into positive spatial autocorrelation when we have a cluster of 

similar reflectance and a negative autocorrelation when we have a cluster of dissimilar values. 

Computing Gi* within a series of increasing windows and noting the distance at which the 

largest absolute Gi* values occur allows for an assessment of the size of the region of 

association around an individual pixel. A small window size (distance) indicates that spatial 

dependency is maximised within a localised region while a large distance value indicates more 

spatially extensive spatial dependence.  A weakness of the Gi* statistic is that it cannot be used 

to identify clustering of medium values since mid-range values of Gi* (i.e values around zero) 

can result from either this situation or an absence of clustering of similar variate values.  
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There are several neighbourhood rules (also known as indices) that must be adhered to, these 

rules define which adjacent pixels to compare to the central pixel, the rules are:  

 Rook’s Case (default): Selects the pixels on the top, bottom, left, and right. 

 Bishop’s Case: Selects four diagonal neighbouring pixels. 

 Queen’s Case: Selects all eight neighbouring pixels. 

 Horizontal: Selects two neighbouring pixels in the same row. 

 Vertical: Selects two neighbouring pixels in the same column. 

 Positive Slope: Selects two neighbouring pixels in opposite corners in a positive 

diagonal. 

 Negative Slope: Selects two neighbouring pixels in opposite corners in a negative 

diagonal. (www.exelisvis.com/docs/LocalSpatialStatisticcs.html) 

The spatially auto-correlated SPOT6 Getis index layers created through Getis statistics are 

compared through a variable selection process.  The SPOT6 Getis index layer variable that 

cluster areas of S. plumosum and discriminate these areas more accurately than other layers are 

classified according to their importance to mapping model.  The Getis transformed layer 

variables with the highest importance are used to map S. plumosum and further integrated into 

geostatistical technique cokriging as input data for density estimation.  

 

3.4 Variable selection analysis (Assessment and comparison of the Getis statistics 

indices layers) 

Given the large volume of data obtained from the Getis statistics transformation process, it is 

impractical to use all the data for mapping S. plumosum. This section aims to identify Getis 

transformed layer variables optimal in clustering pixels representing S. plumosum from the 

SPOT6 image. Furthermore, it is vital to select variables that are significant for accurate 

classification of the S. plumosum. To carry out this task, we employed the variable selection 

technique.  

Variable selection provides for the selection of an optimal set of predictors (i.e. SPOT 6 Getis 

transformed layers) essential for the inclusion in a model for mapping S. plumosum. Variable 

selection selected the best subset of predictors (i.e. Getis transformed indices layers) for 

modelling and mapping S. plumosum based on variable importance model. The variable 

importance model used was the “Recursive feature elimination” in which each Getis variable 
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layer was ranked using its importance to the model of clustering S. plumosum. The variable 

importance used the second order model: 

  𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . … . +𝛽𝑛𝑥𝑛   equation 1 

Getis transformed layer variables were selected and discarded based on their overall 

importance to the model indicating likelihood that a particular Getis transformed layer can 

cluster and discriminate S. plumosum from other vegetation. The Getis transformed layer 

variables with highest R-squared value demonstrated high clustering probability. The term 

“probability” refers to the likelihood that “mean layer values” of Getis transformed layer 

variables clustered pixel values represent S. plumosum. This was done with consideration of 

possible overfitting, i.e. a model adjusts to specific random features or noise of the training 

data but works poorly on other datasets (Packalén et al., 2012).  

The Getis statistics transformed layer variables needed to be evaluated for their performance 

in clustering pixels. This is a criterion used to define the level to which an index layer is 

considered to be having a high probability in clustering pixels of S. plumosum.  Field collected 

plot data was used in this selection of the most significant Getis index layer variable. Because 

the field data is applied at the plot level, remote sensing image’s spatially dependent pixel 

values were averaged to one value per plot. The field data was split into 70% training data and 

30% test data. The concept of the split criterion gives more weights to the training dataset 

which provides a reliable model building in vegetation studies (Kokaly and Clark, 1999). The 

training dataset was input into the variable selection model to train the model in selecting the 

Getis index layer with the best S. plumosum pixel clusters. The variable selection was executed 

in a binary environmental measurement, i.e. presence or absence of S. plumosum where a 

variable containing 1(presence) or 0 (absence) was integrated into the Getis transformed layer 

selection. The variable selection was executed in R environment using the caret packages. The 

results of this assessment are demonstrated in chapter 4.  
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3.5 Classification methods 

The image transformation techniques applied to SPOT6 multispectral imagery in this study 

resulted in image layers containing clusters of pixels which are spatially dependent.  Some of 

these pixel clusters are representations of an image feature of interest (i.e. S. plumosum) which 

we intend to discriminate and classify from the rest of the land-cover features. The ideal 

classification algorithm for this Getis transformed data is an algorithm that considers spatial 

information and accurately classifies the clusters within the transformed dataset. Image 

segmentation techniques segment clustered pixels into objects for classification making it ideal 

for classification (Li et al., 2014).  Segmentation incorporates spatio-contextual information in 

finding an optimal partitioning of the data into subdivisions (Li et al., 2014). Each image object 

segmented contains spatially contiguous and homogenous pixels, and different regions have a 

high degree of heterogeneity. This object image analysis can be applied in both supervised and 

unsupervised classification technique which contributes to the ideals of automating features 

mapping within remote sensing. This method of classification allows for rectification of human 

error which may be introduced through supervised classification.  The segmentation process 

measures pixel clusters compactness around the cluster centre and measurements of the 

compactness of the cluster can be taken as the set of standard deviation for the cluster measured 

separately for each object (Nussbaum and Menz, 2008). This ensures that the clustered pixels 

are well separated, a characteristic achieved through Getis transformation. The classification 

algorithm used was “assign class” to categorize pixel clusters based on thresholding method. 

  

3.6 Regression methods 

Stepwise linear regression is used to determine the relationships between remotely sensed data 

and ground surveyed vegetation variables (Mutanga and Skidmore, 2004, Mutanga and 

Rugege, 2006). In this study, stepwise linear regression was performed on the SPOT6 bands, 

and band ratios derived vegetation variables that demonstrated to have a significant correlation 

(significance level: p< 0.01) with S. plumosum canopy cover and density. Regression analysis 

was done for the band ratios and individual bands for SPOT6 multispectral. In line with 

specified criteria for the best fit model, stepwise linear regression analysis was used to find 

subsets of the predictor variables that best predict responses on a dependent variable by a 

regression equation (Mutanga and Rugege, 2006). However, to avoid overfitting a given 

stepwise regression model, the rule of thumb, as suggested by studies (Skidmore et al., 1997, 

Mutanga and Skidmore, 2004, Mutanga and Rugege, 2006) are that: (1) the number of predictor 
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variables to enter the model be less than 1/3 the number of observations and (2) the number of 

steps in the stepwise linear regression analysis be 10 to 20 times less than the training data set. 

This was recommended to circumvent the problem of predictions being very unstable. 

 

3.7 Geostatistics methods 

Preliminary statistical tests and analyses were performed on sampled plots and selected Getis 

transformed layers. When constructing a linear model of co-regionalization, it is important that 

isotropic variograms be applied.  Examining the different pairs of the sample (in this case S. 

plumosum cover) locations is an efficient means to assess the spatial structure in the 

regionalized variables.  The set of actual values of S. plumosum that comprise the realization 

of random functions is known to be regionalized variable. A region is made of population units, 

so we can think of a random function as a super-population, with an infinite number of units in 

space and an infinite number of values of S. plumosum at each point in space.  This is vital as 

exploring the data gives a good understanding of the spatial autocorrelation among measured 

values.  

 

Spatial variation of irregular (randomly) sampled data is not necessarily the same in all 

directions, resulting in anisotropy.  Anisotropy is a property of being directionally dependent. 

If the process is anisotropic then so are the variogram and the covariance function (Webster 

and Oliver, 2007).  This helps to account for directional influences (i.e. anisotropy) in the 

sampled data.  The presence of anisotropy affects geostatistical prediction methods by 

imposing directional influence on the predicted surfaces. It is thus important to investigate 

anisotropy so that if directional differences are detected in the autocorrelation, they can be 

accounted for by applying a transformation.  

 

The environment, though continuous, vary from place to place with great complexities.  

Environmental variables (i.e. S. plumosum) are affected by factors (water, soil, slope, 

disturbances) which are largely unknown in detail and interact with a complexity we cannot 

disentangle, thus we can consider these environmental variables occurrence as random.  If we 

adopt a stochastic view at each point in space, we regard the observed value as one drawn at 

random according to some probability distribution. This means at each point there is variation, 

thus at a particular point, an environmental variable is treated as a random variable with a mean, 

variance, and higher order moments, and a cumulative distribution function (Webster and 
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Oliver, 2007).  The set of random variables (i.e. S. plumosum), constitute a random function, a 

random process or a stochastic process.   

 

Through spatial interpolation, we estimate the quantity value of a land-cover feature (i.e. S. 

plumosum) at a location with no recorded data by using known observations of that land-cover 

feature at nearby locations. Therefore geostatistics conforms to the assumption of stationarity, 

in which we assume that the values of S. plumosum in all locations have some degree of 

similarity irrespective of their distance from each other.  Places close to one another tend to 

have similar values, whereas ones that are farther apart differ. When there is a spatial 

correlation, then by stratifying we can estimate more precisely or sample more efficiently or 

both. If the strata are of different sizes then we might vary the weights attributable to their data 

in proportion. Geostatistical prediction differs from classical regression models estimation in 

that it relies on spatial models, whereas classical regression models methods do not (Webster 

and Oliver, 2007).  Geostatistics requires the assumption that the variable is random, that the 

reality on the ground is the outcome of one or more random processes. Also, it assumes that 

the environmental variable (i.e. S. plumosum) to be predicted is present within the entire study 

area in varying quantity. The models on which predictions are based are of these random 

processes. Geostatistics treats a set of spatial data as a sample from the realization of a random 

process, therefore our summary data must include the spatial correlation. This will usually be 

the experimental or sample variogram in which the variance is estimated at increasing intervals 

of distance and several directions.  Furthermore, we must recognize that spatial positions of the 

sampling points matter.  This will show the extent to which the sample fills the region of 

interest, the clustering, and any mistakes in spatial position recording such as reversed 

coordinates.  The methods are deterministic and to that extent accord with the understanding 

that the variation in the environment has physical causes, which means, it is physically 

determined.   
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3.7.1 Sampling image data using variogram 

The field data surveyed are unevenly distributed and each pair of observation is separated by a 

unique lag in both distance and direction. To obtain averages containing directional information 

we must group the separations by direction and distance (Webster and Oliver, 2007).  We 

choose a lag interval, the multiples of which will form a regular progression of nominal lag 

distance. The significant S. plumosum density measured in the field and best selected Getis 

statistic index layer data (identified from variable selection analysis of Getis index layers) were 

analysed using the basic geostatistical tool known as semivariogram/ variogram. The 

variogram is based on the theory of regionalization (Woodcock et al., 1988). The best selected 

Getis index layer data (i.e. pixels that correspond to ground sampled locations) was modelled 

using the variogram to determine the spatial range of influence in the samples. The range is 

highly related to the size of objects in an image and for this study, the range is related to S. 

plumosum density.  

 

3.7.2 The Experimental Variogram 

The variogram describes the variance in S. plumosum density within the region. Each calculated 

semivariance for a particular lag is only an estimate of a mean semivariance of that lag, as such 

it is subject to error. This error can give the experimental variogram an erratic appearance. The 

variogram is very important to geostatistics and is vital to estimate, interpret and model 

correctly.  The variogram is a function of an underlying stochastic process.  It may be thought 

of as the average of the variograms from all possible realizations of the process.  The 

experimental variogram is computed from data which constitute a sample from a region. It 

applies to an actual realization and estimates the regional variogram for that realization.  The 

shape of the points in the experimental variogram can reveal much at this stage about the way 

that properties change with distance and the adequacy of sampling.  Variograms computed for 

different directions can show whether there is anisotropy and what form it takes. The variogram 

and estimates provide a basis for interpreting the causes of spatial variation and for identifying 

some of the controlling factors and processes (Webster and Oliver, 2007).   
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3.7.3 Kriging and cokriging technigues of interpolations 

Two kriging methods were evaluated for this study with the main focus on cokriging method. 

However, ordinary kriging was assessed for the purposes of comparative analysis of the S. 

plumosum density prediction. Kriging and cokriging apply the same techniques to prediction 

models, however, cokriging allows for supplementing primary data with secondary and tertiary 

data into modelling taking advantage of correlation that may exist between the variable of 

interest and other more easily measured variables while kriging only use primary data. For both 

ordinary kriging and cokriging, all prediction models were evaluated for prediction of S. 

plumosum as no model was previously studied and found to excel more than the other in 

predicting S. plumosum. Kriging methods generally use the distance weighting factor and the 

spatial arrangement in the weights to quantify spatial autocorrelation in sample data. Ordinary 

kriging is thus based on the linear model of regionalization, which is fundamentally a weighting 

function approach which uses the variogram to estimate or predict variables.  

 

Kriging provides a mechanism for combining global and local information in predictions, 

however, the ability of the variogram to describe spatial dependence is directly a function of 

the quantity and quality of the sampled data (Eldeiry and Garcia, 2010). The correlations 

among neighbouring values are modelled as a function of the geographic distance between the 

points across the study area, defined by a variogram (Eldeiry and Garcia, 2010).  The variogram 

plays the significant role as a function that describes spatial dependence for a regional variable 

S. plumosum.  The semivariance is a measure of the variance as distance increases from all 

points of recorded S. plumosum, it eventually reaches a value equal to the variance for the entire 

array of data locations (i.e. image), regardless of distance.  That is, at recorded point of S. 

plumosum, the semivariance is zero, but the semivariance increases moving away from 

recorded point of S. plumosum until at a distance called the “range” where the semivariance 

value is equal to the variance, a point called the sill. The semivariance and covariance functions 

quantify the assumption that things nearby tend to be more similar than things that are farther 

apart by measuring the strength of statistical correlation as a function of distance.  
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The semivariogram is defined as: 

γ(xi,xj) = ½ var(Z(xi) - Z(xj)),    equation 2 

 

Where var is the variance. If two locations, xi and xj, are close to each other in terms of the 

distance measure of d (xi, xj), we expect them to be similar, so the difference in their values, 

Z(xi) - Z(xj), will be small. As xi and xj get farther apart, they become less similar, so the 

difference in their values, Z(xi) - Z(xj), will become larger (Johnston et al., 2001). 

 

Covariance is a function of the lag, it describes the dependence between values of a variable 

with changing lag. If the variable has a multivariate normal distribution for all positions than 

the mean and the covariance function completely characterise the process because all of the 

higher-order moments are constant. Satellite imagery has local erratic nature of the variation, 

wherever within an image there is some fluctuation, which emanates from variation in pixel 

values.  

The variogram summarises the spatial relations in the data, however, we want the variogram 

to describe the variance of the data in the region. In other words the variogram analyses the 

spatial structure of the residuals from the multiple regression models (Eldeiry and Garcia, 

2010).  As a function of distance, this plot gives information on the spatial dependency of the 

variable.  Regression kriging involves various combinations of linear regressions and kriging. 

The simplest model is based on a normal regression followed by ordinary kriging with the 

regression residuals.  

Each calculated semivariance for a particular lag is only an estimate of a mean semivariance 

for that lag and errors may occur for the semivariogram. For the semivariogram, it is essential 

to choose a lag distance that best represents the distance among the points. The selection of a 

lag size has important effects on the empirical semivariogram, that is, if the lag size is too large, 

short-range autocorrelation may be masked. If the lag size is too small, there may be many 

empty bins, and sample sizes within bins will be too small to get representative averages for 

bins (Johnston et al., 2001).  We used the “Average Nearest Neighbour” tool to determine the 

average distance between points and their neighbours, choosing the lag distance of 2429 

metres. The true variogram representing the regional variation is continuous, and it is this 

variogram that we should know. Fitting the continuous model is required, this is done so that 

we can describe the spatial variation to predict values at unsampled locations and in larger 
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blocks of land optimally by kriging.  Based on the correlation theory, it is reasonable to expect 

that the density data are correlated along the transect, thus the density values of S. plumosum 

which are close together are likely to be more similar than density values which are distant 

from each other.  

The semivariogram depicts the spatial autocorrelation of the measured sample points.  It 

measures the strength of statistical correlation as a function of distance, the process of 

modelling semivariogram and covariance functions fit a semivariogram curve to the empirical 

data. The goal is to achieve the best fit which is ideal for the S. plumosum predictions. The 

empirical semivariogram and covariance provide information on the spatial autocorrelation of 

data. However they do not provide information for all possible directions and distances, for 

this reason, it is essential to fit a model to the empirical semivariogram to ensure that kriging 

predictions have positive kriging variances (Johnston et al., 2001).  

Within the semivariogram plot, the points are paired and grouped so that they have a common 

distance and direction to reduce the number of points in the empirical semivariogram.  This 

grouping process is known as binning.  This property makes the empirical semivariogram 

symmetric.  For each bin, you form the squared difference from the values for all pairs of 

locations that are linked, and these are then averaged and multiplied by 0.5 to give one 

empirical semivariogram value per bin.  

 

3.8 Validation and accuracy assessment 

Classification accuracy has various components for different user needs, it is, therefore, 

important to measure the desired properties (Lark, 1995). It is important that the component of 

accuracy measured is appropriate for the requirements of a particular study to avoid 

misinterpretation (Stehman, 1997). Consequently, seeking to optimize accuracy expressed by 

one metric may lead to a suboptimal classification when quantified with a different metric 

(Morisette et al., 1999). These coupled with other issues complicate the assessment and 

reporting of classification accuracy, which also limits the value of remote sensing as a source 

of land-cover data. 

Many measures of classification accuracy can be derived from a confusion matrix. One of these 

is the percentage of classes correctly allocated. This is an easily interpretable guide to the 
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overall accuracy of the classification. If attention focuses on the accuracy of individual classes, 

then the percentage of cases correctly allocated may be derived from the confusion matrix by 

relating the number of cases correctly allocated to the class to the total number of cases of that 

class.  This may be achieved from two standpoints, giving rise to the user’s and producer’s 

accuracy, depending on whether the calculations are based on the matrix’s row or column 

marginal (Campbell, 1996). The calculation of these and some other major indices is illustrated 

in Table 3 for data obtained via simple random sampling.  The accuracy assessment is based 

on minimum mapping unit of 20m by 20m. 

 

In the derivation of these indices, a number of fundamental assumptions are typically made. 

For example, it is generally assumed implicitly that each case pixel to be classified belongs 

fully to one of the classes in an exhaustively defined set of discrete and mutually exclusive 

classes (Congalton et al., 1998, Congalton and Green, 1999).  To accommodate for the effects 

of chance agreement, kappa coefficient has often been used and some commentators argue that 

it should, in some circumstances, be adopted as a standard measure of classification accuracy 

(Smits et al., 1999). The kappa coefficient has many attractive features as an index of 

classification accuracy (see equation 2). It makes some compensation for chance agreement 

and a variance term may be calculated for it enabling the statistical testing of the significance 

of the difference between two coefficients (Rosenfield and Fitzpatrick-Lins, 1986). This is 

often important, as frequently, there is a desire to compare different classifications and so 

matrices. The rule of thumb is that there are at least test 10 points for accuracy assessment of a 

class.  

 

Table 3: Sample confusion error matrix 

 

 

 

 

 

 

 

 

  

  Reference  

Producer  S. plumosum Other  Total 

S. plumosum a b a+b 

Other  c d c+d 

Total a+c b+d (a+c)+(b+d) 
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The promoted standard method of kappa coefficient is not always appropriate. There is nothing 

unique about the kappa coefficient in compensating for chance agreement or in allowing the 

significance of differences in accuracy to be evaluated as these are features shared with other 

accuracy metrics. 

 

where r is the number of rows, xii is the number of observations, xi+ is the marginal total of 

row I, x+i is the marginal total of column i, N is the total number of observations.  

 

The design of an accuracy assessment programme has several elements including the definition 

of an appropriate sample size and sampling design as well as the specification and use of a 

measure of accuracy appropriate to the application in-hand (Dicks and Lo, 1990, Stehman, 

1999). The sample size, for example, must be selected with care and be sufficient to provide a 

representative and meaningful basis for accuracy assessment. An appropriately defined sample 

will aid the ability to infer the properties of the population from which it was drawn. The 

sampling design used to select the cases upon which the accuracy assessment is based is of 

major importance. If for example, a probability-based measure of classification accuracy is to 

be used, it is essential that the cases were acquired according to an appropriate sampling design 

(Stehman et al., 2000). How often this is achieved is open to question as typically, little 

information on the sampling design used in evaluating classification accuracy is provided with 

the accuracy statement.  It is nonetheless important that the sampling design used is specified 

as it can significantly influence the results of an analysis (Friedl et al., 2000, Green et al., 1993, 

Stehman, 1995). Indeed, the confusion matrix cannot be properly interpreted without 

knowledge of the sampling design used in its construction (Stehman, 1995, MALING, 1989). 

Basic sampling designs, such as simple random sampling, can be appropriate if the sample size 

is large enough to ensure that all classes are adequately represented. The adoption of a simple 

sampling design is also valuable in helping to meet the requirements of a broad range of users 

(Stehman and Czaplewski, 1998) although the objectives of all users cannot be anticipated 

(Stehman et al., 2000). Frequently, ground data collection is constrained as physical access to 

some sites is impractical and restricted to sites of opportunity. Where possible ground data, or 

high-quality fine spatial resolution imagery acquired at an appropriate date can be used for 

validation (Edwards et al., 1998, Estes et al., 1999).  However, it must be realized that the 

equation 3 
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sampling design used to collect the sample of cases, upon which the accuracy assessment is 

based, has important implications for the estimation of classification accuracy. While there is 

an obvious desire to balance statistical requirements with practicalities (Edwards et al., 1998, 

Merchant et al., 1993), the choice of sampling design influences the reliability of an accuracy 

assessment (Stehman et al., 2000, Muller et al., 1998).  

A method for assessing the accuracy of interpolated layers is the root mean square error 

(RMSE). The RMSE describe the global accuracy of the interpolation method, measuring the 

degree of deviation of the predicted values from the field observed data. For this method, 

samples of accuracy assessment must be adequately spaced apart or they will be spatially auto-

correlated. If the user makes a mistake at a particular location then the chances of the user 

making the same mistake at a closer location are very high.  Therefore the errors around a 

particular error will be highly correlated. The root mean square error is calculated using 

equation 3.  

 

where N is the number of observations, Pi is the population and Ṕi is the estimated 

population.  

  

equation 4 
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CHAPTER FOUR 

RESULTS 

This chapter provides the results obtained from analysis of the Getis transformed layer variable 

selection which selected the best Getis index at clustering pixels representing S. plumosum and 

the classification results.  Furthermore, there is an outline of the geostatistical kriging and 

cokriging, and regression results of interpolation. The variable selection examined the 308 

Getis transformed layer variables computed through the seven Getis statistic indices from 

SPOT 6 multispectral data. These variable selection results served to identify Getis transformed 

layers utilized to map S. plumosum and also for geostatistical predictions. Succeeding the 

variable selection process, the chapter presents the object based image analysis classification 

results for the top performing Getis transformed index layer variables. This classification is 

further improved through geostatistics to predict density quantity and percentage cover of S. 

plumosum.  

Geostatistics allows for dealing with properties that vary in ways that are far from systematic 

and at all spatial scales. It also provides estimates of error. In this chapter, we also demonstrate 

model semivariograms which feed into kriging and cokriging techniques of interpolation. The 

results produced by different geostatistical tools and analysis, such as the variogram modelling 

for kriging and cokriging techniques of interpolation, as outlined earlier in chapter three are 

presented. 

 

4.1 Getis transformed indices layer variables. 

The SPOT 6 multispectral image Getis transformations resulted in 168 lag 3 bands and 140 

lag5 bands for all the seven Getis indices. The lag 3 indices were computed in two ways; 1) to 

include intermediate lag 1, 2 and 3; and 2) to exclude the intermediate lags. This was motivated 

by the need to establish if there is any significant difference in the ability and probability of 

clustering pixels of S. plumosum by inclusion or exclusion of intermediate lags. The field plot 

data was used to extract 9 pixels per plot for each index for all indices and averaging the values 

of the 9 pixels within each 20x20m plot to a single mean value per plot. These mean layer 

values were used for the variable importance selecting the Getis transformed bands with a high 

probability of S. plumosum pixel clusters in variable selection process. The results from 

variable selection of Getis indices layers/bands for each lag are summarised in Table 4.  
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The model ranked the Getis transformed layers according to clustering of pixels in areas of 

presence of S. plumosum. The SPOT 6 bands most useful are the bands 2 (Green band) and 

4(Infrared band) with their Getis transformed layers importance ranging from 0.79 to 0.83 for 

both lags. Table 4 shows the SPOT 6 bands, related Getis index variable, and their importance.  

Table 4 : Top 20 Getis indices transformed layers, 10 for each lag 5 and 3 respectively. 

“Mean” refers to layer in the naming.  

 Lag 5 Lag 3 

Layer 

No: 

SPOT 

band 

Getis transformed 

layer variable 

Variable 

importance 

value 

SPOT 

band 

Getis transformed 

layer variable 

Variable 

importance 

value 

1 2 Rook mean.10 0.83045977 4 Positive mean.12 0.82758621 

2 2 Horizontal mean.10 0.82758620 4 Horizontal mean.12 0.82327586 

3 4 Positive mean.18 0.82758620 4 Positive mean.11 0.82183908 

4 4 Horizontal mean.18 0.82327586 4 Positive intermediate 

mean.12 

0.82183908 

5 4 Positive mean.17 0.82183908 4 Queen mean.11 0.81609195 

6 4 Positive mean.19 0.82040229 4 Bishop mean.11 0.81465517 

7 2 Rook mean.9 0.82040229 4 Positive intermediate 

mean.11 

0.81465517 

8 2 Horizontal mean.9 0.81609195 4 Rook mean.11 0.81465517 

9 2 Queen mean.9 0.81609195 2 Bishop mean.6 0.81321839 

10 2 Queen mean.10 0.81609195 4 Rook intermediate 

mean.12 

0.81321839 



44 

 

Figure 4 and 5 indicate the change in variable importance for Getis transformed layer variables.  

The layer variables displayed in each figure are the top 10 for each lag with variable 1 having 

the highest clustering importance.  

 

Figure 4: Variable importance reduction according to the performance of each Getis index 

layer for lag 5.  

 

 

Figure 5: Variable importance reduction according to the performance of each Getis index 

layer for lag 3.  

The Getis transformed layer variables selected with high importance to cluster pixels 

representing S. plumosum were utilized in the classification process of S. plumosum.  
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4.2 Classification and accuracy assessment 

The Getis transformed layers identified in the variable selection process contained spatially 

dependent pixel cluster information. The classification algorithm suitable for the classification 

of this spatially dependent data must be able to classify clustered pixel. The object based image 

classification algorithm identified was successful in classifying the clusters of pixels 

representing the patches of S. plumosum. The classification was performed on the best top three 

performing indices bands namely Rook, Horizontal and Positive. These classification results 

are demonstrated in figure 6 and figure 7.  

 

Figure 6: Demonstration of S. plumosum infested areas mapped using top 3 Getis indices 

layers. The area covered by S. plumosum is 13148.7 hectares.  
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Accuracy assessment 

Table 5 : Classification confusion matrix 

 Reference 

 S. plumosum Other Total 

P
ro

d
u

ce
r
 S. plumosum 37 0 37 

Other 26 9 35 

Total 63 9 72 

 

The confusion matrix demonstrated the overall accuracy of 63.9%, Omission error of 41.3%, 

commission error of 0% and Kappa coefficient: 0.262411.  

a 

Figure 7: Demonstration of the extent of S. plumosum patch mapped, a) SPOT 6 image used for the 

study, b) SPOT 6 image with S. plumosum patches mapped.  
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4.3 Geostatistical analysis  

4.3.1 Selecting the optimal variable for density estimation 

To apply geostatistics to the field and remote sensing data, a relationship needed to be 

determined between the Getis transformed layer variables and the field data collected. This 

relation is essential for the kriging and cokriging of the data to produce the most optimal and 

accurate density estimations (Mutanga and Skidmore, 2004, Mutanga and Rugege, 2006). The 

correlation of the SPOT 6 multispectral data, Getis transformed layer variables and field 

parameters data determined the degree of significance of the relationship between the data 

(Table 6). The data collected in the field included the canopy density, length, height, width, 

spacing, observed percentage estimation, and surrounding features. The canopy length, width, 

and spacing were used to calculate the reliable percentage area covered by S. plumosum per 

plot. Not all the field collected information was significantly useful for density prediction but 

was used to understand the results and analysis. The field data was found to be non-normally 

distributed when assessing “canopy density and canopy percentage” histograms, thus dictating 

that the data be transformed. It is important to have the data normally distributed for the 

selection of suitable geostatistical technique which assumes a normal distribution of the dataset. 

The transformation of this data was done through LogK transformation which produced 

satisfactory normal distribution in the data (Figure 8).  

 

 

Figure 8 : Field collected canopy density histogram. The x-axis shows dataset, and y-axis 

shows frequency. 
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Table 6 : Correlation (r) between field data parameters and SPOT 6 data (multispectral data 

and Getis transformed data). 

Variable  Canopy density  Percentage canopy cover  

Canopy percentage 0.93496819 1 

Band 1 0.405516157 0.579167269 

Band 2 0.552321516 0.499910696 

Band 3 0.336705719 0.320507736 

Band 4 0.527769021 0.438021563 

NDVI 0.470247477 0.376780205 

Rook Getis layer variable 0.578564458 0.521730927 

Horizontal Getis layer 

variable 

0.578020357 0.520603033 

Positive Getis layer variable 0.596441439 0.53331117 

p-value < 0.01 

 

4.3.2 Investigating directional influence in the data 

The data used in the study was randomly sampled, indicating some level of anisotropy which 

affects the variogram in various ways (Figure 9). If the variogram has a sill, then variation in 

gradient will lead to variation in the range. The variogram cloud information of field data fields 

reflected a non-gradual increase in the semivariogram values from the centre to all directions 

indicating the presence of anisotropy. The presence of anisotropy in the variogram surfaces 

measured S. plumosum density datasets allowing for accounting for anisotropy for modelling a 

reliable linear model of coregionalization and better surface predictions. The significant 

principle is that when there is anisotropy for spatial correlation, the semi-variance depends on 

the magnitude of distance and its direction. The directional influence measured was at 36.4 

degrees in the northeast direction.  

 

Figure 9: Demonstration of the presence of directional influence to the semivariogram model.  
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4.3.3 Estimation of S. plumosum canopy density and percentage cover. 

The variogram is the cornerstone of geostatistics and very important to estimate, interpret and 

model correctly (Webster and Oliver, 2007).  It is computed using the Matheron’s method-of-

moments estimator (moments is a method for estimation of population parameters). The values 

of the variance can then be plotted against lag distance as a scatter diagram in the variogram 

cloud. The variogram cloud shows the spread of values at each lag and assists in identifying 

outliers. This variogram cloud contains information on the spatial relations in the data to the 

lag. However, in practical terms, it is difficult to judge from a variogram cloud if there is any 

spatial autocorrelation present, the form it might have, and how we can model it (Webster and 

Oliver, 2007). As a result, we average the variance for each of the lags and examine the results. 

The dense distribution of points in the variogram cloud signifies stronger spatial continuity in 

the data. That is, the closer the points lie on the variogram line, the stronger is the correlation 

and the smaller the semivariance.  

 

The autocorrelation coefficients and semivariogram are affected by the lag distance intervals, 

as the correlation between pairs of points decreases and the semivariance increases.  The lag 

increments can affect the resulting variogram, and so distance should be chosen wisely. The 

variogram was computed using the data in kriging and cokriging tools. All the geostatistical 

models were used to model S. plumosum density and assessed through their root mean square 

error (RMSE). Kriging was applied to the field measured canopy density information whilst 

cokriging was applied to the field measured canopy density combined with Getis transformed 

layer information. Cokriging produced better results than kriging with a circular model having 

the smallest RMSE (Table 7). Further cokriging was performed for the percentage canopy 

cover using SPOT 6 band 1, Positive and Horizontal Getis transformed layer variables. Figure 

12 demonstrate the map for percentage cover.  

https://en.wikipedia.org/wiki/Estimation
https://en.wikipedia.org/wiki/Statistical_parameter
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Table 7: Kriging and cokriging model root mean square error results. The variables used in 

the model are Rook, Horizontal and Positive Getis transformed layer variables.  

Geostatistics model Cokriging RMSE Kriging RMSE 

Circular 25.80420785 26.88747865 

Spherical 26.99353244 26.74096792 

Tetraspherical 26.94055773 26.37429003 

Pentaspherical 26.8815745 26.09141439 

Exponential 26.96823528 26.68273326 

Gaussian 26.92228675 26.88629792 

Rational Quadratic 26.8606043 26.84878289 

Hole effect 26.91285171 26.4835978 

K-Bessel 26.97529734 26.74660637 

J-Bessel 27.2693793 26.44371081 

Regression root mean square error: 35.61255352 

 

Variograms were constructed for the sampled field measured canopy density, percentage cover, 

Getis transformed layer variables, and Cross-variogram for field canopy density data combined 

with Getis transformed layer variables (see Figure 10). The variography aimed to explore and 

quantify spatial dependence. The variogram models were used to predict S. plumosum density 

using ordinary kriging and cokriging. The cokriging circular model demonstrated to be 

performing better than all other geostatistical models, we, therefore, chose to display its 

variograms. With the support of the Getis transformed data, we integrated field canopy density 

measurements with Getis transformed layer variable in a cokriging technique, the results are 

demonstrated in Figure 10.  
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Figure 10: Variograms for prediction models of S. plumosum canopy density, a) field canopy 

density data variogram; b) Variogram for Rook, Horizontal and positive Getis transformed 

layers; c) Cross-variogram for field canopy density data combined with Getis transformed layer 

variable for cokriging modelling. 

 

It is essential to notice that the variogram for the plot density has a nugget value whilst the 

Getis transformed layer variable does not have.  This suggests that the measurement error can 

be reduced when cross-correlation factor between intensively sampled image data and Getis 

a 

b 

ɣ.10^3 

ɣ.10^5 

c 

ɣ.10^3 
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transformed layer variable are combined in semivariogram modelling. Therefore, it is 

important to understand the nugget effect for cokriging which can be exact or smoothed 

depending on the measurement error model calculated from the cross-semivariogram.  

Table 8: Variogram parameters for predicted S. plumosum canopy density. 

No. Variable Range (m) Nugget (m) Sill (m) 

1 Field 29151 0.7705 1.2 

4 Getis transformed layer variable 13025 0.17 0.367 

5 Cross variogram 13914 0.73 1.1 

 

 

Figure 11: Density cover map of S. plumosum created through Geostatistical cokriging of field 

canopy density information and Getis transformed layer variables. Filled contours depict 

different levels of density infestation per 400 sqm. 
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Figure 12 : Percentage cover map of S. plumosum created through Geostatistical cokriging of 

field canopy percentage information, SPOT 6 multispectral band 1, Positive and horizontal 

Getis transformed layer variables. Filled contours depict different levels of percentage 

infestation per 400 sqm. 

 

  



54 

 

CHAPTER FIVE 

DISCUSSIONS AND CONCLUSIONS 

In this chapter Getis statistics, classification, Geostatistics and regression results are discussed. 

This study had two objectives to: 1) assess if Getis statistics can be used to map S. plumosum; 

and 2) predict canopy density and percentage cover of S. plumosum using Geostatistics.  

 

5.1 Assessing the ability of Getis statistics to discriminate pixels of S. plumosum 

The potential of Getis statistics in discriminating pixels of S. plumosum was demonstrated 

using SPOT 6 multispectral imagery. The Getis statistics image transformations yielded layers 

of spatially dependent pixel clusters depicting a variety of landcover features. Among these 

features is the S. plumosum shrub species which was of interest to this study. The SPOT 6 Getis 

transformed data was found to have positive autocorrelation. The statistical test for the pixel 

clustering probability of the Getis transformed bands through variable selection demonstrated 

S. plumosum importance ranging from 0.79 to 0.83 for both 3 and 5 lags. Lag 5 produced the 

highest importance thus used as input into classification and geostatistical interpolation. The 

clusters of image spectral values and the strength of the association between neighbouring 

pixels are demonstrated by the magnitude of the Gi* results (Wulder and Boots, 1998). These 

Gi* values within a moving window create fuzzy boundaries between objects reflecting the 

subtle changes occurring in spectral values among image objects. The visualization of the Gi* 

results illustrated that result conveyed meaningful spatial information, demonstrating the 

potential of Getis statistics in remote sensing context. Measures of spatial dependence such as 

variogram have proved to have value in remote sensing image processing. Local indicators of 

spatial association are complementary to variograms while providing information not 

detectable in variogram analysis allowing for an improved understanding of image spatial 

structure. This understanding of the magnitude of autocorrelated values is valuable 

supplementary information, providing insights to image spatial structure, which may allow for 

the creation of fuzzy boundaries around image objects (Wulder and Boots, 1998).  
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5.2 Object based image analysis classification results 

Spatially dependent reflectance value clusters of varying intensities were distinguished, having 

low and high Gi* values which translating into good spatial uniformity within the image. Of 

the 308 Getis index layers, top 20 indices layers were tested for the classification of S. 

plumosum. However, top 3 Lag 5 layers demonstrated better classifications compared to top 1, 

5, 10, 15 and 20. The overall accuracy of the classification obtained was 63.9%. The 

classification error of omission was large (41.3%). This large error can be attributed to canopy 

spacing which, within an image, increases the reflectance of other vegetation and soil in the 

neighbourhood of S. plumosum, reducing reflectance purity of the S. plumosum canopy. Areas 

recorded to have large canopy spacing (average of 2.5 meters) in the field are not mapped due 

to limitations in spatial resolution. Additionally, some small patches of S. plumosum canopies 

recorded in the field were not clustered to be S. plumosum on the image introducing errors of 

omission. Other misclassifications and omission have been identified in areas with “young” 

plant canopies. These canopies have a height and width of fewer than 50 centimeters on 

average. There was misclassification of wet soil into S. plumosum, this behaviour can be 

attributed to the fact that water is known to absorb light, therefore, making soil appearing 

darker. The very low value of kappa coefficient of agreement can be attributed to the large 

error of omission indicating Getis statistics does not achieve very high accuracy for mapping 

S. plumosum.  

Generally, Getis statistics were moderate in discriminating pixels representing S. plumosum 

from other vegetation types. The cluster of the image values succeeded in mapping S. 

plumosum patches with mature adult canopy averaging height of 70 centimetres and width 

averaging 1 metre with less than one meter average canopy spacing. This is very significant as 

the study area contained diverse landscapes comprising of different crops and natural 

vegetation. The Getis statistics weaknesses on creating clusters of medium values which do not 

belong to hot or cold spots are prevalent for mapping S. plumosum. Some of the features such 

as tar road and minor shadows were also misclassified to be S. plumosum introducing an error 

of commission. These minor shadows and tar had similar values to the peripheral mixed 

reflectance of S. plumosum and other vegetation.  
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The classification of spatially dependent image values therefore demonstrated that Getis 

statistics can be used to discriminate mature S. plumosum canopy and not “young” canopies. 

To compensate for the weaknesses in this classification, predictive techniques were used to 

predict density and percentage cover of S. plumosum in the entire study area. The density is 

predicted from field density and percentage measurements using the geostatistics analysis. 

 

5.3 Geostatistics analysis results 

Geostatistical techniques utilized field measured canopy density and percentage information, 

and Getis transformed layer variables and SPOT 6 multispectral band to predict density cover 

(Figure 11) and cover percentage (Figure 12). The identified best performing Getis transformed 

layer variable was used as input into Geostatistics instead of the classification mainly due to 

the error that may accrue from the classification. Irrespective of the error’s magnitude, it would 

be introduced into the geostatistical cokriging emanating to further bias and uncertainties. 

Furthermore, the Getis transformed layer also had the advantage over classification because it 

provided continuous spatially dependent information throughout the study area.   

 

The correlation results showed that certain canopy parameters (e.g. height) do not have a 

significant correlation to the Getis transformed data. The canopy density and percentage are 

parameters that had the highest level of significance of correlation (Table 6).  Canopy density 

and percentage had the highest correlation with SPOT 6 Getis transformed layers and was thus 

selected for cokriging. The canopy density is the only parameter per plot which gives the 

canopy density of S. plumosum. Canopy size (width, length) and spacing help understand some 

of the reasons why in some field records, areas of infestation are not mapped on the SPOT 

image.  

 

The variograms for the field canopy density values had a nugget value greater than zero at zero 

distance. Theoretically, we expected a zero nugget at zero distance, however, all the 

semivariograms depict a nugget value, and this nugget effect can be attributed to measurement 

errors.  Measurement error occurs because of the error inherent in measuring devices, in this 

case, SPOT 6 sensor and the GPS. The nugget effect can further be attributed to spatial sources 

of variation at distances smaller than the sampling interval.  
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When assessing the model of a semivariogram, we noticed that at a certain range, the model 

levels out (i.e. reaches a sill). This means sample locations separated by distances closer than 

the range are spatially autocorrelated, yielding better density estimations reducing prediction 

error, whereas locations further apart than the range are not spatially autocorrelated. The partial 

sill is at the centre of data spatial autocorrelation, it is relatively small for Getis transformed 

layers indicating that only a few points in the dataset are spatially autocorrelated having low 

prediction error closer to them and larger prediction errors at distances farther from them.  

 

The semivariogram for the S. plumosum density cover and the percentage was at lag 2429 

meters. At this lag size, the experimental model with a nugget effect yielded the best estimation 

for the field dataset. The large error reflected the non-systematic sample field plots layout and 

lack of field information for large areas between surveyed farms. It is significant to notice that 

the large prediction errors occurred in areas that sparsely sampled. The Cokriging model had a 

root mean square error of 25.8 and the ordinary kriging model had a root mean square error of 

26.1 and linear regression had a root mean square error of 35.6. Contrary to Eldeiry and Garcia 

(2010) whose study found ordinary kriging to perform more accurately than cokriging, we have 

found cokriging to have the lowest RSME compared to both ordinary kriging and ordinary 

regression.  

The cokriging technique of density prediction resulted in the smallest root mean square error 

(RMSE) compared to kriging and regression prediction. This means the integration of Getis 

statistic and field data is significant for improving density prediction. Furthermore, the 

integration of spatial dependence information plays a significant role in improving the accuracy 

of predictions. This is indicated by the 9% RMSE difference between ordinary regression 

taking no account of spatial dependence and geostatistics which account for spatial 

dependence. The density values predicted on the density map in Figure 11 demonstrate low, 

medium and high infestations of S. plumosum. Areas of low infestations are areas in which S. 

plumosum canopy is dispersed and with large spacing among individual canopy.  
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5.3  Conclusions 

This section reviews the aim and objectives of the study, determine what has been achieved 

regarding the set goals and provides a synthesis of the approaches adopted for this study. 

Conclusion, limitations, and recommendations for future applications of Getis statistics and 

geostatistical techniques for the estimation of S. plumosum canopy density and percentage 

cover, are also provided.  

 

Gi* computation is efficient in the assessment, generation and utilization of spatial dependence 

information present based upon neighbouring pixel relationships. LISA statistics, especially 

Getis statistics, provide values based on the spatial structure of digital images. The ability to 

assess the strength of inter-pixel relationships as well as the magnitude of autocorrelated data 

proved valuable when the values computed semivariance, as a positive valued function (Wulder 

and Boots, 2001). The positive spatial autocorrelation can be considered as positive additional 

of information source to image classification. Local spatial autocorrelation characteristics, the 

Getis statistics, generated to explore spatial autocorrelation characteristics present in remote 

sensing imagery is useable in classification of shrubs (Wulder and Boots, 2001). The Getis 

statistics was successful in discriminating mature S. plumosum from other vegetation types. 

More research into Getis statistics could result in large scale mapping of the invasive shrub 

considering the potential demonstrated in this study. The use of OBIA classification method 

also provides an interesting area of exploration as remote sensing classification and mapping 

are moving towards automation. Getis statistics, however, can be explored future in 

conjunction with spectral techniques of classification.  
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5.3.1 Aims and objectives re-visited 

The aim of the study was to evaluate the different Getis-statistic indices in mapping invasive 

shrub S. plumosum in which local statistics LISA Getis was applied to SPOT 6 data to produce 

spatially autocorrelated Getis layers. The aim was also to estimate S. plumosum canopy density 

and cover by integrating field data with best performing Getis transformed indices through 

geostatistics technique called cokriging. The Getis indices which create clusters of pixels with 

similar reflectance proved to be useful in mapping spatial extent of the patches for invasive 

shrub S. plumosum. The mapping model importance of between 0.66 and 0.83 obtained is 

satisfactory for the application of Getis statistics in vegetation studies and allows for further 

refinement to optimize the ability of Getis to map vegetation.  The study also indicated the 

variation in the correlation between field data and Getis transformed data. Findings established 

that the variation depends on the type of field sampled parameter and how it relates to both 

spectral and spatial characteristics of the remotely sensed image data.  

 

The objective of this study was to investigate the use of Getis indices image transformations 

applied to high-resolution SPOT 6 multispectral imagery and geostatistic techniques in 

mapping and estimating canopy density and percentage cover of the invasive plant S. plumosum 

in the South African grasslands. This objective was achieved with Rook, Positive and 

Horizontal indices of Getis statistics yielding the highest mapping importance resulting in the 

S. plumosum map (Figure 6). The study also specifically focused on the use of geostatistical 

techniques known as kriging (i.e. ordinary kriging of sampled field data) and cokriging (i.e. 

interpolation of field and Getis transformed data) to estimate the density and percentage cover 

of S. plumosum. The results obtained demonstrate that SPOT 6 Getis transformed data utilised 

in conjunction with field data can be utilised to estimate the S. plumosum using Geostatistics 

technigues. This was demonstrated by cokriging which performed better than ordinary kriging 

and regression.  
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5.3.2 Key research questions 

5.3.2.1 The research question “Which Getis image transformation index performs better in 

detecting and mapping invasive species S. plumosum?” was answered by the study with 

Lag 5 Rook Getis index performing better than all other indices for the Lags 3 and 5.  

5.3.2.2 “To what level can geostatistical technique, cokriging, improve mapping and estimate 

canopy density and percentage over of S. plumosum?” Given that we were only able to 

take measurements at discrete locations and not over the entire, the utility of geostatistics 

has improved mapping through estimations in areas which were not field surveyed.  

 

5.4 Recommendation for future use of Getis and geostatistics 

Getis statistics demonstrated potential in local spatial studies in remote sensing. However, more 

research beyond the scope of this study should be carried out in which investigations attempt 

to eliminate the errors. The use of very high resolution imagery can also assist in the refinement 

of the Getis statistics classifications.  
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APPENDICES 

This chapter contains field data sheets used in the field, the schedule planned and pictures taken 

during some of the activities in the field.  

Appendix 1: Field sheet 

       Date:………………………… 

Name of farm:……………….....Site No:…………..…..GPS:..…………………….. 

Name of Farmer:……………………..……….Contacts:…………………………………….. 

Type of enterprise (farming system and/or natural 

environment):….……………………………………………………………………. 

Bankrupt bush (Seriphium plumosum) treatment control, Last date of 

treatment:…………………………………….……………………………………… 

Density of Bankrupt bush per 20 x 20 meter plot 

Plot 

No 

Canopy 

No 

Length Height Width Canopy 

spacing  

GPS 

coordinates 

Soil 

type 

Soil 

color 

Photo 

ID 

Other (observation) 

           

           

           

           

           

           

 

Notes:…………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………………………………………………… 
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Appendix 2: Field work schedule 

The field work will comprise locating, measuring and assessing the density of Bankrupt bush 

(Seriphium plumosum). We have selected plots in each property on which to carry out these 

tasks to save us time. The work is scheduled to take place as follows: 

Date Properties to visit 

23/02/2015 Zyfer fontein; Hillyside; DeWildt; 

Rondebos; Nelville; Witsand; Witzand; 

Nieuwejaarsfontein; Aurora; Koekemoers 

rekwest;  

24/02/2015 Jocador; Virginia; Virginia; Arundel; 

Bidsulphsberg; Canada; Cyferkuil; 

Liebenbergs bult. 

25/02/2015 Astorea; Maclear; Frieden; Eenzaamheid; 

Groot Taaiboschfontein; Schurvekop 

26/02/2015 Melsetter; Gethsemane; Waterval; 

Dupreezpoort; Langverwacht; Weiveld; 

Kalkoenkrans; Stoffelina; De la Harpe; 

Kranskop 

27/02/2015 Deelfontein; Brakwater; Makwera; 

Liebenbergs bult. 
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Appendix 3: Field pictures 

 

Picture 1: Seriphium plumosum infestation in a grassland. 

 

 

Picture 2: Width/Length measurement of Seriphium plumosum canopy.  
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Picture 3: Seriphium plumosum canopy spacing measurement. 

 

 

Picture 4: Height measurements of Seriphium plumosum canopy. 
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Picture 5: Demonstration of the constructed 20x20 meter plot in the field. 

 

 

Picture 6: Biological control of Seriphium plumosum. 
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Picture 7: Fully dense Seriphium plumosum infested area.  


