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Abstract

There are basically two types of variables in population modelling, global and local variables.
The former describes the behavior of the entire population while the latter describes the behavior
of individuals within this population. The description of the population using local variables is
more detailed, but it is also computationally costly. In many cases to study the dynamics of
this population, it is sufficient to focus only on global variables. In applied sciences, to achieve
this, the method of aggregation of variables is used. One of methods used to mathematically
justify variables aggregation is the centre manifold theory. In this dissertation we provide detailed
proofs of basic results of the centre manifold theory and discuss some examples of applications
in population modelling.
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Introduction

When we think of studying the stability of a dynamical system, we first look at certain points
within the system where the vector field vanishes. In this work, we use terms fixed points or
equilibrium points interchangeably to denote them.

In order to understand the behavior of solutions around a fixed point of a nonlinear system, we
study an associated linear system called its linearization at the fixed point.

If the fixed point is hyperbolic i.e if none of the eigenvalues of the linearization has zero real part
then we can easily deduce, based on the study of the linearization, the stability properties of the
nonlinear system. On the other hand, if the fixed point is nonhyperbolic then the linearization
does not provide any conclusive information.

In the latter case, there is a powerful mathematical technique that allows for a substantial progress.
It is the centre manifold theory, whose main goal is to simplify the dynamical system by reducing
its dimension. Moreover, since the interesting dynamics take place on the centre manifold, one
can uniquely focus investigations on the centre manifold instead of studying the whole space.

In our work, based on Carr’s monograph [1], we study and provide detailed proofs of basic results
on the centre manifold theory in finite dimension. The main goal is to fill gaps and correct some
errors in Carr’s presentation. In further work we will extend the study to the theory of infinite
dimensional invariant manifolds including stable, unstable and centre manifold. Then apply them
to aggregation problems in singularly perturbed multi-structured population models.

This dissertation is divided into three chapters. In the first chapter we give definitions of manifolds,
differentiable manifolds and invariant manifolds. We state without proofs the stable and centre
manifolds theorems.

In the second chapter we present detailed proofs of the main results of the centre manifold theory
namely: the existence of the centre manifold, the reduction principle and the approximation of the
centre manifold. First a detailed proof of the existence of the centre manifold is given using the
contraction mapping principle. Next we show in the reduction principle that knowing dynamics
of the flow on the centre manifold, one can deduce the dynamics of the full system. Last we
present a result that allows us to approximate the centre manifold to any degree of accuracy by
a function of class C2. We conclude the chapter with several examples which illustrate how the
centre manifold theory may be used in order to study the behavior of nonlinear systems when
linearization fails to provide enough information. We also give some interesting properties of the
centre manifold theory.

In the third chapter we give an application of the centre manifold theory which focuses on
population modelling. The model that we present consists of prey and predators living in two
different patches. Prey can move between both patches but predators remain in their patch.
We aggregate variables so that we can concentrate on global variables which contain information
of the entire population instead of studying the behavior into individual patches. We perform
some transformations to bring the model in an appropriate form so that we can use the centre
manifold theory. We end with a system reduced to the centre manifold which consists only of
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global variables.

We note that we don’t study the dynamics of the system reduced to the centre manifold since it
requires elaborate techniques which are beyond the scope of this dissertation.



1. Preliminaries

The goal of this chapter is to introduce the notion of manifold, differentiable manifold and
invariant manifold which will be used in the sequel of our work. We are not going to develop the
theory of manifolds which can by itself be considered as the subject of a degree. Rather, we are
going to define what we need from this huge theory.

1.1 Manifold

Definition 1.1.1

Let X be a non-empty set. A metric on X is a mapping d of X ×X into R that satisfies the
following conditions:

1. d (x, y) ≥ 0 for all x, y ∈ X,

2. d (x, y) = 0 if and only if x = y,

3. d (x, y) = d (y, x) for all x, y ∈ X,

4. d (x, z) ≤ d (x, y) + d (y, z) for all x, y, z ∈ X.

A metric space is a pair (X, d) in which X is a non-empty set and d is a metric on X. A metric
is also called a distance function.

Condition (3) expresses the fact that d is symmetric in x and y. Inequality (4) is usually called
the triangle inequality and conditions (1-4) will sometimes be referred to as the metric space
axioms [2].

Example

Let

d (x, y) =

(
n∑
k=1

(xk − yk)
2

)1/2

for all x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rn. Then d is a metric on Rn and is called
Euclidean metric.

The metric space (Rn, d) is called n-dimensional Euclidean Space [2].

Definition 1.1.2

Let n ∈ N. An n-manifold or a manifold of dimension n is a metric space M such that for every
x ∈M there is a neighborhood U of x homeomorphic to an open subset of Rn [3].

3
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Examples

The set Rn itself is the simplest example of a manifold. For each x ∈ Rn we can take U to be
all of Rn. We may define an homeomorphism between Rn supplied with the usual metric and Rn

with a metric equivalent to the usual metric [3].

The second simplest example of a manifold is an open ball in Rn. In this case we can take U to
be the entire open ball since an open ball in Rn is homeomorphic to Rn [3].

The next example derives directly from the second. Any open subset V of Rn is a manifold. For
each x ∈ V we can choose U to be some open ball with x ∈ U ⊂ V [3].

Remark 1.1.1

From these few manifolds we can already construct many others by noting that ifMi are manifolds
of dimension ni (i = 1, 2) then M1 ×M2 is an (n1 × n2)-manifolds [3].

Example

The product S1 × · · · × S1 of n 1-spheres is called an n-torus while S1 × S1 is called the torus.
It is homeomorphic to a subset of R3 which is obtained by revolving the circle{

(0, y, z) ∈ R3 : (y − 1)2 + z2 = 1/4
}

around the z-axis. This subset is what most of the people have in mind when they speak of a
torus [3].

1.2 Differentiable Manifold

Definition 1.1.3

An n-dimensional differentiable manifold M (or a manifold of class Ck) is a connected metric
space with an open covering {Uα} i.e.

M =
⋃
α

Uα

such that

1. for any α in M there exists an open neighborhood Uα homeomorphic to an open unit ball
B = {x ∈ Rn : |x| < 1} in Rn. i.e. for any α there exists a homeomorphism hα : Uα → B
of Uα onto B and

2. if Uα ∩ Uβ 6= ∅ and hα : Uα → B, hβ : Uβ → B are homeomorphisms then hα (Uα ∩ Uβ)
and hβ (Uα ∩ Uβ) are subsets of Rn and the map

hαβ ≡ hα ◦ h−1
β : hβ (Uα ∩ Uβ) → hα (Uα ∩ Uβ)

is differentiable (or of class Ck), and for all x ∈ hβ (Uα ∩ Uβ) the Jacobian determinant
detDh(x) 6= 0.

The manifold M is said to be analytic if maps hαβ ≡ hα ◦ h−1
β are analytic [4].
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Remark 1.1.2

The pair (Uα, hα) is called a chart for the manifold M and the set of all charts is called an atlas for
M . The differentiable manifold M is called orientable if there is an atlas with detDhα ◦h−1

β > 0
for all α, β and x ∈ hβ (Uα ∩ Uβ) [4].

1.3 Invariant Manifold

Let

ẋ = f(x), x ∈ Rn and f : Rn → Rn (1.1)

be a nonlinear system. Consider the initial value problem

ẋ = f(x),

x(0) = x0.
(1.2)

Definition 1.1.4

Let E be an open subset of Rn and let f ∈ C1(E). For x0 ∈ E let I(x0) denotes the maximal
interval of existence of the solution φ(t, x0) of (1.2). Then for t ∈ I(x0) the set of mappings
{φt}t∈I(x0) of E onto E defined by

φt(x0) = φ(t, x0)

is called the flow of the differential equation (1.1) [4].

Definiton 1.1.5

Let E be an open subset of Rn. Let f ∈ C1(E) and φt : E → E be the flow of the nonlinear
system (1.1) defined for all t ∈ R.

A set S ⊂ E is called invariant with respect to the flow φt if φt(S) ⊂ S for all t ∈ R. If
we restrict the time to be positive (or negative) then we refer to S as positively (or negatively)
invariant with respect to the flow φt [4].

Definition 1.1.6

An invariant set S ⊂ Rn is said to be Ck (k ≥ 1) invariant manifold of (1.1) if S has the structure
of Ck differentiable manifold [5].

We will see now how some important invariant manifolds arise by studying an orbit structure near
an equilibrium point.
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Definition 1.1.7

A point x∗ ∈ Rn is called an equilibrium point or a fixed point of (1.1) if f(x∗) = 0. An
equilibrium point x∗ is called a hyperbolic equilibrium point if each eigenvalue of Df(x∗) has
nonzero real part.

Note that here and throughout the dissertation Df denotes the Jacobian of f , where f is any
differentiable function.

Let x∗ be an equilibrium point of the nonlinear system (1.1). The linearization of (1.1) at x∗ is
given by

ẋ = Ax, (1.3)

where A ≡ Df(x∗) is a constant n× n matrix and x ∈ Rn.

A solution of (1.3) through the point x0 ∈ Rn is given by

x(t) = eAtx0, (1.4)

where

eAt = I + At+
1

2!
A2t2 + ... (1.5)

and I is the n× n identity matrix.

It follows that Rn can be represented as a direct sum of the following subspaces: Es, Eu and Ec

known as stable, unstable and centre subspaces of the linear system (1.3) respectively, and they
are defined as follows:

Es = Span {v1, · · · , vs} ,
Eu = Span {vs+1 · · · , vs+u} ,
Ec = Span {vs+u+1 · · · , vs+u+c} ,

(1.6)

with s + u + c = n and where {v1, · · · , vs} is a basis of (generalized) eigenvectors of A cor-
responding to the eigenvalues of A having negative real parts, {vs+1 · · · , vs+u} is a basis of
(generalized) eigenvectors of A corresponding to the eigenvalues of A having positive real parts
and {vs+u+1 · · · , vs+u+c} is a basis of (generalized) eigenvectors of A corresponding to the eigen-
values of A having zero real parts [5].

Es, Eu and Ec are invariant subspaces since a solution of (1.3) with initial condition in one of
these subspaces will remain there for all time [5].

Theorem 1.1.1 (The Stable and Unstable Manifold Theorem)

Let E be an open subset of Rn containing the origin, let f ∈ C1(E) and φt the flow of the
nonlinear system (1.1). Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative
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real part and n − k eigenvalues with positive real part. Then there exists a k-dimensional
differentiable stable manifold S tangent to the stable subspace Es of the linear system (1.3) at
0 such that for all t ≥ 0 φt(S) ⊂ S and for all x0 ∈ S

lim
t→∞

φt(x0) = 0,

and there exists an (n−k)-dimensional differentiable unstable manifold U tangent to the unstable
subspace Eu of (1.3) at 0 such that for all t ≤ 0 φt(U) ⊂ U and for all x0 ∈ U [4]

lim
t→−∞

φt(x0) = 0.

Furthermore, S and U are of the same dimension as Es and Eu respectively [4].

Example

Consider the nonlinear system

ẋ1 = −x1,

ẋ2 = −x2 + x2
1,

ẋ3 = x3 + x2
1.

(1.7)

We determine the stable and unstable manifolds, we verify the invariance property and we check
the asymptotic behavior of solutions starting in those manifolds.

The only equilibrium point of the system (1.7) is at the origin. The linear system associated to
(1.7) is given by

ẋ = Ax, (1.8)

where

A =

 −1 0 0
0 −1 0
0 0 1

 .
Hence, the stable and unstable subspaces Es and Eu of (1.8) are the x1x2-plane and the x3-axis
respectively.

The solution of the nonlinear system (1.7) is given by

x1(t) = c1e
−t,

x2(t) = c2e
−t + c21(e

−t − e−2t),

x3(t) = c3e
t +

c21
3

(et − e−2t),

(1.9)

where c = (c1, c2, c3) = x(0). Therefore the flow of (1.7) is given by
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φt(c) = φ(t, c) =

 c1e
−t

c2e
−t + c21(e

−t − e−2t)

c3e
t +

c21
3

(et − e−2t)

 .
It follows that

lim
t→∞

φt(c) = 0

if and only if c3 +
c21
3

= 0. Thus, the stable manifold of (1.7) is given by

S = {c ∈ R3|c3 =
−c21
3
},

and for c ∈ S we have

φt(c) =

 c1e
−t

c2e
−t + c21(e

−t − e−2t)

−c
2
1

3
e−2t

 ∈ S.
Hence, φt(S) ⊂ S for all t ∈ R so S is invariant under the flow φt.

Next
lim
t→−∞

φt(c) = 0

if and only if c1 = c2 = 0. So, the unstable manifold of (1.7) is given by

U = {c ∈ R3|c1 = c2 = 0}.

Then for c ∈ U we have

φt(c) =

 0
0

c3e
t +

c21
3
et

 ∈ U.
Hence, φt(U) ⊂ U for all t ∈ R so U is invariant under the flow φt [4]. �

The aim of studying the linear system (1.3) was to get information about the behavior of solutions
around the equilibrium point x = x∗ of the nonlinear system (1.1). The stable manifold theorem
will provide an answer to this question [5].

We need first to do some transformation of the fixed point x = x∗ to the origin by the translation
y = x − x∗. Then since x∗ is an equilibrium point f(x∗) = 0 and the nonlinear system (1.1)
becomes

ẏ = f(x∗ + y), y ∈ Rn. (1.10)
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The Taylor expansion of (1.10) around x = x∗ gives

ẏ = Df(x∗)y +R(y), y ∈ Rn, (1.11)

where R(y) = O(|y|2).

The linear system (1.3) can be transformed into the following block diagonal form

u̇1

u̇2

u̇3

 =

As O O
O Au O
O O Ac

u1

u2

u3

 (1.12)

by an appropriate linear transformation T , where T−1y ≡ (u1, u2, u3) ∈ Rs × Ru × Rc with
s+ u+ c = n. As is an s× s matrix having eigenvalues with negative real parts, Au is a u× u
matrix having eigenvalues with positive real parts and Ac is a c × c matrix having eigenvalues
with zero real parts and O denotes the appropriately sized block consisting all of zero’s [5].

If we take u = (u1, u2, u3) then by the same linear transformation (1.10) becomes

u̇ = Au+G(u), (1.13)

where

A =

As O O
O Au O
O O Ac

 (1.14)

and G(u) = T−1R(Tu). The linear system (1.12) has an s-dimensional invariant stable subspace,
a u-dimensional invariant unstable subspace and a c-dimensional invariant centre subspace; all
intersecting at the origin [5].

Remark 1.1.3

The stable and unstable manifolds of Theorem 1.1.2 are referred to as the local stable and
unstable manifolds of (1.1) since they are only defined in a small neighborhood of the origin. The
global stable and unstable manifolds are defined by flowing points in S backward in time and
those in U forward in time.

If φt is the flow of the nonlinear system (1.1) then the global stable and unstable manifolds of
(1.1) are defined as follows:

W s =
⋃
t≤0

φt(S)

and
W u =

⋃
t≥0

φt(U).
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Note that, without loss of generality, we did not consider the unstable direction in our examples
because the reduction principle may fail to work if we take that direction into account.

Another important result when studying the flow of the nonlinear system consists of establishing
the existence of an invariant centre manifold W c(0) tangent to the centre subspace Ec of the
linear system (1.3) at the origin [4].

Theorem 1.1.2 (The Centre Manifold Theorem)

Let f ∈ Ck(E), where E is an open subset of Rn containing the origin and k ≥ 0. Suppose
that f(0) = 0 and that Df(0) has k eigenvalues with negative real parts, j eigenvalues with
positive real parts and m = n − k − j eigenvalues with zero real parts. Then there exists an
m-dimensional invariant centre manifold W c(0) of class Ck tangent to the centre subspace Ec

of (1.3) at the origin [4].

The next chapter is devoted to the study of the centre manifold since near the origin all the
interesting dynamic takes place on the centre manifold. So, instead of studying the flow through
the whole space Rn, one can reduce the study to the centre manifold [6].



2. Centre Manifold

The goal of this chapter is to present in detail, following Carr [1], some basic results on the centre
manifold theory such as the existence of the centre manifold and the reduction principle. The
latter result allows studying the flow of a nonlinear system through its restriction to the centre
manifold which reduces the dimension of the problem and it is of major importance in applications
[6].

Because in general it is impossible to solve the system for the centre manifold, we also present a
result allowing the approximation of the centre manifold to any degree of accuracy.

We note that the results we present in this work are valid in finite dimension but some extensions
to infinite dimension space are possible.

Let
ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),
(2.1)

be a nonlinear system of ordinary differential equation, where x ∈ Rn and y ∈ Rm. A and B
are constant matrices such that all eigenvalues of A have zero real parts and all eigenvalues of
B have negative real parts. f(x, y) and g(x, y) are vectors functions of x and y of class C2 with
f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0 [1].

Let us consider the case where f and g are identically zero. Then system (2.1) reduces to the
following linear system:

ẋ = Ax,

ẏ = By,
(2.2)

that we can write in the matrix form as follows:

[
ẋ
ẏ

]
=

[
A 0
0 B

] [
x
y

]
. (2.3)

If we analyse the above system in R3 with n = 2 and m = 1 then the x1x2-plane and the x3-axis
represent the centre manifold and the stable manifold respectively or more precisely the centre
subspace and the stable subspace respectively.

In general the linear system (2.2) has two obvious invariant manifolds namely x = 0 that we refer
as the stable subspace Es and y = 0 as the centre subspace Ec [1].

Definition 2.1.1

A centre manifold for (2.1) is an invariant differentiable manifold tangent to the centre subspace
Ec of Rn at the origin.

11



Section 2.1. Existence of the Centre Manifold Page 12

A centre manifold for (2.1) can be represented as follows:

W c(0) = {(x, y) ∈ Rn × Rm|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0} ,

for δ sufficiently small [5]. Here and throughout the dissertation |.| denotes the euclidean norm.

Remark 2.1.1

Conditions h(0) = 0 and Dh(0) = 0 are conditions of tangency of the centre manifold W c(0) to
the centre subspace Ec of Rn at the origin.

Remark 2.1.2

If f and g are identically zero then all solutions of (2.1) tend exponentially fast, as t → ∞, to
solutions of

ẋ = Ax. (2.4)

In other words, all solutions will rapidly decay to the centre subspace along the stable subspace.
That is, we can determine the asymptotic behavior of solutions of a nonlinear system once we
know the equation that determines the behavior of small solutions on the centre manifold [1].

Now if f and g are non-zero then there are similar results for the system (2.1) that we give in
the sequel of this chapter.

2.1 Existence of the Centre Manifold

First we give an example to illustrate the method used to prove the existence of the centre
manifold.

Example

Let us consider the following system:

ẋ1 = x2,
ẋ2 = 0,
ẏ = −y + g(x1, x2),

(2.5)

where g is smooth and g(0, 0) = 0, Dg(0, 0) = 0.

Take G(x1, x2) = ψ(x1, x2)g(x1, x2), where ψ : R2 → R is a C∞ function with compact support
such that ψ(x1, x2) = 1 for (x1, x2) sufficiently small. We show that the new system of equations

ẋ1 = x2,
ẋ2 = 0,
ẏ = −y +G(x1, x2),

(2.6)
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has a centre manifold y = h(x1, x2) with (x1, x2) ∈ R2. Since G(x1, x2) = g(x1, x2) for (x1, x2)
sufficiently small then y = h(x1, x2) with x2

1 + x2
2 < δ for some δ, is a local centre manifold for

(2.5).

The first two equations in (2.6) have x1(t) = z1 + z2t and x2(t) = z2, where xi(0) = zi for
i = 1, 2, as solutions.

Assume the solution of the third equation in (2.6) be given by y(t) = h(x1(t), x2(t)). Therefore

d

dt
h(z1 + z2t, z2) = −h(z1 + z2t, z2) +G(z1 + z2t, z2). (2.7)

To compute a centre manifold for (2.6) we select a special solution of (2.7). Solutions of (2.7)
have the following form:

h(z1 + z2t, z2) = e−th(z1, z2) +

∫ t

0

es−tG(z1 + z2s, z2)ds. (2.8)

We see that (2.8) has a term e−t. Since the centre manifold should be tangent to the z1z2-plane
at the origin and the component that contains e−t tends to the origin along the stable manifold
perpendicular to the z1z2-plane as t → ∞, we must eliminate it. To do so, we include in (2.8)
the condition

lim
t→−∞

h(z1 + z2t, z2)e
t = 0.

Thus, multiplying (2.8) by et and solving the limit as t→ −∞, we get

lim
t→−∞

h(z1 + z2t, z2)e
t = lim

t→−∞
h(z1, z2)− lim

t→−∞

∫ 0

t

esG(z1 + z2s, z2)ds,

0 = h(z1, z2)−
∫ 0

−∞
esG(z1 + z2s, z2)ds.

Hence,

h(z1, z2) =

∫ 0

−∞
esG(z1 + z2s, z2)ds. (2.9)

For h, defined by equation (2.9), to be a centre manifold for (2.8) we must show that it is an
invariant manifold. Replacing z1 by z1 + z2t in equation (2.9) gives

h(z1 + z2t, z2) =

∫ 0

−∞
esG(z1 + z2(s+ t), z2)ds. (2.10)

We must show that (2.10) satisfies the third equation in (2.6). That is, we must compute its
derivative with respect to t. Let ξ1 = z1 + z2(s+ t) and ξ2 = z2 therefore,



Section 2.1. Existence of the Centre Manifold Page 14

d

dt
h(z1 + z2t, z2) =

∫ 0

−∞
es[G.1z2 +G.20]ds

=

∫ 0

−∞
es[G.1z2]ds

=

∫ 0

−∞
es
[
∂G

∂s

]
ds

(
since

∂G

∂s
=
∂G

∂ξ1
z2

)
= [esG(z1 + z2(t+ s), z2)]

0
−∞ −

∫ 0

−∞
esG(z1 + z2(t+ s), z2)ds

= G(z1 + z2t, z2)−
∫ 0

−∞
esG(z1 + z2(t+ s), z2)ds,

(2.11)

where G.1 denotes the partial derivative of G with respect to ξ1 and G.2 the partial derivative of
G with respect to ξ2. It follows, using (2.10), that

ḣ(z1 + z2t, z2) = −h(z1 + z2t, z2) +G(z1 + z2t, z2). (2.12)

We have shown that the solution of equation (2.6) through (z1, z2, h(z1, z2)) lies on the curve
y(t) = h(z1 + z2t, z2). This shows y = h(z1, z2) is an invariant manifold for (2.6). Since G is
C∞, G(0, 0) = 0 and DG(0, 0) = 0 it follows that h is C∞, h(0, 0) = 0 and Dh(0, 0) = 0.
So, h is a centre manifold for (2.6). As an example we consider G(z1, z2) = z1z2. Then
G(z1 + z2t, z2) = z2(z1 + z2t). Therefore

h(z1, z2) = z2

∫ 0

−∞
es(z1 + z2s)ds

= z1z2 − z2
2 .

(2.13)

Replacing z1 by z1 + z2t in equation (2.13) gives

h(z1 + z2t, z2) = z2(z1 + z2t)− z2
2

= z1z2 + z2
2t− z2

2 ,
(2.14)

then

d

dt
h(z1 + z2t, z2) = z2

2

= −z1z2 − z2
2t+ z2

2 + z1z2 + z2
2t

= −(z1z2 + z2
2t− z2

2) + z1z2 + z2
2t

= −h(z1 + z2t, z2) +G(z1 + z2t, z2).

(2.15)

�
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After this example we return to the general case.

Definition 2.1.2

Let X be a metric space with metric d. A mapping T of X into itself is said to be a contraction
mapping if and only if there is a real α with 0 < α < 1 such that

d(T (x), T (y)) ≤ αd(x, y)

for all x, y ∈ X. To simplify notation, we will write Tx for T (x) [2].

Theorem 2.1.1 (Contraction Mapping Principle)

Let T be a contraction mapping of a complete metric space X into itself. Then there is a unique
point u ∈ X such that Tu = u.

Lemma 2.1.1

Let us define a set X of Lipschitz functions h : Rn → Rm. With the Lipschitz constant p1,
|h(x)| ≤ p for x ∈ Rn and h(0) = 0 for given p, p1 > 0. With the metric induced by the
supremum norm ‖.‖ from the space C(Rn,Rm) of continuous functions of Rn into Rm, X is a
complete metric space.

Proof

Indeed, X is a subspace of C(Rn,Rm) and we show that X is closed in C(Rn,Rm) so that its
completeness follows. Let h ∈ X̄, the closure of X. Then there are (hn) ∈ X such that hn → h
as n→∞. Hence, given an ε > 0. Then there is an integer N such that for n ≥ N we have

‖hn − h‖ = sup {|hn(x)− h(x)| : x ∈ Rn} < ε.

Hence, for any fixed x0 ∈ Rn |hn(x0)− h(x0)| < ε for n ≥ N . This shows that hn(x0) → h(x0)
as n→∞.

We have to show that h ∈ X. Since hn ∈ X for n = 1, 2, ... we have |hn(x)−hn(y)| ≤ p1|x−y|
for x, y ∈ Rn and |hn(x)| ≤ p with p1, p > 0. Letting n →∞ yields |h(x)− h(y)| ≤ p1|x− y|
for x, y ∈ Rn and |h(x)| ≤ p. This shows that h ∈ X. Since h ∈ X̄ was arbitrary, this proves
the closedness of X in C(Rn,Rm) and so its completeness as a metric space with metric induced
from C(Rn,Rm). �

Next we formulate and prove the main result of this section.

Theorem 2.1.2

There exists a C2 centre manifold y = h(x), |x| < δ for (2.1).

Proof

The proof of the existence of the centre manifold uses the contraction mapping principle.

As in the previous example, we define from (2.1) a new system

ẋ = Ax+ F (x, y),

ẏ = By +G(x, y),
(2.16)
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where F (x, y) = f
(
xψ
(x
ε

)
, y
)
, G(x, y) = g

(
xψ
(x
ε

)
, y
)

and ψ : Rn → [0, 1] is a C∞

function with ψ
(x
ε

)
= 0 when |x| ≥ 2ε and ψ

(x
ε

)
≤ 1 when |x| ≤ 2ε.

We prove that (2.16) has a centre manifold y = h(x), x ∈ Rn, for ε small enough. Using the
fact that F = f and G = g in a neighborhood of the origin, we show that there exists a local
centre manifold for (2.1) [1].

We assume that we can solve the first equation in (2.16) and substitute its solution into the
second equation to solve it to get the centre manifold. That is, for h ∈ X and x0 ∈ Rn let
x(t, x0;h) be the solution of

ẋ = Ax+ F (x, h(x)), with x(0, x0;h) = x0. (2.17)

The solution of (2.17) is given by

x(t, x0;h) = eAtx0 + eAt
∫ t

0

e−AsF (x(s, x0, h), h(x(s, x0;h)))ds, (2.18)

where y(t) = h(x(t, x0, h)) is the solution of the second equation in (2.17). Therefore

d

dt
h(x(t, x0;h)) = Bh(x(t, x0;h)) +G(x(t, x0;h), h(x(t, x0;h))). (2.19)

As in the example, to compute a centre manifold for (2.16) we must single out a special solution
of (2.19). Solutions of (2.19) have the following form:

h(x(t, x0;h)) = eBth(x0) + eBt
∫ t

0

e−BsG(x(s, x0, h), h(x(s, x0;h)))ds. (2.20)

We must eliminate the component which decays to the origin along the stable manifold since the
centre manifold should be tangent to the invariant manifold y = 0. That is, we must include the
condition limt→−∞ e−Bth(x(t, x0;h)) = 0 in (2.20). Thus, multiplying (2.20) by e−Bt and using
the limit as t→ −∞ gives

0 = lim
t→−∞

e−Bth(x(t, x0;h)) = lim
t→−∞

h(x0)− lim
t→−∞

∫ 0

t

e−BsG(x(s, x0;h), h(x(s, x0;h)))ds.

Hence,

0 = h(x0)−
∫ 0

−∞
e−BsG(x(s, x0;h), h(x(s, x0;h)))ds

so that

h(x0) =

∫ 0

−∞
e−BsG(x(s, x0;h), h(x(s, x0;h)))ds. (2.21)
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We use the contraction mapping principle to show that under suitable conditions (2.21) has a
unique solution in certain subset U of Rn containing x0. That is, let define T : X → X by

(Th)(x0) =

∫ 0

−∞
e−BsG(x(s, x0, h), h(x(s, x0;h)))ds, (2.22)

where h ∈ X and x0 ∈ Rn.

We have to prove that T is a contraction on X. Therefore if h is a fixed point of (2.22) then by
(2.21), it is the centre manifold for (2.16). To do so, we need the following auxiliary estimates:

Lemma 2.1.2

There exists a continuous function k(ε) with k(0) = 0 such that

|F (x, y)|+ |G(x, y)| ≤ εk(ε),

|F (x, y)− F (x
′
, y

′
)| ≤ k(ε)[|x− x

′|+ |y − y
′|],

|G(x, y)−G(x
′
, y

′
)| ≤ k(ε)[|x− x

′|+ |y − y
′|],

(2.23)

for all x, x
′ ∈ Rn and y, y

′ ∈ Rm with |y|, |y′| < ε [1].

Proof

Given a real-valued Ck-function f defined on an open convex subset U of Rn. The multivariate
Taylor expansion of f at a ∈ U is given by

f(a+ h) =
k∑
r=0

Dr
hf(a)

r!
+Rk(h), (2.24)

where

Rk(h) =
Dk+1
h f(ξ)

(k + 1)!

is the kth degree remainder of f at a and ξ is on the segment L joining a with a+ h. Note that

lim
h→0

Rk(h)

|h|k
= 0

and

Dk
hf = (h1D1 + · · ·+ hnDn)

kf

=
∑

j1+···+jn=k

(
k,

j1 · · · jn

)
hj11 · · ·hjnn D

j1
1 · · ·Djn

n f,
(2.25)

is the iterated directional derivative with respect to h = (h1 · · ·hn). For instance, if n = 2 and
k = 2, we have
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D2
hf = (h1D1 + h2D2)

2f

=

(
h1

∂

∂x
+ h2

∂

∂y

)2

f

= h2
1

∂2f

∂x2
+ 2h1h2

∂2f

∂x∂y
+ h2

2

∂2f

∂y2
.

(2.26)

Using (2.24) with h = (z, y) and a = (0, 0), the Taylor formula for f up to the second order at
(0, 0) is given by

f((0, 0) + (z, y)) = f(0, 0) +Dhf(0, 0) +R1(h),

where R1(h) =
1

2!
[D2

hf ] (θz, θy); with 0 < |θz| < |z| and 0 < |θy| < |y|.

Since f(0, 0) = 0 and Df(0, 0) = 0 we have f(z, y) = R1(h) with limh→0
R1(h)

|h|
= 0.

Define

k̃(ε) = sup
|h|≤ε

|R1(h)|
|h|

.

Thus, k̃(ε) → 0 as ε→ 0 for |h| ≤ ε.

Therefore
|R1(h)|
|h|

≤ k̃(ε) ⇔ |R1(h)| ≤ k̃(ε)|h|.

Since
ψ(x) ≤ 1 if |x| < 2 and ψ(x) = 0 if |x| ≥ 2,

we have ∣∣∣xψ (x
ε

)∣∣∣2 ≤ (2ε)2 if |x| < 2ε and
∣∣∣xψ (x

ε

)∣∣∣2 = 0 if |x| ≥ 2ε.

Which implies that ∣∣∣xψ (x
ε

)∣∣∣2 ≤ 4ε2 for all x

and

|h| =
√
|z|2 + |y|2,

=

√∣∣∣xψ (x
ε

)∣∣∣2 + |y|2,

≤
√

4ε2 + ε2,

=
√

5ε.

It follows that
|F (x, y)| ≤ ε

2
k(ε),
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where k(ε) = 2
√

5k̃(ε).

Using the same reasoning, we find the estimate of G(x, y) by |G(x, y)| ≤ ε

2
k(ε).

Hence,
|F (x, y)|+ |G(x, y)| ≤ εk(ε).

Next we define

u(t) = F (tx+ (1− t)x
′
, ty + (1− t)y

′
). (2.27)

Then u(0) = F (x
′
, y

′
), u(1) = F (x, y) and the Taylor’s formula of u up to the first order in one

variable on the interval [0, 1] gives

u(1) = u(0) + u(1)(c), (2.28)

for some 0 < c < 1.

Therefore we have from (2.28)

F (x, y)− F (x
′
, y

′
) = F.1(θx, θy)(x− x

′
) + F.2(θx, θy)(y − y

′
), (2.29)

where |x′| < |θx| < |x|, |y′| < |θy| < |y|,

F.1(θx, θy) =

[(
∂Fi
∂xj

)
|(θx,θy)

]
1≤i,j≤n

and F.2(θx, θy) =

[(
∂Fi
∂yk

)
|(θx,θy)

]
1≤i≤n, 1≤k≤m

.

Then

|F (x, y)− F (x
′
, y

′
)| ≤ |F.1(θx, θy)||(x− x

′
)|+ |F.2(θx, θy)||(y − y

′
)|. (2.30)

Now, if |x|, |x′| < 2ε and |y|, |y′| < ε then |θx| < 2ε and |θy| < ε. Therefore, derivatives can be
estimated by their supremum with respect to (x, y) over balls |x| < 2ε, |y| < ε.

Since F (x, y) = f
(
xψ
(x
ε

)
, y
)

for |x′| < |θx| < |x|, |y′| < |θy| < |y| and z = xψ
(x
ε

)
we have

F.1(θx, θy) =

[(
∂fi
∂zj

)
|(θxψ( θx

ε
),θy)

.

[
ψ

(
θx
ε

)
ej +

θx
ε

(
∂ψ

∂xj

)
|( θx

ε
)

]]
1≤i,j≤n

and
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F.2(θx, θy) =

[(
∂fi
∂yk

)
|(θxψ( θx

ε
),θy)

]
1≤i≤n, 1≤k≤m

.

Define

k̃(ε) = sup
|x|<2ε,|y|<ε

{∣∣∣∣∣
(
∂fi
∂zj

)
|(θxψ( θx

ε
),θy)

∣∣∣∣∣ ,
∣∣∣∣∣
(
∂fi
∂yk

)
|(θxψ( θx

ε
),θy)

∣∣∣∣∣ : 1 ≤ i, j ≤ n and 1 ≤ k ≤ m

}
,

so that k̃(ε) → 0 as ε→ 0.

Let us consider the following different cases:

Case I: |x′|, |x| < ε ⇒ |θx| < ε, ψ

(
θx
ε

)
= 1 and

(
∂ψ

∂xj

)
|( θx

ε
)

= 0 for 1 ≤ j ≤ n.

Therefore
F.1(θx, θy) = f.1(θx, θy) ⇒ |F.1(θx, θy)| ≤ k̃(ε)

and
F.2(θx, θy) = f.2(θx, θy) ⇒ |F.2(θx, θy)| ≤ k̃(ε),

where

f.1(θx, θy) =

[(
∂fi
∂zj

)
|(θx,θy)

]
1≤i,j≤n

and f.2(θx, θy) =

[(
∂fi
∂yk

)
|(θx,θy)

]
1≤i≤n, 1≤k≤m

.

Case II: ε ≤ |x′|, |x| < 2ε ⇒ |θx| < 2ε implies∣∣∣∣θxψ(θxε
)∣∣∣∣ < 2ε,

∣∣∣∣∣
(
∂ψ

∂xj

)
|( θx

ε
)

∣∣∣∣∣ ≤ K and

∣∣∣∣∣ψ
(
θx
ε

)
ej +

θx
ε

(
∂ψ

∂xj

)
|( θx

ε
)

∣∣∣∣∣ ≤ (1 + 2K)

for 1 ≤ j ≤ n therefore
|F.1(θx, θy)| ≤ (1 + 2K)k̃(ε)

and
|F.2(θx, θy)| ≤ k̃(ε).

Case III: |x′| < 2ε and |x| ≥ 2ε.

In which case we may have two different situations

(1)

|θx| ≥ 2ε ⇒ ψ

(
θx
ε

)
= 0 and

(
∂ψ

∂xj

)
|( θx

ε
)

= 0

for 1 ≤ j ≤ n. Therefore

F.1(θx, θy) = 0 ⇒ |F.1(θx, θy)| ≤ Ck̃(ε)
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and
F.2(θx, θy) = f.2(0, θy) ⇒ |F.2(θx, θy)| ≤ k̃(ε).

(2)We have either |θx| < ε which is similar to case I or ε ≤ |θx| < 2ε which is similar to case II
above.

Case IV: |x′|, |x| ≥ 2ε.

In this case, we may also have two different situations:

(1)The segment joining x
′
to x does not cross the ball. This one is similar to case III(1)

(2)The segment joining x
′
to x pass through the ball. Then we have either |θx| < ε we are in

case I or ε ≤ |θx| < 2ε we are in case II or |θx| ≥ 2ε we are case III(1).

Note that |y′|, |y| < ε always so is |θy| < ε, and in any case F.1(θx, θy), F.2(θx, θy) may be
estimated by their suprema with respect to (x, y).

Taking k(ε) = Constantk̃(ε) which approaches 0 as ε→ 0. We have

|F (x, y)− F (x
′
, y

′
)| ≤ k(ε)[|x− x

′|+ |y − y
′|].

Since G(x, y) = g
(
xψ
(x
ε

)
, y
)
, using the same reasoning as for f , we compute the estimate of

G(x, y)−G(x
′
, y

′
) which is given by

|G(x, y)−G(x
′
, y

′
)| ≤ k(ε)[|x− x

′|+ |y − y
′|].

�

Lemma 2.1.3

If eigenvalues of B all have negative real parts then there exist positive constants β,C such that
for s ≤ 0 and y ∈ Rm [1]

|e−Bsy| ≤ Ceβs|y|. (2.31)

If eigenvalues of A all have zero real parts then for each r > 0 there is a constant M(r) with in
general M(r) →∞ as r → 0, such that for x ∈ Rn and s ∈ R [1]

|eAsx| ≤M(r)er|s||x|. (2.32)

Proof

Given an m × m Jordan canonical form of a real matrix M having real eigenvalues λj, j =
1, · · · , k, and complex eigenvalues λj = aj + ibj and λ̄j = aj − ibj, j = k + 1, · · · ,m.

B =

B1

. . .

Br

 ,
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where the elementary Jordan blocks Bj, j = 1, · · · , r are either of the form

Bj =


λj 1 0 · · · 0
0 λj 1 · · · 0
· · ·
0 · · · λj 1
0 · · · 0 λj

 ,

for λj one of the real eigenvalues of M or of the form

Bj =



aj −bj 1 0 0 0 · · · 0
bj aj 0 1 0 0 · · · 0
0 0 aj −bj 1 0 · · · 0
0 0 bj aj 0 1 · · · 0
· · ·
0 · · · aj −bj 1 0
0 · · · bj aj 0 1
0 · · · aj −bj
0 · · · bj aj


,

for λj = aj + ibj one of the complex eigenvalues of M .

Using the fact that Jordan’s canonical form splits space into invariant subspaces, one may work
with each block separately and the final result is valid for the full matrix. Let us consider a real
eigenvalue λj of M . Then

e−Bjsy =



y1e
−λjs + sy2e

−λjs + s2

2
y3e

−λjs · · ·+ sk−1

(k − 1)!
yke

−λjs

y2e
−λjs + sy3e

−λjs + · · ·+ sk−2

(k − 2)!
yke

−λjs

y3e
−λjs + · · ·+ sk−3

(k − 3)!
yke

−λjs

· · ·
· · ·

yk−1e
−λjs + syke

−λjs

yke
−λjs


.

Hence,
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|e−Bjsy|2 = e−2λjs

[(
y1 + sy2 + · · ·+ sk−1

(k − 1)!
yk

)2

+

(
y2 + sy3 + · · ·+ sk−2

(k − 2)!
yk

)2

+ · · ·+ y2
k

]

= e2λjs(y2
1 + y2

2 · · ·+
s2(k−1)

[(k − 1)!]2
y2
k + · · ·+ 2y1yk

sk−1

(k − 1)!
+ · · ·+ 2y2yk

sk−2

(k − 2)!
+ · · ·+ y2

k)

≤ e−2λjs|y|2P2(k−1)(s)

= e−2λjse2βjse−2βjs|y|2P2(k−1)(s)

= e2βjs|y|2e−2(βj+λj)sP2(k−1)(s),

where P2(k−1)(s) is a polynomial of degree 2(k − 1) in s and λj < −βj < 0 for j = 1, · · · , k.
Since −βj − λj > 0 and s < 0 the expression e−2(βj+λj)sP2(k−1)(s) is bounded. It follows that

|e−Bjsy| ≤ Cje
−βjs|y|, j = 1 · · · , k,

and for λj = aj + ibj one of the complex eigenvalues of M we have

e−Bjsy =



e−ajs(yk+1 sin b1s− yk+2 cos bjs) + · · ·+ sm−1

(m− 1)!
e−ajs(ym−1 sin bjs− ym cos bjs)

e−ajs(yk+1 cos b1s+ yk+2 sin bjs) + · · ·+ sm−1

(m− 1)!
e−ajs(ym−1 cos bjs+ ym sin bjs)

· · ·
· · ·

ym−1e
−ajs sin bjs− yme

−ajs cos bjs
ym−1e

−ajs cos bjs+ yme
−ajs sin bjs


.

Hence,

|e−Bjsy|2 = e−2ajs((yk+1 sin bjs− yk+2 cos bjs) + · · ·+ sm−1

(m− 1)!
(ym−1 sin bjs− ym cos bjs)

+ (yk+1 cos bjs+ yk+2 sin bjs) + · · ·+ sm−1

(m− 1)!
(ym−1 cos bjs+ yn sin bjs)

+ · · ·+ (ym−1 sin bjs− ym cos bjs) + (ym−1 cos bjs+ ym sin bjs))
2

= e2a1s(y2
k+1 + y2

k+2 + · · ·+ s2(m−1)

[(m− 1)!]2
(y2
m−1 + y2

m) + · · ·+ y2
m−1 + y2

m)

≤ e−2ajs|y|2P2(n−1)(s)

= e−2ajse−2βjse2βjs|y|2P2(m−1)(s)

= e2βjse−2(βj+aj)sP2(m−1)(s)|y|2,
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where aj < −βj < 0 and P2(m−1)(s) is a polynomial of degree 2(m− 1) in s. Since −βj − aj >
0, j = k + 1, · · · ,m and s < 0 the expression e−2(βj+aj)sP2(m−1)(s) is bounded. It follows that

|e−Bjsy| ≤ Cje
βjs|y|, j = k + 1, · · · ,m.

Therefore for the full matrix we have

|e−Bsy| ≤ Ceβs|y| for Reλj < −β < 0, j = 1, · · · ,m.

Now we estimate eAsx where A is an n × n Jordan canonical form of a real matrix M whose
eigenvalues have zero real parts and x ∈ Rn. We derive the estimate of eAsx from the estimate
of e−Bsy by setting the real parts of the latter to zero. Therefore for λk, k = 1, · · · , q, one of
the eigenvalues of M we have

|eAksx|2 ≤ |x|2P2(q−1)(s)

= e2r|s|e−2r|s||x|2P2(q−1)(s)

= e2r|s|e−2r|s|P2(q−1)(s)|x|2,

where r > 0 and P2(q−1)(s) is a polynomial of degree 2(q−1) in s. The expression e−2r|s|P2(q−1)(s)
is bounded by a constant M(r) depending on r such that M(r) → 0 as r →∞ and vice versa.
Hence,

|eAksx| ≤M(r)e2r|s||x|.

For λk = ak + ibk, k = q + 1, · · · , n we have

|eAksx|2 ≤ |x|2P2(n−1)(s)

= e2r|s|e−2r|s||x|2P2(n−1)(s)

= e2r|s|e−2r|s|P2(n−1)(s)|x|2,

where r > 0 and P2(n−1)(s) is a polynomial of degree 2(n−1) in s. The expression e−2r|s|P2(n−1)(s)
is bounded by a constant M(r) depending on r as above. Hence,

|eAksx| ≤M(r)e2r|s||x|.

It follows, for the full matrix, that we have

|eAsx| ≤M(r)er|s||x|.

�

The next lemma is of great importance in the proof of the existence of the centre manifold.

Lemma 2.1.4 (Gronwall’s inequality)

Let f(t) and g(t) be continuous nonnegative real valued functions and
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f(t) ≤ C +

∫ t

t0

f(s)g(s)ds (2.33)

for all t ∈ [t0, t0 + α], where α > 0 and C > 0. It then follows that for all t ∈ [t0, t0 + α]

f(t) ≤ C exp

(∫ t

t0

g(s)ds

)
. (2.34)

Proof

Define F (t) = C+
∫ t
t0
f(s)g(s)ds on [t0, t0 +α]. Then F (t) ≥ f(t) and F (t) > 0 on [t0, t0 +α].

Differentiating F with respect to t we get F
′
(t) = f(t)g(t). Therefore

F
′
(t)

F (t)
=

f(t)g(t)

F (t)
≤

f(t)g(t)

f(t)
. It follows that

F
′
(t)

F (t)
=

d

dt
logF (t) ≤ g(t). Integrating the latter expression, we get

logF (t)− logF (t0) ≤
∫ t

t0

g(s)ds,

F (t) ≤ F (t0) exp

(∫ t

t0

g(s)ds

)
.

Taking C = F (t0) we obtain

F (t) ≤ C exp

(∫ t

t0

g(s)ds

)
.

But, since we observed f(t) ≤ F (t) we have

f(t) ≤ C exp

(∫ t

t0

g(s)ds

)
for all t ∈ [t0, t]. �

Now, using above results, we prove that T is a contraction on X. In what follows we assume
p < ε.

Let x0 ∈ Rn. From (2.22), by using estimates on G and h and the inequality (2.31) we have [1]

|(Th)(x0)| ≤
∫ 0

−∞
|e−Bs||G(x(s, x0;h), h(x(s, x0;h)))|ds

≤
∫ 0

−∞
Ceβs|G(x(s, x0;h), h(x(s, x0;h)))|ds

≤ Cεk(ε)

∫ 0

−∞
eβsds

= Cβ−1εk(ε).
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We choose an appropriate ε so that k(ε) ≤ C−1β. Therefore

|(Th)(x0)| ≤ ε, (2.35)

for x0 ∈ Rn.

Now, let x0, x1 ∈ Rn. From the inequality (2.32), estimates on F and h, and the equation (2.17),
we have for r > 0 and t ≤ 0

x(t, x0;h) = e−Atx0 +

∫ 0

t

eA(s−t)F (x(s, x0;h), h(x(s, x0;h)))ds,

x(t, x1;h) = e−Atx1 +

∫ 0

t

eA(s−t)F (x(s, x1;h), h(x(s, x1;h)))ds.

Then writing X0 for x(t, x0;h) and X1 for x(t, x1;h) we have

|X0 −X1| ≤ |e−At(x0 − x1)|+
∫ 0

t

|eA(s−t)[F (X0, h(X0))− F (X1, h(X1))]|ds

≤M(r)e−rt|x1 − x0|+M(r)

∫ 0

t

er(s−t)k(ε)[|F (X0, h(X0))− F (X1, h(X1)))|ds

≤M(r)e−rt|x1 − x0|+ k(ε)M(r)

∫ 0

t

er(s−t)[|X0 −X1|+ |h(X0)− h(X1)|]ds

≤M(r)e−rt|x1 − x0|+ k(ε)M(r)

∫ 0

t

er(s−t)[|X0 −X1|+ p1|X0 −X1|]ds

= M(r)e−rt|x1 − x0|+ k(ε)M(r)

∫ 0

t

er(s−t)(1 + p1)|X0 −X1|ds

= M(r)e−rt|x1 − x0|+ (1 + p1)k(ε)M(r)

∫ 0

t

er(s−t)|X0 −X1|ds.

Using Gronwall’s inequality for t ≤ 0 we have

|X0 −X1| ≤M(r)|x1 − x0|e−[r+(1+p1)k(ε)M(r)]t.

Taking γ = r + (1 + p1)k(ε)M(r), and rewriting x(t, x0;h) for X0 and x(t, x1;h) for X1 we
obtain

|x(t, x0;h)− x(t, x1;h)| ≤M(r)|x1 − x0|e−γt. (2.36)

From (2.36), the bounds on G, h and (2.22), we have
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|(Th)(x0)− (Th)(x1)| ≤
∫ 0

−∞
|e−Bs[G(X0, h(X0))−G(X1, h(X1))]|ds

≤
∫ 0

−∞
Ceβsk(ε)[|X0 −X1|+ |h(X0)− h(X1)|]ds

= Ck(ε)

∫ 0

−∞
eβs(1 + p1)|X0 −X1|ds

≤ (1 + p1)Ck(ε)

∫ 0

−∞
eβsM(r)|x1 − x0|e−γtds

= Ck(ε)M(r)(1 + p1)(β − γ)−1|x1 − x0|,

where h is Lipschitz with Lipschitz constant p1. We choose appropriate ε and r so that β−γ > 0
and Ck(ε)M(r)(1 + p1)(β − γ)−1 < p1. Hence,

|(Th)(x0)− (Th)(x1)| ≤ p1|x1 − x0|. (2.37)

From (2.35) and (2.37) we have shown that Th : Rn → Rm is a bounded Lipschitz function with
same bounds as h. Thus, T : X → X.

Similarly, let h1, h2 ∈ X and x0 ∈ Rn. Writing H1 for x(t, x0;h1) and H2 for x(t, x0;h2) we
have

|h1(H1)− h2(H2)| = |h1(H1)− h1(H2) + h1(H2)− h2(H2|
≤ |h1(H1)− h1(H2)|+ |h1(H2)− h2(H2)|
≤ p1|H1 −H2|+ |(h1 − h2)(H2)|
≤ p1|H1 −H2|+ ‖h1 − h2‖,

where ‖h1 − h2‖ = Sup{|h1(x0)− h2(x0)| : x0 ∈ Rn} and

|H1 −H2| = |
∫ 0

t

eA(s−t)[F (H1, h1(H1))− F (H2, h2(H2))]ds|

≤
∫ 0

t

M(r)er(s−t)|F (H1, h1(H1))− F (H2, h2(H2))|ds

≤
∫ 0

t

M(r)er(s−t)k(ε)[|H1 −H2|+ |h1(H1)− h2(H2)|]ds

≤
∫ 0

t

M(r)er(s−t)k(ε)[|H1 −H2|+ p1|H1 −H2|+ ‖h1 − h2‖]ds

= M(r)e−rtk(ε)(1 + p1)

∫ 0

t

ers|H1 −H2|ds+M(r)e−rtk(ε)‖h1 − h2‖
∫ 0

t

ersds

≤M(r)k(ε)‖h1 − h2‖r−1 +M(r)k(ε)(1 + p1)

∫ 0

t

er(s−t)|H1 −H2|ds.
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Hence by Gronwall’s inequality,

|H1 −H2| ≤M(r)k(ε)r−1‖h1 − h2‖e−[r+(1+p1)k(ε)M(r)]t.

Rewritting x(t, x0;h1) for H1 and x(t, x0;h2) for H2, and taking γ = r + (1 + p1)k(ε)M(r) we
have

|x(t, x0;h1)− x(t, x0;h2)| ≤M(r)k(ε)r−1‖h1 − h2‖e−γt.

Therefore

|(Th1)(x0)− (Th2)(x0)| = |
∫ 0

−∞
e−BsG(H1, h1(H1))ds−

∫ 0

−∞
e−BsG(H2, h2(H2))ds|

= |
∫ 0

−∞
e−Bs[G(H1, h1(H1))−G(H2, h2(H2))]ds|

≤
∫ 0

−∞
|e−Bs||G(H1, h1(H1))−G(H2, h2(H2))|ds

≤
∫ 0

−∞
Ceβsk(ε)[|H1 −H2|+ |h1(H1)− h2(H2)|]ds

≤
∫ 0

−∞
Ceβsk(ε)[(1 + p1)|H1 −H2|+ ‖h1 − h2‖]ds

≤ Ck(ε)[

∫ 0

−∞
eβsds+ (1 + p1)M(r)k(ε)r−1

∫ 0

−∞
e(β−γ)sds]‖h1 − h2‖

= Ck(ε)[β−1 + (1 + p1)M(r)k(ε)r−1(β − γ)−1]‖h1 − h2‖.

Hence,

‖(Th1)− (Th2)‖ ≤ Ck(ε)[β−1 + (1 + p1)M(r)k(ε)r−1(β − γ)−1]‖h1 − h2‖, (2.38)

where ‖(Th1)− (Th2)‖ = sup {|(Th1)(x0)− (Th2)(x0)| : x0 ∈ Rn}.

If we choose p1, ε small enough and r big enough then

0 < Ck(ε)[β−1 + (1 + p1)M(r)k(ε)r−1(β − γ)−1] < 1.

�

Hence, T is a contraction on X therefore. There exists therefore a Lipschitz centre manifold for
(2.16) and hence, there exists a local centre manifold for (2.1).

To prove that the centre manifold is C1 we have to show that T is a contraction on a subset of
X. The details are similar to proofs given above. To prove that the centre manifold is C2 we
refer to the proof of Theorem 4.2 in Coddington and Levinson [7, p333].
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2.2 Reduction Principle

In this section we show that we can restrict the study of the flow of (2.1) to the centre manifold.

The flow on the centre manifold is determined by the n-dimensional system

u̇ = Au+ f(u, h(u)). (2.39)

Theorem 2.2.1

(a)Suppose that the zero solution of (2.39) is stable (asymptotically stable)(unstable). Then the
zero solution of (2.1) is stable (asymptotically stable)(unstable).

(b)Suppose that the zero solution of (2.39) is stable. Let (x(t), y(t)) be the solution of (2.1) with
(x(0), y(0)) sufficiently small. Then there exists a solution u(t) of (2.39) such that as t→∞

x(t) = u(t) +O(e−γt),

y(t) = h(u(t)) +O(e−γt),
(2.40)

where γ > 0 is a constant.

Let (x0, h(x0)) be on the centre manifold. Then by invariance solutions (x(t), y(t)) of (2.1)
through (x0, h(x0)) are on the centre manifold. That is y(t) = h(x(t)). Differentiating y(t) with
respect to t, we get ẏ = Dh(x)ẋ. Replacing ẏ and ẋ by their values in (2.16), and y by its value
we get

Dh(x) [Ax+ F (x, h(x))] = Bh(x) +G(x, h(x)), (2.41)

which, together with conditions h(0) = 0 and Dh(0) = 0, is the system to be solved to compute
the centre manifold [1].

Before we give the proof of this theorem 2.2.1, we first prove a stability property of the centre
manifold [1].

Lemma 2.2.1

Let (x(t), y(t)) be a solution of (2.16) with |(x(0), y(0))| sufficiently small. Then there exist
positive constants C1 and µ such that

|y(t)− h(x(t))| ≤ C1e
−µt|y(0)− h(x(0))|

for all t ≥ 0.

This lemma means that a trajectory which starts close enough to the origin will decay exponentially
fast to the centre manifold.
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Proof

Let (x(t), y(t)) be a solution of (2.16) with (x(0), y(0)) sufficiently small and let z(t) = y(t)−
h(x(t)). Then

ż = ẏ −Dh(x)ẋ

= By +G(x, y)−Dh(x)[Ax+ F (x, y)]

= B[z + h(x)] +G(x, z + h(x))−Dh(x)[Ax+ F (x, z + h(x))]

= Bz +Bh(x) +G(x, z + h(x))−Dh(x)[Ax+ F (x, z + h(x))],

(2.42)

where y = z + h(x).

From (2.41) we have

Bh(x) = Dh(x)[Ax+ F (x, h(x))]−G(x, h(x)). (2.43)

Substituting equation (2.43) into (2.42) gives

ż = Bz +Dh(x)[Ax+ F (x, h(x))]−G(x, h(x)) +G(x, z + h(x))−Dh(x)[Ax+ F (x, z + h(x))]

= Bz +Dh(x)[Ax+ F (x, h(x))− Ax− F (x, z + h(x))] +G(x, z + h(x))−G(x, h(x))

= Bz +Dh(x)[F (x, h(x))− F (x, z + h(x))] +G(x, z + h(x))−G(x, h(x)).

If we define N(x, z) = Dh(x)[F (x, h(x))−F (x, z+h(x)))]+G(x, z+h(x))−G(x, h(x)) then
we have

ż = Bz +N(x, z). (2.44)

The estimate of N(x, z) is given by

|N(x, z)| = |Dh(x)[F (x, h(x))− F (x, z + h(x))] +G(x, z + h(x))−G(x, h(x))|
≤ |Dh(x)||F (x, h(x))− F (x, z + h(x))|+ |G(x, z + h(x))−G(x, h(x))|
≤ p1k(ε)[|x− x|+ |h(x)− z − h(x)|] + k(ε)[|x− x|+ |z + h(x)− h(x)|]
= p1k(ε)|z|+ k(ε)|z|
= (p1 + 1)k(ε)|z|,

where |Dh(x)| ≤ p1.

Taking δ(ε) = (p1 + 1)k(ε), clearly δ(ε) is continuous function such that δ(0) = 0. Hence,

|N(x, z)| ≤ δ(ε)|z|. (2.45)
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From (2.44) we have

z(t) = eBtz(0) + eBt
∫ t

0

e−BsN(x(s), z(s))ds.

Using (2.31) we obtain

|z(t)| = |eBtz(0) +

∫ t

0

eB(t−s)N(x(s), z(s))ds|

≤ |eBtz(0)|+ |
∫ t

0

eB(t−s)N(x(s), z(s))ds|

≤ Ce−βt|z(0)|+
∫ t

0

Ce−β(t−s)δ(ε)|z(s)|ds

≤ Ce−βt|z(0)|+ Cδ(ε)

∫ t

0

e−β(t−s)|z(s)|ds.

By the Gronwall inequality we have

|z(t)| ≤ Ce−βt|z(0)| exp(Cδ(ε)

∫ t

0

ds)

≤ Ce−βt|z(0)|eCδ(ε)t

= Ce−(β−Cδ(ε))t|z(0)|.

Taking ε small enough so that β − Cδ(ε) > 0, and C1 = C gives

|z(t)| ≤ C1e
−µt|z(0)|,

where µ = β − Cδ(ε). Hence,

|y(t)− h(x(t))| ≤ C1e
−µt|y(0)− h(x(0))|.

�

This complete the proof of the Lemma 2.2.1.

Lemma 2.2.2

Let A be a real matrix whose eigenvalues have zero real parts. By a change of basis A can be
put in the form A1 + A2, where A2 is nilpotent,

|eA1tX| = |X| (2.46)

and

|A2X| ≤ (β/4)|X|. (2.47)
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β is defined in (2.31).

Proof

Suppose that A has real eigenvalues λj, j = 1, · · · , k, and complex eigenvalues λj = aj+ibj and
λ̄j = aj− ibj, j = k+1, · · · , n. Then by the Jordan canonical form theorem there exists a basis
of generalized eigenvectors or a linear transformation T that converts A into the canonical form.
For simplicity, we consider A with one Jordan block corresponding to a multiple real eigenvalue
and one Jordan block corresponding to a multiple complex eigenvalue. This two blocks capture
all possible behavior relevant to this lemma.

A =



0 1 0 0 · · · 0 0 0

0 0
. . . 0 · · · 0 0
. . . 1

...
... 0

B I2 O

O · · · . . . I2
O · · · O B


with

B =

[
0 −b
b 0

]
, O =

[
0 0
0 0

]
and I2 =

[
1 0
0 1

]
.

Then A may be split into

A1 =



0 0 0 0 · · · 0 0 0

0 0
. . . 0 · · · 0 0
. . . 0

...
... 0

B O

O · · · . . . O
O · · · O B


and A2 =



0 1 0 0 · · · 0 0 0

0 0
. . . 0 · · · 0 0
. . . 1

...
... 0

O I2 O

O · · · . . . I2
O · · · O O


,

such that A = A1 + A2, where A2 is a nilpotent matrix. It follows that
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eA1tX =



x1
...
xk

xk+1 cos bt− xk+2 sin bt
xk+1 sin bt+ xk+2 cos bt

...
xn−1 cos bt− xn sin bt
xn−1 sin bt+ xn cos bt


and

|eA1tX| = [x2
1 + · · ·+ x2

k + (xk+1 cos bt− xk+2 sin bt)2 + · · ·+ (xn−1 sin bt+ xn cos bt)2]1/2

= [x2
1 + · · ·+ x2

k + x2
k+1 cos2 bt+ x2

k+1 sin2 bt+ · · ·+ x2
n cos2 bt+ x2

n sin2 bt]1/2

= [x2
1 + · · ·+ x2

k + x2
k+1(cos2 bt+ sin2 bt) + · · ·+ x2

n(cos2 bt+ sin2 bt)]1/2

= [x2
1 + x2

2 + · · ·+ x2
k + x2

k+1 · · ·+ x2
n−1 + x2

n]
1/2

= |X|.

�

Next consider A2. In the standard basis of Rn

X = (x1, · · · , xn)

and
Y = A2X = (x2, · · · , xk1 , xk1+2, · · · , xn, 0, 0).

Let us introduce a new basis in which vector X is given by

X
′
=


x

′

1 = α1x1,

...

x
′

n = αnxn,

and Y is given by
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Y
′
=



y
′

1 = α1y1,

...

y
′

k−1 = αk−1yk−1,

y
′

k = αkyk,

y
′

k+1 = αk+1yk+1,

...

y
′

n−2 = αn−2yn−2,

y
′

n−1 = αn−1yn−1,

y
′

n = αnyn,

=



y
′

1 = α1x2,

...

y
′

k−1 = αk−1xk,

y
′

k = αkxk+2,

y
′

k+1 = αk+1xk+3,

...

y
′

n−2 = αn−2xn,

y
′

n−1 = 0,

y
′

n = 0.

Therefore

|Y ′| = [y
′2

1 + · · ·+ y
′2

k−1 + y
′2

k + y
′2

k+1 + · · ·+ y
′2

n−2 + y
′2

n−1 + y
′2

n ]1/2

= [α1
1x

2
2 + · · ·+ α2

k−1x
2
k + α2

kx
2
k+2 + α2

k+1x
2
k+3 + · · ·+ α2

n−2x
2
n]

1/2

= [
α2

1

α2
2

x
′2

2 + · · ·+
α2
k−1

α2
k

x
′2

k +
α2
k

α2
k+2

x
′2

k+2 +
α2
k+1

α2
k+3

x
′2

k+3 + · · ·+
α2
n−2

α2
n

x
′2

n ]1/2.

Taking

α1 =
1

4
, α2 =

1

β
, α3 =

4

β2
, · · · , αk−1 =

4k−3

βk−2
, αk =

4k−2

βk−1

and

αk+1 = αk+2 =
4k+1

βk+2
, αk+3 = αk+4 =

4k+2

βk+3
· · · ,

αn−2 = αn−3 =
4n−2

βn−1
, αn−1 = αn =

4n−1

βn
.

We have

|Y ′| = |A2X
′| = β

4
[x

′2

2 + · · ·+ x
′2

k + x
′2

k+2 + · · ·+ x
′2

n ]1/2,

≤ β

4
|X ′|

(2.48)

and still
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|eA1tX
′| = [α2

1x
2
1 + · · ·+ α2

kx
2
k + α2

k+1(xk+1 cos bt− xk+2 sin bt)2 + · · ·
+ α2

n(xn−1 sin bt+ xn cos bt)2]1/2

= [
α2

1

α2
1

x
′2

1 + · · ·+ α2
k

α2
k

x
′2

k + α2
k+1(

1

αk+1

x
′

k+1 cos bt− 1

αk+2

x
′

k+2 sin bt)2+

· · ·+ α2
n(

1

αn−1

x
′

n−1 sin bt+
1

αn
x

′

n cos bt)2]1/2

= [x
′2

1 + · · ·+ x
′2

k +
α2
k+1

α2
k+1

(x
′

k+1 cos bt− x
′

k+2 sin bt)2+

· · ·+ α2
n

α2
n

(x
′

n−1 sin bt+ x
′

n cos bt)2]1/2

= [x
′2

1 + · · ·+ x
′2

k + x
′2

k+1(cos2 bt+ sin2 bt) + · · ·+ x
′2

n (cos2 bt+ sin2 bt)]1/2

= [x
′1

1 + · · ·+ x
′2

k + x
′2

k+1 + · · ·+ x
′2

n ]1/2

= |X ′|,

(2.49)

since αk+1 = αk+2 and αn−1 = αn. �

Proof of theorem 2.2.1

(a)Suppose that the zero solution of (2.39) is unstable. Let u(t) be a solution of (2.39). Then
there exists an ε > 0 such that for every δ > 0 there exists u0 such that ‖u0‖ < δ and there is
tδ such that ‖u(tδ)‖ ≥ ε. Let (x(t), y(t)) be a solution of (2.1) such that x(t) = u(t, u0) and
y(t) = h(u(t, u0)) for t > 0 with u0 = u(0). Then given δ > 0. We have

‖(x(tδ), y(tδ))‖2 = (u(tδ))
2 + (h(u(tδ)))

2

≥ ε2 + (h(u(tδ)))
2

≥ ε2.

Thus, there exists an ε > 0 such that for every δ > 0 there exists tδ such that ‖(x(tδ), y(tδ))‖ ≥ ε
whenever ‖(x0, y0)‖ < δ, with x(0) = x0 and y(0) = y0. It follows that the zero solution of (2.1)
is unstable.

(b)We assume that the zero solution of (2.39) is stable and prove that (2.40) holds where
(x(t), y(t)) is a solution of (2.16) with |(x(0), y(0))| sufficiently small. Since F and G are equal
to f and g in a neighborhood of the origin, this holds for (2.1) and proves Theorem 2.2.1 [1].

The proof is divided into two steps. In step 1, given a solution u(t) of (2.39). We prove the
existence of a solution (x(t), y(t)) of (2.16) exponentially close to u(t).

In step 2, using the Invariance of Domain Theorm [8, 9], we show that the mapping which relate
small solutions of (2.39) to that of (2.16) is a homeomorphism and hence we show the reverse
of step 1 from which (2.40) follows.
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Step 1

Let u0 ∈ Rn and z0 ∈ Rm with |(u0, z0)| sufficiently small. If u(t) is a solution of (2.39), with
u(0) = u0 then we have to prove the existence of a solution (x(t), y(t)) of (2.16) such that
y(0)− h(x0) = z0, where x0 = x(0), and x(t)− u(t), y(t)− h(u(t)) are exponentially small as
t→∞.

Indeed, let (x(t), y(t)) be a solution of (2.16) and u(t) a solution (2.39). Note that if u(0) is
sufficiently small then

u̇ = Au+ F (u, h(u)), (2.50)

since F is equal to f in the neighborhood of the origin. Let z(t) = y(t) − h(x(t)) and φ(t) =
x(t)− u(t) then using the proof of Lemma 2.2.1 we have

ż = Bz +N(φ+ u, z) (2.51)

and

φ̇ = ẋ− u̇

= Ax+ F (x, y)− Au− F (u, h(u))

= A[φ+ u] + F (φ+ u, z + h(φ+ u))− Au− F (u, h(u))

= Aφ+ Au+ F (φ+ u, z + h(φ+ u))− Au− F (u, h(u))

= Aφ+ F (φ+ u, z + h(φ+ u))− F (u, h(u)),

where x = φ+ u and y = z + h(φ+ u).

Defining R(φ, z) = F (φ+ u, z + h(φ+ u))− F (u, h(u)), we can write

φ̇ = Aφ+R(φ, z). (2.52)

We formulate (2.51) and (2.52) as a fixed point problem. For a > 0, K > 0 let X be the set of
continuous function φ : [0,∞) → Rn with |φ(t)eat| ≤ K for all t ≥ 0.

If we define ‖φ‖ = sup {|φ(t)eat| : t ≥ 0} then X is a complete space (the proof is similar to
that of the set of Lipschitz functions in theorem 2.1.2). Let (u0, z0) be sufficiently small and let
u(t) be the solution of (2.50) with u(0) = u0. Given φ ∈ X. Let z(t) be the solution of (2.51)
with z(0) = z0.

Using the fact that A can be put in the form A = A1 + A2, where A1, A2 satisfy (2.46) and
(2.47) respectively, we obtain

φ̇ = Aφ+R(φ, z)

= (A1 + A2)φ+R(φ, z)

= A1φ+ A2φ+R(φ, z),
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so that

φ(t) = eA1tφ(0) + eA1t

∫ t

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds (2.53)

is a solution of (2.52).

Since |φ(t)eat| ≤ K ⇔ |φ(t)| ≤ Ke−at, we have |φ(t)| → 0 as t→∞. Hence, taking the limit
as t→∞ in (2.53) gives

lim
t→∞

φ(t) = lim
t→∞

eA1t

[
φ(0) + lim

t→∞

∫ t

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds

]
,

0 = lim
t→∞

eA1t

[
φ(0) +

∫ ∞

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds

]
,

0 = φ(0) +

∫ ∞

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds,

thus,

φ(0) = −
∫ ∞

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds. (2.54)

Substituting (2.54) into (2.53) gives

φ(t) = −eA1t

∫ ∞

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds+ eA1t

∫ t

0

e−A1s[A2φ(s) +R(φ(s), z(s))]ds

= −eA1t

∫ ∞

t

e−A1s[A2φ(s) +R(φ(s), z(s))]ds

= −
∫ ∞

t

e−A1(t−s)[A2φ(s) +R(φ(s), z(s))]ds.

Let T : X → X be defined by

(Tφ)(t) = −
∫ ∞

t

e−A1(t−s)[A2φ(s) +R(φ(s), z(s))]ds. (2.55)

We solve (2.55) by means of the contraction mapping principle. If φ is a fixed point of T then
x(t) = u(t) + φ(t), y(t) = z(t) + h(x(t)) is a solution of (2.16).

By appropriately changing the neighborhood on which we operate we may fix K = 1 and 2a = β
[1].
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Lemma 2.2.3

There exist a constant C and a continuous function δ(ε), with δ(ε) → 0 as ε → 0, such that if
φ1, φ2 ∈ Rn with |φi| ≤ 1 for i = 1, 2 and z1, z2 ∈ Rm with |zi| < ε for i = 1, 2 then

|N(φ1, z1)−N(φ2, z2)| ≤ C[|z1||φ1 − φ2|+ δ(ε)|z1 − z2|]. (2.56)

Proof

Using the bounds on F , G and h, let us consider

N(φ, z) = h′(φ)[Φ(φ, z)] + Ψ(φ, z),

where Φ(φ, z) = F (φ, h(φ)) − F (φ, z + h(φ)) and Ψ(φ, z) = G(φ, z + h(φ)) − G(φ, h(φ)).
Therefore for i = 1, 2, writing Φi for Φ(φi, zi) and Ψi for Ψ(φi, zi) we have

N(φ1, z1)−N(φ2, z2) = h′(φ1)Φ1 − h′(φ2)Φ2 + Ψ1 −Ψ2

= (h′(φ1)− h′(φ2))Φ1 + h′(φ2)[Φ1 − Φ2] + Ψ1 −Ψ2.

It follows that

|N(φ1, z1)−N(φ2, z2)| ≤ |h′(φ1)− h′(φ2)||Φ1|+ |h′(φ2)||Φ1 − Φ2|+ |Ψ1 −Ψ2|.

Since h is a Lipschitz function with Lipschitz constant p1 and |h(φ)| < ε we have

|h′(φ2)| ≤ p1.

h′ is of class C1. Therefore by the mean value Theorem, we have

h′(φ1)− h′(φ2) ≤ h′′(ξ)(φ1 − φ2).

Hence, for |φ1|, |φ2| ≤ 1
|h′(φ1)− h′(φ2)| ≤ C1|φ1 − φ2|.

Where
C1 = sup

|ξ|≤1

|h′′
(ξ)|.

The estimate of Φ1 is given by

|Φ1| ≡ |Φ(φ1, z1)| = |F (φ1, h(φ1))− F (φ1, z1 + h(φ1))|
≤ k(ε)|z1|.

Let us give an alternative expression of Ψ(φ, z).

Ψ(φ, z) =

∫ 1

0

d

dt
G(φ, tz + h(φ))dt

= z

∫ 1

0

G.2(φ, tz + h(φ))dt,
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where G.2 is defined the same way as F.2 in (2.29). Then

Ψ1 −Ψ2 = z1

∫ 1

0

G.2(φ1, tz1 + h(φ1))dt− z2

∫ 1

0

G.2(φ2, tz2 + h(φ2))dt

= z1

∫ 1

0

(G.2(φ1, tz1 + h(φ1))−G.2(φ2, tz2 + h(φ2))) dt+ (z1 − z2)

∫ 1

0

G.2(φ2, tz2 + h(φ2))dt.

Hence,

|Ψ1−Ψ2| ≤ |z1|
∫ 1

0

|G.2(φ1, tz1+h(φ1))−G.2(φ2, tz2+h(φ2))|dt+|z1−z2|
∫ 1

0

|G.2(φ2, tz2+h(φ2))|dt.

G.2 can be expanded in Taylor’s formula up to one term as follows:

G.2(φ1, tz1+h(φ1))−G.2(φ2, tz2+h(φ2)) = G.21(ζ1, ζ2)(φ1−φ2)+G.22(ζ1, ζ2)(tz1+h(φ1)−tz2−h(φ2)),

where

G.21(ζ1, ζ2) =

[(
∂2Gi

∂uk∂φj

)
|(ζ1,ζ2)

]
and G.22(ζ1, ζ2) =

[(
∂2Gi

∂uk∂ul

)
|(ζ1,ζ2)

]
,

with 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m and u = tz + h(φ). If |φ| ≤ 1 and |u| < 2ε then the second
derivatives may be estimated by their suprema with respect to (φ, u).

Let

C2 = sup
|φ|≤1, |u|<2ε

{∣∣∣∣∣
(

∂2Gi

∂uk∂φj

)
|(ζ1,ζ2)

∣∣∣∣∣ ,
∣∣∣∣∣
(

∂2Gi

∂uk∂ul

)
|(ζ1,ζ2)

∣∣∣∣∣ : 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ m

}
.

It follows that

|G.2(φ1, tz1 + h(φ1))−G.2(φ2, tz2 + h(φ2))| ≤ C2[|φ1 − φ2|+ |tz1 + h(φ1)− tz2 − h(φ2)|]
≤ C2[|φ1 − φ2|+ |tz1 − tz2|+ |h(φ1)− h(φ2)|]
≤ C2[|φ1 − φ2|+ t|z1 − z2|+ p1|φ1 − φ2|]
≤ C2[(1 + p1)|φ1 − φ2|+ |z1 − z2|],

since 0 ≤ t ≤ 1 and h is Lipschitz with Lipschitz constant p1. From the proof of (2.23) and
using the fact that G is defined the same way as F , we have

|G.2(φ2, tz2 + h(φ2))| ≤ k(ε).
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Hence,

|Ψ1 −Ψ2| ≤ |z1|C2[(1 + p1)|φ1 − φ2|+ |z1 − z2|] + k(ε)|z1 − z2|
= C2(1 + p1)|z1||φ1 − φ2|+ (C2|z1|+ k(ε))|z1 − z2|
= C|z1||φ1 − φ2|+ δ(ε)|z1 − z2|,

where C is some positive constant and |z1| < ε and δ(ε) → 0 as ε→ 0.

Since F and G are defined the same way, following similar reasoning as for Ψ(φ, z) we can
estimate Φ1 − Φ2 by the same quantity as Ψ1 −Ψ2. We therefore have

|Φ1 − Φ2| ≤ C|z1||φ1 − φ2|+ δ(ε)|z1 − z2|

and hence,

|N(φ1, z1)−N(φ2, z2)| ≤ |h′(φ1)− h′(φ2)||Ψ1|+ |h′(φ2)||Ψ1 −Ψ2|+ |Ψ1 −Ψ2|
≤ C1k(ε)|z1||φ1 − φ2|+ (p1 + 1)C[|z1||φ1 − φ2|+ δ(ε)|z1 − z2|]
≤ C[|z1||φ1 − φ2|+ δ(ε)|z1 − z2|].

Note that here, for the convenience, h′ denotes the Jacobian of h �.

Lemma 2.2.4

There exists a continuous function δ(ε) with δ(0) = 0 such that if φ1, φ2 ∈ Rn, with |φi| ≤ 1 for
i = 1, 2 and z1, z2 ∈ Rm with |zi| < ε for i = 1, 2, then

|R(φ1, z1)−R(φ2, z2)| ≤ δ(ε)[|z1 − z2|+ |φ1 − φ2|]. (2.57)

Defining R(φ, z) = F (u+ φ, z + h(u+ φ))− F (u, h(u)) we get

|R(φ, z)| = |F (u+ φ, z + h(u+ φ))− F (u, h(u))|
≤ k(ε)[|u+ φ− u|+ |z + h(u+ φ)− h(u)|]
≤ k(ε)[|φ|+ |z|+ |h(u+ φ)− h(u)|]
≤ k(ε)[|φ|+ |z|+ p1|u+ φ− u|]
= k(ε)[|φ|+ |z|+ p1|φ|]
= k(ε)[(1 + p1)|φ|+ |z|]
≤ k(ε)[(1 + p1)|φ|+ (1 + p1)|z|]
= (1 + p1)k(ε)[|φ|+ |z|]
≤ δ(ε)[|φ|+ |z|].

It follows that
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|R(φ1, z1)−R(φ2, z2)| = |F (u+ φ1, z1 + h(u+ φ1))− F (u+ φ2, z2 + h(u+ φ2))|
≤ k(ε)[|u+ φ1 − u− φ2|+ |z1 + h(u+ φ1)− z2 − h(u+ φ2)|]
= k(ε)[|φ1 − φ2|+ |z1 − z2|+ |h(u+ φ1)− h(u+ φ2)|]
≤ k(ε)[|φ1 − φ2|+ |z1 − z2|+ p1|u+ φ1 − u− φ2|]
= k(ε)[|φ1 − φ2|+ |z1 − z2|+ p1|φ1 − φ2|]
= k(ε)[(1 + p1)|φ1 − φ2|+ |z1 − z2|]
≤ k(ε)[(1 + p1)|φ1 − φ2|+ (1 + p1)|z1 − z2|]
= (1 + p1)k(ε)[|φ1 − φ2|+ |z1 − z2|]
≤ δ(ε)[|φ1 − φ2|+ |z1 − z2|].

�

After the proof of Lemma 2.2.4, we come back to the proof of Theorem 2.2.1. From (2.51) we
have

z(t) = eBtz0 + eBt
∫ t

0

e−BsN(φ(s), z(s))ds.

Then

|z(t)| ≤ |eBtz0|+
∫ t

0

|eB(t−s)||N(φ(s), z(s))|ds

≤ C|z0|e−βt + Cδ(ε)

∫ t

0

e−β(t−s)|z(s)|ds,

where we have used (2.31) and (2.56). By Gronwall’s inequality

|z(t)| ≤ C|z0|e−β1t, (2.58)

where β1 = β − Cδ(ε).

The inequality (2.58) means that z(t) is exponentially small. Therefore also by Lemma 2.2.1
y(t)− h(u(t)) is exponentially small as in the second equation in (2.40).

From (2.55), if ε is sufficiently small we show that T is a mapping of X into X. Indeed,
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|(Tφ)(t)| ≤
∫ ∞

t

|eA1(t−s)[A2φ(s) +R(φ(s), z(s))]|ds

≤
∫ ∞

t

|A2φ(s) +R(φ(s), z(s))|ds

≤
∫ ∞

t

(|A2φ(s)|+ |R(φ(s), z(s))|)ds

≤
∫ ∞

t

|A2φ(s)|ds+

∫ ∞

t

|R(φ(s), z(s))|ds

≤
∫ ∞

t

β

4
|φ(s)|ds+

∫ ∞

t

k(ε)[|φ(s)|+ |z(s))|]ds

≤ β

4

∫ ∞

t

e−asds+ k(ε)

∫ ∞

t

e−asds+ k(ε)

∫ ∞

t

C|z0|e−β1sds

≤ e−at

2
+ k(ε)

∫ ∞

t

(e−as + C|z0|e−β1s)ds

≤ e−at

2
+
k(ε)

a
e−at + C

k(ε)

β1

|z0|e−β1t

≤ e−at

2
+
k(ε)

a
e−at + C

k(ε)

β1

|z0|e−2ateCk(ε)t

≤ e−at

2
+
e−at

2

[
2k(ε)

a
+

2k(ε)|z0|
β1eat

eCk(ε)t
]
.

(2.59)

For sufficiently small ε the expression in the bracket is less than 1. Therefore

|(Tφ)(t)| ≤ e−at. (2.60)

Where we have used (2.46),(2.47),(2.56),(2.57) and (2.58). Hence T maps X into X. Now we
show that T is a contraction mapping on X.

Let φ1, φ2 ∈ X and let z1, z2 be the corresponding solutions of (2.51) with zi(0) = z0 for i = 1, 2.
We first estimate W (t) = z1(t)− z2(t).

From (2.51) and (2.56) we have

W (t) =

∫ t

0

eB(t−s)(N(φ1(s), z1(s))−N(φ2(s), z2(s)))ds.

Therefore
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|W (t)| ≤
∫ t

0

|eB(t−s)||(N(φ1(s), z1(s))−N(φ2(s), z2(s)))|ds

≤
∫ t

0

Ce−β(t−s)[C|z1(s)||φ1(s)− φ2(s)|+ δ(ε)|z1(s)− z2(s)|]ds

≤ C̃

∫ t

0

e−β(t−s)|z0|e−β1s|φ1(s)− φ2(s)|ds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

≤ C̃|z0|
∫ t

0

e−β(t−s)eβ1s‖φ1 − φ2‖e−asds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖
∫ t

0

e−β(t−s)eβ1se−asds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖e−βt
∫ t

0

eβseβ1se−asds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖e−βt
∫ t

0

eβse−βseCδ(ε)e−asds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖e−βt
∫ t

0

e−(a−Cδ(ε))sds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖e−βt
∫ t

0

e−τεsds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

≤ C̃|z0|‖φ1 − φ2‖e−βt
∫ ∞

0

e−τεsds+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C̃|z0|‖φ1 − φ2‖e−βt
1

τε
+ Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

=
C̃|z0|
τε

‖φ1 − φ2‖e−βt + Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds

= C1‖φ1 − φ2‖e−βt + Cδ(ε)

∫ t

0

e−β(t−s)|W (s)|ds,

where C1 =
C̃|z0|
τε

is a constant and τε = a− Ck(ε).

Then by Gronwall’s inequality

|W (t)| = |z1(t)− z2(t)| ≤ C1‖φ1 − φ2‖e−βteCδ(ε)t

= C1‖φ1 − φ2‖e−(β−Cδ(ε))t

= C1‖φ1 − φ2‖e−β1t.

(2.61)

Using (2.31) and (2.61) for ε sufficiently small, we have from (2.55)

(Tφ1)(t)− (Tφ2)(t) =

∫ ∞

t

eA1(t−s)[A2(φ2(s)− φ1(s)) +R(φ2(s), z2(s))−R(φ1(s), z1(s))]ds.
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Then

|(Tφ1)(t)− (Tφ2)(t)| ≤
∫ ∞

t

|eA1(t−s)[A2(φ2(s)− φ1(s)) +R(φ2(s), z2(s))−R(φ1(s), z1(s))]|ds

≤
∫ ∞

t

|A2(φ2(s)− φ1(s))|ds+

∫ ∞

t

|R(φ2(s), z2(s))−R(φ1(s), z1(s))|ds

≤
∫ ∞

t

β

4
|φ2(s)− φ1(s)|ds+

∫ ∞

t

δ(ε)[|φ1(s)− φ2(s)|+ |z1(s)− z2(s)|]ds

≤ β

4
‖φ1 − φ2‖

∫ ∞

t

e−asds+ δ(ε)

(∫ ∞

t

(|φ1(s)− φ2(s)|ds+ |W (s)|) ds
)

≤ ‖φ1 − φ2‖
(
e−at

2
+ δ(ε)

(∫ ∞

t

e−asds+ C1

∫ ∞

t

e−β1sds

))
= ‖φ1 − φ2‖

[
e−at

2
+ δ(ε)

∫ ∞

t

(e−as + C1e
−β1s)ds

]
,

= ‖φ1 − φ2‖e−at
[
1

2
+ δ(ε)

(
1

a
+
C1

β1

e−(a−Cδ(ε))t
)]

.

It follows that

|(Tφ1)(t)− (Tφ2)(t)|eat ≤ ‖φ1 − φ2‖
[
1

2
+ δ(ε)

(
1

a
+
C1

β1

e−(a−Cδ(ε))t
)]

.

Hence,
‖Tφ1 − Tφ2‖ ≤ α‖φ1 − φ2‖,

where
‖Tφ1 − Tφ2‖ = sup

{
|(Tφ1)(t)− (Tφ2)(t)|eat : t ≥ 0

}
and

α =

[
1

2
+ δ(ε)

(
1

a
+
C1

β1

δ(ε)e−(a−Cδ(ε))t
)]

< 1,

provided ε sufficiently small.

This shows that T is a contraction on X. Therefore it has a fixed point. Suppose that φ(t) is
the fixed point of T , then |φ(t)| ≤ e−at.

Next we have to prove the converse. That is for any (x0, y0) sufficiently small there is u(t)
solution on the centre manifold such that (2.40) holds. For this we use in step 2 the Invariance
of Domain Theorem [9] or [8].

Step 2

Let U be an open neighborhood of the origin in Rn+m and (u0, z0) ∈ U , where u0 = u(0) and
z0 = y(0) − h(x(0)). We define a mapping S of U into Rn+m by S(u0, z0) = (x0, z0) where
x0 = u0 + φ(0). We show that S is a homeomorphism. Repeating the above analysis, one can
show that T : X ×U → X is a continuous uniform contraction. This proves that the fixed point
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depends continuously on u0 and z0. Since φ depends continuously on u0 and z0, S is continuous
[1].

We now show that S is one-to-one, so that by Invariance of Domain Theorem [8, 9], S is an
open mapping. Hence, a homeomorphism. S(0, 0) = 0 proves that S is a full neighborhood of
the origin.

Indeed, given (u0, z0) and (u1, z1) in U we prove that if S(u0, z0) = S(u1, z1) then (u0, z0) =
(u1, z1). In other words, we have to prove that if u0 + φ0(0) = u1 + φ1(0) then u0 = u1 and
φ0(0) = φ1(0).

Let u0 + φ0(0) = u1 + φ1(0). Then the initial values for x and y are the same. Using the fact
that solution (x(t), y(t)) of (2.16) is unique then u0(t) + φ0(t) = u1(t) + φ1(t) for all t ≥ 0,
where ui(t) is the solution of (2.50) with ui(0) = ui [1].

Hence,
u0(t)− u1(t) = φ1(t)− φ0(t).

From (2.50) we have

u̇ = A1u+ A2u+ F (u, h(u)). (2.62)

Taking

u = eA1tv ⇒ |u| = |eA1tv| = |v| and u̇ = A1u+ eA1tv̇. (2.63)

Using (2.63), (2.62) gives

v̇ = A2v + e−A1tF (eA1tv, h(eA1tv)). (2.64)

Then

d

dt
(v1 − v0) = A2(v1 − v0) + e−A1t[F (eA1tv1, h(e

A1tv1))− F (eA1tv0, h(e
A1tv0))]

〈 d
dt

(v1−v0), v1−v0〉 = 〈A2(v1−v0), v1−v0〉+〈e−A1t[F (eA1tv1, h(e
A1tv1))−F (eA1tv0, h(e

A1tv0))], v1−v0〉

1

2

d

dt
〈v1−v0, v1−v0〉 = 〈A2(v1−v0), v1−v0〉+〈e−A1t[F (eA1tv1, h(e

A1tv1))−F (eA1tv0, h(e
A1tv0))], v1−v0〉

1

2

d

dt
|v1−v0|2 ≥ −|A2(v1−v0)||v1−v0|−|e−A1t[F (eA1tv1, h(e

A1tv1))−F (eA1tv0, h(e
A1tv0))]||v1−v0|

1

2

d

dt
|v1 − v0|2 ≥ −β

4
|v1 − v0|2 − k(ε)[|v1 − v0|+ p1|v1 − v0|]|v1 − v0|

1

2

d

dt
|v1 − v0|2 ≥ −

(
β

4
+ k(ε)(1 + p1)

)
|v1 − v0|2
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1

2

d

dt
|v1 − v0|2 ≥ −

(
β

4
+ δ(ε)

)
|v1 − v0|2

1

2

d

dt
ln |v1 − v0|2 ≥ −

(
β

4
+ δ(ε)

)
d

dt
ln |v1 − v0| ≥ −

(
β

4
+ δ(ε)

)
ln
|v1(t)− v0(t)|
|v1 − v0|

≥ −
(
β

4
+ δ(ε)

)
t

|v1(t)− v0(t)| ≥ |v1 − v0|e−(β
4
+δ(ε))t

|v1(t)− v0(t)|e(
β
4
+δ(ε))t ≥ |v1 − v0|.

Now using the first implication in (2.63) we have

|u1(t)− u0(t)|e(
β
4
+δ(ε))t ≥ |u1 − u0|,

since we assumed that u1(t)− u0(t) = φ1(t)− φ0(t), we have

|φ1(t)− φ0(t)|e(
β
4
+δ(ε))t ≥ |u1 − u0|.

It follows that
|φ1(t)− φ0(t)|e

β
2
t ≥ |u1 − u0|e(

β
4
−δ(ε))t.

Then from (2.53), |φ1(t) − φ0(t)|e
β
2
t is bounded whereas |u1 − u0|e(

β
4
−δ(ε))t is diverging for ε

small enough. Therefore we have a contraction, unless u0 = u1.

2.3 Approximation of the Centre Manifold

The computation of the centre manifold requires solving the following system

Dh(x)[Ax+ f(x, h(x))]−Bh(x)− g(x, h(x)) = 0,

h(0) = 0,

Dh(0) = 0.

(2.65)

System (2.65) is in general impossible to solve. In the next Theorem we present a method of
approximation of the centre manifold to any degree of accuracy by a function of class C2.

Given C2-functions φ : Rn → Rm in the neighborhood of the origin and using (2.41) we define

(Mφ)(x) = Dφ(x)[Ax+ f(x, φ(x))]−Bφ(x)− g(x, φ(x)).

Theorem 2.3.1

Suppose that φ(0) = 0, Dφ(0) = 0 and that (Mφ)(x) = O(|x|q) as x→ 0, where q > 1. Then
as x→ 0

|h(x)− φ(x)| = O(|x|q).
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Proof

Let θ : Rn → Rm be a continuously differentiable function with compact support such that
θ(x) = φ(x) for |x| small. Consider

N(x) = Dθ(x) [Ax+ F (x, θ(x))]−Bθ(x)−G(x, θ(x)), (2.66)

where F and G are defined in theorem 2.1.2. Note that N(x) = O(|x|q) as x → 0 since
θ(x) = φ(x) for |x| small.

For a given K > 0, let YK = {z : z + θ ∈ X, |z(x)| ≤ K|x|q for all x ∈ Rn}, where X is the
set of Lipschitz functions h : Rn → Rm defined in lemma 2.1.1. With the sup norm and the
same Lipschtiz constant YK is a subset of C(Rn,Rm) which is closed. Indeed, let z ∈ ȲK , the
closure of YK . There are (zn) ∈ YK such that zn → z as n→∞. Hence, given an ε > 0. There
is a natural number N such that for n ≥ N we have

‖zn − z‖ = sup {|zn(x)− z(x)| : x ∈ Rn} < ε.

Now we have to show that z ∈ YK . Since zn ∈ YK for n = 1, 2, · · · we have |zn(x)| ≤ K|x|q
for x ∈ Rn and q > 1. Letting n→∞ gives |z(x)| ≤ K|x|q for x ∈ Rn and q > 1. This shows
that z ∈ YK . Since z ∈ ȲK was arbitrary, this proves that YK is closed in C(Rn,Rm).

Let YK be the domain of a mapping S defined by Sz = T (z + θ) − θ, where T : X → X is
the contraction mapping with h as fixed point defined in theorem 2.1.2. We see that Sz + θ =
T (z + θ) ∈ X. So it is enough to show that |Sz(x)| ≤ K|x|q. That is, to prove theorem 2.3.1,
we have to show that Sz ∈ YK . In other words, we have to exhibit a positive K such that S
maps YK into YK . We first show that S is a contraction on YK . Using the fact that T is a
contraction mapping on X. For x0 ∈ Rn, z1 and z2 ∈ YK we have

|(Sz1)(x0)− (Sz2)(x0)| = |T (z1 + θ)(x0)− θ(x0)− T (z2 + θ)(x0) + θ(x0)|
= |T (z1 + θ)(x0)− T (z2 + θ)(x0)|
≤ q|(z1 + θ)(x0)− (z2 + θ)(x0)|
= q|z1(x0) + θ(x0)− z2(x0)− θ(x0)|
= q|z1(x0)− z2(x0)|
≤ q‖z1 − z2‖.

Consequently

‖Sz1 − Sz2‖ = sup {|(Sz1)(x0)− (Sz2)(x0)| : x0 ∈ Rn} ≤ q‖z1 − z2‖.

Hence, S is a contraction mapping on YK . Therefore there exists a unique point z̄ ∈ YK such
that Sz̄ = z̄. It follows that T (z̄+ θ)− θ = z̄ which implies T (z̄+ θ) = z̄+ θ. Therefore z̄+ θ is
a fixed point of T . Since T has a unique fixed point h on X and z̄ + θ ∈ X we have h = z̄ + θ.

To show the existence of a positive K such that S maps YK into YK , we first give another
formulation of S. For z ∈ YK let x(t, x0) be the solution of
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ẋ = Ax+ F (x, z(x) + θ(x)), x(0, x0) = x0. (2.67)

Using (2.17) and (2.22) we define

(T (z + θ))(x0) =

∫ 0

−∞
e−BsG(x(s, x0), z(x(s, x0)) + θ(x(s, x0)))ds.

From the definition of N(x) we draw θ̇(x) = Bθ(x) +G(x, θ(x)). Then, arguing as in (2.21) we
have

θ(x0) =

∫ 0

−∞
e−BsG(x(s, x0), θ(x(s, x0)))ds

= −
∫ 0

−∞
e−Bs[Bθ(x(s, x0))−

d

ds
θ(x(s, x0))]ds.

From (2.66) and (2.67), writing x for x(s, x0) we have

Bθ(x)− d

ds
θ(x) = Bθ(x)−Dθ(x)ẋ

= Bθ(x)−Dθ(x)[Ax+ F (x, z(x) + θ(x))]

= Dθ(x)[Ax+ F (x, θ(x))]−N(x)−G(x, θ(x))−Dθ(x)[Ax+ F (x, z(x) + θ(x))]

= −N(x)−G(x, θ(x)) +Dθ(x)[F (x, θ(x))− F (x, z(x) + θ(x))].

Therefore

θ(x0) =

∫ 0

−∞
e−Bs[N(x) +G(x, θ(x))−Dθ(x)[F (x, θ(x))− F (x, z(x) + θ(x))]]ds.

Hence,

(Sz)(x0) = T (z + θ)(x0)− θ(x0)

=

∫ 0

−∞
e−Bs

{
G(x, z + θ)−N(x)−G(x, θ) + θ

′
(x)[F (x, θ(x))− F (x, z(x) + θ(x))]

}
ds.

Taking Q(x, z) = G(x, z + θ) − N(x) − G(x, θ) + θ
′
(x)[F (x, θ(x)) − F (x, z(x) + θ(x))] and

writing x(s, x0) for x we have

(Sz)(x0) =

∫ 0

−∞
e−BsQ(x(s, x0), z(x(s, x0)))ds,

where x(t, x0) is the solution of (2.67).
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We now show the existence of K > 0 such that S maps YK into YK . We assume that θ was
chosen so that |θ(x)| ≤ ε for all x ∈ Rn. Since N(x) = O(|x|q) as x→ 0 there exists a constant
C1 > 0 such that

|N(x)| ≤ C1|x|q, x ∈ Rn (2.68)

and

|Q(x, z)| = |Q(x, 0) +Q(x, z)−Q(x, 0)|
≤ |Q(x, 0)|+ |Q(x, z)−Q(x, 0)|
= |N(x)|+ |Q(x, z)−Q(x, 0)|.

(2.69)

The estimate of |Q(x, z)−Q(x, 0)|, using (2.23), is given by

|Q(x, z)−Q(x, 0)| = |G(x, z + θ)−G(x, θ) +Dθ(x)[F (x, θ(x))− F (x, z(x) + θ(x))]|
≤ |G(x, z + θ)−G(x, θ)|+ |Dθ(x)||F (x, θ(x))− F (x, z(x) + θ(x))|
≤ k(ε)|z|+ p1k(ε)|z|
≤ (1 + p1)k(ε)|z| = δ(ε)|z|.

(2.70)

Using (2.68), (2.69) and (2.70) for z ∈ Y and x ∈ Rn we have

|Q(x, z)| ≤ C1|x|q + δ(ε)|z(x)|
≤ C1|x|q +Kδ(ε)|x|q

= (C1 +Kδ(ε))|x|q.
(2.71)

Using (2.31) and (2.71) for z ∈ YK we have

|(Sz)(x0)| = |
∫ 0

−∞
e−BsQ(x(s, x0), z(x(s, x0)))ds|

≤
∫ 0

−∞
|e−Bs||Q(x(s, x0), z(x(s, x0)))|ds

≤
∫ 0

−∞
Ceβs(C1 +Kδ(ε))|x(s, x0)|qds

≤ C(C1 +Kδ(ε))

∫ 0

−∞
eβs(M(r))q|x0|qe−qγsds

= C(C1 +Kδ(ε))(M(r))q|x0|q
∫ 0

−∞
e(β−qγ)sds

= C(C1 +Kδ(ε))(M(r))q(β − qγ)−1|x0|q,
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where x(t, x0) is the solution of (2.67), γ = r+2M(r)k(ε) and |x(t, x0)| ≤M(r)|x0|e−γt. M(r)
was defined in (2.32).

It follows that

|(Sz)(x0)| ≤ C(C1 + 2Kk(ε))(M(r))q(β − qγ)−1|x0|q, (2.72)

provided ε and r are small enough so that β − qγ > 0 [1].

We choose K large enough and ε small enough so that C(C1 +2Kk(ε))(M(r))q(β−qγ)−1 ≤ K.
Therefore

|(Sz)(x0)| ≤ K|x0|q.

This shows that Sz ∈ YK and since Sz + θ = T (z + θ) ∈ X we have |h(x)− θ(x)| = O(|x|q).

Since θ(x) = φ(x) for |x| small we have |h(x)− φ(x)| = O(|x|q) as |x| → 0, and this completes
the proof of the Theorem. �

2.4 Examples

In this section we give few examples to illustrate how the above theorems may be applied to non
linear systems.

Lemma 2.4.1

Let us consider the following equation

ẏ = ayα + o(|y|q), (2.73)

where y ∈ R, α ∈ N and q > α. If a < 0 and α is odd then (2.73) is asymptotically stable.

Proof

Let ẏ = yα(a + o(|1|). As a < 0 there exists a neighborhood N0 of the origin such that
a+ o(1) < 0. Let y0 ∈ N0 be an initial condition of (2.73).

If y0 > 0 then ẏ(t, y0) < 0 ⇒ y(t, y0) → 0 as t → ∞ and if y0 < 0 then ẏ(t, y0) > 0 ⇒
y(t, y0) → 0 as t→∞.

Hence in any case, y(t, y0) → 0 as t→∞. �

Example 2.4.1

Let us consider the following system:

ẋ = xy + ax3 + by2x ≡ f(x, y)

ẏ = −y + cx2 + dx2y ≡ g(x, y).
(2.74)
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We first put (2.74) in an appropriate form for the application of the theorems. The linearization
of (2.74) about the origin is given by

[
ẋ
ẏ

]
=

[
0 0
0 −1

]
+

[
xy + ax3 + bxy2

cx2 + dx2y

]
.

Since the eigenalues of the linear part are 0 and −1 then by Theorem 2.1.2, (2.74) has a local
centre manifold y = h(x). To approximate the centre manifold we take

h(x) = a1x
2 + a2x

3 + o(x4).

We set

(Mh)(x) = 0 ⇔ h′(x)[xh(x) + ax3 + bxh2(x)] + h(x)− cx2 − dx2h(x) = 0.

Hence,

(2a1x+3a2x
2+· · · )[a1x

3+a2x
4+ax3+ba2

1x
5+ba2

2x
7+2a1a2bx

6]+a1x
2+a2x

3−cx2−da1x
4−da2x

5 = 0,

so that
(a1 − c)x2 + a2x

3 + o(x4) = 0 ⇔ a1 = c, and a2 = 0.

Hence,
h(x) = cx2 + o(x4).

By theorem 2.2.1, the equation which determines the stability of the zero solution of (2.74) is
given by

u̇ = uh(u) + au3 + buh2(u)

= u(cu2 + o(u4)) + au3 + bu(cu2 + o(u4))2

= cu3 + au3 + bc2u5 + · · ·
= (a+ c)u3 + o(u5).

Thus, the zero solution of (2.74) is asymptotically stable if a+ c < 0 and unstable if a+ c > 0.
We cannot say anything about the stability when a + c = 0. In this case we have to obtain a
better approximation of the centre manifold.

Suppose a+ c = 0 and let h(x) = cx2 + ψ(x), where ψ(x) = o(x4). Therefore

(Mh)(x) = 0 ⇔ (2cx+ψ′(x))[xψ(x)+bc2x5+2bcx3ψ(x)+bxψ2(x)]+ψ(x)−cdx4−dx2ψ(x) = 0.

Let ψ(x) = wx4. Then

(Mh)(x) = 0 ⇔ (2cx+4wx3 + · · · )[wx5 +bc2x5 +2bcwx7 +bw2x9]+wx4−cdx4−dwx6 = 0,

(w − cd)x4 + o(x6) = 0 ⇔ ψ(x)− cdx4 = o(x6).
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Hence, ψ(x) = cdx4 + o(x6), and then

h(x) = cx2 + cdx4 + o(x6).

By theorem 2.2.1, the equation which determines the stability of the zero solution of (2.74) is
given by

u̇ = uh(u) + au3 + buh2(u)

= u(cu2 + cdu4 + o(u6)) + au3 + bu(cu2 + cdu4 + o(u6))2

= (cd+ bc2)u5 + o(u7).

Hence, in the case a+ c = 0, the zero solution of (2.74) is asymptotically stable if cd+ bc2 < 0
and unstable if cd + bc2 > 0. We cannot conclude anything about stability when cd + bc2 = 0.
Therefore we should still get a better approximation of the centre manifold. That is, suppose
a+ c = cd+ bc2 = 0 and let h(x) = cx2 + cdx4 + δ(x) where δ(x) = o(x6) then (Mh)(x) = 0
which is equivalent to

(2cx+ 4cdx3 + δ′(x))[xδ(x) + 2bc2dx7 + bc2d2x9 + 2bcdx5δ(x) + 2bcx3δ(x) + bxδ2(x)]

+ δ(x)− cd2x6 + dx2δ(x) = 0.

Let δ(x) = qx6. Then we have

(2cx+4cdx3+6qx5+· · · )[qx7+2bc2dx7+bc2d2x9+2bcdqx11+2bcqx9+bq2x13]+qx6−cd2x6+dqx8 = 0.

It follows that
(q − cd2)x6 + o(x8) = 0 ⇔ δ(x)− cd2x6 = o(x8).

Hence, δ(x) = cd2x6 + o(x8) and then

h(x) = cx2 + cdx4 + cd2x6 + o(x8).

By theorem 2.2.1, the equation which determines the stability of the zero solution of (2.74) when
a+ c = cd+ bc2 = 0 is given by

u̇ = uh(u) + au3 + buh2(u)

= cd2u7 + 2bc2du7 + o(u9).

Since bc2 = −cd we have
u̇ = −cd2u7 + o(u9).

Hence, the zero solution of (2.74) is asymptotically stable if c > 0 and unstable if c < 0.

Example 2.4.2

Let us consider the following system:
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ẋ = εy − x3 + xy ≡ f(x, y)

ẏ = −y + y2 − x2 ≡ g(x, y),
(2.75)

where ε is a real parameter. We study the zero solution of (2.75) for ε sufficiently small.

The linearization of (2.75) about the origin is given by

[
ẋ
ẏ

]
=

[
ε 0
0 −1

] [
x
x

]
+

[
xy − x3

y2 − x2

]
.

The linear part has ε and −1 as eigenvalues. Therefore the results from the centre manifold
theory cannot directly be applied at this level. System (2.75) can be rewritten in the following
equivalent form

ẋ = εx− x3 + xy ≡ f(x, y, ε)

ẏ = −y + y2 − x2 ≡ g(x, y, ε)

ε̇ = 0 ≡ h(x, y, ε).

(2.76)

The linearization of (2.76) about the origin is given by

 ẋ
ẏ
ε̇

 =

 0 0 0
0 −1 0
0 0 0

 x
y
ε

+

 εx− x3 + xy
y2 − x2

0

 .
Since the eigenvalues of the linear part are 0, −1 and 0 then by theorem 2.1.2, (2.76) has a two
dimenional centre manifold y = h(x, ε) where x and ε are sufficiently small. To approximate the
centre manifold we take

h(x, ε) = a1x
2 + a2xε+ a3ε

2 + o(ν),

where ν denotes a cubic in x, ε, and we set

(Mh)(x, ε) = 0 ⇔ hx(x, ε)[εx− x3 + xh(x, ε)] + hε(x, ε)ε̇+ h(x, ε)− h2(x, ε) + x2 = 0.

Hence,

(2a1x+ a2ε+ · · · )[εx− x3 + a1x
3 + a2x

2ε+ a3xε
2] + a1x

2 + a2xε+ a3ε
2

−a2
1x

4−a2
2x

2ε2−a2
3ε

4−a1a2x
3ε−a1a3x

2ε2−a2a3xε
3 +x2 = 0,

so that

(a1 + 1)x2 + (2a1 + a2)xε+ a3ε
2 + o(c(x, ε)) = 0 ⇔ a1 = −1, a2 = 2, a3 = 0.

Hence,
h(x, ε) = −x2 + 2xε+ o(ν(x, ε)).
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By Theorem 2.2.1, the equation which determines the stability of small solutions of (2.75) is
given by

u̇ = εu− 2u3 + uh(u, ε)

= εu− 2u3 + u(−u2 + 2uε+ o(ν(u, ε)))

= εu− 3u3 + o(ν(u, ε))

ε̇ = 0.

(2.77)

Neglecting the highest term in the first equation reduces (2.77) to

u̇ = εu− 3u3 ≡ f(u). (2.78)

If ε < 0 then the solution u = 0 of (2.78) is asymtotically stable. Then by Theorem 2.2.1, the
zero solution of (2.75) is asymptotically stable [1].

If ε > 0 then (2.78) has two fixed points namely u = 0 and u = ±
√

ε
3
, and f ′(u) = ε − 9u2.

Then f ′(0) = ε and f ′(±
√

ε
3
) = −2ε show that u = 0 is an unstable fixed point and u = ±

√
ε
3

are stable fixed points. The zero solution of (2.75) is a saddle.

Example 2.4.3 (Singular pertubation-the linear case)

Let us consider the following system:

ẋ = ax+ by,

εẏ = cx+ dy.
(2.79)

Taking t = ετ changes equation (2.79) to

x′ = εax+ εby,

y′ = cx+ dy,
(2.80)

where ′ denotes the derivative with respect to τ , while . denotes the derivative with respect to t.

To apply the results from the centre manifold theory we have to rewrite (2.80) in the following
equivalent form:

x′ = εax+ εby,

y′ = cx+ dy,

ε′ = 0.

(2.81)

Hence, the linearization of (2.81) about the origin gives

L =

 0 0 0
c d 0
0 0 0

 .
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which is not in canonical form. To have L in canonical form, we change variables as follows:

taking v = y +
c

d
x ⇒ y = v − c

d
x, (2.81) changes into

x′ = εax+ εbv − εb
c

d
x,

v′ = dv + εa
c

d
x+ εb

c

d
v − εb

c2

d2
x,

ε′ = 0.

(2.82)

Then the linear part of (2.82) about the origin is given by

Li =

 0 0 0
0 d 0
0 0 0

 .
The eigenvalues of Li are 0, d and 0. Hence (2.82) has a two dimensional centre manifold
v = h(x, ε). To approximate the centre manifold we take

h(x, ε) = a1x
2 + a2xε+ a3ε

2 + o(ν).

We set (Mh)(x, ε) = 0 which is equivalent to

hx(x, ε)[εax+ εbh(x, ε)− εb
c

d
x] + hε(x, ε)ε

′ − dh(x, ε)− εa
c

d
x− εb

c

d
h(x, ε) + εb

c2

d2
x = 0.

Hence,

(2a1x+ a2ε+ · · · )[aεx+ a1bεx
2 + a2bε

2x+ a3bε
3 − b

c

d
εx]− a1dx

2 − a2dεx− a3dε
2 − a

c

d
εx

−a1b
c

d
εx2 − a2b

c

d
ε2x− a3b

c

d
ε3 + b

c2

d2
εx = 0,

so that

a1dx
2 + (a2d+ a

c

d
− b

c2

d2
)xε+ a3dε

2 + o(|ε|3 + c(x, ε)) ⇔ a1 = 0, a2 =
c

d2

(
b
c

d
− a
)
, a3 = 0.

Hence,

h(x, ε) =
c

d2

(
b
c

d
− a
)
xε+ o(|ε|3 + ν(x, ε))

is the centre subspace for (2.82). The equation that determines the stability of small solutions
of (2.82) is given by

u′ = ε
(
a− b

c

d

)
u+ o(ε2).

In the original time scale we have

u̇ =
(
a− b

c

d

)
u+ o(ε). (2.83)
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Therefore by the second part of Theorem 2.2.1, for ε and (x(0), v(0)) sufficiently small there
exists solution u(t) of (2.83) such that for µ > 0 we have

x(t) = u(t) + o(e−µt/ε)

v(t) = h(u(t), ε) + o(e−µt/ε).
(2.84)

Replacing v(t) and h(u, ε) by their respective values in (2.84) gives

x(t) = u(t) + o(e−µt/ε)

y(t) =
(
− c
d

+ o(ε)
)
u(t) + o(e−µt/ε) and t > 0.

(2.85)

We have shown that using the centre manifold theory for ε sufficiently small solutions of (2.79)
are close to solutions of

 y = − c
d
x

ẋ =
(
a− b

c

d

)
x,

computed by setting ε = 0 in (2.79).

Example 2.4.4

Let us consider the following system:

ẏ = −y + (y + c)z

εż = y − (y + 1)z,
(2.86)

where ε > 0 is small and 0 < c < 1.

Letting ε = 0 we have

z =
y

y + 1
. (2.87)

Inserting (2.87) into the first equation of (2.86) gives

ẏ =
−λy
y + 1

, (2.88)

where λ = 1− c. Using the centre manifold theory, we show that solutions of (2.86) are indeed
close to solutions of (2.87) and (2.88) for ε small enough.

Considering a new time scale t = ετ in (2.86) gives
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y′ = −εy + ε(y + c)z

z′ = y − (y + 1)z
(2.89)

where ′ denotes the derivative with respect to τ while . denotes the derivative with respect to t.
The linear part of (2.89) is given by

l =

[
−ε εc

1 −1

]
.

Therefore the centre manifold theory results can not be applied at this level directly. We need
some transformations. That is, we write (2.89) in the following equivalent form

y′ = −εy + ε(y + c)z

z′ = y − (y + 1)z

ε′ = 0

(2.90)

The linear part of (2.90) is given by

li =

 0 0 0
1 −1 0
0 0 0


which is not in canonical form. Taking w = y − z into (2.90) yields

y′ = −λεy + εy2 − εyw − cεw

w′ = −w − λεy + y2 − yw + εy2 − εyw − cεw

ε′ = 0

(2.91)

whose linear part

L =

 0 0 0
0 −1 0
0 0 0


is indeed in canonical form.

Since the eigenvalues of L are 0,−1 and 0 we can apply the results from the centre manifold
theory. It follows, by Theorem 2.1.2, that (2.91) has a two dimensional centre manifold

w = h(y, ε).

To approximate the centre manifold we take

h(y, ε) = b1y
2 + b2yε+ b3ε

2 + o(ν),
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and we set
(Mh)(y, ε) = 0

which is equivalent to

hy(y, ε)[−λεy + εy2 − εyh− cεh] + hε(y, ε)ε
′ + h+ λεy − y2 + yh− εy2 + εyh+ cεh = 0.

Hence,

(2b1y + b2ε+ · · · )[−λεy + εy2 − b1εy
3 − b2ε

2y2 − b3ε
3y − b1cεy

2 − b2cε
2y − b3cε

3]

+b1y
2+b2εy+b3ε

2+λεy−y2+b1y
3+b2εy

2+b3ε
2y−εy2+b1εy

3+b2ε
2y2+b3ε

3y+b1cεy
2+b2cε

2y+b3cε
3 = 0,

where we have written h for h(y, ε). Then

(b1 − 1)y2 + (b2 − λ)yε+ b3ε
2 + o(c) = 0 ⇔ b1 = 1, b2 = −λ, b3 = 0.

Hence,
h(y, ε) = y2 − λyε+ o(ν).

By Theorem 2.2.1, the equation which determines the stability of small solutions of (2.91) is
given by

u′ = −λεu+ λεu2 − εu3 + λε2u2 + λcε2u (2.92)

Then in the original time scale we have

u̇ = −λu+ λu2 + o(|u|3 + |εu|). (2.93)

Hence, since λ is positive small solutions of (2.86) are asymptotically stable. Therefore by the
second part of Theorem 2.2.1, for ε and (y(0), z(0)) sufficiently small there exists solution u(t)
of (2.93) such that for a constant γ > 0 we have

y(t) = u(t) + o(e−γt/ε)

w(t) = h(y(t), ε) + o(e−γt/ε)
. (2.94)

Replacing w(t) by y(t)− z(t) system (2.94) becomes

y(t) = u(t) + o(e−γt/ε)

z(t) = y(t)− h(y(t), ε) + o(e−γt/ε).
(2.95)

Consider the Taylor expansion

1

1 + y
= 1− y + y2 + · · · .
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We have from (2.88)
ẏ = −λy + λy2,

which is approximately close to (2.93).

Replacing h(y(t), ε) by its value in the second equation of (2.95) gives

z(t) ' y(t)− y2(t),

and from (2.87) using the above Taylor expansion we have

z ' y − y2.

Therefore (2.87) is approximately correct [1].

2.5 Properties of the Centre Manifold

In this section we give few properties of the centre manifolds.

(1)The centre manifold for (2.1) is not unique. We can see this by considering the following
system

ẋ = −x3

ẏ = −y
(2.96)

where (x, y) ∈ R2. x = 0 is an invariant stable manifold for (2.96) and y = 0 is an invariant
centre manifold for (2.96). But, we can find other centre manifolds for (2.96). That is, eliminating
the independent variable t in (2.96) gives

dy

dx
=

y

x3
, (2.97)

and solving (2.97) we get for x 6= 0

y(x) = C exp(−1

2
x−2),

where C is any real constant. Hence, (2.96) has one parameter family of centre manifolds of
(x, y) = (0, 0) given by

W c
0 =

{
(x, y) ∈ R2|y = C exp(−1

2
x−2) for x 6= 0, y = 0 for x = 0

}
,

where (x, y) = (0, 0) is a fixed point of (2.96).

If h1 and h2 are two centre manifolds of a given fixed point of (2.1) then by Theorem 2.3.1 we
have |h1(x)− h2(x)| = O(|x|q) as x→ 0 where q > 1 [1].
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(2)If f and g are Ck, k ≥ 2 then h is Ck. If f and g are analytic then in general (2.1) does not
have an analytic centre manifold. For example consider the following system

ẋ = −x3

ẏ = −y + x2 (2.98)

The linear part of (2.98) is given by

L =

[
0 0
0 −1

]
.

By Theorem 2.1.2, (2.98) has a local centre manifold y = h(x). Suppose that h is analytic at
x = 0. Then

h(x) =
∞∑
n=2

anx
n

for small x. To approximate h we set

(Mh)(x) = 0 ⇔ h′(x)ẋ− ẏ = 0

which is equivalent to

(
∞∑
n=2

nanx
n−1)(−x3) +

∞∑
n=2

anx
n − x2 = 0,

−
∞∑
n=2

nanx
n+2 +

∞∑
n=2

anx
n − x2 = 0.

Using one-to-one correspondence we have

(a2 − 1)x2 + a3x
3 +

∞∑
n=2

(an+2 − nan)x
n+2 = 0,

and this is equivalent to a2 = 1, a3 = 0 and nan = an+2 for all n. Since a3 = 0 we have
a2n+1 = 0 for all n and nan = an+2 for n = 2, 4, 6 · · ·

As we can notice, coefficients a2n of h(x) are increasing as 2n−1(n − 1)! so that its radius of
convergence approaches zero. Therefore it is not analytic. Hence, (2.98) does not have an
analytic centre manifold.



3. An application in Mathematical
Biology

In this chapter we show how the centre manifold theory can be used to study the dynamic that
governs systems in a prey-predator model. We consider a model in which prey and predators are
living in two different patches but, prey can move between both patches while predators remain
on patch 1. The patch 2 is a refuge for prey [10].

The model we are investigating is due to Poggiale and Auger [10], and it is given by

dn1

dt
= R(m2n2 −m1n1) + n1(r1 − ap),

dn2

dt
= R(m1n1 −m2n2) + n2r2,

dp

dt
= p(bn1 − d),

(3.1)

where for i = 1, 2 ni denotes prey density in patch i, mi denote proportions of prey populations
leaving patch i per unit time, ri is the prey population growth rate on patch i, d is the predator
population death rate, a is the predator rate on patch 1, p denotes predator density, and bn1 is
the per capita predator growth rate [10].

Expressions on the right hand side of equation (3.1) are divided into two terms. The first one,
which contains R, is called the faster term and the second one the slower term.

Taking R =
1

ε
and t = ετ in (3.1) gives the following corresponding system in new coordinates

with another time scale

dn1

dτ
= m2n2 −m1n1 + εn1(r1 − ap),

dn2

dτ
= m1n1 −m2n2 + εn2r2,

dp

dτ
= εp(bn1 − d),

dε

dτ
= 0.

(3.2)

System (3.2) can be written in the following standard form:

dx

dτ
= Bx+ εf(x, y),

dy

dτ
= Ay + εg(x, y),

dε

dτ
= 0,

(3.3)
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where x = (n1, n2) ∈ R2, y = p ∈ R and ε ∈ R.

B =

[
−m1 m2

m1 −m2

]
, A = 0, f(x, y) = f(n1, n2, p) =

[
n1(r1 − ap)

n2r2

]
,

g(x, y) = g(n1, n2, p) = p(bn1 − d).

First, we shall put matrix B into canonical form. The eigenvalues of B are 0,−(m1 +m2), with
eigenvectors

[
m2

m1

1

]
,

[
1

−1

]
.

Using the above eigenbasis, we have

[
n1

n2

]
=

[
m2

m1
1

1 −1

] [
u1

u2

]
,

with inverse

[
u1

u2

]
=

m1

m1 +m2

[
1 1
1 −m2

m1

] [
n1

n2

]
,

which changes (3.2) into

 u′1
u′2
p′

 =

 0 0 0
0 −(m1 +m2) 0
0 0 0

 u1

u2

p

+ εU

 (r1 − r2 − ap)u2 + (r1m+ r2 − apm)u1

(r1 + r2m− ap)u2 +m(r1 − r2 − ap)u1

pbu2 + pbmu1 − pd


ε′ = 0,

(3.4)

where U =
m1

m1 +m2

and m =
m2

m1

. By Theorem 2.1.2, (3.4) has a local centre manifold

W c(0) =
{
(u1, u2, p, ε) ∈ R4 : u2 = h(u1, p, ε), h(0) = 0, Dh(0) = 0

}
for u1, p and ε sufficiently small. Next we use Theorem 4 of [1] which states that h = O(ε)
uniformly in other variables so that we can write

u2 = h(u1, p, ε) = εw1(u1, p) + ε2w2(u1, p) + . . . . (3.5)

Inserting this into the second equation of (3.4) we get

du2

dτ
= −ε(m1 +m2)w1(u1, p) + ε(1− U)(r1 − r2 − ap)u1 +O(ε2). (3.6)
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On the other hand, differentiating (3.5) and using the fact that
dp

dt
,
du1

dt
are bounded as ε → 0

we get

du2

dτ
= ε

(
∂w1

∂p

dp

dτ
+
∂w1

∂u1

du1

dτ

)
+ . . . = ε2

(
∂w1

∂p

dp

dt
+
∂w1

∂u1

du1

dt

)
+ . . . = O(ε2). (3.7)

Hence, comparing (3.7) and (3.6) we get

w1(u1, p) =
(1− U)(r1 − r2 − ap)

m1 +m2

u1. (3.8)

It follows that

dn

dt
= n(r − a1p) + εn

U(1− U)(r1 − r2 − ap)(r1 − r2 − ap)

m1 +m2

+O(ε2),

dp

dt
= p

(
b1n− d

)
+ εpbn

U(1− U)(r1 − r2 − ap)

m1 +m2

+O(ε2),

(3.9)

where t = ετ, a1 = a(1 − U), b1 = b(1 − U), n = n1 + n2, nU = u1. System (3.9) is the
reduction to the centre manifold of system (3.4).

By numerical simulation, it is shown in [10] that the solutions to (3.1) decay to zero as t →
∞. However, the zero order approximation to (3.1), which is the Lotka-Voltera system (ε =
0 in (3.9)), has periodic solutions and it cannot provide satisfactory approximation to the original
system. This necessitates introduction of ε order correction in (3.9) to understand the dynamics
of the global variables.



Conclusion

In this dissertation we have studied the centre manifold theory in finite dimension based on the
monograph of Carr. The main goal of the work was to acquire a working understanding of the
theory and to fill several gaps in the proofs of Carr [1] as well as to correct mistakes.

We have provided proofs of several technical results, which were skipped in [1], such as inequalities
(2.3.5), (2.3.6), (2.3.7), (2.3.8) on p. 18, inequalities (2.4.3), (2.4.4) on pp. 20 and 21. We have
noticed that the first inequality in (2.4.10) was incorrect and we provided a correct version proving
that it is sufficient to carry out the proofs. Also the statement ‖u1(t)−u0(t)‖eεt →∞ as t→ 0
in [1, p25] is imprecise. We gave a precise version of it which was shown to be sufficient to
complete the proof of the relevant theorem.

Furthermore, we have provided several examples in order to make the use of the centre manifold
theory easier to understand.

In the main example of application in Chapter 3, contrary to the examples in paragraph 2.4, we
were limited to verify the existence of the centre manifold and to reduce the system to it. This
reduced the dimension of the system. However, since the dimension of the centre manifold in this
case is bigger than 1, further analytic study was impossible and one has to resort to numerical
techniques. This is a subject of further studies which will consists in performing numerical
simulations and compare phase portraits of the original system and that of the system reduced
to the centre manifold.

Our further work will also consist of studying the theory for infinite dimensional problems and
investigate techniques which allow us to study the dynamics of the system reduced to the centre
manifold.
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