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Abstract

Recent high-pressure experiments on iridium show a transition to a 14 atomic layer

superlattice structure. Since iridium has a high bulk modulus, it is used in many high­

pressure applications, for instance as a gasket for high-temperature, high-pressure

diamond anvil cell experiments. The effects of pressure on this material are hence of

interest.

Of the transition metals, the iridium surface has been one of the most extensively studied

surfaces experimentally. The field ion microscope has made it possible to observe in detail

the behaviour of adatoms on the surface, and has led to interesting discoveries of the

nature of atomic adsorption on the lr(111) surface. A number of theoretical and semi­

empirical studies have been made on this topic. However, none of these studies take

atomic relaxations into account in a satisfactory manner, and therefore do not give a

complete understanding of the process of incorporation of adatoms onto the surface.

In the present work, first-principles total energy calculations based on the plane wave

pseudopotential method within the framework of the density functional theory are

employed in the study of the bulk properties of iridium, and the crystal phases and defect

structures of iridium under pressure. The bond-orientation model is extended to include

the effects of pressure, and used to compute all of the _2N defect structures of iridium as

a function of atomic volume.

Allowance for full atomic relaxations is made in computing the ideal and relaxed surface

formation energies of the three low-index surfaces of iridium, and in investigating the

nature of adsorption of single adatoms on the lr(lll) surface. The formation energy of a

vacancy on the h(111) surface is also computed. This is the first time such a calculation

has been made.
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Chapter 1

Introduction

Iridium is a 5th row transition metal with an extremely high bulk modulus. It has a high

degree of thermal and mechanical stability. It is therefore used in a number of high­

pressure high-temperature applications, for instance as a gasket for high-pressure diamond

anvil cell experiments. The effects of pressure on this material are hence of interest.

Of the transition metals, the iridium surface has been one of the most extensively studied

surfaces experimentally. With the field ion microscope, it is possible to observe in detail

the behaviour of adatoms on the surface. A number of interesting insights into the nature

of atomic adsorption on the Ir(111) surface have hence been made1,2,3,4,5.

Computational modelling has gained considerable attention in recent years. The

development of new and more powerful computers has meant that systems such as

iridium, which until recently were extremely difficult to model from first principles, are

now relatively easily and accurately modelled. The exponential growth in the speed of
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computer processors means that the near future holds even greater possibilities in the area

of scientific computing than have been realised until now. The relative cost of

computational modelling is low, as only one piece of equipment is required to calculate a

wide range of physical properties. Desktop PC's have developed to the extent that they

are now able to perform calculations which, a few years ago, were solvable only on

expensive supercomputers.

Electronic structure calculations involve the calculation of the total energy by modelling

the quantum mechanics of a system. From this energy, one can determine a number of

properties of the system, such as the equilibrium lattice constant, the bulk modulus and

cohesive energy, the energy of formation of surfaces and defect structures, and phase

transitions between the various crystallographic structures of the solid. In addition, the

derivative of the energy with respect to the positions of the ions yields the Hellmann­

Feynman forces on the ions, which can be used to propagate the ions in such a way as to

find the relaxed structure, and hence the minimum energy configuration of the system.

The task of analytically solving anything but the simplest of systems, such as hydrogen,

by means of quantum mechanics is an extremely complex and intractable task. In

addition, in order to obtain a realistic modelling of defects in a system, a sizable unit cell is

required. Efficient numerical algorithms are thus required to enable such modelling to be

achievable.

The current work makes use of a set of codes, namely the Brookhaven Electronic

STructure Codes. (BEST), in which various of these algorithms have been implemented.

These codes were developed by Chetty and Weinert during the period 1993 to 1995. They

have been used to successfully predict the energetics of a number of solid state systems.6,7

A dual-AMD-processor desktop PC with 1GBytes of RAM and running at a speed of

1.8GHz per processor was used for the calculations in this thesis.
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The theory underpinning the BEST codes is density functional theory (DFT), which was

developed in 1964 by Hohenberg and Kohn8
. As Chapter 2 of this thesis shows, DFT is, in

principle, an exact theory which has provided a means of quantum mechanically

calculating the total energy of a system in its ground state. It has thus gained

considerable attention in recent years, and has been used in many applications to compute

the properties of solid state systems. Chapter 2 goes on to discuss the exchange and

correlation energy due to interactions between the electrons. In the present work, this

energy term is taken into account by means of the local density approximation (LDA).

Among the numerical algorithms which are implemented in the BEST codes is the

pseudopotential approximation, in which the ionic core is treated as chemically inert.

This is a reasonable assumption since the chemical properties of an atom are primarily

determined by its valence electrons. It is therefore possible to replace the strong ionic

potential by a much weaker pseudopotential, which mimics the effect of the core on the

valence electrons. This weaker pseudopotential is less computationally demanding than

the full ionic potential, since it has fewer electrons and smoother pseudo orbitals, and has

consequently enabled the solution of electronic structure calculations to be even more

accessible. Chapter 3 outlines the history of the development of this approximation, and

describes the manner in which pseudopotentials are constructed.

A number of further improvements in the efficiency of total energy calculations are

discussed in Chapter 4. The discretisation of the Brillouin zone for the purpose of

efficient integration is discussed, with particular reference to the special k-point

technique, which is the method of choice in the current work. This is followed by a

discussion of the Ewald summation, which is a rapidly converging means of computing

the interaction energy between the ions in the system. Without the use of this

summation, the calculation of this energy involves a slowly converging series. Chapter 4

goes on to outline a number of electronic structure techniques used in the field at present,
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examples being the linear muffin tin orbital (LMTO) method, the tight-binding method,

and the full potentiallinearised augmented plane wave (FLAPW) method. The iterative

method is then outlined. In particular, the Car-Parrinello molecular dynamics method9 is

presented in detail. This method is computationally more efficient than the usual

iterative matrix diagonalisation techniques. Chapter 4 goes on to discuss a variation on

this] namely the preconditioned steepest descent (PSD) algorithm6
, which is applied in the

current work, together with a subspace diagonalisation which serves to orthogonalise the

wavefunctions between successive iterations. Finally, atomic relaxations through the

application of the Hellmann-Feynman theorem are discussed, in which the BFGS

algorithm10 is used as the update scheme for the atomic positions.

The mixing of charge densities between successive iterations is an important means of

accelerating the convergence of total energy calculations. Three distinct mixing schemes,

namely the linear, Anderson] and modified Broyden schemes, are discussed in Chapter 5.

Computer codes were developed to implement these schemes, and their relative efficiency

is compared in this chapter.

Chapter 6 contains a discussion on the application of electronic structure calculations to

iridium. The bulk properties are computed and compared with experimental values.

Recent high-pressure experiments on iridium show a transition to a supedattice structure

comprising 14 atomic layers ll
. This claim is investigated in this chapter through an

application of a novel technique, developed by ourselves, called the "pressure dependant

bond-orientation model".

Chapter 7 investigates the energetics of the three principal surfaces of iridium, namely the

(100), (110), and (111) surfaces. The results of these computations are compared with

other experimental and theoretical results.
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The deposition of adatoms on the (111) surface of iridium is investigated in Chapter 8,

and the results compared with experimental and theoretical work. The formation energy

of the surface vacancy is investigated in this chapter. This is a new result that has not

been calculated or measured before.

Finally, a number of concluding remarks are made in Chapter 9. Amongst these are an

outline of a way forward for further work to be done on the Ir(lll) surface.
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Chapter 2

Basic Theory

Ouantum theory has provided a very precise means of predicting the total energy of a

system of electrons and nuclei, and hence the many physical properties of the system that

may be related to the total energy, for instance the equilibrium lattice constants, bulk

moduli, phonons, piezoelectric constants, and phase transition pressures and

temperatures. In addition, the Hellmann-Feynman theorem enables one to compute

forces on the atoms from the gradient of the energy, which enables one to perform first

principle molecular dynamics simulations. One may also compute the gradient of the

energy with respect to the strain, which yields the quantum mechanical stress on the

system. This enables one to calculate, for example, the elastic properties of the system.

In practice, however, the exact solution of the Schrodinger equation for a many-body

system is impossible to achieve.
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2.1 The many-body problem

The non-relativistic Schrodinger equation for a system of interacting electrons and nuclei

may be written in the form:

{Telee + Tion + Vion-elee + Velee-elee + Vion-ion}<I> = E<I> ,

where Tefec is the kinetic energy operator of the electrons, given by

2

T = - ~ '" \72
elee 2 ~ i ,

m i

and the kinetic energy operator of the ions, T,on , is:

2
_11_ L \7:
2M1 I

The potential energy due to the ion-electron interactions, V/on-e1ec , is

(2.1)

(2.2)

(2.3)

V. IIon -e ee (2.4)

The electron-electron interaction potential is given by

Velee-elee (2.5)
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and the interaction potential between the ions is

v .Ion -Ion
(2.6)

Here the electrons have coordinates ri and charge -e, and the ions have coordinates RI and

charge +ZI e. Hartree atomic units are used, where the distances are measured in Bohr

and the energies in Hartree. This sets the values for e2
} 11 and m at 1. These factors have

been retained in many of the equations for purposes of clarity.

In this formulation} the Hamiltonian is known exactly. The many-body wavefunction <I>

must be solved for subject to the constraints of antisymmetry as is required by the Pauli

exclusion principle. This problem is intractable for all but the one-electron problem} e.g.

hydrogen.

The large mass difference between the electrons and the nuclei, together with the much

slower movement of the nuclei compared with that of the electrons} leads to the Born­

Oppenheimer approximation} otherwise known as the adiabatic approximation. Here the

electrons are assumed to be in the ground configuration for the instantaneous positions of

the ions. The kinetic energy and the mutual repulsion of the ions is hence constant for a

fixed nuclear configuration. Equation (2.1) may therefore be simplified to

{ T + V + V }'P = E'Pe!ec ion - e!ec e!ec - e!ec } (2.7)

where ':P is the many-electron wavefunction} related to the many-body wavefunction <I>

and the ionic wavefunction X by
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<P=x'¥ . (2.8)

'P(r101,rp2 , ... rNoN ) is a function of the space and spin variables rp, of the i-th electron.

For simplicity, we will use r, to indicate both the spatial and spin variables in subsequent

equations.

In spite of the simplification offered by the Born-Oppenheimer approximation, the solution

of equation (2.7) remains an impossible task for present-day computers beyond the

simplest of systems. This is due to the intractable nature of the electron-electron

interactions. Direct solution of the Schrodinger equation would require solving

approximately 1023 coupled differential equations. Further approximations are therefore

required in order for a solution to be achievable.

2.2 The Hartree approximation

In the Hartree theory, the ground-state wavefunction of the many-electron system is

expressed as the product of orthonormal one-electron spin-orbitals in the form

(2.9)

The set of one-electron Schrodinger equations become:

(2.10)
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where the first term is the one-electron kinetic energy operator and V(r) is the potential in

which the electron is moving:

where

(2.11)

V. (r)
IOn (2.12)

and

- eJ n(r') dr' .
Ir-r'l

(2.13)

The electron charge density n(r) is given by:

Here the summation is over all occupied single-electron levels.

(2.14)

The Hartree potential is thus decoupled from the individual motions of all of the electrons

in the system, and instead depends simply on the time-averaged electron distribution of

the system.

The Hartree approximation was an important breakthrough in the attempts for a solution

to the many-body problem. However, it is clear that equation (2.9) does not allow for

antisymmetry of the wavefunction under the exchange of any two electrons, as required

by the Pauli exclusion principle. Nevertheless, the Hartree theory did provide surprisingly

good results considering its simplicity.
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2.3 The Hartree-Fock approximation

The Hartree-Fock approach was an attempt to improve on the Hartree theory. This

approach makes use of a Slater determinant of single particle orbitals to ensure

antisymmetry of the wavefunction. The expression in (2.9) may instead be written in

the form

1\11(r1) 1\11 (r2) 1\11 (r N)

1 1\12(r1) 1\12(r2) 1\12(r N)
(2.15)1J' O(r1,r2, ... ,rN) --

IN!
1\1 N(r1) 1\1 N(r2) 1\1 N(r N)

In addition to the Hartree potential, an exchange potential is included in the single-particle

Hamiltonian, which arises as a result of this antisymmetry condition. The Hartree-Fock

equations are:

1;2
- 2m \12 1\1 i(r) + V ion (r)1\1 i(r) + VHarcree (r)1\1 i(r) -

e 2 L J dr I 1\1/ (r') 1\1 i(r')1\1/r)1\1 i * (r) = ei 1\1 i(r)
j Jr-r I

(2.16)

Surprisingly, the Hartree-Fock approach, in some instances, yields less satisfactory results

than the Hartree theory. This is because the electrostatic correlation due to Coulomb

repulsion of the electrons has not been taken into account in the Hartree-Fock

approximation, and this to some extent screens the exchange effect. The Hartree-Fock

approximation does yield fairly good results for single atoms, and for molecular solids, and

has thus been used extensively by chemists. However, it fails dramatically for the

homogeneous electron gas, which is a prototypical metal, for a number of reasons. The
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electrons most important for metallic properties] namely those with energy close to the

Fermi energy, are calculated to have infinite velocities within the Hartree-Fock theory.

Also, the density of states function] which should resemble that for a free electron gas]

instead approaches zero at the Fermi energy] which is an entirely incorrect result for

metals.

In order to understand more accurately the reasons for the shortcoming of the Hartree­

Fock theory] we will need to take a closer look at the exchange and correlation energy.

2.4 The energy of exchange and correlation

The exchange energy is the term given to the reduction in the energy of a many-electron

system due to the antisymmetry of the wavefunction] a direct consequence of the Pauli

exclusion principle. Oualitatively] the region around an electron of a particular spin will

be depleted of other electrons of the same spin] giving rise to an "exchange hole]]] therefore

reducing the overall electron-electron Coulomb energy. The exchange energy is accounted

for exactly in Hartree-Fock theory.

The term correlation energy is used to describe the difference between the true ground-state

energy of the many-body electronic system and the Hartree-Fock approximation for the

total energy. In other words it is used to describe all effects on the total energy of the

system due to electron-electron interactions that are not accounted for by the Hartree­

Fock theory. It is extremely difficult to calculate the correlation energy of a

many-electron system. A reliable approximation for the effects of the electron-electron

interactions is thus required.
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2.4.1 Exchange energy in the Hartree-Fock approximation

When the Hartree-Fock approach is applied to the homogeneous electron gas, with the

electronic wavefunctions represented as a set of plane waves

1 'k'" .(r) = - e I . r
I IV

the total energy of the N-electron system is evaluated to be:

E = N[.£e _.£ e
2

kF ] .
5 F 4 1t

When written in the conventional form, with the energy expressed in Rydberg

(2 Rydberg= 1 Hartree), we obtain an expression for the energy per electron:

(2.17)

(2.18)

(2.19)

where the second term is the exchange term. Here ao is the Bohr radius, which has the

value 5.2918x 10-11 m, and rs is the radius of a sphere whose volume is equal to the volume

per electron.

Since the second term in equation (2.19) gives an average value for the exchange energy

of an electron, Slater12 suggested that, for non-uniform systems, one could replace the

exchange term in equation (2.16) by a local energy given by double the exchange energy

term from equation (2.19). In other words, he developed an exchange potential, to be

added to the Hartree term VHarrree , which has the form
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1

V (r) = - 2.95 (ao
3 n(r) )3 Ry

exchg
(2.20)

Apparent in this formulation is a resemblance to the local density approximation] which

will be looked at in detail in Section 2.4.4. The Hartree-Fock-Slater approach has been

used widely by solid-state physicists, particularly in band-structure calculations. Many

attempts have been made to improve on the Slater expression in (2.20). One such

attempt was the ilX/ approximation13 in which a semi-empirical parameter ex was

multiplied by the original Slater expression. One can recognise in the expression for the

exchange potential in equation (2.20) a precursor to density functional theory] since here

the exchange energy is expressed purely in terms of the electronic charge density. It is

worth noting that the exchange energy is a non-linear function of the density.

2.4.2 The Wigner approximation for the correlation energy

In the 1930s] Wigner14 calculated the correlation energy for the electron gas at a high

density (r/ao= 1) using second-order perturbation theory. He found the correlation

energy per electron to be

Ecorr = _ 0.88 Ry = - 0.11Ry .
N 7.8

(2.21)

He then went on to look at the low-density limit, where rjao c.20. At this low density

the electrons with a uniform positive charge background can be considered to crystallise

in an ordered array. This low density crystal is in a stable state] as the electron-electron

potential energy is proportional to 1/rs . Since the kinetic energy effects depend upon

1Ir/] at high values of rs this is not sufficient to oppose the potential energy term which
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gives rise to the formation of the ordered array. For this low-density limit, Wigner

calculated the ground state energy per electron to be

Eo ( 3-= ---+
N rJao

(2.22)

He then calculated the Hartree-Fock value for the ground-state energy per electron at this

low density limit:

(2.23)

The difference between the Hartree-Fock energy and the leading term in equation (2.22)

yield a value for the correlation energy per electron up to terms of the order (r/ao)-312:

N
(2.24)

Interpolating between these high-density and low-density values for the correlation

energy, Wigner obtained the following formula for the correlation energy per electron:

N
= 0.88 Ry

rJao+ 7.8
(2.25)

Use of this approximation for the correlation energy yields a vast improvement to the

calculated cohesive energy, compared with Hartree-Fock values15
.
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2.4.3 The GeIl-Mann and Brueckner calculation

In 1957 Gell-Mann and Brueckner16 performed an exact calculation of the leading terms in

the expansion of the ground-state energy in the high-density limit (r/ao < 1) for the

electron gas using a field-theoretic approach. They showed that, instead of ending the

series expansion at the first divergent term, but rather summing over all such divergent

terms, a convergent result is obtained. In this manner they obtained the following

rigorous result for the ground-state energy per electron:

Eo [ 2.21
N - (r la )2

s 0

(2.26)

Here the first two terms are precisely the expression given in equation (2.19) as a result

of the Hartree-Fock approximation. The remaining terms are hence an exact expression

for the correlation energy per electron in this high density limit. Since for metals the

value of r/ao ranges between 2 and 6, this result is not of particular relevance. It does,

however, indicate a breakthrough in the ability to accurately take into account the effects

of the electron-electron interactions.

2.4.4 The local density approximation (LDA)

In this approximation, the exchange-correlation energy of an electronic system is

constructed by assuming that the exchange-correlation energy per electron at some point

r is equal to that for a homogeneous electron gas which has the same density as the

system under consideration.
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The form for the exchange-correlation energy is thus taken as:

(2.27)

where f\c(n(r)) is the exchange-correlation energy per electron of the homogeneous system

with density n at point r.

Hence

with

V (r)xc
o[n(r) Exc(n(r))]

on(r)
(2.28)

ffOm(n(r))xc (2.29)

Our work makes use of the Perdew and Zunger17 parametrizations for e;;m(n(r)). This

parametrization is based on the quantum Monte Carlo calculations of Ceperley and

Alder18 on homogeneous electron gases at various densities. The parametrization uses

interpolation formulas to link these exact results for the exchange and correlation energy

at many different densities. This is discussed further in Appendix B on page 148.

2.4.4.1 Reasons for the success of the LDA

Although the local density approximation relies on an assumption that the electron

density varies slowly, even in the case of rapid variation, the expression has been shown

to be highly accurate19
. One of the reasons for its accuracy is the fact that it gives the

correct sum-rule for the exchange-correlation hole. In other words, there is an electronic

charge equivalent to that of one electron excluded from the neighbourhood of the electron

at point r.

Page 17



Various attempts have been made to improve on the LDA by taking inhomogeneities into

account, for instance gradient expansion methods. However, only those attempts that

take this sum-rule into account show notable improvements over the LDA 20,21.

A second reason for the LDA's accuracy is the cancellation of the errors in the

approximation of the exchange and correlation energy. For instance] since the correlation

energy is approximately one tenth the magnitude of the exchange energy] the 10% error

in the exchange energy in atoms is partially compensated for by the 100% to 200% error

in the correlation energy2.

Alternative approaches to that of the LDA have been developed. A few of these are

discussed in Appendix C on page 152.

2.4.5 Gradient corrections

As a consequence of the limitations of the LDA, corrections have been attempted which

involve the introduction of a dependence of the exchange-correlation energy on the

gradient of the density.

2.4.5.1 The gradient expansion approximation (GEA)

In the original Hohenberg-Kohn and Kohn-Sham papers] a gradient expansion] based on

the polarizability of the homogeneous electron gas] was introduced. It was suggested for

application in slowly varying systems. It has subsequently been shown to fail] due to the

non-convergence of the gradient expansion for strongly inhomogeneous systems. Also]

the GEA exchange hole, which should be negative] turns out to be positive] and does not
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integrate to a value of -1, as it ought to23
. This approximation has hence not been used in

calculations.

2.4.5.2 The generalised gradient approximation (GGA)

The generalised gradient approximation (GGA) was defined in the eighties24
,21. Here, the

next term in the derivative expansion of the charge density is included in the

approximation to the exchange-correlation energy:

E GGA [n(r)] = JeGGA (n(r), Vn(r)) n(r) dr
xc xc (2.30)

Early forms of the GGA gave good improvements over the LDA where the LDA had failed,

particularly for the binding energy of molecules. The two most widely used forms of the

GGA are the PW91 and the PBE functional, which we will discuss briefly below.

The PW91 was developed by Perdew and Wang25
, and was constructed by introducing a

real-space cut-off of the long-range component of the density-gradient expansion for the

exchange-correlation hole. Although this approximation has been applied successfully in

many instances26
, it has recently been discovered that there are some unphysical wiggles

in the PW91 potential. It also relies on a large number of parameters, making it rather

unwieldy.

Perdew, Burke and Ernzerho£27 developed a simplified version of the GGA functional,

namely the PBE functional, which improves markedly over the PW91 26
, particularly for

linear response of the uniform electron gas. The results for the structural properties of

solids are similar for the PW91 and PBE functionals, but there are no wiggles in

pseudopotentials constructed using the PBE functional. The PBE approximation offers

more accurate results than does the LDA for atomic total energy calculations and first
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ionisation energy values but, at times, overcompensates for the high binding energy values

in clusters computed using the LDA. The PBE offers no vast improvement over the LDA

when applied to solids. Since the LDA is less complex, and hence computationally less

demanding, it is the functional of choice in the present work.

2.5 Density functional theory

2.5.1 Introduction

The breakthrough which revolutionised the field came in 1964 when Hohenberg and

Kohn8 suggested that, rather than using the many-electron wavefunction as the

fundamental variable of the system, the electron density be used instead. They showed

that the ground state density n(r) of a many-electron system uniquely determines the

external potential V(r). All of the ground state expectation values therefore depend

uniquely on n(r). This reduces the basic variable of the system from being

3N-dimensional, in the case of the many-electron wavefunction 'P, to being

3-dimensional.

2.5.2 Basic density functional theory

2.5.2.1 Density as a basic variable

For an interacting N-electron system in an external potential V(r), knowledge of the

ground state density n(r) uniquely determines V(r):
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Proof:

Consider the external potential V(r) of a system with associated ground state density

n(r), total number of particles N= fn(r)dr, Hamiltonian H, ground state wavefunction <I>

and energy E,

n(r) - V(r) .

Here the total ground-state energy E of the system is defined in the following way:

E <~IHI~).

Hence:

(2.31)

(2.32)

(2.33)

where the first term in equation (2.33) is the expectation value of the external potential

operator, and the second term is the expectation value of the kinetic and interaction

energy operators. We can write the first term as:

<~IVI~) =[V(r)n(r)dr ,

and the second term can be written as:

F[n(r)] = <~I(T+U)I~) .

Hence we can write the energy functional E[n(r)]as

E [n(r)] = [V(r) n(r) dr + F [n(r)]
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Consider a second system of N particles with V' (r) *V(r) +C, and therefore <1>' *<1>, and

energy functional written as

E' [n'(r)] = J V'(r) n'(r) dr + F' [n'(r)]

By the Rayleigh-Ritz variational principle we have

(2.37)

E [n(r)] = J V(r) n(r) dr + F [n(r)]

< J V(r) n'(r) dr + F [n'(r)]

= J V(r) n'(r) dr - J V'(r) n'(r) dr + J V'(r) n'(r) dr + F [n'(r)] (2.38)

Hence

E [n(r)] < E' [n'(r)] + J (V(r) - V'(r))n'(r) dr .

Similarly,

E'[n'(r)] < E[n(r)] + J(V(r)-V(r))n(r)dr .

Adding equations (2.39) and (2.40) we get

(E +E') < (E +E') + J(V(r)-V(r)) (n'(r)-n(r))dr

(2.39)

(2.40)

(2.41)

It is clear here that nl(r)~n(r), otherwise equation (2.41) would imply that

(E +E') < (E +E'). There is therefore a distinct ground state density n(r) associated with

each potential V(r).
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2.5.2.2 The energy variational principle

We can express the function F[n], which represents the kinetic and interaction energies of

the electrons, as

F[n] 1Jn(r)n (r')= T [n] + - drdr' + E [n]
s 2 Ir _r' I xc' (2.42)

where the first term is the kinetic energy of non-interacting electrons with density n(r),

and the second term is the classical electron-electron interaction energy (the Hartree

energy). Exc[n] is the energy of exchange and correlation of the electrons. Equation (2.42)

is not a unique separation of terms but, for non highly correlated electronic systems, such

an expression relegates Exc[n] to a relatively small contribution. Furthermore, based on

prior experience, for example the Slater Xa method, such a separation of terms has been

found to have practical relevance. The energy functional given by equation (2.36) can be

shown to be a minimum for the correct ground state density n(r), using the Rayleigh Ritz

principle.

Numerous adaptations to DFT have been made in recent years. Some of these are

discussed in Appendix A on page 144.
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2.5.3 The Kohn-Sham equations

The minimum of the Hohenberg-Kohn energy functional

E [n(r)] = JT [n] + V (r) n(r) dr + ~J n(r)n(r') drdr' + E [n]
5 IOn 2 Ir _r' I xc

(2.43)

gives the exact ground-state energy of the many-body electron system. This functional is

stationary with respect to variations in the ground state density:

{
oT [n] J" n(r') }Jon(r) 5 + V (r) + dr' + V (r)
on(r) Ion Ir-r'l xc

where VX«(r) is the functional derivative

aE)n(r)]
1\/r) = ---­

an(r)

The number of particles in the system is given by:

N = Jn(r) dr .

o , (2.44)

(2.45)

(2.46)

Minimising the energy functional, subject to the condition that variation in the charge

density should leave the number of particles unchanged:

J0 n(r) dr = 0 ,

leads to the Euler condition:

oT [n] J n(r')
5 + V (r) + dr' + V (r) - f.1

on(r) Ion Ir-r'l xc
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where I..l is the Lagrange multiplier associated with the requirement given by equation

(2.47). Comparing this with the equivalent equation for a non-interacting set of electrons

moving in an effective potential Verl-r) leads to the equation:

oT [n]
5 + V rl-r ) - 1..1. = 0 .

on(r) e

These two equations are equivalent if

n(r')
V.1r) = V (r) + J dr' + V (r)

eft \ Ion I I I xcr-r

In other words, we are simply required to solve self-consistently the single-particle

equations:

with

N

n(r) =L 111J)r) 12

i =1

(2.49)

(2.50)

(2.51)

(2.52)

The sum in the above equation is over the N lowest occupied eigenstates. The set of

single-particle equations given in equation (2.51) are called the Kohn-Sham equations28
.

The ground state energy and electronic charge density of the system can be obtained from

self-consistent solution of these equations in the following way: beginning with an

estimate of the charge density n(r), Vxc(r) and hence Verfr) are constructed, and a new

charge density is obtained from equation (2.51) and (2.52).
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In equation (2.51), l\Ji and £i are, respectively, the Kohn-Sham single-particle

wavefunction, and Kohn-Sham eigenvalue of the electronic state j. A common

misconception is that the £i are the single-particle energies. As yet there is no consensus

about their physical interpretation, if they have one. In the self-consistency procedure,

they act as Langrange multipliers to ensure orthogonality of the single-particle

wavefunctions. Since

N N '1;2 )L ej = L (W;, [ - _\1
2

+ "':rr(r) ] W; =
;=1 j=l 2m

(2.53)

we can obtain the expression for the total ground-state energy of the system:

N

E = ~ e. - ~ f n(r)n(r') - f V (r) n(r) d(r) + E [n(r)] .
L..J I 2 I I I xc xc
;=1 r - r

(2.54)

If the exchange-correlation functional Ex([n(r)] was known, the exact solution for the

ground-state energy and density of the many-body system could be found using numerical

techniques. The original interacting system of electrons with exactly known Hamiltonian

and intractable solution for the many-body wavefunction has been mapped onto a non­

interacting system of electrons whose Hamiltonian is not exactly known in practice, but

for which arbitrarily accurate solutions for the electronic orbitals may be found

numerically.

2.5.4 Plane wave formulation of the Kohn-Sham equations

A crystalline solid consists of an extremely large number of electrons (_1023) moving in a

field generated by a similarly large number of ions. Bloch's theorem uses the periodicity of

the crystal to reduce this enormous number of one-electron wavefunctions to as few as

half the number of electrons in the unit cell of the crystal.
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2.5.4.1 Bloch's theorem

At a temperature of OK, the ions in an ideal crystal are arranged in a periodic formation ­

the ions are not static, but vibrate about their equilibrium positions. The external

potential experienced by the electrons is therefore also periodic with the periodicity of the

unit cell.

Bloch showed that a single electron wavefunction in a periodic potential can have the form

of a plane wave multiplied by a cell periodic term:

,Ir . (r) = eik'r u. (r)
't'1 ( (2.55)

Here the Bloch periodic term can be expressed in a Fourier series as an expansion of plane

waves whose wave vectors are reciprocal lattice vectors of the crystal:

( ) "" iG'ru.r =L.Jc.Ge .
I I,

G

The reciprocal lattice vectors G are defined by

(2.56)

G·R = 21tn , n = 1,2,3, ... (2.57)

for all lattice vectors R of the crystal. Each electronic wavefunction may therefore be

written as a sum of plane waves:

W. (r) = "" c. e i (k+G)'r
( L.J l,k+G .

G
(2.58)

Each electronic wavefunction can hence be expressed in terms of a basis of plane waves at

each k-point within the first Brillouin zone.
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2.5.4.2 The Kohn-Sham equations in reciprocal space

The expansion of the electronic wavefunctions in terms of a plane wave basis allows the

Kohn-Sham equations to be expressed in a reciprocal space representation.

Substituting equation (2.58) into the Kohn-Sham equations (2.51) yields:

2

The plane waves with coefficients Ci k+G each have kinetic energy ~ 1 k + G 1
2

.
, 2m

In this formulation, the kinetic term energy is diagonal, and the potentials are expressed

in terms of their Fourier components. The ionic potential is assumed to be local at this

stage. The non-local pseudopotential formulation will be looked at in the following

chapter. For smooth potentials, the higher Fourier components decay rapidly to zero,

hence one may introduce a plane wave energy cut-off Eeu" which reduces the basis set to

one with a finite size.

The size of the Hamiltonian matrix given in curly brackets in equation (2.59) is

determined by the energy cut-off

11 2

E = -lk+G 1
2

cut 2m cut
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2.5.4.3 Advantages of plane waves

By representing each electronic wave function as an expansion of plane waves, one can

obtain systematic convergence with regard to a single parameter, namely the energy cut­

off Ecut ' An example of this is shown in Figure 2.1, where the total energy for iridium has

been plotted against the energy cut-off. The plane waves are not localised functions since

they cover all space equally. As a result, one does not incur a basis-set bias or

superposition error. Calculation of forces is less complex, as one is not required to include

the Pulay correction term. (This is discussed further in Chapter 4). The plane wave

representation is numerically efficient, with the use of Fast Fourier Transforms to

translate between real and reciprocal space.

4r------------------------,

3

o - - - - - - - -~-=-~~------

-1 o 20 40

Ew, (Rydberg)

60 80

Figure 2.1 Convergence of relative energy with respect to cut-off energy E
eUl
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Chapter 3

The Pseudopotential Approximation

3.1 Introduction

As was shown in the previous chapter) use of Bloch's theorem enables one to express each

electronic wavefunction in a periodic solid as a sum of plane waves. However) when

using a plane wave basis set) if all of the electrons in the system are to be included in a

calculation) the number of plane waves required to expand the tightly bound core orbitals

would be very large) incurring a vast computational cost. This is due to the rapid

oscillations of the wavefunctions near the nucleus) as the potential in this region is very

deep. An example of this can be seen in Figure 3.1, where the iridium 6s valence

wavefunction is shown. The rapid oscillations of the valence wavefunctions in the core

region ensure orthogonality between the core and valence electrons) as is required by the

Pauli exclusion principle.
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Figure 3.1 Valence wavefunction for Iridium 6s electrons

Since most physical properties of solids are largely dependent on the valence electrons, the

core electrons may be considered to be inert. The pseudopotential approximation makes

use of this fact by replacing the core electrons and the strong nuclear potential with a

much weaker ionic pseudopotential. This pseudopotential is designed in such a way that

it reproduces the effects of the core electrons on the valence wavefunctions. The pseudo

wavefunctions corresponding to this pseudopotential oscillate less rapidly than the

original wavefunctions. Consequently a greatly reduced number of plane waves is

required for the expansion of the pseudo wavefunctions.
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3.2 Historical account

In the late 1930's two methods were devised29,30 in an attempt to overcome the demand

for a large number of plane waves in the expansion of the electronic wavefunctions. Both

of these methods involved a modification of the plane waves at small r.

3.2.1 Augmented plane waves

An augmented plane wave (APW)31 is constructed such that it is identical to the original

plane wave outside of a sphere of radius R (sometimes referred to as the APW sphere).

Hence the APW <Pk,,£ can be defined as

rh ik'r f
't'ke = e orr >R ., (3.1)

Within the sphere of radius R, the potential V(r) is assumed to have spherical symmetry

so that an APW can be constructed in such a way as to satisfy the Schrodinger equation

exactly within the sphere, and to join with the original plane wave on the surface of the

sphere at radius R, (i.e. continuity of the wavefunction at r=R).

The portion of the APW outside of the sphere does not satisfy the Schrodinger equation.

In addition, the two parts of the APW, namely that within and that outside of the sphere,

do not join smoothly, (i.e. discontinuity of the gradient of the wavefunction at r=R).

An approximation to the correct solution to the crystal Schrodinger equation is obtained

from a superposition of APW's. The expansion of lJ1k (r) will then have the form
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Wk(r) = L Cc <P hC (r)
C (3.2)

with the sum over all reciprocal lattice vectors G. A secular equation of about 20x20 is

required for convergence of the energy eigenvalues.

3.2.2 OrthogonaIised plane waves

An orthogonalised plane wave (OPW)32 is constructed by adding to a plane wave

contributions from core states of lower energy, so that the original wavefunction is

resembled as closely as possible. Hence the OPW can be defined as:

<P k = e ik
" + Lbe W; (r) , (3.3)

with the sum over all core levels with wave vector k. The constants be are determined

through the requirement that cPk be orthogonal to each core level:

be = - f W;' <P k eik
" dr . (3.4)

This construction, based on lower energy core orbitals, ensures orthogonality of the OPW

with the core states. The desired wavefunction can then be expressed as a series of

OPWs. Only a few terms are required for a sufficiently good representation of the

wavefunction which yields rapid convergence of the energy eigenvalues.

The OPW method yields energy values which are not as accurate as those from the APW

method. This is due to the fairly approximate nature of the construction of the OPWs.
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In order to eliminate the error due to this approximation one requires a secular equation

of order 106 x 106
.

For both the APW and OPW methods a suitable operator Vs can be generated, yielding a

pseudo wave equation

(T + V Ps ) WPs = E WPs , (3.5)

where lJfPs is the wavefunction generated in the described way (either APW or OPW).

This equation is a mathematical transformation of the Schrodinger equation

(T + V) WAE = E WAE
, (3.6)

where the eigenfunction is altered, but the energy eigenvalues remain the same. This

operator, Vs , was the earliest form of the pseudopotential. It was not known as such for

the first 20 years of its use, but when it was first expressed in the form shown in equation

(3.5) in 1959 33
,34, a search for other forms for the pseudopotential began29

.

The earliest pseudopotentials which were constructed in the 1960's were empirically

based. In other words, parameters for the construction of pseudopotentials were obtained

by fitting pseudopotentials to experimental data, such as electronic band structures as

measured by photoemission spectroscopy.

Modern pseudopotential generation procedures have moved beyond empirical fitting of

potentials, to the development of ab initio methods in which the potentials are parameter­

free. The general outline for the construction of such potentials is described in the

following section.
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3.3 Construction of norm-conserving non-local

pseudopotentials

3.3.1 Requirements for pseudopotential construction

There are a number of requirements which should be met in the ab initio construction of a

pseudopotential if one wishes it to most accurately represent the behaviour of the ion in

various chemical environments:

1. The pseudopotential should be constructed in such a way that the pseudo

wavefunction contains no radial nodes in the core region. This ensures a smooth

shape for the pseudo wavefunction, which is essential if one wishes to represent

the pseudo wavefunction with a sufficiently small plane wave basis set.

2. The pseudo wavefunction and the pseudopotential must identically match the

original wavefunction and potential outside of a chosen cut-off radius re

3. Pseudo-electron eigenvalues should be the same as the valence eigenvalues

obtained from the atomic wavefunctions.

4. The core charge produced by the pseudo wavefunction must be the same as that

produced by the atomic wavefunctions, a property that is known as norm

conservation. The pseudopotential should hence satisfy

re re

JWAE * (r) WAE (r) dr = JWPs
* (r) WPs (r) dr

o 0
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This condition ensures that the scattering properties of the pseudo wavefunction

are identical to those of the ion and core electrons for the valence wavefunctions.

It also guarantees accuracy of the exchange-correlation energy.

5. The first and second derivatives of the pseudo wavefunction should be matched

to the real values at the cut-off radius re to ensure smoothness of the shape of the

pseudo wavefunction.

To ensure an accurate description of scattering due to the ion in various atomic

enVironments, we require a transferrable pseudopotential. A value for re close to the core

radius increases the transferability of the potential. Also, subtracting the screening

potential, namely the Coulomb and exchange-correlation contributions, from the

pseudopotential yields the bare ion core potentials, which are transferrable to any atomic

environment.

3.3.2 The general procedure for pseudopotential generation

The first step in generating a pseudopotential is to find the valence electron eigenvalues

and wavefunctions for an all-electron atom with a chosen electronic configuration

(generally the ground state configuration). Here a spherically symmetric form for the

Hamiltonian is assumed, and a suitable choice is made for the form of the exchange­

correlation functional. This choice of functional should be consistent throughout the

generation procedure, and should be the same as that used in later calculations. The ionic

pseudopotential is then generated iteratively using some procedure, such as the Troullier­

Martins35
, or the Bachelet-Hamann-SchlUter36 construction, so that the conditions listed

in Section 3.3.1 are met. This ionic pseudopotential is then used to determine the

electronic density in any new environment of the atom.
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The value for r( is chosen to range from one to two times the value of the radius of the

outermost filled shell, and depends on the context in which the pseudopotential is to be

used. For instance, a lower choice of value for r( will ensure transferability of the

pseudopotential to different chemical environments. A higher value for r( , however,

ensures a softer pseudopotential, in other words one which requires a smaller plane wave

basis set for expansion of the pseudo wavefunctions. The choice of cut-off radius is

refined after testing the pseudopotential for accuracy and transferability.

The flowchart in Figure 3.2 below outlines this procedure.

Set up V,la from n(r)

Yes

Calculate Er"

Generate VP
, and Ill'

STOP

Yes

Figure 3.2 Flowchart describing pseudopotential generation procedure
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3.3.3 The Martins-TroulIier pseudopotential

It is desirable for the pseudopotential to be as "smooth" as possible. In other words we

require a rapid convergence in the calculated total energy, and thus in the system's

properties, with respect to an increase in the number of plane waves in the basis set.

Smoothness can most easily be achieved by increasing the cut-off radius re" However, this

process compromises the transferability of the pseudopotential, since there is a larger

range in r for which the pseudopotential differs from the real potential. T roullier and

Martins35 developed the following procedure for generating smooth pseudopotentials:

An electronic wavefunction may be expressed in radial form in the following way:

(
R k))lJ1 (r) = _n_

r
- Ylm(f) , (3.8)

where the Y'm are the spherical harmonics. The radial Kohn-Sham equation becomes:

[
_"h

2
d

2
+ "h

2
1(/:1) +V(r)]rRnk) = EnlrRn/(r) .

2m dr 2 2m r
(3.9)

Here we are assuming a non-relativistic formulation of the theory, although in our actual

calculations, a scalar-relativistic (that is, a first-order relativistic) version of the Dirac

equation is used.

The radial pseudo wavefunction is defined in a similar way to that developed by Kerker
37

:

{

RAE (r)nl
R

Ps
(r) = 1+1 eP(r)nl r

if rz re

if r.,:, re
(3.10)
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where p(r) is a polynomial of order six in r2
:

p(r) = c + c r 2 + C r4 + C r6 + C r8 + C r 10 + C r 12o 2 4 6 8 10 12 (3.11)

To ensure norm conservation of the charge within the core radius, the following condition

is applied:

2eo + In[ !r 2{1"le I2P('l-"oldr] "

o
In[ !IR:f(rlI2r2dr]

o
(3.12)

This condition is used, together with the requirement that there be continuity of the

pseudo wavefunction and its first four derivatives at re , and that there be zero curvature

of the screened pseudopotential at the origin, to determine the coefficients in equation

(3.11). The expressions for these conditions are:

p(r) [

p(r )
In _e

1+1
re

(3.13)

pl(r) =
P'(r)

P(r)e

1+ 1

re

(3.14)

p"(re) 2VAE(r ) - 2el - 2(1+ 1) p'(r) - [p'(r)]2
e r

e
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AE 2(/+1) 2(/+1)
p"'(r) == 2 (V)' (r) + 2 p'(r) - p"(r) - 2p'(r)p"(r

c
)

r rc c
(3.16)

p""(r )c
== 2(VAE )" (r) _ 4(1+1)p'(r) + 4(1+1)p"(r)

c 3 c 2 c
r rc c

- 2(1+1) p"'(r) - 2[p"(r)]2 - 2p'(r)p"'(r)
re

(3.17)

To ensure a smooth shape for the pseudopotentials, the condition that V" (0) =0 is

imposed, bringing in an additional constraint:

2
C2 + c4 (2/+5) == 0 .

In these equations, VAE(r) is the all-electron atomic screened potential, and

P(r) == rR~ (r) .

(3.18)

(3.19)

Once the c, have been solved for, the screened pseudopotential is obtained by inverting

the Schrodinger equation. The unscreened (bare ion) potentials are then obtained by

subtracting contributions from both the Hartree and the exchange-correlation potentials:

VPS(r) == V Ps (r) - V [n (r)] - V [n (r)] .
screened H ps xc ps

Page 40

(3.20)



3.3.4 The non-linear core correction

The assumption made in the generation of the pseudopotential is that the exchange­

correlation functional is linear in terms of the core and valence electron densities:

E (n + n ) = E (n) + E (n) .xc c v xc c xc v (3.21)

In other words, it is assumed that the core and valence electron orbits do not overlap with

one another. Where the exchange-correlation potential cannot be assumed to be linear in

the charge density, an error will be incurred at the step where the screening potential,

which is generated by the valence charge only, is removed.

This error can be corrected by means of the non-linear core correction, where the core

electron density is added to the valence density at the unscreening step. In addition, this

core density is carried into the solid state calculation, where it is added to the iteratively

evolving valence electron density before the exchange-correlation potential and energy are

calculated at each point r in space.

3.3.5 The Kleinman-Bylander construction

The general form for the pseudopotential is

Vi:: (r) = L IY1m ) V/S (r) (Y1m I
I

(3.22)

where the Y
lm

are spherical harmonics, as before, and VI is the Ith angular momentum

component of the pseudopotential acting on the wavefunction. Implementation of this

Page 41



form for the pseudopotential requires a complete projection of the angular momentum

components of the wavefunction. Kleinman and Bylander coined the term "semi-local" to

describe the nature of this potential. They pointed out that separating this potential into

local and non-local parts greatly reduces computational effort, as manipulation of these in

reciprocal space is much more efficient.

This separation is done by assuming that all potentials with angular momentum I greater

than some value Imax are equal to some arbitrarily chosen local potential. Hence

v Ps (r)
lmax 00

= L IY1m ) yts (r) (Y1m I + L IY1m ) VI;: (r) (Y1m I
1=0 1= Imax +l

Imax

L IY1m ) ( vts (r) - Vla/
s (r) ) (Y1m I + L IY1m ) VI:: (r) (Y1m I (3.23)

1=0 1=0

Imax

" IY ) ( V Ps (r) - V Ps (r) ) (Y I + V Ps (r)L..J Im 1 lac Im lac
1=0

The Kleinman-Bylander separated form for the pseudopotential requires a single basis

state for each of the angular momentum components of the wavefunction. This

pseudopotential hence has the form:

V PS (r) = VI:: (r) + ~ Iw
Ps

1I::.vts
(r» (I::. vts

(r) W
Ps

11

1=0 ( WPs
1 I I::. vts (r) IwPs

1 )

(3.24)

where the local part of the pseudopotential is VP\oJr), and I::.VPSlr) is the non-local part.

Use of this separable non-local potential will result in a substantial saving in

computational time and storage. The process of taking matrix elements of the semi-local

form for the pseudopotential on an N-dimensional plane wave basis set is an O(N
2

)
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process, whereas the separable form requires only O(N) operations. There is, however, a

problem in the Kleinman-Bylander approach. The calculated chemical binding energy of

molecules and solids is sometimes incorrectly described. In addition, self-consistent

calculations can become unstable. This is because the Kleinman-Bylander Hamiltonian

does not obey the Wronskian theorem, which states that atomic eigenfunctions are

energetically ordered so that the energies increase with the number of nodes. In other

words, the nodeless wavefunction is no longer guaranteed to be the solution with the

lowest energy. Neglect of this theorem gives rise to "ghost states". These are single-node

states below the zero-node reference state which do not appear in the all-electron case.

Gonze et al38 have proposed a rigorous means by which these ghost states may be

identified. This problem can be addressed through slight modification of the

pseudopotential, without altering its scattering properties. Careful choice of the local part

of the pseudopotential will most likely eliminate these unwanted states.

3.3.6 Pseudopotentials for iridium

In the present work, the improved Troullier-Martins procedure was used, together with

the Kleinman-Bylander construction, to generate pseudopotentials for iridium. The

ground state valence electron configuration for iridium is [Xe] 4£1 4 6s2 6pO 5d7
. The 4f

electrons, since they constitute a filled f-shell, are treated as belonging to the core. For

each of the 6s, 6p and 5d valence orbitals the cut-off radius re was chosen to be a distance

of 80% between the last node and the outermost extremum. Choice of these values for

the core radii gave the most accurate values for the bulk properties when compared with

experimental values. The consequent pseudo wavefunctions are shown, together with

the all-electron wavefunctions, in Figures 3.3 to 3.5.
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Figure 3.3 All-electron and pseudo wavefunctions for Iridium 6s valence electrons. (re = 2.41 Bohr)
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Figure 3.5 All-electron and pseudo wavefunctions for Iridium 5d valence electrons. (re = 1.15 Bohr)
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The pseudopotentials for the valence states of iridium, together with the all-electron

potential, are shown in Figure 3.6.
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Figure 3.6 The 65, 6p and 5d pseudopotentials for iridium shown together with the atomic all-electron
potential.
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The initial choice for the local part of the pseudopotential was 1= 1. This choice gave rise

to ghost states in the system
J

and resulted in numerical instabilities in the self-consistency

calculations. These states vanished with the choice of 1=0 as the local part.

3.4 Constructing the total ionic potential

The total ionic potential is constructed by placing the pseudopotentials which have been

generated for the single ions at the positions of each of the ions in the solidJ for the

various species of ion. Information of these ionic positions is obtained from the structure

factor J which at wave-vector G is given by:

5 (G)
a. (3.25)

where I indicates the ions of species ex. in the unit cell. The local part of the total ionic

potential is hence obtained by summation of the product of the Fourier transform of the

pseudopotential and the structure factor over all species of ions in the system:

a.
(3.26)

As can be seen in Figure 3.6J the pseudopotential behaves in the same way as the

Coulomb potential for large distances. In other words, it has the form -Ze2/r for large r,

where Z is the valence of the atom. The Fourier transform of the pseudopotential

therefore diverges as Z/C2 for small C. The ionic potential hence becomes infinite at

G=O. This means that the electron-ion energy is infinite at G=O. However, the electron-
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electron interaction energies, as well as the ion-ion interaction energies, diverge similarly

for G=O. The contributions to the total energy by all three of these interactions cancel

one another exactly.

However, since the pseudopotential is not purely Coulombic, it is not exactly

proportional to Z/C2 for small C, but has a constant contribution to the energy for each

ionic species a:

v j1Z/r-vaIOC(r)]4rr.r2dr.
a,core (3.27)

Here v !oca is the local component of the pseudopotential. The integral given in equation

(3.27) is non-zero within the core region, and zero otherwise, as the pure Coulomb

potential and the pseudopotential are identical outside of this region, and hence their

difference is zero.

The non-Coulomb part of the pseudopotential at G=O contributes to the total energy by

an amount given by:

N 0- 1
" N vel L..J a a,core

a
(3.28)

Here N a is the number of ions of species a, Ne! is the number of electrons in the system,

and Q is the unit cell volume.
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3.5 Advantages of the pseudopotential approach

Use of the pseudopotential approximation greatly reduces the number of plane waves

which are required for expanding the electronic wavefunctions. The computational

complexity of the calculation is therefore greatly reduced. Also, since the core electrons

have been removed, fewer electronic wavefunctions are required in the system. The total

energy of the valence system is typically one-thousand times smaller than that of the

all-electron system. Therefore, since energy differences, rather than total energy values,

are of primary importance, these may be obtained with greater accuracy within a

pseudopotential calculation than in an all-electron calculation.
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Chapter 4

Algorithms

4.1 Brillouin zone integrations

One can map out the first Brillouin zone in reciprocal space by a continuous set of k­

points:

where the occupied states at each k-point contribute to the electronic potential of the

solid. There is an infinite number of k-points in the Brillouin zone at which the

wavefunctions are to be calculated. The required basis set would hence be infinite.

(4.1)

A consequence of Bloch's theorem is that the electronic structure problem of computing

an infinite number of wavefunctions for an infinitely extended periodic system is reduced
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to a problem of calculating a finite number of wavefunctions at this infinite number of k­

points within the Brillouin zone. Some form of integration over these k-points is

required. Many such methods have been developed over recent years. Some of these

methods are briefly discussed below.

4.1.1 Brief overview of Brillouin zone integration methods

4.1.1.1 The Gaussian broadening method

This simple approach involves the even distribution of k-points throughout the Brillouin

zone. This method is primarily used when one requires only a rough idea of where the

electronic states lie. It is less accurate than most other methods that are in use, but does

converge relatively quicklY9.

4.1.1.2 The linear tetrahedron method

The linear tetrahedron method, developed by Lehmann and Taut40
, and later improved by

Blochl et a141
, is the standard method generally used when evaluating integrals over the

Brillouin zone. This method consists of dividing the irreducible part of the Brillouin zone

in reciprocal space into tetrahedra of equal volumes. Energy eigenvalues and matrix

elements are evaluated at each apex. The values within the tetrahedra are found by linear

interpolation and analytical integration.

Although this is the most simple and therefore attractive method for performing Brillouin

zone integrations, Pickard and Payne42 have reported problems with the linear tetrahedron

method which are associated with band crossing and poor representations of van Hove
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singularities. These problems arise due to the lack of second-order band information. In

addition, a high density of k-points is required for convergence.

4.1.1.3 The quadratic tetrahedron method

This method involves the piecewise quadratic representation of the Brillouin zone, and

converges more rapidly than both the Gaussian and the linear tetrahedron method43
• The

van Hove singularities are treated more accurately than in either of these methods.

However, due to the need for a high k-point sampling density, this method has not been

used very much.

4.1.1.4 The linear extrapolative method

Tetrahedra are once again made use of in this scheme, but in this case a single point

within each tetrahedron is chosen, from which energies at unknown points in the

Brillouin zone are extrapolated44
. Convergence is achieved quickly with a relatively small

set of tetrahedra.

4.1.1.5 The quadratic extrapolative method

This method, recently developed by Pickard and Payne42
, efficiently divides the Brillouin

zone into subcells, making full use of the symmetry of the system. A single k-point is

selected within each cell, and the information regarding the wavefunctions and energy

eigenvalues of neighbouring k-points are found by means of extrapolation, using a second­

order perturbation scheme, the so-celled k'p perturbation method. It has been shown to

be highly efficient, requiring a low k-point sampling density. However, this method is

not highly suited to a plane-wave approach, as the perturbation scheme requires a

perturbation sum over matrix elements between all of the states.
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4.1.2 The special k-point technique

A method which is well suited to a plane-wave representation, and which is the method

of choice in the current work, is the special k-point technique. In this method, a discrete

set of k-points within the irreducible part of the Brillouin zone at which the electronic

states are to be calculated are selected. The potential can therefore be calculated at a

finite number of k-points. Consequent errors may be rendered negligible by choice of a

sufficiently dense set of k-points.

The reciprocal space charge density for each k-point in the set is given by

nk(r) = LWk/ (r) lh/r )
i

(4.2)

Here the i label indicates the occupied states, and k is an element of the Brillouin zone.

The total charge density then becomes

n(r) =~ f nk(r) dk ,
(2n)3 BZ

(4.3)

where V is the volume of the unit cell. As an approximation, the charge density is

computed at a carefully selected set of k-points. This set of k-points should characterise

the shape of the reciprocal space unit cell. Since the space group symmetry operations of

a crystal map some of the k-points onto others, the charge density at these points is

related, and hence needs only one calculation for all such related points.

This fact is made use of by Monkhorst and Pack45
, who have designed a method for

generating a special set of k-points for the sampling of the Brillouin zone. This method is

outlined in AppendiX D on page 155.
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4.2 Calculating the interaction energy between ions

Due to the long-range nature of the Coulomb interactions, the calculation of the

Coulomb energy of the ionic system is difficult using real-space summation, due to the

slow convergence of the series. The logarithmic divergence in real-space, together with

that for the electron-electron interaction, is cancelled by the negative electron-ion

divergence, yielding a finite contribution. A rapidly converging method, known as the

Ewald summation46
, has been developed for performing these summations for periodic

lattices. Ewald recast the slowly converging potential energy as the sum of two rapidly

converging series plus a constant term:

where Er is the real space sum:

(4.4)

Er (4.5)

with 1indicating the real space lattice vectors, and Z/ and Z) the valences of ions I and}.

The function erfc is the complementary error function. The 1in the summation indicates

that the 1=0 term must be omitted when I=}. The Coulomb interaction here is between

an ion positioned at Rz and an array of ions positioned at Rl +1.

The term Em indicates the reciprocal sum:

E =.!- L Z Z e 2 { 4n L_l_e -IGI
2

/ 4T]2 cos[(R -R )'G] } (4.6)
m 2 I,] I J n c..oIG 12 1 2 '

where the G are reciprocal-space lattice vectors, and Q is the unit cell volume.
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The constant term, Eo, is given by:

Appropriate choice of a value for 11 will ensure rapid convergence of the real- and

reciprocal-space summations. (It should be noted that

(4.7)

aEEwaid

al1
= 0 (4.8)

for all values of 11, as can be checked very easily. The actual value of 11 is hence chosen for

computational efficiency. In our calculations, we choose a value of 11 that minimises Eo,

and hence minimises E,+Em which is subject to errors due to the finite approximations to

the summations.)

4.3 Overview of various electronic structure methods

4.3.1 Linear muffin tin orbital (LMTO) method

This method involves the construction of a sphere of radius SMT around each atom. This

is called the muffin-tin sphere (MT). The potential is hence divided into two separate

regions:

= {v(r) ,r < 5MT

VMTZ ,r ~ SMT
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The potential is spherically symmetric within the sphere, and constant, with a value of

VMTZ outside of the sphere. The basis functions can therefore be constructed as Bloch

sums of muffin-tin orbitals:

{

(E) P (E) (r/SMT) , ,r < SMT
_ . I m WI ,r + I 2 (21 +1)

XIII! - I Y I (r)
(r / SMT) -1-1 , r ~ SMT

(4.10)

Here lJ1,(E;r) is the solution of the radial Schrodinger equation inside the muffin-tin sphere

as a function of energy E. The potential function P,(E) arises due to the requirement that

the orbitals be differentiable and continuous at the sphere boundary. The kinetic energy,

K2
, of the part that is outside of the sphere is chosen to be zero. For this reason, the form

for the orbital in this region is a very simple Neumann function.

In the atomic sphere approximation the muffin-tin spheres overlap in such a way that

their total volume is the same as that for the unit cell. Inside each muffin-tin sphere the

potential is assumed to be spherically symmetric. The wavefunction lJ1,(E,r) is expanded

around some energy Ev . This yields a set of linear muffin-tin orbitals. Use of this

approximation leads to simplifications which allow large system sizes to be considered.

These systems should, however, be fairly densely packed. Allowance is made for so-called

"empty spheres" for less densely packed systems such as diamond.

The full-potential method (FP-LMTO) describes the potentials and charge densities in the

crystal without necessarily regarding them as spherical. The unit cell is divided into non­

overlapping muffin-tin spheres around the atom, and an interstitial region. Within the

spheres the potentials and electron densities are expanded in a way that does not require

spherical symmetry. In the interstitial region the charge density and the potential are

expanded in a Fourier series, due to their periodic nature. Use of the full potential does
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not require the system under consideration to be densely packed. Forces are more

accurately calculated in this scheme.

4.3.2 Tight-binding method·

In this method, the ground state total energy of the system, ETor , is approximated by the

sum of two terms: the band-structure energy EBS' and the repulsive potential Urep ' The

band-structure energy EBS is the sum of occupied electronic eigenvalues En of the

Hamiltonian. These eigenvalues may have a complex dependence on the atomic

coordinates RI' In order to find the eigenvalues, the Hamiltonian should be constructed

and diagonalised. Since the true eigenfunctions lJ1n of the Hamiltonian are unknown, they

are approximated by a basis of known functions. This is done by means of a linear

combination ofatomic orbitals (LCAO):

(4.11)
I,a.

where the index 1 spans all of the atoms of the system, and the index ex spans all of the

basis orbitals positioned on a particular atom. These basis functions may be considered

orthogonal to one other, in which case they would fall into the orthogonal tight-binding

(OTB) category, or not, constituting the nonorthogonal tight-binding (NTB) category.

The repulsive potential Urep consists of two terms: the repulsive energy between nuclear

charges Z/J and the term which corrects for the double counting of the electron-electron

energy in the band-structure term EBS' It is assumed that the repulsive potential has a

simple dependence on the atomic geometry, and can hence be represented as a sum of

short-ranged two-body potentials, each of which depend purely on the distance between
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the associated atomic pairs. This gives rise to a semi-empirically based tight-binding

scheme. The atomic forces are calculated by means of the Hellmann-Feynman theorem.

Earlier tight-binding methods were used successfully in applications with semiconductors

and transition metals, but were generally shown to be less accurate than self-consistent

methods47
. More recent developments to this method have, however, yielded more

accurate results48
.

4.3.3 Full potential Iinearised augmented plane wave method

Otherwise known as the FIAPW method, this all-electron method treats the electrons in a

scalar-relativistic form. All of the electrons are included in a self-consistent approach,

using a full potential for the valence electrons which has no shape approximation. The

method makes use of the periodicity of the system, and operates within the local density

approximation for the exchange-correlation energy. The basis set is made up of linearised

augmented plane waves (IAPW's), which are modified from the augmented plane waves

discussed in Section 3.2.1. The IAPW's are constructed in such a way that the basis

functions as well as their derivatives are continuous at the boundary edge of the APW

sphere. This ensures greater flexibility of the IAPW basis, enabling the potential

generated in this way to be used as a general crystal potential.

Although this method is efficient and accurate for densely packed systems49
, it is

computationally demanding for fairly open structures. It is therefore most appropriate for

precise calculations that do not involve dynamical processes or large supercell geometries.
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4.4 The iterative method

4.4.1 General procedure

The general procedure which is followed for a solution of the Kohn-Sham equations is

outlined below:

•

•

•

•

•

•

•

•

An estimate is made for the initial charge density n(r).

From this value for n(r) the Hartree potential VH(r) and the exchange correlation

potential Vxc(r) are calculated.

A choice of basis functions is made) ego plane waves.

The Hamiltonian matrix is constructed for each k-point which is an element of

the Brillouin zone.

The Hamiltonian matrix is then diagonalised) which yields the Kohn-Sham

eigenvectors and eigenvalues. This step may be performed "conventionalli) or

"iteratively)).

The Fermi level is found through fractional occupation of the states by means of

the Fermi distribution function.

The charge density is computed) and mixed with the input density.

A new Hamiltonian is constructed.
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This process is repeated until self-consistency is reached.

In the Fermi distribution function

(4.12)

the Fermi level Er is adjusted to accommodate the fixed number of electrons. Although

the temperature of the electronic sub-system is 0, a choice of T close to room temperature

is made for computational convenience. (This removes the discontinuity in the Fermi

distribution function). This assumption is of no consequence, since kBT < Er'

Conventional matrix diagonalisation techniques are not well suited to the solution of

plane-wave pseudopotential calculations, as the number of operations required for matrix

diagonalisation is proportional to Npw
3

, where Npw refers to the number of plane wave

basis states, which are typically of the order of 100 for each atom in a system. (The

efficiency of one such matrix diagonalisation technique is discussed in AppendiX E.) In

addition, conventional diagonalisation methods require storage of the entire Hamiltonian,

which is of the order of Np}. Alternative methods, which scale more favourably with the

size of the system and require less memory storage space, are thus required.

4.4.2 The Car-ParrinelIo method

One such method is the Car-Parrinello method9
, for which a Lagrangian is formulated for

the Kohn-Sham eigenstates. Here the electronic wavefunctions are treated as dynamical

variables.
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The form for this Lagrangian is:

(4.13)

where I..l. is a fictitious mass associated with the wavefunctions, and E[n(r)] is the Kohn­

Sham energy surface. This Lagrangian describes the fictitious dynamics of trial

wavefunctions, which are successively updated until they eventually converge to the true

Kohn-Sham eigenstates. To ensure that not all of these eigenfunctions converge to the

lowest energy eigenstate, a condition of mutual orthogonality must be imposed on them:

(4.14)

In the Lagrangian molecular dynamics approach, these orthogonality constraints are taken

into account by means of the method of Lagrange multipliers. The Lagrangian then takes

the form:

L = ~ L <wilw) - E[n(r)] + ~Aii[{fw/(r)w/r)d3(r)}-olj]
I 1,1

(4.15)

where the Lagrange multipliers AJj ensure the orthonormality of the wavefunctions.

Using the Euler-Lagrange equations:

d ( oL J =

dt oW /
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we obtain the following equations of motion for the eigenstates:

IlW; = -HW; + LA;;W; ,
;

(4.17)

where H is the Kohn-Sham Hamiltonian. The term (- H lfIJ acts as a force which

propagates the electronic wavefunctions along their molecular-dynamics trajectories.

However, the evolution of these equations of motion requires the values of the Lagrange

multipliers to vary continuously with time. They would hence need to be evaluated at

infinitely small time intervals.

To avoid this problem, the Lagrange multipliers are approximated by a constant value

during each time step. This means that the wavefunctions will not remain orthonormal

at the end of the iterative step, and a separate orthonormalisation step is required for each

iteration. As a first approximation, we neglect all Lagrange multipliers Ai; except for Aii

which is assumed to be constant. The equation of motion hence takes the form:

(4.18)

where Ai is the approximation for the Lagrange multiplier Aii , and is found by computing

the expectation value of the energies of the states:

(4.19)

The integration of the equations of motion is done by means of the Verlet algorithm. The

value of the ith electronic state at the time step (t+ 1) is given by:

(4.20)
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Substituting equation (4.18) into this yields

(4.21)

In the Car-Parrinello formulation, once a time step in the integration of the equations of

motion has been completed, orthogonalisation of the wavefunctions is done iteratively,

with repeated application of the following algorithm:

W
l

l = W - ~ L (wlw·) W·
( 2.. I I I

/1'1

(4.22)

which generates a new set of wavefunctions {1J1/} from a set of normalised

wavefunctions {lJ1J. The wavefunctions are then to be normalised after each iteration of

the algorithm. The number of steps required in this algorithm increases with the number

of wavefunctions, and the extent of the non-orthonormality of these functions.

If the wavefunctions are not orthogonalised, they all cascade down to the lowest energy

eigenfunction. The orthogonalisation procedure ensures that the eigenfunctions

ultimately converge to a set of mutually orthogonal states that span the ground state.

One of the downfalls of the Car-Parrinello method is that the true energy eigenstates are

not computed. This method is therefore applicable to band-gap materials (which have a

constant occupation number for each state), and not for metals.
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4.4.3 The conjugate gradients method

The conjugate gradients methodSO is an effective and straight-forward method for finding

the minimum of a function, with a fairly rapid rate of convergenceS1
. The initial direction

in which to move in order to locate the minimum of a function f(x) from the starting

point x is in the direction of steepest descent of that function, '\7f(x). Subsequent

directions are taken to be a linear combination of previous directions and the new

gradient. The procedure is outlined below:

The gradient go of the function f(x) at the starting point Xois given by:

of(x) Igo = -- .ox x=xo

The initial minimisation step is hence given by:

do = - of(x) I = - go .ox x=xo

The subsequent mutually conjugate directions are chosen so that

The coefficients Pk may be given by, for example, the Fletcher-Reeves formula:

T
gk+l . gk+l

T.
gk gk

where gTk is the transpose of the gradient vector gk .
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The step length along each direction is calculated by:

(4.27)

where Q is a positive definite symmetric matrix, and d\ is the transpose of the direction

vector dk .

For an n-dimensional subspace, the minimum of the function f(x) may be located in n

steps or less using the conjugate gradients method. This is because gk is constructed in

such a way as to be perpendicular to all previous search directions, so that each point X k+1

is a minimum with respect to the entire subspace that is spanned by the vectors

{do, d 1 , ... d k }. In other words, each step may be considered as removing one dimension

of the space from the problem.

When applying the conjugate gradients method to total energy calculations, one replaces

the function fin the above procedure with the Kohn-Sham energy functional E. The

wavefunctions {lJ1,} take the place of the vector x, and the Kohn-Sham Hamiltonian H

replaces the matrix Q.

4.4.4 The preconditioned steepest descent method

The iterative scheme which is used in the BEST code is a variant of the preconditioned

steepest descent algorithm (PSD)6. In this algorithm it is not necessary for the entire

Hamiltonian to be stored in memory, as is done in the Car-Parrinello scheme. Instead, a

subspace of occupied states is selected, since only the lowest occupied states of the system

are of interest. This yields the lowest-energy eigenstates of the system. The number of
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selected states in this procedure, ns, is larger than the number of occupied states, and is

typically of the order of 1% of the total number of plane waves (which determines the

size of the Hamiltonian). Where the conj ugate gradients method requires storage of all

past information for the respective search directions which requires a large amount of

storage space, the steepest descent method requires storage of only the information

pertaining to the current search direction. Hence, although this method is generally less

efficient in finding the minimum of the function f(x) , it requires less storage space,

making it more practical for calculations of complex systems. A further point in favour of

the PSD method is that the conjugate gradients method, in using information from

previous iterations, may force the states in the wrong direction. This is because the space

which is spanned by the trial states is altered between steps due to the orthogonalisation

procedure, as well as the implementation of the equation of motion. Hence, the

information pertaining to previous steps is given in reference to a rotated space. If this

rotation is large, it will lead to errors in the propagation of the states. By contrast, the

PSD method, in only using information from the current iteration, will not incur this

problem. Chetty et al6 pointed out that the PSD method, combined with the subspace

diagonalisation, does not suffer from the well-documented "long valley" problem faced by

the general steepest descent algorithm, and is a stable and efficient method for finding

converged minimum energy results.

4.4.4.1 The steepest descent algorithm

In order to minimise the energy, this algorithm considers a step in the direction of

steepest descent of the energy:

d
j

= _ of(x) I .
ox X=X j
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The minimum along a certain direction is located when the direction along which one is

searching becomes perpendicular to the gradient. Consecutive search directions are hence

always perpendicular to one another in this method, in contrast with the conjugate

gradients method, in which the current search direction is perpendicular to all previous

directions. The iterative procedure for this method is:

(4.29)

where gk is the gradient of the function f(x) at the point x k . There are various ways of

choosing the value of the step Ak . Some examples of these methods are the linear search

method, the optimal gradient method, and the preconditioned steepest descent method,

which will be looked at in more detail shortly.

Within total energy calculations, the equation of motion of the wavefunctions in the

steepest descent method becomes:

a
- I W·) = - (H - A/.) IWt') .at (

(4.30)

The stationary solution of equation (4.30) yields the eigenstates of the Hamiltonian. The

expectation value for the energy in state IWi) is given by:

A.
/

<wiIHlwi )
<wilwi )

(4.31)

A finite difference approximation for equation (4.30) is used for small times !1t for the

propagation of the states:
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(4.32)

these steps being repeated until the states become stationary.

4.4.4.2 Preconditioning

In the PSD algorithm, the magnitude of the step in the direction of steepest descent is

inversely proportional to the kinetic energy of the state. With the wavefunctions

expressed as a plane wave basis set expansion:

lj1 i (r) ~ c ei(k+G)'r
L..J i k+G '
G '

(4.33)

the Hamiltonian matrix has the form:

~ Ik+GI 2 oGG / + VH(G-G
/
) + Vxe(G-G

/
)

+ V Ps (G-G I) + V Ps (k+G k+G /)
foe Ni' .

(4.34)

Equation (4.32) then becomes:

(4.35)

Due to the increasingly dominant role played by the kinetic energy for the high-energy

components, a preconditioning matrix is used to scale these high-energy components,
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allowing a variable time step for each Fourier component of the wavefunction. The

preconditioning matrix may assume the form of:

B ,= { ~ 1 G 1
2+ 5 }-1 0 ,

gg 2 gg

(4.36)

where 5 is a constant shift, whose value is chosen appropriately. Equation (4.35) can

therefore be written in the form:

L (A- kn - HG,G') C
I

G,n
1 g 'C l+ = Cl + ~ _

G,n G,n

(4.37)

The effect of the preconditioning matrix is to transform the Kohn-Sham Hamiltonian H

into a matrix which is diagonally dominant, requiring a smaller spectrum of eigenvalues

than in the original H. This causes the minimisation problem to converge more rapidly

than in the unpreconditioned case. As in the Car-Parrinello scheme, the wavefunctions

are required to be orthogonalised after each propagation step.

4.4.5 The Gram-Schmidt orthogonalisation scheme

The Gram-Schmidt scheme is one of the schemes which may be used for orthogonalising

the wavefunctions at the end of each iteration in the propagation of the wavefunctions.

In this scheme the orthogonalisation is done in a particular order. Each higher-energy

wavefunction is forced to be orthogonal to the wavefunctions which have lower energy.

Each state is hence converged to its lowest energy state subject to the condition of it

being orthogonal to all states below it in energy. The set of lowest energy levels under

these constraints are the Kohn-Sham eigenstates.
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The Gram-Schmidt scheme comprises the following algorithm:

W/ ' = Wi - L (w/lwi ) W/ '
i <i

where

Iw/'I

(4.38)

(4.39)

yielding a set of orthonormal wavefunctions {lfJi '} from a set of linearly independent

wavefunctions {lfJi}.

4.4.6 The subspace diagonalisation scheme

The subspace diagonalisation scheme, developed by Chetty et a/6
, is an alternative

orthogonalisation method to the Gram-Schmidt scheme. In this scheme, once the set of

trial wavefunctions have been propagated according to equation (4.37), these

nonorthogonal trial states are diagonalised with respect to the Hamiltonian

ns ns

L (wknIHlwk,,) Dkmn = Ekn L (wknlwk,,) .
m=l m=l

(4.40)

The exact eigenfunctions, with eigenvalues e kn , are determined from the coefficients

D kml/ , for the subspace spanned by the states IlfJ kl/ ):

IWkn)

n,

L Dkmnlwkm) .
m=l
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This subspace diagonalisation serves to orthogonalise the states, and to determine the

next approximation for the Kohn-Sham eigenvalues. It is the only iterative

diagonalisation method that ensures that the system converges to the actual eigenstates

of the ground state, and not a linear combination of these (which is what equations

(4.38) and (4.22) effectively do).

4.5 Atomic relaxations

We have not as yet considered the atoms in any coordination other than in fixed

positions. A consequence of the Car-Parrinello method is that electronic and atomic

relaxations can take place simultaneously. In order to do this we need to compute the

forces acting on the atoms in order to be able to update the atomic positions. These

forces are found by means of the Hellmann-Feynman theorems2
,s3.

4.5.1 The Hellmann-Feynman theorem

This theorem states that when the wavefunctions l\Ji are eigenstates of the Hamiltonian

H, then

~ ("'.IHI"'.) = ("'.1 aH I"'.)aR I t I aR t
I I

for the positions of the atoms RI' Hence, since the force on the atoms is given by
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= - {~< 'lJ.1 H 1'lJ.) + aE iOn
} ,

aR t t aR
1 1

(4.43)

this force can be efficiently calculated in the following way:

_{< 'lJ.1 aH I'lJ.) + aE iOn
} •

t aR I aR
1 1

(4.44)

In other words, when each l\J, is an eigenstate of H, the partial derivative of the Kohn­

Sham energy with respect to the atomic positions yields the force on the atoms.

However, to avoid incurring errors which arise from using unconverged wavefunctions,

the Hellmann-Feynman theorem should only be implemented once the wavefunctions are

close to self-consistency, since the force (unlike the energy) is not a variational quantity.

An additional term which should arise in equation (4.43)is the partial derivative of the

basis set with respect to the atomic positions. This contribution to the force is called the

Pulay force. However, with the use of a plane-wave basis, this derivative becomes zero,

and the Pulay force vanishes. This is one of the advantages of using a plane-wave basis

(which goes hand-in-hand with the pseudopotential method), as compared with the

numerous other localized basis set methods.
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4.5.2 The BFGS algorithm

Once the Hellmann-Feynman forces have been computed, the atoms are moved in the

direction of these forces by an amount determined through application of a modified

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update scheme54
. The basic idea behind the

BFGS method is that the energy surface around a minimum is quadratic in small

displacements, and hence may be totally determined by a Hessian matrix, which is the

matrix of second derivatives of the energy. If this matrix was known, one could move

from any point to the minimum in one step. However, this matrix is not known, and

hence an approximation to it is built up by progressive improvement of a trial matrix as

the atoms are moved using the BFGS algorithm. (This is also known as a quasi-Newton or

variable metric method.)

The atomic positions are updated according to the relation:

R. 1 = R. + A!1R. ,
I + I I

where

!1R. = H. F.
I I I

(4.45)

(4.46)

Here Hi is the Hessian matrix, and Ei indicates the forces on the atoms. A modification to

this method is made by applying the Oren-Spedicato scaling55 in the second step in order

for the process to be self-scaling. In the BEST implementation it is assumed that the

forces experienced by each atom are comparable to the forces due to phonon vibrations.

The distance in which the atoms are moved along the direction of the force is hence

related to the force, the mass, and a characteristic phonon frequency. Here the Debye

temperature is used. This leads to a rapidly convergent minimisation of the total energy

with respect to atomic positions. No more than 5 atomic steps should be required for full

convergence of the forces to be attained, to within 10 -4 Hartree/Bohr.
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4.5.3 Computational implementation

The computational procedure for relaxation of the atoms has the following sequence:

•

•

•

•

•

•

•

The initial wavefunctions are generated randomly, and the charge density is

calculated from these.

The Kohn-Sham Hamiltonian is then constructed, from which the total energy is

calculated.

This energy is reduced to self-consistency by the method of preconditioned

steepest descents.

Once a self-consistent result for the energy is obtained for this set of atomic

positions, the forces on the atoms are computed.

The atoms are moved in the direction of these forces by integration of the

equations of motion using the BFGS method.

The wavefunctions from the previous atomic iteration will no longer be

eigenstates for the new structure of the atoms, but are a good starting point for

the new self-consistency procedure. The entire procedure is therefore repeated

for this new set of atomic positions, until the atomic forces are sufficiently small.

Once convergence in the forces is reached, the atoms will have completely relaxed

into their lowest-energy positions, and the total energy will be the correct ground

state energy for this atomic structure.
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This computational procedure is outlined in the flow diagram shown in Figure 4.1 below.

Choose initial wavefunctions IjI i

Construct Kohn-Sham Hamiltonian H

Preconditioned steepest descent algorithm

Orthogonalise and normalise IjI i

using subspace diagonalisation

Mix densities

No
Are wavefunctions self-consistent? f----...J

Yes

Calculate forces (Hellman Feynman)

Are forces sufficiently small?
No

Use old ljIi as initial guess

Figure 4.1 Flow diagram illustrating procedure for iterative minimum
energy calculation including atomic relaxations
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4.6 Additional computational considerations

4.6.1 Fast Fourier transforms

Since the charge density is given by the square of the magnitude of the wavefunction,

N

n(r)=L I l\Ji(r) 1
2

,
i= 1

(4.47)

it is most efficiently computed in real space. The charge density is also needed in real

space in order to compute the exchange-correlation energy and potential (on a point-by­

point basis in real space). This requires the wavefunctions to be Fourier transformed into

real space, from their reciprocal space representation. This is done in the BEST codes by

means of fast Fourier transformation (FFT). The efficiency of the FFT is discussed in

AppendiX E on page 158.

4.6.2 Periodic supercells

Thus far we have considered systems with periodic symmetry, where we have made the

assumption that a unit cell may be repeated through all of space to represent the

macroscopic solid under consideration. Figure 4.2 on the following page is a schematic

representation of the basic unit cell which is replicated throughout space.
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Figure 4.2 Schematic representation of a periodic
unit cell repeated through all of space

Surfaces, defects, and interfaces are non-periodic in nature. Within the current periodic

model, then, a method of modelling these is required. In the case of a defect, the periodic

unit cell is extended so that it is large enough to isolate the defects from one another.

This larger unit cell is called a 5upercell. Figure 4.3 below represents a defect in a periodic

supercell.

Figure 4.3 Schematic representation of a supercell
containing a single, "isolated" defect atom.
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In a similar way surfaces may be modelled within the supercell, allowing enough vacuum

layers to prevent the two surfaces created as a result of periodic boundary conditions from

interacting with one another.

Figure 4.4 Schematic representation of a surface supercell
with 2 vacuum layers and 4 slab layers.
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Chapter 5

Investigations of Mixing Schemes

5.1 Introduction

Once the charge density has been determined in a particular iteration, it is used to

determine the input charge density for the subsequent iteration. However, if this charge

density alone is used as the input density, the charge has a tendency to oscillate in

subsequent iterations, causing numerical instabilities. These oscillations are particularly

severe for large supercells for which the long wavelength (ie small G) changes to the

charge density are amplified by the Coulomb potential, which is proportional to n(G).
a2

These oscillations should be damped in order to prevent divergence. This damping is

done by a variety of possible mixing schemes, in which various combinations of charge

densities are taken as the input charge density in subsequent iterations.
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Complex systems with a large number of atoms in the unit cell require an efficient means

of obtaining convergence. One of the ways in which one can accelerate the convergence

of a calculation is to use an appropriate mixing scheme for the system under

consideration. This chapter explores three such mixing schemes, and compares their

convergence for various system sizes.

5.2 Linear mixing

The mixing scheme originally used in the BEST codes is the linear mixing scheme, which

is the simplest of the possible mixing schemes. Here, the input charge density for the

following iteration is a linear combination of the input and output densities from the

current iteration:

n. (m+1)
In

(1 - a) n. (m) + a n (m)
In out (5.1)

The superscript m in this equation indicates the iteration index. The value for ex is chosen

empirically, and should to be in the range [0,1]. With a suitable choice of ex, convergence

is usually achievable. Larger values of ex ensure a rapid rate of convergence of the total

energy. However, if this value of ex is too large, numerical instability is likely to occur, as

the charge density is not being sufficiently damped for subsequent iterations. On the

other hand, a small ex value, although ensuring numerical stability, will require a greater

number of iterations for self-consistency in the results. In Figure 5.1 below, the number

of self-consistent iterations required for convergence of the total energy for a 3-iridium­

atom unit cell is plotted against the mixing parameter a.

Page 81



500

V)

s::
0'- 400......
~....
<:U......'-A
\,J

s::
<:U 300......
V)'-V)

s::
0
\,J

'-Il--<:U
200V)

'-+-
0
....
<:U
~

~

~ 100

oo 0.1 0.2 0.3

Figure 5.1

Mixing parameter et

Graph of number of self-consistency iterations required for
converged total energy result versus linear mixing parameter ex

With the linear mixing scheme, convergence can be extremely slow at times. For

example, in the case of the iridium 12-atom unit cell, ex can not be greater than 0.005 (which

is a 99.5% mixing of input density with 0.5% output density) if a converged result is to be

achieved. This requires an undesirably large number of iterations, in excess of 500. An

improved means of mixing the charge densities is thus required.
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5.3 Anderson's mixing

Anderson56 developed a method which was later suggested as a means of mixing the

charge densities in electronic structure calculations by Hamann57
. This mixing method is

an extension of the linear mixing scheme. Here, the input and output densities which are

to be mixed are constructed as linear combinations of the true input and output densities

from the current and previous iterations:

n. (m) = (1 - {3) n. (m) + {3n. (m-1)
m m m '

and

n (m) = (1 - {3) n (m) + {3n (m-1) .
DUI DUI DUI

We define a vector F to be the distance between the input and output densities:

F (m) (n) = n (m) - n. (m)
DUI m

(5.2)

(5.3)

(5.4)

To determine the best value for pto be used in equations (5.2) and (5.3), the distance

between the two average densities n~/m) and n~/") is minimized. This is done by setting

aD [n;n ' nom]

a{3

where D is the norm of the vector F.

= 0 1 (5.5)
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One hence obtains a value for f3 by solving the following equation:

p =
F(m) • (F(m) _ F(m-l»)

D 2 [F(m),F(m-l)]
(5.6)

The new estimate for the input charge density is then found by mixing the average input

and output densities:

n. (m+l) = (1 - a) n. (m) + a n (m)
m m ~

(5.7)

where ex is again chosen empirically. Figure 5.2 illustrates the relationship of the number

of self-consistent iterations required for convergence of the total energy for a 3-iridium­

atom unit cell with the mixing parameter a.
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Figure 5.2 Graph of number of self-consistency iterations for
converged total energy result versus Anderson mixing
parameter ex.
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In the case of the iridium 12-atom unit cell calculation, et is required to be less than 0.3 in

order for convergence to be achieved. Approximately 200 iterations are consequently

required for convergence of the total energy. Although this is an improvement over the

linear mixing scheme, it remains undesirably high, indicating that an even more efficient

scheme is sought after.

5.4 The modified Broyden's mixing scheme

In 1965 Broyden58 developed an iterative mixing procedure, based on the quasi-Newton­

Raphson method, which ensured extremely fast convergence rates. For large system sizes,

however, this method is undesirable as it requires the storage and inversion of very large

(N x N) matrices. Srivastava59 suggested a modification to this method in which only the

storage of m vectors of length N is required, where m is the number of iterations.

In a similar way to the Anderson method, a vector F is defined to be the distance between

the input and output densities:

n (m) n. (m)
out In (5.8)

in which, by the variational principle, one requires convergence to F=O.
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The vector equation for updating the charge density at each step is:

n. (m+!) = n. (m) + ~ (m) ,
In In

where

m

~ (m) = fJ P (m) - "C .U (i)
L..J mt
i=2

In this equation

a.. = VT(j) (p(i) - p(i-l») I

I1

c = VT(i)p(m)
mi ,

and

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

V TU)
(p(i) _ p(i-l) l
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It should be noted that in equation (5.11), the sign preceding the last term is incorrect in

the original paper, where it appears as a positive sign. This sign should be negative.

Since the Hartree potential is proportional to n(G), errors in the density are amplified in
G2

the long-wavelength limit. This may result in "charge sloshing", and hence give rise to

numerical instabilities in the total energy. This is particularly the case with the modified

Broyden scheme, and leads to severe instabilities in large supercell calculations. The

problem may be overcome by dividing the charge density by G2 at the start of each

mixing subroutine, effectively meaning that one mixes the potentials, rather than the

densities. At the end of the mixing subroutine, one multiplies again by G2
, before

returning to the main program.

5.5 Comparison of mixing schemes

For a simple system, the choice of mixing scheme does not make a vast difference in the

rate of convergence of the total energy. Figure 5.1 shows the convergence results of the

linear, Anderson and modified Broyden mixing schemes applied to a single atom iridium

calculation in the FCC structure. In this instance the Anderson mixing scheme is the

most efficient, with convergence being obtained in 6 iterations.
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Figure 5.1 Convergence of calculated total energy for linear, Anderson, and modified
Broyden mixing schemes for Ir 1-atom unit cell

For a larger system, however, the choice of mixing scheme makes a distinct difference in

the convergence of the total energy. Calculations on a 12-atom FCC Iridium unit cell

have been performed by way of illustration. Figure 5.2 indicates that the convergence

with the modified Broyden scheme is substantially quicker than that with the Anderson

and linear mixing schemes. The linear mixing scheme requires in excess of 500 iterations

for self-consistency to be reached, and the Anderson scheme requires approximately 200

iterations. The modified Broyden scheme requires only -40 steps, and hence reduces the

computational time by at least a factor of 10 over the linear scheme.
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Figure 5.2 Convergence of calculated total energy for linear, Anderson and
modified Broyden mixing schemes applied to Ir 12-atom unit cell.

As a consequence of these convergence studies with various mixing schemes, the

calculations on large Iridium unit cells all make use of the modified Broyden mixing

scheme.

5.6 Optimisation of the modified Broyden mixing scheme

5.6.1 Storage of past information

When using the modified Broyden mixing scheme, in order to ensure the most rapidly

converged result for the total energy calculation, various input parameters should be

optimised. As was indicated in Section 5.4, information about the charge density from

previous iterations is stored, and used in subsequent computations when determining the
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new input charge density. Using all previous values for the charge density is not,

however, optimally efficient, as the convergence is slow for large systems, and memory is

used unnecessarily. A parameter, nstore , is built into the mixing scheme which indicates

the number of iterations for which charge density information from previous iterations is

used.

When nSIOre is varied, the number of iterations required for self-consistency differ

substantially. Convergence tests of the number of iterations required for self-consistency

versus n slOre using a 6-atom iridium supercell are shown in Figure 5.3 on the following page.

120
\rj

~
Cl 100.......
......
1:$
lo....
<:U...... 00.......
A
\J
~
<:U (JJ......
\rj.......
\rj

~
Cl 40\J

~-<:U
\rj

20"'-Cl

~ 0
2 3 4 5 10 20 30 40 50 100 120 150

Figure 5.3

nSlore

Graph of number of self-consistency iterations required for converged total energy
result versus n"orer
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This graph indicates that the optimal number of steps for this particular calculation for

which previous information about the charge densities should be stored is 10. If nswre is set

to infinity, in other words, if all previous information about the charge densities is stored,

the number of steps required for self-consistency is more than double that with nSIOre= 10.

5.6.2 The mixing parameter

In the modified Broyden scheme, the value for the mixing parameter, /3, is fairly arbitrary

for a simple system, such as a l-atom calculation. For more complex systems the

calculation becomes unstable with high values of fJ. Convergence tests of the required

number of iterations with respect to mixing parameter fJ for a 6-atom iridium supercell

are shown in Figure 5.4.

45

30 O~--~---:::-'-:----~--_.l....-_-~----
0.1 0.2 0.3

f3

Figure 5.4 Graph of number of self-consistency iterations required for converged total
energy result versus Broyden mixing parameter f3

Page 91



For this system] setting /3>0.3 leads to a numerically unstable result. Zero mixing] in

other words /3=0] also leads to numerical instabilities. Values between these lead to

varying numbers of iterative steps required for convergence. An optimal value of /3=0.2 is

found for this system.

A similar convergence test on a 12-atom iridium supercell indicates a numerically unstable

result with /3=0.2] and the lowest number of iterations required for self-consistency is

found at /3=0.1. A similar optimal value is found for a 9-atom iridium supercell

calculation.

It appears] then] that although the optimal value for the mixing parameter may vary

slightly between systems] fairly rapid and stable convergence may be guaranteed with a

value of /3=0.1.
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Chapter 6

Applications with Iridium I:

Iridium under pressure

6.1 Introduction

Iridium was discovered in 1803 by Smithson Tennant when the process of dissolving

crude platinum by aqua regia, a mixture of nitric and hydrochloric acids, left a small

amount of black residue. This residue was named iridium, derived from the Greek word

"iris" (meaning rainbow), due to the range of colours of its salts. It is a metal of the

platinum family.

Iridium is the most corrosion resistant of all the metals. For this reason it was used, in a

10% iridium - 90% platinum alloy, in making the metre-bar in Paris. This property of

corrosion resistance makes it an ideal material for a number of "clean" applications, such
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as resistive heating experiments. Iridium is resistant to the effects of acids} as well as to

aqua regia, a mixture which can dissolve such metals as gold and platinum.

Iridium is an extremely hard and brittle metal, being unmalleable at temperatures below

1200°C. Its melting point is approximately 2440°C. It therefore has a high degree of

thermal and structural stability} and is therefore the metal of choice for encapsulating the

power systems of unmanned spacecraft, providing a mechanically very secure shield. It is

also used for making crucibles and other apparatus which need to withstand high

temperatures, like thermocouples and electrical contacts.

It is uncertain whether iridium or osmium is the densest of the known elements. Their

densities having been calculated as 22.65 and 22.61 glcm3 respectively, while specific

gravity measurements indicate a higher value for osmium6o
. Iridium crystallizes in the

FCC structure. It has a relatively high bulk modulus, a value of 355GPa having been

measured61
. This high bulk modulus makes it an ideal material for use as a high-pressure

gasket, for instance in a diamond anvil cell. The stability of the FCC phase of this

material, especially under pressure, is therefore of interest.
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6.2

6.2.1

Bulk properties of iridium

Review of past studies

A limited number of studies have been made of the bulk properties of iridium. Ivanovet

a162 studied the elastic properties, phonon spectra, vacancies, interstitials, dislocations, and

stacking defects, using an empirical pseudopotential which they constructed on the basis

of the work of Greenberg et a163
. Heid et a164 used a first principles pseudopotential

mixed-basis method to compute elastic constants and phonon dispersions for iridium, and

obtained good agreement with experimental results. To date there do not appear to have

been many further attempts at performing first principles calculations on the bulk

properties of iridium.

6.2.2 Bulk properties

In the present work, the core radii chosen for the construction of the pseudopotential

were r5 =2.41 Bohr, rp=3.14 Bohr, and rd =l.15 Bohr, for the valence s, p and d orbitals

respectively. The local component of the pseudopotential was chosen to be the Q=O

component. For the FCC structure consisting of 1 atom per unit cell 110 special k-points

were considered. This corresponds to a sampling of 4000 points in the entire zone.

The results of the calculations are presented in Table 6.1, together with other known

experimental and theoretical results.
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Table 6.1 Reference, lattice constant ao in A, cohesive energy Ecoh in eV, and the bulk modulus B in GPa.

Reference ao(A) Ecoh (eV) B (GPa)

Present work at 50Rydt 3.85 9.35 402

Present work at 70Ryd 3.85 9.58 399

Present work at 100Ryd 3.85 10.23 385

Plane-wave pseudopotential 3.86 - 420

method, Filippetti et al65

Full-potential LMTO method, 3.81 10.31 -

Boisvert et al66

Experimental, Cerenius et al67 3.84 - 306

Experimental, Touloukian et al68 3.83 - -

Kitte161 - 6.94 355

t Energy cut-off for plane wave expansion of wavefunctions

The equilibrium lattice constant was found, in the present work, to be 3.85A for all

three choices of Ecul' The value for the bulk modulus was closer to the expected

value at the higher cut-off energy, but the cohesive energy was found, fortuitously,

to be closer to experimental values at the lower cut-off of 50 Rydberg. The cohesive

energy values are far from the expected values, which is not surprising, as the LDA is

known for its overestimation of the cohesive energy, with errors being mostly due to

an overestimate of the free atomic energy - total energies of the solid are reasonably

well computed in the LDA.

It was decided, for computational efficiency, to use a value of 50 Rydberg for E
cUI

for

further calculations with iridium, as it appears that results are sufficiently converged

with this value.
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6.3

6.3.1

High pressure studies of iridium

Review of past studies

Cerenius et a/67 recently performed high pressure experiments on iridium, using a

diamond-anvil cell, and found a transition to a 14-layer supercell structure at pressures in

excess of 60GPa. This structure was reversible under reduction of the pressure, and was

observed on a second X-ray diffraction machine.

Using X-ray diffraction spectra, they found a substantial increase in the (111) peak,

together with a clear saw-tooth pattern at these high pressures. They could not explain

these patterns by the formation of stacking fault defects, but instead claimed that this

could be indicative of a distortion of the FCC lattice consistent with a 14-layer supercell

structure.

6.3.2 High pressure phases of iridium

The transition metals tend to exhibit phase changes between the FCC, HCP, and BCC

phases. Iridium was hence studied in these phases in the present work, in order to explore

whether a phase transition could occur under pressure from the FCC structure to either

one of these crystallographic structures. For FCC and BCC, 1 atom per unit cell was used,

and 2 atoms per cell for HCP. A comparable k-point sampling of the Brillouin zone was

chosen for all three systems. The equilibrium lattice parameters for HCP were found by

varying both a and c independently. The nearest neighbour distance, a, was found to be
o 0

2.74A, and c was found to be 4.42A, with a cia ratio of 1.62. (The ideal value for the cia

ratio is 1.63.) The equilibrium volume per atom was found to be 14.37A3 for the HCP
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structure, which is higher than that for FCC, which is 14.27A3. Figure 6.1 below shows

graphs of the energy per atom versus volume per atom for the three structures.
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Figure 6.1 Energy versus volume for the FCC, HCP and BCC phases of Iridium

It is clear from this graph that the BCC structure is inaccessible under pressure, due to its

much higher energy values than those for the FCC structure. In addition, the common

tangent line for these two curves indicates that a negative pressure would be required for

a phase change from FCC to BCC, which is unphysical. The energy versus volume curves

for the HCP and FCC structures do not intersect at high pressures. Our calculations

therefore predict that there is no phase transition from FCC to HCP for iridium for

pressures up to 60GPa.
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6.3.3

6.3.3.1

Modelling planar defects

Introduction

The stacking faults in the (111) direction for both the HCP and FCC structures can be

described by means of a sequence of planes labelled A, B, or C, which correspond to the

three possible positions of the atoms in a [111] plane. No two neighbouring planes may

have the same label, as this corresponds to an unstable, high energy stacking structure

which is not ordinarily reasonable. The ideal FCC structure would hence be represented

by the sequence:

FCC: ... ABCABC ... ,

and the HCP structure by the sequence

HCP: ... ABABAB ....

For an N-layer supercell structure with periodic boundary conditions, there are

approximately 2N distinct stacking configurations, including the so called extrinsic (E),

intrinsic (I), and twin (T) faults. The extrinsic fault, in which an additional plane is

inserted in the FCC stacking sequence, is represented by:

E: ... ABCBABC ...

Here the dot indicates a plane which has a local HCP-like environment.
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In a similar way, a stacking sequence containing an intrinsic stacking fault (I) in the FCC

structure, in which the lattice is sheared by the displacement of an entire plane, can be

represented by the sequence:

I: ... ABCBCABC ...

The twin stacking fault (T), which contains mirror symmetry around the faulted plane,

can be represented by the sequence of planes:

T: ... ABCBAC ...

Since it is not possible to study all -2N possible stacking sequences from first principles, a

finite number of systems was considered. These were used together with a model, called

the "bond-orientation model", to calculate the energies of all possible defects in the 14­

layer supercell. This model is outlined below.

6.3.3.2 The bond-orientation model

The bond-orientation model, developed by Chetty and Weinere, consists of a

representation of the energy of each atom in a stacking sequence within its local

environment to two planes above and two planes beneath it. This leads to six distinct

geometries with which one can model the energetics of any sequence of stacking planes.

These six geometries are depicted in Figure 6.2. The E; indicate the associated single-atom

energy parameters. These parameters are functions of the nearest neighbour distance a.
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Figure 6.2 Local geometry configurations for stacking in (111) direction
together with associated energy parameters.

In order to obtain values for these E,(a), energies for a number of 6- and 7-atom unit cells

were calculated as a function of nearest-neighbour distance a. The energy for these unit

cells can be expressed as a linear combination of the relevant energy parameters, E,(a),

associated with the local environment of each of the atoms in the stacking sequence of

the unit cell. For instance, the FCC unit cell represented by the stacking sequence

... A B CAB C ... consists of six atoms, each in a locally Ea environment. One may

therefore represent the energy of this unit cell as:

(6.1)

Table 6.2 shows the 6- and 7-atom defect structures which were considered. The

associated energy as a function of lattice constant, together with the energy expressed in

terms of the relevant bond orientation parameters, are also shown in the table.
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Table 6.2 Defect structures, bond-orientation parameters, and associated cubic fit parameters, in units

of Hartree to energy vs nearest neighbour distance.

SuperceII Bond-orientation parameters C :j: Cl C2 C30

structure

ABCABC 6 e8 (a) 87.6081822 -115.59858 21.1373154 -1.28305287

ABABAB 6 ea (a) 99.0398503 -122.348853 22.4723882 -1.37133444

ABABA C e3(a)+2e4(a)+es(a)+2 e6(a) 87.9295048 -115.701217 21.1442002 -1.28279103

AB CBA C 2es(a) +4e7(a) 87.6769923 -115.603458 21.1324679 -1.28240307

ABCBABC 2eS(a)+e6(a)+2 e7(a)+2es(a) 102.412925 -134.898875 24.6538463 -1.49578876

:j: en indicates coefficient of xn in cubic expression for the first-principles energy as a function of lattice

constant a, and has the units of Hartree/(At

From the cubic fits to the first principles energies of each of the structures shown in Table

6.2, the £;(a) parameters may be extracted by solving simultaneously the equations listed

in the above table. All energies are referred to that for the FCC structure. This effectively

sets £8 (a)=O. As a consequence of a hidden symmetry which exists in the system, there is

a maximum of 5 linearly independent equations for the parameters. This symmetry is

due to the fact that only certain sequences of the £; (a) are possible. For instance, the

local geometry £8 (a) may only be followed by £7 (a), which in turn may only be followed

by £5 (a) or £4 (a).

Once the energy parameters have been determined, one can compute the energy of any

possible stacking sequence using an appropriate combination of the £; (a).
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6.3.4 Exploring planar defects in the 14-atom superceU using the

bond-orientation model

In order to investigate the claims made by Cerenius et al that a 14-layer superlattice exists

for iridium under pressures in excess of 60 GPa, the bond-orientation model was used to

study the planar defects of a 14-atom supercell. The model was extended to include the

energy dependence on volume to enable the study of systems under pressure. The 14­

atom ideal structures are expressed in terms of the bond-orientation model in the

following way:

(6.2)

and

(6.3)

By way of example, the twin stacking fault, which has the following structure in the 14­

atom supercell:

T: ... CABCABCBA CBA CB ...

is expanded in terms of the E, (a) in the following way:

(6.4)

In a similar way the energies of all ~214 possible defect structures may be modelled. Due

to the high level of degeneracy in the system, there are only 60 distinct expansions which

exist in terms of the bond-orientation parameters. Figure 6.3 contains all 60 curves, which

represent all possible defect structures in the 14-atom supercell. The energies are bounded

below by the FCC curve, and above by the HCP curve. There is no common tangent
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which links the FCC curve with any of the other curves. In addition, there is a relatively

large energy jump from the FCC curve to the nearest one above it. Our calculations

therefore show that these defect structures are not attainable under pressures up to 60

GPa.
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Figure 6.3

Nearest Neighbour Distance (If)

Energy versus nearest neighbour distance for all - 214 defect
structures in the 14-atom supercell with periodic boundary
conditions.
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6.4 Stacking fault energies

The plane wave pseudopotential method has been used to study the stacking fault

energies of iridium. The FCC structure in a 12-atom supercell oriented in the (111)

direction was modelled with the choice of Monkhorst-Pack parameters for the k-point

sampling of (442). The HCP structure was also considered with the same supercell size

and Brillouin zone sampling.

The twin, extrinsic, and intrinsic stacking faults were also considered, with their

supercells represented by:

T: ... ABCABCBACBAC ... ,

E: ... ABCABCBABCABC ... ,

and

I: ... ABCABCBCABC ...

The T supercell has 12 atoms per unit cell, and its energy therefore may be compared

directly with that of the FCC supercell, since their k-point sampling is identical. Due to

periodic boundary conditions, the T supercell has two faulted planes.

The E supercell has 13 atoms per cell, which is dissimilar to the 12 atoms per cell of the

HCP structure. The sampling of the Brillouin zone in the z-direction is therefore not

identical. The larger number of planes in this direction for the E supercell requires a

smaller sampling of the Brillouin zone compared with the FCC structure if we wish the
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sampling of the Brillouin zones in this direction to be comparable. The energy of the E

supercell with a Monkhorst-Pack k-point mesh of (442) was initially compared with that

of the FCC supercell with a (443) mesh to give a best estimate of the formation energy for

this stacking fault. The E supercell energy with a (442) mesh was then compared with

that for the FCC supercell with a (442) mesh to give a lower bound for the formation

energy.

Since the I supercell has 11 atoms per cell, a best estimate for the energy was found by

comparing its energy using a (443) mesh with that of the FCC cell using a (442) mesh.

The lower bound was found using a (442) mesh for both.

The consequent formation energies, together with their lower bounds, where relevant, are

shown in Table 6.3.

Table 6.3 Supercell structure, best estimate of formation energy, and lower bound for the formation

energy, in meV.

Supercell Formation energy (meV) Lower bound for

formation energy (meV)

HCP 80 -

T 54 -

E 128 122

I 137 137
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6.5 Conclusion

Our calculations lead to the conclusion that no exotic phase or superlattice structure

exists for iridium under pressure. It should be noted that in these calculations we have

assumed conditions of hydrostatic pressure, thus not taking into account the possibility

of uniaxial stresses, inhomogeneous strains etc., which may have arisen during the

experimental process. Further experimental measurements are required in order to

ascertain the nature of the apparent 14-layer superlattice structure observed by Cerenius

et a/67
.

The bond-orientation model, which in this instance has been extended to include a

description of systems under pressure, is a convenient and accurate means of computing

the energies of planar defect structures. In addition, the stacking fault energies of iridium

have been calculated from first principles.
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Chapter 7

Applications with Iridium 11:

Study of Clean and Relaxed Surfaces

7.1 Introduction

There have been a number of theoretical studies of the three low-index surfaces of

iridium, namely the (lOO), (110) and (111) surfaces, for instance by Filippetti et a165
,

Fiorentini et a169
, Tyson et aFo, and van Beurden et aFl. The work of Fiorentini et at takes

complete atomic relaxations into account, allowing for relaxations of all of the atomic

layers. Fiorentini et al and van Beurden et al only allow for relaxations of the top layer,

making the crude assumption that all other layers remain fixed. Tyson et at make no

allowance for relaxations in their calculations.
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Since no studies to date have considered convergence of the surface formation energy with

regard to k-point sampling, and with regard to the number of atomic layers considered in

the unit cell, the present work explores this, allowing for full atomic relaxations, for each

of the low-index surfaces of iridium.

7.2 The Ir(111) surface

Figure 7.1 below shows the (111) surface for an FCC crystal.

Figure 7.1 FCC structure with shaded plane indicating (111) surface

If this shaded plane is represented in the plane of the paper, the hexagonal symmetry

becomes evident, as is shown in the Figure 7.2.

Page 109



Figure 7.2

a

Diagrammatic representation of [111] surface showing
hexagonal symmetry and a and b spanning vectors (in
the plane of the paper) for the unit cell

The smallest unit cell is a rhombus in the x-y plane with the following spanning vectors:

a = (an' 0,0) ,

b 1 /3= (- a - a 0)
2 n' 2 n' ,

where an is the nearest-neighbour distance.
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To generate the ABC stacking sequence, the required basis vectors are:

1: 1
(0,0,0) , (7.4)

(1 1 /2)1: = -a -a -a2 2 n' 2/3 n' /3 n '

_ 1 2/2)
1:

3
- (0, - a ,- a

/3 n /3 n

In our investigation of the clean (111) surface, we use a supercell with a lxl dimension in

the x-y plane, while varying the number of atomic layers in the z-direction in order to

investigate convergence with respect to supercell size. For this purpose, we use 6, 9 and 12

atomic layers respectively. We compute the surface formation energies in the following

manner:

where N is the number of atoms in the slab, and Ebu1k is the bulk energy of a single iridium

atom. We divide by 2 since there are 2 equivalent surfaces in each supercell.

By varying the parameters of the Monkhorst-Pack k-point mesh, we can also explore

convergence of the energy with number of k-points. The parameter sets we use are

(221), (442), (662) and (664). We allow for full relaxation of the surfaces, by allowing

each atomic layer to relax until the atomic forces are negliglibly small. The results of our

calculations are shown in Table 7.1.
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Table 7.1 Parameters for Monkhorst-Pack k-point mesh, surface formation energy a in eV, relaxed

surface formation energy 0relax in eV, and surface relaxation energy in meV, for 6,9 and 12

atomic layers for Ir(lll) surface

6 atomic layers (4 bulk layers + 2 vacuum layers)

k-point mesh No. of special k- (J (eV) (Jrelax (eV) Relaxation
points energy (meV)

(221) 4 1.033 0.986 46

(442) 16 1.052 1.048 4

(662) 36 1.094 1.084 10

(664) 72 1.096 1.086 10

.

9 atomic layers (5 bulk ~ayers + 4 vacuum layers)

k-point mesh No. of special k- (J (eV) (Jrelax (eV) Relaxation
points energy (meV)

(221) 4 1.322 1.250 71

(442) 15 1.047 1.043 4

(662) 31 1.116 1.107 9

(664) 62 1.117 1.108 9

",,7*" .•.... "., . ","'
12 atoini£ layers (6 bulk layers + 6 vacuum layers)

k-point mesh No. of special a (eV) 0relax (eV) Relaxation
k-points energy (meV)

(221) 7 1.291 1.222 70

(442) 29 1.059 1.052 6

(662) 60 1.109 1.098 11

(664) 120 1.109 1.100 9
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The graph in Figure 7.3 illustrates the convergence of the energy with respect to supercell

size and k-point sampling. The dotted line in each case represents the relaxed energy,

which for obvious reasons is always lower than the unrelaxed surface formation energy.
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...................... ....
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(221) (442) (662)

k-poitt satqJIq

(664)

Figure 7.3 Graph of Ir(lll) surface formation energies in eV (including fully relaxed energies)
for 6, 9 and 12 atomic layer supercells, plotted with respect to k-point sampling.
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7.3 The Ir(110) surface

Figure 7.4 shows the (110) surface for a FCC crystal.

Figure 7.4 FCC structure with shaded plane indicating (110) surface

The smallest unit cell is a rectangle with the spanning vectors:

a = (a/l'O,O) ,

c = (O,O,a/l) ,

(7.8)

(7.9)

(7.10)

where an is the nearest-neighbour distance. The basis vectors for the positions of the

atoms in the unit cell are:

't1 = (0,0,0) ,

( 1 1 1)'t = -a -a -a
2 2/1',fin'211'

(7.11)

(7.12)

In our investigation of the clean (110) surface, we again use a supercell with a lxl

dimension in the x-y plane, while using 6, 8, 10 and 12 atomic layers respectively in the z-
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direction. As with the (111) surface] we investigate convergence of the energy with

respect to k-point sampling] and we allow for full atomic relaxations. The results of our

calculations are shown in Table 7.2 below.

Table 7.2 Parameters for Monkhorst-Pack k-point mesh, surface formation energy 0 in eV, relaxed

surface formation energy Urelax in eV, and surface relaxation energy in meV, for 6,8, 10 and

12 atomic layers for Ir(110) surface
. ".'

6 atomic layers (4 bulk layer~ + 2 vacq,um layers) :-~,

,
F . , .yC'

k-point mesh No. of special k- o (eV) 0relax (eV) Relaxation

points energy (meV)

(221) 1 2.396 2.158 238

(442) 4 2.318 2.254 64

(662) 9 2.344 2.248 99

(664) 18 2.373 2.274 96

8 atomic layers (4 bulk layers + 4 vacuum layers)

k-point mesh No. of special k- ° (eV) 0relax (eV) Relaxation
points energy (meV)

(221) 1 2.127 1.884 243

(442) 4 2.440 2.258 182

(662) 9 2.528 2.366 161

(664) 18 2.506 2.344 161

, .'
10 atomic layers (5 bulk laye~s + 5 vacuum layers) "

k-point mesh No. of special k- ° (eV) 0relax (eV) Relaxation
points energy (meV)

(221) 1 2.524 2.279 245

(442) 4 2.322 2.166 156

(662) 9 2.464 2.293 171

(664) 18 2.451 2.279 171
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12 atomic layers (6 bulk layers + 6 vacuum layen)

k-point mesh No. of special k- (J (eV) (JrcIaz (eV) Relaxation
points energy (meV)

(221) 1 2.662 2.426 237

(442) 4 2.225 2.071 154

(662) 9 2.411 2.291 120

(664) 18 2.417 2.297 120

The graph in Figure 7.5 illustrates the convergence of the energy with respect to supercell

size and k-point sampling.
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Figure 7.5
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Graph of Ir(llO) surface formation energies in eV (including fully relaxed energies)
for 6,8, 10 and 12 atomic layer supercells, plotted with respect to k-point sampling
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7.4 The Ir(100) surface

Figure 7.6 below shows the (100) surface for a FCC crystal.

Figure 7.6 FCC structure with shaded plane indicating (100) surface

The smallest unit cell is a square with the spanning vectors:

a = (_1 a - _1 a 0)
.;2 n' .;2 n' ,

" = (_1 a _1 a 0 )
.;2 n'.;2 n' ,

(7.13)

(7.14)

where a ll is the nearest-neighbour distance. The basis vectors for the stacking sequence

are:

'1: 1 = (0,0,0) ,

'1:
2

= (0, _1 a , _1 a ) .
.fi " .fi n
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Here again, a supercell with a lxl dimension in the x-y plane is used in the calculations,

the number of atomic layers in the z-direction varying between 6, 8, 10 and 12. The

results of our calculations are shown in Table 7.3 below.

Table 7.3 Parameters for Monkhorst-Pack k-point mesh, surface formation energy 0 in eV, relaxed

surface formation energy Grelax in eV, and surface relaxation energy in meV, for 6,8, 10

and 12 atomic layers for Ir(100) surface
:-'

6 atomic l~yers (4 bulk layers +2 vacuum layers)

k-point mesh No. of special k- a (eV) 0relax (eV) Relaxation

points energy (meV)

(221) 1 1.803 1.192 611

(442) 3 1.534 1.468 66

(662) 6 1.644 1.625 19

(664) 12 1.663 1.644 19

, ',' ' ""',,'"'' ,,' ,>1" c· i;o' " ">C' -,;;-
S atomic layers (4 bulk laye.rs + ,4 vacuum layers) , "

k-point mesh No. of special k- a (eV) 0relax (eV) Relaxation

points energy (meV)

(221) 1 1.967 1.363 604

(442) 3 1.592 1.525 67

(662) 6 1.667 1.647 20

(664) 12 1.663 1.643 20

10 atomic layers (5 bulk layers + 5 vacuuml~yers)
& '

k-point mesh No. of special k- a (eV) 0relax (eV) Relaxation
points energy (meV)

(221) 1 2.001 1.533 468

(442) 3 1.585 1.496 89

(662) 6 1.654 1.605 48

(664) 12 1.662 1.614 48
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12 atomic layers (6 bulk layers + 6 VIICUUIIllayers)

k-point mesh No. of special k- G (eV) GrcJax (eV) Relaxation
points energy (meV)

(221) 1 1.976 1.260 716

(442) 3 1.582 1.503 79

(662) 6 1.622 1.586 35

(664) 12 1.611 1.576 36

The graph in Figure 7.7 illustrates the convergence of the energy with respect to supercell

size and k-point sampling.

_2.2....------------------------,
>
~

~ 2...
~~ 1.8+-------~-~-----------------j

=
.~ 1.6-l------=~~~~;;e:~~~~.~. :~::~::;,~~~~..~..~.~~.~.~~.:.~:-:~.:..~-~
~

c.2 1.4 +-----:x::-:.-=-'-,.......:..:'--.----:..........~. .--:-----------------1

~ x···.··J! .'... 1.2 +------7r----------------------j

='tI)

1-'----------------------.J

--*-6atan
·..x· .. 6 atanrel.axe.d

--*-8atan
-.. x· .. 8atanrel.axe.d

--*-10atan
·--x- -- 10 atanrel.axe.d

--*-12atan
·--x- .- 12 atanrel.axe.d

(221) (442) (662)

k-pm sarq:Ai~

(664)

Figure 7.7 Graph of Ir(100) surface formation energies in eV (including fully rdaxed energies) for 6,8, 10
and 12 atomic layer supercells, plotted with respect to k-point sampling.
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7.5 Summary of clean and relaxed surface results

The total energy is not variational with respect to the number of k-points. Hence it is not

strictly true that a higher number of k-points will ensure a lower energy result. In order

to obtain the most plausible result for the surface formation energy from our calculations)

we find the mean value for the energy from all results with a Monkhorst-Pack k-point

sampling mesh of (662) and (664) for each of the low-index surfaces. The standard

deviation from the mean is used as an indication of the error bar in each result. We

present these results in Table 7.4 below, together with other experimental and theoretical

values for the purposes of comparison.

Table 7.4 Reference and relaxed surface formation energy Or in eV for each of the low-index

surfaces for iridium

Reference or (111) (eV) Or (110) (eV) Or (100) (eV)

Present work 1.10±0.01 2.30±0.04 1.62±0.03

Filippetti et al65 (relaxed) 1.31 2.59 1.85

Tyson et afo (unrelaxed) 1.07 2.83 1.36

Fiorentini et al69 (relaxed) - - 1.73

As is evident from the results) the surface formation energy for the lr(111) surface is lower

than that for the other two surfaces. This is because only 3 nearest-neighbour bonds are

broken when the surface is formed. The (110) surface requires the highest amount of

energy for its formation as 5 bonds between nearest-neighbours are broken in this process.

By contrast, the formation of the lr(100) surface involves the breaking of 4 nearest­

neighbour bonds.
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Table 7.5 contains the results of our computations for the relaxations of the atomic planes

with respect to one another, as a percentage of the ideal bulk spacing. We have included

results by other authors for purposes of comparison.

Table 7.5 Reference and surface layer relaxations as percentage of the ideal bulk spacing for the low­

index surfaces of iridium. (Negative values indicate inward relaxation)

Ir(111) ~;tf,f~ace , .. ,r;l{i:'..c% ,';P

Reference ~d12 ~d23 ~d34

Present work -1.8 0.1 0.2

DFT (LDA), Filippetti et al65 -1.3 -0.2 0.0

DFT (GGA), van Beurden et aFl -2.1 - -

Experimental, Watson et aF2 -2.6±4.5 - -

Ir(110) surface

Reference ~d12 ~d23 ~d34

Present work -9.2 2.5 -1.5

DFT (LDA), Filippetti et al65 -11.6 5.4 -1.3

Ir(100) surface

Reference ~d12 ~d23 ~d34

Present work -2.7 1.3 0.6

DFT (LDA), Fiorentini et al69 -3.0 - -

DFT (LDA), Filippetti et al65 -3.8 1.0 -0.5

DFT (GGA), van Beurden et aFl -4.8 - -

Experimental, Watson et aF2 -3.6±0.5 - -
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The low values for the interplanar relaxation for the Ir(lll) surface are due to the close­

packed nature of this surface. There is relatively little room for the movement of the

atomic layers. The inward relaxation in each case is caused by the atoms attempting to

regain some of the lost electronic charge density due to the broken bonds with the atomic

layer above the surface. Since the formation of the Ir(110) surface requires 5 nearest­

neighbour bonds to be broken, this inward relaxation is high, as the atoms lose a high

proportion of their charge density. In addition, with just 2 nearest-neighbour atoms in

the plane of the surface, there is a great likelihood of buckling at this surface. The (100)

surface requires 4 nearest-neighbour bonds to be broken in the formation of the surface

and therefore does not have the same extent of inward relaxation as does the (110)

surface.
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Chapter 8

Applications with Iridium Ill:

Adatom Adsorption Studies

8.1 Introduction

An understanding of the growth of crystals is important to more accurately be able to

control the growth process) and to ensure high quality crystals. This has important

applications in the area of optoelectronic and semiconductor devices) chemical catalysts,

as well as in the refinement of metals) plastics and ceramics. It is hence important that

the process of homoepitaxial growth be fully understood) which is the process whereby a

crystal is grown by deposition of adatoms of identical nature onto the surface. This

subject has therefore received a large amount of attention by both experimentalists and

theoreticians.
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The process of adsorption of iridium adatoms onto the (111) surface of iridium, and the

diffusion of these adatoms across the surface) has received particular interest in the last

few decades since a number of interesting phenomena have been observed in this process,

8.2 Review of experimental work

A key instrument used by experimentalists in the study of surface phenomena in

transition metals is the field ion microscope (FIM)) since it has the ability to image

individual atoms on the surface) and is therefore ideally suited for the quantitative study

of surface atomic processes. The section to follow offers a brief introduction to this

instrument.

8.2.1 The field ion microscope

Although the FIM offers atomic resolution) the principle on which it operates is

remarkably simple. An electrically insulated specimen, in the form of a needle tip which

is 10 to 100 nm in radius, is positioned 5 cm in front of a phosphor screen) inside a

vacuum system, Once the system has been cooled to between 20 and 100 K, a small

amount of He or Ne gas is released into the vacuum system. At the same time) a positive

voltage is slowly applied to the specimen. Eventually the electric field at the tip of the

specimen becomes large enough to remove an electron from one of the gas atoms (which

is loosely attached to the surface)) leaving a positively charged He+ or Ne+ ion on the

surface of the tip, As this tip is also positively charged it will cause the ion to be repelled

from the tip onto the screen) where the ion will produce a spot of light. The entire

picture caused in this way is called the ft'eld ion image, and represents the positions of the
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individual atoms on the surface of the tip. The magnification of this image is of the order

of one million times the size of the tip.

8.2.2 The field ion microscope applied to iridium

Although the FIM cannot be used for all metals due to the high electric field that is

required for the imaging, it has been used successfully in the study of a number of

transition metal surfaces such as platinum, rhodium, nickel, tungsten and iridium.

Wang et eP used the FIM to observe single Ir adatoms on the Ir(111) surface. Their

findings were that in only 63 out of the 455 observations, adatoms were found to occupy

FCC sites, the remainder being located at HCP sites. In other words, a single adatom is

located at an HCP site in 85% of the cases, and on an FCC site in only 15% of the

observations made. The energy difference between the HCP and the FCC sites was

measured to be O.370kcallmol (16.0meV/atom). They measured the diffusion barrier

between these two types of sites, finding the activation energy for atomic migration, EA,

to be 6.2±0.1kcallmol (O.269±O.004eV/atom). Their observations led them to pose the

question of the nature of Ir crystal growth if single adatoms indicate a preference for HCP

sites. Subsequent findings by Wang et aP were that, although single Ir adatoms prefer

HCP sites, trimers show no preference for either site, tetramers favour FCC sites 85% of

the time, and heptamers are found exclusively on FCC sites. Thus, as the number of Ir

atoms in the cluster increases, so does the likelihood of the cluster occupying FCC surface

sites.

In other work in which these authors3 were studying the diffusion of individual adatoms

on the Ir(lll) surface, it was found that the diffusion process most likely to occur on this

surface is the movement of an adatom from an HCP site to a neighbouring FCC site (via

the bridge site), and then back to an HCP site, in other words jumps between nearest-
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neighbour sites. Diffusion by direct jumps from HCP to HCP sites, or FCC to FCC sites,

was found to be less likely. They subsequentll measured the diffusion energy barrier for

an adatom moving from an HCP to an FCC site to be 6.22±0.7kcallmol

(0.270±0.03eV/atom), and that for an adatom moving from an FCC to an HCP site to be

5.72±0.7kcallmol (0.248±0.03eV/atom). Chen et a!s performed similar measurements on

adatom diffusion on the Ir(lll) surface using the FlM and found the diffusion barrier to

be 0.022±0.03eY. They did not distinguish the path direction. (It should be noted that

there appears to be an error in their reporting of this value, as it contradicts all other

experimental findings by a factor of 10).

8.3 Review of theoretical work

The experimental work of Wang et a! discussed above was soon followed by theoretical

work on this system, in an attempt to understand the behaviour of adatoms on the

Ir(lll) surface from a theoretical perspective. Piveteau et af3 used the tight-binding

method to calculate the binding energies at HCP and FCC sites on the (111) surface.

They performed their calculations in real space, considering the perturbation of 22 atoms

of the substrate within a sphere which is centred on the adatom. In this way they

considered only the relaxation of the nearest-neighbour atoms, which is not a complete

account of the relaxation process. These authors found the Hep site to be lower in

energy by 21.5 meV, (compared with 16.0meV found by Wang et a/i.) They also

computed the energy barrier to adatom diffusion and found that in moving from an FCC

to an HCP site, this barrier is 0.241 eV, while for a move from an HCP to an FCC site the

energy barrier is 0.255 eY. It should be noted here that the difference in these respective

energies, namely 14 meV, contradicts their finding of a 21.5 meV energy difference

between FCC and HCP adatom sites.
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Boivert et aF4 used the full-potentiallinear-muffin-tin-orbital technique in the context of

Density Functional Theory (in the Local Density Approximation) to determine the energy

barriers to adatom diffusion on the Ir(111) surface. Atomic relaxations were not taken

into account completely here, as their codes make no allowance for the calculation of

forces. They relaxed the outer atomic layer manually by finding the minimum in the

total energy as a function of interplanar relaxation. They used 7 special k-points

(including the r-point) for the (2 x2) surface supercell, with only 1 point along the kz ­

direction. They considered a 5-layer slab of bulk material, a single adatom layer, and a 6­

layer vacuum region. Their supercell was symmetric so that both surfaces were identical.

They computed the energy of an adatom at an FCC site to be O.02eV lower than that for

an HCP site, and claimed that this value is supported by Wang et ar. However, the paper

that they refer to indicates a lower energy at the HCP site (as described in Section 8.2.2

above.) This seems to indicate that their calculations are incorrect, or that their paper

includes a misprint. Diffusion may occur by means of a process known as the exchange

mechanism, in which a surface atom is promoted above the surface, and hence exchanged

with the diffusing atom. These authors did not consider this mechanism, since the

perturbations induced by this process are substantial, hence requiring prohibitively large

supercells. They therefore only considered diffusion by "jumps" along the surface. They

computed the energy barrier for a jump from an FCC to an HCP site (over a bridge site) to

be O.24±O.03eV, and compared this with experimental results of O.22±O.03eV found by

Chen et a/s and O.270±O.003eV as reported by Wang et ar.

Papadia et afs used the tight-binding model to compute the energetics of monomer, dimer

and trimer adatoms on the Ir(111) surface. They found that monomers and dimers show

a preference for HCP sites, while trimers favour neither of the sites, both being of equal

energy, in agreement with the findings of Wang et aP. These authors allowed for

constrained relaxations (to a first order approximation), with the neighbouring atoms

being displaced laterally to accommodate the adatom, which was displaced perpendicular

to the surface. No specific energies were reported in this paper. Instead, the difference in
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binding energy as a function of d-band filling was given. Similarly the displacements due

to atomic relaxations were not given specifically, but were also computed as a function of

d-band filling.

Habar et af6 used a tight-binding scheme, together with a recursion method, to study

various adatom cluster configurations on the Ir(111) surface. In their model they only

considered the 5d orbitals, and did not take atomic relaxations into account. They studied

various island configurations, and extracted effective cluster interaction energies (ECI's),

and averaged these out for a number of configurations. These ECI's could then be used to

compute the energy of some arbitrary configuration. Finite temperature Monte Carlo

simulations were performed, and revealed the formation of compact islands at

intermediate temperatures. At low temperatures atomic mobility was too low for large

clusters to form, so that only small, compact clusters were found. At high temperatures

the islands were also small in size due to the dominant effect of entropy. The difference

between these islands and those formed at low temperature was that the former were

more irregular in shape with less tendency towards clustering.

Habar et aP submitted a more complete set of results in their subsequent paper, in which

they used an Ising model, in conjunction with ECI's, in order to perform Monte Carlo

simulations on the Ir(111) surface at finite temperatures. They investigated the transition

from HCP to FCC sites as a function of adlayer concentration, and found that as the

concentration increased, so did the preference for FCC sites by the adatoms, as opposed to

HCP sites at low concentration.

Hamilton et af8 performed first-principles calculations in the GGA approximation, making

use of ultrasoft pseudopotentials with a plane-wave energy cut-off of 191eV, to

investigate adatom cluster diffusion over the Ir(lll) surface. They computed the energy

difference between a pseudomorphic adatom monolayer in the FCC and the HCP sites,

and found this difference to be 81 meY. They found the energy of a single adatom at an
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FCC site to be 18 meV greater than when situated at an HCP site, in close agreement

with the experimental findings outlined earlier1
,4. The remainder of their paper involves a

semi-empirical modelling of the diffusion of large clusters, which is not relevant to the

present work, as this is beyond the scope of first-principles calculations at the present

time.

8.4 Review of semi-empirical work

A number of semi-empirical models have been applied to the study of the Ir(lll) surface.

Shiang et aF9 used a molecular-dynamics simulation, making use of semi-empirical Rosato­

Guillope-Legrand potentials, to explore surface diffusion on the (100), (110), and (111)

surfaces of iridium. Since these simulations are based on a classical inter-atomic potential,

they are not highly accurate. These authors found the difference in single adatom binding

energy between the FCC and HCP sites to be 0.03 eV, which is a factor of 2 more than

that reported by Wang et al1
,4. Their finding of the energy barrier across the bridge site of

0.17 eV is in accord with other theoretical and experimental results4
,S,74. These authors

reported that there was no exchange mechanism found on the Ir(l11) surface during their

simulation, the close-packed nature of this surface being the most likely explanation for

this.

Chang et a/BD used the Embedded Atom Method (EAM) potential to study adatom, dimer

and trimer diffusion on the (100), (110), and (111) surfaces of iridium. They found no

evidence of an exchange mechanism for diffusion on the Ir(lll) surface, in agreement

with the previous authors. They found the cohesive energy of a single adatom on the

surface to be 4.95 eV, making no distinction between the FCC or HCP sites, since in their

calculations the energy difference between these two sites is negligibly small (:::::0.1 meV).

They found that for dimers, the nearest-neighbour distance pairs are the most stable,
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whereas a dimer consisting of one atom on an HCP site and the other on an FCC site is

energetically unfavourable. Their computed value for the energy barrier height for

diffusion of a single adatom over a bridge site (0.11 eV) is approximately half the energy

barrier values found byexperimentalists81
,5.

Trushin et al82 used the modified Lennard-Jones pair potential and the many-body Rosato­

GUillope-Legrand potential to study the energy barriers for various diffusion processes

over the flat and stepped h(111) surface. Of interest to the present work are the values

they obtained for energy barriers to surface diffusion from HCP to FCC sites on the flat

surface, these values being 0.24 eV using the Rosato-Guillope-Legrand potential, and

0.20 eV with the Lennard-Jones potential. They found the energy difference between an

adatom on an FCC site and that on an HCP site to be less than 0.005 eV, (below the value

of their error bars). It is unclear in this paper which of these sites is energetically more

favourable.

Van Beurden et al83 developed modified embedded-atom-method (MEAM) potentials for

iridium, amongst other platinum-group metals, based on density functional theory

calculations, and applied these potentials to the study of surface properties of these

materials. They computed the adsorption energy for a single adatom to be 5.87eV, and

the diffusion energy barrier to be 0.42eV. They found the FCC adatom site to be lower in

energy than the HCP site by 0.06eV, which contradicts the experimental results outlined

previously.
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8.5 Adatom formation energy calculations

Since no theoretical work to date has taken full atomic relaxations into account, it is

important that these be investigated fully. The present work explores the energy of a

single adatom in both the FCC and HCP sites, and compares the fully relaxed results with

those found by experimentalists.

In our investigations, we use a supercell with a 2x2 surface unit cell, while allowing the

number of atomic layers within the cell to vary between 6 and 9. Ideally a 3x3 surface

unit cell should be used in order to minimise interactions between adatoms in

neighbouring supercells. Computational limitations, however, have placed confines on

our calculations for the time being. In future work the larger supercell will be

investigated. Tables 8.1 and 8.2 below contain the results of our calculations for an

adatom incorporated onto an FCC site, and an HCP site respectively.

Table 8.1 Parameters for Monkhorst-Pack k-point mesh, FCC adatom formation energy in eV, relaxed

FCC adatom formation energy in eV, and FCC adatom relaxation energy in meV for 6 and 9

atomic layers for the 2 x 2 lr(l11) surface

6 ato~i£.la!ers (4 bulk Jay~rs"k+ 1 aflatomJayer i;- t vacu\!m .~ay~r)

k-point No. of special FCC adatom Relaxed FCC FCC adatom relaxation

mesh k-points energy (eV) adatom energy (eV) energy (meV)

(221) 3 9.339 8.584 755

(442) 11 9.714 8.992 722

9 atomic layers (4 bul!< lay~rs + 1 adatom layer + 4 vacuum layer'S)

k-point No. of special FCC adatom Relaxed FCC FCC adatom relaxation
mesh k-points energy (eV) adatom energy (eV) energy (meV)

(221) 3 9.315 8.458 857

(442) 11 10.002 9.173 829
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Table 8.2 Parameters for Monkhorst-Pack k-point mesh, HCP adatom formation energy in eV, relaxed

HCP adatom formation energy in eV, and HCP adatom relaxation energy in meV, for 6 and 9

atomic layers for the 2x2 Ir(l11) surface

6 atomic layers (4buJU'layers + 1 adatom layer + 1 vacuum layer) •

k-point No. of special HCPadatom Relaxed HCP HCP adatom relaxation

mesh k-points energy (eV) adatom energy (eV) energy (meV)

(221) 3 9.391 8.514 877

(442) 11 9.759 8.990 770

9 atomic layers (4 b1l1k layers + 1 adatom layer +,4 vacuum layers)

k-point No. of special Hep adatom Relaxed HCP HCP adatom relaxation
mesh k-points energy (eV) adatom energy (eV) energy (meV)

(221) 3 9.384 8.416 968

(442) 11 10.047 9.168 880

The adatom energies are computed in the following manner:

E = E - NE - 20
adarolll 5upercell bulk 111'

where N is the number of atoms in the supercell, and 0 111 is the surface formation energy

for the fully relaxed Ir(111) surface.

From these results, the difference in energy between the FCC adatom site and the HCP

adatom site may be computed. These results are shown in Table 8.3 on the following

page.
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Table 8.3 Parameters for Monkhorst-Pack k-point mesh, unrelaxed energy difference between HCP and

FCC adatom sites, and relaxed energy difference between HCP and FCC adatom sites, both

in meV, for 6 and 9 atomic layers for the 2 x2 Ir(lll) surface. A negative sign for this energy

difference indicates that the HCP site is lower in energy than the FCC site.

}

6 atomic layers (4 bulk layers + 1 adatom layer + 1 vacuum layer)

k-point mesh Unrelaxed EHCP - EFCC (meV) Relaxed EHCP - EFCC (meV)

(221) 52 -70

(442) 45 -3

,-

9 atomic layers (4 b"!tk layers" + 1 adatom)ayer + 4 v.:acuumJa~~r) . ,-"

k-point mesh Unrelaxed EHCP - EFCC (meV) Relaxed EHCP - EFCC (meV)

(221) 69 -42

(442) 45 -6

It is interesting to note that, before allowing for relaxations, the energy of the adatom on

the HCP site is higher than that on the FCC site. Once the structure is allowed to relax,

the HCP adatom site is lower in energy. In Figure 8.1 on the following page the HCP and

FCC adatom energies are plotted for the unrelaxed and relaxed structures. For this

diagram the energies from the 6 atomic layer supercell with a (221) k-point mesh are used,

as these most clearly illustrate the effect of relaxations on the adatom energies.
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Figure 8.1 Graph of unre1axed and relaxed single adatom formation energies on
FCC and HCP sites.

Our results for the relaxed adatom energies compare favourably with the experimental

values of Wang et al1,4 which indicate the HCP adatom site to be lower in energy than the

FCC site by 16.0±1.3meV1 in one set of measurements, and 17.3±1.5meV4 in another.

Our deviations from this result could be due to finite size effects as a result of the limited

size of the unit cell. We do not have the computational resources at present to study a

more realistic 3 x 3 surface supercell.

The nature of the atomic relaxations may be investigated by observing the direction in

which each atom in the unit cell is displaced. Figure 8.2 shows the displacement

directions of the atoms with an adatom placed at the FCC surface site. Although only a

(2 x2) surface supercell is used in the calculations, the diagram includes a number of

atoms from neighbouring surface cells to give a complete picture of the relaxations. All
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mirror atoms, in terms of their position in the surface supercell, are indicated with the

same number.

'B ~'B ~
1 e 2 1 e 2

e =adatom

o =surface atom
o
3

8
3 4~ 3

8 4T
~.e:~.~

Figure 8.2 Relaxations of atoms due to incorporation of an adatom on an FCC site of
the Ir(lll) surface

All surface atoms marked with a 3 relax inwards by 0.3% of the nearest-neighbour

distance, ann' The adatoms relax inwards by 2.5% of anno The surface atoms denoted by 1,

2 and 4 all relax outwards, and in the direction of the arrow in the x-y plane. The

magnitude of their displacement is 0.6% of ann' Atoms in the layer just beneath the

surface all relax inwards by a small amount (0.05% of ann)'

Figure 8.3 shows a similar diagram for an adatom incorporated on an Hep site.
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Figure 8.3 Relaxations of atoms due to incorporation of an adatom on an HCP site of the

Ir(111) surface.

Each adatom relaxes inwards by a displacement of 2.8% of ann. The surface atoms marked

with a 2 relax inwards by 0.1% of ann' Surface atoms indicated by 1, 3 and 4 all move in

the direction shown by the arrow in the x-y plane, and simultaneously relax outwards.

Their overall displacement is 0.7% of ann' In the plane just below the surface layer, the

atom directly beneath the adatom does not move at all, and the remaining three atoms in

this 2x2 plane move towards one another, and outwards, by a total displacement of 0.1%

of ann' The atomic relaxations with the adatom on an HCP site are greater than those

with the adatom on an FCC site, hence the crossover in the energies before and after

relaxation.

Page 136



8.6 Study of vacancies on the Ir(111) surface

To our knowledge, no investigations have been done to date on the formation of

vacancies on the (111) surface of iridium. Table 8.4 below contains the results of our

calculations, in which a 2x2 surface supercell was used, the vacancy simply being formed

by removing one of these surface atoms. The number of atomic layers was varied

between 6 and 9.

Table 8.4 Parameters for Monkhorst-Pack k-point mesh, surface vacancy formation energy in eV,

relaxed surface vacancy formation energy in eV, and surface vacancy relaxation energy in

meV for 6 and 9 atomic layers for the 2x2 Ir(111) surface

"

6 atomic layers (3 bu!k lay~rs + 1 surface with vacancy layer + 2 vacuum layers)

k-point No. of special Surface vacancy Relaxed surface Relaxation

mesh k-points energy (eV) vacancy energy (eV) energy (meV)

(221) 3 8.870 8.589 281

(442) 11 8.991 8.755 236

;c" if: 'F '0 ,,;if, _0 . ' 0.. i. .

9 atomie'layers (3 bulk layers + 1 surface with vacancy layer + S'vacuum layers)

k-point No. of special Surface vacancy Relaxed surface Relaxation
mesh k-points energy (eV) vacancy energy (eV) energy (meV)

(221) 3 8.620 8.315 305

(442) 11 9.062 8.781 281

The surface vacancy energies are computed in the following manner:

E - E - NE - 20
vacancy - supercell bulk 111'

where N is the number of atoms in the supercell, and 0111 is the fully relaxed surface

formation energy for the 1r(111) surface.
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The relaxations of the individual atoms in the supercell (together with some of the

neighbouring supercell atoms) are shown in Figure 8.4.

~ ~
1ZJ P. ~ ~....... 3 #........,
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~ ~

J~" ~ ~ () = surface vacancy
(........)
._.. e =surface atom

~0 0 0 =atom beneath2 2
surface

1ZJ
..... 3. \

t .:._...

Figure 8.4 Relaxations of atoms due to creation of a surface vacancy on the Ir(lll) surface

All of the surface atoms move inwards, and in the directions indicated by the arrows, by a

displacement magnitude of 0.8% of a",," The atoms beneath the surface denoted by a 2

relax inwards by 0.05% of a",," The remaining atoms beneath the surface, namely those

indicated by 1, 3 and 4, move outwards, and in the direction indicated by the arrows.

Their overall displacement is 0.2% of a"".

The movement of the atoms, unlike with the FCC and HCP adatoms, is not in the

expected direction if one just considers the atoms to behave as a classical set of balls,

where one would expect the three atoms in the plane of the vacancy to move toward the

vacancy to fill this gap" The atoms in fact move in the opposite direction. The reason for
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this is that each of these atoms originally had 12 nearest-neighbour bonds in this

crystallographic structure. The formation of the surface, as well as the formation of the

vacancy, has meant that each of these atoms has lost 4 nearest-neighbours. These atoms

therefore move toward one another, in an attempt to restore their electronic coordination,

and increase their electronic density. The atoms in the layer beneath the surface move

toward one another for the same reason, as they have each lost 1 nearest-neighbour in the

formation of the vacancy. As an illustration of this point, the nearest-neighbour bonds of

the vacancy are shown in Figure 8.5 below.
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Figure 8.5 Nearest-neighbour bonds of the surface vacancy on the lr(lll) surface
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8.7 Conclusion

We have computed the formation energy of a single adatom on the FCC and HCP sites on

the Ir(111) surface, and have found, in agreement with experiment, that the HCP is the

energetically favoured site. This result is only evident once the atoms have been allowed

to fully relax. The accuracy of our calculations is limited due to the finite size effects of

the 2 x2 surface supercell, and the (442) Monkhorst-Pack k-point mesh to which we have

been restricted as a result of our computational resources.

In principle, if a large supercell is used in such calculations, so that the slabs on either side

of the surface are separated sufficiently, it should only be necessary to sample the

Brillouin zone at one point in this direction (ie the z-direction). However, the limitations

on our computational resources have meant that remnant interactions between the

surfaces can not be disregarded, and the Brillouin zone should hence be sampled

accordingly.

In investigating the atomic relaxations, we have found that the atoms in the layer

beneath the surface layer are displaced by a small amount when relaxations are fully

accounted for. Since the magnitude of their displacement is around 14% of the magnitude

of the displacements of the surface layer atoms, it seems an oversimplification to ignore

the movement of these atoms in the relaxation process, as many authors have done. Our

work is the only work to date which allows for the full relaxation of all of the atoms in

the supercell when computing adatom formation energies on the Ir(lll) surface.

We have also computed the surface vacancy formation energy, and investigated the

associated atomic relaxations. Studies of the surface vacancy on Ir(111) have not been

carried out before.
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Chapter 9

Concluding Remarks

In this work the density functional theory in the local density approximation has been

applied to the study of various physical properties of iridium. The methodology is based

on the plane wave pseudopotential method, and we have used the T roullier and Martins35

pseudopotentials in our work. Electronic structure codes known as BEST have been used,

in which the iterative scheme of choice is a variation of the preconditioned steepest

descent algorithm, together with a subspace diagonalisation, developed by Chetty et al.6

In the course of this work, computer codes were developed to enhance the rapid

convergence of the total energy through implementation of the modified Broyden mixing

scheme used for mixing the charge densities between iterations. Comparisons of this

mixing scheme with the linear and Anderson schemes were made, and various input

parameters were investigated for optimum implementation of this scheme. Convergence

was significantly accelerated with the Broyden mixing scheme.
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Bulk properties of iridium were investigated, and the results were compared with other

experimental and theoretical results. Our results compare favourably with experiment.

The effects of pressure on iridium were then investigated, through implementation of the

"pressure dependant bond-orientation model", developed by ourselves as an extension to

the model developed by Chetty and Weinert7
. A claim by experimentalists that a 14-layer

supedattice structure exists for iridium under pressure was investigated, and the

conclusion to our calculations was that no such structure exists under conditions of

hydrostatic pressure. In the experimental process, large uniaxial pressures could exist,

giving rise to the possibility of metastable structures. However, it is difficult to predict

such structures theoretically. We believe that more experimental work needs to be done

to study this system at high pressure.

The ideal and relaxed low-index surfaces of iridium were investigated, and the surface

formation energies and interplanar relaxations compared with other theoretical and

experimental results. Atoms were allowed to relax fully, and convergence of the total

energy results with k-point sampling was investigated.

The adsorption of adatoms onto the h(111) surface was investigated, with full atomic

relaxations being taken into account. The results of our computations showed favourable

agreement with experiment, where it was found that an HCP adatom site is energetically

favoured over the expected FCC adatom site. No other theoretical or semi-empirical work

done on this system has allowed for full relaxation of the atoms. We also computed the

energy of formation of the surface vacancy, which has not previously been calculated.

In future work we intend to explore the energy of formation of dimers and trimers of

various geometries on the Ir(lll) surface. In order to do this, we will need to consider

surface unit cells of at least 3x3 in dimension. We further intend to study diffusion

barriers for the migration of single adatoms, as well as dimers and trimers, across the

surface. In each of these calculations we will consider full atomic relaxations as these,
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have not been taken into account in any previous work on these systems. The

continuation of this work is contingent on us acquiring more powerful computational

resources.
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Appendix A

Adaptations to the Density Functional

Theory

The density functional theory is an exact ground state theory. Due to its variational

approach, it is not possible to apply the Kohn-Sham scheme in a straightforward manner

to the study of the excited states of a system. The usual practice for such systems is to

apply numerically intensive Greens-function methods, or quantum-chemical methods for

smaller systems. A number of adaptations to the basic DFT have been made in recent

years to achieve the study of excited systems.

The energy of exchange and correlation are incorporated into the exchange-correlation

potential in the Kohn-Sham formulation. This potential is approximated through

schemes such as the LDA and GGA. Various adaptations to the DFT have been to more

accurately account for this energy.
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In the BEST codes
J

the computational cost of implementing DFT is O(N2 /n N) 1 where N

is the number of atoms in the system. This limits the size of the system which can be

investigated. More efficient methods are constantly being sought J ideally methods which

scale linearly with system size J otherwise known as O(N) methods.

This appendix gives a very brief overview of some of the adaptations that have been made

to the DFT to account for these and other limitations.

Density matrix theory has been developed in an attempt to find a more efficient method

than the DFT. The central quantity in this theory is the two-particle density matrix n(r1,

r 2i r 1 ; r 2 I). An example of one such formulation84 is one which involves the expansion

of the density matrix in terms of average coordinates

and relative coordinates

R = (At)

(A2)

Due to the factorisation of the Coulomb and exchange integrals in this formulationJ the

energy expression becomes very simple. HoweverJ the kinetic energy is represented in real

space J and is the hardest term to compute accurately. Finite element methods require too

small a grid size to make the computation efficient.

In density matrix theoryJ linear scaling with system size is ensured by enforcing the

following cut-off:

n(rJr') = 0J Ir-r'l >R, .
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In this way, the information in the density matrix is dependent only on the local

environment and hence the total amount of information is linear in the number of atoms,
in the system, N. This theory applies to both the ground and excited states of the

system.

Time-dependent density functional theory85 (TDDFT) was originally designed to explore time­

dependent phenomena in a system. More recently it has been applied to excited states,

and has been used in the investigation of optical excitations in which electron-hole pairs

are formed86
. It involves an initial solution of the ground-state Kahn-Sham equations,

followed by an iterative solution of a first-order representation of the Kahn-Sham

equations. Here an approximation to the first functional derivative of the time-dependent

exchange correlation potential is needed. This is given by

avxc (r, t)
fxc(r,r',t,t') = an (r',t')

(AA)

This is called the exchange correlation kernel. Various approximations for this kernel have

been made. The adiabatic local density approximation (ALDA) is the most commonly

used one in TDDFT. This approximation is discussed further in Appendix C.

Instead of approximating both the exchange and correlation energies, as is the case with

most applications of density functional theory, the exact exchange DFT has been developed

to give an exact expression for the exchange energy, and an approximation for the energy

of correlation, for example by means of the LDA or GGA correlation functionals. Better

approximations for energy gaps and structural properties are obtained from this extension

to DFT87
.

In spin-density functional theory the external field can differ for the two spin components.

A one-ta-one correspondence is then established between the spin densities n1(r/t) and

n I (r/ t), and the potentials VI (r/ t) and v I (r/ t). Hence all quantities can be expressed as
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functions of the two spin densities. The approximation that is generally used for the

exchange-correlation energy is the local spin density approximation (LSDA)2B.

Gonze et alBB pointed out that the basic DFT is not a sufficiently accurate theory for

describing a crystal in a finite electric field, and suggested that the bulk dielectric

properties in such a crystal require the state of the system to be a functional of both the

density and the polarization. Martin et alB9 constructed a generalised form for the DFT,

namely density-polarization functional theory (DPFT), in which the dielectric behaviour of

materials can be completely described.

In large systems consisting of heavy atoms, a relativistic correction may be required.

Relativistic density functional theory90 is an extension to DFT which has been developed for

such systems.
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Appendix B

The Ceperley-Alder Form of the LDA

B.t The variational Monte Carlo method

In variational Monte Carlo the energy of a many-body trial wavefunction 'P (R)is

computed for a known Hamiltonian operator in the following way:

E
_ f'Y *(R) H 'Y(R) dR

f'Y *(R) 'Y(R) dR
(B.t)

where R is a 3N dimensional position coordinate of N particles. In the Monte Carlo

method a sequence of R's is generated using the Metropolis random walk algorithm. By

the Rayleigh-Ritz variational principle, the energy functional provides an upper bound to

the exact ground state energy and will be a minimum when 'P(R) is equal to the exact

ground state wavefunction.
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A common form used for the trial wavefunction 'P(R) is the Slater-Jastrow type, in which

a sum of Slater determinants of single-particle spin-dependent orbitals is used together

with a pair-correlation factor (called the Jastrow factor):

'P(R) L Dn1Dn
l exp [ Lu (riUr;u r) ]

n 1,i<;
(B.2)

Here I corresponds to the positions of the ions, and i and j to electron positions. The

Jastrow factor u needs to take cusp conditions into account, which result from derivative

discontinuities in the wavefunction at potential collision points between charged

particles. The Jastrow factor is then adjusted variationally to achieve the lowest possible

energy.

B.2 The Ceperley-Alder work on the electron gas

Ceperley and Alder91 developed a method in which the variational Monte Carlo technique

is applied in order to calculate the properties of an electron gas in its ground state. They

extended the solution for the many-boson problem to fermions, where the wavefunctions

are required to be anti-symmetric. The calculation was carried out in two steps.

The first step treats the nodes where the trial wavefunction vanishes as absorbing barriers

to the process of diffusion. This yields the "fixed-nodeJl energy, which is equivalent to the

boson energy, and forms an upper bound to the correct ground-state energy of the

system.
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The second step, the "nodal relaxation" step, involves reversal of the sign of the

contribution of a random walk as it crosses the node of the trial wavefunction. One

hence obtains a set of positive walks, in which the nodes have been crossed an even

number of times, and a set of negative walks, where there has been an odd number of

node crossings.

The difference between these two probability densities, namely those from the first and

second steps, yields a representation for the anti-symmetric wavefunction. Ceperleyand

Alder used the nodes of the Hartree-Fock wavefunction for the trial wavefunction.

Implementation of this method, if run for a sufficiently long time on the computer, can

give as precise a solution for the ground state properties of the electron gas as is required.

B.3 The Perdew and Zunger parametrisations

For the unpolarized homogeneous electron gas, Perdew and Zunger92 derived the

following parametrised expressions from the work of Ceperley and Alder:

(B.3)

where

0.4582
r

5
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and

-0.1423

(1 + 1.0529 rr +0.3334r)V' 5 5

-0.0480+0.0311 In rs-0.0116rs+0.0020rs In rs
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Appendix C

Extensions to the Local Density

Approximation

C.l Limitations of the local density approximation

The LDA equates the exchange-correlation energy for the local value of the density with

that of a uniform electron gas which has the same density. It was initially formulated for

systems with slowly varying electron densities. Although the LDA has yielded

surprisingly accurate results, there are a number of instances in which it does not yield

satisfactory results. Where a system is far from being homogeneous, for instance at a

surface, the LDA tends to fail in its representation of the system. In addition, there is a

general tendency towards overestimation of cohesive energies. In particular, in

applications to molecules, the molecular binding energies are consistently in error. This is

due to the underestimation of the exchange-correlation contribution at regions of low

electron density. The dielectric constant is also overestimated by 10-40% in the LDA, as a
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result of the neglect of a polarization- dependent exchange correlation field. The LDA also

fails for excited state properties. The band gaps in insulators, for instance, are

underestimated by as much as 2eY.

C.2 Extensions to the local density approximation

The local spin density approximation (LSDA) applies to open-shell systems and magnetic

solids. Here the exchange-correlation energy not only depends on the local electron

density, but also on the local spin density. This is the form of the exchange-correlation

functional which is used in spin-density functional theory.

The adiabatic local density approximation (ALDA) has become the standard approximation

in the time dependent density functional theory (TDDFT), which has been discussed in

Appendix A. The general form for the time-dependent exchange correlation kernel is

given in equation (AA) in Appendix A. In the ALDA, the long wavelength limit for this

kernel is equal to that for the static exchange-correlation functional for the homogeneous

electron gas in reciprocal space:

r~LDA lim r;;m (G) .
G - 0

It can be expressed in terms of the exchange correlation energy per particle in the

homogeneous electron gas e.;OIN(n(r)) in the following way93:

rALDA = ~ [n e hom (n)] .
xc dn 2 xc
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The ALDA is computationally simple and efficient] and it is claimed that to date there are

no approximations which lead to better exchange correlation kernels than this one94
. It is

therefore the most frequently used approximation within the TDDFT.

Examples of other approximations which have been used in TDDFT are the frequency­

dependent LDA95
] which is an attempt to overcome the ambiguity which arises when the

LDA is applied to non-local quantities; the random-phase approximation93
] in which all

dynamic exchange-correlation effects are ignored; the Petersilka-Gossman-Gross96

derivation, in which an exact-exchange kernel is constructed] and correlation effects are

ignored; and the Burke-Petersilka-Gross97 approximation] which is a hybrid formula

designed to improve on excitation spectra for small atoms. We will not look at these

approximations in detail here.

Kohn and Mattsson98 have developed a technique for handling inhomogeneities at the

edges of a system. They proposed an exchange-correlation functional specifically designed

for the edge part of the system] and a separate functional for the interior region. They did

this by introducing an edge electron gas from which the functional is derived. Armiento

and Mattsson99 extended this idea to apply to systems which may contain

inhomogeneities throughout] not just in the edge region. They proposed the use of

different functionals in the different regions of the system.
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Appendix D

Sampling of the Brillouin Zone

D.t Introduction

The application of Bloch]s theorem for a periodic structure allows real space integrals for

an infinitely extended system to be replaced by reciprocal space integrals over the first

Brillouin zone. These integrals may be approximated through summation of the

integrand values at a finite number of points in the Brillouin zone. These points are called

the special k-points. A sufficiently dense set of k-points is required for convergence of the

results.

Baldereschi100 developed a method for finding a single point in the Brillouin zone] called

the "mean value point" k·] which would give the best approximation to the averaging of

some function ((k) over the entire zone:

1 =~ J((k)dk = ((k*)
(2n )3
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Chadi and Cohen101 extended this to generate a number of representative points in the

Brillouin zone. Monkhorst and Pack45 later developed a more systematic way of

producing k-points within the Brillouin zone over which integrations over the zone could

be done. This scheme, which is briefly outlined below, ensures that the k-points are

distributed homogeneously throughout the Brillouin zone.

D.2 Outline of the Monkhorst-Pack scheme

In the Monkhorst-Pack scheme, a sequence of numbers, Un is generated by the expression

Ur = (2r - q - 1) / 2q ,

for r running from 1 through to q. Here q is an integer value which determines the

number of special points to be chosen. We then define a set of distinct points

k = U b1 + U b2 + U ba 'prs p r 5

(D.2)

(D.3)

where the bi are the reciprocal lattice vectors. From (D.3) we thus have q3 uniformly

spaced points in the Brillouin zone. Making use of the lattice point group symmetry, we

can significantly reduce this number of points. To do this we define a set of vectors,

called a "star", in the following way:

A (k) = N -'12 ~ e ik·R
m m L

IRI=C., (DA)

where the R vectors are the Bravais lattice vectors which are related to each other by the

lattice point group operations. N m is the number of terms in the mth star of R.
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Thus for a function f(k) which we wish to integrate in reciprocal space, we would

approximate this integral by the following summation over the set of k; points:

F(k.) = "F A (k.) I
1 L..J1Il 1111

111

where

1~F = w. Frk.) A (k.)
111 3 ) \) 111)

q ]=1

(D.S)

(D.6)

Here P(q) is the symmetry-dependent number of points from those generated in (D.3),

and w/ is the weighting associated with each k/. This weighting indicates the number of

k-vectors that are represented by each special point through the symmetry operations of

the relevant crystallographic structure.
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Appendix E

Fast Fourier Transforms

The plane wave representation of the molecular dynamics equation of motion (the

Car-Parrinello method) can be written in the following form

where Il represents a fictitious mass associated with the electronic wavefunctions, and

the Ai are Lagrange multipliers which ensure orthogonality of the wavefunctions. The

total potential Vr (G) is given by

V (G-G') = V Ps (G-G') + V (G-G') + V (G-G')T Ion H xc

Here the ionic pseudopotential is purely local. Written in another way,
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Hence the product of the Kohn-Sham Hamiltonian with the wavefunction has been

divided into two parts, one which is diagonal in real space, and the other in reciprocal

space. The wavefunctions are therefore Fourier transformed from reciprocal into real

space, whereupon the contribution to the acceleration by operation of the potential on

these wavefunctions is calculated in real space. These contributions are then Fourier

transformed into reciprocal space.

One therefore requires an efficient means of transforming between real and reciprocal

space.

The definition of the discrete Fourier transform of an input sequence f[n] of length N is

N-l

F(k) L f[n] e21t
i/N ,

n=O
(E.4)

the solution of which is an O(N2
) process, as is illustrated in Figure E.1. This is because

the summation from n=0 to N-1 occurs for each index k, of which there are N.

By way of illustration, we have performed the discrete Fourier transform on number

sequences of increasing length, and have generated a graph of time taken for the

transform plotted against system size (Figure E.1 on the following page). This graph

illustrates the O(N2
) nature of the discrete transform.
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o 1

Number ofpoints (x 10 5)

Figure E.1 Discrete Fourier transform applied to number sequences of increasing length. Computational
time scales quadratically with number of points.

A much more efficient method is the fast Fourier transform (FFT)] which requires

O(N In N) operations. Danielson and Lanczos102 developed a lemma] in which they

proved that a discrete Fourier transform of length N can be rewritten as the sum of two

discrete Fourier transforms] each of length N12. One of these is formed from the even­

numbered points of the original N] the other from the odd-numbered points. This lemma

can be used recursively] dividing each of the two sets obtained above into two] leaving
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four sets of length N14, and so on, until one is left with transforms of length one. At this

point one is left with a one-point transform corresponding with the pattern of e's and a's

(corresponding to an even- or odd-numbered subset of data at each division). In order to

identify which input number fn is associated with the one-point transform, the value of n

associated with the pattern of e's and a's can be retrieved by a process is called bit-reversal.

Here, the pattern of e's and a's is reversed, and each e is associated with a 0, each 0 with a

1. This yields a binary number which is precisely the number n corresponding to fn-

After the process of bit-reversal, adjacent single-point transforms are then combined into

2-point transforms, which are combined into 4-point transforms, and so on until the

entire data set is combined into one transform. Each operation takes O(N) operations,

and since there are In N combinations, the entire algorithm is an O(N In N) process.

The Fourier transform of a wavefunction from reciprocal space into real space hence

requires NRS In N RS operations, where N RS is the number of points on the real space grid.

NRS is approximately 16 times the number of plane waves in the wavefunction. This is

because the charge density has components with wave vectors up to double the cut-off

wave vector for the electronic wavefunctions, requiring the FFT grid to have double the

density of the real space grid in each direction. Performing a Fast Fourier Transform on a

single band therefore requires NFFT = 16 Np\y/ In N pw operations.

The fast Fourier transform, as given in Numerical Recipes103
, has been applied to

sequences of increasing length, and the consequent graph of the number of operations

plotted against system size is shown in Figure E.2. This graph illustrates the O(N In N)

nature of the FFT.
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Figure E.2

Number ofpoints (x 10 6
)

Fast Fourier transform applied to number sequences of increasing length (N). Time
scales as (N In N) .
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