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Abstract 

Fast-growing urbanization trend is resulting in rampant social inequalities in most cities of the 

developing world. These inequalities are manifesting most clearly in the burgeoning and spread 

of informal settlements. With an estimated 1 billion informal settlement inhabitants worldwide, 

the United Nations has mandated member states to prioritize alleviation of living conditions 

for the urban poor in these deprived living spaces. In order to achieve their objectives, 

comprehensive information on the exact locations and dimensions of informal settlements is of 

vital importance. However, there is global lack of systematic empirical spatial documentation 

of the informal settlements. Diversities in their dynamic patterns and morphological 

appearances across locales or within the same geographical location present challenges in their 

semantic abstraction. Durban city is characterized by rapidly expanding and spatially 

heterogeneous informal settlement landscape. Although attempts have been made to map 

informal settlements in the city, there is paucity of documented research on comprehensive 

empirical investigation of informal settlements’ spatial patterns and dynamics, and potential 

links between processes and patterns for Durban metropolitan area. The study could aid impact 

evaluation of intervention policies and assessment of environmental consequences, with 

implications on urban sustainability management and planning. Given this background, this 

study sought to exploit integration of various innovative mapping approaches with texture 

analysis to localize morphologic variations in informal settlement features as well as their 

dynamics in Durban Metropolitan area, South Africa. To attain this, five objectives were set. 

The initial objective brought forth a synopsis of texture analysis approaches in modelling 

informal settlements. The study examined factors such as algorithms, sensors, feature selection 

as well as scale of analysis. The results of the review confirmed progress in literature in the use 

of texture analysis. However, scant studies were observed in sub-Saharan Africa, with South 

African studies only concentrated in Johannesburg. Results also indicated underutilization of 

Sentinel-2A in mapping informal settlements. The second objective sought to exploit the 

potential of pan sharpening Sentinel-2A imagery for enhanced abstraction of morphologically 

varied informal settlements. Pan sharpening techniques were exploited on Sentinel-2A to make 

the most of the spectral resolution of Sentinel-2A data and the high spatial resolution of the 10 

m bands. Higher spectral and spatial resolution of pan sharpened Sentinel-2A, integrated with 

image texture led to the highest informal settlement detection accuracy, with the best results 

achieved using Gram Schmidt algorithm (F-score-95.2%; Overall accuracy 91.8%). However, 

there remained a challenge of misidentification between informal settlements and formal areas 
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due to morphological similarity between informal settlements and other formal areas in 

Durban. The third objective developed an automated informal settlement mapping framework 

using Google Earth Engine (GEE) cloud computing, and assessed the relative value of various 

spectral and textural feature sets in characterizing spatial distribution of dynamic informal 

settlements in a complex and heterogeneous Durban landscape. Results indicated that random 

forest (RF) classification algorithm within the GEE was able to capture the diversities of 

informal settlements better than in studies that used classical image processing software. The 

spectral bands and texture features’ model achieved highest accuracy level of 94%, whilst 

addition of spectral indices decreased classification accuracy. The fourth objective explored 

object-based image classification in GEE, using high resolution PlanetScope imagery for 

informal settlement mapping. Fusion of PlanetScope, Sentinel-2, and Sentinel-1 data was 

investigated using object-based image analysis approach within the GEE platform. The 

convenience of simple non-iterative clustering (SNIC) algorithm within the GEE, for 

segmentation, was explored in the context of informal settlement mapping. Results indicated 

higher levels of accuracy (F-score 94%, Overall accuracy, 95%) compared to other similar 

studies that used classical image processing softwares for object-based image analysis. 

Exploiting advantages of integrating sensors as well as cloud computing capabilities of GEE 

yielded added value to the characterization of informal settlement diversities in Durban. The 

final objective was to systematically analyse informal settlement growth patterns and related 

land cover/ land use transitions, between 2015 and 2021, using intensity analysis approach. 

The study involved linking of informal settlement growth patterns to processes. The results 

revealed a net increase (3%) in informal settlement area of coverage. Intensity analysis at 

category level indicated that informal settlements’ gain was more active than the loss, with gain 

intensity of 72% against uniform intensity of 26%. The settlements avoided water. The 

transition level revealed systematic transition between informal settlement class and other 

urban class. The systematic process was found to be mainly influenced by South African 

government’s restructuring initiatives in the form of upgrading programmes aimed at 

improving conditions in the deprived areas. 

Different sets of experiments and different data inputs employed in the study presented relative 

merits of various mapping approaches in providing more nuanced extraction of informal 

settlement extents and dynamics. However, the study confirmed that complexities remain in 

urban environments that complicate applicability of approaches for informal settlement 

mapping. Grey level co-occurrence matrix (GLCM) image texture coupled with robustness and 
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operationalization of GEE cloud computing platform presented enhanced potential in capturing 

inherent complexities of informal settlements. Even so, the results of mapping remain 

contingent upon various factors ranging from image spatial resolution, fragmentation of 

landscape under investigation, intricate relations between land cover categories, and the 

selection of pertinent textural features. An approach that precisely captures diversities of urban 

deprivation pockets, through integration of field surveys, would be crucial for promoting 

research on socio-ecological dynamics, urban sustainability, urban risk management as well as 

informed decision making. 

Keywords: Urbanization, unplanned settlements, texture analysis, mapping, Google Earth 

Engine, Durban 
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CHAPTER ONE: 

General Introduction 

1.1 Introduction 

 

‘Slum settlements’, are a growing concern, globally. Mahabir et al. (2016) postulated that they 

have become almost ubiquitous in most developing countries that often lack infrastructure and 

resources to control their growth and expansion. Globalization has accelerated urbanized 

growth without matching capacity to provide the housing infrastructure that sufficiently keeps 

up with demand, as cities continue to grapple with the influx of people either from rural areas 

or neighbouring countries (Fox, 2014, Patel et al., 2015, UN-Habitat, 2015). The heterogenous 

process of urbanisation (Ooi and Phua, 2007) has thus resulted in urbanization of poverty 

(Zhang, 2016) and huge inequalities, with subsequent shifts in spatial distribution of 

populations (Balsa-Barreiro et al., 2019). These inequalities have manifested visibly in the 

mushrooming and growth of “slums” in most urban areas of the global south (Rodriguez Lopez 

et al., 2017, Wurm et al., 2017b). The increasing development of these deprived areas is one 

of the most serious humanitarian challenges to sustainable urban development in the 

developing world (Hofmann et al., 2015, UN-Habitat, 2003). Faced with the mandate to 

eradicate poverty by 2030, world cities are obliged to ameliorate the lives of the “slum” 

dwellers as a priority goal in the 2030 Sustainable Development Goals (Fallatah et al., 2022, 

Pratomo et al., 2017). However, despite their visible growing extents, scholars have argued that 

lack of adequate information on their morphology, spatial dimensions, and dynamics is the 

main setback to attaining the vision (Wang et al., 2019c, Badmos et al., 2018). Where the 

information exists, it frequently displays poor temporal accuracy and consistency (Wang et al., 

2019b). “Slum” morphological diversities, coupled with their dynamic nature in space and time 

(Badmos et al., 2018, Samper et al., 2020) make semantic abstraction of their locations and 

spatial extents intricate (Gibson et al., 2019, Wang et al., 2019b). With their rapid spread, 

sometimes covering large extents or scattered pockets within urban areas (Mboga et al., 2017), 

Hofmann et al. (2008) suggested the need for classification methods that are feasible for 

complex environments and that provide spatial information in a timely and accurate way. This 

study contends that there is need for holistic techniques that are reproducible, and that can 

provide rapid and reliable spatial information with possibility of being updated within certain 
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time interval to allow monitoring of these dynamic landscapes, as well as informing of policy 

related to urban area and risk management. 

  

Approximately one billion people live in “slums”, globally (Winter et al., 2020), and 

projections reveal that the number will increase to two billion by 2030 and three billion by 

2050 (UN-Habitat, 2016). The United-Nations (2015) presents the percentage of the urban 

population living in “slum” conditions as 35% in Southern Asia, 24% in Latin America and the 

Caribbean and 13% in North Africa. The challenge of “slums” is regarded as acute in sub-

Saharan Africa (SSA) where the proportion of the urban population that is residing in these 

areas of deprivation reaches 62% (UN-Habitat, 2015). For South Africa, estimates suggest that 

13.9% of households live in these slums (Nkonki-Mandleni et al., 2021). Kwazulu-Natal 

province has 25% of the population occupying informal housing (Gibbs et al., 2014). 

Approximately 13.29% of all households in Durban reside in informal settlements (Statistics, 

2016). These estimates of populations are projected to double by 2030 (UN-Habitat, 2016). 

Jones (2017) proposed that there is need for policies that redress complexities of urbanization 

particularly in curbing uncontrollable growth of "slums”. 

 

The aforementioned estimates of populations are based on UN-Habitat (2003)’s definition that 

associated “slums” with overcrowding, insecurity of tenure, inadequate provision of basic 

amenities such as safe water, sanitation and other infrastructure. However, there does not exist 

a standard definition for “slums” as yet (Fallatah et al., 2018, Persello and Stein, 2017, Samper 

et al., 2020). There are numerous nomenclatures of “slum settlements” (e.g., squatter 

settlements, barrios bajos, favelas, shanties, ghettos, unplanned townships or slums) (Winter et 

al., 2020). The names vary between country to country or within the same country, depending 

on the context. For instance, when considering tenure status, they are usually denoted as 

“illegal”, “squatter, or “informal” settlements (Kuffer et al., 2016a). In the context of growth 

dynamics, they are referred to as “spontaneous” or “irregular” (Kraff et al., 2020), and terms 

such as “deprived,” “shantytown”, and “sub-standard” explain the socio-economic status of 

informal settlement dwellers (UN-Habitat, 2015). While some researchers regard informal 

settlements as synonymous with “slums” (Arimah, 2010, UN-Habitat, 2003), and are often 

used interchangeably in the literature (Mahabir et al 2016), some scholars regard them as 

antonymous (Hofmann et al., 2015, Jones, 2017). There are also terminological restrictions 

from one country to the other (Taubenböck et al., 2018). For instance, the term “slum” is not 

used in South Africa because of associated negative connotations of a bad area, which is an 
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incubator of unsociable and criminal activities (Marx and Charlton, 2003a). Although the 

United Nations continues to use the term “slum”, concerns have been expressed that the term 

is emotive and pejorative (Ezeh et al., 2017, Gilbert, 2007). Ezeh et al. (2017) further suggests 

the term ‘informal settlement’ as an alternative. The current study, thus, assumes the term 

informal settlement. 

 

According to Mahabir et al. (2018), the lack of consensus on the definition of informal 

settlement could partly be attributed to the diversification of their morphological characteristics 

worldwide. Morphologies for informal settlements vary across countries, across cities, across 

informal settlement areas within the same city, or within the same informal settlement 

landscape (Kuffer et al., 2016b). The factors that drive these morphological miscellanies are 

anchored in three key types of typologies; object type, land and site characteristics, and the 

area's temporal dynamics and history (Kuffer et al., 2017). In some countries, for example, 

Medieval Cairo, informal settlements occupy the urban fringe,  often dispersed in agricultural 

land (Kuffer et al., 2017). In Durban, they characteristically occupy every vacant land, are 

along rivers and in flood prone areas (Membele et al., 2022b, Williams et al., 2018). 

Differences in informal settlement morphogenesis also largely explain diversities in 

morphological layouts of informal settlements from place to place (Kuffer et al., 2017). 

Morphogenesis explains their characteristics as sometimes an expression of the process of 

development stage, that is, from being spaced out at infancy stage to closely packed at maturity 

(Kuffer et al., 2016a, Schmitt et al., 2018), sometimes associated with increasing building size 

and height. Sometimes, the variations are explained in terms of unique constructional materials. 

For example, morphology of informal settlements in Jeddah, Saudi Arabia, differ with those in 

Asia and Africa in that formal and informal settlements’ constructional materials are identical 

(Fallatah et al., 2019). To the contrary, those in Asia and Africa usually present dissimilar 

appearance compared to planned residential developments (Shekhar, 2012, Kohli et al., 2016a).  

Nevertheless, sometimes due to upgrading processes, the morphologies may revamp with time 

and become decent low-income homes (Mahabir et al., 2018). This supports the assertion that 

the definition of the term informal settlement can change with time. These dynamic informal 

settlement morphologies contribute to lack of consensus on the definition of informal 

settlements (Taubenböck et al., 2018).  Differential morphologies also surmise that those 

informal settlements expand with different spatial patterns and development dynamics (Bren 

d'Amour et al., 2017). These diversities in morphological layouts as well as absence of an 

agreed definition of informal settlements makes their mapping inherently complex. 



4 

 

Nonetheless, remote sensing methods build on the premise that informal settlements share 

specific morphological features that can be recognized in an image (Taubenböck et al., 2018). 

 

Previously, there has been a number of initiatives that were aimed at mapping informal 

settlements in South Africa. These initiatives included Eskom’s SPOT Building Count, and 

STATSSA dwelling Frame building count (Kemper et al., 2015). Just like in the global context 

, such survey based approaches have been regarded as costly in terms of resource requirements 

and time consuming (Kemper et al., 2015). Remote sensing has offered possible solutions to 

identification and monitoring of the spatial behaviour of informal settlements. Supported by 

progress in accessibility of very-high-resolution (VHR) data, as well as technological 

advancements, remote sensing has been an invaluable data source for providing updated, 

consistent and comprehensive geospatial information with great thematic detail in complex 

urban environments (Wang et al., 2019b). The capabilities of remote sensing to capture the 

geography, morphological diversities, and dynamics of informal settlements has been explored 

in various informal settlement studies (Kuffer et al., 2016b, Persello and Stein, 2017, Prabhu 

et al., 2021b, Wurm et al., 2017a). However, a plethora of studies have raised concern over 

drawbacks that are associated with use of high spatial resolution satellite systems, especially 

when classification is solely based on spectral properties of the image (Ansari et al., 2019a, 

Duque et al., 2017, Mboga et al., 2017). For instance, multiformity of informal settlement 

landscapes, fragmented spatial configuration of urban environments, and diverse morphologies 

of informal settlements (Chen et al., 2015, Mugiraneza et al., 2019, Stark et al., 2020) inhibit 

accurate depiction of their spatiality (Leonita et al., 2018, Mboga et al., 2017). In order to 

address shortcomings arising from sole reliance on spectral information, researchers have 

adopted image processing techniques that are based on information from adjacent pixels 

(Pelizari et al., 2018). 

 

The surge in use of VHR satellites (Quick bird, World view, Orbview, GeoEye) has been 

associated with observed increase in utilization of texture analysis for informal settlement 

mapping (Kuffer et al., 2016b, Wurm et al., 2019). The capability of spatial contextual 

information in the form of image texture to enhance capturing of informal settlements’ diverse 

morphological characteristics has been emphasized (Kuffer et al., 2016b, Kuffer et al., 2018, 

Kuffer et al., 2014). Texture analysis refers to a class of mathematical procedures and models 

that distinguish the spatial variations within imagery, in order to extract information (Armi and 

Fekri-Ershad, 2019). Numerous studies have explored texture feature algorithms such as grey 
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level co-occurrence matrix (GLCM) (Kohli et al., 2016b, Kuffer et al., 2016b, Prabhu et al., 

2017, Wurm et al., 2017b), local Binary Patterns (LBPs)  (Luus et al., 2014, Mdakane and van 

den Bergh, 2012, van den Bergh, 2011), contourlets (Ansari et al., 2019b), curvelets (Ansari 

and Buddhiraju, 2019a),  and lacunarity (Kit and Lüdeke, 2013, Owen and Wong, 2013a). 

Several  authors have conducted reviews on texture analysis techniques (Hofmann et al., 2015, 

Kuffer et al., 2016a, Mahabir et al., 2018). These studies mostly stressed the role of remote 

sensing in informal settlement identification, and gave general overviews of various mapping 

approaches, but presenting a brief review of texture analysis approaches. Unpacking the 

application of various image texture features and capabilities of the numerous texture analysis 

approaches could enhance better understanding of the complexity and dynamism of informal 

settlements (Kuffer et al., 2016b).  

 

Some studies have taken advantage of innovative approaches such as pan sharpening in texture 

analysis for informal settlement mapping (Kohli et al., 2016a, Mugiraneza et al., 2019, Owen 

and Wong, 2013b). For instance, pan sharpened Quickbird image (Kohli et al., 2016a) and pan 

sharpened Worldview image (Kuffer et al., 2016b) have been used to map informal settlements 

in Pune (India) and Kigali, Mumbai and Ahmedabad, respectively. In another study Owen and 

Wong (2013b) pan sharpened Quickbird MS imagery using 0.6m PAN band, employing the 

rational polynomial coefficients approach in Guatemala. According to Kumar et al. (2014), the 

availability of high spectral and spatial resolution images is crucial when mapping areas with 

complex morphologic structures such as urban environment. The aforementioned studies have 

exploited pan sharpened products of costly, high-resolution imageries, which are not within the 

financial reach of most institutions in resource constrained nations. Capabilities of pan 

sharpening freely downloadable Sentinel-2A for capturing the distribution of morphologic 

informal settlements can also be explored for capturing smaller and lesser-known informal 

settlements in the diverse Durban landscape. Wurm et al. (2017b) described capturing of small 

deprivation pockets as compromised when using image texture from only the Sentinel-2A 10 

m bands. Thus, pan sharpening Sentinel-2A would exploit the high spatial resolution and high 

spectral resolution for potential enhancement of informal settlement detection accuracy. 

 

In texture analysis, there are various image processing functions that are undertaken, especially 

when using grey level co-occurrence matrix (GLCM) algorithm. These steps include 

calculation of optimum window size, a process involving testing of varied window sizes. Also, 

calculation of average distance forms an important step in texture-based image classification. 
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These processes, apart from being time consuming (Graesser et al., 2012), would generate sheer 

volumes of data which is computationally demanding in terms of processing (Rodriguez-

Galiano et al., 2012), especially where classical image-processing software is concerned 

(Stromann et al., 2019). The traditional image processing platforms may lack the computational 

capacities to handle the large data processing requirements, thus causing classification 

complexity (Chen* et al., 2010, Shafizadeh-Moghadam et al., 2021). Also, local computers 

would require specifications in terms of software and hardware which would, again, have cost 

implications.  

Recent advances in cloud computing, through the development of Google Earth Engine (GEE) 

has partially reduced challenges involving data preparation, management, processing, and 

analysis (Kelley et al., 2018, Mananze et al., 2020). Open-access data, as well as a host of data 

within the GEE, for example, Sentinel-2, Sentinel-1, MODIS and Landsat (Amani et al., 2019b) 

have presented opportunities for more comprehensive and advanced processing functionality, 

through data integration (Amani et al., 2017). Google Earth Engine has removed the procedure 

of downloading a large number of satellite images, feature extraction, and provides data in 

formats that are ready to use. A plethora of machine learning algorithms as well as image 

mosaicking techniques within GEE allow combinations of different feature sets, allowing 

comprehensive mapping. Because of its reliable, broad code applicability, GEE has been 

leveraged in various environmental applications ranging from crop mapping (Kelley et al., 

2018, Shelestov et al., 2017, Teluguntla et al., 2018), wetland mapping (Amani et al., 2019b, 

Liu et al., 2022), and urban LULC mapping (Hamud et al., 2021, Mugiraneza et al., 2020). Its 

cloud computing prowess presents the potential for the mapping of high spatial variability of 

morphological informal settlements in heterogeneous urban landscapes. Recently, the 

accessibility of high resolution PlanetScope (PL) data within GEE has presented opportunities 

for implementation of mapping approaches aimed at systematic examination of morphological 

informal settlements. For instance, its availability within GEE has made geographic object-

based image analysis (GEOBIA) implementable within the platform. Earlier studies that 

demonstrated the potency of object based image analysis (OBIA) in enhancing informal 

settlement mapping (Fallatah et al., 2020, Fallatah et al., 2022, Kohli et al., 2016a, Shekhar, 

2012) have focused on Kohli et al. (2012)’s ontology-based informal settlement 

characterization, which has been described as complex, tedious, associated with many 

segmentation and classification tasks, and requiring considerable analysis skills (Kohli et al., 

2016a). The numerous processing steps involved in segmentation and classification demand 
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increased computer capacity (Gorelick et al., 2017). GEE, through the convenience of inbuilt, 

simple non iterative clustering (SNIC) algorithm, presents potential for OBIA to map spatial 

morphology of deprivation pockets in complex built up environment, with ease and enhanced 

speed (Pu et al., 2020). In addition, the inbuilt GLCM algorithm makes texture analysis 

implementable within the cloud computing platform which, according to Kohli et al. (2013b) 

is critical in distinguishing between formal and informal areas when using the OBIA technique.  

The online-based environmental monitoring platform provides unique capabilities to map 

informal settlements’ morphologic dynamics over time and with precision (Mugiraneza et al., 

2020, Tingzon et al., 2020). Kraff et al. (2020) alluded that informal settlement dynamics can 

only be comprehensively investigated by bridging the gap from static to multi-temporal 

measurement. As informal settlements continue to change rapidly in response to urbanization, 

understanding their dynamics in the context of associated land cover/ land use (LULC) 

transitions would be key in the modelling of future rates of change. United-Nations (2019) 

expressed the need to understand the dynamics of human settlements as crucial for sustainable 

development and management of the environment, as well as for effective implementation of 

settlement policies. Intensity analysis is an approach that presents potential for holistic 

assessment of informal settlement spatial dynamics through linking patterns with process. 

Findings of this study could be used to create knowledge repositories which would assist in 

devising a tailored informal settlement management approach for Durban municipality, 

especially aimed at addressing the challenges associated with encroachment into flood 

vulnerable land. Moreover, the findings have potential to reveal insights on better matched 

solutions, whether in the form of informal settlement management policies or adaptive 

strategies. 

1.2. Aim and objectives  

The main aim of this study was to exploit the integration of various innovative mapping 

approaches with texture analysis to unpack the morphologic variations in informal settlement 

features in Durban Metropolitan area, South Africa. 

 To achieve this, the following objectives were set: 

1. To provide a synopsis of texture analysis approaches in modelling informal settlements 



8 

 

2. To evaluate the potential of pan sharpening techniques on Sentinel-2A data, and textural 

features in enhancing informal settlement identification accuracy, in a fragmented 

urban environment  

3. To leverage Google Earth Engine’s cloud computing capabilities and advanced data 

analytic capabilities for accurate capturing of morphological diversities of informal 

settlements in a heterogeneous urban landscape 

4. To exploit Sentinel-1(S1) radar data, Sentinel-2 (S2) and PlanetScope (PL) optical data 

fusion for more accurate and precise mapping of informal settlements using geographic 

object-based image analysis (GEOBIA), within Google Earth Engine. 

5. To map and systematically analyze informal settlement growth patterns and associated 

land use/ land cover transitions using intensity analysis approach. 

1.3. Description of the study site 

The study area (Figure 1.1c) is located in KwaZulu-Natal province, South Africa (Figure 1.1a), 

and lies within Durban Metropolitan area (Figure 1.1b). Situated in the north-western part of 

Durban city, the area of study extends to, approximately, 900 ha between longitudes 29.95°E 

and 29.98°E, and latitudes 29.8°S and 29.83°S. The study area forms part of the Umgeni 

catchment, lying to the south of the Umgeni River. It covers suburbs such as Clare Estate, 

Westville, and Reservoir hills. The area includes informal settlements such as Kennedy Road, 

Quarry Road, New Germany road, Palmiet zone 1, and Foreman Road. The topography of the 

area is steep and highly undulating, ranging from about 30 m to 120 m above sea level. A 

humid subtropical climate coupled with a mean annual precipitation exceeding 1000 mm per 

annum characterize Durban (Williams et al., 2018). Also, warm, wet summers and mild, dry 

winters describe Durban climate. Most informal settlements in the study area are close to road 

networks such as Palmiet Road, Clare Road, Quarry Road, and New Germany Road. These 

roads follow a steep topography and often lead down to Umgeni River. The informal 

settlements’ location on steep slopes, in proximity to road and river networks, coupled with 

characteristic fragile soils may contribute to their vulnerability to landslides and flood hazards 

during extreme climatic conditions. Most of the informal settlements are located within 

‘pockets’ of formal settlements or close to prominent institutions or business areas. For 

example, Reservoir Hills shopping center lies adjacent to the New Germany road informal 

settlement. Similarly, the University of KwaZulu-Natal, Westville campus, lies at an average 



9 

 

distance of about 1.5 km from the three closest informal settlements. This is reflective of the 

morphology of informal settlements in Durban, where they capitalize on every inch of urban 

space in the city. The fact that about 75% of the metropolitan gross housing backlog of 305,000 

units represent informal dwellings (Marx and Charlton, 2003b) showing high levels of 

accommodation crisis in Durban. Moreover, the housing units are constructed using corrugated 

iron, plastic, timber, and metal sheeting that testify to the poverty and low-income levels of the 

residents. 

 

 

Figure 1.1. Location of the study area 

1.4. General structure of the thesis 

The thesis comprises seven chapters where chapter 1 forms the introduction and chapter 7 

forms the synthesis chapter. Five research papers that answer each of the aforementioned 

research objectives outlined in section 1.2, also form part of the thesis. The literature review 

and methodology are entrenched within the mentioned papers. 
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Chapter Two provides a systematic review of progress of texture analysis in mapping informal 

settlements. The review presents an investigation of key factors affecting texture-based 

classification processes in the identification of informal settlements. The factors include 

sensors, algorithms, scale, classifiers and feature selection methods. Gaps and opportunities 

were presented, as well as future directions on the application of texture analysis for informal 

settlement identification. 

Chapter Three evaluates the potential of pan sharpening techniques on Sentinel-2A data, and 

textural features in enhancing informal settlement identification accuracy. Specifically, 

Sentinel-2A 20 m bands were pan sharpened using 10 m bands to investigate the potency of 

integrating pan sharpening and image texture in mapping diverse spatial layout of informal 

settlements. 

Chapter Four leverages data analytic tools and available data archives within the GEE cloud 

computing environment in order to establish a framework that integrates spectral and texture 

features, as well as random forest classification to enhance capturing of informal settlement 

morphological diversities. This paper performed a comparison analysis of 7 different feature 

combinations to investigate their discriminative capabilities in accurately predicting informal 

settlement locations and extents. Feature combinations including spectral bands, spectral 

indices and various GLCM texture features were explored. 

Chapter Five explored the available high-spatial resolution PlanetScope imagery within the 

GEE platform, coupled with the convenience of simple non-iterative clustering (SNIC) 

segmentation algorithm to perform GEOBIA to map spatial morphology of deprivation pockets 

in complex built up environment of Durban. The study fused data from Sentinel-1(S1) radar 

data, Sentinel-2 (S2) and PlanetScope (PL) optical data sensors with different spectral 

characteristics and spatial resolutions for effective abstraction of informal settlement diversity. 

GLCM algorithm, present within the GEE platform was employed for extraction of image 

texture features from PL imagery, which were integrated within the classification framework 

for precise localization of informal settlements in a complex urban landscape. 

Chapter Six analyzed spatiotemporal dynamics of informal settlements in relation to triggered 

LULC changes in part of Durban Metropolis. The study mapped and systematically analyzed 

transitions in LULC in response to informal settlement growth patterns in Durban Metropolitan 

area from 2015 to 2021. An object-based image classification, incorporating texture analysis 

was performed on fused Sentinel -1 and PlanetScope data within the GEE. Further, intensity 
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analysis approach was utilized to quantitatively investigate inter category transitions, at 

category, and transition levels so as to enhance comprehension of patterns and processes of 

change and consequences on the environment. Findings have implications for sustainable 

urbanization policies and devising of environmentally responsible approaches, especially in 

rapidly urbanizing cities. The study applied an object-based image classification on 

PlanetScope imagery within the GEE platform. 
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CHAPTER TWO: LITERATURE REVIEW 

Texture analysis approaches in modelling informal settlements 

This chapter is based on: 

Matarira, D., Mutanga, O., & Naidu, M. (2022). Texture analysis approaches in modelling 

informal settlements: a review. Geocarto International, 37(26), 13451-13478, 

doi:10.1080/10106049.2022.2082541 

 

Abstract:  

Texture-based informal settlement mapping has gained attention in urban remote sensing 

research. Numerous studies conducted on the use of texture analysis for informal settlement 

mapping have investigated wide-ranging sensors, algorithms, scale, classifiers, feature 

selection methods, and other factors of interest. However, no study has systematically 

investigated key factors affecting texture-based classification processes. This paper presents a 

detailed synthesis of scientific progress in texture based informal settlement mapping. Results 

revealed that grey level co-occurrence matrix was the most popularly used algorithm. 

Quickbird was the widely used sensor in the mapping of informal settlements using texture 

analysis approaches. The use of machine-learning classifiers, particularly, support vector 

machine and random forest yielded, comparatively, high accuracies (>80%). Interestingly, 

deep learning showed potential to advance informal settlement identification. Multi-city 

comparison studies demonstrated need for texture features to be locally specific in order to 

allow transferability. Thus, integration of remote sensing data and field survey statistics could 

be crucial in enhancing understanding of morphological variations for improved informal 

settlement mapping. 

Keywords: Remote sensing; informal settlements; modelling; image texture 
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2.1. Introduction 

 ‘Slums’, herein defined as informal settlements (ISs) (Gibson et al., 2021) have become a 

growing concern, globally. They are home to about 1.6 billion dwellers, worldwide (UNDP, 

2018), and the figure is projected to increase to three billion by 2050 (United-Nations, 2019). 

In Africa, 62% of the city residents dwells in ISs, in Asia; 30%; and in Latin America and the 

Caribbean; 24% (UN-Habitat, 2015). Urban poverty, lack of cities’ capacity to meet an 

increasing housing demand, inability of states or the market to provide affordable housing for 

the urban poor, combined with the inability to provide basic services are some of the main 

drivers of the growth and persistence of informal settlements in the global south (Samper et al, 

(2020, Tellman et al., 2022). In accordance with the 2030 Agenda for Sustainable Development 

(Fallatah et al., 2020b), countries have a mandate to transform all ISs into serviced and formal 

neighbourhoods (Brelsford et al., 2018). However, data on their location, extent and dynamics 

is often not available, outdated, or inconsistent (Persello and Stein, 2017, Prabhu and 

Parvathavarthini, 2021, Verma et al., 2019, Wang et al., 2019c). Accurate mapping of the 

distribution, size and patterns of ISs potentially allows effective implementation of policies and 

urban growth management (Samper et al., 2020).  

 

Texture analysis approaches have the potential to capture morphological variations in ISs 

(Kohli et al., 2016b, Mboga et al., 2017). In that regard, various studies have explored texture 

feature techniques such as grey level co-occurrence matrix (GLCM) (Girija and Nikhila, 2018, 

Kohli et al., 2016b, Prabhu and Alagu Raja, 2018, Shabat and Tapamo, 2017), contourlets 

(Ansari et al., 2019b), curvelets (Ansari and Buddhiraju, 2019a), lacunarity (Fallatah et al., 

2018b, Kit and Lüdeke, 2013, Kit et al., 2012a, Owen and Wong, 2013a), local Binary Patterns 

(LBPs) and Line Support Regions (LSRs) (Graesser et al., 2012).While some studies integrated 

texture analysis with object based image analysis (Kohli et al., 2016b, Kohli et al., 2013), others 

fused texture analysis with machine learning approaches (Leonita et al., 2018, Mboga et al., 

2017).  

Even though diverse texture analysis approaches have been exploited, there is lack of 

consensus on the most suitable approach yet (Kuffer et al., 2016b). Diversity of morphologies 

of informal settlements across locales presents uncertainties and challenges that compromise 

effective delineation of ISs using remote sensing (Kuffer et al., 2017). Furthermore, 

dissimilarities in feature sets (Wang et al., 2019c), data gaps due to high cost of VHR imagery 

(Duque et al., 2017, Taubenböck et al., 2018), sensor characteristics (Schmitt et al., 2018, 
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Wurm et al., 2017a), as well as scale issues have an impact in the accurate mapping of ISs. 

Therefore, it is crucial to synthesize the collective knowledge of all factors influencing texture-

based classification. 

 

Recently, some researchers  have conducted reviews stressing the role of remote sensing in IS 

identification (Hofmann et al., 2015, Kuffer et al., 2016a, Mahabir et al., 2018). Kuffer et al. 

(2016a) gave a systematic review of different approaches and methods that used high/ very 

high resolution (H/VHR) imagery to study slums over the last 15 years. The main purpose was 

to assess the methodological advances in IS detection that are crucial for a global slum 

inventory. Available reviews (Hofmann et al., 2015, Mahabir et al., 2018b) only provide a brief 

review of texture analysis. An in-depth analysis of the application of texture analysis for IS 

identification is still lacking. Rather, the texture analysis approaches are scantly discussed 

without a comprehensible guidance on the relative performance of different texture analysis 

approaches for IS mapping. This work therefore provides a detailed synthesis of peer-reviewed 

studies on the role of texture analysis in IS mapping.  

The main objective of this work is to systematically review the results of existing studies on 

texture based IS mapping in order to: 

1) document various factors that are important in texture analysis such as sensors, 

geographical regions, algorithms and accuracy assessment methods. 

2) identify and briefly summarise the scientific advances in texture-based algorithms for 

IS extraction 

3) provide scientific guidance regarding the use of texture analysis for IS mapping 

2.1.1. Conceptualizing informal settlements 

2.1.1.1. Definitions 

The definition of the term ‘slum’ remains a contentious construct (Patel et al., 2019). In fact 

there is absence of an internationally agreed definition of what informality is (Mahabir et al., 

2016). The definition of what constitutes a slum varies by country, within countries or even 

cities (Kuffer et al., 2017). Samper et al. (2020) suggested a number of variables that define 

informal settlements, which include lack of basic needs such as safe water, sanitation, 

infrastructure and services, overcrowding, fragile structures, non-secure tenure, among others, 

all of which are embedded in UN-Habitat (2003)’s definition that described slums ( also 

referred to as ISs) as overcrowded, insecure areas that are characterised by poor structural 
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quality housing and lacking adequate access to safe water, sanitation and other infrastructure. 

Samper et al. (2020) emphasized the need for an IS to be captured in any of its unique 

definitions. One reason is that, what one country may consider as a “slum” may be regarded as 

perfectly acceptable accommodation in another (Gilbert, 2007). Moreover, with time, slums 

may improve and become respectable low-income homes (Mahabir et al., 2018). This means 

that slum definition can change any time. For that reason, slums cannot be defined in any 

universally acceptable way (Taubenböck et al., 2018). It is also vital to note that, while United 

Nations seems to suggest that ISs are synonymous with ‘slums’ (Fallatah et al., 2018), in some 

countries, for example, South Africa, the two terms are not synonymous (Hoffman et al., 2015). 

The term ‘slum’ is not used in South Africa because of associated negative connotations. In 

fact, Gilbert (2007) described the term ‘slum’ as pejorative and emotive. Hence, Taubenböck 

et al. (2018) based their study on the term ‘Arrival City’ in order to avoid the conceptual 

restrictions. For the same reason, the term ‘informal settlement’ will be used in the current 

review. 

2.1.1.2. Morphology of informal settlement landscape 

Morphology of ISs shares unique characteristic patterns across settlements (Samper et al., 

2020).These characteristics include shape, size, scale and distribution (Kuffer et al., 2017). 

From a remote sensing perspective, morphology refers to observable and detectable spatial and 

spectral characteristics that can help distinguish ISs from formal settlements (Hoffmann et al 

2008, Graesser et al., 2012). Those spatial characteristics that vary across countries, across 

cities, or even across IS areas within the same city (Kuffer et al., 2016b) characterize 

informality. To enhance understanding of the concept of ‘morphology’ in the context of 

informal settlements, Kuffer et al. (2017) conceptualized the determinants that drive variations 

in ISs morphology, many of which are anchored in three key types of typologies; object type,  

land and site characteristics, and the area's temporal dynamics and history. These typologies 

vary from settlement to settlement and can be quite dynamic. For example, Suhartini and Jones 

(2020) observed that, in Indonesia housing units in ISs result from unplanned adaptations of 

domestic space, reflected in their differential organic and haphazard forms, as well as various 

structural layouts. In Cairo, whilst some ISs are constructed on deteriorated historic core, for 

example, Medieval Cairo, some occupy either abandoned agricultural land or desert land 

(Kuffer et al., 2017). In Mumbai, IS landscape is characterized by (1) rehabilitated ISs adjacent 

to high-rise apartment buildings, (2) long-established ISs, which may have regular small-scale 
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shops and building patterns along the main roads, and (3) very densely packed areas with only 

small lanes inside the area (Kuffer et al., 2016a). In Latin America, informal settlements may 

take variations that include occupation of public communal land as well as unlicensed 

subdivision of land (Fernandes, 2011). Similar to spatial layout in South Africa, ISs in Recife, 

are clustered in open spaces in the city and near highways (Duque et al., 2017). Remote sensing 

is anchored on the premise that ISs share explicit morphological features that can be recognized 

in an image (Taubenböck et al., 2018). According to Graesser et al. (2012) such diverse 

morphological characteristics can be captured in VHR imagery, and incorporating textural 

information would effectively characterize local IS neighbourhoods. For instance, Kuffer et al. 

(2016a) used GLCM variance to distinguish ISs types from formal areas. Likewise, Kuffer et 

al. (2017) successfully investigated the capacity of VHR imagery to map locally specific types 

of ISs.  

2.2. Satellite image texture analysis and informal settlement identification  

Texture analysis involves use of a class of mathematical procedures and models that exploit 

spatial variability of intensity values in image classification (Armi and Fekri-Ershad, 2019). It 

has been widely used in high resolution image processing. There are various texture extraction 

approaches that are categorised into statistical, structural, transform based and model-based 

techniques. The commonly used statistical approaches include GLCM and LBP (Ramola et al., 

2020). GLCM is a matrix which specifies the spatial relationship between two neighbouring 

pixels separated at distance (d) and direction (θ), referred to as orientation angle (00, 450, 900, 

and 1350) (Ramola et al., 2020, Shabat and Tapamo, 2017). Selection of appropriate angle (θ) 

is important in the extraction of textural information from images containing highly directional 

characteristics. Most importantly, orientation of urban structures influences extraction of 

features that are based on a certain direction (Wurm et al., 2017a). Given the unstructured 

arrangement of buildings in ISs, a rotation invariant GLCM is used in some studies (Khumalo 

et al., 2011). During texture feature extraction, usually all the four directions are considered 

and from them, the mean of features are calculated (Haralick et al., 1973). However, the 

calculation of mean directional textural information is characterised by loss of textural 

information that results in low classification accuracy (Singh and Srivastava, 2017). Texture 

analysis techniques have since disseminated into several fields. There is a significant body of 

texture analysis related work in fields such as vegetation mapping, forest mapping, species 

diversity mapping and urban built-up area extraction, among others. The application of GLCM 
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has been successful in the mapping of uprooted orchard trees (Ciriza et al., 2017), desert 

vegetation mapping (Zhou et al., 2021), and mangroves species classification (Wang et al., 

2016b). According to the aforementioned studies, the addition of GLCM texture can improve 

image classification. The use of LBP features has also been associated with high accuracies, 

particularly in classification of areas with complex textural characteristics such as bark texture 

(Figure 2.1a-e). However, basic local binary patterns (LBP) do not adequately discriminate 

features, and have been criticized for their sensitivity to noise (Fekri-Ershad, 2020). Thus, some 

studies have utilised modified approaches of LBP in texture analysis. For example, Fekri-

Ershad (2020) used improved local tenary patterns for bark texture classification. Researchers 

in urban remote sensing have successfully applied texture analysis in classifying complex built 

up areas (Giannini and Merola, 2012, Mhangara and Odindi, 2013, Zhang et al., 2014). Most 

importantly, investigators have developed tools and techniques that explore texture-based 

classification for IS detection (Fallatah et al., 2020, Kit et al., 2012a, Kohli et al., 2016b, Kuffer 

et al., 2016b). GLCM has been broadly accepted in IS identification (Girija and Nikhila, 2018, 

Kohli et al., 2016b, Kuffer et al., 2016b, Wurm et al., 2017b). According to Haralick et al. 

(1973), the advantage of using GLCM in texture analysis has been its ability to capture the 

spatial variation of neighbouring pixel values. The results of most studies that employed 

GLCM showed robustness of the approach in IS identification. Interestingly, Owen and Wong 

(2013a) revealed representative values expected of ISs (Table 2.1).  

Table 2.1. Commonly used GLCM texture metrics and expected values for informal 

settlement areas 

 

Adopted from (Prabhu and Alagu Raja, 2018) 

Apart from orientation angle, window size is also an important parameter in texture analysis 

(Engstrom et al., 2017, Ghaffarian and Emtehani, 2021). The previous studies in classifying 
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ISs (Kuffer et al., 2016b, Schmitt et al., 2018, Wurm et al., 2017a) have addressed the issue of 

multi scales by varying window sizes. Figure 2.1 is an illustration of the possible impact of a 

particular size of window on classification. If a small window size is chosen (red boxes in 2.1e), 

then there will be inadequate statistical information to define the texture (Baykal, 2019), 

causing misclassification. When the window size is too large, overlapping with other land cover 

classes may occur, introducing inaccurate spatial information (Kabir et al., 2010). 

 

Figure 2.1a-e. Some examples of tree bark different textures. Sources: (Fekri-Ershad, 2020); 

(Baykal, 2019) 

However, taking cognisance of implications of too small and too large window sizes, there is 

need to establish an optimum window size in texture analysis (Lan and Liu, 2018). Lan and 

Liu (2018) argued that, obtaining an optimum window size would create a link between scale 

and real object sizes. The issue of various scales has been addressed by some researchers 

through use of multi-resolution analysis (MRA) based approaches such as contourlets (Ansari 

and Buddhiraju, 2019c), wavelets  and curvelets (Ansari and Buddhiraju, 2019b). Table 2.1 

shows advantages and disadvantages of various approaches used in texture based informal 

settlement identification. 

2.3. Literature search methods 

A systematic literature search was conducted in four databases; Google Scholar, Scopus, 

ScienceDirect and Web of Science. The search for literature focused on articles that 

investigated application of image texture in the mapping of ISs. Published articles within the 

last 21 years, that is from 2000-2021 were considered. This selection of the period was 

important to guarantee that recent literature on the subject area was incorporated in the study 

to keep track with advances in methodologies and approaches. The databases were searched 
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using the search rule ("Texture analysis" OR "Image texture" OR "Texture features") 

AND "Remote Sensing" AND ("informal settlements " OR "slums" OR "Unplanned 

settlements") AND ("Classification" OR "Mapping"). Refinement of articles was done by date, 

article type, subject areas, title, and abstract. Double records were removed from the databases 

to further refine the search. Only the literature published between 2000 and 2021 was 

considered. Conference proceedings and two theses were also considered in this review. There 

was no limitation regarding the spatial scope of research but articles were limited to those 

written in English.  For the paper to be included in this analysis, the papers needed to meet the 

following criteria: Each study should: 1) utilize remotely sensed data; 2) incorporate image 

texture in IS mapping. Following the above process, a database was created with fields 

containing the following information: authors, title, year published, imagery type, texture 

analysis algorithm used, location of study (city, country and continent), classifier used, 

accuracy assessment information. All cities listed in the paper were included in order to 

determine the geographic coverage of the studies 

 

Figure 2.2. The number of published articles for informal settlement mapping 
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2.4. Meta-Data analysis 

The study focused on quantifying the studies and investigating several features of image 

texture-based classification, that include sensors, window size, classifiers, classification 

accuracy, texture features extracted, and texture analysis algorithm. Measures of overall 

accuracy were also analysed from individual case studies. Statistics were also collected on the 

frequency of use of algorithms, sensors and classifiers. However, during the analysis of the 

influence of each uncertainty, it was observed that some case studies failed to clearly provide 

information for all fields. Therefore, in accordance with the specific objectives of the research, 

only relevant case studies that clearly expounded the corresponding uncertainties were 

considered during the quantitative analyses. 

2.5. Results   

The number of articles retained by the initial literature search was 632. The articles were then 

refined considering those that fell within the range 2000-2021, within subject areas of 

environmental and social sciences, and which were either research articles or proceedings. The 

refinement returned 580 articles. After further searches, 97 articles were retained for qualitative 

analysis after removing duplicates, those that did not directly exploit application of image 

texture in IS modelling. Sixty- three articles finally remained for quantitative analysis. Figure 

2.2 illustrates the process of literature determination including inclusion and exclusion criteria.  

2.5.1. Geographic location of texture analysis studies 

This review considered texture analysis studies carried out from across the world (Figure 2.3). 

All publications under review came from 23 countries. Figure 2.3 shows the spatial distribution 

of studies that applied texture analysis approaches for IS modelling.  From the spatial point of 

view, most of the articles on image texture based IS identification are mainly located in Asia 

(49.4%), with the largest percentage of case studies (35%) focusing on India. The three next 

studied countries include South Africa (10.4%), Brazil (9.1%) and Rwanda (7.8%). In India, 

the 27 studies were distributed across six cities, distributed in four states of India, which are 

Maharashtra, Telangana, Gujarat and Tamil Nadu. It is important to note that Mumbai city had 

the largest proportion of studies (15.6%), followed by Madurai city (7.8%), both in India. Other 

cities with fair numbers of studies included Johannesburg (7.8%) and Kigali (7.8%), both in 

sub-Saharan Africa. 
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Figure 2.3. Country level distribution of texture analysis studies for informal settlement 

identification (studies published from 2005-2021). 

2.5.2. Trends in texture analysis based on published articles 

The numbers and the trend of publications from 2005 to 2021 are presented in Figure 2.4. From 

the literature search, the first texture analysis paper for IS extraction dates back to 2005 (Barros 

Filho and Sobreira, 2005). Prior to 2011, the number of related publications did not noticeably 

increase. However, from 2011 onwards, research on texture-based IS identification began to 

increase gradually as shown by the increase in publications. From the year 2005 to 2013 (eight 

years), there were six publications using texture analysis algorithms for IS mapping. There was 

a notable sharp increase from 2014 to 2017. The year 2017 witnessed the highest number (12) 

of publications while the year 2018 had five articles. The literature review showed that a 

significant number of studies employing texture analysis for IS identification (47.6%) were 
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Figure 2.5. Satellite data used for texture based informal settlement modelling from year 

2005 to 2021 

2.5.4. Texture analysis approaches for the identification of informal settlements 

Several texture analysis approaches were employed in various publications under review. The 

current review synthesized the types of algorithms that were most frequently used. The 

selection was based on the availability of information such as texture algorithm, classifier and 

well stated accuracy. Again, only approaches that were used in more than one study were 

incorporated in quantitative analysis. These approaches are represented in Figure 2.6. 

Table 2.2. Studies with well documented classifiers and accuracy levels. 
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Study Texture algorithm Classifier Classification accuracy (%) 

(Ansari and Buddhiraju, 2019c) GLCM, MRA based contourlet, 

MRA based wavelet, Crisp 

contourlet 

MDM 93-96 

(Ansari and Buddhiraju, 2019b) Curvelet transforms, Contourlet 

transforms, MRA based wavelet, 

GLCM 

SVM, MDM 91.4-95.4 

(Wurm et al., 2017b) GLCM, DMP RF 81.65 

(Mboga et al., 2017) GLCM, LBP CNN, SVM 91.71 

(Stasolla and Gamba, 2008) GLCM Fuzzy ARTMAP Neural Network 90 

(Fallatah et al., 2020) GLCM RF 91 

(Wurm et al., 2017a) 

 

GLCM, DMP RF, LDA 88.58 

(Kuffer et al., 2017) GLCM RF, LR 98.9 
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(Kuffer et al., 2016b) GLCM RF 90 

(Leonita et al., 2018) GLCM Pantex, LBP, 

Morphological features 

RF, SVM 

 

88.5 

(Mugiraneza et al., 2019) GLCM SVM 85.36 

(Duque et al., 2017) GLCM, Histogram of pixel 

values 

RF, SVM, LR 

 

F2 scores 0.81 

(Bürgmann, 2015) GLCM LDA, SVM, RF 

 

91 

(Khumalo et al., 2011) GLCM, Gabor filters I-Nearest neighbour 92.45 

(Lai and Yang, 2020) GLCM SVM 90.7 

(Praptono and Sirait, 2013) Gabor Filters, Gaussian weighted 

grey level co-occurrence 

probabilities 

Decision trees 74.15 

(Gevaert et al., 2017 ) LBP SVM 91.6-95.2 

(Prabhu and Alagu Raja, 2018) GLCM, Tamura, Wavelet 

transform 

Rule based, Fuzzy C means 68.5-73.5 

(Prabhu and Parvathavarthini, 

2021) 

MSh-MSi-MP, GLCM, wavelet 

frame transform, MP, 

Morphological attribute profile, 

Modified MP 

 

SVM 89.99-96.25 

(Prabhu et al., 2021b) MShMSiMP-GF SVM 91.37-99.36 

(Gevaert et al., 2016) LBP  MKL- SVMs 90.29 

(Weigand, 2017) GLCM, DMP RF, LDA 88.58 

(Fallatah et al., 2018) GLCM CART 92.9 
 

Accuracies were reported across algorithms basing on overall accuracy. In Table 1. RF refers to random forest, MDM is minimum distance to mean 

classifier, SVM is support vector machine, ANN refers to the Artificial Neural Network, LDA is linear discriminant analysis and CART is 

classification and regression tree. 
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Statistics of the current review (Figure 2.6) indicate that GLCM was the most commonly used 

texture analysis algorithm, followed by local binary patterns, both of which are statistical 

approaches. The results indicated that 73% of the research papers used GLCM texture metrics, 

whilst 14.3 % of the published papers used LBP. It is important to note that the trend of use of 

GLCM has been increasing (Figure 2.7) as shown by the number of publications that continue 

to increase over years. The search results revealed that, of the published articles, 13% utilised 

lacunarity approach. Structural based IS mapping approaches in the form of mathematical 

morphologies (MM) were exploited in 8% of the studies. These are studies that explored 

conventional mathematical morphologies. There were also few studies that successfully used 

transform based multi resolution approaches such as contourlets (Ansari et al., 2019a), 

curvelets (Ansari et al., 2019b), wavelets (Ansari and Buddhiraju, 2019b, Ansari et al., 2019b) 

and Gabor filters (Khumalo et al., 2011, Praptono and Sirait, 2013). The most commonly used 

transform-based approaches were contourlets (5%) and Gabor filters (5%). Table 2.3 shows 

advantages and disadvantages of the commonly used approaches in IS mapping. 

 

 

Figure 2.6. Studies that have used texture analysis approaches for the mapping of informal 

settlements from year 2005 to 2021 
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Figure 2.7. Literature review results for the number of publications (per year) using the grey 

level co-occurrence matrix analysis approach for mapping informal settlements from year 2005 to 

2021 

Table 2.3. Strengths and limitations of various texture analysis methods for informal 

settlement identification 

Algorithm Properties 

GLCM Description 

It defines texture in terms of local grey level statistics based on the spatial distribution of 

reflectance values 

Sample studies 

Prabhu et al. (2021a) 

Wurm et al. (2017a) 

Kuffer et al. (2016b) 

 

Advantages 

1. GLCM addresses a large spatial neighborhood of the pixels  

2. Characterize the detailed and complex urban structure at a reliable level 

Limitations 

1. GLCM features can be obtained for a single orientation as well as combining all the 

orientation together making GLCM direction independent. 

2. The GLCM is originally designed for texture analysis of two-dimensional (2D) images 

but today its scope is extended as scientists are using GLCM features to extract texture 

information from three-dimensional (3D) surfaces 

3. Incapability of describing texture information at multiple scales which is overcome by 

extending GLCM to multiple scales.  

4 GLCM computation requires long processing time 

5. High dimensionality of the matrix 

6. High correlation of Haralick features 
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texture features such as GLCM and LBP are sensitive to viewing and illumination 

geometry differences 

Local Binary 

Patterns 

Description 

1. LBP combines structural methods and statistical methods through analysis of local 

structures and occurrences, respectively  

2. Through LBP one can easily define the image texture by two complementary 

measures, that is, “local spatial patterns” and “grayscale contrast. 

 

 

Sample studies 

van den Bergh (2011) 

Luus et al. (2014) 

Fekri-Ershad (2020) 

Advantages 

1. Can define the local spatial structure and the local contrast of the image or part of the 

image 

2. It is simple to implement and extraction of proper features with high classification 

accuracy 

3.LBP are sensitive to viewing and illumination geometry differences 

4. It is invariant to grayscale changes 

 

Limitations 

1. Under certain circumstances, they miss the local structure as they don't consider the 

effect of the center pixel  

2. They are often characterized by high dimensionality histograms 

3. Some versions of local binary patterns are sensitive to noise. 

4.They are not invariant to rotations. 

5. High computational complexity 

Lacunarity Description 

Distinguishes spatial patterns through the analysis of their gap distribution in different 

scales 

 

Sample studies 

Kit et al. (2012a) 

Kit and Lüdeke (2013) 

Owen and Wong (2013a) 

Advantages 

1. Properties of objects at different scales aid in better discrimination.  

2. Provide information on intra and inter diversity.  

3. Can provide valuable information to study the structural changes of a feature over time 

Limitations 

1.Has the potential to misplace or misidentify ISs covering areas smaller than the gird 

sizes used to collect information. 

2.Lacunarity values from one IS may be non-transferable to another IS due to specific 

qualities of the imagery being used such as its spatial and radiometric resolution. 

3.Research on lacunarity mainly focus on the use binarized imagery, which leads to the 

loss of valuable image properties of ISs compared to the use of grayscale or color 

imagery. 

Mathematical 

morphology 

Description 

Powerful tools used to extract spatial, structural information through opening and closing 

profiles with increasing sizes of structuring elements 

Sample studies 

Prabhu and Parvathavarthini (2021) 

Wurm et al. (2017b) 

Prabhu et al. (2021a) 

Advantages 

1.Discriminate urban ISs for different sizes and shapes 

2.Allows the utility of implementing different shapes and sizes of opening, closing 

profiles in an image that yields spatially regular and homogeneous land 

 Limitations 
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MM uses scene specific rules which may not be transferrable to other image scenes. 

 

Contourlets Description 

Composed of basis images oriented at varying directions in multiple scales, with flexible 

nonlinear aspect ratios. 

Sample studies 

Ansari and Buddhiraju (2019b) 

Ansari et al. (2019b) 

 

Advantages 

1. Exhibit a strong ability to capture intrinsic geometrical details and directional 

selectivity 

2. Efficiently capture the curvilinear details and represents the structures having various 

orientation and anisotropic characteristics. 

 

  

Limitations 

They have a problem in effectively capturing the geometry of image edges  

Gabor filters Description 

A gabor filter is a linear local filter 

Sample studies 

Engstrom et al. (2017) 

Khumalo et al. (2011) 

Praptono and Sirait (2013) 

Advantages 

1. Ability to be adjusted in the areas of the place and in the frequency domain 

2. The multiresolutional aspect of the approach allows the extraction of frequency and 

orientation information.  

Limitations 

1.It is characterized by high redundancy of features 

2.The dimension of feature vector is too long 

 

2.5.5. Spatial analysis of informal settlement mapping studies 

Tables 2.4 and 2.5 compare peer reviewed published texture analysis studies in the most studied 

areas of India and South Africa. In the case of India, the most popularly used approaches, 

starting with the most frequent approach, were: (A) GLCM (B) LBP (C) Lacunarity (D) MM 

(E) Contourlets (F) Gabor filters. Results of analysis have indicated that of the 27 studies done 

in India on texture analysis approaches, 20 studies used GLCM approach. It is also important 

to note that, of the 10 texture-based studies conducted in Mumbai, all of them incorporated 

GLCM, which is indicative of the popularity of GLCM in Mumbai city. Gabor filters have not 

been explored in India. Almost similarly, GLCM was incorporated in all the texture analysis 

studies done in South Africa. Lacunarity, mathematical morphology and contourlets have not 

been explored in South Africa. It is also important to note that five out of the seven studies that 

used GLCM approach in South Africa were carried out in Soweto suburb. Tables 2.4 and 2.5 

reveal that the use of more than one texture analysis approach has not been very common in 

the studies reviewed here (11 studies out of 31 studies). 
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Table 2.4. Studies of informal settlements in India using texture-based approaches classified 

by texture descriptor  

A) GLCM; (B) LBP; (C) Lacunarity; (D) MM; (E) Contourlets; (F) Gabor filters 

Author Approach City Province 

 A ٭B C D E ٭F   

(Ansari and Buddhiraju, 2019c) x    x  Pune Maharashtra 

(Ansari and Buddhiraju, 2019b) x    x  Mumbai Maharashtra 

(Wurm et al., 2017a) x   x   Mumbai Maharashtra 

(Wurm et al., 2017b) x   x   Mumbai Maharashtra 

(Kit et al., 2012a)   x    Hyderabad Telangana 

(Kit and Lüdeke, 2013) x      Ahmedabad Gujarat 

(Kuffer et al., 2017) x      Mumbai Maharashtra 

(Bürgmann, 2015) x      Mumbai Maharashtra 

(Kuffer et al., 2016b) x      Mumbai Maharashtra 

(Kuffer et al., 2016b) x      Ahmedabad Gujarat 

(Kuffer et al., 2015) x      Mumbai Maharashtra 

(Kohli et al., 2016a) x      Pune Maharashtra 

(Kuffer et al., 2013) x      Mumbai Maharashtra 

(Shekhar, 2012) x      Pune Maharashtra 

(Kohli et al., 2016c) x      Pune Maharashtra 

(Prabhu and Alagu Raja, 2018) x   x   Madurai Tamil Nadu 

(Prabhu and Parvathavarthini, 
2021) 

   x   Madurai Tamil Nadu 

(Prabhu et al., 2021a) x   x   Madurai Tamil Nadu 

(Prabhu et al., 2021b)    x   Madurai Tamil Nadu 

(Kit and Lüdeke, 2013)   x    Hyderabad Telangana 

(Girija and Nikhila, 2018) x      Madurai Tamil Nadu 

(Naorem et al., 2016) x      Mumbai Maharashtra 

(Prabhu et al., 2017) x      Madurai Tamil Nadu 

(Weigand, 2017) x   x   Mumbai Maharashtra 

No of studies 20  2 7 2    

* No studies using this approach occurred in India 
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Table 2.5. Studies of informal settlements in South Africa using texture-based approaches 

classified by texture descriptor 

A) GLCM; (B) LBP; (C) Lacunarity; (D) MM; (E) Contourlets; (F) Gabor filters 

 

Author Approach City Province 

 A B *C *D *E F   

(Khumalo et al., 2011) x     x Johannesburg Gauteng 

(van den Bergh, 2011) x x     Johannesburg Gauteng 

(Mudau and Mhangara, 2021) x      Tshwane                                                                            Gauteng 

(Ella et al., 2008) x x     Johannesburg Gauteng 

(Shabat and Tapamo, 2017) x      Johannesburg Gauteng 

(Luus et al., 2014) x x     Johannesburg Gauteng 

(Mdakane and van den Bergh, 2012) x x     Johannesburg Gauteng 

Total 7 4       

* No studies using this approach occurred in South Africa 

2.5.6. Texture feature selection 

Analysis of reviewed articles showed that feature selection did not attract adequate attention. 

Of the selected studies (Table 2.2), those that explicitly employed the feature selection method 

only account for 15.9%. The majority of studies failed to adopt the feature selection method or 

explicitly state whether the feature selection method was employed. Most of the studies that 

performed texture feature selection chose either GLCM or GLCM texture metrics as indicators 

of importance (Duque et al., 2017, Graesser et al., 2012, Owen and Wong, 2013a). Results of 

texture feature extraction varied across studies. Some texture metrics chosen as variables of 

importance included contrast (Duque et al., 2017, Kohli et al., 2016b, Kohli et al., 2013b), 

entropy (Owen and Wong, 2013a, Praptono and Sirait, 2013), variance (Girija and Nikhila, 

2018, Kuffer et al., 2016b, Lai and Yang, 2020) and homogeneity and dissimilarity (Wurm et 

al., 2017a).  

2.6. Comparison studies 

2.6.1. Comparing methodological performance 

Analysis of reviewed studies revealed that few studies compared texture-based algorithms in 

multiple countries (Duque et al., 2017, Graesser et al., 2012, Kuffer et al., 2016b, Schmitt et 
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al., 2018, Stasolla and Gamba, 2008). About 13% of published articles focused on multiple 

countries. Most of those studies crossed continental boundaries (Graesser et al., 2012, Kuffer 

et al., 2016b, Stasolla and Gamba, 2008) while Prabhu et al. (2021b) discriminated ISs in two 

cities of the same country, Madurai and Tiruppur, India. Kuffer et al. (2016b) revealed that 

GLCM variance allowed clear separation of ISs from formal settlements. On the other hand, 

Graesser et al. (2012) revealed failure of lacunarity approach to accurately distinguish ISs from 

formal settlements in Kabur, Kandahar, Caracus and La Paz.  

2.6.2. Comparison of used classifiers  

In this analysis, only classifiers that were used in two or more publications were considered. 

Considering all the classifiers used in the 63 publications, 36.5% employed conventional 

machine learning classifiers. Frequencies of most commonly used classifiers based on the 

above-mentioned criteria were listed in Table 2.2, and the classifiers include MDM, SVM, RF, 

LDA, CNN and LR. Figure 2.8 shows the frequency of the commonly used classifiers, as 

represented in Table 2.2. Random Forest was the most commonly used classifier, followed by 

SVM. Results showed that 28.6% of the 63 publications used RF whilst 20.6% used SVM. In 

terms of classification accuracy, the results also indicate that machine learning classifiers 

yielded higher accuracies than conventional classifiers with most of the classification 

accuracies achieved being above 80%. Comparing accuracies for the two commonly used 

classifiers, SVM demonstrated superiority in terms of classification accuracy (Figure 2.9). 

SVM, on average performed better than RF with mean accuracy (~90%) and (~ 89%), 

respectively. 
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Figure 2.8. Frequency of classifiers used for the mapping of informal settlements using 

texture analysis approaches from year 2005 to 2021 

 

Figure 2.9. Overall accuracy of Random Forest vs Support Vector Machine algorithms in the 

mapping of informal settlements using texture analysis approaches from year 2005 to 2021 

Deep learning, on the other hand, has also shown an emerging trend in texture based IS 

identification with 3 out of 63 studies having used deep learning algorithms. 
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2.7. Effect of window size in informal settlement extraction 

The importance of scale in texture analysis for IS detection was emphasised in numerous 

studies (Ansari and Buddhiraju, 2019b, Graesser et al., 2012, Wurm et al., 2017a). To take 

cognizance of scale dependent nature of image texture, some studies investigated the 

discriminative power of multi-resolution analysis (MRA) based feature descriptors such as 

wavelets, contourlets and curvelets (Ansari and Buddhiraju, 2019b, Ansari and Buddhiraju, 

2019c). MRA approach showed some popularity with 10% of the studies having exploited 

wavelets, curvelets, and contourlets. Whilst 17% of the studies varied window sizes and 

established optimum window sizes, some just varied window sizes and were not conclusive of 

the optimum window size (Ansari and Buddhiraju, 2019b, Ansari and Buddhiraju, 2019c). Of 

the studies that determined optimum window sizes, most of them ranged from 19 x 19 to 200 

x 200. However, some studies used small window size of 3x3 (Lai and Yang, 2020, Owen and 

Wong, 2013a). 

3. Discussion of results, gaps in knowledge and future directions 

3.1. Geographic distribution of case studies 

The results of the current analysis highlighted a number of knowledge gaps. The major gaps 

are found in the spatial locations for which texture analysis techniques are employed for IS 

identification. Most notably, the approaches are only found in a few countries, with studies 

focusing largely on India, followed by South Africa. This result is consistent with Mahabir et 

al. (2018) who also revealed highest concentrations of informal settlement studies in India and 

South Africa. According to Tellman et al. (2022), high resolution (<10 m) satellite data is a 

requirement when mapping informal settlements. In their assessment of spatial distribution of 

H/VHR imagery for the study of informal settlements, Mahabir et al. (2018) discovered that 

India and South Africa were among the major regions with the highest usage of H/VHR 

imagery. The authors’ results also indicated that the application of analysis methods including, 

among others, image texture analysis, follow the similar trend. One could then explain higher 

prevalence of texture analysis approaches in India and South Africa in terms of higher 

utilization of H/ VHR in the regions. The underutilization in other regions could be due to 

unavailability or cost-prohibitive nature of commercial satellites, for example Quickbird, 

WorldView and GeoEye especially in resource constrained countries, which leaves many 

regions understudied. For example, cities with records of dynamic IS population, for example, 

Nairobi (60%) and Cairo (65%) (Satterthwaite et al., 2020) have not been studied. Given 
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projections for significant growth of IS dwellers, worldwide, especially in sub-Saharan Africa 

over the next 20 years (Girija and Nikhila, 2018, United-Nations, 2015), there is need for case 

studies that stretch across the range of all urban frameworks for better understanding of IS 

characterization.  

 

The results of analysis also showed that case studies are sparsely distributed within few cities 

in a country. For example, in India, the 27 studies were distributed across six cities, distributed 

in four states of India, which are Maharashtra, Telangana, Gujarat and Tamil Nadu. Prabhu et 

al. (2021a) submitted that there are huge IS populations in other Indian states such as Andhra 

Pradesh, West Bengal, Madhya Pradesh, and Uttar Pradesh for which published studies have 

not been found. The case study distribution is also skewed towards large cities, with small and 

medium sized urban areas remaining significantly less studied. Leao and Leao (2011) explained 

this distribution in terms of well distinguishable morphological differences between formal and 

informal urban development in large cities. For instance, in India, studies are more 

concentrated in Mumbai (11 studies out of the 27 studies), followed by Madurai city (6). Apart 

from being home to one of the largest ISs in Asia (Dharavi), Mumbai’s characteristic high IS 

population (42% of Mumbai's dwellers) occupying 13–15% of the city (Wurm et al., 2017a) 

could attract IS research. Moreover, heterogeneity of IS size relating to the characteristic 

morphology of Indian ISs (Kuffer et al., 2017) make Mumbai well-suited to develop and test 

IS mapping techniques (Taubenböck and Wiesner, 2015). Most importantly, Kuffer et al. 

(2017) argued that morphologic characteristics of Mumbai ISs can be easily extracted by 

texture based methods.  

 

For South Africa, the eight studies identified in literature are spread in only three cities, which 

are Johannesburg, Tshwane and Capetown. Interestingly, seven out of the eight studies are 

found in Gauteng province. The large gaps in the spatial coverage of studies could be explained 

in terms of restrictive data costs that limit usage of high resolution commercial satellites, 

especially in cities of the global south (Taubenböck et al., 2018). Arribas-Bel et al. (2017) 

submitted that globally, many researchers or research institutions lack the financial capacity to 

purchase full satellite imagery, thus limiting research. Those financial constraints make many 

researchers to prefer focusing on methodological advances and not exploring new study areas. 

Although other sensors for example MODIS (250 m) and Landsat (30 m) are free for research 

use, Tellman et al. (2022) argued that their resolution is not sufficient to capture informal 
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settlement patterns. Again, one would argue that availability of freely available sensors, for 

example Sentinel imagery, should fill the gap and improve image availability. Even though, 

image availability may still remain problematic due to frequent cloud cover in tropical cities, 

such as Kenya, Tanzania and Uganda (Kuffer et al., 2016a). In that regard SAR sensors such 

as TerraSAR-X are available and can penetrate clouds. However, such sensors have been 

scarcely used in texture analysis (Wurm et al., 2017a). 

 

Across all geographical scales, selective coverage of case study areas may hinder 

comprehensive understanding of informality globally (Mahabir et al., 2018). The unbalanced 

spatial coverage of studies would mean that the global IS inventory that Kuffer et al. (2016a) 

initiated could still be far from being achieved. There is, therefore, need for more studies in 

smaller and medium sized cities in order to improve understanding of morphological variations 

across all spatial scales (Wang et al., 2019c). Clearly though, lack of studies in some areas 

presents potential opportunities to deliver science, especially in the small towns and cities 

where science-informed policy guidance is crucial for sustainable urban development (Reba 

and Seto, 2020).  

 

Sensors 

Very High-Resolution sensors such as QuickBird, WorldView and SPOT have been major 

sources of data for IS extraction using texture analysis (Kuffer et al.2016a). The advantage of 

VHR earth observation satellites is that they allow extraction of detailed information, allowing 

characterization of IS landscapes based on their morphological characteristics (Gevaert et 

al.2017, Graesser et al., 2012). The analysis of the employed methods shows that most studies 

used commercial and rather expensive imagery (QuickBird, WorldView). Only very few 

studies used free data sources such as Google Earth (GE) (Arribas-Bel et al., 2017, Duque et 

al., 2017, Duque et al., 2015, Praptono and Sirait, 2013) and Sentinel-2 A (Wurm et al., 2017b). 

Analyzing the satellite sensors used in the reviewed studies (Figure 5), QuickBird was 

identified as the most frequently used sensor (33%). The QuickBird sensor provides a geo-

metric resolution of 0.60 m in panchromatic mode and therefore basically allows for a 

delineation of the objects in ISs (Kuffer et al., 2016b). Although radar images (PALSAR, 

Terra-SAR-X) have been scantly used in texture based informal settlement mapping, there has 

been progress in their use (Burgmann, 2015, Wurm et al., 2017). Weigand (2017) described 

SAR sensors as a reliable data source for large area IS mapping because of their ability to trace 

potential locations of ISs (Schmitt et al., 2018). Their reliability is enhanced by their capability 
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to penetrate clouds and other atmospheric components, a characteristic that is lacking in optical 

remote sensing (Burgmann, 2015). Radar data presents opportunities for studies in developing 

countries that lie in the tropical regions (Weigand, 2017). 

3.2. Application of texture analysis approaches for informal settlement modelling 

3.2.1. Performance of texture analysis approaches in informal settlement mapping 

Several methods have been exploited to identify IS areas. Information extracted from reviewed 

case studies indicated that GLCM was the most commonly used approach (73%). Comparing 

an algorithm to another allows assessment of effectiveness of that algorithm as well as 

establishment of its strengths and weaknesses (Ma et al., 2017). Analysis of studies that 

compared algorithms (Ansari and Buddhiraju, 2019b, Ansari et al., 2019a, Leonita et al., 2018, 

Prabhu and Alagu Raja, 2018, Wurm et al., 2017a) revealed that most comparisons involved 

GLCM. While some of those studies compared two algorithms (Ella et al., 2008, Shabat and 

Tapamo, 2017, Wurm et al., 2017a), others investigated more than two algorithms (Ansari and 

Buddhiraju, 2019b, Ansari and Buddhiraju, 2019c). The results of comparing GLCM and LBP 

(Ella et al., 2008, Mboga et al., 2017) indicated that LBP outperformed GLCM. Findings from 

Ella et al. (2008)’s research revealed that LBP outperformed GLCM with accuracy levels of 

98% and 94%, respectively. In a similar manner, Mboga et al. (2017) also observed superiority 

of LBP against GLCM with accuracy levels of  90.48% and 86.65%, respectively. Almost 

similarly, Shabat and Tapamo (2017) compared local directional patterns (LDP) and GLCM. 

Results indicated that LDP outperformed GLCM but the results were not conclusive with 

regard to the final accuracy level. GLCM, lacunarity, histogram gradients, linear feature 

distribution, line support regions, vegetation indices, and textons were also compared in 

Graesser et al. (2012)’s study. This study utilised a large dataset to develop consistent 

predictors for formal built up areas and IS areas. The robustness of textons was revealed in all 

included cities with the features achieving maximum accuracy of 92%. Other works (Ansari 

and Buddhiraju, 2019c), compared GLCM with 3 transform based approaches, which are, 

MRA based contourlets and wavelets, as well as CRISP contourlets. The results indicated that 

contourlets performed better than GLCM and wavelets with overall classification accuracy 

ranging from 93-96%. The wavelets were criticized for their inability to show directional 

information besides horizontal, vertical and diagonal directions. Similar works (Ansari and 

Buddhiraju, 2019b) compared GLCM with contourlets, curvelets and wavelet transforms. 

Results of their study indicated that curvelet based statistical feature descriptors yielded the 
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best discriminative power than all the other approaches. Ansari et al. (2019a) attributed the 

performance of curvelets and contourlets to their ability to extract textural information at 

multiple scales and in varied directions.  

 

The GLCM’s compromised performance in most of the comparison studies is largely due to its 

incapability to extract and characterise ISs at different scales (deSiqueira et al., 2013, Prabhu 

and Alagu Raja, 2018, Ramola et al., 2020). Ansari and Buddhiraju (2019c) iterated that those 

methods which do not employ multi resolution strategy in texture analysis cannot exploit the 

scale dependency nature of texture. The issue of scale was, thus, a concerning factor in the 

studies.  

3.2.2. Multi-scale analysis 

To deal with the multi-scale complexity of IS landscapes (Wurm et al., 2017a), several 

researchers have employed multi-scale based approaches in discriminating ISs. Some 

researchers extended GLCM to multiple scales through varying window sizes (Graesser et al., 

2012, Luus et al., 2014, Owen and Wong, 2013a, Wurm et al., 2017a). Even though Graesser 

et al. (2012) used a discrete window size, the authors acknowledged that accuracies would 

improve if statistics were computed with a moving window, instead. Wurm et al. (2017a) 

observed that the effect of window size on accuracy is dependent on the size of target objects. 

In this regard, several studies (Kuffer et al., 2016b, Weigand, 2017, Wurm et al., 2017a) agreed 

that for large IS areas, large window sizes improve IS identification accuracy. On the other 

hand, small window sizes are needed for small IS patches (Lai and Yang, 2020, Owen and 

Wong, 2013a). Whilst Owen and Wong (2013a) criticised the larger window sizes because of 

their resultant smoothing effect. Wurm et al. (2017b) regarded the smoothing effect of large 

window size as beneficial to IS mapping. However, large window sizes are associated with 

long processing times and the process of varying them is computationally expensive (Graesser 

et al., 2012).  

 

In order to incorporate variability of scale in an image, some studies that exploited GLCM 

algorithm also integrated the approach with different conventional mathematical morphologies 

(Leonita et al., 2018, Prabhu et al., 2021a, Wurm et al., 2017a). According to Ramola et al. 

(2020), integrating GLCM and MM have the capability to enhance classification accuracy for 

texture images. GLCM and MM complement each other in that, while morphological features  
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possess the capability to capture geometric information and dissimilar structures in an image, 

determining their shape and size (Prabhu and Alagu Raja, 2018), GLCM texture features 

determine the built up densities (Leonita et al., 2018). Wurm et al. (2017b) applied MM on 

SAR to distinguish formal and ISs in Italy and Sudan. Wurm et al. (2017a) utilised GLCM 

together with morphological profiles (MP), obtained from polarimetric SAR, to characterise 

ISs in Mumbai city. They revealed the capability of GLCM to detect large IS patches with 

higher accuracies than smaller patches. The authors observed that GLCM performed better than 

MP. The authors cited that the performance of MP was compromised by the strip map data 

used (6 m) which could not allow meaningful extraction of IS dwellings. Moreover, the sensor 

is hugely affected by the orientation of buildings thus affecting image classification (Wurm et 

al., 2017a). In another study, Wurm et al. (2017b) explored the use of GLCM and differential 

morphological profiles using Sentinel-2A data for IS mapping in Mumbai city. Their results 

revealed that neither GLCM nor DMP alone could accurately depict the presence of ISs. 

However, the integration of the two approaches produced increased accuracy. Similarly, when 

Tamura features and wavelets could not distinguish ISs of different shapes and sizes, Prabhu 

and Alagu Raja (2018) successfully integrated them with MM to incorporate shape and size. 

These studies that combined approaches supported Graesser et al. (2012)’s findings who argued 

that integration of texture metrics may be necessary for discrimination of complex urban 

settlement patterns. 

 

Lacunarity is also a multiscale approach whose discriminating power was investigated in 

several studies (Amorim et al., 2014, Kit and Lüdeke, 2013, Kit et al., 2012a, Owen and Wong, 

2013a). However, conflicting results were reported in the reviewed literature with regard to its 

strength in capturing the presence of ISs. While some studies (Graesser et al., 2012, Kit et al., 

2012a) reported higher lacunarity values to be indicators of IS presence, others reported lower 

lacunarity values as indicators (Amorim et al., 2014, Barros Filho and Sobreira, 2008). Such 

differences could emanate from variations in defining the term IS. Describing ISs as 

comprising “less gathered buildings” (Prabhu et al., 2021a) would imply higher gappiness and 

hence higher lacunarity values. On the other hand describing them as “densely built up areas” 

(Persello and Stein, 2017) would lead to adoption of lower permeability and lower gappiness 

(Amorim et al., 2014, Barros Filho and Sobreira, 2008), implying lower lacunarity. While 

lacunarity was effective in discriminating ISs (Kit et al., 2012a), its effectiveness was 

questioned in Kit and Lüdeke (2013) and Owen and Wong (2013a)’s studies. Kit and Lüdeke 

(2013) observed that lacunarity could not identify small IS pockets. The authors argued that 
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the approach requires a large window so complex residential boundaries may lead to potential 

misclassification or misidentification of ISs where small areas are concerned. Owen and Wong 

(2013a) explained differences in results as they indicated that lacunarity values calculated for 

ISs in one area may not be applicable to another location. One can conclude that, because of 

morphological variations between study areas, it may be difficult to derive generalised research 

results.  

3.2.3. Application of machine learning in texture based informal settlement detection. 

In the current review, studies exploited machine learning algorithms either to learn features 

directly from the data (Mboga et al., 2017) or as classification algorithms. Those that employed 

machine learning for classification purposes used conventional algorithms such as RF, SVM, 

LR, DTs, and others (Duque et al., 2017, Fallatah et al., 2020, Kuffer et al., 2017, Leonita et 

al., 2018, Wurm et al., 2017b). Results have shown superiority of SVM in terms of mean 

accuracy of ~ 90% whilst RF obtained mean accuracy of ~ 89%. However, there are 

inconsistent results as to which one performs better. Some studies suggested that RF produces 

the best IS accuracy (Arribas-Bel et al., 2017, Bürgmann, 2015, Fallatah et al., 2020, Wurm et 

al., 2017b). Random Forest algorithm is advantageous in that it can handle wide spectrum of 

training areas (Wurm et al., 2017a). Wurm et al. (2017a), however, observed that training 

random forests using large quantities of training pixels is extremely time consuming. On the 

other hand, studies that utilised SVM observed that it performed better in differentiating IS 

areas from non-IS areas (Duque et al., 2017, Leonita et al., 2018, Prabhu and Parvathavarthini, 

2021). Duque et al. (2017) put forward that SVM algorithm works well even with few training 

samples. Ma et al. (2017) submitted that performances of various classifiers may be 

inconsistent due to influences of other uncertain factors, notably, scale and texture feature 

selection  (Ma et al., 2015). The DTs and RF classifiers perform better at processing redundant 

features, while other classifiers benefit more from feature selection (Ma et al., 2017). Another 

advantage of DT is that it can perform feature selection on its own, a characteristic that most 

classifiers do not have (Graesser et al., 2012).  

 

Recently, deep learning has gained attention in IS analysis (Mboga et al., 2017, Persello and 

Stein, 2017, Prabhu et al., 2021b). Mboga et al. (2017) utilised CNN to detect ISs in Dar es 

Salaam, Tanzania. While Persello and Stein (2017) successfully distinguished ISs using deep 

fully convolutional networks (FCNs), Prabhu et al. (2021b) explored the potential of kernel 
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based deep convolutional neural network (DK-DCNN). The main advantage of machine 

learning is the capacity to incorporate any number of variables without being concerned about 

multicollinearity as well as to capture non-linear relationships (Wurm et al., 2017a). 

3.2.4. Spatial analysis of texture analysis algorithms 

There are also gaps in the geographies for which texture analysis techniques are exploited in 

different countries. The spread of the most used algorithms in literature was analysed 

considering the most commonly used approaches in the highly studied countries of India and 

South Africa. Results of analysis revealed that GLCM approach is the most commonly used 

approach in both India and South Africa (Table 2.4 and 2.5). More specifically, the approach 

is most concentrated in Mumbai where out of 11 texture analysis studies exploited in Mumbai, 

10 utilised GLCM (Table 2.4). Studies have shown that locally specific ISs in Mumbai can be 

easily mapped using GLCM texture measures, particularly, GLCM variance (Kuffer et al., 

2016b, Kuffer et al., 2017, Wurm et al., 2017a). The 7 studies carried out in South Africa using 

GLCM are found in 2 cities, Johannesburg and Tshwane. All the studies performed in 

Johannesburg were biased towards Soweto. Gabor filters were never explored in India. 

Similarly, there were no studies that exploited mathematical morphology and contourlets in 

South Africa. From a spatial point of view, Kuffer et al. (2016a) submitted that, such 

discriminative use of analytical approaches, and in the same areas raises the concern of 

probable biases in the analysis as well as in the comprehension of ISs (as derived from these 

studies). However, underutilised approaches and understudied areas present potential 

opportunities in terms of research avenues for the exploration of those texture analysis 

approaches in other areas.  

3.2.5. Effect of feature selection on classification 

The reviewed studies indicated that there is uncertainty as to whether feature selection could 

improve the process of texture based IS identification or not. Graesser et al. (2012) 

demonstrated that, using a full set of image features may cause the inclusion of redundant or 

highly correlated features which, apart from being computationally expensive, may degrade 

performance of classifiers. In the current review, there are studies that performed well using 

single texture feature, for example, variance (Kuffer et al., 2016b). Lai and Yang (2020) put 

forward that variance resolves the confusion between formal built up land and informal 

structures and allows extraction of ISs in complex urban morphologies. Duque et al. (2017), 
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however, put forward that, although feature selection may reduce classification complexity and 

improve classification accuracies, not all studies guarantee that feature selection improves 

classification accuracy. This observation was consistent with Wurm et al. (2017b) who 

combined morphological profiles and GLCM when each of the texture features had failed to 

characterise structure of IS settlements alone. In agreement Graesser et al. (2012) argued that 

one feature may not be sufficient to characterise ISs. Ma et al. (2015) put forward that feature 

selection may be associated with several uncertainties introduced by performance of classifiers 

that influence classification performance. Duque et al. (2017) ‘s study demonstrated that 

selected texture features performed better with the use of SVM as a classifier than RF. The 

author argued that low classification scores provided by RF could be due to existence of 

peculiarities within cities that may complicate the identification of ISs using the model. The 

results presented by Duque et al. (2017) showed that SVM classification accuracy improved 

with decreased number of dimensions. Graesser et al. (2012) assessed and tested the capability 

of 230 variables, using DTs and selected 10 variables which resulted in improved overall 

accuracies, 91%, 89%, 92% and 85% for the cities of Caracus, Venezuela, Kabul and 

Kandahar, respectively. According to the authors, DTs are advantageous in that it is a 

classification scheme that performs texture feature selection on its own, a property that other 

classifiers do not have. However, although feature selection is an important step to ensure 

working with the best and achieving high accuracies, it is computationally costly. 

3.2.6. Comparisons between countries 

To demonstrate methodological reproducibility, some researchers performed cross city 

comparisons (Duque et al., 2017, Graesser et al., 2012, Kuffer et al., 2016b, Owen and Wong, 

2013a, Schmitt et al., 2018). Some studies were carried out in cities within the same country 

(Owen and Wong, 2013a), cities of different countries within the same continent (Duque et al., 

2017), cities of different countries across continents (Graesser et al., 2012) and some across 

continents, but including a city in sub-Saharan Africa (Ansari and Buddhiraju, 2019c, Gevaert 

et al., 2017 , Kuffer et al., 2016b, Schmitt et al., 2018, Stasolla and Gamba, 2008). Duque et 

al. (2017) tested the ability of LR, SVM and RF to depict presence of ISs in Buenos Aires 

(Argentina), Medellin (Colombia) and Recife (Brazil). SVM algorithm accurately identified 

ISs in all the three countries. Almost similarly, Schmitt et al. (2018) used schmittlets to identify 

ISs in Cape town, Manilla and Mumbai with accuracy levels reaching 87%, 60% and 54%, 

respectively. Both studies focused on similarity of ISs. Schmitt et al. (2018) put forward that, 
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although ISs can be mapped with similarity in all the three cities, the way in which each IS’s 

morphology varies in relation to the surrounding urban morphology differs. Both studies 

acknowledged the importance of considering local patterns or specific characteristics of each 

city instead of using a unified model. Even in the same continent, Duque et al. (2017) 

established that it is impossible to fit one method for IS identification. This is because 

morphological variations are better captured using locally specific feature sets (Wang et al., 

2019c). The method may seem applicable basing on overall accuracy values but the respective 

class accuracy is highly dependent on the specific city structure (Schmitt et al., 2018).  

  

Although statistics are robust in capturing IS diversity, there were inconsistencies in results 

where methodologies were tested in two different localities. Owen and Wong (2013b)’s study 

revealed that indicator significance may differ depending on weather, climatic conditions as 

well as altitude. If mapping IS areas in cities within the same country (Coban and Gautemala) 

would be impacted by environmental conditions (Owen and Wong, 2013b), one would question 

how feature sets could be transferred across continents. Kuffer et al. (2016b)’s study depicted 

that low GLCM variance values represented ISs whilst high values represented formal 

settlements. The results indicated that, whilst methodology could be successfully applied to 

Kigali, transferring to Ahmedabad required variation of window sizes, making it difficult to 

generalise results. Structural differences, attributed to high socio-economic gradient between 

the two countries, could help explain the inconsistencies in the results (Owen and Wong, 

2013b). Transferability issues could also arise from capturing settlements at different stages of 

development. Detecting ISs that are at infancy stage and those at maturity stage  using the same 

model may be challenging and misleading (Owen and Wong, 2013b), since newly established 

ones may not be evident in the image, whilst the mature ones would be captured well.  

 

 Schmitt et al. (2018) also suggested that the impact of sensors in the detection of ISs should 

be taken into consideration especially in areas of differing altitudes. From the reviewed studies 

on comparisons, it could be observed that the studies only focused on transferability and 

robustness of approaches and ignored the impact of sensors, which in most comparison cases 

were of different resolutions. Schmitt et al. (2018), in agreement with Wurm et al. (2017a) also 

put forward that although texture and structural information could distinguish between 

informality and formal built up areas, the impact of orientation on the class accuracy is high. 

The authors pointed out that, sensors, for example Space –borne SAR sensors that only provide 

a narrow range of image geometries would not be able to picture multiple geometries, thus 
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compromising accuracy. This means that sensor requirements should suit the morphological 

variations in order to enhance replicability. Schmitt et al. (2018) recommended more research 

into appropriate sensors that would suit specific IS typologies.  

 

Due to complexity of IS morphology, RS still leads to incomparable datasets across studies 

(Taubenböck et al., 2018). Kuffer et al. (2017) suggested that an inventory of morphological 

types be carried out for each locality as conceptual foundation. An interplay of earth 

observation data with field surveys is imperative in the process, since there is proven 

correlation of image features with socio-economic parameters of an area (Duque et al., 2015).  

Schmitt et al. (2018) also pointed out that IS locations may be detected, but whether it is 

inhabited or not cannot be taken automatically. The authors recommended human interaction 

to be integrated with texture based remote sensing methods. 

3.3. Integrating texture analysis and socio-economic data 

Fusion of textural information and other ancillary datasets are important for improvement of 

IS identification and accuracy. Some researchers have attempted to integrate spatial features 

with other complimentary socio- economic information such as employment status, 

educational status, population figures and population density, to avoid representation of ISs as 

one-dimensional phenomena, that is, physical characteristics (Baud et al., 2010). Weeks et al. 

(2007) integrated satellite information, from Quickbird imagery, with cultural and 

socioeconomic characteristics, obtained from the census, to locate ISs in Ghana. In this study 

texture was used as an additional metric. Sandborn and Engstrom (2016) extracted five spatial 

features, from imagery, which include line support regions, Pantex, histograms of oriented 

gradients, local binary patterns, and fourier transform and then correlated them to census 

variables. The results obtained from this analysis suggested that socio-economic characteristics 

can be mapped from spatial features derived from satellite imagery and can help detect 

deprived areas. Such indirect extraction of socio-economic data from remotely sensed imagery 

to characterise ISs is important, especially in countries in the global south where census data 

is either non-existent, outdated or of low temporal resolution (Mahabir et al., 2018). According 

to Baud et al. (2010), the success of such integrative studies shows the importance of combining 

socio economic information and RS. However, Mahabir et al. (2016) postulated that one major 

limitation of integrating RS derived socio-economic information with existing socio-economic 

data from traditional sources, for example, census, are differences in temporal and spatial 
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resolutions of these data. However, in cases where socioeconomic data from surveys exists, 

their accessibility for research purposes may be hampered due to protection of privacy and 

confidentiality. This limits the use of census surveys, alone, in acquiring information for the 

mapping of deprived areas and hence promotes the fusion with remote sensing datasets. 

3.4. Limitations of texture analysis in informal settlement identification 

Whilst texture analysis has capability to improve informal settlement identification, it does not 

offer total solution to heterogeneity problem in urban areas (Zhang et al., 2003). A major 

limitation in the use of image texture for classification emanates from failure to identify 

suitable textures and the computation costs associated with texture feature selection (Mhangara 

and Odindi, 2013). Moreso, Mahabir et al. (2018) revealed that there is little guidance in 

literature on the selection of the most effective texture metrics to use in IS identification, often 

leading to the process of trial and error. A scrutiny of literature revealed that texture varies with 

the characteristics of the landscape under investigation and the image data used. Because of 

morphological variations, the texture measures extracted vary within the same slum or across 

different locations (Schmitt et al., 2018). The unique properties of individual slums and the 

imagery used makes it difficult to transfer textures at specific windows sizes and at a particular 

shape found significant for one slum to another slum (Wurm et al., 2017a). While varying 

window sizes and averaging the textures over all directions are acknowledged in texture 

analysis (Engstrom et al., 2017), a thorough understanding of their relevance is limited since 

they are usually performed through simple trial-and-error (Wang et al., 2019a). Moreso, 

averaging directions is computationally expensive and often lead to loss of textural information 

(Singh and Srivastava, 2017).  

3.5. Conclusion 

This study aimed at understanding the contribution of texture analysis in IS modelling. The 

current research has shown that there is huge progress in the use of texture analysis for IS 

detection. However, analysis of results pointed to significant gaps in knowledge, especially in 

the spatial coverage of studies and methods. Results revealed that the geographical coverage 

of texture analysis approaches is scarce across the world. Many studies focus on Indian cities. 

Many cities, especially in sub-Saharan Africa, are being understudied. Even within well studied 

countries, there is concentration of studies in particular cities, and limited work in other cities. 

This suggests the need for a wider geographic coverage in order to better understand and 
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characterize ISs across the globe. GLCM proved to be the most popularly used approach. 

Interestingly, analyses showed that there are gaps in the geographical coverage of approaches 

where some approaches are concentrated in certain geographical areas and are sparse in others. 

With regard to datasets, Quickbird was the most employed sensor. Freely available satellites 

Sentinel-2A have not been largely exploited. Results have also shown that not all studies could 

safely regard feature selection as contributing to enhanced classification accuracy because of 

uncertainties introduced in the process of texture-based classification. Hence, feature selection 

requires substantial further research.  

 

The use of machine learning classifiers, particularly, RF and SVM has proved to have a great 

potential of improving texture based IS identification. Although RF and SVM classifiers have 

also attracted great attention owing to their excellent classification performance, deep learning 

is showing immense potential to enhance classification accuracy. Studies revealed that, not all 

unified models could cater for morphologic characteristics of IS areas in different geographic 

settings. Where applicability of algorithms in different localities is investigated region specific 

feature sets should be developed. Studies recommended integration of RS data and socio-

economic parameters derived from field surveys in order to have a comprehensive 

understanding of region-specific morphologies. Future review studies should explore the 

integration of texture analysis and field surveys in locally specific contexts in order to enhance 

understanding of the techniques in relation to particular IS typologies. 

3.6. Summary 

This chapter provided an investigation of application of texture analysis algorithms for 

informal settlement identification. Investigations revealed that GLCM was the most popularly 

used texture feature extraction algorithm. Whilst all studies that were carried out in South 

Africa utilized GLCM, they were mainly concentrated in Johannesburg. Only one of seven 

studies that utilized GLCM algorithm was done in Tshwane. This presented a research gap for 

a study in Durban which equally grapples with proliferation of these low-income housing 

settlements. The study also revealed that Quickbird was the most utilized sensor for informal 

settlement identification. Sentinel-2A, which is freely downloadable was scantly exploited. 

Sentinel-2A, having high spectral resolution, coupled with its characteristic 10 m bands 

presents potential to exploit pan sharpening technique for informal settlement mapping. Thus, 
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the next chapter will exploit possibility of pan sharpening Sentinel-2A for precise informal 

settlement mapping in Durban.  
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CHAPTER THREE: 

 

Performance evaluation of pan sharpening Sentinel 2A imagery for informal settlement 

identification by spectral-textural features 

This chapter is based on: 

 

Matarira, D., Mutanga, O., & Naidu, M. (2022). Performance evaluation of pansharpening 

Sentinel 2A imagery for informal settlement identification by spectral-textural features. 

Transactions of the Royal Society of South Africa, 1-14. doi:10.1080/0035919x.2022.2144538 

 

Abstract: 

The diversity of informal settlement morphologies across locales makes their mapping 

inherently challenging in heterogeneous urban landscapes. This study sought to evaluate the 

potential of pan sharpening techniques on Sentinel-2A data, and textural features in enhancing 

informal settlement identification accuracy, in a fragmented urban environment. Brovey 

transform, Intensity, Hue and Saturation transform, ESRI, Simple mean, and Gram-Schmidt 

techniques were employed to pan sharpen multispectral bands of Sentinel-2A, bands 5, 6, and 

7 in the first group, and bands 8A, 11 and 12 in another, using an average of bands 4 and 8 as 

the panchromatic band. The main objective was to investigate the efficacy of pan sharpening 

Sentinel-2A imagery and texture analysis in automated mapping of morphologically varied 

informal settlements. An evaluation of the quality of fused images was undertaken through 

computation of the correlation between the spectral values of the original multispectral and pan 

sharpened image. Grey-level-co-occurrence matrix texture features were extracted from the 

pan sharpened images, and subsequently incorporated in the classification process, using a 

support vector machine classifier. Our results confirm that Gram Schmidt fusion technique 

yielded the highest performance (F-score 95.2%; Overall accuracy 91.8%). The experimental 

results demonstrated the potential of pan sharpening Sentinel-2A, and the added value of image 

texture for a more nuanced characterization of informal settlements. 

 

Keywords: Pan sharpening, sentinel 2A, informal settlement mapping, remote sensing, image 

texture 
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3.1. Introduction 

Informal settlements have become a major constituent of urban development, worldwide. 

Having, approximately, 1 billion informal settlement dwellers globally (UN-Habitat, 2016), 

projections reveal that, as the population in urban areas of sub-Saharan Africa grows by 10 

million yearly, 7 million people are likely to occupy informal settlements (United-Nations, 

2015, Mahabir et al., 2018). Often described as a physical expression of poverty and 

inequalities (Mahabir et al., 2018, Müller et al., 2020), informal settlements are characterized 

by overcrowding, insecurity of tenure, low quality housing structures and lack of access to 

adequate basic amenities (Hofmann et al., 2015). Taking cognizance of informal settlements’ 

deprivations, the United Nations mandated governments to address the growing urban poverty 

through Goal 11 of 2030 Sustainable Development Goals (Fallatah et al., 2022, Mugiraneza et 

al., 2019) that prioritized the urban poor. However, in order to support improvements in 

informal settlements, up-to date information on their morphology, in terms of location, extent 

and dynamics is a prerequisite. Such information is often either unavailable, outdated or 

inconsistent (Wang et al., 2019b). Characteristic diversity of informal settlement morphologies 

renders their automatic detection inherently complex (Hofmann et al., 2015), making it difficult 

to map and model their extent and distribution (Mahabir et al., 2018, Patel and Baptist, 2012). 

Accurately capturing their variability provides baseline information for tackling issues to do 

with urban development, poverty reduction, environmental protection and urban risk 

management (Tellman et al., 2022). 

 

Remote sensing provides potential data for capturing of the diversity of informal settlement 

morphologies as well as their spatial dynamics (Kraff et al., 2020). Technological 

advancements, particularly in terms of enhanced spatial and spectral resolutions of sensors have 

allowed detailed characterization of these urban deprived areas (Fallatah et al., 2022, Prabhu 

and Parvathavarthini, 2021). Various high resolution earth observation (EO) data have been 

tested to map informal settlements, which include commercial satellites such as Quickbird 

imagery (Kohli et al., 2016a, Mboga et al., 2017, Persello and Stein, 2017), World view (Ansari 

and Buddhiraju, 2019b, Kuffer et al., 2016b), GeoEye (Fallatah et al., 2020, Fallatah et al., 

2019, Fallatah et al., 2022). However, selection of the proper remote sensing data for a 

particular application is controlled by factors such as the cost and resolutions (Mahmoud, 

2021). For instance, the unavailability and cost prohibitive nature of high resolution imagery 

makes extraction of urban deprived areas challenging (Taubenböck et al., 2018). Some studies 
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have thus exploited freely available Sentinel-2A data for the mapping of informal settlements 

(Gram-Hansen et al., 2019, Wurm et al., 2017b). However, the relatively coarse spatial 

resolution of Sentinel-2A multispectral (MS) bands may pose challenges for more precise 

localization of informal settlement morphological features, limiting mapping accuracy. 

Mechanical and technological restraints in the design of satellite sensors makes it impractical 

for a single sensor to provide images with high resolution in both spectral and spatial domains 

(Hashim et al., 2022). Remotely sensed data acquired by sensors such as Quickbird, Worldview 

and GeoEye have the panchromatic band (PAN) which has higher spatial resolution than that 

in the multispectral bands (MS) of the same sensor (Pereira et al., 2017, Zhang, 2004). On the 

other hand, sensors, for example Sentinel-2, and Rapid-Eye only capture images in a 

multispectral mode (Mahmoud, 2021). According to Kumar et al. (2014), the availability of 

high spectral and spatial resolution images is crucial when mapping areas with complex 

morphologic structures such as urban environment. The fusion (pan sharpening) of MS and 

PAN bands has become a promising tool to obtain images with high spatial and spectral 

resolution simultaneously (Hashim et al., 2022, Mallick et al., 2021, Park et al., 2017).  

 

Pan sharpening improves the MS bands by exploiting a high resolution PAN image to produce 

spatially enhanced MS image (Ge et al., 2020), which, potentially, improves classification 

accuracy (Gašparović and Jogun, 2017, Hashim et al., 2022, Zheng et al., 2017). The enhanced 

images provide an opportunity to capitalize on the advantages of each of the images, 

particularly for mapping complex environments (Kumar et al., 2014). Overviews and 

comparisons of various pan sharpening algorithms have been provided (Alparone et al., 2007, 

Kösesoy et al., 2012, Pushparaj and Hegde, 2016, Vivone et al., 2015). These pan sharpening 

approaches can be grouped into two classes which are, component substitution (CS) and multi-

resolution analysis (MRA) (Pandit and Bhiwani, 2015, Park et al., 2017, Selva et al., 2015). 

Whilst numerous researchers have indicated superiority of CS over MRA approaches in 

achieving high resolution image fusion (Mahmoud, 2021, Mallick et al., 2021, Mhangara et al., 

2020), Zheng et al. (2017) propounded that the MRA-based pan sharpening algorithms can 

potentially attain finer spectral and spatial quality than those based on CS. However, other 

investigators articulated that a fusion method can only be better for as long as it could preserve 

the spectral characteristics and the spatial information of the multispectral and the 

panchromatic data, respectively (Kaplan, 2018, Park et al., 2017, Zheng et al., 2017). Pan 

sharpening has been reported for numerous image types and sensors, including, for example, 

Landsat ETM+ (Lwin and Murayama, 2013), synthetic aperture radar (Quan et al., 2020), 
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China–Brazil Earth Resources Satellite (CBERS-4) (Pereira et al., 2017), and GeoEye-1 

imagery (Johnson et al., 2012). More specifically, pan sharpening Sentinel-2A imagery has 

received widespread attention owing to the availability of 10m bands which provide an 

opportunity to enhance the resolution of other 20m bands (Park et al., 2017, Phiri et al., 2020, 

Zhang, 2004). The approach has been exploited for various remote sensing applications ranging 

from water bodies mapping (Du et al., 2016, Che et al., 2015, Feng et al., 2012, Wu and Liu, 

2015), mineral mapping (Ge et al., 2020), retrieving leaf area index and chlorophyll content 

(Zhang et al., 2019b), and for land use/land cover (LULC) classification (Gašparović and 

Jogun, 2017, Zheng et al., 2017) leveraging the high resolution 10 m bands as the PAN bands. 

Interestingly, pan sharpening has also been reported for informal settlement mapping (Kohli et 

al., 2016a, Mugiraneza et al., 2019, Owen and Wong, 2013b). For instance, pan sharpened 

Quickbird image (Kohli et al., 2016a) and pan sharpened Worldview image (Kuffer et al., 

2016b) have been used to map informal settlements in Pune (India)  and Kigali, Mumbai and 

Ahmedabad, respectively. In another study Owen and Wong (2013b) pan sharpened Quickbird 

MS imagery using 0.6 m PAN band, employing the rational polynomial coefficients approach 

in Guatemala.  

 

Although pan sharpening has potential to enhance mapping applications through increased 

spatial resolution, several investigators have argued that it is associated with spectral and 

spatial distortions (Grochala and Kedzierski, 2017, Jawak and Luis, 2013, Pandit and Bhiwani, 

2015, Park et al., 2017), depending largely on the pan sharpening approach used. To 

compensate for the loss in spatial information, some researchers recommended the use of image 

texture and contextual information to exploit full benefits of pan sharpening, and ensure a more 

comprehensive evaluation (Zheng et al., 2017, Du et al., 2016, Palsson et al., 2012). Most 

importantly, in spatially heterogeneous urban landscapes, it is nontrivial to accurately capture 

spatial morphology of deprivation pockets using spectral information alone (Prabhu et al., 

2021b). In earlier research undertakings using Sentinel-2A, Wurm et al. (2017b) extracted 

textural features using only Sentinel-2A 10 m bands in order to capture morphological 

variations in Mumbai. Mumbai’s informal settlement landscape is characterized by varied 

typologies ranging from rehabilitated informal settlements in proximity to double storey 

buildings, age-old informal settlements, characterized by small-sized business enterprizes and 

regular housing units lining major roads, and very compactly packed areas with only small 

lanes inside the area (Kuffer et al., 2016b). Wurm et al. (2017b) results indicated that, whilst 

large informal settlement patches would be captured more accurately, smaller patches were 
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compromised. Although methods for mapping urban deprivation using EO data have advanced 

in recent times, the detection of discrete pockets of deprivation, the location of many smaller 

and lesser-known informal settlements remains compromised (Stark et al., 2020). Exploiting 

the high spatial and spectral resolution of Sentinel-2A data could help in extracting highly 

variable morphological informal settlement features in complex urban built up landscapes. To 

the best of found knowledge, there has been no systematic exploration of capabilities of pan 

sharpening Sentinel-2A for capturing the distribution of morphologic informal settlements. 

 

Owing to this background, the current study sought to investigate the potential to enhance 

capturing of spatial morphology of deprivation pockets in the diverse Durban landscape 

through pan sharpening freely available Sentinel-2A data. Further, the study exploits the value 

added in combining pan sharpening with texture analysis in mapping the diversity of informal 

settlement morphologies.  

The specific objectives of this work are to: 

(1) To merge the spatial details of Sentinel-2A 10 m bands into its 20 m bands and produce 

a composite image constituted by all ten multispectral bands at a 10 m spatial resolution 

(2) Compare the performance of various popular pan sharpening algorithms in producing an 

enhanced Sentinel-2A that captures fine grained heterogeneity existing in informal 

settlement landscape 

(3) Investigate the value of increased spectral information and texture metrics for more 

precise capturing of diversity of morphological informal settlements in Durban landscape. 

3.2. Methods and Materials 

3.2.1. Data and pre-processing 

The research work was based on Sentinel-2A multispectral imagery. This study used a 

radiometrically and geometrically corrected Sentinel-2 level 1C image product. The Level-1C 

processed data were georeferenced in the WGS 84 UTM 36S coordinate system and resampled 

using nearest neighbour algorithm. Sentinel-2A image covers 13 bands in the visible, near-

infrared and shortwave infrared (SWIR) wavelengths and consists of four bands at 10 m, six 

bands at 20 m and three bands at 60 m (Lanaras et al., 2018, Phiri et al., 2020). Sentinel-2A 

does not offer a panchromatic band with high resolution. The satellite was launched on June 

23, 2015 (Kaplan and Avdan, 2018). The image, depicting parts of the city of Durban, South 

Africa, was captured on 11 August 2020 and was downloaded from Sentinel Hub 
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Figure 3.1. Technical flow chart. 

3.3.1. Pan sharpening methods 

For pan sharpening, five algorithms that have been previously used in published articles were 

used in this study. These include Brovey transform (BT), Intensity, hue and saturation (IHS), 

ESRI, Gram Schmidt (GS), and Simple Mean (SM), all of which belong to component 

substitution category. These approaches have been described by Nikolakopoulos (2008), as 

producing good quality fused images.  

 

Brovey transform : Brovey is described as a simple method (Palsson et al., 2012, Pandit and 

Bhiwani, 2015) that uses a mathematical combination of the MS bands and PAN band for pan 

sharpening (Pandit and Bhiwani, 2015). Equation 1 defines the Brovey transform. The 

approach involves use of an algebraic expression to inject the overall brightness of the PAN 

image into each pixel of the MS image (Pushparaj and Hegde, 2016). According to Pandit and 

Bhiwani (2015), it sometimes causes distortion of radiometric characteristics of the bands. 
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𝐷𝑁𝑓𝑢𝑠𝑒𝑑𝑀𝑆𝑖=
𝐷𝑁𝑏𝑖

𝐷𝑁𝑏1 + 𝐷𝑁𝑏2 +…..+ 𝐷𝑁𝑏𝑛
𝐷𝑁𝑃𝐴𝑁 (Equation 1) 

Where DN is the digital number of that particular band and bi is the particular band of the MS 

image. 

 

Intensity, Hue and Saturation is regarded as the most widely used pan sharpening technique 

(Niazi et al., 2015, Sarp, 2014), with fast computing capabilities (Pandit and Bhiwani, 2015). 

This approach is based on colour space transformation (Grochala and Kedzierski, 2017). The 

technique entails that a composite of red-green-blue (RGB) bands is converted into an IHS 

colour space (Sanli et al., 2016, Zhang, 2004). The transformation separates the intensity from 

the two colour components (Du et al., 2007). During the fusion process, a high resolution PAN 

image replaces the intensity (I) band (Borana et al., 2019, Zhang, 2004). Simultaneously, an 

interpolation technique is used to resample the hue and saturation bands to the higher resolution 

pixel size (Nikolakopoulos, 2008). To obtain a pan sharpened image, a reverse IHS 

transformation is executed on the PAN band, as well as on the hue (H) and saturation (S) bands 

(Zhang, 2004). Although IHS may cause large spectral distortion (Choi, 2006), the approach is 

regarded as simple and efficient (Niazi et al., 2015). 

 

Gram Schmidt: GS uses averaging of the multi- spectral bands (Sarp, 2014). Like IHS 

method, this method requires forward and backward transformation of multispectral image, 

and pan sharpened multispectral bands are created from an inverse GS transform (Pandit and 

Bhiwani, 2015). Although it is regarded as the best pan-sharpening method in terms of 

minimizing spectral distortion, it is more complex and computationally expensive than most 

other methods (Maurer, 2013). Despite its shortfalls, Borana et al. ( 2019) described GS as a 

successfully accurate technique  

 

Simple Mean: According to https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-

analyst/mapalgebra/what-is-map-algebra.htm cited in (Alcaras et al., 2021), SM method uses 

a simple mean-averaging equation for each merger of PAN with one multispectral image. 

Consequently, the pan sharpened image is supplied by the formula:  

𝑀𝑆𝑘
𝑓
=

𝑃𝐴𝑁

µ𝑃𝐴𝑁
.𝑀𝑆𝑘     (Equation 2) 
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Where 𝑀𝑆𝑘 is the original MS image and 𝑀𝑆𝑘
𝑓
is the pan sharpened image. 

ESRI: The ESRI method initially exploits the MS bands to produce a weighted image. Further, 

the reflectance values of the weighted image from the original PAN image are subtracted in 

order to construct and adjustment image. Ultimately, the adjustment image is joined to each of 

the discrete MS bands, proportionately, to come up with individual pan sharpened MS bands. 

 

In this study, BT, IHS, ESRI and SM algorithms were implemented in ArcMap 10.4 whilst GS 

was implemented using ENVI 5.3 software. Because pan sharpening depends on the 

availability of fine spatial resolution PAN band (Du et al., 2016), the properties of Sentinel-2A 

dataset were considered in the selection of input bands for the establishment of that band, as 

well as selection of the input lower resolution bands. Zheng et al. (2017) stipulated that the 

center wavelength proximity determines criterion for selecting optimal PAN-like band. In this 

study, bands 1, 9 and 10, whose resolution is 60 m, were not considered for pan sharpening 

process. This is because those bands were not intended for land cover classification 

(Gašparović and Jogun, 2017). Since Sentinel-2A provides six bands at 20 m resolution, and 

most pan sharpening algorithms, for example, IHS and Brovey are restricted to a maximum of 

3 bands at a time (Borana et al., 2019, Gašparović and Jogun, 2017), two groups of bands were 

created from the 6, Sentinel-2A 20 m bands. The grouping was done following Gašparović and 

Jogun (2017) and Vaiopoulos and Karantzalos (2016). The aforementioned researchers put 

bands 5, 6, and 7 in the first group and bands 8A, 11 and 12 in the second group, considering 

their spectral ranges. The establishment of panchromatic band relied on the supposition that for 

each relevant portion of the spectrum, only one high resolution band (the panchromatic one) 

exists, overlapping, at least partly, with the lower resolution bands to be sharpened (Lanaras et 

al., 2018, Zheng et al., 2017). Following that notion, Gašparović and Jogun (2017) put forward 

that, although band 4 and 8 are the spectrally closest higher resolution bands for the first group, 

neither of the two bands completely overlaps the spectral range of the first group bands. For 

that reason, Selva et al. (2015) suggested a combination of the bands 4 and 8, through 

calculation of their mean (Equation 3) to be used as a panchromatic image for band 5, 6 and 7. 

Following the suggestion, this study utilized the average of bands 4 and 8, which was also 

utilised by Gašparović and Jogun (2017) and Vaiopoulos and Karantzalos (2016), as PAN band 

for the case of bands 5, 6 and 7. 

 

S=
𝐵4+𝐵8

2
 where S represents synthesized band.                                           (Equation 3) 



56 

 

 

For the case of bands 8A, 11 and 12, the band 8 was considered directly as the PAN band, as 

suggested by Gašparović and Jogun (2017) described band 8 as the only probable higher 

resolution band at 10 m spatial resolution spectrally closest to all the bands in the second group. 

Figure 3.2 illustrates the pan sharpening framework implemented in this study. 

 

Pan sharpening framework  

 

 

Figure 3.2. The structure of pan sharpening procedure 

3.3.2. Performance evaluation of the pan-sharpened images 

After the application of five pan sharpening algorithms, pan sharpened Sentinel-2A images 

were quantitatively evaluated. The process of evaluation of the performance of the algorithms 

required a reference image, which, according to Amro et al. (2011), is the MS image at the 

resolution of the PAN image. Gangkofner et al. (2007) pointed out that resampling the original 

MS image to the size of the PAN image may help create a reference image. Following studies 

by Gašparović and Jogun (2017), as well as Park et al. (2017), this study utilised resampling in 

order to obtain the reference image. The 20 m bands were resampled to 10 m bands using 

nearest neighbour algorithm, and a composite image was established. According to  Liu et al. 



57 

 

(2020), the existing pan sharpening methods may produce spectral distortions, making quality 

assessments imperative. This study used the correlation coefficient to compare the spectral 

performances of the pan sharpening algorithms. Correlation coefficient quantifies how much 

the algorithm preserves spectral information (Palsson et al., 2012), or how close the enhanced 

image and the original image/reference image are, in terms of spectral quality (Nikolakopoulos, 

2008). Each band of the original MS image was correlated with the respective pan sharpened 

bands in excel.  

 

3.3.3. Separability analysis 

A class pair separability analysis was conducted on pan sharpened images and resampled image 

for each algorithm. The analysis was done using ENVI software version 5.3. Separability 

analysis was done to determine which algorithm best discriminates informal settlements. The 

performance of each algorithm was examined and compared with other algorithms. 

3.3.4. Texture feature extraction and analysis 

According to Kavitha and Suruliandi (2018), selection of image texture features that can 

distinguish classes well is an important aspect in texture analysis. In the current study, 8 texture 

metrics were statistically extracted from sentinel-2A imagery using the GLCM texture analysis 

method. These included mean, variance, homogeneity, contrast, dissimilarity, entropy, angular 

second moment, and correlation (Table 3.2). The selection of the textural features was elicited 

by their potency in studies that utilized high resolution data to detect informal settlements using 

high resolution data (Kabir et al., 2010). In this study, the red (band 4), green (band 3), and 

blue (band 2) bands were used as input bands in the computation of GLCM textures. GLCM 

texture measures were measured based on the average of all directions (0, 45, 90, and 135), the 

same co-occurrence shift (1,1), quantization level of 64, and 7x7 window size. According to 

Giannini and Merola (2012), a quantization level of 64 preserves information and has an 

acceptable computing time. In an attempt to determine the optimum window size for informal 

settlement extraction, the current study applied the methodology implemented by (Kabir et al., 

2010). The method involves calculation of coefficient of variation. Based on the visual 

inspection of texture images, mean texture feature seemed to provide the most useful 

information on informal settlements. Therefore, the mean texture feature was used for the 

determination of optimum window size. The process involved computation of class statistics 

for mean texture feature. The class statistics included minimum, maximum, mean and standard 
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deviation. These statistics were calculated for the red, blue and green bands and for the window 

sizes 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15. Coefficients of variation were calculated in 

Excel, using the formula CV=
𝜕

µ
, where   

CV= coefficient of variation 

∂ =   standard deviation 

µ=   mean  

A graph showing coefficient of variation against window size was presented for each band. 

Table 3.2. Image texture measures derived from Sentinel-2A imagery for informal settlement 

extraction 

Second order statistic Statistic description of behaviour Statistic formula 

Angular second moment High when GLCM is locally 

homogeneous 

∑ ∑ {𝑝(𝑖, 𝑗)}2

𝑗𝑖
 

Contrast A measure of the amount of local 

variation in pixel values among 

neighbouring pixels. It is opposite of 

homogeneity 

∑ 𝑛2

𝑛=1

𝑛=0

{∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

} 

Correlation  Linear dependency of pixel values on 

those of neighbouring pixels 

∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − µ𝑥µ𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

Dissimilarity Similar to contrast and inversely 

related to homogeneity ∑ 𝑛 {∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

}

𝑁=1

𝑛=0

 

Entropy High when the pixel values of GLCM 

have varying values. Opposite of 

angular second moment. 

∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔(𝑝(𝑖, 𝑗))

𝑗𝑖

 

Homogeneity A measure of homogeneous pixel 

values across an image  
∑ ∑

1

1 + (𝑖 − 𝑗)2

𝑗𝑖

𝑝(𝑖, 𝑗)  

Mean Grey level average in the GLCM 

window 

µ𝑖=∑ 𝑖(𝑝𝑖,𝑗)𝑁−1
𝑖,𝑗=0  

µ𝑗=∑ 𝑗(𝑝𝑖,𝑗)𝑁−1
𝑖,𝑗=0  

 

Variance Grey level variance in the GLCM 

window 
𝜎𝑖

2 = ∑ 𝑝𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − µ)2 

𝜎𝑗
2 = ∑ 𝑝𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − µ𝑗)
2
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3.3.6. Accuracy assessment 

In the current study, evaluation of all classification was done using the confusion matrix. The 

initial step in accuracy assessment involved determination of reference polygons from google 

earth Pro. Ground truth data for the six classes (formal settlements, informal settlements, water, 

vegetation, road, bare land) was obtained. All classification accuracies were calculated using 

ENVI version 5.3 and were presented using the overall accuracy (OA), producer accuracy 

(PA), user accuracy (UA), and F-score.  The F-score was used in the comparison analysis since 

it is class specific. According to Zurqani et al. (2019), the F-score reflects the goodness of the 

classifier in the context of both producer’s and user’s accuracies by weighting their mean.  

F-score = 2*
(𝑃𝐴∗𝑈𝐴)

(𝑃𝐴+𝑈𝐴)
                                                                        (Equation 4) 

3.4. Experimental Results 

3.4.1. Establishing optimum window size 

The window size was computed from mean texture images. After calculating coefficients of 

variation for each mean texture image using the 3x3, 5x5, 9x9, 11x11, 13x13, 15x15 window 

sizes (Matarira et al., 2022a), the window size of 7x7 was considered as the optimum window 

size. Following Kabir et al. (2010), the coefficients of variation began to stabilize at the 7x7 

pixel window size for the informal settlement class. 

 

Figure 3.3. Coefficient of variation curve using the mean feature for informal settlement 

classes 
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extraction. Transformed Divergence Separability Index (TDSI) values were obtained from 

class separability test conducted using ENVI software. Figure 3.4 presents TDSI values for 

class pairs involving informal settlements, calculated for each pan sharpening method. The 

TDSI values ranged from 0.5 to 2. Analysis of class pairs (Figure 3.4) revealed that pan 

sharpening produced significant improvement of informal settlement separability. For all the 

algorithms, most classes displayed separability ranging from 1 to 2, with the exception of IS 

vs formal settlement, which ranged from 0.55 to 1.5. For all images, informal vs vegetation, as 

well as informal vs water seemed to be the most separable as shown by their highest TDSI 

values, approximately equal to 2 for all pan sharpening algorithms. According to Mushore et 

al. (2022), the TDSI varies from 0 to 2 with values near 0 implying that the classes cannot be 

easily distinguished, while values close to 2 indicating that two LULC classes are easily 

distinguishable. The least separable class was IS and formal settlement (TDSI< 1.5). Figure 

3.5 presents average separability indices for the pan sharpening algorithms. From the results 

presented, pan sharpened data had higher separability values than resampled/reference data 

(Figure 3.5). The average TDSI for the resampled image was 1.63, the lowest value, compared 

to pan sharpened images. From the spearman’s rank correlation test, the differences between 

TDSI for resampled image and that for BR, ESR, IHS and simple mean were statistically 

significant (p<0.05). However, for GS the difference between the average separability index 

and that of the resampled image was not statistically significant (p> 0.05).  

 

Figure 3.4. TDSI values for class pairs involving informal settlements 
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(4) Pan sharpened MS image + rgbnir + mean: The inclusion of image texture to composites 

of pan sharpened images and rgbnir caused significant increases (p<0.05) in classification 

accuracy for all algorithms, compared to results of pan sharpening alone (Table 3.6). Gram 

Schmidt had the highest accuracy of 95.2%. The average accuracy was 93.7% for this 

experiment. From the results, it can be inferred that a combination of pan sharpened image, 

additional 4 high resolution bands and image texture produced pronounced results for all the 

methods.  

 

Considering all scenarios, GS produced the highest F-score when mean texture image of a 

combination of pan sharpened image and the four high resolution bands were classified. An IS 

map was therefore produced using results for scenario four produced by GS method. Figure 

3.8 shows the informal settlement map of part of Durban Metro. 

 

Figure 3.8. Land use/Land cover map showing informal settlements for part of Durban Metro 
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3.5. Discussion 

The current study sought to investigate the potential of pan sharpening Sentinel-2A for 

capturing diverse morphological informal settlements in the complex urban built up landscape 

of Durban. Sentinel-2A 20 m bands were pan sharpened using the 10 m bands. Brovey, Gram 

Schmidt, ESRI, Intensity-Hue and Saturation as well as Simple Mean algorithms were the pan 

sharpening approaches used. A correlation between spectral values of resampled MS images 

and pan sharpened images was done to examine the quality of pan sharpened images. 

 

The results of the study demonstrated that pan sharpening Sentinel-2A has potential to increase 

mapping precision of informal settlements. Because of complexity of urban environments, 

informal settlements are usually poorly characterized and comprehended. Although Brovey 

performed poorly in spectral preservation (Table 3.4), results of spectral classification of pan 

sharpened images indicated its superiority in capturing the diversity of informal settlements, as 

indicated by the highest mapping accuracy compared to other algorithms. This result is 

consistent with more similar mapping applications involving raw pan sharpened images 

(Mallick et al., 2021, Wang et al., 2018) that yielded the most accurate classification results 

using Brovey algorithm. However, comparing classification accuracy levels for all pan 

sharpened images produced by the various algorithms, subtle differences were recorded as 

compared with the yardstick image downscaled by nearest neighbour resampling. Results of 

pan sharpening indicated an average accuracy of 62.3%, against 61.2% for the reference image 

and an average difference of 1.14%. In agreement, results from Vaiopoulos and Karantzalos 

(2016)’s review of 21 pan sharpening algorithms on the Sentinel 2, 20 m bands also indicated 

that none of the pan sharpening methods significantly outperformed standard bicubic 

interpolation on the original low resolution bands. Also, the results were consistent with Zheng 

et al. (2017)’s study that showed classification accuracies that were almost the same as that of 

the reference image. Such results agree with the assertion that during pan sharpening spatial 

resolution is enhanced at the expense of some spectral detail (Kaplan, 2018, Park et al., 2017). 

This finding is, however, inconsistent with Gilbertson et al. (2017) who, from a pan sharpened 

Landsat 8 data, demonstrated improved classification accuracy by ~15% using Pixel Based 

Image Analysis (PBIA) and Object Based Image Analysis (OBIA) approaches in Western 

Cape, South Africa. Gilbertson et al. (2017) ‘s increase in accuracy of about 5% could be due 

to less complexity of their study area, which was agricultural whereas the current study is in an 

urban setting characterized by a complex landscape. To explain these inconsistencies Zheng et 
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al. (2017) iterated that numerous factors could be at play in influencing the classification 

accuracy, and not only dependant on spectral fidelity of these pan sharpening algorithms. These 

factors include the classification system as well as the data inputs. 

 

Considering pixel-based classification of raw pan sharpened images, informal settlement 

identification accuracies were <70% for all algorithms (62.3%, on average) (Table 3.5). The 

accuracy levels could not satisfy the lowest precision requirements proposed by (Lu and Weng, 

2007). Apart from the impacts of loss of spectral information resulting from pan sharpening 

(Zheng et al., 2017), the results demonstrate that, utilizing only spectral information, pan 

sharpening failed to adequately provide much more detailed information for semantic 

abstraction of morphologic informal settlements in Durban. Inherent within class variability in 

heterogeneous urban environments could help explain low classification outputs, post 

pansharpening (Irons et al., 2007). More specifically, complexities in capturing boundaries and 

similarity in morphological features with formal built-up structures (Stark et al., 2020) 

potentially result in complex affiliation of formal settlements with informal settlement 

category. The classification results support the class separability tests conducted in the current 

study, where, in comparison with other class pairs, the lowest TDSI values were between 

informal and formal settlement class (Figure 3.4) for all the pan sharpening algorithms. These 

results confirm the non-triviality of separating informal from formal settlement class. Müller 

et al. (2020) explained that, due to potential similarity in morphological layouts, the spectrum 

of morphological settlement structures tends to be the same in heterogeneous urban built up 

landscapes, making distinction between formal and formal structures complex. However, 

combining pan sharpened images with the original 10m bands restored the loss in spectral 

quality through increased spectral resolution, and yielded much more enhanced accuracy 

(Table 3.6). Compared with pan sharpened images alone, the results of increasing spectral 

information led to an increase in average accuracy from 62.3% to 72.3%. This result agrees 

with Palsson et al. (2012)’s result where accuracy improved significantly when spectral 

information was added through combining the original high resolution (PAN) bands with the 

fused image.  

In order to capitalize on the increased spatial details from image sharpening, and to fully exploit 

the efficacy of image sharpening for informal settlement identification using Sentinel-2A 

(Zheng et al., 2017), GLCM texture was extracted from pan sharpened images. The results 

revealed that, all algorithms showed remarkable improvements in accuracy, especially, when 

the classification scenario involved texture images generated from composites of pan 
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sharpened images and the original 10 m bands. The F-scores for all the algorithms ranged from 

93% - 95.2% for the classification scenario Pan + rgbnir + mean. These results confirm Mallick 

et al. (2021) ‘s assertion, that in order to generate reliable accuracy maps from pan sharpening 

there should be incorporation of the spatial domain in the form of image texture. In addition, 

the results concur Zheng et al. (2017) ’s assertion that, for LULC classification using Sentinel- 

2 data, from the viewpoint of feature sets , the more features are used as inputs, the higher the 

accuracy. The results also demonstrated the added advantage of increased spectral information. 

Overall, Gram Schmidt fusion technique, that also attained the highest average separability 

index, provided higher overall accuracies with a combination of enhanced spectral resolution 

and contextual information. Image texture extracted from a combination of pan sharpening and 

10 m bands, showed potential to extract unique informal settlement typologies in Durban. The 

result produced by the GS in this last experiment was, overall, the best performance of all 

classifications and was utilized to generate the informal settlement map for the study area.  

In a nutshell, results of the study demonstrated the advantages of the four 10 m bands and six 

20 m bands of sentinel-2A in providing the richest spatial and spectral information for more 

precise extraction of deprived urban areas. However, the applied methodology could be tested 

with locally specific feature sets to find the most appropriate fusion technique for detection of 

morphologic informal settlements in Durban, and to better understand the role morphological 

informal settlement landscapes play in determining the suitability of pan sharpening methods. 

3.6. Conclusion 

This paper assessed the contribution of pan sharpening Sentinel-2A to informal settlement 

detection. Spatial features in the form of image texture were added to compensate for the 

shortfalls of image sharpening in terms of spatial information loss. Results indicated that the 

pan sharpened Sentinel-2A imagery has the potential for enhanced capturing of informal 

settlement diversity. The following conclusions were drawn: 

• Considering the four classification scenarios, the results demonstrated that different 

image sharpening algorithms had distinct effects on classification, since no specific 

method constantly outperformed the other. 

• Although pan sharpening led to increased separability of informal settlements from the 

other classes, solely based on the pan sharpened spectral bands, image sharpening has 

been observed to be of limited benefit in terms of informal settlement identification. 
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• Robust discrimination of informal settlements can be achieved by a combination of 

texture analysis and increased spectral resolution generated through combination of pan 

sharpened bands and the original four, 10 m resolution bands. 

 

Overall, the results point out that fused images can be better classified, but the quality depends 

on the method used for pan sharpening. Gram Schmidt sharpened image provided the best 

result with a combination of pan sharpened image, four original 10 m bands, and image texture. 

This study did not aim to determine the best method for image pan sharpening, but it focused 

on how full benefits of pan sharpening can be exploited through addition of spectral 

information and spatial features, in order to enhance informal settlement discriminability. 

3.7. Summary 

This chapter presented pan sharpening technique for informal settlement mapping. The 

research was a comparison analysis involving four classification scenarios. The scenario that 

produced the highest accuracies for all the pan sharpening algorithms involved composite 

image of four, Sentinel-2A, raw 10 m bands, pansharpened image and image texture. Gram-

Schmidt technique outperformed all the other techniques including Brovey and Simple mean. 

However, pan sharpening in its own sense produced relatively low accuracy levels owing to 

high spectral distortion associated with component substitution methods. The low 

classification outputs for pan sharpened images could also be attributed to use of mean as the 

only texture variable. Prior research has indicated that extraction of a large number of feature 

sets from satellite imagery could enhance mapping accuracy. However, extraction of a number 

of texture features as well as calculation of their window sizes would require fast computer 

processing. In addition, previous research has advocated for various spectral indices as vital 

in enhancing mapping accuracy. Data preparation, feature extraction, and classification of 

various combinations of input features has been reported as weighty, computationally 

expensive, tedious and time consuming when using classical image processing softwares. 

Recent advances in cloud computing present potential for solutions to these challenges through 

built-in time saving aspects. Some researchers put forward that GEE is a considerably efficient 

approach for operational mapping in complex urban environments. Thus, the next chapter 

leverages GEE’ cloud computing capabilities, through their inbuilt machine learning 

algorithms for accurate capturing of informal settlements’ morphologic variations. 
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accurately mapping informal settlements. The results revealed that the classification based on 

spectral bands + textural information yielded the highest informal settlement identification 

accuracy (94% F-score). The addition of spectral indices decreased mapping accuracy. Our 

results confirm that the highest spatial accuracy is achieved with the ‘textural features’ model, 

which yielded the lowest root-mean-square log error (0.51) and mean absolute percent error 

(0.36). Our approach highlights the capability of GEE’s complex integrative data processing 

capabilities in extracting morphological variations of informal settlements in rugged and 

heterogeneous urban landscapes, with reliable accuracy. 

Keywords: cloud computing; heterogeneous urban landscapes; Sentinel 2A; textural features; 

data input combinations 
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4.1. Introduction 

Informal settlements are a growing concern in urban landscapes, worldwide. According to 

Samper et al. (2020), informal settlements are described as overcrowded housing units that are 

constituted by fragile structures, often deprived of basic amenities such as safe water, 

sanitation, infrastructure and services, and lacking secure tenure. Recent statistics have 

indicated that, of the four billion people who are currently residing in urban areas (UNDP, 

2018), 1.6 billion live in informal areas (United-Nations, 2019), a figure that is estimated to 

rise to 3 billion by the mid-21st century (Samper et al., 2020). According to the 2030 Agenda 

for Sustainable Development (Fallatah et al., 2022), countries are expected to increase efforts 

in upgrading and improving the quality of life of their residents. To support that vision, and 

guide upgrading processes (Mboga et al., 2017, Persello and Stein, 2017), city planners and 

policy makers need information on their location and extent (Wang et al., 2019a), which is 

often scanty, not up-to-date, or inaccurate (Persello and Stein, 2017, Prabhu and 

Parvathavarthini, 2021). Furthermore, as informal settlements, particularly in Durban, South 

Africa, continue to be flood vulnerability hotspots (Membele et al., 2022b), occupying 

precarious sites (Satterthwaite et al., 2020), determining their locations and extents provides 

baseline information for planning integrated management in the event of floods. Therefore, a 

realistic approach which allows production of consistent, reliable and comprehensive informal 

settlement morphologies is critical for disaster preparedness, and also as baseline data for 

supporting mitigation measures in the event of foreseen or unforeseen climate scenarios. 

The formation, location and expansion of informal settlements are a result of multifaceted and 

inter-related factors including, but not limited to, poor urban planning and management, 

uncontrolled population growth, rural-urban migration, inadequate housing provision (Fox, 

2014, Winter et al., 2020) and the fact that in some sub-Saharan African countries, they are a 

manifestation of segregationist past (Loggia and Govender, 2020, Patel et al., 2019). Whilst 

economic globalization is associated with the spread of growth and greater opportunities 

(Balsa-Barreiro et al., 2019, Parnell and Crankshaw, 2009), city authorities in developing 

countries fail to keep pace with increased urbanization in terms of provision of housing. Being 

characterized by erratic urban morphology (Quesada-Román, 2022), the emergence of informal 

settlements is reflective of increased inequalities and socio-economic disparities (Balsa-

Barreiro et al., 2019). In the global north, some countries, such as the United Nations Economic 

Commission for Europe (UNECE) (18) countries, have also experienced these radical 

transformations. 
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To date, the increasing availability of remote sensing data has made whole city studies possible. 

Geospatial techniques have emerged as reliable tools for the capture of more detailed, accurate, 

up-to-date, and objective spatial information on informal settlements, their dynamics and their 

morphologic characteristics at high temporal frequency (Kuffer et al., 2016b, Mboga et al., 

2017). Traditionally, the measurement of informal settlements’ extents was usually based on 

census data. However, because of the fluidity of informal settlements (Mudau and Mhangara, 

2022), survey-based information is often outdated (Kohli et al., 2013b), characterized by huge 

temporal gaps (Mudau and Mhangara, 2021) and masks demographic and socio-economic 

differences in informal settlements (Membele et al., 2022a). Utilization of high-resolution 

imagery enables both spatial analytics and spectral analysis of informal settlements, (Farda, 

2017), and are more efficient when compared with terrestrial surveys. However, obtaining 

reliable and accurate data on informal settlements continues to be hindered by (1) heterogeneity 

and complex spectral characteristics of urban land (Chen et al., 2015), (2) fragmented spatial 

configuration (Mugiraneza et al., 2019) and (3) diversity of morphologies of informal 

settlements (Stark et al., 2020). These characteristics vary extensively between countries, cities, 

within cities, and socio-economic contexts, making the characterization of spatial resolution 

and data input combinations difficult (Mananze et al., 2020, Wekesa et al., 2011). Given the 

fragmentation of urban landscapes, high spatial resolution often leads to high spectral mixing 

especially when spectral information is the sole data input (Persello and Stein, 2017). For that 

reason, spatial contextual information in the form of image texture can be exploited in capturing 

their morphological variations (Kohli et al., 2013a, Kuffer et al., 2017, Kuffer et al., 2018, 

Mboga et al., 2017).  

Scientific research has been carried out in exploiting texture analysis to clearly identify and 

capture informal settlements (Kuffer et al., 2016b, Leonita et al., 2018, Prabhu et al., 2021b). 

In particular, several studies have explored texture feature algorithms such as grey level co-

occurrence matrix (GLCM) (Girija and Nikhila, 2018, Kohli et al., 2016b, Prabhu and Alagu 

Raja, 2018, Shabat and Tapamo, 2017), contourlets (Ansari et al., 2019b), curvelets (Ansari 

and Buddhiraju, 2019a), lacunarity (Fallatah et al., 2019, Kit and Lüdeke, 2013, Kit et al., 

2012a, Owen and Wong, 2013a), local Binary Patterns (LBPs) and Line Support Regions 

(LSRs) (Graesser et al., 2012). In other studies (Graesser et al., 2012, Kuffer et al., 2016b, 

Owen and Wong, 2013b), spectral information, spectral indices and textural information have 

been integrated for improved accuracy, with NDVI being the widely used spectral index. For 

instance, Kuffer et al. (2016b) achieved accuracy levels of between 84% and 88% when grey 
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level co-occurrence matrix (GLCM) variance was combined with NDVI, and an accuracy level 

of 90% when spectral information was combined with GLCM variance. However, such studies 

used limited numbers of input variables. Integration of image texture with spectral indices such 

as normalized difference water index (NDWI), the soil-adjusted vegetation index (SAVI) and 

the normalized difference building index (NDBI) for informal settlement detection to date, has 

rarely been exploited. Since urban areas are constituted by varied feature classes such as water 

bodies, built-up areas and vegetation (Fallatah et al., 2019), incorporation of the 

aforementioned spectral indices can help enhance class separability, thus contributing to 

increased informal settlement identification. Although the combination of the band-derived 

features has the potential to enhance image classification accuracy, their computation is 

accomplished through the application of numerous, tedious and sometimes time-consuming 

functions. For example, the extraction of texture features, particularly grey level co-occurrence 

matrix (GLCM) texture features, is carried out through the application of numerous functions 

to the image bands at varied window sizes. This often results in huge volumes of input data 

(Rodriguez-Galiano et al., 2012). There are also computation costs involved in averaging 

directions, as well as in texture feature selection. Apart from being time consuming (Graesser 

et al., 2012), the handling of large datasets with many features usually results in computational 

limitations, especially for a personal computer, where classical image-processing software is 

concerned (Stromann et al., 2019). In addition, the integration of the various input parameters 

would generate high dimensional feature sets, resulting in a sheer volume of data processing 

that traditional image processing platforms may fail to handle, thus causing classification 

complexity (Chen* et al., 2010, Shafizadeh-Moghadam et al., 2021). 

Google Earth Engine (GEE), with its advancements in data processing and analytic tools, high 

computational power, and huge storage capacities (Dong et al., 2016), presents the potential to 

help overcome the limitations associated with handling voluminous data, in terms of storage, 

integration, processing, and analysis (Gorelick et al., 2017, Mananze et al., 2020). GEE’s 

abundant imagery archives and data products (Zhang et al., 2019), for example Landsat-8, 

Sentinel-1 and -2, and MODIS (Amani et al., 2019c) mean that users do not need to download 

large datasets to local directories. Its integrative ability through effective script writing (Tassi 

and Vizzari, 2020), and parallelized processing of a stack of images have offered opportunities 

for integrating different feature sets at great speed, making timely outputs a reality (Patel et al., 

2015). Furthermore, its provision of a complete package in terms of a plethora of remotely 

sensed images and cloud resources that warrant fast processing and analysis of images makes 
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traditional software and desktop-based image analysis obsolete (Liang et al., 2020). Given that 

background, several investigators have thus taken advantage of GEE cloud-computing for 

mapping purposes at diversified scales, ranging from global (Liu et al., 2018), continental (Liu 

et al., 2020, Xiong et al., 2017), to country scale (Mananze et al., 2020, Phan et al., 2020).  

The application of GEE has been investigated in urban environments (Goldblatt et al., 2018, 

Rudiastuti et al., 2021, Tassi and Vizzari, 2020). For instance, Shafizadeh-Moghadam et al. 

(2021) integrated spectral, textural and topographical features in LULC in the Tigris–Euphrates 

basin. In another study, Tassi and Vizzari (2020) utilized spectral indices and GLCM textural 

indices for object based LULC classification in Trasimeno Lake, in Umbria, Central Italy. In 

Mananze et al. (2020) Landsat 7 and Landsat 8 bands, vegetation indices, and GLCM textural 

features were used to obtain a land cover map in Mozambique. The researchers took advantage 

of an environment in GEE that allows building of composite images from integrated feature 

sets (Teluguntla et al., 2018), summoning, processing, and stacking of image input data, 

running all analyses in parallel (Kelley et al., 2018). In one of the first studies on the application 

of GEE in informal settlement mapping, Tingzon et al. (2020) took advantage of the 

aforementioned cloud computing capabilities of GEE to map informal settlements in Colombia, 

through integration of spectral bands and spectral band-derived indices. In Colombia, informal 

settlements mainly occupy steep escarpments and are along urban fringes (Kamalipour and 

Dovey, 2019). The study did not explore the impact of adding image texture for informal 

settlement extraction. According to Duque et al. (2015), texture features have the capability to 

quantitatively differentiate informal settlement morphological characteristics such as high 

densities, organic morphology and disarranged spatial patterns, from planned, organized and 

well-structured urban layouts.  

The paper seeks to extend the work of Tingzon et al. (2020) through integration of spectral 

bands, spectral indices and textural features for the precise mapping of informal settlements 

using the GEE software, in a South African context. On the other hand, Matarira et al. (2022b) 

discovered that studies on informal settlements in South Africa (Ella et al., 2008, Khumalo et 

al., 2011, Mudau and Mhangara, 2021, Shabat and Tapamo, 2017, van den Bergh, 2011) have 

mainly concentrated in Johannesburg city (Ella et al., 2008, Khumalo et al., 2011, Shabat and 

Tapamo, 2017, van den Bergh, 2011), Soweto township, and mostly used Quickbird imagery. 

Durban lacks coverage on application of image texture for the mapping of informal settlements. 

Durban is characterized by varied morphological patterns, ranging from lining traffic arteries, 

steep terrain (e.g., Bester’s Camp (Inanda), open spaces, to being in proximity to river 
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networks, for example, Palmiet River (e.g., Quarry Road West). Texture analysis allows 

extraction of the diverse and explicit morphological features (Graesser et al., 2012, Kuffer et 

al., 2017). 

Owing to this background, the study seeks to test performance of various data input 

combinations for precise characterization of informal settlements through exploitation of GEE 

cloud computing capabilities in the heterogeneous landscape of Durban, South Africa. The 

paper presents an approach for the creation of a reproducible classification framework, which 

would allow for the production of consistent data on a regular basis.  

Specifically, the objectives were to:  

1) Present an operational framework based on various Sentinel 2A band-derived spectral 

and texture feature combinations for capturing informal settlements in Durban, South 

Africa. 

2) Determine the extent to which GEE’s data analysis capabilities can precisely depict 

morphologically diverse informal settlements in the Durban landscape. 

3) Statistically assess the deviations in informal settlement spatial extents derived from 

comparison analysis between modelled outputs and reference area estimates.  

The results exhibit a paradigm shift from classical image processing software and approaches 

for detection of informal settlements towards advanced cloud computing resources that 

simplify access to datasets and processing of large feature sets.  

4.2. Materials and Methods 

4.2.1. Datasets 

Sentinel 2A image collection (COPERNICUS/S2_SR surface reflectance dataset) was used in 

the analysis. The Sentinel 2A image covers 13 bands in the visible, near-infrared, and 

shortwave infrared (SWIR) wavelengths and consists of four bands at 10 m, six bands at 20 m, 

and three bands at 60 m (Lanaras et al., 2018, Phiri et al., 2020). To select data from the GEE 

archive, the filtered collection by date function was used. Multiple images covering a period 

from 1 August 2020 to 30 August 2020 in the study area were combined in a GEE collection. 

After filtering by date, three images were obtained that were used to form a composite, and a 

median value was assigned to each pixel. The resulting single image object represents the 

median value in each band of all the images in the filtered collection. Because clouds appear 

in different positions in the images, collections of several images acquired over a period of 
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time and over the same study area are a powerful way to removing many of the cloud-

contaminated pixels (Patel et al., 2015, Tassi and Vizzari, 2020). Sentinel-2A image with less 

than 10% cloud coverage was employed. 

4.2.2. Methods 

Figure 4.1 illustrates the full approach adopted in this study. Our analysis consists of 7 

methodological steps, which include: loading image collection and pre-processing, spectral 

feature extraction, texture feature calculation, feature input integration, feature importance 

evaluation, image classification, and accuracy assessment. GEE was the tool used to perform 

the bulk of the processing and analysis of Sentinel-2A imagery. 

 

Figure 4.1. Research workflow chart. 
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Among the several spectral indices, water indices, namely, NDWI and the modified normalized 

difference water index (MNDWI) were included. Built-up area indices that were used in the 

current study included normalized difference building index (NDBI), urban index (UI), new 

built-up index (NBI), and the band ratio for built-up areas (BRBA). These indices have been 

previously incorporated for the extraction of built-up areas (Kaimaris and Patias, 2016) and 

LULC mapping (Adepoju and Adelabu, 2019). According to Firozjaei et al. (2019), the NDBI 

and UI provide fast detection of built-up areas or bare land. The mathematical equations used 

for the calculation of the aforementioned indices are presented in Table 4.2. 

Table 4.2. Spectral indices used for the mapping of informal settlements in the study. 

Spectral Index Equation Main Reference 

NDVI 
𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

(Rudiastuti et al., 2021, Shafizadeh-Moghadam et al., 

2021, Zurqani et al., 2019) 

SAVI 1.5 × ((𝐵8 − 𝐵4)/(𝐵8 +  𝐵4 +  0.5)) (Gandhi, 2021) 

NDWI 
𝐵3 − 𝐵8

𝐵3 + 𝐵8
 

(Shafizadeh-Moghadam et al., 2021, Zurqani et al., 

2019) 

MNDWI 
𝐵3 − 𝐵11

𝐵3 + 𝐵11
 (Rudiastuti et al , 2021, Tingzon et al., 2020) 

BRBA 
𝐵4

𝐵11
 (Tingzon et al., 2020) 

NDBI 
𝐵11 − 𝐵8

𝐵11 + 𝐵8
 (Rudiastuti et al , 2021, Tingzon et al., 2020) 

NBI 
𝐵4 ∗ 𝐵11

𝐵8𝐴
 (Rudiastuti et al , 2021, Tingzon et al., 2020) 

UI 
𝐵7 − 𝐵5

𝐵7 + 𝐵5
 (Tingzon et al., 2020) 

 

4.2.3.2. GLCM Textural Features 

To derive textural information, the GLCM algorithm was used. GLCM describes the 

probability of relationships between the reflectance values of neighbouring pixels at a distance 

and orientation invariant within the image (Haralick et al., 1973). The resultant raster layer that 

is made up of derived texture measurements may be input into the further analysis (Hall-Beyer, 

2017). The metrics involved in the current study included angular second moment, contrast, 

correlation, variance, entropy, dissimilarity, mean, and homogeneity, computed from Sentinel 

2A visible bands. According to Ruiz Hernandez and Shi (2017), texture measurements can 

provide additional contextual information that enhances discrimination of diverse classes. The 

texture feature extraction was carried out using the GLCM implementation that is provided 

within the ENVI 5.3 software. In total, 24 texture features were obtained from the three visible 
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bands. In their study on leaf area index estimation using textural features, Zhou et al. (2017) 

carried out the sensitivity analysis of the GLCM parameters and discovered that the most 

important parameters to be considered in image processing included orientation, displacement, 

and moving window size. Adopting that notion, GLCM texture measures were measured based 

on the average of all directions (0°, 45°, 90°, and 135°), the same co-occurrence shift (1,1), 

quantization level of 64, and 7 × 7 window size. According to Giannini and Merola (2012), a 

quantization level of 64 preserves information and has an acceptable computing time. As 

pointed out in the literature (Kabir et al., 2010, Lan and Liu, 2018, Roberti de Siqueira et al., 

2013), the window size is an important variable that has the potential to influence the 

discrimination capacity of extracted texture features. Selection of the optimal window size was 

performed using the method of coefficient of variation. The method of coefficient of variation 

was adopted from Kabir et al. (2010)’s study in their analysis of urban LULC classification. 

The process involved computation of class statistics for mean texture feature, which, through 

visual analysis, showed the most discriminative capability for informal settlements. The class 

statistics included minimum, maximum, mean and standard deviation. These statistics were 

calculated for the red, blue and green bands and for the window sizes 3 × 3, 5 × 5, 7 × 7, 9 × 9, 

11 × 11, 13 × 13, 15 × 15. Coefficients of variation were calculated in Excel, using the formula 

CV = 
𝜕

µ
, where 

CV = coefficient of variation 

∂ = standard deviation 

µ = mean 

After texture feature extraction, the texture features were imported into GEE, exploiting the 

capability of the cloud computing platform to import and upload data on its public data catalog 

(Kumar and Mutanga, 2018). 

4.2.4. Feature Combinations 

After the extraction of spectral and texture features from Sentinel-2A bands, combinations of 

various feature types were established. In that respect, 42 features were used to develop feature 

combinations that were incorporated in differentiating informal areas and other land uses. The 

input feature sets were composed of spectral bands (SBs), spectral indices (SIs), spectral bands 

plus spectral indices (SBS + SIs), texture features (Txts), spectral bands plus texture features 
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(SBs + Txts), texture features plus spectral indices (SIs + Txts), and spectral bands + spectral 

indices + texture features (SBs + SIs + Txts) derived from Sentinel-2A imagery. Based on the 

extracted features, three feature sets and four feature combinations were constructed to assess 

the influence of feature sets in distinguishing informal settlements.  

4.2.5. Random Forest Classification 

A pixel-based supervised RF machine learning algorithm was used for classification. RF 

classifiers applied to Sentinel 2A imagery in GEE have successfully mapped built-up areas 

(Rudiastuti et al., 2021), human settlements (Trianni et al., 2014), and, specifically, informal 

settlements (Tingzon et al., 2020). The choice of classifier for the current study was made 

owing to its capability to handle urban area classification where high-dimensional feature 

spaces are concerned and its robustness for informal settlement mapping in complex 

environments (Wurm et al., 2017a). Random Forest classifiers also measure each variable’s 

contribution to the classification output, which is critical in assessing the value of each variable 

(Teluguntla et al., 2018). The entire classification process was performed in GEE where the 

building and tuning of the classification model were all based on the code “ee. Classifier 

package”. The seven constructed feature sets were used as inputs in the classification models. 

Following (Rudiastuti et al., 2021), an RF model with 100 trees was created, and the number 

of variables per split was set to the square root of the number of variables (Mananze et al., 

2020, Phan et al., 2020). Following Phan et al. (2020), training samples were selected as small 

polygons to ensure that a polygon contains homogeneous pixels of a given land cover. In 

addition, small training polygons minimize the effect of spatial correlation (Phan et al., 2020). 

The classification was completed using 782 training samples and 309 testing samples. The 

model was designed to perform a random sampling strategy to create approximately 70% of 

the training samples from the original dataset and generating a decision tree for each training 

sample separately, with the remaining 30% of the training samples being used as validation 

data for internal cross validation to evaluate the classification accuracy of the random forest 

(Zhao et al., 2022). Furthermore, five land cover classes that characterise the study area 

landscape were proposed in the land classification scheme. These included informal settlement, 

vegetation, water, formal buildings and bare land.  

To obtain an accurate representation of the performance of the classifier (Shetty et al., 2021), 

achieve better classifier stability (Jin et al., 2018), and consider potential variation in accuracy 

levels resulting from a random sampling of training samples (Belgiu and Drăguţ, 2016), 20 
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replications of bootstrap sampling were performed and the same number of iterative 

classification trials performed for each model. Random Forest algorithms apply a bagging 

approach involving randomly resampling training data subsets to allow iterative construction 

of numerous, comparatively unbiased models which would then be averaged (Belgiu and 

Drăguţ, 2016). This means 20 classification results were obtained for each input feature set.  

4.2.6. Variable Importance 

In the current study, the RF algorithm was used for variable importance evaluation. In the 

evaluation of variable importance score, the value of a feature parameter is turned into a random 

number and the impact on the accuracy of the model calculated (Zhao et al., 2022). The 

importance of the parameter was calculated from the out-of-bag error of each decision tree, 

calculated from the OOB data, following Jin et al. (2018). Feature importance evaluation was 

performed on feature combinations that consisted of more than 10 variables (Txts, SBs + SIs, 

SBs + Txts, SIs + Txts, and SBs + SIs + Txts) in order to obtain the 10 most significant 

variables, following (Bessinger et al., 2022, Hao et al., 2015). Five new feature subsets, made 

up of the important variables from each evaluated model were used to train the classifier. After 

repetition of the classification process 20 times, average values of the 20 F-scores were 

calculated for each feature subset model. Performance evaluation of feature subsets was carried 

out through a comparison of classification results of different feature subsets against the 

original feature set from which they were derived. The assessment was completed in order to 

establish if feature reduction would significantly improve informal settlement identification or 

not. 

4.2.7. Accuracy Assessment, Classification Comparison, and Statistical Testing 

According to Teluguntla et al. (2018), accuracy assessment is critical in map production using 

remote sensing data. Establishing the relative comparative performances of different feature 

sets, against the SBs (benchmark experiment) was an important focus of this paper. 

4.2.7.1 Pixel-Based Accuracy Assessment 

Classification performances of all seven classification models; SBs, SIs, Txts, SBs + SIs, SBs 

+ Txts, SIs + Txts, and SBs + SIs + Txts were assessed. The confusion matrix implemented in 

GEE was used for the accuracy assessment of LULC classifications. User’s accuracy (UA) and 

producer’s accuracy (PA), calculated from the confusion matrix, were used to determine F-
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scores that were used as the accuracy metric for informal settlement identification. The 

calculated F-scores were representative of classification accuracies for the informal settlement 

class. F-scores were used to quantify variations in the results for all feature-based models and 

the feature subset-based models. According to Zurqani et al. (2019), the F-score shows how 

good the classifier is in the context of both producer’s and user’s accuracies by weighting their 

average. The percentage deviations of F-score were calculated to assess the precision of the 

model vis-à-vis its accuracy. 

F-score = 2 × 
(𝑈𝐴)(𝑃𝐴)

𝑈𝐴+𝑃𝐴
  (1) 

F-score was calculated for each of the 20 classification iterations run for each feature set. 

After performing 20 iterative classifications for a particular classification model, the 20 results 

of each experiment were tested for normality of distribution using the Shapiro test. 

Subsequently, the relative comparison between performances of pairs of different feature set 

combinations were performed using either the Welch Two-sample t-test or Wilcoxon Rank 

Sum test, depending on whether pairs of data were normally distributed or not. Where both 

datasets attained normal distribution, the Welch Two sample t-test was used to test if a 

significant difference existed between the means, with a corresponding calculation of p-values. 

Given the null hypothesis, H0: µ1 − µ2 = 0 or H0: µ1 = µ2 and alternative hypothesis H1: µ1 − µ2 

≠ 0 or H0: µ1 ≠ µ2, µ1 and µ2 represented means for the classification results for models 1 and 2, 

respectively. The p-value was calculated for a 95% confidence level and the null hypothesis of 

equal means was rejected at p < 0.05. Where one dataset was normally distributed and the other 

one was not, the Wilcoxon Rank Sum test was carried out. Given the null hypothesis, H0: ƞA = 

ƞB and alternative hypothesis H1: ƞA ≠ ƞB, ƞA, and ƞB represented medians for the classification 

results for models A and B respectively. Similarly, the p-value was calculated at a 95% 

confidence level, and the null hypothesis of equal medians was rejected at p < 0.05. 

Particularly, the main aim of this analysis was to determine whether statistically significant 

differences existed between classification results of different feature input combinations. 

Statistical significance tests were also executed for each pair of predictions made by feature 

subset-based and all feature-based models. 

4.2.7.2. Patch-Based Accuracy Assessment 

For the patch-based accuracy assessment, seven informal settlements (labelled A-G) (Figure 

4.2) were considered as independently derived reference data for spatial estimation of informal 
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settlement areas. Boundaries for the respective informal settlements were digitized from 

Google Earth Pro and are shown in Figure 4.2. The polygons were used to compute areal 

estimates of informal settlements on the ground that were compared to the areal estimates on 

classified maps. The areas for the corresponding patches on classified maps were calculated 

using spatial analyst tools in ArcMap. 

 

Figure 4.2. Ground truth samples of informal settlements (A-G (red)) in the study area.  

4.2.7.3. Regression between Extracted Informal Settlement Areas and Ground Truth 

Data 

Regression analysis was carried out to analyse the spatial variations in the relationship between 

ground truth area data and estimated areas. The focus of this analysis was to quantify the 

discrimination power of different feature input combinations through the measurement of the 

magnitude of error between predicted and observed spatial extents. In their research on spatial 

accuracy assessment of object boundaries, Albretch et al. (2010) suggested that validation 

concepts need to be extended to a spatial accuracy assessment of the objects’ boundaries. In 
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this regard, this paper presented two different spatial error assessment methods, which included 

root-mean-square log error (RMSLE) and mean absolute percent error (MAPE). These error 

metrics, calculated in R statistical software, were used to compare the predictive ability of each 

input feature combination, in terms of deviation between boundaries of classification outputs 

and a reference dataset. 

4. 3. Results 

4.3.1. Evaluation and Comparative Analysis of Classification Results 

4.3.1.1. Visual Analysis of Different Feature Input Models 

The study tested seven different feature set options (1) spectral bands (SBs), (2) spectral indices 

(SIs), (3) texture features (Txts), (4) spectral bands and spectral indices (SBs + SIs), (5) spectral 

bands and texture features (SBs + Txts), (6) spectral indices and texture features (SIs + Txts), 

and a combination of spectral bands, spectral indices and texture features (SBs + SIs + Txts). 

Through visual comparison, differences were noted in the classification outputs, paying 

particular attention to the degree of misclassification between the informal built-up land and 

other land uses. From a visual inspection, the drawback of “salt and pepper” effects could be 

evident in the models SIs, SBs + SIs, and SBs. Misclassifications were noticed, especially 

between informal areas and bare land. Some informal settlement patches could be seen in areas 

that, on the ground, were represented as bare land. Examples of misclassified areas are shown 

in black squares (Figure 4b,e,f). The black squares mark out areas with evident 

misclassifications of bare land and informal settlements. The distinct separation of informal 

settlements from other LULC classes could be identified in Txts, SBs + Txts, SBs + SIs + Txts, 

and SBs + Txts models where large and well-defined patches of informal settlements were 

labelled as informal built-up land.  
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Generally, accuracy was high for all feature-based models, averaging beyond 80%. The 

average F-scores ranged from 94 ± 1.27% (SBs + Txts) to 76 ± 2.06% (SIs). In fact, the 

descending order of IS identification accuracy was 94% (SBs + Txts), 93% (SBs + SIs + Txts), 

92% (SIs + Txts), 90% (Txts), 86% (SBs), 82% (SBs + SIs), and 76% (SIs). Generally, the 

results suggested that the inclusion of image texture significantly boosted classification 

accuracy, since classification performances were enhanced in all the models that incorporated 

textural features. More specifically, the addition of textural features to spectral bands yielded 

the highest accuracy improvement when spectral bands alone were used as a benchmark 

experiment. On the other hand, combining spectral bands and spectral indices decreased the F-

score by 4%. The results also show that the sole use of spectral bands resulted in relatively 

higher performance than “spectral bands + spectral indices”. Considering models that 

incorporated textural features, the descending order of importance was SBs + Txts (94%), SBs 

+ SIs + Txts (93%), SIs + Txts (92%), and Txts (90%). It is also important to note that, whilst 

the addition of textural information to spectral bands (SBs + Txts) yielded the highest accuracy 

levels, results declined when spectral indices were added to the feature set. Almost similarly, 

compared with Txts alone, the composite of spectral indices and texture metric (SIs + Txts) 

yielded decreased accuracy. Result analysis also demonstrated that combining multispectral 

bands with texture features performed better (94%) than using each type of feature solely (SBs-

86%, Txts-90%). Furthermore, a composite of all three feature sets (SBs + SIs + Txts) did not 

provide superior results. Most importantly, all six experiments that were compared against the 

performance of only spectral bands showed significant differences between classification 

performances (p < 0.05) (Table 4.4). 

Whilst the accuracy deviations, as represented by standard deviations, were not very large, 

there was no consistency in terms of precision. For instance, considering the 20 test runs for 

the SBs + Txts models, its accuracy was the best, but its precision, as measured by standard 

deviation, was not. Although SIs + Txts model yielded lower accuracy than SBs + Txts, the 

result showed more precision as indicated by the low standard deviation. The percentage 

deviations of average F1-scores were 1.98%, 2.06%, 1.19%, 1.43%, 1.27%, 0.91%, 1.08% 

(Table 4.4). These standard deviations were for SBs, SIs, Txts, SBs + SIs, SBs + Txts, SIs + 

Txts, and SBs + SIs + Txts, respectively. 
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Figure 4.4. Feature importance scores of the 10 most important features for the image 

combinations. 

In the feature combinations where spectral indices were incorporated, ui obtained the highest 

importance score and would feature in the top four variables. When textural features were 

incorporated, B2mean, B3mean, and B4mean attained the highest importance score, indicating the 

relevance of mean texture in the classification process. There was no consistency with regard 

to the most important spectral band, with B8A contributing most in the model SBs + Txts and 

B2 contributing most in the SBs+ SIs model. From Figure 4.4, it could be observed that the 

variable importance score also decreased when the number of features used to build the RF 

model increased. For example, considering the Txts model, B2mean, B3mean, and B4mean attained 

feature scores ranging between 300–400. When Txts were combined with either SBs or SIs, 

importance scores were reduced to between 150 and 200. The feature importance score was 

reduced further to between 100 and 140 when Txts was combined with both SBs and SIs.  

4.3.1.4. Feature Subset Evaluation 

From the two-sample t-tests that were carried out, three models showed significant differences 

between the performance of feature models and feature subset-based models. Classification 
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Figure 4.5. Classified informal settlement patch areas (A-G (black)) for models (a) Spectral 

bands, (b) Spectral indices, (c) Texture features, (d) Spectral bands + spectral indices, (e) 

Spectral bands + texture features, (f) Spectral indices + texture features, (g) Spectral bands + 

spectral indices + texture features, and corresponding ground truth polygons (A-G (red)). 

Table 4.6. Spatial accuracy assessment results for area-based classification. 

Classification 

Model 
Patch 

Classified 

Patch Area 

(ha) 

Reference 

Patch Area 

(ha) 

Difference 
Difference 

(%) 
RMSLE MAPE 

SBs 

A 2.97 3.94 0.97 24.62 

1.13 0.57 

B 1.89 1.86 −0.03 −1.61 

C 6.96 12.43 5.47 44.01 

D 3.89 13.55 9.66 71.29 

E 1.83 4.49 2.66 59.24 

F 1.97 11.22 9.25 82.44 

G 0.95 5.09 4.14 81.34 

SIs 

A 2.72 3.94 1.22 30.96 

1.2 0.61 
B 1.50 1.86 0.36 19.35 

C 6.76 12.43 5.67 45.62 

D 3.80 13.55 9.75 71.96 
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E 1.88 4.49 2.61 58.13 

F 1.82 11.22 9.4 83.78 

G 0.83 5.09 4.26 83.69 

Txts 

A 3.25 3.94 0.69 17.51 

0.51 0.36 

B 1.73 1.86 0.13 6.99 

C 7.83 12.43 4.6 37.01 

D 6.47 13.55 7.08 52.25 

E 3.85 4.49 0.64 14.25 

F 6.70 11,22 4.52 40.29 

G 2.62 5,09 2.47 48.53 

SBs + SIs 

A 3.11 3.94 0.83 21.07 

0.88 0.50 

B 1.80 1.86 0.06 3.23 

C 7.83 12.43 4.6 37.01 

D 4.97 13.55 8.58 63.32 

E 2.61 4.49 1.88 41.87 

F 3.04 11.22 8.18 72.91 

G 1.28 5.09 3.81 74.85 

SBs + Txts 

A 3.88 3.94 0.06 1.52 

0.63 0.38 

B 1.42 1.86 0.44 23.66 

C 8.31 12.43 4.12 33.15 

D 5.28 13.55 8.27 61.03 

E 3.63 4.49 0.86 19.15 

F 6.44 11.22 4.78 42.60 

G 2.12 5.09 2.97 58.35 

SIs + Txts 

A 2.93 3.94 1.01 25.63 

0.68 0.44 

B 1.85 1.86 0.01 0.54 

C 7.04 12.43 5.39 43.36 

D 5.04 13.55 8.51 62.80 

E 3.53 4.49 0.96 21.38 

F 5.71 11.22 5.51 49.11 

G 1.82 5.09 3.27 64.24 

SBs + SIs + Txts 
A 3.11 3.94 0.83 21.07 

0.73 0.46 
B 1.70 1.86 0.16 8.60 
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C 6.75 12.43 5.68 45.70 

D 4.45 13.55 9.1 67.16 

E 3.19 4.49 1.3 28.95 

F 5.50 11.22 5.72 50.98 

G 1.83 5.09 3.26 64.05 

 

4.4. Discussion 

The study sought to investigate performance of different feature input combinations in 

accurately depicting morphologically varied informal settlements as well as their spatial extents 

within the GEE platform. Variable results were obtained depending on the input datasets. 

Average accuracy of >80% suggests the success of RF in extracting informal built-up areas in 

the study area. Results demonstrated that classification of spectral bands alone yielded 

relatively low model performance (86%), whilst models that incorporated texture features 

performed better, ranging from 90% to 94%. In agreement with the current study results, Kuffer 

et al. (2016b) achieved an increase in accuracy from 62% to 65% when image texture was 

integrated with spectral bands. Both results are supported by Shafizadeh-Moghadam et al. 

(2021), who alluded that spectral bands alone are insufficient in discriminating different LULC 

types, and that similar morphological characteristics, in the form of constructional materials, 

paint or roof colours (Gevaert et al., 2016, Myint et al., 2011) can help explain confusion within 

urban landscapes. GLCM texture-based analysis can capture urban morphological 

characteristics such as built up densities (Leonita et al., 2018), shape, size, orientation and roof 

colours (Kuffer et al., 2017). However comparing the classification performances, RF 

classification using the GEE platform, performed in the current study, yielded significantly 

higher accuracies than RF classification implemented by Kuffer et al. (2016b) in the eCognition 

software. Given some similarities in morphological characteristics of informal settlements in 

Mumbai and Durban (high densities, organic morphology, iron and asbestos roofing sheets), 

higher accuracy in the current study can largely be explained in terms of GEE’s integrative 

ability through effective script writing (Tassi and Vizzari, 2020), and parallelized processing 

of a stack of input features, that offers opportunities for integrating different feature sets for 

enhanced mapping accuracy. Whilst 24 texture variables were integrated in the current study, 

Kuffer et al. (2016b) only used variance. In Kuffer et al. (2016b), it is argued that combining a 

number of texture descriptors is crucial in discriminating complex urban settlement patterns. 
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Mirroring these findings, RF models within the GEE were able to capture the morphological 

characteristics of informal settlements better than studies that used classical software. 

Results also indicate that, while the addition of spectral indices to the “spectral bands + texture 

features” model reduced the accuracy level from 94% to 93% in the current study, the addition 

of NDVI to the “spectral bands + texture” model increased informal settlement identification 

accuracy in Kuffer et al. (2016b)’s study, from 65% to 90%. The results from Kuffer et al. 

(2016b) showed the relevance of NDVI in distinguishing informal settlements in Mumbai. 

Conversely, considering combinations that incorporated spectral indices, variable importance 

analyses indicated that NDVI only featured in 1 out of 3 feature subsets (Figure 4.4), where it 

assumed the lowest rank. The low performance of NDVI in the current study could also help 

explain the reduced accuracies when spectral indices were incorporated into other feature sets. 

Nonetheless, the current results appear consistent with (Graesser et al., 2012)’s findings, where 

NDVI resulted in consistently low accuracies. This result is potentially explained by the lack 

of variance in urban vegetation in many cities (Amani et al., 2019c, Graesser et al., 2012). In 

addition, the significant fall in classification accuracy in the current results when spectral 

indices were added to the “spectral bands + texture features” model is in agreement with other 

studies in spatially heterogeneous complex landscapes (Li et al., 2016, Lin et al., 2021). In their 

mapping of complex surface-mined and agricultural landscapes, Li et al. (2016) attributed 

reduced accuracy to the importation of redundant information, since spectral indices are 

derived from the linear computation of spectral bands (Chen et al., 2017). Furthermore, Dolean 

et al. (2020) argued that the main problem with spectral indices being used for urban area 

mapping is that they cause spectral mixing between built-up areas and bare surfaces due to 

their similarity in spectral response patterns, especially in spatially heterogeneous 

environments. These explanations conform with the current results where misclassifications of 

bare land as informal settlements were evident (see the black rectangles in Figure 4.3b, e) in 

models that incorporated spectral indices (Figure 4.3). In their study, Firozjaei et al. (2019) 

also observed similar spectral behaviours between built-up and bare lands. Most importantly, 

the current results mean that, although informal settlement mapping can be performed better 

through the RF algorithm, some problems of spectral confusion, especially between bare 

surfaces and built-up areas, remain unsolved.  

Examination of the performance of feature subset-based models revealed that feature subsets 

either yielded significantly reduced classification accuracies (p < 0.05) at a 95% confidence 

interval, with an average value of 6%, or yielded no change in classification results. This 
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finding agrees with Graesser et al. (2012)’s findings in which feature reduction caused 

decreased accuracy, and no feature subsets were as powerful as the full combination. The 

current findings are, however, inconsistent with Maxwell et al. (2014), who in their mapping 

of a complex mining environment, reported significant improvement in accuracy from the 

utilization of the top 10% of variables selected using variable importance measures. The fact 

that combinations of different input features yielded higher results than single feature sets 

suggest that, although adding additional features such as textural variables to the original 

spectral bands increases the dimensionality of feature space Graesser et al. ( 2012), more input 

variables could enhance informal settlement discriminability. This observation is consistent 

with Amani et al. (2019b), who alluded that extraction of many features from satellite data is 

one way of increasing image classification accuracy. Current findings contribute to revealing 

the strength of the RF classifier in dealing with high-dimensional feature sets (Ruiz Hernandez 

and Shi, 2017).  

Estimated Informal Settlement Areas 

From the analysis of modelled slum patches and ground truth samples of slum patches, the 

results indicate that, although distinct informal settlement patches and clear boundaries could 

be identified from RF classification, there were inconsistencies in the mapping. Results 

demonstrated evidence of underestimation of informal settlement spatial extents (Figure 4.5). 

Generally, high RMSLE values were evident ranging from 0.51 to 1.2. Whilst mapping results 

suggest the effectiveness of RF classification in capturing informal settlement locations, 

underestimation indicates lack of robustness in the capturing of their diversity. The 

inconsistences could be attributed to the complexity of informal settlement morphologies 

(Taubenböck et al., 2018). Challenges exist in capturing informal settlements characterized by 

varied typologies within the area. For instance, remote sensing data fail to reveal the dynamics 

in factors that shape the apparent morphologies of the informal settlements, for example, 

culture, socio-political and economic status. Capturing informal settlements at varied stages of 

development could be challenging (Owen and Wong, 2013b). Whilst remotely sensed data and 

socio-economic parameters of an area may correlate (Duque et al., 2015), structural variations 

emanating from a high socio-economic gradient between two informal settlement areas could 

compromise the reliability of results. In Kuffer et al. (2017), it is suggested that integrating 

remotely sensed data with survey-derived socio-economic information such as employment 

status, educational status, population figures and population density would avoid representation 

of informal settlements as one-dimensional.  
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In the current study, there were also some limitations. Firstly, the near-infra-red band which 

was not used in the extraction of image texture could be exploited, since according to Ruiz 

Hernandez and Shi (2017), it provides greater contrast and thus carries the most significant 

data spikes. Secondly, our method utilized Sentinel-2A images with relatively low spatial 

resolution, which could explain some false identification that was evident in the results. The 

definition of adequate spatial resolution has been regarded as a key issue in the mapping of 

complex environments (Mananze et al., 2020, Räsänen and Virtanen, 2019). For instance, the 

potential of PlanetScope data for precise mapping of heterogeneous landscapes, for example, 

in identifying crop types and extents in small holder environments, has been emphasized 

(Kpienbaareh et al., 2021, Rufin et al., 2022). In addition, the application of object-oriented 

analysis techniques, particularly within GEE, is constantly evolving (Tassi and Vizzari, 2020). 

In Vizzari (2022), land cover was mapped using object-based image classification and 

PlanetScope imagery within GEE and increased accuracy was achieved. Further, the author 

integrated PlanetScope with Sentinel-1 and Sentinel-2 data using the object-based oriented 

approach and achieved improved geometric and thematic accuracy. These findings present an 

opportunity to explore the capabilities of high resolution PlanetScope and object-oriented 

analysis in overcoming challenges of inaccurate identification of dynamic, spatially and 

morphologically complex informal settlements. Accurate and consistent characterization of 

informal settlements would provide insights into their historical and contemporary dynamics, 

as well as in simulating future land changes. 

4.5. Conclusions 

GEE cloud computing was successfully applied for informal settlement mapping in part of 

Durban Metro, South Africa. GEE showed considerable versatility and adaptability due to its 

integrative capabilities and its efficient platform for script writing. Within the GEE 

environment, this work developed and tested pixel-based classification of various input 

combinations. The best performing input variables for the random forest ensemble classifier 

were identified through systematic testing of different feature input combinations.  

The following conclusions were drawn: 

• The RF model performed well in distinguishing informal settlements, yielding an 

average accuracy above 80%.  

• The addition of texture features yielded statistically significant accuracy levels 
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• The addition of spectral indices generated significantly reduced accuracy levels.  

• Considering the accuracy level of the informal settlement class, the spectral bands + 

texture features model achieved the best performance (94%).  

• The texture features model yielded the lowest spatial error, enabling it to most 

accurately depict informal settlement boundaries. 

The results demonstrate how the GEE framework, by simplifying access and processing of a 

large amount of satellite data, is shifting the paradigm in built-up area mapping from a static, 

product-based approach into a more dynamic and application-specific one with reasonable 

accuracy and in no time. 

4.6. Summary 

This chapter mapped informal settlement diversities using a combination of spectral bands, 

spectral indices and GLCM textural variables. Innovative image processing techniques 

available within the GEE were exploited. Among the seven data input combinations that were 

tested, a combination of spectral bands and textural variables yielded the highest accuracy. 

Although the value of inbuilt RF algorithm was shown through high accuracy levels, fuzziness 

still existed in classification, either between informal settlements and bare land, or between 

informal settlements and formal buildings. One explanation for this could be pixel-based 

classification used in the study. These uncertainties call for the need for a more improved 

classification framework that would accurately capture informal settlement heterogeneities. 

An object-based algorithm can possibly ease the challenges of misclassification as it takes into 

account the contextual information within a given imaging neighbourhood. The availability of 

a segmentation algorithm within GEE, as well as GLCM texture feature extraction algorithm 

allows exploration of GEOBIA for a more accurate classification. The next chapter will 

implement GEOBIA within the GEE, exploring the efficacy of integration of data from diverse 

range of multiple datasets. 
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CHAPTER FIVE: 

Object-Based informal settlement mapping in Google Earth Engine using the 

integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data 

This chapter is based on: 

Matarira, D., Mutanga, O., Naidu, M., & Vizzari, M. (2022). Object-Based Informal 

Settlement Mapping in Google Earth Engine Using the Integration of Sentinel-1, Sentinel-2, 

and PlanetScope Satellite Data. Land, 12(1). doi:10.3390/land12010099 

 

Abstract: 

Mapping informal settlements’ diverse morphological patterns remains intricate due to 

unavailability and huge costs of high-resolution data, as well as spatial heterogeneity of urban 

environments. Accessibility to high-spatial resolution PlanetScope imagery, coupled with the 

convenience of simple non-iterative clustering (SNIC) algorithm within the Google Earth 

Engine present potential for geographic object-based image analysis (GEOBIA) to map spatial 

morphology of deprivation pockets in a complex built up environment of Durban. Such 

advances in multi-sensor satellite image inventories on GEE also afford possibility to integrate 

data from sensors with different spectral characteristics and spatial resolutions for effective 

abstraction of informal settlement diversity. The main objective is to exploit Sentinel-1(S1) 

radar data, Sentinel-2 (S2) and PlanetScope (PL) optical data fusion for more accurate and 

precise localization of informal settlements using GEOBIA, within GEE. The findings reveal 

that the random forest classification model achieved informal settlement identification 

accuracy of 87% (F-score) and overall accuracy of 96%. An assessment of agreement between 

observed informal settlement extents and ground truth dimensions was conducted through 

regression analysis, yielding root mean square log error (RMSLE) = 0.69 and mean absolute 

percent error  (MAPE) = 0.28. The results demonstrate reliability of the classification model in 

capturing variability of spatial characteristics of informal settlements. The research findings 

confirm efficacy of combined advantages of OBIA within GEE, and integrated datasets for 

more precise capturing of characteristic morphologic informal settlement features in a 

heterogeneous urban landscape. The outcomes demonstrate a transition from informal 

settlement mapping using conventional static approaches towards more dynamic cloud 

computing platform that simplifies processing of voluminous data. The study has important 

implications for the identification of the most effective ways to map informal settlements in a 
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complex urban landscape, thus providing a yardstick for other regions that are characterized by 

large landscape multiformity. 

Keywords: Google Earth Engine, simple non iterative clustering, object-based image 

analysis, informal settlements, texture features, mapping. 
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 5.1. Introduction 

Unprecedented processes of urbanization, especially in developing countries, result in highly 

dynamic urban patterns, characterised by dominance of informal urban development (Wurm et 

al., 2019). Being inexorably a reflection of “urbanization of poverty’(Hofmann et al., 2015), 

informal settlements are characterized by dense housing, made up of sub-standard, 

heterogeneous constructional materials, which, when coupled with their characteristic location 

on flood vulnerable areas, exacerbate residents’ risk and vulnerability to natural hazards such 

as flood events (Kuffer et al., 2020). Housing approximately 1 billion dwellers globally (UN-

Habitat, 2016), the United Nations has prioritized informal settlement improvements in the 

2030 Sustainable development goals (Fallatah et al., 2022, Pratomo et al., 2017). Despite their 

stipulated targets, informal settlements continue to grow (Pratomo et al., 2017). Ameliorating 

the conditions of deprivation in informal settlements requires up-to date base maps with 

comprehensive information on their spatial locations and dimensions (Kuffer et al., 2020), 

which is mostly inconsistent, generalized or simply non-existent (Taubenböck et al., 2018). 

Given the dynamic nature of these deprived areas (Kraff et al., 2020), there is exigency for 

techniques that can provide rapid and reliable information on their morphological layouts. 

Furthermore, the understanding of informal settlements’ level of marginalization as it relates 

to natural hazards and climate change risk requires precise and comprehensive identification 

of their spatiality.  

 

Remote sensing provides ease in spatial analytics (Farda, 2017), and its synoptic and repetitive 

capabilities afford updated, consistent and comprehensive geospatial information with great 

thematic detail, especially in complex urban environments (Wang et al., 2019b). Exploiting the 

convenience of high-resolution sensors, such as GeoEye, IKONOS, QuickBird, and 

WorldView, concerted research efforts have been made to map informal settlements (Kuffer et 

al., 2016b, Mboga et al., 2017a, Mudau and Mhangara, 2021, Prabhu and Parvathavarthini, 

2021). However, the intricacy of semantic abstraction of informal settlements has been 

emphasized (Fallatah et al., 2020, Kohli et al., 2016a, Mugiraneza et al., 2019). Firstly, the cost 

prohibitive and sometimes unavailable high resolution earth observation (EO) data 

(Taubenböck et al., 2018) is a major drawback in efforts for accurate delineation of urban 

deprived areas. Secondly, the inherent variations in informal settlement morphological 

appearances either within or across geographical locations (Stark et al., 2020) confound the 

task. Also, fragmented urban landscapes are difficult to represent using a pixel-based 
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classification approach where only spectral values are concerned (Fallatah et al., 2020), making 

characterization of informal settlement morphologic differences complex (Leonita et al., 2018, 

Mboga et al., 2017).  

 

Recently, object-based image analysis (OBIA or geographic object based image analysis 

(GEOBIA) has been applied more frequently in capturing heterogeneity in fragmented urban 

landscapes for informal settlement identification (Fallatah et al., 2020, Fallatah et al., 2022, 

Kohli et al., 2016a, Pratomo et al., 2017, Mugiraneza et al., 2019). The strength of object 

oriented approaches (OOA) for informal settlement analysis is in its capability to incorporate 

spectral, spatial and contextual characteristics of an image, which intensify potential to capture 

informal settlement morphological diversities (Kohli et al., 2016a, Kohli et al., 2013a). Kohli 

et al. (2016a) used OBIA to map informal settlements in Pune, India, using Quickbird imagery, 

and yielding overall accuracy of 80.8%. In another study, Fallatah et al. (2019) mapped 

informal settlements in Jeddah, Saudi Arabia, and distinguished informal and formal areas with 

an overall accuracy of 83%. Fallatah et al. (2020) advanced Fallatah et al. (2019) ’s work and 

took advantage of machine learning, synergistically combined with OBIA to improve informal 

settlement mapping in Saudi Arabia, achieving enhanced overall accuracy of 91% from 

GeoEye-1 imagery. An attempt to integrate data from 2 sensors for OBIA was presented by 

Fallatah et al. (2022), combining GeoEye-1 and Landsat data in the Middle Eastern 

environment achieving overall random forest (RF) classification accuracy of 95%. These past 

efforts focused on the ontological framework suggested by Kohli et al. (2012) using a range of 

informal settlement indicators for segmentation at different scale levels. In that regard, Fallatah 

et al. (2019) reported the need for expert knowledge in transferring informal settlement 

indicators into local knowledge. In addition, the popularly used eCognition software, for 

segmentation, requires high level of image analysis skill in translating such indicators into 

informal settlement identification (Fallatah et al., 2019). Also, the framework involves different 

levels of rigorous segmentation as well as numerous processing steps for the classification 

refinement, at different spatial levels (Mugiraneza et al., 2019). Sometimes, segmentation and 

classification are performed in two different softwares (Fallatah et al., 2020). Fallatah et al. 

(2020) described the whole process as time consuming and cumbersome. In fact, numerous 

processing steps enforce a weighty computational and storage burden on local computation 

platforms. 
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Google Earth Engine (GEE), with its engrained segmentation algorithms, has presented 

potential solutions to long proven challenges of complex segmentation and classification steps 

encountered when using classical image processing softwares. GEE’s open access and 

accessibility of advanced classification algorithms, coupled with its parallelized framework 

throughscripting (Phan et al., 2020) presents ease of analysis, classification as well as 

visualization of outputs (Shafizadeh-Moghadam et al., 2021). Besides being a powerful 

platform for image collection and organisation (Teluguntla et al., 2018), GEE provides an 

application program interface for summoning, processing, and stacking image input data, 

running all analyses in parallel (Kelley et al., 2018). Within GEE, 3 segmentation algorithms 

can be implemented, which include, K-means, G-means, and Simple Non-Iterative Clustering 

(SNIC) (Yang et al., 2021). According to Achanta and Susstrunk (2017), SNIC is 

computationally cheaper and uses lesser memory than the K-means and G-means. The 

feasibility of SNIC algorithm for object based mapping applications has been investigated (Luo 

et al., 2021, Qu et al., 2021, Shafizadeh-Moghadam et al., 2021, Vizzari, 2022). SNIC has been 

successfully employed for LULC mapping using PlanetScope, Sentinel -2, and Sentinel -1 data 

for central Brazil (Vizzari, 2022), for winter wheat mapping, using Sentinel- 2 in China (Yang 

et al., 2021) and for crop mapping in China, using Sentinel 1 data (Luo et al., 2021). Significant 

improvements in mapping accuracy have also been reported when OBIA approach was 

integrated with Grey Level Co-occurrence Matrix (GLCM) texture features within GEE 

(Shafizadeh-Moghadam et al., 2021, Tassi et al., 2021, Tassi and Vizzari, 2020, Vizzari, 2022). 

GLCM algorithm permits the calculation of image textural indices based on second-order 

statistics for image texture analysis (Mugiraneza et al., 2020). According to Kohli et al. 

(2013a), a texture analysis approach is critical in discriminating between, sometimes difficult 

to distinguish, formal and informal areas using the OBIA technique. 

 

The advent of Google Earth Engine has also increased data accessibility through the engrained 

abundant imagery archives, for example Sentinel-1 and -2 (S1 and S2), Landsat and MODIS 

(Zhang et al., 2019a). Of late, the accessibilty of high resolution PlanetScope (PL) data within 

GEE has made OBIA implementable in the mapping of heterogeneous terrestrial environments 

(Vizzari, 2022). To take advantage of variations in spectral or spatial domains of sensors 

available within the GEE platform, GEE presents opportunities for data fusion (Li et al., 2022). 

Whilst optical sensors, for example S2, are sensitive to reflectivities of ground targets 

(Mahdianpari et al., 2018c), SAR sensors (e.g S1) are  reactive to their structural, textural, and 

dielectric characteristics (Mahdianpari et al., 2017). Amani et al. (2019a) added that SAR data 
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can provide more differentiable land cover information than multi-spectral data. The 

synergistic use of different sensors such as S1, S2 and PL EO data has offered opportunities 

for different mapping applications, especially in highly dynamic fragmented landscapes. For 

instance, Mahdianpari et al. (2018b) integrated S2 and S1 for wetland mapping. Almost 

similarly, Tavares et al. (2019) combined S2 and S1 for urban land use/land cover (LULC) 

mapping in Brazil. Vizzari (2022) and Rao et al. (2021) compared the performances of 

PlanetScope, Sentinel-2 and Sentinel-1 for LULC and crop mapping, respectively. The authors 

demonstrated the benefits of integrating data from all three sensors, yielding accuracy levels of 

91% and 85%, respectively. Research endeavours that incorporated PL imagery reported 

improved classification of subtle features (Rao et al., 2021, Tassi and Vizzari, 2020, Vizzari, 

2022), presenting opportunities for semantic abstraction of small deprivation pockets, whose 

identification is inherently difficult (Fallatah et al., 2022). According to Bwangoy et al. (2010), 

classification of multi-source satellite data yields more accurate classification results than that 

achieved by a single source data.  

 

Owing to this background, the study sought to integrate data from PL, S2 and S1 and perform 

GEOBIA, within GEE, to map spatial heterogeneity of morphological informal settlements in 

a geographically diverse Durban landscape, South Africa. To the extent of the authors’ 

knowledge, there has not been any study that has exploited OBIA on PlanetScope imagery for 

capturing structural heterogeneity of informal settlements. Most importantly, GEOBIA, 

comprising integration of object segmentation and object textural analysis, has not been 

exploited for informal settlement analysis within the GEE environment.  

The main objectives of the study are to: 

1) develop an improved, reliable and reproducible object-based classification workflow, 

using GEE, for capturing high morphological variability in an informal settlement 

landscape  

2) investigate SNIC based OBIA, within GEE, in accurately capturing subtle deprivation 

pockets in a heterogeneous landscape  

3) exploit the potential of multiple datasets to synergistically enhance semantic abstraction 

of morphologically diverse areas of deprivation in fragmented built up area of Durban 
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5.2. Methodology 

The workflow of this approach mainly included image acquistion, pre-processing, and 

composition, image segmentation and texture feature extraction, random forest classification, 

and accuracy assessment (Figure 5.1). Firstly, PlanetScope, Sentinel-2 and Sentinel-1 images 

were collected for the chosen period and study area. Secondly, segmentation of the image into 

clusters was performed using SNIC algorithm. Thirdly, GLCM algorithm was computed for 

the calculation of texture metrics. Fourth, object-based classification was performed using 

Random Forest protocol. The confusion matrix was finally computed for accuracy assessment. 

The GEE platform was utilized for implementation of all the mentioned procedures. 

 

 

Figure 5.1. Flowchart showing summary of procedures used in this study  
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5.2.1. Data collection, pre-processing, and image composition 

 

According to Tassi et al. (2021), an important step in LULC classification within GEE is the 

generation of the base composite dataset. The study utilized data from two optical sensors, 

PlanetScope and Sentinel-2, and one radar sensor, Sentinel-1, that fell within the study period 

(1 June 2021 to 31 December 2021). PL imagery are acquired by 120 CubeSat 3U satellites 

measuring 10 x 10 x 30 cm, referred to as a dove (Marfai et al., 2018). Its sensors can detect 

four spectral bands (RGB and NIR) with a spatial resolution of between 3–5 m. The high-

resolution composite base maps for PL have lately become accessible in GEE for the tropical 

regions, appreciations to the alliance between Google and the NICFI (Norway’s International 

Climate and Forest Initiative). In the study period, PL images are available in GEE as cloud-

free monthly composite. S2 data, already available in GEE as orthorectified and radio-corrected 

to provide surface reflectance values, was utilized in the analysis (Vizzari, 2022, Carrasco et 

al., 2019). S2 images were filtered considering the cloud coverage of less than 10%. In this 

step, the study leveraged band QA60 of S2 that signifies the opaque and cirrus clouds to mask 

cloud cover for S2. 

  

Normalized difference vegetation index (NDVI), and normalized difference water index 

(NDWI) were computed from PL data, while bare soil index (BSI) was calculated using S2 

data. Being the widely used index in texture-based informal settlement detection (Kuffer et al., 

2016b, Mudau and Mhangara, 2021), NDVI quantifies vegetation cover and better 

discriminates LULC classes. According to Bouzekri et al. (2015), NDWI is the best index for 

distinguishing road networks, for example tarred roads in formal areas against a mixture of 

sand, gravel and mud which is characteristic of informal settlements. In addition to capturing 

brightness of roads, thus, detecting tarred roads with low brightness (Fallatah et al., 2020), 

NDWI also identifies water bodies (Carrasco et al., 2019). The NDVI layer was calculated 

from the red (B3) and near-infrared (B4) bands of the PL image, whilst NDWI was computed 

from the green (B2) and near-infrared (B4) bands of the same satellite. BSI is an index 

constructed from a combination of the NDVI and the normalized difference built-up index 

(NDBI) (Diek et al., 2017). The index effectively distinguishes bare land from built up land, 

land cover classes with relatively similar spectral characteristics (Nguyen et al., 2020).  

 

S1 carries a single C-band synthetic aperture radar instrument that supports operation in single 

polarization (HH or VV) and dual polarization (HH+HV or VV+VH). Following Tassi et al. 
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(2021), the study utilized two diverse polarisation modes which include single co-polarisation 

with vertical transmit/receive (VV) and dual-band co-polarization with vertical transmit and 

horizontal receive (VH). Following Vizzari (2022), the ratio between two polarization modes 

was used to create an additional band, VH_VV. The ratio feature partially compensates for the 

radiometric instability of the sensor and shows higher stability than the single polarization 

(Vergni et al., 2021). The ratio has been proven promising for identifying non-forested 

wetlands (Amani et al., 2019a). The mean values were obtained in GEE with a simple “reduce” 

step for all the PL, S2, and S1 bands and derived indices, thus creating 6-month composite 

images.  

5.2.2. Image segmentation with SNIC 

Segmentation involves splitting an image into objects by clustering neighbouring pixels with 

common values (Hu et al., 2018). The current study implemented image segmentation within 

the GEE environment, using the SNIC algorithm. SNIC is an enhanced version of Simple 

Linear Iterative Clustering algorithm (SLIC) (Achanta et al., 2012) which uses super pixel 

segmentation to simplify image into discrete clusters of image connected pixels (Achanta and 

Susstrunk, 2017). In the current research, SNIC analysis was executed on the visible and NIR 

(4) bands of PL datasets, segmenting the image into a set of super pixels. Within the GEE 

platform, SNIC categorizes the objects (clusters) with regard to the set input parameters, visits 

pixels only once and clusters pixels without iterations (Achanta and Susstrunk, 2017). The 

input parameters  include: “image”, “size”, “compactness”, “connectivity”, “neighbourhood 

size” and “seeds” (Luo et al., 2021) (see (Shafizadeh-Moghadam et al., 2021) for definitions). 

Of these parameters, Shafizadeh-Moghadam et al. (2021) iterated that the main ones are 

“compactness factor”, the “connectivity”, and a “neighborhoodSize”. Accordingly, after 

consideration of landscape characteristics in the area of study, these parameters were 

experimentally set as follows: “compactness” = 1, “connectivity” = 8, “neighbourhood Size” 

= 128. The selection of parameters  and parameter values are based on repeated iterations as 

well as visual evaluation of the outputs (Tassi et al., 2021, Qu et al., 2021). SNIC is performed 

using a regular grid of seeds as input generated by the “Image. Segmentation.seedGrid” 

function (Tassi and Vizzari, 2020) which requires a super pixel seed  location spacing (in 

pixels) for the generation of seed grid. After consideration of the textural characteristics of the 

landscape patches in the study areas, seed spacing values (5, 10, 15, 20) were also tested 

iteratively and was then set at 10 for PlanetScope. To create the dataset for classification, the 
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(2020) demonstrated the reliability of VHR image depiction as an independent source for 

validation data collection. For the area assessment, polygons for these ground truth samples 

were digitized and their areas measured. Corresponding areas for the classified patches for the 

same identified samples were also calculated. The statistical evaluation of correct depiction of 

spatial extents was carried out using regression analysis in R statistical software, using root 

mean square log error (RMSLE) and mean absolute percent error (MAPE) accuracy metrics.  

5.2.6. Feature Importance Assessment 

The current research utilized RF algorithm for variable importance evaluation. According to 

Zhao et al. (2022), the evaluation of variable importance score entails turning into a number, 

the contribution of a feature parameter in terms of impact on the accuracy. A variable 

importance graph was drawn in GEE to show the relevance of all the features used in the 

classification. This graph supported an iterative selection of the most relevant features in the 

classification. 

5.3. Results 

5.3.1. Accuracy assessment of the LULC map 

The LULC object-based classification map using PL, S2, and S1 combined data is presented 

in Figure 5.2. The Google Earth Pro imagery and a confusion matrix were jointly used for the 

visual and statistical analysis of LULC map, respectively. For effective demonstration of 

classification details, some informal settlement areas were selected from the classified map and 

compared with their corresponding Google Earth Pro images. Visually, when compared with 

high-resolution satellite imagery, results of LULC classification indicates that SNIC based 

object-based classification using integrated data inputs from PL, S2 and S1 accurately captured 

informal settlements.  
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Figure 5.2. Comparison of results of informal settlements and LULC classification (a) and 

(c), and visual appearance of sample informal settlements on an RGB image (b) (circled in 

red) 
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Figure 5.3. Classified informal settlement patch areas against ground truth patch extents 

5.3.2. Relative contribution of input variables in RF classification  

Figure 5.4 shows the relative importance of the different input features in the classification 

model, and the sensors from which the features are derived. The results indicate that band 8, 

blue band, NDWI, BSI, T5 (homogeneity), and T4 (variance) were the six most important input 

variables in the classification. Homogeneity was the most important texture variable. 

 

Figure 5.4. Importance assessment of LULC classification features  
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5.4. Discussion 

The current study sought to assess the capability of object-based image classification, 

performed within GEE’ cloud computing environment, for improved mapping of complex 

informal settlement morphologies. The study capitalized on the embedded SNIC segmentation 

algorithm, the GLCM algorithm, as well as availability of high-resolution PL imagery within 

GEE to precisely capture informal settlement diversities in a heterogeneous built-up landscape. 

Versatility of the coding platform available within GEE (Hamud et al., 2021) and good 

reliability of GEE integrative packages for feature construction and ease of classification 

process have been explored to allow reproducibility of reliable maps. This study is the first to 

introduce OBIA in GEE for informal settlement identification. 

 

Generally, the results of the analysis demonstrated that performing OBIA on a three-sensor 

dataset, within the GEE was successful in accurately depicting all LULC classes in the study 

area, yielding overall accuracy of 96%. This accuracy value is way above 85% which, 

according to Kpienbaareh et al. (2021), is a threshold for good classification. Class specific 

accuracy results also indicated that all classes were accurately captured with F-score values 

ranging from 87% to 100%. Such high classification results demonstrate the proficiency of 

OBIA classification within GEE. Informal settlement identification accuracy of 87% 

demonstrates how an improved workflow within the GEE can generate high quality informal 

settlement map in an area with high morphological variability. The results confirm proficiency 

of experimental design and code writing (Luo et al., 2021) in allowing accurate informal 

settlement identification. Taking advantage of enfolded SNIC segmentation algorithm, and 

integrated data from PL, S2, and S1, the results confirm the potency of the approach in 

capturing variability of spatial characteristics of informal settlements in a heterogeneous urban 

environment of Durban. Mirroring the findings, both overall and at class level, the RF model 

was also able to capture the inner structural heterogeneity in the informal settlement landscape. 

The importance of RF in mapping complex environments using GEE is emphasized (Qu et al., 

2021, Shafizadeh-Moghadam et al., 2021, Tavares et al., 2019, Vizzari, 2022). The current 

findings concur with previous studies that integrated sensors using GEE in mapping complex 

environments, for example, crop types (Kpienbaareh et al., 2021, Rao et al., 2021), and LULC 

in the complex agri-natural space (Vizzari, 2022). Their studies suggested the importance of 

including all the sensors in the classification. Agreeing with Bwangoy et al. (2010)’s assertion 

that classification of multi-source satellite data yields higher classification performances in 

comparison with the perfromance of a single source data, Vizzari (2022) observed that the more 
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accurate textural analysis on image objects computed from PL data, integrated with the spectral 

information derived from S2 and S1 boosted the efficacy of the three-sensor dataset 

combination.  

The high accuracy levels shown from integrating various datasets are also in agreement with 

earlier efforts by  Fallatah et al. (2022), who through the integration of GeoEye data with time-

series Landsat data confirmed relevance of integrating data from different sensors in informal 

settlement mapping. Their study was advancing works by Fallatah et al. (2019) and by Fallatah 

et al. (2022) in their object based mapping of informal settlements in Jeddah, Saudi Arabia. 

The integrated efforts by Fallatah et al. (2022) yielded overall accuracy levels of 95%, 

compared to 83% for OBIA alone (Fallatah et al., 2019), and 91% for integrated machine 

learning and OBIA (Fallatah et al., 2020).  

 

The suitability of texture parameters in clearly distinguishing built up area from other complex 

classes especially bare land has been emphasized (Duque et al., 2015, Kohli et al., 2016a, Kohli 

et al., 2013a). Through the use of GLCM algorithm engrained within the GEE, contextual 

information for LULC mapping was added (Fallatah et al., 2019). However, compared with 

previous works on OBIA, there are inconsistencies in terms of the most contributing texture 

metrics in the classifications. For instance, the current study revealed that, homogeneity 

attained the highest importance score of all the texture features. The result is not in agreement 

with other studies (Fallatah et al., 2020, Fallatah et al., 2022) who, after investigating contrast, 

entropy, homogeneity, correlation, and mean, found contrast and entropy to be the most 

significant texture parameter at settlement level. Also, in an earlier study, Duque et al. (2015) 

utilized entropy to map informal settlements layout and other land cover classes. In another 

study, Lai and Yang (2020) found variance to be of high merit in the separation of built up 

areas. In a more comprehensive manner, Lai and Yang (2020) explained that the relevance of 

particular textural measures in capturing heterogeneity is reliant upon myriad of influencing 

factors that range from image spatial resolution, convoluted landscape, complexity of 

relationships among multifarious land cover categories, as well as the choice of suitable 

textural features. For instance, in the context of variability in landscape components, Fallatah 

et al. (2019) revealed that informal settlements in Jeddah differ in typology with informal 

settlements in other cities in Asia, and others in Africa, in that both formal and informal 

settlement types are made up of similar building materials, causing textural complexities. On 

the other hand, in Pune, slums generally have diverse appearances that differ with planned 

residential complexes (Shekhar, 2012, Kohli et al., 2016a), whilst in Durban, they are usually 
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made up of corrugated iron, plastics and wood, with some upgraded areas showing similarity 

with formal areas. Pratomo et al. (2017) also indicated that such variability in morphology 

renders textural features’ contribution context specific and, sometimes, data dependant. 

 

Although high classification accuracies have been attained using OBIA methods within GEE 

platform, there have been some uncertainties in the identification of informal settlements. From 

the confusion matrix (Table 5.4), there is evident misclassification between informal 

settlements and “other urban” class. Whilst OBIA could accurately capture the spatial patterns 

of urban morphology, varying interurban morphological informal settlement features could 

explain the confusion (Stark et al., 2020). In confirmation, Fallatah et al. (2019) alluded to the 

complexity of urban areas because of their characteristic intermix of diverse man-made and 

natural features, which may engender confusion between the object and its spectral reflectivity. 

According to Taubenböck et al. (2018), a vital requirement in the delineation of informal 

settlements is capability to identify small pockets of deprivation for informed decision making. 

Although all LULC classes could be accurately captured in the current study, the approach 

failed to capture some discrete informal settlement patches. Figure 5.5 shows an informal 

settlement that is evident on high resolution RGB imagery (Figure 5.5 (d), red rectangle), but 

missing on a classified image (Figure 5.5 (c), red rectangle). 

 

Figure 5.5. (a) shows misclassified informal settlement patches that on the ground (b) are 

commercial buildings. The black rectangles, (c) and (d), indicate misclassification of bare land 

(d) as informal settlement (c) (red patch). The red rectangle indicates missed informal 

settlement (c) that exists on the ground (d) 
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Such uncertainties can be explained in terms of complexity in defining the term informal 

settlement (Pratomo et al., 2017). For instance, the same characteristic of density may differ 

locally depending on developmental stages of informal settlements, presenting inner-structural 

heterogeneity of these areas of deprivation (Kohli et al., 2012). Imprecisions may also be 

explained in terms of similarity in some morphological characteristics with formal built up 

structures (Mugiraneza et al., 2019). There is also evidence of other built-up areas, for example, 

commercial buildings being misrepresented as informal settlements (Figure 5.5a, black 

rectangle). The misclassification can be explained in terms of similarity of roofing materials, 

causing textural complexity. Evidently, confusion was also displayed between bare land and 

informal settlements. An informal settlement patch exists (Figure 5.5c, black rectangle) on an 

area that is predominantly bare (Figure 5.5d, black rectangle), which is evidence of potential 

similarity in spectrum (Kohli et al., 2016a). According to Gevaert et al. (2016) rusted iron 

sheets, that is common roofing material in informal settlements, tend to be reflect similarly to 

bare soils which are usually reddish in colour. 

 

Conceptual imprecision in OBIA within the GEE platform may also be compounded by 

complexity in application of segmentation algorithms in particular areas (Qu et al., 2021). 

Myint et al. (2011) observed that, because of landscape heterogeneity, unvarying segmentation 

parameters may not yield the best results for all LULC types. Qu et al. (2021) added that 

segmentation results may be compromised due to similarity in spectral characteristics among 

different land cover classes, as well as complexity in delineating the boundaries between the 

objects, especially, between formal and informal areas. Some researchers (Amani et al., 2019a, 

Hay Chung et al., 2021) also noted that misclassifications could result from the quality of 

training samples that largely affects performance of classifiers, resulting in failure to capture 

the dynamics. In that regard, Pratomo et al. (2017) propounded that it is critical to explicitly 

clarify these uncertainties’ influence on classification results when aiming at remote sensing 

based informal settlement mapping. 

 

However, not withstanding the limitations, the present study exhibited the value of classifying 

informal settlements utilizing OBIA and multi-source data within GEE.  
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5.5. Conclusion 

This study presented an object-based approach for informal settlement identification within the 

GEE, using integrated datasets from PL, S2 and S1. GEE cloud computing was successfully 

applied for informal settlement mapping in Durban, South Africa. The GEE provided a 

powerful analysis platform for classification, allowing image segmentation and texture feature 

extraction using inbuilt SNIC and GLCM algorithms, respectively.  

 

The main conclusions were: 

• The produced informal settlement map yielded high overall accuracy and informal 

settlement identification accuracy of 98% and 94%, respectively.  

• Spatial accuracy assessment yielded RMSLE of 0.69 and MAPE of 0.28 

• The derived error metrics presented reasonable agreement between the classified output 

with the ground truth statistics from Google earth Pro. 

The results indicated that the proposed object-based approach satisfactorily captured the 

morphological variations within the informal settlement of Durban and could form the basis 

for derivation of subsequent on demand products. 

 

5.6. Summary 

GEOBIA was successfully implemented within GEE yielding high overall and class specific 

accuracy levels. It is important to note that informal sttlement mapping has implications for 

policy. The LULC map provides valuable information about the location and extent of informal 

settlements which can also contribute to understanding of the amount of loss and gain in 

informal settlement areas over time. The next chapter presents an appoach that analyzes inter 

categorical transitions that are as a result of informal settlement expansion.  Intensity analysis 

will be implemented to provide a systematic analysis of growth patterns of infomal settlements  

linking pattern to process. The understanding of informal settlement dynamics would assist in 

planning and fundamental decision making for expediting informed management of cities. 
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CHAPTER SIX: 

 

Characterizing informal settlement dynamics using GEE and intensity analysis in 

Durban Metropolitan area, South Africa: Linking pattern to process  

This chapter is based on: 

Matarira, D., Mutanga, O., Naidu, M., Mushore, T. D., & Vizzari, M. (2023). Characterizing 

Informal Settlement Dynamics Using Google Earth Engine and Intensity Analysis in Durban 

Metropolitan Area, South Africa: Linking Pattern to Process. Sustainability, 15(3). 

doi:10.3390/su15032724 

 

Abstract: 

The growing population in informal settlements expedites alterations in land use and land cover 

over time. Understanding the patterns, processes of landscape transitions associated with 

informal settlement dynamics in rapidly urbanizing cities is critical for better understanding of 

consequences, especially in environmentally vulnerable areas. The study sought to map and 

systematically analyze informal settlement growth patterns, dynamics and processes and 

associated land use and land cover transitions in Durban Metropolitan area, from 2015 to 2021. 

The study applied an object-based image classification on PlanetScope imagery within the 

Google Earth Engine platform. Further, intensity analysis approach was utilized to 

quantitatively investigate inter category transitions, at category, and transition levels. Thus far, 

no study of land conversion to and from informal settlement areas in South Africa has been 

exploited using both Google Earth Engine and intensity analysis approaches. The results 

suggest spatial growth of informal settlements with a total net gain of 3%. Intensity analysis 

results at category level revealed that informal settlements were actively losing and gaining 

land area within the period, with yearly gain and loss intensity of 72% and 54%, respectively, 

compared to the uniform intensity of 26%. Whilst the growth of informal settlements avoided 

water bodies over the studied period, there was an observed systematic process of transition 

between informal settlements and other urban land. Government policy initiatives in upgrading 

informal housing could be attributed to the transitions between informal settlement and other 

urban. This study illustrates the efficacy of intensity analysis in enhancing comprehension of 

the patterns and processes in land changes, which aids decision-making for suitable urban land 

upgrading plans in the Durban Metropolitan area. 

 

Keywords: Intensity analysis; informal settlements; land-use transition; systematic transition 
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6.1. Introduction 

Globalization, typifying advancements in the economic and social dimensions (Rodriguez 

Lopez et al., 2017) has stirred urban population dynamics, with subsequent emergence of social 

inequalities in most cities of the global south (Balsa-Barreiro et al., 2019). Informal settlements 

are growing at unprecedented rates in response to disjointed urbanization (Jones, 2017), 

instigating major land use/land cover (LULC) changes, with implications on functioning of 

urban landscape components and disaster risk (Samper et al., 2020, Tellman et al., 2022). 

Systematic empirical analysis of their growth patterns and comprehension of associated LULC 

transitions are critical in addressing questions that deal with how much, what kind of land is 

consumed and the process at play (Solecki et al., 2013). Subsequent findings would be key in 

the modelling of future rates of change, with potential to reveal insights on better matched 

solutions, whether in the form of informal settlement management policies or adaptive 

strategies (Mwangi et al., 2017, Samper et al., 2020).  

 

With its characteristic repeat coverage, remote sensing is an important data source for 

producing consistent and easily updateable land use maps that allow detection of relationships 

between different classes of LULC changes (Msofe et al., 2019). In recent times, increasing 

availability of high-resolution time series data within the Google Earth Engine (GEE) data 

archives have brought forth robustness in mapping urban area LULC changes. Since the advent 

of GEE, scores of studies have harnessed GEE’s powerful image processing capabilities in 

accessing multi temporal data (Li et al., 2020), as well as its estimation tools for change 

detection analyses in broader urban areas (Hamud et al., 2021, Mugiraneza et al., 2020, 

Rudiastuti et al., 2021). For instance, Celik ( 2018) investigated the possibilities of identifying 

changed areas in Ankara, Turkey, using Sentinel-1 and Sentinel-2 within GEE. In one study, 

Mugiraneza et al. (2020) used Landsat data for continuous monitoring of urban land cover 

change trajectories in Kigali Rwanda. In another study, Zurqani et al. (2019) mapped urban 

growth trends in a forested landscape in South-eastern United States. These analyses were able 

to identify the patterns, magnitude, as well as rates of LULC changes (Mwangi et al., 2017). 

Even though, several studies (Fuchs et al., 2015, Manandhar et al., 2010, Xie et al., 2020) have 

discounted net change analyses due to failure to account for all area gains and losses, and 

incapacity to offer in-depth signals concerning land changes, as well as insight into the 

underlying processes (Huang et al., 2018, Xie et al., 2020, Yuan et al., 2015). In as much as 

zero net change may ordinarily mean absence of change, there could be a probability of location 
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changes or swapping among categories (Mwangi et al., 2017). A comprehensive understanding 

of observed change patterns and their link with processes responsible for the changes is 

insightful as it allows integration of remote sensing and social science in developing sustainable 

urban management policies (Badmos et al., 2018). 

 

Intensity analysis framework analyzes land cover changes by considering categorical 

transitions with regard to gains, losses, net change and swapping (Aldwaik and Pontius Jr, 

2013). Apart from being designed to gain in-depth understanding of factors and processes 

driving LULC changes, the mathematical approach allows visualization of both the size and 

intensity of land transitions, and evaluates the consistency and irregularity of the LULC 

patterns (Akinyemi et al., 2016, Zhou et al., 2014). Intensity analysis is designed to explore 

changes among land categories at three levels: interval, category and transition, quantifying the 

deviation between observed change intensity and hypothesized uniform change intensity (Yang 

et al., 2017). In addition to consideration of the sizes of categories in the calculation of change 

intensities (Hasani et al., 2017, Quan et al., 2019), the approach allows detection of systematic 

and random processes of landscape transitions (Mwangi et al., 2017, Teixeira et al., 2014). 

Identifying the processes at play would aid in relating the observed change patterns to possible 

causes and potential pressures on environmental sustainability (Pontius et al., 2004, Teixeira 

et al., 2014).  

 

A plethora of studies have successfully employed intensity analysis in various applications 

(Huang et al., 2012, Mushore et al., 2022, Nyamekye et al., 2020, Quan et al., 2019, Tong et 

al., 2020, Yang et al., 2017). In an earlier study, Gandharum et al. (2022) used Landsat data to 

produce LULC maps within GEE and incorporated intensity analysis, simultaneously, to 

explore the influence of urban growth on agricultural land in the north coastal region of West 

Java Province. In another study, Tong et al. (2020) employed intensity analysis and barycenter 

migration models to investigate land use dynamics from 1990 to 2015 in four municipalities of 

China (Beijing, Tianjin, Shanghai, and Chongqing). Results of intensity analysis revealed that 

transitions were mainly between arable land and construction land. Also, Nyamekye et al. 

(2020) utilized a combined approach of machine learning and intensity analysis to investigate 

the changes among the major LULC categories in New Juaben Municipality, Ghana. Their 

results indicated that transitions between built-up and agricultural land were the most 

prominent. Mushore et al. (2022) used local climate zones (LCZs) and intensity analysis to 

assess the influence of long-term urban growth on surface urban heat islands. Results of 
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transition level intensity demonstrated that growth of built LCZs was rampant in areas 

designated as water, low plants and dense forest LCZ in the two analysed intervals (2005-

2020). Results of transition-level analysis proved that the expansion of built-up areas strongly 

targeted agricultural land. Notably, majority of the afore mentioned studies focused on the 

broader LULC changes involving built up areas, a broad class including all impervious surfaces 

in a locality. In one of the first attempts, Badmos et al. (2018) applied intensity analysis for the 

quantification of yearly change intensities at categorical and transitional levels, relating 

patterns and processes of informal settlement expansion in Lagos city. Their results revealed 

that, at category level slums gained and lost in land area, simultaneously. One of the 

explanations for the gain was encroachment onto bodies of water and vacant space. Most 

importantly, the loss was explained in terms of gentrification and demolition processes.  

 

Durban is a city with rapidly expanding informal settlement landscape. The city’s spatial 

structure is neither shaped by planned growth nor is it a vision of urban form, but a result of 

legacy of past Apartheid based planning (Loggia and Govender, 2019). The legacy has caused 

inequalities in access to decent housing causing spread of lower income settlements, that are 

usually located on precarious land (Jagarnath et al., 2019). Reflecting on the morphology of 

informal settlements in Durban, the informal settlements locate close to road networks, on 

vacant land, steep slopes, sometimes characterized by fragile soils, and follow natural features 

such as rivers or ravines (Marx and Charlton, 2003a). Such locations make the residents 

vulnerable to landslides and flood hazards, during extreme climatic conditions. Since the 

inception of the South African Constitution (1996), the South African government has 

developed proactive urban policies aimed at transforming spatial visions for the country’s 

cities, restructuring its urban spaces as well as emphasizing sustainable urban development and 

land use management (Berrisford, 2011, Ogunrobi, 2014). To underscore the national urban 

agenda, policy frameworks that have been developed include the National Spatial development 

Framework (NSDF), Spatial Planning and Land Use Management Act, as well as Integrated 

Urban Development Framework, 2016 (IUDF) (Ogunrobi, 2014).The policies’ priorities are to 

ensure effective and improved management of urban spaces and achieve cities and human 

settlements that are inclusive, safe, resilient and sustainable, as informed by Sustainable 

development Goal 11 (Van der Berg, 2017). 
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Of late, Durban has been experiencing worst climate scenarios in terms of flood hazard, with 

informal settlement dwellers being the worst affected. For instance, Quarry Road settlement 

had on several occasions been badly affected by the impacts of floods, with the huge impacts 

being attributed to their location on a road reserve and flood plain (Membele et al., 2022b, 

Williams et al., 2018, Williams et al., 2019). Despite the flood impacts, Quarry Road West has 

also undergone several periods of rapid expansion with most of these occurring just after 

significant flood (Williams et al., 2018). Such developments create evidence that, whilst, the 

mapping of perimeter extensions serves as a tool to confirm the challenges and resilience of 

informal settlements (Samper et al., 2020), in depth analysis is required to link the pattern and 

the process, and subsequently establish the possible driving forces. In support, Manzoor et al. 

(2022) iterated that intensity analysis can support evidence for a hypothesized change process 

and, sometimes, potential for development of new hypotheses. According to Solecki et al. 

(2013), lack of intrinsic analysis of the fundamentals involved in land use change makes 

interpretations fragmented, lacking scientific consensus on which to build evidence based 

policies. Therefore, there is need for in-depth analysis such as authored by intensity analysis in 

order to improve interpretation of land use changes especially in complex settings of informal 

settlements. 

 

Owing to this background, the current study sought to exploit intensity analysis approach to 

quantitatively measure the spatiotemporal changes of LULC and understand the dynamics of 

informal settlements in Durban over a period of six years. Currently, there are limited land 

change studies in South Africa (Jagarnath et al., 2019). Moreso, most previous land cover 

change studies in Durban focused on general land changes with focus on the transitions 

between vegetation and broader built up land but little focus on informal settlements (Jagarnath 

et al., 2019, Mazeka et al., 2021, Otunga et al., 2014). The aforementioned studies largely used 

the “from-to” change detection approach which is not as revealing of the change process as 

with intensity analysis. Besides the usual “from-to” analysis, intensity analysis also calculates 

important information such as which transitions are targeted or avoided by specific classes 

during a period. Intensity analysis will not only show changes in coverage of informal 

settlements but also has potential to depict and quantify the land use and land cover types that 

were affected by their dynamics. Interestingly though, Jewitt et al. (2015) earlier attempted to 

apply intensity analysis to systematically analyze land cover changes in Kwa-Zulu Natal 

Province, South Africa but with focus on impacts of the changes on biodiversity loss. 
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The current study expands on work done by Gandharum et al. (2022) in the combined use of 

GEE and intensity analysis. Whilst Gandharum et al. (2022) successfully combined the two 

approaches, their focus was on agricultural land, and without emphasis on other important 

applications of intensity approach that links patterns to causes of change. In the study in Lagos, 

Badmos et al. (2018) characterized informal settlement growth over one time period using 

RapidEye data, but without exploiting GEE provisions. The SNIC algorithm embedded within 

the GEE afford solutions to complexities associated with tuning parameters for segmentation, 

which is cumbersome when classical image processing software, for example ENVI and 

ERDAS software, are involved. Object based classification would allow comprehensive 

empirical analysis of informal settlement dynamics using intensity analysis. Given the irregular 

nature and perceived expansion of informal settlements globally, it is crucial to understand area 

specific patterns in order to inform policies and strategies to ensure sustainable growth of cities. 

 

Badmos et al. (2018) conducted an in-depth analysis of informal settlement patterns in Lagos 

where spatial structures, temporal trends and government policies differ to those in South 

Africa. The current study provides an analysis specific to Durban, which is important for 

regional and international comparison, as well as for guidance of formulation of government 

and local policies and strategies towards sustainable and smart cities in South Africa. 

The specific objectives of the study are thus: 

1) To determine and examine spatiotemporal changes in LULC from 2015 to 2021 in 

Durban informal settlement landscape.  

2) Measure the intensity of land cover alterations involved during informal settlement 

expansion process. 

3) To link the informal settlement growth patterns with processes in land transitions, 

together with related national policy factors.  

6.2. Materials and methods 

6.2.1 Study area 

The area of study encompasses part of Durban metropolitan region, which includes the central 

city area of Durban. It is located in the province of KwaZulu-Natal, South Africa (Figure 1a) 

and stretches from 30°55′00″ E to 31°00′30″ E and from 29°50′30″ N to 29°47′30″ N, 

occupying an area of 7410 ha. Durban is characterized by an estimated population of 3.6 

million (Williams et al., 2018). The topography of the area is steep and highly undulating, 
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ranging from about 30 m to 120 m above sea level. The humid subtropical climate, with mean 

annual precipitation exceeding 1000 mm per annum describes the climate of Durban (Williams 

et al., 2018). In addition, warm, wet summers and mild, dry winters form part of the climate of 

the city. The morphological informal settlements in Durban follow a steep topography and 

often lead down to Umgeni River, making the residents vulnerable to flood hazards during 

extreme climatic conditions. Their location on vacant land, low land areas, steep slopes, 

sometimes characterized by fragile soils (Marx and Charlton, 2003a) often contribute to their 

exposure to landslides and flood hazards. For instance, the Havelock informal settlement is 

located on privately owned land and a portion within the Durban Metro Open Space System 

(Parikh et al., 2020), whilst the Quarry Road settlement is partly in close proximity to road 

network and in a flood plain. Durban’s landscape is described as complex, in terms of both 

physical and biological diversity perpetuated by varied use and ownership of the landscape 

(Jewitt et al., 2015). 

 

 

Figure 6.1. Study area selected in KwaZulu-Natal province (a), within Durban Metropolis (b), 

South Africa. (c) is the overview of the area obtained with an RGB PlanetScope imagery, in 

UTM/WGS84 plane coordinate 

The workflow of this approach mainly included (1) image collection, pre-processing, and 

composition (2) image segmentation and texture feature extraction, (3) object-based image 
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classification and accuracy assessment, (4) LULC change and intensity analysis (Figure 6.2). 

The first step involved the collection of PlanetScope and Sentinel-1 images for the chosen 

period and study area. Secondly, segmentation of the image into clusters was performed using 

SNIC algorithm and GLCM algorithm was computed for the calculation of texture metrics 

using PlanetScope data. Thirdly, object-based classification was performed using Random 

Forest protocol with subsequent accuracy assessment done using confusion matrix. Fourth, 

cross tabulation matrix was produced in ARGIS Pro. Finally, intensity analysis was performed 

using Pontius excel file. 

 

Figure 6.2. Work flow of the study 
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6.2.2. Data collection and pre processing 

The study utilized data from optical and SAR (Synthetic Aperture Radar), PL and S1 that fell 

within the study period (1 June 2021 to 31 December 2021). PL imagery are acquired by 120 

CubeSat 3U satellites measuring 10 x 10 x 30 cm, referred to as a dove (Marfai et al., 2018). 

Its sensors can detect four spectral bands (RGB and NIR) with a spatial resolution of between 

3–5 m. PL high-resolution composite base maps have recently become accessible in GEE for 

the tropical regions, thanks to the partnership between Google and the NICFI (Norway’s 

International Climate and Forest Initiative). In the study period, PL images are available in 

GEE as cloud-free monthly composite. Normalized difference vegetation index (NDVI), and 

normalized difference water index (NDWI) were calculated from PL data. NDVI and NDWI 

have been extensively used to improve the accuracy of classification in complex environments 

(Amani et al., 2019b, Mahdianpari et al., 2018a). The NDVI layer was calculated from the red 

(B3) and near-infrared (B4) bands of the PL image, whilst NDWI was calculated from the 

green (B2) and near-infrared (B4) bands of the same satellite. S1 carries a single C-band 

synthetic aperture radar instrument that supports operation in single polarization (HH or VV) 

and dual polarization (HH+HV or VV+VH). The study utilized two diverse polarization modes 

which include single co-polarization with vertical transmit/receive (VV) and dual-band co-

polarization with vertical transmit and horizontal receive (VH). Following Vizzari (2022), the 

ratio between two polarization modes was used to create an additional band, VH_VV. The ratio 

feature partially compensates for the radiometric instability of the sensor and shows higher 

stability than the single polarization (Vergni et al., 2021). The mean values were obtained in 

GEE with a simple “reduce” step for all the PL, and S1 bands and derived indices, thus creating 

6-month composite images.  

6.2.3. Object based image classification 

Object-based image analysis (OBIA) was utilized in the preparation of LULC maps for the 

2015 and 2021 time points, within the GEE. OBIA involves segmentation of images, that is 

splitting an image into homogeneous clusters of pixels called segments (Ye et al., 2018). 

According to Mui et al. (2015) the packaging of pixels into discrete objects minimizes the 

variance experienced by high spatial resolution images, allowing the objects, rather than 

individual pixels to be classified. In the current study, image segmentation was performed using 

SNIC algorithm within the GEE environment. SNIC categorizes the objects (clusters) 

according to the set input parameters, visits pixels only once and clusters pixels without 
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iterations (Achanta and Susstrunk, 2017). SNIC analysis was executed on the visible and NIR 

(4) bands of PL datasets, segmenting the image into a set of super pixels. Contextual 

information in the form of textural information was also extracted from the segments using 

GLCM algorithm within the GEE (Vizzari, 2022). Following prior studies that have 

incorporated image texture in OBIA for informal settlement detection (Fallatah et al., 2020, 

Fallatah et al., 2019, Fallatah et al., 2022, Prabhu and Alagu Raja, 2018), contrast, entropy, 

variance, homogeneity, mean and angular second moment were the texture indices employed 

in the mapping. Object based classification was carried out on the composite image made out 

of mean bands of PL ans S1. The LULC classification scheme included informal settlement, 

bare land, other urban, water, and vegetation (see Table 5.3 for LULC class descriptions). One 

thousand seven hundred fifty random sample points were collected and classified using high 

spatial resolution imagery. These points were used to train the RF classifier (70%) and for 

validation of the final LULC classification results (30%). 

6.2.4. Land-Cover Transition Matrix  

A post-classification technique was utilized for detection of transitions in the land use maps 

over the study period. The post classification was explored because of its provision of change 

matrix for different categories (Hasani et al., 2017). The superimposition of the LULC maps 

generated a transition matrix for 2015 and 2021. The matrix shows areas that transition from 

the initial category to the subsequent category (Huang et al., 2012). The study exploited the 

thematic change workflow in the ArcGIS Pro software package for the detection of the spatial 

changes in absolute terms, as well as through consideration of inter category transitions to and 

from informal settlements. The transition matrix/cross-tabulation matrix became the input for 

intensity analysis for the time period. The intensity analysis approach was carried out on 

category, and transition levels.  

6.2.5. Intensity Analysis  

Intensity analysis is a mathematical approach that examines LULC dynamics through 

calculation of categorical changes in relation to the sizes of the categories and the intensities 

of change (Nyamekye et al., 2020, Pontius et al., 2013). The approach depends on accessibility 

of maps for disparate time points, for the same area and consisting of the similar land cover 

categories. Because of limited availability of temporal data at high resolution, the current study 

’s focus was on one-time period (2015–2021). In this study, intensity analysis was carried out 
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using a PontiusMatrix41.xlsx available for free from www.clarku.edu/~rpontius and developed 

by Aldwaik and Pontius Jr (2013).  

6.2.5.1 Category level analysis 

The category level of analysis focuses on intensity of gain or loss of each land use type in the 

time interval (Pontius et al., 2013). Category analysis entailed examination of the degree and 

magnitude of gross gains and gross losses in five LULC classes and among different categories 

during time interval t (where t represents the time interval period 2015 to 2021), producing 

change trends for each individual LULC category. According to Quan et al. (2019), there is a 

common hypothesis with regard to the category level that suggests that for each interval, all 

categories undergo gross loss and gross gain with the same yearly intensity. The intensity of a 

uniform change during interval t is St. Equation (1) calculates the uniform intensity by dividing 

size of the transition by length of the time interval resulting in a percentage of spatial extent. 

Using Equation (2) a category’s annual gross gain intensity (Gtj) in an interval is determined 

by the size of the category’s annual gross gain divided by the size of the category at the final 

stage of each time interval (Quan et al., 2019). On the other hand, a category’s yearly gross 

loss intensity (Lti) in an interval is attained using Equation (3) by dividing the size of the 

category’s yearly gross loss by the size of the category at the starting point of each interval.   

 

The annual percentage of the study area that changed during the time interval, St, is  

calculated by 

     St = 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 [𝑌𝑡,𝑌𝑡+1]

(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑌𝑡,𝑌𝑡+1](𝐸𝑥𝑡𝑒𝑛𝑡 𝑆𝑖𝑧𝑒)
 x 100%  = 

∑ (∑ 𝐶𝑡𝑖𝑗
𝑗
𝑖=1 )−𝐶𝑡𝑖𝑗

𝑗
𝑗=1

(𝑌𝑡+1,𝑌𝑡)(∑ ∑ 𝐶𝑡𝑖𝑗
𝑗
𝑗=1

𝑗
𝑗=1

)
 x 100%              (1) 

 

The gross gain intensities, Gtj, were calculated by: 

         

Gtj = 
𝐴𝑛𝑛𝑢𝑎𝑙 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑗 𝑑𝑢𝑟𝑖𝑛𝑔 [𝑌𝑡,𝑌𝑡+1]

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑗 𝑎𝑡 𝑌𝑡+1
 x 100%   = 

[(∑ 𝐶𝑡𝑖𝑗
𝑗
𝑖=1 )−𝐶𝑡𝑖𝑗]/(𝑌𝑡+1−𝑌𝑡)

∑ 𝐶𝑡𝑖𝑗
𝑗
𝑖=1

 x 100%               (2) 

 

The gross loss intensities, Lti, were calculated by: 

         Lti= 
𝐴𝑛𝑛𝑢𝑎𝑙 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑖 𝑑𝑢𝑟𝑖𝑛𝑔[𝑌𝑡,𝑌𝑡+1]

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖 𝑎𝑡 𝑌𝑡
 x 100%   = 

[(∑ 𝐶𝑡𝑖𝑗
𝑗
𝑖=1 )−𝐶𝑡𝑖𝑗]/(𝑌𝑡+1−𝑌𝑡)

∑ 𝐶𝑡𝑖𝑗
𝑗
𝑖=1

 x 100%          (3) 
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Category level also provides information on all the dormant and active categories during that 

time period (Badmos et al., 2018). If Lti < St, or Gtj < St then we say the respective loss from 

category i or gain to category j during interval t is dormant. On the other hand, if Lti > St, or Gtj 

> St, then the respective loss from category i or gain to category j is considered active within 

the time interval t. 

Table 6.1. Mathematical notations used in the study 

Symbol Description 

T number of time points 

Yt year at time point t 

t index for the initial time point of an interval [Yt 

−Yt+1], where t ranges from 1 to T − 1 

J number of categories 

i index for a category at the initial time point of an 

interval 

j index for a category at the latter time point of an 

interval 

n index of the gaining category for the selected 

transition 

Ctij size of transition from category i to category j during 

interval [Yt −Yt+1] 

St annual change during interval [Yt −Yt+1] 

Gtj intensity of annual gain of category j during interval 

[Yt −Yt+1] relative to size of category j at time t + 1 

Lti intensity of annual loss of category i during interval 

[Yt −Yt+1] relative to size of category i at time t 

Rtin intensity of annual transition from category i to 

category n during interval [Yt −Yt+1] relative to size 

of category i at time t 

Wtn uniform intensity of annual transition from all non-n 

categories to category n during interval [Yt −Yt+1] 

relative to size of all non-n categories at time t 

 Adopted from (Kourosh Niya et al., 2019) 

6.2.5.2 Transition level analysis 

Intensity analysis at transition level evaluates which land-cover categories transition to which 

other land-cover categories in a process expressed as either “targeting” or “avoidance” 

(Manzoor et al., 2022). At this level, the size and intensity of transitions as a category gains 



132 

 

from other categories are calculated (Gandharum et al., 2022). In this study, the transition level 

focuses on informal settlement areas. Equation 4 and Equation 5 represent the transition level 

equations. Equation (4) calculates observed intensity Rtin of annual transition from category i 

to category n for a given time period relative to the size of category i at the start of the interval 

(Mwangi et al., 2017). It is the transition intensity from category i to category n where i≠ n. 

The observed intensity Rtin is compared with uniform intensity Wtn calculated using Equation 

(5) which assumes that category n gains uniformly across the landscape. If Rtin >Wtn, the gain 

of category n is considered to target category i at time t. In the event that Rtin <Wtn, the gain of 

category n is seen as avoiding the category i at time t.  

    

Rtin = 
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 [𝑌𝑡,𝑌𝑡+1]

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖 𝑎𝑡 𝑡
  = 

𝐶𝑡𝑖𝑛/(𝑌𝑡+1−𝑌𝑡)

∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

 x 100%                                    (4)                       

 

 

The uniform intensity for category n, Wtn, which distributes the intensity of annual 

transition gains to category n uniformly across the study area, is calculated by: 

 

  

Wtn = 
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 [𝑌𝑡,𝑌𝑡+1]

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑛𝑜𝑡 𝑛 𝑎𝑡 𝑡
 = 

[(∑ 𝐶𝑡𝑖𝑛
𝐽
𝑖=1 )−𝐶𝑡𝑛𝑛]/(𝑌𝑡+1−𝑌𝑡)

∑ [(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1 )−𝐶𝑡𝑛𝑗]

𝐽
𝑗=1

 x 100%                             (5) 

             

The transition level intensity allows the identification of which land use categories are 

targeted or avoided during the process of informal settlement expansion. 

 

6.3. Results 

6.3.1. Observed Patterns of LULC Change Dynamics 

Figure 6.3 shows the LULC maps produced for the years 2015 and 2021 as well as the 

proportions of all the categories at the time points. The accuracies of LULC classification for 

2015 and 2021 are illustrated in Table 6.2. The accuracy assessment matrices used were overall 

accuracy (OA), user accuracy (UA), producer accuracy (PA), and F1-score. The year 2015 

yielded overall accuracy and F-score for informal settlement class of 96% and 67%, 

respectively. On the other hand, year 2021 yielded higher overall accuracy of 97% and F-score 

value of 92% for informal settlement class. Figure 6.3 presents maps showing amount of 
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Figure 6.4 clearly shows the areal changes over the time period. 

 

Figure 6.4. Areal changes of land use categories in the study area from 2015 to 2021 

 

Figure 6.5 represents the maps of category losses and gains distinguished from persistence (no 

change) during the interval. Grey indicates areas of no change and any other colour represents 

either corresponding loss or gain of the category. The results indicate that vegetation is the 

category with the largest losses (Figure 6.5a), whilst the largest gaining category is other urban 

(Figure 6.5b).  
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Figure 6.5. (a) The category loss map; and (b) the category gain map for the time interval 

2015 to 2021. 

6.3.2. Intensity analysis  

6.3.2.1. Category level 

Figure 6.6 shows graphical representation of the loss and gain intensities for different classes 

at the category level. Each category has pair of bars which show the intensity of the changes 

The main focus in the current study is on the informal settlement class losses or gains. The 

results revealed that the informal settlements were both actively gaining and actively losing 

during the period since the intensities passed the uniform intensity line. However, the gain 

intensity was greater than the loss intensity. Although “other urban” class experienced gross 

gains, the gain was dormant. In fact, the other urban class is dormant for both gain and loss 

during the interval. Results also reveal that bare land and informal settlements were both 

actively gaining and losing, rendering them the most active of all land use categories (Badmos 

et al., 2018). However, for both categories the gain was more intensive than the loss.  
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Figure 6.6. Intensity Analysis for category-level changes for each land category during the 

time interval 2015-2021 

6.3.2.2. Transition level  

The category level analysis revealed that informal settlements are actively losing and gaining. 

Of importance is the determination of which land use categories the informal settlements are 

either gaining from or losing to. Figure 6.7 presents the map of the transitions between informal 

settlements and other categories. Figure 6.7a shows transition of other categories to informal 

settlement, whilst Figure 6.7b shows transition from informal settlement to other categories. 

Throughout the time period, other urban, bare land and vegetation were transforming into 

informal settlements (Figure 6.7a), so informal settlements experienced high rates of increase 

from those classes. Similarly, informal settlements also lost to other urban and vegetated lands 

(Figure 6.7b). 
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Figure 6.7. (a)  Maps of land transitions to informal settlements, and (b) transitions from 

informal settlement for the 2015-2021 time period 

 

Figure 6.8a presents the graphical representation of intesities of observed transitions given the 

gain of informal settlement, gain of other urban, gain of bare land, and gain of vegetation. The 

transition of water class to informal settlement lies to the left of the transition intensity line 

indicating avoidance of the water category. The  bar for other urban stretches beyond the 

uniform line. This suggests that the informal settlement class most intensively targeted other 

urban. It is also crucial to note that during the same time interval other urban areas were also 

systematically targeting informal settlements (Figure 6.8b), so informal settlements 

experienced high conversion rates into other urban category in the area of study. Figure 6.8b 

confirms the targeting of informal settlement class by the other urban class. The scenario where 

on one hand informal settlements target other urban areas and , simultaneously, urban area 

targets informal settlements represents a systematic process of transition (Aldwaik and Pontius, 

2012).  
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Figure 6.8. Intensity of the observed transitions (a) given the gross gain of informal 

settlement, (b) gross gain of other urban, (c) gross gain of bare land, and (d) gross gain of 

vegetation 

 

Interestingly, the rate at which other categories were changing into the informal settlement 

class are higher than the rate at which informal settlements were changing to other classes, as 

shown in Figure 8.9 Considering all the transitions between informal settlements and other 

categories over the time period, about 68.9% of the transitions involved changes from other 

categories to informal settlements. This shows that informal settlement expansion was greater 

than their decline during the period. 
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Figure 6.9. A representation of variation of uniform transition intensity of informal settlement 

during the 2015–2021time interval. 

6.4. Discussion 

The study sought to investigate informal settlement dynamics in the context of subsequent 

LULC transitions for an area in Durban Metropolis, South Africa. In this study, GEE, with its 

geospatial analysis tools and parallel processing capabilities allowed effective implementation 

of OBIA for LULC classification. Classification results revealed a much lower F-score value 

of 67% for informal settlement class for 2015 than 2021, which yielded F-score of 92%. The 

2015 classification result potentially demonstrates substantial confusion between informal 

settlements and other classes in the LULC map. Following Amani et al. (2019c), in their 

mapping of complex wetland environment, a trade off was considered between the efficiency 

of the model and level of accuracy. Due to fragmentation of the landscape, the lower 

classification result is potentially explained by the informal settlement class being less 

spectrally distinguishable during that year. Visual analysis of informal settlement layouts 

indicates sparsely laid out informal settlements in 2015 which, hypothetically, would be 

complex to distinguish from formal built up residential areas, due to similarity of the spectrum. 

Because of the dynamic nature of informal settlements (Kraff et al., 2020), they changed 

significantly over time and assumed morphological layout of contiguity, typical of informal 



140 

 

settlements, making 2021 class level more reasonable. Also, unclear and fuzzy boundaries 

between formal and informal housing units could have caused uncertainties in boundary 

delineation. Some informal settlements are found adjacent to high density formal buildings 

without clear cut boarders, making them hardly distinguishable. According to Amani et al. 

(2019c), boundaries should be conservatively determined in order to avoid transitional areas. 

  

Generally, the results of intensity analysis showed a net increase in area coverage of informal 

settlements. Category level analysis revealed informal settlements as actively gaining and 

losing within the period. However, the intensity of gain was higher than the loss. Whilst rural 

urban migration has been regarded as the major cause of rapid expansion of informal 

settlements, for example Quarry Road West informal settlement in Durban (Williams et al., 

2019), South Africa also grapples with influx of illegal migrants from the neighbouring 

countries.  The influx of these migrants potentially explains the gain as they increasingly settle 

into these spontaneous, low-income settlements. These results compare favourably with 

Badmos et al. (2018) who also observed a net increase in area covered by informal settlements 

within the study period.  It was also observed that areas that were initially covered by informal 

settlements in 2015 had been changed to other land use categories in 2021(bare land, other 

urban area, and vegetation). Such conversions potentially explain the intense loss of informal 

settlements within the period. The observed transitions of informal settlements to other land 

cover classes in this interval could be attributed to some catastrophic events that happened 

between 2015 and 2021. For example, a fire engulfed Havelock informal settlement in 

December 2019 and engulfed the whole settlement (Georgiadou et al., 2021). Devastating 

climate events for example floods that have hit Durban in 2016 and 2019 can also help explain 

transitions from informal settlements to other classes. For instance, in May 2016 and April 

2019 informal settlements experienced some of the worst and most devastating floods in the 

Quarry road west informal settlement, as they caused washing away of houses and massive 

displacements (Membele, 2022). Despite these disaster events, Williams et al. (2018) put 

forward that the settlement encountered numerous periods of rapid expansion, with most of 

these occurring just after significant flood and fire events. 

 

Government responses to such catastrophic events help explain transitions from informal 

settlements to urban class. For instance, in response to Havelock fire incident, Project 

Preparation Trust, a local non-profit organization has embarked on reconstruction programme 

where new typologies, for instance, double-storey shacks are tested together with introduction 
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of climate-proof dwelling design in ten informal settlements in Durban, including Havelock 

(Georgiadou et al., 2021). Thus, the conversion of informal settlements to other urban land use 

category in the area of study could be a result of these disaster events or upgrading programmes. 

 

The current result showing evidence of transitions from informal settlement to other categories 

is also consistent with Badmos et al. (2018)’s results, where there were also observed 

transitions from informal settlements to other land use categories. However, whilst the causes 

of the transitions in Durban are naturally induced, through disasters, Badmos et al. (2018) 

pointed out that demolitions were the causes in Lagos. This reveals differences in government 

policies between the nations, with South Africa aiming at protecting the right of each individual 

to the city. 

 

The findings of the current study revealed an increase in area covered by other urban within 

the time interval. One explanation for the expansion is potentially due to South Africa’s spatial 

development policies (Du Plessis, 2015) aimed at restructuring and redressing imbalances 

created by apartheid spatial planning, through and upgrading programmes, as well as associated 

physical infrastructural development. Before 1994, South Africa’s highly regulated urban 

growth was shaped by the restrictive Prevention of Illegal Squatters Act of 1951 (Odindi et al., 

2012). Today, the South African constitution enforces citizens’ ‘right to the city’ (Parikh et al., 

2020). Notwithstanding, the post-apartheid continues to define human settlements. Even 

though, the South African Constitution (1996) maintains a progressive legal and policy 

framework that guarantees the right of the individual to access adequate housing (Parikh et al., 

2020). Thus, in an effort to redress the imbalances, state-subsidized housing programmes are 

ongoing, where eligible beneficiaries are granted a variety of state subsidized housing options. 

 

Transition level analysis results indicated that informal settlements actively targeted other 

urban class. Theoretically, the transition from other urban to informal settlement could also be 

large for two reasons. First, other urban’s start size is larger than most categories. Second, 

informal settlement’s gain targets other urban. If all transition intensities were equal, then 

informal settlement would take more from other urban than any other category. A question 

would be asked “What processes drive informal settlement dwellers to target other urban and 

to avoid vegetation?” Figure 8.8b shows also that less than half of other urban’s intensity bar 

is to the right of the uniform line, which means that informal settlement’s targeting of other 

urban explains less of the transition from other urban to informal settlement. Instead, more than 
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half of other urban’s intensity bar is to the left of the uniform line meaning that other urban’s 

size explains most of the transition from other urban to Informal settlement. The fact that other 

urban targets informal settlements and informal settlements targets other urban imply 

systematic process of transition (Badmos et al., 2018). Accentuating the argument, Teixeira et 

al. (2014) alluded that a given systematic transition over a period corroborates potential link of 

that specific transition to some management policy prevailing during that period of time. The 

targeting of informal settlement class by other urban class (Figure 8b) can, thus, be attributed 

to the in-situ upgrading programmes that involve the formalization of informal settlements in 

their original location, preserving social and economic networks (Del Mistro and Hensher, 

2009). 

 

 There was also an indication of decline in vegetated area as well as area designated as water 

between 2015 and 2021 (Figure 6.4). According to Badmos et al. (2018), vegetation loss is a 

common feature in urban areas, where encroachment of vegetated land forms part of urban 

expansion. In their investigation of LULC in the context of green spaces, earlier study by also 

revealed a decline in green urban spaces owing to transformation of the landscape in eThekwini 

municipality through government’s Reconstruction and Development Programme aiming to 

address housing challenges. It is important to note that, although there was evident decline in 

vegetation over time, results of intensity analysis stipulated that informal settlement class 

avoided vegetation. This is partially expounded by the fact that most vegetated land in South 

Africa is protected. Even so, previous study by Odindi et al. (2012) submitted that once green 

areas are cleared for establishment of physical structures, the informal dwellers may contribute 

to further exploitation of the greenery through wood extraction for fuel. Ordinarily, an increase 

in population is usually associated with increased demand for fuel firewood which makes 

logging prevalent in areas near human settlements. In agreement with results of the current 

study, Badmos et al. (2018), in their study in Lagos, also identified a decline in vegetated areas. 

Similarly, the authors revealed that informal settlements in Lagos were not targeting 

vegetation. However, the authors acknowledged that as migrants flocked Lagos the inflow was 

accommodated in already established informal settlement communities. Thus, their expansion 

cannot be explained in terms clearance of forest for establishment of new settlements but 

expansion of existing informal settlements. However, despite the fact that informal settlement’s 

gain avoids vegetation, the change from vegetation to informal settlement is large (Figure 6.7a), 

theoretically, because of vegetation’s large start size.  
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Satterthwaite et al. (2020) asserted that informal settlements experience the worst climate 

change effects because of their ill preparedness as well as poor construction materials and lack 

of preventative infrastructure that makes them highly vulnerable to high risks of floods and 

landslides. They tend to be located in flood prone areas such as flood plains or in proximity to 

water bodies (Abunyewah et al., 2018, De Risi et al., 2013). Although the findings for transition 

level of intensity analysis demonstrated avoidance of water bodies by informal settlements 

during the 2015–2021 time interval, the loss in area of coverage is indicative of encroachment. 

Since other urban class has shown that it targets water, and similarly informal settlements target 

urban, the systematic process of transition could be indicative of encroachment of water bodies 

even by the informal settlements.  

 

Overall, the main two targeting transitions from other urban to informal settlement and vice 

versa are in line with policy. However, if land change patterns are not adequately linked to 

processes, sustainability issues persist. Given the complexity of Kwazulu-Natal landscape, it 

is vital to understand the drivers, patterns and processes of LULC change for different urban 

management and policy implications. To help in developing the best land use strategies, a 

further validation on social factors is imperative. 

6.5. Conclusion 

This study contributes to assessment of informal settlement dynamics in Durban and 

implications for sustainable urban management. The study successfully utilized OBIA, 

leveraging the SNIC algorithm for segmentation, and the GLCM algorithm within the GEE. 

The resultant maps were useful in providing input data for intensity analysis.  

The main conclusions were: 

• Informal settlement dimensions, as well as their spatial extent increased with a net 

percentage increase of 3%. This could be attributed to in migration from rural area and 

neighbouring countries. 

•  Results from category level analysis demonstrated an active gain of informal 

settlement class with gain intensity of 72%.  

• Transition level of intensity analysis showed a systematic process of transition between 

informal settlements and other urban areas.  

• The systematic transitions were influenced by government policy through its 

development programmes.  
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• Informal settlement growth was faster than its decline in the interval studied.  

• Disaster events for example fires and flood events were major contributory factors 

contributing to informal settlements losing land to other categories.  

• Poor maintenance of existing building structures such as industries could also help 

explain the transition of other urban areas to informal settlements. 

 

The results reveal the potential for spatial challenges to continue to marginalize the poor, with 

impact on South Africa’s long-term development. More specifically, such dynamics pose 

potential planning challenges for disaster risk protection and municipal service provision. On 

the other hand, transition level intensity analysis showed a systematic process of transition 

between informal settlements and other urban areas, potentially influenced by government 

policy, through its development programs. Although the Durban municipality strives to 

improve the livelihoods of informal settlement dwellers through in situ upgrading, under the 

National Housing Code, the findings read as a tale of caution to policy makers within South 

Africa, as well as countries within the developing world as a whole. The results suggest that 

city authorities should respond to the detailed urban space and planning requirements for 

sustainable urban area management policies, design of effective intervention strategies in order 

to minimize disaster risk, as well as legislative decisions toward curbing settling on precarious 

areas.  
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CHAPTER SEVEN: 

 

Integrating texture analysis and innovative modelling approaches for capturing 

morphological diversities and dynamics of informal settlements in Durban metropolitan 

area, South Africa: A Synthesis 

7.1. Introduction 

The urban fabric in most developing countries faces the challenge of burgeoning informal 

settlements. The alarming growth of the informal settlements has resulted in a slew of disasters 

including poverty, and exposure to natural disasters, such as floods, induced by their location 

on flood vulnerable areas. Urbanization's complexities, such as, uncontrolled population 

growth, rural-urban migration, under and unemployment, discrimination and marginalization, 

as well as segregation policies, in some cases, are perpetuating the ongoing growth of informal 

settlements (Fox, 2014, UN-Habitat, 2015). These factors pose challenges for sustainable 

urbanization policies and strategies (Jones, 2017). Furthermore, the lack of accurate base maps 

and spatial information, complex morphological layouts, inherent spatial heterogeneity, and 

the dynamic nature of these deprived areas (i.e. informal settlements) impede accurate 

prediction of their geographies and thus complicates efforts to achieve goals aimed at 

improving their deplorable living conditions (Hofmann et al., 2015, Taubenböck et al., 2018, 

Wang et al., 2019a). Consequently, there is a need for techniques that provide more refined 

characterization of informal settlements in a timelier and reliable manner, in order to guide 

sustainable policy decisions and monitor their progression (Pratomo et al., 2017). With 

increased availability of high-resolution data, there has been progress in the use of, particularly 

image texture, in enhancing and capturing the morphological features of informal settlements 

(Kohli et al., 2016c, Mboga et al., 2017, Prabhu and Parvathavarthini, 2021). However, 

unavailability or high costs of appropriate earth observation (EO) data (for example, 

QuickBird, WorldView, and Orbview) (Taubenböck et al., 2018) has also been a hindrance to 

precise characterization of their varied forms in resource constrained countries. Freely 

downloadable Sentinel-2A has however presented a solution. Taking advantage of Sentinel-

2A’s high spatial and spectral resolution with strategically positioned bands including red-edge 

can enhance the mapping of complex morphologies of urban built-up areas. Similarly, the 

availability of high resolution PlanetScope imagery in Google Earth Engine Platform has 

complemented efforts to enhance mapping precision in complex urban environments (Kelley 



146 

 

et al., 2018, Mananze et al., 2020, Teluguntla et al., 2018). Its inbuilt simple non-iterative 

clustering (SNIC) and grey-level co-occurrence matrix (GLCM) for segmentation and texture 

feature extraction, respectively, has allowed more nuanced approaches such as GEOBIA for 

improving the mapping of informal settlements. In addition, given the constantly changing 

urban form (Kraff et al., 2020), there is a need for quantitative characterization of informal 

settlements and their  dynamics in relation to LULC transitions. Intensity analysis allows an 

in-depth monitoring of LULC changes, providing linkages between patterns and processes, 

thus bridging the gap from static to multi-temporal measurement (Mwangi et al., 2017, Teixeira 

et al., 2014). In general, cutting-edge classification methods, particularly through the GEE 

embedded machine learning RF algorithm, have enabled quantitative characterization of 

informal settlements for evaluation of dynamic morphologic informal settlements. Therefore, 

this study explored the integration of texture analysis and innovative modeling approaches for 

capturing the morphological diversities and dynamics of informal settlements in the Durban 

metropolitan area in South Africa.  

7.2. Conclusions 

The thesis sought to explore the integration of image texture features with cutting edge 

approaches in characterization of spatial heterogeneity and dynamics of morphological 

informal settlements in a fragmented landscape of Durban. Findings reported in the current 

study demonstrated the efficacy of incorporating image texture in varied approaches that 

ranged from fusion of data, exploitation of varied feature sets, an object-based image 

classification framework and most importantly, within the cloud computing environment of 

GEE in capturing characteristic morphologic informal settlement features. The main 

conclusions were as follows:  

1) Progress on the use of texture analysis in mapping informal settlements was 

well documented. However, gaps existed in the use of texture-based 

approaches in sub-Saharan African cities, particularly in South Africa where 

studies were concentrated in Johannesburg with no coverage for Durban. An 

investigation of the applicability of various texture analysis algorithms also 

revealed transferability issues in different geographical settings owing to 

varied morphological and typological characteristics. From the few studies that 

exploited texture feature selection, it could be inferred that there were 

uncertainties as to whether reduction of feature dimensional space would 
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enhance informal settlement accuracy or not, presenting research gap in the 

South African landscape context. Also, whilst high data costs and, sometimes 

unavailability of high-resolution data were cited as a hindrance for precision 

mapping of informal settlements, freely downloadable Sentinel-2A was 

scarcely exploited. 

2) Capitalizing on the 10 m bands of Sentinel-2A, the 20 m bands were 

successfully pan sharpened using five algorithms in the component substitution 

category. Pan sharpening Sentinel-2A showed potential to increase the 

mapping accuracy of the areas of deprivation. Integration of pan sharpened 

images with image texture revealed the best result when the full range of the 

Sentinel spectrum was exploited, using Gram Schmidt algorithm. The findings 

revealed the potency of integrating pansharpening, image texture as well as 

high spectral resolution in the capturing of characteristic morphology of 

informal settlements in the Durban landscape. 

3) GEE’s Sentinel-2 archive, its advanced data processing functionality, and 

integrative potential through scripting allowed combination of a variety of data 

input features ranging from spectral data, spectral indices, and textural features 

for informal settlement mapping. Feature reduction reduced accuracy levels. 

The highest classification accuracies were achieved using a combination of 

textural features and spectral bands, with spectral indices reducing accuracy 

levels. The study demonstrated the efficacy of inbuilt RF model in extracting 

semantic land cover information for informal settlement identification.  

4) Leveraging the computational power of the Google Earth Engine, the 

availability of high spatial resolution PlanetScope imagery, SNIC 

segmentation algorithm, and GLCM, OBIA was successfully explored for 

precise mapping of morphological informal settlements in Durban. Although 

there were some compromises in terms of accuracy, potentially due to 

heterogeneity of the landscape, and different typologies in terms of age, layout 

and size, results demonstrated potency of the approach. 

5) Exploiting GEE and intensity analysis for mapping and assessment of informal 

settlement dynamics and associated LULC transitions delivered dependable 

results. Through determining the patterns of change, potential causes of nature 

of transitions involving informal settlements were established. In absolute 

terms, there was a net increase in area covered by informal settlements. Intensity 
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analysis at category level revealed an active gain of informal settlements 

between 2015 and 2021. The intensity analysis results indicated that informal 

settlements and other urban land dominated the dynamics of LULC change, 

with each of the two categories targeting each other, a representation of 

systematic process of transition. Efforts of the South African government to 

redress imbalances in terms of housing, through restructuring programmes, for 

example in situ upgrading programmes could potentially explain the systematic 

process.  Intensity analysis approach effectually allowed analysis of linkages 

between patterns and processes. 

7.3. Challenges and Recommendations for the future 

The findings of this study accentuated the importance of synthesizing texture analysis with 

cutting edge approaches for enhanced characterisation of heterogenous morphological layouts 

of informal settlements. The requirement for high resolution imagery for texture analysis 

presents potential for exploration of pan sharpening approaches using Sentinel-2A imagery. 

Also, the availability of high resolution PlanetScope, allowed data fusion with Sentinel-2A 

imagery as well as leveraging of its computational power for object-based image classification. 

However, accurate capturing of the informal settlements’ heterogeneity relies on the ability of 

the approach to capture accurately their morphological and typological diversities. Accurate 

capturing of their dynamic forms would also allow accurate monitoring of their spatial 

expansion with regard to subsequent LULC transitions. In this regard, the following 

recommendations should be considered for future research: 

• Transferability of texture analysis approaches remains a challenge owing to diversities 

of morphological characteristics as well as absence of unified models to characterize 

informal settlements. The uniqueness of informal settlements’ characteristic 

morphologies implies variations in applicability of approaches from place to place. 

Remote sensing fails to capture socio-political, economic, and cultural dynamics that 

shape the heterogeneous urban landscapes. Approaches that investigate the integration 

of earth observation data and field survey data should be investigated to promote 

comprehensive understanding of applicability of texture-based approaches in unique 

geographical settings. 

• The study utilized Component substitution approaches such as Brovey transform and 

Gram-Schmidt approaches to pan sharpen Sentinel-2A for informal settlement 
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mapping. However, these approaches are characterised by high spectral distortion that 

compromises accuracy of mapping. The recommendation is thus to exploit multi-

resolution analysis approaches such as PanNet which have competitive ability in 

addressing the pan sharpening issues both quantitatively and visually. Also, the spatial 

resolution of the PAN image was just two times better than that of the MS. Investigation 

of pan sharpening methods with scale ratio of at least 4 would be recommended. 

• Cloud computing capabilities of GEE, as well as integrative potential through script 

writing, enabled successful classification of large feature sets using inbuilt machine 

learning RF algorithm for enhanced informal settlement mapping. However, intricate 

relations with other classes such as formal buildings and bare land was evident. To 

eliminate the noise, the current study recommends incorporation of topographic 

variables to augment input data, in order to capture the influence of aspect given that 

informal settlements locate on steep slopes. 

• Despite the integration of PL, S2, and S1 for more comprehensive capturing of 

dynamic, morphologic informal settlements using GEOBIA, within GEE, uncertainties 

still remained, affecting class accuracy. Because of fragmentation of the landscape, the 

there is need for careful segmentation during object-based classification in order to 

produce objects with appropriate size for classification. During the study, textural 

features were extracted from PlanetScope data. Given complementary advantages of 

SAR data, extraction of texture features from S1 could offer a potential avenue for 

further research in future studies.  

• Leveraging the opportunities offered by cloud-computing resources for GEOBIA in the 

cloud, LULC maps were produced to use as input data for intensity analysis.  However, 

informal settlement identification accuracy for 2015 was relatively too low for 

monitoring the changes in informal settlement areas. In addition to segmentation 

intricacies, the low accuracy could be related to the number of training data available 

for the class. In order to improve classification in future studies, it is recommended that 

more field data be included in order to initially improve classification result and allow 

subsequent operational informal settlement growth monitoring with appropriate 

accuracy. 
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