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This dissertation is concerned with developing and extending statistical models

in the area of spatial modeling with particular interest towards application to

HIV, TB and HSV-2 data. Hierarchical spatial modeling is a common and useful

approach for modeling complex spatially correlated data in many settings in epi-

demiological, public health and ecological studies. Chapter 1 of this thesis gives

a chronological development of disease mapping models, from non-spatial to spa-

tial and from single disease models to multiple disease models. In Chapter 2, a

new model that relaxes the over-restrictive normal distribution assumption on the

spatially unstructured random effect by using the generalised Gaussian distribu-

tion is introduced and investigated. The third chapter provides a framework for

including sampling weights into the Bayesian hierarchical disease mapping model.

In this model, design effect is used to re-scale the sample sizes. A new model for

over dispersed spatially correlated binary data is developed in chapter 4 of this

thesis; in this model, the over dispersion parameter is modeled by a beta random

effect which is allowed to vary spatially also. In chapter 5, the common multiple

spatial disease mapping models are reviewed and adopted for the binary data at

hand since the original models were developed based on Poisson count data. The

methodologies developed in this dissertation widen the toolbox for spatial analysis

and disease mapping in applications in epidemiology and public health studies.
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Chapter 1

General Introduction

1.1 Overview

Of late, there has been a rising interest in the development and application of

spatial statistical methods for analysis of geographically correlated data. This can

be attributed to the increasing availability of geo-referenced data in many fields of

study, for example public health and ecology. Most of the data collected by many

African governments through surveys and sentinel surveillance are geo-referenced

by districts, counties, provinces or other administrative units. The thesis is biased

towards hierarchical models for count data, simply due to the availability of such

data in this setting. We introduce this thesis by discussing key concepts in spatial

modeling followed by the chronological development of spatial models, building up

from single disease models to joint disease models.

1
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1.2 Disease Mapping

Disease mapping refers to the estimation and presentation of summary measures of

health outcomes[Rezaeian et al., 2007]. Some of the purposes of disease mapping

include, to;

1. describe geographical variation of diseases.

2. generate hypotheses about a disease.

3. generate disease atlases.

4. detect clustering of a disease.

Mapping of disease incidence and prevalence is a common place in public health

and epidemiology. Often the primary interest in disease mapping is to smooth

and predict some response variables over a geographical domain of interest. The

area-specific estimates of the diseases can be used by policy makers when mak-

ing decisions on public health resources allocation. There are two fundamental

characteristics of disease mapping, namely geographical distribution and disease.

1.3 Hierarchical Models for Disease Mapping

Complex disease mapping and spatial models stem from the generalized linear

model. Consider a study domainD, partitioned into a set of regions, i = 1, 2, · · · , n.

Let yi be the observed diseases counts in region i. These are typically the number
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of cases prevalent or incident in region i. The counts are modeled as either Pois-

son or Binomial random variables in the generalized linear models (GLM) setting

[Wakefield, 2007; Ghosh et al., 1999]. When the disease under discussion is rare,

then the Poisson model can be used as an approximation to the binomial model.

Covariates can be introduced into the models in the standard GLM fashion.

An extension of this model is the inclusion of an uncorrelated random effect,

leading to the generalized linear mixed model (GLMM) with one random effect

[Lawson et al., 2003]. The model is specified in hierarchy form, with two stages. In

the first stage, the observed counts are conditionally independent given the values

of the random effects. In the second stage, the distribution of the random effects

is specified. This also allows for over-dispersion if the data model is Poisson.

Thus, so far, the model elicit a non-spatial correlation between the observations,

and in fact the area-specific relative risk estimates are concessions between local

data and global weighted averages obtained from the entire dataset. It is possible

to introduce correlated random effects via a spatial covariance matrix. This can

be achieved by considering the random effects to form a single vector following an

appropriate distribution with a specified mean and a spatial variance-covariance

matrix as opposed to the random effects being exchangeable. The most common

assumption on the distribution of the random effects is a multivariate Gaussian

distribution [Waller and Gotway, 2004; Gaetan and Guyon, 2010; Sherman, 2011].

The spatial variance-covariance matrix is made up of parametric functions defining

the covariance structure based on location of any two units of study. For geosta-

tistical data, the spatial covariance between two observations is dictated by the



Chapter 1. General Introduction 4

distance between the two observations [Waller and Gotway, 2004; Cressie, 1993;

Diggle et al., 1998]. In the case of lattice data, the neighbourhood can be specified

based on the basis of sharing a border, the distance between the centroids of any

pair of regions or a combination of these two.

Clayton and Kaldor [1987] introduced spatially structured prior distribution for

the random effects. Estimation was done using empirical Bayes approach in which

the relative risk estimate for a region was a compromise between local data and

a weighted average of observations in the neighbourhood of that region. Besag

et al. [1991] introduced the full Bayesian approach counterpart to the Clayton and

Kaldor [1987] formulation. They implemented their model using Markov chain

Monte Carlo (McMC) algorithms. Their specification gives an alternative to using

the multivariate Gaussian models. It is called the conditional autoregressive model

(CAR).

In CAR, the conditional distribution of a random effect in a region given all the

others is simply the weighted average of all the other random effects. Besag et al.

[1991] assigned the weights based on whether a pair of regions shared a boundary

or not; if the regions share a boundary, the weight is 1, otherwise it is 0. Best et al.

[1999] discusses other weighting possibilities. All the weighting options discussed

this far are assumed to be fixed when modeling. Lu et al. [2007] took another

approach for weighting by estimating the weights from the data itself.

The CAR formulation has computational advantage over the multivariate Gaus-

sian in the sense that the variance component in multivariate Gaussian requires
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matrix inversion during its estimation, at each update when executing the algo-

rithm leading to more computational burden; this is not required in CAR.

Besag et al. [1991] further extended this model by advocating for inclusion of

both spatially unstructured random effects and spatially structured random ef-

fects, through the convolution model. This allows the model to borrow informa-

tion both locally and globally. There is need to assign prior weight fairly to these

two components so as to avoid either global over smoothing or local over smooth-

ing. Bernardinelli et al. [1995] focussed their study on this and came up with a

conclusion that the standard deviation of the conditional distribution of the spa-

tially structured random effects should be 0.7 times the standard deviation of the

spatially unstructured random effects. This conclusion is still open for debate. If

the prior distributions of the precision parameters of the two random effects in the

convolution model are taken to be non-informative, then only the sum of the two

random effects will be identifiable and not the individual components.

Several authors have also proposed alternative formulations for the convolution

model. Notably, Leroux et al. [1999] as opposed to Besag et al. [1991] formulation

of a random intercept split into two components, the authors used only one random

intercept and its variance covariance matrix was split into spatial and non-spatial

components, with a parameter controlling the spatial dependency. For other au-

thors with alternative proposals, see MacNab and Dean [2000] for a parametric

bootstrap approach, and Green and Richardson [2002] for their hidden Markov

field approach.

With all these alternative models, the Besag et al. [1991] formulation still enjoys
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more application due to its close fit with common McMC implementations and also

because of a wide variety of readily available software, e.g WinBUGS [Spiegelhal-

ter et al., 2007] and R statistical software [RDevelopment, 2005] implementing it.

Extensions of this model for zero inflated datasets has been considered [Lambert,

1992; Agarwal et al., 2002; Agarwal, 2006].

Hitherto, we have been discussing single disease modelling. There are two major

approaches for handling multiple diseases, namely the shared component approach

and the multivariate CAR approach [MacNab, 2010]. Bernadinelli et al. [1997]

modelled two diseases by treating one disease to be a covariate while adjusting

for sampling error on it. In a novel manner, Knorr-Held and Best [2001] extended

BYM model to enable modeling two diseases jointly. Their formulation was called

the shared component model, in which each of the random effects was shared by

two diseases. Held et al. [2005] further extended this shared component model for

the case of more than two diseases in a similar fashion. Wang and Wall [2003]

also developed a general common spatial factor model, in which they hypothesised

that a common spatially correlated latent factor causes the correlation between

variables measured at the same location and correlations of each variable across

locations.

Kim et al. [2001] proposed the two fold CAR model in which they allowed for shar-

ing of information between neighbouring regions with respect to the same disease

and also between the two diseases within the same region. Carlin and Banerjee

[2003] and Gelfand and Vounatsou [2003] separately, at almost the same time, de-

veloped the multivariate conditional autoregressive (MCAR) model for modeling
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multiple diseases under separability assumptions. The separability assumption

dictates that the association structure decomposes into spatial and non-spatial

components. The joint consideration comes in the sense that the spatial random

effects were assumed to follow a joint distribution which allows for correlation of

the components. They also assumed that there was a single parameter that con-

trolled spatial dependency in all the diseases. Jin et al. [2005] further extended

the model by introducing parameters that allowed for cross-covariance between

diseases and regions. When there are only two diseases, this model reduces to the

model proposed by Kim et al. [2001].

Reich et al. [2007] introduced a class of models that allow for two different classes

of neighbourhood definitions. Another class of extension is the case of spatially

varying coefficients. Instead of tying the spatial dependency on the random effects,

the coefficients can be allowed to vary through the spatial domains, this allows

for the relationship between responses and covariates to vary by region in the

spatial domain [Hastie and Tibshirani, 1993; Hoover et al., 1998; Assuncao et al.,

2002; Assunçao, 2003; Pavlov, 2003; Gamerman et al., 2003; Gelfand et al., 2003].

It is important to note that so far spatial dependency has been introduced into

the model using random effects and spatially varying coefficients. It is possible

to introduce the dependency via the observations themselves. Examples of these

include autologistic model [Hoeting et al., 2000] and the autoPoison models [Besag,

1974; Griffith, 2002]. It is also worth noting that the overview provided above

caters only for discrete variation of disease. This type of spatial data considered
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is called areal data (lattice data). Two other basic types of spatial data are point-

referenced data (geostatistical data) and point pattern data. For more discussions

and exposure on geostatistical and point pattern spatial data types, we refer the

readers to Diggle and Ribeiro [2007] and Cressie [1993] respectively.

1.4 Statement of the Problem

Several models have been developed to deal with disease models, both for single

diseases and multiple diseases. Most of these models are based on the use of ran-

dom effects, which is split into spatial and non-spatial components. Normality

assumption is always used for the non-spatial component. These models have also

been developed with knowledge that the data come from surveillance data or reg-

istry files. Very few models have been developed to deal with data from complex

sample surveys.

There is need to consider models that allow flexibility in the normal random effects,

this flexibility could be due to high peaked and low peakedness of the distribu-

tions. In this work we allow the random effects to have less than 3 or greater than

3, kurtosis values, allowing for low and high peakedness respectively.

There is also need to extend the models to accommodate data from complex sur-

veys. This can be achieved by incorporating the sampling weights into the model.

Overdispersion in count data is a common phenomenon. It is also possible for

overdispersion and spatial autocorrelation to occur simultaneously. This thesis
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also consider this dual problem and develops a model that caters for both overdis-

persion and spatial correlation while allowing the overdispersion parameter to vary

spatially over space.

1.5 Main Objective

The main objective is to develop flexible models for disease mapping for both

sentinel surveillance data and complex survey data.

1.6 Specific Objectives

The specific objectives for this thesis are:

• to review disease mapping models for single and multiple diseases.

• to incorporate survey weights in disease mapping with data from complex

surveys.

• to develop models with less restrictive prior assumption on the unstructured

heterogeneity random effect.

• to develop joint disease models for binary data

• to develop models that cater for overdispersion in spatially correlated binary

data.
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1.7 Dissertation Outline

This thesis is concerned with development of models and methods for the spatial

analysis of diseases. The thesis is organised in form of chapters which represent full

research papers that have been published in peer reviewed journals or submitted

to the same. Each paper has been written as a stand-alone article that can be read

separately from the rest of the thesis but draws separate conclusions that link to

the overall research objectives. This dissertation is made up of six chapters, the

section below describes the contents of each chapter.

Chapter 1: This chapter serves as an introduction to the study, giving recent

developments in disease mapping for both single and multiple diseases, and the

objectives of this study.

Chapter 2: This chapter extends the BYM model by introducing a flexible ran-

dom effect distribution for the spatially unstructured random effect. The use of

the generalised Gaussian distribution (GGD) is investigated using simulation stud-

ies and applied to tuberculosis data collected in Kenya in the year 2002 by the

division of leprosy, TB and lung disease (DLTLD) under the Ministry of Health,

Kenya. The GGD allows for the random effects to depart from the frequently

assumed normal distribution.

Chapter 3: In this chapter a spatial model that incorporates sampling weights

is developed. The weights are included in the model using design effects which

adjusts the actual observed counts of diseases and the sample size in a binomial
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setup. The developed model is applied to modeling HIV variation in Kenya for

men and women.

Chapter 4: In this chapter, a model is developed to handle spatially corre-

lated and overdispersed binary data. Overdispersion is a common phenomenon

especially when the data follows Poisson distribution and binomial distribution.

Overdispersion occurs when the usual mean-variance relationship is not adhered

to in these distributions. In the proposed model, the overdispersion parameter is

allowed to vary spatially in the regions under study. The model is used to model

Herpes Simplex Virus-Type 2 (HSV-2) variation in Kenya.

Chapter 5: This chapter reviews the commonly encountered models for spatial

joint modeling of diseases and adopted for bivariate spatial logistic models to suit

the data at hand and the resulting models were used to jointly model HIV and

HSV-2 in Kenya.

Chapter 6: Finally, this chapter gives a summary of the thesis in a nutshell. The

findings are summarized and conclusions are derived from the preceding chapters.

Topics for further study are highlighted in this section. A single reference list is

given at the end of the dissertation.



Chapter 2

A Flexible Random Effects

Distribution in Disease Mapping

Models

Disease mapping has seen many applications in epidemiology and public health.

The basic model used in disease mapping is the Besag, York and Mollie model,

which incorporates two random effects, one which is spatially structured and the

other random effect which is spatially unstructured. The normality assumption

on the spatially unstructured random effect is very common. In this work, we

investigate a more robust spatially unstructured random effect distribution by

considering the symmetric generalized Gaussian distribution in the disease map-

ping problem. The distribution has the normal and Laplace distributions as special

cases. The inference under this model are carried out under the Bayesian approach

implemented in WinBUGS. The generalized Gaussian distribution is introduced in

12
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WinBUGS using zero tricks. The usefulness of the proposed model is investigated

with a simulation study and applied in real data; mapping tuberculosis in Kenya.

In this paper we showed that the generalized Gaussian distribution can produce

better results when the normality assumption is violated due to high peakedness

or less peakedness in the data. For the case of data in which the random ef-

fects are truly normal, the generalized Gaussian distribution adjusts to a normal

distribution as dictated by the data itself.

2.1 Introduction

Disease mapping refers to the estimation and presentation of summary measures

of spatially observed health outcomes. The increased availability of georeferenced

data and flexible computational softwares has seen rise in application of disease

mapping in the areas of epidemiology and public health [Rezaeian et al., 2007;

Everitt and Dunn, 2011]. Disease mapping can be used to describe geographical

variation of diseases, identify clustering of diseases and generate atlas of diseases.

A number of statistical reviews on disease mapping have been done [Wakefield,

2007; Clayton and Bernardinelli, 1992; Smans and Esteve, 1997; Wakefield et al.,

2000; Manda et al., 2011].

The backbone model for univariate disease mapping is the Besag, York and Mol-

lie (BYM) model proposed by Besag et al. [1991]. This model is a form of the

generalized linear mixed effects model, with two random effects; a spatially un-

structured random effect which is modelled using a normal prior and a spatially
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structured random effect which is modelled using an intrinsic conditional autore-

gressive (ICAR) prior. The use of normal distribution to model the spatially

unstructured random effects is mainly because of its computational simplicity.

Assumption of normality on the uncorrelated random effect in models is common.

Sometimes this assumption is incorrect because some random effects can in fact be

platykurtic, leptokurtic or skewed; diverging from this general normality assump-

tion [Box and Tiao, 1973]. When this normality assumption is violated, there is

need to consider other models that would better suit the data at hand. The gen-

eralized Gaussian distribution can be used in cases where there is deviation from

the normal kurtosis (kurtosis = 3) and when there is evidence of skewness in the

data. It is a generalization of the common normal distribution to allow for these

departures.

The general Gaussian distribution has two versions, both of which add a shape pa-

rameter to the normal distribution. The first version of the generalized Gaussian

distribution includes normal and Laplace distributions. The continuous uniform

distribution arises naturally as a limiting case for this distribution. All the dis-

tributions encompassed under this family are symmetric. In the second version,

the shape parameter is used to incorporate skewness in the family of distributions.

Positive values of the shape parameter produce distributions which are skewed

to the left while negative values lead to right skewed distributions. In this work,

we concentrate on the symmetric version of the generalized Gaussian distribution.

The generalized Gaussian distribution, which we will denote by GGD, has three
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parameters, the location parameter, µ, the scale parameter, σ2 and the shape pa-

rameter, φ. The shape parameter dictates the amount of peakedness or kurtosis.

This work is structured as follows: in section 2, we review the BYM model, in

section 3 we introduce the symmetric generalized Gaussian distribution and discuss

its limiting distributions, in section 4, we carry out a simulation to study the effect

of misspecifying the random effects, in section 5 we use the discussed models

to analyze the tuberculosis (TB) data from Kenya and finally discussions and

conclusions in section 6.

2.2 Review of the BYM model

The most commonly used model in single disease spatial analysis was proposed by

Besag et al. [1991]. It was used to model disease prevalence in regions using the

Poisson model. Let λi be the unknown relative risk for region i with respect to a

standard population. Also let yi denote the observed counts of disease in region

i and ei denote the expected count in the same region. The model assumed that

the log of relative risk of disease can be broken down into a spatially structured

component ui and a spatially unstructured component vi. This can be written

mathematically as

yi ∼ Poisson (eiλi) , (2.1)

with

log (λi) = ui + vi, (2.2)
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where ui and vi are random effects representing unobserved covariates, with ui

representing variables that if were observed would influence the spatial structure,

while vi represents the unobserved heterogeneity in region i. Besag et al. [1991]

noted that in most cases, one of the random effects usually dominates the other.

If u is stronger than v, then the estimated risk will show spatial structure and if v

is stronger than u then the consequence will be to shrink the estimated means to-

wards the overall mean. Besag et al. [1991] assumed that u and v were independent

with the following priors:

p(v|τ) ∝ τ
−n
2 exp

{
− 1

2τ

n∑
i=1

v2
i

}
, (2.3)

and

p(u|k) ∝ k
−n
2 exp

− 1

2k

∑
i

∑
j∈N(i)

(ui − uj)2

 . (2.4)

Basically, equation (2.3) means that v, the spatially unstructured component is a

white noise Gaussian process with unknown variance τ , and equation (2.4) means

that the spatially structured component u, is a Gaussian Markov random field

(GMRF) process with variance k, n being the number of regions under study and

N(i) is the set of neighbours of region i. The neighbourhood can be defined in

terms of Euclidean distance of the centroids of the regions, whether two regions

share a border or a combination of these two. Besag et al. [1991] defined their

neighbourhood based on shared border.
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This implies that the conditional distributions of each ui, given the rest, are given

by

(ui|u−i) ∼ N

(∑
j∈N(i)

uj

di
,
k

di

)
, (2.5)

with

E (ui|u−i) =

∑
j∈N(i)

uj

di
(2.6)

and

V ar (ui|u−i) =
k

di
, (2.7)

where di is the number of neighbours of region i. This conditional distribution

for u is called the intrinsic conditional autoregressive (ICAR) prior distribution.

Besag et al. [1991] sampled the posterior distribution using the Gibbs sampler, an

McMC algorithm.

2.3 The generalized Gaussian Distribution and

its properties

Several authors, Wakefield [2007]; Besag et al. [1991]; Best et al. [1999], have

mentioned that it is possible to replace the normality assumption of the spatially

unstructured random effect with either the Laplace distribution or the Student’s

t distribution. In this work we explore the use of the generalized Gaussian distri-

bution as a candidate for random effects. It has pleasant properties, allowing for

the data to dictate the best fitting model for the random effects, whether normal

or Laplace adaptively. The generalized Gaussian distribution can result in several
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interesting distributions upon varying the shape parameter. Of great interest is

the fact that the GGD reduces to a normal distribution when the shape parameter

has a value of two and to the Laplace distribution when the shape parameter is

one.

Definition 2.1. A random variable X is said to have a GGD if its probability

density function is given by

f(x;µ, σ, φ) =
1

2Γ
(

1 + 1
φ

)
ζ (φ, σ)

exp

(
−
∣∣∣∣ x− µζ (φ, σ)

∣∣∣∣φ
)

(2.8)

where x, µ ∈ R, σ > 0 and ζ (φ, σ) =

[
σ2Γ( 1

φ)
Γ( 3

φ)

] 1
2

. In this expression ζ (φ, σ) is a

scaling factor. See Nadarajah [2005] for further discussions on statistical properties

of this distribution.

2.3.1 Special cases of the GGD

Property 1. If φ = 1 and σ2 = 2b, then the pdf of the GGD becomes

f(x;µ, b, 1) =
1

2b
exp

(
−
∣∣∣∣(x− µ)

b

∣∣∣∣) . (2.9)

Equation (2.9) is the Laplace probability density function with location parameter

µ and scale parameter b.

Property 2. If φ = 2, (2.8) becomes

f(x;µ, σ, 2) =
1√

2πσ2
exp

(
−1

2

(
x− µ
σ

)2
)
. (2.10)
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Equation (2.10) is the probability density function of a normal random variable

with mean µ and variance σ2.

Property 3. The uniform distribution is a limiting case of the GGD when φ→∞.

2.4 Simulation

In this section, we carry out a simulation study to determine the effect of wrongly

specifying the distribution of the random effect in a BYM model. Three scenarios

were considered in the simulation. In the first simulation, the datasets is generated

through a random effect, v with a peaked kurtosis as follows: Assuming that there

are 60 geographical regions and Oi is the number of disease counts observed in

region i and Ei is the corresponding expected counts in that region. Without loss

of generality, we further assume that no covariates are available for use.

1. Step 1: Generate 60 values of v ∼ GGD(0, 0.1, 1.02), which is platykurtic.

2. Step 2: Set E = 40 for all the regions.

3. Step 3: Calculate the relative risk θ = log(v)

4. Step 4: Calculate λ = E × θ

5. Step 5: Generate the observed counts as O ∼ Poisson(60,mean = λ).

We fitted two Bayesian hierarchical models for the data set. The models were

specified based on different assumptions on the random effects as follows:

Oi ∼ Poisson(µi) (2.11)



Chapter 2. A Flexible Random Effects Distribution in Disease Mapping Models20

and

log(µi) = log(Ei) + vi (2.12)

with

• Model a: vi ∼ GGD(0, σ2
1, φ),

• Model b: vi ∼ N(0, σ2
2).

The estimated relative risk θ̂i = log(vi).

The simulation steps above were repeated m = 1000 times.

To compare the two models, we calculated the mean squared error (MSE), for each

model, using the formula:

MSE =
1

1000

1000∑
j=1

1

60

60∑
i=1

(
θ̂ij − θij

)2

. (2.13)

The model with a small MSE provides the best fit.

In the second scenario, the procedure above is repeated but changing the random

effect generation mechanism in step 1, as v ∼ N(0, 0.1).

Similarly, in the third scenario, the procedure was repeated with the random effect

being generated using v ∼ GGD(0, 0.1, 12), yielding platykurtic random effect.

From the simulation results, the generalized Gaussian random effect is seen to

adapt well even in cases where the random effect strictly follows a normal distri-

bution. In Table 2.1, the generalized Gaussian distribution produces lower mean

squared error values as compared to the normal distribution in all the cases. When

the random effects are platykurtic, the loss in efficiency incurred for using normal
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Table 2.1: Model comparison under simulation

Generating dist. parameters used model
used

MSE % loss in
efficiency

GGD(Leptokurtic) µ = 0, σ2 = 0.1, φ =
1.02

Normal 0.006497 17.8

GGD 0.005514 0
Normal µ = 0, σ2 = 0.1 Normal 0.003297 6.2

GGD 0.003093 0
GGD(Platykurtic) µ = 0, σ2 = 0.1, φ =

12
Normal 0.002926 17.8

GGD 0.002483 0

random effects is 17.841% and when the random effects are leptokurtic, the per-

centage loss in efficiency is 17.822%. When the random effects are generated using

normal distribution, still the GGD has a lower mean squared error compared to

the normal counterpart. The loss in efficiency for this case is low at 6.19%.

2.5 Application: Mapping of tuberculosis in Kenya

In this section we apply the model to TB data collected by the Ministry of Health,

Kenya. The division of leprosy, TB and lung disease (DLTLD) is responsible for

the data collection within this ministry. This central unit receives case finding

reports from all counties on a quarterly basis and aggregates the values for the

whole year. The Table 2.3 in Appendix 1a summarises the number of TB cases

per county and the corresponding population estimates for the year 2002.

The following models, with increasing complexity, were fitted:

Oi ∼ Poisson(µi) (2.14)
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with

• Model 1: log(µi) = log(Ei) + β0 + vi; v ∼ N(0, σ2
v)

• Model 2: log(µi) = log(Ei) + β0 + vi; v ∼ GGD(0, σ2
v , φ)

• Model 3: log(µi) = log(Ei) + β0 + ui; u ∼ ICAR

• Model 4: log(µi) = log(Ei) + β0 + vi + ui; v ∼ N(0, σ2
v), u ∼ ICAR

• Model 5: log(µi) = log(Ei) + β0 + vi + ui; v ∼ GGD(0, σ2
v , φ), u ∼ ICAR

where O is the observed counts of cases of TB and E is the expected count of

cases of TB. Model estimation was carried out using a Bayesian approach. All

parameters in the models were assigned prior distributions. In this analysis, a

non informative normal prior was assigned to the fixed effect coefficient β0, the

shape parameter φ was given a diffuse, uniform prior, and the variance parameters

were assigned inverse gamma distributions. The models were implemented using

WinBUGS version 1.4 [Spiegelhalter et al., 2007; Ntzoufras, 2011]. For each model,

50,000 Markov chain Monte Carlo (McMC) iterations were ran, with the initial

10,000 discarded to cater for the burn-in period and thereafter keeping every tenth

sample value. The 4,000 iterations left were used for assessing convergence of

the McMC and parameter estimation. We assessed McMC convergence of all

models parameters by checking trace plots and autocorrelation plots of the McMC

output, see Gelman et al. [2003]. The models were compared using the Deviance

Information Criterion (DIC) as suggested by Spiegelhalter et al. [2002]. The best

fitting model is one with the smallest DIC value. In this analysis, the unstructured
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Table 2.2: Model comparison in mapping TB in Kenya

Estimates
Model β0 φ σ2

u σ2
v pD DIC

Model 1 -0.21(-0.31,-
0.08)

- - 0.07(0.03,0.19) 46.48 510.64

Model 2 -0.20(-0.38,-
0.02)

2.27(1.07,6.27) - 0.25(0.18,0.47) 45.76 507.81

Model 3 -0.22(-0.22,-
0.19)

- 1.31(0.59,2.69) - 49.76 515.12

Model 4 -0.22(-0.39,-
0.11)

- 0.02(0.01,0.13) 0.06(0.03,0.11) 46.98 511.35

Model 5 -0.18(-0.30,-
0.02)

3.92(0.82,7.83) 0.31(0.00,1.56) 0.16(0.00,0.34) 50.55 519.47

heterogeneity, modelled using the generalized Gaussian distribution was found to

perform slightly better than the other models considered in this study. This can

be seen in Table 2.2, based on the DIC values. Figure 2.1 shows the spatial

distribution of TB in Kenya based on this best fitting model. This is a map of

relative risk and its corresponding credible interval.

Figure 2.1: TB relative risk map(a) and the corresponding 95% lower(b) and
upper(c) credible limits maps, respectively, produced by model 2.
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2.6 Discussion

Routine framework for modelling correlated data is through the generalized linear

mixed effects model in which a random effect is incorporated. The usual main

assumption in a standard version of the setup is to model the between subject

variations with random effects that are normally distributed; this choice to some

extent has been driven, over the years, by computational ease or flexibility in

generating the posterior distribution. The assumption of modelling random effects

with a normal distribution has been both challenged and supported by several

authors [McCulloch and Neuhaus, 2011; Litière et al., 2007, 2008]. A lot of work

has been done in trying to find better fitting distributions in the recent past.

Magder and Zeger [1996] proposed a smooth non-parametric maximum likelihood

approach to modelling the random effects. Verbeke and Lesaffre [1997] proposed

using a mixture of normal distributions for the random effects and they carried

out their estimation using the expectation maximization (EM) algorithm. Zhang

and Davidian [2001] proposed a semi-parametric linear mixed model in which

they assumed that the random effects have a smooth density represented by semi-

nonparametric truncated series expansion. Ho and Hu [2008] used a finite mixture

of normal in a Bayesian setting with the number of components being estimated

from the data automatically.

In disease mapping context, the same situation arises. The basic BYM model

has two components, one which is spatially structured and the other component

which is spatially unstructured. The spatially unstructured component is usually

modelled using the normal distribution. In this work we propose the generalized
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Gaussian distribution as a random effect distribution to replace the over-restrictive

normal distribution for the unstructured heterogeneity. The special cases of the

generalized Gaussian distribution, including the normal and Laplace distributions,

are exposed. The generalized Gaussian distribution has an extra parameter to

allow for high and low peakedness as dictated by the data.

The parameters in the models are estimated under Bayesian inference. The models

were implemented in WinBUGS. The generalized Gaussian distribution is not a

standard distribution in the WinBUGS software. We introduced this distribution

in the software using zero tricks, see Appendix 1b. The models were compared

using simulation studies and again with a real data set.

In the simulation study it was seen that the effect of misspecification of the random

effects when the normal distribution is used in place of the generalized Gaussian

distribution was high as compared to using the generalized Gaussian in place

of the normal distribution. The generalized Gaussian distribution has all the

nice properties of the normal distribution. In fact the normal distribution is a

special case of the generalized Gaussian distribution. When the random effect

distribution fails to adhere to the normality assumption due to peakedness, the

generalized Gaussian distribution plays a big role in capturing this, something

that the normal distribution cannot.

In the real data sets comparison, the generalized Gaussian distribution is seen

to perform better than the normal distribution model. This model was used to

produce county specific maps of relative risk of TB in Kenya. The maps are critical
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in understanding disease epidemiology and also in helping policy makers to develop

informed intervention programs and allocate scarce resources adequately.

One limitation of this model is that it only captures high and low peakedness

departures from the normal distribution. It assumes that the random effects are

symmetric. This assumption can at times also be wrong. More flexible random

effects models, which can also capture skewness can be investigated.
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Appendix 1a: Tuberculosis data

Table 2.3 gives the number of TB cases reported for each county and the corre-

sponding population as at 2002 in Kenya.

Table 2.3: Number of TB cases reported for each county and the corresponding
population size.

County TB cases Population County TB cases Population
Baringo 572 461175 Mandera 993 286006
Bomet 729 437321 Marsabit 989 194960
Bungoma 1343 1134381 Meru 2380 1221068
Busia 1262 618068 Migori 1974 746904
Elgeyo Marakwet 395 326798 Mombasa 5889 755867
Embu 1145 497662 Muranga 1541 808488
Garissa 1000 480489 Nairobi 15979 2495170
Homa Bay 3159 829355 Nakuru 3413 1354899
Isiolo 611 107741 Nandi 720 659957
Kajiado 613 461174 Narok 610 604298
Kakamega 1979 1454722 Nyamira 763 548053
Kericho 1936 890544 Nyandarua 639 526742
Kiambu 2638 1523061 Nyeri 1536 722739
Kilifi 1521 923837 Samburu 340 163001
Kirinyaga 721 502243 Siaya 2034 790555
Kisii 2105 1052456 Taita Taveta 569 279951
Kisumu 4753 882705 Tana River 278 195965
Kitui 2166 908106 Tharaka-Nithi 1053 338616
Kwale 945 559901 Trans Nzoia 876 652005
Laikipia 344 365759 Turkana 1340 516833
Lamu 111 83985 Uasin Gishu 2384 707664
Machakos 2474 1005586 Vihiga 515 561538
Makueni 1119 856800 Wajir 743 377527

West Pokot 915 349857
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Appendix 1b: Specifying the GGD prior in Win-

BUGS using zero tricks

Since the GGD prior is not specified as a standard distribution in WinBUGS, we

used the zero trick technique to specify this prior distribution. Suppose we wish to

use a prior GGD(θ) which is not available, we first define a flat/non-informative

prior for θ, say, h(θ). Next we define a dummy variable, say Zeros, with all its

values set to zero. We also specify this dummy variable, Zeros, to be following

a Poisson distribution with mean λ. Then we set λ to be equal to the negative

log-likelihood of the prior distribution that we are interested in, the GGD, that is

λ = −log(GGD(θ)).

f(θ|Zeros) = f(Zeros = 0|θ)h(θ)

=
e−λλZeros

Zeros!
h(θ)

=
e−λλ0

0!
× 1

= e−λ

= elog(GGD(θ))

= GGD(θ)

This is the prior distribution that that we wanted. The corresponding code in

Winbugs software is given below.

#Generalized Gaussian prior distribution implementation using zero tricks

my_zeta<-pow(abs((sigmau*sigmau*exp(loggam(1/psi)))/(exp(loggam(3/psi)))),0.5)
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normalizing<-1/((2*exp(loggam(1+1/psi)))*my_zeta)

logN<-log(normalizing)

for(i in 1: n)

{

v[i]~dunif(-10000,10000)

zeros[i]<-0

logGGD[i]<-logN-pow(abs(v[i]/my_zeta),psi)

zeros[i]~dpois(-logGGD[i])

}



Chapter 3

Spatial Variation of HIV Infection

in Kenya based on Complex

Survey Data

Human Immunodeficiency Virus (HIV) still remains a leading public health prob-

lem in Sub-sahara Africa and many parts of the world. Understanding geographi-

cal variation of HIV is key in formulating policies and interventions to combat it.

Many governments, especially in developing countries rely on using Demographic

and Health Surveys to monitor the progress of intervention programs put in place

to fight HIV and other scourges.

The objective of this study is to demonstrate how to incorporate survey weights

from complex survey data in spatial analysis, investigate the effect of weight in-

clusion on inference made and generate disease maps.

30
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The weights are incorporated so as to take care of the nature of the complex sur-

vey design used to collect the data. The effect of survey weight incorporation

is investigated by comparing variability between weight adjusted and unadjusted

estimates. The method is applied to the Kenya Aids indicator survey dataset, col-

lected by the government of Kenya, in 2007. It involves 19,840 individuals in the

of age 15-64 years. Parameter estimation is carried out under Bayesian inference

using Markov chain Monte Carlo methodology.

The weight adjustment was seen to reduce sampling variation and control for ex-

aggeration of effects, this lead to quality inference. HIV prevalence for counties in

Kenya is estimated for males and females and high prevalence counties identified.

In this study, we have shown how to include survey weights into spatial modeling,

so as to account for the unequal selection probabilities associated with complex

surveys. The weighted analysis produces estimates with low variability as com-

pared to unweighted analysis.

3.1 Introduction

Human Immunodeficiency Virus (HIV) still remains a leading public health prob-

lem in sub-Saharan Africa and many parts of the world. Governments in collabo-

ration with private stakeholders have been tirelessly putting up new programs to

prevent new HIV infections and to improve the quality of life of people affected and

infected by HIV. Many advances like the introduction of free antiretroviral drugs,

distribution of free condoms, free voluntary testing and counselling centres, and

public awareness programmes are aimed at curbing this menace. National surveys
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are important for assessing whether government and private sector led interven-

tions and campaigns have an impact on the prevalence of the infection. There is

need to monitor disease burden within administrative regions of a country.

Disease infection variation within a country’s geographical regions is important in

determining where more resources on prevention and treatment need to be focused

[Waller and Gotway, 2004; Lawson et al., 1999]. Visualisation of disease distribu-

tion is an important procedure in understanding disease occurrence [Everitt and

Dunn, 2011]. The use of maps in the context of disease distribution has devel-

oped rapidly in the public health sector [Lawson et al., 2003; Cliff, 1995; Kazembe

et al., 2006; Manda et al., 2009]. Disease maps inform people about the geograph-

ical variation in disease burden [Wakefield, 2007].

Most countries carry out Demographic and Health Surveys (DHS) in order to

understand people’s comprehension of certain health issues and also determine

prevalence and awareness about several diseases. The survey data are usually

collected with an aim of being representative of the whole population. Complex

survey designs are usually used to ensure proper representation of the population.

In complex surveys, the individuals included in the sample usually have a sampling

weight attached to them so as to downscale or upscale their representativeness of

the population. This is used to acknowledge the fact that not all individuals in

the population had a chance to be selected into this sample. If all the individuals

had the same and equal chance of being selected into the population then this will

imply a simple random sampling scheme hence each individual will have a sam-

pling weight equal to one. This means that in complex survey designs individuals

included in the study had unequal probabilities of selection, as opposed to simple



Chapter 3. Spatial Variation of HIV Infection in Kenya based on Complex
Survey Data 33

random sampling scheme.

Previous research [Ngigi, 2007; Montana et al., 2007], of geographical analysis of

HIV has been done using standardised morbidity ratios, and ignoring the fact that

the datasets used were collected using complex survey design where individuals

included in the study had unequal probabilities of selection.

Chen et al. [2012], in their recent work on inclusion of sampling weights into anal-

ysis, for binary data, incorporated sampling weights by matching variances in a

stratified random sampling survey. In this study, we incorporate the survey weights

into the model using effective sample sizes through design effects [Kish, 1995]. De-

sign effects measure the loss (or gain) in effectiveness by using a complex sampling

scheme as opposed to simple random sampling. We then use a generalized linear

mixed model [McCulloch and Neuhaus, 2005] with spatially unstructured random

effects and spatially structured random effects being modelled by normal priors

and intrinsic conditional autoregressive (ICAR) priors respectively [Besag et al.,

1991]. The methods are applied to HIV data extracted from the Kenya aids in-

dicator survey dataset of 2007, collected by the Government of Kenya. In this

work, we also investigate if there is any difference in inference when we include

the sampling weights in the model.



Chapter 3. Spatial Variation of HIV Infection in Kenya based on Complex
Survey Data 34

3.2 Methods

3.2.1 Data

The data for this study was extracted from the 2007 Kenya Aids Indicator Survey

(KAIS), conducted by the Government of Kenya. The main objective of survey

was to collect high quality data on the prevalence of HIV and sexually transmitted

infections (STI) among adults, and to assess knowledge of HIV and STI in the

populations. The survey collected a representative sample of households selected

from the eight provinces in the country. It involved men and women in the age of

15-64 years. The primary sampling unit for the survey was a cluster, a collection

of one or more enumeration areas, with an average of 100 households in each

cluster. In all, 402 clusters were surveyed. Two questionnaires were used in

the survey. The first one is a household questionnaire which collected information

about the household head and the characteristics of the dwelling place. The second

one, the individual questionnaire, collected information from men and women

aged 15-64 years, about their demographic characteristics, and their knowledge

on HIV and STI. All women and men aged 15-64 years in selected households

who were either usual residents or visitors present the night before the survey

were eligible to participate in the individual interview and blood draw, provided

they gave informed consent. For minors aged 15-17 years, parental consent and

minor assent were both required for participation. Participants could consent to

the interview and blood draw or to the interview alone. The inclusion criteria

may have captured non-Kenyans living as usual residents or visitors in a sampled
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household. Design weights were used for households, individual interviews, and

blood draws. The purpose of weighting was to correct for unequal probability of

selection and to adjust for non-response to produce results that were representative

of the larger population from which the sample was drawn. Base weights were

adjusted for cluster non-response, household non-response, and individual non-

response (both for the interview and the blood draw). Readers are referred to the

final survey report for more details regarding survey methodologies used in the

study [NASCOP, 2008]. Each individual was then asked for consent to provide a

venous blood sample for HIV, HSV-2, syphilis testing and CD4 cell count. In total

17,940 individuals completed the individual questionnaires while 15,867 provided

venous blood for testing.

3.2.2 Selection of variables

An initial univariate and multivariate exploratory data analysis carried out showed

that the following variables were significantly associated with HIV infection among

men: age at first sex, perceived risk of HIV, number of partners in the previous

year, condom use, circumcision status, residential area, age, access to media and

whether the person had STI. In a similar manner, for the women case, the following

variables were identified to be associated with HIV infection: education level,

age at first sex, perceived risk of HIV, number of partners in the previous year,

residential area, age, frequency of away travels, marital status and whether the

person had STI. The significant covariates identified were generally in agreement

with existing literature [Montana et al., 2007, 2005; Cheluget et al., 2006; Johnson
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and Way, 2006; Bailey et al., 2007; Weiss et al., 2000]. The identified individual

level covariates were used to compute county covariates based on proportions.

3.2.3 Statistical models and analysis

This section introduces the models and their specifications. First the data are

modeled without incorporating the survey weights and then followed by modeling

with the survey weights adjustment. In the next subsection we fully describe the

method used to incorporate the survey weights, followed by the hierarchical models

considered.

3.2.3.1 Incorporating Sampling weights

Let yij be a binary response for the HIV status of individual j in area i (i =

1, 2, · · · ,m and j = 1, 2, · · ·Ni). Our initial interest is to estimate the small

region specific proportion parameter pi given by:

pi =

∑Ni
j=1 yij

Ni

. (3.1)

pi can be estimated using the direct survey-weighted estimate given by

p̂i =

∑ni
j=1 wijyij∑ni
j=1wij

, (3.2)

where ni is the sample size of the small domain i and wij is the sampling weight

associated with individual j in area i. In order to calculate the “effective sample
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size”, n∗i for the ith area, we first estimate the corresponding design effect, deffi,

see Kish [1995]. Design effect measures the loss or gain of effectiveness by using

a complex sampling design instead of simple random sampling. Using this and

following from You and Zhou [2011], deffi is estimated as

deffi =
s2
i

s2
ri

, for i = 1, 2, · · · ,m (3.3)

where s2
i is the unbiased direct estimate of the variance of proportion based on the

complex sampling design and s2
ri is the unbiased direct estimate of the variance of

the proportion based on the simple random sampling design.

Using the estimated design effect, we calculate the effective sample size for each

small area as follows;

n∗i =
ni

deffi
(3.4)

To find the effective number of HIV cases in each region, y∗i , we multiplied the

effective sample size and the area proportion p̂i as calculated from equations (3.4)

and (3.2) respectively as;

y∗i = n∗i × p̂i (3.5)

3.2.3.2 Hierarchical Model

The conditional distribution of y∗i given pi for this binary case is defined as

y∗i |pi ∼ Bin (n∗i , pi) , i = 1, 2, · · ·m. (3.6)
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where n∗i and y∗i are as defined in equations (3.4) and (3.5) respectively. Having de-

scribed the distributional properties of the response variable y∗i , we now present the

statistical models that will be used. We consider random effects models, both spa-

tially structured and spatially unstructured. The spatially unstructured random

effect was modeled as using a normal prior, vi ∼ N(0, σ2
v). For the spatially struc-

tured random effect, ui, we used the intrinsic conditional autoregressive(ICAR)

prior, specified by Besag et al. [1991] as follows

ui|u−i, j 6= i ∼ N


∑

j∈N(i)

uj

di
,
σ2
u

di

 (3.7)

where N(i) denotes the set of neighbours of area i, di is the corresponding number

of neighbours and u−i = (u1, · · · , ui−1, ui+1, · · · , um), is the vector of the random

effects without the ith component. Two regions are defined to be neighbours if

they share a border. The variance component σ2
u accounts for spatial variation

between the regions and is also used to capture the amount of variation explained

by the spatial structure.

In this work, different models in increasing order of complexity arising from dif-

ferent assumptions on random effects were fitted. The models are (we present

the systematic part of the models, the first stage for each model is the likelihood

distribution given in (3.6)):

• Model 1: logit(pi) = xTi β: Generalized linear model.

• Model 2: logit(pi) = xTi β + vi: Normal unstructured heterogeneity (UH)

random effects model.
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• Model 3: logit(pi) = xTi β + ui: ICAR spatial random effects model.

• Model 4: logit(pi) = xTi β + ui + vi: Convolution model.

The modeling was done separately for men and women due to the difference in HIV

prevalence between the two genders. In Kenya, HIV prevalence among women is

8.4% and 5.4% among men. Model estimation was carried out using a Bayesian

approach [Gelman et al., 2003]. All parameters in the models were assigned prior

distributions. In this analysis, non-informative normal priors were assigned to

the fixed effect coefficients, β and the variance parameters were assigned non-

informative inverse gamma distributions. The models were implemented using

WinBUGS version 1.4, [Spiegelhalter et al., 2007; Ntzoufras, 2011]. For each

model, 200,000 Markov chain Monte Carlo (McMC) iterations, [Mollie et al., 1996],

were ran for each model, with the initial 20,000 discarded to cater for the burn-in

period and there after keeping every tenth sample value. The 18,000 iterations left

were used for assessing convergence of the McMC and parameter estimation. We

assessed McMC convergence of all models parameters by checking trace plots and

autocorrelation plots of the McMC output [Gelman et al., 2003]. The models were

compared using the Deviance Information Criterion (DIC) [Spiegelhalter et al.,

2002]. The best fitting model is one with the smallest DIC value. In cases where

the difference in DIC between the models is not above 5, we selected the best model

based on “simplicity” of the model, that is, model with both few parameters and

random effects.



Chapter 3. Spatial Variation of HIV Infection in Kenya based on Complex
Survey Data 40

3.3 Results

In this analysis, laboratory HIV test results of a sample of 9,049 women and 6,818

men with full covariate information was used.

3.3.1 Effect of weight adjustment on parameter coefficients

In the men’s data, the model with a spatially unstructured random effect only,

was found to be the simplest model with a relatively lower DIC compared to the

other models, see Table 3.1 and Table 3.2. Based on this best fitting model, the

final conclusion on the effects of the covariates, that is on whether the variable is

significant or not, was the same in both weight adjusted and weight unadjusted

models. The coefficient estimates are also very close in both weight adjusted and

weight unadjusted analyses. Proportion perceiving not to be at risk of HIV and

proportion of men in the county who are not circumcised were found to be signif-

icantly associated with HIV infection.

Table 3.1: Men’s results from weight unadjusted models: parameter estimates
and corresponding 95% credible interval

County covariate model 1 model 2 model 3 model 4
Constant 0.27(-3.39,3.70) -0.86(-5.47,2.98) 0.49(-4.67,5.57) -0.18(-4.35,5.54)
Prop. sex debut at 15-17 1.53(-0.51,3.56) 2.09(-0.51,4.84) 0.86(-1.93,3.49) 1.21(-1.47,3.68)
Prop. perceiving not at risk -7.60(-12.7,-2.54) -7.48(-14.4,-0.78) -7.01(-14.31,0.52) -7.01(-14.76,0.18)
Prop. who had one partner -3.35(-5.29,-1.17) -2.54(-5.20,0.50) -3.46(-6.69,0.31) -3.08(-6.51,-0.6)
Prop. not using condom 0.35(-1.54,2.29) 0.39(-2.45,3.06) 0.41(-2.06,3.03) 0.51(-2.27,3.12)
Prop. not circumcised 1.49(0.96,2.03) 1.77(0.96,2.65) 1.26(0.43,2.11) 1.44(0.64,2.26)
Prop. in rural area -0.58(-1.11,-0.05) -0.83(-1.85,0.13) -1.00(-2.18,-0.02) -0.97(-2.14,0.07)
Prop. without media access -1.30(-2.68,-0.01) -1.44(-3.22,0.32) -1.47(-3.28,0.23) -1.53(-3.38,0.31)
Prop. with STI -4.23(-11.23,1.94) -3.60(-12.2,4.94) -5.53(-14.6,2.55) -4.81(-13.7,3.09)
Average Age -0.00(-0.06,0.055) 0.00(-0.07,0.08) 0.00(-0.10,0.09) 0.01(-0.10,0.10)
σv - 0.18(0.00,0.50) - 0.06(0.00,0.38)
σu - - 0.49(0.00,1.51) 0.30(0.00,1.12)
DIC 235.00 220.19 221.08 220.94
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Table 3.2: Men’s results from weight adjusted Models: parameter estimates
and corresponding 95% credible interval

County covariate model 1 model 2 model 3 model 4
Constant -0.26(-3.12,3.19) -0.00(-5.46,5.79) -0.40(-5.39,4.48) -0.36(-5.62,4.93)
Prop. sex debut at 15-17 0.41(-0.93,1.73) 1.33(-1.09,3.94) 0.28(-2.16,2.74) 0.86(-1.70,3.36)
Prop. perceiving not at risk -8.71(-13.99,-3.7) -7.24(-14.35,-0.12) -5.67(-13.59,1.83) -6.04(-14.45,2.28)
Prop. who had one partner -2.82(-4.81,-1.0) -2.53(-6.74,0.81) -2.73(-5.96,0.52) -2.26(-5.49,1.14)
Prop. not using condom 1.81(0.31,3.36) 0.69(-2.76,3.43) 1.58(-0.64,3.78) 1.22(-1.70,3.87)
Prop. not circumcised 1.48(0.98,1.96) 1.64(0.69,2.60) 1.25(0.37,2.11) 1.47(0.511,2.39)
Prop. in rural area -0.757(-1.28,-0.23) -0.83(-1.90,0.36) -1.09(-2.34,0.04) -0.97(-2.1,0.18)
Prop. without media access -2.09(-2.90,-1.30) -1.49(-3.16,0.28) -1.86(-3.55,-0.30) -1.66(-3.33,0.03)
Prop. with STI -1.52(-6.60,3.256) -2.34(-11.5,6.15) -3.63(-11.50,3.55) -2.62(-10.90,5.13)
Average Age -0.00(-0.05,0.04) -0.01(-0.12,0.08) 0.01(-0.08,0.09) -0.01(-0.11,0.09)
σv - 0.25(0.07,0.56) - 0.13(0.00,0.44)
σu - - 0.66(0.18,1.58) 0.34(0.00,1.49)
DIC 261.67 226.74 227.64 227.13

In the women’s data, the model with a spatially structured random effect only,

was found to be the simple model with relatively lower DIC compared to the other

models, for both weight adjusted models and weight unadjusted models, see Ta-

ble 3.3 and Table 3.4. Based on this best fitting model, the final conclusion on

whether the covariates were significant or not was the same in both weight ad-

justed and weight unadjusted models. Age at sex debut, proportion of people in

the county who had one partner and the proportion of people in the county living

in the rural area were found to be significantly associated with HIV infection.

Table 3.3: Women’s results from weight unadjusted models: parameter esti-
mates and corresponding 95% credible interval

County covariate model 1 model 2 model 3 model 4
Constant 11.77(5.69,15.49) 14.07(9.33,19.7) 7.92(-0.11,15.96) 1.70(-2.64,12.89)
Prop. with no education 1.15(0.56,1.77) 0.03(-1.4,1.39) 1.08(-0.36,2.44) 1.15(-0.45,2.58)
Prop. sex debut at 15-17 4.32(3.15,5.49) 4.00(1.11,7.09) 3.44(1.39,5.78) 3.64(1.21,6.05)
Prop. perceiving not at risk -1.12(-2.14,-0.19) -0.87(-3.13,1.34) -0.76(-3.03,1.58) -0.96(-3.31,1.39)
Prop. who had one partner -12.55(-16.05,-6.73) -13.56(-17.05,-9.80) -10.37(-17.14,-2.07) -4.60(-14.21,1.59)
Prop. in rural area -0.68(-1.16,-0.20) -0.49(-1.54,0.61) -1.12(-2.08,-0.10) -1.31(-2.30,-0.27)
Prop. which did not stay away -1.25(-2.01,-0.49) -0.61(-2.35,1.27) 0.17(-1.38,1.86) 0.11(-1.61,2.05)
Prop. married with 1 partner -1.54(-3.42,0.22) -2.11(-6,1.88) -1.32(-4.12,1.53) -1.30(-4.55,1.74)
Prop. with STI -7.53(-14.51,-0.84) -6.37(-18.73,6.50) -4.79(-17.34,7.88) -3.67(-16.41,9.02)
Average Age -0.05(-0.11,-0.00) -0.08(-0.19,0.01) -0.01(-0.10,0.06) 0.00(-0.11,0.10)
σv - 0.28(0.11,0.59) - 0.02(0.00,0.13)
σu - - 0.69(0.27,1.42) 0.69(0.21,1.45)
DIC 314.45 259.88 253.18 253.87

In both men’s and women’s data, even though the parameter estimates of the fixed
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Table 3.4: Women’s results from weight adjusted models: parameter estimates
and corresponding 95% credible interval

County covariate model 1 model 2 model 3 model 4
Constant 14.32(9.26,21.05) 24.9(20,31.51) -2.61(-7.56,4.09) -2.32(-7.33,2.61)
Prop. with no education 1.01(0.48,1.55) -0.35(-1.77,1.00) 0.86(-0.74,2.82) 0.85(-0.96,2.47)
Prop. sex debut at 15-17 5.23(3.95,6.46) 3.19(0.27,6.21) 3.40(0.58,6.23) 3.63(0.38,6.53)
Prop. perceiving not at risk -0.98(-2.17,0.10) -0.80(-3.23,1.51) -0.63(-3.41,2.10) -0.75(-3.53,2.13)
Prop. who had one partner -15.64(-22.35,-10.16) -23.13(-29.67,-16.67) -1.85(-3.49,-0.20) 0.03(-4.06,6.08)
Prop. in rural area -1.22(-1.60,-0.85) -0.12(-1.26,0.93) -1.11(-1.97,-0.26) -1.23(-2.44,-0.0)
Prop. which did not stay away -0.81(-1.65,0.04) -0.31(-2.41,1.59) 0.57(-1.50,2.82) 0.15(-1.99,2.64)
Prop. married with 1 partner -1.29(-3.02,0.27) -3.10(-6.94,0.49) -2.51(-7.12,1.26) -3.15(-6.79,0.37)
Prop. with STI -10.1(-15.96,-4.43) -7.67(-20.08,5.71) -2.71(-16.85,12.22) -3.45(-17.5,11.17)
Average Age -0.04(-0.08,0.00) -0.10(-0.19,-0.02) 0.05(-0.05,0.13) 0.01(-0.06,0.10)
σv - 0.31(0.14,0.61) - 0.04(0.00,0.25)
σu - - 0.97(0.42,1.91) 0.86(0.16,1.86)
DIC 328.31 259.84 252.71 252.42

effects coefficients were of the same order of magnitude for both weight adjusted

and weight unadjusted models, the confidence interval for the weight adjusted

models were generally narrower. In cases where the parameter estimates were a

little bit different between the weight adjusted and weight unadjusted models, the

weight adjusted model had slightly lower values.

Figure 3.1 and Figure 3.2 shows box plots of HIV prevalence in the 46 counties

for men and women respectively, based on the best fitting weight adjusted models.

The horizontal line gives the countrywide HIV prevalence for each gender, stand-

ing at 7.88% for women and 5.60% for men. Table

Table 3.5 gives the county HIV prevalence estimates based on the best fitting

weight adjusted models for men and women.

Table 3.5: County HIV prevalence estimates and corresponding 95% credible
interval based on best fitting weight adjusted models

Men Women
ID County Prevalence (95% CI) Prevalence (95% CI)
1 Baringo 0.02(0.01,0.05) 0.02(0.01,0.05)
2 Bomet 0.11(0.08,0.13) 0.08(0.04,0.14)
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3 Bungoma 0.02(0.00,0.04) 0.04(0.02,0.08)
4 Busia 0.05(0.02,0.07) 0.07(0.05,0.10)
5 Elgeyo Marakwet 0.05(0.02,0.09) 0.05(0.02,0.12)
6 Embu 0.02(0.01,0.04) 0.06(0.03,0.11)
7 Garissa 0.04(0.02,0.07) 0.01(0.01,0.02)
8 Homa Bay 0.26(0.19,0.34) 0.31(0.26,0.36)
9 Isiolo 0.03(0.00,0.09) 0.07(0.02,0.16)
10 Kajiado 0.03(0.01,0.08) 0.05(0.01,0.14)
11 Kakamega 0.05(0.04,0.08) 0.07(0.05,0.11)
12 Kericho 0.05(0.03,0.09) 0.12(0.07,0.18)
13 Kiambu 0.04(0.02,0.07) 0.04(0.02,0.07)
14 Kilifi 0.06(0.04,0.08) 0.08(0.05,0.12)
15 Kirinyaga 0.04(0.02,0.06) 0.06(0.03,0.09)
16 Kisii 0.04(0.02,0.07) 0.07(0.05,0.09)
17 Kisumu 0.13(0.08,0.20) 0.20(0.14,0.27)
18 Kitui 0.05(0.02,0.08) 0.07(0.04,0.12)
19 Kwale 0.04(0.02,0.06) 0.06(0.04,0.09)
20 Laikipia 0.04(0.02,0.08) 0.03(0.01,0.06)
21 Lamu 0.04(0.01,0.10) 0.01(0.00,0.04)
22 Machakos 0.03(0.02,0.06) 0.05(0.03,0.09)
23 Makueni 0.04(0.02,0.07) 0.09(0.06,0.11)
24 Mandera 0.01(0.00,0.04) 0.02(0.01,0.03)
25 Marsabit 0.01(0.00,0.03) 0.01(0.00,0.03)
26 Meru 0.02(0.01,0.04) 0.06(0.03,0.10)
27 Migori 0.17(0.12,0.23) 0.21(0.15,0.28)
28 Mombasa 0.08(0.05,0.12) 0.16(0.13,0.18)
29 Muranga 0.03(0.01,0.05) 0.04(0.03,0.06)
30 Nairobi 0.07(0.05,0.10) 0.11(0.08,0.14)
31 Nakuru 0.05(0.03,0.09) 0.11(0.06,0.17)
32 Nandi 0.08(0.04,0.15) 0.09(0.04,0.15)
33 Narok 0.04(0.01,0.09) 0.07(0.03,0.12)
34 Nyamira 0.05(0.02,0.09) 0.07(0.04,0.11)
35 Nyandarua 0.04(0.01,0.07) 0.04(0.02,0.08)
36 Nyeri 0.04(0.02,0.07) 0.03(0.02,0.05)
37 Siaya 0.14(0.09,0.20) 0.20(0.16,0.25)
38 Taita Taveta 0.06(0.04,0.09) 0.09(0.06,0.12)
39 Tana River 0.03(0.01,0.08) 0.03(0.01,0.05)
40 Tharaka-Nithi 0.04(0.02,0.07) 0.07(0.04,0.11)
41 Trans Nzoia 0.08(0.05,0.10) 0.09(0.04,0.18)
42 Turkana 0.10(0.06,0.15) 0.16(0.07,0.28)
43 Uasin Gishu 0.04(0.02,0.07) 0.07(0.05,0.09)
44 Vihiga 0.05(0.02,0.09) 0.06(0.03,0.09)
45 Wajir 0.01(0.00,0.03) 0.01(0.00,0.02)
46 West Pokot 0.03(0.01,0.06) 0.07(0.02,0.14)
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3.3.2 Variation of HIV infection in Kenya

The best fitting weight adjusted models were used to produce smoothed maps to

show the variation of HIV in Kenya, for men and women. Weight adjusted model

2 was used to produce the women’s map while weight adjusted model 3, was used

to produce the men’s map.

From the choropleth map in Figure 3.3, the prevalence of HIV with respect to men

among counties shows huge geographical discrepancy. There is high prevalence in

the counties situated on the western side of the country, around Lake Victoria

region and also in the Turkana county in the North West part of the country.

In the women’s analysis, from the choropleth map in Figure 3.4, HIV prevalence

was found to be higher around the Lake Victoria region counties, on the West part

of the country. Turkana County, on the North West corner of the country is also

found to have high prevalence of HIV, as well as the coastal counties situated in

the South Eastern part of the country.

3.4 Discussion

In this study, we set out to develop a disease prevalence modeling and mapping

approach that allows for acknowledgment of the complex nature of the method

used to collect the survey data. Sampling weights are used to control two major

forms of bias in survey sampling, namely non-response bias and non-coverage bias.
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Introducing sampling weights during modelling in a generalized linear mixed mod-

elling framework has been a challenge [Gelman, 2007; Heeringa et al., 2010]. Sev-

eral attempts have been made on this topic in the recent past [DuMouchel and

Duncan, 1983; Pfeffermann, 1993] but these procedures are not very flexible, and

this is the main reason why the modeling approach is more popular for problems

such as small area estimation [Fay and Herriot, 1979; Rao, 2005]. Another prob-

lem with weight adjusted estimates is that standard errors are hard to calculate.

In as much as fitting regression models is simple for ordinary data, and of late

fitting hierarchical models has followed suite, due to new state of the art softwares

like WinBUGS, STATA, R, SAS etc, applying these models to survey data with

acknowledgment of survey weights is still a challenge.

In this work, we model the prevalence of HIV based on data collected from a

complex survey. We introduced the weights into the model using design effects,

which is a design based approach. Our main interest is to compare the variation in

inference when we model the data with these survey weights and when we ignore

the survey weights (assuming simple random sampling was used in collecting the

data), applied to Kenya HIV prevalence data.

To capture both regional variation and region specific characteristics, both spa-

tially structured and spatially unstructured random effects were introduced in the

models. The spatially structured random effects were modelled using a Markov

random field while the spatially unstructured random effects were modelled using

a zero mean Gaussian prior. Bayesian inference was used in the estimation due to

the complex nature of the data and models.
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Weight adjusted estimates were found to have low variability, their confidence

intervals were narrow and were generally lower in value than the weight unadjusted

analyses. In other words weight adjustment was able to control for exaggeration

of effects and this led to quality inference. This was in line with Chen et al. [2012]

findings about sampling weight adjustment analysis, carried out for small area

estimation.

In terms of whether the county covariates of interest in the model were significant

or not, both weight adjusted and weight unadjusted analyses gave the same results.

The order in magnitude of the coefficients was also the same for both weight

adjusted and weight unadjusted models. This result seems to support an argument

by Fienberg [2009], which highlights that including survey weights in statistical

models is a futile venture in Bayesian analysis.

Disease prevalence maps provide a quick visualisation of the geographic variation

of disease burden in a country. For a given county, this is critical especially in the

dispensation of the new constitution with counties being the new administrative

units.

There was significant variation of HIV prevalence among the counties, which to

the best of our knowledge could be explained by the socio-economic and cultural

practices of communities residing in the counties. As noted in other studies, [Ngigi,

2007; Montana et al., 2007; Cheluget et al., 2006; Oluoch et al., 2011], the preva-

lence of HIV for both men and women was found to be mainly higher in the Lake

Victoria region counties, that is the Western part of the country.
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One limitation in this study is the restricted number of variables available and

their nature from this national survey data. For example, condom use covariate

was not well captured since the survey only asks if someone used a condom with

the last partner, it does not capture the consistency in condom use.

3.5 Conclusions

We have shown a statistical method of incorporating sampling weights and the

complex structure of survey data in disease mapping analyses. This method can be

applied to any survey data provided the information of every individual’s residence

region is available in the data. Calculations of the effective sample sizes and

effective observations for the regions using design effects is straight forward and

can be applied with ease.

The method produces maps which can show geographical variation of the disease

burden at a glance, based on survey data. These maps are important to policy

makers in both government and private sectors. Policy makers can use these maps

in formulating policies and programs suited for each county. In particular such

easy to use tools can be very useful in optimal allocation of resources aimed at

controlling the disease. The separation of men and women analyses can further

help health policy makers to come up with gender specific policies.
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Figure 3.1: County HIV prevalence box-plot for men using weight adjusted
data and best fitting model 2.

Figure 3.2: County HIV prevalence box-plot for women using weight adjusted
data and best fitting model 3
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Figure 3.3: HIV prevalence map for men based on weight adjusted data and
model 2

Figure 3.4: HIV prevalence map for women based on weight adjusted data
and model 3



Chapter 4

A Double Random Effects Model

for Spatially Correlated and

Overdispersed Binary Data with

Application to HSV-2 Variation

in Kenya

Herpes Simplex Virus-Type 2 (HSV-2) still remains a neglected disease in many

parts of the world, especially in Africa. This is evident by the low publicity and

few testing centers that are accorded to the disease. Overdispersion is a common

phenomenon in count data. Several models have been developed to accommodate

for overdispersion in modeling count data. The models developed usually either

ignore spatial correlation or allows for spatial correlation but assumes that the

51
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overdispersion parameter is not influenced spatially. In this work, a spatial model

for overdispersed binary data which allows for the overdispersion parameter to

vary over the region under study is developed. This model was compared to

existing models and was found to provide a better fit to the data at hand. The

proposed model was used to develop smoothed HSV-2 prevalence maps for Kenya.

These maps can be very informative to policy makers especially if there are limited

resources available in setting up testing centers and a decision has to be made on

where the centers are to be located across the country.

4.1 Introduction

Herpes simplex virus type 2 (HSV-2) is the most frequent cause of genital herpes.

It is one of the most prevalent sexually transmitted infections (STIs) worldwide

[Cusini and Ghislanzoni, 2001]. HSV-2 causes significant neurological morbidity

in Africa that has plagued human health.

The disease is focal in transmission with the primary infection affecting skin or

mucosal surfaces, consequently the ganglia becomes susceptible to be invaded by

viral deoxyribonucleic acid (DNA), being transported to these site with retrogade

axonal transport . During these stage viral genome undergoes circulization with

sensory neurons being the primary target hence a state of latency being observed

[Aumakhan et al., 2010]. Antigenic variation mechanism has also been associated

with the disease with strong mounting of T-cell and humoral immunity. Stress

triggers up to two fold in terms of transcription and replication of the virus with
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the overall clinical inflammatory complications of mucosal lesions and skin being

shed [Horbul et al., 2011].

HSV-2 mainly affects the genital area and is primarily transmitted by sexual con-

tact with an infected person though cross-infection may be possible from orogenital

sex. Even though HSV-2 might not be generally dangerous, it is a nuisance, can

be excruciating and may cause emotionally trauma to the infected person. As per

now, there is no cure for HSV-2; once you have the virus in your body system,

you can only be put on a treatment therapy to suppress it but it will still remain

in the body [Beauman, 2005]. Many individuals have none or mild symptoms of

the herpes virus and are therefore unaware of the infection. Persons infected with

HSV-2 do not necessarily develop a clinical disease, but most, from time to time

produce virus from the genital tract [Lafferty et al., 1987]. Several studies have

indicated that genital herpes is associated with high risk of HIV transmission and

acquisition [Celum et al., 2008; Watson-Jones et al., 2008]. Ngesa et al. [2013]

carried out a joint analysis to investigate the spatial correlation between HIV and

HSV-2 among men at county level in Kenya; a significant positive correlation

was established between these two infections. In Africa, the diseases is not well

reported/studied and very few testing centres exist for this disease.

Spatial analysis of HSV-2 prevalence can give insight for understanding the ge-

ographical distribution of the disease and create strategies for setting up testing

programmes in areas with high prevalence of this disease. In modelling binary

data, especially disease presence or absence in individuals within a region, bino-

mial distribution is a common assumption on the data generating mechanism.
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The main objective of the study is to develop an appropriate statistical model to

assess the prevalence of HSV-2 by county in Kenya, allowing for spatial variations

in the regions while accounting for overdispersion in the data. Overdispersion re-

sults when the data appear more dispersed than is expected under some reference

model. It occurs in data distributions in which the observed counts have variances

that are functions which depend on the value of the mean. That is, the variance

of Y depends on the expected value of Y, which is estimated from the data. In

binomial and Poisson distributions, theoretically, the dispersion parameter is usu-

ally assumed to have a given a value of 1, any departure from this value leads to

overdispersion (> 1) or underdispersion (< 1).

Several over dispersion modelling strategies exist for binomial data. Two major

approaches for handling this is by assuming a distribution for the probability of

success or using random effects. In beta binomial models, the probability of success

is assumed to follow a beta distribution while the data generating mechanism

follows a binomial distribution. Hinde and Demétrio [1998] provide a unified

approach for modelling over-dispersion and clustering. Molenberghs et al. [2007]

and Molenberghs et al. [2010] introduced the combined modeling framework for

handling over-dispersion and repeated measures. Molenberghs et al. [2012] and

Kassahun et al. [2012] focused on combined modelling framework for binomial

data. In Kassahun et al. [2012] and Molenberghs et al. [2012], non-spatial binomial

data was considered and the non-spatial random effects were introduced via the

mean function.

In this study, we develop a model which allows for the dispersion parameter in
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the binomial model to be modelled separately and allowed also to vary spatially

among the regions under study. None of the above studies have allowed for this in

their analysis. This new model is compared with existing over-dispersion model-

ing strategies using the deviance information criterion (DIC) [Spiegelhalter et al.,

2002]. The application of the model yields new and important insights in geo-

graphical variation of HSV-2 in Kenya. We employ a fully Bayesian approach in

the estimation of the parameters. The models are implemented in WinBUGS soft-

ware [Spiegelhalter et al., 2007]. The programs used for the analyses are available

upon request from the first author.

4.2 Data

The data for this study was extracted from the 2007 Kenya Aids Indicator Survey

(KAIS), conducted by the Government of Kenya. The main objective of survey

was to collect high quality data on the prevalence of HIV and sexually transmitted

infections (STI) among adults, and to assess knowledge of HIV and STI in the

populations. The survey collected a representative sample of households selected

from the eight provinces in the country. It involved all men and women in the

age of 15-64 years. Two questionnaires were used in the survey. The first one is

a household questionnaire which collected information about the household head

and the characteristics of the dwelling place. The second one, the individual

questionnaire, collected information from men and women aged 15-64 years, about

their demographic characteristics, and their knowledge on HIV and STI. Each

individual was then asked for consent to provide a venous blood sample for HIV,
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HSV-2, syphilis testing and CD4 cell count. In total, 6,606 men, aged 15-64

years who provided venous blood for HSV-2 testing and also had full covariate

information was extracted from the KAIS data and were used in the analysis. The

following covariates were used in the analysis: education level, circumcision status,

place of residence (urban/rural) and age of respondent.

4.3 Disease mapping models

In this section, we review some of the frequently encountered models for disease

mapping when the data is binary and their overdispersion counterparts. We re-

view the binomial model as an exponential family member, beta-binomial model,

logistic-normal model and the convolution model. The proposed model is also

outlined in this section.

4.3.1 Binomial model and exponential family

The basic model for modeling binary count data is the binomial model. The

binomial distribution has the structure;

f(y|p) =

(
n

x

)
py(1− p)n−y, y = 0, 1, · · · , n (4.1)
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The binomial distribution is a member of the exponential family [McCulloch and

Neuhaus, 2005]. The exponential family distributions take the form,

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
, (4.2)

where θ and φ are called the natural parameter and the scale parameter respec-

tively. For the binomial data, this can be shown as

f(y|p) =

(
n

x

)
py(1− p)n−y (4.3)

= exp

yln
(

p
1−p

)
+ nln (1− p)

1
+ ln

((
n

y

)) (4.4)

Comparing this with the general exponential family structure, the dispersion pa-

rameter, φ = 1. This model is not adequate for data which has overdispersion.

4.3.2 Beta-binomial

A beta-binomial model can be used to model binary count data in cases where

there is overdispersion or underdispersion, i.e φ 6= 1. The model is formulated as

follows and has two levels of hierarchy.

yi ∼ Binomial(ni, pi)

pi ∼ Beta(α, β)
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In this model, the prior means and variances of pi are

Eprior(pi) =
α

α + β
, (4.5)

V arprior(pi) =
αβ

(α + β)2(α + β + 1)
(4.6)

This prior, with fixed α and β leads to a closed form posterior distribution, a beta

distribution, i.e

Posterior =
Likelihood× Prior

Constant

.

P (p|y,n, α, β) =
h∏
i=1

(
ni
yi

)
pyii (1− pi)ni−yi

pα−1
i (1− pi)β−1

[B(α, β)]h
(4.7)

=
h∏
i=1

(
ni
yi

)
pyi+α−1
i (1− pi)ni−yi+β−1

[B(α, β)]h
(4.8)

This is a joint distribution of h independent beta distributions with parameters

yi + α and ni − yi + β i.e Beta (yi + α, ni − yi + β).

Therefore the posterior distribution of pi has means and variances given by

Eposterior(pi) =
yi + α

ni + α + β
, (4.9)

V arposterior(pi) =
(yi + α)(ni − yi + β)

(ni + α + β)2(ni + α + β + 1)
(4.10)

This model is preferred due to the beta-beta conjugacy in prior and posterior

distributions. The model captures overdispersion in the data but is inadequate if

there exists spatial correlation in the data.
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4.3.3 Logistic-normal model

This is an alternative model to the beta-binomial model and it allows for intro-

duction of covariates in the modeling framework. In this model, it is assumed that

a direct linkage exists between a linear predictor, η and the parameter of interest

pi. The commonly used link function for binary data is the logit link i.e

yi ∼ Binomial(ni, pi)

logit(pi) = XT
i β

This falls under the generalized linear modeling (GLM) framework [McCullagh and

Nelder, 1989]. A set of random effects can be introduced into the model to capture

extra variation. This random effect is usually called uncorrelated heterogeneity

(UH), i.e

logit(pi) = XT
i β + vi,

where vi ∼ N(0, σ2
v). This is the logistic-normal model and it falls in the broad

framework of models called generalized linear mixed models (GLMM). The weak-

ness with the above model is that it only allows spatially unstructured variability.

If there are spatially structured effects then such a model cannot suffice.

4.3.4 Convolution model

It is possible to include two random effects, ui and vi in which ui is spatially

structured and vi is spatially unstructured. This type of model (though in a
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different form) was formulated by Besag et al. [1991], and it is described as follows.

yi ∼ Binomial(ni, pi)

logit(pi) = XT
i β + ui + vi,

where ui and vi are variables representing unobserved covariates. In this formula-

tion, ui represents variables that if were observed would bring in influential spatial

structure while vi represents the unobserved spatially unstructured variables. In

most cases, one of them usually dominates the other [Besag et al., 1991]. If u

is stronger than v then the estimated risk will show spatial structure and if v is

stronger than u then the consequence will be to shrink the estimated means to-

wards the overall mean. Besag et al. [1991] assumed that u and v were independent

with the following priors;

p(v|τ) ∝ τ−
n
2 exp

{
− 1

2τ

∑
i=1

nv2
i

}
, (4.11)

and

p(u|k) ∝ k−
n
2 exp

− 1

2k

∑
j∈N(i)

n(ui − uj)

 . (4.12)

In this equation, N(i) is the set of neighbours of region i and n is the number of

regions in the study. Basically, equation (4.11) means that v, the spatially un-

structured random effect is a white noise Gaussian process with unknown variance

τ and equation (4.12) means that the spatially structured random effect, u, is a

Gaussian Markov random field process. This distribution for spatially structured
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random effect is also known as the conditional autoregressive model, conditionally

it is normal distributed and given by

(
ui|uN(i)

)
∼ N

(∑
j∈N(i)

uj

di
,
k

di

)
, (4.13)

N(i) and di denotes the set of neighbours of area i and the number of its neighbours

respectively. In this model, the spatially unstructured component can also be

viewed to capture overdispersion while the spatial structured component allows

for spatial correlation.

4.3.5 Combined model

Molenberghs et al. [2012] and Kassahun et al. [2012] introduced the combined

modelling strategy for binary random variables. In their models, they introduced

two independent random effects, one for overdispersion and the other one to cater

for clustering. These two random effects were introduced in the generalised linear

mixed modelling framework. The models took the form:

yij ∼ Bernoulli(pij),

pij = θijωij,

logit(ωij) = XT
ijβ + vi

θij ∼ Beta(α, β),
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vi ∼ N(0, σ2
v).

4.3.6 Proposed spatial beta-binomial model

In this work, we propose a spatial beta-binomial model which extends on the

work of Molenberghs et al. [2012] and Kassahun et al. [2012]. In their models, the

additional random effect to capture overdispersion was assumed not to be spatially

influenced and independent of the neighbourhood structure. The proposed model

allows for the overdispersion parameter to also vary spatially over the area under

study.

It is worth noting that, in binary data, overdispersion does not occur when the

data is assumed to be independent and identically distributed Bernoulli. When

there are hierarchies in the Bernoulli data or when the binary data accumulate to

binomial data, then overdispersion can occur. Since these Bernoulli data are now

correlated in the clusters, then there is a possibility for overdispersion.

The proposed model is developed for the analysis HSV-2 prevalence data which is

clustered in counties. The model is formulated as follows. Let yij be the HSV-2

status of individual j in county i, where i = 1, 2, · · ·N and j = 1, 2, · · · , ni. Then

yij ∼ Bernoulli(pij),

pij = θijωij,

logit(ωij) = XT
ijβ + u1i + v1i
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θij ∼ Beta(ai, bi),

ai = µ∗iψi

bi = ψi(1− µ∗i )

logit(µ∗i ) = u2i + v2i

ψi = exp(u3i + v3i)

(
uli|ulN(i)

)
∼ N

(∑
j∈N(i)

ulj

dli
,
kl
dli

)
, l = 1, 2, 3.

vli ∼ N(0, σ2
vl), l = 1, 2, 3

4.4 Estimation of parameters

We chose to use Bayesian inference in estimating the parameters in the model with

Markov chain Monte Carlo(McMC) technique. In Bayesian inference, parameters

are treated as random variables and are given the so called prior distributions.

These prior distributions are updated with the observed data to give the posterior

distributions of the parameters of interest.

In our models, the following prior distributions were used. The spatially struc-

tured component were assigned a conditional autoregressive prior and their corre-

sponding precision parameters 1
kl

were given a non-informative gamma distributed
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priors, i.e 1
kl
∼ gamma(0.1, 0.0001). All the fixed effect parameters β were given

non-informative normally distributed priors, i.e β ∼ N(0, 0.0001).

The models were implemented using WinBUGS version 1.4 [Spiegelhalter et al.,

2007]. For each model, 85,000 McMC [Mollie et al., 1996] iterations were ran,

with the initial 15,000 discarded to cater for the burn-in period and there after

keeping every tenth sample value. The 7,000 iterations left were used for assessing

convergence of the McMC and parameter estimation.

We assessed McMC convergence of all models parameters by checking trace plots

and autocorrelation plots of the McMC output [Gelman et al., 2003]. The mod-

els were compared using the Deviance Information Criterion (DIC) [Spiegelhalter

et al., 2002]. The best fitting model is one with the smallest DIC value.

4.5 Results

This results section has been divided into two subsections; the first subsection

compares the performance of the proposed spatial beta-binomial model against all

the other models that were discussed and the second section uses the best fitting

model to identify determinants of HSV-2 infection in Kenya among men.
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4.5.1 Models comparison

The HSV-2 data for men in Kenya was analyzed using the following models: sim-

ple logistic model (M1), logistic beta-binomial model (M2), logistic normal beta-

binomial model (M3), logistic convolution model (M4), spatial combined model

(M5), and finally the proposed spatial beta-binomial model (M6). Comparing the

models based on the DIC, from Table 4.1, the spatial combined model (DIC =

6202.79) performed better than simple logistic model (DIC = 6419.36),Logistic

beta-binomial model (DIC = 6241.59),logistic convolution model (DIC = 6221.72)

and logistic normal beta-binomial model (DIC = 6215.27). The proposed spatial

beta-binomial model (DIC = 6164.90) outperformed all the models.

Table 4.1: Parameter Estimates and Corresponding Credible Interval

Effect Simple Logistic Logistic Beta Binomial
Fixed Effects
Intercept -2.27(-2.61,-1.89) -1.65(-1.95,-1.15)
Urban Yes 0.33(0.18,0.48) 0.25(-0.04,0.49)
Circumcised Yes -1.45(-1.61,-1.26) -1.34(-1.58,-1.08)
Education Primary 0.25(0.09,0.41) 0.14(-0.07,0.34)

Secondary 0.02(-0.16,0.18) -0.11(-0.33,0.10)
Higher -0.37(-0.59,-0.16) -0.55(-0.81,-0.29)

Age 20-24 1.02(0.64,1.37) 0.81(0.22,1.18)
25-29 1.93(1.51,2.32) 1.83(1.21,2.16)
30-34 2.45(2.04,2.82) 2.49(1.92,2.85)
35-39 2.89(2.52,3.24) 2.97(2.43,3.30)
40-44 3.26(2.89,3.71) 3.49(2.77,3.88)
45-49 3.32(2.93,3.74) 3.68(2.95,4.07)
50-54 3.02(2.65,3.42) 3.17(2.53,3.71)
55-59 3.13(2.76,3.54) 3.35(2.80,3.82)
60-64 2.88(2.54,3.39) 3.02(2.30,3.50)

Random effects
a - 3.22(3.01,3.80)
b - 1.39(1.17,1.50)

σv - -
σu - -

DIC 6419.36 6241.59
Logistic normal beta-binomial Logistic convolution



Chapter 4. A double random effects model for spatially correlated and
overdispersed binary data with application to HSV-2 variation in Kenya 66

Fixed Effects
Intercept -2.34(-2.75,-1.78)
Urban Yes 0.39(0.10,0.70) 0.33(0.10,0.58)
Circumcised Yes -1.05(-1.34,-0.84) -0.92(-1.20,-0.66)
Education Primary 0.16(-0.01,0.33) 0.14(-0.03,0.28)

Secondary -0.04(-0.25,0.16) -0.10(-0.29,0.08)
Higher -0.40(-0.63,-0.16) -0.42(-0.62,-0.21)

Age 20-24 0.83(0.22,1.24) 1.01(0.70,1.32)
25-29 1.83(1.21,2.18) 1.95(1.64,2.30)
30-34 2.48(1.80,2.91) 2.54(2.20,2.84)
35-39 2.93(2.23,3.34) 2.92(2.59,3.21)
40-44 3.39(2.67,3.82) 3.31(3.00,3.60)
45-49 3.47(2.82,3.93) 3.39(3.08,3.67)
50-54 3.15(2.40,3.61) 3.08(2.77,3.40)
55-59 3.20(2.49,3.70) 3.14(2.79,3.48)
60-64 3.01(2.28,3.50) 3.00(2.62,3.29)

Random effects
a 4.73(4.15,4.99) -
b 1.19(1.10,1.40) -

σv 2.25(1.25,3.87) 0.04(0.00,0.14)
σu - 0.40(0.15,0.74)

DIC 6215.27 6221.72
Spatial combined model Spatial beta-binomial model

Fixed Effects
Intercept -2.35(-2.75,-1.88) -1.97(-2.49,-1.48)
Urban Yes 0.52(0.26,0.81) 0.52(0.17,0.89)
Circumcised Yes -1.04(-1.33,-0.75) -1.06(-1.39,-0.73)
Education Primary 0.14(-0.08,0.35) 0.11(-0.16,0.35)

Secondary -0.09(-0.31,0.12) -0.21(-0.55,0.084)
Higher -0.47(-0.74,-0.24) -0.67(-1.10,-0.32)

Age 20-24 0.94(0.68,1.26) 1.13(0.73,1.54)
25-29 1.98(1.67,2.31) 2.23(1.82,2.68)
30-34 2.63(2.36,2.90) 3.03(2.56,3.59)
35-39 3.14(2.77,3.53) 3.64(3.09,4.40)
40-44 3.65(3.28,3.98) 4.69(3.67,10.29)
45-49 3.75(3.40,4.15) 4.85(3.81,11.17)
50-54 3.34(2.96,3.73) 3.98(3.30,5.08)
55-59 3.45(2.97,3.93) 4.14(3.42,5.63)
60-64 3.23(2.91,3.49) 3.77(3.11,4.76)

Random effects
a 3.77(3.03,4.87) -
b 1.33(1.12,1.49) -

σu1 0.28(0.01,0.85)
σv1 0.57(0.17,1.30) 0.26(0.00,1.36)
σu2 - 0.02(0.00,0.22)
σv2 - 0.03(0.00,0.29)
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σu3 - 0.33(0.23,0.43)
σv3 - 0.02(0.00,0.19)
DIC 6202.79 6164.90

4.5.2 Spatial distribution of HSV-2 infection in Kenya and

its determinants

The following discussions on the effect of the fixed effects is based on this best

fitting spatial beta-binomial model. The risk of getting HSV-2 among men was

higher for those in urban as compared to those in rural, 0.52(0.17, 0.89). The

estimated model regression coefficients show that circumcision in males reduces the

chance of being infected by HSV-2, −1.06(−1.39,−0.73). Having higher education

reduces the risk of being infected with HSV-2, −0.67(−1.10,−0.32). Males in the

age groups 40 − 49 are at higher risk of being infected with HSV-2 compared to

the other age groups. The spatial beta-binomial model was used to produce the

smoothed maps of HSV-2 prevalence in Kenya by county as show in Figure 4.1.

HSV-2 is more prevalent in the Western part of the country around Lake Victoria

region. It is also more prevalent in the Southern and South West region of the

country.
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Figure 4.1: HSV-2 prevalence map(a) and the corresponding 95% lower(b)
and upper(c) credible limits maps, respectively, based on the proposed spatial

beta-binomial model

4.6 Discussion

Analysis of the HSV-2 prevalence in Men’s data from Kenya showed that in the

presence of overdispersion and spatial autocorelation, the proposed model pro-

duces a better fit than all the previous models that were discussed. In this work,

we model spatially overdispersed binary data by introducing two sets of random

effects; beta random effects and spatially structured random effects. The spatially

structured random effects are modeled using Conditional Autoregressive (CAR)

model [Besag et al., 1991]. In this model, the overdispersion parameter is also

allowed to vary spatially over the region under study. The proposed model is

called spatial beta-binomial model. This model can be viewed as a substitute to

the commonly encountered convolution model since the beta random effects intro-

duced capture overdispersion while the normal CAR random effects capture the

spatial correlation inherent in the data. The models were implemented in Win-

BUGS software where non-informative priors were assigned to parameters and

hyperparameters in the models.
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Several disease mapping models ranging from standard models to models which

cater for overdispersion and spatial correlation were compared. We compared

the logistic model, logistic-normal model, logistic beta-binomial model, logistic

beta-binomial normal model, logistic convolution model and the proposed spatial

beta-binomial model.

The spatial beta-binomial model was found to perform better in terms of deviance

information criterion. From the data analysis carried out, based on this model, the

chance of getting infected by HSV-2 among men was found to be higher for those

in urban as compared to those in rural. Males who are circumcised had a lower

chance of being infected by HSV-2. Males who had attained higher education level

were found to have reduced the chance of being infected with HSV-2. Males in

the age groups 40− 49 were found to have a higher chance of being infected with

HSV-2 compared to the other age groups.

The proposed model was used to produce county specific HSV-2 prevalence smoothed

maps for Kenya. These maps are important to policy makers in both government

and private sectors. Policy makers can use these maps in formulating policies and

intervention programs suited for each county.

From previous research findings that HSV-2 is highly correlated with HIV and

that HSV-2 accelerates the transmission and acquisition of HIV [Celum et al.,

2008; Watson-Jones et al., 2008]; the HSV-2 high prevalence areas can be targeted

with tailor made intervention programs with the hope of curbing the acquisition

and transmission of HIV.
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This study is based on a cross-sectional survey hence it is only possible to make

ecological association and it will be wrong to imply any causal association. Based

on this, we therefore caution readers to interpret the findings with great caution.

Causality can only be established by studies which have been carefully designed

to investigate such.

As part of future research, the proposed model can be investigated for further

extension to multivariate setting where several diseases have been observed in

each spatial unit.



Chapter 5

Spatial Joint Disease Modeling

and Mapping with Application to

HIV and HSV-2

The joint modeling of epidemiological and public health outcomes within a spa-

tial statistical context opens numerous opportunities for understanding disease

aetiology. This paper reviews statistical properties of common joint modeling ap-

proaches and develops a model for the joint variation of the human immunodefi-

ciency virus (HIV) and the herpes simplex virus-type 2 (HSV-2). The dataset used

in this study consisted of men age 15-49 years from the 2007 Kenya Aids indicator

survey data. Bivariate spatial logistic models are developed at the individual level

and used to identify comorbidity of HIV and HSV-2. The joint spatial modelling

strategy helps in stabilizing parameter estimates by borrowing strength between

different diseases and also between neighbouring regions. A Bayesian approach

71



Chapter 5. Spatial Joint Disease Modeling and Mapping with Application to HIV
and HSV-2 72

was used and the models were implemented in WinBUGS software. Both diseases

showed significant spatial variation with highest disease burdens occurring around

the Lake Victoria region. There was a significant positive correlation between HIV

and HSV-2, a result in line with other studies. The correlation between the two

diseases could mean that occurrence of one disease could be accelerating trans-

mission and/or acquisition of the other disease. HSV-2 is not widely publicized

and there are very few centres that test for it. There is need to put more effort

and investment in controlling HSV-2 with the hope of reducing acquisition and

transmission of HIV.

5.1 Introduction

Human immunodeficiency virus still remains a major concern in the global com-

munity. It is estimated that 34 million people were living with the virus at the

end of 2011 [WHO and UNICEF, 2012]. Sub-Saharan Africa is the worst hit and

it is estimated that 23.5 million people are living with HIV in this region [WHO

and UNICEF, 2012]. In Kenya, the nationwide prevalence is estimated at 7.1%

among adults aged 15-64 years. The prevalence of HIV is 8.4% among women and

5.4% among men [NASCOP, 2008]. However, the HIV prevalence varies consid-

erably between sub-regions in the country. Counties like Bungoma, Embu, Isiolo,

Kajiado, Machakos, Meru, Wajir and West Pokot having a prevalence of less than

3% while counties close to the lake Victoria region, in the west having prevalence

ranging between 15% and 25% [NASCOP, 2008].
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HIV is suspected to be associated with herpes simplex virus [Celum et al., 2008;

Watson-Jones et al., 2008]. Herpes simplex virus is the causative agent of genital

herpes. Two serotypes of Herpes simplex virus have been identified, namely herpes

simplex virus-type 1 (HSV-1) and herpes simplex virus-type 2 (HSV-2). There is

no cure for herpes; once you have the virus in your body system, you can only

be put on a treatment therapy to suppress it but it will still remain in the body

[Beauman, 2005]. Many individuals have non or mild symptoms of the herpes

virus and are therefore unaware of the infection. Several studies have indicated

that genital herpes is associated with high risk of HIV transmission and acquisition

[Celum et al., 2008; Watson-Jones et al., 2008].

A lot of work has been done to estimate prevalence at regions below the national

level. This falls in small area estimation techniques [Rao, 2005]. The estimates in

these sub-regions can be highly unreliable if the sample sizes in those sub-regions

are small. In single disease modeling, spatial smoothing techniques can be used to

borrow information from other neighbouring regions so as to get robust estimates

for each region. In the same spirit, modeling two diseases which have some asso-

ciation can help in stabilizing the sub-region estimates by borrowing information

from the other disease and also borrowing information from its neighbours.

Several approaches exist for spatial joint modeling of diseases [Manda et al., 2011;

Kazembe and Namangale, 2007; Manda et al., 2012]. The two main encountered

models are the shared component model by Held et al. [2005] and the multivariate

conditional autoregressive model by Carlin and Banerjee [2003]. In this study, we

jointly model HIV and HSV-2 at individual level using these two methods and
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compare and contrast the results vis a vis separate modeling of the diseases. The

models are applied to the men’s data extracted from the Kenya AIDS indicator

survey, collected by the government of Kenya in 2007.

5.2 Data

The data for this study was extracted from the 2007 Kenya AIDS indicator survey

(KAIS), conducted by the Government of Kenya. The main objective of survey

was to collect high quality data on the prevalence of HIV and Sexually Trans-

mitted Infections (STI) among adults, and to assess knowledge of HIV and STI

in the populations. The survey collected a representative sample of households

selected from the eight provinces in the country. It involved all men and women

in the age of 15-64 years. Two questionnaires were used in the survey. A house-

hold questionnaire which collected information about the household head and the

characteristics of the dwelling place. The second one, the individual questionnaire

which collected information from men and women aged 15-64 years, about their

demographic characteristics, and their knowledge on HIV and STI. Each individ-

ual was then asked for consent to provide a venous blood sample for HIV and

HSV-2 testing. In this study we use the men’s data from this survey. In total,

6,606 men who provided venous blood for testing and also had full covariate in-

formation were used in the analysis. The following covariates were used in the

analysis: education level, circumcision status, place of residence(urban/rural) and

age of respondent.



Chapter 5. Spatial Joint Disease Modeling and Mapping with Application to HIV
and HSV-2 75

5.3 Review of Models

In this section we review the conditional autoregressive (CAR) distribution and

the two proposed spatial joint modeling strategies to be used on this data, namely

the multivariate conditional autoregressive (MCAR) and the shared component

models.

5.3.1 Conditional autoregressive distribution

Consider a vector φ = (φ1, φ2, · · · , φp)T of p components that follow a multivariate

Gaussian distribution with mean zero and variance-covariance matrix B−1, where

B is a p× p symmetric and positive definite matrix. It follows that the joint pdf

of φ is given by

p(φ) = (2π)−
p
2 |B|

1
2 exp

{
1

2
φTBφ

}
(5.1)

The conditional distribution of one of the components given the remaining ones,

in terms of the elements of matrix B, is given by

p(φi|φ−i) ∝ exp

−bii2

(
φi −

∑
j 6=i

−bij
bii

φj

)2
 (5.2)

This can be written in short form as φi|φ−i ∼ N(−
∑

j 6=i
bij
bii
φj,

1
bii

).

Besag [1974], using Hammersley-Clifford’s theorem and Brook’s lemma, showed

the conditions under which the full conditional distributions specified above uniquely

define a full joint distribution. If we simplify the notations in the conditional dis-

tribution by letting
−bij
bii

= cij, cii = 0 and 1
bii

= σ2
i , then proceed to form two
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matrices C and M , with C having elements cij and cii, and M being a diag(σ2
i )

matrix. The inverse of the dispersion matrix, B is then related to C and M as

follows;

B = M−1(I −C) (5.3)

Then the joint distribution of φ is MVN(0,M−1(I − C)). The trick is that C

and M must be modeled properly so as to ensure symmetry in B. The condition

cijσ
2
j = cjiσ

2
i usually guarantees the required symmetry. The C matrix is also

specified to show relationship between neighbours.

A commonly used adjacency matrix for lattice data is one due to Besag [1974].

He defined the the elements of the matrix C matrix as cii = 0 and cij = 1
mi

if j is

adjacent to i and zero otherwise. Here mi is the number of neighbours of region i.

Define another matrix W to hold the adjacency structure, where wii = 0, wij = 1

if region i and region j are neighbours and zero otherwise. It then follows that

C = W s where W s = diag( 1
mi

). This notation implies the following specification

to the matrix B; bii = λmi and, bij = −λ if region j is adjacent to region i and

zero otherwise. This further implies that

B = λ(diag(mi)− C). (5.4)

From equation (5.3), M−1(I −C) has to be positive definite for the conditional

distributions to give rise to a valid joint pdf. Besag [1974] definition of the adja-

cency matrix leads to an improper joint pdf. This can be overcome by introducing
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a parameter α into the precision matrix B, to yield

B = M−1(I − αC) (5.5)

If |α|< 1, then the matrix M−1(I − αC) is diagonally dominant and symmet-

ric. Harville [1997] showed that symmetric and diagonally dominant matrices are

positive definite.

5.3.2 Multivariate Conditional Autoregressive Model

The development of the multivariate model is based on Mardia [1988] extension

of Besag [1974] results to a multivariate setting. Mardia [1988] showed conditions

under which the conditional multivariate distributions uniquely determine the cor-

responding multivariate joint pdf. Using these results, Carlin and Banerjee [2003]

developed the MCAR as follows. Let ΦT = (φT1 ,φ
T
2 , · · · ,φTp ), where each φi is an

n×1 vector. Then Φ is an np×1 vector. Also let Φ have a multivariate Gaussian

distribution with mean 0 and dispersion matrix B, written as

P (Φ) = (2π)
−np

2 |B|
1
2 exp

{
−1

2
ΦTBΦ

}
(5.6)

B is an np×np symmetric and positive definite matrix. It is informative to look at

B as a p× p block matrix with n×n block Bij. The full conditional distributions
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are given by

P (φi|φ−i) ∝ exp

−1

2

(
φi −B−1

ii

∑
j 6=i

(−Bij)φj

)T

Bii

(
φi −B−1

ii

∑
j 6=i

(−Bij)φj

)
(5.7)

This implies that φi|φ−i ∼ Nn

(
B−1
ii

∑
j 6=i (−Bij)φj,B

−1
ii

)
. The full conditional

probability density functions are

P
(
φi|φ−i

)
= Nn

(∑
j 6=i

Cijφj,Σi

)
, i = 1, 2, · · · , p, (5.8)

where Σi andCij are n×nmatrices. Σi is also symmetric and positive definite. We

now write Σi and Cij in terms of B, the precision matrix of the joint distribution

as Cij = −B−1
ii Bij and Σi = B−1

ii . If we set Σ to be a block diagonal matrix with

Σi blocks and C as a partitioned matrix with blocks Cij and Cii = 0n×n, then

B = Σ−1(I −C) (5.9)

A propriety parameter α can be added into the precision matrix in equation (5.8)

to yield

B = Σ−1(I − αC) (5.10)

For B to be symmetric then a condition to satisfy this is that CijΣj = ΣiC
T
ji.

Carlin and Banerjee [2003] denoted this distribution by MCAR(C,Σ). During

implementation, α and Σ are given appropriate priors, most often, uniform distri-

bution for α and Wishart(ρ,Σ0) for Σ.
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5.3.3 Shared Component Model

Held et al. [2005] introduced a new joint modeling paradigm known as the shared

component model. The idea was borrowed from Knorr-Held and Best [2001], in

their work on joint disease clusters detection. For the case of two diseases, two

components were introduced into the model; one component which is relevant to

the two diseases and another one which is specific to one of the diseases. The

two components represent unobserved spatial variables that affect the risk of the

disease(s). Let yi1 be the observed cases of disease 1 in region i and e1i be the

corresponding expected number of cases for the same disease. Similarly yi2 and

e2i are the observed and expected number of cases for the second disease in region

i. In their model, they assumed that;

yi1 ∼ Poisson (ei1 exp(ηi1)) ,

yi2 ∼ Poisson (ei2 exp(ηi2)) ,

and the log relative risks were modeled using normal random variables with,

ηi1 ∼ N (α1 + u1iδ + u2i, τ1) ,

ηi2 ∼ N
(
α2 +

u1i

δ
, τ2

)
.

u1 is the shared component while u2 is the component specific to the first disease

only. They were assumed to follow Gaussian Markov random fields (GMRF) with

precision parameters τ1 and τ2 respectively. The non-negative parameter δ was
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included in the model to allow the two diseases to have different risk gradients in

the shared component. They assumed that log δ ∼ N(0, σ2), with the value of σ2

pre-set to 0.17. The parameters α1 and α2 are the intercepts for disease 1 and

disease 2 respectively and were assumed to be having uniform priors.

5.4 Models Specification

In this section, the reviewed models are adopted to suit the Bernoulli data at

hand. Let yijk be the disease status(0/1) of disease k, k = 1 for HIV, k = 2 for

HSV-2, for individual j in county i, i = 1, 2, · · · 46. We further assume that the

observed outcomes arise from a bivariate Bernoulli distribution, with pijk as the

probability of disease k occurring in individual j in area i. The data generating

model is defined as

yijk ∼ Bernoulli(pijk), (5.11)

and for each model, the covariates are introduced as discussed below. In the shared

component model, the covariates and random effects are introduced as follows

logit(pij1) = α1 +XTβ1 + u1iδ + u2i,

logit(pij2) = α2 +XTβ2 +
u1i

δ
.

u1 is the shared component while u2 is the component specific to the first disease

only. These two components are modeled using conditional autoregressive priors

with precision parameters τ1 and τ2 respectively.
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In the multivariate CAR model, the covariates and random effects are introduced

as follows

logit(pij1) = α1 +XTβ1 + u1i,

logit(pij2) = α2 +XTβ2 + u2i.

where u = (u1, u2)T is modeled using a multivariate condition autoregressive prior

that is u ∼MCAR(1,Σ), where Σ is the covariance matrix inducing correlation.

In the separate analyses, the covariates and random effects are introduced as

follows

logit(pij1) = α1 +XTβ1 + u1i + v1i,

logit(pij2) = α2 +XTβ2 + u2i + v2i.

where, u1 and u2 are modeled using independent conditional autoregressive priors

while v1 and v2 are modeled using independent normal distributions.

Also, αk is the intercept for disease k while the terms β = (β1,β2)T are vectors of

regression parameters corresponding to the set of covariates (fixed effects). Model

estimation was carried out using the Bayesian approach and appropriate prior

distributions were specified for all parameters of the models. In addition to the

priors given to the random effects discussed in the models above, non-informative

priors were assigned to the regression coefficients. For the intercepts, diffuse pri-

ors were assumed, that is, p(αk) ∝ 1, while for the covariate coefficients highly

dispersed normal distribution priors were chosen, that is, p(β) ∼ N(0, 10000).

In the shared component model, the extra parameter δ was given a prior as
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log δ ∼ N(0, σ2) while in the multivariate setting the covariance matrix was given

an inverse Wishart prior as Σ ∼ IW (r, R), with R being assumed to be an identity

matrix.

5.5 Results

The estimated covariate effects for the different models fitted are presented in an

odds ratio scale in Table 5.1. The table summarizes the results of the models

including parameter estimates (odds ratio) and their confidence intervals. The

multivariate CAR model was found to have the lowest DIC hence the best fitting

model for the data. In the subsequent discussion we only report results of this

best fitting model. The correlation between HIV and HSV-2 was found to be

positive and significant, 0.37(0.001, 0.69). The odds of getting HIV and HSV-

2 were higher for those in urban as compared to those in rural, 1.41(1.02, 1.94)

and 1.36(1.11, 1.65) respectively. The odds of being infected by HIV and HSV-

2 was lower for the circumcised males as compared to the uncircumcised males,

0.25(0.17, 0.32) and 0.42(0.34, 0.50), respectively). The odds of getting infected

by HIV and HSV-2 were lower for those with post primary education but higher

for those with primary education as compared to those with no education at all.

The odds of getting HIV and HSV-2 were high for those in the age groups above

15 − 19 years. The age groups in the category 25 − 39 years had the highest

risk of both HIV and HSV-2 infection. The choropleth maps in Figure 5.1 give

the county-specific HIV and HSV-2 smoothed prevalence estimates from the joint

model. High rates of HIV and HSV-2 were found to be concentrated in the western
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and southern parts of the country. The highest burden of the two diseases occur

at the Lake Victoria region.
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Table 5.1: Posterior means(95%CI) estimates for HIV and HSV-2 smoothed prevalence parameters

Separate models Joint models

Fixed Effects Mixed Effects Multivariate CAR Shared Component

Covariates HIV HSV-2 HIV HSV-2 HIV HSV-2 HIV HSV-2
Rural Yes 1 1 1 1 1 1 1 1

No 1.36 (1.02,1.72) 1.4 (1.21,1.59) 1.44 (1.00,1.92) 1.34 (1.10,1.64) 1.41 (1.02,1.94) 1.36 (1.11,1.65) 1.32 (0.87,1.77) 1.32 (1.03,1.63)
Circum. No 1 1 1 1 1 1 1 1

Yes 1.29 (0.88,1.70) 0.96 (0.69,1.39) 0.22 (0.15,0.31) 0.40 (0.32,0.51) 0.25 (0.17,0.32) 0.42 (0.34,0.50) 0.25 (0.17,0.39) 0.48 (0.39,0.61)
Educ. None 1 1 1 1 1 1 1 1

Prim. 1.29 (0.88,1.70) 1.26 (1.05,1.47) 1.25 (0.85,1.62) 1.14 (0.96,1.31) 1.20 (0.86,1.63) 1.14 (0.97,1.33) 1.09 (0.77,1.42) 1.14(0.95,1.33)
Sec. 0.95 (0.69,1.39) 1.03 (0.86,1.20) 0.92 (0.64,1.34) 0.93 (0.78,1.15) 0.90 (0.63,1.28) 0.93 (0.77,1.13) 0.82 (0.57,1.12) 0.92 (0.77,1.09)
Higher 0.53 (0.31,0.87) 0.70 (0.54,0.86) 0.56 (0.36,0.84) 0.69 (0.55,0.88) 0.63 (0.40,0.97) 0.67 (0.51,0.85) 0.52 (0.31,0.82) 0.67 (0.53,0.86)

Age 15-19 1 1 1 1 1 1 1 1
20-24 1.52(0.33,2.90) 2.26(0.52,3.19) 1.73(0.38,3.23) 2.35(0.52,3.56) 1.52(0.32,2.86) 2.33(0.45,3.28) 1.46(0.54,2.77) 2.51(1.48,3.76)
25-29 5.36(0.98,9.59) 5.40(1.11,7.80) 6.25(0.82,11.06) 6.07(1.00,9.44) 5.03(1.01,9.25) 6.08(1.18,8.37) 5.09(2.32,8.52) 6.58(4.29,9.28)
30-34 6.65(1.11,12.09) 9.20(1.87,13.51) 8.21(1.03,14.51) 10.76(1.79,16.42) 6.69(1.19,12.86) 10.77(1.83,14.58) 7.00(3.27,11.7) 11.77(7.25,16.87)
35-39 9.00(1.20,17.22) 13.84(2.65,19.62) 10.51(1.14,18.49) 15.97(2.61,24.1) 8.25(1.08,15.92) 15.90(2.63,22.23) 8.50(4.11,13.9) 17.29(11.02,24.94)
40-44 8.77(1.52,14.88) 20.33(3.606,28.68) 10.57(0.98,18.56) 23.91(3.80,36.44) 8.45(1.24,16.00) 23.80(4.18,33.2) 8.34(3.98,13.48) 25.68(16.57,38.68)
45-49 6.17(0.72,10.75) 21.74(3.81,31.72) 7.55(1.04,13.58) 24.74(4.13,38.58) 5.76(0.74,10.73) 25.29(3.91,35.19) 5.72(2.18,9.52) 28.54(17.85,42.29)
50-54 6.52(0.97,12.17) 16.28(3.03,23.37) 7.64(0.80,13.89) 18.86(2.62,28.45) 5.95(0.77,12.87) 18.85(2.39,27.36) 5.82(2.36,9.64) 21.33(12.42,31.48)
55-59 2.35(0.63,4.17) 18.27(2.39,27.75) 2.42(0.45,4.84) 20.08(2.87,32.77) 2.46(0.49,5.12) 20.41(3.03,28.31) 2.09(0.69,4.43) 22.95(14.78,34.85)
60-64 2.40(0.45,4.57) 13.78(2.90,20.92) 3.03(0.37,6.41) 17.31(1.95,26.58) 1.72(0.42,4.20) 17.07(2.77,25.53) 2.26(1.05,4.96) 18.21(10.27,27.58)

Random
effects
Unstr.
std. dev.

- - 0.19(0.04,0.35) 0.003(0.00,0.01) - -

Str. std.
dev.

- - 0.003(0.00,0.01) 0.54(0.06,1.02) 0.84(0.52,1.15) 0.77(0.51,1.03) 2.71(0.79,5.05)

Corr. - - - - 0.37(0.001,0.69)

Ind.
DIC

2473.45 6419.64 2428.35 6217.02 2425.62 6214.6 2426.63 6336.05

Full DIC 8893.09 8645.37 8640.22 8762.68
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Figure 5.1: (a) HIV prevalence among men by county and (b) HSV-2 preva-
lence among men by county from the best fitting joint model.

5.6 Discussion

In this work, we have reviewed models for spatial joint modeling of diseases. The

models were then adopted for bivariate spatial logistic models to suit the data

at hand and the resulting models were used to jointly model HIV and HSV-2 in

Kenya.

Joint modeling has several advantages, first, statistically, joint modeling helps to

stabilize parameter estimates especially in small area estimation where sample

sizes at sub-regions with respect to each disease are small and secondly, in epi-

demiological perspective, joint modeling helps in determining divergent and similar

patterns of disease and understanding diseases association.

The models were compared using the deviance information criterion. The multi-

variate conditional autoregressive model was the best fitting model. Under this

model, the spatial correlation between HIV and HSV-2 was found to be significant.
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This finding is in line with other studies [Celum et al., 2008; Watson-Jones et al.,

2008].

Joint modeling of diseases has recently seen growth in application with the main

aim of understanding aetiology of several diseases. Most recent applications with

similar modeling strategy include Manda et al. [2011], Manda et al. [2012] and

Kazembe and Namangale [2007]. In these works, the authors fitted only one

type of model, either multivariate CAR or shared component model. In our work

we fit separate models, shared component model and multivariate conditional

autoregressive model and compare the performance of each on this data.

The MCAR model was used to produce smoothed prevalence maps which can

show geographical variation of the diseases burden at a glance, based on survey

data. These maps are important to policy makers in both government and private

sectors. Policy makers can use these maps in formulating policies and programs

suited for each county. In particular such easy to use tools can be very useful in

optimal allocation of resources aimed at controlling the diseases.



Chapter 6

Conclusion and Future Research

This dissertation has been concerned with developing and extending statistical

models in the area of spatial modelling with inclination towards application to

HIV, TB and HSV-2 data. The models under consideration cater for areal(lattice)

data only; geostatistical data and point pattern data were not delved into in this

work. No study goes without limitations. A major limitation of our study is that

the data used for county estimation was collected when the country was still based

on the old administrative units (provinces), the data was not powered to carry out

estimation at these new administrative units. The study rides on the advantage

that these new administrative units called counties were formed by combining

several districts together. This made it easy for the county where an individual

belongs to be allocated easily since each district belongs to only one county. Also,

in the KAIS (2007) data, the way some variables were captured was not useful;

ever using a condom should be replaced with consistent use of condom. Despite

these limitations, the models developed in this thesis will find wide application in
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spatial analysis.

Chapter 2 introduces a new model that relaxes the over-restrictive normal dis-

tribution assumption on the spatially unstructured random effect by using the

generalised Gaussian distribution. In chapter 3, a framework for including sam-

pling weights into the Bayesian hierarchical disease mapping model is given; in this

model, design effect is used to re-scale the sample sizes. A new model is developed

in chapter 4 to cater for overdispersed spatially correlated binary data; in this

model, the overdispersion parameter is modelled by a beta random effect which is

allowed to vary spatially also . In chapter 5, the common multiple spatial disease

mapping models are reviewed and adopted for the binary counterpart since the

original models were meant for Poisson data.

Future work will consider extensions of the models presented in Chapters 2, 4

and 5. In chapter 2, a topic of interest could be to consider a more generalised

Gaussian distribution for the random effects that allows for skewness.

Further studies can be directed into using more flexible distributions for the un-

structured random effects in a multiple spatial disease modelling in lieu of the

multivariate Gaussian distribution. A generalised multivariate Gaussian distribu-

tion, is a possible candidate in this framework.

A major extension of all the models discussed in this thesis is incorporation of the

temporal component. Since the KAIS survey will be carried out severally in fu-

ture, these models can be extended to accommodate for this time portion. Several

authors have considered temporal extensions to hierarchical spatial models based

on a parametric description of time trends, on independent risk estimates for each
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time period, or on the definition of the joint covariance matrix for all the peri-

ods as a Kronecker product of matrices [Cressie and Wikle, 2011]. Waller et al.

[1997] introduced a spatio-temporal model where the spatial effects are nested

within time. MacNab and Dean [2002] proposed a generalized additive mixed

model (GAMM), where B-spline smoothing over the temporal dimension provides

a flexible means of accommodating overall time effects as well as region-specific

time effects. Mart́ınez-Beneito et al. [2008] came up with an autoregressive ap-

proach to spatio-temporal disease mapping by fusing ideas from autoregressive

time series in order to link information in time and by spatial modelling to link

information in space. Schrödle and Held [2011] also carried out a spatio-temporal

disease mapping, utilising the Integrated Nested Laplace approximation method.

A multivariate spatio-temporal analysis may be explored and could lead to im-

proved precision for the estimation of the underlying disease risks, by borrowing

strength from other diseases as well as from neighboring areas and/or time points.

All the developments in overdispersed spatial models, including the development

of chapter 4, have been based on single disease modelling. Further research can

be focussed on extending these models for multiple diseases.



Appendix A

WinBUGS Codes for chapter

Two Models

model}

# Likelihood

for (i in 1 : N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha0 + v[i]+u[i]

RR[i] <- exp(alpha0 + v[i]+u[i]) # Area-specific relative risk (for maps)

u[i]~dnorm(0,precu)

}

# CAR prior distribution for random effects:

v[1:N] ~ car.normal(adj[], weights[], num[], precv)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

# Other priors:

alpha0 ~ dflat()

precv ~ dgamma(0.5, 0.0005) # prior on precision

precu ~ dgamma(0.01, 0.01)

sigmav <- sqrt(1 / precv) # standard deviation of v

sigmau <- sqrt(1 / precu) # standard deviation of u

}

Data

Initials

list(precv = 1,precu=1, alpha0 = 0,

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(precv = 1,precu=1, alpha0 = 0,

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

#GGD MODEL

model { # Likelihood

for (i in 1 : N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha0 + v[i]+u[i]

RR[i] <- exp(alpha0 + v[i]+u[i]) # Area-specific relative risk (for maps)}

#Generalized Gaussian Distribution implementation using zero tricks

my_zeta<-pow(abs((sigmau*sigmau*exp(loggam(1/psi)))/(exp(loggam(3/psi)))),0.5)

normalizing<-1/((2*exp(loggam(1+1/psi)))*my_zeta)

logN<-log(normalizing)

for(i in 1: N)

{

u[i]~dunif(-10000,10000)

zeros[i]<-0

logGGD[i]<-logN-pow(abs(u[i]/my_zeta),psi)

zeros[i]~dpois(logGGD[i])

}

#priors

psi~dunif(0,3)

sigmau~dgamma(1,1)

# CAR prior distribution for random effects:

v[1:N] ~ car.normal(adj[], weights[], num[], precv)

for(k in 1:sumNumNeigh) { weights[k] <- 1 }

# Other priors:

alpha0 ~ dflat()

precv ~ dgamma(0.5, 0.0005) # prior on precision

# precu ~ dgamma(0.01, 0.01)

sigmav <- sqrt(1 / precv) # standard deviation of v

# sigmau <- sqrt(1 / precu) # standard deviation of u

}

#Data

#Initials

list(precv = 1, alpha0 = 0, psi=1,sigmau=0.5,

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(precv = 1,precu=1, alpha0 = 0,

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))



Appendix B

WinBUGS Codes for Chapter

Three Models

###############################################################

### WEIGHTED ###

### ANALYSIS WOMEN ###

###############################################################

##############BEST FITTING NON SPATIAL MODEL#################

####Variables#####

#x1=firstsex_15-17, #x2=Percept_norisk, #x3=One_partner

#x4=prop_not_using_condom, #x5=prop_No_condom

#x6=prop_Not_Circumcised, #x7=prop_rural, #x8=No_media_access

#x9=propwith_STI, #x10=age

model

{ for(i in 1:N)

{ n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]

}

#prior distribution for the current model

for(j in 1:ncov)

{beta[j]~dnorm(0.0,0.0001)}

}

#initialisation

list(beta=c(0,0,0,0))

# data
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###############################################################

##############UNSTRUCTURED HETEROGENEITY MODEL###########

####Variables#####: #x1= mean county age, #x2= sex debut average age,

#x3= PropAway

model

{ for(i in 1:N)

{ n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+v[i]

v[i]~dnorm(0,tau.v) }

sigma.v<-(1/tau.v)

#prior distribution for the current model

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001) }

tau.v~dgamma(0.1,0.0001)

}

#initialisation

list(beta=c(0,0,0,0),tau.v=0.01,v=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0 ,0))

# data

###############################################################

########################CAR MODEL############################

####Variables#####: #x1= mean county age #x2= sex debut average age

#x3= PropAway

model

{ for(i in 1:N)

{ n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+u[i]}

# CAR

u[1:N]~car.normal(adj[],weights[],num[],tau.u)

for(k in 1:sumNumNeigh){ weights[k]<-1}

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001) }

tau.u~dgamma(0.1,0.0001)

sigma.u<-(1/tau.u)

}

#initialisation

list(beta=c(0,0,0,0),tau.u=0.01,u=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0 ,0))

# data

###############################################################

###################CONVOLUTION MODEL########################

####Variables##### #x1= mean county age #x2= sex debut average age

#x3= PropAway
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model

{ for(i in 1:N)

{ n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+u[i]+v[i]

v[i]~dnorm(0,tau.v) }

sigma.v<-(1/tau.v)

grandp<-sum(y_adj[])/sum(n_adj[])

for(i in 1:N) { RR[i]<-p[i]/grandp }

# CAR

u[1:N]~car.normal(adj[],weights[],num[],tau.u)

for(k in 1:sumNumNeigh){ weights[k]<-1 }

#prior distribution for the current model

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001)}

tau.u~dgamma(0.1,0.0001)

tau.v~dgamma(0.1,0.0001)

sigma.u<-(1/tau.u)

}

#initialisation

list(beta=c(0,0,0,0),tau.u=0.01,tau.v=0.01,u=c(0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0),v=c(0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0))

# data

###############################################################

###############################################################

###############################################################

### WEIGHTED ###

### ANALYSIS MEN ###

###############################################################

##############BEST FITTING NON SPATIAL MODEL#################

####Variables#####: #x1=firstsex_15-17#x2=Percept_norisk

#x3=One_partner #x4=prop_not_using_condom#x5=prop_No_condom

#x6=prop_Not_Circumcised

#x7=prop_rural #x8=No_media_access #x9=propwith_STI#x10=age

model

{ for(i in 1:N)

{ y[i]~dbin(p[i],n[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+

beta[5]*x4[i]+beta[6]*x5[i]+beta[7]*x6[i]+beta[8]*x7[i]+beta[9]*x8[i]+

beta[10]*x9[i]+beta[11]*x10[i] }

#prior distribution for the current model

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001)}

}

#initialisation
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list(beta=c(0,0,0,0,0,0,0,0,0,0,0))

# data

#N=46,ncov=11

###############################################################

##############UNSTRUCTURED HETEROGENEITY MODEL###########

####Variables#### #x1= mean county age #x2= proportion with no education

#x3= Proportion perceiving not at risk of HIV #x4=propotion not circumcised

model

{ for(i in 1:N)

{n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+

beta[5]*x4[i]+v[i]

v[i]~dnorm(0,tau.v) }

sigma.v<-(1/tau.v)

#prior distribution for the current model

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001)}

tau.v~dgamma(0.1,0.0001)

}

#initialisation

list(beta=c(0,0,0,0,0),tau.v=0.01,v=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0 ,0))

# data

###############################################################

########################CAR MODEL############################

####Variables##### #x1= mean county age #x2= proportion with no education

#x3= Proportion perceiving not at risk of HIV #x4=propotion not circumcised

model

{ for(i in 1:N)

{ n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+

beta[5]*x4[i]+u[i] }

# CAR

u[1:N]~car.normal(adj[],weights[],num[],tau.u)

for(k in 1:sumNumNeigh) { weights[k]<-1}

for(j in 1:ncov) { beta[j]~dnorm(0.0,0.0001)}

tau.u~dgamma(0.1,0.0001)

sigma.u<-(1/tau.u)

}

#initialisation

list(beta=c(0,0,0,0,0),tau.u=0.01,u=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0))
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# data

###############################################################

###################CONVOLUTION MODEL########################

####Variables#####

#x1= mean county age #x2= proportion with no education

#x3= Proportion perceiving not at risk of HIV #x4=propotion not circumcised

model

{ for(i in 1:N)

{n_adj[i]<-n[i]/deff[i]

y_adj[i]<-p_est[i]*n_adj[i]

y_adj[i]~dbin(p[i],n_adj[i])

logit(p[i])<-beta[1] +beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+

beta[5]*x4[i]+u[i]+v[i]

v[i]~dnorm(0,tau.v) }

sigma.v<-(1/tau.v)

grandp<-sum(y_adj[])/sum(n_adj[])

for(i in 1:N) {RR[i]<-p[i]/grandp }

# CAR

u[1:N]~car.normal(adj[],weights[],num[],tau.u)

for(k in 1:sumNumNeigh) {weights[k]<-1}

#prior distribution for the current model

for(j in 1:ncov){beta[j]~dnorm(0.0,0.0001) }

tau.u~dgamma(0.1,0.0001)

tau.v~dgamma(0.1,0.0001)

sigma.u<-(1/tau.u)

}

#initialisation

list(beta=c(0,0,0,0,0),tau.u=0.01,tau.v=0.01,u=c(0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0),v=c(0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0))

# data

###############################################################
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WinBUGS Codes for chapter

Four Models

##########Simple logistic )#############################

model

{

#likelihood

for(i in 1: N)

{###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2); D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2); D.Age3[i]<-equals(Age[i],3)

D.Age4[i]<-equals(Age[i],4); D.Age5[i]<-equals(Age[i],5)

D.Age6[i]<-equals(Age[i],6); D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8); D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])

p1[i]<-min(1,max(0,pb[i]))

logit(pb[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+
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Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

#priors

beta1~dnorm(0,0.0001); circum1~dnorm(0,0.0001); Urb1~dnorm(0,0.0001)

#Age coefficients

for(k in 2:10) {Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001) }

#ODDS ratios

#Education coefficients

for(j in 1: 4){ ORedu1[j]<-exp(edu1[j]) }

#Age coefficients

for(k in 1:10){ ORAge1[k]<-exp(Age1[k]) }

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

for(i in 1: N)

{ for(j in 1: Nareas) {PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{ for(i in 1: N){count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PHIVC[j]<-sum(PH[j,])/number[j] }

}

#DATA

#INITIALS

list(beta1=0,Circum1=0,Urb1=0,Age1=c(NA,0,0,0,0,0,0,0,0,0),edu1=c(NA,0,0,0))

##########logistic convolution )#############################

model

{

#likelihood

for(i in 1: N)

{

###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2);D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2); D.Age3[i]<-equals(Age[i],3)

D.Age4[i]<-equals(Age[i],4); D.Age5[i]<-equals(Age[i],5)
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D.Age6[i]<-equals(Age[i],6); D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8); D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])

p1[i]<-min(1,max(0,pb[i]))

logit(pb[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+

Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]+U1[county[i]]+V1[county[i]]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

#priors

beta1~dnorm(0,0.0001); Circum1~dnorm(0,0.0001)

Urb1~dnorm(0,0.0001);

#Age coefficients

for(k in 2:10)

{ Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001) }

#ODDS ratios

#Education coefficients

for(j in 1: 4) {ORedu1[j]<-exp(edu1[j])}

#Age coefficients

for(k in 1:10) { ORAge1[k]<-exp(Age1[k]) }

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

omega.v1 ~ dgamma(0.1, 0.0001) ; omega.spatial1 ~ dgamma(0.1, 0.0001)

omega.v1sq<-1/omega.v1 ; omega.spatial1sq<-1/omega.spatial1

for(j in 1: Nareas) { V1[j] ~ dnorm(0, omega.v1) }

U1[1:Nareas] ~ car.normal(adj[],weights1[],num[],omega.spatial1)

for (k in 1:sumNumNeigh) { weights1[k] <- 1 }

for(i in 1: N)

{ for(j in 1: Nareas) {PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{ for(i in 1: N){count[j,i]<-equals(county[i],j)}

number[j]<-sum(count[j,])

PHIVC[j]<-sum(PH[j,])/number[j]

}

}

#DATA

#INITIALS

list(beta1=0,Circum1=0,Urb1=0,Age1=c(NA,0,0,0,0,0,0,0,0,0),

edu1=c(NA,0,0,0),omega.v1=0.01,omega.spatial1=0.01,
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U1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),V1=c(0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0))

########## spatial beta binomial )#############################

model

{

#likelihood

for(i in 1: N)

{

###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2); D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2); D.Age3[i]<-equals(Age[i],3)

D.Age4[i]<-equals(Age[i],4); D.Age5[i]<-equals(Age[i],5)

D.Age6[i]<-equals(Age[i],6); D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8); D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])

p1[i]<-min(1,max(0,pb[i]))

pb[i]<-theta[county[i]]*omega[i]

logit(omega[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+

Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]+U1[county[i]]+V1[county[i]]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

a~dunif(3,5); b~dunif(1.1,1.5)

#priors

beta1~dnorm(0,0.0001); Circum1~dnorm(0,0.0001)

Urb1~dnorm(0,0.0001)

#Age coefficients

for(k in 2:10) { Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001) }

#ODDS ratios

#Education coefficients
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for(j in 1: 4) { ORedu1[j]<-exp(edu1[j])}

#Age coefficients

for(k in 1:10) { ORAge1[k]<-exp(Age1[k]) }

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

omega.v1 ~ dgamma(0.1, 0.0001); omega.spatial1 ~ dgamma(0.1, 0.0001)

omega.v1sq<-1/omega.v1; omega.spatial1sq<-1/omega.spatial1

for(j in 1: Nareas) {

V1[j] ~ dnorm(0, omega.v1) ;theta[j]~dbeta(a,b) }

U1[1:Nareas] ~ car.normal(adj[],weights1[], num[],omega.spatial1)

for (k in 1:sumNumNeigh) { weights1[k] <- 1 }

for(i in 1: N)

{ for(j in 1: Nareas) {PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{ for(i in 1: N) { count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,]); PHIVC[j]<-sum(PH[j,])/number[j]

}

}

#DATA

#INITIALS

list(a=4,b=1.2,beta1=0,Circum1=0,Urb1=0, Age1=c(NA,0,0,0,0,0,0,0,0,0),

edu1=c(NA,0,0,0),omega.spatial1=0.01,omega.v1=0.01,

U1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

V1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

##########logistic beta binomialrandom effects)############

model

{

#likelihood

for(i in 1: N)

{

###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2);D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2);D.Age3[i]<-equals(Age[i],3)

D.Age4[i]<-equals(Age[i],4);D.Age5[i]<-equals(Age[i],5)

D.Age6[i]<-equals(Age[i],6);D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8);D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])
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p1[i]<-min(1,max(0,pb[i]))

pb[i]<-theta[i]*omega[i]

theta[i]~dbeta(a,b)

logit(omega[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+

Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]+V1[county[i]]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

a~dunif(3,5); b~dunif(1.1,1.5)

#priors

beta1~dnorm(0,0.0001); Circum1~dnorm(0,0.0001)

Urb1~dnorm(0,0.0001);

#Age coefficients

for(k in 2:10) { Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001) }

#ODDS ratios

#Education coefficients

for(j in 1: 4) { ORedu1[j]<-exp(edu1[j]) }

#Age coefficients

for(k in 1:10) { ORAge1[k]<-exp(Age1[k])}

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

omega.v1 ~ dgamma(0.1, 0.0001)

# omega.spatial1 ~ dgamma(0.1, 0.0001)

omega.v1sq<-1/omega.v1

# omega.spatial1sq<-1/omega.spatial1

for(j in 1: Nareas) { V1[j] ~ dnorm(0, omega.v1) }

#U1[1 : Nareas] ~ car.normal(adj[], weights1[], num[], omega.spatial1)

#for (k in 1:sumNumNeigh) {

# weights1[k] <- 1

# }

for(i in 1: N)

{ for(j in 1: Nareas)

{ PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{ for(i in 1: N){ count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PHIVC[j]<-sum(PH[j,])/number[j]

}

}

#DATA
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#INITIALS

list(a=4,b=1.2,beta1=0,Circum1=0,Urb1=0,

Age1=c(NA,0,0,0,0,0,0,0,0,0),edu1=c(NA,0,0,0),

omega.v1=0.01,V1=c(0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0))

##########Combine spatial beta binomial )##############

model

{

#likelihood

for(i in 1: N)

{

###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2);D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2); D.Age3[i]<-equals(Age[i],3)

D.Age4[i]<-equals(Age[i],4); D.Age5[i]<-equals(Age[i],5)

D.Age6[i]<-equals(Age[i],6); D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8); D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])

p1[i]<-min(1,max(0,pb[i]))

pb[i]<-theta[county[i]]*omega[i]

logit(omega[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+

Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]+U1[county[i]]+V1[county[i]]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

a~dunif(3,5); b~dunif(1.1,1.5)

#priors

beta1~dnorm(0,0.0001); Circum1~dnorm(0,0.0001)

Urb1~dnorm(0,0.0001)

#Age coefficients

for(k in 2:10) { Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001)}
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#ODDS ratios

#Education coefficients

for(j in 1: 4) { ORedu1[j]<-exp(edu1[j]) }

#Age coefficients

for(k in 1:10) { ORAge1[k]<-exp(Age1[k]) }

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

omega.v1 ~ dgamma(0.1, 0.0001); omega.spatial1 ~ dgamma(0.1, 0.0001)

omega.v1sq<-1/omega.v1; omega.spatial1sq<-1/omega.spatial1

for(j in 1: Nareas) { V1[j] ~ dnorm(0, omega.v1)

theta[j]~dbeta(a,b) }

U1[1 :Nareas] ~ car.normal(adj[],weights1[],num[],omega.spatial1)

for (k in 1:sumNumNeigh) { weights1[k] <- 1 }

for(i in 1: N)

{ for(j in 1: Nareas) {PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{ for(i in 1: N){ count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PHIVC[j]<-sum(PH[j,])/number[j]

}

}

#DATA

#INITIALS

list(a=4,b=1.2,beta1=0,Circum1=0,Urb1=0,

Age1=c(NA,0,0,0,0,0,0,0,0,0),edu1=c(NA,0,0,0),

omega.spatial1=0.01,omega.v1=0.01,

U1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

V1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

##### spatial beta binomial effects version random beta)#####

model

{

#likelihood

for(i in 1: N)

{

###Definition of Variables##

###circumcised=1, notcircumcised=1##

D.Circumcised[i]<-equals(Circumcised[i],2)

###urban=2, rural=1##

D.Urban[i]<-equals(Urban[i],2)

###None=1,primary=2,secondary=3,higher=4##

D.education2[i]<-equals(education[i],2)

D.education3[i]<-equals(education[i],3)

D.education4[i]<-equals(education[i],4)

###Age=15-19,20-24,25-29,30-34,....60-64##

D.Age2[i]<-equals(Age[i],2); D.Age3[i]<-equals(Age[i],3)
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D.Age4[i]<-equals(Age[i],4); D.Age5[i]<-equals(Age[i],5)

D.Age6[i]<-equals(Age[i],6); D.Age7[i]<-equals(Age[i],7)

D.Age8[i]<-equals(Age[i],8); D.Age9[i]<-equals(Age[i],9)

D.Age10[i]<-equals(Age[i],10)

herpes[i]~dbern(p1[i])

p1[i]<-min(1,max(0,pb[i]))

pb[i]<-theta[county[i]]*omega[i]

logit(omega[i])<-beta1+edu1[2]*D.education2[i]+

edu1[3]*D.education3[i]+edu1[4]*D.education4[i]+

Circum1*D.Circumcised[i]+Urb1*D.Urban[i]+Age1[2]*D.Age2[i]+

Age1[3]*D.Age3[i]+Age1[4]*D.Age4[i]+Age1[5]*D.Age5[i]+

Age1[6]*D.Age6[i]+Age1[7]*D.Age7[i]+Age1[8]*D.Age8[i]+

Age1[9]*D.Age9[i]+Age1[10]*D.Age10[i]+U1[county[i]]+V1[county[i]]

}

#nuissance parameters set to zero..to cater for reference levels

Age1[1]<-0; Age2[1]<-0; edu1[1]<-0; edu2[1]<-0

#prior for gamma random effects

#a~dunif(3,5)

#b~dunif(1.1,1.5)

#priors

beta1~dnorm(0,0.0001); Circum1~dnorm(0,0.0001)

Urb1~dnorm(0,0.0001);

#Age coefficients

for(k in 2:10) { Age1[k]~dnorm(0,0.0001) }

#Education coefficients

for(j in 2: 4) { edu1[j]~dnorm(0,0.0001) }

#ODDS ratios

#Education coefficients

for(j in 1: 4) { ORedu1[j]<-exp(edu1[j]) }

#Age coefficients

for(k in 1:10) { ORAge1[k]<-exp(Age1[k]) }

ORCircum1<-exp(Circum1); ORUrb1<-exp(Urb1)

omega.v1 ~ dgamma(0.1, 0.0001); omega.spatial1 ~ dgamma(0.1, 0.0001)

omega.v2 ~ dgamma(0.1, 0.0001); omega.spatial2 ~ dgamma(0.1, 0.0001)

omega.v3 ~ dgamma(0.1, 0.0001) ; omega.spatial3 ~ dgamma(0.1, 0.0001)

omega.v1sq<-1/omega.v1 ; omega.spatial1sq<-1/omega.spatial1

omega.v2sq<-1/omega.v2 ; omega.spatial2sq<-1/omega.spatial2

omega.v3sq<-1/omega.v3; omega.spatial3sq<-1/omega.spatial3

for(j in 1: Nareas)

{

V1[j] ~ dnorm(0, omega.v1)

V2[j] ~ dnorm(0, omega.v1)

V3[j] ~ dnorm(0, omega.v1)

theta[j]~dbeta(a1[j],b1[j])

a1[j]<-max(1.01,a[j])

b1[j]<-max(1.01,b[j])

a[j]<-mu[j]*psi[j]
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b[j]<-psi[j] - psi[j]*mu[j]

logit(mu[j])<-U2[j]+V2[j]

psi[j]<-exp(U3[j]+V3[j])

}

U1[1:Nareas] ~ car.normal(adj[], weights1[], num[], omega.spatial1)

U2[1:Nareas] ~ car.normal(adj[], weights2[], num[], omega.spatial2)

U3[1:Nareas] ~ car.normal(adj[], weights3[], num[], omega.spatial3)

for (k in 1:sumNumNeigh) {

weights1[k] <- 1 ;weights2[k] <- 1; weights3[k] <- 1

}

for(i in 1: N)

{

for(j in 1: Nareas) {PH[j,i]<-(p1[i])*(equals(county[i],j)) }

}

for(j in 1: Nareas)

{

for(i in 1: N) { count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PHIVC[j]<-sum(PH[j,])/number[j]

}

}

#DATA

#INITIALS

list(beta1=0,Circum1=0,Urb1=0,Age1=c(NA,0,0,0,0,0,0,0,0,0),

edu1=c(NA,0,0,0),omega.spatial1=0.01,omega.spatial2=0.01,

omega.spatial3=0.01,omega.v3=0.01,omega.v2=0.01,

omega.v1=0.01,U1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0),U2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

U3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),V1=c(0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0),V2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

V3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))



Appendix D

WinBUGS Codes for chapter

Five Models

###############################################

########## Separate Analyses #################

################################################

model

{

#likelihood

for(i in 1: N)

{#N=3759

#for HIV

hiv[i]~dbern(p1[i])

p1[i]<-min(1,max(0,PHIV[i]))

logit(PHIV[i])<-beta1[1]+beta1[2]*education[i]+

beta1[3]*Circumcised[i]

+beta1[5]*Urban[i]+beta1[5]*Age[i]

#for herpes

herpes[i]~dbern(p2[i])

p2[i]<-min(1,max(0,PHRP[i]))

logit(PHRP[i])<-beta2[1]+beta2[2]*education[i]+

beta2[3]*Circumcised[i]+

beta2[4]*Urban[i]+beta2[5]*Age[i]

y11[i]<-hiv[i]

y11[i]~dbern(p11[i])

p1[i]<-min(1,max(0,PHIV[i]))

logit(PHIV[i])<-beta1[1]+beta1[2]*education[i]+

108
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beta1[3]*Circumcised[i]+

beta1[5]*Urban[i]+beta1[5]*Age[i]

#for herpes

herpes[i]~dbern(p2[i])

p2[i]<-min(1,max(0,PHRP[i]))

logit(PHRP[i])<-beta2[1]+beta2[2]*education[i]+

beta2[3]*Circumcised[i]+

beta2[4]*Urban[i]+beta2[5]*Age[i]

}

#Getting Odds ratio from logOdds, by taking exponent of the coefficients

for(i in 2:8){ Oddsbeta1[i]<-exp(beta1[i]); Oddsbeta2[i]<-exp(beta2[i])}

#prior

for(j in 1: 5)

{ beta1[j]~dnorm(0,0.0001); beta2[j]~dnorm(0,0.0001) }

for(i in 1: N)

{

for(j in 1: 46)

{ PH[j,i]<-(PHIV[i])*(equals(county[i],j))

PHPS[j,i]<-(PHRP[i])*(equals(county[i],j))

}

}

for(j in 1: 46)

{

for(i in 1: N)

{count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PCHV[j]<-sum(PH[j,])/number[j]

PCHPS[j]<-sum(PHPS[j,])/number[j]

}

}

#DATA

#INITIALS

list(beta1=c(0,0,0,0,0),beta2=c(0,0,0,0,0))

#########################################

#########Multivariate CAR model##########

#########################################

model

{

#likelihood

for(i in 1: N)

{#N=3759

#for HIV

HIV[i]~dbern(p1[i])

p1[i]<-min(1,max(0,PHIV[i]))

logit(PHIV[i])<-beta1[1]+beta1[2]*perceived_Risk[i]+

beta1[3]*Ever_used_condom[i]+beta1[4]*Circumcised[i]+

beta1[5]*Urban[i]+beta1[6]*Age[i]+beta1[7]*away[i]+
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beta1[8]*Sex_resp2[i]+S[1,county[i]]

#for herpes

herpes[i]~dbern(p2[i])

p2[i]<-min(1,max(0,PHRP[i]))

logit(PHRP[i])<-beta2[1]+beta2[2]*perceived_Risk[i]+

beta2[3]*Ever_used_condom[i]+beta2[4]*Circumcised[i]+

beta2[5]*Urban[i]+beta2[6]*Age[i]+beta2[7]*away[i]+

beta2[8]*Sex_resp2[i]+S[2,county[i]]

}

#Getting Odds ratio from logOdds, by taking exponent of the coefficients

for(i in 2:8){ Oddsbeta1[i]<-exp(beta1[i]); Oddsbeta2[i]<-exp(beta2[i])}

# MVCAR prior

S[1:Ndiseases,1:Nareas] ~ mv.car(adj[],weights[],num[],omega[ , ])

for (i in 1:sumNumNeigh) { weights[i] <- 1 }

R[1,1] <- 3; R[1,2] <- 0; R[2,1] <- 0; R[2,2] <- 2

# Precision matrix of MVCAR

omega[1 : Ndiseases, 1:Ndiseases] ~ dwish(R[ , ],Ndiseases)

# Covariance matrix of MVCAR

sigma2[1 : Ndiseases, 1 : Ndiseases] <- inverse(omega[ , ])

# conditional SD of S[1, ] (oral cancer)

sigma[1] <- sqrt(sigma2[1, 1])

# conditional SD of S[2,] (lung cancer)

sigma[2] <- sqrt(sigma2[2, 2])

# within-area conditional correlation

corr <- sigma2[1, 2] / (sigma[1] * sigma[2])

# between oral and lung cancers.

mean1 <- mean(S[1,]); mean2 <- mean(S[2,])

for(j in 1: 46) { S1[j]<-S[1,j]; S2[j]<-S[2,j] }

#prior

for(j in 1: 8){ beta1[j]~dnorm(0,0.0001); beta2[j]~dnorm(0,0.0001)}

for(i in 1: N)

{ for(j in 1: 46)

{ PH[j,i]<-(PHIV[i])*(equals(county[i],j))

PHPS[j,i]<-(PHRP[i])*(equals(county[i],j))

}

}

for(j in 1: 46)

{

for(i in 1: N) { count[j,i]<-equals(county[i],j) }

number[j]<-sum(count[j,])

PCHV[j]<-sum(PH[j,])/number[j]

PCHPS[j]<-sum(PHPS[j,])/number[j]

}

}

#DATA

#INITIALS

list(beta1=c(0,0,0,0,0,0,0,0),beta2=c(0,0,0,0,0,0,0,0),
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omega=structure(.Data=c(1,1,1,1), .Dim=c(2,2)))

##############################################

### Shared Component model ##############

##############################################

model

{

#likelihood

for(i in 1: N)

{

#N=3759

#for HIV

hiv[i]~dbern(p1[i])

p1[i]<-min(1,max(0,PHIV[i]))

logit(PHIV[i])<-beta1[1]+beta1[2]*perceived_Risk[i]+

beta1[3]*Ever_used_condom[i]+

beta1[4]*Circumcised[i]+beta1[5]*Urban[i]+

beta1[6]*Age[i]+beta1[7]*away[i]+

beta1[8]*Sex_resp2[i]+S[2,county[i]]

#for herpes

herpes[i]~dbern(p2[i])

p2[i]<-min(1,max(0,PHRP[i]))

logit(PHRP[i])<-beta2[1]+beta2[2]*perceived_Risk[i]+

beta2[3]*Ever_used_condom[i]+beta2[4]*Circumcised[i]+

beta2[5]*Urban[i]+beta2[6]*Age[i]+beta2[7]*away[i]+

beta2[8]*Sex_resp2[i]+S[2,county[i]]

}

#Getting Odds ratio from logOdds, by taking exponent of the coefficients

for(i in 2:8)

{

Oddsbeta1[i]<-exp(beta1[i]); Oddsbeta2[i]<-exp(beta2[i])

}

for(i in 1:Nareas)

{

# Define log relative risk in terms of disease-specific

#(psi) and shared (phi)

# random effects

# changed order of k and i index for psi

#(needed because car.normal assumes

# right hand index is areas)

S[1, i] <- phi[i] * delta + psi[1, i]

S[2, i] <- phi[i] / delta + psi[2, i]

}

# Spatial priors (BYM) for the disease-specific random effects

for (k in 1 : Ndiseases) {

for (i in 1 : Nareas) {

# convolution prior = sum of unstructured and spatial effects
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psi[k, i] <- U.sp[k, i] + S.sp[k, i]

# unstructured disease-specific random effects

U.sp[k, i] ~ dnorm(0, tau.unstr[k])

}

# spatial disease-specific effects

S.sp[k,1:Nareas] ~ car.normal(adj[],weights[], num[],tau.spatial[k])

}

# Spatial priors (BYM) for the shared random effects

for (i in 1:Nareas) {

# convolution prior = sum of unstructured and spatial effects

phi[i] <- U.sh[i] + S.sh[i]

# unstructured shared random effects

U.sh[i] ~ dnorm(0, omega.unstr)

}

# spatial shared random effects

S.sh[1:Nareas] ~ car.normal(adj[], weights[], num[], omega.spatial)

for (k in 1:sumNumNeigh) { weights[k] <- 1 }

#prior

for(j in 1: 8){ beta1[j]~dnorm(0,0.0001); beta2[j]~dnorm(0,0.0001)}

for(i in 1: N)

{

for(j in 1: 46)

{

PH[j,i]<-(PHIV[i])*(equals(county[i],j))

PHPS[j,i]<-(PHRP[i])*(equals(county[i],j))

}

}

for(j in 1: 46)

{

for(i in 1: N)

{

count[j,i]<-equals(county[i],j)

}

number[j]<-sum(count[j,])

PCHV[j]<-sum(PH[j,])/number[j]

PCHPS[j]<-sum(PHPS[j,])/number[j]

}

# Other priors

for (k in 1:Ndiseases) {

tau.unstr[k] ~ dgamma(0.1, 0.0001)

tau.spatial[k] ~ dgamma(0.1, 0.0001)

}

omega.unstr ~ dgamma(0.1, 0.0001)

omega.spatial ~ dgamma(0.1, 0.0001)

# scaling factor for relative strength of shared component

#for each disease

logdelta ~ dnorm(0, 5.9)
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# (prior assumes 95% probability that delta^2 is between 1/5 and 5;

delta <- exp(logdelta)

# lognormal assumption is invariant to which disease is labelled 1

# and which is labelled 2)

# ratio (relative risk of disease 1 associated with shared component)

# to (relative risk of disease 2 associated with shared component)

# # - see Knorr-Held and Best (2001) for further details

# # RR.ratio <- pow(delta, 2)

#Mapping issues

# Relative risks and other summary quantities

# The GeoBUGS map tool can only map vectors, so need to create

#separate vector of quantities to be mapped, rather than an

#array (i.e. totalRR[i,k] won’t work!)

}

#DATA

#INITIALS

list(beta1=c(0,0,0,0,0,0,0,0),beta2=c(0,0,0,0,0,0,0,0),

omega.unstr=0.01,omega.spatial=0.01,logdelta=2,

tau.unstr=c(0.01,0.01),tau.spatial=c(0.01,0.01))
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