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ABSTRACT

In order to assess the performance of water management approaches and irrigation systems

used by the sugar industry in the Lowveld of Zimbabwe, a sugarcane yield and irrigation

systems simulation model was developed. The model, named ZIMsched 2.0, was used to

predict how field derived indices of irrigation systems performance, such as the coefficient of

uniformity, CV, impacted on estimated recoverable crystal, ERC, yields and the water

balance. This was done across a range of soil conditions, seasonal climates, irrigation system

types and existing and refined irrigation scheduling strategies. Results of a verification study

of the model showed an index of agreement, 'd', equal to 0.96 and a Pearson's correlation

coefficient equal to 0.94, between observed and simulated yields of ERC, relative to a

reference treatment. Application of the model showed the actual and also the potential

performance of the different irrigation system hardware. Additional applications of the tools

and information which were developed as a result of this research included an integrated

economic assessment of peak irrigation system design specifications and associated deficit

irrigation watering strategies. In an effort to translate theoretical water savings into practical

realities a range of novel water management tools was also developed.

Most of the drip irrigation systems in the Lowveld were performing below potential due to

excessive infield variations in applied water. The performance of furrow irrigation systems

was limited by the large variations in water applied to individual furrows, and water

applications that were, on average, excessively high relative to soil water holding

characteristics. Simulations showed that sub-surface drip irrigation systems have a slight

edge on other irrigation systems in terms of potential efficiency. Average water savings for

drip irrigation systems ranged from approximately 2.2 to 1.5 Ml/ha relative to floppy

irrigation systems, and 3.5 to 2.3 Ml/ha relative to typical furrow irrigation systems,

depending on how water applications were scheduled. A major finding was that there was

potential for the Lowveld sugar industry to use up to 30% less water per hectare on an annual

basis if ZIMsched, a specialist spreadsheet-based irrigation scheduling tool developed during

the course of the project, was used to derive more appropriate and system specific water

management guidelines. However, simulations showed that with the more precise irrigation

scheduling there could be a slight crop yield penalty when the distribution uniformity of

applied water was poor.
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1. INTRODUCTION

One of the severe consequences of the 1991/2 drought in the south east Lowveld of

Zimbabwe1 was the near closure of the sugar industry there (Kaseke, 1998). The drought

highlighted the importance of investigating the performance of the irrigation systems and

water management strategies which were being used in the sugar industry. Building more

dams to increase the level of available water storage may help to mitigate risk; however,

water supply and demand interactions still remain and questions as to the optimal level of

land development for the increased water storage would still need to be addressed.

Therefore, whether or not more dams are, or can be, built, there is a need for increased insight

into water supply and demand interactions, the selection and proper design, operation and

maintenance of suitable types of irrigation systems, together with the implementation of well

matched water management strategies, in order to ensure the long term viability of the

Lowveld sugar industry. The Lowveld sugar industry is not unique in terms of these

requirements. Most irrigated agricultural industries in southern Mrica operate in a climate

characterised by recurring droughts and increasing competition for limited water supplies.

The need to assess irrigation and water management systems and strive for continuous

improvement is, therefore, wide ranging.

The Lowveld sugar industry, which was the focus of this study, is situated around latitude

21°S, and has an average altitude of approximately 420 m.a.s.!. It is in a semi-arid region,

with a climate characterised by very hot summers and short cold winters. Average annual

rainfall is 561 mm. The rain falls mainly over the summer months of November to March

and seasonal deviations from the mean are high, ranging from 467 mm below the long term

average in 1991/2 to 481 mm above the long term mean in 1977/78. Annual A-pan

equivalent evaporation averages 1990 mm and therefore a secure supply of irrigation water is

essential for crops to flourish on the fertile paragneiss and basalt derived soils which cover

much of the area. The Lowveld would not have been developed to its present state,

including approximately 45 000 hectares of irrigated sugarcane, had it not been for the

development of vast water resources, mainly on the Runde river and its major tributaries, the

Chiredzi, Mutirikwi and Tokwe rivers. These rivers rise in the Highveld of Zimbabwe and

pass through granite escarpments, which offer excellent dam sites. Water is conveyed from

1 Hereafter the south east Lowveld of Zimbabwe is referred to as 'the Lowveld'
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these dams to the farming areas via a complex network of weirs, natural channels, gravity fed

canals and pipelines, as well as inter-basin transfers (Clowes and Breakwell, 1998).

Many different types of irrigation and water management systems are being used by growers

of sugarcane in the Lowveld. While traditionally the majority of sugarcane was grown using

furrow irrigation or hand-moved overhead sprinkler irrigation, other types of irrigation

systems, including centre pivots, floppy and drip irrigation systems were also attracting

increasing interest and were being increasingly adopted. Descriptions of the various

irrigation systems, in the context of the Lowveld, are given in the Zimbabwe Sugarcane

Production Manual (Clowes and Breakwell, 1998). What is important to note is that each

type of irrigation system has different characteristics which make it more or less suitable for

application under different circumstances. Apart from manufacturer claims and informal

anecdotes there has been little, if any, scientifically valid and/or verified information to date

on the comparative performance of these different types of irrigation systems in the Lowveld

environment. The water management approaches which were being used were also not

necessarily well suited to all the different types of irrigation hardware or circumstances.

Therefore, in order to improve performance and make rational decisions regarding the

selection, upgrading and management of different types of irrigation systems, the following

questions require objective answers:

•

•

•

how effectively are the different types of irrigation systems being implemented and

used?

how effectively could the different systems be used? and

under what circumstances would a change to another type of irrigation system, or

water management approach, result in more effective use of resources and gains in

productivity?

The research described in this thesis has been undertaken with the aim of developing the

methods, tools and information to provide answers to these questions.

A purely experimental approach, whereby appropriate experiments and an intensive irrigation

systems monitoring exercise is used to evaluate the performance of irrigation systems and

water management approaches, was considered initially. However, such an approach was

2



deemed inappropriate because the experiments and monitoring needed to evaluate a

representative sample of the various irrigation systems, for different soils and water

management strategies and over a range of relatively wet and dry seasons, would have been

too time consuming, costly and disruptive to be practically feasible. In addition, there was a

high risk that results from such experiments and monitoring would be significantly biased by

extraneous factors (such as soil compaction, nematodes or diseases), operational problems

and inconsistent management and baseline conditions over time. Therefore, an alternative and

supplementary irrigation systems evaluation strategy was sought.

An extensive international literature exists on irrigation systems performance assessment and

measurement. For example, Burt et al. (1997) and Purcell and Currey (2003) provide good

syntheses of relevant literature and the vast array of irrigation system performance

definitions. Those authors have also attempted to provide working frameworks for irrigation

performance assessments. They highlight the premise that one of the most important aspects

of the in-field performance of irrigation systems is the uniformity with which water is

applied; however, they do not show how to relate irrigation uniformity to crop yields. De

Juan et al. (1996) and Li (1998) have proposed approaches to relate the uniformity with

which irrigation water is applied to crop yields. Their approaches are mathematically explicit

representations which substantiate the premise that the uniformity of seasonal, or growth

stage specific, applications of water affects crop yields. However, what was needed for this

study was a process-based evaluation tool which accounts for the uniformity with which

water is applied, but within the wider context of both the intra- and inter-seasonal dynamics

of the soil, plant, atmosphere, continuum and the associated irrigation system and water

management interactions.

Available process-based simulation tools for estimating irrigation crop water demand and

associated sugarcane yield impacts are historically derived mainly from South African and

Australian initiatives. In South Africa, these initiatives have resulted in the development of

the ACRU agrohydrological model (Schulze, 1995; Lecler and Schulze, 1995), the

CANEGRO model (Inman-Bamber, 1991; Inman-Bamber, 2000) and the CANESIM model

(Singels et aI., 1998; Bezuidenhout and Singels, 2003). Australian initiatives have resulted

in, for example, the development of APSIM-Sugarcane (McCown et al., 1996; O'Leary,

2000). In the context of this study all these models, despite their respective strengths, also

included substantial limitations. These limitations were related primarily to their
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representation of different types of irrigation systems, especially those regarding evaporation

from a differentially wetted soil surface. This factor is important when comparing different

types of irrigation systems, for example, overhead sprinkler irrigation to furrow irrigation.

Furthermore, none of the models contained algorithms to account for non-uniform irrigation

water applications. The APSIM, CANEGRO and CANESIM models were also reportedly

weak in terms of adequately accounting for water stress effects (Singels et al., 1998; Van

Antwerpen, 2000; O'Leary, 2000). This was a major concern with regard to their potential for

evaluating the effects of water management strategies. Work on relating water stress to

sucrose yields as opposed to cane yields was also not well established and is still largely in

the developmental phase (O'Leary, 2000; Singels and Bezuidenhout, 2002). Furthermore,

access and support for most of these models was also a practical constraint to their

development and application in the Lowveld.

The Food and Agricultural Organisation Paper No. 56 (FAO 56; AlIen et al., 1998) provides

an additional well founded basis for estimating irrigation crop water requirements and

associated crop yield impacts. It is also being promoted as an international standard.

Furthermore, FAO 56 provides algorithms which specifically differentiate between the water

budgets pertaining to different irrigation system (hardware) characteristics. However, the

FAO 56 water budget is somewhat too simplified in terms of accounting for effective rainfall

and deep percolation and it also does not distinguish between uniform and non-uniform

irrigation water applications. Kassam and Smith (2001) have also reported that the

relationships between water stress and crop yield, which are referred to in FAO 56 and are

described in detail by Doorenbos and Kassam (1979), in many cases need to be adapted and

refined.

Thus, in the author's view, there existed no wholly appropriate method with associated tools

for evaluating the in-field performance of irrigation systems in the Lowveld of Zimbabwe.

As discussed previously, a solely experimental approach, whilst theoretically possible, would

have been impractical and would probably have yielded unreliable results. Typical irrigation

performance indices such as those described, for example, by Burt et al. (1997) need to be

translated into associated impacts on yield and water budgets (and hence profitability), and

existing models and approaches had limitations in their ability to do this.
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With this background, the hypothesis for this research was that new techniques and tools

were needed in order to assess the in-field performance of the various irrigation and water

management systems in the Lowveld. These did not necessarily have to be developed ab

initio, but could be based on an appropriate synthesis and development/refinement of existing

options/approaches. The overall approach which was proposed for the evaluation of irrigation

and water management systems in the Lowveld is described as follows:

• Develop and/or apply tools and methods to record in-field irrigation systems

performance data, such as the typical depth and distribution uniformity of applied

water.

•

•

•

Use the in-field performance data/information recorded or measured to calculate

'Irrigation Engineering Performance Indices' (IEPIs) of irrigation systems

performance. An example of an IEPI is the coefficient of uniformity, CU, which

gives an indication of the distribution uniformity of applied water (Burt et aI., 1997).

Develop a sugarcane yield and irrigation systems simulation model to predict how the

field-derived IEPIs impacted potential crop yields and water budgets, taking into

consideration the characteristics of different irrigation systems and water management

strategies prevailing in the Lowveld, in relation to various soil and climatic

conditions.

Verify and apply the sugarcane yield and irrigation systems simulation model in order

to assess the typical performance of irrigation and water management systems

prevalent in the Lowveld. Compare performance of the various systems under typical

conditions in practice to the performance of the various irrigation systems if more

optimal but achievable IEPIs and water management strategies were used.

This irrigation systems performance evaluation methodology was, in itself, unique.

Furthermore, the research resulted in the synthesis and development of appropriate

algorithms into an irrigation systems and crop yield simulation modelling tool with

distinctive capabilities. Verification and subsequent application of this tool resulted in new

information pertinent to the Lowveld and a systematic and scientific basis for assessing the

performance of irrigation and water management systems. In addition, the research provided

the basis for other developments and applications including, for example, a range of new and

improved irrigation scheduling tools, methods and models for the assessment of irrigation
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system design and management strategies, and an assessment of alternative reference

evaporation estimation and measurement options.

This study is structured as follows: In Chapter 2, factors which affect irrigation system

performance are reviewed in order to provide a background to the description of

methodologies, tools and data collection described in Chapter 3. The primary focus of

Chapter 3 is to provide a description of the methods and model developed to translate in-field

measurements of irrigation systems performance, such as the distribution and depth of

applied water, into associated impacts on crop yields, water budgets and irrigation

performance indices. In Chapter 4, results of a verification study of the simulation model are

presented together with results from the application of the methodologies, in order to assess

the performance of irrigation and water management systems prevalent in the Lowveld sugar

industry. Other tools and applications developed in this study, for example, those for

determining optimal irrigation system capacities and water management strategies and

tailored irrigation scheduling charts as well as a spreadsheet-based, 'farmer friendly'

irrigation scheduling tool, are presented in Chapter 5. Key implications to the sugar industry

arising from information derived during this study together with appropriate

recommendations are given III Chapter 6. The layout of the thesis is illustrated

diagrammatically in Figure 1.1.

Chapter 5
Other a licalians
- optiimum system capacities
- scheduling tools
- economic comparisons / strategy evaluation

Model VerifICation
Model Application
- performance of different hardware

and water management systems

IChapter 4
Results

PERFORMANCE OF IRRIGATION AND WATER MANAGEMENT SYSTEMS
IN THE LOWVELD OF ZIMBABWE

Solution Strategies

Issues I Challenges

Chapter 3
Methodology of Irrigation
S stems Performance Evaluation
Two Stage Approach
- in-field measurements
- model development to interpret

Document Layout in-field measurements

"'C""h""'ap""'te""'r2::------.!...-----~- performance measures

Literature Review: irri alia" s stems erformance
Fundamental Principles
- unijormily
- runoff and deep percolation
- evaporation losses
- water management and management strategies

Performance Measures and Issues

Conclusions Leading to Proposed Methodology

Figure 1.1 Thesis layout
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2. IRRIGATION SYSTEMS PERFORMANCE: A PERSPECTIVE

With increasing demand and competition for finite water resources, the efficiency of water

used in agriculture and the performance of irrigation and water management systems is

coming under ever closer scrutiny. This was especially so in Zimbabwe, where irrigated

agriculture has been reported to "consume 80 % of the recorded water use" at an average

efficiency of only 60 % (GoZ, 1999). Often statements such as these can be grossly

misinterpreted, leading to the widespread belief that much of the nation's future water

requirements can be obtained by improving the efficiency with which water is used in

irrigated agriculture. Judging by statements such as the one quoted below from Australia,

such perceptions on irrigation efficiency are widespread.

"the use of the term 'irrigation efficiency' has caused an absolute dichotomy between

the physical situation of the hydrologic system and the public's and government's

perception of the physical nature of water management. These incorrect views are so

pervasive and strongly held that billions ofdollars have been proposed for investment

to correct for low irrigation efficiencies with the general public actually believing that

their water problems will be solved" (AlIen and Willardson, 1997, cited by

Fairweather et aI., 2003 )

One of the issues with irrigation efficiency is that unlike more traditional definitions of

efficiency, for example, in thermodynamics, water which is not used efficiently is not

necessarily lost or 'consumed', but often becomes available downstream. In addition,

efficiencies are often quoted somewhat casually without losses being measured or defined

accurately. All this contributes to a situation where there is much misunderstanding and

misconception regarding irrigation systems performance (Clemmens, 2000). Part of this lack

of understanding could be addressed if the fates of applied water at the field, farm and

watershed scales could be better determined and understood. The concepts of irrigation

efficiency and the goal of achieving sufficient water for the future are more complex than

what is often perceived.

A perspective of irrigation systems performance is provided in this Chapter. This includes the

water balance, irrigation uniformity, water management and a summary of various irrigation
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performance measures and frameworks. The information given provides the basis for the

approach proposed to assess the in-field performance of irrigation and water management

systems in the Lowveld, which is described in Chapter 3.

2.1 The Water Balance

At the heart of any consideration of irrigation systems performance is an irrigation water

balance and the determination of the fate of the various fractions of the total irrigation water

applied (Burt et al., 1997; Clemmens, 2000; Fairweather et al., 2003). In order to apply a

water balance, the boundaries of the system need to be defined and the potential fates of

different fractions need to be identified so that the various components can be measured or

estimated. Once the components of the water balance are quantified, and the boundaries of

the system defined, various performance indicators can be estimated. Performance will also

vary depending on the spatial and time scale. The spatial scale can vary from a single

irrigation application device (a syphon tube, a sprinkler, or a micro irrigation emitter) to an

irrigation set (a single sprinkler lateral) to broader land scales (field, farm district, watershed).

The time scale can vary from a single irrigation application, a part of the crop season, the

irrigation season, a year or a period of years (Howell, 2003). In Figure 2.1 the various

fractions of water applied which are involved in defining irrigation performance at the field

level are illustrated.

Rain or Irrigation Water Applied
• • 0

Dri~t

P1ant and 50i1 5ur~ace

Free Water Evaporation

Transpiration

'. Root
• • • • " • Zone

I'.' , • '. • Depth• •• •- ------.-- .l.
. • Deep PercolatJ.on

-----------

•••••6
••
: Sur~ace
6n~ ~ ~

,.,..·~~~---~~-",e:~__4,.,.......Lr_~;.:;;---<:J~ Run-O~~
..~o

In~11trated

Figure 2.1 Various fates of water in the soil-plant-atmosphere system (ASCE, 1978)
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The definitions of the components of the water balance, as indicated in Figure 2.1 are

introduced in this section, based mainly on the paper of Burt et al. (1997). Details of

methods and approaches which have been formulated to quantify these components of the

water balance are provided in Chapter 3.

2.1.1 Evaporation

Evaporation is the conversion of water from liquid form to vapour form. In the context of this

sub-section, only evaporation from free surfaces of water in transit, from plant surfaces that

have intercepted irrigation water and from the soil surface interface are considered.

Evaporation of any water that has passed through the plant, i.e. transpiration, is dealt with

separately. Examples of water in transit are sprinkler droplets, surface ponding, puddles and

surface runoff. The rate of evaporation is dependent on climatic conditions, water surface

area and soil properties. Changing the frequency of application, the irrigation method used, or

the amount of mulching and shading can modify the amount of evaporation that takes place.

The amount of evaporation can also be influenced by advection. For example, a flowing

canal can have higher evaporation per unit area than a large open body of water (Burt et aI.,

1997). Losses of water due to evaporation are unlike losses of water due to runoff, deep

percolation, seepage from canals and pipe leaks, all of which potentially feed back to

downstream areas.

2.1.1.1 Spray evaporation, wind drift and plant interception

Evaporation of plant intercepted water together with evaporation of water sprayed from

irrigation emitters and wind drift losses depend to a large degree on the irrigation system, the

type of emitter and also the prevailing weather conditions. The contributions that spray

evaporation and wind drift make towards water which is lost from the system are very

difficult to assess accurately. The reason for this is that spray evaporation is accompanied by

a largely compensating reduction in evaporation of water from the soil and plant because,

after the evaporation of the irrigation spray, less energy is available to evaporate water from

the soil and plant surfaces (Heermann et aI., 1990; Thompson et al., 1993). In addition, it is

reasonable to assume that the contribution of spray evaporation to the micro-climate during

very hot conditions, namely a reduced vapour pressure deficit and lower temperature, may

also result in enhanced photosynthesis, relative to a non-sprinkler irrigated crop (Tolk et aI.,



1995). For these reasons, some daytime spray evaporation "loss" should actually be

considered a beneficial water use.

In similar vein it is apparent that evaporation of water intercepted by crop canopies is not a

major loss as it can contribute beneficially to evapotranspiration (Schnieder, 2000). Reported

measurements of net water losses from spray evaporation and canopy intercepted water are

typically less than 10% (McNaughton, 1981; Tolk et al., 1995 and Thompson et aI., 1997).

2.1.1.2 Evaporation from the soil surface

Evaporation of water from exposed soil surfaces is the most significant component of

"wasted" water in irrigation. This is so even though there are some small compensatory

feedbacks to transpiration, whereby the relative contribution by transpiration is reduced when

the soil surface is wet and increased when the soil surface is dry (Ritchie, 1971; Adams, et

aI., 1976; Ritchie and Johnson, 1990). Overall total evaporation from the cropped surface

increases when the soil surface is wetted (Burt et al., 1997; AlIen et al., 1998).

Evaporation of water from the soil surface is dependent on the following factors.

•

•

Agronomic practices: these can either inhibit or encourage evaporation from the soil

surface. For example, surface mulching and narrower row spacing can reduce the

component of water evaporated from the soil surface significantly.

The type of irrigation system and its management: systems that apply water to a large

proportion of the field's surface area will have large amounts of that applied water

lost due to evaporation from the soil surface, especially if the system is managed such

that the water is applied to the soil surface frequently in relatively small amounts,

prior to the development of a full crop canopy. In the report by AlIen et al. (1998),

the evaporation from the soil surface when water is applied at intervals of four days, is

shown to be nearly four times greater than the corresponding evaporation if the

interval between irrigations is extended to 20 days. The fraction of the soil surface

wetted by irrigation can vary significantly depending on the type of irrigation system

and these variations can also have significant impacts on evaporation losses prior to

the development of a full crop canopy. Typical values for the fraction of the soil

surface wetted for different types of irrigation systems are given in Table 2.1.
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Table 2.1 Common values of the fraction, fw , of soil surface wetted by irrigation

applications (after AlIen et al., 1998)

Irrigation System fw

Centre Pivot 1

Drip 0.0 - 0.4

Sprinkler, Floppy 1

Furrow 0.4...0.7

2.1.2 Transpiration

Transpiration is the evaporation process of liquid water within a plant through the stomata

and plant surfaces into the air (Pereira and AlIen, 1999). Transpiration takes place within the

soil-plant-atmosphere continuum and, therefore, for transpiration to proceed at potential rates,

the atmospheric demand for water must be balanced by the flow of water to the plant roots

and from the root surfaces to the leaves. Crops predominantly lose water through their

leaves, as a result of stomata which facilitate exchange of gases and water vapour. The

vapour exchange with the atmosphere is controlled by stomatal aperture. Nearly all water

taken up by a plant's root system is lost by transpiration and only a small fraction is used by

the plant (AlIen et aI., 1998). Transpiration is normally considered to be a beneficial water

loss.

The rate of transpiration, like that of direct evaporation, depends on available energy supply,

the vapour pressure gradient and wind. Transpiration is also dependent on soil water content,

both excess and deficient, soil water salinity, crop management, plant physiology and growth

stage (Burt et aI., 1997; AlIen et aI., 1998; Pereira and AlIen, 1999).

2.1.3 Evapotranspiration

Evapotranspiration (ET) is the combined process of evaporation from the soil and wet plant

surfaces as well as the transpiration from the plant. Evaporation and transpiration occur

simultaneously and there is no easy way to distinguish between the two processes. Normally
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the combined ET is estimated by soil water balance or aboveground energy balance methods

(Burt et aI., 1997). When the crop is small, water is predominantly lost by soil water

evaporation, but once the crop develops and especially when it completely covers the soil,

. transpiration becomes the dominant process (AlIen et aI., 1998)

Soil, crop, irrigation (management) and atmospheric factors influence the ET process.

Differences in resistance to transpiration, crop height, crop roughness, reflection, ground

cover and rooting characteristics result in different ET levels in different crops under

identical environmental conditions. Factors such as poor land fertility, poor fertilization, soil

compaction, pests and diseases and poor soil management may also impact on crop

development, and hence ET. The effect of the soil water content on ET is determined

primarily by the water deficit and type of soil. On the other hand, too much water, which

results in water logging, can also damage the roots and inhibit root water uptake by inhibiting

respiration. Management decisions such as maintaining wet or dry soils, or stressed versus

unstressed crops, will influence ET. For most irrigated crops part of ET is supplied by

rainfall and part supplied by irrigation water (Burt et al., 1997; AlIen et al.,1998).

2.1.4 Infiltration

Infiltration is the process whereby rainfall, or irrigated water, enters the soil profile (Lorentz

et aI., 1995). All the water that enters the soil surface is in transit. Some enters the plant

through the root system immediately while another fraction, viz. that up to and even

exceeding the so-called drained upper limit or field capacity, is temporarily stored as soil

water in the root zone. This stored water may also enter the plant, be drawn to the soil

surface and evaporate, or eventually move down below the root zone (Burt et aI., 1997).

2.1.5 Deep percolation

Deep percolation is the fraction of applied water that moves through the soil to below the

root zone, at which stage it is then unavailable to the crop (Burt et aI., 1997). It can result

from excess application of irrigation water and the non-uniformity of irrigation water over a

field area. Some deep percolation is required to remove salts that are concentrated by

evapotranspired irrigation water. Dependent on project or defined boundaries, deep
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percolation has the potential to be re-used downstream. However, it is often of much poorer

quality than the original irrigation water (Clemmens, 2000).

2.1.6 Runoff

Runoff may be defined as the surface water that leaves an area's boundary in liquid form. For

a given field, runoff is not usually considered a beneficial water use. However, runoff is

often captured and re-used elsewhere, or even on the same field. Runoff does, however,

often pick up sediments and agricultural chemicals and can become degraded in quality

(Clemmens, 2000). Surface water that is collected from an area's boundary and is reapplied

within the region is not considered as runoff in water balance and efficiency considerations

(Burt et aI., 1997).

2.1.7 Diverted water versus consumed water

There is a vast difference between water diverted for use by irrigation and the amount of

water actually "used", "consumed" or removed from the system by irrigation.

2.1.7.1 Diverted water

Diverted water includes all water that is diverted from a river or pumped from a well for use

in irrigation. Many references to irrigation efficiencies imply a relationship between water

stored in the crop's root zone and diverted water. With diverted water in the denominator,

quoted efficiencies in the order of 50% or lower are common. However, with these so-called

"inefficienf' irrigation schemes, a large proportion of the diverted water returns to the system

as return flows. The reason for this is that the greatest causes of irrigation inefficiencies are

water leaving/"lost" from the root zone due to deep percolation and/or surface runoff

(Schulze and Dunsmore, 1984; Heerman et aI., 1990). Thus, although a great proportion of a

catchment's water may be diverted for use in irrigation, the amount of water actually

consumed, or lost from the system, may be far less. Often improvements in field-level

irrigation application efficiency result in only small changes to the amount of water available

in the system as a whole. This is so because the amount of water consumed remains little

changed between efficient and inefficient irrigations. Nevertheless, although non-
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consumptive fractions of diverted water can often be re-applied elsewhere, this water will

likely be degraded in terms of quality (Burt et al., 1997)

2.1.7.2 Consumed water

In irrigated agriculture, water consumed or lost from the system is the water that evaporates

into the atmosphere from:

• the plant,

• the soil, and

• the supply system, or

• water which is removed in harvested plant tissues, for example, in watermelon or

tomatoes (Burt et al., 1997).

This evaporated (or removed) water is far less variable than diverted water and has relatively

little effect on the irrigation efficiencies that are so often reported.

An understanding of the hydrological water balance is fundamental to assessing irrigation

performance. If the components of the water balance can be quantified, various performance

indices can be derived. Also rational decisions can be made regarding the appropriateness of

water uses and their effects on crop production and the environment (Clemmens and Burt,

1997). The variability of water applications at the field scale can impact on the overall field

water balance. Therefore, the uniformity of irrigation water applications plays an important

role in irrigation systems performance.

2.2 Uniformity of Irrigation Water Applications

Irrigation uniformity refers to the evenness of irrigation water applications. The uniformity

of the applied water can have a significant effect on the performance of irrigation systems

(Pitts et al., 1996; Clemmens, 2000; Howell, 2003). Irrigation uniformity is a characteristic

of the type of irrigation system, and also the standard to which a given system has been

designed, and is operated and maintained. It can also be affected by soil infiltration

characteristics and land preparation. It can have significant effects on irrigation performance

because even if the timing and average magnitude of water applications is well matched to
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crop water demand and soil water storage capacity, non-uniformity results in some areas

receiving relatively higher water applications and other areas receiving relatively lower water

applications. Excessive runoff and deep percolation losses are likely on the areas receiving

the relatively higher water applications and reductions in crop yield can be expected on the

areas receiving the relatively lower water applications. Depending on how well an area is

drained, reductions in crop yields can also occur on the areas receiving excess water. The

influence that irrigation uniformity can have on crop yields is highlighted by the results

shown in Table 2.2.

Table 2.2 Crop sensitivity to irrigation application uniformities, where a coefficient of
uniformity, CU, equal to 100 indicates perfect uniformity (after Reinders,
1996)

Coefficient of Yield (t/ha)
Uniformity

(CU)
Maize Bananas

60 4.2 23.4

72 6.0 33.6

80 6.8 38.3

A planning model to determine optimal irrigation strategies which takes into account the

effect of the non-uniformity of irrigation water applications on crop yield has been described

by de Juan et al. (1996). However, a major constraint of de Juan et al.'s (1996) model in

terms of potential application for evaluating irrigation and water management systems

performance in a given environment, is that the water balance was somewhat over-simplified.

In de Juan et al.'s (1996) approach, an initial sub-model was used to estimate irrigation water

requirements associated with a given (inputed) ET deficit. Using a simple water budget in

this sub-model, application of irrigation water was assumed to return the soil to field capacity

at the selected ET deficit. The sub-model thus determined an irrigation schedule and

translated the selected ET deficit into an associated seasonal irrigation application

requirement. The ET deficit was related to a yield impact using the production function of

Stewart et al. (1977) and yield response factors proposed by Doorenbos and Kassam (1979).

Next, a deficit coefficient (Cd) was defined as the ratio between the average deficit depth and
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the required depth, as illustrated in Figure 2.2. Then, assuming the reduction in ET equates to

the soil water deficit (an example of the over-simplification of the water balance), Cd was

related to yield, dependent on the proportion of the crop's water requirement which was

supplied by irrigation, as opposed to rainfall. Cd was determined from the mathematical

properties of an assumed distribution function describing the application of irrigation water.

This enabled Cd to be determined for a given uniformity and depth of irrigation application

relative to the deficit depth. Thus de Juan et al. (1996) were able to investigate relationships

between a theoretical seasonal crop water requirement, the amount of water applied relative

to this theoretical requirement, the uniformity of the applied water and an associated crop

yield.

o
o

Percent of Area Adequately Irrigated

50

AD

100

Depth

dreq

dm

1-AD
• •

Distribution of applied irrigation water

for a given distribution uniformity

Deficit

Figure 2.2 A normal distribution for applied irrigation depths with a certain distribution
uniformity. The variable dreq , is the depth required to replace the water
deficit in the soil, dm is the average depth of infiltrated water, AD represents
the area receiving adequate water, dj_AD is the average deficit depth of water
in the under-irrigated area (l-AD), the shaded 'Deficit' area is the total soil
water deficit (after de Juan et aI., 1996)
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Li (1998) presented a similar approach of relating crop yield to irrigation uniformity.

However, Li (1998) used the model proposed by Jensen (1968) to relate crop yield to water

deficits at particular growth stages to try and better represent water stress effects. The water

budget of Li's (1998) is also simplified, especially with regard to the relationship of the soil

water deficit to the ET deficit and the proportion of the crop water requirements which are

satisfied by rainfall.

Mantovani et al. (1995) not only described the development of a model to relate yield to

irrigation amount and uniformity, which is apparently the foundation of the approaches of

both de Juan et al. (1996) and Li (1998), but also compared this approach to results obtained

by running a more process-representative, but data intensive crop growth model, namely

CERES-Maize (Jones and Kiniry, 1986). The inclusion of irrigation application uniformity

in the growth model simulations was achieved by running the CERES-Maize simulation

model to simulate multiple units, with each unit receiving a different irrigation application

amount dependent on irrigation uniformity. A comparison between the simple model and the

CERES-Maize model adapted to simulate spatial variability in applied water showed similar

trends but differences in absolute values (Mantovani et aI., 1995). The multiple water

budgets approach has the advantage of better representing the dynamics of the soil water

balance.

Whilst the importance of irrigation uniformity in determining the optimal irrigation

application amount has been widely recognised (see also, Solomon, 1984; Letey, 1985;

Clemmens, 1991; Burt et aI., 1997; Ascough, 2001), in a review of literature related to

sugarcane and irrigation (including Inman-Bamber et aI., 1993; McGlinchey and Inman

Bamber, 1996; Robertson et aI., 1997; Singels et al., 1999; Magwenzi, 2000; Inman-Bamber

et aI., 2001; Ascough and Kiker, 2002) no explicit relationship between irrigation uniformity

and crop yields was found.

2.3 Water Management

Managers of irrigation systems, by the appropriateness of their actions and/or instructions

often contribute the most to poor or good irrigation systems performance. Two very

important performance characteristics of an irrigation system which are largely determined

17



by management and/or design decisions are the amount of water applied at each irrigation

application and the rate at which water is applied.

2.3.1 Amount and rate of water applied

For most types of irrigation system the amount of water applied at each irrigation application

can be varied between reasonable limits in relation to soil and crop characteristics. However,

for most furrow irrigation systems, application amounts are relatively inflexible, being

largely dictated by layouts and soil infiltration characteristics (Kruger, 1998). With many

furrow irrigation systems it can be very difficult to control the magnitude and the evenness of

water applications, especially when trying to apply relatively small amounts of water per

application, e.g. < 40 mm. When the amount of water applied per irrigation application is

not well matched to soil water holding characteristics, performance will be poor because of

either:

• excessive crop stressing if the soil IS depleted to a level coinciding with larger

irrigation applications, or

• inefficient irrigation with excessive runoff and deep percolation losses and associated

drainage problems if large irrigation applications are applied at relatively low soil

water depletion levels in order to avoid excessive drying of the soil and crop water

stress.

The effects of irrigation uniformity on system performance also depend on the average

amount of water applied at an irrigation application. Poor application uniformities may not

result in large reductions in crop yields if the average amount of water applied, dm, is so large

that even the areas receiving relative lower amounts of water, (I-AD), receive water

sufficient to prevent crop water stress (cf Figure 2.2). However, depending on the drainage

characteristics of a field, there will likely be problems on the areas receiving excess irrigation

water. Problems likely to arise include: poor root aeration, excessive runoff and deep

percolation, a raised water table and the associated development of salinity problems.

If the rate of water applied is not well matched to soil water infiltration characteristics,

excessive runoff and possibly erosion will occur. Poorly designed centre pivots are prone to
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having excessive runoff problems towards the outer towers because of high application rates

at the outer ends. Some soils, especially those with high silt content, are very prone to

surface capping, exacerbated by the impact of water droplets. As a result of this potential

runoff issue, specialist apparatus, viz. the Reinders infiltration meter (Reinders and Louw,

1984) has been developed to assess soil infiltration rates under sprinkler irrigation and it is

important for designers to utilise such apparatus for determining centre pivot specifications.

2.3.2 Runoff and deep percolation

Excessive runoff and deep percolation losses are often the greatest contributors to low field

level irrigation application efficiencies, and result largely from poor water management

and/or system design. A major problem is incorrect matching of irrigation water applications

to crop water demands. Runoff and deep percolation can be reduced considerably by

appropriate irrigation scheduling, i.e. ensuring that water is applied in quantities not

exceeding the soil water storage capacity at a time before undesirable crop stress occurs. The

type of irrigation system, its uniformity and the irrigation strategy being followed can also

have a significant impact on these losses. Runoff and deep percolation losses from a field do,

however, return to the system as return flows, and can become available for re-use,

especially to areas downstream of the field. However, to reiterate, the impacts of the return

flows on water quality needs to be carefully monitored and can be a cause of major salinity

problems.

2.3.3 Irrigation strategy

The irrigation strategy adopted by management can also have a major effect on irrigation

systems performance. Irrigation water losses, including those due to spray evaporation, wind

drift, evaporation from the soil surface, surface runoff and deep percolation (especially if

uniformities are poor) increase with increasing irrigation water application. In addition, with

increasing water application, the effective use of rainfall is likely to diminish as the

probability of rain falling on an already wet soil is high. The net result is that if a plot of crop

yield versus actual transpiration and applied irrigation water is drawn, the yield versus

applied irrigation water line will curve away from the yield versus transpiration line as shown

in Figure 2.3. This is one of the reasons why the application of the large amounts of

irrigation water needed to maximise yield seldom results in optimum system performance and
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may not realise maximum economic return. Adjusting the irrigation strategy is often the best

way of ensuring gains in irrigation systems performance and overall profitability (English

and Raja, 1996; Boggess and Ritchie, 1988; MacRobert and Savage, 1998; Lecler, 2001).
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Cl.
o....
()
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~ 1. Applied Water

................... 2. Transpiration

1. Applied Water / 2. Transpiration

Figure 2.3 General form of a crop production function (after English, 1990)

2.3.4 Deficit irrigation: some concepts (after English, 1990; Lecler, 1998)

Deficit irrigation is an optimising strategy whereby net returns, as opposed to crop yields, are

maximised. This is often achieved by reducing the amount of irrigation water applied to a

crop to a level that results in some yield reduction caused by water stress, i.e. deliberate

under-irrigation. The fundamental goals of deficit irrigation are:

•

•

to reduce water losses, and

maximise profits through a reduction in capital and operating costs.

Recognition of the following points is fundamental to an understanding of deficit irrigation,

VlZ.
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• that water losses increase as the number and the magnitude of irrigation water

applications increase,

• that the application of irrigation water is costly, in terms of both direct costs but more

importantly in terms of lost opportunities, and

• that the determination of an optimal irrigation strategy is very dependent on water

supply and demand interactions, particularly on whether a shortage of water or a

shortage of land is the factor limiting production.

Irrigation water application costs are related to actual costs of water, interest on capital

equipment, energy, labour and also opportunity costs, especially if water is limited. When

water, as opposed to land, is limited the water saved by reducing irrigation applications per

hectare may be used to irrigate additional land either immediately or during droughts after

having been saved or "banked" in storage works. Whilst per hectare yields may be lower, the

potential to irrigate additional land can result in a significant increase in total income over a

given production period. The potential income from the irrigation of the additional land is an

opportunity cost of water which can be substantial. If land is limited, the question is then

simplified to what irrigation application amount results in the maximum difference between

irrigation application costs and yield related returns.

In Figure 2.4, two cost functions and a revenue function are shown. The revenue function

has the same shape as the yield versus applied water curve (cf. Figure 2.3), as revenue is

simply the product of yield and crop price. The lower limit of the cost functions represents

fixed field costs, for example, capital costs, crop insurance, fixed costs of irrigation, planting,

tillage, chemical use and harvesting. The slope of the cost functions represents the marginal

variable field costs of production, for example, pumping costs, water costs and yield related

costs, for example harvesting and haulage. The upper limit of the cost functions represents

the maximum water delivery capacity of the two different irrigation systems. The maximum

water delivery capacity of an irrigation system is a hardware limitation that can have very

significant cost and flexibility implications. For example, for the two systems shown in

Figure 2.4, the system with the smaller capacity, i.e. System 2, does not have sufficient

capacity to irrigate for maximum crop yields. However, the implications of lower capital and

operating costs are such that the net returns are nearly double those attainable with the larger

system, i.e. System 1, even though the attained crop yields are lower.
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Figure 2.4 Cost and revenue functions (after English, 1990)

Given that the relationships given in Figure 2.4 were known precisely, the selection of an

optimum strategy for either land- or water-limited production could be achieved. The

analytical framework for such an exercise has been well documented by English (1990).

However, whilst it is fairly easy to determine the cost function, the following two questions

remain.

• Is water limiting production or is land limiting production, and does this change over

time, viz. within a season or over a period of years?

• How can the information relating yield to irrigation applications be determined?

Therefore, the adoption of deficit irrigation requires, at minimum, knowledge of crop ET,

crop response to water deficits, including critical growth periods and the economic impact of

yield reduction strategies (Perreira et aI., 2002). In addition, knowledge of the associated

interaction of irrigation water demand and supply is critical (Lecler, 1998).
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2.4 Irrigation Performance Measures

A plethora of irrigation performance indicators, usually termed efficiencies, have been

defined in the literature. A comprehensive overview of the evolution of efficiency and

irrigation performance concepts is given by Fairweather et al. (2003), who referred mainly to

Solomon (1984), Bos and WoIters (1989) and Clemmens and Solomon (1997). Often the

same term, for example, 'irrigation efficiency', has meant different things to different

researchers or different segments of the irrigation profession. In an attempt to contribute to

some order to the profusion of terms and concepts, the American Society of Civil Engineers

Task Committee on Defining Irrigation Efficiency and Uniformity (ASCE-TC) undertook to

standardise the definitions. This collaborative effort is contained in Burt et al. (1997) and

was proposed as the new industry standard on the correct definitions of irrigation

performance criteria, relating primarily to engineering aspects of performance. There have

also been other initiatives which were more inclusive and included, inter alia, crop

productivity impacts. For example, a four-stage project, titled "Determining a Framework,

Terms and Definitions for Water Use Efficiency in Irrigation", was undertaken to make

progress on the development of consistent irrigation standards throughout Australia (Purcell

and Currey, 2003). A framework for water use efficiency and water productivity was also

proposed by Smith (2000). Taken together, these initiatives provide incisive perspectives of

irrigation performance assessment, measures and indices and they are, therefore, summarised

and discussed in the section which follows.

2.4.1 Irrigation efficiency

Efficiency is generally associated with a transformation of inputs to outputs and can be

expressed as follows (Smith, 2000):

. output
EffiCIency = -.-- x 100%

Input
Eq.2.1

With reference to defined system boundaries, Burt et al. (1997) define irrigation efficiency,

lE, according to the following relationship:
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volume of irrigation water beneficially used 10001lE = x -;0

(volume of irrigation water applied -/1 storage of irrigation water)
Eg.2.2

The concept of beneficial water use is not straightforward. It can have many different

interpretations and these different interpretations influence seasonal irrigation efficiency. A

common mistake, for example, is the double counting of beneficial uses. An example of

double counting is water that is applied for frost protection, which is later available to the

crop for evapotranspiration (Burt et aI., 1997). Typically, beneficial water use may include

the required evapotranspiration and the leaching water required for salinity management

(Howell,2003). However, evaporation from the soil surface is not necessarily beneficial and

a field that requires a relatively higher leaching fraction in comparison to another field will

only be differentiated from the field requiring a lower leaching fraction, if the leaching

fraction is excluded from the so-called beneficial water used.

2.4.2 Irrigation consumptive use coefficient

It was noted by Solomon and Burt (1999) that lE is often misinterpreted from the point of

view that (100 - IE)% of applied irrigation water can be conserved or reallocated. This

misconception is what, more likely than not, prompted Burt et al. (1997) to include the

concept of the irrigation consumptive use coefficient (ICUC). The ICUC is defined as

follows:

ICUC _ volume of irrigation water consumptively used
- (I f'" x 100%vo ume 0 IrrIgatIOn water applied -/1 storage of irrigation water)

Eg.2.3

The ICUC can be applied at a field, project, district or farm scale and has sometimes been

incorrectly used to estimate lE. Burt et al. (1997) also stress that while water used for salt

removal or drainage water may have quality problems that make them unusable, this does

not, however, mean that they have been consumed, as they could be re-used after treatment.

The relationship between ICUC and lE, as defined by Burt et al. (1997), is shown in Figure

2.5.
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Figure 2.5 The relationship between IE and ICUC which highlights the division between
consumptive and non-consumptive uses as distinct from the division between
beneficial and non-beneficial uses (after Burt et al., 1997)

2.4.3 Irrigation sagacity

Whilst irrigation efficiency (lE) can be a useful term for comparison of irrigation water use,

from a societal and grower's perspective it can be incomplete. The reason for this is that other

benefits may accrue to society or to the environment from water used for irrigation and hence

reasonable uses need to be included in the numerator (Burt et al., 1997). These concepts for

reasonable use resulted in a new term, viz. the irrigation sagacity (IS), this being defined as a

better measure of prudent water use. Irrigation sagacity, IS, is defined as follows (Burt et ai.,

1997):
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volume of irrigation water beneficially and / or reasonably used 10001
IS = X /0

(volume of irrigation water applied- !1 storage of irrigation water)
Eq.2.4

Burt et al. (1997) do not suggest that IS be used in place of IE, but that the two should be

given with clear definitions so that the appropriateness of the ratio can be judged.

The relationship between IE and IS, with examples of various reasonable but non-beneficial

water uses as defined by Burt et al.(1997), is shown in Figure 2.6.

100%

1
IE%

1

(100 -IE)%

BENEFICIAL USES

·Crop ET
• Salt removal
• Climate control
• Soil preparation
• Water harvested with crop

NON-BENEFICIAL USES

Reasonable uses

• Water needed for maintaining water
quality standards in drains

• Some deep percolation due to non
uniformity

• Some deep percolation due to
uncertainties in salt management

• Various losses which may be
uneconomical to avoid

• Wet soil water evaporation

Unreasonable uses

• Excess deep percolation
• Excessive tailwater

IS%

(100 -IS)%

100%

Figure 2.6 The relationship between irrigation efficiency (lE) and irrigation sagacity
(IS). IS was introduced as a better measure of prudent water use (after Burt
et al., 1997)
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2.4.4 Application efficiency

The efficiency terms lE, IS and ICUC are difficult to evaluate rapidly and require a detailed

quantification of the water balance components. Application efficiency, AE, is based on the

concept of meeting a target application depth for an irrigation event. This allows judgmental

decisions, such as beneficial or reasonable uses, to be separated from how well the irrigation

system is able to meet a target depth of application. The AE term applies only to a single

irrigation event. The target depth chosen can be the soil moisture deficit, SMD, or a smaller

amount to supplement potential rainfall, or it could contain a desired depth of reclamation

water, or it may be a requirement for leaching of salts (Burt et aI., 1997). The definition of

AE for a single event is thus:

AE = average depth of irrigation water contributing to target x 100%

average depth of irrigation water applied

Equation 2.5 replaces an earlier definition of AE given in Equation 2.6.

AE = average depth of irrigation water stored in the root zone x 100%

average depth of irrigation water applied

Eq.2.5

Eq.2.6

The main difference between Equations 2.5 and 2.6 is that Equation 2.5 allows for multiple

beneficial uses, for example, a portion of spray evaporation and plant intercepted water which

can contribute beneficially to ET (Schneider, 2000).

Implicit in the definition of AE is the assumption that the target depth is uniform across the

field and that no time period needs to be specified, as it accounts for a single event only. If

the requirement is just equal to all the expected beneficial uses, AE can be used to

approximate lE (Burt et aL., 1997).

2.4.5 Irrigation uniformity measures

Depending on the type of irrigation system, different indices have become routinely used as

the standard means of describing irrigation uniformity. The indices used in the Standards of

the American Society of Agricultural Engineers (ASAE EP419.1, 1998a; ASAE S436.1,
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1998b; ASAE EP458, 1998c) are described here together with the recommendations of the

ASCE-TC (Burt et al., 1997).

2.4.5.1 Christiansen's coefficient of uniformity (CV)

Christiansen (1942) proposed a coefficient of uniformity mainly intended for sprinkler

systems. The coefficient of uniformity is, therefore, most often used to describe the

uniformity of overhead sprinkler, floppy and centre pivot irrigation systems (e.g. Pitts et al.

1996; Magwenzi, 2000; Ascough and Kiker, 2002). Coefficients of uniformity are defined

according to Equations 2.7 and 2.8.

Eq.2.7

Eq.2.8

where

CV = Christiansen's coefficient of uniformity

CVcp = Heermann and Hein coefficient of uniformity for centre pivots

Ds = catch can depth of application (mm)

Dm = mean catch can depth (mm)

Ss = distance from centre of pivot to catch can (m).

The numerical significance of the CV is illustrated in Figure 2.5, where the cumulative water

application distributions for CV values of 80 and 88 for two floppy irrigation systems are

shown. By definition, half of the field area receives less than the average application depth

and half of the field area receives more than the average application depth. Lower CV values

result in greater deviations from the average application depth as illustrated by the greater

extremes in water application depth for a CV of 80 versus a CV of 88.
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2.4.5.2 Statistical uniformity (SU)

The statistical uniformity, SU, is usually used to represent the uniformity of a drip irrigation

block, because water is not applied to the whole field area (Pitts et al., 1996; Koegelenberg

and Breedt, 2002). It is defined according to Equation 2.9, viz.

su = lOO(1-CV) Eq.2.9

where

SU = statistical uniformity

CV = coefficient of variation of applied water in a representative sample

= standard deviation of the sample divided by the sample mean.

2.4.5.3 Distribution uniformity (DU)

Low quarter distribution uniformity, DU1q, is the term most often used to describe the

uniformity of surface irrigation systems (Howell, 2003). The low quarter distribution

uniformity is defined according to Equation 2.10, viz.
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Eq.2.1O

where

DU1q = low quarter distribution uniformity

Dzq = average depth of water infiltrated in the quarter of the area which received the least

infiltrated depth (mm)

Dz = average depth of water infiltrated (mm).

The DU1q and CU coefficients are mathematically interrelated. Warrick (1983) has presented

relationships between different uniformity terms for normal, log-normal, uniform, specialised

power, beta and gamma-distributions of applied irrigation water. Assuming a normal

distribution, the relationships between CU, SU and DUlq are:

DU1q = 100 - 1.59 (lOO-CV)

DV1q = 100 - 1.27 (lOO-SU)

Eq.2.11

Eq.2.12

These relationships are shown quantitatively for a range of CU values in Table 2.3. It is clear

that of the three performance measures, DUlq is the most stringent. Clemmens and Solomon

(1997) note that the normal distribution represents many irrigation component distributions.

Table 2.3 Relationships between uniformity measurements for normally distributed
irrigation water applications derived using Equations 2.11 and 2.12.

Christiansen's Coefficient of Statistical Uniformity Distribution Uniformity
Uniformity (CU) (SU) (DU1n)

97 96 95

90 88 84

83 80 74

80 76 69

73 67 59

67 59 48
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2.4.5.4 Global distribution uniformity

Burt et al. (1997) note that from the perspective of the crop it is the field-wide uniformity of

irrigation water applications which is important. In surface irrigated fields, variations in soil

infiltration characteristics along the length of run, but also transversely from furrow to

furrow, influence the global uniformity, as do variations in inflow from furrow to furrow.

Similarly, non-uniformity in the distribution of water applied in a sprinkler field is not only

dependent on the wetting pattern of adjacent sprinklers, but also on the overall pressure

variation in the field laterals as well as the variation in nozzle wear and sizes throughout the

field. Thus there are, in principle, many causes of non-uniformity. Furthermore, the scale of

measurement is also important.

Burt et al. (1997) propose that while it is not practical to measure field-wide uniformity

distribution of applied irrigation water, it is feasible to study the uniformity of the individual

components and then to combine effects in such a way as to get a good estimate of the global

uniformity. Component distribution uniformities (DUs) should only be combined through

proper statistically valid techniques. Burt el al. (1997) thus maintain that the lack of a

statistical basis for CU, precludes combining results for sprinkler overlap, with some

description of the pressure variation in the laterals. This supports their rationale for

proposing wider adoption of DU in favour of CU as a standard uniformity descriptor.

In order for DU to be applied universally to all crops, the concepts of the totality of field

elements and elements of scale need to be incorporated. An element is defined as the smallest

area in the field that requires water and within which the variation in distributed water is not

important. The concept of element scale is crucial for the generic use of DU. For example, in

an orchard a DU = 100 does not imply that the whole field receives the same amount of

water, but that the elemental areas receive the same amount. On the other hand, in a wheat

field with plant coverage everywhere, a DU = 100 would imply that the whole field receives

the same water application (Burt et aI., 1997).

Distribution uniformity is not an efficiency term. To re-iterate, an irrigation event can have a

high DU, but if excessive water has been applied then the application efficiency, AE, will be

low. However, a high AE with minimal under-irrigation is only possible if the DU is also
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high. The above concept of distribution uniformity assumes that a uniform target is desired

within the irrigated field (Burt et al., 1997).

2.4.6 Potential application efficiency

Potential application efficiency, PAE, is based on the concept that the irrigation event could

be terminated when the target depth would just be met by the average of the lowest values in

the irrigation infiltration distribution. In this way deep percolation losses would be kept to a

minimum, due only to the non-uniformity of application, while the AE would be at a

maximum with minimal under-irrigation (Burt et aI., 1997).

As with DU, PAE cannot be quantified until the lowest values in the distribution have been

characterised over a specified fraction of the field area. Here again the norm is to use the

lower quarter, and hence the definition for PAE1q follows (Burt et aI., 1997):

PAE Iq = average depth of irrigation water contributing to target x 100%
average depth of irrigation water applied such that d Iq = target

where

d'q = average of depths accumulated in that quarter of the field area

receiving the smallest depths (cf. Figure 2.2)

Eq.2.13

Thus, PAE1q can be used to estimate the gross amount of water to apply. The denominators of

DU1q and PAE1q differ by the amount of surface losses, such as runoff and evaporation, and

therefore PAE1q can be accurately estimated as (after Burt et aI., 1997):

PAE,q = (DU,q / 100) x (100 - % surface losses) Eq.2.14

where surface losses include evaporation during an irrigation event, spray drift and surface

runoff. Note DU1q is a percentage in Eq 2.14.

From the above, the gross irrigation water required for an irrigation event can be estimated as

(Burt et al., 1997):
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100
Gross average depth to apply = Target depth x -

PAE 1q

2.4.7 Low-quarter adequacy

Eq.2.15

The degree to which the target, or required depth, is met is termed adequacy. In keeping with

the definition of AE based on the requirement for all beneficial uses, the low-quarter

adequacy (ADIq) is given by (Burt et aI., 1997):

Eq.2.16

where

dreq = the required depth for all beneficial uses (mm).

With this definition, an AD1q < 1 indicates under-irrigation and AD1q > 1 indicates over

irrigation. When AD1q = 1, then AE = PAE1q and the surface losses match potential values.

This definition of adequacy differs from other definitions that are based on the percentage of

area adequately irrigated (Burt et aI., 1997).

It should be highlighted, however, that the rationale for the relationships given in Equations

2.14, 2.15 and 2.16 for PAE1q, the gross average depth to apply and AD1q are based on the

assumption that applying water such that d1q is equivalent to the target application depth is

best. This may not necessarily be the case. For example, if irrigation is largely

supplementary to rainfall on a drought tolerant crop, application of a relatively lower amount

of irrigation water, such that a greater proportion of the field is under-irrigated, may be much

more efficient, have a minimal effect on crop yields, and result in increased profitability. The

need for a fundamental shift in emphasis away from maximising crop yields to rather

maximising benefits, especially economic benefits, is well motivated by English et al. (2002).
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2.4.8 Alternative water use efficiency and water productivity frameworks and

definitions

Land and Water Australia have completed a two stage, four year project to develop a

framework and gain acceptance on efficiency, uniformity and water use efficiency terms. The

framework was developed to include all aspects of an irrigation system that affect irrigation

water use efficiency. The framework is summarised in Figure 2.8 (Purcell and Currey, 2003).

The most commonly accepted water use efficiency terms, their derivation and relationships

are also shown in Figure 2.8.

An issue addressed by the Australian initiative was the mixture of units in 'efficiency' terms.

For example, water use efficiency defined as:

Total crop production (kg) / Irrigation Water Applied (Ml) Eq.2.17

In strict terms, efficiencies should be dimensionless. Therefore a proposed solution was to

refer to specific performance indicators as 'indices', and not efficiencies. It also became

necessary to define more and more performance indices depending on the purpose at hand.

Thus the concept of a 'water use efficiency toolbox' was proposed, with each tool a specific

performance index which fitted under the general label of 'water use efficiency'. Any

performance indicator could, therefore, be tailor-made to suit the purpose of a particular

study, provided it was clearly defined with units specified (Purcell and Associates, 1999)

Another water use efficiency and productivity framework which was proposed by Smith

(2000) is shown in Figure 2.9. With reference to Figure 2.9, Smith (2000) distinguishes three

levels of water use efficiency and productivity. Combining the different levels he defines

'water use efficiency' as the fraction of the total water available by both rainfall and

irrigation that is used by the crop for transpiration. Thus in his definition, water use

efficiency integrates the total pathway of water both from irrigation and rainfall, each with

their own typical pathway efficiencies and evaporation patterns, which will be different for

rain and irrigation.
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Figure 2.9 Water use efficiency and productivity framework (Smith, 2000)

Water productivity is then defined as the yield produced per unit of water for a given crop _

water supply system. Smith (2000) also includes a relationship for assessing the economic

benefits of water productivity investments, according to the following relationship:
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Yield x Market price
Rate of return d .. . = -----------"-------

Water pro uctlvlty Investments Water investments + Agricultural investments

************

Eg.2.17

In this chapter, key determinants of irrigation systems performance have been reviewed. The

uniformity with which water is applied can have a significant effect on the performance of

irrigation systems and is related to the type of irrigation system and the standard to which it

has been designed, operated and maintained. There is strong evidence that while losses due

to plant intercepted water, spray evaporation and wind drift vary for different types of

irrigation system and weather, there is a degree of compensation resulting from associated

reductions in transpiration and evaporation of water from the soil surface, and possibly also

enhanced relative growth rates associated with modified micro-climates during extremely hot

weather. The amount of irrigation water applied in relation to the available soil water storage

capacity is largely determined by management, but it can also be constrained by the type and

design of the irrigation system, particularly with furrow irrigation. Management through the

selection and implementation of irrigation watering schedules, or scheduling methodologies,

can have significant effects on overall system performance, especially if the irrigation

hardware is well designed. If the irrigation hardware is poorly designed and has a low

inherent irrigation uniformity, overall performance is likely to be poor, even with appropriate

watering schedules and good water management.

The most significant losses from a field are due to evaporation from the exposed soil surface,

runoff and deep percolation. These losses depend on both the type of irrigation system and

its management. Runoff and deep percolation both return to the system as return flows and

can potentially be re-used, however, the impact of the return flows on water quality needs to

be carefully monitored.

For a given type of irrigation system, which is performing at a certain level, the management

strategy (e.g. a deficit irrigation management strategy) can also have significant impacts on

overall system performance. In order to determine an appropriate deficit irrigation strategy, a

prediction tool to relate the estimated recoverable crystal (ERe) yields of sugarcane to
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various watering strategies, types of irrigation system, measures of irrigation application

uniformity, soils, seasonal weather patterns and water supply is needed.

In order to quantify irrigation systems performance, a range of indices and methods has been

proposed. While there have been efforts to standardise performance terms and definitions,

the Australian experience shows that such standards do not necessarily meet the constraints

or requirements of all particular circumstance or situations. Since performance comparisons

are important it is, therefore, very important that any proposed performance indices are well

specified. Thus the associated units, calculation procedures and assumptions, including the

system boundaries and the time scale, should be explicit. Also, since the primary role of

irrigation is to facilitate improved productivity, some indication of the impact of the

performance of the irrigation and water management system on crop yields and associated

returns on investment is important. The determination of appropriate values for the

numerators and denominators used in the indices is difficult and open to varied

interpretations.

It may be concluded that the rational quantification of the water balance in relation to the

uniformity of applied water, the environment and the water management approach forms the

basis of assessing the performance of irrigation and water management systems at the field

scale. Methodologies proposed and adopted to achieve this 'rational quantification' of the

water balance are described in Chapter 3.
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3. METHODOLOGY

The methodology formulated to evaluate the performance of both the irrigation and water

management systems prevalent in the Lowveld, is described and discussed in this Chapter.

3.1 Background

In theory, the performance of irrigation and water management systems in the Lowveld could

have been assessed by taking a range of appropriate measurements. However, the

experiments and monitoring needed to evaluate a representative sample of all the various

irrigation systems and associated irrigation application uniformities, for all the different soils

present and water management strategies being applied, and that over a range of relatively

wet and dry seasons, would have been too time consuming, costly and disruptive to be

practically feasible. In addition, there was a high risk that results from such experiments and

monitoring would be significantly biassed by extraneous factors (such as soil compaction

and/or pest and disease impacts), operational hiccups and inconsistent management and

baseline conditions. Therefore an alternative to a purely experimental evaluation approach to

evaluating the performance of irrigation and water management systems in the Lowveld was

needed.

A modelling approach, although relying on relatively few well designed experiments for the

development and verification of appropriate algorithms, involves the integration of numerous

and complex procedures and knowledge into a system which, in contrast to a purely

experimental approach, can be used to evaluate a wide range of irrigation systems,

performance measures and water management strategies relatively efficiently. Depending on

the structure of the model, the effects of a wide range of conditions, such as wet and dry

seasons and for deep or shallow soils can also be examined. Such evaluations can be

objective and relatively cost effective to undertake.

Available process-based simulation models for estimating irrigation crop water demand and

associated sugarcane yield impacts have included mainly South Mrican and Australian

initiatives. In South Mrica, these initiatives have resulted in the development of the ACRU

agrohydrological model (Schulze, 1995; Lecler and Schulze, 1995), the CANEGRO model

39



(Inman-Bamber, 1991; Inman-Bamber, 2000) and the CANESIM model (Singels et al., 1998;

Bezuidenhout and Singels, 2003). Australian initiatives have resulted in the development of

APSIM-Sugarcane (McCown et aI., 1996; O'Leary, 2000). In the context of this study, all

these models had limitations. These limitations related primarily to their representation of

different types of irrigation systems, especially regarding evaporation from a differentially

wetted soil surface, which is important, for example, when comparing overhead sprinkler

irrigation to sub-surface drip irrigation, and none of the models had algorithms to account for

non-uniform irrigation water applications. The APSIM, CANEGRO and CANESIM models

have also been identified to be weak in terms of accounting for water stress effects (Singels et

aI., 1998; Van Antwerpen, 2000; O'Leary, 2000). This was a major concern with regard to

their potential for evaluating various water management/irrigation scheduling strategies.

Research on relating water stress to sucrose, as opposed to cane yields was also not well

established and in a largely developmental phase (O'Leary, 2000; Singels and Bezuidenhout,

2002). Furthermore, access and support for most of these models was a practical constraint

to their development and application in the Lowveld.

The Food and Agricultural Organisation's Irrigation and Drainage Paper No. 56 (FAO 56), is

being promoted as an international standard for estimating irrigation crop water requirements

(AlIen et aI., 1998). Furthermore FAO 56 provides algorithms which specifically distinguish

between the water budgets pertaining to different irrigation system (hardware) characteristics,

which was very important in the context of this study. However, the FAO 56 water budget is

somewhat simplified, for example, in terms of accounting for runoff, deep percolation and

effective rainfall and also in not differentiating between uniform and non-uniform irrigation

water applications. Furthermore, Kassam and Smith (2001) reported that the relationships

between water stress and crop yield which are referred to in FAO 56, and which are described

in detail by Doorenbos and Kassam (1979) need, in many cases, to be adapted and refined.

Therefore, it may be concluded that at the start of this study, there existed no wholly

appropriate method and associated tools for evaluating the in-field performance of irrigation

and water management systems for sugarcane in the Lowveld of Zimbabwe. A solely

experimental approach while theoretically possible would have been impractical. Typical

irrigation performance indices, for example, those described in Chapter 2 by Burt et al.

(1997), have limitations. Primarily there is a need to relate uniformity and adequacy of

irrigation water applications to associated impacts on crop yields, water budgets and hence
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profitability. The existing models and approaches reviewed have limitations in their ability to

do this.

Thus, in the context of the perspectives given in Chapter 2, the following multi-faceted

approach was formulated and executed in order to assess the in-field performance of

irrigation and water management systems with specific reference to the irrigation of

sugarcane in the Lowveld.

•

•

•

•

Tools and methods to record in-field operating characteristics of various irrigation

systems in the Lowveld environment were developed and/or acquired by a Mobile

Irrigation Performance Evaluation Unit (MIPU). The MIPU was initiated by the author

but much of the work was carried out by a candidate MSc Engineering student, Brent

Griffiths, who worked under the author's supervision.

The data and information acquired using the tools and methods from the MIPU were used

to calculate 'Irrigation Engineering Performance Indices' (IEPIs) such as the coefficient

of uniformity, CU, which gives an indication of how uniformly irrigation water was being

applied.

A sugarcane yield and irrigation systems simulation model was developed to predict how

these IEPIs impacted on crop yields and the water budget, for different soils, seasonal

weather conditions, irrigation systems and water management strategies.

The sugarcane yield and irrigation systems simulation model was verified against

experimental trial data and applied to assess the typical performance of irrigation and

water management systems prevalent in the Lowveld. The performances of the various

irrigation and water management systems under typical conditions in practice, as reported

by the MIPU were compared to the performances of the various irrigation systems

assuming more optimal but achievable IEPIs and water management strategies.

This approach is illustrated diagrammatically in Figure 3.1.
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Figure 3.1 Diagrammatic depiction of the methodology used in this study for the
evaluation of irrigation hardware and water management systems in the
Lowveld of Zimbabwe

The focus in this Chapter is on the development of the irrigation systems simulation model.

While the MIPU was an integral part of the methodology (which the author had formulated

and initiated), the day-to-day operations of the MIPU were largely the responsibility of Brent

Griffiths and are, therefore, only given brief mention in this thesis.

3.2 Collection of In-field Data and Information on Irrigation Systems Operating

Characteristics

The Mobile Irrigation Performance Evaluation Unit (MIPU) was initiated by the author under

the auspices of the Water Management Project (WMP) of the Zimbabwe Sugar Association

Experiment Station (ZSAES). Brent Griffiths, a graduate student under the author's

supervision, was employed to acquire and/or develop the necessary measuring equipment,
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computer software and methodologies for assessing the in-field operational characteristics of

the various irrigation systems. The main focus of the evaluations was on the assessment of

equipment wear, water application uniformities and causes of poor application uniformities.

The equipment and the various procedures used by the MIPU for evaluations are summarised

in Griffiths and Lecler (2001).

3.3 Interpretation of In-field Irrigation Systems Performance Data and Information

In terms of the water balance and crop yield impacts, the evenness or uniformity with which

water is applied, and the amount of water applied at each irrigation application, are two of the

most important performance characteristics of a given type of irrigation system. This

information was captured by the MIPU and reported in the form of Engineering Performance

Indices, such as the coefficient of uniformity, CU. However, whilst the engineering indices

reported by the MIPU to describe irrigation uniformity and water applications (cf. Chapter 2)

were vitally important, and provided some basis for systems comparisons, additional

interpretation was required in order for them to be translated to associated impacts on

potential sugar yields (i.e. estimated recoverable crystal, ERC) and the water balance. This

additional interpretation required the development of the irrigation systems simulation model.

A model of a system can be described as a set of equations or rules that quantitatively

describe the operation of the system through time. Simulation is the process of solving these

equations within the rules with changing time, i.e. mimicking the performance of the system

over time by calculating the values of the variables at each series of time steps (Peart and

Curry, 1998). A deterministic crop and irrigation systems simulation model, ZIMsched 2.0

was developed by the author in order estimate how water management, different irrigation

system characteristics and the in-field measures of irrigation systems operating characteristics

derived by the MIPU, impacted on potential crop yields and the water balance.

The complexities of water budgeting were integrated in the form of robust algorithms based

on leading research by, inter alia, Schulze (1995) and AlIen, et al. (1998), so that the

following processes were accounted for, as illustrated in Figure 3.2:

• evaporation from the soil surface and transpiration in relation to:
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atmospheric evaporative demand,

available soil water, including excess and/or deficient conditions,

crop and rooting characteristics (the development of which were related to

temperature),

irrigation system type,

• stormflow (surface runoff), and

• deep percolation, all of which relate to

• rainfall effectiveness, and are impacted by

• the uniformity or non-uniformity of irrigation water applications.

EV AP FRO M THE PLANT

(Transpiration)

Canopy development

EVAPORATION FROM
THE SOIL SURFACE
(Differentially wetted)

RAINFALL
I I IRRIGATION APPLICATIONS
.... BY DIFFERENT SYSTEM S

STORM FLOW (Runoff)
~

Volume of soil water available

Root development

y

Figure 3.2

DEEP PERCOLATION

Components of the water balance which impact on crop yields as represented
in ZIMsched 2.0

ZIMsched 2.0 is considered unique in terms of not only its synthesis and integration of the

water budgeting and crop yield algorithms which were developed, but also because this

translates into the unique capability of differentiating between different types of irrigation

system and accounting for different levels of irrigation system performance (in terms of
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uniformity of water applications), while also predicting yields of estimated recoverable

crystal (ERC).

In this section ZIMsched 2.0 is presented and the concepts and algorithms which were

integrated and/or developed and refined and used in ZIMsched 2.0 are described. The

validity of ZIMsched 2.0 is also discussed. Verification of ZIMsched 2.0 against

experimental trial data is discussed in Chapter 4.

3.3.1 Total evaporation

In ZIMsched 2.0, total evaporation from the cropped surface (i.e. evapotranspiration) is

dependent on climatic conditions, soil water status, crop canopy status and rooting

characteristics.

3.3.1.1 Crop coefficient

The crop coefficient is used to relate evaporation from the cropped surface to atmospheric

evaporative demand, AED. Evaporation from the soil and the crop are determined separately,

based on the internationally accepted algorithms described in the FAO Irrigation and

Drainage Paper No. 56 (Alien et al., 1998). It is very important to separate these processes

because prior to the development of significant canopy cover, water losses are dominated by

evaporation from the soil surface. This evaporative loss can be highly variable because

different types of irrigation systems wet different fractions of the soil and there are also

variations in wetting frequencies. Thus, effective early season crop coefficients can vary

significantly dependent on the type and operation of irrigation system (cf. Chapter 2). The

solution proposed by the FAO (Alien et al.,1998) was to use a dual crop coefficient, Le. the

basal crop coefficient (Kcb) to control potential transpiration from the plant and a coefficient

(Ke) to control evaporation from the soil. The evaporative losses from the cropped surface

may thus be expressed as follows:

= (Kcb + Ke). E,er

where

ETc = evaporation losses from the cropped surface (evapotranspiration) (mm)

Kcb = basal crop coefficient

Eq 3.1
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Ke = coefficient controlling evaporation from the soil

E,ef = reference evaporation to represent atmospheric evaporative demand, AED (mm)

3.3.1.1.1 Basal crop coefficient, Kcb

The basal crop coefficient, Kcb, is defined as the ratio of the crop evapotranspiration to the

reference evaporation (ETJEref) when the soil surface is dry but with transpiration occurring

at the potential rate, i.e. soil water is not limiting transpiration. The value of Kcb.Eref does

include a residual diffusive evaporation component supplied by soil water below the dry

surface and by soil water beneath dense vegetation (AlIen et al., 1998).

Guidelines for sugarcane basal crop coefficients are as follows:

• 0.15 during the initial stages, i.e. the residual diffusive evaporation component, and

• (Kc - 0.05) for a full canopy crop, where Kc is the crop coefficient used for a full

canopy crop grown under conditions were the soil surface is wetted (AlIen et al.,

1998).

The variation of crop coefficients with time, or the rate of canopy development, is very

dependent on temperature and therefore the concept of relating crop coefficients to thermal

time is better than relating them to calendar days. The reason for this is that variations in the

rate of canopy development, which are associated with different planting/ratooning times

(early, mid, late season) and seasonal temperature variations, can be automatically accounted

for. Hughes (1992) used lysimeter data collected at Pongola in northern KwaZulu-Natal,

South Africa and reported on by Thompson (1986) to develop a relationship between thermal

time and crop coefficients for the period from germination to establishment of full canopy.

Thermal time was determined using the following relationship:

IT = (Tmax + Tmin)l2 - 12CC Eq3.2

where

IT = thermal time (degree days)

Tmax = daily maximum temperature (CC)

Tmin = daily minimum temperature (CC).
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The equation for crop coefficients that best fitted Pongola data from one plant crop and four

ratoon crops was as follows (Hughes, 1992):

= 0.2977 + (1.32xlO-6xTI/) + (-6.83xlO-10xTI/) Eq3.3

where

Kc = average crop coefficient, (i.e. it includes effects of evaporation from the soil surface and

from the plant in one lumped coefficient)

TIA = accumulated thermal time (degree days).

Note that this relationship is only valid for TIA accumulated until the maximum Kc value is reached.

Using linear interpolation, the basal crop coefficient, Kcb' (i.e. representing evaporation from

the plant only) can be derived from Kc (i.e. soil and plant lumped together) as follows:

Kcb = KJO.4 x 0.15

Kcb = Kc - (0.25 - (Kc - 0.4) x 0.2/0.45)

Kcb = Kc - 0.05

for Kc < 0.4

for 0.4 < Kc < 0.85

for Kc > 0.85.

Eq 3.4

This procedure for deriving !<cb (Equation 3.4) was assessed for conditions in the Lowveld by

analysis of sugarcane crop growth data recorded by Mr Haslem at the Zimbabwe Sugar

Association Experiment Station. Haslem (-) collected leaf area index (LA!) data that

included data for four crops planted in different years and during the early, mid and late part

of the season. In order to compare the rate of canopy (and hence Kc) development, a plot of

the Haslem's (-) LAI data versus thermal time, together with the Kc relationship derived by

Hughes (1992) is shown in Figure 3.3. With reference to Figure 3.3 it can be seen that there

was a very close correspondence between the development of Kc and the development of

LA!, up to a LA! = 3. A LA! = 3 is the typical LA! value at which ET reaches a maximum

(Ritchie, 1972; Kristensen, 1974).

Furthermore, using Haslem's data a relationship between thermal time and LA! was derived,

VlZ.

LA! = -0.57356 + 0.003084 TIA for TI> 185

and LA! S 3

Eq 3.5
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Figure 3.3 Leaf Area Index (LA!) for an August 1975 plant crop, April 1980 ratoon
crop, November 1979 ratoon crop and an August 1979 ratoon crop vs
thermal time. LA! data were collected by Haslem (-) at ZSAES. The graph
also shows the crop coefficient, ~, vs thermal time relationship which
determines the rate of canopy development in ZIMsched.

This relationship in Equation 3.5 was then used together with a relationship between Kcb and

LA! (Equation 3.6), reported by Ritchie (1972) as an alternative independent means of

deriving Kcb' viz.

= (0.71.LAI°.5 - 0.21) Kpan

= 1.0 Kpan

for LAI:s 3

for LAI 2: 3

Eq3.6

where

=

=

Kpan

basal crop coefficient

coefficient used to adjust Ritchie's original relationship which used a short grass Erer, to

an A-pan based Erer

= 0.85 as an average for conditions in the Lowveld of Zimbabwe.
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As shown in Figure 3.4 there was very close agreement between:

• the Keb values derived using the Hughes (1992) Kern vs TT relationship and linear

interpolation (Equations 3.3 and 3.4), and

• Keb values derived using the TT vs LA! relationship derived using data collected in

Zimbabwe and converted to Keb using Ritchie's (1972) relationship between Keb and

LA! (Equations 3.5 and 3.6).

Through the use of Equations 3.3 and 3.4 in ZIMsched 2.0, the effects of planting/ratooning

in different months and the effects intra-seasonal temperature variations on the rate of canopy

development and associated water use for different types of irrigation systems was, therefore,

considered to be well represented.
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Figure 3.4 The basal crop coefficient, K.:b calculated using the values derived from
Hughes's (1992) K.: vs TT relationship and linear interpolation (Equations
3.3 and 3.4), and K.:b values derived using the thermal time (TT) vs leaf area
index (LA!) relationship derived using data collected in Zimbabwe and
converted to K.:b using Ritchie's (1972) relationship between K.:b and LA!
(Equations 3.5 and 3.6)
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In ZIMsched 2.0 the maximum value for Kc was limited to 0.9 when using evaporation from a

class A-pan as a reference to represent atmospheric evaporative demand, AED. Thus the

corresponding limit for Kcb , was 0.85. These limits were based on an analysis of irrigation

trial data from the Zimbabwe Sugar Association Experiment Station (ZSAES) and an analysis

of A-pan data and data from an Automatic Weather Station (Lecler, 2001a; Appendix A).

Analysis of data from trials where full canopy sugarcane was irrigated using various fractions

of evaporation from a class A-pan to determine irrigation intervals (so-called "pan factor"

trials) showed that there was little benefit in irrigating full canopy sugarcane assuming a Kc

greater than 0.9 (Lecler 2001a), an observation also supported by Ellis et al. (1985) and Nyati

(1996). Data from these 'pan factor' irrigation trials also served as an indirect verification for

evaporation losses from sugarcane in relation to the evaporation measured from an A-pan, i.e.

assuming estimated recoverable crystal (ERe) t/ha as the dependent variable instead of soil

water, which in many ways is more integrated and meaningful.

3.3.1.1.2 Soil surface water evaporation coefficient, Ke (after Alien et al., 1998)

The coefficient Ke describes the potential evaporation of water from the soil surface, which is

assumed to take place in two stages. In the first stage, when the topsoil is wet following

irrigation application or rainfall, Ke is maximal. In the second stage, after a certain amount of

water has evaporated, the soil surface is drier and Ke reduces, eventually reaching zero when

there is minimal water near the soil surface for evaporation. The limit to evaporation from a

wet surface relative to evaporation from an A-pan is set to 1.0 in ZIMsched 2.0 when

evaporation from an A-pan is used as the reference evaporation, E,ef, i.e. Kcb + Ke = 1.0 or

Ke = 1.0 - Kcb'

The two stages are modelled using Equation 3.7, viz.

Eq3.7

where

Ke = coefficient controlling evaporation from the soil surface

Kcb = basal crop coefficient

Kr = evaporation reduction coefficient dependent on cumulative depth of water depleted

(evaporated) from the topsoil,
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few = fraction of soil that is both exposed and wetted, i.e. from which evaporation takes place.

Following rain or an irrigation water application Kr = 1, and evaporation is determined by the

energy available for evaporation. As the soil surface dries, K r becomes less than 1 and

evaporation is reduced. Kr becomes zero when no water is left for evaporation from the

surface layer. The amount of water that can be depleted by evaporation from the soil surface

during a complete drying cycle is estimated as:

TEW = 1000C8dul - 0.S8pwp) Ze Eq3.8

where

TEW =
8 duJ =
8 pwp =
Ze =

total evaporable water from the top soil (mm)

soil water content at the drained upper limit (field capacity) (m3jm3
)

soil water content at permanent wilting point (m3jm3
)

thickness of the surface soil layer that is subject to drying by way of evaporation, taken as

0.1 m in ZIMsched 2.0.

Stage 1 evaporation from the soil surface (Kr = 1) holds until the cumulative depth of

evaporation, De , is such that hydraulic properties of the upper soil become limiting and water

cannot be transported to the surface at a rate to match potential demand. De is the readily

evaporable water (REW) and typical values range from 5 to 12 mm, with values generally

highest for fine and medium textured soils. Default values based on soil texture that are used

in ZIMsched 2.0 are given in Appendix B.

Stage 2 evaporation from the soil surface (l(.. < 1) starts when De > REW. At this point the

soil surface is visibly dry and evaporation from the exposed soil decreases in proportion to

the amount of water remaining in the surface soil layer.

3.3.1.1.3 Exposed and wetted fraction, few

Where the entire soil surface is wetted, as by sprinkler irrigation or rainfall, the fraction of

soil surface from which most evaporation occurs, few, is essentially defined as (l-fe), where fe,

is the fraction of soil surface covered by vegetation. However, for wetting events which only

wet part of the soil surface, e.g. a water application with furrow irrigation or sub-surface drip
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irrigation, few must be limited to fw, which is the fraction of soil surface wetted by irrigation,

I.e.

= min(l-fe , fw)

where the 'min' function selects the lowest value of 'l-fe' or 'fw '.

Eq3.9

The limitation imposed by Equation 3.9 assumes that the fraction of soil which is wetted

occurs within the fraction of soil which is exposed to sunlight and ventilation. This is

generally the case, except for subsurface drip irrigation and in-row furrow irrigation. In these

cases where the wetted fraction is largely shaded, fwis reduced by multiplying by ((1-(2/3)fc)

(AlIen et aI., 1998).

3.3.1.1.4 The exposed soil fraction, 1 - fe

The fraction of the soil surface covered by vegetation, fc , is determined in ZIMsched 2.0

using the relationship between thermal time (TT) and Kern as the basis for a relationship

between TT and fe, given in Equation 3.10, viz.

= max(Grdini , min(0.99,((TT-340)/(1000-340))0.99)) for

where

= Grdini for TT < 340

TT> 340

Eq 3.10

Grdini = initial ground cover, e.g. due to surface mulching (fraction 2: 0 ; :s 0.99).

where 'max' and 'min' select the maximum or minimum of the terms in brackets. The

numerical values, '340' and '1000' are based on the LA! vs TT data collected by Haslem (-) at

ZSAES (cf. Figure 3.2).

3.3.1.1.5 Daily calculation of~

Determination of Ke requires a daily water balance computation in order to calculate the

cumulative depletion, De , for the surface layer from a wet condition. The daily soil water

balance equation for the exposed and wetted fraction, few, of the surface soil layer is given as
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De,i = De,i-I - (Pi - Ra) - l;/fw+ E;/few + Tew,i + DPe,i Eq 3.11

where

De, i-I =

Dei =

Pi =
ROi =
I i =
Ei =
Tewi =
DPe,i =

cumulative depth of evaporation following complete wetting from the exposed and wetted

fraction of the topsoil at the end of day i-I (mm)

cumulative depth of evaporation following complete wetting from the exposed and wetted

fraction of the topsoil at the end of day i (mm)

rainfall on day i (mm)

stormflow/runoff from the soil surface on day i (mm)

irrigation depth on day i that infiltrates the soil (mm)

evaporation from the soil surface day i (mm)

depth of transpiration from the exposed and wetted soil surface layer on day i (mm)

deep percolation from the topsoil layer on day i if soil water content exceeds the drained

upper limit, i.e. field capacity (mm) (Note: DPe, i is always assumed equal to zero as

although the surface layer may be draining, in such a state the surface will likely be wet

and evaporation from the surface uninhibited)

fw = fraction of soil surface wetted by irrigation (0.01 - 1)

few = exposed and wetted soil fraction (0.01 - 1)

with limits, 0 ~ De, i ~ TEW.

Equation 3.11 is simplified in the FAO 56 calculations (AlIen et aI., 1998) which assume that

all water infiltrates, i.e. RO is zero, and that transpiration from the surface layer that

contributes to E j is negligible. In ZIMsched 2.0 :

•

•

stormflow/runoff (RO) is not assumed to be zero, but is calculated using the modified

SCS stormflow equation (Schulze, 1995), and

transpiration, Tew , from the soil layer contributing to Ej is not assumed to be zero.

The proportion of the actual transpiration for a day that is extracted from the topsoil layer is

related to the total rooting depth and the soil water content in this layer, according to

Equation 3.12, such that

= max(O, O.1/(Rrac.Sdep).(TAM10 - De, i-lVTAM10) Eq 3.12
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ITA =
Sdep =
TAMo.\ =
8 du\ =
8 pwp =
De, i-I =

where

FT, i = fraction of actual transpiration on day i that is extracted from the topsoil layer

Rfac = proportion of maximum effective soil rooting depth that is penetrated by roots, always has

a value such that the depth from which water uptake can occur is 2: OA m

= OA/Sdep for ITA < 340

= min(l, (1- OA/ Sdep ).(ITA-340)/(980-340) + 004/ Sdep » for ITA. 2: 340

with the limit Sdep 2: OA m

(Note: it is assumed that maximum rooting depth coincides with the development of full

canopy cover (Jensen et al., 1990»

accumulated thermal time (degree days)

the maximum potential effective rooting depth for a fully grown crop (m)

total available water in the topsoil layer of 0.1 m, viz. (8du1 - 8 pwp) x 0.1

soil water content at the drained upper limit, i.e. field capacity (m3/m3
)

soil water content at permanent wilting point (m3/m3
)

cumulative depth of evaporation following complete wetting from the exposed and wetted

fraction of the topsoil at the end of day i-1 (mm).

3.3.1.2 Atmospheric evaporative demand, AED

The evaporation measured using a class A-pan is used to represent AED in ZIMsched 2.0.

The reason for this is that in Zimbabwe most of the research involving sugarcane crop water

use has been undertaken using the evaporation from A-pans as the reference evaporation

(Ellis et aI., 1985; Nyati, 1996). Nevertheless, the correlation between the evaporation from

an A-pan and the evaporation from a cropped surface can be markedly different in summer

and winter and also under advective conditions, or when there are wide variations in wind

and humidity (AlIen et aI., 1998). The following two alternatives to the A-pan were therefore

investigated:

•

•

the Food and Agricultural Organisation, version of the Penman-Monteith reference

evaporation (AlIen et aI., 1998), and

the evaporation measured using an ETgage, a relatively simple atmometer device

(Asbell, 1999) that may better represent a plant.

However, in a report on the investigation (Appendix A), Lecler (2001a) showed that there

was very little difference between using A-pan data with appropriate pan factors and the
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Penman- Monteith equation with data from an automatic weather station, especially when the

data were averaged over a five day period, which was less than a typical sprinkler irrigation

cycle. An additional reason for selecting A-pan data as the default reference evaporation

option in ZIMsched 2.0 was that the data from the AWS and ETgage at ZSAES were only

collected from 1998 and 2000 respectively. Therefore, the records were relatively short and

less adequate for investigating inter-seasonal differences between wet, dry and normal

seasons.

3.3.1.3 Rooting characteristics

In ZIMsched 2.0 the root zone which delimits the depth of soil from which water is available

to the crop is dynamic, in order to account for root growth and associated soil water stress

effects. The depth of the zone from which water uptake can occur, Rz , was calculated by

assuming that maximum rooting depth coincides with the development of full canopy (Jensen

et al.,1990), which in ZIMsched 2.0 is predicted from a relationship with thermal time, viz.

where

= Rfac • TAM Eq 3.13

Rz = depth of the zone from which water uptake can occur (m)

Rfac = proportion of maximum effective soil rooting depth that is penetrated by roots, and which

always has a value such that the depth from which water uptake can occur is ~ 0.4 m

= O.4/Sdep for ITA < 340

= min(1, (1- 0.41 Sdep ).(TIA-340)/(980-340) + 0.41 Sdep)) for ITA. ~ 340

with the limit Sdep ~ 0.4 m

(Note: it is assumed that maximum rooting depth coincides with the development of full

canopy cover (Jensen et al., 1990))

ITA = accumulated thermal time (degree days)

Sdep = the maximum potential effective rooting depth for a fully grown crop (m).

3.3.1.4 Transpiration under conditions of soil water stress

Transpiration (T) is reduced below its maximum value (i.e. "potential") if soils are too dry

relative to AED, according to a relationship derived by Slabbers (1980). Based on first
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principles, Slabbers (1980) developed a relationship which accounts for the fact that the soil

water content at which actual transpiration (Ta) is less than potential (Tp) is dependent on:

• the critical leaf water potential of the crop, ('Vel) and

• the evaporative demand of the atmosphere (AED),

such that if it is very hot, plant stress will start to occur at relatively high soil water contents,

whereas when it is cooler and more humid, plant stressing will only start to occur at relatively

lower soil water contents. This relationship is discussed in more detail in Lecler and Schulze

(1995).

To express the effects of soil water stress in terms of soil water contents is not wholly correct

because the rate of water uptake is influenced more directly by the energy level of the soil

water (soil matric potential and associated hydraulic conductivity) than by the water content.

The energy level of soil water corresponds to different soil water contents for different soil

types, and therefore the soil water content at which a crop starts to experience stress is also a

function of soil type (AlIen et al., 1998). For example, the energy levels of the water in a

clay and a sand will be different if the water contents are the same. The fraction of total

available water (TAM) at which stress starts, 'f' is given in Equation 3.14 (after Slabbers,

1980):

f

where

= max(0.2, 0.94+0.0026('!'cl/AED)) Eq 3.14

f = fraction of TAM at which stress starts

'!'cl = critical leaf water potential (kPa), which for sugarcane is defaulted to -1200 kPa in

ZIMsched 2.0, after Inman-Bamber (1986)

AED = atmospheric evaporative demand, represented in ZIMsched 2.0 by the evaporation from

an A-pan (mm).

In order to account for the effects of soil type on the amount of depletion required before a

soil water content is reached at which stress starts, Equation 3.15 is used:

= TAM.Rrac((l-f) + FtexJ100(1-f)) Eq 3.15
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where

D
str

= depletion required before transpiration is reduced below potential due to a shortage of soil

water (mm)

f = fraction of TAM at which soil water stress starts

TAM = total available water (mm)

F
lext

= soil texture dependent percentage increase or decrease in the fraction of TAM that is

depleted before stress starts (%), with default values for Ftexl given in AlIen et al., (1998;

cf. also Appendix B).

Evaporation from the plant is also reduced below potential if soils are above field capacity

due to poor aeration. This is accounted for in ZIMsched 2.0 using an equation from the

ACRU model (Schulze, 1995), which was based on research reported by Dijkhuis and

Berliner (1988). The interrelationships used in ZIMsched 2.0 between soil water content and

the ratio of actual to potential transpiration (Tactual: Tpotential) are illustrated diagrammatically

in Figure 3.5.

f is dependent on AED and soil texture
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Figure 3.5 Interrelationships used in ZIMsched 2.0 between soil water content and the
ratio of actual to potential transpiration (Ta: Tp) and 'f' , i.e. the fraction of
total available moisture (TAM) at which soil water stress starts. 'DUL'
refers to the drained upper limit (field capacity) and 'PWP' the permanent
wilting point. 'AED' is the atmospheric evaporative demand (after Schulze,
1995)
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3.3.2 Surface runoff / stormflow

In ZIMsched 2.0, "surface runoff', or storrnflow, is defined as the water which is generated

on or near the surface of a field from a rainfall or irrigation application event. This water

does not contribute to the crop available soil water budget and is, therefore, important for

estimating the effectiveness of rainfall. Surface runoff is estimated using the Soil

Conservation Service (SCS) storrnflow equation (USDA, 1985) as modified by Schulze

(1995) and used in the ACRU agrohydrological simulation model. The modified equation is

given below as Equation 3.16.

Q = (Pg - CS)2/(Pg+ S(1-c» Eq.3.16

where

Q =
Pg =
c =

=
S =

stonnflow (i.e. surface runoff) depth (mm)

gross daily precipitation amount (mm)

coefficient of initial abstraction

0.25 (ZIMsched 2.0 default value)

potential maximum water retention of the soil, taken as the soil water deficit below

porosity (mm), and with S calculated for the top 0.250 m of soil as a default in ZIMsched

2.0.

A major difference between Equation 3.16 (Schulze, 1995) and the original Curve Number

(CN) based SCS storrnflow equation (USDA, 1985) is that the potential maximum retention,

S, is a soil water deficit calculated by daily water budgeting techniques and can thus

inherently account for different growth stages of the crop as well as for different tillage

practices. The soil water deficit is taken as the difference between water retention at porosity

and the actual soil water content just prior to the rainfall event. This more dynamic approach

represents a substantial refinement to the more static Curve Number approach to account for,

inter alia, antecedent soil water conditions and is discussed in detail in Schulze (1995). Most

other sugarcane models, including, the CANEGRO model (Inman-Bamber, 1991; Inman

Bamber, 2000) and the CANESIM model (Singels et ai., 1998; Bezuidenhout and Singels,

2003) use the conceptually static Curve Number based SCS equation to estimate runoff and

hence rainfall infiltration.
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Equation 3.16 has been well tested (Schulze 1995), with tests including some on sugarcane

research catchments (Smithers et al., 1997). The tests on the sugarcane catchments formed

the basis for the recommended ZIMsched 2.0 default values for c and the depth for which S is

calculated.

3.3.3 Deep percolation / drainage

If, at the end of a day, the soil water content is still above the drained upper limit, DUL (i.e.

field capacity), drainage of water from the bottom of the root zone is initiated. The drainage

rate is calculated according to Equation 3.17 ( after Jones et aI., 1986), viz.

Eq 3.17

where

Dd = depth of deep percolation / drainage water (mm.day-i)

et = actual soil water content (mm equivalent)

eDUL = soil water content at drained upper limit, DUL (mm equivalent)

Ks = saturated drainage coefficient, with default values used in ZIMsched 2.0 related to soil

texture (cf. Appendix B) according to values given by Schulze et aL. (1995)

Drainage can take place over a number of days during which the plant can extract water, but

plant extraction is at a reduced rate due to poor aeration (cf. Figure 3.5). The amount of

drainage and the duration of drainage are dynamic, dependent on soil characteristics,

antecedent soil water and the magnitude of the rainfall or irrigation event resulting in

excessive soil water. Thus, when compared to many other water budgeting algorithms which

assume a fixed drainage time, often of only one day, the time for the soil to drain to its

drained upper limit (i.e. field capacity) in ZIMsched 2.0 is highly variable. This is a very

important aspect, as the tendency to over-simplify drainage assumptions and assume drainage

to field capacity within a fixed time period, which is often too short, can result in grossly

inaccurate water budgets and lead to a snowballing cycle of over-irrigation and poor root

aeration, with large differences between the theoretical budget and actual field conditions.

The author frequently observed such discrepancies with the over-simplified, hand-calculated

water budgets typically used on the sugar estates in the Lowveld. Often the simple water

budget calculations would indicate a substantial soil water deficit when, in fact, field
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observations showed that the soils were still close to their drained upper limit (field capacity).

This discrepancy was especially prevalent with furrow irrigation, where irrigation water

applications were typically excessive (cf. Chapter 4) and the 'time-to-drain' underestimated.

3.3.4 Effective rainfall

Effective rainfall was defined as that amount of rainfall that enters into the soil profile

(infiltrates) and is available for use by the crop. In ZIMsched 2.0 effective rainfall is

calculated on a daily basis dependent on the runoff, drainage and ET relationships described

in this section.

3.3.5 Crop yield estimate

The estimated recoverable crystal (ERC) algorithm in ZIMsched 2.0 is based on simulating a

reference potential ERC yield and then adjusting this reference potential yield according to

the timing and magnitude of soil water stress. The reference potential yield estimate was

based on a robust relationship between actual evapotranspiration (ET) and tons sucrose that

was derived by Thompson (1976) using data from Hawaii, Australia, Mauritius and several

locations in South Africa. In ZIMsched 2.0, rather than using ET, which could lead to

spurious results when simulating watering strategies which may have resulted in high levels

of evaporation from the soil surface (Es), potential transpiration (Tp) was used in a modified

form of Thompson's (1976) sucrose verus ET relationship. This modified relationship is

given in Equation 3.18 and it was used in ZIMsched 2.0 to derive an estimate of reference

potential ERC for a given season.

reference potential yield of estimated recoverable crystal (tlha)

accumulated potential transpiration, i.e. assuming no soil water stress effects (mm)

Y pOI =

where

Y pot =
TpA =

-22.65 + 4.923«TpN'100)x1.05) - O.149«TpAIlOO)x1.05)2 Eq 3.18

The factor' 1.05' used as a multiple of TpA in Equation 3.18 was applied in order to substitute

transpiration for ET in Thompson's (1976) original equation. The value of '1.05' was derived

from a comparison between evapotranspiration (ET), and transpiration (T), simulated with
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ZIMsched 2.0 assummg typical well watered conditions, i.e. 50 mm irrigation water

applications applied at a soil water deficit of 50 mm, which is representative of overhead

sprinkler irrigation systems.

The reference potential ERe estimated using Equation 3.18 was then further modified

according to the timing and magnitude of water stress according to procedures based on

research reported on by Doorenbos and Kassam (1979). In order to quantify the effects of

soil water stress on crop yields, Doorenbos and Kassam (1979) used a function relating the

relative yield decrease to the relative deficit of total evaporation (i.e. actual

evapotranspiration). This relationship is given below as Equation 3.19:

Eq 3.19

where

Ya = actual harvested yield of a given crop (t/ha)

Yp = potential non-water-stressed harvested yield of a given crop, i.e. reference potential yield

(t/ha)

ET = actual total evapotranspiration (i.e. Ta + Es , mm)

ETm = maximum potential evapotranspiration (i.e. Tp + Es , mm)

Es = evaporation from the soil surface (mm)

Ta = actual evaporation from the plant tissue, i.e. actual transpiration (mm)

Tp = maximum potential evaporation from the plant tissue, i.e. maximum potential

transpiration (mm), i.e. assuming no soil water stress effects

Ky = growth stage specific yield response factor

The response of yield to water supply is quantified through the yield response factor, Ky ,

which relates the relative decrease in yield, (1-YafYp), to a relative deficit in total evaporation

(l-ETIETm). The Ky values for most crops were derived on the assumption that the

relationship between relative yield (YafYp) and relative evapotranspiration (ETlETm) is linear

and is valid for water deficits of up to approximately 50%, i.e. (l-ETIETm) = 0.5. According

to de lager (1994), concerns about the transferability of the yield function given in Equation

3.19 can be obviated through the use of transpiration ratios (i.e. TafTp) in the place of total

evaporation ratios (i.e. ET/ETm). In Equation 3.20, the influences of atmospheric vapour

pressure deficits and climate-crop architecture on TafTp , and hence YafYp , cancel out (de

lager, 1994). Hence the yield response factor Ky defined in Equation 3.20 becomes a purely
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plant physiological entity and is thus determined by crop genetics and not climate. The Ky

factor should thus be neither site nor climate specific (de lager, 1994).

i=G

Eq.3.20
i=l

where

= i-th growth stage in a growing season with a total of G growth periods

Ky; = yield response factor for the i-th growth period

De lager (1994) tested a range of wheat yield functions, including Equation 3.20, using the

water budgeting algorithms of the PUTU model to calculate Ta and Tp• Results of these tests

showed that using a yield function based on Equation 3.20 with values for Kyi for wheat taken

from Doorenbos and Kassam (1979), was the most accurate of the various different yield

functions tested and that the accuracy was very acceptable for use in decision support

applications.

Therefore, based on research, inter alia, by Doorenbos and Kassam (1979) and de lager

(1994), and a comparison between observed and simulated yields and water use (cf. Chapter

4), Equation 3.20 was adopted as an option for estimating ERC yields in ZIMsched 2.0. The

overall growing season yield response factor (Ky) of 1.2 proposed by Doorenbos and Kassam

(1979) is used in ZIMsched 2.0 up until the ripening period (taken as 56 days before cutting),

after which a Ky value of -0.01 was used. The yield response factor for the final growth

period (ripening) was changed to -0.01 from the value of 0.1 proposed by Doorenbos and

Kassam (1979) based on analysis of the results from the dry-off trials undertaken in

Zimbabwe which showed that stress in this ripening period can have a very mild beneficial

effect on ERC (Lecler, 2001, Appendix C).

3.3.6 Irrigation uniformity

In order to account for the effects of irrigation uniformity on systems performance, the water

budget and yield estimate in ZIMsched 2.0 were based on the average of three equal areas

each receiving different amounts of water at each simulated irrigation water application, i.e. a

multiple water budget. The simulated amount of water on each of the three areas was varied,
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dependent on the uniformity measure of the irrigation system. One third of the area was

simulated to receive the mean irrigation water application, one third received the mean water

application plus a percentage (D%) of the mean and one third received the mean minus a

percentage (D%) of the mean. Assuming normally distributed irrigation water applications,

Equations 3.21, 3.22 and 3.23 were derived to relate the percentage deviation (D%)

corresponding to a given coefficient of uniformity (CV), statistical uniformity (SV) or low

quarter distribution uniformity (DV1q) respectively (cf. Chapter 2). For example, if the mean

application for a furrow irrigation event was 50 mm, and the DV was equal to 60, one third of

the area would receive an average of 50 mm, one third would receive an average of 69 mm

and one third would receive an average of 31 mm at each simulated irrigation water

application. The equations for D% are:

= 149.97 - 149.96.(CU/100)

= 122.49 - 122.49.(SU/100)

= 96.48 - 96.50.(DU,q/100)

Eq.3.21

Eq.3.22

Eq.3.23

where

D% = percentage of mean application to be added and subtracted from the mean to determine

irrigation application amounts for the three representative water budgets (%)

DU'q = low quarter distribution uniformity (cf. Chapter 2)

SU = statistical uniformity (cf. Chapter 2)

CU = Christiansen's coefficient of uniformity (cf. Chapter 2)

The relationships between CV, SV, DV1q and D% shown as Equations 3.21, 3.22 and 3.23,

were determined as follows:

Step 1 - three irrigation application amounts were determined for a given D% value, i.e. x,

x + D% and x - D% , with an arbitrary integer value being assumed for x;

Step 2 - a CV value was calculated for these three irrigation application amounts, viz. x, (x

- D%) and (x + D%) (cf. Equation 2.7, Chapter 2)

Step 3 - Step 1 and Step 2 were repeated for a range of D% values so that a series of CV

and associated D% values were obtained

Step 4 - using the series of CV and associated D% values, a least squares regression was

used to determine a relationship between D% and CV, viz. Equation 3.21
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Step 5 - Equations 2.11 and 2.12 (cf. Chapter 2) where used together with Equation 3.21 to

derive Equation 3.22 and Equation 3.23.

3.3.7 Validity of ZIMsched 2.0

The FAO Irrigation and Drainage Paper No. 56 (AlIen et aI., 1998) was used as the major

reference for determining evaporation losses. FAO 56 is an international standard and

includes procedures for accounting for the effects of different types of irrigation systems on

early season evaporation losses. The relationship between the rate of canopy development

and thermal time that was developed using data from Pongola was checked against LA! data

collected in Zimbabwe, and found to be representative. This relationship enables the effects

of planting/ratooning in different months and the effects of hot or cold inter- and intra

seasonal temperature conditions on the rate of canopy development and associated water use

to be represented.

Stormflow/runoff and deep percolation/drainage were based on algorithms well proven in the

ACRU agrohydrological model (Schulze, 1995), including verification studies on sugarcane

research catchments (Smithers et aI., 1997). The water budget presented in FAO 56 (AlIen

et al., 1998) does not specifically account for stormflow or deep percolation, but both of these

processes are of great importance in a water budget when rainfall can provide a significant

portion of the crop's water requirements, as is often the case in the Lowveld.

The effects on water uptake and crop yield caused by both too much or too little water were

based on algorithms used in the ACRU model, based on research by Dijkhuis and Berliner

(1988), Slabbers (1980) and also FAO 56 (AlIen et aI., 1998). The relationships account for

the fact that under very hot and dry conditions a crop will experience stress at a relatively

higher soil water content compared to when conditions are more cold and humid; when even

with a relatively drier soil the crop may not necessarily be experiencing water stress. The

algorithms also account for the fact that it is more difficult to withdraw water from a clay

than from a sand, even if they are both at the same volumetric water content.

The crop coefficients and A-pan based evaporative demand estimates used in ZIMsched 2.0

were found to correspond with both the FAO 56 approach, based on the Penman-Monteith

reference evaporation equation used together with data from an automatic weather station,
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and data from irrigation trials undertaken at ZSAES (Lecler, 200la). In addition to having

been proposed as an international benchmark, the FAO 56 approach to estimating

evaporation from sugarcane has been verified in southern Africa and Australia and found to

compare closely to direct measurements of sugarcane evaporation collected using Bowen

ratio apparatus (McGlinchy and Inman-Bamber, 2002).

The effect of various distribution functions to describe the variation of irrigation water

applications on relative sugarcane yield and the water balance was investigated by Ascough

and Lecler (2004) using ZIMsched 2.0 (Appendix D). The results showed that the yield, deep

percolation, runoff and efficiency were sensitive to using multiple water budgets. However,

using up to thirteen simultaneous water budgets did not produce significant differences to the

values simulated using three water budgets. In addition, different distribution functions with

the same uniformity value did not produce significant differences in the variables simulated.

Thus, it was considered computationally efficient to use three water balances and reasonable

to assume a normal distribution to account for spatial variability of applied water in the

ZIMsched 2.0 model in this study.

3.4 Irrigation Systems Performance Measures

As discussed in Chapter 2, a multitude of indices has been proposed to quantify irrigation

systems performance. There is also some confusion because many of the indices have been

given different definitions and are perceived and interpreted differently by different people.

The performance indices used in this study and their definitions are given in Equations 3.24

and 3.25.

lE = T.100 / (Ig + Rg) Eq.3.24

where

lE = irrigation efficiency (%)

T = accumulated seasonal transpiration (mm), representing beneficial water use

Rg = total rainfall (mm), measured in the growing season

Ig = total gross irrigation water applied (mm), in the growing season

WUP = ERC.100 / (Ig+RJ Eq.3.25
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where

WUP = water use productivity (t x lOO/ha/mm)

Note: WUP has often been referred to as Water Use Efficiency, but since the numerator

and denominator have different units, the term 'productivity' has been preferred

ERe = estimated recoverable crystal (t/ha/season)

'Irrigation Efficiency' and 'Water Use Productivity' as defined in Equations 3.24 and 3.25

and, indeed, other performance indices, provide a useful basis for comparisons. Equation 3.24

represents the main beneficial output required from irrigation water applications, namely

transpiration divided by the total water input, i.e. rainfall and irrigation. It was a typical

practice in the Lowveld to 'dry-off' the crop before harvesting. Therefore, in formulating

Equation 3.24, the net contribution from stored soil water was assumed negligible, and

therefore disregarded, because fields started the season dry and ended dry. An advantage of

using ZIMsched 2.0 was that it facilitated using transpiration rather than ET in the numerator

in Equation 3.24. This made it possible to distinguish between irrigation systems and

management practices which affect evaporation of water from the soil surface differently.

The latter was considered important because evaporation from the soil surface was viewed as

a non-beneficial water use.

While Equation 3.25 provides an indication of water use productivity (WUP), from a

business perspective it has limitations. To illustrate this, consider two irrigation systems with

different water use productivities. The system with the highest water use productivity may

not necessarily be the most effective system, unless the cost of achieving the very high WUP

has been taken into consideration. If this cost is too high, the system will not be viable from

a business perspective, no matter how good its technical performance or WUP (cf. Figure 2.4,

Chapter 2).

From a business perspective, the return on investment and the overall relative net return are

key determinants in the evaluation of different irrigation and water management systems.

Equations 3.26 and 3.27 were thus proposed to enable systems to be compared in terms of a

Net Return per Hectare (NRH) and Relative Net Return (RNR). NRH and RNR (Equations

3.26 and 3.27) are defined and explained as follows:
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Net Return per Hectare (NRH) = (Gross Revenue - Yield Dependent Costs

- Irrigation Variable Costs - Base Production Costs

- Irrigation Fixed Costs) / Hectares in production

Eq.3.26

Relative Net Return (RNR) = Net Return per Hectare x Relative Production Area Eq.3.27

The relative production area is determined by considering the relative water use of different

systems, i.e. relative production area for a given system = (maximum water used considering all

systems and seasons)l(water used for the given system and season). Gross revenue is the product of

ERe yield and price. Yield dependent costs are costs that depend on yield, e.g. harvesting

and hauling, and possibly fertiliser (if fertiliser amount is applied relative to expected yield).

Irrigation variable costs include the direct costs of water, energy (electricity or diesel), labour

and maintenance. The irrigation variable costs depend on both the amount of irrigation water

applied and the rate of application. The rate of application relates to the irrigation system's

peak capacity, which impacts on the crop yields that can be obtained with the system and also

the energy and fixed irrigation costs. Base production costs include all variable production

costs other than yield dependent or irrigation variable costs, e.g. herbicides, labour and seed.

Irrigation fixed costs include interest on investment and depreciation. The relative net return

allows the opportunity cost of water to be accounted for. This opportunity cost, e.g. using

water savings to increase the production area, or to increase average production over a

number of seasons, is a vital consideration, especially when water is limited.

************

In this chapter the integration of robust water budgeting and crop yield relationships into a

unique computer simulation modelling tool, namely ZIMsched 2.0, was described. The water

balance and associated crop yields simulated with ZIMsched 2.0 are sensitive to:

•

•

different types of irrigation system hardware, for example, the different surface

wetting patterns of furrow irrigation versus overhead sprinkler irrigation,

different levels of irrigation system performance, namely the uniformity with which

water is applied and the flexibility of applying water applications of various

magnitudes,
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• different water management strategies / scheduling approaches, all in relation to

• different soil characteristics, and

• various weather conditions, including the impact of very wet or dry, hot or cold

seasonal climates.

ZIMsched 2.0 was designed to be used together with information from a MIPU to evaluate

existing irrigation and water management systems and also for more strategic purposes. For

example, it can be used to determine how best to apply a limited amount of water and

determine the most appropriate irrigation strategy to suit specific environmental and

irrigation system constraints. The selected strategy can then be implemented using a

simplified version of the same tool (cf. Chapter 5).

The net return per hectare (NRH) and relative net return (RNR) were proposed as

performance measures best suited to comparing the performance of irrigation and water

management systems from a business perspective. Estimates of crop yield and associated

water use distributions derived using ZIMsched 2.0 facilitate the calculation of NRH and

RNR, together with estimates of other performance indices such as irrigation efficiency (lE)

and water use productivity (WUP).

Although the concepts and algorithms in ZIMsched 2.0 were based on valid and

internationally proven algorithms, the unique synthesis and integration of these algorithms

and the credibility of the model for Lowveld conditions, still needed to be established.

Verification of ZIMsched 2.0 for a range of soil, weather and irrigation watering conditions in

the Lowveld of Zimbabwe, and application of the model for evaluating irrigation and water

management systems, are the subjects of Chapter 4.
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4. RESULTS

In this Chapter the application of ZIMsched 2.0 to simulate the performance of irrigation and

water management systems in the Lowveld is discussed. Simulations were undertaken using

data and information collated by the Mobile Irrigation Performance Evaluation Unit, MIPU.

The data and information provided by the MIPU were representative of the irrigation systems

as they stood. Additional simulations were undertaken assuming that the uniformity and

depth of irrigation water applied were at more optimal, but achievable, levels. The

information derived from this combination of simulations showed the actual and also the

potential performance of the different types of irrigation and water management systems in

the Lowveld environment.

The credibility of the information reported here is dependent on the performance of the

ZIMsched 2.0 irrigation systems simulation model. Therefore, before describing the

application of ZIMsched 2.0, verification of the model is discussed.

4.1 Evaluation of ZIMsched 2.0

In the context of this study, a sound model should provide accurate predictions of the relative

yields of estimated recoverable crystal (ERC) for different soils, wet and/or dry seasons and

for different watering/irrigation scheduling regimes. The data from two irrigation trials

undertaken at the ZSAES provided excellent data for the verification of ZIMsched 2.0

because they incorporated the requisite range of soil, climate and irrigation

watering/scheduling regimes. Pertinent details of these trials are summarised below.

4.1.1 Trial 4200/1

Trial 4200/1 was an irrigation trial initiated at the ZSAES by Dr J Gosnell. The trial was

planted to sugarcane in 1966 and terminated in 1972. Irrigation water was applied using

overhead hand-moved sprinkler irrigation and the cane variety was NCo 376. One of the

main objectives of the trial was to determine the effect of various irrigation watering regimes

on the yields of cane and ERe. The irrigation watering regimes (treatments) used were:
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• Treatment 1: pan factor 1.0, 50 mm of water applied following an accumulated A-pan

evaporation of 50 mm;

• Treatment 2: pan factor 1.0 in summer and 0.5 in winter, 50 mm of water applied

following an accumulated A-pan evaporation of 50 mm in summer, and 50 mm of

water applied at an accumulated A-pan evaporation of 100 mm in winter;

• Treatment 3: pan factor 0.84, 50 mm of water applied following an accumulated A

pan evaporation of 59 mm;

• Treatment 4: pan factor 0.68, 50 mm of water applied following an accumulated A

pan evaporation of 73 mm;

• Treatment 5: pan factor 0.53, 50 mm of water applied following an accumulated A

pan evaporation of 94 mm;

• Treatment 6: pan factor 0.38, 50 mm of water applied following an accumulated A

pan evaporation of 133 mm.

The soils at the trial site were sandy clay loams with estimated total available moisture

(TAM) of 76 mm. Irrigation and climate data for the plant, 1st, 2nd and 3rd ratoon crops were

obtained from trial records kept at the ZSAES and these were used in ZIMsched 2.0 to

simulate the effects of the various treatments and associated seasonal weather conditions on

yields of ERe. Rainfall for the seasons simulated ranged from 280 mm to 600 mm and

seasonal irrigation water applications associated with the different treatments ranged from

660 mm to 1 778 mm. As the main objective of the verification study was to assess the

capability of ZIMsched 2.0 to represent relative differences between irrigation watering

regimes and irrigation systems, the observed and simulated yields of ERC were compared in

relative terms.

4.1.2 Trial 4200/12

Trial 4200/12 was an irrigation trial similar to trial 4200/1. However, the treatments were

slightly different, the soils were different, the seasons were different and irrigation water was

applied using flood beds as opposed to overhead sprinklers. The officer in charge was Mr C

Nyati. The trial commenced in 1986 and was terminated in 1991 and the cane variety was

NCo 376. The objective of the trial was to apply various irrigation watering regimes and
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determine their effect on crop yields. The irrigation watering regimes (treatments) were as

follows:

• Treatment 1: pan factor 1.0,50 mm of water applied following an accumulated A-pan

evaporation of 50 mm;

• Treatment 2: pan factor 1.0, 100 mm of water applied following an accumulated A

pan evaporation of 100 mm;

• Treatment 3: pan factor 0.85, 50 mm of water applied following an accumulated A

pan evaporation of 59 mm;

• Treatment 4: pan factor 0.70, 50 mm of water applied following an accumulated A

pan evaporation of 71 mm;

• Treatment 5: pan factor 0.55, 50 mm of water applied following an accumulated A

pan evaporation of 91 mm;

• Treatment 6: pan factor 0040, 50 mm of water applied following an accumulated A

pan evaporation of 125 mm.

The soils at the trial site were sandy clay loams with estimated total available moisture

(TAM) of 100 mm. Irrigation and climate data for the 1st, 2nd and 3rd ratoon crops were

obtained from records kept at the ZSAES and these were used in ZIMsched 2.0 to simulate

the effects of the various treatments on yields of ERe. Seasonal rainfall for the seasons

simulated ranged from 328 mm to 728 mm and seasonal irrigation water applications

associated with the different treatments ranged from 550 mm to 1 750 mm.

4.1.3 Results of a verification of ZIMsched 2.0

A scatter plot of observed and simulated ERe yields shown in relative terms, i.e. as fractions

of the yield obtained by Treatment 1 for each of the two trials, viz. Trial 4200/1 and Trial

4200/12, is presented in Figure 4.1. The associated statistics of model performance are given

in Table 4.1.
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Figure 4.1

Table 4.1

Observed Data: ERe Yields Relative to Treatment 1

I.Trial 4200/1 .... Trial 4200/121

Scatter plot of observed and simulated Estimated Recoverable Crystal (ERC)
yields shown in relative terms, i.e. as a fraction of the yield obtained by
Treatment 1 for each of two irrigation trials, viz. Trial 4200/1 (1966-72) and
Trial 4200/12 (1986-91), conducted at the Zimbabwe Sugar Association
Experiment Station on sugarcane variety NCo376

Quantitative performance measures for comparing simulated Estimated
Recoverable Crystal (ERC) yields and observed ERC yields in relative
terms, i.e. as fractions of the yield obtained by Treatment 1 for trials 4200/1
and 4200/12 combined!

Omean Smean N A b RMSE RMSEu RMSEs d r

0.85 0.84 30 0.16 0.80 0.056 0.043 0.036 0.96 0.94

ITerms N, b, d and rare dimensionless, while remaining terms represent relative yields in terms of a fraction
Omean mean of observed relative yields of estimated recoverable crystal (ERC)
Smean = mean of simulated relative yields of ERe
RMSE = root mean squared error
RMSEu and RMSEs = root mean squared errors, unsystematic and systematic, respectively
d = index of agreement, 1.0 indicates perfect agreement, 0.0 indicates no agreement

(Wilmott, 1981)
= correlation coefficient (Pearson's r)

N = number of data points
a (intercept) and b (slope) of a least squares regression between predicted relative yields as the dependent
variable and observed relative yields as the independent variable.
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The value for the index of agreement, 'd' was 0.96, which is very close to a value of 1.0. A

value of 1.0 would indicate perfect agreement between observed and simulated relative ERC

yields, i.e. yields relative to the yield obtained from Treatment 1. The root mean squared

error (RMSE) was 0.056, indicating that on average the predicted relative yields were within

6 % of the observed relative yields. Most of the error was unsystematic although the

intercept, 'a' and slope, 'b' values showed that the model was prone to slight overestimation

of yield declines caused by mild soil water stressing and slight underestimation of the yield

declines caused by more severe soil water stressing, with the model likely simulating too

rapid canopy recovery after severe stressing events. The correlation coefficient, Pearson's 'r'

of 0.94, nevertheless indicates a very high degree of correspondence between the observed

and simulated relative yields. Overall the statistics of model performance were indicative of

very good model performance. Therefore, the model was considered sufficiently accurate for

the evaluation of irrigation water management systems, especially the comparison of one

system to another in relative terms, which was the primary aim of this study.

4.2 Performance of Irrigation and Water Management Systems

Triangle Estates (TE), Hippo Valley Estates (HVE) and Mkwasine Estate (ME), the three

major sugarcane estates in the Lowveld, each used a different set of water management

guidelines. The Zimbabwe Sugarcane Production Manual, edited by Clowes and Breakwell

(1998), contained a further set of water management recommendations. The application of

these various irrigation water management (scheduling) guidelines in relation to different

soils, seasons, types of irrigation system and levels of irrigation system performance, as

represented by the distribution uniformity of applied water and the depth of irrigation water

applications relative to the soil TAM values, was simulated using ZIMsched 2.0. The

measurements of the typical magnitude, range and uniformity of irrigation water applications

associated with the different estates and types of irrigation system were either recorded by the

MIPU or by personnel on the large sugarcane estates who were trained by the MIPU team.

4.2.1 Analysis of MIPU data for floppy, drip and sprinkler irrigation systems

For the floppy, drip, hand-moved sprinkler and centre pivot irrigation systems, a frequency

analysis was performed on either the CU, or SU, values (dependent on the type of irrigation

system) reported by the MIPU. The results of this analysis are shown in Table 4.2.
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Table 4.2 Ranked performance indices derived from field measurements undertaken by
the Mobile Irrigation Performance Evaluation Unit (MIPU) for centre pivot,
floppy, hand-moved sprinkler and drip irrigation systems in the Lowveld of
Zimbabwe (after Griffiths and Lecler 2001; Griffiths, 2003)

System Type (Performance Performance Rating Representative Representative Median
Measure, Le. CV or SV) Median Value of Irrigation Application

CV orSV1 depth as a Percentafe of
TAM (%TAM)

Centre Pivot (CV) Top third 90 <50%

" Middle third 87 <50 %

" Lower third 82 <50%

Benchmark3 > 90 (CV) <50%

Floppy (CV) Top third 81 <50%

" Middle third 73 <50%

" Lower third 69 <50%

Benchmark3 > 82 (CV) <50%

Hand·Moved Sprinkler (CV) Top third 89 <50%

" Middle third 82 <50%

" Lower third 75 <50%

Benchmark3 > 84 (CU) <50%

Drip (SV) Top third 84 <50%

" Middle third 72 <50%

" Lower third 54 <50%

Benchmark3 > 88 (SU) <50%

1 SU = Statistical Uniformity
CU = Christiansen's Coefficient of Uniformity (cf. Chapter 2).

2 If the application depth could be varied to less than 50 % of the value of the soil's total available moisture
(TAM) value, a value < 50 was used for %TAM in the ZIMsched 2.0 simulations, dependent on each estate's
water management guidelines. The exception was for drip irrigation, where daily irrigation applications were
simulated to occur in order to maintain the soil water at approximately 90 % of the TAM value.

3 'Benchmark' refers to the value of the relevant performance measure that should be expected and attainable in
practice if the system was designed and installed according to reasonable standards.

The CU values for centre pivot and sprinkler irrigation systems were very high, reflecting

sound design (i.e. adequate and uniform pressure) and maintenance (i.e. mainly routine

replacement of worn nozzles). Centre pivots displayed the highest uniformities, followed

closely by those of the overhead sprinklers and then the floppy irrigation systems. Although

with proper design, installation and maintenance, drip systems can be used to apply water
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with very high unifonnities, the MIPU results showed the drip systems to have the lowest

uniformities of all the systems evaluated. The low unifonnities in many drip irrigation

systems could be attributed to excessive pressure variation and also too many blocked or

semi-blocked emitters. The emitter blockages were often a direct result of poor designs

which did not adequately cater for sufficient flushing velocities, nor provide correct

chemigation injection facilities, nor address pump intake arrangements and water quality

characteristics, especially in regard to the high levels of iron present (Griffiths and Leder,

2001).

4.2.2 Analysis of MIPU data for furrow irrigation systems

The detennination of representative low quarter distribution unifonnity, DU1q , values (cf.

Chapter 2) for furrow irrigation systems was difficult. In addition to the variation in water

applied to individual furrows, there was variation in the amount of water infiltrated down the

length of a furrow. These variations also differed with each irrigation water application,

dependent on both antecedent soil water conditions and management control (Griffiths,

2003). In addition, there were thousands of furrows on each estate and only a sample of these

could be evaluated within the constraints of this study. Thus, for furrow irrigation systems,

the following procedure was considered to be the most appropriate way to analyse the data

reported by the MIPU.

•

•

The average depth of water applied to every furrow was nonnalised by converting to

an equivalent percentage of the associated field's reported TAM value (%TAM).

The %TAM values derived from all the furrows and fields associated with a particular

type of furrow irrigation system (i.e. in-row or inter-row) on each estate were used to

calculate a globally representative DUlq and %TAM value for each of the three large

estates and types of furrow irrigation system (cf. Chapter 2).

Although these DU1q and %TAM values represented only a sample of the water application

characteristics for the different furrow irrigation systems on each estate, they were,

nevertheless considered to be indicative of the major features of furrow irrigation systems in

the Lowveld. The analysis showed that the variation in the amounts of water applied into

individual furrows was very high. The average amount of water applied per application was
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also excessive, relative to the reported soil TAM values, particularly for the in-row furrows

(cfTable 4.3).

Table 4.3 Average low quarter distribution uniformity (DU1q) and irrigation application
depths for furrow irrigation (after Griffiths and Lecler 2001 and Griffiths,
2003)

System Type Value Of DU1Q Mean Irrigation Application Number Of Furrow
Calculated Using All Amount As A Percentage Of Measurements

Furrows l TAM (%TAM)

In-row Furrow (Hippo Valley
48 73 69

Estate)
In-row Furrow (Triangle

1162Estate - 1st, 2nd and 3rd 35 254
irrigation applications)
In-row Furrow (Triangle
Estate - 4th and subsequent 61 68 93
irrigation applications)
In-row Furrow (Mkwasine

52 71 96
Estate)
Benchmarkj

>75 <60

Inter-row Furrow (Hippo
60 62 12

Valley Estate)
Inter-row Furrow (Triangle - - 0
Estate)
Inter-row Furrow (Mkwasine

28 62 38Estate)
Benchmark3

>75 <60

1 DUlq = low quarter distribution uniformity based on measurements of depth of water applied relative to
the field's total available moisture (TAM), calculated using data from flow measurements into all furrows on
all fields evaluated by the MIPU trained evaluation teams on each estate (cf. Chapter 2).

2 According to Triangle Estate's irrigation scheduling recommendations, the magnitude of the first three
irrigation applications after cutting or planting is meant to be equivalent to the soil's TAM, thereafter the
applications are meant to be equivalent to 50% of the soil's TAM value. Approximately 3% percent of the
furrow measurements were excluded from the analysis as outliers. Recorded applications in these furrows
were so high that the results (especially the mean) would have been severely biased and not representative of
97% of the fields.

3 'Benchmark' refers to the value of the relevant performance measure that should be expected and attainable in
practice if the system was designed and installed according to reasonable standards.

It should be noted that although the benchmark performance standards shown in Table 4.3 are

generally applicable, they might be very difficult and/or expensive to achieve on certain

fields, for example, if soils have very high infiltration rates, low values of TAM, or the

topography is very variable, and/or if long furrows are desired for efficient mechanisation of

field operations.
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4.2.3 ZIMsched 2.0 simulations

For floppy, drip, hand-moved sprinkler and centre pivot irrigation systems ZIMsched 2.0 was

used to simulate the water balance and associated yields of ERC using the CU, SU and the

%TAM values shown in Table 4.2. The main watering (irrigation scheduling) strategy used

in the Lowveld for each of these systems was simulated, together with a more optimal

strategy.

For furrow irrigation systems ZIMsched 2.0 was used to simulate the water balance and

associated yields of ERC, using the DU1q and %TAM values shown in Table 4.3. A key

characteristic of the furrow irrigation systems was that the average magnitude of the

irrigation water applications was excessive relative to the soil's TAM, for all systems and on

all estates.

4.2.3.1 Floppy irrigation systems

A number of private farmers and Triangle Estates (TE) used floppy irrigation systems. The

private farmers used a variety of water management approaches and TE followed prescribed

irrigation scheduling guidelines which are detailed in Appendix E. The irrigation water

management (scheduling) guidelines used by TE were programmed in ZIMsched 2.0 so that

they could be replicated. The performance of TE's scheduling guidelines in terms of the

water balance and relative yields of ERC was then compared to scheduling using the water

budget of ZIMsched 2.0. The results of this comparison are shown in Table 4.4. Spray

evaporation and wind drift losses were assumed to be 8 % (cf. Chapter 2).

Dry seasons required up to 40 % more irrigation water than wet seasons. On average, gross

irrigation water applied from the field edge could be reduced from 15.9 Ml/ha to 11.7 Ml/ha

if the water management guidelines were changed and ZIMsched 2.0 was used for irrigation

scheduling. This represents a saving in water of approximately 26 %. The over-watering

resulting from scheduling according to TE's recommendations compensated to an extent for

the spatial variability in water applications, and resulted in a slight (4 %) benefit in the

average yield of simulated ERe. Therefore, the scheduling recommendations derived using

ZIMsched 2.0 could be adjusted, depending on the uniformity (evenness) with which water is

applied, especially during dry years when a larger portion of the crop's water requirement is
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supplied by irrigation rather than rainfall (cf. Table 4.4). Whether or not an adjustment is

warranted would depend on whether, and how often, the extra revenue from the yield benefit

exceeded the direct and opportunity cost of the additional water. Case studies on such topics

are discussed in Chapter 5. The water productivity i.e. crop yield per unit of water applied,

could be increased by approximately 19 % through the implementation of scheduling

recommendations derived using ZIMsched 2.0.

Table 4.4 Comparison of the performance of floppy irrigation systems: Triangle
Estates water management vs scheduling with ZIMsched 2.0. Values shown
are representative of systems in the top third of systems in terms of
performance (i.e. CV = 81) and averaged for April, June and October cut
crops

Rainfall Gross Irrigation Irrigation Relative Estimated Relative Water
Season Applications (MI/ha) Efficiencyl Recoverable Crystal Productivity (%)2

(%)
Triangle:! ZIMsched Triangle:! ZIMsched Triangle:! ZIMsched Triangle:! ZIMsched

High 14.3 9.9 56 67 102.4 100 100 120

Medium 15.4 11.3 63 76 104.7 100 100 121

Low 18.0 13.9 67 78 104.8 100 100 117

Mean 15.9 11.7 62 74 104 100 100 119

1 Irrigation Efficiency
2 Water Productivity

3 Triangle

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
= Estimated Recoverable Crystal (t/ha/annum) x lOO/Gross Irrigation Water

Applied (mm)
Scheduling according to Triangle Estate guidelines (cf. Appendix E)

The effect of the standard to which floppy irrigation systems were designed and installed was

evaluated by comparing simulated irrigation efficiency and relative yields of ERe for

systems as they stood, to yields and efficiencies simulated assuming an appropriate

(practically attainable) standard, i.e. with a CV equal to 82. Results of this comparison are

shown in Table 4.5. The range of irrigation efficiencies and relative yields of ERC for the

floppy irrigation systems evaluated in the Lowveld was small, indicating that it is a fairly

robust system. Only relatively small gains could be attained by improvements to the design

and installation, viz. 4 % in irrigation efficiency and 6 % in the yields of ERe.
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Table 4.5 Performance of the top, middle and lower third of floppy irrigation systems
evaluated in the Lowveld relative to a system designed and installed
according to appropriate and practically attainable standard, and with
irrigation water applications scheduled using ZIMsched 2.0

System Rating Median Median Relative Estimated Median Amount of
Irrigation Recoverable Crystal (%) Drainage Water
Efficiencyl (mm)

Upper Third of
74 100 298Systems

Middle Third of
71 96 337Systems

Lower Third of
70 94 357Systems

Benchmark2 74 100 294

1 Irrigation Efficiency

2 Benchmark =

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
(Averaged for dry, normal and wet seasons)
Performance simulated with a CV = 82

4.2.3.2 Drip irrigation systems

Most of the drip irrigation systems in the Lowveld were owned and operated by private

growers. TE and HVE only had small irrigation 'trials'; approximately 85 hectares and 15

hectares respectively. Before the development of ZIMsched 2.0, most private growers were

guided by the scheduling guidelines given in the Zimbabwe Sugarcane Production Manual

(SPM) edited by Clowes and Breakwell (1998). In order to evaluate the SPM guidelines,

they were programmed into ZIMsched 2.0 so that they could be replicated and compared to

scheduling with ZIMsched 2.0. The results of this analysis are shown in Table 4.6

As with the floppy irrigation systems, there were substantial variations between irrigation

water applied depending on the rainfall of the season. On average, gross irrigation water

applied from the field edge could be reduced from 13.7 Ml/ha to 10.2 Ml/ha if the water

management was done according to recommendations provided by ZIMsched 2.0 rather than

the SPM. This represents a saving in water of approximately 26 %. The simulated reduction

in applied water relative to floppy irrigation systems, i.e. an average of 1.5 Ml/ha when

scheduling using ZIMsched 2.0, resulted because evaporation of water from the soil surface is

explicitly represented in ZIMsched 2.0 and with sub-surface drip irrigation, hardly any of the

soil surface is wetted (depending on the depth of the drip emitters). Thus evaporation of
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water from the soil surface is minimal for sub-surface drip irrigation systems. In addition, no

spray evaporation and wind drift losses were assumed for the drip irrigation systems. The

reduction in evapotranspiration (ET) resulting from the reduction in evaporation of water

from the soil surface is not reflected in the SPM scheduling recommendations. These were

originally developed for furrow and overhead irrigation systems.

Table 4.6 Comparison of the performance of drip irrigation systems: Zimbabwe
Sugarcane Production Manual water management guidelines vs scheduling
with ZIMsched 2.0. Values shown are representative of systems in the top
third of systems in terms of performance (i.e. SU = 84)

Rainfall Gross Irrigation Irrigation Relative Relative Water
Season Applications Efficiencyl Estimated Productivity (%)2

(MlIha) Recoverable
Cnstal (%)

ZPM3 ZIMsched ZPM3 ZIMsched ZPM3 ZIMsched ZPM3 ZIMsched

High 12.6 8.5 61 74 100.7 100 100 123

Medium 13.6 9.9 70 86 101.3 100 100 124

Low 15.0 12.3 78 89 101.9 100 100 115

Mean 13.7 10.2 70 83 101.0 100 100 121

1 Irrigation Efficiency
2 Water Productivity

3 ZPM

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
= Estimated Recoverable Crystal (t/halannum) x 100 / (Rain + Gross Irrigation

Water Applied) (mm)
= Scheduling using Pan guidelines given in the Zimbabwe Sugarcane Production

Manual (Clowes and Breakwell, 1998)

The relative over-watering inherent in the SPM scheduling guidelines, when used with drip

irrigation systems, compensated to a degree for the imperfect distribution uniformity or

spatial variation in irrigation water applications. As a result, the simulated yields of ERC

were marginally higher than the yields simulated using ZIMsched 2.0 for scheduling (cf.

Table 4.6). The simulated water productivity i.e. yield per unit of water applied, was

increased by approximately 21 % using the irrigation scheduling recommendations derived

using ZIMsched 2.0.

The effect of the standard to which drip irrigation systems were designed and installed was

evaluated by comparing simulated irrigation efficiency and relative yields of ERC for

systems as they stood, to yields and efficiencies simulated assuming an appropriate
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(practically attainable) standard, i.e. with a SU equal to 88. Results of this comparison are

shown in Table 4.7

Table 4.7 Performance of the top, middle and lower third of drip irrigation systems
relative to a system designed and installed with a SU equal to 88, and with
irrigation water applications scheduled using ZIMsched

System Rating Median Median Relative Estimated Median Amount of
Irrigation Recoverable Crystal (%) Drainage Water
Efficiency) (mm)

Upper Third of
83 99 271

Systems
Middle Third of

80 95 316Systems
Lower Third of

76 88 387Systems

Benchmark2 84 100 258

1 Irrigation Efficiency

2Benchmark

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
(Averaged for dry, normal and wet seasons)

= Performance simulated with a SU = 88

The range of irrigation efficiencies and relative ERC yields simulated for drip irrigation

systems was relatively large compared with the floppy irrigation systems, indicating that drip

irrigation is not as robust a system. Assuming proper scheduling, improvements to the

design, installation and/or maintenance (thereby improving the value of the SU to the

benchmark of 88) resulted in average simulated gains of 8 % in irrigation efficiency and 12 %

in the yields of ERC for one third of the systems evaluated. This highlights that great care

needs to be taken in the design, installation and maintenance of drip irrigation systems.

4.2.3.3 Centre pivot irrigation systems

Both HVE and TE and a number of private growers have centre pivot irrigation systems. In

field evaluations undertaken by the MIPV showed that most of these pivots had CV values

above 85, which is very good (cf. Table 4.2) and concurs with evaluations of pivots

undertaken in the South Mrican sugar industry (Ascough and Kiker, 2002). Thus, it is

apparent that a characteristic of centre pivots is that they have very good CU values.

Consequently, assuming that the pivots were designed with water application rates well

matched to soil infiltration characteristics, the major differences in the performance of centre
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pivots would be due to the water management system being followed. In the performance

analysis reported here the focus was, therefore, on a comparison of the water management,

i.e. irrigation scheduling, approaches used by HVE and TE. The results of this analysis are

shown in Table 4.8. Spray evaporation and wind-drift losses were assumed to be 8 % of the

net irrigation water applied to the soil in all cases (cf. Chapter 2).

There was little difference in the performance of centre pivots for the two water management

systems used by TE and HVE, with TE's recommendations resulting in slightly higher

simulated water use. Both estates' water management recommendations resulted in

substantially higher simulated water use compared with scheduling with ZIMsched 2.0, i.e.

between 18 % and 25 % more water respectively. The use of centre pivots often results in

relatively high evaporation from the bare soil surface in the early season because of frequent

watering. Relatively frequent and small irrigation water applications of approximately 25

mm per application are characteristic of centre pivots because larger water applications often

result in excessive runoff due to the high water application rates at the outer towers (Reinders

and Louw, 1984). Thus, the early season scheduling guidelines used by HVE (cf. Appendix

F) resulted in slight under-watering in the early season, with gradual depletion of the

available soil water store. The soil water store is then gradually replenished during the

remainder of the season and prior to drying off, due to slight over-watering. The under

watering in the early season is because the HVE scheduling guidelines were originally

developed for furrow irrigation systems. With furrow irrigation systems only approximately

60 % of the soil surface is wetted, and there are relatively fewer and larger early season

irrigation water applications. Therefore, evaporation from the soil surface is relatively low.

The result of the slight under-watering in the early season and over-watering later, associated

with HVE's scheduling recommendations was reflected in the slight reduction in simulated

yields of ERC relative to the yields of ERC which were simulated when scheduling with

ZIMsched 2.0.

With centre pivots, because the water applications were relatively even, there was a different

dynamic between over-watering and irrigation uniformity when compared with irrigation

systems which have more uneven water applications, such as the furrow irrigation systems.

The over-watering inherent, for example, in TE's scheduling recommendations, resulted in a

slight simulated yield penalty.
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Table 4.8 The performance of centre pivots with various water management guidelines.
Results from simulations with ZIMsched 2.0 assumed sandy clay soils with a
TAM of 80 mm and a net 24 mm of water applied at each irrigation water
application

Performance Measure Hippo Valley Estate's Triangle Estate's ZIMsched Water
Water Mana2ement Water Mana2ement Management

Relative Irrigation Water 118 125 100
Applied (%) (14.2 Mllha) (15.0 Mllha) (12.0 Mllha)
Relative Estimated 96 98 100
Recoverable Crystal (%)
Irrigation 63 62 72Efficiency!
Relative Water Use 85 84 100Productivity (%) 2

Relative 178 198 100Drainage (%)

1 Irrigation Efficiency
2 Water use productivity =

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Estimated Recoverable Crystal (t/ha/annum) x 100 / (Rain + Gross Irrigation
water applied) (mm)

4.2.3.4 Hand-moved sprinkler irrigation systems

A major portion of the sugarcane grown on TE is irrigated using hand-moved overhead

sprinkler irrigation systems. The MIPV provided results for 68 'in-field' sprinkler uniformity

evaluations. For these fields the performance of the irrigation hardware was excellent, with

the majority of the CV values in excess of what would be expected if the systems were

designed and installed according to appropriate standards, i.e. with a CV greater than 84. The

effects of scheduling irrigation water applications using TE's water management

recommendations were compared to scheduling irrigation water applications using ZIMsched

2.0. The irrigation water management (scheduling) guidelines used by TE (cf. Appendix E)

were applied consistently for furrow, floppy and overhead sprinkler irrigation systems

(Mtunzi, 2002). The results of this comparison of water management systems are shown in

Table 4.9. Spray evaporation and wind-drift losses were assumed to be 10 % of the net

irrigation water applied to the soil (cf. Chapter 2). Slightly higher losses for spray

evaporation and wind-drift were assumed for the hand-moved sprinkler systems, because the

sprinklers operate in relative isolation and therefore there is not as great a micro-climate

effect as compared with centre pivot and floppy irrigation systems.
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Again the simulated amounts of irrigation water applied were very dependent on rainfall. On

average the simulated amount of irrigation water applied from the field edge was reduced

from 15.9 Ml/ha to 11.3 Ml/ha when ZIMsched 2.0 was used for irrigation scheduling. This

represented a saving in water of approximately 29 %. In contrast to drip and furrow

irrigation systems, the uniformity of the sprinkler irrigation systems, which were evaluated,

was excellent and the over-watering resulting from scheduling according to Triangle's

recommendations resulted in only a slight simulated yield benefit of 2 %. The high

uniformity reflected the good maintenance practices, which were carried out at TE, especially

the regular replacement of sprinkler nozzles. The simulated water productivity i.e. yield per

unit of water applied, was increased by approximately 25 % through scheduling irrigation

water applications with ZIMsched 2.0.

Table 4.9 Comparison of the performance of overhead hand-moved sprinkler irrigation
systems: Triangle Estates' water management guidelines vs scheduling with
ZIMsched 2.0. Values shown are representative of systems in the top third of
systems in terms of performance (i.e. CD = 89 and averaged for April, June
and October cut crops)

Rainfall Gross Irrigation Irrigation Relative Estimated Relative Water
Season Applications (MI/ha) Efficiency· Recoverable Crystal Productivity (%)2

(%)

TriangleJ ZIMsched TriangleJ ZIMsched Triangle3 ZIMsched Triangl~ ZIMsched

High 14.0 9.4 57 70 101 100 100 124

Medium 15.8 10.8 62 80 102 100 100 130

Low 17.8 13.6 68 82 102 100 100 122

Mean 15.9 11.3 62.3 77 102 100 100 125

1 Irrigation Efficiency
2 Water Productivity

3 Triangle

=
Transpiration (mm) x 100 I (Rain + Gross Irrigation Water Applied) (mm)
Estimated Recoverable Crystal (tlha/annum) x 100 I (Rain + Gross Irrigation
Water Applied) (mm)
Scheduling according to Triangle Estate's irrigation water management
guidelines

The potential to improve performance of the overhead sprinkler irrigation systems through

improved distribution uniformities was considered minimal because the systems were already

performing at a high standard (cf. Table 4.2).
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4.2.3.5 Hippo Valley Estate: In-row furrow irrigation

The results of the analysis of the water management system used by HVE given the in-row

furrow performance characteristics on that estate are shown in Table 4.10. The HVE

scheduling recommendations are described in Appendix F. On average, the simulated gross

irrigation water applied from the furrow edge was reduced from 17.2 Ml/ha to 12.5 Ml/ha

using ZIMsched 2.0. This represented a saving in water of approximately 27 %. However,

the over-watering of the HVE scheduling system compensated for the poor distribution

uniformity (i.e. DUlq = 48) and resulted in slight simulated ERC yield benefits of

approximately 5 % relative to scheduling with ZIMsched 2.0 and assuming good drainage

rates.

Table 4.10 Comparison of the performance of in-row furrow irrigation systems: Hippo
Valley Estate (HVE) water management guidelines vs scheduling with
ZIMsched 2.0. Values shown are based on average system performance
characteristics derived using all the in-row furrow evaluation data.

Rainfall Gross Irrigation Irrigation Relative Relative Water
Season Applications Efficiency! Estimated Productivity (%)2

(MI/ha) Recoverable
CI1 stal (%)

HVE.l ZIMsched HVEj ZIMsched HVEj ZIMsched HVE.l ZIMsched

High 15.2 11 52 61 103 100 100 117

Medium 17.0 11.7 57 70 105 100 100 125

Low 19.5 14.7 60 72 105 100 100 119

Mean 17.2 12.5 56 68 105 100 100 120

1 Irrigation Efficiency
2 Water Productivity

3 HVE

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Estimated Recoverable Crystal (t/ha/annum) x 100 / (Rain + Gross Irrigation
Water Applied) (mm)
Scheduling using pan factors and effective rainfall formulae given in the Hippo
Valley Estate irrigation scheduling recommendations (Appendix F)

The simulated water productivity, i.e. yield per unit of water applied, was increased by

approximately 20 % through the use of ZIMsched 2.0 for irrigation scheduling. The increase

in simulated amounts of water applied relative to floppy irrigation systems was small, and

ranged from 0.8 Ml/ha to 1.3 Ml/ha. These differences occurred because the irrigation water

applications of the furrow irrigation system were not well matched to the reported soil water

holding characteristics, i.e. TAM values (ct. Table 4.3). This mismatch outweighed any
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potential water conservation advantages of the furrow irrigation system, which include

reductions in spray evaporation and wind drift, as well as reduced evaporation from the soil

surface due to partial surface wetting and less frequent irrigation applications. Losses in

unlined furrow feeder canals were not added to the water requirements shown here. These

conveyance losses constitute a separate and variable water loss which is potentially, but not

always pertinent to furrow irrigation.

The effect of the design / lay-out and operation of furrow irrigation systems at HVE was

evaluated by comparing simulated irrigation efficiency and the relative yields of ERe for

systems as evaluated by the MIPU to the simulated performance of a furrow irrigation system

with a DUlq of 75 and with the amount of water applied per irrigation applications equal to 60

% of the soil's TAM value. Note, however, that such performance standards may be very

difficult and/or costly to achieve, depending on a particular field's topography and soil

characteristics. Results of this analysis are shown in Table 4.11.

Table 4.11 Performance of in-row furrow irrigation systems at Hippo Valley Estates
compared to a hypothetical benchmark system which had a DU1q of 75 and
the amount of irrigation water applied per application equal to 60 % of the
soil's total available moisture (TAM), and irrigation scheduling using
ZIMsched 2.0.

System Mean Mean Relative Mean Drainage
Irrigation Estimated Water
Efficiencyl Recoverable (mm)

Crvstal (%)

HVEhve 56 105 958

HVE ZlMsched 68 100 550

Benchmark 77 108 350

1 Irrigation Efficiency
HVE hve

HVE ZIMsched

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Furrow systems performance as measured, but scheduling using Hippo Valley's
scheduling recommendations.
Furrow systems performance as measured, but scheduling using ZIMsched 2.0.

Simulated irrigation efficiency was increased from 56 percent to 77 percent through:

improvements to the amount of irrigation water applied per application, the DUlq and through

scheduling irrigation water applications using ZIMsched 2.0 (et. Table 4.11). However, the
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potential to increase ERC when assuming HVEs' water management recommendations and

adequate drainage was relatively small. This indicates that if HVE continue to use their own

recommendations for water management, the major benefit from improved irrigation systems

design, installation and operation would be reduced drainage and water use. The reduction in

simulated water use resulted from irrigation water applications which were better matched to

soil water holding characteristics (TAM values), i.e. the amount of water applied per

application, was reduced from 73 % of the soil's TAM to 60 % of the soil's TAM (cf. Table

4.3). Simulations showed that the over-watering inherent in HVE's scheduling

recommendations compensates, to an extent, for poor distribution uniformities, at a cost,

however, of a substantial increase in water use and drainage (deep percolation). If ZIMsched

2.0 was used for irrigation scheduling the benefit from having improved distribution

uniformity, i.e. a DUlq equal to 75, was substantial. Simulated yields of ERC increased by

approximately 8 %. The reason for this was that the relative proportion of the area being

under-watered with more precise irrigation scheduling was reduced through the improved

distribution uniformity.

4.2.3.6 Hippo Valley Estate: Inter-row furrow irrigation

The results of the analysis of the water management system used by HVE, given the inter

row furrow performance characteristics on that estate, are shown in Table 4.12. On average,

the simulated amount of irrigation water applied from the furrow edge was reduced by

approximately 14 % relative to HVE's in-row furrow irrigation systems. This was expected

because, from a conceptual viewpoint, the irrigation advance front times are less restricted

with inter-row furrow irrigation systems compared with in-row furrow irrigation systems.

The reason for this is that there is no sugarcane in the inter-row. Thus, for a given furrow

length and slope, an overall reduction in the intake opportunity times and associated

infiltration amounts could be expected with the inter-row furrow irrigation systems.

Average simulated irrigation water applications were reduced from 14.8 Ml/ha to 11.4 Ml/ha

when the water management was effected according to recommendations provided by

ZIMsched 2.0 rather than the existing HVE recommendations. This represented water saving

of approximately 23 %. As with the in-row furrow irrigation systems, the over-watering

inherent in the HVE scheduling recommendations compensated for the spatial variation in

water applications and resulted in a slight simulated benefit in the yield of ERC, i.e. a 3 %
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increase relative to scheduling with ZIMsched 2.0. These yield benefits from over-watering

were not as high as those simulated using the in-row furrow irrigation systems, because the

distribution uniformity of the inter-row furrow irrigation systems was better, i.e. DU equal to

60 for inter-row furrow irrigation systems versus a DU equal to 48 for the in-row furrow

irrigation systems (cf. Table 4.3). The simulated water productivity i.e. yield per unit of

water applied was increased by approximately 16 % using ZIMsched 2.0 to schedule

irrigation water applications. Overall, although only relatively few inter-row furrows were

evaluated, the performance of inter-row furrow irrigation systems on HVE was much better

than the performance of the in-row furrow irrigation systems.

Table 4.12 Comparison of the performance of inter-row furrow irrigation systems:
Hippo Valley Estate water management guidelines vs scheduling with
ZIMsched 2.0. Values shown are based on average system performance
characteristics derived using all the in-row furrow evaluations.

Rainfall Gross Irrigation Irrigation Relative Relative Water
Season Applications Efficiency! Estimated Productivity

(MI/ha) Recoverable (%)2

Crystal (%)

HVE3 ZIMsched HVE3 ZIMsched HVE3 ZIMsched HVE3 ZIMsched

High 13.1 9.8 58 66 102 100 100 114

Medium 14.6 10.7 64 77 104 100 100 120

Low 16.8 13.8 69 77 103 100 100 113

Mean 14.8 11.4 64 73 103 100 100 116

! Irrigation Efficiency
2 Water Productivity

3HVE

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
= Estimated Recoverable Crystal (tlha/annum) x 100 / (Rain + Gross Irrigation

Water Applied) (mm)
Scheduling using guidelines recommended by Hippo Valley Estates (Appendix
F)

The effect of the design / lay-out and operation of the inter-row furrow irrigation systems at

HVE was evaluated by comparing simulating irrigation efficiency and relative ERC yields to

the performance of a hypothetical furrow irrigation system designed and laid out according to

appropriate standards, i.e. with a DU1q of 75 and with the amount of water applied per

irrigation application equal to 60 % of the soil's TAM value. The results of this analysis are

shown in Table 4.13.
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Table 4.13 Performance of inter-row furrow irrigation systems at Hippo Valley Estates
compared with a hypothetical benchmark system which had a DU1q of 75 and
the amount of irrigation water applied per application equal to 60 % of the
soil's total available moisture (TAM), and irrigation scheduling using
ZIMsched 2.0.

System Irrigation Relative Average
Efficiencyl Estimated Drainage

Recoverable Water (mm)
Crystal (%)

HVE hve
2 64 103 703

HVE ZIMsched
3 73 100 416

Benchmark 77 104 350

I Irrigation Efficiency
2 HVE hve

3 HVE ZIMsched

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Furrow systems performance as measured but scheduling using Hippo Valley's
scheduling recommendations

= Furrow systems performance as measured but scheduling using ZIMsched 2.0

With the improved DU1q, and the simulated irrigation efficiency was increased from 64 % to

77 %. However, the potential to increase yields of ERC using the HVE water management

recommendations was minimal. Thus, assuming HVE's existing irrigation scheduling

recommendations, the major benefit from improving the distribution uniformity of applied

water and reducing the amount of irrigation water applied per application would be water

saving, and reduced drainage, similar to the results for the in-row systems. If ZIMsched 2.0

was used for irrigation scheduling, the benefit in simulated yields of ERC resulting from the

improved DU1q was approximately 4 %. This is not as high as the 8 % potential improvement

for the in-row furrow irrigation systems because the inter-row furrows were already

performing at a higher standard in terms of DU1q•

4.2.3.7 Mkwasine Estate: In-row furrow irrigation

The results of the analysis of the water management system used by ME given the in-row

furrow performance characteristics on that estate are shown in Table 4.14. The ME

scheduling recommendations are described in Appendix G.
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Table 4.14 Comparison of the performance of in-row furrow irrigation systems:
Mkwasine Estate water management guidelines vs scheduling with ZIMsched
2.0. Values shown are based on average system performance characteristics
derived using all the in-row furrow evaluations

Rainfall Gross Irrigation Irrigation Relative Relative Water
Season Applications Efficiencyl Estimated Productivity

(Ml/ha) Recoverable (%)2

Crystal (%)

MEY ZIMsched ME3 ZIMsched MEJ ZIMsched ME3 ZIMsched

High 15 9.5 52 64 104 100 100 125

Medium 17.4 11.0 55 74 105 100 100 135

Low 18.1 14.5 62 71 104 100 100 114

Mean 16.8 11.7 56 70 105 100 100 125

1 Irrigation Efficiency
2 Water Productivity

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
= Estimated Recoverable Crystal (tlha/annum) x 100 I (Rain + Gross Irrigation

Water Applied) (mm)
= Scheduling using guidelines given by Mkwasine Estate (Appendix G)

On average gross irrigation water applied from the furrow edge was reduced from 16.8 Ml/ha

to 11.7 Ml/ha (i.e. 30 %) using ZIMsched 2.0. However, because of the spatial variations in

applied water, reflected in the low DUlq of 52 (cf. Table 4.3), the more precise irrigation

scheduling resulted in a slight reduction in the simulated yield of ERC of approximately 5 %.

The simulated water productivity was increased by 25 % through using ZIMsched 2.0 for

irrigation scheduling. There was a slight decrease in applied water relative to the in-row

furrow irrigation systems on HVE. This was due to the deeper soils at ME, i.e. the average

TAM of furrows evaluated at ME was 100 mm versus an average TAM of furrows evaluated

at HVE of only 72 mm. The associated irrigation cycles were, therefore, slightly longer.

Again, it should be noted that losses in unlined furrow feeder canals were not added to the

water requirements shown here.

The effect of the design / lay-out and operation of furrow irrigation systems at ME was

evaluated as for ~VE. The results are shown in Table 4.15.
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Table 4.15 Performance of in-row furrow irrigation systems at Mkwasine Estate
compared with a hypothetical benchmark system which had a DU,q of 75 and
the amount of irrigation water applied per application equal to 60 % of the
soil's total available moisture (TAM), and irrigation scheduling using
ZIMsched 2.0

System Irrigation Relative Estimated Average
Efficiencyl Recoverable Drainage

Crystal (%) Water
(mm)

ME Me 56 104 946

ME ZlMsched 70 100 509

Benchmark 77 105 360

, Irrigation Efficiency
ME Me

ME ZIMsched

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Furrow systems performance as measured but scheduling using Mkwasine
Estate's scheduling recommendations

= Furrow systems performance as measured but scheduling using ZIMsched 2.0

The potential to increase the irrigation efficiency of the in-row furrow irrigation systems at

ME was relatively large, with the results of this analysis showing that irrigation efficiency

could be increased from 56 % to 77 %. The potential to increase yields of ERC using the ME

water management recommendations was, however, relatively small, assuming drainage was

adequate. These results were similar to those for the in-row furrow irrigation systems on

HVE. Thus, assuming ME's existing irrigation scheduling recommendations, the major

benefit from improving the distribution uniformity of applied water and reducing the amount

of irrigation water applied per application would be water saving, and reduced drainage. If

ZIMsched 2.0 was used for irrigation scheduling, the benefit in simulated yields of ERC

resulting from the improved DU1q was approximately 5 %. This is not as high as the 8 %

potential improvement for the in-row furrow irrigation systems at HVE because the soils at

ME had higher values of TAM and the initial DU1q values were slightly higher than those at

HVE (cf. Table 4.3). Assuming irrigation water applications were scheduled using ZIMsched

2.0, the improved value of the DU1q resulted in the average simulated irrigation efficiency

increasing from 70 % to 77 %.
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4.2.3.8 Mkwasine Estate: Inter-row furrow irrigation

The results of the analysis of the water management system used by ME given the inter-row

furrow performance characteristics on that estate are shown in Table 4.16. On average, gross

irrigation water applied from the furrow edge was reduced by approximately 12 % relative to

ME's in-row furrow irrigation systems. However, because of the very poor uniformity of the

inter-row furrow irrigation systems evaluated at ME, which resulted in a DUlq of 28, the

yields for ME's inter-row furrow irrigation systems were simulated to be 12 % lower than the

yields on the in-row furrow irrigation systems. On average, water applications could be

reduced from 14.7 Ml/ha to 10.8 Ml/ha using ZIMsched 2.0 rather than the existing ME

irrigation scheduling recommendations. This represented a saving in water of approximately

27 %. As with the in-row furrow irrigation systems, the over-watering of the ME scheduling

system compensated for the spatial variation in water applications and resulted in slight

simulated benefit in yield of ERC of approximately 3 % relative to scheduling with ZIMsched

2.0. The simulated water productivity i.e. yield per unit of water applied, was increased by

approximately 21 % using ZIMsched 2.0 to schedule irrigation water applications.

Table 4.16 Comparison of the performance of inter-row furrow irrigation systems:
Mkwasine Estate water management guidelines vs scheduling with ZIMsched
2.0. Values shown are based on average system performance characteristics
derived using all the in-row furrow evaluations

Rainfall Gross Irrigation Irrigation Relative Relative Water
Season Applications Efficiency· Estimated Productivity

(MI/ha) Recoverable (%)2

er stal (%)

ME3 ZIMsched ME3 ZIMsched ME3 ZIMsched ME3 ZIMsched

High 13.1 9.2 52 63 102 100 100 119

Medium 15.2 10.2 55 71 103 100 100 130

Low 15.8 13.11 62 70 102 100 100 114

Mean 14.7 10.8 56 68 103 100 100 121

1 Irrigation Efficiency
2 Water Productivity =

=

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Estimated Recoverable Crystal (tlha/annum) x 100 / (Rain + Gross Irrigation
Water Applied) (mm)
Scheduling using guidelines recommended by Mkwasine Estate (Appendix G)
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The effects of the design / lay-out and operation of the inter-row furrow irrigation systems at

ME was evaluated similarly to the HVE systems. The results of this analysis are shown in

Table 4.17. Simulated irrigation efficiency was increased substantially from 56 % to 77 %,

and the simulated increase in the yield of ERe, assuming the ME water management

recommendations was also substantial, i.e. 14 %. When ZIMsched 2.0 was used for irrigation

scheduling the simulated benefit in the yield was even greater, i.e. approximately 17 %.

These potential increases were very large because the inter-row furrows evaluated at ME

were performing at a very low standard in terms of application uniformities, i.e. the initial

DU1q value of 28 was considerably lower than the benchmark DUlq value 75 (cf. Table 4.3).

Table 4.17 Performance of inter-row furrow irrigation systems at Mkwasine Estate
compared with a hypothetical benchmark system which had a DU1q of 75 and
the amount of irrigation water applied per application equal to 60 % of the
soil's total available moisture (TAM), and irrigation scheduling using
ZIMsched 2.0.

System Irrigation Relative Average
Efficiency I Estimated Drainage

Recoverable Water (mm)
Crystal (%)

ME Me
2 56 103 849

ME ZIMsched
3 68 100 508

Benchmark 77 117 360

I Irrigation Efficiency
2 ME Mc

3 ME ZIMsched

= Transpiration x iOOI (Rain + Gross Irrigation Water Applied)
= Furrow systems performance as measured but scheduling using Mkwasine

Estate's recommendations (Appendix G)
Furrow systems performance as measured but scheduling using ZIMsched 2.0

4.2.3.9 Triangle Estate: In-row furrow irrigation

All the furrow irrigation systems evaluated on TE were in-row furrow irrigation systems.

The results of the analysis of the water management system used by TE, given the in-row

furrow performance characteristics on that estate, are shown in Table 4.18. The Triangle

scheduling recommendations are described in Appendix E. The scheduling approach used at

TE was very different to the approaches used on HVE and ME. At TE, the first three

irrigation water applications were timed according to calendar days, and were intended to be

equivalent in magnitude to the soil's TAM value. Thereafter, a water budget was used based
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on A-pan equivalent evaporation and a crop factor of 1.0, with soil water deficits and

associated irrigation water applications intended to be equivalent to 50 % of the soil's TAM

(cf. Appendix E). The results for TE were based on the simulation of an April cut crop only.

Table 4.18 Comparison of the performance of in-row furrow irrigation systems:
Triangle Estate water management vs scheduling with ZIMsched 2.0. Values
shown are based on average system performance characteristics derived
using all the in-row furrow evaluations undertaken by the MIPU trained
evaluation teams

Rainfall Gross Irrigation Irrigation Efficiency! Relative Estimated Relative Water
Season Applications (MI/ha) Recoverable Crystal Productivity (%)2

(%)

Triangle3 ZIMsched Triangle3 ZIMsched Triangle3 ZIMsched Triangle3 ZIMsched

High 14.5 9.2 56 70 100 98.2 100 127

Medium 16.4 11.1 59 76 100 96 100 128

Low 18.3 14.9 66 76 100 99 100 117

Mean 16.4 11.7 60 74 100 98 100 124

1 Irrigation Efficiency
2 Water Productivity

3 Triangle

= Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
= Estimated Recoverable Crystal (t/ha/a) x lOO/Gross Irrigation Water Applied

(mm)
= Scheduling according to Triangle Estate irrigation scheduling recommendations

(Appendix E)

As with HVE and ME there were significant variations between seasonal irrigation water

applications, dependent on rainfall amounts. On average gross irrigation water applied from

the furrow edge was reduced from 16.4 MlIha to 11.7 MlIha using ZIMsched 2.0 rather than

the existing TE irrigation scheduling recommendations. This represented a saving in water of

approximately 29 %. However, because of the variations in applied water which are reflected

in the DU1q values, i.e. DUlq equal to 35 for the first three water applications and DU1q equal

to 61 for the subsequent water applications, the over-watering of the Triangle scheduling

system compensated for the poor spatial distribution uniformity of water applications and

resulted in only slight benefits in the simulated yields of ERC of approximately 2 % relative

to scheduling with ZIMsched 2.0, and assuming good drainage rates. Differences between

TE, HYE and ME were due mainly to differences in the average amount of irrigation water

applied per application, which were related to reported, soil TAM values. The average TAM

of the soils for fields evaluated at Triangle was 92 mm, which was greater than the average at

HVE, viz. 72 mm. The simulated water productivity, or yield per unit of water applied, was
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increased by approximately 24 % using ZIMsched 2.0. It should be reiterated that losses in

unlined furrows were not added to the water requirements shown here as they constitute a

separate and variable water loss, potentially but not always pertinent to furrow irrigation.

The effect of the design / lay-out and operation of in-row furrow irrigation systems at TE was

evaluated similarly to HVE. The results of this analysis are shown in Table 4.19.

Table 4.19 Performance of in-row furrow irrigation systems at Triangle Estates
compared with a hypothetical benchmark system which had a DU,q of 75, the
amount of irrigation water applied per application equal to 60 % of the soil's
total available moisture (TAM), and irrigation scheduling using ZIMsched
2.0

System Irrigation Relative Estimated Average
Efficiencyl Recoverable Drainage

Crystal (%) Water
(mm)

Triangle Trg
2 60 100 862

Triangle ZIMsched
3 74 98 575

Benchmark 79 100 463

1 Irrigation Efficiency
2 Triangle Trg

3 Triangle ZIMschcd

Transpiration (mm) x 100/ (Rain + Gross Irrigation Water Applied) (mm)
Furrow systems performance as measured, but scheduling using Triangle's
scheduling recommendations (Appendix E)

= Furrow systems performance as measured but scheduling using ZIMsched 2.0

The potential to increase the irrigation efficiency of the in-row furrow irrigation systems at

TE was relatively small, with the results of this analysis showing that irrigation efficiency

could be increased from 74 % to 79 %. The potential to increase yields of ERe using the TE

water management recommendations was also relatively small, assuming adequate drainage.

This indicates that at Triangle the major benefit in performance would come from improved

water management, rather than improvements to the design and layouts and hence the DUlq.

The DU1q for the fourth and subsequent irrigations of 61 was relatively good, although the

DU1q for the first three irrigation applications of 35 was very poor. Major benefits would

likely come from adjusting the amount of irrigation water applied per application in the first

three irrigation water applications. This amount should be reduced to 50 % of the soil's
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TAM value rather than using 100 % of the soil's TAM value, as was recommended in the

Triangle irrigation scheduling guidelines.

************

In order to evaluate the performance of water management and irrigation systems in the

Lowveld, a strategy was formulated which hinged on the development of an irrigation

systems simulation model to interpret results from evaluations undertaken by a Mobile

Irrigation Performance Evaluation Unit (MIPU). Based on in-field evaluations of irrigation

systems, the MIPU provided information on the distribution uniformity of water applications

(i.e. DU1q, SU or CU), the magnitude of these water applications relative to soil water holding

characteristics, and the watering (or irrigation scheduling) strategy used. While the

information and data from the MIPU were useful in their own right, considerable value was

added to the MIPU data and information by translating it into associated impacts on yields of

estimated recoverable crystal (ERC), water budgets and associated indices of irrigation

performance, such as irrigation efficiency and water use productivity. The credibility of

ZIMsched 2.0 for simulating yields of ERC for different soil, climate and irrigation regimes

was established by comparisons between observed and simulated crop yields.

One of the key findings of this study was that, if ZIMsched 2.0 were used for irrigation

scheduling, up to 30 % of the water presently used on an annual basis when there are no

water restrictions, could likely be saved. However, unless the distribution uniformity of

applied irrigation water is improved on the furrow and drip irrigation systems, in particular,

there was evidence that slight yield losses may occur with the more precise irrigation

scheduling, assuming that fields are adequately drained.

Most of the floppy, overhead sprinkler and centre pivot irrigation systems were performing at

levels close to those expected had they had been designed and installed to appropriate

standards. However, most of the drip irrigation systems were performing below potential.

This was largely due to in-field variations in applied water, caused by sub-standard system

design, installation and/or maintenance. Nevertheless, provided drip irrigation systems are

designed, installed and commissioned to an appropriate standard, and then operated and
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maintained correctly, simulations showed that they had a slight edge on the other irrigation

systems in terms of potential efficiency.

The simulated crop yields and irrigation efficiencies for the furrow irrigation systems were

limited by large variations in the amounts of water applied to individual furrows, and water

applications which were, on average, excessively high. Although the large water applications

did compensate, to a degree, for the variations in applied water between and down the

furrows, they also compromised efficiencies and could lead to further development of other

problems, including raised water tables and increased soil salinity levels. On deep soils with

high values of TAM and on fairly level topography, furrow irrigation could, theoretically, be

almost as efficient as sub-surface drip irrigation. The reason for this is that evaporation from

the bare soil surface is limited (because only a portion of the soil surface is wetted, and then

only relatively infrequently), there are no spray evaporation or wind drift losses and with

proper design and layout, high distribution uniformities (DU1q > 75) are theoretically

achievable. However, this study has shown that with furrow irrigation, there is a big gap

between potential theoretical performance and what is generally achieved in practice in the

Lowveld, particularly on the soils with low water holding capacities (or TAM values).

Most of the original scheduling recommendations developed in the Lowveld were based on

hand-moved sprinkler and furrow irrigation systems. This study has shown that the water

balance can vary considerably for the different types of irrigation systems. Differences were

attributed to variations in evaporation of water from the soil surface. Therefore, irrigation

scheduling guidelines should be tailored to specific types of irrigation system.

In addition to being useful for the evaluation of irrigation and water management systems,

ZIMsched 2.0 has other applications. For example, it can be used for the determination of

optimal irrigation system design capacities, deficit irrigation strategies and the development

of irrigation scheduling aids. Examples of the use of ZIMsched 2.0 for these applications are

described in Chapter 5.
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5. OTHER IRRIGATION AND WATER MANAGEMENT TOOLS

AND APPLICATIONS EMANATING FROM THIS RESEARCH

The main focus of the research described in this thesis was the development and application

of methods and tools to evaluate the performance of the irrigation and water management

systems in the Lowveld of Zimbabwe. In addition to this, methods and tools to determine

more optimal irrigation system design capacities and water management strategies were

developed. Furthermore, in order to facilitate the implementation of improved irrigation and

water management strategies, a range of irrigation scheduling aids was developed. These

additional developments and applications are described in this Chapter.

5.1 Tools and Methods to Support Strategic Irrigation Design and Water

Management Decisions

The maximum water delivery capacity of an irrigation system depends on limitations of

hardware which can have considerable cost, flexibility and efficiency implications. In order

to provide a high water delivery capacity, larger pumps, motors, pump-houses, mainlines,

sub-mains, laterals and/or canals are required. Therefore, designing or specifying irrigation

systems with excess capacity can result in substantial cost implications. On the other hand, if

the peak irrigation system capacity is too small, excessive crop yield losses may occur (cf.

Chapter 2, Section 2.3.4). For the purposes of this thesis, peak irrigation system capacity is

defined as:

"the highest rate at which an irrigation system can be used to supply water to a crop, in

units equivalent to millimetre per day (mm/d)"

Thus, a centre pivot which could be used to apply 30 mm of water every five days would

have a peak irrigation system capacity equivalent to 6 mm per day. In the majority of

irrigation systems designs, a comprehensive and deterministic investigation into the

relationships between peak irrigation system design capacities and predicted crop yields,

seasonal irrigation water applications and economic returns is seldom undertaken. Irrigation

systems are frequently designed (and potentially operated) such that a crop can be irrigated

without experiencing stress, even though such a strategy is unlikely to be optimal (Lecler et
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aI., 1994; English et aI., 2002). The development of a methodology to enable the selection of

more optimal peak irrigation system capacities and associated operating strategies, for

example, an appropriate deficit irrigation strategy, would be of great value. The use of

ZIMsched 2.0 for such an application is described here.

Crop yields and associated seasonal irrigation water applications associated with different

peak irrigation system capacities were simulated using daily climate data recorded at the

ZSAES during the period 1975 to 1992. Details of other information used in these

simulations are shown in Table 5.1. Frequency analyses of the simulated yields of estimated

recoverable crystal (ERC) and seasonal irrigation water applications are shown in Figures 5.1

and 5.2 respectively.

Table 5.1 Information used in ZIMsched 2.0 to simulate yields of estimated recoverable
crystal (ERC) and associated irrigation water use. Simulations were for a
crop cut in August and for different minimal irrigation cycle times of 7 days,
6 days, 5 days, 4 days and 3 days, i.e. equivalent to irrigation system
capacity limitations of 10 mm/d, 7.5 mm/d, 6 mm/d, 5 mm/d and 4.3 mm/d

Soil Irrigation CUI Total Net Gross Per cent of Dry-off
Texture System Available Irrigation Irrigation TAM at which period3

Type Moisture Water Water an Irrigation
(TAM) Application Application Water
(mm) (mm) (mm) Application

was Scheduled2

(%)
Sandy Centre

90 95 27 30 60 2xTAMClay Pivot

1 Christiansen's Uniformity coefficient (cf. Chapter 2)
2 If the soil water content was at a level less than 60 % of the soil's TAM value, an irrigation water application

was simulated to occur, provided the time in days since the last irrigation water application was greater than
the minimum irrigation cycle time. Otherwise the irrigation application was delayed until the time in days
since the last irrigation water application was greater than the minimum irrigation cycle time.

3 All irrigation water applications ceased when the amount of A-pan evaporation which would accumulate prior
to the harvest date was less than or equal to a value equivalent to 190 mm, or twice the value of the soil's
TAM (2 x TAM).
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Examination of the results shown in Figures 5.1 and 5.2 shows that:

• the peak irrigation system capacity had a considerable effect on the total amount of

irrigation water applied in a season (Figure 5.2);

• the potential yield which could be obtained was dependent on the system capacity

limitations (Figure 5.1);

• the marginal yield benefits decreased as the system capacities increased (Figure 5.1);

• increasing the system capacity beyond a certain limit resulted in minimal further crop

yield benefits, illustrated by a comparison of the water used and yields attained for

systems with capacity limitations of 10 mm/d and 7.5 mm/d ;

• correct irrigation scheduling is important, as indicated in the range of seasonal

irrigation water applications for a given system capacity (Figure 5.2); and

• with increasing system capacity the range in water applied becomes larger and the

potential for wastage greater (Figure 5.2).

Even greater value and perspective can be added to the information shown in Figures 5.1 and

5.2 by placing it into an economic context. The economic implications of the different

irrigation strategies were, therefore, estimated by calculating a net return per hectare (NRH)

and relative net return (RNR) using the simulated crop yield and water use information

together with reasonable production cost and revenue assumptions. Equation 5.1 and

Equation 5.2 were used respectively to calculate the NRH and the RNR (cf. Chapter 3.3). To

reiterate, the RNR reflects the opportunity cost of water by multiplying the NRH by a relative

production area which could be achieved using a certain fixed volume of water. For

example, assume Strategy 1 used 1000 mm of water per hectare and Strategy 2 used 500 mm

of water per hectare. Therefore, for every hectare irrigated using Strategy 1, two hectares

could be irrigated (in relative terms) using the same amount of water with Strategy 2.

NRH = (ERC yield x ERC price) - (base production costs) - (irrigation water applied x

water cost) - (irrigation water applied x electricity cost) - (ERC yield x 100/12 x

harvesting and haulage cost) - (fixed irrigation interest charges) - (fixed irrigation

depreciation charges) Eq. 5.1
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RNR = NRH x (maximum water used considering all systems and seasons)/(water used

for the given system and season) Eg. 5.2

The estimated interest and depreciation charges for centre pivot irrigation systems with

different peak capacity limitations are shown in Table 5.2.

Table 5.2 Fixed irrigation costs for different irrigation system capacities

Peak Irrigation Capital Cose Interese Depreciation3

System Capacity (R/ha) (R/ha) (R/ha)
(mm/d)

10.0 13 961 838 1396

7.5 12088 725 1208

6.0 11858 711 1186

5.0 10872 652 1087

4.3 10 723 643 1072

I Capital costs were based on estimates provided by Zartmann (2004). These cost estimates included variations
due to mainline pipe sizes, pump houses and pumps but assumed in-field costs of the centre pivot
infrastructure were the same for all systems

2 (Purchase Price + Salvage Value)/2) x i/lOO
3 (Purchase Price - Salvage Value)/Lifespan
Salvage Value = RO.OO
Lifespan = 10 years
Interest Rate (i) = 12 % p.a.

Other cost and revenue information which was assumed to be consistent for all systems is

shown in Table 5.3.

Table 5.3 Revenue and cost information which was common to all systems and used in
the economic analysis

Parameter Value Units
Water costs 0.1233 Rlm3

Electricitv costs 1.15 Rlmm.ha
Harvesting and Haulage Costs 45 Rlton 1

Common Base Production Costs 4000 Rlha
Estimated Recoverable Crystal Price 1250 Rlton

1 Harvesting and haulage costs were based on tons of sugarcane. Tons of sugarcane were estimated from yields
of estimated recoverable crystal assuming a 12 % ERC content per ton sugarcane (cf. Equation 5.1).

The results of a frequency analysis of the NRH and RNR for the various irrigation system

capacities are shown in Figures 5.3 and 5.4 respectively. The information shown in Figures
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5.3 and 5.4 places a very different perspective on the information shown in Figures 5.1 and

5.2.
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Although the system with the highest capacity of 10 mm/d gave the best yields of ERC (cf.

Figure 5.1), from an economic perspective, this was not the best system. If availability of

land limited production (relative to available water) then the system with a capacity

equivalent to 7.5 mm/d was estimated to give the best overall returns (cf. Figure 5.3).

However, if water was the factor which limited production (relative to available land), then

the system with a capacity of only 5 mm/d (cf. Figure 5.4), gave the best overall profitability.

This case study application thus reinforces, and provides an explicit demonstration, of the

deficit irrigation concepts described in Chapter 2, Section 2.3.4.

Peak irrigation system capacities can also have an impact on irrigation efficiency, particularly

with regard to centre pivots. The reason for this is that with centre pivots the outer towers

cover a relatively larger area compared with the inner towers in a given time period. Thus the

irrigation water application rate at the outer towers needs to be much higher than the water

application rate closer to the centre of the pivot in order to maintain a constant irrigation

water application depth. An associated constraint is that the irrigation water application rate

at the outer towers of a centre pivot can often exceed soil infiltration rates leading to

excessive runoff and reduced efficiency. This limits the recommended size of the pivot and

can have further cost implications because the per hectare costs of in-field centre pivot

irrigation systems infrastructure decreases with increasing pivot size (Reinders and Louw,

1984).

5.2 On-Farm Irrigation Water Management Tools

Many water-budgeting tools, or procedures for irrigation water management, have been

developed (for example, Clowes and Breakwell, 1998; Singels et aI., 1998; Annandale et al.,

1999); however, few of these were seeing widespread use amongst growers in the Lowveld as

effective management aids. Factors contributing to an explanation of this lack of application

of these tools included the following.

• Water budgeting methodologies which are based on hand calculations can be

confusing, excessively time-consuming, error prone and often require that the soil

plant-atmosphere continuum be over-simplified in order to facilitate easy calculations.
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• Computer simulation models, whilst having great potential for facilitating more

efficient and accurate water budgeting, are often unfamiliar and confusing to many

growers, especially when it comes to configuring them for a particular situation or

"resetting/re-initialising" them if simulations do not match field observations at a

particular time.

• Furthermore, while many growers are computer literate, many other growers do not

yet have access to computers or are averse to using computers.

Even if irrigation scheduling consultants operate computer simulation models and/or other

tools and pass information on to farmers, this is not always ideal. Many consultants begin to

lose touch with the realities on the ground as they are often located at some distance from

farms.

There is no doubt, however, that water budgeting tools, when used correctly, can facilitate

substantial improvements in irrigation water management (cf. Chapter 4). A major challenge

is to match accurate water budgeting with ease of use from a farmer's perspective. With this

in mind, two water management decision support tools were developed, namely:

•

•

a spreadsheet-based water management and yield forecasting tool aimed at growers

who were computer literate, and

irrigation scheduling charts or calendars aimed at growers who were adverse to the

use of computers. These tools are described as follows.

5.2.1 A spreadsheet-based irrigation scheduling and yield forecasting tool

Spreadsheets were selected as the basis for developing an irrigation scheduling tool option

because they are familiar to many people and have very powerful in-built functionality. The

water budgeting algorithms used in ZIMSched 2.0 formed the basis of the spreadsheet-based

irrigation scheduling tool. These algorithms and their validity are described in Chapter 3.

They were further endorsed through a verification study described in Chapter 4. The

spreadsheet-based irrigation scheduling and yield forecasting tool was essentially a simplified

version of ZIMsched 2.0. It was tailored to suit the needs of growers for on-farm irrigation

105



water management decisions whilst still incorporating enough of the complexities of water

budgeting such that the following processes were represented:

• evaporation from the soil surface and transpiration in relation to:

atmospheric evaporative demand,

available soil water, including excess and/or deficient conditions,

crop and rooting characteristics (the development of which were related to

temperature),

irrigation system type, for example, sub surface drip irrigation versus overhead

sprinkler irrigation,

• stormflow (surface runoff), and

• deep percolation, all of which relate to

• rainfall effectiveness.

The configuration, information/data requirements, operation and utilities of the spreadsheet

based irrigation scheduling tool, which was named ZIMsched are summarised as follows.

5.2.1.1 Input information / data

The various components of the water budget and the crop yield estimate are represented in

columns in a spreadsheet, as shown in Figure 5.5. Upon initial configuration the user needs

to input:

•

•

•

•

•

•

•

soil texture class,

maximum rooting/soil depth,

estimated field drainage rate (rapid, average or slow),

type of irrigation system, for example, furrow or sprinkler,

initial soil cover fraction, for example, if the cane was harvested green and there was

a decent trash blanket, this would be set to 0.99,

plant or cut/harvest date,

field name.
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Figure 5.5 ZIMsched spreadsheet columns for a sugarcane crop planted in March 2000

The required climate and irrigation input information, were:

•

•

•

•

•

daily maximum temperature,

daily minimum temperature,

daily A-pan reference evaporation,

daily rainfall, and

irrigation water applied.

These are also shown as columns in the spreadsheet (cf. Figure 5.5).

Default values for a range of parameters needed for the water balance calculations, including,

for example, field capacity, porosity and total available moisture (TAM) of the soil for the
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field in question, are estimated in ZIMsched based on lookup tables using values from

Schulze et al. (1995) and AlIen et al. (1998). Values for these parameters can also be input

directly or modified by a user if better information is available.

5.2.1.2 Representation of fields

Numerous inter-dependent fields can be represented in a single spreadsheet file, with each

field on a different notebook sheet. For example, a user may have a centre pivot divided into

four sectors, with each sector planted at different times of the year. In ZIMsched each sector

could be represented in the same file, but on a different notebook sheet. Input information for

daily maximum temperature, minimum temperature, A-pan reference evaporation and rainfall

need only be entered once in the climate file as the notebook cells for a particular date on the

water balance sheets are linked to the corresponding notebook cells for the same date in the

climate file, also via lookup functions. Thus the climate related input data/information is

carried through automatically to all linked fields. The components of the water budget are

calculated and updated automatically once changes to input information are made.

5.2.1.3 Determination of irrigation water applications

When using ZIMsched, a user enters recorded daily values for maximum and minimum

temperature and A-pan equivalent evaporation in a common "weather.xls" weather

spreadsheet file. Rainfall and irrigation water applications are best input per field and the

user then simply observes changes to the estimated soil water status and the date when the

estimated soil water is expected to reach a level at which an irrigation water application is

needed. In order to extrapolate into the future, a user can use long term mean daily values for

climate data (cf. Figure 5.5) or use the in-built spreadsheet functionality to calculate the mean

of the previous 'x' days and extrapolate using these values. In the sugar industry in the

Lowveld representative recorded values for daily maximum and minimum temperature as

well as A-pan evaporation data were available from the ZSAES or from one of the three large

Estates. Users were advised to record the rainfall and irrigation water applications associated

with individual fields. In order to simplify the appearance of ZIMsched, users can elect to

hide components of the water budget that may not be of interest, or that may be confusing, by

using the 'columns hide' facility in spreadsheets.
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5.2.1.4 Other ZIMsched utilities

Additions or modifications to ZIMsched to suit user requests were easily added. For

example, a request by users was to have a summary notebook sheet which showed on a single

page the estimated soil water status for a particular grouping of inter-dependent fields. This

is shown in Figure 5.6.
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Figure 5.6 An example of a tailored summary notebook sheet in ZIMsched, this example
showing the soil water status of a particular grouping of fields

Another request was to have a notebook sheet which contained summaries of weekly water

orders which depended on field areas, application amounts, conveyance and balancing dam

losses. Conveyance losses are estimated as a percentage of water conveyed and farm

balancing dam losses are estimated based on the surface area of the dam and daily A-pan

values adjusted for open water bodies (Schulze et ai., 1995a) and an assumed percentage

seepage loss. The information in these summary sheets was generated automatically, based

on the water budgeting notebook sheets and user input regarding actual and expected

irrigation water applications.
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5.2.1.5 Crop yield benchmarks and forecasts

ZIMsched has powerful facilities for yield forecasting and benchmarking. Yield estimates for

selected historical years can easily be compared to corresponding estimates for the present

season. The present season can be extrapolated to a harvest date, assuming various climate

scenarios, for example, using long term mean daily climate data or daily climate data from

historical seasons associated with particularly good or bad climatic conditions. Both

potential yields and actual yields can be compared. Potential yields are based on

transpiration estimated under conditions of no soil water stress effects while actual yields are

based on transpiration estimates as influenced by soil water stress resulting from either too

much or too little water.

5.2.1.6 Useful in-built spreadsheet functions

The in-built charting options in spreadsheets are a particularly useful tool and enable various

charts to be quickly updated or designed in ZIMsched. For example, a chart showing

estimated soil water status, the soil water status at which water stress is initiated and the

associated rainfall and irrigation applications is shown in Figure 5.7. Another useful chart

option shows the soil water status of a particular inter-dependent field grouping which

enables a user to see at a glance the relative wetness of the selected fields. ZIMsched has

many other management applications, for example, managing and recording fertilizer

applications so that chances of leaching are minimised, or displaying day-lengths so that a

crop may be deliberately stressed when day-lengths may otherwise promote undesired

flowering for crops harvested late in the season. Seasonal summaries and statistics of the

various components of the water budget are available, for example, irrigation water

applications are easily calculated in ZIMsched using the in-built spreadsheet functions, for

example, "=average", for averaging, or "=sum", for summation. A major advantage of using

spreadsheets is that the user can quickly tailor the basic tool to suit specific needs without

having to wait for a specialist computer programmer to make the desired changes/additions.
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Figure 5.7 Graph showing variations in estimated soil water content (mm), soil water
stress thresholds (mm) together with rainfall (mm), irrigation (mm) and cane
yield (t/ha). Note: -ve soil water values indicate depletion below the drained
upper limit

5.2.2 Irrigation scheduling charts and calendars

While many farmers growing sugarcane under irrigation already were, or were becoming,

computer literate, many others were either averse to the use of computer-based decision

support tools, or did not have easy access to computers. This was particularly evident with

emergent small-scale farmers. Therefore, simple-to-use charts showing when irrigation water

should be applied were developed to provide such farmers with an appropriate water

management decision support option.

Initially, ZIMsched was used to develop charts which showed the average number of days

between successive irrigation water applications for cane cut at different times during the

harvest season, and for different types of irrigation systems on different soils. A robust

methodology to determine and account for effective rainfall was also developed for use with

the charts. The information provided in the charts could easily be transcribed to standard

calendars which provided an easy-to-use format for an irrigation scheduling and planning

tool.
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The potential benefits of these irrigation scheduling charts, which are described in detail in

Appendix H, based on Lecler (2003) were not, however, quantified nor assessed in

comparison to either more sophisticated or less sophisticated irrigation scheduling

approaches. Thus, following on from this initial work, the author together with an under

graduate final year Agricultural Engineering student, Ria Moothilal, developed a similar set

of irrigation scheduling guidelines for the Pongola region of South Mrica, and evaluated this

approach to irrigation scheduling by comparison with more sophisticated and less

sophisticated approaches to irrigation scheduling (Lecler and Moothilal, 2004). The irrigation

scheduling guidelines developed by Lecler and Moothilal (2004) showed the recommended

irrigation cycles for different months of the year, dependent on ratooning/cutting dates and

type of irrigation system. The potential use of these guidelines for scheduling irrigation water

applications using centre pivot irrigation systems was evaluated and is discussed here, based

on the paper by Lecler and Moothilal (2004).

5.2.2.1 Background to an evaluation study of the irrigation scheduling charts

Daily climate data obtained from the Pongola weather station in South Mrica for the period

1968 to 2001 were used in the evaluation study. The Pongola weather station is located at

latitude 27° 24' south and longitude 31° 35' east. Mean values of maximum and minimum

temperatures and sugarcane reference evaporation were determined for each day of the year.

This information was then used in the CANESIM sugarcane crop yield and water budgeting

computer simulation model (Singels et ai., 1998) to determine the number of days between

successive 25 mm irrigation water applications, assuming no rainfall to have occurred. This

is termed the 'dry cycle'. Dry cycle values were determined for the first and second half of

each month of the year, for harvest dates coinciding with the first day of each month in the

March to December cutting season. An example of the dry cycle values for a crop cut on 1

March is shown in Table 5.4, where the irrigation cycle (or days between irrigation water

applications) for the first half of May is given as eight days, and for the second half of May,

nine days. The CANESIM model was used rather than ZIMsched because CANESIM had

been developed and verified under South Mrican conditions (Singels et al., 1998; Singels et

al., 1999) and the study was undertaken after the author had left Zimbabwe and was located

in South Mrica.
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Table 5.4 Irrigation cycle lengths for use with centre pivots in Pongola. The cycles
were determined for the first and second half of each month (shown by /)
using the CANESIM computer simulation model (Singels et al., 1998)
assuming no rainfall, a March cut crop, no drying-off period and water
applications of 25 mm per application (Lecler and Moothilal, 2004)

Month Mar Apr May Jun Jut Aug Sep Oct Nov Dec Jan Feb

Cycle 28/10 10/9 8/9 9/9 8/8 6/5 4/4 3/3 3/3 3/3 3/3 3/3

The methodology used to account for rainfall was an adaptation of that originally proposed

by the author (Lecler, 2003; cf. Appendix H). It is described here as follows. Using the daily

mean cane reference evaporation (Ecref) values for Pongola, the monthly Ecref values were

determined, as shown in Table 5.5. To account for effective rainfall, the amount of rain

recorded was divided by the respective mean monthly Ecref value. This result, rounded down

to the nearest whole number, was the number of days to be added to the dry cycle associated

with a particular month. The number of days that were added per 'rainfall cycle' was limited

to a maximum of six. A rainfall cycle was defined as a group of consecutive days on which

some rain falls, i.e. a rainfall cycle starts on the first day of rainfall and ends when there is a

day of no rain. For example, if the following amounts of rainfall were recorded for 10 days: 0

mm, 20 mm, 48 mm, 23 mm, 0 mm, 40 mm, 0 mm, 0 mm, 60 mm and 0 mm, there would be

three rainfall cycles, namely, days 2, 3, 4, day 6, and day 9. The procedures used to

determine the Ecref values are described by McGlinchey and Inman Bamber (1996a).

Table 5.5 Monthly mean values of daily cane reference evaporation (Ecref) for Pongola
(Lecler and Moothilal, 2004)

Month Jan Feb Mar Apr May Jun Jut Aug Sep Oct Nov Dec

Erer (mm/day) 6.1 5.3 4.4 3.5 2.9 2.6 2.8 3.6 4.5 4.9 5.5 5.9
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5.2.2.2 Using the irrigation scheduling charts

The irrigation scheduling charts show the irrigation cycle lengths for each month. These are

dependent on a particular harvest date, and the rainfall rule is used to account for the effect of

rainfall on these pre-determined irrigation cycles. For example, consider a crop cut on 1

March:

Step 1: Within the first week after cutting, apply sufficient water to refill the soil profile to the

drained upper limit (i.e. field capacity), typically around 50 mm.

Step 2: Look up the dry cycle value for the current month, i.e. March initially in this example.

This dry cycle value is the number of days between successive irrigation water

applications. The next irrigation water application would therefore be planned for 30

March, i.e. the dry cycle value for the first half of March is 28 (ct. Table 5.4), and

there are 28 days between 1 March when the crop was cut and 30 March, which is the

date of the next planned irrigation water application.

Step 3: If it rains before the next proposed irrigation water application, apply the rainfall rule

and delay the proposed irrigation application date for a period equal to the number of

days determined using the rainfall rule. Continue this procedure until the proposed

irrigation application date is reached. For example, say rain caused a further five days

to be added on to the March dry cycle value, this would result in the next application

date being delayed until 4 April. An irrigation water application of 25 mm should then

be applied on this day. April would now be the current month, therefore look up the

dry cycle value associated with the beginning of April (for a March cut crop), which

is given as 10 days in Table 5.4. The next irrigation application should then take place

on 15 April (after counting 10 days) if there is no further rain.

Steps 2 and 3 would be repeated until drying off or harvest. In this investigation it was

assumed that irrigation continued until harvest.

5.2.2.3 Evaluation of the irrigation scheduling charts

Scheduling irrigation water applications using the pre-determined irrigation cycle guidelines

and rainfall rule (CY-RR), was compared with scheduling using near-real-time daily weather

data and the CANESIM model (C-NRW). In addition, both these scheduling approaches were
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compared with another two less sophisticated, irrigation scheduling approaches. To expedite

this procedure, a computer program was written by Ria Moothilal (under the author's

guidance and supervision) to perform the abovementioned CY-RR implementation steps for

crops harvested in months March until December of each year from 1968 to 2001. The

program determined the dates on which irrigation application amounts of 25 mm would have

been applied if the cycle guidelines and rainfall rule had been used in each of these cropping

seasons.

Simulated trials for each season were then carried out. First, CANESIM was set to irrigate

automatically whenever 25 mm of water had been depleted from the soil profile, with the

constraint of a minimum irrigation cycle time of three days, i.e. based on the assumption that

to apply 25 mm with a centre pivot would require at least three days. After this, CANESIM

was set such that irrigation water applications were simulated to take place according to the

irrigation dates applicable to the CY-RR scheduling method. As a comparison with what a

grower may be doing in practice, a further two methods of scheduling were simulated in

CANESIM. Both methods had fixed irrigation cycles, described as follows:

Method 1: 25 mm of water applied on a 3-day cycle in summer and a 7-day cycle in winter.

Method 2: 25 mm of water applied on a 7-day cycle in summer and a 14-day cycle in winter.

'Summer' included the months of October through to March, and 'winter' the months April

through to September. Other information used in the simulations is given in Table 5.6.

Table 5.6 Information used for the CANESIM simulation trials.

CANESIM Variable Value

Total available moisture (mm) 100

Allowable depletion level (mm) 70

Irrigation refill level (mm) 95

Crop starting year, month, day As per trial

Crop ending year, month, day As per trial

Irrigation system Sprinkler

Initial soil water content (mm) 70

Row spacing (m) 1.5

Ratoon or plant crop Ratoon
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5.2.2.4 Economic analysis of the irrigation scheduling charts

For the economic analysis, the four different scheduling approaches were compared in terms

of Net Returns per Hectare and Relative Net Returns, as defined in Equations 5.3 and 5.4.

Note that for this analysis base production costs were assumed constant for every scenario.

NRH =

RNR =

(Gross revenue) - (base production costs) - (irrigation water applied x

water cost) - (irrigation water applied x electricity cost) - (RV yield x 100/12 x

harvesting and haulage cost) Eg.5.3

NRH x (maximum water used considering all scheduling options and seasons)/(water

used for the given system and season) Eg.5.4

In South Africa, payment is determined by the 'relative value' (RV) of the cane rather than

estimated recoverable crystal (ERe), thus gross revenue is the product of tons 'relative value'

(RV) and the RV price. Base production costs, for example, herbicides, labour and seed,

were assumed equal for all scheduling scenarios. The relative net return allowed for the

opportunity cost of water to be accounted for; for example, when water savings could be used

to increase the production area, or to increase average production over a number of drought

seasons.

The mean of the simulated crop yields and associated mean of irrigation amounts applied for

the four different methods of scheduling were used in the economic analysis. A management

factor was used to reduce the simulated cane yields to 80% of their initial values, so that the

analysis was more representative of typical conditions in practice rather than under research

conditions. The cost and revenue assumptions made for the economic analysis are shown in

Table 5.7.

Table 5.7 Information and costs used for the economic analysis

Parameter Value Units
Water costs 0.1233 R/mJ

Electricity costs 1.15 R/mm.ha
Harvesting and haulage costs 45 R/ton
Common base production costs 4000 Ma
RV price 1250 R/ton
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5.2.2.5 Results and discussion: Yield analysis

A scatter plot of simulated yields is shown in Figure 5.8. On average, the yields simulated

when scheduling according to the pre-determined cycles and rainfall rule (CY-RR) were very

close to the yields simulated when scheduling according to the CANESIM model and near

real-time weather data (C-NRW). Quantitative measures of the yield comparison are given in

Table 5.8. The 2 % difference in mean simulated crop yields, coupled with the close to unity

values of d and r, showed that, overall, scheduling using the CY-RR method was very

effective when compared with the C-NRW method, even though there were a few years when

the yields were substantially lower (cf. Figure 5.8).
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Figure 5.8 Scatter plot comparison of simulated sugarcane yields using CANESIM and
near-real-time weather data and cane yields using the pre-determined
irrigation cycles and rainfall rule, to schedule irrigation water applications
(Lecler and Moothilal, 2004)

Table 5.8 Quantitative measures of a comparison between cane yields simulated using
the CANESIM model and near-real-time weather data (C-NRW) to schedule
irrigation water applications and cane yields simulated using the pre
determined cycles and rainfall rule (CY-RR) to schedule irrigation water
applications (Lecler and Moothilal, 2004)

C-NRWmean CY-RRmean N a b RMSE d r

129 126 340 13.323 0.876 4.428 0.930 0.914

Terms N, b, d and rare dimensionless, whereas the other terms are in tons/hectare.
C-NRWmean = mean of simulated yields obtained using the CANESIM model and near-real-time weather data

(t/ha)
CY-RRmean = mean of simulated cane yields if irrigation applications were timed using the pre-determined

cycles and rainfall rule (t/ha)
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N =
a, b =

RMSE =
d
r =

sample size (number of simulated trials run)
y-intercept and slope respectively, of least squares regression between CY-RR yields as the
dependent variable and C-NRW yields as the independent variable
root mean squared error (CY-RR compared with C-NRW)
index of agreement where a value of 1.00 would indicate perfect agreement (Wilmott, 1981)
correlation coefficient (Pearson's r)
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5.2.2.6 Results and discussion: Analysis of seasonal irrigation water applications

A scatter plot of annual (seasonal) amounts of irrigation water applied is shown in Figure 5.9.

Irrigation water applied varied greatly, depending on the climate during the cutting season.

However, an important result was that the majority of the data points were below the 1 : 1

line, indicating that, on average, scheduling using the CY-RR method used less water than

scheduling according to C-NRW. Quantitative measures of amounts of irrigation water

applied are given in Table 5.9.

Irrigation water applied when scheduling using CANESIM and near-real-time weather data (mm)

Figure 5.9 Scatter plot comparison of simulated amounts of irrigation water applied
using CANESIM and near-real-time weather data and cane yields using the
pre-determined irrigation cycles and rainfall rule, to schedule irrigation
water applications (Lecler and Moothilal, 2004)

The RMSE value of 129 mm shows that there was about a 11% difference in simulated

seasonal irrigation water applications, even though the means of all simulated seasons were

much closer. On average, the amount of irrigation water applied simulated using CY-RR is

less than that simulated using C-NRW. The values of 'd' and 'r' both indicate reasonable

agreement and correlation. This is important because, ideally, the CY-RR approach should
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reflect the influence of a particular season's climate, in particular rainfall, similarly to

scheduling with C-NRW. The regression coefficients, a and b and scatter plot shown In

Figure 5.9, show that in low rainfall years when seasonal irrigation amounts are high, the CY

RR method of scheduling results in less water being applied than when scheduling using the

C-NRW method, whereas the opposite is true in seasons of high rainfall. Although there were

differences in excess of 200 mm in the seasonal amounts of irrigation water applied, this had

a limited detrimental effect, as the difference in means of simulated crop yields over all

seasons was only 2%. This indicates that the CY-RR method of scheduling is robust, but not

necessarily optimal in all seasons. Further evaluation of the CY-RR approach on soils with

lower TAM values, which may not be as 'forgiving', is advised.

Table 5.9 Quantitative measures of a comparison between annual amounts of irrigation
water applied, simulated using the CANESIM model and near-real-time
weather data (C-NRW), compared with annual amounts of irrigation water
applied simulated if irrigation applications were timed using the pre
determined cycles and rainfall rule (CY-RR) (Lecler and Moothilal, 2004)

C-NRWmean CY-RR".ean N a b RMSE d r

1086 1055 340 469.5 0.539 129 0.849 0.800

Terms N, b, d and rare dimensionless, whereas the other terms are in tons!hectare
C-NRWmean = mean of simulated irrigation water applied using the CANESIM model and near-real-time

weather data (t!ha)
CY-RRmean = mean of simulated irrigation water applied if irrigation applications were timed using the pre-

determined cycles and rainfall rule (t!ha)
N = sample size (number of simulated trials run)
a, b = y-intercept and slope respectively, of least squares regression between CY-RR water applied

the dependent variable and CY-NRW water applied as the independent variable
RMSE = root mean squared error (CY-RR compared with C-NRW)
d = index of agreement, where a value of 1.00 would indicate perfect agreement (Wilmott, 1981)
r = correlation coefficient (Pearson's r)

5.2.2.7 Results and discussion: Economic comparison

The results of the economic analysis are shown in Table 5.10. The difference between the

NRH, whether scheduling with C-NRW or CY-RR, was negligible. However, the difference

between either one of these more scientific scheduling approaches, and the less sophisticated

scheduling approaches typical in practice and represented by Method 1 or Method 2, was

substantial, i.e. from RI 079 per hectare up to R2 687 per hectare. The inefficiency of
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Method 1 meant that it required 21.93 MI of water per hectare, which was more than double

the water required when scheduling using the CY-RR, C-NRW or Method 2. Apart from the

high power and water costs, this meant that for everyone hectare irrigated using Method 1,

the same amount of water could have been used to irrigate more than two hectares using any

of the other scheduling methods. Relative overall returns if water limited production could,

therefore, be increased by approximately R3 485 per hectare irrigated according to Method 1,

by increasing the relative production area, for example, during droughts, and scheduling

according to C-NRW or CY-RR. While Method 2 used the lowest amount of water and had

relatively low power and water costs, the timing of the water applications was not optimal.

This was reflected in the low simulated crop yields and the relatively lower NRH and RNR

compared with scheduling using C-NRW and CY-RR. The mean of the yields simulated

using Method 2 for scheduling, was approximately 14% less than the mean of yields

simulated using C-NRW, CY-RR or Method 1.

Table 5.10 Economic comparison of simulated irrigation scheduling scenarios (Lecler
and Moothilal, 2004)

C-NRW CY-RR Method 1 Method 2
Mean simulated cane yield (t/ha/a)' 103 101 102 89
RV equivalent @ 12% RV (t!ha/a) 12.4 12.1 12.3 10.7
Irrigation water applied (MI!ha) 10.86 10.55 21.93 9.79
Affected variable costs:

Water (Rlha) 1304 1266 2631 1175
Power (Rlha) 1249 1213 2522 1126
Harvesting and haulage (Rlha) 4644 4546 4607 4007

Common base production costs (Rlha) 4000 4000 4000 4000
Revenue (Rlha) 15480 15153 15356 13 358
(a) Net return per hectare (NRH, Rlha)o 4283 4128 1596 3049
(b) Relative water limited production area (ha) 1 1.03 0.50 1.12
(c) Relative net returns = (a) x (b) (RNR, R) 4283 4251 798 3415

C-NRW = irrigation scheduling using the CANESIM model and near-real-time weather data
CY-RR = irrigation scheduling using the pre-determined irrigation cycles and the rainfall rule
Method 1 = 25 mm of irrigation water applied every 3 days in summer and every 7 days in winter
Method 2 = 25 mm of irrigation water applied every 7 days in summer and every 14 days in winter
• Simulated yields shown here have been adjusted downwards, assuming an 80% management factor
b Net return per hectare, and therefore, the relative net returns shown here include affected variable costs of
water, power and harvesting and haulage and common base production costs, for example, fertiliser, herbicides,
seedcane and labour, which were assumed equal to R4 OOO!ha.

The aim of this investigation was to refine and to evaluate a potentially simple, but effective,

irrigation scheduling approach proposed by the author whilst he was in Zimbabwe (Lecler
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(2003; Appendix H). In essence, ZIMsched was used to determine average intervals between

successive irrigation water applications and a simple rule was used to account for effective

rainfall. In this case study evaluation, rather than determining the intervals between

successive irrigation water applications, the approach was refined to show recommended

irrigation cycle times for each month of the year, dependent on a particular harvest date and

irrigation application amount. There were instances when the use of the pre-determined

irrigation cycles and the rainfall rule resulted in a substantial reduction in simulated crop

yields relative to yields simulated using the comprehensive CANESIM computer simulation

model and near-real-time daily weather data for scheduling. Nevertheless, in 340 computer

simulation trials, the average reduction in crop yields was only 2%.

In terms of impacts on profitability, there was a negligible difference between using

CANESIM and near-real-time weather data for irrigation scheduling and scheduling using the

pre-determined cycles and rainfall rule. Importantly, there was a substantial gain in simulated

profitability compared with less scientific, but typical, approaches to irrigation scheduling

which have been observed in practice, ranging from R1079 up to R3485 per hectare, if an

opportunity cost of water was considered.

************

Traditionally, in the design and operation of irrigation systems, the focus has usually been on

maximising crop yields. With increasing competition for limited resources, the pressure to

rather maximise net benefits via, for example, the formulation and adoption of deficit

irrigation strategies, is likely to increase. The contrast between designing and operating

irrigation systems for 'maximum crop yields' as compared to 'maximum economic benefit'

was illustrated in Section 5.1 by way of an example case study analysis. This type of analysis

was made possible by the development of ZIMsched 2.0. In this case study, deficit irrigation

strategies yielded considerably higher overall economic returns compared to full irrigation,

for both land and particular for water limited production scenarios.

Analyses of the results of this 'peak irrigation system capacity' case study (cf. Chapter 5.1),

together with the results presented in Chapter 4, highlighted the importance of correct

irrigation scheduling. Therefore, a range of irrigation scheduling decision support tools
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aimed at catering for the needs of growers who are computer literate, but also for growers

who are averse to the use of computers, was also developed.

In Section 5.2.1, ZIMsched, a robust, scientifically sound and yet simple spreadsheet-based

irrigation management and yield forecasting tool is described. This was developed for

farmers who were computer literate. Because many such farmers were already familiar with

spreadsheets, they experienced a high degree of familiarity and competency within a short

period of time after having been introduced to ZIMsched. This was considered to be a key

aspect of successful technology transfer. ZIMsched incorporates robust algorithms to account

for the components of a water budget that are of major importance to irrigation, yet which are

often either ignored, over-simplified or over-complicated, namely, runoff, drainage, effective

rainfall and evaporation under conditions of excess or deficient soil water. ZIMsched was

developed to be flexible enough to be reset/adjusted with ease, should field soil water

observations indicate a need for resetting, for example, if a drainage problem became

apparent, or a disease or nutritional deficiency resulted in conditions different to the norm.

There are facilities to include various management strategies, for example, for controlled soil

water deficits at certain stages under water limited conditions, or to inhibit flowering in cane

crops harvested late in the season (i.e. harvested after mid October). The efficient options

included for managing input data and executing calculations were considered very important,

because they could potentially reduce the time required for scheduling irrigation water

applications so that management time can be freed for other operations.

For farmers who did not have access to computers or who were averse to their use, an

alternative irrigation scheduling option was also proposed (cf. Section 5.2.2), namely charts

showing recommended intervals between irrigation water applications for crops cut at

different times in the year and assuming various irrigation water application depths.

Importantly, given the potential contribution of rainfall to crop water requirements in the

Lowveld (cf. Chapter 4), a simple 'rule-of-thumb' to account for rainfall was also developed

for use with the irrigation scheduling charts. The only tools required to schedule irrigation

water applications would, therefore, be the cycle guidelines or charts themselves, a rainfall

gauge and a calendar. This makes for a relatively simple method of irrigation scheduling,

potentially effective not only in terms of water management, but also in terms of costs and

appropriateness, which is a concern for all growers, but especially the small scale growers.

Scheduling irrigation water applications using these pre-determined irrigation cycles and the
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rainfall rule proved to be robust and effective in a case study evaluation undertaken for the

Pongola region in South Africa. This approach to irrigation scheduling could, therefore,

represent an innovative way of utlilising and tailoring the output of more complex computer

simulation models so that they have wider application and impact.

************

In the context of the near collapse of the sugar industry in the Lowveld of Zimbabwe

following the 1991/2 drought, there was a need to assess the performance of the water

management and irrigation systems being used in the industry. Following a review of

literature on irrigation systems performance, given in Chapter 2, a methodology to evaluate

the performance of irrigation and water management systems was formulated and was

described in Chapter 3. Results of the application of this methodology and the associated

tools which were developed were presented in Chapter 4 in an assessment of the actual and

the potential performance irrigation systems, including, furrow, drip, sprinkler, floppy and

centre pivot irrigation systems. Furthermore, various existing and refined water management

approaches, applied in conjunction with the different types of irrigation systems, were also

assessed. In Chapter 5 additional applications of the tools and information which were

developed as a result of this study, were presented. These included an integrated economic

assessment of peak irrigation system design capacities and associated watering strategies,

including deficit irrigation and the development of a range of water management tools.

Important consequences and recommendations resulting from this research are discussed in

the following chapter.
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6. DISCUSSION AND CONCLUSIONS

A review of relevant literature showed that the quantification of the water balance in space

and time is most important in an assessment of irrigation systems performance. Furthermore,

while many indices for irrigation systems performance have been proposed, the challenge is

to determine values for the numerators and denominators of these performance indicators and

to develop and quantify performance indices which are useful from a business/economic

perspective. Another issue is that many of the irrigation systems performance descriptors

given in the literature are based on over-simplified assumptions. One example, is the

assumption that an irrigation water application is ideal when it is of such a magnitude that the

quarter of the field receiving the least amount of water, receives sufficient water to replenish

the soil water deficit. Such simplifying assumptions have led to the derivation of useful

indices and comparisons. Nevertheless, the perspective of irrigation systems performance

given in Chapter 2, especially the section on water management and deficit irrigation (cf.

Section 2.3), showed that, particularly from a business perspective, the dynamics of the soil,

plant, atmosphere, management and economic interactions are complex. Thus, a

sophisticated approach to assessing the performance of irrigation and water management

systems is required, if such interactions are to be suitably represented.

Computer simulation models can, potentially, represent the dynamics of the water balance in

relation to crop yields and, thereby, provide information needed for associated economic

analyses. Furthermore, models can be applied to provide water budget and crop yield

information assuming a wide range of interacting conditions, for example, of different soils,

seasons, types of irrigation systems and water management approaches. Obtaining similar

crop yield and water budget information from experiments would be extremely complex,

time consuming, costly and, not least, highly impractical. However, with regard to sugarcane

in the Lowveld of Zimbabwe, there were no wholly appropriate computer simulation

modelling tools available when the research described in this thesis was initiated in late 1998.

Furthermore, information on the in-field operating characteristics of the various types of

irrigation hardware in use in the Lowveld was also not available then, neither had the

irrigation water management or scheduling approaches been scientifically assessed in relation

to the different types of irrigation system hardware, in particular with regard to the newer

centre pivot, floppy and drip irrigation systems.
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Thus, in order to evaluate the performance of irrigation and water management systems in the

Lowveld, a strategy was formulated which hinged on the development of an irrigation

systems simulation model, namely ZIMsched 2.0, to interpret results from a Mobile Irrigation

Performance Evaluation Unit, MIPU. In essence the MIPU assessed the in-field operating

characteristics of the various irrigation systems hardware, providing information on the

uniformity and depth of water applications, while ZIMsched 2.0 was used to interpret this

MIPU information in terms of associated water budget and crop yield impacts. In order to

achieve this interpretation of MIPU data and information, algorithms were developed and/or

integrated to account for:

•

•

•

•

•

•

•

surface runoff,

drainage,

crop canopy and root development in relation to thermal time,

irrigation non-uniformity,

transpiration in relation to both too much and too little soil water, at different stages in

the crop's growth cycle,

soil water evaporation losses in relation to different irrigation hardware

characteristics, and

yields of estimated recoverable crystal, ERC, in relation to all of the above processes,

in a unique and original synthesis which resulted in the ZIMsched 2.0 model. The credibility

of ZIMsched 2.0 was established through a verification study in which close agreement and

correspondence between the relative differences of observed and simulated yields of ERC for

a range of soil, climate and water management conditions was shown. The index of

agreement, 'd', between observed and simulated yields of ERC relative to a reference

treatment, was 0.96 and Pearson's 'r' was 0.94.

While MIPUs in themselves are not unique, the data and information collated by the MIPU in

the Lowveld of Zimbabwe and, in particular, the analysis of the MIPU data and its translation

into associated impacts on yields of ERC, and water budgets, was considered novel and

yielded new information and perspectives. Furthermore, as a result of the activities of the

MIPU, persons were trained and methods and specialist tools were developed for the
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collation and analysis of essential in-field irrigation systems performance data and

information. Thus, apart from the valuable data and information gathered in this research, a

major benefit has been that sectors of the sugar industry in the Lowveld of Zimbabwe were

sensitised to improved standards for irrigation systems design, installation and operation, and

the capacity of human resources was developed.

Implementation of the research strategy resulted in unique and specific information on the

performance of irrigation and water management systems in the Lowveld. In this regard, a

key finding was that if the sugar industry in Zimbabwe were to improve its water

management recommendations, it is likely that more than 20% of the water presently used on

an annual basis when there are no water restrictions, could be saved. However, unless

irrigation application uniformities are also improved, particularly on the furrow irrigated

fields, there was evidence that slight crop yield losses may occur with the more precise

irrigation scheduling, assuming fields are well drained, i.e. the portion of the fields receiving

relatively low water applications due to poor uniformities would receive even less water with

more precise irrigation scheduling. On poorly drained fields, however, crop yields are likely

to improve with the reduced irrigation water applications associated with more precise

irrigation scheduling, especially in the long term.

The sugar industry in the Lowveld of Zimbabwe is located in an area prone to recurring

droughts, where historically there have been long periods during which water supply and

demands have not been well balanced. This imbalance in water supply and demand led to the

near collapse of the sugar industry following the 1991/2 drought. Therefore, it is

recommended that the potential water savings shown in this research should be stored, and

used to support the industry through the drought years. If such water savings are not made, or

a portion of the sugar industry's water is re-allocated to another user, there is every chance

that another economic disaster such as that which occurred after the 1991/2 drought, could

recur. Thus, appropriate institutional arrangements to give incentives to conserve water, for

example, through arrangements which facilitate 'water banking' by individual growers,

should also be developed and implemented.

Questions regarding the actual and potential performance of the various types of irrigation

systems were addressed. In this regard, it was found that most of the floppy, centre pivot and

overhead sprinkler irrigation systems were performing at levels close to those expected, had
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they been designed and installed to appropriate engineering standards. However, most of the

drip irrigation systems were performing below potential. Simulations showed that potential

crop yields were limited by an average of approximately 12 % for one third of all the drip

systems evaluated. This was largely due to in-field variations in water applied, caused by

substandard system design, installation and/or maintenance. The crop yield potentials and

irrigation efficiencies of the furrow irrigation systems were limited by large variations in

water applied to individual furrows, and water applications which were, on average,

excessively high. Although the simulations showed that the large water applications did

compensate, to a degree, for the variations in applied water between and along the furrows,

they also compromised efficiencies and could lead to further development of other problems,

including raised water tables and increased soil salinity levels. Also, adequate drainage was

assumed for the simulations. If drainage is impaired, yield reductions due to poor soil

aeration are likely to occur. Most furrow designs and layouts were not operator friendly.

The high variation in water applied to individual furrows showed that it was difficult for

operators to control water applications and application variability using siphons. This is an

area which could be improved through better, albeit more complex and expensive, designs

and installations. For example, well designed supply furrows discharging through pipe spiles

could be used to control flows into the furrows more evenly and would be much more

operator friendly.

In terms of the potential performance of the various irrigation systems, it was shown that,

provided drip irrigation systems are designed, installed and commissioned to an appropriate

standard, and then operated and maintained correctly, sub-surface drip has a slight edge over

the other irrigation systems which were evaluated. Average water savings ranged from

approximately 2.2 to 1.5 Ml/ha relative to sprinkler type systems, and 3.5 to 2.3 Ml/ha

relative to typical furrow irrigation systems, depending on how water applications were

scheduled. With sub-surface drip, water savings occur as a result of reduced evaporation from

the bare soil surface, no spray evaporation or wind drift losses, and the inherent flexibility in

applying water which makes it possible to control runoff and deep percolation relatively

easily compared with, say, furrow irrigation. However, this study revealed that, in practice,

most drip systems in the Lowveld were not performing at potential optimum levels. There

needs to be a greater level of professionalism in the design and installation of drip systems

and growers need to have appropriate drip irrigation management training.
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Furthermore, it was shown that on deep soils with high TAMs and on fairly level topography,

furrow irrigation could, theoretically, be almost as efficient as sub-surface drip irrigation. The

reason for this is that with furrow irrigation, evaporation from the bare soil surface is limited

because only a portion of the soil surface is wetted, there are no spray evaporation or wind

drift losses and with proper design and layout, irrigation water applications can be applied

uniformly. However, this study revealed that with furrow irrigation, there is a big gap

between potential theoretical performance and that generally achieved in practice in the

Lowveld conditions, particularly on the sandier soils with low TAM values. With many

furrow irrigation systems, feeder water losses constitute an additional, but very variable loss.

Water losses in unlined feeders of up to 30% have been measured on an estate in the

Lowveld.

Simulations with the ZIMsched 2.0 irrigation system model showed that drainage under

furrow irrigation, in particular, was excessive. Unless remedial actions are initiated, for

example, through improvements to irrigation scheduling and better control of water

applications, the development of high water tables and associated salinity problems is likely

to get increasingly worse. In many cases, soils and topography may dictate that changes to

another type of irrigation system would improve profitability. In this regard, a unique

potential application of ZIMsched 2.0 is to interpret in-field irrigation systems evaluations

carried out by a MIPU, and then to compare these results, through an economic analysis, by

using the simulated crop yields and water budgets predicted when other types of irrigation

systems, or an upgrade to the existing system, are assumed.

The centre pivots and overhead hand-moved sprinkler systems which were evaluated by the

MIPU were found to apply water with very good uniformities. It was also found that

operators were able to control the amount of water applied with these systems relatively

easily, compared with furrow irrigation. As a result, simulated efficiencies where higher than

with furrow irrigation, generally leading to an annual saving in water of at least 1 MlIha.

Nevertheless, a potential limitation regarding the efficiency of floppy, sprinkler, and centre

pivot irrigation systems was highlighted, namely, that of water losses attributable to

evaporation from the wet soil surface. The reason for this is that with floppy, sprinkler and

centre pivot irrigation systems the entire soil surface is wetted and if water is applied

frequently, the evaporation losses from the bare soil surface can be excessively high prior to

the development of full crop canopies. Early season water management approaches should,
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therefore, take cognisance of the potential for such losses and aim at applying relatively

larger water amounts less frequently, viz. initiating irrigation applications after at least 35 mm

of water has been depleted.

Applying such large water applications with overhead sprinkler irrigation systems, particular

with centre pivots, can, however, present a challenge in the sense that surface runoff is likely

to increase. Therefore, appropriate surface mulching, for example, using the trash and tops

from sugarcane should also be considered. When the soil surface is protected from the

impacts of water droplets, it is less prone to crusting and higher infiltration rates can be

maintained. If the soil surface is mulched, the water budget / schedule should also be

adjusted accordingly, otherwise excessive water is likely to be applied in the early season

with increased potential for leaching, denitrification and lowering of crop yields. The reason

for this is that with surface mulching the water budget is impacted in a positive way through

reduced evaporation from the soil surface. Sugarcane varieties which ratoon well under trash

conditions should also be targeted, otherwise the potential for delays in germination and

canopy development resulting from the trash blanket may offset any potential gains from

water savings.

In order to address two major outcomes of the research, namely, that there is a great need for

improved irrigation scheduling by the three large estates and by individual growers in the

Lowveld, and that the application of all the existing water management recommendations

resulted in excessive irrigation water applications, two new and original irrigation scheduling

tools were developed. The first tool, ZIMsched, is a spreadsheet-based scheduling tool,

which incorporates the unique water budgeting algorithms in ZIMsched 2.0. Spreadsheets

were selected as the design platform in order to take advantage of the familiarity that many

growers had already developed with spreadsheets. This gave ZIMsched a distinct advantage

relative to other computer-based irrigation scheduling tools in terms of ease of use.

Furthermore, ZIMsched could easily be tailored to specific needs of growers and allowed for

relatively complex water management strategies, for example, deficit irrigation strategies,

which could be developed using ZIMSched 2.0, to be implemented at grower level.

For growers averse to the use of computers, another new irrigation scheduling approach was

formulated. This irrigation scheduling approach used pre-determined irrigation cycles suited

to particular soil, irrigation systems and average growing season conditions and an
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innovative, yet simple, rule-of-thumb to account for effective rainfall. Although less flexible

and representative when compared with irrigation scheduling tools which make use of near

real-time daily weather data, such as ZIMsched, the use of the pre-determined cycles and

rainfall rule proved very robust and profitable in a case study evaluation undertaken using

data from Pongola in South Africa. It is thus considered to have good potential as an

appropriate and novel technology transfer option, particular suited to small scale and/or

emerging farmers.

To reiterate, the provision of irrigation water management support systems is considered

vitally important to improving performance. With ZIMsched the accuracy with which the

water budget is calculated, was improved considerably relative to existing budget calculations

prevalent in the Lowveld and simulated water savings of 20 % to 30 % were achieved.

Additional to the implementation of ZIMsched, or the pre-determined irrigation cycles, the

following changes to the existing irrigation water management recommendations and

practices in the Lowveld of Zimbabwe should also result in improved efficiencies.

• Change the full canopy 'pan factor' from 1.0 to 0.9 for the October to March period

and then to 0.85 for the remainder of the season until the drying-off period is initiated.

• Assume when calculating water applications, that application efficiency is above 90

% for all sprinkler systems and 100 % for furrow and drip systems. If a low

efficiency is assumed, excessive water is applied and the low efficiency assumed will

be realised due to excessive runoff and deep percolation losses!

• Use the methodology described in Chapter 5 (Section 5.2.2.1) to account for effective

rainfall, i.e. when calculating soil water depletion levels, and rain then falls, only

resume adding deficits after the period of days determined using the methodology

described in Chapter 5.

• After an excessive irrigation application which, for example, can occur frequently

with many furrow fields, wait at least two to three days (dependent on the field's

drainage characteristics and the amount of excess) to allow the excess water to drain,

before starting to add deficits to the calculated soil water budget.
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• Mkwasine Estate's early season 'pan factors' are too high for furrow irrigation. The

pan factors used by Hippo Valley, or the date system used by Triangle are better

suited for furrow irrigation.

• After the first irrigation, further irrigation water applications using Triangle Estate's

time based scheduling system need only be equivalent of 50 % of the soil's TAM, as

opposed to Triangle's recommendation of applying water applications equivalent to

100 % of the soil's TAM value. Simulations with ZIMsched 2.0 showed that the

actual soil water depletion at the time of Triangle's recommended second and third

irrigation water applications was not likely to exceed 45 mm. For the furrows

sampled, the amount of water applied in the first three irrigations at Triangle was

excessive.

•

•

•

The early season, pre-full canopy pan factors used by Hippo Valley are well suited to

furrow irrigation, but are too low for centre pivots if there is no surface mulching.

The reason for this is the higher level of evaporation from the bare soil surface for

pivots compared with furrow systems. After the first month the factor of 0.2 should

be increased to 0.3, and the factors of 0.3 increased to 0.4 (cf. Appendix F).

An intensive exercise to monitor and control the amount of water siphoned into

individual furrows should be supported. The author together with the MIPU has

developed simple apparatus and trained personnel on the three estates to facilitate this.

Fields which have excessive applications need to be examined and the water

applications reduced where possible.

When planning to upgrade an irrigation system or install a new system, the MIPU

should be consulted to check that the system is designed, installed and commissioned

to appropriate standards.

A further outcome of the research described in this thesis is that techniques and tools to

support strategic irrigation and water management decisions in the Lowveld of Zimbabwe

were developed. Used together with case specific financial and production cost information,

the tools and methods described in this thesis make possible the calculation of comparative

Net Returns per Hectare and associated Relative Net Returns (reflecting an opportunity cost

of water) for different irrigation and water management systems. Thus, unique and original

information to support sound business decisions regarding the design, upgrading or

replacement of existing irrigation systems or the selection of an appropriate irrigation and
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water management system for a given environment can be provided. For example, in

Chapter 5, the application of ZIMsched 2.0 to determine peak irrigation system design

capacities and associated water management strategies, including deficit irrigation strategies,

suited to either land limited or water limited production conditions, is discussed and serves to

highlight the utility value of this research.

In final conclusion, the research effort described in this thesis has highlighted opportunities to

increase the productive and sustainable use of resources through the development and

application of a unique set of tools and methodologies. Furthermore, tools and information to

facilitate improvements to both strategic and on-farm water management were developed, in

an effort to translate theoretical water savings into practical realities.
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Abstract

In order to benchmark and improve estimates of sugarcane
evapotranspiration (ET) and thereby facilitate increased irriga
tion water use efficiencies, a study was undertaken to compare,
for the south east lowveld of Zimbabwe:

• the world standard, Food and Agricultural Organisation
(FAO) Penman Monteith reference evaporation (E

FAOpm
), with

• evaporation from United States Weather Bureau, Class A
evaporation pans (Eapan

)' and

• evaporation from a relatively simple commercially available
atmometer device, called an ETgage, which has been de
signed to mimic many of the evaporation characteristics ofa
plant (E..).

In addition, ET estimates for sugarcane, derived using state-of
the-art procedures presented in the FAO publication No.56 were
used to derive refined monthly pan and ETgage factors in order
to relate data from these instruments to benchmark FAO-based
estimates of sugarcane ET.

The comparisons between evaporation estimates showed that
there were large differences between E

apan
and E

FAOpm
, espe

cially when E was above 8 mm. At these high E values,apan apan

Eapan was shown to exceed the equivalent E
FAOpm

by more than
30%. Nevertheless, the relationship between E

apan
and the E

FAOpm

estimates was very consistent, especially when averaged over
a period of five days or longer. Accurate estimates of E

FAOpm

could be predicted from E data using a linear regression rela-
apan

tionship. When compared with the A-pan, it is easier to install
and operate the ETgage according to standard recommenda
tions. The ETgage is also simpler and significantly cheaper
than an automatic weather station and was shown to have po
tential to provide a good practical reference evaporation esti
mate. The study revealed that, for the data analysed, both sets
of derived pan and ETgage factors showed seasonal trends,
with values relatively lower in winter months than in summer
months. The derived pan factors ranged from 0.85 in June to
1.01 in January. These pan factor values tally with the results of
irrigation trials. The derived ETgage factors were slightly lower
than corresponding FAO-based sugarcane crop coefficients.
The greatest benefit of using data from an automatic weather
station for the calculation of E 0 is likely to be in situations

FA pm

when the crop is irrigated daily, as with drip irrigation.

Introduction

In Zimbabwe, estimates ofsugarcane water requirements which
are vital for irrigation planning, development, day-to-day water

management, and crop yield forecasting, have usually been
determined with reference to the evaporation from United States
Weather Bureau, Class A evaporation pans (A-pan). While it
has been routinely accepted that water loss from an A-pan is
very closely related to water loss from a sugarcane crop
(Thompson and Boyce, 1972; Cackett, 1984; Clowes and
Breakwell, 1998), the suitability of the A-pan as a reference
evaporation estimate for crops, has also been questioned (de
Jager and van Zyl, 1989; Jensen et al., 1990; Schulze and Kunz,
1995).

In a number of comprehensive comparative evapotranspiration
(ET) studies, the often erratic and poor performance of A-pans
has been contrasted with the superior performance of the Pen
man Monteith (PM) approach (Jensen et al., 1990; Choisnel et
al., 1992, cited by Alien et al., 1998). A panel ofexperts from the
International Commission ofIrrigation and Drainage, the World
Meteorological Organization and the Food and Agricultural
Organisation (FAO) have, therefore, recommended the adop
tion of the PM combination method as a new, globally valid
standard for crop water requirement calculations (Alien et al.,
1998).

The FAO PM approach accounts for differences in crop cano
pies and aerodynamic resistances, relative to a defined refer
ence crop, within a 'crop coefficient' (KJ Kc can be split into
two factors which separately describe the evaporation from the
soil surface, Kc, and the transpiration, Kcb' components. Under
conditions of low relative humidity and/or high windspeeds,
the aerodynamic differences between tall crops like sugarcane
and the defined reference crop can be significant. In order to
account for these differences, Kcs can be further adjusted for
the influences of climatic conditions using an equation that
contains crop height, wind speed and minimum relative humid
ity as variables (Alien et al., 1998).

An alternative methodology to using Kcs, is to use the PM
equation in a one-step procedure for the direct calculation ofET
because the surface and aerodynamic resistances in the PM
equation are crop specific. This approach is being researched
for sugarcane, for example, by McGlinchey and Inman-Bamber
(1996). The one-step approach for sugarcane is, however, prov
ing challenging and problems have been reported Cpersonal
communication). It is pertinent to note that Pereira and Alien
(1999) state that, due mainly to difficulties in describing changes
in resistance and net radiation,

'the research community is probably some 10 to 15 years away
from producing one-step procedures that are consistent, pre
dictable and reliable'.
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With this background and evidence that there is potential for
deriving improved estimates of sugarcane ET, thereby benefit
ing irrigation water use efficiencies, a study was initiated to
compare, for the south east lowveld of Zimbabwe, relation
ships between:

wet and dry bulb readings recorded at 08:00h and 14:00h were
averaged to estimate the average daily vapour pressure for the
EFAOPM calculations. Radiation was measured using a Bellani
pyranometer. All instruments were installed according to stand
ard recommendations (Doorenbos, 1976).

Evapotranspiration, pan factor and ETgage factor calcula
tions

For the ET comparisons, the FAO methodology (Alien et
al., 1998), which is also considered to be the most accurate es
timate ofsugarcane ET, was used as a benchmark (Equation I).

Manual Weather Station, E
erg

A single ETgage was read daily at 08hOO by recording the water
level in a sight tube. A green canvas #30 vapor diffusion cover
was used on the Etgage, which was installed according to
standard recommendations (Asbell, 1999).

Eql

1.25 + (0.04(u
2
-2) - O.OO4(RHm;n-45))(hI3)OJ

FAO-based benchmark evapo-transpira
tion estimate for a 3 m tall full canopy
sugarcane crop (mm/d)

FAO recommended sugarcane crop coef
ficient adjusted on a daily basis for intlu
ences ofrelative humidity and windspeed

windspeed measured at a height of2 m
(m/s)

KC(U2.RH)d

ETFAOd

where ETFAOd =

where u
2

Manual Weather Station, E
Qpan

Two adjacent A-pans painted black inside (not standard ac
cording to FAO recommendations) and silver outside and cov
ered with wire screens with a mesh size of25 mm were read daily
at 08:00h using a hook gauge, and the values averaged. No
adjustment for the screening or black paint were made.

Automatic Weather Station, EFAOpm

For data recorded using the AWS, average daily vapour pres
sure and saturated vapour pressure, based on relative humid
ity measurements recorded at ten second intervals using a
Vaisala CS 500 air temperature and relative humidity sensor,
were used for the daily EFAOPM calculation. A LI-COR LI200X
silicon pyranometer was used to measure solar radiation. The
AWS was installed according to standard recommendations
(Savage, 1998).

Methodology

Weather data were recorded at the ZSAES which is located at
latitude 21 0 2.5' south and longitude 31 0 57' east and altitude
420 m.a.s.l. The manual weather station (MWS) measurements
which included radiation data were for the period from 1970 to
1990. Thereafter radiation data were not collected from the
MWS because the Bellani pyranometer which had been used
for the purpose broke and was not be replaced. The automatic
weather station (AWS) was commissioned in April 1998, and
the ETgage in February 2000.

• the FAO PM reference evaporation estimates (EFAOpm)

• evaporation from A-pans (E,p,n)' and

• evaporation from a relatively simple commercially available
atmometer device, called an ETgage which has been de
signed to mimic many ofthe evaporation characteristics ofa
plant (E"g) (Asbell, 1999).

The ETgage was included in the study because literature (e.g.
Broner and Law, 1980; Asbell, 1999) had indicated that it has
potential to give reference evaporation estimates comparable
to those from a full automatic weather station (AWS), at a sub
stantial reduction in cost and complexity.

In addition, ET estimates for sugarcane, derived using the state
of-the-art procedures presented in the FAO publication No.56
were used to derive monthly pan and ETgage factors. These
factors can be used to relate data from these instruments to
benchmark FAO-based estimates of sugarcane ET. This will
help facilitate objective comparisons to be made between the
water requirements of sugarcane and other, sometimes com
peting, crops.

The evaporation comparisons were based on 20 years of daily
weather data collected at a manual weather station, three years
of data from an automatic weather station and one years data
from the ETgage atmometer device, all at the Zimbabwe Sugar
Association Experiment Station (ZSAES). Data from pan fac
tor irrigation trials were used in order to assess the pan factor
values derived using the FAO-based ET estimates. The re
search methodology, results of the comparative studies and
implications for irrigation water management are discussed in
this paper.

• investigate the potential for refining pan and ETgage fac
tors so that these instruments could be used to give ET
estimates similar to benchmark ET estimatesFAOd

Instrumentation and reference evaporation calculations

A Fortran 90 computer programme was written to calculate
EFAOPM according to procedures described by Alien et al. (1998).
The options selected for the calculation of vapour pressures,
the type of radiation instruments and the apparatus used for
recording E and E are described as follows

Jpan etg .

Manual Weather Station E
, FAOplll

For the weather data recorded manually, vapour pressures from

RH .mm

h

In order to:

minimum daily relative humidity (%)

crop height, taken as 3 m for sugar
cane (m)
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A scatter plot showing comparisons between daily Eapon and
EFAOpm calculated using data recorded manually from 1970 to
1990 is shown in Figure 1. A second scatter plot showing the
same data smoothed with a five day moving average is shown
in Figure 2. The use of a moving average encapsulates all
possible five day average values and is relevant as an appro
priate representation of typical minimal irrigation application
intervals, for most systems except drip. Similar scatter plots
with EFAOpm calculated using data recorded with the AWS from
April 1998 to March 2001 are shown in Figures 3 and 4 respec
tively.

Both sets of data show similar trends, viz. the differences be
tween E and the EFAO increase as the magnitude of the

apan pm

evaporation increases. For the months April to August (winter
when evaporation is relatively low), the differences are small
but during September to March (summer, when evaporation is
higher), the differences can exceed 30%, (cf. Figure 4). From an
irrigation management perspective, it is pertinent to note that
the relationship between five day averaged values is much
better than the relationship between daily values.

Using data from the AWS and the MWS resulted in two differ
ent linear regression relationships between five day average
Eapan data and five day average EFAOpm estimates, as shown in
Table 1. Investigation of the Bellani pyranometer apparatus,
which was used for the MWS radiation measurements, revealed
that:

Results

• the reading is temperature dependent, therefore

ETFAOd / Ee,g Eq 3

refined ETgage factor to relate evapora
tion from an ETgage to sugarcane ET as
estimated using the FAO methodology
(Alien et al., 1998)

evaporation from the ETgage (mm/d)

refined pan factor to relate evaporation
from an A-pan to sugarcane ET as esti
mated using the FAO methodology (Alien
et al., 1998)

E
etg

where K
clgr

K
c:tgr

evaporation from a Class A evaporation
pan (mm/d)

Similar calculations were used to derive refmed monthly ETgage
factors using data recorded during the period February 2000 to
March 2001. The monthly ETgage factors were taken as the
median monthly values ofdaily factors calculated according to
Equation 3, viz.

E
apan

where K
pc

• observe whether there were any apparent seasonal trends
in the pan and ETgage factors

• assess the derived pan factors in relation to existing pan
factor recommendations and irrigation trial data, weather
data recorded by the AWS during the period 1998 to 2001
were used to derive refined monthly pan factors. These
were taken as the median monthly values of daily factors
calculated according to Equation 2, viz.

Kp, ETFAO.J Eapon Eq 2
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Figure 3. Scatter plot showing Eapan vs EFAOpm daily
values, data were recorded by the automatic weather
station.
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Figure 1. Scatter plot showing Eapan vs EFAOpm daily
values, data were recorded at the manual weather station.
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Figure 2. Scatter plot showing Eapan vs EFAOpm , values
are five day moving averages, data were recorded at the
manual weather station.

Figure 4. Scatter plot showing Eapan vs EFAOpm, values
are five day moving averages, data were recorded by the
automatic weather station.
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• it needs to be calibrated in the field against a solarimeter in
a special calibration programme that covers different sea

sons, and

• its accuracy is ± 10 to 20% (Doorenbos, 1976).

At ZSAES, it seems that only one calibration equation was
used, despite large variations in mean air temperatures. As the
Bellani pyranometer is no longer at ZSAES, the derivation of
temperature dependent calibration relationships in order to 'cor
rect' all the historical radiation data was not feasible. The inac
curacies in the Bellani pyranometer radiation measurements
would have translated to similar inaccuracies in the estimates
of E For this reason E and associated relationshipsFAOpm' , FAOpm . .
derived using data from the MWS were considered unreliable.

For the relatively short period for which concurrent ETgage,
E and AWS data were available, viz. within 1 February 2000

apan .
to 22 March 200 I, E data and E data were compared with

etg apan

E estimates derived from the AWS. Scatter plots of these
~O~ .

comparisons are shown in Figures 5 and 6, and comparative
statistics for the five day moving averages are shown in Table
2. When compared to the average of two A-pans read with a
hook gauge, the resolution of the reading from the single
ETgage, read from a sight tube, was relatively coarse at a daily
time scale, viz. it was apparent from the data that the data
recorder normally read the site tube to the nearest 1.0 mm (cf.
Figure 5). However, this had little effect on the five day aver
ages because the sight tube readings on the ETgage were in
ter-dependent Compared to the E data, E data were much. apan elg

closer to E estimates. The RMSE, for E compared toFAOpm etg

E was 0.98 mm and the difference between the means, 13.6%,FAOpm
compared to a RMSE of 1.3 mm and difference between means

of 32.7% for the corresponding comparison between Eap,n and
E . However ifE readings were used as input to a linear

FAOpm 'apan .
regression model used to calculate an estimate of EFAOpm, the
model performance was excellent, in fact, better than a similar
linear regression model using E

et
data, viz. the RMSE is lower,

a greater proportion of the RMSE is unsystematic and the in
dex ofagreement, d, is closer to 1.0 (cf. Table 2). This indicates
that for the period under consideration, the A-pan was an ex
cellent predictor for EFAOpm, in fact better than the ETgage.

The refined median monthly A-pan and ETgage factors calcu
lated to relate data from these instruments to ETFAOd (cf. Equa
tions 2 and 3) are given in Table 3. Both sets of factors show
a definite seasonal trend, being lower in winter than in summer.
The pan factor values compare well with irrigation trial data
collected at ZSAES, which are shown in Figure 7. The data in
Figure 7 are from the irrigation of full canopy sugarcane using
various pan factors to determine irrigation intervals. These
trials showed that optimum ET estimates result from pan fac
tors which are greater than 0.8 and less than 1.0, but gave little
information on how pan factors may vary throughout a sea
son. It is likely, therefore, that taking cognisance of the sea
sonal trends in the pan factors shown in Table 3 may lead to
improved estimates of sugarcane ET, however, an appropriate
trial is needed to test this hypothesis. When considering the
likely gains in irrigation efficiency from slight under-irrigation
(Lecler, 1998), the use of a constant pan factor of 0.85 is also
well justified. The derivation of median monthly FAO Kcs

(K ) shown in Table 3, should facilitate the use of E
c(u2.RH)m ' apan

as a predictor of E which can then be used withoutFAOpm
windspeed and relative humidity data to estimate ETFAOd' A
further independent data set is, however, needed in order to
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Figure 5. Scatter plot showing Eetg vs EFAOpm, daily
values.

Figure 6. Scatter plot showing Eetg vs EFAOpm, values are
five day moving averages.

Table 1. Regression statistics for linear regression equations used to predict EFAOpm from E,.,n' (y = bx + aI, showing
differences between relationships derived using the AWS and the MWS·.

Dependent Independent Slope Constant Std Error of EFAoPM Correlation
Variable Variable (b) (a) estimate Coefficient

(y) (x) (SEy) (Pearson's r)

EFAopm MWS Eapan 0.734 0.82 0.57 0.92
1970-1990

EFAOpm AWS Eapan 0.676 0.31 0.34 0.95
1998 -2001

*All umts except band rare mm/d
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Table 2. Quantitative measures of five day reference evaporation comparisons for concurrent data from the ETgage, the
AWS and the A-pan, viz. within 1 February 2000 to 22 March 2001**.

NameofP Mean Mean N a b RMSE RMSEu RMSEs d r
E.Ann~ P

Eapan 3.44 4.57 370 -0.3 1.4 1.3 0.42 1.23 0.8 0.97

Ec,g 3.44 3.91 370 0 0.9 0.98 0.85 0.49 0.88 0.85

EFAOpm 3.44 3.44 370 0.19 0.94 0.29 0.28 0.07 0.99 0.97
predicted from
Eanan
EFAOpm 3.44 3.44 370 0.95 0.72 0.64 0.54 0.34 0.91 0.85
predicted from
E.,n

** Terms N, b, d and rare dimensionless, while remaining terms have units ofmm/d

RMSE = root mean squared error

RMSE
u

and RMSE, = root mean squared errors, unsystematic and systematic, respectively

d = index ofagreement, 1.0 indicates perfect agreement, 0.0 indicates no agreement (Wilmott, 1981)

r = correlation coefficient (Pearson's r)

a (intercept) and b (slope) of a least squares regression between P as the dependent variable (predicted) and EFAOpm as the
independent variable (observed)

N = number of data points

Table 3. Derived full canopy 'pan factors', 'ETgage factors' and median monthly FAO-based sugarcane crop coefficient
(KCIu2.RH)m) values for the south east lowveld of Zimbabwe.

Factors Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Refined 1.01 1.01 0.96 0.96 0.90 0.85 0.88 0.87 0.91 0.96 0.96 0.97
"Pan
Factors"
(K."r)
Median 1.22 1.18 1.18 1.21 1.25 1.23 1.25 1.27 1.30 1.31 1.29 1.25
Monthly
FAO

K,,(u2.RHlm

Refined 1.11 1.03 1.15 1.04 0.95 0.90 1.06 0.87 1.02 1.12 1.11 1.21
"ETgage
Factors"
(K,,\I1J)

verify this approach, and to compare it with the use of pan
factors alone.

Conclusions

• There is a large difference between Eap,n data and equivalent
estimates of EFAopm' especially when the A-pan reads above
8 mm. At such high evaporation values, E can exceed

apan

EFAOPI11 by more than 30 %. However, the relationship be-
tween the E and EFAO was very consistent, and E

. apan. pm FAOpm

estimates were reliably predicted from Eapan data using a lin-
ear regression relationship.

• Differences between the EF Op : E relationship using
A m apan

data collected from instruments read manually, and data
recorded by the AWS were likely due to:

• the different time periods for which data were recorded,
but more importantly,

• the likely errors in the manually recorded radiation data.

EFAOPI11 estimates, calculated using data from the AWS were,
therefore, considered more reliable for deriving E : E

FAOpm apan'

EFAOpm : Ee,g and associated relationships.

• When considering general uncertainties in irrigation water
budgeting, including rainfall measurement and effectiveness,
soil water properties, estimates of irrigation water applica
tions, crop canopy conditions, nutrition status and also irri
gation (non-) uniformity, the relative errors in ET estimates
arising from the use of the ETgage and/or the A-pan are not
likely to be significant in most practical applications. This is
especially so ifappropriate locally calibrated ETgage or pan
factors are used to adjust recorded E or E values to

. apan c:lg

associated sugarcane ET estimates, and the ET estimates
are for periods of five days or longer.
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• Refined monthly pan factors, suitable for use in the lowveld
ofZimbabwe were derived using data recorded by the AWS.
These refined pan factor values showed a definite seasonal
trend and were relatively higher in summer than in winter.
The values, which ranged from 0.85 in June to 1.01 in Janu
ary tally with results from irrigation pan factor trials. Taking
cognisance of the apparent seasonal trend in pan factor
values which was revealed in this study, may lead to im
proved irrigation water use efficiencies.

• World wide research studies show that the 'Rolls Royce'
method for the prediction ofcrop ET is likely to be the use of
data from an AWS to determine EFAOpm combined with the
FAO recommended Kes adjusted for influences ofwindspeed
and relative humidity. To benefit from this technology, will,
however, require careful application ofa good water budget
and regular maintenance, calibration and representative
placement of the AWS sensors. Drip irrigation water man
agement, which entails daily irrigation water applications, is
likely to benefit the most through the use of AWS data.
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• The average of two A-pans read with a hook gage in a re
search environment, proved a better predictor than Ectg in a
linear regression model to estimate EFAopm' Nevertheless,
the relative simplicity, low and simple maintenance, stand
ardisation and robustness of the ETgage are likely to prove
it a more reliable and practical instrument in many on-fann/
estate contexts. There is evidence, however, that the use of
standard FAO-based sugarcane crop coefficients with Eetg,
will lead to slight over-estimation ofETFAOd' Refined monthly
ETgage factors, suitable for use in the lowveld of Zimba
bwe, have been derived in order to adjust E.,g to give better
estimates ofETFAOd' These new derived ETgage factors need
to be tested on independent data once more E.tg data be
come available.
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APPENDIXB: DEFAULT SOIL TEXTURE-BASED PARAMETERS USED IN

ZIMsched 2.0

Table B1 Soil texture-based parameters used in ZIMsched 2. 0 (after Schulze et aL.,
1995; AlIen et aI., 1998)

Texture Class PWP DUl PO REW Adjustment Saturated Drainage
(FAO 56) to Slabber's 'f' Coefficient 'Ks'

(m/m) (m/m) (m/m) (mm) (%)

Cl 0.298 0.416 0.482 10 -8.0 0.15
Cll 0.195 0.312 0.468 9 -1.8 0.4
l 0.128 0.251 0.464 9 0.6 0.5
lSa 0.068 0.143 0.432 6 5.5 0.7
Sa 0.050 0.112 0.430 4.5 8.0 0.8
SaCI 0.228 0.323 0.423 8.5 -1.8 0.4
SaCll 0.159 0.254 0.402 8.5 0.6 0.5
Sal 0.093 0.189 0.448 8 4.3 0.65
SiCI 0.253 0.390 0.480 10 -5.5 0.25
SiCll 0.190 0.335 0.473 9.5 -3.1 0.35
Sil 0.121 0.272 0.495 9.5 -0.6 0.45

Note:

PWP =
DUL
PO =
REW =

permanent wilting point
drained upper limit (i.e. field capacity)
porosity
'Stage l' soil water evaporation limit
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Optimal Water Management Strategies for Sugarcane

Neil Lecler
Zimbabwe Sugar Association, Private Bag 7006, Chiredzi

Abstract

Uncertain water availability requires the use of innovative water management strategies to ensure the
long term viability of the Zimbabwe sugar industry. In this paper the potential of 'deficit irrigation' is
presented using empirical data from more than 40 'crop-years' of irrigation trials. These trials
confirmed theoretical concepts of deficit irrigation and showed that a reduction in efficiency
accompanied increased watering. Trials have also highlighted the benefits of using a well judged'dry
off' period (to 3 x TAM) as a simple, low risk water saving strategy. Trials cannot, however, be used
to answer questions on how to manage streamflow, irrigation strategy/water demand and available
storage interactions over time. There are tools available to investigate these relationships, for example,
the ACRU agrohydrological simulation model. Evidence given in this paper and in other reports on the
water status of the industry suggests that the commissioning of such an investigation and the adoption
of irrigation strategies on the basis of these insights could be of great benefit to the sugar industry. A
tool to implement target irrigation strategies and schedule irrigation applications at the field level has
been developed. This tool can be used to guide the application of a given target of water in the optimal
fashion, taking into consideration different harvest dates, soils, long range climate forecasts, the
characteristics of different types of irrigation system and the timing of water stress, so that limited water
is used in the most effective manner.

Introduction

The sugar industry in the Lowveld of Zimbabwe is heavily dependent on available water resources.
After a near catastrophic drought in 1992, consultants were tasked with assessing the reliability of these
resources. They highlighted serious limitations in the numerous methods that have been used to assess
available water and reservoir yields and presented evidence suggesting that reservoir yields have been
grossly over-estimated. In their conclusions they recommended that a 'state of the art' computer
simulation model of the system needs to be developed in order to:
(i) obtain a more reliable assessment of water availability, and
(ii) operate the "complex" system in the most efficient manner (Binnie and Partners, 1993).

In the twelve years prior to 1993 the average level of reservoir storage in the Runde catchment showed
a gradual but fairly consistent decline from 100% of potential to nearly 0 % of potential (Kaseke 1998).
Thus supply and demand interactions were not well managed, further evidence that reservoir yields have
been overestimated. Whilst building more dams to increase the level of available storage could help, the
supply and demand interactions will become more complex and questions as to the optimal level ofland
development for the increased water storage, still remain. Increased insight into water availability and
well matched water management strategies are needed to ensure the long term viability of the industry.

In this paper the potential of deficit irrigation as a strategic option is investigated and the tools and
information needed to transfer strategy to practice are discussed.

Deficit Irrigation: Concepts

Deficit irrigation is an optimising strategy whereby net returns as opposed to crop yields, are maximised.
This is often achieved by reducing the amount of irrigation water applied to a crop to a level that results
in some yield reduction caused by water stress. The fundamental goal of deficit irrigation is to improve
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water use efficiency and maximise profits through a reduction in capital and operating costs. A major
challenge to the introduction of deficit irrigation strategies is to convince irrigation practitioners not only
of their value but also of their practicality.

Recognition of the following points is fundamental to an understanding of deficit irrigation:
i) that the efficiency of irrigation water applications decreases as the number and the magnitude of

the applications increases,
ii) that the application of irrigation water is costly, in terms of both direct costs but more

importantly in terms of lost opportunities, and
iii) that the determination of an optimal irrigation strategy is very dependent on water supply and

demand interactions over time, particularly on whether a shortage of water or a shortage of land
is the factor limiting production.

Irrigation water losses include those due to spray evaporation, wind-drift, evaporation from the soil
surface and potentially through surface runoff and deep percolation, especially if the performance of an
irrigation system is poor and water is applied unevenly. The potential for losses through surface runoff
and deep percolation increases as the number and magnitude of irrigation applications increases and in
addition, the effective use of rainfall is likely to diminish. The net result is that if a plot of crop yield
versus actual transpiration and applied irrigation water is drawn, the yield versus applied irrigation water
line will curve away from the yield versus transpiration line as shown in Figure 1. This is one of the
reasons why the application of the large amounts of irrigation water needed to maximise yield does not
always result in maximum economic return.
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Figure 1 General
form of a crop production function (after English, 1990)

Irrigation water application costs are related to actual costs of water, interest on capital equipment,
energy, labour and also opportunity costs, especially if water is limited. When water as opposed to land
is limited, the water saved by reducing irrigation applications per hectare may be used to irrigate
additional land possibly resulting in an increase in total income. The potential income from the irrigation
of the additional land is an opportunity cost of water. If land is limited the question reverts to what
irrigation application amount results in the maximum difference between irrigation application costs and
yield related returns.

In Figure 2, two cost functions and a revenue function are shown. The revenue function has the same
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shape as the yield versus applied water curve (see Figure 1) as revenue is simply the product of yield and
crop price. The lower limit of the cost functions represents fixed field costs, for example, capital costs,
crop insurance, fixed costs of irrigation, planting, tillage, chemical use and harvesting. The slope of the
cost functions represents the marginal variable field costs of production, for example, pumping costs,
water costs and yield related costs, like fertiliser and transport. The upper limit of the cost functions
represents the maximum water delivery capacity of the two different irrigation systems. The maximum
water delivery capacity of an irrigation system is a hardware limitation that can have very significant cost
and flexibility implications. For example, for the two systems shown in Figure 2, the system with the
smaller capacity, i.e. System 2, does not have sufficient capacity to irrigate for maximum crop yields,
however, the implications of lower capital and operating costs are such that the net returns are nearly
double those attainable with the larger system, i.e. System 1.
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Sugarcane Production and Revenue Functions

Data recorded during irrigation trials performed at the Zimbabwe Sugar Association Experiment Station
(ZSAES) were collated and analysed in order to determine relationships between the various irrigation
treatments and crop yields. The trials could be separated into three main groups of treatments, viz.
(i) the irrigation of full canopy sugarcane using various fractions of evaporation from a class A-pan

to determine irrigation intervals (so-called "pan faCtor" trials),
(ii) varying the way sugarcane was irrigated during the early growth period, i.e. after harvesting to

the development of a full canopy, and
(iii) varying the way sugarcane was "dried-off' prior to harvesting.

The trials with different irrigation treatments during early growth showed a wide scatter in results and
it was difficult to reconcile actual irrigation treatments with those reported on in the experiment designs.
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For this reason only data from the "pan factor" and "dry-off' trials have been included in this paper. The
data from these trials are shown in Figures 3 and 4. The data from the pan factor trials were used to
derive a sugarcane production function, which is given in Equation 1, and also shown in Figure 3.
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Figure 3 ERC vs total water (irrigation + rain) for various pan factors

Equation 1 can be used to estimate a relationship between total water, i.e. irrigation and gross rainfall,
and ERC yield.

Y erc = -3.8355 - 0.00329,Wtot + 2.1561.lO-5.Wtot2 - 7.1098.1O-9.Wtot3 ....Eq 1.

where Yerc = ERC yield (Lha-l.a-l)
Wtot = Total Water (irrigation + rain) (mm)

The derived relationship between ERC and total water is curva-linear. This substantiates theoretical
considerations, confirming the reductions in marginal gains and efficiencies with increased watering.
ERC yield increases with increasing application of water up to a limit of approximately 1900 mm of
irrigation and rainfall. Further application ofwater is not beneficial and appears to cause some reduction
in yield.

The "dry-off'trials showed a much flatter relationship with little change in the yield of ERC for various
levels and methods of "drying-off' with optimum yields obtained with as little as 1600 mm of total
water. This is to be expected because of senescence during the latter stages of the crop's growth, with
associated reductions in water requirements. In addition, slowed growth caused by water stress at this
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time can have a ripening affect on the cane and any losses in yield of dry matter are likely to be
compensated for by increased ERe content. Saving water by 'drying-off' cane is thus a very simple,
effective and low risk strategy. Ellis (1993) has developed a simple dry off scheduling tool, based on
week of harvest and Total Available Moisture (TAM).
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Figu I Ire
4 ER
C vs total water (irrigation + rain) for various 'drying-off' treatments. The labels on the data represent
the multiple ofTAM to which the crop was 'dried- off'. Non-labelled data are from 'dry-off' treatments
using various pan factors or time periods.

In order to derive a sugarcane revenue function, the yield derived from the production function was
multiplied by the sugar price. For this paper it was assumed that a grower received Z$5904 per ton ERC
(1999 price when Z$37.00. = US$1.00).

Sugarcane Field Cost Function

A spreadsheet computer package was used to develop a framework for an irrigated sugarcane field cost
function. The cost function used in this paper included: fixed costs of irrigation system equipment, land
preparation, harvesting and haulage machinery, and variable costs offield production. The variable costs
included: water, energy, labour, land preparation and stool kill, planting inputs (seedcane, fungicide and
pesticide), fertilizer, weed and pest control, harvesting and haulage. The energy and labour costs were
related to the irrigation system specifications, including peak system capacity and mainline pipe sizes.
The size of the main pipeline has a significant effect on friction losses, pump and motor requirements
and operating costs. The variable costs of fertilizer, harvesting and haulage were a function ofsugarcane
yield which was determined as a function of total water using Equation 1. Fertilizer was varied
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according to expected crop yield and assumed to comprise, 160 kg.ha-] N, 75 kg.ha'] P205 and 150 kg.ha'
] K20 per 150 t.ha'] crop. Energy and water costs varied according to rainfall and applied water.
Rainfall was assumed to be 500 mm for this paper.

Profit Calculations

The sugarcane production and cost functions were used to determine a measure of profitability at
different levels of irrigation. For land limited production the optimum level of irrigation is when the
marginal cost equals the marginal return, or when the difference between the cost and revenue functions
is a maximum. For water limited production the opportunity cost of water needs to be taken into
consideration. This was achieved by calculating a relative measure ofprofitability which reflects relative
total returns to water. For example, given two irrigation strategies, viz. Strategy 1 and Strategy 2,
• Strategy 1 uses, say 1500 mm of water per hectare (15 Ml) and
• Strategy 2 uses, say 1000 mm of water per hectare (10 MI),
• Strategy 2 could therefore be used to irrigate 1.5 times the area irrigated using Strategy 1 for a

given amount of water.
IfStrategy 1 realised a return of Z$1000/ha and Strategy 2 Z$800 per hectare, the total returns could by
maximised by using Strategy 2 and irrigating 1.5 times the area that could be irrigated using Strategy
1, viz. Z$1000x1 vs Z$800xl.5, realising an additional Z$200 for every ha that could have been irrigated
using Strategyl. A summary of the sugarcane field costs and revenues for different levels of irrigation
is shown in Table 1. H land limits production, maximum field profitability is attained when irrigation
is applied to achieve close to maximum yields, viz. irrigation and rainfall totalling approximately 1700
mm, on average.

Ifwater limits production, Z$(80923-66737 =14186) extra income per hectare irrigated with irrigation
and rainfall totalling 1800 mm could be attained by irrigating 1.37 that area using a total (irrigation and
rain) of only 1450 mm per hectare. For an estate of some 12000 ha this could equate to an additional
Z$170 (US$4.5) million per annum on average and for an industry of some 45000 ha, some Z$638 (US$
17.2) million per annum on average. The question of whether or not the extra area should be irrigated
every year or 'banked' and 'used' during drought years depends on how Mill capacity, water supply,
demand and storage interact over time. There may be years when due to reservoir water levels, a switch
from a land limited to water limited strategy would be advisable and vice-versa. These interactions can
be assessed by investing in the development of the databases and tools needed to configure and apply
theACRU agrohydrological computer model (Schulze,1995) to simulate the Lowveld water supply and
demand interactions and associated irrigation operating strategies.

Table 1 Irrigation Profitability for Land or Water Limiting Conditions

Total Total Water ERC Revenue Field Profitability Relative Relative Profit
Water for Yield Yield @Z$S904. Costs Measure 2 Area for (water limiting)
with Dry, Calculation tERC I Equivalent
Off I s (Lha'l.a'l) (Z$.ha,l) Water (Relative Z$)
(mm) (mm) (Z$) (Z$) (a) (ha) (a) x (b)

(b)
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1350 1500 15.75 92962 40925 52037 1.53 79586
1400 1559 16.50 97395 41596 55799 1.44 80598
1450 1618 17.17 101350 42214 59136 1.37 80923
1500 1676 17.75 104776 42773 62003 1.30 80604
1550 1735 18.23 107622 43266 64356 1.24 79679
1600 1794 18.60 109837 43689 66148 1.18 78175
1650 1853 18.86 111369 44036 67333 1.13 76116
1700 1912 19.00 112167 44300 67867 1.08 73523
1750 1971 19.00 112180 44476 67704 1.04 70412
1800 2029 18.86 111357 44620 66737 1.00 66737
1850 2088 18.57 109646 44729 64917 0.96 62512

1 It has been assumed that a 15 % saving in water can be realised through drying off to 3 x TAM (cf. Figures 1 and 2)
2 The profitability measure is dependent on numerous assumptions regarding input costs. This figure is based on estimated
costs of erecting a pivot on cleared land and conducting operations according to the guidelines provided by the ZSAES

Derivation and Application of Selected Irrigation Strategies at Field Level Using ZIMsched

ZIMsched (Lecler, 2000; 2001) is a simple to use, spreadsheet-based water management tool. Whilst
it is simple to use, it has water budgeting routines based on state-of-the-art research by, inter alia, AlIen
et al. (1998) and Schulze (1995). The water budget in ZIMsched accounts for:
• evaporation from the soil surface and transpiration in relation to:

atmospheric evaporative demand
available soil water,
crop and rooting characteristics (the development of which are related to temperature),
irrigation system type,
irrigation system performance,

• stormflow (surface runoff),
• deep percolation, all of which relate to
• rainfall effectiveness.

The timing and application of water can be adjusted according to various management options,
including, user selected:
• early and/or late season reference pan factors,
• dry-off periods, given as a multiple of the soil's total available moisture (TAM).

The influence of these water application strategies in relation to different soils, expected climates,
different types of irrigation system and different irrigation system performance levels in terms of:
• total applied water and
• expected ERC yield
can be simulated.

The ERC yield estimate in ZIMsched is based on a robust relationship between actual evapotranspiration
(ET) and tons sucrose that was derived by Thompson (1976) using data from Hawaii, Australia,
Mauritius, Mt Edgecombe, Chakaskraal and Pongola. ZIMsched's estimate of potential transpiration is
used in a modified form of Thompson's (1976) sucrose verus ET relationship in order to derive an
estimate of potential ERC for a given season. This potential ERC is then further modified according to
the timing and magnitude of water stress according to procedures based on research reported on by
Doorenbos and Kassam (1979).

In order to quantify the effects of soil water stress on crop yields, Doorenbos and Kassam (1979) utilised
a function relating the relative yield decrease to the relative deficit of total evaporation (i.e. actual
evapotranspiration). This relationship is given below as Equation 2
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(l-Y/Yp) = ~(l-ElEm) ... Eq2

where:
Ya =
Yp =
E =
Em =
Et =
Etm =
Es =
~ =

actual harvested yield of a given crop (t)
potential non-water-stressed harvested yield of a given crop (t)
actual total evaporation (i.e. El + Es' mm)
maximum evaporation (i.e. Etm + Es, mm)
actual evaporation from the plant tissue, i.e. actual transpiration (mm)
maximum evaporation from the plant tissue, i.e. maximum transpiration (mm)
evaporation from the soil surface (mm)
growth stage specific yield response factor

The response of yield to water supply is quantified through the yield response factor, ~' which relates
the relative decrease in yield, (1-Y/Yp) to a relative deficit in total evaporation (1-ElEm). The~ values
for most crops were derived on the assumption that the relati~nship between relative yield (y/Yp) and
relative total evaporation (ElEm) is linear and is valid for water deficits of up to approximately 50%, i.e.
(l-ElEm) = 0.5. Values for ~' for a wide range of crops, were derived based on the analysis of
experimental field data covering a range of different growing conditions. Details of the numerous
experiments analysed to derive the ~ values are given in the Appendices of the publication by
Doorenbos and Kassam (1979). In the analysis of these experiments, the magnitude and duration of
water deficits, expressed as relative deficits of total evaporation, were made to correspond closely to
individual crop growth periods. As a result, in most cases, 80 to 85 % of the yield variations due to
different water treatments could be explained (Doorenbos and Kassam, 1979).

According to De lager (1994), concerns about the transferability of the yield function given in Equation
2 can be obviated through the use of transpiration ratios (i.e. ElEtm) in the place of total evaporation
ratios (i.e. EIEJ. In Equation 3 the influences of atmospheric vapour pressure deficits and climate-crop
architecture on EjEtm and hence Y/Yp cancel out (De lager, 1994). Hence the yield response factor,~,

defmed in Equation 3 becomes a purely plant physiological entity and is thus determined by crop
genetics and not climate. The~ factor should thus be neither site nor climate specific (De lager, 1994).

YjYb

where:
1

~i

=

=
=

i=G

n [l-Kyi(l-E/E",J]
i=1

i-th growth stage in a growing season with a total of G growth periods
yield response factor for the i-th growth period

...Eq3

De lager (1994) tested a range ofwheat yield functions, including Equation 3, using the water budgeting
algorithms of the PUTU model to calculate Et and Etm. Results of these tests showed that using a yield
function based on Equation 2 with values for ~i for wheat taken from Doorenbos and Kassam (1979),
was the most accurate of the various different yield functions tested and that the accuracy was very
acceptable for use in decision support applications.

Based on research by, inter alia, Doorenbos and Kassam (1979) and De lager (1994), and a preliminary
comparison between observed and simulated yields and water use, Equation 2 has been adopted as an
option for estimating ERe yields inZIMsched. With this facility for estimating crop yields, it is possible
to plan and design, inter alia, irrigation strategies, taking into account the effects of different water
application targets and scheduling practices on crop production, and utilising commonly available
data/information.

It should be emphasized that yield estimates based on Equation 3 are particularly sensitive to the
duration of the different growth periods, and care should be exercised to ensure realistic values. This
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is an area that needs research attention and ideally should be related to thermal time. In the interim it
is strongly suggested that users should refer to their local agricultural research stations to obtain local
cultivar trial information on growth periods. Potential users of this approach to estimating yield should
also be aware that the rationale for adopting this function is based primarily on theoretical considerations
and literature studies. Verification studies are still ongoing, however, initial results, shown in Figures
5 and 6 indicate that the approach is sound with simulated yields and water use for different pan factors
and dry off strategies very close to those derived from experimental trials (cf. Figures 5 and 6).
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Figure 6 Simulated ERC versus total water for various 'drying-off' periods. The length of the dry
offperiods was determined as a function of the soils' total available moisture (TAM), the
multiple of which (shown as data labels) in accumulated A-pan evaporation units
determined the last irrigation date.

General guidelines on, inter alia, growing periods and yield response factors for sugarcane are given in
Table 2. The yield response factors shown in Table 2 a~e in general agreement with research reported
on by Chaudhry and Leme (1996) who conducted an experiment in Brazil where cane was stressed at
different stages of its growth cycle. Analysis of their data showed that:
• water stress during the two month period following the establishment of full canopy had the most

severe effects on yields,
• water stress during the period where canopy cover ranged from 75% to 100% had the next

greatest effect on yields, and
• water stress periods during the later stages of the crop cycle showed smaller and smaller yield

effects.
No stress treatments were imposed prior to the 75 % canopy stage. Based on results from the dry-off
trials undertaken in Zimbabwe (cf. Figure 4) the yield response factor for growth period 4 (ripening) has
been changed to -0.01 in ZIMsched, thus stress in this period is simulated to have a very mild beneficial
effect on ERe.

Table Growing period durations and yield response factors, ~, for sugarcane (after Doorenbos and
Kassam, 1979)

Growth Growing Period Duration (days) ~
Period

Short Season Medium Season Long Season
(Zimbabwe)

0 20 20 35 -
1 200 275 320 0.75
3 90 100 150 0.50
4 50 60 70 0.1·

Total 360 455 575 -

Growth Periods: 0 = establishment
1 = vegetative
3 = yield formation
4 = ripening

'0.1 has been changed to -0.01 in ZIMsched based on dry-off trial data

Discussion and Conclusions

A basis for deficit irrigation has been established using empirical data from more than 40 'crop-years'
of irrigation trials. These trials confinn theoretical concepts of deficit irrigation and have also
highlighted the benefits of using a well judged'dry-off' period (to 3 x TAM) as a simple, low risk water
saving strategy. Trials cannot, however, be used to answer questions on how to manage streamflow,
irrigation strategy/water demand and available storage interactions over time. There are tools available
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to investigate these relationships, for example, theACRU agrohydrological simulation model. Evidence
given in this paper and in other reports on the water status of the industry suggests that the
commissioning of such an investigation and the adoption of irrigation strategies on the basis of these
insights could be of great benefit to the sugar industry and result in major increases in long term
profitability.

The challenge of determining and implementing effective irrigation strategies at the field level has been
addressed. Robust water budgeting and yield relationships have been integrated into a simple to operate
spreadsheet tool, ZIMsched. This version of ZIMsched can be used to simulate the effect of different
water management strategies on water requirements and ERC yields, taking into consideration:
• irrigation system type (e.g. pivot vs furrow),
• irrigation system performance (coefficient of uniformity CU),
• soil characteristics, and the
• expected climate of the season,
so that a targeted amount of water is used on the most effective manner. The selected strategy can then
be implemented using the same tool.

The validity of this tool for simulating ERC is still being checked, however, it is based on sound
international research. Preliminary comparisons between simulated ERC yields and water use are in
good agreement with experimental trial data collected in the lowveld of Zimbabwe. The ERC yield
estimates are particularly sensitive to the duration of the different sugarcane growth periods, and care
should be exercised to ensure realistic values. This is an area that needs further research. Ideally the
duration of the growth periods should be related to thermal time and other environmental factors that
influence crop development, for example, day-length.
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ACCOUNTING FOR UNIFORMITY OF APPLIED IRRIGATION WATER USING
MULTIPLE WATER BALANCES IN ZIMSCHED 2.0

ABSTRACT
Irrigation water is seldom applied in a completely uniform fashion. Thus parts of a field
typically receive more irrigation water than other parts. As a result there is a potential
reduction in yield in the portions of the field which receive deficient and/or excess water.
ZIMsched 2.0 is an irrigation systems simulation model which uses three water balances to
account for the impacts of the non-uniformity of irrigation water applications. In this paper
the sensitivity of the water balance and crop yields simulated with ZIMsched 2.0 for a range
of multiple water balance permutations was investigated. Simulations were run for the
Pongola region, RSA for the period 1980 - 2000 using different irrigation uniformities, soils,
scheduling options, numbers of simultaneous water balances and distribution functions to
describe the spatial variability of applied water. The results showed that the simulated crop
yields, drainage, runoff and seasonal irrigation efficiency were sensitive to irrigation non
uniformity represented using multiple water balances. However, using more than three
simultaneous water balances to represent the non-uniformity of applied irrigation water did
not produce any further significant differences in the values simulated. Using different
distribution functions to describe the spatial variability of irrigation water applications for a
given uniformity value also did not produce significant differences in the variables simulated.
Thus, in this case study it was computationally efficient and representative to use only three
water balances and the uniform distribution function to account for the spatial variability or
non-uniformity ofapplied irrigation water.

Keywords: sugarcane, multiple water balances, irrigation scheduling, ZIMsched, irrigation
systems, uniformity

1 INTRODUCTION

The application of irrigation water to a field is never uniform. This non-uniformity results in
portions of the field that are over- and/or under-irrigated. Thus, there will be areas of the field
that will be subjected to water shortages and areas that may be subjected to water logging..
These conditions will ultimately lead to a reduction in the potential yield of the field.

The spatial distribution of water applied to a field has been represented using distribution
functions such as the normal, uniform, specialised power, and log-normal distributions
(Warrick, 1983; Heermann et al., 1992). A planning model to determine optimal irrigation
strategies which takes into account the effect of the non-uniformity of seasonal irrigation
water applications on crop yield has been described by de Juan et al. (1996). However, a
major constraint of de Juan et al.'s (1996) model is that the water balance was somewhat
over-simplified. Li (1998) presented a similar approach to relating crop yield to irrigation
uniformity, however, Li (1998) related crop yield to water deficits at particular growth stages
to try and better represent water stress effects. Mantovani et al. (1995) not only described the
development of a simple model to relate yield to irrigation amount and uniformity, which is
apparently the foundation of the approaches of both de Juan et al. (1996) and Li (1998), but
also compared this approach to results obtained by running a more process-representative but
data intensive crop growth model, namely Ceres-maize (lones and Kiniry, 1986). The
inclusion of irrigation application uniformity in the growth model simulations was achieved
by running the Ceres-Maize simulation model to simulate multiple units with each unit
receiving a different irrigation application amount dependent on irrigation uniformity. A
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comparison between the simple model and the Ceres-Maize model adapted to simulate spatial
variability in applied water showed similar trends but differences in absolute values
(Mantovani et al., 1995). The multiple water budgets approach has the advantage of better
representing the dynamics of the soil water balance.

Lecler (2003) developed ZIMsched 2.0, a sugarcane yield and irrigation systems simulation
model which uses three water balances to account for the impacts of the non-uniformity of
irrigation water applications. In this paper the sensitivity of the water balance and crop yields
simulated with ZIMsched 2.0 for a range of multiple water balance permutations were
investigated. These included the effects of more than three water balances and the use of
various distribution functions to describe the spatial variability of water applications. Impacts
on yields of estimated recoverable crystal (ERC) and the water balance for a range of
scheduling options, soils and seasonal weather conditions were assessed.

2 METHODOLOGY

To account for the variation in water distribution across a field, the field was divided into 3, 5,
7,9, 11, or 13 equal parts. The simulated depth of irrigation water applied to each portion was
determined by assuming a statistical distribution for the irrigation water application and
calculating the average application depth in each portion. This is illustrated for a normal
distribution in Figure 1. The inputs were the uniformity (low quarter distribution uniformity
(DU1q), coefficient of uniformity (CU) or coefficient of variation (CV)) and the target or mean
irrigation application depth. The target application depth was determined from the irrigation
scheduling option used. For these simulations, fixed amount, fixed cycle and variable amount,
variable cycle scheduling options were used. The fixed amount, fixed cycle scheduling option
had different winter and summer irrigation application depths/cycles as are commonly used.
The variable amount, variable cycle scheduling option simulated the soil being refilled to a
specified level below field capacity at a soil water deficit coinciding with the planned mean
irrigation application depth. This option was used to simulate an "ideal" scheduling practice.
Figure 1 shows the average simulated irrigation water application depth in each zone when
the field has been divided into 13 equal areas for 13 simultaneous water balances. The
average irrigation application depth for each zone was calculated numerically. Figure 2 shows
the average depth of simulated irrigation water applications for a specialised power
distribution that has been separated into five water balances.

The ZIMsched 2.0 irrigation systems simulation model (Lecler, 2003) was configured to
simulate growing a crop of sugarcane in Pongola, KwaZulu-Natal for the period 1980 - 2000.
A number of simulations were run to compare output from the different number of
simultaneous water balances used and to assess the sensitivity of the model to changes in
distribution type and input parameters. For the purposes of this study, it was assumed that the
soils were homogeneous within the field and that the non-uniformity of irrigation water
applications was constant during the period of the simulations. Variables assessed were yield
of estimated recoverable crystal (ERC), application efficiency, runoff, and deep percolation.
The seasonal application efficiency (SAE) was defined as:

SAE =Accumulated seasonal actual transpiration

Total irrigation water supplied + Rainfall
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Due to the large number of potential simulations that were possible by assuming different
soils, irrigation unifonnities, scheduling options, planting dates, or number of water balances
simulated, only a reduced number of simulations were done. For the two scheduling options,
the parameters shown in Table 1 were used for the simulations. Option 1 is assumed to
represent ideal scheduling and Option 2 is a typical schedule used by overhead irrigators in
the Pongola region.

I .dflTable 1 Schedul'mg OT: nons use -------

Option Target depth
1. Variable cycle, Refill to field capacity before the onset of stress less 10mm allowed
variable amount for storage of rainfall
2. Fixed cycle, fixed Summer: 48mm applied in 12h every 14 days
amount Winter: 24mm applied in 6 hours every 14 days
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The simulations were run for two different soil types. The properties of the clay (Cl) and
sandy-clay (SaCl) soils used are shown in Table 2.

- ------ - --~---- ~- ----} -- - -;I - - --- -- ~---, ~- --

Soil type PWP [mlm] DUL [mlm] PO [mlm] Total available
moisture rmm1

Cl 0.298 0.416 0.482 94
SaCI 0.228 0.323 0.423 76

3 RESULTS AND DISCUSSION

The use of more than one water budget did have an effect on yield, drainage and runoff
simulated. In Figure 3 the yields simulated for a normal distribution with DUlq= 60% for 1, 3,
5, 9 and 13 water budgets are shown. Scheduling option 1 was used. The difference in yield
between one water budget and three or more water budgets was significant at the 5% level.
However, the difference in yield was not significantly different when using three or more than
three water budgets. The average yield for one water balance is higher than that for the
multiple water balances. Thus, taking uniformity into account in ZIMsched 2.0 affected the
simulated yield as stress in under- and over-irrigated areas was taken into account. It is
interesting to note, that in years of high rainfall, the yield was lower than in years of less
rainfall. The high rainfall in 1984 was due to flooding where 366.6mm of rain fell in three
consecutive days.

Average ERe yield simulated for a Normal distribution with DU =60%
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Figure 3 Simulated ERC yield for a clay soil, DUlq = 60% and scheduling option 1.

In Figures 4 and 5 the average drainage and runoff simulated for normally distributed
irrigation water applications with DUlq= 75% and using scheduling Option 1 are shown. The
difference between the average drainage and runoff simulated for one water balance versus
three or more water balances was not significantly different at the 5% level. However, it can
be seen that using a single water balance produces lower simulated runoff and drainage. The
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use of either a uniform or specialised power distribution (exponent = 2) did not produce any
significant differences in the average drainage or runoff simulated over a normal distribution
for the same uniformity.

In Figure 6 the average amounts of irrigation water applied using 13 water balances and
scheduling Option 1 are shown. As expected, the average irrigation water applications were
dependant on the amount of rainfall. The model showed increased irrigation water demand in
low rainfall years and decreased demand in high rainfall years. There were small differences
in the average water applied for the two specialised power distribution curves. This difference
is due to the average calculated from the 13 water balances not being equal to the average of
the distribution curve. Despite using an "ideal" irrigation scheduling approach, there is still
potential for substantial runoff and drainage when rainfall events occur on an already wet soil.
The application efficiency ranged from 52.9 to 79.5%. Years with low efficiency
corresponded with high rainfall years as there was less efficient use of rainfall. In general, the
efficiency was above 65% for this scheduling option. Accounting for rainfall or being able to
forecast rainfall events with certainty is, therefore, likely to result in substantial improvements
in seasonal irrigation application efficiencies.

Average drainage for a Normal distribution with DU = 75%

20.0 -...__._. _. _...- ------ 1200.0

360.0

1080.0

· 120.0

-240.0

· 840.0

720.0 E
oS

600.0 'iii...c:
n;

· 480.0 It:

· 960.0

•

•
•

I. • L 0.0

16.0

18.0

E 14.0
E
"; 12.0 I -A l~\ IfI. \l
Cl
toc:
~ 10.0
c
Cl>

~ 8.0
Cl>
>« 6.0

4.0

2.0

0.0
19801981198219831984198519861987198819891990 19911992 1993 199419951996 1997 19981999

Year

i-~'1 WB'~-i'WB'~ 5 WB -..- 9-WB'-~ 13 WB --; - Rai~ialil_______ __ • _.__ . .. ._ _._.__ .J
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Average runoff for a Normal distribution with DU = 75"10
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Figure 5 Average runoff simulated for a Normal Distribution with DUlq = 75% for 1,3,5,9
and 13 water budgets using scheduling option 1.
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Figure 6 Average irrigation water applied using scheduling option 1 and 13 water balances.

In Figure 7 the effect of varying the soil type is shown. For a clay soil the runoff was greater
than that of a sandy clay soil due to the lower infiltration rate of the clay soil. The sandy clay
soil showed increased drainage due to the higher drainage rate from that type of soil. The
clay soil exhibited greater total runoff and drainage losses compared to the sandy-clay soil.
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Runoff and Drainage for Cl and SaCI soils
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Figure 7 Runoff and drainage for Cl and SaCI soils using 13 water balances with a Normal
distribution, DUlq = 60% and scheduling option 1.

For scheduling Option 2 the findings were very similar. However, due to the less efficient
method of applying water, more runoff, more drainage and poorer efficiency was noted. The
efficiency was much lower than that of scheduling Option 1 ranging from 36.9 to 66.6%. The
efficiency is lower due to the inflexibility of the scheduling option used and because it makes
very inefficient use of rainfall. In scheduling Option 2 the cycle was not reset after significant
rainfall events as might occur in practice. Thus these values are the lower boundary for
application efficiency. The simulated drainage ranged from 12.7 to 470.3mm and the
simulated runoff ranged from 221.9 to 1055.5mm. The sandy clay soil produced more
drainage and less runoff than the clay soil. There was significant runoff from the clay soil,
which resulted in the very poor application efficiencies.

In Figure 8 the average simulated ERC yields for 13 water balances and for the various
distributions are shown. The average yields simulated were similar, with the higher
uniformity of water application giving slightly higher yields. The poor performance in yield in
1997 was due to the high amount of rainfall (resulting in less radiation) and over-irrigation
that took place that caused the field to be saturated for a large portion of the year. Comparing
this to the 10.2 t/ha/a yield in 1997 for scheduling Option 1 (see Figure 3), shows the
detrimental effect of too much water on yields.
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5 CONCLUSIONS

Accounting for uniformity of irrigation water application had an effect on simulated yields.
The results from the simulations showed that there were significant differences between a
lumped average simulation and simulations using multiple water balances. However,
increasing the number of simultaneous water balances beyond three did not produce
significant differences. Thus, division of a field into at least three portions should be
considered in order to account for the effects of non-uniform irrigation water applications in
simulation models.

Average simulated crop yields decreased when the field was split into multiple water
balances. This shows that ZIMsched 2.0 is sensitive to simulated over- and under-irrigation.
On the other hand, the average drainage and runoff simulated were greater from the multiple
water balance simulations than from the lumped simulation, as expected. The greater
resolution afforded by the multiple water balances resulted in runoff and drainage which is
likely to occur on the portions of the field being over-irrigated being simulated.

For the same uniformity value, the type of distribution used to describe the spatial variability
of applied water did not result in significant differences in the simulated values of yield,
runoff, drainage and seasonal irrigation application efficiencies. Using three water balances in
ZIMsched 2.0 was shown to be a valid approach for representing the effects of irrigation
uniformity, various irrigation scheduling options, soils and climate on crop yields and the
water balance.
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APPENDIXE: TRIANGLE ESTATE'S WATER MANAGEMENT

GUIDELINES

AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH

/'ill

REFERENCE

mBudgot d.,o fo' th;,d ;"'gahon 0' SI... 01 no""a' ;,,;gation

~ P,ed'otod dato of tull oanopy

~ Prodlotod dato of oommonoomont o' .talk olongatlon

Note:

•

•

•

•

The aim is for the first three irrigation water applications to be equal in magnitude to the soil's TAM,
thereafter, soil water depletionis calculated using a soil water budget in which A-pan evaporation data
is multiplied by a factor of 1.0 in order to estimate daily evapotranspiration
After the first three irrigation water applications, subsequent irrigation applications should be equal in
magnitude to 50 % of the soil's TAM
Rainfall less than 5 mm is ignored while rainfall and/or irrigation water applied in excess of the
calculated soil water depletion is assumed lost as far as the water budget is concerned

The crop is usually dried off prior to harvest for a period during which A-pan evaporation accumulates
to a value equal to 2 to 3 times the soil's TAM value

Figure El Triangle Estate's water management guidelines
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APPENDIX F: IDPPO VALLEY
GUIDELINES

ESTATE'S WATER MANAGEMENT

Table F1 Monthly crop factors which are multiplied by A-pan evaporation
values in order to estimate evapotranspiration losses

APR MAV JUN JUl AUG SEP OCT NOV DEC JAN FEB MAR

1.APRll CUT • cl' ;"i.O.2)~ 0.2 0.2 0.3 0.7 O.B 1.0 1.0 1.0 1.0 1.0 0.0

~.MAV CUT • cll 0.0 0.2' 0.2 0.3 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0

3.JUNE CUT· cif 1.0 0.0 0.2 0.2 0.5 O.B 1.0 1.0 1.0 1.0 1.0 1.0

~.JUlV CUT . cll 1.0 1.0 0.0 "he 0.2 ""«. 0.2 0.3 0.6 1.0 1.0 1.0 1.0 1.0

5.AUGUST CUT· cll 1.0 1.0 1.0 0.0'_1f.2 t,· 0.3 0.6 1.0 1.0 1.0 1.0 1.0

~.SEPTEMBER CUT • cif 1.0 1.0 1.0 1.0 0.0 KW!t 0.2""" 0.' O.B 1.0 1.0 1.0 1.0

7.0CTOBER CUT • cll 1.0 1.0 1.0 1.0 1.0 0.0 if;~:~O.2MM 0.' O.B 1.0 1.0 1.0

B.NOVEMBER CUT· cl' 1.0 1.0 1.0 1.0 1.0 1.0 o.O.~·012_ OA O.B 1.0 1.0

9.DECEMBER CUT· cll 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 • 'W\lf#Wiii0 0.2 0.6 1.0 1.0

Note:

•

The crop is usually dried off for a period during which A-pan evaporation accumulates to 2 to 3 times
the soil's total available moisture, TAM, value
The crop factors shown in Table El are further modified, depending on the soil's TAM according to
Equation El as follows:
Kern Kc! (1- O.003(TAM-76) / 2)
where

=
modified crop factor
monthly crop factor shown in Table F1

Table F2 Percentage of rainfall which is considered effective and added to the water
budget

Days since previous Recorded Rainfall mm
rainfall of 5mm + 0-9 10 - 20 21·40 41 -75 75+

More than 4 0% 0% 60% 80% 100%
2-4 0% 50% 80% 100% 100%

1 50% 70% 100% 100% 100%
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APPENDIXG: MKWASINE

GUIDELINES

ESTATE'S WATER MANAGEMENT

Table Gl Monthly crop factors which are multiplied by A-pan evaporation values In

order to estimate evapotranspiration losses

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

I.APRIL CUT - e/l .0.40 0.50 0.60 0.75 0.85 0.85 1.00 1.00 1.00 1.00 1.00 0.0

2.MAY CUT - e/l 0.00 ,,0.40" 0.50 0.60 0.75 0.85 1.00 1.00 1.00 1.00 1.00 1.0C

3.JUNE CUT - </1 0.85 0.00 .& 0.40' 0.50 0.75 0.85 1.00 1.00 1.00 1.00 1.00 0.85

4.JULY CUT - </1 0.85 0.85 0.00 ,i<&O.!IOJ !h, 0.50 0.75 0.85 1.00 1.00 1.00 1.00 0.85

5.AUGUST CUT· </1 0.85 0.85 0.85 0.00 [$ltll.~:*$ 0.50 0.75 0.85 1.00 1.00 1.00 0.8S

8.SEPTEMBER CUT • </1 0.85 0.85 0.85 0.85 0.00 IJ'" 0.40;+ 0.60 0.85 1.00 1.00 1.00 0.85
7.0CTOBER CUT • c/I 0.85 0.85 0.85 0.85 0.85 0.00 \ d.401lM 0.70 1.00 1.00 1.00 0.85

8.NOVEMBER CUT - c/I 0.85 0.85 0.85 0.85 0.85 0.85 0.00 Iffwo.4Q.l$ii; 0.70 1,00 1.00 0.85

Note:

• The crop is usually dried off for a period during which A-pan evaporation accumulates to 2 to 3 times
the soil's total available moisture, TAM, value
Generally, rainfall less than 15 mm is ignored and rainfall or irrigation in excess of the calculated soil
water depletion is assumed lost as far as the water budget is concerned
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APPENDIXH: CHARTS AND CALENDARS FOR IRRIGATION

SCHEDULING OF SUGARCANE IN THE ZIMBABWE

LOWVELD (Lecler, 2003)
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CHARTS AND CALENDARS FOR IRRIGATION SCHEDULING
OF SUGARCANE IN THE ZIMBABWE LOWVELD

NLLECLER

Zimbabwe Sugar Association Experiment Station,
P/Bag 7006, Chiredzi, Zimbabwe

Currently at: South African Sugar Association Experiment Station,
P/Bag X02, Mount Edgecombe, 4300, South Africa

E-mail: Neil.Lecler@Sugar.org.za

Abstract

Many emergent farmers growing irrigated sugarcane do not have easy access to computers. To
provide such farmers with appropriate agronomic and water management decision aids, charts
showing when irrigation water should be applied were produced and are described in this paper.
The charts can be used with most types of irrigation systems and on all soil forms found in the sugar
industry. A simple but robust methodology to determine and account for effective rainfall was also
developed. The information in the irrigation scheduling charts, together with other appropriate
agronomic recommendations, could help growers to derive more inclusive 'sugarcane growing'
management calendars, which include fertiliser and herbicide recommendations. Although not as
accurate for water management as the use of credible computer simulation models and near-real
time weather data, these schedules and the methodology for accounting for rainfall, could be better
suited to many growers.

Keywords: sugarcane, emergent farmers, irrigation scheduling, effective rainfall, management

Introduction

Many farmers growing irrigated sugarcane are either averse to the use of computer-based decision
support tools, or do not have easy access to computers. This is particularly evident with emergent
farmers. Charts showing when irrigation water should be applied have been produced to provide
such farmers with appropriate water management decision aids. This paper outlines the
development of these charts and gives examples of their application. The charts show the average
number of days between irrigation applications for cane cut at different times during the harvest
season, using different types of irrigation systems and on different soil forms. A robust
methodology to determine and account for effective rainfall was also developed.

Methodology

ZIMsched 2.0, an irrigation systems simulation model (Lecler, 2000; Lecler, 2003), was used to
determine the ideal intervals between irrigation water applications for various target soil water
depletion levels, at different times during the growing season. Irrigation water applications were
simulated to take place immediately after planting/harvesting and subsequently throughout a 12
month growing period whenever the simulated soil water depletion level reached the selected target
value. The target soil water depletion levels were selected dependent on the type of irrigation
system and/or soil water holding characteristics.

Proc S A{r Sug Technol Ass (2003) 77
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The results shown in this communication are for target soil water depletion levels of -50, -36 and 
25 mm, corresponding, in absolute terms, to the magnitude of typical furrow, overhead sprinkler
and centre pivot irrigation water applications, respectively. Long term average daily values of
maximum and minimum temperatures and A-pan evaporation, recorded at the Zimbabwe Sugar
Association Experiment Station (ZSAES) were used as the inputs to ZIMsched 2.0. The number of
days between successive irrigation applications for a range of representative harvest dates were then
tallied and tabulated for the growing season (cf Figure 1).

Accountingfor rainfall when using the scheduling charts
Values for rainfall ranging from 3 mm to 60 mm were input to ZIMsched 2.0 in order to simulate
the resultant period of extension to the next required irrigation, at different times during the year.
This period was dependent on soil and drainage characteristics, the time of year and the amount of
rain. However, it was found that a rule of thumb to determine this period, was to divide the recorded
rainfall by the mean daily A-pan evaporation value for the respective month during which the
rainfall occurred. This rule of thumb proved fairly robust, provided the result was limited to a
maximum value of six. The resulting number of days is then added to the day count between
irrigation water applications, as illustrated in the following two examples.

Example 1: 20 mm of rain falls in May
Referring to Table 1, the mean daily A-pan evaporation for May is 4 mm. Dividing the 20 mm of
rain by an A-pan evaporation of 4 mm yields 5. This result is not greater than 6, the maximum
number of days to be added, therefore 5 days are added to the day count between successive
irrigation water applications.

If the day count between irrigation applications was la, it would change to a total of (la + 5) = 15.
If 7 days had already been counted when the rain occurred, a further 8 days (15- 7 = 8) would still
need to be counted before the next irrigation water application is applied. The rain has resulted in
the day count between irrigations changing from 10 to 15.

Example 2: 60 mm ofrain falls in March
Mean daily A-pan evaporation for March is 6 mm. Dividing 60 mm of rain by the March mean A
pan evaporation of 6 mm yields 10. This result is greater than 6, the maximum number of days to be
added, therefore only 6 days are added to the day count between irrigation applications, and not 10
days.

Table 1. Mean monthly A-pan values. Values were calculated from more than 24 years of data
recorded at the Zimbabwe Sugar Association Experiment Station.

Results

The day counts between successive lITigation water applications for typical furrow, overhead
sprinkler and centre pivot irrigation systems are shown in Figure 1. To illustrate the use of the
cha.rts in Figure 1, consider the following example. For a furrow irrigated field cut in late April,
whIch takes approximately 50 mm of water per irrigation application, the grower would select the
'Furrow Irrigation Schedule' in Figure 1. After cutting, 50 mm of water would be applied within
one week.
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Thereafter, following the chart column headed 'May', irrigation applications would proceed as
follows:
• count 78 days, apply 50 mm on day 79
• count 24 days, apply 50 mm on day 25
• count 13 days, apply 50 mm on day 14
• count 10 days, apply 50 mm on day 11, and so on.

The day count between successive irrigation water applications will eventually reduce to 7, and stay
at 7, until February and March when it increases to 9. Drying off would start around 12 March.

Note: The count is re-set to one on the day following an irrigation water application, and the
irrigation water is applied on the day after the day count reaches the value shown in the table. The
information in the table was derived on the assumption that the crop would be cut on the first day of
the month. Therefore, if a crop is cut, say, in late April, it is best to select the 'May' column.
Alternatively, if a crop is cut in early April, it would be best to select the'April' column.

The time between the initial irrigation (within one week of cutting) and the following irrigation may
seem excessively long. Research at the ZSAES has, nevertheless, shown that at least 200 mm of A
pan evaporation can be accumulated between such irrigation applications with no yield losses
(Nyati, -). These trial-based research results are in general agreement with what ZIMsched 2.0
predicts, although ZIMsched 2.0 also shows variations due to different cutting dates, canopy
development rates and irrigation systems. Evaporation losses during the early phase of growth are
very low, and occur mainly from the bare soil surface, especially in the winter months when crop
canopy development is relatively slow. The traditional crop factors of 0.4-0.5 that have regularly
been used to schedule irrigation applications during this period are often inappropriate, especially
for furrow irrigation. Under furrow irrigation evapotranspiration in the early part of the growing
season is relatively low, because large water applications are applied relatively infrequently and
only a portion of the soil surface is wetted.

Discussion and recommendations

An accurate way to schedule irrigation water applications is to use a suitably representative and
credible computer simulation model with appropriate input information / data. However, many
growers are averse to the use of computers or do not have easy access to computer technology.
These same growers are nevertheless under increasing pressure to improve production efficiencies
in order to sustain profitability. In southern Africa they also often operate in environments where
water is scarce and where there is increasing competition for existing water supplies. In order to
help such farmers, many of whom over-irrigate and/or apply irrigation water in an ad-hoc manner,
simple scheduling charts have been produced for different irrigation systems. Correct use of these
charts should facilitate improved production efficiencies by the provision of better information on
when to irrigate and how much water to apply. Although not as accurate as a computer simulation
tool such as ZIMsched, the charts and 'rule-of-thumb' methodology for accounting for rainfall are,
nevertheless, likely to be a significant improvement on many irrigation scheduling approaches.
Whilst hopefully simple to interpret and use, they are based on sophisticated and proven water
budgeting and crop growth algorithms (cf. Lecler 2003). The information in the charts can also be
integrated with other appropriate agronomic recommendations to derive more inclusive
management calendars for irrigated cane, which include, for example, fertiliser and herbicide
recommendations. These management calendars may prove popular and valuable decision aids for
many farmers, especially emergent farmers.
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The development and evaluation of similar charts and management calendars for other irrigated
areas in southern Africa where growers may be averse to the use of computers, is recommended.
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Figure 1. Irrigation scheduling charts for different types of irrigation systems.
The charts were derived using ZIMsched and long term average weather data.
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