
UNIVERSITY OF KWAZULU NATAL

PARALLEL ROBOT DESIGN INCORPORATING A

DIRECT END EFFECTOR SENSING SYSTEM

STUDENT:
Ahmed Asif Shaik - 201293525

BScEng
School of Mechanical Engineering

Durban
ashaik@csir.co.za

SUPERVISOR:
Prof. Glen Bright

Bri ghtg@ukzn.ac ,za

November 2007

Submitted in fulfilment of the academic requirements for the degree of Master of Science in

Engineering at the School of Mechanical Engineering, University of KwaZulu Natal.

mailto:ashaik@csir.co.za
mailto:ghtg@ukzn.ac

Preface

The author hereby states that this entire dissertation, unless specifically stated otherwise, is

his own work, and has not been submitted in part or whole to any other university. This

dissertation recbrds the work completed by the author at the School of Mechanical

Engineering, University of KwaZulu Natal from January 2005 to November 2007.

A. A. Shaik

Abstract

This dissertation details the development of a parallel robot with an integrated direct end

effector sensing system, from concept to prototype model and includes details of research,

design, simulation, construction, assembly and testing.

Current research in parallel robots is insufficient as compared to serial type machines, even

though their existence has been known for some time. The reasons are the difficulty in

conceptualising unique parallel mechanisms, achieving machines that are capable of high

accuracy, solving their complex kinematics, dynamics and control problems. There are many

advantages of parallel machines that rival the serial type, and these warrant further studies.

The second aspect of this project was the design of a direct end effector sensor system. Many

existing automated multi-axis machines operate under overall 'open loop' control. The exact

position in space of the end effector or tool head, for those machines, is not sensed directly

but is calculated by software monitoring sensors on actuator axes.

This sensor system and robot structure was designed specifically for use in the agricultural

and general food processing/packaging industries. The accuracy and repeatability of such a

machine and its sensor system are in the millimetre range.

iii

'

Acknowledgements

The work presented in this dissertation was carried out under the supervision of Prof. Glen

Bright of the School of Mechanical Engineering, University of KwaZulu Natal. I wish to

thank Prof. Bright for his unwavering support and dedicated supervision.

Additionally I owe a great deal of gratitude to the following people and organisations:

• My parents for their support and encouragement throughout my academic career. To my

brother Dr. M. Z. Shaik for all the financial support and tireless motivation given without

question during the toughest and most challenging year of my life.

• Mr. Mike Smith and the rest of the staff of the Mechanical Engineering Workshop for their

expert skill and assistance in the construction of the mechanical apparatus.

• The National Research Foundation (NRF) and the University of KwaZulu Natal for all

financial support received.

iv

List of Acronyms

ADC Analogue to Digital Converter
AGPS Assisted Global Positioning System
ALU Arithmetic and Logic Unit
API Application Programming Interface
ATX Advanced Technology Extended
BE Bull's Eye
CAD Computer Aided Design
CD Carrier Detect
CdS Cadmium Sulphide
CMOS Complementary Metal Oxide Semiconductor
COO Cell of Origin
CPU Central Processing Unit
CTS Clear to Send
D Dimensional
DGPS Differential Global Positioning System
DMA Decoupled Motion Axes
DOF Degree of Freedom
DSR Data Set Ready
DTR Data Terminal Ready
FK Forward Kinematics
FKP Forward Kinematics Problem
GPS Global Positioning System
GUI Graphical User Interface
IC Integrated Circuit
IK Inverse Kinematics
IKP Inverse Kinematics Problem
LCD Liquid Crystal Display
LTI Linear Time Invariant
MAST Multi Axis Simulation (Shake) Table
P Prismatic
PC Personal Computer
PCB Printed Circuit Board
PKM Parallel Kinematics Machine
PWM Pulse Width Modulation
PS Power Supply
R Rotational
RTS Request to Send
S Spherical
SE Solid Edge
SLAM Simultaneous Location and Mapping
TO A Time of Arrival
TOF Time of Flight
TTL Transistor, Transistor Logic
U Universal
USART Universal Synchronous Asynchronous Receiver Transmitter
VB Visual Basic
VOR VHF Omni-directional Ranging
VSLAM Visual Simultaneous Localization and Mapping

v

Table of Contents

Preface ii

Abstract iii

Acknowledgements iv

List of Acronyms v

Table of Contents vi

Table of Figures x

1 Introduction 1

1.1 Mechatronics 1

1.2 Motivation for the Study 1

1.3 Scientific Contribution of the Dissertation 2

1.4 Project Objectives 3

1.5 Project Specifications 3

1.5.1 Mechanical Specifications 3

1.5.2 End Effector Sensor Specifications 4

1.6 Research Publications 4

1.7 Dissertation Outline 5

1.8 Chapter Summary 5

2 Parallel Mechanisms 6

2.1 A History of the most Influential Parallel Robots 6

2.2 Comparison between Parallel and Serial Technology 10

2.3 The Flex-Picker Robot 13

2.4 Chapter Summary 13

3 Direct End Effector Sensor System 14

3.1 An Overview of Current Location Sensing Technologies 14

3.1.1 Global Positioning System (GPS) 14

3.1.1.1 Differential GPS (DGPS) 15

3.1.1.2 Assisted GPS (AGPS) / Indoor GPS 16

3.1.2 Bluetooth, WIFI and Cellular Networks 17

vi

3.1.3 Tnangulation 17

3.1.3.1 Lateration 17

3.1.3.2 Angulation 19

3.1.4 Interferometers 19

3.1.5 Grid Encoders 20

3.1.6 Imaging Methods 21

3.1.6.1 Scene Analysis 21

3.1.6.2 Simultaneous Location and Mapping (SLAM) 21

3.1.7 Other 22

3.1.8 Comparison of Technologies 23

3.2 Sensor Feedback System 24

3.2.1 Requirements 24

3.2.2 Sensor System Concept 24

3.2.3 Sensor System Resolution 26

3.2.4 Advantages and Disadvantages of Sensor Concept 31

3.3 Chapter Summary 32

Mechanical Design 33

4.1 Design of Parallel Kinematic Machines 33

4.1.1 Structural Design 34

4.1.2 Dimensional Synthesis 35

4.1.3 Design Considerations 37

4.2 Structural Design of the Modified Delta Robot 38

4.3 Dimensional Synthesis 43

4.3.1 Dimensioning 43

4.3.2 System Modelling 43

a. Forward Kinematics (FK) Problem 44

b. Geometric Kinematics Model 47
c. Geometric Approach to Solving the FK 50
d. Calculating knee coordinates from the actuation angle 56
e. The Inverse Kinematics (IK) Problem 59
f. Solving the IK using the Looping Method 60
g. IK for the Delta Modification using the Geometry Method 62
h. Singularities 70
i. Delta Mechanism Singularities / Designed PKM Singularities.... 71
j . Idealized Work Envelope Calculation and Visualisation 72

k. Dynamic Modelling to determine maximum Servo Motor
Loading 73

4.4 Chapter Summary 80

5 Electronic Hardware 81

5.1 Processor 81

5.2 Communication 82

5.2.1 Line Voltage Conversion 83

5.3 Servo Motors 83

5.3.1 The Inner-workings of a Servo 83

5.4 Analogue To Digital Converters 84

5.5 Laser Stimulant 85

5.6 Light Detectors 86

5.6.1 Available Light Sensing Options 86

a. Photomultiplier Tubes 86

b. Photodiodes 87
c. Phototransistors and Photodarlingtons 88
d. Photoconductive Sensors 88
e. Integrated Circuits 89
f. Hybrids 89
g. Sensor Electronic Assemblies 89
h. Other Sensors 90
i. Selecting a Sensor 90
j . Sensor Screen Detectors 91

5.7 Buffers/Amplifiers 91

5.8 Serialization 91

5.9 Power Supply 92

5.10 Schematics and PCBs 92

5.11 Chapter Summary 98

6 Control Design 99

6.1 Macro Stage Control 99

6.2 Micro Stage Control 100

6.2.1 Characterising the system 100

6.2.2 Control System in S-Domain 105

6.2.3 Control System in the Z-Domain (Discrete time) 108

6.2.4 Controller Implementation 113

viii

6.3 Chapter Summary 115

7 Software 116

7.1 MATLAB Software 116

7.1.1 Forward and Inverse Kinematics 116

7.1.2 Workspace Envelope 116

7.1.3 Vibration 116

7.1.4 Trajectory Simulation for Solid Edge (SE) 117

7.2 Visual Basic (VB) Software 117

7.2.1 Graphical Control of End Effector 117

7.2.2 Graphical Display of Data 118

7.2.3 Transfer of Control Signals / Receiving Data 118

7.2.4 Calculation of Inverse Kinematics 118

7.2.5 Video Display 119

7.2.6 Software Calibration 119

7.3 CAVR Embedded Software 120

7.3.1 Command Interpretation / Data Reception 120

7.3.2 Shift Register control 120

7.3.3 Data processing 120

7.3.4 Data Transfer 121

7.3.5 ADC control 121

7.3.6 PWM Generation 121

7.3.7 Control Algorithm 122

7.4 Chapter Summary 123

8 Calibration, Simulation Results, Prototyping and
Performance Tests 124

8.1 Calibration 124

8.1.1 Mechanical Calibration 124

8.1.2 Software Calibration 125

8.2 Simulation Results 126

8.2.1 Forward and Inverse Kinematics Solver 126

8.2.2 Vibration 129

8.2.3 Workspace envelope 132

8.2.4 Trajectory calculation for Solid Edge (SE) 132

ix

8.2.5 Control System Simulation 135

8.3 Prototype 141

8.4 Performance Tests and Results 144

8.4.1 Step Response after Implementation of Controller 145

8.4.2 Mechanical (Positioning) 145

8.4.3 Electronic (Sensing) Repeatability 148

8.5 Chapter Summary 149

9 Conclusion 150

References 155

Appendices 160

Appendix A - Forward Kinematics for Legs 2, 3 and 4 160

Appendix B - Solving the Inverse Kinematics for Legs 2, 3 and 4 165

Appendix C - Light Sensor Characteristics [55] 171

Appendix D - Measurements 172

Appendix E - Mechanical Drawings 173

Appendix F - Code 183

Table of Figures

Figure 1 Graphical illustration of Mechatronics 1

Figure 2 First Patented Parallel Mechanisms [3] 6

Figure 3 Hexapods [3] 7

Figure 4 Flight Simulators [3] 8

Figure 5 Popular PKMs 9

Figure 6 A comparison between parallel and serial machines [14] 11

Figure 7 Comparison of location sensing technologies 23

Figure 8 High level architecture of detector screen 26

Figure 9 Laser grid 27

Figure 10 Depiction of laser grid projection onto detector plane for 5 mm resolution 28

Figure 11 Depiction of laser grid projection onto detector plane for 2.5 mm resolution... 30

Figure 12 A comparison of machine topologies [14] 35

Figure 13 Actuator positioning and dimensioning 36

Figure 14 Design criteria used in constructing PKMs 38

x

Figure 15 Significant Mechanical Parts 39

Figure 16 End effector 40

Figure 17 Mounting of servo motors and assembly of arms 40

Figure 18 Complete assembly 41

Figure 19 Simplified Geometric Kinematics Model 47

Figure 20 Illustration of joint labels and coordinates 49

Figure 21 Four hemispheres each centred on a knee joint 51

Figure 22 Top and side views of spheres used to solve FK 52

Figure 23 Illustration of leg 1 coordinate frame and angular conventions 57

Figure 24 Inverse Kinematics Problem 59

Figure 25 Illustration of sphere-circle intersection 63

Figure 26 Illustration of sphere-circle intersection 63

Figure 27 Choosing the correct leg configuration 69

Figure 28 Different views of workspace, top half, bottom half and total 73

Figure 29 Centres of mass on maj or components of the moving system 74

Figure 30 A depiction of the COMs of each link superimposed on the geometric
model 75

Figure 31 Illustration of torques about x0and y0on the plane z = z0 76

Figure 32 Illustration of torques about lineyy (x0 = 30.15,z = z0) 77

Figure 3 3 Planar proj ection of serial leg equivalent for each leg of the PKM 79

Figure 34 Null modem with loop back handshaking 82

Figure 35 Wire tap into feedback potentiometer of servo motor 85

Figure 36 Schematic of sensor screen module 93

Figure 37 PCB of sensor screen module 93

Figure 38 Schematic of data/control-signal module 94

Figure 39 PCB of data/control-signal module 94

Figure 40 Sensor electronic assembly 95

Figure 41 Schematic of embedded controller 96

Figure 42 Schematic of RS232 level shifter 97

Figure 43 Embedded controller PCB 97

Figure 44 Block diagram for PC software controller 99

Figure 45 Typical plant model 100

Figure 46 Step response via display on Cleverscope Software 101

Figure 47 Display of data in MATLAB 102

xi

Figure 48 Superposition of the best single function approximation to the data 103

Figure 49 Plant approximations 104

Figure 50 A typical feedback control system with controller GC\s) and no sensor

conditioning 106

Figure 51 Comparison of modified and original step response of model 107

Figure 52 Block diagram of a typical discrete time feedback control system 108

Figure 53 Block diagram of PKM servo motor controller 108

Figure 54 Modified block diagram of PKM servo motor controller 109

Figure 55 Block diagram of feedback transfer function in the Z domain 109

Figure 56 Block Diagram of digital feedback control system 110

Figure 57 Block implementation of equation (6.20) 114

Figure 58 Block diagram implementation of equation (6.21) 115

Figure 59 Combined block diagram realizing discrete time controller 115

Figure 60 Screenshot of GUI PC controller 119

Figure 61 Function of embedded controller 123

Figure 62 Upper leg indicating rotation limits 124

Figure 63 PKM Legs angular variations at position (0, 0, - 20), with a 1 degree,

500 Hz vibration 131

Figure 64 End effector coordinate variation with upper leg oscillations of 1 degree

and 500 Hz 131

Figure 65 Mechanical simulation of PKM 132

Figure 66 Plot of the XYZ coordinates of the designed mechanical simulation

trajectory 134

Figure 67 Upper leg rotation angles (0° - 180°) for the designed trajectory 135

Figure 68 Block diagrams of controllers (1 continuous time and 2 discrete time) 136

Figure 69 Simulation results of controllers in SIMULINK 137

Figure 70 Illustrations of complete PKM and electronic hardware 141

Figure 71 Step response after implementation of digital controller 145

Figure 72 Positional accuracy results 146

Figure 73 Electronic sensor system repeatability 149

Figure 74 Illustration of leg 2 coordinate frame and angular conventions 160

Figure 75 Illustration of leg 3 coordinate frame and angular conventions 161

Figure 76 Illustration of leg 4 coordinate frame and angular conventions 163

xii

1 Introduction

1.1 Mechatronics

This was a mechatronics project as it consists of parts from 4 engineering disciplines. This

term was first mentioned in 1969 by a senior engineer, Mr. Tetsuro Mori, of the Japanese

company Yaskawa. Mechatronics is the synergistic combination of several engineering

disciplines, consisting of technologies from mechanical, electronic, control, and software

engineering as illustrated in Figure 1. [1]

Figure 1 Graphical illustration of Mechatronics

(Adapted from [2])

Essentially, mechatronics adds intelligence to mechanical designs. With the rapid advance of

electronic technology, designs that were once purely mechanical are now best accomplished

with electronics or a combination of both. Traditional mechanical solutions in modern

machinery are being improved on or replaced by mechatronic solutions. [2]

1.2 Motivation for the Study

There has been a renewed interest in parallel mechanisms, and currently researchers from all

over the world are investigating or creating new parallel kinematics machines for industry.

Serial type mechanisms have reached the limits on their advantages of speed, payload

1

capacity, etc. Parallel mechanisms on the other hand can be designed to be faster, carry larger

masses, and they can be designed to have greater accuracy. See Figure 6 for an illustration.

The parallel robot that inspired this study was the Flex-Picker by ABB Automation. These

machines, as well as many automated multi-axis machines, operate under overall 'open loop'

control. The exact position in space of the end effecter or tool head is not sensed directly.

With knowledge of the robot's initial position, the control system uses differential

measurements from sensors on axes that track linear translation and rotations of shafts/gears,

to track the position of the end effector. It then uses this information to plot a trajectory to

future positions. A direct end effector sensing system would provide additional data for

positioning. Errors in the control system brought on by errors in the actuator sensors may then

be corrected, to achieve better positioning accuracy and repeatability. This however, is

dependent on the resolution of the sensor system involved and the positioning capability of

the robot.

The design of the robot and sensor system were specific to the agricultural and food

processing/packaging industry. For this application robot speed is paramount, accuracy and

repeatability is less stringent but within lie within certain tolerances, roughly in the millimetre

range. Parallel robots are perfectly suited for such an application. The sensor system for such

an application needs to be robust for the environment in which it is intended to work. This

environment is subject to conditions of humidity, vibration and contaminants. An additional

sensor system providing direct end effector position location adds sensor redundancy to the

control system, thereby improving the ability of accurate positioning.

1.3 Scientific Contribution of the Dissertation

The scientific contribution of this dissertation lies with the fact that there hasn't been a

parallel robot designed with an integrated direct end effector sensor system. Furthermore, the

mathematical modelling of parallel robots uses intense matrix theory of Jacobians and

Lagrangian formulae that are not easily followed. This dissertation aims to provide a

simplified geometrical model of the parallel robot designed. It also provides closed form

algebraic solutions to the forward and inverse kinematics for this Flex-Picker type PKM.

2

1.4 Project Objectives

The objectives of this project were:

• To research various types of parallel kinematics machines. To perform a study of the Delta

type (Flex-Picker) PKM structure.

• Design and construct a scaled version of the Delta robot. Simulate the multi-DOF machine

in a CAD package.

• Research, design and implement a sensor system that would align a machine's end effector

with its base and be able to track its location in space. Develop, calibrate and test in 2D

first. Then extrapolate the design to 3D.

• Design a control system for the robot which interprets data from the sensor system.

Develop algorithms for movement control and data acquisition to and from sensors.

Control the machine's movement by electronic hardware and software programming.

• Conduct a performance analysis of the design.

1.5 Project Specifications

1.5.1 Mechanical Specifications

Size: The robot should be a scaled version of a commercial system, for the purpose of a

kinematics and controls study. The mounting framework of the robot should be 650 mm

(length) x 300 mm (width) x 550 mm (height). The heavy inertial frame (relative to the size of

the robot) should dampen any effect of vibration from the motors on the frame itself.

Workspace: The workspace of the end effector should cover 120 mm (length) x 120 mm

(width) x 100 mm (height).

Positioning Accuracy: This scaled adaptations sole purpose is a study of parallel mechanism

machine design. It will not be doing any work of pick and place or assembly. Accuracy

therefore is of little consequence. An accuracy of 5 mm is more than sufficient.

Positioning repeatability: Likewise, repeatability is also not an issue. However a

repeatability of 95% within a 5 mm radius of the intended position will be aimed for.

Robot Speed: Not applicable.

Robot Acceleration: Not applicable.

Payload Carrying Ability: Not applicable. As mentioned, this machine will not carry a

payload.

3

1.5.2 End Effector Sensor Specifications

Sensor Resolution: This should be higher than the positioning capability of the robot. A

resolution of 2 to 4 mm would be acceptable, as this was the positioning accuracy required by

the food processing and packaging industry.

Sensor Repeatability: The repeatability of the sensor system should be higher than 97% with

the robot positioned at its absolute maximum distance from the screen.

Sensitivity Distance: Must sense the end effector at a distance of 200 mm.

Sensitivity Area: 160 mm x 160 mm. This must be larger than the length x width of the

workspace.

1.6 Research Publications

1. 22nd International Conference on CAD/CAM, Robotics and Factories of the

Future, July 2006. Track: Advanced Control Systems. "Mechatronic Sensor System

for Robotic and Automated Machines", by A. A. Shaik, Prof. G. Bright and Prof. W.

L. Xu.

2. Incom'2006: 12th IF AC Symposium on Information Control Problems in

Manufacturing, September 2006, Volume 1 - Track "Robotics and Factory of the

Future". "Modular Sensor System for Flexi-Picker and Multi-Axis Automated

Machines", by A. A. Shaik, Prof. G. Bright and Prof. W. L. Xu.

3. ACRA 2006: Australasian Conference on Robotics and Automation, December

2006. "Robotic Sensor System for Automated Machines", by A. A. Shaik, Prof. G

Bright and Prof. W. L. Xu.

4. ISAM 2007: 2007 IEEE Symposium on Assembly and Manufacturing, July

2007. "Sensor System for Multi Axis Automated Assembly and Manufacturing

Machines", by A. A. Shaik, Prof. G Bright and Prof. W. L. Xu.

5. AFRICON 2007: IEEE AFRICON Conference, September 2007. "Closed Loop

Sensor System for Automated Machines", by A. A. Shaik, Prof. G Bright and Prof.

W. L. Xu.

6. IJISTA: International Journal of Intelligent Systems Technologies and

Applications. "Parallel Robot Design Incorporating a Direct End Effector Sensing

System", by A. A. Shaik, Prof. G Bright and Prof. W. L. Xu. Publication pending.

4

1.7 Dissertation Outline

Chapter 1, Introduction: Introduces the topic of the dissertation, listing project objectives,

specifications and publications.

Chapter 2, Parallel Mechanisms: Presents a history of the most influential parallel robots

ever conceptualised or built. The Flex-Picker robot's capabilities are then highlighted.

Chapter 3, Direct End Effector Sensor System: Presents research on various position

location technologies, discusses the sensor concept that was used and proves its resolution.

Chapter 4, Mechanical Design: Discusses the design of parallel robots and then presents the

design of the modified delta mechanism. The system is modelled and the solutions to the

forward and inverse kinematics are discussed.

Chapter 5, Electronic Hardware: The electronic components used in the design are

discussed. The schematics and PCBs are then presented.

Chapter 6, Control Design: The system is characterised through a standard linear time

invariant (LTI) modelling technique. Controllers are designed in the S and Z domains, and the

discrete time controller implementation is illustrated.

Chapter 7, Software: Three software languages were used in the design of the system. These

are discussed as well as the various software functions used to model or control the system.

Chapter 8, Calibration, Simulation Results and Prototyping: Discusses the mechanical

and software calibration of the system. Simulation results of the forward and inverse

kinematics, vibration, a designed trajectory and the control system are presented. The

prototype is then illustrated and its performance discussed.

1.8 Chapter Summary

This chapter serves to introduce the reader to the project, which was the design of a parallel

robot with an integrated direct end effector sensor system. It provides a motivation for the

study, highlights the contribution of the dissertation, lists the project objectives and its

specifications for both the sensor system and the parallel robot.

5

2 Parallel Mechanisms

2.1 A History of the most Influential Parallel Robots

Theoretical works on parallel mechanisms (leading up to parallel robots, or machines) date

back to centuries ago, when mathematicians investigated polyhedra. However there is no

clear evidence of a complete parallel manipulator until more recent times. One of the first

recorded designs of a parallel mechanism (or machine) is accredited to James E. Gwinnett. He

applied for a patent in 1928 for a motion platform for the entertainment industry which was

based on a spherical parallel mechanism. It was visionary and was designed only a few years

after the first colour motion picture and the first with sound. This is shown in Figure 2 a.

Ten Years later Willard L.V. Pollard invented a new industrial parallel robot for automated

spray painting. It was a 5-DOF, 3 branch parallel robot that was never built. The first PKM

industrial robot to be built was co-designed by Pollard's son, Willard L.G. Pollard Jr. On

October 29, 1934, Willard Jr. filed a patent for a spray painting machine. The patent consisted

of two parts: an electrical control system and a mechanical manipulator. The mechanical

manipulator was a parallel robot based on a pantograph. Willard Jr.'s patent was issued on

June 16, 1942. This machine is shown in Figure 2 b. [3, 4, 5]

Figure 2 First Patented Parallel Mechanisms [3]

a. Possibly the first spatial parallel mechanism, patented in 1931
b. The first spatial industrial parallel robot, patented in 1942

In 1947 a new parallel mechanism was invented by Dr. Eric Gough, which would become the

most popular, revolutionary parallel robot that would be replicated over a thousand times. It

6

was the variable-length-strut octahedral hexapod (a polyhedron with 8 faces having 6 legs

separating the base from the table). The universal tire-testing machine was invented to

determine the properties of tires under combined loads, and was based on an earlier hexapod

design as mentioned by Dr. Gough in his paper "Universal tire test machine" contained in the

proceedings of FISITA (pp. 117-137, May 1962). Systems with six jacks (hexapods), with

three vertical and three horizontal, have been so common that their origins were forgotten.

Their popularity was due to the fact that for small variations, the jack adjustments would be

simple and interpretable. These systems, or slightly modified versions, are known under the

acronym MAST, i.e. Multi-Axis Simulation (or Shake) Table, and are still manufactured by

numerous companies. These hexapods are shown in Figure 3. [3, 4, 5]

Figure 3 Hexapods [3]

a. The first octahedral hexapod, the original Gough platform of 1954
b. Tire testing machine in 2000, just before Dunlop started using another method
c. A typical MAST system, hexapods of this type have existed long before the

Gough platform.

The distinguishing characteristic about the Gough platform was the arrangement of the six

struts. Since large ranges of motion were needed, he selected the symmetrical arrangement of

an octahedron. The machine was built in the early 1950s, was fully operational in 1954 and

played an important role in the birth of rubber science.

In 1965, a paper written by D. Stewart entitled "A platform with 6 degrees of freedom"

appeared in the proceedings of the British IMechE journal (Vol. 180, No. 15, pp. 371-385),

where he described a 6-DOF motion platform for use as a flight simulator. The parallel

mechanism, illustrated in Figure 4 a, was different from the octahedral hexapod which is

oddly referred to as the "Stewart platform." Stewart's paper had a great impact on the

subsequent development of the field of parallel kinematics. A number of uses were suggested

for the hexapod, many of which were accurate predictions of the future. [3, 4, 5]

7

In 1962, US engineer Klaus Cappel was given the task of improving an existing conventional

6-DOF vibration system based on a hexapod, by the Franklin Institute Research Laboratories

in Philadelphia. This MAST originally had four horizontal actuators positioned in a cyclic

pattern. However, the redundancy of the seven-strut configuration was too complex to control

and the resulting antagonistic forces eventually fractured the table. Mr. Cappel then came up

with the same octahedral arrangement as the one designed by Dr. Gough. The corporate office

of the Sikorsky Aircraft Division of United Technologies then made a request to the Franklin

Institute for the design and construction of a 6-DOF helicopter flight simulator. Mr. Cappel

produced his octahedral arrangement and applied for a patent on December 7, 1964. It was

granted in 1971 by the US Patent and Trademark Office. At that time Mr. Cappel was

unaware of Gough's invention (or of Stewart's paper which was not yet published). [3, 4, 5]

Figure 4 Flight Simulators [3]

a. Schematic of the one and only "Stewart platform"
b. Excerpt from the first patent on an octahedral hexapod issued in 1967
c. The first flight simulator based on an octahedral hexapod as in the mid 1960s

In 1987 Karl-Erik Neumann (founder of Neos Robotics) designed a new parallel kinematics

robot, the Tricept (see Figure 5 c). The major challenge for its control system was the lack of

8

adequate microprocessor computational power. In 1992, Comau Pico launched the first

multiprocessor controller which resolved this problem. The Tricept was designed to overcome

the shortcomings of existing robots for the assembly of relays on switchboards. Its use was

then extended as a machine tool for automotive and aerospace companies that wanted micron

level repeatability, stiffer robots with greater power, and flexibility. [6]

Figure 5 Popular PKMs

a. IRB 340 Flex-Picker [7]
b. Clavel's Delta Architecture [8]
c. Neos Tricept and Tricept design patent [6]

Another popular parallel robot is the Delta robot (see Figure 5, a, b.), invented by Prof.

Reymond Clavel of Ecole Polytechnique Federate de Lausanne. The Delta robot has three

actuators controlling 3 translational DOFs of the mobile platform, with an additional linkage

providing rotational movement of the end effector. This robot is used mostly as a pick-and-

place facilitator; other rare applications include machining and assembly. The Delta robot

9

unlike the Tricept, was licensed to various companies. Some machine tool manufacturers

have built PKMs based on the Delta robot architecture, and have obtained patents for them.

One such company is ABB Flexible Automation of New Berlin which produces the Flex-

Picker Robots. [6, 8]

2.2 Comparison between Parallel and Serial Technology

The few parallel mechanisms addressed thus far present a fresh outlook from conventional

mechanism design. Most robots used for industrial manufacturing have articulated arms

equipped with serial technology. The increased need for automation and flexible production

means new applications and higher performance requirements for industrial robots. Current

serial robot technology is limited whereas parallel kinematics structures have the highest

potential for improvement [9].

In a serial topology each actuator axis is in line relative to the preceding one in an open

kinematics chain. In a purely parallel topology the actuator axes (one for each DOF) have a

fixed arrangement and position in space. From the fixed base, a number of arms and links are

coupled in parallel to the end effector, forming closed kinematics chains. Hybrid systems use

a combined arrangement of parallel and serial mechanisms to extract the best features of each

architecture. The result of the parallel design is a robot that has increased stability and arm

rigidity. As there is less flexing of the arms there is high repeatability. Also the high structural

stiffness of a closed-loop kinematics chain allows it to exert strong forces in its workspace

[10]. The speed of displacement is often greater since the end effector has low inertia; due to

the fact that the motors are generally positioned on a fixed base [11]. Depending on the exact

configuration, the load can often be purely axial, and is always distributed through the legs

[12]. With serial robots each link is required to support not only the load of the sample, but

also the load of all the links and drive units preceding it. This means considerable inertia, thus

limiting the robots' acceleration capability and dynamic performance [9]. Furthermore the

end-of-arm flexing errors are cumulative. Both absolute accuracy and repeatability errors

generated by each unit, together with manufacturing errors, gear backlash and hysteresis are

amplified throughout the serial structure. In a parallel structure all the errors are averaged.

The use of large displacement compliant joints to construct PKMs further reduces the errors

mentioned above and can lead to sub-micron accuracy [13]. Additionally, PKMs have a

reduced sensitivity to temperature, lower energy consumption, lower manufacturing cost and

higher reliability.

10

Figure 6 A comparison between parallel and serial machines [14]

a. 4-DOF SCARA Robot c. 3 RPRS PKM

b. 7-DOF Redundant Robot d. 3 RRR Planer PKM

PKMs offer good design variation and designers can stretch their creativity to conceptualize

machines with varying architectures, more so than they could do with serial topologies.

The main disadvantage of parallel kinematics robots is that, in general, they have a larger

footprint to workspace ratio as a result of the configuration of the axes. There are some

exceptions such as the Tricept, but other devices such as those based on the hexapod PKM

take up a sizable work area. Another drawback of PKMs is that their performance depends

heavily on their geometry and optimal design has therefore become a key issue for their

development [15]. The ratio between payload and machine moving mass is higher, and

therefore the payload variations influence the machine behaviour remarkably. Control is also

11

difficult as the kinematics and dynamic models are far more complex than those of serial

machines. [10]

The most studied parallel mechanisms have 6 DOFs. They have a small useful workspace, are

riddled with design difficulties and their direct kinematics is a very difficult problem. The

problem of parallel mechanisms with 2 and 3 DOFs can be described with exact equations for

motion and exact mathematical solutions relating position of the end effector to actuated

variable magnitudes, i.e. they are closed form. Additionally, not all singularities of a 6-DOF

parallel mechanism can be found readily, but these are identified easily for parallel

mechanisms with 2 and 3 DOFs. For such reasons, parallel mechanisms with less than 6

DOFs have increasingly attracted more and more attention with respect to industrial

applications. [16]

Table 1 A comparison between parallel and serial
mechanisms

ADVANTAGE: Y

Higher Stability and Arm
Rigidity

Greater Repeatability

Higher Stiffness

Greater Speed and
Acceleration

Load Distribution among
Actuators

Dynamic Behaviour
Immune to Payload

Variations

Lower Energy
Consumption

Lower Manufacturing
Cost

Smaller Positioning
Errors

PARALLEL
MECHANISMS

/

/

/

/

/

/

/

Y

SERIAL
MECHANISMS

Y

12

Lower Sensitivity to
Environmental

Conditions

Larger Workspace to
Footprint Ratio

Geometry Independent
Performance

Simpler Control

Simple Forward
Kinematics

Simple Inverse
Kinematics

Predictable Dynamics

/

/

Y

Y

Y

Y

Y

2.3 The Flex-Picker Robot

The PKM designed is based on the Flex-Picker robot. The IRB 340 Flex-Picker system (see

Figure 5 a) is a three or four axis robot designed for light assembly, material handling, and

pick and place applications. This machine has three lightweight reinforced carbon fibre arms.

Using a vacuum gripper, the IRB 340 is capable of 120 pick and place operations per minute,

for objects with a mass up to one kilogram. It has a maximum acceleration of 10 g, a

maximum velocity of 10 ms-1 and a maximum torque output of one N. It is suitable for

manipulating light weight objects such as mechanical parts, electronic modules for personal

computers and cell phones, pharmaceuticals, and food. Due to its off-line configuration

ability, it is highly adaptable to product changeover. [7]

2.4 Chapter Summary

This chapter begins with a history of the most influential parallel robots ever designed. It then

presents a comparison between serial and parallel technologies, pointing out the advantages

and disadvantages of each. It ends with a look at the capabilities of the Flex-Picker robot, on

which the PKM designed was based.

13

3 Direct End Effector Sensor System

3.1 An Overview of Current Location Sensing Technologies

There are numerous technologies available that can be used to locate objects in space. They

are distinguished from one another by the use of different media, transducers and processing

techniques. To effectively design a sensor system for object location it is imperative to at least

discuss these technologies and methods available even though some of these may not be

suitable for the task at hand. The common problems are resolution and the type of media

used. Resolution is always an issue with measurement and in this particular case refers to the

maximum positional error possible with the technology being discussed. With regard to the

medium or transducer stimulant, some media may prove undesirable; for instance using an

ultrasound triangulation system in a small closed environment. A discussion of these

techniques/technologies now follows.

3.1.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is the most significant recent advance in navigation and

positioning technology. It was designed and built by the U.S. Department of Defence. It used

to be known as the Navstar GPS and was first brainstormed at the Pentagon in 1973 as an

error-proof navigation satellite system. The first operational GPS satellite was launched in

1978 and by the mid-1990s the system was fully operational with 27 satellites, 24 active and 3

backups. Each of these 1 500 kg solar-powered satellites circles the globe at about 19,300 km,

making two complete orbits every day. Today anyone with a small receiver can use the

system free of charge.

GPS satellites transmit signals to the receivers on the ground. These receivers are passive.

The receivers require an unobstructed view of the satellites above, so they are used outdoors

and perform poorly within forested areas or near tall buildings.

The operation of the GPS system is based on a mathematical principle called tri-lateration

(see section 3.1.3.1 Lateration). Each GPS satellite transmits data that indicates its location

and the current time. The satellites synchronize their operations so that these repeating signals

are transmitted at the same instant. The signals move at the speed of light and arrive at a GPS

receiver at slightly different times as some satellites are farther away than others. By

multiplying this time by the speed of light an estimate of the distance to the satellites is

determined, on the assumption that the signal traveled in a straight line. With one signal the

receiver knows it is located somewhere on the surface of an imaginary sphere centred at the

14

satellite. The receiver can provide a reasonable approximation of its position in 3D space

when it has received at least four unique signals. Its location is the intersection of these 4

spheres. The orbits of the satellites were arranged so that at any time, there are at least four

satellites visible at any point on the Earth. The system depends on a very accurate time

reference. Atomic clocks are used on the satellites, but these cost around R 350k - R 700k.

Hand held GPS receivers use simple quartz clocks, and it overcomes its timing inaccuracy by

constantly resetting its time reference based on the signals it receives. There is only one time

value that will make all the "signal spheres" intersect at 1 point, instead of having an

"intersection space" of where the receiver could be.

The accuracy of a position determined with GPS depends on the type of receiver. Most hand­

held GPS units have an accuracy of about 10-20 m (spherical radius), while other types of

receivers use a method called Differential GPS to obtain higher accuracy.

[17,18,19]

3.1.1.1 Differential GPS (DGPS)

Three "signal spheres" will always intersect even if all the timing and data are inaccurate,

however 4 spheres will not intersect at one point with inaccuracies. There are a number of

errors that occur with GPS, these are:

• The signal slows down as it passes through the ionosphere and troposphere
• Signal multi-path
• Receiver clock errors
• Inaccuracies in the reported position of the satellites
• Low number of visible satellites
• Bad satellite geometry

DGPS uses two GPS receivers. Observations made by a known stationary location (base or

reference) is used to correct the data received by a GPS unit at an unknown location (rover).

As the base station knows its location exactly, it can determine satellite signal errors. This is

done by measuring the ranges to each satellite using the received signals which are compared

to the actual ranges calculated from its known location. These differential corrections for each

tracked satellite are transmitted to all the roving GPS receivers in the area. The corrections are

then applied to the calculations. DGPS generally achieves an accuracy of less than 1 meter.

[20] Presents a cheap solution with errors of less than 5 cm.

[17, 19]

15

3.1.1.2 Assisted GPS (AGPS) / Indoor GPS

AGPS is a variant of GPS that utilizes an assistance server to aid in position determination.

The assistance server has the ability to access information from a reference network and

possesses computing power exceeding that of the GPS receiver. The receiver found in non-

ideal locations for position fixing, communicates with the assistance server (via cellular

communication) and by sharing tasks, the process position fixing is quicker and more

efficient albeit more dependent on cellular coverage. Its intended application is in urban areas

when the user is located in cities, under heavy tree cover, or indoors but not in underground

car parks or tunnels.

Indoor GPS, or high sensitivity GPS, is a combination of AGPS and massive parallel

correlation. Outdoor GPS applications tend to experience multi-path in only its most benign

form, i.e. a reflection that is weaker than the direct line-of-sight signal. The situation is

different indoors. The reflection can readily exceed the power of the direct signal, or the

direct signal can disappear altogether.

Laser indoor GPS systems are also available. These systems are composed of three or more

laser transmitters, and function in a similar manner to conventional GPS. The transmitter uses

both laser and infrared light to create one-way position information of the relative azimuth

(horizontal component of a direction) and elevation from the transmitter to the receiver. The

receiver has photodiodes inside its module and senses the transmitted laser and infrared light

signals. With the addition of a second transmitter of known location and orientation, the

position of the receiver can be calculated in the base coordinate system. By adding two more

transmitters, the system will have four laser transmitters having its accuracy maximized. As in

satellite-based GPS, a one-way signal path is created from transmitters to the receiver,

allowing an unlimited number of receivers to continuously and independently calculate

positions whenever two or more transmitters are in view. This indoor GPS metrology system

has millimetre accuracy and finds use in the manufacturing sector, tracking parts, materials,

or people.

[18,19,21]

16

3.1.2 Bluetooth, WIFI and Cellular Networks

Bluetooth, WiFi and Cellular networks provide a means for location sensing.

Bluetooth devices form mini-cells, and with a sufficient number of Bluetooth cells (access

points) installed, the position of a transmitter can be deduced by knowing the cell with which

a device is communicating (or location base stations in a WiFi network), discussed in [22] for

locating people in buildings. [23] Also takes into account signal strength from the access

points. Since the transmitted signal energy decreases almost proportionally with the distance

between stations and mobile terminals, this relation can be used to determine the distance

from a particular node. The signal energy is measured by the mobile device and is transmitted

to a central server that calculates its location. These Bluetooth networks have an accuracy

ranging from 2 to 5 m; this is subject to the number of cells installed in the region and the

spacing between them.

Cell of Origin (COO) is a mobile positioning technique for finding a caller's cell (the basic

geographical coverage unit of a cellular telephone system) location. It works in the same way

as the Bluetooth network just mentioned, however the accuracy may be as close as one

hundred meters from the target (in an urban area) or as far off as thirty kilometres, the

accuracy is dependent on the number of base stations in the area. For this reason, when

precision is important COO is often used in conjunction with some other technology, such as

GPS or Time of Arrival (TOA).

[24, 25]

3.1.3 Triangulation

This technique uses geometry to calculate position and is achieved by considering the

properties of triangles to compute object locations. There are 2 subcategories of triangulation

i.e. lateration and angulation.

3.1.3.1 Lateration

The term lateration is used for distance measurements. It computes the position of an object

by measuring its distance from multiple reference positions. Calculating an object's position

in 2D requires distance measurements from 3 non-collinear points. For 3D measurements,

distances from 4 non-coplanar points are required. There are three general approaches to

measuring the distances required by the lateration technique.

17

Direct - Direct measurement of distance. Direct distance measurements are simple to

understand but may prove to be difficult or even impossible to obtain if the distances are

rather large.

Time of Flight (TOF) - Measuring distance from an object to some point P using TOF means

measuring the time it takes a signal to travel between the object and a point P at a known

velocity. The problem is made more complex if the object itself is moving. It is possible to

make the calculations if there is a known mathematical function for the acceleration. If

however it varies arbitrarily then it is impossible to find a solution. Other factors have to be

considered to get an accurate answer:

• For instance if the signal used is ultrasonic, and the air medium density varies over the

distance then the speed of the signal itself will vary. The density of air at each point cannot

be known, and there is no guaranteeing that it will vary according to some well behaved

function. A best guess estimate must therefore be used, e.g. a function that varies density

based on altitude. Temperature and humidity also influence air density and must be

factored into the equation.

• Reflection is another problem as direct and reflected signals look identical. Bats and other

creatures that use sonic vision statistically prune away reflected measurements by

aggregating multiple receivers' measurements and observing the environment's reflective

properties.

• Another issue in taking TOF measurements is the time reference. When only one

measurement is needed, as with round-trip or radar reflections, timing is simple because

the transmitting object is also the receiver and must maintain its own time with sufficient

precision to compute the distance. In other systems (like GPS) where the receiver and

transmitter are on different objects they must be synchronized precisely to get an accurate

time measurement of distance.

Attenuation - The intensity of an emitted signal decreases as the distance from the emission

source increases. The decrease relative to the original intensity is the attenuation. Given a

function correlating attenuation and distance for a type of emission as well as the original

strength of the emission, it is possible to estimate the distance from an object to some point P

by measuring the strength of the emission when it reaches P. Signal propagation issues such

as reflection, refraction, and multi-path cause the attenuation to correlate poorly with distance

resulting in inaccurate and imprecise distance estimates.

[26, 27, 28]

18

3.1.3.2 Angulation

The term angulation is used for angular measurements, and these are used for determining the

position of an object. In general, 2D angulation requires two angle measurements and one

length measurement such as the distance between the reference points. In 3D, one length

measurement, one azimuth measurement, and two angle measurements are needed to specify

a position. Angulation implementations sometimes choose to designate a constant reference

vector (e.g. magnetic north) as 0°. Phased antenna arrays are an excellent enabling technology

for the angulation technique. Multiple antennas with known separation measure the time of

arrival of a signal. Given the differences in arrival times and the geometry of the receiving

array, it is then possible to compute the angle from which the emission originated. If there are

enough elements in the array and large enough separations, the angulation calculation can be

performed.

The VHF Omni-directional Ranging (VOR) aircraft navigation system uses a different

implementation of the angulation technique. VOR stations are ground-based transmitters in

known locations which repeatedly broadcast 2 simultaneous signal pulses. The first signal is

an omni-directional reference containing the station's identity. The second signal is swept

rapidly through 360° like the light from a lighthouse at a rate such that the signals are in phase

at magnetic north and 180° out of phase to the south. By measuring the phase shift, aircraft

listening to a VOR station can compute the angle formed by the direct vector to the VOR

station and the vector from the VOR to magnetic north, with an accuracy of 1°. Aircraft

location can be computed via angulation using 2 VOR stations.

[26, 27, 28]

3.1.4 Interferometers

Interferometry is the applied science of combining two or more waves, which are said to

interfere with each other. The interference pattern is considered a state with amplitude and

phase which depends on the amplitude and phase of all the contributing waves.

The interferometer can measure displacements to a resolution within a fraction of the

wavelength of light. It has enabled Micro- and Nano-scale measurements of position or

movement. An optical heterodyne interferometer recently designed at NASA's Jet Propulsion

Laboratory can measure linear displacements with an error of 20 pm (pico, 1(T12). Many

companies, such as Agilent Technologies and Zygo, provide laser interferometers for the

purpose of high precision manufacturing.

19

Interferometers work by splitting a beam of light using a semi-transparent mirror into two

separate beams that travel different paths along two arms. One of the beams is directed to a

mirror located at a certain distance to provide a reference in measurements. The other beam

reaches a mirror or reflector fixed on the moving object. This beam, being reflected,

recombines and optically interferes with the reference beam (or beams) at the detector. The

interference pattern, typically a set of alternating bright and dark stripes called fringes,

displays subtle differences between the two travel paths. By analyzing these fringe patterns,

the position of the moving target can be measured. For instance the fringe pattern is shifted by

one fringe when one arm is stretched relative to the other by mm. An important

3000

characteristic of interferometry is that only displacement is measured, not absolute position.

The initial distance to the movable mirror is not measured, only the change in position of the

mirrors with respect to each other can be determined. If the initial position is known,

integrating the change in position over time will yield its current position. This is the principle

by which all inertial measurement units work. [29]

3.1.5 Grid Encoders

An optical grid encoder offers yet another solution and is capable of 2D dynamic

measurements. These grids are made by OPTRA and the Heidenhain Corporation. They have

a coverage range up to 380 mm x 380 mm with high accuracy and excellent repeatability.

The grid encoder is composed of a grid plate with a waffle-type grating of closely spaced

lines (4 um signal period) and a non-contact scanning head which is able to measure

translations in two directions. The optical grid plate is attached to an aluminium mounting

base. This base is mounted in the plane to be measured (on an X-Y table for instance) and the

scanning head is fixed perpendicular to the plate (e.g. on the Z axis attached to the spindle).

This system measures the relative planar motion of the two bodies for any curvilinear path in

the plane of the mounting base with a resolution of 4 nm and to within an accuracy of ± 2 um.

[30]

20

3.1.6 Imaging Methods

Imaging methods use cameras and sophisticated software to determine position location. [31]

Discusses a low cost solution employing a camera and LCD screen to locate an object's

coordinates in 2D with high accuracy. The LCD screen displays an image, a small circle or

cross somewhere on its surface. The camera which is attached to the end effector then tries to

align this shape in some way with the image it produces. It can also be used to determine 2D

orientation.

3.1.6.1 Scene Analysis

The scene analysis location sensing technique uses features of a scene observed from a

particular vantage point to draw conclusions about the location of the observer or of objects in

the scene. Usually the observed scenes are simplified to obtain features that are easy to

represent and compare. In static scene analysis, observed features are searched in a predefined

dataset that maps them to object locations. In contrast, differential scene analysis tracks the

difference between successive scenes to estimate location. Differences in the scenes will

correspond to movements of the observer and if features in the scenes are known to be at

specific positions, the observer can compute its own position relative to them. The advantage

of scene analysis is that the location of objects can be inferred using passive observation and

features that do not correspond to geometric angles or distances. The disadvantage of scene

analysis is that the observer needs to have access to the features of the environment against

which it will compare its observed scenes. Furthermore, changes to the environment in a way

that alters the perceived features of the scenes may necessitate reconstruction of the

predefined dataset or retrieval of an entirely new dataset. The scene itself can consist of visual

images, such as frames captured by a wearable camera, or any other measurable physical

phenomena such as the electromagnetic characteristics that occur when an object is at a

particular position and orientation. [26, 32, 33]

3.1.6.2 Simultaneous Location and Mapping (SLAM)

SLAM is a technique used by robots and autonomous vehicles to build up a map within an

unknown environment while at the same time keeping track of its current position from

various sensors. If at the next iteration of map building the measured distance and direction

traveled has a slight inaccuracy, then any features being added to the map will contain

corresponding errors. If unchecked, these positional errors build cumulatively grossly

distorting the map and the robot's ability to know its precise location. There are various

21

techniques to compensate for this such as recognizing features that it has come across

previously and re-skewing recent parts of the map to make sure the two instances of that

feature become one. Some of the statistical techniques used in SLAM include Kalman filters,

particle filters (a.k.a. Monte Carlo methods) and scan matching of range data. SLAM in the

mobile robotics community generally refers to the process of creating geometrically accurate

maps of the environment. SLAM has not yet been fully perfected, but it is starting to be

employed in unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers and

newly emerging domestic robots. SLAM usually uses laser range finders or sonar sensors to

build the map. However VSLAM (visual simultaneous localization and mapping) uses

entirely visual means. [34, 35]

3.1.7 Other

Displacement measuring instruments utilizing eddy currents, capacitive and inductive

properties exist, but are not as widely spread as the technologies mentioned.

Accelerometers and Gyroscopes are used to determine position and orientation. They are

capable of measuring the change in acceleration of a body. An integration of this yields

velocity and a second integration yields distance travelled. Keeping track of these parameters

and having been given an initial position for the object, its current position can be inferred.

This system is usually used in conjunction with other techniques/technologies such as GPS

and radar.

22

: Measurement
Technology Accuracy Cost Range

^Varies from R 800 - 4 000 for
GPS Within 10 m receiver alone Globe

Varies from R 1 600 - 8 000 100 m from
DGPS ! Within 5 cm !for 2 receivers base station

Ranges from 2 - Depends on number of
Bluetooth Networks !5 m bluetooth ceils — R 7 k +

10.04% of range
{2.4 microns to

Laser Triangulation 6.6 mm) R15k +

120 m radius
for 3 cells

max 16.5 m

Interferometers 12 pm-10 nm

Grid Encoders

LCD Imaging System

±2 urn

R 250 k +

R 250 k +

Claimed within |R 40 k + ... Large LCD screen
0.05 mm land High resolution camera

Image Processing
Methods

:R 100 k + ... Expensive
Software and multiple high

Within 2 mm resolution cameras

max 10.6 m

Size of measurement units /
system

Receiver size 4cm x 4cm x 1cm.
Compact processing unit.

2 Receivers (4cm x 4cm x 1cm), 2
Compact processing units.

Size of Bluetooth tranceivers (usb
type plug in devices) and
Processing unit (PC).

Smallest enclosure 6.5 cm x 5 cm x
2 cm — largest enclosure 6.3 cm
x 17 cm x 3 cm

6 cm x 25.5 cm x 6.35 cm

max area 1440 XY plates range from 17.5 cm x 17.
sq cm 5 cm to 38 cm x 38 cm

177.8 cm

20 m

110cmx 177.8 cm LCD Screen

Size of cameras and fixed mounted
positions in environment

Other Disadvantages Other Advantages

3D Position
determination

3D Position
determination

1D/2D / 3D Position
measurement; can
adjust range by using
more cells

One dimensional
measurement; Cannot Highly robust and
mount on end effector reliable

One dimensional
measurement;
positioning and setting
mirrors for a 3D moving
object would be
extremely difficult

System cannot be
scaled, maximum work
area is fixed 2D metrology system

Complex software, real |
time control would be a Completely passive, no
problem transmitted signals

3.2 Sensor Feedback System

3.2.1 Requirements

The sensor system should possess the following characteristics or capabilities:

• It should either locate the tool point's spatial coordinates directly,
• Or reduce the errors accumulated in an existing sensor system.
• It should integrate seamlessly with existing techniques for motion control.
• In its most primary function it should locate the tool head in 2D space,
• With some additions and modifications it should locate an object in 3D space.
• It must be modular,
• Robust,
• Fast,
• And error immune to work in a harsh industrial environment.

3.2.2 Sensor System Concept

The first decision to be made was choosing whether the sensing system should be passive or

active. Passive systems, or imaging methods as mentioned in section 3.1.6, require lots of

processing power, complex software and expensive cameras. Furthermore, with current

technology the systems are not real time. An active sensor system is therefore needed, that is

one that transmits a signal and then receives it with a sensor array at another location, and

then computes position.

The first step to solving the problem of locating the end effector in space was to reduce the

problem to a simpler case, solve it and then attempt a generalization. The problem of locating

the end effector of a robot in real world space was first reduced to finding its position in a 2D

plane with regard to a point reference. Once accomplished the general problem is solved by

attaching two 2D planes at right angles. With such an arrangement 2 axes coincide and if the

reference point of each plane coincides, the result is a 3 axis sensor system for position

location in 3D space.

After consideration of the available physical quantities used when locating objects, a laser

light stimulant was chosen for the task at hand. A laser light sensor can be conditioned to

provide a digital output, that is, it provides only 2 voltage levels representing a digital 1 when

the sensor is switched on and 0 when it is off. Most sensors used for tracking are analogue in

nature and require digitization for use in digital systems, this digitization takes a finite time

and the data created occupies a larger memory. If there are m sensors in a sensor array, with

each sensor being represented by, for instance, an 8 bit digital value then there are 8m bytes of

24

data that have to be processed. The varying value indicating light intensity is irrelevant, as all

that is required is a value saying that that sensor has been stimulated by laser light.

Furthermore analogue signals are compromised by atmospheric effects, temperature, humidity

and unshielded noise from surrounding machinery. Triangulation utilizing radio, ultrasound

or infrared waves is not suitable as multiple reflections from surrounding surfaces cause

interference. They also require modulation and demodulation to distinguish the signals

generated from those created by the environment.

The defining component of this sensor system is a grid of laser light detectors. The detectors

need to have a narrow sensitivity wavelength bandwidth as well as viewing angle to prevent

wrongful stimulation and spurious results. The designed sensor concept utilizes a direct

approach, with a laser or set of lasers, attached to the end effector and the sensor grid (the

sensor plane with sensors spaced equally in rows and columns) mounted directly above it, to

the side or directly below. This was a natural choice as the coherent nature of laser light aids

the task of finding the end effector in 2D if the laser beam remains perpendicular to the sensor

plane at all times (this implies that the end effector must be perfectly horizontal). The end

effector's location is the same as the sensor which is stimulated (in a 2D plane, depth has no

meaning). It must be stressed that this sensor system requires only bit (1 or 0) information for

each sensor. Each sensor is either stimulated (switched on) or not stimulated (switched off). A

stimulated sensor indicates position on the plane as explained. This makes data processing

and transfer far simpler and makes control easier. The resolution is limited to the spacing

between sensors. If the spot light is smaller than the spacing between sensors, there will be a

dead zone between sensors where beam tracking will be lost completely. The laser light

detectors are phototransistors. Current fabrication techniques can accommodate hundreds of

millions of transistors on a sliver of silicon. INTEL has claimed to have the capability of

creating a 45 nm transistor (see INTEL website). This implies that on a 1 mm2 piece of

silicon there is an upper limit of 493 827 160 transistors that can be etched on that surface.

IBM states that it has produced a 6 nm transistor (see IBM website). From this it should be

clear that extremely high densities of transistors can be achieved, but at high cost. Fabrication

methods can be used to construct a detector screen with an exceptional and practical

resolution. The current accuracy of the IRB 340 Flex Picker is 0.1 mm; the lower limit on

screen resolution for absolute 2D positioning would then be 400 phototransistors per square

mm, a screen with twice the resolution of the positioning accuracy of the robot. Resolution

affects data output, a greater resolution implies more data per unit area (more sensors). A

hybrid type system (combining this end effector sensor with conventional motor encoders and

software position fixing) would involve a sensor grid with a comparatively smaller resolution.

Each sensor provides a checkpoint. Knowing the exact spatial distance between these

25

detectors provides the controller with a means to limit the errors incurred. Instead of

accumulating errors from one extremity to the next, errors only exist between successive

detectors.

The array of data has to be placed in a data format or byte structure to facilitate processing.

This is made possible by parallel to serial data converters. As a numerical example consider

first the workspace of the IRB 340 Flex Picker from ABB Automation. The specified

workspace envelope is a cylinder with diameter 1130 mm and height of 250 mm. A 1150 mm

x 1150 mm screen would be large enough to track the end effector in its specified workspace.

Using the same resolution as before i.e. 400 detectors per mm2, there would be 529 000 000

detectors on the screen. This sensor grid consists if 23 000 rows and 23 000 columns. A 4

byte data format (2 bytes for the row and 2 bytes for the column) would be more than

sufficient to indicate any single stimulated sensor to an external control system.

Figure 8 displays high level architecture of the detector screen.

Sensor Screen Architecture
Output - Coordinates of stimulated sensors

Sensors - Number and Spacing
dictated by specification and
limited by the latest fabrication
Technology.

A.
Buffers / Amplifiers - Signal
Amplification / buffering to provide
digital output.

Microprocessor-Internal
processing to determine all
sensors that were stimulated by
the laser.

Parallel to Serial Converters -
To serialize data for processing
by internal CPU.

Figure 8 High level architecture of detector screen

3.2.3 Sensor System Resolution

The sensor system designed has a resolution of 2.5 mm. The detector screens have a

resolution of 10 mm (spacing between successive sensors in rows and columns, see section

5.6 j as well as Figures 37 and 40). The improvement in resolution is due to the use of a laser

module, one laser module per detector screen, at the end effector. Each laser module has 12

lasers with a particular arrangement to provide the sensor system with the resolution stated.

26

To explain how this is achieved an animated depiction of the laser projection onto the detector

screen is illustrated in Figures 9, 10 and 11.

The blue circles represent the sensors. The red and green circles represent the lasers. The

central laser with the blue bull's eye, henceforth know as BE, is the tracking point or end

effector reference. The relative spacing of these lasers are shown in Figure 9. The 4 inner

lasers lie on grid points with a grid spacing of 15 mm. These lasers improve the resolution of

the detector system to 5 mm, and this laser grid will be known as G5. These lasers are

represented by the BE and 3 green circles in Figure 9 b. The outer lasers lie on grid points

with a grid spacing of 22.5 mm and improve the resolution of the sensor system to 2.5 mm,

and this grid will be known as G2.5. Grid G2.5 has to be used in conjunction with grid G5

and is represented by BE and the red circles in Figure 9 b.

The black solid lines of Figure 9 b are reference lines. The dashed lines represent the 2.5 mm

resolution. Figure 9 a shows the mechanical component used to mount the lasers (see Figures

16-18).

'£- +p

SEBiK StS±§bStS
1+

SSfl!SS53iB6S53
H+HH+hH- -H+HH+H-H-H+l-m

oDxap
t i J ± l

Figure 9 Laser grid

a. Laser guide indicating dimensions and laser positions
b. Laser grid projection onto detector plane, centred on s(i, j)

Suppose initially BE is at sensor s{i,j), in Figure 9 b. If it moves 5 mm to the right it no

longer lies on s(i, j), however the green circle on the same y grid line lies on sensor

s[i + 2,j) (Figure 10 a). If BE were to move 5 mm to the left, that same green circle would

27

lie on sensor s(i + l,j) (Figure 10 b). So any horizontal 5 mm displacement can be tracked;

this is the maximum distance the end effector would have to move horizontally before another

sensor indicates position. Similarly 5 mm vertical displacements can be tracked (shown in

Figure 10 c, d). Combined displacements can also be tracked. Suppose BE moves 5 mm to the

right and 5 mm up, then the bottom left hand green circle lies on sensor s(i + 2,j -1) (Figure

10 e). If BE is moved 5 mm to the left and 5 mm down, then that same green circle lies on

sensor s(i + \,j - 2) (Figure 10 f).

Figure 10 Depiction of laser grid projection onto detector plane for

5 mm resolution

a. BE moved 5 mm to the right of s(i,j), s(i + 2,j) detects laser

b. BE moved 5 mm to the left of s(i,j), s(i + \,j) detects laser

c. BE moved 5 mm down from s(i,j), s(i,j - 2) detects laser

d. BE moved 5 mm up from s(i,j), s(i,j -1) detects laser

e. BE moved 5 mm up & to the right of s(i,j), s(i + 2,j -1) detects laser

f. BE moved 5 mm down & to the left of s(i, j), s(i +1, j - 2) detects laser

28

StB±i
H+HH+H- (-

4-m-lWi:

•H+HH+H-H-H+H+H

•(• fHH^Hft -H+HH

+ ̂
L±tClI
H+WH+H-

HES1
333+tt HfHOWM

1 ±
M+tfH+l;

i±l

-\-

:dm±'
httm+tt
3g-

StSSBiSliS SS±K ' b^d ~*~ •ass*'-

ff+HH+HT
rat Era t era ran en

-HI+H-H+I-+H-HI+H+H

e.
H+H-H+H-t-

+
±

mrratn
m 'MM

8tB±S

-a. POW
+
±

+H+H-H+H-H-HI+H-H

t ramnmtm
a

hW-WH-H+H-H

The 2.5 mm resolution is proved as follows. Start of at position in Figure 9 b. Move 2.5 mm

to the right. The laser sharing the same y grid line to the far left of BE then lies on sensor

s{i — 2,j) (Figure 11a). If BE is moved 2.5 mm down then the laser at the top left hand

corner lies on sensor s(i - 2,j + 2) (Figure 11 b). If BE is now moved 2.5 mm to the left the

laser sharing the same x grid line directly above BE moves onto sensor s\i,j + 2) (Figure 11

c). The pattern can now be seen clearly. As BE moves about the 2.5 mm grid surrounding

sensor s(i,j), the lasers on G2.5 hit sensors lying on the 20 mm grid surrounding sensor

s(i,j) (i.e. S\i ±m,j± n) where m, n = 0 or 2 as shown in Figure 11 a to g). So any 2.5 mm

vertical, horizontal or combined displacement can be sensed. Similarly displacements of 7.5

mm can be tracked however the designed PKM is not expected to have such a large error.

29

Figure 11 Depiction of laser grid projection onto detector plane

2.5 mm resolution

a.

b.

c.

d.

e.

f.

g-

g-

BE moved 2.5 mm to the right of s(i,j), s(i - 2,j) detects laser

BE then moved 2.5 mm down, s(i — 2,j + 2) detects laser

BE moved 2.5 mm to the left, s(i,j + 2) detects laser

BE moved 2.5 mm to the left, s(i + 2,j + 2) detects laser

BE moved 2.5 mm up, s(i + 2,j) detects laser

BE moved 2.5 mm up, s(i + 2,j - 2) detects laser

BE moved 2.5 mm to the right, s(i,j - 2) detects laser

BE moved 2.5 mm to the right, s(i — 2,j — 2) detects laser

a. arnica
H+HiJ+H-t-

reran:

M+H-H+l-H-

&3i±K

8=tS±i§StS
-H^H+H+H-H-H+H-H

a n i i x m p x n j
trM I S K ^ L J : tkJ

+H+H-H+H-H+HH-H-H
+1

nTiwrnrrm

c. KMi
SruSt
t-H-H-H+H-t-

-aj +
p ± § q

i+tfTH+H-
f-

+++r+-H+H-H+-H-H+H

+-T+H-HTHTI -H+HH

^ ^ p H ^ F j ^
V
!+

SiHSS±reSS 3333 o

-hl+HH+H-H-hl+HH

x jxnx jxa ,nx i

H+T+HFH-hl+HH mm'

e.
i±

i n n
±

H+1+-H+I-+H

pnirxn

-m+m

U I L S S !

,.,--- i n

1+H-H+l-iH+d+H-H

hh%
iH+H-i

pin

H-W-H+i

:QTmTti
:

+p
t Q :
m+i-t-

-rrfiTrT

as*

f-H+|-»H

r1^
* r B3B5B

-H-rH-H+l-H-H-H-H-H

H+WH+H-

± +
i

l+H-H+H-t-

I * * 1
+

l+

HH+htW-H+l

craxerctmcf]
tr"i "t l''L j_j Y~t. tyN

-H+H+H+H-H-m-H-H

i4

+
£aSS3±Si

3Enr

M+H-H+H-

TTTITt

I-

^ ;

SSBSa

BSiKSESib't '—b«!fes' ' flpbJ • UibhJ """"7*$

-H+H+H+t+H-H+HH

53 SafM?
r4

The meaning of stimulated sensors does not refer to the exact position of the reference point

BE but rather displacements from that point. For this machine there are sensors that monitor

the angular positions of the legs, these are the potentiometers of the servo motors used

(sections 5.3 and 5.4). Those measurements together with these end effector displacement

error readings provide improved end effector tracking. The errors from positioning are not

expected to exceed 5 mm and this is also one of the machine design specifications.

3.2.4 Advantages and Disadvantages of Sensor Concept

Advantages:

• Detector screen of any practical size can be built from modular components.

• The screens do not have to be mounted vertical or horizontal, as long as they are

perpendicular to each other for 3D object tracking.

31

• Resolution is independent of screen size, and the detector screens can be scaled up

maintaining the exact resolution designed.

• Data is purely digital as the sensors are either on (1) or off (0).

• It facilitates 2D or 3D tracking.

Disadvantages:

• For 3D tracking 2 screens are needed, and the system becomes twice as expensive.

• The end effector must remain perpendicular to the detector screens.

• This sensor must fit the space and mounting constraints imposed by the manufacturing

system.

3.3 Chapter Summary

This chapter discussed current technologies used for position location. Most of the equipment

used for each technology was unsuitable for the task at hand for one of more of the following

reasons: the systems were too expensive, slow, inaccurate or bulky. A tabulated comparison

of the technologies was given which highlighted accuracies, ranges, advantages and

disadvantages. From this investigation an idea stemmed from two sources i.e. laser

triangulation and John Ziegert's idea [31] of an imaging screen. The sensor concept was then

discussed and its resolution capability proved.

32

4 Mechanical Design

4.1 Design of Parallel Kinematic Machines

Although robots are usually designed to perform a large variety of tasks it is not realistic to

believe that a single robot will be sufficiently flexible and able to manage any task. On the

other hand the end user may wish to perform a set of specific tasks with stringent

requirements. For this reason a fundamental step in the design of robotic systems is

determining the most appropriate mechanical structure of the robot when given the task

requirements, such as desired workspace, accuracy, load, and stiffness.

There are three basic types of parallel actuation mechanisms applicable for robot arms, i.e.

prismatic, rotary, or fixed linear actuation types, including their modifications. Table 2 shows

the comparison of these three mechanisms in terms of their basic characteristics. [36]

Table 2 Comparison of PKM attributes based on actuators
used in its design [36]

Type

Output Force

Actuator Location

Moving Mass

Speed

Rigidity

Workspace

Structure

Rotary

Small

Basement

Small

Very Fast

Fair

Large

Simple and compact

Prismatic

Fwrrrrrnmt

Large

Moving Part

Large

-

Good

Small

Large moving parts

Fixed Linear

Large

Basement

Small

Fast

Good

Large

Large basement

Overall the rotary actuation type provides the best characteristics for more general

applications even though the resulting rigidity isn't as high as the other types.

33

The mechanical design of robots may be split into two processes:

• Structural Design - It involves the general arrangement of the mechanical structure

such as the type and number of joints and how they are connected.

• Dimensional Synthesis - This determines the length of the links, the axis and exact

location of the joints, and the necessary maximal joint forces/torques.

The performance of a robot is drastically dependent on both syntheses. A comparison

between two different structures may only be made after a careful dimensional synthesis. This

is more so for closed loop parallel robots. [37]

4.1.1 Structural Design

a. Machine Topology

Machine topology describes the number and type of joints, as well as the number of branches

in the structure. It can be described compactly if the machine is symmetric. For instance in

Figure 6 c, the parallel robot is described as 3-DOF 3 RPRS, meaning that the PKM has 3

degrees of freedom with 3 branches and each branch from base to end effector has a rotational

joint, followed by a prismatic joint, another rotational joint and finally a spherical joint. In

Figure 6 d, the parallel robot is described as 3-DOF 3 RRR planer, meaning there are 3

branches and each branch has 3 rotational joints. Its motion is restricted to the plane; that is it

has 3-DOF with 2 translational and 1 rotational. Clavel's Delta robot may be described as 3-

DOF 3 RUU, with U representing a universal joint. ABB's Flex-Picker may be described as

3-DOF 3 RSS, as it has spherical joints on its "knee" and "ankle". The hexapod may be

described as 6-DOF 6 SPU, where P denotes a prismatic actuated joint. As an additional

example Figure 12 illustrates 2 more parallel mechanisms. Their structures are completely

different. They have different branches, different joints, and different actuator positions. This

provides an indication as to the various number of PKM designs possible.

34

a. b.

Figure 12 A comparison of machine topologies [14]

a. 4-DOF 3 RRRS
b. 6-DOF 4 PRRS

b. Actuator Positioning

The arrangement of the actuators affects the way the robot moves. This also determines the

position of singularities (see section 4.3.2. h). See Figure 13 a.

4.1.2 Dimensional Synthesis

a. Dimensioning

Choosing the size of robot arms is a matter of finding a good compromise between weight,

stiffness, and its ability to reach the entire workplace. Depending on robot sizing, an optimal

choice of motors and transmission ratios of reducers should be addressed. [11] See Figure 13

b.

b. System Modelling

Once the dimensioning is complete, models for both the forward and inverse kinematics

(section 4.3.2) and dynamics (section 4.3.2 k.) may be obtained. These models are then used

for motion control.

As this machine accomplishes no pick and place operations, a rigorous and complete dynamic

analysis is unnecessary. The complete kinematics model with closed form solutions will be

explained, as one is used in the control system. Dynamic modelling is discussed in section

4.3.2 k but is not used in the control system of the robot. Theory of plant estimation from

35

linear control theory was used to model the system, and these equations inherently capture the

dynamic behaviour of the system.

The effectiveness of a kinematics model can be described by three terms, i.e.

Figure 13 Actuator positioning and dimensioning

(Adapted from [14])
a. Figure depicting the choice of actuator positions
b. Figure depicting the link length design parameter

• Accuracy - Is defined as the difference between the actual position in space and position

calculated using the kinematics model.

• Repeatability - It is the difference between actual positions when repeatedly sent to the

same position coordinates. It includes hysteresis of joints, thermal elongation of links etc,

but does not include bad model design or wrongly estimated parameters.

• Resolution - The size of the smallest positional step.

36

The order of importance is accuracy, repeatability and then resolution. The parameters that

are used to model a robot are split into two categories, as the following list indicates [14]:

Non-Geometrical Model Parameters:

• Compliance and stiffness
• Gear backlash
• Encoder resolution
• Temperature related expansion
• Linkage wobble

Geometrical Model Parameters:

• Structure
• Angles between links
• Links dimensions
• Zero positions of links
• Mechanical Design

4.1.3 Design Considerations

A general approach to the design of PKMs should cover the following issues [38]:

• Determination of the reachable workspace,
• Kinematics stiffness described by several local and global manipulability measures,
• Relation of driving and actuator forces,
• Overall elastic stiffness of the structure,
• Static stability analysis.

Kinematically, an n-DOF non redundant PKM also implies that each leg should also be an n-

DOF serial kinematics chain, regardless of the number of legs. To simplify design and

development efforts, there are a few additional considerations [39]:

• Symmetric Design - Each leg is identical to the others. Hence, each leg should have the

same number of active joints. As the total number of (1-DOF) active joints in a 6-DOF

non redundant PKM is six, the number of legs for a symmetric design can be six (1-DOF

actuated joint per leg), three (two 1-DOF actuated joints per leg), or two (three 1-DOF

actuated joints per leg).

• Types of joints - Four types of commonly used joints are considered, i.e., 1-DOF revolute

(R), 1-DOF prismatic (P), 2-DOF universal (U), and 3-DOF spherical (S) joints. Among

37

them, the spherical and universal joints are meant as passive joints, the prismatic joints are

meant as active joints (they are ineffective as passive joints), and revolute joints can be

used as either passive or active joints.

• Active joints are placed close to the based so as to reduce the moment of inertia and

increase the loading capacity and motion acceleration.

• Passive 3-DOF spherical joints are used to reduce the number of passive joints and make

the design compact.

• At most one (active) prismatic joint can be employed in each of the legs due to its heavy

and bulky mechanical structure.

• Designing for Decoupled Motion Axes (DMA). This gives the robot simple kinematics for

easy analysis, design, trajectory planning, and motion control. [39]

Figure 14 illustrates a graphical summary of the steps used in the parallel mechanism design

process.

Mechanical Design

Structural Synthesis

—»{ Machine Topology

Stiffness

Actuators - No.& type

HZ Speed

Workspace

1—»| Actuator Positioning

Stiffness

HI Workspace

Dimensional Synthesis

Dimensioning

Workspace

Singularities

—H System Modelling

Kinematics Modelling

Dynamics Modelling

Control System

Figure 14 Design criteria used in constructing PKMs

4.2 Structural Design of the Modified Delta Robot

The mechanical structure is based on that of a Flex-Picker pick and place parallel kinematics

industrial robot, and is a scaled adaptation.

38

The design consists of 4 articulated legs; 4 servo motors (as used in model helicopters); a

plate end effector with attached lasers; ball-cup joints and a mounting frame. The entire

mechanical structure is 600 mm in length, 400 mm wide and 500 mm high. Figures 15 and 16

illustrate the parts and some assemblies. Figures 17 and 18 illustrate the complete assembly

with detector boards in various views.

Figure 15 Significant Mechanical Parts

a. Ball from ball in socket bearing

b. Socket/Ball cup

c. Laser

d. Upper leg

e. Servo motor with upper leg attached and mounting bracket

f. Lower leg component

g. Servo motor

h. Servo motor with mounting bracket

39

Figure 16 End effector

a. Vertical laser mounting arm
b. Multiple laser guide
c. Multiple laser mounting
d. Laser mounting with guide attached
e. Laser mountings and guides attached to end effector

Figure 17 Mounting of servo motors and assembly of arms

a. Servo motors and upper arms mounted on inertial frame
b. Lower arms and end effector attached to upper arms
c. Knee joint
d. Ankle joint

40

Figure 18 Complete assembly

b. *

! u
<

8 .4

1

a. Total view b. Side view

d.

c. Front view
d. Bottom view of end effector and horizontal detector screen (hidden base)

41

e. Back view of end effector and vertical

f. Left side view

It must be noted that the lower leg components are held together via 2 springs (not shown),

one just below the 'knee' and the other just above the 'ankle' for each leg (see Figure 19 for

these joint labels). The ball cup joints give a large degree of freedom. These were made from

ball in socket bearings. The upper legs swing from side to side whereas the lower legs can

move up, down, left and right and can rotate about the 'knee' by sequencing sets of its basic

motion (induced by rotating pairs of servos each to particular angles). The laser can move

about a volume of space, which is roughly a hemisphere below the sensitivity area, the square

cut-out on the servo mounting frame in Figure 17 a.

The frame work was made from angled aluminium (long bar of L shape aluminium). The

lower legs and laser mounting were made from a stiff hard plastic. The lower legs were made

from stainless steel rods used to construct model helicopters and aeroplanes. The ball and

socket joints were made of steel. These materials gave the Flex-Picker model sufficient

stiffness for all movement during testing.

Machine Topology

As this PKM is symmetric it may be described as 3-DOF 4 RSS (3 degrees of freedom, all

translational with 4 branches containing a rotational actuator and 2 spherical joints).

42

Actuator Positioning

The actuators are located on the same plane and are arranged to form a cross. They are

positioned such that the plane of rotation of each servo lies coincident with that of the servo

directly opposite it, and the adjacent rotation planes are at 90° to each other.

4.3 Dimensional Synthesis

4.3.1 Dimensioning

Table 3 Link lengths

Lengths

Upper Arm

Lower arm

End effector (Cross)

100 mm

179 mm

100 mm

Spacing

Between lower arms

Between opposing servos

30 mm

200 mm

4.3.2 System Modelling

The system model is illustrated graphically in Figures 19 to 22.

Parallel structures suffer from some weaknesses which have to be analyzed and taken into

account when designing the mechanisms. These are:

• The existence of critical points in the workspace where the mechanism loses the ability to

change its position in a prescribed manner or to react to a given load. These are known as

points of singular configuration.

• A limited work volume in comparison with that of serial manipulators.

• The increased computational effort necessary to control a parallel manipulator. [13, 40]

The kinematics geometry of multi-DOF robotic manipulators must be analysed to determine

the positions and orientations of all the members of the mechanism. This is to avoid the

pitfalls mentioned above as the device goes through its motions. This position analysis can be

formulated, but is difficult to solve for certain machine configurations. The difficulty arises

due to the fact that the kinematics analysis depends on solutions to sets of nonlinear

equations. There are two types of kinematics problems for every robotic manipulator, i.e. the

forward and inverse kinematics. [41]

43

For both problems the kinematics structure with its parameters are defined. (Structure - the

number of links, the types of joints, the connectivity graph; Parameters - each link's twist

and length, and the fixed lengths or angles between neighbouring links)

The forward kinematics (FK) problem in addition to the above has a full set of actuation

parameters and aims to determine the position and orientation of the end effector. (Actuation

Parameters - the actively controlled joint variables: angles for revolute joints and linear

displacement for prismatic joints)

In the inverse kinematics (IK) problem the situation is the opposite, here the end effector's

position and orientation are given and the objective is to find the set of actuation parameters

that will satisfy the kinematics configuration. This leaves a set of nonlinear equations that

have to be solved to obtain the actuated variables. This nonlinearity expresses the fact that

generally there are multiple sets of values for the actuated variables that will produce exactly

the same end effector pose, i.e. multiple solutions for a single end effector position. [41, 42]

It is the IK problem that is of interest to the control systems designer of any robotic

manipulator. The control system needs to move the end effector to specific points in its

workspace to carry out a task. These points are known. The requirement is the set of actuation

values that would follow a trajectory from its current location, avoiding any obstacles in its

path to the point of interest.

The equations that describe the direct and inverse problems are the same. The DC is a first

example of the geometrical duality between serial and parallel manipulators. The IK for a

parallel manipulator (with an arbitrary number of legs) has a unique solution (if each serial

leg has a unique solution), and can be calculated immediately. These are properties of the FK

of the general serial manipulator. [42]

a. Forward Kinematics (FK) Problem

For serial mechanisms the FK problem can be solved without any difficulty. The relative

position and orientation of each link is dependent on the previous link, and so it can be

obtained as the result of vector addition, matrix multiplication, or some analogous

44

deterministic operations. For parallel mechanisms, the relative position and orientation of

some links depend on more than one other link, so the FK problem leads to a set of nonlinear

equations. Hence, for parallel mechanical systems, the FK problem (i.e., where all the

actuator values are given and the requirement is the end effector's pose) is more difficult to

solve than its IK. [41]

Solution Methods

Many solutions to the forward kinematics problem for parallel mechanisms deal with

particular architectures or small classes of architectures, sometimes under hypothesis of

geometrical symmetries. The lack of general explicit solutions occurs even in the simpler case

of pure translational motion of the end effector. [43]

A variety of solution methods have been developed for solving the sets of nonlinear

polynomial equations that arise in the inverse problem for series chains and the direct

problem for parallel systems. The methods that have proven to be the most useful have been

based on polynomial continuation, elimination methods or Grobner bases. [41]

Polynomial continuation is a numerical method that is useful in solving problems for actual

numerical values and running numerical experiments. It does not offer any direct assistance in

general studies involving parameters on a symbolic level. For kinematics analyses it is

necessary to have solution methods that give all possible solutions to a particular set of

nonlinear equations. While numerical methods, such as Newton-Raphson, converge to a

single solution, the polynomial continuation method is a numerical procedure that can find all

solutions to a given problem. "The idea is that small changes in the coefficients of a system

lead to small changes in the solutions. Using this idea and having a system whose initial

solutions are known, it is possible to gradually transform the system to find the solutions that

are required. During this transformation, all solutions are tracked, so that in the end all the

solutions to the final system are found." [41]

The advantages of polynomial continuation are its ability to solve very large systems, and the

fact that the procedure itself need not be modified for different polynomial systems. Also it

virtually guarantees that all solutions to a system will be found, assuming there are no

numerical anomalies.

45

The disadvantage of polynomial continuation is mainly speed. For many kinematics

problems, the number of paths that must be tracked can be large enough that the continuation

calculation is too slow for real-time control or other applications where speed is important.

[41]

Elimination methods, sometimes called resultant methods, are based on an algebraic

formulation that allows for the elimination of a large number of variables in one single step,

and reduces a set of nonlinear equations to a single polynomial in one unknown. They also

allow for studies of solution properties on a symbolic rather than a numerical basis and

require much more algebraic manipulation than continuation methods. A basic example

illustrates the construction procedure more adequately, see source [41] for a detailed example.

If an elimination based solution method can be found for a particular problem, it normally

leads to much faster computation times than polynomial continuation or Grobner base

methods. The main disadvantage of elimination based methods is finding an appropriate

multivariate eliminant for a particular problem.

Numerous authors have used eliminant methods to solve the direct kinematics problems for

Stewart-Gough platforms with some special geometric constraints, such as concentric

spherical joints. All the algorithms to solve the general case of the Stewart-Gough platform's

direct kinematics problem and obtain a 40th-degree univariate polynomial, use elimination.

[41]

Grobner bases is an iterative algebraic variable elimination technique for solving sets of

nonlinear equations. Grobner bases has recently proven to be very useful in conjunction with

elimination methods. The basic elimination procedure resembles Gaussian elimination in that

it produces a triangular system of equations. For the Grobner bases technique, the last

equation is a univariate polynomial, and each subsequent equation adds at most one new

variable, although the equation may not be linear in that variable. The univariate polynomial

may be solved to find all possible values of one unknown, and the other equations will yield

the values of the other variables for each solution. The choice of ordering for the polynomial

terms in nonlinear equations is not obvious, however a lexicographic ordering will always

lead to triangular Grobner bases.

The disadvantage of the Grobner bases technique is the computation time needed. Also, the

complexity of a given problem is unpredictable. Nevertheless, the technique has proven

46

useful in kinematics analysis, most notably in confirming the number of solutions for the

general case of the Stewart-Gough platform's FK. It also aided in determining the

characteristic polynomial, as well as in predicting the upper bound on the number of solutions

for those special cases where platform legs are required to share pivot locations. [41]

b. Geometric Kinematics Model

The methods to solve the forward and inverse kinematics using complex matrix algebra and

Jacobians are difficult to understand. A geometric model, shown in Figure 19, was devised

and using common math and trigonometric functions, the forward and inverse kinematics

problems were established. These were then solved with rigorous algebraic manipulation of

the variables, in those functions, to obtain closed form solutions.

Figure 19 Simplified Geometric Kinematics Model

This geometric model differs from the mechanical system shown in Figure 18. The

parallelograms of the lower arms have been collapsed to single lines joining the "knee" to the

"ankle". This simplification is acceptable as the parallelograms that compose the lower arms

47

completely restrain the orientation of the end effector; as a result the end effector plane {ee}

remains parallel to the base plane {bs} at all instances of its motion.

This parallel plane constraint is taken into account in the model with a few points as listed ...

• The origin of {ee} is the "dead" centre of the end effector.

• The coordinates of the "ankle" joints for each leg i (i = 1,...,4) on the end effector are

known relative to the origin of {ee}. These are fixed distances from the origin of {ee}

determined at design.

• The origin of {bs} is the "dead" centre of the base.

• The coordinates of the "thigh" joints for each leg i (i = 1,...,4) on the base are known

relative to the origin of {bs}. These are fixed distances from the origin of {bs} determined

at design.

• The upper legs are restrained to have rotational motion about a plane, i.e. Upper legs 1 and

3 move in plane y = 0, the rotation axes of T, and T3are perpendicular to the plane y = 0.

Upper legs 2 and 4 move in the plane x = 0, the rotation axes of T2 and T4 are

perpendicular to the plane x = 0.

• The lower legs have complete spatial motion.

48

Convention - (x,y,z)

K,, - (x„, y4, z4)

T, - (m, 0, 0)

T4 - (0, m, 0)

(0, 0, 0)

T 2 - (0 , -m, 0)

T 3 - (-m,0 ,0)

K3 - (x3, y3, z3)

K, (Xi, y i , zi)

(%f„ Vo + n . Zo)
A j

(x o - n, y0, zo)
A, K2 (x2, y2, z2)

Ai (x0 + n,y0,Zo) A2-(x0 ,yo-n,Zo)

Figure 20 Illustration of joint labels and coordinates

The coordinates of the critical points are:

{bs} origin - (0; 0; 0)

origin of {ee} relative to {bs} is (x0; yQ; z0)

Leg 1: T, - (m;0;0) K{- (xx; yx; z,)

Leg 2: T2 - (0 ; - m;0) K2 - {x2;y2;z2)

Leg 3 : T3 - (- m; 0 ; 0) K3 - (x3; y3; z3)

Leg 4; T4 - (0; m; 0) K4 - (x4; yA; z4)

A, ~(x0 + n;yQ;z0)

Ai-(x0;y0-n;z0)

A3-(x0-n;y0;zQ)

A 4 ~ (v > ; o + ".'zo)

m And n are design constraints, indicating the relative displacement of the revolute and

spherical joints from the centres of {bs} and {ee} along the x and y axes

49

• All sphere radii have magnitude RQ (see following sub-section)

• All circle radii have magnitude /?, (see following sub-section)

• From the dimensional synthesis of section 4.3.1 Dimensioning, the variables mentioned

above have values:

m=10cm; n = 4.45 cm; 7^= 17.9 cm; ^ = 1 0 cm.

c. Geometric Approach to Solving the FK

The FK problem provides the actuation angles for each motor and then requires the end

effector position in space. This problem is easier to solve with serial kinematics manipulators

but far more difficult for PKMs, and the difficulty depends on the complexity of the machines

legs.

For this mechanical design, seeing as the actuation angles are known for the forward

kinematics, the coordinates of the knee joints can be readily calculated.

To solve the FK some knowledge of the mechanical constraints of the system, have to be

used. In particular the fact that the end effector plane \ee\ will always remain parallel to the

base plane \bs\ is critical, this reduces the number of unknowns from 6 (having any position

and orientation in space) to just 3 (only position).

The knee joint coordinates are known, each of x,, yi and z, (i = 1...4)can be calculated.

• K, -{x{;y{,zx\ yl = 0

• K2 -(x2;y2;z2), x 2 = 0

• K3 -(x3 ; j3 ;z3) , y3=0

• K4 -(x4;y4;z4), x 4 = 0

The ankle joint coordinates are unknown, x0, y0 and z0 have to be solved.

• A,-(x0+4.45;j ;0 ;z0)

• A2-(x0 ; .y0-4.45;z0)

50

• A 3 - (x 0 -4 .45; j ; 0 ;z 0)

• A 4 - (x 0 ; j 0 + 4.45;z0)

Aj must lie on a sphere centred atK i ; for i = 1,:,4. The equation of a sphere

ty{xa-xbf + {ya-ybf + {za-zbf =R2, for a point a (xa;ya;za) lying on a

radius R with centre b (xb;yb;zb). This is shown in Figures 21 and 22.

V

Figure 21 Four hemispheres each centred on a knee joint

Figure 22 Top and side views of spheres used to solve FK

a. Top view b. Side view

Solving for (x0,y0,z0) requires rigorous algebraic manipulation of these sphere equations. It

is however much easier to understand when compared to traditional methods as discussed in a

previous section.

Solving for x0:

{xa-xbf + (ya-yb)
2 + (za-zbf=R2

Sphere equation for leg 1:

((x0 + 4.45)-x1)2+(7 o-3 ;1)2+(z ()-z1)2 = 17.92 = 320.41, ^ , = 0

=> (x0
2+8.9x0 +19.803-2x,x0-8.9x, + x,2)+.y0

2+(z0
2-2z,z0+z,2) = 320.41

Rearranging the equation and factoring yields:

=> x0(8.9-2x1)-2z lz0 + (-8.9x1+x,2+z,2)= 300.607 - x0
2 - y0

2 - z 0
2

Making the following substitutions:

52

C0 = 300.607 - x 0
2 - y2 -z2

C, = 8.9-2x,

C2 = -S^+xf+z2

C[And C2 are constants whereas C0 is variable. Hence the first equation reduces to:

C0 = C|X0 — 2 Z | Z 0 + C 2 ... [?*•*)

Sphere equation for leg 3:

((x0-4.45)-X3)2 + (^ 0 - j3) 2 + (z0-z3)2 = 17.92 = 320.41, y3=0

=> (x0
2-8.9x0+l 9.803-2x3X0+8.9x3+X32)+j0

2 + (z0
2-2z3z0 + Z32) = 320.41

Rearranging the equation and factoring yields:

=> x0(-8.9-2x3)-2z3Z0 + (8.9x3+X32+z3
2) = 300.607-x0

2 -y2 - z 0
2

Making the following substitutions:

C3 = -8 .9-2x 3

C4 = 8.9x3 + x3 +z3

C3 And C4 are constants. Hence the second equation reduces to:

O Q — I^-^XQ Z.Z^ZQ ~r i ^ 4 . . . \^T.AJ

Clearly equation (4.l) equals equation (4.2).

L/,x0 zZ [Z 0 +L / 2
 : : *^3X0 z z 3 z 0 + C 4 — C 0

Solving for x0 in terms of z0 yields:

=> (C,-C3)x0 = 2(z,-z3)z0 + (C4-C2)

_s r . 2(z1-z3)z0+(C4-C2)

° ' " c -c
(4.3)

53

Solving for y0:

Sphere equation for leg 2:

(x 0 -x 2) 2 +((> ; 0 -4 .45) -7 2) 2 +(zo-^) 2 = 1V-92 = 320.41, x2=0

=> x0
2 + (y0

2-S.9y0+l9.803-2y2y0 + 8.9y2+y2
2)+(z0

2-2z2z0+z2
2)= 320.41

Rearranging the equation and factoring yields:

=> y0(-8.9-2y2)-2z2z0 + (8.9y2+y2
2 + z2) = 300.607 - x2 -y2-z2

Making the following substitutions:

C5 = -i.9~2y2

Q = S.9y2 + y2
2+z2

2

C5 And C6 are constants. Hence the third equation reduces to:

C0 = C5y0-2z2z0 + C6 ... (4.4)

Sphere equation for leg 4:

(X 0 - X 4) 2 + ((J 0 + 4 . 4 5) - J 4) 2 + (Z 0 - Z 4) 2 = 17.92 = 320.41, xA = 0

=> x0
2 + (y0

2 + 8.9j0 + l 9.803 - 2y4y0 + 8.9j4 + y2)+ (z2 - 2z4z0 + z2) = 320.41

Rearranging the equation and factoring yields:

=> y0(S.9-2y4)-2z4z0 + (-8.9y4+y4
2 +z4

2) = 300.607-x0
2 -y0

2 -z0
2

Making the following substitutions:

C7 = 8.9 -2y4

C8 = -8.9_y4 + j>4
2 + z4

2

54

C7 And C8 are constants. Hence the fourth equation reduces to:

Co = C7y0 - 2z4z0 + C8 ... (4.5)

Equation (4.4) equals equation (4.5).

C5J^0
 — ^-Z2Z0 "*" ^ 6 — ^7^0 — ^ Z 4 Z 0 ' ^ 8 ~" ^ 0

Solving for y0 in terms of z0 yields:

=> (C J - C 7 K = 2(z2-z4)z0 + (Cg-C6)

=> _ 2 (Z 2 ~ Z 4 K + (Q - Q) (4 6)
C5 — C7

Both x0 and y0 are expressed in terms of z0:

x = 2(z,-z3)_ | (C^-gj
0 r- -r ° r - r

= 2(z 2 -z 4)_ (Q - Q)
c5 — c7 c5 — c7

Make the following

I * - 2 (z ' " Z 3) ;

Q-c3
2(z2-z4)

m2 = —— —;
C -C
*-5 ^ 7

x0 = mlz0 + nl

y0 = m2z0+n2

substitutions:

to-

„2 = < c . -
Q-

...

-c2)
-c 3

- Q)
-c,

(4.7)

Substitute equation set (4.7) into the sphere equation for leg 1:

((X 0 + 4 . 4 5) - X 1) 2 + (J 0 - J ; 1) 2 + (Z 0 - Z 1) 2 = 17.92 = 320.41, yi=0

=> (x0
2+8.9x0 + 19.803-2x,x0-8.9x1+x1

2)+j0
2 + (z0

2-2z lz0 + z1
2) =

=> ((w,z0 + «,)2 + 8.9(/w,z0 + «,)+19.803-2x,(m,z0 + nl)-S.9xl + x,2)+ (m2z0 + n2f +...

W-2zizo+zi2)

=> m, z0 + «, +19.803+2mlz0nl +8.9/w,z0+ 8.9M,-2x lm lz0-2x,« l -8.9x, + x, +m2 z0 +.

2m2z0n2 + n2 +z0 -2z,z0 + z, = 320.41

Rearranging and simplifying:

(m,2 + w2 + ljz0 + (2w,«, + 8.9/w, - 2x,m, + 2m2«2 - 2z,)z0

(«,2+8.9«,-2x1«1-8.9x l+x1
2+«2

2+z1
2-300.607) = 0

2

This is a quadratic inz0 , i.e. az0 +bz0+c = 0 .

+ ...

„, f -b±ylb2 -4ac ... Therefore zn = , with:

0 2a

a = mx +m2 +1;

b = 2mlnl+S.9ml-2xlm]+2m2n2-2zl and:

c = «,2+8.9n l-2x1«1-8.9x1+x l
2+«2

2+z1
2-300.607.

There are 2 sets of solutions for(x0;_y0;z0), and both are real as there are 2 possible values

forz0. The correct configuration or solution for the end effector coordinates has z0more

negative than the z coordinates of the knee joints.

d. Calculating knee coordinates from the actuation angle

Leg 1: Resolving (xl,yl,zl):

The first thing to note is that the knee coordinate (xl,yl,zl) lies on a circle centred at the

"thigh joint" for leg 1, this is indicated by the red dashed line of Figure 23. It also lies on the

straight line passing through that "thigh joint" with a gradient given by the angle 6X with

regard to the fixed frame of reference, indicated the thick solid black line of Figure 23. The

positions of the motors were mirrored about a centre line in the mechanical design to make

the machine symmetric. The coordinate systems and references for each leg are the same,

however, to make calculations uniform. The angle Bx in the calculations (indicated by the red

counter clockwise arrow) differs from the actuation angle 0Rl (indicated by the green arrow -

56

range 0° to 180°, clockwise). The angle #,is with respect to the coordinate system angular

frame of reference, and 6m is the rotation angle with respect to the servo and its mounting

(solid green line). A transform is used to obtain dx from 0RX{6xis used in the FK to

determine end effector position coordinates). As the servo motors have a 180° limit on their

rotation, the limits on 0X are from 45° to 225° (clockwise).

90° < <?, < 18ff 90° 0= < 0, < 90°

(.^-loy+z^ioo

Figure 23 Illustration of leg 1 coordinate frame and angular

conventions

The transform used to obtain 0l is:

6X = (4O5o-0sl)mod36O; 0° < 0S1 < 180°, 225°<0,<36O° u O°<0,<45 c

57

A few example calculations:

For0,, =0° : 6X = 405°mod360 = 45°

Fortf,,, =90° : 0, = (405°-90°)mod360 = 315°mod360 = 315°

Forfl^ = 180° : 0, = (405°-180°)mod360 = 225°mod360 = 225°

This transform is also used to obtain 64 from0S4. The transform for 62 and 03 is different and

is given by 6i = 135° +0m, i=2,3.

Once the actuation angles are obtained in the global reference system, the "knee" coordinates

for each leg can be evaluated. This is illustrated for leg 1.

Equation of straight line (upper leg): px(xx -10) = z, (when x,=10, z,=0 and px is the

gradient of the line, i.e. pl = tan# t.)

Equation of circle: (x, -10)2 + z,2 = 100

x,2-20x1+100 + z,2 = 100

=> x, - 20x, + z, =0

=> x,2-20x1 + (tan<9,(x1-10))2 = 0

=> x,2 - 20x, + x,2 tan2 0{ - 20xr tan2 9X +100tan2 dx = 0

=> x1
2(l + tan2(9,)-2Ox,(l + tan2(91)+lOOtan201 = 0

This is a quadratic inx t, and using the binomial formula to resolve x, yields:

20(1 + tan2 6X) ± ̂ 400(1 + tan2 6X J - 400 tan2 6X (l + tan2~flj

*' " 2(l + tan26X)

_ lQ^/l + 2 tan2 6>, + tan4 fl - tan2 Gx - tan4 g

1 + tan2 6X

= 10± . 1 0 V 0,?t 90° + k. 180°, £ e N 0 ... (4.8)
•yjl + tan2 0,

58

This formula provides 2 solutions forx,, the correct solution is determined from the quadrant

of 0i. If Gx is in the first or fourth quadrant x, > 10 and if 0X is in the third quadrant x, < 10.

See Appendix A for the calculation of knee coordinates for legs 2, 3 and 4, leg coordinate

frame figures and their corresponding angular transforms {6Rj => 6t, i = 2, 3, 4).

e. The Inverse Kinematics (IK) Problem

The IK problem can be challenging for serial mechanisms and an example of this can be

illustrated using the planar, three revolute joint mechanism shown in Figure 24 a. Given the

lengths of all the links, i.e. the structural parameters, and given a specified value for the end

effector pose, i.e. the position and orientation of the end effector, the problem is to determine

the angles 6], 02 and 83 to get the manipulator into that desired position. In even the most

complex series manipulators, the situation is analogous.

Figure 24 Inverse Kinematics Problem

a. A planar 3-revolute joint mechanism
b. Generic kinematics model for parallel manipulators

For parallel structures, the level of difficulty of the IK problem depends entirely on the

complexity of the legs. If the legs are simple, as when each leg consists of two links

connected by a prismatic joint, then the inverse kinematics is simple. On the other hand, if the

legs are complex, as when each leg is a series chain of five links, each connected to its

neighbour by revolute or spherical joints, the problem becomes quite complex. In general

59

most parallel devices are built with simple legs, and therefore it is usual for the inverse

problem to be quite simple and straightforward. [41]

f. Solving the IK using the Looping Method

The link frame conventions and transformations defined for serial kinematics chains apply

without change to each of the legs in a parallel robot. The only difference with the serial case

is the definition used for the connection of all legs to the base and the end effector platforms.

Figure 24 b shows the kinematics model that will be used as a generic example. It is not fully

generic, in that the base and end effector are arbitrarily chosen to be planar, and only

prismatic legs are used with spherical joints at both ends. It is sufficient for illustrating the

kinematics loops and loop equations used in solving the IK.

The platforms are rigid bodies, which are represented by the reference frames {bs} (base,

plane at z = 0) and {ee} (end effector, plane at z = z0), respectively. Parallel manipulators are

closed loop mechanisms, by virtue of the fact that by selecting any critical point such as a

joint position one can traverse a set of links and joints passing each one only once and return

to the joint or point of origin. This is illustrated in Figure 24 b. It will be shown using

conventional coordinate and vector notation, as indicated below [42, 44, 45, 46]:

• In Figure 24 b{bs} serves as the immobile world reference frame, and {ee} the mobile

frame of interest,

• The vector a can be written as PEB''EE • it is the vector from the origin of {ee} to the

connection of the i leg on the end effector platform,

• The vector d (also denoted by /,) is a non-unit direction vector along the i'h leg, and its

length | /; | , equals the current length of the leg,

• The vector c is the vector from the origin of {bs} to the connection point of the i'h leg on

the base platform; it is denoted by the notation P ''BS ,

• The vector b can be written as PBS'EE
 f it connects the origin of {bs} to the origin of

{ee}.

For each leg i, the following position closure constraint is always satisfied:

/>« • ' • »+ / . = pBS,EE+p£EJEE V / = l , . . . , 6 (4.9)

Or by lettered enumeration c + d — a + b.

60

In this equation, PBS''BS and PEE''EE are known design constants, so their coordinates are

known with respect to {bsj and {ee}, respectively. /, Is time-varying and usually only its

magnitude is measurable, not its direction. pBS'EE Changes with the position and orientation

of the end effector platform with respect to the base platform. The matrix q — (jqx.. .q6)
r

(containing vectors qj) denotes the end effector joint positions of the parallel manipulator.

These can be used to calculate leg lengths of prismatic joints, or angles of actuated revolute

joints, as the matrix containing the vectors of all base or reference joints is known from

design. [42, 44, 45, 46]

The IK is solved as follows:

Step 1: Equation (4.9) immediately yields the vector /(., since all other vectors in the

position closure equation are known when BS T is known. EE
S T is the transform that would

yield the current position and orientation of {ee} when applied to an initial frame {ee} that is

coincident to {bs}. This transform includes a rotation matrix used for orientation and a

translation vector used for positioning. In terms of coordinates with respect to the base

reference frame {bsj, this equation gives:

7 pBS,EE , pEE,iEE _ pBS,iBS

BSli BS1 ' BS1 BSr

_ pBS,EE , EEp pEE,iEE _ pBS,iBS (A , p.\
~ BSr ~r BS^EE* BSr ••• V - 1 U /

BSP ' (Translation vector) and BSR (rotation matrix) come from the input BST, as

mentioned. EEPEE''EE And BSP
BS''BS are known constant magnitude vectors determined

during the design of the manipulator. [42, 44, 45, 46]

Step 2: The length /; I is the Euclidean norm:

l!\ = yldJ2+0i,y)
2+(liJ

2 - (4.H)

For the hexapod (or Stewart-Gough design), this length immediately gives the desired

position qi of the actuated prismatic joint for leg i. Other designs require more mathematics to

arrive at the values for the actuated joint variables.

61

g. IK for the Delta Modification using the Geometry Method

The geometric kinematics model used is shown in Figures 19 and 20. This was explained in

section 4.3.2 b Geometric Kinematics Model.

In order to determine the rotation values for the actuated revolute joints, from a geometric

point of view, position the end effector as desired within its workspace, having \ee} parallel

to \bs}. At this point the coordinates of the "ankle" joints on \ee\ are known. Construct

spheres with radii equal to the length of the lower arm centred at the "ankle" joint. Construct

circles with radii equal to the length of the upper arm centred on the "thigh" joint. Now for

each leg i (i = 1,...,4), the intersection of the circle and the sphere result in the coordinates of

the "knee" joints. There are 2 intersection points that occur on each leg, from these only the

outer coordinates are taken as the required solutions [44, 45]. See Figures 25 and 26 for

illustrations.

The Cartesian equation of a sphere centred at the point (a,b,c) with radius R^ is given by

(x - a) +(y-b) +(z-c) =R^ . The Cartesian equation of a circle centred at the point

(d,e) with radius ^ is given by (x - df + (y- ef = R{
2.

At first glance it may seem that there are 3 variables to solve for at each knee joint, however

due to the fact that the circle is completely planar one of those three variables is known and

only 2 have to be solved. Essentially there are 2 equations and 2 unknowns and this ensures

that this system is solvable, although it requires substantial algebraic manipulation.

62

fe- Circle Centred at
"Thigh Joint"

Coordinates of l | | H
Intersection \nr,
"Knee Join!" \

-, Sphere Centred
at "Ankle Joint"

Figure 25 Illustration of sphere-circle intersection

a.

* « 4. 4

Figure 26 Illustration of sphere-circle intersection

a.
b.

Side View
Top view

63

Figure 20 illustrates the joint labels and coordinates for each leg. Leg i contains "thigh"

joint Tj, "knee" joint K; and "ankle" joint Af for i = 1,...,4.

Now the leg equations are:

Legl:

Sphere...

(x, - (x 0 + n))2 + {yx -y0f+ (z, - z 0 f = R^2

y, is known and is 0, this yields...

=> (*. ~(x0 + n))2 + {y0f + (z, -z0f= K

Circle...

(*i-»02+(z,)2=/?1
2

Leg 2:

Sphere...

(x2 -x0)
2 + (y2 - (y0 - n)f + (z2 -zj = R^

x2 is known and is 0, this yields...

=> {^)2 + {y2-{y0-n))2 + {z2-Z())
2=R^

Circle...

(y2-(-m)Y+(Z2Y=R>
=> {y2+mf+{z2)

2=Rx
2

Leg 3:

Sphere...

(*3 - (*0 - n)f + fo - ^0)2 + (Z3 ~ Z0 f = -K<>2

_y3 is known andisO, this yields...

=> (*3 ~ (*0 ~ n)f + 0>0)2 + (Z3 - Z0 f = &

64

Circle...

(x3-(-W))2
 + (z 3) 2 = ^

=> {x3+mf+{z}f=Rl
2

Leg 4:

Sphere...

(x4 - x0 f + {yA - (y0 +n)f+ (z4 - z0 f = R^

x4 is known and is 0, this yields...

=> (*o f + (yt ~ iya + n)f + (z4 -
 zo Y = K

Circle...

U-„)2
 + (z4)2=*,2

In each of the circle equations the z coordinate can be made the subject of the formula. This

allows for the removal of the z variable from the sphere equation through manipulation and

substitution. In this case the result would be a quadratic in the remaining variable.

Once the coordinates of the "knee" joints are established, the actuation angles can be

calculated as the gradient of each leg can now be found. Inverse trigonometric formulae are

then used to obtain the angles.

Solving the Leg Equations for Leg 1:

From the circle equation:

(x^ -mf + (z,)2 = R* where m=10 and Rx -10.

=> (x,-10)2 + (z,)2 = 102

x,2-20x1+100 + z1
2 = 100

=> x,2 - 20x, + z,2 = 0

=> z . ^ O j q - x , 2 ... (A.U)

2 2

This places a restriction on x, as z, is always non-negative, so 20x, - x, > 0, which implies

thatO <x, <20 .

65

From the sphere equation:

=> (*i - f o + n) f + (y o) 2 + (z i ~zo)2 =Ro
= (x 1 -x 0 -«) 2 + (j0)2 + (z1-z0)2 =R0

2 where n = 4.45 and R^= 17.9.

=> (x,-x0-4.45)2 + (^0)
2 + (z,-z0)2 = 17.92 = 320.14

X!2+x0
2+l9.803-2x,x0-8.9x1+8.9x0 + ̂ 0

2+z1
2-2z1z0+z0

2 = 320.14 ... (4.13;

Substituting Z[from equation (4.12) into (4.13) above yields:

x,2 +x0
2 -2x,x0 -8.9x, + 8.9x0 + y0

2 + \20xi -x |
2) -2z ,z 0 + z(

320.14-19.803 = 300.607

x1(l l . l -2x0)-2z1z0 + (x0
2+8.9x0 + j 0

2 + z 0
2) = 300.607

Rearrange and make z, the subject of the formula:

__ x , (l l . l -2x 0) + (x0
2 + 8.9x0+j0

2+z0
2-300.607)

—? 2. —

2z„
(AAA)

The only unknowns here are z, and xl, the rest are known. Collecting terms and making the

following substitution to ease readability results in:

_ l l . l - 2 * 0 _ _x0
2+8.9x0+y0

2+z0
2-

2z0 2z0

=> zi=clxi+c2 ... (AA5)

Squaring both sides of (4.15):

-300.607

2 — 2 2 4- 9 A- 2

However from equation (4.12) z, equals 20x, — Xj , which implies:

C l JLl I ^/C'lC'yJirl "T" L"J ~~ i— V / , \ | .A-l

c,2x,2 + x,2 + 2c,c2x, - 20x, + c2
2 = (c,2 + ljx,2 + (2c,c2 - 20)x, + c2

2 = 0

66

This is a quadratic in x, and using the binomial formula - - - — — yields both
2a

solutions i.e.:

_ - (2c,c2 - 20) ± V(2c,c2 - 20)2 - 4(c,2 + ljc

2(q2 + l)

- 2c,c2 + 20 ± 74c,2c2
2 - 80c,c2 + 400 - 4c,2c2

2 - Ac

2c , 2 +2

_ - 2c,c2 + 20 ± -^400 - 80c,c2 - 4c2
2 _ - 2c,c2 + 20 ± 2^100 - 20c,c2 - c,

2c, + 2 2q + 2

_ - c{c2 +10 ± -^100 - 20c,c2 - c

c , 2 +l

For real solutions to exist the condition 100-20c ,c 2 - c 2 > Omust hold. Since xl is now

known, having taken into account the restriction of equation (4.12), z, can be found by taking

the square root of both sides of said equation. The inverse kinematics leg equations for legs 2,

3 and 4 can be found in Appendix B.

There are 2 real solutions giving 2 real configurations of each leg, for a given end effector

position. The correct leg configuration must be selected, to acquire the correct angle for

actuation. The wrong solution for actuation would mean that the leg is folded inwards instead

of outwards, and would imply that it must have passed through a singularity condition, i.e.

when the leg is completely folded or completely extended, see section 4.3.2 h for an

explanation of singularities.

There are a few possible graphical illustrations for configurations of the leg and their planar

projections (XZ or YZ plane) are illustrated in Figure 27. The cases illustrated by C and D are

impossible; that is having both solutions lie on the same side of the lineTjAj. This can be

seen immediately as m = n and p = o , and the formation of 2 isosceles triangles. Hence

each set of solutions for the knee coordinates, for each leg, must lie on either of line T.Aj.

The correct solution for legs 1 and 4 lie to the right of line TjA; (l '=l, 4) , and the correct

solutions for legs 2 and 3 lie to the left of line T. A ; (i = 2, 3) with respect to the geometric

model's coordinate system (Figure 27). The equation for lineTjAj is found; it is a straight line

67

function of variable x or y. The x or y coordinates, depending on the leg, of the knee joint

solution sets are then substituted into this equation yielding 2 z coordinate test values. These

values are then checked, with the test just described, to determine if they lie to the left or right

of line TjA; for leg i and the correct solution is chosen. If the z coordinate equals the 'test'

value, that is when both solutions coincide, then there is a singularity (see section 4.3.2 h.) at

this end effector position.

Once the correct leg configurations have been determined, the angles for the upper legs can

be calculated. To obtain 0X three cases need to be resolved (see Figure 27 e). A general

explanation will be given for 0j. dj Can lie in 1 of 4 quadrants depending on i (for i — 1,..,4,

see Figure 27 e and f), and its value is given by:

180° (z.-zA
6j Lies in first quadrant: 0{ .arctan — —

* \<li-<ln)

\
6j Lies in second quadrant: 9i — 180° .arctan

180° . (z,
i —

n \9i-9»J

180°
Qi Lies in third quadrant: di - 180° + .arctan

7t

1 OQO

0i Lies in fourth quadrant: 0i - 360° H .arctan
K

z, - z„

<ii-qm.

z , - zK

li-ln

Wherez/(. = 0 V i; qt— xx, y2, x3, y4; qn = 10, - 1 0 , - 1 0 , 1 0 for i=\,..A respectively.

These cases are due to the fact that arctan yields a principle argument in the range

<Bi< —. The case when 0j = 270° () can be seen through inspection and occurs

when the centre line of the upper leg lies directly on the negative z axis passing through that

particular T;.

The transforms used to obtain the rotation angles 6Ri are inverse functions of those shown in

the FK, when dRj was used to obtain 6i. Interestingly, the inverse function for legs 1 and 4 in

the IK is the same as the original function used in the FK, with variables swapped.

For i = 1, 4 : dRi = (405° - 0.)mod360

Fori = 2, 3 : 0m = 0 , - 1 3 5 °

68

d.
^
^ S \ m
\ \ n \J \ \ , 4
\ X / \

\ p
\
\
\
i

1°

A,

e. Legs 1 & 4

180°

9i 0°

270°

f. Legs 2 & 3

180

270°

Figure 27 Choosing the correct leg configuration

Leg configuration of projection onto the XZ or YZ plane

a. A; Lies in the 3rd quadrant, solutions on either side of line AjT,.

b. A; Lies in the 4th quadrant, solutions on either side of line A;T;

c. A; Lies in the 3rd quadrant, solutions on same side of line AT;.

d. Aj Lies in the 4th quadrant, solutions on same side of line A;T;

Leg positions
e. Legs 1 & 4 lie in quadrants 1, 3 and 4
f. Legs 2 & 3 lie in quadrants 2, 3 and 4

69

h. Singularities

Singularities are an important consideration in the design of parallel manipulators. It was

mentioned earlier, but a full explanation is necessary and will now be given.

There are 2 classes of singularities, i.e. architectural and configuration.

Architectural Singularities

An architectural singularity is caused by the design of the manipulator, and not by a specific

combination of actuation values for rotation or prismatic joint variables. [42]

Configuration singularities

This singularity would occur for specific values of the actuated joint variables. One example

of this is when either the base or the end effector platform is coplanar with one or more legs.

In this configuration, the manipulator cannot resist forces orthogonal to the plane of the base

or the end effector. As a design rule-of-thumb, it is better not to use planar base or end

effector platforms, because that planar relationship introduces partial dependence between

several coordinates and increases the possibility of singularities. [42]

There are 3 subclasses that result from configuration space singularities, i.e. inverse, forward

and combined.

i. Inverse Singularity

The inverse singularity refers to a specific robot configuration in which the moving platform

loses one or more degrees of freedom, instantaneously. [39]

ii. Forward Singularity

The forward singularity configuration refers to a specific robot configuration in which the

moving platform gains one or more degrees of freedom, instantaneously. In other words, if all

of the active joints are completely locked, the moving platform will still possess infinitesimal

motion in certain directions. [39]

iii. Combined Singularity

The combined singularity configuration refers to a specific robot configuration in which the

moving platform simultaneously gains and loses one or more degrees of freedom. Hence, the

combined singularity occurs if and only if both forward and inverse singularities occur

simultaneously. The combined singularity is subject to strict conditions and can be avoided by

proper dimension design of the mechanisms. [39]

70

The importance of singularities, from an engineering perspective, arises for several reasons:

• Loss of freedom. A kinematics configuration may result in joints locking in their position.

This represents a loss of freedom of one or more degrees.

• Workspace. When a manipulator is at a boundary point of its workspace it is at a singular

point of its kinematics mapping, though the converse is not the case. Knowledge of these

singular points indicates where the manipulator can and cannot move.

• Loss of control. A variety of control systems are used for manipulators. Rate control

systems require the end effector to traverse a path at a fixed rate and therefore to determine

the required joint velocities by means of the inverse of the derivative of the (known)

forward kinematics. Near a singularity, this matrix is ill-conditioned and either the control

algorithm fails or the joint velocities and accelerations may become unsustainably great.

Conversely, force control algorithms, well adapted for parallel manipulators, may result in

intolerable joint forces or torques near singularities of the projection onto the joint space.

• Mechanical advantage. Near a singular configuration, large movement of joint variables

may result in small motion of the end effector. Therefore there is mechanical advantage

that may be realised as a load-bearing capacity or as fine control of the end effector.

Another aspect of this is in the design of mechanisms possessing trajectories with specific

singularity characteristics. In traditional 1-DOF mechanisms (such as the planar 4-bar) a

cusp singularity provides 'dwell', where the trajectory is close to stationary for a period of

time allowing some process steps in a production to be performed. [38, 47]

i. Delta Mechanism Singularities / Designed PKM Singularities

The PKM designed is a modified delta type mechanism. Since each leg still consists of 2 links

and the structure is similar, the singularity conditions for this mechanism are the same as that

of a normal Delta PKM (or Flex Picker robot).

The Delta PKM is relatively free of singularities. The ones that occur are readily anticipated,

i.e. when a leg is fully extended or completely folded. Due to symmetry these conditions may

arise simultaneously in all three legs of the Delta PKM [39, 46].

For the PKM designed the singularities occur when both the lower leg and the upper leg have

the same gradient, in the plane of the upper leg rotation. This condition may arise in all 4 legs

simultaneously, and this happens when all legs are completely extended or folded (when the

"thigh", "knee" and "ankle" joints of the legs are collinear). When calculating the IK this

gradient condition must be checked for each leg, and this procedure was outlined in section

4.3.2 g.

71

Understanding the intrinsic nature of the various types of singularities and their relations with

the kinematics parameters and the configuration spaces is of ultimate importance in design,

planning and control of the system. [48]

Singularities can never be eliminated, but, as in the case of serial robots, they can be cleverly

exploited. Due to their linear dependency on coordinates they can be positioned so that they

are either outside of the useful workspace of the robot, or are easier to control. [42]

The approach for this system was to avoid any and all singularities, as those that occur are

inverse singularities.

j . Idealized Work Envelope Calculation and Visualisation

The work envelope of the PKM was calculated to provide a visualisation of the workspace.

There are 2 possible methods for completing this calculation: using the forward kinematics or

the inverse kinematics. Using the forward kinematics there would be 4 nested "for loops", one

for each angle (upper leg). Each angle is varied and the forward kinematics calculated for the

set of angles, giving the end effector coordinates. This allows calculation of the workspace as

well as determination of all singularities within the workspace. However, placing the data in a

format acceptable to MATLAB for creating the visualisation is difficult.

The second method using the inverse kinematics solves the difficulty of the previous solution

but does not provide singularity information. It, however, was used as it simplified the

problem of determining the workspace envelope. There is an intuitive guess for the limits on

the XYZ positioning capability. The algorithm starts at the extreme Z positions (a Z min and

Z max that cannot be reached for any pair of XY coordinates) in space and calculates the

inverse kinematics (solving for the angles of the upper legs for each pair of XY sets). It then

works its way inwards to the boundary of the workspace (increasing Z min and decreasing Z

max, finding the first Z min and the first Z max that provides actual solutions to the inverse

kinematics, for each XY pair). The XY boundary is also set just outside the positioning ability

of the robot and the values of X and Y varied (with suitable step) to cover the boundary. This

method produces the workspace envelope shown in Figure 28.

72

Figure 28 Different views of workspace, top half, bottom half and

total.

k. Dynamic Modelling to determine maximum Servo Motor Loading

The dynamic modelling of robotic systems involves the study of motion with regard to the

forces that cause it as well as external forces that are applied to the system during parts of that

motion. For pick and place robots the force of the added weight of the object that was picked

up would affect the machine's dynamics if the ratio of object mass to the system's moving

mass is high. This applies to parallel pick and place machines like the Flex-Picker.

Complete dynamic modelling, resolving all forces on all links, of PKMs is sometimes not

possible due to the multiple arm structure and the multiple dependencies of the arms on each

other. For these systems an approximation is sometimes the only possibility to model some of

the dynamics involved. [30]

The first step to establishing the dynamic relations in a mathematical model is to find the

centre of masses (COMs) for each of the links in the system including the end effector. These

are then superimposed on the geometric kinematics model established earlier.

The COMs for each component was found using the SE CAD software package. The densities

of each part are saved in the material properties of the part file. Once the design for the part is

complete, the physical properties of COM and centre of volume (COV) are calculated by the

CAD package and saved with the design, as this property does not change unless the design is

73

altered. For a composite part like the end effector in this PKM design, its COM is calculated

from the COMs of is composing parts. The COMs of all moving parts are shown in Figure 29.

All that is required are the COMs for the end effector, the lower legs and the upper legs.

These are illustrated in Figure 29, which are represented by significant points on the

geometric model.

Figure 29 Centres of mass on major components of the moving

system

The COM coordinates for the upper leg and lower leg were simplified in the dynamics model

that was developed. For the upper leg it is the length from the axis of rotation to the point of

the COM, which is 65.89 mm. For the lower leg it can be reduced to the mid point of the line

from the "ankle" joint to the "knee" joint, which is 89.5 mm from either point.

The COMs are superimposed on the geometric model and is illustrated in Figure 30. These

COMs can be calculated in the kinematics model, since the relative positions from joints do

not change.

74

(0, 10,0) x

+

UL - Upper Leg
LL - Lower Leg
RE - End Effector

Figure 30 A depiction of the COMs of each link superimposed on

the geometric model

The next step in approximating the system is to split the parallel structure into 4 serial parts.

This is done at the end effector where the mass MEE is carved up into 4 parts with a certain

portion concentrated at each "ankle" joint. This is obtained from a look at the end effector

when it is stationary. For static equilibrium the sum of the forces and torques must be zero.

See Figure 31.

75

Y +

Figure 31 Illustration of torques about x0 and y0 on the

plane z = z0

To find the equivalent mass at each "ankle" joint, the following sets of equations must be

solved, with torques positive in the clockwise direction:

Z F + F = 0 (4.16)

Torques about the Y-axis, the line x = x0 and z = z0.

45.5Fii3>z + 3 0 . 1 5 F W - 45.5FLLhZ = 0

Torques about the X-axis, the line y = y0 and z = z0.

45.5F i i2jZ - 45.5FLL4,Z = 0

<£=> F - F
V ^ * LL2,Z 1 U4,Z

(4.17)

(4.18)

76

a.

30.15

]

+

T
'UAZ

X «»

|

F

15.35

I F

+
FLLS.Z <

75

»-

65

U.I/.

Plane

yy

Y"

Fu.2,z

Z = Z o

A Fi L3.Z

i >

PLL4,Z

Z +

A F LL2.Z

30.15-

-75.65-
t * /

W

-15.35-

1.L1.Z

F\1EE.Z

Figure 32 Illustration of torques about line yy (x0 = 30.15, z = zQ)

The masses of the upper leg, lower leg and end effector are 0.055 kg, 0.0825 kg and 0.2413

kg respectively.

The torques about the line yy, given by x0 — 30.15 and z — zQ:

/ W (0) + 1 5 . 3 5 F u w - 2 x 3 0 . 1 5 F u w - 7 5 . 6 5 F t t 3 > 2 = 0 (4.19)

(4.16), (4.17) and (4.19) may be written as follows:

+ 2FLL2,Z+FLL3,Z = MEEg

30.15

45.5

LL\,Z

^LL\,Z + "^* i£2,2 **LL3,Z MEEg =0.6626M££g

Fm , z-3.9283F i i 2 j Z-4.9283FL L 3 i Z = 0

(4.20)

(4.21)

(4.22)

Or in matrix form:

2

0

-3.9283

1

4.9283

1 LL\,Z

F
1 LL2,Z

F
_ LLi,Z _

=

MEEg

0.6626MEEg

0

(4.23)

A.F =

77

This system cannot be solved as A is not invertible, that is all equations are not linearly

independent.

The reason for this is that the mechanical system is over determined. If one of the lower leg

pairs is removed the mechanical system will still be functional, capable of performing its

3DOF. The additional leg was added to improve positioning accuracy, control and load

carrying capability.

To model the worst case situation, setFLi3Z = 0 . This yields FLLlz =0.6626MEEg and

FLL2Z =0.1687'MEEg. Hence the worst case partial mass of the end effector at the ankle

joint is 0.6626ME£ = 0.1599 kg.

Each 2 link arm is now treated serially. Standard techniques for dynamic modelling of serial

manipulators may be applied, but a holistic picture of the machine must be maintained. Each

position of this equivalent serial arm is obtained by solving the inverse kinematics of the

parallel machine. To gauge the effect of this resulting serial arm on the motor, these 3 masses

are combined to form one equivalent mass at the end of the upper leg, or "knee joint". The

dynamics of the system may then be treated as that of a pendulum. This simplification is

illustrated in Figure 33.

The effect of masses Mx and M2 on the upper leg (see Figure 33):

FMx=Mvg.sm02A

FM2 = Mi-g-sin02A

Fa=F.cos{es-e2A-270°)

Hence the worst case equation for static torque of all masses on the motor is given by:

T = Fm.dl+Fa.d2

=dvM3 .g. sin (0RT - 270°) + d2 .(M, + M2).g. sin 02A. cos (0R - 02A - 270°)

=dvM3.g.cos(0RT)-d2.(Ml + M2).g.sin02A.sin(0R - 02A)

Using standard trigonometry rules in particular the equality,

. , . _ COS(A-B)-COS(A + B) . , ,
sin A sin 5 = i -, yields:

78

&K /" ""s/V 6,T = 6> - 270°

QRK 7^0.-180°

e:K =6^+180°

"D ~^RK*9tf

= 0^-180°+90°-82i -180°
= ear-eu--m°

Figure 33 Planar projection of serial leg equivalent for each leg of

the PKM

^•sinfo sin^^.sin^y. - 0l A) = ^ C O S (2&2A -0RT)~ ^ C ° S faff)

Substitute this in the previous equation:

T =d].Mrg.cos(0RT)- d2.{Mx + M2).g. sin 62A. sin ($R

= dv Myg. cos {dRT) .d2.(Mi + M2).g.cos(202A

•C0S fa«r) - d2 iM\ + M 2)•§•Sin ^ 2 ^ •Sin fa* - 02 J

i (2^2, -««•) + \-d2 -(M, + M2).g. cos ($„)

(4.24)

Clearly, from Figure 33, the maximum static torque on the motor occurs when the upper leg is

completely horizontal (0RT — 360°) and the lower leg completely vertical (02A = 90°, this

also forces the lower leg planer projection to equal its maximum possible length, that is the

full length of the lower leg, i.e. 179 mm).

79

r = J1 .M3 .g.cos(360o)--.J2 .(M1 + M2).g.cos(2(90o)-360o) + - .J2 . (M1 + M2).g.cos(360°)

=dx .M3.g - -.d2(Ml + M2).g{-1) + -.d2.{Ml + M2).g r s
 2

 2'v ' 2 / o v 2
= dl.M3.g + .d2.{M]+M2).g

= (0.065 89)(0.055)(9.81) + (0. l)(0.2413 + 0.0825)(9.81)

=0.0356 + 0.3177 = 0.3533 Nm

T
The maximum mass at the "knee" joint is given by

d2.g

0 3533
MMax = , t , = 0.3601 kg Max (0.1X9.81)

The leg may now be modelled as a pendulum with a mass of 0.3601 kg at a distance of 0.1 m

from the actuated rotational joint of the upper leg. This provides a conservative model for the

PKM and eases calculation. The purpose of this model is to determine the maximum speed

and acceleration at which the upper legs can be moved without the end effector overshooting

its intended position; that is to keep the reactive torque applied by the linkage less than that of

the maximum torque rating of the motor. This provides a modelling approach for the control

of the robot from a theoretical point.

The model in the control system however uses control theory of plant estimation. This is

described in chapter 6 Control Design.

4.4 Chapter Summary

Chapter 4 describes the mechanical design and the design process for PKMs. Fully illustrated

CAD drawings of the mechanical structure is presented. This chapter also provides a

combined geometric and algebraic method to solve both the forward and inverse kinematics

as well as providing an illustration of the workspace envelope. The solutions to the FK and

the IK are closed form, and these can be solved rapidly by the control software. Singularities

of PKMs are mentioned, and those for the machine designed are indicated as well as how they

are determined in the IK and avoided. Mass and dynamic modelling is also presented and the

mechanical system reduced to 4 pendulums.

80

5 Electronic Hardware

5.1 Processor

The processor used for the electronic control system was the ATmegal28 micro controller

from Atmel. It is a powerful microcontroller that provides a highly flexible and cost effective

solution to many embedded control applications. Some of its features include [49]:

133 Powerful Instructions - Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers + Peripheral Control Registers
Fully Static Operation
Up to 16 MIPS Throughput at 16 MHz
128K Bytes of In-System Reprogrammable Flash
4K Bytes EEPROM
4K Bytes Internal SRAM
Up to 64K Bytes Optional External Memory Space
Two 8-bit Timer/Counters
Two 16-bit Timer/Counters
Real Time Counter with Separate Oscillator
Two 8-bit PWM Channels
PWM Channels with Programmable Resolution from 2 to 16 Bits
8-channel, 10-bit ADC
Dual Programmable Serial USARTs
Powerful multiplier supporting signed or unsigned multiplication and fractional format

The peripheral features that were used most extensively were the timers and the USART

(universal synchronous asynchronous receiver transmitter).

The 16 bit timers were used to generate the PWM control signals for the servo motors.

A dedicated hardware USART in this microcontroller gives it the ability to communicate

serially with any other processor possessing a USART. It is capable of both synchronous and

asynchronous communication. The asynchronous feature was used as the microcontroller

communicates with a PC via its RS232 serial port.

One ATmegal28 was used. Its functions were:

• Communication with host PC
• Control of data converters
• Search and process acquired data
• Servo motor digital controller implementation
• ReadADCs
• Generate 4 PWM signals for servo control

81

5.2 Communication

The controller is used to transfer the reference numbers of those sensors that are stimulated to

the PC through its US ART transceiver and the PCs RS-232 serial port.

One protocol for serial communication is the RS-232C standard, which stands for

Recommend Standard number 232, C being the latest revision of the standard. The serial

ports on most computers use a subset of the RS-232C standard. The full standard specifies a

25 pin "D" connector of which 22 pins are used. Most of these pins are not needed for normal

PC communications, and most new PCs are equipped with male D type connectors having

only 9 pins.

To use the RS232 port a null modem configuration of the communications line was

implemented. Null modem cables cross the transmit & receive, DTR & DSR & CD and RTS

& CTS lines in the cable. This configuration allows communication when there is no need for

data flow control. Figure 34 shows the wiring diagram for the implementation.

Figure 34 Null modem with loop back handshaking

J2

o-
o-

DB9

-o

-o
•o

DB9

Connector 1

2

3

5

1 & 4 & 6

—

7 & 8

—

Conned or 2

3

2

5

1 & 4 & 6

—

7 & 8

Function

RX <- TX

TX -> RX

Signal Ground

DTR & CD & DSR

DTR & CD & DSR

RTS & CTS

RTS & CTS

82

5.2.1 Line Voltage Conversion

The voltage levels specified in the RS-232 standard for the serial port are -10 V for logic 1

and +10 for logic 0. These are different when compared to the microcontroller circuits that are

powered by a 5 V source. In order for the controller and the PC to communicate a voltage

conversion must occur. For this purpose a MAX 232 conversion chip is used. It has two

internal charge pumps which convert the voltages as required. [50]

5.3 Servo Motors

A servo motor is one that can place its rotary shaft to specific angular positions depending on

the reception and value of a particular coded signal. As long as that coded signal exists on the

input line, the servo will maintain the shaft's angular position. Servos are used in radio

controlled airplanes and helicopters to position elevators, rudders and blades. They are also

used in radio controlled cars, puppets and robots. [51, 52]

5.3.1 The Inner-workings of a Servo

The servo motor is composed of a DC motor, a feedback potentiometer, control circuitry, a

plastic casing and a gear box. The potentiometer allows the control circuitry to monitor the

current angle of the servo motor. If the shaft is at the correct angle, then the motor shuts off. If

the circuit finds that the angle is not correct, it will rotate the motor in the right direction until

the desired angle is reached. The output shaft of the servo can move about 180°. Usually,

there is a 210° range, but this varies by manufacturer and it is not capable of any further

movement due to a mechanical stop built on the main output gear.

The amount of power applied to the motor is proportional to the angular distance it needs to

travel. If the shaft needs to rotate a large angular distance, the motor will run at full speed. If

it needs to turn only a small amount, the motor will run at a fraction of its full speed. The

control wire is used to communicate the angle, which is determined by the duration of a pulse

that is applied to the control wire, called Pulse Coded Modulation or Pulse Width Modulation.

The parameters for this pulse are its minimum/maximum values and its repetition rate. Given

the rotation constraints of the servo, neutral is defined to be the position where the servo has

exactly the same amount of potential rotation in the clockwise direction as it does in the

counter clockwise direction. Different servos have different constraints on their rotation but

they all have a neutral position, and that position is always around 1.5 ms (pulse width).

Angular positioning is achieved through linear interpolation of pulse width, between the

83

extreme positions of 0° and 180°. The resolution however is limited by the digital control

system in use: 8 bit timers can achieve rotational resolution of 0.706° and 16 bit timers can

achieve resolution of 0.003°. When a pulse is sent to a servo that is less than 1.5 ms the servo

rotates to a position and holds its output shaft some number of degrees counter clockwise

from the neutral point. When the pulse width is wider than 1.5 ms the opposite occurs. The

minimum and maximum pulse width, that will command the servo to turn to a valid position

are functions of each servo. Different brands, and even different servos of the same brand,

will have different maximum and minimum pulse widths. Generally, for all servos, the

minimum pulse is about 1 ms and the maximum pulse about 2 ms, and it has to be refreshed

every 20 ms.

The maximum amount of force the servo can exert is its torque rating. Another parameter that

varies from servo to servo is the turn rate. This is the time it takes for the servo to change

from one position to another. [51, 52]

Servos Used

Four JR-591 servos were used in the design. They each have a mass of 350 grams and a

torque rating of 5.1 kg.cm. Also its rated speed is 60*70.2Is, i.e. it rotates 60° in 0.21s. They

were selected for reasons of cost, torque and size. The servo's torque was sufficient to carry

and hold all masses attached to its shaft which was the main requirement. This motor loading

was described in section 4.3.2 k. The maximum static torque applied by the system on the

servo motor is 3.601 kg.cm (or 0.3601 kg at 10 cm, as was derived). This is well within the

torque rating of the motor. The control design ensures that the dynamic reactive torque

applied by all masses and links attached to the servos are less than its maximum rating. See

chapter 6 on the control design.

5.4 Analogue To Digital Converters

To acquire direct feedback on the angular position of the servomotor (hence each upper leg),

a modification was made to each servo, tapping directly into the analogue voltage on its

potentiometer. This analogue voltage provides the servo with angular position feedback. The

analogue signals were fed to 4 independent 8 bit TLC548CP analogue to digital converters

(ADCs) [53]. The high input impedance of these ADCs do not affect the control circuitry of

the servos. The reason for using 4 ADCs will be explained. Firstly the rotation of the servos

were limited and calibrated, to make the mechanical system uniform as the servos are not

identical and have slight variations. A mechanical calibration and limiting tool was made to

84

prevent the upper leg from exceeding its maximum and minimum positions (see section 8.1.1

on calibration). The voltages at each of these maximum and minimum positions were

different for each servo. The positive reference voltage on the ADC for each servo was tuned

to the voltage appearing at the maximum position. The negative reference was tuned to the

value appearing at the minimum position. Each ADC converts the rotation range (140°)

exactly to a value between 0 and 255. Even though each servo may have a different voltage at

for instance 120°, the digital value of each output of each ADC would read the same. This

was the purpose of having separate ADCs with separate references.

Figure 35 Wire tap into feedback potentiometer of servo motor

5.5 Laser Stimulant

Twenty-four 635 nm laser diodes were used, 12 for the vertical screen and 12 for the

horizontal screen. The number of lasers used increases the sensor system resolution. See

section 3.2.3 for an explanation on the arrangement of these lasers. The vertical laser set is 40

mm below z0 (end effector z coordinate reference). This was allowed so that it would not

affect the legs during motion. The 40 mm vertical offset can be accounted for in software or

physically with the mounting of the vertical screen.

The lasers cannot be used continuously as they overheat and this leads to destruction of the

diode in minutes. The nature of this design however does not require a continuous stream of

optical power. The lasers are switched off just after the parallel to serial converters are loaded

with the sensor data, through the data transfer stage until the next data acquisition. The data

processing takes roughly 80 ms and the detector needs 10 us to switch on completely [54].

Utilizing a design factor of 100 yields a laser on time of 1 ms (100x10 us). This implies that

the laser is on 1.25% of the time, which is sufficient to prevent burnout.

85

5.6 Light Detectors

5.6.1 Available Light Sensing Options

Light sensing applications vary widely from specialized scientific instrumentation that must

detect individual light "particles" (photons) to systems that control high speed welding and

cutting lasers which produce kilowatts of optical power. There are sensors for almost any

application imaginable: from a photomultiplier tube which gives a large voltage pulse for

every photon it detects, to cooled thermopiles that absorb kilowatts of power providing a

thermocouple voltage proportional to the optical power absorbed. Other detectors include

photodiodes, phototransistors, photodarlingtons, photoresistors, integrated circuits, and

various hybrids. Table CI of Appendix C summarizes these characteristics. For any

application the following needs must be considered: [55, 56, 57, 58]

• Light source spectral characteristics,
• Optical power,
• Mating electronics,
• Packaging constraints,
• Image size,
• Signal-to-noise ratio,
• Frequency bandwidth,
• Operating lifetime,
• Reliability,
• Operation and storage environment,
• Performance,
• Cost.

The following sections describe the most popular light sensing technologies.

a. Photomultiplier Tubes

Photomultiplier tubes are special vacuum tubes that have a light sensing surface (the

photocathode) that absorbs incoming light photons and emits secondary electrons. These

secondary electrons are accelerated and multiplied within the photomultiplier tube by dynode

plates. Each time an electron strikes a dynode, it has gained enough momentum to create a

larger number of secondary electrons. This multiplication process continues for each dynode

within the tube. Tubes with ten to twelve dynodes can easily generate multiplications of more

than a million, resulting in sufficient current to develop hundreds of milli-volts across an

output 50 ohm load resistor for a single incident photon.

86

Photomultiplier tubes provide ultimate detection sensitivity. They can sense the smallest

amount of optical energy there is, i.e. an individual photon. When cooled, they can be

essentially noise free, with at most one false photon pulse in a one second time period.

However, there are many disadvantages to this light sensor, it [55, 56, 59, 60]:

• Is mechanically fragile
• Requires an extremely stable high voltage power supply
• Is expensive
• Has a package that is limited in shape and size
• Is susceptible to external magnetic fields
• Has limited wavelength sensitivity

b. Photodiodes

All diodes and transistors are light-sensitive. Photodiodes and phototransistors are designed

specifically to take advantage of this fact. Photodiodes are manufactured in essentially the

same way as semiconductor diodes used in conventional electronic circuits. The primary

differences are that photodiode ICs are larger and they are packaged to allow light onto the

sensitive area of the diode.

Photodiodes offer many conveniences and advantages that make them very practical for a

wide range of applications:

• Can measure pico to milli-watts of optical power,
• Have standard packages which can be tooled to fit the application exactly,
• Almost any photosensitive shape can be fabricated with costs starting at R24 000,
• Wide range of wavelength sensitivity, from 190 to more than 2000 nm,
• Small and light,
• Highly reproducible sensitivity,
• Cheap,
• Very large detectable surface areas can be fabricated,
• Fast response time (as fast as 10 picoseconds),
• Can be conditioned to resist noise.

Photodiodes are used in applications ranging from sensors for door openings, assembly line

controls, load levellers in luxury cars, to personal blood sugar meters for diabetics, sun-tan

exposure meters, smoke detectors and x-ray baggage inspection systems. [55, 59, 60]

87

c. Phototransistors and Photodarlingtons

The most common phototransistor is an NPN bipolar transistor with an exposed base region.

In this case light striking the base replaces a voltage that would have been applied there. It

therefore amplifies variations in the amount of light striking it.

They are often more convenient than photodiodes because they have built in gain

(amplification). Photodarlingtons have two stages of gain, with net gains that can be greater

than 100,000. Phototransistors/photodarlingtons can therefore be coupled with a load resistor

to accommodate TTL level voltages for a wide range of light levels. They have become

popular due to their ease of use, low cost, TTL compatible signal levels, and suitability in

applications that have nano-watts of available optical power. These devices however, do have

some drawbacks when compared to photodiodes. The frequency bandwidth and linearity are

relatively limited and spectral response is restricted to between 350 and 1100 nm. In addition,

there are very large variations in sensitivity between individual devices and only a few

standard package options. [55, 59, 60, 61]

d. Photoconductive Sensors

A photoconductive sensor is a thick film semiconductor material whose electrical resistance

decreases with increasing incident light. These rugged assemblies can withstand hundreds of

volts and are typically smaller than a 6 mm diameter.

Photoconductive sensors based on cadmium sulphide (CdS) have sensitivity curves that

closely match the sensitivity of the human eye. They are useful in applications involving

human light perception such as headlight dimmers and intensity adjustments on information

displays. These sensors can be designed for measuring microwatts to milli-watts of optical

power and are inexpensive at high volume. These characteristics make CdS photoconductors

the sensor of choice in applications such as street light control and in the toy industry where

economy is a major consideration.

Photoconductors made from materials other than CdS such as lead telluride and mercury

cadmium telluride are also available. These materials have spectral sensitivities that cover the

range that photodiodes cannot, i.e. from 2-15 urn This longer wavelength sensitivity is very

important for infrared imaging cameras and for long wave instrumentation such as is used to

monitor carbon dioxide laser emission and atmospheric physics. These sensors tend to be

more expensive than both silicon photodiodes and CdS photoconductors. [55, 56, 57, 58]

88

e. Integrated Circuits

Incorporating additional electronics directly onto a semiconductor sensor chip makes it

possible to add additional functions to the sensor. An "optical IC" is an integrated circuit

comprising photodiode and electronic-signal-processing-circuits. Additional functions such as

current to voltage conversion and reference level sensing (e.g. a Schmitt trigger) can be

incorporated. Other optical ICs can provide signals highly immune to noise, such as a

current-to-frequency conversion.

The principal advantages of an optical IC are ease of use, small size and immunity to

electronic noise when compared to a photodiode with separate electronics. These devices are

much more expensive and offer a very limited active light sensing area. Custom tooling for

specific applications is also expensive. [55, 56, 57, 58]

f. Hybrids

The electronic functions of an optical IC can also be provided by a hybrid circuit that has

unpackaged IC components (die) attached to a substrate that also contains a photodiode. This

type of sensor combines the ease of use and immunity to electrical noise of an optical IC with

increased design flexibility and lower tooling costs. In addition, the sensitivity can easily be

increased with a larger photodiode active area without the added cost of a separate detector.

The primary disadvantages of a hybrid sensor are its cost and reliability. Cost can be several

times higher than the electronic assembly option discussed below and reliability testing is

difficult to quantize, so either limited reliability screening is implemented, or the piece cost

becomes high. [55, 56, 57, 58]

g. Sensor Electronic Assemblies

Combining any of the sensors listed above with printed circuit based electronic signal

processing creates sensor assemblies or "black boxes". The user defines specifications for

light input and the desired output response, the vendor then builds and tests the systems to

ensure that the specifications are met. An assembly can also include optical components such

as lenses and special wavelength filters. The user bolts the assembly into place and connects

it to the high-level electronics; there are no concerns about mismatch between the purchased

sensor and front-end amplifiers or diagnostic electronics. The system is relatively immune to

noise and is highly reliable due to the mature manufacturing technologies used.

89

Sensor electronic assemblies are easy to implement. Experienced vendors can often deliver

better reliability and lower cost products compared to in-house manufacturing. The main

disadvantage is less flexibility in making changes dynamically, but this is not an issue for a

responsive vendor or mature designs. [55]

h. Other Sensors

There are many other types of sensors. These include avalanche photodiodes, bolo-meters,

self-scanned arrays an photon drag detectors. A sensor vendor can provide information about

these devices and can discuss the physics and advantages of each detector technology.

i. Selecting a Sensor

Reviewing a few design aspects provides sufficient information for making an optimal choice

of detector for a given application.

Wavelength - An effective choice for detector can be made based on the range of

wavelengths of interest. These can be seen in table CI of Appendix C. For example detecting

wavelengths below 1100 nm, photoconductive cells or a silicon-based detector would be

appropriate. At wavelengths above 1100 nm, the costs and technology options are not

straightforward, and a detector vendor consultant should provide the most effective guidance.

Optical Power - A detector must be capable of providing an output at the given optical

power. Applications detecting wavelengths with at least microwatts of optical power in the

visible spectrum, in which the sensor is simply required to detect if light is present, can use

one of the least expensive and most rugged detectors available, the photoconductive cell.

Silicon phototransistors and photodarlingtons should be considered for applications that are

required to detect nano-watts of optical power within a 5 mm diameter spot at wavelengths

between 350 and 1100 nm.

Performance - For UV to near IR wavelengths, photodiodes offer the best overall

performance. They are only slightly more expensive than phototransistors, but their spectral

range is broader and they have lower noise, more uniform sensitivity and reproducibility, a

larger dynamic range, better linearity and more packaging options. Also, photodiodes can

routinely detect pico-watts of optical power. If phototransistors or photoconductive cells are

not appropriate for an application, more often than not a photodiode will afford the best

alternative.

[55, 56, 57, 58]

90

At least 90% of detector applications should be satisfied by using phototransistors,

photodarlingtons, photodiodes or photoconductive cells. When light levels are extremely

low, ambient electronic noise levels high, or there are limited space requirements, alternatives

such as optical ICs, hybrids or photomultipliers should be investigated.

j . Sensor Screen Detectors

The OP521 surface mount phototransistor was chosen as the detector. It is sensitive to light

wavelengths in the range 400 - 1100 nm, with the best spectral response at 900 nm [54].

There are 512 sensors spread over two detector screen PCBs (256 sensors each) covering 225

cm2 each. There is a 10 mm resolution (spacing) between sensors on both the vertical columns

and horizontal rows. The detector screen provides coordinates for check points in space.

These are used to correct position errors in the robots workspace. Errors are no longer

accumulated from one extremity to the next but are limited to the resolution of the combined

laser and sensor arrangement.

5.7 Buffers/Amplifiers

The need for buffers or amplifiers for sensor signal conditioning depends on the strength of

the incident sensor stimulant. As lasers were used, a large percentage of the output optical

power falls on the detector screen sensors, due to the coherent nature of laser light.

Furthermore the flat and tiny 1206 surface mount package of the OP521 phototransistor

allows more incident light to fall on it than previous versions of the detector screens, made by

the author, using phototransistors (LPT3133) in LED type packages. The 1206 package

diagonal length is smaller than the beam diameter of the laser. Hence there was no need for

signal conditioning via buffers or amplifiers.

5.8 Serialization

The outputs from each sensor are fed to the parallel inputs of a parallel to serial data

converter, the 74LS166 [62]. This was to serialize the data for transfer to a PC. There are 4

control lines (CLEAR, SHIFT/LOAD, CLOCK and CLOCK INHIBIT) and 10 data lines (1

serial input, 8 parallel inputs and 1 serial output) per data converter. There are 32 parallel-to-

serial-data-converters per detector assembly. The serial output line from each 74LS166 is fed

into the serial input line of the following 74LS166. The resulting configuration provides one

91

data output line for each detector assembly. The controller searches through the 64 bytes of

data for bits representing stimulated sensors. It then transfers the number of each sensor.

5.9 Power Supply

An ATX computer power supply was used to power all the electronics and servo motors. It

had to be modified, however, to work independently from a PC. The steps for converting

these power supplies can be viewed on many electronic hobbyist websites.

"How to convert a Computer ATX Power Supply to a Lab Power Supply" -

http://www.wikihow.com/Convert-a-Computer-ATX-Power-Supplv-to-a-Lab-Power-Supplv

5.10 Schematics and PCBs

Two detector screen sensor electronic assemblies were made, one for each of the vertical and

horizontal planes. Each of these electronic assemblies consists of a sensor screen and a

data/control-signal routing board.

The sensor electronic assemblies were made to be modular, so that a screen of any practical

size could be built. This is the single biggest advantage of this system. Each sensor module

plugs into each data/control-signal module via rail headers. The modules then plug into each

other (via wired link or a separate board with rail headers) and are arranged to form one large

detector screen. The modules were made such that the ICs and phototransistor components

were on either side of the modules outer layers after the boards were put together, so that

components could be changed easily if they malfunctioned. Each sensor module consists of

16 OP521 phototransistors. Each data/control-signal module consists of two 74LS166 ICs.

See Figures 36 - 39.

Each sensor assembly screen consists of 256 OP521 phototransistors and of 32 74LS166

parallel to serial data converters. There are 16 sensor modules per sensor screen assembly.

These 2 sensor electronic assemblies (1 vertical and 1 horizontal) then connect to a main

embedded controller. This is shown in Figure 40.

The main components of the controller board were the microcontroller, MAX232 level

shifter, BC547 transistors used to power the lasers and the TLC548CP analogue to digital

converters. See Figures 41-43.

92

http://www.wikihow.com/Convert-a-Computer-ATX-Power-Supplv-to-a-Lab-Power-Supplv

OP!

C E

OP521
OP2

C E

0PS21
OP3

C E

OP521
OP4

C E

OP521
OPS

C E

OP521
OPS

C E

OP521
OP7

C E

OP521
OPS

C E

2 DO

2 Dl

2 D2

2 D3
D?
D6
D5

2 D4 IM

2 D5

Jl

1
2

4
5
6
7
8
9

CON)

2 D6

2 D?

OP9

OP521
OPIO

C E

OP521
OP11

C E

OP521
OP12

OP521
OP13

C E

OP521
OP14

C E

OP52I
OP15

C E

OP521
OP16

C E

2 TO

2 D9

2 DH>

T i l
)10

2 Dll
D8

2 D12

2 D13

2 1)14

2 D15

J2

CONS

Figure 36 Schematic of sensor screen module

a. b.

Figure 37 PCB of sensor screen module

(Not to scale)

a. Top layer holding components
b. Bottom layer

93

: ! :*•« <•

11

-<

1 « t v n o ^ o o *

..

3 c

• '

a

..

5

> r - «e t i l

5 3 3

C
O

N

C
O

N

5

"I
x

a.

r i

•&

.«

a

• *

.S

.

s

B

J
u

^
0

P
a

b
| H

0
3

o
B<
X/i

•*
O
c*

2
O

^

M

o
C>

u i

ft
£

.

•«• n S • p r. z-

HP HP
Si %
u o

Figure 38 Schematic of data/control-signal module

DDnOODDDO
BDDDBBDDD

b. EBB

a. Top layer

Figure 39 PCB of data/control-signal module

(Not to scale)

b. Bottom layer which holds components

94

c. rrai
BDBOBBOBD

ill
_„lilSU, „

• *-Mi'-—T|;B; in o U I *—• [IjwJ jl
naiDDDoaa "'""-- j nnoooBBBo

PRalPRa tM
T ^ t ^

llMllilil
nnDBBBDIIB : D B B B B B B B B

orami WL
wffmB

I fj*mP ?« •* P» PJj| OPW*o ooa g aooJIla^eaoaBgnQjIlpmw^oqa.So^I

! s Is * * i : | " ° i H i H-i i i ! l CJil
BBBESBBBB—KSKm BOBBOBOOD— ĴHH: BBBBBBBBO—sMm BBBBOBBBB—<JHf

I f̂ tlBBj a«a 3B qB a J l O l ^ f ^

•r——onqnoroon *«(•»-™BBDO: BBJ BOBBBBOB I •.•-,-..- ncnnnD DBD ̂
K»«^eooo50oc>oirp«^eeBaaBaoj|:r*-apcoBBoeBoJl!^«*;ooBOBo03|

• n i f ; B : a u n a no a a a u mm' a a a- a * n a

s. s :i;s : 5 : : i : ; s S1-1 |s '• s o-Siils^sr^

cSScSsŝ 'Sl iintiiiffJM ..invJ&M iitit^'m

i s is s s s s si £ g i i is 1 • a ! • a a a o a 0 e • a • • a a. n • ^ D n a • n ^ B a D D a '; a a u « B «— u n 3

!:ii|;gJB iiiisigjli: Sissiŝ JB :± ji^M

Figure 40 Sensor electronic assembly

a. Detector screen, top layer - holds components
b. Detector screen, bottom layer
c. Data/control-signal board, top layer
d. Data/control-signal board, bottom layer - holds ICs

95

il
§_p . M i l

6 g g 8,

X-—*

S, * S
g_jji ft & * *

M s 9
I ! a 3

&

:M 8 I

M * 9
4 1 3 1

* . S8

-\3 V 1 ^

" ^

S

Si

ft

7 ^ - ^ -w-

g 4 *
•g- g' I,

f t 3' §

SG

r

^3Ea

j.

i a

v w *v ^ o Y

ttHHrSs

ss^.s.i.y * iii,KR

I 1 B I

;;,.,,,, * f s
l"B'i

oiiJ

I

Si;

:3 s4=s M :

vlU

Figure 41 Schematic of embedded controller

96

4=i

vcfrli v-

Cl-

C2+

JB>J»JC

vcc

GND

TIOUT

RilN

RIOUT

HEN *

T2GUT T2IN

R2IN R2QUT • -

MAX232 - Level Shifts

16 VCC_1

15 GND_t

14 ROJejC

13 TD..ihn_PC

12

Data&on;Co.rioi;cr

p~;~£;--

j " GND"'" IC5

-
Figure 42 Schematic of RS232 level shifter

b.

a.

Figure 43 Embedded controller PCB

(Not to scale)

Top layer b. Bottom layer

97

5.11 Chapter Summary

The electronic design is presented. The components and their implementations in this design

are described. It begins with a motivation for the choice of embedded microcontroller, the

ATmegal28. One processor is used in the design to acquire sensor data, process that data and

for servo motor control. Communication with the PC control software occurs via the

controller's USART and the PC's RS232 serial port. The Max232 facilitates voltage

conversion. The servo motors used are then discussed as well as the modification to read the

servo position, through 4 TLC548CP ADCs. A discussion of the detector screen components,

i.e. the lasers and light sensors, then follows. In total 24 lasers were used, 12 per detector

screen, and the OP521 phototransistor was used as the light sensor. There are 256

phototransistors per screen. They connect to 32 74LS166 parallel to serial data converters.

The output serial line from each converter feeds into the serial input line of the following

converter, and this allows 2 data lines to carry all the data to the microcontroller. The design

schematics and PCB diagrams are then illustrated.

98

6 Control Design

The control system design consists of 2 levels of control. At the macro stage, it consists of

tracking and control of the coordinates in 3D space in software. This is done by solving the

inverse kinematics for each position of the robots trajectory and obtaining angular values for

rotation of the upper legs. The trajectory of the robot is the path in 3D space which the end

effector reference coordinates must follow. This macro stage has 2 sources of position

feedback i.e. from the motor encoder relating angular position of the leg, and the direct end

effector sensor.

The micro stage consists of an embedded system controlling the position of each leg and the

manner in which it drives the legs to the desired angular position at maximal speed with a

control algorithm that inherently takes into account the system dynamics. There is only one

source of feedback which is the motor position potentiometer.

6.1 Macro Stage Control

The macro level control system problem for this PKM can be stated: from the current

position, which can be measured accurately via the combined sensor readings of the direct

end effector sensor system and the motor position potentiometers, follow a trajectory to the

point of interest in the workspace of the manipulator. The block diagram for this is shown in

Figure 44.

Desired Coordinates

(Xd.y<i.z<j) F<8> Coordinate Errors

Measured Coordinates

Plant
(Mechanical

System)
Movement

PWM
Generation

CONTROLLER

MACRO STAGE

Trajectory
correction

Embedded control
for angle variation

MICRO STAGE

Solve Inverse
Kinematics

Servo
Angles

Figure 44 Block diagram for PC software controller

99

6.2 Micro Stage Control

6.2.1 Characterising the system

The first step in designing the control system for the parallel robot scale model was to obtain

a transfer function for the compound leg. Each leg (comprising servo motor, upper leg, lower

leg and part of end effector) is treated as a plant. Inherently stored in this model are the

dynamics of the system.

Method

To obtain a transfer function in the S-Domain, first apply a known input to the system (x(t))

and measure the output. Then find a best fit curve to the output data obtained (y{t)), that is

find a mathematical function for the output (if not exact then best approximate) in the time

domain. Next take the Laplace transform of the output (Y(s)) and divide it by the Laplace

transform of the input (X(s)). To derive the transfer function of the "plant" in the time

domain (g(t)), take the inverse Laplace transform of G(s). This method provides a means of

plant estimation for linear time invariant (LTI) systems. To determine if a system is LTI apply

2 inputs and measure their outputs. Then apply an input to the system which is the sum of

those 2 previous inputs, provided that this value is within the operating range of the system,

and measure the output. If this output is the sum of the previous 2 outputs then the system is

LTI. This is the principle of superposition, and it applies to linear systems. [63]

x(t)

X(s)
G(s) = Y(s)/X(s)

y(t)

Y(s)

Figure 45 Typical plant model

Usuallyx(t) is a simple standard function whose Laplace transform is known. The most

common types are an impulse, step or ramp function. The corresponding output is called the

impulse, step or ramp response. Of the three functions named the easiest to generate is the

step input, and it was used to obtain the step response. It is generated by changing the input

from some initial value to some final value. The function generated is not ideal as there will

100

be some delay involved in reaching the final value, however for an acceptable approximation

these non ideal characteristics do not have to be modelled if the system time constants

(generally reactive time for mechanical components or chemical processes) is far larger. A

number of different sized steps were applied to the system, and their outputs measured. The

test to determine if the system was linear was carried out, and it was found that the system

satisfied the condition for linearity. This can be seen readily if one considers the steady state

(it was confirmed for the transient state) of the system, where each angle has a linear mapping

to a particular voltage. [63]

The mathematical model of the system is obtained at the maximum speed at which it can

operate. The embedded software controlling the mechanical system at this point changes the

input to the servos immediately when it receives control signals from the host PC control

software. That is, no digital controller is implemented to condition the "plant" input to

account for system dynamics. For the system in question, the input is a reference angle, which

is changed from an initial angle to a final angle. These angles were chosen so that the effect of

one upper leg (or motor) on another was minimal and moving vertically along the z-axis

ensures this. Furthermore pure vertical movements mean that the legs operate uniformly, that

is the angular change is the same for each leg. The step change in input therefore moves the

reference point on the end effector from (0,0,za) to (0,0,zA).

Positional feedback is measured via the servo potentiometer. The Cleverscope CS328 PC

oscilloscope was used to acquire the step response. This is shown in Figure 46. The noise

seen on the output is caused by an oscillation of the potentiometer wiper on its windings. The

modelling is accomplished by averaging the maximum and minimum values of the errors

around time tj, for all i in the data set.

Figure 46 Step response via display on Cleverscope Software

101

The data was then exported as text, and imported to MATLAB, where it was normalized, in

this context meaning that the output was shifted and scaled to start at 0 (with the time of the

step change in input occurring at 0 s) and end at 1. These operations on the data did not affect

the design of the control system. A control system designed for normalized data will work

with the actual system. This was confirmed in section 8.2.5 Figure 70 f.

3 . Data from Oscilloscope

Normalized Data, for a unit step

Time (s)

C. Normalized Data, time of step shifted to t = 0s

Figure 47 Display of data in MATLAB

a. Data from oscilloscope
b. Normalized Data
c. Normalized and step time shifted to t = 0s.

Once this was done an approximate mathematical function was fitted to the data (as it was not

possible to find an exact function to fit the data). The output data resembles the response of a

second order system. The time function of a general second order step response is given

by: y(t) - 1 - e~a'.cos(ax). Suitable values for a and 0) had to be found.

102

Best Approximation, Not Laplace Transformable

a.

Time (s)

Graph of Cos(w*t1'35)

Time (s)

Figure 48 Superposition of the best single function approximation

to the data

Best approximate single mathematical function to the data, not Laplace
transformable

1.35 > b. Graph of cos^ . f " 3)

The best fit curve for the data was given by the function:

y(t) = l-e-a'.cos(cotb) = \-e~23'.cos(33t135) ... (6.1)

This function however is not Laplace transformable. A graphical illustration is shown in

Figure 48 a.

The best fit Laplace transformable function was found to be:

y(t) = 1 - e"a ' .cos(^) = 1 - e"23'.cos(270 ... (6.2)

103

This is shown in Figure 49 a. The 3r oscillation of the approximation was made to fit the 3r

oscillation of the data curve, yielding values of 2.3 and 27 for a and 6) respectively. The first

2 peaks and troughs do not coincide with those of the data curve. They occur ahead of time

and have higher amplitude displacements. This means that the modelled system given by the

approximation is more reactive. A control system designed for this slightly more reactive

system would work with the real world system as this can be likened to designing for a worst

case situation. A comparison of the best fit approximation and the acceptable Laplace

transformable approximation is shown in Figure 49 b.

3 . Acceptable Approximation, Laplace Transformable

Figure 49 Plant approximations

a. Acceptable Laplace transformable approximation
b. Comparison of best approximation and the Laplace transformable

approximation

104

Plant Transfer Function

Take the Laplace transform of the output equation y(t), equation 6.2. [63]

Y(S) = 4 l - e - f l ' . c o s M]
1 s + a

s s2 +2as + (a2 +G)2)

s2 + las + (a2 + O)2) - s(s + a) 1 s2 + las + [a2 + a)2) - s2 - as j _

s2 +las + {a2 +a>2) 's s2 +las + (a2 + a)2) s

as + (a2+(Q2) J. 13s + (l32+172) 1

s2+las + (a2+co2)'s ' 5 2+2x2.35 + (2.32 + 272) 's

2.3^ + 734.29 1
—z .— ... (o.i)
s2 + 4.6s + 734.29 j

The input equation, the step function l(t)has the Laplace transform —, or X(s) = —. Hence
s s

the transfer function G(.s)is given by:

G(s) =
Y(s)

X(s)

1.3s + 734.29

_ s2 + 4.6s + 734.29
1

s

as + a2 + 0)2

1

s

s2 + las + a2 +Q)2

13s + 734.29

s 2 + 4.65 + 734.29

a = 2.3&6> = 27 ... (6.4)

6.2.2 Control System in S-Domain

For positional control in a robotic system, the second order response with overshoot and

oscillations is not acceptable as this means that the end effector overshoots its intended

position and has damped oscillations until it settles to that position. A first order response is

required, and a controller GC^sJis used to reshape the output ofG(s). A typical feedback

control system is described by Figure 50.

105

X(s) E(s)
x (t) ~ ^

V e(t)
GC(s) G(s)

Y(s)
y(t)

Figure 50 A typical feedback control system with controller GC(s)

and no sensor conditioning

The transfer function of this system is given by:

GFB(s) =
Y(s) GC(s).G(s)

X(s) " l + GC(s).G{s)
(6.5)

A time function for a first order step response is given b y l - e ' . Taking the Laplace

transform yields:

1 1 b 1
Y(s)= 4-*-*']=--

s s+b s+b s
(6.6)

Dividing by the Laplace transform of the input step, gives GFB{s):

GFB(s)
X(s)

b 1

s + b s
1
s

s + b
(6.7)

The parameter b is used to shape the response, the smaller the value ofb the slower the

response. To obtain GCys), equation 6.7 must be written in the form of equation 6.5.

106

GFB{s) =

b
_ s

s + b
(6.8)

1 +

This implies:

GC{s\G(s) =

&GC{s) =

!L . GC{s). 2 3 , + 734.29
s V s2+ 4.6s + 734.29

s2 + 4.6s + 734.29 fr

2.35 + 734.29 '5
(6.9)

Using the STEP function in MATLAB, a value for b was selected to gain an acceptable

output response. Using the 95% criterion, bor t can be designed when given the other.

1 - £f *' = 0.95

e~b' = 0.05

-bt = ln(0.05)

ln(0.05)
=> b =

-t
(6.10)

For b = 4 , it takes 0.752 s to reach 95% of its final value.

Step Response

Time (sec)

Figure 51 Comparison of modified and original step response of

model

6.2.3 Control System in the Z-Domain (Discrete time)

*(0 e(t) 4kT\ GDC(Z) , m{kT)
GP(s)

O *s.
Sampler

A/D

z+0.5 _h-
u(t)

1

s+1

><0

Digital Zero order
Controller Hold, D/A

Plant

Figure 52 Block diagram of a typical discrete time feedback control

system

The block diagram of Figure 52 represents a general form of a digital control system. The

error signal is sampled and digitized before being passed to the digital controller. The digital

controller modifies this error and feeds it to a hold circuit where the digital output, which is a

quantized discrete time signal, is turned into a quantized continuous time signal. This control

signal is then fed to the plant. [64, 65]

The PKM control system can be modelled similarly, even though the input signal is actually a

digital signal and the output is digitized before the summing joint, shown in Figure 53.

x{kT) e(kT)

- 9
m

GDM)

(kT)

J ^
u(t)

Gp(s)
y(t)

y(kT)

Figure 53 Block diagram of PKM servo motor controller

This block diagram may be modified as in Figure 54.

108

x(t) x(kT)

*€ G^Cz) •

m(£r

JV
)

«(0
— • <?,(*)

>'(0

Figure 54 Modified block diagram of PKM servo motor controller

This then reduces to the block diagram of Figure 52.

The digital controller is not the Z transform of the controller GC(s) in the S Domain. It has

to be derived separately and this will be shown in stages.

To get the feedback transfer function divide the Z transform of the output function by the Z

transform of the input function. The output function y(kT) {y[t) at discrete instants of time

kT } is given by 1 - e~bkT , the input function is the unit step \{kT). [64, 65]

(l-s-'Xl-*-"*-1)
Z\y{kT)\ = z\-e>"\ = j, V-« £ _ ^ = y(z)

z[x(kT)} = Z[l(kT)] = —?—{ = X{z)
\-z

Therefore « *) - M = E S E g g] . i z £ ^ L

\-z

(6.11)

*H
GFB(z)

Y(z)

Figure 55 Block diagram of feedback transfer function in the Z

domain

109

cci \c(\
The feedback transfer function GFB\z) = , (6.12), from the expansion of

1 + GC(z)G(z)

block GFB(z) as shown in Figure 55.

X(z) E(z)

• © — i GC(z)
M(z)

G(z)
Y(z)

Figure 56 Block Diagram of digital feedback control system

Equation (6.11) must be written in the form of equation (6.12).

x {l-e-bT)z-1

1 + x \-ehTz-x

x(l-e-bTz-1) = {l + x)(\-e-bT)z-1

x - xe~bTz-x = z"1 - e-bTz~l + xz'1 - xe~bTz'1

x - xz~x = z_1 - e'bTz'1

x{l-z~l) = (\-e-bT)z-x

x = GC{z)G{z) = (X-e~bTVX

\-z
(6.13)

G\z) Is the Z transfer function of the product of the zero order hold and the plant transfer

function. The zero order hold transfer function is given by
1 -ft 1 - i

1—e \—z

Hence Gyz) - Z
\-z

:G(S) = (l -Z" ')Z 'Mi

110

G(s)
To obtain the Z transform of ——, its inverse Laplace transform must first be found, that is a

s
function in t. [65]

G(s)
= I71 1 as + a + 0)

s s + las + a +0) 2 , ,3-
: (From equation (6.4))

1 as + a2 + Q)2

s s +2as + a + 0) 2 , , , 2 = 17
js + a)

s (s + of + 2 -co2
(Partial fraction expansion)

= 17 - I7l s + a
(s + af + a)2 _

= i(0- e .cos OX (6.14)

Therefore:

G{z) = Z\ ^ ^ . G (s) = {l-z-l}z G(s)

= (l-z- l) .z[\{t)-e-a .cos ox] = (l-z-').z[l{kT)-e-akT.cos OJkr]

= (l-z"') .[Z[l{kT)]- z[e-akT.cos akT]

= (i - z -)
1-e ~ . z .cosatf1

-2ar -2 1 - z-1 1 - 2e~a' .z"1. cos off + e~lal .z

Make the following substitutions

«! = e " .cos Q)T

m, = le a .cos off
-2aT

111

- (I- ," ') .
1 l-e " .z .cos coT

1-z"1 l-2e~a \z~'.cos6>r + <T .z 2aT -2

l (l-z"Xl-»,z-)
1 - mxz ' + m2z

 2

1 - myz ' + w2z
 2 - [l - z ' - «,z ' + «[Z~2

1 - w,z_1 + »?2z~2

(l + »,—/«[)z ' + (w2 - «[)z~

1 — mxz~x + w2z~2 (6.15)

fl— *~ur\z~1 1
From equation (6.13) the controller GC{z) is given by -̂ -^—.—r—r. Hence:

1-z G(z)

GC(z) • ('-e"r>" - L . 4 = * 3 1 — w,z + m2z

1 - z 1 G(z) 1 - Z - 1 (l + «!-m,)z '+ (/M 2 -« 1)z~

(l-e-' '^)z-1 (l-m,z~'+ffl2z-2)

(l - z - 1) 'z_1((l + «, - m J + ^ - n J z " 1)

(l-e-
bT)-m(l-e-bT)z'l+m2(l-e-bT)z-2

(l + « 1 -w,)(l -z" 1)+(m 2 -« 1)z" 1 (l -z" 1)

(l _ e-"ry_ ^ fr _ g-MJ -̂i + mz(, _ e-^r)z-2

(l + «j — m,)— (l + «j — m,)z~' + (AM2 - «,)z~' - (w2 - «,)z"

(l - e - f e r) -m,(l -e - f c r)z- 1 + W 2 (l - e - j ' r)z- 2

(l + Wj—m,)—(l + 2«, -ml—m2)z_1 - (m2 - w,)z~2
(6.16)

112

Make the following substitutions:

p0 = l-e-bT

px = m, (l - e~bT) = 2e~aT (l - e~bT). cos off

p2 =m2(\-e-bT) =e-2aT(l-e-bT)

q0=l + nl-ml = 1 +e~aT.cos 6)T-2e~aT.cos a>T = l -e" a r . cos coT

q{ = 1 + 2«[—mx-m2

= l + 2e-aT.cos OJT-2e'aT.cos OJT- e~2aT =l-e~2aT

q2 =m1-nl = e~2aT - e~a7\cos ofT

GC(z) = Po-P^+P^-2 ... (6.17)

6.2.4 Controller Implementation

There are 2 approaches to the controller implementation: these are direct and standard

programming. This controller was implemented using the standard programming approach,

which uses the minimum number of delay elements, and in this case it is 2. [65]

GC(z) = Po-P*l + P*-*

_ M(z) _ M{z) H(z) _ p0-pxz-l+p2z-

E{z) H{z)'E{z) 1 'q^-qxz-x-q2z ?

Where

M{z) = pQ - pxz~x + p2z

H{z) ^ 1
(6.18)

113

And:

H{z) = 1
E(Z) <lo-<llZ~l-<l2Z~

(6.19)

Equation (6.18) may be written as:

M(z) = p0H{z)- Plz'lH(z) + p2z~2H{z) (6.20)

Its block implementation is:

Py>
Gain 1

z-*H(z)

H(z)

Gain 2 J&
U(z)

w*£>
Unit Delay 1 Unit Delay2 Gain 3

Figure 57 Block implementation of equation (6.20)

Equation (6.19) may be written as:

E{z) = qQH{z)-q^H{z)-q2z-2H{z)

Rearranging to make qQH\z) the subject of the formula:

q0H(z) = E{z) + qlz-iH{z) + q2z-2H{z)

The block diagram of equation (6.21) is:

(6.21)

114

Gain 6

Figure 58 Block diagram implementation of equation (6.21)

Combining the block diagrams realizes the digital controller [65]:

gM*

Gain 4
H(z

_ft
E(z)

P^>

Gain 1 z~lU{z)

Unit Delay 1

Gain2 3P
2H(z)

Gain 5

Unit Delay2

- < ^

Gain 3

W(z)

Gain 6

Figure 59 Combined block diagram realizing discrete time

controller

6.3 Chapter Summary

The control system for the PKM was discussed and the method of obtaining the transfer

function of the motor (with leg masses attached) was described. The method was based on

standard linear control theory, and the system was proved to be linear. A mathematical

function was fitted to the data. The Laplace transforms and Z transforms were found, and the

control system was designed around these functions both in the S domain and the Z domain.

This was done to evaluate the digital controller against a continuous time controller.

Simulation results are shown in section 8.2.5.

115

7 Software

Various stages of this project required the use of different software packages. The 3 software

packages used were MATLAB, Visual Basic (VB) and CODEVISION CAVR. MATLAB

was used to simulate and resolve various unknown aspects of the mechanical design. Visual

Basic was used to code the user interface. CAVR was used to program the embedded

controllers.

7.1 MATLAB Software

7.1.1 Forward and Inverse Kinematics

M-files (MATLAB code) were written to solve both the forward and inverse kinematics.

These 2 functions formed the basis for all the code that followed. These functions were a

direct translation of the mathematical modelling used to solve the kinematics (sections 4.3.2

c, d and g). To test the functions and gauge whether they were coded correctly as well as

verify the solution of the kinematics, a check was performed which was as follows. Given

coordinates for the end effector, the inverse kinematics function was used to solve the angular

values for each of the upper legs. These angular values were then input to the forward

kinematics function, whose output is the end effector position. Both sets of coordinates were

the same for all coordinates tested and it verified the correctness of both functions in terms of

programming, mathematics, and the geometric model.

7.1.2 Workspace Envelope

The workspace envelope was visualised using the inverse kinematics as this made it easier to

graph the data using commands in MATLAB. For each set of XY coordinates in a rough

estimate of the workspace the minimum and maximum Z positions that could be reached were

found. These were calculated by moving inwards from positions that could not be reached.

The matrix data found were then combined and plotted using the SURF command, this was

described in section 4.3.2 j .

7.1.3 Vibration

The effects of oscillatory vibration of the actuators needed to be determined. This oscillation

is a sinusoidal function with magnitude a, frequency CO and phase shift ^ , i.e. asm(eot + 6).

When given an end effector position, the inverse kinematics function was used to solve for

116

the upper leg angles. The sinusoidal offset (with possibly different a, CO and 6) was then

added to these angles. At time tt the new angles are calculated (with offset added) and fed as

input to the forward kinematics which calculates the position in space of the end effector. The

spatial displacements of the end effector in X, Y and Z are then calculated when compared to

the original position without vibration. These spatial offsets are then plotted to see the effect

of the vibration. See section 8.2.2 for results.

7.1.4 Trajectory Simulation for Solid Edge (SE)

To create a graphical simulation in SE of the mechanical system moving on a trajectory, an

M-file was written to solve the inverse kinematics for points along that trajectory. Each set of

angular values found was time stamped and saved in a text file, 4 text files in all, one for each

leg. These text files were then loaded into SE, which uses a spline interpolator to fit curves to

these points in parts. A curve is drawn for every set of 4 consecutive points. Overlapping

curves are averaged to get a continuous smooth curve. This curve represents time stamped

positional information in step sizes that SE requires to create a smooth transition between

graphic illustrations of mechanical configuration. See section 8.2.4 for the mechanical

simulation.

The points along the designed trajectory had to have a small step size (spatial distance

between points). If the step size was too large the end effector tends to bob from position / to

position i+1. The reason for this lies in the structure of the machine. For a linear change in

position the change in angular values of the upper legs varies in some way that the spline

interpolation in SE cannot fit exactly.

7.2 Visual Basic (VB) Software

The user interface for the PKM consists of a few graphical controls and background

functions. The graphical window controls allow manual direction of the end effector in its 3D

(XYZ control) workspace and a visualisation of data received on its current position. As the

intention is to only control the position of the end effector, only the inverse kinematics

function in MATLAB was translated into VB code.

7.2.1 Graphical Control of End Effector

Two VB controls combined allow the user to control the 3 XYZ coordinates of the end

effector. A picture box control with cross hair and bull's eye allow the user to control the XY

117

coordinates. Left and right arrow keys allow the user to change the Z coordinate. Once the

user left clicks on the bull's eye it attaches to the mouse pointer and a second left click

releases the bull's eye. Once the bull's eye is attached to the mouse pointer a right click

invokes the inverse kinematics function and solves the upper leg angle values for the current

position selected in software. If these values are in the correct range it then converts these

angles to a value between 0 and 255, and transfers the data to the embedded controller.

7.2.2 Graphical Display of Data

Each sensor in space is represented by a coloured circle in one of 2 picture boxes, indicating

either vertical or horizontal screen data. The XYZ coordinates being controlled are also

indicated on these controls via cross hairs. The horizontal data screen has XY coordinate

information superimposed on it. The vertical data screen has the YZ coordinate information

superimposed on it. The picture boxes were properly scaled to represent the data in its correct

coordinates.

7.2.3 Transfer of Control Signals / Receiving Data

The control signals are start, stop and angular data for rotation. A value between 0-255

representing an angle is transferred via ASCII characters. For example the value 135 is sent as

49 (1), 51 (3), 53 (5) and 88 (X) which is a completion character.

The data received from the embedded controller indicates a reference number for a sensor that

is stimulated and a reference for the plane of data, i.e. vertical or horizontal. The lasers on the

end effector were arranged so that at most only one sensor is stimulated per screen. The

reference number for each sensor on each screen may therefore be represented by a single

byte of data (0-255) as there are 256 sensors per screen. When the data processing indicates

that no sensor has been hit, a separate signal is sent (e.g. an ASCII character for a letter).

The MSCOMM control in VB handles the process of sending and receiving data through the

RS232 serial communications port.

7.2.4 Calculation of Inverse Kinematics

This function is a direct translation of that used in MATLAB to solve the inverse kinematics

and make the angles available in VB.

118

7.2.5 Video Display

A video feed from a webcam was made available through a free open source software

component created by E. J. Bantz for Visual Basic programmers. It accesses the driver API

(application programming interface) and allows the software to display the video feed directly

in a control window.

7.2.6 Software Calibration

This routine calibrates the coordinate system, that is, it aligns the software coordinate system

with the real world system of the sensor screens. It is initiated with a key press, the Fl key

which has a value of 112. This is explained further in section 8.1.2.

•wmwiiff^
; M A N U A L SERVO CONTROL

Servo: 1 Servo; 2 S e r w

Start Capturing Servo feedback

Capture Servo f e udback Values

> I he Coordinates You have selected :x0 =3.05;y0 • -3.99; zO • -15.00

Solution Sets for leg:1

SS I (19.68;0.0O:-251) SS2 (0,03; OJOO; 0.77)
Angle: 345.00 Coordinates - (1958:0,00; -251)

'.-i.liiiiini Sets for ii;y:2
SSI - (0 00:-0JJ1; 0.49) SS2-(0.00; 19.88;-157)

Angle: 189.00 Coordinates- (0.00; -1958; -137)

Solution Sets for legS
SS1 - (-030;0.00;2.41) SS2 - (-16.99;0.00; -7,15)
Angle: 226.00 Coordinates - (-16.99; 0.00: -7.15)

Solution Sets for leg:4

SSI (0.00; 16.48;-752) SS2 (0.00:0.35;2.64)
Angle: 310.00 Coordinates - (0.00; 16.48; -7.62)

Servo Rotation Angles : (60.00:54J0O; 91 .00; 95.00)

Upper I eg 1 Angle:345.00 Knee Coordinates: (19.68; 0.00; -251)
Upper U g 2 Angle: 189.00 Knee Coordinates: (000; -19.88; -157)
Upper Leg 3 Angle:226.00 Knee Coordinates: (16 .99; 0.00; -7.15)
iUpjiBi I eg 4 Angle:310.00 Knee Coordinates: (0 * » ; 16.48; -752)

Figure 60 Screenshot of GUI PC controller

Figure 60 illustrates the PC controller GUI. The text box at the bottom left hand corner

displays the results of the inverse kinematics solution. The picture boxes in the middle with

the blue dots illustrate the sensors. The one on top represents the horizontal screen, with X

and Y axes. The one at the bottom represents the vertical screen, with Z and X axes.

Superimposed in both representations of the screens are the position cross hairs. This

119

indicates the alignment of the software coordinate system with real world positioning. The

picture box on the top right corner indicates the XY coordinate mouse control. The dashed

lines are the X and Y reference axes. The black solid lines with the blue BE represents the XY

coordinates the user wishes to move to. When controlling the robot the BE is attached to the

mouse pointer. The Z coordinate is controlled with the left and right arrow keys, which move

it up and down respectively. Vertical lines on the vertical detector screen representation

indicate constant Z values. The picture box at the bottom right displays video captured from a

webcam.

7.3 CAVR Embedded Software

7.3.1 Command Interpretation / Data Reception

Only 2 commands are received, for starting and stopping mechanical control.

Data received is for controlling the angles of the servos. The angle for each servo is indicated

by a character, followed by its digits in order of significance (i.e. hundreds, tens then units),

and lastly by a completion character. The value is then built up in the embedded system

software and used as the reference in the control algorithm.

7.3.2 Shift Register control

The 74LS166 function table in its datasheet illustrates how to control this IC and the

procedure used is outlined. Each 74LS166 must be cleared with a low applied to the CLEAR

pin. The CLOCK pin is enabled with a low to the CLOCK INHIBIT pin. To load parallel data

into the shift register, the SHIFT/LOAD line is pulled low and the register clocked (low to

high transition of pin CLOCK). The register is then set to shift data when the SHIFT/LOAD

line is pulled high. The data is now shifted through the output QH, bit at a time, most

significant bit (MSB) first with every clock signal. The register has to be clocked 8 times to

read the 8 bits of each register representing 8 sensor current states. As there are 32 registers

per detector screen, and as each serial output feeds into the serial input of the following

register (the last serial output is fed to the microcontroller), the registers are clocked 256

times (32x8).

7.3.3 Data processing

The data is processed simultaneously when it is read from the parallel to serial converters. All

the data from one detector screen is read on one line (as the output from each parallel to serial

120

converter is fed to the serial input of the following register). When a bit is read its value is

checked (is it 1 or 0), if it is 1 then that sensor, which is represented by the number of times

the registers have been clocked at this point, is a sensor that has been stimulated. All the

sensors are checked in this manner. All the reference values for those sensors with bit values

of 1 are then transferred to the host PC control system. If no sensors are stimulated then the

control system sends a character code indicating this.

7.3.4 Data Transfer

Data is transferred in the same way it is received i.e. via ASCII characters representing the

decimal digits. The data transferred are the reference numbers for the sensors that have been

stimulated. The angles measured by the ADC are only used by the control system. The control

system makes these measured angles follow the reference input angles.

7.3.5 ADC control

The procedure for setting up and reading the ADC is as follows. All 4 ADCs are read

simultaneously. Four temporary variables are used to store the data read from the ADCs, once

read the values are stored in the reference variables.

The clocking pin (I/OC) is set low. CS (Read as not chip select) is initially high. This allows

for the input voltage to be sampled continuously and digitized. This pin is now set low which

stops the conversion process and allows the data to be read. The data is shifted out serially

through the data output pin DO, from most significant bit to least significant bit. These bits

are read into the temporary variables, with each clock of pin I/OC. The ADCs are clocked 8

times to read the 8 bits. Once this is done the values are stored to the output feedback values

used in the control algorithm. CS is then set high to allow another conversion. The ADCs are

read every 2 ms.

7.3.6 PWM Generation

The timers were used without any pre-scaling, i.e. the frequency of the crystal resonator that

clocks the microcontroller was not divided. This resonator has a 16 MHz frequency or a

period of 0.0625 us (micro seconds). The 16 bit timer interrupt register increments every

clock cycle or every 0.0625 us for a clock with no pre-scaling. Two 16 bit timers were used to

generate the PWM signals.

121

There are 3 more 16 bit registers (compare interrupt registers A, B and C), the values of

which are constantly compared to the 16 bit timer interrupt register. This functionality was

built into the architecture of the microcontroller. There are 3 compare interrupts and when

there is a match with the value stored in either of the compare interrupt registers with the

value currently in the timer interrupt register, the corresponding compare interrupt is

executed.

The compare interrupts A and B of each timer generates the PWM signals for the servos.

Compare interrupt C is set at 2 ms, to reset the interrupt register. This 2 ms period represents

the time in which corrections are made in the control algorithm. As the rotation angles were

limited in value the full 2 ms period for a 180° rotation was not necessary.

7.3.7 Control Algorithm

The algorithm of the digital controller indicated by the digital control block diagram of Figure

59 is coded. It consists of 2 delays, and multiple additions and multiplications. A single

function was written to perform the control algorithm and is shown in Figure 61.

122

Start Controller
Algorithm for Servo i

Global Vector Variables & Multipliers

Ma[4] = [a1,a2. a3,a4];
Ra|4] = [b1, b2, b3, b4];
Ez[4] = [c1,c2, c3, c4];
Hz[4] = [d1. d2, d3, d4];

// Measured angles
// Reference Angles
// Error Vector

Hz1[4] = [e1, e2, e3, e4]; // First delay
Hz2[4] = [f1,f2, f3,f4];
Mz|4] = [g1,g2,g3,g4];
pO; p1; p2 ;
q0;q1;q2 ;

// Second delay
// Modified signal to servo
// Multipliers - set values
// Multipliers - set values

*• Ez{i) = Ra(i)-Ma(i);

Declare temp variable TEMP;
TEMP = Ez(i) + q1*Hz1(i) +q2*Hz(2);

Hz(i) = TEMP/qO;
Mz{i) = pO*Hz(i) - p1*Hz1(i) + Hz2(i);

Hz2(z) = Hz1 (i); // Second Delay
Hz1(i) = Hz(i); //First Delay

Determine PWM value
for Servo i
From Mz(i)

i = i+1;

If i=5 then reset i
T o 1 ;

Figure 61 Function of embedded controller

7.4 Chapter Summary

This chapter describes how 3 software development languages were used in this Mechatronics

project. VB was used to code and design the PC controller GUI. MATLAB was used to

simulate and solve many of the mechanical issues related to the mechanical design, i.e.

kinematics, vibration, SE Simulation and workspace. Once the IK solution was verified, it

was then written in VB. CAVR, a C compiler for ATMEL microchips was used to code the

program for the embedded controller, which included data acquisition, processing and control

of motors.

123

8 Calibration, Simulation Results, Prototyping and

Performance Tests

8.1 Calibration

The calibration of the system has 2 parts: the mechanical positioning calibration of the legs

and the software coordinate calibration.

8.1.1 Mechanical Calibration

The mechanical calibration ensures that all legs rotate the same angular degrees for each

reference angle input to the system. The range of motion was limited, however this does not

infringe on the workspace specification mentioned in section 1.5.1.

The total angular range of motion was limited to 140°.The maximum actuation angle is set at

75° from the positive vertical in the clockwise direction (see Figure 23 for a depiction of the

actuator reference for rotation). The minimum actuation angle is set at 140° from that

maximum (clockwise) or 215° from the vertical, shown in Figures 62. The leg rotates from

215° to 75° counter clockwise.

Figure 62 Upper leg indicating rotation limits

a. 3D View of upper leg alignment tool
b. Front view of upper leg alignment tool
c. Front view of alignment tool indicating rotation limits

124

At this minimum position, for each leg, the voltage read from the analogue feedback

potentiometer was set as the negative reference to the corresponding servo ADC. Similarly

the voltage at the maximum position was read for each servo and set as the positive reference

to that servo's ADC. Each ADC converts a voltage representing an angle in the range of 0° to

140°, to an 8 bit digital value. The angular positioning resolution achieved was

140°
= 0.55° (see section 8.2.1 for the effect of this quantisation). A mechanical alignment

tool was made to ensure that the minimum and maximum angles were uniform for all legs.

This tool was laser cut from 3 mm Perspex, and is shown in Figure 62 a-c.

Another important aspect of the mechanical calibration was that of aligning the detector

screens. The mechanical designs in SE were accurate and the screens were aligned in this

CAD package. The relative displacements from the edges of the mechanical frame were then

measured and these measurements were used to position the real screens on the mechanical

rig. In this manner each column of detectors on the horizontal screen was aligned with the

column detectors on the vertical screen.

8.1.2 Software Calibration

The software calibration aligns the real world coordinate system with the software coordinate

system. Errors may exist with the alignment of the screens and these have to be accounted for.

These are relative errors that are fixed in value, and are corrected by either adding or

subtracting the offset. To find the offset the control software moves the end effector to 4

points in space where it expects to be sensed by both the vertical and horizontal screen. For

each set of coordinates (reference coordinates) if no sensor is found, the control software

enters a horizontal spiralling routine to find a horizontal sensor. The y coordinate of the

vertical detector screen should be the same if the detector screens are aligned properly. Once

the horizontal sensor is found it moves the end effector up and down until it finds the vertical

sensor for that coordinate set. If it does not find a vertical sensor, then the screens are not

aligned properly and this must be corrected. If it finds the corresponding sensor (real world

measured coordinates), the errors between the reference coordinates and the measured

coordinates are then set as the error offsets in X, Y and Z. This procedure is followed for each

of the 4 coordinate sets. The errors should read the same if not there is a problem with

alignment once again.

This procedure aligns the reference system with the real physical system. It does not affect,

restrict or reduce the motion of the end effector in anyway.

125

8.2 Simulation Results

Various aspects of the design were simulated in 2 software packages. The mechanical design

was realized in SE, a CAD package. Once the design was complete it was used to simulate

and provide a 3D visualization of the movement of the modelled PKM.

MATLAB was used to solve the kinematics which was the basis for simulating and

determining other aspects of the design. SIMULINK, a simulation add-on to MATLAB, was

used to design the digital controller and simulate the design in both the S and Z domains.

8.2.1 Forward and Inverse Kinematics Solver

A number of function m-files were written to solve the kinematics of the machine. The

forward kinematics solutions were used to verify the inverse kinematics solutions and vice

versa. When the inverse kinematics function is run in MATLAB the user is prompted for a set

of end effector coordinates. The coordinates (- 7,6,- 20) were input and the results follow:

MENU ...

1. Inverse Kinematics (with Forward Kinematics Check)

2. Forward Kinematics (with Inverse Kinematics Check)

3. Vibration Model ... 1

Enter end effector coordinates ...

x Range:-7.5 to 7.5 y Range:-7.5 to 7.5 z Range:-22 to-12

xO :-7

yO : 6

zO : -20

The coordinates you have selected ... [-7.0000 6.0000 -20.0000]

Anglel = 275.7000 [xl yl zl] = [10.9932 0.0000 -9.9506]

Angle2 = 261.6058 [x2 y2 z2] = [0.0000 -11.4598 -9.8929]

Angle3 = 208.7283 [x3 y3 z3] = [-18.7691 0.0000 -4.8066]

126

Angle4 = 326.4105 [x4 y4 z4] = [0.0000 18.3302 -5.5324]

Checking solution with Forward Kinematics...

[Anglel Angle2 Angle3 Angle4] = [275.7000 261.6058 208.7283 326.4105]

Anglel = 275.7000 [x l y l z l] = [10.9932 0.0000 -9.9506]

Angle2 = 261.6058 [x2 y2 z2] = [0.0000 -11.4598 -9.8929]

Angle3 = 208.7283 [x3 y3 z3] = [-18.7691 0.0000 -4.8066]

Angle4 = 326.4105 [x4 y4 z4] = [0.0000 18.3302 -5.5324]

Convert to Servo Rotation Angles....

[Anglel Angle2 Angle3 Angle4] = [129.3000 126.6058 73.7283 78.5895]

The angular rotation values are with respect to the coordinate system. These values have to be

converted to byte values that can be sent to the servo motors. Note that the servos have a 140°

degree range of motion due to the mechanical calibration apparatus, mentioned in section

8.1.1. The effect of the quantisation of the ADC leads to uncertainty in the actual angular

positions. The angular quantization steps are 0.55°, hence the maximum quantisation error is

0.55°
= 0.275°. To gauge the effect of this quantisation error, the angles obtained above

were then quantised and input to the forward kinematics to see the relative changes in the end

effector coordinates X, Y and Z. The angles were modified with the function

Angle i
X 0.275. The floor function removes the remainder from division so

is an integer number. The servo rotation angles when modified are 129.2500,
0.275

126.5000, 73.7000 and 78.3750. Applying these angles to the forward kinematics yields:

MENU ...

1. Inverse Kinematics (with Forward Kinematics Check)

2. Forward Kinematics (with Inverse Kinematics Check)

3. Vibration Model ... 2

127

Enter 4 actuation Angles ... Servo Angles Range: 30 -170 Degrees (140 Degree Range)

Servo Angle 1 : 129.2500

Servo Angle 2 : 126.5000

Servo Angle 3 : 73.7000

Servo Angle 4 : 78.3750

Convert to Coordinate System Angles....

[Anglel Angle2 Angle3 Angle4] = [275.7500 261.5000 208.7000 326.6250]

[xO yO zO] = [-6.9946 6.0139 -19.9864]

Anglel = 275.7500 [xl yl zl] = [11.0019 0.0000 -9.9497]

Angle2 = 261.5000 [x2 y2 z2] = [0.0000 -11.4781 -9.8902]

Angle3 = 208.7000 [x3 y3 z3] = [-18.7715 0.0000 -4.8022]

Angle4 = 326.6250 [x4 y4 z4] = [0.0000 18.3509 -5.5012]

Checking solution with Inverse Kinematics...

Anglel = 275.7500

Angle2 = 261.6081

Angle3 = 208.7000

Angle4 = 326.5304

[xl yl zl] = [11.0019 0.0000 -9.9497]

[x2 y2 z2] = [0.0000 -11.4594 -9.8929]

[X3y3z3] = [-18.7715 0.0000 -4.8022]

[x4 y4 z4] = [0.0000 18.3418 -5.5149]

[xO yO zO] = [-6.9946 6.0139 -19.9864]

From this it can be seen that the errors in position are:

Ax = -6.9946-(-7) = 0.0054 cm

Ay = 6.0139-6 = 0.0139 cm

Az = -19.9864-(-20) = 0.0136 cm

The uncertainty in position is small in relation to the span of motion. To determine the

maximum effect of this error the end effector is moved vertically. The coordinates

(0,0,-20)are investigated. The rotation angles come out as 90.9622, 90.9622, 90.9622 and

128

90.9622. Quantizing these angles yields values of 90.7500, 90.7500, 90.7500 and 90.7500,

which are input to the forward kinematics and yield end effector coordinates of

(-0.0000,-0.0000,-19.9482). The X and Y errors are insignificant. The error in the Z

coordinate is Az = -19 .9482- (-20) = 0.0518 cm. This was repeated for various end

effector coordinates and the results were similar. So from a mathematical standpoint using an

8 bit ADC over a range of 140° produces uncertainty errors that are far less that the

specifications mentioned in section 1.5.1 for a perfect geometric model of the system.

The forward and inverse kinematics software solutions verify each other and proved that the

mathematical solutions behind them are sound. This was crucial as these solutions lay the

groundwork for other simulations that follow.

8.2.2 Vibration

The frame of the PKM significantly outweighs the moving parts of the machine. Any effect

on the frame from the motors and during motion of the end effector cannot be detected

visually. Vibration on the end effector results from oscillation of the upper arms of the

machine. Another m-file was written to gauge the effect of a sinusoidal oscillation on each

leg. This function was explained in section 7.1.3. The PWM signals are synchronized so the

frequency of oscillation of each upper leg is the same and there is no phase shift. As each

PWM signal is refreshed every 2 ms the frequency is 500 Hz. A vibration with a 1 degree

amplitude is simulated and the results shown below. Figures 63 and 64 display the results.

MENU ...

1. Inverse Kinematics (with Forward Kinematics Check)

2. Forward Kinematics (with Inverse Kinematics Check)

3. Vibration Model ... 3

Frequency (Hz) 500.0000

Amplitude (Degrees): 1.0000

Simulation Time (S) : 0.0040

Enter end effector coordinates ...

x Range:-7.5 to 7.5 y Range:-7.5 to 7.5 z Range:-22 to-12

129

xO : 0

yO :0

zO : -20

The coordinates you have selected ... [0.0000 0.0000 -20.0000]

Anglel = 314.0378

Angle2 = 225.9622

Angle3 = 225.9622

Angle4 = 314.0378

[x l y l z l] = [16.9513 0.0000 -7.1888]

[x2 y2 z2] = [0.0000 -16.9513 -7.1888]

[x3 y3 z3] = [-16.9513 0.0000 -7.1888]

[x4 y4 z4] = [0.0000 16.9513 -7.1888]

Convert to Servo Rotation Angles....

[Anglel Angle2 Angle3 Angle4] = [90.9622 90.9622 90.9622 90.9622]

[x0_min xOjnax] = [-0.2497405356 0.2497405356]

xO_max - xO_min = 0.4994810712

[yOjnin yO_max] = [-0.2497405356 0.2497405356]

yOjnax - yOjnin = 0.4994810712

[zO_min z0_max] = [-20.0000001000 -19.9963264968]

zO max - zO min = 0.0036736032

From the simulation it can be seen that the displacement between the minimum and maximum

positions along the X and Y axes are about 5 mm. That displacement along the Z axis is

negligible. Figure 64 indicates that the X0 and Y0 displacements are in phase which implies a

diagonal movement with total displacement of 7.07 mm (5V2). Interestingly the Z

displacement, although negligible in magnitude, has a frequency twice that of the oscillation

at the legs. From this it can be seen that it is possible to reduce components of vibration error

in PKMs, unlike serial machines which are always additive. This is done by change of phase

in vibration from each leg or refreshing the PWM signal to each leg at different times.

130

Servo 1 Vibration Servo 2 Vibration

92

* 915

W

/ \ '~7T\

0 0 5

d.

1.
3 91

90

1 15 2 ?5
Tinrse {s>

Servo 4 Vibration

\ l / ~
35 *

do" 3

0 0 6 1 15 2 2 5 3 3.5 4

Figure 63 PKM Legs angular variations at position (0, 0, - 20),

with a 1 degree, 500 Hz vibration

a. Servo 1 vibration
c. Servo 3 vibration

b. Servo 2 vibration
d. Servo 4 vibration

X0 Vibration

f 01

-02

b. YO Vibration

X J / i i "v^ i —" i i i ^ i > ^

Z0 Vibration

a.

C.

Figure 64

x0 Vibration

z0 Vibration

End effector coordinate variation with upper leg

oscillations of 1 degree and 500 Hz

b. y0 Vibration

8.2.3 Workspace envelope

The workspace envelope was calculated and its method was discussed in section 4.3.2 j . A

graphical illustration is also displayed in said section.

8.2.4 Trajectory calculation for Solid Edge (SE)

In SE there is a motion simulator which can accept data for the positioning of mechanical

elements to obtain a graphical mechanical simulation. The mechanical simulation was

important to determine if the end effector would remain completely horizontal during all parts

of its motion. An m-file was coded in MATLAB to obtain this positioning data for SE, i.e.

time stamped angular values for the upper legs, which is discussed in section 7.1.4. When the

positions of the upper legs are determined the kinematics solver in SE renders the other

moving elements, which have dependencies on the upper legs, in their correct positions. This

is due to structural relationships made during the assembly.

Figure 65 (a, b and c) shows that the end effector is completely horizontal at one position in

the designed trajectory. The video simulation confirmed that the end effector did not twist or

tilt on any of the X, Y or Z axes. This ensures that the end effector will always be parallel to

the base frame and that the lasers will always be perpendicular to the sensor screens.

Figure 65 Mechanical simulation of PKM

a. Front view
b. Side view
c. Bottom view

132

The XYZ coordinates for each point in the designed trajectory was plotted against time as

well the solution to the inverse kinematics (upper leg angles) for the 23 second simulation,

which are shown in Figures 66 and 67.

133

a.

5 2

i o
1 - 2

Xn Coordinate

Y0 Coordinate

Zo Coordinate

Time (s)
20

Figure 66 Plot of the XYZ coordinates of the designed mechanical

simulation trajectory

a.

b.

c.

x0 Coordinate

y0 Coordinate

z0 Coordinate

134

a. Angle 1
120

100

80

40

- *

0

b.

100

80

60

10

(

120

100

an

BO

40

(

"i i f\
v/wU

C.

N^VJF"Y

>
d.

100

80

60

40

. t
M

V

: : : : : (: : • :

- * f - : • / "•

V / V ^ / :
, . . , . . v p . . , . . , ,.

5

• ^ - • " V -
«—-i—t-- 4—4^">*4** t "4

- - 's^-*.
5

• • / - i - > - \ . •

/ : : \ .
/ - - • • • \

: : : : : ! : : : : : : :
"Y /

V ; , 4. .. J

10

Angle 2

^ H ' V ' :

HHStSJS
10

Angle 3

• i - - j ^ - v - •:••-: ..->..}... j.. i.. i--i>i«
•tjfl'-i—s—i—:—t—r : • • : • • : • • ? • • <

10

Angle 4
: v•;::; \ % y"-*^

.;-:: f̂:,.,,
j±iffi ;;;;!:: ;

• • • ' ' ' • • • • • ' • • • • •

: j ! j :

: „ : ; ' N^_

- - : - - - : - • - J - - - : • - - : — ^ - - j - .

15

tj/mn
/^: . - ; . : ,

15

**£*?%£% '- '

15

V : : ; -
fe^-

: : • : ! : : :

,
20

„ A
fe:!::|im
\L^:r

20

L | . . ; . . ; . . : . . : . . - . I . - L .

20

• JA t tn i
i&i±*
™SH : : • . . i --. :

hh
Izi ~

;..;.-

•r--t--

A
' \

Figure 67

Time (s)

Upper leg rotation angles (0° - 180°) for the designed

trajectory

a.
c.

Angle 1
Angle 3

b.
d.

Angle 2
Angle 4

8.2.5 Control System Simulation

The control system designed was intended to reduce the real world physical response of the

motor leg combination of the PKM, which is approximately second order, to a first order

system. This reason being to prevent any overshoot of the end effector the first time it reaches

its intended position. The overshoot in position of the end effector can be seen at the leg with

some oscillation of the upper leg. This can be measured at the feedback potentiometer of the

servo motor (sections 5.4 and 6.2.1).

The controller was simulated in both the S (continuous) and Z (discrete time) domains and the

block diagram is shown in Figure 68. The data is sent to the MATLAB workspace and plotted

from there.

135

OTQ
C

n
©\ oc

s
o
r>
rr
a
S*

ore
"!

Er. B
ai m

Q s
i f rs
re o

re

i m
Step

rs
O

s o

3
n
a a
tsJ

OS

- € >

-0

-*€>

Stepjnput

To Workspace

4s2+18.4s+2937 2

2.3s2+734 29s

2.3S+734.29

s2+4.6s+734.29

Transfer Fcn2 Transfer Fcn3

S out

To Workspacel

*Q

0.008-0.0159z-t«O-0079264z:2

0.006-0.0091z-'l+0.0031r2 JV
Discrete Filters

Zero-Order
HolrJ2

23S+73429

S2+4.6s+734„29

Transfer Fcn7

8-1S.9r1+7.93z-2

6-9z-1+3z-2 JV
Discrete Fiften

Zero-Order
HokH

23S+734.29

s2+4.6s+734.29

Transfer Fcn1

Clock

Time

To Workspace6

Z1 out

To Workspace3

> DifM

To Workspace2

+o

Scope

*• Diff_2

To Workspace4

Z2 out

To Workspaces

The output of the continuous time (S domain) closed loop system is a first order response, this

is seen in Figure 69 a. The output of the first closed loop discrete time system, i.e. with

discrete time controller Zl, follows in Figure 69 b. Due to the discretizing nature of this

controller it does not follow the S controller exactly and indentations can be seen on the

output as it reaches steady state. The difference between the outputs of the systems with each

controller at each instant is shown in Figure 69 c. The Zl controller overcompensates; at each

instant its value is slightly larger than that of the S controller. The coefficients of Zl were

multiplied by 1000 and some were rounded (to ease embedded calculation) to obtain

controller Z2. One major problem with digital controllers is coefficient sensitivity. Changing

the coefficients too much, to aid calculation, may make the controller unstable. The output of

the closed loop system with controller Z2 illustrates this in Figure 69 d. The indentations are

more distinct but the controller remains stable. The difference between the outputs of the

systems with controllers Z2 and S is shown in Figure 69 e. Z2 is used in the embedded

controller, even though it is not ideal so that the coefficients can be handled by the embedded

system. The steady state time (time to reach steady state) is 1.25 s, and there is no severe

oscillation that would be noticed. The digital controller was then simulated with the step

conditions of the actual system, with initial value of 1.05 and final value of 1.375 at a step

time of 4 s, as shown in Figure 46. The results are depicted in Figure 69 f.

Figure 69 Simulation results of controllers in SIMULINK

a. S Domain Controller - Continuous time
b. Zl Controller - Discrete time, with exact coefficients
c. Difference between Zl controller and S controller outputs
d. Z2 Controller - Discrete time, with rounded coefficients
e. Difference between Z2 controller and S controller outputs
f. Z2 Controller step response at conditions of measurement (section 6.2.1)

137

3 . S Domain Controller - Continuous Time

0.6

a 0.4

0.2

-0.2
0.5 1.5

Time (s)
2.5

b. Z1 Controller - Discrete Time,
with exact coefficients

ra 08
to
Q

f
o
13

0.6

£ 0.4

0.2

-0.2
0 5 1.5

Time (s)
2.5

138

0.01

-0.01

e

I -0 02h
I
Q
o -0.03

W -0.04
5

-0.05

-0.06

-0.07

Difference between Z1-Controller and
S-Controller outputs

0.5 1.5
Time (s)

2.5

d.

I

0.8

0.6

S 0.4 -

0.2 -

-0.2

Z2 Controller - Discrete Time,
with rounded coefficients

- : *-*jsf ^-^ : : 1

0.5 1.5
Time js)

2.5

139

Q Difference between Z2-Controller (rounded
coefficients) and S-Controller outputs

0.02

-0.02

-0.04

-0.06 -

-0.08

-0 1

-012
05 1.5

Time (s)
2.5

•f Z2 Domain Controller - At conditions
of measurement (section 6.2.1)

1.4

1.35

1.3

•§ 1.25
Q
"5
§ 1.2
O

I 1.15

1.1 -

1.05

I I I

/[j
7
/ I

/

/

f I
i i i

4.5 5.5
Time (s)

6.5

140

8.3 Prototype

The mechanical structure was built without difficulty. A problem that was noticed was that

the upper legs tend to loosen up at the servo after some time. The design could be improved

with a bearing type mechanism providing reinforcement. When the PCBs were first designed

the main controller board had some errors on it, these were corrected as shown in Figure 70 j ,

k with manual bypass wiring. The electronic designs in chapter 5 have these corrections taken

into account. A few images of the actual PKM and electronic hardware are presented.

Figure 70 Illustrations of complete PKM and electronic hardware

a. Complete machine with controller and detector screens
b. Rear view of end effector and vertical detector electronic assembly
c. Horizontal detector electronic assembly and mechanical calibration tool
d. Top view showing controller and power supply
e. Controller board wired up to peripherals
f. Detector screen, front view
g. Detector screen, rear view
h. Signal routing board with components, front view
i. Signal routing board, rear view
j . Controller board with components, top view
k. Controller board, bottom view with corrections

a.
141

142

« • • • • i

" : * . . * • - , M.

. . . .
' . ;

" , ' . * ' • • • • :

. . .

• •

I
I I

f.

143

8.4 Performance Tests and Results

The performance tests carried out were to determine accuracy, precision, and repeatability of

positioning as well as repeatability of sensor stimulation.

144

8.4.1 Step Response after Implementation of Controller

The step response of the system was tested after the controller was implemented to verify the

controller design. The PC oscilloscope (Cleverscope) was used once again to obtain the data.

The probe was attached to the shaft potentiometer on one of the servos, and the step was

initialised as had been done to acquire the initial data.

Figure 71 Step response after implementation of digital controller

Although the oscilloscope picks up noise on the probe, it is clear that the controller has

reduced the response of the system to an approximate first order curve. The noise is due

mainly to the potentiometer as its wiper moves across the windings.

8.4.2 Mechanical (Positioning)

Accuracy is the degree of conformity of a measured or calculated quantity to its actual or true

value. Accuracy is closely related to precision, the degree to which further measurements or

calculations will show the same or similar results. Accuracy is defined as the maximum

deviation from the theoretical, calculated or intended value, whereas precision is the

maximum deviation from the mean value. The accuracy also gives an indication of

repeatability which is the extent to which a similar result is attained. Due to the unavailability

of a 3D metrology system, a method was devised to estimate the accuracy of the PKM. This

method, although rudimentary, does provide some indication of the errors in positioning.

145

Method

To get the accuracy or repeatability of the positioning systems, the electronic screens were

removed and replaced with cardboard backings sporting a printout of the screens. These

indicated exactly the positions of the sensors and facilitated tracking of the laser from above

as well as the marking of positions and measuring of distances. The position offset was taken

to be the distance from the centre of the laser point to the centre of the OP521 footprint. 15

Readings were taken for each of 3 coordinate sets (different X, Y and Z coordinates). Taking

more measurements wouldn't offer much value based on the accuracy of the method. The

measurements are made to the nearest mm. The coordinate sets chosen were (0, 0, — 20);

(-7, - 7 , - 1 8) and (5, - 5 , - 1 6) . The tables of results are located in Appendix D. The

results are shown graphically in Figure 72 (a, b and c).

Figure 72 Positional accuracy results

a. Error in X Coordinates
b. Error in Y Coordinates
c. Error in Z Coordinates

3 _ Error irt X coordinates

146

b. Error in Y coordinates

3

2

— 1
E

£ o
> •

a -1
•
Q „

1 | 2 j 3 '[4 > 5 l 1 '[m l m]' f \ 1 0 \ 1 1 / 1 2 / 13 i 14 / l5
A- y3

Attempt

c. Error in Z coordinates

E
E
•—<
N
* -1
Q

-2

-3

: $

/ i
13...

H i -

A.J ($

.̂

6

A.

8 9 W^ 11/ 12\

M \-wk&t"

...13./..1.4.. 15

Attempt

The axial accuracy of the positioning is 2 mm, 3 mm and 3 mm for the X, Y and Z axes. This

is the maximum measured deviation along the axis. The spatial accuracy is about 4 mm, this

is the magnitude of the vector from the intended position to the actual position (occurs at data

set 14, for coordinate set 3). The axial mean of the absolute values of the errors are 1.3 mm,

1.3 mm and 1.5 mm (X, Y and Z respectively). The spatial mean is therefore 2.4 mm. From

the definition the precision (beginning of this section) is 1.6 mm (4 - 2.4). These values were

obtained from mathematical functions. As the smallest measurement discemable has mm

resolution these values are applied to a ceiling function yielding 2mm for each of the axial

mean errors, 3 mm for the spatial mean and 2 mm for the precision.

The major factors involved in the positioning inaccuracy are due to hysteresis as well as

backlash in the servo gearing system, and the ball socket joints.

147

Hysteresis is the difference in reading or positioning when the physical quantity being

investigated is approached from different directions. It is due to mechanical friction, elastic

deformation and thermal effects. It is a property of systems (usually physical systems) that do

not instantly follow the forces applied to them, but react slowly, or do not return completely

to their original state.

Backlash is the play or loose motion in an instrument due to the clearance existing between

mechanically contacting parts. In gearing systems, it is the clearance between two gears, the

amount by which the width of a tooth space exceeds the thickness of the engaging tooth on

the pitch circles. It also occurs in lead screws, and is the amount of free movement between a

screw and nut. Backlash cannot be eliminated completely as it is required to allow for

lubrication, manufacturing errors, deflection under load and differential expansion between

the gears and the housing.

Other errors due to inaccurate machining of parts and their placement also factor into the

problem, but they are not nearly as significant as those from hysteresis and backlash.

Most manufacturers of geared motors do provide some indication of these errors in their

datasheets. The hysteresis and backlash due to the ball and socket joints which were actually

modified from ball in socket bearings are not quantifiable. In general this problem exists for

all delta type mechanisms that use ball in socket joints. The problem can be alleviated with

the use of compliant joints which was mentioned in section 2.2. Compliant joints are difficult

to manufacture and are expensive. It was not possible to make them on this scale.

8.4.3 Electronic (Sensing) Repeatability

The repeatability measurement for the detector screen was done within the positioning

capabilities of the rig. The PKM was commanded to sensor coordinate positions at Z

displacements of 14 cm, 17 cm and 20 cm, and 25 attempts were made for each of 16 sensors.

The repeatability for each distance is taken as the average of all the readings in the group

measurement, and expressed as a percentage of the 25 attempts. They are 99.25%, 98.75%

and 98% respectively. The repeatability decreases mainly due to the fact that the further away

the laser, the more difficult it is to stabilize and hold a position. A stiffer machine with

vibration damping should have no such problem.

148

Sensor System Repeatability

25.5

At 14 cm
At 17 cm

—4—At 20 cm

-i 1 1 1 1 1 1 1 1 1 1-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sensor Number

Figure 73 Electronic sensor system repeatability

8.5 Chapter Summary

This chapter starts with a description of the procedure and tools used to calibrate the PKM in

both software and hardware. This ensures that the system is aligned with the coordinate

system in the control software. It then presents all the simulation data. The forward and

inverse kinematics functions were tested against and validated each other. The workspace was

visualised and some vibration effects from the motors on the end effector illustrated. The

trajectory designed was simulated in MATLAB and the data imported to SE. SE verified that

the end effector would remain perfectly horizontal throughout its trajectory (which consisted

of all motions the machine would have to make). A video was then created. The controller

was designed and tested in SIMULINK. The output of the S controller is first order as this

was designed. The Z controller's implementation for both exact and rounded coefficients

were tested against the S controller. Both discrete time controllers produced less than perfect

responses but were acceptable for this scaled model. Pictures of the real machine were then

shown including all PCBs. The controller with rounded coefficients was implemented and the

step response of the system measured. It was approximately first order and acceptable. The

positioning accuracy of the mechanical system was then tested with a rudimentary method

due to the lack of a 3D metrology system. This revealed a 3 mm axial accuracy and a 4 mm

spatial accuracy. The repeatability of the sensor system was then tested and the results were

within specification.

149

9 Conclusion

The objectives of this project were met:

• Various types of parallel kinematics machines were researched in particular the Delta type

(Flex-Picker) PKM.

• A scaled and modified version of the Delta robot was designed, simulated and built.

• Various sensor systems were researched. A sensor system was then designed and

implemented. It was developed in 2D and extrapolated to 3D. The system was then

calibrated and tested.

• A control system was designed which interprets data from the sensor system, and a motor

controller was designed. Algorithms were developed to control movement, and acquire

data from sensors.

• A performance analysis was conducted for both the mechanical and the sensor systems.

The main purpose of this project was to design a parallel robot structure possessing an

integrated end effector sensor system for use in the agricultural, or in general food processing,

industry. For this application the resolution on position and sensing should be in the

millimetre range. Robustness and reliability or repeatability of measurements and positioning

are crucial.

A study was undertaken to decide on the PKM to model, modify and simulate. The

investigation revealed that one of the most popular PKMs used in industry was the Flex-

Picker by ABB automation. It was based on the design by Dr. Raymond Clavel. There was

however no detailed, easily understandable literature on aspects of the kinematics of the

machine. A major portion of this thesis is therefore dedicated to finding simplistic closed

form solutions to both the forward and inverse kinematics of the machine that could be

implemented on stand alone processors.

The mechanical structure of the machine designed was based on a Flex-Picker robot. It was

scaled and modified to incorporate an additional arm. The purpose of that arm was to increase

payload carrying ability, machine stiffness and aid the robot in exiting singular positions

caused by the other three. A design specification was given in section 1.5.1. The mechanical

design of this parallel robot was split into the two processes of structural design and

dimensional synthesis. This robot was symmetric and its topology classified as 3-DOF 4 RSS

(see section 4.1.1. a Machine Topology). Spherical joints were used for the "knee" and

150

"ankle" joints as these give it more freedom than the universal joints used in the classical

Delta mechanism. The most difficult problem was obtaining the ball and cup for each joint.

These were eventually made from ball in socket bearings. Removing the ball from the socket

and having the socket maintain a cup shape without scratching or damaging the ball was

difficult and required dexterous workmanship. This was seen to by the mechanical design

workshop.

The link lengths and joint locations were chosen to more than adequately satisfy the

workspace requirements of the specification. This was not obtained from an exact

mathematical formula or software simulation, but from an understanding of the machine and

some rough sketches. These parameters were however tested later in software to determine if

they satisfied all the specifications.

Both the forward and inverse kinematics were solved using a combination of coordinate

geometry and algebra. Non-geometrical model parameters (section 4.1.2) were not

considered. There is great difficulty in solving the forward kinematics for any PKM and

closed form solutions were created for the PKM designed. There are multiple solutions to

both the forward and inverse kinematics and geometrical relationships were devised to select

the correct solution set. These also provided a means to determine a singular configuration,

i.e. when the arms are completely extended or folded. These singularities are then avoided

through the method discussed in section 4.3.2 g and i.

A dynamics model was created to accomplish mass and force modelling. Since this scaled

model does not accomplish any pick and place operations, a theoretical analysis of the

dynamics is not necessary. The dynamics of the system is considered in the control system,

where the transfer function of the leg is obtained from LTI theory of plant estimation. That

transfer function inherently contains dynamic information of the system.

These kinematics solutions were then coded in MATLAB. The forward kinematics function

was used to verify the inverse kinematics and vice versa. These functions were then used to

create a vibration model and visualisation of the workspace boundary. The vibration model

revealed an interesting fact: since the legs are synchronised, any vibration on the motors

results in the end effector having an oscillatory diagonal motion. The Z displacements are

negligible in magnitude but have a frequency twice that of the leg vibration.

The mechanical design was created in SE, which was also used to generate a graphical 3D

simulation of the machine. This required 4 sets of time stamped data indicating angular

151

positions of the upper legs. SE resolves the other components in their correct position for each

configuration of the upper legs based on assembly relationships made during the design. A

graphical simulation was crucial for one other reason, it had to be verified that the end

effector would remain parallel to the base frame during its motion. This was an important

requirement of the sensor system design. A trajectory was then designed and the kinematics

solutions implemented to obtain the angular configurations at each point along this trajectory.

The angles were time stamped and saved each to its own text file. These text files were then

imported to SE for each of the 4 actuated axes. A 3D video animation of the simulation was

created, which confirmed that the end effector would remain parallel to the base frame during

its motion.

To design the sensor screen an investigation was made into numerous technologies that are

available to locate objects in space. These were varied and used different media, transducers

or processing techniques. The problems faced are with resolution, and that different types of

stimulating media present difficulties with respect to their use. After consideration of all the

available physical stimuli used with these technologies, it was decided that a laser light

stimulant would be the most suitable for the application at hand. A surface mount

phototransistor the OP521 was selected as the detector.

A sensor system was designed to reduce errors encountered in the so called 'open loop'

control of this robotic mechanism, and as such the sensors are arranged in a planar grid with a

resolution of 10 mm and by itself functions in 2D space. A 3D system was created by

attaching two of these 2D sensor planes at right angles. Vertical and horizontal laser grids on

the end effector improve the resolution by a factor of 4, providing a final resolution of 2.5

mm. Each laser grid has 12 lasers which are strategically positioned.

The detector screen's nature was inherently modular thus allowing it to integrate with existing

techniques for motion control without difficulty. The screens also have an advantage over

existing systems in their modularity. Detector screens of any practical size may be built,

without loss in resolution. The only issue may be wiring of the modules but this could be

overcome with additional PCB routing connectors. This preservation of resolution and sensor

error does not apply to many existing systems when they are scaled up. The laser and its

detectors also make the system robust and immune to environmental errors.

152

The electronic designs, schematics and PCBs, were created in PROTEL 99SE. The only issue

was of space, i.e. fitting all the components on the PCBs and soldering on both sides of the

board. During testing the system functioned as expected. It was also noticed at this point that

end effector vibration would be an issue, however for this machine there was none. For this

structure vibration effects may be averaged by changing the phase of vibration for each leg.

In order to design a control system, a "plant" model had to be obtained for each leg. This

model inherently contains dynamic information. A number of measurements were made, with

different step inputs, to confirm that the system was LTI before proceeding. Standard

techniques were used to obtain this model.

• Apply a step input

• Measure the output

• Fit an approximate mathematical function to the data

• Take the Laplace transform of the output function and divide it by the Laplace transform

of the input function

The output data was measured with a PC oscilloscope with a tap directly into the servo's

potentiometer. The data was then exported to MATLAB where a Laplace transformable

function was generated to represent the plant. Once the plant function was obtained,

controllers were designed both in the S domain and the Z domain. Simulations were carried

out and the controllers were compared to each other. The digital controller was acceptable in

its performance and was then coded in a ' C based program.

The software was composed of the embedded system microcontroller code and the PC user

interface. The embedded system has to receive and interpret commands from the PC, acquire

data from sensors, process that data and indicate if there are stimulated sensors, and lastly

generate PWM signals for servo rotation. A single microprocessor, the ATMEL AVR

ATmegal28, was used to accomplish this, with a clock frequency of 16 MHz. Custom data

transfer routines were written to increase the speed of code execution and decrease the SRAM

memory used in the microcontroller. These routines also facilitate easier processing. The PC

control software had to transmit commands, receive and display data, and perform high level

control.

153

Performance tests were carried out to determine accuracy, precision and repeatability of

positioning as well as repeatability of sensor stimulation. A method was devised to carry out

these tests which offered a good indication of the positioning capability of the Flex-Picker as

well as the reliability of the detector screen. These were within the specifications mentioned.

In conclusion the project was completed as:

• A modified Flex-Picker was researched, designed, simulated and assembled;

• A sensor system was researched, designed and tested;

• Its control system was designed and implemented;

• Design specifications were met.

There were 1 journal article and 5 conference papers were written and accepted for

publication at various stages of project development.

154

References

[I] "Mechatronics: Electronic Control Systems in Mechanical and Electrical
Engineering", by W. Bolton; third edition, 2003. Pearson Education Limited, England.

[2] "Mechatronics: Principles and Applications", by G. C. Onwubolu; first edition, 2005.
Elsevier Butterworth-Heinemann, England.

[3] "The True Origins of Parallel Robots" By Ilian Bonev, an article for Parallemic,
January 2003. http://www.parallemic.org/

[4] "Robot Analysis: The mechanics of Serial and Parallel Manipulators", by L. W. Tsai;
first edition, 1999. John Wiley & Sons, New York.

[5] "Parallel Robots", by J. P. Merlet; first edition, 2000. Kluwer Academic Publishers,
Amsterdam.

[6] "Parallel Kinematics Robots" by Bennett Brumson, an article from
http://www.roboticsonline.com/'

[7] IRB 340 - Flex-Picker Datasheet from www.abb.com/robots

[8] "Conception D'un Robot Parallele Rapide A 4 Degres De Liberie" by Reymond
Clavel, Ingenieur mecanicien diplome, Departement De Microtechnique, Ecole
Polytechnique Federale De Lausanne (EPFL), Ph.D Thesis, Lausanne, 1991.

[9] "Modelling And Model Based Performance Prediction For Parallel Kinematic
Manipulators" by Jan-Gunnar Persson, Kjell Andersson; Engineering Design,
Department of Machine Design; KTH - Royal Institute of Technology, Stockholm,
Sweden. Presented at Mechatronics Meeting, Gothenburg, August 2003.

[10] "Mechatronic design of a parallel robot for high-speed, impedance-controlled
manipulation" by L. E. Bruzzone, R. M. Molfino, M. Zoppi; Proceedings of the 11th
Mediterranean Conference on Control and Automation, Rhodes, Greece, June 2003.
http://www.dimec.unige.it/PMAR/

[II] "Design of the 'Granit' Parallel Kinematic Manipulator" by Alessandro Tasora1,
Paolo Righettini2, Steven Chatterton2. 1 - Universita degli Studi di Parma,
Dipartimento di Ingegneria Industriale, Parma, Italy; 2 - Politecnico di Milano, Italy.
Proceedings of RAAD'05 - 14th International Workshop on Robotics, Bucharest, May
2005.

[12] "A parallel robot for the Strain Imager (SALSA)" by S. Rowe (ILL), Millennium
Programme and Technical Developments. http://www.ill.fr/AR-
02/site/areport/fset 96.htm

[13] "Design of Compliant Parallel Kinematics Machines" by Yong-Mo Moon, Prof.
Sridhar Kota, Mechanical Engineering, University of Michigan. Proceedings of
DETC2002 - Biannual Mechanisms and Robotics Conference, DETC'2002/MECH-
34204, Montreal, Canada, September-October 2002.

[14] "Kinematics Design of In-Parallel Robots," by G. Yang, I. M. Chen, W. K. Lim and
S. H. Yeo, School of Mechanical and Production Engineering, Nanyang

155

http://www.parallemic.org/
http://www.roboticsonline.com/'
http://www.abb.com/robots
http://www.dimec.unige.it/PMAR/
http://www.ill.fr/AR-

Technological University, Singapore. Journal of Autonomous Robots, Vol. 10, No. 1,
p83-89,2001.

[15] "Multi-Criteria Optimal Design of Parallel Manipulators Based on Interval Analysis"
by F. Hao, J.P. Merlet; INRIA Sophia-Antipolis, France, 6 July 2004. Journal of
Mechanism and Machine Theory, Vol. 40, No. 2, pl57-171, February 2005.

[16] "Two Novel Parallel Mechanisms with Less than Six DOFs and the Applications" by
Xin-Jun Liu1, Jongwon Kim1, Jinsong Wang2; 1 - Robust Design Engineering Lab,
Seoul National University, Seoul, Republic of Korea; 2 - Manufacturing Engineering
Institute, Tsinghua University, Beijing, China. Proceedings of the workshop on
Fundamental Issues and Future Research Directions for Parallel Mechanisms and
Manipulators, Vol. 1, No. 1, pl72-177, Quebec, Canada, October 2002.

[17] "The GPS Manual: Principles & Applications", by S. Dye and F. Baylin; first edition
1997. Baylin-Gale Productions.

[18] "Understanding the GPS: An Introduction to the Global Positioning System", by G. T.
French; first edition, 1997.

[19] "Location Sensing Technologies and Applications", by George Roussos. School of
Computer Science and Information Systems, Birkbeck College, University of London,
November 2002.

[20] "High Precision GPS Guidance of Mobile Robots" by R. Willgoss, V. Rosenfeld and
J. Billingsley. ACRA - Australasian Conference on Robotics and Automation, August
2003.

[21] "Indoor GPS Technology" by Frank van Diggelen and Charles Abraham, Global
Locate, Inc. Presented at CTIA Wireless-Agenda, Dallas, USA, May 2001.

[22] "Indoor Positioning Systems in Healthcare, a Basic Overview of Technologies" by M.
Dempsey; Radianse Inc. CIMIT - Innovative Technology for Medicine, June 2003.

[23] "In-building location using Bluetooth" by Miguel Rodriguez, Juan P. Pece, Carlos J.
Escudero. Departamento de Electronica e Sistemas, Universidade da Coruna, Spain.
INWAN - International Workshop on Wireless Ad-Hoc Networks, London, UK, May
2005.

[24] "Indoor and Outdoor Positioning in Mobile Environments - A Review and some
Investigations on Wlan-Positioning" by R. Bill, C. Cap, M. Kofahl and T. Mundt.
University Rostock, Germany. International Workshop on Ubiquitous Geographical
Information Sciences, Vol. 10, No. 2, p91 -98, Gavle, Sweden, June 2004.

[25] "Location Awareness in Ad Hoc Wireless Mobile Networks", by Y. Tseng, S. Wu, W.
Liao and C. Chao. IEEE Computer, Vol. 34, No. 6, p.46-52, June 2001.

[26] "Location Sensing Techniques" by Jeffrey Hightower and Gaetano Borriello,
Computer Science and Engineering, University of Washington. Technical report,
UNCSE 01-07-01, July 2001. http://seattle.intel-research.net

[27] "On the Potential Use of Mobile Positioning Technologies in Indoor Environments",
by A. Pateli, G. M. Giaglis, K. Fouskas, P. Kourouthanassis and A. Tsamakos;

156

http://seattle.intel-research.net

Proceedings of 15th Bled Electronic Commerce Conference -e-Reality: Constructing
the e-Economy; Bled, Slovenia, April 2002.

[28] "A Taxonomy of Indoor and Outdoor Positioning Techniques for Mobile Location
Services", by G.M. Giaglis, V. Zeimpekis, and G. Lekakos. ACM SIGECOM
Exchanges, Vol. 3, No. 4, pi9-27, August 2003.

[29] "Displacement Measuring Interferometers Provide Precise Metrology", by D.
Musinski. Laser Focus World, Vol. 39, No. 12, December 2003.

[30] "A new sensor for the micro-metre-level measurement of three-dimensional, dynamic
contours," by Tony Schmitz and John Ziegert; Machine Tool Research Center,
Department of Mechanical Engineering, University of Florida, Gainesville, USA.
Measurement Science and Technology, IOP - Institute of Physics - Electronic
Journals, Vol. 10, p51-62, Feb. 1999. http://www.lQP.org/EJ

[31] "Active Vision/Display Sensors for Precision Positioning" by J. Ziegert. University of
Florida, USA. A project proposal to the NSF - National Science Foundation,
September 2005.

[32] "Image Classifiers for Scene Analysis", by B. L. Saux and G. Amato. Computational
Imaging and Vision, Vol. 32, p39-44, March 2006.

[33] "Visual Schemas in Object Recognition and Scene Analysis", by R. Miikkulainen and
W. K. Leow. The handbook of brain theory and neural networks, pi029-1031,
July 1998.

[34] "Simultaneous Map Building and Localization for an Autonomous Mobile Robot", by
J. J. Leonard and H. F. Durrant-Whyte. Proceedings of the IEEE International
Workshop on Intelligent Robots and Systems, pl442-1447, Osaka, Japan, November
1991.

[35] "Mobile Robot Localisation and Mapping in Extensive Outdoor Environments" by I.
Bailey. PhD thesis, ACFR, University of Sydney, Australia, August 2002.

[36] "Design and Accuracy Evaluation of High-Speed and High Precision Parallel
Mechanisms" by Yoshihiko Koseki1, Tatsuo Arai2, Kouichi Sugimoto3, Toshiyuki
Takatuji4, Mitsuo Goto4; 1 - Mechanical Engineering Laboratory, AIST; Namikil-2,
Tsukuba, Ibaraki, Japan; 2 - Graduate School of Engineering Science, Osaka
University, Japan; 3 - Hitachi ltd., Japan; 4 - National Research Laboratory of
Metrology, AIST, Japan. Proceedings of ICRA'98, Vol. 3, No. 1, pl340-1345,
Leuven, Belgium, May 1998.

[37] "Optimal Design of Robots" by J. P. Merlet, INRIA Sophia Antipolis, France.
Proceeding of Robotics: Science and Systems, Massachusetts Institute of
Technology, Cambridge, Massachusetts, June 2005.
http://www.roboticsproceedings.org/index.html

[38] "Manipulability and Static Stability of Parallel Manipulators" by A. Muller, Institute
of Mechatronics, Chemnitz University of Technology, Germany. Journal of Multi-
Body System Dynamics, Vol. 19, No. 1, pl-23, February 2003.

157

http://www.lQP.org/EJ
http://www.roboticsproceedings.org/index.html

[39] "Kinematic Design of a Six-DOF Parallel-Kinematics Machine With Decoupled-
Motion Architecture," by Guilin Yang, I-Ming Chen, Weihai Chen, and Wei Lin,
IEEE Transactions on Robotics and Automation, Vol. 20, No. 5, p876-884, 2004.

[40] "Kinematic and Dynamic Properties of Parallel Manipulators," by A. Muller and P.
Maiber; Institute of Mechatronics, Chemnitz University of Technology, Germany.
Journal of Multi-Body System Dynamics, Vol. 5, No. 3, p223-249, April 2001.

[41] "On the Kinematic Analysis of Robotic Mechanisms," by James Nielsen and Bernard
Roth; Design Division, Department of Mechanical Engineering, Stanford University,
USA. International Journal of Robotics Research, Vol. 18, No. 12, pi 147-1160.

[42] "Parallel robots" by Herman Bruyninckx, August 2005. The Robotics WeBook, the
online textbook project. http://www.roble.info/robotics/parallel

[43] "Position Analysis of a Class of Translational Parallel Mechanisms" by M. Zoppi, L.
E. Bruzzone and R.M. Molfino; PMAR Robot Design Research Group - DIMEC -
University of Genova, Genova, Italy. International Journal of Robotics and
Automation, Vol. 19, No. 3, 2004.

[44] "Geometric Analysis Of Parallel Mechanisms," by Ilian Alexandrov Bonev,
D'epartement de g'enie m'ecanique, Facult'E Des Sciences Et De G'Enie,
Universit'E Laval, Qu'ebec, November 2002.

[45] "Descriptive Geometric Kinematic Analysis of Clavel's 'Delta' Robot," by P. J.
Zsombor-Murray, Department of Mechanical Engineering, Centre for Intelligent
Machines, McGill University, Canada, April 2004.

[46] "A New Approach to the Design of a DELTA Robot with a Desired Workspace," by '
& 2 Xin-Jun Liu, ' Jinsong Wang, 2 Kun-Ku Oh and 2 Jongwon Kim; ' Manufacturing
Engineering Institute, Department of Precision Instruments and Mechanology,
Tsinghua University, Beijing, China; 2 Robust Design Engineering Lab, School of
Mechanical and Aerospace Engineering, Seoul National University, Korea. Journal of
Intelligent and Robotic Systems, Vol. 39, No. 2, p209-225, February 2004.

[47] "Singularities of Robot Manipulators," by Peter Donelan; School of Mathematics,
Statistics and Computer Science; Victoria University of Wellington, New Zealand.
Proceedings of "5 Weeks in Singularities," Luming, 2005.

[48] "Singularities of Parallel Manipulators: A Geometric Treatment," by Guanfeng Liu,
Yunjiang Lou, and Zexiang Li. IEEE Transactions of Robotics and Automation, Vol.
19,No.4,p579-594,2003.

[49] ATmegal28 Microcontroller Datasheet, from www.atmel.com.

[50] "+5V-Powered, Multi-Channel RS-232, Drivers/Receivers" by MAXIM.

www.maxim-ic.com/packages.

[51] "The Robot Builder's Bonanza", by G. McComb; second edition 2001. McGraw-Hill.

[52] "Build Your Own Humanoid Robots", by K. Williams; first edition 2004. Tab Books.

[53] TLC548CP - Analogue to digital converters, from Texas instruments, www.ti.com

158

http://www.roble.info/robotics/parallel
http://www.atmel.com
http://www.maxim-ic.com/packages
http://www.ti.com

[54] OP521 Phototransistor datasheet, from www.alldatasheet.com.

[55] "Choosing the Detector for your Unique Light Sensing Application," by Larry
Godfrey, http://www.engr.udavton.edu/facultv/iloomis/ece445/topics/egginc/tp4.html.

[56] "Sensors and Transducers", by I. R. Sinclair; third edition 2001. Newnes.

[57] "Sensor Technology Handbook", by J. Wilson; first edition 2004. Newnes/Elsevier.

[58] "Intelligent Sensor Technology", by Y. Ohba and Y. Chba; first edition 1992. John
Wiley & Sons.

[59] "Handbook of Through the Air Communications", by D. A. Johnson. Online book,
http://www.imagineeringezine.com/ttaoc-pdf/OTTAC-Handbook.PDF

[60] "Design and Implementation of a Laser Level Detector" by G. Cook; School of
Information Technology and Electrical Engineering, The University of Queensland,
honours thesis, October 2002.

[61] "Light Sources and Detectors", by M. Jonasz; chapter 91 of "Handbook of Measuring
System Design", editors: P. H. Sydenham and R. Thorn; 2007, John Wiley & Sons.

[62] 74LS166 Parallel to serial shift register datasheet, from www.alldatasheet.com.

[63] "Modern Control Engineering", by Katsuhiko Ogata; University of Minnesota; third
edition, 1997. Prentice Hall, New Jersey.

[64] "Digital Control Systems: Theory, Hardware and Software" by Constantine H. Houpis
and Gary B. Lamont; Air Force Institute of Technology, Write Patterson Air Force
Base, Ohio; second edition, 1992. McGraw-Hill Inc.

[65] "Discrete-Time Control Systems", by Katsuhiko Ogata; University of Minnesota;
second edition, 1995. Prentice Hall, New Jersey.

159

http://www.alldatasheet.com
http://www.engr.udavton.edu/facultv/iloomis/ece445/topics/egginc/tp4.html
http://www.imagineeringezine.com/ttaoc-pdf/OTTAC-Handbook.PDF
http://www.alldatasheet.com

Appendix A

Appendices

Forward Kinematics for Legs 2,3 and 4

Leg: 2

90° 0' < 62 < 90°

(y2 - (-10)^+^=100

Figure 74 Illustration of leg 2 coordinate frame and angular

conventions

Equation of straight line: p2(y2 +10) = z2 (when y2 - -10, z2 = 0. p2 Is the gradient of the

line and /?2 = tanft_.)

Equation of circle: (y2 - (-10))2 + z2
2 = 100

y2
2+20>>2 + 100 + z2

2=100

=> J 2
2 + 2 0 J 2 + Z 2

2 = 0

=> j 2
2 + 20j2 + (tan6'2(>'2+10))2 = 0

=> y2
2 + 20j2+>>2

2tan2ft^20y2tan2ft>100tan26>2 = 0

160

=> y2
2(l + tm202)+2Oy2(l + tan202)+lOOtan202 = 0

This is a quadratic in y2, and using the binomial formula to resolve y2 yields:

- 20(1 + tan' 02) ± ^400(1 + tan' 02)- 400 tan2 02 (l + tan' 02)
yi ' 2(1 + tan2 02)

= -10 +

= - 1 0 ±

1 Oyjl + 2 tan2 02 + tan4 02 - tan' 62 - tan4 02

10

^/l + tan2 0,

1 + tan" 6>

•, V 02it 90° + A:.180o, ke~N0

The transform used to obtain 02 from 0R2 is:

(92 = 135° + 0R2 0°< ^2^180°

Leg: 3

(T<6>3<90=

(x 3 - (- 1 0)) 2 + Z 3 2 = 1 0 0

Figure 75 Illustration of leg 3 coordinate frame and angular

conventions

Equation of straight line: p3 (x3 +10) = z3 (when x3 = -10, z3 = 0 . p3 Is the gradient of the

line and p3 = tan#3.)

Equation of circle: (x3 - (-10))2 +z3
2 = 100

x3
2+20x3 + 100 + z3

2 = 100

=> x3 + 20x3 + z3 =0

=> x3
2+20x3 + (tan<93(x3 + 10))2 = 0

=> x3
2+2Ox3 + x3

2tan2<93 + 2Ox3tan203 + lOOtan26>3 = 0

=> x3
2(l + tan26»3)+20x3(l + tan26>3)+100tan2<93 = 0

This is a quadratic in x3, and using the binomial formula to resolve x3 yields:

- 20(1 + tan2 03) ± ̂ 400(1 + tan2 03)- 400 tan2 03 (l + tan2 <93)

*3 ~ 2(1 + tan2 03)

10 J l + 2 tan2 03 + tan4 03 - tan2 03 - tan4 03

1 + tan2 03

= - 1 0 ± - j — — ., V 03± 90°+ £.180°, £ e N 0

yl + tan 2^

The transform used to obtain 93 from 0R3 is:

03 = 135° + 0S3 O°<0R3<18O°

Leg: 4

90° <6>4<18(r 90°

,20,0) J

(>'4-10)2+z4*=100

Figure 76 Illustration of leg 4 coordinate frame and angular

conventions

Equation of straight line: p4(y4 -10) = z4 (when y4 = 10, z4 - 0 . p4 Is the gradient of the

line and p4 =tan<94.)

Equation of circle: (y4 -10) 2 + z4
2 = 100

j 4
2 - 2 0 j 4 + 100 + z 4

2=100

=> y4
2-20y4+z4

2 = 0

7 4
2 - 2 0 j 4 + (tan64(j4-10))2 = 0

y4 - 20y4 + y4 tan2 94 - 20y4 tan2 6

j 4
2 (l + t an 2 6 4) -20 j 4 (l + tan2(94)+100tan2(94 = 0

j 4
2 - 2 0 j 4 + j 4

2 t a n 2 < 9 4 - 2 0 j 4 t a n 2 6 » 4 + 100tan264 = 0

163

This is a quadratic in y4, and using the binomial formula to resolve yA yields:

20(1 + tan' dA) + 7400(1 + tan2 ft,) - 400 tan' 6A (l + tan' 0^

^ y*~~ 2(l + tan'ft4)

10-̂ /l + 2 tan' dA + tan4 dA - tan' 6>4 - tan4 9A

l + tan'<94

= 1 0 ± n — = •, V 94± 90°+ £.180°, £ e N 0

Vl + tan204

The transform used to obtain 6A from 0RA is:

04 = (405°-^4)mod360; 0° < 6RA < 180°, 225° < 0A < 360° u 0° < 6A < 45°

Appendix B - Solving the Inverse Kinematics for Legs 2,3 and 4

Leg 2:

From the circle equation:

(y2 + m) + (z2 f = R2 where m=10 and Rx =10.

=> (j 2 + 10)2 + (z2)
2 = 102

>>2
2 + 20.y2+100 + z2

2 = 100

=> j 2
2 + 20_y2+z2

2=0

^ z2
2=-20y2-y2

2 (B\)

2 2

This places a restriction on y2 as z2 is always non-negative, so -20y2 — y2 > 0 , which

implies that-20 < y2 < 0.
Now from the sphere equation:

(*o Y+(y2 - (y0 -
 n)f+(zi - zo f = n*2

= (x0) +(y2-y0+n) +(z 2 -z 0) 2 = RQ2 where n = 4.45 and R0 = 17.9.

=> M2 + (y2-y0 +4.45)2 +(z2 - z 0) 2 = 17.92 = 320.41

x2 + y2 +y0
2+\ 9.803 -2y2y0 + 8.9 j 2 -8 .9y 0 +z 2

2 -2z 2 z 0 +z 0
2 = 320.41 ... (52)

Substituting z2 from equation (Bl) into (B2) above yields:

=> x2 + y2 + y2 - 2y2y0 + S.9y2 - 8.9>>0 + (- 20y2 - y2) - 2z2z0 + z2

320.41 -19.803 = 300.607

j 2 (- l l . l - 2> ; 0) -2z 2 z 0 + (x0
2+70

2-8.9j;0+z0
2)= 300.607

Now rearrange and make z2 the subject of the formula:

^ Zz = 7 2 (- l l . l -2 7 o)+(x 0
2 + V-8.9y 0 +z 0

2 -300.607) (J 3)

2z0

The unknowns here are z2 and y2 , the rest are known. Collecting terms and making the

following substitution to ease readability results in:

165

2 . 2 o n 2

C
= - l l . l - 2 > > 0 a n d c = V + V - 8 . 9 ^ 0 + z 0 -300.607

2z0 2z0

=> z2 = cty2+c2 ... (54)

Squaring both sides of (B4):

2 2 2 , ~ , 2

z2 =c, y2 + 2cxc2y2+c2

However from equation (Bl) z2 equals - 20y2 — y2 , so:

c?y2 + 2cf2y2 +c2
2 =- 20y2 - y2

cfy2 + y2 + 2cxc2y2 + 20y2 +c2 = Ic, +1)y2 + (2c,c2 + 20)y2 +c2 -0

This is a quadratic in y2 and using the binomial formula yields both
2a

solutions i.e.:

>2

= -

- (2c,c2 + 20) ± y](2Clc2 + 20)2 -

2(Cl
2 + l)

/ 2 2

- 2c,c2 - 20 ± y4cl c2 + 800^2
2c,2+2

- 2c,c2 - 20 ± ̂ 400 + 80c,c2 - 4c2
2

2c,2 + 2

- cf2 -10 ± ̂ /lOO + 20qc2 - c2
2

-4(Cl
2+l)t2

2

+ 400-4Cl
2c2

2

- 2c,c2 - 20

-4c2
2

±2A/l00 + 20c1c2-c2
2

2c,2+2

c, +1

For real solutions to exist 100 + 20c,c2 -c2 > Omust hold. Since y2 is now known, having

taken into account the restriction of equation (Bl), z2 can be found by taking the square root

of both sides of said equation. There are 2 solutions for z2 (a positive and a negative

solution), the correct one must be selected to get the right angle for actuation. The wrong

solution would mean that the leg is folded inwards instead of outwards, and would imply that

it must have passed through a singularity condition (see section 4.3.2 h Singularities).

166

Leg 3:

From the circle equation:

(x3 +m) +(z3)2 = i?,2 where w=10 and /?, = 10.

=> (x3+10)2 + (z3)2= 102

x3
2+20x3 + 100 + z3

2 = 100

=> x3 + 20x3 + z3 = 0

=> z3 = -20x 3 -x 3 (B5)

2 2

This places a restriction on x3 as z3 is always non-negative, so -20x3 — x3 > 0, which

implies that -20 < x3 < 0.
Now from the sphere equation:

=> (x3 - (xo -n)f + (y0 f + (z3 - zo f = ^o2

= (x 3-x 0 + «) +(y0) +(zi-z0) =i?„ where n = 4.45 and ^ = 17.9.

=> (x3 - x0 + 4.45)2 + (y0 f + (z3 - z0)
2 = 17.92 = 320.41

x3
2+x0

2+l9.803-2x3X0+8.9x3-8.9x0+^0
2+z3

2-2z3z0+z0
2 = 320.41 ... (B6)

Substituting z3 from equation (B5) into (B6) above yields:

=> x3 +x0 -2x3x0+8.9x3-8.9x0 + .y0
2 +(-20x3-x3

2J-2z3z0+z0
2

320.41-19.803 = 300.607

x 3 (- l l . l -2x 0) -2z 3 z 0 + (x 0
2 -8 .9x 0+j 0

2+z 0
2)= 300.607

Now rearrange and make z3 the subject of the formula:

^ z = x3(- l l . l -2x0)+(x0
2-8.9x0+j0

2+z0
2-300.607)

2z0

The unknowns here are z3 and x3, the rest are known. Collecting terms and making the

following substitution to ease readability results in:

167

- l l . l - 2 * 0 =x0
2-S.9x0 + y0

2+z0
2 -300.607

2z 2 2z

=> z3 = c,x3+c2 ... (B8)

Squaring both sides of (B8):

2 — 2 2 4 - 9 - I - 2

2

However from equation (B5) z3 equals -20x3 — x3 , so:

1 " ^ I ^iC-1C--> vV T I *-"? ' V n) A ^

c, x3 + x3 + 2c,c2x3 + 20x3 + c2 = (c, + ljx3 + (2c,c2 + 20)x3 + c2 = 0

_ , • , , • • , ^ , -b ± V&2 - 4ac . , , , , This is a quadratic in x3 and using the binomial formula yields both

2a

solutions i.e.:

x, =
-(2c,c2 + 20)± V(2c,c2 + 20)2 - 4(c,2 + ljfc

2(c,2 + l)

_ - 2c,c2 - 20 ± ̂ Ac2c2 + 80c,c2 + 400 - 4c,2c2
2 - Ac.

2c,2 + 2

_ - 2c,c2 - 20 ± ^400 + 80^2-4c 2
2 _ - 2c,c2 - 20 ± 2-̂ 100 +20c,c2 -c.

2c,2 + 2 2c,2 + 2

_ -c,c2 - 10+ 7l00 + 20c,c2-c2
2

c,2 + l

For real solutions to exist 100 + 20c,c2 - c 2
2 > 0 must hold. Since x3 is now known, having

taken into account the restriction of equation (B5), z3 can be found by taking the square root

of both sides of said equation. There are 2 solutions for z3 (a positive and a negative

solution), the correct one must be selected to get the right angle for actuation. The wrong

solution would mean that the leg is folded inwards instead of outwards, and would imply that

it must have passed through a singularity condition (see section 4.3.2 h Singularities).

168

Leg 4:

From the circle equation:

(y4-m) +(z4) = R2 where m=10 and 5, = 10.

=» (j4-10)2
 + (z4)2=102

j ; 4
2 - 2 0 j 4 + 100 + z4

2 = 100

=> j 4
2 -20>; 4 +z 4

2 =0

=> Z 4
2 = 2 0 J 4 - J 4

2 (59)

2 2

This places a restriction on j>4 as z4 is always non-negative, so 20y4 - y4 > 0, which

implies that 0 <y4 < 2 0 .
Now from the sphere equation:

(*o)2+(y* - (y<>+n)Y+(z4 - z0)
2 = V

= (x0) + (y4- y0-n) +(z4_zo) = #-o where n = 4.45 and 50 = 17.9.

=> (x0f + (y4-y0-4A5)2 + (z4-zJ = 17.92 = 320.41

x0
2 + y4+y2 +19.803-2j4y0-8.974+8.9j0+z4

2-2z4z0 + z0
2 = 320.41 ... (BIO)

Substituting z4 from equation (B9) into (B10) above yields:

=> xo2+y4
2+y0

2 - 2y*y0 - 8.9^+8.9>>0 + (20>>4 - >>4
2)- 2z4z0+z0

2

320.41 -19.803 = 300.607

y4{l 1.1 - 2 j 0) - 2z4z0 + (x0
2 + yQ

2 + 8.9 y0 + z2) = 300.607

Now rearrange and make z4 the subject of the formula :

^ _4_ 7 4 (l l . l -2y 0)+(x 0
2

+ > ; 0
2 +8.9^ + z0

2-300.607) (5 U)

2z0

The unknowns here are z4 and y4, the rest are known. Collecting terms and making the

following substitution to ease readability results in:

H-l-2^0 a n d c _x0
2 + y0

2+S.9y0+z0
2-300.607

2z0
 2 2z0

=> z4=cxy4+c2 ... (#12,)

169

Squaring both sides of (B12):

2 2 2 , ~ , 2

=> ZA = ci ^4 +2c,c2y4 + c2

However from equation (B9) z4 equals 20j>4 — y4 , so :

c,2j4
2 + 2c,c2j4 + c2

2 = 20.y4 - y4

=> c, V4
2 + J4

2 + 2c,c2 j 4 - 20 j 4 + c2
2 = (c,2 + l)j4

2 + (2c,c2 - 20)^4 + c2
2 = 0

This is a quadratic in y4 and using the binomial formula = yields both
2a

solutions i.e.:

_ - (2c,c2 - 20) ± A/(2c1c2 - 20)2 - 4(c,2 + l)c

_ - 2c,c2 + 20 ± -y/4c,2c2
2 - 80c,c2 + 400 - 4c,2c2

2 - 4c

2c,2 + 2

_ -2c,c2+20±A /400-80c,c2-4c2
2 _ - 2c,c2 + 20 ± 2^100 - 20c,c2 - c.

2c,z+2 2 c / + 2

_ - cxc2 +10 ± -y/lOO - 20C[C2 - c.

c,2 + l

For real solutions to exist 100-20c,c2 -c 2
2 > 0 must hold. Since y4 is now known, having

taken into account the restriction of equation (B9), z4 can be found by taking the square root

of both sides of said equation. There are 2 solutions for z4 (a positive and a negative

solution), the correct one must be selected to get the right angle for actuation. The wrong

solution would mean that the leg is folded inwards instead of outwards, and would imply that

it must have passed through a singularity condition (see section 4.3.2 h Singularities).

170

Appendix C - Light Sensor Characteristics [55]

Table CI - Comparison of Light Sensor Characteristics

Electrical
Characteristics

Available
Wavelengths

(urn)

Performance-
to-cost
ratio

Sensitivity

Linearity

Ambient
Noise

Performance

Dynamic
Range

Stability

Reproducibility

Cost

Ruggedness

Physical Size

Ease of
Customization

Cost of
Customization

Lead time for
Customization

(weeks)

Photo-
multiplier

Tubes

0.2-0.9

Fair

Excellent

Good

Fair

Very
Good

Very
Good

Fair

High

Poor

Large

Poor

Very
High

40

Photo-
diodes

0.2-2.0

Good

Very
Good

Excellent

Very
Good

Excellent

Very
Good

Excellent

Low

Excellent

Small

Easy

Low

12

Photo-
transistors

0.4-1.1

Excellent

Very
Good

Good

Very
Good

Very
Good

Good

Fair

Very Low

Excellent

Small

Fair

Medium

14

CdS
Photocells

0.4-0.7

Excellent

Very
Good

Good

Very
Good

Good

Poor

Poor

Very Low

Excellent

Small

Fair

Low

12

|

Other
Photo-

conductors

2-15

Fair

Very
Good

Good

Very
Good

Good

Integrated
Circuits

0.2-1.1

Fair

Very
Good

Good

Excellent

Very
Good

Fair 1 V«y
Good

Fair
Very
Good

High i Medium

Good I Excellent

|
Small Small

Poor

High

20

Poor

Very
High

40

Hybrids

0.2-15.0

Fair

Very
Good

Good

Excellent

Very
Good

Very
Good

Very
Good

High

Very
Good

Medium

Poor

High

30

Sensor
Electronic
Assembly

0.2-15.0

Good

Very Good

Good

Excellent

Very Good

Very Good

Very Good

Medium

Excellent

Medium

Fair

Medium

16

Appendix D - Measurements

Dl. PKM positioning repeatability / accuracy

(0; 0; -20) (-7; -7; -18) (5; -5; -16)
dx dy dz dx dy dz dx dy dz
1

2

1

-1

1

-1

-1

-2

-2

2

1

0

1

1

1

2

2

1

0

1

1

-1

-1

1

-2

-2

1

1

2

0

-1

3

-2

-2

1

1

1

1

1

-1

1

1

0

0

1

0

1

1

-2

0

1

2

1

1

1

-2

-2

2

2

2

-2

-2

1

1

2

-1

-1

-1

2

2

-2

-3

2

2

1

1

1

2

1

-2

-2

-1

2

3

-3

-2

1

1

1

0

2

-2

2

2

1

0

0

-1

-1

1

1

1

1

-2

1

1

1

0

0

0

1

-1

-1

-1

1

2

1

2

-3

1

2

2

1

1

-2

-2

-2

2

2

2

1

1

-3

2

1

D2. Sensor System Repeatability

Sensor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

%

At 14 cm

25

24

25

25

25

25

25

25

25

24

25

24

25

25

25

25

0.9925

At 17 cm

25

25

24

25

25

24

25

25

25

24

25

24

25

24

25

25

0.9875

At 20 cm

25

25

24

25

25

23

25

25

25

25

23

25

24

25

24

24

0.98

280

t
V >

« • • —
48

t
V >

•m
160

f

y

»• —•— 48

t

y

—»»-

m

Jl

UNIVERSITY OF
KWA-ZULU NATAL

Schooi of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1:2
MATERIAL: Aluminiu

UNITS: mm
NOTES: None

STUDENT NAME-. Ahmed Shaik

Project: Flexipicker Robot

ITTLE: Breathwise Bracket

TEL No.: 072 430 0739/ 260 1226
H-MAIL: sliaika(s'uk7.n.ac.7.a

No. 1

<]-

500

L e e

374 15

*L

1

1

40

,
>

OO

CO

[

420 40

' 1
4 i J

UNIVERSITY OF
KWA-ZULU NATAL

Schooi of Mechanical Engineering

WShop Technician

Uraftsperson

Project Supervisor

DATE CHECKED SCALE 1:5
MATERIAL: Aluminium

UNITS: mm
NOTES: None

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

TITLE: Heightwise Bracket
No. 2

TEL No. :

<3<^-

640

37 —rt 566 &.

C O

t

vJ3

22

[
168 260 168 22

1 .
i

i_n

I

CO
- J -

UNIVERSITY OF
KWA-ZULU NATAL

Schooi of Mechanical Engineeriiie

WShop Technician

Draft sperson

Project Supervisor

DATE CHECKED SCALE 1:5
MATERIAL: Aluminium

UNITS : mm
NOTES: None

STUDENT NAME : Ahmed Shaik

Project: Flexipicker Robot

TITLE: Lcrmthwise Bracket
No. 3

TEi. No. j 072 430 0739/ 260 1226
E-MAIL: shaika(g'uk7,n,ac.za <3$"

o

UNIVERSITY OF
KWA-ZULU NATAL

Schooi of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1:5
MATERIAL: Wood

UNITS: mm
NOTES: None

TITLE: Wooden Base

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

TEL No. J 072 430 0739/ 260 1226
E-MAIL : shaika(8'ukzn.ac.za

No. 4

<]

joY)

u)
UNIVERSITY OF

KWA-ZULU NATAL
School of Mechanical Engineering

«a- 32 B

i • • i

< *

Ln

Ln"

1

I

1

R

WShop Technician

Draftsperson

Project Supervisor

Tiji^

• 1 -——-

2 ^ ^ -

^ ^ ^ 4 £

DATE CHECKED

: :

: :

1

L n

I

SCALE 1:2
MATERIAL: Nylon

UNITS: mm
NOTES: None

STUDENT NAME : Ahmed Shaik
Project: Flexipicker Robot

TITLE: Upper Leg

TEL No. : W2 43ft 0739/ ^ , 0 1 226
E-MAII : shaikate'ukzn.ac.za

1 & \
1 * 1

1 1 * 1

No. 5

^ < &

fV |̂
I I I
yj

UNIVERSITY OF
KWA-ZULU NATAL

School of Mechanical Engineering

|

WShop Technician

Drattsperson

Project Supervisor

II II
II II

i ° 1
• U

DATE CHECKED SCALE 1

—

—

: 1
MATERIAL: Nylon

UNITS : mm
NOTES: None

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

111LK: Upper Arm Ball Mounting

TEL No.: 072 430 073W 260 1226
F-MAII .: shaikate'ukzn.ac.za

1 •"1
1 0 1

V 1

No. 6

<3&

150

UNIVERSITY OF
KWA-ZULU NATAL

School of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1:2
MATERIAL: Stcc!

UNITS: mm
NOTES: None

STUDENT NAME: Ahmed Shaik
Project: Fiexipicker Robot

TITLE: Lower Leg

TEL No.: WMMZMIZK
feMfllL • :iaii.a(ffukzn.ac.?a

No. 7

O-

LPi

-4-
e g

1 LJ

n

,31,56 J x

- —t i_ _

on
II

LJ

n

<fc VI

-0s

s.e ?

R2S.

UNIVERSITY OF
KWA-ZULU NATAL

School of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1:2
MATERIAL: Nylu:

UNITS: mm
NOTES: None

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

r n i E : End Effector

TEL No : 072 4^0 07 ffl 2o6 I 226
E-MAIL: shaikaCgukzn.ac.za

No.

O"

33

4

•m • »

0

0

o
CO

23

< ^

/? • i i
-" i > -

0

0

UNIVERSITY OF
KWA-ZULU NATAL

School of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1: 1
MATERIAL: Aluminium

UNITS: mm
NOTHS: None

STUDENT NAME : Ahmed Shaik

Project: Flexipicker Robot

TITLE: .Second Laser Mounting No. 9

TEL No.: 072 430 0739/ 26(1 1226
E-MAII.: shaika(g'ukzn.ac.7.a

•^-Q-

CNI
r--
CsJ

CD
r~- 39

0

o

112

170

"1

UNIVERSITY OF
KWA-ZULU NATAL

School of Mechanical Engineering

WShop Technician

Uraftsperson

Project Supervisor

DATE CHECKED SCALE 1:5
MATERIAL: Aluminium

UNITS: mm
NOTES: None MILE: Servo mounting frame

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

No. 10

TEL No.: 072 430 0739/ l&b 1525
1--VM1 s l l . i l k . i " ' III-.'11 .K / . ;

<3"$-

LO

r—

Csl

cr-T

Csl
oo

o

3,5

UNIVERSITY OF
KWA-ZULU NATAL

Schooi of Mechanical Engineering

WShop Technician

Draftsperson

Project Supervisor

DATE CHECKED SCALE 1: 1
MATERIAL: Aluminium

UNITS: mm
None

TITLE: Servo Mounting Bracket

STUDENT NAME: Ahmed Shaik
Project: Flexipicker Robot

TEL No.: 072 4 JO 0 7 M g g | I22(i
h-MAM shaika(a'ukzn,ac.za

No. 11

<1

Appendix F - Code

MATLAB CODE
FLEXPICKER SIMULATION
% Solving the forward kinematics and describing the workspace

% Clear Command window
clc
S_Angles = [000 0];
coee = [0 0 0];

menuselection = 4;

while (menuselection ~= 0)

fprintfC\nMENU...');
fprintfi('\n\nl. Inverse Kinematics (with Forward Kinematics Check)');
fprintf('\n2. Forward Kinematics (with Inverse Kinematics Check) ');
menu_selection = inputC\n3. Vibration Model ...');

%menu_selection = 1; % remove
if (menuselection = 1)

fprintfC\nEnter end effector coordinates ... \t');
fprintf('x Range: -7.5 to 7.5 \ty Range: -7.5 to 7.5 \tz Range: -25 to -15 ');
coee(l) = input('\n\nx0 : ');
coee(2) = input('\ny0 :');
coee(3) = input('\nz0 :');

fprintf('\n\nThe coordinates you have selected ...');
fprintf('[%8.4f\t%8.4f\t%8.4fJ',coee);

[SAngles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2),
coee(3));

fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ',S_Angles(l) , kjl);
fprintfC\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%&AWo8Af\t%8Af\\ S_Angles(2), kj2);
fprintfC\nAngle3 - %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3);
fprintf('\nAngle4 = %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4);

fprintfC\n\n\nChecking solution with Forward Kinematics...1);
fprintfC\n\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Angles);

[coee(l), coee(2), coee(3), kjl, kj2, kj3, kj4] = Forward_Kinematics(S_Angles(l), S_Angles(2), S_Angles(3),
S_Angles(4));

fprintfC\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ',S_Angles(l) , kjl);
fprintfC\nAngle2 - %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(2), kj2);
fprintf('\nAngle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3);
fprintf('\nAngle4 = %8.4f\t\t[x4 y4 z4] - [%8.4f\t%8.4f\t%8.4fJ', S_Angles(4), kj4);

fprintf('\n\nConvert to Servo Rotation Angles....1);
SRotAngles = Convert_to_servo_rotation_angles (S_Angles);
fprintf('\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Rot_Angles);

elseif (menuselection = 2)

fprintfC\nEnter 4 actuation Angles ... \t');
fprintf('Servo Angles Range: 30 - 170 Degrees (140 Degree Range)');
S_Angles(1) = input('\n\nServo Angle 1 : ');
S_Angles(2) = input('\nServo Angle 2 : ');
S_Angles(3) = input('\nServo Angle 3 : ');
S_Angles(4) = input('\nServo Angle 4 : ');

fprintf('\n\nConvert to Coordinate System Angles....');
SAngles = Convert_to_coordinate_system_angles (S_Angles);
fprintf('\n[Anglel Angle2 Angle3 Angle4] = [%8.4i\t%8.4f\t%8.4f\t%8.4f]', SAngles);

[coee(l), coee(2), coee(3), kjl, kj2, kj3, kj4] = Forward_Kinematics(S_Angles(l), S_Angles(2), S_Angles(3),
S_Angles(4));

%Forward_Kinematics
fprintf('\n\n[x0 yO zO] = [%8.4f\t%8.4f\t%8.4f]', coee);
fprintf('\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4f]',S_Angles(l), kjl);

fprintfC\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(2), kj2);
fprintfC\nAngle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4f],

) S_Angles(3), kj3);
fprintf('\nAngle4 - %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4I t̂%8.4f]•, S_Angles(4), kj4);

fprintfC\n\nChecking solution with Inverse Kinematics...');
[S_Angles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2),

coee(3));
fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4f]',S_Angles(l), kjl);
fprintf('\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\r%8.4f|,, S_Angles(2), kj2);
fprintfl>Angle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(3), kj3);
fprintfi>Angle4 = %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4);
fprintf('\n\n[xO yO zO] - [%8.4f\t%8.4f\t%8.4f]', coee);

elseif (menuselection = 3)

vf= 500;
va= 1;
vp = [0, pi/2, pi];
time = 2/500;
dt = 2/(500*99);

fprintfC\nFrequency (Hz) : %9.4f, vf);
fprintfC\nAmplirude (Degrees): %9.4f, va);

fprintf('\nSimulation Time (S) : %9.4f, time);

%Call vibration function Vibration (vf, va, vp, time, dt)
Vibration (vf, va, vp, time, dt);

end

end

CONVERT TO SERVO ROTATION ANGLES

function [n] = Convert_to_servo_rotation_angles (s)
%Convert to servo angles

n(l) = mod(405 - abs(s(l)), 360); %from 45 to -135, clockwise,
%convertto0tol80

n(2) = s(2) -135; %from 135 to 315, anti-clockwise,
%convert to 0 to 180

n(3)= s(3) - 135; %from 135 to 315, anti-clockwise,
Voconvert to 0 to 180

n(4) = mod(405 - abs(s(4)), 360); %from 45 to -135, clockwise,
%convert to 0 to 180

INVERSE KINEMATICS

function [servo_angle_l, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] = Inverse_Kinematics(xO, yO, zO)
%function [servoanglel, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] = Inverse_Kinematics(xO, yO, zO)
% This Program will solve the Inverse Kinematic equations of the modified Delta
% Robot for points in space.
% Coordinates for the centre of the end effector... coee = [xO yO zO]

coee = [000];

coee(l) = x0;
coee(2) = yO;
coee(3) = zO;

if (coee(3) ~= 0) % Proceed only if zO is not equal to 0

"/(.coordinates of ankle joint 1
coajl = [(coee(l)+4.45), coee(2), coee(3)];

%coordinates of ankle joint 2

coaj2 = [coee(l), (coee(2)-4.45), coee(3)];

%coordinates of ankle joint 3
coaj3 • [(coee(l)-4.45), coee(2), coee(3)];

"/(.coordinates of ankle joint 4
coaj4 = [coee(l), (coee(2)+4.45) coee(3)];

%coordinates of thigh joint 1
cotjl = [10 0 0];

%coordinates of thigh joint 2
cotj2 = [0-10 0];

%coordinates of thigh joint 3
cotj3 = [-10 0 0];

%coordinates of thigh joint 4
cotj4=[0 10 0];

%A11 equations have been solved —> 1 ; if any cannot be resolved —> 0
all_equations_solved = 1;

%fprintfC\nSolving the knee coordinates for each leg ...\n')
%LEG 1
%coaj 1 = [xO+4.45 yO z0];
%cl = (5-x0)/z0
cl=(5.55-coee(l))/coee(3);

% c2 = (xOA2 + y0A2 + zOA2 + 10x0 - 200)/2z0
c2 =• (coee(l)A2 + coee(2)A2 + coee(3)A2 + 8.9*coee(l) - 300.607)/(2*coee(3)); %was 200 instead of 295.41

tempi = 100-20*cl*c2-c2A2;
%if tempi < 0 then we have no real solutions

if (tempi < 0) | (allequationssolved = 0)
%Place and escape sequence here
allequationssolved = 0;
servoanglel = -400;
kjl = H00,-400,-400];

else
%Solution set 1
% cokjlsl - coordinates of knee joint 1 solution 1
%cokj l s l=[x ly lz l]
cokjlsl = [0 0 0];

% xl = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1)
cokjlsl(l) = (-cl*c2+ 10 + (templ)A0.5)/(clA2+ 1);

%zl =c lx l+c2
cokjlsl(3) = cl*cokjlsl(l) + c2;

%Solution set 2
% cokj 1 s2 - coordinates of knee joint 1 solution 2
%cokjls2 = [xlyl zl]
cokj ls2 = [0 0 0];

% xl = (-clc2 + 10 - (templ)A0.5)/(clA2 + 1)
cokjls2(l) = (-cl*c2+ 10-(templ)A0.5)/(clA2+ 1);

%zl =c lx l+c2
cokj ls2(3) = cl*cokj ls2(l) + c2;

[servoanglel, kjl] = Determine_correct_solution(cokjlsl, cokjls2, coajl, cotjl); % (si, s2, a, t)

end

%LEG 2
%coordinates of ankle joint 2 — coaj2 = [xO y0-5 zO]
%coordinates of ankle joint 2

%cll2 = (-5-y0)/z0
cl = (-5.55 - coee(2))/coee(3);

% c211 = (xOA2 + y0A2 + zOA2 - lOyO - 200)/2z0
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 - 8.9*coee(2) - 300.607)/(2*coee(3)); %was 200 instead of 295.41

temp2 = 100 + 20*cl *c2 - c2A2;
%if temp2 < 0 then we have no real solutions

if (terap2 < 0) | (allequationssolved = 0)
%Place and escape sequence here
allequationssolved = 0;
servo_angle_2 = -400;
kj2 = [-400, -400, -400];

else
%Solution set 1
% cokj2sl - coordinates of knee joint 2 solution 1
%cokj2sl = [x2y2z2]
cokj2sl = [0 0 0];

% y2 - (-clc2 -10 + (templ)A0.5)/(clA2 + 1)
cokj2sl(2) = (-cl*c2 -10 + (temp2)A0.5)/(clA2 + 1);

%z2 = cly2 + c2
cokj2sl(3) = cl*cokj2sl(2) + c2;

%Solution set 2
% cokj2s2 - coordinates of knee joint 2 solution 2
% cokj2s2 = [x2 y2 z2]
cokj2s2 = [0 0 0];

% y2 = (-clc2 - 10 - (templ)A0.5)/(clA2 + 1)
cokj2s2(2) = (-cl*c2 - 10 - (temp2)A0.5)/(clA2 + 1);

%z2 = cly2 + c2
cokj2s2(3) = c 1 *cokj2s2(2) + c2;

[servo_angle_2, kj2] - Determine_correct_solution(cokj2sl, cokj2s2, coaj2, cotj2); % (si, s2, a, t)

end

%LEG 3
%coaj3 = [xO-5yOzO];
%cl=(-5-x0)/z0
cl = (-5.55 - coee(l))/coee(3);

% c2 = (x0A2 + y0A2 + z0A2 + 10x0 - 200)/2z0
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 - 8.9*coee(l) - 300.607)/(2*coee(3)); %was 200 instead of 295.41

temp3 = 100 + 20*cl *c2 - c2A2;
%if temp3 < 0 then we have no real solutions

if (temp3 < 0) | (allequationssolved = 0)
%Place and escape sequence here
allequationssolved = 0;
servo_angle_3 = -400;
kj3 = [-400, -400, -400];

else
%Solution set 1
% cokj3sl - coordinates of knee joint 3 solution 1
% cokj3sl = [x3 y3 z3]
cokj3sl = [0 0 0];

% x3 = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1)
cokj3sl(l) = (-cl*c2- 10 + (temp3)A0.5)/(clA2+ 1);

% z3 = clx3 + c2
cokj3sl(3) = cl*cokj3sl(l) + c2;

%Solution set 2
% cokj3s2 - coordinates of knee joint 3 solution 2
% cokj3s2 = [x3 y3 z3]
cokj3s2 = [0 0 0];

% x3 = (-clc2 + 10 - (templ)A0.5)/(clA2 + 1)
cokj3s2(l) = (-cl*c2 - 10 - (temp3)A0.5)/(clA2 + 1);

%z3 = clx3 + c2

cokj3s2(3) = cl *cokj3s2(l) + c2;

[servo_angle_3, kj3] = Determine_correct_solution(cokj3sl, cokj3s2, coaj3, cotj3); % (si, s2, a, t)

end

%LEG 4
"/(.coordinates of ankle joint 4 — coaj4 « [xO y0+5 zO]
"/.coordinates of ankle joint 4

%cl = (5-y0)/z0
cl = (5.55 - coee(2))/coee(3);

% c2 = (xOA2 + yOA2 + z0A2 + 1 OyO - 200)/2z0
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 + 8.9*coee(2) - 300.607)/(2*coee(3)); %was 200 instead of 295.41

temp4 = 100 - 20*c 1 *c2 - c2A2;
%if temp4 < 0 then we have no real solutions

if (temp4 < 0) | (all_equations_solved = 0)
%Place and escape sequence here
all_equations_solved = 0;
servo_angle_4 = -400;
kj4 = [-400, -400, -400];

else
"/(.Solution set 1
% cokj4sl - coordinates of knee joint 4 solution 1
% cokj4sl = [x4 y4 z4]
cokj4sl = [0 0 0];

% y4 = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1)
cokj4sl(2) = (-cl*c2 + 10 + (temp4)A0.5)/(clA2 + 1);

%z4 = cly4 + c2
cokj4s 1 (3) - c 1 *cokj4s 1 (2) + c2;

"/oSolution set 2
% cokj4s2 - coordinates of knee joint 4 solution 2
% cokj4s2 = [x4 y4 z4]
cokj4s2 = [0 0 0];

% y4 - (-clc2 - 10 - (templ)A0.5)/(clA2 + 1)
cokj4s2(2) = (-cl*c2 + 10 - (temp4)A0.5)/(clA2 + 1);

%z4 = cly4 + c2

cokj4s2(3) = c 1 *cokj4s2(2) + c2;

[servo_angle_4, kj4] = Determine_correct_solution(cokj4sl, cokj4s2, coaj4, cotj4); % (si, s2, a, t)

end

else
% There is a divide by 0...coordinates cannot be found
servo_angle_l = -400;
kjl=[-400,-400, -400];
servo_angle_2 = -400;
kj2 = [-400, -400, -400];

servo_angle_3 = -400;
kj3 = [-400, -400, -400];

servo_angle_4 = -400;
kj4 = [-400, -400, -400];

end

DETERMINE CORRECT SOLUTION

function [angle, Kcoordinates] = Determine_correct_solution(sl, s2, a, t)
%Determine Correct Angle

%sl and s2 are coordinates sets for the knee coordinates, both solutions
%sl=(kxl,kyl ,kzl)
%s2 = (kx2, ky2, kz2)

%a is the ankle joint
%a = (ax, ay, az)

%t is the thigh joint
%t = (tx, ty, tz)

rad2deg=180/pi;

i f (t (l) = 1 0)%Legl

% function [angle] = Get_upper_leg_angle(zl, z2, rl, r2)
angl = Get_upper_leg_angle(sl(3), 0, sl(l), 10); %atan(sl(3)/(sl(l) -10))*rad2deg;
ang2 = Get_upper_leg_angle(s2(3), 0, s2(l), 10); %atan(s2(3)/(s2(l) -10))*rad2deg;

if (t(l) ~= a(l)) % In this case the Denominator goes to 0
% Gradient of line A1T1 - DZ/DX

m = (t(3)-a(3))/(t(l)-a(l));
c = -10*m;
zl =m*sl(l) + c; %zatx = sl(l)
z2 = m*s2(l) + c; %z at x = s2(l)

%Now Test gradient of AIT 1
if(m>0)
% z of Knee coordinates must be less than z of A1T1 at
% corresponding x

if(sl(3)<zl)
angle = ang 1;
K_coordinates = si;

elseif(s2(3)<z2)
angle = ang2;
Kcoordinates = s2;

else
%Problems

angle = -400;
K_coordinates = [-400, -400, -400];

end

elseif(m<0)
% z of Knee coordinateszl must be more than z of A1T1 at
% corresponding x

if(sl(3)>zl)
angle = angl;
Kcoordinates = si;

elseif(s2(3)>z2)
angle = ang2;
Kcoordinates = s2;

else
%Problems

angle = -400;
K_coordinates = [-400, -400, -400];

end

end

else%t(l) = a(l)
if(abs(sl(l))>abs(s2(l)))

angle = angl;
K_coordinates = si;

elseif (abs(sl(l)) < abs(s2(l)))

angle = ang2;
K_coordinates = s2;

else
%Problems

end

end

o/**** i gQ 3 *****************

elseif(t(l) = -10)%Leg3
angl = Get_upper_leg_angle(sl(3), 0, sl(l), -10); %atan(sl(3)/(sl(l) + 10))*rad2deg;
ang2 = Get_upper_leg_angle(s2(3), 0, s2(1), -10); %atan(s2(3)/(s2(1) + 10))*rad2deg;

if (t(l) ~= a(l)) % In this case the Denominator goes to 0
% Gradient of line AIT1 = DZ/DX

m = (t(3)-a(3))/(t(l)-a(l));
c = 10*m;
zl=m*sl(l) + c; %zatx = sl(l)
z2 = m*s2(l) + c; %z at x = s2(1)

%Now Test gradient of AlTl
if(m>0)
% z of Knee coordinates must be less than z of AlTl at
% corresponding x

if(sl(3)>zl)
angle = angl;
Kcoordinates = si;

elseif(s2(3)>z2)
angle = ang2;
Kcoordinates = s2;

else
%Problems

angle - -400;
Kcoordinates = [-400, -400, -400];

end

elseif(m<0)
% z of Knee coordinateszl must be more than z of AlTl at
% corresponding x

if(sl(3)<zl)
angle = angl;
K_coordinates = si;

elseif(s2(3)<z2)
angle = ang2;
K_coordinates • s2;

else
%Problems

angle = -400;
Kcoordinates - [-400, -400, -400];

end

end

else%t(l) = a(l)
if(abs(sl(l))>abs(s2(l)))

angle = angl;
Kcoordinates « si;

elseif (abs(sl(l)) < abs(s2(l)))
angle = ang2;
K_coordinates = s2;

else
%Problems

end

end

%**** LEG 2 *****************
elseif(t(2) = -10)%Leg2

angl = Get_upper_leg_angle(sl(3), 0, sl(2), -10); %atan(sl(3)/(sl(2) + 10))*rad2deg;
ang2 = Get_upper_leg_angle(s2(3), 0, s2(2), -10); %atan(s2(3)/(s2(2) + 10))*rad2deg;

if (t(2) ~= a(2)) % In this case the Denominator goes to 0
% Gradient of line AlTl = DZ/DX

m = (t(3)-a(3))/(t(2)-a(2));

189

c= 10*m;
zl=m*sl(2) + c; %zaty = sl(2)
z2 = m*s2(2) + c; %z at y = s2(2)

%Now Test gradient of AlTl
if(m>0)
% z of Knee coordinates must be less than z of AlTl at
% corresponding y

if(sl(3)>zl)
angle = angl;
K_coordinates = si;

elseif(s2(3)>z2)
angle = ang2;
K_coordinates = s2;

else
%Problems

angle = -400;
K_coordinates = [-400, -400, -400];

end

elseif(m<0)
% z of Knee coordinateszl must be more than z of AlTl at
% corresponding y

if(sl(3)<zl)
angle = angl;
Kcoordinates = si;

elseif(s2(3)<z2)
angle = ang2;
Kcoordinates = s2;

else
%Problems

angle = -400;
K_coordinates = [A00, -400, -400];

end

end

else%t(2) = a(2)
if(abs(sl(2))>abs(s2(2)))

angle = angl;
Kcoordinates = si;

elseif (abs(sl(2)) < abs(s2(2)))
angle = ang2;
Kcoordinates = s2;

else
%Problems

end

end

%****LEG4 *****************
elsei f (t (2)=10)%Leg4

angl = Get_upper_leg_angle(sl(3), 0, sl(2), 10); %atan(sl(3)/(sl(2) - 10))*rad2deg;
ang2 = Get_upper_leg_angle(s2(3), 0, s2(2), 10); %atan(s2(3)/(s2(2) - 10))*rad2deg;

if (t(2) ~= a(2)) % In this case the Denominator goes to 0
% Gradient of line A4T4 = DZ/DY

m = (t(3)-a(3))/(t(2)-a(2));
c = -10*m;
zl =m*sl(2) + c; %zatx = sl(l)
z2 = m*s2(2) + c; %z at x = s2(l)

%Now Test gradient of AlTl
if(m>0)
% z of Knee coordinates must be less than z of A4T4 at
% corresponding y

if(sl(3)<zl)
angle = angl;
Kcoordinates = si;

elseif(s2(3)<z2)
angle = ang2;
K_coordinates = s2;

else

%Problems
angle = -400;
Kcoordinates = H00, -400, -400];

end

elseif(m<0)
% z of Knee coordinateszl must be more than z of A4T4 at
% corresponding y

if(sl(3)>zl)
angle = angl;
Kcoordinates • si;

elseif(s2(3)>z2)
angle " ang2;
Kcoordinates = s2;

else
%Problems

angle = -400;
K_coordinates = [-400, -400, -400];

end

end

else%t(2) = a(2)
if(abs(sl(2))>abs(s2(2)))

angle = angl;
Kcoordinates = si;

elseif (abs(sl(2)) < abs(s2(2)))
angle « ang2;
Kcoordinates = s2;

else
%Problems

end

end

end

GET UPPER LEG ANGLES

function [angle] = Get_upper_leg_angle(zl, z2, rl, r2)

rad2deg = 180/pi;
%Correct Arctangent with angle transform for leg included
num = zl -z2;
den = rl - r2;

if(den~=0)

angle = atan(num/den)*rad2deg;

%Determine Correct Quadrant
%First Quadrant
if(num = 0)&(den>0)

angle • 0;
elseif (num > 0) & (den > 0)

%No change to angle

%Second Quadrant - aTan is negative
elseif (num > 0) & (den < 0)

angle = angle - 180; %force angle to go from -180 to -270

elseif (num — 0) & (den < 0)
angle = -180;

%Third Quadrant - aTan is positive
elseif (num < 0) & (den < 0)

angle = angle - 180; % Angle must range from -90 to -180

%Fourth Quadrant - aTan is negative
elseif (num < 0) & (den > 0)

angle = angle; % No change

end

else % den = 0
if(num>0)

angle = 90;
elseif (num<0)

angle = -90;
else

%Problems - cannot determine angle as num = 0 and den = 0
end

end

angle = mod(angle, 360);
% fprintf('\n After Transform Angle = %8.4f, angle);

FORWARD KINEMATICS

function [xO, yO, zO, kj 1, kj2, kj3, kj4] = Forward_Kinematics(al, a2, a3, a4)
% Solving for xO, yO and zO ... the forward kinematics of the FlexPicker
% Robot

kjl =[0 0 0];
kj2 = [0 0 0];
kj3 = [0 0 0];
kj4 = [0 0 0];
coee =[0 0 0];

% ********** New coordinate system Funtion
%function [kl, k2, k3, k4] = Solveforkneecoordinatesfk (angl, ang2, ang3, ang4)
[kjl, kj2, kj3, kj4] = Solve_for_knee_coordinates_fk (al, a2, a3, a4);

cl=8.9-2*kjl(l);
c2 = -8.9*kjl(l) + kj 1(1)A2 + kjl(3)A2;

c3 = -8.9-2*kj3(l);
c4 = 8.9*kj3(l) + kj3(l)A2 + kj3(3)A2;

c5 = -8.9 - 2*kj2(2);
c6 = 8.9*kj2(2) + kj2(2)A2 + kj2(3)A2;

c7 = 8.9 - 2*kj4(2);
c8 = -8.9*kj4(2) + kj4(2)A2 + kj4(3)A2;

ml = (2*(kjl(3) - kj3(3)))/(cl - c3);
nl = (c4 - c2)/(cl - c3);

m2 = (2*(kj2(3) - kj4(3)))/(c5 - c7);
n2 = (c8 - c6)/(c5 - c7);

a = mlA2 + m2A2+l;
b = 2*ml*nl + 8.9*ml - 2*kjl(l)*ml + 2*m2*n2 - 2*kjl(3);
c = nlA2 + 8.9*nl -2*kjl(l)*nl - 8.9*kjl(l)+kjl(l)A2+ n2A2+ kjl(3)A2 - 300.607; %200;

zOsl = (-b + (bA2 - 4*a*c)A.5)/(2*a);
xOsl = (2*(kjl(3) - kj3(3))*z0sl + c4 - c2)/(cl - c3);
yOsl = (2*(kj2(3) - kj4(3))*z0sl + c8 - c6)/(c5 - c7);

z0s2 = (-b - (bA2 - 4*a*c)A.5)/(2*a);
x0s2 = (2*(kjl(3) - kj3(3))*z0s2 + c4 - c2)/(cl - c3);
y0s2 = (2*(kj2(3) - kj4(3))*z0s2 + c8 - c6)/(c5 - c7);

if(z0s2<=z0sl)
coee(l) = x0s2;
coee(2) = y0s2;
coee(3)= z0s2;

elseif (zOsl <=z0s2)
coee(l) = x0sl;
coee(2) = yOs 1;
coee(3) = z0sl;

end

xO = coee(l);
yO = coee(2);
zO = coee(3);

SOLVE FOR KNEE COORDINATES

function [kl, k2, k3, k4] = Solveforkneecoordinatesfk (angl, ang2, ang3, ang4)
%Getting Coordinates of ankle joints for forward kinematics
%Using new coordinate system

deg2rad = pi/180;

%Determine coordinates from angle for leg 1 of delta modification
angle = deg2rad*angl; %Convert to radians
yl-0;

%fprintfl;'\nAnglel =%6.2f,angl);

% [xlsl zlsl xls2 zls2] = solving_for_xl_and_zl(angl, xlow, x_high, zlow, z_high)
if (angl > 270)&(angl < 360) % 0 > z > -10 and 20 > x > 10

[xl zl] = solvingJbr_xl_and_zl (angle, 10,20, -10,0);

elseif (angl — 270) % z = -10 and x = 10
xl = 10;
zl=-10;

elseif (angl > 180)&(angl < 270) % 0 > z > -10 and 10 > x > 0
[xl zl] = solving_for_xl_and_zl(angle, 0, 10, -10, 0);

elseif (ang 1 = 180) % z = 0 and x = 0
x l = 0 ;
z l = 0 ;

elseif (angl > 90)&(angl < 180) % 0 < z < 10 and 10 > x > 0
[xl zl] = solving_for_xl_and_zl (angle, 0, 10, 0, 10);

elseif (angl = 90) % z = 10 and x = 10
xl = 10;
zl - 10;

elseif (angl < 90)&(angl > 0) % 0 < z < 10 and 20 > x > 10
[xl zl] = so lv ing jbrx landz l (angle, 10, 20,0, 10);

elseif (angl = 0) % z = 0 and x = 0
x l=20;
z l = 0 ;

else
fprintf('\nError with angle, coordinates for leg 1 cannot be resolved.')
xl=-400;
yl - -400;
zl = -400;

end
kl - [xl, yl, zl];

%Determine coordinates from angle for leg 2 of delta modification
angle = deg2rad*ang2; %Convert to radians
x2 = 0;

%fprintfl>\nAngle2 = %6.2f ,ang2);

% [y2sl z2sl y2s2 z2s2] = solving_for_y2_and_z2(ang2, y_low, y_high, z_low, z_high)
if(ang2>270)&(ang2<360)%0>z>-10 and 0>y>-10

[y2 z2] = solving_for_y2_and_z2(angle, -10, 0, -10,0);

elseif (ang2 = 270) % z = -10 and y = -10
y2 = -10;
z2 = -10;

elseif (ang2 > 180)&(ang2 < 270) % 0 > z > -10 and -10 > y > -20
[y2 z2] = solving_for_y2_and_z2(angle, -20, -10, -10,0);

elseif (ang2 = 180) % z = 0 and y = -20
y2 = -20;
z2 = 0;

elseif (ang2 > 90)&(ang2 < 180) % 0 < z < 10 and -10 > y > -20
[y2 z2] = solving_for_y2_and_z2(angle, -20, -10,0, 10);

elseif (ang2 — 90) % z = 10 and y = -10
y2 = -10;
z2=10;

elseif (ang2 < 90)&(ang2 > 0) % 0 < z < 10 and 0 > y > -10
[y2 z2] = solving_for_y2_and_z2(angle, -10, 0, 0, 10);

elseif (ang2 = 0) % z = 0 and y = 0
y2 = 0;
z2 = 0;

else
fprintf('\nError with angle, coordinates for leg 2 cannot be resolved.')
x2 = -400;
y2 - -400;
z2 = -400;

end
k2 = [x2, y2, z2];

0/***

%Determine coordinates from angle for leg 3 of delta modification
angle = deg2rad*ang3; %Convert to radians
y3 = 0;

%fprintf('\n\nAngle3 = %6.2f ,ang3);

% [x3sl z3sl x3s2 z3s2] = solving_for_x3_and_z3(ang3, xlow, xhigh, z_low, zhigh)
if (ang3 > 270)&(ang3 < 360) % 0 > z > -10 and 0 > x > -10

[x3 z3] = solving_for_x3_and_z3(angle, -10,0, -10, 0);

elseif (ang3 — 270) % z = -10 and x = -10
x3 = -10;
z3 = -10;

elseif (ang3 > 180)&(ang3 < 270) % 0 > z > -10 and -10 > x > -20
[x3 z3] = solving_for_x3_and_z3(angle, -20, -10, -10,0);

elseif (ang3 = 180) % z = 0 and x = -20
x3 - -20;
z3 = 0;

elseif (ang3 > 90)&(ang3 < 180) % 0 < z < 10 and -10 > x > -20
[x3 z3] = solving_for_x3_and_z3(angle, -20, -10,0, 10);

elseif (ang3 — 90) % z = 10 and x - -10
X3--10;
z3 - 10;

elseif (ang3 < 90)&(ang3 > 0) % 0 < z < 10 and 0 > x > -10
[x3 z3] = solving_for_x3_and_z3(angle, -10,0, 0, 10);

elseif (ang3 — 0) % z = 0 and x = 0
x3 = 0;
z3 = 0;

else
fprintf('\nError with angle, coordinates for leg 3 cannot be resolved.')
x3 = -400;
y3 = -400;
z3 = -400;

end
k3 = [x3,y3, z3];

0/*******************

%Detennine coordinates from angle for leg 4 of delta modification
angle = deg2rad*ang4; %Convert to radians
x4 = 0;

%fprintf('\n\nAngle4 = %6.2f ,ang4);

% [y4sl z4sl y4s2 z4s2] - solvingJor_y4_and_z4(ang4, yjow, y high, zlow, z_high)
if (ang4 > 270)&(ang4 < 360) % 0 > z > -10 and 20 > y > 10

[y4 z4] = solvingJor_y4_and_z4(angle, 10,20, -10,0);

elseif (ang4 = 270) % z = 10 and y = 10
y4=10;
z4 = -10;

elseif (ang4 > 180)&(ang4 < 2 7 0) % 0 > z > - 1 0 a n d l 0 > y > 0
[y4 z4] = solving for_y4_and_z4(angle, 0, 10,-10, 0);

elseif (ang4 = 180) % z = 0 and y = 0
y4 = 0;
z4 = 0;

elseif (ang4 > 90)&(ang4 < 180) % 0 < z < 10 and 10 > y > 0
[y4 z4] = solvingJor_y4_and_z4(angle, 0, 10, 0, 10);

elseif (ang4 — 90) % z = 10 and y = 10
y4 = 10;
z4=10;

elseif (ang4 < 90)&(ang4 > 0) % 0 < z < 10 and 20 > y > 10
[y4 z4] « solving_for_y4_and_z4(angle, 10,20, 0, 10);

elseif (ang4 = 0) % z = 0 and y = 20
y4 = 20;
z4 = 0;

else
fprintfCViError with angle, coordinates for leg 4 cannot be resolved.')
x4 = -400;
y4 = -400;
z4 = -400;

end
k4 = [x4, y4, z4];

SOLVE FOR XI ANDZ1

function [xl zl] = solving for_xl_and_zl(angl, xlimitlow, xlimithigh, zjimit low, zlimithigh)
%Determine coordinates from angle for leg 1 of delta modification

ml =tan(angl);
xlsl = 10 + (10/((1 +mlA2)A0.5));
zlsl=ml*(xlsl -10);

xls2 = 10 - (10/((1 + mlA2)A0.5));
zls2 = ml*(xls2-10);

%fprintf('[x J imit low \txjimitjiigh] = [%6.2f\t%6.2fJ\n', xlimitlow, xjimitjiigh);
%fprintf('[zjimit low \tz limitJiigh] = [%6.2f\t%6.2f]\n', zjimitlow, z limit high);
%fprintfC[xlsl zlsl xls2 zls2] = [%6.2f\t%6.2f\t%6.2f\t%6.2f|\n,, xlsl, zlsl, xls2, zls2);

%check_solutionl - (xlsl - 10)A2 + zlslA2;
%check_solution2 = (xls2 - 10)A2 + zls2A2;

%fprintf('[check_solutionl check_solution2] = [%6.2f\t%6.2f]\n', checksolutionl, check_solution2);

% xlimitlow < x < xlimithigh and zlimitlow < z < zlimithigh
if (z_limit_low < z 1 s 1)&(z 1 s 1 < z_limit_high)&(x_limit_low < x 1 s 1)&(x 1 s 1 < x_limit_high)

xl =xls l ;
zl =z ls l ;

elseif (zjimitlow < zls2)&(zls2 < z limit high)&(x limit low < xls2)&(xls2 < xjimit_high)

file:///txjimitjiigh

xl =xls2;
zl = zls2;

else
fprintf('Coordinates for leg 1 cannot be resolved.W)
xl =-400;
zl = -400;

end

SOLVE FOR Y2 AND Z2

function [y2 z2] • solving for_y2_and_z2(ang2, ylimitlow, ylimitjiigh, zlimitjow, zjimitjiigh)
%Determine coordinates from angle for leg 2 of delta modification

m2 = tan(ang2);
y2sl = -10 + (10/((1 + m2A2)A0.5));
z2sl =m2*(y2sl + 10); %-m2 previously

y2s2 = -10 - (10/((1 + m2A2)A0.5));
z2s2 = m2*(y2s2 + 10); %-m2 previously

%fprintfC\n[y_limit_low\ty_limit_high] = [%6.2f\t%6.2f]', yjimit low, yjimit high);
%fprintf('\n[z_limit_low \tzjimithigh] = [%6.2f\t%6.2fJ', zjimitlow, z_limit_high);
%fprintf('\n[y2sl z2sl y2s2 z2s2] = [%6.2f\t%6.2f\t%6.2f\t%6.2fJ', y2sl, z2sl, y2s2, z2s2);

%check_solutionl = (y2sl + 10)A2 + z2slA2;
%check_solution2 = (y2s2 + 10)A2 + z2s2A2;

%fprintf('\n[check_solutionl check_solution2] = [%6.2f\t%6.2f]', checksolutionl, check_solution2);

% yjimitlow < y < ylimithigh and zjimitlow < z < zjimitjiigh
if (zjimitlow < z2sl)&(z2sl < z_limit_high)&(y_limit_low < y2sl)&(y2sl < ylimithigh)

y2 =y2sl;
z2 = z2sl;

elseif (zjimitlow < z2s2)&(z2s2 < zlimitjiigh)&(y limitJow < y2s2)&(y2s2 < yjimitjiigh)
y2 = y2s2;
z2 = z2s2;

else
fprintf('\nCoordinates for leg 2 cannot be resolved.')
y2 = -400;
z2 = -400;

end

SOLVE FOR X3 AND Z3

function [x3 z3] = solving for_x3_and_z3(ang3, xlimitlow, xlimithigh, zlimitjow, zjimitjiigh)
%Determine coordinates from angle for leg 3 of delta modification

m3 • tan(ang3);
x3sl = -10 + (10/((1 +1113*2)^.5));
z3sl =m3*(x3sl + 10); %-m3 previously

x3s2 = -10 - (10/((1 + m3A2)A0.5));
z3s2 = m3*(x3s2 + 10); %-m3 previously

%fprintf('[xJimitJow\txlimit_high] = [%6.2f\t%6.2f]\n', xlimitlow, xjimithigh);
%fprintf('[zJimitlow\tzJimit_high] = [%6.2i\t%6.2f]\n', z limit low, zjimitjiigh);
%fprintfi;'[x3sl z3sl x3s2 z3s2] » [%6.2f\t%6.2f\t%6.2f\t%6.2f]\n', x3sl, z3sl, x3s2, z3s2);

%check_solutionl = (x3sl + 10)A2 + z3slA2
%check_solution2 = (x3s2 + 10)A2 + z3s2A2

%fprintf('[check_solutionl check_solution2] = [%6.2f\t%6.2fJ\n', checksolutionl, check_solution2);

% xlimitJow < x < xjimithigh and z limit low < z < zjimitjiigh
if (z limit Jow < z3sl)&(z3sl < zJimitJiigh)&(xlimitlow < x3sl)&(x3sl < xjimithigh)

x3 =x3sl;

file:///tzjimithigh

z3 = z3sl;

elseif (zlimitlow < z3s2)&(z3s2 < z_limit_high)&(x_limit_low < x3s2)&(x3s2 < xlimithigh)
x3 = x3s2;
z3 = z3s2;

else
fprintf('Coordinates for leg 3 cannot be resolved.\n')
x3 = -400;
z3 = -400;

end

SOLVE FOR Y4 AND Z4

function [y4 z4] = solving_for_y4_and_z4(ang4, y_limit_low, y_limit_high, z_limit_low, z_limit_high)
%Determine coordinates from angle for leg 4 of delta modification

m4 = tan(ang4);
y4sl = 10 + (10/((1 + m4A2)A0.5));
z4sl - m4*(y4sl - 10);

y4s2 = 10 - (10/((1 + m4A2)A0.5));
z4s2 - m4*(y4s2 - 10);

%fprintf('[y_limit_low \ty_limit_high] = [%6.2f\t%6.2fJ\n', ylimitlow, ylimithigh);
%fprintf('[z_limit_low \tz_limit_high] = [%6.2f\t%6.2f]\n', z_limit_low, z_limit_high);
%fprintf('[y4sl z4sl y4s2 z4s2] - [%6.2f\t%6.2f\t%6.2f\t%6.2fJ\n', y4sl, z4sl, y4s2, z4s2);

%check_solutionl = (y4sl - 10)A2 + z4slA2;
%check_solution2 = (y4s2 - 10)A2 + z4s2A2;

%fprintf('[check_solutionl check_solution2] • [%6.2f\t%6.2fJ\n', checksolutionl, check_solution2);

% ylimitlow < y < ylimithigh and zlimitlow < z < zlimithigh
if (zlimitlow < z4sl)&(z4sl < z_limit_high)&(y_limit_low < y4sl)&(y4sl < ylimithigh)

y4 = y4sl;
z4 = z4sl;

elseif (zlimitlow < z4s2)&(z4s2 < z_limit_high)&(y_limit_low < y4s2)&(y4s2 < y_limit_high)
y4 = y4s2;
z4 • z4s2;

else
fprintf('Coordinates for leg 4 cannot be resolved.\n')
y4 = -400;
z4 = -400;

end

VIBRATION

function [] = Vibration (vf, va, vp, time, dt)

fprintfC\n\nEnter end effector coordinates ... \t')
fprintf('x Range: -7.5 to 7.5 \t\ty Range: -7.5 to 7.5 \t\tz Range: -22 to -12 ')

coee(l) = inputC\n\nxO :');
coee(2) = inputC\nyO :');
coee(3) = inputCXnzO :');

fprintfC\n\nThe coordinates you have selected ... [%8.4f\t%8.4f\t%8.4fJ', coee);
[SAngles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2),

coee(3));

fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ'>S_Angles(l) , kjl);
fprintf('\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(2), kj2);
fprintfC^AngleS = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3);
fprintf('\nAngle4 » %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4);

t = zeros(l, 100);
yl =zeros(l, 100);

197

file:///ty_limit_high
file:///tz_limit_high
file:///t/ty
file:///t/tz

y2 = zeros(l, 100);
y3 = zeros(l, 100);
y4 = zeros(l, 100);
x0 = zeros(l, 100);
yO = zeros(l, 100);
z0 = zeros(l, 100);

xOmin = coee(l);
xOmax = coee(l);

yOmin » coee(2);
yOmax = coee(2);

zOmin = coee(3);
zO_max = coee(3);

rprintfC\n\nConvert to Servo Rotation Angles....');
S_Rot_Angles = Converttoservorotationangles (SAngles);
rprintfC\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Rot_Angles);

for m = 2 : 2 : 2 % Was 6 to get more phase differences
%For a Phase difference of vpl =0 radians
k = m/2;

for i = 1 : 100
t(i)= (i-l)*dt;
yl(i) = S_Rot_Angles(l) + va*sin (2*pi*vf*t(i));
y2(i) = S_Rot_Angles(2) + va*sin (2*pi*vf*t(i) + vp(k));
y3(i) = S_Rot_Angles(3) + va*sin (2*pi*vf*t(i));
y4(i) = S_Rot_Angles(4) + va*sin (2*pi*vf*t(i) + vp(k));

al = SAngles(l) + va*sin (2*pi*vf*t(i));
a2 = S_Angles(2) + va*sin (2*pi*vf*t(i) + vp(k));
a3 = S_Angles(3) + va*sin (2*pi*vf*t(i));
a4 = S_Angles(4) + va*sin (2*pi*vf*t(i) + vp(k));

[x0(i), yO(i), z0(i), kjl, kj2, kj3, kj4] = Forward_Kinematics(al, a2, a3, a4); %Forward_Kinematics

if(x0(i)>x0_max)
xOmax = x0(i);

elseif (x0(i) < xOmin)
xOmin • x0(i);

end

if(yO(i)>yO_max)
yOmax = yO(i);

elseif (yO(i) < yOmin)
yOmin = yO(i);

end

if (zO(i) > zOmax)
zOmax = zO(i);

elseif (zO(i) < zOmin)
zO_min = zO(i);

end

end

if (coee(l) - xO_min < 0.0000001)
xO_min = coee(1) - 0.0000001;

end

if (xO_max - coee(l) < 0.0000001)
xO_max = coee(l) + 0.0000001;

end

if (coee(2) - yO_min < 0.0000001)
y0_min = coee(2) - 0.0000001;

end

if (yOmax - coee(2) < 0.0000001)
yOmax - coee(2) + 0.0000001;

end

if (coee(3) - zOmin < O.OOOOOOl)
zOmin « coee(3) - 0.0000001;

end

if (zO_max - coee(3) < 0.0000001)
zO_max = coee(3) + 0.0000001;

end

fprintf('\n\n[xO_min xO_max] = [%14.10f \t %14.10f]\t\txO_max - xO_min = %14.10f, xOmin, xOmax, (xOmax •
xOmin));

fprintfOntyOjiiin yO_max] = [%14.10f \t %14.10f]\t\tyO_max - yO_min = %14.10f, yOmin, yOmax, (yOmax -
yOmin));

fprintf('\n[z0_min zO_max] = [%14.10f \t %14.10f]\t\tzO_max - zO_min = %14.10f, zO_min, zO_max, (zO_max -
zOmin));

%Now that we have the angles we may add the vibration to them
Figure(m);
elf;
subplot(2,2,l)
hold on;

plot(t, yl, '-b', 'LineWidth',2);
ymin = SRotAngles(l) - 1.5*va;
ymax = SRotAngles(l) + 1.5*va;
axis([0, time, ymin, ymax]);
grid on;
titlefa. Servo 1 Vibration')
xlabel('Time (s)')
ylabel('Angle (Degrees)')

subplot(2,2,2)
plot(t, y2, '-b','LineWidth',2);
ymin = S_Rot_Angles(2) - 1.5*va;
ymax = S_Rot_Angles(2) + 1.5*va;
axis([0, time, ymin, ymax]);
grid on;
titleCb. Servo 2 Vibration')
xlabel('Time (s)')
ylabel('Angle (Degrees)')

subplot(2,2,3)
plot(t, y3, '-b', 'LineWidth',2);
ymin = S_Rot_Angles(3) - 1.5*va;
ymax = S_Rot_Angles(3) + 1.5*va;
axis([0, time, ymin, ymax]);
grid on;
title('c. Servo 3 Vibration')
xlabel(Time (s)')
ylabel('Angle (Degrees)')

subplot(2,2,4)
plot(t, y4, '-b','LineWidth',2);
ymin = S_Rot_Angles(4) - 1.5*va;
ymax = S_Rot_Angles(4) + 1.5*va;
axis([0, time, ymin, ymax]);
grid on;
title('d. Servo 4 Vibration')
xlabel(Time (s)')
ylabelf Angle (Degrees)')
hold off;

Figure(m+1);
elf;
subplot(3,l,l)
hold on;
plot(t, xO, '-b', 'LineWidth',2);
axis([0, time, x0_min , xOmax]);
title('a. X0 Vibration')
grid on;
ylabel('Position (cm)')

subplot(3,l,2)
plot(t, yO, '•*', 'LineWidth',2);
axis([0, time, y0_min, y0_max]);
grid on;

titleCb. YO Vibration')
ylabel('Position (cm)')

subplot(3,l,3)
plot(t, zO, '-b', 'LineWidth',2);
axis([0, time, zOmin, zOmax]);
grid on;
title('c. ZO Vibration')
xlabel('Time (s)')
ylabel('Position (cm)')
hold off;

end

WORKSPACE CALCULATION

function [xl, yl, zmin, x2, y2, zmax, lastvalidx, last_valid_y, correspondz] = WorkspaceCoordinateCalculation (m, n,
last_valid_x, last_valid_y, correspondz)
%Workspace coordinate calculation

zmaxglobal = 0;
zmin_global = -25;
xmin_global = -16;
xmax_global = 16;
ymin_global = -16;
ymaxglobal = 16;

actual_minimum_z_reached = 10;
% Set it high so that we ensure we actually find the minimum

% We want to find the actual minimum and actual maximum
xmin = xmax_global;
xmax = xmin_global;

% We want to find the actual minimum and actual maximum
ymin = ymax_global;
ymax = ymin_global;

zmin = zmin_global;
zmax = zmax_global;

S_Angles_min = [0000];
SAnglesmax = [000 0];

zmin_found ~ 0; % reset... searching for new min z
zmaxfound = 0; % reset... searching for new max z

xmin_found ™ 0; % reset... searching for new min x
xmaxfound = 0; % reset... searching for new max x

yminfound = 0; % reset... searching for new min y
ymax_found = 0; % reset... searching for new max y

xl =m;
x2 = m;
yl =n;
y2 = n;

while (zminfound = 0)|(zmax_found == 0)

% function [servoanglel, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] =
Inverse_Kinematics(xO, yO, zO)

if (zmin_found = 0)
[S_Angles_min(l), S_Angles_min(2), S_Angles_min(3), S_Angles_min(4), kjl_min, kj2_min, kj3_min, kj4_min] =

Inverse_Kinematics(m, n, zmin);

if (S_Angles_min(l) — -400)|(S_Angles_min(2) = -400)|(S_Angles_min(3) = -400)|(S_Angles_min(4) — -400)
zmin • zmin + 0.25;
if (zmin >= zmax)

% Passed range
zmin found = 1;

200

zmin = correspond_z; %zmin cannot be found
xl = lastvalidx;
yl = last_valid_y;

end
else

% Found zmin
zminfound = 1;
last_valid_x = m;
last_valid_y = n;
correspondz = zmin;
% We have found a value here, now we need to check
% whether the x and y values for the minimum and
% maximum
if (m>xmax)

xmax = m;
end

if (m<xmin)
xmin = m;
last_valid_x = m;

end

if (n>ymax)
ymax = n;
last_valid_y = n;

end

if (n<ymin)
ymin = n;

end

if (actualminimumzreached > zmin)
actualminimumzreached = zmin;

end

end
end

if (zmax_found = 0)
[S_Angles_max(l), S_Angles_max(2), S_Angles_max(3), S_Angles_max(4), kjlmax, kj2_max, kj3_max,

kj4_max] = Inverse_Kinematics(m, n, zmax);

if (S_Angles_max(l) = ^t00)|(S_Angles_max(2) = -400)|(S_Angles_max(3) = -400)|(S_Angles_max(4) = -
400)

zmax = zmax - 0.25;
if (zmax <= zmin)

% Passed range
zmaxfound • 1;
zmax = correspondz;
x2 = lastvalidx;
y2 = last_valid_y;

end
else

% Found zmax
zmaxfound • 1;
lastvalidx = m;
last_valid_y = n;
correspondz = zmax;
% We have found a value here, now we need to check
% whether the x and y values for the minimum and
% maximum
if (m> xmax)

xmax = m;
end

if (m< xmin)
xmin = m;

end

if (n > ymax)
ymax = n;

end

if (n< ymin)

ymin = n;
end

end
end

end

202

VISUAL BASIC CODE
Option Explicit

' Determining which servo values we are receiving
Dim bool_all_servo_mvnt_comp As Boolean

' This variable will hold the incoming data
Dim received_data As String

' End effector Coordinates
Dim xO As Single, yO As Single, zO As Single
Dim xOold As Single, yOold As Single, zOold As Single
Dim zOmax As Single

Dim attach circle to mouse As Boolean

1 Upper Legs of Servos
Dim upper_leg(3) As leg

' End effector ankle joint coordinates
Dim endeffector As EEAJ

Dim r_angles As rotationangles
Dim byterangles As rotationangles ' 0 - 160 -> 0 - 255

Private Sub value_to_ascii(d As Integer)

' This routine sends the ascii characters of the correspondinge decimal digits
Select Case d

CaseO
MSComml .Output = "0"

Case 1
MSComm 1 .Output = " 1"

Case 2
MSComml.Output = "2"

Case 3
MSComml .Output = "3"

Case 4
MSComml .Output = "4"

Case 5
MSComml .Output = "5"

Case 6
MSComml Output = "6"

Case 7
MSComml.Output = "7"

Case 8
MSComml.Output = "8"

Case 9
MSComml.Output = "9"

End Select

End Sub

Private Sub send_digits_of_PWM_value(temp As Integer)

Dim digit As Integer
"send Ten thousands digit
'digit = temp \ 10000 ' Integer division yields, integer result
'temp = temp - 10000 * digit
'Call value_to_ascii(digit)

" Send thousands digit of coordinate
'digit = temp \ 1000 ' Integer division yields, integer result
'temp = temp - 1000 * digit
'Call valuetoascii(digit)

' Send hundreds digit of coordinate
digit = temp \ 100 ' Integer division yields, integer result
temp = temp -100 * digit
Call value_to_ascii(digit)

' Send tens digit of coordinate

digit = temp \ 10
temp = temp - 10 * digit
Call value_to_ascii(digit)

' Send units digit of coordinate
digit = temp
Call value_to_ascii(digit)

' Send completion character
MSComml .Output = "X"

End Sub

Private Sub btn_start_Click()

If (btn_start.Caption = "Start Capturing Servo Feedback") Then
btnstart.Caption = "Stop Capturing Servo Feedback"
'Send start command...open commport first then send start signal
If MSComml.PortOpen = False Then

MSComml .PortOpen = True
'Send start signal
MSComml .Output = "E"
'Calculate Inverse Kinematics

Call do_inverse_kinematics_calculation(0, 0,-15)

End If
Else

btn_start.Caption = "Start Capturing Servo Feedback"
'Send stop command
If MSComm 1 .PortOpen - True Then

'Send stop command then disable port
MSComml .Output = "G"
MSComml.PortOpen = False

End If
End If

End Sub

Private Sub Commandl_Click()

' Displays the source dialog for the video control
'If (ezVidCapl.HasDlgSource) Then

'ezVidCapl .ShowDlgVideoSource
•End If

' Toggles preview and visibility
'If ezVidCapl.Preview = False Then

'ezVidCapl.Preview — True
'ezVidCap 1 .Visible - True

•Else

'ezVidCap 1 .Preview = False
'ezVidCapl .Visible = False

•End If

End Sub

Private Sub Command2_Click()

If MSComml.PortOpen = True Then
Textl.Text = Textl.Text & vbNewLine
MSComml.Output = "T"

End If

End Sub

Private Sub Command3_Click()

'Save angles to variables
xO = Val(txtxO.Text)
yO - Val(txt_yO.Text)
zO - Val(txtzO.Text)

204

Text3.Text - "The Coordinates You have selected : xO =" & xO & "; yO = " & yO & "; zO = " & zO
Text3.Text = Text3.Text & vbNewLine

Call Calculate_Inverse_Kinematics(xO, yO, zO, upper_leg(), endeffector, rangles, Text3)

Call Write_Upper_leg_values(Text3)

End Sub

Private Sub Write_Upper_leg_values(t As TextBox)

Dim i As Integer

'Format$(COKJS2(l), "Fixed")

For i = 0 To 3 Step 1
t.Text = t.Text & vbNewLine & "Upper Leg " & (i + 1) & " Angle: " & _
Format$(upper_leg(i).angle, "Fixed") & " Knee Coordinates: (" & _
Format$(upper_leg(i).knee_coordinates.x, "Fixed") &_
"; " & Format$(upper_leg(i).knee_coordinates.y, "Fixed") & "; " & _
Format$(upper_leg(i).knee_coordinates.z, "Fixed") & ")"

Next i
t.Text • t.Text & vbNewLine

For i = 0 To 3 Step 1
t.Text = t.Text & vbNewLine & "End Effector Ankle Joints: AJ" & (i + 1) & _
"- (" & Format$(end_effector.AJ(i).x, "Fixed") & "; " & _
Format$(end_effector.AJ(i).y, "Fixed") & "; " & Format$(end_effector.AJ(i).z, "Fixed") & ")"

Next i
•

End Sub

Private Sub Command4_Click()

'x0 = 0
'y0 = 0
'z0 = -10

'Calculate Inverse Kinematics
Call do_inverse_kinematics_calculation(0, 0, -10)

'Enable Timer and send data out port
Timerl .Enabled = True

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

Text 1 .Text = KeyCode

If(KeyCode = 90)Then
bool_all_servo_mvnt_comp = True

End If

End Sub

Private Sub Form_Load()

'Initialize variables
boolallservomvntcomp = False

'Set to empty string
receiveddata = ""

'Set Thigh Joint Coordinates - once only
Call Set_Thigh_Joint_Coordinates(upper_leg())

Call initialize variables

'Initialize xO, yO, zO
zO max = -10

205

'xO = 0
'yO = 0
'zO = zOmax - 5

'Calculate Inverse Kinematics
Call do_inverse_kinematics_calculation(0, O, zO_max - 5)
txtzO.Text = zO

'Scale Picture boxes
Call scale_pic_boxes

'initialize mouse control picture box
Call draw_mouse_control_indicator(0, 0)

attachcircleto mouse = False

End Sub

Private Sub Form_Unload(Cancel As Integer)

Close comport if it is open
If MSComml .PortOpen = True Then

'Send stop command then disable port
MSComml.Output - "G"
MSComm 1 .PortOpen = False

End If

End Sub

Private Sub MSComm l_OnComm()

'Holds character values
Dim code As String
code = MSComml .Input

'Remove Textl control., just checking data received
'Textl .Text = Textl .Text & code
If(code = "X")Then

Textl .Text = Textl .Text & "
End If

If (code = "z") Then
'All servos have moved to their angles
bool_all_servo_mvnt_comp = True
MSComm 1 .Output = "z" 'Received completion character

Elself (code = "X") Then

'Reset string containing data
received_data = ""

Elself (code = "0") Or (code = "1") Or (code = "2") Or (code = "3") Or (code = "4") Or (code = "5") Or (code = "6") Or (code
= "7") Or (code = "8") Or (code - "9") Then

' Make sure code is a numerical ascii value - i.e. 0 to 9
' Appending a text string is similar to appending a text box
receiveddata = received_data & code

Else
'Some code character, or unknown value

End If

End Sub

Private Sub move_indicator_if_clicked(xt As Single, yt As Single)

'Modify
picmousecontrol.Cls
Call draw_mouse_control_indicator(0, 0)

If opn_mouse. Value = True Then
' The first click attaches the circle to the mouse, once attached a second click will then
' release the mouse

206

If (attachcircletomouse = True) Then
' if its true we need to release the mouse
attach_circle_to_mouse = False
'Reset
'x0 = 0
'y0 = 0
'zO = zOmax - 5

Call do_inverse_kinematics_calculation(0, 0, zOmax - 5)

xOold = 0
y0_old = 0
z0_old = zO

txtxO.Text - Format$(xO, "Fixed")
txt_yO.Text = Format$(yO, "Fixed")
txtzO.Text = Format$(zO, "Fixed")

Else
' if its false we need to check if the pointer is ontop of the circle
If ((xt >= -0.1) And (xt <= 0.1)) Then

If ((yt >= -0.1) And (yt <= 0.1)) Then
' At this point the mouse pointer is over the circle
attachcircletomouse = True

End If
End If

End If
End If

End Sub

Private Sub opn_demo_Click()

opndemo. Value = True

Timer 1 .Enabled = True

End Sub

Private Sub opn_mouse_Click()

Timer 1 .Enabled = False

End Sub

Private Sub pic_mouse_control_KeyDown(KeyCode As Integer, Shift As Integer)

If (zO <= z0_max) Or (zO >= z0_max - 10) Then

If(KeyCode = 38)Then
'Up

z0 = z0 + 0.1

Elself (KeyCode - 40) Then
'Down

z0 = z0-0.1

End If

End If
If(z0>z0_max)Then

zO = z0_max
Elself (zO < z0_max - 10) Then

z0 = z0_max- 10
End If

txt_zO.Text = Format$(z0, "Fixed")
'draw data into picboxes
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, boolallservomvntcomp)
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, boolallservomvntcomp)

207

End Sub

Private Sub pic_mouse_control_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = 1 Then ' Left click
Call move_indicator_if_clicked(x, y)
'draw sensor grid data
'draw data into picboxes
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, bool_all_servo_mvnt_comp)
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, bool_all_servo_mvnt_comp)

Elself Button = 2 Then 'Right Click
'Only calculate inverse kinematics if we have the mouse attached to end of the cursor
If (attachcircletomouse = True) Then

'Calculate Inverse Kinematics
Call do_inverse_kinematics_calculation(xO, yO, zO)
xO_old = xO
yOold = yO
zO_old = zO

End If
Else

End If

End Sub

Private Sub pic_mouse_control_MouseMove(Button As Integer, Shift As Integer, x As Single, y As Single)

If (attach_circle_to_mouse = True) Then
picmousecontrol.Cls

xO = x
yO = y

Call draw_mouse_control_indicator(x, y)
txt_xO.Text = Format$(xO, "Fixed")
txt_yO.Text - Format$(yO, "Fixed")

'draw sensor grid data
'draw data into picboxes
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xO_old, yOold, bool_all_servo_mvnt_comp)

Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, boolallservomvntcomp)

End If

End Sub

Private Sub sld_servol_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

Call servo 1 control

End Sub

Private Sub sld_servo2_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

Call servo2_control

End Sub

Private Sub sld_servo3_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

Call servo3_control

End Sub

Private Sub sld_servo4_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)

Call servo4_control

End Sub

Private Sub servo lcontrolQ

208

'Display value in textbox
txt servol.Text = sld servol.Value

If MSComml .PortOpen = True Then
'Let Controller know Servo 1 's value is coming
MSComml.Output = "P"
'Convert 8 bit value to 16 bit value, then send digits out of port
send_digits_of_PWM_value (sldservo 1. Value)
Textl.Text = Textl.Text & " **P" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servol.Value) & "P** "

End If

End Sub

Private Sub servo2_control()

'Display value in textbox
txt_servo2.Text = sld_servo2.Value

If MSComml.PortOpen = True Then
'Let Controller know Servo 1 's value is coming
MSComml.Output = "Q"
'Convert 8 bit value to 16 bit value, then send digits out of port
send_digits_of_PWM_value (sld_servo2.Value)
Textl.Text = Textl.Text & " **Q" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo2.Value) & "Q** "

End If

End Sub

Private Sub servo3_control()

txt_servo3.Text = sld_servo3. Value

If MSComml .PortOpen = True Then
'Let Controller know Servo 1 's value is coming
MSComml.Output = "R"
'Convert 8 bit value to 16 bit value, then send digits out of port
send_digits_of_PWM_value (sld_servo3 .Value)
Textl.Text = Textl.Text & " **R" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo3.Value) & "R** "

End If

End Sub

Private Sub servo4_control()

txt_servc4.Text = sld_servo4.Value

If MSComml.PortOpen = True Then
'Let Controller know Servo 1 's value is coming
MSComml.Output = "S"
'Convert 8 bit value to 16 bit value, then send digits out of port
send_digits_of_PWM_value (sld_servo4. Value)
Textl.Text = Textl.Text & " **S" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo4.Value) & "S** "

End If

bool_all_servo_mvnt_comp = False

End Sub

Private Sub scale_pic_boxes()

'Scale picboxes - Workspace 16x16x16
picmousecontrol.Scale (-7,7)-(7, -7)

'Boards are 16 cm
pic_horizontal_data. Scale (-8, 8)-(8, -8)
picverticaldata. Scale (zO_max + 3, 8)-(z0_max - 13, -8) 'zOmax -5 + 8; zOmax - 5 - 8

End Sub

Private Sub draw_mouse_control_indicator(x As Single, y As Single)

'Draw X axis, Y axis
'Set line thickness, and style

picmousecontrol.FillColor = vbBlack
picmousecontrol.DrawStyle = 1 'Dash
picmousecontrol.Line (0, 7)-(0, -7)' y axis
pic_mouse_control.Line (-7, 0)-(7,0)' x axis

picmousecontrol.FillColor = vbBlue
picmousecontrol.DrawStyle = 0 'Solid
pic_mouse_control.Line (x, 7)-(x, -7)'
pic_mouse_control.Line (-7, y)-(7, y) '

picmousecontrol.Circle (x, y), 0.1

End Sub

Private Sub do_inverse_kinematics_calculation(x As Single, y As Single, z As Single)

Dim xt As Single, yt As Single, zt As Single

xt = x
yt = y
zt = z

x0 = xt
y0 = yt
z0 = zt

'Calculate Inverse Kinematics
txtxO.Text = Format$(x0, "Fixed")
txt_yO.Text = Format$(y0, "Fixed")
txt_zO.Text = Format$(z0, "Fixed")

Text3.Text = "The Coordinates You have selected : xO =" & Format$(x0, "Fixed") & _
"; yO = " & Format$(y0, "Fixed") & "; zO = " & Format$(z0, "Fixed")
Text3.Text = Text3.Text & vbNewLine
Call Calculate_Inverse_Kinematics(xO, yO, zO, upper_leg(), endeffector, rangles, Text3)
CallWrite_Upper_leg_values(Text3)

Call rotation_angles_to_byte_conversion 'Convert angles and send data out port

End Sub

Private Sub rotation_angles_to_byte_conversion()

•Oto 160 = 0 to 255
Dim conversionfactor As Single

conversionfactor • 255 /190

byterangles.angl = Round(r_angles.angl * conversion_factor)
byte_r_angles.ang2 « Round(r_angles.ang2 * conversionfactor)
byte_r_angles.ang3 = Round(r_angles.ang3 * conversionfactor)
byte_r_angles.ang4 = Round(r_angles.ang4 * conversionfactor)

If (rangles.angl <= 160) And (r_angles.ang2 <= 160) And (r_angles.ang3 <= 160) And (r_angles.ang4 <= 160) Then

sld_servol.Value = byte_r_angles.angl
sld_servo2.Value • byte_r_angles.ang2
sld_servo3. Value = byte_r_angles.ang3
sld_servo4. Value • byte_r_angles.ang4

Call servolcontrol
Call servo2_control
Call servo3_control
Call servo4_control

Else

Textl.Text = "Angles out of Mechanicallly imposed limits.... 0 - 160 degrees."

End If

End Sub

Private Sub Timer l_Timer()

210

If (opndemo. Value = False) Then

'Disable timer
Timerl .Enabled • False

'Calculate Inverse Kinematics
Call do_inverse_kinematics_calculation(0, 0,-18)

Else' Demo has been selected

'Call demo routine
Call DemoMovement

End If

End Sub

Private Sub Demo_Movement()

Static demostep As Integer

demostep = demostep + 1

If (demo_step • 1) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demostep = 2) Then

Call Move_To_Coordinates(5,0,-18)

Elself (demostep = 3) Then

Call Move_To_Coordinates(0,0, -10)

Elself (demostep = 4) Then

Call Move_To_Coordinates(-5, 0, -18)

Elself (demostep = 5) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demostep • 6) Then

Call Move_To_Coordinates(0, 5s -18)

Elself (demostep = 7) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demo_step = 8) Then

Call Move_To_Coordinates(0, -5, -18)

Elself (demostep = 9) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demo_step = 10) Then

Call Move_To_Coordinates(5,0, -18)

Elself (demostep =11) Then

Call Move_To_Coordinates(5, 5, -18)

Elself (demostep » 12) Then

Call Move_To_Coordinates(0,5, -18)

Elself (demostep = 13) Then

Call Move_To_Coordinates(-5, 5, -18)

Elself (demostep = 14) Then

Call Move_To_Coordinates(-5,0, -18)

Elself (demostep =15) Then

Call Move_To_Coordinates(-5, -5, -18)

Elself (demostep = 16) Then

Call Move_To_Coordinates(0, -5, -18)

Elself (demostep = 17) Then

Call Move_To_Coordinates(5, -5, -18)

Elself (demostep = 18) Then

Call Move_To_Coordinates(5,0,-18)

i *

Elself (demostep = 19) Then

Call Move_To_Coordinates(0, 0,-10)

Elself (demostep = 20) Then

Call Move_To_Coordinates(5, 5, -18)

Elself (demostep = 21) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demostep = 22) Then

Call Move_To_Coordinates(-5, -5, -18)

Elself (demostep = 23) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demo_step = 24) Then

Call Move_To_Coordinates(-5,5, -18)

Elself (demostep = 25) Then

Call Move_To_Coordinates(0,0,-10)

Elself (demo_step = 26) Then

Call Move_To_Coordinates(5, -5,-18)

Else

Call Move_To_Coordinates(0,0,-15)

demostep = 0
opndemo.Value = False
opn_mouse. Value = True
Timerl .Enabled = False

End If

End Sub

Private Sub Move_To_Coordinates(xm As Single, ym As Single, zm As Single)

Call do_inverse_kinematics_calculation(xm, ym, zm)
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, boolallservomvntcomp)
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, bool_all_servo_mvnt_comp)

End Sub

Option Explicit

Public Sub draw_picbox_data(pb As PictureBox, t As TextBox, xq As Single, yq As Single, xo As Single, yo As Single,
boolstimulated As Boolean)

Dim width As Single, height As Single, xp As Single, yp As Single
Dim stepx As Single, step_y As Integer

'Clear picture box
pb.Cls

width = pb.ScaleWidth
height = pb.ScaleHeight

'First sensor position
xp = pb.ScaleLeft + 0.5
yp = pb.ScaleTop - 0.5

step_x = width /16
step_y = height /16

'Draw Reference Axes
'Set line thickness, and style
pb.FillColor = vbBlack
pb.DrawStyle = 1 'Dash
pb.Line (pb.ScaleLeft + width / 2, pb.ScaleTop) _
-(pb.ScaleLeft + width / 2, pb.ScaleTop + height) ' y axis

pb.Line (pb.ScaleLeft, pb.ScaleTop + height 12) _
-(pb.ScaleLeft + width, pb.ScaleTop + height / 2) ' x axis

' check Scale values
't.Text = pb.ScaleHeight & vbTab & pb.ScaleWidth & vbTab & xp & vbTab & yp & vbTab & step_x & vbTab & step_y

'Fillcolour and fill style
pb.FillColor = &HFFFF00 ' a light blue
pb.DrawStyle = 0 ' Solid

'Distance between centres of sensors is 10 mm, 16 by 16 grid of sensors
For yp = pb.ScaleTop - 0.5 To (pb.ScaleTop - 0.5 + height) Step step_y
'Rows - Represented by y

For xp » pb.ScaleLeft + 0.5 To (pb.ScaleLeft + 0.5 + width) Step stepx
'Columns - represented by x

'xo, yo - old coordinates
If (Abs(xo - xp) <= 0.1) And (Abs(yo - yp) <= 0.1) Then

'Change fillcolour to red, then draw circle, and change fillcolour back
If (boolstimulated = True) Then

pb.FillColor = vbRed
End If

pb.Circle (xp, yp), 0.2
pb.FillColor = &HFFFF00

Else
' Just draw the circle
pb.Circle (xp, yp), 0.2

End If

'Draw bulls eye
If (Abs(xq - xp) <= 0.1) And (Abs(yq - yp) <= 0.1) Then

pb.FillColor = vbBlue
pb.Circle (xp, yp), 0.1
pb.FillColor = &HFFFF00

End If

Next xp

Nextyp

'draw crosshair
pb.Line (xq, pb.ScaleTop)-(xq, pb.ScaleTop + pb.ScaleHeight) '

pb.Line (pb.ScaleLeft, yq)-(pb.ScaleLeft + pb.ScaleWidth, yq)'

End Sub

Option Explicit

Dim rad2deg As Single
Dim angle_legl_min As Single
Dim angleleglmax As Single
Dim angles As rotationangles

Public Sub initialize_variables()
rad2deg= 180/3.141592654

angleleglmin = 25
angle_legl_max = 245

End Sub

Private Sub Coordinates_not_found(L As leg)
'Sets values to impossible values, because coordinates cannot be found
L.angle = -400
L.kneecoordinates.x = -400
L.kneecoordinates.y = -400
L.kneecoordinates.z = -400

End Sub

Private Sub Reset_Knee_Joint_Solutions(x() As Single)
x(0) = 0
x(l) = 0
x(2) = 0

End Sub

Public Sub Calculate_Inverse_Kinematics(x As Single, y As Single, z As Single, L() As leg, ee As EEAJ, r_a As rotation_angles,
t As TextBox)

Dim x_0 As Single, y_0 As Single, z_0 As Single, angle 1 As Single, angle2 As Single
Dim solution As angle_and_coordinates
Dim c 1 As Single, c2 As Single
Dim temp As Single
Dim allequationssolved As Boolean
Dim COKJSl(2) As Single, COKJS2(2) As Single
Dim i As Integer

'Set Conversion constant
'rad2deg

x_0 = x
y_0 = y
z_0 = z
i = l

' Set end effector ankle joints
ee.AJ(0).x = x + 4.45
ee.AJ(0).y = y
ee.AJ(0).z = z

ee.AJ(l).x = x
ee.AJ(l).y = y-4.45
ee.AJ(l).z = z

ee.AJ(2).x = x - 4.45
ee.AJ(2).y = y
ee.AJ(2).z = z

ee.AJ(3).x = x
ee.AJ(3).y = y + 4.45
ee.AJ(3).z = z

allequationssolved • True

214

'To Prevent division by 0
If(z_0o0)Then

'Solving Leg 1 Knee coordinates
cl=(5.55-x_0)/z_0
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 + 8.9 * x_0 - 300.607) / (2 * z_0)

temp = 100 - 20 * cl * c2 - c2 A 2
If (temp < 0) Or (allequationssolved = False) Then

allequationssolved = False
Call Coordinates_not_found(L(0))

Else
'Coordinates can be found
'Solutions set 1
Call Reset_Knee_Joint_Solutions(COKJS 1 ())
'x Value
COKJS1(0) = (-cl * c2 + 10 + temp A 0.5) / (cl A 2 + 1)
'z Value
COKJS1 (2) = c 1 * COKJS1 (0) + c2

'Solution Set 2
CallReset_Knee_Joint_Solutions(COKJS20)
'x Value
COKJS2(0) = (-cl * c2 + 10 - temp A 0.5) / (cl A 2 + 1)
'z Value
COKJS2(2) = cl * COKJS2(0) + c2

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJSl(0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") <

" & Format$(COKJSl(2), "Fixed") & ")" &_
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & ";" &

Format$(COKJS2(2), "Fixed") & ")"

't.Text = t.Text & vbNewLine & ((COKJS 1(0) - ee.AJ(O).x) A 2 + (COKJS 1(1) - ee.AJ(O).y) A 2 + (COKJS 1(2) -
ee.AJ(O).z) A 2)

'tText = t.Text & vbNewLine & ((COKJS2(0) - ee.AJ(O).x) A 2 + (COKJS2(l) - ee.AJ(O).y)A 2 + (COKJS2(2) -
ee.AJ(0).z)A 2)

solution = Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(O), L(0).thigh_coordinates)
t.Text = t.Text & vbNewLine & "Angle:" & Format$(solution.angle, "Fixed")
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " & _
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")"

L(0).angle = solution, angle
L(0).knee_coordinates = solution.coordinates

End If

'Sloving Leg 2 Knee Coordinates
cl=(-5.55-y_0)/z_0
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 - 8.9 * y_0 - 300.607) / (2 * z_0)

temp - 100 + 20 * cl * c2 - c2 A 2
If (temp < 0) Or (all_equations_solved « False) Then

allequationssolved = False
Call Coordinates_not_found(L(l))

Else
'Coordinates can be found
'Solutions set 1
Call Reset_Knee_Joint_Solutions(COKJS 1 ())
'y Value
COKJSl(l) = (-cl * c2 - 10 + temp A 0.5)/(cl A 2 + 1)
'z Value
COKJSl(2) = cl *COKJSl(l) + c2

'Solution Set 2
CallReset_Knee_Joint_Solutions(COKJS2())
'y Value
COKJS2(l) = (-cl * c2 - 10 - temp A 0.5) / (cl A 2 + 1)
'z Value
COKJS2(2) - cl * COKJS2(l) + c2

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i

t.Text = t.Text & vbNewLine & "SSI - (" & Format$(COKJS 1 (0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & '
" & Format$(COKJSl (2), "Fixed") & ")" & _

vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & "; " &
Format$(COKJS2(2), "Fixed") & ")"

'Check for Correct Solutions

solution = Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(l), L(l).thighcoordinates)
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed")
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & " ; " & _
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")"

L(l).angle = solution.angle
L(l).knee_coordinates = solution.coordinates

End If

i = i + l

'Solving Leg 3 Knee Coordinates
cl = (-5.55 - x_0) / z_0
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 - 8.9 * x_0 - 300.607) / (2 * z_0)

temp = 100 + 20 * cl * c2 - c2 A 2
If (temp < 0) Or (all_equations_sol ved • False) Then

all_equations_solved = False
Call Coordinates_not_found(L(2))

Else
'Coordinates can be found
'Solutions set 1
Call Reset_Knee_Joint_Solutions(COKJS 1 ())
'x Value
COKJS1(0) = (-cl * c2 - 10 + temp A 0.5) / (cl A 2 + 1)
'z Value
COKJSl(2) = cl * COKJS1(0) + c2

'Solution Set 2
CallResetJCnee_Joint_Solutions(COKJS20)
'x Value
COKJS2(0) = (-cl * c2 -10 - temp A 0.5) / (cl A 2 + 1)
'z Value
COKJS2(2) = cl * COKJS2(0) + c2

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJSl(0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & '

" & Format$(COKJSl(2), "Fixed") & ")" & _
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & "; " &

Format$(COKJS2(2), "Fixed") & ")"
'Check for Correct Solutions

' * * * * * * * * * * * * * * * * * * * > f t *

solution " Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(2), L(2).thigh_coordinates)
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed")
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " &_
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")"

L(2).angle = solution.angle
L(2).knee_coordinates = solution.coordinates

End If

i = i + l

'Solving Leg 4 Knee Coordinates
cl=(5.55-y_O)/z_0
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 + 8.9 * y_0 - 300.607) / (2 * z_0)

temp = 100 - 20 * cl * c2 - c2 A 2
If (temp < 0) Or (allequationssolved = False) Then

all_equations_solved = False
Call Coordinates_not_found(L(l))

Else
'Coordinates can be found
'Solutions set 1
Call Reset_Knee_Joint_Solutions(COKJS 10)

216

'y Value
COKJSl(l) = (-cl *c2 + 10 + tempA0.5)/(cl A 2 + l)
'z Value
COKJSl(2) = cl *COKJSl(l) + c2

'Solution Set 2
CallReset_Knee_Joint_Solutions(COKJS2())
'y Value
COKJS2(l) = (-cl *c2 + 10-tempA0.5)/(cl A2 + l)
'z Value
COKJS2(2) = cl * COKJS2(l) + c2

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJS 1 (0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & ";

" & Format$(COKJSl(2), "Fixed") & ")" &_
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(1), "Fixed") & ";" &

Format$(COKJS2(2), "Fixed") & ")"
'Check for Correct Solutions

solution = Deterrnine_Correct_Solution(COKJSl, COKJS2, ee.AJ(3), L(3).thigh_coordinates)
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed")
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " & _
FormatSfsolution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")"

L(3).angle = solution.angle
L(3).knee_coordinates = solution.coordinates

End If

'Converting to servo rotation angles

angles = Convert_to_servo_rotation_angles(angles)

t.Text = t.Text & vbNewLine
t.Text = t.Text & vbNewLine & "Servo Rotation Angles : (" & Format$(angles.angl, "Fixed") & "; " & _
Format$(angles.ang2, "Fixed") & "; " & Format$(angles.ang3, "Fixed") & "; " & _
Format$(angles.ang4, "Fixed") & ")" & vbNewLine

r_a = angles

End If

End Sub

Public Sub Set_Thigh_Joint_Coordinates(L() As leg)

L(0).thigh_coordinates.x = 10
L(0).thigh_coordinates.y = 0
L(0).thigh_coordinates.z = 0

L(l).thigh_coordinates.x = 0
L(l).thigh_coordinates.y = -10
L(1).thigh_coordinates.z = 0

L(2).thigh_coordinates.x = -10
L(2).thigh_coordinates.y = 0
L(2).thigh_coordinates.z = 0

L(3).thigh_coordinates.x = 0
L(3).thigh_coordinates.y « 10
L(3).thigh_coordinates.z = 0

End Sub

Private Function Get_upper_leg_angle(zl As Single, z2 As Single, rl As Single, r2 As Single)

Dim num As Single, den As Single, angle As Single

num = zl - z2
den = rl - r2

If(denoO)Then

angle • rad2deg * Atn(num / den)

217

' First Quadrant
If (num = 0) And (den > 0) Then

angle = 0

Elself (num > 0) And (den > 0) Then
"No change to angle

' Second Quadrant - atn is negative
Elself (num > 0) And (den < 0) Then

angle = angle -180 ' Force angle to go from -180 to -270

Elself (num = 0) And (den < 0) Then
angle = -180

' Third Quadrant
Elself (num < 0) And (den < 0) Then

angle = angle - 180 ' Angle must range from -90 to -180

' Fourth Quadrant
Elself (num < 0) And (den > 0) Then

angle = angle ' No change

End If

Else' den = 0

If (num >0) Then
angle = 90

Elself (num <0) Then
angle = -90

Else
'Problems cannot determine angle as num = 0 and den = 0

End If

End If

angle = (angle + 360) Mod 360
Getupperjegangle = angle ' Return Angle

End Function

Private Function Determine_Correct_Solution(sl() As Single, s2() As Single, a As XYZcoordinates, t As XYZ_coordinates) As
angle_and_coordinates

Dim angl As Single, ang2 As Single
Dim temp As angleandcoordinates
Dim m As Single, c As Single, zl As Single, z2 As Single

t * * * * * * * * * * * * * * I C Q 1 *

Ift.x=10Then'Forleg 1
angl = Get_upper_leg_angle(sl(2), 0, sl(0), 10)
ang2 = Get_upper_leg_angle(s2(2), 0, s2(0), 10)

If t.x o a.x Then' else den is 0
'Gradient of line AlTl = DZ/DX
m = (t.z - a.z) / (t.x - a.x)
c = -10*m
zl = m*sl(0) + c
z2 = m * s2(0) + c

'Now test gradient of A1T1
If(m>0)Then
'z of Knee coordinate must be less than z of AlTl at corresponding x

If(sl(2)<zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)<z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)

218

temp.coordinates.z = s2(2)
Else

'Problems - Singularity
temp.angle = -400
temp.coordinates.x • -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

ElseIf(m<0)Then
'z of knee coodinate must be more than AlTl at corresponding x

If(sl(2)>zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)>z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y • s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

End If

Else' t.x = a.x -> den goes to 0
If (Abs(sl(0)) > Abs(s2(0))) Then

temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

Elself (Abs(s 1(0)) < Abs(s2(0))) Then
temp.angle = ang2
temp.coordinates.x « s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems

End If

End If

angles.angl = temp.angle

p * * * * * * * * * * * * * * * * i p o 3 ********************************

ElseIft.x = -10Then'leg3
angl = Get_upper_leg_angle(sl(2), 0, sl(0), -10)
ang2 - Get_upper_leg_angle(s2(2), 0, s2(0), -10)

If t.x o a.x Then' else den is 0
'Gradient of line A3T3 = DZ/DX
m = (t.z - a.z) / (t.x - a.x)
c = 1 0 * m
z l=m*s l (0) + c
z2 = m * s2(0) + c

'Now test gradient of A3T3
If(m>0)Then
'z of Knee coordinate must be less than z of A3T3 at corresponding x

If(sl(2)>zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)>z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)

temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

ElseIf(m<0)Then
'z of knee coodinate must be more than A3T3 at corresponding x

If(sl(2)<zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)<z2)Then
temp.angle = ang2
temp.coordinates.x «• s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x «• -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

End If

Else ' t.x = a.x -> den goes to 0
If (Abs(sl(0)) > Abs(s2(0))) Then

temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = s 1 (1)
temp.coordinates.z = si (2)

Elself (Abs(sl(0)) < Abs(s2(0))) Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems

End If

End If

angles.ang3 = temp.angle

'************************* LEG 2 **
ElseIft.y = -10Then'leg2

angl = Get_upper_leg_angle(sl(2), 0, si(1), -10)
ang2 = Get_upper_leg_angle(s2(2), 0, s2(l), -10)

If t.y o a.y Then ' else den is 0
'Gradient of line A2T2 = DZ/DY
m = (t.z - a.z) / (t.y - a.y)
c = 1 0 * m
zl = m*sl (l) + c
z2 = m*s2(l) + c

'Now test gradient of A2T2
If(m>0)Then
'z of Knee coordinate must be less than z of A2T2 at corresponding y

If(sl(2)>zl)Then
temp.angle = angl
temp.coordinates.x « sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)>z2)Then

220

temp.angle • ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

ElseIf(m<0)Then
'z of knee coodinate must be more than A2T2 at corresponding y

If(sl(2)<zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

ElseIf(s2(2)<z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

End If

Else' t.y = a.y -> den goes to 0
If (Abs(s 1 (1)) > Abs(s2(1))) Then

temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

Elself (Abs(sl(l)) < Abs(s2(l))) Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems

End If

End If

angles.ang2 = temp.angle

I * T C P A *

ElseIft.y=10Then'leg4

angl = Get_upper_leg_angle(sl(2), 0, si(1), 10)
ang2 = Get_upper_leg_angle(s2(2), 0, s2(l), 10)

If t.x o a.x Then' else den is 0
'Gradient of line A4T4 = D27DY
m = (t.z - a.z) / (t.y - a.y)
c = -10*m
z l = m * s l (l) + c
z2 = m*s2(l) + c

'Now test gradient of A4T4
If(m>0)Then
'z of Knee coordinate must be less than z of A4T4 at corresponding y

If(sl(2)<zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = sl(2)»

221

Elself(s2(2)<z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle «-400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

ElseIf(m<0)Then
'z of knee coodinate must be more than A4T4 at corresponding y

If(sl(2)>zl)Then
temp.angle = angl
temp.coordinates.x = sl(0)
temp.coordinates.y = s 1(1)
temp.coordinates.z = si (2)

ElseIf(s2(2)>z2)Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems - Singularity
temp.angle = -400
temp.coordinates.x = -400
temp.coordinates.y = -400
temp.coordinates.z = -400

End If

End If

Else ' t.y = a.y -> den goes to 0
If (Abs(s 1 (1)) > Abs(s2(1))) Then

temp.angle • angl
temp.coordinates.x = sl(0)
temp.coordinates.y = sl(l)
temp.coordinates.z = si (2)

Elself (Abs(sl(l)) < Abs(s2(l))) Then
temp.angle = ang2
temp.coordinates.x = s2(0)
temp.coordinates.y = s2(l)
temp.coordinates.z = s2(2)

Else
'Problems

End If

End If

angles.ang4 = temp.angle

End If

Determine_Correct_Solution = temp

End Function

Private Function Convert_to_servo_rotation_angles(b As rotationangles) As rotation_angles

b.angl = (Abs(b.angl - 405)) Mod 360 ' From 45 to -135, clockwise convert to 0 to 180

b.ang2 = (b.ang2 -135) ' From 135 to 315, clockwise convert to 0 to 180

b.ang3 = (b.ang3 - 135) ' From 135 to 315, clockwise convert to 0 to 180

b.ang4 = (Abs(b.ang4 - 405)) Mod 360 ' From 45 to -135, clockwise convert to 0 to 180

•Return values
Convert_to_servo_rotation_angles =J)'

End Function

Option Explicit

Public Type XYZ_coordinates

•May need to change these to single
x As Single
y As Single
z As Single

End Type

Public Type leg

angle As Single
knee_coordinates As XYZcoordinates
thigh_coordinates As XYZ_coordinates

End Type

Public Type EEAJ

'End effector Ankle Joints
AJ(3) As XYZ_coordinates

End Type

Public Type angle_and_coordinates

angle As Single
coordinates As XYZcoordinates

End Type

Public Type rotation_angles

angl As Single
ang2 As Single
ang3 As Single
ang4 As Single

End Type

