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Abstract 

This dissertation details the development of a parallel robot with an integrated direct end 

effector sensing system, from concept to prototype model and includes details of research, 

design, simulation, construction, assembly and testing. 

Current research in parallel robots is insufficient as compared to serial type machines, even 

though their existence has been known for some time. The reasons are the difficulty in 

conceptualising unique parallel mechanisms, achieving machines that are capable of high 

accuracy, solving their complex kinematics, dynamics and control problems. There are many 

advantages of parallel machines that rival the serial type, and these warrant further studies. 

The second aspect of this project was the design of a direct end effector sensor system. Many 

existing automated multi-axis machines operate under overall 'open loop' control. The exact 

position in space of the end effector or tool head, for those machines, is not sensed directly 

but is calculated by software monitoring sensors on actuator axes. 

This sensor system and robot structure was designed specifically for use in the agricultural 

and general food processing/packaging industries. The accuracy and repeatability of such a 

machine and its sensor system are in the millimetre range. 
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1 Introduction 

1.1 Mechatronics 

This was a mechatronics project as it consists of parts from 4 engineering disciplines. This 

term was first mentioned in 1969 by a senior engineer, Mr. Tetsuro Mori, of the Japanese 

company Yaskawa. Mechatronics is the synergistic combination of several engineering 

disciplines, consisting of technologies from mechanical, electronic, control, and software 

engineering as illustrated in Figure 1. [1] 

Figure 1 Graphical illustration of Mechatronics 

(Adapted from [2]) 

Essentially, mechatronics adds intelligence to mechanical designs. With the rapid advance of 

electronic technology, designs that were once purely mechanical are now best accomplished 

with electronics or a combination of both. Traditional mechanical solutions in modern 

machinery are being improved on or replaced by mechatronic solutions. [2] 

1.2 Motivation for the Study 

There has been a renewed interest in parallel mechanisms, and currently researchers from all 

over the world are investigating or creating new parallel kinematics machines for industry. 

Serial type mechanisms have reached the limits on their advantages of speed, payload 
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capacity, etc. Parallel mechanisms on the other hand can be designed to be faster, carry larger 

masses, and they can be designed to have greater accuracy. See Figure 6 for an illustration. 

The parallel robot that inspired this study was the Flex-Picker by ABB Automation. These 

machines, as well as many automated multi-axis machines, operate under overall 'open loop' 

control. The exact position in space of the end effecter or tool head is not sensed directly. 

With knowledge of the robot's initial position, the control system uses differential 

measurements from sensors on axes that track linear translation and rotations of shafts/gears, 

to track the position of the end effector. It then uses this information to plot a trajectory to 

future positions. A direct end effector sensing system would provide additional data for 

positioning. Errors in the control system brought on by errors in the actuator sensors may then 

be corrected, to achieve better positioning accuracy and repeatability. This however, is 

dependent on the resolution of the sensor system involved and the positioning capability of 

the robot. 

The design of the robot and sensor system were specific to the agricultural and food 

processing/packaging industry. For this application robot speed is paramount, accuracy and 

repeatability is less stringent but within lie within certain tolerances, roughly in the millimetre 

range. Parallel robots are perfectly suited for such an application. The sensor system for such 

an application needs to be robust for the environment in which it is intended to work. This 

environment is subject to conditions of humidity, vibration and contaminants. An additional 

sensor system providing direct end effector position location adds sensor redundancy to the 

control system, thereby improving the ability of accurate positioning. 

1.3 Scientific Contribution of the Dissertation 

The scientific contribution of this dissertation lies with the fact that there hasn't been a 

parallel robot designed with an integrated direct end effector sensor system. Furthermore, the 

mathematical modelling of parallel robots uses intense matrix theory of Jacobians and 

Lagrangian formulae that are not easily followed. This dissertation aims to provide a 

simplified geometrical model of the parallel robot designed. It also provides closed form 

algebraic solutions to the forward and inverse kinematics for this Flex-Picker type PKM. 
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1.4 Project Objectives 

The objectives of this project were: 

• To research various types of parallel kinematics machines. To perform a study of the Delta 

type (Flex-Picker) PKM structure. 

• Design and construct a scaled version of the Delta robot. Simulate the multi-DOF machine 

in a CAD package. 

• Research, design and implement a sensor system that would align a machine's end effector 

with its base and be able to track its location in space. Develop, calibrate and test in 2D 

first. Then extrapolate the design to 3D. 

• Design a control system for the robot which interprets data from the sensor system. 

Develop algorithms for movement control and data acquisition to and from sensors. 

Control the machine's movement by electronic hardware and software programming. 

• Conduct a performance analysis of the design. 

1.5 Project Specifications 

1.5.1 Mechanical Specifications 

Size: The robot should be a scaled version of a commercial system, for the purpose of a 

kinematics and controls study. The mounting framework of the robot should be 650 mm 

(length) x 300 mm (width) x 550 mm (height). The heavy inertial frame (relative to the size of 

the robot) should dampen any effect of vibration from the motors on the frame itself. 

Workspace: The workspace of the end effector should cover 120 mm (length) x 120 mm 

(width) x 100 mm (height). 

Positioning Accuracy: This scaled adaptations sole purpose is a study of parallel mechanism 

machine design. It will not be doing any work of pick and place or assembly. Accuracy 

therefore is of little consequence. An accuracy of 5 mm is more than sufficient. 

Positioning repeatability: Likewise, repeatability is also not an issue. However a 

repeatability of 95% within a 5 mm radius of the intended position will be aimed for. 

Robot Speed: Not applicable. 

Robot Acceleration: Not applicable. 

Payload Carrying Ability: Not applicable. As mentioned, this machine will not carry a 

payload. 
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1.5.2 End Effector Sensor Specifications 

Sensor Resolution: This should be higher than the positioning capability of the robot. A 

resolution of 2 to 4 mm would be acceptable, as this was the positioning accuracy required by 

the food processing and packaging industry. 

Sensor Repeatability: The repeatability of the sensor system should be higher than 97% with 

the robot positioned at its absolute maximum distance from the screen. 

Sensitivity Distance: Must sense the end effector at a distance of 200 mm. 

Sensitivity Area: 160 mm x 160 mm. This must be larger than the length x width of the 

workspace. 

1.6 Research Publications 

1. 22nd International Conference on CAD/CAM, Robotics and Factories of the 

Future, July 2006. Track: Advanced Control Systems. "Mechatronic Sensor System 

for Robotic and Automated Machines", by A. A. Shaik, Prof. G. Bright and Prof. W. 

L. Xu. 

2. Incom'2006: 12th IF AC Symposium on Information Control Problems in 

Manufacturing, September 2006, Volume 1 - Track "Robotics and Factory of the 

Future". "Modular Sensor System for Flexi-Picker and Multi-Axis Automated 

Machines", by A. A. Shaik, Prof. G. Bright and Prof. W. L. Xu. 

3. ACRA 2006: Australasian Conference on Robotics and Automation, December 

2006. "Robotic Sensor System for Automated Machines", by A. A. Shaik, Prof. G 

Bright and Prof. W. L. Xu. 

4. ISAM 2007: 2007 IEEE Symposium on Assembly and Manufacturing, July 

2007. "Sensor System for Multi Axis Automated Assembly and Manufacturing 

Machines", by A. A. Shaik, Prof. G Bright and Prof. W. L. Xu. 

5. AFRICON 2007: IEEE AFRICON Conference, September 2007. "Closed Loop 

Sensor System for Automated Machines", by A. A. Shaik, Prof. G Bright and Prof. 

W. L. Xu. 

6. IJISTA: International Journal of Intelligent Systems Technologies and 

Applications. "Parallel Robot Design Incorporating a Direct End Effector Sensing 

System", by A. A. Shaik, Prof. G Bright and Prof. W. L. Xu. Publication pending. 
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1.7 Dissertation Outline 

Chapter 1, Introduction: Introduces the topic of the dissertation, listing project objectives, 

specifications and publications. 

Chapter 2, Parallel Mechanisms: Presents a history of the most influential parallel robots 

ever conceptualised or built. The Flex-Picker robot's capabilities are then highlighted. 

Chapter 3, Direct End Effector Sensor System: Presents research on various position 

location technologies, discusses the sensor concept that was used and proves its resolution. 

Chapter 4, Mechanical Design: Discusses the design of parallel robots and then presents the 

design of the modified delta mechanism. The system is modelled and the solutions to the 

forward and inverse kinematics are discussed. 

Chapter 5, Electronic Hardware: The electronic components used in the design are 

discussed. The schematics and PCBs are then presented. 

Chapter 6, Control Design: The system is characterised through a standard linear time 

invariant (LTI) modelling technique. Controllers are designed in the S and Z domains, and the 

discrete time controller implementation is illustrated. 

Chapter 7, Software: Three software languages were used in the design of the system. These 

are discussed as well as the various software functions used to model or control the system. 

Chapter 8, Calibration, Simulation Results and Prototyping: Discusses the mechanical 

and software calibration of the system. Simulation results of the forward and inverse 

kinematics, vibration, a designed trajectory and the control system are presented. The 

prototype is then illustrated and its performance discussed. 

1.8 Chapter Summary 

This chapter serves to introduce the reader to the project, which was the design of a parallel 

robot with an integrated direct end effector sensor system. It provides a motivation for the 

study, highlights the contribution of the dissertation, lists the project objectives and its 

specifications for both the sensor system and the parallel robot. 
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2 Parallel Mechanisms 

2.1 A History of the most Influential Parallel Robots 

Theoretical works on parallel mechanisms (leading up to parallel robots, or machines) date 

back to centuries ago, when mathematicians investigated polyhedra. However there is no 

clear evidence of a complete parallel manipulator until more recent times. One of the first 

recorded designs of a parallel mechanism (or machine) is accredited to James E. Gwinnett. He 

applied for a patent in 1928 for a motion platform for the entertainment industry which was 

based on a spherical parallel mechanism. It was visionary and was designed only a few years 

after the first colour motion picture and the first with sound. This is shown in Figure 2 a. 

Ten Years later Willard L.V. Pollard invented a new industrial parallel robot for automated 

spray painting. It was a 5-DOF, 3 branch parallel robot that was never built. The first PKM 

industrial robot to be built was co-designed by Pollard's son, Willard L.G. Pollard Jr. On 

October 29, 1934, Willard Jr. filed a patent for a spray painting machine. The patent consisted 

of two parts: an electrical control system and a mechanical manipulator. The mechanical 

manipulator was a parallel robot based on a pantograph. Willard Jr.'s patent was issued on 

June 16, 1942. This machine is shown in Figure 2 b. [3, 4, 5] 

Figure 2 First Patented Parallel Mechanisms [3] 

a. Possibly the first spatial parallel mechanism, patented in 1931 
b. The first spatial industrial parallel robot, patented in 1942 

In 1947 a new parallel mechanism was invented by Dr. Eric Gough, which would become the 

most popular, revolutionary parallel robot that would be replicated over a thousand times. It 
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was the variable-length-strut octahedral hexapod (a polyhedron with 8 faces having 6 legs 

separating the base from the table). The universal tire-testing machine was invented to 

determine the properties of tires under combined loads, and was based on an earlier hexapod 

design as mentioned by Dr. Gough in his paper "Universal tire test machine" contained in the 

proceedings of FISITA (pp. 117-137, May 1962). Systems with six jacks (hexapods), with 

three vertical and three horizontal, have been so common that their origins were forgotten. 

Their popularity was due to the fact that for small variations, the jack adjustments would be 

simple and interpretable. These systems, or slightly modified versions, are known under the 

acronym MAST, i.e. Multi-Axis Simulation (or Shake) Table, and are still manufactured by 

numerous companies. These hexapods are shown in Figure 3. [3, 4, 5] 

Figure 3 Hexapods [3] 

a. The first octahedral hexapod, the original Gough platform of 1954 
b. Tire testing machine in 2000, just before Dunlop started using another method 
c. A typical MAST system, hexapods of this type have existed long before the 

Gough platform. 

The distinguishing characteristic about the Gough platform was the arrangement of the six 

struts. Since large ranges of motion were needed, he selected the symmetrical arrangement of 

an octahedron. The machine was built in the early 1950s, was fully operational in 1954 and 

played an important role in the birth of rubber science. 

In 1965, a paper written by D. Stewart entitled "A platform with 6 degrees of freedom" 

appeared in the proceedings of the British IMechE journal (Vol. 180, No. 15, pp. 371-385), 

where he described a 6-DOF motion platform for use as a flight simulator. The parallel 

mechanism, illustrated in Figure 4 a, was different from the octahedral hexapod which is 

oddly referred to as the "Stewart platform." Stewart's paper had a great impact on the 

subsequent development of the field of parallel kinematics. A number of uses were suggested 

for the hexapod, many of which were accurate predictions of the future. [3, 4, 5] 
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In 1962, US engineer Klaus Cappel was given the task of improving an existing conventional 

6-DOF vibration system based on a hexapod, by the Franklin Institute Research Laboratories 

in Philadelphia. This MAST originally had four horizontal actuators positioned in a cyclic 

pattern. However, the redundancy of the seven-strut configuration was too complex to control 

and the resulting antagonistic forces eventually fractured the table. Mr. Cappel then came up 

with the same octahedral arrangement as the one designed by Dr. Gough. The corporate office 

of the Sikorsky Aircraft Division of United Technologies then made a request to the Franklin 

Institute for the design and construction of a 6-DOF helicopter flight simulator. Mr. Cappel 

produced his octahedral arrangement and applied for a patent on December 7, 1964. It was 

granted in 1971 by the US Patent and Trademark Office. At that time Mr. Cappel was 

unaware of Gough's invention (or of Stewart's paper which was not yet published). [3, 4, 5] 

Figure 4 Flight Simulators [3] 

a. Schematic of the one and only "Stewart platform" 
b. Excerpt from the first patent on an octahedral hexapod issued in 1967 
c. The first flight simulator based on an octahedral hexapod as in the mid 1960s 

In 1987 Karl-Erik Neumann (founder of Neos Robotics) designed a new parallel kinematics 

robot, the Tricept (see Figure 5 c). The major challenge for its control system was the lack of 
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adequate microprocessor computational power. In 1992, Comau Pico launched the first 

multiprocessor controller which resolved this problem. The Tricept was designed to overcome 

the shortcomings of existing robots for the assembly of relays on switchboards. Its use was 

then extended as a machine tool for automotive and aerospace companies that wanted micron 

level repeatability, stiffer robots with greater power, and flexibility. [6] 

Figure 5 Popular PKMs 

a. IRB 340 Flex-Picker [7] 
b. Clavel's Delta Architecture [8] 
c. Neos Tricept and Tricept design patent [6] 

Another popular parallel robot is the Delta robot (see Figure 5, a, b.), invented by Prof. 

Reymond Clavel of Ecole Polytechnique Federate de Lausanne. The Delta robot has three 

actuators controlling 3 translational DOFs of the mobile platform, with an additional linkage 

providing rotational movement of the end effector. This robot is used mostly as a pick-and-

place facilitator; other rare applications include machining and assembly. The Delta robot 
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unlike the Tricept, was licensed to various companies. Some machine tool manufacturers 

have built PKMs based on the Delta robot architecture, and have obtained patents for them. 

One such company is ABB Flexible Automation of New Berlin which produces the Flex-

Picker Robots. [6, 8] 

2.2 Comparison between Parallel and Serial Technology 

The few parallel mechanisms addressed thus far present a fresh outlook from conventional 

mechanism design. Most robots used for industrial manufacturing have articulated arms 

equipped with serial technology. The increased need for automation and flexible production 

means new applications and higher performance requirements for industrial robots. Current 

serial robot technology is limited whereas parallel kinematics structures have the highest 

potential for improvement [9]. 

In a serial topology each actuator axis is in line relative to the preceding one in an open 

kinematics chain. In a purely parallel topology the actuator axes (one for each DOF) have a 

fixed arrangement and position in space. From the fixed base, a number of arms and links are 

coupled in parallel to the end effector, forming closed kinematics chains. Hybrid systems use 

a combined arrangement of parallel and serial mechanisms to extract the best features of each 

architecture. The result of the parallel design is a robot that has increased stability and arm 

rigidity. As there is less flexing of the arms there is high repeatability. Also the high structural 

stiffness of a closed-loop kinematics chain allows it to exert strong forces in its workspace 

[10]. The speed of displacement is often greater since the end effector has low inertia; due to 

the fact that the motors are generally positioned on a fixed base [11]. Depending on the exact 

configuration, the load can often be purely axial, and is always distributed through the legs 

[12]. With serial robots each link is required to support not only the load of the sample, but 

also the load of all the links and drive units preceding it. This means considerable inertia, thus 

limiting the robots' acceleration capability and dynamic performance [9]. Furthermore the 

end-of-arm flexing errors are cumulative. Both absolute accuracy and repeatability errors 

generated by each unit, together with manufacturing errors, gear backlash and hysteresis are 

amplified throughout the serial structure. In a parallel structure all the errors are averaged. 

The use of large displacement compliant joints to construct PKMs further reduces the errors 

mentioned above and can lead to sub-micron accuracy [13]. Additionally, PKMs have a 

reduced sensitivity to temperature, lower energy consumption, lower manufacturing cost and 

higher reliability. 
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Figure 6 A comparison between parallel and serial machines [14] 

a. 4-DOF SCARA Robot c. 3 RPRS PKM 

b. 7-DOF Redundant Robot d. 3 RRR Planer PKM 

PKMs offer good design variation and designers can stretch their creativity to conceptualize 

machines with varying architectures, more so than they could do with serial topologies. 

The main disadvantage of parallel kinematics robots is that, in general, they have a larger 

footprint to workspace ratio as a result of the configuration of the axes. There are some 

exceptions such as the Tricept, but other devices such as those based on the hexapod PKM 

take up a sizable work area. Another drawback of PKMs is that their performance depends 

heavily on their geometry and optimal design has therefore become a key issue for their 

development [15]. The ratio between payload and machine moving mass is higher, and 

therefore the payload variations influence the machine behaviour remarkably. Control is also 
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difficult as the kinematics and dynamic models are far more complex than those of serial 

machines. [10] 

The most studied parallel mechanisms have 6 DOFs. They have a small useful workspace, are 

riddled with design difficulties and their direct kinematics is a very difficult problem. The 

problem of parallel mechanisms with 2 and 3 DOFs can be described with exact equations for 

motion and exact mathematical solutions relating position of the end effector to actuated 

variable magnitudes, i.e. they are closed form. Additionally, not all singularities of a 6-DOF 

parallel mechanism can be found readily, but these are identified easily for parallel 

mechanisms with 2 and 3 DOFs. For such reasons, parallel mechanisms with less than 6 

DOFs have increasingly attracted more and more attention with respect to industrial 

applications. [16] 

Table 1 A comparison between parallel and serial 
mechanisms 

ADVANTAGE: Y 

Higher Stability and Arm 
Rigidity 

Greater Repeatability 

Higher Stiffness 

Greater Speed and 
Acceleration 

Load Distribution among 
Actuators 

Dynamic Behaviour 
Immune to Payload 

Variations 

Lower Energy 
Consumption 

Lower Manufacturing 
Cost 

Smaller Positioning 
Errors 

PARALLEL 
MECHANISMS 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

Y 

SERIAL 
MECHANISMS 

Y 
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Lower Sensitivity to 
Environmental 

Conditions 

Larger Workspace to 
Footprint Ratio 

Geometry Independent 
Performance 

Simpler Control 

Simple Forward 
Kinematics 

Simple Inverse 
Kinematics 

Predictable Dynamics 

/ 

/ 

Y 

Y 

Y 

Y 

Y 

2.3 The Flex-Picker Robot 

The PKM designed is based on the Flex-Picker robot. The IRB 340 Flex-Picker system (see 

Figure 5 a) is a three or four axis robot designed for light assembly, material handling, and 

pick and place applications. This machine has three lightweight reinforced carbon fibre arms. 

Using a vacuum gripper, the IRB 340 is capable of 120 pick and place operations per minute, 

for objects with a mass up to one kilogram. It has a maximum acceleration of 10 g, a 

maximum velocity of 10 ms-1 and a maximum torque output of one N. It is suitable for 

manipulating light weight objects such as mechanical parts, electronic modules for personal 

computers and cell phones, pharmaceuticals, and food. Due to its off-line configuration 

ability, it is highly adaptable to product changeover. [7] 

2.4 Chapter Summary 

This chapter begins with a history of the most influential parallel robots ever designed. It then 

presents a comparison between serial and parallel technologies, pointing out the advantages 

and disadvantages of each. It ends with a look at the capabilities of the Flex-Picker robot, on 

which the PKM designed was based. 
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3 Direct End Effector Sensor System 

3.1 An Overview of Current Location Sensing Technologies 

There are numerous technologies available that can be used to locate objects in space. They 

are distinguished from one another by the use of different media, transducers and processing 

techniques. To effectively design a sensor system for object location it is imperative to at least 

discuss these technologies and methods available even though some of these may not be 

suitable for the task at hand. The common problems are resolution and the type of media 

used. Resolution is always an issue with measurement and in this particular case refers to the 

maximum positional error possible with the technology being discussed. With regard to the 

medium or transducer stimulant, some media may prove undesirable; for instance using an 

ultrasound triangulation system in a small closed environment. A discussion of these 

techniques/technologies now follows. 

3.1.1 Global Positioning System (GPS) 

The Global Positioning System (GPS) is the most significant recent advance in navigation and 

positioning technology. It was designed and built by the U.S. Department of Defence. It used 

to be known as the Navstar GPS and was first brainstormed at the Pentagon in 1973 as an 

error-proof navigation satellite system. The first operational GPS satellite was launched in 

1978 and by the mid-1990s the system was fully operational with 27 satellites, 24 active and 3 

backups. Each of these 1 500 kg solar-powered satellites circles the globe at about 19,300 km, 

making two complete orbits every day. Today anyone with a small receiver can use the 

system free of charge. 

GPS satellites transmit signals to the receivers on the ground. These receivers are passive. 

The receivers require an unobstructed view of the satellites above, so they are used outdoors 

and perform poorly within forested areas or near tall buildings. 

The operation of the GPS system is based on a mathematical principle called tri-lateration 

(see section 3.1.3.1 Lateration). Each GPS satellite transmits data that indicates its location 

and the current time. The satellites synchronize their operations so that these repeating signals 

are transmitted at the same instant. The signals move at the speed of light and arrive at a GPS 

receiver at slightly different times as some satellites are farther away than others. By 

multiplying this time by the speed of light an estimate of the distance to the satellites is 

determined, on the assumption that the signal traveled in a straight line. With one signal the 

receiver knows it is located somewhere on the surface of an imaginary sphere centred at the 
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satellite. The receiver can provide a reasonable approximation of its position in 3D space 

when it has received at least four unique signals. Its location is the intersection of these 4 

spheres. The orbits of the satellites were arranged so that at any time, there are at least four 

satellites visible at any point on the Earth. The system depends on a very accurate time 

reference. Atomic clocks are used on the satellites, but these cost around R 350k - R 700k. 

Hand held GPS receivers use simple quartz clocks, and it overcomes its timing inaccuracy by 

constantly resetting its time reference based on the signals it receives. There is only one time 

value that will make all the "signal spheres" intersect at 1 point, instead of having an 

"intersection space" of where the receiver could be. 

The accuracy of a position determined with GPS depends on the type of receiver. Most hand­

held GPS units have an accuracy of about 10-20 m (spherical radius), while other types of 

receivers use a method called Differential GPS to obtain higher accuracy. 

[17,18,19] 

3.1.1.1 Differential GPS (DGPS) 

Three "signal spheres" will always intersect even if all the timing and data are inaccurate, 

however 4 spheres will not intersect at one point with inaccuracies. There are a number of 

errors that occur with GPS, these are: 

• The signal slows down as it passes through the ionosphere and troposphere 
• Signal multi-path 
• Receiver clock errors 
• Inaccuracies in the reported position of the satellites 
• Low number of visible satellites 
• Bad satellite geometry 

DGPS uses two GPS receivers. Observations made by a known stationary location (base or 

reference) is used to correct the data received by a GPS unit at an unknown location (rover). 

As the base station knows its location exactly, it can determine satellite signal errors. This is 

done by measuring the ranges to each satellite using the received signals which are compared 

to the actual ranges calculated from its known location. These differential corrections for each 

tracked satellite are transmitted to all the roving GPS receivers in the area. The corrections are 

then applied to the calculations. DGPS generally achieves an accuracy of less than 1 meter. 

[20] Presents a cheap solution with errors of less than 5 cm. 

[17, 19] 
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3.1.1.2 Assisted GPS (AGPS) / Indoor GPS 

AGPS is a variant of GPS that utilizes an assistance server to aid in position determination. 

The assistance server has the ability to access information from a reference network and 

possesses computing power exceeding that of the GPS receiver. The receiver found in non-

ideal locations for position fixing, communicates with the assistance server (via cellular 

communication) and by sharing tasks, the process position fixing is quicker and more 

efficient albeit more dependent on cellular coverage. Its intended application is in urban areas 

when the user is located in cities, under heavy tree cover, or indoors but not in underground 

car parks or tunnels. 

Indoor GPS, or high sensitivity GPS, is a combination of AGPS and massive parallel 

correlation. Outdoor GPS applications tend to experience multi-path in only its most benign 

form, i.e. a reflection that is weaker than the direct line-of-sight signal. The situation is 

different indoors. The reflection can readily exceed the power of the direct signal, or the 

direct signal can disappear altogether. 

Laser indoor GPS systems are also available. These systems are composed of three or more 

laser transmitters, and function in a similar manner to conventional GPS. The transmitter uses 

both laser and infrared light to create one-way position information of the relative azimuth 

(horizontal component of a direction) and elevation from the transmitter to the receiver. The 

receiver has photodiodes inside its module and senses the transmitted laser and infrared light 

signals. With the addition of a second transmitter of known location and orientation, the 

position of the receiver can be calculated in the base coordinate system. By adding two more 

transmitters, the system will have four laser transmitters having its accuracy maximized. As in 

satellite-based GPS, a one-way signal path is created from transmitters to the receiver, 

allowing an unlimited number of receivers to continuously and independently calculate 

positions whenever two or more transmitters are in view. This indoor GPS metrology system 

has millimetre accuracy and finds use in the manufacturing sector, tracking parts, materials, 

or people. 

[18,19,21] 
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3.1.2 Bluetooth, WIFI and Cellular Networks 

Bluetooth, WiFi and Cellular networks provide a means for location sensing. 

Bluetooth devices form mini-cells, and with a sufficient number of Bluetooth cells (access 

points) installed, the position of a transmitter can be deduced by knowing the cell with which 

a device is communicating (or location base stations in a WiFi network), discussed in [22] for 

locating people in buildings. [23] Also takes into account signal strength from the access 

points. Since the transmitted signal energy decreases almost proportionally with the distance 

between stations and mobile terminals, this relation can be used to determine the distance 

from a particular node. The signal energy is measured by the mobile device and is transmitted 

to a central server that calculates its location. These Bluetooth networks have an accuracy 

ranging from 2 to 5 m; this is subject to the number of cells installed in the region and the 

spacing between them. 

Cell of Origin (COO) is a mobile positioning technique for finding a caller's cell (the basic 

geographical coverage unit of a cellular telephone system) location. It works in the same way 

as the Bluetooth network just mentioned, however the accuracy may be as close as one 

hundred meters from the target (in an urban area) or as far off as thirty kilometres, the 

accuracy is dependent on the number of base stations in the area. For this reason, when 

precision is important COO is often used in conjunction with some other technology, such as 

GPS or Time of Arrival (TOA). 

[24, 25] 

3.1.3 Triangulation 

This technique uses geometry to calculate position and is achieved by considering the 

properties of triangles to compute object locations. There are 2 subcategories of triangulation 

i.e. lateration and angulation. 

3.1.3.1 Lateration 

The term lateration is used for distance measurements. It computes the position of an object 

by measuring its distance from multiple reference positions. Calculating an object's position 

in 2D requires distance measurements from 3 non-collinear points. For 3D measurements, 

distances from 4 non-coplanar points are required. There are three general approaches to 

measuring the distances required by the lateration technique. 
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Direct - Direct measurement of distance. Direct distance measurements are simple to 

understand but may prove to be difficult or even impossible to obtain if the distances are 

rather large. 

Time of Flight (TOF) - Measuring distance from an object to some point P using TOF means 

measuring the time it takes a signal to travel between the object and a point P at a known 

velocity. The problem is made more complex if the object itself is moving. It is possible to 

make the calculations if there is a known mathematical function for the acceleration. If 

however it varies arbitrarily then it is impossible to find a solution. Other factors have to be 

considered to get an accurate answer: 

• For instance if the signal used is ultrasonic, and the air medium density varies over the 

distance then the speed of the signal itself will vary. The density of air at each point cannot 

be known, and there is no guaranteeing that it will vary according to some well behaved 

function. A best guess estimate must therefore be used, e.g. a function that varies density 

based on altitude. Temperature and humidity also influence air density and must be 

factored into the equation. 

• Reflection is another problem as direct and reflected signals look identical. Bats and other 

creatures that use sonic vision statistically prune away reflected measurements by 

aggregating multiple receivers' measurements and observing the environment's reflective 

properties. 

• Another issue in taking TOF measurements is the time reference. When only one 

measurement is needed, as with round-trip or radar reflections, timing is simple because 

the transmitting object is also the receiver and must maintain its own time with sufficient 

precision to compute the distance. In other systems (like GPS) where the receiver and 

transmitter are on different objects they must be synchronized precisely to get an accurate 

time measurement of distance. 

Attenuation - The intensity of an emitted signal decreases as the distance from the emission 

source increases. The decrease relative to the original intensity is the attenuation. Given a 

function correlating attenuation and distance for a type of emission as well as the original 

strength of the emission, it is possible to estimate the distance from an object to some point P 

by measuring the strength of the emission when it reaches P. Signal propagation issues such 

as reflection, refraction, and multi-path cause the attenuation to correlate poorly with distance 

resulting in inaccurate and imprecise distance estimates. 

[26, 27, 28] 

18 



3.1.3.2 Angulation 

The term angulation is used for angular measurements, and these are used for determining the 

position of an object. In general, 2D angulation requires two angle measurements and one 

length measurement such as the distance between the reference points. In 3D, one length 

measurement, one azimuth measurement, and two angle measurements are needed to specify 

a position. Angulation implementations sometimes choose to designate a constant reference 

vector (e.g. magnetic north) as 0°. Phased antenna arrays are an excellent enabling technology 

for the angulation technique. Multiple antennas with known separation measure the time of 

arrival of a signal. Given the differences in arrival times and the geometry of the receiving 

array, it is then possible to compute the angle from which the emission originated. If there are 

enough elements in the array and large enough separations, the angulation calculation can be 

performed. 

The VHF Omni-directional Ranging (VOR) aircraft navigation system uses a different 

implementation of the angulation technique. VOR stations are ground-based transmitters in 

known locations which repeatedly broadcast 2 simultaneous signal pulses. The first signal is 

an omni-directional reference containing the station's identity. The second signal is swept 

rapidly through 360° like the light from a lighthouse at a rate such that the signals are in phase 

at magnetic north and 180° out of phase to the south. By measuring the phase shift, aircraft 

listening to a VOR station can compute the angle formed by the direct vector to the VOR 

station and the vector from the VOR to magnetic north, with an accuracy of 1°. Aircraft 

location can be computed via angulation using 2 VOR stations. 

[26, 27, 28] 

3.1.4 Interferometers 

Interferometry is the applied science of combining two or more waves, which are said to 

interfere with each other. The interference pattern is considered a state with amplitude and 

phase which depends on the amplitude and phase of all the contributing waves. 

The interferometer can measure displacements to a resolution within a fraction of the 

wavelength of light. It has enabled Micro- and Nano-scale measurements of position or 

movement. An optical heterodyne interferometer recently designed at NASA's Jet Propulsion 

Laboratory can measure linear displacements with an error of 20 pm (pico, 1(T12). Many 

companies, such as Agilent Technologies and Zygo, provide laser interferometers for the 

purpose of high precision manufacturing. 
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Interferometers work by splitting a beam of light using a semi-transparent mirror into two 

separate beams that travel different paths along two arms. One of the beams is directed to a 

mirror located at a certain distance to provide a reference in measurements. The other beam 

reaches a mirror or reflector fixed on the moving object. This beam, being reflected, 

recombines and optically interferes with the reference beam (or beams) at the detector. The 

interference pattern, typically a set of alternating bright and dark stripes called fringes, 

displays subtle differences between the two travel paths. By analyzing these fringe patterns, 

the position of the moving target can be measured. For instance the fringe pattern is shifted by 

one fringe when one arm is stretched relative to the other by mm. An important 

3000 

characteristic of interferometry is that only displacement is measured, not absolute position. 

The initial distance to the movable mirror is not measured, only the change in position of the 

mirrors with respect to each other can be determined. If the initial position is known, 

integrating the change in position over time will yield its current position. This is the principle 

by which all inertial measurement units work. [29] 

3.1.5 Grid Encoders 

An optical grid encoder offers yet another solution and is capable of 2D dynamic 

measurements. These grids are made by OPTRA and the Heidenhain Corporation. They have 

a coverage range up to 380 mm x 380 mm with high accuracy and excellent repeatability. 

The grid encoder is composed of a grid plate with a waffle-type grating of closely spaced 

lines (4 um signal period) and a non-contact scanning head which is able to measure 

translations in two directions. The optical grid plate is attached to an aluminium mounting 

base. This base is mounted in the plane to be measured (on an X-Y table for instance) and the 

scanning head is fixed perpendicular to the plate (e.g. on the Z axis attached to the spindle). 

This system measures the relative planar motion of the two bodies for any curvilinear path in 

the plane of the mounting base with a resolution of 4 nm and to within an accuracy of ± 2 um. 

[30] 
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3.1.6 Imaging Methods 

Imaging methods use cameras and sophisticated software to determine position location. [31] 

Discusses a low cost solution employing a camera and LCD screen to locate an object's 

coordinates in 2D with high accuracy. The LCD screen displays an image, a small circle or 

cross somewhere on its surface. The camera which is attached to the end effector then tries to 

align this shape in some way with the image it produces. It can also be used to determine 2D 

orientation. 

3.1.6.1 Scene Analysis 

The scene analysis location sensing technique uses features of a scene observed from a 

particular vantage point to draw conclusions about the location of the observer or of objects in 

the scene. Usually the observed scenes are simplified to obtain features that are easy to 

represent and compare. In static scene analysis, observed features are searched in a predefined 

dataset that maps them to object locations. In contrast, differential scene analysis tracks the 

difference between successive scenes to estimate location. Differences in the scenes will 

correspond to movements of the observer and if features in the scenes are known to be at 

specific positions, the observer can compute its own position relative to them. The advantage 

of scene analysis is that the location of objects can be inferred using passive observation and 

features that do not correspond to geometric angles or distances. The disadvantage of scene 

analysis is that the observer needs to have access to the features of the environment against 

which it will compare its observed scenes. Furthermore, changes to the environment in a way 

that alters the perceived features of the scenes may necessitate reconstruction of the 

predefined dataset or retrieval of an entirely new dataset. The scene itself can consist of visual 

images, such as frames captured by a wearable camera, or any other measurable physical 

phenomena such as the electromagnetic characteristics that occur when an object is at a 

particular position and orientation. [26, 32, 33] 

3.1.6.2 Simultaneous Location and Mapping (SLAM) 

SLAM is a technique used by robots and autonomous vehicles to build up a map within an 

unknown environment while at the same time keeping track of its current position from 

various sensors. If at the next iteration of map building the measured distance and direction 

traveled has a slight inaccuracy, then any features being added to the map will contain 

corresponding errors. If unchecked, these positional errors build cumulatively grossly 

distorting the map and the robot's ability to know its precise location. There are various 
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techniques to compensate for this such as recognizing features that it has come across 

previously and re-skewing recent parts of the map to make sure the two instances of that 

feature become one. Some of the statistical techniques used in SLAM include Kalman filters, 

particle filters (a.k.a. Monte Carlo methods) and scan matching of range data. SLAM in the 

mobile robotics community generally refers to the process of creating geometrically accurate 

maps of the environment. SLAM has not yet been fully perfected, but it is starting to be 

employed in unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers and 

newly emerging domestic robots. SLAM usually uses laser range finders or sonar sensors to 

build the map. However VSLAM (visual simultaneous localization and mapping) uses 

entirely visual means. [34, 35] 

3.1.7 Other 

Displacement measuring instruments utilizing eddy currents, capacitive and inductive 

properties exist, but are not as widely spread as the technologies mentioned. 

Accelerometers and Gyroscopes are used to determine position and orientation. They are 

capable of measuring the change in acceleration of a body. An integration of this yields 

velocity and a second integration yields distance travelled. Keeping track of these parameters 

and having been given an initial position for the object, its current position can be inferred. 

This system is usually used in conjunction with other techniques/technologies such as GPS 

and radar. 
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: Measurement 
Technology Accuracy Cost Range 

^Varies from R 800 - 4 000 for 
GPS Within 10 m receiver alone Globe 

Varies from R 1 600 - 8 000 100 m from 
DGPS ! Within 5 cm !for 2 receivers base station 

Ranges from 2 - Depends on number of 
Bluetooth Networks !5 m bluetooth ceils — R 7 k + 

10.04% of range 
{2.4 microns to 

Laser Triangulation 6.6 mm) R15k + 

120 m radius 
for 3 cells 

max 16.5 m 

Interferometers 12 pm-10 nm 

Grid Encoders 

LCD Imaging System 

±2 urn 

R 250 k + 

R 250 k + 

Claimed within |R 40 k + ... Large LCD screen 
0.05 mm land High resolution camera 

Image Processing 
Methods 

:R 100 k + ... Expensive 
Software and multiple high 

Within 2 mm resolution cameras 

max 10.6 m 

Size of measurement units / 
system 

Receiver size 4cm x 4cm x 1cm. 
Compact processing unit. 

2 Receivers (4cm x 4cm x 1cm), 2 
Compact processing units. 

Size of Bluetooth tranceivers (usb 
type plug in devices) and 
Processing unit (PC). 

Smallest enclosure 6.5 cm x 5 cm x 
2 cm — largest enclosure 6.3 cm 
x 17 cm x 3 cm 

6 cm x 25.5 cm x 6.35 cm 

max area 1440 XY plates range from 17.5 cm x 17. 
sq cm 5 cm to 38 cm x 38 cm 

177.8 cm 

20 m 

110cmx 177.8 cm LCD Screen 

Size of cameras and fixed mounted 
positions in environment 

Other Disadvantages Other Advantages 

3D Position 
determination 

3D Position 
determination 

1D/2D / 3D Position 
measurement; can 
adjust range by using 
more cells 

One dimensional 
measurement; Cannot Highly robust and 
mount on end effector reliable 

One dimensional 
measurement; 
positioning and setting 
mirrors for a 3D moving 
object would be 
extremely difficult 

System cannot be 
scaled, maximum work 
area is fixed 2D metrology system 

Complex software, real | 
time control would be a Completely passive, no 
problem transmitted signals 



3.2 Sensor Feedback System 

3.2.1 Requirements 

The sensor system should possess the following characteristics or capabilities: 

• It should either locate the tool point's spatial coordinates directly, 
• Or reduce the errors accumulated in an existing sensor system. 
• It should integrate seamlessly with existing techniques for motion control. 
• In its most primary function it should locate the tool head in 2D space, 
• With some additions and modifications it should locate an object in 3D space. 
• It must be modular, 
• Robust, 
• Fast, 
• And error immune to work in a harsh industrial environment. 

3.2.2 Sensor System Concept 

The first decision to be made was choosing whether the sensing system should be passive or 

active. Passive systems, or imaging methods as mentioned in section 3.1.6, require lots of 

processing power, complex software and expensive cameras. Furthermore, with current 

technology the systems are not real time. An active sensor system is therefore needed, that is 

one that transmits a signal and then receives it with a sensor array at another location, and 

then computes position. 

The first step to solving the problem of locating the end effector in space was to reduce the 

problem to a simpler case, solve it and then attempt a generalization. The problem of locating 

the end effector of a robot in real world space was first reduced to finding its position in a 2D 

plane with regard to a point reference. Once accomplished the general problem is solved by 

attaching two 2D planes at right angles. With such an arrangement 2 axes coincide and if the 

reference point of each plane coincides, the result is a 3 axis sensor system for position 

location in 3D space. 

After consideration of the available physical quantities used when locating objects, a laser 

light stimulant was chosen for the task at hand. A laser light sensor can be conditioned to 

provide a digital output, that is, it provides only 2 voltage levels representing a digital 1 when 

the sensor is switched on and 0 when it is off. Most sensors used for tracking are analogue in 

nature and require digitization for use in digital systems, this digitization takes a finite time 

and the data created occupies a larger memory. If there are m sensors in a sensor array, with 

each sensor being represented by, for instance, an 8 bit digital value then there are 8m bytes of 
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data that have to be processed. The varying value indicating light intensity is irrelevant, as all 

that is required is a value saying that that sensor has been stimulated by laser light. 

Furthermore analogue signals are compromised by atmospheric effects, temperature, humidity 

and unshielded noise from surrounding machinery. Triangulation utilizing radio, ultrasound 

or infrared waves is not suitable as multiple reflections from surrounding surfaces cause 

interference. They also require modulation and demodulation to distinguish the signals 

generated from those created by the environment. 

The defining component of this sensor system is a grid of laser light detectors. The detectors 

need to have a narrow sensitivity wavelength bandwidth as well as viewing angle to prevent 

wrongful stimulation and spurious results. The designed sensor concept utilizes a direct 

approach, with a laser or set of lasers, attached to the end effector and the sensor grid (the 

sensor plane with sensors spaced equally in rows and columns) mounted directly above it, to 

the side or directly below. This was a natural choice as the coherent nature of laser light aids 

the task of finding the end effector in 2D if the laser beam remains perpendicular to the sensor 

plane at all times (this implies that the end effector must be perfectly horizontal). The end 

effector's location is the same as the sensor which is stimulated (in a 2D plane, depth has no 

meaning). It must be stressed that this sensor system requires only bit (1 or 0) information for 

each sensor. Each sensor is either stimulated (switched on) or not stimulated (switched off). A 

stimulated sensor indicates position on the plane as explained. This makes data processing 

and transfer far simpler and makes control easier. The resolution is limited to the spacing 

between sensors. If the spot light is smaller than the spacing between sensors, there will be a 

dead zone between sensors where beam tracking will be lost completely. The laser light 

detectors are phototransistors. Current fabrication techniques can accommodate hundreds of 

millions of transistors on a sliver of silicon. INTEL has claimed to have the capability of 

creating a 45 nm transistor (see INTEL website). This implies that on a 1 mm2 piece of 

silicon there is an upper limit of 493 827 160 transistors that can be etched on that surface. 

IBM states that it has produced a 6 nm transistor (see IBM website). From this it should be 

clear that extremely high densities of transistors can be achieved, but at high cost. Fabrication 

methods can be used to construct a detector screen with an exceptional and practical 

resolution. The current accuracy of the IRB 340 Flex Picker is 0.1 mm; the lower limit on 

screen resolution for absolute 2D positioning would then be 400 phototransistors per square 

mm, a screen with twice the resolution of the positioning accuracy of the robot. Resolution 

affects data output, a greater resolution implies more data per unit area (more sensors). A 

hybrid type system (combining this end effector sensor with conventional motor encoders and 

software position fixing) would involve a sensor grid with a comparatively smaller resolution. 

Each sensor provides a checkpoint. Knowing the exact spatial distance between these 
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detectors provides the controller with a means to limit the errors incurred. Instead of 

accumulating errors from one extremity to the next, errors only exist between successive 

detectors. 

The array of data has to be placed in a data format or byte structure to facilitate processing. 

This is made possible by parallel to serial data converters. As a numerical example consider 

first the workspace of the IRB 340 Flex Picker from ABB Automation. The specified 

workspace envelope is a cylinder with diameter 1130 mm and height of 250 mm. A 1150 mm 

x 1150 mm screen would be large enough to track the end effector in its specified workspace. 

Using the same resolution as before i.e. 400 detectors per mm2, there would be 529 000 000 

detectors on the screen. This sensor grid consists if 23 000 rows and 23 000 columns. A 4 

byte data format (2 bytes for the row and 2 bytes for the column) would be more than 

sufficient to indicate any single stimulated sensor to an external control system. 

Figure 8 displays high level architecture of the detector screen. 

Sensor Screen Architecture 
Output - Coordinates of stimulated sensors 

Sensors - Number and Spacing 
dictated by specification and 
limited by the latest fabrication 
Technology. 

A. 
Buffers / Amplifiers - Signal 
Amplification / buffering to provide 
digital output. 

Microprocessor-Internal 
processing to determine all 
sensors that were stimulated by 
the laser. 

Parallel to Serial Converters -
To serialize data for processing 
by internal CPU. 

Figure 8 High level architecture of detector screen 

3.2.3 Sensor System Resolution 

The sensor system designed has a resolution of 2.5 mm. The detector screens have a 

resolution of 10 mm (spacing between successive sensors in rows and columns, see section 

5.6 j as well as Figures 37 and 40). The improvement in resolution is due to the use of a laser 

module, one laser module per detector screen, at the end effector. Each laser module has 12 

lasers with a particular arrangement to provide the sensor system with the resolution stated. 
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To explain how this is achieved an animated depiction of the laser projection onto the detector 

screen is illustrated in Figures 9, 10 and 11. 

The blue circles represent the sensors. The red and green circles represent the lasers. The 

central laser with the blue bull's eye, henceforth know as BE, is the tracking point or end 

effector reference. The relative spacing of these lasers are shown in Figure 9. The 4 inner 

lasers lie on grid points with a grid spacing of 15 mm. These lasers improve the resolution of 

the detector system to 5 mm, and this laser grid will be known as G5. These lasers are 

represented by the BE and 3 green circles in Figure 9 b. The outer lasers lie on grid points 

with a grid spacing of 22.5 mm and improve the resolution of the sensor system to 2.5 mm, 

and this grid will be known as G2.5. Grid G2.5 has to be used in conjunction with grid G5 

and is represented by BE and the red circles in Figure 9 b. 

The black solid lines of Figure 9 b are reference lines. The dashed lines represent the 2.5 mm 

resolution. Figure 9 a shows the mechanical component used to mount the lasers (see Figures 

16-18). 
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Figure 9 Laser grid 

a. Laser guide indicating dimensions and laser positions 
b. Laser grid projection onto detector plane, centred on s(i, j) 

Suppose initially BE is at sensor s{i,j), in Figure 9 b. If it moves 5 mm to the right it no 

longer lies on s(i, j), however the green circle on the same y grid line lies on sensor 

s[i + 2,j) (Figure 10 a). If BE were to move 5 mm to the left, that same green circle would 
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lie on sensor s(i + l,j) (Figure 10 b). So any horizontal 5 mm displacement can be tracked; 

this is the maximum distance the end effector would have to move horizontally before another 

sensor indicates position. Similarly 5 mm vertical displacements can be tracked (shown in 

Figure 10 c, d). Combined displacements can also be tracked. Suppose BE moves 5 mm to the 

right and 5 mm up, then the bottom left hand green circle lies on sensor s(i + 2,j -1) (Figure 

10 e). If BE is moved 5 mm to the left and 5 mm down, then that same green circle lies on 

sensor s(i + \,j - 2) (Figure 10 f). 

Figure 10 Depiction of laser grid projection onto detector plane for 

5 mm resolution 

a. BE moved 5 mm to the right of s(i,j), s(i + 2,j) detects laser 

b. BE moved 5 mm to the left of s(i,j), s(i + \,j) detects laser 

c. BE moved 5 mm down from s(i,j), s(i,j - 2) detects laser 

d. BE moved 5 mm up from s(i,j), s(i,j -1) detects laser 

e. BE moved 5 mm up & to the right of s(i,j), s(i + 2,j -1) detects laser 

f. BE moved 5 mm down & to the left of s(i, j), s(i +1, j - 2) detects laser 
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The 2.5 mm resolution is proved as follows. Start of at position in Figure 9 b. Move 2.5 mm 

to the right. The laser sharing the same y grid line to the far left of BE then lies on sensor 

s{i — 2,j) (Figure 11a). If BE is moved 2.5 mm down then the laser at the top left hand 

corner lies on sensor s(i - 2,j + 2) (Figure 11 b). If BE is now moved 2.5 mm to the left the 

laser sharing the same x grid line directly above BE moves onto sensor s\i,j + 2) (Figure 11 

c). The pattern can now be seen clearly. As BE moves about the 2.5 mm grid surrounding 

sensor s(i,j), the lasers on G2.5 hit sensors lying on the 20 mm grid surrounding sensor 

s(i,j) (i.e. S\i ±m,j± n) where m, n = 0 or 2 as shown in Figure 11 a to g). So any 2.5 mm 

vertical, horizontal or combined displacement can be sensed. Similarly displacements of 7.5 

mm can be tracked however the designed PKM is not expected to have such a large error. 
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Figure 11 Depiction of laser grid projection onto detector plane 

2.5 mm resolution 

a. 

b. 

c. 

d. 

e. 

f. 

g-

g-

BE moved 2.5 mm to the right of s(i,j), s(i - 2,j) detects laser 

BE then moved 2.5 mm down, s(i — 2,j + 2) detects laser 

BE moved 2.5 mm to the left, s(i,j + 2) detects laser 

BE moved 2.5 mm to the left, s(i + 2,j + 2) detects laser 

BE moved 2.5 mm up, s(i + 2,j) detects laser 

BE moved 2.5 mm up, s(i + 2,j - 2) detects laser 

BE moved 2.5 mm to the right, s(i,j - 2) detects laser 

BE moved 2.5 mm to the right, s(i — 2,j — 2) detects laser 
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The meaning of stimulated sensors does not refer to the exact position of the reference point 

BE but rather displacements from that point. For this machine there are sensors that monitor 

the angular positions of the legs, these are the potentiometers of the servo motors used 

(sections 5.3 and 5.4). Those measurements together with these end effector displacement 

error readings provide improved end effector tracking. The errors from positioning are not 

expected to exceed 5 mm and this is also one of the machine design specifications. 

3.2.4 Advantages and Disadvantages of Sensor Concept 

Advantages: 

• Detector screen of any practical size can be built from modular components. 

• The screens do not have to be mounted vertical or horizontal, as long as they are 

perpendicular to each other for 3D object tracking. 
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• Resolution is independent of screen size, and the detector screens can be scaled up 

maintaining the exact resolution designed. 

• Data is purely digital as the sensors are either on (1) or off (0). 

• It facilitates 2D or 3D tracking. 

Disadvantages: 

• For 3D tracking 2 screens are needed, and the system becomes twice as expensive. 

• The end effector must remain perpendicular to the detector screens. 

• This sensor must fit the space and mounting constraints imposed by the manufacturing 

system. 

3.3 Chapter Summary 

This chapter discussed current technologies used for position location. Most of the equipment 

used for each technology was unsuitable for the task at hand for one of more of the following 

reasons: the systems were too expensive, slow, inaccurate or bulky. A tabulated comparison 

of the technologies was given which highlighted accuracies, ranges, advantages and 

disadvantages. From this investigation an idea stemmed from two sources i.e. laser 

triangulation and John Ziegert's idea [31] of an imaging screen. The sensor concept was then 

discussed and its resolution capability proved. 
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4 Mechanical Design 

4.1 Design of Parallel Kinematic Machines 

Although robots are usually designed to perform a large variety of tasks it is not realistic to 

believe that a single robot will be sufficiently flexible and able to manage any task. On the 

other hand the end user may wish to perform a set of specific tasks with stringent 

requirements. For this reason a fundamental step in the design of robotic systems is 

determining the most appropriate mechanical structure of the robot when given the task 

requirements, such as desired workspace, accuracy, load, and stiffness. 

There are three basic types of parallel actuation mechanisms applicable for robot arms, i.e. 

prismatic, rotary, or fixed linear actuation types, including their modifications. Table 2 shows 

the comparison of these three mechanisms in terms of their basic characteristics. [36] 

Table 2 Comparison of PKM attributes based on actuators 
used in its design [36] 

Type 

Output Force 

Actuator Location 

Moving Mass 

Speed 

Rigidity 

Workspace 

Structure 

Rotary 

Small 

Basement 

Small 

Very Fast 

Fair 

Large 

Simple and compact 

Prismatic 

Fwrrrrrnmt 

Large 

Moving Part 

Large 

-

Good 

Small 

Large moving parts 

Fixed Linear 

Large 

Basement 

Small 

Fast 

Good 

Large 

Large basement 

Overall the rotary actuation type provides the best characteristics for more general 

applications even though the resulting rigidity isn't as high as the other types. 
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The mechanical design of robots may be split into two processes: 

• Structural Design - It involves the general arrangement of the mechanical structure 

such as the type and number of joints and how they are connected. 

• Dimensional Synthesis - This determines the length of the links, the axis and exact 

location of the joints, and the necessary maximal joint forces/torques. 

The performance of a robot is drastically dependent on both syntheses. A comparison 

between two different structures may only be made after a careful dimensional synthesis. This 

is more so for closed loop parallel robots. [37] 

4.1.1 Structural Design 

a. Machine Topology 

Machine topology describes the number and type of joints, as well as the number of branches 

in the structure. It can be described compactly if the machine is symmetric. For instance in 

Figure 6 c, the parallel robot is described as 3-DOF 3 RPRS, meaning that the PKM has 3 

degrees of freedom with 3 branches and each branch from base to end effector has a rotational 

joint, followed by a prismatic joint, another rotational joint and finally a spherical joint. In 

Figure 6 d, the parallel robot is described as 3-DOF 3 RRR planer, meaning there are 3 

branches and each branch has 3 rotational joints. Its motion is restricted to the plane; that is it 

has 3-DOF with 2 translational and 1 rotational. Clavel's Delta robot may be described as 3-

DOF 3 RUU, with U representing a universal joint. ABB's Flex-Picker may be described as 

3-DOF 3 RSS, as it has spherical joints on its "knee" and "ankle". The hexapod may be 

described as 6-DOF 6 SPU, where P denotes a prismatic actuated joint. As an additional 

example Figure 12 illustrates 2 more parallel mechanisms. Their structures are completely 

different. They have different branches, different joints, and different actuator positions. This 

provides an indication as to the various number of PKM designs possible. 
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a. b. 

Figure 12 A comparison of machine topologies [14] 

a. 4-DOF 3 RRRS 
b. 6-DOF 4 PRRS 

b. Actuator Positioning 

The arrangement of the actuators affects the way the robot moves. This also determines the 

position of singularities (see section 4.3.2. h). See Figure 13 a. 

4.1.2 Dimensional Synthesis 

a. Dimensioning 

Choosing the size of robot arms is a matter of finding a good compromise between weight, 

stiffness, and its ability to reach the entire workplace. Depending on robot sizing, an optimal 

choice of motors and transmission ratios of reducers should be addressed. [11] See Figure 13 

b. 

b. System Modelling 

Once the dimensioning is complete, models for both the forward and inverse kinematics 

(section 4.3.2) and dynamics (section 4.3.2 k.) may be obtained. These models are then used 

for motion control. 

As this machine accomplishes no pick and place operations, a rigorous and complete dynamic 

analysis is unnecessary. The complete kinematics model with closed form solutions will be 

explained, as one is used in the control system. Dynamic modelling is discussed in section 

4.3.2 k but is not used in the control system of the robot. Theory of plant estimation from 

35 



linear control theory was used to model the system, and these equations inherently capture the 

dynamic behaviour of the system. 

The effectiveness of a kinematics model can be described by three terms, i.e. 

Figure 13 Actuator positioning and dimensioning 

(Adapted from [14]) 
a. Figure depicting the choice of actuator positions 
b. Figure depicting the link length design parameter 

• Accuracy - Is defined as the difference between the actual position in space and position 

calculated using the kinematics model. 

• Repeatability - It is the difference between actual positions when repeatedly sent to the 

same position coordinates. It includes hysteresis of joints, thermal elongation of links etc, 

but does not include bad model design or wrongly estimated parameters. 

• Resolution - The size of the smallest positional step. 
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The order of importance is accuracy, repeatability and then resolution. The parameters that 

are used to model a robot are split into two categories, as the following list indicates [14]: 

Non-Geometrical Model Parameters: 

• Compliance and stiffness 
• Gear backlash 
• Encoder resolution 
• Temperature related expansion 
• Linkage wobble 

Geometrical Model Parameters: 

• Structure 
• Angles between links 
• Links dimensions 
• Zero positions of links 
• Mechanical Design 

4.1.3 Design Considerations 

A general approach to the design of PKMs should cover the following issues [38]: 

• Determination of the reachable workspace, 
• Kinematics stiffness described by several local and global manipulability measures, 
• Relation of driving and actuator forces, 
• Overall elastic stiffness of the structure, 
• Static stability analysis. 

Kinematically, an n-DOF non redundant PKM also implies that each leg should also be an n-

DOF serial kinematics chain, regardless of the number of legs. To simplify design and 

development efforts, there are a few additional considerations [39]: 

• Symmetric Design - Each leg is identical to the others. Hence, each leg should have the 

same number of active joints. As the total number of (1-DOF) active joints in a 6-DOF 

non redundant PKM is six, the number of legs for a symmetric design can be six (1-DOF 

actuated joint per leg), three (two 1-DOF actuated joints per leg), or two (three 1-DOF 

actuated joints per leg). 

• Types of joints - Four types of commonly used joints are considered, i.e., 1-DOF revolute 

(R), 1-DOF prismatic (P), 2-DOF universal (U), and 3-DOF spherical (S) joints. Among 
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them, the spherical and universal joints are meant as passive joints, the prismatic joints are 

meant as active joints (they are ineffective as passive joints), and revolute joints can be 

used as either passive or active joints. 

• Active joints are placed close to the based so as to reduce the moment of inertia and 

increase the loading capacity and motion acceleration. 

• Passive 3-DOF spherical joints are used to reduce the number of passive joints and make 

the design compact. 

• At most one (active) prismatic joint can be employed in each of the legs due to its heavy 

and bulky mechanical structure. 

• Designing for Decoupled Motion Axes (DMA). This gives the robot simple kinematics for 

easy analysis, design, trajectory planning, and motion control. [39] 

Figure 14 illustrates a graphical summary of the steps used in the parallel mechanism design 

process. 

Mechanical Design 

Structural Synthesis 

—»{ Machine Topology 

Stiffness 

Actuators - No.& type 

HZ Speed 

Workspace 

1—»| Actuator Positioning 

Stiffness 

HI Workspace 

Dimensional Synthesis 

Dimensioning 

Workspace 

Singularities 

—H System Modelling 

Kinematics Modelling 

Dynamics Modelling 

Control System 

Figure 14 Design criteria used in constructing PKMs 

4.2 Structural Design of the Modified Delta Robot 

The mechanical structure is based on that of a Flex-Picker pick and place parallel kinematics 

industrial robot, and is a scaled adaptation. 
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The design consists of 4 articulated legs; 4 servo motors (as used in model helicopters); a 

plate end effector with attached lasers; ball-cup joints and a mounting frame. The entire 

mechanical structure is 600 mm in length, 400 mm wide and 500 mm high. Figures 15 and 16 

illustrate the parts and some assemblies. Figures 17 and 18 illustrate the complete assembly 

with detector boards in various views. 

Figure 15 Significant Mechanical Parts 

a. Ball from ball in socket bearing 

b. Socket/Ball cup 

c. Laser 

d. Upper leg 

e. Servo motor with upper leg attached and mounting bracket 

f. Lower leg component 

g. Servo motor 

h. Servo motor with mounting bracket 
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Figure 16 End effector 

a. Vertical laser mounting arm 
b. Multiple laser guide 
c. Multiple laser mounting 
d. Laser mounting with guide attached 
e. Laser mountings and guides attached to end effector 

Figure 17 Mounting of servo motors and assembly of arms 

a. Servo motors and upper arms mounted on inertial frame 
b. Lower arms and end effector attached to upper arms 
c. Knee joint 
d. Ankle joint 
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Figure 18 Complete assembly 

b. * 

! u 
< 

8 .4 

1 

a. Total view b. Side view 

d. 

c. Front view 
d. Bottom view of end effector and horizontal detector screen (hidden base) 
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e. Back view of end effector and vertical 

f. Left side view 

It must be noted that the lower leg components are held together via 2 springs (not shown), 

one just below the 'knee' and the other just above the 'ankle' for each leg (see Figure 19 for 

these joint labels). The ball cup joints give a large degree of freedom. These were made from 

ball in socket bearings. The upper legs swing from side to side whereas the lower legs can 

move up, down, left and right and can rotate about the 'knee' by sequencing sets of its basic 

motion (induced by rotating pairs of servos each to particular angles). The laser can move 

about a volume of space, which is roughly a hemisphere below the sensitivity area, the square 

cut-out on the servo mounting frame in Figure 17 a. 

The frame work was made from angled aluminium (long bar of L shape aluminium). The 

lower legs and laser mounting were made from a stiff hard plastic. The lower legs were made 

from stainless steel rods used to construct model helicopters and aeroplanes. The ball and 

socket joints were made of steel. These materials gave the Flex-Picker model sufficient 

stiffness for all movement during testing. 

Machine Topology 

As this PKM is symmetric it may be described as 3-DOF 4 RSS (3 degrees of freedom, all 

translational with 4 branches containing a rotational actuator and 2 spherical joints). 
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Actuator Positioning 

The actuators are located on the same plane and are arranged to form a cross. They are 

positioned such that the plane of rotation of each servo lies coincident with that of the servo 

directly opposite it, and the adjacent rotation planes are at 90° to each other. 

4.3 Dimensional Synthesis 

4.3.1 Dimensioning 

Table 3 Link lengths 

Lengths 

Upper Arm 

Lower arm 

End effector (Cross) 

100 mm 

179 mm 

100 mm 

Spacing 

Between lower arms 

Between opposing servos 

30 mm 

200 mm 

4.3.2 System Modelling 

The system model is illustrated graphically in Figures 19 to 22. 

Parallel structures suffer from some weaknesses which have to be analyzed and taken into 

account when designing the mechanisms. These are: 

• The existence of critical points in the workspace where the mechanism loses the ability to 

change its position in a prescribed manner or to react to a given load. These are known as 

points of singular configuration. 

• A limited work volume in comparison with that of serial manipulators. 

• The increased computational effort necessary to control a parallel manipulator. [13, 40] 

The kinematics geometry of multi-DOF robotic manipulators must be analysed to determine 

the positions and orientations of all the members of the mechanism. This is to avoid the 

pitfalls mentioned above as the device goes through its motions. This position analysis can be 

formulated, but is difficult to solve for certain machine configurations. The difficulty arises 

due to the fact that the kinematics analysis depends on solutions to sets of nonlinear 

equations. There are two types of kinematics problems for every robotic manipulator, i.e. the 

forward and inverse kinematics. [41] 
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For both problems the kinematics structure with its parameters are defined. (Structure - the 

number of links, the types of joints, the connectivity graph; Parameters - each link's twist 

and length, and the fixed lengths or angles between neighbouring links) 

The forward kinematics (FK) problem in addition to the above has a full set of actuation 

parameters and aims to determine the position and orientation of the end effector. (Actuation 

Parameters - the actively controlled joint variables: angles for revolute joints and linear 

displacement for prismatic joints) 

In the inverse kinematics (IK) problem the situation is the opposite, here the end effector's 

position and orientation are given and the objective is to find the set of actuation parameters 

that will satisfy the kinematics configuration. This leaves a set of nonlinear equations that 

have to be solved to obtain the actuated variables. This nonlinearity expresses the fact that 

generally there are multiple sets of values for the actuated variables that will produce exactly 

the same end effector pose, i.e. multiple solutions for a single end effector position. [41, 42] 

It is the IK problem that is of interest to the control systems designer of any robotic 

manipulator. The control system needs to move the end effector to specific points in its 

workspace to carry out a task. These points are known. The requirement is the set of actuation 

values that would follow a trajectory from its current location, avoiding any obstacles in its 

path to the point of interest. 

The equations that describe the direct and inverse problems are the same. The DC is a first 

example of the geometrical duality between serial and parallel manipulators. The IK for a 

parallel manipulator (with an arbitrary number of legs) has a unique solution (if each serial 

leg has a unique solution), and can be calculated immediately. These are properties of the FK 

of the general serial manipulator. [42] 

a. Forward Kinematics (FK) Problem 

For serial mechanisms the FK problem can be solved without any difficulty. The relative 

position and orientation of each link is dependent on the previous link, and so it can be 

obtained as the result of vector addition, matrix multiplication, or some analogous 
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deterministic operations. For parallel mechanisms, the relative position and orientation of 

some links depend on more than one other link, so the FK problem leads to a set of nonlinear 

equations. Hence, for parallel mechanical systems, the FK problem (i.e., where all the 

actuator values are given and the requirement is the end effector's pose) is more difficult to 

solve than its IK. [41] 

Solution Methods 

Many solutions to the forward kinematics problem for parallel mechanisms deal with 

particular architectures or small classes of architectures, sometimes under hypothesis of 

geometrical symmetries. The lack of general explicit solutions occurs even in the simpler case 

of pure translational motion of the end effector. [43] 

A variety of solution methods have been developed for solving the sets of nonlinear 

polynomial equations that arise in the inverse problem for series chains and the direct 

problem for parallel systems. The methods that have proven to be the most useful have been 

based on polynomial continuation, elimination methods or Grobner bases. [41] 

Polynomial continuation is a numerical method that is useful in solving problems for actual 

numerical values and running numerical experiments. It does not offer any direct assistance in 

general studies involving parameters on a symbolic level. For kinematics analyses it is 

necessary to have solution methods that give all possible solutions to a particular set of 

nonlinear equations. While numerical methods, such as Newton-Raphson, converge to a 

single solution, the polynomial continuation method is a numerical procedure that can find all 

solutions to a given problem. "The idea is that small changes in the coefficients of a system 

lead to small changes in the solutions. Using this idea and having a system whose initial 

solutions are known, it is possible to gradually transform the system to find the solutions that 

are required. During this transformation, all solutions are tracked, so that in the end all the 

solutions to the final system are found." [41] 

The advantages of polynomial continuation are its ability to solve very large systems, and the 

fact that the procedure itself need not be modified for different polynomial systems. Also it 

virtually guarantees that all solutions to a system will be found, assuming there are no 

numerical anomalies. 
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The disadvantage of polynomial continuation is mainly speed. For many kinematics 

problems, the number of paths that must be tracked can be large enough that the continuation 

calculation is too slow for real-time control or other applications where speed is important. 

[41] 

Elimination methods, sometimes called resultant methods, are based on an algebraic 

formulation that allows for the elimination of a large number of variables in one single step, 

and reduces a set of nonlinear equations to a single polynomial in one unknown. They also 

allow for studies of solution properties on a symbolic rather than a numerical basis and 

require much more algebraic manipulation than continuation methods. A basic example 

illustrates the construction procedure more adequately, see source [41] for a detailed example. 

If an elimination based solution method can be found for a particular problem, it normally 

leads to much faster computation times than polynomial continuation or Grobner base 

methods. The main disadvantage of elimination based methods is finding an appropriate 

multivariate eliminant for a particular problem. 

Numerous authors have used eliminant methods to solve the direct kinematics problems for 

Stewart-Gough platforms with some special geometric constraints, such as concentric 

spherical joints. All the algorithms to solve the general case of the Stewart-Gough platform's 

direct kinematics problem and obtain a 40th-degree univariate polynomial, use elimination. 

[41] 

Grobner bases is an iterative algebraic variable elimination technique for solving sets of 

nonlinear equations. Grobner bases has recently proven to be very useful in conjunction with 

elimination methods. The basic elimination procedure resembles Gaussian elimination in that 

it produces a triangular system of equations. For the Grobner bases technique, the last 

equation is a univariate polynomial, and each subsequent equation adds at most one new 

variable, although the equation may not be linear in that variable. The univariate polynomial 

may be solved to find all possible values of one unknown, and the other equations will yield 

the values of the other variables for each solution. The choice of ordering for the polynomial 

terms in nonlinear equations is not obvious, however a lexicographic ordering will always 

lead to triangular Grobner bases. 

The disadvantage of the Grobner bases technique is the computation time needed. Also, the 

complexity of a given problem is unpredictable. Nevertheless, the technique has proven 
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useful in kinematics analysis, most notably in confirming the number of solutions for the 

general case of the Stewart-Gough platform's FK. It also aided in determining the 

characteristic polynomial, as well as in predicting the upper bound on the number of solutions 

for those special cases where platform legs are required to share pivot locations. [41] 

b. Geometric Kinematics Model 

The methods to solve the forward and inverse kinematics using complex matrix algebra and 

Jacobians are difficult to understand. A geometric model, shown in Figure 19, was devised 

and using common math and trigonometric functions, the forward and inverse kinematics 

problems were established. These were then solved with rigorous algebraic manipulation of 

the variables, in those functions, to obtain closed form solutions. 

Figure 19 Simplified Geometric Kinematics Model 

This geometric model differs from the mechanical system shown in Figure 18. The 

parallelograms of the lower arms have been collapsed to single lines joining the "knee" to the 

"ankle". This simplification is acceptable as the parallelograms that compose the lower arms 
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completely restrain the orientation of the end effector; as a result the end effector plane {ee} 

remains parallel to the base plane {bs} at all instances of its motion. 

This parallel plane constraint is taken into account in the model with a few points as listed ... 

• The origin of {ee} is the "dead" centre of the end effector. 

• The coordinates of the "ankle" joints for each leg i (i = 1,...,4) on the end effector are 

known relative to the origin of {ee}. These are fixed distances from the origin of {ee} 

determined at design. 

• The origin of {bs} is the "dead" centre of the base. 

• The coordinates of the "thigh" joints for each leg i (i = 1,...,4) on the base are known 

relative to the origin of {bs}. These are fixed distances from the origin of {bs} determined 

at design. 

• The upper legs are restrained to have rotational motion about a plane, i.e. Upper legs 1 and 

3 move in plane y = 0, the rotation axes of T, and T3are perpendicular to the plane y = 0. 

Upper legs 2 and 4 move in the plane x = 0, the rotation axes of T2 and T4 are 

perpendicular to the plane x = 0. 

• The lower legs have complete spatial motion. 
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Convention - (x,y,z) 

K,, - (x„, y4, z4) 

T, - (m, 0, 0) 

T4 - (0, m, 0) 

(0, 0, 0) 

T 2 - (0 , -m, 0) 

T 3 - ( -m,0 ,0) 

K3 - (x3, y3, z3) 

K, ( Xi, y i , zi) 

(%f„ Vo + n . Zo) 
A j 

(x o - n, y0, zo) 
A, K2 (x2, y2, z2) 

Ai (x0 + n,y0,Zo) A2-(x0 ,yo-n,Zo) 

Figure 20 Illustration of joint labels and coordinates 

The coordinates of the critical points are: 

{bs} origin - (0; 0; 0) 

origin of {ee} relative to {bs} is (x0; yQ; z0) 

Leg 1: T, - (m;0;0) K{- (xx; yx; z,) 

Leg 2: T2 - ( 0 ; - m;0) K2 - {x2;y2;z2) 

Leg 3 : T3 - ( - m; 0 ; 0) K3 - (x3; y3; z3) 

Leg 4; T4 - (0; m; 0) K4 - (x4; yA; z4) 

A, ~(x0 + n;yQ;z0) 

Ai-(x0;y0-n;z0) 

A3-(x0-n;y0;zQ) 

A 4 ~ ( v > ; o + ".'zo) 

m And n are design constraints, indicating the relative displacement of the revolute and 

spherical joints from the centres of {bs} and {ee} along the x and y axes 
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• All sphere radii have magnitude RQ (see following sub-section) 

• All circle radii have magnitude /?, (see following sub-section) 

• From the dimensional synthesis of section 4.3.1 Dimensioning, the variables mentioned 

above have values: 

m=10cm; n = 4.45 cm; 7^= 17.9 cm; ^ = 1 0 cm. 

c. Geometric Approach to Solving the FK 

The FK problem provides the actuation angles for each motor and then requires the end 

effector position in space. This problem is easier to solve with serial kinematics manipulators 

but far more difficult for PKMs, and the difficulty depends on the complexity of the machines 

legs. 

For this mechanical design, seeing as the actuation angles are known for the forward 

kinematics, the coordinates of the knee joints can be readily calculated. 

To solve the FK some knowledge of the mechanical constraints of the system, have to be 

used. In particular the fact that the end effector plane \ee\ will always remain parallel to the 

base plane \bs\ is critical, this reduces the number of unknowns from 6 (having any position 

and orientation in space) to just 3 (only position). 

The knee joint coordinates are known, each of x,, yi and z, (i = 1...4)can be calculated. 

• K, -{x{;y{,zx\ yl = 0 

• K2 -(x2;y2;z2), x 2 = 0 

• K3 -(x3 ; j3 ;z3) , y3=0 

• K4 -(x4;y4;z4), x 4 = 0 

The ankle joint coordinates are unknown, x0, y0 and z0 have to be solved. 

• A,-(x0+4.45;j ;0 ;z0) 

• A2-(x0 ; .y0-4.45;z0) 
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• A 3 - (x 0 -4 .45; j ; 0 ;z 0 ) 

• A 4 - ( x 0 ; j 0 + 4.45;z0) 

Aj must lie on a sphere centred atK i ; for i = 1,:,4. The equation of a sphere 

ty{xa-xbf + {ya-ybf + {za-zbf =R2, for a point a (xa;ya;za) lying on a 

radius R with centre b (xb;yb;zb). This is shown in Figures 21 and 22. 

V 

Figure 21 Four hemispheres each centred on a knee joint 



Figure 22 Top and side views of spheres used to solve FK 

a. Top view b. Side view 

Solving for (x0,y0,z0) requires rigorous algebraic manipulation of these sphere equations. It 

is however much easier to understand when compared to traditional methods as discussed in a 

previous section. 

Solving for x0: 

{xa-xbf + (ya-yb)
2 + (za-zbf=R2 

Sphere equation for leg 1: 

((x0 + 4.45)-x1)2+(7 o-3 ;1)2+(z ( )-z1)2 = 17.92 = 320.41, ^ , = 0 

=> (x0
2+8.9x0 +19.803-2x,x0-8.9x, + x,2)+.y0

2+(z0
2-2z,z0+z,2) = 320.41 

Rearranging the equation and factoring yields: 

=> x0(8.9-2x1)-2z lz0 + (-8.9x1+x,2+z,2)= 300.607 - x0
2 - y0

2 - z 0
2 

Making the following substitutions: 
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C0 = 300.607 - x 0
2 - y2 -z2 

C, = 8.9-2x, 

C2 = -S^+xf+z2 

C[ And C2 are constants whereas C0 is variable. Hence the first equation reduces to: 

C0 = C|X0 — 2 Z | Z 0 + C 2 ... [?*•*) 

Sphere equation for leg 3: 

((x0-4.45)-X3)2 + (^ 0 - j3) 2 + (z0-z3)2 = 17.92 = 320.41, y3=0 

=> (x0
2-8.9x0+l 9.803-2x3X0+8.9x3+X32)+j0

2 + (z0
2-2z3z0 + Z32) = 320.41 

Rearranging the equation and factoring yields: 

=> x0(-8.9-2x3)-2z3Z0 + (8.9x3+X32+z3
2) = 300.607-x0

2 -y2 - z 0
2 

Making the following substitutions: 

C3 = -8 .9-2x 3 

C4 = 8.9x3 + x3 +z3 

C3 And C4 are constants. Hence the second equation reduces to: 

O Q — I^-^XQ Z.Z^ZQ ~r i ^ 4 . . . \^T.AJ 

Clearly equation (4.l) equals equation (4.2). 

L/,x0 zZ [Z 0 +L / 2
 : : *^3X0 z z 3 z 0 + C 4 — C 0 

Solving for x0 in terms of z0 yields: 

=> (C,-C3)x0 = 2(z,-z3)z0 + (C4-C2) 

_s r . 2(z1-z3)z0+(C4-C2) 

° ' " c -c 
(4.3) 
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Solving for y0: 

Sphere equation for leg 2: 

(x 0 -x 2 ) 2 +( (> ; 0 -4 .45 ) -7 2 ) 2 +(zo-^ ) 2 = 1V-92 = 320.41, x2=0 

=> x0
2 + (y0

2-S.9y0+l9.803-2y2y0 + 8.9y2+y2
2)+(z0

2-2z2z0+z2
2)= 320.41 

Rearranging the equation and factoring yields: 

=> y0(-8.9-2y2)-2z2z0 + (8.9y2+y2
2 + z2) = 300.607 - x2 -y2-z2 

Making the following substitutions: 

C5 = -i.9~2y2 

Q = S.9y2 + y2
2+z2

2 

C5 And C6 are constants. Hence the third equation reduces to: 

C0 = C5y0-2z2z0 + C6 ... (4.4) 

Sphere equation for leg 4: 

( X 0 - X 4 ) 2 + ( (J 0 + 4 . 4 5 ) - J 4 ) 2 + ( Z 0 - Z 4 ) 2 = 17.92 = 320.41, xA = 0 

=> x0
2 + (y0

2 + 8.9j0 + l 9.803 - 2y4y0 + 8.9j4 + y2)+ (z2 - 2z4z0 + z2) = 320.41 

Rearranging the equation and factoring yields: 

=> y0(S.9-2y4)-2z4z0 + (-8.9y4+y4
2 +z4

2) = 300.607-x0
2 -y0

2 -z0
2 

Making the following substitutions: 

C7 = 8.9 -2y4 

C8 = -8.9_y4 + j>4
2 + z4

2 
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C7 And C8 are constants. Hence the fourth equation reduces to: 

Co = C7y0 - 2z4z0 + C8 ... (4.5) 

Equation (4.4) equals equation (4.5). 

C5J^0
 — ^-Z2Z0 "*" ^ 6 — ^7^0 — ^ Z 4 Z 0 ' ^ 8 ~" ^ 0 

Solving for y0 in terms of z0 yields: 

=> ( C J - C 7 K = 2(z2-z4)z0 + (Cg-C6) 

=> _ 2 ( Z 2 ~ Z 4 K + ( Q - Q ) (4 6) 
C5 — C7 

Both x0 and y0 are expressed in terms of z0: 

x = 2(z,-z3)_ | (C^-gj 
0 r- -r ° r - r 

= 2(z 2 -z 4 )_ ( Q - Q ) 
c5 — c7 c5 — c7 

Make the following 

I * - 2 ( z ' " Z 3 ) ; 

Q-c3 
2(z2-z4) 

m2 = —— —; 
C -C 
*-5 ^ 7 

x0 = mlz0 + nl 

y0 = m2z0+n2 

substitutions: 

to-

„2 = < c . -
Q-

... 

-c2) 
-c 3 

- Q ) 
-c, 

(4.7) 

Substitute equation set (4.7) into the sphere equation for leg 1: 

( ( X 0 + 4 . 4 5 ) - X 1 ) 2 + ( J 0 - J ; 1 ) 2 + ( Z 0 - Z 1 ) 2 = 17.92 = 320.41, yi=0 

=> (x0
2+8.9x0 + 19.803-2x,x0-8.9x1+x1

2)+j0
2 + (z0

2-2z lz0 + z1
2) = 



=> ((w,z0 + «,)2 + 8.9(/w,z0 + «,)+19.803-2x,(m,z0 + nl)-S.9xl + x,2)+ (m2z0 + n2f +... 

W-2zizo+zi2) 

=> m, z0 + «, +19.803+2mlz0nl +8.9/w,z0+ 8.9M,-2x lm lz0-2x,« l -8.9x, + x, +m2 z0 +. 

2m2z0n2 + n2 +z0 -2z,z0 + z, = 320.41 

Rearranging and simplifying: 

(m,2 + w2 + ljz0 + (2w,«, + 8.9/w, - 2x,m, + 2m2«2 - 2z, )z0 

(«,2+8.9«,-2x1«1-8.9x l+x1
2+«2

2+z1
2-300.607) = 0 

2 

This is a quadratic inz0 , i.e. az0 +bz0+c = 0 . 

+ ... 

„, f -b±ylb2 -4ac ... Therefore zn = , with: 

0 2a 

a = mx +m2 +1; 

b = 2mlnl+S.9ml-2xlm]+2m2n2-2zl and: 

c = «,2+8.9n l-2x1«1-8.9x1+x l
2+«2

2+z1
2-300.607. 

There are 2 sets of solutions for(x0;_y0;z0), and both are real as there are 2 possible values 

forz0. The correct configuration or solution for the end effector coordinates has z0more 

negative than the z coordinates of the knee joints. 

d. Calculating knee coordinates from the actuation angle 

Leg 1: Resolving (xl,yl,zl): 

The first thing to note is that the knee coordinate (xl,yl,zl) lies on a circle centred at the 

"thigh joint" for leg 1, this is indicated by the red dashed line of Figure 23. It also lies on the 

straight line passing through that "thigh joint" with a gradient given by the angle 6X with 

regard to the fixed frame of reference, indicated the thick solid black line of Figure 23. The 

positions of the motors were mirrored about a centre line in the mechanical design to make 

the machine symmetric. The coordinate systems and references for each leg are the same, 

however, to make calculations uniform. The angle Bx in the calculations (indicated by the red 

counter clockwise arrow) differs from the actuation angle 0Rl (indicated by the green arrow -
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range 0° to 180°, clockwise). The angle #,is with respect to the coordinate system angular 

frame of reference, and 6m is the rotation angle with respect to the servo and its mounting 

(solid green line). A transform is used to obtain dx from 0RX{6xis used in the FK to 

determine end effector position coordinates). As the servo motors have a 180° limit on their 

rotation, the limits on 0X are from 45° to 225° (clockwise). 

90° < <?, < 18ff 90° 0= < 0, < 90° 

(.^-loy+z^ioo 

Figure 23 Illustration of leg 1 coordinate frame and angular 

conventions 

The transform used to obtain 0l is: 

6X = (4O5o-0sl)mod36O; 0° < 0S1 < 180°, 225°<0,<36O° u O°<0,<45 c 
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A few example calculations: 

For0,, =0° : 6X = 405°mod360 = 45° 

Fortf,,, =90° : 0, = (405°-90°)mod360 = 315°mod360 = 315° 

Forfl^ = 180° : 0, = (405°-180°)mod360 = 225°mod360 = 225° 

This transform is also used to obtain 64 from0S4. The transform for 62 and 03 is different and 

is given by 6i = 135° +0m, i=2,3. 

Once the actuation angles are obtained in the global reference system, the "knee" coordinates 

for each leg can be evaluated. This is illustrated for leg 1. 

Equation of straight line (upper leg): px(xx -10) = z, (when x,=10, z,=0 and px is the 

gradient of the line, i.e. pl = tan# t.) 

Equation of circle: (x, -10)2 + z,2 = 100 

x,2-20x1+100 + z,2 = 100 

=> x, - 20x, + z, =0 

=> x,2-20x1 + (tan<9,(x1-10))2 = 0 

=> x,2 - 20x, + x,2 tan2 0{ - 20xr tan2 9X +100tan2 dx = 0 

=> x1
2(l + tan2(9,)-2Ox,(l + tan2(91)+lOOtan201 = 0 

This is a quadratic inx t, and using the binomial formula to resolve x, yields: 

20(1 + tan2 6X) ± ̂ 400(1 + tan2 6X J - 400 tan2 6X (l + tan2~flj 

*' " 2(l + tan26X) 

_ lQ^/l + 2 tan2 6>, + tan4 fl - tan2 Gx - tan4 g 

1 + tan2 6X 

= 10± . 1 0 V 0,?t 90° + k. 180°, £ e N 0 ... (4.8) 
•yjl + tan2 0, 
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This formula provides 2 solutions forx,, the correct solution is determined from the quadrant 

of 0i. If Gx is in the first or fourth quadrant x, > 10 and if 0X is in the third quadrant x, < 10. 

See Appendix A for the calculation of knee coordinates for legs 2, 3 and 4, leg coordinate 

frame figures and their corresponding angular transforms {6Rj => 6t, i = 2, 3, 4). 

e. The Inverse Kinematics (IK) Problem 

The IK problem can be challenging for serial mechanisms and an example of this can be 

illustrated using the planar, three revolute joint mechanism shown in Figure 24 a. Given the 

lengths of all the links, i.e. the structural parameters, and given a specified value for the end 

effector pose, i.e. the position and orientation of the end effector, the problem is to determine 

the angles 6], 02 and 83 to get the manipulator into that desired position. In even the most 

complex series manipulators, the situation is analogous. 

Figure 24 Inverse Kinematics Problem 

a. A planar 3-revolute joint mechanism 
b. Generic kinematics model for parallel manipulators 

For parallel structures, the level of difficulty of the IK problem depends entirely on the 

complexity of the legs. If the legs are simple, as when each leg consists of two links 

connected by a prismatic joint, then the inverse kinematics is simple. On the other hand, if the 

legs are complex, as when each leg is a series chain of five links, each connected to its 

neighbour by revolute or spherical joints, the problem becomes quite complex. In general 
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most parallel devices are built with simple legs, and therefore it is usual for the inverse 

problem to be quite simple and straightforward. [41] 

f. Solving the IK using the Looping Method 

The link frame conventions and transformations defined for serial kinematics chains apply 

without change to each of the legs in a parallel robot. The only difference with the serial case 

is the definition used for the connection of all legs to the base and the end effector platforms. 

Figure 24 b shows the kinematics model that will be used as a generic example. It is not fully 

generic, in that the base and end effector are arbitrarily chosen to be planar, and only 

prismatic legs are used with spherical joints at both ends. It is sufficient for illustrating the 

kinematics loops and loop equations used in solving the IK. 

The platforms are rigid bodies, which are represented by the reference frames {bs} (base, 

plane at z = 0) and {ee} (end effector, plane at z = z0), respectively. Parallel manipulators are 

closed loop mechanisms, by virtue of the fact that by selecting any critical point such as a 

joint position one can traverse a set of links and joints passing each one only once and return 

to the joint or point of origin. This is illustrated in Figure 24 b. It will be shown using 

conventional coordinate and vector notation, as indicated below [42, 44, 45, 46]: 

• In Figure 24 b{bs} serves as the immobile world reference frame, and {ee} the mobile 

frame of interest, 

• The vector a can be written as PEB''EE • it is the vector from the origin of {ee} to the 

connection of the i leg on the end effector platform, 

• The vector d (also denoted by /,) is a non-unit direction vector along the i'h leg, and its 

length | /; | , equals the current length of the leg, 

• The vector c is the vector from the origin of {bs} to the connection point of the i'h leg on 

the base platform; it is denoted by the notation P ''BS , 

• The vector b can be written as PBS'EE
 f it connects the origin of {bs} to the origin of 

{ee}. 

For each leg i, the following position closure constraint is always satisfied: 

/>« • ' • »+ / . = pBS,EE+p£EJEE V / = l , . . . , 6 (4.9) 

Or by lettered enumeration c + d — a + b. 
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In this equation, PBS''BS and PEE''EE are known design constants, so their coordinates are 

known with respect to {bsj and {ee}, respectively. /, Is time-varying and usually only its 

magnitude is measurable, not its direction. pBS'EE Changes with the position and orientation 

of the end effector platform with respect to the base platform. The matrix q — (jqx.. .q6 )
r 

(containing vectors qj) denotes the end effector joint positions of the parallel manipulator. 

These can be used to calculate leg lengths of prismatic joints, or angles of actuated revolute 

joints, as the matrix containing the vectors of all base or reference joints is known from 

design. [42, 44, 45, 46] 

The IK is solved as follows: 

Step 1: Equation (4.9) immediately yields the vector /(., since all other vectors in the 

position closure equation are known when BS T is known. EE
S T is the transform that would 

yield the current position and orientation of {ee} when applied to an initial frame {ee} that is 

coincident to {bs}. This transform includes a rotation matrix used for orientation and a 

translation vector used for positioning. In terms of coordinates with respect to the base 

reference frame {bsj, this equation gives: 

7 pBS,EE , pEE,iEE _ pBS,iBS 

BSli BS1 ' BS1 BSr 

_ pBS,EE , EEp pEE,iEE _ pBS,iBS (A , p.\ 
~ BSr ~r BS^EE* BSr ••• V - 1 U / 

BSP ' (Translation vector) and BSR (rotation matrix) come from the input BST, as 

mentioned. EEPEE''EE And BSP
BS''BS are known constant magnitude vectors determined 

during the design of the manipulator. [42, 44, 45, 46] 

Step 2: The length /; I is the Euclidean norm: 

l!\ = yldJ2+0i,y)
2+(liJ

2 - (4.H) 

For the hexapod (or Stewart-Gough design), this length immediately gives the desired 

position qi of the actuated prismatic joint for leg i. Other designs require more mathematics to 

arrive at the values for the actuated joint variables. 
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g. IK for the Delta Modification using the Geometry Method 

The geometric kinematics model used is shown in Figures 19 and 20. This was explained in 

section 4.3.2 b Geometric Kinematics Model. 

In order to determine the rotation values for the actuated revolute joints, from a geometric 

point of view, position the end effector as desired within its workspace, having \ee} parallel 

to \bs}. At this point the coordinates of the "ankle" joints on \ee\ are known. Construct 

spheres with radii equal to the length of the lower arm centred at the "ankle" joint. Construct 

circles with radii equal to the length of the upper arm centred on the "thigh" joint. Now for 

each leg i (i = 1,...,4), the intersection of the circle and the sphere result in the coordinates of 

the "knee" joints. There are 2 intersection points that occur on each leg, from these only the 

outer coordinates are taken as the required solutions [44, 45]. See Figures 25 and 26 for 

illustrations. 

The Cartesian equation of a sphere centred at the point (a,b,c) with radius R^ is given by 

(x - a) +(y-b) +(z-c) =R^ . The Cartesian equation of a circle centred at the point 

(d,e) with radius ^ is given by (x - df + (y- ef = R{
2. 

At first glance it may seem that there are 3 variables to solve for at each knee joint, however 

due to the fact that the circle is completely planar one of those three variables is known and 

only 2 have to be solved. Essentially there are 2 equations and 2 unknowns and this ensures 

that this system is solvable, although it requires substantial algebraic manipulation. 
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fe- Circle Centred at 
"Thigh Joint" 

Coordinates of l | | H 
Intersection \nr, 
"Knee Join!" \ 

-, Sphere Centred 
at "Ankle Joint" 

Figure 25 Illustration of sphere-circle intersection 

a. 

* « 4. 4 

Figure 26 Illustration of sphere-circle intersection 

a. 
b. 

Side View 
Top view 
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Figure 20 illustrates the joint labels and coordinates for each leg. Leg i contains "thigh" 

joint Tj, "knee" joint K; and "ankle" joint Af for i = 1,...,4. 

Now the leg equations are: 

Legl: 

Sphere... 

(x, - (x 0 + n))2 + {yx -y0f+ (z, - z 0 f = R^2 

y, is known and is 0, this yields... 

=> (*. ~(x0 + n))2 + {y0f + (z, -z0f= K 

Circle... 

(*i-»02+(z,)2=/?1
2 

Leg 2: 

Sphere... 

(x2 -x0)
2 + (y2 - (y0 - n)f + (z2 -zj = R^ 

x2 is known and is 0, this yields... 

=> {^)2 + {y2-{y0-n))2 + {z2-Z())
2=R^ 

Circle... 

(y2-(-m)Y+(Z2Y=R> 
=> {y2+mf+{z2)

2=Rx
2 

Leg 3: 

Sphere... 

(*3 - (*0 - n)f + fo - ^0 )2 + (Z3 ~ Z0 f = -K<>2 

_y3 is known andisO, this yields... 

=> (*3 ~ (*0 ~ n)f + 0>0 )2 + (Z3 - Z0 f = & 
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Circle... 

(x3-(-W))2
 + ( z 3 ) 2 = ^ 

=> {x3+mf+{z}f=Rl
2 

Leg 4: 

Sphere... 

(x4 - x0 f + {yA - (y0 +n)f+ (z4 - z0 f = R^ 

x4 is known and is 0, this yields... 

=> (*o f + (yt ~ iya + n)f + (z4 -
 zo Y = K 

Circle... 

U-„)2
 + (z4)2=*,2 

In each of the circle equations the z coordinate can be made the subject of the formula. This 

allows for the removal of the z variable from the sphere equation through manipulation and 

substitution. In this case the result would be a quadratic in the remaining variable. 

Once the coordinates of the "knee" joints are established, the actuation angles can be 

calculated as the gradient of each leg can now be found. Inverse trigonometric formulae are 

then used to obtain the angles. 

Solving the Leg Equations for Leg 1: 

From the circle equation: 

(x^ -mf + (z,)2 = R* where m=10 and Rx -10. 

=> (x,-10)2 + (z,)2 = 102 

x,2-20x1+100 + z1
2 = 100 

=> x,2 - 20x, + z,2 = 0 

=> z . ^ O j q - x , 2 ... (A.U) 

2 2 

This places a restriction on x, as z, is always non-negative, so 20x, - x, > 0, which implies 

thatO <x, <20 . 
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From the sphere equation: 

=> (*i - f o + n ) f + ( y o ) 2 + ( z i ~zo)2 =Ro 
= (x 1 -x 0 -«) 2 + (j0)2 + (z1-z0)2 =R0

2 where n = 4.45 and R^= 17.9. 

=> (x,-x0-4.45)2 + (^0)
2 + (z,-z0)2 = 17.92 = 320.14 

X!2+x0
2+l9.803-2x,x0-8.9x1+8.9x0 + ̂ 0

2+z1
2-2z1z0+z0

2 = 320.14 ... (4.13; 

Substituting Z[ from equation (4.12) into (4.13) above yields: 

x,2 +x0
2 -2x,x0 -8.9x, + 8.9x0 + y0

2 + \20xi -x |
2 ) -2z ,z 0 + z( 

320.14-19.803 = 300.607 

x1( l l . l -2x0)-2z1z0 + (x0
2+8.9x0 + j 0

2 + z 0
2 ) = 300.607 

Rearrange and make z, the subject of the formula: 

__ x , ( l l . l -2x 0 ) + (x0
2 + 8.9x0+j0

2+z0
2-300.607) 

—? 2. — 

2z„ 
(AAA) 

The only unknowns here are z, and xl, the rest are known. Collecting terms and making the 

following substitution to ease readability results in: 

_ l l . l - 2 * 0 _ _x0
2+8.9x0+y0

2+z0
2-

2z0 2z0 

=> zi=clxi+c2 ... (AA5) 

Squaring both sides of (4.15): 

-300.607 

2 — 2 2 4- 9 A- 2 

However from equation (4.12) z, equals 20x, — Xj , which implies: 

C l JLl I ^/C'lC'yJirl "T" L"J ~~ i— V / , \ | .A-l 

c,2x,2 + x,2 + 2c,c2x, - 20x, + c2
2 = (c,2 + ljx,2 + (2c,c2 - 20)x, + c2

2 = 0 
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This is a quadratic in x, and using the binomial formula - - - — — yields both 
2a 

solutions i.e.: 

_ - (2c,c2 - 20) ± V(2c,c2 - 20)2 - 4(c,2 + ljc 

2(q2 + l) 

- 2c,c2 + 20 ± 74c,2c2
2 - 80c,c2 + 400 - 4c,2c2

2 - Ac 

2c , 2 +2 

_ - 2c,c2 + 20 ± -^400 - 80c,c2 - 4c2
2 _ - 2c,c2 + 20 ± 2^100 - 20c,c2 - c, 

2c, + 2 2q + 2 

_ - c{c2 +10 ± -^100 - 20c,c2 - c 

c , 2 +l 

For real solutions to exist the condition 100-20c ,c 2 - c 2 > Omust hold. Since xl is now 

known, having taken into account the restriction of equation (4.12), z, can be found by taking 

the square root of both sides of said equation. The inverse kinematics leg equations for legs 2, 

3 and 4 can be found in Appendix B. 

There are 2 real solutions giving 2 real configurations of each leg, for a given end effector 

position. The correct leg configuration must be selected, to acquire the correct angle for 

actuation. The wrong solution for actuation would mean that the leg is folded inwards instead 

of outwards, and would imply that it must have passed through a singularity condition, i.e. 

when the leg is completely folded or completely extended, see section 4.3.2 h for an 

explanation of singularities. 

There are a few possible graphical illustrations for configurations of the leg and their planar 

projections (XZ or YZ plane) are illustrated in Figure 27. The cases illustrated by C and D are 

impossible; that is having both solutions lie on the same side of the lineTjAj. This can be 

seen immediately as m = n and p = o , and the formation of 2 isosceles triangles. Hence 

each set of solutions for the knee coordinates, for each leg, must lie on either of line T.Aj. 

The correct solution for legs 1 and 4 lie to the right of line TjA; (l '=l, 4) , and the correct 

solutions for legs 2 and 3 lie to the left of line T. A ; (i = 2, 3 ) with respect to the geometric 

model's coordinate system (Figure 27). The equation for lineTjAj is found; it is a straight line 
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function of variable x or y. The x or y coordinates, depending on the leg, of the knee joint 

solution sets are then substituted into this equation yielding 2 z coordinate test values. These 

values are then checked, with the test just described, to determine if they lie to the left or right 

of line TjA; for leg i and the correct solution is chosen. If the z coordinate equals the 'test' 

value, that is when both solutions coincide, then there is a singularity (see section 4.3.2 h.) at 

this end effector position. 

Once the correct leg configurations have been determined, the angles for the upper legs can 

be calculated. To obtain 0X three cases need to be resolved (see Figure 27 e). A general 

explanation will be given for 0j. dj Can lie in 1 of 4 quadrants depending on i (for i — 1,..,4, 

see Figure 27 e and f), and its value is given by: 

180° (z.-zA 
6j Lies in first quadrant: 0{ .arctan — — 

* \<li-<ln) 

\ 
6j Lies in second quadrant: 9i — 180° .arctan 

180° . (z, 
i — 

n \9i-9»J 

180° 
Qi Lies in third quadrant: di - 180° + .arctan 

7t 

1 OQO 

0i Lies in fourth quadrant: 0i - 360° H .arctan 
K 

z, - z„ 

<ii-qm. 

z , - zK 

li-ln 

Wherez/(. = 0 V i; qt— xx, y2, x3, y4; qn = 10, - 1 0 , - 1 0 , 1 0 for i=\,..A respectively. 

These cases are due to the fact that arctan yields a principle argument in the range 

<Bi< —. The case when 0j = 270° ( ) can be seen through inspection and occurs 

when the centre line of the upper leg lies directly on the negative z axis passing through that 

particular T;. 

The transforms used to obtain the rotation angles 6Ri are inverse functions of those shown in 

the FK, when dRj was used to obtain 6i. Interestingly, the inverse function for legs 1 and 4 in 

the IK is the same as the original function used in the FK, with variables swapped. 

For i = 1, 4 : dRi = (405° - 0. )mod360 

Fori = 2, 3 : 0m = 0 , - 1 3 5 ° 
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Figure 27 Choosing the correct leg configuration 

Leg configuration of projection onto the XZ or YZ plane 

a. A; Lies in the 3rd quadrant, solutions on either side of line AjT,. 

b. A; Lies in the 4th quadrant, solutions on either side of line A;T; 

c. A; Lies in the 3rd quadrant, solutions on same side of line AT;. 

d. Aj Lies in the 4th quadrant, solutions on same side of line A;T; 

Leg positions 
e. Legs 1 & 4 lie in quadrants 1, 3 and 4 
f. Legs 2 & 3 lie in quadrants 2, 3 and 4 
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h. Singularities 

Singularities are an important consideration in the design of parallel manipulators. It was 

mentioned earlier, but a full explanation is necessary and will now be given. 

There are 2 classes of singularities, i.e. architectural and configuration. 

Architectural Singularities 

An architectural singularity is caused by the design of the manipulator, and not by a specific 

combination of actuation values for rotation or prismatic joint variables. [42] 

Configuration singularities 

This singularity would occur for specific values of the actuated joint variables. One example 

of this is when either the base or the end effector platform is coplanar with one or more legs. 

In this configuration, the manipulator cannot resist forces orthogonal to the plane of the base 

or the end effector. As a design rule-of-thumb, it is better not to use planar base or end 

effector platforms, because that planar relationship introduces partial dependence between 

several coordinates and increases the possibility of singularities. [42] 

There are 3 subclasses that result from configuration space singularities, i.e. inverse, forward 

and combined. 

i. Inverse Singularity 

The inverse singularity refers to a specific robot configuration in which the moving platform 

loses one or more degrees of freedom, instantaneously. [39] 

ii. Forward Singularity 

The forward singularity configuration refers to a specific robot configuration in which the 

moving platform gains one or more degrees of freedom, instantaneously. In other words, if all 

of the active joints are completely locked, the moving platform will still possess infinitesimal 

motion in certain directions. [39] 

iii. Combined Singularity 

The combined singularity configuration refers to a specific robot configuration in which the 

moving platform simultaneously gains and loses one or more degrees of freedom. Hence, the 

combined singularity occurs if and only if both forward and inverse singularities occur 

simultaneously. The combined singularity is subject to strict conditions and can be avoided by 

proper dimension design of the mechanisms. [39] 
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The importance of singularities, from an engineering perspective, arises for several reasons: 

• Loss of freedom. A kinematics configuration may result in joints locking in their position. 

This represents a loss of freedom of one or more degrees. 

• Workspace. When a manipulator is at a boundary point of its workspace it is at a singular 

point of its kinematics mapping, though the converse is not the case. Knowledge of these 

singular points indicates where the manipulator can and cannot move. 

• Loss of control. A variety of control systems are used for manipulators. Rate control 

systems require the end effector to traverse a path at a fixed rate and therefore to determine 

the required joint velocities by means of the inverse of the derivative of the (known) 

forward kinematics. Near a singularity, this matrix is ill-conditioned and either the control 

algorithm fails or the joint velocities and accelerations may become unsustainably great. 

Conversely, force control algorithms, well adapted for parallel manipulators, may result in 

intolerable joint forces or torques near singularities of the projection onto the joint space. 

• Mechanical advantage. Near a singular configuration, large movement of joint variables 

may result in small motion of the end effector. Therefore there is mechanical advantage 

that may be realised as a load-bearing capacity or as fine control of the end effector. 

Another aspect of this is in the design of mechanisms possessing trajectories with specific 

singularity characteristics. In traditional 1-DOF mechanisms (such as the planar 4-bar) a 

cusp singularity provides 'dwell', where the trajectory is close to stationary for a period of 

time allowing some process steps in a production to be performed. [38, 47] 

i. Delta Mechanism Singularities / Designed PKM Singularities 

The PKM designed is a modified delta type mechanism. Since each leg still consists of 2 links 

and the structure is similar, the singularity conditions for this mechanism are the same as that 

of a normal Delta PKM (or Flex Picker robot). 

The Delta PKM is relatively free of singularities. The ones that occur are readily anticipated, 

i.e. when a leg is fully extended or completely folded. Due to symmetry these conditions may 

arise simultaneously in all three legs of the Delta PKM [39, 46]. 

For the PKM designed the singularities occur when both the lower leg and the upper leg have 

the same gradient, in the plane of the upper leg rotation. This condition may arise in all 4 legs 

simultaneously, and this happens when all legs are completely extended or folded (when the 

"thigh", "knee" and "ankle" joints of the legs are collinear). When calculating the IK this 

gradient condition must be checked for each leg, and this procedure was outlined in section 

4.3.2 g. 
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Understanding the intrinsic nature of the various types of singularities and their relations with 

the kinematics parameters and the configuration spaces is of ultimate importance in design, 

planning and control of the system. [48] 

Singularities can never be eliminated, but, as in the case of serial robots, they can be cleverly 

exploited. Due to their linear dependency on coordinates they can be positioned so that they 

are either outside of the useful workspace of the robot, or are easier to control. [42] 

The approach for this system was to avoid any and all singularities, as those that occur are 

inverse singularities. 

j . Idealized Work Envelope Calculation and Visualisation 

The work envelope of the PKM was calculated to provide a visualisation of the workspace. 

There are 2 possible methods for completing this calculation: using the forward kinematics or 

the inverse kinematics. Using the forward kinematics there would be 4 nested "for loops", one 

for each angle (upper leg). Each angle is varied and the forward kinematics calculated for the 

set of angles, giving the end effector coordinates. This allows calculation of the workspace as 

well as determination of all singularities within the workspace. However, placing the data in a 

format acceptable to MATLAB for creating the visualisation is difficult. 

The second method using the inverse kinematics solves the difficulty of the previous solution 

but does not provide singularity information. It, however, was used as it simplified the 

problem of determining the workspace envelope. There is an intuitive guess for the limits on 

the XYZ positioning capability. The algorithm starts at the extreme Z positions (a Z min and 

Z max that cannot be reached for any pair of XY coordinates) in space and calculates the 

inverse kinematics (solving for the angles of the upper legs for each pair of XY sets). It then 

works its way inwards to the boundary of the workspace (increasing Z min and decreasing Z 

max, finding the first Z min and the first Z max that provides actual solutions to the inverse 

kinematics, for each XY pair). The XY boundary is also set just outside the positioning ability 

of the robot and the values of X and Y varied (with suitable step) to cover the boundary. This 

method produces the workspace envelope shown in Figure 28. 
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Figure 28 Different views of workspace, top half, bottom half and 

total. 

k. Dynamic Modelling to determine maximum Servo Motor Loading 

The dynamic modelling of robotic systems involves the study of motion with regard to the 

forces that cause it as well as external forces that are applied to the system during parts of that 

motion. For pick and place robots the force of the added weight of the object that was picked 

up would affect the machine's dynamics if the ratio of object mass to the system's moving 

mass is high. This applies to parallel pick and place machines like the Flex-Picker. 

Complete dynamic modelling, resolving all forces on all links, of PKMs is sometimes not 

possible due to the multiple arm structure and the multiple dependencies of the arms on each 

other. For these systems an approximation is sometimes the only possibility to model some of 

the dynamics involved. [30] 

The first step to establishing the dynamic relations in a mathematical model is to find the 

centre of masses (COMs) for each of the links in the system including the end effector. These 

are then superimposed on the geometric kinematics model established earlier. 

The COMs for each component was found using the SE CAD software package. The densities 

of each part are saved in the material properties of the part file. Once the design for the part is 

complete, the physical properties of COM and centre of volume (COV) are calculated by the 

CAD package and saved with the design, as this property does not change unless the design is 
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altered. For a composite part like the end effector in this PKM design, its COM is calculated 

from the COMs of is composing parts. The COMs of all moving parts are shown in Figure 29. 

All that is required are the COMs for the end effector, the lower legs and the upper legs. 

These are illustrated in Figure 29, which are represented by significant points on the 

geometric model. 

Figure 29 Centres of mass on major components of the moving 

system 

The COM coordinates for the upper leg and lower leg were simplified in the dynamics model 

that was developed. For the upper leg it is the length from the axis of rotation to the point of 

the COM, which is 65.89 mm. For the lower leg it can be reduced to the mid point of the line 

from the "ankle" joint to the "knee" joint, which is 89.5 mm from either point. 

The COMs are superimposed on the geometric model and is illustrated in Figure 30. These 

COMs can be calculated in the kinematics model, since the relative positions from joints do 

not change. 
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(0, 10,0) x 

+ 

UL - Upper Leg 
LL - Lower Leg 
RE - End Effector 

Figure 30 A depiction of the COMs of each link superimposed on 

the geometric model 

The next step in approximating the system is to split the parallel structure into 4 serial parts. 

This is done at the end effector where the mass MEE is carved up into 4 parts with a certain 

portion concentrated at each "ankle" joint. This is obtained from a look at the end effector 

when it is stationary. For static equilibrium the sum of the forces and torques must be zero. 

See Figure 31. 
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Y + 

Figure 31 Illustration of torques about x0 and y0 on the 

plane z = z0 

To find the equivalent mass at each "ankle" joint, the following sets of equations must be 

solved, with torques positive in the clockwise direction: 

Z F + F = 0 (4.16) 

Torques about the Y-axis, the line x = x0 and z = z0. 

45.5Fii3>z + 3 0 . 1 5 F W - 45.5FLLhZ = 0 

Torques about the X-axis, the line y = y0 and z = z0. 

45.5F i i2jZ - 45.5FLL4,Z = 0 

<£=> F - F 
V ^ * LL2,Z 1 U4,Z 

(4.17) 

(4.18) 
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Figure 32 Illustration of torques about line yy (x0 = 30.15, z = zQ) 

The masses of the upper leg, lower leg and end effector are 0.055 kg, 0.0825 kg and 0.2413 

kg respectively. 

The torques about the line yy, given by x0 — 30.15 and z — zQ: 

/ W ( 0 ) + 1 5 . 3 5 F u w - 2 x 3 0 . 1 5 F u w - 7 5 . 6 5 F t t 3 > 2 = 0 (4.19) 

(4.16), (4.17) and (4.19) may be written as follows: 

+ 2FLL2,Z+FLL3,Z = MEEg 

30.15 

45.5 

LL\,Z 

^LL\,Z + "^* i£2,2 **LL3,Z MEEg =0.6626M££g 

Fm , z-3.9283F i i 2 j Z-4.9283FL L 3 i Z = 0 

(4.20) 

(4.21) 

(4.22) 

Or in matrix form: 

2 

0 

-3.9283 

1 

4.9283 

1 LL\,Z 

F 
1 LL2,Z 

F 
_ LLi,Z _ 

= 

MEEg 

0.6626MEEg 

0 

(4.23) 

A.F = 
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This system cannot be solved as A is not invertible, that is all equations are not linearly 

independent. 

The reason for this is that the mechanical system is over determined. If one of the lower leg 

pairs is removed the mechanical system will still be functional, capable of performing its 

3DOF. The additional leg was added to improve positioning accuracy, control and load 

carrying capability. 

To model the worst case situation, setFLi3Z = 0 . This yields FLLlz =0.6626MEEg and 

FLL2Z =0.1687'MEEg. Hence the worst case partial mass of the end effector at the ankle 

joint is 0.6626ME£ = 0.1599 kg. 

Each 2 link arm is now treated serially. Standard techniques for dynamic modelling of serial 

manipulators may be applied, but a holistic picture of the machine must be maintained. Each 

position of this equivalent serial arm is obtained by solving the inverse kinematics of the 

parallel machine. To gauge the effect of this resulting serial arm on the motor, these 3 masses 

are combined to form one equivalent mass at the end of the upper leg, or "knee joint". The 

dynamics of the system may then be treated as that of a pendulum. This simplification is 

illustrated in Figure 33. 

The effect of masses Mx and M2 on the upper leg (see Figure 33): 

FMx=Mvg.sm02A 

FM2 = Mi-g-sin02A 

Fa=F.cos{es-e2A-270°) 

Hence the worst case equation for static torque of all masses on the motor is given by: 

T = Fm.dl+Fa.d2 

=dvM3 .g. sin (0RT - 270°) + d2 .(M, + M2 ).g. sin 02A. cos (0R - 02A - 270°) 

=dvM3.g.cos(0RT)-d2.(Ml + M2).g.sin02A.sin(0R - 02A) 

Using standard trigonometry rules in particular the equality, 

. , . _ COS(A-B)-COS(A + B) . , , 
sin A sin 5 = i -, yields: 
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&K /" ""s/V 6,T = 6> - 270° 

QRK 7^0.-180° 

e:K =6^+180° 

"D ~^RK*9tf 

= 0^-180°+90°-82i -180° 
= ear-eu--m° 

Figure 33 Planar projection of serial leg equivalent for each leg of 

the PKM 

^•sinfo sin^^.sin^y. - 0l A) = ^ C O S (2&2A -0RT)~ ^ C ° S faff ) 

Substitute this in the previous equation: 

T =d].Mrg.cos(0RT)- d2.{Mx + M2).g. sin 62A. sin ($R 

= dv Myg. cos {dRT) .d2.(Mi + M2).g.cos(202A 

•C0S fa«r ) - d2 iM\ + M 2 )•§•Sin ^ 2 ^ •Sin fa* - 02 J 

i (2^2, -««• ) + \-d2 -(M, + M2 ).g. cos ($„) 

(4.24) 

Clearly, from Figure 33, the maximum static torque on the motor occurs when the upper leg is 

completely horizontal (0RT — 360°) and the lower leg completely vertical (02A = 90°, this 

also forces the lower leg planer projection to equal its maximum possible length, that is the 

full length of the lower leg, i.e. 179 mm). 
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r = J1 .M3 .g.cos(360o)--.J2 .(M1 + M2).g.cos(2(90o)-360o) + - .J2 . (M1 + M2).g.cos(360°) 

=dx .M3.g - -.d2(Ml + M2 ).g{-1) + -.d2.{Ml + M2 ).g r s
 2

 2'v ' 2 / o v 2 
= dl.M3.g + .d2.{M]+M2).g 

= (0.065 89)(0.055)(9.81) + (0. l)(0.2413 + 0.0825)(9.81) 

=0.0356 + 0.3177 = 0.3533 Nm 

T 
The maximum mass at the "knee" joint is given by 

d2.g 

0 3533 
MMax = , t , = 0.3601 kg Max (0.1X9.81) 

The leg may now be modelled as a pendulum with a mass of 0.3601 kg at a distance of 0.1 m 

from the actuated rotational joint of the upper leg. This provides a conservative model for the 

PKM and eases calculation. The purpose of this model is to determine the maximum speed 

and acceleration at which the upper legs can be moved without the end effector overshooting 

its intended position; that is to keep the reactive torque applied by the linkage less than that of 

the maximum torque rating of the motor. This provides a modelling approach for the control 

of the robot from a theoretical point. 

The model in the control system however uses control theory of plant estimation. This is 

described in chapter 6 Control Design. 

4.4 Chapter Summary 

Chapter 4 describes the mechanical design and the design process for PKMs. Fully illustrated 

CAD drawings of the mechanical structure is presented. This chapter also provides a 

combined geometric and algebraic method to solve both the forward and inverse kinematics 

as well as providing an illustration of the workspace envelope. The solutions to the FK and 

the IK are closed form, and these can be solved rapidly by the control software. Singularities 

of PKMs are mentioned, and those for the machine designed are indicated as well as how they 

are determined in the IK and avoided. Mass and dynamic modelling is also presented and the 

mechanical system reduced to 4 pendulums. 
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5 Electronic Hardware 

5.1 Processor 

The processor used for the electronic control system was the ATmegal28 micro controller 

from Atmel. It is a powerful microcontroller that provides a highly flexible and cost effective 

solution to many embedded control applications. Some of its features include [49]: 

133 Powerful Instructions - Most Single Clock Cycle Execution 
32 x 8 General Purpose Working Registers + Peripheral Control Registers 
Fully Static Operation 
Up to 16 MIPS Throughput at 16 MHz 
128K Bytes of In-System Reprogrammable Flash 
4K Bytes EEPROM 
4K Bytes Internal SRAM 
Up to 64K Bytes Optional External Memory Space 
Two 8-bit Timer/Counters 
Two 16-bit Timer/Counters 
Real Time Counter with Separate Oscillator 
Two 8-bit PWM Channels 
PWM Channels with Programmable Resolution from 2 to 16 Bits 
8-channel, 10-bit ADC 
Dual Programmable Serial USARTs 
Powerful multiplier supporting signed or unsigned multiplication and fractional format 

The peripheral features that were used most extensively were the timers and the USART 

(universal synchronous asynchronous receiver transmitter). 

The 16 bit timers were used to generate the PWM control signals for the servo motors. 

A dedicated hardware USART in this microcontroller gives it the ability to communicate 

serially with any other processor possessing a USART. It is capable of both synchronous and 

asynchronous communication. The asynchronous feature was used as the microcontroller 

communicates with a PC via its RS232 serial port. 

One ATmegal28 was used. Its functions were: 

• Communication with host PC 
• Control of data converters 
• Search and process acquired data 
• Servo motor digital controller implementation 
• ReadADCs 
• Generate 4 PWM signals for servo control 
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5.2 Communication 

The controller is used to transfer the reference numbers of those sensors that are stimulated to 

the PC through its US ART transceiver and the PCs RS-232 serial port. 

One protocol for serial communication is the RS-232C standard, which stands for 

Recommend Standard number 232, C being the latest revision of the standard. The serial 

ports on most computers use a subset of the RS-232C standard. The full standard specifies a 

25 pin "D" connector of which 22 pins are used. Most of these pins are not needed for normal 

PC communications, and most new PCs are equipped with male D type connectors having 

only 9 pins. 

To use the RS232 port a null modem configuration of the communications line was 

implemented. Null modem cables cross the transmit & receive, DTR & DSR & CD and RTS 

& CTS lines in the cable. This configuration allows communication when there is no need for 

data flow control. Figure 34 shows the wiring diagram for the implementation. 

Figure 34 Null modem with loop back handshaking 
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5.2.1 Line Voltage Conversion 

The voltage levels specified in the RS-232 standard for the serial port are -10 V for logic 1 

and +10 for logic 0. These are different when compared to the microcontroller circuits that are 

powered by a 5 V source. In order for the controller and the PC to communicate a voltage 

conversion must occur. For this purpose a MAX 232 conversion chip is used. It has two 

internal charge pumps which convert the voltages as required. [50] 

5.3 Servo Motors 

A servo motor is one that can place its rotary shaft to specific angular positions depending on 

the reception and value of a particular coded signal. As long as that coded signal exists on the 

input line, the servo will maintain the shaft's angular position. Servos are used in radio 

controlled airplanes and helicopters to position elevators, rudders and blades. They are also 

used in radio controlled cars, puppets and robots. [51, 52] 

5.3.1 The Inner-workings of a Servo 

The servo motor is composed of a DC motor, a feedback potentiometer, control circuitry, a 

plastic casing and a gear box. The potentiometer allows the control circuitry to monitor the 

current angle of the servo motor. If the shaft is at the correct angle, then the motor shuts off. If 

the circuit finds that the angle is not correct, it will rotate the motor in the right direction until 

the desired angle is reached. The output shaft of the servo can move about 180°. Usually, 

there is a 210° range, but this varies by manufacturer and it is not capable of any further 

movement due to a mechanical stop built on the main output gear. 

The amount of power applied to the motor is proportional to the angular distance it needs to 

travel. If the shaft needs to rotate a large angular distance, the motor will run at full speed. If 

it needs to turn only a small amount, the motor will run at a fraction of its full speed. The 

control wire is used to communicate the angle, which is determined by the duration of a pulse 

that is applied to the control wire, called Pulse Coded Modulation or Pulse Width Modulation. 

The parameters for this pulse are its minimum/maximum values and its repetition rate. Given 

the rotation constraints of the servo, neutral is defined to be the position where the servo has 

exactly the same amount of potential rotation in the clockwise direction as it does in the 

counter clockwise direction. Different servos have different constraints on their rotation but 

they all have a neutral position, and that position is always around 1.5 ms (pulse width). 

Angular positioning is achieved through linear interpolation of pulse width, between the 
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extreme positions of 0° and 180°. The resolution however is limited by the digital control 

system in use: 8 bit timers can achieve rotational resolution of 0.706° and 16 bit timers can 

achieve resolution of 0.003°. When a pulse is sent to a servo that is less than 1.5 ms the servo 

rotates to a position and holds its output shaft some number of degrees counter clockwise 

from the neutral point. When the pulse width is wider than 1.5 ms the opposite occurs. The 

minimum and maximum pulse width, that will command the servo to turn to a valid position 

are functions of each servo. Different brands, and even different servos of the same brand, 

will have different maximum and minimum pulse widths. Generally, for all servos, the 

minimum pulse is about 1 ms and the maximum pulse about 2 ms, and it has to be refreshed 

every 20 ms. 

The maximum amount of force the servo can exert is its torque rating. Another parameter that 

varies from servo to servo is the turn rate. This is the time it takes for the servo to change 

from one position to another. [51, 52] 

Servos Used 

Four JR-591 servos were used in the design. They each have a mass of 350 grams and a 

torque rating of 5.1 kg.cm. Also its rated speed is 60*70.2Is, i.e. it rotates 60° in 0.21s. They 

were selected for reasons of cost, torque and size. The servo's torque was sufficient to carry 

and hold all masses attached to its shaft which was the main requirement. This motor loading 

was described in section 4.3.2 k. The maximum static torque applied by the system on the 

servo motor is 3.601 kg.cm (or 0.3601 kg at 10 cm, as was derived). This is well within the 

torque rating of the motor. The control design ensures that the dynamic reactive torque 

applied by all masses and links attached to the servos are less than its maximum rating. See 

chapter 6 on the control design. 

5.4 Analogue To Digital Converters 

To acquire direct feedback on the angular position of the servomotor (hence each upper leg), 

a modification was made to each servo, tapping directly into the analogue voltage on its 

potentiometer. This analogue voltage provides the servo with angular position feedback. The 

analogue signals were fed to 4 independent 8 bit TLC548CP analogue to digital converters 

(ADCs) [53]. The high input impedance of these ADCs do not affect the control circuitry of 

the servos. The reason for using 4 ADCs will be explained. Firstly the rotation of the servos 

were limited and calibrated, to make the mechanical system uniform as the servos are not 

identical and have slight variations. A mechanical calibration and limiting tool was made to 
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prevent the upper leg from exceeding its maximum and minimum positions (see section 8.1.1 

on calibration). The voltages at each of these maximum and minimum positions were 

different for each servo. The positive reference voltage on the ADC for each servo was tuned 

to the voltage appearing at the maximum position. The negative reference was tuned to the 

value appearing at the minimum position. Each ADC converts the rotation range (140°) 

exactly to a value between 0 and 255. Even though each servo may have a different voltage at 

for instance 120°, the digital value of each output of each ADC would read the same. This 

was the purpose of having separate ADCs with separate references. 

Figure 35 Wire tap into feedback potentiometer of servo motor 

5.5 Laser Stimulant 

Twenty-four 635 nm laser diodes were used, 12 for the vertical screen and 12 for the 

horizontal screen. The number of lasers used increases the sensor system resolution. See 

section 3.2.3 for an explanation on the arrangement of these lasers. The vertical laser set is 40 

mm below z0 (end effector z coordinate reference). This was allowed so that it would not 

affect the legs during motion. The 40 mm vertical offset can be accounted for in software or 

physically with the mounting of the vertical screen. 

The lasers cannot be used continuously as they overheat and this leads to destruction of the 

diode in minutes. The nature of this design however does not require a continuous stream of 

optical power. The lasers are switched off just after the parallel to serial converters are loaded 

with the sensor data, through the data transfer stage until the next data acquisition. The data 

processing takes roughly 80 ms and the detector needs 10 us to switch on completely [54]. 

Utilizing a design factor of 100 yields a laser on time of 1 ms (100x10 us). This implies that 

the laser is on 1.25% of the time, which is sufficient to prevent burnout. 
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5.6 Light Detectors 

5.6.1 Available Light Sensing Options 

Light sensing applications vary widely from specialized scientific instrumentation that must 

detect individual light "particles" (photons) to systems that control high speed welding and 

cutting lasers which produce kilowatts of optical power. There are sensors for almost any 

application imaginable: from a photomultiplier tube which gives a large voltage pulse for 

every photon it detects, to cooled thermopiles that absorb kilowatts of power providing a 

thermocouple voltage proportional to the optical power absorbed. Other detectors include 

photodiodes, phototransistors, photodarlingtons, photoresistors, integrated circuits, and 

various hybrids. Table CI of Appendix C summarizes these characteristics. For any 

application the following needs must be considered: [55, 56, 57, 58] 

• Light source spectral characteristics, 
• Optical power, 
• Mating electronics, 
• Packaging constraints, 
• Image size, 
• Signal-to-noise ratio, 
• Frequency bandwidth, 
• Operating lifetime, 
• Reliability, 
• Operation and storage environment, 
• Performance, 
• Cost. 

The following sections describe the most popular light sensing technologies. 

a. Photomultiplier Tubes 

Photomultiplier tubes are special vacuum tubes that have a light sensing surface (the 

photocathode) that absorbs incoming light photons and emits secondary electrons. These 

secondary electrons are accelerated and multiplied within the photomultiplier tube by dynode 

plates. Each time an electron strikes a dynode, it has gained enough momentum to create a 

larger number of secondary electrons. This multiplication process continues for each dynode 

within the tube. Tubes with ten to twelve dynodes can easily generate multiplications of more 

than a million, resulting in sufficient current to develop hundreds of milli-volts across an 

output 50 ohm load resistor for a single incident photon. 
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Photomultiplier tubes provide ultimate detection sensitivity. They can sense the smallest 

amount of optical energy there is, i.e. an individual photon. When cooled, they can be 

essentially noise free, with at most one false photon pulse in a one second time period. 

However, there are many disadvantages to this light sensor, it [55, 56, 59, 60]: 

• Is mechanically fragile 
• Requires an extremely stable high voltage power supply 
• Is expensive 
• Has a package that is limited in shape and size 
• Is susceptible to external magnetic fields 
• Has limited wavelength sensitivity 

b. Photodiodes 

All diodes and transistors are light-sensitive. Photodiodes and phototransistors are designed 

specifically to take advantage of this fact. Photodiodes are manufactured in essentially the 

same way as semiconductor diodes used in conventional electronic circuits. The primary 

differences are that photodiode ICs are larger and they are packaged to allow light onto the 

sensitive area of the diode. 

Photodiodes offer many conveniences and advantages that make them very practical for a 

wide range of applications: 

• Can measure pico to milli-watts of optical power, 
• Have standard packages which can be tooled to fit the application exactly, 
• Almost any photosensitive shape can be fabricated with costs starting at R24 000, 
• Wide range of wavelength sensitivity, from 190 to more than 2000 nm, 
• Small and light, 
• Highly reproducible sensitivity, 
• Cheap, 
• Very large detectable surface areas can be fabricated, 
• Fast response time (as fast as 10 picoseconds), 
• Can be conditioned to resist noise. 

Photodiodes are used in applications ranging from sensors for door openings, assembly line 

controls, load levellers in luxury cars, to personal blood sugar meters for diabetics, sun-tan 

exposure meters, smoke detectors and x-ray baggage inspection systems. [55, 59, 60] 
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c. Phototransistors and Photodarlingtons 

The most common phototransistor is an NPN bipolar transistor with an exposed base region. 

In this case light striking the base replaces a voltage that would have been applied there. It 

therefore amplifies variations in the amount of light striking it. 

They are often more convenient than photodiodes because they have built in gain 

(amplification). Photodarlingtons have two stages of gain, with net gains that can be greater 

than 100,000. Phototransistors/photodarlingtons can therefore be coupled with a load resistor 

to accommodate TTL level voltages for a wide range of light levels. They have become 

popular due to their ease of use, low cost, TTL compatible signal levels, and suitability in 

applications that have nano-watts of available optical power. These devices however, do have 

some drawbacks when compared to photodiodes. The frequency bandwidth and linearity are 

relatively limited and spectral response is restricted to between 350 and 1100 nm. In addition, 

there are very large variations in sensitivity between individual devices and only a few 

standard package options. [55, 59, 60, 61] 

d. Photoconductive Sensors 

A photoconductive sensor is a thick film semiconductor material whose electrical resistance 

decreases with increasing incident light. These rugged assemblies can withstand hundreds of 

volts and are typically smaller than a 6 mm diameter. 

Photoconductive sensors based on cadmium sulphide (CdS) have sensitivity curves that 

closely match the sensitivity of the human eye. They are useful in applications involving 

human light perception such as headlight dimmers and intensity adjustments on information 

displays. These sensors can be designed for measuring microwatts to milli-watts of optical 

power and are inexpensive at high volume. These characteristics make CdS photoconductors 

the sensor of choice in applications such as street light control and in the toy industry where 

economy is a major consideration. 

Photoconductors made from materials other than CdS such as lead telluride and mercury 

cadmium telluride are also available. These materials have spectral sensitivities that cover the 

range that photodiodes cannot, i.e. from 2-15 urn This longer wavelength sensitivity is very 

important for infrared imaging cameras and for long wave instrumentation such as is used to 

monitor carbon dioxide laser emission and atmospheric physics. These sensors tend to be 

more expensive than both silicon photodiodes and CdS photoconductors. [55, 56, 57, 58] 
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e. Integrated Circuits 

Incorporating additional electronics directly onto a semiconductor sensor chip makes it 

possible to add additional functions to the sensor. An "optical IC" is an integrated circuit 

comprising photodiode and electronic-signal-processing-circuits. Additional functions such as 

current to voltage conversion and reference level sensing (e.g. a Schmitt trigger) can be 

incorporated. Other optical ICs can provide signals highly immune to noise, such as a 

current-to-frequency conversion. 

The principal advantages of an optical IC are ease of use, small size and immunity to 

electronic noise when compared to a photodiode with separate electronics. These devices are 

much more expensive and offer a very limited active light sensing area. Custom tooling for 

specific applications is also expensive. [55, 56, 57, 58] 

f. Hybrids 

The electronic functions of an optical IC can also be provided by a hybrid circuit that has 

unpackaged IC components (die) attached to a substrate that also contains a photodiode. This 

type of sensor combines the ease of use and immunity to electrical noise of an optical IC with 

increased design flexibility and lower tooling costs. In addition, the sensitivity can easily be 

increased with a larger photodiode active area without the added cost of a separate detector. 

The primary disadvantages of a hybrid sensor are its cost and reliability. Cost can be several 

times higher than the electronic assembly option discussed below and reliability testing is 

difficult to quantize, so either limited reliability screening is implemented, or the piece cost 

becomes high. [55, 56, 57, 58] 

g. Sensor Electronic Assemblies 

Combining any of the sensors listed above with printed circuit based electronic signal 

processing creates sensor assemblies or "black boxes". The user defines specifications for 

light input and the desired output response, the vendor then builds and tests the systems to 

ensure that the specifications are met. An assembly can also include optical components such 

as lenses and special wavelength filters. The user bolts the assembly into place and connects 

it to the high-level electronics; there are no concerns about mismatch between the purchased 

sensor and front-end amplifiers or diagnostic electronics. The system is relatively immune to 

noise and is highly reliable due to the mature manufacturing technologies used. 
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Sensor electronic assemblies are easy to implement. Experienced vendors can often deliver 

better reliability and lower cost products compared to in-house manufacturing. The main 

disadvantage is less flexibility in making changes dynamically, but this is not an issue for a 

responsive vendor or mature designs. [55] 

h. Other Sensors 

There are many other types of sensors. These include avalanche photodiodes, bolo-meters, 

self-scanned arrays an photon drag detectors. A sensor vendor can provide information about 

these devices and can discuss the physics and advantages of each detector technology. 

i. Selecting a Sensor 

Reviewing a few design aspects provides sufficient information for making an optimal choice 

of detector for a given application. 

Wavelength - An effective choice for detector can be made based on the range of 

wavelengths of interest. These can be seen in table CI of Appendix C. For example detecting 

wavelengths below 1100 nm, photoconductive cells or a silicon-based detector would be 

appropriate. At wavelengths above 1100 nm, the costs and technology options are not 

straightforward, and a detector vendor consultant should provide the most effective guidance. 

Optical Power - A detector must be capable of providing an output at the given optical 

power. Applications detecting wavelengths with at least microwatts of optical power in the 

visible spectrum, in which the sensor is simply required to detect if light is present, can use 

one of the least expensive and most rugged detectors available, the photoconductive cell. 

Silicon phototransistors and photodarlingtons should be considered for applications that are 

required to detect nano-watts of optical power within a 5 mm diameter spot at wavelengths 

between 350 and 1100 nm. 

Performance - For UV to near IR wavelengths, photodiodes offer the best overall 

performance. They are only slightly more expensive than phototransistors, but their spectral 

range is broader and they have lower noise, more uniform sensitivity and reproducibility, a 

larger dynamic range, better linearity and more packaging options. Also, photodiodes can 

routinely detect pico-watts of optical power. If phototransistors or photoconductive cells are 

not appropriate for an application, more often than not a photodiode will afford the best 

alternative. 

[55, 56, 57, 58] 

90 



At least 90% of detector applications should be satisfied by using phototransistors, 

photodarlingtons, photodiodes or photoconductive cells. When light levels are extremely 

low, ambient electronic noise levels high, or there are limited space requirements, alternatives 

such as optical ICs, hybrids or photomultipliers should be investigated. 

j . Sensor Screen Detectors 

The OP521 surface mount phototransistor was chosen as the detector. It is sensitive to light 

wavelengths in the range 400 - 1100 nm, with the best spectral response at 900 nm [54]. 

There are 512 sensors spread over two detector screen PCBs (256 sensors each) covering 225 

cm2 each. There is a 10 mm resolution (spacing) between sensors on both the vertical columns 

and horizontal rows. The detector screen provides coordinates for check points in space. 

These are used to correct position errors in the robots workspace. Errors are no longer 

accumulated from one extremity to the next but are limited to the resolution of the combined 

laser and sensor arrangement. 

5.7 Buffers/Amplifiers 

The need for buffers or amplifiers for sensor signal conditioning depends on the strength of 

the incident sensor stimulant. As lasers were used, a large percentage of the output optical 

power falls on the detector screen sensors, due to the coherent nature of laser light. 

Furthermore the flat and tiny 1206 surface mount package of the OP521 phototransistor 

allows more incident light to fall on it than previous versions of the detector screens, made by 

the author, using phototransistors (LPT3133) in LED type packages. The 1206 package 

diagonal length is smaller than the beam diameter of the laser. Hence there was no need for 

signal conditioning via buffers or amplifiers. 

5.8 Serialization 

The outputs from each sensor are fed to the parallel inputs of a parallel to serial data 

converter, the 74LS166 [62]. This was to serialize the data for transfer to a PC. There are 4 

control lines (CLEAR, SHIFT/LOAD, CLOCK and CLOCK INHIBIT) and 10 data lines (1 

serial input, 8 parallel inputs and 1 serial output) per data converter. There are 32 parallel-to-

serial-data-converters per detector assembly. The serial output line from each 74LS166 is fed 

into the serial input line of the following 74LS166. The resulting configuration provides one 
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data output line for each detector assembly. The controller searches through the 64 bytes of 

data for bits representing stimulated sensors. It then transfers the number of each sensor. 

5.9 Power Supply 

An ATX computer power supply was used to power all the electronics and servo motors. It 

had to be modified, however, to work independently from a PC. The steps for converting 

these power supplies can be viewed on many electronic hobbyist websites. 

"How to convert a Computer ATX Power Supply to a Lab Power Supply" -

http://www.wikihow.com/Convert-a-Computer-ATX-Power-Supplv-to-a-Lab-Power-Supplv 

5.10 Schematics and PCBs 

Two detector screen sensor electronic assemblies were made, one for each of the vertical and 

horizontal planes. Each of these electronic assemblies consists of a sensor screen and a 

data/control-signal routing board. 

The sensor electronic assemblies were made to be modular, so that a screen of any practical 

size could be built. This is the single biggest advantage of this system. Each sensor module 

plugs into each data/control-signal module via rail headers. The modules then plug into each 

other (via wired link or a separate board with rail headers) and are arranged to form one large 

detector screen. The modules were made such that the ICs and phototransistor components 

were on either side of the modules outer layers after the boards were put together, so that 

components could be changed easily if they malfunctioned. Each sensor module consists of 

16 OP521 phototransistors. Each data/control-signal module consists of two 74LS166 ICs. 

See Figures 36 - 39. 

Each sensor assembly screen consists of 256 OP521 phototransistors and of 32 74LS166 

parallel to serial data converters. There are 16 sensor modules per sensor screen assembly. 

These 2 sensor electronic assemblies (1 vertical and 1 horizontal) then connect to a main 

embedded controller. This is shown in Figure 40. 

The main components of the controller board were the microcontroller, MAX232 level 

shifter, BC547 transistors used to power the lasers and the TLC548CP analogue to digital 

converters. See Figures 41-43. 
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(Not to scale) 

a. Top layer holding components 
b. Bottom layer 
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Figure 40 Sensor electronic assembly 

a. Detector screen, top layer - holds components 
b. Detector screen, bottom layer 
c. Data/control-signal board, top layer 
d. Data/control-signal board, bottom layer - holds ICs 
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5.11 Chapter Summary 

The electronic design is presented. The components and their implementations in this design 

are described. It begins with a motivation for the choice of embedded microcontroller, the 

ATmegal28. One processor is used in the design to acquire sensor data, process that data and 

for servo motor control. Communication with the PC control software occurs via the 

controller's USART and the PC's RS232 serial port. The Max232 facilitates voltage 

conversion. The servo motors used are then discussed as well as the modification to read the 

servo position, through 4 TLC548CP ADCs. A discussion of the detector screen components, 

i.e. the lasers and light sensors, then follows. In total 24 lasers were used, 12 per detector 

screen, and the OP521 phototransistor was used as the light sensor. There are 256 

phototransistors per screen. They connect to 32 74LS166 parallel to serial data converters. 

The output serial line from each converter feeds into the serial input line of the following 

converter, and this allows 2 data lines to carry all the data to the microcontroller. The design 

schematics and PCB diagrams are then illustrated. 
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6 Control Design 

The control system design consists of 2 levels of control. At the macro stage, it consists of 

tracking and control of the coordinates in 3D space in software. This is done by solving the 

inverse kinematics for each position of the robots trajectory and obtaining angular values for 

rotation of the upper legs. The trajectory of the robot is the path in 3D space which the end 

effector reference coordinates must follow. This macro stage has 2 sources of position 

feedback i.e. from the motor encoder relating angular position of the leg, and the direct end 

effector sensor. 

The micro stage consists of an embedded system controlling the position of each leg and the 

manner in which it drives the legs to the desired angular position at maximal speed with a 

control algorithm that inherently takes into account the system dynamics. There is only one 

source of feedback which is the motor position potentiometer. 

6.1 Macro Stage Control 

The macro level control system problem for this PKM can be stated: from the current 

position, which can be measured accurately via the combined sensor readings of the direct 

end effector sensor system and the motor position potentiometers, follow a trajectory to the 

point of interest in the workspace of the manipulator. The block diagram for this is shown in 

Figure 44. 

Desired Coordinates 

(Xd.y<i.z<j) F<8> Coordinate Errors 

Measured Coordinates 

Plant 
(Mechanical 

System) 
Movement 

PWM 
Generation 

CONTROLLER 

MACRO STAGE 

Trajectory 
correction 

Embedded control 
for angle variation 

MICRO STAGE 

Solve Inverse 
Kinematics 

Servo 
Angles 

Figure 44 Block diagram for PC software controller 
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6.2 Micro Stage Control 

6.2.1 Characterising the system 

The first step in designing the control system for the parallel robot scale model was to obtain 

a transfer function for the compound leg. Each leg (comprising servo motor, upper leg, lower 

leg and part of end effector) is treated as a plant. Inherently stored in this model are the 

dynamics of the system. 

Method 

To obtain a transfer function in the S-Domain, first apply a known input to the system (x(t)) 

and measure the output. Then find a best fit curve to the output data obtained (y{t)), that is 

find a mathematical function for the output (if not exact then best approximate) in the time 

domain. Next take the Laplace transform of the output (Y(s)) and divide it by the Laplace 

transform of the input (X(s)). To derive the transfer function of the "plant" in the time 

domain (g(t)), take the inverse Laplace transform of G(s). This method provides a means of 

plant estimation for linear time invariant (LTI) systems. To determine if a system is LTI apply 

2 inputs and measure their outputs. Then apply an input to the system which is the sum of 

those 2 previous inputs, provided that this value is within the operating range of the system, 

and measure the output. If this output is the sum of the previous 2 outputs then the system is 

LTI. This is the principle of superposition, and it applies to linear systems. [63] 

x(t) 

X(s) 
G(s) = Y(s)/X(s) 

y(t) 

Y(s) 

Figure 45 Typical plant model 

Usuallyx(t) is a simple standard function whose Laplace transform is known. The most 

common types are an impulse, step or ramp function. The corresponding output is called the 

impulse, step or ramp response. Of the three functions named the easiest to generate is the 

step input, and it was used to obtain the step response. It is generated by changing the input 

from some initial value to some final value. The function generated is not ideal as there will 
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be some delay involved in reaching the final value, however for an acceptable approximation 

these non ideal characteristics do not have to be modelled if the system time constants 

(generally reactive time for mechanical components or chemical processes) is far larger. A 

number of different sized steps were applied to the system, and their outputs measured. The 

test to determine if the system was linear was carried out, and it was found that the system 

satisfied the condition for linearity. This can be seen readily if one considers the steady state 

(it was confirmed for the transient state) of the system, where each angle has a linear mapping 

to a particular voltage. [63] 

The mathematical model of the system is obtained at the maximum speed at which it can 

operate. The embedded software controlling the mechanical system at this point changes the 

input to the servos immediately when it receives control signals from the host PC control 

software. That is, no digital controller is implemented to condition the "plant" input to 

account for system dynamics. For the system in question, the input is a reference angle, which 

is changed from an initial angle to a final angle. These angles were chosen so that the effect of 

one upper leg (or motor) on another was minimal and moving vertically along the z-axis 

ensures this. Furthermore pure vertical movements mean that the legs operate uniformly, that 

is the angular change is the same for each leg. The step change in input therefore moves the 

reference point on the end effector from (0,0,za) to (0,0,zA). 

Positional feedback is measured via the servo potentiometer. The Cleverscope CS328 PC 

oscilloscope was used to acquire the step response. This is shown in Figure 46. The noise 

seen on the output is caused by an oscillation of the potentiometer wiper on its windings. The 

modelling is accomplished by averaging the maximum and minimum values of the errors 

around time tj, for all i in the data set. 

Figure 46 Step response via display on Cleverscope Software 
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The data was then exported as text, and imported to MATLAB, where it was normalized, in 

this context meaning that the output was shifted and scaled to start at 0 (with the time of the 

step change in input occurring at 0 s) and end at 1. These operations on the data did not affect 

the design of the control system. A control system designed for normalized data will work 

with the actual system. This was confirmed in section 8.2.5 Figure 70 f. 

3 . Data from Oscilloscope 

Normalized Data, for a unit step 

Time (s) 

C. Normalized Data, time of step shifted to t = 0s 

Figure 47 Display of data in MATLAB 

a. Data from oscilloscope 
b. Normalized Data 
c. Normalized and step time shifted to t = 0s. 

Once this was done an approximate mathematical function was fitted to the data (as it was not 

possible to find an exact function to fit the data). The output data resembles the response of a 

second order system. The time function of a general second order step response is given 

by: y(t) - 1 - e~a'.cos(ax). Suitable values for a and 0) had to be found. 
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Best Approximation, Not Laplace Transformable 

a. 

Time (s) 

Graph of Cos(w*t1'35) 

Time (s) 

Figure 48 Superposition of the best single function approximation 

to the data 

Best approximate single mathematical function to the data, not Laplace 
transformable 

1.35 > b. Graph of cos^ . f " 3 ) 

The best fit curve for the data was given by the function: 

y(t) = l-e-a'.cos(cotb) = \-e~23'.cos(33t135) ... (6.1) 

This function however is not Laplace transformable. A graphical illustration is shown in 

Figure 48 a. 

The best fit Laplace transformable function was found to be: 

y(t) = 1 - e"a ' .cos(^) = 1 - e"23'.cos(270 ... (6.2) 
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This is shown in Figure 49 a. The 3r oscillation of the approximation was made to fit the 3r 

oscillation of the data curve, yielding values of 2.3 and 27 for a and 6) respectively. The first 

2 peaks and troughs do not coincide with those of the data curve. They occur ahead of time 

and have higher amplitude displacements. This means that the modelled system given by the 

approximation is more reactive. A control system designed for this slightly more reactive 

system would work with the real world system as this can be likened to designing for a worst 

case situation. A comparison of the best fit approximation and the acceptable Laplace 

transformable approximation is shown in Figure 49 b. 

3 . Acceptable Approximation, Laplace Transformable 

Figure 49 Plant approximations 

a. Acceptable Laplace transformable approximation 
b. Comparison of best approximation and the Laplace transformable 

approximation 
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Plant Transfer Function 

Take the Laplace transform of the output equation y(t), equation 6.2. [63] 

Y(S) = 4 l - e - f l ' . c o s M ] 
1 s + a 

s s2 +2as + (a2 +G)2) 

s2 + las + (a2 + O)2) - s(s + a) 1 s2 + las + [a2 + a)2) - s2 - as j _ 

s2 +las + {a2 +a>2) 's s2 +las + (a2 + a)2) s 

as + (a2+(Q2) J. 13s + (l32+172) 1 

s2+las + (a2+co2)'s ' 5 2+2x2.35 + (2.32 + 272) 's 

2.3^ + 734.29 1 
—z .— ... (o.i) 
s2 + 4.6s + 734.29 j 

The input equation, the step function l(t)has the Laplace transform —, or X(s) = —. Hence 
s s 

the transfer function G(.s)is given by: 

G(s) = 
Y(s) 

X(s) 

1.3s + 734.29 

_ s2 + 4.6s + 734.29 
1 

s 

as + a2 + 0)2 

1 

s 

s2 + las + a2 +Q)2 

13s + 734.29 

s 2 + 4.65 + 734.29 

a = 2.3&6> = 27 ... (6.4) 

6.2.2 Control System in S-Domain 

For positional control in a robotic system, the second order response with overshoot and 

oscillations is not acceptable as this means that the end effector overshoots its intended 

position and has damped oscillations until it settles to that position. A first order response is 

required, and a controller GC^sJis used to reshape the output ofG(s). A typical feedback 

control system is described by Figure 50. 
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X(s) E(s) 
x ( t ) ~ ^ 

V e(t) 
GC(s) G(s) 

Y(s) 
y(t) 

Figure 50 A typical feedback control system with controller GC(s) 

and no sensor conditioning 

The transfer function of this system is given by: 

GFB(s) = 
Y(s) GC(s).G(s) 

X(s) " l + GC(s).G{s) 
(6.5) 

A time function for a first order step response is given b y l - e ' . Taking the Laplace 

transform yields: 

1 1 b 1 
Y(s)= 4-*-*']=--

s s+b s+b s 
(6.6) 

Dividing by the Laplace transform of the input step, gives GFB{s): 

GFB(s) 
X(s) 

b 1 

s + b s 
1 
s 

s + b 
(6.7) 

The parameter b is used to shape the response, the smaller the value ofb the slower the 

response. To obtain GCys), equation 6.7 must be written in the form of equation 6.5. 
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GFB{s) = 

b 
_ s 

s + b 
(6.8) 

1 + 

This implies: 

GC{s\G(s) = 

&GC{s) = 

!L . GC{s). 2 3 , + 734.29 
s V s2+ 4.6s + 734.29 

s2 + 4.6s + 734.29 fr 

2.35 + 734.29 '5 
(6.9) 

Using the STEP function in MATLAB, a value for b was selected to gain an acceptable 

output response. Using the 95% criterion, bor t can be designed when given the other. 

1 - £f *' = 0.95 

e~b' = 0.05 

-bt = ln(0.05) 

ln(0.05) 
=> b = 

-t 
(6.10) 

For b = 4 , it takes 0.752 s to reach 95% of its final value. 

Step Response 

Time (sec) 

Figure 51 Comparison of modified and original step response of 

model 



6.2.3 Control System in the Z-Domain (Discrete time) 

*(0 e(t) 4kT\ GDC(Z) , m{kT) 
GP(s) 

O *s. 
Sampler 

A/D 

z+0.5 _h-
u(t) 

1 

s+1 

><0 

Digital Zero order 
Controller Hold, D/A 

Plant 

Figure 52 Block diagram of a typical discrete time feedback control 

system 

The block diagram of Figure 52 represents a general form of a digital control system. The 

error signal is sampled and digitized before being passed to the digital controller. The digital 

controller modifies this error and feeds it to a hold circuit where the digital output, which is a 

quantized discrete time signal, is turned into a quantized continuous time signal. This control 

signal is then fed to the plant. [64, 65] 

The PKM control system can be modelled similarly, even though the input signal is actually a 

digital signal and the output is digitized before the summing joint, shown in Figure 53. 

x{kT) e(kT) 

- 9 
m 

GDM) 

(kT) 

J ^ 
u(t) 

Gp(s) 
y(t) 

y(kT) 

Figure 53 Block diagram of PKM servo motor controller 

This block diagram may be modified as in Figure 54. 
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x(t) x(kT) 

*€ G^Cz) • 

m(£r 

JV 
) 

«(0 
— • <?,(*) 

>'(0 

Figure 54 Modified block diagram of PKM servo motor controller 

This then reduces to the block diagram of Figure 52. 

The digital controller is not the Z transform of the controller GC(s) in the S Domain. It has 

to be derived separately and this will be shown in stages. 

To get the feedback transfer function divide the Z transform of the output function by the Z 

transform of the input function. The output function y(kT) {y[t) at discrete instants of time 

kT } is given by 1 - e~bkT , the input function is the unit step \{kT). [64, 65] 

(l-s-'Xl-*-"*-1) 
Z\y{kT)\ = z\-e>"\ = j, V-« £ _ ^ = y(z) 

z[x(kT)} = Z[l(kT)] = —?—{ = X{z) 
\-z 

Therefore « * ) - M = E S E g g ] . i z £ ^ L 

\-z 

(6.11) 

*H 
GFB(z) 

Y(z) 

Figure 55 Block diagram of feedback transfer function in the Z 

domain 
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cci \c( \ 
The feedback transfer function GFB\z) = , . ... (6.12), from the expansion of 

1 + GC(z)G(z) 

block GFB(z) as shown in Figure 55. 

X(z) E(z) 

• © — i GC(z) 
M(z) 

G(z) 
Y(z) 

Figure 56 Block Diagram of digital feedback control system 

Equation (6.11) must be written in the form of equation (6.12). 

x {l-e-bT)z-1 

1 + x \-ehTz-x 

x(l-e-bTz-1) = {l + x)(\-e-bT)z-1 

x - xe~bTz-x = z"1 - e-bTz~l + xz'1 - xe~bTz'1 

x - xz~x = z_1 - e'bTz'1 

x{l-z~l) = (\-e-bT)z-x 

x = GC{z)G{z) = (X-e~bTVX 

\-z 
(6.13) 

G\z) Is the Z transfer function of the product of the zero order hold and the plant transfer 

function. The zero order hold transfer function is given by 
1 -ft 1 - i 

1—e \—z 

Hence Gyz) - Z 
\-z 

:G(S) = ( l -Z" ' )Z 'Mi 

110 



G(s) 
To obtain the Z transform of ——, its inverse Laplace transform must first be found, that is a 

s 
function in t. [65] 

G(s) 
= I71 1 as + a + 0) 

s s + las + a +0) 2 , ,3-
: (From equation (6.4)) 

1 as + a2 + Q)2 

s s +2as + a + 0) 2 , , , 2 = 17 
js + a) 

s (s + of + 2 -co2 
(Partial fraction expansion) 

= 17 - I7l s + a 
(s + af + a)2 _ 

= i(0- e .cos OX (6.14) 

Therefore: 

G{z) = Z\ ^ ^ . G ( s ) = {l-z-l}z G(s) 

= (l-z- l) .z[\{t)-e-a .cos ox] = (l-z-').z[l{kT)-e-akT.cos OJkr] 

= (l-z"') .[ Z[l{kT)]- z[e-akT.cos akT] 

= ( i - z - ) 
1-e ~ . z .cosatf1 

-2ar -2 1 - z-1 1 - 2e~a' .z"1. cos off + e~lal .z 

Make the following substitutions 

«! = e " .cos Q)T 

m, = le a .cos off 
-2aT 
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- ( I- ," ' ) . 
1 l-e " .z .cos coT 

1-z"1 l-2e~a \z~'.cos6>r + <T .z 2aT -2 

l (l-z"Xl-»,z-) 
1 - mxz ' + m2z

 2 

1 - myz ' + w2z
 2 - [l - z ' - «,z ' + «[Z~2 

1 - w,z_1 + »?2z~2 

(l + »,—/«[ )z ' + (w2 - «[ )z~ 

1 — mxz~x + w2z~2 (6.15) 

fl— *~ur\z~1 1 
From equation (6.13) the controller GC{z) is given by -̂  -^—.—r—r. Hence: 

1-z G(z) 

GC(z) • ('-e"r>" - L . 4 = * 3 1 — w,z + m2z 

1 - z 1 G(z) 1 - Z - 1 (l + «!-m,)z '+ ( /M 2 -« 1 )z~ 

(l-e-' '^)z-1 (l-m,z~'+ffl2z-2) 

( l - z - 1 ) 'z_1((l + «, - m J + ^ - n J z " 1 ) 

(l-e-
bT)-m(l-e-bT)z'l+m2(l-e-bT)z-2 

(l + « 1 -w,)( l -z" 1 )+(m 2 -« 1 )z" 1 ( l -z" 1 ) 

(l _ e-"ry_ ^ fr _ g-MJ -̂i + mz(, _ e-^r)z-2 

(l + «j — m,)— (l + «j — m,)z~' + (AM2 - «,)z~' - (w2 - «,)z" 

( l - e - f e r ) -m,( l -e - f c r )z- 1 + W 2 ( l - e - j ' r )z- 2 

(l + Wj—m,)—(l + 2«, -ml—m2 )z_1 - (m2 - w, )z~2 
(6.16) 
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Make the following substitutions: 

p0 = l-e-bT 

px = m, (l - e~bT) = 2e~aT (l - e~bT). cos off 

p2 =m2(\-e-bT) =e-2aT(l-e-bT) 

q0=l + nl-ml = 1 +e~aT.cos 6)T-2e~aT.cos a>T = l -e" a r . cos coT 

q{ = 1 + 2«[ —mx-m2 

= l + 2e-aT.cos OJT-2e'aT.cos OJT- e~2aT =l-e~2aT 

q2 =m1-nl = e~2aT - e~a7\cos ofT 

GC(z) = Po-P^+P^-2 ... (6.17) 

6.2.4 Controller Implementation 

There are 2 approaches to the controller implementation: these are direct and standard 

programming. This controller was implemented using the standard programming approach, 

which uses the minimum number of delay elements, and in this case it is 2. [65] 

GC(z) = Po-P*l + P*-* 

_ M(z) _ M{z) H(z) _ p0-pxz-l+p2z-

E{z) H{z)'E{z) 1 'q^-qxz-x-q2z ? 

Where 

M{z) = pQ - pxz~x + p2z 

H{z) ^ 1 
(6.18) 

113 



And: 

H{z) = 1 
E(Z) <lo-<llZ~l-<l2Z~ 

(6.19) 

Equation (6.18) may be written as: 

M(z) = p0H{z)- Plz'lH(z) + p2z~2H{z) (6.20) 

Its block implementation is: 

Py> 
Gain 1 

z-*H(z) 

H(z) 

Gain 2 J& 
U(z) 

w*£> 
Unit Delay 1 Unit Delay2 Gain 3 

Figure 57 Block implementation of equation (6.20) 

Equation (6.19) may be written as: 

E{z) = qQH{z)-q^H{z)-q2z-2H{z) 

Rearranging to make qQH\z) the subject of the formula: 

q0H(z) = E{z) + qlz-iH{z) + q2z-2H{z) 

The block diagram of equation (6.21) is: 

(6.21) 
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Gain 6 

Figure 58 Block diagram implementation of equation (6.21) 

Combining the block diagrams realizes the digital controller [65]: 

gM* 

Gain 4 
H(z 

_ft 
E(z) 

P^> 

Gain 1 z~lU{z) 

Unit Delay 1 

Gain2 3P 
2H(z) 

Gain 5 

Unit Delay2 

- < ^ 

Gain 3 

W(z) 

Gain 6 

Figure 59 Combined block diagram realizing discrete time 

controller 

6.3 Chapter Summary 

The control system for the PKM was discussed and the method of obtaining the transfer 

function of the motor (with leg masses attached) was described. The method was based on 

standard linear control theory, and the system was proved to be linear. A mathematical 

function was fitted to the data. The Laplace transforms and Z transforms were found, and the 

control system was designed around these functions both in the S domain and the Z domain. 

This was done to evaluate the digital controller against a continuous time controller. 

Simulation results are shown in section 8.2.5. 

115 



7 Software 

Various stages of this project required the use of different software packages. The 3 software 

packages used were MATLAB, Visual Basic (VB) and CODEVISION CAVR. MATLAB 

was used to simulate and resolve various unknown aspects of the mechanical design. Visual 

Basic was used to code the user interface. CAVR was used to program the embedded 

controllers. 

7.1 MATLAB Software 

7.1.1 Forward and Inverse Kinematics 

M-files (MATLAB code) were written to solve both the forward and inverse kinematics. 

These 2 functions formed the basis for all the code that followed. These functions were a 

direct translation of the mathematical modelling used to solve the kinematics (sections 4.3.2 

c, d and g). To test the functions and gauge whether they were coded correctly as well as 

verify the solution of the kinematics, a check was performed which was as follows. Given 

coordinates for the end effector, the inverse kinematics function was used to solve the angular 

values for each of the upper legs. These angular values were then input to the forward 

kinematics function, whose output is the end effector position. Both sets of coordinates were 

the same for all coordinates tested and it verified the correctness of both functions in terms of 

programming, mathematics, and the geometric model. 

7.1.2 Workspace Envelope 

The workspace envelope was visualised using the inverse kinematics as this made it easier to 

graph the data using commands in MATLAB. For each set of XY coordinates in a rough 

estimate of the workspace the minimum and maximum Z positions that could be reached were 

found. These were calculated by moving inwards from positions that could not be reached. 

The matrix data found were then combined and plotted using the SURF command, this was 

described in section 4.3.2 j . 

7.1.3 Vibration 

The effects of oscillatory vibration of the actuators needed to be determined. This oscillation 

is a sinusoidal function with magnitude a, frequency CO and phase shift ^ , i.e. asm(eot + 6). 

When given an end effector position, the inverse kinematics function was used to solve for 
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the upper leg angles. The sinusoidal offset (with possibly different a, CO and 6) was then 

added to these angles. At time tt the new angles are calculated (with offset added) and fed as 

input to the forward kinematics which calculates the position in space of the end effector. The 

spatial displacements of the end effector in X, Y and Z are then calculated when compared to 

the original position without vibration. These spatial offsets are then plotted to see the effect 

of the vibration. See section 8.2.2 for results. 

7.1.4 Trajectory Simulation for Solid Edge (SE) 

To create a graphical simulation in SE of the mechanical system moving on a trajectory, an 

M-file was written to solve the inverse kinematics for points along that trajectory. Each set of 

angular values found was time stamped and saved in a text file, 4 text files in all, one for each 

leg. These text files were then loaded into SE, which uses a spline interpolator to fit curves to 

these points in parts. A curve is drawn for every set of 4 consecutive points. Overlapping 

curves are averaged to get a continuous smooth curve. This curve represents time stamped 

positional information in step sizes that SE requires to create a smooth transition between 

graphic illustrations of mechanical configuration. See section 8.2.4 for the mechanical 

simulation. 

The points along the designed trajectory had to have a small step size (spatial distance 

between points). If the step size was too large the end effector tends to bob from position / to 

position i+1. The reason for this lies in the structure of the machine. For a linear change in 

position the change in angular values of the upper legs varies in some way that the spline 

interpolation in SE cannot fit exactly. 

7.2 Visual Basic (VB) Software 

The user interface for the PKM consists of a few graphical controls and background 

functions. The graphical window controls allow manual direction of the end effector in its 3D 

(XYZ control) workspace and a visualisation of data received on its current position. As the 

intention is to only control the position of the end effector, only the inverse kinematics 

function in MATLAB was translated into VB code. 

7.2.1 Graphical Control of End Effector 

Two VB controls combined allow the user to control the 3 XYZ coordinates of the end 

effector. A picture box control with cross hair and bull's eye allow the user to control the XY 
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coordinates. Left and right arrow keys allow the user to change the Z coordinate. Once the 

user left clicks on the bull's eye it attaches to the mouse pointer and a second left click 

releases the bull's eye. Once the bull's eye is attached to the mouse pointer a right click 

invokes the inverse kinematics function and solves the upper leg angle values for the current 

position selected in software. If these values are in the correct range it then converts these 

angles to a value between 0 and 255, and transfers the data to the embedded controller. 

7.2.2 Graphical Display of Data 

Each sensor in space is represented by a coloured circle in one of 2 picture boxes, indicating 

either vertical or horizontal screen data. The XYZ coordinates being controlled are also 

indicated on these controls via cross hairs. The horizontal data screen has XY coordinate 

information superimposed on it. The vertical data screen has the YZ coordinate information 

superimposed on it. The picture boxes were properly scaled to represent the data in its correct 

coordinates. 

7.2.3 Transfer of Control Signals / Receiving Data 

The control signals are start, stop and angular data for rotation. A value between 0-255 

representing an angle is transferred via ASCII characters. For example the value 135 is sent as 

49 (1), 51 (3), 53 (5) and 88 (X) which is a completion character. 

The data received from the embedded controller indicates a reference number for a sensor that 

is stimulated and a reference for the plane of data, i.e. vertical or horizontal. The lasers on the 

end effector were arranged so that at most only one sensor is stimulated per screen. The 

reference number for each sensor on each screen may therefore be represented by a single 

byte of data (0-255) as there are 256 sensors per screen. When the data processing indicates 

that no sensor has been hit, a separate signal is sent (e.g. an ASCII character for a letter). 

The MSCOMM control in VB handles the process of sending and receiving data through the 

RS232 serial communications port. 

7.2.4 Calculation of Inverse Kinematics 

This function is a direct translation of that used in MATLAB to solve the inverse kinematics 

and make the angles available in VB. 
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7.2.5 Video Display 

A video feed from a webcam was made available through a free open source software 

component created by E. J. Bantz for Visual Basic programmers. It accesses the driver API 

(application programming interface) and allows the software to display the video feed directly 

in a control window. 

7.2.6 Software Calibration 

This routine calibrates the coordinate system, that is, it aligns the software coordinate system 

with the real world system of the sensor screens. It is initiated with a key press, the Fl key 

which has a value of 112. This is explained further in section 8.1.2. 

•wmwiiff^ 
; M A N U A L SERVO CONTROL 

Servo: 1 Servo; 2 S e r w 

Start Capturing Servo feedback 

Capture Servo f e udback Values 

> I he Coordinates You have selected :x0 =3.05;y0 • -3.99; zO • -15.00 

Solution Sets for leg:1 

SS I (19.68;0.0O:-251) SS2 (0,03; OJOO; 0.77) 
Angle: 345.00 Coordinates - (1958:0,00; -251) 

'.-i.liiiiini Sets for ii;y:2 
SSI - (0 00:-0JJ1; 0.49) SS2-(0.00; 19.88;-157) 

Angle: 189.00 Coordinates- (0.00; -1958; -137) 

Solution Sets for legS 
SS1 - (-030;0.00;2.41) SS2 - (-16.99;0.00; -7,15) 
Angle: 226.00 Coordinates - (-16.99; 0.00: -7.15) 

Solution Sets for leg:4 

SSI (0.00; 16.48;-752) SS2 (0.00:0.35;2.64) 
Angle: 310.00 Coordinates - (0.00; 16.48; -7.62) 

Servo Rotation Angles : (60.00:54J0O; 91 .00; 95.00) 

Upper I eg 1 Angle:345.00 Knee Coordinates: (19.68; 0.00; -251) 
Upper U g 2 Angle: 189.00 Knee Coordinates: (000; -19.88; -157) 
Upper Leg 3 Angle:226.00 Knee Coordinates: (16 .99; 0.00; -7.15) 
iUpjiBi I eg 4 Angle:310.00 Knee Coordinates: ( 0 * » ; 16.48; -752) 

Figure 60 Screenshot of GUI PC controller 

Figure 60 illustrates the PC controller GUI. The text box at the bottom left hand corner 

displays the results of the inverse kinematics solution. The picture boxes in the middle with 

the blue dots illustrate the sensors. The one on top represents the horizontal screen, with X 

and Y axes. The one at the bottom represents the vertical screen, with Z and X axes. 

Superimposed in both representations of the screens are the position cross hairs. This 
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indicates the alignment of the software coordinate system with real world positioning. The 

picture box on the top right corner indicates the XY coordinate mouse control. The dashed 

lines are the X and Y reference axes. The black solid lines with the blue BE represents the XY 

coordinates the user wishes to move to. When controlling the robot the BE is attached to the 

mouse pointer. The Z coordinate is controlled with the left and right arrow keys, which move 

it up and down respectively. Vertical lines on the vertical detector screen representation 

indicate constant Z values. The picture box at the bottom right displays video captured from a 

webcam. 

7.3 CAVR Embedded Software 

7.3.1 Command Interpretation / Data Reception 

Only 2 commands are received, for starting and stopping mechanical control. 

Data received is for controlling the angles of the servos. The angle for each servo is indicated 

by a character, followed by its digits in order of significance (i.e. hundreds, tens then units), 

and lastly by a completion character. The value is then built up in the embedded system 

software and used as the reference in the control algorithm. 

7.3.2 Shift Register control 

The 74LS166 function table in its datasheet illustrates how to control this IC and the 

procedure used is outlined. Each 74LS166 must be cleared with a low applied to the CLEAR 

pin. The CLOCK pin is enabled with a low to the CLOCK INHIBIT pin. To load parallel data 

into the shift register, the SHIFT/LOAD line is pulled low and the register clocked (low to 

high transition of pin CLOCK). The register is then set to shift data when the SHIFT/LOAD 

line is pulled high. The data is now shifted through the output QH, bit at a time, most 

significant bit (MSB) first with every clock signal. The register has to be clocked 8 times to 

read the 8 bits of each register representing 8 sensor current states. As there are 32 registers 

per detector screen, and as each serial output feeds into the serial input of the following 

register (the last serial output is fed to the microcontroller), the registers are clocked 256 

times (32x8). 

7.3.3 Data processing 

The data is processed simultaneously when it is read from the parallel to serial converters. All 

the data from one detector screen is read on one line (as the output from each parallel to serial 
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converter is fed to the serial input of the following register). When a bit is read its value is 

checked (is it 1 or 0), if it is 1 then that sensor, which is represented by the number of times 

the registers have been clocked at this point, is a sensor that has been stimulated. All the 

sensors are checked in this manner. All the reference values for those sensors with bit values 

of 1 are then transferred to the host PC control system. If no sensors are stimulated then the 

control system sends a character code indicating this. 

7.3.4 Data Transfer 

Data is transferred in the same way it is received i.e. via ASCII characters representing the 

decimal digits. The data transferred are the reference numbers for the sensors that have been 

stimulated. The angles measured by the ADC are only used by the control system. The control 

system makes these measured angles follow the reference input angles. 

7.3.5 ADC control 

The procedure for setting up and reading the ADC is as follows. All 4 ADCs are read 

simultaneously. Four temporary variables are used to store the data read from the ADCs, once 

read the values are stored in the reference variables. 

The clocking pin (I/OC) is set low. CS (Read as not chip select) is initially high. This allows 

for the input voltage to be sampled continuously and digitized. This pin is now set low which 

stops the conversion process and allows the data to be read. The data is shifted out serially 

through the data output pin DO, from most significant bit to least significant bit. These bits 

are read into the temporary variables, with each clock of pin I/OC. The ADCs are clocked 8 

times to read the 8 bits. Once this is done the values are stored to the output feedback values 

used in the control algorithm. CS is then set high to allow another conversion. The ADCs are 

read every 2 ms. 

7.3.6 PWM Generation 

The timers were used without any pre-scaling, i.e. the frequency of the crystal resonator that 

clocks the microcontroller was not divided. This resonator has a 16 MHz frequency or a 

period of 0.0625 us (micro seconds). The 16 bit timer interrupt register increments every 

clock cycle or every 0.0625 us for a clock with no pre-scaling. Two 16 bit timers were used to 

generate the PWM signals. 
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There are 3 more 16 bit registers (compare interrupt registers A, B and C), the values of 

which are constantly compared to the 16 bit timer interrupt register. This functionality was 

built into the architecture of the microcontroller. There are 3 compare interrupts and when 

there is a match with the value stored in either of the compare interrupt registers with the 

value currently in the timer interrupt register, the corresponding compare interrupt is 

executed. 

The compare interrupts A and B of each timer generates the PWM signals for the servos. 

Compare interrupt C is set at 2 ms, to reset the interrupt register. This 2 ms period represents 

the time in which corrections are made in the control algorithm. As the rotation angles were 

limited in value the full 2 ms period for a 180° rotation was not necessary. 

7.3.7 Control Algorithm 

The algorithm of the digital controller indicated by the digital control block diagram of Figure 

59 is coded. It consists of 2 delays, and multiple additions and multiplications. A single 

function was written to perform the control algorithm and is shown in Figure 61. 
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Start Controller 
Algorithm for Servo i 

Global Vector Variables & Multipliers 

Ma[4] = [a1,a2. a3,a4]; 
Ra|4] = [b1, b2, b3, b4]; 
Ez[4] = [c1,c2, c3, c4]; 
Hz[4] = [d1. d2, d3, d4]; 

// Measured angles 
// Reference Angles 
// Error Vector 

Hz1[4] = [e1, e2, e3, e4]; // First delay 
Hz2[4] = [f1,f2, f3,f4]; 
Mz|4] = [g1,g2,g3,g4]; 
pO; p1; p2 ; 
q0;q1;q2 ; 

// Second delay 
// Modified signal to servo 
// Multipliers - set values 
// Multipliers - set values 

*• Ez{i) = Ra(i)-Ma(i); 

Declare temp variable TEMP; 
TEMP = Ez(i) + q1*Hz1(i) +q2*Hz(2); 

Hz(i) = TEMP/qO; 
Mz{i) = pO*Hz(i) - p1*Hz1(i) + Hz2(i); 

Hz2(z) = Hz1 (i); // Second Delay 
Hz1(i) = Hz(i); //First Delay 

Determine PWM value 
for Servo i 
From Mz(i) 

i = i+1; 

If i=5 then reset i 
T o 1 ; 

Figure 61 Function of embedded controller 

7.4 Chapter Summary 

This chapter describes how 3 software development languages were used in this Mechatronics 

project. VB was used to code and design the PC controller GUI. MATLAB was used to 

simulate and solve many of the mechanical issues related to the mechanical design, i.e. 

kinematics, vibration, SE Simulation and workspace. Once the IK solution was verified, it 

was then written in VB. CAVR, a C compiler for ATMEL microchips was used to code the 

program for the embedded controller, which included data acquisition, processing and control 

of motors. 
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8 Calibration, Simulation Results, Prototyping and 

Performance Tests 

8.1 Calibration 

The calibration of the system has 2 parts: the mechanical positioning calibration of the legs 

and the software coordinate calibration. 

8.1.1 Mechanical Calibration 

The mechanical calibration ensures that all legs rotate the same angular degrees for each 

reference angle input to the system. The range of motion was limited, however this does not 

infringe on the workspace specification mentioned in section 1.5.1. 

The total angular range of motion was limited to 140°.The maximum actuation angle is set at 

75° from the positive vertical in the clockwise direction (see Figure 23 for a depiction of the 

actuator reference for rotation). The minimum actuation angle is set at 140° from that 

maximum (clockwise) or 215° from the vertical, shown in Figures 62. The leg rotates from 

215° to 75° counter clockwise. 

Figure 62 Upper leg indicating rotation limits 

a. 3D View of upper leg alignment tool 
b. Front view of upper leg alignment tool 
c. Front view of alignment tool indicating rotation limits 
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At this minimum position, for each leg, the voltage read from the analogue feedback 

potentiometer was set as the negative reference to the corresponding servo ADC. Similarly 

the voltage at the maximum position was read for each servo and set as the positive reference 

to that servo's ADC. Each ADC converts a voltage representing an angle in the range of 0° to 

140°, to an 8 bit digital value. The angular positioning resolution achieved was 

140° 
= 0.55° (see section 8.2.1 for the effect of this quantisation). A mechanical alignment 

tool was made to ensure that the minimum and maximum angles were uniform for all legs. 

This tool was laser cut from 3 mm Perspex, and is shown in Figure 62 a-c. 

Another important aspect of the mechanical calibration was that of aligning the detector 

screens. The mechanical designs in SE were accurate and the screens were aligned in this 

CAD package. The relative displacements from the edges of the mechanical frame were then 

measured and these measurements were used to position the real screens on the mechanical 

rig. In this manner each column of detectors on the horizontal screen was aligned with the 

column detectors on the vertical screen. 

8.1.2 Software Calibration 

The software calibration aligns the real world coordinate system with the software coordinate 

system. Errors may exist with the alignment of the screens and these have to be accounted for. 

These are relative errors that are fixed in value, and are corrected by either adding or 

subtracting the offset. To find the offset the control software moves the end effector to 4 

points in space where it expects to be sensed by both the vertical and horizontal screen. For 

each set of coordinates (reference coordinates) if no sensor is found, the control software 

enters a horizontal spiralling routine to find a horizontal sensor. The y coordinate of the 

vertical detector screen should be the same if the detector screens are aligned properly. Once 

the horizontal sensor is found it moves the end effector up and down until it finds the vertical 

sensor for that coordinate set. If it does not find a vertical sensor, then the screens are not 

aligned properly and this must be corrected. If it finds the corresponding sensor (real world 

measured coordinates), the errors between the reference coordinates and the measured 

coordinates are then set as the error offsets in X, Y and Z. This procedure is followed for each 

of the 4 coordinate sets. The errors should read the same if not there is a problem with 

alignment once again. 

This procedure aligns the reference system with the real physical system. It does not affect, 

restrict or reduce the motion of the end effector in anyway. 
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8.2 Simulation Results 

Various aspects of the design were simulated in 2 software packages. The mechanical design 

was realized in SE, a CAD package. Once the design was complete it was used to simulate 

and provide a 3D visualization of the movement of the modelled PKM. 

MATLAB was used to solve the kinematics which was the basis for simulating and 

determining other aspects of the design. SIMULINK, a simulation add-on to MATLAB, was 

used to design the digital controller and simulate the design in both the S and Z domains. 

8.2.1 Forward and Inverse Kinematics Solver 

A number of function m-files were written to solve the kinematics of the machine. The 

forward kinematics solutions were used to verify the inverse kinematics solutions and vice 

versa. When the inverse kinematics function is run in MATLAB the user is prompted for a set 

of end effector coordinates. The coordinates (- 7,6,- 20) were input and the results follow: 

MENU ... 

1. Inverse Kinematics (with Forward Kinematics Check) 

2. Forward Kinematics (with Inverse Kinematics Check) 

3. Vibration Model ... 1 

Enter end effector coordinates ... 

x Range:-7.5 to 7.5 y Range:-7.5 to 7.5 z Range:-22 to-12 

xO :-7 

yO : 6 

zO : -20 

The coordinates you have selected ... [ -7.0000 6.0000 -20.0000] 

Anglel = 275.7000 [xl yl zl] = [ 10.9932 0.0000 -9.9506] 

Angle2 = 261.6058 [x2 y2 z2] = [ 0.0000 -11.4598 -9.8929] 

Angle3 = 208.7283 [x3 y3 z3] = [-18.7691 0.0000 -4.8066] 
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Angle4 = 326.4105 [x4 y4 z4] = [ 0.0000 18.3302 -5.5324] 

Checking solution with Forward Kinematics... 

[Anglel Angle2 Angle3 Angle4] = [275.7000 261.6058 208.7283 326.4105] 

Anglel = 275.7000 [ x l y l z l ] = [10.9932 0.0000 -9.9506] 

Angle2 = 261.6058 [x2 y2 z2] = [ 0.0000 -11.4598 -9.8929] 

Angle3 = 208.7283 [x3 y3 z3] = [-18.7691 0.0000 -4.8066] 

Angle4 = 326.4105 [x4 y4 z4] = [ 0.0000 18.3302 -5.5324] 

Convert to Servo Rotation Angles.... 

[Anglel Angle2 Angle3 Angle4] = [129.3000 126.6058 73.7283 78.5895] 

The angular rotation values are with respect to the coordinate system. These values have to be 

converted to byte values that can be sent to the servo motors. Note that the servos have a 140° 

degree range of motion due to the mechanical calibration apparatus, mentioned in section 

8.1.1. The effect of the quantisation of the ADC leads to uncertainty in the actual angular 

positions. The angular quantization steps are 0.55°, hence the maximum quantisation error is 

0.55° 
= 0.275°. To gauge the effect of this quantisation error, the angles obtained above 

were then quantised and input to the forward kinematics to see the relative changes in the end 

effector coordinates X, Y and Z. The angles were modified with the function 

Angle i 
X 0.275. The floor function removes the remainder from division so 

is an integer number. The servo rotation angles when modified are 129.2500, 
0.275 

126.5000, 73.7000 and 78.3750. Applying these angles to the forward kinematics yields: 

MENU ... 

1. Inverse Kinematics (with Forward Kinematics Check) 

2. Forward Kinematics (with Inverse Kinematics Check) 

3. Vibration Model ... 2 
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Enter 4 actuation Angles ... Servo Angles Range: 30 -170 Degrees (140 Degree Range) 

Servo Angle 1 : 129.2500 

Servo Angle 2 : 126.5000 

Servo Angle 3 : 73.7000 

Servo Angle 4 : 78.3750 

Convert to Coordinate System Angles.... 

[Anglel Angle2 Angle3 Angle4] = [275.7500 261.5000 208.7000 326.6250] 

[xO yO zO] = [ -6.9946 6.0139 -19.9864] 

Anglel = 275.7500 [xl yl zl] = [ 11.0019 0.0000 -9.9497] 

Angle2 = 261.5000 [x2 y2 z2] = [ 0.0000 -11.4781 -9.8902] 

Angle3 = 208.7000 [x3 y3 z3] = [-18.7715 0.0000 -4.8022] 

Angle4 = 326.6250 [x4 y4 z4] = [ 0.0000 18.3509 -5.5012] 

Checking solution with Inverse Kinematics... 

Anglel = 275.7500 

Angle2 = 261.6081 

Angle3 = 208.7000 

Angle4 = 326.5304 

[xl yl zl] = [ 11.0019 0.0000 -9.9497] 

[x2 y2 z2] = [ 0.0000 -11.4594 -9.8929] 

[X3y3z3] = [-18.7715 0.0000 -4.8022] 

[x4 y4 z4] = [ 0.0000 18.3418 -5.5149] 

[xO yO zO] = [ -6.9946 6.0139 -19.9864] 

From this it can be seen that the errors in position are: 

Ax = -6.9946-(-7) = 0.0054 cm 

Ay = 6.0139-6 = 0.0139 cm 

Az = -19.9864-(-20) = 0.0136 cm 

The uncertainty in position is small in relation to the span of motion. To determine the 

maximum effect of this error the end effector is moved vertically. The coordinates 

(0,0,-20)are investigated. The rotation angles come out as 90.9622, 90.9622, 90.9622 and 
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90.9622. Quantizing these angles yields values of 90.7500, 90.7500, 90.7500 and 90.7500, 

which are input to the forward kinematics and yield end effector coordinates of 

(-0.0000,-0.0000,-19.9482). The X and Y errors are insignificant. The error in the Z 

coordinate is Az = -19 .9482- ( -20 ) = 0.0518 cm. This was repeated for various end 

effector coordinates and the results were similar. So from a mathematical standpoint using an 

8 bit ADC over a range of 140° produces uncertainty errors that are far less that the 

specifications mentioned in section 1.5.1 for a perfect geometric model of the system. 

The forward and inverse kinematics software solutions verify each other and proved that the 

mathematical solutions behind them are sound. This was crucial as these solutions lay the 

groundwork for other simulations that follow. 

8.2.2 Vibration 

The frame of the PKM significantly outweighs the moving parts of the machine. Any effect 

on the frame from the motors and during motion of the end effector cannot be detected 

visually. Vibration on the end effector results from oscillation of the upper arms of the 

machine. Another m-file was written to gauge the effect of a sinusoidal oscillation on each 

leg. This function was explained in section 7.1.3. The PWM signals are synchronized so the 

frequency of oscillation of each upper leg is the same and there is no phase shift. As each 

PWM signal is refreshed every 2 ms the frequency is 500 Hz. A vibration with a 1 degree 

amplitude is simulated and the results shown below. Figures 63 and 64 display the results. 

MENU ... 

1. Inverse Kinematics (with Forward Kinematics Check) 

2. Forward Kinematics (with Inverse Kinematics Check) 

3. Vibration Model ... 3 

Frequency (Hz) 500.0000 

Amplitude (Degrees): 1.0000 

Simulation Time (S) : 0.0040 

Enter end effector coordinates ... 

x Range:-7.5 to 7.5 y Range:-7.5 to 7.5 z Range:-22 to-12 
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xO : 0 

yO :0 

zO : -20 

The coordinates you have selected ... [ 0.0000 0.0000 -20.0000] 

Anglel = 314.0378 

Angle2 = 225.9622 

Angle3 = 225.9622 

Angle4 = 314.0378 

[ x l y l z l ] = [16.9513 0.0000 -7.1888] 

[x2 y2 z2] = [ 0.0000 -16.9513 -7.1888] 

[x3 y3 z3] = [-16.9513 0.0000 -7.1888] 

[x4 y4 z4] = [ 0.0000 16.9513 -7.1888] 

Convert to Servo Rotation Angles.... 

[Anglel Angle2 Angle3 Angle4] = [ 90.9622 90.9622 90.9622 90.9622] 

[x0_min xOjnax] = [ -0.2497405356 0.2497405356] 

xO_max - xO_min = 0.4994810712 

[yOjnin yO_max] = [ -0.2497405356 0.2497405356] 

yOjnax - yOjnin = 0.4994810712 

[zO_min z0_max] = [-20.0000001000 -19.9963264968] 

zO max - zO min = 0.0036736032 

From the simulation it can be seen that the displacement between the minimum and maximum 

positions along the X and Y axes are about 5 mm. That displacement along the Z axis is 

negligible. Figure 64 indicates that the X0 and Y0 displacements are in phase which implies a 

diagonal movement with total displacement of 7.07 mm (5V2). Interestingly the Z 

displacement, although negligible in magnitude, has a frequency twice that of the oscillation 

at the legs. From this it can be seen that it is possible to reduce components of vibration error 

in PKMs, unlike serial machines which are always additive. This is done by change of phase 

in vibration from each leg or refreshing the PWM signal to each leg at different times. 

130 



Servo 1 Vibration Servo 2 Vibration 

92 

* 915 

W 

/ \ '~7T\ 

0 0 5 

d. 

1. 
3 91 

90 

1 15 2 ?5 
Tinrse {s> 

Servo 4 Vibration 

\ l / ~ 
35 * 

do" 3 

0 0 6 1 15 2 2 5 3 3.5 4 

Figure 63 PKM Legs angular variations at position (0, 0, - 20), 

with a 1 degree, 500 Hz vibration 
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8.2.3 Workspace envelope 

The workspace envelope was calculated and its method was discussed in section 4.3.2 j . A 

graphical illustration is also displayed in said section. 

8.2.4 Trajectory calculation for Solid Edge (SE) 

In SE there is a motion simulator which can accept data for the positioning of mechanical 

elements to obtain a graphical mechanical simulation. The mechanical simulation was 

important to determine if the end effector would remain completely horizontal during all parts 

of its motion. An m-file was coded in MATLAB to obtain this positioning data for SE, i.e. 

time stamped angular values for the upper legs, which is discussed in section 7.1.4. When the 

positions of the upper legs are determined the kinematics solver in SE renders the other 

moving elements, which have dependencies on the upper legs, in their correct positions. This 

is due to structural relationships made during the assembly. 

Figure 65 (a, b and c) shows that the end effector is completely horizontal at one position in 

the designed trajectory. The video simulation confirmed that the end effector did not twist or 

tilt on any of the X, Y or Z axes. This ensures that the end effector will always be parallel to 

the base frame and that the lasers will always be perpendicular to the sensor screens. 

Figure 65 Mechanical simulation of PKM 

a. Front view 
b. Side view 
c. Bottom view 
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The XYZ coordinates for each point in the designed trajectory was plotted against time as 

well the solution to the inverse kinematics (upper leg angles) for the 23 second simulation, 

which are shown in Figures 66 and 67. 
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20 

Figure 66 Plot of the XYZ coordinates of the designed mechanical 

simulation trajectory 

a. 

b. 

c. 

x0 Coordinate 
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Figure 67 

Time (s) 

Upper leg rotation angles (0° - 180°) for the designed 

trajectory 

a. 
c. 

Angle 1 
Angle 3 

b. 
d. 

Angle 2 
Angle 4 

8.2.5 Control System Simulation 

The control system designed was intended to reduce the real world physical response of the 

motor leg combination of the PKM, which is approximately second order, to a first order 

system. This reason being to prevent any overshoot of the end effector the first time it reaches 

its intended position. The overshoot in position of the end effector can be seen at the leg with 

some oscillation of the upper leg. This can be measured at the feedback potentiometer of the 

servo motor (sections 5.4 and 6.2.1). 

The controller was simulated in both the S (continuous) and Z (discrete time) domains and the 

block diagram is shown in Figure 68. The data is sent to the MATLAB workspace and plotted 

from there. 
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The output of the continuous time (S domain) closed loop system is a first order response, this 

is seen in Figure 69 a. The output of the first closed loop discrete time system, i.e. with 

discrete time controller Zl, follows in Figure 69 b. Due to the discretizing nature of this 

controller it does not follow the S controller exactly and indentations can be seen on the 

output as it reaches steady state. The difference between the outputs of the systems with each 

controller at each instant is shown in Figure 69 c. The Zl controller overcompensates; at each 

instant its value is slightly larger than that of the S controller. The coefficients of Zl were 

multiplied by 1000 and some were rounded (to ease embedded calculation) to obtain 

controller Z2. One major problem with digital controllers is coefficient sensitivity. Changing 

the coefficients too much, to aid calculation, may make the controller unstable. The output of 

the closed loop system with controller Z2 illustrates this in Figure 69 d. The indentations are 

more distinct but the controller remains stable. The difference between the outputs of the 

systems with controllers Z2 and S is shown in Figure 69 e. Z2 is used in the embedded 

controller, even though it is not ideal so that the coefficients can be handled by the embedded 

system. The steady state time (time to reach steady state) is 1.25 s, and there is no severe 

oscillation that would be noticed. The digital controller was then simulated with the step 

conditions of the actual system, with initial value of 1.05 and final value of 1.375 at a step 

time of 4 s, as shown in Figure 46. The results are depicted in Figure 69 f. 

Figure 69 Simulation results of controllers in SIMULINK 

a. S Domain Controller - Continuous time 
b. Zl Controller - Discrete time, with exact coefficients 
c. Difference between Zl controller and S controller outputs 
d. Z2 Controller - Discrete time, with rounded coefficients 
e. Difference between Z2 controller and S controller outputs 
f. Z2 Controller step response at conditions of measurement (section 6.2.1) 
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8.3 Prototype 

The mechanical structure was built without difficulty. A problem that was noticed was that 

the upper legs tend to loosen up at the servo after some time. The design could be improved 

with a bearing type mechanism providing reinforcement. When the PCBs were first designed 

the main controller board had some errors on it, these were corrected as shown in Figure 70 j , 

k with manual bypass wiring. The electronic designs in chapter 5 have these corrections taken 

into account. A few images of the actual PKM and electronic hardware are presented. 

Figure 70 Illustrations of complete PKM and electronic hardware 

a. Complete machine with controller and detector screens 
b. Rear view of end effector and vertical detector electronic assembly 
c. Horizontal detector electronic assembly and mechanical calibration tool 
d. Top view showing controller and power supply 
e. Controller board wired up to peripherals 
f. Detector screen, front view 
g. Detector screen, rear view 
h. Signal routing board with components, front view 
i. Signal routing board, rear view 
j . Controller board with components, top view 
k. Controller board, bottom view with corrections 

a. 
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8.4 Performance Tests and Results 

The performance tests carried out were to determine accuracy, precision, and repeatability of 

positioning as well as repeatability of sensor stimulation. 
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8.4.1 Step Response after Implementation of Controller 

The step response of the system was tested after the controller was implemented to verify the 

controller design. The PC oscilloscope (Cleverscope) was used once again to obtain the data. 

The probe was attached to the shaft potentiometer on one of the servos, and the step was 

initialised as had been done to acquire the initial data. 

Figure 71 Step response after implementation of digital controller 

Although the oscilloscope picks up noise on the probe, it is clear that the controller has 

reduced the response of the system to an approximate first order curve. The noise is due 

mainly to the potentiometer as its wiper moves across the windings. 

8.4.2 Mechanical (Positioning) 

Accuracy is the degree of conformity of a measured or calculated quantity to its actual or true 

value. Accuracy is closely related to precision, the degree to which further measurements or 

calculations will show the same or similar results. Accuracy is defined as the maximum 

deviation from the theoretical, calculated or intended value, whereas precision is the 

maximum deviation from the mean value. The accuracy also gives an indication of 

repeatability which is the extent to which a similar result is attained. Due to the unavailability 

of a 3D metrology system, a method was devised to estimate the accuracy of the PKM. This 

method, although rudimentary, does provide some indication of the errors in positioning. 
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Method 

To get the accuracy or repeatability of the positioning systems, the electronic screens were 

removed and replaced with cardboard backings sporting a printout of the screens. These 

indicated exactly the positions of the sensors and facilitated tracking of the laser from above 

as well as the marking of positions and measuring of distances. The position offset was taken 

to be the distance from the centre of the laser point to the centre of the OP521 footprint. 15 

Readings were taken for each of 3 coordinate sets (different X, Y and Z coordinates). Taking 

more measurements wouldn't offer much value based on the accuracy of the method. The 

measurements are made to the nearest mm. The coordinate sets chosen were (0, 0, — 20); 

(-7, - 7 , - 1 8 ) and (5, - 5 , - 1 6 ) . The tables of results are located in Appendix D. The 

results are shown graphically in Figure 72 (a, b and c). 

Figure 72 Positional accuracy results 

a. Error in X Coordinates 
b. Error in Y Coordinates 
c. Error in Z Coordinates 
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The axial accuracy of the positioning is 2 mm, 3 mm and 3 mm for the X, Y and Z axes. This 

is the maximum measured deviation along the axis. The spatial accuracy is about 4 mm, this 

is the magnitude of the vector from the intended position to the actual position (occurs at data 

set 14, for coordinate set 3). The axial mean of the absolute values of the errors are 1.3 mm, 

1.3 mm and 1.5 mm (X, Y and Z respectively). The spatial mean is therefore 2.4 mm. From 

the definition the precision (beginning of this section) is 1.6 mm (4 - 2.4). These values were 

obtained from mathematical functions. As the smallest measurement discemable has mm 

resolution these values are applied to a ceiling function yielding 2mm for each of the axial 

mean errors, 3 mm for the spatial mean and 2 mm for the precision. 

The major factors involved in the positioning inaccuracy are due to hysteresis as well as 

backlash in the servo gearing system, and the ball socket joints. 
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Hysteresis is the difference in reading or positioning when the physical quantity being 

investigated is approached from different directions. It is due to mechanical friction, elastic 

deformation and thermal effects. It is a property of systems (usually physical systems) that do 

not instantly follow the forces applied to them, but react slowly, or do not return completely 

to their original state. 

Backlash is the play or loose motion in an instrument due to the clearance existing between 

mechanically contacting parts. In gearing systems, it is the clearance between two gears, the 

amount by which the width of a tooth space exceeds the thickness of the engaging tooth on 

the pitch circles. It also occurs in lead screws, and is the amount of free movement between a 

screw and nut. Backlash cannot be eliminated completely as it is required to allow for 

lubrication, manufacturing errors, deflection under load and differential expansion between 

the gears and the housing. 

Other errors due to inaccurate machining of parts and their placement also factor into the 

problem, but they are not nearly as significant as those from hysteresis and backlash. 

Most manufacturers of geared motors do provide some indication of these errors in their 

datasheets. The hysteresis and backlash due to the ball and socket joints which were actually 

modified from ball in socket bearings are not quantifiable. In general this problem exists for 

all delta type mechanisms that use ball in socket joints. The problem can be alleviated with 

the use of compliant joints which was mentioned in section 2.2. Compliant joints are difficult 

to manufacture and are expensive. It was not possible to make them on this scale. 

8.4.3 Electronic (Sensing) Repeatability 

The repeatability measurement for the detector screen was done within the positioning 

capabilities of the rig. The PKM was commanded to sensor coordinate positions at Z 

displacements of 14 cm, 17 cm and 20 cm, and 25 attempts were made for each of 16 sensors. 

The repeatability for each distance is taken as the average of all the readings in the group 

measurement, and expressed as a percentage of the 25 attempts. They are 99.25%, 98.75% 

and 98% respectively. The repeatability decreases mainly due to the fact that the further away 

the laser, the more difficult it is to stabilize and hold a position. A stiffer machine with 

vibration damping should have no such problem. 
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Figure 73 Electronic sensor system repeatability 

8.5 Chapter Summary 

This chapter starts with a description of the procedure and tools used to calibrate the PKM in 

both software and hardware. This ensures that the system is aligned with the coordinate 

system in the control software. It then presents all the simulation data. The forward and 

inverse kinematics functions were tested against and validated each other. The workspace was 

visualised and some vibration effects from the motors on the end effector illustrated. The 

trajectory designed was simulated in MATLAB and the data imported to SE. SE verified that 

the end effector would remain perfectly horizontal throughout its trajectory (which consisted 

of all motions the machine would have to make). A video was then created. The controller 

was designed and tested in SIMULINK. The output of the S controller is first order as this 

was designed. The Z controller's implementation for both exact and rounded coefficients 

were tested against the S controller. Both discrete time controllers produced less than perfect 

responses but were acceptable for this scaled model. Pictures of the real machine were then 

shown including all PCBs. The controller with rounded coefficients was implemented and the 

step response of the system measured. It was approximately first order and acceptable. The 

positioning accuracy of the mechanical system was then tested with a rudimentary method 

due to the lack of a 3D metrology system. This revealed a 3 mm axial accuracy and a 4 mm 

spatial accuracy. The repeatability of the sensor system was then tested and the results were 

within specification. 
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9 Conclusion 

The objectives of this project were met: 

• Various types of parallel kinematics machines were researched in particular the Delta type 

(Flex-Picker) PKM. 

• A scaled and modified version of the Delta robot was designed, simulated and built. 

• Various sensor systems were researched. A sensor system was then designed and 

implemented. It was developed in 2D and extrapolated to 3D. The system was then 

calibrated and tested. 

• A control system was designed which interprets data from the sensor system, and a motor 

controller was designed. Algorithms were developed to control movement, and acquire 

data from sensors. 

• A performance analysis was conducted for both the mechanical and the sensor systems. 

The main purpose of this project was to design a parallel robot structure possessing an 

integrated end effector sensor system for use in the agricultural, or in general food processing, 

industry. For this application the resolution on position and sensing should be in the 

millimetre range. Robustness and reliability or repeatability of measurements and positioning 

are crucial. 

A study was undertaken to decide on the PKM to model, modify and simulate. The 

investigation revealed that one of the most popular PKMs used in industry was the Flex-

Picker by ABB automation. It was based on the design by Dr. Raymond Clavel. There was 

however no detailed, easily understandable literature on aspects of the kinematics of the 

machine. A major portion of this thesis is therefore dedicated to finding simplistic closed 

form solutions to both the forward and inverse kinematics of the machine that could be 

implemented on stand alone processors. 

The mechanical structure of the machine designed was based on a Flex-Picker robot. It was 

scaled and modified to incorporate an additional arm. The purpose of that arm was to increase 

payload carrying ability, machine stiffness and aid the robot in exiting singular positions 

caused by the other three. A design specification was given in section 1.5.1. The mechanical 

design of this parallel robot was split into the two processes of structural design and 

dimensional synthesis. This robot was symmetric and its topology classified as 3-DOF 4 RSS 

(see section 4.1.1. a Machine Topology). Spherical joints were used for the "knee" and 
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"ankle" joints as these give it more freedom than the universal joints used in the classical 

Delta mechanism. The most difficult problem was obtaining the ball and cup for each joint. 

These were eventually made from ball in socket bearings. Removing the ball from the socket 

and having the socket maintain a cup shape without scratching or damaging the ball was 

difficult and required dexterous workmanship. This was seen to by the mechanical design 

workshop. 

The link lengths and joint locations were chosen to more than adequately satisfy the 

workspace requirements of the specification. This was not obtained from an exact 

mathematical formula or software simulation, but from an understanding of the machine and 

some rough sketches. These parameters were however tested later in software to determine if 

they satisfied all the specifications. 

Both the forward and inverse kinematics were solved using a combination of coordinate 

geometry and algebra. Non-geometrical model parameters (section 4.1.2) were not 

considered. There is great difficulty in solving the forward kinematics for any PKM and 

closed form solutions were created for the PKM designed. There are multiple solutions to 

both the forward and inverse kinematics and geometrical relationships were devised to select 

the correct solution set. These also provided a means to determine a singular configuration, 

i.e. when the arms are completely extended or folded. These singularities are then avoided 

through the method discussed in section 4.3.2 g and i. 

A dynamics model was created to accomplish mass and force modelling. Since this scaled 

model does not accomplish any pick and place operations, a theoretical analysis of the 

dynamics is not necessary. The dynamics of the system is considered in the control system, 

where the transfer function of the leg is obtained from LTI theory of plant estimation. That 

transfer function inherently contains dynamic information of the system. 

These kinematics solutions were then coded in MATLAB. The forward kinematics function 

was used to verify the inverse kinematics and vice versa. These functions were then used to 

create a vibration model and visualisation of the workspace boundary. The vibration model 

revealed an interesting fact: since the legs are synchronised, any vibration on the motors 

results in the end effector having an oscillatory diagonal motion. The Z displacements are 

negligible in magnitude but have a frequency twice that of the leg vibration. 

The mechanical design was created in SE, which was also used to generate a graphical 3D 

simulation of the machine. This required 4 sets of time stamped data indicating angular 
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positions of the upper legs. SE resolves the other components in their correct position for each 

configuration of the upper legs based on assembly relationships made during the design. A 

graphical simulation was crucial for one other reason, it had to be verified that the end 

effector would remain parallel to the base frame during its motion. This was an important 

requirement of the sensor system design. A trajectory was then designed and the kinematics 

solutions implemented to obtain the angular configurations at each point along this trajectory. 

The angles were time stamped and saved each to its own text file. These text files were then 

imported to SE for each of the 4 actuated axes. A 3D video animation of the simulation was 

created, which confirmed that the end effector would remain parallel to the base frame during 

its motion. 

To design the sensor screen an investigation was made into numerous technologies that are 

available to locate objects in space. These were varied and used different media, transducers 

or processing techniques. The problems faced are with resolution, and that different types of 

stimulating media present difficulties with respect to their use. After consideration of all the 

available physical stimuli used with these technologies, it was decided that a laser light 

stimulant would be the most suitable for the application at hand. A surface mount 

phototransistor the OP521 was selected as the detector. 

A sensor system was designed to reduce errors encountered in the so called 'open loop' 

control of this robotic mechanism, and as such the sensors are arranged in a planar grid with a 

resolution of 10 mm and by itself functions in 2D space. A 3D system was created by 

attaching two of these 2D sensor planes at right angles. Vertical and horizontal laser grids on 

the end effector improve the resolution by a factor of 4, providing a final resolution of 2.5 

mm. Each laser grid has 12 lasers which are strategically positioned. 

The detector screen's nature was inherently modular thus allowing it to integrate with existing 

techniques for motion control without difficulty. The screens also have an advantage over 

existing systems in their modularity. Detector screens of any practical size may be built, 

without loss in resolution. The only issue may be wiring of the modules but this could be 

overcome with additional PCB routing connectors. This preservation of resolution and sensor 

error does not apply to many existing systems when they are scaled up. The laser and its 

detectors also make the system robust and immune to environmental errors. 
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The electronic designs, schematics and PCBs, were created in PROTEL 99SE. The only issue 

was of space, i.e. fitting all the components on the PCBs and soldering on both sides of the 

board. During testing the system functioned as expected. It was also noticed at this point that 

end effector vibration would be an issue, however for this machine there was none. For this 

structure vibration effects may be averaged by changing the phase of vibration for each leg. 

In order to design a control system, a "plant" model had to be obtained for each leg. This 

model inherently contains dynamic information. A number of measurements were made, with 

different step inputs, to confirm that the system was LTI before proceeding. Standard 

techniques were used to obtain this model. 

• Apply a step input 

• Measure the output 

• Fit an approximate mathematical function to the data 

• Take the Laplace transform of the output function and divide it by the Laplace transform 

of the input function 

The output data was measured with a PC oscilloscope with a tap directly into the servo's 

potentiometer. The data was then exported to MATLAB where a Laplace transformable 

function was generated to represent the plant. Once the plant function was obtained, 

controllers were designed both in the S domain and the Z domain. Simulations were carried 

out and the controllers were compared to each other. The digital controller was acceptable in 

its performance and was then coded in a ' C based program. 

The software was composed of the embedded system microcontroller code and the PC user 

interface. The embedded system has to receive and interpret commands from the PC, acquire 

data from sensors, process that data and indicate if there are stimulated sensors, and lastly 

generate PWM signals for servo rotation. A single microprocessor, the ATMEL AVR 

ATmegal28, was used to accomplish this, with a clock frequency of 16 MHz. Custom data 

transfer routines were written to increase the speed of code execution and decrease the SRAM 

memory used in the microcontroller. These routines also facilitate easier processing. The PC 

control software had to transmit commands, receive and display data, and perform high level 

control. 

153 



Performance tests were carried out to determine accuracy, precision and repeatability of 

positioning as well as repeatability of sensor stimulation. A method was devised to carry out 

these tests which offered a good indication of the positioning capability of the Flex-Picker as 

well as the reliability of the detector screen. These were within the specifications mentioned. 

In conclusion the project was completed as: 

• A modified Flex-Picker was researched, designed, simulated and assembled; 

• A sensor system was researched, designed and tested; 

• Its control system was designed and implemented; 

• Design specifications were met. 

There were 1 journal article and 5 conference papers were written and accepted for 

publication at various stages of project development. 
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Appendix A 

Appendices 

Forward Kinematics for Legs 2,3 and 4 

Leg: 2 

90° 0' < 62 < 90° 

(y2 - ( -10)^+^=100 

Figure 74 Illustration of leg 2 coordinate frame and angular 

conventions 

Equation of straight line: p2(y2 +10) = z2 (when y2 - -10, z2 = 0. p2 Is the gradient of the 

line and /?2 = tanft_.) 

Equation of circle: (y2 - (-10))2 + z2
2 = 100 

y2
2+20>>2 + 100 + z2

2=100 

=> J 2
2 + 2 0 J 2 + Z 2

2 = 0 

=> j 2
2 + 20j2 + (tan6'2(>'2+10))2 = 0 

=> y2
2 + 20j2+>>2

2tan2ft^20y2tan2ft>100tan26>2 = 0 
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=> y2
2(l + tm202)+2Oy2(l + tan202)+lOOtan202 = 0 

This is a quadratic in y2, and using the binomial formula to resolve y2 yields: 

- 20(1 + tan' 02) ± ^400(1 + tan' 02)- 400 tan2 02 (l + tan' 02) 
yi ' 2(1 + tan2 02) 

= -10 + 

= - 1 0 ± 

1 Oyjl + 2 tan2 02 + tan4 02 - tan' 62 - tan4 02 

10 

^/l + tan2 0, 

1 + tan" 6> 

•, V 02it 90° + A:.180o, ke~N0 

The transform used to obtain 02 from 0R2 is: 

(92 = 135° + 0R2 0°< ^2^180° 

Leg: 3 

(T<6>3<90= 

( x 3 - ( - 1 0 ) ) 2 + Z 3 2 = 1 0 0 

Figure 75 Illustration of leg 3 coordinate frame and angular 

conventions 



Equation of straight line: p3 (x3 +10) = z3 (when x3 = -10, z3 = 0 . p3 Is the gradient of the 

line and p3 = tan#3.) 

Equation of circle: (x3 - (-10))2 +z3
2 = 100 

x3
2+20x3 + 100 + z3

2 = 100 

=> x3 + 20x3 + z3 =0 

=> x3
2+20x3 + (tan<93(x3 + 10))2 = 0 

=> x3
2+2Ox3 + x3

2tan2<93 + 2Ox3tan203 + lOOtan26>3 = 0 

=> x3
2(l + tan26»3)+20x3(l + tan26>3)+100tan2<93 = 0 

This is a quadratic in x3, and using the binomial formula to resolve x3 yields: 

- 20(1 + tan2 03) ± ̂ 400(1 + tan2 03)- 400 tan2 03 (l + tan2 <93) 

*3 ~ 2(1 + tan2 03) 

10 J l + 2 tan2 03 + tan4 03 - tan2 03 - tan4 03 

1 + tan2 03 

= - 1 0 ± - j — — ., V 03± 90°+ £.180°, £ e N 0 

yl + tan 2^ 

The transform used to obtain 93 from 0R3 is: 

03 = 135° + 0S3 O°<0R3<18O° 



Leg: 4 

90° <6>4<18(r 90° 

,20,0) J 

(>'4-10)2+z4*=100 

Figure 76 Illustration of leg 4 coordinate frame and angular 

conventions 

Equation of straight line: p4(y4 -10) = z4 (when y4 = 10, z4 - 0 . p4 Is the gradient of the 

line and p4 =tan<94.) 

Equation of circle: (y4 -10) 2 + z4
2 = 100 

j 4
2 - 2 0 j 4 + 100 + z 4

2=100 

=> y4
2-20y4+z4

2 = 0 

7 4
2 - 2 0 j 4 + ( tan64( j4-10))2 = 0 

y4 - 20y4 + y4 tan2 94 - 20y4 tan2 6 

j 4
2 ( l + t an 2 6 4 ) -20 j 4 ( l + tan2(94)+100tan2(94 = 0 

j 4
2 - 2 0 j 4 + j 4

2 t a n 2 < 9 4 - 2 0 j 4 t a n 2 6 » 4 + 100tan264 = 0 
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This is a quadratic in y4, and using the binomial formula to resolve yA yields: 

20(1 + tan' dA) + 7400(1 + tan2 ft,) - 400 tan' 6A (l + tan' 0^ 

^ y*~~ 2(l + tan'ft4) 

10-̂ /l + 2 tan' dA + tan4 dA - tan' 6>4 - tan4 9A 

l + tan'<94 

= 1 0 ± n — = •, V 94± 90°+ £.180°, £ e N 0 

Vl + tan204 

The transform used to obtain 6A from 0RA is: 

04 = (405°-^4)mod360; 0° < 6RA < 180°, 225° < 0A < 360° u 0° < 6A < 45° 



Appendix B - Solving the Inverse Kinematics for Legs 2,3 and 4 

Leg 2: 

From the circle equation: 

(y2 + m) + (z2 f = R2 where m=10 and Rx =10. 

=> ( j 2 + 10)2 + (z2)
2 = 102 

>>2
2 + 20.y2+100 + z2

2 = 100 

=> j 2
2 + 20_y2+z2

2=0 

^ z2
2=-20y2-y2

2 (B\) 

2 2 

This places a restriction on y2 as z2 is always non-negative, so -20y2 — y2 > 0 , which 

implies that-20 < y2 < 0. 
Now from the sphere equation: 

(*o Y+(y2 - (y0 -
 n)f+(zi - zo f = n*2 

= (x0) +(y2-y0+n) +(z 2 -z 0 ) 2 = RQ2 where n = 4.45 and R0 = 17.9. 

=> M2 + (y2-y0 +4.45)2 +(z2 - z 0 ) 2 = 17.92 = 320.41 

x2 + y2 +y0
2+\ 9.803 -2y2y0 + 8.9 j 2 -8 .9y 0 +z 2

2 -2z 2 z 0 +z 0
2 = 320.41 ... (52) 

Substituting z2 from equation (Bl) into (B2) above yields: 

=> x2 + y2 + y2 - 2y2y0 + S.9y2 - 8.9>>0 + (- 20y2 - y2 ) - 2z2z0 + z2 

320.41 -19.803 = 300.607 

j 2 ( - l l . l - 2> ; 0 ) -2z 2 z 0 + (x0
2+70

2-8.9j;0+z0
2)= 300.607 

Now rearrange and make z2 the subject of the formula: 

^ Zz = 7 2 ( - l l . l -2 7 o )+(x 0
2 + V-8.9y 0 +z 0

2 -300.607) ( J 3 ) 

2z0 

The unknowns here are z2 and y2 , the rest are known. Collecting terms and making the 

following substitution to ease readability results in: 
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2 . 2 o n 2 

C 
= - l l . l - 2 > > 0 a n d c = V + V - 8 . 9 ^ 0 + z 0 -300.607 

2z0 2z0 

=> z2 = cty2+c2 ... (54) 

Squaring both sides of (B4): 

2 2 2 , ~ , 2 

z2 =c, y2 + 2cxc2y2+c2 

However from equation (Bl) z2 equals - 20y2 — y2 , so: 

c?y2 + 2cf2y2 +c2
2 =- 20y2 - y2 

cfy2 + y2 + 2cxc2y2 + 20y2 +c2 = Ic, +1 )y2 + (2c,c2 + 20)y2 +c2 -0 

This is a quadratic in y2 and using the binomial formula yields both 
2a 

solutions i.e.: 

>2 

= -

- (2c,c2 + 20) ± y](2Clc2 + 20)2 -

2(Cl
2 + l) 

/ 2 2 

- 2c,c2 - 20 ± y4cl c2 + 800^2 
2c,2+2 

- 2c,c2 - 20 ± ̂ 400 + 80c,c2 - 4c2
2 

2c,2 + 2 

- cf2 -10 ± ̂ /lOO + 20qc2 - c2
2 

-4(Cl
2+l)t2

2 

+ 400-4Cl
2c2

2 

- 2c,c2 - 20 

-4c2
2 

±2A/l00 + 20c1c2-c2
2 

2c,2+2 

c, +1 

For real solutions to exist 100 + 20c,c2 -c2 > Omust hold. Since y2 is now known, having 

taken into account the restriction of equation (Bl), z2 can be found by taking the square root 

of both sides of said equation. There are 2 solutions for z2 (a positive and a negative 

solution), the correct one must be selected to get the right angle for actuation. The wrong 

solution would mean that the leg is folded inwards instead of outwards, and would imply that 

it must have passed through a singularity condition (see section 4.3.2 h Singularities). 
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Leg 3: 

From the circle equation: 

(x3 +m) +(z3)2 = i?,2 where w=10 and /?, = 10. 

=> (x3+10)2 + (z3)2= 102 

x3
2+20x3 + 100 + z3

2 = 100 

=> x3 + 20x3 + z3 = 0 

=> z3 = -20x 3 -x 3 (B5) 

2 2 

This places a restriction on x3 as z3 is always non-negative, so -20x3 — x3 > 0, which 

implies that -20 < x3 < 0. 
Now from the sphere equation: 

=> (x3 - (xo -n)f + (y0 f + (z3 - zo f = ^o2 

= (x 3-x 0 + «) +(y0) +(zi-z0) =i?„ where n = 4.45 and ^ = 17.9. 

=> (x3 - x0 + 4.45)2 + (y0 f + (z3 - z0)
2 = 17.92 = 320.41 

x3
2+x0

2+l9.803-2x3X0+8.9x3-8.9x0+^0
2+z3

2-2z3z0+z0
2 = 320.41 ... (B6) 

Substituting z3 from equation (B5) into (B6) above yields: 

=> x3 +x0 -2x3x0+8.9x3-8.9x0 + .y0
2 +(-20x3-x3

2J-2z3z0+z0
2 

320.41-19.803 = 300.607 

x 3 ( - l l . l -2x 0 ) -2z 3 z 0 + (x 0
2 -8 .9x 0+j 0

2+z 0
2 )= 300.607 

Now rearrange and make z3 the subject of the formula: 

^ z = x3(- l l . l -2x0)+(x0
2-8.9x0+j0

2+z0
2-300.607) 

2z0 

The unknowns here are z3 and x3, the rest are known. Collecting terms and making the 

following substitution to ease readability results in: 
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- l l . l - 2 * 0 =x0
2-S.9x0 + y0

2+z0
2 -300.607 

2z 2 2z 

=> z3 = c,x3+c2 ... (B8) 

Squaring both sides of (B8): 

2 — 2 2 4 - 9 - I - 2 

2 

However from equation (B5) z3 equals -20x3 — x3 , so: 

1 " ^ I ^iC-1C--> vV T I *-"? ' V n ) A ^ 

c, x3 + x3 + 2c,c2x3 + 20x3 + c2 = (c, + ljx3 + (2c,c2 + 20)x3 + c2 = 0 

_ . . . . . , • , , • • , ^ , -b ± V&2 - 4ac . , , , , This is a quadratic in x3 and using the binomial formula yields both 

2a 

solutions i.e.: 

x, = 
-(2c,c2 + 20)± V(2c,c2 + 20)2 - 4(c,2 + ljfc 

2(c,2 + l) 

_ - 2c,c2 - 20 ± ̂ Ac2c2 + 80c,c2 + 400 - 4c,2c2
2 - Ac. 

2c,2 + 2 

_ - 2c,c2 - 20 ± ^400 + 80^2-4c 2
2 _ - 2c,c2 - 20 ± 2-̂ 100 +20c,c2 -c. 

2c,2 + 2 2c,2 + 2 

_ -c,c2 - 10+ 7l00 + 20c,c2-c2
2 

c,2 + l 

For real solutions to exist 100 + 20c,c2 - c 2
2 > 0 must hold. Since x3 is now known, having 

taken into account the restriction of equation (B5), z3 can be found by taking the square root 

of both sides of said equation. There are 2 solutions for z3 (a positive and a negative 

solution), the correct one must be selected to get the right angle for actuation. The wrong 

solution would mean that the leg is folded inwards instead of outwards, and would imply that 

it must have passed through a singularity condition (see section 4.3.2 h Singularities). 
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Leg 4: 

From the circle equation: 

(y4-m) +(z4) = R2 where m=10 and 5, = 10. 

=» (j4-10)2
 + (z4)2=102 

j ; 4
2 - 2 0 j 4 + 100 + z4

2 = 100 

=> j 4
2 -20>; 4 +z 4

2 =0 

=> Z 4
2 = 2 0 J 4 - J 4

2 (59) 

2 2 

This places a restriction on j>4 as z4 is always non-negative, so 20y4 - y4 > 0, which 

implies that 0 <y4 < 2 0 . 
Now from the sphere equation: 

(*o )2+(y* - (y<>+n)Y+(z4 - z0 )
2 = V 

= (x0) + (y4- y0-n) +(z4_zo) = #-o where n = 4.45 and 50 = 17.9. 

=> (x0f + (y4-y0-4A5)2 + (z4-zJ = 17.92 = 320.41 

x0
2 + y4+y2 +19.803-2j4y0-8.974+8.9j0+z4

2-2z4z0 + z0
2 = 320.41 ... (BIO) 

Substituting z4 from equation (B9) into (B10) above yields: 

=> xo2+y4
2+y0

2 - 2y*y0 - 8.9^+8.9>>0 + (20>>4 - >>4
2)- 2z4z0+z0

2 

320.41 -19.803 = 300.607 

y4{l 1.1 - 2 j 0 ) - 2z4z0 + (x0
2 + yQ

2 + 8.9 y0 + z2) = 300.607 

Now rearrange and make z4 the subject of the formula : 

^ _4_ 7 4 ( l l . l -2y 0 )+(x 0
2

+ > ; 0
2 +8.9^ + z0

2-300.607) ( 5 U ) 

2z0 

The unknowns here are z4 and y4, the rest are known. Collecting terms and making the 

following substitution to ease readability results in: 

H-l-2^0 a n d c _x0
2 + y0

2+S.9y0+z0
2-300.607 

2z0
 2 2z0 

=> z4=cxy4+c2 ... (#12,) 
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Squaring both sides of (B12): 

2 2 2 , ~ , 2 

=> ZA = ci ^4 +2c,c2y4 + c2 

However from equation (B9) z4 equals 20j>4 — y4 , so : 

c,2j4
2 + 2c,c2j4 + c2

2 = 20.y4 - y4 

=> c, V4
2 + J4

2 + 2c,c2 j 4 - 20 j 4 + c2
2 = (c,2 + l)j4

2 + (2c,c2 - 20)^4 + c2
2 = 0 

This is a quadratic in y4 and using the binomial formula = yields both 
2a 

solutions i.e.: 

_ - (2c,c2 - 20) ± A/(2c1c2 - 20)2 - 4(c,2 + l)c 

_ - 2c,c2 + 20 ± -y/4c,2c2
2 - 80c,c2 + 400 - 4c,2c2

2 - 4c 

2c,2 + 2 

_ -2c,c2+20±A /400-80c,c2-4c2
2 _ - 2c,c2 + 20 ± 2^100 - 20c,c2 - c. 

2c,z+2 2 c / + 2 

_ - cxc2 +10 ± -y/lOO - 20C[C2 - c. 

c,2 + l 

For real solutions to exist 100-20c,c2 -c 2
2 > 0 must hold. Since y4 is now known, having 

taken into account the restriction of equation (B9), z4 can be found by taking the square root 

of both sides of said equation. There are 2 solutions for z4 (a positive and a negative 

solution), the correct one must be selected to get the right angle for actuation. The wrong 

solution would mean that the leg is folded inwards instead of outwards, and would imply that 

it must have passed through a singularity condition (see section 4.3.2 h Singularities). 
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Appendix C - Light Sensor Characteristics [55] 

Table CI - Comparison of Light Sensor Characteristics 

Electrical 
Characteristics 

Available 
Wavelengths 

(urn) 

Performance-
to-cost 
ratio 

Sensitivity 

Linearity 

Ambient 
Noise 

Performance 

Dynamic 
Range 

Stability 

Reproducibility 

Cost 

Ruggedness 

Physical Size 

Ease of 
Customization 

Cost of 
Customization 

Lead time for 
Customization 

(weeks) 

Photo-
multiplier 

Tubes 

0.2-0.9 

Fair 

Excellent 

Good 

Fair 

Very 
Good 

Very 
Good 

Fair 

High 

Poor 

Large 

Poor 

Very 
High 

40 

Photo-
diodes 

0.2-2.0 

Good 

Very 
Good 

Excellent 

Very 
Good 

Excellent 

Very 
Good 

Excellent 

Low 

Excellent 

Small 

Easy 

Low 

12 

Photo-
transistors 

0.4-1.1 

Excellent 

Very 
Good 

Good 

Very 
Good 

Very 
Good 

Good 

Fair 

Very Low 

Excellent 

Small 

Fair 

Medium 

14 

CdS 
Photocells 

0.4-0.7 

Excellent 

Very 
Good 

Good 

Very 
Good 

Good 

Poor 

Poor 

Very Low 

Excellent 

Small 

Fair 

Low 

12 

| 

Other 
Photo-

conductors 

2-15 

Fair 

Very 
Good 

Good 

Very 
Good 

Good 

Integrated 
Circuits 

0.2-1.1 

Fair 

Very 
Good 

Good 

Excellent 

Very 
Good 

Fair 1 V«y 
Good 

Fair 
Very 
Good 

High i Medium 

Good I Excellent 

| 
Small Small 

Poor 

High 

20 

Poor 

Very 
High 

40 

Hybrids 

0.2-15.0 

Fair 

Very 
Good 

Good 

Excellent 

Very 
Good 

Very 
Good 

Very 
Good 

High 

Very 
Good 

Medium 

Poor 

High 

30 

Sensor 
Electronic 
Assembly 

0.2-15.0 

Good 

Very Good 

Good 

Excellent 

Very Good 

Very Good 

Very Good 

Medium 

Excellent 

Medium 

Fair 

Medium 

16 



Appendix D - Measurements 

Dl. PKM positioning repeatability / accuracy 

(0; 0; -20) (-7; -7; -18) (5; -5; -16) 
dx dy dz dx dy dz dx dy dz 
1 

2 

1 

-1 

1 

-1 

-1 

-2 

-2 

2 

1 

0 

1 

1 

1 

2 

2 

1 

0 

1 

1 

-1 

-1 

1 

-2 

-2 

1 

1 

2 

0 

-1 

3 

-2 

-2 

1 

1 

1 

1 

1 

-1 

1 

1 

0 

0 

1 

0 

1 

1 

-2 

0 

1 

2 

1 

1 

1 

-2 

-2 

2 

2 

2 

-2 

-2 

1 

1 

2 

-1 

-1 

-1 

2 

2 

-2 

-3 

2 

2 

1 

1 

1 

2 

1 

-2 

-2 

-1 

2 

3 

-3 

-2 

1 

1 

1 

0 

2 

-2 

2 

2 

1 

0 

0 

-1 

-1 

1 

1 

1 

1 

-2 

1 

1 

1 

0 

0 

0 

1 

-1 

-1 

-1 

1 

2 

1 

2 

-3 

1 

2 

2 

1 

1 

-2 

-2 

-2 

2 

2 

2 

1 

1 

-3 

2 

1 

D2. Sensor System Repeatability 

Sensor 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

% 

At 14 cm 

25 

24 

25 

25 

25 

25 

25 

25 

25 

24 

25 

24 

25 

25 

25 

25 

0.9925 

At 17 cm 

25 

25 

24 

25 

25 

24 

25 

25 

25 

24 

25 

24 

25 

24 

25 

25 

0.9875 

At 20 cm 

25 

25 

24 

25 

25 

23 

25 

25 

25 

25 

23 

25 

24 

25 

24 

24 

0.98 
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Appendix F - Code 

MATLAB CODE 
FLEXPICKER SIMULATION 
% Solving the forward kinematics and describing the workspace 

% Clear Command window 
clc 
S_Angles = [000 0]; 
coee = [0 0 0]; 

menuselection = 4; 

while (menuselection ~= 0) 

fprintfC\nMENU...'); 
fprintfi('\n\nl. Inverse Kinematics (with Forward Kinematics Check)'); 
fprintf('\n2. Forward Kinematics (with Inverse Kinematics Check) '); 
menu_selection = inputC\n3. Vibration Model ...'); 

%menu_selection = 1; % remove 
if (menuselection = 1) 

fprintfC\nEnter end effector coordinates ... \t'); 
fprintf('x Range: -7.5 to 7.5 \ty Range: -7.5 to 7.5 \tz Range: -25 to -15 '); 
coee(l) = input('\n\nx0 : '); 
coee(2) = input('\ny0 :'); 
coee(3) = input('\nz0 :'); 

fprintf('\n\nThe coordinates you have selected ...'); 
fprintf('[%8.4f\t%8.4f\t%8.4fJ',coee); 

[SAngles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2), 
coee(3)); 

fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ',S_Angles(l) , kjl); 
fprintfC\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%&AWo8Af\t%8Af\\ S_Angles(2), kj2); 
fprintfC\nAngle3 - %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3); 
fprintf('\nAngle4 = %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4); 

fprintfC\n\n\nChecking solution with Forward Kinematics...1); 
fprintfC\n\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Angles); 

[coee(l), coee(2), coee(3), kjl, kj2, kj3, kj4] = Forward_Kinematics(S_Angles(l), S_Angles(2), S_Angles(3), 
S_Angles(4)); 

fprintfC\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ',S_Angles(l) , kjl); 
fprintfC\nAngle2 - %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(2), kj2); 
fprintf('\nAngle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3); 
fprintf('\nAngle4 = %8.4f\t\t[x4 y4 z4] - [%8.4f\t%8.4f\t%8.4fJ', S_Angles(4), kj4); 

fprintf('\n\nConvert to Servo Rotation Angles....1); 
SRotAngles = Convert_to_servo_rotation_angles (S_Angles); 
fprintf('\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Rot_Angles); 

elseif (menuselection = 2) 

fprintfC\nEnter 4 actuation Angles ... \t'); 
fprintf('Servo Angles Range: 30 - 170 Degrees (140 Degree Range)'); 
S_Angles( 1) = input('\n\nServo Angle 1 : '); 
S_Angles(2) = input('\nServo Angle 2 : '); 
S_Angles(3) = input('\nServo Angle 3 : '); 
S_Angles(4) = input('\nServo Angle 4 : '); 

fprintf('\n\nConvert to Coordinate System Angles....'); 
SAngles = Convert_to_coordinate_system_angles (S_Angles); 
fprintf('\n[Anglel Angle2 Angle3 Angle4] = [%8.4i\t%8.4f\t%8.4f\t%8.4f]', SAngles); 

[coee(l), coee(2), coee(3), kjl, kj2, kj3, kj4] = Forward_Kinematics(S_Angles(l), S_Angles(2), S_Angles(3), 
S_Angles(4)); 

%Forward_Kinematics 
fprintf('\n\n[x0 yO zO] = [%8.4f\t%8.4f\t%8.4f]', coee); 
fprintf('\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4f]',S_Angles(l), kjl); 



fprintfC\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(2), kj2); 
fprintfC\nAngle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4f],

) S_Angles(3), kj3); 
fprintf('\nAngle4 - %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4I t̂%8.4f]•, S_Angles(4), kj4); 

fprintfC\n\nChecking solution with Inverse Kinematics...'); 
[S_Angles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2), 

coee(3)); 
fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4f]',S_Angles(l), kjl); 
fprintf('\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\r%8.4f|,, S_Angles(2), kj2); 
fprintfl>Angle3 = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(3), kj3); 
fprintfi>Angle4 = %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4); 
fprintf('\n\n[xO yO zO] - [%8.4f\t%8.4f\t%8.4f]', coee); 

elseif (menuselection = 3) 

vf= 500; 
va= 1; 
vp = [0, pi/2, pi]; 
time = 2/500; 
dt = 2/(500*99); 

fprintfC\nFrequency (Hz) : %9.4f, vf); 
fprintfC\nAmplirude (Degrees): %9.4f, va); 

fprintf('\nSimulation Time (S) : %9.4f, time); 

%Call vibration function .... Vibration (vf, va, vp, time, dt) 
Vibration (vf, va, vp, time, dt); 

end 

end 

CONVERT TO SERVO ROTATION ANGLES 

function [n] = Convert_to_servo_rotation_angles (s) 
%Convert to servo angles 

n(l) = mod(405 - abs(s(l)), 360); %from 45 to -135, clockwise, 
%convertto0tol80 

n(2) = s(2) -135; %from 135 to 315, anti-clockwise, 
%convert to 0 to 180 

n(3)= s(3) - 135; %from 135 to 315, anti-clockwise, 
Voconvert to 0 to 180 

n(4) = mod(405 - abs(s(4)), 360); %from 45 to -135, clockwise, 
%convert to 0 to 180 

INVERSE KINEMATICS 

function [servo_angle_l, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] = Inverse_Kinematics(xO, yO, zO) 
%function [servoanglel, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] = Inverse_Kinematics(xO, yO, zO) 
% This Program will solve the Inverse Kinematic equations of the modified Delta 
% Robot for points in space. 
% Coordinates for the centre of the end effector... coee = [xO yO zO] 

coee = [000]; 

coee(l) = x0; 
coee(2) = yO; 
coee(3) = zO; 

if (coee(3) ~= 0) % Proceed only if zO is not equal to 0 

"/(.coordinates of ankle joint 1 
coajl = [(coee(l)+4.45), coee(2), coee(3)]; 

%coordinates of ankle joint 2 



coaj2 = [coee(l), (coee(2)-4.45), coee(3)]; 

%coordinates of ankle joint 3 
coaj3 • [(coee(l)-4.45), coee(2), coee(3)]; 

"/(.coordinates of ankle joint 4 
coaj4 = [coee(l), (coee(2)+4.45) coee(3)]; 

%coordinates of thigh joint 1 
cotjl = [10 0 0]; 

%coordinates of thigh joint 2 
cotj2 = [0-10 0]; 

%coordinates of thigh joint 3 
cotj3 = [-10 0 0]; 

%coordinates of thigh joint 4 
cotj4=[0 10 0]; 

%A11 equations have been solved —> 1 ; if any cannot be resolved —> 0 
all_equations_solved = 1; 

%fprintfC\nSolving the knee coordinates for each leg ...\n') 
%LEG 1 
%coaj 1 = [xO+4.45 yO z0]; 
%cl = (5-x0)/z0 
cl=(5.55-coee(l))/coee(3); 

% c2 = (xOA2 + y0A2 + zOA2 + 10x0 - 200)/2z0 
c2 =• (coee(l)A2 + coee(2)A2 + coee(3)A2 + 8.9*coee(l) - 300.607)/(2*coee(3)); %was 200 instead of 295.41 

tempi = 100-20*cl*c2-c2A2; 
%if tempi < 0 then we have no real solutions 

if (tempi < 0) | (allequationssolved = 0) 
%Place and escape sequence here 
allequationssolved = 0; 
servoanglel = -400; 
kjl = H00,-400,-400]; 

else 
%Solution set 1 
% cokjlsl - coordinates of knee joint 1 solution 1 
%cokj l s l=[x ly lz l ] 
cokjlsl = [0 0 0]; 

% xl = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1) 
cokjlsl(l) = (-cl*c2+ 10 + (templ)A0.5)/(clA2+ 1); 

%zl =c lx l+c2 
cokjlsl(3) = cl*cokjlsl(l) + c2; 

%Solution set 2 
% cokj 1 s2 - coordinates of knee joint 1 solution 2 
%cokjls2 = [xlyl zl] 
cokj ls2 = [0 0 0]; 

% xl = (-clc2 + 10 - (templ)A0.5)/(clA2 + 1) 
cokjls2(l) = (-cl*c2+ 10-(templ)A0.5)/(clA2+ 1); 

%zl =c lx l+c2 
cokj ls2(3) = cl*cokj ls2(l) + c2; 

[servoanglel, kjl] = Determine_correct_solution(cokjlsl, cokjls2, coajl, cotjl); % (si, s2, a, t) 

end 

%LEG 2 
%coordinates of ankle joint 2 — coaj2 = [xO y0-5 zO] 
%coordinates of ankle joint 2 



%cll2 = (-5-y0)/z0 
cl = (-5.55 - coee(2))/coee(3); 

% c211 = (xOA2 + y0A2 + zOA2 - lOyO - 200)/2z0 
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 - 8.9*coee(2) - 300.607)/(2*coee(3)); %was 200 instead of 295.41 

temp2 = 100 + 20*cl *c2 - c2A2; 
%if temp2 < 0 then we have no real solutions 

if (terap2 < 0) | (allequationssolved = 0) 
%Place and escape sequence here 
allequationssolved = 0; 
servo_angle_2 = -400; 
kj2 = [-400, -400, -400]; 

else 
%Solution set 1 
% cokj2sl - coordinates of knee joint 2 solution 1 
%cokj2sl = [x2y2z2] 
cokj2sl = [0 0 0]; 

% y2 - (-clc2 -10 + (templ)A0.5)/(clA2 + 1) 
cokj2sl(2) = (-cl*c2 -10 + (temp2)A0.5)/(clA2 + 1); 

%z2 = cly2 + c2 
cokj2sl(3) = cl*cokj2sl(2) + c2; 

%Solution set 2 
% cokj2s2 - coordinates of knee joint 2 solution 2 
% cokj2s2 = [x2 y2 z2] 
cokj2s2 = [0 0 0]; 

% y2 = (-clc2 - 10 - (templ)A0.5)/(clA2 + 1) 
cokj2s2(2) = (-cl*c2 - 10 - (temp2)A0.5)/(clA2 + 1); 

%z2 = cly2 + c2 
cokj2s2(3) = c 1 *cokj2s2(2) + c2; 

[servo_angle_2, kj2] - Determine_correct_solution(cokj2sl, cokj2s2, coaj2, cotj2); % (si, s2, a, t) 

end 

%LEG 3 
%coaj3 = [xO-5yOzO]; 
%cl=(-5-x0)/z0 
cl = (-5.55 - coee(l))/coee(3); 

% c2 = (x0A2 + y0A2 + z0A2 + 10x0 - 200)/2z0 
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 - 8.9*coee(l) - 300.607)/(2*coee(3)); %was 200 instead of 295.41 

temp3 = 100 + 20*cl *c2 - c2A2; 
%if temp3 < 0 then we have no real solutions 

if (temp3 < 0) | (allequationssolved = 0) 
%Place and escape sequence here 
allequationssolved = 0; 
servo_angle_3 = -400; 
kj3 = [-400, -400, -400]; 

else 
%Solution set 1 
% cokj3sl - coordinates of knee joint 3 solution 1 
% cokj3sl = [x3 y3 z3] 
cokj3sl = [0 0 0]; 

% x3 = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1) 
cokj3sl(l) = (-cl*c2- 10 + (temp3)A0.5)/(clA2+ 1); 

% z3 = clx3 + c2 
cokj3sl(3) = cl*cokj3sl(l) + c2; 



%Solution set 2 
% cokj3s2 - coordinates of knee joint 3 solution 2 
% cokj3s2 = [x3 y3 z3] 
cokj3s2 = [0 0 0]; 

% x3 = (-clc2 + 10 - (templ)A0.5)/(clA2 + 1) 
cokj3s2(l) = (-cl*c2 - 10 - (temp3)A0.5)/(clA2 + 1); 

%z3 = clx3 + c2 

cokj3s2(3) = cl *cokj3s2(l) + c2; 

[servo_angle_3, kj3] = Determine_correct_solution(cokj3sl, cokj3s2, coaj3, cotj3); % (si, s2, a, t) 

end 

%LEG 4 
"/(.coordinates of ankle joint 4 — coaj4 « [xO y0+5 zO] 
"/.coordinates of ankle joint 4 

%cl = (5-y0)/z0 
cl = (5.55 - coee(2))/coee(3); 

% c2 = (xOA2 + yOA2 + z0A2 + 1 OyO - 200)/2z0 
c2 = (coee(l)A2 + coee(2)A2 + coee(3)A2 + 8.9*coee(2) - 300.607)/(2*coee(3)); %was 200 instead of 295.41 

temp4 = 100 - 20*c 1 *c2 - c2A2; 
%if temp4 < 0 then we have no real solutions 

if (temp4 < 0) | (all_equations_solved = 0) 
%Place and escape sequence here 
all_equations_solved = 0; 
servo_angle_4 = -400; 
kj4 = [-400, -400, -400]; 

else 
"/(.Solution set 1 
% cokj4sl - coordinates of knee joint 4 solution 1 
% cokj4sl = [x4 y4 z4] 
cokj4sl = [0 0 0]; 

% y4 = (-clc2 + 10 + (templ)A0.5)/(clA2 + 1) 
cokj4sl(2) = (-cl*c2 + 10 + (temp4)A0.5)/(clA2 + 1); 

%z4 = cly4 + c2 
cokj4s 1 (3) - c 1 *cokj4s 1 (2) + c2; 

"/oSolution set 2 
% cokj4s2 - coordinates of knee joint 4 solution 2 
% cokj4s2 = [x4 y4 z4] 
cokj4s2 = [0 0 0]; 

% y4 - (-clc2 - 10 - (templ)A0.5)/(clA2 + 1) 
cokj4s2(2) = (-cl*c2 + 10 - (temp4)A0.5)/(clA2 + 1); 

%z4 = cly4 + c2 

cokj4s2(3) = c 1 *cokj4s2(2) + c2; 

[servo_angle_4, kj4] = Determine_correct_solution(cokj4sl, cokj4s2, coaj4, cotj4); % (si, s2, a, t) 

end 

else 
% There is a divide by 0...coordinates cannot be found 
servo_angle_l = -400; 
kjl=[-400,-400, -400]; 
servo_angle_2 = -400; 
kj2 = [-400, -400, -400]; 

servo_angle_3 = -400; 
kj3 = [-400, -400, -400]; 



servo_angle_4 = -400; 
kj4 = [-400, -400, -400]; 

end 

DETERMINE CORRECT SOLUTION 

function [angle, Kcoordinates] = Determine_correct_solution(sl, s2, a, t) 
%Determine Correct Angle 

%sl and s2 are coordinates sets for the knee coordinates, both solutions 
%sl=(kxl,kyl ,kzl) 
%s2 = (kx2, ky2, kz2) 

%a is the ankle joint 
%a = (ax, ay, az) 

%t is the thigh joint 
%t = (tx, ty, tz) 

rad2deg=180/pi; 

i f ( t ( l ) = 1 0 )%Legl 

% function [angle] = Get_upper_leg_angle(zl, z2, rl, r2) 
angl = Get_upper_leg_angle(sl(3), 0, sl(l), 10); %atan(sl(3)/(sl(l) -10))*rad2deg; 
ang2 = Get_upper_leg_angle(s2(3), 0, s2(l), 10); %atan(s2(3)/(s2(l) -10))*rad2deg; 

if (t(l) ~= a(l)) % In this case the Denominator goes to 0 
% Gradient of line A1T1 - DZ/DX 

m = (t(3)-a(3))/(t(l)-a(l)); 
c = -10*m; 
zl =m*sl(l) + c; %zatx = sl(l) 
z2 = m*s2(l) + c; %z at x = s2(l) 

%Now Test gradient of AIT 1 
if(m>0) 
% z of Knee coordinates must be less than z of A1T1 at 
% corresponding x 

if(sl(3)<zl) 
angle = ang 1; 
K_coordinates = si; 

elseif(s2(3)<z2) 
angle = ang2; 
Kcoordinates = s2; 

else 
%Problems 

angle = -400; 
K_coordinates = [-400, -400, -400]; 

end 

elseif(m<0) 
% z of Knee coordinateszl must be more than z of A1T1 at 
% corresponding x 

if(sl(3)>zl) 
angle = angl; 
Kcoordinates = si; 

elseif(s2(3)>z2) 
angle = ang2; 
Kcoordinates = s2; 

else 
%Problems 

angle = -400; 
K_coordinates = [-400, -400, -400]; 

end 

end 

else%t(l) = a(l) 
if(abs(sl(l))>abs(s2(l))) 

angle = angl; 
K_coordinates = si; 

elseif ( abs(sl(l)) < abs(s2(l))) 



angle = ang2; 
K_coordinates = s2; 

else 
%Problems 

end 

end 

o/**** i gQ 3 ***************** 

elseif(t(l) = -10)%Leg3 
angl = Get_upper_leg_angle(sl(3), 0, sl(l), -10); %atan(sl(3)/(sl(l) + 10))*rad2deg; 
ang2 = Get_upper_leg_angle(s2(3), 0, s2( 1), -10); %atan(s2(3)/(s2( 1) + 10))*rad2deg; 

if (t(l) ~= a(l)) % In this case the Denominator goes to 0 
% Gradient of line AIT1 = DZ/DX 

m = (t(3)-a(3))/(t(l)-a(l)); 
c = 10*m; 
zl=m*sl( l) + c; %zatx = sl(l) 
z2 = m*s2(l) + c; %z at x = s2( 1) 

%Now Test gradient of AlTl 
if(m>0) 
% z of Knee coordinates must be less than z of AlTl at 
% corresponding x 

if(sl(3)>zl) 
angle = angl; 
Kcoordinates = si; 

elseif(s2(3)>z2) 
angle = ang2; 
Kcoordinates = s2; 

else 
%Problems 

angle - -400; 
Kcoordinates = [-400, -400, -400]; 

end 

elseif(m<0) 
% z of Knee coordinateszl must be more than z of AlTl at 
% corresponding x 

if(sl(3)<zl) 
angle = angl; 
K_coordinates = si; 

elseif(s2(3)<z2) 
angle = ang2; 
K_coordinates • s2; 

else 
%Problems 

angle = -400; 
Kcoordinates - [-400, -400, -400]; 

end 

end 

else%t(l) = a(l) 
if(abs(sl(l))>abs(s2(l))) 

angle = angl; 
Kcoordinates « si; 

elseif (abs(sl(l)) < abs(s2(l))) 
angle = ang2; 
K_coordinates = s2; 

else 
%Problems 

end 

end 

%**** LEG 2 ***************** 
elseif(t(2) = -10)%Leg2 

angl = Get_upper_leg_angle(sl(3), 0, sl(2), -10); %atan(sl(3)/(sl(2) + 10))*rad2deg; 
ang2 = Get_upper_leg_angle(s2(3), 0, s2(2), -10); %atan(s2(3)/(s2(2) + 10))*rad2deg; 

if (t(2) ~= a(2)) % In this case the Denominator goes to 0 
% Gradient of line AlTl = DZ/DX 

m = (t(3)-a(3))/(t(2)-a(2)); 
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c= 10*m; 
zl=m*sl(2) + c; %zaty = sl(2) 
z2 = m*s2(2) + c; %z at y = s2(2) 

%Now Test gradient of AlTl 
if(m>0) 
% z of Knee coordinates must be less than z of AlTl at 
% corresponding y 

if(sl(3)>zl) 
angle = angl; 
K_coordinates = si; 

elseif(s2(3)>z2) 
angle = ang2; 
K_coordinates = s2; 

else 
%Problems 

angle = -400; 
K_coordinates = [-400, -400, -400]; 

end 

elseif(m<0) 
% z of Knee coordinateszl must be more than z of AlTl at 
% corresponding y 

if(sl(3)<zl) 
angle = angl; 
Kcoordinates = si; 

elseif(s2(3)<z2) 
angle = ang2; 
Kcoordinates = s2; 

else 
%Problems 

angle = -400; 
K_coordinates = [A00, -400, -400]; 

end 

end 

else%t(2) = a(2) 
if(abs(sl(2))>abs(s2(2))) 

angle = angl; 
Kcoordinates = si; 

elseif ( abs(sl(2)) < abs(s2(2)) ) 
angle = ang2; 
Kcoordinates = s2; 

else 
%Problems 

end 

end 

%****LEG4 ***************** 
elsei f ( t (2)=10)%Leg4 

angl = Get_upper_leg_angle(sl(3), 0, sl(2), 10); %atan(sl(3)/(sl(2) - 10))*rad2deg; 
ang2 = Get_upper_leg_angle(s2(3), 0, s2(2), 10); %atan(s2(3)/(s2(2) - 10))*rad2deg; 

if (t(2) ~= a(2)) % In this case the Denominator goes to 0 
% Gradient of line A4T4 = DZ/DY 

m = (t(3)-a(3))/(t(2)-a(2)); 
c = -10*m; 
zl =m*sl(2) + c; %zatx = sl(l) 
z2 = m*s2(2) + c; %z at x = s2(l) 

%Now Test gradient of AlTl 
if(m>0) 
% z of Knee coordinates must be less than z of A4T4 at 
% corresponding y 

if(sl(3)<zl) 
angle = angl; 
Kcoordinates = si; 

elseif(s2(3)<z2) 
angle = ang2; 
K_coordinates = s2; 

else 



%Problems 
angle = -400; 
Kcoordinates = H00, -400, -400]; 

end 

elseif(m<0) 
% z of Knee coordinateszl must be more than z of A4T4 at 
% corresponding y 

if(sl(3)>zl) 
angle = angl; 
Kcoordinates • si; 

elseif(s2(3)>z2) 
angle " ang2; 
Kcoordinates = s2; 

else 
%Problems 

angle = -400; 
K_coordinates = [-400, -400, -400]; 

end 

end 

else%t(2) = a(2) 
if(abs(sl(2))>abs(s2(2))) 

angle = angl; 
Kcoordinates = si; 

elseif (abs(sl(2)) < abs(s2(2))) 
angle « ang2; 
Kcoordinates = s2; 

else 
%Problems 

end 

end 

end 

GET UPPER LEG ANGLES 

function [angle] = Get_upper_leg_angle(zl, z2, rl, r2) 

rad2deg = 180/pi; 
%Correct Arctangent with angle transform for leg included 
num = zl -z2; 
den = rl - r2; 

if(den~=0) 

angle = atan( num/den )*rad2deg; 

%Determine Correct Quadrant 
%First Quadrant 
if(num = 0)&(den>0) 

angle • 0; 
elseif (num > 0) & (den > 0) 

%No change to angle 

%Second Quadrant - aTan is negative 
elseif (num > 0) & (den < 0) 

angle = angle - 180; %force angle to go from -180 to -270 

elseif (num — 0) & (den < 0) 
angle = -180; 

%Third Quadrant - aTan is positive 
elseif (num < 0) & (den < 0) 

angle = angle - 180; % Angle must range from -90 to -180 

%Fourth Quadrant - aTan is negative 
elseif (num < 0) & (den > 0) 

angle = angle; % No change 



end 

else % den = 0 
if(num>0) 

angle = 90; 
elseif (num<0) 

angle = -90; 
else 

%Problems - cannot determine angle as num = 0 and den = 0 
end 

end 

angle = mod(angle, 360); 
% fprintf('\n After Transform Angle = %8.4f, angle); 

FORWARD KINEMATICS 

function [xO, yO, zO, kj 1, kj2, kj3, kj4] = Forward_Kinematics(al, a2, a3, a4) 
% Solving for xO, yO and zO ... the forward kinematics of the FlexPicker 
% Robot 

kjl =[0 0 0]; 
kj2 = [0 0 0]; 
kj3 = [0 0 0]; 
kj4 = [0 0 0]; 
coee =[0 0 0]; 

% ********** New coordinate system Funtion 
%function [kl, k2, k3, k4] = Solveforkneecoordinatesfk (angl, ang2, ang3, ang4) 
[kjl, kj2, kj3, kj4] = Solve_for_knee_coordinates_fk (al, a2, a3, a4); 

cl=8.9-2*kjl(l); 
c2 = -8.9*kjl(l) + kj 1(1)A2 + kjl(3)A2; 

c3 = -8.9-2*kj3(l); 
c4 = 8.9*kj3(l) + kj3(l)A2 + kj3(3)A2; 

c5 = -8.9 - 2*kj2(2); 
c6 = 8.9*kj2(2) + kj2(2)A2 + kj2(3)A2; 

c7 = 8.9 - 2*kj4(2); 
c8 = -8.9*kj4(2) + kj4(2)A2 + kj4(3)A2; 

ml = (2*(kjl(3) - kj3(3)))/(cl - c3); 
nl = (c4 - c2)/(cl - c3); 

m2 = (2*(kj2(3) - kj4(3)))/(c5 - c7); 
n2 = (c8 - c6)/(c5 - c7); 

a = mlA2 + m2A2+l; 
b = 2*ml*nl + 8.9*ml - 2*kjl(l)*ml + 2*m2*n2 - 2*kjl(3); 
c = nlA2 + 8.9*nl -2*kjl(l)*nl - 8.9*kjl(l)+kjl(l)A2+ n2A2+ kjl(3)A2 - 300.607; %200; 

zOsl = (-b + (bA2 - 4*a*c)A.5)/(2*a); 
xOsl = (2*(kjl(3) - kj3(3))*z0sl + c4 - c2)/(cl - c3); 
yOsl = (2*(kj2(3) - kj4(3))*z0sl + c8 - c6)/(c5 - c7); 

z0s2 = (-b - (bA2 - 4*a*c)A.5)/(2*a); 
x0s2 = (2*(kjl(3) - kj3(3))*z0s2 + c4 - c2)/(cl - c3); 
y0s2 = (2*(kj2(3) - kj4(3))*z0s2 + c8 - c6)/(c5 - c7); 

if(z0s2<=z0sl) 
coee(l) = x0s2; 
coee(2) = y0s2; 
coee(3)= z0s2; 

elseif (zOsl <=z0s2) 
coee(l) = x0sl; 
coee(2) = yOs 1; 
coee(3) = z0sl; 



end 

xO = coee(l); 
yO = coee(2); 
zO = coee(3); 

SOLVE FOR KNEE COORDINATES 

function [kl, k2, k3, k4] = Solveforkneecoordinatesfk (angl, ang2, ang3, ang4) 
%Getting Coordinates of ankle joints for forward kinematics 
%Using new coordinate system 

deg2rad = pi/180; 

%Determine coordinates from angle for leg 1 of delta modification 
angle = deg2rad*angl; %Convert to radians 
yl-0; 

%fprintfl;'\nAnglel =%6.2f,angl); 

% [xlsl zlsl xls2 zls2] = solving_for_xl_and_zl(angl, xlow, x_high, zlow, z_high) 
if (angl > 270)&(angl < 360) % 0 > z > -10 and 20 > x > 10 

[xl zl] = solvingJbr_xl_and_zl (angle, 10,20, -10,0); 

elseif (angl — 270) % z = -10 and x = 10 
xl = 10; 
zl=-10; 

elseif (angl > 180)&(angl < 270) % 0 > z > -10 and 10 > x > 0 
[xl zl] = solving_for_xl_and_zl(angle, 0, 10, -10, 0); 

elseif (ang 1 = 180) % z = 0 and x = 0 
x l = 0 ; 
z l = 0 ; 

elseif (angl > 90)&(angl < 180) % 0 < z < 10 and 10 > x > 0 
[xl zl] = solving_for_xl_and_zl (angle, 0, 10, 0, 10); 

elseif (angl = 90) % z = 10 and x = 10 
xl = 10; 
zl - 10; 

elseif (angl < 90)&(angl > 0) % 0 < z < 10 and 20 > x > 10 
[xl zl] = so lv ing jbrx landz l (angle, 10, 20,0, 10); 

elseif (angl = 0) % z = 0 and x = 0 
x l=20; 
z l = 0 ; 

else 
fprintf('\nError with angle, coordinates for leg 1 cannot be resolved.') 
xl=-400; 
yl - -400; 
zl = -400; 

end 
kl - [xl, yl, zl]; 

%Determine coordinates from angle for leg 2 of delta modification 
angle = deg2rad*ang2; %Convert to radians 
x2 = 0; 

%fprintfl>\nAngle2 = %6.2f ,ang2); 

% [y2sl z2sl y2s2 z2s2] = solving_for_y2_and_z2(ang2, y_low, y_high, z_low, z_high) 
if(ang2>270)&(ang2<360)%0>z>-10 and 0>y>-10 

[y2 z2] = solving_for_y2_and_z2(angle, -10, 0, -10,0); 

elseif (ang2 = 270) % z = -10 and y = -10 
y2 = -10; 
z2 = -10; 



elseif (ang2 > 180)&(ang2 < 270) % 0 > z > -10 and -10 > y > -20 
[y2 z2] = solving_for_y2_and_z2(angle, -20, -10, -10,0); 

elseif (ang2 = 180) % z = 0 and y = -20 
y2 = -20; 
z2 = 0; 

elseif (ang2 > 90)&(ang2 < 180) % 0 < z < 10 and -10 > y > -20 
[y2 z2] = solving_for_y2_and_z2(angle, -20, -10,0, 10); 

elseif (ang2 — 90) % z = 10 and y = -10 
y2 = -10; 
z2=10; 

elseif (ang2 < 90)&(ang2 > 0) % 0 < z < 10 and 0 > y > -10 
[y2 z2] = solving_for_y2_and_z2(angle, -10, 0, 0, 10); 

elseif (ang2 = 0) % z = 0 and y = 0 
y2 = 0; 
z2 = 0; 

else 
fprintf('\nError with angle, coordinates for leg 2 cannot be resolved.') 
x2 = -400; 
y2 - -400; 
z2 = -400; 

end 
k2 = [x2, y2, z2]; 

0/*************************************************************** 

%Determine coordinates from angle for leg 3 of delta modification 
angle = deg2rad*ang3; %Convert to radians 
y3 = 0; 

%fprintf('\n\nAngle3 = %6.2f ,ang3); 

% [x3sl z3sl x3s2 z3s2] = solving_for_x3_and_z3(ang3, xlow, xhigh, z_low, zhigh) 
if (ang3 > 270)&(ang3 < 360) % 0 > z > -10 and 0 > x > -10 

[x3 z3] = solving_for_x3_and_z3(angle, -10,0, -10, 0); 

elseif (ang3 — 270) % z = -10 and x = -10 
x3 = -10; 
z3 = -10; 

elseif (ang3 > 180)&(ang3 < 270) % 0 > z > -10 and -10 > x > -20 
[x3 z3] = solving_for_x3_and_z3(angle, -20, -10, -10,0); 

elseif (ang3 = 180) % z = 0 and x = -20 
x3 - -20; 
z3 = 0; 

elseif (ang3 > 90)&(ang3 < 180) % 0 < z < 10 and -10 > x > -20 
[x3 z3] = solving_for_x3_and_z3(angle, -20, -10,0, 10); 

elseif (ang3 — 90) % z = 10 and x - -10 
X3--10; 
z3 - 10; 

elseif (ang3 < 90)&(ang3 > 0) % 0 < z < 10 and 0 > x > -10 
[x3 z3] = solving_for_x3_and_z3(angle, -10,0, 0, 10); 

elseif (ang3 — 0) % z = 0 and x = 0 
x3 = 0; 
z3 = 0; 

else 
fprintf('\nError with angle, coordinates for leg 3 cannot be resolved.') 
x3 = -400; 
y3 = -400; 
z3 = -400; 

end 
k3 = [x3,y3, z3]; 



0/******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

%Detennine coordinates from angle for leg 4 of delta modification 
angle = deg2rad*ang4; %Convert to radians 
x4 = 0; 

%fprintf('\n\nAngle4 = %6.2f ,ang4); 

% [y4sl z4sl y4s2 z4s2] - solvingJor_y4_and_z4(ang4, yjow, y high, zlow, z_high) 
if (ang4 > 270)&(ang4 < 360) % 0 > z > -10 and 20 > y > 10 

[y4 z4] = solvingJor_y4_and_z4(angle, 10,20, -10,0); 

elseif (ang4 = 270) % z = 10 and y = 10 
y4=10; 
z4 = -10; 

elseif (ang4 > 180)&(ang4 < 2 7 0 ) % 0 > z > - 1 0 a n d l 0 > y > 0 
[y4 z4] = solving for_y4_and_z4(angle, 0, 10,-10, 0); 

elseif (ang4 = 180) % z = 0 and y = 0 
y4 = 0; 
z4 = 0; 

elseif (ang4 > 90)&(ang4 < 180) % 0 < z < 10 and 10 > y > 0 
[y4 z4] = solvingJor_y4_and_z4(angle, 0, 10, 0, 10); 

elseif (ang4 — 90) % z = 10 and y = 10 
y4 = 10; 
z4=10; 

elseif (ang4 < 90)&(ang4 > 0) % 0 < z < 10 and 20 > y > 10 
[y4 z4] « solving_for_y4_and_z4(angle, 10,20, 0, 10); 

elseif (ang4 = 0) % z = 0 and y = 20 
y4 = 20; 
z4 = 0; 

else 
fprintfCViError with angle, coordinates for leg 4 cannot be resolved.') 
x4 = -400; 
y4 = -400; 
z4 = -400; 

end 
k4 = [x4, y4, z4]; 

SOLVE FOR XI ANDZ1 

function [xl zl] = solving for_xl_and_zl(angl, xlimitlow, xlimithigh, zjimit low, zlimithigh) 
%Determine coordinates from angle for leg 1 of delta modification 

ml =tan(angl); 
xlsl = 10 + (10/((1 +mlA2)A0.5)); 
zlsl=ml*(xlsl -10); 

xls2 = 10 - (10/((1 + mlA2)A0.5)); 
zls2 = ml*(xls2-10); 

%fprintf('[x J imit low \txjimitjiigh] = [%6.2f\t%6.2fJ\n', xlimitlow, xjimitjiigh); 
%fprintf('[zjimit low \tz limitJiigh] = [%6.2f\t%6.2f]\n', zjimitlow, z limit high); 
%fprintfC[xlsl zlsl xls2 zls2] = [%6.2f\t%6.2f\t%6.2f\t%6.2f|\n,, xlsl, zlsl, xls2, zls2); 

%check_solutionl - (xlsl - 10)A2 + zlslA2; 
%check_solution2 = (xls2 - 10)A2 + zls2A2; 

%fprintf('[check_solutionl check_solution2] = [%6.2f\t%6.2f]\n', checksolutionl, check_solution2); 

% xlimitlow < x < xlimithigh and zlimitlow < z < zlimithigh 
if (z_limit_low < z 1 s 1 )&(z 1 s 1 < z_limit_high)&(x_limit_low < x 1 s 1 )&(x 1 s 1 < x_limit_high) 

xl =xls l ; 
zl =z ls l ; 

elseif (zjimitlow < zls2)&(zls2 < z limit high)&(x limit low < xls2)&(xls2 < xjimit_high) 
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xl =xls2; 
zl = zls2; 

else 
fprintf('Coordinates for leg 1 cannot be resolved.W) 
xl =-400; 
zl = -400; 

end 

SOLVE FOR Y2 AND Z2 

function [y2 z2] • solving for_y2_and_z2(ang2, ylimitlow, ylimitjiigh, zlimitjow, zjimitjiigh) 
%Determine coordinates from angle for leg 2 of delta modification 

m2 = tan(ang2); 
y2sl = -10 + (10/((1 + m2A2)A0.5)); 
z2sl =m2*(y2sl + 10); %-m2 previously 

y2s2 = -10 - (10/((1 + m2A2)A0.5)); 
z2s2 = m2*(y2s2 + 10); %-m2 previously 

%fprintfC\n[y_limit_low\ty_limit_high] = [%6.2f\t%6.2f]', yjimit low, yjimit high); 
%fprintf('\n[z_limit_low \tzjimithigh] = [%6.2f\t%6.2fJ', zjimitlow, z_limit_high); 
%fprintf('\n[y2sl z2sl y2s2 z2s2] = [%6.2f\t%6.2f\t%6.2f\t%6.2fJ', y2sl, z2sl, y2s2, z2s2); 

%check_solutionl = (y2sl + 10)A2 + z2slA2; 
%check_solution2 = (y2s2 + 10)A2 + z2s2A2; 

%fprintf('\n[check_solutionl check_solution2] = [%6.2f\t%6.2f]', checksolutionl, check_solution2); 

% yjimitlow < y < ylimithigh and zjimitlow < z < zjimitjiigh 
if (zjimitlow < z2sl)&(z2sl < z_limit_high)&(y_limit_low < y2sl)&(y2sl < ylimithigh) 

y2 =y2sl; 
z2 = z2sl; 

elseif (zjimitlow < z2s2)&(z2s2 < zlimitjiigh)&(y limitJow < y2s2)&(y2s2 < yjimitjiigh) 
y2 = y2s2; 
z2 = z2s2; 

else 
fprintf('\nCoordinates for leg 2 cannot be resolved.') 
y2 = -400; 
z2 = -400; 

end 

SOLVE FOR X3 AND Z3 

function [x3 z3] = solving for_x3_and_z3(ang3, xlimitlow, xlimithigh, zlimitjow, zjimitjiigh) 
%Determine coordinates from angle for leg 3 of delta modification 

m3 • tan(ang3); 
x3sl = -10 + (10/((1 +1113*2)^.5)); 
z3sl =m3*(x3sl + 10); %-m3 previously 

x3s2 = -10 - (10/((1 + m3A2)A0.5)); 
z3s2 = m3*(x3s2 + 10); %-m3 previously 

%fprintf('[xJimitJow\txlimit_high] = [%6.2f\t%6.2f]\n', xlimitlow, xjimithigh); 
%fprintf('[zJimitlow\tzJimit_high] = [%6.2i\t%6.2f]\n', z limit low, zjimitjiigh); 
%fprintfi;'[x3sl z3sl x3s2 z3s2] » [%6.2f\t%6.2f\t%6.2f\t%6.2f]\n', x3sl, z3sl, x3s2, z3s2); 

%check_solutionl = (x3sl + 10)A2 + z3slA2 
%check_solution2 = (x3s2 + 10)A2 + z3s2A2 

%fprintf('[check_solutionl check_solution2] = [%6.2f\t%6.2fJ\n', checksolutionl, check_solution2); 

% xlimitJow < x < xjimithigh and z limit low < z < zjimitjiigh 
if (z limit Jow < z3sl)&(z3sl < zJimitJiigh)&(xlimitlow < x3sl)&(x3sl < xjimithigh) 

x3 =x3sl; 
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z3 = z3sl; 

elseif (zlimitlow < z3s2)&(z3s2 < z_limit_high)&(x_limit_low < x3s2)&(x3s2 < xlimithigh) 
x3 = x3s2; 
z3 = z3s2; 

else 
fprintf('Coordinates for leg 3 cannot be resolved.\n') 
x3 = -400; 
z3 = -400; 

end 

SOLVE FOR Y4 AND Z4 

function [y4 z4] = solving_for_y4_and_z4(ang4, y_limit_low, y_limit_high, z_limit_low, z_limit_high) 
%Determine coordinates from angle for leg 4 of delta modification 

m4 = tan(ang4); 
y4sl = 10 + (10/((1 + m4A2)A0.5)); 
z4sl - m4*(y4sl - 10); 

y4s2 = 10 - (10/((1 + m4A2)A0.5)); 
z4s2 - m4*(y4s2 - 10); 

%fprintf('[y_limit_low \ty_limit_high] = [%6.2f\t%6.2fJ\n', ylimitlow, ylimithigh); 
%fprintf('[z_limit_low \tz_limit_high] = [%6.2f\t%6.2f]\n', z_limit_low, z_limit_high); 
%fprintf('[y4sl z4sl y4s2 z4s2] - [%6.2f\t%6.2f\t%6.2f\t%6.2fJ\n', y4sl, z4sl, y4s2, z4s2); 

%check_solutionl = (y4sl - 10)A2 + z4slA2; 
%check_solution2 = (y4s2 - 10)A2 + z4s2A2; 

%fprintf('[check_solutionl check_solution2] • [%6.2f\t%6.2fJ\n', checksolutionl, check_solution2); 

% ylimitlow < y < ylimithigh and zlimitlow < z < zlimithigh 
if (zlimitlow < z4sl)&(z4sl < z_limit_high)&(y_limit_low < y4sl)&(y4sl < ylimithigh) 

y4 = y4sl; 
z4 = z4sl; 

elseif (zlimitlow < z4s2)&(z4s2 < z_limit_high)&(y_limit_low < y4s2)&(y4s2 < y_limit_high) 
y4 = y4s2; 
z4 • z4s2; 

else 
fprintf('Coordinates for leg 4 cannot be resolved.\n') 
y4 = -400; 
z4 = -400; 

end 

VIBRATION 

function [] = Vibration (vf, va, vp, time, dt) 

fprintfC\n\nEnter end effector coordinates ... \t') 
fprintf('x Range: -7.5 to 7.5 \t\ty Range: -7.5 to 7.5 \t\tz Range: -22 to -12 ') 

coee(l) = inputC\n\nxO :'); 
coee(2) = inputC\nyO :'); 
coee(3) = inputCXnzO :'); 

fprintfC\n\nThe coordinates you have selected ... [%8.4f\t%8.4f\t%8.4fJ', coee); 
[SAngles(l), S_Angles(2), S_Angles(3), S_Angles(4), kjl, kj2, kj3, kj4] = Inverse_Kinematics(coee(l), coee(2), 

coee(3)); 

fprintf('\n\nAnglel = %8.4f\t\t[xl yl zl] = [%8.4f\t%8.4f\t%8.4fJ'>S_Angles(l) , kjl); 
fprintf('\nAngle2 = %8.4f\t\t[x2 y2 z2] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(2), kj2); 
fprintfC^AngleS = %8.4f\t\t[x3 y3 z3] = [%8.4f\t%8.4f\t%8.4fJ', S_Angles(3), kj3); 
fprintf('\nAngle4 » %8.4f\t\t[x4 y4 z4] = [%8.4f\t%8.4f\t%8.4f]', S_Angles(4), kj4); 

t = zeros(l, 100); 
yl =zeros(l, 100); 
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y2 = zeros(l, 100); 
y3 = zeros(l, 100); 
y4 = zeros(l, 100); 
x0 = zeros(l, 100); 
yO = zeros(l, 100); 
z0 = zeros(l, 100); 

xOmin = coee(l); 
xOmax = coee(l); 

yOmin » coee(2); 
yOmax = coee(2); 

zOmin = coee(3); 
zO_max = coee(3); 

rprintfC\n\nConvert to Servo Rotation Angles....'); 
S_Rot_Angles = Converttoservorotationangles (SAngles); 
rprintfC\n[Anglel Angle2 Angle3 Angle4] = [%8.4f\t%8.4f\t%8.4f\t%8.4f]', S_Rot_Angles); 

for m = 2 : 2 : 2 % Was 6 to get more phase differences 
%For a Phase difference of vpl =0 radians 
k = m/2; 

for i = 1 : 100 
t(i)= (i-l)*dt; 
yl(i) = S_Rot_Angles(l) + va*sin (2*pi*vf*t(i)); 
y2(i) = S_Rot_Angles(2) + va*sin (2*pi*vf*t(i) + vp(k)); 
y3(i) = S_Rot_Angles(3) + va*sin (2*pi*vf*t(i)); 
y4(i) = S_Rot_Angles(4) + va*sin (2*pi*vf*t(i) + vp(k)); 

al = SAngles(l) + va*sin (2*pi*vf*t(i)); 
a2 = S_Angles(2) + va*sin (2*pi*vf*t(i) + vp(k)); 
a3 = S_Angles(3) + va*sin (2*pi*vf*t(i)); 
a4 = S_Angles(4) + va*sin (2*pi*vf*t(i) + vp(k)); 

[x0(i), yO(i), z0(i), kjl, kj2, kj3, kj4] = Forward_Kinematics(al, a2, a3, a4); %Forward_Kinematics 

if(x0(i)>x0_max) 
xOmax = x0(i); 

elseif (x0(i) < xOmin) 
xOmin • x0(i); 

end 

if(yO(i)>yO_max) 
yOmax = yO(i); 

elseif (yO(i) < yOmin) 
yOmin = yO(i); 

end 

if (zO(i) > zOmax) 
zOmax = zO(i); 

elseif (zO(i) < zOmin) 
zO_min = zO(i); 

end 

end 

if (coee(l) - xO_min < 0.0000001) 
xO_min = coee( 1) - 0.0000001; 

end 

if (xO_max - coee(l) < 0.0000001) 
xO_max = coee(l) + 0.0000001; 

end 

if (coee(2) - yO_min < 0.0000001) 
y0_min = coee(2) - 0.0000001; 

end 

if (yOmax - coee(2) < 0.0000001) 
yOmax - coee(2) + 0.0000001; 

end 



if (coee(3) - zOmin < O.OOOOOOl) 
zOmin « coee(3) - 0.0000001; 

end 

if (zO_max - coee(3) < 0.0000001) 
zO_max = coee(3) + 0.0000001; 

end 

fprintf('\n\n[xO_min xO_max] = [%14.10f \t %14.10f]\t\txO_max - xO_min = %14.10f, xOmin, xOmax, (xOmax • 
xOmin)); 

fprintfOntyOjiiin yO_max] = [%14.10f \t %14.10f]\t\tyO_max - yO_min = %14.10f, yOmin, yOmax, (yOmax -
yOmin)); 

fprintf('\n[z0_min zO_max] = [%14.10f \t %14.10f]\t\tzO_max - zO_min = %14.10f, zO_min, zO_max, (zO_max -
zOmin)); 

%Now that we have the angles we may add the vibration to them 
Figure(m); 
elf; 
subplot(2,2,l) 
hold on; 

plot(t, yl, '-b', 'LineWidth',2); 
ymin = SRotAngles(l) - 1.5*va; 
ymax = SRotAngles(l) + 1.5*va; 
axis([0, time, ymin, ymax]); 
grid on; 
titlefa. Servo 1 Vibration') 
xlabel('Time (s)') 
ylabel('Angle (Degrees)') 

subplot(2,2,2) 
plot(t, y2, '-b','LineWidth',2); 
ymin = S_Rot_Angles(2) - 1.5*va; 
ymax = S_Rot_Angles(2) + 1.5*va; 
axis([0, time, ymin, ymax]); 
grid on; 
titleCb. Servo 2 Vibration') 
xlabel('Time (s)') 
ylabel('Angle (Degrees)') 

subplot(2,2,3) 
plot(t, y3, '-b', 'LineWidth',2); 
ymin = S_Rot_Angles(3) - 1.5*va; 
ymax = S_Rot_Angles(3) + 1.5*va; 
axis([0, time, ymin, ymax]); 
grid on; 
title('c. Servo 3 Vibration') 
xlabel(Time (s)') 
ylabel('Angle (Degrees)') 

subplot(2,2,4) 
plot(t, y4, '-b','LineWidth',2); 
ymin = S_Rot_Angles(4) - 1.5*va; 
ymax = S_Rot_Angles(4) + 1.5*va; 
axis([0, time, ymin, ymax]); 
grid on; 
title('d. Servo 4 Vibration') 
xlabel(Time (s)') 
ylabelf Angle (Degrees)') 
hold off; 

Figure(m+1); 
elf; 
subplot(3,l,l) 
hold on; 
plot(t, xO, '-b', 'LineWidth',2); 
axis([0, time, x0_min , xOmax ]); 
title('a. X0 Vibration') 
grid on; 
ylabel('Position (cm)') 

subplot(3,l,2) 
plot(t, yO, '•*', 'LineWidth',2); 
axis([0, time, y0_min, y0_max]); 
grid on; 



titleCb. YO Vibration') 
ylabel('Position (cm)') 

subplot(3,l,3) 
plot(t, zO, '-b', 'LineWidth',2); 
axis([0, time, zOmin, zOmax]); 
grid on; 
title('c. ZO Vibration') 
xlabel('Time (s)') 
ylabel('Position (cm)') 
hold off; 

end 

WORKSPACE CALCULATION 

function [xl, yl, zmin, x2, y2, zmax, lastvalidx, last_valid_y, correspondz] = WorkspaceCoordinateCalculation (m, n, 
last_valid_x, last_valid_y, correspondz) 
%Workspace coordinate calculation 

zmaxglobal = 0; 
zmin_global = -25; 
xmin_global = -16; 
xmax_global = 16; 
ymin_global = -16; 
ymaxglobal = 16; 

actual_minimum_z_reached = 10; 
% Set it high so that we ensure we actually find the minimum 

% We want to find the actual minimum and actual maximum 
xmin = xmax_global; 
xmax = xmin_global; 

% We want to find the actual minimum and actual maximum 
ymin = ymax_global; 
ymax = ymin_global; 

zmin = zmin_global; 
zmax = zmax_global; 

S_Angles_min = [0000]; 
SAnglesmax = [000 0]; 

zmin_found ~ 0; % reset... searching for new min z 
zmaxfound = 0; % reset... searching for new max z 

xmin_found ™ 0; % reset... searching for new min x 
xmaxfound = 0; % reset... searching for new max x 

yminfound = 0; % reset... searching for new min y 
ymax_found = 0; % reset... searching for new max y 

xl =m; 
x2 = m; 
yl =n; 
y2 = n; 

while (zminfound = 0)|(zmax_found == 0) 

% function [servoanglel, servo_angle_2, servo_angle_3, servo_angle_4, kjl, kj2, kj3, kj4] = 
Inverse_Kinematics(xO, yO, zO) 

if (zmin_found = 0) 
[S_Angles_min(l), S_Angles_min(2), S_Angles_min(3), S_Angles_min(4), kjl_min, kj2_min, kj3_min, kj4_min] = 

Inverse_Kinematics(m, n, zmin); 

if (S_Angles_min(l) — -400)|(S_Angles_min(2) = -400)|(S_Angles_min(3) = -400)|(S_Angles_min(4) — -400) 
zmin • zmin + 0.25; 
if (zmin >= zmax) 

% Passed range 
zmin found = 1; 
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zmin = correspond_z; %zmin cannot be found 
xl = lastvalidx; 
yl = last_valid_y; 

end 
else 

% Found zmin 
zminfound = 1; 
last_valid_x = m; 
last_valid_y = n; 
correspondz = zmin; 
% We have found a value here, now we need to check 
% whether the x and y values for the minimum and 
% maximum 
if (m>xmax) 

xmax = m; 
end 

if (m<xmin) 
xmin = m; 
last_valid_x = m; 

end 

if (n>ymax) 
ymax = n; 
last_valid_y = n; 

end 

if (n<ymin) 
ymin = n; 

end 

if (actualminimumzreached > zmin) 
actualminimumzreached = zmin; 

end 

end 
end 

if (zmax_found = 0) 
[S_Angles_max(l), S_Angles_max(2), S_Angles_max(3), S_Angles_max(4), kjlmax, kj2_max, kj3_max, 

kj4_max] = Inverse_Kinematics(m, n, zmax); 

if (S_Angles_max(l) = ^t00)|(S_Angles_max(2) = -400)|(S_Angles_max(3) = -400)|(S_Angles_max(4) = -
400) 

zmax = zmax - 0.25; 
if (zmax <= zmin) 

% Passed range 
zmaxfound • 1; 
zmax = correspondz; 
x2 = lastvalidx; 
y2 = last_valid_y; 

end 
else 

% Found zmax 
zmaxfound • 1; 
lastvalidx = m; 
last_valid_y = n; 
correspondz = zmax; 
% We have found a value here, now we need to check 
% whether the x and y values for the minimum and 
% maximum 
if (m> xmax) 

xmax = m; 
end 

if (m< xmin) 
xmin = m; 

end 

if (n > ymax) 
ymax = n; 

end 

if (n< ymin) 



ymin = n; 
end 

end 
end 

end 
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VISUAL BASIC CODE 
Option Explicit 

' Determining which servo values we are receiving 
Dim bool_all_servo_mvnt_comp As Boolean 

' This variable will hold the incoming data 
Dim received_data As String 

' End effector Coordinates 
Dim xO As Single, yO As Single, zO As Single 
Dim xOold As Single, yOold As Single, zOold As Single 
Dim zOmax As Single 

Dim attach circle to mouse As Boolean 

1 Upper Legs of Servos 
Dim upper_leg(3) As leg 

' End effector ankle joint coordinates 
Dim endeffector As EEAJ 

Dim r_angles As rotationangles 
Dim byterangles As rotationangles ' 0 - 160 -> 0 - 255 

Private Sub value_to_ascii(d As Integer) 

' This routine sends the ascii characters of the correspondinge decimal digits 
Select Case d 

CaseO 
MSComml .Output = "0" 

Case 1 
MSComm 1 .Output = " 1" 

Case 2 
MSComml.Output = "2" 

Case 3 
MSComml .Output = "3" 

Case 4 
MSComml .Output = "4" 

Case 5 
MSComml .Output = "5" 

Case 6 
MSComml Output = "6" 

Case 7 
MSComml.Output = "7" 

Case 8 
MSComml.Output = "8" 

Case 9 
MSComml.Output = "9" 

End Select 

End Sub 

Private Sub send_digits_of_PWM_value(temp As Integer) 

Dim digit As Integer 
"send Ten thousands digit 
'digit = temp \ 10000 ' Integer division yields, integer result 
'temp = temp - 10000 * digit 
'Call value_to_ascii(digit) 

" Send thousands digit of coordinate 
'digit = temp \ 1000 ' Integer division yields, integer result 
'temp = temp - 1000 * digit 
'Call valuetoascii(digit) 

' Send hundreds digit of coordinate 
digit = temp \ 100 ' Integer division yields, integer result 
temp = temp -100 * digit 
Call value_to_ascii(digit) 

' Send tens digit of coordinate 



digit = temp \ 10 
temp = temp - 10 * digit 
Call value_to_ascii(digit) 

' Send units digit of coordinate 
digit = temp 
Call value_to_ascii(digit) 

' Send completion character 
MSComml .Output = "X" 

End Sub 

Private Sub btn_start_Click() 

If (btn_start.Caption = "Start Capturing Servo Feedback") Then 
btnstart.Caption = "Stop Capturing Servo Feedback" 
'Send start command...open commport first then send start signal 
If MSComml.PortOpen = False Then 

MSComml .PortOpen = True 
'Send start signal 
MSComml .Output = "E" 
'Calculate Inverse Kinematics 

Call do_inverse_kinematics_calculation(0, 0,-15) 

End If 
Else 

btn_start.Caption = "Start Capturing Servo Feedback" 
'Send stop command 
If MSComm 1 .PortOpen - True Then 

'Send stop command then disable port 
MSComml .Output = "G" 
MSComml.PortOpen = False 

End If 
End If 

End Sub 

Private Sub Commandl_Click() 

' Displays the source dialog for the video control 
'If (ezVidCapl.HasDlgSource) Then 

'ezVidCapl .ShowDlgVideoSource 
•End If 

' Toggles preview and visibility 
'If ezVidCapl.Preview = False Then 

'ezVidCapl.Preview — True 
'ezVidCap 1 .Visible - True 

•Else 

'ezVidCap 1 .Preview = False 
'ezVidCapl .Visible = False 

•End If 

End Sub 

Private Sub Command2_Click() 

If MSComml.PortOpen = True Then 
Textl.Text = Textl.Text & vbNewLine 
MSComml.Output = "T" 

End If 

End Sub 

Private Sub Command3_Click() 

'Save angles to variables 
xO = Val(txtxO.Text) 
yO - Val(txt_yO.Text) 
zO - Val(txtzO.Text) 
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Text3.Text - "The Coordinates You have selected : xO =" & xO & "; yO = " & yO & "; zO = " & zO 
Text3.Text = Text3.Text & vbNewLine 

Call Calculate_Inverse_Kinematics(xO, yO, zO, upper_leg(), endeffector, rangles, Text3) 

Call Write_Upper_leg_values(Text3) 

End Sub 

Private Sub Write_Upper_leg_values(t As TextBox) 

Dim i As Integer 

'Format$(COKJS2(l), "Fixed") 

For i = 0 To 3 Step 1 
t.Text = t.Text & vbNewLine & "Upper Leg " & (i + 1) & " Angle: " & _ 
Format$(upper_leg(i).angle, "Fixed") & " Knee Coordinates: (" & _ 
Format$(upper_leg(i).knee_coordinates.x, "Fixed") &_ 
"; " & Format$(upper_leg(i).knee_coordinates.y, "Fixed") & "; " & _ 
Format$(upper_leg(i).knee_coordinates.z, "Fixed") & ")" 

Next i 
t.Text • t.Text & vbNewLine 

For i = 0 To 3 Step 1 
t.Text = t.Text & vbNewLine & "End Effector Ankle Joints: AJ" & (i + 1) & _ 
"- (" & Format$(end_effector.AJ(i).x, "Fixed") & "; " & _ 
Format$(end_effector.AJ(i).y, "Fixed") & "; " & Format$(end_effector.AJ(i).z, "Fixed") & ")" 

Next i 
• 

End Sub 

Private Sub Command4_Click() 

'x0 = 0 
'y0 = 0 
'z0 = -10 

'Calculate Inverse Kinematics 
Call do_inverse_kinematics_calculation(0, 0, -10) 

'Enable Timer and send data out port 
Timerl .Enabled = True 

End Sub 

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer) 

Text 1 .Text = KeyCode 

If(KeyCode = 90)Then 
bool_all_servo_mvnt_comp = True 

End If 

End Sub 

Private Sub Form_Load() 

'Initialize variables 
boolallservomvntcomp = False 

'Set to empty string 
receiveddata = "" 

'Set Thigh Joint Coordinates - once only 
Call Set_Thigh_Joint_Coordinates(upper_leg()) 

Call initialize variables 

'Initialize xO, yO, zO 
zO max = -10 
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'xO = 0 
'yO = 0 
'zO = zOmax - 5 

'Calculate Inverse Kinematics 
Call do_inverse_kinematics_calculation(0, O, zO_max - 5) 
txtzO.Text = zO 

'Scale Picture boxes 
Call scale_pic_boxes 

'initialize mouse control picture box 
Call draw_mouse_control_indicator(0, 0) 

attachcircleto mouse = False 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 

Close comport if it is open 
If MSComml .PortOpen = True Then 

'Send stop command then disable port 
MSComml.Output - "G" 
MSComm 1 .PortOpen = False 

End If 

End Sub 

Private Sub MSComm l_OnComm() 

'Holds character values 
Dim code As String 
code = MSComml .Input 

'Remove Textl control., just checking data received 
'Textl .Text = Textl .Text & code 
If(code = "X")Then 

Textl .Text = Textl .Text & " 
End If 

If (code = "z") Then 
'All servos have moved to their angles 
bool_all_servo_mvnt_comp = True 
MSComm 1 .Output = "z" 'Received completion character 

Elself (code = "X") Then 

'Reset string containing data 
received_data = "" 

Elself (code = "0") Or (code = "1") Or (code = "2") Or (code = "3") Or (code = "4") Or (code = "5") Or (code = "6") Or (code 
= "7") Or (code = "8") Or (code - "9") Then 

' Make sure code is a numerical ascii value - i.e. 0 to 9 
' Appending a text string is similar to appending a text box 
receiveddata = received_data & code 

Else 
'Some code character, or unknown value 

End If 

End Sub 

Private Sub move_indicator_if_clicked(xt As Single, yt As Single) 

'Modify 
picmousecontrol.Cls 
Call draw_mouse_control_indicator(0, 0) 

If opn_mouse. Value = True Then 
' The first click attaches the circle to the mouse, once attached a second click will then 
' release the mouse 
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If (attachcircletomouse = True) Then 
' if its true we need to release the mouse 
attach_circle_to_mouse = False 
'Reset 
'x0 = 0 
'y0 = 0 
'zO = zOmax - 5 

Call do_inverse_kinematics_calculation(0, 0, zOmax - 5) 

xOold = 0 
y0_old = 0 
z0_old = zO 

txtxO.Text - Format$(xO, "Fixed") 
txt_yO.Text = Format$(yO, "Fixed") 
txtzO.Text = Format$(zO, "Fixed") 

Else 
' if its false we need to check if the pointer is ontop of the circle 
If ((xt >= -0.1) And (xt <= 0.1)) Then 

If ((yt >= -0.1) And (yt <= 0.1)) Then 
' At this point the mouse pointer is over the circle 
attachcircletomouse = True 

End If 
End If 

End If 
End If 

End Sub 

Private Sub opn_demo_Click() 

opndemo. Value = True 

Timer 1 .Enabled = True 

End Sub 

Private Sub opn_mouse_Click() 

Timer 1 .Enabled = False 

End Sub 

Private Sub pic_mouse_control_KeyDown(KeyCode As Integer, Shift As Integer) 

If (zO <= z0_max) Or (zO >= z0_max - 10) Then 

If(KeyCode = 38)Then 
'Up 

z0 = z0 + 0.1 

Elself (KeyCode - 40) Then 
'Down 

z0 = z0-0.1 

End If 

End If 
If(z0>z0_max)Then 

zO = z0_max 
Elself (zO < z0_max - 10) Then 

z0 = z0_max- 10 
End If 

txt_zO.Text = Format$(z0, "Fixed") 
'draw data into picboxes 
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, boolallservomvntcomp) 
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, boolallservomvntcomp) 
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End Sub 

Private Sub pic_mouse_control_MouseDown(Button As Integer, Shift As Integer, x As Single, y As Single) 

If Button = 1 Then ' Left click 
Call move_indicator_if_clicked(x, y) 
'draw sensor grid data 
'draw data into picboxes 
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, bool_all_servo_mvnt_comp) 
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, bool_all_servo_mvnt_comp) 

Elself Button = 2 Then 'Right Click 
'Only calculate inverse kinematics if we have the mouse attached to end of the cursor 
If (attachcircletomouse = True) Then 

'Calculate Inverse Kinematics 
Call do_inverse_kinematics_calculation(xO, yO, zO) 
xO_old = xO 
yOold = yO 
zO_old = zO 

End If 
Else 

End If 

End Sub 

Private Sub pic_mouse_control_MouseMove(Button As Integer, Shift As Integer, x As Single, y As Single) 

If (attach_circle_to_mouse = True) Then 
picmousecontrol.Cls 

xO = x 
yO = y 

Call draw_mouse_control_indicator(x, y) 
txt_xO.Text = Format$(xO, "Fixed") 
txt_yO.Text - Format$(yO, "Fixed") 

'draw sensor grid data 
'draw data into picboxes 
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xO_old, yOold, bool_all_servo_mvnt_comp) 

Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, boolallservomvntcomp) 

End If 

End Sub 

Private Sub sld_servol_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single) 

Call servo 1 control 

End Sub 

Private Sub sld_servo2_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single) 

Call servo2_control 

End Sub 

Private Sub sld_servo3_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single) 

Call servo3_control 

End Sub 

Private Sub sld_servo4_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single) 

Call servo4_control 

End Sub 

Private Sub servo lcontrolQ 
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'Display value in textbox 
txt servol.Text = sld servol.Value 

If MSComml .PortOpen = True Then 
'Let Controller know Servo 1 's value is coming 
MSComml.Output = "P" 
'Convert 8 bit value to 16 bit value, then send digits out of port 
send_digits_of_PWM_value (sldservo 1. Value) 
Textl.Text = Textl.Text & " **P" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servol.Value) & "P** " 

End If 

End Sub 

Private Sub servo2_control() 

'Display value in textbox 
txt_servo2.Text = sld_servo2.Value 

If MSComml.PortOpen = True Then 
'Let Controller know Servo 1 's value is coming 
MSComml.Output = "Q" 
'Convert 8 bit value to 16 bit value, then send digits out of port 
send_digits_of_PWM_value (sld_servo2.Value) 
Textl.Text = Textl.Text & " **Q" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo2.Value) & "Q** " 

End If 

End Sub 

Private Sub servo3_control() 

txt_servo3.Text = sld_servo3. Value 

If MSComml .PortOpen = True Then 
'Let Controller know Servo 1 's value is coming 
MSComml.Output = "R" 
'Convert 8 bit value to 16 bit value, then send digits out of port 
send_digits_of_PWM_value (sld_servo3 .Value) 
Textl.Text = Textl.Text & " **R" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo3.Value) & "R** " 

End If 

End Sub 

Private Sub servo4_control() 

txt_servc4.Text = sld_servo4.Value 

If MSComml.PortOpen = True Then 
'Let Controller know Servo 1 's value is coming 
MSComml.Output = "S" 
'Convert 8 bit value to 16 bit value, then send digits out of port 
send_digits_of_PWM_value (sld_servo4. Value) 
Textl.Text = Textl.Text & " **S" & convert_8_bit_slider_value_to_16_bit_PWM_value(sld_servo4.Value) & "S** " 

End If 

bool_all_servo_mvnt_comp = False 

End Sub 

Private Sub scale_pic_boxes() 

'Scale picboxes - Workspace 16x16x16 
picmousecontrol.Scale (-7,7)-(7, -7) 

'Boards are 16 cm 
pic_horizontal_data. Scale (-8, 8)-(8, -8) 
picverticaldata. Scale (zO_max + 3, 8)-(z0_max - 13, -8) 'zOmax -5 + 8; zOmax - 5 - 8 

End Sub 

Private Sub draw_mouse_control_indicator(x As Single, y As Single) 

'Draw X axis, Y axis 
'Set line thickness, and style 



picmousecontrol.FillColor = vbBlack 
picmousecontrol.DrawStyle = 1 'Dash 
picmousecontrol.Line (0, 7)-(0, -7)' y axis 
pic_mouse_control.Line (-7, 0)-(7,0)' x axis 

picmousecontrol.FillColor = vbBlue 
picmousecontrol.DrawStyle = 0 'Solid 
pic_mouse_control.Line (x, 7)-(x, -7)' 
pic_mouse_control.Line (-7, y)-(7, y) ' 

picmousecontrol.Circle (x, y), 0.1 

End Sub 

Private Sub do_inverse_kinematics_calculation(x As Single, y As Single, z As Single) 

Dim xt As Single, yt As Single, zt As Single 

xt = x 
yt = y 
zt = z 

x0 = xt 
y0 = yt 
z0 = zt 

'Calculate Inverse Kinematics 
txtxO.Text = Format$(x0, "Fixed") 
txt_yO.Text = Format$(y0, "Fixed") 
txt_zO.Text = Format$(z0, "Fixed") 

Text3.Text = "The Coordinates You have selected : xO =" & Format$(x0, "Fixed") & _ 
"; yO = " & Format$(y0, "Fixed") & "; zO = " & Format$(z0, "Fixed") 
Text3.Text = Text3.Text & vbNewLine 
Call Calculate_Inverse_Kinematics(xO, yO, zO, upper_leg(), endeffector, rangles, Text3) 
CallWrite_Upper_leg_values(Text3) 

Call rotation_angles_to_byte_conversion 'Convert angles and send data out port 

End Sub 

Private Sub rotation_angles_to_byte_conversion() 

•Oto 160 = 0 to 255 
Dim conversionfactor As Single 

conversionfactor • 255 /190 

byterangles.angl = Round(r_angles.angl * conversion_factor) 
byte_r_angles.ang2 « Round(r_angles.ang2 * conversionfactor) 
byte_r_angles.ang3 = Round(r_angles.ang3 * conversionfactor) 
byte_r_angles.ang4 = Round(r_angles.ang4 * conversionfactor) 

If (rangles.angl <= 160) And (r_angles.ang2 <= 160) And (r_angles.ang3 <= 160) And (r_angles.ang4 <= 160) Then 

sld_servol.Value = byte_r_angles.angl 
sld_servo2.Value • byte_r_angles.ang2 
sld_servo3. Value = byte_r_angles.ang3 
sld_servo4. Value • byte_r_angles.ang4 

Call servolcontrol 
Call servo2_control 
Call servo3_control 
Call servo4_control 

Else 

Textl.Text = "Angles out of Mechanicallly imposed limits.... 0 - 160 degrees." 

End If 

End Sub 

Private Sub Timer l_Timer() 
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If (opndemo. Value = False) Then 

'Disable timer 
Timerl .Enabled • False 

'Calculate Inverse Kinematics 
Call do_inverse_kinematics_calculation(0, 0,-18) 

Else' Demo has been selected 

'Call demo routine 
Call DemoMovement 

End If 

End Sub 

Private Sub Demo_Movement() 

Static demostep As Integer 

demostep = demostep + 1 

If (demo_step • 1) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demostep = 2) Then 

Call Move_To_Coordinates(5,0,-18) 

Elself (demostep = 3) Then 

Call Move_To_Coordinates(0,0, -10) 

Elself (demostep = 4) Then 

Call Move_To_Coordinates(-5, 0, -18) 

Elself (demostep = 5) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demostep • 6) Then 

Call Move_To_Coordinates(0, 5s -18) 

Elself (demostep = 7) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demo_step = 8) Then 

Call Move_To_Coordinates(0, -5, -18) 

Elself (demostep = 9) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demo_step = 10) Then 

Call Move_To_Coordinates(5,0, -18) 

Elself (demostep =11) Then 

Call Move_To_Coordinates(5, 5, -18) 

Elself (demostep » 12) Then 

Call Move_To_Coordinates(0,5, -18) 

Elself (demostep = 13) Then 

Call Move_To_Coordinates(-5, 5, -18) 



Elself (demostep = 14) Then 

Call Move_To_Coordinates(-5,0, -18) 

Elself (demostep =15) Then 

Call Move_To_Coordinates(-5, -5, -18) 

Elself (demostep = 16) Then 

Call Move_To_Coordinates(0, -5, -18) 

Elself (demostep = 17) Then 

Call Move_To_Coordinates(5, -5, -18) 

Elself (demostep = 18) Then 

Call Move_To_Coordinates(5,0,-18) 

i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Elself (demostep = 19) Then 

Call Move_To_Coordinates(0, 0,-10) 

Elself (demostep = 20) Then 

Call Move_To_Coordinates(5, 5, -18) 

Elself (demostep = 21) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demostep = 22) Then 

Call Move_To_Coordinates(-5, -5, -18) 

Elself (demostep = 23) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demo_step = 24) Then 

Call Move_To_Coordinates(-5,5, -18) 

Elself (demostep = 25) Then 

Call Move_To_Coordinates(0,0,-10) 

Elself (demo_step = 26) Then 

Call Move_To_Coordinates(5, -5,-18) 

Else 

Call Move_To_Coordinates(0,0,-15) 

demostep = 0 
opndemo.Value = False 
opn_mouse. Value = True 
Timerl .Enabled = False 

End If 

End Sub 

Private Sub Move_To_Coordinates(xm As Single, ym As Single, zm As Single) 

Call do_inverse_kinematics_calculation(xm, ym, zm) 
Call draw_picbox_data(pic_horizontal_data, Text3, xO, yO, xOold, yOold, boolallservomvntcomp) 
Call draw_picbox_data(pic_vertical_data, Text3, zO, yO, zOold, yOold, bool_all_servo_mvnt_comp) 

End Sub 



Option Explicit 

Public Sub draw_picbox_data(pb As PictureBox, t As TextBox, xq As Single, yq As Single, xo As Single, yo As Single, 
boolstimulated As Boolean) 

Dim width As Single, height As Single, xp As Single, yp As Single 
Dim stepx As Single, step_y As Integer 

'Clear picture box 
pb.Cls 

width = pb.ScaleWidth 
height = pb.ScaleHeight 

'First sensor position 
xp = pb.ScaleLeft + 0.5 
yp = pb.ScaleTop - 0.5 

step_x = width /16 
step_y = height /16 

'Draw Reference Axes 
'Set line thickness, and style 
pb.FillColor = vbBlack 
pb.DrawStyle = 1 'Dash 
pb.Line (pb.ScaleLeft + width / 2, pb.ScaleTop) _ 
-(pb.ScaleLeft + width / 2, pb.ScaleTop + height) ' y axis 

pb.Line (pb.ScaleLeft, pb.ScaleTop + height 12) _ 
-(pb.ScaleLeft + width, pb.ScaleTop + height / 2) ' x axis 

' check Scale values 
't.Text = pb.ScaleHeight & vbTab & pb.ScaleWidth & vbTab & xp & vbTab & yp & vbTab & step_x & vbTab & step_y 

'Fillcolour and fill style 
pb.FillColor = &HFFFF00 ' a light blue 
pb.DrawStyle = 0 ' Solid 

'Distance between centres of sensors is 10 mm, 16 by 16 grid of sensors 
For yp = pb.ScaleTop - 0.5 To (pb.ScaleTop - 0.5 + height) Step step_y 
'Rows - Represented by y 

For xp » pb.ScaleLeft + 0.5 To (pb.ScaleLeft + 0.5 + width) Step stepx 
'Columns - represented by x 

'xo, yo - old coordinates 
If (Abs(xo - xp) <= 0.1) And (Abs(yo - yp) <= 0.1) Then 

'Change fillcolour to red, then draw circle, and change fillcolour back 
If (boolstimulated = True) Then 

pb.FillColor = vbRed 
End If 

pb.Circle (xp, yp), 0.2 
pb.FillColor = &HFFFF00 

Else 
' Just draw the circle 
pb.Circle (xp, yp), 0.2 

End If 

'Draw bulls eye 
If (Abs(xq - xp) <= 0.1) And (Abs(yq - yp) <= 0.1) Then 

pb.FillColor = vbBlue 
pb.Circle (xp, yp), 0.1 
pb.FillColor = &HFFFF00 

End If 

Next xp 

Nextyp 

'draw crosshair 
pb.Line (xq, pb.ScaleTop)-(xq, pb.ScaleTop + pb.ScaleHeight) ' 



pb.Line (pb.ScaleLeft, yq)-(pb.ScaleLeft + pb.ScaleWidth, yq)' 

End Sub 

Option Explicit 

Dim rad2deg As Single 
Dim angle_legl_min As Single 
Dim angleleglmax As Single 
Dim angles As rotationangles 

Public Sub initialize_variables() 
rad2deg= 180/3.141592654 

angleleglmin = 25 
angle_legl_max = 245 

End Sub 

Private Sub Coordinates_not_found(L As leg) 
'Sets values to impossible values, because coordinates cannot be found 
L.angle = -400 
L.kneecoordinates.x = -400 
L.kneecoordinates.y = -400 
L.kneecoordinates.z = -400 

End Sub 

Private Sub Reset_Knee_Joint_Solutions(x() As Single) 
x(0) = 0 
x(l) = 0 
x(2) = 0 

End Sub 

Public Sub Calculate_Inverse_Kinematics(x As Single, y As Single, z As Single, L() As leg, ee As EEAJ, r_a As rotation_angles, 
t As TextBox) 

Dim x_0 As Single, y_0 As Single, z_0 As Single, angle 1 As Single, angle2 As Single 
Dim solution As angle_and_coordinates 
Dim c 1 As Single, c2 As Single 
Dim temp As Single 
Dim allequationssolved As Boolean 
Dim COKJSl(2) As Single, COKJS2(2) As Single 
Dim i As Integer 

'Set Conversion constant 
'rad2deg 

x_0 = x 
y_0 = y 
z_0 = z 
i = l 

' Set end effector ankle joints 
ee.AJ(0).x = x + 4.45 
ee.AJ(0).y = y 
ee.AJ(0).z = z 

ee.AJ(l).x = x 
ee.AJ(l).y = y-4.45 
ee.AJ(l).z = z 

ee.AJ(2).x = x - 4.45 
ee.AJ(2).y = y 
ee.AJ(2).z = z 

ee.AJ(3).x = x 
ee.AJ(3).y = y + 4.45 
ee.AJ(3).z = z 

allequationssolved • True 
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'To Prevent division by 0 
If(z_0o0)Then 

'Solving Leg 1 Knee coordinates 
cl=(5.55-x_0)/z_0 
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 + 8.9 * x_0 - 300.607) / (2 * z_0) 

temp = 100 - 20 * cl * c2 - c2 A 2 
If (temp < 0) Or (allequationssolved = False) Then 

allequationssolved = False 
Call Coordinates_not_found(L(0)) 

Else 
'Coordinates can be found 
'Solutions set 1 
Call Reset_Knee_Joint_Solutions(COKJS 1 ()) 
'x Value 
COKJS1(0) = (-cl * c2 + 10 + temp A 0.5) / (cl A 2 + 1) 
'z Value 
COKJS1 (2) = c 1 * COKJS1 (0) + c2 

'Solution Set 2 
CallReset_Knee_Joint_Solutions(COKJS20) 
'x Value 
COKJS2(0) = (-cl * c2 + 10 - temp A 0.5) / (cl A 2 + 1) 
'z Value 
COKJS2(2) = cl * COKJS2(0) + c2 

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i 
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJSl(0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") < 

" & Format$(COKJSl(2), "Fixed") & ")" &_ 
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & ";" & 

Format$(COKJS2(2), "Fixed") & ")" 

't.Text = t.Text & vbNewLine & ((COKJS 1(0) - ee.AJ(O).x) A 2 + (COKJS 1(1) - ee.AJ(O).y) A 2 + (COKJS 1(2) -
ee.AJ(O).z) A 2) 

'tText = t.Text & vbNewLine & ((COKJS2(0) - ee.AJ(O).x) A 2 + (COKJS2(l) - ee.AJ(O).y)A 2 + (COKJS2(2) -
ee.AJ(0).z)A 2) 

solution = Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(O), L(0).thigh_coordinates) 
t.Text = t.Text & vbNewLine & "Angle:" & Format$(solution.angle, "Fixed") 
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " & _ 
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")" 

L(0).angle = solution, angle 
L(0).knee_coordinates = solution.coordinates 

End If 

'Sloving Leg 2 Knee Coordinates 
cl=(-5.55-y_0)/z_0 
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 - 8.9 * y_0 - 300.607) / (2 * z_0) 

temp - 100 + 20 * cl * c2 - c2 A 2 
If (temp < 0) Or (all_equations_solved « False) Then 

allequationssolved = False 
Call Coordinates_not_found(L(l)) 

Else 
'Coordinates can be found 
'Solutions set 1 
Call Reset_Knee_Joint_Solutions(COKJS 1 ()) 
'y Value 
COKJSl(l) = (-cl * c2 - 10 + temp A 0.5)/(cl A 2 + 1) 
'z Value 
COKJSl(2) = cl *COKJSl(l) + c2 

'Solution Set 2 
CallReset_Knee_Joint_Solutions(COKJS2()) 
'y Value 
COKJS2(l) = (-cl * c2 - 10 - temp A 0.5) / (cl A 2 + 1) 
'z Value 
COKJS2(2) - cl * COKJS2(l) + c2 

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i 



t.Text = t.Text & vbNewLine & "SSI - (" & Format$(COKJS 1 (0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & ' 
" & Format$(COKJSl (2), "Fixed") & ")" & _ 

vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & "; " & 
Format$(COKJS2(2), "Fixed") & ")" 

'Check for Correct Solutions 

solution = Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(l), L(l).thighcoordinates) 
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed") 
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & " ; " & _ 
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")" 

L(l).angle = solution.angle 
L(l).knee_coordinates = solution.coordinates 

End If 

i = i + l 

'Solving Leg 3 Knee Coordinates 
cl = (-5.55 - x_0) / z_0 
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 - 8.9 * x_0 - 300.607) / (2 * z_0) 

temp = 100 + 20 * cl * c2 - c2 A 2 
If (temp < 0) Or (all_equations_sol ved • False) Then 

all_equations_solved = False 
Call Coordinates_not_found(L(2)) 

Else 
'Coordinates can be found 
'Solutions set 1 
Call Reset_Knee_Joint_Solutions(COKJS 1 ()) 
'x Value 
COKJS1(0) = (-cl * c2 - 10 + temp A 0.5) / (cl A 2 + 1) 
'z Value 
COKJSl(2) = cl * COKJS1(0) + c2 

'Solution Set 2 
CallResetJCnee_Joint_Solutions(COKJS20) 
'x Value 
COKJS2(0) = (-cl * c2 -10 - temp A 0.5) / (cl A 2 + 1) 
'z Value 
COKJS2(2) = cl * COKJS2(0) + c2 

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i 
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJSl(0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & ' 

" & Format$(COKJSl(2), "Fixed") & ")" & _ 
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2(l), "Fixed") & "; " & 

Format$(COKJS2(2), "Fixed") & ")" 
'Check for Correct Solutions 

' * * * * * * * * * * * * * * * * * * * > f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

solution " Determine_Correct_Solution(COKJSl, COKJS2, ee.AJ(2), L(2).thigh_coordinates) 
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed") 
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " &_ 
Format$(solution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")" 

L(2).angle = solution.angle 
L(2).knee_coordinates = solution.coordinates 

End If 

i = i + l 

'Solving Leg 4 Knee Coordinates 
cl=(5.55-y_O)/z_0 
c2 = (x_0 A 2 + y_0 A 2 + z_0 A 2 + 8.9 * y_0 - 300.607) / (2 * z_0) 

temp = 100 - 20 * cl * c2 - c2 A 2 
If (temp < 0) Or (allequationssolved = False) Then 

all_equations_solved = False 
Call Coordinates_not_found(L(l)) 

Else 
'Coordinates can be found 
'Solutions set 1 
Call Reset_Knee_Joint_Solutions(COKJS 10) 
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'y Value 
COKJSl(l) = (-cl *c2 + 10 + tempA0.5)/(cl A 2 + l ) 
'z Value 
COKJSl(2) = cl *COKJSl(l) + c2 

'Solution Set 2 
CallReset_Knee_Joint_Solutions(COKJS2()) 
'y Value 
COKJS2(l) = (-cl *c2 + 10-tempA0.5)/(cl A2 + l) 
'z Value 
COKJS2(2) = cl * COKJS2(l) + c2 

t.Text = t.Text & vbNewLine & vbNewLine & "Solution Sets for leg:" & i 
tText = t.Text & vbNewLine & "SSI - (" & Format$(COKJS 1 (0), "Fixed") & "; " & Format$(COKJSl(l), "Fixed") & "; 

" & Format$(COKJSl(2), "Fixed") & ")" &_ 
vbTab & "SS2 - (" & Format$(COKJS2(0), "Fixed") & "; " & Format$(COKJS2( 1), "Fixed") & ";" & 

Format$(COKJS2(2), "Fixed") & ")" 
'Check for Correct Solutions 

solution = Deterrnine_Correct_Solution(COKJSl, COKJS2, ee.AJ(3), L(3).thigh_coordinates) 
t.Text = t.Text & vbNewLine & "Angle: " & Format$(solution.angle, "Fixed") 
t.Text = t.Text & vbTab & "Coordinates - (" & Format$(solution.coordinates.x, "Fixed") & "; " & _ 
FormatSfsolution.coordinates.y, "Fixed") & "; " & Format$(solution.coordinates.z, "Fixed") & ")" 

L(3).angle = solution.angle 
L(3).knee_coordinates = solution.coordinates 

End If 

'Converting to servo rotation angles 

angles = Convert_to_servo_rotation_angles(angles) 

t.Text = t.Text & vbNewLine 
t.Text = t.Text & vbNewLine & "Servo Rotation Angles : (" & Format$(angles.angl, "Fixed") & "; " & _ 
Format$(angles.ang2, "Fixed") & "; " & Format$(angles.ang3, "Fixed") & "; " & _ 
Format$(angles.ang4, "Fixed") & ")" & vbNewLine 

r_a = angles 

End If 

End Sub 

Public Sub Set_Thigh_Joint_Coordinates(L() As leg) 

L(0).thigh_coordinates.x = 10 
L(0).thigh_coordinates.y = 0 
L(0).thigh_coordinates.z = 0 

L(l).thigh_coordinates.x = 0 
L(l).thigh_coordinates.y = -10 
L( 1 ).thigh_coordinates.z = 0 

L(2).thigh_coordinates.x = -10 
L(2).thigh_coordinates.y = 0 
L(2).thigh_coordinates.z = 0 

L(3).thigh_coordinates.x = 0 
L(3).thigh_coordinates.y « 10 
L(3).thigh_coordinates.z = 0 

End Sub 

Private Function Get_upper_leg_angle(zl As Single, z2 As Single, rl As Single, r2 As Single) 

Dim num As Single, den As Single, angle As Single 

num = zl - z2 
den = rl - r2 

If(denoO)Then 

angle • rad2deg * Atn(num / den) 
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' First Quadrant 
If (num = 0) And (den > 0) Then 

angle = 0 

Elself (num > 0) And (den > 0) Then 
"No change to angle 

' Second Quadrant - atn is negative 
Elself (num > 0) And (den < 0) Then 

angle = angle -180 ' Force angle to go from -180 to -270 

Elself (num = 0) And (den < 0) Then 
angle = -180 

' Third Quadrant 
Elself (num < 0) And (den < 0) Then 

angle = angle - 180 ' Angle must range from -90 to -180 

' Fourth Quadrant 
Elself (num < 0) And (den > 0) Then 

angle = angle ' No change 

End If 

Else' den = 0 

If (num >0) Then 
angle = 90 

Elself (num <0) Then 
angle = -90 

Else 
'Problems cannot determine angle as num = 0 and den = 0 

End If 

End If 

angle = (angle + 360) Mod 360 
Getupperjegangle = angle ' Return Angle 

End Function 

Private Function Determine_Correct_Solution(sl() As Single, s2() As Single, a As XYZcoordinates, t As XYZ_coordinates) As 
angle_and_coordinates 

Dim angl As Single, ang2 As Single 
Dim temp As angleandcoordinates 
Dim m As Single, c As Single, zl As Single, z2 As Single 

t * * * * * * * * * * * * * * I C Q 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Ift.x=10Then'Forleg 1 
angl = Get_upper_leg_angle(sl(2), 0, sl(0), 10) 
ang2 = Get_upper_leg_angle(s2(2), 0, s2(0), 10) 

If t.x o a.x Then' else den is 0 
'Gradient of line AlTl = DZ/DX 
m = (t.z - a.z) / (t.x - a.x) 
c = -10*m 
zl = m*sl(0) + c 
z2 = m * s2(0) + c 

'Now test gradient of A1T1 
If(m>0)Then 
'z of Knee coordinate must be less than z of AlTl at corresponding x 

If(sl(2)<zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)<z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
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temp.coordinates.z = s2(2) 
Else 

'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x • -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

ElseIf(m<0)Then 
'z of knee coodinate must be more than AlTl at corresponding x 

If(sl(2)>zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)>z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y • s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

End If 

Else' t.x = a.x -> den goes to 0 
If (Abs(sl(0)) > Abs(s2(0))) Then 

temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

Elself (Abs(s 1(0)) < Abs(s2(0))) Then 
temp.angle = ang2 
temp.coordinates.x « s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems 

End If 

End If 

angles.angl = temp.angle 

p * * * * * * * * * * * * * * * * i p o 3 ******************************** 

ElseIft.x = -10Then'leg3 
angl = Get_upper_leg_angle(sl(2), 0, sl(0), -10) 
ang2 - Get_upper_leg_angle(s2(2), 0, s2(0), -10) 

If t.x o a.x Then' else den is 0 
'Gradient of line A3T3 = DZ/DX 
m = (t.z - a.z) / (t.x - a.x) 
c = 1 0 * m 
z l=m*s l (0 ) + c 
z2 = m * s2(0) + c 

'Now test gradient of A3T3 
If(m>0)Then 
'z of Knee coordinate must be less than z of A3T3 at corresponding x 

If(sl(2)>zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)>z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 



temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

ElseIf(m<0)Then 
'z of knee coodinate must be more than A3T3 at corresponding x 

If(sl(2)<zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)<z2)Then 
temp.angle = ang2 
temp.coordinates.x «• s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x «• -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

End If 

Else ' t.x = a.x -> den goes to 0 
If (Abs(sl(0)) > Abs(s2(0))) Then 

temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = s 1 (1) 
temp.coordinates.z = si (2) 

Elself (Abs(sl(0)) < Abs(s2(0))) Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems 

End If 

End If 

angles.ang3 = temp.angle 

'************************* LEG 2 ******************************************** 
ElseIft.y = -10Then'leg2 

angl = Get_upper_leg_angle(sl(2), 0, si(1), -10) 
ang2 = Get_upper_leg_angle(s2(2), 0, s2(l), -10) 

If t.y o a.y Then ' else den is 0 
'Gradient of line A2T2 = DZ/DY 
m = (t.z - a.z) / (t.y - a.y) 
c = 1 0 * m 
zl = m*sl ( l ) + c 
z2 = m*s2(l) + c 

'Now test gradient of A2T2 
If(m>0)Then 
'z of Knee coordinate must be less than z of A2T2 at corresponding y 

If(sl(2)>zl)Then 
temp.angle = angl 
temp.coordinates.x « sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)>z2)Then 
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temp.angle • ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

ElseIf(m<0)Then 
'z of knee coodinate must be more than A2T2 at corresponding y 

If(sl(2)<zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)<z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

End If 

Else' t.y = a.y -> den goes to 0 
If (Abs(s 1 (1)) > Abs(s2( 1))) Then 

temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

Elself (Abs(sl(l)) < Abs(s2(l))) Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems 

End If 

End If 

angles.ang2 = temp.angle 

I * * * * * * * * * * * * * * * * * * * * * * * * * T C P A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

ElseIft.y=10Then'leg4 

angl = Get_upper_leg_angle(sl(2), 0, si(1), 10) 
ang2 = Get_upper_leg_angle(s2(2), 0, s2(l), 10) 

If t.x o a.x Then' else den is 0 
'Gradient of line A4T4 = D27DY 
m = (t.z - a.z) / (t.y - a.y) 
c = -10*m 
z l = m * s l ( l ) + c 
z2 = m*s2(l) + c 

'Now test gradient of A4T4 
If(m>0)Then 
'z of Knee coordinate must be less than z of A4T4 at corresponding y 

If(sl(2)<zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = sl(2)» 
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Elself(s2(2)<z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle «-400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

ElseIf(m<0)Then 
'z of knee coodinate must be more than A4T4 at corresponding y 

If(sl(2)>zl)Then 
temp.angle = angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = s 1(1) 
temp.coordinates.z = si (2) 

ElseIf(s2(2)>z2)Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems - Singularity 
temp.angle = -400 
temp.coordinates.x = -400 
temp.coordinates.y = -400 
temp.coordinates.z = -400 

End If 

End If 

Else ' t.y = a.y -> den goes to 0 
If (Abs(s 1 (1)) > Abs(s2( 1))) Then 

temp.angle • angl 
temp.coordinates.x = sl(0) 
temp.coordinates.y = sl(l) 
temp.coordinates.z = si (2) 

Elself (Abs(sl(l)) < Abs(s2(l))) Then 
temp.angle = ang2 
temp.coordinates.x = s2(0) 
temp.coordinates.y = s2(l) 
temp.coordinates.z = s2(2) 

Else 
'Problems 

End If 

End If 

angles.ang4 = temp.angle 

End If 

Determine_Correct_Solution = temp 

End Function 

Private Function Convert_to_servo_rotation_angles(b As rotationangles) As rotation_angles 

b.angl = (Abs(b.angl - 405)) Mod 360 ' From 45 to -135, clockwise convert to 0 to 180 

b.ang2 = (b.ang2 -135) ' From 135 to 315, clockwise convert to 0 to 180 

b.ang3 = (b.ang3 - 135) ' From 135 to 315, clockwise convert to 0 to 180 

b.ang4 = (Abs(b.ang4 - 405)) Mod 360 ' From 45 to -135, clockwise convert to 0 to 180 

•Return values 
Convert_to_servo_rotation_angles =J)' 



End Function 

Option Explicit 

Public Type XYZ_coordinates 

•May need to change these to single 
x As Single 
y As Single 
z As Single 

End Type 

Public Type leg 

angle As Single 
knee_coordinates As XYZcoordinates 
thigh_coordinates As XYZ_coordinates 

End Type 

Public Type EEAJ 

'End effector Ankle Joints 
AJ(3) As XYZ_coordinates 

End Type 

Public Type angle_and_coordinates 

angle As Single 
coordinates As XYZcoordinates 

End Type 

Public Type rotation_angles 

angl As Single 
ang2 As Single 
ang3 As Single 
ang4 As Single 

End Type 


