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ABSTRACT 

 

To deliver modern day broadband services to both fixed and mobile devices, ultra-high speed 

wireless networks are required. Innovative services such as the Internet-of-Things (IoT) can be 

facilitated by the deployment of next generation telecommunication networks such as 5G 

technologies. The deployment of 5G technologies is envisioned as a catalyst in the alleviation of 

spectrum congestion experienced by current technologies. With their improved network speed, 

capacity and reduced communication latency, 5G technologies are expected to enhance 

telecommunication networks for next generation services. These technologies, in addition to using 

current Long Term Evolution (LTE) frequency range (600 MHz to 6 GHz), will also utilize 

millimetre wave bands in the range 24-86 GHz. However, these high frequencies are susceptible 

to signal loss under rain storms. At such high frequencies, the size of the rain drop is comparable 

to the wavelength of the operating signal frequency, resulting in energy loss in the form of 

absorption and scattering by water droplets. 

This study investigates the effect of intense rain storms on link performance to accurately 

determine and apply dynamic rain fade mitigation techniques such as the use of a combination of 

modulation schemes to maintain link connectivity during a rain event. The backpropagation neural 

network (BPNN) model is employed in this study to predict the state of the link for decision 

making in employment of dynamic rain fade mitigation. This prediction model was tested on all 

rainfall regimes including intense rain storms and initial results are encouraging. Further on, the 

prediction model has been tested on a rainfall event rainfall data collected over Butare (2.6078° S, 

29.7368° E), Rwanda, and the results demonstrate the portability of the proposed prediction model 

to other regions. The evolution of R0.01 (rain rate exceeded for 0.01% of the time in an average 

year) parameter due to intense rain storms over the region of study is examined and detailed 

analysis shows that this parameter is double the proposed ITU-R value of 60 mm/h. Moreover, an 

investigation on the largest rain drop size present in each rain storm is carried out for different 

storm magnitudes. The study goes further to examine the frequency of occurrence of rain storms 

using the Markov chain approach. Results of this approach show that rain spikes with maximum 

rain rates from 150 mm/h and above (intense storms) are experienced in the region of study with 

probability of occurrence of 11.42%. Additionally, rain spike service times for various rain storm 
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magnitudes are analyzed using the queueing theory technique. From this approach, a model is 

developed for estimation of rain cell diameter that can be useful for site diversity as a dynamic rain 

fade mitigation strategy. Finally, the study further investigates second-order rain fade statistics at 

different attenuation thresholds. 
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CHAPTER 1 

General introduction 

1.1 Introduction 

Wireless communication links operating at frequencies above 10 GHz provide the much needed 

bandwidths for fast and efficient communication via satellite and terrestrial links. The advent of 

5G technologies brings about benefits of faster speeds, higher bandwidths and lower 

latency down to 1 ms or less. For instance, the first outdoor trial of 5G technology in Africa was 

carried out by South Africa’s network operator, MTN, in collaboration with Huawei as reported 

in [Jamie, 2018]. In this trial, MTN reached download and upload speeds of 530 Mbps and 79 

Mbps respectively, with a latency of 7 ms which were measured using an online speed test. During 

the test, 100 MHz bandwidth was allocated in the 28 GHz spectrum.  However, when operating at 

such high frequencies in the spectrum, the link may not be guaranteed to provide a high efficiency 

service due to signal outages resulting from signal absorption and scattering by rain drops under 

rainy conditions.  This eventually leads to signal attenuation and, therefore, strategies have to be 

put in place to ensure that even in the presence of rain storms, the wireless link is at least available 

for at least 99.99% of the time or more of an average year. 

1.2 Problem formulation and motivation 

Recent studies and literature over South Africa have revealed that there has been an increase in 

rainfall over most parts of the country. McKellar et al., [2014] carried out a study on climatic 

trends in rainfall and temperatures over a period of 50 years (1960-2010) for South Africa. Results 

of their analysis show that there was a significant increase in rainy days over the KZN region. A 

more recent study on historical rainfall trends was done by Krugger and Nxumalo [2017] and 

analysis of their results show that, in general, most parts of the country experienced an increase in 

the intensity of daily rainfall. Over Durban, rain measurements have shown an increase in both the 

number of storms and their magnitudes. For instance, an intense rain storm with a maximum rain 

rate of 253.066 mm/h was recorded on 11th March 2016 from 18:50:30 hours to 22:37:30 hours. 
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This rain rate is much higher compared to the previous highest rain rate of 88.0419 mm/h that was 

recorded on 3rd December 2013 from 13:35:00 hours to 14:05:30 hours. This study therefore 

undertakes to investigate, among others, the effect of the rise in the number and duration of storms 

on the communication wireless links by searching for answers to the following research questions:  

 Does the upward rise in the number of storms alter the long-term R0.01 parameter?  

 To what extend do these high magnitude rain storms alter the rain drop size distributions? 

 With high variability of rain in both space and time, can an artificial neural network be 

employed for prediction of rain attenuation?  

 What is the minimum distance of separation for two earth stations deployment for space 

diversity as a rain-mitigation measure?  

 What is the probability of occurrence of intense rain storms over the region of study and 

how long do resultant fades last?  

1.3 Objectives 

a) To determine the new R0.01 parameter with the sudden occurrence of rain storms and the 

effect of rain storm magnitudes on the maximum rain drop size distribution over Durban. 

b) To explore the use of the backpropagation neural network in prediction of link condition 

for dynamic rain fade mitigation 

c) To use queueing theory approach to for determining rain spike queueing parameters and 

distributions 

d) To investigate the probability of occurrence of deep fades using Markov chains and fade 

duration statistics at different fade thresholds 

1.4 Dissertation overview 

This chapter introduces the work that has been carried in this study and provides the problem 

formulation and motivation for this study in addition to contributions that have been made. Chapter 

2 provides the literature review on the topical areas that are related to this study. In Chapter 3, we 

investigate the effect of intense rain storms on long-term R0.01 parameter and the effect of these 

storms on rain drop size distributions. In Chapter 4, an investigation is carried out to show the 

application of the backpropagation neural network (BPNN) for rain attenuation prediction. In 
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Chapter 5, the queuing theory and Markov chain techniques are used to predict link outages during 

intense rain storm events. Rain fade duration statistics are investigated in Chapter 6 for application 

with dynamic rain fade mitigation techniques. Conclusions are presented in Chapter 7.    

1.5 Original contributions 

 Determination of the new R0.01 parameter over Durban 

 Examination of effects of storm magnitudes on rain attenuation using measured drop size 

distributions 

 Rain attenuation prediction using the backpropagation neural network for application of 

dynamic rain fade mitigation 

 Determination of rain cell diameters using queueing parameters for space diversity 

mitigation technique 

 Investigation of the most predominant spike magnitudes using Markov chains 

 Determination of second order rain fade statistics for site diversity rain fade mitigation 

1.6 Publications – Journal and Conferences 

1) Mary N. Ahuna, Thomas J. Afullo, Akintunde A. Alonge, “Outage Prediction during 

Intense Rainstorm Events Using Queuing Theory and Markov Chains Over Radio 

Links”, Progress In Electromagnetic Research M, Vol. 73, pp. 183-196, 2018. 

2) Mary N. Ahuna, Thomas J. Afullo and Akintunde A. Alonge, “Rain attenuation 

prediction using artificial neural network for dynamic rain fade mitigation,” SAIEE 

Africa Research Journal, Vol. 110(1), pp. 11-18, March 2019. 

3) Mary N. Ahuna, Thomas J. Afullo and Akintunde A. Alonge, “Rainfall rate prediction 

based on artificial neural networks for rain fade mitigation over earth-satellite link” 

Proceedings of IEEE AFRICON Conference, Cape Town, South Africa, pp. 579-584, 

18th – 20th September 2017.  

4) Mary N. Ahuna and Thomas J. Afullo, “Effects of storm attenuation over satellite links 

in sub-tropical Africa” The 40th PIERS 2018 Conference, 1st – 4th August 2018, 

Toyama, Japan, p. 153. 
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5) Mary N. Ahuna and Thomas J. Afullo, “Rain fade duration statistics over Ku-band 

radio links in sub-tropical South Africa” South African Telecommunications Network 

and Applications Conference (SATNAC), Cape Town, South Africa, 2nd – 5th 

September 2018, pp. 434-438.  

6) Mary N. Ahuna, Thomas J. Afullo and Akintunde A. Alonge, “Specific rain attenuation 

dependence on rain storm magnitudes and measured drop sizes” IEEE Radio 2018 

Conference, 15th-18th October, Hilton Resort and Spa, Wolmar, Mauritius, 2018.  

1.7 Chapter Summary 

An introduction to the rest of thesis has been presented in this chapter, with the problem statement 

and motivation, in addition to contributions made in this study. In the next chapter, a literature 

review on related topics will be presented. 
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CHAPTER 2 

Literature Review and Related Work 

2.1 Introduction 

A general introduction was done in the previous chapter providing highlights on the problem 

formulation and motivation for this work. In this chapter, a literature review is carried out on 

related works and topics that provide background on the work that has been done in this study.  

2.1.1 Wireless Communication and Technologies 

Wireless and optical fiber access networks play a key role of providing access to information. Each 

of these two technologies has its own limitations. For instance, the optical fiber provides a huge 

amount of bandwidth and effectively high speeds, but this cable cannot reach everywhere. On the 

other hand, wireless communication networks can potentially reach everywhere, but their 

communication channel that is highly susceptible to atmospheric and environmental impairments.  

Frequencies above 10 GHz provide large bandwidths for fast and efficient communications 

through satellite and terrestrial links [Matricciani and Riva, 2005; Cheffena and Amaya, 2008; 

ITU-R P.618, 2017; Foty et al., 2011]. Rolling out of 5G technologies brings about benefits of fast 

speeds and lower latency. For successful implementation of these technologies, wireless 

communication links are desired to experience close to zero outages. Unfortunately, 

communication links operating at 7 GHz and above may not be guaranteed to provide the intended 

service due to signal fading caused by rain drops through processes of absorption and scattering 

[Matricciani, 1997; ITU-R P.530-17, 2017]. Link designers, in the quest to provide reliable 

service, strive to achieve link availabilities of at least 99.99% of an average year or better. 

2.1.2 Wave Propagation and Atmospheric Effects 

Communication systems that operate at frequencies above 18 GHz and especially those with lower 

elevation angles may suffer a great deal due to multiple sources of simultaneously occurring 

atmospheric attenuation. These sources of attenuation include rain, clouds, gas and tropospheric 

scintillation. ITU-R [ITU-R P.618-13, 2017] provides an equation for determining total attenuation 

due to these multiple sources: 
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𝐴𝑡𝑜𝑡(𝑝) = 𝐴𝐺(𝑝) + √(𝐴𝑅(𝑝) + 𝐴𝐶(𝑝))
2
+ 𝐴𝑆

2(𝑝)          [𝑑𝐵]                       (2.1) 

where 𝐴𝐺  is the attenuation due to gas (vapor and oxygen), 𝐴𝑅 is the attenuation due to rain, 𝐴𝐶  is 

attenuation due to clouds, 𝐴𝑆 is attenuation due to atmospheric scintillation and p is the probability 

of attenuation being exceeded in the range 50% to 0.001%. It is to be noted that 𝐴𝐶  and 𝐴𝐺  are 

considered at p = 1 [ITU-R P.618-13, 2017]. 

2.2 Rain Rate Prediction Models 

Prediction of the rain intensity, R mm/h, that is exceeded for different percentages of an average 

year is important in the design of reliable communication links. ITU-R [ITU-R P.618-13, 2017] 

recommends a rain rate, R0.01, that is exceeded for 0.01% of an average year for design of 

communication links that can guarantee link availability of up to 99.99%. There are a number of 

rain rate prediction models in existence that can be used to obtain this long-term parameter such 

as Rice and Holmberg [1973], Olsen [1999], Dissanayake et al. (2002), Ojo et al. (2008), Chun 

and Mandeep (2013). More details on these models are given in Ahuna et al. (2016b).  

Further, ITU-R recommends R0.01 be determined using data sampled at 1-minute integration time. 

Regions where only higher integration time data are available, estimation of rain rates exceeded 

can be obtained using rain rate conversion models. A review on integration time conversion models 

was carried out by Emiliani et al. (2009) by grouping these models into three broad categories of 

physical, analytical and empirical (See Appendix 1). Physical models are based on physical 

processes that are involved in the formation and development of rain. In analytical models, the rain 

rate CDF is assumed to be represented by a given function and the Moupfouma model is an 

example of such models. Most common models combine physical with stochastic/analytical 

approaches in their modelling. Two examples of such models are the EXCELL [Capsoni et al., 

1987] and the Lavergnat (LG) model [Lavergnat, 1998]. In the conversion of cumulative 

distribution function from an integration time, t1, toa target integration time, t2, the LG model 

achieves this by using a conversion factor, CF, given by: 

𝐶𝐹 =
𝑡1
𝑡2
                                                                          (2.2) 

𝑃2(𝑅2) = 𝐶𝐹𝑎𝑃1(𝑅1)                                                                          (2.3) 
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𝑅2 =
𝑅1
𝐶𝐹𝑎

                                                                          (2.4) 

Where P2(R2) is the probability that a certain rain rate, r2, is greater than R2 in the target integration 

time, t2, P1(R1) is the probability that a certain rain rate r1 is greater than R1 in the integration time, 

t1, while a is a parameter that is empirically determined. 

Empirical models give simple analytical laws that show the relationship between equiprobable rain 

rate values. These models are the most common because functions for these models are relatively 

simple to generate whenever cumulative distributions for both integration times are available. 

Examples of empirical models include the Flavin, (1982) model and the ITU-R P.837-5 (2007) 

model. In the absence of precipitation measurements, this parameter can be obtained from rain 

maps proposed by ITU-R [ITU-R P.837-7, 2017] as given in Appendix 2. For instance, four long-

term rainfall rate prediction models are briefly discussed in this section. These models are the 

Moupfouma model [Moupfouma, 1987], Moupfouma and Martins model [Moupfouma and 

Martins, 1995], the Rice-Holmberg model [Rice and Holmberg, 1973] and Crane rain rate models 

[Crane, 1982; Crane, 1996]. 

2.2.1 The Moupfouma Model 

A three-parameter model that resembles an exponential distribution at higher rainfall rates and 

lognormal distribution at lower rainfall rates was developed by Moupfouma [Moupfouma, 1987] 

for prediction of rainfall rates exceeded at various percentages, P, of time in an average year. This 

model is expressed as: 

𝑃(𝑅 ≥ 𝑟) = 10−4 (
𝑅0.01
𝑟
)
𝑏

𝑒(𝜆𝑟
1−𝑠[(

𝑅0.01
𝑟

)−1])                                                 (2.5𝑎) 

with  

𝑏 = 8.22(𝑅0.01)
−0.584                                                         (2.5𝑏) 

𝜇 = 𝜆𝑟−𝑠                                                                                (2.5𝑐) 

where P is the probability that rainfall rate R in [mm/h] exceeds a value r, and R0.01 is the rain rate 

exceeded for 0.01% of the time of an average year, whereas parameters  and s are as given in 

[ITU-R, P.837-1, 1994] according to different climatic zones. 
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2.2.2 The Moupfouma and Martins Model 

In 1995, Moupfouma and Martin [Moupfouma and Martins, 1995] improved on the model in (2.5a) 

by developing a model that could perform better for both temperate and tropical regions. This 

model is given as: 

𝑃(𝑅 ≥ 𝑟) = 10−4 (
𝑅0.01
𝑟 + 1

)
𝑏

𝑒[𝜇(𝑅0.01−1)]                                                 (2.6𝑎) 

with: 

𝑏 = (
𝑟 − 𝑅0.01
𝑅0.01

) 𝑙𝑛 (1 +
𝑟

𝑅0.01
)                                                   (2.6𝑏) 

𝜇 = (
9.21

𝑅0.01
) 𝑒

[−𝜆(
𝑟

𝑅0.01
)
𝛾
]
                                                                 (2.6𝑐) 

where  = 1.066 and γ = 0.214 and R0.01, p and r are as defined in (2.5a). 

2.2.3 Rice-Holmberg (R-H) Rain Rate Model 

In this model, rain rate distributions are developed from Mode 1 rain (thunderstorms) and Mode 2 

rain (other rain), with the total distribution, M, being the sum of the two modes and given as [Rice 

and Holmberg 1973; Dissanayake et al., 1997; Dissanayake et al., 2003]: 

𝑀 = 𝑀𝑜𝑑𝑒 1 +𝑀𝑜𝑑𝑒 2   [𝑚𝑚]                                                          (2.7) 

and 

𝑃(𝑅) =
𝑀

87.6
{0.03𝛽𝑒−0.03𝑅 + 0.2(1 − 𝛽)[𝑒−0.258𝑅 + 1.86𝑒−1.63𝑅]}      [%]           (2.8) 

where P(R) is the percentage of the year the rain rate R mm/h is exceeded, M is the average annual 

accumulation of rainfall in mm, whereas β is the thunderstorm component of M. Values of β and 

M can be obtained from world maps given in Rice and Holmberg [1973], or can be obtained from 

the relation [Rice and Holmberg, 1973; Dissanayake et al., 2002]: 

𝛽 =
𝑀1
𝑀
                                                                          (2.9) 



9 | P a g e  
 

where M1 is the mean annual accumulation of thunderstorm rain in mm and M is defined in (2.5). 

Alternatively, β can be determined as: 

𝛽 = 𝛽0[0.25 + 2𝑒
−0.35(1 + 0.125𝑀)/𝑈]                                         (2.10𝑎) 

𝛽0 = 0.03 + 0.97𝑒−5𝑒𝑥𝑝(−0.004𝑀𝑚)                                               (2.10𝑏) 

where U is the average number of thunderstorm days expected during an average year and Mm is 

the highest monthly precipitation observed in the total period of the experiment. Dutton and 

Dougherty [1974] extended the R-H model to include an attenuation prediction property, and the 

modified model becomes: 

𝑃(𝑅) =

{
 
 

 
 0.0114(𝑇11 + 𝑇12)𝑒

−
𝑅

𝑅1
′
,          𝑅 < 5 𝑚𝑚/ℎ

0.0114𝑇21𝑒𝑥𝑝(−√
𝑅

𝑅21

4

)          5 ≤ 𝑅 ≤ 30

0.0114𝑇11𝑒𝑥𝑝(−𝑅/𝑅̅11)                   𝑅 > 30

                 [%]                      (2.11) 

where T11, T21, R1’ and 𝑅̅ are linear combinations of M, β and D = 24 + 3M and are determined 

from regression equations.  

2.2.4 Crane Rain Rate Models  

In 1980, the popularly known as the Crane Global model was developed by Crane (1980) for rain 

rate prediction. Two years later, Crane (Crane, 1982) proposed his second model known as the 

two-component Crane model. This was a closed-form distribution model that handles 

contributions from volume cells and debris separately during link calculations. The empirical rain 

rate distributions function, P(r ≥ R), of the model is given as [Crane, 1996; Ahuna 2016b]: 

𝑃(𝑟 ≥ 𝑅) = 𝑃𝐶(𝑟 ≥ 𝑅) + 𝑃𝐷(𝑟 ≥ 𝑅) − 𝑃𝐶𝐷(𝑟 ≥ 𝑅)                                     (2.12𝑎) 

with 

𝑃𝐶(𝑟 ≥ 𝑅) = 𝑃𝐶𝑒
−𝑅/𝑅𝐶                                                      (212𝑏) 

𝑃𝐷(𝑟 ≥ 𝑅) = 𝑃𝑁𝑁(
𝑙𝑛𝑅 − 𝑙𝑛𝑅𝐷

𝑆𝐷
)                                              (2.12𝑐) 
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=
𝑃𝐷

√2𝜋𝑆𝐷
∫ 𝑒𝑥𝑝 [

1

2
(
𝑙𝑛(2/𝑅𝐷)

𝑆𝐷
)

2

]                                       
∞

𝑅

(2.12𝑑) 

𝑃𝐶𝐷(𝑟 ≥ 𝑅) = 𝑃𝐶(𝑟 ≥ 𝑅)𝑃𝐷(𝑟 ≥ 𝑅) ≈ 0                                  (2.12𝑒) 

where r and R are rain rates in mm/h, PC(r ≥ R), PD(r ≥ R) and PCD(r ≥ R) are the CDFs for volume 

cells, debris and joint CDF for volume cells and debris respectively, PC and PD are probability of 

cell and debris respectively, N is the normal distribution function, RC and RD are average rain rate 

in cell and median rain rate in debris respectively, and SD is the standard deviation of natural 

logarithm of rain rate.  

2.2.5 Application of the Artificial Neural Network for Rainfall Prediction  

An artificial neural network (ANN) is an interconnection of nodes designed to solve problems that 

would prove difficult or complex to solve by humans or statistical methods. This computation 

model works by mimicking the functions of biological neural networks (neurons) [Rojas, 1996]. 

An example of a multilayer neural network is shown in Figure 2.1, showing input patterns, internal 

representation and output patterns. There are different kinds of neural networks that can be used 

for different tasks such as forecasting (stock market, weather), character recognition (for fraud 

detection in banks), cancer detection (in medicine), satellite imagery and natural language 

processing.   

 

Figure 2.1 Multilayer neural network 



11 | P a g e  
 

The feedforward neural network (FNN) is the simplest type of ANN in which data moves only in 

one direction, from input to the output with the goal of approximating some function, f. An 

example of the feedforward network is shown in Figure 2.2 and this king of network is utilized in 

medicine (X-ray) (Jian and Wu, 2010). Another kind of ANN is the Convolutional neural network 

(CNN) that was developed by Yann and his collaborators in 1998 [LeCun et al., 1998]. This 

network was used as a recognizer for handwritten digits under the name LeNet. The CNN is widely 

used for image and audio processing. For recurrent neural networks, they are commonly used for 

sequence prediction or time series forecasting [Kim, 2014; Brownlee, 2017]. A variant of this 

network is the long short-term memory (LSTM) that is widely used for sequence prediction 

problems. Other variants of ANNs exist for different applications, but the most commonly used 

network for prediction/forecasting is the classical feedforward network known as the 

backpropagation neural network, which is discussed at length in Chapter 4. 

 

Figure 2.2 Feedforward neural network 

 

 

Figure 2.3 Basic ANN showing an activation function, f 
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An artificial neural network uses an activation function, f, for decision-making and Figure 2.3 

shows a sample of an activation function at the output of the network. Some notable activation 

functions are the Linear function, the Rectified Linear Unit (ReLu), the Sigmoid function, and the 

Tanh function as shown in Figure 2.4 with their functions given as: 

𝑓𝑙𝑖𝑛(𝑥) = 𝑘𝑥                                                                                    (2.13) 

𝑓𝑅𝑒𝐿𝑢(𝑥) = {  
0          ;        𝑥 < 0
𝑥           ;        𝑥 ≥ 0

                                                 (2.14) 

𝑓𝑠𝑖𝑔(𝑥) =
1

1 + 𝑒−𝑥
                                                                        (2.15) 

𝑓𝑡𝑎𝑛(𝑥) =
2

1 + 𝑒−2𝑥
                                                                        (2.16) 

    

(a)                                                                                         (b) 

     

(c)                                                                                    (d) 

Figure 2.4 Variants of ANN activation functions (a) Linear (b) Rectified Linear Unit (c) 

Sigmoid (d) Tanh 
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where flin, fReLu, fsig, ftan are linear, Rectified Linear, Sigmoid and Tanh functions, respectively, with 

x being the input variable. 

Atmospheric processes from which rainfall is formed have been known to be complex and may 

not be accurately modelled using mathematical or statistical models. The artificial neural network 

(ANN) is known to predict these random variables reasonably well with non-linear relationships. 

Earlier studies have been carried out on the application of the ANN for rainfall prediction 

especially in the field of meteorology and water management [Abhishek et al., 2012; Michaelides 

et al., 1995; Luk et al., 2001; Hung et al., 2009; Purnomo et al., 2017]. The use of an artificial 

network was employed by French et al. [1992] to predict a two-dimensional rainfall, one hour 

ahead in time. This work laid a good foundation for form most researchers in this field. Over 

Cyprus, estimation of missing rainfall data was done using the artificial neural network together 

with daily rainfall observations in the neighboring sites [Michaelides et al., 1995]. In 2004, 

Christodoulou et al. [2004], using radar data as inputs and rain gauge data as outputs, trained the 

self-organizing map (SOM) and the K-Nearest Neighbor (KNN) machine learning classifiers to 

predict rainfall rates in Italy. These earlier studies have motivated new researchers to venture into 

application of machine learning algorithms for prediction of rainfall. 

2.3 Rain Attenuation Prediction 

The prediction of long-term rain attenuation is important in the design of microwave links that can 

be highly available and reliable. The rain attenuation probability distribution function, P(a > A) is 

the main objective in all attenuation prediction models. Some of these include the Bryant model 

[Bryant et al., 2001], the Crane two-component model [Crane, 1982] and the widely used ITU-R 

P.618 model [ITU-R P.618-13, 2017].  

2.3.1 ITU-R Prediction Model 

ITU-R [ITU-R P.618-13, 2017] provides a model for estimation of rain attenuation exceeded for 

0.01% of an average year. This model is given as: 

𝐴0.01(𝑑𝐵) = 𝛾 × 𝑟 × 𝐿𝑠                           [d𝐵]                                        (2.17) 
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Figure 2.5 Earth-space link parameters [ITU-R P.618-13, 2017] 

 

Figure 2.6 Earth-satellite slant path 
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Figure 2.7 Rain attenuation as a function of frequency and outage probability, Po %, in an 

average year at Fucino [Matricciani and Riva, 1998] 

 

Figure 2.8 Rain attenuation as a function of frequency and outage probability, Po %, in an 

average year at Gera Lario [Matricciani and Riva, 1998] 
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where r is the path length adjustment factor, Ls is the slant path length in km (see Figure 2.5) and 

γ, in dB/km, is the specific rain attenuation as obtained in [ITU-R P.838-3, 2005]. An estimate of 

long-term attenuation statistics for other percentages of an average year in the range 0.001% to 5% 

are given as [ITU-R P.618-13, 2017]: 

𝐴𝑝(𝑑𝐵) = 𝐴0.01 (
𝑝

0.01
)
−0.655+0.033 ln(𝑝)−0.045ln(𝐴0.01)−𝛽(1−𝑝)𝑠𝑖𝑛𝜃

                       (2.18) 

where p is the probability of exceedance in %, 𝐴𝑝 is attenuation exceeded p % of time in an average 

year, 𝜃 is the angle of elevation of the earth station antenna, k and α are parameters dependent on 

frequency and 𝛽 is the parameter dependent on the latitude of the earth station and obtained from 

ITU-R P.618-13 [2017] as: 

𝛽 = {

0                          ;                      𝑝 ≥ 1%   or   |𝜑| ≥ 36°

−0.005(|𝜑| − 36)        ;    𝑝 < 1%   and   |𝜑| < 36°   and   𝜃 ≥ 25°

−0.005(|𝜑| − 36) + 1.8 − 4.25 sin 𝜃    ;        Otherwise

           (2.19) 

where 𝜑 is the latitude of the earth station in degrees and 𝜃 is defined in (2.10). 

2.3.2 Rain Attenuation Prediction Using Synthetic Storm Technique (SST) 

A rain attenuation prediction model using the SST approach was proposed by Matricciani (1996). 

In this model, the vertical structure of rain is modelled using two layers, A and B, as shown in 

Figure 2.6, where layer A is made up hydrometeors in form of rain drops at 20°C, whereas layer 

B is the melting layer at 0°C. With an assumption that the rain in layer A is uniform, using simple 

physical hypotheses, Matricciani (1996) showed that the rain rate in the melting layer, also termed 

‘apparent rain rate’, is assumed to be uniform and may be estimated as: 

𝑅𝐵 = 3.134𝑅𝐴                           [d𝐵]                                        (2.20) 

where RB and RA are rain rates in layer B and layer A, respectively. 

Matricciani and Riva (1998), using data collected over Fucino and Gera Lario, estimated the P(a 

> A) function using the SST. They also derived a function that associated the attenuation, A, with 

the carrier frequency, frq, for fixed probabilities in the frequency range of 10 GHz to 100 GHz. 

These results are shown in Figure 2.7 and Figure 2.8 for Fucino and Gera Lario, respectively. The 

function of association is given as: 
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𝐴(𝑓𝑟𝑞) = 𝐶1𝑒
𝛿1𝑓𝑟𝑞 + 𝐶2𝑒

𝛿2𝑓𝑟𝑞 − (𝐶1 + 𝐶2)                                             (2.21) 

where frq in GHz is the carrier frequency while C1, C2, δ1 and δ2 are functions of probability as 

given in Appendix 3 and Appendix 4 for Fucino and Gera Lario, respectively. A further search for 

the most reliable long-term rain attenuation CDF on a slant path was carried out by Matricciani  

and Riva (2005). This study was motivated by relatively large errors when existing prediction 

results were tested on beacon measurements. This study was carried out using data collected over 

Spino d’Adda and independent predictions of the synthetic storm technique for the same radio 

link. Figure 2.9 shows a scatter plot of standard deviation of the error, , for 15 prediction models. 

2.4 Rain Fades and Mitigation Techniques 

This section gives an overview of second order rain fade statistics and thereafter, a summary of 

some of the rain fade mitigation techniques that can be employed to mitigate these fades is 

provided. 

 

 

Figure 2.9 Error standard deviation for 15 rain attenuation models [Matricciani and 

Riva, 2005] 
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2.4.1 Second Order Rain Fade Statistics 

The three most important parameters that become inputs to dynamic rain fade mitigation schemes 

are the rain fade duration, the inter-fade duration and the fade slope, with the former parameter 

determining the length of time a communication link is subjected to an outage. In 1982, Cox and 

Arnold [1982] investigated fade durations on a slant path link operating at 19-GHz and an elevation 

angle of 18.5°. Results of this investigation showed that the median fade durations range between 

2.8 to 7.5 minutes at fade thresholds in the range of 5 dB to 40 dB. Another research on prediction 

of long-term fade duration statistics was carried out by Matricciani, [1997] on the slant path by 

simulating time series using the synthetic storm technique (SST). Results of this study showed that 

predicted and measured rain fade durations longer than approximately 64-128 sec are quite similar. 

In addition, researchers on this topic agree that fade durations at 5 dB to 20 dB thresholds tend to 

follow a lognormal distribution [Lin, 1973; Paraboni and Riva, 1994; Dao et al., 2012, ITU-R, 

P.618-13, 2017]. For instance, a double lognormal model for prediction of rain fade duration 

statistics was developed by Cheffena and Amaya [2008] using data collected from links operating 

at frequencies ranging from 11 GHz to 50 GHz and elevation angles from 14° - 89°. This model is 

given by: 

𝑃(𝑑 > 𝐷|𝑎 > 𝐴) = 𝛼
𝑄 (
ln (𝐷/𝑚𝑠

𝜎𝑠
)

𝑄 (
ln (1/𝑚𝑠

𝜎𝑠
)
+ (1 − 𝛼)𝛼

𝑄 (
ln (𝐷/𝑚𝑟

𝜎𝑟
)

𝑄 (
ln (1/𝑚𝑟

𝜎𝑟
)
                                       (2.22) 

where 𝑃(𝑑 > 𝐷|𝑎 > 𝐴) is the probability of occurrence of fades with duration d longer than D sec 

and having attenuation a greater than A dB, with  𝐷 ≥ 1 s, Q being the standard cumulative 

distribution for a normally distributed variable defined in [ITU-R, P.1623, 2005; Cheffena and 

Amaya, 2008 ]. Equations for determining vales for α, σs, dr, ms and mr are given in [Cheffena and 

Amaya, 2008] as: 

∝= 0.8881 − 0.3168𝛽3 + 0.1636𝑒(−
𝐴
2.61

)                                         (2.23𝑎) 

𝑚𝑠 = 0.3636 − 2.0411 × 10−6𝑓3 + 0.11117𝑒(−∈)                                         (2.23𝑏) 

𝜎𝑠 = 1.6462 + 29.8038𝑒
(−

𝑓
3.5
) − 1.3671 × 10−6𝐴3                                        (2.23𝑐) 

𝑚𝑟 = 686.59 − 173.51log (𝑓)                                         (2.23𝑑) 
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𝜎𝑟 = 0.6210 + 4.3516 × 10
−3𝑓1.5 + 3.3637𝐴−2                                        (2.23𝑒) 

where A is the attenuation threshold in dB, ms and ds are the mean and standard deviation of the 

first lognormal function, mr and dr are the mean and standard deviation of the second lognormal 

function,  is the elevation angle in the range 5 to 90°,  f is the frequency in the range 10 GHz to 

50 GHz, α defines the fraction of fades related with each lognormal function and β is the rain 

connectivity parameter whose value is estimated in ITU-R P.837-4 [2007] for different locations.  

Similarly, ITU-R, P.1623, [2005] provides guidelines on how to determine fade duration statistics 

through two independent cumulative functions given by: 

𝑃(𝑑 > 𝐷|𝑎 > 𝐴) =
𝑁(𝑑 > 𝐷|𝑎 > 𝐴)

𝑁𝑡𝑜𝑡(𝐴)
                                                         (2.24) 

and 

𝐹(𝑑 > 𝐷|𝑎 > 𝐴) =
𝑇(𝑑 > 𝐷|𝑎 > 𝐴)

𝑇𝑡𝑜𝑡(𝐴)
                                                              (2.25) 

where 𝑃(𝑑 > 𝐷|𝑎 > 𝐴) is as defined in (2.13), 𝑁(𝑑 > 𝐷|𝑎 > 𝐴) is the number of fades with 

duration d lasting longer than D s, 𝑁𝑡𝑜𝑡(𝐴) is the total number of fades observed at the given 

attenuation threshold, 𝐹(𝑑 > 𝐷|𝑎 > 𝐴) is the probability of occurrence of fades with durations 𝑑 

longer than 𝐷 sec, 𝑇(𝑑 > 𝐷|𝑎 > 𝐴) is the total fading time due to fades of durations longer than 

𝐷 sec given that the threshold attenuation 𝐴 is exceeded, 𝑇𝑡𝑜𝑡(𝐴) is the total exceedance time at 

attenuation threshold 𝐴 dB, 𝐹(𝑑 > 𝐷|𝑎 > 𝐴), is the probability of occurrence of fades lasting with 

durations 𝑑 longer than 𝐷 s.  It is to be noted that the ITU-R model is only valid for fade durations 

longer than 1 sec with model input parameter, A in dB, elevation angles from 5 to 60 and 

frequency f, such that 10 ≤ 𝑓 ≤ 50 GHz. 

2.4.2 Rain Fade Mitigation Techniques 

The two main propagation effects that are of great concern to system designers are attenuation 

effects and depolarization effects. Rain is the main cause of attenuation on wireless links, and has 

thus attracted the attention of researchers seeking ways of mitigating these effects. Rain fade 

mitigation schemes can broadly be divided into two categories: (1) static rain fade mitigation 

techniques (SRFMTs) and dynamic rain fade mitigation techniques (DRFMTs). The common 
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SRFMT considers the assignment of a static fade margin equivalent to a rain rate that results into 

a link availability of 99.99% during an average year [ITU-R 618-13, 2017; ITU-R P.530-17, 2017]. 

One main advantage of this method is its simplicity. On the other hand, the main shortcoming is 

that the method is uneconomical due to power assignment even during dry spells. Further, 

employment of this method leads to link outages during intense rain storms with rain rates way 

above predicted rates.  

More economical and reliable methods such as adaptive coding and modulation (ACM), adaptive 

power control and diversity techniques consider the random behavior of signal attenuation and are 

put in place when needed and hence improving link efficiency and availability. Most of these 

methods employ feedback channels that aid in determining the state of the link and hence employ 

power-on-demand fade mitigation techniques [Nakazawa et al., 2010]. 

A. Power Control Techniques 

Power control, as a rain fade mitigation technique, is achieved by varying the EIRP of the signal 

to improve the carrier-to-noise (C/N) ratio. In adaptive power control systems, the power is 

adjusted to compensate for fluctuations in the signal attenuation along the path. This method is 

commonly referred to as uplink power control (ULPC) and can be achieved in two modes: open 

loop mode (OLM) or closed loop mode (CLM). When operating in the open loop mode, the likely 

fade level on the link is predicted using the downlink signal and the power is adjusted accordingly. 

In the closed loop mode, the satellite is used to detect the received signal level and sends a control 

signal back to the earth station for adjustment of the transmitted power in accordance with the state 

of the link. The CLM is viewed as the most accurate mode, though more expensive than the OLM. 

B. Signal Processing Technique 

This processing is handled onboard the transponder by translating the uplink signal from the earth 

station to the baseband through demodulation, demultiplexing and decoding processes. Each 

incoming packet is processed in the baseband level, and this makes it possible for most of the bit 

errors to be detected and removed. The transmitting station is eventually alerted for cases where 

energy levels of their transmitted packets are below defined thresholds. 
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C. Diversity Techniques 

These techniques include time diversity (TD), frequency diversity (FD) and site diversity (SD). In 

the common TD scheme, the same signal is transmitted twice with an appropriate time delay 

between the two transmissions. At the receiving end, the two signals are compared and the 

strongest is chosen. The possibility of one signal being stronger than the other is strengthened by 

the fact that most rain fades have limited time spans [Panagopoulos et al. 2004]. The diversity 

gain parameter determines the performance of any diversity technique and is defined as the path 

attention difference between attenuation related to a single path diversity mode of operation for a 

given % of time and is given as [Elbert, 2008; Badron et al., 2011; Nurul et al., 2013]:  

𝐺(𝑝) =  𝐴0(𝑝) − 𝐴𝑡𝑑(𝑝)                                                             (2.26) 

where G(p) is the diversity gain of TD scheme, A0 is the signal with no time delay and Atd is the 

delayed signal.  

In frequency diversity scheme, two or more frequency bands are employed. During rain storms 

(resulting in signal attenuation), there is change-over from heavily affected frequency bands to less 

affected bands. Space diversity takes advantage of the finite sizes of rain cells. For SD, two or 

more stations are located sufficiently apart so that the effects of rain or other signal impairments 

do not affect both stations at the same time.  This enables those stations that are less affected to 

route stronger signal traffic to affected stations for re-distribution [ITU-R P.618-13, 2017]. If two 

earth stations are separated by less than 20 km, ITU-R P.618-13 (2017) provides a simplified 

method of predicting the net diversity gain, G dB, between the two stations as: 

𝐺 = 𝐺𝑑 × 𝐺𝑓𝑟𝑞 × 𝐺𝜃 × 𝐺Ψ                                                      (2.27) 

𝐺𝑓𝑟𝑞 = 𝑒−0.025𝑓𝑟𝑞                                                       (2.28) 

𝐺𝜃 = 1 + 0.006θ                                                     (2.29) 

𝐺𝛹 = 1 + 0.002Ψ                                                     (2.30) 

𝐺d = 𝑎(1 − 𝑒−𝑏𝑑)                                                      (2.31𝑎) 
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where 𝐺𝑓𝑟𝑞 is the frequency dependent gain, Gθ is the gain dependent on elevation angle, Gψ is the 

baseline dependent term, d is the site separation distance in km, A is the path rain attenuation for a 

single site in dB, frq is the frequency in GHz, ψ is the angle of azimuth made by the propagation path 

and the baseline between the two sites with ψ  90° whereas Gd the gain contributed by spatial 

separation with the values of a and b given as: 

𝑎 = 0.78𝐴 − 1.94(1 − 𝑒−0.11𝐴)                                                 (2.31𝑏) 

𝑏 = 0.59(1 − 𝑒−0.1𝐴)                                                                    (2.31𝑐) 

D. Adaptive Coding and Modulation Scheme 

Two main benefits of ACM are: (1) maximization of throughput regardless of link condition (2) 

keeping the link up, though with lower throughput, thereby yielding higher system availability 

[Miller, 2009; Tarchi et al., 2012]. Microwave communication links using adaptive coding and 

modulation (ACM) schemes continuously monitor the quality of the link. This technique enables 

network operators to achieve high-capacity data transmission while maintaining the highest link 

spectral efficiency possible at any given instance irrespective of the link condition, as shown in 

Figure 2.10. The high spectral efficiency is achieved by defining which services should be 

transmitted at various link conditions. For instance, whenever the link condition is degraded, high-

priority services such as voice data are transmitted while low-priority services such as internet 

 

Figure 2.10 Spectral efficiency vs SNR [Miller, 2009] 
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browsing are suspended until the link condition improves [Bezde, 2018]. In cases of degrading 

signal quality, there is graceful step-down to lower-order modulation schemes during periods of  

intense rain storms and this maintains link reliability and availability. When signal impairments 

disappear, the system gradually reverts back to higher-order modulation schemes for full-capacity 

operation (high data rates) in clear air conditions [Cioni, 2004; Ippolito, 2008; Das et al., 2011].  

This is illustrated in Figure 2.11 where the more robust 4QAM modulation is employed during a 

rain storm event to maintain the link connectivity. The average spectral efficiency, ASE, is given 

by [Holm, (n.d.)]: 

𝐴𝑆𝐸 = ∑𝑅𝑛𝑃𝑛

𝑁

𝑛=1

                                                                  (2.32) 

where Rn is the information rate and Pn is the probability that modulation code n is used. 

2.5 Chapter summary 

This chapter has given a literature review on topics related to the rest of the work in this thesis. In 

the next chapter, effect of intense rain storms on the R0.01 parameter and rain drop size distributions 

will be investigated. 

  

 

Figure 2.11 Link availability through ACM [Bezde, 2018] 
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CHAPTER 3 

Evolution of R0.01 parameter and effects of intense 

rain storms on attenuation 

3.1 Introduction 

In Chapter Two, a literature review on related topics are given as a foundation for the rest of the 

thesis. In this chapter, the long-term value of the R0.01 parameter is investigated. This investigation 

is driven by the sudden rise of rain storms within the region of study. Thereafter, the raindrop size 

distributions are modelled using the lognormal rain DSD. Further on, an investigation is carried 

out to confirm the variability of the rain drop DSD with the storm magnitude.   

3.2 Long-Term Rain Rate Prediction 

Information pertaining to the rain rate exceeded for a fraction of an average year is very important 

in the design of radio links. Prediction of the rain rate exceeded for 0.01% (R0.01 mm/h) of an 

average year is an important parameter for the design of radio links in order to guarantee 99.99% 

link availability [Matricciani and Riva, 2005]. In the prediction of this parameter, ITU-R 

recommends measurement data sampled every 1-minute. In cases where higher sampling times are 

used, there are models available for conversion of such data with higher sampling time, , to 1-

minute or lower [Flavin, 1982;Ajayi and Ofoche, 1984; Segal, 1986; Chebil and Rahman, 1999; 

Emiliani and Luini, 2010; Ahuna et al., 2016a]. In regions where precipitation measurements are 

not available, [ITU-R P.618-13, 2017] provides rain maps for R0.01 to assist in link design. 

3.2.1 Methodology 

This chapter, and subsequent chapters uses rainfall data collected over Durban (2952’S, 3058’E), 

South Africa, for a period of 17 years using two types of measurement instruments with three 

sampling times as shown in Table 3.1. As indicated in this table, the 5-min sampled data was 

sourced from the South African Weather Services (SAWS), whereas the rest of the data was 

collected at Howard College, University of KwaZulu-Natal, Durban. The outdoor measurement 

equipment is installed on the rooftop of the Electrical North building. The Joss-Waldvögel (JW) 

RD-80 impact disdrometer instrument is used for collection of precipitation using sampling times 

of 60 sec and 30 sec at different times. This instrument encompasses an outdoor unit with rain 

drops capturing surface area measuring 0.005 m2, and an indoor unit that consists of a processor 
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connected to a computer. A full description and set-up of this measurement instrument is given in 

[Ahuna et al., 2016a]. The complete dataset is categorized into different year periods for 

investigation of the progressive nature of the R0.01 parameter. These classifications are shown in 

Table 3.2.  

 

Table 3.1 Precipitation measurements over Durban 

Period 
Sampling time 

[min] 

Measurement 

Instrument 

2001-2011 5 
Rain gauge 

(SAWS) 

2008-2010 1 Disdrometer 

2013-2017 0.5 Disdrometer 

 

Table 3.2 Categorization of precipitation measurement 

periods 

Period Designation 
Integration time 

[ min] 

2001-2004 P1 5 

2004-2007 P2 5 

2007-2011 P3 5 

2008-2010 P4 1 

2013-2015 P5 0.5 

2014-2016 P6 0.5 

2015-2017 P7 0.5 

2013-2017 P8 0.5 
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Figure 3.1 and Table 3.3 show the number of rain storms that were recorded in Durban over a 5-

year period. These storms are categorized according to the maximum rain rate, Rmax, within the 

rain storm. Table 3.4 shows two time periods: (1) pre-storm period (PSP) that encompasses years 

 

Figure 3.1 Storm occurrence patterns over Durban 

Table 3.3 Number of storms recorded 

Storm Type 

Number of storm occurrences 

2013 2014 2015 2016 2017 Total 

S1 1 3 8 37 14 63 

S2 0 0 0 4 1 5 

S3 0 0 0 3 7 10 

Total 1 3 8 44 22 78 

 

Table 3.4 Precipitation year periods 

Year 

Period 

Period 

description 
Abbrev. 

Highest rain rate 

[mm/h] 

Mean rain event 

duration 

[minutes] 

2013-2015 Pre-storm period PSP 88.0419 112.40 

2016-2017 Storm period SP 253.066 69.84 
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from 2015 and earlier and (2) a storm period (SP) that includes the years 2016 and 2017. This 

information can be verified in Figure 3.1 and Table 3.3, with emergence of storm 2 (S2) and storm 

3 (S3) types in the years 2016-2017. Analysis of Table 3.3 shows that 59% of rain storms were 

experienced in the period 2016-2017 compared to 14% that were experienced in the 2013-2015.  

3.2.2 Results and discussion 

This subsection presents results that are obtained in this section. Figure 3.2(a) shows rain rates 

exceeded for different percentages of time of an average year. This analysis is done for year periods 

P1, P2 and P3 and results show that the later period, P3, has higher values of rain rates exceeded 

than P1 and P2 for all percentages below 0.02. For periods P1 and P2, the values seem to be close 

for most of the percentages, with P1 period having slightly higher values than P2 period. Results 

show that rain rates exceeded for 0.01% of time of an average year in mm/h are 54, 52 and 60 for 

P1, P2 and P3, respectively. Rain rates exceeded for other percentages of time are recorded in Table 

3.5. 

In Figure 3.2(b), we present the complementary CDF for the year period P4 and results show that 

the rain rate exceeded for 0.01% of an average year is 61 mm/h. This value is comparable to ITU-

R value of 60 mm/h in Region L according to [ITU-R, P.837-1, 1994], but higher than proposed 

Table 3.5 Rain rate exceeded over year period 2001-2017 

% 

Rain Rate exceeded [mm/h] 

P1 P2 P3 P4 P5 P6 P7 P8 

1 4 4.5 4 6 11 13 16 11 

0.5 5 6 6.5 10 17 21 26 18 

0.1 16 16 16 24 35 50 67 48 

0.05 26 24 25.5 31 46 64.3 88.5 66 

0.01 54 52 60 61 76 118 152 132 

0.005 66.5 65 78.5 67 82 139 182 157 

0.001 107 97.5 165 117.2 89 185 220 216 
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values of between 40 mm/h and 50 mm/h [ITU-R P.837-7, 2017]. Figure 3.3(a) shows 

    

(a)                                                                                                (b) 

Fig. 3.2 Complementary CDFs for (a) period P1, P2 and P3 (b) period P4 

   

(a)                                                                                             (b) 

Figure 3.3 Complementary CDFs for (a) periods P5, P6, P7 (b) period P8 
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complementary CDFs for year periods P5, P6 and P7 and results show that corresponding rain rates 

exceeded for 0.01% of an average year are 76 mm/h, 118 mm/h and 152 mm/h for P5, P6 and P7 

periods, respectively. From these results, it is noted that there is an upward increase in rain rates 

exceeded as year periods advance and it is an indication that R0.01 parameter is indeed rising.  

Figure 3.3(b) shows the complementary CDF for the 5-year period from 2013 to 2017 (P8) and 

results show that the rain rate exceeded for 0.01% of an average year is 132 mm/h. This value is 

way higher than that proposed by ITU-R [ITU-R P.837-7, 2017]. Figure 3.4(a) shows 

complementary CDFs for all year periods, P1 - P8. This figure shows grouping of graphs, with P5-

P7 year-period graphs occupying the upper part of the graph, whereas the lower part being occupied 

by graphs of earlier year periods of P1 - P4.  Finally, Figure 3.4(b) graphically presents the values 

of long-term parameter R0.01 with time and results confirm that this parameter has been on the rise 

over the region of study.   

3.3 Rain DSD Modelling 

3.3.1 Background Information 

Many authors from tropical regions are in agreement that rain DSDs that were developed using 

temperate data do not accurately represent tropical and subtropical rain behavior. In their studies, 

   

(a)                                                                              (b) 

Fig. 3.4 (a) Complementary CDFs for periods P1 – P8 (b) R0.01 progression 
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[Ajayi and Olsen, 1985; Afullo, 2011] confirmed that the three-parameter gamma DSD model 

developed by [Ulbrich, 1983] and [Atlas and Ulbrich, 1974] represents rain DSDs in tropical and 

sub-tropical regions well. Over the current region of study, [Odedina and Afullo, 2010] carried out 

a study to determine the forward scattering amplitudes for spherical rain drops through Mie 

scattering approach. They used three rain DSDs (exponential, lognormal and Weibull) to model 

observed rain DSDs and their results showed that the lognormal DSD represented the measured 

rain DSDs well, followed by the gamma DSD. In 2011, [Alonge and Afullo, 2011] carried out an 

investigation on the behavior of existing rain DSD models for different rainfall regimes of drizzle, 

widespread, shower and thunderstorm. A year later, [Alonge and Afullo, 2012] investigated on the 

seasonal dynamics of rainfall rate and rain drop sizes in the quest to find the best fit rain DSD. 

Further on, parameter estimation for the lognormal rain DSD model using method of moments 

(MoM) and maximum likelihood estimation (MLE) were used by [Adetan and Afullo, 2012] and 

the MoM gave best fit parameters. 

 

 

Figure 3.5 Rain storm definition 

 

Table 3.6 Rain storm categories 

Rain Storm type Label 
Maximum Rainfall 

rate [mm/h] 

Highest rainfall rate 

[mm/h] 

Storm 1 (2013-2015) S101 40 ≤ 𝑅 < 100 88.0419 

Storm 1 (2016-2017) S102 40 ≤ 𝑅 < 100 99.1083 

Storm 2 (2016-2017) S202 100 ≤ 𝑅 < 150 137.4889 

Storm 3 (2016-2017) S302 𝑅 > 150 253.0660 
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In this subsection, the optimized lognormal DSD with maximum likelihood estimation (MLE) of 

its parameters is used to fit measured rain drops size distributions. This model is represented as 

[Afullo, 2011]:   

𝑁(𝐷) = 𝑓(𝐷)𝑁𝑇 =
𝑁𝑇

𝜎𝐷√2𝜋
𝑒𝑥𝑝 [−

1

2
(
ln(𝐷) − 𝜇𝑙𝑛

𝜎𝑙𝑛
)

2

]                                         (3.1) 

where f(D) is the probability density function, N(D) is the drop size distribution, NT is the drop 

concentration, whereas µ and σ are the mean and standard deviation, respectively. 

3.3.2 Methodology 

Data used in this section is obtained as described in Section 3.2.1 with rain events from storm 

regimes (Rmax  40 mm/h). Rain storms were thereafter subdivided into five categories according 

to Rmax, as shown in Table 3.6. Once again, the analysis is carried out for two-year periods of PSP 

and SP as shown in Table 3.4. It is to be noted that there are two storm subdivisions from S1 storm 

type, one from each year period as shown in Table 3.6 and an illustration of storm definitions in 

Figure 3.5.  

3.3.3 Results and Discussion 

The mean parameter, µ, and standard deviation parameter, σ, in (3.1) are obtained from measured 

data as: 

𝜇 =
1

𝑛
∑ 𝑙𝑛(𝐷𝑘)

𝑛

𝑛=1

                                                                         (3.2) 

𝜎 = [
1

𝑛
∑(𝑙𝑛(𝐷𝑘) − 𝜇𝑀𝐿)

2

𝑛

𝑛=1

]

½

                                                           (3.3) 

The self-consistency rule of rainfall DSD was used to optimize the concentration parameter, NT, 

parameter and thereafter, the three parameters in the function given in (3.1) were fitted with rainfall 

rates giving the following relationships 

𝑁𝑇,𝑥𝑦 = 𝑎𝑇,𝑥𝑦(𝑅)
𝑏𝑇,𝑥𝑦                                                                            (3.4𝑎) 

𝜇𝑥𝑦 = 𝑏𝜇,𝑥𝑦 + 𝑎𝜇,𝑥𝑦 𝑙𝑛(𝑅)                                                                 (3.4𝑏) 

𝜎𝑥𝑦 = 𝑏𝜎,𝑥𝑦 + 𝑎𝜎,𝑥𝑦 𝑙𝑛(𝑅)                                                                 (3.4𝑐) 
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(a)                                                                                (b) 

Figure 3.6 Fitting observed DSDs 85 𝑚𝑚/ℎ ≤ 𝑅 < 90 𝑚𝑚/ℎ for (a) S101 and (b) S102 storms with 

lognormal DSD 

 

 
(a)                                                                                 (b) 

Figure 3.7 Fitting observed DSDs at (a) 85 𝑚𝑚/ℎ ≤ 𝑅 < 90 𝑚𝑚/ℎ for S202 storm and (b) 150 𝑚𝑚/ℎ ≤ 𝑅 <

155 𝑚𝑚/ℎ for S302 storm with lognormal DSD 
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with subscript ‘x’ and ‘y’ representing the storm magnitude and the part number, respectively, as 

shown in Figure 3.5. 

Lognormal parameters in (3.1) are shown in Table 3.7 and it is observed that there is a general 

decrease in the concentration parameter, NT, from PSP to SP periods. This reduction is also evident 

in the μ parameter. The  parameter is observed to increase as the magnitude of the storm increases. 

In Figure 3.6, a comparison is made between the measured rain DSDs and the three-parameter 

lognormal function for S1 storm type in both year periods. It is observed that there is an 

underestimation of the rain DSDs for drops with mean diameters less than 2 mm and rainfall rates 

below 85 mm/h. Also, an underestimation by the model is noted for drops with mean diameters 

Table 3.7 Lognormal fitting parameters 

Storm 

type 

Parameters 

𝑁𝑇,𝑥𝑦 = 𝑎𝑇𝑅
𝑏𝑇 𝜇𝑥𝑦 = 𝑎𝜇,𝑥𝑦 ln(𝑅) + 𝑏𝜇,𝑥𝑦 𝜎 = 𝑎𝜎,𝑥𝑦 ln(𝑅) + 𝑏𝜎,𝑥𝑦 

𝑎𝑇,𝑥𝑦 𝑏𝑇,𝑥𝑦 𝑎𝜇,𝑥𝑦 𝑏𝜇,𝑥𝑦 𝑎𝜎,𝑥𝑦 𝑏𝜎,𝑥𝑦 

S101 75.947 0.5138 0.1538 -0.2383 0.0068 0.4468 

S102 108.87 0.3308 0.1646 -0.2419 0.0336 0.3650 

S202 96.516 0.356 0.1779 -0.3842 0.042 0.4388 

S302 46.409 0.5697 0.2006 -0.6287 -0.0001 0.7096 

 

  

Figure 3.8 Lognormal DSD comparisons at R = 88 mm/h 
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above 5 mm. Figure 3.7 presents DSD fittings for S2 and S3 storms. From this figure, it is observed 

that there is a DSD overestimation is observed for rain drops with mean diameters in the range 

2 𝑚𝑚 < 𝐷 < 5 𝑚𝑚 and rainfall rates above 40 mm/h. It is noted that, though this underestimation 

occurs for rain drops with mean diameters above 5 mm is reflected in both year periods, the SP 

period suffers more.    

A further investigation was carried out to examine the influence of larger storms on the drop 

concentration. Results of this investigation are shown in Figure 3.8, where a constant rain rate of 

88 mm/h was used to generate measured DSDs within all four storm types. Results show that drops 

with mean diameters greater than 4 mm have higher concentration in both S202 and S302 storm types. 

The determination of specific attenuation through DSDs is achieved by integrating over all drop 

sizes using the function [Maitra, 2004; Adetan and Afullo, 2013]:   

A𝑠𝑝 = 4.343 × 10
−3∫ 𝑄𝑒𝑥𝑡(𝐷𝑘)𝑁(𝐷𝑘). d𝐷𝑘

∞

0

                 [dB/km]                           (3.5) 

where Asp is the specific attenuation, Qext is the extinction cross-section, p is the largest drop size 

and N(Dk).dD is the number density of the rain drop with equivalent diameter D in the interval dD. 

The measured rain DSDs at 88 mm/h were used as inputs to the function given in (3.5) for the four 

rain storm types. The resultant specific attenuation values are compared with those obtained using 

the lognormal model and the ITU-R (V) model as shown in Table 3.7.  These results show that at 

the same rain rate, measured DSDs increase considerably with increase in the storm magnitude. 

The same trend is observed for the lognormal model though increments have smaller margins. At 

the same rain rate of 88 mm/h, the ITU-R model would give a constant attenuation of 3.6689 

dB/km computed from the function, Asp = R [ITU-R P.838-3, 2005] using the 12 GHz frequency 

with vertical polarization.  

3.4 Rain attenuation dependence on storm magnitudes and rain DSD 

3.4.1 Introduction 

Measurement campaigns on drop size distributions across the world have shown that there is an 

increase in the concentration of larger drop sizes per unit volume at higher rain rates. These large 

drops are the main cause of signal outages along microwave paths. Previous studies have 

confirmed that specific attenuation does not solely depend on the rain rate, but on geographic and 
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climatic conditions due to the high variability of the rain DSD [Joss et el., 1970; Jaffrain and 

Berne, 2012; Schonhuber et al., 2015]. 

The extent of attenuation on a microwave signal is dependent on sizes of rain drops present on its 

path. This chapter investigates the effects and contributions of heavy rain storms on the maximum 

size of the rain drop. Electromagnetic signals (with frequencies above 10 GHz) transmitted over 

wireless links suffer greatly from the effects of rain. These waves are greatly attenuated through 

processes of absorption and scattering during heavy rain storms [Lakshmi et al., 2007; Schonhuber 

et al., 2013; Ahuna et al., 2016a]. Lakshmi et al. [Lakshmi et al., 2007], in their investigations, 

noted that drop diameters from 0.771 mm to 5.3 mm play a significant role in the determination of 

specific attenuation.  In their investigations over Durban, Adetan and Afullo (2013) concluded that 

rain drops in the range 0.5 mm  D  2.5 mm contribute higher specific attenuation at higher 

frequencies. In this section, analysis of the variability of rain attenuation that results from rain 

drops present in different magnitudes of rain storms is performed. This investigation is motivated 

by the sudden occurrence of rain intense rain storms over the region as shown in Figure 3.1 and 

Table 3.3. 

3.4.2 Data Collection and Processing 

The data set in this section is drawn from data collection described in Section 3.2.1 with data from 

collected from 2013 to 2017. This data is, thereafter, categorized into different storm magnitudes 

as shown in Table 3.6.  

3.4.3 Results and Discussion 

Results are discussed in two parts: (1) relationship between the maximum drop size, Dmax, and the 

rain rates, and, (2) the relationship between the total number of drops, Ntot, and rain rates within a 

storm.  

A. Correlation of Dmax with rainfall rate  

The largest mean drop diameter for each rain rate were correlated with rain rates and resultant 

correlations are shown in Figure 3.9 and Table 3.8. These results show that the largest drop 

diameter, Dmax, increases with increase in the rain rate, R.  For instance, it is observed that an 

average value of Dmax is 4.859 mm, 5.202 mm, 5.373 mm and 5.373 mm for S101, S102, S202 and 

S302 storms respectively at higher rainfall rates. This relationship between Dmax and rain rate is 

observed to follow a power-law function given as: 
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𝐷𝑚𝑎𝑥 = 𝑘𝐷𝑅
𝛼𝐷                                                                    (3.6) 

where 𝑘𝐷 and 𝛼𝐷 are regression factors whose values are shown in Table 3.8. It is observed that 

the maximum mean drop diameter for S302 storm was nearly constant from a rain rate of about 18 

mm/h and can be estimated by: 

𝐷𝑚𝑎𝑥,𝑆302 = {
3.3704𝑅0.173,       𝑅 < 18 𝑚𝑚/ℎ
5.373 ,                      𝑅 > 18 𝑚𝑚/ℎ

                                           (3.7) 

B. Correlation of Ntot rain drops with rainfall rate  

Furthermore, an investigation was carried out on the relationship between the total number of rain 

drops with rainfall rate, R, in mm/h for different rain storms. Figure 3.10 shows a power law 

relationship for all the four storm types with correlation factors above 0.8. This relationship is 

shown as: 

𝑁𝑡𝑜𝑡 = 𝑘𝑁𝑅
𝛼𝑁                                                                               (3.8) 

 

Figure 3.9. Correlation of Dmax with rainfall rate 

Table 3.8 Correlation of Dmax with rain rates 

Storm Type 𝒌𝑫 𝜶𝑫 𝑹𝟐 

S101 1.901 0.1989 0.9463 

S102 2.3153 0.1832 0.8525 

S202 3.518 0.0907 0.8230 
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where 𝑁𝑡𝑜𝑡 is the total number of drops per rain rate sample, and 𝑘𝑁 and 𝛼𝑁 are regression factors 

whose values are given in Table 3.9. Analysis of results in this this table shows that the total 

number of drops decreases with increase in the magnitude of the storm.  

C. Specific Rain Attenuation 

For slant paths, [ITU-R P.618-13, 2017] recommends a model for calculating the attenuation 

exceeded for 0.01% of time of an average year. This model is given in (2.9) with specific 

attenuation as one the inputs.   Two common ways of estimating the specific attenuation are: (1) 

using the rain rate, R mm/h in the power-law function or (2) using observed rain DSD. The first 

approach is given as [ITU-R P.838-3, 2005]: 

𝛾 = 𝑘𝑅𝛼            [𝑑𝐵/𝑘𝑚]                                                               (3.9) 

 

Figure 3.10 Correlation of Ntot with rainfall rate 

Table 3.9 Correlation of Ntot with rain rates 

Storm Type 𝒌𝑵 𝜶𝑵 𝑹𝟐 

S101 76.945 0.5138 0.9487 

S102 65.811 0.4544 0.9436 

S202 63.858 0.3787 0.8085 

S302 25.314 0.5633 0.9395 
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where γ is the specific attenuation whereas k and  are regression factors given in [ITU-R, P.838-

3, 2005]. The expression for estimation of specific attenuation, 𝐴𝑠𝑝, using observed rain drop size 

distribution is given as [Adetan & Afullo, 2013]: 

A𝑠𝑝 = 4.343 × 10
−3∑Qext(𝐷𝑘)N(Dk). dDk

n

k=1

            [dB/km]                             (3.10) 

where Qext is the extinction cross-section, n is the largest size and N(Dk).dD is the number density 

of rain drops with equivalent diameter D in the interval dD.  

Figure 3.11 shows the graph of specific attenuation determined using measured rain DSD model 

given in (3.10). For instance, it is observed that specific attenuation values of 4.2122, 4.6796, 

5.7625 and 5.9799 are obtained for storms S101, S102, S202 and S302, respectively. These values are 

obtained for a mean rain rate in the range 85 ≤ 𝑅 < 90 mm/h. It is observed that, despite a 

decrease in the total number of drops for larger rain storms, there is an increase in signal 

attenuation.  This increase in attenuation is explained by earlier appearance of larger rain drop 

diameters during high magnitude storms as demonstrated in Figure 3.9.  In contrast, using the 

specific attenuation model in (3.9) in the same rain rate range gives a constant value of 3.6689 

dB/km as is observed in Section 3.3.3. 

 

Figure 3.11 Correlation of specific attenuation with rain rate 
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3.5 Chapter Summary 

Results in this chapter show that the parameter R0.01 over Durban has escalated to higher values 

compared to ITU-R proposed value. Further, analysis of the rain drop size distribution show that 

with the occurrence of larger storms, measured rain DSDs above 5 mm drop diameter fail to match 

with the statistical lognormal rain DSD model. Lastly, the specific attenuation is obtained from 

measured rain DSD and results show that at the same rainfall rate, a wireless link is exposed to 

different outage levels depending on different storm magnitudes. In the next chapter, we explore 

the prediction of rain attenuation using the backpropagation neural network for dynamic rain fade 

mitigation. 
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CHAPTER 4 

Prediction of rain attenuation using the 

Backpropagation Neural Network 

4.1 Introduction 

The use of higher frequencies above 10 GHz for satellite and terrestrial microwave 

communication results in signal fading during intense rainfalls [Matricciani, 1981; Ajayi and 

Ofoche, 1984; Emiliani et al., 2009]. These outages are a great concern to service providers 

especially during live streaming of content such as sport events and prime news that require 

virtually zero link outages. In the previous chapter, we investigated the effects of intense rain 

storms on the long-term R0.01 long-term parameter and the resulting rain attenuation through 

measured rainfall DSDs. Dynamic rain fade mitigation requires link state monitoring in real time. 

This provides information on the state of the link at a future time (t +1). In this chapter, the 

backpropagation neural network (BPNN) is trained to predict and classify rain attenuation for 

dynamic rain attenuation mitigation schemes such as adaptive coding and modulation. 

Consequently, this prediction allows measures to ensure acceptable signal-to-noise (S/N) ratio to 

maintain the quality of service, and therefore, enhance resource management. 

4.2 Background Information 

Several rain attenuation prediction models (see Table 4.3) have been developed, such as the ITU-

R model [ITU-R P.618-13, 2017] and Synthetic Storm Technique (SST) model [Matricciani, 1996; 

Matricciani and Carlo Riva, 2005]. Moreover, the ITU-R model statically predicts rain attenuation 

and hence is not appropriate for dynamic fade mitigation. A review by Nayak et al., (2013) on the 

utilization of the artificial neural network (ANN) for rainfall prediction reports on the suitability 

of the ANN for rain fall prediction compared to mathematical and statistical methods.  A number 

of research work on the use the ANN for rainfall prediction has been done in the field of 

meteorology and water management for monthly rainfall forecasting [Luk et al., 2001; Abhishek 

et al., 2012; Christodoulou and Michaelides, 2007; Purnomo et al., 2017]; with a few studies 

leaning towards prediction intervals of 24 hours or less [French et al., 1992; Michaelides et al., 

1995; Christodoulou et al., 2004; Ahuna et al., 2017]. In this chapter, we focus on the latter 

approach to rainfall prediction, as it would be more relevant to this work. 
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4.3 The BPNN Computing Unit 

The backpropagation neural network (BPNN) as a computing unit, is divided into two functional 

units: an integration function unit and the output function. The former function sums up N inputs 

into a single value, whereas the latter unit uses an activation function to produce an output in 

accordance with the computation function. The common activation function commonly used with 

backpropagation neural networks is the sigmoid function. This function possesses two key 

properties of continuity and differentiability of the error function during training. The basic 

diagram of the ANN as a computing unit and the training structure is shown in Figure 4.1. 

Integration and activation functions shown in Figure 4.1 are given as [Rojas, 1996; Ahuna et al., 

2017] 

𝑔 = 𝑏 +∑𝑤𝑛𝑖𝑛           𝑛 = 1,2, … , 𝑁

𝑁

𝑛=1

                                          (4.1) 

where, b is the bias input, 𝑔 is the integration function, N is the number of inputs, and 𝑤𝑛 is the 

weight associated with the nth input, in. The actual output of the backpropagation neural network 

is obtained by applying the activation function to the integration function given by [Rojas, 1996; 

Rumelhart et al., 1986]: 

𝑓(𝑔) =
1

1 + 𝑒−𝑔
                                                                       (4.2) 

where f(g) is the activation function. During the training process, the network’s performance is 

evaluated by computing an error function given by [Rumelhart et al., 1986; Rojas, 1996]: 

    

(a)                                                                         (b) 

Figure 4.1 The (a) ANN Computing unit (b) BPNN training structure 
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𝐸 =
1

2
∑(𝑂𝑡 − 𝑂𝐵𝑃)

2

𝑃

𝑝=1

                                                               (4.3) 

where E is the error, Ot is the desired output (target), OBP is the BPNN output, and P is the 

number of data points. A good predictor model produces outputs that are exact or as close as 

possible to expected outputs. For the BPNN, errors between outputs and targets during the 

training process are minimized by an error derivative given by [Rojas, 1996; Ahuna et al., 

2017]: 

𝝏𝑬𝒕𝒐𝒕𝒂𝒍
𝝏𝑶𝒂

= −(𝑶𝒕 − 𝑶𝒂)                                                                 (𝟒. 𝟒) 

The process in (4.4) aims at arriving at an optimized weight vector, w, which results in a 

minimized error function. This is achieved by updating associated weights on the ith input 

using: 

∆𝑤𝑖 = 𝜂
𝜕𝐸

𝜕𝑂𝑖
             𝑖 =        1,2, … , 𝐼                                      (4.5) 

where η is the learning rate, ∆wi is the weight change on the ith input, and Oi and the output 

contributed by the ith input.  

4.4 Methodology 

Training and validation data for the proposed model was collected as described in Section 3.2.1 

with a sampling time of 30 seconds. Training dataset, comprising of 108, 861 samples was obtained 

from the 4-year (2013-2016) measurement period, and comprise of the four rainfall regimes of 

drizzle, widespread, shower and storms. It is important to train the neural network using rainfall 

events from all regimes to prepare the predictor model for all types of rainfall regimes.  To validate 

and test the trained model, we used data collected from January 2017 to May 2018. Rainfall data 

within this period of 17 months are a representation of all four seasons (summer, autumn, winter 

and spring) that are experienced in the region of study. 

4.4.1 BPNN Training 

The training model is a three-layered network whose structure is 3:3:1:1 as shown in Figure 4.1(b). 

In this structure, there are 3 inputs (I), 3 neurons in the hidden layer (H) and one neural in the 

output layer (O). The last ‘1’ stands for the network output. During training, TRAINLM and 
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LEARNGDM functions were used as training and adaptation functions, respectively, whereas the 

MSE and TANSIG were utilized as performance and transfer functions, respectively. The best 

performance was achieved at epoch 371 of 377 epochs with a mean square error of 6.017. 

Performance and training regression plots are shown in Figure 4.2(a) and Figure 4.2(b) 

respectively. The regression coefficient of 0.91094 shown in Figure 4.2(b) shows a good 

correlation between BPNN outputs and target outputs. After training, optimized weight and bias 

matrices are determined to be: 

 

𝑤HI = [
−0.1974 −1.1467 −7.8568
−0.0115 0.0086 −0.0476
4.0797 6.1838 6.0543

]                                          (4.6𝑎) 

𝑤OH = [−78.4395 −32.0736 31.939]                                            (4.6𝑏) 

𝑏H = [
−11.4485
0.4845
−17.3805

]                                                                 (4.6𝑐) 

𝑏O = [−32.1027]                                                                 (4.6𝑑) 

  

(a)                                                                            (b) 

Figure 4.2 BPNN training plots (a) performance (b) regression 
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where wHI is the weight vector for weights from the input to the hidden layer, wOH is the weight 

vector for weights from the hidden layer to the output layer whereas bH and bO are input bias 

vectors to the hidden layer and the bias input to the output layer, respectively. 

4.4.2 The BPNN Prediction Model 

Most well-known rain rate prediction models such as [Moupfouma, 1985; ITU-R P.837-6, 2012] 

estimate rain rates exceeded for various percentages of time in an average year. Due to the highly 

variable nature of rainfall with respect to both space and time, communication links suffer great 

outages during intense rain storms that may last for relatively short periods hence the need for 

prediction of rain attenuation in time domain. Thus, the main goal is to train a backpropagation 

neural network for prediction of a future rainfall rate, Rp(t + 1) mm/h at time (t + 1), using two 

previous rain rates and a current rain rate, Ra(t) as shown in Figure 4.3. The predicted rain rate is 

related to the three previous rain rates by the function [Ahuna et al., 2017]:   

𝑹𝒑(𝒕 + 𝟏) = 𝒇(𝑹𝒂(𝒕 − 𝟐), 𝑹𝒂(𝒕 − 𝟏), 𝑹𝒂(𝒕))                                   (𝟒. 𝟕) 

where Ra(t – 1) and Ra(t – 2) are actual rain rates at time (t – 1) and (t – 2), respectively and all rain 

rates are measured in mm/h. Rain attenuation prediction models such as those proposed by Bryant 

et al. (2001); Capsoni et al. (2009); Crane (1982); ITU-R P.618-13 (2017) estimate rain 

attenuation exceeded for different percentages of an average year. In 1996, Matricciani, (1996) 

proposed a prediction model for rain attenuation time series. In this model, the vertical structure 

of rain is modelled as two layers with one layer consisting of hydrometeors in the form of rain 

drops (Layer A) and the other layer comprising of melting hydrometeors (Layer B).  In this study, 

 

Figure 4.3 Attenuation prediction and classification model 
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rain attenuation prediction is achieved using the model proposed by Matricciani (1996) in 

conjunction with parameters obtained in ITU-R P.618-13, (2017) and ITU-R P838-3, (2005). The 

rain attenuation time series proposed by Matricciani (1996) estimates rain attenuation A at time (t) 

as:  

𝐴(𝑡) = 𝑘𝐴𝑅(𝑡)
𝛼𝐴𝐿𝐴 + 𝑟

𝛼𝐵𝑘𝐵𝑅(𝑡)
𝛼𝐵(𝐿𝐵 − 𝐿𝐴)          [𝑑𝐵]                             (4.8) 

where 𝐿𝐴 and 𝐿𝐵 are Layer A and Layer B slant paths, respectively, in km, R(t) is the rain rate in 

Layer A, r is the rain rate in Layer B whose value is given in [Matricciani, 1996], whereas kA, αA, 

kB, and αB  are frequency-dependent parameters for Layer A and Layer B given in [ITU-R P838-

3, 2005]. 

4.5 Results and Discussion 

In this section, discussions are done in two parts: (1) complementary CDFs and (2) the BPNN rain 

rate prediction model. In the former, long-term attenuation from the prediction model is compared 

with actual and ITU-R model values. 

4.5.1 BPNN Rain Rate Prediction Model  

The trained BPNN was tested using precipitation data collected from January 2017 and May 2018. 

This data is ‘unseen’ to the trained network because it was not used in training. The BPNN testing 

results show a fair correlation coefficient of 0.8298 between actual and predicted rainfall data and 

root mean square error (RMSE) of 2.5128. This correlation is shown in Figure 4.4(a). Further, 

fitting of predicted and current rain rates was done and resulted in a correlation coefficient of 

0.9811. Out of this correlation, a model is developed that relates Rp(t + 1) and Ra(t) as: 

𝑅𝑝(𝑡 + 1) = 𝑚𝑅𝑎(𝑡) + 𝑛                                                        (4.9) 

where m and n are regression parameters whose values are 0.9036 and n = 0.3483, respectively 

and Rp(t + 1) being a function of the previous three rain rates as shown in (4.7). 

4.5.2 Long-Term Rain Attenuation Prediction 

The motivation in this subsection is to make a comparison of complementary CDFs resulting from 

actual and predicted rainfall attenuation values. From (4.7) and (4.8), attenuation on the link at 

time (t + 1) can be obtained as: 

𝐴𝑝(𝑡 + 1) = Φ𝐿𝐴 +Ψ(𝐿𝐵 − 𝐿𝐴)                                         (4.10𝑎) 
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with:  

Φ = 𝑘𝐴𝑅𝑝(𝑡 + 1)
𝛼𝐴                                                           (4.10𝑏) 

Ψ = 𝑟𝛼𝐵𝑘𝐵𝑅𝑝(𝑡 + 1)
𝛼𝐵                                                     (4.10𝑐) 

Using the testing data described in Section 4.5.1, Figure 4.5 shows testing result statistics for the 

long-term attenuation statistics exceeded for various percentages of an average year.  

Comprehensive statistics are shown in Table 4.1 for the comparison of long-term statistics for 

actual values, BPNN predicted outputs and outputs from the model in (4.9). The ITU-R P.618 

model results are also presented for comparison. Results of this long-term prediction show that 

attenuation values exceeded for 0.01% of an average year are 53 dB (from actual rain rates), 50 

dB (from BPNN predicted outputs), 48 dB (proposed model in (4.9) and 53 dB (ITU-R model). 

These results show the BPNN’s ability to predict rain rate time series and consequently, rain 

attenuation. 

4.6 Model Validation 

Rainfall events with varying magnitudes from different rainfall regimes were used to confirm the 

suitability of the proposed prediction model. Five attenuation classes with four attenuation  

   

(a)                                                                                      (b) 

Figure 4.4 Correlation of BPNN predicted outputs with (a) actual outputs at time (t + 1) (b) current rain 

rates at time (t) 
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thresholds of 10 dB, 20 dB, 40 dB and 60 dB were used for this purpose and are shown in Table 

4.2. The prediction model illustrated in Figure 4.3 was provided with rain rates from individual 

rain events and the model produced, as outputs, predicted rain rates for conversion to 

corresponding attenuation values using the prediction model. Thereafter, these attenuation values 

are classified using a classification algorithm. As an example, Figure 4.6(a) and Figure 4.7(a) show 

rain rates of a shower rain event with Rmax = 22.2265 mm/h being used as inputs to both the BPNN 

model and the model given in (4.9), respectively. Classifications of resultant attenuation values 

are shown in Figure 4.6(b) and Figure 4.7(b). These results show that all predicted attenuation 

 

Figure 4.5 Complementary CDFs for long-term rain attenuation (2017-2018) 

TABLE 4.1 Rain attenuation distributions 

% 

Rain attenuation exceeded [dB] 

Aa(t+1) 
Ap(t+1) BPNN 

out 
Ap(t+1) model Ap(t+1) ITU-R 

1 2 2 2 5 

0.1 18 15 16 18 

0.01 53 50 48 53 

0.001 86 83 77 106 
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values are within Class 1 with of attenuation class bound A < 10 dB.  In this work, a good class 

agreement occurs when ‘o’ and ‘x’ markers merge as shown in Figure 4.6(b) and Figure 4.7(b). 

The prediction model was further tested on a S120 rain event of 21st Feb. 2018, with a maximum 

rain rate of 89.9575 mm/h as shown in Figure 4.8(a). Three rain attenuation classes are expected 

from this rain event as shown in Figure 4.8(b).  A more detailed section of Figure 4.8(b) reveals a 

few misses in the predicted rain attenuation.  

Table 4.2 Rain attenuation classes 

Attenuation 

Class 
Class Bounds [dB] 

1 𝐴 < 10 𝑑𝐵 

2 10 ≤ 𝐴 < 20 

3 20 ≤ 𝐴 < 40 

4 40 ≤ 𝐴 < 60 

5 𝐴 ≥ 60 

 

    

(a)                                                                                   (b) 

Figure 4.6 (a) Prediction of (a) rain rate (BPNN out) at Rmax = 22.2265 mm/h) (b) rain attenuation 

classification 
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The highest rain rate within the testing dataset was 224.9989 mm/h that occurred on 22nd February 

2017 at 10:53:00 hours. Testing on this rain event was inspired by the need to show the viability 

of the prediction process during intense rain storms. Model prediction of these rain rates are shown 

in Figure 4.10(a) and the resulting attenuation classification is presented in Figure 4.10(b). 

Observations show that the model can predict fairly well the rain attenuation, and classification 

results fall within all five classes, as expected. A detailed view of a section of Figure 4.10(b) is 

presented in Figure 4.11 that spans across a time length of 600 sec (from t = 1000 sec to t = 1600 

   

(a)                                                                                    (b) 

Figure 4.7 Prediction of (a) Rain rate (model at Rmax = 22.2265 mm/h (b) rain attenuation classification for 

Figure 4.7(a) 

 

(a)                                                                               (b) 

Figure 4.8 Prediction of (a) Rain rate (model) at Rmax = 89.9575 mm/h (b) rain attenuation classification for 

Figure 4.8(a) 

 

 

0

5

10

15

20

25

0 1000 2000 3000

R
ai

n
fa

ll
 r

at
e 

[m
m

/h
]

Time [sec]

Ra(t+1)

Rp(t+1)_model

0

1

2

0 1000 2000 3000

A
tt

en
u

at
io

n
 c

la
ss

Time [sec]

Ap(t+1)

Ap(t+1)_model

0

20

40

60

80

100

0 5000 10000 15000

R
ai

n
fa

ll
 r

at
e 

[m
m

/h
]

Time [sec]

Ra(t+1)

Rp(t+1)_model

0

1

2

3

4

0 5000 10000 15000

A
tt

en
u

at
io

n
 c

la
ss

Time [sec]

Aa (t+1)

Ap(t+1) model



50 | P a g e  
 

sec), a period that is expected to experience the deepest fading effect. Results of this test show that 

there are nine misses during this period. Nevertheless, cases where the ‘x’ marker is above the ‘o’ 

marker can be regarded as safer because during these instances, there is an over-estimation of rain 

attenuation and this causes a fade mitigation scheme to be put in place. Close analysis shows that 

rain attenuation underestimation or overestimation in most cases, involve two adjacent levels, 

implying that the fade mitigation technique employed might be adequate for the two cases and 

especially when these attenuation values are close to threshold boundaries.   

 

Figure 4.9 Expanded section of Figure 4.8(b) 

 

(a)                                                                                   (b) 

Figure 4.10 Prediction of (a) Rain rate (model) at Rmax = 224.9989 mm/h (b) rain attenuation 

classification for Figure 4.10(a) 
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The prediction model was further subjected to one-minute sampled data from Butare, Rwanda, 

tropical region with equatorial climate. The event is a storm type with Rmax = 66.0395 mm/h that 

occurred on 17th Feb. 2015 from 10:31:00 hours. Results of this rain rate prediction are shown in 

Figure 4.12(a) whereas attenuation classification is shown in Figure 4.12(b). The classification 

plot shows that there were three misses within a period of 600 sec (10 minutes). Excluding 

overestimation, this number reduces to only one miss, a case of underestimation at time t = 9750 

sec.   A comparison of various attenuation models are shown in Table 4.3 as proposed by various 

researchers from different parts of the world. 

 

Table 4.3 Comparison of rain attenuation models 

Model Inputs Deployment 

Rice-Holmberg 
Cumulative distribution 

of rainfall 
Temperate climate 

Global model 
Location and link 

parameters 
Globally 

Karasawa Model 
Rain statistics and link 

parameters 

Applicable for Japanese 

environment 

ITU-R P.618-11 
Location and link 

parameters 

Used or region-wise rain 

intensity 

Crane model 

Rain cell and debris 

together with other link 

parameters 

Used for different 

hydrometeors 

Matricciani model 
Point rain rate and link 

parameters 
Attenuation time series 

Dutton-Dougherty 
Exceedance time % 

used with rain rate 

Used for gaseous and rain 

attenuation 

Garcia Lopez 
Point rain rate and link 

parameters 
Used for tropical climate 

Simple Attenuation 

Model (SAM) 

Point rain rate and link 

parameters 
Optimized for simplicity 
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4.7 Chapter Summary 

Results obtained in this chapter have indicated that a trained backpropagation neural network can 

be used to predict rain attenuation fairly well over a communication link. In addition, the 

portability of the prediction model has been demonstrated through data collected over an equatorial 

region with a tropical climate. In the next chapter, we will investigate the queueing characteristics 

of rain spikes and their probabilities of occurrence using the queuing theory technique and Markov 

Chain. 

 

Figure 4.11 Detailed section of Figure 4.10(b) 

    

(a)                                                                              (b) 

Figure 4.12 Prediction of (a) Rain rate (model) at Rmax = 60.0395 mm/h in Butare (b) rain attenuation 

classification for Figure 4.12(a) 
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CHAPTER 5 

Outage Prediction using queuing theory and Markov 

Chain 

5.1 Introduction 

Rain attenuation is a major threat to satellite communication links operating at higher frequencies 

above 10 GHz [ITU-R P.618-13, 2017]. Rain fade mitigation techniques such as site diversity 

technique are among techniques that can be utilized on earth-satellite links to improve system 

reliability and availability. In the previous chapter, rain attenuation was predicted using the 

backpropagation neural network technique. This chapter uses the queueing theory technique to 

investigate the length of time a cloud shadow takes to cross an observation point on the ground. 

This information becomes the basis for site diversity fade mitigation techniques.  Due to the 

increase in the number of storms over the location of study, this chapter explores the probability 

of occurrence of storms of different magnitudes for efficient planning and mitigation for link 

outages due to the rain storms. 

In this chapter, the queueing theory technique and Markov chains are used to investigate the 

characteristics and attributes of rain storms, in addition to determining the probability of 

occurrence of storms of different magnitudes. Results of the investigation are thereafter compared 

with those that were earlier obtained earlier in Jimma, Ethiopia (7.6667N, 36.8333E), which is 

characterized by the tropical climate.  

5.2 Background Information 

Previous studies have confirmed that the queuing theory technique can be used to model the 

behavior of rain as a naturally occurring phenomenon. Three well-known random variables that 

are used for testing queueing theory technique (QTT) problems are the inter-arrival time, the 

service time and the overlap time [Cooper, 1981; Kleinrock, 1975; Alonge and Afullo, 2014; 

Alonge and Afullo, 2015a].  

The application of the queueing theory concept over Durban was pioneered by Alonge and Afullo, 

(2015a). In their findings, they proposed non-Markovian distribution for rainfall service time, 𝑡𝑠𝑡, 

as [Alonge and Afullo, 2015a]:  



54 | P a g e  
 

𝑓(𝑡𝑠𝑡) =
𝑘𝜇(𝑘𝜇𝑡𝑠𝑡)

𝑘−1𝑒−𝑘𝜇𝑡𝑠𝑡

Γ(𝑘)
                       𝑓𝑜𝑟      𝑡𝑠𝑡 > 0            (5.1) 

where 𝑘 is the Erlang-k number of stages and 𝜇 is the service rate. The inter-arrival time 

distribution was observed to be an exponential distribution that follows a Markovian process given 

by: 

𝑓(𝑡𝑎𝑟𝑟) = 𝜆𝑒−𝜆𝑡𝑎𝑟𝑟                                     𝑓𝑜𝑟   𝑡𝑎𝑟𝑟 > 0              (5.2) 

where 𝜆 is the data arrival rate and 𝑡𝑎𝑟𝑟 the inter-arrival time. 

Results from Alonge and Afullo (2015b) showed that for tropical and sub-tropical locations, the 

steady-state queue discipline follows a semi-Markovian first-come first-served (FCFS) Semi-

Markovian queue discipline (M/Ek/s). The same approach was used in a study in Jimma, Ethiopia 

by Diba et al. (2016) and their results showed that rain spike service time follows the Erlang-k 

probability distribution, contrary to the exponential distribution that has been adopted in past 

studies. Further on, Diba et al. (2016) characterized rainfall rate spikes over Jimma using Markov 

chain and results indicate that over the region, shower spikes dominate with occurrence probability 

of 51.26%. 

Rain spike attributes of a typical rain event are shown in Figure 5.1 as service time, (tst); inter-

arrival time (tarr); overlap time (tov) and the maximum spike rainfall rate (Rm). Similarly, Figure 

5.2 shows a typical rain event with spikes of different magnitudes and width over time. The 

unpredictability of rain spikes occurrence with varying magnitudes and width makes it difficult to 

predict the magnitude or width of the next rain spike. A single rain spike within a rain event is 

analogous to a birth-death process with rain rates progressively building up from near zero to a 

spike maximum rate, Rm, and thereafter gradually reducing in magnitude with time [Alonge and 

Afullo, 2015b]. This analogy shows that a rain spike is associated with a single cloud having a 

maximum rain intensity at its center. Hence, it is shown that rain spikes displayed in Figure 5.2 

are formed by a queue of clouds passing over a rain measurement instrument in a first come first 

served (FCFS) discipline. 
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5.3 Rain Storm Modelling Using the Unified Model Language Concept 

The Unified Model Language (UML) concept is used in this chapter to show the relationship that 

exists between elements of a rain event. In this concept, class diagrams are used to show how 

entities are modelled within a system by showing attributes, associations, operations and 

constraints that are imposed on a class [Rambaugh et al., 2005]. In brief, a class represents an 

 

Figure 5.1 Drizzle rainfall event of 16th August 2016 at 18:41:30 hours 

 

Figure 5.2 Shower rainfall event of 8th January 2017 at 09:04:00 hours 
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abstraction of an entity with common features whereas relationships between classes are 

represented by associations. Figure 5.3 shows a general class diagram model that can be used to 

model any entity within a system. From this general model, Figure 5.4 is developed to show the 

use of UML class diagram in modelling a rain storm (entity) with associations existing between 

the rain storm event and rain spikes within the storm. For For application of the queuing theory 

concept, the cardinality of the rain spike is given in Figure 5.4 as “2…*”. This implies that, for 

successful extraction of the three queueing parameters, the storms to be considered need to 

comprise two or more rain spikes. This is an example of a constraint on the storm to be used with 

QTT. A detailed description of Figure 5.4 is given in Ahuna et al. (2018a). In addition, it is shown 

in the same figure that the three classes are responsible for signal attenuation, though with different 

magnitudes as low as 1 dB for drizzle spikes and over 10 dB for storm rain spikes.  

 

 

 

Figure 5.3 A UML typical class diagram 

 

 

Figure 5.4 Rain storm entity class diagram 
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5.4 Methodology 

Precipitation measurements were carried out as described in Section 3.2.1 and comprised of 30-

sec sampled data collected from 2013 to 2017. Data used in this chapter is retrieved from 

convective rainfall regimes of shower and storm types with rain rates, R  10 mm/h. This choice 

is motivated by the higher contribution towards signal impairment over LOS radio links by these 

two kinds of rainfall regimes. The data was further categorized into drizzle (D), widespread (W), 

shower (Sh), storm 1 (S1), storm 2 (S2) and storm 3 (S3) rain spikes as shown in Table 5.1. Storm 

subdivisions are is necessitated by the wide gap between the minimum rain rate of 40 mm/h and a 

maximum of 253.066 mm/h obtained from measurements. Analysis of storm occurrences of storms 

over Durban is done over a period of 57 consecutive months from April 2013 to December, 2017 

and this is motivated by the sudden rise in the number of rain storms and their higher magnitudes 

over the region of study as shown in Figure 3.1 and Table 3.3 and Table 3.6.  

5.5 Results Analysis and Discussions 

The three queuing parameters mentioned in Section 5.3 are analyzed in this section and the results 

are summarized in Table 5.2. Subsequently, probabilities of storm occurrences of storms of 

different magnitudes are analyzed using the Markov Chain technique. 

 

Table 5.1 Statistics for shower and storms regimes 

Rain Rate 

Regime 

Range of Rmax 

[mm/h] 
Samples used % 

Drizzle (D) R < 5 125 17.6 

Widespread (W) 5 ≤ R < 10 130 18.3 

Shower (Sh) 10 ≤ R < 40 283 39.8 

Storm 1 (S1) 40 ≤ R ≤ 100 135 19.0 

Storm 2 (S2) 100 < R ≤ 150 20 2.8 

Storm 3 (S3) R > 150 18 2.5 
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5.5.1 Spike Service Time Distributions 

In Figure 5.5 we present service time distributions with Figure 5.5(a) showing are distributions for 

the shower regime and Figure 5.5(b) showing distributions for storms. It is evident that both service 

times for measured data can be approximated by the Erlang-k distribution with k = 2 and k = 3 for 

shower and storm regimes respectively.  The Erlang-k distribution is given by [Alonge and Afullo, 

2015a; Adan and Resing, 2015]: 

𝑓(𝑥) = 𝜇
(𝜇𝑥)𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥                                                                     (5.3) 

where 𝜇 is the scale parameter and 𝑘 is the shape parameter. The number of rain spikes for which 

service time is exceeded is shown in Figure 5.6, where it is observed that the number of shower 

spikes outnumber those of the storm spikes for the same service time. Further analysis shows that 

it takes shorter time for high-magnitude storms to traverse a given region compared to those with 

lower magnitudes. For instance, it is shown in Table 5.2, that it takes, on average, 21.13 minutes 

Table 5.2 Spike Queuing Parameters 

Parameter 
Rainfall 

regime 

Average 

time 

[min] 

Best fit 

Distribution 
RMSE CHI 

Service time, 

tst,  

𝑐𝑥,𝑆ℎ = 0.7201 21.13 Erlang-k, k = 2 0.0059 0.0931 

𝑐𝑥,𝑆𝑡 = 0.6712 13.00 Erlang-k, k = 3 0.0092 0.2390 

Inter-arrival 

Time, tarr 

𝑐𝑥,𝑆ℎ = 0.4807 16.28 Erlang-k, k = 2 0.0057 0. 2306 

𝑐𝑥,𝑆𝑡 = 1.0996 8.47 Exponential 0.0092 0.1445 

Overlap Time, 

tov 

𝑐𝑥,𝑆ℎ = 0.8702 3.16 Erlang-k, k = 2 0.0128 0.4070 

𝑐𝑥,𝑆𝑡 = 0.6067 2.79 Erlang-k, k = 3 0.0471 0.1563 

Spike Max. 

Rain Rate, Rm 

𝑐𝑥,𝑆ℎ = 0.7335 - Erlang-k, k = 2 0.0068 0.0352 

𝑐𝑥,𝑆𝑡 = 0.8964 - Exponential 0.0024 0.0609 

cx,Sh and cx,st are coefficients of variation for shower and storms regimes respectively  
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for shower clouds to traverse a region as compared to 13.00 minutes for storm clouds. The traversal 

time of 13.00 minutes is comparable to 13.32 minutes obtained by Diba et al. (2016) for rain storm 

spikes over Jimma, a tropical climate. This comparison is shown in Table 5.3. Further analysis 

shows that service times for shower spikes are longer over Durban compared to Jimma, contrary 

to service times for storms where spikes have relatively higher service times in Jimma compared  

 

 

                               (a)                                                                                  (b) 

Figure 5.5 Service time distributions for (a) shower and (b) storm rainfall regimes 

 

Figure 5.6 Number of rain spikes exceeded 
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to Durban region. It is also noted that for both regions, measured data can be approximated by 

Erlang-k distributions with k taking values in the range 2  k  4. 

5.5.2 Spike Inter-Arrival Time Distributions 

The time interval for arrival of two consecutive rain clouds as observed from a stationary point is 

referred to as the inter-arrival time. These times are presented in Table 5.2 for both shower and 

storm rain events and results show that these times are 16.28 minutes and 8.47 minutes for shower 

and storm regimes, respectively. From Figure 5.7, it is observed that the spike inter-arrival time 

for shower regimes follow the Erlang-k distribution with k = 2, whereas those for storms follow 

the exponential distribution, similar to results that were obtained by Alonge and Afullo, (2015a). 

5.5.3 Spike Over-Lap Time Distributions 

It is evident from Figure 5.1 shows that there exists an overlap time, tov, over which two rain spikes 

overlap in time. The overlap time distributions are shown in Figure 5.8, where spikes in both types 

of regimes follow the Erlang-k distribution with k = 2 and k = 3 for shower and storm regimes, 

respectively. Overlap time distributions are expected to follow the Erlang-k distribution because 

overlap times are subsets of service times. Results presented in Table 5.2 show that rain spikes in 

shower and storm regimes overlap for a mean duration of 3.16 minutes and 2.79 minutes, 

respectively. For storms, results from Alonge and Afullo (2015a) showed a corresponding mean 

overlap time of 5.75 minutes for storms, over Durban region. One explanation for the difference 

in the two overlap times in the same location can be described by analysis carried out in the next 

chapter on rain fade statistics, where it is revealed that for the same rain rate, rain spikes that 

occurred during storm periods last for a shorter period than their pre-storm counterparts.  

Table 5.3 Service time comparisons for Durban and Jimma 

Model Regime 
Service time 

distribution 

Average Spike 

Service Time 

(minutes) 

Diba et al., 2016 

(Jimma) 

Shower Ek, k = 4 16.8390 

Storms Ek, k = 4 13.3237 

Durban 

Shower Ek, k = 2 21.1336 

Storms Ek, k = 3 13.0028 
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5.5.4 Correlation Between Spike Maximum Rain Rate with Spike Diameter 

For every rain spike, there exists a rain rate, Rmax mm/h, with the highest value. This rain rate is 

referred to in this section as the maximum rain rate. In Figure 5.9, we present Rmax distributions 

for shower and storm regimes. Results show that, for this parameter, shower regimes and storm 

regimes follow Erlang-k and the exponential distributions, respectively. Further, examination of 

the relationship between spike diameters and Rmax was carried out and results are presented in 

Figure 5.10.  

  

(a)                                                                               (b) 

Figure 5.7 Inter-arrival time distributions for (a) shower and (b) rain storm regimes 

  

                                 (a)                                                                                  (b) 

Figure 5.8 Overlap time distributions for (a) shower and (b) storm rainfall regimes 
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Results of this examination show that the diameter of a rain spike is a function of the maximum 

Rmax with low magnitude spikes having larger diameters compared to higher magnitude spikes. 

For instance, it is observed that spikes with Rmax below 10 mm/h have, on average, diameters of 

about 8.5 km. On the other hand, spikes with maximum rain rates 90  Rmax  100 mm/h take on 

values of about 4.8 km. These diameters are calculated using advection velocities of 6 m/s and 10 

  

                             (a)                                                                           (b) 

Figure 5.9 Spike Rmax distributions for (a) shower and (b) storm rainfall regimes 

 

Figure 5.10 Cloud cell diameter versus Rmax  
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m/s for shower and storm rain cells, respectively [Pawlina, 2002; Akuon and Afullo, 2011b]. 

Analysis of the relationship that exists between Rmax and the spike diameter yields a power-law 

function that can be used to estimate the diameter, Dsp, of a rain spike and is given as: 

𝐷𝑠𝑝 = 𝑐1𝑅𝑚𝑎𝑥
𝑐2                   [𝑘𝑚]                                                  (5.4) 

where coefficients 𝑐1 and 𝑐2 are found to be 12.842 and -0.212 respectively. From analysis of 

thequeuing parameters shown in Table 5.2, a rain event cell diameter, 𝐷𝑒𝑣, can be estimated as: 

𝐷𝑒𝑣 ≈ 𝑤𝐷𝑠𝑝 − (𝑤 − 1)𝐷𝑜𝑣                [𝑘𝑚]                                                   (5.5) 

where w is the mean number of spikes within a rain event, Dsp and Dov are rain spike diameter and 

the overlap distance, respectively, both in km. Hence, from (5.4) and (5.5) in conjunction with the 

knowledge of the overlap time described in Section 5.6.3, the stretch of any rain event can be 

determined. For clarity, a rain event is regarded as the continuous time in which R  0 with one or 

more spikes present. 

Knowledge on the coverage distance of a rain event is important for site diversity as a rain fade 

mitigation scheme. Link designers are keen on maximizing site diversity gain by considering the 

minimum distance required between two earth stations. This ensures that the two or more earth 

Table 5.4 Comparison of rain cell sizing 

Model Region of study Approach Rain cell diameter 

Khamis et al., 

(2004) 

Subang, Selangor, 

Malaysia 
R0.01 rain rate 

1.2 km  D  1.5 km  

for R0.01 = 120 mm/h 

Begun and Otung 

(2009) 

Sparsholt,  

United Kingdom 

Synthetic Storm 

Technique and rain rate 

time series 

D < 10 km  

for intense rain cells 

Akuon and Afullo 

(2011) 

Various climatic 

zones,  

South Africa 

Synthetic Storm 

Technique and 1-minute 

rainfall distributions 

D = 7.75 km 

for Rmax = 60 mm/h 

Proposed model 
Durban,  

South Africa 

Queueing Theory 

Technique 

D = 5.39 km 

for Rmax = 60 mm/h 
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stations are not located under the same rain intense rain clouds.   Using the synthetic storm 

technique and rain rate time series, Begun and Otung (2009] determined the partial structure of 

rain cells over Sparsholt, UK. Results of their investigation showed that intense rain cells cover 

less than 10 km. Similarly, investigations carried out by Akuon and Afullo (2011b] show that rain 

cells with rain rate threshold of 60 mm/h cover distances up to 7.75 km. Their investigations were 

carried out over different climatic regions in South Africa using the synthetic storm technique and 

1-minute rainfall distributions. Over Durban, a cell with Rmax = 60 mm/h yields a cell diameter of 

5.39 km, which is comparable to the results of Akuon and Afullo, (2011b]. A comparison of three 

rain cell sizing model is shown in Table 5.4. 

5.5.5 Rain Spike Magnitude Prediction Using Markov Chain Approach 

Prediction of the amount of rain attenuation can be achieved with the knowledge of the magnitude, 

Rm, of the rain spike that is to arrive next. This prediction becomes more accurate if there is a 

known probability of occurrence of different rain magnitudes. The prior knowledge of the amount 

of attenuation prepares the system to engage necessary fade mitigation measures that will ensure 

link availability during a rain storm. In this chapter, the N-state Markov Chain approach is used to 

investigate the natural arrival of rain spikes of different magnitudes within the regions of study 

[Bolch et al., 1998].  

This investigation considers six states, where ‘state’ represents a type of a rain regime. The six 

states of investigation are drizzle (D), widespread (W), shower (Sh), storm 1 (S1), storm 2 (S2) and 

storm 3 (S3) whose rain rate bounds are given in Table 5.1. This analysis uses data sourced from 

convective rain events due to their significant contribution to signal attenuation. A 3 × 3 state 

transition matrix for the shower regime is presented as: 

𝑃𝑖𝑗,(𝑆ℎ) = [
𝐷𝐷 𝐷𝑊 𝐷𝑆ℎ
𝑊𝐷 𝑊𝑊 𝑊𝑆ℎ
𝑆ℎ𝐷 𝑆ℎ𝑊 𝑆ℎ𝑆ℎ

]                                                           (5.6) 

where WD represents a state transition from widespread spike to drizzle spike, with other states 

defined in the same way. Our investigation from measured data yielded a rain spike transition 

graph presented in Figure 5.11 and the state transition matrix as: 

𝑃𝑖𝑗,(𝑆ℎ) = [
0.4609 0.2783 0.2609
0.2800 0.2000 0.5200
0.2483 0.3221 0.4295

]                                                 (5.7) 
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From (5.7), the initial probability matrix shows that state transitions from widespread spikes to 

shower spikes occur more frequently with a probability of 52% whereas the least transition occur 

between two widespread spikes with a state transition probability of 20%. In the same way, the 

6 × 6 transition probability matrix for rain storm events are presented below: 

 

Figure 5.11 Spike transition graph for shower regime 

 

 

Figure 5.12 Spike transition graph for storm regime 
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𝑃𝑖𝑗,(𝑆) =

[
 
 
 
 
 
𝐷𝐷 𝐷𝑊 𝐷𝑆ℎ 𝐷𝑆1 𝐷𝑆2 𝐷𝑆3
𝑊𝐷 𝑊𝑊 𝑊𝑆ℎ 𝑊𝑆1 𝑊𝑆2 𝑊𝑆3
𝑆ℎ𝐷 𝑆ℎ𝑊 𝑆ℎ𝑆ℎ 𝑆ℎ𝑆1 𝑆ℎ𝑆2 𝑆ℎ𝑆3
𝑆1𝐷 𝑆1𝑊 𝑆1𝑆ℎ 𝑆1𝑆1 𝑆1𝑆2 𝑆1𝑆3
𝑆2𝐷 𝑆2𝑊 𝑆2𝑆ℎ 𝑆2𝑆1 𝑆2𝑆2 𝑆2𝑆3
𝑆3𝐷 𝑆3𝑊 𝑆3𝑆ℎ 𝑆3𝑆1 𝑆3𝑆2 𝑆3𝑆3 ]

 
 
 
 
 

                                    (5.8) 

The probability transition graph for storm spikes arising from (5.8) is presented in Figure 5.12 

whereas the spike transition matrix is given in (5.9). Equation (5.9) indicates that the highest 

transition probability occurs between S3 spikes with a probability of 80%. 

𝑃𝑖𝑗,(𝑆) =

[
 
 
 
 
 
0.0909 0.2727 0.2727 0.3636 0 0
0.0714 0.3214 0.3214 0.2500 0.0357 0
0.0301 0.0902 0.5714 0.2632 0.0301 0.0150
0.0148 0.0370 0.3111 0.5556 0.0519 0.0296
0 0 0.1071 0.5000 0.2857 0.1071
0 0 0 0.1000 0.1000 0.8000]

 
 
 
 
 

                          (5.9) 

Chapman-Kolmogorov forward equations are used in this section to determine the state probability 

k steps into a chain and are given by Kleinrock (1975) as: 

𝑃(𝑘+1) = [𝑃(𝑘)] × [𝑃]      ;          𝑃𝑖𝑗
(𝑘+1) =∑𝑃𝑖𝑗

𝑘

𝑛

𝑘=0

𝑃𝑘𝑗                               (5.10) 

Π𝑗 =∑Π𝑖𝑃𝑖𝑗

𝑁

𝑖=1

      ;       ∑Π𝑗

𝑁

𝑗=1

= 1                                               (5.11) 

From (5.7) and (5.10), the final state matrices for shower regimes are given as: 

Π 𝑆ℎ = [𝑃𝐷 𝑃𝑊 𝑃𝑆ℎ]                                                        (5.12𝑎) 

Π𝑆ℎ = [0.3264 0.2743 0.3993]                                     (5.12𝑏) 

where PD, PW and PSh, represent the state probabilities for drizzle, widespread and shower rains.  

Similarly, from (5.9) and (5.10), the final state probabilities for storms regime are as given as: 

Π𝑆 = [𝑃𝐷 𝑃𝑊 𝑃𝑆ℎ 𝑃𝑆1 𝑃𝑆2 𝑃𝑆3]                                   (5.13𝑎) 

Π𝑆 = [0.0238 0.0769 0.3554 0.3682 0.0616 0.1142]               (5.13𝑏) 

Observations from (5.12b) shows that shower spikes have the highest probability of occurrence at 

39.93% within a given shower rain event, trailed by drizzle spikes with 32.64% and at the lower 
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end, are widespread spikes with probability of occurrence of 27.43%. Similarly, it is observed in 

equation (5.13b) that S1 spikes have the highest occurrence probability of 36.82% followed by 

shower spikes with 35.54% and so on. Within storm rain events, drizzle spikes have the least 

probability of occurrence of 2.38%. 

The Markov Chain values over Durban are compared with those obtained for Jimma and the results 

are given in Table 5.3 and Table 5.4. This comparison reveals that, at both sites, shower spikes 

dominate with probabilities of 39.93% and 51.26%, respectively. For rain storms, comparison 

the results show that rain storm spikes have the highest probability of occurrence compared to low 

magnitude spikes over both regions with values of 36.82% and 49.90% for Durban and Jimma, 

respectively. Future studies in this area will provide more comprehensive results due to on-going 

precipitation measurements in Durban, South Africa, Jimma, Ethiopia and Butare, Rwanda. 

5.6 Chapter Summary 

Distributions for service times, inter-arrival times and overlap times of rain spikes have been 

presented in this chapter. From service times and Rmax, maximum variable models are developed 

for estimating the spike cell and rain event diameters. Also, from measured rainfall data, state 

probability matrices for shower and storm rainfall regimes are developed using the Markov Chain 

approach. The next chapter will explore the second order statistics, and in particular, fade durations 

experienced over wireless links at different attenuation thresholds.  

 

Table 5.5 Markov Chain steady state values 

Model Regime 

Markovian Steady State values 

PD PW Psh PS1 

Diba et al., 

2016 

 (Jimma) 

Shower 0.1733 0.3140 0.5126 - 

Storms 0.0515 0.1651 0.3344 0.4990 

Durban 

Shower 0.3264 0.2743 0.3993 - 

Storms 0.0238 0.0769 0.3554 0.3682 
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CHAPTER 6 

Second Order Rain Fade Statistics and Application 

for Site Diversity 

6.1 Introduction 

The drive to meet quality and reliability criteria and optimize system capacity has been on the rise 

in many regions of the world. Dynamic fading characteristics of fading require dynamic fade 

mitigation techniques for efficient systems and resource sharing [ITU-R P.1623, 2005; Argota et 

al. 2017]. Therefore, rain fade duration (RFD) statistics (as inputs to dynamic fade mitigation 

schemes) are important for design of earth-space links operating at frequencies above 10 GHz 

[Matricciani and Riva, 2005; Cheffena and Amaya, 2008; ITU-R P.618, 2017]. In the previous 

chapter, probabilities of occurrence for rain storms of various magnitudes were analyzed. In this 

chapter, rain fade durations at different attenuation thresholds are examined and explored for site 

diversity and adaptive coding and modulation fade mitigation techniques. 

6.2 Background Information 

The knowledge of the occurrence probability of a rain fade duration at a given attenuation 

threshold is an important factor that determines the performance availability and quality of service 

(QoS) [Dao et al., 2013].  Fade duration is the continuous time over which rain attenuation is 

above a given threshold whereas an inter-fade duration is the continuous time interval that 

separates two consecutive fade events, in which attenuation is below a given threshold. The third  

 

Figure 6.1 A fade duration illustration  
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parameter of interest in second order statistics is the fade slope. This is defined as the rate of change 

of attenuation with time. The duration of a rain fade determines the period in which a 

communication link becomes degraded or unavailable and is an important input for planning and 

applying dynamic fade mitigation. Figure 6.1 shows an example of a rain fade, fd, measured at an 

attenuation threshold of A2 dB. This figure was derived from a rain event of 20th February, 2014 

from 19:58:30 hours. 

6.3 Methodology 

Precipitation data used in this chapter was obtained as described in Section 3.2.1 and spans for a 

period of 5 years, similar to data used in Chapter 5. Once again, this data was categorized into two 

periods of PSP (2013-2015) and SP (2016-2017) for comparison of results. In both year periods, 

convective rainfall events with Rmax  10 mm/h, are considered for analysis. Rain events 

considered in this chapter are categorized into six categories of shower 1 (Sh1yz), shower 2 (Sh2yz), 

storm 1(S1yz) and storm 2 (S202), and storm 3 (S302) as shown in Table 6.1 and 6.2. Cases where the 

mid subscript is zero means that the rainfall regime was never subdivided into parts. Measured 

rain data was converted into the corresponding rain attenuation time series using the model 

developed by Matricciani (1996) and the input parameters to this model were determined using a 

link with an elevation angle of 36.5° operating at a frequency of 12 GHz. Finally, fade duration 

statistics were extracted from rain attenuation time series data using MATLAB® codes that was 

developed for this purpose.  

Table 6.1 Convective rain events categories 

(PSP) 

Rmax bounds 

[mm/h] 

Regime 

Label 

10 ≤ 𝑅 < 20 Sh101 

20 ≤ 𝑅 < 40 Sh201 

40 ≤ 𝑅 < 60 S101 

𝑅 > 60 S201 

 

 

Table 6.2 Convective rain events categories (SP) 

Rain Rate 

Bounds [mm/h] 
Regime Label 

10 ≤ 𝑅 < 20 Sh102 

20 ≤ 𝑅 < 40 
Sh202 

40 ≤ 𝑅 < 60 
S112 

60 ≤ 𝑅 < 100 
S122 

100 ≤ 𝑅 < 150 S202 

𝑅 > 150 S302 
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Attenuation thresholds of 1.28 dB, 2.78 dB, 6.02 dB, 13.05 dB, 20.51 dB, 36.25 dB and 56.98 dB 

are used in this study, corresponding to attenuation caused by rain rates of 5 mm/h, 10 mm/h, 20 

mm/h, 40 mm/h, 60 mm/h, 100 mm/h and 150 mm/h respectively. Other than the 5 mm/h, the rest 

are lower rain rate bounds for Sh1yz, Sh2yz, S1yz, S202, and S302, as shown in Table 6.2.  

6.4 Results and Discussion 

In this section, we discuss the results of this study in two parts: (1) long-term attenuation statistics 

and (2) second order rain fade statistics. 

6.4.1 Long-Term Attenuation Statistics 

Long-term attenuation prediction provides information on attenuation exceeded for a given 

percentage, p, of time in an average year. Figure 6.2(a) and Figure 6.2(b) show complementary 

cumulative distribution functions (CCDFs) for pre-storm and storm year periods, respectively. The 

three CCDFs are compared and the results are shown in Table 6.3 and Table 6.4 for PSP and SP 

periods respectively. Comparisons show a general agreement in attenuation values derived  

 

  

(a)                                                                                         (b) 

Figure 6.2 Complementary CDF of attenuation exceeded during (a) PSP period (b) SP period 
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from ITU-R P.618 model and Matricciani (1996) model for percentages down to around 0.01% as 

shown in Figure 6.2(a) during PSP period. Similarly, in Figure 6.2(b) it is observed that, for the 

two models, the agreement of results stretch down to 0.005% of an average year, during SP period.  

Further analysis shows that long-term attenuation values derived from RFDs are lower values 

compared to the other two models. One possible explanation for these lower values is that fade 

duration statistics do not consider the depth of a fade, but rather, its duration at a given threshold. 

For instance, it is noted that the margin between exceeded fades during SP period shown in Figure 

6.2(b) is higher than that obtained during PSP period at 0.01% of an average year. Results show 

Table 6.3 Attenuation exceeded (PSP) 

% 
SST Model 

[Matricc.] 

ITU-R Model 

 [ITU-R P.618-13] 

Proposed model 

(Fade durations 

approach) 

1 1.0 1.0 - 

0.5 1.4 1.6 - 

0.3 2.1 2.1 - 

0.1 4.2 4.2 2.5 

0.05 6.1 6.2 4.0 

0.03 8.8 8.1 5.7 

0.01 14.7 13.6 10.2 

0.005 21.3 18.2 15.5 

0.003 23.8 22.0 20.51 

 

Table 6.4 Attenuation exceeded (SP) 

% 
SST Model 

[Matricc.] 

ITU-R Model 

[ITU-R P.618-13] 

Fade durations 

approach 

1 3.8 5.0 - 

0.5 5.5 7.4 - 

0.3 9.3 10.0 2.5 

0.1 19.0 18.5 9.5 

0.05 28.5 26.4 14.0 

0.03 35.5 33.8 19.1 

0.01 54.0 54.0 34.3 

0.005 68.5 69.8 49.2 

0.003 74.0 82.5 56.98 
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that, for the PSP period, attenuation exceeded for 0.01% of an average year are 14.7 dB, 13.6 dB 

and 10.2 dB for Matricciani model, ITU-R P.618 model and fade statics approach, respectively. 

Similarly, for the SP period corresponding values are 54.0 dB, 54.0 dB and 34.3 dB for Matricciani 

model, ITU-R P.618 model and fade statics approach, respectively. Further, it is observed that 

there is a margin of approximately 20 dB between RFD approach and the other two models at 

0.01% probability during SP period. Similarly, a margin of 4.5 dB is observed between the RFD 

approach and the other two models during the PSP period at the same probability of exceedance. 

More conclusive results on the margin may obtained using data collected over a relatively longer 

period such as 10 years and above. Table 6.2(a) and Table 6.2(b) show more statistics on other 

percentages of exceedances. 

6.4.2 Rain Fade Duration Statistics 

This subsection presents rain fade statistics that are computed for the pre-storm and storm periods 

at the thresholds given in Section 6.3. These results are shown in Table 6.5 and Table 6.6 for PSP 

and SP periods, respectively.  Analysis of mean fade durations was performed and results show 

that these values decrease with increase in fade thresholds. For instance, on average, a spike in 

PSP is observed to last for about 2.13 minutes at a threshold of 2.78 dB while it lasts for about 1.5 

minutes at a threshold of 20.51 dB. Corresponding values for storm periods are 2.35 minutes and 

1.52 minutes at the same fade thresholds. Generally, comparison results show that mean fade 

durations are higher for convective rains during storm periods compared to pre-storm periods, 

despite the smaller mean rain event duration indicated in Table 6.4. One possible explanation for 

this is that high intensity rain spikes have steeper slopes, hence larger widths at higher fade 

thresholds, especially for mid-range thresholds. This is evident from Table 6.5 and Table 6.6 where 

the lowest and highest thresholds have lower mean fade durations than in PSP period.   

Further analysis shows that median fade durations over Durban are in the range of 1 minute and 

1.5 minutes for PSP whereas they range from 0.5 minute to 1 minute for SP. Results for median 

fade durations over Durban are compared to those obtained by Cox and Arnold (1982] and are 

found to be lower. In their study, Cox and Arnold, (1982) used a link operating at a frequency of 

19 GHz with an elevation angle of 18.5°. Their results revealed median fade durations ranging 

from 2.8 minutes to 7.5 minutes with fade thresholds from 5 dB to 40 dB. A possible explanation 

for lower values of median fade duration over Durban is the lower frequency of operation and a 
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higher elevation angle. Previous studies have proven that the fade duration is a function of both 

elevation angle and the frequency of operation [Mitchel et al., 1997; Acosta, 1997].   

In Figure 6.3, we show distributions of number of fade events that last for a time duration longer 

than D sec at different fade thresholds. A comparison is made between two year periods and plots  

 

    

(a)                                                                                                                 (b) 

Figure 6.3 Number of events with fade durations greater than a given fade duration for (a) PSP (b) SP 

   

(a)                                                                               (b) 

Figure 6.4 Probability of occurrence fade events with FD  D sec for (a) PSP (b) SP 
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 Table 6.5 Fade Duration Statistics (PSP) 

Fade threshold 

[dB] 

Mean fade 

duration [min] 

% of time 𝒂 ≥ 𝑨 

in a rain event 

Total number of 

samples 

1.28 184 13.6 430 

2.78 128 5.7 218 

6.02 109 3.2 71 

13.05 102 3.0 18 

20.51 90 1.3 10 

 

Table 6.6 Fade Duration Statistics for SP 

Attenuation 

threshold [dB] 

Mean fade 

duration [sec] 
% of time a  A dB 

in a rain event 

Total number 

of samples 

1.28 174 24.23 1430 

2.78 141 13.66 989 

6.02 128 9.37 494 

13.05 119 8.24 222 

20.51 91 5.49 132 

36.25 65 4.06 57 

56.98 55 1.82 22 

 

Table 6.7 Number of Fades exceeded at D sec 

Fade thresh. 

[dB] 

Number of fades 

PSP  SP 

1 min 3mins 5 mins  1 min 3mins 5 mins 

1.28 301 128 78  877 282 49 

2.78 135 52 20  603 148 27 

6.02 41 10 7  272 72 9 

13.05 10 5 2  124 34 - 

20.51 6 2 1  73 10 - 

36.25 - - -  25 - - 

56.98 - - -  8 - - 
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show similar trends, with lower thresholds plots showing higher values than lower thresholds. For 

example, at a boundary of 3 minutes, the number of fades that last for this duration or longer are 

found to be 10 and 5 at thresholds of 6.02 dB and 13.05 dB, respectively, during the PSP period. 

In the same way, the values are 90 and 54 at the same thresholds during SP period. These statistics 

are given in Table 6.7.   

Figure 6.4 shows the probability of occurrence of fade spikes with duration d ≥ D sec during both 

year periods. Observations show that trends in both year periods are similar. For instance, the 

    

(a)                                                                                                      (b) 

Figure 6.5: Mean fade durations at different fade thresholds during (a) PSP (b) SP 

    

(a)                                                                                   (b) 

 

Figure 6.6 Maximum fade durations at different fade thresholds during (a) PSP (b) SP 
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probability of occurrence of fades lasting for 6 minutes or more is 5.6% at a fade threshold of 

13.05 dB during the pre-storm period whereas it is 7.6% during SP period.  

The mean and maximum fade durations were plotted against fade thresholds and results are shown 

in Figure 6.5 and Figure 6.6, respectively. Similar trends are observed for the two year periods 

indicating that the two parameters, FD,mn and FD.mx decrease as fade thresholds increase, though 

the gradient is smaller at higher thresholds.  

From results of Table 6.5 and Figure 6.5, two power-law relationships are obtained for estimation 

of the mean fade duration, FD,mn and the maximum fade duration, FD,mx during the pre-storm 

period. These functions are given as: 

𝐹D,mn = 178.34𝐴−0.235         [𝑠𝑒𝑐]                                       (6.1) 

𝐹D,mx = 5160𝐴−0.925            [𝑠𝑒𝑐]                                       (6.2) 

Similarly, using Table 6.6 and Figure 6.6 results, the two parameters for the SP period are 

estimated as:  

𝐹D,mn = 218.04𝐴−0.31         [𝑠𝑒𝑐]                                       (6.3) 

𝐹D,mx = 5908𝐴−0.792           [𝑠𝑒𝑐]                                       (6.4) 

Equations (6.1) and (6.3) may become useful in determining the distance of separation between 

two or more earth stations when applying site diversity as a fade mitigation scheme. On the other 

hand, (6.2) and (6.4) provide information on the worst case scenario where a fade is longest at a 

given fade threshold.  

6.5 Application of RFD statistics for Site Diversity 

In this section, rain fade duration statistics are applied in two types of dynamic fade mitigation, 

namely: site diversity and adaptive coding and modulation. 

6.5.1 Application of RFDs for Site Diversity 

The spatial variability of rain makes it possible for implementation of site diversity. Convective 

rains occur with high rain rates though they cover shorter distances of up to 5 km [Panagopoulos 

et a., 2004; Ahuna et al., 2018a]. Also, it is a general agreement that fading at two sites separated 

by a distance greater than the average size of the rain cell will be uncorrelated [Acosta, 1997]. In 

this scenario, the two stations that are separated by a distance greater than the average cell diameter 
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are safeguarded from being covered by the same rain cloud. On the other hand, rain cells usually 

appear in queues and hence we need to consider the probability of the two stations being covered 

 

Figure 6.7 Double-site diversity [Panagopoulos et al., 2004] 

 

 

Figure 6.8 Illustration of double-site diversity 
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by two adjacent rain cells at the same time. In this section, we have considered this second scenario.  

Figure 6.7 shows double-site diversity technique that utilizes two earth stations receiving the same 

signal from one satellite. This is beneficial because the site with less or no fading can re-route 

stronger data traffic to those sites that are affected by rain fading through alternative paths.  

Figure 6.8 shows an example of two consecutive fade cells moving in the direction AB with 

maximum fades at their centers, points P and Q. The area of inner circles represents fades above, 

A2 dB threshold.  Separating these two stations with a distance less than DPQ gives good results, 

though a separation distance equal to Dbst yields the best results, with an assumption that these rain 

cells are circular and only one layer of clouds exists. Two instances can be considered here: (1) 

that one station is under maximum fading while the other is under minimum fading conditions or 

(2) both stations are under fading conditions with attenuation below the A2 dB threshold, and 

eventually, improving the link reliability and performance. With analysis of Figure 6.8 and an 

advection velocity of 10 m/s, the best separation distance Dbst, is given by: 

𝐷bst = 5[𝐹𝐷,𝑚𝑛 + 𝐼𝐹𝐷,𝑚𝑛]           [𝑚]                                          (6.5) 

where FD,mn is as defined in (6.1) and IFD,mn is the mean inter-fade duration at an attenuation 

threshold, A2 dB shown in Figure 6.8.  

6.5.2 Rain fade mitigation using ACM 

Due to dynamics of rain attenuation, dynamic fade mitigation schemes such as adaptive coding 

and modulation schemes can be employed for link efficiency. In dynamic schemes, system 

resources such as more power, are not expended during good sky (clear air) conditions. This means 

that the fade mitigation scheme will only be utilized depending on the current prevailing link 

conditions. Adaptive coding and modulation schemes are widely used techniques for improving 

link reliability under fading conditions. This technology enables service and network providers to 

achieve high-capacity data transmission. Additionally, the highest link spectral efficiency possible 

can be maintained throughout during data transmission under any given link condition. 

In Chapter 4, the BPNN was utilized in the prediction of rain attenuation at time (t + 1). This 

shows that, for a deteriorating link, the link state can be predicted beforehand and resources 

allocated to guarantee link availability. The concept developed in Chapter 4 can be used for 
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deployment of ACM as illustrated in Figure 6.9. In this illustration, we assume that the received 

signal level (RSL) is the main factor in deciding on the level of a modulation scheme to employ 

under prevailing link conditions. As an example, Figure 6.9 relates to Table 4.2 with three 

attenuation classes (5, 4, and 3) with attenuation thresholds as shown in Table 4.2. It should be 

noted that relating attenuation thresholds and modulation schemes in this figure are only for 

illustrating the ACM concept.  

The ACM switching algorithm shown in Figure 6.9, indicates that during the period when the link 

condition is good (high RSL), the highest modulation scheme (2048 QAM) is employed. As the 

link’s condition deteriorates and the RSL reaches a given threshold, there occurs a modulation 

scheme down-shift at the step-down threshold (attention threshold). Conversely, the modulation 

scheme is stepped up when the RSL reaches the step-up attenuation threshold as the link conditions 

improves. This process is beneficial because it improves the overall link availability.  

6.6 Chapter Summary 

This chapter has investigated fade duration statistics and their application with site diversity as a 

rain mitigation technique over earth-satellite links. The chapter further illustrates an application 

ACM using results of Chapter 4. The next chapter will give a summary and the conclusions drawn 

from the work of this study as well as providing recommendations for future work.  

 

Figure 6.9 Illustration of ACM switching algorithm 
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CHAPTER 7 

Conclusions and Recommendations for Future Work 

7.1 Chapter Introduction 

In this chapter we present the conclusion of the research work that has been carried out and 

documented in this thesis and make further recommendations on the future work. 

7.2 Thesis Conclusion 

In Chapter 3, the long-term R0.01 parameter was examined from data spanning a period of 17 years 

and results show that this parameter has been rising. This information is critical for accurate 

estimation of rainfall attenuation over the region of study, for rain fade mitigation. Attenuation 

estimated from the ITU-R proposed value of between 40 – 60 mm/h will not be accurate because 

the current value of this parameter stands at around 132 mm/h. This is revealed using data collected 

in the period 2013-2017, with a lower sampling time of 30 sec.   

Additionally, modelling of rain drop size distribution using the lognormal DSD is investigated in 

this chapter and results show that, due to intense rain storms, larger rain drops with mean diameters 

of over 4 mm are not well represented by the typical 3-parameter lognormal DSD. Consequently, 

rain attenuation estimated from measured DSDs reveal that at the same rain rate, the microwave 

link is exposed to higher attenuation resulting due to larger rain drops present in intense rain 

storms. This finding implies that specific attenuation values obtained from measured rain DSDs 

provide more accurate results compared to those obtained through the well-known and widely used 

power-law model.  

In Chapter 4, results show that the backpropagation neural network can predict rain rate time series 

well, and hence, attenuation, over a communication link. This prediction is useful for dynamic rain 

fade mitigation over a link. Rain fade mitigation techniques such as adaptive coding and 

modulation techniques are applied according to the link condition, hence the need to predict the 

future link condition for adjustment of the modulation scheme. Moreover, results in this chapter 

revealed that the trained BPNN model is suitable for use in tropical regions with equatorial climate. 
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The Queueing theory technique was used to determine distributions of the three basic rainfall 

queueing parameters in Chapter 5. Analysis of these results show that the service time and the 

overlap time are best represented by the Erlang-k distribution, whereas the inter-arrival time for 

shower and storm regimes are best fitted with Erlang-k and the exponential distributions 

respectively. These parameters were subsequently used to develop a model for estimating rain cell 

sizes using Rmax as the model input. This information is required for application in site diversity as 

a rain fade mitigation scheme. For Effectiveness, two stations are to be separated by a distance 

greater than the average cell diameter. This ensures that the two stations are not subjected to the 

fading effect of the same rain cell. Further, the Markov chains model was utilized to develop state 

probability matrices and it is revealed that, for storms, rain storms with maximum rain rates in the 

range 40  Rmax  100 mm/h are dominant with a state probability of 36.82%.   

In Chapter 6, rain fade duration statistics are examined at six different attenuation thresholds 

ranging from 1.28 dB to 56.98 dB. Results show that the mean fade duration decreases with an 

increase in the attenuation threshold for both pre-storm period (PSP) and storm period (SP), with 

storms having relatively higher values within threshold range of 2  A  20 dB. Further, the number 

of fades exceeded at a given threshold is found to be higher for the storm period compared to the 

pre-storm period. This indicates that fade spikes are more frequent during the SP period, hence the 

mitigation scheme to be employed should result in link efficiency.  Using rain fade duration 

statistics, a model is developed for estimation of the best distance, Dbst, of earth stations separation 

that could improve the signal quality of transmission using the site diversity scheme. Lastly, the 

ACM technique is used as an illustration in the application for rain fade mitigation. 

7.3 Recommendations for future work 

 Develop or modify any existing rain DSD model that can suitably represent intense rain 

storms over the region of study. 

 Investigate rain fade statistics using data collected at other sampling times and make 

comparisons with the results of the current study. 

 Investigate optimal frequencies that can successfully be transmitted under different rain 

storm magnitudes 
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 In the application of the backpropagation neural network for rainfall prediction, we 

recommend training the BPNN using rainfall data collected at a much lower integration 

time of less than 30 sec and make comparisons with the current results.  

 Future work should consider the effect of temperature and pressure on the maximum rain 

drop size within a rain storm and their relationships with Dmax.  

 Due to constant variations of fading over communication links, future work should explore 

the use of self-optimizing networks and how they can be designed to autonomously 

compensate for fading and interference and allocate radio resources for quality of service 

based on demand and environmental parameters. 
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Appendix 1  

Summary of rain rate conversion models [Emilliani et al., 2009] 
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Appendix 3  

Best fit parameters of (2.21) for Fucino as a function of 

probability 

 

Appendix 4 

Best fit parameters of (2.21) for Gera Lario as a function of 

probability 

 


