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Abstract

A challenge in clinical medicine is that of correct diagnosis of disease. Medical researchers invest

considerable time and effort to enhance accurate disease diagnosis. Diagnostic tests are important

components in modern medical practice. The receiver operating characteristic (ROC) is a commonly

used statistical tool for describing the discriminatory accuracy and performance of a diagnostic

test. A popular summary index of discriminatory accuracy is the area under ROC curve (AUC).

In the era of high-dimensional data, scientists are evaluating hundreds to multiple thousands of

biomarkers simultaneously. A critical challenge is the combination of these markers into models

that give insight into disease. In infectious disease, markers are often evaluated in the host as well

as in the microorganism or virus causing infection, adding more complexity to the analysis. In

addition to providing an improved understanding of factors associated with infection and disease

development, combinations of relevant markers is important to diagnose and treat disease. Taken

together, this presents many novel and major challenges to, and extends the role of, the statistical

analyst.

In this thesis, we will address the problem of how to select from multiple markers using existing

methods. Logistic regression models offer a simple method for combining markers. We applied

resampling methods (e.g., Cross-Validation and bootstrap) to adjust for overfitting associated with

model selection. We simulated several multivariate models to evaluate the performance of the re-

sampling approaches in this setting. We applied the methods to data collected from a study of

tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in Cape Town. Baseline lev-

els of five biomarkers were evaluated and we used this dataset to evaluate whether a combination

of these biomarkers could accurately discriminate between Tuberculosis Immune Reconstitution
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Inflammatory Syndrome (TB-IRIS) and non TB-IRIS patients, applying AUC analysis and resam-

pling methods.
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Chapter 1

Introduction

1.1. Motivation and Purposes

A challenge in clinical medicine is that of correct diagnosis of disease. It is undesirable to declare

someone as infected with a serious disease when in fact the individual is disease free and likewise

undesirable not to declare someone as diseased when in fact the individual is diseased. Both errors

have serious implications to the individual. Medical researchers invest considerable time and efforts

to improve accurate disease diagnosis. The receiver operating characteristic (ROC) is a commonly

used statistical tool for describing the discriminatory accuracy and performance of a diagnostic test

(Pepe [47]). The ROC curve was first used in signal detection theory (Egan [21] and Green and

Swets [27]). In the late 1980’s, researchers began applying ROC curves methodology to medical

diagnostic test evaluation (Hanley [31], Shapiro [51]). However the use of ROC curves in Radiology

was earlier reported in the 1980s in a paper by Swets and Pickett [57]. In general the ROC analysis

has been extended for use in visualizing and analyzing the behavior of diagnostic systems (Swets

[59]). A receiver operating characteristic (ROC) graph is a technique for visualizing and ranking

classifiers based on their performance. It is a commonly used statistical tool for describing the

discriminatory accuracy of a diagnostic test. In order to appropriately define the ROC curve

in relation to disease diagnosis one needs to understand the difference between sensitivity and

specificity of a test. Sensitivity is the probability that the test result is positive given the individual

is truly diseased. Specificity is the probability that the test result is negative given the individual

is truly disease free. Suppose the classification of a sample from an individual into diseased or

disease free depends on a set threshold or cut-off value of a continuous biomarker. At each of these
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Chapter 1 – Introduction

cut-offs an estimate of the sensitivity and specificity of the test can be found. The ROC is a plot of

sensitivity versus 1-specificity for different values of the cut-off points of the continuous biomarker.

Combining multiple biomarkers to estimate the AUC is of interest in the era of multiple assessments.

When we have several biomarkers we can combine them to obtain better diagnostic accuracy and

improve the AUC from all possible combinations (Fang et al., [22]). In this thesis we are interested

in combining biomarkers to estimate the AUC. For this purpose we use Logistic regression as it is

commonly used when the outcome or response is the presence is binary. In order to obtain the best

(maximum) AUC we applied feature selection, also known as variable selection. This is a technique

of selecting a subset of relevant features for building models and it improves model performance.

Resampling procedures are non-parametric inference methods based on generating repeated samples

drawn from the original sample. They can be implemented computationally by simulating these

new samples.

The Cross-Validation method is a standard tool for estimating prediction error and it is a specialized

resampling procedure for application in model validation problems. It is mainly used in settings

where the goal is prediction and one is interested to estimate how accurately a predictive model

will perform in practice.

In 1979 Efron [18] introduced the bootstrap as a general method for estimating the sampling distri-

bution of a statistic based on the observed data. This method is also used for assigning measures

of accuracy to statistical estimates. Bootstrapping is accomplished by selecting with replacement

n observations from among the original set of n observations (unlike in the cross-validation).

The main purpose of this thesis is to use the resampling methods (Cross-Validation and Bootstrap),

discussed in Chapter 3, to estimate the AUC for procedures that select and combine biomarkers

and also to make inference. We simulated several multivariate models to evaluate the performance

of the resampling approaches in this setting. We applied the resampling methods to data collected

from a study of tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS), as part of

ongoing collaboration between my supervisors and Professor Robert Wilkinson from the Institute

of Infectious Disease and Molecular Medicine (IIDMM), University of Cape Town. TB-IRIS occurs

in 8 − 43% of HIV-infected patients receiving TB treatment after starting antiretroviral therapy

(ART). Baseline levels of five biomarkers were evaluated and we used this dataset to investigate
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Chapter 1 – Introduction

whether a combination of these markers could accurately discriminate between IRIS and non-IRIS

patients by applying the AUC analysis and resampling methods.

1.2. Background and Related Studies

The history of the ROC curves goes back to the second world war where it was firstly used in

analyzing radar signals and later used in signal detection theory (see Fawcett [23] or Green and

Swets [27]). Since then the usage and applications of ROC curves has spread to many other fields

such as psychophysics, medicine (Hanley [31], Shapiro [51]), epidemiology (Aoki et al., [2]), radiology

(Metz [44]), social sciences and evaluation of machine learning techniques (Spackman [55]). ROC

analysis is a very rich area for research and a large number of articles have been published in the

last two decades.

One of the earliest adopters of ROC graphs in machine learning was Spackman [55], who demon-

strated the value of ROC curves in evaluating and comparing algorithms. Recent years have seen

an increase in the use of ROC graphs in the machine learning community and for examining the

effectiveness of diagnostic markers in distinguishing between diseased (D) and non-diseased (D)

individuals (Greiner et al., [28], Pepe [47], Shapiro [51] and Zhou et al., [67]). A diagnostic test

result can be binary, ordinal or continuous. A binary test result simply provides the diagnosis as

positive or negative. Ordinal and continuous tests provide measurements (on an ordinal or contin-

uous scale). For instance, blood pressure, as an indicator of hypertension, serves as an example of

a continuous marker. Ordinal markers are widely used in radiology for examining X−rays, where

radiologists provide rankings corresponding to likelihood of disease.

The area under the ROC curve (AUC) is a popular measure to summarize the ROC curves in

diagnostic testing. It is also used in non-diagnostic testing systems for example the use of AUC in

clinical trials (Hauck [34]) and in toxicology (Bosch et. al., [24]).

Some experimental studies comparing different accuracy estimation methods have been previously

done but most of them were on artificial or small datasets. We now describe some of these studies:

Dodd and Pepe [17] have proposed a new method for making inference about covariate effects on

the performance of a classifier. Advantages of this approach are that “it can be simply applied

by adapting standard binary regression methods, it requires fewer assumptions than existing ROC
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Chapter 1 – Introduction

regression methods”.

Zhang et.al., [66] considered clinical trials with two treatments and a non-normally distributed

response variable.

The authors mentioned that the semi-parametric area under the ROC curve (AUC) regression model

proposed by Dodd and Pepe [17] can be used. However, because a logistic regression procedure is

used to obtain parameter estimates and a bootstrapping method is needed for computing parameter

standard errors, their method may be cumbersome to implement. In [66] it is proposed to use a

set of AUC estimates to obtain parameter estimates and combine DeLong’s method and the delta

method for computing parameter standard errors. Their new method avoids heavy computation

associated with the Dodd and Pepe’s method and hence is easy to implement.

It is of interest to estimate the AUC. The resampling methods, such as Cross-Validation and

Bootstrap, can be used for this purpose.

Efron [19] conducted five sampling experiments and compared leave-one-out cross-validation, sev-

eral variants of bootstrap, and several other methods. The purpose of the experiments was to

investigate some related estimators, which seem to offer considerably improved estimation in small

samples. The results indicate that leave-one-out cross-validation gives nearly unbiased estimates

of the accuracy, but often with unacceptably high variability, particularly for small samples, and

that the 632 bootstrap performed best.

Fang et. al., [22] considered the optimal linear combination that maximizes the AUC, this pa-

per compared the estimating of the AUC associated with the estimated coefficients using Cross-

Validation, Bootstrap and re-substitution methods. The authors recommended the Cross-Validation

procedure, which works very well as an estimate for the AUC associated with the estimated coeffi-

cients.

1.3. Thesis Outlines

In this thesis we are mainly concerned with the ROC curves in the context of biomedical diagnostic

testing and the computations of the area under the ROC curves (AUC). The thesis is divided into

five chapters.
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Chapter 1 – Introduction

Chapter 1 is an introduction to the thesis, which is itself divided into three sections. In Sections

1.1 and 1.2 we introduce the purposes of the thesis, the ideas and background behind the ROC

curves analysis. Section 1.3, which is the current one is to describe the structure of this thesis.

In Chapter 2 we discuss the concept of Receiver Operating Characteristic (ROC) Curves. This

chapter is divided into four sections, where we first give some important definitions and basic

concepts in Section 2.1. Section 2.2, which is mainly concerned with the ROC for continuous tests,

is divided into three subsections, where in Subsection 2.2.1 we define the ROC curves and give

an example for a ROC curve. In Subsection 2.2.2 we mention some properties and attributes of

ROC curves. In Subsection 2.2.3 we introduce the Binormal ROC Curve, which is the classic form

of ROC curve. In Section 2.3, we introduce four important indices of the ROC curves, where in

Subsection 2.3.1, we discuss an important index, namely the area under ROC curve, denoted by

AUC. In Subsection 2.3.2 we briefly review the ROC at a specific point (ROC(t0)). In Subsection

2.3.3, we define the partial AUC, which is another important summary measure. Subsection 2.3.4

is devoted to the study of the Kolmogrov-Smirnov index. In Section 2.4, we give a motivation for

combining multiple biomarkers as a better diagnostic test tool than a single biomarker on its own.

We describe some methods for combining multiple biomarkers, namely the Boolean combination

(Subsection 2.4.1) the likelihood ratio approach and risk score functions (Subsection 2.4.2) and the

method based on logistic regression (Subsection 2.4.3).

In Chapter 3 we review resampling methods, namely cross-validation, bootstrap and permutation

test. The chapter is composed of five sections. In Sections 3.1, 3.2 and 3.3 we discuss the methods of

cross-validation, bootstrap and permutation test respectively. Section 3.4 is devoted to discussing

the Feature or Variable Selection problem. Finally in Section 3.5 we discuss the reseampling

methods in the context of multiple biomarkers.

In Chapter 4 we are concerned with simulation studies and application to a real dataset. The

chapter is divided into two main sections. Section 4.1 itself is divided into two subsections, where in

Subsection 4.1.1 we explain how we generate different datasets from different settings. In Subsection

4.1.2 we used the free software R to obtain some results and we listed these results in Table 4.1.

Section 4.2 is also divided into two main subsections where we apply the resampling methods

discussed in Chapter 3 to a real dataset that has been collected from a study of tuberculosis

immune reconstitution inflammatory syndrome (TB-IRIS) at Cape Town.
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Chapter 1 – Introduction

Chapter 5 is a conclusion to the thesis and we suggest some of the future work that can be done

as an extension to the current work.

Finally some R programs are supplied in the Appendix. We would also like to mention that 68

relevant references are listed under the Bibliography.
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Chapter 2

Receiver Operating Characteristic

(ROC) Curves

We would like to mention that in most of the work on this chapter we follow mainly the book of

Pepe [47] supplemented with our own understanding of the problem.

2.1. Definitions and Basic Concepts

In this section we quote some of the basic and important definitions and concepts that will be

required throughout this thesis.

If a subject is classified as diseased or non-diseased and a test result as positive or negative,

indicating the presence or absence of the disease, then there are four possible outcomes. These are

• when the test reports a positive result for a person who actually has the disease. We refer to

this result as a true positive (TP),

• when the test reports a negative result for a person who actually is disease free. We refer to

this result as a true negative (TN),

• when the test reports a positive result for a person who is disease free. We refer to this result

as a false positive (FP),

• when the test reports a negative result for a person who actually has the disease. We refer

to this result as a false negative (FN).

7



Chapter 2 – Receiver Operating Characteristic (ROC) Curves

When a single test is performed, the person may in fact have the disease (D = 1) or the person may

be disease free (D = 0). The test result may be positive (Y = 1), indicating the presence of disease,

or the test result may be negative (Y = 0), indicating the absence of the disease. Using these

actual disease status and test results variables, the previous four outcomes can be summarized in

the following table.

D = 1 D = 0

Y = 1 True Positives (TP) False Positives (FP)

Y = 0 False Negatives (FN) True Negatives (TN)

We define the true positive and negative fractions to be respectively TPF =
TP

TP + FN
and

TNF =
TN

TN + FP
. In Definition 2.1.1 we will refer to TPF and TNF as sensitivity and specificity

respectively. These are original concepts in diagnostic testing literature and will be used throughout

the development of this thesis.

Definition 2.1.1. The sensitivity (true positive fraction TPF ) is defined to be the probability

that a test result will be positive when the disease is present in the individual, while the specificity

(true negative fraction TNF ) is defined to be the probability that a test result will be negative when

the disease is not present.

In probability notation the sensitivity and specificity are written respectively as

TPF = P (Y = 1|D = 1) = TP/(TP + FN) and

TNF = P (Y = 0|D = 0) = TN/(TN + FP ).

Sensitivity and specificity describe how well the test discriminates between patients with and with-

out disease. In fact we are also interested to know the probability of disease, given a certain test

result. This leads to the predictive values of the test.

Definition 2.1.2. The positive predictive value PPV is defined as the probability that disease

is present when the test is positive, while the negative predictive value NPV is defined as the

probability that disease is not present when the test is negative.

8
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In probability notation, the PPV and NPV are written respectively as

PPV = P (D = 1|Y = 1) = TP/(TP + FP ) and

NPV = P (D = 0|Y = 0) = TN/(TN + FN).

Definition 2.1.3. The likelihood ratio LR is the probability of a given test result among people

with a disease divided by the probability of that test result among people without the disease.

In probability notation the LR is written as P (Y = a|D = 1)/P (Y = a|D = 0), where a = 0 or 1

in the case of a binary test result.

Definition 2.1.4. The positive likelihood ratio LR+ is defined to be the ratio between the

probability of a positive test result given the presence of the disease and the probability of a positive

test result given the absence of the disease, while the negative likelihood ratio LR− is defined

to be the ratio between the probability of a negative test result given the presence of the disease and

the probability of a negative test result given the absence of the disease.

In probability notation the LR+ and LR− are written respectively as

LR+ = P (Y = 1|D = 1)/P (Y = 1|D = 0) and

LR− = P (Y = 0|D = 1)/P (Y = 0|D = 0).

Remark 2.1.1. Note that from Definitions 2.1.1 and 2.1.4 we obtain

LR+ =
sensitivity

1− specificity
and LR− =

1− sensitivity
specificity

.

2.2. Introduction to Receiver Operator Characteristic Curve (ROC) for Continuous

Tests

2.2.1 Definition of ROC Curves

A continuous test means a test based on a continuous test variable or biormarker as a measure of

presence of disease. For a threshold c, a binary test from the continuous test result Y is said to

9



Chapter 2 – Receiver Operating Characteristic (ROC) Curves

be positive if Y ≥ c and negative if Y < c. The corresponding true and false positive fractions, at

threshold c, are defined to be

TPF (c) = P [Y ≥ c|D = 1], (2.1)

FPF (c) = P [Y ≥ c|D = 0], (2.2)

respectively.

Definition 2.2.1. The ROC curve is the set of all possible true and false positive fractions for Y

for all c. That is to say

ROC(.) = {(FPF (c), TPF (c))| c ∈ R}. (2.3)

The ROC curve shows the trade off between specificity and sensitivity as the threshold for deter-

mining positivity varies.

Remark 2.2.1. Note that as c increases, both FPF (c) and TPF (c) decrease, while if c decrease,

then both FPF (c) and TPF (c) increase. In the special cases if c −→∞, then limc−→∞FPF (c) =

limc−→∞ TPF (c) = 0 and if c −→ −∞, then limc−→−∞ FPF (c) = limc−→−∞ TPF (c) = 1. Thus

the ROC curve is a monotone increasing function in (0, 1)× (0, 1) (see Figure 4.1 of Pepe [47]).

The ROC curve can also be written in the form (see Pepe [47]):

ROC(.) = {(t, ROC(t))| t ∈ (0, 1)}, (2.4)

where t 7→ TPF (c), thus this defines the ROC function and c is the corresponding threshold to

FPF (c) = t.

2.2.2 Properties and Attributes of ROC Curves

A test result is said to be perfect if TPF (c) = 1 and FPF (c) = 0 for some threshold c. Graphically,

the diagnostic accuracy increases as its ROC curve approaches the left upper corner as shown in

Figure 2.1.

On the other hand an uniformative test result is defined to be the test that does not separate

between diseased and non-diseased subjects. That is TPF (c) = FPF (c), ∀c. Graphically the

10
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Figure 2.1: An example of a ROC curve

ROC curve of a uniformative test result is a straight line with slope 1 (i.e., the straight line joining

the points (0, 0) and (1, 1).

In the following proposition we quote some important results from Pepe [47].

Proposition 2.2.1. (i) The ROC curve is invariant to strictly increasing transformations of Y,

(ii) if SD and SD denote the survivor function for Y in diseased and non-diseased populations,

where SD(y) = P [Y ≥ y| D = 1] and SD(y) = P [Y ≥ y| D = 0], then the ROC curve can be

represented as follows:

ROC(t) = SD(S−1
D

(t)), t ∈ (0, 1), (2.5)

(iii) with LR being the likelihood ratio, the optimal criterion based on Y for classifying subjects as

positive for disease is LR(Y ) > c, in the sense that it achieves the highest true positive fraction

among all possible criteria based on Y with false positive fractions t = P (LR(Y ) > c|D = 0).

PROOF. We only show (ii). For other statements see Results 4.1, and 4.4 of Pepe [47]. Now to show

Equation (2.5), let c = S−1
D

(t), that is the corresponding FPF = t. Thus we have P [Y ≥ c| D =

0] = t. The corresponding TPF is P [Y ≥ c| D = 1] = SD(c). Therefore the TPF that corresponds

to FPF = t is ROC(t) = TPF = SD(c) = SD(S−1
D

(t)). Hence the result. �

We conclude this section by listing some of the important attributes of the ROC curves. These
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Figure 2.2: ROC curves for perfect, uninformative and two tests A and B. Test A is better than B

attributes have been listed in Table 4.1 of Pepe [47] and in Fawcett [23]. In summary the ROC

curve:

• Provides a tool for describing the test across a range of values and it is useful in early

evaluation of tests when specific thresholds are unknown.

• Can be a useful guide for choosing thresholds in real applications.

• Is a useful mechanism for comparison between different non-binary tests, as it is scale invari-

ant.

2.2.3 Binormal ROC Curves

The binormal ROC curve plays a major role in ROC analysis and it provides the classic model for

ROC curves. Its form is derived from normal distributions for test results. To derive the functional

form of binormal ROC curves, suppose that the test results are normally distributed in diseased

and non-diseased populations.

Proposition 2.2.2. Suppose that YD ∼ N(µD, σ2
D) and YD ∼ N(µD, σ2

D
). Then

ROC(t) = Φ(a + bΦ−1(t)), (2.6)

where a =
µD − µD

σD
, b =

σD

σD
and Φ denotes the standard normal cumulative distribution function.

12
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PROOF. Let c be any threshold. Then because of the symmetric nature of the normal distribution

we have

FPF (c) = P (YD > c) = Φ
(

µD − c

σD

)
,

TPF (c) = P (YD > c) = Φ
(

µD − c

σD

)
.

For FPF we can see that c = µD − σDΦ−1(t). Thus

ROC(t) = TPF (c) = Φ
(

µD − c

σD

)
= Φ

(
µD − µD + σDΦ−1(t)

σD

)
= Φ

(
a + bΦ−1(t)

)
completing the proof. �

The binormal ROC curve is defined to be ROC(t) = Φ(a + bΦ−1(t)). The coefficients a and b are

referred to as the intercept and the slope of the binormal ROC curve respectively.

Remark 2.2.2. Note that the slope of the ROC curve at t is the likelihood ratio at the corre-

sponding threshold c.

Now

• if b = 1, then the binormal ROC curve is concave everywhere,

• if b > 1, then the likelihood ratio decreases and then increases,

• if b < 1, then the likelihood ratio increases and then decreases, as t ∈ (0, 1).

When b 6= 1, this leads to anomalies in the ROC curves. Thus the fact that the binormal ROC curve

does not have the monotone likelihood ratio raises some concern about using it for approximation

of real data. However Swets [58] and Hanley [32] and [33] showed that a binormal ROC curve is a

good approximation in practice.

We have seen in Proposition 2.2.1 that the ROC is invariant to monotone increasing data transfor-

mations. Therefore if YD and YD have normal probability distributions and if we let WD = h(YD)

and WD = h(YD), where h(.) is a monotone strictly increasing function, then the ROC curve for WD

13
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and WD is a binormal curve given by ROC(t) = Φ(a + bΦ−1(t)). Conversely, to say that the ROC

curve for YD and YD is binormal is simply to say that for some strictly increasing transformation

h(.), the functions h(YD) and h(YD) have normal distributions (see Pepe [47]).

We conclude by mentioning that the binormal assumption states that some monotone transforma-

tion of the data exists to make YD and YD normally distributed and this can be taken as a weak

assumption.

2.3. Some of ROC Curves Indices

In this section we briefly go over some of the ROC indices, which provide important information

about the ROC curves. Many indices have been developed in the literature and are used in various

applications, for example see Shapiro [51], Greiner et al., [28], Zhou et al., [67] and Pepe [47].

2.3.1 Area Under ROC Curves (AUC)

While the ROC curve contains most of the information about the accuracy of a continuous marker,

we may want to reduce ROC performance to a single scalar value representing expected perfor-

mance. The most commonly used global index is the area under the ROC curve (AUC). It is a

convenient way of comparing markers. For continuous markers the AUC is defined as

AUC =
∫ 1

0
ROC(t)dt. (2.7)

We note from Equation (2.7) that the AUC is a portion of the area of the unit square. Hence

its value will always be between 0 and 1. Values of AUC close to 1 indicate that the marker has

high diagnostic accuracy and a test is called perfect if its AUC = 1, while a test is called an

uninformative if its AUC = 0.5. AUCs less than 0.5 may suggest the scale needs transformation so

that increasing values indicate increasing likelihood of diseased.

Definition 2.3.1. Let A and B be two tests. We say that A is better than B if

ROCA(t) ≥ ROCB(t), ∀ t ∈ (0, 1).

Proposition 2.3.1. Let A and B be two tests such that A is better than B. Then

AUCA ≥ AUCB.

14



Chapter 2 – Receiver Operating Characteristic (ROC) Curves

Remark 2.3.1. The converse of Proposition 2.3.1 is not necessarily true. For example it may be

the case that for some number k ∈ (0, 1), we have

ROCA(t) ≥ ROCB(t), ∀ t ∈ (0, k] and ROCB(t) ≥ ROCA(t), ∀ t ∈ [k, 1).

Thus ∀ t ∈ (0, k] test A is better than B and ∀ t ∈ [k, 1) test B is better than A

The AUC has an interesting statistical interpretation (Bamber [6], Hanley and McNeil [31], Pepe

[47]). It is equal to the probability that a test result chosen randomly from diseased subjects is

greater than a test result chosen randomly from non-diseased subjects. In general

AUC = P (YD > YD) +
1
2
P (YD = YD).

For a continuous test we have P (YD = YD) = 0. Thus the AUC for a continuous test will have the

form

AUC = P (YD > YD).

To show the above we have

AUC =
∫ 1

0
ROC(t)dt =

∫ 1

0
SD(S−1

D
(t))dt

=
∫ −∞

∞
SD(y)dSD(y)

=
∫ ∞

−∞
P (YD > y)fD(y)dy

=
∫ ∞

−∞
P (YD > y, YD = y)dy

= P (YD > YD)

by change of variable from t to y = S−1
D

(t), where fD denotes the probability density function of

YD and independence of YD and YD, we can write the AUC in the form above.

The interpretation of AUC as probability of correctly ordering the diseased and non-diseased sub-

jects is an interesting result but it does not provide the best interpretation of this important

measure. We thus can regard the AUC as an average of TPF, averaged uniformly over the whole

range of FPF in (0, 1). Dodd [14] suggested the use of a weighted average approach, weighting

certain parts of FPF domain more than others.
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The AUC for the binormal ROC curve is given by

AUC = Φ
(

a√
1 + b2

)
PROOF. Recall that AUC = P (YD > YD) = P (YD − YD > 0). Let W = YD − YD then W ∼

N(µD − µD, σ2
D + σ2

D
) and

p(W > 0) = 1− Φ

−µD + µD√
σ2

D + σ2
D


= Φ

 µD − µD√
σ2

D + σ2
D


= Φ

µD − µD

(σD)
/

√
1 +

σ2
D

σ2
D


= Φ

(
a√

1 + b2

)
which completes the proof. �

It is interesting to note that the area under the empirical ROC curve is the Mann-Witney U-statistic.

That is

AUCe =
nD∑
j=1

nD∑
i=1

I[YDi > YDj
] +

1
2
I[YDi = YDj

]/nDnD. (2.8)

2.3.2 The ROC(t0)

If we are interested in a specific FPF value say t0, then the corresponding TPF value ROC(t0)

provides relevant summary index.

We can interpret ROC(t0) as a proportion of diseased subjects that have test results greater than

1− t0 quantile for non diseased observations. If t0 is small then the ROC(t0) is interpreted as the

proportion of diseased subjects with test result values above the normal range.

One of the restrictions of ROC(t0) is that it does not give all the information as the ROC(t). For

two tests A and B such that ROCA(t0) = ROCB(t0), if ROCA(t) ≥ ROCB(t) for any t ∈ (0, t0),

then it is obviously that test A is better than test B with regard to the overall performance.
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2.3.3 Partial AUC

The partial area under the curve pAUC(t0) is defined to be

pAUC(t0) =
∫ t0

0
ROC(t)dt. (2.9)

It is a measure concerned with the values of FPF ∈ (0, t0) and it uses all points on (ROC(0), ROC(t0)).

A lower bound for pAUC is
t20
2

and this happens when the test is uninformative (TPF (c) = FPF (c)

for all thresholds c). An upper bound for pAUC is t0 and this happens when the test is perfect.

The normalized value of pAUC is defined to be pAUC(t0)/t0 and it is clearly that it ranges from

t0/2 to 1 for uninformative and perfect tests respectively. The normalized pAUC can be interpreted

as
pAUC(t0)

t0
= P [YD > YD|YD > S−1

D
(t0)].

That is to say it is the probability of correctly ordering a diseased and non-diseased observation

selected randomly given that the non-diseased observation is above 1 − t0 quantile of the non

diseased distribution.

More general formula for Equation (2.9) has been given in Dodd and Pepe [16].

2.3.4 Kolmogorov-Smirnov (KS)

The maximum vertical distance between the ROC curve and TPF = FPF is an index we refer to

it as KS. We have

KS = maxt|ROC(t)− t| = maxt|SD(S−1
D

(t))− t| = supc∈(−∞,∞)|SD(c)− SD(c)|.

We can see that this is exactly the Kolmogorov-Smirnov measure, which measures the distance

between two distributions SD and SD of two tests YD and YD respectively (Gail and Green [26]).

In fact we identify the index KS with Kolmogorov-Smirnov measure.

Another well-known measure is Youden index, which is a special case of Kolmogorov-Smirnov

measure. For more information on this index, refer to Fluss [25].
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2.4. Motivation for Combining Multiple Biomarkers

In this thesis we are mainly interested in combining multiple biomarkers since this combination

may possess a better diagnostic accuracy than any single test on its own. For example, a single

biomarker may not give sufficient sensitivity and specificity in the study of a population with

ovarian cancer. However, combinations of biomarkers may.

Methods for combining multiple biomarkers can be found in Pepe [47]. Here we go briefly over

some of these methods.

2.4.1 Boolean Combinations

This method is used when the predictors are binary. Suppose that there are P predictors {Y1, Y2, · · · , YP }.

For example each of these predictors can be described as either present or absent. These predictors

are combined by using the conjunctions “AND”, “OR” and “NOT”. Since each predictor Yj for

some j ∈ {1, 2, · · · , P} has two possibilities, there will be 2P combinations in total. Thus if P = 2,

there are four possibilities namely (0, 0), (0, 1), (1, 0) and (1, 1). The decision rules are then clas-

sified as the “Believe the positive” (BP) and “Believe the negative” (BN) rules (Marshal [43]) as

defined below.

Definition 2.4.1. For two binary tests Y1 and Y2 we define the “Believe the positive” (BP) to be

that if Y1 OR Y2 is positive, then the subject is classified as diseased, while we define the “Believe

the negative” (BN) to be that if Y1 AND Y2 are positive, then the subject is classified as diseased

free.

In general the BP test is more sensitive and less specific than all the component tests, while the

BN test is more specific and less sensitive than each test.

We remark that as the number of predictors P get larger, the Boolian combination becomes more

complex since the 2P combinations become large.
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2.4.2 The Likelihood Ratio Method (LR)

In Definition 2.1.3 we defined the likelihood ratio. The likelihood transformation is an interesting

tool when we want to combine multiple test results Y = {Y1, Y2, · · · , YP }. First, we must provide

some definitions. The following is a central result that plays an important role in finding the

optimal combination, Pepe [47]. The LR(Y ) with Y = {Y1, Y2, · · · , YP } gives all optimal decision

rules based on P tests. That is LR(Y ) > c will

• maximize the sensitivity among all possible criteria based on Y with FPF = t, ∀t ∈ (0, 1)

• maximize the specificity among all possible criteria based on Y with TPF = r, ∀r ∈ (0, 1)

• minimize the overall misclassification probability

where the chosen c depends on an optimality criterion.

Although the LR is a useful tool for combining multiple tests, it is still not easy to apply in practice

as the multivariate probability distribution for Y must be known in advance, which is not easy to

calculate.

Next we introduce a principle that is equivalent to LR function. We refer to this principle as the

risk score RS(Y), which is commonly estimated with data.

Proposition 2.4.1. The ROC curve based on RS(Y) is the same as LR(Y).

PROOF. To show that RS(Y) is a monotone increasing function of LR(Y) it is sufficient to prove

that the RS(Y ) and LR(Y ) have the same ROC curve. Now

RS(Y ) = P [D = 1|Y ]

=
P [Y |D = 1]P [D = 1]

P [Y ]

=
P [Y |D = 1]P [D = 1]

P [Y |D = 1]P [D = 1] + P [Y |D = 0]P [D = 0]

=
LR(Y )P [D = 1]

LR(Y )P [D = 1] + P [D = 0]
,

which is a monotone increasing function in LR(Y ). Hence the result �
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We conclude by mentioning that to obtain the optimal combination of a multiple test results, we

should ascertain the RS function or alternatively use any monotone increasing function of the RS.

2.4.3 Logistic Regression

Logistic regression is commonly used when the outcome or response is the presence or absence of a

condition, often a disease. In these cases, the explanatory variable is often a test or procedure used

to detect this condition. Logistic regression allows us to convert these agreement proportions into

probabilities of having the disease. In addition, these probabilities can be converted into sensitivity

and specificity which can be used to determine the accuracy of a procedure or test in successfully

predicting the absence or presence of a condition. A mathematical formula for the logistic regression

is given by

log(P (D = 1|Y )/1− P (D = 1|Y )) = β0 +
p∑

i=1

βiYi.
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Resampling Methods

Resampling procedures are statistical inference methods based on generating repeated samples

drawn from the original sample. They can be implemented computationally by simulating these

new samples.

In this chapter we review and discuss methods of resampling, namely cross-validation, bootstrap

and permutation test methods. Much of this is described by the Efron and Tibshirani [20]. In our

applications in Chapter 4 we use the cross-validation and bootstrap methods and their combina-

tions.

3.1. Cross-Validation

Cross-Validation is a standard tool for estimating prediction error and it is a specialized resampling

procedure that is designed specifically for application in model validation problems. It is mainly

used in settings where the goal is prediction and one wants to estimate how accurately a predictive

model will perform in practice. It can be used to estimate the error of a given model as a basis for

model selection by choosing one of several models that has the smallest estimated prediction error.

Cross-validation is important especially in cases where further samples are costly or impossible to

collect.

Cross-validation is accomplished by implementing the following steps.

• leaving out a portion of the sample
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• building the prediction rule on the remaining sample (training set)

• predicting the class labels of the left out (test set) sample.

Types of Cross-Validation

K−fold Cross-Validation

K−fold cross-validation can be summarized in the following steps:

• Split the full dataset into K randomly equal sized subsets. Keep one of them for testing the

model and use the other K − 1 parts as training data.

• Fit the model for the K − 1 parts included and calculate the prediction error of the fitted

model when predicting the kth part of the data left out.

• repeat the above step for all k = 1, 2, · · · ,K and average the K results from the K−fold

prediction.

The advantage of this method is that all observations are used for both training and testing and

each observation is used for testing exactly once and used for training K − 1 times. Note that

the variance of the resulting estimate is reduced as K increased. On the other hand the training

algorithm has to be rerun from scratch K times.

The simplest case of K−fold cross-validation is when K = 2 (2−fold Cross-Validation). For each

fold, we randomly assign data points to two sets, so that both sets are equal size. We then train

on the first set and test on the second set, followed by training on the second set and testing on

the first set. This has the advantage that each data point is used for both training and validation

on each fold.

Note 3.1.1. Prediction error, PE, is a quantity that measures how well the model predict the

response value of a future observation. It is often used for model selection since it is sensible to

choose a model that has the lowest prediction error among a set of candidates [20]. In regression

models it refers to the expected squared difference between a future response and its prediction

from the model that is PE = E(y − ŷ)2.

22



Chapter 3 – Resampling Methods

Leave One Out Cross-Validation (LOOCV)

This is same as the K−fold cross-validation with K being equal to the number of observations in

the original sample. We use a single observation from the original sample as the validation data,

and the remaining observations as the training data. This is repeated such that each observation

in the sample is used once as the validation data. Leave one out Cross-Validation is a common

choice for small sample sizes. It is accomplished through the following steps:

• The full dataset is divided into training and test (validation) sets. The test set contains a

single observation.

• The prediction rule is built from scratch using the training set.

• The rule is applied to the observation in the test set for class prediction.

• The process is repeated until each observation has appeared once in the test set.

Repeated Random Subsampling Validation

This method randomly splits the data set into training and validation data. For each such split, the

model is fit to the training data and predictive accuracy is assessed using the validation data. The

results are then averaged over all the splits. The advantage of this method is that the proportion

of the training/validation split is independent from the number of folds. On the other hand some

observations may never be selected in the validation subsample, whereas others may be selected

more than once. Cross-Validation can be used to provide an improved estimate of prediction error,

but for variance estimation we use bootstrapping (with LOOCV as an internal loop).

3.2. Bootstrap Method

In 1979 Efron [18] introduced the bootstrap as a general method for estimating the sampling dis-

tribution of a statistic based on the observed data.

Bootstrapping can be used to estimate measures of accuracy to statistical estimates. Bootstrap

estimation of the true error rate (See Simon [52]) is an alternative to cross validation. Bootstrapping

is accomplished by selecting with replacement n observations from among the original set of n
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observations (unlike in the cross-validation). With bootstrapping the original sample could be

duplicated as many times as computing resources allow. Also every resample has the same number

of observations as the original sample. Thus the bootstrap method has the advantage of modeling

the impact of the actual sample size. It should be noted that a predictive model is developed

from scratch, this includes the variable selection step with each bootstrap replicate. The model is

then used to predict the class for each observation not in the bootstrap sample. Each prediction

is recorded as correct or incorrect. This process is repeated for many bootstrap samples and the

average number of misclassification per prediction is used as an estimate of the misclassification

rate (Simon [52]).

We remark that bootstrap estimates have smaller variances, especially for small sample sizes. An

estimate θ∗B, b = 1, 2, · · · , B of the parameter of interest θ is calculated from each pseudo sample.

Then an estimate of the variance of the parameter of interest is calculated as follows for the

bootstrap:

V arBS(θ) =
1

B − 1

B∑
b=1

(θ∗b − θ∗)2

where B is the number of replicate samples and θ∗ = 1
B

B∑
b=1

θ∗b .

It has been suggested that the number of replicate samples needs to be large. Efron[20] stated that

a large B would be 200 replicates, however if confidence intervals will be calculated then it has been

suggested that B needs to be 1000. Generally variance decreases as sample size increases. For this

reason we use 1000 bootstrap replicates in both simulation studies and application to real dataset.

In this thesis we calculated AUC for combined biomarkers by using bootstrap Cross-Validation

method. Here we built a Leave One Out Cross-Validation (LOOCV) function and used this function

inside bootstrap loop. That is to say we used an outer bootstrap loop with Cross-Validation as

an inner loop. The LOOCV split the full dataset into training and a test, which contains a single

observation. The training set consists of the other remaining observations. For the training set, we

build our predictive models and we would like to mention that a variable selection procedure should

be used within Cross-Validation loop. We then predicted the part of the data left out. This gives a

value between 0 and 1. The process was repeated until all the possible sets are selected. Finally we

used these values to estimate the AUC To obtain estimation of bootstrap Cross-Validated AUC, we

drew a bootstrap sample and performed AUC Cross-Validation on the bootstrap sample. We used
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1000 bootstrap replicates. The purpose of using bootstrap method is to get the variance estimates

for Cross-Validated AUC.

3.3. Permutation Test

Permutation tests are computer intensive statistical methods that predate computers. They are

a subset of non-parametric statistics methods and were first introduced by R. A. Fisher in 1930s.

They are attractively simple and have close connection with bootstrap.

Permutation tests are called resampling tests and they are considered a special case of nonpara-

metric tests. Nonparametric test statistics do not rely on a specific probability distribution that

describes the underlying population. However, permutation tests are not quite distribution free.

Some underlying assumptions are required with respect to the samples, namely (exchangeability)

LaFleur [38].

Note 3.3.1. A collection of random variables Xi, i ∈ {1, 2, · · · } is exchangeable if for every finite

subset of random variables Xi1, Xi2, · · · , XiN and every permutation operator ρ(.), which rearranges

any set of integers, the joint probability distribution of the permuted sequence Xρ(i1), Xρ(i2), · · · , Xρ(iN)

is the same as joint probability distribution of the original sequence. We also remark that indepen-

dent and identically distributed random variables are exchangeable.

The main application of permutation tests is the two-sample problem, which is defined next. Let F

and G be the probability density functions of two independent random samples x and y respectively,

where

x = {x1, x2, · · · , xn} and y = {y1, y2, · · · , ym}.

In other words x is a random sample of size n from F and y is a random sample of size m from G,

where x and y are independent of each other. This setup is called the two-sample problem.

The permutations often are referred to as the physical act of permuting subject labels (eg. group

1 or 2 in the above example) and the permutation tests can be accomplished as follows:

• Data from an experiment are tested using some pre-specified test statistic.

• The test statistic is generated for the original sample of the data (observed permutations).
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• The results are saved and data permutations are then generated.

• A test statistic is then calculated for each of the permutations and compared against the test

statistic based on the original data.

We permute (rearrange) the data by shuffling their labels and then calculate the test statistic on each

permutation. The collection of test statistic from the permuted data constructs the distribution

under the null hypothesis, which states that there is no difference between the two density functions,

thats is F = G.

The permutations either can be all possible permutations or a random sample of all possible per-

mutations. The permutation tests based on a random sample of permutations is still exact, in the

sense that the significance level of the test is equal to the false rejection rate. However, random

permutations can be less powerful than all possible permutations and increasing the number of

permutations improves the approximation to the exact Type I error.

Permutation tests are therefore used when assumptions for parametric tests cannot be met or when

an exact test is desired. They are often as powerful as the unbiased parametric test when sample

sizes are small.

Permutation tests are restricted to testing under the null hypothesis and gives a simple way to

compute the sampling distribution for test statistics under the null hypothesis. To estimate the

sampling distribution of the test statistic we generate many samples under the strong null hypoth-

esis. The null hypothesis was defined above.

A commonly used example of permutation test is the Fisher’s exact test, which is used for evaluating

the association between two dichotomous variables.

3.4. Feature Selection

Feature selection, also known as variable selection or feature reduction is the technique of selecting

a subset of relevant features for building models. Variable and feature selection have become

the focus of much research when tens or hundreds of thousands of variables are available. Such

datasets are common in gene expression array studies. Feature selection is the common first step

when developing a class predictor based on microarray data (Simon [52]). In fact it is reasonable
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to assume that only some subset of many of measured genes contribute useful information for

distinguishing the classes. By removing most redundant genes (variables) from the data, feature

selection helps improve the performance of models. The objective of variable selection is to avoid

overfitting, improve model performance and providing faster and more effective predictors.

One approach to feature selection, is to select variables based on their statistical significance in

univariate tests of differences between the classes. For this purpose t−test or Wilcoxon rank-

sum test can be used to assess univariate statistical significance (Simon [52]). Then those variables

considered statistically significant are to be selected selected for inclusion in the multivariate model.

Various selection methods such as Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are available. The AIC is a measure of the goodness of fit of an estimated statistical

model. The AIC is an operational way of assessing the trade off between the complexity of an

estimated model against how well the model fits the data. The preferred model is the one with the

lowest AIC value.

The most commonly used methods for variables selection are backward elimination, forward selec-

tion, and stepwise selection. We briefly summarize these methods.

Backward elimination begins with a full model consisting of all candidate predictor variables. Vari-

ables are sequentially eliminated from the model until a predefined stopping rule is satisfied. The

variable whose elimination would result in the smallest decrease in a summary measure is elimi-

nated. A common stopping rule is to stop when all variables that remain in the model are significant

at a pre-specified significance level.

Forward selection begins with the empty model. Variables are added sequentially to a model until

a pre-specified stopping rule is satisfied. At a given step of the selection process, the variable whose

addition would result in the greatest increase in the summary measure is added to the model.

A typical stopping rule is that if any added variable would not be significant at a pre-specified

significance level, then no further variables are added to the model.

Stepwise regression is a standard procedure for variable selection, which is based on the procedure

of sequentially introducing the predictors into the model one at a time. Stepwise selection is a

variation of forward selection. At each step of the variable selection process, after a variable has
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been added to the model, variables are allowed to be eliminated from the model. For instance, if

the significance of a given predictor is above a specified threshold, it is eliminated from the model.

The iterative process is ended when a pre-specified stopping rule is satisfied.

3.5. Resampling Methods in the Context of Combining Multiple Biomarkers

Diagnostic tests are important components in modern medical practice. Recall from Chapter 1

that the ROC curve is a graphical tool for evaluating the discriminatory accuracy of diagnostic

tests and the AUC is the most popular summary index of discriminatory accuracy. When we have

several biomarkers, we can combine them to obtain better diagnostic accuracy and maximum AUC

overall possible combinations (Fang et al., [22]).

As pointed out in Fang et al., [22], the procedure of combining multiple test results has been well

studied. For example, Su and Liu [56] discussed the optimal linear combination under the multiple-

normal assumption; Pepe and Thompson [46]; Pepe, Cai, and Longton [48]; and Ma and Huang

[30] discussed this procedure under the generalized linear model (GLM) assumption. Copas and

Corbett [11] addressed the overfitting problem (using the same data both to fit the score and to

calculate its ROC tends to give an over optimistic estimate of the performance of the score) when

combining tests through logistic regression. In this thesis we use logistic regression, which is often

used to find a linear combination of covariates that best discriminates between two populations.

The purpose of this section is to use the resampling methods that have been introduced in the

previous sections (cross-validation, bootstrap and permutation test) to estimate the AUC in the

context of variable selection.

Cross-Validation is the simplest and most widely used method for estimating the predictor error.

As we have indicated earlier that if many diagnostic tests are available and some of them are

redundant, then we want to seek an optimal subset of diagnostic tests that the combined test

has the largest AUC. Thus for each subset of diagnostic tests we calculate the cross-validation

estimation of the AUC and then we choose the subset of diagnostic tests, which gives the largest

or maximizes the cross-validated AUC as the best one. We remark that including the redundant

diagnostic tests in the combination will decrease the AUC. This gives rise to the variable selection

problem (see Efron and Tibshirani [20]).
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In this thesis we used Leave one out cross-validation (LOOCV) as it is nearly unbiased, easy to

implement and to understand. In LOOCV the classifier is trained with all but one observation and

test on the observation that left out. This process repeated until every observation is tested once.

The tested observations are pooled together to estimate the AUC. Formally, the AUC is calculated

with LOOCV as
1

|X+||X−|
∑

xi∈X+

∑
xj∈X−

H(C{i}(xi)− C{j}(xj)),

where H is the Heaviside step function defined by

H(x) =

 1 if x ≥ 0.5,

0 if x < 0.5,

C{i} and C{j} denote classifiers trained without the ith and jth respectively and X+ ⊂ X and

X− ⊂ X denote the positive and negative samples in the training set X respectively.

3.5.1 Algorithm to Obtain the AUC Through Cross-Validation

The following is a Leave One Out Cross-Validation algorithm.

• The full dataset is divided into training and test (validation) sets. The test set contains a

single observation.

• For the training set, feature selection is performed from scratch to build a predictive model.

• Predicting the part of the data left out.

• This gives a value in (0,1) for each subjects.

• The process is repeated until all the possible sets are selected.

• These values can be used to estimate the AUC.

3.5.2 Algorithm to Estimate the Variance of AUC Through Bootstrapping

The Bootstrap is used to obtain variance estimates of the cross-validated AUC. The following is

the procedure to do this.
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• Draw a bootstrap sample, stratifying by disease status

• Perform cross-validation as described in previous algorithm on the bootstrap sample.

• Estimate the SE of the cross-validated AUC based on the bootstrap replicates.
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Chapter 4

Simulation Studies and Application

In this chapter the proposed methods introduced in Chapter 3 (Cross-Validation and Bootstrap) are

illustrated by some simulation studies and application to real dataset. We first start by presenting

simulation studies.

4.1. Simulation Studies

Simulations studies use computer intensive procedures to evaluate particular hypotheses and assess

the appropriateness of a variety of statistical methods, under specific models where the truth is

known. These techniques provide empirical estimation of the sampling distribution of the parame-

ters of interest that could not be achieved from a single study. Simulation studies are increasingly

being used in the era of increased computational resources. In addition, simulations can be used

as instructional tools to help with the understanding of many statistical concepts.

4.1.1 Introduction to Simulated Data

In this section we are mainly concerned with examining the performances of different methods, with

particular interest to Cross-Validation and Bootstrap Cross-Validation, as methods for the estima-

tion of the AUC and its variance, in our context. We simulate datasets under the following group

settings: Assume that there are k diagnostic tests (corresponding to k biomarkers) X1, X2, · · · , Xk.

In our case, we let k = 5, that is five biomarkers X1, X2, X3, X4 and X5. Denote the mean vector

of the k biomarkers in diseased and non-diseased by µD
k and µD

k respectively.
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With the above settings, the biomarker outcomes yD
ik and yD

jk for diseased and non-diseased popu-

lations respectively are given by

yD
ik = µD

k + aD
i + εD

ik

and

yD
jk = µD

k + aD
j + εD

jk,

where the notation and assumptions in our case are

• n (resp. m) is the number of individuals from diseased (resp. non-diseased) population and

i (resp. j) is in the set {1, 2, · · · , n} (resp. {1, 2, · · · ,m}),

• k is number of biomarkers,

• aD
i (resp. aD

j ) is the subject specific random effect with normal distribution aD
i ∼ N(0, 0.5)

(resp. aD
j ∼ N(0, 0.5)),

• εD
ik (resp. εD

jk) is random error effect with normal distribution εD
ik ∼ N(0, 0.25) (resp. εD

jk ∼

N(0, 0.25)).

The outcomes yD
ik and yD

jk are generated from three multivariate normal distributions with means

being µD
k = (0.5, 0.25, 0, 0, 0) and µD

k = (0, 0, 0, 0, 0) for three group settings defined by three

different variance-covariance matrices. The three variance-covariance matrices are as follow:

• For the first setting we assume independence for the biomarkers and consequently we will have

variances in the main diagonal and zeros elsewhere. In this case the resulting variance−covariance

matrix will have the form:

Σ1 =



0.75 0 0 0 0

0 0.75 0 0 0

0 0 0.75 0 0

0 0 0 0.75 0

0 0 0 0 0.75


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• For the second setting we add dependence for the biomarkers with mean shift for diseased

(X3, X4 and X5). In this case the resulting variance−covariance matrix will have the form:

Σ2 =



0.75 0.5 0 0 0

0.5 0.75 0 0 0

0 0 0.75 0 0

0 0 0 0.75 0

0 0 0 0 0.75


• For the third setting we assume the same dependence across all the biomarkers. The resulting

exchangeable or compound symmetry variance−covariance matrix is:

Σ3 =



0.75 0.5 0.5 0.5 0.5

0.5 0.75 0.5 0.5 0.5

0.5 0.5 0.75 0.5 0.5

0.5 0.5 0.5 0.75 0.5

0.5 0.5 0.5 0.5 0.75


.

We briefly explain how to derive the third matrix. Suppose that yik = µk + ai + εik. If we assume

that Cov(εik, εil) = 0 for any different biomarkers k and l and that Cov(εij , ai) = 0 then

V ar(yik) = var(ai) + var(εik)

V ar(yik) = σ2
a + σ2

ε

and for ` 6= k the covariance between yik and yi` is

Cov(yik, yi`) = Cov(ai + εik, ai + εi`)

= E[(ai + εik)(ai + εi`)]

= E[a2
i + aiεik + aiεi` + εikεi`]

= E[a2
i ]

= σ2
a.

We remark that the same variance-covariance matrix was used for diseased and non-diseased sub-

jects in all previous settings.
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4.1.2 Simulations Methods and Results

We are interested in combining biomarkers to obtain better diagnostic accuracy and AUC estima-

tion. For this purpose we used Logistic Regression as it is commonly used when the outcome or

response is the presence or absence of a condition, often a disease.

Biomarkers from simulated datasets were used to evaluate whether a combination of these biomark-

ers can accurately discriminate between two groups of diseased and non-diseased after applying

logistic regression for biomarkers combination and resampling methods.

An original R program was created to carry out this process for the simulated data. This program

requires the user to specify

• the number of simulations or repetitions,

• the total sample size N (N/2 diseased and N/2 disease free),

• mean vector of the five biomarkers for diseased subjects,

• mean vector of the five biomarkers for non-diseased subjects,

• variance-covariance matrix or matrices and

• the number of bootstrap replicates B.

We calculated AUC after combining the biomarkers using bootstrap Cross-Validation denoted by

AUCbcv. To do that we built a Leave One Out Cross-Validation (LOOCV) function and used this

function inside bootstrap loop. Estimates of variances are necessary to evaluate the significance of

the AUC statistic. The bootstrap is a replication method that can be used for variance estimation.

In the LOOCV function, we split the full dataset into training and a test, which contains a single

observation. The training set consists of the other remaining observations. For the training set,

we used logistic regression to build our predictive models using the “glm” function, in the library

“stats” together with stepwise variable selection method (“stepAIC” function from “MASS” library

for stepwise model selection). We then predicted the part of the data left out. This gives a value

between 0 and 1. The process was repeated until all the possible sets are selected. Finally we used
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these values to estimate the AUC and to achieve this we used “auc” function from “pROC” library.

For estimation of bootstrap Cross-Validated AUC, we drew a bootstrap sample and performed AUC

Cross-Validation on the bootstrap sample. We used 1000 bootstrap replicates and obtained 1000

AUC estimates, then we calculated the mean for these 1000 AUCs in order to obtain a single AUC.

Also the standard error of the Cross-Validated AUC based on the bootstrap replicates, denoted by

SEb, was obtained.

Computing coverage probability is complex in this setting, therefore we evaluated the true perfor-

mance of the fixed predictor (model) on a large dataset (10 000 total sample size) using AUC and

PE, denoted by TAUC and TPE. This method considers the performance of fixed predictor (based

on the smaller dataset) by computing its performance in a large sample.

We used normal linear discriminant approach LDA to estimate the true value of the AUC. As it

has been mentioned before that the simulated outcomes yD and yD are distributed as a multivari-

ate normal with means µD and µD for the diseased and non-diseased population respectively, and

variance-covariance matrices ΣD and ΣD from the diseased and non-diseased population respec-

tively. With these notations the true AUC is given by:

AUCLD = Φ
[√

(µD − µD)′(ΣD + ΣD)(µD − µD)
]

. (4.1)

Our analysis was based on the estimation of the following quantities: The true AUC based on LDA

(AUCTLD), the true AUC (TAUC) obtained from a large dataset, the mean of Bootstrap Cross-

Validation AUC (AUCbcv) across 1000 simulations, the mean of Cross-Validated AUC (AUCcv)

across 1000 simulations, the confidence interval (CI) for AUCcv using standard error from Hanley

and McNiel [31], the confidence interval of AUCbcv based on asymptotic normality using bootstrap

standard error, proportion of times lower confidence limits of AUCcv CIs that excludes 0.5, pro-

portion of times lower confidence limits of AUCbcv CIs that excludes 0.5, coverage probability of

AUCcv CIs that include the TAUC, coverage probability of AUCbcv CIs that include the TAUC, the

empirical standard error for AUCbcv (SEb.e), bootstrap standard error SEb, the empirical standard

error for AUCcv (SEe.cv), standard error for AUCcv (SEcv) using Hanley and McNeil equation [31]

and finally our last two quantities are the prediction error (see Note 3.1.1) and true prediction error

denoted by PE and TPE respectively. The disease prevalence (this is the proportion of cases in the

total populations) in our simulation was 50%. We summarize our results in Table 4.1.
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Table 4.1 (continued)

SEe.b SEb SEe.cv SEcv PE TPE TAUC

Model 1: (the no 0.039 0.0525 0.0515 0.0387 0.389 0.384 0.662

correlation case)

Model 2: (with

correlation only 0.032 0.0539 0.0516 0.039 0.399 0.393 0.649

between the

first two markers)

Model 3: (the

correlation

between all 0.033 0.0434 0.048 0.036 0.342 0.339 0.722

the biomarkers)

With a total sample size N = 200, bootstrap replicates B = 1000 and number of simulations

nsim = 1000, we used the previous three variance-covariance matrices (Σ1, Σ2 and Σ3) which

are used to obtain Models 1, 2 and 3 respectively in Table 4.1) together with the mean vectors of

diseased and non-diseased µD and µD to perform our simulation. We obtained 1000 AUC estimates.

From Table 4.1, we can see that:

• For Model 1, the AUCTLD equals to 0.6772 while the TAUC equals to 0.662 and that means

using large dataset gives AUC values nearly close to true AUC from LDA. The AUCcv and

AUCbcv equal to 0.6492 and 0.6656 respectively. This result indicates that values of AUCcv

and AUCbcv are very close to each other and they are nearly unbiased as their values are very

close to the true AUC values. Based on CI’s for both AUCcv and AUCbcv we deduce that the

two methods yield a significant discriminatory probability (the CI’s do not include 0.5). We

also investigated the the level of discrimination of the two methods by looking at how often

the lower limits exclude an AUC = 0.5. The proportion of times lower of CI’s for AUCcv

and AUCbcv that exclude 0.5 are 0.903 and 0.875 respectively. These can be interpreted as

the power of the methods. However, both methods (Cross-Validation and Bootstrap Cross-

Validation) perform well. The coverage probabilities (proportion of time the CI’s include true

AUC values) for AUCcv and AUCbcv are 0.875 and 0.963 respectively, indicating that CI’s

for the cross-validation method are too low. This shows that 875 out of 1000 CI’s of AUCcv

include the true AUC values, while 963 out of 1000 CI’s of AUCbcv include the true AUC

values, and indicates that the bootstrap cross-validated AUC estimation perform better than
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just cross-validated AUC estimation. We also found that the SEe.b and SEb are equal to 0.039

and 0.0525 respectively. The SEe.cv and SEcv are 0.0515 and 0.0387 respectively. This shows

that the bootstrap affords larger variances and using Hanley & McNeil for standard error

gives smaller standard error. This is due to the fact that the sample size is small (especially

for cross-validated AUC). Finally we found that both PE and TPE values are similar to each

other (0.389 and 0.384 respectively).

• For Model 2, the AUCTLD equals to 0.6628 while the TAUC equals to 0.649. The AUCcv and

AUCbcv equal to 0.6385 and 0.655 respectively. This result indicates that values of AUCcv

and AUCbcv are close to each other and they are nearly unbiased as their values are close to

true AUC values. Based on CI’s for both AUCcv and AUCbcv we deduce that the two values

of AUCcv and AUCbcv are statistically significant. However the AUC values tend to be lower

here than under Model 1. The proportion of times lower of CI’s for both AUCcv and AUCbcv

that exclude 0.5 are 0.873 and 0.793 respectively. The coverage probabilities of CI’s (that

include true AUC values) for both AUCcv and AUCbcv are 0.856 and 0.972 respectively. This

shows that 972 out of 1000 CI’s of AUCbcv include the true AUC values, indicating that the

bootstrapping is better than just cross-validation in order to estimate the coverage probability

and it gives AUC values close to true AUC. We also found that the SEe.b and SEb are equal

to 0.036 and 0.0539 respectively. The SEe.cv and SEcv are 0.053 and 0.039 respectively. This

shows that the bootstrap affords larger standard errors. Finally we found that both PE and

TPE values are similar to each other (0.399 and 0.393 respectively).

• For Model 3, the AUCTLD equals to 0.7422 while the TAUC equals to 0.722. The AUCcv

and AUCbcv equal to 0.7123 and 0.7295 respectively. We can see that the values of AUCcv

and AUCbcv are nearly unbiased as their values are close to true AUC values. Based on

CI’s for both AUCcv and AUCbcv we deduce that the two values of AUCcv and AUCbcv are

statistically significant (the CI’s do not include 0.5). The proportion of times lower limits of

CI’s for both AUCcv and AUCbcv that exclude 0.5 are 0.982 and 1 respectively. This shows

high power for both methods. The coverage probabilities of CI’s (include true AUC values)

for both AUCcv and AUCbcv are 0.896 and 0.960 respectively, indicating that the bootstrap

is affords confidence intervals that most of them include the true AUC. We also found that

the SEe.b and SEb are equal to 0.033 and 0.0434 respectively. The SEe.cv and SEcv are 0.048

and 0.036 respectively. Finally we found that both PE and TPE values are 0.342 and 0.339
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respectively.

From the above results we can see that LOOCV is nearly unbiased in order to estimate the AUC

for the three models. It appears that the bootstrap cross-validated AUC values are larger than the

cross-validated AUC values, and coverage is better with the bootstrap cross-validation approach.

Most of the confidence intervals of bootstrap cross-validated AUC’s contained the true values of

AUC. We conclude by remarking that using Model 3 (with correlation) is preferable since we

obtained the highest AUC and smallest variance compared to other two models. Furthermore the

bootstrap obtain larger variances compared to empirical variances. We considered a relatively large

sample size. Future study of smaller sample sizes are worth consideration.

4.2. Application to Real Dataset

In Section 4.1 we evaluated the performance of resampling methods through simulation studies.

In this section we evaluate the performance of resampling methods through application to a real

dataset to see if the results of the simulation studies are consistent when applied to real data. We

first introduce the dataset that was used in our application.

4.2.1 Tuberculosis Immune Reconstitution Inflammatory Syndrome (TB-IRIS)

Dataset

The dataset that we are using here has been collected from a study of tuberculosis immune re-

constitution inflammatory syndrome (TB-IRIS). According to a recent paper by Marais et. al.,

[40], paradoxical tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) occurs

in 8 − 43% of HIV-infected patients receiving TB treatment after starting antiretroviral therapy

(ART) in South Africa. It is found that TB-IRIS results from rapid restoration of Mycobacterium

tuberculosis (M. tuberculosis)-specific immune responses.

Neurological TB-IRIS occurs in a substantial proportion, specifically in 12% of TB-HIV patients

on concurrent treatment cases, and is the commonest cause of central nervous system (CNS) dete-

rioration during the first year of ART in settings of high TB/HIV prevalence. Mortality is high (up

to 30%) in those affected. Manifestations of neurological TB-IRIS include: meningitis, intracranial
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tuberculomata, brain abscesses, radiculomyelitis and spinal epidural abscesses. For more details

about these biomarkers, we refer the reader to [3, 12, 39, 49, 42, 61, 64]. There are not many

studies describing tuberculous meningitis (TBM)-IRIS that have been published. The authors of

[40] investigated clinical and laboratory findings in ART-naive HIV-infected patients who presented

with TBM. They undertook serial cerebrospinal fluid (CSF) sampling in patients who did and did

not develop TBM-IRIS.

A prospective, observational study targeting 34 adults (≥ 18 years) ART-naive HIV-infected pa-

tients presenting with meningitis was carried out at GF Jooste Hospital, a public sector referral

hospital in Cape Town. The hospital serves a low-income, high-density population in which the

TB notification rate exceeds 1.5% per year with 70% of TB cases co-infected with HIV. This study

was carried from March 2009 through October 2010.

4.2.2 Data Results

First, we consider AUC estimation for every biomarker to evaluate the performance of each biomarker

in distinguishing between IRIS and Non-IRIS groups. But our main purpose is to calculate AUC

after combining biomarkers using resampling methods. Baseline levels of five biomarkers were used

to evaluate whether a combination of these biomarkers could accurately discriminate between IRIS

and non-IRIS patients. This was accomplished by applying AUC analysis and resampling methods.

We denote the five biomarkers by il12p40, tnfa, infg, il10 and il6 respectively.

We report the coefficients of the biomarkers from fitting logistic regression for full sample size as

in Table 4.2.

Table 4.3 contains the AUC values for each biomarker, their 95% confidence intervals (CI) and

standard errors SE. The CI and SE were estimated using the bootstrap method with 1000 replicates.

We used the R libraries “pROC” and “pcvsuite” for this purpose.

We recall that a larger AUC value would suggest that the test is more accurate in distinguishing

between IRIS and non-IRIS subjects and it is expected that the higher the AUC, the less variability

there would be. As can be seen in Table 4.3, based on logistic regressions for each biomarker, the

smallest AUC values were for il12p40 and il10 equal to 0.67 and 0.66 respectively. The bootstrap

40



Chapter 4 – Simulation Studies and Application

Table 4.2: Coefficients of the Biomarkers

Estimate Std. Error z-value Pr(> |z|)

(Intercept) -1.668e+02 4.543e+04 -0.004 0.997

il12p40 -7.169e-01 6.442e+02 -0.001 0.999

tnfa 4.168e+00 1.108e+03 0.004 0.997

infg -1.073e-02 1.750e+01 -0.001 1.000

il10 -3.376e+00 9.303e+02 -0.004 0.997

il6 -9.921e-03 8.698e+00 -0.001 0.999

Table 4.3: AUC Values for Biomarkers

Biomarkers AUC value CI SE

il12p40 0.67 (0.48, 0.84) 0.09

tnfa 0.87 (0.74, 0.96) 0.06

infg 0.77 (0.58, 0.94) 0.09

il10 0.66 (0.45, 0.84) 0.1

il6 0.86 (0.74, 0.96) 0.06

technique provided 95% confidence interval between (0.48 , 0.84) and (0.45 , 0.84) respectively and

their respective standard errors equal to 0.09 and 0.1. Based on null hypothesis H0 = 0.5 and from

confidence intervals for the il12p40 and il10, we conclude that il12p40 and il10 are not statistically

significant and do not have high ability to distinguish between two groups of IRIS and non-IRIS, in

addition to their variances which are the largest variances compared to other biomarkers. For tnfa

and il6, the AUC estimate equals to 0.87 and 0.86 respectively, while the 95% confidence interval

for both of them is approximately (0.74, 0.96), indicating that these two biomarkers are statistically

significant. The standard errors equal to 0.06 for both of them and that means they have smallest

variances. These results suggest that tnfa and il6 have high ability to distinguish between two

groups of IRIS and non-IRIS. For infg a logistic regression, yields an AUC estimate equals to 0.77.

The bootstrap technique provides 95% confidence interval from 0.58 to 0.94 and standard error

equals to 0.09. The CI for infg indicates that this biomarker is statistically significant, however
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Chapter 4 – Simulation Studies and Application

the AUC value suggests that this biomarker does not have high ability to discriminate between two

groups of IRIS and non-IRIS.

From Table 4.3 we conclude that the two biomarkers tnfa and il6 have more ability to distinguish

between two groups of IRIS and non-IRIS compared to other biomarkers as they have the highest

AUCs values and less variability. Each of Figures 4.1, 4.2, 4.3, 4.4 and 4.5 contains the ROC curve,

AUC and CI for each biomarker. Figure 4.6 which combines all the biomarkers together supports

our results.

Figure 4.1: ROC Curve For il12p40

Figure 4.2: ROC Curve For tnfa
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Figure 4.3: ROC Curve For infg

Figure 4.4: ROC Curve For il10

Note that we are interested in combining biomarkers for the purpose of estimating the AUC. For

this purpose we use Logistic Regression as we have a binary response (IRIS states).

Baseline levels of five biomarkers were evaluated and we used them to assess whether a combination

of these biomarkers could distinguish between IRIS and non-IRIS patients with high probability.

This is accomplished by applying AUC analysis and resampling methods.

We calculated AUC after combining the il12p40, tnfa, infg, il10 and il6 using bootstrap Cross-

Validation. To do this we built a Leave One Out Cross-Validation (LOOCV) function and used

this function inside bootstrap loop as before in simulated data. We also calculated the variance for

bootstrap cross validated AUC the same way for simulated data.
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Figure 4.5: ROC Curve For il6

Figure 4.6: ROC Curves For il12p40, tnfa, infg, il10 and il6

An R program similar to the one used in simulation studies, was created to apply the bootstrap

cross-validation technique of AUC and variance estimation to the IRIS data. In this R program

the user is required to specify an input data set and the number of bootstrap replicates. In our

case we used 1000 bootstrap replicates. Table 4.4 shows the results obtained from the application

of the bootstrap Cross-Validation technique.

After applying bootstrap Cross-Validated technique we obtained AUCbcv equals to 0.956. The esti-

mated Standard error for this AUC based on the bootstrap replicates SEb is 0.036. The confidence
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Table 4.4: Bootstrap Cross-Validation of AUC

AUCbcv SEb CI

0.956 0.036 (0.8153, 0.9907)

interval is found to be (0.8153, 0.9907), which does not contain 0.5 and thus the estimated AUCbcv

is statistically significant. The values of AUCbcv, SEb and CI suggests that the combination of

biomarkers yield a high AUC value and small variability. This shows that the combination of

biomarkers has high ability to distinguish between diseased states. Applying the Cross Validation

method (without bootstrapping), we found that the Cross-Validated AUC (AUCcv) is given by

0.967, which is larger than the AUC from bootstrap AUCbcv, although the difference is small. We

also estimated the PE from Cross-Validation applied to the logistic regression and found that the

PE = 0.059, indicating that the model performance is good. An important point that we would

like to mention is that the AUC obtained by combining multiple biomarkers using both Cross-

Validation and Bootstrap Cross-Validation methods have high distinguishing accuracy between

IRIS and non-IRIS subjects compared to AUC based on involving single biomarker in the model.

We conclude this chapter by remarking that resampling methods (e.g., cross-validation and boot-

strap) for the purpose of estimating the area under the receiver operating characteristic curve

(AUC) for a model that combine biomarkers from simulated and real datasets (TB-IRIS) gives

deep insight in understanding the disease and provide a more accurate diagnosis of the disease.
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Chapter 5

Conclusion

Diagnostic tests are important components in modern medical practice. In clinical medicine, correct

diagnosis of disease is of great interest and hence researchers invest considerable time and developing

methods to enhance accurate disease diagnosis. The receiver operating characteristic (ROC) is a

commonly used statistical tool for describing the discriminatory accuracy and performance of a

diagnostic test. The area under receiver operating characteristic (AUC) is a popular summary index

of discriminatory accuracy. In this thesis we evaluated some of the resampling methods namely

Cross-Validation (more specifically Leave One Out Cross-Validation) together with Bootstrap for

the purpose of estimating the (AUC) for models that combine multiple biomarkers. According to our

simulation studies, using large number of bootstrap replicates would give better AUC estimates and

small variability. We found that Model 3 gives higher AUC values compared to the other models.

This tells us that the assumptions under which data is simulated will affect the AUC values. We also

deduced that Leave One Out Cross-Validation (LOOCV) gives nearly unbiased AUC estimation,

but that it alone can not be used to obtain confidence intervals with the correct coverage. Using

bootstrap cross-validated AUC gives high coverage probability. We would like to indicate that the

bootstrap affords larger variances compared to empirical variances, and coverage probability is at

or above the nominal level. Also AUC estimates based on bootstrap cross-validation are larger

than those based on cross-validation. An interesting point is that using large dataset gives AUC

estimates nearly equal to those found using LDA.

An application to IRIS dataset reveals that Cross-Validation method gives higher AUC estimates

than the Bootstrap method. However both cross-validation and bootstrap cross-validation yield

AUC estimations closely to each other.
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Chapter 5 – Conclusion

We conclude by remarking that resampling methods (e.g., cross-validation and bootstrap) for the

purpose of estimating the area under the receiver operating characteristic curve (AUC) for a model

that combine biomarkers from simulated and real datasets (TB-IRIS) gives insight in understanding

the disease and provide a more accurate diagnosis of the disease.

In my future work I plan to continue developing techniques considered in the this project. Simula-

tion studies evaluating performance with smaller sample sizes are warranted. The extension of this

work is to the setting of combining markers measured over time using a time to event outcome.

The introduction of a longitudinal component and censored observations adds new complexities.

An important goal of this analysis is to develop methods that can be iteratively explored with

our medical collaborators. Methods modeling the joint survival distribution have been previously

developed by Heagerty et al [29], but an imputation-based approach might perform similarly. Such

an approach would certainly be easier to implement. Specifically, imputation methods will be con-

sidered to address censoring of survival times. Then longitudinal models can be fit. We will apply

multiple imputation for censored data and obtain time dependent prediction curves. After that we

will compare the results to existing methods for ROC analysis.
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### Simulation R Code

cat(NULL,file="my.csv")

library(MASS)

library(pROC)

Sim<-function(nsim,N,mu1,mu2,Sigma, nboot,seed){

set.seed(seed)

for ( i in 1:nsim){

X1=mvrnorm(N/2,mu1,Sigma)

X2=mvrnorm(N/2,mu2,Sigma)

X=rbind(X1,X2)

y1=rep(1,N/2)

y2=rep(0,N/2)

Y=c(y1,y2)

Dataset = data.frame(Y,X)
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X1.BIG=mvrnorm(5000,mu1,Sigma)

X2.BIG=mvrnorm(5000,mu2,Sigma)

X.BIG=rbind(X1.BIG,X2.BIG)

y1.BIG=rep(1,5000)

y2.BIG=rep(0,5000)

Y.BIG=c(y1.BIG,y2.BIG)

Dataset.BIG= data.frame(Y.BIG,X.BIG)

################################

LOOCV.AUC<-function(Dataset.b){

pred.score<-c()

for (i in 1:rows){

model<-glm(Y~X1+X2+X3+X4+X5,Dataset.b[-i,],family=binomial)

MS<-stepAIC(model,direction="both")

pred.score[i]<-predict(MS,newdata=Dataset.b[i,], type="response")

P = ifelse(pred.score[i]>0.5,1,0)

}

PE1= mean((Y - P )^2)

Auc=auc(Dataset.b$Y, pred.score)

Tab=data.frame(Auc=Auc,PE1=PE1)

return(Tab)

}

auc.b<-c()

for (j in 1:nboot){

rows<- nrow(Dataset)
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s<- sample(1:rows,rows,replace=TRUE)

Dataset.b<-Dataset[s,]

auc.b[j]<-LOOCV.AUC(Dataset.b)$Auc

}

auc.b

AUC=mean(auc.b)

SE=sqrt(var(auc.b))

###############################

PE=LOOCV.AUC(Dataset)$PE1

AUC.cv=LOOCV.AUC(Dataset)$Auc

pred.new<-c()

model<-glm(Y~X1+X2+X3+X4+X5,Dataset,family=binomial)

MS<-stepAIC(model,direction="both", trace=FALSE)

pred.new<-predict(MS,newdata=Dataset.BIG, type="response")

P=ifelse(pred.new>0.5,1,0)

PE.new= mean((Y.BIG - P)^2)

Auc.new=auc(Dataset.BIG$Y, pred.new)

out <- data.frame(AUC,SE,PE,AUC.cv,Auc.new=Auc.new,PE.new)

write.table(out, file = "my.csv", append=(i>1))

}

}

Sim(nsim,N,mu1,mu2,Sigma, nboot,seed)

file.show("my.csv")

50



Appendix

### R Code For IRIS Data

roccurve(dataset="TBM", d="Y", markers=c("V1","V2","V3","V4","V5"),

level=95,nsamp=1000,rocmeth="nonparametric")

#############################################

ROC1<-roc(TBM $Y, TBM $V1)

ROC2<-roc(TBM $Y, TBM $V2)

ROC3<-roc(TBM $Y, TBM $V3)

ROC4<-roc(TBM $Y, TBM $V4)

ROC5<-roc(TBM $Y, TBM $V5)

ROC1 ROC2 ROC3 ROC4 ROC5

sqrt(var(ROC1,method="bootstrap", boot.n=1000))

sqrt(var(ROC2,method="bootstrap", boot.n=1000))

sqrt(var(ROC3,method="bootstrap", boot.n=1000))

sqrt(var(ROC5,method="bootstrap", boot.n=1000))

sqrt(var(ROC5,method="bootstrap", boot.n=1000))

##################################################
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ci.auc(TBM $Y,TBM$V1,boot.n=1000,conf.level=0.95,method="bootstrap")

ci.auc(TBM $Y,TBM$V2,boot.n=1000,conf.level=0.95,method="bootstrap")

ci.auc(TBM $Y,TBM$V3,boot.n=1000,conf.level=0.95,method="bootstrap")

ci.auc(TBM $Y,TBM$V4,boot.n=1000,conf.level=0.95,method="bootstrap")

ci.auc(TBM $Y,TBM$V5,boot.n=1000,conf.level=0.95,method="bootstrap")

##################################################

LOOCV.AUC<-function(Dataset.b){ pred.score<-c()

for (i in 1:rows){

model<-glm(Y~V1+V2+V3+V4+V5,Dataset.b[-i,],family=binomial)

MS<-stepAIC(model,direction="both")

pred.score[i]<-predict(MS,newdata=Dataset.b[i,], type="response")

P = ifelse(pred.score[i]>0.5,1,0)

}

PE1= mean((Y - P )^2) Auc=auc(Dataset.b$Y, pred.score)

Tab=data.frame(Auc=Auc,PE1=PE1) return(Tab)

}

nboot=1000

auc.b<-c()

for (j in 1:nboot){

rows<-nrow(TBM)

s<-sample(1:rows,rows,replace=TRUE)
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Dataset.b<-TBM[s,]

auc.b[j]<-LOOCV.AUC(Dataset.b)$Auc

}

auc.b

AUC=mean(auc.b)

AUC

SE=sqrt(var(auc.b))

SE

PE=LOOCV.AUC(TBM)$PE1

PE
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