
  

 

THE USE OF MACHINE LEARNING ALGORITHMS TO ASSESS THE 

IMPACTS OF DROUGHTS ON COMMERCIAL FORESTS IN 

KWAZULU-NATAL, SOUTH AFRICA 

 

By 

Mthokozisi Ndumiso Mzuzuwentokozo Buthelezi 

 

Supervisor: Dr RT Lottering 

 

Submitted in partial fulfilment of the academic requirements for the degree of Master of 

Science in the Discipline of Applied Environment Science 

 

School of Agricultural, Earth Environmental Sciences 

University of KwaZulu-Natal 

Pietermaritzburg 

May 2020 

 

 



 

 i 

Abstract 

Droughts are a non-selective natural disaster in that their occurrence can be in both high and 

low precipitation areas. However, this study acknowledged that droughts are more recurrent 

and a regular feature in arid and semi-arid climates such as that of Southern Africa. Some of 

these countries rely strongly on commercial forests for their gross domestic product (GDP), 

especially South Africa and Mozambique which means droughts pose a significant threat to 

their economy and the society that depends on this economy. The risks associated with droughts 

have consequently created an increased demand for an efficient method of analysing and 

investigating droughts and the impacts they impose on forest vegetation. Therefore, this study 

aimed to examine the effects of droughts on all commercial forests within the province of 

KwaZulu-Natal (KZN) at a catchment and provincial scale by employing Kernel Support 

Vector Machine (Kernel –SVM), Rotation Forests (RTF) and Extreme Gradient Boosting 

(XGBoost) algorithms. These were based on Landsat and MODIS derived vegetation and 

conditional drought indices.  The main aim of this study was achieved by the following 

objectives: (i) to improve methods for classifying droughts; (ii) to achieve medium spatial 

resolution drought analysis using Landsat sensors; (iii) to determine the accuracy of machine 

learning algorithms (MLAs) when employed on remote sensing data and (iv) to improve the 

usability of conditional drought indices and vegetation indices. The results obtained there-after 

demonstrated that the objectives of this study were met. With the MLAs performing better 

when using conditional drought indices compared to vegetation indices, therefore, highlighting 

drawbacks already associated with vegetation indices. Where at the catchment scale, Kernel – 

support vector machine (SVM) produced an overall accuracy (OA) of 94.44% when based on 

conditional drought indices compared to 81.48% when based on vegetation indices. On the 

same scale, Rotation forests (RTF) produced 96.30% and 81.84% when using conditional 

drought indices and vegetation indices, respectively.  At a provincial scale, RTF produced an 

OA of 76.6% and 70.7% when using conditional drought indices and vegetation indices 

respectively. This was compared to extreme gradient boosting (XGBoost) which produced an 

OA of 81.9% and 69.3% when using conditional drought indices and vegetation indices 

respectively. These results also indicate that it is possible to analyse droughts at provincial and 

catchment scale. Although the results presented in this study were promising, more research is 

still required to improve the applicability of MLAs in drought analysis. 

Keywords: Drought, Machine Learning, Rotation Forests, Kernel, Extreme Gradient Boosting 
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“ 

For I know the plans I have for you, 

declares the Lord, plans to prosper you, 

plans to give you hope and a future. 

- Jeremiah 29:11 
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1. CHAPTER ONE: GENERAL INTRODUCTION 

 

1.1 Introduction 

 

Commercial forests commonly referred to as plantation forests are often a topic of controversy 

in environmental and hydrological sectors, especially in a country like South Africa which is 

not forest-rich (Tewari, 2001; Tuswa et al., 2019).  This is due to these forests being associated 

with negative implications such as environmental degradation, high water usage and 

streamflow reduction (Scott et al., 1998; Wei et al., 2018; Tuswa et al., 2019). These 

implications are primarily due to commercial forests being composed of mainly alien invasive 

species (Shackleton et al., 2019). However, in the South African economic sector, commercial 

forests are highly valuable (Tewari, 2001; Wei et al., 2018). That is because of the increased 

demand for forest products and the ability of commercial forests to generate employment 

opportunities and enable foreign exchange (Tewari, 2001; Naidoo et al., 2013; Davis and 

Vincent, 2017). South Africa has thus invested heavily in commercial forestry. Hence, 

commercial forests account for one percent (1.273 million ha) of the country’s land area and 

approximately half of all commercial forests in the Southern African Development Community 

(SADC) (Naidoo et al., 2013; Davis and Vincent, 2017). Therefore, it can be argued that these 

governments prioritised the economy over the environment. 

However, South Africa is susceptible to recurring droughts and is relatively dry (Scott et al., 

1998; Rouault and Richard, 2003). Droughts generally have major impacts on socio-economic, 

ecological and agricultural systems which are interlinked with forest ecosystems and therefore, 

droughts have been determined to have negative impacts on forests (Dale et al., 2001; Wu et 

al., 2013). A continental summary by Allen et al. (2010) established that increased forest 

mortality in Africa is due to extensive droughts. This is further compounded by diseases and 

insect outbreaks induced by droughts which intensify tree mortality (Ganey and Vojta, 2011; 

Wu et al., 2013).  Therefore, there is a need to research, monitor and analyse the impacts of 

droughts on forests.  
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Monitoring and analysing droughts require some numerical standard; that will aid in 

understanding and quantifying the impacts of droughts (Heim Jr, 2002; Hayes et al., 2011). 

Gaining this understanding and quantification would allow for timely responses to droughts 

(Peters et al., 2002). Compared to raw indicator data, this standard is also more readily useable 

(Zargar et al., 2011). Establishing this standard is, however, hindered by the complexity of 

droughts that arise from a lack of a definitive definition, the difficulty in determining its 

severity and the difficulty to accurately predict its onset and ending (Peters et al., 2002; Hayes 

et al., 2011; Baniya et al., 2019).  

The difficulty in determining the severity of droughts stems from the fact that it is not only 

dependent on the spatial extent, duration and intensity but also the demand on water resources 

by the type of vegetation, economic and human activities within a region experiencing the 

drought (Wilhite and Glantz, 1985). The complexity of droughts and the existence of multiple 

definitions has therefore resulted in the development of multiple drought numerical standards 

of which most are only applicable for a specific region and application (Heim Jr, 2002; Zhuo 

et al., 2016). These include conventional indices that are based on meteorological indices (MI) 

such as Palmer drought severity index (PDSI), standardized precipitation evapotranspiration 

index (SPEI) and standardized precipitation index (SPI) (Peters et al., 2002; Wu et al., 2013; 

Zhang et al., 2017b).  These indices are limited by the sparse and limited availability of weather 

station networks, especially in forested areas (Caccamo et al., 2011). 

The limitations associated with MI can be overcome by remote sensing which can monitor 

meteorological, agricultural and hydrological droughts (Wu et al., 2013). Remote sensing 

enables spatial and temporal analysis of drought impacts through repeated image acquisition 

over a given location (Dube et al., 2016). Thus, there has been increased development of 

multiple drought indices that are based on remote sensing (Peters et al., 2002; Zhuo et al., 

2016; Zhang et al., 2017b). Remote sensing indices include evapotranspiration (ET), 

Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (Zhuo 

et al., 2016). From the indices mentioned above, conditional indices can be derived. 

Conditional indices include the LST based temperature condition index (TCI) and NDVI based 

vegetation condition index (VCI) which are prevalent conditional indices for monitoring the 

impacts, duration and severity of droughts (Du et al., 2013; Zhuo et al., 2016).  

Multiple studies have analysed droughts at continental, national and regional scale; these 

include Ganey and Vojta (2011) who studied droughts by investigating their influence on tree 
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mortality and determined that alongside climate change, they pose a significant threat for 

forests at a global scale. Zhang and Jia (2013) who monitored drought utilising multi-sensor 

microwave remote sensing data in semi-arid northern China. Baniya et al. (2019) studied 

temporal and spatial variation of drought by applying satellite derived VCI in Nepal from 

1982–2015. This current study deviates from the aforementioned studies in that it investigates 

the impacts of droughts at a catchment scale, which will yield more detailed and location-

specific results. The results obtained from the catchment analysis will then be compared with 

those obtained from the provincial scale analysis.  

Remote sensing has improved considerably with temporal resolutions approaching real-time 

image acquisition and spatial resolutions now at sub-meter level (Nouri et al., 2014). However, 

limited studies are using high temporal and spatial resolution sensors because of their limited 

availability and high costs (Dube et al., 2016). Given the economic status of South Africa as a 

developing country, it is important to utilise cheap and easily accessible remote sensing 

imagery from sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) 

and Landsat (Dube and Mutanga, 2015; Dube et al., 2016). Therefore, Landsat sensors 

(Landsat 4 and 5, 7 and 8) and MODIS will be utilised for the purposes of this study. 

Information from these sensors will yield high-volume data sets that will require classification 

into sensible groups that can be interpreted as meaningful information which is required to 

make conclusive arguments (Jain, 2010; Mountrakis et al., 2011).  

There are multiple methods available for organising data; such include factor analysis, principal 

component analysis (PCA), linear regression and cluster analysis amongst others (Jain, 2010). 

These methods are generally classified as supervised when reference data is required or 

unsupervised when image statistics are utilised to obtain the required parameters (Belgiu and 

Drǎguţ, 2014). Also, according to Belgiu and Drǎguţ (2014) there had been no study comparing 

supervised and unsupervised data segmentation methods before their study. However, most 

studies have tended to utilise and recommend supervised object-based techniques if there is 

accurate and efficient reference data (Ma et al., 2017). 

Unsupervised methods are recently becoming widely accepted and utilised by the science 

community (Afanador et al., 2016). However, unsupervised methods are difficult and 

challenging (Jain, 2010), and more studies should be conducted to determine their accuracy 

when classifying large volumes of data. Therefore, this study utilised a supervised approach 

through supervised MLAs, namely, Kernel - SVM, RTF and XGBoost. MLAs are gaining 
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popularity within remote sensing because they can accurately classify non-linear and high 

dimensional data, they accept varying input predictor data and are non-parametric (Maxwell et 

al., 2018; Shiferaw et al., 2019). Multiple studies have also determined that MLAs can match 

if not exceed the accuracies obtained by conventional remote sensing classification methods 

(Mountrakis et al., 2011; Ghimire et al., 2012). 

However, there is often limited reference data in remote sensing which makes SVMs more 

applicable given their performance gain and the fact that researchers have evolved them to be 

employable on low quality and quantity training data (Mountrakis et al., 2011). Kernel – SVM 

is one of the better versions of SVMs, and its basis is that each classifier is trained on samples 

derived from a pair of labelled classes that the classifier must learn to distinguish (Hobbs, 

2018). RTF is defined by Blaser and Fryzlewicz (2016) as “an ensemble method which 

combines the predictions of multiple base learners to create more accurate predictions.” RTF 

also assumes that one classifier is independently constructed utilising the decision tree 

technique where each tree is trained in a rotated feature space on the training samples (Xia et 

al., 2013). XGBoost is based on gradient boosting machines (GBMs), which have been applied 

widely on multiple remote sensing applications (Georganos et al., 2018). It is adjusted for large 

tree structures and yields good classifications with high execution speeds (Sandino et al., 

2018). Utilising these three MLAs will give insight to future prospects of ML in remote 

sensing. 

 

1.2 Aims and Objectives 

 

This study aims to analyse the impacts of droughts on all commercial forests within the 

province of KwaZulu-Natal (KZN) at a catchment and provincial scale by employing MLAs 

on Landsat and MODIS derived from vegetation and conditional drought indices.  

To meet the above aim, the following objectives were determined: 

 To evaluate ML image classification methods for drought mapping. 

 To achieve high spatial resolution drought analysis using Landsat sensors. 
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 To implement machine learning approaches to classify drought damage on commercial 

forests. 

 To improve the usability of conditional drought indices and vegetation indices. 

 

1.3 Research Questions 

 

 Can ML image classification methods be used for drought mapping? 

 Can Landsat be used to analyse the impacts of droughts on commercial forests at a 

catchment scale? 

 How does the drought damage classification conducted at catchment scale compare 

with those conducted at a provincial scale? 

 Can ML algorithms improve on results achieved using conventional classification 

methods? 

 

1.4 Significance of the Study  

 

The findings from this study are very beneficial to the commercial forestry sector and therefore 

the economy of South Africa because this sector contributes significantly to the GDP of the 

country. However, droughts have been found to be more recurrent in South Africa and 

therefore, assessing and understanding their impacts on forest vegetation is very important for 

the commercial forestry sector to adapt to this phenomenon. Thus, researchers that apply 

methods recommended in this study will be able to assess drought impacts more effectively 

and efficiently.  
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1.5 Limitations of the Study 

 

Though significant, some limitations of this study should be noted. The study methodology did 

not account for different species within the Sappi forests. That was because the reference data 

was not mapped out to indicate the grouping of different species. Another limitation is that the 

study utilised only the reference data and no field visits were conducted due to the scope of the 

study. 

 

1.6 Scope of the Study  

 

The study assessed the impacts of droughts on commercial forests in KZN at catchment and 

provincial scales. The 2015 – 2016 drought was the main focus of the study; hence the duration 

of the study was the beginning of 2015 to the end of 2017. 

 

1.7 Structure of the Thesis 

 

Four chapters form this thesis where the first chapter presents the general introduction and the 

last chapter presents the synthesis and concluding remarks. Chapter Two and Three are made 

up of two research papers which seek to meet objectives mentioned in 1.2 and answer research 

questions mentioned in 1.3. 

Chapter Two classifies the impacts of droughts on commercial forests at a catchment scale by 

employing Kernel – SVM and RTF based on Landsat 4 and 5, 7 and 8 data. The study also 

gives insight on the different accuracies obtained when using ML algorithms on vegetation and 

conditional indices. Chapter Three focuses on the classification of commercial forest trees 

impacted by droughts and those which were not; the analysis was conducted at a provincial 

scale. RTF and XGBoost were employed on vegetation and conditional drought indices derived 

from MODIS imagery to achieve the results. 
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2. CHARPTER TWO: IMPLEMENTING MACHINE LEARNING 

APPROACHES TO CLASSIFY DROUGHT DAMAGE ON 

COMMERCIAL FORESTS. 

Abstract 

South Africa and other countries within Southern Africa are susceptible to recurrent droughts 

which pose a major threat to commercial forests. Commercial forestry contributes significantly to 

the economy of these countries as well as the livelihood of people that live in them. Droughts 

enhance forest degradation and exacerbate wildfire outbreaks and destructive pest outbreak. It is 

these events or the possibility of their occurrence that can or could reduce the productivity and 

profitability of commercial forests, hence there is an increased demand for an efficient method of 

analysing and investigating droughts and the impacts they impose on forest vegetation. This study, 

therefore, utilised two MLAs, namely, RTF and Kernel – SVM for the classification of drought 

damaged trees and those that were not damaged within the small Sappi Shafton plantation located 

in the Natal Midlands during the intense and prolonged 2015 – 2016 drought. The algorithms were 

employed on conditional drought (VCI and VMCI) and vegetation (NDVI, EVI, SAVI, NDWI, 

SR and GCHL) indices derived from Landsat 4 and 5, 7 and 8 imageries from 2001 to 2017. Kernel 

- SVM produced an OA of 94.44% when based on conditional drought indices compared to 

81.48% when based on vegetation indices. RTF produced 96.30% and 81.84% when using 

conditional drought indices and vegetation indices, respectively. These results showed that both 

algorithms are capable of accurately detecting trees that exhibit drought damage and those that do 

not, more so RTF and when the algorithms were employed on conditional drought indices data. 

When applied on vegetation indices data, the performance of the algorithms decreased 

considerably. Overall, the study demonstrated that MLAs can be employed when classifying 

drought damage on forest vegetation, Landsat data can be used for analysing drought damage at a 

catchment or regional scale, drought analysis can be undertaken at a catchment scale and that 

conditional drought indices are a better option for drought analysis than vegetation indices. 

Keywords: drought, machine learning, rotation forest, Kernel support vector machine, catchment 
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2.1 Introduction 

 

Commercial forests are crucial for South Africa’s economy (Führer, 2000). In 2015, commercial 

forestry had a contribution approximated to R31.1 billion towards the South African GDP and 

brought employment to 158 400 people (Xulu et al., 2019). However, with droughts occurring 

more frequently; these forests are faced with aggravated degradation which is further compounded 

by drought-induced wildfires and pests outbreaks (Kirilenko and Sedjo, 2007). It has been reported 

that the rate of occurrence of new destructive pest in South Africa is alarming (SA Forestry, 2016) 

and wildfires do not only exacerbate forest degradation, but they also result in deforestation which 

is a concern on its own (Poursanidis and Chrysoulakis, 2017). Forest degradation is a complex 

process, defined by a permanent or a temporary deterioration in the structure or density of the 

vegetation cover, where the deterioration is not necessarily due to land-use change (Lambin, 1999; 

Hosonuma et al., 2012). The complexity of forest degradation arises as a result of its strong 

interaction with climatic fluctuations that generally occurred naturally but have become strongly 

influenced by human-induced climate change (Lambin, 1999).   

Climate change has also, resulted in declining precipitation for semi-arid regions such as South 

Africa (Hans, 1948; Nicholson, 1986; Olsson, 1993). This declining precipitation has led to 

significant drought periods in the country, namely, 1950-1969, 1970-1988, 1992-1995 and 2015-

2016 droughts (Nicholson, 1986; Richard et al., 2001; Baudoin et al., 2017). Thus, the 

characterisation of South Africa as a drought susceptible country (Vogel, 1994; Rouault and 

Richard, 2003). Studies by Breshears et al. (2005), Nepstad et al. (2007), Asner and Alencar 

(2010), da Costa et al. (2010), Saatchi et al. (2013) and Martin-Benito et al. (2017) found that the 

impacts of droughts on forests is reduced canopy cover, tree growth, and above-ground biomass 

which are components of forest degradation. From these findings, it can be concluded that forest 

degradation resulting from droughts will harm commercial forest productivity and profitability 

(Warburton and Schulze, 2008). This does not bode well for a country like South Africa, which is 

dependent on commercial forestry for its GDP. 
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Climate change further compounds the recurrent nature of droughts in South Africa by increasing 

their severity, extent and frequency (Asner and Alencar, 2010). It is these drought conditions that 

are necessary for the manifestation of drought impacts on forest trees (Warburton and Schulze, 

2008; Gazol et al., 2017; Xulu et al., 2019). The 2015-2016 drought which resulted due to an 

extreme El Niño (Bahta et al., 2016) embodied these conditions. Agri SA (2016) reported that this 

drought had such high magnitude, intensity and temperatures that planning was beyond any farmer 

or ministry with any resource base. The year 2015 also saw the lowest mean annual precipitation 

on record for South Africa since 1904 which was 403 mm (De Jager, 2016). The losses 

accumulated by farmers costed up to an estimated R10 million (Bahta et al., 2016). Therefore 

monitoring droughts and the resulting forest degradation and other associated impacts of droughts 

has become inevitable and a necessity to limit the losses incurred by farmers and the government 

(Gazol et al., 2017).  

Monitoring will also aid the consideration of potential drought adaptation measures (Warburton 

and Schulze, 2008). However, like forest degradation, droughts are also complex. Their 

complexity arises from their complex impacts, slow onset and lack of a specific definition (Botai 

et al., 2016). This is further compounded by different species or individual trees exhibiting 

different responses under similar drought stresses (Martin-Benito et al., 2017). This complexity 

has made it difficult to detect droughts (Xulu et al., 2019). As a result, multiple drought indices 

are developed and most are only applicable to a specific region and application (Heim Jr, 2002; 

Zhuo et al., 2016). 

Remote sensing, however, uses optical sensors to detect droughts directly and can, therefore, 

overcome the hassle of selecting a suitable drought index (De Sy et al., 2012; Wu et al., 2013; 

Mladenova et al., 2014; Xulu et al., 2019). Also, drought impacts occur slowly through land cover 

modifications which require integration of temporal, spatial and spectral information that is only 

possible with remote sensing (Lambin, 1999). This is due to remote making it possible to access 

systematic observation systems and historical data archives (Rosenqvist et al., 2003). 

However, the application of remote sensing is hindered by limited access to required data, 

especially in developing countries where funding for projects is generally lacking (Van Westen 
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and Soeters, 2002; De Sy et al., 2012; Bello and Aina, 2014). Lack of funds meant researchers 

could not access remote sensing data products which had been commercialised since 1948 and 

each scene was valued at approximately $4400; that was until the introduction of Landsat-7 which 

decreased the cost of data to approximately $660 per scene (Wulder et al., 2012). In January of 

2008 the National Aeronautics and Space Administration (NASA) and the United States 

Geological Survey (USGS) released the Landsat Data Distribution Policy which enabled Landsat 

products starting from 1972 to be freely distributed (Woodcock et al., 2008). This policy has 

resulted in higher usage of Landsat data products and has enabled the undertaking of studies that 

seek to monitor the impacts of droughts. 

Multiple drought and vegetation indices were derived for purposes of analysing the impact of 

droughts on forest vegetation using Landsat data. Several studies as reported by Du et al. (2013) 

have utilised conditional drought indices with great success, namely, NDVI based VCI (Kogan 

and Sullivan, 1993; Kogan, 1995b) and LST based TCI (Kogan, 1997). Though accurate 

separately, Kogan (1997) and Du et al. (2013) found that the combination of TCI and VCI yielded 

the vegetation health index (VHI) which is a more accurate index, therefore, increasing the 

accuracy of the results. Also, using a single drought index may not be as accurate as using multiple 

indices for the drought analysis (Hao and AghaKouchak, 2013). Therefore, this study will utilise 

multiple drought indices, namely, VCI and vegetation moisture condition index (VMCI) based on 

the normalised difference moisture index (NDMI). Results obtained from the drought conditional 

indices will be compared with raw vegetation indices to determine which can accurately detect the 

impacts of droughts on forest vegetation. However, obtaining these results will require the 

employment of two MLAs that are also capable of visualising these results. 

Machine learning is focused on computer-based systems that improve and adapt through 

experience and it has progressed considerably over the past two decades (Brunton et al., 2020). 

Thus, it has become a preferred method for multiple applications including remote sensing (Jordan 

and Mitchell, 2015). Multiple algorithms based on machine learning have been developed and 

evolved and are said to yield higher accuracies than conventional classification methods (Arganda-

Carreras et al., 2017). MLAs include RTF developed by Rodriguez et al. (2006) based on random 
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forests (RF) and Kernel – SVM which is a supervised learning method (Hobbs, 2018) were utilised 

to classify trees affected by droughts within the Sappi Shafton plantation between 2013 and 2018. 

RTF is classified as an ensemble method that combines the predictions made by multiple base 

learners to create predictions that are more accurate (Blaser and Fryzlewicz, 2016). RTF also 

assumes that one classifier is independently created utilising the decision tree method where each 

tree is trained in a rotated feature space on the training samples (Xia et al., 2013). Multiple studies 

which include Xia et al. (2013), Du et al. (2015) and Khamar and Eftekhari (2018) have utilised 

RTF for the classification of remote sensing imagery and determined that it generally performed 

better than other ensemble methods such as RF and SVM. To verify the accuracy and performance 

of RTF, it was compared with Kernel – SVM because; SVMs generally produce high accuracies 

(Roli and Fumera, 2001; Melgani and Bruzzone, 2004). Comparing these algorithms will aid in 

determining the shortcomings of each algorithm over the other and therefore assist researchers 

when selecting an algorithm to use for future studies. The basis for Kernel-SVM is that each 

classifier is trained on samples derived from a pair of labelled classes which the classifier must 

learn to distinguish (Hobbs, 2018). Kernel – SVM is employable on non-linearly separable data 

(Melgani and Bruzzone, 2004); which is important because data is generally non-linearly 

separable.  

Against this background and the fact that machine learning’s potential to analyse droughts and 

their impacts has not been investigated thoroughly, this study aimed to analyse the impacts of 

droughts on commercial forests over time at a catchment scale. To achieve this, conditional 

drought and vegetation indices were derived from scenes produced by Landsat 4 and 5, 7 and 8. 

Scenes from Landsat are obtained at a 30-meter resolution and 16-day revisit cycles, thus making 

it possible to analyse and visualise vegetation and land cover changes at a catchment scale using 

RTF and Kernel – SVM algorithms (Zhu et al., 2016). Therefore, the objectives of this study were 

adapting machine learning through RTF and Kernel – SVM for drought analysis, localising 

drought analysis to a catchment scale and determining how different indices affect the accuracy of 

RTF and Kernel – SVM.  
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2.2 Methodology 

 

2.2.1 Study area description 

 

The Sappi Forests Natal Midlands District or commonly the Sappi Shafton plantation 

(29°25'17.77"S and 30°11'14.43"E) is located within the Natal Midlands, which is approximately 

70 km from Pietermaritzburg (Clulow et al., 2011) (Figure 2.1). This region is defined by its 

subtropical oceanic climate that yield mild summers and cool dry winters (Hitayezu et al., 2014). 

The Natal Midland’s mean annual temperature is 17℃ and this region receives approximately 659 

mm to 1280 mm of rainfall per year, which is mostly during the wet summer months (Bulcock and 

Jewitt, 2012; Duncan, 2019). Summer rainfall in the Natal Midlands is characterised by many low-

intensity events and some high-intensity storms (Bulcock and Jewitt, 2012). This region also gets 

frequent and heavy mist which has a considerable contribution to the area’s precipitation (Clulow 

et al., 2011). 

The conditions mentioned above make the Natal Midlands an optimal region for perennial crops 

and commercial forestry with Pinus patula (pine), Euculyptus grandis (gum tree) and Acacia 

mearnsii (wattle) being the dominant plantation species (Bulcock and Jewitt, 2012; Albaugh et al., 

2013; Duncan, 2019). However, this region has a history of droughts and with persisting climate 

change, the conditions that make the Natal Midlands a mainstay for commercial forestry are slowly 

deteriorating (Warburton and Schulze, 2008; Duncan, 2019). Droughts decrease precipitation, 

increase soil moisture deficit and create water stress on the forest vegetation (Schönau and Schulze, 

1984). 
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Figure 2.1 The location of the Sappi Shafton plantation within KZN, South Africa. 

 

2.2.2 Data acquisition 

 

Three Landsat sensors were used for this study, namely, Landsat 4 and 5, 7 and 8.  Figure 2.2 

shows the path to acquire scenes from these sensors freely from https://earthexplorer.usgs.gov/ 

which is an archive created and maintained by the USGS Earth Resources Observation and Science 

(EROS) Centre. The Landsat images were downloaded for January, February and December 

beginning from 2001 to 2018. Landsat 8 was launched in 2013. Hence, its scenes were downloaded 

from 2014 to 2018. The three selected months were used because it is during these months that the 

https://earthexplorer.usgs.gov/
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Natal Midlands gets most of its annual rainfall. Comparing these three months, February had to 

some extent more usable scenes. 

 

Figure 2.2 Path used to acquire data from USGS.  

 

Table 2.1 shows different electromagnetic spectrum frequencies measured by the Landsat sensors 

utilised for this study. Frequencies are separated into ranges that are then designated into bands. 

These bands include red, blue, green, near-infrared (NIR), short-wavelength infrared (SWIR) and 

thermal infrared (TIR). The bands that are bold in Table 2.1 were used to calculate NDMI, NDVI, 

normalised difference water index (NDWI), enhanced vegetation index (EVI), soil adjusted 

vegetation index (SAVI), simple ratio (SR) and green channel index (GCHL). 
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Table 2.1 Landsat 4 and 5 Thematic Mapper (TM), 7  Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS) band designations (Zhu et al., 2016). 

 

Landsat 4 and 5 (TM) Landsat 7 (ETM+) Landsat 8 (OLI & TIRS) 

Band Description Wavelength (µm) 
Resolution 

(meters) 
Band Description Wavelength (µm) Resolution Band Description Wavelength Resolution 

Band 1 - Blue 0.45 – 0.52 30 Band 1 - Blue 0.45 – 0.52 30 
Band 1 – Ultra 

Blue 
0.43 – 0.45 30 

Band 2 - Green 0.52 – 0.60 30 Band 2 - Green 0.52 – 0.60 30 Band 2 - Blue 0.45 – 0.51 30 

Band 3 - Red 0.63 – 0.69 30 Band 3 - Red 0.63 – 0.69 30 Band 3 - Green 0.53 – 0.59 30 

Band 4 - NIR 0.76 - 0.90 30 Band 4 - NIR 0.77 – 0.90 30 Band 4 - Red 0.64 – 0.67 30 

Band 5 - SWIR 1 1.55 – 1.75 30 Band 5 - SWIR 1 1.55 – 1.75 30 Band 5 - NIR 0.85 – 0.88 30 

Band 7 – SWIR 2 2.08 – 12.50 30 Band 7 – SWIR 2 2.09 – 2.35 30 Band 6 – SWIR 1 1.57 – 1.65 30 

   Band 8 - Pan 0.52 – 0.90 15 Band 7 – SWIR 2 2.11 – 2.29 30 

      Band 8 - Pan 0.50 – 0.68 15 

            Band 9 - Cirrus 1.36 – 1.38 30 

   Band 61 - TIR 
10.40 – 12.50 

(low gain) 
60 Band 10 - TIRS 10.60 – 11.19 100 

Band 6 - TIR 10.40 – 12.50 120* (30) Band 62 - TIR 
10.40 – 12.50 

(high gain) 
30 Band 11 - TIRS 11.50 – 12.51 100 
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One issue encountered during data acquisition was that most scenes were unusable due to cloud 

cover. This is, however, a known problem as it was previously alluded by Asner (2001) and 

Schleeweis et al. (2016) who stated that optical imagery is disadvantaged by cloud cover which 

persists even during dry conditions. It is for that reason; the three Landsat sensors were utilised 

with a probability that there will be fewer gaps in the data. EROS automatic cloud cover 

assessment (ACCA) algorithms were developed and evolved over the years to be compatible with 

Landsat-7 ETM+ and Landsat-4 and -5 TM images (Schleeweis et al., 2016). However, it should 

be noted that images that were processed before January of 2009 possess inaccurate ACCA scores. 

Therefore, Landsat images that had no cloud cover nor cloud shadows were utilised to obtain the 

results.  

 

2.2.3 Image pre-processing  

 

Images obtained from Landsat are susceptible to distortions caused by atmospheric, solar, sensor 

and topographic effects (Young et al., 2017). To make sure the images utilised in this study did 

not have these distortions, the images were pre-processed through geometric, solar and absolute 

radiometric correction using ArcGIS version 10.4. Schroeder et al. (2006) argued that atmospheric 

correction could introduce new errors. Therefore to avoid incurring these errors, Young et al. 

(2017) recommended that high – level products be used instead of low-level products. Therefore, 

to avoid introducing new errors to the data extracted from the Landsat imagery through 

atmospheric correction, high-level products were downloaded from the USGS database for this 

study. 
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2.2.4 Data processing  

 

The indices used in this study were selected based on their ability to monitor drought impacts on 

vegetation with information derived from {Svoboda, 2016 #61}. Also, all the indices were applied 

on a threshold of one to zero with zero signifying drought impact and one indicating no drought.  

 

a) Conditional Drought Indices 

 

Landsat scenes were first clipped using the boundary of the Sappi Shafton plantation. NDVI and 

NDMI were then calculated with the aim of obtaining the required drought conditional indices 

namely, VCI and VMCI. 

i. Normalised Difference Vegetation Index  

The fraction of radiation that is photosynthetically active and absorbed by vegetation yields NDVI; 

this makes it usable for monitoring long-term vegetation change such as its density and health (Jiao 

et al., 2016; Novillo et al., 2019). NDVI can also aid the calculation of the proportion of vegetation 

(Pv) (Fils et al., 2018). 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 …… (1) 

Where NIR and RED represent the near-infrared band and the red band respectively. For Landsat 

4 and 5 and 7, NIR and RED are band 4 and 3, respectively. For Landsat 8, NIR and RED are 

bands 5 and 4 respectively. 
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ii. Normalised Difference Moisture Index  

NDMI is the indicator of soil moisture content (Sahu, 2014). It is calculated using the following 

equation: 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 …… (2) 

Where NIR and SWIR are the bands designated for near-infrared and short-wave infrared 

respectively.  

iii. Vegetation Condition Index  

Drought impacts are difficult to detect directly from NDVI data, thus VCI was developed by Kogan 

(1995b) who scaled NDVI values from zero to one utilising the minimum and maximum NDVI 

for each location (Zhuo et al., 2016). 

𝑉𝐶𝐼 =  
𝑁𝐷𝑉𝐼− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 …… (3) 

Where NDVImax is the maximum NDVI and NDVImin is the minimum NDVI, calculated for the 

corresponding pixels in the same month from the entire NDVI records (2001–2018) and NDVI is 

the actual NDVI for a pixel in a particular month. When VCI is closer to zero, the vegetation is in 

poor condition, however, when closer to one the vegetation is in a good condition. 

iv. Vegetation Moisture Condition Index 

The VMCI algorithm is similar to the algorithm used to obtain VCI, and the difference is that 

instead of using NDVI when calculating VCI, NDMI is used to calculate VMCI. 

𝑉𝑀𝐶𝐼 =
𝑁𝐷𝑀𝐼−𝑁𝐷𝑀𝐼𝑚𝑖𝑛

𝑁𝐷𝑀𝐼𝑚𝑎𝑥−𝑁𝐷𝑀𝐼𝑚𝑖𝑛
 …… (4) 

Where NDMImax is the maximum NDMI and NDMImin is the minimum NDMI respectively, 

calculated for the corresponding pixels in the same month from the entire Landsat NDMI records 

(2001–2018) and NDMI is the NDMI value for a pixel in a particular month. 
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b) Vegetation Indices 

 

Vegetation indices have been mostly utilised for the derivation of vegetation structural parameters, 

phenological monitoring and vegetation classification (Huete et al., 1999). With NDVI already 

calculated, EVI, SAVI, NDWI, SR and GCHL were calculated to bring a total of six vegetation 

indices to be used to analyse droughts.  

i. Enhanced Vegetation Index 

EVI is regarded as the improved NDVI because of its ability to reduce soil and atmospheric noise 

simultaneously; hence EVI possesses improved vegetation monitoring capabilities (Liu and Huete, 

1995; Huete et al., 1999; Matsushita et al., 2007; Tenny and Hoffman, 2019).   

𝐸𝑉𝐼 =  2.5 × (
𝑁𝐼𝑅−𝑅

𝐿+𝑁𝐼𝑅+6𝑅−7.5𝐵
)…… (5) 

Where NIR is the near-infrared, R represents the band designated for red, L is the soil adjustment 

parameter which equals to 1 and 6 and 7.5 are constant values. 

ii. Soil Adjusted Vegetation Index 

SAVI is an index developed to reduce canopy background noise (Huete, 1988). 

𝑆𝐴𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅)×(1+𝐿)

(𝑁𝐼𝑅+𝑅+𝐿)
 …… (6) 

Where NIR is near-infrared, R is red and 𝐿 is determined according to the specific environmental 

conditions. When the vegetation is dense, L approaches 1, meaning there is less canopy 

background noise (Tenny and Hoffman, 2019). 

iii. Simple Ratio 

Han et al. (2019) theorised that leaves absorb more red light compared to infrared light which 

meant with more leaves in the canopy, the higher the ratio.  
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𝑆𝑅 =  
𝑁𝐼𝑅

𝑅
 …… (7) 

Where NIR is near-infrared and R is the band designated for red. 

iv. Normalised Difference Water Index 

NDWI is defined by Ling et al. (2003) as a dimensionless index which determines the availability 

of water in a vegetation surface. The equation to calculate NDWI was proposed by Nanda et al. 

(2018): 

𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
 …… (8) 

Where NIR is near-infrared and SWIR is the band designated for short wave infrared. 

v. Green Channel Index 

GCHL Index estimates the changes in the state of vegetation using the variety of the green channel 

instead of using the normalised difference between NIR and R (Pedregosa et al., 2011). 

𝐺𝐶𝐻𝐿 =  
𝑁𝐼𝑅

𝐺
− 1 …… (9) 

Where NIR is the band designated for near-infrared and G is the band designated for the green 

channel. 

 

2.2.5 Reference data 

 

Sappi conducted field visits to monitor the condition of forest vegetation in terms of drought 

damage within the 517 compartments in KZN. However, only 30 of the 517 compartments were 

within the Sappi Shafton plantation. Therefore, data from those 30 compartments were utilised as 

reference data for extracting information from the Landsat imagery. R-Studio version 1.2.1335 
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was used to perform this extraction. The extracted information was then utilised by RTF and 

Kernel – SVM to perform drought damage classification within the plantation. 

 

2.2.6 Statistical analysis 

 

2.2.6.1 Kernel – SVM 

 

SVM’s are a powerful tool for diverse machine learning problems and outperform most 

conventional learning algorithms. However, they are not as compact as neural networks (Dutta et 

al., 2015). SVM’s also differ from neural networks in that they do not follow the empirical risk 

minimisation (ERM) rule which is focused on training error minimisation and often leads to 

overfitting problems (Yin and Yin, 2016). To overcome overfitting incurred during training error 

minimisation, SVM’s follow the structural risk minimisation (SRM) rule which also improves 

generalisation abilities by restricting the complexity of the algorithm (Vapnik, 2013).  

However, SVM’s were initially proposed for binary classifications and assumed linear separation 

which rarely occurs in real-world tasks (Yin and Yin, 2016). Therefore, to broaden the applicability 

of SVM’s to real world-tasks, advanced methods such as kernel clustering and kernel principal 

component analysis (KCPA) were introduced. These kernel (K) functions can separate non-

linearly separable data by mapping it at a higher dimension. Kernel SVM’s obtain more classes by 

utilising the “one versus one” reduction method where binary classifiers (K choose 2) are trained 

by training each classifier on the samples from a pair of classes and learn to distinguish between 

them (Hobbs, 2018).   
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2.2.6.2 Rotation forests 

 

RTF is viewed as a typical supervised clustering method (Gu et al., 2008). It is based on the 

decision tree method which is sensitive to the rotation of the feature axes which makes them more 

accurate compared to other decision tree based learning methods (Rodriguez et al., 2006; Du et 

al., 2015). That is because other decision tree based methods only split the class space vertically 

and horizontally which is less likely to produce better classification than performing rotation of 

the feature class (Kazllarof et al., 2019). RTF generates the data set in an Independent Component 

Analysis (ICA) and PCA feature spaces and multiple classification trees are produced by utilising 

the data set produced in these feature spaces (Xia et al., 2013; Gulácsi and Kovács, 2018). 

Rodriguez et al. (2006) selected PCA as a base for feature extraction because ensemble based on 

it performed better than ensemble based on random feature selection. However,  Rodriguez et al. 

(2006) did acknowledge PCA limitations due to dimensionality reduction  highlighted in the 

literature. To overcome reduced dimensionality, RTF randomly divides the feature into K subsets, 

and in each subset the linear transformation method is applied (Wang et al., 2018). RTF also keeps 

all the principal components so that all the discriminatory information is preserved. 

 

2.2.7 Algorithm parameter optimisation 

 

The parameters evaluated for Kernel – SVM were cost (C) and gamma (γ) which are independent 

of each other and the algorithm returns the pair (C and γ) with the least error rate or best accuracy 

as the optimal parameter values (Sarkar et al., 2016). According to Pedregosa et al. (2011), “the 

cost parameter defines the trading off of correct classification of training examples against 

maximisation of the decision function’s margin and the gamma parameter defines the reach of a 

single training example”. When C is high it means the algorithm prioritised error minimisation and 

when it is low, margin maximisation is prioritised (Nanda et al., 2018). Low gamma means the 

single training sample is far-reaching and when high it does not reach far.  



 

23 

 

For RTF, the parameters that affect its performance are K and L which are the number of variable 

subsets and the number of base classifiers respectively (Wang et al., 2018). L is a hyper parameter 

of RTF which can be optimised using cross-validation or a separate validation set and it is L that 

indicates how complex the ensemble is (Rodriguez et al., 2006). Additionally, Wang et al. (2018) 

found that increased L and K lead to increased computational cost and compromise the 

classification accuracy while also noting that the accuracy is not affected by increasing K alone. 

Therefore, a tenfold cross-validation method was utilised to determine optimal parameters for both 

Kernel – SVM and RTF. Once the parameters were optimised, the classification analysis was 

conducted based on 30 forest compartments within the study area to create clusters of forest trees 

similarly affected by droughts and those that were not. Forest trees affected by droughts were 

determined by employing Kernel-SVM and RTF with optimal parameters based on conditional 

drought indices and vegetation indices. The study period stretched between 2013 and 2018; that 

incorporated the onset in 2013, the intensification in 2015 and the offset in 2017 of the drought 

(Xulu et al., 2019). To compute RTF and Kernel-SVM classifications, svm and rotationForest 

functions within the latest version of R-Studio application version 1.2.1335 were used and the 

overall methodology is presented in Figure 2.3.  
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Figure 2.3 The procedure followed to obtain the result of the study. 

 

2.2.1 Classification accuracy assessment 

 

The classification accuracy assessments were conducted for the comparison of the performance of 

conditional drought indices and vegetation indices in detecting and mapping the extent of drought 

impacts over time using Kernel-SVM and RTF. Prior to training the model, the dataset (n = 240) 

extracted from the compartments for all tree species within the Sappi Shafton plantation was 

divided into 70% train and 30% test data. The data, both training and test data for drought damage 

(where level 1 represents the occurrence of drought and level 0 represents no drought) were 
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resampled (10 fold and repeated 5 times) to ensure that the algorithm does not over fit the sample 

data (see Figure 2.4 and Figure 2.5). The Kernel-SVM and RTF were then calculated based on the 

classification results of the test dataset.  

 

                    

 

Figure 2.4 Drought damage data before resampling.  

 

                     

Figure 2.5 Drought damage data after resampling. 

       

The OA from the confusion matrix, AUC and Cohen’s Kappa coefficient were used as indicators 

of a good classification. The OA determines how often the model is accurate and will be utilised 

as the primary measure of accuracy for this study. The area under the receiver operating 

characteristic (ROC) curve is AUC which was computed using R Studio version 1.2.1335 and is 
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considered the primary method of assessing the performance of predictive algorithms or models 

(Han et al., 2019). Cohen’s Kappa coefficient measures the performance of the classifier and 

compares it to how it would have performed merely by chance. Higher values of the Kappa 

coefficient ranging between 100% and 81 % indicate strong correlation and lower values that are 

less than 0% indicate no agreement at all.  

 

2.3 Results 

 

This section presents the results obtained from the classification accuracy assessment where the 

performance of Kernel - SVM was compared with RTF to classify droughts damage based on both 

conditional drought and vegetation indices. 

 

2.3.1 Classification analysis 

 

Kernel - SVM and RTF are both powerful algorithms capable of classifying and clustering non-

linearly distributed data. Both Kernel - SVM and RTF were employed on identical datasets to 

determine which algorithm can accurately classify drought damaged trees from those that were not 

damaged based on conditional drought and vegetation indices. Figure 2.6 presents the decision 

boundaries for binary classification results obtained for both algorithms using conditional drought 

indices, where the points represents the actual observations and the area within the plot represents 

the predicted regions/boundaries where the algorithm predicts the trees will be impacted by 

droughts or not. The red points are trees observed to be impacted by droughts and the green points 

represent the trees that were not; the red area is where the algorithm predicts the trees will be 

impacted by droughts and the green area is where the algorithm predicts the trees will not be 

impacted by droughts.  
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Both algorithms were successful at classifying drought impacted trees from those that were not 

based on drought conditional indices; however, with a few points being misclassified. There was 

a considerable difference between the algorithms when predicting the area where trees not 

impacted by drought were found. Kernel - SVM predicted a relatively smaller area compared to 

RTF which predicted almost half the plot area.  

 

            

Figure 2.6 Kernel – SVM (I) and rotation forests (II) decision boundaries for conditional drought 

indices classification. 

 

The algorithms were then used to classify drought damage data based on vegetation indices (Figure 

2.7). The algorithms classification accuracy decreased compared to their performance when 

classifying drought damage using conditional drought indices. This was due to more points being 

outside the predicted decision boundaries where they belonged. The predicted areas were also 

different for both the algorithms with Kernel - SVM predicting a much smaller area for no drought 

occurrence compared to a larger area predicted by RTF. 
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Figure 2.7 Kernel - SVM (I) and rotation forests (II) decision boundaries for the classifications 

based on vegetation indices. 

 

Kernel - SVM and RTF were both successful at classifying the drought damage data; however, it 

is challenging to determine how accurate the classification was by looking at the decision 

boundaries alone. Therefore, the classification accuracy assessment was conducted. 

 

2.3.2 Kernel – SVM and RTF optimal parameters 

 

Table 2.2 presents the optimal parameter pairs for both algorithms and indices where the highest 

accuracy was obtained. The C for both applications of Kernel – SVM was 100% which meant error 

minimisation was emphasised. However, the gamma was different for conditional drought indices 

and vegetation indices. Kernel – SVM based on vegetation indices had a gamma of 16.7%, which 

means the single training example was far-reaching compared to 50% gamma for Kernel – SVM 

based on condition drought indices that implied a lower reach. RTF’s K and L were identical for 

both indices at 2 and 3, respectively. These optimal parameters were then utilised to build RTF 

and Kernel – SVM classifiers based on conditional drought and vegetation indices. 
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Table 2.2 Algorithm parameters automatically optimised by both Kernel – SVM and RTF to 

generate predictions. 

 Kernel SVM Rotation Forests 

 Conditional 

Drought Indices 

Vegetation 

Indices 

Conditional 

Drought 

Indices 

Vegetation 

Indices 

Cost (C) 1 

0.5 

- 

1 

0.167 

- 

- 

- 

- 

- Gamma (γ) 

K 2 2 

L - - 3 3 

 

 

2.3.3 Classification accuracy assessment 

 

Table 2.3 presents the accuracy results obtained from Kernel - SVM and RTF when employed on 

both conditional drought indices and vegetation indices. RTF performed slightly better than Kernel 

– SVM when classifying based on conditional drought indices and arguably when classifying 

based vegetation indices. This conclusion was drawn from using OA as an indicator where Kernel 

- SVM had an OA of 94.44 % whereas RTF had 96.30% for conditional drought indices. However, 

for vegetation indices, they were almost equal where Kernel - SVM was 81.48 % and RTF was 

81.84%. The AUC results for RTF classification were 96.3% compared to 94.4% obtained for 

Kernel – SVM based on conditional drought indices. This performance decreased when the 

classification was based on vegetation indices as both Kernel - SVM’s and RTF produced an AUC 

of 81.5%.  



 

30 

 

Table 2.3 Results for Kernel -SVM and RTF accuracy assessment. 

 Kernel - SVM RTF 

Conditional 

Drought Indices 

(%) 

Vegetation 

Indices (%) 

Conditional 

Drought Indices 

(%) 

Vegetation 

Indices (%) 

Overall Accuracy 94.44 81.48 96.3 81.84 

AUC 94.4 81.5 96.3 81.5 

Cohen’s Kappa 

Coefficient 

88.89 62.96 92.55 62.96 

 

 

2.3.4 Drought damage maps 

 

All drought damage maps were generated using ArcGIS version 10.4. Figure 2.8 and Figure 2.9 

presents the resulting maps from the Kernel - SVM classification for both conditional drought and 

vegetation indices respectively. The maps include January 2013 (Figure 2.8a), which is probably 

the onset of the drought, December 2015 (Figure 2.8b) when the drought was very intense and 

January 2017 (Figure 2.8c) which was the probable offset period of the drought. From the 

predictive maps it can be observed that in 2013, there was less drought damage compared to 2015 

when the drought was at its peak. January 2017 shows a considerable recovery by the forest 

vegetation given that the drought was ending. 
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a)  

b)  
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c)  

Figure 2.8 Kernel - SVM classification maps based on conditional drought indices. 

 

There are detectable differences between maps classified based on conditional drought indices 

(Figure 2.8) and those classified based on vegetation indices (Figure 2.8). The December 2015 

map (Figure 2.8b) classified based on conditional drought indices contained more trees that were 

not impacted by droughts compared to the December 2015 map (Figure 2.9b) classified based on 

vegetation indices. There is also a noticeable difference between January 2017 maps (Figure 2.9c), 

where the January 2017 map classified based on conditional drought indices showed fewer trees 

that were not impacted by droughts compared to the January 2017 map (Figure 2.9c) classified 

based on vegetation indices which showed a huge improvement from what was observed by the 

end of 2015. 
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a)  

b)  
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c)  

Figure 2.9 Kernel - SVM classification maps based on vegetation drought indices. 

 

Figure 2.10 and Figure 2.11 present the resulting maps from the RTF classification for both 

conditional drought and vegetation indices, respectively. There are detectable differences in the 

drought damage maps classified using RTF. The December 2015 map (Figure 2.10b) classified 

based on conditional drought indices showed more non - drought impacted trees compared to the 

December 2015 map (Figure 2.11b) classified based on vegetation indices.  
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a)  

b)  
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c)  

Figure 2.10 RTF classification maps based on conditional drought indices. 

 

The differences are also detected for January 2017, where the January 2017 map (Figure 2.10b) 

classified based on conditional drought indices contained fewer trees that were not impacted by 

droughts compared to the January 2017 map (Figure 2.11b) classified based on vegetation indices.  
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a)  

b)  
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c)  

Figure 2.11 RTF classification maps based on vegetation drought indices. 

 

The overall results indicate that both Kernel – SVM and RTF classifications based on information 

derived from both conditional drought indices and vegetation indices can be utilised for analysing 

droughts and their impacts. It was also observed that when the algorithms were classifying based 

on conditional drought indices, they predicted more trees to be impacted by drought compared to 

when they were classifying based on vegetation indices. 
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2.4 Discussion 

 

This study focused on machine learning as a tool for analysing droughts at a catchment scale. The 

results have shown that both MLAs, namely, Kernel – SVM and RTF are useful tools for analysing 

drought and their impacts on commercial forest vegetation. This is especially for RTF which 

showed a better accuracy compared to Kernel – SVM. However, RTF was relatively recently 

developed as an ensemble method by Rodriguez et al. (2006); hence it has been underutilised in 

studies focusing on drought assessment. The results also showed the potential for the application 

of conditional drought indices over vegetation indices for the analysis of droughts in forest 

ecosystems.  

This study sought to explore the adaptation of Kernel – SVM and RTF for drought analysis, 

however, this required a thorough investigation of the accuracy of both these algorithms. 

Therefore, the ability of Kernel – SVM and RTF to accurately classify drought-impacted trees and 

trees that were not impacted by drought was assessed using the OA, AUC and the Cohen’s Kappa 

index. The accuracy of these algorithms was investigated based on both conditional drought and 

vegetation indices. Using multiple indices ensured the reliability of the results as opposed to using 

a single index which Hao and AghaKouchak (2013) deemed insufficient for the classification and 

assessment of droughts. Similarly to our findings,  Du et al. (2015) and Khamar and Eftekhari 

(2018) found RTF to perform better than the SVM algorithm. 

Multiple studies including Zhu and Woodcock (2012), Zerrouki and Bouchaffra (2014), Han et al. 

(2015) and Chandrasekar et al. (2017) have utilised the confusion matrix and measures derived 

from it as the main accuracy assessment method. Ye et al. (2018) reviewed 209 studies for their 

study and determined that 146 studies used OA, which ranged between 42% and 96% as a measure 

of accuracy. The OA for this study was 94.44 % for Kernel – SVM and for RTF it was 96.30% 

when classifying based on conditional drought indices. For vegetation indices there was an 

observable decrease to the performance where Kernel - SVM was 81.48 % and RTF was 81.84%. 

These OA results demonstrate an excellent performance from both algorithms when classifying 
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based on conditional drought indices data in comparison with the 85% average and the range 

determined by Ye et al. (2018) in their study. 

Similar to OA, in many studies, AUC is recognised as the preferred accuracy measure of 

performance of classification algorithms (Cortes and Mohri, 2005). The AUC results for RTF 

classification were 96.3% compared to 94.4% obtained for Kernel – SVM based on conditional 

drought indices. This performance decreased when the classification was based on vegetation 

indices as both Kernel - SVM’s and RTF produced an AUC of 81.5%.  

The results demonstrated by the OA and AUC show that conditional drought indices were more 

accurate when classifying drought trees compared to vegetation indices. It should be taken into 

consideration that though accurate, conditional drought indices can misrepresent the actual drought 

extent and intensity (Jiao et al., 2016).  However, that does not mean that conditional drought 

indices results are not reliable as Dutta et al. (2015) and Zambrano et al. (2016) found that these 

indices strongly correlate with the prevalent and widely used in situ SPI. Multiple studies have 

also demonstrated the significance of vegetation indices for analysing droughts. These studies 

include Orhan et al. (2014), Jordan and Mitchell (2015), Arganda-Carreras et al. (2017), Gulácsi 

and Kovács (2018) and Xulu et al. (2019), Ahmadi et al. (2019). Some of these studies also found 

that vegetation indices strongly correlate with SPI, but generally the three-month SPI.  

However, Mutanga and Skidmore (2004) argued that NDVI hinders the accuracy of classifiers due 

to NDVI’s saturation at densely vegetated areas. Therefore, this study added EVI, NDWI, SR, 

SAVI and GCHL in anticipation that these indices could counter the limitations of NDVI. The 

results obtained for this study were then compared with those obtained by Xulu et al. (2019) who 

employed the RF algorithm on NDWI to analyse drought damage; they obtained and OA of 87.7% 

, which was comparable to our findings. This meant adding vegetation indices did not improve the 

performance of both algorithms, especially given that RTF generally performs better 

classifications than RF (Khamar and Eftekhari, 2018).  

Classifying based on conditional drought and vegetation indices proved the capability and 

effectiveness of both algorithms and highlighted the shortcoming of utilising vegetation indices. 
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Where the algorithms were not as accurate as when they classified based on conditional drought 

indices. Even though RTF performed better than Kernel – SVM, it can be argued that Kernel – 

SVM results were also reliable. This expectation is based on the findings by Kavzoglu et al. (2015) 

who found RTF to perform better than Kernel – SVM. The argument for Kernel – SVM is that the 

drought damage classification maps it produced (Figure 2.8 and 2.9) do not significantly differ 

from those produced by RTF (Figure 2.10 and 2.11). Also, drawing from the Agri SA (2016) report 

which stated that 2015 had a drought of very significant magnitude and De Jager (2016)  finding 

that 2015 had the lowest rainfall since the drought of 1904, Kernel – SVM map outputs were able 

to highlight more drought damage in 2015 compared to 2013 and 2017. Henceforth, Kernel - SVM 

could be as useful and effective as RTF when employed on conditional drought indices. This 

creates a niche for machine learning, conditional drought indices and improving vegetation indices 

application in drought analysis and remote sensing as a discipline.  

Moreover, it should be noted that the scale or scope of the study has not been thoroughly 

investigated in the literature in terms of how performing classifications at a catchment scale affects 

the accuracy of the algorithm. Most studies tend to analyse droughts at a continental or 

subcontinental (Yuan et al. (2018)), national (Kogan (1995b), Botai et al. (2019)) and provincial 

scale (Botai et al. (2016)). However, some studies have studied or analysed droughts at a regional 

or catchment scale; these include Masupha and Moeletsi (2017), Meshram et al. (2018), Masupha 

and Moeletsi (2018) and Xulu et al. (2019). These studies have demonstrated that positive results 

can be obtained from analysing droughts at a localised scale. However, more research is still 

required to determine the true potential and accuracy of localised drought analysis, especially for 

forested catchments. 

In summary, this study has provided crucial insight and results for the capability of MLAs to 

classify droughts at a catchment scale. It is therefore recommended that future studies prioritise 

machine learning algorithms to analyse drought damage on forest vegetation; however, this does 

not mean they should be limited to forest vegetation only. In addition, it should not necessarily be 

only the two algorithms that were used in this study, and researchers should investigate the 

capability of other machine learning algorithms. Moreover, the results indicated that Landsat data 

could be a valuable tool for catchment drought analysis and conditional drought indices produce 
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more accurate data compared to vegetation indices. Thus, the objectives that were set for this study 

were met. 

 

2.5 Conclusion 

 

Intense droughts such as the one experienced between 2015 and 2016 pose a considerable threat 

to commercial forests and their impacts should be analysed and understood. This study has thus, 

demonstrated that machine learning could be adapted and utilised for remote sensing drought 

analysis as RTF and Kernel – SVM produced accurate classifications for drought damaged trees 

and non-damaged trees. Furthermore, results from this study have also demonstrated that: 

1. RTF was more accurate than Kernel – SVM in detecting and mapping drought. 

2. Classifications based on conditional drought indices were more accurate than those based 

on vegetation indices. 

3. Landsat imagery can be used for analysing drought damage at a catchment or regional scale 

due to their high spatial resolution. 

However, more research is still required for the application of machine learning and artificial 

intelligence in remote sensing and drought analysis. More research should also go into vegetation 

indices, as to why they underperformed compared to conditional drought indices. Moreover, the 

scope of this study can be extended by analysing drought damage in individual tree species, using 

different sensors to validate the use of Landsat and by employing the methodology used in this 

study in a different forested catchment with a different climate and landscape. 
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3. CHAPTER THREE: COMPARING ROTATION FORESTS AND 

EXTREME GRADIENT BOOSTING FOR MONITORING 

DROUGHT DAMAGE ON KWAZULU-NATAL COMMERCIAL 

FORESTS 

Abstract 

This study acknowledged that droughts are a recurrent and regular feature in countries such as 

South Africa where they pose a significant threat on the economy by crippling commercial forests 

and the society which depends on them. This called for the forecasting and quantification of 

droughts; however, this is a difficult undertaking given the complexity of droughts. Hence this 

study explored the utilisation of RTF and XGBoost MLAs to classify drought damage in 

commercial forests in KZN using information obtained from MODIS derived vegetation and 

conditional drought indices.  The results from this undertaking demonstrated that both algorithms 

are capable of accurately detecting trees that exhibit drought damage and those that do not, more 

so when the algorithms were classifying based on information derived from conditional drought 

indices which yielded an accuracy of 82% for XGBoost and 76% for RTF. However, when the 

algorithms were classifying using vegetation indices data, the performance of the algorithms 

decreased resulting in an accuracy of 69% for XGBoost and 72% for RTF. Overall, the results 

demonstrated that MLAs could be utilised for the classification of drought damage on forest 

vegetation. Additionally, the study showed that MODIS imagery could be used for MLA 

classification and the fact that it is freely available in the USGS archives provides an added 

opportunity for more research to be conducted for the utilisation and improvement of these MLAs. 

Keywords: Indices, Rotation Forests, Drought, Extreme gradient boosting, Machine Learning 
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3.1 Introduction 

 

Droughts are a non-selective natural disaster in that their occurrence can be in both high and low 

precipitation areas (Wilhite and Glantz, 1985; Wu et al., 2015). However, in semi-arid and arid 

climates such as Southern Africa droughts are a recurrent and regular feature (Rouault and Richard, 

2005; Edossa et al., 2014; Xulu et al., 2018). Droughts can have adverse and sometimes 

irreversible impacts on society, agriculture and ecology (Edossa et al., 2014). Therefore, given the 

dependence of Southern African countries on agricultural and ecological products such as 

commercial forestry for economic gain, droughts pose a major threat to the economy of some of 

these countries (Wu et al., 2015). This calls for the forecasting and quantification of droughts 

which requires that the duration, extent and intensity of this phenomenon be investigated 

simultaneously (Zucchini and Adamson, 1984; Wu et al., 2015). However, this is not an easy 

undertaking given the complexity of droughts (Mera, 2018). 

This complexity arises as a result of droughts creeping nature in that it is difficult to detect their 

onset or their ending and to determine their severity (Wilhite, 2005). The lack of a definitive 

definition further compounds this complexity (Wilhite and Glantz, 1985; Mera, 2018). However, 

there is a consensus in most literature that droughts are defined by a decrease in or a lack of 

precipitation over an extended period (Wilhite, 2005; Solh and van Ginkel, 2014; Mera, 2018; 

Xulu et al., 2018; Bayissa et al., 2019). Droughts also are categorised into four types, namely; 

hydrological, socioeconomic, agricultural and meteorological droughts. Hydrological drought is 

concerned with the depletion of water supplies in lakes, dams and streams. Meteorological drought 

relates to decreased rainfall, agricultural drought is related with soil water deficit that leads to 

decreased agricultural productivity and socioeconomic droughts are concerned with the hindrance 

of supply of economic goods (Zucchini and Adamson, 1984; Edossa et al., 2014). This study 

focused on the agricultural drought given that it strongly correlates with the objectives of this 

study. 
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The complexity of droughts is also enhanced by the interactions between these different drought 

types. The commercial forestry industry and therefore the economy of South Africa is arguably 

susceptible to all these drought types. The susceptibility of commercial forests was highlighted by 

Sun et al. (2018). They stated that as the earth continues to warm, drought induced tree mortality 

is also increasing and this is recognised as a crucial economic and ecological issue. Droughts 

directly influence forest vegetation mortality by increasing evaporative water demand through 

increased temperatures which results in tree water stress and indirectly enhancing tree mortality 

by making trees more vulnerable to destructive pathogens and insects that thrive under these 

conditions (Hope et al., 2014; Millar and Stephenson, 2015; Xulu et al., 2018). However, trees 

during growth have different responses to droughts, therefore some tree species survive a drought 

while others do not (Sun et al., 2018). Researching and investigating the impacts of droughts on 

commercial forests will therefore aid the identification of tree species most vulnerable and those 

that are most resistant to droughts (Martínez-Vilalta et al., 2012). The identification of such trees 

will, therefore, aid the management and the transition to tree species best adapted to droughts, 

which would decrease economic losses incurred due to droughts (Millar and Stephenson, 2015). 

Multiple indices have been developed to investigate, quantify and classify drought impacts while 

keeping in consideration the complexities and constraints associated with droughts. As a result, 

most drought indices are only applicable in a specific region for a specific application (Heim Jr, 

2002; Zhuo et al., 2016). However, remote sensing-based drought indices are not constrained by 

location or application hence they are most suitable and applicable for drought analysis even in 

the complex forest vegetation. Remote sensing indices determine the state or condition of 

vegetation through the characterisation of the vegetation area which includes monitoring leaf area 

coverage, biomass and growth status (Wu et al., 2015). These indices can be derived from MODIS 

onboard both Terra and Aqua satellites or Landsat sensors. MODIS will be the only sensor utilised 

to derive drought indices used in this study due to its high temporal resolution with 36 spectral 

bands that covers the entire Earth surface; however, it possesses a relatively low spatial resolution 

(Wu et al., 2013; Wu et al., 2015; Jiao et al., 2016).  

Determining the impacts of droughts requires the understanding of forest biomass dynamics over 

time, therefore having access to multiple observations within a year from MODIS can reveal 
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varying forest temporal patterns (Gao et al., 2019). This will allow for the differentiation of natural 

forest processes such as regrowth from drought-induced processes (Dutrieux et al., 2015). 

Droughts limit the photosynthetic capacity of the tree and therefore, its growth capacity by 

reducing its leaf area index (LAI) (Jiao et al., 2016). Vegetation indices such as NDVI and EVI  

are sensitive to LAI changes which makes them useful for detecting the impacts of droughts on 

forest vegetation (Tucker, 1979; Huete et al., 2002). In addition to NDVI and EVI, there are 

multiple indices capable of monitoring droughts such as the NDVI derived VCI (Kogan, 1995a), 

NDWI (Gao, 1996), VHI and TCI (Kogan, 1995b) amongst others (Wu et al., 2013). However, 

droughts are a complex phenomenon and they cannot be investigated using one or arguably two 

indices; multiple indices should be employed to capture different aspects of droughts and therefore 

determine their impacts accurately (Wu et al., 2013; Zhang et al., 2013; Hao and Singh, 2015).  

As a result, this study will utilise three vegetation indices (EVI, NDVI, NDWI) and five conditional 

drought indices (TCI, VCI, vegetation moisture condition index (VMCI), VHI (Kogan, 2002) and 

enhanced vegetation condition index (EVCI)). These indices have been employed in various 

drought studies under varying environmental and climatic conditions (Rojas et al., 2011; Wu et 

al., 2013; Zambrano et al., 2016). This study, therefore, seeks to extend the application of these 

indices by utilising them in the classification of drought-impacted trees and non-impacted trees 

within all commercial forests in KZN. This will be done using RTF and XGBoost. The utilisation 

of MLAs in this study is bounded on the expanding interest and need to select an accurate ensemble 

classification algorithm in remote sensing (Colkesen and Kavzoglu, 2017).  

The selection of RTF and XGBoost, therefore, takes into consideration the wide utilisation of non-

parametric supervised MLAs such as SVMs and RF in remote sensing classifications even though 

they somewhat produce inferior accuracy results (Colkesen and Kavzoglu, 2017; Georganos et al., 

2018). Kuncheva and Rodríguez (2007) investigated the potential and optimality of RTF and they 

found it to yield higher accuracies than RF, bagging and AdaBoost. Whereas XGBoost developed 

by Chen and Guestrin (2016) is optimised primarily for large tree structures and yields good 

classifications and at high execution speeds (Sandino et al., 2018). This is one of the very few 

studies to utilise XGBoost and to our knowledge, it is one of the few studies to utilise this MLA 

in the classification of forest vegetation impacted by droughts. 
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Given the information presented above, this study, therefore, aims to classify the impact of 

droughts on commercial forests in KZN and compare the accuracy of RTF and XGBoost in 

meeting this aim. To achieve this, MODIS derived conditional drought and vegetation indices were 

used to enable the classification and visualisation of drought damaged and non - damaged trees 

using XGBoost and RTF. The objectives of this study were to expand the utilisation of MLAs in 

drought analysis, determining the accuracy of MODIS for classifying drought damage on forest 

trees and determining the accuracy of multiple conditional drought indices compared to vegetation 

indices. The primary contributions of this study include: (1) expanding the knowledge of drought 

impact on commercial forests; (2) extending information on the usability of conditional drought 

indices; (3) extending the use of MLAs on remote sensing data and (4) extending the information 

on the usability and accuracy of XGBoost in drought applications. 

After the introduction in subsection 3.1, the rest of this paper is arranged in the following order; 

Subsection 3.2 outlines the methodology which consists of the detailed study area description, data 

acquisition and processing, classification analysis and accuracy assessment. Subsection 3.3 and 

3.4 form the last part of this paper, which presents the results and discussion respectively. The 

concluding remarks are presented in subsection 3.5. 

 

3.2 Methodology 

 

3.2.1 Study area description 

 

Commercial forests within the province of KZN in South Africa which has an area of 94361 km2 

(Figure 3.1) were the focus of this study. KZN is situated on the eastern seaboard of the country 

and is characterised by a complex landscape due to steep environmental gradients that occur over 

short distances (Jewitt et al., 2015; Jewitt, 2016).  The landscape of KZN ranges from the eastern 

subtropical climates of the Indian ocean to the western mountainous climates of the Drakensberg 
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escarpments which are over 3000 m above sea level (Jewitt, 2016). KZN is considered the wettest 

province in South Africa due to its mean annual precipitation of over 800 mm compared to less 

than 500 mm received by the entire country of South Africa (Jewitt et al., 2015). These conditions 

arise because of the presence of a warm coastal current that provides humid air to the atmosphere 

(Jury, 1998; Jewitt et al., 2015). KZN’s mean annual temperature ranges between 8 and 23 ℃ 

(Jewitt, 2016). This makes the province favourable for agriculture, hence the domination of 

commercial timber plantations, sugar cane, subsistence and commercial crops over the landscape 

(Jewitt et al., 2015). 

However, KZN is susceptible to climate stresses such as droughts which have been recurring over 

the past decades and likely to persist over coming decades with increased frequencies and durations 

(Reid and Vogel, 2006; Hlahla and Hill, 2018). Drought stresses are fuelling the need for research 

into the impacts of droughts, especially in commercial forestry, which is one of the primary 

economic commodities in the province. 
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Figure 3.1 The geographical location of KwaZulu-Natal and forested regions within the province.
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3.2.2 Data acquisition 

 

Droughts are a creeping process characterised by decreased precipitation that results in increased 

surface temperatures and soil moisture deficits, thus, imposing stress on vegetation. Monitoring 

droughts, therefore, requires that parameters derived from precipitation, vegetation and the soil are 

taken under consideration (Du et al., 2013). MODIS-Terra MOD13Q1 data was acquired from the 

USGS’s Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) website 

(https://lpdaacsvc.cr.usgs.gov/appeears/). MOD13Q1 scenes were obtained for the year 2015 

(January to December); which was due to the intensity of the drought over KZN in this year.  

MOD13Q1 has a 16-day revisit cycle with a 250-meter spatial resolution which enables the sensor 

to analyse vegetation dynamics. The scenes from the sensor were generated using the maximum 

value compositing method (MVC) which reduces atmospheric and residual cloud effects (Wang 

et al., 2019). This is significant because South Africa has a considerable cloud cover during the 

wet months which include January, February and December (Kruger, 2007). MOD13Q1 image 

band information is provided in Table 3.1 and the products derived from the image and utilised in 

this study are presented in Table 3.2. 

From literature, EVI is considered to be more accurate than NDVI due to NDVI’s sensitivity to 

high biomass conditions and canopy background variations and therefore produces saturated 

signals whereas EVI has improved sensitivity to such conditions (Huete, 1988; Huete et al., 2002; 

Chen et al., 2006). This suggests that the conditional drought index derived from EVI is more 

accurate at analysing drought impacts compared to VCI which is based on NDVI.  However, 

when these indices were analysed using the Pearson correlation coefficient , VCI had a stronger 

correlation compare to EVCI which had no correlation with drought damage. 

 

https://lpdaacsvc.cr.usgs.gov/appeears/
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Table 3.1 MOD13Q1 image band information provided by USGS. 

Science Dataset 

Name 
Description Units Data Type 

Fill 

Value 

No Data 

Value 
Valid Range 

Scale 

Factor 

250m 16 days 

NDVI 
16-day NDVI NDVI 16-bit signed integer -3000 N/A -2000 to 10000 0.0001 

250m 16 days 

EVI 
16-day EVI EVI 16-bit signed integer -3000 N/A -2000 to 10000 0.0001 

250m 16 days 

VI Quality 
VI quality indicators 

Bit 

Field 

16-bit unsigned 

integer 
65535 N/A 0 to 65534 N/A 

250m 16 days 

red reflectance 
Surface Reflectance Band 1 N/A 16-bit signed integer -1000 N/A 0 to 10000 0.0001 

250m 16 days 

NIR reflectance 
Surface Reflectance Band 2 N/A 16-bit signed integer -1000 N/A 0 to 10000 0.0001 

250m 16 days 

blue reflectance 
Surface Reflectance Band 3 N/A 16-bit signed integer -1000 N/A 0 to 10000 0.0001 

250m 16 days 

MIR reflectance 
Surface Reflectance Band 7 N/A 16-bit signed integer -1000 N/A 0 to 10000 0.0001 

250m 16 days 

view zenith 

angle 

View zenith angle of VI Pixel Degree 16-bit signed integer -10000 N/A 0 to 18000 0.01 

250m 16 days 

sun zenith angle 
Sun zenith angle of VI pixel Degree 16-bit signed integer -10000 N/A 0 to 18000 0.01 

250m 16 days 

relative azimuth 

angle 

Relative azimuth angle of VI pixel Degree 16-bit signed integer -4000 N/A 
-18000 to 

18000 
0.01 

250m 16 days 

composite day 

of the year 

Day of year VI pixel Julian day 16-bit signed integer -1 N/A 1 to 366 N/A 

250m 16 days 

pixel reliability 
Quality reliability of VI pixel Rank 8-bit signed integer -1 N/A 0 to 3 N/A 
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Table 3.2 Vegetation and conditional drought indices utilised for this study. 

Index Equation Label Reference Description 

 

Vegetation Indices 

 

NDVI  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 

10 

Tucker (1979) NDVI is the fraction of radiation 

that is absorbed by vegetation. 

EVI  

𝐸𝑉𝐼 =  2.5 × (
𝑁𝐼𝑅 − 𝑅

𝐿 + 𝑁𝐼𝑅 + 6𝑅 − 7.5𝐵
) 

 

 

11 

Huete et al. (2002) EVI is regarded as the improved 

NDVI because of its ability to 

reduce soil and atmospheric noise 

simultaneously, hence EVI 

possesses improved vegetation 

monitoring capabilities. 

NDWI  

𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

 

12 

Gao (1996) NDWI is defined by Ling et al. 

(2003) as a dimensionless index 

which determines the availability 

of water in a vegetation surface. 
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Conditional Drought Indices 

VCI 
𝑉𝐶𝐼 =  

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 
 

13 

Kogan (1995b) When VCI is closer to zero, that 

means the vegetation is in poor 

condition and when closer to one 

that means the vegetation is in 

good condition. 

TCI 
𝑇𝐶𝐼 =  

𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛

 
 

14 

Kogan (1995b) TCI assumes that during a drought 

soil moisture will decrease leading 

to land surface thermal stress. 

VHI 𝑉𝐻𝐼 = 0.5 × 𝑉𝐶𝐼 + 0.5 × 𝑇𝐶𝐼  

15 

Kogan (2002) VHI combines temperature and 

vegetation indices. 

VMCI 
𝑉𝑀𝐶𝐼 =

𝑁𝐷𝑀𝐼 − 𝑁𝐷𝑀𝐼𝑚𝑖𝑛

𝑁𝐷𝑀𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑀𝐼𝑚𝑖𝑛
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 NDMI is used to calculate VMCI. 

EVCI 
 𝐸𝑉𝐶𝐼 =  

𝐸𝑉𝐼− 𝐸𝑉𝐼𝑚𝑖𝑛

𝐸𝑉𝐼𝑚𝑎𝑥− 𝐸𝑉𝐼𝑚𝑖𝑛
 

17  EVI is used to calculate EVCI, 

hence it is assumed to be more 

accurate than VCI. 

Note: NIR is near-infrared, SWIR is for short-wave infrared, R is the band designated for red, L is the soil adjustment parameter and LST is Land Surface Temperature 
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3.2.3 Reference data 

 

Field visits were conducted by Sappi to monitor and record the condition of forest vegetation in 

terms of drought damage within the 517 compartments in KZN. Data from these compartments 

were utilised as reference data for extracting information from the MODIS imagery. R-Studio 

version 1.2.1335 was used to perform this extraction. The extracted data was then utilised by RTF 

and XGBoost to perform drought damage classification across all forested regions in KZN. 

 

3.2.4 Statistical analysis 

 

3.2.4.1 Rotation Forests 

 

RTF was proposed by Rodriguez et al. (2006) as a typical supervised classifier both as a selector 

and as a final exported classifier (Kazllarof et al., 2019). This algorithm is based on the decision 

tree method, which is sensitive to the rotation of the feature axes, making them more accurate 

compared to other learning methods (Rodriguez et al., 2006). RTF randomly splits the vector 

feature into disjoint subsets, and then a bootstrap technique is applied with a 75% resampling rate 

(Kazllarof et al., 2019). An orthogonal transformation is then performed within a PCA feature 

space (Akar, 2018).  Finally, RTF generates multiple classification trees by utilising the data set 

produced in the PCA feature space (Xia et al., 2013; Gulácsi and Kovács, 2018). Performing 

rotations of the feature space provide the prospect of greater variety within the ensemble entities 

which makes RTF better than other decision tree methods which split the class only vertically and 

horizontally (Kazllarof et al., 2019).  
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3.2.4.2 Extreme Gradient Boosting 

 

XGBoost is extended from gradient boosting machines (GBMs) which have been applied widely 

on multiple remote sensing applications (Georganos et al., 2018). GBMs have been suggested to 

be a powerful machine learning method and capable of performing scene classifications and 

estimating above ground biomass (Zhang et al., 2015). However, GBMs have also been suggested 

to be highly susceptible to overfitting due to a lack of a robust regularisation framework. They 

require more parameters to be optimised compared to SVMs and RF (Georganos et al., 2018). 

XGBoost is based on boosting which is the combination of all the set of weak learners to develop 

a strong learner through additive training strategies (Fan et al., 2018). The final classification, 

therefore, includes the improvements of all the previous modelled trees (Georganos et al., 2018). 

However, Xia et al. (2017) determined that XGBoost is limited by its poor capability to determine 

the optimal tree structure. The algorithm attempts to overcome this by employing the greedy search 

technique which is costly when processing data that is at a high dimension and scale (Bergstra et 

al., 2011; Xia et al., 2017). 

 

3.2.5 Classification algorithm parameter optimisation 

 

It is very rare that a classification algorithm does not possess hyper-parameters (Xia et al., 2017). 

Hyper-parameters have a significant influence on the accuracy of the algorithm and this, therefore, 

introduces the need for tuning these parameters to get the best obtainable accuracy (Bergstra et al., 

2011). However, hyper-parameter is heavily criticised for the subjective judgement and trial and 

error method associated with this practice (Bergstra et al., 2011; Georganos et al., 2018). With the 

improvement in computation, hyper-parameter optimisation scarcely depends on human subjective 

judgement as improved computation allows for the tuning of parameters using grid search (GS) 

and automatic optimisation (Georganos et al., 2018).  
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RTF parameters are K which is the number of variable subsets and L, which is the number of base 

classifiers (Rodriguez et al., 2006). For this study, K and L were obtained using automatic 

optimisation. GS and automatic optimisation can be utilised to obtain the parameters for XGBoost, 

however, their feasibility is questionable given the substantial amount of hyper-parameters in 

XGBoost (Xia et al., 2017). Therefore, for this study, the Bayesian optimisation explained in 

Bergstra et al. (2011) was utilised to optimise XGBoost parameters. Bayesian optimisation is 

considered an excellent parameter optimisation method capable of excellent results (Georganos et 

al., 2018).  

Therefore, this study employed both XGBoost and RTF with optimal parameters to classify 

drought-impacted trees and those that were not on all commercial forests within KZN. The study 

period considers the year 2015 which arguably included the onset and intensification of the 2015 

– 2016 drought. To demonstrate drought damage over the year 2015, January, April, July, 

September and December drought damage classification results were mapped. The xgboost and 

rotationForest packages within R-Studio version 1.2.1335 were used to compute the 

classifications created by XGBoost and RTF. Figure 3.2 presents the overall methodology for this 

study. 
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Figure 3.2 The procedure used to obtain results for this study. 

 

 

3.2.6 Classification accuracy assessment 

 

XGBoost and RTF could be successful at performing the desired classification, however, the 

accuracy of the classification should be assessed to determine the true potential of these algorithms. 

The classification assessment will assess the performance of both XGBoost and RTF when 

classifying based on both vegetation and conditional drought indices.  

Therefore, before both algorithms were trained with drought data obtained from the KZN forest 

compartments, the dataset had two levels and was divided into 70% train and 30% test data. The 

levels in the data were level 1, which represented the occurrence of drought conditions and level 

0 which meant no drought conditions were observed. To ensure that the algorithms do not over fit 
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the sample data, drought damage data was resampled 10-fold and repeated 5 times. Both train and 

test data were under-sampled as seen in Figure 3.3 and 3.4 where 1 represent no drought and 2 

represents the occurrence of drought.  XGBoost and RTF were then employed on these data based 

on the vegetation and conditional drought indices. 

 

 

                  

 

 

Figure 3.3 Drought damage data before resampling. 

 

 

                  

Figure 3.4 Drought damage data after resampling. 
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The percentage overall accuracy (OA), user and producer accuracy and Cohen’s Kappa coefficient 

from the confusion matrix were specifically used to assess the performance of XGBoost and RTF. 

 

3.3 Results 

 

3.3.1 Classification analysis 

 

This study aimed to determine the potential of XGBoost and RTF to separate trees exhibiting 

drought damage from those trees that do not show any damage. This meant drought-impacted trees 

and non-drought impacted trees were the two classes utilised for this study. XGBoost and RTF 

performed their classifications based on MODIS derived vegetation and conditional drought 

indices. Both algorithms were successful at performing these classifications, however, at varying 

accuracies. MLA classifications are generally visualised using decision boundary plots, however, 

given the large dataset used to train and test RTF and XGBoost it was difficult to determine if 

more or fewer points were inside or outside the boundary of the class they belong to. 

 

3.3.2 XGBoost and RTF optimal parameters 

 

Optimal parameters for XGBoost are presented in Table 3.3 and were obtained using Bayesian 

optimisation method. This method presented a combination of parameters that had the highest 

accuracy possible. These parameters were then used to build the XGBoost classifier based on both 

conditional drought and vegetation indices.  
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Table 3.3 XGBoost optimal parameters for both condition and vegetation drought indices obtained 

using the Bayesian optimisation method. 

Parameter Value 

Subsample Ratio (rs) 0.7991 

Learning Rate (τ) 0.2905 

Maximum Tree Depth (Dmax) 6 

Minimum Child Weight (ωmc) 2 

Column subsample ratio (rc) 0.5 

 

Table 3.4 and 3.5 show varying accuracies produced by different values of K and L. RTF classifiers 

based on conditional drought and vegetation indices were, therefore, built using a pair of K and L 

that produced the highest accuracy which is highlighted in the tables.
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Table 3.4 RTF parameters when classifying 

based on conditional drought 

indices. 

RTF - Conditional Drought Indices 

Parameters Accuracy (%) 

K L  

1 3 76.44 

1 6 76.80 

1 9 76.93 

5 3 76.68 

5 6 77.00 

5 9 77.28 

Table 3.5 RTF parameters when classifying 

based on vegetation indices. 

RTF - Vegetation Indices 

Parameters 
Accuracy 

(%) 

K L  

1 3 69.34 

1 6 69.75 

1 9 69.87 

3 3 69.49 

3 6 69.62 

3 9 69.79 

 

 

3.3.3 Algorithm variable importance 

 

During classification of trees affected by drought, the algorithms selected the most relevant 

variables for the classification. They disregarded the irrelevant variables which could have 

negative implications on the algorithm accuracy (Gregorutti et al., 2017). Table 3.6 shows that 

when the algorithms were classifying based on conditional drought indices, RTF prioritised VCI 
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where as XGBoost prioritised VHI. When the algorithms were classifying based on vegetation 

indices, EVI was prioritised by RTF and NDVI was prioritised by XGBoost. 

 

Table 3.6 Overall variable importance for both RTF and XGBoost when classifying based 

conditional drought and vegetation indices. 

RTF XGBoost 

Conditional Drought 

Indices 

Vegetation Indices Conditional Drought 

Indices 

Vegetation Indices 

Variable Overall 

Importance (%) 

Variable 

(%) 

Overall 

Importance (%) 

Variable 

(%) 

Overall 

Importance 

(%) 

Variable 

(%) 

Overall 

Importance 

(%) 

VCI 100 EVI 100 VHI 100 NDVI 100 

VHI 47.24 NDVI 56.21 TCI 65.88 EVI 90.26 

TCI 16.95 NDWI 0 EVCI 7.24 NDWI 0 

VMCI 10.79   VMCI 3.68   

EVCI 0   VCI 0   

 

 

3.3.4 Classification accuracy assessment 

 

The results in Table 3.7 indicate a somewhat considerable overall difference between the 

accuracies of algorithms when classifying based on conditional drought indices and when based 



 

63 

 

on vegetation indices. When the algorithms were classifying based on conditional drought indices, 

they had a better performance than when utilising vegetation indices to perform their 

classifications. The OA was 76.05% for RTF when classifying based on conditional drought 

indices. This OA considers the user and producer accuracies for both drought and non-drought 

classes. When RTF was classifying based on conditional indices the user and producer accuracies 

for drought were 83% and 65.2%, respectively. For non-drought, user and producer accuracies 

were 71.6% and 86.7%, respectively. There was a decrease in performance when the algorithms 

were classifying based on vegetation indices with RTF decreasing from 76.05% to 70.7%. The OA 

also considers the user and producer accuracies for both drought and non-drought classes. When 

RTF was classifying based on vegetation indices the user and producer accuracies for drought were 

71.7% and 68.3%, respectively. For non-drought, user and producer accuracies were 69.7% and 

73.1%, respectively. 

For XGBoost when classifying based on conditional drought indices the OA was 81.9%. This OA 

also considers the user and producer accuracies for both drought and non-drought classes. When 

XGBoost was classifying based on conditional indices the user and producer accuracies for 

drought were 84.8% and 77.6%, respectively. For non-drought, user and producer accuracies were 

79.6% and 86.7%, respectively. The performance decreased when XGBoost was classifying based 

on vegetation indices with the OA decreasing from 81.9% to 69.3%. This OA also considers the 

user and producer accuracies for both drought and non-drought classes. When XGBoost was 

classifying based on vegetation indices the user and producer accuracies for drought were 70.1% 

and 67.2%, respectively. For non-drought, user and producer accuracies were 68.5% and 71.4%, 

respectively. 

A considerable difference can also be observed in the Cohen’s Kappa index where the algorithms 

had 63.87% and 52.04% for XGBoost and RTF respectively when classifying based on conditional 

drought indices. When classifying based on vegetation indices XGBoost and RTF had Cohen’s 

Kappa indices of 38.58% and 41.34%, respectively. However, it should be noted that the criticism 

surrounding the randomness nature of the Cohen’s Kappa index (Fassnacht et al., 2014; Lottering 

et al., 2020) made so that the conclusion from the results was not directly drawn from this index. 
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Table 3.7 Results for RTF and XGBoost accuracy assessment. 

 

RTF XGBoost 

Conditional Drought 

Indices 
Vegetation Indices 

Conditional Drought 

Indices 
Vegetation Indices 

No 

Drought 

(%) 

Drought 

(%) 

No 

Drought 

(%) 

Drought 

(%) 

No 

Drought 

(%) 

Drought 

(%) 

No 

Drought 

(%) 

Drought 

(%) 

User 

Accuracy 
71.6 83 69.7 71.7 79.6 84.8 68.5 70.1 

Producer 

Accuracy 
86.7 65.2 73.1 68.3 86.3 77.6 71.4 67.2 

Overall 

Accuracy 
76.05 70.7 81.9 69.3 

Cohen’s 

Kappa 

Coefficient 

52 41.3 63.9 38.6 

 

The results presented by the measures derived from the confusion matrix imply a great potential 

for machine learning in analysing droughts and their impacts using conditional drought indices 

and raised more questions on the use of vegetation indices to perform the same task. 
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3.3.5 Drought damage classification maps 

 

The drought damage maps presented in this subsection are a result of clustering using both RTF 

and XGBoost which were trained using 2015 vegetation and conditional drought indices data. 

Figure 3.5 show the drought damage clusters in commercial forested regions within KZN for every 

three months starting from January 2015 to December of the same year. These were constructed 

in R-Studio version 1.2.1335 using RTF based on conditional drought indices. From the maps it 

can be observed that less forested areas were impacted by drought in January compared to April 

and July, which showed more drought-impacted areas. 

There are fewer observable differences in areas affected by drought in July to September; however, 

there is a remarkable improvement in forest vegetation in December as tiny patches indicate 

drought impact. 
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Figure 3.5 Maps showing RTF based on conditional drought indices cluster maps for January, April, July, 

September and December. 
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Figure 3.6 present similar maps seen in Figure 3.5; however, the drought damage clusters in Figure 

3.6 are based on XGBoost trained using conditional drought indices. Contrary to the maps in 

Figure 3.5, the maps in Figure 3.6 indicate that from January through July 2015, more forested 

areas were impacted by the drought. This gave a notion that the drought had already commenced 

before the start of 2015. Drawing from July to September, there are no observable differences in 

drought damage clusters; however, December presents a considerable improvement as more areas 

show no drought damage. 
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Figure 3.6 XGBoost based on conditional drought indices cluster maps for January, April, July, September and  

December. 
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Both algorithm classification based on conditional drought indices indicate that commercial forests 

of KZN started experiencing drought impacts before the start of 2015. However, there is a 

considerable improvement by the forest vegetation towards the end of 2015. It can also be observed 

that XGBoost predicted more drought damage than RTF. 

Figure 3.7 presents the drought damage clusters in commercial forested regions within KZN for 

every three months starting from January 2015 to December of the same year constructed using 

RTF based on vegetation indices in R-Studio version 1.2.1335. It can be observed that in January 

there are some patches impacted by drought, these areas increase with time as it can be observed 

in July where more drought damaged areas were observed than initially in January. However, the 

trend observed from January to July does not continue to September where RTF predicted a 

considerable forest vegetation recovery which continues through to December. 
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Figure 3.7 Maps showing RTF based on vegetation indices cluster maps for January, April, July,  September and  

December.
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The maps for clusters created from RTF trained using conditional drought indices predicted more 

forested areas to be impacted by droughts in 2015 compared to when the algorithm was trained 

using vegetation indices. 

Figure 3.8 presents the drought damage clusters for commercial forested regions within KZN 

constructed using XGBoost based on vegetation indices. There are small increments of areas 

impacted by drought from January to April and to July. The opposite of what was observed from 

January to July compared to September to December where an incremental recovery of the forested 

region was observed as areas not impacted by drought increased. 
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Figure 3.8 Maps showing XGBoost based on vegetation indices cluster maps for January, April, July, September 

and December. 
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The overall drought damage maps indicated that before the start of 2015 commercial forest regions 

in KZN were already being impacted by droughts and as the year continued more forested areas 

were impacted. However, towards the end of 2015 forested areas were recovering as indicated by 

the December drought damage clusters. To determine the consistency of the algorithms, drought 

damage clusters were constructed in R-Studio version 1.2.1335 for January of 2016 using RTF in 

Figure 3.9 and XGBoost in Figure 3.10, which were trained using 2015 indices information.  

The maps for January 2016 showed a considerable difference from December cluster maps in that 

there was an increase in drought damage than previously observed for the last year. This could be 

due to the rains that occurred from February to March in 2015, therefore, resulting in the recovery 

observed in December of 2015 (Monyela, 2017). However, that rainfall period was followed by 

dry months which could explain the damage observed in January of 2016. 
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Figure 3.9 Maps showing January 2016 drought damage clusters created using RTF classifications 

based on conditional drought indices (A) and vegetation indices (B). 
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Figure 3.10 Maps showing January 2016 drought damage clusters created using XGBoost 

classifications based on conditional drought indices (A) and vegetation indices (B). 
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3.4 Discussion 

 

This study was aimed at exploring the potential of RTF and XGBoost to perform drought damage 

classification for commercial forests in KZN. Even though far from extensive, the results from this 

study have demonstrated that the performance of RTF and XGBoost depends mainly on the type 

of index used to train them. This was drawn from the poor performance observed when the 

algorithms were trained using vegetation indices compared to a somewhat better performance 

when based on conditional drought indices. Most studies have argued against the use of vegetation 

indices especially NDVI to perform classifications for densely vegetated areas by demonstrating 

that these indices saturate in such environments (Gao et al., 2000; Mutanga and Skidmore, 2004; 

Qiu et al., 2018).  

The limitations of NDVI led to its comparison with EVI which is assumed to be a superior index 

for vegetation monitoring due to its enhanced sensitivity to reduced atmospheric influence and 

high biomass (Huete et al., 2002; Qiu et al., 2018). Multiple studies have utilised or compared the 

accuracies of both NDVI and EVI for extracting vegetation information, namely, Lijun et al. 

(2008), Wardlow and Egbert (2010), Testa et al. (2018) and Bajocco et al. (2019). All the 

aforementioned studies concluded that EVI is a more convenient index compared to NDVI except 

for Wardlow and Egbert (2010). They found that both indices are susceptible to saturation during 

the growth stage of vegetation, therefore concluding that differences in classification based on 

these indices are negligible. However, in this study the differences were significant for the 

influence of EVI and NDVI in the accuracy of the classification. 

XGBoost with 69.29% accuracy was outperformed by RTF with 70.67% accuracy when both 

algorithms were classifying based on vegetation indices (Table 3.7). The reason behind this 

outcome was observed to be the variable prioritised by the algorithm during the classification 

where XGBoost prioritised NDVI over EVI and NDWI. In contrast RTF prioritised EVI 

information over the other indices (Table 3.6). This, therefore, implied that XGBoost is hindered 

by the saturation of the indices and that EVI should be utilised over NDVI when performing forest 
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vegetation classifications. Due to limited literature on the utilisation of XGBoost in drought 

analysis, these results could not be compared to other studies. 

However, even when the EVI was prioritised, the algorithms still underperformed compared to 

when they classified based on information extracted using conditional drought indices. Vegetation 

indices have been in most cases utilised to temporary monitor vegetation. However, they cannot 

perform relative comparisons at pixel location or time period and conditional indices possess this 

ability (Kogan, 1995a; Peters et al., 2002; Jiao et al., 2016; Mohammad et al., 2018). Zhang et al. 

(2017a) emphasised the fact that conditional drought indices are based on time-series analysis 

(calculated per pixel over time) makes them more accurate when extracting vegetation 

information.  Kogan (1990) explained that time-series analysis considers the minimum which is 

determined by the available moisture and other values, including the historical maximum are 

determined by the weather. Therefore, it is these aspects that make conditional indices more 

accurate than vegetation indices.  

XGBoost outperformed RTF when using conditional drought indices (Table 3.7) with 81.95% and 

76.05% classification accuracies respectively. This could have been due to both algorithms 

prioritising different variables where XGBoost prioritised VHI and RTF prioritised VCI (Table 

3.6). The underperformance of VCI in vegetation condition classification has been highlighted in 

multiple studies including Zhang et al. (2017a) and Jiao et al. (2016). They argued that VCI is 

calculated using NDVI which only considers the R and NIR bands. They also argued that NDVI 

is affected by the difference in spectral bandwidth and atmospheric changes especially in humid 

regions. Most importantly, Jiao et al. (2016) argued that VCI often fails to monitor the leaf status 

during drought conditions. 

On the contrary, VHI is considered to be a superior index to other conditional drought indices 

because it is computed using both VCI and TCI (Kogan, 1995a; Mohammad et al., 2018). This 

superiority implies better accuracy, given that it is drawn from the idea that it combines both the 

vegetation aspect from VCI and the temperature aspect from TCI. Multiple studies have performed 

drought analysis using VHI and compared its performance to other indices such as VCI, VMCI 

and TCI and determined that it performs better than those indices, such studies include Bhuiyan et 
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al. (2006) and Amalo and Hidayat (2017).  This, therefore, verifies the good performance obtained 

by XGBoost. 

The algorithms classification results were then utilised to create drought damage clusters which 

are presented in Figure 3.5 to 3.8. Given the report by Agri SA (2016), which stated the 2015-2016 

drought had a very high magnitude and as a result 2015 had the lowest mean annual precipitation 

since 1904. This led to the expectation that maps produced from the drought clusters should show 

more drought damage. Although different, maps from both algorithms did show more drought 

damage throughout the year.  

The maps showed that during the beginning of 2015 the forested areas of KZN were already 

showing drought damage, which meant that the onset of the 2015-2016 drought preluded 2015. 

The resulting maps also showed an increase in drought damage with time. However, December 

showed a remarkable forest vegetation recovery which could be attributed to summer rains which 

are a major influence in the establishment of commercial forests in KZN. When comparing maps 

produced by RTF and XGBoost without considering the indices used to train them, it was observed 

that XGBoost classifications showed more drought damage than maps produce by RTF 

classifications. Given the expectation based on the Agri SA (2016), it can, therefore be argued that 

RTF was understating the true drought damage while maps based on XGBoost are true. This also 

applies to indices where classifications based on vegetation indices yielded less drought damage 

compared to more damage when classifying based on conditional drought indices. 

Overall, the results presented in this study clearly show the potential of both XGBoost and RTF to 

classify drought damage in forest vegetation. However, very few studies have utilised these 

algorithms in drought analysis and in forested environments, which makes it nearly impossible to 

draw comparisons for the verification of the obtained results. Nonetheless, the obtained accuracy 

range of 69% to 82% could be improved upon especially for XGBoost. Xia et al. (2017) suggested 

that by carefully tuning the parameters of XGBoost its accuracy could be improved. This study 

has also demonstrated the superiority of conditional drought indices over vegetation indices which 

was also the main finding in such studies as Zhang et al. (2017a) and Mohammad et al. (2018). 

This therefore signifies the need to focus drought research towards conditional drought indices. 
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Moreover, it is suggested that future research should focus on all types of vegetation to determine 

where these algorithms provide optimal classification accuracies. 

 

3.5 Conclusion 

 

This study aimed to utilise RTF and XGBoost to classify drought damage in commercial forests 

in KZN using vegetation and conditional drought indices and in meeting this aim it was identified 

that vegetation indices, especially, NDVI hinder the performance of these indices. It was therefore 

concluded that MLAs perform better when using information derived from conditional drought 

indices. Additionally, the results demonstrated that: 

1. The ability of MLAs to perform drought damage classifications.  

2. XGBoost was more superior in detecting and mapping drought when compared to RFT.  

3. Conditional drought indices performed better than vegetation indices in detecting drought 

in commercial forest plantations. 

4. The onset of the 2015-2016 drought was before 2015. 

5. Variable prioritisation has a significant influence on the classification accuracy of the 

algorithm. 

6. MODIS imagery can be used by MLAs for classifications and the fact that it is freely 

available in the USGS archives provides an opportunity for more research to be conducted 

for the utilisation and improvement of these algorithms. 

Although the results obtained in this study are promising, more research is still required to improve 

these results and to determine how good MLAs can be for drought analysis. Also, research into 

MLAs should not be limited to forest vegetation and drought damage, it should also be aimed at 

multiple environmental facets including pressing issues such as climate change. 
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4. CHAPTER FOUR: SUMMARY OF STUDY FINDINGS 

 

This study aimed to analyse the impacts of droughts on commercial forests in KZN while 

exploring the effectiveness of MLAs at performing such analysis. These algorithms were 

employed at both catchment and provincial scales, using both Landsat and MODIS data. The 

obtained results therefore conclusively demonstrated the capabilities of MLAs and highlighted 

advantages they bring when analysing drought impacts. This study is one of the very few 

studies to utilise XGBoost and RTF for the classification of drought damage on commercial 

forests. The study also highlighted the advantages of conditional drought indices over 

conventional vegetation indices when analysing drought damage on commercial forests. 

Therefore, in this chapter objectives set in chapter one will be reviewed against the findings.  

One of the objectives in this study was to investigate and improve the utilisation of conditional 

and vegetation indices in forest drought analysis. The key finding relating to this objective in 

both chapter two and chapter three was the high accuracy demonstrated by the three MLAs 

when performing classifications based on conditional drought indices compared to when using 

information derived from vegetation indices. These findings highlighted the limitations of 

vegetation indices, especially, NDVI and recommended the use of EVI instead. However, even 

when EVI was prioritised by the algorithms they still underperformed compared to when using 

conditional indices to perform classifications.  

The high accuracy of conditional drought indices over vegetation indices observed in the study 

is due to conditional drought indices being calculated per pixel over time makes which makes 

it more accurate when extracting vegetation information. This, therefore, indicates that for ML 

algorithms to perform at their best they require more accurate information, which for vegetation 

drought analysis is best obtained from conditional drought indices. 

Most drought studies are not focused on drought analysis at catchment level which creates a 

gap in drought research. Therefore, this study set an objective to close that gap by utilising 

Landsat imagery to classify drought damage at the Sappi Shafton catchment. This was detailed 

in chapter two and the results demonstrated that catchment drought analysis is a viable method 
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of determining drought damage on commercial forests. This was drawn from the high accuracy 

of Kernel – SVM and RTF when classifying drought damage on commercial forests.  

When comparing these results (catchment scale and Landsat imagery) with those in chapter 

three (provincial scale and MODIS imagery), the results from the latter produced more accurate 

classifications. This outcome is more important because in chapter three XGBoost which is 

said to be more accurate than RTF and Kernel – SVM was used and OA results demonstrated 

that it underperformed compared to RTF and Kernel – SVM results in chapter two.  To 

demonstrate this conclusion, Figure 4.1 presents the drought damage classification using RTF 

based on both MODIS and Landsat information at the catchment scale. It can be observed that 

there are more details on the Landsat map compared to the MODIS map, which is due to higher 

resolution of the Landsat imagery. It can also be observed that MODIS predicted more forested 

areas to be impacted by droughts. 

 

Figure 4.1 Drought damage on Shafton commercial forest mapped using RTF based on 

MODIS and Landsat information. 
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This meant high spatial resolution drought analysis at the catchment scale using Landsat 

imagery should be preferred over low spatial resolution drought analysis. 

The results from the study also demonstrated the high potential of MLAs in improving drought 

analysis for forested regions which was also one of the objectives. As aforementioned, these 

algorithms showed great potential, especially when classifying drought damage at a catchment 

scale using conditional indices information over vegetation indices. Therefore, calling for more 

incorporation of MLAs in drought analysis and other remote sensing applications. Another 

reason for the use of MLAs is that their accuracy can be improved over time by gaining 

experience through being employed in multiple datasets (Jean et al., 2016; Luo, 2016). This is 

also beneficial given the prospect of increased data availability as exemplified by the free 

availability of Landsat data through USGS.  

However, it should be conceded that MLAs are highly parameter dependent and that might 

have limited the findings in this study. That is because for this study RTF and Kernel – SVM 

parameters were selected using automatic parameterisation to avoid the labour-intensive 

manual parameterisation. It is argued that there is still room for improving automatic 

parameterisation in MLAs which will result in improved efficiency and accuracy of these 

algorithms. With more improvements required in the algorithm’s automatic parameterisation, 

therefore creates room for error in the results obtained in this study. 
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5. CONCLUSION 

Droughts have a devastating impact on developing countries given their dependence on drought 

susceptible agricultural resources and commercial forestry. Therefore, analysing droughts is 

necessary for understanding this phenomenon and the development of ways to mitigate its 

impacts. As aforementioned, droughts are complicated and require a holistic consideration of 

all its facets which include extent, severity and duration. This study, therefore, explored the 

potential of MLAs to perform this function with the exception of the severity aspect. The result 

from the study demonstrated that MLAs are capable of classifying and visualising the extent 

of drought damage on commercial forests at the catchment scale and provincial scale.  

This conclusion is based on the findings from this thesis and answers the research question 

established in the first chapter of the thesis: 

Can Landsat be used to analyse the impacts of droughts on commercial forests at a catchment 

scale? 

 RTF and Kernel - SVM produced high accuracies when classifying drought damage on 

commercial forests within the Sappi Shafton plantation using Landsat images. 

However, this accuracy varies according to the type of indices used to perform the 

classification where conditional drought indices produced higher accuracies compared 

to vegetation indices.  

How does the drought damage classification conducted at catchment scale compare with those 

conducted at provincial scale? 

 Drought damage classification conducted at catchment scale produced higher overall 

accuracies and more detailed maps in terms of delineating areas with trees impacted by 

droughts compared to provincial drought damage classification. 

Can MLAs improve on results achieved using conventional classification methods? 

 MLAs have an inherent ability to learn and improve over time and provide a robust 

solution to drought analysis and this study provides an uncomplicated way of utilising 

them. However, there was a significant limitation encountered which is that the 
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accuracy of MLAs decreased when computing drought damage based on vegetation 

indices. The mentioned decrease is not inherent in the algorithms, instead it is 

associated with the limitations of the vegetation indices themselves. Therefore, it was 

concluded that conditional drought indices information should be preferred for drought 

classification over vegetation indices and MLAs should be preferred over conventional 

classification methods. 

Overall, this study provided insight into three of MLA, namely, RTF, Kernel – SVM and 

XGBoost. This is mainly for XGBoost, which is rarely used in drought investigations. 

Researchers should utilise this study as a base for future drought analysis using MLAs. 
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6. FUTURE RESEARCH RECOMMENDATIONS 

 

Future research should focus on improving methods of parameter selection for MLAs to 

produce more efficient and accurate classifications. This study utilised three MLAs and given 

the large pool of supervised and unsupervised algorithms to select from, and future studies 

should utilise more of these algorithms to determine their efficiency compared to the ones used 

in this study. Also, MLAs drought damage classifications can be compared to other proposed 

classification such as the linear combined index (LCI) and linear spectral unmixing. 

This study focused on forested study areas; future research can, therefore shift, the focus 

towards different land covers such as grasslands or areas with sparse vegetation where there 

could be less saturation of vegetation indices. It was also noted in the study that different tree 

species respond differently to drought therefore, these differences should be investigated 

thoroughly. Future research can also focus mainly on high-resolution remote sensing imagery 

to perform drought analysis at the catchment scale to obtain more details as demonstrated in 

this study. Droughts require a holistic consideration, therefore developing a method in addition 

to ML algorithms that can investigate the extent, severity and duration of a drought 

simultaneously is essential. 
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