HYDRODYNAMICS OF TEMPORARY OPEN ESTUARIES, WITH CASE STUDIES OF MHLANGA AND MDLOTI

By: Ingrid Zietsman

Submitted in fulfilment of the requirements for the degree of Master of Science in Engineering in the Civil Engineering Programme University of Kwa-Zulu Natal All work for this thesis was completed at the former University of Natal, Durban

Supervisor:Professor D. D. StretchCo-supervisor:Professor R. PerissinottoDate of Submission:5 January 2004

Abstract

Estuaries are unique coastal bodies of water where water derived from land meets the sea. In order to preserve estuaries and minimise the effects of human interference in these sensitive areas, an understanding of the hydrodynamics is essential. South Africa has 259 estuaries, of which approximately 70% are temporary open. The aim of the project was to provide data to analyse the effect of different flow scenarios on the frequency, timing and duration of mouth closure for temporary open estuaries. To achieve the project aim, two case studies were undertaken, namely Mblanga and Mdloti Estuaries.

Achieving the terms of reference required monitoring of the mouth state, water level, flow rates and developing an understanding of breaching mechanisms. Observations of the mouth were used to monitor its state and initially photographs were used to monitor the water level within each estuary. During 2003 a continuous water level monitor was developed and placed in each estuary. Velocity readings were taken upstream of the estuaries at discrete time intervals and converted to flow rates using the velocity area method. A photographic survey of the berm at Mhlanga Estuary was used to observe the effect of beach processes on the mouth area. The survey observed the estuary as it shifted from closed through to open, then partially open and finally closed again, providing information on mouth mechanisms.

The continuous water level monitoring provides useful information for Mhlanga Estuary in terms of breaching patterns, tidal exchange when in the open state and an indication of the time scales involved in mechanisms which change the mouth state. Similar information for Mdloti Estuary was not available as the estuary did not breach since the installation of the water level monitors, however salinity profiles from 2002 provided qualitative information on the existence of a saline intrusion into the estuary.

The relationship between flow and mouth state is complex and relies on other influences such as water level and systems losses. In general estuaries will breach under high flows and remain closed under low flows, however in between these two regimes the estuary mouth state is less predictable based on flow alone. Mhlanga Estuary repeatedly breached at low tide. During the open phase tidal influence was both observed and captured by water level monitors despite the perched nature of the estuary. Closure generally occurred at high tide trapping saline water within the estuary. The two case studies provided a good basis for exploring the affects of different flow conditions on estuaries, with Mdloti Estuary experiencing the effects of the Hazelmere Dam and abstractions, while Mhlanga Estuary has increased flow due to the discharge of treated effluent to the system.

Preface

I, Ingrid Zietsman, hereby declare that the whole of this research is my own work and has not been submitted in part, or in whole to any other university. Where use has been made of the work of others, it has been duly acknowledged in the text. This research was carried out under the supervision of Professor D. D. Stretch, in the School of Civil Engineering, Survey and Construction, University of Kwa-Zulu Natal, Durban.

Tietsma

Signature

13 April 2004

Date

As the candidates supervisor I have approved this dissertation for submission.

Prof. D. D. Stretch

13 April 2004

Date

Acknowledgements

I would like to thank:

- Water Research Commission (WRC), the KZN Wildlife association, the CSIR and the University of Natal, Durban (UND) for making this project possible;
- Jeffares and Green inc. for their guidance and support;
- Professor D. D. Stretch for supervision and guidance;
- Professor R. Perissinotto and his team for their assistance and support;
- Rob van Zyl for his invaluable assistance developing the water level monitor;
- Mr P. Huizinga for sharing his wisdom and support;
- Mr C. Meyer (OPTRON) for his assistance with the GPS survey;
- David Mardon and Mark Griffith for accompanying me to the estuary and retrieving the water level monitors under less than favourable conditions;
- The UND Civil Engineering Laboratory Staff, in particular Logan, Craig and Sydney for their assistance;
- Last but not least, my family and Jon for their support and understanding.

Table of Contents

1.	Introd	Introduction 1				
1.1.	I	ntroduction	1			
1.2.	Ν	Motivation for the study	1			
1.3.	(Dbjectives of the study	2			
1.4.	(Dutline of the dissertation	2			
2.	Backg	round & Literature review	4			
2.1.	I	ntroduction	4			
2.2.	E	Biotic component	6			
	2.2.1.	Biotic background	6			
	2.2.2.	Biological importance of hydrodynamics	7			
2.3.	V	Vater Balance	9			
2.4.	C	Climate	. 11			
2.5.	Ν	Aechanisms of breaching	. 12			
	2.5.1.	Seepage through the berm:	. 13			
	2.5.2.	Overtopping:	. 18			
	2.5.3.	Wave Action:	. 18			
	2.5.4.	Artificial Breaching:	. 22			
2.6.	Ν	Aechanisms of closure	. 23			
2.7.	S	ediment availability	. 24			
2.8.	V	Vave climate	. 25			
2.9.	C	Characteristics of temporary open estuaries	. 27			
	2.9.1.	Characteristics of the case study estuaries	. 33			
2.10	. S	tudies relating flow and mouth state	. 34			
	2.10.1.	RDM process	. 35			
	2.10.2.	Mhlanga Estuary	. 36			
	2.10.3.	Mdloti Estuary	. 37			
	2.10.4.	The Great Brak	. 38			
2.11	. S	ummary	. 39			
3.	Case S	tudies	. 40			
3.1.	R	eview of available data/Physical data	. 40			
	3.1.1.	Catchment area	. 42			
	3.1.2.	Lagoon area	. 43			
	3.1.3.	Survey	. 44			

	3.1.4.	Storage capacity	. 45
	3.1.5.	Abstractions and discharges	. 47
	3.1.6.	Weather data	. 48
3.2.		Mdloti Estuary	. 48
3.3.		Mhlanga Estuary	. 53
3.4.		Summary	. 55
4.	Field	work Methodology	. 57
4.1.		Introduction	. 57
4.2.		Flow measurements	. 57
4.3.		Water level monitoring	. 58
4.4.		Salinity	. 65
4.5.		Surveying of the berm	. 66
5.	Discu	ussion of Fieldwork	. 68
5.1.		Introduction	. 68
5.2.		Data collected	. 68
	5.2.1.	Rainfall Data	. 68
	5.2.2.	Mouth State	. 70
	5.2.3.	Flow Data	. 72
	5.2.4.	Water levels	. 74
	5.2.5.	Survey data	. 78
5.3.		The effects of flow on the mouth state	. 80
	5.3.1.	Outflows	. 84
	5.3.2.	Low flows	86
	5.3.3.	Intermediate flows	. 88
	5.3.4.	High flows	90
	5.3.5.	Summary	91
5.4.		Effects of rainfall on mouth state	91
	5.4.1.	Mdloti Estuary	91
	5.4.2.	Mhlanga Estuary	93
- -	5.4.3.	Summary	95
5.5.		Tidal exchange	96
	5.5.1.	Summary1	.03
5.6.]	Mechanisms affecting the sand berm	04
	5.6.1.	Breaching1	04
	5.6.2.	Closure	09

	5.6.3.	Summary		
5.7.		Modelling the relationship between flow and mouth state		
	5.7.1.	Flow duration curves		
	5.7.2.	The model 115		
5.8.		Summary of results 118		
6.	Concl	usion		
6.1.	-	Introduction		
6.2.		Question 1: Flow and mouth state		
6.3.		Question 2: Rainfall and mouth state		
6.4.		Question 3: Tidal influence		
6.5.		Question 4: Mechanisms affecting the mouth 121		
6.6.	1	Summation 122		
6.7.		Suggestions for further research 122		
References				

List of Figures

Figure 2-1: Map of temporary open estuaries around South Africa.
Figure 2-2: The water balance
Figure 2-3: Mean monthly precipitation for KwaZulu Natal, Eastern Cape and Western Cape
based on data obtained from Schulze (1997) 12
Figure 2-4: Schematic diagram showing the seepage and variables used in determining the
hydraulic gradient
Figure 2-5: The affect of seepage on the breaching mechanism
Figure 2-6: Frequency distribution of sediment yield for temporary open estuaries in KwaZulu
Natal (CSIR, 1990)25
Figure 2-7: Summary of wave direction around the coast of South Africa (Rossouw, 2002)25
Figure 2-8: Plot showing the distribution of % closed against residence time
Figure 2-9: Rank* of percentage of time an estuary is closed against the residence time of that
estuary
Figure 2-10: Plot of the area of the estuary against the catchment area of the same estuary 31
Figure 2-11: The ranks of estuary area versus the respective ranks of catchment area
Figure 2-12: Catchment areas of temporary open estuaries in the warm temperate zone. The
estuary numbers correspond to those in figure 2-1
Figure 2-13: Catchment areas of temporary open estuaries in the subtropical zone. The estuary
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
Figure 3-1: Location map
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1
numbers correspond to those in figure 2-1

Figure 4-2: A schematic	diagram which	was the basis	of the WLM	design. Where	PT is the
pressure transducer	and VR the volta	ge regulator			60

Figure 5-1: Daily rainfall occurring between March 2002 and mid November 2002
Figure 5-2: Daily rainfall occurring between mid November 2002 and July 2003
Figure 5-3: Comparison of monthly rainfall over the observation period against expected
average monthly rainfall70
Figure 5-4: The mouth state at Mdloti Estuary over the observation period
Figure 5-5: The mouth state at Mhlanga Estuary over the observation period
Figure 5-6: Spot flow data measured at Mdloti Estuary over the observation period. (Points
joined by dotted line for clarity)73
Figure 5-7: Spot flow data measured at Mhlanga Estuary over the observation period. (Points
joined by dotted line for clarity)73
Figure 5-8: Spot water level data measured at Mdloti Estuary over the observation period.
(Points joined by dotted line for clarity)
Figure 5-9: Spot water level measurements at Mhlanga Estuary over the observation period.
(Points joined by dotted line for clarity)
Figure 5-10: Continuous water level data measured, using water level monitors, between March
2003 and August 2003
Figure 5-11: Continuous water level data measured, using water level monitors, between March
2003 and August 2003
Figure 5-12: Ribbon plots of selective beach profiles measured at Mhlanga Estuary
Figure 5-13: Ribbon plots of selective mouth profiles measured at Mhlanga Estuary
Figure 5-14: Comparison of the flow rates obtained during the open and partly open states at
Mdloti Estuary with RDM thresholds
Figure 5-15: Comparison of the flow rates obtained during the closed state at Mdloti Estuary
with RDM thresholds
Figure 5-16: Comparison of the flow rates obtained during the open state at Mhlanga Estuary
with RDM thresholds
Figure 5-17: Comparison of the flow rates obtained during the partly open state at Mhlanga
Estuary with RDM thresholds
Figure 5-18: Comparison of the flow rates obtained during the closed state at Mhlanga Estuary
with RDM thresholds
Figure 5-19: Plot of seepage against water level used to determine maximum seepage
Figure 5-20: Water levels and flow rates over time for Mdloti Estuary, with an indication of the
maximum water level and maximum seepage

Figure 5-21: Water levels and flow rates measured at Mhlanga Estuary between March and
August 2003
Figure 5-22: Plot of mouth state and rainfall over the observation period
Figure 5-23: Ranks of monthly rainfall and percentage of time in the corresponding month that
the estuary mouth was closed
Figure 5-24: Plot of rainfall and mouth state over the observation period
Figure 5-25: Ranks* of monthly rainfall and percentage of time in the corresponding month
that the estuary mouth was closed against time
Figure 5-26: The Mhlanga Estuary in the open state during March 200396
Figure 5-27: Exploded view of the open phase presented in figure 5-26
Figure 5-28: Demonstrating the correspondence between the fluctuations in estuary water level
and tidal fluctuations
Figure 5-29: The data collected over the open phase during May 2003 100
Figure 5-30: The open state captured by the water level monitor during June 2003 100
Figure 5-31: The open state at Mhlanga Estuary during July 2003 101
Figure 5-32: Salinity profile at Mdloti Estuary under partly open conditions
Figure 5-33: Salinity profile at Mdloti Estuary after it had been closed for 15 days 103
Figure 5-34: Breaching event on 23 May 2003 104
Figure 5-35: Breaching event on 26 June 2003 105
Figure 5-36: On the 27 July 2003 the Mhlanga Estuary breached for the third time since the
installation of the water level monitor
Figure 5-37: A 1-month annual flow duration curve of both the natural state and the present day
conditions at Mhlanga estuary
Figure 5-38: A 1-month annual flow duration curve of both the natural state and the present day
conditions at Mdloti Estuary 114
Figure 5-39: Visual interpretation of the model for Mhlanga Estuary, where Q is flow and Q _c
critical flow
Figure 5-40: Visual interpretation of the model for Mdloti Estuary, where Q is flow and Qc
critical flow
Figure 5-41: Plot of flow normalized by the critical flow against the percentage of time
exceeded. The three flow regimes are superimposed on the plot

List of Tables

Table 2-1: Net longshore sediment transport as reported by Schoonees (2002)
Table 2-2: Summary of wave height and period around the coast of South Africa
(after Rossouw, 2002)
Table 2-3: The variance of berm height, dependant on grain size. 27
Table 2-4: Characteristics of Mhlanga Estuary
Table 2-5: Characteristics of Mdloti Estuary
Table 2-6: The potential uses of the various levels of RDM (DWAF, 2003)
Table 2-7: Definition of the different estuary states (after CSIR, 2002) 36
Table 2-8: Mouth state proportions under present state conditions (after CSIR, 2003) 37
Table 2-9: Mouth state proportions under reference state conditions (after CSIR, 2003)
Table 2-10: Mouth state proportions under present state conditions (after CSIR, 2002)
Table 2-11: Mouth state proportions under reference state conditions (after CSIR, 2002) 38
Table 3-1: Characteristics of Mhlanga and Mdloti Estuaries
Table 3-2: Determination of dynamic storage
Table 3-3: Summary of discharges
Table 3-4: Summary of key characteristics
Table 5-1: Summary of the mouth state at Mhlanga and Mdloti Estuaries
Table 5-2: Mouth state, rainfall and flow over the observation period. 80
Table 5-3: Constant water levels and the corresponding flow rates obtained at Mhlanga Estuary.
Table 5-4: Constant water levels and the corresponding flow rates obtained at Mdloti Estuary.
Table 5-5: Summary of losses and related information. 86
Table 5-6: Comparing the three breaching events captured by the water level monitor 107
Table 5-7: Relevant characteristics of Mhlanga and Mdloti Estuaries 115
Table 5-8: Information extracted for Mhlanga Estuary from figure 5-41
Table 5-9: Comparison of percentage closed for reference and present state obtained from
various sources

List of plates

Plate 2-1: Seepage at Mhlanga Estuary
Plate 2-2: Mhlanga Estuary after breaching
Plate 2-3: Teton Dam, Idaho, several hours after seepage began. (Olson, 1976)16
Plate 2-4: Seepage reaches crest of Teton Dam (Olson, 1976)16
Plate 2-5: The failure of Teton Dam as breach widens (Olson, 1976) 17
Plate 2-6: Several hours after breaching began, the dam is almost empty (Ponce, 1976) 17
Plate 2-7: The different types of breaking waves are a) spilling, b) plunging, c) surging and d)
collapsing (U.S. Army Corps of Engineers, 2002)
Plate 2-8: Depletion and accretion as observed on Mhlanga beach
Plate 2-9: Over-wash has widened the berm at Mhlanga Estuary
Plate 2-10: The effects of over-wash into Mdloti Estuary
Plate 2-11: Hand dug channel from estuary to the sea
Plate 3-1: The change in position of breaching at Mdloti Estuary and the destruction caused by
the recreational centre
Plate 3-2: The effect of the construction of the M4 bridge
Plate 3-3: An aerial photograph taken in 1985, showing pre-flood conditions. (Perry, 1989)52
Plate 3-4: The affect of the 1987 flood on the sand berm of Mdloti Estuary. (Perry, 1989) 52
Plate 3-5: Plates a) & b) show the estuary in the open and closed state before the loss of the
vegetated dune (Whitfield, Bate, Colloty and Taylor, www.upe.ac.za)
Plate 3-6: Plates a) & b) show the present state of the estuary in both the closed (a) and open (b)
states
Plate 4-1: The photographs show: a) the drogues and b) the determination of the cross-sectional
area
Plate 4-2: The plates show: a) the Swoffer instrument and b) the Swoffer instrument in use
upstream of Mdloti estuary
Plate 4-3: Different views of the Tinytalk data logger and the pressure transducer mounted on a
circuit board along with the microprocessor, are shown in a) and b)
Plate 4-4: The materials for the capsule comprising of perspex tubing and HDPE end plugs 62
Plate 4-5: 1 est cell used for experiments conducted with the water level monitors
Plate 4-6: The data logger a) enclosed in a bladder and b) with geo-fabric cover
Plate 4-7: The canister was placed under the pile cap of the first column of the northern end of
the M4 bridge at Mdloti Estuary

Plate 4-8: At Mhlanga Estuary the canister was placed under the pile cap of the first column of
the M4 bridge on the Northern side at the position shown
Plate 4-9: Installing the water level monitors using the boat and divers. The plate on the left
shows the divers holding the canister before installation
Plate 4-10: Example of photographs used in the determination of beach profile
Plate 5-1: Water hyacinth preventing flow measurements upstream of Mdloti estuary72
Plate 5-2: The high water mark on the M4 bride over the Mhlanga Estuary77
Plate 5-3: The high water marks on the M4 bride over the Mdloti Estuary
Plate 5-4: High tide pushing in through the entire width of the mouth
Plate 5-5: A channel within the mouth of Mhlanga Estuary
Plate 5-6: Seepage at the southern end of Mhlanga Estuary on the 26 June 2003 108
Plate 5-7: Seepage observed at Mhlanga Estuary on the 15 September 2003 108
Plate 5-8: Depth of scour observed at a) 11:19 and b) 12:32 109
Plate 5-9: The characteristics of the mouth
Plate 5-10: Build up of sand, deposited during high tide 110
Plate 5-11: Defined central channel on the morning of closure
Plate 5-12. Channel becoming narrow on the seaward side, as the estuary closes,

Abbreviations

- CSIR Council for Scientific and Industrial Research
- DWAF Department of Water Affairs and Forestry
- EMWS eThekweni Municipality Water and Sanitation
- FDC Flow Duration Curve
- KZN KwaZulu Natal
- LOICZ Land Ocean Interactions in the Coastal Zone
- MAE Mean Annual Evaporation
- MAP Mean Annual Precipitation
- MAR Mean Annual Runoff
- MAS Mean Annual Streamflow
- MSL Mean Sea Level
- PPDC Provincial Planning and Development Commission
- ppt Parts per Thousand
- RDM Resource Directed Measures
- TOC Temporary Open/Closed
- UND University of Natal, Durban
- UNP University of Natal, Pietermaritzburg
- UPE University of Port Elizabeth
- WWTW Waste Water Treatment Works

1. INTRODUCTION

1.1. Introduction

The National Water Act (Act 36, 1998) was introduced in 1998 to ensure the sustainable management of resources to meet both the human and ecological requirements. These requirements place a large demand on the quality and quantity of South Africa's water resources. An estuary is important in terms of ecology as it is a unique environment of high biodiversity which serves as a nursery for juvenile fish. Humans require the estuarine environment for subsistence fishing, recreation and tourism. Therefore this research is aimed at obtaining an understanding of the hydrodynamics of the estuarine system, which is a driving force behind the functioning and sustainability of the estuary.

Barnhart and Barnhart (1992) define an estuary as the broad mouth of a river, into which tide flows. Temporary open estuaries function in this manner when in the open state. The closed state of the estuary results when the mouth is blocked by a sand bar, forming a lagoon in place of the estuary. This behaviour exhibited by estuaries such as Mhlanga and Mdloti is important as it creates a unique environment.

There are many different levels of detail concerning the role of hydrodynamics in an estuary. Schumann, Largier and Slinger (1999) provide an overview, including flow rates, water levels, tidal fluctuations, turbulence, stratification, etc. These hydrodynamic components determine the physio-chemical environment of an estuary. In temporary open estuaries the greatest impact on the estuarine system is caused by changes in mouth state. Therefore it is important to understand the driving forces behind mouth state and this was the primary focus of this research.

1.2. Motivation for the study

This research forms part of a project funded by the Water Research Commission (WRC) and was done in collaboration with KZN Wildlife, the CSIR and the University of PE. The focus for this part of the research was to obtain data on the affect of flow on the mouth state of temporary open estuaries, with case studies of the Mhlanga and Mdloti Estuaries. This research was conducted concurrently with research on the biotic components of the estuary (undertaken by UND, Biology), allowing for the possibility that the information could be integrated to help

in predicting estuarine health and productivity. The information collected is required for the design and implementation of management procedures to protect both the human and biotic interest in estuaries.

1.3. Objectives of the study

The main objective of this study is to determine the effects of flow on mouth state. In order to achieve this objective several facets needed to be explored, such as the mechanisms involved in breaching and closure. Both Mhlanga and Mdloti Estuaries are perched, temporary open estuaries. Several key questions were raised about perched temporary open estuaries, in particular Mhlanga and Mdloti Estuaries, which needed to be answered:

- 1. Is there a definite relationship between flow and mouth state? i.e. Are specific flow regimes associated with specific mouth states?
- 2. Can rainfall be linked directly to mouth state?
- 3. What, if any, tidal influence exists during the open mouth state, given that the estuaries are perched above mean sea level (MSL)?
- 4. What are the mechanisms involved in breaching and closure of the mouth and what are the timescales?

All four questions are related to the influence of flow on the frequency and duration of mouth opening, which is a key aspect in the biological functioning of temporary open estuaries.

1.4. Outline of the dissertation

The remainder of this dissertation may be outlined as follows:

Chapter 2: BACKGROUND & LITERATURE REVIEW

This chapter provides a general understanding of estuarine characteristics, particularly those relating to perched, temporary open estuaries which was required as background for this research. Some of the hydrological characteristics are explored including the water balance, breaching mechanisms and closing mechanisms. Some biological information is introduced to establish the links between the physical dynamics and biotic responses. Chapter 2 also includes literature on the physical characteristics of estuaries as well as studies which include the effects of flow on mouth state. The studies reviewed include those conducted by the CSIR on the Mhlanga and Mdloti Estuaries based on the RDM process, with the study of the Great Brak providing an example of studies on flow and mouth state outside of the RDM process.

Chapter 3: CASE STUDIES

In this chapter Mhlanga and Mdloti Estuaries provide a basis to explore the effects of flow on mouth state in the field. Although they experience similar climatic conditions and share similar characteristics, in that they are both temporary open, and perched estuaries, they have different histories. The different forms of human impact on each estuary are explored in this chapter, particularly in terms of the affects on flow.

Chapter 4: FIELD WORK METHODOLOGY

Water levels, flow rates and mouth state are the three main aspects of the field monitoring program discussed in this chapter. This chapter provides a description of the techniques or approaches used to meet these requirements as well as giving an indication of the accuracy associated with the various techniques.

Chapter 5: DISCUSSION OF FIELDWORK

The main issue discussed in this chapter is the effect of flow on the mouth state. The flows are discussed under three regimes: low, intermediate and high. These regimes are defined in terms of the water balance, using the storage dependant losses from the system. As data on rainfall is generally more readily available than stream-flow data, analysis was done to determine whether there is a direct link between mouth state and rainfall.

Mouth state is an important feature of this research, therefore the breaching and closure mechanisms of the estuary are analysed. The timescales and mechanisms involved in the breaching and closure of the estuary are analysed using continuous water level data and observations.

Chapter 6: CONCLUSIONS

Finally conclusions concerning the key questions outlined in the objectives of this research are discussed.

2. BACKGROUND & LITERATURE REVIEW

2.1. Introduction

Estuaries are important as they provide nursery areas for marine fish which is essential for both industry and subsistence fishing. Estuaries are also important for tourism as the estuarine areas have high biodiversity and aesthetic appeal. The health and sustainability of estuarine systems is largely dependent on the driving forces within the system, namely hydrodynamics, sediment dynamics and biogeochemistry (Whitfield & Smith, 1999).

South Africa's coast is divided into three climatic regions, namely cool temperate along the west coast, warm temperate to the south and sub-tropical along the east coast. Whitfield (2000) reported that 4% of South Africa's 259 estuaries are found in the cool temperate region, 49% are found in the warm temperate region and the remaining 47% in the sub-tropical region. The southern coast of South Africa is less supportive of estuarine environments as it is dominated by rocky and aeolian type coastlines, (Reddering, 1988). Of the 259 estuaries in South Africa approximately 70% are temporary open (Whitfield, 2000). A temporary open estuary generally has a sand bar which forms across the mouth preventing free connection with the sea for portions of the year. Figure 2-1 shows the locations of the temporary open estuaries of South Africa. This plot was derived from a combination of sources (e.g. Whitfield, (2000) and a variety of maps of South Africa).

The main aim of this project was to obtain an understanding of the effects of flow on the mouth state of temporary open estuaries. To achieve this aim, both flow and mouth state need to be explored and understood. In order to understand the flow dynamics the water balance for the estuarine system needs to be explored. This can be found in 2.3.

The mouth dynamics of the estuary include breaching and closure mechanisms. The different mechanisms are explored in sections 2-5 and 2-6. Sections 2-7 through to 2-9 explore the dynamic coastal environment which affects the estuary.

However before discussing the hydrodynamic component of the project section 2.2 disscusses the importance of such a study in the biological context.

Figure 2-1: Map of temporary open estuaries around South Africa.

17

Έ

1 Diep/Riet/lei	32 van Stadens	63 Blind	94 Bulunguta	125 Mtamvuna	156 Mvusi
2 Wildevoel	33 Maitland	64 Hiaze	95 Ku-Amanzimzama	126 Zolwane	157 Fafa
3 Bokramspruit	34 Coega (Ngcura)	65 Qinira	96 Mncwasa	127 Sandlundlu	158 Mdesingane
4 Schuster	35 Boknes	66 Bulura	97 Mpako	128 Ku-Boboyi	159 Sezela
5 Krom	36 Kasuka	67 Cunge	98 Nenga	129 Tongazi	160 Mkumbane
6 Silwermyn	37 Rufane	68 Cintsa	99 Mapuzi	130 Kandandlovu	161 Mzinto
7 Sand	38 Riet	69 Cefane	100 Lwandilana	131 Mpenjati	162 Mzimayi
8 Lourens	39 Wes-Kleinemond	70 Kwenxura	101 Lwandile	132 Umhlangankulu	163 Mpambanyoni
9 Sir Lowry's Pass	40 Oos-Kleinemond	71 Nyara	102 Hluleka	133 Kaba	164 Mahlongwa
10 Rooiels	41 Klein Palmiet	72 Haga-haga	103 Mnenu	134 Mbizana	165 Mahlongwana
11 Buffels (Oos)	42 Old Woman's	73 Mtendwe	104 Mtonga	135 Mvutshini	166 Ngane
12 Onrus	43 Mpekweni	74 Quko	105 Mpande	136 Bilanhiolo	167 uMgababa
13 Ratel	44 Mtati	75 Morgan	106 Sinangwana	137 Uvuzana	168 Msimbazi
14 Klipdrifsfontein	45 Mgwalana	76 Cwili	107 Bulolo	138 Kongweni	169 Lovu
15 Blinde	46 Bira	77 Gxara	108 Mtambane	139 Vungu	170 Little Manzimtoti
16 Hartenbos	47 Gqutywa	78 Ngogwane	109 Ntlupeni	140 Mhlangeni	171 Manzimtoti
17 Klein Brak	48 Ngculura	79 Qolora	110 Nkodusweni	141 Zotsha	172 Mbokodweni
18 Groot Brak	49 Mtana	80 Ncizele	111 Mzimpunzi	142 Boboyi	173 Mgeni
19 Maalgate	50 Ngqinisa	81 Cebe	112 Mbotyi	143 Mbango	174 Mhlanga
20 Gwaing	51 Kiwane	82 Gqunqe	113 Mkozi	144 Mtentweni	175 Mdloti
21 Goukamma	52 Tylomnga	83 Zalu	114 Myekane	145 Mhlangamkulu	176 Tongati
22 Noetsie	53 Shelbertsstroom	84 Ngqwara	115 Lupatana	146 Damba	177 Mhlali
23 Piesang	54 Lilyvale	85 Sihlonttweni (Gcini)	116 Mkweni	147 Koshwaná	178 Seteni
24 Matjies	55 Ross' Creek	86 Jujura	_117 Mgwegwe	148 iNtshambili	179 Mdlotane
25 Groot (Wes)	56 Ncera	87 Ngadla	118 Mgwetyana	149 Mzumbe	180 Nonoti
26 Eerste	57 Miele	88 Ngoma	119 Sikombe	150 Mhlabatshane	181 Zinkwasi
27 Tsitsikamma	58 Mcantsi	89 Mendu	120 Kwanyana	151 Mhlungwa	182 Siyai
28 Klipdrif (Oos)	59 Gxulu	90 Ku-Mpenzu	121 Mnyameni	152 Mfazazana	
29 Slang	60 Goda	91 Ku-Bhula (Mbhanyana)	122 Mpahlanyana	153 Kwa-Makosi	
30 Seekoei	61 Hlozi	92 Ntonyane	123 Mpahlane	154 Mnamfu	
31 Kabeljous	62 Hickmans	93 Nkanya	124 Mtentwana	155 Mtwalume	

WARM

TEMPERATE

POT: ELZASETH

137

SUBTROPICAL

181

130

122 124 18 120 115

128

123

112

110 108 105

131. 127

125

123.

100

1E2

52

150

2.2. Biotic component

2.2.1. Biotic background

The following is a summary of the many different life forms such as invertebrates, fish, birds, other vertebrates and plants supported by the estuarine environment as reported by Breen & McKensie (2001).

Invertebrates include the benthic species, which consists of creatures like crown crabs and sand prawns that live on or in the sediment, and nektonic species, such as swimming prawns that are active throughout the water column. Small nekton known as zooplankton are barely visible to the naked eye. Invertebrates are important as they make energy and nutrients available for other creatures by processing living and dead plant material.

Estuaries function as nurseries for juvenile fish, supporting a variety of species some of which are more dependant on estuaries than others. A diversity of bird life may also be found around estuaries, for example waders, waterfowl, kingfishers, cormorants, gulls, terns, egrets, herons and fish eagles. Other vertebrates found in or around estuaries include otters and the water mongoose as well as hippopotamuses and crocodiles.

Plant life within South African estuaries is made up of six communities; microalgae (small algae), macroalgae (large algae), macrophytes or large submerged plants, reeds and sedges, salt marshes and mangroves. Large populations of microalgae give surfaces a green or brown tinge, and restrict light penetration when suspended in the water column. Phytoplankton microalgae in the water column provide an indication of the pollution and status of nutrients in the estuary. Macroalgae consists of two groups, filamentous or threadlike in appearance and thalloid or leafy in appearance.

Macrophytes have roots stems and leaves and grow in beds. These beds are important as they provide habitat for organisms such as fish. Salt marshes provide shelter for crabs and other invertebrates and are formed in flood plains and other areas of higher elevation in estuaries. Stems and roots of small shrubs and trees known as mangroves provide surface area for small organisms to use for colonization. They are also useful sources of energy and nutrients.

6

Reeds and sedges grow in fresh or slightly saline water. These plant species are important as they provide nutrients and energy within the estuary and because they supply materials which can be used in craftwork and construction.

Wetlands forming around estuaries are responsible for filtering and cleaning the water by removing sediments and pollutants, soaking up flood waters and dispersing surges as well as stabilizing the shoreline and preventing erosion.

2.2.2. Biological importance of hydrodynamics

To fully understand the importance of a study such as this the influence of hydrodynamics on the biotic components needs to be introduced. Mouth state directly or indirectly influences several abiotic factors within an estuary, such as salinity, light penetration, turbidity, nutrient concentrations and oxygenation. Mouth state is also directly linked to water level which in turn determines habitat availability. Under the closed state salinity begins to decrease as freshwater inflow persists. As the water level within the estuary rises the velocities decrease, leading to a clearer, less turbid water column with greater light penetration. Wind and fresh water flow into the estuary generally mixes oxygen into the surface waters, however after long periods of closure the oxygen levels in the bottom waters drops. The longer the residence time of the estuary the more sediment and nutrients accumulate as well as any pollution introduced into the river, such as heavy metals.

Under open mouth conditions, river and tidal driven mixing leads to the estuary becoming well oxygenated, however with the increased turbulence comes an increase in turbidity with reduced light penetration. Sometimes the marine influence can cause a decrease in turbidity. The estuary can become predominantly fresh under high flow conditions however as the flows subside saline intrusions increase.

All these abiotic factors either directly or indirectly impact the biotic component of the estuarine environment. These impacts on specific components in the food chain, are further explored in the rest of this section based on information obtained from CSIR (2002 & 2003).

Microalgae

A governing influence on the biomass, productivity and diversity of microalgae is the state of the mouth of the estuary. For instance, open mouth conditions generally result in an initial loss of microalgae, followed by the establishment of a diverse range of marine and fresh water species. The closed state, on the other hand, leads to less diversity with more abundance. Mouth dynamics determines the duration of open and closed conditions. Short closed periods do not provide favourable conditions for microalgae as nutrients are repeatedly flushed from the estuary, while long periods of closure result in higher productivity due to nutrient accumulation. Salinity also causes drastic changes within the community structures. In the case of zooplankton, decreases in salinity cause some species to disappear while increases in salinity cause them to reappear. Turbidity in the water column reduces the light availability which is necessary for photosynthesis. Microalgae are the primary producers in the food web, therefore any impacts on the microalgae population dynamics has an impact on the entire food chain.

Macrophytes

Macrophytes are not submerged therefore factors such as turbidity do not influence these communities. In contrast to microalgae, macrophytes are not significantly influenced by mouth state in the long term. However increased nutrient availability under closed conditions may result in higher productivity. Salinity intrusions into the estuary have little or no effect on macrophytes as these communities are generally tolerant of brackish conditions.

Invertebrates

The mouth state of the estuary has a major affect on the biomass, productivity and diversity of zooplankton, with a decrease in macrobenthos typically occurring during open, high flow conditions. Closed conditions are also responsible for the exclusion of inter-tidal organisms. Salinity can cause radical changes in the zooplankton community structure, while macrobenthos favours higher salinities for diversity and abundance. Eutrophication in estuaries, leading to oxygen depletion can be problematic particularly during sustained closed periods.

Fish

Some of the largest factors governing fish communities are abiotic. The mouth state of the estuary has a large impact on the fish community, with the open state mouth state allowing small fish to enter the estuary while the closed state allow the fish to grow in a sheltered environment. When the estuary reopens these fish return to the sea. The influences of mouth state, turbidity and salinity indirectly impact the fish communities through the food chain, starting with the primary producers. However should algal blooms result in oxygen depletion, the end result is fish kills.

Birds

As with the fish communities, the bird community is indirectly impacted by abiotic factors via the food chain. Some species however prefer specific conditions. For example waders prefer low water levels, occurring during the open mouth state, while diving fish feeders prefer higher water levels such as those under closed conditions.

2.3. Water Balance

According to Reddering (1988) estuaries exist where there is river discharge into the sea, tidal interaction and sediment availability. This only occurs during the open phase for temporary open estuaries. The water balance of temporary open estuaries during the closed phase is depicted schematically in figure 2-2.

Figure 2-2: The water balance.

This concept is based on continuity and is not unique to estuarine systems, but can be applied to other water bodies and is also the basis of the Land Ocean Interactions in the Coastal Zone (LOICZ) water budget for estuaries (IGBP, 2001). The basic continuity equation is represented by:

$$\frac{dS}{dt} = I - O$$

Where change in storage (dS) over change in time (dt) is equal to the inputs (I) to the system less the outputs (O).

Inputs into the estuary can consist of a combination of the following:

- Inflow;
- Rainfall;
- Groundwater flow;
- Over-wash and
- Tidal influx.

The inflow refers to the stream-flow entering the head of the estuary. This inflow can be estimated by summing together the freshwater resulting from runoff within the catchment; discharges from waste water treatment works (WWTW), storm-water outfalls, etcetera; less the abstractions for irrigation and domestic use. The source of the waste water discharges and the destination of water abstractions do not necessarily lie within the same catchment area as the estuary. Other factors also influence inflow into an estuary; these include structures such as dams and changes in land-use.

Rainfall not only reaches the estuarine system via runoff which becomes stream-flow, but also enters the estuary directly. Groundwater flow from the area directly surrounding the estuary is also an input into the estuarine system.

Over-wash is defined here as the introduction of sea water into the estuary through overtopping of the berm under closed conditions. Over-washing generally occurs during spring high tides. When the estuary is open there is a tidal influx which introduces both saline water and marine sediment into the estuarine system.

The system outputs consist of a combination of:

- Evaporation;
- Seepage;
- Overtopping and
- Outflow.

Seepage is particularly significant for perched estuaries where the low water levels are above mean sea level (MSL) and where the estuary's sand berm is narrow.

Where the inputs (I) exceed the outputs (O) from the system for a sustained period of time the water level within the estuary rises until it exceeds the level of the berm, leading to overtopping and possibly breaching. Under open conditions water flows out of the estuary and has free connection with the sea. Perched estuaries tend to almost completely empty upon breaching. Other inflows/outflows affecting the system are tidal and only occur during the open phase.

In temporary open estuaries flow may be classified into three general regimes: high, intermediate and low. Under high flow and flood conditions the inflows into the estuary far exceed the outflows from the system leading to the estuary filling up rapidly and breaching. In this instance a residence time (T_R), or time the estuary takes to fill, can simply be defined as the storage capacity of the estuary (S) divided by the inputs (I) into the system. In this instance the outputs from the system can be ignored as the outputs are relatively small in comparison to the inputs.

$$T_R = \frac{S}{I}$$

Under intermediate conditions the outputs (O) from the system are of similar magnitude to the inputs to the system and therefore impact the residence time significantly. Under these conditions the water level rises until an equilibrium is reached at a high water level. The residence time under intermediate flow conditions is therefore defined by:

$$T_{R} = \frac{S}{I - O}$$

Under drought and low flow input conditions the outputs either equal or exceed the inputs to the system leading to low or reducing water levels within the estuary which remains closed until such time as the inputs to the system are increased.

2.4. Climate

The South African climate also plays a role in the functioning of an estuary. The monthly distributions of precipitation for KwaZulu Natal, Eastern Cape and Western Cape are represented in figure 2-3. KwaZulu Natal has the largest annual rainfall of the three provinces,

with peak rainfall in January (summer). The Western Cape differs from the other two provinces as the peak rainfall occurs in winter, and the rainfall pattern is less variable.

Figure 2-3: Mean monthly precipitation for KwaZulu Natal, Eastern Cape and Western Cape based on data obtained from Schulze (1997).

Schulze (1997) reports that runoff in South Africa is on average 9% of the precipitation, which is well below the world average of 35%. The province in South Africa with the highest runoff is KwaZulu Natal at 16.5% of the mean annual precipitation (MAP), yet this is still less than half the world average. South Africa is therefore a low runoff zone by world averages and this coupled with the high variability of the rainfall leads to competition for water with estuaries taking lower priority. The temporary open nature of a large portion of the estuaries found in South Africa can probably be attributed to the natural lack of water with humans imposing even greater strain on the estuarine water resources.

2.5. Mechanisms of breaching

The water level at which an estuary would normally breach naturally is important as this determines the storage capacity of the system and associated residence times, as well as determining the magnitude of sediment flushed from the estuary during breaching (Huizinga and van Niekerk, 2002). There are several mechanisms by which an estuary naturally breaches, including breaching due to seepage through the berm, overtopping with associated scour and wave action. Artificial breaching is also a factor which requires consideration.

2.5.1. Seepage through the berm:

The sand berm which forms the barrier between the estuary and the sea is porous, allowing for water to seep through the berm. Mhlanga and Mdloti Estuaries are both perched with a low water level of approximately 0,67m and 0,78m above MSL respectively, therefore it is expected that water will seep from the estuary to the sea. The berm is also relatively narrow in these examples.

Seepage through the berm is dependant on the hydraulic gradient (i) across the berm:

$$i = \frac{\Delta h}{L}$$

where Δh is the head difference and L represents the length of flow over which head difference occurs. See figure 2-4 for visual interpretation of this relationship.

Figure 2-4: Schematic diagram showing the seepage and variables used in determining the hydraulic gradient.

As the hydraulic gradient increases the rate of seepage through the berm increases until the point is reached at which soil stability is lost. In order for the failure condition to occur and breaching to result, a critical hydraulic gradient must be reached. Therefore an increase in Δh or a decrease in L would aid in reaching the critical value.

Boiling or quicksand conditions are thought to have been observed at other estuaries. CSIR (1982) reported the occasional occurrence of quicksand at the Silwermine lagoon, with historical reports of a rider losing his horse in the quicksand.

The sea level is constantly changing between high and low tides, with a wider range of tidal fluctuation during a spring tide than during a neap tide. Although low spring tide provides the highest hydraulic gradient, this gradient is only sustained for a few hours. Neap tide, however provides a consistently lowered sea level providing a lower hydraulic head than at spring low. This hydraulic head, created during neap tide, is sustained over a period of days rather than hours. Breaching due to seepage failure may thus be expected to occur at neap tide, where the timescales required for seepage failure are greater than six hours. Impervious layers underlying the sand berm can aid seepage failure as the flow is constricted and thereby increased, leading to an increased rate of sand removal or piping.

A possible mechanism of breaching is that as seepage increases and sand is removed, through sand piping (eg. Gillette, 2003), from the lower end of the sea facing berm it causes the sea slope to slump reducing the width of the berm at this point. Figure 2-5 depicts this form of failure. Step 1 shows seepage through the berm, which increases with increasing water levels until such time as the seepage scours the base of the berm on the seaward side, as shown in step 2. This scour leads to the berm slumping and thereby allowing water from the estuary to overtop the berm and scour the remainder of the mouth, as shown in step 3.

Figure 2-5: The affect of seepage on the breaching mechanism.

The initial foundation for this model of breaching comes from observations at Mhlanga Estuary. Prior to two specific breaching events, extensive seepage was present. Plate 2-1 is an example of the seepage observed, with plate 2-2 showing failure of the berm. Unfortunately the actual breaching of the berm was not observed during this study, as the breaching events occurred at night.

Plate 2-1: Seepage at Mhlanga Estuary.

Plate 2-2: Mhlanga Estuary after breaching.

The piping failure mechanism is not unique to the estuarine environment, but is a common cause of failure in earth dams. Sand piping is defined by the Ohio Department of Natural Resources (1994) as the phenomenon beginning with soil erosion due to seepage on the downstream slope of an embankment and progressively eroding a path into the reservoir. An example of such a failure, reported by Gillette (2003), occurred at Teton Dam, Idaho, in 1976.

The failure began with several hours of seepage, shown in plate 2-3, which removed sediment from the dam. Once this erosive seepage reached the crest of the dam, plate 2-4, the breach occurred within minutes, continuing to expand, as seen in plate 2-5, for approximately an hour thereafter. Plate 2-6 was taken after the breaching event has subsided.

It is interesting to note the similarities between the estuary breaching event and the failure of an earth dam. These similarities are seen in the initial photographs of seepage and the later pictures of the breached estuary and failed dam. The berm of an estuary can in essence be seen as a small earth dam and therefore the seepage and overtopping failure mechanisms of earth dams become applicable to estuaries.

Plate 2-3: Teton Dam, Idaho, several hours after seepage began. (Olson, 1976).

Plate 2-4: Seepage reaches crest of Teton Dam (Olson, 1976).

Plate 2-5: The failure of Teton Dam as breach widens (Olson, 1976).

Plate 2-6: Several hours after breaching began, the dam is almost empty (Ponce, 1976)

The estimated time for breaching to develop at Teton Dam was reported as being approximately 6 hours. Although there are several differences between the failure of an earth dam and the breaching of an estuary, the principle behind failure is the same. Some of the differences

between estuaries and earth dams include the soil type and compaction, the storage volume and the presence of wave action on the downstream face.

Similarities between the failure of estuaries and the failure of earth dams are not unique to seepage failure but also are observed in failure due to overtopping and scour.

2.5.2. Overtopping:

As the water level within an estuary rises above the level at the lowest point of the berm the water can overtop the estuary berm and scour a channel to the sea. The channel would become increasingly defined as the water exiting the estuary increases in momentum. This failure through overtopping is also a failure mechanism of earth dams, enforcing the concept of a berm behaving as a small earth dam.

It may be expected that estuaries will breach via overtopping, rather than due to seepage, when the time scale to overtop the estuary is shorter than the time required for seepage erosion to influence failure. It is important to note that this mechanism does not require a sustained high hydraulic gradient for failure.

Under flooding conditions the time taken to fill the estuary is expected to be shorter than the time scale for seepage failure, therefore this form of breaching is more likely. In extreme flooding conditions the flood wave would rapidly overtop the berm and generate strong scour, breaching the estuary.

2.5.3. Wave Action:

Breaking waves can be classified into four types, namely spilling, plunging, surging and collapsing. Examples of these 4 types of breaking waves are given in plate 2-7.

a)

b)

Plate 2-7: The different types of breaking waves are a) spilling, b) plunging, c) surging and d) collapsing (U.S. Army Corps of Engineers, 2002).

Spilling breakers commonly occur on gently sloped beaches, when the wave steepness is high, conversely surging and collapsing breakers tend to occur where low steepness waves come into contact with steep beach slopes. Plunging breakers occur when high steepness waves are combined with steep beach slopes. The plunging and to a lesser extent surging and collapsing breakers are more effective at suspending sediment and therefore cause higher erosion on the beach face, than spilling breakers. As the east coast of South Africa has steep beach slopes, the coast is susceptible to highly erosive breakers.

Wave action on the seaward side of the berm aids in reducing the width of the berm through depletion. The regular alongshore pattern of alternating depletion and accretion is shown in plate 2-8, caused by currents alternating between rip and shore bound as observed at Mhlanga Estuary prior to breaching at the end of July. Where the depletion was evident, seepage was visible along the southern portion of the estuary. The reduction in berm width through depletion results in an increase in hydraulic gradient thereby increasing the effects of seepage.

Plate 2-8: Depletion and accretion as observed on Mhlanga beach.

A second mechanism by which wave action can trigger breaching is by over-wash into the estuary, thereby reducing the berm height. Introduction of saline water into the estuarine environment not only occurs when the estuary is open but can occur during the closed phase too. Over-wash is most likely to occur during spring high or after a storm event.

The over-wash can be responsible for reducing the level of the berm to below that of the water level within the estuary allowing for water to flow out of the estuary. A reduction in berm height also leads to a reduction in soil pressure, enhancing seepage through the berm and the attainment of conditions required for sand piping. Furthermore, over-wash by wave action can also increase the water level within the estuary such that it surpasses the level of the berm, resulting in the breaching of the estuary.

Over-wash can also cause an increase in berm width, thereby decreasing the hydraulic gradient and impeding failure through seepage. Plate 2-9 and 2-10 shows the widened berm at Mhlanga and Mdloti Estuaries due to over-wash. The affect of over-wash is visible in the patterns created by the over-washing waves entering the estuary.

Plate 2-9: Over-wash has widened the berm at Mhlanga Estuary.

Plate 2-10: The effects of over-wash into Mdloti Estuary.

2.5.4. Artificial Breaching:

Artificial breaching of estuaries at water levels that are lower than the natural breaching water levels, causing a reduction in flushing of the estuary and resulting in sedimentation problems. (Huizinga and van Niekerk, 2002)

There are three main factors which drive artificial breaching practices:

- 1. To prevent the flooding of crops planted within the estuary flood plain,
- 2. To protect housing and amenities built too close to the edge of the estuary and
- 3. To improve the water quality of the estuary due to the build up of pollution and nutrients creating a health risk if an estuary is left stagnant for too long.

The increased sedimentation within estuaries is a problem which perpetuates itself until only a large flood event (or dredging) can restore the estuary to health. Historically many of South Africa's estuaries were artificially breached (Begg 1978 & 1984). Plate 2-11 shows a small channel dug by hand by children on the beach at Mhlanga Estuary. The estuary was very full and close to breaching naturally, therefore breaching due to a small perturbation such as this is unlikely to adversely affect the estuary.

Plate 2-11: Hand dug channel from estuary to the sea.
2.6. Mechanisms of closure

After breaching the estuary remains open for a period of time. This time period is determined by two competing forces: the first are flows which maintain an open state by scouring sediment from the mouth and the second are physical processes causing closure by rebuilding the sand bar. The fresh water inflows into the estuary can keep the estuary open by scouring the mouth. Each estuary would require a certain minimum flow to keep the inlet open (Huizinga, and van Niekerk, 2002). Tidal exchange flows can also play a role in keeping the estuary open by scouring sediment from the mouth.

There are two distinct sediment transport processes affecting the closure of an estuary: longshore sediment transport and cross-shore sediment transport (Huizinga and van Niekerk, 2002). Longshore sediment transport is the process whereby sediment is moved parallel to the coastline by wave and current action. The sediment is suspended by breaking waves in the surf zone and then transported along the coast by longshore currents generated by waves travelling at an oblique angle to the coastline (Schoonees, 2002). In larger estuaries longshore transport is responsible for the deposition of sediment in the inlet of an estuary, forming a sediment bypass bar which obstructs the inlet, closing the estuary off from the sea (Huizinga, 2000). While longshore sediment transport is an important process in the closing of inlets in the case of large estuaries, in small estuaries it is responsible for ensuring sediment availability. In small estuaries cross-shore transport was reported by Huizinga and van Niekerk, (2002) to be the driving force behind closure. Sediment is suspended in high waves through turbulence and deposited due to wave action. This wave action can cause a wave built sand bar within the surf zone to move towards the land and this sand bar eventually blocks the inlet. Tidal forces can also deposit sand in the inlet, as the tidal outflow may not be strong enough to remove sediment deposited during tidal inflow; particularly for asymmetrical flood dominated tidal exchange flows. This concept of sediment supplied by longshore transport and deposited in the mouth of an estuary through direct wave action was also reported in Reddering (1988).

According to Huizinga (2000) and Reddering (1988) wind blown sediment has little effect on closure. However in areas where there is a prevailing wind action parallel to the coastline wind can play a significant role in the elevation of the sand bar across the mouth.

2.7. Sediment availability

Table 2-1 indicates the volume of sediment transport along the South African coast on an annual basis. Moving up the east coast of South Africa an increase in longshore sediment transport is evident. The net longshore transport along the south coast is about half that of the east coast, implying less sediment availability and possibly increasing the time required for closure of estuaries in those regions.

Location	Net Longshore	Net Longshore
	Transport (m ³ /yr)	Transport (m ³ /day)
Richard's Bay	850 000	2 300
Durban	500 000	1 400
East London	300 000 - 500 000	820 - 1 400
Port Elizabeth	150 000	410
Northern False Bay	100 000 - 150 000	270-410
Walvis Bay	860 000	2 400

Table 2-1: Net longshore sediment transport as reported by Schoonees (2002).

Another possible source of sediment is fluvial. The fluvial sediment yield for temporary open estuaries along the KwaZulu Natal coast ranges from about 1.7million tonnes per annum for large catchments such as that for Mgeni Estuary to as little as 1 800 tonnes per annum for smaller estuaries such as the Siyai and Ku-boboyi Estuaries (CSIR 1990). This translates to an approximate volumetric range of 3 to 2700m³ per day, suggesting that larger catchment areas are capable of supplying the sediment required for closure. The distribution of sediment yield is shown in figure 2-6. However it is unlikely that fluvial sediment plays a large role in mouth closure as the sediment is very fine and easily flushed from the estuarine system.

Figure 2-6: Frequency distribution of sediment yield for temporary open estuaries in KwaZulu Natal (CSIR, 1990).

2.8. Wave climate

The general wave direction at various locations around the coast of South Africa are given in figure 2-7, from which it can be seen the dominant wave direction along the east coast is south westerly in direction. These waves hit the coast at an oblique angle creating a longshore current in the nearshore zone and associated net transport of sediment up the coast.

Figure 2-7: Summary of wave direction around the coast of South Africa (Rossouw, 2002).

Wave run-up on beaches is defined by U.S. Army Corps of Engineers, (2002) as being the maximum wave uprush above still water level. There are two components of run-up, setup or the super-elevation of mean water level due to wave action and swash, which is defined as fluctuations about that mean. The active portion of the beach profile is determined by the upper limit of the run-up.

This upper limit is also important in the determination of the height of the sand berm, with a lesser role played by wind action. Run-up is a function of beach slope, porosity, wave height and wave steepness (U.S. Army Corps of Engineers, 2002). A summary of the 50 percentile (median) and the 1 percentile significant wave heights (Hs), as reported by Rossouw (2002), for the coast of South Africa are listed in table 2-2.

Location	Hs ^{50%}	Hs ^{1%}
Port Nolloth	2.0 m	4.5 m
Saldanha	2.2 m	5.5 m
Agulhas Bank	2.5 m	6.0 m
Port Elizabeth	2.3 m	5.3 m
East London	1.8 m	3.5 m
Durban	1.8 m	3.3 m

 Table 2-2: Summary of wave height and period around the coast of South Africa
 (after Rossouw, 2002).

From table 2-2 it can be determined that the significant wave height along the coast of South Africa is greater in the warm temperate zone, reducing in the subtropical zone. Along the east coast of South Africa CSIR (1990) states the water level at which KwaZulu Natal estuaries generally breach is between 2 and 2,5 m above MSL, which translates to 1.1 to 1.4 times the median wave height, reported by Rossouw (2002), for Durban.

Bagnold (1940) states that berm height (s) is proportional to the deep sea wave height (h), relative to the same datum. The berm height is also affected by the grain size of the beach sand. Table 2-3 presents the different relationships between berm height and wave height for three grain sizes. These relationships were determined through laboratory experiments.

Grain size (mm)	Equation
7	s = 1.68.h
3	s = 1.78.h
0.5	$s \approx 1.8.h$

Table 2-3: The variance of berm height, dependant on grain size.

Therefore for a range of grain sizes the approximate range in sand berm height near Durban is 3 to 3.2 m (using $h = Hs^{50\%}$, Rossouw,2002).

2.9. Characteristics of temporary open estuaries

Whitfield (2000) provides information on estuary classification distinguishing between open estuaries, temporary open estuaries and estuarine lakes, which can also be temporary open. Characteristics of South African estuaries have been published by several sources, including Begg (1978 and 1984), Jezewski, et al. (1984), Ramm et al. (1985 - 1986), CSIR (1982) and CSIR (1990). The literature published by the CSIR (1982) pertains to estuaries in the Cape, while the rest of the literature afore mentioned pertains generally to estuaries on the east coast of South Africa in KwaZulu Natal. Jezewski, Pyke and Roberts (1984) cover a range of estuaries throughout South Africa. The characteristics given in these reports include catchment areas, estuary areas, mean annual precipitation (MAP), mean annual runoff (MAR) and mean annual evaporation (MAE). Summaries of data from Begg (1978 and 1984), Jezewski, Pyke and Roberts (1984), Ramm et al. (1985-1986) and CSIR (1990) are given in appendix A. Information on these characteristics can also be obtained from Midgely, Pitmann and Middleton (1994 and 1997) for guaternary catchment areas; however the catchment areas for a particular estuary may not be the same as that of its quaternary catchment. Combining data from the various sources a plot of average residence time against percentage closed, shown in figure 2-8, was obtained. Residence time is used as a base indicator of the hydrodynamic functioning of an estuary as well as defining the nature of the water balance. The average residence time was calculated using a simplified relationship of storage volume divided by Mean Annual Runoff (MAR), with the storage volume equal to average depth multiplied by lagoon area.

Figure 2-8: Plot showing the distribution of % closed against residence time.

In figure 2-8 there are three distinct groups of data. There are three data points representing estuaries with relatively higher residence times and are closed more than 80% of the time. Conversely there is a cluster of data points which are closed less than 30% of the time and have a relatively low residence time. The third group does not behave as expected. Although the majority of these data points lie in the region closed more than 60% of the time the range of residence times corresponding to these points are relatively low. Exploring the data further a plot of the ranks was produced, shown in figure 2-9.

Figure 2-9: Rank* of percentage of time an estuary is closed against the residence time of that estuary.

*(Where a rank of 1 is assigned to the largest number)

There is a weak trend, determined from the ranked data, indicating the residence time increases with an increase in percentage closed (Spearman's rank correlation coefficient of 0.51, which is significant at 99% confidence level using a standard t-test (Helsel, and Hirsch, 1984)). Possible reasons for not achieving a stronger trend could be due to the approximation used in determining the residence times of the various estuaries. As there was insufficient data available on the outflows from each estuary the residence time was approximated on the assumption that the losses from the system are negligible in comparison to the inflows and that the inflows were estimated to be of the same order of the MAR. Therefore the residence time was determined by:

$$T_{R} = \frac{S}{MAR}$$

The storage capacity of the estuaries was determined by multiplying the estuary area by the depth. Although this is not an accurate method for determining storage, limited data was available, therefore one consistent method was applied.

Some general trends concerning the size of temporary open estuaries can be reviewed from the available information. Figure 2-10 and 2-11 explore the relationship between estuary area and

catchment size, using data from Jezewski, Pyke and Roberts (1984). The expected trend is that, in areas of similar rainfall, the larger the catchment area, the larger the required storage capacity of the estuary should be. With an increase in storage capacity there should be an increase in surface area of the estuary. Presumably where estuaries have similar areas and morphology, those with larger catchment areas would breach more frequently under similar climatic conditions. Simply plotting the areas against each other did not show any obvious trend (figure 2-10), however a plot of the respective ranks for catchment area and estuary area does show a general trend (figure 2-11). The data points in figure 2-11 were ranked largest (rank = 1) to smallest.

The Spearman's rank correlation coefficient for the data shown in figure 2-11, is 0.72, which is significant at a 99 % confidence level.

As there is a significant positive correlation between catchment size and estuary size, the distribution of the catchment size will also give an indication of the distribution of estuary size. Jezewski, Pyke and Roberts (1984) provided information on catchment areas for 91 of the 182 temporary open estuaries of South Africa. Figures 2-12 and 2-13 show the distribution and range of catchment sizes for the warm temperate and subtropical regions. The cool temperate region has been omitted as there is only information available on one of the five temporary open estuaries in the region. Of the 91 temporary open estuaries 30% have a catchment area less than 25km² and 50% have a catchment area less than 50km². As indicated in figure 2-13, the majority (approximately 75%) of the estuaries in the subtropical area have catchment areas of less than 50km².

Figure 2-10: Plot of the area of the estuary against the catchment area of the same estuary.

Figure 2-11: The ranks of estuary area versus the respective ranks of catchment area.

*(Where a rank of 1 is assigned to the largest number)

Figure 2-12: Catchment areas of temporary open estuaries in the warm temperate zone. The estuary numbers correspond to those in figure 2-1.

Figure 2-13: Catchment areas of temporary open estuaries in the subtropical zone. The estuary numbers correspond to those in figure 2-1.

2.9.1. Characteristics of the case study estuaries

Information specific to Mhlanga and Mdloti Estuaries was extracted from Jezewski, Pyke and Roberts (1984), Begg (1978, 1984), Ramm et al. (1985/6) and CSIR (1990) tables 2-4 and 2-5 were produced.

	Begg (1978 & 1984)	Jezewski, et al (1984)	Ramm, et al. (1986)	CSIR (1990)
Catchment area (km ²)	85, 124, 196	118	118	118
River length (km)	28		28	28
Longest collector (km)		25		
MAR (10 ⁶ m ³)	19.7 to 29.5	23	19.8*	
Min. flow m ³ /s	0.02			
Max. flow m ³ /s	1.75	·		
Av. Flow m ³ /s	0.28			
Lagoon area m ²	114 000	114 000	114 000	
Depth (m)			1.7	
% Closed			96	
Time of concentration (hr)		5.8		
Freshwater req. (10 ⁶ m ³ /yr)		0.801		
Sediment yield (tonnes/yr)				47 200

Table 2-4:	Characteristics	of Mhlanga	Estuary.
------------	-----------------	------------	----------

*Reported as 0.0198 million m³, however this appears to be an error.

Table 2-5:	Characteristics	of Mdloti	Estuary.

	Begg (1978 & 1984)	Jezewski, et al. (1984)	Ramm, et al. (1985)	CSIR (1990)
Catchment area (km ²)	481,497,550,704	527	527	527
River length (km)	74 to 88		81	81
Longest collector (km ²)		75		
MAR (10 ⁶ m ³ /yr)	97, 105, 134	102	89.0*	
Min. flow m ³ /s	0.34			
Max. flow m ³ /s	5			
Av. Flow m ³ /s	2 to 2.5 perrennial			
Lagoon area m ²	136 000	183 000	136 000	
Depth (m)			1.24	
% Closed			64	
Time of concentration (hr)		12.5		
Freshwater req. (10 ⁶ m ³ /yr)		5 <u>.2</u> 10		
Sediment vield (tonnes/yr)				210 800

*Reported as 0.89million m³, however this appears to be an error.

From tables 2-4 and 2-5 a wide range of values are given for data such as catchment area. The catchment for Mhlanga Estuary forms part of the U30B quaternary catchment defined in Midgely and Pitmann (1994), whilst Mdloti Estuary catchment area falls in quaternary catchment U30A and part of U30B. Midgely and Pitmann (1994) reports the catchment area of U30A and U30B to be 376 and 221km² respectively, giving a total possible catchment for Mhlanga and Mdloti Estuaries combined equal to 597km² which also includes a portion of catchment area which provides runoff directly into the sea. The sum of the two catchments reported by Jezewski, Pyke and Roberts (1984), Ramm, et al (1985/6) and CSIR (1990) equates to 645km², exceeding the possible 597km². Some of the values reported in Begg (1978, 1984) are too high to conform to values reported by Midgely and Pitmann (1994).

Chapter 4 further explores issues of catchment area and estuary area, whilst flows for Mdloti and Mhlanga Estuaries are further explored in chapter 6.

2.10. Studies relating flow and mouth state

To ensure the demands on South African water resources are satisfied, both in terms of quality and quantity, for human requirements and ecological sustainability the National Water Act (Act 36, 1998) was introduced. Jezewski, Pyke and Roberts (1984) reported one of the first attempts to quantify the freshwater requirements of estuaries in South Africa. Jezewski used the evaporative requirement and the flooding requirement of each estuary as a basis for predicting the freshwater required for the abiotic functioning of each estuary. The evaporative requirement was defined as the volume of water required to replace the water lost by the estuary through evaporation and thus prevents the occurrence of hypersaline conditions. The flooding requirement was defined as the volume of water required to periodically breach the estuary, flush accumulated sediments from the system, and flood the wetlands around the margins of the system. It was argued that this could be estimated using the 2-year return period flood hydrograph for the system. The calculated freshwater requirements were generally less than 6% of MAR, with details of individual estuaries given in appendix B. These estimates are significantly lower than the requirements inferred using RDM procedures, that take a holistic approach incorporating both the abiotic and biotic functions of estuaries. This recent approach is outlined in CSIR, (2002). The RDM approach views a reduction of freshwater inflow as a threat to the natural functioning of the estuarine system, ultimately affecting the biodiversity of an estuarine system.

During the past two years, the RDM methodology has been applied to Mdloti and Mhlanga Estuaries (CSIR, 2002,2003). Some of the data used in the RDM study of Mhlanga Estuary included data from this current study.

The purpose of the RDM methodology is to determine the impact of changes in flow on the estuarine ecosystem and provide an indication of the health of the estuary in its present state relative a natural (reference) state.

2.10.1. RDM process

There are four levels of RDM studies, namely desktop, rapid, intermediate and comprehensive. Table 2-6 presents the use of the various levels, with the different levels requiring different degrees of detail.

Level	Use
Desktop estimate	For use in Water Situation Assessment Model (WSAM) as part of the planning process only
Rapid determination	Individual licensing for small impacts in unstressed catchments of low importance & sensitivity; compulsory licensing "holding action"
Intermediate determination	Individual licensing in relatively unstressed catchments
Comprehensive determination	All compulsory licensing. In individual licensing, for large impacts in any catchment. Small or large impacts in very important and/or sensitive catchments.

Table 2-6:	The potential	uses of the various	levels of RDM	(DWAF, 2003)
	The potential	abes of the railous		

In terms of flow and mouth state the RDM studies have defined four typical abiotic states. Each RDM study aims to provide flow ranges, for a particular estuary, for each state. Each state is then described in terms of the abiotic characteristics and processes and the occurrence of each state estimated using simulated monthly flows for the present state of the estuary. Table 2-7 defines the four abiotic states.

State	Name
1	Closed, where the estuary is cut-off from the sea with no water exchange.
2	Semi-closed, with a perched outlet channel but no seawater intrusion (except occasional over-wash), and with water still flowing out to sea
3	Open, with seawater intrusion
4	Open, with no seawater intrusion under high flow conditions (river dominated), i.e. completely fresh

Table 2-7: Definition of the different estuary states (after CSIR, 2002)

The RDM also determines the reference or natural condition of an estuary using simulated data. Comparing the present state of the estuary to the reference condition provides a method of determining health of the estuary relative to its natural state. This methodology is also used in the analysis of the effects changes in flow will have on the natural functioning of the estuary in question.

2.10.2. Mhlanga Estuary

The Mhlanga Estuary was reviewed using the rapid RDM process (CSIR, 2003). As part of this study the present and reference (or natural) conditions of the estuary were evaluated using flow duration curves from 75 years of simulated monthly flows. The occurrence of the four estuary states are tabulated in tables 2-8 and 2-9 for the present and reference conditions respectively, with the estimated threshold flows as presented in CSIR (2003). CSIR (2003) determined the percentage of time the estuary was in each state by combining the threshold flows and the flow duration curves. Note that data collected as part of this current study contributed towards the RDM study.

State	Threshold Flows (m ³ /s)	Percentage
Closed	< 0.4	49
Semi-closed	0.4-0.5	26
		25
Open - estuarine	0.5-5.0	
Open - fluvial	> 5.0	< 1

Table 2-8: Mouth state proportions under present state conditions (after CSIR, 2003)

Table 2-9: Mouth state proportions under reference state conditions (after CSIR, 2003)

State	Threshold Flows (m³/s)	Percentage
Closed	< 0.4	82
Semi-closed	0.4-0.5	3
Open - estuarine	0.5-5.0	15
Open - fluvial	> 5.0	< 1

The results from CSIR (2002) reproduced in tables 2-8 and 2-9 indicate that the Mhlanga Estuary was naturally closed for approximately 82% of the time however under present conditions it is only closed approximately 49% on average. The reduction in the percentage of time the estuary is closed on average can be attributed to the increase in flow due to the addition of treated effluent into the estuarine system.

2.10.3. Mdloti Estuary

The rapid RDM method was used to assess the Mdloti Estuary by CSIR, 2002. The estimated threshold flows used to define the four biotic states are tabulated for present conditions and reference conditions in tables 2-10 and 2-11 respectively. The percentages given for each state were determined by CSIR (2003) by combining the threshold flows and flow duration analysis based on 75 years of simulated monthly flows.

State	Threshold Flows (m ³ /s)	Percentage
Closed	< 0.3	45
Semi-closed	0.3-2.0	28
Open - estuarine	2.0-5.0	13
Open - fluvial	> 5.0	13

Table 2-10: Mouth state proportions under present state conditions (after CSIR, 2002)

Table 2-11. Mouth state proportions under reference state conditions (after CSIR, 2	te conditions (after CSIR, 2002)	Table 2-11. Mouth state proportions under reference state con
---	----------------------------------	---

State	Threshold Flows (m ³ /s)	Percentage
Closed	< 0.3	2
Semi-closed	0.3-2.0	61
Open - estuarine	2.0-5.0	20
Open - fluvial	> 5.0	17

CSIR (2003) indicate that the flows at Mdloti Estuary have been reduced between reference and present conditions from 98.7 to 72.3 million m³ per year. This lowered flow rate is a combination of the effect of the construction of Hazelmere Dam and the abstractions for irrigation. From tables 2-10 and 2-11 it can be deduced that with the reduction in flow there was a large increase in percentage of time the estuary is closed.

2.10.4. The Great Brak

Another example of a study conducted on an estuary, was Huizinga (1995) on the Great Brak Estuary. The need to study and develop a management strategy for the Great Brak Estuary arose with the construction of the Wolwedans Dam 2km upstream of the estuary. Huizinga (1995) identified that the mouth state would be greatly impacted by the reduction of streamflow resulting from the dam. The Great Brak was expected to remain open during summer as the prevailing wave conditions in the area are low whilst in winter high waves close the estuary. Typical prolonged periods of open conditions were expected at the Great Brak Estuary during summer, therefore management of the flows in summer is important in order to imitate the natural behaviour of the estuary. Should the flows be greatly reduced the estuary will not open as regularly causing problems for fish migration, poor water quality and is unattractive for tourists.

2.11. Summary

The importance of a study relating flow rates and mouth state (e.g. Perissinotto, R, et al. 2003), is linked to the effects on the biotic component of the estuarine system. The breaching of an estuary has a large impact on the physio-chemical environment influencing the entire food chain, as well as providing connection to the sea for migration both into and out of the estuary.

Estuaries provide a unique environment where fluvial and marine elements compete. Temporary open estuaries exist where a berm forms between the river and the sea closing the lagoon off for periods of time. The mechanisms of breaching are closely related water balance, whilst the forces generally responsible for closure are marine in origin. The preceding sections provide background information on the elements linked to either the fluvial or marine environment including climate and wave dynamics.

General information on the physical characteristics are available from sources such as Begg (1984). From these characteristics a simplified residence time was determined, scaling out the size of the estuary and making them more comparable. There was a weak trend found between the calculated residence time and the percentage of time closed.

Some of the studies, which incorporate the effect of flow on mouth state, were discussed in section 2.10. From the studies on Mhlanga and Mdloti Estuaries, conducted using the rapid RDM process, there is evidence of changes in mouth dynamics linked to changes in streamflow. These studies indicate that Mdloti Estuary is receiving less flow than in its natural state and breaching less frequently while conversely Mhlanga Estuary receives more stream flow and breaches more regularly than it would have in its natural state.

3. CASE STUDIES

Mhlanga and Mdloti Estuaries are located along the east coast of South Africa, in KwaZulu Natal, approximately 19 and 25km north-east of Durban respectively. Both Mhlanga and Mdloti Estuaries are temporary open, perched estuaries, formed at the points where the Ohlanga and Mdloti Rivers reach the sea. A map showing the location of the case studies is presented in figure 3-1.

Figure 3-1: Location map.

3.1. Review of available data/Physical data

Summarized in table 3-1 are some of the physical characteristics of the two case studies. The methods used in obtaining this data are described in this section.

Characteristic	Mblanga Estuary	Mdloti Estuary	Source
CSIR no.	NN2	NN3	e.g. CSIR, 1990
Quaternary catchment	U30B	U30 A&B	
Av. catchment slope	0.0056	0.0070	Jezewski, et al., 1984
Longest collector (km)	25	75	Jezewski, et al., 1984
Time of concentration (hrs)	5.8	12.5	Jezewski, et al., 1984
River gradient (1:)	86	95	CSIR, 1990
River sediment yield (t/yr)	47 200	210 800	CSIR, 1990
Highest water level (mm)	2960	3200	Section 3.1.3
Lowest water level (mm)	670	780	Section 3.1.3
Estuary area (km ²)	0.7	0.8	Section 3.1.2
Dynamic estuary storage (m ³)	800 000	970 000	Section 3.1.4
Catchment area (km ²)	80	108 + 376* = 484	Section 3.1.1
MAR (million m ³ /yr)	12.7	83.1	Section 3.1.5
MAR (m ³ /s)	0.40	2.63	
Release from Hazelmere Dam		62.6	Section 3.1.5
(million m ³ /yr)	-	02.0	5601011 5.1.5
MAR for relevant potion of	12.7	17.1	
U30B (million m ³ /yr)			
Discharges (million m ³ /yr)	7.4	2.7	Section 3.1.5
Abstractions (million m ³ /yr)	-	5.9	Section 3.1.5
MAS (million m ³ /s)	20.1	76.5	Section 3.1.5
Berm length (m)	664	725	Section 3.1.3
Berm width (m)	30-60	±70	Section 3.1.3
Berm height (m)	2.88-5.85	4.22-4.9	Section 3.1.3
% closed (natural)	82	2	CSIR, 2003 and 2002
% closed (present)	49	45	CSIR, 2003 and 2002
Av. measured flow (m^3/s)	0.70	2.08	Section 5.2.3
Maximum seepage (m ³ /s)	0.25	0.53	Section 5.3.1
Maximum evaporation (m ³ /s)	0.02	0.02	Section 5.3.1
Median wave height (m)	1.8	1.8	Rossouw, 2002
Net longshore transport-Dbn	500 000	500 000	Schoonees, 2000
(m ³ /yr)			
Dominant wave direction-Dbn	southerly	southerly	Rossouw, 2002

Table 3-1: (Characteristics	of Mhlanga	and Mdloti	Estuaries.
--------------	-----------------	------------	------------	------------

* catchment area for U30A as stated in Midgley et al, 1994.

3.1.1. Catchment area

Orthophotos, dating from 1992, of the areas surrounding the Mhlanga and Mdloti Estuaries and the rivers contributing to the estuaries were used to determine the catchment areas of the two estuaries. The catchment areas were estimated by examination of the 5m contour lines. In the determination of the catchment area for Mdloti Estuary, only the catchment area downstream of Hazelmere dam was measured. The catchment area upstream of Hazelmere dam constitutes the catchment area as defined by Midgely et al, (1995), as quaternary catchment U30A, and has not been specifically measured for this project as the water falling in the catchment upstream is collected by the dam with only the flow released by the dam reaching the estuarine system. The orthophotos were also used to determine river morphology, land use and location of structures. Information and mapping data obtained from the Durban City Engineers was used to check the data from the orthophotos. The data provided was in Arcview GIS format, from which the map of the catchment areas, presented in figure 3-2, was generated.

Data obtained from the Water Research Commission in the form of the Midgely et al (1997, 2nd Ed.), included general information on the catchment areas for Mhlanga and Mdloti (downstream of Hazelmere) Estuaries within the quaternary catchment area U30B, and the rest of Mdloti Estuary catchment area (upstream of Hazelmere) U30A. The information obtained included mean annual precipitation, mean annual runoff, underlying geology, etc.

The quaternary catchment area U30B consists of the catchment area for Mhlanga Estuary, the downstream portion of Mdloti Estuary catchment area and some catchment area providing runoff directly into the sea. Therefore the sum of the portions of catchment area for the two estuaries falling within the U30B area should sum to less than 221km². The sum of the two measured areas is 188km², with the remaining 33km² draining towards the coast.

Figure 3-2: The catchment areas for Mdloti and Mhlanga Estuaries. The area shown for Mdloti Estuary is the portion below Hazelmere Dam.

3.1.2. Lagoon area

The area of the lagoon portion of each estuary was measured off a set of orthophotos dated 1992. Unfortunately the detail provided by the 5m contour interval on the orthophotos was not sufficient to determine the true head of the estuary. Therefore the head of the estuary was found by projecting the maximum water level, determined from fieldwork, upstream using the 2m contour data and mapping, dated 2003, supplied by the Durban City Engineers. Figures 3-3 and 3-4 show the Mhlanga and Mdloti lagoons as determined from the contours depicted. Not all of the contours are displayed in the figure as this would clutter the plot, therefore 2m contours are displayed up to 10m above MSL, and thereafter random contours are shown. Note that the values obtained for the surface areas of the estuaries are much larger than those defined by literature (e.g. Begg, 1984), this is probably linked to the definition of the estuary head.

Figure 3-3: Map showing the extent of Mhlanga Estuary.

Figure 3-4: Map showing the extent of Mdloti Estuary.

3.1.3. Survey

All the water level data collected at Mhlanga and Mdloti Estuaries was referenced to the pile cap of the respective bridges. In order to report these measurements relative to MSL a GPS survey was conducted at both Mhlanga and Mdloti Estuaries. From this survey the heights of the pile caps at Mhlanga and Mdloti Estuaries were measured as 1274 and 962 mm above MSL

respectively. The maximum and minimum water levels were then determined from the data collected relative to MSL (see section 5.2.4 for data collected on water levels).

The GPS survey was also used to measure the length, width and height of the sand berm.

3.1.4. Storage capacity

It is important to note that the estuarine environment is dynamic and therefore the volume can change depending on the water level of the estuary and the morphology of the lagoon.

The dynamic storage within the estuary is an important hydrological feature of temporary open estuaries. No hydro-graphic survey was conducted as part of this study, therefore a model has been used to estimate the storage capacity of the estuary. A possible model for storage of an estuary is a triangular prism, allowing for sedimentation and dead storage in the lower reaches, as seen in figure 3-5. The resulting cross-section representing the dynamic storage is trapezoidal.

Figure 3-5: Storage model used to represent the storage within an estuary. HWL and LWL refer to the high water level and low water level.

Unfortunately there was insufficient data for this model therefore a rough estimate of storage was determined by:

$$V = \frac{1}{2} \cdot d \cdot A$$

In this equation V represents the volume of the estuary while d is the maximum change in water level and A is the surface area of the estuary when full. Table 3-2 contains the approximate storage for both Mhlanga and Mdloti Estuaries.

	Mhlanga	Mdloti
Max. change in water level (m)	2.29	2.42
Estuary area (m ²)	700 000	800 000
Storage (m ³)	800 000	970 000

Table 3-2: Determination of dynamic storage.

Observations during this study indicate that the actual morphology of the estuaries is far more complex. Several cross-sections of both Mhlanga and Mdloti Estuaries were measured for flow determination. Examples of cross-sections measured at Mdloti and Mhlanga Estuaries are presented in figures 3-6 and 3-7 respectively. A complete record of all the cross-sections and the location at which each of the cross-sections were measured are included in appendix C.

Figure 3-6: The cross-sectional profile at Mhlanga Estuary measured on the 13 November 2002. The surface water level relative to MSL is 0.25m.

Figure 3-7: The cross-sectional profile at Mdloti Estuary measured on the 22 January 2003. The surface water level relative to MSL is 2.25m.

3.1.5. Abstractions and discharges

The Department of Water Affairs and Forestry (DWAF) provided information on the discharges from Hazelmere dam into the Mdloti River. The average discharge stated in table 3-1 was calculated from 20 years of complete data between 1977 and 2002, excluding the 1987 data. The 1987 data was excluded as the flood event occurring during this year was reported by Perry (1989) as probably the maximum experienced by Mdloti Estuary and therefore would bias the data. eThekweni Municipality Water and Sanitation (EMWS) provided information on the volumes of treated effluent discharged from the Mhlanga and the Phoenix Waste Water Treatment Works (WWTW) into the Ohlanga River upstream of Mhlanga Estuary (shown in figure 3-2). The current annual discharge or capping flow is approximately $7.2 \times 10^6 \text{m}^3/\text{yr}$ (0.23m³/s). The effluent discharges from the Verulam and the Mdloti WWTW (see figure 3-2) have a current annual discharge of approximately $2.7 \times 10^6 \text{m}^3/\text{yr}$ (0.086m³/s). These WWTWs are situated downstream of Hazelmere. Table 3-3 presents the discharges from the various WWTWs.

	Discharge	Discharge
ww1w	(million m ³ /yr)	(m ³ /s)
Mhlanga	2.62	0.083
Phoenix	4.75	0.15
Mdloti	0.37	0.012
Verulam	2.33	0.074

Table 3-3: Summary of discharges.

Water is abstracted from Mdloti River by Tongaat-Hullet for irrigation and domestic use. The estimated abstraction is 5.9million cubic meters per year $(0.19m^3/s)$. Water meters were recently installed; however this data is not yet available (Gurney, 2003).

The natural MAR reported in Midgely and Pitmann (1994) for the quaternary catchments was scaled by the catchment areas of Mhlanga and Mdloti Estuaries to obtain the natural MAR figures in table 3-1. For Mhlanga Estuary the present day Mean Annual Stream-flow (MAS) was determined by adding the discharges from WWTWs to the natural runoff. The present day MAR for Mdloti Estuary was calculated by adding the discharge from Hazelmere Dam and the WWTW to the natural runoff for Mdloti Estuary for the catchment area in U30B, and subtracting the abstractions. The discharge from Hazelmere Dam effectively replaces the runoff from quaternary catchment U30A, as it falls upstream of Hazelmere Dam, which would naturally enter Mdloti's estuarine system.

3.1.6. Weather data

Weather data, from the Mount Edgecombe station (reference number 0241072), was obtained from the weather bureau as it is the closest weather station to the two estuaries. The Mount Edgecombe station is situated approximately 11km south-west of Mdloti Estuary and 6km west of Mhlanga Estuary.

3.2. Mdloti Estuary

Mdloti Estuary has been transformed from its natural state through several human influences, both directly and indirectly. The largest direct influence on the hydrodynamics of the system is

the Hazelmere Dam. Hazelmere Dam was constructed in 1975 and has a net capacity of $23.2 \times 10^6 \text{m}^3$, with a surface area of approximately 223.9 ha. The effect of the dam on the hydrodynamics is to attenuate flood flows, release less flow under drought conditions and to change the seasonal stream flow pattern. The quaternary area U30A, is the portion of the Mdloti catchment area upstream of Hazelmere Dam. The average monthly stream-flow from the Hazelmere Dam is shown in figure 3-8 together with the simulated natural stream flow for the U30A catchment obtained from Midgley, et al. (1997). It was expected that the flow released form Hazelmere Dam would be lower than the simulated natural stream-flow, however this is not the case. Either the simulated data underestimates the natural stream-flow for the catchment or there is an overestimation of the flows released from Hazelmere Dam creating this inconsistency.

Figure 3-8: Plot of seasonal variations in flow, both simulated natural stream-flow and actual flow released from Hazelmere Dam.

Hazelmere Dam is not the only factor affecting the stream flow; water is also directly discharged and abstracted from the river. Discharges into the estuary are in the form of treated waste water released from two WWTWs, namely Verulam WWTW and Mdloti WWTW (see figure 3-2). These discharges add a capping flow to the existing flow throughout the year and increase the organic and nutrient loading in the estuary. Water is abstracted for both irrigation of sugarcane and domestic purposes, lowering the flow rate.

The sugarcane plantations which cover a large portion of the Mdloti catchment area, not only impact the estuarine system through abstraction of water, but also affect the available runoff from the catchment. CSIR (2002) reports that agricultural use of the floodplain and catchment area surrounding an estuary can result in increased nutrient and sediment loading. Along with

the increase in sediment loading and therefore turbidity, fertilizers, pesticides and insecticides are also introduced into the system.

Human influence has also had an impact on the breaching position of the estuary. Plate 3-1 shows the different locations at which the estuary breaches.

Plate 3-1: The change in position of breaching at Mdloti Estuary and the destruction caused by the recreational centre.

Historically Mdloti Estuary breached towards the south in a rocky region. This natural breaching point has a rock sill which prevents the estuary from emptying completely.

Previously Mdloti Estuary has been artificially breached in order to protect houses built on the fore dunes from being undermined and crops in the flood plains from being inundated. When the estuary is artificially breached, a channel is made in the centre of the berm, rather than at its natural location to the south. Artificially breaching the Mdloti Estuary, in the centre of the berm, results in the estuary emptying completely. (PPDC, 2002 Draft).

At the time the photograph was taken the estuary had been artificially breached at the location shown. Since the construction of the recreational centre on the northern bank of the estuary the vegetated dune north of the estuary has been undermined and eradicated as far back as the seaward facing parking bays. It appears that the developments have altered the natural flow path of the estuary, particularly in the northern region and have caused a reduction in berm width to the north, possibly aiding the occurrence of breaching in this region.

Other direct human impacts on the estuary include the construction of the M4 bridge across the estuary. In order to build this bridge, embankments were required and these embankments resulted in the loss of the old flood channel on both the northern and southern banks, as seen in plate 3-2. The bridge and embankments would therefore also have altered the flow and sedimentation patterns.

Plate 3-2: The effect of the construction of the M4 bridge.

The northern embankment of the bridge lies directly in the path of flood waters, and both embankments restrict the flood flow. To deflect the flood waters away from the northern embankment another embankment was constructed.

The flood of 1987 led to a much wider mouth eliminating the majority of the berm. Plate 3-3 was taken prior to the flood and the contrasting flood conditions are shown in plate 3-4. The flood also resulted in the failure of the bridge across the estuary.

Plate 3-3: An aerial photograph taken in 1985, showing pre-flood conditions. (Perry, 1989)

Plate 3-4: The affect of the 1987 flood on the sand berm of Mdloti Estuary. (Perry, 1989)

Sandwinning operations upstream of Mdloti Estuary have also had an impact on the environment (PPDC, 2002 Draft). During mining vegetation is destroyed or removed to create several access paths to the operation. Often the river is deviated during a sandwinning operation in order to provide storage areas, however after the operation ceases there is often little attempt at rehabilitating the area. Equipment required for the operation is generally serviced in close proximity to the river creating pollution. A further impact is the suspension of sediment leading to increased silt loading in the estuary.

3.3. Mhlanga Estuary

The sand bar separating Mhlanga Estuary from the sea was historically a vegetated sand dune, as shown in plate 3-5. Begg (1984) reported the loss of vegetation to the north due to trampling. As a result of the loss of vegetation, wind erosion affected this section of the berm lowering it and allowing for over-wash. This weakened this part of the berm and in 1980 a small flood broke through, altering the natural position of the mouth. It is possible that the combination of trampling of vegetation and a large flood resulted in the loss of the rest of the vegetation on the dune. The lack of vegetation means the berm has lost some of its protection as the plant coverage helps to keep the sand intact. The present state of the berm is shown in plate 3-6.

The mouth of the estuary is generally located to the south, as seen in the plates; this phenomenon has not changed despite the loss of vegetation of the dune, and possible reduction in berm height. The southern portion of the estuary has a reef within the onshore zone, which could influence the position of the breach.

a)

Plate 3-5: Plates a) & b) show the estuary in the open and closed state before the loss of the vegetated dune (Whitfield, Bate, Colloty and Taylor, <u>www.upe.ac.za</u>).

Plate 3-6: Plates a) & b) show the present state of the estuary in both the closed (a) and open (b) states.

Human exploitation of Mhlanga Estuary and the surrounding catchment area, include the encroachment of sugarcane plantations, bridges and the discharge of treated waste water. The effect of the sugar plantations within the catchment is to increase the silt loading in the estuary, in turn affecting the turbidity and light attenuation in the estuary (CSIR 2003). The runoff from a catchment covered in sugarcane will have the same or lower runoff than if the catchment were

covered by grasslands depending on the soil thickness (Schmidt, Smithers, Schulze and Mathews, 1998). Where sugarcane has been planted in the floodplains it has encroached on natural wetlands, which has particularly affected the northern bank of Mhlanga Estuary.

The embankments which form part of the bridge across the estuary encroach on the natural habitat of the estuary reducing the reed beds in the vicinity. Construction of such a structure places limitations on the estuary, particularly under flood conditions when the flow is restricted by the bridge.

There are two waste water treatment works which discharge treated effluent into the Mhlanga Estuary, namely the Phoenix and the Mhlanga WWTWs. The discharges have two major impacts on the estuary. Firstly the discharge contains nutrients which flow directly into the estuary and can lead to eutrophication. Secondly, and more relevant in terms of this study, the introduction of treated effluent increases the flow into the estuary by approximately 58% of the natural MAR.

Another factor which could affect both estuaries is urbanisation within the catchment. Urbanised areas generally have a higher runoff, which is usually collected in storm drains and can be discharged into the estuaries without screening. Runoff from the N3 and M4 also discharges into the estuaries, along with any pollutants washed from the road.

3.4. Summary

The two case studies presented are situated close to one another in similar climatic regions. However, in terms of the way that the changes in flow have impacted on the functioning of the estuaries, they provide examples of different scenarios. Mdloti Estuary experiences less flow than would naturally occur, whilst Mhlanga Estuary experiences an elevated flow. Furthermore the nature of the flow changes imposed on the estuaries are also different. A summary of the key characteristics is given in table 3-4.

Characteristic	Mhlanga Estuary	Mdloti Estuary
Catchment area (km ²)	80	484
MAR (million m ³ /yr)	12.7	83.1
Δ Flow/MAR (%)	+58	-8
% closed (natural)	82	<5
% closed (present)	55	69

Table 3-4: Summary of key characteristics.

The main change affecting Mdloti Estuary is the construction of the Hazelmere Dam, which severely attenuates flood flows, while also reducing flow during low flow periods. Abstractions also have a large impact on low flows. From table 3-4 it is shown that the reduction in flow has resulted in an increase in the percentage of time the estuary is closed.

In contrast at Mhlanga Estuary the addition of the treated effluent to the stream-flow has had a large effect in increasing the low flows, while having relatively little impact on flood flows. Table 3-4 shows that the increase in flow has resulted in a decrease in the percentage of time the estuary is closed.

4. FIELDWORK METHODOLOGY

4.1. Introduction

During the project a range of data was collected in the field. Water levels and flow rates were a large portion of the fieldwork for this project. Surveying was also required and this ranged from the use of a GPS to link the water levels within the estuary to mean sea level, to a photographic survey of the beach to monitor the change in the beach profile. KZN Wildlife provided daily monitoring of the mouth state, and data on salinity concentrations were obtained by the UND biology department. The methodology and theory are discussed in this section to establish the nature and relevance of the fieldwork.

4.2. Flow measurements

Direct measurements of the inflows into the estuary were made at several stations upstream of the estuary. Initially flow measurements were made using a drogue comprising of a float and a drag vane shown in plate 4-1 a). The method involved timing the drogue, as it travelled a known distance at discrete intervals across the width of the river. Where possible the vane was set to approximately 0.6 times the river depth in order to obtain the average velocity of the vertical velocity profile. The method was limited as it required a uniform straight channel and wind and reeds sometimes interfered with the drogues. Depth was also a limiting factor, as only the surface velocity of shallow water could be measured. Cross-sections were obtained manually using a sounding rod while wading across the river as shown in plate 4-1 b). It is estimated that the error associated with the use of drogues varies from 10 to 40%.

Since February 2003 the Model 3000 Swoffer instrument, shown in plate 4-2, has been used to determine the velocities and the flow rates upstream of the estuaries. The instrument is a propeller type velocimeter which uses a 2 inch propeller and a photo-fibreoptic sensor to determine the velocity of the water from the rotation rate of the propeller. The velocity range of the instrument is from 0.03 to 7.5 meters per second, with an accuracy of approximately 1% (Swoffer Instruments, 2002). The velocimeter is fitted to a wading rod which is used to determine the river depth at discrete intervals across the river width. Both the depth and distance across the width of the estuary are manually entered into the portable micro-computer. The average velocity is measured at each position, with the propeller set at 0.6 of the river

depth, and recorded in the portable micro-computer. The flow rate through the cross-section is computed by numerical integration.

Plate 4-1: The photographs show: a) the drogues and b) the determination of the cross-sectional area.

Plate 4-2: The plates show: a) the Swoffer instrument and b) the Swoffer instrument in use upstream of Mdloti estuary.

4.3. Water level monitoring

A key aspect of the study of estuarine dynamics is the monitoring of changes in water level. Initially the water level was monitored using photographs of the M4 bridges at Mhlanga and Mdloti Estuaries. The measured height of the top beam and the height of the column were used
to scale the water height from digital photographs, relative to the pile cap. Figure 4-1 shows the dimensions of the bridges used to scale the water level from the photographs.

Figure 4-1: The dimensions of the M4 bridges over Mhlanga and Mdloti Estuaries.

The digital camera used to take the pictures to determine the water level has a resolution of 1600 by 1200 pixels. Depending on the position from which the photograph was taken relative to the bridge the data extracted from the photographs has an accuracy ranging from 10 to 300 mm. Lower accuracies occurred on days when there was poor visibility when photographs were taken from the beach. The quality of photographic data improved with the discovery of access to the bridges alongside the M4.

The need for continuous water level monitoring became apparent in 2002 as weekly water levels did not provide an adequate level of accuracy in terms of temporal resolution. High resolution records of water level fluctuations can be used to provide a record of when the estuary changes state, (i.e. whether it is open or closed) as well as giving an indication of the volume of water stored in the estuarine system. The data recorded could also show short term changes due to rain events, or when the water level remains constant it is indicative of the system losses, such as seepage, being equal to the inflows into the estuary. Any tidal influx into the estuary when in the open state, would also be visible from the data logged. It was therefore decided that an instrument would be developed to continuously monitor the water level in the estuaries.

The instrument was required to be small, compact and waterproof so that it could be placed below the low water level, out of sight. It was important to limit visibility and accessibility to the instrument in order to diminish the risk of vandalism and theft, particularly when the water level is low. Alternatively a big structure could have been used to protect the device, however this was less desirable as it would interfere with the estuary aesthetically, attract unwanted attention and it would be cumbersome to install.

Based on the above considerations it was decided to use a pressure sensor linked to a small data logger, housed in a sealed capsule. The capsule was placed in a perforated container which formed a permanent fixture during the monitoring period.

Figure 4-2 is a schematic diagram of the preliminary design of the water level monitor (WLM), incorporating the use of the Tinytalk TK0702 miniature data logger.

Figure 4-2: A schematic diagram which was the basis of the WLM design. Where PT is the pressure transducer and VR the voltage regulator.

In this application it was decided that logging was to be done at hourly intervals. This time span is more than adequate during the closed phase. However a higher resolution is preferable during breaching and the open phase which can display changes in water level of up to 1240 mm and 300mm in one hour respectively. A compromise between the requirements for the open and closed phases was required as the logger can only store in the region of 1800 data points, therefore the data logger can operate for 75 days set on the hourly interval. The tinytalk logger logs the voltages it receives from the pressure transducer after it outputs a sensing signal pulse to indicate a reading is imminent. The sensing signal was used to trigger the powered warm-up period for the pressure transducer prior to taking the reading, allowing it to stabilise.

The Motorola MPX 5050 pressure transducer was chosen based on availability, function and affordability. A differential pressure transducer vented to the atmosphere can provide a direct water level reading accounting automatically for barometric pressure variations. However a problem arises with visibility of the instrument, as a vent to the atmosphere would be visible above the water line and was therefore undesirable. It was therefore decided to simply determine the water pressure, relative to the pressure within the sealed capsule and to subsequently compensate for changes in barometric pressure during post processing. The pressure transducer has an error estimated to be 2.5% of the total range under all conditions.

A problem arose with the initial design of the water level monitor as the sensing signal generated by the logger only allows for a 150 millisecond warm up period, whilst the pressure transducer requires 15 seconds to warm up. To overcome this problem a PIC microcontroller was incorporated with the technical assistance of Mr R Van Zyl, from the University of Natal Pietermaritzburg (UNP). This microcontroller was programmed to continuously monitor the time between sensing signals and used this time to turn on the voltage regulator for the required 15 second warm up period prior to sampling. Plate 4-3 shows a Tinytalk data logger and the pressure transducer mounted on a printed circuit board designed and built by Mr R van Zyl of UNP and incorporating the PIC microcontroller. The circuitry for the board, the component list and costs are given in appendix D.

The Tinytalk TK0702 has an eight bit resolution; therefore it has 256 levels (from 0 to 255) to measure a 5 meter column of water giving an accuracy of approximately 20 millimetres. Compensation for changes in atmospheric pressure is required as variations of 200 mm can occur over extended time periods. The manufacturer's specifications are included in appendix E.

Plate 4-3: Different views of the Tinytalk data logger and the pressure transducer mounted on a circuit board along with the microprocessor, are shown in a) and b). The pressure transducer also required an external power source in the form of batteries. In determining the battery specifications a compromise between size and durability was required. The pressure transducer requires a 5 volt supply, and in order for the voltage regulator to supply a regulated 5 volts, an minimum input voltage of 5.5 volts was required, therefore 4 AAA alkaline batteries were used, supplying a 6 volt voltage.

Plate 4-4: The materials for the capsule comprising of perspex tubing and HDPE end plugs.

Electronic equipment requires a dry environment in which to function, therefore the water level meter needed to be housed in a water tight capsule. A clear Perspex tube was used with an inner diameter of 34mm and a 40mm outer diameter. The end plugs were constructed on a lathe from a 50mm diameter high density polyethylene (HDPE) rod. The casing and raw materials are shown in plate 4-4. O-Rings and silicone grease were used to create the seal between the plugs and the tube. One plug was drilled in order to accommodate the pressure sensor, the exposed surface was countersunk and recessed grooves were machined as a precaution to prevent false readings when using a bladder, described below. A bleed hole was created in the other cap by drilling and tapping a hole, with a screw as a bleed cap and a greased o-ring to ensure no leaks. Both the electronics and the casing were tested under laboratory conditions before placing the water level monitors in the field. The test cell shown in plate 4-5 was used to test the water level monitors.

According to the manufacturer's specifications for the pressure transducer, attached in appendix E, the optimum operating conditions are in air, therefore the water level monitor was sealed in a 150 μ m, flexible, air filled plastic bladder, heat sealed by means of a soldering iron, as shown in plate 4-6(a). Initial trial installations showed that the bladders were, however easily

punctured in the field causing errors in the data retrieved. As the bladders were proving unreliable in the field, they were discarded and the loggers were simply placed into the estuary with a porous geo-fabric cover over the end cap, as seen in plate 4-6(b). The geo-fabric allowed water to reach the pressure transducer but traps dirt from the water, preventing it from disturbing the pressure readings or blocking the pressure port.

Plate 4-5: Test cell used for experiments conducted with the water level monitors.

Plate 4-6: The data logger a) enclosed in a bladder and b) with geo-fabric cover.

In order to ensure the water level monitor was always placed in the same place and could not float away a perforated container was fixed in the estuary. The initial canister design was a section of steel pipe sealed on one end with a lid on the other attached to a steel stake about 1 meter in length. The idea behind the design was that the stake would be driven into the floor of the estuary near the M4 bridge, however this did not work in practice as it was not easy to drive the stake into the ground underwater. The second design consisted of PVC pipe with an end cap on one side and a lid on the other. This canister was attached to the piles underneath the bridge pile caps using stainless steel brackets, rope and stainless steel wire. Scuba divers, shown in plate 4-9, were used to place the containers under the pile caps. The position of the canisters at Mdloti and Mhlanga Estuaries are shown in plate 4-7 and 4-8 respectively.

Plate 4-7: The canister was placed under the pile cap of the first column of the northern end of the M4 bridge at Mdloti Estuary.

Plate 4-8: At Mhlanga Estuary the canister was placed under the pile cap of the first column of the M4 bridge on the Northern side at the position shown.

The water level monitors were retrieved on a regular basis, not exceeding 75 days as this was the limit set by the available memory of the logger when using one hour logging intervals. The water level monitors were placed in a test chamber under different pressures, both before and after being placed in the estuary, to calibrate the instrument.

Plate 4-9: Installing the water level monitors using the boat and divers. The plate on the left shows the divers holding the canister before installation.

4.4. Salinity

An estuary is defined as a junction between a river and the sea, therefore by analysing the salinity distribution it can be determined which parts of an estuary are influenced by the river flow and which by tidal flow. In the case of a temporary open, perched estuary the increased salinity near the mouth over a closed period is probably from either overtopping or saline water trapped during closure.

In the case of temporary open/closed (TOC) estuaries it is expected that under open conditions and at low tide the estuary will exhibit a salinity profile dominated by freshwater, particularly if the estuary is perched. Conversely the estuary could experience tidal domination during high tide as waves push into the estuary.

As part of the fieldwork undertaken by the UND biology department, salinity samples were taken at three stations, the mouth, middle and head of the estuary, on a monthly basis. The vertical profiles of salinity were recorded using a YSI 6920 Water Logger, with five to ten

centimetre resolution (Perissinotto, 2003). The salinity concentration in freshwater is less than 0.5 ppt, while marine water has a salinity of approximately 35 ppt at this location.

The purpose of investigating the salinity profile of an estuary in the context of this research was to determine the existence of patterns in terms of stratification and differences between the open and closed phases. The interaction between saline and freshwater within an estuary makes the estuarine environment unique. It was expected that Mhlanga and Mdloti Estuaries would have very limited tidal exchange as they are perched.

The salinity profiles obtained have several limitations. Only three stations within the estuary were sampled, the head, middle and mouth, with only one sample at each station. Should one of the sampling points be unrepresentative of the conditions, large errors could be obtained in the analysis of the data. In some instances readings were not taken consecutively. For instance, there was a difference of up to two hours between some readings, if this occurs when the estuary is open, the change in tide over the time interval could be large enough to affect the salinity measurements.

4.5. Surveying of the berm

The sea facing slope of the berm is continuously moulded by the sea, therefore a daily survey spanning a tidal cycle of two weeks, to cover tidal conditions from spring to neap and back to spring, was carried out in order to determine how these changes affect the breaching of the estuary. The study was conducted at Mhlanga Estuary as at the time it was the most active estuary of the two. Two positions were chosen to measure the profile changes, the first at the approximate position of the mouth and the second slightly north of the mouth position to provide a means by which to gauge the effect of the ocean even when the mouth is open. The measurements were taken at low tide, when there was maximum exposure of the beach slope.

Poles, marked at 25 centimetre intervals, were placed at the edge of the estuary and edge of the sea, with a rope between the two. The rope had two meter markings on it and at each two meter point a stake was driven into the sand. Photographs of the beach were taken using a digital camera fixed to a levelled tripod. The poles were used to provide a vertical scale for the picture while the stakes provided a horizontal scale. Levelling the tripod on sand was not always very accurate as sand is not a stable surface on which to work, therefore the horizon was used during post processing to ensure the data obtained was level. Plate 4-10 is an example of the photographs used in determining the beach profiles.

Plate 4-10: Example of photographs used in the determination of beach profile.

The method used to obtain the beach profiles had several flaws:

- Although the tripod was levelled, working on sand resulted in several photographs containing a tilt. Where possible the horizon was used to compensate for this.
- The position of the camera varied from day to day and in some instances was varied for specific cross-sections.
- Lighting was occasionally a factor distorting post analysis of photographs.

The digital camera used to take the pictures has a resolution of 1600 by 1200 pixels. The error associated with a half degree tilt of the camera over thirty metres is approximately 260 mm in the vertical and approximately 1 mm in the horizontal.

5. DISCUSSION OF FIELDWORK

5.1. Introduction

The main objective of the fieldwork was to determine the effects of flow on mouth state. Over the study period flow rates, water levels and mouth state were measured or observed, from which threshold flows for the various mouth states are discussed. The data collected also provides information on the losses associated with the system. As rainfall is an easier parameter to measure, and rainfall data is readily available this section also deals with the relationship between mouth state and rainfall. Mechanisms related to the mouth state such as failure and closure of the berm are discussed from observations made together with the data collected. The time scales associated with both the breaching and closure of the estuaries are also discussed.

5.2. Data collected

During the observation period from March 2002 to August 2003, field data was collected at both Mhlanga and Mdloti Estuaries. The data collected is presented in sections 5.2.1 to 5.2.5, and comprises of data on rainfall, mouth state, flow rates, water levels and beach profiles. This data provides the basis for the analysis which follows in sections 5.3 to 5.6.

5.2.1. Rainfall Data

Figures 5-1 and 5-2 present the daily rainfall events over the observation period from March 2002 to August 2003. This data was obtained from the South African Weather Bureau, and was collected at the Mount Edgecombe station (reference number 0241072)

The Mean Annual Precipitation (MAP) for Mhlanga and Mdloti Estuaries (quaternary catchment area U30B) is approximately 982 mm. The expected average rainfall for the Mt. Edgecombe weather station, near Mdloti and Mhlanga Estuary, between the months of January and August, is approximately 60% of the MAP, however the region received less than 30% of the MAP between January and August in 2003. Over the entire observation period (March 2002 to August 2003) the area received approximately 65% of the expected rainfall. A plot of the monthly rainfall over the observation period against the average monthly rainfall is shown in figure 5-3.

Figure 5-1: Daily rainfall occurring between March 2002 and mid November 2002.

Figure 5-2: Daily rainfall occurring between mid November 2002 and July 2003.

Figure 5-3: Comparison of monthly rainfall over the observation period against expected average monthly rainfall.

5.2.2. Mouth State

Data gathered on mouth state for Mdloti and Mhlanga Estuaries is presented in figures 5-4 and 5-5 respectively. The mouth states at Mdloti and Mhlanga Estuaries over the observation period are summarized in table 5-1. Appendix F contains all the data recorded relevant to mouth state.

	Parameters	Quantity	Comment	
_	No. of breaches	9	6 within 3 days of neap tide, 2 on neap tide	
lary	No. of partial breaches	4	3 within 3 days of neap tide	
Estu	No. of days fully open	103	21%	
sti I	No. of days partly open	47	10%	
Idle	No. of days closed	328	69%	
2	Total no. days with data	478	100%	
	No. of breaches	18	9 within 3 days of neap tide, 3 on neap tide	
Estuary	No. of partial breaches	14	6 within 3 days of neap tide, 1 on neap tide, 1 on spring tide	
nga	No. of days fully open	146	27%	
lhlar	No. of days partly open	97	18%	
Z	No. of days closed	296	55%	
	Total no. days with data	539	100%	

Table 5-1: Summary of the mouth state at Mhlanga and Mdloti Estuaries.

Ramm et al. (1986) stated that Mhlanga Estuary is typically closed 96% of the time, while Mdloti Estuary is closed 64% of the time. CSIR, 2002 reports that Mhlanga and Mdloti Estuaries are closed/semi-closed 75% and 73% of the time respectively, under present conditions. It was therefore expected that Mdloti Estuary would breach more frequently than

Figure 5-4: The mouth state at Mdloti Estuary over the observation period.

Figure 5-5: The mouth state at Mhlanga Estuary over the observation period.

Mhlanga Estuary. Even though Mhlanga and Mdloti Estuaries were open 27% and 21% respectively, Mhlanga Estuary breached double the number of times Mdloti Estuary breached. Since February 2003 Mdloti Estuary has remained closed, reflecting the lowered rainfall, however Mhlanga Estuary has continued to breach regularly.

5.2.3. Flow Data

Figures 5-6 and 5-7 show a plot of the flow rates measured at Mdloti and Mhlanga Estuaries respectively. Where flow measurements were made upstream of a WWTW discharge point, the estimated discharges, obtained from the EMWS, were added to the measurement. Appendix C contains the locations of the flow readings along with the cross-sectional data and velocity readings.

No flow measurements were made for Mdloti Estuary between February and June 2003, due to accessibility problems encountered upstream of the estuary, as seen in plate 5-1.

Plate 5-1: Water hyacinth preventing flow measurements upstream of Mdloti estuary.

The abundance of water hyacinth upstream of Mdloti Estuary made it very difficult to gain access to the head of the estuary by boat. After travelling as far as the hyacinth would permit attempts to measure the flow were unsuccessful as there was no measurable flow. While the estuary remained closed the water hyacinth remained a problem upstream. Eventually alternative access to Mdloti River via a small bridge near Mt. Moreland, upstream of the hyacinth problem, was found suitable for taking readings.

Figure 5-6: Spot flow data measured at Mdloti Estuary over the observation period. (Points joined by dotted line for clarity).

Figure 5-7: Spot flow data measured at Mhlanga Estuary over the observation period. (Points joined by dotted line for clarity).

Some of the other problems encountered in measuring flows at the estuaries included wind and reeds adversely influencing the drogues. The Swoffer instrument was only effective where wading was possible and required a minimum velocity of 0.03 m/s.

The average measured flow for each estuary, over the observation period, was determined using a simple arithmetic average of all the samples yields a value of 1.09m³/s for Mdloti Estuary and 0.75m³/s for Mhlanga Estuary. However these figures are biased as samples were taken more frequently in June and July of 2003 than in the other months. Therefore for each month an average of the flow readings was taken and one reading form each month averaged to obtain 2.08m³/s and 1.40m³/s for Mdloti and Mhlanga Estuaries respectively. A flow of 8.35m³/s was measured at Mhlanga Estuary in January 2003 is included in the latter average even though it was a short lived flooding event that was not representative of the flows for that month. If the flooding event is excluded the average flow is 0.70m³/s.

The expected flow rate or MAS (inclusive of the effects of Hazelmere Dam, WWTW discharges and abstractions) was estimated, in chapter 3.1.5, to be 76.5 million m³/yr and 20.1 million m³/yr for Mdloti and Mhlanga Estuaries respectively. This is equivalent to 2.42m³/s and 0.64m³/s. The average flow rate of 2.08m³/s obtained for Mdloti Estuary is approximately 79% of the expected flow, which is reasonable as the estuary experienced only 65% of the expected precipitation. At Mhlanga Estuary the measured flow (excluding the flood event) was approximately 110% of the expected stream-flow. Mhlanga Estuary should have an average flow less than the expected stream-flow due to the low rainfall. This suggests that either the flow measurements were not representative of the actual average flows or that there were higher discharges into the estuary from the WWTW. Alternatively the MAR for Mhlanga Estuary could have been underestimated.

5.2.4. Water levels

The water level data was as expected lower when the estuary was open and shortly after closing than when it had been closed for a period of time. From the water level data for Mdloti Estuary figure 5-8 was produced. Figures 5-9, 5-10 and 5-11 represent the water level data for Mhlanga Estuary. Appendix G contains the water level data obtained from photographs of the bridges as well as an example of the data captured by the water level monitors.

Figure 5-8: Spot water level data measured at Mdloti Estuary over the observation period. (Points joined by dotted line for clarity).

Figure 5-10: Continuous water level data measured, using water level monitors, between March 2003 and August 2003.

Figure 5-11: Continuous water level data measured, using water level monitors, between March 2003 and August 2003.

In figures 5-10 and 5-11 the continuous water level monitoring data over the period from the 23 May 2003 to the 30 May 2003 was erroneous due to instrument failure. From the water level data the maximum and minimum water levels for the estuaries was estimated. The maximum water level recorded at Mhlanga Estuary was 2960 mm above MSL, while the minimum water level recorded was 670 mm above MSL. At Mdloti Estuary the maximum water level recorded was 780 mm above MSL and the minimum water level was 780 mm above MSL.

From plate 5-2 and 5-3 of the M4 bridges over the two estuaries, distinct high water marks are visible. The various water marks indicate the different breaching levels attained by the estuaries.

Plate 5-2: The high water mark on the M4 bride over the Mhlanga Estuary.

Plate 5-3: The high water marks on the M4 bride over the Mdloti Estuary.

The sand berm is a governing influence in determining the maximum water level of an estuary. The height of the sand berm is in turn a function of wave run-up. The relationship developed in Bagnold (1940) and discussed in section 2.9 estimated the berm height for the Durban area is in the region of 3 to 3.2 m, which concurs with the maximum water levels recorded at Mhlanga and Mdloti Estuaries.

5.2.5. Survey data

The beach profiles measured at Mhlanga Estuary over a two week period from the 25 June to the 8 July 2003, showed large changes. During the observation the tidal cycle shifted from spring through neap and back to spring. The profiles were taken at low tide when the beach was exposed, while some visual observations were made at high tide. Fortunately during the observation period the Mhlanga Estuary breached providing data on the mechanisms affecting the mouth of the estuary. This data can be used to estimate the volume of sand involved in closure as well as providing the opportunity to observe waves pushing water into the estuary and the process of closure of the estuary mouth. Examples of the data are shown in figures 5-12 and 5-13.

Daily profiles of the mouth area showed increases in sediment deposition in the mouth. This deposition was of the order of half a meter a day. During this breaching event the width of the berm was approximately 30m at the mouth, while the width of the mouth was approximately 26m. Therefore the wave action deposited approximately 400m³ of sediment in the mouth of

the estuary each day, that is $200m^3$ each high tide. This volume is far less than that of the longshore sediment transport for the Durban area, reported by Schoonees (2000) as $1400m^3/day$.

Figure 5-12: Ribbon plots of selective beach profiles measured at Mhlanga Estuary.

5.3. The effects of flow on the mouth state

Flow and rainfall data for 2002 was separated from that for 2003 creating table 5-2. This was done to explore the change in mouth state and flow rates with the change in precipitation between 2002 and 2003.

		Mar 02 – Dec 02	Jan 03 – Aug 03	Mar 02 – Aug 03
	Rainfall (%MAP)	59	28	86
Mdlati	Expected rainfall (%MAP)	74	60	133
Fatuary	% closed	53	91	69
Estuary	Av. flow (m^3/s)	2.26	0.88	1.83
	Av. flow (% MAS)	86	33	69
	Rainfall (%MAP)	59	28	86
Mhlanga	Expected rainfall (%MAP)	74	60	133
Estuary	% closed	51	59	55
Estuary	Av. flow (m^3/s)	0.91	0.39	0.69
	Av. flow (% MAS)	144	62	110

Table 5-2: Mouth state, rainfall and flow over the observation period.

As the precipitation during 2003 was considerably less than in 2002, it was expected that the estuaries would breach less frequently. This is true for Mdloti Estuary as both a decrease in average flow and an increase in the percentage of time the estuary was closed was observed. However Mhlanga Estuary experienced a decrease in the percentage of time the estuary was closed despite the reduction in average flow and precipitation. Another interesting observation is that during 2002, Mhlanga Estuary received more than the expected stream-flow, indicating a possible underestimate of the MAS as there was less than expected rainfall during the period in question. This underestimation could be attributed to the discharge estimates or the simulated figures for natural stream-flow.

Figure 5-14 and 5-15 are visual representations of the flow rates measured at Mdloti Estuary during different states. On two occasions the flow readings were obtained the day prior to breaching. These readings were incorporated with the open data as these flows may have resulted in breaching. The single value obtained when the estuary was in the partly open state was also incorporated with the data obtained for the open state. Superimposed on the figure are the values given by CSIR (2002) as threshold flows separating the different states. CSIR (2002)

estimated that the Mdloti Estuary is closed when the flow rate is less than 0.3 m^3 /s, whilst between 0.3 and 2 m^3 /s the estuary is partly open and when the flow rate exceeds 2 m^3 /s the estuary is open. Once the flow rate exceeds 5 m^3 /s the estuary was classified as river dominated.

Figure 5-14: Comparison of the flow rates obtained during the open and partly open states at Mdloti Estuary with RDM thresholds.

Figure 5-15: Comparison of the flow rates obtained during the closed state at Mdloti Estuary with RDM thresholds.

Approximately 70% of the flow rates, measured when Mdloti Estuary was closed exceed the $0.3m^3/s$ limit, given by CSIR (2002), above which the estuary was classified as partly open. The flow rate measured during the partly open state was $2.5m^3/s$, slightly above the maximum RDM limit of $2m^3/s$ for the partly open state. Two of the measured flow rates recorded, while the estuary was closed, were above $3m^3/s$ yet the estuary remained closed for several days thereafter even though similar flows were recorded when the estuary was open or about to open. A possible reason for this discrepancy is that the high flows recorded, when the estuary was closed, were shorter in duration than the time required for those flows to cause breaching. This indicates the importance of including water levels and residence time in determining the effect of flow on mouth state

At Mhlanga Estuary the threshold flows were estimated in the RDM report by CSIR (2003). Below a flow rate of 0.4m^3 /s the estuary was classified as closed, while flows between 0.4 and 0.5m^3 /s were given as the range corresponding to the partly open state. Between 0.5 and 5m^3 /s the Mhlanga Estuary was classified as open with flows in excess of 5m^3 /s classified as a river dominated state. Figures 5-16, 5-17 and 5-18 show the flow rates measured and the estimated thresholds flows.

Figure 5-16: Comparison of the flow rates obtained during the open state at Mhlanga Estuary with RDM thresholds.

Figure 5-17: Comparison of the flow rates obtained during the partly open state at Mhlanga Estuary with RDM thresholds.

Figure 5-18: Comparison of the flow rates obtained during the closed state at Mhlanga Estuary with RDM thresholds.

Approximately 50% of the flows measured during the open phase were less than $0.4 \text{m}^3/\text{s}$, however the measurements made once the estuary had been open for a while are not necessarily reflective of the flows which caused the estuary to open. One of the measurements was made during a small flood event during January 2003. The flow recorded was approximately $8.3 \text{m}^3/\text{s}$. The salinity profile measured on the same day shows the estuary dominated by freshwater

indicating a river dominated state as expected. The salinity measurements were made at low tide and it is not certain that the estuary continued to exhibit these characteristics under high tide conditions.

It seems that attempting to classify the state of the system based purely on the flow rate does not always achieve the required results as this approach does not account for the water level or the residence time of the estuary. A slightly different approach has therefore been used in determining the effect of flows on mouth state. The approach is based on the water balance, incorporating the residence time of the estuarine system as this is directly linked to the inflows and outflows. Initially the outflows are established after which the inflows are discussed in three categories: low flows, intermediate flows and high flows along with the effect of each flow regime on the mouth state.

5.3.1. Outflows

In the case of Mhlanga and Mdloti Estuaries the two main losses from the systems, when they are closed, are seepage and evaporation. This scenario is likely to be typical for perched estuaries with narrow sand bars. Both seepage and evaporation losses are storage dependant, with seepage increasing as the water level within the estuary rises and evaporation increasing as surface area increases.

Where estuaries are perched, the seepage losses can be substantial, and can dominate the evaporation losses. The seepage losses can be estimated by combining water level data and flow readings. When the water level remains constant in the estuary, there is an equilibrium as the inflows are equal to the outflows. Therefore flow readings taken at constant water levels are equal to the seepage losses at that water level. To determine the maximum seepage from the system, the relationship between flow rate and water level needs to be projected to the maximum water level.

During May 2003 the water level monitor at Mhlanga Estuary captured two different stages at which the water level remained constant for a period of time. Flow measurements were made during each of these two occasions. The water levels and flows recorded are tabulated in table 5-3.

Fortunately at Mhlanga Estuary a flow rate was captured the morning of a breach after the estuary had remained closed at the high water level for several days. This flow rate of $0.25 \text{m}^3/\text{s}$

indicates the maximum seepage from the estuary. The average evaporation from the system was estimated by multiplying the MAE by the surface area. For Mhlanga Estuary the estimated evaporation from the system was calculated as $0.02m^3/s$, which is relatively small (<10%) compared to the estimated seepage and can therefore be ignored.

 Table 5-3: Constant water levels and the corresponding flow rates obtained at Mhlanga

 Estuary.

Date	Water level (m +MSL)	Flow rate (m ³ /s)	Comment
7 May 2003	2.79	0.19	Constant approx. 20 days
23 May 2003	2.96	0.25	Morning of breach

Two data points, shown in table 5-4, were obtained for Mdloti Estuary, neither of which corresponded to the high water level of the estuary.

 Table 5-4: Constant water levels and the corresponding flow rates obtained at Mdloti Estuary.

Date	Water level (m+MSL)	Flow rate (m ³ /s)	Comment
19 Feb 2003	2.09	0.20	Constant > 10 days
25 Jun – 8 Jul '03	2.57	0.34	Averaged over 2 weeks

There was not enough data available to determine an accurate relationship between water level and seepage. The rate of seepage increases with an increase in water level. From the information available figure 5-19 was produced, from which the maximum seepage was estimated. The maximum seepage was therefore estimated to be $0.53m^3/s$ at a water level of 3.2m above MSL. The maximum evaporation losses from the system, which occur when the estuary is full and the maximum surface area exposed, is approximately $0.02m^3/s$ or 5% of the maximum seepage. Table 5-5 contains a summary of the losses from Mhlanga and Mdloti Estuaries.

The residence time for any flow Q may be defined as $T_R = S/Q$ where S is the storage when the estuary is full. The residence time represents the time required for a specific flow to replace the storage volume. The residence time associated with the maximum seepage outflows therefore

gives an indication of the time between successive breaching events when the flow is just large enough to overcome seepage losses.

	Mhlanga Estuary	Mdloti Estuary
Seepage (m ³ /s)	0.25	0.53
Evaporation (m ³ /s)	0.02	0.02
Critical Tr (days) = S/Q_{CR}	34	20
% of MAR	68	21

Table 5-5: Summary of losses and related information.

Figure 5-19: Plot of seepage against water level used to determine maximum seepage.

The seepage is also dependant on the characteristics of the berm and can therefore change depending on the morphology of the berm.

5.3.2. Low flows

Low flows are previously defined, in section 2.3, as the state under which outflows exceed the inflows and therefore the water level within the estuary does not rise. Both Mhlanga and Mdloti Estuaries are perched with low water levels at 670 and 780 mm above MSL respectively. The maximum losses, due to seepage and evaporation, from the system occur when the water level

in the estuary is at a maximum. It can therefore be deduced that as long as the flows into the system are less than the maximum outflow from the system, the estuary will reach a equilibrium below the breaching water level, remaining closed until such time as the inflows increase above the maximum outflow. Therefore this state can be defined as:

$$I - O_{max} < 0$$

where I represents the inflows and O_{max} represents the maximum possible outflow (approximately equal to the seepage in this case).

Under this condition should the inflows into the system be reduced to less than the outflows (eg. because of reduced rainfall or increased abstractions), the water level in the estuary will drop until an equilibrium is reached.

Mdloti Estuary has remained closed since February 2003 and therefore provides a good example of the low flow regime. The flow rates and water level between February and August 2003 are shown in figure 5-20. Superimposed on the figure are the maximum water level and the maximum outflow, estimated in section 5.3.1.

Figure 5-20: Water levels and flow rates over time for Mdloti Estuary, with an indication of the maximum water level and maximum seepage.

From the water levels it can be seen that although there were variations in the water level the maximum water level was not reached and the estuary did not breach.

During a two week survey conducted from the 25 June to the 8 July 2003 daily flow rates and water levels were recorded. Over this period the water level was fairly constant, with the flows generally below the maximum seepage. Although there is one defined instance in which the flow rate was above the estimated maximum seepage, the flow was not sustained for a sufficient period of time to cause the water level to rise to or above the maximum water level and cause failure of the berm.

5.3.3. Intermediate flows

The intermediate flow regime occurs when the inflows are adequate, such that given enough time the estuary can fill to the maximum water level, however there is insufficient flow to cause overtopping. It is possible to define this flow regime as:

$$I - O_{max} \approx 0$$

This regime requires the inflow to be of similar magnitude to the maximum outflow. The intermediate flows lead to a rise in water level initially when the water level within the estuary is low. As the water level increases the seepage increases, therefore decreasing the rate at which the water level is rising. Should this flow rate be maintained for a sufficient time period, the water level will rise until the inflow equals the outflow at the maximum or natural breaching level. Stability is lost under this condition with the seepage eroding the seaward face, ultimately resulting in the estuary breaching.

This flow state is very specific and can be seen as a critical flow. It is important to note that this critical flow may vary slightly depending on the characteristics of the berm.

Since there was a decrease in stream-flow due to the decrease in rainfall during 2003, the discharges from the WWTWs played a larger role in the flow. Between February and August the treated effluent discharge amounted to approximately 60% of the measured flow entering the Mhlanga Estuary. The outflows from the Mhlanga Estuary system were estimated as for Mdloti Estuary with seepage amounting to $0.25 \text{m}^3/\text{s}$.

From the data recorded by the water level monitors installed in the Mhlanga Estuary a range of flow conditions can be identified. The continuous water level data relative to MSL is presented in figure 5-21. This data was checked by plotting the water levels obtained via digital photographs of the M4 bridge (shown as circles on the plot).

Figure 5-21: Water levels and flow rates measured at Mhlanga Estuary between March and August 2003.

Three separate breaching events are visible in figure 5-21 during the period from March 2003 to August 2003, despite the lower than average precipitation in the catchment. Figure 5-21 a) shows a range of flow states occurring between the closure in March and the breach in May of 2003. In April there was a phase at which the water level remains constant, indicating an equilibrium, in the low flow regime. Thereafter there is an increase in water level until the maximum water level was obtained, this level was maintained until neap tide when the estuary breached.

In figure 5-21 b) the change in water level occurring during the closed phase between the end of June and the end of July 2003 is typical of the curve expected in a system driven by intermediate flows. Over this period the system was driven mainly by base flows with negligible rainfall. The rate at which the water level rises slows down over time until the breaching level is reached.

Over the two week period starting 25 June 2003, daily observations were made at Mhlanga Estuary. On the 2^{nd} day the estuary breached and higher flows were recorded when the mouth was open however they returned to average during closure. During July there was only 0.4 mm of rainfall yet the water level at Mhlanga Estuary continued to rise indicating the system was driven by baseflows at the time, constituting mainly of WWTW discharges.

5.3.4. High flows

When the inflows into the estuarine system exceed the maximum seepage, the water level will rise continuously. Initially the water level rises rapidly, slowing as the water level increases and seepage increases. The water level will continue to rise until the water level in the estuary exceeds the lowest point of the sand berm resulting in overtopping and scour. This flow regime is defined by:

$$I - O_{max} > 0$$

Jezewski (1984) states the one in two year flood at Mdloti Estuary has a peak discharge of approximately 76m³/s. Under these flow conditions the outflows from the system are negligible in comparison to the inflows. The peak flow rate translates to a residence time of approximately 4 hours. Hazelmere Dam probably has little effect in attenuating floods of this magnitude.

During the 1987 floods Mdloti Estuary experienced an extreme flood flow of approximately $2000m^3$ /s (Perry, 1989). This flow was much larger than the maximum seepage which is of the order $0.53m^3$ /s. The flood flow translates to a residence time of approximately 10 minutes. Hazelmere Dam will not have been able to attenuate the flood as the volume of the dam was far exceeded by the volume of the flood.

5.3.5. Summary

Mhlanga and Mdloti Estuaries appears to breach at a consistent high water level (approximately 3 and 3.2 m above MSL respectively). In determining how flows affect the mouth state a simple relationship was not found. The mouth state is easily determined for sustained high and low flow rates, with high flows leading to open mouth conditions and low flows causing the estuary to remain closed. The intermediate flows (flows of similar magnitude to the maximum seepage) are not as easily defined. This flow regime is likely to result in seepage failure, however the estuary may not breach immediately after reaching the maximum water level, but may remain in this unstable state. These scenarios only apply to sustained flows, for example should a high flow be attained for a short enough period of time the estuary probably will not breach unless it was almost full when the high flow occurred.

5.4. Effects of rainfall on mouth state

5.4.1. Mdloti Estuary

Figure 5-22 shows the plots of rainfall and mouth state over time. The rainfall experienced by the Mdloti Estuary during the various closed periods ranges from 0 to 70 mm over the catchment area. From the data there is no clear correlation evident between amounts of rainfall and breaching, with rainfall events of varying intensity coinciding with breaching events. A general trend exists as in 2003 the estuary breached less than in 2002, coinciding with a reduction in rainfall from 2002 to 2003.

b)

Figure 5-22: Plot of mouth state and rainfall over the observation period.

Figure 5-23 was produced in order to further explore the effects of rainfall on the mouth state through plotting the rainfall accumulated in the month as well as the percentage of time the estuary was closed each month against time. There is a weak general trend between the amount of rainfall in a month and the percentage of time the estuary was closed within that month in that the rainfall decreased as the percentage closed increased. The computed Spearman's linear correlation coefficient of 0.37, was found insignificant at the 95% confidence level, but significant at the 85% confidence level.

Figure 5-23: Ranks of monthly rainfall and percentage of time in the corresponding month that the estuary mouth was closed.

*(Where a rank of 1 is assigned to the largest number)

5.4.2. Mhlanga Estuary

Comparing the data collected in 2002 to the results in 2003 for the months March through to July Mhlanga Estuary was, as expected, open less frequently in 2003 than 2002 as the rainfall during the 5 months of 2002 amounted to 336 mm, while the same 5 months in 2003 only received 145 mm. Between March and December 2002 the estuary was closed approximately 57% of the time, whilst between March and December 2003 the estuary was closed 87% of the time. Between 1 August 2002 and 28 February 2003, Mhlanga Estuary was closed approximately 36% of the time, with a rainfall during this period of approximately 356 mm. In order to further explore the effects of rainfall on the mouth state figure 5-24 was produced. Again breaching coincided with varying intensities of rainfall and in some cases no rainfall was recorded over the closed period yet breaching still occurred.

b)

Figure 5-24: Plot of rainfall and mouth state over the observation period.

As with Mdloti Estuary figure 5-25 was produced for Mhlanga Estuary in order to further explore the effects of rainfall on the mouth state by plotting the rainfall accumulated in the month as well as the percentage of time the estuary was closed each month. At Mhlanga Estuary there is a stronger general trend than at Mdloti Estuary between the amount of rainfall in a month and the percentage of time the estuary was closed within that month in that as the rainfall decreased the percentage closed increased. The Spearman's linear correlation coefficient of 0.61, is significant at the 95% confidence level.

Figure 5-25: Ranks* of monthly rainfall and percentage of time in the corresponding month that the estuary mouth was closed against time.

*(Where a rank of 1 is assigned to the largest number)

5.4.3. Summary

The effect of rainfall on mouth state was sought as a long term rainfall data is more readily available than flow data. It could be expected that the conclusions obtained for determining mouth state from stream flow would be applicable when determining the effect of rainfall on mouth state. Therefore estuaries should open after receiving large amounts of rainfall and remain closed under drought conditions. However this cannot be looked at in isolation. For instance both Mhlanga and Mdloti Estuaries experienced drought conditions in 2003, and while Mdloti Estuary remain closed as expected Mhlanga Estuary continued to breach regularly, in large, due to the addition of treated effluent.

Although Mhlanga Estuary shows a correlation between rainfall and the percentage of time the estuary is closed, this method of determining mouth state may not work on all estuaries or under all conditions. The weak correlation between rainfall and mouth state found for Mdloti Estuary confirms that rainfall is not a reliable method of determining mouth state.

5.5. Tidal exchange

Initially the tidal exchange flows were expected to be insignificant in the cases of Mhlanga and Mdloti Estuaries as the estuaries are perched well above MSL. However the water level monitor recordings at Mhlanga Estuary indicated cyclical fluctuations in water level when the mouth of the estuary was open.

The first examples of tidally driven water level fluctuations within the Mhlanga Estuary were captured in March 2003 (shortly after the installation of the continuous water level monitor). The continuous water levels recorded are plotted in figure 5-26 on the same scale as the corresponding tide. The tidal water levels were predicted for Durban using a harmonic model, Hopper (2003).

Figure 5-26: The Mhlanga Estuary in the open state during March 2003

The data shows initial periodic fluctuations followed by partial closures and breaches. The main point of interest was to establish whether the fluctuations are linked to the tide. During high tide the water level in the estuary reached up to 1800 mm above MSL, with the lowest recorded water level in the estuary, at low tide, approximately 740 mm above MSL. This fluctuation represents half the water level range occurring in the estuary and a volume exchange between 12.5% and 50% of the estuary's dynamic storage capacity depending on the relationship between depth and storage. During the open state the spring tide variations at sea were 2 m in range corresponding to a change in estuary water level of 1.06 m.

The fluctuations measured in the estuary are a result of the wave runup accentuated by the steep beach slope that is characteristic of the KwaZulu Natal coast. The fluctuation could be further enhanced within the estuary by the narrow, shallow mouth. (Huizinga, 2003)

Figure 5-27: Exploded view of the open phase presented in figure 5-26.

Figure 5-27 is an exploded view of the water level fluctuations in the Mhlanga Estuary. The tidal level has been projected upwards, by 1 m (approximately 0.55 times the median H_s for Durban, see table 2-2) to represent the effects of wave run-up.

The water level fluctuations seen in figure 5-27 do not follow the same sinusoidal path as the tide, but rather exhibit asymmetry, with the increase in water level occurring more rapidly than the decrease. Constriction of the mouth results in tidal asymmetry and in this case the estuary is flood dominated as the flood tide is more intense than the ebb tide. The constriction of the mouth also results in the water level in the estuary lagging behind the tidal fluctuation (e.g. Schumann, Largier and Slinger, 1999).

From the plots of water level against time it can be seen that the change in estuary water level is not as dramatic as the change in sea level. The change in water level in the estuary is inhibited by the perched nature of the estuary, with the difference between the estuary water level and sea level far greater at low tide than at high tide. Figure 5-28 is a magnified plot of the tidal fluctuations which occurred in the estuary. Beginning at point A, where the tidal level (increased to account for wave run-up) exceeds the water level within the estuary causing a rise in the water level within the estuary. The rise in tidal level is larger than the water level rise within the estuary. The water level continues to rise until point C is reached despite the fact that the tidal level began to drop at point B some time before point C. Point C represents the point at which the tidal level and estuary water level have the same head and are once again equal, thereafter as the tidal level continues to drop, the water level in the estuary drops, however not as quickly. The estuary water level continues to drop after point D, despite the tide having turned, until the estuary water level matches that of the tidal level, restarting the cycle.

Figure 5-28: Demonstrating the correspondence between the fluctuations in estuary water level and tidal fluctuations.

Visual observations provided an explanation for the flood dominated tidal exchanges at Mhlanga Estuary. At high tide, water washing into the estuary uses the entire width of the mouth, as seen in plate 5-4, however when the water leaves the estuary, it flows out of a small channel in the middle of the mouth as shown in plate 5-5, thus causing the estuary to fill quicker than it empties.

Plate 5-4: High tide pushing in through the entire width of the mouth.

Plate 5-5: A channel within the mouth of Mhlanga Estuary.

Mhlanga Estuary breached during the early hours of the morning of the 23 May 2003, later that morning the water level logger was replaced, unfortunately the new logger had not sealed correctly, making the data unreliable. Data from the malfunctioning water level monitor is shown in figure 5-29. Although the data points were not quantitatively correct, from a qualitative perspective the estuary again shows the effects of the tidal variations.

Figure 5-29: The data collected over the open phase during May 2003.

Figure 5-30: The open state captured by the water level monitor during June 2003.

Figure 5-30 shows the Mhlanga Estuary under open conditions during June 2003. The tidal level in this case has been projected upwards, by 0.8 m (approximately 0.44 times the median H_s for Durban, see table 2-2) to represent the effects of wave run-up. An interesting feature of this data is that the water level data does not follow the same pattern as for the case shown in figure 5-26. As the tide shifts towards low tide the water level stops dropping indicating there is sediment forming a bar at the mouth preventing the estuary from emptying any further.

The tidal fluctuations in the sea during the open phase were between 850 and 1350 mm, causing a 200 to 500 mm change in the water level within the estuary. The tidal influence seen here is less than that for the first recorded open state during March 2003; this may be attributed to the difference in tidal range or wave conditions between the two cases as well as the mouth not having scoured as deeply.

Six high tide cycles are visible before the estuary closed on the 30 June, that is the estuary was open for approximately three and a half days. At present it is not possible to determine whether the estuary is fully or only partially closed from the data obtained from the water level monitors. It is also not clear when the berm became fully restored from the water level data. The best method for obtaining this information is from direct visual observations of the mouth.

Figure 5-31: The open state at Mhlanga Estuary during July 2003.

During July the estuary was open for two and a half days, closing on the fifth high tide. As with the previous cases, figure 5-31 shows a strong correlation between the tide and the water level within the estuary under open conditions. The tidal level has been projected upwards, by 0.8 m (approximately 0.44 times the median H_s for Durban, see table 2-2) to represent the effects of wave run-up. The tidal range at the time varied between 1350 and 1500 mm, while the water level within the estuary varied between 470 and 580 mm.

As the estuary closed at high tide saline water was trapped within the estuary. During the mouth closure that occurred towards the end of July 2003, the water level upon closure was approximately 1400 mm above MSL. The storage volume of the estuary this saline water trapped in the estuary was estimated to be 3.2% to 32% of the Mhlanga Estuary's dynamic storage capacity (depending on the relationship between depth and volume).

Since the installation of the water level monitors, the Mdloti Estuary has not breached, therefore an alternative approach was sought to determine whether or not the Mdloti Estuary experiences a tidal influence under open mouth conditions. As it has already been established that Mhlanga Estuary has a tidal influence, salinity changes were examined to see if a trend existed which could be used to determine tidal influence at Mdloti Estuary. There are two main sources of saline water in a perched estuary, namely over-wash and tidal inflow during the open phase. From observations at the estuary over-wash generally occurs at spring high tide, however it is likely to be small in comparison to the saline intrusion into the estuary that occurs during the open phase. Salinity measurements made at Mhlanga Estuary are consistent with higher salinities during high tide when the estuary is open and shortly after closure, with salinities lowering after prolonged periods of closure. Similar trends were sought for Mdloti Estuary and again there was an indication of higher salinities associated with the open phase and lower salinities to fresh water conditions after prolonged closure. Figure 5-32 is a plot of the salinity profile measured on the 12 September 2002, when the estuary was in the partially open state. While figure 5-33 shows the affect of prolonged closure, approximately 15 days, prior to sampling on 9 December 2002 as the salinity in the system has been reduced and the estuary is dominated by freshwater. It can therefore be deduced that Mdloti Estuary experiences tidal inflows when the mouth is open. A summary of the salinities measured over the study period are included in appendix H.

102

Figure 5-33: Salinity profile at Mdloti Estuary after it had been closed for 15 days.

5.5.1. Summary

From the data collected it was determined that both Mhlanga and Mdloti Estuaries experience tidal influence despite being perched above MSL. The tidal influence was initially observed from continuous water level data obtained during the open phase. The data showed distinct fluctuations of water level within the estuary during the open phase corresponding to changes in sea level due to tide. As there were no breaching events captured at Mdloti Estuary by the continuous water level monitor, salinity was used to determine whether tidal influence exists. However from the salinity alone it was not possible to determine the magnitude of the tidal intrusion.

The asymmetrical fluctuations in the estuary varied in magnitude for the different breaching events. These fluctuations are dependent on both the magnitude of the tide and the magnitude of the wave run-up responsible for the fluctuations. The volume of tidal influence at Mhlanga Estuary was determined to be of the order 20 to 35%.

5.6. Mechanisms affecting the sand berm

Even though there has been reduced runoff in the catchment area, Mhlanga Estuary has been breaching regularly. The data captured and observations made were used to explore the mechanisms involved in breaching and closure.

5.6.1. Breaching

With respect to breaching at Mhlanga Estuary, three events were captured by the water level monitor. The first breach depicted in figure 5-34, occurred on the 23 May 2003.

Figure 5-34: Breaching event on 23 May 2003.

Prior to breaching the estuary had been closed for approximately seven and a half weeks, during which time rainfall recorded for the area was about 50 mm (approximately half the average rainfall for this period). Each rainfall event was responsible for an increase in the water level within the estuary, as expected, with the rainfall occurring on the 14 May 2003 pushing the water level in the estuary to a high of approximately 2960 mm above MSL. This is the height at which breaching appears to occur. However breaching only occurred during neap tide, nine days after the estuary reached the high water level. Inputs into the estuary must have been similar to the outputs from the estuary during the nine days as the estuary maintained the high water level to within 60 mm, bearing in mind the accuracy of the logger is ± 20 mm.

The estuary breached at a water level of 2955 mm between one and two o'clock in the morning at low tide on the 23rd and by eleven o'clock the water level in the estuary had dropped to 906 mm above MSL. The largest drop in water level occurred during the second hour of breaching, between two and three o'clock, where the water level was reduced by approximately 1240 mm. At eleven o'clock on the morning of the breach the water level monitor was replaced. Unfortunately the logger introduced into the estuary failed, providing unreliable data after 11 am.

Figure 5-35: Breaching event on 26 June 2003.

The second breach captured on the data logger was on the 26 June 2003 and is shown in figure 5-35. The water level in the estuary was approximately 2915 mm above MSL, with the tidal situation shifting from neap to spring. During the preceding closed phase of approximately four weeks the area received a total rainfall of about 21.8 mm, 60% of which fell the day before breaching. In this instance the water level was raised and breaching occurred, there was no waiting period before breaching as observed in the previous event.

The estuary breached between eight and nine o'clock in the evening, again at low tide, on the 26 June, and took five hours to lower the water level to 1055 mm above MSL, after which the estuary experienced a rise in water level. At this point it would appear that the estuary had not completely emptied but the force of the tide pushing into the estuary was greater than that of the water trying to leave the estuary. During the following low tide the water level in the estuary reached a low of 920 mm above MSL. The most substantial drop in the water level occurred during the first two hours after breaching started, with a reduction of 515 mm in the first hour and 980 mm in the second hour.

Figure 5-36: On the 27 July 2003 the Mhlanga Estuary breached for the third time since the installation of the water level monitor.

On the 27 July 2003 the estuary breached for the third time since the water level monitors had been installed. The water level prior to breaching was approximately 2810 mm above MSL as seen in figure 5-36. In the four weeks since the estuary closed on the 30 June 2003, the rainfall recorded in the area was very low at 0.4 mm. Mhlanga Estuary reached its peak water level on the 21 July with the water level fluctuating slightly (approximately 80 mm of fluctuation was recorded, however the accuracy of the logger is \pm 20 mm) for 6 days before breaching. At the time of breaching the tide was shifting from neap to spring.

This breach began between eight and nine o'clock in the evening, again at low tide, with the water level dropping to 935 mm above MSL by one o'clock the following morning. The estuary then experienced the effects of high tide increasing the water level before it dropped to a low of 732 mm during the following low tide. As with the previous breaching event it appears the estuary had not completely emptied before the tide began to drive into the estuary mouth. The majority of the storage volume of the estuary was released within the first two hours of breaching with a water level decrease of 1000 mm in the first hour and 620 mm in the second hour.

Information on the three breaching events is summarized in table 5-6. In each scenario the estuary breached at low tide, with the last two cases emptying for five hours before tidally driven flow began to enter the estuary, increasing the volume of water in the estuary. The first breaching event recorded showed a reduction in water level even during the first high tide,

probably as the tide at the time was neap and the waves were unable to push into the estuary. Once open the estuary appears to be influenced by the tide, this is further discussed below.

		May	June	Juty
Tidal Situation		Neap	4 days after	4 days after
			neap	neap
Tide		Low	Low	Low
Water Level be	fore breach	2955	2915	2810
Lowest water level when open		875	826	690
Rainfall during o	closed period)	50	21.8	0.4
Reduction in	Hour 1	285	516	998
water level	Hour 2	1240	980	622
during the hours following breaching	Hour 3	255	219	131
	Hour 4	106	85	86
	Hour 5	43	61	38
5	Hour 5-10	123	n/a	n/a

Table 5-6: Comparing the three breaching events captured by the water level monitor.

The average change in water level occurring in the first 5 hrs of a breach is approximately 1.9 m. Using the storage determined in section 3.1.4, the volume of water flushed from the estuary in the 5 hrs is approximately $800\ 000\text{m}^3$. This translates to a flow rate of 44m^3 /s, which is greater than the peak discharge of 36m^3 /s associated with the 1 in 2yr flood (Jezewski, et al., 1984).

Seepage appears to be an important factor in breaching at Mhlanga Estuary under the flow conditions observed in 2003. On two occasions seepage was observed at the base of the sand berm on the seaward side, within hours of a breaching event. Plate 5-6 was taken on the morning of the 26 June 2003.

Plate 5-6: Seepage at the southern end of Mhlanga Estuary on the 26 June 2003.

On the 15 September 2003 the scour due to seepage observed at Mhlanga Estuary was greater than that observed in June. Plate 5-7 gives an overall impression of the seepage event around midday. The exact time of the breach is unknown, however the estuary had breached by the following day and as the estuary had not breached before the tide turned it is assumed that it breached at the following low tide. The water level observed during this event was higher than previously recorded, approximately 3.2m.

Plate 5-7: Seepage observed at Mhlanga Estuary on the 15 September 2003.

Dramatic erosion of Mhlanga Estuary beach face was observed over several hours on the 15 September 2003. The increased depth of erosion from 11:19am to 12:32pm is shown in plate 5-8.

Plate 5-8: Depth of scour observed at a) 11:19 and b) 12:32.

5.6.2. Closure

From the data obtained from the water level monitors it has been established that Mhlanga Estuary appears to close at high tide. In June and July 2003 the estuary took 3.5 and 2.5 days to close respectively, which is equivalent to 7 and 5 tidal cycles. During a two week daily observation of the Mhlanga Estuary the process of closure at Mhlanga Estuary was observed.

The approximate volume of sediment lost from the sand berm when the mouth opened on the 26 June 2003, was estimated as 1400m³. Over the 3.5 days it took for the estuary to close the sand berm within the channel built up with a smaller channel releasing water through the middle. Plate 5-9 shows the mouth of the estuary with a channel in the middle, while plate 5-10 shows the build up of sediment.

The estuary took 7 high tides to close, therefore approximately 200m³ of sediment was deposited in the mouth each high tide, amounting to 400m³ per day. The Durban area has an average longshore sediment transport rate of 1400m³ per day (Schoonees, 2000), therefore the estuary required a sediment supply of approximately 30% of the longshore supply. It is also possible that some of the sediment originally scoured from the mouth was deposited in the surf zone and pushed back on shore. A daily berm survey carried out during this period indicated a rise in the sand berm around the channel of approximately half a meter a day, which is

equivalent to approximately 400m³/day, corroborating with the estimate calculated above by dividing the total volume of sediment removed by number of days to closure.

Plate 5-9: The characteristics of the mouth.

Plate 5-10: Build up of sand, deposited during high tide.

On the third day of the study observations were made at high tide to study the behaviour of the mouth. As the waves pushed into the mouth at an angle, sand was deposited into the channel

which had formed down the centre of the mouth. Plate 5-11 shows the substantial channel connected to the sea, while plate 5-12 taken 6.5 hours later shows the channel narrowing on the seaward side. By low tide the following morning the estuary had partially closed with only a small trickle connecting the estuary to the sea.

An interesting aspect of the mouth closure is that it occurs at high tide trapping a large volume of saline water in the estuary. The water depth at the time of closure is approximately 1400 millimetres above MSL, as opposed to the level of 690 millimetres above MSL when open at low tide.

Plate 5-11: Defined central channel on the morning of closure.

Plate 5-12: Channel becoming narrow on the seaward side, as the estuary closes.

5.6.3. Summary

Each of the events captured by the water level monitors show that Mhlanga Estuary breached at low tide, while closure tended to occur at high tide, trapping saline water in the estuary. Once breaching commenced the estuary took approximately 5 hours to empty, which indicates a flow rate of the order 44m^3 /s.

Mhlanga Estuary continued to breach regardless of the lack of rainfall in the region. On two occasions seepage has been observed prior to breaching, and is possibly the cause of failure under the low flows experienced by Mhlanga Estuary.

Closure of the estuary is due to wave action depositing sediment in the estuary mouth. Crossshore waves deposit layers of sediment in the mouth on a daily basis and unless the river flow is sufficient to remove this sediment the estuary is likely to close within a few days.

5.7. Modelling the relationship between flow and mouth state

Mhlanga and Mdloti Estuaries provided a platform, from which two different flow regimes could be explored. The main human influence impacting on the hydrodynamics of Mdloti Estuary is the Hazelmere Dam. The construction of a dam upstream alters the seasonal stream-flow pattern as well as having an attenuating effect on the flood flows. Under drought conditions, a higher percentage of the water entering the reservoir is retained by the dam. A second problem which arises during a low rainfall year is that more water is required for irrigation of the sugar cane and therefore more water is likely to be abstracted. As there is less flow in the river the required abstraction forms a higher percentage of the flow.

Mhlanga Estuary is subject to an increased flow due to WWTW discharge equivalent to approximately 60% of the natural MAR. This capping flow is not significant in terms of flood flows, however under low flow conditions this capping flow largely increases the baseflow resulting in regular breaching when the closed state is expected.

To compare the effects of changes in stream-flow on the behaviour of the mouth, flow duration curves (FDC's) have been calculated for the case studies and are discussed in section 5.7.1.

The RDM studies used flow thresholds to determine the mouth state from flow rate. However from this current study it has been shown that flows are only useful in determining mouth state in the high and low flow regimes and do not reflect the intermediate state. A simplified model for determining the percentage closed from flow data is presented in section 5.7.2.

5.7.1. Flow duration curves

FDCs provide a simple and informative manner of presenting the distribution of river flows from drought to flood conditions. The FDCs are usually presented as log-normal plots of discharge versus percentage of time that the discharge is either equalled or exceeded. This frequency distribution of flows does not account for the order in which the flows occur. 1-month annual and 1-day annual flow duration curves can be calculated from monthly or daily data sets, respectively over a recorded period or data sets can be grouped either seasonally or into similar months. (Smakhtin, 2000).

Monthly annual FDCs were plotted for both the present and natural or reference states at Mhlanga and Mdloti Estuaries. Comparing the FDCs for the reference and present state, the effects of human influences, such as discharge of treated effluent and the construction of Hazelmere Dam, are visible. The addition of treated effluent into the stream-flow entering Mhlanga Estuary causes an increase in the flow throughout the data, as seen in figure 5-37. An additional state was included in the FDC for Mhlanga Estuary, namely the future state. Provision was made for the future as it is foreseen that the WWTWs discharging into the Ohlanga River are likely to increase the amount of discharge form 20Ml/day to 35Ml/day, for which permits have been granted, within the next 4 years (CSIR, 2003).

Although the elevation in flow is fairly uniform throughout the range, the effect on the low flows is more dramatic than on the higher flows. That is under flood conditions the additional treated effluent entering the system has negligible effect, whilst under low flow conditions the additional flow can be responsible for driving the system as witnessed at Mhlanga Estuary during 2003, when there was little rainfall yet the estuary continued to breach at fairly regular intervals.

At Mdloti Estuary the effect of the abstraction and discharge of treated effluent is merely to shift the flow rates down or up, however the construction of the dam alters the natural pattern of stream-flow. It is expected that Hazelmere Dam will attenuate the flood flows, the effects of which can be seen in figure 5-38.

Figure 5-38: A 1-month annual flow duration curve of both the natural state and the present day conditions at Mdloti Estuary.

The data presented in figure 5-38 is problematic, with the present state data showing higher flows than the reference state. An overall decrease in the flows should be evident for the present state as the release from Hazelmere Dam should be less than the stream-flow for the U30A catchment and the abstractions from the Mdloti River downstream of the Hazelmere dam exceed the discharges into the river. Possible reasons for the inaccuracies could be that the simulated stream-flow data is underestimated or the Hazelmere Dam data overestimated. Other sources of error could include underestimation of the abstractions, as there was no gauged data available.

5.7.2. The model

It has been established that a temporary open estuary can be classified into three flow regimes.

- 1. The open regime which occurs under high flow conditions where the residence time of the inflow is less than the time required for closure to occur, thereby forcing the mouth to remain open.
- 2. The closed regime which occurs under low flow conditions, where the inflow is less than the maximum seepage losses, the estuary remains closed.
- 3. Inbetween the open regime and the closed regime is the open/closed regime which is dependant on both flow and residence time. For example high flows (significantly greater than seepage losses) may only be sustained long enough to increase the water level and not result in breaching, while relatively low flows (slightly greater than the maximum seepage loss), occurring when the estuary water level is high, can cause breaching in a short period of time. Note this open/closed regime is not the same as the partly open state but is better defined as intermittently open/closed.

Schematic representations of the conceptual model for the relationship between flow and mouth state developed for Mhlanga and Mdloti Estuaries are given in figures 5-39 and 5-40 respectively. These figures were produced using the data tabulated in table 5-7.

	Mhlanga	Mdloti
$Q_c (m^3/s)$	0.27	0.55
Storage=S (m ³)	800 000	970 000
$T_R \text{ at } Q_c = T_{cr} = S/Q_c \text{ (days)}$	±34	20
Time to closure = T _{cl} (days)	±5	±5
T _{cr} /T _{cl}	7	4

Table 5-7: Relevant characteristics of Mhlanga and Mdloti Estuaries.

Figure 5-39: Visual interpretation of the model for Mhlanga Estuary, where Q is flow and Q_c critical flow.

Figure 5-40: Visual interpretation of the model for Mdloti Estuary, where Q is flow and Q_c critical flow.

Combining the model with the FDC for Mhlanga Estuary figure 5-41 was produced. By combining the data the percentage of time the estuary is likely to be in each regime, on average, can be estimated. These estimates are presented in table 5-8.

Figure 5-41: Plot of flow normalized by the critical flow against the percentage of time exceeded. The three flow regimes are superimposed on the plot.

Decimo	Present State	Reference State	Future State
Kegime	(% of time)	(% of time)	(% of time)
Closed	1	73	0
Open/Closed	94	23	95
Open	5	4	5

 Table 5-8: Information extracted for Mhlanga Estuary from figure 5-41.

To make this information comparable with the RDM data it has been assumed that in the open/closed regime, half the time the estuary is closed and the other half the estuary is open. The partly open state is difficult to determine, and in generally partly open states observed were during a transitional phase between open and closed. The data is tabulated in table 5-9.

Table 5-9: Comparison of percentage closed for reference and present state obtained from various sources.

	State	Percentage closed		
	State _	RDM	Model	Observed
Mhlanga	Reference	82	85	-
	Present	49	48	55

The results obtained from the model for Mhlanga Estuary correlate well with the RDM results. The values obtained for % closed from observations are expected to be higher than the averages from the RDM data and the Model due to low rainfall during the observation period. Perhaps a larger proportion of the open/closed regime should be allocated to the closed state to improve the model.

5.8. Summary of results

• The three flow regimes:

The flows were categorised in relation to the maximum seepage from the estuary.

Low flows	$I-O_{max} < 0$	Estuary remains closed if the flows
		remain in this regime.
Intermediate flows	$I-O_{max} \approx 0$	Water level reaches breaching level,
		becoming unstable
High flows	$I-O_{max} > 0$	Very short residence time (T _R), if flow
		continues longer than T_R overtopping
		occurs.

• Open state:

Both estuaries experience tidal influence under open conditions. From the water level data it can be seen that Mhlanga Estuary is flood dominated as the water level rises faster than it subsides.

	March '03	June '03	July '03
Tidal Range (open) - mm	1000-2000	850-1350	1350-1500
Water Level range - mm	740-1800	200-500	470-580
No. High tides leading to	*	7	5
closure			
Days open	4*	3.5	2.5

* The water level monitors were first introduced into the estuary during the open phase in March 2003, therefore this data is not available from the data logger

• Breaching:

Upon breaching the estuary has an average flow rate of $44m^3$ /s over the first five hours of the breaching event. An interesting feature noted in all three breaching events captured is the occurrence of breaching at low tide.

		May	June	July
Tidal Situation		Noan	4 days after	4 days after
i idai Situ		Neap	neap	neap
Tide		Low	Low	Low
Water Level be:	fore breach	2955	2915	2810
Rainfall during closed period		50	21.8	0.4
(mm))	50	21.0	0.1
Poduction in	Hour 1	285	516	998
water level	Hour 2	1240	980	622
during the	Hour 3	255	219	131
hours following	Hour 4	106	85	86
breaching	Hour 5	43	61	38
Steaching	Hour 5-10	123	n/a	n/a

• Closure:

Closure took 2.5 to 4 days in the three full breaches recorded; however this was under low flow conditions. If higher flows existed the mouth could be maintained in the open state for longer.

Volume of sediment removed from berm	1400m ³
Sediment deposited in estuary mouth daily	400m ³
Sediment available from longshore transport	1400m ³ /d

• Modelling:

A basic model can be used in the determination of percentage closed. This model incorporates the use of the critical flows and the timescales involved in mechanisms influencing the mouth state.

6. CONCLUSION

6.1. Introduction

Four questions were proposed at the outset of this dissertation, with the aim of determining the effects of flow on mouth state. It has been established that the hydrodynamic component of the estuarine system, in particular mouth state, has a large impact on the welfare of estuaries with respect to aspects such as water quality and the biological component. Estuaries are important not only from a biological aspect but also play a role in tourism and in subsistence farming.

6.2. Question 1: Flow and mouth state

Is there a definite relationship between flow entering an estuary and the mouth state of an estuary?

From the research conducted it was found that flow can be used to predict mouth state only under certain circumstances. For instance where high flows are sustained for a sufficient period of time the estuary is likely to breach. Conversely should low flows be sustained the estuary will remain closed. However for flows existing between these two regimes, or where flows are short in duration, the mouth state is not directly related. The best indicator of mouth state is water level, which governs the behaviour of an estuary.

6.3. Question 2: Rainfall and mouth state

Can rainfall be used to determine the mouth state of an estuary?

Rainfall is an easily measurable component of stream-flow, therefore a correlation between rainfall and mouth state was sought. There was a weak correlation between monthly rainfall and the percentage of time the estuary was open during that month. However the case study estuaries occasionally breached when there had been no rainfall during the closed period, while remaining closed for some time after a rainfall event.

6.4. Question 3: Tidal influence

What, if any, tidal influence exists in perched, temporary open estuaries such as Mhlanga and Mdloti Estuaries?

While the estuaries are open tidal influence exists despite the perched nature of the estuary. This phenomenon is as a result of wave runup superimposed on the natural tidal fluctuations. At Mhlanga Estuary data captured on the water level monitor showed asymmetrical fluctuations, exhibiting signs of flood domination, corresponding with the tidal fluctuations.

Salinity readings were used to confirm the existence of tidal influence at Mdloti Estuary, as no breaching events occurred after the installation of the continuous water level monitors.

6.5. Question 4: Mechanisms affecting the mouth

What are the mechanisms involved in breaching and closure of an estuary mouth, and what are the timescales implicated?

Breaching mechanisms were also explored in this dissertation. The mechanism by which an estuary breaches is dependant on the relationship between the inflows and outflows from the system. Where the inflows are of the same order of magnitude as the maximum outflows, the water level rises until the maximum breaching level is reached and seepage failure is likely to occur. However should the inflows be far greater than the outflows, failure through overtopping should occur. In the breaching events captured by the continuous water level monitors the water level tended to drop for 5 hours after commencement of breaching, until a low water level was reached.

Tidal influence is instrumental in the closure of Mhlanga Estuary, by progressively building up the mouth with each high tide. In the events captured on the water level monitors the closure took between 3 and 5 days. Length of time required for closure to occur could be prolonged if the freshwater inflow to the estuary is strong enough to scour the deposited sediment form the mouth. The estuary closed at high tide trapping a large volume of saline water in the estuary.

6.6. Summation

From the research conducted it was discovered that the mouth state of Mhlanga and Mdloti Estuaries is dependant on the water level within the estuary. There is a correlation between sustained high flows and an open estuary mouth and between sustained low flows which maintain the estuary in the closed state. However for the intermediate flow regimes, as well as high and low flows with short residence times, it is not as easy to determine the mouth state of the estuary. An estuary is a complex system and determination of the mouth state requires an understanding of the water levels, losses, residence times and flows.

6.7. Suggestions for further research

In order to further this research the continuous water level recordings need to be coupled with continuous flow measurements. Combining these two data sets will provide more accurate information on the relationship between flow and water level as well as providing more precise details on the water balance and hence the losses from the system. The flow records during open phases can also be used to indicate the magnitudes of flow required to keep the estuary open. It would also be valuable to obtain further data for these case study estuaries under different climatic conditions, for instance the affects of a wet year and average year on flows and mouth state.

Surveys of the estuary are valuable in determining the storage of the estuary. Sediment build up in the estuary affects the morphology of the lagoon. Sediment within an estuary provides habitat to several organisms. The creation and destruction of this habitat could greatly influence the food chain. During the closed phase a sediment yield analysis (e.g. Modified Universal Soil Loss Equation) could be used to determine the sediment entering the estuary, which can be confirmed with surveys. The effect of estuary breaching is to scour sediment from the estuary. The water levels, flow rates and mouth size affects the amount of sediment scoured from the estuary and in turn the health of the estuary, therefore particularly for artificially breached estuaries an understanding of the water levels and mouth size is required for adequate scouring to occur.

The water level at which breaching occurs is dependent on the characteristics of the berm. A study focussed on the affect of berm characteristics on the breaching of an estuary could provide an explanation as to how and when an estuary is likely to breach. For instance, as Mdloti

Estuary has remained closed for a large portion of 2003 and the berm has gradually become wider over this period, does this affect the flows required for the estuary to breach.

When the estuary is in the open phase, tidal influence is evident. A long term study could be used to determine the relationship between the tide level, significant wave height and the volume exchange within the estuary. A secondary affect would be to see how these characteristics affect the transport of sediment in and out of the estuary.

There are several other abiotic characteristics influencing the estuarine environment, for instance turbidity and salinity, both of which are linked to mouth state. The relationship between flows, mouth state and abiotic characteristics could be further explored to obtain an understating of the estuary.

REFERENCES

Bagnold, RA, 1940. Beach formation by waves; some model-experiments in a wave tank. Institution of civil engineering journal, vol. 15, pp 27-53.

Barnhart, C L and Barnhart, R K (Eds.), 1992. The World Book Dictionary, World Book Inc., USA.

Begg, G W, 1978. The Estuaries of Natal, *Natal Town and Regional Planning Report* 41, pp 657. The Natal Town and Regional Planning Commission, Pietermaritzburg.

Begg, G W, 1984. The Estuaries of Natal Part 2 – Supplement to NTRP Report 41, *Natal Town* and Regional Planning Main Series Report 55, pp 182. The Natal Town and Regional Planning Commission, Pietermaritzburg.

Breen, C & McKensie, M (eds), 2002. Managing Estuaries in South Africa: An Introduction, Institute of National Resources, Pietermaritzburg.

CSIR, 1982. Report 13, On the Silwermine Estuary CSW3. In: Estuaries of the Cape, Part II, Synopses of Available Information on Individual Systems. (Eds: Heydorn, A.E.F and Grindley, J.R.). CSIR Report no. 412.

CSIR, 1990. Hydro Factors Affecting Siltation in the Lower Reaches of Natal/KwaZulu Rivers, CSIR Report EMA-D 9006

CSIR, 2002. Rapid Determination of Resource Directed Measures of the Mdloti Estuary. Draft Specialist Report for DWAF.

CSIR, 2003. Rapid Determination of Resource Directed Measures of the Mhlanga Estuary. Draft Specialist Report for DWAF.

DWAF, 2003. Water Resource Protection and Assessment Policy Implementation Process. (Eds: Taljaard, S, Turpie, J and Adams, J.) Department of Water Affairs and Forestry.

Gillette, D, 2003. Breach Formation in Piping and Seismic Failures of Embankment Dams, US Bureau of Reclamation, Denver. (www.pswcrl.ars.usda.gov, accessed in October 2003)

Glavovic, B, 2000. Our Coast, Our Future, A New Approach to Coastal Management in South Africa, Common Ground Consulting for the Department of Environmental Affairs and Tourism.

Gurney, P, 2003. Personal communications: 25 August 2003.

Hopper, M, 2003. WXTide32 version 3.1. (http://wxtide32.com, accessed in February 2003)

Huizinga, P and van Niekerk, L, 2002. Mouth Dynamics and Hydrodynamics of Estuaries, Coastal Engineering Course, University of Stellenbosch, September 2002.

Huizinga, P, 1995. River Basin Management and Estuarine Needs: The Great Brak Case Study. Water Science Technology Journal, vol. 32, no.5-6, pp. 87-93.

Huizinga, P, 2000. Introduction and Discussion on Water Flow and Mouth Management of Estuaries, *NRF Estuaries Workshop*.

Huizinga, P, 2003. Personal communications: 9 June 2003, 10:33

IGBP, 2001. LOICZ methods, (<u>http://data.ecology.su.se/MNODE/Methods/TOC.htm</u>, accessed May 2003)

Jezewski, W A, Pyke, P D and Roberts, C P R 1984. Estuarine and Lake Freshwater Requirements, Technical Report No. TR123, DWAF

Midgley, DC, Pitmann, WV, Middleton, BJ, 1994. Surface Water Resources of South Africa, 1st Edition. *Water Research Commission Report* 298/1/94.

Midgley, DC, Pitmann, WV, Middleton, BJ, 1997. Surface Water Resources of South Africa, 2nd Edition Appendices. (Available on CDROM)

Olson, E, 1976. www.geol.uscb.edu/faculty/sylvester/Teton Dam (accessed in November 2003)

Perissinotto, R, 2003. Personal communication: 20 August 2003, 11:14

Perissinotto, R, Stretch, DD, Forbes, AT, Connell, A, Blair, A, Demetriades, N, Zietsman, I Kibirige, I, Thwala, X, Thomas, C, Iyer, K, 2003. WRC Programme K5/1247: Final Report.

Perry J.E., 1989. The impact of the September 1987 floods on the estuaries of Natal/Kwazulu; a hydro-photographic perspective. CSIR Research Report 640. Earth, Marine and Atmospheric Science and Technology.

Ponce, V M, 1976. Teton Dam Failure, http://kahuna.sdsu.edu/ (accessed in November 2003)

PPDC, Draft 2002. Estuaries Part II, UNPUBLISHED.

Ramm, A, Cerff, E, Harrison, T D, 1985(a). Natal Estuaries Status Report No. 33 – The Mhlabatshane Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(b). Natal Estuaries Status Report No. 8 – The Mvutshini Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(c). Natal Estuaries Status Report No. 7 – The Umhlangankulu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(d). Natal Estuaries Status Report No. 6 – The Mpenjati Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(e). Natal Estuaries Status Report No. 5 – The Kandanlovu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(f). Natal Estuaries Status Report No. 4 – The Kuboboyi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(g). Natal Estuaries Status Report No. 3 – The Tongazi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(h). Natal Estuaries Status Report No. 21 – The Sipingo Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(i). Natal Estuaries Status Report No. 20 – The Mzinto Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(j). Natal Estuaries Status Report No. 19 – The Mhlangeni Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(k). Natal Estuaries Status Report No. 18 – The Zotsha Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(l). Natal Estuaries Status Report No. 17 – The Boboyi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(m). Natal Estuaries Status Report No. 16 – The Mbango Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(n). Natal Estuaries Status Report No. 31 – The Mnamfu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(o). Natal Estuaries Status Report No. 30 – The Mfazazana Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(p). Natal Estuaries Status Report No. 24 – The Mzimkulu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(q). Natal Estuaries Status Report No. 2 – The Sandlundlu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(r). Natal Estuaries Status Report No. 9 – The Kaba Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(s). Natal Estuaries Status Report No. 10 – The Mbizana Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(t). Natal Estuaries Status Report No. 11 – The Bilanhlolo Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(u). Natal Estuaries Status Report No. 12 – The Uvuzana Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1985(v). Natal Estuaries Status Report No. 13 – The Kongweni Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1985(w). Natal Estuaries Status Report No. 14 – The Vungu Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1985(x). Natal Estuaries Status Report No. 15 – The Mdloti Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(y). Natal Estuaries Status Report No. 22 – The Mhlangamkulu Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(z). Natal Estuaries Status Report No. 23 – The Mtentweni Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(aa). Natal Estuaries Status Report No. 25 – The Damba Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(ab). Natal Estuaries Status Report No. 26 – The Mzumbe Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(ac). Natal Estuaries Status Report No. 27 – The Koshwana Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(ad). Natal Estuaries Status Report No. 28 – The Intshambili Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(ae). Natal Estuaries Status Report No. 29 – The Mhlungwa Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1985(af). Natal Estuaries Status Report No. 32 – The Kwamakosi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(a). Natal Estuaries Status Report No. 4 – The Mhlanga Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(b). Natal Estuaries Status Report No. 63 – The Little Manzimtoti Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(c). Natal Estuaries Status Report No. 65 – The Mkomazi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(d). Natal Estuaries Status Report No. 43 – The Mgeni Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(e). Natal Estuaries Status Report No. 39 – The Mdesingane Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(f). Natal Estuaries Status Report No. 55 – The Tugela Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(g). Natal Estuaries Status Report No. 46 – The Mahlongwa Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(h). Natal Estuaries Status Report No. 45 – The Mpambanyoni Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(i). Natal Estuaries Status Report No. 60 – The Zinkwasi Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(j). Natal Estuaries Status Report No. 61 – The Mhlali Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(k). Natal Estuaries Status Report No. 62 – The Manzimtoti Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(1). Natal Estuaries Status Report No. 64 – The Lovu Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(m). Natal Estuaries Status Report No. 47 – The Mahlongwana Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(n). Natal Estuaries Status Report No. 35 – The Mtwalume Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(o). Natal Estuaries Status Report No. 54 – The Matigulu Estuary, National Institute for Water Research of the CSIR

Ramm, A, Cerff, E, Harrison, T D, 1986(p). Natal Estuaries Status Report No. 56 – The Mvoti Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(q). Natal Estuaries Status Report No. 57 – The Nonoti Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(r). Natal Estuaries Status Report No. 58 – The Mdlotane Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(s). Natal Estuaries Status Report No. 59 – The Seteni Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(t). Natal Estuaries Status Report No. 38 – The Mkumbane Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(u). Natal Estuaries Status Report No. 37 – The Mvuzi Estuary, *National Institute for Water Research of the CSIR*

Ramm, A, Cerff, E, Harrison, T D, 1986(v). Natal Estuaries Status Report No. 36 – The Fafa Estuary, *National Institute for Water Research of the CSIR*

Reddering JSV, 1988. Coastal and catchment basin controls on estuary morphology of the south-eastern Cape coast. South African Journal of Science, Vol. 84, 154-157.

Schmidt, EJ, 1998. Impacts of Sugarcane Production and Changing Land Use on Catchment Hydrology, WRC, Report no. 419/1/98.

Schoonees, K, 2000. Annual Variation in Net Longshore Transport, Coastal Engineering Journal, vol. 40, 141-160.

Schoonees, K, 2002. Coastal Sediment Transport, Coastal Engineering Course, University of Stellenbosch, September 2002.
Schulze, RE, 1997. South African Atlas of Agrohydrology and -climatology. WRC, Pretoria, Report TT82/96.

Schumann, E, Largier, J, Slinger, J, 1999, Estuarine Hydrodynamics, *Estuaries of South Africa*, Eds: Allanson, B R & Baird, D, Cambridge University Press.

Swoffer instruments inc., 2002. Model 3000, operating instructions. (<u>www.swoffer.com</u>, accessed June 2003)

U.S. Army Corps of Engineers, 2002. Coastal Engineering Manual. Engineering Manual 1110-2-1100.

Whitfield, A K and Smith, J L B, 1999, Resource Directed Measures For Protection Of Water Resources: Estuarine Ecosystem Component, Water Resources Protection And Assessment Policy Implementation Process, Eds: MacKay, H and Weston, B. (<u>http://www-dwaf.pwv.gov.za/docs/Water%20Resource%20Protection%20Policy/estuarine%20ecosystems/est App1 version1.0.doc</u>., accessed August 2003)

Whitfield, AK 2000, Available Scientific Information On Individual South African Estuarine Systems, WRC Report 577/3/00

Whitfield, A, Bate, G, Colloty, B and Taylor, R, 2003. CERM Photohouse. (www.upe.ac.za/cerm/Guybate.html, accessed March 2003)

APPENDICES

Contents:

Appendix A: Summaries of J ezewski (1984), CSIR (1990), Ramm et al (1985/6), Begg (1978) and Begg (1984)

Appendix B: Freshwater requirements (Jezewski, 1984)

Appendix C: Flow data

Appendix D: Circuit diagram and costing for the water level monitors

Appendix E: Manufacturer's specifications:	Gemini Data Loggers
	Motorola Pressure Transducer

Appendix F: Mouth state data

Appendix G: Water level data

Appendix H: Salinity data

APPENDIX A: SUMMARIES OF

JEZEWSKI (1984) CSIR (1990) RAMM ET AL (1985/6) BEGG (1978) BEGG (1984)

6.12

Jezewski (1984)							
			E	vaporative W	ater requireme	ent	
	1	Quartenary		Mean Annual	l	Evaporative	
	CSIR m	drainage	Estuary	Gross Evan	Mean Annual	Requirement	Remarks
		region	Area (ha)	(mm)	Rainfall (mm)	(4()6 -3(0)	(Chiana)
		region		(1111)			
Kosi	NN21	W700	3500	1470	1000	23.860	
Mgobezeleni	NN20	W700	1.3	1420	1000	0.008	
Lake St Lucia	NN19	W305	32500	1400	900	222.950	
Mfolozi	NN18	W230	180	1350	1200	0,772	
Nhlabane	NN17	W122	17	1350	1300	0.061	
Richard's Bay	NN16	W122	1320	1330	1400	3 567	evaporative requirement of the
Mlalazi	NN15	W130	120	1310	1200	0.505	
Sivai (Sivava)	NN14	W130	59	1300	1200	0.000	
Maticulu	NN13	W110	122	1290	1100	0.020	
Nyoni	NN12	W110	70	1200	1100	0.310	
Tugela	NN11	V500	- 55	1260	1100	5 200	
Zinkwasi	NN10	11500	34.8	1250	1100	0.200	
Nonoti	NN9	11500	18	1250	1100	0.073	
Mdiotane	NN8	U500	94	1250	1100	0.038	
Mvoti	NN7	U403	18.4	1240	1100	0.073	
Seteni	NNB	U302	11	1230	1100	0.004	
Mblali	NN5	U302	21	1230	1100	0.004	
Tongati	NN4	U302	94	1220	1100	0.042	
Mdloti	NN3	U301	18.3	1220	1000	0.042	
Mhlanga	NN2	U301	114	1200	1000	0,000	
Moeni	NN1	11202	38.8	1200	1000	0.048	
Durban Bay	NS53	11602	N/A	1200	1000	N/A	hadaard
Mlazi	NS52	11602	N/A	1200	1000	N/A	market and database send
Sipingo	NS51	11603	68	1200	1000	0.020	concrete inter intereste carea
Mbokodweni	NS50	11603	72	1200	1000	0.023	
Manzimtoti	NS49	11700	87	1200	1000	0.031	
Little Manzimtoti	NS48	11700	1.5	1200	1000	0.028	
	NS47	11700	20	1200	1000	0.000	
Msimbazi	NS46	11700	13.2	1200	1000	0.000	
u Mgababa	NS45	U700	17.6	1200	1000	0.030	
Naane	NS44	11701	14	1200	1000	0.075	
Mkomazi	NS43	U100	55.8	1200	1000	0.000	
Mahlongwana	NS42	11804	68	1200	1000	0.230	
Mahlongwa	NS41	U804	8.6	1200	1000	0.028	
Mpanbanyon	NS40	U804	2.3	1200	1000	0.020	
Mzimavi (North)	NS39	U803	0.9	1200	1000	0.004	
Mzinto	NS38	U803	7	1200	1000	0.03	
Mkumbane	NS37	U803	0.3	1200	1000	0.001	
Sezela	NS36	U803	9	1200	1000	0.039	
Mdesingane	NS35	U803	0.4	1200	1000	0.002	
Fafa	NS34	U803	30.1	1200	1000	0.129	
Mvuzi	NS33	U803	0.8	1200	1000	0.003	
Mtwalume	NS32	U802	24.8	1200	1000	0.106	
Mnamfu	NS31	U802	1.3	1200	1000	0.006	
Kwa-Makosi	NS30	U802	2.5	1200	1000	0.000	
Mfazazana	NS29	U802	2.1	1200	1000	0.009	
Mhlungwa	NS28	U802	3.1	1200	1000	0.013	
Mzimayi (South)	NS27	U802	2.3	1200	1000	0.01	nino interne na Ministratairean P
Mzumbe	N\$26	U801	21.6	1200	1000	0.092	
i Ntshambili	NS25	U801	1.7	1200	1000	0,007	
Koshwana	NS24	U801	1.2	1200	1000	0.005	
Damba	NS23	U801	1.7	1200	1000	0.007	
Mhlangamkulu	NS22	U801	3.9	1200	1000	0.017	
Mtentweni	NS21	U801	8	1200	1000	0.034	
Mzimkulu	NS20	T502	74	1200	1000	0.317	
Mbango	NS19	T402	0.9	1200	1000	0.004	
Boboyi	NS18	T402	1.3	1200	1000	0.006	
Zotsha	NS17	T402	7.3	1200	1000	0.031	
Mhlangeni	NS18	T402	3.6	1200	1000	0.015	
Vungu	NS15	T402	1.1	1200	1000	0.005	
Kongweni	NS14	T402	1.4	1200	1000	0.006	
Uvuzana	NS13	T402	0.6	1200	1000	0.003	
Bilanhiolo	NS12	T402	2.6	1200	1000	0.011	
Mvutshini	NS11	T402	0.9	1200	1000	0.004	
Mbizane	NS10	T402	12.4	1200	1100	0.044	
Kaba	NS9	T402	2.4	1200	1100	0.009	
Umhlangankulu	NS8	T402	5.8	1200	1100	0.021	
Mpenjati	NS7	T402	11.6	1200	1100	0.042	
Kandandhlovu	NS6	T402	18	1200	1100	0.006	

			E	vaporative Wa	ater requireme	ent	
	CSIR no.	Quartenary drainage	Estuary Area (ba)	Mean Annuai Gross Evap	Mean Annual Rainfall (mm)	Evaporative Requirement	Remarks
		region	,	(mm)		(10 ⁶ m ³ /a)	
Tongazi	NS5	T402	0.8	1200	1200	0.002	
Ku-Boboyi	NS4	T402	1.1	1200	1200	0.003	
Sandiundiu	NS3 NS2	T402	4	1200	1200	0.012	
Mtamvuna	NS1	T401	50.3	1200	1200	0.145	international Rher
Great Kei	CSE59	S701	298	1300	1000	1.594	
Morgan	CSE57	R303	30	1300	1000	0.161	
Quko	CSE56	R303	43	1300	1000	0.23	
Nvara	CSE53	R303	17	1300	900	0.021	
Kwenxura	CSE52	R303	48	1310	900	0.295	
Cefane	CSE51	R303	64	1310	900	0.393	
Cintsa	CSE50	R303	23	1310	900	0.141	
Bulura	CSE48	R303	198	1320	900	1.236	
Gaunube (Gonubi)	CSE47 CSE46	R303	84	1320	900	0.524	
Qinira	CSE45	R301	49	1320	900	0.305	
Nahoon	CSE44	R202	54	1320	900	0.337	
Buffalo	CSE41	R402	135	1330	850	0.902	
oxuiu Meantsi	CSE35	R402	51 8	1350	800	0.059	
Great Fish	CSE15	P400	199	1400	700	1.672	International Sheer
Oos-Kleinemonde	CSE14	P400	35	1410	700	0.297	
Wes-Kleinemonde	CSE13	P400	80	1420	700	0.687	
Kowie	CSE10	P400	825	1440	700	7.244	
Kariena	CSE8	P400 P300	36 198	1450	700	0.337	
Bushmans	CSE7	P100	213	1470	700	1.931	
Boknes	CSE6	P200	27	1480	800	0.228	
Sundays	CSE5	N400	268	1550	500	3.008	
Koega	CSE4	M300	35	1550	500	0.393	
Swankops Van Stadens	CMS49	M100	28	1530	600	0.289	
Gamtoos	CMS48	1,900	175	1500	600	1.76	
Kabeljous	CMS47	K902	82	1450	600	0.785	
Seekoei	CMS46	K902	98	1400	600	0.892	
Krom Groot (Weet)	CM545	K901	2/5	1300	1000	2.372	
Keurbooms	CMS19	K601	373	1300	700	2.779	_
Piesang	CMS18	K602	15	1300	700	0.112	
Noetsie	CMS14	K802	8	1300	800	0.054	
Knysa	CMS13	K500	1633	1300	800	11.023	
Swartvlei	CMS12 CMS11	K402	1413	1300	800	9.538	_
Touws	CMS10	K300	40	1300	800	0.27	
Kaaimans	CMS9	K300	8	1300	700	0.06	
Maalgate Cos et Brok	CMS5	K300	13.5	1300	800	0.091	
Little Brak	CMS3 CMS2	K102	96	1300	700	0.555	· · · · ·
Hartenbos	CMS1	K101	31	1300	700	0.231	
Gourits	CSW25	J402	188	1300	400	1.795	
Kafferkuils	CSW24	H900	263	1300	400	2.612	
Druiwennoks Brog (Brogede)	CSW23	H700	1113	1310	400	8.398	
Heuningnes	CSW19	G501	110	1340	400	1.092	
Ratel	CSW18	G501	10	1350	600	0.086	
Uilkraals	CSW17	G404	260	1350	600	2.24	
Klein	CSW16	G403	1280	1350	600	11.04	
Bot	CSW13	G402	1490	1360	700	11.95	
Palmiet	CSW12	G401	18	1360	1000	0.25	•
Buffels (East)	CSW11	G401	6	1370	1000	0.036	
Rooiels	CSW10	G401 G205	1.2	13/0	800	0.007	
Eerste	CSW6	G204	15	1390	700	0.125	
Sand	CSW4	G203	121	1390	1000	0.751	
Silvermine	CSW3	G203	1	1380	1000	0.006	
Eise Houtheal	CSW2	G203	10	1380	1000	0.075	
Diep/Rietylei	CW25/24	G203	428	1390	600	3.854	
Great Berg	CW15	G105	798	1450	300	9.317	
Verlore	CW13	G301	1520	1490	400	17.26	
Olifants	CW10	E304	648	1600	150	9.169	
Groen	CW/	F500	28	1760	100	0.433	Non-permini river
Orange	CW1	D803	N/A	2000	50	N/A	River mouth

	Flooding Water Requirement										
						2yr Flood	Calculated	Adopted			
	Catchment	Mean Annual	Longest	Average	Time of	Peak	Flooding	Flooding			
	Area (km ²)	Runoff	Collector	Catchment	Concentration	Discharge Q	Requirement	Requirement	Remarks		
	/	(10°m³/a)	(km)	slope	(⊓)	(m ³ /s)	(10 ⁶ m ³ /a)	(10 ⁶ m ³ /a)			
Kosi	500	Not available	30	0.0015	1 <u>1.1</u>	74	2.957	2.957			
Mgobezeleni	33	Not available	8	0.0038	2.8	19	0.192	0.192			
Lake St Lucia	7515	395	-	-	-	-	84.716	27.650	estimated at 7% MAR		
Mfolozi	10075	885	388	0.0032	59.7	340	109.609	61.950	estimated at 7% MAR		
Nhlabane	104	29	15	0.0043	4.4	33.5	0.531	0.531			
Richard's Bay	4235	645	200	0.0055	29.1	218	34.257	45.150	estimated at 7% MAR		
Mlalazi	5 <u>10</u>	122	60	0.0097	9.3	75	3.767	3.767			
Siyai (Siyaya)	18	Not available	5	0.0027	2.2	13.7	0.109	0.109			
Matigulu	880	180	75	0.0081	11.8	99	6.308	6.308	Entwary month in		
Nyoni	1150	20	35	0.0035	9.0	35.5	1.150	1.150	common		
Tugela	29101	4597	563	0.0025	78.5	5/0	241.623	300.000			
Zinkwasi	13	14.3	20	0.011	3.0	20.3	1.509	1.509			
Nonou	320	35	30	0.0061	2.6	21.5	0.201	0.201			
Myoti	2829	482	190	0.0067	25.9	178	24,895	24,895			
Seteni	16	Not available	3	0.0167	0.7	13	0.033	0.033			
Mhlali	320	62	50	0.0102	7.9	59	1.678	1.678			
Tongati	436	84	55	0.0101	8.5	69	2.111	2.111			
Mdloti	527	102	75	0.0070	12.5	76	5.130	5.130			
Mhlanga	118	23	25	0.0056	5.8	36	0.752	0.752			
Mgeni	4432	683	248	0.0058	33.6	223	40.461	19.900			
Durban Bay	242	30	45	0.0162	6.1	-	n/a	n/a	berbour		
Mlazi	972	119	75	0.0066	12.7	-	n/a	n/a	concrete lined drainage		
Sipingo	39	5.7	20	0.0155	3.3	20.3	0.241	0.241			
Mbokodweni	295	35.3	60	0.0128	8.3	57	1.703	1.703			
Manzimtoti	44.5	6.2	18	0.1940	2.8	22	0.222	0.222			
	903	1.0	100	0.0097	143	100	7 722	7 722			
Msimbazi	36.4	49	13	0.0007	24	19.5	0 168	0.168			
u Moababa	37	4.9	15	0.0167	2.6	19.8	0.185	0.185			
Ngane	16.5	2.2	10	0.0180	1.8	13.3	0.086	0.086			
Mkomazi	4310	1034	285	0.0052	39.0	220	46.332	46.332			
Mahiongwana	17	Not available	8	0.0250	1.4	13.4	0.068	0.068			
Mahlongwa	107	14	33	0.0125	5.3	34	0.649	0.649			
Mpanbanyoni	562	71	85	0.0101	11.9	79	5.077	5.077			
Mzimayi (North)	31	3.7	20	0.0132	3.5	18	0.227	0.227			
Mzinto	164	19.8	33	0.0180	4.6	42.4	0.702	0.702			
Mkumbane	28	.3.4	15	0.0167	2.6	17.3	0.162	0.162			
Ndesingane	20	2.4	5	0.0107	2.3	70	0.120	0.120			
Fafa	239	30	65	0.0100	93	51	1 707	1 707			
Myuzi	8	Not available	7	0.0214	13	91	0.043	0.043			
Mtwałume	565	71	83	0.0108	11.4	79	4,863	4.863			
Mnamfu	15	2.1	10	0.0240	1.6	12.5	0.072	0.072			
Kwa-Makosi	10	1.5	8	0.0250	1.4	10.2	0.051	0.051			
Mfazazana	15	2.1	10	0.0250	1.6	12.5	0.072	0.072			
Mhlungwa	31	4.4	16	0.0158	2.8	18	0.181	0.181			
Mzimayi (South)	41.5	5,9	17	0.0191	2.7	21.2	0.206	0.206			
MZUMDe	536	68	83	0.0075	13.1	17	5.447	5.447			
Koshwana	12	4	7	0.0154	2.4	19	0.164	0.164			
Damba	26	1.4	15	0.0280	24	11.3	0.049	0.049			
Mhlangamkulu	12	14	7	0.0214	13	11.3	0.143	0.143			
Mtentweni	53	6.2	17	0.0202	2.6	24	0.225	0.225			
Mzimkulu	6745	1478	330	0.0054	43.1	275	64.004	64,004			
Mbango	12	3.4	8	0.0125	1.8	11.3	0.073	0.073			
Boboyi	31	8.6	15	0.0200	2.4	18	0.156	0.156			
Zotsha	71	14.8	22	0.0236	3.0	27.8	0.300	0.300			
Mhlangeni	44	9.2	12	0.0200	2.0	21.8	0.157	0.157			
Vungu	102	27.5	30	0.0213	4.0	33	0.475	0.475			
Kongweni	18	4.9	6	0.0317	1.0	13.7	0.049	0.049			
Bilapholo	10	1.8	3	0.0429	0.6	8.5	0.018	0.018			
Myutshini	6	1.6	65	0.0234	1.8	14.1	0.091	0.091			
Mbizane	165	34	28	0.0145	44	42.5	0.031	0.031			
Kaba	12	2.9	8.5	0.0259	1.4	11.3	0.057	0.073			
Umhlangankulu	10	2.4	6.5	0.0231	1.2	10.2	0.044	0.044			
Mpenjati	87	20.7	20	0.0271	2.7	30.9	0.300	0.300			
Kandandhiovu	11	3.7	8	0.0413	1.1	10.8	0.043	0.043			

				Flo	oding Water Re	quirement			
	0.111	Mean Annual	Longest	Average	Time of	2yr Flood	Calculated	Adopted	
	Catchment	Runoff	Collector	Catchment	Concentration	Peak Discharge O	Flooding	Flooding	Remarks
	Area (km*)	(10 ⁶ m ³ /a)	(km)	slope	(h)	(m ³ /e)	$(10^6 m^3/m)$	(10 ⁸ m ³ /m)	
Tongazi	20	6.7	10	0.0375	1.4	14.5	0.073	0.073	
Ku-Boboyi	4	1.3	4	0.0263	0.8	6.4	0.018	0.018	
Sandlundlu	19	6.3	8	0.0413	1.1	14.1	0.056	0.056	
Zolwane	7	1.3	6.5	0.0420	1.0	8.5	0.031	0.031	
Mtamvuna Great Kei	20566	303.7	421	0.0050	25.4	740	263 736	18.105 74.480	
Morgan	20500	6	13	0.025	2.1	24.3	0.184	0.184	edamated at 7% MAR
Quko	172.7	37.2	41	0.0068	7.9	74	2.105	2.105	
Haga-Haga	18	3.9	12	0.0168	2.2	19.3	0.153	0.153	
Nyara	36.4	7.9	18.5	0.0108	3.6	27.6	0.358	0.358	
Kwenxura	146.9	17.1	40	0.0086	7.1	28.8	1.431	1.200	estimated at 7% MAR
Cintsa	43.7	4.5	23	0.0130	3.8	30.3	0.365	0.363	and manual of The MAR
Bulura	41	3.7	20	0.0073	4.4	29.4	0.466	0.260	entimated at 7% MAR
Kwelera	424	38.3	80	0.0052	14.7	95	5.027	2.680	waternational and 7% MARR
Gaunube (Gonubi)	665	47	95	0.0073	14.7	119	9.446	3.290	entimated at 7% MAR
Qinira	90	9	21	0.0087	4.3	43.7	0.676	0.676	
Nanoon	1290	34	118	0.0057	14.5	113	8.909	2.380	estimated at 7% Mark
Gxulu	105	12	31	0.0074	6.2	47.5	1.060	0.840	estimated at 7% MAR
Mcantsi	21	2	12	0.0163	2.2	21	0.166	0.166	estimated at 7% MAR
Great Fish	29284	526	785	0.0015	137.4	800	593.568	36.820	entimated at 7% MAR
Oos-Kleinemonde	48.5	2.1	17.6	0.0110	3.4	32	0.392	0.150	estimated at 7% MAR
vves-rueinemonde	89.4 765	3.9	79	0.0063	15.8	43.5	1.112	0.270	estimated at 7% MAR
Kasuka	113	Not available	20	0.0100	3.9	49	0.688	0.688	entimated at 7% MAR
Kaniega	685	16	115	0.0036	22.4	122	14.757	1.120	entirelated at 7% MAR
Bushmans	2675	38	260	0.0022	50.7	240	65.707	2.660	estimated at 7% MMR
Boknes	200	10	25	0.0073	5.3	85.5	1.250	0.700	entirested at 7% MAR
Sundays	20790 600	204	438	0.0027	13.0	0/5	254.786	14.280	collevated at 7% MAR
Swartkops	1335	79	110	0.0052	18.8	170	17.258	5.530	continuent at 7% MAR
Van Stadens	21.5	13.9	28	0.0159	4.3	21.2	0.328	0.328	
Gamtoos	34450	500.6	620	0.0020	102.6	870	482.015	35.040	estimated at 7% MAR
Kabeljous	262	16.3	33	0.0123	5.3	75	1.431	1.140	estimated at 7% MAR
Seekoel	250	10.7	36	0.0099	0.2	153	1.041	8,610	collemated at 7% MMR
Groot (West)	180	46	30	0.0133	4.8	61.5	1.063	1.063	
Keurbooms	1060	177	80	0.0089	11.9	152	9.768	9.768	
Piesang	46	5.6	20	0.0135	3.5	31.5	0.397	0.397	
Noetsie	39	4.8	13	0.0277	1.9	28.8	0.197	0.197	
Coukamma	225	53	28	0.0099	8.9	71	1 789	1 780	
Swartviel	387	96		-	-		2.321	2.321	
Touws	155	39	44	0.0104	7.1	57.5	1.470	1.470	
Kaaimans	131	36	27	0.0220	3.6	52.5	0.680	0.680	
Maalgate	180	27	25	0.0143	4.1	61.5	0.908	0.908	
Great Brak	190	50.2	33 48	0.0178	4.0	109	4 532	4,532	
Hartenbos	205	5	33	0.0063	6.9	66.3	1.647	0.350	estimated at 7% MAR
Gourits	45450	539	410	0.0024	69.6	1000	375.840	37.730	andmaked at 7% MAR
Kafferkulls	1155	106	65	0.0034	14.7	158	12.542	7.420	estimated at 7% MAR
Druiwenhoks	835	90	80	0.0040	16.2	134	228 200	6.300	understand at 7% MAR
Bree (Breede)	12280	38	99	0.0011	27.2	160	23,501	2,660	collected at 7% MAR
Ratel	185	7	25	0.0101	4.5	63	1.021	0.490	estimated at 7% MMR
Uilkraals	375	18	48.5	0.0052	10.0	90	3.240	1.260	collected at 7% MAR
Klein	793	38	82	0.0025	19.8	130	13.900	2.660	estimated at 7% MAR
Onrus	73	5	17.5	0.0204	2.7	82	0.797	0.350	unterested at 7% MAR
Bol	920	201	72	0.0050	11.0	283	14.330	2.700	estimated at 7% LANR
Buffels (East)	52	22	7.5	0.0576	0.9	69	0.224	0.224	_
Rooiels	21	9	10	0.0576	1.2	43.8	0.189	0.189	
Lourens	140	122	19	0.0222	2.8	113	1.139	1.139	
Eerste	655	195	43	0.0077	7.8	247	10.404	0.714	
Silvermine	21	5	12	0.045	1.7	20.9	0.113	0.113	
Else	13	3	6.5	0.0369	1.0	16.1	0.058	0.058	
Houtbaai	78	22.6	12	0.0070	1.3	41	0.192	0.192	
Diep/Rietvlei	1495	81	83	0.0020	21.8	180	21.190	5.670	estimated at 7% MAR
Great Berg	6500	489	277	0.0004	102.5	375	207.563	2 730	estimated at 7% WAR
Veriore	1895	39 1015.4	300	0.0014	30.0 77.8	158	66.379	66.379	equinated at 7% MAR
Groen	4470	34	-	-	-	-	n/a	n/a	san-perturbal theor
Spoeg	1525	3		-		•	n/a	n/a	non-perronial ther
Orange	408045	11868	2615	0.0007	476.2	475	1221.450	534.060	estimated at 4.5% MAR

CS1R, 1990. Hydro Factors Affecting Siltation in the Lower Reaches of Natal/KwaZulu Rivers,

CSIR Report EMA-D 9006

Sediment Yield (after Rooseboom 1975)

									Av. M	ax. yields
	1		River	Source	River	Estuarine	Decrease in			
		catchment	length	elevation	gradient	length in	estuary length			
		area (km²)	(km)	(m)	(1:)	1976 (km)	this centuary	Ц	tonnes/yr	tonnes/km2/yr
Mtamvuna	NS1	1553	162	1920	84	5			434290	280
Zolwane	NS2	7	6.5	259	25	0.21		Ц	4200	600
Sandlundlu	NS3	16	7.5	282	27	0.6		Ц	9600	600
Ku-Boboyi	NS4	3	4	107	37	0.53			1800	600
Tongazi	NS5	17	8.5	385	22	0.35		L	10200	600
Kandandhlovu	NS6	9	8	290	28	0.55			5400	600
Mpenjati	NS7	100	18	480	38	1.1	Y	Ц	60000	600
Umhlangankulu	NS8	9	6.5	180	36	0.85		Ц	3600	400
Kaba	NS9	11	9	220	41	0.5		Ц	4400	400
Mbizane	NS10	145	26	480	54	1.5	У	Н	72500	500
Mvutshini	NS11	7	6.5	180	36	0.25		Ц	2800	400
Bilanhloio	NS12	21	12	240	50	0.5		Ц	8400	400
Uvuzana	NS13	8	2.5	130	19	0.23		Ц	3200	400
Kongweni	NS14	20	6	180	33	0.85		Н	8000	400
Vungu	NS15	124	24	610	39	0.18		Ц	85200	400
Mhlangeni	NS16	38	12.5	340	37	0.95	Y	Ц	15200	400
Zotsha	NS17	57	20	415	48	2.5		Ц	22800	400
Boboyi	NS18	32	14	370	38	0.38	<u>y</u>	Ц	12800	400
Mbango	NS19	13	8	139	58	0.65		Ц	5200	400
Mzimkulu	NS20	6745	329	2440	135	5.5	У	Н	2170020	322
mtentweni	NS21	50	20	340	59	2.3		Н	20000	400
Miniangamkulu	NS22	11		185	38	0.9		μ	4400	400
Lamba	NS23	25	11	300	37	0.5	y	Н	10000	400
Nosnwana	NS24	11	6.3	200	32	0.48		Н	4400	400
Maumho	N525	33	12.5	210	60	0.55	Y	Н	13200	400
Maimori (Carith)	NS26	536	64	933	90	0.95		H	214400	400
Mzimayi (South)	N527	4/	16	240	67			Н	18800	400
Miniungwa	NS28	32	18	222	81	1.5		H	12800	400
Mrazazana	NS29	16	10.5	2/8	38	0.53	У	Н	6400	400
Nwa-makusi Maamfu	NG30	10		183	38	0.75		Н	6400	400
Mhannu	NS31	10	9	233	39	0.75		Н	6400	400
Mauri	NC22	900	65	980	80	1.7	y	Н	226000	400
Fofe	NC24	0	0.0	1/8	3/	0.7		Н	3200	400
Mdosingone	NC25	231	50	918	12	3	y y	Н	88150	382
Sezola	NS36	20	<u>⊃.∠</u> 12	180	67	0.5	У	Н	2400	400
Mkumbana	NS37	20	14	100	67	1.0		Н	8000	400
Mzinto	NC38	140	27	520	4/	0.25	y	H	50000	400
Mzimavi (North)	NS30	31	20	178	112	1.42		Н	12400	400
Mnanhanyoni	NS40	562	100	062	104	0.25	<u> </u>	Н	12400	400
Mahionowa	NS41	92	23	430	53	1.0	y	Н	36800	328
Mahlongwana	NS42	15	6	218	27	1.3		Н	30000	400
Mkomazi	NS43	4310	298	2650	112	1.5		Н	1616260	400
Ngane	NS44	16	8	219	37	0.34	y	Н	6400	375
u Mgababa	NS45	37	14.5	244	59	24		Н	14800	400
Msimbazi	NS46	35	16	244	66 -	2.7		Н	14000	400
Lovu (Illovu)	NS47	893	135	1280	105	11		Н	308000	400
Little Manzimtoti	NS48	18	15	165	91	0.8		Н	7200	400
Manzimtoti	NS49	39	11.6	274	42	1.6		Н	15600	400
Mbokodweni	NS50	283	59	732	81	0.7		Н	113200	400
Sipingo	NS51	51	27	328	82	1 25		Н	20400	400
Mlazi	NS52	972	82	914	90	,.20		Н	426800	430
Durban Bay	NS53	not studied		<u> </u>				Η	720000	
Mgeni	NN1	4432	232	1829	127	6.2	v	Η	1657670	374
Mhianga	NN2	118	28	324	86	2.2	v –	Η	47200	400
Mdloti	NN3	527	81	854	95	1.5		Η	210800	400
Tongati	NN4	436	50	747	67	2		Η	174400	400
Mhlali	NN5	304	46.5	580	80	2	v	Η	121600	400
Seteni	NN6	16	5	61	82	0.35		Η	6400	400
Mvoti	NN7	2829	197	1479	133	1.75	y	H	813850	288
Mdlotane	NN8	43	13	122	107	2.25		Η	17200	400
Nonoti	NN9	210	37.5	488	77	1.9		H	84000	400
Zinkwasi	NN10	73	22	229	96	7.4		Π	29200	400
lugela	NN11	29101	405	3109	130	0.8	у	Ħ	8798000	302
Nyoni	NN12	115	25	152	164	7			41280	359
Matigulu	NN13	880	96	762	126	7.5	У	T	224440	255
Siyai (Siyaya)	NN14	18	8	59	136	2.5	У	1	1800	100
Mialazi	NN15	492	54	549	98	11		T	49200	100
Richard's Bay	NN16							T	not studied	
Mhlatuze		3670	209	1265	165	0.5	У		1055470	288
Nhlabane	NN17	104	12	43	279	3	y	1	10400	100
Mfolozi	NN18	10075	395	1646	240	4.6	y	1	2364240	235
Lake St Lucia	NN19	not studied						1		
Mgobezeleni	NN20	33	6	15	400	0.75		1	23300	100
KOSI	NN21	+/-500	30	75	400	16	-	1	500000	100

Simulated runoff

	Simulated runoff/precipitation								
	MAD			median annual					
	MAR (m ³ × 10 ⁶)	appual	monthly	$(m^3 \times 10^6)$	median/		MAR (mm)	MAP (mm)	MAR/MAP
Mtemvuna	303 78	43.4	96.4	264.36	87	+	196	956	20.5
Zolwane	1.73	43.4	96.4	1.51	87	╋	247	1019	24.5
Sandlundlu	6.4	51.9	125.6	5.65	88		400	1194	33.5
Ku-Boboyi	1.2	51.9	125.6	1.06	88		400	1194	33.5
Tongazi	6.8	51.9	125.6	6	88	+	400	1194	33.5
Kandandhiovu	3.5	51.9	125.6	3.18	88	+	400	1194	33.5
Umhlangankulu	23.52	51.9	125.6	1.76	88	╉	233	10/4	21.3
Kaba	2.44	51.9	125.6	2.15	88	$^{+}$	222	1040	21.3
Mbizan e	29.56	51.9	125.6	26.08	88		204	1019	20
Mvutshini	1.82	51.9	125.6	1.61	88	+	260	1091	23.8
Bilanhiolo	5.46	51.9	125.6	4.82	88	+	260	1091	23.8
Kongweni	5.2	51.9	125.6	4.59	88	╉	260	1091	23.8
Vungu	26.44	51.9	125.6	23.32	88	+	213	1031	20.7
Mhlangeni	9.6	51.9	125.6	8.47	88		253	1073	23.6
Zotsha	14.4	51.9	125.6	12.7	88		253	1073	23.6
Boboyi	8.53	51.9	125.6	7.52	88	+	267	1080	24.7
Mbango	3.4/	51.9	125.6	3.06	88	+	267	1080	24.7
Mtentweni	14.62	68	149.3	11.65	80	+	292	1030	28.3
Mhlangamkulu	3.22	68	149.3	2.57	80	$^{+}$	292	1030	28.3
Damba	7.31	68	149.3	5.82	80		292	1030	28.3
Koshwana	3.22	68	149.3	2.57	80		292	1030	28.3
i Ntshambili	9.65	68	149.3	7.69	80	+	292	1030	28.3
Mzumbe Mzimovi (South)	9 14	80	149.3	50.0	80	╉	173	903	14.7
Mblungwa	5.55	68	149.3	4.42	80	╉	173	1038	16.7
Mfazazana	2.77	68	149.3	2.21	80	1	173	1038	16.7
Kwa-Makosi	2.77	68	149.3	2.21	80	I	173	1038	16.7
Mnamfu	2.77	68	149.3	2.21	80		173	1038	16.7
Mtwalume	60.02	68	149.3	47.82	80	+	106	932	11.4
MVUZI	0.84 24.17	68	149.3	19.26	80	+	105	920	11.4
Mdesingane	0.9	68	149.3	0.72	80	╉	150	985	15.2
Sezela	2.99	68	149.3	2.38	80		150	985	15.2
Mkumbane	4.18	68	149.3	3.34	80		150	985	15.2
Mzinto	22.29	68	149.3	17.76	80	+	150	985	15.2
Mzimayi (North)	4.54	68	149.3	3.7	80	+	93	965 895	10.4
Mahlongwa	12.02	68	149.3	9.59	80	┢	131	1004	13
Mahlongwana	1.96	68	149.3	1.56	80		131	1004	13
Mkomazi	1036.17	42.8	84	954.45	92		240	982	24.4
Ngane	2.9	63.8	124.1	2.31	80	4	181	1040	17.4
u Mgababa	6.71	63.8	124.1	5.34	80	+	181	1040	17.4
MSIMDAZI	0.35	63.8	124.1	88.91	80	H	125	936	13.4
Little Manzimtoti	3.78	63.8	124.1	3.01	80		210	1079	19.5
Manzimtoti	8.2	63.8	124.1	6.52	80	1	210	1079	19.5
Mbokodweni	35.58	71.2	146	27.89	78	-	126	961	13.1
Sipingo	6. 4 1	71.2	146	5.03	78	H	94	861	10.9
Durban Bay	81	11.2	140	71.54	- 10	H		001	10.0
Mgeni	682.88	57	107.1	561.45	82		154	945	16.3
Mhlanga	26	71.3	160.6	19.82	76	Ц	220	1028	21.4
Mdloti	116.99	71.3	160.6	89.16	76	\mathbb{H}	222	1104	20.1
Tongati	74.99	71.3	160.6	57.15	76	H	1/2	1087	15.8
Mhiali	49.4	71.3	160.6	1.698	76	H	163	1085	15
Mvoti	468.19	85.6	146.4	335.9	72	H	166	1035	16
Mdlotane	9.1	85.6	146.4	6.53	72	Π	212	1100	19.3
Nonoti	44.47	85.6	146.4	31.9	72	Ц	212	1100	19.3
Zinkwasi	15.46	85.6	146.4	11.09	72	H	212	1100	19.3
Tugela	4594.94	48.8	122.3	4045.79	60	Η	100	094	11.1
	201.07	77.1	156.5	149.22	74	H	202	1129	17.9
Sivai (Sivava)	5.25	87.8	160.5	3.83	73	Ħ	292	1286	22.7
Mlalazi	117.01	87.8	160.5	85.37	73	Π	238	1209	19.7
Richard's Bay						Ц	46=	0.70	4.5
Mhlatuze	467.5	84.8	142.3	352.9	76	⊢	127	876	14.5
Nhlabane	30.75	87.1	158.4	21.66	10	H	<u>290</u> 88	849	10.4
Mtolozi	667.28	123.8	210./	305.78	<u> </u>	H	00		,,,,,
Moobezeleni	nr	nr	nr	nr	nr	Ħ	nr	nr	nr
Kosi	nr	nr	nr	nr	nr	Π	nr	nr	nr

Information obtained from Natal Estuaries Status Reports, by Ramm et al.

E-fuend		Catchment	River Length	MAR (x	Closed (% of		Estuary
Estuary		Area (km ²)	(km)	10 ⁶ m ³)	yr)	Elevation (m)	Length (m)
Zinkwasi	toc	73	22	110	84	229	7400
Nonoti	toc	210	38	320	94	488	1900
Mdlotane	toc	43	13	70	95	122	2200
Seteni	toc	16	5	20	83	61	400
Mhlali	toc	304	46	380		580	2000
Mdloti	toc	527	81	890	64	854	1500
Mhlanga	toc	118	28	19.8	96	324	2.2
Mgeni	toc	4432	232	5610	0	1829	6200
Manzimtoti	toc	39	12	70	63	274	1600
Little Manzimtoti	toc	18	15	30	54	165	800
Lovu	toc	893	135	890	17	1280	1100
Mahlongwa	toc	92	23	100	75	430	1900
Mpambanyoni	toc	560	100	410	23	962	200
Mzinto	toc	149	37	180	93	520	1400
Mkumbane	toc	28	14	30	81	300	200
Fafa	toc	231	66	190	96	918	3000
Mvuzi	toc	8	6	10	99	178	700
Mtwalume	toc	565	85	480	31	985	1700
Mnamfu	toc	16	9	20	89	233	800
Kwa-Makosi	toc	16	7	20	83	183	800
Mafazazana	toc	16	10	20	89	278	500
Mhlabatshane	toc	47	16	50	25	240	1000
Intshambili	toc	33	12	80	90	210	600
Koshwana	toc	11	6	30	86	200	500
Damba	toc	25	11	60	95	300	500
Mhlangankulu	toc	9	6	20	92	180	800
Mpenjati	toc	100	18	230	65	480	1100
Kandanlovu	toc	9	8	30	80	290	600
Tongazi	toc	17	8	60	16	385	400
Ku-Boboyi	toc	3	4	10	83	107	500
Sandlundlu	toc	16	8	60	18	282	600
Mzimkulu	open	6745	329	13450	3	2440	5500
Kaba	toc	11	9	20	93	220	500
Mbizana	toc	145	26	260	68	480	1500
Bilanhlolo	toc	21	12	50	75	240	500
Uvuzana	toc	8	2	20	85	130	200
Kongweni	toc	20	6	50	60	180	800
Vungu	toc	124	24	230	9	610	200
Mtentweni	toc	50	50	120	70	340	2300
Mzumbe	toc	536	84	570	10	933	1000
Mvoti	river mouth	2829	197	3360	2	1479	1800
Matigulu	open	880	96	1340	5	762	7500
Mkomazi	open	4310	298	9540	1	2650	3000
Sipingo	modified open	51	27	50	99	328	1200
Mvutshini	toc	7	6	20	86	180	300
Mhlangamkulu	toc	11	7	30	97	185	900
Mbango	toc	13	8	30	95	139	600
Mhlangeni	toc	38	13	80	65	340	1000
Zotsha	toc	57	20	130	78	415	2500
Tugela	river mouth	129101	405	40460	0	3109	800
Mhlungwa	toc	32	18	4	93	222	1500
Mahlongwa Lagoon	toc	15	6	20	99	218	1300
Mdesingane	toc	6	5	1	65	76	500

Summary of TOC Estuaries in Natal, from the Estuaries of Natal Series by G. Begg

	Catchment Area	Piver Length	MAR (v 10 ⁸			Flow (m ³ /s)	_			Mor	phometry of La	goon		Sandbar
Estuary	(km²)	(km)	m ³)	Min.	Max.	Summer	Winter	Av.	Area (ha)	Axial length (km)	Shore length (km)	Flood Plain (m)	Width (m)	(m)
Siyai / Siyaya	18	8		-	-	•	-	-	8	2.5	5.2	60 to 100	45	
Zinkwasi	70 to 76	20 to 24	14.3		0.42				18.2 to 19.6	4.8	10.3	350	215	200
Nonoti	176 to 326	23 to 52	34.4 to 61.3	0.05	0.28			Other: 0.64	18	1.9	4.2	300	240	700
Mdlotane	33.6 to 52	10 to 16	9.86					less than 0.02, erratic	9.4	2.25	5	180	100	short
Seteni	16	5							1.13	0.35	1	50	70	
Mhlali	256, 295, 331	38 to 55	49.85 to 59.76				11	1.1 - erratic	21	1.25 to 2	6.4	400 to 500	180, 75 to 200	500
Tongati	370, 399, 413, 468	40 to 60	84.8 to 92.7			2.4	1.2	2.18	7.6	2	4.7	200	150	150
Mdloti	481,497,550,704	74 to 88	97, 105, 134	0.34	5			2 to 2.5 perrennial	13.6	1.5	6.5	600	380	600
Mhlanga	85, 124, 196	28	19.7 to 29.5	0.02	1.75			0.28	11.4	2.2, 0.5, 1.6	5.3	500, 350	90 to 100	500
Mgeni	4385, 4400, 4639, 5084, 5850	230 to 235	707	4.5	532 , 5700	18.4	6.5	12.5 to 13, 15.5	48	2.5	14.2	1000	30 to 40	
Mbokodweni	235, 241, 243, 256	47, 71	9.5	0 - abstracted	1416 (100yr flood)				7.24	0.65 to 0.7	2.6	560	70	400
Manzimtoti	28 to 33	10,11.3, 14	1 to 2	0.028	0.28				6.67	1.6 to 2	2.6	200	110	250
Little Manzimtoti	10 to 15	15		0.28	1.14		80% of flow sewage effluent		1.5	0.8	1.7	100	45	

	Catchment Area	Diver Length	MAD /v 40			Flow (m ³ /s)				Mor	phometry of Lag	joon		Sandbar
Estuary	(km ²)	(km)	mAR (X 10 m ³)	Min.	Max.	Summer	Winter	Av.	Area (ha)	Axial length (km)	Shore length (km)	Flood Plain (m)	Width (m)	(m)
Lovu	893, 916, 930, 945, 1036	135	98, 123, 125			7	5.5	6.2	10.5	1.1	3.8	800	230	250
Msimbazi	33.7, 34.2, 41.4	14.5, 18		0.08	0.85				13.2, 20	2.8	8.4	500 to 600	. 110	60
Umgababa	35 to 39	13 to 16	13.5			0.08	0		17.6	2.4	350		160 to 400	
Ngane	12.2 to 20.7	8						low	1.36	0.34	750	250	60	70
Mahlongwa	17	6						perrenial	6.84	1.3	3.1	200	150	
Mahlongwa Lagoon	.98 to 104	23	14.7			0.2	0.03		5.9	1.4	3.3	300	115	80
Mpambanyoni	517, 544, 564, 567	100	32.1, 36, 52.4					0.71	2.32	0.25	800	350	120	160
Mzimayi	31	20							0.9	0.25	570	130	30	
Mzinto	117, 142, 264	37	15.21, 35.23					0.37	7	1.42	3.8	300	250	
Mkumbane	22 to 34	13 to 15						0.085	0.25	0.1	200	150	20	250
Sezela	19 to 21	10 to 14						0.14	9	1.8	6.4	350	100	125
Mdesingane	6	5.25							0.39	0.5	1	100	25	50
Fafa	246, 251, 259	64, 68	25.6, 26.8, 40.	7		5.6	1.4	0.62 to 1.5	27.8, 32.4	2.85, 3	6.5	none	300	400

	Catabarat	D				Flow (m ³ /s)			[·	Mor	nhometry of La	2005		
Estuary	(km²)	(km)	MAR (x 10 ⁻ m ³)	Min.	Max.	Summer	Winter	Av.	Area (ha)	Axial length (km)	Shore length (km)	Flood Plain (m)	Width (m)	Sandbar (m)
Mvuzi	8	6.5							0.8	0.7	1.8	5 120	30)
Mtwalume	505, 569, 580	85	80 to 76					1.7	24.8	0.7 to 1.7	(500	400 to 600	1000
Mnamfu	15	9							1.26	0.5		1 120	60)
Kwa-Makosi	10 to 16	7 to 9	1.5						2.45	0.5	1.2	2 200	110)
Mafazazana	15	10.5							2.1	0.525	1.3	3 120	100	,
Mhlungwa	31	18						0.14	3.09	0.8	1.7	7 200	60	
Mhlabatshane	34 to 49	16						0.11	2.27	0.55	1.2	2 100	60	40
Intshambili	34	12 to 13						0.85	1.7	0.55	1.5	5 150	60	75
Koshwana	12	6.25							1.16	0.475	1.25	5 150	45	
Damba	26	11						0.11	1.7	0.5	1.18	200	65	250
Mhlangankulu	12	7							3.94	0.9	2	200	180	40
Mpenjati	78, 83, 101	18	15, 17.8					0.51	11.6	1.1	3.85	430	300	
Kandanhlovu	11	8							1.8	0.55	1.2	20	70	150
Tongazi	20	8.5							0.76	0.35	0.725	confined	40	75
Ku-Boboyi	4	4							1.1	0.525	1.2	60	45	50
Sandlundlu	19	7.5					ceases		4	0.6	1.2		230	
Zolwane	. 7	6.5						perrenial	0.5	0.21	0.475		40	40
Mtamvuna	1561, 1580, 1585, 1630	161, 163	243, 319					8.5	52.7	5 to 5.25	10.3	none	235	350 to 700

APPENDIX B: FRESHWATER REQUIREMENTS (JEZEWSKI, 1984)

	Total	Freshwater Require	ement	
	Total Freshwater Requirement - Quantity (10 ⁶ m ³ /a)	Total Freshwater Requirement - % of Virgin MAR	Remarks	
				Mpenjati
Kosi		n/a		Kandand
Mgobezeleni	0.200	n/a 63.4		Ku-Robo
Lake St Lucia	200.000	71		Sandlung
MIDIOZI	0.592	2		Zolwane
	0.002	70	Freshvaler requirements of	http://www.
Richard's Bay	48.717	7.6	sanctuary area only	Mamvun
Miałazi	4.2/2	3.5		Morgan
Siyal (Siyaya)	0.132	nva		Outo
Mauguiu	6.848	3.8		Haga-Ha
Tugela	305 200	66		Nyara
Zinkwasi	0.528	37		Kwenxur
Nonoti	1.671	3		Cefane
Mdiotane	0.239	2.4		Cintsa
Mvoti	24.968	5.2		Bulura
Seteni	0.037	n/a		Kwelera
Mhlali	1.759	2.8		Ggunube
Tongati	2.153	2.6		Qinira
Mdloti	5.210	5.1		Nahoon
Mhlanga	0.801	3.5		Buffalo
Mgeni	20.200	3		Gxulu
Durban Bay	n/a	n/a		Mcantsi
Mlazi	n/a	n/a		Great Fis
Sipingo	0.270	4.7		Oos-Klei
Mbokodweni	1.734	4.9		Wes-Kle
Manzimtoti	0.251	4		Kowie
Little Manzimtoti	0.085	4.7		Kasuka
Lovu (illovu)	7.808	6.5		Kariega
Msimbazi	0.224	4.6		Bushmar
u Mgababa	0.260	5.3		Boknes
Ngane	0.092	4.2		Sundays
Mkomazi	46.571	4.5		Koega
Mahiongwana	0.097	nva da		Swantkop
Maniongwa	0.877	4.8		Van Stad
Mpanbanyoni	0.087	1.2		Gamioos
Mizintes	0.231	0.2	<u> </u>	Sockooi
Mambana	0.732	4.8		Krom
Sezele	0.105	4.0		Groot A
Mdesingane	0.039	5.6		Keutoo
Fafa	1 836	6.0		Piesano
Myuzi	0.046	n/a		Noetsie
Mtwalume	4,969	7		Kovsa
Mnamfu	0.078	3.7		Goukam
Kwa-Makosi	0.062	4.1		Swartvle
Mfazazana	0.081	3.9		Touws
Mhlungwa	0.194	4.4		Kaaiman
Mzimayi (South)	0.216	3.7		Maalgate
Mzumbe	5.539	8.1		Great Br
i Ntshambili	0.171	4.3		Little Bra
Koshwana	0.054	3.9		Hartenbo
Damba	0.150	5		Gourits
Mhlangamkulu	0.070	5		Kafferkui
Mtentweni	0.259	4.2		Druiwent
Mzimkułu	64.321	4.4		Bree (Br
Mbango	0.077	2.3		Heuning
Boboyi	0.162	1.9	<u> </u>	Ratel
Zotsha	0.331	2.2		Uiikraals
Minlangeni	0.172	1.9		Kilein
Vungu Kooguori	0.480	1.7		Onrus
Nongweni Uburzenz	0.000	1.1		Bot
Bilanblolc	0.021	1.1		Palmiet
Mystsbioi	0.102	22		Books In
Mbizane	0.000	21		Lourses
Kaba	0.056	23		Econto
Umblangankulu	0.065	2.3		Cersie

1	Total Emphysics Paguirement				
		Fiestiwater require			
	Total Freshwater	Total Freshwater			
	Requirement -	Requirement - % of	Remarks		
	Quantity (10 ⁶ m ³ /a)	Virgin MAR			
Mooniati	0.342	17			
Kandandhlouru	0.042	13			
Topoazi	0.045	11			
Ku-Bobovi	0.021	1.6			
Sandlundlu	0.021	11			
Zolwane	0.000	2.5			
20(#0110	0.002	2.0			
Mtamvuna	18.250	6	international river		
Great Kei	76.074	(.1	international river		
Morgan	0.345	5.8			
Quko	2.335	6.3			
нада-нада	0.1/4	4.5			
Nyara	0.462	<u> </u>			
Kwenxura	1.495	8.7			
Cetane	0.776	17.2			
Cintsa	0.501	9.8			
Bulura	1.496	40.4			
Kwelera	3.011	7.9			
Gqunube (Gonubi)	3.814	8.1			
	0.981	10.9			
Ivanoon	7.242	8			
Cratu	1.342	8			
GXUIU	1.200	11.0			
Mcantsi Grad Fieb	0.224	7.9			
Great Fish	30.492	7.3	international ther		
Wee Kleinemonde	0.447	21.5			
Vves-ruememonde	0.957	24.5			
Kouka	1.025	30			
Kadega	2.015	19.2			
Ruebmane	2.915	10.2			
Bushinans	4.091	0.3			
Sundave	17 288	8.5			
Koega	0.883	12.6			
Swattone	17,403	22.0			
Van Stadens	0.817	44			
Gamtoos	36,800	7.4			
Kabellous	1 925	11.8			
Seekoei	1,992	12.7			
Krom	10.982	89			
Groot (West)	1.288	28			
Keurbooms	12 547	71			
Piesang	0.209	9.1			
Noetsie	0.251	5.2			
Knysa	16.117	12.1			
Goukamma	2.127	4	İ		
Swartvlei	11.859	12.4			
Touws	1.740	4.5			
Kaaimans	0.740	2.1			
Maalgate	0.999	3.7			
Great Brak	1.596	4.1			
Little Brak	5.247	8.9			
Hartenbos	0.581	11.6			
Gourits	39.525	7.3			
Kafferkuils	9.932	9.4			
Druiwenhoks	7.226	8			
Bree (Breede)	131.458	7.5			
Heuningnes	3.752	9.9			
Ratel	0.576	8.2			
Uilkraals	3.500	19.4			
Klein	13.700	36.1			
Onrus	0.420	8.4			
Bot	15.240	32.4			
Palmiet	2.950	1.5			
Buffels (East)	0.260	1.2			
Rooiels	0.196	2.2			
Lourens	1.169	1			
Lerste	10.529	5.4			
Sand	1.465	6.1			

	Total Freshwater Requirement				
	Total Freshwater Requirement - Quantity (10 ⁶ m ³ /a)	Total Freshwater Requirement - % of Virgin MAR	Remarks		
Silvermine	0.119	2.4			
Else	0.133	4.4			
Houtbaai	0.223	1			
Diep/Rietvlei	9.524	11.8			
Great Berg	43.547	8.9			
Verlore	19.990	51.3			
Olifants	75.548	7.4			
Groen	0.433	1.3			
Speeg	0.860	28.7			
Orange	534.060	4.5			
Ncera	0.785	10.3			
Tyolomnqa	3.946	12.3			
Keiskamma	14.932	8.7			
Gqutywa	0.789	13.2			
Bira	1.920	14.8			
Mgwalana	1.596	13.3			
Mbashe	89.700	10			
Mtata	45.200	10	—		
Mzimvubu	296.800	10			
Mzimkulu	-				
Mtentu	104.000	10			
Mngazi	42.000	10			
Xona	24.900	10			
Qora	54.300	10			

APPENDIX C: FLOW DATA

Summary of flow data at Mhlanga Estuary

Data	Measured Flow			Mhlanga WWTW	Total Streamflow	
Date	(m ³ /s)	Method	Comment	discharge (m³/s)	(m³/s)	Mouth State
19-Apr	0.86	Float	Incl. WWTWs		0.86	Open 2 days
22-Jun	1.08	Float	Incl. WWTWs		1.08	Closed 2 days
14-Jul	0.27	Float	Incl. WWTWs		0.27	Open 27 days
16-Aug	2.03	Float	Incl. WWTWs		2.03	Partly open 2 days
_13-Sep	1.09	Float	Incl. WWTWs		1.09	Closed 3 days
13-Nov	0.34	Float	Inci. WWTWs		0.34	Partly open 3 days
10-Dec	0.68	Float	Incl. WWTWs		0.68	Open 4 days
23-Jan	8.35	Float	Incl. WWTWs		8.35	Open 7 days
19-Feb	0.40	Float	Incl. WWTWs		0.40	Closed 2 days
21-Mar	0.86	Float	Incl. WWTWs		0.86	Closed 21 days
_25-Mar	0.30	Swoffer	excl. Mhlanga WWTW	0.067	0.37	Open 4 days
7-May	0.19	Swoffer	excl. Mhlanga WWTW	0.065	0.25	Closed 40 days
23-May	0.25	Swoffer	exci. Mhlanga WWTW	0.075	0.33	Closed 56 days
30-May	0.17	Swoffer	excl. Mhlanga WWTW	0.068	0.24	Closed 2 days
14-Jun	0.22	Swoffer	excl. Mhlanga WWTW	0.058	0.28	Closed 17 days
19-Jun	0.21	Swoffer	excl. Mhlanga WWTW	0.067	0.28	Closed 22 days
25-Jun	0.31	Swoffer	excl. Mhlanga WWTW	0.072	0.38	Closed 28 days
26-Jun	0.39	Swoffer	excl. Mhlanga WWTW	0.065	0.45	Open 1 day
27-Jun	0.26	Swoffer	excl. Mhlanga WWTW	0.072	0.33	Open 2 days
28-Jun	0.35	Swoffer	excl. Mhlanga WWTW	0.068	0.42	Open 3 days
29-Jun	0.34	Swoffer	excl. Mhlanga WWTW	0.056	0.40	Open 4 days
30-Jun	0.24	Swoffer	excl. Mhlanga WWTW	0.071	0.31	Partly open 1 day
1-Jul	0.25	Swoffer	excl. Mhlanga WWTW	0.081	0.33	Closed 1 day
2-Jul	0.25	Swoffer	excl. Mhlanga WWTW	0.081	0.33	Closed 2 days
3-Jui	0.24	Swoffer	excl. Mhlanga WWTW	0.081	0.32	Closed 3 days
4-Jul	0.24	Swoffer	excl. Mhlanga WWTW	0.081	0.32	Closed 4 days
5-Jul	0.23	Swoffer	excl. Mhlanga WWTW	0.081	0.31	Closed 5 days
6-Jul	0.20	Swoffer	excl. Mhlanga WWTW	0.081	0.28	Closed 6 days
7-Jul	0.22	Swoffer	excl. Mhlanga WWTW	0.081	0.30	Closed 7 days
8-Jul	0.23	Swoffer	excl. Mhlanga WWTW	0.081	0.31	Closed 8 days

	Measured Flow	1		Mdloti WWTW		
Date	(m³/s)	Method	Comment	discharge (m ³ /s)	Total Streamflow (m ³ /s)	Mouth State
18-Apr-02	1.68	Float	incl. WWTWs		1.68	Open 1 day
22-Jun-02	0.66	Float	excl. Mdloti WWTW	0.010	0.67	Closed 21 days
14-Jul-02	0.39	Float	excl. Mdloti WWTW	0.012	0.40	Closed 43 days
16-Aug-02	4.77	Float	excl. Mdloti WWTW	0.007	4.78	Open 1 day
12-Sep-02	2.54	Float	excl. Mdloti WWTW	0.010	2.55	Partly open 1 day
12-Oct-02	3.06	Float	excl. Mdloti WWTW	0.011	3.07	Closed 6 days
12-Nov-02	1.14	Float	excl. Mdloti WWTW	0.011	1.15	Closed 12 days
09-Dec-02	1.53	Float	excl. Mdloti WWTW	0.012	1.54	Closed *
22-Jan-03	2.64	Float	excl. Mdloti WWTW	0.013	2.65	Closed 8 days
19-Feb-03	0.20	Float	excl. Mdloti WWTW	0.011	0.21	Closed 11 days
19-Jun-03	0.29	Swoffer	excl. Mdloti WWTW	0.010	0.30	Closed 131 days
25-Jun-03	0.26	Swoffer	excl. Mdloti WWTW	0.011	0.27	Closed 137 days
26-Jun-03	0.39	Swoffer	excl. Mdloti WWTW	0.014	0.40	Closed 138 days
27-Jun-03	0.23	Swoffer	excl. Mdloti WWTW	0.014	0.24	Closed 139 days
28-Jun-03	0.31	Swoffer	excl. Mdloti WWTW	0.013	0.32	Closed 140 days
29-Jun-03	0.55	Swoffer	excl. Mdloti WWTW	0.013	0.56	Closed 141 days
30-Jun-03	0.40	Swoffer	excl. Mdloti WWTW	0.013	0.41	Closed 142 days
01-Jul-03	0.25	Swoffer	excl. Mdloti WWTW	0.012	0.26	Closed 143 days
02-Jul-03	0.28	Swoffer	excl. Mdloti WWTW	0.012	0.29	Closed 144 days
03-Jul-03	0.25	Swoffer	excl. Mdloti WWTW	0.012	0.26	Closed 145 days
04-Jul-03	0.29	Swoffer	excl. Mdloti WWTW	0.012	0.30	Closed 146 days
05-Jul-03	0.24	Swoffer	excl. Mdloti WWTW	0.012	0.25	Closed 147 days
06-Jul-03	0.47	Swoffer	excl. Mdloti WWTW	0.012	0.48	Closed 148 days
07-Jul-03	0.42	Swoffer	excl. Mdloti WWTW	0.012	0.43	Closed 149 days
08-Jul-03	0.33	Swoffer	excl. Mdloti WWTW	0.012	0.34	Closed 150 days

Summary of flow data at Mdloti Estuary

Figure showing the location of flow readings taken at Mdloti Estuary.

Figure showing the location of flow readings taken at Mhlanga Estuary.

Date: Weather: Estuary State: Station Reference:

19-Apr-02 Sunny, very windy Open G

Midth (m)	Depth (m)	Floats, Time in seconds Electronic Meter (Hz)				Commont				
width (m)	Deput (m)	Big	Medium	Small	Surface	100mm	200mm	300mm	400mm	Comment
0	0.07	-	-	-	-	-	-	-	-	
1	0.15	-	-	-	-	-	-	-	-	1
2	0.18	-	-	-	-	1	-	-	-	1
3	0.25	-	-	-	-	3	-	-	-	-shallow
4	0.33	-	-	-	-	4	6	-	-	1
5	0.385	-	-	-	-	18	13	9	-]
6	0.37	169	139	120	*	5	6	8	-	1
7	0.39	**	**	**	**	17	17	15	-	thuind.
8	0.415	**	**	**	**	21	19	22		wina
9	0.415	87	107	123	121	24	23	23	-	
10	0.425	80	76	97	117	28	28	20	-	
11	0.49	67	68	69	71	25	23	23	21	
12	0.54	63	61	59	59	32	28	24	22	
13	0.6	69	83	70	63	31	28	26	21	
14	0.74	60	65	61	61	34	30	26	25	
15	0.89	*	*	*	*	34	33	28	29	*reede
16	1.07	*	*	*	*	21	15	15	22	reeas

Area =	7.2565	m² –
Av. Vel =	0.1182	m/s
Flow =	0.8574	m³/s

Date:22-Jun-02Weather:Sunny, clear, breezeEstuary State:Closed, fairly fullTidal Situation:E

Width (m)	Depth (m)	Time in s	Comment		
vvidin (m)	Depth (III)	0.2	0.44	Surface	Comment
0	1.1	-	-	-	Reeds
1	1.03	-	-	-	Reeds
2	1.03	90	80	*	* wind
3	1.04		87		
4	1.04	135	90	95	
5	1.03				
6	0.95	80	95	120	
7	1.1				
8	1.055	*	*	*	Roads
9	1.07	*	*	*	interferred
10	0.97	*	*	*	
11	0	-	-	-	Bank

Area =	10.46375	m²
Av. Vel =	0.103211	m/s
Flow =	1.079974	m³/s

Data Collected:

Date:14-Jul-02Weather:Sunny, clear, slight cross windEstuary State:OpenStation Reference:F

Midth (m)	Depth (m)	Time in seconds at depth (m):			Comment	
width (m)	Depth (m)	0.2	0.07	Surface	Vel. (m/s)	Comment
0	0				0	Bank
1	0.41				0	Cross flow &
2	0.37			214	0.046729	reed
3	0.36			213	0.046948	interference
4	0.35	141	130	120	0.076726	
5	0.37	135	95	87	0.094637	
6	0.4	97	86	110	0.102389	
7	0.38	90	84	80	0.11811	
8	0.34	85	95	92	0.110294	
9	0.3	90	84	99	0.10989	
10	0.26	101	93	82	0.108696	
11	0.21		100	91	0.104712	
12	0.18		132	125	0.077821	
13	0.09		180	134	0.063694	
14	0.04				0	Elow minimal
15	0.04				0	virtually 0
16	0				0	

Area =	3.858824	m²
Av. Vel =	0.07071	m/s
Flow =	0.272857	m³/s

Mhlanga Estuary

Date:	16-Aug-02
Weather:	Overcast, preceding days were cold and rainy
Estuary State:	Partly open
Tidal Situation:	between low and high (The Kingfisher, Tide Timetable 2002)
Station Reference:	D

Width (m)	Depth (m)	Time in seconds at depth (m):				Commont
widur (m)	Deptil (m)	0.4	0.2	Surface	Vel. (m/s)	Comment
0	0	-	-	-	-	Bank
1	0.8	30.94			0.323206	
2	0.7			22	0.454545	_
3	0.8	24			0.416667	
4	0.8			24	0.416667	
5	0.7		25.13		0.397931	
6	0.7			29.58	0.338066	
7	0.5	62*			0.16129	*Stuck a little
8	0	-	-	-	-	Bank

Area =	5.2	, m²
Av. Vel =	0.39118	m/s
Flow =	2.034138	m³/s

-

Date:	13-Sep-02
Weather:	Cloudy, light rain
Estuary State:	Closed
Station Reference:	В

\\/idth /m\	Depth (m)	$\Lambda roo (m^2)$	Time in s	econds at d	lepth (m):		Commont	
	Debru (III)	Area (m)	0.4	0.8	Surface	Vel. (m/s)	Comment	
0.35	0.30	0					Bank	Surface velocities
1	0.70	0.325						noticeably higher
2	1.00	0.85						Distance = 16.9m
3	1.00	1						
4	1.10	1.05						
5	1.05	1.075	180			0.093889		
6	1.10	1.075						
7	1.10	1.1						
8	1.10	1.1						
9	1.10	1.1	151			0.111921		
10	1.00	1.05						
11	0.70	0.85						

Area =	10.575	m ²
Av. Vel =	0.102905	m/s
Flow =	1.088217	m³/s

Date:

Weather: Estuary State: Tidal Situation: Station Reference: 13-Nov-02 Sunny, calm (expecting SW buster later) Med High - mouth partially open - perched channel about 8m wide and 200mm deep Mid-tide - coming in I think C

Width (m)	Depth (m)	Time in s	seconds at o	depth (m):		Area	Vel*Area	Comment			
widen (m)	Deptir (iii)	0.3	0.5	Surface	vei. (11/3)	(m^2)	(m^3/s)	Comment			
0	0.00				0.000	0.00	0.000	Bank	Surface velocities		
1	0.35	53			0.094	0.18	0.017		noticeably higher		
2	0.80	61			0.082	0.58	0.047		Distance =	5	m
3	0.68	56			0.089	0.74	0.066				
4	0.56	57			0.088	0.62	0.054				
5	0.53	57		53	0.088	0.55	0.048				
6	0.56	50		_	0.100	0.55	0.055				
7	0.57	50			0.100	0.57	0.057				
8	0.57				0.000	0.57	0.000	reeds			
9	0.55				0.000	0.56	0.000	reeds	No flow in reeds of	ut to 2.	.5
10	0.00				0.000	0.28	0.000	Bank			
					Sums =	5.17	0.34		-		

Area =	5.17	m ²
Av. Vel =	0.058276	m/s
Flow =	0.301285	m³/s

Date: Weather:

Estuary State: Station Reference:

10-Dec-02 Dull, overcast, no wind Closed : B

LB

RB

Data Collected:

Times for 10m

		Timing d	istance =	10	m	Vel interpo	lated betv	veen measurem	ents (zero i	n reeds)
	Denth (m)	Tim	ne in second	ds at depth	(m):	Velocity	Area	Velocity*Area	Comment]
wiath (m)		0.4D	0.6D	0.8D	Surface	(m/s)	(m2)	(m3/s)	Comment	
0	0.10					0.000	0.050	0.000	Reeds	1
1	0.39					0.000	0.390	0.000	Reeds	Times for 10m
2	0.42					0.100	0.420	0.042		1
3	0.38					0.120	0.380	0.046]
4	0.40					0.143	0.400	0.057]
5	0.47					0.143	0.470	0.067		
6	0.52	56	70			0.143	0.520	0.074]
7	0.51					0.138	0.510	0.070]
8	0.53					0.136	0.530	0.072]
9	0.56					0.134	0.560	0.075]
10	0.55		76			0.132	0.550	0.072]
11	0.50	90				0.111	0.500	0.056]
12	0.44					0.111	0.440	0.049]
13	0.16					0.000	0.160	0.000]
						Sum =	5.880	0.681		-

Note: There was a subsurface cross current towards left bank (due to river bend?)

Area =	5.960	m²
Av. Vel. =	0.101	m/s
Flow =	0.601	m³/s

Date:

23-

Weather: Estuary State:

Station Reference:

23-Jan-03 P/cloudy, warm - becoming sunny, Wind S

P/cloudy, warm - becoming sunny. Wind SW med-strong. Severe thunderstorms last night. N2 bridge causeway flooded, strong flow estimated 8m^3/s Open (centrally) with outflow. Water levels med-low (to top of pile-caps re pics) G

Data Collected:

Times for 10m

			Timing d	istance =	10	m	Vel interpo	lated betv	veen measurem	ents (zero i	in reeds)
	Width (m)	Depth (m)	Tim	ne in second	is at depth	(m):	Velocity	Area	Velocity*Area	Comment	
	Midar (iii)	Deptil (III)	0.4D	0.6D	0.8D	Surface	(m/s)	(m2)	(m3/s)	Comment	
.B	0	0.00					0.00	0.00	0.00	Reeds	Actual steep sandy bank
	1	0.40					0.15	0.20	0.03		
	2	0.34					0.30	0.37	0.11]
	3	0.34		23			0.43	0.34	0.15]
	4	0.33					0.47	0.34	0.16		l
	5	0.33					0.50	0.33	0.17		Area = 13.9400 m ²
	6	0.34		_			0.53	0.34	0.18		Av. Vel. = 0.5451 m/s
	7	0.36		17	19		0.59	0.35	0.21		Flow = 7,5987 m ³ /s
	8	0.37					0.60	0.37	0.22		
	9	0.52					0.61	0.45	0.27		1
	10	0.52		16			0.63	0.52	0.33		1
	11	0.53					0.63	0.53	0.33		1
	12	0.55					0.63	0.54	0.34		1
	13	0.58					0.63	0.57	0.35		1
	14	0.62		16			0.63	0.60	0.38		1
	15	0.65					0.63	0.64	0.40		1
	16	0.65					0,66	0.65	0.43		1
	17	0.63					0.69	0.64	0.44]
	18	0.60	_				0.72	0.62	0.44		1
	19	0.60					0.75	0.60	0.45		1
	20	0.57					0.78	0.59	0.46		1
	21	0.55		12.5			0.80	0.56	0.45		1
	22	0.52					0.78	0.54	0.42		1
	23	0.50					0.73	0.51	0.37		
	24	0.50					0.68	0.50	0.34		
	25	0.52		16			0.63	0.51	0.32		
	26	0.53					0.60	0.53	0.32]
	27	0.54					0.40	0.54	0.21]
	28	0.45					0.20	0.50	0.10]
в	28.8	0.00					0.00	0.18	0.00	Reeds	Clear, steep sandy bank
							Sum =	13.90	8.35		-

Note: This is a relatively straight section of river, with relatively uniform depth - expect good accuracy

Date:	19-Feb-03
Weather:	Sunny, windy
Estuary State:	Closed
Station Reference:	В

			Timing d	istance =	10	m	Vel interpo	lated betwe	en measur	ements (zero i	n reeds)
Data Collected:	Midth (m)	Depth (m)	Tim	e in second	ls at depth ((m):	Velocity	Area (m2)	Velocity*	Comment	
		Depth (m)	0.4D	0.6D	0.8D	Surface	(m/s)		Area		
Times for 10m	0	1.80					0.00	0.90	0.00	Reeds	
	1	1.32					0.02	1.56	0.03		
	2	1.60		269			0.04	1.46	0.05		
	3	1.52					0.06	1.56	0.09		
	4	1.55					0.07	1.54	0.10		
	5	1.42		120			0.08	1.49	0.12		
	6	1.49					0.04	1.46	0.06		
	7	1.46					0.00	1.48	0.00	Reeds	
	8	1.48					0.00	1.47	0.00	Reeds	
							Sum =	12.90	0.45		-

Area =	12.0000	m ²
Av. Vel. =	0.0334	m/s
Flow =	0.4007	m³/s

Date:	
Weather:	
Estuary State:	
Station Reference:	

21-Mar-03

Sunny Open H

Section	Date	Time	Distance	Depth	Velocity	Unit		area	v.a
2	21-Mar-03	13:41	0	0	0	m	Bank	0	0
2	21-Mar-03	13:46	1	0.505	0.125	m		0.505	0.063
2	21-Mar-03	13:48	2	0.65	0.128	m		0.650	0.083
2	21-Mar-03	13:50	3	0.68	0.116	n		0.680	0.079
2	21-Mar-03	13:52	4	0.75	0.102	m		0.750	0.077
2	21-Mar-03	13:53	5	0.72	0.1	в		0.720	0.072
2	21-Mar-03	13:57	6	0.65	0.112	m		0.650	0.073
2	21-Mar-03	13:59	7	0.64	0.109	m		0.640	0.070
2	21-Mar-03	14:00	8	0.55	0.103	m		0.550	0.057
2	21-Mar-03	14:02	9	0.49	0.12	m		0.490	0.059
2	21-Mar-03	14:03	10	0.38	0.135	m		0.380	0.051
2	21-Mar-03	14:05	11	0.32	0.132	m		0.320	0.042
2	21-Mar-03	14:07	12	0.6	0.1	m		0.600	0.060
2	21-Mar-03	14:09	13	0.39	0.072	m		0.390	0.028
2	21-Mar-03	14:10	14	0.4	0.071	m		0.400	0.028
2	21-Mar-03	14:11	15	0.35	0.038	m		0.350	0.013
2	21-Mar-03	14:12	16	0.21	0.012	m		0.315	0.004
2	21-Mar-03	14:13	18	0	0	m	Sand	0	0
							Sum:	8.39	0.859

Discharge (Swoffer) 0.85

Discharge (Calculated)

0.859

Date: Weather: Estuary State: Station Reference: 25-Mar-03

Sunny

Closed A

Section	Date	Time	Distance	Depth	Velocity	Unit		area	v.a
3	25-Mar-03	11:03	0	0	0	m	Gabion	0	0
3	25-Mar-03	11:19	1	0.22	0.439	m		0.220	0.097
3	25-Mar-03	11:12	2	0.25	0.413	m		0.250	0.103
3	25-Mar-03	11:13	3	0.15	0.412	m		0.150	0.062
3	25-Mar-03	11:15	4	0.12	0.274	m		0.120	0.033
3	25-Mar-03	11:16	5	0.05	0.17	m		0.050	0.009
3	25-Mar-03	11:17	6	0.015	0	m		0.015	0.000
3	25-Mar-03	11:17	7	0	0	m	Sand	0	0
								0.805	0.303

Discharge (Swoffer) 0.3

Discharge (Calculated) 0.303

Location:

Mouth State: Closed

Α

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
4	7-MAY-03	12:47	0	1.25	0	m	Gabion	0.625	0
4	7-MAY-03	12:49	0.5	0.2	0.121	m		0.1	0.0121
4	7-MAY-03	12:51	1	0.24	0.241	m		0.18	0.04338
4	7-MAY-03	12:52	2	0.2	0.418	m		0.2	0.0836
4	7-MAY-03	12:54	3	0.14	0.314	m		0.14	0.04396
4	7-MAY-03	12:56	4	0.06	0.112	m		0.06	0.00672
4	7-MAY-03	12:56	5	0.04	0	m		0.04	0
4	7-MAY-03	12:57	6	0	0	m	Sand	0	0
								1.345	0.18976

Discharge (Swoffer) 0.18

Discharge (Calculated) 0.190

A Open

Location:

Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
5	23-May-03	12:03	0	0	0	m	Gabion	0	0
5	23-May-03	11:54	0.5	0.19	0.136	m		0.095	0.01292
5	23-May-03	11:57	1	0.26	0.311	m		0.195	0.060645
5	23-May-03	11:59	2	0.21	0.444	m		0.1575	0.06993
5	23-May-03	12:05	2.5	0.19	0.388	m		0.095	0.03686
5	23-May-03	12:00	3	0.16	0.314	m		0.12	0.03768
5	23-May-03	12:01	4	0.14	0.166	m		0.14	0.02324
5	23-May-03	12:03	5	0.07	0.087			0.105	0.009135
5	23-May-03	12:03	7	0	0	m	Sand	0	0
							10 - AL	0.908	0.250

Discharge (Swoffer) 0.25

Discharge (Calculated) 0.250

Location:

Mouth State:

Closed

А

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
6	30-May-03	10:43	0	0	0	m	Gabion	0	0
6	30-May-03	10:45	0.5	0.19	0	m		0.095	0
6	30-May-03	10:46	1	0.22	0.291	m		0.11	0.03201
6	30-May-03	10:47	1.5	0.18	0.341	m		0.09	0.03069
6	30-May-03	10:48	2	0.17	0.411	m		0.085	0.034935
6	30-May-03	10:49	2.5	0.15	0.36	m		0.075	0.027
6	30-May-03	10:51	3	0.15	0.312	m		0.1125	0.0351
6	30-May-03	10:52	4	0.09	0.096	m		0.09	0.00864
6	30-May-03	10:53	5	0.05	0	m		0.0375	0
6	30-May-03	10:53	5.5	0	0	m	Sand	0	0
								0.695	0.168

Discharge (Swoffer) 0.16

Discharge (Calculated) 0.168

Location: Mouth State: A Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
7	14-Jun-03	9:25	0	0.1	0	m		0.05	0
7	14-Jun-03	9:27	1	0.27	0.295	m		0.2025	0.059738
7	14-Jun-03	9:28	1.5	0.24	0.307	m		0.12	0.03684
7	14-Jun-03	9:30	2	0.19	0.367	m		0.095	0.034865
7	14-Jun-03	9:32	2.5	0.18	0.401	m		0.09	0.03609
7	14-Jun-03	9:33	3	0.17	0.307	m		0.085	0.026095
7	14-Jun-03	9:34	3.5	0.15	0.223	m		0.075	0.016725
7	14-Jun-03	9:36	4	0.12	0.107	m		0.09	0.00963
7	14-Jun-03	9:37	5	0.08	0	m		0.08	0
7	14-Jun-03	9:37	6	0.04	0	m		0.04	0
7	14-Jun-03	9:37	7	0	0	m		0	0
								0.928	0.220

Discharge (Swoffer) 0.22

Discharge (Calculated) 0.220
Location:

А

Closed

Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
9	19-Jun-03	12:57	0	0	0	m		Ģ	0
9	19-Jun-03	12:59	0.5	0.25	0.018	m		0.100	0.002
9	19-Jun-03	13:00	0.8	0.26	0.156	m		0.130	0.020
9	19-Jun-03	13:01	1.5	0.26	0.34	m		0.156	0.053
9	19-Jun-03	13:02	2	0.24	0.406	m		0.120	0.049
9	19-Jun-03	13:03	2.5	0.22	0.381	m		0.110	0.042
9	19-Jun-03	13:04	3	0.19	0.323	m		0.143	0.046
9	19-Jun-03	13:04	4	0.15	0	m		0.3	0
9	19-Jun-03	13:05	7	0	0	m		0	0
								1.059	0.212

Discharge (Swoffer) 0.21

Location: A Mouth State: Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
10	25-Jun-03	8:28	0	0.15	0	m		0.038	0
10	25-Jun-03	8:30	0.5	0.22	0.172	m		0.110	0.019
10	25-Jun-03	8:32	1	0.31	0.303	m		0.155	0.047
10	25-Jun-03	8:33	1.5	0.26	0.368	m		0.130	0.048
10	25-Jun-03	8:35	2	0.25	0.475	m		0.125	0.059
10	25-Jun-03	8:36	2.5	0.24	0.440	m		0.120	0.053
10	25-Jun-03	8:37	3	0.21	0.369	m		0.105	0.039
10	25-Jun-03	8:38	3.5	0.22	0.260	m		0.110	0.029
10	25-Jun-03	8:40	4	0.18	0.120	m		0.135	0.016
10	25-Jun-03	8:40	5	0.15	0	m		0.225	0
10	25-Jun-03	8:40	7	0	0	m		0	0
								1.253	0.309

Discharge (Swoffer) 0.3

Location:

A Open Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
12	26-Jun-03	8:33	0	Q	0	m		0	0
12	26-Jun-03	8:34	0.5	0.25	0.186	m		0.125	0.023
12	26-Jun-03	8:35	1	0.28	0.422	m		0.140	0.059
12	26-Jun-03	8:36	1.5	0.27	0.458	m		0.133	0.061
12	26-Jun-03	8:38	2	0.25	0.538	m		0.125	0.067
12	26-Jun-03	8:39	2.5	0.24	0.410	m		0.120	0.049
12	26-Jun-03	8:39	3	0.21	0.401	m		0.105	0.042
12	26-Jun-03	8:40	3.5	0.25	0.340	m		0.125	0.043
12	26-Jun-03	8:41	4	0.22	0.211	m		0.110	0.023
12	26-Jun-03	8:42	4.5	0.19	0.099	m		0.095	0.009
12	26-Jun-03	8:43	5	0.17	0.073	m		0.128	0.009
12	26-Jun-03	8:43	6	0.11	0	m		0.138	0
12	26-Jun-03	8:44	7.5	0	0	m		0	0
								1.205	0.386

Discharge (Swoffer) 0.38

Α Open

Location:

Mouth State:

Section Depth Date Time Distance 0.50 0 0 11 27 Jun 03

14	27-Jun-03	9:50	0	0.11	0	m	0.028	0
14	27-Jun-03	9:51	0.5	0.24	0.083	m	0.120	0.010
14	27-Jun-03	9:52	1	0.26	0.382	m	0.130	0.050
14	27-Jun-03	9:53	1.5	0.24	0.441	m	0.120	0.053
14	27-Jun-03	9:54	2	0.2	0.435		0.100	0.044
14	27-Jun-03	9:55	2.5	0.17	0.412	m	0.085	0.035
14	27-Jun-03	9:56	3	0.16	0.314	m	0.080	0.025
14	27-Jun-03	9:57	3.5	0.14	0.262	m	0.070	0.018
14	27-Jun-03	9:58	4	0.15	0.146	m	0.113	0.016
14	27-Jun-03	9:59	5	0.1	0	m	0.100	0
14	27-Jun-03	9:59	6	0.05	0	m	0.050	0
14	27-Jun-03	9:59	7	0	0	m	0	0
		• • • • • • • • • • • • • • • • • • •					0.995	0.251

Velocity

0.25

Unit

Comment

area

v.a

Discharge (Swoffer)

Location: A Mouth State: Open

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
16	28-Jun-03	10:45	0	0.16	0	m		0.04	0
16	28-Jun-03	10:47	0.5	0.27	0.101	m		0.135	0.014
16	28-Jun-03	10:48	1	0.3	0.444	m		0.150	0.067
16	28-Jun-03	10:51	1.5	0.32	0.419	m		0.160	0.067
16	28-Jun-03	10:52	2	0.3	0.477	m		0.150	0.072
16	28-Jun-03	10:53	2.5	0.24	0.441	m		0.120	0.053
16	28-Jun-03	10:54	3	0.2	0.371	m		0.100	0.0 <u>37</u>
16	28-Jun-03	10:55	3.5	0.17	0.257	m		0.085	0.022
16	28-Jun-03	10:56	4	0.19	0.114	m		0.143	0.016
16	28-Jun-03	10:56	5	0.15	0	m		0.225	0
16	28-Jun-03	10:56	7	0	0	m		0	0
								1.308	0.347

Discharge (Swoffer) 0.34

A Open Location: Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
18	29-Jun-03	8:20	0	0.19	0	m		0.048	0
18	29-Jun-03	8:21	0.5	0.24	0.187	m		0.120	0.022
18	29-Jun-03	8:23	1	0.28	0.355	m		0.140	0.050
18	29-Jun-03	8:23	1.5	0.28	0.370	m		0.140	0.052
18	29-Jun-03	8:25	2	0.27	0.388	m		0.135	0.052
18	29-Jun-03	8:25	2.5	0.225	0.457	m		0.113	0.051
18	29-Jun-03	8:26	3	0.18	0.379	m		0.090	0.034
18	29-Jun-03	8:27	3.5	0.155	0.329	m		0.078	0.025
18	29-Jun-03	8:28	4	0.16	0.272	m		0.120	0.033
18	29-Jun-03	8:29	5	0.15	0.088	m		0.225	0.020
18	29-Jun-03	8:29	7	0	0	m		0	0
								1.208	0.340

Discharge (Swoffer)

0.33

Location:AMouth State:Partly open

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
21	30-Jun-03	9:51	0	0.15	0	m	Gabion	0.038	0
21	30-Jun-03	9:52	0.5	0.2	0.126	m		0.100	0.013
21	30-Jun-03	9:53	1	0.24	0.319	m		0.120	0.038
21	30-Jun-03	9:54	1.5	0.255	0.378	m		0.128	0.048
21	30-Jun-03	9:55	2	0.23	0.404	m		0.115	0.046
21	30-Jun-03	9:56	2.5	0.18	0.351	m		0.090	0.032
21	30-Jun-03	9:56	3	0.16	0.288	m		0.080	0.023
21	30-Jun-03	9:57	3.5	0.13	0.214	m		0.065	0.014
21	30-Jun-03	9:58	4	0.15	0.163	m		0.113	0.018
21	30-Jun-03	9:59	5	0.1	0.061	m		0.150	0.009
21	30-Jun-03	9:59	7	0	0	m	Sand	0	0
								0.998	0.241563

Discharge (Swoffer)

0.24

Discharge (Calculated)

0.242

Location:

Mouth State:

A Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
23	1-JUL-03	9:58	0	0.095	0	m		0.024	0.000
23	1-JUL-03	9:59	0.5	0.195	0.11	m		0.098	0.011
23	1-JUL-03	10:00	1	0.25	0.336	m		0.125	0.042
23	1-JUL-03	10:01	1.5	0.25	0.359	m		0.125	0.045
23	1-JUL-03	10:02	2	0.255	0.438	m		0.128	0.056
23	1-JUL-03	10:03	2.5	0.2	0.349	m		0.100	0.035
23	1-JUL-03	10:03	3	0.155	0.283	m		0.078	0.022
23	1-JUL-03	10:04	3.5	0.145	0.202	m		0.073	0.015
23	1-JUL-03	1 <u>0:05</u>	4	0.145	0.122	m		0.109	0.013
23	1-JUL-03	10:06	5	0.12	0.058	m		0.180	0.010
23	1-JUL-03	10:07	7	0	0	m		0	0.000
								1.038	0.249

Discharge (Swoffer) 0.24

А

Closed

Location:

Mouth State:

Section Date Time Distance Depth Velocity Unit Comment area va 25 2-JUL-03 9:52 0.02 0 0.08 0 0 m 25 2-JUL-03 9:52 0.5 0.19 0.12 0.095 0.0114 m 25 9:53 0.0455 2-JUL-03 1 0.25 0.364 0.125 m 25 2-JUL-03 9:54 1.5 0.25 0.384 0.125 0.048 m 25 2-JUL-03 0.23 0.437 0.115 0.050255 9:55 2 m 25 0.0975 0.037343 2-JUL-03 9:56 2.5 0.195 0.383 m 25 2-JUL-03 9:56 3 0.15 0.277 0.075 0.020775 m 25 0.065 0.013845 2-JUL-03 9:57 3.5 0.13 0.213 m 25 2-JUL-03 9:58 0.14 0.138 0.105 0.01449 4 m 25 0.009608 2-JUL-03 9:59 5 0.105 0.061 0.1575 m 25 2-JUL-03 9:59 7 0 0 Ō 0 m

0.251

0.98

Discharge (Swoffer) 0.25

Location: Mouth State: A Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
27	3-JUL-03	10:22	0	0.12	0	m		0.03	0
27	3-JUL-03	10:23	0.5	0.23	0.155	m		0.115	0.0178
27	3-JUL-03	10:24	1	0.23	0.346	m		0.115	0.0398
27	3-JUL-03	10:25	1.5	0.24	0.438	m		0.12	0.0526
27	3-JUL-03	10:26	2	0.22	0.406	m		0.11	0.0447
27	3-JUL-03	10:27	2.5	0.16	0.356	m		0.08	0.0285
27	3-JUL-03	10:27	3	0.15	0.239	m		0.113	0.0269
27	3-JUL-03	10:28	4	0.12	0.12	m		0.24	0.0288
27	3-JUL-03	10:28	7	0	0	m		0	0
								0.923	0.239

Discharge (Swoffer) 0.23

Location: A Mouth State: Cl

Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
29	4-JUL-03	10:50	0	0.04	0	m		0.01	0
29	4-JUL-03	10:50	0.5	0.19	0.128	m		0.095	0.012
29	4-JUL-03	10:51	1	0.25	0.325	m		0.125	0.041
29	4-JUL-03	10:52	1.5	0.25	0.382	m		0.125	0.048
29	4-JUL-03	10:53	2	0.23	0.43	m		0.115	0.049
29	4-JUL-03	10:54	2.5	0.18	0.356	m		0.09	0.032
29	4-JUL-03	10:54	3	0.15	0.232	m		0.1125	0.026
29	4-JUL-03	10:55	4	0.13	0.113	m		0.26	0.029
29	4-JUL-03	10:55	7	0	0	m		0	0
								0.933	0.238

Discharge (Swoffer) 0.23

Α

Closed

Location:

Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
31	5-JUL-03	12:11	0	0.07	0	m		0.018	0
31	5-JUL-03	12:12	0.5	0.19	0.103	m		0.095	0.010
31	5-JUL-03	12:12	1	0.26	0.297	m		0.130	0.039
31	5-JUL-03	12:13	1.5	0.24	0.409	m		0.120	0.049
31	5-JUL-03	12:14	2	0.22	0.375	m		0.110	0.041
31	5-JUL-03	12:14	2.5	0.19	0.292	m		0.095	0.028
31	5-JUL-03	12:15	3	0.15	0.228	m		0.113	0.026
31	5-JUL-03	12:16	4	0.14	0.118	m		0.280	0.033
31	5-JUL-03	12:16	7	0	0	m		0	0
								0.960	0.225

Discharge (Swoffer) 0.22

Location: A Mouth State: Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
33	6-JUL-03	12:03	0	0.15	0	m		0.038	0
33	6-JUL-03	12:04	0.5	0.23	0.169	m		0.115	0.019
33	6-JUL-03	12:05	1	0.23	0.282	m		0.115	0.032
33	6-JUL-03	12:06	1.5	0.23	0.383	m		0.115	0.044
33	6-JUL-03	12:07	2	0.21	0.334	m		0.105	0.035
33	6-JUL-03	12:08	2.5	0.18	0.356	m		0.090	0.032
33	6-JUL-03	12:08	3	0.15	0.208	m		0.113	0.023
33	6-JUL-03	12:09	4	0.11	0.081	m		0.220	0.018
33	6-JUL-03	12:09	7	0	0	m		0	0
								0.910	0.204

Discharge (Swoffer) 0.2

Location: Mouth State: A Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
35	7-JUL-03	13:25	0	0.15	0	m		0.038	0
35	7-JUL-03	13:26	0.5	0.21	0.105	m		0.105	0.011
35	7-JUL-03	13:27	1	0.25	0.288	m		0.125	0.036
35	7-JUL-03	13:28	1.5	0.25	0.381	m		0.125	0.048
35	7-JUL-03	13:28	2	0.22	0.406	m		0.110	0.045
35	7-JUL-03	13:29	2.5	0.18	0.303	m		0.090	0.027
35	7-JUL-03	13:30	3	0.155	0.231	m		0.116	0.027
35	7-JUL-03	13:30	4	0.12	0.112	m		0.240	0.027
35	7-JUL-03	13:30	7	0	0	m		0	0
								0.949	0.220

Discharge (Swoffer) 0.22

A Closed

Location:

Mouth State:

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
37	8-JUL-03	14:12	0	0.075	0	m		0.019	0
37	8-JUL-03	14:13	0.5	0.23	0.14	m		0.115	0.016
37	8-JUL-03	14:14	1	0.25	0.312	m		0.125	0.039
37	8-JUL-03	14:15	1.5	0.25	0.406	m		0.125	0.051
37	8-JUL-03	14:16	2	0.21	0.407	m		0.105	0.043
37	8-JUL-03	14:17	2.5	0.175	0.368	m		0.088	0.032
37	8-JUL-03	14:17	3	0.15	0.222	m		0.113	0.025
37	8-JUL-03	14:18	4	0.13	0.081	m		0.260	0.021
37	8-JUL-03	14:18	7	0 .	0	m		0	0
								0.949	0.227

Discharge (Swoffer) 0.22

Date: Weather: Estuary State: Station Reference: 18-Apr-02 Partly cloudy, very windy (cross wind) Open 3

Midth (m)	Depth (m)	Time in	seconds for	floats to tra	avel 10m	Comment
wider (m)	Depth (III)	Big	Medium	Small	Surface	Comment
0	0.000					
1	0.070			_		
2	0.090			40	42	
3	0.120					
4	0.110			40	45	
5	0.100					
6	0.140			23	30	
7	0.145					
8	0.170			30	28	
9	0.210					
10	0.260	39	32	36	26	_
11	0.240					
12	0.210		23	26	23	
13	0.320					
14	0.270	24			22	
15	0.330					
16	0.330	24	23	23	23	
17	0.340					
18	0.460	24	23	23	22	
19	0.500	24	23	24	22	
20	0.490					

Area =	4.6714	m²
Av. Vel. =	0.3594	m/s
Flow =	1.6787	m³/s

Date: Weather: Estuary State: Station Reference: 19-May-02 Sunny, still Closed, fairly full 2

Width (m)	Depth (m)	Electronic 400mm	Vel m/s	Area m^2	Vel*Area m^3/s	Comment
0	1.40	4	0.22	0.70	0.16	Reeds
1	1.40	1	0.06	1.40	0.08	
2	1.34	3	0.17	1.37	0.23	
3	1.39	6	0.33	1.37	0.46	
4	1.30	4	0.22	1.35	0.30	
5	1.31	4	0.22	1.31	0.29	
6	1.42	4	0.22	1.37	0.30	
7	1.40	3	0.17	1.41	0.24	
8	1.37	5	0.28	1.39	0.38	
9	1.45	3	0.17	1.41	0.24	
10	1.38	3	0.17	1.42	0.24	
11	1.47	4	0.22	1.43	0.32	
12	1.31	4	0.22	1.39	0.31	
13	1.28	4	0.22	1.30	0.29	
14	1.30	4	0.22	1.29	0.29	Small float 10m in 45s
15	1.18	2	0.11	1.24	0.14	
16	1.17	3	0.17	1.76	0.29	Reeds
				22.87	4.53	

Av Vel =	0.20	m/s
Area =	22.87	m^2
Flow =	4.56	m^3/s

Date: Weather: Estuary State: Station Reference: 22-Jun-02 Sunny, clear, still Closed, very full 2

Width (m)	Depth (m)	Tir	ne in secon	ds at depth	(m):	Comment	
vvidur (m)	Deput (III)	0.2	0.44	0.86	Surface	Comment	
0	1.56						
1	1.51					Boods	
2	1.54					interferred	
3	1.40						
4	1.36						
5	1.28	454	307	266	246		
6	1.23						
7	1.23	288	215	223	*	*Drifted	
8	1.20						
9	1.20	*	*	240	241	*Reeds	
10	1.20						
11	1.21					Reeds	
12	1.22] interferred	
13	1.14						
14	1.10					Reeds	

Area =	18.0880	m²
Av. Vel. =	0.0363	m/s
Flow =	0.6564	m³/s

Date:

Weather: Estuary State: Station Reference: 14-Jul-02 Sunny, clear, calm Closed, very full 2

Data Collected:

Alidah (m)	Donth (m)	Tin	ne in second	ds at depth	(m):	Velocity	Area	Velocity*A	Commont	T
	Depth (m)	0.2	0.44	0.86	Surface	(m/s)	(m^2)	rea (m3/s)	Comment	
0	1.115					0.000	0.56	0.000	Reeds	1
1	1.225	250*				0.024	1.17	0.028	Reeds] *@ 6m
2	1.33	310**	Reeds	218	Reeds	0.033	1.28	0.042		**@ 6m
3	1.45	235***	275	113	358	0.048	1.39	0.066] ***@ 9m
4	1.12	350	289	209	329	0.034	1.29	0.044]
5	1.12	218	215	285	244	0.042	1.12	0.047]
6	1.06	235	330	252	318	0.035	1.09	0.038		
7	1.21	307	229	217	489	0.032	1.14	0.037]
8	1.18		272	237	222	0.041	1.20	0.049]
9	1.125					0.000	1.72	0.000	Reeds]
			· · · · · · · · · · · · · · · · · · ·				11.94	0.35		-

Note: There was a subsurface cross current

Area ≈	10.7415	m²
Av. Vel. =	0.0361	m/s
Flow ≈	0.3873	m³/s

Date:	16-Aug-02
Weather:	Overcast, preceding days were cold and rainy
Estuary State:	Open
Tidal Situation:	between high and low (The Kingfisher, Tide Timetable 2002)
Station Reference:	3

Data Collected:

Midth (m)	Donth (m)	Tin	ne in secon	ds at depth	(m):	Velocity	Area	Velocity*Area	Common
vviduri (m)	Debru (m)	0.3	0.2	0.1	Surface	(m/s)	(m^2)	(m3/s)	Commen
0	0	-				0.000	0.00	0.000	
1	0.22				16.5	0.606	0.11	0.067	
2	0.27					0.530	0.25	0.130	
3	0.18				21.34	0.469	0.23	0.105	_
4	0.11					0.400	0.15	0.058	
5	0.07					0.200	0.09	0.018	
6	0					0.000	0.04	0.000	Sand
9	0	-				0.000	0.00	0.000	Bank
10	0.07					0.550	0.04	0.019	
11	0.07				18	0.556	0.07	0.039	
12	0.11					0.550	0.09	0.050	_
13	0.11				18.5	0.541	0.11	0.059	
14	0.24					0.630	0.18	0.110	
15	0.26			15	15	0.667	0.25	0.167	
16	0.27					0.650	0.27	0.172	
17	0.33		16.81		14	0.649	0.30	0.195	
18	0.44					0.640	0.39	0.246	
19	0.58	14.46	14.91		18.53	0.626	0.51	0.319	
20	0.55					0.610	0.57	0.345	
21	0.59	17	16.5		17.8	0.585	0.57	0.333	
22	0.52					0.586	0.56	0.325	
23	0.53	18			16	0.588	0.53	0.309	
24	0.52					0.610	0.53	0.320	
25	0.7		15.5		16.69	0.621	0.61	0.379	
26	0.59					0.630	0.65	0.406	
27	0.7				15.5	0.645	0.65	0.416	
28	0.9				<u> </u>	0.630	0.80	0.504	
29	0.9				16.09	0.622	0.90	0.559	Reeds
	· · ·	·		•	•		8.05	5.00	•

Area =	9.2810	m2
Av. Vel. =	0.5139	m/s
Flow =	4.7697	m3/s

Note: Paddling was difficult under these conditions

Date:

Weather: Estuary State: Station Reference: 12-Sep-02 Sunny, clear, windy Closed, full, high waves overtopping (spring tide) 2

Data Collected:

\\/idth (m)	Depth (m)	Time in seconds at depth (m):				Velocity	Area	Velocity*Ar	Commont
	Deptil (m)	0.4	0.6	0.8	Surface	(m/s)	(m^2)	ea (m3/s)	Comment
0	0.90					0.000	0.45	0.000	Reeds
4	1.00					0.000	3.80	0.000	Reeds
6	1.00					0.060	2.00	0.120	
8	1.00	84				0.119	2.00	0.238	
10	1.20					0.110	2.20	0.242	
12	1.30					0.100	2.50	0.250	
14	1.40					0.090	2.70	0.243	
16	1.25	80	141	145		0.088	2.65	0.234	
18	1.30					0.090	2.55	0.230	
20	1.35					0.100	2.65	0.265	
22	1.50					0.110	2.85	0.314	
24	1.00	88				0.114	2.50	0.284	
26	1.00					0.060	2.00	0.120	
28	1.00					0.000	2.00	0.000	Reeds
30	1.00					0.000	2.00	0.000	Reeds
							34.85	2.54	

Note: There was a subsurface cross current

Area =	32.5000	m ²
Av. Vel. =	0.0694	m/s
Flow =	2.2555	m³/s

Date:12-Oct-02Weather:Windy, clearEstuary State:ClosedTidal Situation:Between high and low (The Kingfisher, Tide Timetable 2002)Station Reference:2

Data Collected:

Width (m)	Depth (m)	Time in s	seconds at	Velocity	Comment
	Deput (iii)	0.8	Surface		
0	0.19				
1	1.15				
2	1.71				
3	1.74				
4	1.64	_			
5	1.62				
6	1.61				
7	1.56				
8	1.56	140	93	0.0858369	
9	1.52				
10	1.59				
11	1.70	150		0.0666667	
12	1.68	114		0.0877193	
13	1.71		,		
14	1.80		120	0.0833333	
15	1.80				
16	1.70	150	90	0.0833333	
17	1.42				
18	1.47				
19	1.45				
20	1.52				
21	1.55				
22	1.60				
23	1.61				Reeds
24	1.67				Reeds

Area =	37.6467	m2
Av. Vel. =	0.0814	m/s
Flow =	3.0636	m3/s

Note: There was a subsurface cross current

Date:

Weather:

19-Feb-03

2

Su

Sunny, windy Closed, previous position of mouth still lower than rest of berm

Estuary State: Station Reference:

Timing distance = 5 m Vel interpolated between measurements (zero in						s (zero in reeds)			
Midth (m)	Depth (m)	anth (m) Time in seconds at depth (m):			(m):	Velocity	Area	Velocity*Area	Commont
vvidin (m)	Depth (m)	0.3	0.6	0.8	Surface	(m/s)	(m2)	(m3/s)	Comment
0	0.60					0.000	0.300	0.000	Reeds
1	0.60					0.011	0.600	0.007	Flow too low
2	0.60		220			0.023	0.600	0.014	Little flow, wind
3	0.58		275			0.018	0.580	0.011	
4	0.57					0.026	0.565	0.015	
5	0.55					0.026	0.550	0.014	
6	0.58		148			0.034	0.580	0.020	
7	0.63		114		206	0.044	0.630	0.028	less wind
8	0.67					0.036	0.670	0.024	
9	0.77		173			0.029	0.770	0.022	
10	0.82		179			0.028	0.820	0.023	wind
11	0.79		139			0.036	0.790	0.028	less wind
12	0.82					0.000	0.820	0.000	Reeds
13	1.58					0.000	1.580	0.000	Reeds
						Sum =	9.855	0.205	

Area =	9.0650	m ²
Av. Vel. =	0.0222	m/s
Flow =	0.2014	m³/s

Mdloti

Location:

Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
8	19-Jun-03	11:05	0	0.33	0.127	m		0.0825	0.010478
8	19-Jun-03	11:06	0.5	0.37	0.5	m		0.2035	0.10175
8	19-Jun-03	11:03	1.1	0.37	0.424	m		0.3145	0.133348
8	19-Jun-03	11:01	2.2	0.3	0.292	m		0.165	0.04818
								0.766	0.294

Discharge (Swoffer) 0.24

Location:

Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
11	25-Jun-03	9:51	0	0.21	0	m		0.02625	0
11	25-Jun-03	9:53	0.25	0.11	0.805	m		0.0275	0.022138
11	25-Jun-03	9:55	0.5	0.37	0.478	m		0.0925	0.044215
11	25-Jun-03	9:56	0.75	0.3	0.884	m		0.075	0.0663
11	25-Jun-03	9:57	1	0.23	0.834	m		0.0575	0.047955
11	25-Jun-03	9:58	1.25	0.3	0.69	m		0.1125	0.077625
11	25-Jun-03	9:59	1.75	0.25	0	m		0.0625	0
								0.454	0.258

Discharge (Swoffer) 0.25
Location: 1 Mouth State: Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
13	26-Jun-03	9:48	0	0.22	0.44	m		0.055	0.0242
13	26-Jun-03	9:50	0.5	0.28	0.899	m		0.105	0.0944
13	26-Jun-03	9:51	0.75	0.32	0.946	m		0.08	0.0757
13	26-Jun-03	9:54	1	0.29	0.527	m		0.0725	0.0382
13	26-Jun-03	9:55	1.25	0.34	0.695	m		0.085	0.0591
13	26-Jun-03	9:56	1.5	0.34	0.776	m		0.085	0.0660
13	26-Jun-03	9:57	1.75	0.54	0.517	m		0.0675	0.0349
								0.550	0.392

Discharge (Swoffer) 0.35

Location:

-

Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Angle	Unit	Comment	area	v.a
			0	0	0			Edge	0	0
15	27-Jun-03	10:52	0.5	0.33	0.212	0	m		0.165	0.03498
15	27-Jun-03	10:51	1	0.34	0.726	0	m		0.1275	0.092565
15	27-Jun-03	10:53	1.25	0.31	0.679	0	m		0.155	0.105245
			2	0.1	0			Edge	0.0375	0
									0.448	0.233

Discharge (Swoffer)

0.12 (Excludes edges)

Location: Mouth State: Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
17	28-Jun-03	11:51	0	0.15	0	m		0.0375	0
17	28-Jun-03	11:54	0.5	0.14	0.37	m		0.0525	0.01943
17	28-Jun-03	11:56	0.75	0.25	0.958	m		0.0625	0.05988
17	28-Jun-03	11:57	1	0.4	0.662	m		0.1	0.06620
17	28-Jun-03	11:58	1.25	0.22	0.484	m		0.055	0.02662
17	28-Jun-03	11:59	1.5	0.25	0.848	m		0.09375	0.07950
17	28-Jun-03	12:01	2	0.18	0.887	m		0,0675	0.05987
17	28-Jun-03	12:01	2.25	0.25	0	m		0.03125	0
								0.500	0.311

Discharge (Swoffer) 0.31

Location:

Mouth State:

1 Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
19	29-Jun-03	11:06	0.25	0.25	0	m		0.03125	0
19	29-Jun-03	11:07	0.5	0.36	0.731	m		0.09	0.06579
19	29-Jun-03	11:09	0.75	0.37	0.964	m		0.0925	0.08917
19	29-Jun-03	11:10	1	0.39	0.941	m		0.14625	0.137621
19	29-Jun-03	11:12	1.5	0.34	0.832	m		0.17	0.14144
19	29-Jun-03	11:13	2	0.25	0.889	m		0.125	0.111125
19	29-Jun-03	11:13	2.5	0.3	0	m		0.075	0
								0.730	0.545

Discharge (Swoffer) 0.54

Location: 1 Mouth State: Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
20	30-Jun-03	9:05	0	0.23	0	m	bank	0.0575	0
20	30-Jun-03	8:56	0.5	0.26	0.96	m		0.0975	0.0936
20	30-Jun-03	8:57	0.75	0.37	0.487	m		0.0925	0.045048
20	30-Jun-03	8:59	1	0.255	0,7	m		0.06375	0.044625
20	30-Jun-03	9:00	1.25	0.33	0.933	m		0.0825	0.076973
20	30-Jun-03	9:02	1.5	0.32	0.597	m		0.12	0.07164
20	30-Jun-03	9:03	2	0.2	0.907	m		0.075	0.068025
20	30-Jun-03	9:04	2.25	0.18	0	m	reeds	0.0225	0
								0.611	0.400

Discharge (Swoffer) 0.39

Location: Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
22	1-JUL-03	8:53	0	0.205	0	m	Bank	0.025625	0
22	1-JUL-03	8:54	0.25	0.305	0.181	m		0.07625	0.013801
22	1-JUL-03	8:55	0.5	0.29	0.132	m		0.0725	0.00957
22	1-JUL-03	8:56	0.75	0.34	0.305	m		0.085	0.025925
22	1-JUL- <u>03</u>	8:57	1	0.36	0.405	m		0.09	0.03645
22	1-JUL- <u>03</u>	8:58	1.25	0.295	0.47	m		0.07375	0.034663
22	1-JUL-03	8:59	1.5	0.26	0.198	m		0.065	0.01287
22	1-JUL-03	9:00	1.75	0.35	0.601	m		0.0875	0.052588
22	1-JUL-03	9:01	2	0.29	0.245	m		0.0725	0.017763
22	1-JUL-03	9:02	2.25	0.43	0.405	m		0.1075	0.043538
22	1-JUL-03	9:03	2.5	0.25	0	m	Reeds	0.03125	0
								0.787	0.247

Discharge (Swoffer)

0.24

Location: Mouth State: 1 Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	va
24	2-JUL-03	8:59	0	0.16	0	m		0.02	0
24	2-JUL-03	9:00	0.25	0.35	0.532	m		0.0875	0.04655
24	2-JUL-03	9:01	0.5	0.3	0.624	m		0.075	0.0468
24	2-JUL-03	9:02	0.75	0.37	0.292	m		0.0925	0.02701
24	2-JUL-03	9:03	1	0.33	0.255	m		0.0825	0.021038
24	2-JUL-03	9:04	1.25	0.3	0.584	m		0.075	0.0438
24	2-JUL-03	9:05	1.5	0.35	0.509	m		0.0875	0.044538
24	2-JUL-03	9:06	1.75	0.4	0.472	m		0.1	0.0472
24	2-JUL-03	9:07	2	0.1	Ō	m		0.0125	0
								0.633	0.277

Discharge (Swoffer) 0.27

Location: Mouth State:

1

Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
26	3-JUL-03	9:26	0	0.26	0	m		0.0325	0
26	3-JUL-03	9:27	0.25	0.195	0.244	m		0.04875	0.011895
26	3-JUL-03	9:28	0.5	0.34	0.281	m		0.085	0.023885
26	3-JUL-03	9:29	0.75	0.29	0.359	m		0.0725	0.026028
26	3-JUL-03	9:30	1	0.25	0.455	m		0.0625	0.028438
26	3-JUL-03	9:30	1.25	0.31	0.512	m		0.0775	0.03968
26	3-JUL-03	9:31	1.5	0.28	0.391	m		0.07	0.02737
26	3-JUL-03	9:32	1.75	0.4	0.354	m		0.1	0.0354
26	3-JUL-03	9:33	2	0.31	0.256	m		0.0775	0.01984
26	3-JUL-03	9:34	2.25	0.33	0.493	m		0.0825	0.040673
26	3-JUL-03	9:35	2.5	0.2	0	m		0.025	0
								0.734	0.253

Discharge (Swoffer) 0.25

Location: Mouth State:

1 Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
28	4-JUL-03	10:09	0	0.31	0.212	m		0.03875	0.00822
28	4-JUL-03	10:10	0.25	0.35	0.179	m		0.0875	0.01566
28	4-JUL-03	10:11	0.5	0.36	0.393	m		0.09	0.03537
28	4-JUL-03	10:12	0.75	0.25	0.443	m		0.0625	0.02769
28	4-JUL-03	10:13	1	0.31	0.492	m		0.11625	0.05720
28	4-JUL-03	10:15	1,5	0.4	0.623	m		0.15	0.09345
28	4-JUL-03	10:16	1.75	0.37	0.328	m		0.0925	0.03034
28	4-JUL-03	10:17	2	0.45	0.429	m		0.05625	0.02413
								0.694	0.292

Discharge (Swoffer) 0.26

Location:

Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
30	5-JUL-03	10:50	0	0.3	0.245	m		0.0375	0.00919
30	5-JUL-03	10:51	0.25	0.31	0.289	m		0.0775	0.02240
30	5-JUL-03	10:52	0.5	0.38	0.367	m		0.095	0.03487
30	5-JUL-03	10:53	0.75	0.31	0.342	m		0.0775	0.02651
30	5-JUL-03	10:54	1	0.33	0.45	m		0.12375	0.05569
30	5-JUL-03	10:56	1.5	0.32	0.429	m		0.12	0.05148
30	5-JUL-03	10:57	1.75	0.35	0.426	m		0.0875	0.03728
30	5-JUL-03	10:57	2	0.25	0	m		0.03125	0
								0.650	0.237

Discharge (Swoffer) 0.23

Location: Mouth State: Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
32	6-JUL-03	11:10	0	0.15	0	m		0.01875	0
32	6-JUL-03	11:10	0.25	0.37	0.353	m		0.0925	0.032653
32	6-JUL-03	11:11	0.5	0.41	0.436	m		0.1025	0.04469
32	6-JUL-03	11:12	0.75	0.45	0.498	m		0.1125	0.056025
32	6-JUL-03	11:13	1	0.44	0.529	m		0.165	0.087285
32	6-JUL-03	11:14	1.5	0.37	0.774	m		0.13875	0.107393
32	6-JUL-03	11:15	1.75	0.52	0.597	m		0.13	0.07761
32	6-JUL-03	11:16	2	0.5	0.526	m		0.125	0.06575
32	6-JUL-03	11:17	2.25	0.2	0	m		0.025	0
								0.910	0.471

Discharge (Swoffer) 0.47

Location:

Mouth State:

Closed

1

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
34	7-JUL-03	12:32	0	0.15	0	m		0.01875	0
34	7-JUL-03	12:33	0.25	0.36	0.413	m		0.09	0.03717
34	7-JUL-03	12:34	0.5	0.38	0.477	m		0.095	0.045315
34	7-JUL-03	12:35	0.75	0.3	0.58	m		0.075	0.0435
34	7-JUL-03	12:36	1	0.26	0.71	m		0.0975	0.069225
34	7-JUL-03	12:37	1.5	0.36	0.775	m		0.135	0.104625
34	7-JUL-03	12:37	1.75	0.4	0.564	m		0.1	0.0564
34	7-JUL-03	12:38	2	0.48	0.537	m		0.12	0.06444
34	7-JUL-03	12:39	2.25	0.2	0	m		0.025	0
								0.756	0.421

Discharge (Swoffer) 0.42

Location:1Mouth State:Closed

Section	Date	Time	Distance	Depth	Velocity	Unit	Comment	area	v.a
36	8-JUL-03	13:20	0	0.25	0	m		0.03125	0
36	8-JUL-03	13:21	0.25	0.3	0.371	m		0.075	0.027825
36	8-JUL-03	13:22	0.5	0.35	0.408	m		0.0875	0.0357
36	8-JUL-03	13:22	0.75	0.25	0.515	m		0.0625	0.032188
36	8-JUL-03	13:23	1	0.22	0.676	m		0.0825	0.05577
36	8-JUL-03	13:24	1.5	0.33	0.715	m		0.12375	0.088481
36	8-JUL-03	13:25	1.75	0.4	0.449	m		0.1	0.0449
36	8-JUL-03	13:26	2	0.38	0.497	m		0.095	0.047215
36	8-JUL-03	13:26	2.25	0.2	0	m		0.025	0
								0.683	0.332

Discharge (Swoffer) 0.33

MHLANGA ESTUARY - Data obtained from digital photography. Beam Height (b) = 930 mm 2970 mm Column Height (H) = Height of Column above the water = h Height of water above pile cap = H-hHeight below pc when empty = He

Height of pile cap above MSL = 1274

		b,	h,	h,	h=b*h,/b,	H-h		Above MSL
Date	Time	(pixels)	(pixels)	(pixels)	(mm)	(mm)	He	mm
11-Apr-02		92	130	,,	1314	1656		2930
May-02		75	132		1637	1333		2607
22-Jun-02	12:18	21	48		2126	844		2118
14-Jul-02	13:43	81	295		3387	-417		857
16-Aug-02	13:25	31	84		2520	450		1724
16-Aug-02	16:15	89	265		2769	201		1475
30-Aug-02	11:55	172	600		3244	-274		1000
4-Sep-02	10:02	46	125		2527	443		1717
13-Sep-02		38	69		1689	1281		2555
20-Sep-02	12:57	58	206		3303	-333		941
27-Sep-02	12:15	29	52		1668	1302		2576
5-Oct-02	10:55	24	59		2286	684		1958
15-Oct-02	9:24	65	97		1388	1582		2856
31-Oct-02	10:00	121	220		1691	1279		2553
30-Dec-02	16:20	103	348		3142	-172		1102
2-Jan-03	14:26	55	198		3348	-378		896
8-Feb-03	15:56	81	232		2664	306		1580
14-Feb-03	11:55	82	230		2609	361		1635
19-Feb-03	12:07	55	156	· · · · · · · · · · · · · · · · · · ·	2638	332		1606
7-Mar-03	7:35	121	243		1868	1102		2376
14-Mar-03	7:42	74	145		1822	1148		2422
21-Mar-03	14:53	131	504	66	3578	-608		666
25-Mar-03	10:42	67	201		2790	180		1454
2-Apr-03	16:18	48	125		2422	548		1822
16-Apr-03	12:30	282	438		1444	1526		2800
20-Apr-03	0.50	80	121		1407	1563		2837
7-May-03	12.19	138	213		1435	1535		2809
13-May-03	10.24	160	239		1389	1581		2855
23-May-03	10:33	139	496	66	3319	-349		925
24-May-03	9:49	24	86	9	3333	-363		912
26-May-03	11:37	48	162	11	3139	-169		1105
30-May-03	9.52	217	545		2336	634		1908
30-May-03	10.03	126	307		2266	704		1978
6-Jun-03	10:46	259	515		1849	1121		2395
14-Jun-03	8:25	215	386		1670	1300		2574
19-Jun-03	11:48	39	70		1669	1301		2575
25-Jun-03	7:52	55	93		1573	1397		2671
26-Jun-03	7:16	41	63		1429	1541		2815
27-Jun-03	9:14	33		13			-366	908
28-Jun-03	7:56	21	77		3410	-440		834
28-Jun-03	9:53	130		73			-522	752
29-Jun-03	9:03	31		9			-270	1004
29-Jun-03	10:24	43		19			-411	863
29-Jun-03	15:18	183		16			-81	1193
30-Jun-03	10:29	36	105		2713	258		1532
1-Jul-03	10:52	69	164		2210	760		2034
2-Jul-03	10:45	36	82		2118	852		2126
3-Jul-03	11:19	29	69		2213	757		2031
4-Jul-03	11:53	57	137		2235	735		2009
5-Jul-03	12:57	105	227		2011	959		2233
6-Jul-03	13:08	54	115		1981	989		2263
7-Jut-03	13:06	286	577		1876	1094		2368
8-Jul-03	13:54	255	509		1856	1114	_	2388
15-Jul-03	11:35					1345		2619
16-Jul-03	12:02	192	326		1579	1391		2665
18-Jul-03	9:04	160	264		1535	1436		2710
21-Jul-03	11:18	145	231		1482	1488		2762
26-Jul-03	15:28	351	537		1423	1547		2821

MIN = MAX =

666 2930

MDLOTI ESTUARY - Data obtained from digital photography

Beam Height (b) = 880 mm 3640 mm

Column Height (H) =

Height of Column above the water = h

Height of water above pile cap = H-h

3850

Height of pile cap above MSL = 962

		b _x	h _x	h=b*h _x /b _x	H-h	Above MSL
Date	Time	(pixels)	(pixels)	(mm)	(mm)	mm
18-May-02		36	90	2200	1440	2402
22-Jun-02	8:22	9	17	1662	1978	2940
14-Jul-02	7:48	142	289	1791	1849	2811
16-Aug-02	11:18	12	37	2713	927	1889
30-Aug-02	11:02	16	56	3080	560	1522
4-Sep-02	9:29	26	113	3825	-185	777
12-Sep-02		31	91	2583	1057	2019
20-Sep-02	11:53	13	20	1354	2286	3248
5-Oct-02	10:06	20	47	2068	1572	2534
12-Oct-02	9:24	68	111	1436	2204	3166
15-Oct-02	11:28	20	30	1320	2320	3282
31-Oct-02	9:36	11	20	1600	2040	3002
8-Feb-03	15:34	30	78	2288	1352	2314
14-Feb-03	11:09	21	54	2263	1377	2339
19-Feb-03	9:23	41	117	2511	1129	2091
7-Mar-03	7:14	21	59	2472	1168	2130
14-Mar-03	7:20	21	48	2011	1629	2591
25-Mar-03	8:47	48	102	1870	1770	2732
2-Apr-03	15:33	22	46	1840	1800	2762
16-Apr-03	11:59	27	54	1760	1880	2842
29-Apr-03	9:44	85	215	2226	1414	2376
7-May-03	10:04	79	197	2194	1446	2408
13-May-03	10:07	136	327	2116	1524	2486
23-May-03	10:07	197	493	2202	1438	2400
30-May-03	9:24	133	324	2144	1496	2458
· 6-Jun-03	10.24	182	432	2089	1551	2513
14-Jun-03	12:40	194	437	1982	1658	2620
19-Jun-03	11:28	217	499	2024	1616	2578
25-Jun-03	9:31	257	571	1955	1685	2647
26-Jun-03	9:27	241	525	1917	1723	2685
27-Jun-03	10:28	233	517	1953	1687	2649
28-Jun-03	12:22	203	457	1981	1659	2621
29-Jun-03	10:47	147	346	2071	1569	2531
30-Jun-03	9:24	213	562	2322	1318	2280
1-Jul-03	9:22	260	568	1922	<u>1718</u>	2680
2-Jul-03	9:24	255	566	1953	1687	2649
3-Jul-03	9:54	202	554	2413	1227	2189
4-Jul-03	9:47	211	467	1948	1692	2654
5-Jul-03	11:15	238	560	2071	1569	2531
6-Jul-03	11:36	249	556	1965	1675	2637
7-Jul-03	12:56	214	471	1937	1703	2665
8-Jul-03	13:43	235	559	2093	1547	2509
15-Jul-03	9:35				1593	2555
21-Jul-03	12:17	200	447	1967	1673	2635

MIN = 777 MAX = 3282

APPENDIX G: WATER LEVEL DATA

Dates (Inclusive)		No. of		Rainfall during	Tidal Situation at the
From	То	days	State	period (mm)	end of the period
11-Nov-02	14-Nov-02	4	Partly Open	25.6	2 days after neap
15-Nov-02	16-Nov-02	2	Open	6.4	4 days after neap
17-Nov-02	20-Nov-02	4	Closed	0	Spring
21-Nov-02	30-Nov-02	10	No data	5	n/a
1-Dec-02	6-Dec-02	6	Closed	23.8	2 days after spring
7-Dec-02	14-Dec-02	8	Open	17.2	2 days after neap
15-Dec-02	16-Dec-02	2	Partly Open	0.4	4 days after neap
17-Dec-02	20-Dec-02	4	Closed	13.8	Spring
21-Dec-02	30-Dec-02	10	No data	21.4	n/a
31-Dec-02	31-Dec-02	1	Closed	0	3 days after neap
1-Jan-03	1-Jan-03	1	Partly Open	0	4 days after neap
2-Jan-03	2-Jan-03	1	Open	0	5 days after neap
3-Jan-03	8-Jan-03	6	Closed	35.6	4 days before spring
9-Jan-03	15-Jan-03	7	Open	13.8	3 days after spring
16-Jan-03	16-Jan-03	1	Closed	0.4	4 days after spring
17-Jan-03	7-Feb-03	22	Open	51.2	3 days after spring
8-Feb-03	8-Feb-03	1	Closed	0	4 days before neap
9-Feb-03	9-Feb-03	45	Partly Open	0	3 days before neap
10-Feb-03	11-Feb-03	2	Closed	0	1 day before neap
12-Feb-03	17-Feb-03	6	Partly Open	0	2 days before spring
18-Feb-03	26-Feb-03	9	Closed	15.6	Neap
27-Feb-03	28-Feb-03	2	Open	0	2 days after neap
1-Mar-03	21-Mar-03	21	Closed	70	1 day after spring
22-Mar-03	25-Mar-03	4	Open	1.8	1 day before neap
26-Mar-03	27-Mar-03	2	Closed	0.2	1 day after neap
28-Mar-03	28-Mar-03	1	Open	0	2 days after neap
29-Mar-03	23-May-03	56	Closed	50	Neap
24-May-03	28-May-03	5	Open	0	5 days after neap
29-May-03	25-Jun-03	28	Closed	21.8	2 days after neap
26-Jun-03	29-Jun-03	4	Open	0.8	3 days before spring
30-Jun-03	30-Jun-03	1	Partly Open	0	2 days before spring
1-Jul-03	26-Jul-03	26	Closed	0.4	3 days after neap
27-Jul-03	31-Jul-03	5**	Open	0	

the data only begins on the 1 March 2002, therefore the estuary may have been open for several days before.
 The data collected by KZN Wildlife was only available up to the 27 June 2003, the data up to the end of July 2003 was obtained from the water level monitor in conjunction with visual observations.

The table represents the state of Mhlanga estuary relative to the rainfall and relevant tidal situation.

Dates (Inclusive)		No. of		Rainfall during	Tidal Situation at the	
From	То	days	State	period (mm)	end of the period	
1-Mar-02	7-Mar-02	7*	Open	26.8	Neap	
8-Mar-02	10-Mar-02	3	Partly Open	3	3 days after neap	
11-Mar-02	10-Apr-02	31	Closed	25.8	5 days after neap	
11-Apr-02	12-Apr-02	2	Open	6	1 day before spring	
13-Apr-02	17-Apr-02	5	Partly Open	81.4	4 days after spring	
18-Apr-02	22-Apr-02	5	Open	0	1 day after neap	
23-Apr-02	23-Apr-02	1	Partly Open	0	2 days after neap	
24-Apr-02	26-Apr-02	3	No data	15.8	n/a	
27-Apr-02	11-May-02	15	Open	9.4	2 days before spring	
12-May-02	20-May-02	9	Closed	0	Neap	
21-May-02	22-May-02	2	Open	0	2 days after neap	
23-May-02	24-May-02	2	Partly Open	0	4 days after neap	
25-May-02	7-Jun-02	14	Closed	0.4	4 days after neap	
8-Jun-02	10-Jun-02	3	Partly Open	0	1 day before spring	
11-Jun-02	14-Jun-02	4	Closed	8.8	3 days after spring	
15-Jun-02	16-Jun-02	2	Open	0	5 days after spring	
17-Jun-02	20-Jun-02	4	Partly Open	0	2 days after neap	
21-Jun-02	2-Jul-02	12	Closed	0.2	1 day before neap	
3-Jul-02	6-Jul-02	4	Open	0	3 days after neap	
7-Jul-02	7-Jul-02	1	Partly Open	0	4 days after neap	
8-Jul-02	31-Jul-02	24	Open	158.4	3 days before neap	
1-Aug-02	3-Aug-02	3	Partly Open	0.2	Neap	
4-Aug-02	14-Aug-02	11	Open	18.4	4 days after spring	
15-Aug-02	16-Aug-02	2	Partly Open	13.6	1 day before neap	
17-Aug-02	27-Aug-02	11	Closed	6.6	3 days after spring	
28-Aug-02	3-Sep-02	7	Open	8	2 days after neap	
4-Sep-02	4-Sep-02	· 1	Partly Open	2.2	3 days after neap	
5-Sep-02	9-Sep-02	5	Closed	16.2	I day after spring	
10-Sep-02	10-Sep-02	1	Open	0	2 days after spring	
11-Sep-02	19-Sep-02	9	Closed	0.2	4 days after neap	
20-Sep-02	20-Sep-02	1	Open	0	5 days after neap	
21-Sep-02	22-Sep-02	2	Closed	2.8	Spring	
23-Sep-02	28-Sep-02	6	Partly Open	5.2	2 days before neap	
29-Sep-02	1-Oct-02	3	Closed	11	1 day after neap	
2-Oct-02	5-Oct-02	4	Partly Open	0	5 days after neap	
6-Oct-02	20-Oct-02	15	Closed	8.8	1 day before spring	
21-Oct-02	22-Oct-02	2	Partly Open	0	I day after spring	
23-Oct-02	3-Nov-02	12	Closed	20.2	5 days after neap	
4-Nov-02	4-Nov-02	1	Partly Open	0.2	1 day before spring	
5-Nov-02	5-Nov-02	1	Open	7.4	Spring	
6-Nov-02	6-Nov-02	1	Closed	1.2	I day after spring	
7-Nov-02	7-Nov-02	1	Open	0	2 days after spring	
8-Nov-02	8-Nov-02	1	Closed	0	3 days after spring	
9-Nov-02	10-Nov-02	2	Open	3.2	5 days after spring	

The state of Mdloti estuary relative to the rainfall and relevant tidal situation of the time are present in tabular form.

Dates (Inclusive)		No. of		Rainfall during	Tidal Situation at the
From	Тө	days	State	period (mm)	end of the period
14-Mar-02	23-Mar-02	10*	Open	0.8	Neap
24-Mar-02	27-Маг-02	4	Partly open	13.2	4 days after neap
28-Mar-02	10-Apr-02	14	Closed	11.8	4 days after neap
11-Арг-02	12-Apr-02	2	Open	6	6 days after neap
13-Apr-02	13-Apr-02	ł	Partly open	0	Spring
14-Apr-02	15-Apr-02	2	No data	71.4	n/a
16-Apr-02	17-Apr-02	2	Partly open	10	4 days after spring
18-Apr-02	23-Apr-02	6	Open	0	2 days after neap
24-Apr-02	26-Apr-02	3	Partly open	15.8	5 days after neap
27-Apr-02	4-May-02	8	Open	9.4	1 day before neap
5-May-02	12-May-02	8	No data	0	n/a
13-May-02	31-May-02	19	Closed	0.2	5 days after spring
1-Jun-02	1-Jun-02	1	Partly open	0.2	6 days after spring
2-Jun-02	20-Jul-02	49	Closed	149.2	l day after neap
21-Jul-02	12-Aug-02	23	Open	34.2	1 day after spring
13-Aug-02	15-Aug-02	3	Partly open	16.2	4 days after spring
16-Aug-02	20-Aug-02	5	Open	1	3 days after neap
21-Aug-02	28-Aug-02	8	Closed	13.6	4 days after spring
29-Aug-02	11-Sep-02	14	Open	18.4	3 days after spring
12-Sep-02	15-Sep-02	4	Partly open	0.2	Neap
16-Sep-02	21-Sep-02	6	Closed	0	1 day before spring
22-Sep-02	26-Sep-02	5	Open	8	4 days after spring
27-Sep-02	5-Oct-02	9	Partly open	11	2 days before spring
6-Oct-02	6-Oct-02	1	No data	2.2	n/a
7-Oct-02	15-Oct-02	9	Closed	6.4	neap
16-Oct-02	30-Oct-02	15	Open	20.4	1 day after neap
31-Oct-02	31-Oct-02	1	Partly open	0	2 days after neap
I-Nov-02	14-Nov-02	14	Closed	37.6	2 days after neap
15-Nov-02	29-Nov-02	15	No data	11.2	n/a
30-Nov-02	27-Dec-02	28	Closed	76.4	Neap
28-Dec-02	29-Dec-02	2	Open	0.4	2 days after neap
30-Dec-02	13-Jan-03	15	Partly open	49.2	1 day after neap
14-Jan-03	14-Jan-03	1	Closed	0.2	2 days after neap
15-Jan-03	22-Jan-03	8	Closed	17.2	1 day after spring
23-Jan-03	4-Feb-03	13	Open	34.4	1 day after spring
5-Feb-03	8-Feb-03	4	Partly open	0	5 days after spring
9-Feb-03	31-Jul-03	173**	closed	160.6	

the data only begins on the 14 March 2002, therefore the estuary may have been open for several days before.

** Data collected by KZN Wildlife is only available up to the end of July 2003.

APPENDIX F: MOUTH STATE DATA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

١

.

AN1513

Crimp-on Clamp

Nylon Snap

Screv

Spring Wire

Figure 4. Hose Clamps

The two clamps most recommended by Motorola are the crimp-on clamp and the screw-on, Clippard reusable clamp. The crimp-on type clamp is offered from both Ryan Herco (#0929-007) and Clippard (#5000-2). Once crimped in place, it provides a very secure hold, but it is not easily removed and is not reusable. The Clippard, reusable hose clamp is a brass, self-threading clamp, which provides an equally strong grip as the crimp-on type just described. The drawback is the reusable clamp is considerably more expensive. The nylon snap is also reusable, however the size options do not match the necessary outside diameter. The spring wire clamp, common in the automotive industry, and known for its very low cost and ease of use, also has a size matching problem. Custom fit spring wire clamps may provide some cost savings in particular applications.

SUPPLIER LIST

Hoses

Norton–Performance Plastics Worldwide Headquarters 150 Dey Road, Wayne, NJ 07470–4599 USA (201) 596–4700 Telex: 710–988–5834 USA P.O. Box 3660, Akron, OH 44309–3660 USA (216) 798–9240 FAX: (216) 798–0358

Clippard Instrument Laboratory, Inc. 7390 Colerain Rd. Cincinnati, Ohio 45239, USA (513) 521–4261 FAX: (513) 521–4464

Ryan Herco Products Corporation P.O. Box 588 Burbank, CA 91503 1–800–423–2589 FAX: (818) 842–4488 Spring Wire Clamps RotorClip, Inc. 187 Davidson Avenue Somerset, NJ 08875–0461 1–800–631–5857 Ext. 255

Rivets and Push–Pins

ITW FasTex 195 Algonquin Road Des Plaines, IL 60016 (708) 299–2222 FAX: (708) 390–8727

Bolts

Quality Screw and Nut Company 1331 Jarvis Avenue Elk Grove Village, IL 60007 (312) 593–1600

Crimp-on and Nylon Clamps

Ryan Herco Products Corporation P.O. Box 588 Burbank, CA 91503 1–800–423–2589 FAX: (818) 842–4488

Crimp-on and Screw-on Clamps

Clippard Instrument Laboratory, Inc. 7390 Colerain Rd. Cincinnati, Ohio 45239, USA (513) 521–4261 FAX: (513) 521–4464

Nylon Screws

Motorola recommends the use of #6-32 nylon screws as a hardware option. However, they should not be torqued excessively. The nylon screw will twist and deform under higher than recommended torque. These screws should be used with a nylon nut.

Rivets

Rivets are excellent fasteners which are strong and very inexpensive. However, they are a permanent connection. Plastic rivets are recommended because metal rivets may damage the plastic package. When selecting a rivet size, the most important dimension, besides diameter, is the grip range. The grip range is the combined thickness of the sensor package and the thickness of the mounting surface. Package thicknesses are listed below.

Port Style	Thickness, a	Grlp Range = a + b
Single side port Dual side port Axial side port	0.321" (8.15 mm) 0.420" (10.66 mm) 0.321" (8.15 mm)	
Stovepipe port	(Does not apply)	\Box

Push-Pins

Plastic push pins or ITW FasTex "Christmas Tree" pins are an excellent way to make a low cost and easily removable connection. However, these fasteners should not be used for permanent connections. Remember, the fastener should take all of the static and dynamic loads off the sensor leads. This type of fastener does not do this completely.

HOSE APPLICATIONS

By using a hose, a sensor can be located in a convenient place away from the actual sensing location which could be a hazardous and difficult area to reach. There are many types of hoses on the market. They have different wall thicknesses, working pressures, working temperatures, material compositions, and media compatibilities. All of the hoses referenced here are 1/8" inside diameter and 1/16" wall thickness, which produces a 1/4" outside diameter. Since all the port hose barbs are 1/8", they require 1/8" inside diameter hose. The intent is for use in air only and any questions about hoses for your specific application should be directed to the hose manufacturer. Four main types of hose are available:

Vinyl
 • Tygon
 • Urethane
 • Nylon

Vinyl hose is inexpensive and is best in applications with pressures under 50 psig and at room temperature. It is flexible and durable and should not crack or deteriorate with age. This type of hose should be used with a hose clamp such as those listed later in this application note. Two brands of vinyl he are:

Hose	Wali Thickness	Max. Press. @ 70°F (24°C)	Max. Temp. (°F)/(°C
Clippard #3814–1	1/16″	105	100/(38
Herco Clear #0500-037	1/16″	54	180/(82

Tygon tubing is slightly more expensive than vinyl, but i the most common brand, and it is also very flexible. It also recommended for use at room temperature and applicatic below 50 psig. This tubing is also recommended applications where the hose may be removed and reattach several times. This tubing should also be used with a ho clamp.

	Wall	@ 73°F	Max. Tem
Tubing	Thickness	(25°C)	(°F)/(°C
Tygon B-44-3	1/16″	62	165/(74)

Urethane tubing is the most expensive of the four typ described herein. It can be used at higher pressures (up to 1 psig) and temperatures up to 100°F (38°C). It is flexib although its flexibility is not as good as vinyl or Tygc Urethane tubing is very strong and it is not necessary to u a hose clamp, although it is recommended.

Two brands of urethane hose are:

Hose	Wall Thickness	Max. Press. @ 70°F (24°C)	Max. Temp. (°F)/(°C	
Clippard #3814–6	1/16″	105	120/(49)	
Herco Clear #0585-037	1/16″	105	225/(107	

Nylon tubing does not work well with Motorola's sensors is typically used in high pressure applications with me fittings (such as compressed air).

HOSE CLAMPS

Hose clamps should be employed for use with all hose listed above. They provide a strong connection with the sens which prevents the hose from working itself off, and all reduces the chance of leakage. There are many types of hose clamps that can be used with the ported sensors. Here a some of the most common hose clamps used with hoses.

1/2" = 3,175mm 1/4"= 6,35 mm

Motorola Sensor Device Data

Figure 3. Case Outline Drawings Top: Case 371D-02, Issue B Bottom: Case 350-03, Issue H

To mount any of the devices except Case 371-05/06 and 867E) to a flat surface such as a circuit board, the spacing and diameter for the mounting holes should be made according to Figure 3.

Mounting Screws

Mounting screws are recommended for making a very secure, yet removable connection. The screws can be either metal or nylon, depending on the application. The holes are 0.155" diameter which fits a #6 machine screw. The screw can be threaded directly into the base mounting surface or go through the base and use a flat washer and nut (on a circuit board) to secure to the device.

MOUNTING TORQUE

The torque specifications are very important. The sensor package should not be over tightened because it can crack, causing the sensor to leak. The recommended torque specification for the sensor packages are as follows:

Port Style	Torque Range			
Single side port:				
port side down	3-4 in-1b			
port side up	6-7 in-lb			
Differential port (dual port)	9—1⊊in—lb			
Axial side port	9-16 in-lb			

The torque range is based on installation at room temperature. Since the sensor thermoplastic material has a higher TCE (temperature coefficient of expansion) than common metals, the torque will increase as temperature increases. Therefore, if the device will be subjected to very low temperatures, the torque may need to be increased slightly. If a precision torque wrench is not available, these torques all work out to be roughly 1/2 of a turn past "finger tight" (contact) at room temperature.

Tightening beyond these recommendations may damage the package, or affect the performance of the device.

2

.

r"

30.48

19.30

0.50

4.57

1.32

0.40

2.03

4.06

11.68

4.95

2.54

5.84

18.16

8.15

0.50

1.32

4.92

0.40

18.16

7.62

4.01

4.01

6.35

16.51

AN151

Mounting Techniques and Plumbing Options of Motorola's MPX Series Pressure Sensors

Prepared by: Brian Pickard Sensor Products Division Semiconductor Products Sector

INTRODUCTION

Motorola offers a wide variety of ported, pressure sensing devices which incorporate a hose barb and mounting tabs. They were designed to give the widest range of design flexibility. The hose barbs are $1/8'' (\approx 3 \text{ mm})$ diameter and the tabs have #6 mounting holes. These sizes are very common and should make installation relatively simple. More importantly, and often overlooked, are the techniques used in mounting and adapting the ported pressure sensors. This application note provides some recommendations on types of fasteners for mounting, how to use them with Motorola sensors, and identifies some suppliers. This document also recommends a variety of hoses, hose clamps, and their respective suppliers.

This information applies to all Motorola MPX pressure sensors with ported packages, which includes the packages shown in Figure 1.

Õ

Differential Port

Axial Port

Stovepipe Port

Figure 1. MPX Pressure Sensors with Ported Packages

Figure 2. Mounting Hardware

REV 1

C Motorola, Inc. 1997

A review of recommended mounting hardware, mount torque, hose applications, and hose clamps is also provic for reference.

MOUNTING HARDWARE

Mounting hardware is an integral part of package design Different applications will call for different types of hardware When choosing mounting hardware, there are three important factors:

- permanent versus removable
- application
- cost

The purpose of mounting hardware is not only to secure t sensor in place, but also to remove the stresses from t sensor leads. In addition, these stresses can be high if t hose is not properly secured to the sensor port. Screws, rive push-pins, and clips are a few types of hardware that can used. Refer to Figure 2.

LOGGER ALARM UNIT (ACS-5000)

FEATURES

Programmable delay

The alarm unit can be programmed to wait for a specified length of time after the logger reports an alarm state. In this way, the unit can ignore short periods in an alarm state and it will only sound after a more prolonged, continuous alarm event. The delay resets itself each time the logger reports that it is no longer in an alarm state.

A free software tool is available as an add-on to the GLM Windows software. To use the tool, the alarm unit is connected directly to the PC using the standard PC to logger interface lead (CAB-0007). When the tool is run from the Tools menu, the user is guided by on-screen instructions to program the delay as required.

Test button

The test button simulates an alarm condition while it is pressed, but without any delay. It has no other effect.

Clear Alarms Button

If the logger is set with latched alarms, it will continue to report a previous alarm condition even when it is no longer in an alarm state. This will result in the alarm unit sounding continually. The Clear Alarms button resets the alarm *in the logger*, which will remain off until the next time it crosses back into the alarm state. Consequently the alarm unit is silenced. The Clear Alarms button must be held down until a triple beep is heard.

Battery

The alarm unit is powered by a single, 9-volt PP3 or equivalent alkaline battery. To change the battery, the case must be opened using a cross-headed screwdriver. To avoid damage, take care not to touch the electronics or trap any wires. The unit gives a double beep on power-up.

Audible battery low warning

When the battery voltage falls below about 6 Volts the unit emits three rapid high-pitched beeps once every minute.

Volt-Free Relay Contacts

There is a built-in latching relay, which can be used to connect other devices to the alarm unit. Two sets of changeover contacts are available from a set of screw terminals inside the case. A label under the battery shows the arrangement of the terminals. A blanking plug in the side of the case allows cable access.

The relay operation reflects the state of the audible alarm (A small delay may be noticeable).

It is the user's responsibility to ensure that the relay contacts are used in a safe manner.

TINYVIEW LOGGERS (TV-)

FEATURES

Minimum, Maximum or Actual Readings

It is possible to record minimum, maximum or actual readings. For minimum and maximum readings, the recorded value at the end of each logging interval is calculated from readings taken during the interval. Therefore a minimum logging interval of 2 minutes is needed for these functions.

Alarms

TINYVIEW has two programmable alarms. Both use the LCD display to show an alarm state. Both are fully programmable for:

- i. Alarm trip point
- ii. Over or under value.
- iii. Latching or non-latching.

These can be cleared via the Windows software without interrupting the logging.

Display

A clock face symbol on the display indicates that the logger is set for delayed start.

If it is set to start logging when a magnet is applied to the case, this is indicated by a block symbol, with arrows on the screen pointing to where the magnet must be applied.

An arrow on the display points to a graph symbol when the unit is logging.

Numerical reading: Actual temperature or Relative Humidity level. For temperature, an arrow pointing to the bottom of the display indicates the units used (degrees Centigrade or Fahrenheit). The display is updated every four seconds. (Later models: every second when logging in seconds mode)

Alarm status is shown by the presence of Lo1, Lo2, Hi1 and Hi2 indicators at the top of the LCD.

Word 'STOP': Logger in stop mode.

Display blank: In stop mode the logger turns the display off after 5 minutes to preserve battery life. When you connect to the logger in GLM the display turns on again.

Word 'CAL': Indicates that the logger is due or nearly due for calibration. This will only appear on calibrated units and will not stop the logger functioning. The word CAL will also appear on calibrated units for a few seconds each time the battery is inserted. Uncalibrated units will display 'BATT' instead.

CARE OF UNIT

See also 'General Information' section. Do not open the unit for any purpose other than to change the battery, particularly with RH units, as calibration may be affected.

CALIBRATION

For critical applications, TINYVIEW can be supplied with a NAMAS traceable calibration certificate. All calibrated units are fitted with a tamper-proof seal and re-calibration date label. To assist you in maintaining calibration, all TINYVIEWs that have been calibrated will warn you when re-calibration date falls due by showing the word 'CAL' on the display every few seconds. This calibration warning can only be cleared by returning the unit to your supplier for calibration cancellation or an approved Calibration Service, which also includes battery and O-ring replacement, re-sealing and dating.

The period for which a calibration is valid will depend upon the type of logger.

Please note that the Manufacturers Warranty is NOT extended by the Calibration Service.

TWO CHANNEL LOGGERS

Readings are displayed alternately on the screen. The two channels must share the same start/stop times and logging intervals.

TINYTAG INTRINSICALLY SAFE LOGGERS (TGIS-)

INTRODUCTION

TINYTAG IS loggers are clearly distinguishable from standard TINYTAGs by their red case and the distinctive community mark shown on the label.

Internally the units have a special circuit board with various safety components added for approval.

NOTE: any modification will invalidate the Intrinsically Safe approval.

TINYTAG Intrinsically Safe Dataloggers are approved for use in hazardous areas to the following standard:

EEx ia IIC T4 (T_{amb}=40°C) T3 (T_{amb}=85°C) SCS Number: Ex 96D2069X

With the following warnings:

- Connection to the 3-pin socket (for serial communication to the host computer) may only be made when the TINYTAG IS logger is in the non-hazardous area and the installer shall ensure that the maximum voltage supplied does not exceed 125Vrms.
- ii. Only SAFT LS14250 cells may be used. Do not change in the hazardous area.
- iii. Static hazard do not rub with a dry cloth.

TINYTAG IS loggers are approved over the operating temperature range of -20° C to $+40^{\circ}$ C (-4° F to $+104^{\circ}$ F) for a T4 environment and -20° C to $+85^{\circ}$ C (-4° F to $+185^{\circ}$ F) for a T3 environment.

NOTE: Although the functional temperature range of the loggers may be wider than the approved range, the IS approval is only valid while operating within the approved range.

Please refer to the Certificate of Conformity supplied with each TINYTAG IS logger for further details about the approval.

Minimum, Maximum or Actual Readings

It is possible to record minimum, maximum or actual readings. For minimum and maximum readings, the recorded value at the end of each interval is calculated from readings taken during the logging interval. Therefore a minimum logging interval of 2 minutes is needed for these functions.

Alarms

The logger has two programmable alarms. Both use a Red LED indicator to show an alarm state. Both are fully programmable for:

- i. Alarm trip point
- ii. Over or under value.
- iii. Latching or non-latching.
- iv. One or two flashes.

The alarms can be cleared via the Windows software without interrupting the logging.

Red Alarm LED

One or two flashes as defined by the user when setting the alarms. If both alarms are triggered together, the red LED flashes 4 times.

This LED is not normally used at any other time, however if both LEDs flash brightly and rapidly together, the unit will not work. Remove and refit the battery. If the problem persists, return the unit for repair.

Green Status LED

Waiting delay start: 2 flashes every 4 sec

Logging (seconds): 1 flash every 3 sec

Logging (minutes): 1 flash every 4 sec

Storing a reading: 1 bright flash

Power Up: ON for several seconds

Note: Status indication may vary with very short logging intervals.

i) The maximum frequency input to guarantee no false readings is 50Hz although substantially higher frequencies may be allowed if very occasional false readings are acceptable (the higher the frequency the more false readings).

ii) The total number of counts, BEFORE the division, per LOGGING INTERVAL must not exceed 65535 counts otherwise the counter is reset to zero.

iii) In Seconds mode: The total number of counts per SECOND must not exceed 255 otherwise the counter is reset to zero.

iv) In Minutes mode: Total number of counts per ANY 4 SECOND period must not exceed 255 otherwise the counter is reset to zero.

COUNT INTERFACE DETAILS

Input Circuit Diagram

Debounce

A low pass filter on the input of TINYTAG RE-ED COUNT provides a basic level of input debounce for both digital and volt free switch inputs. If a volt free switch input is being used which requires further debounce this can be achieved by simply connecting an additional capacitor across the switch contacts (about 10nF should be sufficient). Note: Doing this will increase the minimum open time required. It is recommended that you test your circuit for switch bounce before using it. This can be done with the Current Reading option in GLM.

Count Errors

The first stored reading will always be zero. Readings which, after division, are greater than 255 will be stored as 255. In most applications the only other significant error will be that due to rounding after the division:

Max Rounding Error = +/- Divisor/2

In applications using short logging intervals there will be an additional error due to the slight variations which can occur in the length of the logging intervals (although these will average out over multiple readings):

With PC connected, the maximum interval deviation is +/- 200ms (except while offloading, when it can be as much as +/- 4s). Without PC connected it is +/- 20ms. (Note: The deviation will be greater than this during the first 3 seconds of the logging run.)

TINYTAG PLUS RE-ED for OEMs (circuit board only)

Please use the edge connector for all terminations, rather than soldering directly to the PCB. See individual datasheets for PCB dimensions and layout of the edge connector. Pins are numbered to suit a standard 20-way IDC female edge connector. Pins 1,2,19 and 20 are not used.

General Electrical Characteristics.

Pin	Signal	Description	Min	Tvp	Max
3	VBAT	O/P Supply* (using on-board battery)		3.6V	3.67V
3	VBAT	O/P Supply current available* (using on-board battery)		5mA	0107 1
3	VBAT	I/P Logger power requirement (if no battery fitted)	3.2V	3.6V	5.5V
3	VBAT	I/P Logger Current (if no on-board battery fitted)			5mA (Peak)
5	GLED	O/P Green LED anode (See Tinytag Plus section, Status indicator)	VBAT,	via series !	560 ohms
6	RLED	O/P Red LED anode (See Tinytag Plus section, Alarm indicator)	VBAT	via series !	560 ohms
7	TX-B	O/P Transmit RS232 data			
9	RX-A	I/P Receive RS232 data			
10	SENSE	O/P goes high from 150ms before reading (NOT TGPR-1200)	VBAT.	ria series	100k
12	VREF	O/P Reference when SENSE line is high (NOT TGPR-1200)		2.50V	
12	VREF	O/P Current available (NOT TGPR-1200)			125uA
17	GND	Signal and power Ground			
18	IN	Signal Input. See specific datasheets and previous pages for electric	al characte	ristics.	

DO NOT CONNECT TO ANY OTHER PAD.

*Based on Saft LS14250 battery at 20°C (68°F). The current available improves with higher temperatures.

All output signals are Tri-state or passive when not in the active high state. These specifications are subject to change without prior notice.

Application Note (TGPR-0805 only)

When using a two-wire current output transducer with an XP TINYTAG RE-ED - mA, the negative supply of the transducer is also the current output and should be connected to the input of the XP.

TINYTAG PLUS RE-ED Voltage loggers (TGPR-0700, -0704, -0705 only)

Selecting Volt I/P Ranges

TINYTAG RE-ED - VOLT loggers are factory set with a range of 0 to 2500mV. Ranges of 10V and 25V can be selected on the internal switch (the O-ring may need to be replaced when the lid is removed). Re-educator software is required to change the range look-up table. Note: The applied voltage (relative to ground connection) must be no less than 0V or greater than 3.5, 14 or 35V for the 2.5, 10 and 25V ranges respectively.

Voltages outside of these ranges may permanently damage the unit. If 'input' is left unconnected on the 2.5V range, the input will float. On the other ranges it will pull down to 0V.

TINYTAG PLUS RE-ED Count loggers (TGPR-1200, -1201 only)

Introduction

TINYTAG RE-ED COUNT is designed to count pulses generated by an external circuit or a volt free switch. At the end of each logging interval the number of pulses counted during that interval is divided by a user programmable constant (from 1 to 256) and recorded as an 8 bit value. In this way count rates of over 65,000 per interval can be logged.

NOTE: Unlike TINYTAG loggers that record readings at discrete points in time e.g. temperature, TINYTAG RE-ED COUNT loggers record readings over time so the reading taken depends on the logging interval selected. This gives rise to some extra points which need to be considered:

- The property units are specified as 'per interval' - e.g. if one pulse from a flow meter represents one litre of liquid, then the units will be 'litres/interval'. Because these units are general, it is a good idea to state the specific interval being used as part of the Title, e.g. 'Water How per hour', in this way the interval will be clearly shown when the data is presented.

- The Current Reading becomes meaningless to some extent as the interval between readings is not user defined (it is about one second). Also, no division is applied to Current Readings, regardless of any that has been set. The Current Reading is however a useful test tool, and so has been left available except while logging.

- The alarms and data statistics are of limited use with TINYTAG RE-ED COUNT although, by setting an alarm condition as greater than zero, a total count may be calculated from the statistics using the following formula:

Total counts = Area in alarm condition x

1 hour logging interval

NOTE: Depending on what property is being recorded by a counting logger, the data collected may be transient in nature. If this is the case it is important that no data points are omitted when plotting the data (unlike, say temperature, where on a large dataset every other point or so may be plotted to speed up the drawing process without any loss of visible detail). GLM gives an option to always plot all of the data points.

When using Re-Educator with TINYTAG RE-ED COUNT remember to:

i) Include 'per interval' in the property units e.g. People/interval.

ii) Ensure that any algorithms that may be used take account of the input division that is set.

iii) Delete any algorithms that apply to a different input division.

COUNT INPUT SPECIFICATION

Digital

Low level:	-0.5V to 1V
High level:	2.5V to 10V
Min pulse width:	150µs (@5V)
Min pulse separation	: 150µs (@5V)
Input impedance:	>100kohms
Max input frequency:	50Hz (subject to restrictions below)
Edge detection:	ligh to Low transition.

Volt Free Switch

 Switch type:
 Normally open contacts with minimal bounce.

 Min closed time:
 150µs

 Min open time:
 500µs

 Max input frequency:
 50Hz (subject to restrictions below)

 Edge detection:
 Open to Closed transition.

Frequency and Count Restrictions

In order to get reliable data from TINYTAG RE-ED COUNT it is very important that the following restrictions are adhered to:

TINYTAG PLUS RE-EDUCATABLE LOGGERS (TGPR-)

FEATURES

Minimum, Maximum or Actual Readings, LED Indicators: As for Tinytag Plus.

XP - External Power Supply (TGPR- 0705, -0805, 1002 only)

XP TINYTAG PLUS RE-ED has a 12V battery pack inside as standard, which enables a wide range of commercially available sensors and transducers to be used without the need for an additional power supply. This power is switched on only when readings are taken (allowing 8 seconds for the sensor to stabilise) which greatly extends battery life. This battery also powers the status and alarm LEDs further increasing the life of the XP TINYTAG PLUS RE-ED's separate internal lithium battery supply. NOTE: whenever the XP is linked to the host computer, the external supply line is active.

RE-EDUCATOR SOFTWARE

The re-educator software runs in the Windows environment and allows the replacement of:

- Data conversion tables
- Property names and units
- Overall logger name

With TINYTAG RE-ED COUNT it also allows setting the input division (See the COUNT section of this manual for details). It does not allow the replacement of serial numbers or modification of existing data. For further details see the Re-educator software manual.

ADDITIONAL INFORMATION

HARDWARE CONNECTOR WIRING

(For OEM users all connections should be made via the PCB edge connector as detailed in the separate section.)

(TGPR-0804, -1001, -1201)

Name	Colour	Pin
Input	Red	В
Ground	Blue	A

(TGPR-0704, -0705, -0805, -1002)

Name	Colour	Pin		
Input	Yellow	E		
Ground	Black	D		
Sense (TGPR-0704 only)	White	С		
External Power (XPs only)	Green	B		
2.5V ref	Red	A		

Line details

Input: On Volt and mV units this is the (dc) input voltage to be measured. On mA units it is the current input. On count units it can either be connected via a switch to Ground or used as a digital input (See TINYTAG RE-ED COUNT section for detailed specification). On all units this pin must not be held negative with respect to ground.

Ground: Common power supply ground (where applicable) and voltage signal ground.

Sense: (not XP, or mV/mA except OEM) A trigger signal which can be used to switch the power to external circuitry during a reading. Power goes high (3.5V), 150ms before the A/D takes a reading. A 100k resistor is fitted in series with the sense line to protect it from overload.

Power: This line is available in XP units only. 12 Volt power output used to power external circuitry during a reading. Power goes high (12V), 8 seconds before the A/D takes a reading, to allow external circuitry to stabilise. Max. recommended load current: 50mA with a voltage drop of 0.4V. Current is internally limited to 80mA.

2.5V ref.: Reference signal during reading (FSD for 2.5V range). The Maximum load that can be applied is 20K to GND.

- The property units are specified as 'mm per interval'. Because these units are general, it is a good idea to state the specific interval being used as part of the Title, e.g. 'Summer Rain mm/day', in this way the interval will be clearly shown when the data is presented.

- The Current Reading option is meaningless.

- The alarms and data statistics are of limited use with TINYTAG PLUS RAINFALL although, by setting an alarm condition as greater than zero, the total rainfall for a period may be calculated from the statistics using the following formula:

Total = Area in alarm x = 1 hour

Rainfall condition logging interval

NOTE: Because a plot of rainfall can be transient in nature, it is important that no data points are omitted when plotting the data (unlike, say temperature, where on a large dataset every other point or so may be plotted to speed up the drawing process without any loss of visible detail). In GLM there is an option to always plot all of the data points.

Rainfall Logger Errors

The first stored reading will always be zero.

Because the error is 'per interval' it is cumulative over multiple readings. For this reason short logging intervals - especially when combined with low rainfalls - should be avoided in order to minimise error.

With very heavy rainfall additional errors may be encountered due to raindrops splashing over the side of the gauge.

-TINYTAG PLUS LEAF WETNESS LOGGER TGP-0903

The Leaf Wetness Logger is aimed at agricultural/ horticultural users who need to determine the proportion of time for which leaves are wet. The Leaf Wetness Logger uses an artificial leaf type of sensor manufactured by Campbell Scientific (Model 237). The sensor consists of a circuit board with interlaced gold- plated copper fingers. Condensation on the sensor lowers the resistance between the fingers, which is measured by the logger. The resistance of the sensor varies from over 3 Meg Ω when dry to about $1k\Omega$ when submersed in water. Droplets small enough not to touch two fingers simultaneously do not affect the sensor resistance. For this reason, this type of sensor is often coated with flat latex paint to spread the water droplets. The colour and type of paint affects sensor performance. Only the raw sensor is supplied since individual modifications vary depending on the application.

The following scientific paper details the effect of paint colour and sensor angle on the response of the leaf wetness sensor:

Gillespie, T.J. and Kidd, G.E. 1978. 'Sensing duration of leaf moisture retention using electrical impedance grids' Can. J. Plant Sci. 58:179-187.

NOTE: The sensor's resistance is artificially reduced by contaminants such as fingerprints and smudges. Before painting or calibrating the sensor, wash it with alcohol to remove possible contaminants.

Leaf Wetness: Units of Measurement

Because the measured resistance of the grid will depend not only on the wetness, but also on many other different factors such as coatings on the grid and impurities in the water (pure water does not conduct electricity), it is not possible to calibrate the logger with an absolute scale of wetness. For this reason the Leaf Wetness Logger is calibrated in arbitrary units of percent wetness based on the resistance of the grid as follows:

Wetness	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Grid Resistance (kΩ)	8200	2200	1160	720	478	326	221	144	86	40	3

Leaf wetness Logger Accuracy

The variation in percent wetness for a given 'leaf' resistance (i.e. interchangeability between loggers) is ± 2% wetness.

Due to the high resistances that must be measured, the Leaf Wetness Logger may be susceptible to additional errors due to noise if electrical machinery is operated nearby.

Wet/Dry Transition Point

Before the fraction of time wet or dry can be calculated, the wet/dry transition point must be found.

A sharp change in resistance occurs in the wet/dry transition on the un-coated sensor, while the coated sensors have a poorly defined transition. The resistance of the un-coated sensor at the wet/dry transition is normally between $50k\Omega$ and $200k\Omega$. The coated sensor transition normally occurs from $20k\Omega$ to above $1M\Omega$.

Leaf Wetness Sensor Calibration

For best results, the leaf wetness sensor should be field calibrated, since the transition point will vary for different areas and vegetation. Set the logger with a short logging interval (say 1 minute) and place the sensor among the vegetation whose wetness is to be monitored. Then observe the vegetation until it reaches the desired wetness by natural means and note the time. The logger can then be offloaded and the transition point found.

Tip for using Leaf Wetness Loggers with GLM software:

Once the wet/dry transition point has been found, set an alarm for readings over this level. GLM will then calculate the total time spent in the wet state for you.
TINYTAG TRANSIT, ULTRA & PLUS LOGGERS (TG-, TGU2K-, TGU-, TGP-)

FEATURES

Minimum, Maximum or Actual Readings

It is possible to record minimum, maximum or actual readings. For minimum and maximum readings, the recorded value at the end of each logging interval is calculated from readings taken during the interval. Therefore a logging interval of at least 2 minutes is needed for these functions.

LED Indicators

These loggers have a red alarm indicator and a green status indicator. In Tinytag Transit loggers they shine through the base of the case, while in other loggers there are coloured lenses on the outside of the box.

Red Alarm Indicator

The logger has two programmable alarms. Both are fully programmable for:

- i. Alarm trip point
- ii. Over or under value.
- iii. Latching or non-latching.
- iv. One or two flashes.

If both alarms are triggered the red LED flashes 4 times.

The alarms can be cleared via the Windows software without interrupting the logging.

When the unit stops logging, the red LED gives one bright, half-second flash.

This LED is not normally used at any other time, however if both LEDs flash brightly and rapidly together, the unit will not work. Remove and refit the battery. If the problem persists, return the unit for repair.

Green Status Indicator

Waiting delay start: 2 flashes every 4 sec

Logging (seconds): 1 flash every 3 sec

Logging (minutes): 1 flash every 4 sec

Storing a reading: 1 bright flash

Power Up: On for several seconds

Note: Status indication may vary with very short logging intervals. While in alarm condition, LED indicators override logging indication.

CARE OF UNIT

See also 'General Information' section. Tinytag Transit and Tinytag Ultra only give limited resistance against ingress of moisture. When used outdoors they must be placed with the base facing downwards. To open a Tinytag Transit case, grip the lid in one hand and the hanging tab in the other, and gently ease apart the two halves of the container. To open a Tinytag Ultra, gently ease apart the tabs at the sides of the container to release the lid.

TWO CHANNEL LOGGERS

Two channel loggers behave the same way as single channel ones, but the two channels must share the same start times, logging intervals and stop times.

TINYTAG LOGGERS - ADDITIONAL INFORMATION

-TINYTAG PLUS SHOCK LOGGERS TGP-0605, TGP-0610

The SHOCK logger records the maximum acceleration that it experiences during each logging interval, but not its direction. The maximum survivable shock for all models is 300g. (2940 m/s²)

To achieve the stated accuracy, the permitted operating temperature range is -40° C to $+70^{\circ}$ C (-40° F to 158° F). TNYTAG PLUS loggers are designed to operate up to $+85^{\circ}$ C (185° F), however accuracy is not guaranteed.

-TINYTAG PLUS VIBRATION LOGGER TGP-0650

the VIBRATION logger records perturbation levels at discrete time intervals. The frequency response of the unit is 20Hz to 1kHz. The logger is less sensitive to vibrations outside this frequency range.

To achieve the stated accuracy, the permitted operating temperature range is -40°C to +70°C (-40°F to 158°F). TNYTAG PLUS loggers are designed to operate up to +85°C (185°F), however accuracy is not guaranteed.

-TINYTAG PLUS RAINFALL LOGGER TGP-0901

Introduction

TINYTAG PLUS RAINFALL is a counting logger that has been integrated with a simple rain gauge. Rain collected over a 5000mm² area passes through the gauge forming into drops of known volume. These drops are then counted and the rainfall in mm/interval calculated and stored. NOTE: because the rain gauge senses the drops by measuring their conductivity, it may not function in areas where the rain is exceptionally pure, as pure water does not conduct electricity.

Unlike TINYTAG loggers that record readings at discrete points in time e.g. temperature, TINYTAG PLUS RAINFALL loggers record readings over time so the reading taken depends on the logging interval selected. This gives rise to some extra points which need to be considered:

TINYTALK LOGGERS (TK-)

Green Status LED

Waiting delay start: 2 flashes every 4 secLogging:1 flash every 3 secStoring a reading:1 short, bright flashWhen logger stops:1 half-second bright flashPower Up:On for several seconds

CARE OF UNIT

See also 'General Information' section. To remove the unit from its container, gently squeeze the sides of the canister.

TINYTALK VOLT LOGGER

Selecting Volt I/P Ranges

TINYTALK - VOLT is factory set with a range of 0 to 2500mV. Ranges of 10V and 25V can be selected on the internal switch. Reeducator software is required to change the range look-up table, property names and units and overall logger name. It does not allow the replacement of serial numbers or modification of existing data. For further details see the Re-educator software manual.

Connector Wiring

Name	Colour	Pin
Input	Yellow	Ring
Ground	Black	Outer
Sense	White	Tip

Line details

Input: This is the (dc) input voltage to be measured.

Note: The applied voltage (relative to ground connection) must be no less than 0V or greater than 3.5, 14 or 35V for the 2.5, 10 and 25V ranges respectively. Voltages outside of these ranges may permanently damage the unit. If 'input' is left unconnected on the 2.5V range, the input will float. On the other ranges it will pull down to 0V.

Ground: Voltage signal ground.

Sense: A trigger signal that can be used to switch the power to external circuitry during a reading. Power goes high (3.5V), 150ms before the A/D takes a reading. A 100k resistor is fitted in series with the sense line to protect it from overload.

Introduction

The 'Getting Started' guide supplied with every logger provides the basic information needed to launch and offload loggers. It also contains guarantee information.

This manual gives the user a guide to the features and correct use of the products in the Gemini range. For full details of the specification for your particular product, please see the datasheet for that product.

For more detailed information on how to use the host software, please refer to the on-screen Help within the software.

General Information

CARE OF UNIT

Care must be taken to ensure that no dirt or moisture gets into the logger or any connectors. Moisture will cause the unit to stop recording and can lead to corrosion. Protection ratings of all loggers are only valid when lids and connectors are all securely fitted. In some models, the orientation of the case also affects the level of protection against ingress of moisture and dirt. Where any logger has been used in cold conditions, allow it to warm to room temperature prior to opening or removing connector caps, to prevent condensation forming inside. Should Tinytalk, Tinytag Transit or Tinytag Ultra electronics accidentally get wet, remove the battery immediately, wash the unit in fresh water (avoiding the RH sensor, where fitted) and dry completely before re-installing the battery. Care should be taken when handling the unit once out of the container, since it may be damaged by static electricity.

Battery Life

The life of the battery varies considerably depending on the logger type and how it is used. To maximise battery life, use longer logging intervals (in minutes mode) if possible, and do not leave the logger connected to the host computer for long periods. Disable any alarms when not in use. Low temperatures also reduce battery life.

RH LOGGERS: Sensor Working Range

RH Sensor working range

Note: If wetted the sensor may take up to 30 minutes to recover. For high humidity or applications with significant temperature changes, it is advisable to use Tinytag Plus RH data logger, Part No. TGP-0304, which has an IP68 waterproof case.

Gemini Data Loggers

Data Logger Manual

9800-4401 Issue 2: 8th Jan 2001 E&OE

. . .

WARNING

Please be sure to read the Warnings Section in the Getting Started Guide before using your data logger.

Contents

¢

Introduction

General Information

Care of Unit

Relative Humidity loggers

TINYTALK LOGGERS (TK-)

FEATURES

CARE OF UNIT ADDITIONAL INFORMATION -TINYTALK VOLT LOGGERS

TINYTAG TRANSIT, TINYTAG ULTRA and TINYTAG PLUS LOGGERS (TG-, TGU2K-, TGU-, TGP-)

FEATURES

CARE OF UNIT

TWO CHANNEL LOGGERS

ADDITIONAL INFORMATION

-TINYTAG PLUS SHOCK LOGGERS unless details added to datasheet. -TINYTAG PLUS VIBRATION LOGGER unless details added to datasheet. -TINYTAG PLUS RAINFALL LOGGER -TINYTAG PLUS LEAF WETNESS LOGGER

TINYTAG PLUS RE-EDUCATABLE LOGGERS (TGPR-)

FEATURES

RE-EDUCATOR SOFTWARE

ADDITIONAL INFORMATION

-HARDWARE CONNECTOR WIRING -TINYTAG PLUS RE-ED VOLTAGE LOGGERS -TINYTAG PLUS RE-ED COUNT LOGGERS -TINYTAG PLUS RE-ED FOR OEMS

TINYTAG INTRINSICALLY SAFE LOGGERS (TGIS-)

INTRODUCTION

FEATURES

TINYVIEW LOGGERS (TV-)

FEATURES

CARE OF UNIT

CALIBRATION

TWO CHANNEL LOGGERS

LOGGER ALARM UNIT (ACS-5000)

APPENDIX E: MANUFACTURER'S SPECIFICATIONS

12月些

GEMINI DATA LOGGERS MOTOROLA PRESSURE TRANSDUCER

Parts List for Tiny Talk Timer Interfaces

Component Details	Supplier	Cost / Item	QTY	Cost
Single sided PCB	UNP Electronics Centre	R 5.00	1	R 5.00
pic12C508A-04SM UCB 160	Avnett Kopp	R 7.49	1	R 7.49
LM 2936M-5.0 Low Drop out 5V regulator (SMD)	Arrow Altec	R 8.96	1	R 8.96
32.768KHz XTL	Electrocomp Components	R 0.98	1	R 0.98
100n 0805 SM chip capacitor	Electrocomp Components	R 0.15	2	R 0.30
15p 0805 SM chip capacitor	Electrocomp Components	R 0.04	2	R 0.08
100k 0805 SM resistor	Electrocomp Components	R 0.03	1	R 0.03
10k 0805 SM resistor 1%	Electrocomp Components	R 0.04	2	R 0.08
1k 0805 SM resistor	Electrocomp Components	R 0.03	2	R 0.06
100uF 16V radial capacitor	Electrocomp Components	R 0.16	1	R 0.16
BC807-40 SOT23 Transistor	Electrocomp Components	R 0.20	1	R 0.20
100m Blue 0.4mm Panel Wire	A1 Radio	R 50.00	1	R 50.00
100m Red 0.4mm Panel Wire	A1 Radio	R 50.00	1	R 50.00
100m Black 0.4mm Panel Wire	A1 Radio	R 50.00	1	R 50.00
MPX5100DP Transducer	Avnett Kopp	R 160.00	1	R 160.00
Total cost				R 333.34

Logger Timer Circuit

APPENDIX D: CIRCUIT DIAGRAM AND COSTING FOR THE WATER LEVEL MONITORS

EXAMPLE OF DATA RETRIEVED FROM WATER LEVEL MONITORS AND PROCESSED Mhlanga Estuary

Calibration constant (c)=

2.24

```
(Processed data = \Delta WL + \Delta P + Measured)
```

Date & time	Voltage (mV)	Change in Voltage (∆V)	Change in water level =∆V*c (mm)	Change in Pressure (mm)	Photos (mm)	Measured (mm)	Processed data (mm)
30/05/03 11:00	1010	0	0	0	1908	1884	1884.0
30/05/03 12:00	1000	-10	-22.4	9.185			1870.8
30/05/03 13:00	990	-20	-44.8	22.453			1861.7
30/05/03 14:00	990	-20	-44.8	25.514			1864.7
30/05/03 15:00	990	-20	-44.8	27.555			1866.8
30/05/03 16:00	990	-20	-44.8	27.555			1866.8
30/05/03 17:00	1000	-10	-22.4	18.370			1880.0
30/05/03 18:00	1000	- <u>10</u>	-22.4	13.267			1874.9
30/05/03 19:00	1010	0	0	3.062	ļ		1887.1
30/05/03 20:00	1010	0	0	1.021			1885.0
30/05/03 21:00	1010	0	0	0.000	ļ		1884.0
30/05/03 22:00	1020	10	22.4	-4.082			1902.3
30/05/03 23:00	1020	10	22.4	-4.082			1902.3
31/05/03 00:00	1020	10	22.4	0.000			1906.4
31/05/03 01:00	1020	10	22.4	-3.062			1903.3
31/05/03 02:00	1020	10	22.4	1.021	+		1907.4
31/05/03 03:00	1020	10	22.4	2.041			1908.4
31/05/03 04:00	1020		22.4	0.123	┨────		1912.5
31/05/03 05:00	1020	10	22.4	8.165			1914.6
31/05/03 06:00	1030	20	44.8	4.082			1932.9
31/05/03 07:00	1030	20	44.0	0.000			1928.8
31/05/03 08:00	1040	30	67.2	-4.002			1947.1
31/05/03 09:00	1040	30	67.2	-9.100	-		1942.0
31/05/03 10:00	1040		67.2	-7.144	<u> </u>		1944.1
31/05/03 11:00	1040	30	44.8	12 247	-		1930.3
31/05/03 12:00	1030	20	44.0	10 301		<u> </u>	1941.0
31/05/03 13:00	1030	20	44.0	23 473			1940.2
31/05/03 15:00	1030	20	44.8	25.514			1952.3
31/05/03 16:00	1020	10	22.4	23.473			1929.9
31/05/03 17:00	1030	20	44.8	22.453	-		1951.3
31/05/03 18:00	1030	20	44.8	18,370	-		1947.2
31/05/03 19:00	1040	30	67.2	16.329	-		1967.5
31/05/03 20:00	1040	30	67.2	7.144			1958.3
31/05/03 21:00	1040	30	67.2	8.165			1959.4
31/05/03 22:00	1050	40	89.6	7.144	_		1980.7
31/05/03 23:00	1050	40	89.6	12.247			1985.8
01/06/03 00:00	1050	40	89.6	10.937			1984.5
01/06/03 01:00	1050	40	89.6	12.978			1986.6
01/06/03 02:00	1050	40	89.6	17.061			1990.7
01/06/03 03:00	1050	40	89.6	17.061			1990.7
01/06/03 04:00	1050	40	89.6	24.206			1997.8
01/06/03 05:00	1050	40	89.6	23.185			1996.8
01/06/03 06:00	1050	40	89.6	17.061			1990.7
01/06/03 07:00	1050	40	89.6	18.082			1991.7
01/06/03 08:00	1060	50	112	15.020			2011.0
01/06/03 09:00	1060	50	112	16.041			2012.0
01/06/03 10:00	1060	50	112	20.123			2016.1
01/06/03 11:00	1060		112	30.330			2026.3
01/06/03 12:00	1050	40	89.6	40.537			2014.1
01/06/03 13:00	1040	20	01.2	40.002			1997.9
01/06/03 14:00	1030	10	44.0	66.055			1989.8
01/06/03 15:00	1020	10	22.4	60.000			19/2.5
01/06/03 17:00	1020	20	<u> </u>	67.076			19/5.5
01/06/03 18:00	1030	20	<u>44.0</u> 67.0	60.051			1995.9
01/06/03 10:00	1040	30	67.2	57 890			2012.2
01/06/03 20:00	1040	30	67.2	50.021	<u> </u>	+	2009.1
01/06/03 21:00	1040	30	67.2	62.002		+	2011.1
01/06/03 22:00	1040	30	67.2	62 002			2014.2
01/06/03 23:00	1050	40	80.6	60 117		┥────	2014.2
01/00/20.00		<u> </u>	03.0	03.117		1	2042.7

APPENDIX H: SALINITY DATA

Date	Time	Estuary	Tidal	Salinity profile	Salinity
		State	Situation		Range (ppt)
20 Mar 02	10:40	Closed	3 days	Vertical	1.1-27.7
		(day 10)	before neap	stratification	
19 Apr 02	12:30	Open	1 day before	Longitudinal	0.3-1.8
-		(day 2)	neap (low)	stratification	
21 May 02	13:30	Open	1 day after	Vertical	1.1-20.9
		(day 1)	neap (high)	stratification	
19 Jun 02	14:30	Partially	1 day after	Vertical	0.6-21.3
		open	neap (mid)	stratification	
		(day 3)			
18 Jul 02	12:00	Open	1 day after	Vertical	0.5-26.2
		(day 11)	neap (high)	stratification	
16 Aug 02	12:30	Partially	1 day before	Fresh intrusion	0.2-20.4
		open	neap (mid)	at head, saline	
		(day 2)		at mouth	
13 Sept 02	12:50	Closed	2 days	Vertical	2.5-28.3
		(day 3)	before neap	stratification	
15 Oct 02	14:30	Closed	1 day after	Dominated by	0.9-22
		(day 10)	neap	brackish water	
13 Nov 02	12:40	Partially	1 day after	Some vertical	1.5-19.4
		open	neap (high)	stratification	
		(day 3)			
10 Dec 02	14:20	Open	2 days	Longitudinal	0.3-25.2
		(day 4)	before neap	stratification	
			(low)		
23 Jan 03	13:00	Open	3 days	Fresh	0.1-0.2
		(day 7)	before neap		
			(low)		
10 Feb 03	10:00	Closed	neap	Slight Vertical	0.8-9.9
		(day 1)		stratification	

Summary of salinity data recorded at Mhlanga Estuary.

Notes:

Tidal situation given was taken from Hopper 2003, and is the estimated tide for Durban.

Date	Time	Estuary	Tidal	Salinity profile	Salinity
		State	Situation		Range (ppt)
19 Mar 02	10:40*	Open *	4 days		1.6-16
			before neap		
18 Apr 02	10:50	Open	2 days	Slight	0-1
-		(day 1)	before neap	longitudinal	
			(low)	stratification	
22 May 02	12:40	Closed *	2 days after	Mixed - Low	1.2-2.4
			neap	salinity	
20 Jun 02	13:45	Closed	2 days after	Mixed - Fresh	0.3-0.4
		(day 19)	neap		
17 Jul 02	11:00-	Closed	Neap	Fresh, salinity	0.2-0.3
	13:00	(day 46)		increase	
				towards mouth	
15 Aug 02	11:30	Partially	2 days	Slight vertical	0.2-1.7
		Open	before neap	stratification	
		(day 3)	(mid)		
12 Sept 02	12:00	Partially	3 days	Increased	5.7-20.4
		Open	before neap	salinity with	
		(day 1)	(low)	depth	
16 Oct 02	13:00	Open	2 days after	none	1-23.9
		(day 1)	neap (high)		
13 Nov 02	13:50	Closed	1 day after	Low salinity,	0.5-0.9
		(day 13)	neap	highest salinity	
				at mouth	
9 Dec 02	16:30	Closed *	3 days	Fresh, salinity	0.1-0.3
			before neap	increase	
			[-	towards mouth	
22 Jan 03	12:10	Open	4 days	Fresh.	0.1-0.3
		(day 1)	before neap	(Flooding	
			(low)	event)	
19 Feb 03	11:00	Closed	6 days	Highest salinity	1.1-8.4
		(day 11)	before neap	in bottom layers	
				near mouth	

Summary of salinity data recorded at Mdloti Estuary.

Notes:

Tidal situation given was taken from Hopper 2003, and is the estimated tide for Durban. *Data missing

