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Abstract

Despite various efforts by multilateral agencies and governments to prevent, control and
eliminate malaria, it continues to be a major plague with more than 300 million at risk of
infection worldwide. In Kenya, it is still a leading cause of morbidity and mortality, affecting
more than 70% of the population. Malaria is endemic in most parts of the country with either
high to moderate transmission patterns or seasonal epidemic patterns. Statistics from the
ministry of health records show that it accounts for about 30% of outpatient care and 20% of
the admissions in hospitals nationwide. Therefore, it is important to constantly review and
understand the epidemiology, and the risk factors associated with malaria infection. Such
efforts will help the government and the multilateral agencies in their planning, monitoring
and evaluation efforts to control and eventually eradicate malaria.

The main objective of the study was to identify the risk factors associated with malaria
infection in children under the age of fourteen years. To achieve this, three different statisti-
cal methods for analysing complex survey data with a binary outcome, with both linear and
non-linear covariates were used. The data used was obtained from a household survey con-
ducted by the government of Kenya in the year 2010 during the peak malaria transmission
period. A total of 240 clusters with 30 households in each cluster was sampled from highland
epidemic, lake endemic, coastal endemic, seasonal risk and low risk epidemiological regions
of Kenya. Probability weights were assigned at each stage of sampling to provide accurate
estimates. A total of 11, 310 children between 3 months and 14 years were the identified
study subjects.

To account for the complexity in the sampling design, survey logistic regression (SLR),
a special model under the generalized linear models (GLM) framework was used to identify
the risk factors associated with childhood malaria infections. However, the SLR model fails
to account for variability arising from correlation between subjects from the same household
and clusters. Therefore, the generalized linear mixed effects model (GLMM) was also ap-
plied to the data. To relax the assumptions of normality and linearity in the two parametric
models, the semi-parametric generalized additive mixed effects model (GAMM), was finally
applied to the data.
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The findings of the study showed that age of the child, cluster altitude in metres, region,
place of residence, type of housing structure, availability of toilet facilities, use of insecti-
cide treated bed nets and mother’s level of education were the key determinants of the risk
malaria. In the fight to control and eliminate malaria, the results of the study can aid in
policy formulation.
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Chapter 1

Introduction

Malaria is an infectious disease that continues to cause morbidity and mortality in children.

According to theWHO (2015) statistics, there were 214 million reported malaria cases with

438, 000 deaths of with the African region accounting for 88%. This region has temperate

climatic conditions that provides a conducive environment for the Plasmodium parasite that

is responsible for malaria, to breed and mature rapidly. The region is also characterized

by abject poverty and under-development (Gilles, 1981; Gallup and Sachs, 2001). In 2013,

malaria was the leading cause of death in Kenya resulting in 12.2% of the total recorded

deaths and accounting for 20% of the malaria incidences countrywide (Ministry of Health,

2015).

Malaria has a great impact on the livelihoods of individuals as well as the government due

to its effects on the economic growth. Several governmental and multilateral programs have

been established worldwide with the aim of combating and eliminating malaria. Some of the

measures that have been implemented include vector control through the use of insecticide

treated mosquito nets, indoor residual spraying, and basic care of the environment such

as clearing bushes and stagnated waters near homes. Prompt and accurate diagnosis and
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2 CHAPTER 1. INTRODUCTION

treatment of malaria using artemisinin based combination therapy (ACT), could also help

control and manage infections. As a result of these efforts, malaria cases and mortality due

to malaria declined by 18% and 48% respectively between the years 2000 and 2015 (WHO,

2015). There is still a need to study its epidemiology, and determine its prevalence and

risk factors particularly in Kenya and the sub-Saharan region. This will aid in identifying

challenges in intervention programs and policy reformulation.

1.1 Background

Lifecycle of the parasite

Malaria is a vector borne disease, transmitted from one person to another by the female

Anopheles mosquito. It is caused by protozoan parasites of the genus Plasmodium. The

most common species within the African region is the Plasmodium falciparum(Greenwood

et al., 2005). During a blood meal, the infected female mosquito bites the human host inject-

ing in to their blood stream the sporozoite form of the parasite. These reproduce asexually

in the liver cells to merozoites that invade the red blood cells and again multiply asexu-

ally releasing more merozoites (Bray and Garnham, 1982; Cox, 2010). This cycle continues

resulting in the invasion of many more uninfected red blood cells and may lead to severe

malaria complications. Some of the merozoites mature sexually to become gametocytes that

are taken up by the female anopheles mosquito during a blood meal.

In the mosquito, the ingested gametocytes differentiates, and matures into sporozite form of

the parasite that invades the salivary glands, ready to be injected on the human host during

feeding (Ghosh et al., 2000).

Environmental conditions such as temperature, rainfall and humidity play an important role
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in the survival of the mosquito, in the development of the malaria parasite in the mosquito,

and in the breeding and feeding habits of the vector (Hunter, 2003; Gemperli, 2013; Beck-

Johnson et al., 2013).

Some of the general symptoms of malaria include fever, general body weakness, vomiting,

shivers and chills, and joint aches. Severe malaria often caused by plasmodium falciparum

may lead to impaired consciousness, multiple convulsions, respiratory distress, acute pul-

monary oedema, shock, kidney failure, clinical jaundice and vital organ dysfunction (Min-

istry of public health and sanitation, 2010). Prompt diagnosis,treatment and vector control

measures are important to prevent and reduce severe malaria cases that may result in death.

1.2 Malaria in Kenya

Kenya is located in the Eastern parts of Africa, bordered by Ethiopia to the North, Sudan

to the North West, Somalia to the East, Tanzania to the South and Uganda to the West.

Administratively, it used to be divided into 8 provinces with 158 districts which are in turn

divided in to divisions, locations and sub-locations. With a new constitution promulgated in

2010, 47 counties were introduced, as administrative units, headed by governors. The 2009

population and housing census estimates the population to be 38.6 million people, with 32

percent living in urban areas and 43 percent of the population being under 15 years (KNBS,

2010).

It enjoys tropical climate, with four ecological zones namely; hot and humid climate at

the coast, temperate at the inland and higher altitudes, very dry at the north and north
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eastern parts of the country, and cool at the highland areas. It experiences two rainy sea-

sons, with long rains during the months of April to June and the short rains from October

to December. The temperatures, altitude, rainfall patterns and proximity to Lake Victoria

and the Indian Ocean impacts greatly on the malaria epidemiological zones.

Figure 1.1: Map of the malaria endemic regions of Kenya

The four malaria epidemiological zones as shown in Figure 1.1 are:

Endemic: These are areas around Lake Victoria in the western parts of Kenya and area

within the coastal region surrounded by the Indian Ocean.They lie within an altitude rang-

ing between 0 and 1, 300 metres. Malaria transmission is perennial due to temperature,
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humidity and rainfall effects.The life cycle of the vector is short with high survival rates due

to the favorable climatic conditions.

Seasonal transmission: These are the arid and semi-arid areas around the northern and

south-eastern parts of the country. Transmission of malaria occurs during the rainy season,

where water pools form breeding grounds for the vector and the high temperatures ensure

survival of the mosquito.

Highland epidemic prone areas of Kenya: These are western highlands of Kenya where

transmission is seasonal. These areas are characterized by low temperatures, that are not

suitable for vector breeding. In the rainy season, temperatures tend to increase providing

suitable conditions for vector breeding.

Low risk malaria areas: This region include Nairobi and the central highlands of Kenya

where transmission is relatively low due to low temperatures.

About 80% of the population is at risk for malaria with 27% living in the epidemic and

seasonal malaria prevalence (Ministry of Health, 2015).The Ministry of Health reports that

it accounts for 30% of the outpatient cases in health facilities and 19% of hospital admis-

sions(Division of Malaria control, 2009). In recognition of the health burden of malaria,

the Kenyan government has supported and implemented various programs to help control

malaria. The national malaria control program (NMCP) and the president’s malaria ini-

tiative are some initiatives that have been set-up between the government and other donor

organizations.The NMCP in particular set up a 10 year strategic plan,involving all sectors

of government, whose objective is to have a malaria free country achieved through inter-

nationally approved intervention measures. Routine household surveys such as the malaria

indicator survey and demographic and health surveys are conducted to evaluate whether

the objectives of such programs have been achieved. The Kenya malaria indicator survey

of 2010, was carried out to determine the progress towards reduction in malaria cases and
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deaths articulated in the national malaria strategy. This survey provided the data for this

study.

A number of studies have been carried out in Kenya to determine prevalence and risk fac-

tors for malaria. Most of which are hospital based investigating clinical malaria, community

based or undertaken in a particular endemic region (Atieli et al., 2009, 2011; Ernst et al.,

2009; Nevill et al., 1996; Njau et al., 2014; O’Meara et al., 2008; Ter Kuile et al., 2003).

Unlike other surveys, this is a nationally representative survey carried out during malaria

transmission peak period and included all children below the age of 14 years. The previous

surveys were limited to children under 5 years.

1.3 Risk factors associated with malaria

There are several risk factors that have been associated with malaria infections and they

include; age, gender, housing type/structure, proximity to vector breeding sites, ecological

location, household crowding, room size, use of vector control measures such as antimalarial

spraying, use of ITN bed nets, gender and wealth. These factors can be generalized in to

demographic, geographical factors, socio-economic factors and environmental factors.

1.3.1 Demographic factors

The demographic factors associated with malaria status in children are: age, gender, and

family size.

Age

Malaria is an infection that affects people of all ages but its severity differs from one individ-

ual to another depending on the immunity, proximity to the vector breeding sites, geographic
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and ecological factors. Genetic factors may also influence an individual’s susceptibility to

the disease, progression of the infection in the individual and ultimately the outcome of the

infection (Fortin et al., 2002).

One of the major causes of mortality and morbidity in children worldwide is malaria. Chil-

dren, particularly those under five years are susceptible due to their weak immune system

that is still developing. According to Unicef (2007), 1 in 10 deaths worldwide was as a result

of malaria while in sub-Saharan Africa malaria accounts for 1 in 5 deaths. Several research

studies have shown that during the malaria peak periods, the burden is higher in younger

age groups (Carneiro et al., 2010; Molineaux et al., 1980). This may be attributable to the

acquired immunity by the older populations as the malaria intensity progresses. Mortality

as a result of severe malaria differs with the age of the patients, but in high transmission

areas, the intensity is again higher among young children (Olliaro, 2008). However, due to

intensive intervention methods, studies have shown a shift in malaria morbidity from the

young children (under 5 years) to older children (between 5− 9 years) (Ceesay et al., 2008;

Greenwood et al., 1987; O’Meara et al., 2008; Peterson et al., 2009; Schellenberg et al., 2004).

Gender

Evidence from literature is inconclusive about the effect of gender on malaria risk. Most stud-

ies find no association between gender and malaria infection (Deressa et al., 2007). However

a study by Clark et al. (2008) finds that the human host genetic makeup influences the rate

of malaria incidence. They find that female children with glucose-6-phosphate dehydroge-

nase (G6PD) deficiency had lower risk of malaria infection. Haque et al. (2011) and Kateera

et al. (2015) find that male children had a higher risk of malaria infection compared to their

female counterparts due to behavioral differences.
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1.3.2 Social-economic factors

Some of the socio-economic factors that have been studied as indicators of the socio-economic

status of a household are; household income/wealth (Noor et al., 2006), type of housing con-

struction, and ownership of household assets such as radio, bicycle, and mobile phone.

Structure of the house

The risk of malaria infection has been closely linked to the type of housing structure (Ayele

et al., 2012; Chirebvu et al., 2014; Gamage-Mendis et al., 1991). The structure of the house

consists of the type of wall material, floor material and roofing material used in their con-

struction. The more traditional houses usually with large open eaves, thatched roofs without

ceilings, earth floors and mud walls, provide conducive environments for the mosquitoes to

rest and move easily thus increasing the risk of malaria (Snyman et al., 2015). Associated

with the housing construction was the socio-economic status of the household. Usually poor

households with low incomes lived in poorly constructed houses, thus had a greater risk of

malaria, while the more wealthy households lived in better constructed houses (Ayele et al.,

2013; Chirebvu et al., 2014).

Use of preventive and control measures

Some of the preventive and control measures for the prevention of malaria that have proved

to be significant are: use of insecticide treated mosquito nets (ITNs) and indoor residual

spraying (IRS). Mortality rates as a result of malaria infection decreased significantly by

7%, between 2000 and 2013, due to implementation of vector control measures, the use of

diagnostic testing and ACTs (WHO, 2014).

The most widely used measure is the ITNs due to its availability and affordability. They

are distributed freely to vulnerable groups particularly pregnant mothers and infants during

ante-natal and post natal care in the WHO endemic regions. However, the distribution of
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ITNs to the whole population at risk is usually hindered by lack of sufficient funding to

support the program. Evidence from various studies shows a link in reduction of malaria

mortality and morbidity in both adults and children due to the use of ITNs (Atieli et al.,

2011; Ter Kuile et al., 2003; Nevill et al., 1996; Nyarango et al., 2006). It’s use within house-

holds and amongst communities is affected by various factors such as the attitudes, gender,

and education level of the household head (Atieli et al., 2011); the number of mosquito nets

within households; and household income (Okrah et al., 2002).

The use of indoor residual spraying (IRS) has also been seen to reduce incidences of malaria

(Nyarango et al., 2006; Shiff, 2002; Snow, 2015). The eradication of malaria in Europe and

North America has been linked to the use of IRS particularly DDT (Carter and Mendis,

2002). In their study in Western Kenya Gimnig et al. (2016) find that the use of both ITN

and IRS resulted in the reduction in the prevalence of malaria infection.

Maternal education

One of the key determinants of proper care, treatment and control of tropical diseases is the

human attitudes and behavior (Mwenesi et al., 1995). Mothers are usually the first care-

givers to children because they spend more time with them and hence are able to detect any

changes in their children. Various studies have linked maternal education to improvement

in the health of household members particularly children (Caldwell and McDonald, 1982;

Medrano et al., 2008; Siri, 2014). In a cross sectional study, in three countries (Angola,

Tanzania and Uganda) Njau et al. (2014) confirms the analogy and finds that children with

educated mothers were less likely to have malaria infections.

Educated caregivers also provided a protection effect on the household members against

malaria infection due to knowledge on the malaria intervention methods such as case man-

agement, use of ITNs, vecto control, child immunization and intermittent preventative treat-

ment (ITP) for pregnant women (Keating et al., 2005; Noor et al., 2006; Siri, 2014).
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The socio-economic status of a household plays an important role on the health status of the

family members. Malaria has often been linked to poverty (Ayele et al., 2012) and occurs

more often in endemic regions that are characterized by poverty. Household income, place

of residence (either urban or rural setting), household structure and ownership of household

assets such television, radios, mobile phone, bicycles often characterize the socio-economic

status of families. Studies show that the lower the socio-economic status the greater the risk

for malaria (Ayele et al., 2012; Deressa et al., 2007; Yadav et al., 2014). It influences the abil-

ity of the family to take up treatment due to costs, live in clean and hygienic environments,

and acquire preventative paraphernalia such as ITNs.

1.3.3 Geographic and environmental factors

The geographic factors that have often been associated with malaria are the malaria endemic

region and altitude. These regions are often located in low altitudes, and ecological factors

such as temperature, rainfall and humidity play a role in determining the risk of malaria.

Temperature, rainfall and humidity influence the mosquito’s survival, the lifecycle of the

parasite in the mosquito, and the breeding and feeding habits of the vector (Hunter, 2003;

Gemperli, 2013). Many studies found the risk for malaria to decline with increasing altitude

(Ayele et al., 2012; Peterson et al., 2009). In Kenya malaria infection is high in the western

parts of the country and the coastal region, influenced by high rainfall, proximity to large

water bodies (Lake Victoria and Indian Ocean), low altitudes and high temperature (Chaves

et al., 2012). In the highland region of the country, at higher altitude with cooler temper-

atures, malaria has been associated with seasonal rainfall, vegetation cover, and distance

from swampy environments (Ernst et al., 2006, 2009).
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1.4 Objectives of the study

The main objective of this research is to identify the risk factors associated with malaria in

children below the age of 14 years. This will be achieved through applying different statistical

methods to our data. The data used in this study was collected through sampling survey

that has the following characteristics:

� Sampling weights due to unequal probability of an observation being selected

� Cluster sampling whereby individuals or households are selected as groups making up

the cluster.

� Stratification where homogeneous groups of clusters are sampled making up the strata.

This often results in correlation of observations between and within the clusters, non-response

by some subjects yielding biased results and the use of unequal sampling weights. In order

to account for the survey design and achieve our objective, the traditional logistic regression

method, would not be used for analysis of our data. Instead, we shall use survey logistic

regression method. The method is an example of the parametric generalized linear model

for fitting non-normal data and includes the survey attributes in making inference about the

parameter estimates.

Further, to cater for the subject specific random effects from the primary sampling unit,

generalized linear mixed effects model (GLMM) method was used to fit the data. The

GLMM is an extension of the GLM for modeling non-normal data by including both the

fixed effects and random effects in the linear predictor. Both the SLR method and the

GLMM are parametric methods that assume that the functional relationship between the

response and the covariates are known a priori. In order to model the non-linear relationship

between the response and effects of some of the covariates, a semi-parametric model, the
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generalized additive mixed effects model (GAMM), was also used. Semi-parametric models

are useful for modeling non-normal and non-linear data and account for over-dispersion and

correlation by adding random effects to the additive predictor in the data.

1.5 Thesis outline

The first chapter of this thesis gives the introduction and the background to the study. In

Chapter 2, a brief description of the data is provided through exploratory analysis of the data

set, and the prevalence of malaria by various factors such as age and region is determined.

Chapter 3 focuses on the class of generalized linear models (GLMs), particularly logistic

regression methods for modeling data with a binary outcome. Attention is drawn to the

survey logistic regression approach that is most applicable to our data set. A review of

the generalized linear mixed effects models (GLMMs) is provided in Chapter 4. The data

set is then fitted using GLMM to determine the factors associated with malaria incidence.

Chapter 5, examines the use of semi-parametric methods in analysis of binary outcome data

sets with non-normal and non-linear effects. Finally, Chapter 6 discusses and compares the

results from the various statistical methods applied to the data. Conclusions are drawn from

the discussions providing various limitations and possibilities for further research.



Chapter 2

Data presentation and description

2.1 Introduction

In this chapter, we describe the data set used in this study: The Kenya Malaria indica-

tor survey (2010). Descriptive data analysis was performed to determine the relationships

between the variables of interest. A chi-square test of independence analysis was equally

performed to determine the association between the covariates and malaria status.

2.2 Background

This study uses data obtained from the Kenya malaria indicator survey (KMIS), that was

carried out by the Government of Kenya, between June and August in 2010. This period is

identified as the malaria transmission peak period.

One of the objectives of the study was to assess the prevalence of malaria in children between

the ages of 3 months to 14 years. This would provide estimates on the prevalence of malaria

on a nation wide scale for urban and rural areas in the five malaria endemic regions of Kenya

13
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namely: Highland epidemic areas, lake endemic zone, coast endemic zone, seasonal risk areas

and low risk areas.

The survey used a two stage stratified cluster sampling, adopted from the national sample

survey and evaluation programme (NASSEP) IV sampling framework, that was developed

by the Kenya National Bureau of Statistics (KNBS). The first stage sampling involved the

selection of enumeration areas. A total of 1, 800 clusters were created, with probability

proportional to measure of size of the design frame and districts as strata. The second

stage cluster sampling involved the selection of households within each cluster for the survey

through simple random sampling.

From the sampling frame, 240 clusters were selected for the survey, and 30 households allo-

cated to each cluster, making a total of 7, 200 households to be used in the sample. From this

sample, children under the age of 14 years in each household, were to be tested for malaria and

women aged between 15 - 49 years were to be selected to participate in the individual survey.

Two types of questionnaires were used in the survey; a household questionnaire and an

individual questionnaire. The household questionnaire captured information on the house-

hold membership, age, gender and relations, household dwellings and characteristics such as

source of drinking water, type of toilet used, wall material for the house, roofing material

and floor material; household possessions, such as, ownership of television, radio, mobile

telephone, watches/clocks, bicycles e.t.c; net ownership and anti malarial spraying.

The individual questionnaire was given to consenting women, between the ages of 15 - 49

years of age, identified in the household questionnaire. The questionnaire captured details

on their background characteristics such as age, religion, education, reproductive health in-
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formation such as number of children, ante natal care, intermittent pregnancy treatment

during pregnancy and attitude towards malaria treatment and child survival.

Malaria testing was performed on children between 3 months and 14 years whose par-

ent/guardian provided a written consent during the household interview. Blood samples

were taken from children through a finger blood prick. On spot malaria testing was carried

out through rapid diagnostic malaria tests (RDT) using the CareStart® kit. Further, thick

and thin blood smear samples were obtained for each tested child for microscopic analysis

at the KEMRI/Walter Reed Project Malaria Diagnostic center Laboratory in Kisumu.

2.3 The Data sets

The KMIS 2010 was the second such survey ever conducted in Kenya after the first survey

in 2007. The 2007 survey, only covered children under the age of 5 years. On the other

hand, the KMIS 2010 survey assessed prevalence in children between 3 months and 15 years.

It was also a national representative survey as it included low to no transmission endemic

areas in its survey.

Out of the 7, 200 households selected for the survey, 6, 538 household heads were inter-

viewed, and 11, 310 children between 3 months and 14 years tested for malaria. A total of

5, 749 women aged 15 - 49 years took part in the individual questionnaire. The main variable

of interest in this survey is malaria status in children. A child is said to have malaria if their

blood samples tested through RDT, had malaria parasites. Therefore, the response variable

is binary, indicating whether a child has malaria or not.
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The independent variables of interest, are categorized as either demographic, geographical

or socio-economic variables and they are:

� Demographic variables including age and gender.

� Geographical variables include malaria endemic region and cluster altitude in metres.

� Socio-economic variables include: type of place of residence, wealth quantile, mothers

highest education level, source of drinking water, type of toilet facility, wall material,

floor material, roofing material, rooms used per person, mosquito nets used per person,

mosquito nets used for sleeping and anti malarial spraying.

Malaria status and mother’s highest education level were collected at an individual level.

While age, household possession, type of place of residence, wealth quantile, source of drink-

ing water, type of toilet facility, wall material, floor material, roofing material, rooms used

per person, mosquito nets used per person, mosquito nets used for sleeping and anti malarial

spraying were collected at household level.

2.4 Exploratory data analysis

Exploratory data analysis (EDA) is a fundamental step in data analysis and is used to de-

termine the relationships and associations between the variables of interest in a data set.

Cross tabulation was used to estimate associations between the response variable which is

malaria status and the predictor variables.

Table 2.1 summarizes the descriptive statistics, showing malaria prevalence in children by

the selected covariates.
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Table 2.1: Prevalence of malaria by selected covariates

Variable Percent N

Age

<1 8.1 530

1 7.4 876

2 10.3 957

3 9.9 935

4 11.7 934

5 13.1 890

6 14.4 849

7 15.7 773

8 15.0 765

9 14.0 649

10 13.4 826

11 13.9 590

12 13.6 618

13 11.9 603

14 12.2 515

Gender

Male 12.7 5620

Female 11.8 5690

Region

Highland endemic 3.0 2559

Lake endemic 41.7 2883

Moderate area 5.0 1732

Seasonal risk 0.5 2153

Low risk 0.6 1983

Type of place of residence

Urban 4.0 1224

Rural 13.3 10086

Wealth quantile

Richest 5.4 1807

Richer 11.6 2085

Middle 13.8 2572

Poorer 14.9 2349

Poorest 13.7 2467

Mother’s highest education
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No education 7.8 1300

Primary Incomplete 15.6 2244

Primary complete 10.9 1562

Secondary Incomplete 13.1 451

Secondary complete 5.1 611

Higher 5.8 241

Toilet facility

Toilet with flush 1.5 468

Pit latrine 12.4 8682

No facility 14.5 2046

Source of Drinking water

Piped 5.7 2907

Borehole/well 16.8 3921

Springs/Rivers/lakes/dams 12.8 4366

Floor material

Earth/sand 5.7 5288

Dung 29.5 3105

Cement/tiles 5.8 2847

Roof Material

Thatch 15.2 2725

Sticks/mud 13.5 104

Wood/plastic 4.0 101

Corrugated iron 11.5 8208

Cement 4.3 94

Wall Material

Plastic/paper 20.8 24

Mud 17.1 6501

Wood/bamboo planks 1.8 1528

Cement 4.9 1644

Anti-malarial spraying

Yes 17.2 1654

No 11.4 9561

Use of Mosquito nets

Yes 13.6 7532

No 9.8 3918
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The data analyzed in the study consisted of 6, 538 households from the 240 clusters, and

the number of children eligible for malaria testing was 11, 711 children. Out of these, only

11, 310 children were tested for malaria. The overall prevalence of malaria in children was

found to be 12.3%. From Figure 2.1, children aged 7 years had the highest prevalence rate

for malaria at 15.7%. At lower ages between 3 months and 2 years, the prevalence rate

is lower but seems to increase at each subsequent age group and then starts to decline for

children in the 8 year to 14 year age groups.

Figure 2.1: Prevalence of malaria by age
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Figure 2.2 shows the prevalence of malaria in each of the different malaria endemic regions.

It is evident that, there is a huge disparity in malaria prevalence across the endemicity

regions. Out of all households living in the lake endemic region, 41.7% of them have children

with malaria infection. In comparison, only 3% and 5% of households located in the highland

and moderate endemic areas respectively, and less than one per cent of households within

the seasonal risk and low risk regions, have children with malaria infection. Moreover, the

prevalence of malaria in the rural area is more than thrice, that in the urban area.

Figure 2.2: Prevalence of malaria by region

Figure 2.3 shows the prevalence of malaria by place of residence. It indicates that 13.3%

of rural based households and 4% urban situated households had children with malaria. The

prevalence of malaria by cluster altitude in metres is shown in Figure 2.4.
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Figure 2.3: Prevalence of malaria by place of residence

Figure 2.4: Prevalence of malaria by cluster altitude in metres

Malaria is highly prevalent in households located in cluster altitudes of between 1000

metres and 2000 metres in altitude. Of the households with children with positive malaria

results, 59% and 32% were located in clusters within 1000 − 1500 metres and 1500 − 2000
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metres in altitude respectively.

Figure 2.5: Prevalence of malaria by wealth quantile

From Figure 2.5, we see little difference in malaria prevalence among children in the lower

wealth quintiles and it declines amongst children in the wealthier quintiles. The prevalence

rate for the richest households, is 5.4%. This is much lower than the prevalence rates of

households categorized in the middle, poorer and poorest category at 13.8%, 14.9% and

13.7% respectively.

Households that were characterized by either of the following: Use of toilets with flush

system, had piped source for drinking water, and had well constructed homes with cemented

walls, floors and roof, had lower prevalences of malaria. Figure 2.6 shows the distribution of

malaria status by source of drinking water and type of toilet used. From the data, majority

of the respondents, 38.2%, get their drinking water from springs/rivers/lakes/dams, while

76.3% of the households used pit latrines. The figure shows that, households who obtained

their drinking water from springs/rivers/lakes/dams had higher malaria prevalence. House-

holds with no toilet facility also had the highest malaria infection in their children.
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Figure 2.6: Distribution of malaria status by source of drinking water and type of toilet
facility

Ownership of household assets such as television sets, radios, mobile phones, bicycles and

availability of electricity are indicators of household wealth. Figure 2.7 gives the prevalence

and distribution of malaria in children in households with these assets.

Figure 2.7: Distribution of malaria by ownership of household assets
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The results of the survey show that 90% of the households do not have electricity, 84%

do not own television sets whereas only 33%, 68% and 64% own bicycles, radios and mobile

phones respectively. Interestingly, 64% of the children with positive malaria results hailed

from households with radios. A similar result can be deduced for households with mobile

phones and bicycles, reporting 57% and 53% respectively of positive malaria cases.

The distribution of malaria status by wall, floor and roofing materials of the households is

presented in Figure 2.8. Households whose floors were made of earth/sand and cement/tiles

had low percentages of children with malaria, 5.7% and 5.8% respectively. The higher per-

centage of malaria infection was in households with dung floors, at 29.5%. Households with

dwellings made of plastic/paper and mud walls had higher prevalences of malaria, at 2.8%

and 17.1% respectively. Dwellings with wood/bamboo planked walls and cemented walls

had lower percentages of infected children. Finally, malaria infection within households with

thatched roofing was 15.2%, 13.5% with sticks/mud roofing, 4% with wood/plastic roofing,

11.5% with corrugated roofs and 4.3% with cemented roofs.
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Figure 2.8: Distribution of malaria status by wall material, floor material and roof material
used in household construction

The effect of mother’s education on malaria prevalence is illustrated in Figure 2.9. Moth-

ers with completed secondary education and higher education, had lower malaria infections

in their children, with prevalence rates of 5.1% and 5.8% respectively. Education therefore

seemed to have a positive and protective effect since educated mothers could enforce preven-

tive measures to control malaria infection.

Most households in the survey, 85.3%, do not spray their houses to control the malaria

vector. The prevalence rate for malaria for households that used anti-malarial spraying was

17.2% and 11.4% for those who did not. On the contrary, most households, 65.2%, used

mosquito nets while sleeping. In total, 13.6% of those who used mosquito nets had children

with malaria while 9.8% of those who did not use mosquito nets had children with malaria.
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Figure 2.9: Prevalence of malaria by mother’s highest education level

2.4.1 Tests of association

A χ2 test of independence was performed on the various covariates and the results are pre-

sented on Table 2.2. From the analysis, there was a significant association between malaria

status in children and all the selected covariates except the sex of the child. There is a pos-

itive association between malaria and age (χ2: 59.144, p-value: <0.0001). Malaria status is

also significantly associated with the endemicity region, within which a household is located

(χ2: 3139.598, p-value: <0.0001). The type of place of residence is also similarly associated

with malaria infections in children (χ2: 87.039, p-value: <0.0001).

Malaria infection in children is also strongly related with the wealth quintile of each house-

hold, (χ2: 104.811, p-value: <0.0001). Other variables, also found to be positively associ-

ated with malaria are: wall material, roof material and floor material used in a household’s
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dwelling construction; source of drinking water and type of toilet facility. Malaria inter-

vention covariates, including: anti-malaria spraying and use of mosquito nets, were also

associated with malaria status. However, there was no association between malaria status

and the variable, sex of the child (χ2: 1.861, p-value: <0.0001). Therefore, this variable may

not be used in the final model.

Table 2.2: Cross-tabulation of malaria status with selected covariates

Variable χ2 Statistic df P-value

Age 59.144 14 <0.0001

Sex 1.861 1 0.173

Region 3139.598 4 <0.0001

Type of residence 87.039 1 <0.0001

Mothers highest education 90.753 5 <0.0001

Wealth quantile 104.811 4 <0.0001

Wall material 393.260 3 <0.0001

Roof material 38.488 4 <0.0001

Floor material 1179.188 2 <0.0001

Anti-malarial spraying 45.126 1 <0.0001

Source of drinking water 190.288 2 <0.0001

Toilet facility 59.843 2 <0.0001

Use of mosquito nets 34.052 1 <0.0001

Mosquito nets/person 242.088 55 <0.0001

Rooms/person 233.266 62 <0.0001



28 CHAPTER 2. DATA PRESENTATION AND DESCRIPTION

2.4.2 Summary

From the analyses, age of child in years, malaria zone, type of place of residence, and cluster

altitude in metres are the important demographic and geographical factors associated with

malaria infection. Malaria seemed to increase with age of child but declining after age 8.

Households located in rural areas, high endemicity regions and located in low altitude areas

had higher malaria prevalences. The socio-economic status of a household played an im-

portant role in determining susceptibility to malaria infections. Some of the socio-economic

variables that contributed to higher risks of malaria were: wealth quantile; type of housing

structure that includes the material used in roof, wall, and floor construction; toilet facility;

source of drinking water; ownership of household assets such as bicycles, radio, television

and mobile phones; and rooms per person sharing. Use of insecticide treated mosquito nets,

number of nets, and antimalarial spraying were important factors for preventing and con-

trolling malaria. An important factor for consideration is the level of mother’s education,

which seemed to provide a protective cover to children against malaria risk. Households with

mother’s with primary and higher education had lower prevalence rates.

To refine the findings of this analysis, three different statistical methods are used in the

next chapters, to determine the important risk factors for malaria infection in children.



Chapter 3

The Generalized linear model

3.1 Introduction

The Generalized linear model (GLM) developed by Nelder and Wedderburn (1972) is a sta-

tistical technique used in the analysis of data whose outcome may not usually be normally

distributed. The response variable belonging to the exponential family of distributions,

can be modeled by relating the linear predictor of the predictor covariates to the response

variable via a function of the mean response called a link function. GLMs therefore is a

generalization of the general linear model that includes regression analysis, analysis of the

variance and analysis of the covariance, that explain the variation in the response variable as

a linear combination of the explanatory terms and the residual errors based on the normal-

ity assumption to more inclusive non-normal distribution. Some examples of models that

belong to the class of GLMs include: logistic regression for binary response data, Poisson

regression models for count data, multiple regression models for normal response, log-linear

categorical data analysis models and exponential models for survival data analysis (Nelder

and Wedderburn, 1972).

29
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3.1.1 The model structure

A general linear model can be written as:

Yi = β0 + β1x1i + β2x2i + ...+ βpxpi + εi

where it is assumed a response Y is independently observed on N units along with p explana-

tory variables denoted by Yi, X1i, ..., Xpi for i = 1, 2, ..., N . The error term εi are usually

assumed to be iid N(0, σ2). However this is a strict assumption to be satisfied in reality

because the errors can be correlated.

In matrix form, the model is expressed as

Y = Xβ + ε

where Y is a vector of the response variables, X is an n× (p+ 1) design matrix of the inde-

pendent variables, β is a vector of the (p+ 1) regression parameters including the intercept

and ε is a vector of the error terms. The assumptions of the model based on Kutner et al.

(2005):

� The expectation of the error terms E(ε) = 0, therefore the mean of the response

variable Yi is E(Y ) = E(Xβ) + E(ε) = Xβ

� The error terms have a constant variance σ2. Therefore the response variable Y also

has a constant variance.

� It is assumed that the error terms say εi and εj, i 6= j are uncorrelated, therefore the

response variables Yi and Yj are also uncorrelated.
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These assumptions are somehow strict for data whose distribution is not Gaussian. There-

fore, the GLM can be used to model such data whose distributions are from the exponential

family of distributions.

3.1.2 Exponential family

The exponential family comprises of a set of distributions from discrete, continuous or a

mix of both discrete and continuous random variables, and includes distributions such as:

Normal, Binomial, Bernoulli, Poisson, Gamma, Multinomial and Weibull distributions. The

natural form of the exponential family as defined by McCullagh and Nelder (1989) can be

written as:

f(yi|θi;φ) = exp

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
(3.1)

where θi is known as the canonical or natural parameter, a(φ) is the dispersion parameter,

b(.) and c(·) are some known functions while θ and φ are unknown parameters.

The function a(φ), the exponential dispersion function (Jorgensen, 1987), and has the form

a(φ) = φ/wi where wi is an observation specific weight (Agresti, 1990).

Let Y be the response variable with yi, i = 1, 2, , ..., n independent observations. Using the

property
∫
f(y|θ, φ)dy = 1, the mean and the variance of Y can be derived through taking

first and second derivatives of the function, with respect to θ .

∫
(y − b′(θ)) f(y)dy = 0∫

[a(φ)−1(y − b′(θ))2 − b′′(θ)]f(y)dy = 0

Therefore, the mean E(Y ) = b′(θ) and the variance V ar(Y ) = a(φ)b′′(θ) = a(φ)v(µ) can be

obtained through the following procedure described in Dobson (1990):



32 CHAPTER 3. THE GENERALIZED LINEAR MODEL

Let U =
dl(θ; y)

dθ
be the score function obtained from taking the derivative of the log-

likelihood function l(θ; y) of the probability distribution function of Y , f(y; θ) with respect

to θ. To find the first and the second moments of U , we shall make use of the identity,

dlogf(y; θ)

dθ
=

1

f(y; θ)

df(y; θ)

dθ
(3.2)

Taking the expectations on both sides of the equation yields

E(U) =

∫
dlogf(y; θ)

dθ
f(y; θ)dy

=

∫
df(y; θ)

dθ
dy

=
d

dθ

∫
f(y; θ)dy =

d

dθ
= 0

Under certain regularity conditions. Since
∫
f(y; θ)dy = 1, it follows that E(U) = 0 , hence

it follows E(Y ) = b′(θ).

Differentiating equation 3.2 again with respect to θ gives:

d

dθ

∫
dlogf(y; θ)

dθ
f(y; θ)dy =

d2

dθ2

∫
f(y; θ)dy

=0

Therefore the left hand side of this equation can be written as:

d2logf(y; θ)

dθ
f(y; θ)dy +

∫
dlogf(y; θ)

dθ

df(y; θ)

dθ
dy

substituting equation 3.2 in the second term yields

d2logf(y; θ)

dθ
f(y; θ)dy +

∫ [
dlogf(y; θ)

dθ

]2
f(y; θ)dy = 0
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Thus

E

[
−d

2logf(y; θ)

dθ2

]
= E

[(
dlogf(y; θ)

dθ

)2
]

The variance of the score function is V ar(U) = E(U2) = E(U ′), where U ′ is the derivative

of the score with respect to θ. Therefore the variance of Y becomes V ar(Y ) = a(φ)b′′(θ).

The GLM has three main components (Agresti, 1990), they are:

The random Component

A GLM consists of a response variable, Y from the exponential family of distributions with

N independent observations of the form Y1, ..., YN . The first and second moments of Yi gives

the mean, µi = E(Yi) = b′(θ) and variance, V ar(Yi) = a(φ)b′′(θ) respectively.

The Systematic component

This component relates a vector η = (η1, ...ηN)′ to a set of explanatory variables through

a link function. Let Xi = [1, x1, ..., xp] be a p-dimensional vector of covariates and β =

(β0, ...βp), be a vector of the regression coefficients. The distribution of Yi depends on Xi,

through the linear predictor, ηi, such that:

ηi = β0 + β1x1i + β2x2i + ...+ βpxpi

The Link Function

The link function, given by g(µi), is a monotonic and differentiable function that describes

how the mean E(Yi) = µi, depends on the linear predictor. Thus the GLM is generally

defined as:

g(µi) = ηi = β0 + β1ix1i + β2ix2i + ...+ βpxpi

The inverse of the link function, g−1(η) = µ is referred to as the mean function. Special types

of link functions are those obtained directly from the natural parameter θ of the exponential

family. Such link functions are called the canonical link functions such as the logit link for
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binary data, log link for count data and identity link for normal data.

3.1.3 Maximum likelihood estimation

The regression parameters in a GLM are estimated using maximum likelihood estimation

(MLE) method (Nelder and Wedderburn, 1972). The estimates are the values of the param-

eters that maximize the log-likelihood function (Olsson, 2002). The likelihood function for

N independent observations of the parameter Y with a p.d.f from the exponential family is :

L(θ, φ;Y ) =
N∏
i=1

f(Yi|θi, φ)

The log-likelihood equation is:

l(β, Y ) =
N∑
i=1

ln

[
exp

[
Yiθi − b(θi)

a(φ)
+ c(Yi, φ)

]]
(3.3)

=
N∑
i=1

a(φ)−1(Yiθi − b(θi)) +
N∑
i=1

c(Yi, φ)

The log-likelihood equation for a single observation i is given by:

li(β) = a(φ)−1(Yiθi − b(θi)) + c(Yi, φ)

We partially differentiate the log likelihood equation for observation i, with respect to the

regression coefficients βj, using chain rule;

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj
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Since
∂li
∂θi

= [Yi − b′(θi)]/a(φ) and E(Yi) = µi = b′(θ) and var(Yi) = a(φ)b′′(θi), then,

∂li
∂θi

=
(Yi − µi)
a(φ)

and

∂µi
∂θi

= b′′(θi) =
var(Yi)

a(φ)

Again, since ηi =
∑
j

βjxij, then,
∂ηi
∂βj

= xij

Substituting these in the score equation, for N independent observations, gives:

∂l(β)

∂βj
=

N∑
i=1

Yi − µi
a(φ)

a(φ)

var(Yi)
xij
∂µi
∂ηi

(3.4)

=
N∑
i=1

Yi − µi
var(Yi)

xij
∂µi
∂ηi

The estimating function can also be used to determine the asymptotic covariance matrix of

β̂, the inverse of the Information matrix, I(β) (Agresti, 2002).

I(β) = −E
(

∂2l

∂βiβj

)
= E

[(
∂l

∂βi

)(
∂l

∂βj

)]
(3.5)

= E

[
Yi − µi
var(Yi)

xih
∂µi
∂ηi

Yi − µi
var(Yi)

xij
∂µi
∂ηi

]
=

N∑
i=1

xihxij
var(Yi)

(
∂µi
∂ηi

)2



36 CHAPTER 3. THE GENERALIZED LINEAR MODEL

Let W be the diagonal matrix with main diagonal elements wi =

(
∂µi
∂ηi

)2

/var(Yi). Then

the Fisher information is given as:

I(β) = (X ′WX)

The asymptotic covariance matrix becomes:

cov(β̂) = (X ′WX)−1

The score equation then reduces to:

∂l(β)

∂βj
=

n∑
i=1

(yi − µi)wi
∂ηi
∂µi

xij (3.6)

By equating the score equations to zero, the ML estimates, β̂ can be obtained using any

of these three methods: Iterative re-weighted least squares, Newton Raphson and Fisher

scoring (Agresti, 2002).

The Newton Raphson method is an iterative method whose derivation is based on the sec-

ond term of the Taylor series expansion of the log likelihood function. The Taylor series

expansion is generally given by:

f(xo) + (x1 − x0)f ′(x0) +
(x1 − x0)2

2!
f ′′(x0) +

(x1 − x0)3

3!
f ′′′(x0) + ... = 0

Using the first and second terms, assuming higher order terms are negligible, we have :

f(xo) + (x1 − x0)f ′(x0) = 0
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which yields the equation,

x1 = x0 −
f(x0)

f ′(x0)

that is the basis for the iterative updating equation in the Newton Raphson estimation al-

gorithm.

The Newton Raphson method adopts the above by using the score of the log-likelihood

as the basis for parameter estimation:

βr = βr−1 −
(
∂l(βr−1)

∂β

)(
∂2β

∂2l(βr−1)

)
implying,

βr = βr−1 − S(βr−1)[S
′(βr−1)]

−1 (3.7)

Where S ′(βr−1) is the partial derivative of the score equation with respect to β, evaluated

at βr−1 and is referred to as the Hessian matrix .

The fisher scoring is an alternative method for solving the log-likelihood estimating equa-

tions. It resembles the Newton Raphson method but the difference being in the use of the

expected value of the Hessian matrix based on the information matrix. By some complicated

procedures, it can be shown that

I(β) = E

(
∂2l

∂βjβk

)
= −E

(
∂l

∂βj

)(
∂l

∂βk

)

Therefore updating under Fisher scoring is:

βr = βr−1 + S(βr−1)[I(βr−1)]
−1 (3.8)
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The iterative re-weighted least squares method makes use of the fisher scoring method to

find the ML estimates. Multiplying both sides of equation 3.8 by I(βr−1)
−1 we get,

βr[I(βr−1)]
−1 = (βr−1)[I(βr−1)]

−1 + S(βr−1)

Expressing the fisher information and score equation in terms of its covariates at the (r−1)th

iterate gives:

(
xihxij
var(Yi)

(
∂µi
∂ηi

)2
)
βr =

(
xihxij
var(Yi)

(
∂µi
∂ηi

)2
)
βr−1 +

(
(Yi − µi)
var(Yi)

xij
∂µi
∂ηi

)

Let ηih = xihβr−1 and var(Yi) =

(
∂µi
∂ηi

2)
w−1. The fisher scoring equation takes the form:

[X ′WX]βr = X ′Wηi + xijW (Yi − µi)
∂µi
∂ηi

Let Zi = ηi + (Yi − µi)
∂µi
∂ηi

, our equation reduces to

[X ′WX]βr = X ′WZ

Therefore

βr = [X ′WX]−1[X ′WZ] (3.9)

To obtain the new estimate of βr, the working dependent variable zr−1 is regressed on X, with

weight Wr−1. A new linear predictor is obtained, ηr = Xβr and a new working dependent

variable zr for the next (r+1) β̂ estimate. The ML estimator is the limit of βr as r →∞.
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3.1.4 Assessing the fit of a model

Given a data set, a statistical model is of good fit, if it fits the set of observations well. A

good model should minimize the discrepancy between the expected values under the model

and the observed values. The two statistical methods that are used in assessing this fit are:

the deviance and the Pearson’s chi square statistic.

The deviance measures the discrepancy of fit between the maximum log-likelihood of the

saturated model and the log-likelihood of the fitted model, and hence we can be define the

deviance as:

D = 2l(y, φ; y)− 2l(µ̂, φ, y)

where, l(y, φ; y) is the log-likelihood function of the saturated model and l(µ̂, φ; y) is the

log-likelihood of the observed model. µ̂ is the maximum likelihood estimator of the model

of interest, and φ = 1. The scaled deviance, in the case φ 6= 1, is defined as:

D =
[2l(y, φ; y)− 2l(µ̂, φ, y)]

φ

The Pearson’s goodness of fit statistic is a score statistic for testing the fitted model

against the saturated model defined by Smyth (2003) as:

S =
∑ wi(yi − µ̂i)2

v(µ̂i)

where; yi are the response variables, wi, the weights, µ̂i, the fitted means evaluated at the

MLE β̂ and v(µ̂) is the variance function. The Pearson’s score statistic is approximately χ2

distributed with the residual degrees of freedom for the fitted model.
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3.1.5 Model selection

Model selection is an important process in statistical analysis and involves the selection of the

best model amongst several competing models. The two main criteria for model selection

used in GLMs are; Akaike information criterion (AIC) (Akaike, 1974) and the Bayesian

information criterion (BIC) (Schwarz, 1978). The AIC is defined as:

AIC = −2l(β) + 2p (3.10)

where l(β) is the maximum log-likelihood and p is the number of parameters for the model.

The AIC is important in model comparisons, and a model with a smaller AIC is preferred

(Lindsey, 1997). The BIC method looks at the asymptotic behavior of the Bayes estimators

and takes into consideration the sample size (Schwarz, 1978). The best model is one that

minimizes the following equation, given the log-likelihood function l(β), with k parameters

and a sample size of n;

BIC = −2l(β) + klog(n) (3.11)

3.2 Logistic regression model

3.2.1 Introduction

Logistic regression is a statistical method for analyzing a data set, where the dependent

variable is dichotomous or binary and the independent variables may be categorical or a

mix of continuous and categorical variables (Peng et al., 2002). It employs the maximum

likelihood method to get the best fit equation and assumes that the relationship between the

dependent and independent variables is not necessarily linear and that the residuals are not

necessarily normally distributed. It is a special case of the GLM Nelder and Wedderburn
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(1972) that is applied in various studies including health science, epidemiology, demographic

studies and education (Park, 2013; Peng et al., 2002; Hosmer and Lemeshow, 1989). In this

study, we shall limit ourselves to the use of binary logistic regression, where our response

variable is strictly dichotomous stating whether a child has malaria or not.

3.2.2 Binary logistic regression

Suppose we have a binary outcome variable denoted by Y , representing the presence or

absence of an event such that Y = 1 if the event occurs and Y = 0 if the event does not

occur and a set of p independent variables denoted by the vector x′ = (x1, x2, ..., xp). It is

assumed that Y has a Bernoulli distribution represented as:

Y =


1, if the event occurs (with probability π)

0, If the event does not occur (with probability 1− π)

(3.12)

Here, π(x) denotes the conditional probability of the event occurring given the independent

variables, π(x) = P (Y = 1|x1, x2, ..., xp). Therefore, 1−π(x) = P (Y = 0|x1, x2, ..., xp) . The

logistic regression model is defined as:

ln

(
π(x)

1− π(x)

)
= β0 + β1x1 + β2x2...+ βpxp (3.13)

Solving for π(x) gives

π(x) =
ex
′β

1 + ex′β

The link is the logit link thus, in principle, the model is the log odds as a function of a set

of predictions x1, x2, ..., xp.
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3.2.3 Fitting the logistic regression model

Fitting a logistic regression model involves the estimation of the unknown parameters through

the maximum likelihood estimation method. The likelihood function for a sample of obser-

vations of the pair (xi, yi) for i = 1, 2, ..., n, with πi probabilities is

L(β) =
n∏
i=1

P (yi|x1, ..., xp) =
n∏
i=1

(
ex
′β

1 + ex′β

)yi (
1

1 + ex′β

)1−yi
=

n∏
i=1

πyii [1− πi]1−yi (3.14)

The maximum likelihood estimates for the regression parameters denoted by the vector

β = (β0, β1, ..., βp)
′, are the values that maximize the log-likelihood function. Expressing

equation 3.14 in terms of its log yields

l(β) =
n∑
i=1

yilog[πi] + (1− yi)log[1− πi] (3.15)

=
n∑
i=1

log(1− πi) +
n∑
i=1

yilog

(
πi

1− πi

)
=

n∑
i=1

log

(
1

1 + ex′β

)
+

n∑
i=1

yi(x
′β)

=
n∑
i=1

yi(x
′β)−

n∑
i=1

log(1 + ex
′β)

Partially differentiating the log-likelihood function with respect to the regression parame-

ters and equating the result to 0, yields the likelihood equations. The likelihood equations

obtained can be solved iteratively to obtain the maximum likelihood estimates for β. These

likelihood equations are defined as:

n∑
i=1

[yi − πi] = 0 (3.16)
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and
n∑
i=1

xij[yi − πi] = 0 (3.17)

for j = 1, 2, ..., p

3.2.4 Model selection and model fit

The methods commonly used for selecting variables in logistic regression are forward se-

lection, backward elimination and stepwise regression (Chen and Dipak, 2003). Backward

elimination method starts with a model with all variables included, and makes use of the

results of wald tests for each parameter. A parameter with the least significant effect is

eliminated and cannot be returned to the model. Forward selection method, on the other

hand starts with an empty or null model. It examines the score chi-square statistic for

each parameter not in the model, and if significant, it is added to the model and cannot be

eliminated (Bursac et al., 2008). Stepwise regression varies from forward selection method

in that variables added to the model, may be eliminated. The BIC and AIC methods dis-

cussed in section 3.1.5 may be used for selecting a suitable model that best describes the data.

The goodness of fit for a logistic regression model as defined by Hosmer and Lemeshow

(1989) assesses the effectiveness of the model in describing the outcome variable. The fitted

model’s residual variation is expected to be small, displaying no systematic tendency and

and follows the model’s variability (Hosmer et al., 1997). It can be measured using the

Hosmer - Lemeshow (H - L) tests, Pearson chi-square statistic and the deviance statistic.

The H - L statistic is obtained through the calculation of the Pearson chi-square statis-

tic from a 2× g table of observed and estimated expected frequencies. Here g represents the

numbers of groups obtained from the estimated probabilities. The H - L statistic is denoted
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Ĉ given as

Ĉ =

g∑
r=1

(or − nrπr)2

nrπr(1− πr)
∼ χ2

g−2 (3.18)

where nr is the total frequency of subjects in the rth group and or is the total frequency

of event outcome in the rth group while πr is the average estimated probability of an event

outcome in the rth group. If the logistic regression model is the correct model, the statistic

Ĉ can be approximated by the chi-square distribution with g-2 degrees of freedom.

The Pearson’s chi-square statistic, X2 and the deviance, D compares the observed values of

the logistic regression model to the predicted values in a 2× n table (Hosmer et al., 1997).

In a 2× n table, 2 rows define the values of the binary dependent variable y and n columns

defines the number of values the p covariate variables might take in the model.

D = −2
n∑
i=1

yilog(
yi
π

)− 2
n∑
i=1

(1− yi)log
[

(1− yi)
(1− πi)

]
(3.19)

and

X2 =
n∑
i=1

(yi − πi)2

πi(1− πi)
(3.20)

3.2.5 Odds ratio

The parameter estimates from a logistic regression analysis are reported in terms of odds

ratios. To define the odds ratios it is important to understand the concept of odds. Given

that π(x) is the probability of an event occurring as a function of the covariate x, it also

follows that 1 − π(x) is the probability of an event not occurring. The odds of an event

occurring therefore is the ratio of the probability of the event occurring to the probability



3.3. SURVEY LOGISTIC REGRESSION MODEL 45

of the event not occurring, defined as,

O(x) =
π(x)

1− π(x)

It is a measure of association, that estimates the relationship between the risk factor and

the outcome while adjusting for other variable (Wilber and Fu, 2010). They are used to

compare the odds that the outcome of interest will occur given the exposure, to the odds

that the outcome will not occur given no exposure to the variable of interest (Agresti, 1990).

Suppose x, is a categorical independent variable coded 0 and 1. The odds ratio is defined as

the ratio of the odds for x = 1 to the odds for x = 0 (Hosmer and Lemeshow, 1989);

OR =
π(1)/1− π(1)

π(0)/1− π(0)
(3.21)

An odds ratio equivalent to 1 i.e. OR = 1 implies no association between the exposure and

outcome, OR > 1 implies that the exposure is associated with greater odds of the outcome

and OR < 1 implies that the exposure is associated with lesser odds of the outcome.

3.3 Survey logistic regression model

Although logistic regression is useful in modelling data with a dichotomous outcome, it is not

suitable for modelling data obtained through a complex survey that incorporates weights,

stratification and clustering. Survey logistic regression is instead used to model the rela-

tionship between binary dependent variables and the set of explanatory variables by making

use of the sampling design information (Lu and Yang, 2012). The inclusion of the effects of

sampling design in the analysis of data leads to accurate estimation of the standard errors

and variabilities (Kish, 1965; Skinner et al., 1989). The advantages of sample surveys are

that: they are cost effective, speedy and timely, produce quality and accurate population
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estimates and are feasible (Cochran, 1964; Kish, 1965).

The survey logistic regression model is given by:

logit(πijh) =
H∑
h=1

mh∑
j=1

nhj∑
i=1

xTijhβ (3.22)

where i = 1, 2, .., nhj, j = 1, 2, ...,mh and h = 1, 2, ..., H, β is a vector of unknown regression

parameters and xTijh is a vector of the independent variables corresponding to the ith in

individual, from the jth cluster within stratum h.

3.3.1 Estimation of parameters

The traditional logistic regression analysis employs the maximum likelihood method to ob-

tain parameter estimates for its model. Survey logistic regression deals with complex survey

data that involves stratification, cluster sampling and the use of probability weights, there-

fore estimation of the parameters and their standard errors is more complex. According to

Kish and Frankel (1974), stratification in survey designs creates negative correlation between

variables thereby reducing the variance, while clustering increases the correlation between

elements. Failure to account for the sample design effects in the analysis, leads to over-

estimation of the standard errors, increase in bias and under-estimation of the variabilities.

For more details see Lu and Yang (2012). Under such designs, the pseudo-maximum likeli-

hood function is used to obtain the parameter estimates.

Suppose yijh, is a dichotomous dependent variable with π(xijh) = Pr(yijh = 1|xijh), and

wijh is the sampling weight for observation yijh, then the pseudo-maximum likelihood func-
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tion as defined by Archer et al. (2007), is given by:

lp(β) =
H∏
h=1

mh∏
j=1

nhj∏
i=1

π(xijh)
wijh∗yijh [1− π(xijh)]

wijh∗(1−yijh)

Suppose β is the unknown p×1 parameter vector, the pseudo-maximum likelihood estimator,

β̂, is the value that maximizes the pseudo log-likelihood function:

ln[lp(β)] =
H∑
h=1

mh∑
j=1

nhj∑
i=1

{
(wijh ∗ yijh) ln[π(xijh)] + wijh(1− yijh) ln[1− π(xijh)]

}
(3.23)

The ML estimates, β̂, is obtained by equating the score equation to 0 and solving for β using

the iterative methods of Newton Rhapson and Fisher scoring (SAS Institute Inc., 2015).

3.3.2 Variance estimation

In order to make valid inference about the population parameters in survey sampling, it is

important to include the sample design in data analysis. The linearization method and the

replication methods discussed extensively in Binder (1983); Cochran (1964); Efron (1980);

Lu (2004); Skinner et al. (1989); Rao and Wu (1988); Rust (1986); Wolter (1985); Woodruff

(1971), can be used to obtain the variance estimators of the population parameters.

Taylor expansion approximation

The Taylor expansion approximation method also known as the delta (δ) method is a lin-

earization method for obtaining the variance of the estimators. The main idea behind this

method is to reduce the non-linear forms of the estimator to a linearized quantity obtained

by using the linear terms of the Taylor series expansion.

Given that g(.) is a link function such that π = g(x, θ) and θ is a column vector for regression
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coefficients, the pseudo-estimator θ̂, is obtained by solving the estimating equation,

Ĝ(θ̂) =
H∑
h=1

mh∑
j=1

nhj∑
i=1

wijh (diag(πijh)− πijh(πijh)′)−1 (yijh − πijh) = 0 (3.24)

The variance of θ̂, is obtained by taking a Taylor series expansion of Ĝ(θ̂) at θ̂ = θ0, the

population parameter, to obtain:

0 =Ĝ(θ̂) ' Ĝ(θ0) +
∂Ĝ(θ0)

∂θ0
(θ̂ − θ) (3.25)

Ĝ(θ0) ' −
∂Ĝ(θ0)

∂θ0
(θ̂ − θ)

Taking variances on both sides yields the limit,

V ar[ ˆG(θ0)] =

[
∂ ˆG(θ0)

∂θ0

]
V ar(θ̂)

[
∂ ˆG(θ0)

∂θ0

]T
(3.26)

The variance of θ̂ can be obtained by reversing the order of equation 3.26 above yielding;

V ar(θ̂) =

([
∂ ˆG(θ0)

∂θ0

])−1
V ar( ˆG(θ))

[∂ ˆG(θ0)

∂θ0

]T−1 (3.27)

Which in matrix form is simply,

V ar(θ̂) = [I(θ̂)]−1V ar[Ĝ(θ)][I(θ̂)]−1 (3.28)

Note that
∂ ˆG(θ0)

∂θ0
is the information matrix evaluated at θ = θ̂ and var(Ĝ(θ)) is the variance

covariance matrix of the p + 1 estimating equations (SAS Institute Inc., 2015), and can be
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estimated as:

var(Ĝ(θ)) =
n− 1

n− p

H∑
h=1

mh(1− fh)
mh − 1

mh∑
j=1

(chj − c̄h)′(chj − c̄h) (3.29)

where

chj =

nhj∑
i=1

wijh
(
diag(π̂ijh)− π̂ijhπ̂′ijh

)−1
(yijh − π̂ijh) (3.30)

and

c̄h =
1

mh

mh∑
j=1

chj (3.31)

The disadvantages of the linearization method is that it requires that a different variance

formula be derived for each statistic, and its calculation is cumbersome in post-stratification

and non-response adjustments for the etimator θ̂ (Rao, 1997).

Jacknife estimator

The Jackknife technique is a resampling method for estimating the bias and the variance

of the population statistic of interest. Quenouille (1949) introduced the jackknife as a non-

parametric estimate of bias and Tukey advanced Quenouille’s method and established an

estimate of the variance of the estimators. The jackknife estimator works through dividing

the sample into disjoint but equal sized sub-samples, and obtaining the parameter estimates

from each sub-sample. Each of the sub-samples is removed one at a time, while recalculat-

ing the estimates of the parameter of interest of the remaining sub-samples. The variance

of the original sample is estimated from the variability amongst the sub-sample parameter

estimates.

Assume we have a sample of independent and identical random quantitiesX1, X2, ..., Xn ∼ F ,

where F is an unknown probability distribution. Let θ, be some unknown parameter of inter-

est that can be approximated by θ̂ = θ(F̂ ), where F̂ is the empirical probability distribution
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of the sample x1, x2, ..., xn. Quenouille’s method of obtaining bias involves sequentially delet-

ing the points xi and subsequently recomputing the value of θ̂. By deleting the point xi, a

different empirical probability distribution F̂i is obtained and the recomputed value of the

parameter of interest

θ̂(i) = θ(F̂(i)) = θ̂(x1, x2, ..., xi−1, xi+1, ..., xn)

Suppose that

θ̂(·) =
1

n

n∑
i=1

θ̂(i)

Quenouille’s estimate of bias is thus

Bias = (n− 1)(θ̂(·) − θ̂)

The non-parametric estimator of the variance derived from the recomputed statistic ˆθ(i) by

Tukey (1958), is defined as:

ˆV ar =
n− 1

n

n∑
i=1

[θ̂(i) − θ̂(·)]2 (3.32)

For stratified cluster sampling with H strata and nh PSUs sampled from each stratum, the

jackknife estimator of the variance is defined by:

v(θ̂1) =
H∑
h=1

nh − 1

nh

nh∑
j=1

(
θ̂(hj) − θ̂h(·)

)2
(3.33)

where the estimator θ̂(hj) is the estimator θ obtained from the original sample after deleting

the jth cluster from the hth stratum. The remaining clusters in the stratum are then assigned

new weights called the jackknife weights, that are used in place of the sampling weights to
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obtain the solutions to the estimating equations for each sub-sample. The sampling weights

of the remaining strata remain unchanged. One advantage of the jackknife method over the

linearization method is that, it makes use of a single variance for each nonlinear statistic. In

order to cater for the asymptotic inconsistency of the resampling jackknife, Yung and Rao

(2000) developed the linearized jackknife estimator of the variance. One of its advantages is

that it is computationally easier to calculate.

Bootstrap estimator

The bootstrap method introduced by Efron (1979) is another resampling procedure, for es-

timating the standard error, variance and confidence intervals in sample survey data. Let

X = (X1, X2, ..., Xn) be a random sample with unknown probability distribution F , and

observed outcome x = (x1, X2, ..., xn). Suppose R(X,F ) is the random variable of interest.

Its sampling distribution for a one sample bootstrap case can be estimated based on the

sample x through following these steps:

� Construct a sample probability distribution F̂

� Draw a sample of size n from fixed F̂ , X∗i = x∗i ;X∗i ∼ F̂ , i = 1, 2, ..., n.

� The sampling distribution of R(X,F ) is approximated by R∗(X∗, F ∗).

Suppose we are interested in estimating the bias of a functional statistic, such that

R(X,F ) = θ(F̂ )− θ(F )

Then, its estimate is given by

R(X∗, F̂ ) = θ(F̂ ∗)− θ(F̂ )
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where F̂ ∗ is the empirical probability distribution of the bootstrap sample. The bootstrap

estimate of bias is therefore approximated from the B bootstrap resamples:

BIAS =
1

B

n∑
b=1

θ̂∗b − θ̂

Various bootstrap methods have been proposed in literature, they are: the rescaling method

(Rao and Wu, 1988), the without replacement bootstrap (Gross, 1980) and the mirror match

method (Sitter, 1992b). Their comparisons have been discussed extensively by Sitter (1992a).

The rescaling bootstrap procedure draws a resample vector with replacement from the orig-

inal sample, rescales each of the resampled unit, and then applies the original estimator to

the rescaled vector. The procedure for a stratified cluster sampling may be described as

follows:

� For stratum h, randomly select ch clusters from the original nh sample clusters, with

replacement.

� Let chj(d) be the number of times the jth cluster from the hth stratum is resampled for

replicate d. Here, “D” represents the number of times a draw is made, d = 1, 2, ..., D

and
∑
j

chj(d) = ch. The bootstrap weights for replicate d is defined as:

whij(d) =

[{
1−

(
ch

nh − 1

) 1
2

}
+

{(
ch

nh − 1

) 1
2 nh
ch
chi(d)

}]
whij (3.34)

The dth bootstrap estimator θ̂(d) is calculated with the sampling weights replaced by

the bootstrap weights. The step is repeated D number of times, to obtain θ̂(1), ...θ̂(D)

estimators that are used to obtain the Monte Carlo approximation of the variance of

θ̂ given by

VBoot(θ̂) =
1

D − 1

D∑
d=1

( ˆθ(d) − θ(·))2 (3.35)
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where

θ(·) =
1

D
θ̂(d)

The bootstrap method is computationally easy, it’s ideal for arbitrary samples and gives

valid inferences for all forms of smooth and non-smooth statistics (Rao, 1997; Efron, 1979).

Balanced repeated replication method

The balanced repeated replication (BRR) method is a half sampling technique for estimating

the statistics of interest. Assume we have a stratified sample design from which only 2 pri-

mary sampling units are selected from each stratum, nh = 2. Let H denote the total number

of strata and R denote the total half sample replicate estimates satisfyying H ≤ R ≤ H + 3.

There are 2H possible half samples, and the estimates θ̂(r), can be calculated for each half

sample. Evaluating all possible θ̂(r) on the 2H half samples may be computationally expen-

sive and intensive (Skinner et al., 1989), therefore a balanced set of k half samples may be

selected. The variance of θ can hence be estimated by the formula

VBRR(θ̂) =
1

k

k∑
r=1

(θ̂(r) − θ̂)2 (3.36)

The advantage of the BRR over the jackknife estimator is that it provides asymptotically

valid inferences for both smooth and non-smooth statistics but may not be used for arbitrary

sample sizes (Rao, 1997).
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3.3.3 Model selection and fit

Logistic regression utilizes forward selection, backward elimination and stepwise selection

procedures to select the variables that best fit the data set. However, these selection crite-

ria are not implemented in SAS PROC SURVEYLOGISTIC method for analyzing complex

survey data. However, the following steps, suggested by Hosmer and Lemeshow (1989), may

be used for model selection:

First, perform univariate analysis between the dependent variable and the independent vari-

ables one at a time . This can be through a contingency table of the outcome and the nominal

or ordinal independent variable or through fitting a univariate survey logistic regression.

Secondly, the variables that are found to be significant in the univariate analysis, and the

variables known to be important to the outcome are selected for the multivariate analysis. In

the third step, the relevant explanatory variables are included in to the multivariate survey

logistic model one at a time. The importance of each variable is confirmed through observing

the Wald statistic and also comparing its estimated coefficient with that from the univariate

model. Its contribution towards reducing the deviance is also noted. This step is repeated

until only the significant main effects are left in the model. Thereafter, one may consider

including interaction terms amongst the variables in the model.

The AIC and the BIC discussed in section 3.1.5 are also important measures that can be

used to compare two nested models when determining the better model that describes the

data set. The goodness of fit tests for survey logistic models are similar to those for the

logistic regression, and these are the deviance, the pearson’s χ2 and the H - L goodness of

fit tests. These statistics are however based on independently and identically distributed

assumptions, and therefore may give biased results for complex survey data.
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3.4 Analysis of data using survey logistic regression

procedure

Survey logistic regression procedure was applied to our study to investigate malaria infection

in children under fourteen years and to determine the risk factors associated with its man-

ifestation. It allows us to fit the best model that explains the risk factors of malaria, while

catering for the design effects of the survey on the data. The data used was obtained from

a two-stage cluster sample survey (Division of Malaria control [Ministry of public health

and sanitation], Kenya National Bureau of Statistics, and ICF Macro, 2011), where 240

clusters and 30 households from each cluster were selected for the analysis. The outcome

variable Yijh is assumed to be binary with a Bernoulli distribution of the form Yijh, repre-

senting the presence or absence of malaria in a child. That is Yijh ∼ Bernoulli(πijh), where

πijh = P (Yijh = 1). The survey logistic regression model is given by:

logit(πijh) =
H∑
h=1

mh∑
j=1

nhj∑
i=1

xT
ijhβ (3.37)

where i = 1, 2, .., nhj, j = 1, 2, ...,mh and h = 1, 2, ..., H. β is a vector of unknown regression

parameters and xT
ijh is a vector of the independent variables corresponding to child i in

household j within stratum h.

Data analysis was done using PROC SURVEYLOGISTIC command available on SAS ver-

sion 9.3 to determine the risk factors associated with malaria in children under fourteen. The

response variable was malaria status and the individual and household covariates were age,

gender, cluster altitude in metres, malaria zone, type of place of residence, mother’s highest

education, wealth quartile; ownership of car, bicycle, radio and mobile phone; availability of

electricity, wall material, floor material and roofing material used in household construction,

anti-malarial spray, nets used for sleeping, nets per person, toilet facilities available for a
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household and water source.

A univariate analysis was first performed to determine the significant predictor variables

associated with the outcome of interest. Table 3.1 below displays the results of the Type 3

analysis of the univariate survey logistic regression analysis.
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Table 3.1: Type 3 analysis results of the univariate survey logistic regression analysis

Effect df Wald χ2 P > Chisq

Age 1 10.1941 0.0014

Gender 1 0.0565 0.8122

Malaria zone 4 192.4842 0.0001

Type of residence 1 6.1037 0.0135

Mothers highest education 3 13.5094 0.0037

Wealth quartile 2 7.8226 0.0200

Wall material 2 33.8150 0.0001

Roof material 2 6.8683 0.0323

Floor material 2 88.1520 0.0001

Anti-malarial spraying 1 0.9374 0.3329

Source of drinking water 2 10.4118 0.0055

Toilet facility 2 13.6840 0.0011

Use of mosquito nets 1 13.4186 0.0002

Mosquito nets/person 1 1.5605 0.2116

Cluster altitude in metres 1 6.3094 0.0120

Electricity 1 13.1973 0.0003

Ownership of radio 1 0.1930 0.6604

Ownership of television 1 3.6579 0.0558

Ownership of mobile phone 1 0.1174 0.7319

Ownership of Bicycle 1 42.6218 0.0001
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The variables found to be significant in the univariate analysis, (with a p-value <0.05),

were selected for the multivariate model. These were: Age, malaria zone, type of place

of residence, Mother’s highest education, wealth quartile, wall material, roofing material,

floor material, source of drinking water toilet facility, use of mosquito nets, cluster altitude

in metres, availability of electricity and ownership of bicycle. Each significant independent

covariate was fitted one at a time, dropping the variables that contributed to no change in

the deviance. Possible two-way and three-way interaction terms were also investigated by

comparing the fit of the models with interaction terms and the main effects model. This

would entail graphing these interactions to identify important factors that contribute to a

change in the response, and also observing the changes to the deviance and AIC. Only the

significant ones were added to the model. The final model contained the main effects and

only one two way interaction term. This model was also the one with the least deviance as

measured by -2logL, compared to all the other possible models.

Table 3.2 displays the Type 3 analysis of the final survey logistic regression model.
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Table 3.2: Type 3 analysis of the final multivariate survey logistic regression

Effect df Wald χ2 P > Chisq

Age 1 22.8450 0.0001

Floor Material 2 8.0485 0.0179

Altitude 1 10.6497 0.0011

Wall Material 2 8.2430 0.0162

Ownership of Bicycle 1 26.5745 0.0001

Toilet facility 2 12.2290 0.0022

Mother’s Highest Education level 3 5.7829 0.1227

Floor Material*Mothers highest Education 6 23.1095 0.0008

The main effects were: age, toilet facility, cluster altitude in metres, wall material, and

ownership of bicycle. The only significant 2 way interaction was between type of floor mate-

rial used in household construction and mother’s highest education level. Table 3.3 displays

the parameter estimates, adjusted odd ratios, and their respective 95% confidence intervals

for the final multivariate survey logistic regression model.
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Table 3.3: Parameter estimates, adjusted Odds ratio (aOR) and 95 % Confidence intervals
for the final survey logistic model

Variable Estimate aOR 95% C. I S.E(SLR) S.E(SRS) P- value Deff

Intercept -3.1622 0.6422 0.3319 0.0001

Age 0.0697 1.072 (1.042,1.103) 0.0146 0.0117 0.0001 1.25

Toilet facility (Ref = No facility)

Pit Latrine -0.9297 0.395 (0.192,0.811) 0.3677 0.1302 0.0115 2.82

Toilet with flush -2.6953 0.068 (0.014,0.333) 0.8143 0.6089 0.0009 1.34

Floor Material (Ref = Dung)

Earth/Sand -1.3280 0.529 (0.215, 1.299) 0.4708 0.2518 0.0048 1.87

Cement -0.9172 0.551 (0.148,2.094) 0.6830 0.4439 0.1793 1.54

cluster altitude in metres (Ref - >2000)

<2000 1.9541 7.057 (2.182,22.823) 0.5988 0.2472 0.0011 2.42

Wall Material (Ref = Mud)

Plastic/Wood/Bamboo planks -1.4171 0.242 (0.091,0.644) 0.4982 0.3158 0.0044 1.58

Cement -0.3601 0.698 (0.314,1.549) 0.4072 0.2130 0.3765 1.91

Ownership of Bicycle (Ref = No)

Yes 0.9476 2.580 (1.799,3.698) 0.1838 0.0934 0.0001 1.97

Mother’s Education ( Ref = No Education)

Primary 0.6725 1.959 (0.857,4.481) 0.4221 0.2202 0.1111 1.92

Secondary 0.1011 1.106 (0.497,2.463) 0.4083 0.2662 0.8045 1.53

Higher 0.4956 1.641 (0.270,9.992) 0.9215 0.5207 0.5907 1.77

Floor Material*Education (Ref = No education/ Dung)

Earth/Sand and Primary -0.6149 0.541 (0.185,1.584) 0.5485 0.2803 0.2623 1.96

Earth/Sand and Secondary -0.9305 0.394 (0.114,1.370) 0.6353 0.5442 0.1431 1.17

Earth/Sand and Higher 1.5912 4.910 (0.552,43.684) 1.1152 0.7108 0.1537 1.57

Cement and Primary -0.3371 0.714 (0.178,2.863) 0.7087 0.4627 0.6343 1.53

Cement and Secondary -0.0555 0.946 (0.226,3.952) 0.7295 0.5058 0.9394 1.44

Cement and Higher -4.2967 0.014 (0.001,0.268) 1.5213 1.1939 0.0047 1.27

The effects of the variables on positive malaria infection in children under fourteen years can
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be interpreted through odds ratios while confounding for the effects of the other variables.

A unit increase in age in years of the children, implies an increase in the odds for malaria

infection (OR = 1.072, 95% C.I: 1.042, 10103, p - value = 0.0001). The variable cluster alti-

tude in metres was treated as a categorical variable with two different levels ( <2000m, and

>2000m). In comparison to households in greater than 2000 metres in altitude, households

within clusters located in altitudes less than 2000metres had children with increased odds of

testing positive for malaria (OR = 7.057, 95% C.I: 2.182, 22.820, p-value = 0.0011).

Compared to houses with no toilet facility, households using pit latrines and those with

flush toilets, had decreased odds for malaria infection (OR = 0.395, 95% C.I: 0.192, 0.811,

p-value=0.0015) and (OR=0.068, 95% C.I: 0.014, 0.333, p-value=0.0010) respectively. Ironi-

cally, households who own a bicycle had greater odds for positive malaria infection in children

in comparison to those without a bicycle (OR=2.580, 95% C.I: 1.799, 3.698, p-value=0.0001).

The type of wall material used in the house construction was also a significant factor re-

lated with malaria infection. Houses that had either cemented walls or walls made from

bamboo planks and wood, were 30% and 76% less likely to have a child testing positive for

malaria respectively. The result was more so significant for houses with bamboo planks and

wooden walls (OR = 0.242, 95% C.I :0.088, 0.650, P-value = 0.0050).

Interaction terms

The relationship between floor material used in household construction and the mother’s

highest education level is presented in Figure 3.1.
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Figure 3.1: Interaction of mother’s highest education and floor material use in household
construction

The risk of testing positive for malaria was highest amongst households with dung floors

and a mother with primary education. In the same span, the risk was lowest in households

with cemented floors and mother’s with higher education. Generally, households with ce-

mented floors had lower odds for malaria across all levels of mother’s education. The odds

were higher for households with dung floors across all levels of mother’s education. The risk

was relatively low for households with mother’s with no education across all floor types. This

could be because the frequency of uneducated women from the exploratory data analysis was

quite low. Most women had attained at least primary level of education.
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One other measure reported on Table 3.3 is the design effect (Deff), defined as:

deff(θ̂) =
V arSLS(θ̂)

V arSRS(θ̂)
(3.38)

which explains the large variability in the estimates obtained through survey logistic re-

gression (SLR) modelling compared to the same estimates obtained through simple random

sample (SRS) methods such as logistic regression model. Its value is usually greater than

1, indicating that deviating from SRS leads to increased variability of the estimates (Kish,

1965; Kish and Frankel, 1974; Skinner et al., 1989).

The PROC SURVEYLOGISTIC procedure displays the following four statistics for assessing

the predictive accuracy of the model: Concordance index (C), Goodman-Kruskal Gamma

(GKC), Somer’s D (SD), and the Kendal’s Tau-a (KT). These are defined as:

c = [nt − 0.5(t− nc − nd)]t−1

SD = (nc −Nd)t
−1

GKC = (nc − nd)(nc + nd)
−1

KT = (nc − nd)[0.5N(N − 1)]−1

The meaning of N is the sum observation frequencies in the data, t is the total number of

pairs with different responses, nc are the concordant pairs, nd are the discordant pairs and

t− nd − nd are the tied pairs. The concordance index (c), ranges between 0 and 1, and it is

equivalent to the area under the receiver operating characteristic (ROC) curve. A value of 0

indicates no association and a value between 0.5 and 0.6 shows a poor predictive accuracy.
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If the value lies between 0.7 and 0.8 the accuracy is said to be moderate and c greater than

0.8 connotes excellent accuracy. The Somers’ D is another useful statistic that measures

rank correlation between the binary response variable and the predicted probabilities. It

ranges between −1, showing negative association and 1 indicating positive association. The

Goodman-Kruskal’s Gamma measures the difference between the probability of concordance

and the probability of discordance (Agresti, 1990).

The concordance index for the final multivariate survey logistic model was 0.823 indicat-

ing that the model is excellent in predicting malaria infection in children.

3.5 Summary and discussion

Since the data used in the analysis was obtained from a complex survey, the survey logistic

regression method under the generalized linear models was relevant in assessing the risk fac-

tors associated with positive malaria in children. The findings from the study show that age

and the cluster altitude in metres are the important demographic and geographical factors

affiliated to malaria in children. Similarly, type of toilet facility, ownership of bicycle and

the wall material used in housing construction were important socio-economic factors linked

to malaria.

Our results are consistent with other studies showing a link between malaria prevalence

and age (Ayele et al., 2012; Gahutu et al., 2011; Siri, 2014). Of concern is the fact that

the odds for malaria infection seems to increase with increasing age. In separate studies

conducted in Rwanda and Tanzania, Kateera et al. (2015) and Winskill et al. (2011) respec-

tively, find that children aged between 5 and 15 years had higher odds for malaria compared

to children under 5 years.
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Households located in cluster altitudes below 2000 metres were found to be more at risk for

malaria infection while those in cluster altitudes above 2000 metres were less susceptible to

malaria. The literature on this correlation upholds these findings, that the risk for malaria

decreases with increasing altitude (Brooker et al., 2004; Ernst et al., 2006; Githeko et al.,

2006; Graves et al., 2009; Woyessa et al., 2013).

The findings on socio-economic factors associated with malaria prevalence are similar to

those from previous studies (Ayele et al., 2012, 2013; Gahutu et al., 2011). The results

reveal that households that had toilet facilities, either pit latrines or flush toilets, were less

likely to have children infected with the malaria parasite. This Implies that households with

no toilet facility had higher odds for positive malaria. Ownership of a bicycle is also a symbol

of the wealth status of a family. Ironically, households that at least owned a bicycle had

higher odds for malaria infection in children. Similarly, a study in Tanzania by de Castro

and Fisher (2012) finds no significant association between malaria and the socioeconomic

status of a household. The effect of type of housing structure on the prevalence of malaria

has been of great interest to many researchers (Chirebvu et al., 2014; Gamage-Mendis et al.,

1991; Sintasath et al., 2005). Our results show that poorly constructed houses with mud

walls had higher incidences of malaria than those with better wall constructions such as ce-

ment and wood/bamboo planks. This result is consistent with the transmission mechanism

of malaria. Poorly constructed households create ideal conditions for contact between the

mosquito vector and the human host, hence increased probability of transmission from an

infested mosquito.

The interaction between mother’s highest education level and the type of floor material

used in household construction was significant in explaining malaria risk in children. House-

holds with mother’s with at least the basic education and living in homes with cemented
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floors had lower chances for positive malaria infection. Regardless of the mother’s education

level, homes with floors constructed of dung had higher risks for malaria infection.

Malaria infection has for long been perceived as a disease of poverty (Worrall et al., 2005).

The socioeconomic factors such as toilet facility, ownership of household assets and type of

housing structure are indicators of the wealth status of a household. This study suggests

that having better toilet facilities reduces the chances of malaria illness. Different housing

structures also contributes differently to the risk of malaria. Houses constructed with good

materials such as cement, iron sheets, and bricks, on the walls, roof or floors would greatly

reduce the risk of its members testing positive for malaria. Literature shows that poorly

constructed houses provide easy entry and resting environments for the mosquitoes (Atieli

et al., 2009; Howell and Chadee, 2007; Schofield and White, 1984). This in turn increases

human exposure to the vector hence increasing incidences of malaria.

The study shows that the ownership of a bicycle did not greatly contribute towards de-

creasing the susceptibility towards malaria. Bicycles may quite generally be used as a source

of transport to the nearest health centre, or a faster means to purchase malarial drugs, when-

ever an individual manifests its symptoms. However, the results of the study indicate that

despite many families owning one, its use may have been quite limited. These poverty related

factors are important factors to be considered by policy makers. Improving the living con-

ditions of households through providing proper sanitation, and improved housing structures

may prevent poor health amongst household occupants. They can also be used to highlight

the use of intervention methods and treatment seeking procedures Worrall et al. (2003, 2005).

Closely linked to these socioeconomic status is the education level of the primary care-

givers. Our study reveals that homes with mother’s with the basic level of education had
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better living quarters and hence less likely to have childhood malaria infections. Therefore,

improving the literacy knowledge of mother’s indirectly improves the welfare of the house-

hold. Siri (2014) alludes that educated mothers are better equipped to improve the living

conditions of a family, invest in control measures such as ITNs, have knowledge on malaria

and make use of the health systems for treatment.

The results obtained through SLR modelling tends to be unbiased, since it takes into account

the complex design of the sample in the analysis. However, variability due to correlation

amongst the elements selected from the same household and/or cluster also needs to be

incorporated in the analysis. Therefore, the next chapter introduces the Generalized linear

mixed effects model (GLMM), an extension of the GLM that fits outcomes with non-normal

distributions and includes the random effects in addition to the fixed effects in the analysis.



Chapter 4

The Generalized Linear Mixed Models

4.1 Introduction

The previous chapter made use of survey logistic regression modelling under generalized

linear models to investigate the prevalence and risk factors associated with malaria in chil-

dren. This chapter provides us with an alternative method for modelling malaria in children,

given that our data was collected from a survey that incorporated stratification and cluster

sampling, that could lead to variability and correlation amongst subjects from households

within the same cluster.

The generalized linear mixed effects model (GLMM) is an extension of the generalized linear

model (GLM) by Nelder and Wedderburn (1972), and allows Statisticians to model non-

normal and non-linear data that includes both random effects and fixed effects. According

to McCulloch et al. (2008) random effects are achieved from factors with infinite levels drawn

from a sample in a population, and the main interest is in the variations in the levels. The

GLMM’s structure is similar to that of a GLM with the only difference being the introduc-

tion of the random effects in the linear predictor. The GLMM is an important model in

68
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solving the problems of over-dispersion and also makes inference of the population hetero-

geneity. It is applicable in various research fields including epidemiology, ecology, actuarial

statistics, educational studies, biomedical studies and household surveys (McCulloch et al.,

2008; Verbeke and Molenberghs, 2009; Antonio and Beirlant, 2007; Agresti et al., 2000).

This chapter will focus on using the GLMM to investigate the risk factors associated with

malaria in children. We will discuss the structure of the GLMM, provide various methods

of estimation for both the fixed effects and random effects parameters and finally apply the

model to our data.

4.1.1 The model structure

GLMMs are an advancement of the linear mixed model (LMM) proposed by (Laird and

Ware, 1982), that caters for outcomes that are non - Gaussian in nature (McCulloch et al.,

2008). The general structure of the LMM with both fixed and random effects is:

Y = Xβ + Zb+ ε (4.1)

b ∼ N(0, D) (4.2)

ε ∼ N(0, R) (4.3)

where:

Y is N × 1 response vector of observations

X is N × p model matrix for fixed effects

β is p× 1 vector for fixed effects coefficients

Z is N × q model matrix for random effects

b is q × 1 vector of random effects coefficients
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ε are the error terms for the observations

D is q × q variance and covariance component of the random effects

R is N ×N matrix for the error terms

Given the random effects parameter bi, the response variable, yij (the jth observation from

clusteri for i = 1, 2, ...N and j = 1, 2, ..., ni) are assumed to be independent and have a

distribution similar to that from the exponential family. The random effect parameter bi is

drawn independently and has a distribution of f(bi|D).

yij|bi ∼ fyij |bi(yij|bi, ξij)

fyij |bi(yij|bi) = exp

[
yijξij − b(ξij)

a(φ)
+ c(yij, φ)

]
(4.4)

The conditional mean µij = E(yij|bi) is modeled as:

g(µij) = ηij = x′ijβ + z′ijbi

where g(.) is the link function and η(.) is the linear predictor.

4.1.2 Estimation of the parameters

The maximum likelihood method is the preferred estimation method for parameters in a

GLM using iterative methods such as the Newton Raphson method, Fisher scoring and the

Iterative weighted least squares procedure (McCullagh and Nelder, 1983). Under certain

regularity conditions of the likelihood, quadratic convergence of the iterations is achieved

(Gad and El Kholy, 2012). In a GLMM model, the ith subject contribution toward the
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likelihood is defined by:

fi(yij|β,D, φ) =

∫ ni∏
j=1

fij(yij|ui, β, φ)f(bi|G)dbi

Therefore the likelihood for β,D, φ is given as:

L(β,D, φ) =
N∏
i=1

fi(yij|ui, β, φ)f(ui|D)dui (4.5)

=
N∏
i=1

∫ ni∏
j=1

fij(yij|bi, β, φ)f(bi|D)dbi (4.6)

Obtaining the ML estimates for equation 4.5 involves integrating over the bi random effects.

Neyman and Scott (1948), question the efficiency of the ML method in estimating parameters

in partially consistent situations where the set of unknown parameters is infinite. Since

integration of the likelihood for a GLMM is intractable, producing inconsistent estimates and

is computationally infeasible for high dimensions of the random effects, various other methods

have been proposed for parameter estimation. These methods include: Penalized quasi-

likelihood, marginal quasi-likelihood, Laplace approximations, Gauss - Hermite quadrature,

Markov chain Monte Carlo approximations and the Gibbs sampler.

Penalized Quasi-likelihood

The penalized quasi - likelihood (PQL) method (Breslow and Clayton, 1993) approximates

the integral of the quasi-likelihood given by ql(β, ξ), by decomposing data in to the mean

and the error terms and performing a Taylor series expansion of the mean. The integrated

quasi-likelihood function for estimating (β, ξ) is defined as:

eql(β,ξ) ∝ c|D|−1/2
∫
e−k(b)db (4.7)
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where:

k(b) =
1

2φ

n∑
i=1

di(yi;µi) +
1

2
btD−1b

c is a constant term, b is the random effects parameter with a multivariate normal distribu-

tion with mean 0 and covariance matrix D = D(θ), β are the fixed effects

Qi = di(yi;µi) =

∫ µi

yi

yi − t
τ 2V (t)

dt (4.8)

is the conditional quasi likelihood, with τ as the constant of proportionality that relates

var(yi) to v(µi) (McCulloch et al., 2008). By adding a penalty of 1
2
bTD−1b to the QL

one obtains the PQL which when partially differentiated with respect to the fixed effect and

random effect parameters yields the maximum quasi- likelihood equations that can be solved

iteratively through fisher scoring or the Newton Raphson methods.

PQL =
n∑
i=1

Qi −
1

2
bTD−1b (4.9)

The PQL method is implemented in various statistical software although it has a few disad-

vantages. McCulloch et al. (2008) postulates that it is not an efficient method for parameter

estimation of binary data in small clusters. It also produces asymptotically biased results

in the regression coefficients and variance components especially for correlated Poisson and

binary data. More details on the bias of the PQL as authored by various researchers can be

found in McCulloch et al. (2008); Breslow and Clayton (1993); Lin (2007); Breslow and Lin

(1995).

Marginalized quasi-likelihood

The Marginalized quasi likelihood (MQL) is related to the PQL method. Although it is com-

monly used when interest is on the marginal relationship between the co-variables and the
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outcome of interest (Breslow and Clayton, 1993). The MQL method is discussed extensively

by (Breslow and Clayton, 1993), who apply the first and second order marginal moments of

the response variables to estimate the regression parameters and (Sutradhar and Rao, 2001)

who compute the joint moments of the clustered observations up to the forth order.

The PQL and the MQL methods both provide a linear approximation of the integrand

based on the Taylor expansion of the conditional mean. However, the expansion in the MQL

method is based on the current estimates for β and the zero vector for the random effects

(Tuerlinckx et al., 2006). The estimating equations are again solved iteratively to obtain the

parameter estimates.

Laplace approximation

The Laplace approximation method is widely used in approximating the likelihood functions

of the closed form. Breslow and Clayton (1993); Breslow and Lin (1995) use the Laplace

approximation method and second and forth order expansion methods respectively to obtain

the likelihood equations useful for obtaining the GLMM parameter estimates. In the Laplace

approximation method, the integral of the form I =
∫
e−Q(b)db can be approximated through

second order Taylor series expansion of its logarithmic integrand. The resulting integral, as-

sumed to be Gaussian distributed is then evaluated normally.

Gauss-Hermite quadrature

The Gauss-Hermite quadrature is a numerical method of approximating the intractable inte-

gral of the marginal likelihood. Liu and Pierce (1994) defines the Gauss-Hermite quadrature

as follows:

Given an integral of the form: ∫ ∞
−∞

f(z)Φ(z)dz (4.10)
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The Gauss-Hermite quadrature approximation is given as

∫ ∞
−∞

f(z)exp(−z2)dz ≈
Q∑
q=1

wqf(zq) (4.11)

where zq are nodes, with zero value of the rth order in the Hermite polynomial, Q is the

order of approximation and wq are the weights.

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods described in Hastings (1970) are more useful in solving

high dimensional numerical integrations. They are used in solving integrals of the form:

I =

∫
f(x)p(x)dx

Given that p(x) is a probability distribution function of the random variables. The standard

Monte Carlo methods for solving the integral involved drawing N independent and identi-

cal samples of X from the density p(x), and using its estimate Î1 = 1
N

∑
f(xi).However,

drawing samples from the density p(x) is not always feasible, therefore the integral may

be approximated through Markov chain processes described in Hastings (1970) and Spall

(2003). MCMC methods allow for drawing of samples independently without sampling from

p(x) and producing dependent Markov sequences with density q(x) approximately equal to

the density of interest p(x). The MCMC method is especially useful in Bayesian analysis and

has been applied in two algorithms, the Gibbs sampler and metropolis hastings methods.

The Gibbs sampler method discussed extensively in Casella and George (1992) and Zeger

and Karim (1991) is a Markov chain Monte Carlo method of obtaining valid observations

from the joint distribution by invoking a Markov chain through repeated sampling from the

conditional distribution (Rodriguez and Goldman, 2001). Suppose we have a vector θ, of
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three parameters, θ1, θ2, θ3, we want to draw a sample from the posterior distribution p(θ|y)

using the following steps: We pick an arbitrary vector θ(0), and start with any parameter

θ, say θ1. Draw θ
(1)
1 from the conditional distribution, p(θ1|θ(0)2 , θ

(0)
3 , y). Again, we draw

θ
(1)
2 from the conditional distribution, p(θ2|θ1(1), θ

(0)
3 , y) with the updated value of θ

(1)
1 , and

complete the first iteration by drawing θ
(1)
3 from the conditional distribution p(θ3|θ(1)1 , θ

(1)
2 , y)

with the updated value from the second draw. θ(2) is drawn using the updated values from

θ(1). The steps are repeated for M iterations to obtain the empirical distribution that is

used to approximate the joint distribution of the parameters. Monte Carlo integration on

the draws is then performed to obtain the quantities for the parameter of interest. The

Gibbs sampler method is applicable to multivariate and non-gaussian random effects and is

easy to implement (Zeger and Karim, 1991).

The Metropolis Hastings (M - H) algorithm developed by Metropolis et al. (1953) for use in

Physics and generalized by Hastings (1970) is described extensively by Chib and Greenberg

(1995) and is also useful in Bayesian statistics for numerical integration.The Gibbs sampler

is a special case of the M-H algorithm (Zeger and Karim, 1991), and is used when the con-

ditional probabilities are known. Given a likelihood function of the form given in equation

4.6, the joint distribution of [β,D, b] and its marginal distributions [β,D|y] and [bi|y] can be

obtained from the conditional distribution. The Gibbs sampler algorithm follows these steps

to generate the joint distribution for the random variables β, D and b:

� Given the arbitrary starting values β(0), D(0), b(0), draw β(1) from the conditional dis-

tribution [β|D(0), b(0)]. Then draw D(1) from the conditional distribution [D|β(1), b(0)].

The first iteration is completed by drawing b(1) from the conditional distribution

[b|β(1), D(1)].

� After M iterations, we obtain (β(m), D(m), b(m)).
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� The joint distribution is approximated by the empirical distribution of the R values

(β(k), D(k), b(k)), (k = M + 1,M + R), for a sufficiently large M , so that the Gibbs

sampler converges.

4.1.3 Inference for GLMM’s

Once the parameter estimates for a GLMM have been obtained through the methods dis-

cussed in section 4.1.2, statistical inference can be performed. This is an important step in

statistical analysis since one can accurately make conclusions about the population based on

the results obtained from the population sample.

Inference for fixed effects

GLMMs are mostly fitted using maximum likelihood methods, therefore the estimates ob-

tained are usually asymptotically normally distributed. The classical tests that are useful

in making inference for the fixed effects parameters have been analyzed and discussed by

several authors (Verbeke and Molenberghs, 2009; Bolker et al., 2008; Tuerlinckx et al., 2006;

McCulloch et al., 2008). They are: Wald tests, F - tests T -tests, score statistics, and the

likelihood ratio tests. An approximate Wald test and the corresponding confidence intervals

can be obtained through approximating the distribution of
(β̂j−βj)
ˆS.E(β̂j)

, by the standard uni-

variate normal distribution, for each parameter βj, j = 1, ..., p. More generally to test the

hypothesis:

H0 : Lβ = 0 against HA : Lβ 6= 0 (4.12)

for any matrix L, the distribution:

(β̂ − β)′L′

[(
N∑
i=1

X ′iV
−1
i (α̂)Xi

)]−1
L(β̂ − β) (4.13)
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is asymptotically chi square distributed with rank (L) degrees of freedom. The Wald tests

are based on estimated standard errors, that may fail to take into account the variability in β̂

introduced by estimating α, the vector of variance components (Verbeke and Molenberghs,

2009). This bias can be corrected by using approximate t and F statistics to test the

hypothesis given in equation 4.12. The distribution of
(β̂j−βj)
ˆS.E(β̂j)

, can be approximated by t -

distribution, in order to obtain the t - tests and confidence intervals for the parameters βj.

The F - statistic is given by

F =
(β̂ − β)′L′

[(∑N
i=1X

′
iV
−1
i (α̂)Xi

)]−1
L(β̂ − β)

rank(L)
(4.14)

and it also takes in to account the variability that arises as a result of estimating the disper-

sion parameter φ. It is estimated by taking the Wald statistic and dividing by the degrees

of freedom for the test. The Likelihood ratio test (LRT), can also provide inference for the

fixed effects especially in nested model with different mean structures. The LRT statistic

can be defined as:

LR = −2ln

[
LML(θ̂ML)

LML(θ̃ML)

]
(4.15)

where θ̂ML and θ̃ML is the maximum likelihood estimate of θ obtained after maximizing the

marginal likelihood function over the restricted model and the unrestricted model respec-

tively. The score statistic is also referred to as the Lagrange multiplier test and is given

by:

U = s(β̃)F−1
β̃
s(β̂) (4.16)

where s(β̃) is the score function under the restricted model while Fβ̃ is the expected or

the observed information matrix. The Wald statistic and the score tests are based on the

quadratic approximation of the log-likelihood function, and thus are more advantageous

since they only require fitting a single model unlike the LR tests which require fitting of
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both the restricted model and the unrestricted model. The Wald and F tests also depend on

the dispersion parameter. The Wald statistic and the score test are based on the quadratic

approximation of the log-likelihood function. The LR tests can be used in models whether

the dispersion parameter is known or unknown.The LR tests provide better results than the

Wald, score tests and F tests because they use information from both the null model and

the maximal model.

Inference for random effects

The GLMM of the form g(µi) = xTi β + zTi bi has subject specific random effects which

are usually multivariate normally distributed with mean of zero and a variance covariance

matrix D(θ). The vector θ is a q × 1 vector of the unknown variance components. The

presence of random effects in mixed models, makes it necessary to model the within subject

and between subject variations, in the covariates (Zhang and Lin, 2008). The statisticians

therefore tests whether no subject variation exists in the covariates of Z, therefore the null

hypothesis would be to test whether θ = 0. This may result in some of the variance com-

ponents to lie on the boundary of the parameter space, and thus causing tests such as the

Wald tests, Score tests and the LR tests not to have a chi square distribution Lin (1997).

According to (Verbeke and Molenberghs, 2003) it is paramount for a statistician to deter-

mine between one sided and two sided tests whenever one has to make inference about the

variance components in mixed models. For the two sided tests of hypothesis, under the null

distribution, the traditional inference tests, LR tests, Wald tests and Score tests are used

and are asymptotically chi square distributed.

Under certain regularity conditions, the distribution of the MLE θ̂, obtained through likeli-

hood theory can be approximated by normal distribution with a mean vector θ and covari-

ance matrix given by the inverse of the Fisher information matrix (Verbeke and Molenberghs,
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2009). By using the asymptotic normality of the parameter estimates, one is able to obtain

the approximate Wald test and corresponding confidence intervals. This procedure fails in

restricted hypothesis testing, and may require derivation of one sided test statistics and their

null distribution. The calculation of score tests in one sided hypothesis depends on the in-

formation matrix and requires computation of mixed chi square distributions Zhang and Lin

(2008). The score tests are computationally easy as they only require fitting of the GLMM

under the null hypothesis.

Stram and Lee (1994) shows that, in one sided tests of hypothesis, with k correlated random

effects against the alternative k + 1 correlated random effects, the asymptotic null distribu-

tion for the LRT statistic, has a mixture of χ2
k and χ2

k+1, with equal probability 1/2 (Zhang

and Lin, 2008; Verbeke and Molenberghs, 2003, 2009). The random effects bi in a GLMM are

assumed to be random variables with a multivariate normal marginal distribution. Empirical

Bayes estimate for bi can be obtained by calculating the mean of its posterior distribution,

(f(bi|yi)), which is conditional on the observed values of the response variable yi. Inference

on bi is obtained from var(b̂i(θ)− bi).

The process of model selection is important in statistical analysis and involves comparing

and selecting the best model amongst many models with different numbers of parameters.

The most commonly used method for model selection especially in linear mixed models is

the information criterion (IC), based on the maximized log-likelihood function. The IC is

given as:

IC = −2log(λm) +$k

where log(λm) is the maximized log likelihood function, k is the number of parameters. When

the penalty $ = 2, the IC approach is the AIC (Akaike, 1974), and when $ = log(n), it is



80 CHAPTER 4. THE GENERALIZED LINEAR MIXED MODELS

the BIC (Schwarz, 1978). Lindstrom and Bates (1990) suggests that these IC approaches,

can be extended to Normally distributed, non-linear mixed effects models. These methods

are based on the likelihood functions whose integrals are numerically intractable in GLMMs

thus, it may be difficult to estimate the marginal distribution. Several other methods for

assessing the goodness of fit have been proposed. Vonesh et al. (1996) came up with the

concordance correlation coefficient, similar to the R2 for linear models, that measures the

level of concordance between the fitted and observed responses. This method does not

require the specification of the null model, but is however not useful for discrete data. Pan

and Lin (2005) developed procedures for assessing the adequacy of GLMMs by taking the

cumulative sums of residuals over the predicted values. Besides not requiring specification

of the alternative hypothesis, they give information on the nature of model misspecification

and also check the model fit for the random components. (Lavergne et al., 2008) proposes

a simple IC approach obtained by computing the log-likelihood corresponding to the LMM

for the final working variable, given as

ICS = nlog(2π) + log(|Γ̂|) + (Zf −Xβ̂)′Γ̂−1(Zf −Xβ̂) +$k (4.17)

Γ̂ = Ŵ +UD′U ′, U and D are the independent variables and the variance-covariance matrix

for the random effects, respectively, Zf is the final working data and k = p + s, the sum of

fixed and random effects parameter lengths. The GLMM with the smallest ICs is selected.

Another alternative to assessing the goodness of fit is the use of graphical procedures such

as residual plots (Pan and Lin, 2005). They are mostly useful in assessing model fit for

independent outcomes whose residuals are uncorrelated.
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4.1.4 Advantages and disadvantages of GLMMs

Generalized mixed effects models (GLMMs) were developed to cater to some of the limiting

assumptions of linear mixed models (LMMs), as well as generalized linear models (GLMs).

The LMMs assume that the relationship between fixed and random effects and the mean of

the outcome variable can be modelled through a linear function. They also presume that

the variance function of the mean and random effects follows a normal distribution which is

not true for binary outcome random variables. They again deduce that predictions can take

on any values fro negative infinity to positive infinity, an assumption that doesnot hold for

binary outcome variables bounded in the range (0, 1), and count data that only takes positive

values. Treating correlations amongst observations as fixed effects has lead to overdispersion

in generalized linear modelling, and therefore GLMMs prove to be useful in handling non-

normal data that also have random effects. The GLMM procedure is computationally easy

to use and has been implemented in most statistical packages. It may however be challenging

for complex models, where the choice of the significance of the random effect would depend

on the researcher’s objectives. Most of the assumptions of GLMMs are drawn from LMMs

and GLMs, contributing to high risk of model mispecification, producing biased parameter

estimates. Some of the model testing and inferential procedures may also not be applicable

in these models. They are also limited to linear functions yet some predictor values may be

sigmoidal.

4.1.5 GLMMs for binary response data

Several research studies have been conducted for modelling dichotomous data whose covari-

ates have both fixed and random effects, (Pendergast et al., 1996; Zhang et al., 2011; Capanu

et al., 2013; Agresti, 1990). Researchers incorporate logistic regression models with mixed

effects in such situations which uses the logit link. Let Yijh be a binary response variable cor-
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responding to the ith observation in the jth household within the hth cluster. The conditional

mean of Yijh depends on the fixed and random effects, µijh = E(Yijh|bi) = Pr(Yijh = 1|bi).

It is related to the linear predictor via a logit link function such that:

g(µijh) = logit(µijh) = log

(
µijh

1− µijh

)
= ηijh

In the previous chapter, we made use of survey logistic regression approach under GLMs to

identify the risk factors associated with malaria in children. As much as the method takes

in to account the complex survey design utilized in the household survey, it does not take

in to account the variability as a result of drawing samples from the same sampling unit.

The GLMM has the advantage of modelling these variability and thus will be applied in this

chapter.

4.1.6 Data analysis

The PROC GLIMMIX procedure available in SAS version 9.3 was used to analyze our data.

The response variable was malaria status indicating whether child i, from household j within

cluster h tested positive for malaria. The geographic as well as the demographic covariates

were: age, gender, cluster altitude in metres, malaria zone, and type of place of residence.The

socio-economic variables were: toilet facility; water source; household structure that included

roofing material, wall material and floor materials used in household construction; availability

of electricity; ownership of mobile, radio, television and bicycle; and wealth quintile. Asso-

ciated with the socio-economic factors were the intervention factors such as use of mosquito

nets while sleeping, nets per person, number of mosquito nets and antimalarial spraying.

The distribution of the response variable and the link function are specified through the

DIST= and LINK= options in the model statement of the PROC GLIMMIX procedure.
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The binary distribution option with logit link were used in this model. The parameter and

covariance estimation techniques are specified using the METHOD = option syntax in the

PROC GLIMMIX statement. The default estimation technique in the GLIMMIX procedure

is the residual pseudo likelihood method (RSPL). However, the model did not converge,

hence the marginal distribution was approximated by using the Gauss-Hermite quadrature

approximation method and the Laplace methods. Both these methods produced similar

results, with minimal differences in the parameter estimates and their corresponding stan-

dard errors. However, the final model was based on the Gauss-Hermite quadrature with 20

quadrature points.

The Random statement specifies the G-side and the R-side random effects and their covari-

ance structures. The clusters and the households in the data set were chosen at random.The

random effect was the ”household” effect.

Table 4.1: Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Chol (1,1) HouseID 0.3671 0.08657

Inference about the covariance parameters can be made through likelihood based, tests of

significance produced by the COVTEST statement. The results of the test is given in Table

4.2. The significance of the random effect was obtained by testing whether the G matrix can

be reduced to a zero matrix.

Table 4.2: Tests of covariance parameters based on the likelihood

Label DF -2 Log like Chisq Pr>Chisq

No. G-side effects 1 2110.44 13.88 0.0001

The results show that the household effect is significant (i.e. there is evidence of heterogene-

ity in malaria status in children from different household). Further, the variance component
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of the random effect was estimated at 0.3671 with a standard error of 0.08657 (see table 4.1)

confirming its significance. The model was fitted with different covariance structures for the

G matrix. The default covariance structure in the PROC GLIMMIX procedure is the vari-

ance component given by the syntax “type= vc “. The model was fit using the “type=chol”

option, that is numerically stable, and it specifies an unstructured variance-covariance ma-

trix through the Cholesky root.

Selecting the best fit model was achieved through various processes. All the predictor vari-

ables were first fit into the model and a process of backward selection criterion was applied

until only the significant effects (with p - value <0.05) remained. Two-way interactions and

higher order interactions were also exploited. A comparison of the models was done through

the information criteria statistics such as the AIC and BIC.

The results of the Type 3 analysis of the final model selected are displayed on Table 4.3.

Statistical inference about the fixed effect parameters are based on Wald tests and are also

dependent on the estimated covariance matrix (Gurka et al., 2011).
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Table 4.3: Type 3 analysis of the fixed effects for the final multivariate GLMM

Effect df F - value P > F

Age 1 65 0.0001

Malaria zone 4 100.70 0.0001

Floor Material 2 7.57 0.0005

Nets per person 1 6.51 0.0108

Mother’s Highest Education level 2 4.75 0.0087

Number of nets 1 0.87 0.3506

Type of place of residence 1 4.22 0.0400

Toilet facility 2 8.12 0.0003

Floor Material*No. of nets 2 13.99 0.0001

The age of the child in years, type of floor material used in household construction and

type of toilet facility were once again the significant main effects. Other significant main

effects were nets per person, mother’s highest education level, malaria zone and type of place

of residence. The only two-way interaction under consideration was between number of nets

and floor material used in household construction.

Based on the results (see Table 4.4), we again observe that for a unit increase in the age of

child in years, the odds for positive malaria results increases by 13%, [OR = 1.131, p-value =

0.0001, 95% C.I(1.098, 1.166)]. The odds for malaria infection decreased by 70.7% as the
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number of mosquito nets per person sharing increased by a single unit [OR = 0.293, p-value =

0.0001, 95% C.I(0.114, 0.752)]. Compared to households located in the seasonal risk zones,

the odds for having malaria was greatest for households located in the lake regions [OR =

281.913, p-value = 0.0001, 95% C.I = (86.718, 916.480)], followed by the households in mod-

erate zones [OR = 12.643, p-value = 0.0001, 95% C.I(3.826, 41.784)], and lastly the house-

holds located in the highland zones [OR = 8.232, p-value = 0.0006, 95% C.I(2.463, 27.511)].

The risk for malaria also seemed to increase by 75% in households located in the rural areas

compared to those within the urban areas [OR = 1.752, p-value = 0.040, 95% C.I(1.026, 2.992)].

Compared to households with mother’s with a primary education, children in households

with mother’s without an education had a 76% chance for positive malaria outcome [OR =

1.7596, p-value = 0.0079, 95% C.I(1.1598, 2.6698)]. Toilet facility was once again a significant

socio-economic factor in explaining the prevalence of malaria. In comparison to households

with flush toilets, households without toilet facilities had a higher likelihood of positive

malaria outcome in their children.
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Table 4.4: Parameter estimates, odds ratio and 95 % confidence intervals for the final GLMM
with household random effect

Variable Estimate Odds ratio 95% C. I Standard error P- value

Intercept -6.8517 0.9964 0.0001

Age 0.1235 1.1315 (1.098,1.1659) 0.01532 0.0001

Malaria zone ( Ref = Seasonal)

Lake region 5.6416 281.9134 (86.7179,916.4798) 0.6015 0.0001

Moderate risk 2.5371 12.6430 (3.8255,41.7836) 0.6099 0.0001

Highland 2.1080 8.2318 (2.4631,27.5107) 0.6156 0.0006

Low risk 0.3878 1.4737 (0.1500,14.4800) 1.1658 0.7394

Nets per Person -1.2263 0.2934 (0.1145,0.7519) 0.4802 0.0107

Mother’s highest education ( Ref = Primary)

Higher -0.2035 0.8159 (0.5986,1.1120) 0.1580 0.1980

No education 0.5651 1.7596 (1.1598,2.6698) 0.2127 0.0079

Toilet facility( Ref = Toilet with flush)

Pit Latrine 0.5919 1.8074 (0.4075,8.0165) 0.7600 0.4362

No facility 1.2620 3.5325 (0.7834,15.9278) 0.7684 0.1006

Type of place of residence ( Ref = Urban)

Rural 0.5668 1.7626 (1.0322,3.0098) 0.2730 0.0400

Interaction terms

The two way interaction between number of nets in the household and type of floor material

used in household construction was significant. The results are given in Table 4.5 below.
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Table 4.5: Parameter estimates, odds ratio and 95 % confidence intervals for the final GLMM
with household random effect

Variable Estimate Odds ratio 95% C. I Standard error P- value

Number of nets -0.3060 0.7364 (0.5723,0.9475) 0.1286 0.0174

Floor material( Ref = Earth/Sand)

Cement -0.5508 0.5765 (0.2547,1.3049) 0.4168 0.1864

Dung -1.1151 0.3279 (0.1858,0.5786) 0.2898 0.0001

Floor material*Number of Nets( Ref = Earth/Sand)

Number of nets*Cement 0.050 1.0511 (0.7304,1.5126) 0.1857 0.7884

Number of nets*Dung 0.6273 1.8725 (1.4319,2.4489) 0.1369 0.0001

Figure 4.1 displays the pair comparison of least square means of the number of nets and

floor material used in household construction interaction on malaria status.

Figure 4.1: Diffogram of floor material and Number of nets interaction effects
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The diffogram is useful in providing a visual representation of the differences in the least

square means (LS-means) amongst the pairs and levels of classification variables. Both the

variables number of nets and floor material used in household construction had three lev-

els. The horizontal and vertical axes of the diffogram have similar lengths. The point of

intersection of the line coming from the horizontal and the vertical axes gives the values of

the differences in log scale of the LS-means being compared. The length of line segments on

both sides of the crossing point shows the width of the confidence intervals for this differ-

ences. The 45◦ reference line determines the significance of a pair of classification. Usually,

comparisons whose confidence interval entails zero, cross the reference line and are consid-

ered non-significant. Line segments that do not cross the reference line suggests significant

LS-means difference.

From figure 4.1, the combination between dung floor with one net per household and dung

floor with 2 nets per household; dung floor with one net per household and dung floor with

3 nets per household; dung floor with 2 nets per household and dung floor with 3 nets per

household; cemented floor with one net per household and cemented floors with 2 nets per

household; cemented floor with one net per household and cemented floors with 3 nets per

household; cemented floor with one net per household and earthen floors with 2 nets per

household; and cemented floor with 2 nets per household and cemented floors with 3 nets per

household, had insignificant LS-means differences. The remaining interactions have statisti-

cally significant LS-mean differences at the 5% level of significance. Generally, an increase

in number of mosquito nets in earthen floors had a significant effects in decline in malaria

risk compared to the other floor materials.

The model with household random effect had a Pearson chi-square over the degrees of free-

dom statistic of 0.94 where a value of 1 is desirable. This value is close to 1 indicating
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that variability in the data was properly modeled. The cluster effect may also be a source

of random variation. There may be similarity in incidences of malaria amongst households

from the same clusters. However, fitting the same model but with cluster as the random

effect produced a less dispersed model with a Pearson chi square over the degrees of freedom

statistic shifting from 0.94 to 0.60. The variance component estimate for the cluster effect is

however significant at 1.1715, with a standard error of 0.1463, indicating a significant cluster

to cluster variation. The parameter estimates are similar to those of the previous model bit

with slightly higher standard errors.

Further variability can also be induced through nesting the households within the clus-

ters. The dataset included a selection of 30 households in each of the 240 randomly selected

clusters. Attempting this approach, we observe that the model is much less dispersed, with

a Pearson chi square over the degrees of freedom statistic of 0.36. The G-side random effects

were still significant.

Table 4.6: Covariance parameter estimates for household nested within cluster random effects

Cov Parm Subject Estimate Standard error

Intercept Cluster 1.6542 0.4440

Intercept Household(Cluster) 0.9852 0.2880

A comparison of the AIC for the model shown in Table 4.3, shows that the GLMM with

two random effects had a lower AIC. The model with cluster and household nested within

cluster random effects was a better fitting model than the two other models with separate

household and cluster random effects.

Table 4.7: Comparison of the AIC estimates for the models

Model 1 Household random effect 2132.50

Model 2 Cluster random effect 2003.75

Model 3 Cluster and Household nested in cluster 1938.97
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However the final model selected for the study was model 1 with household random effect.

Model 2 and model 3 were less dispersed, and gave insignificant results for type of place of

residence and toilet facilities, which are important covariates in explaining malaria.

4.1.7 Summary and discussion

The results from the study show that demographic, socio-economic as well as geographic

factors are important in explaining malaria infection in children. These factors are: age,

housing structure particularly the type floor material used in household construction, type

of toilet facility, nets per person sharing, number of nets in the household, malaria zone,

type of place of residence and mother’s highest education level.

We observe that the socio-economic factors which are actually poverty related factors played

a vital role in determining the risk of malaria in children. Children whose families had

no toilet facility, had relatively fewer mosquito nets and lived within a rural setting had

higher chances for malaria infection. In addition, having better living conditions through

decently structured homesteads reduces the risk for malaria. Homes that had cemented

floors and dung floors had lower malaria prevalence than home with earthen floors. Having

more mosquito nets within such families could lead to a reduction in malaria prevalence.

The geographical setup within which the household is located also contributed to observed

pattern for malaria spread. Children living in the lake regions, highland malaria zones and

moderate risk zones had high presence of malaria parasitamea in their blood samples. Geo-

graphical factors provide conducive environments for both the parasite and the mosquito to

thrive and multiply. Hence encouraging such communities to effectively control the vector

through anti-malarial spraying, use of insecticide treated bed nets and environmental hygiene
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could help reduce malaria. The study supports this notion since we see that households that

equivalently had more bed nets as the household members had lower risks for malaria.

Several multinational and multilateral programs and initiatives have been set-up and sup-

ported by the Kenyan government to help control and eventually eliminate malaria. Some

of the key strategies employed include control measures such as early malaria diagnosis

and treatment distribution of insecticide treated mosquito nets programs and anti-malarial

spraying. The study findings have shown thats some of these strategies have contributed

to a significant decline in the risk of malaria. Despite these, more effort needs to be added

especially in regions with high malaria cases. Intense vector control measures such as indoor

malaria spraying and clearing of vegetation surrounding the homestead should be encour-

aged. The number of mosquito nets per household should be commensurate with the number

of household members and individuals should use the provided mosquito nets for their in-

tended purpose.

The government can also include poverty alleviation strategies in their social welfare pro-

grams for the communities. The study has shown that poverty is a big contributing factor

towards the risk for malaria. Households that cannot afford better housing with toilet fa-

cilities had higher likelihood for malaria infections. Public awareness campaigns on the

importance of proper sanitation and hygiene and prompt diagnosis and treatment could

help the poorer households combat infectious diseases.

An important observation from the study is the fact that older children, with a perceived

acquired immunity, seem to be more susceptible to malaria than the younger ones. This

may be due to immunization plans facilitated by the government that distributes bed nets

to children under 5 years during ante-natal visits. The government policy can also be shifted
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to encourage distribution of insecticide treated mosquito nets commensurate to the number

of household members.

This chapter has also highlighted that there is variability in malaria prevalence as a re-

sult of testing children from the same household. This may be due to similarity in living

conditions that encourage malaria risk and also, one household may have more children test-

ing for malaria than the next different household. This means that individual household care

and interventions may be necessary, although they may be more costly than the population

based interventions.

The next chapter introduces the generalized additive mixed effects model (GAMM), which

enhances the GLMM framework by modelling non-linearity exhibited in some of the covari-

ates.



Chapter 5

Semi parametric regression approach

5.1 Introduction

The methods discussed in the previous chapters; survey logistic regression (a special case

of the GLM for modelling survey data) and the generalized mixed effects model (GLMM),

are both parametric methods used for describing the relationship between the outcome of

interest and the covariates. Although the parametric methods are computationally easy to

use and interpret, they assume that the functional form of the model is known prior. As a

consequence, the results may be biased, and therefore the need for nonparametric modelling

that assumes an unknown functional form of the model, prior to modelling.

Nonparametric regression is a flexible approach for modelling nonlinear forms of data that

have no predetermined functional forms. Suppose we have a pair of random variables

{Xi, Yi}, i = 1, 2, ..., n, the general form of the nonparametric model is given as;

Yi = g(Xi) + εi (5.1)

94
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where g is the unknown regression function of the predictor variable(s) and can be esti-

mated by a roughness penalty method (Green and Silverman, 1994). Other methods of

approximating unbiased and consistent estimators of the nonparametric regression model

are: kernel estimators, smoothing splines, regression splines, running mean estimator, run-

ning line smoothers, bin smoothers, wavelets and locally weighted scatter plot smoothing

(LOWESS). One such model is the project pursuit regression suggested by (Friedman and

Stuetzle, 1981), that fits the model of the form,

Y =

p∑
j=1

sj(α
′
jX) + ε

where α′jX is a one dimensional projection of the vector X, sj is the arbitrary smooth func-

tion and the error term ε, is an independent random variable with mean 0 and variance σ2.

These models are parsimonious smooth surface estimators but are difficult to interpret for

larger p (Hastie and Tibshirani, 1990).

The alternating conditional expectation discussed by (Breiman and Friedman, 1985), is also

another nonparametric approach for estimating nonlinear multiple regression. The model is

given by:

E(θ(Y )|X) =

p∑
j=1

sj(xj)

The response variable is estimated as a transformation of the form θ(Y ). Extensive litera-

ture on the nonparametric regression has been done, among them: (Härdle, 1990), (Faraway,

2006), (Staniswalis and Lee, 1998), (Lin and Ying, 2001), (Izenman, 1991), (Silverman, 1985),

(Buja et al., 1989).

Nonparametric model fits, however, suffer from a problem researchers refer to as ”the curse of
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dimensionality” in cases where the data is of high dimension. These often results in bias and

unreliable interpretations of the fitted model. Semiparametric regression models have thus

been developed, that combine properties of parametric regression and the nonparametric

methods (Lin and Ying, 2001; Carota and Parmigiani, 2002; Zeger and Diggle, 1994; Härdle

et al., 1998).

The semiparametric regression models are used to fit models with unknown functional forms

and non-linear fits, examples of which can be found in works by (Engle et al., 1986) and

(Green et al., 1985). This chapter utilizes this form of regression in particular the general-

ized additive mixed effects model (GAMM) in determining the risk factors associated with

malaria in children. Section 5.2 of this chapter discusses the generalized additive model

(GAM) that provides a background towards the generalized additive mixed model discussed

in section 5.2.4. Our data is then fit using GAMM procedure, and a summary and discussion

of the results follows thereafter.

5.2 Generalized additive model

The curse of dimensionality in nonparametric regression modelling led to development of

semiparametric models that can fit data with outliers and non-linear covariates. The gen-

eralized additive model (GAM) is an example of the semiparametic regression models. It is

a generalization of the GLM for modelling non-gaussian data and also an extension of the

nonparametric additive model. It is therefore important to give a summary of the additive

model.
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5.2.1 Additive model

Given a sample of n data points, {(Xi, Yi) : i = 1, 2, ..., n}, the additive model (AM),

suggested by Friedman and Stuetzle (1981) and developed by (Hastie and Tibshirani, 1990)

is of the form:

Yi = α +

p∑
j=1

fj(xij) + εi (5.2)

where Yi is the outcome variable, xij are the predictor variables, α is the intercept term,

εi ∼ N(0, σ2), is the error component and fj(·) are the unknown smooth functions with no

pre-specified functional form. The additive model, is a special type of the project pursuit

regression model (Hastie and Tibshirani, 1987), that uses a one-dimensional smoothers in

building the nonparametric multiple regression models. Some of the methods proposed for

estimating the additive function are: the marginal integration estimation methods (Linton

and Nielsen, 1995); the Fourier series approximation (Amato et al., 2002); the nonlinear

wavelet estimation (Sardy and Tseng, 2004); and the backfitting algorithm (Buja et al.,

1989). The backfitting algorithm is the most commonly used method and it enables one to

fit the additive model using any of the regression fitting mechanisms (Hastie and Tibshirani,

1990).

The main concern in additive regression is obtaining an approximate estimate of the smooth

functions in order to obtain the best fit model for our data. Therefore the estimate can be

obtained through a process referred to as smoothing. Smoothing is a process of obtaining

an approximation of the regression curve fj(·), which is the mean of the response variables

near the neighborhood of a point xi. The process involves first identifying the smoothing

technique and then secondly determining the smoothing parameter that controls the trade-

off between under-smoothing and over-smoothing (Wood, 2011). The next section defines

some of the smoothing techniques.
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5.2.2 Smoothing Techniques

Running mean smoother

The running mean smoother is also known as the moving average smoother and it esti-

mates the smooth at point xi by taking the average of the data points in a neighborhood

N(xi), with ni observations, around xi (Buja et al., 1989).

f(xi) =
∑

i∈N(xi)

yi
ni

(5.3)

Using a window of 2k+ 1, the running mean smoother assumes that the neighborhood of xi

is the symmetric nearest neighborhood such that

Ni = max(i− k, 1), ..., i− 1, i+ 1, ...,min(i+ k, n) (5.4)

Running line smoothers are associated with functions that are wiggly and biases at the end

points.

Running line smother

The bias problem in running mean smoothers can be solved through fitting the smooth

curve to the data points through least squares, in a symmetric nearest neighborhood Ni

around each xi.

f(xi) = β̂0 + β̂ixi (5.5)

where β̂0 and β̂i are the ordinary least squares (OLS) estimates of xi.
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Kernel smoothers

Suppose Wi(x)ni=1 is a sequence of weights depending on the vector {xi}ni=1, then the re-

gression estimate of the smooth function f(x) is defined as:

ˆf(x) = n−1
∑

Wi(xi)Yi (5.6)

The kernel smoother defines the shape of the weight function Wi(x) by a density function

that has a scale parameter that adjusts the size and the form of the weights nearx. This

shape function is referred to as the kernel K, and it is a continuous, bounded, symmetric

real function that integrates to unity.

The Nadaraya Watson kernel estimator of f(x) is defined as:

ˆf(x) =

∑n
i=1 k

(
x−xi
h

)
yi∑n

i=1 k
(
x−xi
h

)
where k is an even function that determines the shape of the kernel weights and h, the

bandwidth, is used to parametrize the size of the weights. Generally, the kernel smoother

matrix has the elements fij = cidλ(xi, xj), where d is the even function, λ is the bandwidth

and ci is a normalizing constant. To obtain the estimate of f(xi), the weights at the jth

point is assigned

wij =
ci
λ
d

(|xi − xj|)
λ

Some of the common choices of d(·) are:

� Epanechnikov kernel described in (Härdle, 1990)

d(u) = 0.75(1− u2)I(|u| ≤ 1)
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� The Gaussian kernel (Buja et al., 1989)

dλ(xi, xj) = exp
(
−
(xi−xj

λ

)2)
Locally weighted running line smoother (LOESS)

Locally weighted regression, implemented by (Cleveland, 1979), makes use of both the run-

ning line smoother and kernel smoother methodologies to obtain the smooth. Computation

of the smooth is through following these steps:

� Find a symmetric nearest neighborhood (N(xi)) of xi

� Calculate the distance to the kth nearest neighbor, denote it by di.

� Assign a tri-cube weight function to each point in N(xi):

wij =

(
1−

∣∣∣ (xj−xi)di

∣∣∣3)3

The estimate of the regression function f(xi) is the fitted value at the point xi obtained

through fitting a weighted least square line.

Another method that can be used to estimate the smooth function f(x) is through the

use of splines. A spline may be defined as a function that has been joined ”piece-wise” from

polynomial functions. An example is a sequence of knots defined by ζ1 ≤ ζ2 ≤ ... ≤ ζk, that

join smoothly at the knots. Smoothing splines are a flexible approach for estimating the

regression curve using a piecewise polynomial in which the knots are the observed values of

xi. It is also subject to some smoothing constraints at the knots. Extensive literature on the

common smoothing splines such as: the cubic smoothing spline, thin plate regression splines,

p-splines and the B-spline can be found in works by Wood (2006); Hastie and Tibshirani

(1986); Silverman (1985); Green and Silverman (1994); Buja et al. (1989); Wahba (1975).

The natural cubic spline is the most common smoothing spline and hence the subject for
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our discussion.

Natural cubic spline smooth

Suppose we have a model of the form:

Yi = g(xi) + ei (5.7)

where {(xi, yi)}ni=1 is a sequence of the response variables and predictor variables, ei are the

error terms such that ei ∼ N(0, vi). The regression function of y on x is defined by g(xi), a

nonparametric smooth functions that needs to be estimated. The optimization problem in

this setting is to minimize the penalized sum of squares (PSS) defined in equation 5.8

sλ(g) =
n∑
i=1

(Yi − g(xi))
2 + λ

∫ ∞
−∞

(g′′(x))2dx (5.8)

where λ is a smoothing parameter that controls the trade-off between the curve smoothness

and proximity to the values of y. Notice that when λ = 0, the solution is an interpolating

function and when λ =∞, the solution is the standard least squares line. The PSS is min-

imized by a natural cubic spline with knots at each distinct xi. The solution to sλ(g) is a

cubic polynomial whose derivatives are continuous at the boundary points say x(∗) and x(∗∗),

and the second derivative equates to 0.

Regression splines

Regression splines use fewer knots than the natural cubic splines and they apply parametric

regression to the bases functions. Suppose ζ1, ..., ζL are a set of knots and B1(z), ..., Bl(z)
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are a set of basis functions, then g(x) in equation 5.8 can be estimated by

g(x) ≈
L∑
i=1

Bl(z)αl (5.9)

The vector (αl)
T can be estimated by fitting a parametric model via OLS, of the form

yi =
L∑
i=1

Bl(z)αl + εl

P-splines

The regression function described in equation 5.7 above is approximated with more L knots

than those used in regression splines, although these knots are smaller than the sample size.

An advantage of p-splines is that they are less computer intensive especially for large sample

sizes and also less sensitive to knot allocation.

In spline smoothing, it is important to choose the smoothing parameter well. Stone (1985)

justifies the use of cross validation, which involves omitting one at a time the data points,

and choosing λ at which the missing data points are best predicted by the remainder of

the data (Silverman, 1985). Let g−1λ be the smoothing spline obtained from all data points

excluding (xi, yi), the cross validation choice of λ is the value that minimizes the following

cross validation score:

cv(λ) = n−1
n∑
i=1

{Yi − ˆgλ(xi)}2 (5.10)

(??) propose a suitable alternative to cross validation coined the generalized cross validation

(GCV), that minimizes the average squared errors at design points x1, ..., xn. It is defined as

GCV (λ) =
n−1RSS(λ)

{1− n−1trA(λ)}2
(5.11)
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where RSS(λ) is the residual sum of squares,
∑n

i=1{Yi− ˆg(xi)}2. The function n−1trA(λ) is

the average value of the matrix A(λ) = n−1G(xi, xj), where G(·) is the weight function that

depends on the design points and the smoothing parameter.

The details that follow are borrowed extensively from (Hastie and Tibshirani, 1990). Given

any function f defined on the interval [a, b], and a smoothing parameter λ, the optimization

problem, is to minimize the equation:

n∑
i=1

[
yi −

p∑
j=1

fj(xij)

]2
+

p∑
j=1

λj

∫ b

a

[f
′′

j (t)]2dt (5.12)

If the solution function f̂ , is a cubic spline with knots in each xi, we can obtain a smoothing

matrix. Hence equation 5.12 may be rewritten as;

(
y−

p∑
j=1

fj

)T (
y−

p∑
j=1

fj

)
+

p∑
j=1

λjf
T
j Kjfj (5.13)

The Ks
j are the penalty matrices. Differentiating equation 5.13 with respect to fk and

equating the resulting solution to 0, we obtain the estimating equation

f̂k = Sk(y −
∑
j 6=k

f̂j)

where Sk = (I + λkKk)−1, is the smoother matrix. The smoothing parameterλ, can be

estimated through cross validation (Hastie and Tibshirani, 1990), or GCV (Wood, 2006; ?).
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An np× np system of equations can be obtained from equation ... for all k = 1, 2, ..., p.



I S1 · · · S1

S2 I · · · S2

...
...

. . .
...

Sp SP · · · I





f1

f2
...

fp


=



S1Y

S2Y

...

SpY


(5.14)

Notice that these equations can be written in a linear form:

p̂f = Q̂y

and the solution derived through iterative methods such as the backfitting algorithm (Fried-

man and Stuetzle, 1981; Hastie and Tibshirani, 1986). This algorithm works by going through

each of the predictors, replacing each smooth function with its estimate while controlling

for the effects of the others, and then going through the cycle till convergence (Buja et al.,

1989). The steps can be summarized as follows:

� Assign the initial values of the intercept term with the average of y, α = E(y), and the

smoothing function as fj = f oj , j = 1, 2, ..., p, where f oj is the estimate obtained from

linear regression.

� Repeat this cycle j = 1, ..., p, 1, ..., p, ... times until f̂j converges for each jth predictor,

such that f̂j = Sj(y− µ−
∑

k 6=j fk(xk)). The matrix S is the smoother matrix defined

above.

Additive models are rarely affected by the ”curse of dimensionality” problem, are is easy to

interpret and also cost effective. (Hastie and Tibshirani, 1990; Buja et al., 1989).
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5.2.3 Generalized additive models

The generalized additive models (GAM) (Hastie and Tibshirani, 1986, 1990), are an extension

of the GLM (Nelder and Wedderburn, 1972) that includes an additive term in the linear

predictor. Suppose that yi is the response variable whose distribution is amongst one of the

exponential family of distributions, then the GAM has a general form defined by:

g(µi) = ηi = X∗i θ +
∑
j

fj(xj) (5.15)

where g(µ) is the monotonic, invertible and a differentiable link function, X∗i is the ith row

of the model matrix X∗, whose parameter estimates defined by the vector θ, can be solved

parametrically. The function fj(·) are the smooth functions of the covariates xj.

Estimating the generalized additive model is a two-fold process involving the estimation

of the smoothing parameters and also obtaining the model coefficients of the maximum

penalized likelihood function. Choosing the basis function and the smoothing parameter is

therefore central in GAM estimation. The most common choice of the basis are the penalized

regression smoothers, that are based on smoothing splines discussed in the previous section.

The smooth terms are now represented as a linear combination of the basis functions, bjk,

and the unknown regression parameters, βjk such that:

fj(xj) =

qk∑
k=1

βjkbjk(xj)

Substituting each smooth term fj(xj), by their bases, equation 5.15 can be written as:

g(µi) = ηi = Xiβ (5.16)
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where Xi contains the columns of X∗i and the columns containing the spline bases evaluated

at covariate values. The column vector β contains θ∗ and all the smooth coefficient vectors

β. This equation is similar to a GLM that is fitted using iterative reweighted least squares

(IRLS) procedure. Due to the additive structure of GAMs, the penalized likelihood function

is maximized by penalized iterative least squares (P-IRLS). The optimization problem is

thus minimizing equation 5.17 with respect to β:

||W [k](Z [k] −Xβ)||2 +
∑
j

λjβ
TSjβ (5.17)

The constant k represents the iteration index,and λj is the smoothing parameter. The

diagonal matrix of weights, W has diagonal elements w
[k]
i = ω

1
2
i
V (µ

[k]
i )
−1
2

g′(µ
[k]
i )

where V (µi) =

φ−1var(yi), and Z [k] = Xβ[k] + G[k](y − µ[k]) where G[k] is a diagonal matrix such that the

diagonal element, G
[k]
rr = g′(µ

[k]
i ). The P-IRLS steps can be summarized as follows:

� The initial weights w
[k]
i as defined above, and the pseudo data, z

[k]
i = g′(µ

[k]
i )(yi−µ[k]

i )+

η
[k]
i are estimated using the current model estimate µ

[0]
i = E(yi).

� The next estimate βk+1 is obtained by minimizing equation 5.17 with respect to β and

hence the next estimate of η
[k+1]
i = Xβ[k+1] and µ

[k+1]
i = g−1(η

[k+1]
i ).

� After each iteration, we obtain new values of the coefficients µ and β and update the

weights wi and pseudo data zi. Iteration is repeated until convergence .

Selection of the smoothing parameter is also paramount in GAM estimation and can minimiz-

ing the GVC, the AIC or the Mallow’s Cp commonly known as the unbiased risk estimation

(UBRE) (Wood, 2006). The GVC score is given by:

Vg =
nD(β̂)

[n− tr(A)]2
(5.18)
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where A = WX(XTW 2X + S)−1 is the influence matrix of the fitted model and D(β̂) =

2φ(lsat − lfit), φ is the dispersion parameter, lsat is the maximum value of the log-likelihood

of the model and lfit is the log-likelihood of the fitted model. The UBRE score is defined as:

Vu =
1

n
D(β̂)− σ2 +

2

n
tr(A)σ2 (5.19)

The following AIC can also be minimized to obtain the value of λJ :

Va = D(β̂) + 2tr(A)φ (5.20)

5.2.4 Generalized additive mixed effects models

The generalized additive mixed effects model (Lin and Zhang, 1999) are an extension of the

generalized linear mixed effects model (Breslow and Clayton, 1993), that are used to analyse

data that extra variability as a result of correlation between and amongst observations. They

include an additive function in the linear predictor in addition to the fixed and random effects.

The general form of a GAMM is therefore:

g(µbi) = ηij|b = β0 +

p∑
j=1

fj(xij) +

q∑
k=1

zkbk (5.21)

Suppose that yi are the independent response variable with conditional mean E(yi|b) = µbi

and variance, V ar(yi|b) = φv(µbi), where v(µbi) is the variance function, and φ, the dispersion

parameter. Presume also that xi = (1, xi1, ..., xip)
T are the p × 1 vectors of the covariates

associated with the fixed effects. Therefore, equation 5.21 can be described as follows; g(·) is

a monotonic, differentiable and invertible link function, with b = (b1, ..., bk)
T , a q × 1 vector

of the random effects, b ∼ N(0, D(θ)). The vector zk = (z1, ..., zk)
T are the design covariates

associated with the random effects and fj(·), are the centered twice differentiable smooth
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functions.

In matrix notation, Lin and Zhang (1999) shows that equation 5.21 simplifies to

g(µb) = 1β0 +N1f1 + ...+Npfp +Zb (5.22)

where 1 is an n× 1 vector of ones, Nj is an n× rj incidence matrix with the ith component

Njfj is defined by fj(xj) , µb = (µb1, ..., µ
b
n)T , g(µb) = (µb1, ..., µ

b
n)T and Z = (z1, ...zn)T .

Regression spline methodology allows the unknown smooth functions to be approximated

by a set of basis functions as defined in equation 5.9. Hence, obtaining the fit of a GAMM,

requires a choice of the basis function and estimation of the smoothing parameter. One also

needs to make inference about the variance component θ. The estimator of fj(·), can be ob-

tained using natural cubic smoothing splines discussed in section 5.2.2 above by maximizing

the penalized log-likelihood function given by:

l(yj; β0, f1(·), ..., fp(·), θ)−
1

2

p∑
j=1

λjf
T
j kjfj (5.23)

where the roughness penalty of the penalized sum of squares
∫ tj
sj

[f ′′J (x)]2dx can be estimated

by fTj kjfj. The range of the jth covariate is defined in the interval (sj, tj). Maximizing

this function requires numerical integration hence Laplace methods (Breslow and Clayton,

1993) discussed extensively by (Chen, 2000) can be used to obtain the MLE of β, φ, f(·) and θ.

Lin and Zhang (1999)proposes maximizing the double penalized quasi likelihood function

(D-PQL) w.r.t (β0, f1, ..., fp) to obtain the cubic spline estimators. The D-PQL is defined

as:

ldpql = −1

2

n∑
i=1

di(yi;µ
b
1)−

1

2

n∑
i=1

bTD−1b− 1

2

r∑
j=1

λjf
T
j kjfj (5.24)
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The first penalty term
∑n

i=1 b
TD−1b is due to an approximation of the integrated log-quasi

likelihood based on the Laplace method whereas the second penalty term
∑r

j=1 λjf
T
j kjfj de-

termines the smoothness of the functions fj(·) that depends on the estimate of the smoothing

parameter λJ .

Since the centered parameter vector fj can be re-parameterized in terms of the basis function

such that fj = Xjβj + βjaj, the D-PQL becomes

l∗dpql = − 1

2φ

n∑
i=1

di(y;µb1)−
1

2
bTD−1b− 1

2
aTΛ−1a (5.25)

The vector Xj is an rj × 1 vector with the rj centered distinct values of xij while Bj =

Lj(LjLj)
−1, with the rj × (rj − 2) full rank matrix Lj satisfying the conditions LjL

T
j and

LTj Xj = 0. The identity fTj kjfj reduces to aTj aj in the parametrized D-PQL, where a =

(aT1 , ..., a
T
p )T . The vector Λ = diag(τ1I, ..., τpI) with τj = 1

λj

Equation 5.22 can be generalized to:

g(µb) = Xβ +Ba+Zb (5.26)

The vectors aT and bT represent the random effects and are both multi-normally distributed

with mean equal to zero and variance given by Λ and D respectively. The vector β =

(β1, ..., βp)
T is a ((p+1)×1) vector of the model coefficients, while X = (1, N1X1, ..., NpXp)

T

and B = (N1B1, ..., NpBP ). This model is simply a GLMM, and the D-PQL estimators of

fJ can be obtained by fitting this model.

Maximising the DPQL with respect to β, a and b, we obtain the following normal equa-
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tions: 
XTWX XTWB XTWZ

BTWX BTWB + Λ−1 BTWZ

ZTWX ZTWB ZTWZ +D−1



β

a

b

 =


XTWY

BTWY

ZTWY

 (5.27)

that can be solved through iterative methods such as the fisher scoring algorithm, to obtain

the estimators f̂J , and the estimators of â, and b̂, the random effects.

The covariance matrix of f̂j is obtained from an approximation of the covariance matrix

of β̂ and â. The values of β̂ and â are obtained by solving:

XTR−1X XTR−1B

BTR−1X BTR−1B + Λ−1


β
a

 =

XTR−1Y

BTR−1Y

 (5.28)

The smoothing parameter λ, and the variance of the unknown vector of fixed regression

parameters θ also need to be estimated. To ensure that ˆf(·) performs well, the choice of

ˆ(λ) has to be good (Green and Silverman, 1994). The classical nonparametric method of

obtaining λ̂ through cross validation can be used although it may be expensive and also

hard to make inference on the variance components (Zeger and Diggle, 1994). Zhang et al.

(1998) estimate λ and θ jointly by using the restricted maximum likelihood (REML), and

treat τ = ( 1
λ1
, ..., 1

λj
)T as another variance component. Conversely, Lin and Zhang (1999)

obtain these estimates simultaneously by maximizing the marginal quasi likelihood, and also

presume that τ is an extra variance component.

5.3 Application of GAMM to the dataset

The GAMM is used to fit the dataset to determine the risk factors associated with malaria

in children. The previous chapters applied the parametric methods of survey logistic regres-
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sion and the GLMM. GAMM is an important model used to fit non-linear and non-normal

forms of data. It combines both features of parametric and non-parametric regression hence

the term, semi-parametric regression. The continuous predictor variables are fitted non-

parametrically through additive regression while the remaining covariates are fitted linearly

through parametric methods.

The response variable is malaria status in children, a binary variable, with a Bernoulli

distribution. The associated covariates are: age in years; gender; malaria zone; type of place

of residence; cluster altitude in metres; toilet facility; source of water; availability of electric-

ity; ownership of bicycle; mobile phone and radio; type of wall material, floor material and

roofing material used in household construction; use of mosquito nets; number of mosquito

nets; nets per person; number of rooms per person; and anti malarial spraying.

The effects of age, number of rooms per person, number of nets, nets per person and cluster

altitude in metres were modeled non-parametrically while the remaining covariates were mod-

eled in a parametric way. Variable selection was achieved through applying both backward

and forward selection procedures. We began with a full model containing all the covariates,

eliminating the insignificant covariates (with a p-value ≤ 0.05) one at a time until we re-

mained with only the significant variables. The forward selection procedure was then used

to confirm the choice model. For comparison purposes, the final GLMM in the previous

chapter was also fitted as a GAMM, but now with the continuous covariates modeled as

additive functions (see Table 4.3).

Modelling was done using the mgcv package available in R statistical language using the

gamm formular. (Wood and Wood, 2007). The smooth terms are specified by expressions of

the form s(X, k=” ”, bs=” “), where X is the covariate associated with the smooth function,
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k specifies the dimension of the basis and bs indicates the basis for the smooth term. The

default option is ′′tp′′, thin plate regression smoother which is slow and uses a lot of memory

for large data sets. The option utilized in this study was cubic spline regression,′′cr′′. The

family=” “, in the formula specifies the distribution (binomial) and the link function (logit

link) used to fit the model. The random effect variable is specified through the “random=

option” in the formula statement.

The GAMM is therefore given as:

g(µij) =β0 + β1(Malaria zone) + β2(Toilet) + β3(Residence)

+ β4(Education) + s1(Age) + s2(Altitude) + εij (5.29)

the logit link function is defined by g(·), s(·) represents the centered smooth function and βj′s

are the regression coefficients for the parametric terms. The random effects [bi ∼ N(0, D(θ))]

was measured by the HouseID variable from the dataset. The variable identified the house-

hold number from which each child under fourteen was tested for malaria. The model failed

to converge for random effect measured by the cluster number and even houseID nested

within the cluster effect. This may be as a result of the complexity due to non-linear func-

tions in the linear predictor and dimensionality problems. The total number of rooms per

person, number of nets per person, and total number of nets in the household had an effective

degrees of freedom (EDF) of one signifying a linear relationship with the response variable.

They were then modeled non-parametrically but were dropped from the final model since

they were insignificant.

The model based on the GLMM results converged upon removal of the interaction terms.

This model (labeled model 2) consisted of effects of age and nets per person modeled non-
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parametrically, and the effects of toilet facility, malaria zone, mother’s highest education,

floor material, number of nets and type of place of residence modeled parametrically. Table

5.1 and 5.2, gives the anova results for the two models:

Table 5.1: Anova results for model 1

Parameter df F - value p-value

Age 3.357 25.728 0.0001

Altitude 6.403 6.851 0.0001

Toilet facility 2 14.543 0.0001

Malaria zone 4 127.792 0.0001

Mother’s Highest Education level 2 8.335 0.0002

Type of place of residence 1 14.360 0.0001

Table 5.2: Anova results for model 2

Parameter df F - value p-value

Age 3.335 26.850 0.0001

Nets per person 1.000 8.728 0.0031

Toilet facility 2 8.962 0.0001

Malaria zone 4 120.227 0.0001

Mother’s Highest Education level 2 6.310 0.0018

Type of place of residence 1 15.903 0.0001
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The first model had a better fit with an adjusted R-square statistic of 0.324. The results of

anova tests on both models also revealed that terms of the first model had a more significant

fit. The variable nets per person sharing in the second model shows that it has a linear effect

(EDF=1). Table 5.3 represents the significant parametric coefficients for the model.

Table 5.3: Parameter estimates, odds ratio and 95 % Confidence intervals for the parametric
covariate in the final GAMM

Variable Estimate Odds ratio 95% C. I Standard error P- value

Intercept -4.5501 0.6563 0.0001

Toilet facility( Ref = Toilet with flush)

Pit Latrine 0.4782 1.6132 (0.477,5.460) 0.6221 0.4421

No facility 1.2112 3.3575 (0.980,11.508) 0.6285 0.0540

Malaria zone ( Ref = Highland)

Lake region 3.2028 24.6013 (17.654,34.282) 0.1693 0.0001

Moderate risk -0.1160 0.8905 (0.414,1.916) 0.3910 0.7666

Seasonal risk -2.6121 0.0734 (0.029,0.185) 0.4716 0.0001

Low risk -1.3260 0.2655 (0.093,0.761) 0.5372 0.0136

Type of place of residence ( Ref = Urban

Rural 0.8314 2.2965 (1.494,3.530) 0.2194 0.0002

Mother’s highest education ( Ref = No Education)

Primary -0.5144 0.5979 (0.433,0.826) 0.1648 0.0018

Higher -0.8203 0.4403 (0.297,0.653) 0.2011 0.0001

The results show that toilet facility, type of place of residence, malaria zone and mother’s

highest education level are significant in explaining malaria risk in children. The age of the

child and cluster altitude in metres were modeled non-parametrically using smoothing spline

regression and were also significant in explaining malaria in children. The results for these

smooth terms are displayed in Table 5.4.
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Compared to households that had toilets with flush system, those with pit latrines and

no facility had higher odds for having children test positive for malaria at 1.6132 (e0.4782)

and 3.3575 (e1.2112) respectively. Respondents living in the lake regions had extremely high

odds for malaria infection compared to those living in the highland areas (24.6013, e3.2028).

Households in the moderate zones were 0.8905 (e−0.1160) times less likely to have malaria

compared to those in the highland regions. The results are similar for seasonal and low risk

regions with odds of 0.0734 (e−2.6121) and 0.2655 (e−1.3260) respectively.

Households within the rural settings had higher odds for malaria infection compared to

households within the urban set up (2.2965). The education level of mother’s also had an

influence on the risk for malaria. Children whose mother’s had attained a primary education

and/or had a higher education had decreased odd for malaria (0.5979 and 0.4403 respec-

tively) compared to households with mother’s with no education at all. Both age and cluster

Table 5.4: Approximate significance of the smooth terms for GAMM

Variable EDF* F - Value Pr(>t)

s(Age) 3.357 25.728 0.0001

s(Altitude) 6.403 6.851 0.0001

* Effective degrees of freedom

altitude in metres were significant non-linear effects. Figure 5.1 represents the smooth terms

for these effects.
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Figure 5.1: Smoothing components for malaria status with age and cluster altitude

Non-linearity in GAMMs is measured using the effective degrees of freedom (EDF) of

the smoothing terms. The y-axis in figure 5.1 shows the effect of each smooth term s() and

the value in the parentheses shows the EDF. The shaded region in the figure gives the 95%

confidence intervals for the smooth terms. The EDF’s for age and cluster altitude in metres

are: 3.357 and 6.403 respectively. An EDF = 1 signifies that the relationship between the

covariates and the response is linear. Age has a quadratic effect, the risk for malaria increases

steadily with increasing age in years in children, and reaches its peak at age seven. It’s F-

value is given by 25.728 with a p-value of 0.0001 suggesting with a 95% level of significance

that its not a linear effect as assumed in the GLMM (see Table 4.3) and even survey logistic

regression model (see Table 3.3).

From the figure, we again see that altitude is also non-linearly related with malaria in

children. At lower altitudes, the risk of malaria is higher, increasing with an increase in

altitude. It reaches its peak between 600m to 700m in altitude and steadily declines as



5.3. APPLICATION OF GAMM TO THE DATASET 117

the altitude increases. Moreover its F-value = 6.851 with a p-value = 0.0001 suggests that

cluster altitude in metres is not linearly associated with malaria status in children.

5.3.1 Summary and discussion

In this section, data was analyzed using the generalized additive mixed effects model (GAMM).

The effects of the continuous covariates, age and cluster altitude in metres were analyzed

non-parametrically while toilet facility, malaria zone, type of place of residence and mother’s

highest education level were modeled using parametric methods. The findings from this

analysis support the results from the previous models. We see that age is an important de-

mographic factor that affects malaria incidence. Older children seem to be more susceptible

to malaria infections than the younger ones.

Geographical factors also contribute to an increase in malaria parasitamea in children. Liv-

ing in lower altitudes and regions that provide conducive environments for the parasite to

thrive such as lake region leads to higher chances of malaria infections. The socio-economic

factors also pay an important role in determining whether a child has malaria or not. Poorer

households with no toilet facilities are more likely to be affected by malaria than well to

do homesteads with toilets. Households in rural areas were also highly affected by malaria

than urban households. The education level of mother seems to provide a protective cover

to their children against malaria infections.

The results also continue to highlight on the importance of social welfare programs. There is

a need for the government as well as the various stakeholders to continue to develop policies

and programs that provide education to communities on malaria control measures such as

the use of insecticide treated mosquito nets, antimalarial spraying, and early diagnosis and
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treatment procedures.



Chapter 6

Discussion and conclusion

6.0.2 Discussion

The main objective of the thesis was to determine the prevalence and risk factors associated

with malaria in children under the age of fourteen years in Kenya. In order to achieve this

objective, two broad statistical analyses techniques were applied to the data. These were

the parametric methods that included survey logistic regression and generalized linear mixed

effects models (GLMM). The semi-parametric regression method used for analysis was the

generalized additive mixed effects model (GAMM).

The data used in this study was obtained from a household survey conducted by the Kenyan

government in the year 2010. The response variable was malaria status in children indicating

whether they tested positive or negative for malaria. The associated demographic, geograph-

ical and socio-economic risk factors were: age of child in years, gender, cluster altitude in

metres, malaria zone, type of place of residence, type of wall, floor, and roofing material

used in household construction, toilet facility, water source, number of rooms per person

sharing, wealth quantile, availability of electricity, ownership of mobile phone, bicycle, radio

119
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and television, number of nets in the household, use of mosquito nets while sleeping, number

of nets per person sharing and incidence of anti-malarial spraying.

A detailed discussion for each of the methods used was provided in the previous chapters,

hence only a summary of the main contributions, limitations and recommendations for fu-

ture research will be provided. In order to make valid statistical inference, it was important

to account for the survey design such as stratification, clustering, non-response, and use of

probability weights in the analysis. Hence the use of survey logistic regression (SLR) model,

which is a special type of generalized linear model (GLM) for analyzing survey data with

a binary outcome. To cater for possible correlations between observations from the same

households and clusters, the generalized linear mixed effects model (GLMM) was used. In

addition to the fixed effects, it also includes random effects in its linear predictor to account

for such variabilities. The SLR model and the GLMM are both parametric methods that

assume a linear relationship between the predictors and the outcome variables This may not

be the case for some predictor variables that may exhibit non-linearity. Hence, the semi-

parametric generalized additive mixed effects model was also applied to the data.

The three methods used in the analysis of the data may be different with inherent strengths

and weaknesses, but provide similar findings. Generally, age of the child, cluster altitude in

metres, malaria zone, toilet facility, type of floor material and wall material used in house

construction, ownership of bicycle, and mother’s highest education level are significant as

direct or indirect risk factors of malaria. The risk for malaria infection was higher in older

children aged between 5 years and 8 years than the younger children. The findings favor the

results from other studies showing malaria infection is not only persistent to children in <5

age groups, but also older age groups (Peterson et al., 2009; Ghebreyesus et al., 2000; Deressa

et al., 2007). The geographical factors of altitude and malaria zone ultimately predetermine
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the risk of malaria. The highly malaria endemic regions, mostly located in lower altitude

zones and characterized by high rainfall with moderate temperatures provide conducive en-

vironments for parasite development and mosquito survival. Malaria infection was common

in children at lower altitudes regions, peaking at 600 − 700 metres in altitude regions, and

steadily declined thereafter. Many studies have also found malaria prevalence to increase

with a decrease in altitude (Akhwale et al., 2004).

Evidently, malaria is related to poor socio-economic factors. Households that had poor

housing structures, located in rural settings and lacked toilet facilities had higher chances

of positive malaria tests. This was consistent with findings from literature ((Ayele et al.,

2012, 2013; Gahutu et al., 2011; Peterson et al., 2009; Njau et al., 2014)). Poorly constructed

households provide habitable environments for the mosquito vector to feed, breed and also

rest. Interestingly, ownership of a bicycle, a symbol of wealth in most communities, did not

indicate lower odds for malaria in such households. These factors highlight on the role and

contribution of poverty in the malaria epidemic. However, households that incorporated con-

trol measures such as number of nets per person and total number of nets in the household

had lower risks for malaria. The mother’s education level also seemed to provide a protective

cover to children. Households with mother’s with no education had positive malaria results

than those with primary and higher education levels. The mothers with at least a basic

education are perhaps more aware of malaria infection, its diagnosis, treatment procedures

and are ore likely to take up any of the intervention methods such as the use of mosquito

bed nets.
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6.0.3 Conclusion

Poverty continues to portray its influence on health. From the study, the more affluent fami-

lies living in urban settings, with better housing structures and with basic amenities such as

toilet facilities, had lower risks of malaria. These factors have highlighted on the importance

of social policies that advocate for awareness of malaria, its control measures and allevia-

tion of poverty. Several efforts have already been put in place by the Kenyan government

and donor organizations, to help control and eventually eliminate malaria. In particular

the study has shown that through proper use of insecticide treated mosquito nets, malaria

prevalence can be reduced drastically. This is highlighted in literature too (Atieli et al., 2011;

Nyarango et al., 2006). Other control measures such as indoor residual spraying, clearing

of vegetation and bushes around the homestead and overall hygienic practices can also be

implemented. These control measures can particularly be focused on rural communities, and

highly malarious regions. The conclusion would therefore be for the Kenyan government to

improve their health policies to focus on regional development, and improving the socio-

welfare of communities. This can be achieved through routine education on malaria control

measures.

The government can also focus on rural development, and encourage social-welfare pro-

grams that aim at providing both formal and informal education to the poor communities.

This may in turn improve the socio-economic status of most families and also influence be-

havioral change towards the use of malaria control measures. Policies should also focus on

encouraging more women and girls in particular, to gain formal education. The study has

shown that maternal education has a huge impact on malaria control. Malaria intervention

methods and control programs can also focus on individual household care in addition to

the broad population based programs. This may be costly but the study has indicated a
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variation in malaria prevalence due to household effect.

One of the shortcomings of this study was that some of the categorical variables had small

sample sizes across the different levels, which may have produced insignificant results. Closely

associated with this, is the issue of missing data. The assumption that data was missing at

random, may have lead to biased parameter estimates. Hence, a future research area would

be to consider statistical techniques that handle missing data.

The different statistical methods applied to analyze complex survey data with a binary

outcome have highlighted the risk factors for malaria in children under the age of fourteen

years. The same methods can also be advanced to all age groups in the population to high-

light risk factors for each age group and the vulnerable groups as well. An important future

research area would be to spatially model the geographical regions to identify the malaria

patterns for each zone. Malaria has been seen to be more prevalent in some zones such as

the lake regions, hence malaria mapping would help identify the variation in malaria risk.

This would then help the government formulate policies for each zone and fairly allocate

resources.



Appendix A

SAS and R codes for the models

SAS code for analyzing the survey logistic regression model:

Procsurveylogistic data=malaria data;

Strata District;

Cluster Cluster;

Weight Weight;

Class Cluster, X5, X6, X7, X8, X11;

Model Y (Ref=FIRST) = X1, X2, X5, X6, X7, X8, X11, X6 ∗X8;

Run;

SAS code for analyzing the final GLMM with household random effect

Proc glimmix data=malaria data method = quadrature(20points);

Class Household, X3, X4, X5, X6, X8, X9, X10;

Model Y (Ref=First) = X1, X3, X4, X5, X6, X8, X9, X10, X6 ∗ X9 / link=logit dist = binary

oddsratiosolution;
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Random intercept /subject=Household type=chol;

Covtest zerog;

Run;

R code for analyzing final GAMM

Gamm.Model < − gamm (Y ∼ S(X1, bs=“cr”) + S(X2, bs=“cr”)+X3 + X4 + X5 + X8

, family = binomial(link=logit), data = malaria data)

where:

Y = Malaria status

X1 = Age of child

X2 = Cluster altitude in metres

X3 = Malaria zone

X4 = Type of place of residence

X5 = Toilet facility

X6 = Floor material

X7 = Wall material

X8 = Mother’s highest education level

X9 = Number of nets

X10 = Nets per person

X11 = Ownership of bicycle
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