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Abstract

This master’s dissertation deals with some notions of amenability of general Banach
algebras and that of Banach semigroup algebras `1(S) in relation to the amenability of the
semigroup S. A Banach algebra A is said to be amenable if every continuous derivation D
from A into X ′ is inner for every Banach A-bimodule X, where X ′ denotes the dual space
of X. In this dissertation, we give an explicit proof of some characterizations, hereditary
properties and some basic results in literature on contractible, amenable, approximate
amenable and pseudo-amenable Banach algebras. In addition, we give a survey of results
concerning the above mentioned notions of amenability on Banach semigroup algebras
and also highlight some important structures of the semigroups. The last chapter of this
dissertation is a catalogue of results that we obtained in the course of this research work.

Keywords : Contractible, amenable, approximately amenable, pseudo-amenable, semi-
group, semigroup algebras.
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Chapter 1

Introduction

1.1 Background

Amenability is an abstract mathematical concept which has its roots in measure theory.
The notion of amenability started in the early twentieth century and the class of amenable
groups was introduced and studied by John Von Neumann. He defined amenable groups
as follows: A locally compact group G is amenable if there exists a left translation
invariant mean on G. That is, if there is a linear functional m : L∞(G)→ C satisfying

m(1) = 1 = ‖m‖ and m(lxf) = m(f) (x ∈ G, f ∈ L∞(G)).

He later used this concept to explain why the Banach-Tarski paradox holds for only
dimension greater than or equal to three. Since then, amenability has become an im-
portant concept in abstract harmonic analysis. In 1972, B. E. Johnson showed that the
amenability of a locally compact group G can be characterized in terms of the Hochschild
cohomology of its group algebra L1(G). This result initiated the theory of amenable Ba-
nach algebras.

The concept of amenability for Banach algebras was introduced and studied by B. E.
Johnson in [31]. According to Johnson 1972, a Banach algebra A is amenable if every
continuous derivation D : A → X ′ is inner for every Banach A-bimodule X, where
X ′ denotes the dual of X. In this definition, if we replace X ′ with X, we say that A
is a contractible Banach algebra. Johnson in [31] and [32] was able to establish some
intrinsic characterizations and hereditary properties of amenable Banach algebras. Since
then, the concept of amenability has been a fruitful area of research in Banach algebras,
operator algebras and abstract harmonic analysis. In the course of exploring the concept
of amenability for Banach algebras, it was discovered that the above definition given
by Johnson for amenable Banach algebras was too strong in the sense that, although
it allows for nice theorems, it does not give room for enough and important examples.
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For example, the founding result that was proved by Johnson in [31] was that, the group
algebra L1(G) is amenable if and only if the locally compact group G is amenable. It was
also established that, every finite group is amenable, furthermore, many results which
holds for finite group were extended to amenable groups but these results never hold for
larger class. In addition, it was conjectured in [29] that a contractible Banach algebra
must be finite-dimensional. For this reason, several researchers in this area critically
looked into the definition given by Johnson for amenable Banach algebras and were able to
identify, relax some of the constraints in the definition and establish some generalizations
and modifications of Johnson’s definition of amenability for Banach algebras. In time
past, some of the notable generalizations and modifications includes:

1. weak amenability introduced by Bade, Curtis and Dales in [3];

2. essential and approximate amenability introduced by Ghahramani and Loy in [18];

3. operator amenability introduced by Ruan in [46];

4. Connes amenability introduced by Runde in [47];

5. character amenability introduced by Kaniuth in [35] and Sangani in [42];

6. approximate character amenability introduced by Mewomo and Okelo in [41] and
Aghababa, Luo and Wu in [1].

For more details on various notions of amenability in Banach algebras, see [39].

In this master’s dissertation, we review and obtain some results on notions of amenability
on general Banach algebras and that of Banach semigroup algebra `1(S) in relation to
the amenability of the semigroup S.

1.2 Objectives

The main objectives of this study are to:

1. review some known results on some notions of amenability in general Banach alge-
bras.

2. review some known results on amenability of Banach semigroup algebras in relation
to the structures of the semigroups.

3. investigate some notions of amenability for general Banach algebras.

4. study some notions of amenability of the Banach semigroup algebras in relation to
the semigroups.
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1.3 Work Plan

This master’s dissertation comprises of five chapters. In Chapter two, we lay down the
basic background material that we shall need from Banach spaces, Banach algebras,
Banach modules, semigroups and semigroup algebras. We also introduce some basic def-
initions and examples that will be useful in the course of our study. In chapter three, we
introduce the definitions of some important notions of amenability that we shall consider
in this study. In particular, we consider the notion of contractible, amenable, approxi-
mate amenable and pseudo-amenable Banach algebras. Furthermore, we give an explicit
proof of the main characterization, hereditary properties and some interesting results of
a general Banach algebra regarding these notions.

Chapter four is concerned with a general survey of results on the notion of amenable,
approximate amenable and pseudo-amenable of Banach semigroup algebras `1(S). More
so, some interesting results are presented. Chapter five is a catalogue of the results that
we obtained in the course of the research work. The results in this chapter serve as our
contribution to knowledge.

3



Chapter 2

Preliminaries

The purpose of this chapter is to introduce and develop basic concepts in the theory of
Banach algebras, semigroups, semigroup algebras and the Gelfand theory of commutative
Banach algebras. Other sections develop the basic theory of Banach modules and tensor
product. We also recall some basic definitions, prove some results and give some examples
that are relevant to our study. For more details on Banach spaces, Banach algebras,
semigroups and semigroup algebras, see [2, 9, 11, 30].

2.1 Banach Space

Let X be a Banach space. The dual space of X is the space of continuous linear function-
als onX, it is denoted byX ′. That isX ′ = B(X,C) = {f : X → C | f is linear and continuous}.
Throughout this dissertation, for x ∈ X and f ∈ X ′, we write 〈x, f〉 := f(x). The higher
duals of X are X ′′ = (X ′)′, X

′′′
= (X ′′)′, ..., Xn (n ∈ N), with X0 = X and Xn the nth

dual space of X. The canonical embedding of X into X ′′ is denoted by i and is the map

i : X → X
′′

defined as

〈f, i(x)〉 = 〈x, f〉 (x ∈ X, f ∈ X ′).

The map i is an isometry and the space X is reflexive if i is onto. The image of X in
X ′′ under i is denoted by X̂.

Theorem 2.1.1 (Hahn-Banach). Let Y be a linear subspace of a normed space X. Then
for each f ∈ Y ′ there exists an extension f ′ ∈ X ′ of f such that ‖f ′‖ = ‖f‖.

The Hahn-Banach theorem guarantees that the canonical embedding i from X into its
second dual X ′′ defined above is isometric. Let Y be a closed subspace of a normed space
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X. The annihilator Y ⊥ of Y is defined as

Y ⊥ = {f ∈ X ′ | 〈y, f〉 = 0 ∀ y ∈ Y }.

Also, we define ⊥(Y ⊥) := {x ∈ X | 〈x, f〉 = 0 ∀f ∈ Y ⊥}.

Theorem 2.1.2 ([7]). Let Y be a closed subspace of a normed space X. Then ⊥(Y ⊥) = Y.

Definition 2.1.3. Let X be a Banach space. The weak topology on X, denoted by
σ(X,X ′), is the topology generated by the family of seminorms {pf | f ∈ X ′}, where

pf (x) = |〈x, f〉| (x ∈ X).

The weak* topology on X ′, denoted by σ(X ′, X), is the topology generated by the family
of seminorms {pi(x) | x ∈ X}.

A net (xα) ⊂ X converges to x ∈ X in σ(X,X ′) if and only if

〈xα, f〉 → 〈x, f〉 (f ∈ X ′)

and a net (fα) ⊂ X ′ converges to f ∈ X ′ in σ(X ′, X) if and only if

〈x, fα〉 → 〈x, f〉 (x ∈ X).

We now recall some theorems that are of great importance in the course of this study.

Theorem 2.1.4. Let X be a Banach space.

1. (Goldstine). For each Φ in X ′′, there is a net (xα) ⊂ X such that ‖xα‖ ≤ ‖Φ‖ and
i(xα)→ Φ in σ(X ′′, X ′) with the limit taken in σ(X ′′, X ′) on X ′′.

2. (Banach − Alaoglu). The closed unit ball of X ′ is compact in σ(X ′, X). Every
bounded net in X ′ has a σ(X ′, X)- accumulation point and a σ(X ′, X)- convergent
subnet.

3. (Mazur). For each convex set Y ⊂ X, the closures of Y in (X, ‖·‖) and (X, σ(X,X ′))
are the same.

2.2 Banach Algebra

In this section, we develop the theory of Banach algebras and since this dissertation is
centred around the concept of Banach algebras, we begin by recalling the definition of
an algebra.
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Definition 2.2.1. Let A be a vector space over a scalar field F (F = R or C). Then A
is an algebra if it also has an operation

× : A×A → A,

(x, y) 7→ xy,

known as multiplication or product, which satisfies the following axioms for all x, y, z ∈
A and every α ∈ F :

1. x(yz) = (xy)z;

2. (x+ y)z = xz + yz;

3. x(y + z) = xy + xz;

4. (αx)y = x(αy) = α(xy).

Thus, an (associative) algebra is an algebraic structure that is both a ring and a vector
space, where the addition of the ring is the same as the vector addition and multiplication
by scalars relates to the ring multiplication by axiom (4) in the above definition.

Remark 2.2.2. It is good to note that an algebra is characterized by the ring structure.

Definition 2.2.3. An algebra A

1. is commutative (abelian) if its ring multiplication is commutative, that is

xy = yx (x, y ∈ A);

2. has an identity element, say e, if xe = ex = x for every x in A.

Definition 2.2.4. Let A be an algebra. An ideal I of A is a subset of A such that:

1. I is a vector subspace of A;

2. AI ⊆ I and IA ⊆ I.

Definition 2.2.5. Let A be an algebra over a scalar field F. An algebra norm on A is a
mapping ‖ · ‖ : A → R+ defined as a 7→ ‖a‖ such that:

1. (A; ‖ · ‖) is a normed space over F;

2. ‖xy‖ ≤ ‖x‖‖y‖ (x, y ∈ A).
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An algebra equipped with an algebra norm is called a normed algebra. A complete
normed algebra is called a Banach algebra. A Banach algebra A is said to be unital if
it has an identity, say 1 such that ‖1‖ = 1. Suppose that A is a Banach algebra; any
non-empty subset of A which forms a Banach algebra under the induced norm of A is
called a subBanach algebra.

Remark 2.2.6. The algebraic multiplication × : A×A → A defined as (x, y) 7→ xy is
jointly continuous. The inequality ‖xy‖ ≤ ‖x‖‖y‖ makes the multiplication continuous.
If xn → x in A and yn → y in A then xnyn → xy in A.

A Banach algebra A without a unit can always be embedded isometrically into a unital
Banach algebra denoted by A# called the unitization of A, such that A is closed ideal
of A#. Let A be a Banach algebra without a unit, we then consider A# = A � C with
pointwise addition, scalar multiplication and multiplication defined as

(a, α)(b, β) = (ab+ aβ + αb, αβ)

and the norm ‖(a, α)‖A# = ‖a‖A + |α| (a, b ∈ A, α, β ∈ C). It is easy to show that A#

is a Banach algebra. Indeed, for all a, b ∈ A, α, β ∈ C, we have

‖(a, α)(b, β)‖ = ‖ab+ aβ + αb, αβ‖ = ‖ab+ aβ + αb‖+ |αβ|
≤ ‖a‖‖b‖+ ‖a‖|β|+ |α|‖b‖+ |α||β|
= ‖a‖‖b‖+ |α|‖b‖+ ‖a‖|β|+ |α||β|
= (‖a‖+ |α|)‖b‖+ (‖a‖+ |α|)|β|
= (‖a‖+ |α|)(‖b‖+ β|)
= ‖(a, α)‖‖(b, β)‖.

Clearly, A# is a unital Banach algebra with unit (0, 1). More so, A# is commutative if,
A is commutative.
Many natural occurring Banach algebras are not unital, but most of them possess se-
quence or net called approximate identity which behaves like a multiplicative identity
in the limit. The concept of approximate identities was first studied explicitly by I. E.
Segal, who proved that any norm closed self adjoint subalgebra of the algebra of bounded
linear operators on a Hilbert space contains an approximate identity. Paul J. Cohen also
proved that every element in an algebra with a suitable approximate identity can be
factored. In an algebra with a unit, every element factors trivially (a = a1 = 1a).

Definition 2.2.7. Let A be a normed algebra.

1. A left approximate identity for A is a net (eα)α∈D in A such that eαa converges in
the norm to a ∈ A. For every a ∈ A, that is

lim
α
eαa = a, (a ∈ A).
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2. A right approximate identity for A is a net (eα)α∈D in A such that aeα converges
in the norm to a ∈ A. For every a ∈ A, that is

lim
α
aeα = a, (a ∈ A).

3. An approximate identity for A is a net (eα)α∈D which is both left and right approx-
imate identity.

4. A left or right approximate identity (eα)α∈D is bounded by M > 0, if ‖eα‖ ≤ M
for all α ∈ D.

5. A left or right approximate identity (eα)α∈D is bounded if it is bounded by some
M > 0.

6. A is said to have a bounded approximate identity if it has a left and a right bounded
approximate identity and it is approximately unital if it has a bounded approximate
identity.

7. A has a left approximate unit if for all a ∈ A and ε > 0 there exists u ∈ A
(depending on a and ε) such that ‖a− ua‖ < ε.

8. A has a right approximate unit if for all a ∈ A and ε > 0 there exists u ∈ A
(depending on a and ε) such that ‖a− au‖ < ε.

9. A has a left or right approximate unit bounded by M > 0, if the element u ∈ A
can be chosen such that ‖u‖ ≤M.

Remark 2.2.8. If the net is a sequence, the approximate identity is called a sequential.

Theorem 2.2.9 ([34]). Let (eα)α∈D and (fβ)β∈D′ be bounded left and right approximate
identities for a normed algebra A respectively. Then the net

(eα + fβ − eαfβ)(α,β)∈D×D′

is a bounded approximate identity for A.

Proof. Let (eα)α∈D be a left approximate identity bounded by M1 > 0 and let (fβ)β∈D′
be a right approximate identity bounded by M2 > 0. Since (eα)α∈D and (fβ)β∈D′ are left
and right bounded approximate identity for A respectively. Let ‖eαa − a‖ < ε

1+M2
and

‖afβ − a‖ < ε
1+M1

for all a ∈ A. Now let

(hαβ) = (eα + fβ − eαfβ)(α,β)∈D×D′,

8



we then have that

‖hαβa− a‖ = ‖(eα + fβ − eαfβ)a− a‖ = ‖eαa+ fβa− eαfβa− a‖
= ‖eαa− a+ fβa− eαfβa‖ = ‖(eαa− a)− fβ(eαa− a)‖
= ‖(eαa− a)(1− fβ)‖
≤ ‖eαa− a‖‖1− fβ‖
≤ ‖eαa− a‖(1 + ‖fβ‖)

<
ε(1 +M2)

1 +M2

= ε.

Also,

‖ahαβ − a‖ = ‖a(eα + fβ − eαfβ)− a‖‖ = ‖aeα + afβ − aeαfβ − a‖
= ‖aeα − aeαfβ + afβ − a‖ = ‖(a− afβ)eα − (a− afβ)‖
= ‖(eα − 1)(a− afβ)‖
≤ ‖(eα − 1)‖‖(a− afβ)‖
= ‖eα − 1‖‖afβ − a‖
= (‖eα‖+ 1)‖afβ − a‖

< (M1 + 1)
ε

1 +M1

= ε.

Hence, (hαβ) is an approximate identity for A. For boundedness, observe that

‖hαβ‖ = ‖(eα + fβ − eαfβ)‖
≤ ‖eα‖+ ‖fβ‖+ ‖eα‖‖fβ‖
< M1 +M2 +M1M2.

Let M = M1 +M2 +M1M2. Therefore, ‖hαβ‖ < M. Hence, (hαβ) is bounded approximate
identity for A.

Remark 2.2.10. The above theorem guarantees that a Banach algebra with left and right
(bounded) approximate identity has a (bounded) approximate identity.

Theorem 2.2.11 ([18]). Let A be a Banach algebra and suppose that A has a weak left
(right) approximate identity. Then A has a left (right) approximate identity.

Definition 2.2.12.

A topological space (X, τ) is said to be

1. compact if every open cover of X has a finite sub-cover.

9



2. Hausdorff if for any distinct points x1, x2 ∈ X, there are disjoint open sets G1, G2 ⊆
X with x1 ∈ G1 and x2 ∈ G2.

3. locally compact if every x ∈ X has a compact neighbourhood.

Definition 2.2.13. A group G endowed with a topology is a topological group if both the
multiplication

G×G→ G, (g, h) 7→ gh

and the inversion
G→ G, g 7→ g−1

are continuous mapping. A locally compact group is a topological group whose topology
is locally compact and Hausdorff

Every locally compact group G has a left Haar measure µ. We recall that a left invariant
Haar measure on G is a Borel measure µ satisfying the following conditions:

1. µ(xU) = µ(U) for every x in G and every measurable subset U of G;

2. µ(V ) > 0 for every non-empty open subset V of G;

3. µ(W ) <∞ for every compact subset W of G.

Remark 2.2.14. For example, the Lebesgue measure is an invariant Haar measure on
the real numbers.

There are several examples and classes of Banach algebras, which include the following:
group algebra, Segal algebra, semigroup algebra, operator algebra, Fourier algebra, mea-
sure algebra and so on. Some of these examples are given below. For further details and
examples see, [9] and [43].

Example 2.2.15. 1. (Group algebra). Let G be a locally compact group. We denote
by L1(G) the group algebra of G. This is the Banach space

{f : G→ C, f is measurable | ‖f‖1 =

∫
G

|f |dµ <∞},

where µ denote left Haar measure on G and we equate functions that are equal
almost everywhere with respect to µ. By defining a convolution multiplication on
L1(G) by

(f ∗ g)(t) =

∫
G

f(s)g(s−1t)dµ(s) (f, g ∈ L1(G), t ∈ G),

10



then (L1(G), ∗, ‖ · ‖1) is a Banach algebra. It is easy to check that ‖f ∗ g‖1 ≤
‖f‖1‖g‖1. Indeed, for all f, g ∈ L1(G), we have

‖f ∗ g‖1 =

∫
G

|(f ∗ g)(x)|dµ =

∫
G

∣∣∣∣ ∫
G

(f(y)g(y−1x)

∣∣∣∣dµ(y)dµ(x)

≤
∫
G

∫
G

|(f(y)g(y−1x)|dµ(y)dµ(x) =

∫
G

∫
G

|(f(y)||g(y−1x)|dµ(x)dµ(y)

=

∫
G

|(f(y)|
(∫

G

|g(y−1x)|dµ(x)

)
dµ(y) =

∫
G

|(f(y)|
(∫

G

|g(z)|dµ(z)

)
dµ(y)

= ‖f‖1‖g‖1.

L1(G) is a commutative Banach algebra if and only if the group G is commutative.
In the case where G is discrete, we write l1(G) for L1(G).

2. (Measure algebra). Let G be a locally compact group. We denote M(G) for the
space of all finite complex regular Borel measures on G. M(G) can be identified
with the dual of C0(G), the space of all continuous functions on G that vanish at
infinity. M(G) equipped with the total variation norm given by ‖µ‖ = |µ|(G) for
all µ ∈ M(G), this space is a Banach space and becomes a Banach algebra when
the following convolution product is defined on it:

(µ ∗ υ)(f) =

∫
G

(∫
G

f(gh)dµ(g)

)
dυ(h) (µ, υ ∈M(G), f ∈ C0(G), g, h ∈ G).

According to Fubini’s theorem, the order of integration does not matter. Also, we
recall that a function f vanishes at infinity if for all ε > 0 there exists a compact
subset K of a locally compact Hausdorff space X such that, |f(x)| < ε for each
x ∈ X −K.

3. (Fourier algebra). Let G be a locally compact group and let p, q ∈ (1,∞) such
that 1

p
+ 1

q
= 1. The space Ap(G) consists of all functions f ∈ C0(G) such that

(gn)n∈N ∈ Lp(G) and (hn)n∈N ∈ Lq(G) with
∑∞

n=1 ‖gn‖p‖hn‖q < ∞ and we define
f(x) =

∑∞
n=1(gn ∗ hn(x−1)). Then

‖f‖A = inf

{ ∞∑
n=1

‖gn‖p‖hn‖q | f =
∞∑
n=1

(gn ∗ hn)

}
.

The space Ap(G) together with the pointwise multiplication forms a Banach algebra.
This algebra is called Figa-Talamnce Herz. It is called a Fourier algebra when p = 2
and it is denoted by A(G).

4. (Segal algebra). Let A be a Banach algebra with norm ‖ · ‖A and let B be a dense
left ideal in A such that
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(a) B is a Banach algebra with respect to some norm ‖ · ‖B;

(b) there exists a constant K > 0 such that

‖b‖A ≤ K‖b‖B ∀ b ∈ B;

(c) there is a constant C > 0 such that

‖ab‖B ≤ C‖a‖A‖b‖B ∀ a, b ∈ B.

Then, recall from [40] that B is called an abstract Segal algebra in A. For A =
L1(G), we write S1(G) instead of B, with the following additional condition that
S1(G) is closed under left translation; Lxf ∈ S1(G) for all x ∈ G and f ∈ S1(G),
where Lxf(y) = f(x−1y) for y ∈ G. Conditions (a) - (c) above on B = S1(G) are
equivalent to the map

(x, f) 7→ Lxf : G× S1(G)→ S1(G)

being continuous with ‖Lxf‖S1(G) = ‖f‖S1(G) for f ∈ S1(G), s ∈ G.

5. (Operator algebra). Let X be a Banach space, the space B(X) denotes the set of all
bounded linear operators on X. B(X) is a Banach space with the operator norm,

‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

It becomes a Banach algebra with the composition product

(ST )(x) = (S ◦ T )(x) = S(Tx), (x ∈ X,S, T ∈ B(X)).

Clearly, we have ‖ST‖ ≤ ‖S‖‖T‖. Indeed, for all x ∈ X,S, T ∈ B(X) and ‖x‖ ≤ 1,
we have

‖(ST )x‖ = ‖S(Tx)‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖ ≤ ‖S‖‖T‖.

B(X) is a non-commutative, unital Banach algebra. The unit is the identity op-
erator. There are some closed ideals of B(X) that are also Banach algebras. For
example K(X), the ideal of compact operators on X, A(X), the ideals of approx-
imable operators on X and N (X), the ideal of nuclear operators on X.

6. (Function algebra). Let (X, τ) be a compact topological space. We denote by C(X)
the set of all continuous complex valued functions on X. C(X) equipped with the
norm

‖f‖ = sup
x∈X
|f(x)|, (f ∈ C(X), x ∈ X)

12



and pointwise addition and scalar multiplication is a Banach space and a Banach
algebra with the pointwise product. Clearly,

‖fg‖ = sup
x∈X
|f(x)g(x)| = sup

x∈X
|f(x)‖g(x)| ≤ sup

x∈X
|f(x)| sup

x∈X
|g(x)| = ‖f‖‖g‖.

C(X) is a commutative Banach algebra with unit, where the unit is the constant
function 1.

7. (`1-Munn algebra). Let A be a unital Banach algebra, I and J be arbitrary index
sets and P be a J × I non-zero matrix over A such that ‖P‖∞ = sup{‖Pji : i ∈
I, j ∈ J‖} ≤ 1. Let LM(A, P ) be vector space of all J × I matrices A over A such
that ‖A‖1 =

∑
i∈I,j∈J ‖AJI‖ < ∞. Then, it is easy to check that LM(A, P ) with

the product A ◦ B = APB,A,B ∈ LM(A, P ) and the norm `1- norm ‖(aij)‖ =∑
i∈I,j∈J ‖aij‖ <∞ is a Banach algebra that is called `1-Munn algebra.

Definition 2.2.16. Let A be a Banach algebra with unit 1. An element a ∈ A is invert-
ible, if there exists b ∈ A such that ab = ba = 1 and we write b = a−1.

The set of invertible elements of A is denoted as Inv(A). This set forms a group under
the usual multiplication.

Remark 2.2.17. Every invertible element of a Banach algebra has a unique inverse, if
it exists.

Example 2.2.18. 1. Let X be a finite-dimensional Banach space then

Inv(B(X)) = {T ∈ B(X) | ker T = {0}}.

2. If X is a compact topological space then

Inv(C(X)) = {f ∈ C(X) | f(x) 6= 0 ∀ x ∈ X}.

Theorem 2.2.19 ([2]). Let A be a Banach algebra with unit 1. If a ∈ A with ‖a‖ < 1
then (1− a) ∈ Inv(A) and

(1− a)−1 =
∞∑
n=0

an. (2.1)

Proof. Let a, a0 ∈ A. Since ‖an‖ ≤ ‖a‖n for all n ∈ N and ‖a‖ < 1, the series 2.1 is
absolutely convergent and so convergent by the completeness of A. Let the series 2.1
converge to a0 and let ak be the kth partial sum of the series. Then, observe that

lim
k→∞

( k∑
n=0

an(1− a)

)
= lim

k→∞

(
(1− a)

k∑
n=0

an
)

= lim
k→∞

[(1− a)(1 + a+ a2 + a3 + · · ·+ ak)]

= lim
k→∞

(1− a+ a+ a2 − a2 + a3 − a3 + · · ·+ ak+1)

= lim
k→∞

(1− ak+1) = 1.

13



Therefore, we have that

a0(1− a) = (1− a)a0 = 1

⇒a0 = (1− a)−1

⇒(1− a) ∈ Inv(A).

Corollary 2.2.20 ([2]). Let A be a unital Banach algebra. Then Inv(A) is an open
subset of A.

Proof. Let a0 ∈ Inv(A) and let ra0 = 1
‖a−1

0 ‖
> 0. We want to show that, the open ball

B(a0, ra0) ⊂ Inv(A). Let a ∈ B(a0, ra0), then ‖a0− a‖ < ra0 . We then need to show that
a ∈ Inv(A). From the fact that

a = a0 − a0 + a = (a0 − (a0 − a))a−1
0 a0 = (1− (a0 − a)a−1

0 )a0

and

‖(a0 − a)a−1
0 ‖ ≤ ‖a0 − a‖‖a−1

0 ‖ < ra0‖a−1
0 ‖ = 1,

it follows from Theorem 2.2.19 that (1 − (a0 − a)a−1
0 ) is invertible. Since a0 is also in

Inv(A) and a is the product of two invertible elements, hence a is in Inv(A). Therefore,
Inv(A) is open.

Remark 2.2.21. From Corollary 2.2.20, we have that, every element of Inv(A) is con-
tained in an open ball and this ball is contained in Inv(A).

Corollary 2.2.22 ([2]). Let A be a Banach algebra with unit 1. Then the mapping

ρ : Inv(A)→ Inv(A), a 7→ a−1

is continuous.

Proof. Let a, a0 ∈ Inv(A) with ‖a− a0‖ < 1
2‖a−1‖ , using

a−1 − a−1
0 = a−1(a0 − a)a−1

0

and

‖a−1
0 ‖ = ‖a−1 − a−1 + a−1

0 ‖ = ‖a−1 − (a−1 − a−1
0 )‖

= ‖a−1 − [a−1(a0 − a)a−1
0 ]‖ ≤ ‖a−1‖+ ‖a−1‖‖a0 − a‖‖a−1

0 ‖

≤ ‖a−1‖+ ‖a−1‖ 1

2‖a−1‖
‖a−1

0 ‖ = ‖a−1‖+
1

2
‖a−1

0 ‖.
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It follows that ‖a−1
0 ‖ ≤ 2‖a−1‖. By definition, the map ρ from Inv(A) into Inv(A) is

said to be continuous at a point a0 ∈ Inv(A), if for every ε > 0, there exists δ > 0, such
that if a0 ∈ Inv(A) satisfies ‖a− a0‖ < δ then ‖ρ(a)− ρ(a0)‖ < ε. Suppose a0 ∈ Inv(A)
satisfies ‖a− a0‖ < δ. Then

‖ρ(a)− ρ(a0)‖ = ‖a−1 − a−1
0 ‖ = ‖a−1(a0 − a)a−1

0 ‖
≤ ‖a−1‖‖a0 − a‖|‖a−1

0 ‖
= 2‖a−1‖2‖a0 − a‖ < 2‖a−1‖2δ < ε,

where δ = ε
4‖a−1‖2 . Hence, continuity holds.

Remark 2.2.23. The map ρ from Inv(A) into Inv(A) above is a homeomorphism, since
bijectivity holds from the fact that (a−1)−1 = a and the continuity of ρ−1 follows from
ρ = ρ−1.

Remark 2.2.24. From the above theorem and corollaries, it is clear that the set of all
invertible elements of a Banach algebra A denoted by Inv(A) is a topological group.

2.2.1 Spectrum of a Banach Algebra

In this section, all Banach algebras are assumed to have a unit.

Definition 2.2.25. Let A be a unital Banach algebra and let a ∈ A. The spectrum of a
in A is defined as

σA(a) = {λ ∈ C | λ1− a /∈ Inv(A)}.

We denote the spectrum of a ∈ A by σ(a) and we will write λ instead of λ1 for λ ∈ C.
If B is a subBanach algebra of A, then, we have that

σA(a) ⊆ σB(a) (a ∈ B).

Example 2.2.26. 1. If X is a finite-dimensional Banach space and T ∈ B(X), then

σ(T ) = {λ ∈ C | λ is an eigenvalue of T}.

Proof. By definition,

σ(a) = {λ ∈ C | λ− a /∈ Inv(A)}

from Example 2.2.18 (1), we have that

Inv(B(X))σ(T ) = {λ ∈ C | λ is an eigenvalue of T}. = {T ∈ B(X) | ker T = {0}}.

15



It then follows that

σ(T ) = {λ ∈ C | λ− T /∈ Inv(B(X))}
= {λ ∈ C | ker(λ− T ) 6= {0}}
= {λ ∈ C | (λ− T )(x) = 0} for some x ∈ X
= {λ ∈ C | λx− Tx = 0}
= {λ ∈ C | λx = Tx}.

From the definition of eigenvalues and eigenvectors, we know that any x that sat-
isfies λx = Tx is an eigenvector and λ is the corresponding eigenvalue.

2. The σ(λ) = {λ} for all λ ∈ C.

Definition 2.2.27. Let A be a unital Banach algebra and a ∈ A.

1. The resolvent of a in A is defined as

%A(a) = {λ ∈ C | λ− a ∈ InvA}.

That is %(a) = C\σA(a).

2. The map R : %(a)→ A defined as λ 7→ (λ− a)−1 is called the resolvent function of
a in A.

Definition 2.2.28. A unital algebra A is said to be a division algebra if every non-zero
element in A is invertible. That is Inv(A) = A \ {0}.

Theorem 2.2.29 ([2]). Let A be a unital Banach algebra. If a ∈ A then σ(a) is a
non-empty compact subset of C with σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}.

Proof. For each λ ∈ C such that |λ| > ‖a‖, we have λ − a = λ(1 − λ−1a). But
‖λ−1a‖ = |λ−1|‖a‖ < 1 and so by Theorem 2.2.19, λ − a ∈ Inv(A), which implies
that λ /∈ σ(a). Hence, σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}. Also, σ(a) is closed because it is the
inverse image with respect to the continuous map λ 7→ λ − a, C → A, of the closed
subset A \ Inv(A) of A. Thus, σ(a) is bounded and closed, so σ(a) is a compact subset
of C.

Lastly, we need to show that σ(a) 6= ∅. If σA(a) = ∅, then %(a) = C. Then we have

R : C→ A, λ 7→ (λ− a)−1.
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Corollary 2.2.22, shows that R is continuous, more so, R is analytic and bounded. Indeed,
for all λ0 ∈ C, we have

lim
λ→λ0

(
R(λ)−R(λ0)

λ− λ0

)
=

(λ− a)−1 − (λ0 − a)−1

λ− λ0

=
(λ− a)−1[(λ0 − a)− (λ− a)](λ0 − a)−1

λ− λ0

=
(λ− a)−1(λ0 − λ)(λ0 − a)−1

λ− λ0

=
−(λ− λ0)(λ− a)−1(λ0 − a)−1

λ− λ0

= −(λ− a)−1(λ0 − a)−1.

lim
λ→λ0

(
R(λ)−R(λ0)

λ− λ0

)
= lim

λ→λ0
[−(λ− a)−1(λ0 − a)−1]

= −(λ0 − a)−1(λ0 − a)−1 = −(λ0 − a)−2.

Since λ0 is arbitrary, then R is analytic. Let us now show that R is bounded.

lim
|λ|→∞

R(λ) = lim
|λ|→∞

(λ− a)−1 = lim
|λ|→∞

(1− a/λ)−1

λ
=

(1)−1

∞
= 0 ∀ λ.

Hence, R is bounded. Since we have show that R is analytic and bounded, then by
Louville’s theorem, R is a constant. Since, R(λ) → 0 as |λ| → ∞ for all λ ∈ C. This is
a contradiction, since R(λ) is invertible. Hence, σA(a) 6= ∅.

Theorem 2.2.30 (Gelfand - Mazur). If A is a unital Banach algebra in which every
non-zero element is invertible then A ∼= C.

Proof. Theorem 2.2.29 guarantees that σA(a) 6= ∅. Let a ∈ A, then there exists an
element λ ∈ σA(a), such that λ1− a /∈ Inv(A). Since A is a division algebra, we have

λ1− a = 0, ⇒ λ1 = a.

This gives an isomorphism from A onto C. Define φ : A → C as a 7→ λ. For isometric,
we need to show that ‖φ(a)‖ = ‖a‖. We have that

‖a‖ = ‖λ1‖ = ‖λ‖ = ‖φ(a)‖.

Hence, the map is an isometry.

Remark 2.2.31. The above result shows that C is essentially the only unital Banach
algebra which is also a field.
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Theorem 2.2.32 (Spectral mapping property for polynomials). Let A be a complex
algebra with an identity, let a ∈ A and let p be a complex polynomial. Then

σ(p(a)) = {p(λ) | λ ∈ σ(a)}.

Definition 2.2.33. Let A be a unital Banach algebra and let a ∈ A, the spectral radius
of a is

rA(a) = sup{|λ| | λ ∈ σA(a)}.

Example 2.2.34. Let X be a compact topological space and f in A := C(X), we have

rA(f) = sup
λ∈σA(f)

|λ| = sup
λ∈f(X)

|λ| = ‖f‖.

Theorem 2.2.35 (Spectral radius formula). Let A be a unital Banach algebra and let
a ∈ A, then

rA(a) = lim
n→∞

‖an‖1/n = inf
n∈N
‖an‖1/n.

Corollary 2.2.36 ([34]). If A is a unital Banach algebra and B is a closed unital sub-
algebra of A then rA(b) = rB(b) for all b in B.

Proof. Using the spectral radius formula, for all b ∈ B, we have

rA(b) = lim
n→∞

‖b‖
1
n = rB(b).

Remark 2.2.37. Clearly, the above result guarantees that the spectral radius of a ∈ A
does not change when computed in any subBanach algebra of A, containing a.

Remark 2.2.38. It is easy to see that

rA(λa) = |λ|rA(a) (λ ∈ C)

and by Theorem 2.2.29, we have rA(a) ≤ ‖a‖.

Theorem 2.2.39 ([34]). Let A be a unital Banach algebra and let a, b ∈ A with ab = ba.
Then

rA(ab) ≤ rA(a)rA(b).

Proof. Since ab = ba, we have (ab)n = anbn (n ∈ N). It then follows that

rA(ab) = inf
n∈N
‖(ab)n‖1/n = inf

n∈N
‖anbn‖1/n

≤ inf
n∈N
‖an‖1/n inf

n∈N
‖bn‖1/n = rA(a)rA(b).
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2.2.2 Ideals, Quotients and Homomorphism of Banach Alge-
bras

Definition 2.2.40. Let A be a Banach algebra. An ideal I of A is a vector subspace I
of A such that for all x ∈ I and a ∈ A, we have ax ∈ I and xa ∈ I.

It is well known that, if A is a Banach space and I a closed ideal of A, the quotient space
A/I is a Banach space with respect to the quotient norm ‖a + I‖ = infx∈I ‖a + x‖, for
all a ∈ A. If we define the product (a+ I)(b+ I) = ab+ I on A/I for all a, b ∈ A. Then
A/I becomes a Banach algebra. This result is shown in the next theorem.

Theorem 2.2.41 ([2]). If I is a closed ideal of a Banach algebra A, then A/I is a
Banach algebra. If A is abelian so is A/I.

Proof. It is clear that the product (a+ I)(b+ I) = ab+ I is well defined for all a, b ∈ A.
Since A/I is a Banach space, it is suffices to show that ‖(a+ I)(b+ I)‖ ≤ ‖a+ I‖‖b+ I‖.
Indeed, for all a, b ∈ A, we have

‖(a+ I)(b+ I)‖ = ‖ab+ I‖ = inf
x∈I
‖ab+ x‖ ≤ inf

x,y∈I
‖ab+ ay + xb+ xy‖

= inf
x,y∈I
‖(a+ x)(b+ y)‖ ≤ inf

x,y∈I
‖a+ x‖‖b+ y‖

= ‖a+ I‖‖b+ I‖.

Hence, A/I is a Banach algebra. Suppose A is abelian, then for all a, b ∈ A, we have

(a+ I)(b+ I) = ab+ I = ba+ I = (b+ I)(a+ I).

Hence, A/I is abelian.

Definition 2.2.42. Let A be a Banach algebra.

1. An ideal I in A is proper, if I is not equal to A.

2. An ideal I is a maximal ideal of A, if I is a proper ideal such that I is not contained
in any strictly larger proper ideal of A.

Lemma 2.2.43 ([2]). Let A be a unital Banach algebra. If I is an ideal of A, then I is
a proper ideal if and only if I ∩ Inv(A) = ∅.

Theorem 2.2.44 ([2]). Let A be a unital Banach algebra.

1. If I is a proper ideal of A then the closure I is also a proper ideal of A.

2. Any maximal ideal of A is closed.
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Definition 2.2.45. Let A and B be Banach algebras. A homomorphism from A to B is a
linear map θ : A → B which is multiplicative in the sense that θ(ab) = θ(a)θ(b), (a, b ∈
A). The kernel of such a homomorphism θ is the set

ker θ = {a ∈ A : θ(a) = 0}.

If A and B are unital Banach algebras, we say that a homomorphism θ : A → B is
unital if θ(1A) = 1B. A bijective homomorphism θ : A → B is an isomorphism. If such
an isomorphism exists then the Banach algebras A and B are isomorphic. The kernel of
θ is a proper ideal if θ is not equal to 0. The quotient map π : A → A/I is surjective
homomorphism with ker π = I. Suppose that θ : A → B is a homomorphism of Banach
algebras with ker θ = I. Then there exists a unique embedding ψ : A/I → B such that
θ = ψ ◦ π.

Remark 2.2.46. If two “objects” are isomorphic, we say that they have the same struc-
ture. In the context of Banach algebras, we need more that isomorphism. Two Banach
algebras have the same structure if they are isometrically isomorphic.

Example 2.2.47. Suppose that A is a non-unital Banach algebra then the map

θ : A → A#, a 7→ (a, 0)

is an isometric homomorphism. Indeed, for all a, b ∈ A, we have

θ(ab) = (ab, 0) = (a, 0)(b, 0) = θ(a)θ(b) and

‖θ(a)‖A = ‖(a, 0)‖A# = ‖a‖A + |0| = ‖a‖A.

Hence, θ(A) is a Banach subalgebra of A# which is isometrically isomorphic to A.

2.3 Gelfand Theory

In this section, we give a brief introduction to Gelfand’s theory for commutative Banach
algebras. For further details see [43].

Definition 2.3.1. Let A be a Banach algebra. Then a character on A is a non-zero
homomorphism A → C; that is, a non-zero linear map ϕ : A → C which satisfies
ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A.

We denote the set of all character on A by ΦA. Suppose that 1 ∈ A. Then ϕ(1) = 1 for
every ϕ ∈ ΦA and so a character is a unital homomorphism.

Remark 2.3.2. It is good to note that ΦA and ΦA# are related. Indeed, for every
ψ ∈ ΦA# , ψ(e) = 1 and for every ϕ ∈ ΦA, there exists a unique extension ϕ ∈ ΦA# given
as

ϕ(a+ λ1) = ϕ(a) + λ, (a ∈ A, λ ∈ C).
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Example 2.3.3. 1. Let A := C(X) where X is a compact topological space. For any
x ∈ X, the map ϕx : A → C, f 7→ f(x) is a character on A. Indeed, for all
f, g ∈ A, we have

ϕx(fg) = (fg)(x) = f(x)g(x) = ϕx(f)ϕx(g).

2. Let A := A(D), the disc algebra. For each z ∈ D, the map ϕz : A → C, f 7→ f(z)
is a character on A. Indeed, for all f, g ∈ A, we have

ϕz(fg) = (fg)(z) = f(z)g(z) = ϕz(f)ϕz(g).

Proposition 2.3.4 ([2]). Any unital Banach algebra A possesses at least one character.

Theorem 2.3.5 ([2]). Let A be a Banach algebra and let ϕ ∈ ΦA. Then ϕ is continuous
and ‖ϕ‖ ≤ 1. Suppose A is unital then ‖ϕ‖ = 1.

In particular, ΦA is a subset of the closed unit ball of A′.

Definition 2.3.6. Let A be a Banach algebra and ΦA the set of all character on A. We
endow ΦA with the weakest topology with respect to which all the functions

ΦA → C, ϕ 7→ ϕ(a), (a ∈ A)

are continuous. The topology on ΦA is called the Gelfand topology.

Remark 2.3.7. From Theorem 2.3.5, we have that ΦA is contained in the unit ball of
A′. The Gelfand topology obviously coincides with the weak* topology of A′ on ΦA. This
topology is sometimes called the weak* topology on ΦA.

Theorem 2.3.8 ([2]). Let A be a unital Banach algebra. Then ΦA is a non-empty
compact Hausdorff space in the Gelfand’s topology.

Lemma 2.3.9 ([2]). Let A be a unital commutative Banach algebra.

1. If ϕ ∈ ΦA, then ker ϕ is a maximal ideal of A.

2. If J is a maximal ideal of A, then the map C → A/J, λ 7→ λ + J is an isometric
isomorphism.

Proof. 1. Since ϕ ∈ ΦA, then ϕ is a non-zero homomorphism and so I = ker ϕ is a
proper ideal of A. Suppose that J is another ideal of A such that I ( J and let
a ∈ J \ I. Then ϕ(a) 6= 0, so b = ϕ(a)−1a ∈ J and ϕ(b) = 1. Since ϕ(1) = 1, using
Theorem 2.3.5, we then have that 1− b ∈ I and it follows that 1 = b + 1− b ∈ J.
By Lemma 2.2.43, J = A. This shows that I is not contained in any strictly larger
ideal of A, hence I is a maximal ideal of A.

21



2. Let J be a maximal ideal of A. By Theorem 2.2.41, Theorem 2.2.44 (2) and the fact
that if, A is a unital Banach algebra so is A/J. The unit of A/J is of the form 1+J.
If a+J is a non-zero element of A/J then a ∈ A\J. Let K = {ab+j : j ∈ J, b ∈ A}.
Since A is commutative and J is a maximal ideal, it is easy to see that K is an
ideal of A and J ( K. Since J is a maximal ideal, K = A. Then we have that
1 ∈ K and ab+ j = 1, for some b ∈ A, j ∈ J. Now observe that

(a+ J)(b+ J) = ab+ J = ab+ j + J = 1 + J.

Hence, (a+J) is invertible. Then since every non-zero elements of A/J are invert-
ible, applying Theorem 2.2.30, we have that A/J = 1A/J = 1 + J. It is easy to see
that the map C→ A/J, λ 7→ λ+ J is an isometric homomorphism, since we have
shown that it is surjective. Hence, the result hold.

Theorem 2.3.10 ([2]). Let A be a unital commutative Banach algebra. The mapping
ϕ 7→ kerϕ is a bijection from ΦA onto the set of maximal ideals of A.

Lemma 2.3.11 ([2]). Let A be a unital commutative Banach algebra and let a ∈ A.
Then the following are equivalent;

1. a /∈ Inv(A);

2. a ∈ I for some proper ideal I of A;

3. a ∈ J for some maximal ideal J of A.

Corollary 2.3.12 ([2]). Let A be a unital commutative Banach algebra and let a ∈ A.
Then the following holds.

1. a ∈ Inv(A) if and only if ϕ(a) 6= 0 for all ϕ ∈ ΦA.

2. σA(a) = {ϕ(a) : ϕ ∈ ΦA}.

3. rA(a) = supϕ∈ΦA
|ϕ(a)|

2.3.1 Gelfand Representation

Definition 2.3.13. Let A be a unital commutative Banach algebra. For a ∈ A, the
Gelfand transform of a is the mapping

â : ΦA → C, ϕ 7→ ϕ(a).
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Example 2.3.14. Let A = C(X), where X is a compact Hausdorff space. If f ∈ C(X),
then

f̂ : ΦA → C, ϕx 7→ ϕx(f) = f(x).

Theorem 2.3.15 ([2]). Let A be a unital commutative Banach algebra. For each a ∈ A,
the Gelfand transform â is in C(ΦA). Moreover, the mapping

ΓA : A → C(ΦA), a 7→ â

is a unital, norm-decreasing (and hence continuous) homomorphism and for each a ∈ A
we have

σ(a) = σC(ΦA)(â) = {â(ϕ) : ϕ ∈ ΦA} and rA(a) = ‖â‖.

Proof. It is clear that â is in C(ΦA) from the Gelfand topology on ΦA. It is also easy to
see that Γ is a homomorphism. Indeed, for all a, b ∈ A, we have

Γ(ab) = ϕ(ab) = ϕ(a)ϕ(b) = Γ(a)Γ(b).

By Theorem 2.3.5, Γ is unital. The fact that σ(a) = σC(ΦA)(â) follows from Corollary
2.3.12 (2). Also, rA(a) = ‖â‖ ≤ ‖a‖ follows from Corollary 2.3.12 (3) and Remark 2.2.38,
so Γ is linear and norm-decreasing, hence continuous.

Definition 2.3.16. If A is a unital commutative Banach algebra, then the unital homo-
morphism

Γ : A → C(ΦA), a 7→ â

is called the Gelfand representation of A.

Remark 2.3.17. In general, the Gelfand representation is neither injective or surjective.

2.4 Banach Modules

In this section, we give a brief introduction to Banach modules. For details, see [9].

Definition 2.4.1. Let A be an algebra over a scalar field F.

1. By a right A-module, we mean a vector space X over a scalar field F together with
a map · : X ×A → X, (x, a) 7→ x · a which satisfies

(a) (x+ y) · a = x · a+ y · a (x, y ∈ X, a ∈ A);

(b) x · (a+ b) = x · a+ x · b (x ∈ X, a, b ∈ A);
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(c) x · (ab) = (x · a) · b (x ∈ X, a, b ∈ A).

2. By a left A-module, we mean a vector space X over a scalar field F together with
a map · : A×X → X, (a, x) 7→ a · x which satisfies

(a) (a+ b) · x = a · x+ b · x (x,∈ X, a, b ∈ A);

(b) a · (x+ y) = a · x+ a · y (x, y ∈ X, a ∈ A);

(c) a · (b · x) = (ab) · x (x ∈ X, a, b ∈ A).

3. By an A-bimodule, we mean both left and right A-modules and also satisfies

(a · x) · b = a · (x · b), (a, b ∈ A, x ∈ X).

Definition 2.4.2. Let A be a Banach algebra. A Banach space X which is

1. also a left A-module, is called a left Banach A-module if there exists a constant
M > 0 such that ‖a · x‖ ≤M‖a‖‖x‖, (x ∈ X, a ∈ A);

2. also a right A-module is called a right Banach A-module if there exists a constant
M > 0 such that ‖x · a‖ ≤M‖a‖‖x‖, (x ∈ X, a ∈ A);

3. both left and right Banach A-module, is called a Banach A-bimodule.

Remark 2.4.3. If we renorm X, we may take M = 1.

Example 2.4.4. 1. The Banach algebra A itself is a Banach A-bimodule with the
module operations taken as the Banach algebra multiplication operation.

2. Let X be a Banach A-bimodule and let Y be a closed submodule of X, then the
quotient bimodule X/Y is a Banach A-bimodule with the module operations

a · (x+ Y ) = a · x+ Y and (x+ Y ) · a = x · a+ Y (a ∈ A, x ∈ X).

3. Let X be a Banach A-bimodule and A a Banach algebra. The canonical way of
making X ′ into a Banach A-bimodule is by defining the left and right module op-
erations as

〈x, a · ψ〉 = 〈x · a, ψ〉 and 〈x, ψ · a〉 = 〈a · x, ψ〉 (x ∈ X, a ∈ A, ψ ∈ X ′).

It easy to check that

a · (ψ · b) = (a · ψ) · b,
‖a · ψ‖ ≤M‖a‖‖ψ‖ and ‖ψ · a‖ ≤M‖a‖‖ψ‖.
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Indeed, for all a, b ∈ A, x ∈ X and ψ ∈ X ′, we have

〈x, (a · ψ) · b〉 = 〈b · x, a · ψ〉 = 〈(b · x) · a, ψ〉 = 〈b · (x · a), ψ〉
= 〈x · a, ψ · b〉 = 〈x, a · (ψ · b)〉.

Also,

‖a · ψ‖ = sup{|〈x, a · ψ| | ‖x‖ ≤ 1} = sup{|〈x · a, ψ| | ‖x‖ ≤ 1}
≤ sup{M‖x‖‖a‖‖ψ‖ | ‖x‖ ≤ 1} = M‖a‖‖ψ‖.

Using similar approach, we have ‖ψ · a‖ ≤M‖a‖‖ψ‖.
In general, the nth dual space X(n) of X are Banach A-bimodules for n ∈ N with
X(0) := X.

4. Let A be a Banach algebra and X a Banach A-bimodule. Then L(A, X) is a Banach
A-bimodule with the module operations given as

(a · T )(b) = a · (Tb) and (T · a)(b) = T (ab) (a, b ∈ A, T ∈ L(A, X)).

2.5 Tensor Product

In this section, we give a brief introduction to tensor product. For details, see [43].

Definition 2.5.1. Let A,B and C be vector spaces. An algebraic tensor product of A
and B is a pair (C, θ), where θ : A×B → C is a bilinear map called the tensor map such
that if D is any vector space and for each bilinear map f : A × B → D, there exists a
unique g : C → D, such that f = g ◦ θ.

It is well known that for any two vector spaces say, A,B, the algebraic tensor product of
A,B always exists, unique up to isomorphism and inherits the property of the structure
in which it is defined on. The tensor product (C, θ) is denoted as A ⊗ B, elements of
A⊗B are called tensors. We also denote θ(a, b) = a⊗b, for all a ∈ A, b ∈ B and elements
of this form are called elementary tensors. An element, say t ∈ A⊗ B is of the form

t =
m∑
i=1

ai ⊗ bi m ∈ N, ai ∈ A, bi ∈ B. (2.2)

Remark 2.5.2. The representation for t in Equation (2.2) is not unique.

On the tensor product A⊗B, different types of norms can be defined. In this dissertation,
we only consider the projective norm.
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Definition 2.5.3. Let A and B be normed vector spaces, for t ∈ A ⊗ B, we define
projective tensor product norm as

‖t‖p = inf

{ m∑
i=1

‖ai‖‖bi‖ <∞ | t =
m∑
i=1

ai ⊗ bi, ai ∈ A, bi ∈ B
}
.

Theorem 2.5.4 ([5]). Given a bilinear mapping φ : A × B → C, there exists a unique
linear map ψ : A⊗ B → C, such that ψ(a⊗ b) = φ(a, b), (a ∈ A, b ∈ B).

Remark 2.5.5. By Proposition 2.5.4, we have that (A⊗ B)′ ∼= L(A,B′).

Theorem 2.5.6 ([5]). Let A and B be normed algebras over a scalar field F.There exists
a unique product on A⊗ B with respect to which A⊗ B is an algebra and

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2 (a1, b1 ∈ A, a2, b2 ∈ B).

Theorem 2.5.7 ([5]). Let A,B be normed algebras over a scalar field F. Then the pro-
jective tensor norm on A⊗ B is an algebra norm.

Definition 2.5.8. Let A and B be Banach algebras. Then their projective tensor product
denoted by A⊗̂B is the completion of A⊗ B with respect to the projective tensor norm.

Now let A,B be Banach algebras over a scalar field F. Using Proposition 2.5.7, we may
extend the product on A⊗ B to A⊗̂B so that A⊗̂B becomes a Banach algebra.

Remark 2.5.9. A⊗̂B is a commutative and unital Banach algebra if and only if both A
and B are commutative and unital.

Definition 2.5.10. Let A be a Banach algebra, then A⊗̂A becomes a Banach A-bimodule
with the module operations defined as

a · (b⊗ c) = ab⊗ c and (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

We can make (A⊗̂A)′ and (A⊗̂A)′′ into a Banach A-bimodule in the canonical way.
As in Remark 2.5.5, if we identify (A⊗̂A)′ with L(A,A′), then the canonical Banach
A-bimodule operations on (A⊗̂A)′ takes the form in Example 2.4.4 (4). If A is a Banach
algebra, Aop is also a Banach algebra with the product defined in reverse order, that is
a × b = ba. We can also make A into a left A⊗̂Aop-module by the module operation
defined by

(a⊗ b) · c = acb (a, b, c ∈ A).

2.6 Semigroups and Semigroup Algebras

In this section, we shall recall some basic definitions, some properties of semigroups and
semigroup algebras that will be relevant for our study.
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2.6.1 Semigroups

Definition 2.6.1. A semigroup is a non-empty set S together with an associative binary
operation, denoted by

S × S → S, (s, t) 7→ st (s, t ∈ S).

A non-empty subset T of S is a subsemigroup if T is a semigroup under the induce
binary operation of S. In general, we do not suppose that a semigroup have an identity.
In the case where a semigroup S have an identity, we denote the identity of S by eS.
A semigroup S with an identity is said to be unital. If a semigroup S is non-unital, we
can adjoin an identity to S and S becomes S# := S ∪ {e}, where S# is a semigroup
with an identity adjoined. Then S# is a semigroup containing S as a subsemigroup. The
semigroup S is abelian if for all s, t ∈ S, we have st = ts. If a semigroup S with at least
two elements contains an element 0 such that

0s = 0s = 0 (s ∈ S),

we say that 0 is a zero of S and S is a semigroup with zero. Also, if S is a semigroup
without a zero element, we can also adjoin the element 0 to S. A semigroup in which a
zero is adjoined is denoted by So an So := S∪{0}. Then So is semigroup containing S as
a subsemigroup. A non-empty subset I of S is a left (right) ideal of S if, SI ⊂ I (IS ⊂ I).
A non-empty subset of S which is both left and right ideal is an ideal.

Definition 2.6.2. Let S be a semigroup.

1. Let s ∈ S. An element s∗ ∈ S is called an inverse of s if

ss∗s = s and s∗ss∗ = s∗.

2. An element s ∈ S is called regular if there exists t ∈ S such that sts = s.

3. An element s ∈ S is called completely regular if there exists t ∈ S such that sts = s
and ts = st.

4. S is called regular if each s ∈ S is a regular element.

5. S is called completely regular if each s ∈ S is a completely regular element.

6. S is called an inverse semigroup if S is regular and every element in S has a unique
inverse.

7. An element s ∈ S is left cancellable if s = t whenever vs = vt, for t, v ∈ S.

8. An element s ∈ S is right cancellable if s = t whenever sv = tv for t, v ∈ S.
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9. An element s ∈ S is cancellable if it is both left and right cancellable.

10. S is cancellative if each element is cancellable.

11. S is left reversible if for all x, y ∈ S, xS ∩ yS 6= ∅.

12. S is right reversible if for all x, y ∈ S, Sx ∩ Sy 6= ∅.

13. S is reversible if it is both left and right reversible.

14. An element p ∈ S is called an idempotent if p2 = p, the set of idempotents of S is
denoted by E(S).

Remark 2.6.3. An element s ∈ S has an inverse if and only if is regular. Indeed,
suppose that s ∈ S has an inverse. By definition, it follows that s is regular. Conversely,
suppose that s ∈ S is regular, then there exists t ∈ S such that sts = s. Set u = tst and
observe that

sus = ststs = (sts)ts = sts = s

and
usu = tststst = t(sts)tst = tstst = t(sts)t = tst = u.

Remark 2.6.4. If s ∈ S has an inverse, then it is said to be regular and if not is called
singular. We denote the inverse of an element s in an inverse semigroup as s−1.

Proposition 2.6.5 ([30]). An inverse semigroup with a unique idempotent is a group.

Proposition 2.6.6 ([30]). A semigroup S is an inverse semigroup if and only if S is
regular and the idempotent commutes.

Definition 2.6.7. A semigroup S is called semilattice if S is commutative and E(S) = S.

Let S be an inverse semigroup. The canonical partial order defined on S and E(S)
coincides. The natural partial order on S is defined as

s ≤ t⇔ s = ss−1t (s, t ∈ S)

and that of E(S) is defined as

p ≤ q ⇔ p = pq = qp (p, q ∈ E(S)).

An idempotent p is maximal if p = q whenever p ≤ q.

Definition 2.6.8. Let P be a partially ordered set. For p ∈ P, we define (p] = {x : x ≤ p}
and [p) = {x : p ≤ x}. Then P is locally finite if (p] is finite for each p ∈ P and P is
locally C-finite for some constant C > 1 if |(p]| < C for each p ∈ P. A partially ordered
set that is locally C-finite for some C is uniformly locally finite.
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Definition 2.6.9. Let S be an inverse semigroup. Then S is [locally finite / C-finite
/ uniformly locally finite] respectively if the partial ordered set (E(S),≤) has the corre-
sponding property.

Proposition 2.6.10 ([44]). Let S be an inverse semigroup. Suppose that (E(S),≤) is
[uniformly] locally finite. Then (S,≤) is [uniformly] locally finite.

Proposition 2.6.11 ([30]). Let S be an inverse semigroup and let s, t ∈ S. Then sDt if
and only if there exists x ∈ S such that s−1s = xx−1 and t−1t = x−1x.

Let S be an inverse semigroup, p ∈ E(S) and {Dλ | λ ∈ Λ} be the collection of all
D-class on S and pλ ∈ E(Dλ). The maximal subgroup of S at pλ is denoted by Gpλ and

Gpλ = {s ∈ S : ss−1 = s−1s}.

We recall from [38] the following definitions of semigroups.

Definition 2.6.12. Let S be a semigroup.

1. S is called a band if S = E(S).

2. S is called a rectangular band semigroup if it is a band semigroup and for each
x, y ∈ S, xyx = x.

3. S is a Clifford semigroup if S is an inverse semigroup such that

ss−1 = s−1s (s ∈ S).

For e in E(S), let Ge = {s ∈ S : s−1s = e}, we have that Ge is a group, S =⋃
e∈E(S) Ge and GeGf ⊂ Gef , where Ge’s are the maximal subgroup of S. A Clifford

semigroup is also known as a semilattice of groups.

4. S with a zero element 0 is called Brandt semigroup if it satisfies the following
axioms:

(a) For each non-zero element s of S there corresponding unique elements t, u and
s′ in S such that

ts = s, su = s, s′s = u.

(b) If t, u ∈ E(S) and are non-zero, then tSu 6= {0}.

A Brandt semigroup S over a group G with index set J consist of all canonical
J × J matrix units over G ∪ {0} and a zero matrix 0. It is an inverse semigroup
over G with index set J given as

S = {(g)ij | g ∈ G, i, j ∈ J} ∪ {0},
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where (g)ij is the J × J matrix with (k, l)- entry equal to g if (k, l) = (i, j) and 0
if (k, l) 6= (i, j) and multiplication defined as

(g)ij(h)kl =

{
(gh)il if j = k

0 if j 6= k.

5. A bicyclic semigroup is a semigroup S = {p, q, e : pq = e} generated by an identity
element e and two more elements p and q such that pq = e.

Definition 2.6.13. Let G be a group, I and Λ be arbitrary non-empty sets and Go =
G ∪ {0} be a group with zero adjoined. A sandwich matrix P = (pλi) is a Λ × I matrix
with entries being elements of Go such that each row and column of P has at least one
non-zero entry. The set S = G× I × Λ with the composition

(a, i, j) ◦ (b, l, k) = (aPjlb, i, k) (a, i, j), (b, l, k) ∈ S

is a semigroup that we denote by M(G, I,Λ, P ). Similarly if P is a Λ × I matrix over
Go, then S = G× I × Λ ∪ {0} is a semigroup under the following composition operation

(a, i, jg) ◦ (b, l, k) =

{
(aPjlb, i, k) if Pjl 6= 0

0 if jPjl = 0.

(a, i, j) ◦ 0 = 0 ◦ (a, i, j) = 0 ◦ 0 = 0.

This semigroup which is denoted by Mo(G, I,Λ, P ) can also be describe in the following
way. An I × Λ matrix A over Go that has at most one non-zero entry a = A(i, j) is
called a Rees I × Λ matrix over Go and is denoted by (a)ij. The set of all Rees I × Λ
matrices over Go form a semigroup under the binary operation A · B = APB, which is
called the Rees matrix semigroup over Go.

The above sandwich matrix P is regular if every row and column contains at least one
entry in G and the semigroupMo(G, I,Λ, P ) is regular as a semigroup if and only if the
sandwich matrix is regular.

Definition 2.6.14. Let S be a semigroup. A principal series of ideals for S is a chain

S = I1 ⊃ I2 ⊃ · · · ⊃ Im−1 ⊃ Im = K(S),

where I1, I2, ...Im are ideal in S and there is no ideals of S strictly between Ij and Ij+1

for each j ∈ Nm−1 and K(S) is the minimum ideal of S.
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Example 2.6.15. 1. Let S be an infinite set with the product given by

st = t (s, t ∈ S),

so that S is a right zero semigroup. Then S is a semigroup which is right cancella-
tive and each element of S is a left identity.

2. Let S be an infinite set with the product given by

st = s (s, t ∈ S),

so that S is a left zero semigroup. Then S is a semigroup which is left cancellative
and each element of S is a right identity.

3. Let S = Z2, such that Z2 = Z× Z with the binary operation

(t, u) · (v, w) = (t+ u,w) (t, u, v, w ∈ Z).

Then (S, ·) is a non-abelian semigroup which is left cancellative.

4. Let S be an infinite semigroup and set S1 = S × S as a set. Define

(a, x) · (b, y) = (ab, ay) (a, b, c, d ∈ S).

Then (S1, ·) is a semigroup. It is left cancellative whenever S is left cancellative.

5. Let S = N, with the product

∧ : N× N→ N, (m,n) 7→ m ∧ n := min{m,n}.

Then (S,∧) is an abelian semigroup and 1 acts as a zero. Clearly S = E(S), but
S does not have an identity.

6. Let S = N, with the product

∨ : N× N→ N, (m,n) 7→ m ∨ n := max{m,n}.

Then (S,∨) is an abelian semigroup with identity 1. Clearly S = E(S).

2.6.2 Semigroup Algebras

Let S be a semigroup. We define `1(S) = {f : S → C |
∑

s∈S |f(s)| < ∞}, with the
norm ‖f‖ =

∑
s∈S |f(s)|. `1(S) is a Banach space and it becomes a Banach algebra when

the following convolution product is defined on it:

(f ∗ g)(t) =
∑{

f(r)g(s) | r, s ∈ S, rs = t
}

(t ∈ S),
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where we take (f ∗ g)(t) = 0 where there are no elements r, s ∈ S with sr = t. It can be
easily shown that ‖f ∗ g‖ ≤ ‖f‖|g‖. Indeed, for all f, g ∈ `1(S), we have

‖f ∗ g‖ =
∑
t∈S

|(f ∗ g)(t)| =
∑
t∈S

|
∑
sr=t

f(r)g(s)|

≤
∑
t∈S

∑
sr=t

|f(r)‖g(s) ≤
∑

(r,s)∈S×S

|f(r)‖g(s)|

=
∑
r∈S

∑
s∈S

|f(r)‖g(s)| = ‖f‖|g‖.

(`1(S), ∗) is a Banach algebra, called the Banach semigroup algebra on S. `1(S) is a
commutative Banach algebra if and only if S is commutative. Every f ∈ `1(S) can be
represented as

f =
∑
s∈S

f(s)δs

where δs is the Dirac measure,

δs(t) =

{
1 if s = t

0 if s 6= t.

For further discussion of this algebra, see [9] and [11].
It is well known that the semigroup algebra `1(S) may have an identity even if S does
not. This fact was justified in [25], Proposition 2.1, where S is a finite semilattice. Fur-
thermore, the necessary and sufficient condition for `1(S) to have a bounded approximate
identity for inverse semigroup and other semigroups were given in [13, 28].

Let S and T be semigroups and let θ : S → T be an epimorphism. Then there is an
induced contractive epimormphism θ : `1(S)→ `1(T ) defined by requiring that θ|S takes
specified values in T ⊂ `1(T ). If S and T are isomorphic, then `1(S) and `1(T ) are
isometrically isomorphic. For each ϕ ∈ ΦS, the map∑

s∈S

f(s)δs 7→
∑
s∈S

f(s)ϕ(s)

is a character on `1(S) and every character on `1(S) arises in this way. There is always
one character on the Banach algebra `1(S), this is the augmentation character

ϕS : `1(S)→ C, f 7→
∑
s∈S

f(s).
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Suppose that T is a subsemigroup of S. Then

Φ`1(T ) = {ϕS|`1(T ) | ϕS ∈ ΦS}.

For a semigroup S, it is an established result that `1(S)⊗̂`1(S) is isometrically isomorphic
to `1(S×S) and so, we identify (`1(S)⊗̂`1(S))

′′
with (`1(S×S))

′′
. Using this identification,

the bimodule operations are defined as follows: Let M ∈ (`∞(S × S))′, s ∈ S, then for
all f ∈ `∞(S × S),

Ms(f) = M(sf), sM(f) = M(fs)

and

fs(u, v) = f(su, v), sf(u, v) = f(u, vs).

More so, for all s, t ∈ S, we have δs ∗ δt = δst and δt ∗ δs = δts and so `1(S) is a Banach
`1(S)-bimodule.

Remark 2.6.16. If the semigroup S is a semilattice, then `1(S) is a commutative `1(S)-
module.
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Chapter 3

Notions of Amenability in Banach
Algebras

In this chapter, we shall give the definitions of some important notions of amenability in
Banach algebras that we shall study in this work. In particular, we shall give an explicit
prove of some intrinsic characterizations, hereditary properties and some interesting re-
sults of contractible, amenable, approximately amenable and pseudo-amenable Banach
algebras.

3.1 Basic Definitions

Definition 3.1.1. Let A be a Banach algebra and X a Banach A-bimodule. A derivation
from A into X is a bounded linear map D : A → X such that

D(ab) = a ·D(b) +D(b) · a, (a, b ∈ A).

For example, let x ∈ X, then the linear map δx : A → X defined as

δx(a) = a · x− x · a

is a derivation. Indeed, for all a, b ∈ A, we have

δx(ab) = (ab) · x− x · (ab) = (ab) · x− a · (x · b) + a · (x · b)− x · (ab)
= a · (b · x)− a · (x · b) + (a · x) · b− (x · a) · b
= a · (b · x− x · b) + (a · x− x · a) · b
= a · δx(b) + δx(a) · b.

Hence, δx is a derivation. This type of derivation is called inner derivation and it is
implemented by x. Note that inner derivations are automatically continuous linear maps
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and derivations which are not inner are called outer derivations. Let ϕ ∈ ΦA. Then a
point derivation at ϕ is a linear functional d : A → C such that

d(ab) = ϕ(a)d(b) + d(a)ϕ(b), (a, b ∈ A).

That is, d is a derivation into the bimodule C, where C has the A-bimodule operations

a · z = z · a = ϕ(a)z (a ∈ A, z ∈ C).

Remark 3.1.2. It is good to note that for any two elements x, y ∈ X, we have δx+y(a) =
δx(a) + δy(a). Indeed, for all a, b ∈ A, we have

δx+y(ab) = (ab) · (x+ y)− (x+ y) · (ab)
= (ab) · x+ (ab) · y − [x · (ab) + y · (ab)]
= (ab) · x− x · (ab) + (ab) · y − y · (ab)
= δx(ab) + δy(ab).

More so, any x, y in X can form the same inner derivation. If this occur, we have δx = δy
which implies that δx − δy = δx−y = 0.

Let Z1(A, X) denote the space of all continuous derivations from A into X and let
B1(A, X) denote the space of all continuous inner derivations from A into X. Then, the
first Hochschild Cohomology group of A with coefficients in X is the quotient vector space

H1(A, X) := Z1(A, X)/B1(A, X).

Clearly, H1(A, X) = {0} if and only if Z1(A, X) = B1(A, X). A trivial case in which
H1(A, X) = {0} is the case in which A acts trivially on right (left) of X. That is
X · A = 0 (A ·X = 0).

Definition 3.1.3. Let A be a Banach algebra. Then:

1. A is contractible if, for each Banach A-bimodule X, every continuous derivation
D : A → X is inner;

2. A is amenable if, for each Banach A-bimodule X, every continuous derivation
D : A → X ′ is inner;

3. A is weakly amenable if every continuous derivation D : A → A′ is inner;

4. a continuous derivation D : A → X is said to be approximately inner if there exists
a net (xα) in X such that

D(a) = lim
α

(a · xα − xα · a) = lim
α
δx(a) (a ∈ A),

were the limit is taken in the norm of X;

35



5. A is approximately contractible if, for each Banach A-bimodule X, every contin-
uous derivation D : A → X is approximately inner;

6. A is approximately amenable if, for each Banach A-bimodule X, every continuous
derivation D : A → X ′ is approximately inner;

7. A is approximately weakly amenable if every continuous derivation D : A → A′
is approximately inner;

8. A is boundedly approximately contractible if, for each Banach A-bimodule X and
each continuous derivation D : A → X, there exists M > 0 and a net (xα) in X
such that ‖a · xα − xα · a‖ ≤ M‖a‖ for all a in A and each α and that D(a) =
limα(b · xα − xα · b), (b ∈ A);

9. A is boundedly approximately amenable if, for each Banach A-bimodule X and
each continuous derivation D : A → X ′, there exists M > 0 and a net (xα)
in X ′ such that ‖a · xα − xα · a‖ ≤ M‖a‖ for all a in A and each α and that
D(a) = limα(b · xα − xα · b), (b ∈ A).

Remark 3.1.4. For the approximate notions, we use the qualifier uniform when that
convergence of the net is uniform over the unit ball and similarly we use weak* when the
convergence is in the appropriate weak* topology.

Example 3.1.5. 1. The set of complex number C, is an amenable Banach algebra
with the usual product and norm.

Proof. Let 0 denote the trivial group and A := `1(0) be an amenable Banach
algebra. Define φ : A → C as φ(f) = f(0). Clearly, φ is an isomorphism, more so,
it is an isometry. Indeed, for all f ∈ A, we have

|φ(f)| = |f(0)| = ‖f‖1.

We then have that A ∼= C and since A is amenable, so is C.

2. The Banach algebra A(D) (disc algebra) is not amenable.

Proof. Let x ∈ D and the module operations of A(D) on C are given by

f · z := f(x)z and z · f := f(x)z (f ∈ A(D), z ∈ C).

Define D : A(D) → C as f 7→ f ′(x) (f ′ denote the derivative of f). Clearly, D
is a continuous derivation and every inner derivation at z is zero. Indeed, for all
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f, g ∈ A(D), we have

D(fg)(x) = (fg)′(x) = (fg′ + f ′g)(x)

= f(x)g′(x) + f ′(x)g(x)

= f(x)D(g) +D(f)g(x)

= f ·D(g) +D(f) · g.

For inner derivation, we have

δz(f) = f · z − z · f = f(x)z − f(x)z = 0.

Since all continuous derivation is not inner, hence A(D) is not amenable.

Definition 3.1.6. Let A be a Banach algebra.

1. The operator π : A⊗̂A → A, defined by (a ⊗ b) 7→ ab for all a, b ∈ A is called the
diagonal operator.

2. A diagonal for A is an element u ∈ A⊗̂A such that

a · u = u · a and a · π(u) = a (a ∈ A).

It is well known that π is an A-bimodule homomorphism with respect to the module
operations on A⊗̂A. For a diagonal u =

∑n
j=1 aj ⊗ bj in A⊗̂A, we have

π(u) = π

( n∑
j=1

aj ⊗ bj
)

=
n∑
j=1

π(aj ⊗ bj) =
n∑
j=1

ajbj = eA,

where eA is the identity in A. Also, a · u = u · a implies that

n∑
j=1

aaj ⊗ bj =
n∑
j=1

aj ⊗ bja.

Suppose X is a Banach A-bimodule and ψ ∈ L(A, X). Then there exists a linear map

Φ :A⊗̂A → X,

Φ(a⊗ b) = a · ψ(b) (a, b ∈ A). (3.1)

Since a · u = u · a for a ∈ A and u a diagonal in A⊗̂A, then

Φ(a · u) = Φ(u · a), ⇒ Φ

( n∑
j=1

aaj ⊗ bj
)

= Φ

( n∑
j=1

aj ⊗ bja
)
,

then
n∑
j=1

aajψ(bj) =
n∑
j=1

ajψ(bja) (a, b ∈ A). (3.2)
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Lemma 3.1.7. Let A be a Banach algebra, X a Banach A-bimodule and the map Φ as
defined in Equation (3.1). Then:

1. Φ is bounded;

2. Φ(a⊗ λb) = Φ(λa⊗ b) (a, b ∈ A, λ ∈ C);

3. a · Φ(b⊗ c) = Φ(ab⊗ c) (a, b, c ∈ A);

4. a · Φ(u) = Φ(a · u) (a ∈ A, u ∈ A⊗̂A).

Proof. 1. Let a, b ∈ A and X a Banach A-bimodule. We then have

‖Φ(a⊗ b)‖ = ‖a · ψ(b)‖ ≤ K‖a‖‖ψ(b)‖ ≤ K‖a‖‖b‖‖ψ‖.

2. Let a, b ∈ A and λ ∈ C, we then have

Φ(a⊗ λb) = a · ψ(λb) = a · λψ(b) = λa · ψ(b) = Φ(λa⊗ b).

3. For all a, b, c ∈ A, we then have

a · Φ(b⊗ c) = a · b · ψ(c) = (ab) · ψ(c) = Φ(ab⊗ c).

4. Let a, b, c ∈ A and u ∈ A⊗̂A, where u =
∑n

j=1 bj ⊗ cj, we then have

a · Φ(u) = a · Φ
( n∑

j

bj ⊗ cj
)

= a ·
n∑
j

bj · ψ(cj) =
n∑
j

abj · ψ(cj)

=
n∑
j

Φ(abj ⊗ cj) = Φ

( n∑
j

abj ⊗ cj
)

= Φ(a · u).

Definition 3.1.8. Let A be a Banach algebra.

1. An element M in (A⊗̂A)′′ is called a virtual diagonal for A if

a ·M = M · a and a · π′′(M) = a (a ∈ A).

2. A net (Mα) in A⊗̂A is called an approximate diagonal for A if

a ·Mα −Mα · a→ 0 and a · π(Mα)→ a (a ∈ A).
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3. A bounded approximate diagonal for A is a bounded net (Mα) in A⊗̂A such that

a ·Mα −Mα · a→ 0 and a · π(Mα)→ a (a ∈ A).

Remark 3.1.9. If (Mα) ∈ A⊗̂A is an approximate diagonal for A, then (π(Mα))α is an
approximate identity for A. Since (π(Mα))α is a right approximate identity by definition,
we then show that (π(Mα))α is a left approximate identity. Indeed, for all a ∈ A, we
have that

‖π(Mα) · a− a‖ = ‖π(Mα) · a− a · π(Mα) + a · π(Mα)− a‖
≤ ‖π(Mα) · a− a · π(Mα)‖+ ‖a · π(Mα)− a‖
= ‖a · π(Mα)− π(Mα) · a‖+ ‖a · π(Mα)− a‖
= ‖a · π(Mα)− π(Mα) · a‖ = ‖π(a ·Mα −Mα · a)‖ → 0.

Remark 3.1.10. If A is a finite-dimensional Banach algebra, then any virtual diagonal
for A is also a diagonal for A.

Definition 3.1.11. Let A be a Banach algebra. Then:

1. A is pseudo-amenable if it possesses an (possible unbounded) approximate diagonal;

2. A is pseudo-contractible if it possesses a (possible unbounded) central approximate
diagonal, that is an approximate diagonal (Mα) satisfying a ·Mα = Mα · a for all
a ∈ A and all α.

Definition 3.1.12. A Banach A-bimodule X is said to be pseudo-unital or neo-unital
if for every x ∈ X there exists y ∈ X and a, b ∈ A such that x = a · y · b.

3.2 Preliminary Results.

The following preliminary results are useful in establishing some results that will be
proved in the course of this study.

Proposition 3.2.1 ([48]). For a Banach algebra A with a bounded approximate identity,
the following are equivalent:

1. H1(A, X ′) = {0} for each Banach A-bimodule X;

2. H1(A, X ′) = {0} for each pseudo-unital Banach A-bimodule X.

Proposition 3.2.2 ([48]). Let A be a Banach algebra with bounded approximate identity
which is contained as a closed ideal in a Banach algebra B. Let X be pseudo-unital
Banach A-bimodule, and let D ∈ Z1(A, X ′). Then X is a Banach B-bimodule in a
canonical fashion and there is a unique D ∈ Z1(B, X ′) such that:
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1. D|A = D;

2. D is continuous with respect to the strict topology on B and the weak* topology in
X ′.

Proposition 3.2.3 ([18]). Suppose that A has a bounded approximate identity. Then A
is approximately amenable if and only if every derivation into the dual of any neo-unital
bimodule is approximately inner.

Lemma 3.2.4 ([18]). Let A be a unital Banach algebra with identity e, X an A-bimodule,
D : A → X ′ a derivation. Then there exists D1 : A → e ·X ′ · e and η ∈ X ′ such that

1. ‖η‖ ≤ 2Cx‖D‖.

2. D = D1 + δη.

Proposition 3.2.5 ([31]). Every finite-dimensional approximately amenable Banach al-
gebra is amenable.

3.3 Amenable and Contractible Banach Algebras.

We next give some hereditary properties and some characterizations of amenability and
contractibility in Banach algebras.

3.3.1 Hereditary Properties of Amenable Banach Algebras.

Amenable Banach algebras have some nice hereditary, stability and useful properties. In
this section, we are concerned with giving explicit proofs of some hereditary properties
of amenable Banach algebras.

Proposition 3.3.1 ([31]). Let A be a Banach algebra. If A is amenable and B is another
Banach algebra such that θ : A → B is a continuous homomorphism with dense range,
then B is amenable. In particular, A/I is amenable for every closed ideal I of A.

Proof. Let X be a Banach B-bimodule, X becomes a Banach A-bimodule with the
module operations defined as

x · a = x · θ(a), a · x = θ(a) · x (a ∈ A, x ∈ X).

Let θ : A → B be a homomorphism and suppose that D : B → X ′ is a derivation. The
map D := (D ◦ θ) : A → X ′ is a derivation. Indeed, for all a, b ∈ A, we have

D(ab) = (D ◦ θ)(ab) = D(θ(a)θ(b)) = θ(a) ·D(θ(b)) +D(θ(a)) · θ(b)
= a · (D ◦ θ)(b) + (D ◦ θ)(a) · b = a ·D(b) +D(a) · b. (3.3)
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Hence, D is a derivation. Since A is amenable, there exists x ∈ X ′ such that D(a) =
a · x− x · a = δx(a) for all a ∈ A. By our hypothesis that θ : A → B has a dense range,
then for all b ∈ B there exists a sequence (an) ⊂ A such that limn(θ(an)) = b. It then
follows that for every b ∈ B, we have that

D(b) = D(lim
n
θ(an)) = lim

n
D(θ(an)) = lim

n
((D ◦ θ)(an)) = lim

n
(D(an))

= lim
n

(an · x− x · an) = lim
n

(θ(an) · x− x · θ(an)) = b · x− x · b = δx(b),

which implies that the derivation D from B into X ′ is inner. Hence, B is amenable.

In particular, let X beA/I-bimodule in the canonical fashion, D : A/I → X ′ a derivation
and θ : A → A/I a canonical surjective homomorphism. The map d := (D ◦θ) : A → X ′

is a derivation and since A amenable, there exists x ∈ X ′ such that

d(a) = a · x− x · a = δx(a) (a ∈ A).

Now, observe that

D(a+ I) = D(θ(a)) = (D ◦ θ)(a) = d(a)

= a · x− x · a = θ(a) · x− x · θ(a)

= (a+ I) · x− x · (a+ I)

= δx(a+ I) (a ∈ A).

Hence, A/I is amenable.

Proposition 3.3.2 ([31]). Let A be a Banach algebra. If I is a closed ideal of A such
that both I and A/I are amenable, then A is amenable.

Proof. Suppose I and A/I are amenable and D ∈ Z1(A, X ′), where X is a Banach
A-bimodule. Since X can be identified with a Banach I-bimodule, we then have that
D|I ∈ Z1(I,X ′). Using the amenability of I, then, there exists x ∈ X ′ such that D(a) =
a · x− x · a = δx(a) for all a ∈ I. Now, let δx be the canonical extension of δx on A. We
then have that D = δx which implies that D− δx = 0 on I. For all a ∈ A, b ∈ I, we have
that

0 = (D − δx)(ab) = a · (D − δx)(b) + (D − δx)(a) · b.

It follows that

(D − δx)(a) · b = 0,

since a · (D − δx)(b) = 0 on I. Similarly, we have that

0 = (D − δx)(ba) = b · (D − δx)(a) + (D − δx)(b) · a.
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Also,

b · (D − δx)(a) = 0,

since (D − δx)(b) · a = 0 on I. Then for any x ∈ X, we have

〈b · x, (D − δx)(a)〉 = 〈x, (D − δx)(a) · b〉 = 0

and

〈x · b, (D − δx)(a)〉 = 〈x, b · (D − δx)(a)〉 = 0.

Let XI = span{a ·x+ y · b | a, b ∈ I, x, y ∈ X}. XI is a closed linear span of I ·X ∪X · I.
The above equations implies that D − δx maps A into X⊥I and D − δx ∈ Z1(A, X⊥I ) =
Z1(A, (X/XI)

′). It is clear that, X/XI becomes a Banach A-bimodule with the module
operations defined as

a · (x+XI) = a · x+XI , (x+XI) · a = x · a+XI (a ∈ A, x ∈ X).

Also, X/XI becomes an A/I-bimodule with the module operation on X/XI defined as

(x+XI) · (a+ I) = (x+XI) · a = x · a+XI ,

(a+ I) · (x+XI) = a · (x+XI) = a · x+XI (a ∈ A, x ∈ X).

We claim that D̂ ∈ Z1(A/I, (X/XI)
′), where D̂ is defined as D̂(a+ I) = (D− δx)(a) for

all a ∈ A. The map D̂ from A/I into (X/XI)
′ is well defined and also continuous since

D − δx = 0 on I. For all (a+ I), (b+ I) ∈ A/I, we have

D̂((a+ I)(b+ I)) = D̂(ab+ I) = (D − δx)(ab)
= a · (D − δx)(b) + (D − δx)(a) · b
= (a+ I) · (D − δx)(b) + (D − δx)(a) · (b+ I)

= (a+ I) · D̂(b+ I) + D̂(a+ I) · (b+ I).

Hence, our claim is justified. Since A/I is amenable, there exists y ∈ (x/XI)
′ = X⊥I ⊂ X ′

such that D̂ = δy where δy is an inner derivation for A/I. We then have that

(D − δx)(a) = D̂(a+ I) = δy(a+ I)

= (a+ I) · y − y · (a+ I)

= a · y + I − y · a− I
= a · y − y · a.

It then implies that D− δx = δy and so, D = δx + δy = δx+y. Hence, A is amenable.
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Proposition 3.3.3 ([48]). Let A be an amenable Banach algebra. Then A has a bounded
approximate identity.

Proof. Let us take X = A and define the left and right bimodule module operations as

a · x = ax, x · a = 0 (a ∈ A, x ∈ X).

We also make X ′ = A′ into a Banach A-bimodule in the usual way, that is

〈x · a, α〉 = 〈x, a · α〉 = 0, 〈a · x, α〉 = 〈x, α · a〉 (a ∈ A, x ∈ X,α ∈ X ′).

We also make X ′′ = A′′ into a Banach A-bimodule in the canonical fashion

〈α · a,Ψ〉 = 〈α, a ·Ψ〉, 〈α,Ψ · a〉 = 〈a · α,Ψ〉 = 0 (a ∈ A, α ∈ X ′,Ψ ∈ X ′′).

The canonical embedding D : A → X ′′, defined as D(a)(α) = α(a), a ∈ A, α ∈ X ′ is a
derivation. Indeed, for all a, b ∈ A and α ∈ X ′, we have

〈α,D(ab)〉 = 〈ab, α〉 = 〈a · b, α〉 = 〈b, α · a〉 = 〈α · a,D(b)〉 = 〈α, a ·D(b)〉
= 〈α, a ·D(b)〉+ 〈α,D(a) · b〉 = 〈α, a ·D(b) +D(a) · b〉. (3.4)

The last equality in the Equation (3.4) holds because X ′′ has a right zero action and so
〈α,D(a) · b〉 = 0. Since A is amenable, there exists Φ ∈ X ′′ such that

D(a) = a · Φ− Φ · a = a · Φ (a ∈ A).

Then by Goldstine’s theorem, there exists a bounded net (eλ)λ∈P ∈ X such that D(eλ)
converges to Φ in the weak* topology on X ′′. We then have that 〈α,D(eλ)〉 → 〈α,Φ〉 for
all α ∈ X ′. It then follows that 〈αa,D(eλ)〉 → 〈αa,Φ〉 for all α ∈ X ′, a ∈ A, implying
that 〈aeλ, α〉 → 〈a, α〉. Thus (eλ) is a bounded weak right approximate identify for A
and so by Theorem 2.2.11, A has a bounded right approximate identity (eλ). Doing the
same thing all over again by defining the module operations as

a · x = 0 x · a = xa (a ∈ A, x ∈ X),

we obtain a bounded left approximate identity. We now need to show that the left and
right bounded approximate identity is a bounded approximate identity for A.
Let {eλ}λ∈P and {fβ}β∈Q be bounded left and right approximate identities for A respec-
tively and suppose they are bounded by M1 and M2 respectively. We make P ×Q into
a directed set by defining a partial order (p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 and
q1 ≤ q2 for all p1, p2 ∈ P, q1, q2 ∈ Q. We then have that the net

(hλβ) = (eλ + fβ − eλfβ)(λ,β)∈P×Q

is a bounded approximate identity for A, by Theorem 2.2.9.
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Proposition 3.3.4 ([48]). Let A be a Banach algebra. A is amenable if and only if A#

is amenable.

Proof. Suppose that A# is amenable, let D ∈ Z1(A, X ′), where X is a Banach A-
bimodule. X becomes a Banach A#-bimodule with the module operations defined as

(a, α) · x = αx+ a · x, x · (a, α) = αx+ x · a ((a, α) ∈ A#, x ∈ X). (3.5)

Define d : A# → X ′ as d(a, α) = D(a) ((a, α) ∈ A#). This map is well defined, linear
and a derivation. For linearity, observe that

d((a, α) + (b, β)) = d(a+ b, α + β) = D(a+ b) = D(a) +D(b) = d(a, α) + d(b, β), also

d(α(a, β)) = d(αa, αβ) = D(αa) = αD(a) = αd(a, β) (a, b ∈ A, α, β ∈ C).

For derivation, observe that

d((a, α)(b, β)) = d(ab+ aβ + αb, αβ) = D(ab+ aβ + αb)

= D(ab) +D(aβ) +D(αb)

= a ·D(b) +D(a) · b+ βD(a) + αD(b)

= αD(b) + a ·D(b) + βD(a) +D(a) · b
(using the module operations in Equation (3.5))

= (a, α) ·D(b) +D(a) · (b, β)

= (a, α) · d(b, β) + d(a, α) · (b, β) (a, b ∈ A, α, β ∈ C).

Hence, d is a derivation. Since A# is amenable, there exists x ∈ X ′ such that d(a, α) =
(a, α) · x− x · (a, α) = δx(a, α) ((a, α) ∈ A#). Indeed, for all a ∈ A, α ∈ C, we have

D(a) = d(a, α) = (a, α) · x− x · (a, α) = a · x+ αx− x · a− αx = a · x− x · a = δx(a).

Therefore, A is amenable.
Conversely, suppose that A is amenable, by Proposition 3.3.3, A has a bounded approx-
imate identity. Also, by Proposition 3.2.1, we can take X to be pseudo-unital and since
A is a closed ideal of A#, then by Proposition 3.2.2, we have that D ∈ Z1(A, X ′) and
there exists D ∈ Z1(A#, X ′) such that D|A = D. Hence, A# is amenable.

Proposition 3.3.5 ([31]). Let A be a Banach algebra. If A is amenable and B is also
an amenable Banach algebra, then A⊗̂B is amenable.

Proof. By Proposition 3.3.4, we may assume that A and B are unital Banach algebras
with identities eA and eB respectively. Let X be a Banach A⊗̂B-bimodule and suppose
that D : A⊗̂B → X ′ is a derivation. Since X can be identified with a Banach A-bimodule
with the module operations given as

a · x = (a⊗ eB) · x, x · a = x · (a⊗ eA) (a ∈ A, x ∈ X).
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Define DA : A → X ′ as DA(a) = D(a⊗ eB) for all a ∈ A. It is easy to check that DA is
a continuous derivation from A into X ′. Indeed, for all a, b ∈ A, we have

DA(ab) = D(ab⊗ eB) = D[(a⊗ eB)(b⊗ eB)] = (a⊗ eB) ·D(b⊗ eB) +D(a⊗ eB) · (b⊗ eB)

= a ·D(b⊗ eB) +D(a⊗ eB) · b = a ·DA(b) +DA(a) · b.

Since A is amenable, there exists x ∈ X ′ such that DA(a) = a · x − x · a, for all a ∈ A.
Let δx be the inner derivation from A⊗̂B into X ′. Then, we have

D(a⊗ eB) = DA(a) = a · x− x · a = (a⊗ eB) · x− x · (a⊗ eB)

= δx(a⊗ eB).

And so, D = δx, which implies that D − δx = 0. Let D := D − δx = 0 on A⊗ eB. Note
that

(a⊗ b) = (a⊗ eB)(eA ⊗ b) = (eA ⊗ b)(a⊗ eB) (a ∈ A, b ∈ B).

This implies that A⊗ eB and eA ⊗ B commutes. Then for all a ∈ A, b ∈ B, we have

D(a⊗ b) = D((a⊗ eB)(eA ⊗ b)) = (a⊗ eB) ·D(eA ⊗ b)) +D(a⊗ eB) · (eA ⊗ b)
= (a⊗ eB) ·D(eA ⊗ b),

since D(a⊗ eB) · (eA ⊗ b) = 0 on A⊗ eB. Similarly,

D(a⊗ b) = D((eA ⊗ b)(a⊗ eB)) = (eA ⊗ b) ·D(a⊗ eB) +D(eA ⊗ b) · (a⊗ eB)

= D(eA ⊗ b) · (a⊗ eB),

since (eA⊗b) ·D(a⊗eB) = 0 on A⊗eB. This implies that D(a⊗b) = D(eA⊗b) ·(a⊗eB) =
(a⊗ eB) ·D(eA ⊗ b), then D(eA ⊗ b) · (a⊗ eB)− (a⊗ eB) ·D(eA ⊗ b) = 0 and taking the

closure in weak* topology of X ′, then for h ∈ D(eA ⊗ B), δh(A ⊗ eB) = {0}. Let C be
the annihilator of D(eA ⊗ B) in X. We make X a Banach B-bimodule with the module
operations defined as

b · x = (eA ⊗ b) · x, x · b = x · (eA ⊗ b) (b ∈ B, x ∈ X).

Clearly, C is a Banach B-bimodule of X. We then have that X/C is a Banach B-bimodule
with the module operations

(x+ C) · b = x · b+ C, b · (x+ C) = b · x+ C (b ∈ B, x ∈ X).

By Corollary 1.9 of [7], we have

(X/C)′ = C⊥ = (⊥D(eA ⊗ B))⊥ = D(eA ⊗ B)
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and (X/C)′ ⊂ X ′. Define DB : B → (X/C)′, by DB(b) = D(eA ⊗ b) for all b ∈ B. It
is easy to check that DB is a continuous derivation from B into (X/C)′. Indeed, for all
a, b ∈ B, we have

DB(ab) = D(eA ⊗ ab) = D((eA ⊗ a)(eA ⊗ b)) = (eA ⊗ a) ·D(eA ⊗ b) +D(eA ⊗ a) · (eA ⊗ b)
= a ·DB(b) +DB(a) · b.

Since B is amenable, there exist y ∈ (X/C)′ such that

DB(b) = b · y − y · b (b ∈ B).

Now, note that

D(eA ⊗ b) = DB(b) = b · y − y · b = (eA ⊗ b) · y − y · (eA ⊗ b) = δy(eA ⊗ b).

But we have that δh(A ⊗ eB) = {0}, then such y must satisfy δy|A⊗eB = 0. Hence
D− δy = 0 and D− δy is a derivation of A⊗̂B that vanishes on A⊗ eB and eA⊗B. Since
(A⊗ eB)∪ (eA⊗B) generates A⊗̂B. It then follows that D = δy vanishes on A⊗̂B, then
D = δx + δy = δx+y. Hence, A⊗̂B is amenable.

Remark 3.3.6. The converse of Proposition 3.3.5 is not true in general. However in
[33] Proposition 3.5, B. E. Johnson proved that the amenability of A⊗̂B implies the
amenability of A if the Banach algebra B is subjected to some conditions. In addition,
F. Ghahramani and R. J. Loy in [23] also show that the amenability of A⊗̂B implies the
amenability of A and B in the frame work or sense of semi-inner derivations.

3.3.2 Characterization of Amenable Banach Algebras.

To determine if a Banach algebra is amenable or not via the definition given above is
very difficult. There are however some interesting characterization of amenable Banach
algebras. In this section, we shall consider the intrinsic characterization given by B. E.
Johnson in [31], Curtis and Loy in [8] and A. T. Lau in [36]. An explicit proof of these
characterization will be given.

We begin with the characterization given by B. E. Johnson in [31].

Theorem 3.3.7 ([31]). Let A be a Banach algbera. Then the following are equivalent:

1. A is amenable;

2. A has an approximate diagonal;

3. A has a virtual diagonal.
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Proof. 1 ⇒ 3. By Proposition 3.3.3, A has a bounded approximate identity. Let (eα)
be the bounded approximate identity for A and consider the bounded net (eα ⊗ eα) in
(A⊗̂A)′′. Let E ∈ (A⊗̂A)′′ be a w∗-accumulation point of (eα⊗eα). We define DE : A →
(A⊗̂A)

′′
by DE(a) = a ·E −E · a for all a ∈ A, E ∈ (A⊗̂A)

′′
. The map DE from A into

(A⊗̂A)′′ is a derivation. Indeed, we have

DE(ab) = (ab) · E − E · (ab) = (ab) · E − a · (E · b) + a · (E · b)− E · (ab)
= a · (b · E)− a · (E · b) + (a · E) · b− (E · a) · b
= a · (b · E − E · b) + (a · E − E · a) · b
= a ·DE(b) +DE(a) · b (a, b ∈ A, E ∈ (A⊗̂A)′′).

Hence, DE is a derivation. Then for all a ∈ A, we have

π′′(DE(a)) = π′′(a · E − E · a) = w∗ − lim
α
π′′[a · (eα ⊗ eα)− (eα ⊗ eα) · a]

= w − lim
α

[π(aeα ⊗ eα − eα ⊗ eαa)] = w − lim
α

[π(aeα ⊗ eα)− π(eα ⊗ eαa)]

= w − lim
α

(ae2
α − e2

αa) = w − lim
α

(ae2
α)− [w − lim

α
(e2
αa)] = a− a = 0 (3.6)

The last equality in Equation (3.6) holds because (e2
α) is also a bounded approximate

identity for A. Indeed, for all a ∈ A, we have

‖e2
αa− a‖ = ‖e2

αa− eαa+ eαa− a‖ = ‖(eα + 1)(eαa− a)‖
≤ (‖eα‖+ 1)‖eαa− a‖ → 0. (3.7)

We use similar argument for ‖ae2
α−a‖. Since π is a bimodule homomorphism so is π′′ and

consequently, ker π′′ is a Banach A-bimodule. Also, since A has a bounded approximate
identity, Cohen’s factorization theorem (see [48]) implies that π is surjective and thus
open. Consequently, ker π′′ u (ker π)′′, so that ker π′′ is in fact a dual Banach A-
bimodule. Since A is amenable, there exists an N ∈ ker π′′ such that DE = DN . Let
take M := E −N, for all a ∈ A, we have

a ·M −M · a = a · (E −N)− (E −N) · a
= a · E − a ·N − E · a+N · a
= a · E − E · a− (a ·N −N · a)

= DE(a)−DN(a) = 0.

Also, note that for all a ∈ A, we have

a · π′′(M) = a · π′′(E −N) = a · (π′′(E)− π′′(N)) = a · π′′(E)

= w∗ − lim
α

[a · π′′(eα ⊗ eα)] = w − lim
α

[a · π(eα ⊗ eα)]

= w − lim
α
ae2

α = a.
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Hence, M is a virtual diagonal.
3 ⇒ 2. Suppose that M is a virtual diagonal for A and let (mα) be a bounded net in
A⊗̂A with M = w∗ − limα m̂α, where m̂α ∈ (A⊗̂A)′′. Then for all a ∈ A, we have

w − lim
α

[a ·mα −mα · a] = w∗ − lim
α

[a · m̂α − m̂α · a] = a ·M −M · a = 0.

Also, for all a ∈ A, we have

w − lim
α
a · π(mα) = w∗ − lim

α
a · π′′(m̂α) = a · π′′(M) = a.

2 ⇒ 1. Let (mα) be an approximate diagonal for A. By remark 3.1.9, (π(mα))α is a
bounded approximate identity for A. Let X be a Banach A-bimodule. We need to
show that, for each Banach A-bimodule X, every continuous derivation D : A → X ′

is inner. By Proposition 3.2.1, there is no loss of generality if we suppose that X is
pseudo-unital. Let D : A → X ′ be a derivation and let mα =

∑∞
j=1 a

(α)
j ⊗ b

(α)
j be with∑∞

j=1 ‖a
(α)
j ‖‖b

(α)
j ‖ ≤ ∞. Then

(∑∞
j=1 a

(α)
j · D(b

(α)
j )

)
α

is a bounded net in X ′, without

loss of generality we may suppose that λ is the w∗− lim of

(∑∞
j=1 a

(α)
j ·D(b

(α)
j )

)
α

. Then,

for all a ∈ A and x ∈ X, we have

〈x, a · λ〉 = lim
α

〈
x, a ·

∞∑
j=1

a
(α)
j ·D(b

(α)
j )

〉
= lim

α

〈
x,
∞∑
j=1

aa
(α)
j ·D(b

(α)
j )

〉
,

(since D is linear, using Equation (3.2))

= lim
α

〈
x,
∞∑
j=1

aa
(α)
j ·D(b

(α)
j )

〉
= lim

α

〈
x,
∞∑
j=1

a
(α)
j · [D(b

(α)
j a)]

〉

= lim
α

〈
x,
∞∑
j=1

a
(α)
j · [b

(α)
j ·D(a) +D(b

(α)
j ) · a]

〉

= lim
α

〈
x,

∞∑
j=1

a
(α)
j b

(α)
j ·D(a) +

∞∑
j=1

a
(α)
j ·D(b

(α)
j ) · a

〉

= lim
α

〈
x,
∞∑
j=1

a
(α)
j b

(α)
j ·D(a)

〉
+ lim

α

〈
x,

∞∑
j=1

a
(α)
j ·D(b

(α)
j ) · a

〉

= lim
α

〈
x ·

∞∑
j=1

a
(α)
j b

(α)
j , D(a)

〉
+ 〈x, λ · a〉

= lim
α
〈x · eα, D(a)〉+ 〈x, λ · a〉

= 〈x,D(a)〉+ 〈x, λ · a〉

It follows that D(a) = δλ(a) for all a ∈ A. Hence, A is amenable.

48



Let A be a Banach algebra and suppose that X, Y and Z are Banach A-bimodule and
f : X → Y, g : Y → Z are Banach A-module homomorphism. Then the sequence

Σ : 0→ X
f−→ Y

g−→ Z → 0

is short exact if f is one-to-one, g is onto and im(f) = ker(g). The exact sequence Σ is
admissible if there is a bounded linear map F : Y → X such that Ff = IX . The exact
sequence Σ splits if there is a Banach A-module homomorphism F : Y → X such that
Ff = IX . Curtis and Loy relate the concept of amenability of Banach algebra to the
splitting of Π′ and in terms of the splitting of an admissible sequence

Σ : 0→ X ′
f−→ Y

g−→ Z → 0 where

Π : 0→ K
i−→ A⊗̂A π−→ A → 0 and its dual

Π′ : 0→ A π′−→ (A⊗̂A)′
i′−→ K ′ → 0.

We now state and prove the characterization given by Curtis and Loy in [8].

Theorem 3.3.8 ([8]). The Banach algebra A is amenable if and only if

1. A has a bounded approximate identity and

2. the exact sequence Π′ of A-bimodules splits.

Proof. Suppose that A is amenable, then by Proposition 3.3.3, A has a bounded approx-
imate identity and also by Theorem 3.3.7, A has a virtual diagonal. Let M be the virtual
diagonal for A, for f ∈ (A⊗̂A)′ define 〈a, θf〉 = 〈f · a,M〉 for all a ∈ A. We claim that
θπ′ = I and that θ is an A-bimodule homomorphism. Indeed, for all a ∈ A and λ ∈ A′,
we have

〈a, θπ′λ〉 = 〈(π′λ) · a,M〉 = 〈π′(λ · a),M〉
= 〈λ · a, π′′(M)〉 = 〈a, π′′(M) · λ〉
= 〈a, λ〉.

Lastly, let us show that θ is an A-bimodule homomorphism. For all a, b ∈ A, we have

〈a, θ(f · b)〉 = 〈(b · f) · a,M〉 = 〈b · (f · a),M〉
= 〈f · a,M · b〉 = 〈f · a, b ·M〉
= 〈(f · a) · b,M〉 = 〈f · (ab),M〉
= 〈ab, θ(f)〉 = 〈a, b · θ(f)〉.

Similarly, for all a, b ∈ A, we have

〈a, θ(f · b)〉 = 〈(f · b) · a,M〉 = 〈b · f · (ba),M〉
= 〈ba, θ(f)〉 = 〈a, θ(f) · b〉.
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Conversely, suppose that A has a bounded approximate identity (eα), θ an A-bimodule
homomorphism with θπ′ = I and supposing that the net (eα ⊗ eα) converging weak∗

to u ∈ (A⊗̂A)′′. Let us take M = θ′π′′u. We claim that M is a virtual diagonal for A.
Indeed, for all a ∈ A, f ∈ (A⊗̂A)′, we have

〈f, a ·M〉 = 〈f, a · (θ′(π′′u))〉 = 〈f · a, θ′(π′′u)〉 = 〈θ(f · a), π′′(u)〉
= 〈π′(θ(f · a)), u〉 = lim

α
〈π′(θ(f · a)), (eα ⊗ eα)〉

= lim
α
〈θ(f · a), π(eα ⊗ eα)〉 = lim

α
〈θ(f) · a, e2

α〉

= lim
α
〈θ(f), ae2

α〉 = 〈θ(f), a〉 (the last equality follows from Equation (3.7))

= lim
α
〈θ(f), e2

αa〉 = lim
α
〈a · θ(f), e2

α〉

= lim
α
〈θ(a · f), π(eα ⊗ eα)〉 = lim

α
〈π′θ(a · f), (eα ⊗ eα)〉

= 〈π′θ(a · f), u〉 = 〈θ(a · f), π′′u〉 = 〈a · f, θ′π′′u〉
= 〈f, (θ′π′′u) · a〉 = 〈f,M · a〉.

Lastly, we have

〈f, π′′(M) · a〉 = 〈a · f, π′′(M)〉 = 〈π′(a · f),M〉 = 〈π′(a · f), θ′π′′u〉
= 〈θπ′(a · f), π′′u〉 = 〈(a · f), π′′u〉 (since θπ′ = I)

= 〈π′(a · f), u〉 = lim
α
〈π′(a · f), (eα ⊗ eα)〉

= lim
α
〈a · f, π(eα ⊗ eα)〉 = lim

α
〈f, e2

αa〉

= 〈f, a〉.

Hence, M is a virtual diagonal. Then, by Theorem 3.3.7, A is amenable.

Theorem 3.3.9 ([8]). Let A be an amenable Banach algebra and let

Σ : 0→ X ′
f−→ Y

g−→ Z → 0

be an admissible short exact sequence of left or right A-module with X ′ a dual Banach
A-module. Then Σ splits.

Proof. Suppose that A is amenable and Σ is a sequence of left A-modules. Since Σ is
admissible, there exists G ∈ L(Z, Y ) such that gG = I on Z. Define D : A → L(Z, Y )
as D(a) = a ·G−G · a for all a ∈ A. Clearly, D is a derivation. Indeed, for all a, b ∈ A,
we have

D(ab) = (ab) ·G−G · (ab) = a · (b ·G)− a · (G · b) + (a ·G) · b− (G · a) · b
= a · (b ·G−G · b) + (a ·G−G · a) · b = a ·D(b) +D(a) · b.
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Hence, D is a derivation. More so, for any z ∈ Z and that gG = I, we have

g((D(a))(z)) = g(a ·G−G · a)(z) = (a · gG− gG · a)(z) = az − az = 0.

Therefore D(A) ⊂ L(Z, ker g) = L(Z, imf). Clearly, (f−1 ◦ D) : A → L(Z,X ′) =
(Z ⊗ X)′ is a derivation. Since A is amenable, f−1 ◦ D is inner and so there exists
Q ∈ L(Z,X ′) such that

D(a) = a ·G−G · a = a · fQ− fQ · a (a ∈ A).

If G1 = G− fQ, then a ·G1 = G1 · a and G1 is a left A-module homomorphism from Z
to Y. Furthermore,

gG1(z) = gG(z)− gfQ(z) = gG(z)− 0 = z,

since gG = I and imfQ ⊂ kerg. Therefore G1 is a right inverse for g and thus, the
sequence Σ splits.

Definition 3.3.10. If A is a Banach algebra and X is a Banach A-bimodule, we write

Z(A, X ′) =
⋂
a∈A

{f ∈ X ′ | a · f = f · a}.

Then Z(A, X ′) is a closed subspace of X ′ which is invariant under each bounded linear
operator from X ′ into X ′ commuting with the action of A.

Lastly, we state and prove the characterization given by A. T. Lau in [36].

Theorem 3.3.11 ([36]). Let A be a Banach algebra. The following are equivalent:

1. A is amenable.

2. For any Banach A-bimodule X and any Banach A-submodule Y of X, each linear
functional in Z(A, Y ′) has an extension to a linear functional in Z(A, X ′).

3. For any Banach A-bimodule, there exists a bounded projection from X ′ onto Z(A, X ′)
which commutes with any weak* continuous bounded linear operator from X ′ into
X ′ commuting with the action of A on X ′.

Proof. 1 ⇒ 2. Since X is a Banach A-bimodule, then the quotient Banach space X/Y
becomes a Banach A-bimodule with the canonical module operations given as

a · (x+ Y ) = a · x+ Y, (x+ Y ) · a = x · a+ Y (a ∈ A, x ∈ X).

Let f ∈ Z(A, Y ′) and f̂ ∈ X ′ be any extension of f to X. If a ∈ A, then a · f̂− f̂ ·a ∈ Y ⊥.
It is known that Q : Y ⊥ → (X/Y )′ is an A-module isometry and surjection mapping.

51



Define D : A → (X/Y )′ as D(a) = Q(a · f̂ − f̂ · a) for all a ∈ A. It is easy to see that the
map D from A into (X/Y )′ is a bounded derivation. Indeed, for all a, b ∈ A, we have

D(ab) = Q((ab) · f̂ − f̂ · (ab)) = Q((ab) · f̂ − a · f̂ · b+ a · f̂ · b− f̂ · (ab))
= Q(a · (b · f̂)− a · (f̂ · b) + (a · f̂) · b− (f̂ · a) · b)
= Q(a · (b · f̂ − f̂ · b) + (a · f̂ − f̂ · a) · b)
= a ·Q(b · f̂ − f̂ · b) +Q(a · f̂ − f̂ · a) · b
= a ·D(b) +D(a) · b.

Hence, D is a derivation. Since A is amenable, there exists x ∈ (X/Y )′ such that
D(a) = a · x − x · a = δx(a) for all a ∈ A. Then there exists h ∈ Y ⊥ (Q is surjective)

such that D(a) = a ·Q(h)−Q(h) · a, for all a ∈ A. Let g = f̂ − h and for all a ∈ A and
y ∈ Y, we have

〈y, a · (f̂ − h)− (f̂ − h) · a〉 = 〈y, a · f̂ − f̂ · a〉 − 〈y, a · h− h · a〉 = 0.

This implies that g ∈ Z(A, X ′) and g extends f.
2 ⇒ 3. The projective tensor product X ′⊗̂X becomes a Banach A-bimodule with the
module operations defined as

(f ⊗ x) · a = f ⊗ x · a, a · (f ⊗ x) = f ⊗ a · x (a ∈ A, x ∈ X, f ∈ X ′).

We define the sets H and K as follows

H := lin{T ′(f)⊗ x− f ⊗ T (x) | T ∈ B(X), x ∈ X, f ∈ X ′}

and
K := lin{f ⊗ x | f ∈ Z(A, X ′), x ∈ X}.

By the definitions of H and K, it is clear that both H and K are Banach A-submodule of
(X ′⊗̂X). Therefore, Y/H is also Banach A-submodule of (X ′⊗̂X)/H. Let φ ∈ (X ′⊗̂X)′

satisfying 〈f ⊗ x, φ〉 = f(x) (x ∈ X, f ∈ X ′). Clearly, φ ∈ H⊥. Indeed, for all x ∈
X, f ∈ X ′, observe that

〈T ′(f)⊗ x− f ⊗ T (x), φ〉 = 〈T ′(f)⊗ x, φ〉 − 〈f ⊗ T (x), φ〉
= 〈x, T ′(f)〉 − 〈T (x), f〉
= 〈T (x), f〉 − 〈T (x), f〉 = 0.

Hence, φ ∈ H⊥. Now, we have Φ ∈ (X ′⊗̂X/H)′ such that Φ(y + H) = φ(y) for all
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y ∈ (X ′⊗̂X). We need to check that a · Φ = Φ · a is in (Y/H)′. For all a ∈ A, we have

〈f ⊗ x+H, a · Φ〉 − 〈f ⊗ x+H,Φ · a〉 = 〈(f ⊗ x+H) · a,Φ〉 − 〈a · (f ⊗ x+H),Φ〉
= 〈f ⊗ x · a+H,Φ〉 − 〈f ⊗ a · x+H,Φ〉
= 〈f ⊗ x · a, φ〉 − 〈f ⊗ a · x, φ〉
= 〈x · a, f〉 − 〈a · x, f〉 = 〈x, a · f〉 − 〈x, f · a〉
= 〈x, a · f − f · a〉 = 0.

Since φ is in H⊥, it follows that a ·Φ = Φ ·a for all a ∈ A and Φ ∈ (Y/H)′. By hypothesis

(2), there exists an extension Φ̂ of Φ such that Φ̂ ∈ (X/H)′ and a · Φ̂ = Φ̂ · a. Define

〈x, P (f)〉 = 〈f ⊗ x + H, Φ̂〉 for all x ∈ X, f ∈ X ′. We claim that the projection P is
bounded and commutes with every T ′ ∈ B(X ′). Indeed, for all x ∈ X and f ∈ X ′, we
have

〈x, (P ◦ P )(f)〉 = 〈x, P (P (f))〉 = 〈P (f)(x), P 〉 = 〈(〈x, P (f)〉), P 〉
= 〈(〈f ⊗ x+H, Φ̂〉), P 〉 = 〈(〈f ⊗ x, φ〉), P 〉 = 〈f(x), P 〉
= 〈x, P (f)〉.

Hence P is a bounded projection from X ′ onto Z(A, X ′). Also, observe that

〈x, P (T ′(f))〉 = 〈T ′(f)⊗ x+H, Φ̂〉 = 〈T ′(f)⊗ x, φ〉
= 〈x, T ′(f)〉 = 〈T (x), f〉 = 〈f ⊗ T (x), φ〉
= 〈f ⊗ T (x) +H, Φ̂〉
= 〈T (x), P (f)〉 = 〈x, T ′(P (f))〉.

Hence, P commutes with every T ′ ∈ B(X ′).
3⇒ 1. Without loss of generality, we may suppose that A is unital. Set X := A⊗̂A, X
becomes a Banach A-bimodule in the canonical fashion. Let F = {La, Ra : a ∈ A} be a
family of bounded linear operators from X into X such that

La(b⊗ c) = b⊗ ac, Ra(b⊗ c) = ba⊗ c (a, b, c ∈ A).

Each operator in F commutes with the actions ofA on X. To see this, for all a, b, c, d ∈ A,
we have

b · La(c⊗ d) = b · (c⊗ ad) = bc⊗ ad = bLa(c⊗ d)

and

b ·Ra(c⊗ d) = b · (ca⊗ d) = bca⊗ d = bRa(c⊗ d).
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By hypothesis (3), there exists a bounded projection from X ′ onto Z(A, X ′), such that
P commutes with T ′ (PT ′ = T ′P ) for all T ∈ F . Let q : X ′ → X ′ be defined as
〈a⊗ b, q(f)〉 = 〈b⊗ a, f〉 (a, b ∈ A, f ∈ X ′). From the way q is defined, observe that

〈c⊗ d, q(x′ · a)〉 = 〈d⊗ c, x′ · a〉 = 〈ad⊗ c, x′〉 = 〈c⊗ ad, q(x′)〉
= 〈La(c⊗ d), q(x′)〉 = 〈(c⊗ d), L

′

aq(x
′)〉.

Also, we have

〈c⊗ d, q(a · x′)〉 = 〈d⊗ c, a · x′〉 = 〈d⊗ ca, x′〉 = 〈ca⊗ d, q(x′)〉
= 〈Ra(c⊗ d), q(x′)〉 = 〈(c⊗ d), R

′

aq(x
′)〉,

for all a, b, c, d ∈ A and x′ ∈ X ′. Then by our assumption in (3) we have that

PR
′

a = R
′

aP, PL
′

a = L
′

aP.

Let M = q′(P ′(e⊗e)), where e is the identity of A. We claim that M is a virtual diagonal
for A. Indeed, for all a ∈ A, x′ ∈ X ′, we have

〈x′,M · a〉 = 〈a · x′,M〉 = 〈a · x′, q′(P ′(e⊗ e))〉 = 〈q(a · x′), P ′(e⊗ e)〉
= 〈R′aq(x′), P ′(e⊗ e)〉 = 〈PR′aq(x′), (e⊗ e)〉
= 〈R′aPq(x′), (e⊗ e)〉 = 〈Pq(x′), Ra(e⊗ e)〉
= 〈Pq(x′), a⊗ e〉 = 〈Pq(x′), a · (e⊗ e)〉
= 〈Pq(x′) · a, (e⊗ e)〉 = 〈x′ · a, q′P ′(e⊗ e)〉
= 〈x′, a · q′P ′(e⊗ e)〉 = 〈x′, a ·M〉.

Similarly, for all a ∈ A, x′ ∈ X ′, we have

〈x′, a ·M〉 = 〈x′ · a,M〉 = 〈x′ · a, q′(P ′(e⊗ e))〉 = 〈q(x′ · a), P ′(e⊗ e)〉
= 〈L′aq(x′), P ′(e⊗ e)〉 = 〈PL′aq(x′), (e⊗ e)〉
= 〈L′aPq(x′), (e⊗ e)〉 = 〈Pq(x′), La(e⊗ e)〉
= 〈Pq(x′), e⊗ a〉 = 〈Pq(x′), (e⊗ e) · a〉
= 〈x′, q′P ′(e⊗ e) · a〉 = 〈x′,M · a〉.

Hence, a ·M = M · a. Also, we have

〈f, π′′(M) · a〉 = 〈a · f, π′′(M)〉 = 〈π′(a · f),M〉 = 〈π′(a · f), q′(P ′(e⊗ e))〉
= 〈P (q(π′(a · f))), (e⊗ e)〉 = 〈q(π′(a · f)), (e⊗ e)〉
= 〈π′(a · f), (e⊗ e)〉 = 〈a · f, π(e⊗ e)〉
= 〈f, π(e⊗ e) · a〉 = 〈f, a〉 (a ∈ A, f ∈ A′).

Then, by Theorem 3.3.7, A is amenable.
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3.3.3 Hereditary Properties of Contractible Banach Algebras.

In this section, we are concerned with hereditary properties of contractible Banach al-
gebras. The hereditary properties for contractible Banach algebras are as nice as the
hereditary properties for amenable Banach algebras.

Proposition 3.3.12 ([48]). Let A be a Banach algebra.

1. If A is contractible and B another Banach algebra such that θ : A → B is a
continuous homomorphism with dense range, then B is contractible.

2. If I is a closed ideal of A such that both I and A/I are contractible, then A is
contractible.

3. If A is contractible and B is also contractible, then A⊗̂B is contractible.

Remark 3.3.13. To avoid repetition, the proofs will be omitted. The proofs of the above
hereditary properties are similar to that of amenable Banach algebras. In most cases, we
just need to replace X ′ with X.

Remark 3.3.14. All contractible Banach algebras are amenable. Hence all results that
are true for contractible Banach algebras are true for amenable Banach algebras, but the
converse is not true in general. Both amenability notions are stable under tensor product.

3.3.4 Characterization of Contractible Banach Algebras.

In this section, we give the well known characterization for contractible Banach algebras.
That is all contractible Banach algebras are unital.

Theorem 3.3.15 ([48]). Let A a Banach algbera. Then the following are equivalent:

1. A is contractible.

2. A is unital and possesses a diagonal.

Proof. 1 ⇒ 2. We need to show that A has a unit and possess a diagonal. Firstly, we
show that A has a unit. In doing this, we will show that A has both left and right unit.
Set X = A, with the module operations defined as

a · x = ax, x · a = 0 (a ∈ A, x ∈ X).

The identity map I : A → X is a derivation from A into X. Indeed, for all a, b ∈ A, we
have

I(ab) = ab,
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on the other hand, we have

a · I(b) + I(a) · b = a · b+ 0 = ab.

SinceA is contractible, there exists x ∈ X such that I(a) = a·x−x·a = ax−0 = ax, for all
a ∈ A, which implies that a = ax. Then, x is the right unit forA. Using similar argument,
but with the module operations defined as a · y = 0 and y · a = ya (a ∈ A, y ∈ X).
Since A is a contractible, there exists y ∈ X such that I(a) = a ·y−y ·a = 0−ya = −ya,
which implies that a = −ya. Then, −y is the left unit for A. It it well known that if
the unit of a Banach algebra exists such unit is unique. Therefore, x and −y coincide.
Hence A has a unit.
Secondly, let us show that A has a diagonal element u ∈ A⊗̂A. To achieve this, let us
set X := ker π. Define D : A → ker π, as D(a) = a⊗ e− e⊗ a. We claim that this map
is a bounded derivation. Indeed, for all a ∈ A, we have

‖D(a)‖ = ‖a⊗ e− e⊗ a‖ ≤ ‖a⊗ e‖+ ‖e⊗ a‖
= ‖a‖‖e‖+ ‖e‖‖a‖ = 2‖a‖‖e‖ (a, e ∈ A). (3.8)

Hence, D is bounded. For the derivation, note that

D(ab) = ab⊗ e− e⊗ ab = ab⊗ e− a⊗ b+ a⊗ b− e⊗ ab
= a · (b⊗ e− e⊗ b) + (a⊗ e− e⊗ a) · b
= a ·D(b) +D(a) · b (a, b, e ∈ A). (3.9)

Hence, D is a derivation. Now, since A is contractible, there exists x ∈ X = ker π such
that

D(a) = a · x− x · a
⇒a⊗ e− e⊗ a = a · x− x · a
⇒a⊗ e− a · x = e⊗ a− x · a
⇒a · (e⊗ e− e · x) = (e⊗ e− e · x) · a.

Comparing a · (e⊗e−e ·x) = (e⊗e−e ·x) ·a with a ·u = u ·a, it implies u = e⊗e−e ·x.
We need to affirm that e⊗ e− e · x is a diagonal for A. In doing this, we need to check
if, a · π(e⊗ e− e · x) = a, since a · (e⊗ e− e · x) = (e⊗ e− e · x) · a. Indeed, for all a ∈ A,
we have that

a · π(e⊗ e− e · x) = a · (π(e⊗ e)− π(x)) = a · (e− 0) (since x ∈ X = ker π)

= a · e = a.

It follows that, π(e⊗ e− e · x) = e. Therefore, e⊗ e− e · x is a diagonal for A.
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2 ⇒ 1. Let X be a Banach A-bimodule and suppose that u =
∑

j aj ⊗ bj ∈ A ⊗ A is a
diagonal for A and let π(u) = e ∈ A be a unit on A. Let D : A → X be a continuous
derivation. We need to show that D inner. Since A is unital, we have

D(a) = D(ea) = e ·D(a) +D(e) · a (a ∈ A). (3.10)

Observe that

e ·D(a) = π(u) ·D(a) = π

(∑
j

aj ⊗ bj
)
·D(a) =

∑
j

ajbj ·D(a)

=
∑
j

aj · (D(bja)−D(bj) · a) =
∑
j

aj ·D(bja)−
∑
j

aj ·D(bj) · a

(using Equation 3.1 )

=
∑
j

Φ(aj ⊗ bja)−
∑
j

Φ(aj ⊗ bj) · a

= Φ

(∑
j

aj ⊗ bja
)
− Φ

(∑
j

aj ⊗ bj
)
· a

= Φ(u · a)− Φ(u) · a = Φ(a · u)− Φ(u) · a (since u is a diagonal)

= a · Φ(u)− Φ(u) · a (using Lemma 3.1.7 (4))

let Φ(u) = x

= a · x− x · a. (3.11)

More so, for all a ∈ A, we have

e ·D(e) · a = e · (D(ea)− e ·D(a)) = e ·D(a)− e ·D(a) = 0,

and so, we have

D(e) · a = a ·D(e)− a ·D(e)− 0 +D(e) · a
= a ·D(e)− a ·D(e)− e ·D(e) · a+D(e) · a
= a · (e ·D(e)−D(e))− (e ·D(e)−D(e)) · a

take e ·D(e)−D(e) = y

= a · y − y · a. (3.12)

Now substituting Equations (3.11) and (3.3.4) in Equation (3.10), we have

D(a) = a · x− x · a+ a · y − y · a
= a · (x+ y)− (x+ y) · a = a · z − z · a (x+ y = z).

Thus, D is inner and so A is contractible.
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Contractible Banach algebras are not much studied like other notions of amenability due
to the lack of non-trivial examples. Over the years the only known examples of con-
tractible Banach algebras are finite dimensional Banach algebras and semisimple Banach
algebras. So far, the well known contractible Banach algebras are the direct sum of finite
full matrix algebras.

3.3.5 Some Basic Results

In this section, we study some basic results on amenable Banach algebras.

Theorem 3.3.16 ([31]). Let A be an amenable Banach algebra and let I be a closed
ideal in A. Then I is amenable if and only if I contains a bounded approximate identity.

Proof. Suppose that I contains a bounded approximate identity. By Proposition 3.2.1,
in order to show that I is amenable, it is suffices to show that H1(I,X ′) = {0} for any
pseudo-unital Banach I-bimodule X. Let X be pseudo-unital Banach I-bimodule and let
D : I → X ′ be a derivation. By Proposition 3.2.2, we make X into a Banach A-bimodule
in the canonical fashion such that D has a unique D ∈ Z(A, X ′). Since A is amenable,
there exists x ∈ X ′, such that D(a) = a · x − x · a = δx(a) for all a ∈ A. Then by the
restriction of D = D|I , we therefore have that D is also inner. Hence I is amenable.
Conversely, suppose that I is amenable, then by Proposition 3.3.3, I has a bounded
approximate identity.

Theorem 3.3.17 ([31]). Let A be a Banach algebra with a bounded approximate iden-
tity and let X be a Banach A-bimodule such that A acts trivially on one side. Then
H1(A, X ′) = {0}.

Proof. Let us take the left module operation to be trivial. That is A ·X = {0}, which
implies that X ′ · A = {0}. Let D : A → X ′ be a continuous derivation from A into X ′.
Then for all a, b ∈ A, we have

D(ab) = a ·D(b) +D(a) · b = a ·D(b).

Now, suppose (eα) is a bounded approximate identity for A. We then have that (D(eα))α
is a bounded net in X ′, then by Banach-Alaoglu’s theorem, there exists a w∗− accumula-
tion point y of D(eα). It is known that any subnet of (eα) is also a bounded approximate
identity for A, therefore, we take w∗ − limαD(eα) = y. It then follows that for all a ∈ A
and x ∈ X we have

〈x,D(a)〉 = lim
α
〈x,D(aeα)〉 = lim

α
〈x, a ·D(eα) +D(a) · eα〉

= lim
α
〈x, a ·D(eα)〉 = lim

α
〈x · a,D(eα)〉 = 〈x · a, y〉

= 〈x, a · y〉 = 〈x, a · y − y · a〉
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The last equality holds because y ·a = 0. Hence the derivation D from A into X ′ is inner
and so, H1(A, X ′) = {0}.

Proposition 3.3.18. If A is an amenable Banach algebra, then A⊗̂e and e⊗̂A are
amenable.

Proof. Let A be an amenable Banach algebra, X a Banach A-bimodule and suppose
that D : A → X ′ is a derivation. Since X can be identified with a Banach A-bimodule
with the module operations defined as

a · x = (a⊗ e) · x, x · a = x · (a⊗ e) (a ∈ A, x ∈ X).

We define d : A⊗̂e → X ′ by d(a ⊗ e) = D(a) for all a ∈ A. The map d from A⊗̂e into
X ′ is a derivation. Indeed, for all a, b ∈ A, we have

d((a⊗ e)(b⊗ e)) = d(ab⊗ e) = D(ab) = a ·D(b) +D(a) · b
= (a⊗ e) · d((b⊗ e)) + d((a⊗ e)) · (b⊗ e)

Hence, d is a derivation. Since A is amenable, there exists x ∈ X ′, such that D(a) =
a · x− x · a = δx(a) for all a ∈ A. Now, observe that

d(a⊗ e) = D(a) = a · x− x · a = (a⊗ e) · x− x · (a⊗ e) = δx(a⊗ e).

Therefore every continuous derivation d : A⊗̂e→ X ′ is inner. Hence, A⊗ e is amenable.
We use similar argument to show that e⊗A is amenable.

Proposition 3.3.19. If A is amenable Banach algebra and suppose that I is a closed
ideal of A. Then A/I⊗̂A/I is amenable.

Proof. Since A is amenable, by Proposition 3.3.2, A/I is amenable and so A/I⊗̂A/I is
amenable by Proposition 3.3.5.

Proposition 3.3.20 ([31]). Let A be Banach algebra, J a closed ideal of A with bounded
approximate identity. If J is amenable, then A is amenable.

Proof. By Proposition 3.2.1, we can take X to be a pseudo-unital Banach A-bimodule.
It then suffices to show that H1(A, X ′) = {0} for all pseudo-unital Banach A-bimodule.
Let D : J → X ′ be a derivation, then, by Proposition 3.2.2, there exists D : A → X ′ a
unique derivation such that D|J = D. Using Proposition 3.2.2 and the amenability of J,
we have that H1(A, X ′) = {0}.
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3.4 Approximate and Pseudo-amenable Banach Al-

gebras.

The notions of approximate and pseudo amenability were introduced by F. Ghahramani
and R. J. Loy in [18]. They conceived the idea of coming up with an amenability notion
that does not have bounded approximate identity, which was known for the amenability
notion that was introduced by B. E. Johnson in [31]. The corresponding class of Banach
algebras is larger than that of the amenable Banach algebras. After the concept of ap-
proximate amenability was introduced, all examples of Banach algebras that were studied
in this regard in [[6], [10], [19], [22]] have bounded approximate identity. It then became
an open question whether approximately amenable Banach algebras must have a bounded
approximate identity. In a positive direction, the authors in [6] proved that every bound-
edly approximately contractible Banach algebras have bounded approximate identity. In
the same manner one might think the same holds for boundedly approximately amenable
Banach algebras, but this is false. In [21], F. Ghahramani and C. J. Read gave exam-
ples of bounded approximate amenable Banach algebras without bounded approximate
identity and used these Banach algebras to answer some of the open questions in this area.

In this section, we give some characterizations, hereditary properties and some results in
literature on approximate and pseudo-amenable Banach algebras.

3.4.1 Hereditary Properties of Approximately Amenable Ba-
nach Algebras.

In this section, we give a detailed proof of some hereditary properties of approximately
amenable Banach algebras.

Proposition 3.4.1 ([18]). Let A be a Banach algebra. If A is approximately amenable
and B is another Banach algebra such that θ : A → B is a continuous epimorphism, then
B is approximately amenable.

Proof. Let X be a Banach B-bimodule, X becomes a Banach A-bimodule with the
module operations defined as

x · a = x · θ(a), a · x = θ(a) · x (a ∈ A, x ∈ X).

Let θ : A → B be an epimorphism and suppose that D : B → X ′ is a derivation. The
map D := (D ◦ θ) : A → X ′ is a derivation. Indeed, for all a, b ∈ A, we have that

D(ab) = (D ◦ θ)(ab) = D(θ(a)θ(b)) = θ(a) ·D(θ(b)) +D(θ(a)) · θ(b)
= a · (D ◦ θ)(b) + (D ◦ θ)(a) · b = a ·D(b) +D(a) · b (a, b ∈ A).
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Hence, D is a derivation. Since A is approximately amenable, there exists exists a net
(xα) ⊂ X ′ such that

D(a) = lim
α

[a · xα − xα · a] = lim
α
δxα(a) (a ∈ A).

By our hypothesis that, θ : A → B is an epimorphism, that is for all b ∈ B, there exists
a ∈ A such that θ(a) = b. Then for every b ∈ B, we have that

D(b) = D(θ(a)) = Doθ(a) = D(a) = lim
α

[a · xα − xα · a]

= lim
α

[θ(a) · xα − xα · θ(a)] = lim
α

[b · xα − xα · b] = lim
α
δxα(b),

which implies that the derivation D from B into X ′ is approximately inner. Hence, B is
approximately amenable.

Remark 3.4.2. We remark that this argument does not extend to the closure of a ho-
momorphic image as that of amenable Banach algebras.

Corollary 3.4.3 ([18]). Suppose A is approximately amenable and I a closed ideal of A.
Then A/I is approximately amenable.

Proof. Let X be A/I-bimodule in the canonical fashion, D : A/I → X ′ a derivation and
θ : A → A/I a canonical surjective homomorphism. X becomes a Banach A-bimodule
with the module operations defined as

x · a = x · θ(a), a · x = θ(a) · x (a ∈ A, x ∈ X).

The map d := (D ◦ θ) : A → X ′ is a derivation and since A is approximately amenable,
there exists a net (xα) ⊂ X ′ such that

d(a) = lim
α

[a · xα − xα · a] = lim
α
δxα(a) (a ∈ A).

Now, observe that

D(a+ I) = D(θ(a)) = (D ◦ θ)(a) = d(a)

= lim
α

[a · xα − xα · a] = lim
α

[θ(a) · xα − xα · θ(a)]

= lim
α

[(a+ I) · xα − xα · (a+ I)]

= δxα(a+ I) (a ∈ A).

Hence, A/I is approximately amenable.

Proposition 3.4.4 ([18]). If A is approximately amenable and has a bounded approx-
imate identity and B is an amenable Banach algebra. Then A⊗̂B is approximately
amenable.
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Proof. The proof follows from Proposition 3.3.5.

Lemma 3.4.5. Suppose that A be a unital Banach algebra with identity e, X a Banach
A-bimodule, with the following module operations

a · x = ax, x · a = xa (a ∈ A, x ∈ X).

If D : A → X ′ is a derivation, then D(e) = 0.

Proof. Let D : A → X ′ be a derivation. We have that D(e) = D(ee) = e ·D(e)+D(e) ·e.
It then follows that

〈e · x,D(e) · e〉 = 〈x,D(e) · e · e〉 = 〈x,D(e) · e〉 = 〈x,D(e)〉.

Then, D(e) · e = D(e), it follows that e · D(e) = 0 and since e 6= 0, it implies that
D(e) = 0.

Proposition 3.4.6 ([18]). Let A be a Banach algebra. A is approximately amenable if
and only if A# is approximately amenable.

Proof. Suppose that A# is approximately amenable and D ∈ Z1(A, X ′), where X is a
Banach A-bimodule. X becomes a Banach A#-bimodule with the module operations
defined as

(a, α) · x = αx+ a · x x · (a, α) = αx+ x · a ((a, α) ∈ A#, x ∈ X). (3.13)

Define d : A# → X ′, as d(a, α) = D(a) ((a, α) ∈ A#). This map is well defined, linear
and a derivation. For linearity, observe that

d((a, α) + (b, β)) = d(a+ b, α + β) = D(a+ b) = D(a) +D(b) = d(a, α) + d(b, β), also

d(α(a, β)) = d(αa, αβ) = D(αa) = αD(a) = αd(a, β) ∀a, b ∈ A, α, β ∈ C.

For derivation, note that

d((a, α)(b, β)) = d(ab+ aβ + αb, αβ) = D(ab+ aβ + αb)

= D(ab) +D(aβ) +D(αb)

= a ·D(b) +D(a) · b+ βD(a) + αD(b)

= αD(b) + a ·D(b) + βD(a) +D(a) · b
(using the module operations in Equation (3.13))

= (a, α) ·D(b) +D(a) · (b, β)

= (a, α) · d(b, β) + d(a, α) · (b, β) (a, b ∈ A, α, β ∈ C).
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Hence, d is a derivation. Since A# is approximately amenable, there exists (xβ) ⊂ X ′

such that

d(a, α) = lim
β

[(a, α) · xβ − xβ · (a, α)] = lim
β
δxβ(a, α) ((a, α) ∈ A#).

Now, note that

D(a) = d(a, α) = lim
β

[(a, α) · xβ − xβ · (a, α)]

= lim
β

[αxβ + a · xβ − αxβ − xβ · a] = lim
β

[a · xβ − xβ · a]

= lim
β
δxβ(a) (a ∈ A).

Therefore, A is approximately amenable.
Conversely, suppose thatA is approximately amenable. Let X be a BanachA#-bimodule
and D : A# → X ′ a derivation. By Lemma 3.2.4, there exists η ∈ X ′ and D1 : A# →
e ·X ′ · e, such that D = D1 + δη. Set d := D1|A : A → e ·X ′ · e. Clearly, d is a derivation.
Since A is approximately amenable, there exist a net (xβ) ⊂ X ′ such that

d(a) = lim
β

[a · xβ − xβ · a] = lim
β
δxβ(a) (a ∈ A).

Hence

D1(a) = lim
β

[a · xβ − xβ · a] (a ∈ A).

Since e ·X ′ · e is unital, then by Lemma 3.4.5, D(e) = 0 and for each (a+ α) ∈ A#, we
have that

D1(a+ α) = D1(a) +D1(α) = D1(a) +D1(αe) = D1(a) + αD1(e) = D1(a)

= lim
β

[a · xβ − xβ · a] = lim
β

[a · xβ + αxβ − αxβ − xβ · a]

= lim
β

[(a+ α) · xβ − xβ · (a+ α)].

Hence, D1 is approximately inner and so A# is approximately amenable.

Proposition 3.4.7 ([18]). Suppose that A is approximately amenable. Then A has left
and right approximate identities. In particular A2 is dense in A.

Proof. Let A be an approximately amenable Banach algebra and set X = A, X becomes
a Banach A-bimodule with the left and right module operations given as

a · x = ax, x · a = 0 (a ∈ A, x ∈ X).
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We also make X ′ = A′ into a Banach A-bimodule in the usual way

〈x · a, α〉 = 〈x, a · α〉 = 0, 〈a · x, α〉 = 〈x, α · a〉 (a ∈ A, x ∈ X,α ∈ X ′).

We also make X ′′ = A′′ into a Banach A-bimodule in the canonical fashion

〈α · a,Ψ〉 = 〈α, a ·Ψ〉, 〈α,Ψ · a〉 = 〈a · α,Ψ〉 = 0 (a ∈ A, α ∈ X ′,Ψ ∈ X ′′).

The natural injection D : A → X ′′, defined as D(a)(α) = α(a), a ∈ A, α ∈ X ′ is a
derivation. Indeed, for all a, b ∈ A, α ∈ X ′, we have

〈α,D(ab)〉 = 〈ab, α〉 = 〈a · b, α〉 = 〈b, α · a〉 = 〈α · a,D(b)〉
= 〈α, a ·D(b)〉+ 〈α,D(a) · b〉 = 〈α, a ·D(b) +D(a) · b〉

The last equality in the equation above holds because D(a) · b = 0 = 〈α,D(a) · b〉 = 0.
Then there exists a net (eβ) ⊂ X ′′ such that a · eβ → α(a) for each a ∈ A. Take a finite
set F ⊂ A,Ψ ⊂ A′ and ε > 0. Let H = {φ · a | a ∈ F, φ ∈ Ψ}, K = max{‖ψ‖, ‖φ‖ | ψ ∈
H,φ ∈ Ψ}. Then there is a β = β(F,Ψ,ε) such that ‖a · eβ − α(a)‖ < ε

2K
for any a ∈ F. By

Goldstine’s theorem, there is bβ ∈ A such that

|〈bβ, ψ〉 − 〈ψ, eβ〉| <
ε

2
(ψ ∈ H).

Therefore, for all a ∈ F, φ ∈ Ψ, we have that

|〈abβ, φ〉 − 〈a, φ〉| = |〈abβ, φ〉 − 〈φ, a · eβ + a · eβ − α(a)〉|
≤ |〈abβ, φ〉 − 〈φ, a · eβ〉|+ |〈φ, a · eβ − α(a)〉|

= |〈bβ, φ · a〉 − 〈φ · a, eβ〉|+K
ε

2K
≤ ε.

Hence (bβ)(F,Ψ,ε) is a weak right approximate identity for A. Then by Theorem 2.2.11,
(bβ)(F,Ψ,ε) is an approximate identity. We use similar argument for left.

Proposition 3.4.8 ([18]). Let A be a Banach algebra. If I is a closed ideal of A such that
I is amenable and A/I is approximately amenable, then A is approximately amenable.

Proof. The proof follows from Proposition 3.3.2.
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3.4.2 Characterization of Approximately Amenable Banach Al-
gebras.

In this section, we give an explicit proof of some characterizations of approximately
amenable Banach algebras.

Theorem 3.4.9 ([18]). Let A be a Banach algebra. A is approximately amenable if and
only if either of the following equivalent conditions hold:

1. there is a net (Mv) ⊂ (A#⊗̂A#)′′ such that for each a ∈ A#,

a ·Mv −Mv · a→ 0 and π
′′
(Mv)→ e;

2. there is a net (M ′
v) ⊂ (A#⊗̂A#)′′ such that for each a ∈ A#,

a ·M ′

v −M
′

v · a→ 0 and π
′′
(M

′

v) = e for every v.

Proof. Clearly, (2) implies (1).
Suppose A is approximately amenable, so by Proposition 3.4.6, A# is approximately
amenable. A#⊗̂A# is a Banach A#-bimodule with the module operations defined as

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A#).

Let u = e⊗ e and define Du : A# → ker π′′ as Du(a) = a · u− u · a for all a ∈ A#. It is
easy to check that Du is a derivation. Indeed, we have

Du(ab) = (ab) · u− u · (ab) = a · (b · u)− a · (u · b) + (a · u) · b− (u · a) · b
= a · (b · u− u · b) + (a · u− u · a) · b = a ·Du(b) +Du(a) · b (a, b ∈ A#).

Hence, Du is a derivation. Since A# is approximately amenable, there exists a net
(eα) ⊂ ker π′′ such that

Du(a) = lim
α

[a · eα − eα · a] = lim
α
δeα(a) (a ∈ A#).

Set M
′
v = u− eα. Then for all a ∈ A, we have

a ·M ′

v −M
′

v · a = a · (u− eα)− (u− eα) · a = a · u− a · eα − u · a+ eα · a
= a · u− u · a− (a · eα + eα · a)→ 0.

Also, for all v

π′′(M
′

v) = π′′(u− eα) = π′′(u)− π′′(eα) = π′′(u) = e.
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Thus (2) holds.
Suppose (1) holds. Then by Proposition 3.4.6, it suffices to show that A# is approx-
imately amenable. Let D : A# → X ′ be a derivation. By Propositions 3.4.7 and
3.2.3, we may take X to be neo-unital. So for each v set fv(x) = Mv(µx), where
a, b ∈ A#, x ∈ X,µx(a⊗ b) = 〈x, aD(b)〉. Then, with (Mβ) ⊂ A#⊗̂A# converging weak*
to Mv and noting that for m ∈ A#⊗̂A#, 〈m,µa·x−x·a〉 = 〈m, a·µx−µx ·a〉+〈x, π(m)D(a)〉.
Since X is neo-unital, so X = X · A#, so for each a ∈ A# and x ∈ X, we have that

〈a · x− x · a, fv〉 = 〈µa·x−x·a,Mv〉 = lim
β
〈µa·x−x·a,Mβ〉

= 〈a · µx − µx · a,Mv〉+ lim
β
〈x, π(Mβ)D(a)〉

= 〈µx,Mv · a−Mv · a〉+ 〈x, π′′(Mv)D(a)〉.

So

‖〈x, a · fv − fv · a〉 − 〈x,D(a)〉‖
= ‖〈µx, a ·Mv −Mv · a〉+ 〈x, π′′(Mv)D(a)− 〈x,D(a)〉‖
= ‖〈µx, a ·Mv −Mv · a〉+ 〈x, π′′(Mv)D(a)−D(a)〉‖
= ‖〈µx, a ·Mv −Mv · a〉+ 〈x, (π′′(Mv)− e)D(a)〉‖
≤ ‖µx‖ · ‖a ·Mv −Mv · a‖+ ‖x‖ · ‖π′′(Mv)− e‖ · ‖D(a)‖
= ‖D‖ · ‖x‖ · ‖a ·Mv −Mv · a‖+ ‖x‖ · ‖π′′(Mv)− e‖ · ‖D(a)‖,

then D(a) = limv[a · fv − fv · a]. It follows that A# is approximately amenable and so is
A by Proposition 3.4.6. Then the equivalence holds.

Corollary 3.4.10 ([18]). Let A be a Banach algebra. A is approximately amenable if
and only if there are nets (M

′′
v ) ⊂ (A⊗̂A)′′, (Fv), (Gv) ⊂ A′′, such that for each a ∈ A,

1. a ·M ′′
v −M

′′
v · a+ Fv ⊗ a− a⊗Gv → 0

2. a · Fv → a,Gv · a→ a and

3. π′′(M
′′
v ) · a− Fv · a−Gv · a→ 0.

Proof. SupposeA is approximately amenable. Using the net (Mv) given in Theorem 3.4.9
(1) and write Mv = M

′′
v −Fv⊗e−e⊗Gv+cve⊗e, where (M ′′

v ) ⊂ (A⊗̂A)′′, (Fv), (Gv) ⊂ A′′
and (cv) ⊂ C. Applying π′′ on Mv we have

π′′(Mv) = π′′(M
′′

v − Fv ⊗ e− e⊗Gv + cve⊗ e)
= π′′(M

′′

v )− π′′(Fv ⊗ e)− π′′(e⊗Gv) + π′′(cve⊗ e)
= π′′(M

′′

v )− Fv −Gv + cve.
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By Theorem 3.4.9, π′′(Mv)→ e, then π′′(Mv) · a→ e · a. Since

π′′(M
′′

v )− Fv −Gv + cve→ e,

it follows that cv → 1 and for any a ∈ A, we have

π′′(M
′′

v ) · a− Fv · a−Gv · a+ e · a→ e · a.

It implies that

π′′(M
′′

v ) · a− Fv · a−Gv · a→ 0.

So we have (3). By Theorem 3.4.9 (1), for a ∈ A#, a ·Mv −Mv · a → 0. Since Mv =
M
′′
v − Fv ⊗ e− e⊗Gv + e⊗ e, we then have that

a · (M ′′

v − Fv ⊗ e− e⊗Gv + e⊗ e)− (M
′′

v − Fv ⊗ e− e⊗Gv + e⊗ e) · a→ 0

⇒ a ·M ′′

v − a · Fv ⊗ e− a⊗Gv + a⊗ e−M ′′

v · a+ Fv ⊗ a+ e⊗Gv · a− e⊗ a→ 0.

We must then have that

a ·M ′′

v −M
′′

v · a+ Fv ⊗ a− a⊗Gv → 0, a · Fv → a and Gv · a→ a.

Hence we have (1) and (2).
Conversely, let cv → 1, a · Fv → a,Gv · a → a and Mv = M

′′
v − Fv ⊗ e− e⊗Gv + e⊗ e.

We then have that

a ·Mv −Mv · a = a ·M ′′

v − a · Fv ⊗ e− a⊗Gv + a⊗ e−M ′′

v · a+ Fv ⊗ a+ e⊗Gv · a− e⊗ a
= a ·M ′′

v − a⊗ e− a⊗Gv + a⊗ e−M ′′

v · a+ Fv ⊗ a+ e⊗ a− e⊗ a
= a ·M ′′

v − a⊗Gv −M
′′

v · a+ Fv ⊗ a→ 0.

Hence, a ·Mv −Mv · a→ 0, for all a ∈ A#. Also, we have

π′′(Mv) · a = π′′(M
′′

v − Fv ⊗ e− e⊗Gv + e⊗ e) · a
= (π′′(M

′′

v )− Fv −Gv + e) · a
= π′′(M

′′

v ) · a− Fv · a−Gv · a+ e · a
= 0 + a→ a.

and so, π′′(Mv)→ e. Then by Proposition 3.4.6, A is approximately amenable.

Theorem 3.4.11 ([36]). Let A be a Banach algebra. The following are equivalent:

1. A is approximately amenable.
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2. For a Banach A-bimodule X and a Banach A-submodule Y of X, if f ∈ Z(A, Y ′),
then there exists a net (gα)α∈Γ ⊂ X ′ of extensions of f such that limα(a·gα−gα·a) =
0.

3. For any Banach A-bimodule X, there exists a net (Pα)α∈Γ, Pα : X ′ → X ′ each Pα
is a continuous operator and Pα|Z(A,X′) = IdZ(A,X′). Also Pα commutes with every
weak*-weak* continuous bounded linear operator from X ′ into X ′ commuting with
the action of A on X ′ and limα(a · Pα(f)− Pα(f) · a) = 0 (f ∈ X ′).

Proof. 1⇒ 2. Since X is a BanachA-bimodule, the quotient Banach space X/Y becomes
a Banach A-bimodule with the canonical module operations given as

a · (x+ Y ) = a · x+ Y, (x+ Y ) · a = x · a+ Y (a ∈ A, x ∈ X).

Let f ∈ Z(A, Y ′) and f̂ ∈ X ′ be any extension of f to X. Define D1 : A → (X/Y )′ as

D1(a) = a · f̂ − f̂ ·a (a ∈ A). Clearly, D1 is a derivation. Indeed, for all a, b ∈ A, we have

D1(ab) = (ab) · f̂ − f̂ · (ab) = (ab) · f̂ − a · f̂ · b+ a · f̂ · b− f̂ · (ab)
= a · (b · f̂)− a · (f̂ · b) + (a · f̂) · b− (f̂ · a) · b
= a · (b · f̂ − f̂ · b) + (a · f̂ − f̂ · a) · b
= a ·D(b) +D(a) · b.

Hence, D is a derivation. Since A is approximately amenable, there exists a net (hα) ⊂
(X/Y )′ such that D1(a) = limα(a · hα − hα · a). Then, we have that

D1(a) = lim
α

(a · hα − hα · a)

a · f̂ − f̂ · a = lim
α

(a · hα − hα · a)

lim
α

(a · hα − a · f̂ − hα · a+ f̂ · a) = 0

lim
α

(a · (hα − f̂)− (hα − f̂) · a) = 0

lim
α

(a · gα − gα · a) = 0,

where gα = hα − f̂ . This implies that gα is an extension of f.

2 ⇒ 3. The projective tensor product X ′⊗̂X becomes a Banach A-bimodule with the
module operations defined as

(f ⊗ x) · a = f ⊗ x · a, a · (f ⊗ x) = f ⊗ a · x (a ∈ A, x ∈ X, f ∈ X ′).
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Let us define the sets H and K as follows

H := lin{T ′(f)⊗ x− f ⊗ T (x) | T ∈ B(X), x ∈ X, f ∈ X ′}

and

K := lin{f ⊗ x | f ∈ Z(A, X ′), x ∈ X}.

It is clear from the definitions of H and K that both H and K are Banach A-submodule
of (X ′⊗̂X). Hence, Y/H is also Banach A-submodule of (X ′⊗̂X)/H. Let φ ∈ (X ′⊗̂X)′

satisfying 〈f ⊗ x, φ〉 = f(x) (x ∈ X, f ∈ X ′). Clearly, φ ∈ H⊥. Indeed, for all x ∈
X, f ∈ X ′, observe that

〈T ′(f)⊗ x− f ⊗ T (x), φ〉 = 〈T ′(f)⊗ x, φ〉 − 〈f ⊗ T (x), φ〉
= 〈x, T ′(f)〉 − 〈T (x), f〉
= 〈T (x), f〉 − 〈T (x), f〉 = 0.

Hence, φ ∈ H⊥. We have Φ ∈ (X ′⊗̂X/H)′ such that Φ(y+H) = φ(y) for all y ∈ (X ′⊗̂X).
Now if f ∈ Z(A, X ′), x ∈ X, we have

〈f ⊗ x+H, a · Φ〉 = 〈(f ⊗ x+H) · a,Φ〉 = 〈f ⊗ x · a+H,Φ〉
= 〈f ⊗ x · a, φ〉 = 〈x · a, f〉 = 〈a · x, f〉
= 〈f ⊗ a · x, φ〉 = 〈f ⊗ a · x+H,Φ〉
= 〈(f ⊗ x+H) · a,Φ〉 = 〈f ⊗ x+H,Φ · a〉.

By hypothesis (2), there exists a net Φ̂α ⊂ ((X ′⊗̂X)/H)′ which is an extension of Φ

such that limα(a · Φ̂α − Φ̂α · a) = 0. Let us define 〈x, Pα(f)〉 = 〈f ⊗ x + H, Φ̂α〉 for all
x ∈ X, f ∈ X ′. If f ∈ Z(A, X ′), then it follows that

〈x, Pα(f)〉 = 〈f ⊗ x+H, Φ̂α〉 = 〈f ⊗ x+H,Φ〉 = 〈f ⊗ x, φ〉 = 〈x, f〉.

Hence Pα|Z(A,X′) = IdZ(A,X′). Let T : X ′ → X ′ be a weak*-weak* continuous and
bounded operator which commutes with the action of A on X ′. Then, since T is bounded
continuous operator, we have T = S ′ for S in B(X). Indeed, for all f ∈ X ′, a ∈ A and
x ∈ X, we have

〈S(a · x), f〉 = 〈a · x, S ′(f)〉 = 〈a · x, T (f)〉
= 〈x, T (f) · a〉 = 〈x, T (f · a)〉
= 〈x, S ′(f · a)〉 = 〈S(x), f · a〉
= 〈a · S(x), f〉.
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Thus, we have S(a · x) = a · S(x), in similar way we can show that S(x · a) = S(x) · a.
Hence, we have that S ∈ B(X). We then have that

〈x, Pα(T (f))〉 = 〈T (f)⊗ x+H, Φ̂α〉 = 〈S ′(f)⊗ x+H, Φ̂α〉

and since, S ∈ B(X), we have

S ′(f)⊗ x+H − f ⊗ S(x) ∈ H

and so

〈x, Pα(T (f))〉 = 〈T (f)⊗ x+H, Φ̂α〉 = 〈S ′(f)⊗ x+H, Φ̂α〉
= 〈f ⊗ S(x) +H, Φ̂α〉 = 〈S(x), Pα(f)〉
= 〈x, S ′(Pα(f))〉 = 〈x, T (Pα(f))〉.

Hence for all α, we have PαT = TPα. More so, we have

〈x, a · Pα(f)− Pα(f) · a〉 = 〈x, a · Pα(f)〉 − 〈x, Pα(f) · a〉
= 〈x · a, Pα(f)〉 − 〈a · x, Pα(f)〉
= 〈x · a− a · x, Pα(f)〉 = 〈f ⊗ (x · a− a · x) +H, Φ̂α〉
= 〈f ⊗ x · a+H − f ⊗ a · x+H, Φ̂α〉
= 〈(f ⊗ x+H) · a, Φ̂α〉 − 〈a · (f ⊗ x+H), Φ̂α〉
= 〈f ⊗ x+H, a · Φ̂α〉 − 〈f ⊗ x+H, Φ̂α · a〉
= 〈f ⊗ x+H, a · Φ̂α − Φ̂α · a〉.

Then

|〈x, a · Pα(f)− Pα(f) · a〉| = |〈f ⊗ x+H, a · Φ̂α − Φ̂α · a〉|
≤ ‖f‖‖x‖‖a · Φ̂α − Φ̂α · a‖,

so

‖a · Pα(f)− Pα(f) · a‖ ≤ ‖a · Φ̂α − Φ̂α · a‖‖f‖.

Since limα(a · Φ̂α − Φ̂α · a) = 0, we have

lim
α

(a · Pα(f)− Pα(f) · a) = 0.

Hence (3) holds.
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3⇒ 1. Without loss of generality, we may suppose that A is unital. Set X := A⊗̂A, X
becomes a Banach A-bimodule in the canonical fashion. Let F = {La, Ra : a ∈ A} be a
family of bounded linear operators from X into X defined as

La(b⊗ c) = b⊗ ac Ra(b⊗ c) = ba⊗ c (a, b, c ∈ A).

Each operator in F commutes with the actions of A on X. Indeed, for all a, b, c, d ∈ A,
we have

b · La(c⊗ d) = b · (c⊗ ad) = bc⊗ ad = bLa(c⊗ d)

also,

b ·Ra(c⊗ d) = b · (ca⊗ d) = bca⊗ d = bRa(c⊗ d).

Clearly, the operator Ra, La in F commutes with the actions ofA on X. Now, suppose the
net Pα has the properties mentioned in (3). Let q : X ′ → X ′ be defined by 〈a⊗b, q(f)〉 =
〈b⊗ a, f〉 (a, b ∈ A, f ∈ X ′). From the way q is defined, we have

〈c⊗ d, q(a · x′)〉 = 〈d⊗ c, a · x′〉 = 〈d⊗ ca, x′〉 = 〈ca⊗ d, q(x′)〉
= 〈Ra(c⊗ d), q(x′)〉 = 〈(c⊗ d), R

′

aq(x
′)〉

and

〈c⊗ d, q(x′ · a)〉 = 〈d⊗ c, x′ · a〉 = 〈ad⊗ c, x′〉 = 〈c⊗ ad, q(x′)〉
= 〈La(c⊗ d), q(x′)〉 = 〈(c⊗ d), L

′

aq(x
′)〉,

for all a, b, c, d ∈ A and x′ ∈ X ′. It then follows from our hypothesis in (3) that

PαR
′

a = R
′

aPα, PαL
′

a = L
′

aPα.

Let Mα = q′(P
′
α(e⊗e)), where e is the identity of A. Now observe that for all a ∈ A, x′ ∈

X ′, we have

〈x′,Mα · a〉 = 〈a · x′,Mα〉 = 〈a · x′, q′(P ′α(e⊗ e))〉 = 〈q(a · x′), P ′α(e⊗ e)〉
= 〈R′aq(x′), P ′α(e⊗ e)〉 = 〈PαR

′

aq(x
′), (e⊗ e)〉

= 〈R′aPαq(x′), (e⊗ e)〉 = 〈Pαq(x′), Ra(e⊗ e)〉
= 〈Pαq(x′), a⊗ e〉 = 〈Pαq(x′), a · (e⊗ e)〉
= 〈Pαq(x′) · a, (e⊗ e)〉.
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Similarly, for all a ∈ A, x′ ∈ X ′, we have

〈x′, a ·Mα〉 = 〈x′ · a,Mα〉 = 〈x′ · a, q′(P ′α(e⊗ e))〉 = 〈q(x′ · a), P ′α(e⊗ e)〉
= 〈L′aq(x′), P ′α(e⊗ e)〉 = 〈PαL

′

aq(x
′), (e⊗ e)〉

= 〈L′aPαq(x′), (e⊗ e)〉 = 〈Pαq(x′), La(e⊗ e)〉
= 〈Pαq(x′), e⊗ a〉 = 〈Pαq(x′), (e⊗ e) · a〉
= 〈a · Pαq(x′), (e⊗ e)〉.

By our assumption, we then have that

lim
α

(〈x′, a ·Mα −Mα · a〉) = lim
α

(〈a · Pαq(x′)− Pαq(x′) · a, e⊗ e〉) = 0,

so wk ∗ − limα(a ·Mα −Mα · a) = 0. It is easy to see that q(π′(x′)) ∈ Z(A, X ′). Indeed,
for all a, b, c ∈ A, x′ ∈ A′ we have that

〈b⊗ c, a · q(π′(x′))〉 = 〈b⊗ ca, q(π′(x′))〉 = 〈ca⊗ b, π′(x′)〉
= 〈π(ca⊗ b), x′〉 = 〈cab, x′〉 = 〈π(c⊗ ab), x′〉
= 〈c⊗ ab, π′(x′)〉 = 〈ab⊗ c, q(π′(x′))〉
= 〈a · (b⊗ c), q(π′(x′))〉 = 〈b⊗ c, q(π′(x′)) · a〉.

Hence, q(π′(x′)) ∈ Z(A, X ′). Also, we have

〈f, π′′(Mα) · a〉 = 〈a · f, π′′(Mα)〉 = 〈π′(a · f),M〉 = 〈π′(a · f), q′(P ′α(e⊗ e))〉
= 〈Pα(q(π′(a · f))), (e⊗ e)〉 = 〈q(π′(a · f)), (e⊗ e)〉
= 〈π′(a · f), (e⊗ e)〉 = 〈a · f, π(e⊗ e)〉
= 〈f, π(e⊗ e) · a〉 = 〈f, a〉 (a ∈ A, f ∈ A′).

It implies that

〈f, π′′(Mα)〉 = 〈f, e〉

Then, by Theorem 3.4.9, A is approximately amenable.

Theorem 3.4.12 ([18]). Suppose A is approximately amenable and let

Σ : 0→ X ′
f−→ Y

g−→ Z → 0

be an admissible short exact sequence of left A-module. Then Σ approximately splits.
That is, there is a net Gv : Z → Y of right inverse maps to g such that

lim
v

(a ·Gv −Gv · a) = 0 (a ∈ A)

and a net Fv : Y → X ′ of left inverse maps to f such that

lim
v

(a · Fv − Fv · a) = 0 (a ∈ A).
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Proof. Suppose that A is approximately amenable and that Σ is a sequence of left A-
modules. Since Σ is admissible, there exists G ∈ L(Z, Y ) such that gG = I on Z. Define
D : A → L(Z, Y ) as D(a) = a · G − G · a for all a ∈ A. It is easy to check that D is a
derivation. Indeed, for all a, b ∈ A, we have that

D(ab) = (ab) ·G−G · (ab) = a · (b ·G)a · (G · b) + (a ·G) · b− (a ·G) · b
= a · (b ·G−G · b) + (a ·G−G · a) · b = a ·D(b) +D(a) · b.

Hence, D is a derivation. Then, for any z ∈ Z and gG = I, we have

g((D(a))(z)) = g(a ·G−G · a)(z) = az − az = 0.

Therefore, D(A) ⊂ L(Z, ker g) = L(Z, im f). Clearly f−1 ◦D : A → (Z,X ′) = (Z⊗X)′

is a derivation. Since A is approximately amenable and f−1 ◦D is approximately inner,
then there exists a net (Qα) ⊂ L(Z,X ′) such that

D(a) = a ·G−G · a = lim
α

[a · fQα − fQα · a].

If Gv = G − fQα, then a · Gv = Gv · a and Gv is a left A-module homomorphism form
Z to Y. Furthermore, gGv(z) = gG(z) − gfQα(z) = gG(z) = z. Since gG = I and
im(fQα) ⊂ ker g. Therefore Gv is a right inverse map to g and limv[a ·Gv −Gv · a] = 0.
Similar argument holds for Fv.

3.4.3 Hereditary Properties of Pseudo-amenable Banach Alge-
bras.

In this section, we give the following hereditary properties for pseudo-amenable Banach
algebras.

Proposition 3.4.13 ([24]). Let A be a Banach algebra. If A is pseudo-amenable, B
another Banach algebra, and θ : A → B is a continuous epimorphism, then B is pseudo-
amenable.

Proof. Let θ : A → B be a continuous epimorphism and suppose that A is pseudo-
amenable. The map θ ⊗ θ : A⊗̂A → B⊗̂B defined as (θ ⊗ θ)(a⊗ b) = θ(a)⊗ θ(b) for all
a, b ∈ A, takes any approximate diagonal for A to an approximate diagonal for B.

3.4.4 Some Basic Results.

In this section, we study some basic results for approximately amenable and pseudo-
amenable Banach algebras.
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Proposition 3.4.14 ([22]). Suppose that A and B are approximately amenable Banach
algebras. Then, for any neo-unital (A ⊕ B)-bimodule X, continuous derivations from
A⊕ B into X ′ are weak∗ approximately inner.

Proof. Let D : A ⊕ B → X ′ be a continuous derivation. Then D induces (continuous)
derivation d : A → X ′, defined as d(a) = D(a, 0), (a ∈ A) and d1 : B → X ′, defined as
d(b) = D(0, b), (b ∈ B). Note that, for all a ∈ A, b ∈ B, we have

d(a) + d1(b) = D(a, 0) +D(0, b)

= D((a, 0) + (0, b)) = D(a, b) (derivations are linear map). (3.14)

Since A and B are approximately amenable, there are nets (xα), (yα) ⊂ X ′ such that

d(a) = lim
α

[(a, 0) · xα − xα · (a, 0)] (a ∈ A), (3.15)

d(b) = lim
α

[(0, b) · yα − yα · (0, b)] (b ∈ B). (3.16)

By Proposition 3.4.7, A and B possesses an approximate identity. Let ηα, ια be an
approximate identity of A and B respectively. We then have

(a, 0) = lim
α

(a, b)(ηα, 0) = lim
α

(ηα, 0)(a, b), (3.17)

(0, b) = lim
α

(a, b)(0, ια) = lim
α

(0, ια)(a, b). (3.18)

Using Equations (3.15), (3.16), (3.17) and (3.18). We have that

D(a, b) = d(a) + d1(b) = lim
β

[(a, b) · γβ − ζβ · (a, b)], (a ∈ A, b ∈ B).

Since D is a derivation (γβ) and (ζβ) in the above equation satisfy

(a, b) · (γβ − ζβ) · (c, d)
β−→ 0, (a ∈ A, b ∈ B).

So, we have

D(a, b) · (c, d) = lim
β

[(a, b) · Φβ − Φβ · (a, b)] · (c, d), (a, c ∈ A, b, d ∈ B).

Since X is neo-unital (A⊕B)-bimodule, this implies that D(a, b) = weak*− limβ[(a, b) ·
Φβ − Φβ · (a, b)], for all a ∈ A, b ∈ B. Hence, D is weak* approximately inner.

Proposition 3.4.15 ([22]). If A⊕A is approximately amenable, then A has an approx-
imate identity.
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Proof. We make X = A and (A⊕A)-bimodule by defining the module operation as

(a, b) · x = a · x, x · (a, b) = xb (a, b,∈ A, x ∈ X).

Define D : A ⊕ A → X, as (a, b) 7→ a − b (a, b ∈ A). It is easy to see that D is a
derivation. Indeed, for all a, b, c, d ∈ A, we have

D((a, b)(c, d)) = D(ac, bd) = ac− bd
= ac− ad+ ad− bd
= a(c− d) + (a− b)d (3.19)

= aD(c, d) +D(a, b)d

= (a, b) ·D(c, d) +D(a, b) · (c, d) (using the module operations).

Hence D is a derivation. Since A ⊕ A is approximately amenable, there exists a net
(xα) ⊂ X for which

D(a, b) = lim
α

[(a, b) · xα − xα · (a, b)] = lim
α

[a · xα − xαb], ((a, b) ∈ A⊕A).

Now, observe that

a− b = D(a, b) = lim
α
δxα(a, b) = lim

α
[(a, b) · xα − xα · (a, b)] = lim

α
[axα − xαb]

= lim
α
axα − lim

α
xαb.

In particular, we have that a = limα axα and b = limα xαb for all a, b ∈ A. Hence, (xα) is
an approximate identity.

Suppose that A is an approximately amenable Banach algebra. In particular, A has
one sided approximate identities. Considering the topology τ determine by the seminorms
b 7→ ‖ab‖ (a ∈ A).

Proposition 3.4.16 ([22]). Suppose that A is approximately amenable and that τ is
stronger than the weak topology on A. Then A has an approximate identity.

Proof. We make X = A and A⊕A-bimodule by defining the module operation as

(a, b) · x = ax, x · (a, b) = xb (a, b,∈ A, x ∈ X).

The map D : A ⊕ A → X, (a, b) 7→ a − b ∀ a, b ∈ A is a derivation. By Proposition
3.4.14, any derivation D : A⊕A → X, there is a net (xα) in X such that

D(a, b) · (c, d) = lim
α

[(a, b) · xα − xα · (a, b)] · (c, d)

D(a, b)d = lim
α

[a · xα · d− xα · bd]

(a− b)d = lim
α

[a · xα − xα · b]d.
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Then by our assumption on τ,

a− b = lim
α

[axα − xαb].

In particular, we have that a = weak− limα a ·xα, b = weak− limα xα · b for all a, b ∈ A.
Thus (xα) is a weak approximate identity for A. Then by Theorem 2.2.11, (xα) is an
approximate identity for A.

Proposition 3.4.17 ([23]). Suppose that A#⊗̂B# is approximately amenable. Then
A,B and A⊕ B are approximately amenable.

Proof. The Banach algebra A# admit a non-zero character ϕ. Define Ψ : A#⊗̂B# → B#

as (a⊗b) 7→ ϕ(a)b, (a ∈ A#, b ∈ B#). It is easy to check that Ψ an epimorphism. Indeed,
we have that

Ψ((a⊗ b)(c⊗ d)) = Ψ(ac⊗ bd) = ϕ(ac)bd = ϕ(a)ϕ(c)bd = ϕ(a)bϕ(c)d

= Ψ(a⊗ b)Ψ(c⊗ d), (a, c ∈ A, b, d ∈ B).

Thus, the map is a homomorphism. Since ϕ is a non-zero character, Ψ is surjective.
Hence Ψ is an epimorphism. By Proposition 3.4.1, B# is approximately amenable, also,
by Proposition 3.4.6, B is approximately amenable. We use similar argument for A. We
have the decomposition into closed subalgebras,

A#⊗̂B# = (1A ⊗ 1B) + (1A ⊗ B) + (A⊗ 1B) + (A⊗̂B).

Thus A⊗̂B is a closed ideal, since A#⊗̂B# is approximately amenable, the quotient
algebra

(1A ⊗ 1B) + (1A ⊗ B)⊕ (A⊗ 1B) ∼=
(
(1A ⊗ B)⊕ (A⊗ 1B)

)#

is also approximately amenable. We now define a map

Υ : (1A ⊗ B)⊕ (A⊗ 1B)→ A⊕B, ((1A ⊗ b)(a⊗ 1)) 7→ (a, b) (a ∈ A, b ∈ B).

The map Υ is well defined and isometric surjective algebra isomorphism. Then by Propo-
sition 3.4.1, A⊕ B is approximately amenable.

Proposition 3.4.18 ([42]). Let A and B be Banach algebras. Then, A× B is approxi-
mately amenable if and only if A and B are amenable.

Proof. Suppose A× B is approximately amenable. Define a map

Φ : A× B → B, (a, b) 7→ b.
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Clearly, Φ is a continuous surjective homomorphism. Since A × B is approximately
amenable, then by Proposition 3.4.1, B is approximately amenable. We use similarly
argument for A.
Conversely, suppose both A and B are approximately amenable. We define C := {(0, b) :
b ∈ B}. It is easy to see that B ∼= C and that (A× B)/B = A, so by Proposition 3.4.8,
A× B is approximately amenable.

Proposition 3.4.19 ([24]). Let A be pseudo-amenable Banach algebra and let J be a
closed left/right ideal of A. Then J has a left/right approximate identity if it is bounded
approximately complemented in A.

Proof. Suppose that A is pseudo-amenable and J is a left ideal that is bounded approx-
imately complemented in A. Let Pα : A → J, α ∈ Γ, be a net such that ‖Pα‖ ≤ M,
for some constant M > 0 and Pα(a)

α−→ a for each a ∈ J. Define Φα : A⊗̂A → J by
Φα(a⊗ b) = aPα(b), for all a, b ∈ A. Using similar argument as in Lemma 3.1.7 (1), Φα

is a bounded linear operator. Then ‖Φα‖ ≤M. Given a finite set F ⊂ J and ε > 0, since
A is pseudo-amenable, there exists an element m ∈ A⊗̂A such that

‖fm−mf‖ < ε

3M
and ‖π(m)f − f‖ < ε

3
(f ∈ F ).

Assume that m =
∑n

j=1 aj ⊗ bj and let µα = Φα(m) =
∑n

j=1 ajPα(bj). It is clear that
µα ∈ J. Furthermore, there is α such that

‖Pα(bjf)− bjf‖ <
ε

3
∑n

i=1 ‖ai‖
1 ≤ j ≤ n (f ∈ F ).

Then for α and all f ∈ F, we have

‖fµα − f‖ = ‖fΦα(m)− f‖ = ‖f(
n∑
j=1

ajPαbj)− f‖ = ‖
n∑
j=1

fajPαbj − f‖

= ‖
n∑
j=1

fajPαbj −
n∑
j=1

ajPα(bjf) +
n∑
j=1

ajPα(bjf)−
n∑
j=1

ajbjf +
n∑
j=1

ajbjf − f‖

= ‖Φα(fm)− Φα(mf) +
n∑
j=1

aj[Pα(bjf)− bjf ] +
n∑
j=1

ajbjf − f‖

= ‖Φα(fm)− Φα(mf) +
n∑
j=1

aj[Pα(bjf)− bjf ] + π(m)f − f‖
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≤ ‖Φα(fm)− Φα(mf)‖+
n∑
j=1

‖aj‖‖Pα(bjf)− bjf‖+ ‖π(m)f − f‖

= ‖Φα(fm−mf)‖+
n∑
j=1

‖aj‖‖Pα(bjf)− bjf‖+ ‖π(m)f − f‖

≤ ‖Φα‖‖fm−mf‖+
n∑
j=1

‖aj‖‖Pα(bjf)− bjf‖+ ‖π(m)f − f‖

≤M
ε

3M
+

n∑
j=1

‖aj‖
ε

3
∑n

1=1 ‖ai‖
+
ε

3
= ε.

This shows that J has a right approximate identity. The proof in the case that J is a
right ideal is similar.

Proposition 3.4.20 ([24]). Let A be a pseudo-amenable Banach algebra and let J be a
two sided closed ideal of A. If J has an approximate identity (ti) such that the associated
left and right multiplication operators Li : a 7→ tia and Ri : a 7→ ati from A to J are
uniformly bounded, then J is pseudo-amenable.

Proof. With the condition on (ti), there is a constant M > 0 such that ‖tif‖ ≤ M‖f‖
and ‖fti‖ ≤M‖f‖ for all ti and all f ∈ A. Then ‖tim‖ ≤M‖m‖ and ‖mti‖ ≤M‖m‖ for
all ti and m ∈ A⊗̂A. Let (Mα) ⊂ A⊗̂A be an approximate diagonal for A. Given ε > 0
and a finite set F ⊂ J, choose α such that ‖fMα−Mαf‖M2 ≤ ε

2
and ‖π(Mα)f−f‖M ≤

ε
2

for f ∈ F. Also, choose i such that ‖fti − tif‖M‖Mα‖ ≤ ε
4
, ‖tif − f‖ ≤ ε

4
and

‖π(Mα)(tif − f)‖M ≤ ε
4

for all f ∈ F. We claim that the subnet of (tiMαti) ⊂ J⊗̂J is
an approximate diagonal for J. Indeed, for all f ∈ F, we have

‖ftiMαti − tiMαtif‖ = ‖ftiMαti − tifMαti + tifMαti − tiMαfti + tiMαfti − tiMαtif‖
= ‖(fti − tif)Mαti + ti(fMα −Mαf)ti + tiMα(fti − tif)‖
≤ ‖(fti − tif)Mαti‖+ ‖ti(fMα −Mαf)ti‖+ ‖tiMα(fti − tif)‖
≤ ‖fti − tif‖‖Mαti‖+ ‖ti‖‖fMα −Mαf‖‖ti‖+ ‖tiMα‖‖fti − tif‖
≤ ‖fti − tif‖M‖Mα‖+M‖fMα −Mαf‖M +M‖Mα‖‖fti − tif‖
= 2‖fti − tif‖M‖Mα‖+ ‖fMα −Mαf‖M2

≤ 2
ε

4
+
ε

2
= ε.
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Also, we have

‖π(tiMαti)f − f‖ = ‖π(tiMαti)f − tiπ(Mα)f + tiπ(Mα)f − tif + tif − f‖
= ‖tiπ(Mα)tif − tiπ(Mα)f + tiπ(Mα)f − tif + tif − f‖
= ‖tiπ(Mα)[tif − f ] + ti[π(Mα)f − f ] + tif − f‖
≤ ‖tiπ(Mα)[tif − f ]‖+ ‖ti[π(Mα)f − f ]‖+ ‖tif − f‖
≤ ‖ti‖‖‖π(Mα)[tif − f ]‖+ ‖ti‖‖π(Mαf)− f ]‖+ ‖tif − f‖
≤ ‖π(Mα)[tif − f ]‖M + ‖π(Mα)f − f ]‖M + ‖tif − f‖

≤ ε

4
+
ε

2
+
ε

4
= ε.

Hence our claim is justified. Hence J is pseudo-amenable.

Proposition 3.4.21 ([24]). Let A be a Banach algebra having a central approximate
identity. If A is approximately amenable, then it is pseudo-amenable.

Proof. Let (eα) be a central approximate identity for A. Given ε > 0 and a finite set
F ⊂ A, choose eα1, eα2 ∈ (eα) such that

‖eα1a− a‖ <
ε

2
, ‖eα2eα1a− a‖ <

ε

2
(a ∈ F ).

Let X = kerπ. Define D : A → kerπ by D(a) = aeα1 ⊗ eα2 − eα1 ⊗ eα2a for all a ∈ A.
Clearly, D is a bounded derivation. Indeed, for all a, b ∈ A, we have

D(ab) = abeα1 ⊗ eα2 − eα1 ⊗ eα2ab = abeα1 ⊗ eα2 − aeα1 ⊗ eα2b+ aeα1 ⊗ eα2b− eα1 ⊗ eα2ab

= a · (beα1 ⊗ eα2 − eα1 ⊗ eα2b) + (aeα1 ⊗ eα2 − eα1 ⊗ eα2a) · b
= a ·D(b) +D(a) · a.

Also,

‖D(a)‖ = ‖aeα1 ⊗ eα2 − eα1 ⊗ eα2a‖ ≤ ‖aeα1 ⊗ eα2‖+ ‖eα1 ⊗ eα2a‖
= ‖aeα1‖‖eα2‖+ ‖eα1‖‖eα2a‖ ≤ ‖a‖‖eα1‖‖eα2‖+ ‖eα1‖‖eα2‖‖a‖
= 2‖a‖‖eα1‖‖eα2‖.

Hence D is a bounded derivation. SinceA is approximately amenable, it is approximately
contractible, so there exist u = u(eα1, eα2, ε, F ) ∈ X for which ‖D(a)− (a · u− u · a)‖ <
ε, (a ∈ F ). Take M = eα1 ⊗ eα2 − u. Then for all a ∈ A, we have

‖a ·M −M · a‖ = ‖a · (eα1 ⊗ eα2 − u)− (eα1 ⊗ eα2 − u) · a‖
= ‖aeα1 ⊗ eα2 − a · u− eα1 ⊗ eα2a+ u · a‖
= ‖aeα1 ⊗ eα2 − eα1 ⊗ eα2a− (a · u− u · a)‖
= ‖D(a)− (a · u− u · a)‖ < ε,
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also,

‖π(M) · a− a‖ = ‖π(eα1 ⊗ eα2 − u) · a− a‖ = ‖[π(eα1 ⊗ eα2)− π(u)] · a− a‖
(since u ∈ X = ker π)

= ‖eα1eα2a− a‖ = ‖eα1eα2a− eα1a+ eα1a− a‖

≤ ‖eα1eα2a− eα1a‖+ ‖eα1a− a‖ ≤
ε

2
+
ε

2
= ε, (a ∈ F ).

This implies that

a ·M −M · a→ 0, π(M) · a− a→ 0,

so therefore, A has an approximate diagonal. Hence, A is pseudo-amenable.

Proposition 3.4.22 ([24]). Suppose that A is pseudo-amenable. Let X be a Banach A-
bimodule such that each approximate identity of A is also a one sided (i.e left or right)
approximate identity for X. Then:

1. every continuous derivation D : A → X is approximately inner;

2. every continuous derivation D : A → X ′ is weak* approximately inner.

Proof. Suppose that (Mα) ⊂ A⊗̂A is an approximate diagonal for A and (π(Mα)) is

a right approximate identity for X. Let Mα =
∑

j a
(α)
j ⊗ b

(α)
j and suppose that D is

a continuous derivation from A into X. Since A is pseudo-amenable, it follows that
a ·Mα →Mα · a and π(Mα) · a→ a.

1. Observe that

a ·Mα →Mα · a

⇒ a ·
(∑

j

a
(α)
j ⊗ b

(α)
j

)
→
(∑

j

a
(α)
j ⊗ b

(α)
j

)
· a

⇒
∑
j

aa
(α)
j ⊗ b

(α)
j →

∑
j

a
(α)
j ⊗ b

(α)
j a.

80



It follows that, ∑
j

D(aa
(α)
j ) · b(α)

j →
∑
j

D(a
(α)
j ) · b(α)

j a

⇒
∑
j

a ·D(a
(α)
j ) · b(α)

j +
∑
j

(D(a) · a(α)
j ) · b(α)

j →
∑
j

D(a
(α)
j ) · b(α)

j a

⇒ a ·
∑
j

D(a
(α)
j ) · b(α)

j +D(a) ·
∑
j

a
(α)
j b

(α)
j →

(∑
j

D(a
(α)
j ) · b(α)

j

)
· a

⇒ D(a) ·
∑
j

a
(α)
j b

(α)
j →

(∑
j

D(a
(α)
j ) · b(α)

j

)
· a− a ·

∑
j

D(a
(α)
j ) · b(α)

j

set xα = −
∑
j

D(a
(α)
j ) · b(α)

j

⇒ D(a) · π(Mα)→ a·xα − xα · a
Since (π(Mα)) is a right approximate identity for X, we have that D(a)π(Mα) →
D(a).

D(a)→ a · xα − xα · a
D(a) = lim

α
(a · xα − xα · a) (a ∈ A).

We use similar argument for the left.

2. Also, note that

a ·Mα →Mα · a

⇒ a · (
∑
j

a
(α)
j ⊗ b

(α)
j )→ (

∑
j

a
(α)
j ⊗ b

(α)
j ) · a

⇒
∑
j

aa
(α)
j ⊗ b

(α)
j →

∑
j

a
(α)
j ⊗ b

(α)
j a,

it then follows that,

⇒
∑
j

aa
(α)
j ·D(b

(α)
j )→

∑
j

a
(α)
j ·D(b

(α)
j a)

⇒ a ·
(∑

j

a
(α)
j ·D(b

(α)
j

)
→
∑
j

a
(α)
j · b

(α)
j ·D(a) +

∑
j

a
(α)
j ·D(b

(α)
j ) · a

⇒
∑
j

a
(α)
j · (b

(α)
j ·D(a))→ −

∑
j

a
(α)
j ·D(b

(α)
j ) · a+ a · (

∑
j

a
(α)
j ·D(b

(α)
j )

set xα =
∑
j

a
(α)
j ·D(b

(α)
j )

⇒ π(Mα) ·D(a)→ a · xα − xα · a
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By our assumption, we have that π(Mα)D(a)
w∗−→ D(a).

D(a)→ a · xα − xα · a
D(a) = weak* lim

α
(a · xα − xα · a) (a ∈ A).

We use similar argument for the left.
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Chapter 4

Some Notions of Amenability in
Banach Semigroup Algebras

A lot of investigative study into the concept of amenable, approximate amenable and
pseudo-amenable Banach semigroup algebras `1(S) have been carried out by different
researchers. In this chapter, a survey of results on the notions of amenable, approximate
amenable and pseudo-amenable of Banach semigroup algebras `1(S) are presented.

4.1 Amenability of `1(S)

We remarked in the introduction that the notion of amenability was first studied for
some classes of amenable groups by Von Neumann in 1904. After which, the concept of
amenability was extended and studied for semigroups by M. M. Day. We recall that a
discrete semigroup S is left amenable if the space `∞(S) admits a functional m called
mean such that m(1) = ‖m‖ = 1 and the mean is left invariant. That is m(`xf) = m(f),
where (`xf)(y) = f(xy), (x, y ∈ S, f ∈ `∞(S)). Similarly for right amenable. If S is both
left and right amenable, then it is amenable.

For a locally compact group G. It is an established result that, G is amenable if and only
if L1(G) is amenable, but this is not generally true for a semigroup S. For example, the
bicyclic semigroup S is amenable, but `1(S) is not amenable, see [13]. The amenability
of `1(S) as a Banach algebra is some how complicated. We shall present some partial
results regarding amenability of `1(S) as a Banach algebra and also give the result that
really determines exactly when `1(S) is amenable as a Banach algebra.

Theorem 4.1.1 ([13]). Let S be an inverse semigroup with E(S) finite. Then `1(S) is
amenable if and only if each maximal subgroup of S is amenable.

Theorem 4.1.2. Let S be a semigroup.
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1. Suppose that `1(S) is an amenable Banach algebra. Then:

(a) S is an amenable semigroup;

(b) S is left and right reversible;

(c) S has only finitely many idempotents and each ideal I in S is regular and in
particular I2 = I, S has a minimal idempotents;

(d) `1(S) has an identity, K(S) exists and is an amenable group;

(e) `1(S) is a semisimple algebra.

2. Suppose that S is unital and left or right cancellative. Then `1(S) is amenable if
and only if S is an amenable group.

3. Suppose S is abelian. Then `1(S) is amenable if and only if S is a finite semilattice
of amenable groups.

Proof. 1. (a) See [13], Lemma 3.

(b) See [50], Lemma 1.

(c) See [14], Theorem 2.

(d) See [11], Corollary 10.6.

(e) See [15], Theorem 5.11.

2. See [28], Theorem 2.3.

3. See [27], Theorem 2.7.

From the above results, the condition for the amenability of `1(S) imposes strong alge-
braic constraints on the semigroup S. More so, `1(S) seems amenable if and only if S is
constructed out of an amenable group. We now proceed to give the result which tells
exactly when `1(S) is amenable.

Theorem 4.1.3 ([11]). Let S be a semigroup. Then the Banach algebra `1(S) is amenable
if and only if the minimum ideal K(S) exists, K(S) is an amenable group and S has a
principal series S = I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃ Im−1 ⊃ Im = K(S) such that each quotients
Ij/Ij+1, is a regular Rees matrix semigroup of the form M0(G,P, n), where n ∈ N, G is
an amenable group and the sandwich matrix P is invertible in M(`1(G)).

Theorem 4.1.4 ([13]). Let S be the Brandt semigroup over a group G with finite index
set I. Then `1(S) is amenable if and only if G is amenable

The above result does not hold if the indexing set is infinite.

Theorem 4.1.5 ([13]). Let S be the Brandt semigroup with an infinite index set over an
arbitrary group. Then `1(S) is not amenable.
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4.2 Approximate and Pseudo Amenability of `1(S)

For a locally compact group G, the characterizations of approximate amenability and
pseudo-amenability of L1(G) in terms of the amenability of G are well known results in
the literature. But for a semigroup S, the characterizations of approximate amenability
and pseudo-amenability of `1(S) in terms of the amenability of the semigroup S are not
known in general. There are only partial results established on this in the literature.
For example, it was established in [18, 24] that, for a locally compact group G,L1(G)
is approximately (pseudo) amenable if and only if G is amenable. This is never true
for a semigroup S. For instance, the bicyclic semigroup S is amenable, but `1(S) is
never approximately amenable, see [26]. In [4], M. L. Bami and H. Samea investigated
approximate amenability of the discrete semigroup algebras `1(S) for left cancellative
semigroups. They established that, if `1(S) is approximately amenable as a Banach alge-
bra, then the semigroup S is left amenable. The converse is false, but it was shown that if
S is a finite semigroup and `1(S) is approximately amenable, then S is amenable. In [16]
and [17], the authors considered the pseudo amenability of semigroups for certain classes
of inverse, Brandt, band and cancellative semigroups. It was established in [16] that,
for an inverse semigroup S with uniformly locally finite idempotent set S, the semigroup
algebra `1(S) is pseudo-amenable if and only if each maximal subgroup of S is amenable.

In this section, we shall give some partial results regarding the characterizations of ap-
proximate amenability and pseudo amenability of `1(S) in terms of the amenability of
the semigroup S.

Theorem 4.2.1. Let S be a semigroup.

1. Suppose that the semigroup algebra `1(S) is approximately amenable. Then S is
regular and amenable.

2. Suppose that `1(S) is approximately amenable and that S is right cancellative. Then
S is an amenable group and so `1(S) is amenable.

3. Suppose `1(S) is approximately amenable and E(S) is finite. Then `1(S) has iden-
tity.

Proof. 1. See [22], Theorem 9.2.

2. See [13], Theorem 2.3.

3. See [12], Corollary 2.2.2.

Theorem 4.2.2 ([12]). Let S be a semigroup such that E(S) is finite and let T be an
ideal in S. Suppose that `1(S) is approximately amenable. Then `1(T ) is approximately
amenable.
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Remark 4.2.3. The above results gives an hereditary property of approximately amenable
Banach semigroup algebras.

Theorem 4.2.4 ([12]). Let S be a semigroup such that E(S) is finite. Then `1(S) is
approximately amenable if and only if it is amenable.

Theorem 4.2.5 ([49]). Let S be the Brandt semigroup over the group G with index set
I. Then the following are equivalent;

1. `1(S) is amenable;

2. `1(S) is approximately amenable;

3. I is finite and G is amenable.

Theorem 4.2.6 ([45]). Let S be a uniformly locally finite inverse semigroup. Then, the
following are equivalent;

1. `1(S) is approximately amenable;

2. E(S) is finite and each maximal subgroup of S is amenable;

3. `1(S) is amenable;

4. `1(S) is boundedly approximate contractible;

5. `1(S) is boundedly approximate amenable.

We now give some partial results for pseudo amenability of `1(S).

Theorem 4.2.7 ([16]). Let S be an inverse semigroup. Suppose `1(S) is pseudo-amenable,
then S is an amenable group.

Theorem 4.2.8 ([16]). Let S be a band semigroup. Suppose `1(S) is pseudo-amenable,
then S is semilattice and so amenable.

Theorem 4.2.9 ([16]). Let S be a uniformly locally finite band semigroup. Then `1(S)
is pseudo-amenable if and only if S is semilattice.

Theorem 4.2.10 ([17]). Let S = ∪p∈E(S)Gp be the Clifford semigroup such that E(S)
is uniformly locally finite. Then `1(S) is pseudo-amenable if and only if Gp is amenable
for every p ∈ E(S).

Theorem 4.2.11 ([16]). Let S be a left cancellative semigroup. Then the following are
equivalent:

1. `1(S) is pseudo-amenable;

86



2. S is an amenable group;

3. `1(S) is amenable.

Definition 4.2.12. Let A be a Banach algebra. Then A is called biflat if there exists
a bounded A-bimodule homomorphism ρ : A → (A⊗̂A)

′′
such that π

′′ ◦ ρ = kA, where
kA : A → A′′ is the natural embedding of A into its second dual.

Theorem 4.2.13 ([17]). Let S be an inverse semigroup such that (E(S),≤) is uniformly
locally finite. Then the following are equivalent:

1. `1(S) is pseudo-amenable.

2. Each maximal subgroup of S is amenable.

3. `1(S) is biflat.

4.3 Some Basic Results

In this section, we give some interesting result on the amenability notions of semigroup
algebras `1(S).

Proposition 4.3.1. Let S and T be semigroups and suppose `1(S) and `1(T ) are semi-
group algebras. If `1(S) and `1(T ) are amenable, then S × T is amenable.

Proof. Since `1(S) and `1(T ) are amenable, then by Proposition 3.3.5, `1(S)⊗̂`1(T ) is
amenable. Since `1(S)⊗̂`1(T ) can be identified with `1(S × T ), it follows that `1(S × T )
is amenable. Then by Theorem 4.1.2 (1a), S × T is amenable.

Proposition 4.3.2. Let S be a semigroup and T a closed ideal of S. If `1(S) is amenable,
then `1(S/T ) and S/T are amenable.

Proof. Since `1(S) is amenable and T a closed ideal of S. It is known that `1(T ) is a closed
ideal of `1(S), then by Proposition 3.3.1, `1(S)/`1(T ) is amenable. Since `1(S)/`1(T ) can
be identified with `1(S/T ), it follows that `1(S/T ) is amenable. Then by Theorem 4.1.2
(1a), S/T is also amenable.

Proposition 4.3.3. Let S and T be semigroups and suppose that θ : S → T is an
isomorphism. If `1(S) is amenable, then `1(T ) is amenable.

Proof. Since S and T are semigroups and θ : S → T is an isomorphism. It is known that
the isomorphism between S and T can be extended to their algebras and that `1(S) is
isometrically isomorphic to `1(T ). So if `1(S) is amenable so is `1(T ).
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Proposition 4.3.4. Let S and T be semigroups and suppose that θ : S → T is an
epimorphism. If `1(S) is approximately amenable, then `1(T ) is approximately amenable.

Proof. Since S and T are semigroups and θ : S → T is an epimorphism. It is known that
the epimorphism between S and T can be extended to their algebras and since `1(S) is
approximately amenable, then by Proposition 3.4.1 `1(T ) is approximately amenable.

Remark 4.3.5. The above result also hold for pseudo-amenability.

Definition 4.3.6. Let A be a Banach algebra and let I be a non-empty set. We denote
MI(A), the set of I × I matrices (aij) with entries in A such that

‖(aij)‖ =
∑
i,j∈I

‖aij‖ <∞.

Then MI(A) with the usual matrix multiplication is a Banach algebra that belongs to the
class of `1-Munn algebras. It is clear that the map θ : MI(A)→ A⊗̂MI(C) defined as

θ((aij)) =
∑
i,j∈I

aij ⊗ Eij ((aij) ∈MI(A)),

is an isometric isomorphism of Banach algebras, where Eij are matrix units in MI(C).

Proposition 4.3.7 ([12]). Let G be a group and let n ∈ N. Then

1. Mn(`1(G)) is approximately amenable if and only if it is amenable.

2. Mn(`1(G)) is pseudo-amenable if and only if it is amenable.

Proof. 1. Suppose Mn(`1(G)) is approximately amenable. By Proposition 1.6.7 (ii)
in [12], `1(G) is approximately amenable. Using Theorem 3.2 in [22], the algebra
`1(G) is approximately amenable if and only if G is amenable and this holds if and
only if `1(G) is amenable. We then have that the algebra `1(G) is amenable. From
[11], Theorem 2.7 (i) Mn(`1(G)) is amenable.

2. SupposeMn(`1(G)) is pseudo-amenable. By Corollary 3.3 in [17], `1(G) is pseudo-
amenable. Using Theorem 4.1 in [24], the algebra `1(G) is pseudo-amenable if and
only if G is amenable and this holds if and only if `1(G) is amenable. We then
have that the algebra `1(G) is amenable. From [11], Theorem 2.7 (i)Mn(`1(G)) is
amenable.

Corollary 4.3.8. Let G be a group and let n ∈ N. If

1. Mn(`1(G)) is approximately amenable, then `1(G) is pseudo-amenable.

2. Mn(`1(G)) is pseudo-amenable, then `1(G) is approximately amenable.
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Chapter 5

Collection of Results

The results in this chapter serves as our contribution to knowledge.

5.1 Results on General Banach Algebras

Proposition 5.1.1. Let A and B be Banach algebras and suppose that A and B admit
non-zero character. Then A, B are approximately amenable if A⊗̂B is approximately
amenable.

Proof. Suppose A⊗̂B is approximately amenable and that A and B admit non-zero
character. Let

ψ : A → C

and

φ : B → C

be non-zero characters on A and B respectively. Define ΥB : A⊗̂B → B, as (a ⊗ b) 7→
ψ(a)b, ∀ a ∈ A, b ∈ B. This map is well defined and continuous. It is easy to check that
Υ is an epimorphism. Indeed, for all a, c ∈ A and b, d ∈ B, observe that

ΥB((a⊗ b)(c⊗ d)) = ΥB(ac⊗ bd) = ψ(ac)bd = ψ(a)ψ(c)bd

= ψ(a)bψ(c)d = ΥB((a⊗ b)ΥB(c⊗ d).

Hence, the map is a homomorphism. And since ψ is a non-zero character, ΥB is surjective.
Therefore, ΥB is an epimorphism. Hence, the result holds from Proposition 3.4.1. We
use similar argument for A.

Proposition 5.1.2. Suppose A#⊗̂B# is finite-dimensional approximately amenable Ba-
nach algebra. Then A and B are amenable.
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Proof. Since A#⊗̂B# is approximately amenable, then by Theorem 2.7 of [23], A and
B are approximately approximately amenable. Thus, the amenability of A and B fol-
lows from the fact that they are finite-dimensional and approximately amenable, see
Proposition 3.2.5.

The next result is a slight modification of Proposition 3.4.22, but the approach and
method of prove is completely different from that of Proposition 3.4.22 and thus we
claim that the next result is new.

Proposition 5.1.3. Suppose that A is pseudo-contractible Banach algebra and let X be
a Banach A-bimodule such that an approximate identity for A is also an approximate
identity for X. Then every continuous derivation D : A → X is approximately inner.

Proof. Since A is a pseudo-contractible. Then A has a central approximate diagonal,
say (Mα) ⊂ A⊗̂A which is an approximate diagonal with Mα · a = a ·Mα for all a ∈ A
and all α. Let D : A → X be a continuous derivation. Observe that

lim
α

[π(Mα) ·D(a)] = lim
α

[∑
j

π(a
(α)
j ⊗ b

(α)
j ) ·D(a)

]
= lim

α

[∑
j

a
(α)
j b

(α)
j ·D(a)

]
= lim

α

[∑
j

a
(α)
j ·

(
D(b

(α)
j a)−D(b

(α)
j ) · a

)]
= lim

α

[∑
j

a
(α)
j ·D(b

(α)
j a)−

∑
j

a
(α)
j ·D(b

(α)
j ) · a

]
,

where Φ : A⊗̂A → X is defined by Φ(a ⊗ b) = a · D(a). Using Equation (3.1), with
ψ = D, we have

lim
α

[∑
j

a
(α)
j ·D(b

(α)
j a)−

∑
j

a
(α)
j ·D(b

(α)
j ) · a

]
= lim

α

[
Φ

(∑
j

a
(α)
j ⊗ b

(α)
j a

)
− Φ

(∑
j

a
(α)
j ⊗ b

(α)
j

)
· a
]

= lim
α

[
Φ(Mα · a)− Φ(Mα) · a

]
.

Since A have a central approximate diagonal and also using Lemma 3.1.7 (4). It follows
that

lim
α

[
Φ(Mα · a)− Φ(Mα) · a

]
= lim

α

[
Φ(a ·Mα)− Φ(Mα) · a

]
= lim

α

[
a · Φ(Mα)− Φ(Mα) · a

]
= lim

α

[
a · xα − xα · a

]
,
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where (Φ(Mα)) = (xα) ⊂ X. Since (π(Mα)) is an approximate identity for X, then
π(Mα) ·D(a) = D(a), which implies that

D(a) = lim
α

[a · xα − xα · a].

Proposition 5.1.4. Let A be a unital Banach algebra and I a non-empty set. If MI(A)
is approximately amenable, then MI(A) is pseudo-amenable amenable.

Proof. Suppose MI(A) is approximately amenable. Then by Theorem 5.2 of [45], A is
approximately amenable and I is finite. Now, using Theorem 2.2 of [16], MI(A) have
a central approximate identity, since I is finite. Then, by Proposition 3.4.21, MI(A) is
pseudo-amenable.

5.2 Results on Semigroups

We begin with some definitions that will be needed in proving the results in this section.
We recall that a semigroup S is called a band semigroup if S = E(S), where E(S) is
the set of idempotents of S. We say that S is a rectangular band semigroup if it is a
band semigroup and for each x, y ∈ S, xyx = x. Let S be a semigroup and S1 denote the
unitization of S. We define an equivalence relation on S by

aτb⇔ S1aS1 = S1bS1 (a, b ∈ S).

If S is a regular semigroup, we have

aτb ⇔ SaS = SbS (a, b ∈ S),

see [30].
If S is a band semigroup. Then by Theorem 4.4.1 of [30], S is a semilattice of rectangular
band semigroup. Indeed, S = ∪α∈Y Sα where Y = S/τ and for each α = [s] ∈ Y, Sα = [s].

Definition 5.2.1. Let A be a Banach algebra, Λ be a semillatice and {Aα | α ∈ Λ} be a
collection of closed subalgebras of A. Suppose A is an `1-direct sum of A′αs as a Banach
space such that

AαAβ ⊆ Aαβ (α, β ∈ Λ).

Then A is called `1-graded of A′αs over the semilattice Λ and denoted by A = `1−⊕α∈ΛAα.

Proposition 5.2.2. Let S be a band semigroup and suppose that L and R are left and
right zero semigroups. Suppose that `1(S) is approximately amenable and that every ap-
proximate identity of a complemented ideal of `1(S) is bounded, then `1(L)⊗̂`1(R), `1(L)
and `1(R) are approximately amenable.
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Proof. By the above argument, suppose that S = ∪α∈ΛSα is a semilattice of rectangular
band semigroup. Indeed, we have

SαSβ ⊆ Sαβ (α, β ∈ Λ).

It then follows that `1(S) is `1-graded of `1(Sα)′s over semilattice Λ. Now, let α1 ∈ Λ. It is
known that `1−⊕α≤α1`

1(Sα) is a closed complemented ideal of `1(S). By Corollary 2.4 of
[18], `1−⊕α≤α1`

1(Sα) has a left and right approximate identity. Then by our assumption
the approximate identity of `1 − ⊕α≤α1`

1(Sα) is bounded. Then using Corollary 2.3 of
[18], `1 −⊕α≤α1`

1(Sα) is approximately amenable. Furthermore, we have that `1(Sα1) is
a homomorphic image of `1 −⊕α≤α1`

1(Sα), then `1(Sα1) is approximately amenable. By
Theorem 1.1.3 of [30], Sα1 is isomorphic to L × R. The isomorphism between Sα1 and
L×R can be extended to their algebras. That is

`1(Sα1)
∼= `1(L×R) ∼= `1(L)⊗̂`1(R).

Hence, `1(L × R) ∼= `1(L)⊗̂`1(R) is approximately amenable. Since we can define a
continuous epimorphism from `1(L)⊗̂`1(R) into `1(L) and `1(R), see [16]. Hence `1(L)
and `1(R) are approximately amenable by Proposition 3.4.1.

Proposition 5.2.3. Let S be a band semigroup and suppose that L and R are left and
right zero semigroups. Suppose that `1(S) is pseudo-amenable and that every approximate
identity of a complemented ideal of `1(S) is bounded, then `1(L)⊗̂`1(R), `1(L) and `1(R)
are pseudo-amenable.

Proof. The proof is similar to the one given above. It follows from similar argument given
in the above proof by replacing approximate amenability with pseudo-amenability.

Remark 5.2.4. In the above proposition if, `1(S) is uniformly approximately amenable.
The result hold without the boundedness condition.

Proposition 5.2.5. Let S be a uniformly locally finite inverse semigroup. If `1(S) is
approximately amenable, then each maximal subgroup of S is amenable and each D-class
has finitely many idempotent element.

Proof. Suppose that `1(S) is approximately amenable. By Theorem 2.18 of [44], we have

`1(S) ∼= `1 ⊕ {ME(Dλ)(`
1(Gpλ)) : λ ∈ Λ},

as a Banach algebras. Then for λ ∈ Λ,ME(Dλ)(`
1(Gpλ)) is a homomorphic image of `1(S)

an so is approximately amenable. It is known that Gpλ being a maximal subgroup of S,
it is a group under the semigroup operation and so Gpλ been a group, ME(Dλ)(`

1(Gpλ))
is approximately amenable if and only if it is amenable. Then ME(Dλ)(`

1(Gpλ)) been
amenable, it follows that E(Dλ) is finite and `1(Gpλ) is amenable which implies that Gpλ

is amenable. Hence, the result holds.
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Proposition 5.2.6. Let S be a uniformly locally finite inverse semigroup with |E(Dλ)| =
1. Then `1(S) is pseudo-amenable if and only if E(S) is finite and each maximal subgroup
of S is amenable.

Proof. Suppose that `1(S) is pseudo-amenable. By Theorem 2.1.8 of [44], we have

`1(S) ∼= `1 ⊕ {ME(Dλ)(`
1(Gpλ)) : λ ∈ Λ},

as a Banach algebras. Then for λ ∈ Λ,ME(Dλ)(`
1(Gpλ)) is a homomorphic image of

`1(S) an so is pseudo-amenable. Using the condition that |E(Dλ)| = 1, we have that
ME(Dλ)(`

1(Gpλ)) ∼= `1(Gpλ) and so is pseudo-amenable. Since every unital pseudo-
amenable Banach algebra is approximately amenable, see [24], Theorem 3.1. Then E(S)
is finite and each maximal subgroup of S is amenable from Theorem 4.2.6.
The converse follows from Thorem 4.2.13.
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