
SOME SOll.- CHEMICAL AND FERTll.-ITY ASPECTS OF THE LAND DISPOSAL OF A

WATER TREATMENT RESIDUE ON SELECTED SOll.-S OF KWAZULU-NATAL,

SOUTH AFRICA

SICELO MALIZO BUYEYE

B. Sc. (Hons) (UFH), M.Sc.Agric. (Natal)

Submitted in fulfilment of the requirement for the degree of

Doctor ofPhilosophy

Discipline of Soil Science
School ofEnvironmental Sciences

University ofKwaZulu-Natal
Pietermaritzburg

2005



DECLARATION

I hereby certify that this research is the result ofmy own investigation, except where acknowledged
herein, and that it has not been submitted for a higher degree in any other university or institution.

Date: 17~ a <"' 0-5

Sicelo Malizo Buyeye

Date:
_-----'---L_.-.J;,,~_~--==-__



II

ACKNOWLEDGEMENTS

I would like to thank the following for assistance:

Professor J.C. Hughes for his particular brand ofdelightful supervision;

Umgeni Water for providing the problem on which the work has been based, and also for funding
the project;

Water Research Commission for the generous funding;

FRD for initial funding on the research;

THRIP for financing travel between Durban and Pietermaritzburg;

Mr Owen Poley for help in setting up and monitoring the pot experiment;

Ms Dudu Hlabisa and Ms Sthembi Ndlela for their contribution to laboratory work;

Mr Louis Titshall and Dr Mags Moodley for various assistance, especially for their heavy work on
field trials;

Mr Jeffrey Mthwalo and Dr Harrison Atagana for advice on the use of certain computer packages;

Ms Suzie Riekert, formerly at the KZN Departmrnt of Agriculture and Eiwironmental Affairs and
her team for the plant analysis;

Mr Essack Abib and Mr Tad Dorasamy for helping me navigate my way around the laboratories;

Miss Kate Maphumulo (late) and Miss Sindi Ntusi ofUmgeni Water for providing Maps 1.1 and 1.2;

The Cartographic unit of the School ofApplied Environmental Sciences (Discipline ofGeography)
for Map 2.1;

My one time Chemistry mentors at the University of Fort Hare: Dr M.F. Aldersley (Organic

Chemistry), Dr M.G. Kibblewhite (Inorganic Chemistry) and Prof 1. Zlotnick(Physical Chemistry)­

I higWy appreciate what they were about; and

Dr M.G. Kibblewhite for that unforgettable inspiration.

Nala! Ndokose! kuni Zibhekuza. Sonwabile kuba ngeNtando yenu Sixhamle, SiWomle. Ingathi oku
ingayintshayelelo yokuba aMaMpembathi waxa ukwAkheka Nokwakha kuthi.



III

ABSTRACT

The environmental and agricultural viability of land disposal of a water treatment residue (WTR)
from the Midmar Water Treatment Works of Umgeni Water was investigated by determining
answers to four broad questions:

1. What effects would the application ofthe WTR-.h~_Illim.ts...gr.o.wi:ng-onthe treated soils?
2. What effects would application of the WTR have on soil chemical properties?
3. What effects would the WTR have on the soil solution composition (and by implication the

quality of the groundwater)?
4. Could this material be used to reduce solubility of potential pollutants?

To answer these questions, the following experiments were set up, and their respective results are
reported.

1. Effects of the water treatment residue on plant growth

This was investigated in a pot experiment and two field experiments.

In the pot experiment five soils, two Huttons (Hu-M and Hu-T), an Inanda (la-C), a Namib (Nb-F)
and a Shortlands (Sd) were used to grow perennial ryegrass ((Lolium perellne). All samples were
fertilized with a basal dressing ofN, P, K, Mg and S. Two lime levels were added to the Ia-C and
Nb-F soils, the higher calculated to reduce acid saturation to 1%, and the lower being half of that.
The WTR was applied at rates of0, 40,80 and 120 Mg ha'I. All treatments were in triplicate. Eight
cuts in all were made of the perennial ryegrass.

The dry matter (DM) yield of perennial ryegrass grown in the pot experiment increased with the
WTR applied in all five soils although the highest increase was with the acidic Ia-C and Nb-F soils.
The fact that the highest yields were on the strongly acid soils suggests that the liming effect ofthe
WTR could have contributed, more so considering that lime also increased yields in these soils. It
was, however, clear that no one factor was responsible for the increase in yield as the timing effect
could not explain the results of the other three soils.

At the two field experiments perennial ryegrass was grown at Brookdale Farm from 1998 to 2001,
after which the site was re-seeded with tall fescue (Festuca arundinaceae). At Ukulinga Farm tall
fescue was grown from the outset in 2000. In the two field experiments with both perennial ryegrass
and tall fescue, no significant increase in yield was apparent. Importantly, however, from an

.environmental point of view there was no decrease in yield whether the WTR was incorporated or
applied as a mulch. This was observed even at the highest rates ofapplication, namely 1280 Mg ha'I.
The growth on the mulched plots was often observed to be better than any ofthe other treatments,
including the control.

Analysis of the plant material from both pot and field experiments indicated that the WTR neither
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induced deficiencies nor created toxicities ofheavy metals in the tissues.

2. Effects of the water treatment residue on soil chemical properties

This aspect was investigated in a pot experiment with perennial ryegrass as the test crop, an
incubation experiment at ambient temperatures in the laboratory, and also at the two field

experiments.

In the pot experiment, changes in chemical properties included an increase in extractable calcium
and pH, and a decrease in extractable acidity. In the Ia-C soil, pH (KCI) increased from 4.25 to 5.37
whilst the acid saturation decreased from 27 to 1% at 120 Mg ha-I. For the Nb-F soil under the same
conditions the pH increase was from 3.91 to 6.46 and the acid saturation declined from 37 to 1%.
Fractionation of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn showed that the WTR increased the inactive
forms of these elements. The same was established from fractionation ofP.

Two incubation experiments were run separately. In the first, the five soils used in the pot
experiment plus four more were used. These were another Hutton (Hu-F), another Namib (Nb-A),
a Valsrivier (Va) and a Westleigh (We). The Hu-F and We samples were from the field experiments
at Brookdale and Ukulinga, respectively. Rates ofapplication ofthe WTR were 0,40,80, 120,320
and 1280 Mg ha-I. Samples were incubated at ambient temperature for about three months. The
second incubation experiment involved only two strongly acid soils which were chosen to
specifically test the liming effect ofthe WTR. These were an Avalon (Av) and an Inanda (Ia-W). The
WTR rates were 0,20,40,60,80, 100, 120,320 and 1280 Mg ha-I. Sub-samples were taken during
the incubation period for pH analysis and, in the second incubation experiment, acidity analysis.
Monitoring of the pH showed that the reaction of the WTR with all the soils was complete within
seven days. Trends in the measured properties were the same as found from the pot experiment.

Soil samples were taken periodically from the two field sites and analysed to monitor any effects.
Unlike in the pot and incubation experiments, the WTR in the field did not cause any major changes
in pH, Ca, Mg and P levels in soil samples from the plots with the highest rate of 1280 Mg ha-I.

Analysis of Ca and Mg from depth samples taken at 200 mm intervals to 1200 mm from the
Brookdale experiment showed that no serious migration of these elements had occurred after three
years following application of the WTR. The same results were noted in depth samples from the
Ukulinga site. Except for Mn, exchangeable forms of the eight heavy metals were low or
undetectable. Also, there was no indication of redistribution of these metals to lower layers.

3. Possible effects of the water treatment residue on groundwater pollution

Analysis ofwater extracts from the incubated soil samples established that the ions which increased
with application ofthe WTR were calcium, cWoride and nitrate. Fractionation ofheavy metals from
the pot experiment and incubated soils showed that application ofthe WTR residue increased mostly
the immobile forms of the metals. Laboratory experiments therefore indicated that there could be
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pollution of the groundwater by nitrates. However, analysis of saturated pastes from soils at both
field experiments showed that the levels ofnitrate were increased by application ofthe WTR in only
the fallow plots.

4. The water treatment residue as a possible pollutant-reducing agent

The effect ofthe water treatment residue on the sorption ofP and heavy metals (Cd, Ni and Zn) was
studied in the laboratory. Soils treated with WTR were equilibrated for 6 hours in 0.005 M calcium
cWoride solution containing a known concentration of each element.

For the coarse-textured soils, initial P concentrations ranged from 0 to 1000 mg kg- l as opposed to
oto 1800 mg kg-l for the clay soils. Treatments ofWTR used were 0, 80, 320 and 1280 Mg ha-I, both
incubated and non-incubated. At high initial P solution concentrations, the WTR increased the extent
ofsorption in the coarser textured soils (Hu-T, Nb-A, Nb-F, Va and We), and decreased it in higWy
sorbing Av, Hu-M, la-C and la-W soils. In general though, the WTR greatly reduced soluble P.

For Cd, Ni and Zn only one concentration, 50 mg kg-I, was studied using the incubated soil samples
as affected by WTR rates from 0 to 1280 Mg ha"l. For all three metals, the amount sorbed increased
with increase in amount of WTR for the nine soils studied, namely the Av, Hu-F, Hu-M, Hu-T, la-C,
la-W, Nb-F, Va and We. In many cases the sorption was so high that more than 40 mg kg-l of the
initial concentration was removed from solution. Even for those soils with high sorption capacity
e.g. the Va and We, the WTR still increased sorption by up to an average ofmore than 25% for Cd
and more than 40% for Ni and Zn. Because for the Av and la-W soils liming also increased sorption,
it could be assumed that the accompanying increase in pH as a result of the addition of WTR
promoted precipitation of metals, and/or the resultant increase in negative charge increased their
adsorption.

These results show that where excess concentrations of soluble heavy metals may occur (especially
in coarse-textured soils), and where there is concern about run-off with high P concentrations then
this WTR could be considered to immobilize these elements and render them less harmful to the
environment.

General comments and management guidelines

Based on the results reported above, it is apparent that the WTR can be safely disposed of onto land.
It has been demonstrated in the current investigation that rates of application can be as high as 1280
Mg ha-I. Rates of application to land higher than 1280 Mp; ha-l could probably be acceptable - this
was the highest rate tested in this investigation - where the residue is produced in large amounts at
the plant, and land for disposal is somewhat limited.
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CHAPTER 1

PRODUCTION OF WATER TREATMENT RESIDUE AND CONSIDERATIONS FOR

ITS DISPOSAL: GENERAL INTRODUCTION

1.1 Water treatment residue: source, terminology and production

The water treatment residue ofconcern in this investigation is produced by Umgeni Water, a water

purification company in the midlands region of the KwaZulu-Natal province of South Africa, with

its head office In Pietermaritzburg. According to its web site

(http://\vww.umgeni.co.zalHomePage1.aspx) Umgeni Water, established in 1974, supplies 340

million kL of safe, clean drinking water to 4.8 million people annually, making it the largest bulk

water supplier in KwaZulu-Natal. Umgeni Water's area of operation, spanning 24 thousand km2

(http://www.umgeni.co.za/Operational%20area242.aspx). is shown on Map 1.1 of South Africa.

From the enlarged version (Map 1.2), it can be seen that the supply area stretches between Greytown,

Stanger and surrounding areas in the north and Eastern Cape province in the south, and is bordered

by the Indian Ocean in the east and the Drakensberg Mountains in the west. The official boundaries

are given as the Tugela and Mooi Rivers in the north, and the Mkomazi and Mzimkulu Rivers in the

south (http//www.umgeni.co.za/company/operationalarealIndex.htm).These investigations relate to

the material produced in the Midmar Water Treatment Works at Howick about 30 km north of

Pietermaritzburg.

In order to provide potable drinking water to communities, water suppliers add materials to the raw

water to remove suspended solid particles and contaminants. Some ofthe various materials that can

be added to the turbid water to promote flocculation are alum (aluminium sulphate), ferric chloride,

organic polymers and lime. At the Midmar plant, Umgeni Water uses a combination of cationic

organic polymers and lime (calcium carbonate) to remove the turbidity from the source water. A

more comprehensive description of the water treatment process is given in Hughes, Titshall, Buyeye,

Johnston, Moodley and Pecku (2005). Although this residue has been called water treatment sludge,
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the term which will be used in this document is water treatment residue (WTR) in order to avoid

confusion with sewage sludge. Freshly produced WTR is a slurry-filter cake of about 23% solids

(Umgeni Water, 1994). Typical amounts ofthe WTR produced are indicated in Table 1.1. The period

March 2003 to April 2004 has been chosen to indicate the rate at which the WTR is produced at

Umgeni Water's Midmar Water Treatment Works. From Table 1.1 the average rate of production

of the freshly produced (wet) material, is about 4624 m3 yr-1 which on an air dry basis (solids only)

is equivalent to about 1018 Mg or 1062 m3 yr-l. Practically and economically the figure for the filter

cake, that is 4624 Mg yr-I, is the one to consider as it is in this state that the material is likely to be

disposed of in landfill sites.

Table 1.1 Monthly production rates ofwater treatment residue at the Midmar Water Treatment

Works for the period April 2003 to March 2004

April May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar.
2003 2003 2003 2003 2003 2003 2003 2003 2003 2004 2004 2004

a 208 236 400 336 280 280 280 596 540 444 420 604

b 48 54 92 77 64 64 64 137 124 102 97 139

c 46 52 88 74 61 61 61 132 119 98 93 133

a Figures in m3
, acquired from Umgeni Water and represent fIlter cake of 23 % solids

b Figures in m3
, calculated for air-dry, less than 2 mm aggregates

c Figures in Mg, calculated based on a 960 kg m-3 sample density of air-dry, less than 2 mm aggregates

1.2 Unwanted materials from processing: terminology

In the process of preparing certain products, materials other than the desired product may be

produced. This substance might be readily referred to as a byproduct, although Miller and Miller

(2000) have another idea about the meaning of this term. Citing Powers (1998), they consider a

byproduct to be a material, derived from agricultural or industrial activities, that has positive growth

effects on plants, and no adverse environmental impact. Where it has a neutral or no effect upon land

application, Miller and Miller (2000) consider such material to be waste. In South Mrica there is
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legal reference to litter and waste (The Environment Conservation Act 73 of 1989). Litter, a form

of waste, is any object or matter discarded by the person in whose possession or control it was, whilst

waste is "matter . . . identified as an undesirable or superfluous byproduct, emission, residue or

remainder of any process or activity". This definition thus stops at the production stage and does not

consider what might happen to this material; it also does not include any harmful property that the

waste might possess, or harm that it might cause. The National Water Act (Act 36 of1998) classifies

a waste as including "any solid material or material that is suspended, dissolved or transported into

a water resource in such volume, composition or manner as to cause, or to be reasonably likely to

cause, the water resource to be polluted". Although concerned with pollution ofwater resources, this

description of waste does not necessarily mean that the material has to be physically placed in a

water source to cause concern; in other words it does not exclude the possibility ofsuch a pollution

occurring via another source ofplacement of the material, like land or landfill.

Four classes of environmental problems are recognised i.e., degradable waste, persistent wastes,

wastes of reversible biological and geophysical impact, and those of irreversible biological and

geophysical impact (Fuggle, 1994). It is advisable to determine to which of these categories any

waste or byproduct belongs, as this would help with developing or adopting safer or appropriate

means ofdisposal.

1.3 Disposal of unwanted materials: options

In South Afiica Lombard, Botha and Rabie (1994) list thermal treatment, isolation from the

environment, recycling and physico-chemical treatment as some ofthe disposal options for unwanted

material. They are supported in the recognition ofthermal treatment (referred to as incineration) by

Cameron, Di and McLaren (1997), who also higWighted the option of discharge to water when

considering the disposal of wastes from New Zealand and Australia. These options generally have

limitations including not being suitable for all kinds ofwaste, being costly and causing atmospheric

pollution (notably incineration; Cameron etal., 1997). However, most ofthese options will generate

residues that would still need ultimate disposal to landfill sites (Lombard et al., 1994). Lombard et
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al. (1997) do, however, concede that suitable sites for disposal will become scarcer and therefore

more costly. Besides, some landfills might also allow seepage, and produce volatile and

flammable gases (Cameron et a!., 1997). Also, landfill sites might be specific for a certain kind

of material, and co-disposal might not be allowed since it might initiate mobilization and

migration of certain chemical species (Cameron et al., 1997). Land disposal, another means of

disposal, is thus an option to be investigated. There is more information on disposal options in

Hughes et al. (2005).

1.4 Perspective on land disposal: policy and views

According to the Environment Conservation Act, 1992 (section 9 of Act 79 of 1992, substituting

Section 20 of Act 73 of 1989), a disposal site may not be established, provided or operated

without a permit issued by the Minister ofEnvironmental Affairs and Tourism. The practice of

disposal ofmaterial thus has legal connotations.

Three forms ofdisposal ofwaste material onto land may be recognised, namely land application

(King, 1982; Geertsema, Knocke, Novak and Dove, 1994; Lucas, Dillaha, Reneau, Novak and

Knocke, 1994; Cameron et al., 1997; Miller and lviiller, 2000) defined by Miller and Miller

(2000) as addition of byproducts to benefit crop growth; land treatment (Hughes, 1988; Miller

and Miller, 2000) which is regarded as disposal in general (Miller and Miller, 2000); and

littering, which implies leaving litter on any place to which the public has access, except at a

place set apart for such purpose (Lombard et al., 1994). Ofthe mentioned authors only Miller and

Miller (2000) make a point of differentiating between land application and land treatment. For

the purpose ofthis investigation there will be no attempt to distinguish between the two. This is

because it is not considered that any benefits for crop growth are of more importance than

environmental harmlessness of the material being disposed of In view of this, both land

application and land treatment will be taken to mean the activity of land disposal of waste

material such that effects on the environment are monitored, and that there is a commitment to

safe-guarding the health ofliving organisms. This is in contrast to land disposal in the form of

littering where it is considered that waste is disposed of regardless of consequences, in other

words an act of merely transferring the problem to another' owner' and environment. Although
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control oflittering is regulated through local by-laws (Lombard et aI., 1994), it is a fact that dumping

or discarding ofunwanted material anywhere is a common occurrence.

1.5 Motivation for the study

According to the Umgeni Water (1994) report, the landfill site at Howick, where their Midmar

Works is located, was too small to accommodate the quantities ofthe WTR produced. Transportation

to the nearest larger landfill site in Pietermaritzburg would be expensive, as would co-disposal with

municipal sewage sludge. The Department of Water Affairs and Forestry has expressed concern

about re-circulation to water bodies; this is a further discouragement to this latter option. Elliott and

Singer (1988) are also against the disposal ofWTR into the municipal sewage system as they regard

the practice as merely transferring the burden ofultimate disposal. Such problems are not unique to

KwaZulu-Natal; essentially the same disposal constraints are experienced in other parts ofthe world

as indicated by Basta, Zupancic and Dayton (2000). Pumping the WTR back into surface waters

would cause sedimentation which would unfavourably reduce water depths, detrimentally increase

water turbidity, produce an ecological imbalance via eutrophication, and possibly cause pollution

to this environment by heavy metals.

The production oflarge quantities ofWTR is unavoidable. The current quantities produced are likely

to increase as the number of urban inhabitants increases, as Umgeni Water (and other water

purification companies) make inroads into rural areas, as metropolitan councils incorporate

previously tribal authorities which will force them to supply more potable water, and because of

demands for healthy water in rural areas to avoid health hazards. Conventional disposal of such

quantities ofWTR in landfill sites might in the near future no longer be a viable option due to the

reduced availability oflandfill sites and economics of transportation.

As it is certain that increasing quantities of water treatment residues will continue to be produced

by the various waterworks in the country, and because other disposal options are either currently not

viable or might be questionable in the future, it is logical that disposing ofthe material onto land be
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investigated. As Logan (1990) puts it: "land has the final solution to many ofsociety's waste disposal

problems ...". It was with such an idea in mind that Umgeni Water bought land in close proximity

to their Midmar Water Treatment Works for disposal of this WTR.

1.6 Aims and objectives

Whilst WTRs have been deemed by some to be environmentally benign (e.g. Elliott and Singer,

1988), no such decision has yet been taken in South Mrica where this material is classified as a

'waste'. This means WTRs are classified together with sewage sludges (biosolids). Whilst biosolids

might be considered degradable wastes because oforganic matter, and persistent wastes because of

heavy metals, the same may not expressly be said about WTRs. It still needs to be established

whether it is fair and practical to consider WTR as waste.

Water treatment residues might also have an agricultural influence that needs to be established. On

the other hand, once it is in intimate contact with the soil in a favourably moist environment, then

the WTR might no longer be the harmless material it is perceived to be on its own . It cannot just be

assumed that its innocuousness would persist in the soil, taking into account the extremely complex

nature of the soil medium; the residue and soil might react to yield products or results of

environmental concern. Besides this scientific outlook, it might be argued that any unknown and

unproven material should be considered a potential hazard until established otherwise.

Cameron et al. (1997) raised the question ofwhether soil is an appropriate dumping ground for all

kinds of waste. For this investigation, it was thus important to establish whether it would be

appropriate for Umgeni Water to continue applying WTR on the land ear-marked for disposal (some

minimal disposal had taken place for the past seven years on small areas of the land), and to test

whether other soils could safely accommodate this activity. According to Cox, Camberato and Smith

(1997), the suitability of the WTR for land treatment would be determined by its composition and

subsequent effects on soil properties (once it has been applied).



The broad objectives of the investigation were therefore as follows:-

• to review literature on WTR to investigate its potential for land application;

• to characterize the WTR to establish its properties;

• to determine the influence of the WTR on growth of cover plants;

• to establish the possible chemical effects of the WTR on the soil environment; and

• to investigate the possibility ofusing the WTR as an environment-cleansing material.

9



10

CHAPTER 2

WATER TREATMENT RESIDUE AND LAND USE HISTORY: A REVIEW

2.1 Water treatment residue and plant growth: setting the scene

Rengasamy, Oades and Hancock (1980) in South Australia tested WTR on maize (Zea mays) in a

greenhouse study. Using alum residue (produced with aluminium sulphate as the main flocculent) at

rates of2 and 20 Mg ha- l applied as a dry solid or a suspension to three soils, i.e., a strongly sodic clay

soil, a leached podzolic lateritic sand and a hard-setting red-brown earth, with and without fertilizer,

they achieved mixed responses with respect to dry mass (DM) yield. The lower rate increased yield

with respect to the zero application in all three soils irrespective of the form in which the WTR was

applied, and whether fertilizer was added or not. This increase in DM yield was most noticeable when

the three soils were fertilized, and in the unfertilized hard-setting red-brown earth compared to the

other two soils.

Although the main thrust ofthese investigators' study was on soil structural properties, P uptake by

the maize plants was also considered, and this increased in almost all soils and treatments at the 2 Mg

ha- l rate. Despite the yields at the higher WTR rate being greater than the control, they were lower

than those at the 2 Mg/ha rate except for the fertilized podzol and red-brown earth soils. Lower uptake

of P was observed with this WTR rate compared to the control and the lower rate, and this was

ascribed to the sorption of this nutrient by disordered aluminium-rich products in the WTR.

From these results some observations can be made with respect to the effects ofapplication ofWTR

to soil. Such an investigation should include the influence of WTR on both chemical/fertility and

physical properties ofsoils. The effects ofthe material depend, amongst other factors, on WTR rate,

soil type and soil fertility. Further, a decrease in uptake ofP by plants does not necessarily mean a

reduction in dry mass yield, notably where improved soil physical properties provide an environment

for better plant performance. In addition, less uptake of P does not necessarily translate to a

deficiency.
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Other factors to consider are the type of plant, type of WTR and whether one is dealing with

glasshouse or field experiments.

2.2 Water treatment residue and plant growth: a global tale of different results

2.2.1 Use ofwater treatment residue with different plants

Since Rengasamy et al. (1980) reported the results of their investigation on WTR effects on plant

growth, other workers, mostly from other parts of the world, have utilised a variety of plants.

Amongst those studied have been sorghum-sudan grass by Heil and Barbarick (1989) in Colorado,

fescue grass (Lucas et al., 1994) in Virginia, lawn grass in Southern Australia (Ahmed, Grant and

Oades, 1997), blue gramma and western wheatgrass (Ippolito, Barbarick and Redente, 1999) in

Colorado and, in Oklahoma with bermudagrass (Basta et aI., 2000). This interest in the influence of

WTR on cover plants has a bearing, not only from an agricultural point of view, but also from an

environmental one, as it affects aspects such as soil erosion.

In Connecticut, Bugbee and Frink (1985) investigated the effects of WTR on the growth of sugar

maple and hemlock. Geertsema et al. (1994) researched pine trees in Virginia. This research has an

economic as well as an environmental implication because some trees, like certain pine species, can

be used in reclamation activities (Logan, 1992).

Amongst investigators with field crops were Skene, Oades and Kilmore (1995) who worked with

beans in Southern Australia, Cox et al. (1997) in South Carolina with wheat, and Wang, Coullaird,

Auclair and Campbell (1998) with barley in Canada. Another agronomic consideration was provided

by researching the response of vegetable plants, namely tomatoes by Elliott and Singer (1988) in

Pennsylvania and by Dayton and Basta (2001) in Oklahoma. Ornamentallhorticultural plants in the

form of marigold have also received attention from Bugbee and Frink (1985) and Ahmed et al.

(1997).



12

2.2.2 Plant response to water treatment residue: effects of soil chemical and fertility conditions

Positive responses by plants in terms of increased foliar mass were reported by Elliott and Singer

(1988), Reil and Barbarick (1989), Ahmed et al. (1997) and Ippolito et al. (1999). All ofthese were

pot experiments except for those of Ahmed et al. (1997) which were also conducted as field

experiments. These positive results were explained by an increase in soil pR (Elliott and Singer, 1988;

Reil and Barbarick, 1989), improved availability of Fe (Reil and Barbarick, 1989) following

application of ferric chloride residue, and N supply by the WTR (Elliott and Singer, 1988; Ahmed

et al., 1997). Differences in plant species and time ofgrowth were proposed by Ippolito et al. (1999)

as the possible reasons for a positive response from blue gramma, and an indifferent one from western

wheat grass that was grown later.

In field experiments conducted by Bugbee and Frink (1985) and Geertsema et al. (1994), application

of the WTR did not cause any significant changes to plant uptake of elements, element migration or

growth ofthe trees. Whilst such results are agronomically disappointing, they are encouraging from

an environmental viewpoint if the concern is disposal only and not economic in terms of increasing

yield.

Lucas et al. (1994), Cox et al. (1997) and Wang et al. (1998) reported unequivocal negative plant

growth responses. Other workers (Elliott and Singer, 1988; Reil and Barbarick, 1989) had negative

and positive responses in the same experimental set-up. The results of Reil and Barbarick (1989)

confirmed those ofRengasamy et al. (1980) who established that relatively high levels of the WTR

decreased yields with respect to the lower ones, as increased sorption ofP by the material reduced this

nutrient's uptake by plants. Phosphate sorption was also given as the reason for the negative results

ofLucas et al. (1994) and Cox et al. (1997). On the other hand, Wang et al. (1998) reported low pR

and increased AI activity as the reasons for the inhibited growth of barley they observed with WTR

application. This is seen as an isolated case as other workers who have used alum residue have

reported results contrary to these, notably Reil and Barbarick (1989), Skene et al. (1995) and Ippolito

et al. (1999). Skene et al. (1995) established that both alum and polymer types ofWTR resulted in
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similar Al concentrations in plant tissue that were actually less than in the control. The results of

Ippolito et al. (1999) established that Al shoot concentration actually decreased with increase in WTR

addition. The anomalous results ofWang et al. (1998) could be because ofthe strongly acidic nature

of their WTRs; one had a pH as low as 3.9. To explain observed decreases in yield following

application of a ferric chloride residue, Elliott and Singer (1988) proposed precipitation of

magnesium ammonium phosphate (struvite) in the created alkaline conditions.

Based on the results they obtained with WTR experiments, some workers came to the conclusion that

the strong binding effect of this material for P might be temporary. Thirty months after the residue

was applied to soil, Geertsema et al. (1994) observed no significant differences in bioavailable and

total P between the control and WTR-treated soils in field experiments. These results were partially

supported by those ofAhmed et al. (1997) who, in some subsequent cuts oflawn grass grown in pot

experiments, observed an increase in P uptake per pot at a WTR rate of400 Mg ha-I. From this they

concluded that with ageing and exposure to wetting and drying this material released more of this

nutrient. They thus proposed that WTR could serve a dual purpose i.e., it could be used to sorb P from

polluted waters, which it can do (Macks, Grant, Murray and Drew, 1998), and then act as a slow

release P fertilizer. Essentially the same suggestion was made by Butkus, Grasso, Schulthess and

Wijnja (1998), namely that WTR could act as a P supplier in soil by being amended with it prior to

land application.

Although reduced availability of P induced by addition of the WTR seems to be the mam

chemicaVfertility problem that might reduce the agronomic potential of this material, Dayton and

Basta (2001) also considered nitrite toxicity to be a factor in some conditions. Growing tomatoes

directly on the WTR, these workers found that out of 14 ofthese residues used, five generated toxic

levels ofnitrite. Because the pH of the WTRs was deemed not high enough to cause accumulation

of nitrite, it was speculated that low availability of P in the affected WTRs could have prevented

oxidation ofnitrite to nitrate as suggested by Purchase (1974).

Micronutrients have also received attention concerning their relationship with plant growth following
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addition of the WTR. ElIiott and Singer (1988) reported reduced uptake of Cd, Cu, Ni and Zn by

tomatoes grown in pots, which was attributed to the high pH. Growing sorghum-sudangrass on two

soils in glasshouse studies, Reil and Barbarick (1989) established that the concentrations ofthe metals

Cu, Mu, Ni, Pb and Zn were within acceptable ranges in plants grown on both soils. There were

mixed results with Cd where one soil produced plants with relatively high concentrations of this

metal. In this soil the WTR-treated soil had a pH of5.1 which was judged low enough to increase the

solubility of this element. Although Lucas et al. (1994) and Cox et al. (1997) reported increased

uptake ofCu and Mn by fescue, and Mn by wheat, respectively, these increased tissue concentrations

were within acceptable limits. Also, the increase in concentration was not associated with the yield

response ofplants grown. In the same experiment, however, Lucas et al. (1994) established that tissue

concentrations of Fe and Zn were not significantly affected by application ofWTR. Similar results

were reported by Ahmed et al. (1997) where concentrations ofCu and Mn in lawn grass tissue were

at optimal levels, and were not influenced by the rate ofapplication ofWTR. Growing bermudagrass

directly on a WTR, Basta et al. (2000) established that tissue concentrations of Cd, Cu, Fe, Mn and

Zn were not different from those of plants grown on soil. Whilst it is evident that the response of

plants to metals will depend on experimental conditions, it can nevertheless be accepted that WTRs

neither release these in quantities that are toxic to plants, nor do they change soil conditions such that

this happens.

2.2.3 Plant response to water treatment residue: effects of soil physical condition

The soil physical condition of a soil sometimes has a bearing on the soil's chemical and f~rtility
~-~

p~op~rties. SoiLphysical propertie.s detennin~ th~ rate and exte~! of water infiltration into, and
. . .

percC!!,atiQn thrQij~~2~S, which in t1!Il)._g9~fll§ol1J!e redistribution andJ~~t~hj.ngJn fact Skene et al.
-'~._ .._". . ---.,.,....---

(1995} con~lude(L that th~ysical properties .oR..~-WT:R! are more important than its chemical
----. ---

properties when it comes to plant growth. As was shown by the results ofRengasamy et al. (1980),

addition of WTR to soils can affect plant yield through changes in chemical or physical properties.

Considering soil physical~:thes~ worke~~_~~.~~~.~~!~.~~?crease in drym~ witb-a

d~e in dispers~roved aggregation) oft~~Consi~nt ith t _se findjngS-Q.£"
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Rengasamy et al. (1980), Reil and Barbarick (1989) a!§Q..nmorted-~pbysicalconditions

brought about by WTR and thus an improvement in plant growth. This was in a soil where chemical

(pR) and fertility (N) properties were ruled out as having contributed to the observed positive plant

response.

Other research by Bugbee and Frink (1985), Skene et al. (1995) and Ahmed et al. (1997) has

established that WTRs can be favourably used as ingredients in plant growth media/potting mixtures.

In a mixture of three or all of the residue, peat, perlite and soil, Bugbee and Frink (1985) found

negative growth of lettuce and marigold (ascribed to P deficiencies) in all treatments except those

without soil. This positive response was attributed to the WTR impmv.ingJheae(~Q!L~~dIE~!ure

~n~ty..in-the.gro~GeDeLa1ly=similar-I:easOll~e1:e-gi~~£auesu~

wit!0lean.$,....iIL. WT~Q.Q.::f~[tilizer mixture {Skene.eL aL, .. 1995),.. amt~~~rjth.,.mW,gp.M grown in- .

mixtures containing the residue, peat moss and pine bark (Ahmed et al., 1997). This mixture

performed as well as two commercially available mixtures in terms of number of flowers and shoot

mass ofthe marigold plants.

2.3 Environmental consideration of water treatment residues

From a chemical point of view, not only highly soluble species like nitrate might be of concern to

environmental pollution, but also those with generally low solubility like P and heavy metals.

There are two notable routes by which P in agricultural lands can reach water bodies, i.e., by surface

drainage (e.g. McDowell, Drewry, Paton, Carey, Monaghan and Condron, 2003; Zhang, Zhu, Guo

and Liu, 2004) and subsurface drainage (e.g. Djodjic, Barling and Bergstrom, 2004; Van Es,

Schindelbeck and Jokela, 2004). By either pathway, P could end up in surface waters, notably from

soils which are over fertilized (Carefoot and Whalen, 2003). With its sorptive nature, loss ofP from

land is associated with sediment transport (McDowell et al., 2003), and so its movement could be as

colloidal P as established by McDowell et al. (2003), Toor, Condron, Di and Cameron (2004) and

Turner, Kay and Westermann (2004). Enhancing runoff losses of this element is surface application
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ofP sources (Tarkalson and Mikkelsen, 2004). Flow mechanisms associated with rapid preferential

flow increases leaching ofP compared to a matrix flow (Nash and HalliweIl, 1999; Siemens, Ilg, Lang

and Kaupenjohann, 2004; Van Es et al., 2004).

This possibility of using WTR for environmental cleansing or protection based on its P sorption

propensity has received recognition by certain workers. Applied to soils, WTR was found to be

effective in reducing the amount of soluble P in runoff water (peters and Basta, 1996; Gallimore,

Basta, Storm, Payton, Huhnke and Smolen, 1999) and in reducing excessive amounts of extractable

P (Haustein, Daniel, Miller, Moore and McNew, 2000). The residue is thus able to prevent or reduce

eutrophication, whether it occurs via external drainage or internal drainage water. Also, with its ability

to stabilize aggregates (Rengasamy et al., 1980) it could reduce colloidal transportation losses ofP.

The principle has also been successfully extended to co-application ofWTR with biosolids (sewage

sludge) with the aim of reducing the high active P levels in the sludge (Ippolito et al., 1999).

Other potential pollution from agricultural lands is from heavy metals. Mobilization of these metals

has been associated, amongst others, with application of sewage sludge (McBride, Richards,

Steenhuis and Spiers, 1999; McBride, Martinez, Topp and Evans, 2000; McLaren, Clucas, Taylor and

Hendry, 2004) which usually contains high amounts of these elements, and organic matter that

facilitates leaching of some as metal-organic matter complexes (McBride et al., 1999). Leaching of

metals is also effected by macropore flow (McLaren et al., 2004) or preferential flow (McBride and

Evans, 2002) which bypasses interaction with the soil (McLaren et al., 2004). Whilst WTRs are

different from sewage sludges, they nevertheless contain heavy metals, and there is no unanimous

consensus regarding the behaviour of these residues with respect to these elements (Section 2.2.2).

For use as a soil substitute, WTR has received recommendation by Basta et al. (2000) with

bermudagrass but not by Dayton and Basta (2001) who experienced poor growth oftomatoes. Both

groups ofworkers grew the plants directly on the residue. Dayton and Basta (2001) considered nitrite

toxicity and P deficiency to have been the cause ofthe poor performance but also suggested that low

available water and low bulk density of the material might limit its use in this regard. The factor of
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the different responses of different plants becomes an issue here as the success of the experiment of

Basta et al. (2000) indicated that the residue could be used as a soil substitute for re-vegetation of

degraded lands.

Whether application ofWTRs will have any effects on the environment would be determined in part

by their chemical/fertility and physical properties in association with the properties of the soils, and

also of other materials applied.

2.4 Conclusions

As shown in the literature, WTR can be ofboth agronomic and environmental use ifjudiciously used.

This would depend, amongst other factors, on the nature of the WTR and soil properties, both

chemical and physical. Although some negative results have been reported, they can generally be

explained and are mostly attributed to reduction in P availability at high WTR loadings. Also, most

of these negative results have been experienced in pot experiments where nutrient balancing and

unrealistic plant populations tend to be additional problems. The fact that no negative results have

been reported in field experiments, either with respect to element uptake, element migration or plant

growth suggests the relative safety of land disposal. Also heavy metals, which can be pollutants in

excess concentrations, have not been reported to be ofconcern. In South Africa, all these observations

still have to be established or disputed. An investigation thus is needed to test the influence ofa WTR

in the South African context.
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CHAPTER 3

CHARACTERIZATION OF THE WATER TREATMENT RESIDUE AND SOILS

3.1 Introduction

Water treatment residues from different water works are not expected to be similar, except if, by

coincidence, the raw waters and additives for purification are essentially similar. In fact, even WTRs

from the same plant could be different depending on the season and flocculants added. To test the

possible effects ofany WTR on soils and plants, it is thus important to determine its properties.

Soils to be used for disposal ofWTRs, if such an activity were to be approved, might be determined

more by convenience of location with respect to the water works than any beneficial effects on crop

growth. It is with this view in mind that it was decided that it was important to test the material on

a variety of soils.

Soils used in different aspects ofthe study, and the WTR sampled from the Midmar Water Treatment

Works, Howick, were characterized by determining some of their properties.

3.2 Materials and methods

3.2.1 Water treatment residue

Small samples of the WTR were collected over time from the above-mentioned water works and

analysed for a range of elements. As there was virtually no variation of properties with years and

season, a bulk sample ofthe material was then collected, dried, milled to pass through a 2 mm sieve

and stored for all future use.
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3.2.2 Soils

Twelve topsoils in all, chosen to represent a wide range of properties, and to complement a

companion study on soil physical quality (Moodley, 200 I), were used in the different experimental

aspects of the investigation (See Map 3.1 for location of sampling sites). Soil form names, as

classified by the Soil Classification Working Group (1991), were used to identifY the soils. One was

an Avalon (Av) soil from Geluksburg at a KwaZulu-Natal Department of Agriculture experimental

site. There were three Hutton (Hu) soils, i.e., one from the field experiment at Brookdale Farm,

Howick, about 40 km north ofPieterrnaritzburg (Hu-F), the second from a site adjacent to the water

works at Midmar (Hu-M), and the third from Mangosuthu Technikon about 20 km south ofDurban

(Hu-T). Two ofthe soils were ofthe Inanda (la) form, one from an experimental site ofthe KwaZulu­

Natal Department ofAgriculture at Cedara (la-C) and the other (Ia-W) from Hilton, both north of

Pieterrnaritzburg. From Adams Mission south ofDurban came a Namib (Nb) soil (Nb-A), another

Namib (2 samples) from a disused Mission Farm (Nb-F and Nb-FI) and a Shortlands (Sd).

Completing the twelve were a Valsrivier soil (Va) from Muden, near Greytown north of

Pieterrnaritzburg, and a Westleigh (We) from the field experiment at the University ofKwaZulu­

Natal's Ukulinga Research Farm, about 5 km from Pieterrnaritzburg. The soils were also classified

according to the Soil Survey Staff (1975) (Table 3.1a).

3.2.3 Analysis of the water treatment residue and soils

The pH of all samples (soils and WTR), which had been air-dried and milled to pass a 2 mm sieve,

was measured in a suspension of 109 soil in 25 rnL of both distilled water and 1M KCI solution.

Acidity, Ca and Mg were extracted with 1M KCI solution on an end-over-end shaker for 10 minutes

at a soil to solution ratio of I: 10. To determine cation exchange capacity, samples were first extracted

with 0.1 M SrClz solution in a 1: 10 ratio with the four sequential extracts being pooled before analysis

(Hughes and Girdlestone, 1994). Cation exchange capacity (CEC) was then determined by extracting

the resultant Sr-saturated soil with 1M ammonium acetate solution at a 1: 10 ratio (Hughes and

Girdlestone, 1994). Phosphorus was extracted with a solution (pH = 8) containing 0.25 M ammonium
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bicarbonate, EDTA disodium salt and 0.01 M ammonium fluoride (The Non-Affiliated Soil Analysis

Work Committee, 1990), i. e., the Ambic extracting solution as used by the Fertilizer Advisory Service

of the KwaZulu-Natal Department of Agriculture. It was then analysed by the molybdenum blue

method ofMurphy and Riley (1962). All the above solutions were filtered through Whatman no. 1

paper. Organic matter was determined by the Walkley-Black method (Walkley, 1947). All extractions

were done on an end-over-end shaker. Particle size analysis was done by the pipette method following

dispersion in sodium hexametaphosphate and sodium carbonate solution (Gee and Bauder, 1986).

Other salt solutions were also used to extract cations from the WTR on an end-over-end shaker, i.e.,

0.5M buffered (Thomas, 1982) and O.IM unbuffered (Gillman, 1979) BaClz solutions at a ratio of

1:10. This was done to investigate the isolation ofan extractant that would be suitable in the presence

of non-reacted lime in the material, as well as to be convenient for a single extraction. In another

approach, the four sequential SrClz extractions mentioned earlier in this section were also analysed

separately (instead of being pooled) to gauge the extent of cation recovery in the four steps.

Free carbonates in the WTR were determined by back titration with sodium hydroxide after addition

of excess HCI (Allison and Moodie, 1965). Nitrogen was analysed by the Kjeldahl procedure (Forster,

1995). Total element concentrations were analysed by X-ray fluorescence spectroscopy (XRF).

Soluble cations and anions from the WTR were determined in 1:2 and 1:5 WTRdistilled water

extracts after shaking for an hour (Rhoades, 1996). Extracts were filtered through Whatman no. 42

paper.

In all samples, Ca, K, Mg, Na and Sr were determined by atomic absorption spectrophotometry, NH
4

by the method of Forster (1995), P by DV/visible spectrophotometry, S by the turbidimetric method

ofVerma, Swaminathan and Sud (1977), and bicarbonate, carbonate and chloride by titration (United

States Salinity Laboratory Staff, 1954).
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Map 3.1 Sampling sites for the soils used in the study
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3.3 Results and discussion

3.3.1 General

The particle size distribution of the WTR is 84% clay, 10% silt and 6% sand. It also contains 3.8%

free carbonates and 0.01 % N. The pH of the WTR, as measured in both water and KCI, is slightly

basic (Table 3.1b). This, coupled with 3.8% free carbonates, implies that at high rates ofapplication

the WTR has the potential to act as a liming material. From an agronomic point ofview, this material

would thus mostly be suitable for disposal on strongly acid soils. The amount of extractable basic

cations and the relatively high cation exchange capacity further support the benefits the WTR could

have ifused in infertile soils.

Although the oxidizable organic C is high and might suggest some benefits from mineralization, the

low concentration ofN indicates otherwise. The classification results of the soils are in Table 3.1a.

The soils cover a range of clay percentages and chemical properties as desired (Tables 3.1a and b).

The Nb-Fl sample ofthe Namib form was sampled first. Because it had a high content ofextractable

P, another sample from a less fertilized part of the field was acquired, hence sample Nb-F.

3.3.2 Extractants

Considering the extractants (Table 3.2a), the highest amount ofcations extracted from the WTR was

45.6 cmole kg-· by the sequential extraction with O.IM SrClz, which is approximately twice the CEC

of23.8 cmole kg
ol

(Table 3.1b). This difference is possibly explained by extraction offree carbonates

and a significant amount of soluble cations by the sequential extraction, as well as incomplete

extraction ofSr by ammonium acetate in the determination ofthe cation exchange capacity. A further

test in the laboratory showed the last to be the case, a second extraction of Sr soil with ammonium

acetate producing about 6 cmole kg
ol

• The difference in the effectiveness of the extractants (single

extractions) is not that marked. It would thus seem that a single extraction recovers virtually only the

soluble and (some) exchangeable cations whilst leaving the carbonates intact. This is based on the fact

that they compare to the amount ofcations extracted by buffered barium chloride which does not
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Soil form*

Avalon
Hutton
Hutton
Hutton
Inanda
Inanda
Namib
Namib

ShortIands
Valsrivier
Westleigh

Soil family*

Blackmoor
Stella

Hayfield
Hayfield

Himevil1e
Mayfield
Nortier
Nortier
Bayala

Slykspruit
Helena

USDA**

Plinthic Pa1eudult
Typic Hap1ustult
Typic Haplustult
Typic Ustochrept

Humic, Rhodic, Kandiudox
Humic, Rhodic, Kandiudox

Typic Psammaquent
Typic Psammaquent

Typic Hap1ustalf
Typic Haplargid

Typic P1inthaquept

Sample name Sanda Si1tb Clay"

(g WOg-I)

Av 6 10 84
Hu-F 12 50 38
Hu-M 30 30 40
Hu-T 66 13 21
Ia-C 10 27 63
Ia-W 40 13 47
Nb-A 80 10 10

Nb-F, Nb-F1 84 10 6
Sd 12 31 57
Va 56 19 25
We 18 50 32

* Soil Classification Working Group (1991), ** Soil Survey Staff(1975)

a=particles between 0.053 and 2.00 mm in diameter, b=particles between 0.002 and 0.053 mm in diameter,

c=particles less than 0.002 mm in diameter

Table 3.1b Some properties of the water treatment residue and soils used in the study

Sample pH pH P Acidity Ca Mg CEC Acid Org.C
name (KC1) (H2O) sat.

(mgkg· l
) (cmolckg· l

) (g WOg-I)

WTR 7.62 7.71 26 0.01 20.6* 8.3* 23.8* 0.0 3.47
Av 3.77 4.03 30 3.45 0.3 0.1 1.4 89.6 1.35

Hu-F* 4.22 5.21 22 0.86 5.1 8.6 8.6 8.1 3.35
Hu-M 4.60 5.89 30 0.01 10.5 16.5 16.5 0.1 3.43
Hu-T 4.79 5.63 25 0.04 6.0 7.8 7.8 0.5 1.55
Ia-C 4.25 5.34 20 1.51 2.5 7.9 7.9 26.5 4.74
Ia-W 3.77 4.19 11 3.33 0.3 1.9 1.9 87.0 5.92
Nb-A 4.28 5.35 5 0.04 0.7 1.3 1.3 3.0 0.48
Nb-F1 3.77 4.81 338 0.46 0.5 3.9 3.9 39.7 0.59
Nb-F 4.53 5.82 7 0.02 1.4 0.3 1.0 1.2 0.46

Sd 4.75 5.95 7 0.01 12.4 16.1 16.1 0.1 1.85
Va* 5.91 6.81 19 0.06· 6.7 10.5 10.5 0.5 1.27
We* 4.90 5.91 14 0.01 6.0 9.8 9.8 0.6 2.17

* From Moodley (2001)
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dissolve carbonates. Barium chloride would thus seem the most convenient extractant. It is more

efficient than strontium chloride, easier to prepare than the buffered barium chloride and can be used

to measure extractable K, unlike potassium chloride. The electrical conductivity ofthe water extract

(1 :2) indicates a significant amount of soluble salts, with the dominant cations being calcium and (to

some extent) magnesium, and the anions chloride and bicarbonate (to some extent) (Table 3.2b).

Migrating solutes in WTR-treated soils would be expected to be dominated by these ions although

none ofthem is particularly environmentally harmful, either directly or indirectly.

Table 3.2a Analysis of salt extracts of the water treatment residue

Extractant

IMKCI
0.lMBaCI2

0.5M BaCI2-TEA
O.lM SrCI2 (4x)
O.IM SrCl2 (1)
O.lM SrCl2 (2)
O.lM SrCl2 (3)
O.lM SrCl2 (4)

O.lM SrCl2 (1+2+3+4)

I
Ca K Mg Na NH4 Sum

(cmole kg-1
)

20.6 nd 8.3 1.7 0.7 31.3
23.7 0.7 9.2 1.3 0.5 35.4
22.7 0.8 9.0 1.8 0.2 34.5
35.7 0.7 8.0 0.9 0.3 45.6
21.7 0.4 5.4 0.5 0.4 28.4
8.6 0.2 1.5 0.3 0.1 10.7
4.4 0.1 0.6 0.4 0.1 5.6
3.9 0.1 0.3 0.3 0.1 4.7

38.6 0.8 7.8 1.5 0.7 49.4

Considering the concentration of total trace elements (Table 3.2c), Cl is one of the most abundant.

It is thus not surprising that this element would dominate the soil solution, especially as it is an

indifferent ion. Overall though, the element levels are relatively low, and much lower in comparison

to the ferric chloride residue of Elliott and Singer (1988). Amongst others, this residue had high

concentrations ofCr (432.2 mg kg -1), Mn (4826.8 mg kg -1) and Ni (306.8 mg kg -1), yet it was

beneficial to tomatoes grown in a greenhouse up to a 10% (m/m) rate of application. Thus from the

point ofview ofheavy metal toxicity and pollution, it would seem that the WTR under consideration

here is not likely to be problematic. This is more so considering its basic pH which will reduce the

mobility of such heavy metals.



Table 3.2b Analysis of water extracts of the water treatment residue

Soil:water EC pH Ca K Mg Na NIL Sum Cl HC03 N03 S04 Sum

(dS m-i) (nunole kg-I) (nunoleki I)

1:2 1.69 7.26 5.1 0.8 3.1 1.0 0.6 10.6 12.7 5.4 0.3 0.6 19.0

1:5 0.70 7.41 2.9 0.4 1.7 0.8 0.4 6.2 5.4 2.8 0.1 0.4 8.7

EC = electrical conductivity

Table 3.2c Concentrations of some major and trace elements in water treatment residue as detennined by XRF

Sample date I Si02 Ah03 CaO Fe203 K20 MgO MnO Na20 P20S Ti02 LOI
-

(%)

May 1998 52.30 23.93 4.65 13.91 1.60 1.36 0.84 0.11 0.32 0.81 22.90
August 2000 54.57 22.60 4.20 11.95 1.47 1.92 1.53 0.15 0.24 0.86 23.91

Sample date As Ba Cd Ce Cl Co Cr Cu Ga La Nb Nd

(mg kg-I)

May 1998 20 891 nd 88 nd 45 138 42 18 34 nd 31
August 2000 17 1007 4 96 1575 39 161 44 20 19 11 25

Sample date I Ni Pb Rb S Sc Sr Th U V Y Zn Zr

(mg kg-I)

May 1998 56 17 104 810 40 157 17 2 205 29 101 123
August 2000 53 37 94 720 33 71 10 0 154 27 84 126

LOI = loss on ignition
N
Ul
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3.4 Conclusions

The properties ofthe WTR indicate an apparently environmentally-friendly material. From its low

amount ofpollutants namely heavy metals and N, to its high clay content and basic pH which would

assist in the deactivation of most chemical species, it can, on its own, be regarded as a relatively

harmless material. In addition, an analysis of a WTR sample by Umgeni Water (pietermaritzburg)

tested negative for both Salmonella species and Escherichia coli (Hughes etaI., 2005). Its properties

ofbasic pH and presence of free carbonates map out an investigation involving strongly acid soils.

The pH and high clay content suggest inclusion of strongly sorbed substances like P and heavy

metals in the study. The concern for its effects on the environment to which it is introduced requires

that the behaviour ofchemical species following its application be established, and that the growth

ofvegetation following land treatment be investigated.
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CHAPTER 4

WATER TREATMENT RESIDUE AND GROWTH OF PERENNIAL RYEGRASS: POT

EXPERIMENT

4.1 Introduction

From the literature review (Chapter 2) it was seen that the effects ofWTR on plant growth in pot

experiments are not clearly defined but depend on a number of factors, amongst which are WTR

type/properties (Heil and Barbarick, 1989; Skene et al., 1995), soil type (Rengasamy et al., 1980;

Heil and Barbarick, 1989), plant species (Ippolito et al., 1999) and WTR application rates

(Rengasamy et al., 1980; Elliott and Singer, 1988; Heil and Barbarick, 1989).

Using three types ofWTR, Heil and Barbarick (1989) found the best response with the ferric-based

material for sorghum-sudan grass grown under greenhouse studies in an iron-deficient soil. On the

other hand, Skene et al. (1995) found a polymer WTR to be a superior growth medium for beans

than alum-based material because of better K and N supply. It is in soils with low fertility that the

material is likely to provide a nutritional benefit (Cox et al., 1997) and where there is a benefit from

its liming effect (Elliott and Singer, 1988; Heil and Barbarick, 1989). When it comes to the WTR

rate ofapplication, rather conservative amounts up to a maximum 2.5% (m/m) have generally been

suggested or indicated by results obtained (Reil and Barbarick, 1989; Geertsema et al., 1994; Lucas

et al., 1994), a figure equivalent to approximately 44 Mg ha-I. Some workers have exceeded this rate

and still achieved results better than the control. Elliott and Singer (1988) observed a significant

response to tomatoes grown in the greenhouse with a WTR rate of 10% (m/m), although the highest

yield was obtained at a rate of6% (m/m). Ahmed et al. (1997), with a rate of1600 Mg ha-I, reported

positive results with lawn grass in both field and greenhouse experiments. Other workers have

grown plants directly on the residue, and measured an increase in yield relative to sand (Skene et

al., 1995) and soil (Basta et al., 2000). It would seem then that the rate factor is not conclusive and

would have to be established for particular plant species and soil conditions.
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The results ofthe above-mentioned investigations are an indication ofthe agronomic usefulness

of WTR, in spite of some negative reports of plant response which were mostly attributed to

relatively large quantities of this material reducing P availability and thus reducing yields. Even

in these instances it was found that application of P with the WTR eliminated the problem

(Bugbee and Frink, 1985; Lucas et al., 1994).

Polymer residues as considered in this work have not been widely investigated, probably because

they are considered even more innocuous than the alum-based product which has been the

subject ofmost investigations. There is thus a need for the polymer WTR produced by Umgeni

Water at its Midmar plant in Howick to be tested for its effects on plant growth.

The objectives of this chapter are as follows:-

• to determine the effects ofapplication ofWTR on the growth ofa test plant on different

soils; and

• to establish changes in soil chemical properties following application of the WTR.

4.2 Materials and methods

4.2.1 Soils

Five ofthe 12 soil samples were used i.e., the~~M,Hu-T, la-C, Nb-FI and Sd (see Tables 3.1a
··d .. . ...

and 3.1b). This aspect ofthe investigation was the first to be carried out, before the project was

expanded to include the other 6 soils. The Hu-M, Hu-T and Sd soils are moderately acid whereas

the Ia-C and Nb-Fl soils are strongly acid.

4.2.2 Pot experiment

The WTR was applied at rates of0, 40,80 and 120 Mg ha-1 to triplicate 1 kg soil samples which

had been air-dried, milled and passed through a 2 mm sieve. The highest of these rates

corresponded to 65.57,62.50,80.00,57.55 and 68.38 mgkg-1 for the Hu-M, Hu-T, la-C, Nb-Fl
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and Sd soils, respectively. These rates were chosen such that the highest exceededthe safe-disposal

rate of80 Mg ha-l given in the Umgeni Water (1994) report. In the Ia-C and Nb-F1 soils the WTR

was applied with three lime levels. The highest level was the amount of calcitic lime calculated to

reduce the acid saturation percent ofthe respective soil to 5%, and the lower one was half of that.

Assuming field incorporation to a depth of 200 mm, these rates were equivalent to 9 and 4.5 Mg

ha-l in the Ia-C soil, and 5 and 2.5 Mg ha-l for the Nb-F1 soil. All experimental samples received

a basal dressing of N (150 mg kg-l as ammonium dihydrogen phosphate which was also the P

source, and ammonium nitrate to provide the balance), P (75 mg kg-l), K (50 mg kg-l as potassium

cWoride), Mg (37.5 mg kg-l) and S (50 mg kg-l) - the last two being provided by hydrated

magnesium sulphate.

-
Perennial ryegrass (Lolium perenne) was chosen as the test crop for two reasons. One reason was

that an e~hIDm~~.Lnu.trien~was desi(~oth~t eveI!ifth~ffectsof-~.~were

masked by the...initially.higbJel1ilit)!.,tQek.role..might-heGome....apparent once_inadeguacy ofnutrients

was(,~xperience~ The oth~J reason fo~ the choice ofryegrass was the desire.J.o test a cover plant

~p.oinLoL\ie.Y.LQf-pg.ssiW~trehabilitation of degraded landscap~s-Nutrient depletion was

ensuredJ)y_~ing-plantsafteUillering and 3!!!9wingthem_to (egw)V. Eight cuts in a.!!.....!~e las.t..of

which wasJhefinaLbarvesting, were made in a period spanning about 12 months. The dates ofthe

cuts were 10.12.97, 07.01.98, 29.01.98,20.03.98,30.04.98, 17.07.98,01.09.98 and 22.10.98. Plant

samples were kept for analysis. Soils were maintained at the desired moisture contents by weighing

and watering every day. At the termination ofthe experiment, soil samples were kept for chemical

analyses..

4.2.3 Chemical analysis of soils

Air-dried, <2mm soil samples (1 from each replicate) were analysed for pH, and extra~ta!:>le acidity,

Ca, Mg.and ~Najn IM KCLeJ(ill:l~ts (1: 10 .soil: solution ratio on an end-over-end shaker for 10

minutes). PhosphQ!!!s, .e,Eracteq by the Ambic. solution (Section 3.2.3), was analysed

colorimetrically (Murphy and Riley, 1962) with a DV/visible spectrophotometer,
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4.2.4 Chemical analysis of plant tissue

Oven-dried (70°C) samples (1 from each replicate) were sent to the KZN Department ofAgriculture

and Environmental Affairs where they were digested and analysed (Ca, K, Mg, N, P, Cu, Mn, Zn)

by the procedure ofRiekert and Bainbridge (1998).

4.2.5 Statistical analysis

Three samples ofDM yield, plant tissue and soil, from each ofthe three replicates, were chemically

analysed, and results statistically analysed using one-way analysis ofvariance (atp<0.05).

4.3 Results and discussion

4.3.1 Dry matter yields

In Figures 4.1 to 4.5c it can be seen that the pattern ofdry matter (DM) yield over the different cuts

is essentially the same in all five soils with, in general, the DM peaking at cuts 2 and 6. Exceptions

are the Nb-F1 soil with no WTR applied, where the peak at cut 6 is not prominent (Figures 4.5a to

4.5c). This observation was true even in the soils where cut 1 yields were relatively high, namely

the Hu-T soil (Figure 4.2), the Sd soil (Figure 4.3) and the Nb-Fl soil where lime was applied

(Figures 4.5b and 4.5c).

Two factors could be affecting this pattern of response within the same soil, namely nutrient levels
• ~~:=t<"'"~

and tiwe betJ¥,een cuts, At the second cut the amount ofavailable nutrients was still relatively high,

so although growth was only for 22 days after the first cut, the DM yield was the highest. At cut 6,

where the second highest yield was obtained, the cutting was done 78 days after the fifth one which

was the longest period between cuts. This lengthy period obviously allowed the plants to accumulate

the high mass.
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A similar pattern in the yield response to WTR as discussed above was also observed with lime in

the strongly acid Ia-C and Nb-F1 soils (Figures 4.6a to 4.7d). The maxima at cuts 2 and 6 are again

prominent at all lime and WTR levels, except in the Nb-F1 soil where either no lime or WTR was

applied. There is overall a similarity to the yield pattern of perennial ryegrass in response to WTR

and agricultural lime. Looking at the Nb-F1 soil in particular, the creation ofa yield peak once either

the lime or WTR is applied further implies that there is something common to their effects. Both

ofthem introduce Ca to the soil, and because ofthe presence offree carbonates the WTR could be

expected to have a timing effect as well. It can be argued that the positive response of perennial

ryegrass to either lime or WTR in the Nb-F1 soil was partly due to the introduction ofCa. The Ia-C

soil, with a higher Ca content, showed more prominent maxima, and liming does not noticeably

make these more defmed.

Considering total DM yield response to applied WTR (Figure 4.8), the highest increases occurred

in the Ia-C and Nb-F1 soils. For the Hu-M, Hu-T, la-C, Nb-F1 and Sd soils the highest yield

increases were 2.38 g, 3.30 g, 4.66 g, 4.32 g and 2.74 g, respectively, and all these increases were

significant (p<0.05). These masses represented increases of 18.9%, 21.9%, 18.2%, 35.2% and

62.8%, respectively. The better response in the Ia-C and Nb-F1 soils suggests that the Iiming effect

ofthe WTR was in operation, and/or that Ca nutrition made an improvement to growth. Elliott and

Singer (1988) and Heil and Barbarick (1989) have also suggested that an increase in pH owing to

WTR application could improve yields. Not easy to explain is the increase in the other three soils

which had pH values between 5.5 and 7.0 and fairly high extractable Ca. It is even difficult to

invoke the argument of Rengasamy et al. (1980) and Skene et al. (1995) of improved physical

properties as these three soils have good physical properties. The results nevertheless tend to

confinn that this material should be looked at broadly as many factors are involved in its impact.

In Figures 4.9 and 4.10 the totalDMyield ofthe two strongly acid soils in response to applied WTR

is considered at different lime levels. Even in the presence of lime the increases in yields are

significant in both soils at low rates of WTR application, indicating a complementary effect between

the two materials. At higher rates of application of the WTR, there is an indication of some



5

4

:9 3
"C
Gi
">. 2
~
0

1

0
0 40 80

WTR applied(Mg/ha)

120

BCut1

DCut2

BCut3

III Cut 4

DCut5

DCut6

BCut7

.Cut8

32

Figure 4.1 DM yield of perennial ryegrass grown on the Hu-M soil as
affected by amount ofWTR applied

BCut1

DCut2

BCut3

DCut4

QCut5

DCut6

BCut7

.Cut8

o 40 80 120

Figure 4.2

6

WTR applied (Mglha)

DM yield of perennial ryegrass grown on the Hu-T soil as
affected by amount ofWTR applied

5

:§4
"C
Gi 3

. ">.
~ 2o

1

o -

BCut1

DCut2

.Cut3

DCut4

QCut5

DCut6

.Cut7

.Cut8

o 40 80

WTR applied (Mg/ha)

120

Figure 4.3 DM yield of perennial ryegrass grown on the Sd soil as
affected by amount ofWTR applied



(a)
7

6

,...,5
S
"'C 4
Cii
's. 3
:iE
02

1

0
0

(b)
7

6

,...,5
S
"'C 4
Cii
's. 3
:iE
o 2

1

0

0

(c)
7

6

,...,5
Cl:;4

Cii
"S. 3
:iE
o 2

1

0
0

40 80

WTR applied (Mg/ha)

40 80

WTR applied (Mg/ha)

40 80

WTR applied (Mg/ha)

120

120

120

.Cut1

DCut2

.Cut3

OCut4

IB3 Cut 5

DCut6

.Cut7

.Cut8

.Cut1

DCut2

.Cut3

DCut4

mCut5

DCut6

.Cut7

.Cut8

.Cut1

DCut2

.Cut3

DCut4

rn Cut 5

DCut6

.Cut7

.Cut8

33

Figure 4.4 DM yield of perennial ryegrass grown on the Ia-C soil at
lime level (a) 0, (b) 1 and (c) 2 as affected by amount of
WTRapplied



(a) .Cut1

DCut2

.Cut3

DCut4

mCut5

DCut6

.Cut7

.CutS

34

o

5
(b)

4

S3
"t:I
Qi

>-2
:lE
0

1

0

0

5
(c)

4

Cl:;3
Qi

>-2
:lE
0

1

,0

0

40 SO

WTR applied(Mg/ha)

40 SO

WTR applied (Mglha)

40 SO

WTR applled(Mg/ha)

120

120

120

.Cut1

OCut2

.Cut3

DCut4

~Cut5

OCut6

.Cut7

.CutS

.Cut1

OCut2

.Cut3

DCut4

mCut5

DCut6

.Cut7

.CutS

Figure 4.5 DM yield ofperennial ryegrass grown on the Nb-F1 soil at
lime level (a) 0, (b) 1 and (c) 2 as affected by amount of
WTRapplied



(a)

7

6

~5
S
't:J 4
Qj
';' 3
::iE
Cl 2

1

o

.cut 1

Ocut 2
• cut 3

[J cut 4

[J cut 5

[] cut 6

.cut7

.cut 8

35

(b)

(c)

o

7

S

~5

S
't:J 4
Qj
';' 3
::iE
Cl 2

1

o +--------~~

o

7

6

§i5
't:J 4
Qj
';' 3
::iE
Cl 2

1

o
o

Lime level

Lime level

Lime level

2

2

2

• cut 1
o cut 2
• cut 3
[J cut 4

f] cut 5

I:Jcut 6

.cut 7

.cut 8

• cut 1

o cut 2
• cut 3

Dcut 4
El cut 5
[J cut 6
• cut 7
• cut 8

(d)

7

6

§i5
!! 4
IV
';' 3
::iE
Cl 2

1

o

.cut 1
Ocut 2

.cut 3
_cut 4
[J cut 5
I:J cut 6
• cut 7
.cut 8

o
Lime level

2

Figure 4.6 DM yield of perennial ryegrass grown at (a)
0, (b) 40, (c) 80 and (d) 120 Mg ha-1 WTR
on the Ia-C soil as affected by lime level



36
5

III cut 1
4 - Dcut 2

(a) Cl III cut 3
;'3

El cut 4ID
ill cut 5':;' 2

~ Dcut 60
III cut 7

III cut 8
0

0 2

Lime level

5

(b) 4

Cl
;' 3­
ID
':;'
~ 2
o

o
o

5

Lime level

2

(c)

4

Cl
;'3
ID
':;' 2
~ -
o

o

.cut 1
Ocut2

.cut 3
Dcut 4
Dcut 5
[:Jcut 6

III cut 7

.cut 8

(d)

o

5

4
.......
Cl

;'3
ID
':;' 2
~o

1

O~--=....
o

1

Lime level

1

Lime level

2

2

.cut 1
Ocut 2
.cut 3

Dcut 4
Dcut 5

Dcut 6
Il cut 7

.cut 8

Figure 4.7 DM yield of perennial ryegrass grown at (a) 0,
(b) 40, (c) 80 and (d) 120 Mg ha-1 WTR on the
Nb-FI soil as affected by lime level



20

18

16
.El 14
"C
Qj 12
'>,
~ 10
o 8

~I- 6
4

2

o
o 40 80

W TR applied (Mg/ha)

120

-Hu-M
.Hu-T
rnJla-C

ON b-F1
-Sd

37

Figure 4.8

25

Total DM yield of perennial ryegrass grown on the five soils
at different WTR levels

20
§
"C
Qj 15
'>,
~

o 10

~
5

o
o 40 80

W TR applied (Mg/ha)

120

• lime 0
Cl lime 1
• lime 2

Figure 4.9

16

14

§ 12
"C 10Qj
'>,
~ 8
0

~
6

I- 4

2

0

Total DM yield ofperennial ryegrass grown on the Ia-C soil
at different WTR and lime levels

• lime 0

Cl lime 1

• lime 2

o 40 80

WTR applied (Mg/ha)

120

Figure 4.10 Total DM yield of perennial ryegrass grown on the Nb­
F 1 soil at different WTR and lime levels



38

supplementary (Figure 4.10; Appendix 1.5) and even negative (Figure 4.9; Appendix 1.4) effects.

Isolating the effects oflime at similar rates ofWTR shows that the increases are not as high as those

of the WTR (at similar lime levels). In the Ia-C soil the highest increase due to WTR application

was 6.43 g whereas that oflime was 2.32 g; the corresponding figures for the Nb-F1 soil were 4.49

and 2.50 g. These observations indicate that the suggested timing effect is not the only cause of the

increase in DM yield (see also Section 6.3.2).

4.3.2 Nutrient levels in plant tissue

These data are presented in Appendices 1.1 to 1.5 for cuts 1, 2, 4 and 8. These cuts were selected

to represent the first, middle and final harvests.

In almost all soils and all cuts analysed, tissue Ca increased significantly with amount of WTR

applied. This was especially true for the Hu-M, Hu-T and Sd, all being soils to which no lime was

applied. In the two soils to which lime was added, there were a few instances where response ofCa

tissue concentrations to increase in WTR was not statistically different, notably in the Ia-C soil.

Increase in tissue Ca with amount ofWTR applied was expected as this material had a high amount

of extractable Ca. Although this might indicate that this nutrient could contribute to an increase in

yield as suggested for the Nb-F1 soil above, the data do not confirm this. It is in fact in the higher

yielding cut 2 that Ca is in lower concentrations compared to the lower yielding cuts 4 and 8. It

might then be that Ca is not a factor in the yield response, or that there is a reduction in its

concentration with increase in yield. This dilution effect would not be entirely expected though,

since there was an input ofplant-available Ca through the WTR, and also by timing in the Ia-C and

Nb-F1 soils.

Concentrations of Mg are largely unaffected. With the WTR containing extractable Mg (Section

3.3.2), the uptake ofthis element would have been expected to increase with increase in application

rates ofthe material. The application levels ofthe WTR were apparently not high enough to increase
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uptake ofMg by plants.

Tissue P does not show any trend, which is an unexpected response. Not only does the material

contain P, it also was expected to sorb P (Rengasamy et al., 1980; Lucas et af.; 1994; Cox et al.,

1997) and so reduce its availability. It has, however, been pointed out that polymer WTR have lower

P sorption capacities than, for example, alum WTR (Skene et al., 1995).

Levels of Mn tended to decrease as the rate of WTR applied increased except in the Nb-F1 soil

where it tended to increase. Zinc and Fe did not show any definite pattern of response.
!

4.3.3 pH and extractable elements in the soils

These results are given in Appem1il.c2..J..,Measured pH values sbow ~!!j!l~f~~tSe i!1 Q9Jh_,~~1 and
. -.,- -----......

~ater in all soils~finning_.tha1 !he residue has a liming effect. This is further confirmed by the

reduction in extractable acidity and acid saturation, notably in the Ia-C and Nb-Fl soils. In the Ia-C

soil the acid saturation drops from 27% to 1%, and from 37% to 1% in the Nb-Fl soil. Extractable

Ca increases as expected, whilst Mg is virtually unaffected. This soil behaviour ofMg explains to

some extent the similar concentrations ofthis element in plant tissue (Section 4.3.2) at the same cut.

Extractable P decreases noticeably in the Nb-Fl soil and to some extent in the Hu-T soil. These

decreases were apparently not enough to cause a corresponding decrease in plant tissue P or

reduction in yields. Thus a decrease in the extractable levels of this nutrient does not necessarily

lead to deficiencies or reduced levels in plants.

4.4 Conclusions

From both agricultural and environmental points of view, the results obtained from the pot

experiment are encouraging as perennial ryegrass can be used as feed for animals and protection of

land. In all five soils considered there was a significant positive response ofDM yield ofperennial

ryegrass to the application of WTR. Thus whether soils needed lime or not the material was of
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benefit to the plant concerned. It can be suggested that the material is not soil specific as different

pH values, clay percentages and fertility status were some of the variables involved.

What has been more difficult to identify are the actual causes ofthe observed response. None ofthe

nutrient levels in plant tissues could help with the explanation as none was consistent with the DM

yields. The common factors in all soils after application of the residue were an increase in pH and

Ca. However, neither of these could satisfactorily explain the established response. Improvement

in soil physical properties would also not be a conclusive explanation, since the Nb-Fl was the only

soil with initially poor physical properties.

It is suggested that no single factor can be used to explain the effects of the WTR on the response

of perennial ryegrass in this pot experiment. For the acid and infertile Ia-C and Nb-FI soils, timing

and introduction ofCa could have contributed to the increase in dry mass yields, whilst for the other

three soils which are moderately acid and relatively fertile there was probably another mechanism

at work.
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CHAPTER 5

WATER TREATMENT RESIDUE AND PERFORMANCE OF PERENNIAL

RYEGRASS AND TALL FESCUE: FIELD EXPERIMENTS

5.1 Introduction

The literature review (Chapter 2) revealed that observed negative effects of applied WTR on plant

growth have been in greenhouse experiments while no such effects have been reported for field

trials. In the field experiments of Geertsema et al. (1994) and Ahmed et al. (1997) where loading

rates ofup to about 55 Mg ha-1 and 1600 Mg ha-1 were used, there were no negative changes in the

growth of pine trees and lawn grass, respectively.

Four possible effects ofland-treated WTR need to be considered i.e., agricultural influence (uptake

of elements and plant growth), soil properties, composition of drainage water, and impact on the

activity ofundesirable and/or excessive chemical species in the soil.

The agricultural influence refers to phytotoxicity to plants growing on the treated soil, or zootoxicity

to animals feeding on treated lands. Buttigieg, Klessa and Hall (1989) pointed out three possible

ways by which potentially toxic elements might pose problems to grazing ruminants, i.e., adhering

to leaf surfaces during application, ingestion of the material or contaminated soil from the ground,

and feeding on herbage that has absorbed the species. Characterization of the WTR (Chapter 3)

established that it had a certain amount ofheavy metals, some ofwhich are potential toxins in large

quantities.

The results ofChapter 4 suggested benefits ofapplication ofWTR to growth ofperennial ryegrass

in a pot experiment, although the mechanisms ofthis positive response were unclear. Minyi (1989),

Hopkins, Adamson and Bowling (1994) and McKenzie and Jacobs (2002) have shown the

importance of nutrient adequacy and/or balance in grass herbage. For temperate grasses, which
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provide forage to livestock and are also responsible for protection and conservation ofsoil (Van der

Meer and Wedin, 1989), this would be an issue to consider. It is therefore necessary to establish

whether land disposal ofWTR has an impact on the plant-nutrient relationships.

The objectives of this chapter are as follows:

• to determine the effects of applied WTR on performance of perennial ryegrass (Lolium

perenne) and Dovey tall fescue (Festuca arundinaceae) under field conditions; and

• to establish uptake of elements by these grass species.

5.2 Materials and methods

5.2.1 Test plants

Perennial ryegrass (Lolium perenne) as used in the pot experiment and Dovey tall fescue (Festuca

arundinaceae) were used to establish the effects of the land disposal ofthe WTR.

5.2.2 Sites and soils: Brookdale and Ukulinga

One experiment was set up at Brookdale Farm near Howick, 36 km north ofPietermaritzburg on

a Hutton (Hu-F) soil. This soil is the dominant one on this field of2% slope (Moodley, 2001), and

the farm is an intended site for disposal of the WTR from the Midmar Water Treatment Works.

According to Moodley (2001), the site is at an altitude of almost 1066 m; with a mean annual

(essentially summer) rainfall of866.6 mm; and mean annual maximum and minimum temperatures

of22.4T and 9.9 QC, respectively.

The other experiment was established on a Westleigh (We) soil at the University ofKwaZulu-Natal

Research Farm, Ukulinga. This site was convenient in terms of location, as well as having a soil

very different from the Hu-F on which to test the WTR. The field site is situated at an elevation of
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775 m and has a 1% slope, Ukulinga Farm has a mean annual rainfall of 73 5 mm, and mean annual

maximum and minimum temperatures of27SC and 8.9°C, respectively (Moodley, 2001).

The greenhouse and field trials were unfortunately not exactly complementary to each other since

no common soils were used in both. This was because the field trials were started after the pot trial

had been completed, and none ofthe convenient sites was the source ofthe soils used in pot trials.

However the Hu-M and Ia-C soils were similar to the Hu-F soil.,

5.2.3 Experimental design and establishment: Brookdale and Ukulinga

Details of the two field experiments were described by Moodley, Johnston, Hughes and Titshall

(2004), from which the following information has been summarized. Profile descriptions ofthe soils

(Moodley, 2001) are given in Appendices 3.1 and 3.2. At both sites plots were 6 m by 4 m,

separated from each other by a 2 m wide buffer strip. The variety of treatments applied, and their

modes of application, are given in Table 5.1 and Table 5.2 for the Brookdale and Ukulinga trials,

respectively. The mulched treatment was included at the Brookdale experiment to simulate disposal

without mechanical incorporation which, if successful, would be economically favourable; the

incorporation represents the more conventional means of application of waste materials and

fertilizers, etc, in agriculture.

The WTR, which had been allowed to air-dry for six months and had broken down to aggregates

of mostly 50-80 mm in diameter, was spread evenly (after removal oflarge chunks) on the soil

surface by shovels and then raked over. Lime was broadcast by hand. (For the current study the lime

treatment is of particular interest since lime and the WTR are both alkaline sources of Ca). Where

application was by incorporation, the material concerned was mixed by discing to a depth of 200

mm.

Setting up the Brookdale experiment was completed in early October 1998. In all, 64 plots were

prepared from the 16 treatments which were assigned randomly to the plots. Sixteen plots per
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contour were arranged with their longest dimension parallel to the slope ofthe field. The upper two

contours were left fallow, and the lower two were planted with perennial ryegrass. The plots to be

seeded with perennial ryegrass (April 1999) were fertilised with 200 kg Nha-I, 30 kg P ha-
l

and 185

kg K ha-I as limestone ammonium nitrate (LAN), diammonium phosphate (DAP), and potassium

chloride (KCI).

At Ukulinga the relevant treatments were applied in the third week of October 1999, although it

was only in March 2000 that a stand ofDovey tall fescue could be established because of profuse

weed growth. As at the Brookdale trial, there were seeded and fallow plots replicating the same

treatments. Fertilizer was added at 400 kg N ha-I, 30 kg P ha-l and 150 kg K ha- l prior to seeding

with Dovey tall fescue.

Table 5.1

Treatment

Treatments investigated at the Brookdale Farm trial

Application rate (Mg ha-I)

Water treatment residue (incorporated)

Water treatment residue (mulched)

Gypsum

Dolomitic lime

Anionic polyacrylamide

0,40,80,160,320,640,1280

320,640,1280

5, 10

2,10

15 X 10-3, 30 X 10-3

Table 5.2

Treatment

Treatments investigated at the Ukulinga Farm trial

Application rate (Mg ha-I)

Water treatment residue (incorporated)

Gypsum

Dolomitic lime

Anion polyacrylamide

0, 80, 320, 1280

10

10

30 X 10-3
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5.2.4 Field experiment maintenance: Brookdale and Ukulinga

Routine maintenance of both experiments involved keeping the plots and surrounds weed-free

by application of a glyphosphate-based herbicide (Roundup® and Erase 360 S.L.) on the fallow

treatments and Basagran on the grassed treatments when necessary, and regular irrigation and

mowing (about every 6-8 weeks) of the grassed treatments.

Maintenance of soil fertility at Brookdale Farm involved application of 50 kg N ha-I, 30 kg P

ha-I and 50 kg K ha-I in January of each year with an additional 50 kg N ha-I added every 3

months. In March 2001 the experiment was replanted to Dovey tall fescue. The same fertilizer

scheme, as used in the maintenance applications, was continued.

At the Ukulinga trial additional N was added every 3 months at 50 kg ha-I. In February 2001

maintenance fertilizer (50 kg N ha-I, 50 kg K ha-I and 30 kg P ha-I) was added to the lower half

of each grassed plot to investigate the effect of additional fertilizer on the grass, compared to

that on the unfertilized section of the same plots. After the April 2001 harvest, N fertilization

continued as before over the entire plot.

5.2.5 Grass harvesting: Brookdale and Ukulinga

Grass samples from the two sites were collected on the dates indicated below. Harvesting was

done by randomly placing a 0.25 x 0.25 m quadrat in a plot and then cutting the grass in the

quadrat with a sheep shear to about 20 mm above the soil surface. Three quadrats were

harvested in each plot and the material from these quadrats was bulked before being prepared

for analysis.

The perennial ryegrass was harvested at Brookdale as follows: October 1999, December 1999,

July 2000 and selected treatments sampled in February 2001. The Dovey tall fescue (which

replaced the ryegrass) was harvested as follows: November 2001, February 2002 and October

2002.
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The grass was harvested at Ukulinga at the following times:- July 2000, September 2000, February

2001, April 2001 (lower and upper sections of each plot harvested separately), August 2001,

November 2001, February 2002, April 2002, November 2002, February 2003 and May 2003.

Dry matter (DM) yields are recorded for (some) sampling dates from the Ukulinga trial but not from

the Brookdale trial, the reason being that wild animals had access to the grassed plots so making any

measurement ofyield meaningless.

Results have not been reported for all harvests in the current study. A general trend ofbehaviour had

appeared from the grass plants in earlier harvests, and the later ones were essentially repetitions.

Also, it was the highest treatment of 1280 Mg ha-1 which was mostly compared with the control, the

reason being that the most significant differences would be most likely between these two.

5.2.6 Chemical analysis ofgrass samples

Except for Cd, Co, Cr, Ni and Pb, all harvests were analysed at the Soil Fertility and Analytical

Services Laboratory, KwaZulu-NatalDepartment ofAgriculture and Environmental Affairs, Cedara.

Bulked grass samples were dried at 65°C, weighed and then a sub-sample was analysed for Ca, K,

Mg, N (in some cases), P, Cu, Mn and Zn (Riekert and Bainbridge, 1998). The procedure was

essentially dry digestion followed by dissolving the ash in IM HCI, and analysis by atomic

absorption spectrophotometry. For the analysis ofCd, Co, Cr, Ni and Pb the method ofRiekert and

Bainbridge (1998) was followed with the difference that instead ofthe 19 ofplant material, 5g were

used.

5.2.7 Statistical analysis and comparison of results

All samples were analysed in duplicate and statistically analysed using one-way analysis ofvariance

(atp<0.05). The element levels were compared with research results acquired from the KwaZulu­

Natal Department of Agriculture, Cedara (Miles, undated). The comparisons are not directly
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appropriate since Miles' research results are based on a date corresponding to 2/3 of canopy for

perennial ryegrass 6 to 8 weeks after sowing or 4 weeks regrowth; the corresponding conditions for

tall fescue are 5 to 7 weeks regrowth ofthe green leaf material in the top halfofthe canopy. They,

however serve as an indication of"ideal" conditions.,

5.3 Results and discussion

5.3.1 Observed growth ofgrass at Brookdale and Ukulinga

Neither the rate nor the mode ofapplication ofthe WTR was discerned to cause any negative impact

on the growth ofthe ryegrass (or the tall fescue planted subsequently at Brookdale) with respect to

either the density, height or appearance ofthe grass plants; ifanything, the grass appeared to grow

better where the material was applied. This was especially true for the highest application rate of

1280 Mg ha-I, both incorporated and mulched, and in particular the latter treatments. Such visual

improvement was consistently observed throughout the experiment in both the perennial ryegrass

and the tall fescue at both sites. The general appearance ofthe grass is shown in Plates 5.1 and 5.2

for the Brookdale and Ukulinga experiments, respectively.

5.3.2 Brookdale experiment

5.3.2.1 Perennial ryegrass

In the October 1999 harvest, no definitive trend appeared as to the effects ofeither the WTR or the

lime on the concentrations ofthe various elements in plant tissue. Calcium was the only element that

seemed to respond to the treatments (Table 5.3a), and that response was to the WTR. Calcium tissue

levels increased by 0.08 and 0.13% on the 640 and 1280 Mg ha- l mulched treatments relative to the

control, but it was only at the higher level that the gain was statistically significant.

A similar trend is observed in the December 1999 harvest. Concentrations ofK and Ca increase,
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Plate 5.1 Dovey tall fescue grass growing at Brookdale Farm in November 2001



49

Plate 5.2 Dovey tall fescue grass growing at Ukulinga Farm in November 2001
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especially at application rates above 160 Mg ha-l although none of the increases is significant for

K. In this harvest the increase in tissue Ca occurs at application rates ofthe WTR over 320 Mg ha- l

irrespective of its mode of application, but it is again on the1280 Mg ha- l mulched treatment that

the result is significant. Both lime treatments also show an insignificant increase for both these

elements. It could be expected that tissue Ca would increase with application of the WTR

considering its high levels in this material. The results for K are somewhat unexpected as the WTR

contains a low K concentration.

Table S.3a Some elements in perennial ryegrass grown at Brookdale Farm in 1999 [means (n

= 2) followed by the same letter are not statistically different]

Harvest date Treatment Ca K Mg N P Cu Mn Zn

(Mgha-') (g lOOg-') (mgkg-')

October 1999 RO OA2ab 2.9400 OA2e 2.6800 O.26ab llabe 253e 50ab
R40i OA1ab 3.23bc OA2e 2.75be O.29b 12bc 230cde 42ab
R80i 0.32a 2.14a 0.33ab 1.83a 0.19a 8a 24800 34a

R160i 0.41ab 2.64ab 0.35abc 2.35ab O.21a 9ab 22600de 38ab
R320i O.39a 2.82abe 0.38abc ·2.79be O.23ab lOabc 174ab 42ab
R640i OAOa 2A7ab 0.36aOO 2.50ab 0.19a llabe 176abe 46ab
R1280i OAOa 2.56ab 0.32a 2.56b O.l9a llabe 193abe 42ab
R320m O.40a 3.09be 0.39abc 2.81bc O.25ab 12bc 167a 60b
R640m 0.50be 2.88abe OAOabc 2.73be O.24ab 1200 201abcde 41ab

R1280m 0.55e 3A8c 0.38abc 3.30e 0.25ab Bc 195abed 37ab
LSD(0.05) 0.10 0.76 0.09 0.73 0.08 4 55 25

L2 0.39 2.58 0.36 2.38 0.22 10 236 35
LlO 0.39 2.60 0.38 2.23 0.22 10 162 37

December 1999 RO 0.38a 2.34a 0.33ab 2.29bed O.24a 4a 290ab 27a
R40i O.40abc 2.25ab 0.32ab 1.43aOO O.22a 4a 338b 31a
R80i 0.31a 2.21a O.28a 1.12a O.21a 4a 284ab 30a

R160i O.31a 2.79ab O.28a 1.30ab O.23a 4a 206ab 42a
R320i OA1abe 2.98ab O.33ab 1.71abed O.27a 5a 153a 39a
R640i OA5bc 2.75ab O.32ab 1.79abed 0.24a 5a 164a 39a

R1280i O.52ed 2.90ab 0.36ab 2. 19abed O.26a 7ab 164a 41a
R320m O.50bed 2.91ab 0.35ab 2.3ged O.28a 9ab BOa 35a
R640m O.47bcd 2.93ab 0.30a 2.22bcd 0.27a 8ab 146a 42a

R1280m O.60d 3.06b O.39b 2.55d 0.29a 12b 186ab 37a
LSD(O.05) 0.14 0.85 0.09 1.09 0.08 5 167 17

L2 OA1 2.79 0.34 1.58 0.24 5 185 46
LlO OA6 2.68 0.33 2.16 0.22 7 158 37

R water treatment residue; L lime; numbers are rates ofapplication in Mg ha-l ; i=incorporated; m=mulched
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Calcium and Mg levels are within the respective 0.26-1.0% and 0.2-0.5% ranges of adequacy for

ryegrass. The concentrations ofK were more in the 2.5-6.0% range ofadequacy than the 2.0-3.0%

range of critical levels. However, Nand P are below the adequacy ranges of 3.6-6.0% and 0.25­

0.36%, respectively. For N the levels are in fact clearly below the critical 3.5% value whilst for P

they are close to the critical concentration of0.24%. The overall results, where those ofthe control

were no exception to these observations, suggested that it was the low concentrations of these

elements in soil rather than the effect of the treatments that caused the inadequate tissue levels.

No trend ofresponse to treatments was observed with respect to minor elements, except possibly

for Mn (Table 5.3a) where there was a suggestion of some significant decreases in Mn tissue

concentrations with application of WTR or lime. Levels of Cu, Mn and Zn were generally within

their adequacy ranges of6-12, 50-300 and 15-20 mg kg-I, respectively. Copper concentrations were

sometimes close to or below the lower limit, whilst those ofZn were somewhat elevated compared

to the adequacy range. There was, however, no indication that these levels were caused by the

application ofthe WTR since control treatments were similarly affected. The concentrations ofboth

Mn and Zn were well below thel000 and 300-500 mg kg- l DM limits, respectively, suggested by

Webber et al. (1984; cited by Buttigieg et al., 1989) as the maximum tolerable dietary

concentrations for long-term feeding of perennial ryegrass to ruminants.

5.3.2.2 Dovey tall fescue

Neither the major nor the minor elements exhibited any trends with respect to increases in the WTR

or the lime applied. Adequate levels for this grass are Ca (0.22-0.31 %), K (2.2-3.5%), Mg (0.20­

0.36%), and P (0.25-0.35%); the adequate levels for minor elements are not known. Except for K

and P in the October 2002 harvest (Table 5.3b), the elements were within these ranges. Even for

these exceptions, it was clear that the deficiencies were more a function ofthe soil conditions at the

time than the material applied, as the controls also exhibited similarly low concentrations. Of the

micronutrients, it was only the levels of Mn that tended to decrease with application of either the

WTR or the lime although some ofthe differences were statistically non-significant.
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5.3.3 Dry matter yield ofDovey tall fescue from the Ukulinga experiment

There were no statistical differences between the harvests (Tables 5.4a, 5.4b and 5.4c) except in July

2000 when the 320 and 1280 Mg ha- l rates gave significantly higher yields than the other treatments,

and in August 2002 when all three rates of WTR yielded significantly higher than the control.

Neither the WTR nor the other treatments suppressed the growth of the grass, and in general there

were slight increases in yield with application of the WTR.

Where half of the plots were fertilized (April 2001 harvest), the yield was significantly higher than

where no fertilization had occurred (Table 5Ab). To ascribe the yield response to increased K

content in the plant would only explain the response at 0 and 80 Mg ha- l application ratesofWTR.

It is more that the introduction ofall three primary macronutrients improved the performance ofthe

grass. Elliott and Singer (1988) had recommended that introduction ofWTRs to croplands should

be accompanied by application of N, P and K. A review by Elliott and Dempsey (1991) also

established how WTRs had little impact on soil fertility because of their low N contents, no

increases in mineralization rates following their application, and their being responsible for reducing

plant- available P. After testing the material as a potential plant growth medium, Skene et at. (1995)

concluded that fertilizer application with WTRs is necessary for optimum plant growth. Results of

Rengasamy et at. (1980) in pot experiments gave mixed results, with an increase in growth recorded

with and without fertilizer application. Application of WTR for agronomic purposes should not

make one lose sight of the importance of nutrient balance and adequacy in the soil.

5.3.4 Elements in Dovey tall fescue from the Ukulinga experiment

There was no definitive pattern to the uptake of elements in response to the WTR application

(Tables 5Aa, 5Ab and 5Ac). Also, although there were some general increases in some elements,

they were not significant. As for the ryegrass at Brookdale, it would seem that tall fescue was

generally insensitive to the application of either the WTR or the lime as indicated by uptake of

elements. Nitrogen (where analysed) was the only element that tended to show increases in response

to the WTR. These increases were, however, not statistically significant except in July 2000. These
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Some elements in Dovey tall fescue grown at Brookdale Farm in 2001 and 2002

[means (n = 2) followed by the same letter are not statistically different]

Harvest date Treatment Ca K Mg P ClI Mn Zn

(Mgha-I) (g 100g-l) (mg kg-I)

November RO 0.32a 2.79a 0.35ab 0.24a 9ab 225bcd 29abc

2001 R40i 0.32a 3.62ab 0.29ab 0.26a lOb 23100 29abc

RSOi 0.26a 3.35ab O.2Sa 0.26a 9ab 251d 30abc

R160i 0.31a 3.15ab 0.31ab 0.24a 9ab 246d 3Sc

R320i 0.27a 3.10ab 0.35ab 0.27a 9ab 199abcd 30abc

R640i 0.31a 3.47ab 0.32ab 0.24a Sab 176abcd 29abc

R12S0i 0.34a 3.68ab 0.38b 0.30a lOb 127ab 33bc

R320m 0.30a 3.03ab 0.33ab 0.23a 6a 163abcd 22a

R640m 0.30a 3A2ab 0.34ab 0.26a lOb 140abc 28abc

R1280m 0.28a 3.84b 0.31ab 0.27a lIb 9Sa 24ab

LSD(0.05) 0.10 0.99 0.10 0.09 4 95 10
L2 0.28 3.50 0.35 0.27a 10 201 29

LlO 0.32 3.52 0.33 0.30 9 152 27

February RO 0.28a 2.lOa 0.34a 0.22a 5a 301abc 18a
2002 R40i 0.30ab I.97a 0.35a 0.23a 7a 333a 26c

R80i 0.29ab 2.11a 0.36ab 0.27a 2a 310bc 20ab
R160i 0.31ab 2.32ab O.3Sab 0.23a 11a 291abc 22abc
R320i 0.28a 2.08a oAOab 0.26a 7a 266abc 24bc
R640i 0.30ab 2.20a 0.38ab 0.30a 3a 277abc 25c

R1280i 0.30ab 2AOab OA3ab 0.27a 4a 179a 26c
R320m 0.29ab 2.02a 0.35a 0.28a 2a 209abc 19ab
R640m 0.33bc 2.80b OA5ab 0.28a 3aa lS8ab 22abc

R1280m 0.36c 2.31ab OA7b 0.25a 7a 178a 18a
LSD(0.05) 0.04 0.58 0.11 0.11 9a 125 5

L2 0.30 2.04 0.37 0.24 3a 306 19
LlO 0.26 2.02 0.39 0.24 3a 266 19

October 2002 RO 0.33a I.32a 0.33a 0.19a 4a 331b 19a
R40i 0.34a 1.54a 0.32a 0.18a 5a 363b 25a
RSOi O.3Sa I.87a 0.32a O.17a 3a 305ab 21a
R160i 0.29a 1A3a 0.31a 0.16a 4a 270ab 21a
R320i 0.32a I.97a 0.34ab O.lSa 4a 347b 23a
R640i 0.33a 1.53a 0.30a 0.17a 3a 23Sab 21a

R1280i 0.35a I.27a OA1b 0.21a 4a 244ab 21a
R320m 0.36a I.91a 0.36ab O.19a 5a 304ab 22a
R640m 0.34a lA6a 0.37ab O.19a 4a 24Sab 19a

R1280m 0.31a 2.17a 0.35ab 0.22a 5 186a 20a
LSD(0.05) 0.14 0.09 0.09 0.07 3 144 7

L2 0.29 0.28 0.28 0.17 4 311 21
LlO 0.37 0.39 0.39 0.23 3 282 19

R= water treatment residue; L=lime; munbers are rates of application in Mg ha-I; i=incorporated; rn=mulched
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N results tend to correspond with those of the DM yield (Table 5.4a), and this might suggest that

N could have contributed to the increase in yield observed in the pot experiment (Section 4.3.1).

From the data, it was clear that the concentrations of the major elements in the grass tissue largely

fell in the suggested ranges for adequate levels; and more importantly, application ofthe WTR did

not cause the element levels to be outside these ranges. Of the minor elements, it was again Mn

which showed signs of decreasing with application of both the WTR and the lime. Whilst not

statistically significant, these decreases were nonetheless consistent.

Table 5.4a DM yield and concentration of some elements in Dovey tall fescue grown at

Ukulinga Farm in 2000 [means (n = 2) followed by the same letter are not

statistically different]

Harvest date Treatment DMyield Ca K Mg N P Cu Mn Zn

(Mgha-1) (Mg ha-I) (g lOOg-l) (mg kg-I)

July RO 1.83a 0.29a 2.32ab 0.30a 1.66a 0.25a 5a 96b 23a

2000 R80 l.78a 0.29a 1.93a 0.25a 1.62a 0.22a 4a 57a 20a

R320 2.57ab 0.25a 2.22ab 0.27a 2.34ab 0.23a 5a 71ab 24ab

R1280 3.48b 0.29a 2.53b 0.33a 3.33b 0.23a 7a 82ab 28b

LSD(0.05) 0.93 0.24 0.59 0.04 1.11 0.05 3 25 5

LlD 0.27 2.33 0.27 1.80 0.23 5 68 24

September 2000 RO nd 0.33a 2.99a 0.38b 2.65a 0.28b 8a 159d 33a

R80 nd 0.33a 2.82a 0.32a 3.08 0.26ab 8a 98ab 28a

R320 nd 0.33a 2.91a 0.35ab 2.72a 0.28b 8a 87a 29a

R1280 nd 0.41b 3.35a 0.35ab 3.16a 0.21a 8a 11800 36a

LSD(0.05) 0.08 0.80 0.04 0.87 0.06 0.00 20 14

LlD nd 0.28 3.16 0.30 2.42 0.31 0.00 66 33

R=water treatment residue; L=lime; numbers associated with Rand L are rates ofapplication in Mg ha-I; nd=not determined
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Harvest Treatment DMyield Ca K Mg N P Cu Mu Zn

date

(Mg ha-I) (g) (g WOg-I) (mgkg-1)

February RO 2.50a 0.31a 2Ala OA1a 2.1Sab 0.26a 3a 199c 22a

2001 RSO 2.20a 0.34a 2.30a 0.40a 2.07a 0.30a 2a 129ab 29a
R320 3.60a 0.32a 2.57a 0.37a 2.57bc 0.34a 3a 99a 24a

R12S0 3.25a 0.36a 2.34a 0.40a 3.3Sd 0.31a 4a 121a 29a
LSD (0.05) 1.67 O.OS 0.69 0.09 0043 0.11 3 69 15

LlO 3.05 0.35 1.92 0040 3.10 0.26 3 122 32

April RO 1.25a OAOa I.S2a 0.43a 2.41a O.3Sa 4a 234b 20a
2001 RSO 1.05a 0.44a 1.6Sa OAOa 2.S0a 0.37a 4a 207ab 24ab

R320 l.35a OA3a 2.22a 0.46a 2.4Sa 0.50a 4a 114a 24ab
R12S0 1.45a 0.39a 2.27a 0.41a 2.S7a 0.41a 4a 126a 26b

LSD (0.05) 0.59 0.12 0.70 O.OS 0.79 0.17 0 105 6

LlO 1.25 0.42 2.23 0.45 1.90 0.46 4 SI 22

April RO 2.25a 0.32a 2.6Sa OAOa nd 0.36a 3a 15sb 40a
2001* RSO 2.60a 0.34a 2.70a OAOa nd O.3Sab Sa 93a 2sa

R320 2.40a 0.36ab 2.6Sa 0.44a nd OA3c 4a S6a 2sa
R12S0 3.lOa O.4sc 2.33a 0.47 nd 0.34a 4a 123ab 40a

LSD (0.05) 1.41 0.05 0.S8 0.07 0.05 3 38 24

LlD 1.90 0.37 2.33 0.47 nd 0.38 4 99 27

August RO l.55a 0.42a 2.19a 0.39a nd 0.30a 7a 289b 43a
2001 R80 l.30a OASa 2.04a 0.38a nd 0.32a 4a 210ab 39a

R320 1.80a OA2a l.7sa 0.39a nd 0.32a 8a 16sa 31a
R1280 1AOa 0.58a 1.85a 0.42a nd O.2sa 6a 141a 3sa

LSD (0.05) 1.13 0.41 1.70 0.19 0.21 9 91 26

LW 1.80 0042 1.96 0.46 nd 0.34 S 179 40

November RO 3.lOa 0.27a 1.98a 0.33ab nd 0.29a 4a 194c 16a
2001 R80 2.20a 0.30a 2A3c 0.31ab nd 0.32a 3a 134ab lsa

R320 2.95a 0.31a 1.98a 0.30a nd 0.29a 3a 94a 15a
R1280 3.25a 0.37a 1.99ab 0.38b nd 0.30a 6a 115a 20a

LSD (0.05) 2.04 0.11 0.36 0.07 0.08 5 56 8

LW 2.55 0.33 1.61 0.33 nd 0.28 4 95 12
R=water treatment residue; L lime; numbers associated with Rand L are rates ofapplication in Mg ha'!

nd=not determined; * = results from fertilized plots
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Harvest date Treatment DMyield Ca K Mg P Cu Mn Zn

(Mgha-I ) (g) (g lOOg,l) (mgkg,l)

February RO 2.05a 0.28a 1.47a 0.35a 0.28ab 7a 182b 15ab

2002 R80 2.30a 0.29a 1.82a 0.30a 0.31ab 5a 115ab 14ab

R320 3.20a 0.27a 1.54a 0.33a 0.24a 11a 114ab 12a

R1280 3.20a 0.32a 1.67a 0.36a 0.34a 4a lO8a 19b

LSD (0.05) 1.43 0.09 1.00 0.07 0.08 5 73 7

110 2.55 0.30 1.75 0.33 0.29 4 71 14

April RO nd 0.48a 1.1Sab 0.49a 0.31a 7a 193a 36a

2002 R80 nd 0.43a 1.50b 0.48a 0.27a lOa 144a 39a

R320 nd O.SOa 0.79a 0.56a 0.31a 8a 114a 36a

R1280 nd 0.S8a 0.88a 0.5Sa 0.31a 8a 140a 35a

LSD (0.05) 0.17 0.54 0.12 0.19 8 116 24

110 nd 0.43 1.14 0.50 0.30 6 86 29

August RO 0.8Sa O.Sla 0.67a 0.44a 0.21a 4a 197a 24a

2002 R80 1.5000 0.51a 0.51a 0.39a 0.20a 7a 184a 34a

R320 1.45b 0.59ab 0.64a 0.36a 0.21a 4a 106a 24a

R1280 1.90c 0.65b 0.56a 0.30a 0.19a 5a 128a 29a

LSD (0.05) 0.42 0.12 0.30 0.13 0.10 6 III 30

LIO 1.10 0.59 0.82 0.46 0.26 3 97 24

November RO 1.70a 0.35ab 1.27a 0.54c 0.26a 7a 160d 31a

2002 R80 1.73a 0.34a 1.42a 0.44a 0.27a 6a ilia 24a

R320 2.24a 0.42ab 0.94a 0.52c 0.27a 7a 120ab 29a

R1280 2.42a 0.47b 0.90a 0.48b 0.25a 7a 126bc 28a

LSD (0.05) 1.21 0.12 0.75 0.03 0.04 3 14 12
110 2.04a 0.33 1.57 0.50 0.28 7 114 32

R=water treatment residue; L=lime; numbers associated with Rand L are rates of application in Mg ha,l

nd=not detennined

5.3.5 Selected heavy metals in grass grown at the two sites

Analytical data for Cd, Co, Cr, Ni and Pb showed that concentrations of Cd were below the

detection limit ofthe method used, and so the results for this element are not reported. For the other
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elements the results are presented in Tables 5.5 and 5.6 for the Brookdale and Ukulinga

experiments, respectively. In the Brookdale 1999 harvest, Cr and Ni tissue contents significantly

decreased with WTR applied at the highest rate, both incorporated and mulched. The concentrations

of Co and Pb were essentially unchanged by the application ofthe WTR. In the mulched treatment

of the 2001 harvest, the levels of Co and Cr were significantly higher than those of the control

whereas those ofNi and Pb were non-significantly higher.

Table 5.5 Selected heavy metals in perennial ryegrass (1999) and Dovey tall fescue (2001)

grown at Brookdale Farm [means (n = 2) followed by the same letter are not

statistically different]

Harvest date WTRrate Co Cr Ni Pb

(Mg ha-l) (mg kg-l)

October 0 7.5a 8.9c 7.0d 3.8a
1999 320i 7.2a 7.6bc 5.3c 3.9a

1280i 7.9a 6.0b 3.5b 3.8a
1280m 6.9a 3.0a 1.5a 3.9a

LSD(0.05) 3.2 1.8 1.2 0.9

November 0 6.9a 3.6ab 2.3ab 3.6ab
2001 320i 8.2ab 3.3a 2.1a 3.5a

1280i 7.8a 3.1a 1.7a 3.8ab
1280m 12.1c 5.8c 3.4b 4.5b

LSD(0.05) 3.2 1.6 1.3 0.9
i=incorporated; m=mulched

At Ukulinga the Co tissue levels at the 1280 Mg ha-l WTR application rate were significantly higher

than those ofthe control. Levels ofCr were unaffected by the rate ofWTR in the 2000 harvest and

increased (but not significantly) in the 2001 harvest. Nickel and Pb differences were non-significant

except for Ni at 1280 Mg ha-l in the 2001 harvest. Amounts ofCr and Ni appeared to have increased

in the later harvests.

No reason has been found to explain the differences in Cr and Ni concentrations for the comparative
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harvests. It should be noted, however, that for the Brookdale results two different grasses were

involved; in the Ukulinga data the 2000 harvest was in winter as compared to spring of2001. Also

difficult to explain was the uptake of Co; the Co tissue concentrations tended to consistently

increase with an increase in WTR application rate. A decrease in Ni uptake on application ofWTR

has been reported (Elliott and Singer, 1988) and ascribed to immobilization by the alkaline

conditions created by the WTR. On the whole, it can be stated that the field application ofthis WTR

up to rates of 1280 Mg ha-I to the Hutton and Westleigh soils grown to perennial ryegrass and tall

fescue did not significantly alter the tissue levels of pollutant metals.

Table 5.6 Selected heavy metals in Dovey tall fescue grown at Ukulinga Farm [means (n =

2) followed by the same letter are not statistically different]

Harvest date WTRrate Co Cr Ni Pb

(Mg ha-I) (mg kg-I)

July 2000 0 5.4ab 3.3ab 5.2ab 6.2ab
320 4.9a 2.4a 5.4ab 5.9a
1280 8.8c 3.1ab 3.6a 7.3ab

LSD(0.05) 2.8 2.3 4.5 3.7

November 0 5.1a 8.1ab 7.4ab 4.6ab
2001 320 7.1ab 6.7a 5.9a 4.3a

1280 13.1b l1.2b 9.0c 5.8ab
LSD(0.05) 7.1 4.1 1.5 3.2

The concentrations of these metals in the grass tissue were high compared to those reported by other

investigators. For sewage sludge applied to a field, Buttigieg et al. (1989) reported highest values,

in mg kg-t, of 1.3 for Cr, 5.78 for Ni and 1.55 for Pb in perennial ryegrass. In a perennial

ryegrass/white clover sward to which had been applied 0.6 kg ha-I Co as CoS04.7H20 (Paterson,

Klessa and MacPherson, 1989) the highest plant Co reported was 0.77 mg kg-I DM, higher than the

highest of 0.12 mg kg-I reported by Hopkins et al. (1994) for a field to which no Co had been

applied. The highest Co levels reported by Sherrell (1990) for applications up to 3.15 kg ha-I, were
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2.76 mg kg- l ofDM. Tiller (1989) indicated that the transfer of metal to plant depends on the kind

of plant, the particular metal and the soil chemical environment. The current results, however, do

not present a case against application of the WTR since the grass from the control also had high

concentrations. Reported tolerable dietary concentrations for long term feeding to ruminants are er

(ill): 3000, Ni: 50 and Pb: 30 mg kg- l DM (Webber et al., 1984; cited by Buttigieg et aI., 1989).

Since the metal concentrations measured at both field experiments are well below these

concentrations, and the DM yields showed no signs ofdecline, it can be reasonably concluded that

the concentrations were neither zootoxic nor phytotoxic.

5.4 Conclusions

From an agricultural point ofview, land disposal of the water treatment residue might be deemed

unproductive since it did not bring about any noticeable improvements in the growth of the grasses

at either field trial site. There is an indication, however, that the WTR might increase yields by

increasing plant-available N (See Sections 5.3.4 and 6.3.3). This aspect was, however, not the only

or the main issue. It is clearly encouraging from the land disposal (and thus economic viewpoint)

that no negative effects on either the perennial ryegrass or tall fescue were in evidence.

The main issue is safe disposal ofthe material onto land, and to that extent it could be said that the

investigated option of land application is appealing. Whether the material is spread on the surface

(mulched treatment) or incorporated with the soil did not make any difference to the performance

ofthe grass species. Indeed the successful growth ofgrass in the mulched treatment was indicative

of the possible use ofthe WTR as a soil substitute.
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CHAPTER 6

WATER TREATMENT RESIDUE AND CHANGES IN SOME SOIL CHEMICAL

PROPERTIES: LABORATORY EXPERIMENTS

6.1 Introduction

Two sets ofchemical properties ofthe water treatment residue are likely to have the greatest impact

on soil chemical changes. These are the basic pH and free carbonates, and the extractable cations

and soluble solutes (Section 3.3). In Chapter 4 it was shown in a pot experiment how this WTR

increased pH in all 5 soils used, and decreased the amount ofextractable acidity in the Ia-C and Nb­

F1 soils. These effects clearly indicate the liming potential of this material.

When the WTR is applied to soil, dissolution of some of its constituents should be one of the first

processes to occur. One effect of this would be an increase in the electrical conductivity of the soil

solution, followed by cation exchange reactions involving soluble and extractable cations. One of

these exchange reactions is that involving Al and Ca that resulted in the liming effect seen in

Chapter 4.

Most of the studies that have been carried out on WTR as reviewed (Chapter 2) have concerned

alum materials. Also, except for a few investigations, the liming/pH influence of the WTR has not

been an issue. From an environmental point of view, liming might be used to reclaim chemically

degraded soils (Logan, 1990) and, as a corollary to that, could prevent chemical degradation ofsoils.

A major agricultural benefit of lime is the amelioration of acid soils. Under controlled conditions,

WTR has been found to have different influences on soil pH values with a decrease (Wang et al.,

1998), no marked change (Rengasamy et al., 1980) and increases (Elliott and Singer, 1988; Heil and

Barbarick, 1989; Ahrned et al., 1997) in this soil property having been reported. In the field

Geertsema et al. (1994) reported that the WTR (and lime) did not have any significant effects on

pH 30 months after application.
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These differences in results that at first sight appear contradictory can be explained by considering

the following. The alum WTRs used by Wang et al. (1998) had low pH values of 3.9 and 5.3.

Rengasamy et al. (1990) used low rates of the alum WTR with the highest being 20 Mg ha-I. This,

coupled with the relatively low pH (6.5) of the material and thus probable insignificant quantities

of free carbonates, meant that no appreciable pH changes could be expected. On the other hand,

Elliott and Singer (1988), Heil and Barbarick (1989) and Ahmed et al. (1997) used ferric (pH 9.3),

ferric (pH 7.3) and alum (pH 7.45) WTRs, respectively. The corresponding effects were to raise the

soil pH values from 5.3 to 8.0 at 8% dry mass application, from 4.7 to 7.0 at 20 g kg-I, and from 5.7

to 7.5 at 800 Mg ha-I, respectively. If the soil bulk density is assumed to be 1340 kg m-3 and depth

of incorporation 0.15 ID, the-first two rates would be equivalent to 120 Mg ha-I and 50 Mg ha-I,

respectively.

Although applied to ameliorate acid soils, lime has also been demonstrated to sometimes have

undesirable side effects, amongst which are to reduce extractable Mg (Grove, Sumner and Syers,

1981) and to decrease K potential (Wooldridge, 1990). Also ofconcern is how rapidly, and to what

extent, the lime reacts with soils. Because ofits slow rate ofreaction the Fertilizer Advisory Service

of the KwaZulu-Natal Department of Agriculture recommends application oflime about a month

before planting; this also assumes that the soil is adequately moist in that period.

Cation exchange reactions, which would definitely occur between the WTR and soils, have been

the subject of numerous investigations. Some examples involved creating a homoionic soil by

saturating the soil with a particular cation, notably Ca (Singh, Pal and Poonia, 1981; Poonia, Mehta

and Pal 1986; Poonia and Niederbudde, 1990; Kumar, Mehta, Grewal and Singh, 1997) before

effecting the exchanges by introducing another cation. Other cation exchange reactions have been

studied in clay material that had been isolated from the bulk soil (Doula, Ioannou and Dimirkou,

1995; Escudey, Diaz, Foerster and Galindo, 1997). Nissinen, Ilvesniemi and Tanskanen (1998)

studied cation exchange reactions in podzolic soils under field conditions.

Cation exchange reactions determine the relative affinity of the competing cations for the soil
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adsorption sites (Kumar et al., 1997), and can affect chemical transport in soils (Leij and Dane,

1990). Both ofthese are ofconsiderable interest to the land disposal ofWTR. The soluble products

of the cation exchange reactions expected after dissolution would indicate which species are likely

to be redistributed or leached. Solubility and redistribution ofsolutes are critical in determining the

agronomic acceptability and environmental influence of the land disposal of the WTR.

Although the WTR investigated in this report has a low amount of free carbonates and relatively

low electrical conductivity (Chapter 3), at the quantities that may be applied these might end up at

excessive levels. Thus over liming and salinization might result which, from an agronomic point

of view, would exclude such application rates. However, as pointed out before, the study is of

environmental concern as well, so that the quantities ofWTR land-treated would not only be limited

by agronomic concerns but also by perceived effects on the environment.

The objectives ofthis chapter are as follows:

•
•
•
•

6.2

6.2.1

to establish to what extent the WTR increases pH and reduces acidity in acid soils;

to monitor WTR reaction with respect to some chemical changes over time;

to determine the effects ofWTR on soil water extracts; and

to establish the effects of the WTR on extractable basic cations.

Materials and methods

Incubation experiment: set-up and monitoring

Eleven of the soils described previously (Section 3.2.2) were used, with the strongly acid Av and

Ia-W soils of particular interest to test the liming potential of the WTR. The Nb-A and Nb-F

samples of the Namib form was used.

Soil samples (2.5 kg), excluding the Av and Ia-W, were incubated at ambient temperature and field
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capacity for 3 months after being treated with WTR at rates equivalent to 0, 40, 80, 120, 320 and

1280 Mg ha-I. The highest rate of application was equivalent to 723.20,699.40, 666.64, 853.36,

613.88,613.88, 729.36, 618.36 and 677.24 mg kg-I for the Hu-F, Hu-M, Hu-T, Ia-C, Nb-A, Nb-F,

Sd, Va and We soils, respectively. In order to monitor the WTR reaction, sub-samples were taken

during the incubation period, with the first being of the initial dry mixture (Day 1). Other samples

were taken as indicated in the results. After air-drying, these samples were analysed for pH

(duplicate 10 g samples suspended in 25 mL water for 1 hour). Extractable cations were not

measured, since the salt solutions used could confound results by extracting potentially reactive,

but as yet not reacted, species (Section 3.3). pH was also measured in IM KCI (1 :2.5 soil: solution

ratio for 1 hour), as a monitoring exercise rather than to follow trends.

The experiment using the Av and Ia-W soils was set up after the one with the other nine soils was

terminated, and ran for two months. The same rates ofWTR were applied but with the addition of

rates of20, 60 and 100 Mg ha-\ and dolomitic lime at rates equivalent to 7.5 and 15 Mg ha-I. Here

the equivalent rates for 1280 Mg ha-l were 775.76 and 948.20 mg kg-I for the Av and Ia-C soils,

respectively. The higher lime level was calculated to reduce the acid saturation to 1%. This 15 Mg

ha- l corresponded to 9.00 and 11.00 mg kg- l for the Av and Ia-W soils, respectively. The calcium

carbonate equivalent of the dolomitic lime was 80%. The monitoring procedure was the same as for

the nine soils. All treatments were based on the density of the soil sample (determined in the

laboratory from mass and volume of sample), and an assumed field incorporation of 150 mm.

6.2.2 Extractable cations and cation exchange capacity (CEC)

At the termination of the incubation experiment, duplicate air-dry samples of selected treatments

were extracted with 0.IM barium cWoride (Gillman, 1979; Section 3.2.3) or 1M potassium cWoride

(Section 3.2.3). Water extracts were obtained by shaking soil with distilled water in a soil to water

ratio of 1:2 (Sonnevelt and Van der Ende, 1971; cited by Rhoades, 1996). This ratio was selected

as it is relatively close to a saturation extract but easier to work with, and also because relative

changes rather than absolute solute concentrations were needed (Rhoades, 1996). Samples were
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analysed for electrical conductivity (BC) and pH (Chapter 3), acidity and AI by titration (Thomas,

1982), Ca, Mg and K (by atomic absorption spectrophotometry), bicarbonate and chloride (United

States Salinity Laboratory Staff, 1954), nitrate (by RQflex using nitrate strips), phosphate (Murphy

and Riley, 1962) and sulphate by precipitation as barium sulphate (Verma et a!., 1977).

The CEC was determined in the Av and Ia-W soils for selected treatments by extracting the soil four

times with strontium chloride followed by extraction with ammonium acetate (Hughes and

Girdlestone, 1994).

- 6.2.3 Relationship between surface and solution cations

The incubated soil samples treated with 0 and 1280 Mg ha-! WTR were used. Duplicate 30 g ofeach

sample were extracted with 60 mL of distilled water three times for 1 hour on an end-over-end

shaker, with 50% ethanol washes (60 mL, 10 min) between extractions. The three extracts were

analysed separately. Successive extractions were done to get an idea of the long term effects of the

WTR, on soluble species and exchangeable cations, after a large quantity of water had passed

through. These were preferred to elution studies since water-extractable cations could be related to

the corresponding barium chloride-extractable cations. Moreover, the field experiment was expected

to provide an indication of solute migration.

To establish the amount ofextractable cations corresponding to soluble cations at water extracts 2

and 3, fresh samples were used. Duplicate 109 samples were, successively, extracted with 20 mL

water, washed with 20 mL of 50% ethanol and extracted with 50 mL O.lM BaCI2. The procedure

was repeated twice with only the O.lM BaCl2 extracts retained for analysis for AI by a pyrocatechol

violet colorimetric method (South African Sugar Association Experiment Station procedure;

Appendix 4.1) using a DV/visible spectrophotometer, and Ca, K and Mg by atomic absorption

spectrophotometry.

The equation on which the relationship is based is essentially that proposed by Vanselow (1932) as
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cited by Sposito (1981). The equation is

ExMg + Ca2+(aq.)= ExCa + Mg2+(aq.) ... (6.1)

where Ex represents the exchangeable form, and aq the soluble form of the cation.

The selectivity coefficient from this reaction, referred to as the Vanselow selectivity coefficient

(Sposito, 1981) or conditional equilibrium constant (Sumner and Miller, 1996) is defined by

Kv = [ExCa](Mg2+)/[ExMg](Ca2+) ... (6.2)

where [ ] denotes concentrations and ( ) denotes activities.

Cation activities were calculated using the Visual Minteq programme (Allison, Brown and Novo­

Gradac, 1991).

6.3 Results and discussion

6.3.1 pH and acidity changes with time

The results ofmonitoring the reaction of the WTR are given in Figures 6.1 - 6.9 for the nine soils.

There was an increase in pH in both water and KCI as the amount ofWTR applied increased. The

increase was generally observed in the first 14 days, after which the pH tended to remain fairly

constant.

There were some soils and treatments that did not fully follow this general trend. These deviations

were not, however, caused by the applied material since the control results were similarI~ afi.'.e~ted.

In some cases the pH decreased after reaching a maximum i.e., theIj~oil (Figyres 6.2a and

6.2b) after 35 days; Hu-T (water pH) after 14 days (Figures 6.3a); Ia-C (water pH) at WTRrates up

to 120 Mg ha-! after about 35 days (Figures 6.4a); Nb-A (water pH) at all levels ofthe WTR (Figures
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Figure 6.1 Changes in (a) KCl and (b) water pH with time in the Hu-F soil incubated
with different rates ofwater treatment residue (R)
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Figure 6.2 Changes in (a) KCl and (b) water pH with time in the Hu-M soil incubated
with different rates of water treatment residue (R)
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Figure 6.4 Changes in (a) KCl and (b) water pH with time in the Ia-C soil incubated
with different rates ofwater treatment residue (R)
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incubated with different rates ofwater treatment residue (R)
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Figure 6.6 Changes in (a) KCI and (b) water pH with time in the Nb-F soil incubated
with different rates ofwater treatment residue (R)



72

40 60 80 100 120 140
Days of incubation

20

-e- Ra ... R40 -a- RSO _ R12a -+- R320 -+- R12S0
7.0

4.01+--r---r----..,.---.r--y---r-.,-......---r----r---.,...---,
o

--
~-J:
0.

(a)

(b) I-e- Ra ...... R40 -a- Rsa --- R120 -+- R320 -+- R1280 I

5.0

o 20 40 60 80 100 120 140
Days of incubation

Figure 6.7 Changes in (a) KCI and (b) water pH with time in the Sd soil incubated
with different rates ofwater treatment residue (R)



I-e- RO .... R40 -e- R80 _ R120~ R320 -+- R1280 I(a) 7.2

7.0

6.8

-- 6.60
~-
J: 6.4a.

6.2

6.0

5.8
0 20 40 60 80 100 120 140

Days of incubation

73

(b)
7.7

7.6

7.5-....! 7.4;- 7.3J:
a.

7.2

7.1

7.0
0

I -e- RO .... R40 -e- R80 - R120~ R320 -+- R1280 I

20 40 60 80 100 120 140
Days of incubation

Figure 6.8 Changes in (a) KCf and (b) water pH with time in the Va soil incubated
with different rates ofwater treatment residue (R)



74

(a)

6.8

--o
~ 6.0
:I:
Co

5.6

5.2

-e- RO ... R40 -a- RaO R120~ R320 -+- R1280

o 20 40 60 80 100 120 140
Days of incubation

40 60 80 100 120 140
Days of incubation

20

I-e- RO'" R40 -e- R80 ...... R120~ R320 -+-R1280 I

6.2

6.0

5.8-1-,--,-~~r---r~::!:;:!~::;::=~
o

"C'
S

!
J:
Co 6.4

(b)

Figure 6.9 Changes in (a) KCl and (b) water pH with time in the We soil incubated
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6.5a); Nb-F (water pH) at WTR levels < 320 Mg ha-I(Figures 6.6a); Sd (water pH) at all levels of

the WTR (Figures 6.7a); Sd (KCI pH) at WTR levels < 320 Mg ha"I; and We (pH water) where the

WTR was applied at rates <320 Mg ha-I. In the Va soil the pH did not show any clear response to

the WTR over time (Figures 6.9a and 6.9b) although the pH measured in both water and KCI did

increase with increase in the application rate of the WTR.

These somewhat aberrant results occurred in samples where pH was measured in water. It is

possible therefore that the poorly buffered water suspensions were subject to a decrease in pH on

absorbing atmospheric carbon dioxide. Also at the relatively low rates of application where the

decrease in pH was mostly observed, the WTR probably did not supply enough soluble salts to resist

the carbon dioxide influence.

In the Av (Figures 6.10a and 6. lOb) and Ia-W (Figures 6.11a and 6.11b) soils, the maximum pH was

reached after 6 days for both the lime and the WTR treatments. Comparing these results with those

of the other nine soils, it appears that liming materials react faster where pH is initially lower,

although a direct comparison is not possible as the experiments were conducted at different times

and therefore at possibly different ambient temperatures.

Potassium chloride extractable acidity was also fairly constant in both soils after Day 6 for rates up

to 100 Mg ha-Iin the Av soil (Table 6.1) and 120 Mg ha"} in the Ia-W soil (Table 6.2). The lime (L1

rate) also behaved similarly. For the WTR rates higher than those mentioned above for the

respective soils, and for the L2 rate of lime, the reaction was completed in an even shorter time.

These results are comparable to those ofOsei (1995) where, studying the effects ofanalytical grade

calcium carbonate in acid soils under laboratory conditions, the highest pH was reached in 10 days

and exchangeable Al was eliminated in 7 days.
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Table 6.1 Changes in extractable acidity (cmolekg-I) with time in the Av soil incubated with
water treatment residue or lime over 60 days

Day Water treatment residue (Mg ha-I) Lime (Mg ha-I)

0 20 40 60 80 100 120 320 1280 7.5 15

3.80 2.96 2.04 1.53 0.87 0.78 0.44 0.05 1.92 1.92 0.94

3 3.65 2.35 1.40 0.74 0.31 0.19 0.09 0.03 0.54 0.54 0.40

6 3.74 2.18 1.00 0.42 0.12 0.07 0.05 0.04 0.16 0.16 0.02

9 3.52 2.25 1.10 0.48 0.15 0.07 0.06 0.04 0.24 0.24 0.03
12 3.42 2.14 1.14 0.52 0.16 0.08 0.05 0.04 0.26 0.26 0.03
15 3.63 2.23 1.10 0.46 0.17 0.08 0.04 0.03 0.12 0.12 0.02
30 3..72 2.09 1.11 0.38 0.11 0.06 0.05 0.03 0.09 0.09 0.02
60 3.64 2.00 0.89 0.18 0.07 0.06 0.04 0.03 0.03 0.03 0.02

Table 6.2 Changes in extractable acidity (cmolekg-1
) with time in the Ia-W soil incubated

with water treatment residue or lime over 60 days

Day Water treatment residue (Mg ha-I) Lime (Mg ha-I)

0 20 40 60 80 100 120 320 1280 7.5 15

1 3.80 3.18 2.58 2.14 1.94 1.54 0.91 0.12 0.04 2.11 0.94
3 3.66 2.58 1.70 1.21 0.81 0.46 0.35 0.09 0.00 1.50 0.38
6 3.66 2.31 1.45 0.83 0.46 0.26 0.18 0.09 0.00 1.10 0.24
9 3.86 2.66 1.46 1.02 0.62 0.36 0.22 0.09 0.00 1.16 0.24

12 4.00 2.23 1.44 0.74 0.50 0.25 0.22 0.06 0.00 1.14 0.21
15 3.47 2.22 1.36 0.70 0.45 0.27 0.17 0.08 0.00 1.03 0.18
30 3.63 2.44 1.46 0.74 0.47 0.23 0.14 0.08 0.00 0.82 0.04
60 3.96 2.70 1.42 0.88 0.52 0.27 0.17 0.06 0.00 0.82 0.06

6.3.2 Extractable cations and cation exchange capacity

As expected, since the WTR contains a high amount of extractable Ca and appreciable contents of

Mg (Section 3.3), the salt extractable forms of these cations in the nine soils increased with

increasing application rate (Table 6.3a). Results for the Av and Ia-W soils are given in Table 6.3b.

Potassium and Na (results not shown) were both unaffected and were in low concentrations

throughout « 0.5 cmolekg-1
).

Just like lime, the WTR increased extractable Ca and Mg whilst reducing acidity and AI (Table
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6.3b). The observed decrease in acid saturation was thus due to both an increase in the basic cations

and a decrease in acidic cations.

In the Av soil an acid saturation ofabout 20% (21.5%) was achieved at about 40 Mg ha-
l
ofapplied

WTR and at pH values of4.83 (H20) and 4.27 (KCI) (Table 6.3b. The comparable values for Ia-W

soil were 60 Mg ha-l ofWTR and pH values 4.60 (H20)and 4.24 (KCI). Thus the Ia-W soil, with

appreciably higher organic matter content that contributes to buffering, needed a higher rate ofWTR

to reach similar pH values and acid saturation. The lower lime level in the Ia-W soil gave an acid

saturation of16% at a pH of5.33 (H20) and 4.33 (KCl), the water value being notably higher than

that of the comparative WTR application rates. If lime and the WTR are compared with respect to

pH (H20), then in the Av soil the lower lime level gave the values ofa WTR rate between 120 and

Table 6.3a Calcium and magnesium extracted with barium chloride from nine incubated
soils at selected rates ofwater treatment reidue (Mg ha-I)

Soil Calcium Magnesium
(cmolckg- l

) (cmolckgo1
)

0 80 320 1280 0 80 320 1280

Hu-F 5.04 6.48 7.03 8.77 1.94 2.19 2.41 2.77
Hu-M 4.97 5.27 5.46 5.91 3.29 3.41 4.09 4.71
Hu-T 2.36 2.68 5.65 10.60 1.48 1.63 1.79 3.41
Ia-C 1.99 2.22 6.46 11.76 0.91 1.57 1.65 3.33

Nb-A 0.81 1.43 2.55 5.13 0.58 0.63 0.72 1.75
Nb-F 1.65 2.16 4.55 8.46 0.56 0.60 0.77 3.24

Sd 4.78 6.74 8.24 8.34 4.76 5.04 5.90 6.78
Va 4.69 5.35 7.21 8.80 2.53 2.80 3.43 3.54
We A 01 7.11 8.09 8.90 2.82 3.02 3.25 3.38"".7 J

320 Mg ha- l and between 100 and 120 Mg ha-l for the pH (KCl). In the Ia-W soil the corresponding

values were again between 120 and 320 Mg ha- l for pH (H20) and about 80 Mg ha- l for pH (KCl).

So different results are obtained by using acid saturation or pH to compare the liming potential of

the WTR with that of the lime in terms ofequivalent application rates ofWTR.

pH values for lime (Table 6.3b) were interpolated in a pH vs WTR application rate graph (results
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not shown) to get amount ofWTR equivalent to a respective level of lime. The following results

were obtained, incorporating also the 80% effectiveness of the lime and the 3.8% active calcium

carbonate in the WTR:-

In the Av soil the water pH values of 6.26 forL7.5 (6.0 Mg ha- l at 80% effectiveness) andL15 (12.0

Mg ha-I at 80% effectiveness) give WTR rates of 162.5 and 655 Mg ha-I, respectively. The

corresponding amounts of calcium carbonate contained by these rates at 3.8% are 6.2 and 24.9 Mg

ha-I. The corresponding rates ofWTR in the Ia-W for soil pH values of 5.33 and 5.90 are 170 and

305 Mg ha-I. The active calcium carbonate content in 170 and 305 Mg ha- l of WTR is 6.5 and 11.6

Mg ha-I, respectively. Except for the higher level of lime in the Av soil, where some error might

have occurred in the pH measurement, the calcium carbonate equivalents between the WTR and

lime are in reasonable agreement. It can also be reported here that the potassium chloride pH values

did not show this calcium carbonate relationship.

Cation exchange capacity in the Av and Ia-W soils increased with increase in amount ofWTR or

lime applied (Table 6.3b). This is testimony to the significant presence ofconstituents with variable

charge surfaces in these two soils, although the WTR could have contributed its own CEC (see

Table 3.1b).

6.3.3 Water extracts

Results of water extractable ions (Tables 6.4a and b) showed a similar trend to that of salt

extractable cations for Ca and Mg. For the lime treatment, the concentrations are very low, with Ca

and Mg amounts being equivalent to those ofbetween 0 and 80 Mg ha-I ofapplied WTR. This was

expected since in these variable charge soils the increase in pH will have created negative charges

that attracted Ca and Mg to the surfaces ofsoil colloids thus reducing their solubility. The data from

Tables 6.4a and b also show that there is an increase in chloride and nitrate with addition of the

WTR. The chloride results could be expected since the WTR contains significant quantities of this

element (Section 3.3). Nitrate, however, was not expected to increase since both Kjeldahl and

soluble forms were low (Section 3.3). Ifthe nitrate originated from the soil, then the increase could
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have been through supply ofmoisture, or pH amelioration that increased the activity ofmineralizing

microorganisms. If this was the case, then the Nb-A and Nb-F soils, with low contents of organic

matter, should have shown little response. Results in Table 6.4a, however, show that the nitrate

levels increased by between seven and ten times at the highest rate of WTR in these soils. If an

increase in pH was the cause, then the higher nitrate levels would have been observed only in the

Av and Ia-W soils which had low initial pH values; again, this was not the case. Also against the

role of pH was the fact that lime did not increase the nitrate levels compared to the control.

Table 6.3b Some selected chemical properties in the Av and Ia-W soils incubated with different

rates ofwater treatment residue (R) and lime (L)

Soil Treatment pH pH Acidity AI Ca Mg CEC Acid
(H2O) (KC1) saturation

(Mgha· l
) (cmol"kg·1

) (%)

Av RO 4.13 3.95 3.45 2.93 0.49 0.13 1.1 84.7
R20 4.51 4.02 1.91 1.58 1.94 0.33 nd 45.7
R40 4.83 4.27 0.86 0.59 2.68 0.47 nd 21.3
R60 5.32 4.67 0.14 0.14 3.43 0.63 nd 3.3
R80 5.66 4.94 0.06 0.13 3.93 0.77 1.1 1.3

R100 5.86 5.22 0.05 0.06 5.06 0.89 nd 0.8
R120 6.07 5.55 0.04 0.03 5.34 0.93 nd 0.6
R320 6.80 6.87 0.03 0.01 8.26 1.23 1.9 0.3

R1280 7.36 7.48 0.00 0.00 10.34 2.89 4.0 0.0
L7.5 6.26 5.43 0.02 0.00 2.40 2.50 1.4 0.4
LI5 7.07 6.77 0.01 0.00 3.46 3.31 1.7 0.2

Ia-W RO 3.83 3.84 3.89 3.35 0.41 0.18 1.5 86.8
R20 4.16 3.97 2.63 1.85 1.71 0.41 nd 55.4
R40 4.41 4.13 1.57 0.77 2.67 0.71 nd 31.7
R60 4.60 4.24 0.86 0.42 2.93 0.85 nd 18.5
R80 4.73 4.35 0.55 0.27 4.77 0.94 1.4 8.8

RlOO 4.91 4.58 0.25 0.12 ·5.49 1.15 nd 3.6
R120 5.01 4.67 0.17 0.07 6.43 1.33 nd 2.1
R320 5.94 5.90 0.05 0.02 10.39 2.06 2.1 0.4

R1280 6.91 7.16 0.00 0.00 13.13 3.00 5.4 0.0
L7.5 5.33 4.33 0.84 0.49 2.27 2.27 1.7 16.0
LI5 5.90 5.39 0.05 0.0 3.41 3.41 1.9 0.7

nd-not determined
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Table 6.4a Some water extractable solutes in nine incubated soils at selected rates ofwater

treatment residue (R)

Soil Treatment Ca Mg Cl N03

(Mgha-1) (cmolcL-J
)

Hu-F RO 0.24 0.14 0.06 0.40

R80 1.27 0.17 0.08 0.44
R320 1.53 0.20 0.13 0.53
RI280 2.51 0.36 0.35 1.08

Hu-M RO 0.27 0.42 0.04 0.11
R80 0.30 0.47 0.04 0.97
R320 0.33 0.45 0.04 0.97
R1280 0.39 0.42 0.07 0.97

Hu-T Ra 0.15 0.16 0.04 0.35
R80 0.20 0.18 0.06 0.59

R320 0.33 0.22 0.15 0.62
R1280 1.16 0.47 0.48 1.03

Ia-C RO 0.27 0.27 0.07 0.91
R80 0.54 0.30 0.09 1.25

R320 0.71 0.40 0.15 1.37
R1280 1.38 0.43 0.48 1.71

Nb-A RO 0.02 0.03 0.08 0.09
R80 0.07 0.08 0.10 0.15

R320 0.22 0.12 0.12 0.35
R1280 0.99 0.28 0.26 1.06

Nb-F RO 0.04 0.03 0.06 0.09
R80 0.14 0.08 0.10 0.12

R320 0.27 0.12 0.14 0.28
R1280 1.01 0.28 0.31 0.63

Sd RO 0.27 0.20 0.00 0.05
R80 0.44 0.32 0.12 0.72

R320 0.68 0.37 0.22 0.73
R1280 0.85 0.45 0.23 0.76

Va RO 0.05 0.05 0.08 0.08
R80 0.17 0.39 0.11 0.22

R320 0.31 0.58 0.15 0.47
R1280 0.97 0.78 0.34 0.70

We RO 0.02 0.02 0.09 0.01
R80 0.58 0.12 0.15 0.31

R320 1.33 0.19 0.20 0.48
R1280 1.50 0.37 0.30 0.66
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Table 6.4b Some water extractable solutes in Av and Ia-W soils incubated with different rates

ofwater treatment residue (R) and lime (L)

Soil Treatment

(Mg ha-I)

Av RO
R80

R320
R1280
L7.5
L15

Ia-W RO
R80

R320
R1280
L7.5
L15

Ca

0.17
0.39
1.09
1.54
0.18
0.25

0.09
0.43
1.30
2.49
0.14
0.16

Mg Cl N03

(cmoleL-1
)

0.05 0.06 0.15
0.09 0.13 . 0.21
0.20 0.35 0.44
0.45 0.64 0.67
0.32 0.07 0.17
0.44 0.11 0.19

0.08 0.05 0.35
0.15 0.20 0.44
0.36 0.55 0.75
0.61 0.74 1.16
0.40 0.03 0.04
0.50 0.06 0.05

To clarify whether the increase in nitrate levels with applied WTR was a function of time, non­

incubated soil-WTR and soil-lime mixtures of all eleven soils were compared with the incubated

soils. These results (Table 6.5) show that incubation increased water extractable nitrate, and that

untreated soils also released nitrate with time. Some ofthe water extractable nitrate came from the

soil, but the majority came from the WTR. The incubated Nb-A soil, for example, released only 0.03

cmoleL-1 of nitrate, but when mixed with the lowest rate of the WTR (80 Mg ha-I) four times as

much nitrate was released. From all this, it can be deduced that on incubation with soil, the WTR

releases nitrate with time. This is probably through mineralization ofits own organic constituent(s),

followed by nitrification. The possibility of initial soil inorganic ammonium being a nitrate source

is rejected because it is only the WTR-treated soils which experienced these nitrate increases; the

control and lime-treated soils did not, the latter thus ruling out pH as a major factor in the results

(as suggested above). The possibility ofthe highly mobile nitrate moving with percolating soil water

raises concern on the possibility of ground water pollution by this species. This issue is addressed

in Chapter 7.
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Bicarbonate, phosphate and sulphate could not be detected by the analytical methods used.

Similarly, amounts ofK and Na were either very low or undetectable. Calcium, Mg, Cl and N03

were thus the dominant and thus most significant ions in the water extracts.

It is noted that for some soils and treatments (Tables 6.4a and b), the sum ofcations and anions are

not the same as should be expected. A possible reason is the inadequacy of the analytical methods

used, especially for bicarbonate and sulphate.

6.3.4 Successive barium chloride and water extracts

Except for pH, all other properties ofwater extracts, i.e., electrical conductivity, Ca, Mg, Cl and

N03 decreased with increase in number ofextractions as expected (Table 6.6). These observations

are true for all soils and the two application rates ofthe WTR considered, i.e., 0 and 1280 Mg ha-i.

Since it is observed in the control as well, the increase in pH with increasing number ofextractions

is not solely caused by the introduction of the basic WTR. This increase was observed in the

strongly acid Av and Ia-W soils as well, where the water extractions would be expected to favour

removal ofCa and Mg whilst facilitating the adsorption ofAI, which would then reduce pH. Water­

extractable AI was indeed analytically detectable only in the first extraction at the 0 rate of WTR

in both soils, being 0.14 and 0.38 cmolckg-1 (0.07 and 0.19 cmolcL-1)in the Av and Ia-W soils,

respectively.

Breakthrough pH curves of acid soils treated with Ca-saturated coal-derived organic products

showed a progressive decrease in pH which passed through a minimum before steadily increasing

(Noble, Randall and James, 1995). This pH behaviour was reportedly caused by the ionic strength,

which had an inverse relationship to the pH. In the column-leaching work of Smith, Gob, Bond and

Freney (1995), calcium chloride and phosphogypsum as eluents produced curves where pH showed

a decline with increase in volume ofleachate. On the other hand, where calcium citrate and calcium

fulvate were eluents, pH increased with increase in the leachate volume (Smith et al., 1995). The

explanation for the pH increase was a ligand exchange reaction between citrate or fulvate anions and
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Water extractable nitrate (cmolcL-1
) in incubated and non-incubated soils mixed with

water treatment residue (R) or lime (L) at different rates (Mg ha-I)

Soil Non-incubated Incubated

RO R80 R320 R1280 L7.5 LI5 RO R80 R320 R1280 L7.5 LI5

Av 0.11 0.11 0.09 0.07 0.10 0.11 0.19 0.24 0.45 0.92 0.11 0.12
Hu-F 0.09 0.11 0.12 0.11 na na 0.07 0.37 0.69 0.98 na na
Hu-M 0.03 0.03 0.03 0.03 na na 0.24 0.43 0.67 0.73 na na
Hu-T 0.00 0.00 0.00 0.00 na na 0.40 0.70 0.95 1.57 na na
Ia-C 0.30 0.58 0.69 0.74 na na 0.96 1.09 1.17 1.40 na na
Ia-W 0.07 0.07 0.06 0.05 0.06 0.06 0.32 0.40 0.79 1.29 0.29 0.32
Nb-A 0.00 0.00 0.00 0.00 na na 0.03 0.14 0.32 0.71 na na
Nb-F 0.00 0.00 0.01 0.02 na na 0.01 0.61 0.73 0.76 na na

Sd 0.00 0.00 0.00 0.00 na na 0.03 0.60 0.67 0.83 na na
Va 0.00 0.00 0.00 0.00 na na 0.12 0.15 0.28 0.72 na na
We 0.04 0.04 0.06 0.12 na na 0.01 0.17 0.26 0.38 na na

na=treatment not applied

hydroxyl ions to release these basic anions into solution. In the work ofboth Noble et al. (1995) and

Smith et al. (1995) there was no report on the control treatments. Gillman, Burkett and Coventry

(2001) also reported an increase in leachate pH of eluted soils after incubation with basalt dust.

Small increases in soil pH after leaching were also observed in control experiments (Gillman et a!.,

2001), as happened in the subsequent water extracts in the current study. Thomas (1996) presented

evidence that the pH of a particular soil increases with increase in the water to soil ratio. In other

words, as the sbil solution becomes more dilute (more water compared to soil), the pH increases.

As the repeated extractions used here dilute the soil solution, the pH results in the current study

seem to subscribe in part to this principle of soil: solution ratio. As is reported above, an increase

in ionic strength reduces pH (Noble et al., 1997), then apparently a decrease in ionic strength by

dilution has the effect of increasing the pH. The re-adsorption of AI because of dilution probably

reduces its extent of hydrolysis, with consequently less hydrogen ions released.

Amounts of Ca and Mg extracted with BaC12 also decrease with each successive extraction, the
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Some chemical properties of successive barium cWoride and water extracts of the

soils treated with water treatment residue (WTR) at rates of 0 and 1280 Mg ha- l

H20 extracts BaCl2 ell.iracts

Soil WTR ElI.ir.
(Mgha' l ) no. EC pH Ca Mg Cl NO, Ca Mg

(dS m'l) (cmol.kg·1) (cmol.kg'l)

Av 0 1 0.29 4.44 0.10 0.01 0.02 0.04 0.42 0.03
2 0.07 4.58 0.02 0.00 0.00 0.00 0.34 0.02
3 0.03 4.82 0.02 0.00 0.00 0.00 0.22 0.02

1280 1 1.39 7.37 3.67 0.90 1.23 1.34 14.41 3.37
2 0.22 7.44 0.32 0.14 0.10 0.16 10.68 2.00
3 0.08 8.00 0.14 0.06 0.00 0.02 10.48 1.75

Hu-F 0 1 0.44 4.52 0.29 0.29 0.12 0.86 5.04 2.18
2 0.05 4.99 0.05 0.06 0.06 0.18 4.50 1.66
3 0.03 5.15 0.04 0.04 0.00 0.04 4.34 1.31

1280 1 1.35 6.63 0.95 0.72 0.60 2.16 7.03 2.76
2 0.23 6.88 0.45 0.16 0.14 0.46 5.96 2.11
3 0.10 7.02 0.04 0.07 0.08 0.28 5.34 1.82

Hu-M 0 1 0.91 5.50 0.64 0.84 0.08 1.76 4.97 4.71
2 0.13 5.80 0.06 0.09 0.04 0.24 4.28 4.02
3 0.06 5.97 0.04 0.07 0.00 0.04 4.03 3.20

1280 1 1.90 7.20 0.78 0.85 0.12 2.04 5.46 4.10
2 0.25 7.20 0.08 0.11 0.04 0.30 4.79 3.42
3 0.09 7.55 0.04 0.06 0.00 0.14 4.60 2.92

Hu-T 0 1 0.40 4.87 0.29 0.31 0.08 0.70 2.36 1.79
2 0.12 5.30 0.05 0.04 0.00 0.08 1.85 1.33
3 0.02 5.33 0.04 0.02 0.00 0.02 1.63 1.09

1280 1 0.88 5.21 2.32 0.93 0.96 2.06 10.60 3.41
2 0.08 5.60 0.46 0.30 0.12 0.50 8.50 1.78
3 0.03 5.62 0.33 0.12 0.00 0.18 7.63 1.57

Ia-C 0 1 0.56 4.65 0.55 0.60 0.14 1.84 1.99 1.65
2 0.06 4.93 0.06 0.09 0.00 0.26 1.44 0.78
3 0.02 5.31 0.02 0.02 0.00 0.06 1.40 0.58

1280 1 2.12 6.90 2.76 0.53 0.84 3.42 11.76 3.33
2 0.42 6.97 0.64 0.18 0.24 0.72 9.45 2.004
3 0.21 7.04 0.23 0.08 0.10 0.34 8.96 1.55

EC electrical conductivity
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Table 6.6 cont. Some chemical properties of successive barium chloride and water extracts ofthe
soils treated with water treatment residue (WTR) at rates of 0 and 1280 Mg ha-!

H20 eJo.1raction BaClzextraction
Soil WTR

Extr.
(Mgha· l

) EC pH Ca Mg Cl N03 Ca Mg
no.

(dS m· l ) (cmol,kg'l ) (cmol, kg· l
)

la-W 0 1 0.22 3.67 0.15 0.12 0.10 0.70 0.39 0.20
2 0.03 3.85 0.05 0.03 0.08 0.12 0.24 0.07
3 0.02 4.31 0.04 0.02 0.02 0.02 0.12 0.04

1280 1 1.87 6.48 3.75 0.90 1.48 2.32 17.99 3.37
2 0.32 6.59 0.45 0.14 0.10 0.28 14.50 2.09
3 0.17 6.62 0.19 0.06 0.06 0.04 13.62 1.72

Nb-A 0 1 0.07 5.45 0.04 0.06 0.16 0.20 0.81 0.72
2 0.01 5.72 0.02 0.04 0.12 0.16 0.53 0.54
3 0.00 5.99 0.02 0.02 0.04 0.00 0.45 0.42

1280 1 1.07 7.18 1.98 0.56 0.50 2.14 5.13 1.75
2 0.18 7.27 0.44 0.12 0.06 0.46 3.21 1.34
3 0.08 7.52 0.14 0.06 0.00 0.18 2.75 1.02

Nb-F 0 1 0.11 5.00 0.08 0.06 0.10 0.18 1.80 0.56
2 0.01 5.50 0.04 0.03 0.04 0.02 1.74 0.40
3 0.01 5.77 0.02 0.02 0.02 0.00 1.65 0.18

1280 1 l.08 7.08 2.03 0.56 0.78 1.26 8.46 3.24
2 0.18 7.29 0.33 0.12 0.10 0.28 7.84 2.53
3 0.08 7.45 0.14 0.06 0.02 0.04 6.97 1.83

Sd 0 1 0.67 4.79 0.60 0.94 0.00 0.30 6.05 7.49
2 0.06 5.01 0.06 0.09 0.00 0.04 5.32 6.24
3 0.03 5.42 0.04 0.06 0.00 0.02 4.34 5.60

1280 1 0.54 6.46 1.36 0.98 0.46 1.20 11.07 6.41
2 0.14 6.61 0.23 0.19 0.04 0.14 9.07 4.83
3 0.10 7.00 0.08 0.08 0.02 0.02 8.54 4.58

Va 0 1 0.16 6.91 0.10 0.10 0.16 0.16 4.69 3.43
2 0.03 7.00 0.10 0.10 0.02 0.02 4.30 2.67
3 0.02 7.19 0.06 0.06 0.00 0.00 3.26 1.78

1 1.11 7.11 1.94 0.77 0.70 1.40 8.80 3.54
1280 2 0.25 7.32 0.33 0.16 0.18 0.30 6.76 2.28

3 0.11 7.53 0.14 0.08 0.04 0.08 5.97 1.78

We 0 1 0.09 5.80 0.06 0.04 0.18 0.02 4.65 3.25
2 0.03 6.30 0.02 0.04 0.08 0.00 4.26 3.09
3 0.02 6.42 0.00 0.04 0.04 0.00 3.46 2.19

1 1.05 6.68 0.54 0.75 0.62 1.32 9.55 3.38
1280 2 0.17 7.11 0.16 0.16 0.12 0.20 8.03 2.48

3 0.08 7.18 0.06 0.08 0.04 0.06 7.21 1.97

EC electrical conductivity
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differences between consecutive (BaCI2) extractions generally reflecting "losses" by the water

extractions in-between. In trying to relate the "exchangeable" (BaCI2-extractable) and soluble (H20 )

cations, a binary system of cations is needed to suit the relevant equation (Sposito, 1981; Sumner

and Miller, 1996). Soils chosen for relating exchangeable and soluble cations were thus the Hu-M,

Hu-T, Nb-A, Sd, Va and We. Since each of these soils contained more than 95% of Ca and Mg in

"exchangeable" form, it was assumed that they represented a binary system.

Application ofEquation 6.2 yielded the data in Table 6.7. The Vanselow selectivity coefficient (Eq.

6.2) shows the nature of the distribution of cations between the solid soil fraction and the soil

solution (Orlov, 1992). This distribution in the current investigation changes with increase in

number of extractions, and with introduction of the WTR in all six soils. These changes were

expected since this selectivity coefficient varies with the composition of the exchange phase

(Sumner and Miller, 1996), which surely changes with the introduction of the WTR, and the

sequential extractions.

Table 6.7 Selectivity coefficients (K) of a Ca-Mg exchange reaction in six soils treated with
oand1280 Mg ha-1 ofwater treatment residue (R) under successive extractions

Extr. Hu-M Hu-T Nb-A Sd Va We
no.

RO R1280 RO R1280 RO R1280 RO R1280 RO R1280 RO R1280

1 1.40 1.46 1.39 1.26 1.63 0.84 1.26 1.24 1.37 2.49 0.99 3.91
2 1.60 1.84 1.11 3.09 1.37 0.65 1.31 1.56 1.61 2.97 2.48 3.24
3 2.10 2.28 0.83 1.75 1.07 1.17 0.09 1.87 1.97 3.24 nd 4.79

nd means not calculable because Ca not detectable in solution

In the data ofKerr (1929), cited in Sposito (1981), the values ofa Ca-Mg reaction coefficient in a

silt loam, which differs from the Vanselow selectivity coefficient by using concentrations instead

of activities, ranged between 2.84 and 3.07, with a mean of2.08.

In four of the six soils, namely Hu-M, Sd, Va and We, the changes generally give evidence of
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Equation 6.1 shifting to the right, thus favouring adsorption of Ca and solubility ofMg. This was

deduced from the Kv values generally increasing with the introduction of the WTR, and also with

increase in number of extractions (Table 6.7). In other words there is a selectivity of Ca over Mg

by the exchange complex for these soils under the imposed conditions. Not only would Ca be

preferentially surface-adsorbed compared to Mg because ofits higher ionic potential (Bohn, McNeal

and O'Connor, 2001), but mass action effects ofCa because ofthe introduced WTR would enhance

this selectivity. Leaching ofMg would thus be expected to be accelerated by application ofthe WTR

in these four soils. In the Nb-A soil the trend appeared to be a shift ofEquation 6.1 to the left with

both the application of the WTR and increase in number of extractions. Since this soil has a very

low cation exchange capacity (Table 3.1b), the exchange reaction is somewhat insignificant, such

that virtually all Ca introduced with the WTR remains in solution.

6.4 Conclusions

The WTR applied to a range of soils increased pH, extractable Ca and Mg, soluble salt content,

chloride, nitrate and cation exchange capacity whilst decreasing acidity. From an agronomic point

of view, these are favourable changes. The increase in nitrate content could in part explain the

increase in yields observed in the pot experiment (Section 4.3.1) and Ukulinga field experiment

(Section 5.3.3). From an environmental point ofview there might be some concern with respect to

increased solubility of chloride and nitrate. These two anions are highly mobile and might cause

relatively high amounts ofCa and Mg, the other dominant ions, to be leached to the groundwater.

Ofgreater concern, however, would be ifheavy metals were amongst such companion cations. This

matter is addressed in Chapter 9.
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CHAPTER 7

WATER TREATMENT RESIDUE AND SOLUTE DYNAMICS IN FIELD

EXPERIMENTS

7.1 Introduction

The soil is an open system, being in contact with the atmosphere and the groundwater with which

it exchanges materials. Such exchanges are causes of ongoing disturbances to any equilibrium the

soil strives to achieve.

With man's activities, an in situ soil system at equilibrium becomes even less likely. Inputs are

forever being made to soils - ranging from applications of, inter alia, .manures, fertilizers, limes,

irrigation water and pesticides, to disposal ofwaste materials.

Geertsema et al. (1994) considered that WTR disposed of on land can affect the environment

through plant quality, soil quality, soil water and groundwater. These investigators proceeded to

monitor and analyse relevant materials to establish whether 30 months after application to a field

on which pine trees were growing this material would have any effect(s) on any of these

environmental aspects. No such effects were observed. Some factors associated with plant quality

under field conditions were addressed in Chapter 5. The interest here is on the influence ofthe WTR

on certain soil chemical properties and soil water.

The objectives ofthis chapter are to establish whether the WTR applied to the field would have any

influence on the following:-

•
•
•

depth distribution of pH;

migration of major solutes (excluding P); and

changes in soil solution composition.
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7.2 Materials and methods

Soils were sampled from fallow plots of the two experimental sites (Section 5.2.3) at dates and

depths indicated (Tables 7.1 to 7.6). Analysis was done on soil samples collected from 1998 to

2001. The samples used were collected mainly from the control and 1280 Mg ha-ltreatments which

is where any drastic differences were likely to occur. Plots with the 1280 Mg ha-l mulched

treatments were sampled from the surface of the actual soil, in other words below the mulch.

The pH was measured in water and/or IM KCI solution in a 1:2.5 soil: solution ratio. Calcium and

Mg were extracted with IM KCI solution and analysed using an atomic absorption

spectrophotometer.

To determine the soluble species, the soil solution was separated from a saturated paste by vacuum

following overnight equilibration. Electrical conductivity (EC) of the saturation extract was

determined with a conductivity meter, Ca and Mg were analysed as indicated above, bicarbonate

and chloride by titration (United States Salinity Laboratory Staff, 1954) and nitrate by an RQf1ex

(Chapter 3).

7.3 Results and discussion

7.3.1 Depth distribution ofpH in soils from Brookdale and Ukulinga Farms

The pH values of the Brookdale samples increased with the passing of years in the incorporated

1280 Mg ha-l in all studied depths (Table 7.1a). In the mulched treatment, essentially the same

observation was made except for the 200-400 mm depth in 2000 with a higher value and the 0-200

mm depth in 2001 with a lower value. In the first year of the experiment (1998), the pH of the

samples where the WTR was applied was less than that ofthe control. In the following three years

the pH values of the WTR-treated soils became greater than those of the control samples at the 0­

200 mm depth. For all three treatments in 1998 the pH increased with depth, an unexpected situation
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especially considering that the land had been under cropping, and so would have been limed. For

the control and the incorporated treatment, except for the 0-200 mm depth in 2000, this situation

persisted until 2001. In the mulched treatment the expected decrease ofpH with depth was observed

in 1999 and 2000, with the situation reverting to that of 1998 in 2001. What can be read from these

results is that the water treatment residue increases pH, although these effects apparently do not last

for long.

In the 2001 samples from Brookdale, the trend of pH increasing with depth is still evident in all

treatments, including lime (Table 7.1b). The pH generally increased in the order:- control, mulched

and incorporated WTR treatments at almost all depths. The greater effectiveness ofthe incorporated

treatment is attributed to a higher rate ofreaction between the WTR and soil which is facilitated by

the mixing. The higher lime treatments also increased pH compared to the control and the lower

lime level. The pH increases resulting from the WTR and lime extend to essentially the 1000-1200

mm depth, defying the understood fact oflime effects being confined to the area of application.

Table 7.1a: Potassium chloride pH values of selected depth samples from Brookdale Farm at
selected rates ofwater treatment residue from 1998 to 2001

WTR applied

Sampling date
Sampling depth

0 l280i 1280m
(mm)

(Mgha-1)

September 0-200 4.52 4.41 4.30
1998 200-400 4.48 4.48 4.35

400-600 4.86 4.82 4.73

February 0-200 4.49 4.57 5.40
1999 200-400 4.88 4.70 4.88

400-600 4.96 4.94 4.97

February 0-200 4.47 5.33 5.79
2000 200-400 4.97 5.00 4.84

400-600 5.22 5.07 5.04

February 0-200 4.34 5.12 4.49
2001 200-400 4.87 4.86 4.96

400-600 5.01 5.37 5.17

i = incorporated treatment; m = mulched treatment
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Table 7.tb Potassium chloride and water pH values of depth samples from Brookdale Farm at

selected rates (Mg ha-I) ofwater treatment residue (R) and lime (L) in February 2001

Sampling pH(KC1) pHCHP)
depth

RO R1280i R1280m L2 LlO(mm) RO R1280i R1280m L2 LlO

0-200 4.34 5.12 4.49 4.49 5.18 5.30 5.77 5.16 4.95 5.73
200-400 4.87 4.86 4.96 4.83 5.10 5.43 5.41 5.52 5.34 5.68
400-600 5.01 5.37 5.17 5.00 5.21 5.68 5.81 5.67 5.41 5.67
600-800 5.18 5.82 5.44 5.38 5.64 5.61 6.28 5.66 5.35 5.95
800-1000 5.20 6.04 5.65 5.35 5.73 5.37 6.35 5.62 5.28 5.98
1000-1200 5.26 6.12 5.56 5.29 5.65 5.70 6.23 5.66 5.34 5.81

i = incorporated treatment; m =mulched treatment

This pH trend, however, is also observed in the control plots (Table 7.1b), implying that the WTR

and lime treatments enhanced rather than caused it.

In the We soil (Table 7.2), the ability ofthe WTR and the lime to increase pH (KCI and H20) over

the control is mostly clear in the 0-100 and 100-200 mm depths. The effects of the WTR are

throughout the whole profile, i. e., to the 400-500 mm depth for pH(KCl). As in the Brookdale depth

samples, it is not understood by what mechanism this increase in pH with depth could have

occurred. In Chapter 6 it was shown that the abundant anions in a WTR-treated soil were chloride

and nitrate, which are potential acids. Bicarbonate, the likely ion for increasing pH with depth, was

determined to be low and so would be expected to have insignificant effects.

7.3.2 Depth distribution ofCa and Mg in soils from Brookdale and Ukulinga Farms

Introduction ofthe WTR reduces the concentrations ofboth Ca and Mg (Table 7.3a). These results

contradict those from the incubation experiment where application of the WTR increased the

concentrations ofthese two cations (Table 6.3a). The possibility ofthe dilution effect caused by the

relatively inert large aggregates ofthe WTR is disputed by the fact that the mulched treatment also
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Table 7.2 Potassium chloride and water pH values of depth samples from Ukulinga Farm at

selected rates (Mg ha-i) of water treatment residue (R) and lime (L) in February 2001

Sampling pH(KC1) pH(HP)

depth
LlO RO R1280 LlO(mm) RO R1280

0-100 5.00 7.24 6.25 6.15 7.54 6.85

100-200 4.97 6.64 5.54 6.08 6.87 6.25

200-300 4.93 5.64 4.85 6.06 6.08 5.71

300-400 5.07 5.58 5.21 6.27 5.98 6.25

400-500 5.22 5.92 5.28 6.50 6.32 6.47

Table 7.3a Depth distribution ofCa and Mg from 1998 to 2001 in soil samples from Brookdale

Farm at selected intervals and rates (Mg ha-I) ofwater treatment residue (R)

Sampling Sampling Ca (cmo1ckg·1
) Mg (cmo1c kg·1)

date depth
(mm) RO R1280i R1280m RO R1280i R1280m

September 0-200 4.28 2.55 2.22 3.01 2.41 2.17
1998 200-400 3.29 2.53 2.14 2.97 2.70 2.21

400-600 2.37 1.15 1.45 3.45 3.08 2.59

February 0-200 4.08 2.45 3.31 3.04 2.36 2.68
1999 200-400 4.47 2.29 2.68 3.75 2.68 2.61

400-600 2.80 1.38 1.62 3.99 3.18 3.03

February 0-200 2.90 2.78 3.56 2.46 2.25 1.78
2000 200-400 2.87 3.80 2.17 3.32 2.31 2.13

400-600 1.96 1.48 1.57 3.51 2.45 2.49

February 0-200 2.53 2.73 3.01 2.41 2.09 1.66
2001 200-400 2.53 2.26 2.72 2.93 2.21 2.00

400-600 1.94 1.52 2.25 3.86 2.02 2.48

i = incorporated treatment; m = mulched treatment

decreased extractable Ca compared to the control in 1998. After 1998 the concentrations of Ca

increased in both incorporated and mulched treatments, probably because the WTR released more

of this cation as its aggregates continued to break to smaller sizes. On the other hand, Ca in the
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control plots tended to decline with time, as did Mg for all treatments and depths. This behaviour

ofthe two cations in the control treatment shows that their redistribution in the profile is not caused

solely by the application of the WTR.

Both lime treatments resulted in higher concentrations ofboth Ca and Mg than the control treatment

(Table 7.3b). Both the WTR and the lime have resulted in an increase in levels ofthese two cations

to the lowest depth of 1000-1200 mm. By this time (2001) the Ca concentrations where the WTR

was applied are greater than in the control, and the mulched treatment has higher concentrations of

Ca than the incorporated treatment over all depths considered. The higher concentrations in the

WTR-treated samples over the control shows continued release of Ca from the WTR, whilst the

depletion in the control plots is not replenished.

Table 7.3 b Depth distribution of Ca and Mg in February 2001 soil samples from Brookdale
Farm at selected rates (Mg ha-I) ofwater treatment residue (R) and lime (L)

Sampling Ca (cmo1ckg·l
) Mg (cmolckg-1

)

depth
(mm) RO R1280i R1280m L2 LlO RO R1280i R1280m L2 LlO

0-200 2.53 2.73 3.01 4.47 6.80 2.41 2.09 1.66 2.90 3.80
200-400 2.53 2.26 2.72 3.22 4.35 2.93 2.21 2.00 3.10 3.84
400-600 1.94 1.52 2.25 3.04 3.36 3.86 2.02 2.48 3.20 4.50
600-800 1.25 1.83 1.47 3.04 2.35 2.02 1.94 1.88 3.30 4.37

800-1000 1.00 1.16 1.36 1.94 1.89 1.41 1.64 2.02 3.04 4.37
1000-1200 0.77 1.21 1.53 1.33 1.87 0.97 1.92 2.04 2.62 4.74

i = incorporated treatment; m = mulched treatment

In the Ukulinga Farm depth samples both the WTR and lime had increased Ca concentrations to

400-500 mm by 2001 (Table 7.4). Concerning Mg, its concentrations are lower in the WTR-treated

samples than in the control, and highest in the lime-treated plots. These results are similar to those

of the Brookdale samples, implying that the behaviour of the WTR is essentially similar in both

soils.
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Depth distribution of Ca and Mg in February 2001 soil samples from Ukulinga Farm

at selected rates (Mg ha-I) ofwater treatment residue (R) and lime (L)

Sampling Ca (cmolckgo1
) Mg (cmolckgo1

)

depth
110 RO R1280 110(mm) RO R1280

0-100 3.13 4.98 4.43 1.80 1.12 3.97
100-200 3.16 4.85 4.35 1.61 1.55 3.61
200-300 2.93 3.95 4.18 1.52 1.45 3.36
300-400 2.84 3.82 4.10 1.84 1.62 3.77
400-500 2.67 3.72 4.27 2.02 1.57 4.48

7.3.3 Analysis of saturation extracts

The WTR applied as mulch at the rate of 1280 Mg ha-I substantially and consistently increased the

electrical conductivity of the saturation extract with respect to the control in the Brookdale Farm

samples (Table 7.5) in all six depths considered. On the other hand, the incorporated similar

treatment registered both slight increases and decreases. This electrical conductivity trend is also

followed by the concentrations ofCa, Mg, Cl and N03. This agrees with results from the incubation

experiment (Section 6.3.3) that these four ions are the species likely to leach. At the 0-200 and 200­

400 mm depths the concentration ofCa is higher than that ofMg for all three treatments, whereas

the reverse holds for the lower depths. This points to more ready leaching, or redistribution, ofMg

compared to Ca - an expected occurrence.

It would have been expected that the incorporated treatment, where the WTR was in intimate

contact with the soil, would produce greater effects than the mulched treatment. The question is

what causes this seeming anomaly? Is it because the mulched treatment is more effective, or is it

that the effects of the incorporated treatment are already past the stage of the mulched treatment?

A look at the pH (H20) values (Table 7.5) shows that, except for the 200-400 mm depth, the

incorporated treatment has resulted in higher pH values than the mulched treatment. This is evidence

for the effects of the incorporated treatment extending to 1200 mm as well. This is also shown for
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Table 7.5 Depth distribution of some chemical properties in saturation extracts of February
2001 soil samples with selected rates ofwater treatment residue at Brookdale Farm

Depth . WTR EC pH Ca Mg HCO, Cl NO,

(mm) (Mg ha·l ) (dS m·l ) (HP) (mmol<L·1
)

0-200 0 0.58 5.37 1.9 1.6 0.7 1.1 3.6

1280i 0.49 5.65 2.0 1.4 1.0 1.4 2.5

1280m 0.92 5.37 3.7 2.4 0.7 1.4 5.8

:WO-400 0 0.46 5.60 1.4 1.3 nd nd nd

1280i 0.51 5.44 1.9 1.5 nd nd nd

1280m 0.83 5.60 3.0 2.7 nd nd nd

400-600 0 0.40 5.70 1.0 1.5 0.7 1.0 2.4

1280i 0.44 5.75 1.3 1.4 0.7 1.6 2.1

1280111 0.89 5.69 2.3 3.4 0.5 1.6 6.0

600-800 0 0.39 5.53 0.8 1.6 0.4 1.1 2.1

1280i 0.37 5.90 0.9 1.3 0.6 1.5 1.9

1280m 1.12 5.64 2.6 5.1 0.8 4.5 6.2

800-1000 0 0.31 5.45 0.5 1.2 0.5 1.8 1.6
1280i 0.33 6.54 0.7 1.3 0.6 1.4 1.4

1280m 1.24 5.56 2.6 5.4 nd nd nd

1000-1200 0 0.24 5.50 0.4 0.5 0.4 1.1 1.0
1280i 0.33 6.14 0.7 1.3 1.4 ")~ 20...... .)

1280m 1.05 5.59 ")~ 4.7 0.7 3.5 6.4_..)

EC = electrical conductivity; nd = not analysed

extractable Ca and Mg (Table 7.3b). It can thus be deduced that what has indeed happened is that

leaching has occurred more readily in the incorporated treatment to the extent that the soil has

returned to its initial soluble salt status. Besides incorporation being expected to accelerate the

WTR-soil reaction, the migration ofsalts from the incorporated treatment also starts 200 mm ahead

of those for the mulched treatment, thus encouraging quicker downward migration.

In the Ukulinga experiment (Table 7.6), all the properties measured, namely electrical conductivity,

pH, soluble Ca, Mg, Cl, HC03 and N03 increased with the introduction ofthe WTRat 1280 Mg ha-I.

Again, even in this soil the effects are throughout the whole profile, i.e., down to 500 mm. In this

soil, however, the concentration of Ca is higher than that ofMg throughout the entire profile where

the WTR is applied, which is expected since this material contains more Ca than Mg, and Mg

should leach more readily than Ca.
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Depth distribution of some chemical properties in saturation extracts ofFebruary

2001 soil samples with selected rates of water treatment residue at Ukulinga Farm

0.9 0.8
5.0 1.9

1.0 0.9
3.0 2.5

1.1 1.0
5.0 2.9

1.0 0.9
3.7 2.5

0.7 0.6
2.6 2.0

Depth WTR EC pH

(mm) (Mg ha-I) (dS m-I) (HP)

0-100 0 0.40 6.05
1280 0.88 6.97

100-200 0 0.47 5.90
1280 1.04 6.68

200-300 0 0.46 5.93
1280 0.98 6.19

300-400 0 0.41 6.00
1280 0.89 6.12

400-500 0 0.40 6.11
1280 0.90 6.33

EC = electrical conductivity; nd =not determined

Ca Mg

1.0
5.6

nd
nd

0.9
4.0

0.9
1.8

nd
nd

Cl

1.0 2.1
1.8 5.0

nd nd
nd nd

1.8 2.3
1.5 5.4

1.1 2.2
1.0 5.7

nd nd
nd nd

In this soil, as in that at Brookdale Farm, it would be expected that the groundwater would be

enriched by these ions. Data supplied by Umgeni Water (Table 7.7) suggests this indeed might be

the case in the experiment at Brookdale Farm. There is a suggestion that there might be slight

increases in Ca and Mg concentrations in the borehole water after 1997, before these seem to revert

to initial levels for Ca from 2000. For Cl and N there are no clear trends as to their concentrations.

Geertsema et al. (1994) reported "one-time flux" increases in groundwater nitrogen following

application of alum sludge to soil, but attributed these to the initial tillage disturbance rather than

a long-term mineralization and leaching effect. In the current study, however, it is the mineralization

that is speculated to have released the nitrogen, based on the control treatments releasing less

nitrogen in the incubation experiment (Section 6.3.3). The analysis of the dam water (Table 7.7)

suggests there is no transport of any of the mentioned elements with runoff water. In both water

sources none ofthe concentrations come close to those that might be considered harmful to humans

and livestock according to the data of Lal and Edwards (1994; cited by Havlin, Beaton, Tisdale and

Nelson, 1999). The permissible concentrations given by these authors are < 200 mg L-l for Ca, <

400 mg L-1
for Cl and < 10 mg L-l for N with respect to human consumption. The concentrations

given for livestock consumption are < 1000, < 1000 and < 50 mg L- l for Ca, Cl and N, respectively.
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Calcium, chloride, magnesium and nitrate in boreholel (B) and dam l (D) water at
Brookdale Farm from 1997 to 2002 (data supplied by Umgeni Water)

Date EC Ca Mg N03-N Cl

B D B D B D B D B D

(mSm'l) (mgL'I)

11.12.1997 13.0 12.6 10.1 9.8 5.6 6.6 <0.05 od 9.3 nd

26.03.1998 20.9 nd 21.0 9.6 7.2 6.0 <0.05 <0.05 7.0 8.4

04.06.1998 27.5 13.0 21.0 8.8 10.0 6.2 1.78 <0.05 12.4 8.3

10.09.1998 22.8 16.0 23.0 10.4 7.4 8.1 0.05 <0.05 5.7 9.6

03.12.1998 22.1 10.9 20.0 7.2 7.1 4.3 0.19 <0.05 5.1 8.4

06.05.1999 21.7 14.8 20.3 10.2 8.0 7.3 <0.05 0.08 6.5 11.1

03.06.1999 22.4 18.3 22.0 13.4 8.1 9.1 0.06 <0.05 6.1 12.6

02.09.1999 nd 15.7 od 10.1 od 6.6 nd od od od

02.12.1999 22.6 13.2 22.0 6.4 7.6 3.6 <0.05 <0.05 6.9 9.0
30.03.2000 13.2 11.2 9.3 7.1 6.2 4.5 <0.05 <0.05 9.0 8.9
08.06.2000 16.4 10.5 16.0 8.3 7.6 5.4 <0.05 <0.05 8.9 9.6
07.09.2000 18.2 12.0 17.0 9.6 6.8 5.7 <0.05 <0.05 7.5 6.7
10.04.2001 12.1 13.0 6.2 8.3 6.5 5.7 <0.05 <0.05 8.1 8.9
07.06.2001 13.4 13.7 8.2 10.1 7.8 7.1 <0.05 <0.05 8.0 7.4
07.09.2001 od 14.9 nd 11.6 nd 7.5 nd <0.05 nd 8.2
04.04.2002 19.0 13.6 19.0 od 7.4 od <0.05 nd 6.4 nd
13.06.2002 15.1 13.4 11.5 10.6 10.2 6.7 <0.05 <0.05 8.7 8.2
12.09.2002 17.7 14.1 15.9 10.9 12.2 6.9 <0.05 <0.05 7.7 8.8

EC=electrical conductivity; od=not detennined

With enrichment of the groundwater with nutrients likely to lead to environmentally harmful

eutrophication of some water bodies, then to what extent would that restrict the practice of land

disposal of the WTR? Hughes et al. (2005) report that the solute concentrations in the soils of the

grassed plots were much lower than those in the fallow plots at both sites. Owens, Edwards and Van

Keuren (1994) similarly reported reduced leaching from soils grown to a grass-legume mixture. To

reduce migration ofsolutes to the groundwater, it would thus be advisable for land disposal ofWTR

to be accompanied by growing plants on the treated soils to absorb some of the solutes. Not only

would this reduce the amount ofsolutes reaching the groundwater, it would also provides spin-offs

of agricultural advantage (animal feed) and soil conservation (especially where grass is the chosen

1 The dam and the adjacent boreho1e are about 400 m downslope from the field experiment
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vegetation). Another suggestion (Owens and Bonta, 2004) is minimal N fertilization. With excreta

from grazing animals a likely source of N in runoff water (Mundy, Nexhip, Austin and Collins,

2003), then hay production would probably be a better option to reduce N03 in transit water than

direct grazing.

Analysing the data in Tables 7.5 and 7.6 by the Vanselow selectivity coefficient (Equation 6.2)

yielded results with a different trend to those ofthe incubation experiment (Table 6.7). In these field

results (Table 7.8) the Vanselow coefficients decreased with application ofthe WTR. This decrease

in the Vanselow coefficients with the introduction ofthe WTR implies a shift ofEquation 6.1 to the

left, meaning possible preferential adsorption ofMg over Ca, or induced abundance of soluble Ca

compared to soluble Mg. Whilst no evidence of preferential adsorption of Mg is forthcoming

(Tables 7.3b and 7.4), there does seem to be more soluble Ca in the We soil compared to Mg (Table

7.6). The reverse, however, essentially holds in the Hu-F soil (Table 7.5) from 400-600 mm depth

downwards. Differences between laboratory and field experiments are expected, since other ions

present in a natural system may affect the equilibrium (pleysier, Juo and Herbillon, 1979; Rhue and

Mansell, 1988; Chung, Zasoski and Burau, 1994; Nissinen et al., 1998). The field samples were

fertilized as compared to the incubation samples to which were just added the WTR. These field

samples should thus not be treated as binary systems. Using a Vanselow-type reaction to analyse

field samples at different depths of various soils for a Ca-Mg relationship, Nissinen et al. (1998)

found selectivity coefficients with values around 0.5 for different soils. Whist these values are

generally comparable to those ofthe Ukulinga's We soil and also the 0-200mm of Brookdale's Hu-F

soil, they are very different from the 200-400 mm depth downwards for all three treatments

considered (except for the 400-600 mm depth of the incorporated treatment). The explanation for

this lies partly with the observation that from the 400-600 mm depth the concentration ofMg is

higher than that of Ca in the Brookdale soil (Table 7.5). This has the effect of increasing the

Vanselow selectivity coefficients as calculated from Equation 6.2. It is probable that this Mg was

transitory and not directly under the influence of, or related to, the exchangeable form of the

element; in other words this solution Mg was not in equilibrium with exchangeable Mg.
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Selectivity coefficients ofa Ca-Mg system in soil depth samples from Brookdale and

Ukulinga Farms at selected rates ofwater treatment residue

Experimental site Depth (mm) WTR rate (Mg ha-I)

0 1280i 1280m

Brookdale 0-200 0.37 0.23 0.28

400-600 1.33 0.71 1.31

600-800 3.23 1.54 2.51

800-1000 3.34 2.61 nd

1000-2000 1.50 2.93 2.73

Ukulinga 0-100 0.51 0.09 na

200-300 0.48 0.21 na

300-400 0.59· 0.28 na

na=treatment not applied; nd=not calculated because anions not analysed

7.4 Conclusions

Land treatment ofthe WTR caused slight and somewhat temporary increases in pH throughout the

profile at both field experimental sites. There was also an enhancement ofthe downward migration

of Ca and Mg, although evidence from borehole water is that this should not cause any alarm.

Evidence from the dam suggests that there is no increased transport ofany solutes by runoffwater.

There is evidence ofslow reactivity ofthe WTR with the soil, such that its solutes tend to merge and

be diluted with the soil as a whole. This probably accounts for the rather neutral response observed

for grass (Chapter 5). Combining disposal with growth ofvegetation such as grass (as investigated

here) would make the practice safer and maybe even less expensive since the vegetation might be

commercially used.
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CHAPTER 8

WATER TREATMENT RESIDUE AND PHOSPHORUS BEHAVIOUR IN SOILS

8.1 Introduction

Investigations involving application ofWTR to soils by different workers have highlighted that this

material can sorb P. Amongst workers who have demonstrated this property in WTR are Lucas et

al. (1994), Peters and Basta (1996), Ahmed et at. (1997), Haustein et al. (2000) and Dayton, Basta

and Jakober (2001).

The determination of sorption isotherms is probably the most common technique for studying P

behaviour in soils. These studies take into account both the capacity and intensity factors, and can

thus be used to predict the amount of fertilizer P needed to adjust the soil solution P to a level

optimum for crop growth (McGee, 1972; Bhuiyan and Sedberry, 1995). Two ofthe most commonly

used relationships to describe sorption are the Freundlich and Langmuir isotherms.

Although not as commonly investigated as sorption, desorption is nonetheless important since it

essentially governs absorption by plants, leaching and transportation ofP in runoff water. Different

sorption/desorption models tested by Garcia-Rodeja and Gil-Sotres (1995) established that the

concentration ofinitially desorbable P decreased exponentially with contact time between P and soil,

indicating that sorption is continuous but increasingly slow. These results tend to confirm that

sorption and desorption give complementary information as proposed by Quang and Dufey (1997).

Furthermore, their results also suggested a need to examine the form of transformation that the

sorption takes.

The lack of attainment of equilibrium between the solution and solid phases (Grant and Heaney,

1997;, Quang and Dufey, 1997; Papadopoulos, Dimirkou and Ioannou, 1998) is an indication that

either there is an infinite number of sorption sites in a given amount of soil, or that more sorption
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sites are created as transformation reactions occur in the soil, or both. Of these, the creation of

sorption sites is the most likely. Sorption of applied P in soil is a form oftransformation since P is

converted from a highly mobile form to a less mobile or an immobile one. Whereas in sorption

experiments the interest has been mainly on the loss of the element from solution, transformation

studies are concerned with the soil constituents with which P has become associated.

It has been demonstrated that sorption can be correlated with soil constituents such as "active"

calcium carbonate (Lopez-Pineiro and Navarro, 1997), clay content (Singh and Gilkes, 1991;

Quang, Thai, Linh and Dufey, 1996; Lopez-Pineiro and Navarro, 1997) and various Al and Fe

species (Singh and Gilkes, 1991; Quang et al., 1996; Lopez-Pineiro and Navarro, 1997; Owusu­

Bennoah, Szilas, Hansen and Borggaard, 1997). Fractionation ofP has been carried out on WTRs

and WTR-treated soils (Jonasson, 1996; Cox et al., 1997). Results obtained, although by using

different fractionation methods, indicated transformation to Al and Ca forms.

In addition to the agronomic aspects of P behaviour in soils there is also a need to consider the

environmental impacts of P should it leach from the soil. Although loss of P is in general not

expected to be significant, in coarse-textured soils it can be a problem because oftheir low number

ofsorption sites. High concentrations ofP in soils are mostly as a result ofapplication offertilizers,

and iflost by leaching it may pollute water bodies either via runoff or groundwater (e.g. McPharlin,

Jeffrey, Toussaint and Cooper, 1994; Siemens et al., 2004).

The objectives of this chapter are as follows:-

•
•
•

to determine the influence ofWTR on P sorption by soils;

to establish the transformation ofP in WTR-treated soils' and,

to study the extractability ofP in WTR-treated soils.
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8.2 Materials and methods

8.2.1 Soil samples

Both incubated and non-incubated samples of11 soils (Chapter 6) were used for this study, although

not necessarily in all aspects simultaneously.

8.2.2 Determination of optimum sorption time

Five grams of untreated soil or WTR were allowed to sorb P from 50 mL of 0.005 M calcium

cWoride solution containing an equivalent of 500 ~g P gol soil (250 ~g gol in the Hu-T, Nb-A and

Nb-F soils) as potassium dihydrogen phosphate in a 100 mL centrifuge tube. The suspensions were

equilibrated for 0, 1, 8, 24 and 48 hours. At the end ofeach incubation time, the suspensions were

centrifuged until clear and then filtered through Whatman No. 42 filter paper before analysis by the

molybdenum blue method (Murphy and Riley, 1962) using a DV/visible spectrophotometer. From

the results it was established that the amount ofP sorbed in the 8 hour period was almost the same

as for the longer times. As a result, it was decided to equilibrate the suspensions for 0, 0.5, 1,2,4,

6 and 8 hours, to investigate sorption within this shorter time period.

8.2.3 Determination ofP sorption pattern

The P levels used here were very high and were intended to test to what extent the WTR could be

used as an environmental "cleansing agent" by reducing excessive levels of this element in waste

materials, soils or water bodies. In this study, to 5 g samples in centrifuge tubes were added

concentrations ofP as potassium dihydrogen phosphate in 50 mL of solution which was 0.005M

with respect to calcium cWoride. For the Av and Ia-W soils, the soil:solution ratio was 1:50. The

P concentrations were 0, 200, 400, 600, 800, 1000, 1400 and 1800 ~g gol for all soils except the Hu­

T, Nb-A, Nb-F, Va and We soils where they were 0,40, 160, 320,400, 600, 800 and 1000 ~g gol.

Suspensions were shaken for 6 hours before analysis as indicated above (Section 8.2.2).
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8.2.4 Fractionation ofP

Soil samples from the pot (Chapter 4) and incubation (Chapter 6) experiments with 0 and the

highest rate of WTR, i.e., 120 Mg ha- l for samples from the pot experiment and 1280 Mg ha- l for

the incubated samples, were subjected to the fractionation procedure of Hedley, Stewart and

Chauhan (1982) as modified by Zhang and MacKenzie (1997). This fractionation sequentially

extracts readily available, plant-available, AI and Fe components, Ca-associated P and residual P

using calcium chloride, sodium bicarbonate, sodium hydroxide, hydrochloric acid, and a sulphuric

acid-hydrogen peroxide mixture, respectively. The calcium chloride and sodium bicarbonate

fractions are considered biologically available, the hydroxide fraction moderately resistant and the

rest unavailable to plants. The sulphuric acid-hydrogen peroxide extraction was not done in the

current study.

8.2.5 Extraction ofP from field samples

Surface soil samples (0-200 mm depth) where the WTR had been applied at rates of 0 and 1280 Mg

ha- l from both field trials were extracted with Ambic (Section 3.2.3) and 0.05M calcium chloride

solutions at soil:solution ratio of 1:5 and 1:2, respectively, and P analysed as before (Section 3.2.3).

Soil samples analysed were for September 1998, February 1999, 2000 and 2001 at the Brookdale

Farm, and February 1999 and 2001 at the Ukulinga Farm. The Ambic extractant was used to give

an indication of available P as practised by the Fertilizer Advisory Service in the KwaZulu-Natal

Province. The calcium chloride extractant was used to give an indication ofP desorption (Doula

et al., 1997).

8.2.6 Extraction of aluminium and iron

Free AI and Fe in the WTR and "original" soil samples were extracted by the dithionite-citrate­

bicarbonate (DCB) procedure (Mehra and Jackson, 1960). Poorly crystalline forms of these elements

were determined by the acid ammonium oxalate method (Jackson, Lim and Zelazny, 1986). The
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metals were analysed by atomic absorption spectrophotometry. This analysis was to assist in the

understanding of P behaviour in the different soils and WTR-treated soils, since these soil

constituents can play a significant role in the sorption ofP (e.g. Carreira and Lajtha, 1997).

8.3 Results and discussion

8.3.1 Time-dependence and kinetics ofP sorption

Sorbed P was taken to be the difference between that added and that remaining in solution at the end

ofthe shaking period. Since itwas deemed important to cater for previously sorbed P (Tolner and

Fiileky, 1995), corrections were made for "native" P extracted with 0.005M CaClz solution.

There was a marked increase in the amount ofP sorbed with time up to about 8 hours, after which

the curve tended to level off(Figure 8.1a). These results appear to be consistent with those ofother

workers including Rajan and Fox (1975), and Papadopoulos et at. (1998), who concluded that the

reaction between phosphate and soils is rapid at first, then becomes slower and continues for a long

time without reaching any true equilibrium. More than 90% ofthe P sorbed in 48 hours was sorbed

within the first 8 hours. In the other sorption-time curve (Figure 8.1b) it can be seen that at 6 hours

the extent ofsorption approximately equalled that at 8 hours. Thus for the later experiments 6 hours

was adopted as the standard equilibration time.

It can also be seen that the WTR was comparable in terms ofthe amount ofP sorbed with the highly

weathered Hu-F and Ia-C soils that are known to be high sorbing soils. This implies that the WTR

might be expected to severely reduce the mobility and perhaps plant-availability ofP when applied

to soils less highly sorbing than itself The solution concentration-time relationship was subjected

to a first order kinetic equation (Bhuiyan and Sedberry, 1997; Papadopoulos et al., 1998), which in

integrated form is represented as

In C = - kt + In Co .,,<8.1)
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where C is the P solution concentration at time t, k is the rate coefficient and Co is the initial solution

concentration ofP.

The relationship ofln C against t (Figure 8.2) is not a straight line as expected from the first order

equation. Basically, a first order reaction implies that only one reactant is involved, a possible

situation in pure systems. In soil such an occurrence would be expected if the sorbent (soil) is taken

to have unit activity, although Papadopoulos et al. (1998) did establish that a kaolinite-goethite

system could be described by the first order kinetics. These workers deduced that either the reaction

was simple, or that all reactions involved had similar reaction rates. Quang et al. (1996) considered

that a fast reaction at early times was due to adsorption, and that a later one that could last for a long

time was related to secondary precipitation, etc. This "early" reaction, which could also be the

mechanism at low P concentrations, would probably be the simple one mentioned by Papadopoulos

et al. (1998). Although there are not enough points to make an accurate decision (Figure 8.2), it

may be that 2 hours is about the transition time between the simple and complex processes. Since

in the current study the reaction failed to comply with first order kinetics, the implication is that

more than one reactant overall was involved in the sorption of P. Sorption of P under the conditions

considered was thus higher than first order, and from that it is proposed that other mechanisms in

addition to simple adsorption occurred.

8.3.2 Sorption ofP in incubated and non-incubated soils

The P isotherm is given as the relationship between the sorbed P and that remaining in solution at

the end ofthe equilibration (shaking) period. Sorbed P is taken as the difference between the initial

P concentration in solution and that remaining after shaking. In Figure 8.3 the P remaining in

solution at the end ofthe shaking period is designated the equilibrium concentration. In general, the

points tend to follow the isotherm trend ofa smooth curve. The exception is the Nb-A ~oil (Figure

8.3g) at WTR rates of320 and 1280 Mg ha·I
, both incubated and non-incubated. Introducing a high

amount of the WTR apparently changes the general sorption pattern. After about 15 mg L-I solution

P the curves corresponding to these rates suddenly change direction to become steeper. It might be
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that in this poorly buffered, coarse-textured soil the high number ofsorption sites added by the WTR

have this profound effect.

In the Av soil (Figure 8.3a), the highest sorption was for the non-incubated samples at WTR rates

of320 and 1280 Mg ha-I. Where samples were incubated, sorption at these rates was the same as

that of the 80 Mg ha-I rate in the non-incubated samples. These observations suggest that some

constituent of the WTR might be changing with incubation and reducing its P sorption capacity.

Such results have been identified before. From the results of their work on an alum WTR, Ahmed

etal. (1997) concluded that its high sorption capacity experienced under labora!ory conditions might

be reduced with ageing, leading to release of this nutrient for plant use. Butkus et al. (1998) also­

suggested application ofP to the WTR before soil application, so that the P would then be supplied

to plants as a "slow-release" fertilizer (Ahmed et al. 1997). In the current situation, part of the

answer is perhaps linked to the lime in the WTR. It has been reported that carbonates, and the WTR

contains 3.8% lime (Section 3.3.1), can act as sorbents for P (Lopez-Pineiro and Navarro, 1997;

Zhou and Li, 2001). So as the carbonate reacts and diminishes in the soils following incubation, then

more P is released into solution compared to the non-incubated soil. In general, the extent of

sorption tended to increase with increasing W1R applied.

Other soils in which the sorption capacity increased with application ofthe WTR, especially at 1280

Mg ha-\ were the Hu-F, Hu-T, Nb-A, Nb-F, Sd, Va and We (Figure 8.3 b, d, g, h, i, j and k,

respectively). Although no common properties between these soils could be readily identified as the

cause of this similar response, there was general agreement with the results of Bainbridge, Miles,

Praan and 10hnston (1995). Studying sorption ofP in some Natal (now KwaZulu-Natal) soils, they

found that soils with the lowest sorption were sandy (texture of the Hu-T, Nb-A an~ Nb-F soils).

The correlation of P sorption in South African soils with clay content has also been reported by

McGee (1972) and Henry and Smith (2002). The Va soils, dominated by 2: 1 clay minerals and with

relatively few sorption sites, were classified by Bainbridge et al. (1995) into the group of

intermediate sorption.
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According to the classification, the Hu-F, a weathered soil, is amongst the highest sorbing soils

(Figure 8.3b). It, however, experienced an increase in sorption on application of the WTR, unlike

in the other highly weathered Av (Figure 8.3a), Hu-M (Figure 8.3c), Ia-C (Figure 8.3e) and Ia-W

(Figure 8.3!) soils. Part of the explanation for the seemingly contradictory result lies in the fact that

the Hu-F soil has been used for cropping purposes for almost 40 years (Mr N. Houston, pers. comm.,

1998; cited in Moodley, 2001), and thus has been previously fertilized with P. The cumulative effect

ofP application over these years would result in occupation of some sorption sites. Such initially

retained P can reduce the sorption ofadded P (Bainbridge et aI., 1995; Duffera and Robarge, 1999)

to some extent. The creation ofnew sorption sites by addition ofthe WTR thus increased this soil's

sorption behaviour.

Differences in sorption capacities also seem to be associated with oxalate-extractable AI (Table 8.1),

which increases sorption as was reported also by Bainbridge et al. (1995) for KwaZulu-Natal soils.

In all the soils where sorption was increased by the introduction of the WTR, except for the Hu-F

soil, this form of AI was lower than in the WTR. In all these soils it can be expected that the WTR

would reduce labile P and so perhaps induce deficiency in plants, and decrease runoff and leaching

losses.

Application of the WTR increased the pH in all soils (Figures 6.1 to 6.11), but had mixed effects

on the extent of P sorption. Sorption of P was notably increased where the soil had an initially

relatively high pH e.g. Va, and clearly decreased where the pH was initially Iow as in the Ia-W soil.

Thus on its own pH would not seem to be a significant factor.

In addition to the Av soil, other soils in which the sorption capacity was higher in non-incubated

samples at similar rates of WTR were the Hu-T, Nb-A, Nb-F and Sd. This observation applies also

to the Hu-F soil except for the 1280 Mg ha-l treatment where the incubated sample had the higher

sorption capacity. The isotherms of incubated samples coincided where no WTR was applied,

suggesting that this behaviour was due more to the WTR than the soil. Again, there was no common

feature between these soils that could explain their similar behaviour. They are, however, generally
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the soils identified as having relatively low sorption capacities.

In the Va and We soils (Figure 8.3 j and k, respectively), incubated samples sorbed more than the

corresponding non-incubated samples. It was only in the Ia-C and Ia-W soils (Figure 8.3 e and f,

respectively) that the WTR decreased sorption. These soils thus had a greater sorption capacity than

the WTR, and so application of this material would be likely to improve P availability.

Table 8.1 Aluminium and iron extracted with dithionite-citrate-bicarbonate (DCB) and acid

ammonium oxalate in water treatment residue and soils

Sample DCB Oxalate

AI Fe Al Fe

(g 100g-!)

WTR 0.38 7.74 0.19 2.96
Av 0.60 2.03 0.19 0.36

Hu-F 0.92 3.38 0.24 1.46
Hu-M 1.54 8.20 0.24 0.63
Hu-T 0.60 6.58 0.13 0.21
Ia-C 3.37 9.22 0.41 0.45
Ia-W 2.36 1.91 0.52 1.84
Nb-A 0.04 1.01 0.06 0.17
Nb-F 0.18 0.77 0.11 0.26

Sd 0.44 5.41 0.16 0.34
Va 0.13 1.21 0.10 1.08
We 0.23 1.75 0.07 0.71

8.3.3 Application of sorption isotherms

Agbenin and Tiessen (1994) identified three parameters as important criteria for determining a soil's

capacity to immobilize added P, namely the adsorption maximum, P affinity and buffer index. To

determine sorption maxima, P affinity and P requirement in the current study, use was made of the

linear forms ofthe Freundlich and Langmuir equations. Only data from the incubated samples were

considered.
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The Freundlich equation is presented as:-

log Q= n log C + log KF ... (8.2)

where Q is the amount of solute sarbed, n is a correction factor, C is the equilibrium solution

concentration and KF is the distribution coefficient. A plot of log Q against log C should yield a

straight line with slope n and intercept log KF·

In the plot ofthe Freundlich relationship (Figure 8.4), the points do not always follow a straight line

for all soils although the coefficients ofdetermination {R2 (F), Table 8.2} are high, ranging between

0.887 and 1.000. From the Freundlich linear relationship, the amount of sorbed P required to

provide a solution concentration of 0.2 mg e 1 was calculated (Table 8.2, column FPR). This

concentration has been suggested to be the standard P requirement (herewith the Freundlich P

requirement, FPR) of soils that will satisfY the requirements of many crops (Fox and Kamprath,

1970). Of interest here was to have a reference value to test whether the WTR would cause any

differences to the requirement rather than an interest in absolute quantities. The effects of the

application of the WTR on the amount ofP required to achieve this solution concentration (Table

8.2) were to decrease, virtually not change, or to increase it. Associated clearly with the first effect

were the Av, Ia-C and Ia-W soils, which are the higWy weathered soils with a P sorption capacity

higher than that ofthe WTR. These results agree with the observations made in Section 8.3.2, based

on Figure 8.3, that the WTR was likely to increase availability ofP in the Ia-C and Ia-W soils. In

the Hu-F, Hu-M, Sd and Va, application of the WTR had virtually no effect on the P requirement

ofthe soils. The soils where there was an increase in the P requirement with application ofthe WTR
,

were the Hu-T, Nb-A, Nb-F and We soils. These soils have a relatively low P sorption capacity

(Table 8.2, Column b). Also supporting this observation, the Freundlich distribution coefficient

(Table 8.2, Column KF) increased with application of the WTR to these four soils. Since this

coefficient indicates partitioning ofP between the solid and solution phases, then its increase
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implies an increase in sorbed P at the expense of solution P. The introduction of the WTR to these

soils thus reduced the availability and mobility ofP. The improved retention would reduce leaching

to groundwater in these mostly coarse-textured soils.

The question of the reliability of these FPR values then arises. To address this, use is made of

instances where it is possible to compare the amount of P sorbed calculated directly from the

experimental data with that calculated from the linear form ofthe equation at 0.2 mg L-l P solution

concentration. In the experimental data of the Av soil at 0 Mg ha- l WTR, 190.0 mg kg- l compares

with 200.6 mg kg- l from the Freundlich isotherm. For the Ia-W soil at WTR rates of 0 and 80 Mg

ha-l respectively, 595.0 and 390 mg kg- l from experimental calculations corresponded with 602.3

and 404.4 mg kg- l from the Freundlich isotherm. At 1280 Mg ha-l ofthe WTR in the We soil, 39.8

mg kg- l from the experimental results corresponds with 36.4 mg kg- l from the isotherm. It can thus

be concluded that for the soils and conditions of the experiment, the linear form ofthe Freundlich

isotherm can be useful in determining P requirements of soils.

8.3.3.2 Langmuir isotherm

The Langmuir equation is expressed as:-

C/Q= CIb + I/KL b ...(8.3)

where Q is the amount of solute sorbed, KLis a constant related to binding energy (P affinity), C is

the final solution concentration and b is the maximum amount of solute that can be sorbed

(adsorption maximum). If C/Q is plotted against C, and the data obey the Langmuir equation, a

linear relationship with slope lib and intercept l/KLb will result. As judged by R2 values (Table 8.2,

column R
2
(L» which ranged between 0.789 and 0.998, the linear plot of the Langmuir isotherm

(Figure 8.5), conforms to this type ofcurve.

The equilibrium concentrations plotted here ranged from 0.2 to 25.7,0.3 to 74.96, 0.52 to 72.60,0.8
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Table 8.2 Freundlich and Langmuir parameters for water treatment residue-treated incubated soils

Soil WTRrate K.- FPR R'(F) Kt * 10.1 b LPR R'(L)

(Mgha·1) (Lkg·1
)

(mgkg") (L kg· l ) (mgkg") (mg kg")

Av 0 304.7 200.6 0.981 7.34 667.8 85.6 0.998
80 220.3 140.3 0.988 4.33 559.0 57.8 0.993

320 247.3 135.7 0.994 3.24 741.0 58.2 0.977
1280 215.4 111.2 0.980 1.79 912.9 31.6 0.943

Hu-F 0 111.8 63.5 0.990 0.14 1132.0 29.2 0.989
80 108.8 61.6 0.984 0.10 1210.9 24.0 0.948

320 98.4 53.9 0.997 0.11 1172.6 25.8 0.983
1280 113.9 59.6 0.998 0.14 1441.0 41.2 0.973

Hu-M 0 105.3 59.1 0.982 0.19 952.8 36.1 0.991
80 112.6 66.5 0.968 0.24 827.4 38.9 0.995

320 102.4 58.7 0.973 0.22 845.5 36.3 0.996
1280 106.7 60.9 0.967 0.25 870.9 43.4 0.997

Hu-T 0 29.6 14.6 0.983 0.13 481.9 12.6 0.964
80 43.6 24.3 0.998 0.14 471.4 13.3 0.947

320 40.9 20.7 0.987 0.17 557.8 18.9 0.969
1280 44.3 19.7 0.982 0.23 754.0 34.7 0.983

Ia-C 0 264.5 148.2 0.988 0.69 1670.4 202.7 0.990
80 256.2 147.1 0.997 0.53 1649.4 158.5 0.980

320 178.2 100.4 1.000 0.26 1508.0 73.4 0.976
1280 111.4 55.2 0.979 0.16 1584.4 48.3 0.972

Ia-W 0 909.4 602.3 0.999 17.22 1534.6 556.4 0.989
80 643.2 404.4 0.996 9.35 1327.9 302.5 0.948

320 480.8 287.9 0.966 7.45 1109.4 223.0 0.983
1280 469.6 270.7 0.997 4.77 1264.5 110.0 0.973

Nb-A 0 12.1 6.9 0.887 0.09 121.4 2.2 0.946
80 12.5 7.0 0.968 0.06 169.9 2.0 0.937

320 15.9 8.3 0.952 0.05 298.8 2.8 0.789
1280 27.9 14.2 0.980 0.08 480.3 7.6 0.856

Nb-F 0 16.0 8.1 0.995 0.08 285.4 4.7 0.974
80 17.4 8.5 0.997 0.08 333.0 5.8 0.972

320 19.7 9.4 0.994 0.08 411.2 6.7 0.936
1280 31.2 13.6 0.995 0.12 745.4 17.2 0.925

Sd 0 60.4 35.0 0.981 0.09 633.5 10.0 0.990
80 56.5 33.1 0.961 0.10 541.5 11.1 0.994320 66.2 38.9 0.960 0.12 600.3 14.8 0.9941280 78.9 43.8 0.974 0.10 982.5 19.6 0.992

Va 0 25.1 13.4 0.989 0.08 365.3 5.8 0.91780 18.0 8.7 0.988 0.08 385.8 6.1 0.952320 21.6 10.4 0.993 0.08 456.5 6.6 0.9221280 26.8 11.7 0.991 0.09 716.9 12.8 0.894

We 0 39.2 21.0 0.972 0.20 429.9 16.5 0.98680 33.3 16.4 0.939 0.19 482.7 17.5 0.987320 74.3 45.6 0.987 0.16 571.0 18.3 0.9391280 68.7 36.4 0.974 0.16 818.2 25.3 0.829

KF - ~reundli.ch distribution coefficient; FPR = P requirement based on Freundlich relationship; Kt ~ Langmuir affmity coefficient; b = Langmuir
sorption maxuna; LPR =P requirement based on Langmuir relationship; F and L refer to Freundlich and Langmuir respectively.
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to 55.48, 0.1 to 37.4,0.2 to13.3, 2.2 to 88.0, 1.7 to 74.56, 1.04 to 110.6,2.0 to 66.92 and 0.1 to

62.36 mg L-1 in the Av, Hu-F, Hu-M, Hu-T, Ia-C, Ia-W, Nb-A, Nb-F, Sd, Va and We soils,

respectively. For Eastern Transvaal (now Mpumalanga Province of South Afiica) sesquioxic soils,

McGee (1972) established that deviation from linearity in the Langmuir isotherm occurred when

P solution concentrations were above 0.3 mg L-l
. On the other hand, for selected tobacco-growing

soils ofSouth Afiica, Henry and Smith (2002) reported compliance with the Langmuir isotherm for

P concentrations from 0.025 to 2.00 mg L-1
. In the present study, the relationship seems to hold up

to much higher concentrations according to the R2 values. However, irrespective of the high R2

values, in Figure 8.5 it can be seen that the relationship could be best described by two lines, similar

to the results ofLopez-Pineiro and Navarro (1997). In the Hu-M soil (Figure 8. 5c) for example, each

ofthe four curves is essentially two straight lines meeting at an equilibrium P concentration of3.75

mg L- l
. Another example is the We soil (Figure 8.5k) where there seems to be deviations from

linearity at equilibrium P concentration of2.5 and 10 mg L- l
. Singh and Gilkes (1991) referred to

a non-linear distribution of their Langmuir data to form a curve. It can be seen, for example, that

Figures 8.Sb, 8.5 e and 8.5fforthe Hu-F, Ia-C and Ia-W soils, respectively, betterrepresent smooth

curves rather than straight lines or a series of straight lines. In general though, the points in Figure

8.5 do not follow true straight lines.

The introduction of the WTR reduces the affinity ofP (Table 8.2, column KL) in the Av, Ia-C and

Ia-W soils whereas it remains virtually unchanged in the other soils. Whilst for the three soils the

results agree with the observations made in Sections 8.3.2 and 8.3.3.1, the results for the others are

at variance. For especially the coarse-textured Nb-A, Nb-F and Hu-T soils, it was expected that the

P affinity should increase. More consistent with earlier observations are the results of the sorption

capacities. Increases are notable for the Av, Hu-F, Hu-T, Nb-A, Nb-F, Sd, Va and We soils (Table

8.2, column b). In the Hu-M, Ia-C and Ia-W soils application of the WTR is accompanied by a

decrease in the sorption maximum. It would thus seem that the sorption maximum is a better

parameter for describing P sorption than the affinity term. Comparing the P requirement based on

the Langmuir isotherm (Table 8.2, column LPR) with the FPR, it can be seen that the two are

different, with the LPR being consistently much lower. As the appropriateness of the Freundlich
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isotherm has been demonstrated, it is thus the Langmuir isotherm which is incorrect. A reason for

the apparent deficiencies concerning P affinity and P requirement based on the Langmuir isotherm

is now proposed.

The Langmuir isotherm has received some criticism for its inappropriate usage in soil systems (e.g.

Veith and Sposito, 1977; Harter and Smith, 1981), one ofthe reasons being its assumption ofsimilar

energy sites. As observed by the points of the linear form ofthe Langmuir isotherm deviating from

straight lines (Figure 8.5), sorption sites are ofdifferent energies. The kinetic results (Section 8.3.1)

also support this since they give evidence of different mechanisms of sorption. Any calculations or

conclusions based on treating all points as equal is bound to lead to misleading results. This

understanding has prompted some workers (e.g. Veith and Sposito, 1977) to propose the so-called

binary or "two-surface" Langmuir equation to cater for the perceived deficiency. The improved

equation has worked on occasions, giving better, higher results of sorption maxima than the basic

one (Quang et al., 1996; Lopez-Pineiro and Navarro, 1997). From the literature surveyed the affinity

term has actually not been an issue, probably because it does not have any direct practical

implications.

Subjecting the current data to the two-surface Langmuir isotherm did not improve the LPR values

in all soils. At 0 Mg ha-I ofWTR, the Av for example, had LPR values of85.6 mg kg-I. The two­

surface Langmuir isotherm changed this value from 85.6 to 95.8 mg kg-I. Comparing these to the

proven FPR values (Section 8.3.3.1) of200.6 mg kg-I, it can be seen that it is not worthwhile to use

the binary Langmuir isotherm for these data.

8.3.4 Phosphorus fractionation

8.3.4.1 Pot experiment soils

Calcium cWoride extractions did not exhibit any consistent changes with application of either the

WTR or the lime, indicating that the amount of solution P was not affected by these treatments
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(Table 8.3). This was somewhat in contrast to the work ofJonasson (1996) who reported a reduction

in Cl resin-extractable P on application of an alum WTR to soils. Application of the WTR did not

change the amount ofP extracted with the Ambic solution in the Hu-M, Hu-T and Ia-C soils. In the

Nb-F 1 soil this fraction decreased whereas in the Sd soil it increased. The sodium bicarbonate

fraction remained almost the same in the Hu-M and Hu-T soils, decreased in the Ia-C and Nb-F1

soils, and increased in the Sd soil with application of the WTR. In the Ia-C and Nb-F1 soils

application of lime did likewise, which indicated that this reduction could be associated with an

increase in pH. Because both of these extractants measure available P, a similar behaviour is

expected and this is confirmed here, including in samples where lime was added. The sodium

hydroxide extractable fraction increased drastically in the Hu-M soil, only slightly in the Nb-F1 and

Sd soils, and decreased slightly in the Hu-T and Ia-C soils. Where the Ia-C soil was limed, no clear

pattern was evident whereas in the limed Nb-FI soil there was a slight decrease in this fraction. The

Ia-C soil was the only one in which the HCI fraction did not drastically increase with application

ofthe WTR. Thus in almost all soils the application ofthe WTR converted P to the highly reaction­

resistant calcium phosphate fraction, confirming results obtained by Jonasson (1996). This

seemingly occurs in part at the expense ofP associated with AI and Fe components. This might

happen because the increase in pH brought about by the WTR favoured this redistribution.

8.3.4.2 Incubation experiment soils

Some changes were found (Table 8.4) compared to samples from the pot experiment. For example,

in the Hu-M soil the sodium bicarbonate fraction decreased slightly as compared to a large decrease

in the sample from the pot experiment. The Ambic fraction on the other hand increased as compared

to showing virtually no change in the pot experiment samples. In the Hu-T soil also, these two

fractions increased in the incubation samples but were virtually unchanged in the pot samples. It

could be that the behaviour ofapplied P (as in the pot experiment) differed from that ofnative P (as

in the incubation experiment). That a WTR might interact with applied P but not native P was

reported by Elliott and Singer (1988) for Fe WTR-treated soils. There was an increase in P in the

sodium hydroxide fraction ofthe Hu-M and Nb-A soils, a decrease in the Hu-F, Ia-C, Nb-F, Va and
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Soil Treatment Calcium Ambic Sodium Sodium Hydrochloric
chloride bicarbonate hydroxide acid

(Mgha- I ) (mgkg-I )

Hu-M RO 0.4 8.9 13.0 38.0 4.9
R120 0.4 7.3 3.4 153.5 12.9

Hu-T RO 0.4 13.8 3.6 135.8 4.4
R120 0.4 11.2 4.9 113.8 9.7

Ia-C LORO 0.2 8.0 16.9 195.2 2.4
LOR120 0.3 8.1 5.8 185.4 4.0

LIRO 1.9 5.9 7.7 218.0 3.1
LIR120 0.5 6.7 7.7 186.0 4.6

Nb-F1 LORO 0.5 105.4 70.2 121.5 12.2
LOR120 0.8 48.4 52.1 131.1 57.8

LIRO 1.9 82.2 60.8 113.9 19.9
LIR120 0.5 45.0 44.6 123.7 55.1

Sd RO 0.9 6.0 0.9 161.9 5.7
R120 1.0 9.2 2.0 189.8 14.1

R=water treatment residue; L=lime

We soils, and an unchanged situation in the Hu-T and Sd soils. The calcium chloride and HCl

fractions gave similar results for all soils, the former with no change and the latter with increases

when the WTR was applied.

Even within the same soil, certain factors have been found to result in different behaviour ofP e.g.

P concentration and concentration ofbackground electrolyte (Eze and Loganathan, 1990), and pH

(Chen and Barber, 1990; Eze and Loganathan, 1990; Naidu, Syers, Tillman and Kirkman, 1990).

The different chemical and mineralogical environments between, and different chemical

environments within, similar soils (pot vs incubation experiments), would thus be expected to cause

different reactions of P. Application of the WTR with its own properties could cause further

differences in both the manner and extent ofP behaviour in the soils. No reason can be forwarded

for the current situation.
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8.3.5 Phosphorus extracted from field samples

The September 1998 samples from Brookdale Farm are from untreated plots, whilst the other

samples follow application of fertilizers (including P) as from April 1999 (Section 5.2.4). The

untreated samples from Ukulinga Farm are in February 2000. In this experiment fertilizer

applications were commenced in April 2000. These sampling and fertilizer application practices

thus account for the differences in Ambic extractable Pat 0 Mg ha- l rate ofWTR. To explain the

lower P observed in the soil samples from the incorporated treatment compared to the control, it is

proposed that there could have been some sorption ofthis element by the WTR (Section 8.3.2). This

argument might also hold for the mulched treatment (except for February 2001), considering that

some form of Ca might move from the mulch into the soil. As has been indicated (Section 8.3.4),

some relatively insoluble calcium phosphates seem to be connected with application of the WTR.

The consistently lower P extracted from the incorporated treatment indicates higher induced

sorption since the WTR is more effective when mixed with the soil.

The P extracted by calcium chloride did not exhibit any difference with respect to either time or rate

ofWTR application. The results ofChen and Barber (1990) showed different changes between soil

solution and resin-extractable P on liming, with the former decreasing and the latter increasing. The

dissimilar trends observed between the Ambic- and calcium chloride-extractable P are thus not

necessarily spurious. In the Brookdale soil the calcium chloride-extractable P concentrations range

between 0.8 and 1.5 mg kg-1 which are equivalent to 0.40 and 0.75 mg L-t, respectively. For the

Ukulinga soil the P solution concentration is on average 0.7 mg L-1
. For an element oflow solubility

such as P, these concentrations are high, and a possibility oftransportation in runoffwater needs to

be considered. Concentration ofP in the dam water at Brookdale (Appendix 7.1) does not seem to

reflect the observations in Table 8.5. Also, the dates where high concentrations ofP in the dam

water were recorded do not seem to match high water turbidity (results not shown) as might be

expected. There thus does not seem to be any inducement of external P transportation by the

introduction of the WTR. The problem is whether any of the extractants can be used to predict P

release, whether over land or vertically in soils.
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Table 8.4 Fractionation ofP in soil samples from the incubation experiment

Soil Treatment Calcium Ambic Sodium Sodimn Hydrochloric
chloride bicarbonate hydroxide acid

(Mgha-1
) (mgkg-1

)

Hu-F LORO 1.0 4.8 4.2 323.3 5.7
LOR120 1.0 3.3 4.9 187.6 41.0
L1RO 0.5 6.3 .12.8 419.2 6.2

L1R1280 0.6 1.7 9.2 218.7 23.2

Hu-M RO 0.6 0.2 6.6 139.2 3.8
R1280 0.5 12. I 5.0 218.8 5. I

Hu-T RO 3.3 4.9 2.1 109.9 2.2
RI280 2.4 54.6 4.2 I I 1.4 43.7

Ia-C LORO 0.1 3.2 11.3 146.8 2.9
LORl20 0.2 1.6 1.0 109.2 17.7

L1RO 0.0 2.5 12.2 14I.I 5.5
L1R1280 0.2 2.1 2.0 . 116.9 12.9

Nb-A RO 1.0 0.3 0.5 27.1 2.5
R1280 0.3 5.4 6.8 67.2 74.6

Nb-F RO 0.7 18.4 37.4 264.0 39.5
R1280 0.8 8.2 13.6 114. I 92.0

Sd RO 0.1 0.2 0.6 II7.8 5.7
R1280 0.2 1.6 1.4 118.6 43.4

Va RO 0.7 10.3 10.9 249.8 53.3
RI280 1.0 9.4 9. I 127.9 89.3

We RO 1.1 4.0 1.5 192.7 14.8
R1280 I.I 5.9 5. I 129.6 54.7

R=water treatment residue; L=lime

Since balancing the intensity (solution) and capacity (sorbed) factors is important, depending onjust

the soluble P to make predictions of mobility might not be enough. The Ambic extractant, on the

other hand, measures some sorbed but relatively easily mobilized P. It thus should be a better

indicator of P behaviour than the calcium cWoride extract. Even this would be somewhat empirical

(Agbenin and Tiessen, 1994; Dodor and Oya, 2000) as not all the pool of P controlling the solution

conditions might be catered for. As some support to this view, Borling, Otabbong and Barberis
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(2004) e-stablished that sodium bicarbonate-extractable P (which behaves similarly to Ambic) could

not be used alone to predict potential release ofP by soils.

Table 8.5 Calcium chloride and Ambic extractable phosphorus in selected soil samples from

the Brookdale and Ukulinga Farms

Field site Sample date WTR Calcium chloride Ambic
rate

(Mg ha-i) (mg kg-I)

Brookdale September 0 0.8 5.8
1998

February 0 1.3 13.0
1999 1280i 1.3 12.0

1280m 1.3 17.5

February 0 1.0 13.0
2000 1280i 1.0 6.5

1280m 1.0 8.3

February 0 1.0 10.5
2001 1280i 1.3 7.0

1280m 1.3 13.8

Ukulinga February 0 1.3 5.0
1999 1.3

February 0 1.5 10.5
2001 1280 1.5 7.3

i = incorporated treatment; m = mulched treatment

8.4 Conclusions

The determination of P sorption isotherms for a range of soils has revealed differences between

them after addition of the WTR. Fractionation ofP has yielded results that do not seem to follow

any particular pattern. This approach to the study of P is not recommended for future investigations,
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as it is laborious and does not yield any useful results. Soils with different properties appear to

behave similarly suggesting that the mechanisms at work are different between them. Changes in

P sorption as a result of incubation likewise reveal differences between the soils although no

conclusive reasons are obvious from the results obtained in this study. Such results are not unusual

since the literature contains many conflicting accounts as regards the soil properties that affect P

behaviour in soils. In perhaps the largest study undertaken on P dissolution (Sale, et aI., 1997) it

was found that no single soil factor could adequately predict the dissolution of phosphate rock

fertilizer or the subsequent behaviour of the released P at 26 long-term field sites across Australia.

Although it is clear that the WTR is responsible for P sorption the differences in the field between

the control plots and those amended with the highest amount ofWTR are not great. Further, despite

the evidence of both the laboratory experiments and the P extraction data from the field trial soils,

at both sites there was no analytical or visual evidence ofthis sorption causing deficiencies ofP that

affected the growth of either the perennial ryegrass or the tall fescue (Chapter 5). This evidence is

in agreement with the studies discussed in Chapter 2 that have observed that P deficiency due to

WTR application is restricted to pot experiments. The few field studies that have been conducted

have not indicated any substantial problems with P deficiency and have given rise to the possibility

that WTRs may act as slow release fertilizers. In addition, from an environmental perspective, the

P sorbing capacity of WTRs may be of potential benefit in situations where leaching of P is a

problem such as on coarse-textured soils or where over-fertilization with P on finer-textured soils

has exceeded the sorption capacity of the soil.
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CHAPTER 9

WATER TREATMENT RESIDUE AND BEHAVIOUR OF SOME REAVY METALS

9.1 Introduction

The concentrations ofheavy metals in soils raise concern for three possible reasons, i.e., deficiency

of those which are nutrients, toxicity to animals or plants and migration to water bodies.

The fate ofmetals, whether native or anthropogenic in the soil, is determined by the extent of their

retention by soil constituents. Retention is, in turn, governed inter alia by the chemical and physical

properties of the soil which determine the form of the metal. The form of the metal, e.g. soluble,

exchangeable, etc., controls the extent ofmobility which decides whether the cation migrates or not

and, if so, at what rate and to what extent. Amongst chemical properties affecting sorption are pH

(Ma and Liu, 1997; Filius, Streck and Richter, 1998), other cations (Bibak, 1997; Hanafi and

Sjiaola, 1998) and electrolyte or soil solution concentration (Pardo and Guadalix, 1996; Escrig and

Morell, 1998).

An investigation by Li, Hue and Hussain (1997) showed a change ofMn and Zn from organic to

carbonate forms in a neutral Mollisol but to exchangeable forms in an acid Ultisol, the diminishing

form being explained by the decomposition of organic matter. Pre-treatment of Andosols with

phosphate before adding Zn resulted in an increase in the exchangeable and Fe-Mn bound forms of

Zn (Ahumada, Bustamante and Schalscha, 1997), the former ascribed to phosphate sorption having

increased the surface negative charge. Ma and Uren (1997), studying the fate of Zn in soils,

concluded that when newly applied this metal was present as soluble and exchangeable forms but

transformed into unreactive forms associated with AI, Fe and Mn oxides with time.

Contamination of soils by heavy metals is of importance for ecological and health reasons

(Lehoczky, Szabados and Marth, 1996), the former presumably associated with metal migration to
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the groundwater and hence water bodies, whilst the latter could be linked to direct uptake by plants

or animals. Whilst it is generally considered that most heavy metals are virtually immobile in soils

(Karathanasis, 1999), there are nevertheless conditions under which this appears to be incorrect.

This deviation from the usual is reflected in increases in plant uptake and/or redistribution in soil

profiles.

Downward movement of metals in profiles has been particularly associated with sewage sludge

(Section 2.3). Studying metal concentrations of surface and subsurface soils, Moalla and Pulford

(1995) concluded that flooding could lead to lowering of redox potential that could mobilize and

encourage redistribution ofiron. Arnesen and Singh (1998) reported increases in plant-available Cu

and Zn following application of some organic materials. Organic anions derived from these

materials presumably formed relatively soluble complexes with these cations. Subsurface migration

of Cu and Zn has been shown to be enhanced by colloids in a laboratory study with undisturbed

columns (Karathanasis, 1999). Application of urea was found to increase Cd concentrations in

durum wheat grain grown in a pot experiment (Mitchell, Grant and Racz, 2000). The effects were

attributed to increase in ionic strength and cation exchange involving Cd and ammonium, a product

ofurea hydrolysis.

Disposal of the WTR to land, by virtue of it containing some heavy metals, would constitute

anthropogenic addition ofthese species. These metals in the WTR would add to those already in the

soils from weathering of minerals. The view ofNaidu, Kookana, Sumner, Harter and Tiller (1997)

is that anthropogenic additions pose a greater threat to the environment because ofaccess to animal

and plant uptake at the surface, and also because metal forms from such sources are more

bioavailable and soluble since they are environmentally unstable.

Forms ofmetals in WTR have been studied (Elliott, Dempsey and Maille, 1990) but were confined

to alum and ferric chloride materials and not extended to soils treated with the material. Ofconcern

in the current study was the behaviour of metals in soils treated with WTR.
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The objectives ofthis chapter are as follows:-

• to determine the effect of the WTR on metal sorption by soils; and

• to establish the transformation of selected metals in soils on introduction of the WTR.

9.2 Materials and methods

9.2.1 Soils

All 11 soils (Table 3.Ia) were used in this study. Samples from the pot experiment (Chapter 4) and

the incubated soils (Chapter 6) were included in some aspects of the investigation.

9.2.2 Determination oftime-sorption relationships

To duplicate 1 g samples ofsoil in a centrifuge tube were added 50 mL of0.005 M calcium chloride

. solution containing 167 ~g ofCd, Ni and Zn. Cadmium was chosen because ofits potential toxicity

to plants and humans, Ni as an indicator element for disposal of sewage sludge, and Zn as a

micronutrient with possible deficiencies. The suspension was shaken end-over-end for 0.25, 1,2,

4, 8, 24 and 48 hours. After each shaking period, the corresponding tubes were removed for

centrifugation and filtration. The metals were· analysed by atomic absorption spectrophotometry

(AAS).

9.2.3 Sorption ofmetals as affected by amount ofwater treatment residue

To duplicate 1 g incubated WTR-treated soil samples were added 50 mL of0.005 M CaCl2 solution

containing 50 ~g of Cd, Ni or Zn. After 6 hours of end-over-end shaking, the suspensions were

centrifuged, filtered and analysed by AAS.

To test whether these three cations would provide effective competition for sorption, the same
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procedure as outlined above was followed but with the metals either put in singly or all three

simultaneously in the same tube. Samples considered were the incubated soils where the WTR was

added at rates ofO and 1280 Mg ha-I.

9.2.4 Fractionation of metals

Metal fractions in WTR and soil samples treated with WTR (and lime in some cases) were

determined by the method ofMcLaren and Crawford (1973) as modified by Johnson and Petras

(1998) to be a completely parallel rather than a partly sequential extraction. The method involves

separating the fractions into water soluble + exchangeable by calcium chloride extraction,

inorganically bound extracted with acetic acid, organically bound extracted with potassium

pyrophosphate, that bound in amorphous oxides extracted with acid ammonium oxalate and the

mineral lattice (residual) form as analysed in a sulphuric acid/hydrofluoric acid digest. All

extractions were in duplicate. The residual fraction was not included in the current study.

Included in this fractionation experiment were soil samples from the pot experiment at 0 and 120

Mg ha-I of the WTR, with and without the higher rate of lime for the Ia-C and Nb-Fl soils, and

samples ofthe incubated soils treated with 0,80,320 and 1280 Mg ha-I ofthe WTR as well as lime

for the Hu-F and Ia-C soils. The metals considered, namely Cd, Co, Cr, Cu, Mu, Ni, Pb and Zn,

were analysed by AAS.

9.2.5 Depth distribution of metals il1 the field

The same heavy metals fractionated above were analysed in samples from the two field experiments.

The objectives were to determine whether the WTR would have any effect on the concentration of

metals, and also to establish ifthere was any discernible movement ofthese cations to a lower depth.

Exchangeable metal forms, which have been suggested to indicate potential mobility (Sposito, Lund

and Chang, 1982) were determined by shaking duplicate soil samples on an end-over-end shaker

with 0.05 M CaCl2 solution (Johnson and Petras, 1998) using a 1:2 soil to solution ratio. The
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Brookdale samples analysed were for the years 1998 to 2001 from the 0-200,200-400 and 400-600

mm depths. Samples from the Ukulinga experiment were from 0-200 mm for the year 1999 and all

three depths for the year 2001.The Brookdale samples were from the plots where WTR was applied

at rates of 0 and 1280 Mg ha-1 (mulched and incorporated), and the Ukulinga samples were from

plots treated with 0 and 1280 Mg ha-1 WTR.

9.3 Results and discussion

9.3.1 Time-sorption relationships

As expected, sorption of all three metals increased with time in all soils. Sorption at 8 hours was

compared with that at the often used equilibration time of24 hours (e.g. Pardo and Guadalix, 1996;

Yuan and Lavkulich, 1997; Escrig and Morell, 1998; Hanafi and Sjiaola, 1998; Mesquita, 1998;

Pardo, 2000). More than 90% ofthe Cd sorbed after 24 hours was sorbed by 8 hours in all soils and

the WTR. This was the case also for Ni except in the Av soil (61.5%), Nb-A soil (82%) and Nb-F

soil (87.8%). At least 90% ofthe Zn was also sorbed except in the Ia-C (82%) and Ia-W (72.9%)

soils. It was notable that all the soils where amount sorbed by 8 hours was relatively low had

comparatively low sorption behaviour according to Figures 9.1a, b and c. Rupa and Tomar (1999)

also reported similar sorption results between high and low Zn-sorbing soils; in their experiments

60% ofadded Zn was sorbed within 4 hours by the former soils, an amount which the low-sorbing

soils could only achieve in 24 hours.

9.3.2 Comparative extent of sorption

For all metals, the WTR sorbed more than any of the soils. In fact almost all the added Cd and Zn

was sorbed in 48 hours, with the amount ofNi sorbed being the lowest at 160.4 mg kg-1(96%). This

raises the possibility that application ofthe WTR to soil would enhance the soil's retention capacity

for metals and so reduce their mobility, and maybe their availability to plants. The soils could be

divided into three groups with comparatively high, moderate and low sorption capacity for all three
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metals. The last group consisted of the Av, la-C, la-W, Nb-A and Nb-F soils where the amount

sorbed ranged from 40.2 to 63.3 mg kg-l for Cd, 20.8 t045.1 mg kg-l for Ni and 48.0 to 89.5 mg kg-
1

for Zn. The Hu-F and Hu-T soils made up the middle group where the extent ofsorption for Cd, Ni

and Zn was 103.3 and 87.5 mg kg-I, 70.2 and 83.5 mg kg-I, and 114.2 and 115.4 mg kg- l in the Hu-F

and Hu-T soils, respectively. The group with the highest sorption capacity consisted ofthe Hu-M,

Sd, Va and We soils. The highest amounts ofmetal sorbed were between 110.4 and 121.4 mg kg-
l

for Cd, 92.0 and 105.3 mg kg- l for Ni, and 128.8 and 142.1 mg kg- l for Zn. The soils with a Iow

sorption capacity were either highly weathered (Av, la-C and la-W) or coarse-textured (Nb-A and

Nb-F). In addition, all the soils except the la-C soil had comparatively low cation exchange capacity

(CEC) (Table 3.1b). The Hu-F and Hu-T soils had comparatively moderate CECs, as well as being

less highly weathered.

Those soils with relatively high metal sorption capacities were moderately weathered and had

comparatively high CEC. If the la-C soil is omitted, CEC could be considered to be the main factor

to influence the extent of sorption of the metals as has been reported elsewhere for Zn (prasad,

Gowrisankar and ShukIa, 1997; Singh, McLaren and Cameron, 1997; Pardo, 2000), and Cd and Zn

(Hanafi and Sjiaola, 1998). Considering that sorption could increase with amount of clay (Mandal

and Hazra, 1997; Prasad et aI., 1997; Mesquita, 1998), the Va should have been in the group of low­

sorbing soils and the Ia-C in the group ofhigh-sorbing soils. Ifthese two soils were to be removed

from consideration, then percent clay could be brought in as a strong factor ofinfluence as well. A

stepwise linear regression analysis was performed to test the contributions of acid oxalate­

extractable AI and Fe, CEC, clay content, DCB-extractable AI and Fe and organic matter to the

sorption of these metals. Only the CEC gave significant R2 values of 0.759,0.834 and 0.713 for Cd,

Ni and Zn, respectively.

9.3.3 Effects ofwater treatment residue on sorption of metals by soils

The application ofthe WTR increased the amount ofmetal sorbed (Figures 9.2a to 9.2k) in all soils.

This was an expected result considering that in Figures 9.1 a to 9.1 c it was established that the WTR
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had a higher sorption capacity than all the soils. No single pattern emerged as to the order ofmetal

sorption by the soils. The Av and Ia-W soils followed Zn > Cd > Ni. The sequence Cd >Ni > Zn was

associated with the Hu-F, Hu-M, Hu-T and Sd soils. The Nb-A, Va and We soils followed the order

Cd> Zn > Ni. The Ia-C and Nb-F soils conformed to Cd > Ni >Zn at relatively 10wWTR levels and

to Cd> Zn > Ni at high rates. Pardo (2000) also reported different preferences of three soils with

respect to the extent of sorption for the metals Cd and Zn.

Where all three metals were simultaneously added in solution (labelled with -3 in Figures 9.3a to

9.3k), the amount ofmetal sorbed tended to be lower than when each metal was added on its own.

Suppression of sorption of metals in the presence of others through competitive sorption was

reported for Cu, Ni and Zn by Bibak (1997), Cu and Zn by Mesquita (1998), and Cd and Zn by

Wilkins, Brummel and Loch (1998). Compared to these workers who used comparatively high

concentrations of metals, the differences reported here are not significant. Thus at these

concentrations, there was virtually no competitive sorption between the three metals. This was true

even for the soils identified as low-sorbing, and at the 0 rate ofWTR where no benefits ofsorption

sites from this material were possible.

9.3.4 Metal fractions in the water treatment residue

Elliott et al. (1990) extracted some heavy metals from eight alum WTRs into similar fractions as

done in this study although using a different procedure, and suggested caution when interpreting the

results. Earlier, when performing fractionation ofCu in soils, McLaren and Crawford (1973), whose

modified procedure was used in this study, had established by correiation statistics that the dilute­

acid extractable fraction termed "inorganic" actually contained labile organic fractions as well. The

result for the organic fraction thus strictly refers to the fraction that is relatively stable under normal

soil conditions.

The metal fractions from the analysis of the WTR are presented in Table 9.1. There are zero levels

of the metals analysed in the exchangeable fraction from the WTR, implying that were this
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material to be added to soil, this fraction should either decrease or remain unchanged. This being

the potentially mobile fraction (Sposito et al., 1982), concerns about metals migrating down the soil

profile in WTR-treated soils should be allayed. Only Mn was in high concentration in the inorganic

fraction at 1681.9 mg kg-I. The other seven metals were all < 5 mg kg-I. Cadmium, Mn and Pb could

not be detected in the organic fraction. In WTR-treated soils, the organic fraction of these metals

would thus be expected to remain the same or to decrease. Metals which gave relatively high levels

in this fraction, at around 20 mg kg-I, were Cr, Cu, Ni and Zn. Organic fractions of these metals in

Table 9.1 Fractionation of selected metals in the water treatment residue

Exchangeable Inorganic fraction Organic fraction Amorphous

Metal fraction fraction

(mg kg-I)

Cd 0.0 0.4 0.0 0.0

Co 0.0 2.7 6.6 7.5

Cr 0.0 3.1 21.9 0.0

Cu 0.0 1.3 18.9 59.2

Mn 0.0 1681.9 0.0 3642.1

Ni 0.0 3.0 25.2 0.0

Pb 0.0 0.3 0.0 0.0

Zn 0.0 4.9 19.5 12.8

soils treated with the WTR would thus be expected to increase significantly or be maintained at a

relatively high level. The metals detected in the amorphous fraction were Co at 7.5 mg kg-I, Cu at

59.2 mg kg-I, Mn at 3642.1 mg kg-I and Zn at 12.8 mg kg-I. Concentrations ofamorphous Cu and

Mn would thus be expected to change with application of the WTR to soils, whilst some effect on

Co and Zn could also occur.
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9.3.5 Metal fractions in soil samples from the pot experiment

Soil samples from the pot experiment conformed to the observations above. The exchangeable

fraction of the metals were either 0 mg kg-I (Cd, Co, Cr, Cu, Ni and Pb) or showed a reduction (Mo,

Zn) (Appendices 5.1 to 5.5). Metals whose inorganic fractions were affected by the WTR were Mn

and Zn, with their concentrations increasing in all soils. Manganese was the metal which was

notably affected in the organic fraction by application ofthe WTR. Although the Hu-T and Sd soils

registered relatively unchanged concentrations, this fraction decreased in the Hu-M, Ia-C and Nb-Fl

soils in agreement with earlier expectations. This decrease might be as a result ofdecomposition of

organic matter as reported by Li et al. (1997), or may be a straightforward physical dilution brought

about by the WTR lacking organic Mn. In the amorphous fraction, Co, Cu and Mn concentrations

increased as expected in all soils, although it was only for Mn that these changes were very high.

For Cu especially, more significant changes were expected considering its relatively high

concentration in the WTR (Table 9.1).

9.3.6 Metal fractions in soil samples from the incubation experiment.

The incubated fractions (Appendices 6.1 to 6.9) also tended to conform to the expectations created

by the metal fractions in the WTR. The metals most affected were Mn and Zn, although Co and Cu

were present in some amorphous fractions. In the Hu-F (Appendix 6.1) and Hu-M (Appendix 6.2)

soils exchangeable Mn increased with increase in application rate of the WTR, much against

expectations. From 0 to 1280 Mg ha-I, Mn concentrations increased from 6.8 to 12.4 mg kg- l and

from 65.0 to 89.1 mg kg-Iin the Hu-F and Hu-M soils, respectively. The concentrations ofMn and

Zn in the inorganic fractions increased in all soils. With respect to the organic fraction, application

of the WTR either decreased or did not affect the levels of any of the metals except in the Hu-F

(Appendix 6.1), Ia-C (Appendix 6.4), Nb-F (Appendix 6.6) and Sd (Appendix 6.7) soils where Zn

concentrations increased. The amorphous forms of Mn and Zn increased in all soils, and in some

soils addition ofthe WTR also affected Co (Va, Appendix 6.8) and Cu (Ia-C, Appendix 6.4; Nb-A,

Appendix 6.5; Sd, Appendix 6.7).
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9.3.7 The effect oflime on metal fractions

There was no consistency concerning the effects of lime in either the samples from the pot

experiment or the incubated soils. The generally low concentrations of metals combined with few

treatments for comparison made it difficult to pick up any trends. Observations are possible for Mn

the concentrations ofwhich were relatively high. Exchangeable Mn decreased with application of

lime in the Ia-C (Appendix 5.3) and Hu-F (Appendix 6.1) soils whether the WTR was added or not,

and remained virtually unchanged in the Nb-F 1 soil (Appendix 5.4) under the same treatments. This

behaviour ofMn in the Ia-C and Hu-F soils showed that an increase in pH, caused by either the

WTR or the lime, contributed to a reduction in exchangeable Mn. Essentially similar results were

observed in the incubated Ia-C soil (Appendix 6.4) where exchangeable Mn was decreased by

application of lime. In the presence of 1280 Mg ha-1 of WTR, however, the lime effect was not

evident.

Application of lime increased the inorganic Mn fraction in the Ia-C (Appendix 5.3), Hu-F

(Appendix 6.1) and Ia-C (Appendix 6.4) but caused a decrease in the Nb-Fl soil (Appendix 5.4).

Although it was only in the Hu-F soil that the changes were statistically significant, the results

nevertheless prompted speculation about the fate ofthe exchangeable Mn. It was in the Nb-FI soil

where no decrease in exchangeable Mn was registered that a slight decrease in the inorganic fraction

ofthe metal was noted. In the other three soils, it is possible that some of the exchangeable Mn was

converted to the acid-soluble inorganic fraction with application of either the lime or the WTR.

Organic Mn decreased with lime application in all the soils except the Nb-FI. These results could

be explained by decomposition of organic matter that breaks down some Mn-organic matter

complexes because of an increase in pH. The exception, Nb-Fl soil, had a very low content of

organic matter. Statistically non-significant changes in amorphous Mn were noticed in the four soils

with all showing an increase except the Ia-C sample from the pot experiment (Appendix 5.3) where

this fraction decreased. It would therefore seem that the increase in this fraction with application of

the WTR was not only due to the amorphous fraction from this material, but also that an increase

in soil pH could favour the formation of such fractions (e.g. Mortvedt, 2000).
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9.3.8 Comparison ofmetal fractions in soil samples from pot and incubation experiments

On comparing the soils used in both the pot and incubation experiments, namely the Hu-M, Hu-T,

Ia-C, Nb-Fl, Nb-F and Sd, it was noted that some metal concentrations were very different. The Nb­

F and Nb-F samples used were sampled from different parts ofthe Farm and had different properties

(Table 3.1b) and thus could be expected to yield different results. Similarities were expected from

the Hu-M, Hu-T, Ia-C and Sd soils. Consideration was given to the 0 WTR samples only as the

others had non-comparable treatments. Except for a few exceptions, the concentrations ofall metals

were mostly comparable in the two experimental samples with the main exception ofMn. In the Hu­

M soil (Appendices 5.1" and 6.2) the other exceptions were amorphous Cu and organic Zn. Copper

concentrations were 2.3 mg kg-l in the pot soils but 7.6 mg kg- l in the incubated samples, with Zn

being 24.8 and 10.7 mg kg-I, respectively. In the Hu-T soil (Appendices 5.2 and 6.3) the differences

were in organic Co (2.3 vs 7.6 mg kg-I) and amorphous eu (0 vs 7.5 mg kg-I) in pot vs incubated

samples. There were no obvious differences in corresponding fractions in the Sd soil (Appendices

5.5 and 6.7).

As has been pointed out, Mn showed the greatest differences in all 4 soils and fractions. There were

consistencies in the differences in that concentrations ofthe exchangeable and organic Mn fractions

in the incubated samples were higher than in those from the pot experiment samples, and the

inorganic Mn from pot experiment samples was higher than from the incubated samples. As the

exchangeable fraction would be part of the plant available fraction, it is possible that uptake by the

grass plants had reduced this form ofMn compared to incubated samples. Concerning the organic

fraction, it could be that alternate wetting and drying as occurred during the pot experiment was

more favourable for organic matter mineralization than the stable water conditions experienced by

the incubated samples, or that the labile organic fraction was taken up by the plants.

Reasons for metal fractions of the same soil samples from the pot and incubation experiments in

some cases not being similar may be explained as follows. The samples were subjected to different

environments with respect to moisture regime, soil solution concentration and active cations present,
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the last two caused by fertilizer (pot experiment) and no fertilizer application (incubation

experiment). Competition between cations (Bibak, 1997; Mesquita, 19~8), solution concentration

(pardo and Guadalix, 1996; Escrig and Morell, 1998), in situ drainage status (Chowdhury, McLaren,

Cameron and Swift, 1997), and continuous flooding or alternate wetting/flooding and drying

(Mandal and Hazra, 1997) change the amount of sorption and/or distribution of metals between

fractions. Sorption can be by different mechanisms where metals can resort to exchangeable forms

by electrostatic attraction, or to less mobile fractions through formation of covalent bonds with

specific sorption sites (Pardo and Guadalix, 1996).

9.3.9 Depth distribution of metals in the field experiment soils

9.3.9.1 Brookdale Farm

In the soil at Brookdale, only Cd, Mn and Zn (Table 9.2) were detected. As in the fractionation

experiments, it was again Mn that was in relatively high quantities. For Cd (all < 2 mg kg-I) and Zn

(from 0.5 to 1.3 mg kg-I) the levels were too low to make an informed decision on the effects of

either the WTR or time. For Mn, however, the concentrations were relatively high.

At the 0-200 mm depth, there was a reduction in exchangeable Mn where the WTR had been

applied at all sampling times, except in 1999 for the incorporated treatment. The dilution ofthe soil

by the WTR, which had virtually no exchangeable Mn, could explain the results for the incorporated

treatment. The lower levels on the mulch treatment could be attributed to a cation such as Ca

affecting the mobility of the Mn. The longer persistence of moisture under the WTR mulch would

also encourage the leaching ofMn by favouring some formation of the more mobile I\Iln2
+. At the

200-400 and 400-600 mm depths, the concentrations ofthis metal were higher where the WTR was

applied compared to the control. The Mn lost from the 0-200 mm depth could thus be enriching the

lower depths.

There was a decrease of exchangeable Mn with time at the 0-200 mm and 200-400 mm depths for
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Distribution ofsome heavy metals (mg kg-I) in selected depth samples from 1999 to

2001 at Brookdale Farm with selected rates ofwater treatment residue

Metal WTRrate Year 0-200 200-400 400-600

(Mglha) (mm)

Cd 0 1999 0.2 0.1 0.1
2000 0.2 0.1 0.1
2001 0.2 0.2 0.2

1280i 1999 0.1 0.1 0.1
2000 0.2 0.2 0.2
2001 0.2 0.2 0.2

1280m 1999 0.1 0.1 0.1
2000 0.2 0.2 0.2
2001 0.2 0.2 0.2

Mn 0 1999 90.4 51.1 5.9
2000 52.5 4.0 1.4
2001 79.5 34.4 4.3

1280i 1999 86.7 70.1 9.3
2000 2.8 22.4 3.2
2001 45.6 41.8 17.9

1280m 1999 49 79.2 10.7
2000 0.9 42.4 2.6
2001 25.2 48.6 29.3

Zn 0 1999 0.9 0.4 0.3
2000 1.0 0.5 0.4
2001 1.3 0.7 0.5

1280i 1999 1.1 0.6 0.4
2000 0.8 0.6 0.6
2001 1.1 0.5 0.4

1280111 1999 0.4 0.5 0.4
2000 0.5 0.7 0.5
2001 0.6 0.9 0.6



148

all three treatments from 1999 to 2001. The increases at the 400-600 mm depth also suggests the

mobility of Mn in the conditions of this study. This possibility was also predictable from the

incubated soil results (Section 9.3.4) where exchangeableMn (Appendix 6.1) increased with increase

in rate of the WTR applied in the Hu-F soil. The WTR applied by incorporation effected increases

from 9.3 to 17.9 mg kg-! from 1999 to 2001, whereas the corresponding effects of the mulch

treatment were from 10.7 to 29.3 mg kg-1
. The results of 2000 tended to be anomalous in

comparison with the other years, perhaps because ofsampling or analytical error. Although there was

evidence of downward movement ofMn, there was no evidence ofit enriching the groundwater as

shown by analytical results of the borehole water (Appendix 7.1).

9.3.9.2 Ukulinga Farm

Manganese was in relatively high concentrations at the 0-200 mm depth (Table 9.3). Other metals

detected were Cd, Co, Cu, Ni, Pb and Zn at low concentrations, mostly less than 0.5 mg kg-1 and

with no influence ofthe WTR apparent. The dilution effect ofthe application ofthe WTR was clear

with the application ofthe material decreasing Mn concentrations from 66.5 to 52.8 mg kg- l in 1999

and from 20.0 to 1.2 mg kg-! in 2001. Since the lower depths did not show any evidence of an

increase in exchangeable Mn, the decrease with time could be caused by changing to other forms.

In the We soil (Appendix 6.9) it was established that exchangeable Mn decreased with increase in

the amount of the WTR applied whilst the inorganic and amorphous fractions, which are not

extractable by a neutral salt solution, increased.
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Distribution of some heavy metals (mg kg-i) in selected depth samples in 1999 and
2001 at Ukulinga Farm with selected rates of water treatment residue

Metal WTRrate Year 0-200 200-400 400-600

(Mglha) (mm)

Cd 0 1999 0.1 0.0 0.0
2001 0.1 0.1 0.3

1280 1999 0.1 0.1 0.1
2001 0.1 0.0 0.0

Co 0 1999 1.3 0.0 0.0
2001 2.2 1.3 1.0

1280 1999 0.7 1.1 1.3
2001 0.8 0.0 0.0

Cu 0 1999 0.2 0.0 0.0
2001 0.2 0.1 0.1

1280 1999 0.2 0.5 0.1
2001 0.2 0.0 0.0

Mn 0 1999 66.5 0.0 0.0
2001 20.6 1.0 lA

1280 1999 52.8 0.8 1.8
2001 1.2 0.0 0.0

Ni 0 1999 0.3 0.0 0.0
2001 0.3 0.2 0.2

1280 1999 0.2 0.4 0.3
2001 0.2 0.0 0.0

Pb 0 1999 0.7 0.0 0.0
2001 0.7 0.6 0.6

1280 1999 0.5 0.7 0.6
2001 0.5 0.0 0.0

2n 0 1999 0.5 0.0 0.0
2001 0.5 0.2 0.2

1280 1999 0.3 0.4 0.3
2001 0.3 0.0 0.0
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9.4 Conclusions

When applied to soils under laboratory conditions, the WTR increased the amount ofCd, Ni and Zn

sorbed, and the amount ofsorption increased with time. The form ofsorption was, in part, explained

by the fractionation ofthese metals, together with Co, Cr, Cu, Mn and Pb, in soil samples from pot

and incubation experiments. The metal fractions which generally increased in all soils were inorganic

and amorphous forms, implying specific sorption and mineral layer penetration, respectively.

Whichever mechanism is operative, the practical meaning is that the WTR was responsible for

converting metals to less mobile forms, which would reduce the risk ofgroundwater pollution. It was

only in the Hu-F and Hu-M soils that exchangeable fractions ofMn increased with application of

the WTR, and then only in the incubated samples. It would thus be in soils under fallow that mobility

ofthis metal must be expected. Similar results were observed in the field where Mn was the only one

ofthe eight metals studied which appeared to have leached at the Brookdale experiment on the Hu-F

soil.

The established immobilization ofmetals by introduction of the WTR appeared to reduce mobility

ofthe metals but did not induce any deficiencies in perennial ryegrass and tall fescue grown in either

pot or field experiments. The result ofa 3D-month long field experiment by Geertsema et al. (1994)

with alum WTR showed essentially the same results. Soil analysis and soil water analysis established

that metals incorporated with the WTR were not mobile within the soil profile. Also no differences

were observed, with respect to growth and metal concentration (notably Mn), ofpine trees growing

on their WTR-treated plots.

These results, coupled with those of Chapters 4 and 5, show that land treatment of the WTR is a

worthwhile option ofdisposing ofthe material. There were no agronomic negatives as plant growth

was not adversely affected. Also, no environmental concerns were observed since, except for Mn,

there was no evidence of metal movement down the profile.
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CHAPTER 10

GENERAL DISCUSSION AND CONCLUSIONS

10.1 Introduction

Everyone has a right to a healthy environment according to the constitution ofthe Republic ofSouth

Africa. The health and future ofthe environment, soil included, depends primarily on how the human

inhabitants make use of it. Uses ofland include what Logan (1990) referred to as the final solution

to society's disposal problem. Land disposal ofwastes, however, must not be a transfer ofa problem

to another location, but a solution and, as a bonus, a benefit.

It was the purpose ofthis investigation to establish into which ofthe above categories land disposal

of the WTR would fall. This WTR is based on a cation organic polymer and contains calcium

carbonate, difterent from the more researched so-called alum sludges. Its lime value seems to hold

with different conditions (e.g. comparing lime contents in Sections 3.3.1 and 6.3.2). If the land

disposal would be deemed to be transfer or translocation of a problem, then such an activity would

be discontinued, or not started at all. For the purposes of this investigation, a healthy soil is one

whose plant productivity is sustained or improved by the application ofthe WTR, and/or one which

is not going to be harmful to the environment and its inhabitants or living organisms. In other words,

the permissibility of land disposal of the WTR would be governed by its agricultural and

environmental impact.

10.2 Agricultural implications of the land disposal of water treatment residue

Is land application of the WTR of benefit to agriculture from a soil chemical point of view?

According to the results obtained from the two field experiments, it is not. On the other hand, the

pot experiment showed benefits such as an increase in dry mass yield of perennial ryegrass and pH

(both KCI and H20) offive soils with increase in the amount ofWTR applied up to 120 Mg ha-I. No

such benefits were apparent from field experiments with the same test plant even at the highest rate
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ofapplication, namely 1280 Mg ha-I. Ifthe agricultural benefit was a key driver in land disposal, then

this activity would probably be written off. Of importance, though, is that there were no negative

effects on either soil chemical properties or plant growth occurred as a result of the application of

the WTR. These results are ofeven more significance when noting that the soils providing them have

dissimilar properties. Despite their differences, the deep, highly weathered, well-drained Hu-F soil

gave similar results to the relatively shallow, less weathered, poorly drained We soil. It may thus be

assumed that on soils with properties between these two extreme cases disposal of the WTR can be

practised with similar results.

It has been established that application ofthe WTR does not reduce uptake ofany nutrients by plants.

This includes P and some heavy metals which have been demonstrated in the investigation to be

sorbed by the WTR. Also, although the WTR contained some heavy metals, there was no evidence

ofits application to soil resulting in toxicity to either ofthe species grown. This was the case in both

field experiments, and up to the highest application rate of 1280 Mg ha"I. It can thus be deduced that

for the plants concerned under the current conditions ofthe investigation, the WTR had no negative

effects on availability of nutrients and subsequent plant growth.

The incorporated and mulched treatments of the WTR gave essentially similar results at the

Brookdale field experiment. The results ofthe mulched treatment suggest that the WTR can be used

as a soil substitute when required, as in rehabilitation of eroded lands or stabilization of fragile

landscapes. Perennial ryegrass and tall fescue, which have been demonstrated to thrive under this

mode ofWTR application, or some other grass, could be grown as an aid to the reclamation process

as demonstrated by Titshall (2003).

The question arises as to why the positive results ofthe pot experiment were not repeated in the field

situation. In general, results of pot experiments cannot be directly extrapolated to a field situation.

Part of the explanation in the current case might lie with the differences in conditions, especially

those ofthe aggregate size oftheWTR, and the fate ofthe soil-WTR products. The aggregate sizes

of the WTR applied to the pot experiment were very small « 2mm) compared to those applied to
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the field (50-80 mm). In the pot experiment the reaction ofthe WTR with the soil would thus occur

faster and more readily. The useful products ofthe reaction, like nitrate, would then be available to

be taken up by plants easily, unlike in the field where leaching may occur. Breaking the aggregates

prior to field application would both be impractical and expensive, and leaching cannot be prevented.

If these are the key differences to plant response in pot and fleld experiments, then that would mean

the situation calIDot be rectifled. Although there is evidence of the material breaking to smaller

aggregates with time (Moodley, 2001), chemical and fertility beneflts might not accrue as required

since some of its species would have been lost already. If agricultural beneflts are considered to be

important, then experiments to test the response of other plants might be considered.

10.3 Environmental aspects of the land disposal of water treatment residue

How would it be determined whether land treatment of the WTR is environmentally safe? With the

"environment" in the current investigation referring to the soil, plants, groundwater, surface waters,

and the atmosphere the answer to this question would be how these mentioned environmental

components would respond to the application of this material. The first two of these have been

addressed (Section 10.1). The atmospheric environment has not been investigated. However, from

the fact that the WTR is basically inorganic, and that it does not create anaerobic conditions in the

soil (Moodley, 2001) it can be reasonably assumed that no volatilization or denitriflcation is likely

to occur.

Comparing analytical results from before the establishment ofthe Brookdale trial, and those acquired

in monitoring borehole and dam water during the running of the experiment, it was established that

there were no problematic increases in any of the elements Ca, Mg, Cl, N as nitrate, P, Cr and Mn.

Thus although there was evidence ofremoval ofsolutes from the soil it was not at such a rate as to,

cause pollution to either surface water or the groundwater. Although the chemically retentive nature

of the WTR for soluble material is established, this might not be the only mechanism by which it

reduces, or does not encourage mobility ofsolutes. Moodley et al (2004) have established with the

fleld trials reported here (Chapter 5) that the WTR can increase water retention ofsoils at high rates.

Because of water percolation rates through the soil profile, less solutes will be transported.
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10.4 Conclusions

It is safe to dispose of this type ofWTR on land. The rate of disposal may be up to 1280 Mg ha-I,

the highest rate of application of the WTR in this investigation. Based on the different soils used,

on the different modes of application (incorporated and mulched), and on the data gathered during

the course of this investigation no scientific reason can be forwarded for perceived limitations on

its disposal to land. Further details of other aspects of the land disposal of this and other types of

WTR can be found in Hughes et al. (2005).

Whilst agriculturally it might not be beneficial, the water treatment residue has been demonstrated

to be environmentally innocuous. There were no negative effects on plants growing on WTR-treated

soils. Supporting this was no evidence of induced nutrient deficiencies or creation oftoxicities. To

minimize migration of solutes to the groundwater, land disposal would need to be practised with

growing vegetation on treated soils. This activity could have positive spin-offs in terms of soil

conservation, animal feed and reduction in eutrophication and pollution of groundwater through

absorption of soluble species by the growing plants.

There probably are grounds to rethink the policy of considering the water treatment residue as a

"waste" in the sense that it might cause pollution. Lombard et al. (1994) even concede that the

definition of"waste" might be subjective because what is considered a waste in one context might

be a resource in another. Whilst the water treatment residue might be a waste because of no

perceived benefits agriculturally, it has been proven not to be a waste in terms of pollution. With

especially the demonstration that certain grass species can grow directly on it, its disposal is a means

ofrecycling soil to eroded lands for rehabilitation purposes, thus making it a potential resource. For

rehabilitation practices the National Ministry of Environmental Affairs and Tourism, for whom

.maintenance and restoration of the environment would take precedence over economic

considerations, could take charge of such an undertaking.
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Appendix 1.1 Nutrient composition and DM yield of perennial ryegrass grown on the Hu-M soil
in a pot experiment at cuts 1, 2, 4 and 8 with different rates ofWTR [means (n =3)
followed by the same letter are not statistically different]

Cut WTR Ca K Mg P Cu Mn Zn Mean
no. yield

(Mgha-l ) (g 100g'l) (mgkg-I ) (g)

1 0 0.47a 3.79a 0.44a 0.14a 18a 155a 65a 0.90a
40 0.61ab 4.04a 0.45a 0.17a 18a 17Ia 55a l.ooa
80 0.61ab 3.74a 0.47a 0.14a 16a 135a 60a 1.09a
120 0.6Th 3.25a 0.41a O.13a 13a 117a 60a 0.82a

LSD (0.05) 0.18 0.96 0.14 0.07 5 54 16 0.30

2 0 0.53a 2.97a 0.55a 0.31ab 15a 198c 61a 3.90a
40 0.63ab 3.30b 0.52a 0.36b 16a 140b 55a 4.38a
80 0.66ab 3.27ab 0.64a 0.30a 17a 96a 55a 3.94a
120 0.79b 3.12ab 0.63a 0.28a 17a 89a 58a 4.02a

LSD(0.05) 0.13 0.32 0.24 0.06 3 37 9 0.98

4 0 0.74a 1.11a 0.81a 0.26a 7a 459d 42a 0.77a
40 0.83a 1.43a 0.70a 0.32a 6a 170bc 40a 0.92a
80 0.96a 1.54a 0.83a 0.33a 7ab 101ab 46a 0.61a
120 0.99a 1.35a O.72a 0.19a 9b 72a 40a 0.95a

LSD(0.05) 0.28 0.86 0.28 0.19 2 78 18 0.36

8 0 0.85a 1.61a 0.64a 0.47ab 6a 806d 44b 1.04a
40 0.94ab 1.65a 0.70a 0.56b 5a 455bc 34a 0.99a
80 0.94ab 1.60a 0.68a 0.58b 6a 188a 21a 1.05ab
120 1.34c 1.35a 0.62a 0.42a Sa 346ab 46b I.59c

LSD(0.05) 0.28 0.38 0.17 0.12 3 216 IS 0.41



168

Appendix 1.2 Nutrient composition and DM yield ofperennial ryegrass grown on the Hu-T soil in
a pot experiment at cuts 1, 2, 4 and 8 with different rates ofWTR [means (n = 3)
followed by the same letter are not statistically differentJ

Cut WTR Ca K Mg P eu Mu Zn Mean
yield

(Mgha·1) (g 100g-1) (mgkg-1) (g)

1 0 0.42a 3.60a 0.41a 0.27b 18a 634e l13ab 3.25b
40 0.57b 3.96ab 0.41a O.23b 20a 394ab 114b 2.79ab
80 0.67bc 4.34b 0.42a 0.22ab 18a 205a 97a 2.65a
120 0.6ge 4.22b 0.45a 0.16a 20a 199a 99ab 2.46a

LSD(0.05) 0.11 0.47 0.05 0.06 6 229 16 0.60

2 0 0.42a 3.%a 0.48a 0.51b lOa 686d 87a 4.05a
40 0.57b 3.93a 0.47a 0.43ab 13a 442be 86a 4.18a
80 0.61b 4.02a 0.47a 0.43ab I4ab 216ab 83a 4.61b
120 0.60b 3.84a 0.56a 0.34a 16c 192a 82a 4.61b

LSD(0.05) 0.07 0.28 0.10 0.05 2 223 24 0.35

4 0 0.45a 1.9Ia 0.52a 0.29b Sa 465c 58a 0.83a
40 0.7% 2.00a 0.65ab 0.33b 5a 217a 62a 1.01a
80 1.00e 1.97a 0.73be 0.28ab 7ab 220a 74ab 0.98a
120 1.07c 1.82a 0.84c 0.22a 9b 340b 85b 1.08a

LSD(O.OS) 0.19 0.36 0.14 0.07 3 102 17 0.31

8 0 0.60a 1.60a 0.55a 0.52a 7a 442b 35ab 1.07a
40 O.84b 1.50a 0.62a 0.51a 4a 321b 29a 1.22ab
80 I.02e 1.55a 0.52a 0.53a 5a 85a 41ab 1.17a
120 1.12e 1.41a 0.51a 0.40a 4a 321b 45b 1.67e

LSD(0.05) 0.12 0.22 0.14 0.16 3 216 16 0.26
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Appendix 1.3 Nutrient composition and DM yield of perennial ryegrass grown on the Sd soil in a
pot experiment at cuts 1, 2, 4 and 8 with different rates of WTR [means(n ;::;:: 3)
followed by the same letter are not statistically different]

Cut WTR Ca K Mg P Cu Mu Zn Mean
yield

(Mgha-I) (g WOg-I) (mgkg'l) (g)

1 0 0.56a 3.76a 0.49a 0.15a 18a 301e 90a 2.97c
40 0.62a 3.77a 0.50a O.15a 20a 207b 85a 2.60ab
80 0.68a 4.10a 0.50a O.15a 21a 140a 85a 2.31a
120 O.72a 3.78a 0.50a 0.14a 19a 165a 81a 2.54a

LSD(0.05) 0.18 0.36 0.11 0.02 6 31 21 0.36

2 0 0.43a 3.88a 0.45a 0.43b 11a 455e 60a 4.07b
40 0.58b 3.80a 0.58b 0.37a 13ab 3lOb 72e 3.44a
80 O.56b 3.88a 0.51 ab 0.40ab 1400 159a 64ab 4.4100
120 O.5Sb 3.89a 0.55b 0.40ab 15c 174a 62a 4.76e

LSD(O.OS) 0.11 0.32 0.09 0.05 2 61 7 0.47

4 0 0.59a 1.86a 0.57a 0.41a 7b 448e 55a O.72a
40 0.65ab 1.89a 0.65b 0.40a 7b 272ab 40a 0.94a
80 0.75bc 2.07a 0.7100 0.44a 6ab 129a 57a 0.92a
120 0.94d 1.77a 0.86d 0.37a 4a 247a 52a 0.99a

LSD(0.05) 0.11 0.38 0.07 0.11 2 152 33 0.35

8 0 0.79a 1.65a 0.67e 0.46a Sa 1213e 34ab 0.89a
40 0.78a 1.39a 0.57a 0.40a 4a 388ab 21a 0.938
80 0.86ab 1.48a 0.59ab 0.44a 6a 254a 31ab 1.31b
120 1.02e 1.34a 0.66bc 0.46a Sa 2%a 39b 1.63c

LSD(0.05) 0.10 0.32 0.08 0.12 3 487 14 0.29
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Appendix 1.4 Nutrient composition and DM yield of perennial ryegrass grown on the Ia-e soil in a pot
experiment at cuts 1,2,4 and 8 with different rates ofwater treatment residue (R) (Mg ha-I)
and lime (L) [means (n =3) followed by the same letter are not statistically different]

Cut Treatment Ca K Mg P Cu Mn Zn Mean
yield

(g WOg-I) (mgkg-I) (g)
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Nutrient composition and DM yield ofperennial ryegrass grown on the Ia-C soil in
a pot experiment at cuts 1, 2, 4 and 8 with different fates ofwater treatment residue
(R) (Mg ba-1

) and lime (L) [means (n = 3) followed by the same letter are not
statistically different]

Cut Treatment Ca K Mg P Cu Mu Zn Mean
yield

(g 100g·1) (mgkg·1) (g)

4 LORO 1.l8ab 2.28d 0.40a 0.20a 9a 534b 45a 0.75a
LOR40 1.48b l.38ab 0.96c 0.24a 7a 576b 50a 1.01ab
LOR80 l.31ab 1.18a 0.7500 0.20a 8a 391ab 49a 1.23b
LOR120 1.05a 1.5600 O.71e 0.17a 8a 233a 44a 12Th

L8D(0.05) 0.37 0.25 0.24 0.11 3 203 18 0.30

LIRO 1.22ab 1.97a O.SOab O.19ab 12ab 276a 44a 0.89a
LlR40 0.90a 1.86a 0.40a 0.20ab 11a 273a 43a 1.13ab
LlR80 1.12ab 2.42a 0.46ab 0.17a 14c 246a 45a 1.2200
LIR120 l.34b 2.17a O.64b O.17a 11a 223a 51a l.71d

LSD(O.OS) 0.35 0.59 0.21 0.03 2 108 14 0.28

L2RO 0.72a 1.18a 0.56a 0.23b lOa 153a 42a 1.05a
L2R40 0.81a 1.82a 0.52a 0.19ab lOa 167ab 36a 1.46b
L2R80 1.14a 2.80a 0.29a O.14a l3ab 230c 41a 1.57b

L2R120 uSa 3.0Sa 0.29a 0.17a 15b 149a 37a l.64b

L80(0.05) 1.52 1.25 0.41 O.OS 3 41 9 0.41

8 LORO Ula 1.36b 0.6Sab 0.52a lOb 773b 80b 1.100
LOR40 l.36b 1.29ab O.64a 0.49a 7ab 898b 81b 1.37a
LOR80 1.54c 1.19a 0.62a O.44a Sa 613a 66ab l.64b

LOR120 1.4300 1.26ab 0.710 0.49a 8ab 477a 49a 1.86b

LSD(0.05) 0.16 0.13 0.03 0.09 4 159 17 0.26

LlRO 1.50a 1.55c 0.69a 0.60d lIb 646b 69c 128a
LlR40 1.44a 1.2Sab 0.73ab O.45be Sa 372a SSab l.44a
LlR80 1.46a U5a 0.73ab 0.39ab Sa 373a SOa 1.60ab

LlR120 1.37a 1.08a 0.76b 0.31a Sa 467ab 45a l.%c

L8D(0.OS) 0.17 0.30 0.06 0.09 4 207 13 0.36

L2RO 2.30a 1.25b O.71a 0.58c 17b 373a 40a l.13a
L2R40 2.248 1.10a 0.71a 0.46ab 19b 507a 49a 1.56b
L2R80 2.05a l.l1a 0.65a 0.43a llab 579ab 40a 1.84e

L2R120 1.96a 1.26b O.63a 0.35a 8a 822b 35a 2.01c

LSD(0.05) 0.36 0.12 0.11 0.12 8 301 16 0.22
LO=no lime applied; Ll lower lime treatment; L2-higher lime treatment; R=water treatment residue
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Appendix 1.5 Nutrient composition and DM yield ofperennial ryegrass grown on the Nb-FI soil in a pot
experiment at cuts 1,2,4 and 8 with different rates ofwater treatment residue (R) (Mg hal

)

and lime (L) [means (n =3) followed by the same letter are not statistically different]

Cut Treatment Ca K Mg P Cu Mn Zn Mean
yield

(g lOOg·l) (mgkg"l) (g)

LORO 0.22a 4.18e 0.32a 0.45a 12a 174a 56b 0.69a
LOR40 0.81b 3.98e 0.40b 0.46a 11a 217b 65b 1.12ab
LOR80 0.9800 2.67a 0.42b 0.39a 9a 385d 36a 1.65e
LOR120 1.27d 3.60b 0.45b OAOa 11a 24800 45a 0.98a

LSD(0.05) 0.24 0.31 0.07 0.16 6 35 10 0.48

LlRO O.72a 3.15a 0.40a 0.61e 9a 96a 60a 1.77a
LlR40 1.16b 3.18a OA5b 0.41ab 16a 270b 62a 1.82a
LlR80 1.15b 3.33a OA3ab 0.38a Ba 28% 58a 1.36a

LlR120 1.18b 3.08a OA3ab 0.30a 16a 231b 45a 1.49a

LSD(O.05) 0.34 1.18 0.03 0.12 7 91 35 0.63

L2RO 0.94a 2.29a 0.41a 0.49b 16a 101a 54a 2.13a
L2R40 0.95a 2.17a 0.37a 0.32a 16a 182ab 42a 2.28a
L2R80 1.12a 2.57a 0.40a 0.36ab 11a 207b 41a 2.20a

L2R120 1.28a 2.97a 0.41a 0.37ab 18a 218b 38a 2.00a

LSD(0.05) 0.81 1.87 0.15 0.14 9 90 27 0.71

2 LORO 0.25a 3Ala 0.37a O.72e 9a 162a 36a 2.80a
LOR40 O.97e 3.12a 0.61d 0.62ab lOa 384b 58b 2.87a
LOR80 0.82b 3.25a OA7b 0.59a 7a 757e 45a 3.21a
LOR120 1.07d 2.96a OA8e 0.53a lOa 405ab 47ab 3.43a

LSD(O.05) 0.10 0.65 0.04 0.10 4 124 12 0.66

LlRO 0.80a 3.19a 0.50b O.71e 11a 260a 6ge 2.30a
LlR40 1.00ab 2.95a 0.39a 0.57ab 11a 448a 47ab 3.06b
LlR80 1.07b 2.74a O.44ab 0.52a lOa 405a 36a 3.31b
LlR120 LOTh 3.01a 0.42a 0.55a 12a 268a 43a 3.32b

L8D(0.05) 0.23 0.73 0.08 0.09 3 247 18 0.49

L2RO 0.91a 3.47b 0.46a 0.65e 9b 153a 58b 2.58a
L2R40 0.82a 3.31ab OAOa 0.59be 9b 515d 54b 3.51a
L2R80 1.00a 2.56a 0.48a 0.54ab Sa 31500 39a 2.82a

L2R120 1.02a 3.00ab 0.49a 0.48a 9b 294b 40a 3.26a

L8D(0.05) 0.33 0.89 0.10 0.06 5 128 8 0.49
continued
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Nutrient composition and DM yield ofperennial ryegrass grown on the Nb-F1 soil
in a pot experiment at cuts 1, 2, 4 and 8 with different rates of water treatment
residue (R) (Mg ha-I) and lime (L) [means (n = 3) followed by the same letter are
not statistically different]

Cut. Treatment Ca K Mg P Cu Mn Zn Mean
yield

(g lOOg-!) (mgkg-1) (g)

4 LORO 0.42a 2. lOb 0.46a 0.62ab 7a 179a 52a 0.49a
LOR40 Uge 1.99b 0.7Th 0.80b 7a 1033b 54a 0.49a
LOR80 0.98b 2.13b 0.54a 0.55a 8a 1061b 41a 0.58a
LOR120 1.53d 1.54a 0.91e 0.66b 9a 1441b 46a 0.44a

LSD(O.05) 0.18 0.31 0.13 0.22 6 568 18 0.16

LlRO 1.0ta 2.25b 0.5& O.80e 7a 188a 48b 0.35a
LlR40 1.Ba 2.21b 0.59a 0.62b 7a 823b 44ab 0.49ab
LlR80 1.64b 2.03ab 0.68a 0.47a 5a 1764d 42ab 0.6600
LlR120 l.77b 1.67a O.64a 0.46a 6a l066bc 33a O.77e

LSD(O.05) 0.30 0.41 0.18 0.15 3 263 12 0.23

L2RO l.38c 1.89d 0.93a 0.62b 8a 150a 41b O.44a
L2R40 1.14b 1.4400 0.75a 0.55b 7a 766b 33ab 0.73b
L2R80 1.3100 1.20b O.72a 0.58b 8a 974b 27a a.81b
L2R120 0.74a 0.61a 0.69a 0.41a 8a 783b 28a 0.86b

LSD(0.05) 0.20 0.44 0.27 0.13 2 514 8 0.15

8 LORO 0.84a 2.07c 0.55a 0.88a Sa 511a 64a 0.50a
LOR40 1.40b l.39ab 0.56a 0.84a 7ab 606ab 78a 0.86b
LOR80 1.50b 1.33a 0.50a 0.69a 7ab 503a 46a O.85b
LOR120 1.70b 1.19a 0.62a 0.74a 9b 1597c 58a O.84b

LSD(0.05) 0.47 0.32 0.15 0.38 4 362 38 021

LIRO 129a 1.90b 0.48a 0.95b 9a 287a 60a 0.59a
LlR40 1.61b 1.53ab 0.49a 0.61& 8a 422ab 41& O.72ab
LlR80 1.77b 1.29a 0.66b O.64a lOa 794b 45a O.84b

LIR120 1.77b 1.40a 0.63b 0.77ab lOa 75lab 41a O.83b

LSD(0.05) 0.30 0.41 0.13 0.23 7 494 32 023

L2RO 1.51a 0.48a 0.48a 1.02b 8ab 137a 49c 0.74a
L2R40 1.45a 0.46a 0.46a 0.71a 7a 295ab 35a 0.88a
L2R80 l.%b 0.61a 0.61a LOTh 9ab 4700 32a 0.84a

L2R120 2.03b 0.55a 0.55a 0.93b lOb 275a 36ab 0.9Oa

LSD(O.05) 0.34 0.21 0.16 0.23 3 174 7 0.18
LO no lime applied; Lt lower lime treatment, L2-higher lime treatment, R=water treatment residue
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Appendix 2.1 Chemical analysis of soil samples from th~__pot experimenrwith differ~nt rate~ o(

water treatment resid1!e(R.)(Mg ha-I) and lime' (L) [mean~ (n::::}) followed by the

same letter are 110t statistically different] " '-

Soil Treatment pH pH Exit. Ca Mg Add sat P Total yield
Acidity

.'(KC!)) ( (HzO) (cmol,kg") (g lOOg") (mgkg") (g)

Hu-M LORO 4.48a 5.54a 0.1ge 5.23a 4.73a 1.9b 73, 12.58a..-------- LOR40 4.85b 5.72ab 0.04a 6.213b 4.73a 0.4a Sa 13.63ab
LOR80 5.23c 5:87bc 0.04a 7.25bc 4.76a 0.3a 5a 13.55a

LOR120 5.73d 6.19d 0.06ab 9.08d 4.86a O.4a 5a 14.96e
LSDO.05. 0.23 0.23 0.05 1.36 0.18 0.4 3 1.15

Hu-T LORO 4.24a 5.3Oa 0.18d 2.49a 1.82ab 3.ge Bb 15.l0a
-----...,....., LOR4O 4.99b 5.82b 0.07bc 3.58b l.86ab 1.2b 7a 15.4Oab

LOR80 5.76c 6.28c 0.03a 4.63e 2.00b O.4a 8a 16.62be
LOR120 6.20d 6.60d 0.04ab 5.03c 1.70a 0.6a 8a I8.4Od

LSD 0.05 0.07 0.05 0.04 0.44 0.38 0.6 4 1.28

Ia-C LORO 4.25a 5.45a 1.26c 2.4Oa 1.82a 23.Oc 5a 13.213
LOR40 4.60b 5.68b O.29b 4.85b 1.69a 4.2b 6a I4.82a
LOR80 4.97e 5.78c O.13a 6.71e 2.23b 1.4a 6a I7.48b

LORI20 5.37d 5.94d 0.18a 8.07d 2.36b 0.7a 5a 17.88b
LSD 0.05 0.06 0.05 0.06 0.43 0.28 1.09 4 1.85

LIRO 4.78a 5.67a 0.22b 5.97a 1.57a 2.ge 6a 13.79a
LIR40 5.20b 5.78b 0.09a 8.47b 1.77b O.9ab Sa 15.15ab
LIR80 5.7Oc 5.85c 0.06a 10.95c 1.82bc 0.5a 4a 16.34bc

LlR120 5.7ge 6.56d 0.09a 12.23c 1.95c 0.7a 5a 20.22d
LSD 0.05 0.23 0.04 0.06 1.33 o.t7 0.7 2 1.86

L2RO 5.42a 6.05a 0.05a 9.16a 1.41a O.5a 6a 15.10a
L2R4O 5.78b 6.33b O.lla 10.93b 1.53b O.Sa 6a 17.32b
L2R80 6.03c 6.52c 0.08a 11.83be 1.52b 0.6a 6a 18.29b

L2R120 6.3ld 6.63 0.07a 13.28d 1.59b 0.5a 6a 17.31b
LSD 0.05 0.08 0.07 0.08 1.15 0.10 0.6 1 1.40

N1J..FI LORO 3.91a 4.72a 0.47c 0.48a 0.21a 40.5c 96c 6.87a
LOR40 4.78b 5.36b 0.06ab 1.76b 0.28b 2.7ab 59b 10.02b
LOR80 5.71e 5.90e 0.03a 2.18c 0.37c 1.2a 36a 10.56b

LORl20 6.46d 6.51d 0.03a 2.76d 0.39c 0.8a 36a 1l.19b
LSD 0.05 o.t5 0.10 0.04 0.20 0.05 2.3 9 1.67

LIRO 4.55a 5.32a 0.09c 1.42a 0.24a 5.3e 80c 7.36a
LIR40 5.62b 6.31b 0.04ab 1.90b 0.25ab 2.la 40ab 9.30b
LIR80 6.44c 6.45c 0.07bc 2.55e 0.31be 2.3ab 36a 11.3ge

LIR120 6.77d 6.84d 0.02a 2.97d 0.39d O.5a 32a l1.85e
LSD 0.05 0.31 0.03 0.03 0.40 0.08 2.7 23 1.70

L2RO 5.46a 6.12a 0.04a 2.24a 0.27a 1.5a 69d 9.19a
L2R40 6.12b 6.45b 0.0 la 2.89b 0.34b 0.3a 53bc 1l.49b
L2R80 6.84c 6.77c 0.04a 2.99b 0.33ab 1.3a 37a 11.62b
L2RI20 6.84c 6.96d O.Ola 3.01b 0.33ab O.5a 4Th 12.90b

LSD 0.05 0.22 0.08 0.04 0.35 0.07 1.4 9 1.75

Sd LORO 4.60a 5.713 O.lOb 7.513 9.39b O.6b 6a 15.06a
LOR40 5.00b 5.96b 0.07ab 8.78ab 9.32b 0.4ab 4a 14.05a
LOR80 5.32c 6.26c O.02a 10.62bc 9.02ab O.la 4a 15.91ab

LOR120 5.75d 6.58d 0.06ab 12.96d 8.62a 0.3a 6a 17.80b
LSD 0.05 0.25 0.03 0.116 2.32 0.65 0.3 5 2.01

LO---no lime applied; LI lower lime 1rea1mem; L24igher lime trea1ment; R=water treatment residue; exlt.=extractable



Appendix 3.1

Soil code:
Soil Form:
Soil Family:
Location:
Parent material:
Land use:

Soil profile description of the Button soil at Brookdale Farm

Bu 3100
Button
Stella
BrookdaleFarm, Howick
Do1erite
Dryland cropping

175

Horizon

A

B1

B2

Depth (m)

0-0.38

0.38 - 0.60

0.60 - 1.20+

Description

Very dark brown (lOYR 212); clay; weak crumb; dry;
firm; many fme roots; gnl.dual transition to B 1.

Dark brown (7.5YR 312); clay; weak, subangular
blocky; moist, friable; gradual transition to B2.

Dark red (2.5YR 3/6); weak, subangular blocky; moist,
firm.

Particle size distribution (%)

----------------Sand---------------- -----------Silt-----------

Horizon Coarse Medium
Clay

Fine Coarse Fine

0.5 - 2.0 0.25 - 0.5 0.053 - 0.02 - 0.002 - <0.002
mm mm 0.25 mm 0.053 mm 0.02 mm mm

A 7 2 5 16 18 52

B1 6 1 6 20 11 56

B2 8 2 6 8 13 63

Exchangeable cations Exch. Organic
Horizon pH -----_____(cmol

c
kg-1) _______

acidity carbon

(KCI) (H2O) Ca Mg Na K (cmolc kg-I) (g kg-I)

A 4.22 5.21 5.57 2.29 0.10 0.17 0.37 33.5

B1 4.14 5.50 4.38 2.60 0.24 2.17 0.40 23.2

B2 4.04 5.82 5.34 1.95 0.12 1.00 1.42 15.2



Appendix 3.2

Soil code:
Soil Form:
Soil Family:
Location:
Parent material:
Land use:

Soil profile description of the Westleigh soil at Ukulinga Farm

We 1000
Westleigh
Helena
Ukulinga Farm, Mkondeni, Pietermaritzburg
Ecca shale
Pasture

176

Horizon

A

B

Depth (m)

0-0.26

0.26 - 0.55

Description

Very dark brown (lOYR 212); silty clay loam; weak,
crumb; hard when dry; gradual transition to B.

Dark reddish gray (5YR 412); gravelly silty clay loam;
moderate, subangular blocky; very hard when dry;
numerous yellowish-brown mottles; hardpan
concretions.

Particle size distribution (%)

----------------Sand---------------- -----------Silt-----------

Horizon Coarse Medium Fine Coarse Fine
Clay

0.5 - 2.0 0.25 - 0.5 0.053 - 0.02 - 0.002 - <0.002
mm mm 0.25 mm 0.053 mm 0.02 mm mm

not determined

A

B

9 2 6 25 25 33

Exchangeable cations Exch. Organic

Horizon
pH ----------(cmolc kg-1

)-------- acidity carbon

. (KCI) (H2O) Ca Mg Na K
(cmolc kg-1

) (g kg-1
)

A 4.90 5.91 6.24 3.06 0.14 0.17 0.06 21.70

B not determined
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Appendix 4.1 Colorimetric determination ofAI by the pyrocatechol violet method

Calibration standards were between 0 and5 IJ.g mL-1 ofAl.

Into a 50 mL volumetric flask were put 2 mL ofsample or standard, followed by 10 mL of2% w/v

hydroxylamine hydrochloride, and then 2 mL of0.15% I,10 phenanthroline. After mixing, a 10 mL

aliquot of 0.03% w/v pyrocatechol violet solution was added and followed, after again mixing, by

20 mL ofa pH 6.3 ammonium acetate-acetic acid buffer solution prepared by IM ammonium acetate

and 40% w/v acetic acid. The solutions were then diluted to the mark before again mixing. After 30

minutes the concentrations of AI in the samples were determined against standards using a

DV/visible spectrophotometer at a wavelength of 575 urn.
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Appendix 5.1 Fractionation of metals in the Hu-M soil samples from the pot experiment for
selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.0 0.0 1.1 0.0
R120 0.0 0.0 1.6 0.0

Co RO 0.0 4.2 4.0 0.0
R120 0.0 2.5 3.7 0.0

Cr RO 0.0 OA 21.3 0.1
R120 0.0 0.3 21.4 0.1

tu RO 0.0 30.5 18.3 2.3
R120 0.0- 97.2 18.1 4.0

Mu RO 42.4 0.1 132.8 261.1
R120 6.4 0.1 87.8 904.9

Ni RO 0.0 0.0 26.5 0.0
RI20 0.0 0.0 26.6 0.0

Ph RO 0.1 0.0 0.0 OA
RI20 0.1 0.0 0.0 0.2

Zn RO 0.9 2_0 24.8 0.0
R120 0.3 2.8 24.2 0.0
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Appendix 5.2 Fractionation ofmetals in the Hu-T soil samples from the pot experiment for selected
treatments ofwater treatment residue (R)

Metal WfR Exchangeable Inorganic Organic Amorphous

(Mgha-I ) (mgkg-I )

Cd RO RO 0.0 0.0 1.9
RI20 RI20 0.0 0.0 1.7

Co RO Ra 0.0 4.0 7.8
RI20 R120 0.0 3.5 5.3

Cr RO Ra 0.0 1.5 20.6
RI20 RUO 0.0 1.6 19.0

Cu RO Ra 0.0 0.5 16.5
R120 RI20 0.0 0.4 16.2

Mu RO Ra 58.3 82.4 272.6
RI20 R120 13.1 142.9 268.7

Ni RO Ra 0.0 1.0 25.3
RI20 RI20 0.0 0.8 26.1

Pb RO RO 0.0 0.1 0.7
RI20 RI20 0.0 0.1 0.8

Zn RO RO 2.7 2.2 31.9
RI20 R120 0.3 3.1 27.2
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Appendix 5.3 Fractionation of metals in the Ia-C soil samples from the pot experiment for selected
treatments ofwater treatment residue (R) (Mg ha·l

) and lime (L)

Exchangeable Inorganic Organic Amorphous
Metal Treatment

(mg kg.I)

Cd RO 0.0 0.0 0.4 0.0
RI20 0.0 0.0 2.4 0.0
LIRO 0.0 0.0 0.9 0.0

LIRI20 0.0 0.0 0.8 0.0

Co RO 0.0 2.6 3.1 2.0
R120 0.0 2.4 3.9 3.6
LIRO 0.0 1.8 1.7 5.1

LIRI20 0.0 2.4 1.6 5.8

Cr RO 0.0 1.4 16.0 0.0
RI20 0.0 1.5 15.8 0.0
LIRO 0.0 0.7 12.5 0.0

LIR120 0.0 1.0 12.4 0.0

Cu RO 0.0 0.5 19.3 0.0
Rl20 0.0 0.3 18.3 3.1
LIRO 0.0 0.3 17.9 0.7

LIR120 0.0 0.2 18.5 1.9

Mn RO 31.0 54.1 139.4 132.3
R120 30.5 113.5 0.0 665.9
LIRO 10.5 69.4 104.9 112.2

LIRI20 0.0 157.0 0.0 609.5

Ni RO 0.0 0.6 22.9 0.0
R120 0.0 0.6 24.4 0.0
LIRO 0.0 0.4 22.8 0.0

LIR120 0.0 0.7 22.8 0.0

Ph RO 0.0 0.1 0.0 0.6
R120 0.0 0.1 0.0 0.5
LIRO 0.0 0.1 0.0 0.2

LIRI20 0.0 0.1 0.0 0.2

Zn RO 1.2 1.2 22.7 0.0
RI20 0.3 2.2 21.5 0.0
LIRO 0.1 2.0 20.7 0.0

LIRI20 0.3 1.3 22.1 0.0
LI lime applied
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Appendix 5.4 Fractionation of metals in the Nb-F I soil samples from the pot experiment for selected
treatments ofwater treatment residue (R) (Mg ha-I) and lime (L)

Exchangeable Inorganic Organic Amorphous
Metal Treatment

(mg kg-I)

Cd RO 0.0 0.4 0.2 1.5
R120 0.0 0.4 0.4 1.4
LIRO 0.0 0.1 0.9 1.4

LIRI20 0.0 0.0 0.8 0.2

Co RO 0.0 2.6 0.0 0.8
RI20 0.0 2.8 0.0 1.4
LIRO 0.0 0.6 0.7 0.1

LIRI20 0.0 0.7 0.9 1.0

Cr RO 0.0 3.0 2.5 6.8
RI20 0.0 3.2 2.6 7.4
LIRO 0.0 0.5 7.1 2.3

LIR120 0.0 0.4 8.7 0.0

Cu RO 0.0 1.2 13.0 55.3
R120 0.0 0.5 15.4 9.0
LIRO 0.0 0.3 14.4 6.9

LIRI20 0.0 0.2 14.0 6.9

Mn RO 2.3 42.5 107.1 0.0
RI20 0.2 136.6 0.0 451.2
LIRO 2.3 43.6 102.3 0.0

LIR120 0.0 112.9 0.0 511.0

Ni RO 0.0 0.1 22.0 2.9
R120 0.0 0.4 22.4 2.8
LIRO 0.0 0.3 19.4 5.1

LIRI20 0.0 0.4 22.3 0.4

Pb RO 0.0 0.2 0.1 0.2
R120 0.0 0.2 0.3 0.2
LIRO 0.0 0.1 0.4 0.1

LIR120 0.0 0.1 0.0 0.1

Zn RO 2.7 0.8 13.4 0.0
R120 0.3 2.7 12.1 0.0
LIRO 2.3 3.7 27.3 0.0

LIRI20 0.1 6.8 25.7 0.0
L1 lime applied
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Appendix 5.5 Fractionation of metals in the Sd soil samples from the pot experiment for selected
treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg'l)

Cd RO 0.0 0.0 0,5 0.0
R120 0.0 0.0 2.4 0.0

Co RO 0.0 3.0 2.1 37.9
R120 0.0 2.4 0.0 40.8

Cr Ra 0.0 1.9 9.0 1.0
R120 0.0 2.1 8.6 0.1

Cu RO 0.0 0.5 26.9 9.8
RI20 0.0 0.5 23.7 12,0

Mn Ra 51.8 30.3 158.8 1010.4
R120 24.3 126.0 193.2 1354.3

Ni Ra 0.0 1.3 3.8 10.2
R120 0.0 1.2 4.5 7.4

Pb RO 0.0 0.1 0.0 0.0
RI20 0.0 0.1 0.0 0.0

Zn RO 1.1 1.1 12.9 0.0
RI20 2.1 2.1 9.7 0.0
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Appendix 6.1 Fractionation ofheavy metals in the Hu-F soil samples from the incubation experiment for

selected treatments ofwater treatment residue (R) (Mg ha-I) and lime (L)

Exchangeable Inorganic Organic Amorphous
Metal Treatment

(mgkg·1)

Cd LORO 0.0 0.4 0.0 1.6
LOR80 0.0 0.3 0.0 1.4

LOR320 0.0 0.3 0.0 1.5
LOR1280 0.0 0.5 0.0 1.6

LIRO 0.0 0.4 0.0 1.8
LlR1280 0.0 0.6 0.0 2.1

Co LORO 0.0 5.2 4.4 17.2
LOR80 0.0 5.4 2.8 16.6

LOR320 0.0 4.7 2.4 16.1
LOR1280 0.0 2.8 5.6 9.9

LIRO 0.0 4.9 1.9 11.8
LIR1280 0.0 1.9 6.6 7.4

er LORD 0.0 2.4 22.8 0.0
LOR80 0.0 2.3 21.5 0.0

LOR320 0.0 2.6 21.3 0.0
LOR12l«> 0.0 2.8 21.2 0.0

LIRO 0.0 1.0 19.9 0.7
LIR1280 0.0 1.5 19.2 1.8

Cu LORO 0.0 0.5 19.8 5.8
LOR80 0.0 0.4 19.6 5.1

LOR320 0.0 0.4 20.0 5.8
LOR1280 0.0 0.7 19.5 7.4

LIRO 0.0 1.9 17.2 8.1
LIR1280 0.0 0.9 14.2 12.5

Mn LORO 6.8 68.3 205.6 215.0
LOR80 9.0 192.0 8.0 604.7

LOR320 8.8 277.2 ILl 931.8
LOR1280 12.4 306.5 0.0 1855.0

LIRO 5.0 113.3 152.2 225.1
LlR1280 4.7 518.7 0.0 1866.4

Ni LORO 0.0 0.5 17.3 0.0
LOR80 0.0 1.0 14.2 0.0

LOR320 0.0 1.1 16.5 0.0
LOR1280 0.0 1.3 15.4 0.0

LIRO 0.0 0.6 21.0 0.0
LlR1280 0.0 1.3 18.0 0.0

Ph LORO 0.0 0.2 1.4 0.0
LOR80 0.0 0.3 1.3 0.0

LOR320 0.0 0.3 1.2 0.0
LOR1280 0.0 0.2 1.3 0.0

LIRO 0.0 0.2 1.2 0.0
LlR1280 0.0 0.2 1.3 0.0

Zn LORO 0.0 4.0 12.5 4.4
LOR80 0.0 7.7 18.7 28.3

LOR320 0.0 14.3 29.2 63.9
LOR1280 0.0 41.1 31.8 94.0

LIRO 0.0 2.3 26.9 0.0
LlR1280 0.0 3.6 19.9 1.7

LO=no lime applied, LI lime applied
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Appendix 6.2 Fractionation of heavy metals in the Hu-M soil samples from the incubation
experiment for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.1 0.3 1.4 0.5
R80 0.1 0.3 1.6 0.2
R320 0.1 0.3 1.5 0.4
R1280 0.1 0.3 1.6 0.5

Co RO 0.0 3.9 4.1 14.6
R80 0.0 4.6 3.4 15.7

R320 0.0 3.8 3.8 15.6
R1280 0.0 3.1 5.5 14.5

Cr Ra 0.0 0.8 20.9 0.0
R80 0.0 0.8 18.5 0.0

R320 0.0 0.8 24.8 0.0
R1280 0.0 0.9 21.8 0.0

eu Ra 0.0 0.4 13.0 7.6
R&o 0.0 04 11.& 8.7

R320 0.0 0.5 12.1 10.0
R1280 0.0 0.3 13.2 9.6

Mu RO 65.0 12.0 244.8 121.9
R80 59.9 29.& 228.5 264.1
R320 71.7 27.6 255.0 302.3
R1280 89.1 28.0 237.6 313.6

Ni RO 0.0 0.3 21.4 0.0
R80 0.0 0.6 20.7 0.0

R320 0.0 0.5 22.1 0.0
R1280 0.0 0.5 22.1 0.0

Ph Ra 0.0 0.1 1.0 0.0
R&O 0.0 0.2 0.1 0.1

R320 0.0 0.3 0.1 0.1
R1280 0.0 0.2 0.0 0.3

Zn Ra 0.0 2.4 10.7 0.0
R80 0.0 2.3 11.3 5.6

R320 0.0 3.0 14.5 6.4
R1280 0.0 4.7 16.8 8.6
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Appendix 6.3 Fractionation of heavy metals in the Hu-T soil samples from the incubation
experiment for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.1 0.3 0.8 1.2
R80 0.2 0.2 0.8 1.3

R320 0.2 0.2 0.8 1.8
R1280 0.2 0.3 0.9 1.3

Co RO 0.0 4.2 3.8 16.0
R80 0.0 3.6 4.2 12.0

R320 0.0 3.6 4.2 lOA
R1280 0.0 2.2 5.9 9.4

er RO 0.0 1.4 24.2 0.0
R80 0.0 1.6 28.9 0.0

R320 0.0 1.8 28.1 0.0
R1280 0.0 2.0 20.1 0.0

Cu RO 0.0 0.4 11.8 0.2
RSO 0.0 0.2 11.5 10.4
R320 0.0 0.2 12.6 9.5
R1280 0.0 0.8 13.5 7.7

Mu RO 210.3 1.7 307.1 362.3
RSO 92.6 148.0 260.2 650.1
R320 62.7 275.8 126.3 1052.8
R1280 13.9 424.9 0.0 2074.9

Ni RO 0.0 1.1 17.2 0.0
R80 0.0 1.2 19.4 0.0

R320 0.0 1.4 18.6 0.0
R1280 0.0 1.8 15.5 0.0

Ph RO 0.0 0.1 0.0 0.2
R80 0.0 0,2 0.0 0.2

R320 0.0 0.3 0.0 0.2
R1280 0.0 0.2 0.0 0.2

Zn RO 4.3 1.7 30.9 0.0
RSO 3.5 14.8 37.3 23.0
R320 1.3 34.8 30.0 24.7
R1280 0.3 47.6 33.1 92.3
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Appendix 6.4 Fractionation of heavy metals in the Ia-C soil samples from the incubation experiment for
selected treatments ofwater treatment residue (R) (Mg ha-1

) and lime (L)

Exchangeable Inorganic Organic Amoiphous
Metal Treatment

(mgkg"')

Cd LORO 0.0 0.2 2.0 0.0
LOR80 0.0 0.2 2.0 0.0

LOR320 0.0 0.2 2.5 0.0
LOR1280 0.0 0.4 1.7 0.0

LIRO 0.0 0.3 1.9 0.0
LIR1280 0.0 0.4 1.6 0.0

Co LORD 0.0 2.0 10.3 0.0
LOR8{} 0.0 2.0 10.9 0.0

LOR320 0.0 1.9 12.1 0.0
LOR1280 0.0 0.8 9.5 0.0

LIRO 0.0 1.2 11.0 0.0
LIR1280 0.0 1.0 8.6 0.0

er WRO 0.0 0.6 19.0 0.0
WR80 0.0 0.8 18.2 0.0

LOR320 0.0 0.9 12.2 0.0
LOR1280 0.0 0.9 15.8 0.0

LIRo 0.0 0.7 19.3 0.0
LIR1280 0.0 1.1 16.4 0.0

Co LORD 0.0 0.7 14.0 3.1
LOR80 0.0 0.8 14.5 2.8

LOR320 0.0 0.9 14.9 6.4
LOR1280 0.0 0.8 13.0 10.0

LIRa 0.0 0.6 13.0 4.3
LIR1280 0.0 0.6 13.8 11.1

Mn WRO 66.5 2.8 72.7 66.1
LOR80 63.5 30.3 64.2 276.2

WR320 64.0 244.1 48.4 998.5
LOR1280 13.0 363.2 0.0 1844.8

LIRO 32.2 7.9 50.4 73.4
LIR1280 18.6 389.7 0.0 1942.0

Ni LORD 0.0 0.5 2.8 3.5
LOR80 0.0 0.6 2.9 3.6

LOR320 0.0 0.7 3.2 4.6
LOR1280 0.0 1.0 3.0 4.9

LIRO 0.0 0.5 1.6 5.2
LIR1280 0.0 1.2 2.7 6.0

Ph LORO 0.0 0.1 1.2 0.0
WR80 0.0 0.1 1.2 0.0

LOR320 0.0 0.2 1.1 0.0
LOR1280 0.0 0.2 1.1 0.0

LIRO 0.0 0.2 1.3 0.0
LIRI280 0.0 0.2 1.1 0.0

Zn LORO 1.7 0.5 7.6 1.6
LOR80 1.0 5.6 26.2 13.9

WR320 0.6 22.5 44.0 72.1
WRI280 0.1 34.6 41.4 88.5

LIRO 0.5 3.3 3.8 6.2
LIR1280 0.2 35.6 34.9 88.3

LO=lime not applied, LI lime applied



187

Appendix 6.5 Fractionation of heavy metals in the Nb-A soil samples from the incubation
experiment for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkgo1
)

Cd Ra 0.2 0.2 1.7 0.3
R80 0.2 0.2 1.5 0.7
R320 0.1 0.2 1.7 0.4
Rl280 0.1 0.3 1.4 0.4

Co RO 0.0 0.9 8.6 0.0
R80 0.0 1.0 9.7 0.0

R320 0.0 1.1 10.6 0.0
R1280 0.0 1.3 12.1 0.0

Cr RO 0.0 0.5 16.7 0.0
R80 0.0 0.7 17.3 0.0

R320 0.0 0.8 18.6 0.0
R1280 0.0 1.3 18.1 0.0

Cu Ra 0.0 0.3 900 0.0
R80 0.0 0.7 8.9 0.0
R320 0.0 0.8 9.0 2.8
R1280 0.0 0.9 11.4 4.5

Mu Ra 23.3 0.0 202.7 0.0
R80 16.1 49.7 109.2 338.7

R320 11.6 142.7 32.3 354.8
R1280 2.9 514.1 0.0 1674.8

Ni RO 0.0 0.4 20.9 0.0
R80 0.0 0.4 20.2 0.0
R320 0.0 0.4 20.7 0.0
R1280 0.0 1.6 20.5 0.0

Ph RO 0.0 0.1 1.2 0.0
. R80 0.0 0.1 1.3 0.0
R320 0.0 0.2 1.2 0.0
R1280 0.0 0.2 1.2 0.0

Zn Ra 0.4 0.5 22.6 0.0
R80 0.1 10.5 19.5 7.3

R320 0.1 29.0 19.3 47.5
R1280 0.0 58.0 17.3 %.6
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Appendix 6.6 Fractionation of heavy metals in the Nb-F soil samples from the incubation
experiment for selected treatments ofwater treatment residue (R)

Metal WfR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.2 0.2 0.6 1.3
R80 0.2 0.2 0.8 1.3

R320 0.2 0.2 0.9 1.3
Rl280 0.1 0.4 0.4 1.4

Co RO 0.0 . 1.8 2.4 0.0
R80 0.0 1.9 3.2 0.0
R320 0.0 2.0 3.2 0.0
R1280 0.0 2.2 2.3 0.0

er RO 0.0 1.7 20.7 0.0
R80 0.0 1.8 21.2 0.0

R320 0.0 2.1 19.7 0.0
R1280 0.0 2.3 20.4 0.0

Cu RO 0.0 0.2 RO 0.0
R80 0.0 0.2 8.4 0.0
R320 0.0 0.2 9.3 0.0
R1280 0.0 0.8 12.0 0.0

Mn RO 8.5 14.4 57.4 0.0
R80 7.8 70.5 44.8 168.6

R320 6.9 179.3 0.0 516.1
R1280 6.2 361.0 0.0 1499.5

Ni RO 0.0 0.3 27.9 0.0
R80 0.0 0.5 27.1 0.0

R320 0.0 0.7 26.1 0.0
RI280 0.0 1.3 24.2 0.0

Pb RO 0.0 0.2 0.0 0.0
RSO 0.0 0.2 0.0 0.0

R320 0.0 0.3 0.0 0.0
R1280 0.0 0.1 0.0 0.0

Zn RO 1.3 0.7 14.5 0.0
R80 1.8 9.6 21.8 16.4

R320 1.2 29.6 15.7 55.5
R1280 0.2 47.5 37.3 77.4
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Appendix 6.7 Fractionation ofheavy metals in the Sd soil samples from the incubation experiment
for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.0 0.2 2.2 0.0
R80 0.0 0.2 2.0 0.0
R320 0.0 0.2 1.9 0.0
R1280 0.0 0.3 2.1 0.0

Co Ra 0.0 1.7 1.7 30.9
R80 0.0 1.3 1.8 27.4
R320 0.0 1.0 1.5 29.0
R1280 0.0 0.6 1.6 37.6

er RO 0.0 0.3 13.5 0.0
R80 0.0 0.3 13.4 0.0
R320 0.0 0.5 13.1 0.0
R1280 0.0 0.6 12.7 0.0

Cu RO 0.0 0.5 24.8 6.9
R80 0.0 0.9 22.0 7.3
R320 0.0 0.8 18.3 8.3
R1280 0.0 0.9 21.6 10.8

Mn RO 141.5 0.0 362.8 794.7
R80 103.9 96.4 262.0 1182.1
R320 78.7 207.5 142.4 1585.2
R1280 14.0 393.5 0.0 2322.1

Ni Ra 0.0 1.5 4.4 4.6
R80 0.0 1.5 4.3 4.7

R320 0.0 1.7 4.4 3.6
R1280 0.0 2.1 3.8 5.9

Pb RO 0.0 0.2 1.3 0.0
R80 0.0 0.2 0.8 0.0

R320 0.0 0.3 0.5 0.0
R1280 0.0 0.1 0.3 0.0

Zn Ra 2.4 1.5 16.1 0.0
R80 2.4 7.9 21.9 46.5

R320 1.1 16.0 29.0 61.2
R1280 0.0 40.0 36.3 93.0
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Appendix 6.8 Fractionation ofheavy metals in the Va soil samples from the incubation experiment
for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1) (mgkg-1)

Cd RO 0.1 0.3 0.8 1.1
R80 0.1 0.2 0.8 0.8
R320 0.1 0.2 0.8 0.9
R1280 0.1 0.3 0.4 1.5

Co Ra 0.0 2.4 1.7 5.6
R80 0.0 2.3 1.7 6.7
R320 0.0 2.4 2.1 6.9
R1280 0.0 2.4 1.4 7.2

Cr RO 0.0 2.1 20.3 0.0
R80 0.0 2.1 20.2 0.0
R320 0.0 2.3 20.3 0.0
R1280 0.0 2.7 20.2 0.0

Cu RO 0.0 0.5 12.3 0.0
R80 0.0 0.6 14.0 0.0

R320 0.0 0.8 13.9 4.8
R1280 0.0 0.8 13.9 6.2

Mu RO 6.2 92.0 89.5 222.4
R80 6.1 113.5 92.6 435.5
R320 5.7 206.7 73.3 1042.3
R1280 6.7 350.9 0.0 1753.0

Ni Ra 0.0 0.7 18.8 0.0
R80 0.0 0.7 16.1 0.0

R320 0.0 1.0 15.4 0.0
R1280 0.0 lA 16.6 0.0

Ph Ra 0.0 0.1 0.3 0.0
R80 0.0 0.3 0.7 0.0
R320 0.0 004 0.6 0.0
R1280 0.0 0.2 1.3 0.0

Zn RO 1.2 1.9 13.4 0.2
R80 1.1 10.5 13.8 30.5

R320 1.1 29.8 15.7 84.2
R1280 1.9 41.5 29.3 99.5
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Appendix 6.9 Fractionation ofheavy metals in the We soil samples from the incubation experiment
for selected treatments ofwater treatment residue (R)

Metal WTR Exchangeable Inorganic Organic Amorphous

(Mgha-1
) (mgkg-1)

Cd RO 0.1 0.3 0.0 1.7
R80 0.1 0.2 0.0 1.8

R320 0.1 0.2 0.0 1.8
R1280 0.1 0.4 0.0 1.6

Co Ra 0.0 3.0 4.8 9.7
R80 0.0 2.7 5.2 12.5

R320 0.0 2.8 5.2 10.8
R1280 0.0 2.8 4.7 9.8

Cr RO 0.0 2.6 21.3 0.0
R80 0.0 2.7 21.3 0.0

R320 0.0 2.8 20.2 0.0
R1280 0.0 3.1 21.0 0.0

Cu RO 0.0 0.4 15.8 8.3
R80 0.0 0.9 I 16.0 7.4

R320 0.0 1.0 15.5 10.5
R1280 0.0 . 1.0 16.7 6.2

Mn RO 22.8 114.0 537.6 1238.2
R80 26.2 145.1 428.5 1381.0

R320 13.3 194.3 240.9 1455.6
R1280 10.7 345.5 0.0 2272.3

Ni Ra 0.0 1.0 16.5 0.0
R80 0.0 1.9 16.5 0.0

R320 0.0 1.4 15.9 0.0
R1280 0.0 1.5 17.3 0.0

Ph RO 0.0 0.1 1.4 0.0
R80 0.0 0.2 1.3 0.0

R320 0.0 0.2 1.2 0.0
R1280 0.0 0.2 1.3 0.0

Zn RO 0.3 1.6 13.6 16.6
R80 0.2 12.7 13.6 26.7

R320 0.2 24.2 20.6 63.9
R1280 0.2 42.7 24.7 98.3
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Appendix 7.1 Manganese, chromium and phosphorus in borehole (B) and dam (0) water at
Brookdale Farm from 1997 to 2002 (data supplied by Umgeni Water)

Mn er p

Sample date B D B D B D

(mgL-1) (~g L-1
)

04.12.1997 0.02 nd <3 nd 24.7 nd
11.12.1997 nd 0.06 nd <3 nd nd
26.03.1998 0.04 0.04 22 5.3 25.6 105
04.06.1998 <0.01 <0.01 20.7 4.8 21.9 20.4
10.09.1998 0.04 <0.01 3.6 <3 19.7 33.0
03.12.1998 <0.01 0.01 <3 <3 21.9 43.6
06.05.1999 0.05 0.02 <3 <3 25.4 22.6
03.06.1999 0.04 0.07 <3 <3 20.8 16.4
02.09.1999 nd 0.07 nd <3 nd 46.2
02.12.1999 0.04 0.03 <3 <3 22.4 37.0
30.03.2000 <0.01 0.06 <3 <3 <15 32.6
08.06.2000 <0.01 0.02 <3 <3 <15 <15
07.09.2000 0.24 0.02 <3 <3 nd 30.9
10.04.2001 0.09 0.06 <3 <3 nd nd
07.06.2001 0.03 <0.01 <3 <3 nd nd
07.09.2001 <0.01 0.03 <3 <3 <15 16.5
04.04.2002 nd nd nd <3 nd 21.6
13.06.2002 0.13 <0.01 <3 <3 19.2 15.5
12.09.2002 <0.01 0.02 <3 <3 <15 <15

nd=not determined


	Buyeye_Sicelo_2005.front.p001
	Buyeye_Sicelo_2005.front.p002
	Buyeye_Sicelo_2005.front.p003
	Buyeye_Sicelo_2005.front.p004
	Buyeye_Sicelo_2005.front.p005
	Buyeye_Sicelo_2005.front.p006
	Buyeye_Sicelo_2005.front.p007
	Buyeye_Sicelo_2005.front.p008
	Buyeye_Sicelo_2005.front.p009
	Buyeye_Sicelo_2005.front.p010
	Buyeye_Sicelo_2005.front.p011
	Buyeye_Sicelo_2005.front.p012
	Buyeye_Sicelo_2005.front.p013
	Buyeye_Sicelo_2005.front.p014
	Buyeye_Sicelo_2005.front.p015
	Buyeye_Sicelo_2005.front.p016
	Buyeye_Sicelo_2005.front.p017
	Buyeye_Sicelo_2005.front.p018
	Buyeye_Sicelo_2005.front.p019
	Buyeye_Sicelo_2005.p001
	Buyeye_Sicelo_2005.p002
	Buyeye_Sicelo_2005.p003
	Buyeye_Sicelo_2005.p004
	Buyeye_Sicelo_2005.p005
	Buyeye_Sicelo_2005.p006
	Buyeye_Sicelo_2005.p007
	Buyeye_Sicelo_2005.p008
	Buyeye_Sicelo_2005.p009
	Buyeye_Sicelo_2005.p010
	Buyeye_Sicelo_2005.p011
	Buyeye_Sicelo_2005.p012
	Buyeye_Sicelo_2005.p013
	Buyeye_Sicelo_2005.p014
	Buyeye_Sicelo_2005.p015
	Buyeye_Sicelo_2005.p016
	Buyeye_Sicelo_2005.p017
	Buyeye_Sicelo_2005.p018
	Buyeye_Sicelo_2005.p019
	Buyeye_Sicelo_2005.p020
	Buyeye_Sicelo_2005.p021
	Buyeye_Sicelo_2005.p022
	Buyeye_Sicelo_2005.p023
	Buyeye_Sicelo_2005.p024
	Buyeye_Sicelo_2005.p025
	Buyeye_Sicelo_2005.p026
	Buyeye_Sicelo_2005.p027
	Buyeye_Sicelo_2005.p028
	Buyeye_Sicelo_2005.p029
	Buyeye_Sicelo_2005.p030
	Buyeye_Sicelo_2005.p031
	Buyeye_Sicelo_2005.p032
	Buyeye_Sicelo_2005.p033
	Buyeye_Sicelo_2005.p034
	Buyeye_Sicelo_2005.p035
	Buyeye_Sicelo_2005.p036
	Buyeye_Sicelo_2005.p037
	Buyeye_Sicelo_2005.p038
	Buyeye_Sicelo_2005.p039
	Buyeye_Sicelo_2005.p040
	Buyeye_Sicelo_2005.p041
	Buyeye_Sicelo_2005.p042
	Buyeye_Sicelo_2005.p043
	Buyeye_Sicelo_2005.p044
	Buyeye_Sicelo_2005.p045
	Buyeye_Sicelo_2005.p046
	Buyeye_Sicelo_2005.p047
	Buyeye_Sicelo_2005.p048
	Buyeye_Sicelo_2005.p049
	Buyeye_Sicelo_2005.p050
	Buyeye_Sicelo_2005.p051
	Buyeye_Sicelo_2005.p052
	Buyeye_Sicelo_2005.p053
	Buyeye_Sicelo_2005.p054
	Buyeye_Sicelo_2005.p055
	Buyeye_Sicelo_2005.p056
	Buyeye_Sicelo_2005.p057
	Buyeye_Sicelo_2005.p058
	Buyeye_Sicelo_2005.p059
	Buyeye_Sicelo_2005.p060
	Buyeye_Sicelo_2005.p061
	Buyeye_Sicelo_2005.p062
	Buyeye_Sicelo_2005.p063
	Buyeye_Sicelo_2005.p064
	Buyeye_Sicelo_2005.p065
	Buyeye_Sicelo_2005.p066
	Buyeye_Sicelo_2005.p067
	Buyeye_Sicelo_2005.p068
	Buyeye_Sicelo_2005.p069
	Buyeye_Sicelo_2005.p070
	Buyeye_Sicelo_2005.p071
	Buyeye_Sicelo_2005.p072
	Buyeye_Sicelo_2005.p073
	Buyeye_Sicelo_2005.p074
	Buyeye_Sicelo_2005.p075
	Buyeye_Sicelo_2005.p076
	Buyeye_Sicelo_2005.p077
	Buyeye_Sicelo_2005.p078
	Buyeye_Sicelo_2005.p079
	Buyeye_Sicelo_2005.p080
	Buyeye_Sicelo_2005.p081
	Buyeye_Sicelo_2005.p082
	Buyeye_Sicelo_2005.p083
	Buyeye_Sicelo_2005.p084
	Buyeye_Sicelo_2005.p085
	Buyeye_Sicelo_2005.p086
	Buyeye_Sicelo_2005.p087
	Buyeye_Sicelo_2005.p088
	Buyeye_Sicelo_2005.p089
	Buyeye_Sicelo_2005.p090
	Buyeye_Sicelo_2005.p091
	Buyeye_Sicelo_2005.p092
	Buyeye_Sicelo_2005.p093
	Buyeye_Sicelo_2005.p094
	Buyeye_Sicelo_2005.p095
	Buyeye_Sicelo_2005.p096
	Buyeye_Sicelo_2005.p097
	Buyeye_Sicelo_2005.p098
	Buyeye_Sicelo_2005.p099
	Buyeye_Sicelo_2005.p100
	Buyeye_Sicelo_2005.p101
	Buyeye_Sicelo_2005.p102
	Buyeye_Sicelo_2005.p103
	Buyeye_Sicelo_2005.p104
	Buyeye_Sicelo_2005.p105
	Buyeye_Sicelo_2005.p106
	Buyeye_Sicelo_2005.p107
	Buyeye_Sicelo_2005.p108
	Buyeye_Sicelo_2005.p109
	Buyeye_Sicelo_2005.p110
	Buyeye_Sicelo_2005.p111
	Buyeye_Sicelo_2005.p112
	Buyeye_Sicelo_2005.p113
	Buyeye_Sicelo_2005.p114
	Buyeye_Sicelo_2005.p115
	Buyeye_Sicelo_2005.p116
	Buyeye_Sicelo_2005.p117
	Buyeye_Sicelo_2005.p118
	Buyeye_Sicelo_2005.p119
	Buyeye_Sicelo_2005.p120
	Buyeye_Sicelo_2005.p121
	Buyeye_Sicelo_2005.p122
	Buyeye_Sicelo_2005.p123
	Buyeye_Sicelo_2005.p124
	Buyeye_Sicelo_2005.p125
	Buyeye_Sicelo_2005.p126
	Buyeye_Sicelo_2005.p127
	Buyeye_Sicelo_2005.p128
	Buyeye_Sicelo_2005.p129
	Buyeye_Sicelo_2005.p130
	Buyeye_Sicelo_2005.p131
	Buyeye_Sicelo_2005.p132
	Buyeye_Sicelo_2005.p133
	Buyeye_Sicelo_2005.p134
	Buyeye_Sicelo_2005.p135
	Buyeye_Sicelo_2005.p136
	Buyeye_Sicelo_2005.p137
	Buyeye_Sicelo_2005.p138
	Buyeye_Sicelo_2005.p139
	Buyeye_Sicelo_2005.p140
	Buyeye_Sicelo_2005.p141
	Buyeye_Sicelo_2005.p142
	Buyeye_Sicelo_2005.p143
	Buyeye_Sicelo_2005.p144
	Buyeye_Sicelo_2005.p145
	Buyeye_Sicelo_2005.p146
	Buyeye_Sicelo_2005.p147
	Buyeye_Sicelo_2005.p148
	Buyeye_Sicelo_2005.p149
	Buyeye_Sicelo_2005.p150
	Buyeye_Sicelo_2005.p151
	Buyeye_Sicelo_2005.p152
	Buyeye_Sicelo_2005.p153
	Buyeye_Sicelo_2005.p154
	Buyeye_Sicelo_2005.p155
	Buyeye_Sicelo_2005.p156
	Buyeye_Sicelo_2005.p157
	Buyeye_Sicelo_2005.p158
	Buyeye_Sicelo_2005.p159
	Buyeye_Sicelo_2005.p160
	Buyeye_Sicelo_2005.p161
	Buyeye_Sicelo_2005.p162
	Buyeye_Sicelo_2005.p163
	Buyeye_Sicelo_2005.p164
	Buyeye_Sicelo_2005.p165
	Buyeye_Sicelo_2005.p166
	Buyeye_Sicelo_2005.p167
	Buyeye_Sicelo_2005.p168
	Buyeye_Sicelo_2005.p169
	Buyeye_Sicelo_2005.p170
	Buyeye_Sicelo_2005.p171
	Buyeye_Sicelo_2005.p172
	Buyeye_Sicelo_2005.p173
	Buyeye_Sicelo_2005.p174
	Buyeye_Sicelo_2005.p175
	Buyeye_Sicelo_2005.p176
	Buyeye_Sicelo_2005.p177
	Buyeye_Sicelo_2005.p178
	Buyeye_Sicelo_2005.p179
	Buyeye_Sicelo_2005.p180
	Buyeye_Sicelo_2005.p181
	Buyeye_Sicelo_2005.p182
	Buyeye_Sicelo_2005.p183
	Buyeye_Sicelo_2005.p184
	Buyeye_Sicelo_2005.p185
	Buyeye_Sicelo_2005.p186
	Buyeye_Sicelo_2005.p187
	Buyeye_Sicelo_2005.p188
	Buyeye_Sicelo_2005.p189
	Buyeye_Sicelo_2005.p190
	Buyeye_Sicelo_2005.p191
	Buyeye_Sicelo_2005.p192

