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Abstract

Continuousweak measurement provide a convenient way to gather information about a quantum
system without the need to prepare huge ensembles of identical systems as required by standard
quantum measurement theory. Even though weak measurement alter the dynamics of the wave
function slightly, they nevertheless are a good tool to monitor the dynamics of the wave function
in real time in the presence of certain perturbations, for example, sudden momentum kicks due to
collisions with particles of a surrounding gas. With weak measurement it is possible to monitor
the dynamics of the wave function without knowing it initially. The continuous monitoring can
be employed to influence the dynamics by means of feedback. This thesis focuses on the numeric
simulation of the continuous monitoring of the position of a free massive particle as well as a particle
bound in the following one-dimensional potentials: harmonic and double well. The monitoring
scheme involves estimating the wave function of the hydrogen atom initially and then applying the
results of the weak measurement its position to update the estimate through a numerically simulated
stochastic evolution. We also simulate evolution of the true wave function. The key highlights of
this thesis include: discussion of an alternative way to derive the stochastic differential equations
that govern the evolution of the true and estimated wave functions of the system, as well as the
explanation of the second order numerical scheme.
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Chapter 1

Intr oduction

The control of individual quantum systems promises a new technology for the twenty-first century -
quantum technology.

–Howard M. Wiseman, Gerald J. Milburn [59]

Over the past few decades experimental advancements have made it possible to observe the dy-
namics of the state of an individual quantum system, such as an atom trapped by means of quan-
tum cavity electrodynamics (QCED) [35, 17], or individual ions in cold traps [12, 54]. Individual
quantum systems are the building blocks in quantum information processing, communication, and
security. In fact, the unrivaled security offered by quantum-based cryptographic systems rely on the
ability to encode information onto a quantum state [19, 7, 24, 6, 38, 36], which (in turn) is immune
to cloning [60]; since performing a measurement on a quantum system disturbs its state, and a full
state tomography requires a large ensemble of identical systems.

We will not dwell much on justifying the need for quantum technology, which evidently will play a
significant role in information processing, and secure communication in the twenty-first century and
beyond. However, we will take the liberty to highlight a few benefits of having such a technology.
In the previous paragraph we highlighted the benefits of applying quantum theory to the problem of
information security. Perhaps, it is imperative (at this moment) to point out that the advent of the
quantum computer has been forecasted to greatly compromise the security of classically-encrypted
information because most classical encryption algorithms rely heavily on computational complex-
ity. One such, is the RSA [52] algorithm for public-key encryption, which relies on the complexity
of factoring large integers. In 1994, Shor [56] showed that even though there exist no algorithms
for the factorization of an integer in polynomial time on a classical Turing machine (universal com-
puter), a quantum computer could solve the problem in polynomial time. This speed up implies
that a quantum computer will be able to crack code, which a classical computer practically cannot,
within an acceptable period of time; of course depending on the size of the problem. Fortunately,
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there has been a lot of ground breaking work in the field of quantum cryptography and we can rest
assured that we will still be able to secure our information even when the quantum computer be-
comes available.

This thesis presents the results of the numeric simulation of a method to monitor the position of
a quantum system in real time. In order to achieve the monitoring of its state, the position of
the system in question is measured continuously, but unsharply, and the measurement results are
used to update its estimated wave function at each point in time. After some time the estimated
state reasonably approximates the true state. Our notion of continuous measurement is that of a
sequence of unsharp measurements performed at a high frequency, that is in the continuum limit.
However, there is an upper bound as to how frequently one can observe the system without freez-
ing the dynamics. This upper bound is a function of the Hamiltonian of the system, see [53]. The
phenomenon in which repetitive observation a quantum system at high frequency inhibits unitary
dynamics is calledquantum Zeno effect[41, 27, 20]. So by striking a balance between the strength
of measurement and the frequency of measurement, one can find a regime in which ample informa-
tion can be extracted from the system to update the estimated wave function well enough to mimic
the true wave function within an acceptable period of time. When this convergence takes place, the
estimated wave function effectively represents the state of the system, and the corresponding evolu-
tion equation represents the dynamics. Empowered with this knowledge of the system, we have full
control of it. This is in the sense that we can always apply a unitary operation to drive the state of
the system into any other desired state.

This thesis consists of six chapters, and is written in the manner we shall describe shortly. Fol-
lowing this introductory chapter, we review the mathematical theory of measures in Chapter 2. Our
main aim is to motivate the theory of quantum measurement from standard measure theory. This
allows us to generalize the concept of measurement by representing measurements with Kraus op-
erators [34] whose complete set of effects form positive operator-valued measures (POVM’s). We
then apply the concept of generalized measurement, in Chapter 3, to derive the master equations,
and the corresponding stochastic Schrödinger equations for the evolution of the state of an individ-
ual quantum system, whose position is continuously observed. The work contained in this chapter
has been published in the 2011 proceedings of the annual conference of the South African Insti-
tute of Physics [21]. Even though the derived equations for selective state evolution are the same
as the ones that can be found in [14, 15], our approach differs from [14, 15] in that instead of re-
deriving the It̂o stochastic calculus (which was extensively done in [14]), we show an alternative
way to derive the evolution equations from basic quantum mechanical principles, only applying
stochastic calculus when required. This greatly simplifies the derivation. The way we derive the
non-selective evolution equations, however, does not deviate from that of [32, 53]. We continue
with this approach, in Chapter 4, and derive the evolution equations for the estimation of the state
of the quantum system.
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In Chapter 5 we review numerical simulation methods for stochastic differential equations.The
aim of the chapter is to provide the necessary techniques to derive numerical integration schemes
of desired orders of convergence, rather than restricting ourselves to a specific scheme. The theory
presented in this chapter was not developed by us but rather compiled from the following sources
[22, 30, 31, 49, 47, 40, 10, 45, 50, 53, 39, 9, 28, 46, 48]. The key concept is the application of
Taylor-like expansions to stochastic differential equations in order to derive the various numerical
integration schemes. It is important to point out that Itô calculus was extensively used. However,
we stuck with the philosophy of keeping the presentation as simple and straight-forward as possible.
We go on to show the results of numeric simulations in this chapter.
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Chapter 2

GeneralizedMeasurements

2.1 Introduction

The projection postulate, which prescribes “collapse of the state vector” upon measurement, is
not an essential part of quantum mechanics. Rather it is only an optional discarding of certain
branches of the state vector that are expected to be irrelevant for the purpose at hand. However,
its use is hazardous, and there are examples of repeated measurements for which the conventional
application of the projection postulate leads to incorrect results.

–L. E. Ballentine [4]

The above statements by Ballentine sum up the reason why we motivate the theory of generalized
measurements in this chapter. It is clear, in most instances, that standard quantum measurement
theory falls short in giving an accurate description of the measurement process. Nevertheless, there
are certain circumstances where it holds perfectly. Interestingly, under certain conditions, we can
extract projections from generalized observables. This we shall show later, in this chapter. A more
in depth discussion of the shortcomings of the projection postulate can be found in [4, 59], however,
we shall mention a few examples that we find very helpful to aid us to understand the quantum
measurement process.

The first example is on the joint measurement of momentum and position of a quantum system.
As pointed out by Wiseman and Milburn [59], the joint observation of a system’s position and mo-
mentum is completely acceptable for as long as we do not violate Heisenberg’ uncertainty principle
[25]. However, If we assume that every measurement takes the form of a projection, then we can
only measure one of the two observables, and not both, always. The second curious case involves
the detection of photons. It is well known that detection of photons leads to their destruction, so
detecting the number of photons, say in a cavity, leaves the system in a vacuum state and not the
number eigenstate as dictated by the projection postulate.
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We approach the theory of generalized measurement from the mathematical theoryof measures.
Indeed, generalized observables are described mathematically by positive operator-valued mea-
sures (POVM’s) [57, 44]. Our method is to discuss measure theory starting from the basics, and
hence this chapter contains mostly a collection of definitions and theorems, which we collected
from [45, 2, 26].

2.2 Sample spaces and events

Definition 2.2.1. The set of all possible outcomes of a random experiment is called thesample
space, denoted byΩ.

Definition 2.2.2. A subset of the sample spaceΩ,A ⊆ Ω, is called aneventandω ∈ Ω is called an
elementary event.

2.3 Sigma algebra

Definition 2.3.1. Let Ω be a nonempty set andP(Ω) ≡ {A : A ⊂ Ω} be the power set ofΩ. A
collection of setsF ⊂ P(Ω) is called asigma algebraif :

a) Ω ∈ F ,

b) A ∈ F ⇒ Ac ∈ F , where setAc is the complement of setA,

c) A,B ∈ F ⇒ A ∪B ∈ F ,

d) An ∈ F , for n ≥ 1 ⇒
⋃

n≥1

An ∈ F .

Note: A sigma algebra is always a monotone class, that is,F contains a union of a sequence(An)
for n = 1, 2, . . . such thatAn ∈ F for eachn, andA1 ⊂ A2 ⊂ . . . . It is also important to note that
the smallest sigma algebra containing any non-empty familyS of subsetsA of Ω is identical with
the smallest monotone class containingS. GivenS andΩ the smallest sigma algebra containingS
is the intersection of all sigma algebras containingS and the largest is the power set ofΩ.

2.4 Measures, measurable space and measure space

Definition 2.4.1. Let Ω be a nonempty set andF be a sigma algebra onΩ. Then, a set functionµ
onF is called ameasureif:

a) µ(A) ≥ 0 for all A ∈ F ,
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b) µ(∅) = 0,

c) for any disjoint collection of setsA1, A2, . . . ,∈ F with
⋃

n≥1

An ∈ F ,µ(
⋃

n≥1

An) =
∞∑

n=1

µ(An).

Definition 2.4.2. The pair(Ω,F) is called ameasurable spaceand the triplet(Ω,F , µ) is called a
measure space.

2.5 Probability measure and probability space

Definition 2.5.1. Let Ω be a nonempty set andF be an sigma algebra onΩ. Then, a set functionp
onF is called aprobability measureif it is a measure with the following extra properties:

a) p(Ω) = 1,

b) p(Ac) = 1− p(A).

Definition 2.5.2. The triplet(Ω,F , p) is called aprobability space.

2.6 Random variables

Definition 2.6.1. A random variableis a functionX that maps the elementary eventsω of a proba-
bility space(Ω,F , p) to an image spaceX(ω) which consists of real numbers.

Example 2.6.1.We look at an experiment in which we toss a coin. We define our random variable
as

X =

{

0 if heads,

1 if tails.

The probability mass function is given by

pX =







1
2 if X = 0,
1
2 if X = 1,

0 otherwise.
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2.7 Joint and conditional probabilities

Definition 2.7.1. p(A ∩ B) is thejoint probability that an eventω is contained in both setsA and
B.

Definition 2.7.2. p(A|B) is theconditional probabilitythat events defined in setA occur in setB.

We define conditional probabilities in terms of joint probabilities as follows:

p(A|B) = p(A ∩B)/p(B),

also,
p(B|A) = p(A ∩B)/p(A).

Example 2.7.1.We propose an experiment in which a player has to pick a card from a standard
52-card deck. We want to determine the probability that a player picks a ‘picture card of hearts’.
There are two ways we can do that. The first one is in which we sample from the full deck of cards.
We count the number of ‘picture cards’ that have hearts on them. We find that there are 3 such
cards. The probability is then given by diving 3 by 52, the total number of cards in the deck, that is,
p = 3

52 . Anotherway to determine the probability is to sample from a sub-deck containing ‘cards
of hearts’ only which constitute a quarter of the full deck and apply the definition above. We define
A, the set of events that the player picks a card of hearts, andB, the set of events that the player
picks a picture card. We know that the probabilityp(A) that the player picks a card of hearts is1

4 ,
andthe probability that a player picks a picture card if given a suit of hearts isp(B|A) = 3

13 . The
joint probability that a player picks a picture card of heartsp = p(B|A)p(A) = 3

13 × 1
4 = 3

52 .

2.8 Probability mass function and probability density

Definition 2.8.1. Theprobability mass functionpX is a function that gives the probabilities that a
discrete random variableX takes certain values.

For continuous random variables we cannot use the probability mass function as the probability
measure but the probability density function.

Definition 2.8.2. If A(ω′, dω′) is the set{ω : ω′ ≤ ω < ω′ + dω′}, whereω are elementary events,
then a function̺ (ω′) is a probability density functionif ̺(ω′)dω′ = p[A(ω′, dω′)] ≡ p(ω′, dω′).
Normalization is given by

∫

Ω ̺(ω
′)dω′ = 1.

2.9 Spectral measures and normal operators

Definition 2.9.1. A functionP on the space(Ω,F) whose domain isF and values are self-adjoint
projections in the Hilbert spaceH is called aspectral measureon (Ω,F) if it has the following
properties:
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a) P (Ω) = 1,

b) P (∅) = 0,

c) P (
∞⋃

1

Aj) =
∞∑

1

P (Aj) for any sequence(Aj) of pairwise disjoint sets inF ,

d) If A, B ∈ F are disjoint thenP (A)P (B) = 0,

e) If A ⊂ B ∈ F , thenP (A)P (B) = P (B)P (A) = P (A),

f) For allA, B ∈ F , we haveP (A
⋂
B) = P (A)P (B).

We are interested in the spectral representation of self-adjoint operators which we will apply later in
the derivation of the master equations of continuous position measurement and estimation. At this
point we appeal to the spectral theorem of self-adjoint operators.

Theorem 2.9.1.Let Â be a bounded self-adjoint (Hermitian) operator in the Hilbert spaceH, there
is a unique measurêP on the line supported in the interval(−|a|, |a|), such that

Â =

|a|∫

−|a|

x dP̂ (x), (2.1)

wherex is a eigenvalue of the operator̂A. The functionP̂ : F → L+
P (H), whereF is a sigma

algebra of the sample space andL+
P (H) is the space of projection operators on the Hilbert space, is

called aprojection-valued measure(PVM).

2.10 Positive operator-valued measures (POVM)

Let Ω be the set of all possible measurement resultsi, F be a sigma algebra overΩ and|ψ〉 ∈ H
be normalized, and the initial state of a quantum system. For eachi ∈ Ω there exist a measurement
operator (Kraus operator [34])̂Mi such that the probabilityp(i) of obtaining the resulti is given by
Born’s rule [8],

p(i) = 〈ψ|M̂ †
i M̂i|ψ〉, (2.2)

and every time a measurement resulti is obtained, the state of the system transforms as follows:

|ψ〉 “i”−−→ M̂i|ψ〉
√

〈ψ|M̂ †
i M̂i|ψ〉

. (2.3)
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It is clear that the quantity on the right hand side of equation (2.2) is positive sinceit is the in-
ner product of the state|ψ′〉 = M̂i|ψ〉 with itself. Equation (2.2) also require that the following
condition be satisfied: ∑

i

M̂ †
i M̂i = 1, (2.4)

where1 is the identity operator on our Hilbert spaceH. Condition (2.4) is easy to prove using the
measure theory we introduced above. We know that probability is a measure with the following
propertyp(Ω) = 1 and alsoΩ =

⋃{i}, the union of all{i} ⊂ Ω, implying that1 = p(Ω) =

p(
⋃{i}) =

∑

i

p(i) =
∑

i

〈ψ|M̂ †
i M̂i|ψ〉 = 〈ψ|

(∑

i

M̂ †
i M̂i

)

|ψ〉. We also know that1 = 〈ψ|ψ〉 =

〈ψ|1|ψ〉. Comparing the last two expressions, we see that
∑

i

M̂ †
i M̂i = 1. We can now define

a new set of positive operatorŝEi = M̂ †
i M̂i for eachi ∈ Ω calledeffectsof the measurements

M̂i. The complete set of the effectŝEi form a positive operator valued measureÊ : F → L+(H),
whereF is a sigma algebra of the sample space andL+(H) is the space of positive operators on
the Hilbert space. This is easy to verify sinceÊΩ = 1, Ê∅ = 0 and for each pair of disjoint sets
A,B ∈ F , ÊA∪B = ÊA + ÊB.

2.10.1 Realization of POVM’s

Generalized measurements on a quantum system can be realized by interacting the system with a
smaller system,ancillary, and then performing a projective measurement on the ancillary as shown
in the schematic below.

U

system

ancillary

|ψ〉

|0〉

|ψS〉|0A〉 unitarycoupling−−−−−−−−→ Û |ψS〉|0A〉 = |Ψ〉 measurement−−−−−−−→ (1S ⊗ |ei〉A〈ei|)|Ψ〉

Figure 2.1: Schematic diagram showing the realization of generalized quantum measurement
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In order for us to determine the state change of the system we must trace out theancillary system’s
degrees of freedom from the state of the total system. We know that

ρ̂(t)TOT = |Ψ〉〈Ψ| measurement−−−−−−−→ ρ̂(t)′TOT =
∑

i

(1S ⊗ |ei〉A〈ei|)|Ψ〉〈Ψ|(1S ⊗ |ei〉A〈ei|)†.

The change in the state of the system is therefore given by

ρ̂(t)S → ρ̂′S(t) =trA{ρ̂(t)′TOT} = trA{
∑

i

(1S ⊗ |ei〉A〈ei|)U |ψS〉|0A〉〈ψS|〈0A|U †(|ei〉A〈ei| ⊗ 1S)}

=
∑

ij

〈eA
j |(1S ⊗ |ei〉A〈ei|)U |ψS〉|0A〉〈ψS|〈0A|U †(|ei〉A〈ei| ⊗ 1S)|eA

j 〉

=
∑

ij

〈eA
j |eA

i 〉〈eA
i |Û |0A〉|ψS〉〈ψS|〈0A|Û †|eA

i 〉〈eA
i |eA

j 〉

=
∑

ij

δij〈eA
i |Û |0A〉|ψS〉〈ψS|〈0A|Û †|eA

i 〉δij

=
∑

i

〈eA
i |Û |0A〉|ψS〉〈ψS|〈0A|Û †|eA

i 〉

=
∑

i

〈eA
i |Û |0A〉ρ̂S(t)〈0A|Û †|eA

i 〉. (2.5)

It turns that the operation is a POVM on the state of the system with measurement operatorsM̂i =
〈eA
i |Û |0A〉 and effectsÊi = 〈0A|Û †|eA

i 〉〈eA
i |Û |0A〉 = 〈0A|Û †P̂ A

i Û |0A〉, where
P̂ A
i = |eA

i 〉〈eA
i | is a projector on the subspace of the ancillary system. We verify that the complete

set of the effects constitute a POVM as follows:

ÊΩ =
∑

i

M̂ †
i M̂i =

∑

i

〈0A|Û †P̂ A
i Û |0A〉

=〈0A|Û †
(∑

i

P̂ A
i

)

Û |0A〉

=〈0A|Û †1AÛ |0A〉
=〈0A|Û †Û |0A〉
=〈0A|1TOT|0A〉
=1S, (2.6)

and for eventsA′, B′ ∈ F corresponding to measurement outcomes1 and2, and projectionŝP A
1

10



andP̂ A
2 , respectively, on the ancillary system we have

ÊA′∪B′ =〈0A|Û †P̂A′∪B′Û |0A〉
=〈0A|Û †

(

P̂ A
1 + P̂ A

2

)

Û |0A〉

=〈0A|Û †P̂ A
1 Û |0A〉+ 〈0A|Û †P̂ A

2 Û |0A〉
=ÊA′ + ÊB′ . (2.7)

From equation (2.5) we can deduce that a POVM on a system can be seen as a projection on the
system in a higher dimension and this is calledNaimark’s dilation theorem[42, 43, 29, 1, 37, 13].
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Chapter 3

ContinuousMeasurement of Position

3.1 Introduction

The theory of continuous observation of quantum systems has been around for several decades. In
1987, Caves and Milburn [11] suggested a model for continuous measurement of position of a quan-
tum system. This model is based on the theory of continuous quantum measurement as suggested,
in 1982, by Barchielli [5] et al. In 1988, Diósi [14] then showed that continuous measurement of
position in the selective regime can be represented by a certain Itô stochastic master equation. In this
chapter we present a simplified approach to re-derive the master equations for continuous position
measurement in both the selective and non-selective regimes, as well as the corresponding stochas-
tic Schr̈odinger equations [55]. In this approach, we view continuous measurement as a sequence
of unsharp measurements (see Figure 3.1) on a quantum system in the following limit:

lim
τ→0
σ→∞

1

σ2τ
= γ, (3.1)

whereτ is the time interval between two consecutive measurements,σ is the precision parameter of
measurement andγ is a finite quantity called the decoherence rate. For historical reasons we refer
to this limit as the Barchielli limit, because Barchielli and his co-authors were the first people to use
this type of limit.
Unsharp measurement is achieved by selecting generalized measurement observables, which are
commuting positive operator valued measures (POVM), rather than the standard von Neumann pro-
jection operators, which are projection valued measures (PVM). We consider a special kind of
unsharp measurement of position in one spatial dimensionx given by the following Kraus operators
[34]:

M̂x̄ =
1

4
√
2πσ2

exp
(

− (x̂− x̄)2

4σ2

)

, (3.2)

12



U

t t+ τ

M M

time

Figure3.1: Schematic diagram for the time evolution of a system undergoing a sequence of mea-
surementsM̂ at time intervalsτ . Between two consecutive measurements the closed system evolves
unitarily.

wherex̄ are measurement results. The effects of the measurements are Gaussian and given by:

M̂ †
x̄M̂x̄ =

1√
2πσ2

exp
(

− (x̂− x̄)2

2σ2

)

. (3.3)

Theseoperators satisfy two necessary conditions. The first one is the completeness condition:

∞∫

−∞

dx̄ M̂ †
x̄M̂x̄ =

1√
2πσ2

∞∫

−∞

exp
(

− (x̂− x̄)2

2σ2

)

dx̄

=
1√
2πσ2

∞∫

−∞

exp
(

− (x− x̄)2

2σ2

)

dx̄

∞∫

−∞

|x〉〈x| dx = 1. (3.4)

The second is the ability to extract a projection in the limitσ → 0 as shown below:

lim
σ→0

M̂ †
x̄M̂x̄ = lim

σ→0

1√
2πσ2

exp
(

− (x̂− x̄)2

2σ2

)

=lim
σ→0

∞∫

−∞

1√
2πσ2

exp
(

− (x− x̄)2

2σ2

)

|x〉〈x| dx

=

∞∫

−∞

δ(x− x̄)|x〉〈x| dx

=|x̄〉〈x̄|, (3.5)

whereδ is the Dirac delta function [16]. The unitary evolution between two consecutive measure-
ments is given by

Û = exp
(

− i

~
Ĥτ

)

. (3.6)
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In order for us to derive the state evolution equations it is necessary to Taylor-expand both the
measurement operator̂Mx̄ and unitary operator̂U . We expand the unitary operator up to the first
order with respect to the time intervalτ as follows:

Û = 1− i

~
Ĥτ +O(τ2), (3.7)

becausehigher order terms inτ vanish in the Barchielli limit. We expand the measurement operators
with respect tox̄

σ2 andderive the third line of the following:

M̂x̄ =
1√
4πσ2

exp
(

− (x̂− x̄)2

4σ2

)

=
1√
4πσ2

exp
(

− x̄2

4σ2

)

exp
(−x̂2 + 2x̂x̄

4σ2

)

=
1√
4πσ2

exp
(

− x̄2

4σ2

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

. (3.8)

We truncated the expansion above as follows: while all other terms inσ of order≤ −4 vanish in
the Barchielli limit, the terms inx̄

2

σ4 survive.

3.2 Derivation of the master equation for measurement of position in
the non-selective regime

Consider an experiment in which we perform unsharp position measurements in a sequence as
shown in figure 3.1. If the state of the system at a timet is represented by the density operatorρ̂(t)
then after a timeτ the state of the system

ρ̂(t) → ρ̂(t+ τ) =

∞∫

−∞

dx̄ ÛM̂x̄ρ̂(t)M̂
†
x̄Û

†

=
1√
2πσ2

Û
(

∞∫

−∞

dx̄ exp
(−(x̂− x̄)2

4σ2

)

ρ̂(t) exp
(−(x̂− x̄)2

4σ2

))

Û †. (3.9)

To solve the integral in equation (3.9) we need apply some commutative super-algebra which was
introduced in [3, 32]. We define new position operatorsx̂L andx̂R as follows:

x̂Lρ̂(t) ≡ ρ̂(t)x̂L := x̂ρ̂(t) (3.10)

and
x̂Rρ̂(t) ≡ ρ̂(t)x̂R := ρ̂(t)x̂. (3.11)
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Assuming that the operator̂x hasthe following spectral representation:

x̂ =

∞∫

−∞

x dP̂ (x), (3.12)

wherex are position eigenvalues,dP̂ (x) = |x〉〈x|dx andP̂ (x) are a family of commuting orthog-
onal projectors with the following properties [10]:

P̂ (x′) ≥ P̂ (x) for x′ > x, (3.13)

lim
ǫ→+0

P̂ (x+ ǫ) = P̂ (x), (3.14)

lim
x→−∞

P̂ (x) = 0 (3.15)

and
lim

x→+∞
P̂ (x) = 1, (3.16)

then the operatorŝxL andx̂R can be written as follows:

x̂L =

∞∫

−∞

x′ dP̂L(x
′) (3.17)

and

x̂R =

∞∫

−∞

x′′ dP̂R(x
′′). (3.18)

The actions of the operatorsdP̂L(x
′) and dP̂R(x

′′) on any arbitrary operator̂A of the system’s
Hilbert spaceH are defined as follows:

dP̂L(x
′)Â ≡ Â dP̂L(x

′) := dP̂ (x) Â (3.19)

and
dP̂R(x

′′)Â ≡ Â dP̂R(x
′′) := Â dP̂ (x), (3.20)

respectively. The equations (3.19) and (3.20) are consistent with equations (3.10) and (3.11). The
operatorŝxL andx̂R commute with all operators of the Hilbert space and therefore we can rewrite
equation (3.9) as follows:

ρ̂(t+ τ) =
1√
2πσ2

Û
(

∞∫

−∞

dx̄ exp
(−(x̂L − x̄)2 − (x̂R − x̄)2

4σ2

))

ρ̂(t)Û †

=
1√
2πσ2

Û
(

∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x̂L + x̂R

2σ2
x̄− x̂2L + x̂2R

4σ2

))

ρ̂(t)Û †. (3.21)
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We now apply equations (3.17) and (3.18) to the integral in equation (3.21) as follows:

∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x̂L + x̂R

2σ2
x̄− x̂2L + x̂2R

4σ2

)

=

∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2

)

× exp
( x̂L

2σ2
x̄− x̂2L

4σ2

)

× exp
( x̂R

2σ2
x̄− x̂2R

4σ2

)

=

∞∫

−∞

∞∫

−∞

[
∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2

)

× exp
( x′

2σ2
x̄− (x′)2

4σ2

)

× exp
( x′′

2σ2
x̄− (x′′)2

4σ2

)]

dP̂L(x
′) dP̂R(x

′′)

=

∞∫

−∞

∞∫

−∞

[
∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x′ + x′′

2σ2
x̄− (x′)2 + (x′′)2

4σ2

)]

dP̂L(x
′) dP̂R(x

′′). (3.22)

We can now evaluate the square bracketed integral in equation (3.22) using standard procedure
because the exponential does not contain operators, but rather numbers. We evaluate the integral as
follows:

∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x′ + x′′

2σ2
x̄− (x′)2 + (x′′)2

4σ2

)

=
√
2πσ2 exp

(

− 1

8σ2
((x′)2 + (x′′)2 − 2x′x′′)

)

=
√
2πσ2(1− 1

8σ2
((x′)2 + (x′′)2 − 2x′x′′) +O(σ−4)) . (3.23)

Substituting equation (3.23) into equation (3.22) yields the following:

∞∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x̂L + x̂R

2σ2
x̄− x̂2L + x̂2R

4σ2

)

=

∞∫

−∞

∞∫

−∞

[√
2πσ2(1− 1

8σ2
((x′)2 + (x′′)2 − 2x′x′′) +O(σ−4))

]

dP̂L(x
′) dP̂R(x

′′)

=
√
2πσ2(1− 1

8σ2
(x̂2L + x̂2R − 2x̂Lx̂R) +O(σ−4)) . (3.24)
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We now substitute equations (3.7) and (3.24) into equation (3.21) to obtain the following equation:

ρ̂(t+ τ) = (1− i

~
Ĥτ +O(τ2))(1− 1

8σ2
(x̂2L + x̂2R − 2x̂Lx̂R) +O(σ−4))ρ̂(t)

× (1+
i

~
Ĥτ +O(τ2))

=(1− i

~
Ĥτ +O(τ2))(ρ̂(t)− 1

8σ2
x̂2ρ̂(t) + ρ̂(t)x̂2 − 2x̂ρ̂(t)x̂+O(σ−4))

× (1+
i

~
Ĥτ +O(τ2))

=(1− i

~
Ĥτ +O(τ2))(ρ̂(t)− 1

8σ2
[x̂, [x̂, ρ̂(t)]] +O(σ−4))(1+

i

~
Ĥτ +O(τ2))

=ρ̂(t)− i

~
[Ĥ, ρ̂(t)]τ − 1

8σ2
[x̂, [x̂, ρ̂(t)]] +

iτ

8~σ2
[Ĥ, [x̂, [x̂, ρ̂(t)]]] +O(τ2) +O(σ−4). (3.25)

We can infer from equation (3.25) that,

∆ρ̂(t) = ρ̂(t+ τ)− ρ̂(t)

= − i

~
[Ĥ, ρ̂(t)]τ − 1

8σ2
[x̂, [x̂, ρ̂(t)]]τ +

iτ

8~σ2
[Ĥ, [x̂, [x̂, ρ̂(t)]]] +O(τ2) +O(σ−4).

(3.26)

Applying the Barchielli limit to equation (3.26) yields the following:

dρ̂(t) = − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt. (3.27)

We note that the higher order terms inτ vanish asτ approaches0. Equation (3.27) is the master
equation of continuous position measurement in the non-selective regime.

3.3 Derivation of the stochastic master equation

The stochastic master equation for the continuous measurement of position of a quantum system in
the selective regime was given by Diósi [14]. In this section we present an alternative way to derive
this master equation. As in the previous section we consider the same experiment but the only
difference now is that we account for the measurement results. We start our derivation the same
way as we did in the previous section, with the state of the system at a timet being represented by
the density operator̂ρ(t). After a timeτ the state of the system reads

ρ̂(t+ τ) =
1

pρ̂(x̄)
ÛM̂x̄ρ̂(t)M̂

†
x̄Û

†, (3.28)
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wherepρ̂(x̄) is the probability of obtaining the measurement resultx̄ and is given by:

pρ̂(x̄) =tr

{ 1√
2πσ2

exp
(

− (x̂− x̄)2

2σ2

)

ρ̂(t)
}

=
1√
2πσ2

tr

{

exp
(

− x̂2 − 2x̄x̂+ x̄2

2σ2

)

ρ̂(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{

exp
(

− x̂2 − 2x̄x̂

2σ2

)

ρ̂(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{(

1− x̂2 − 2x̄x̂

2σ2
+

1

2!

(

− x̂2 − 2x̄x̂

2σ2

)2
+O(σ−6)

)

ρ̂(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{(

1+
x̄

σ2
x̂−

=0 in the limit
︷ ︸︸ ︷
( 1

2σ2
− x̄2

2σ4

)

x̂2

− x̄

2σ4
x̂3 +

1

8σ4
x̂4 +O(σ−6)

︸ ︷︷ ︸

vanish in the limit

)

ρ̂(t)
}

≈ 1√
2πσ2

exp
(

− x̄2

2σ2

)(

tr

{

ρ̂(t)
}

+ tr

{ x̄x̂

σ2
ρ̂(t)

})

=
1√
2πσ2

exp
(

− x̄2

2σ2

)(

1 +
x̄

σ2
〈x̂〉ρ̂

)

. (3.29)

Thequantity 1
pρ̂(x̄)

in equation (3.28) can conveniently be Taylor-expanded as follows:

1

pρ̂(x̄)
≈

√
2πσ2 exp

( x̄2

2σ2

)(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)

. (3.30)

To simplify the evaluation of equation (3.28) we first simplify the measurement part,

1

pρ̂(x̄)
M̂x̄ρ̂(t)M̂

†
x̄, (3.31)
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by substituting equations (3.30) and (3.8) as follows:

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

ρ̂(t)

×
(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

=
(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)(

ρ̂(t) +
x̄

2σ2
x̂ρ̂(t) +

x̄

2σ2
ρ̂(t)x̂− 1

4σ2
x̂2ρ̂(t)− 1

4σ2
ρ̂(t)x̂2

+
x̄2

8σ4
x̂2ρ̂(t) +

x̄2

8σ4
ρ̂(t)x̂2 +

x̄2

4σ4
x̂ρ̂(t)x̂− x̄

8σ4
x̂3ρ̂(t)− x̄

8σ4
ρ̂(t)x̂3

+
1

32σ4
x̂4ρ̂(t) +

1

32σ4
ρ̂(t)x̂4 − x̄

4σ4
x̂2ρ̂(t)x̂+

1

16σ4
x̂2ρ̂(t)x̂2 +O(σ−6)

)

=
(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)(

ρ̂(t) +
x̄

2σ2
{x̂, ρ̂(t)} − 1

8σ2
[x̂, [x̂, ρ̂(t)]]− 1

8σ2
{x̂, {x̂, ρ̂(t)}}

+
x̄2

8σ4
{x̂, {x̂, ρ̂(t)}} − x̄

8σ4
{x̂3, ρ̂(t)}+ 1

32σ4
{x̂4, ρ̂(t)}

− x̄

4σ4
x̂2ρ̂(t)x̂+

1

16σ4
x̂2ρ̂(t)x̂2 +O(σ−6)

)

. (3.32)

After applying the Barchielli limit, equation (3.32) becomes:

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− x̄τγ〈x̂〉ρ̂ + x̄2τ2γ2〈x̂〉2ρ̂
)(

ρ̂(t) +
x̄τγ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

− τγ

8
{x̂, {x̂, ρ̂(t)}}+ x̄2τ2γ2

8
{x̂, {x̂, ρ̂(t)}} − x̄τ2γ2

8
{x̂3, ρ̂(t)}+ τ2γ2

32
{x̂4, ρ̂(t)}

− x̄τ2γ2

4
x̂2ρ̂(t)x̂+

τ2γ2

16
x̂2ρ̂(t)x̂2 +O(τ3)

)

. (3.33)

In order for us to further simplify equation (3.33), we need to first introduce some stochastic cal-
culus, which was suggested by Diósi [14, 15] where our measurement resultsx̄t at a timet are
governed by the followingheuristicstochastic equation:

x̄t = 〈x̂〉ρ̂(t) +
1√
γ
wt, (3.34)

wherewt is standard white noise which is defined by

〈wt〉st = 0 (3.35)
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and
〈wtws〉st = δ(t− s). (3.36)

However, equation (3.34) is not time differentiable becausewt is not a real function of time. To
work around this problem we introduce the quantityQt, which is the time integrated measurement
signal and defined as follows:

Qt :=

t∫

0

x̄t′ dt
′. (3.37)

Now substituting for̄xt′ in equation (3.37),

Qt :=

t∫

0

(

〈x̂〉ρ̂(t′) +
1√
γ
wt′

)

dt′

= 〈x̂〉ρ̂(t)t+
1√
γ
Wt, (3.38)

whereWt, the time integral ofwt is a Wiener process. From equation (3.38) it follows that

dQ = 〈x̂〉ρ̂dt+ γ−
1

2 dW, (3.39)

wheredW are Wiener increments and satisfy the following Itô rules:

〈dW 〉st = 0, (3.40)

(dW )2 = dt, (3.41)

(dW )n = 0, for n > 2. (3.42)

We note that in the Barchielli limit̄xτ ≡ dQ implying thatx̄2τ2 = (dQ)2 = 1
γ
dt. SubstitutingdQ

for x̄τ into equation (3.33) we obtain:

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− (dQ)γ〈x̂〉ρ̂ + (dQ)2γ2〈x̂〉2ρ̂
)(

ρ̂(t) +
(dQ)γ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

− τγ

8
{x̂, {x̂, ρ̂(t)}}+ (dQ)2γ2

8
{x̂, {x̂, ρ̂(t)}} − (dQ)τγ2

8
{x̂3, ρ̂(t)}

+
τ2γ2

32
{x̂4, ρ̂(t)} − (dQ)τγ2

4
x̂2ρ̂(t)x̂+

τ2γ2

16
x̂2ρ̂(t)x̂2 +O(σ−6)

)

. (3.43)

20



We now apply It̂o rulesto equation (3.43) to obtain the following:

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− (dQ)γ〈x̂〉ρ̂ + τγ〈x̂〉2ρ̂
)(

ρ̂(t) +
(dQ)γ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

− τγ

8
{x̂, {x̂, ρ̂(t)}}+ τγ2

8γ
{x̂, {x̂, ρ̂(t)}}

)

=
(

1− (dQ)γ〈x̂〉ρ̂ + τγ〈x̂〉2ρ̂
)(

ρ̂(t) +
(dQ)γ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

(dQ)γ

2
{x̂, ρ̂(t)} − (dQ)γρ̂(t)〈x̂〉ρ̂

− τγ〈x̂〉ρ̂
2

{x̂, ρ̂(t)}+ τγ〈x̂〉2ρ̂ρ̂(t)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

(dQ)γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)} −

τγ〈x̂〉ρ̂
2

{x̂− 〈x̂〉ρ̂, ρ̂(t)}

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− τ〈x̂〉ρ̂). (3.44)

Substituting equations (3.7) and (3.44) into (3.28), yields the following:

ρ̂(t+ τ)

=
1

pρ̂(x̄)
ÛM̂x̄ρ̂(t)M̂

†
x̄Û

†

=
(

1− i

~
Ĥτ +O(τ2)

)(

ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− τ〈x̂〉ρ̂)

)

×
(

1+
i

~
Ĥτ +O(τ2)

)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− τ〈x̂〉ρ̂)−

i

~
Ĥτ ρ̂(t) + ρ̂(t)

i

~
Ĥτ

=ρ̂(t)− iτ

~
[Ĥ, ρ̂(t)]− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− τ〈x̂〉ρ̂). (3.45)

For infinitesimal increments of timeτ , which we shall denote by the familiardt, the change in the
system density operator∆ρ̂ = ρ̂(t+ τ)− ρ̂(t) becomes infinitesimal and hence we shall represent
it by dρ̂. We can therefore write the following stochastic differential equation:

dρ̂(t) = − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt+

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− 〈x̂〉ρ̂dt)

= − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt+

√
γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)} dW, (3.46)

as the master equation for continuous measurement of position in the selective regime.
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3.4 Derivation of the Itô stochasticSchrödinger equation

Even though the master equation that we derived in the previous section can be used to evolve pure
states, it is more convenient to evolve them by Schrödinger-type equations [23]. In this section we
re-derive the stochastic Schrödinger equation that governs the evolution of the state vector or wave
function of a quantum system that is undergoing continuous selective measurement of position. If
the state of the system at a timet is given by the state vector|ψ(t)〉 then after a timeτ ,

|ψ(t)〉 → |ψ(t+ τ)〉 = ÛM̂x̄|ψ(t)〉
√

〈ψ(t)|M̂ †
x̄M̂x̄|ψ(t)〉

=
ÛM̂x̄|ψ(t)〉
√
pψ(x̄)

. (3.47)

We now take the same approach as in the previous section where we evaluated the measurement
part first in order to simplify the derivation. The quantitiesÛ , M̂x̄ andpψ(x̄) are the same as those
given in equations (3.7), (3.8) and (3.30) respectively. We evaluate the normalization in equation
(3.47) as follows:

1
√
pψ(x̄)

≈ 1
√

1√
2πσ2

exp
(

− x̄2

2σ2

)(

1 + x̄
σ2 〈x̂〉ψ

)

=
4
√
2πσ2 exp

( x̄2

4σ2

) 1
√
(

1 + x̄
σ2 〈x̂〉ψ

)

≈ 4
√
2πσ2 exp

( x̄2

4σ2

)(

1− x̄

2σ2
〈x̂〉ψ +

3x̄2

8σ4
〈x̂〉2ψ

)

. (3.48)

This in turn implies that

M̂x̄|ψ(t)〉
√
pψ(x̄)

=
(

1− x̄

2σ2
〈x̂〉ψ +

3x̄2

8σ4
〈x̂〉2ψ

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

|ψ(t)〉.
(3.49)

Applying the Barchielli limit to (3.49), we obtain

M̂x̄|ψ(t)〉
√
pψ(x̄)

=
(

1− τγx̄

2
〈x̂〉ψ +

3τ2γ2x̄2

8
〈x̂〉2ψ

)

×
(

1− τ2γ2x̂3x̄

8
+
τ2γ2x̂2x̄2

8
+
τγx̂x̄

2
+
τ2γ2x̂4

32
− τγx̂2

4

)

|ψ(t)〉. (3.50)
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SubstitutingdQ for τ x̄ andsubsequently applying Itô rules to equation (3.50), we get

M̂x̄|ψ(t)〉
√
pψ(x̄)

=
(

1− γ(dQ)

2
〈x̂〉ψ +

3γ2(dQ)2

8
〈x̂〉2ψ

)

×
(

1− τγ2(dQ)x̂3

8
+
γ2(dQ)2x̂2

8
+
γ(dQ)x̂

2
+
τ2γ2x̂4

32
− τγx̂2

4

)

|ψ(t)〉

=
(

1− γ(dQ)

2
〈x̂〉ψ +

3τγ

8
〈x̂〉2ψ

)(

1+
τγx̂2

8
+
γ(dQ)x̂

2
− τγx̂2

4

)

|ψ(t)〉

=
(

1− γ(dQ)

2
〈x̂〉ψ +

3τγ

8
〈x̂〉2ψ

)(

1− τγx̂2

8
+
γ(dQ)x̂

2

)

|ψ(t)〉

=
(

1− τγx̂2

8
+
γ(dQ)x̂

2
+

3τγ

8
〈x̂〉2ψ − γ(dQ)

2
〈x̂〉ψ − τγx̂

4
〈x̂〉ψ

)

|ψ(t)〉

=
(

1− τγx̂2

8
+
τγx̂

4
〈x̂〉ψ − τγ

8
〈x̂〉2ψ +

γ(dQ)x̂

2

− γ(dQ)

2
〈x̂〉ψ +

τγ

2
〈x̂〉2ψ − τγx̂

2
〈x̂〉ψ

)

|ψ(t)〉

=
(

1− τγ

8
(x̂− 〈x̂〉ψ)2 +

γ(dQ)

2
(x̂− 〈x̂〉ψ)−

τγ

2
〈x̂〉ψ(x̂− 〈x̂〉ψ)

)

|ψ(t)〉

=
(

1− τγ

8
(x̂− 〈x̂〉ψ)2 +

γ

2
(x̂− 〈x̂〉ψ)(dQ− τ〈x̂〉ψ)

)

|ψ(t)〉. (3.51)

Substituting equations (3.7) and (3.51) into (3.47), we obtain

|ψ(t+ τ)〉 =
(

1− i

~
Ĥτ

)(

1− τγ

8
(x̂− 〈x̂〉ψ)2 +

γ

2
(x̂− 〈x̂〉ψ)(dQ− τ〈x̂〉ψ)

)

|ψ(t)〉

=
(

1− i

~
Ĥτ − τγ

8
(x̂− 〈x̂〉ψ)2 +

γ

2
(x̂− 〈x̂〉ψ)(dQ− τ〈x̂〉ψ)

)

|ψ(t)〉

⇒ ∆|ψ(t)〉 =
(

− i

~
Ĥτ − τγ

8
(x̂− 〈x̂〉ψ)2 +

γ

2
(x̂− 〈x̂〉ψ)(dQ− τ〈x̂〉ψ)

)

|ψ(t)〉. (3.52)

For an infinitesimal increment of the timedt, ∆|ψ(t)〉 becomesd|ψ(t)〉 and therefore equation
(3.52) becomes,

d|ψ(t)〉 =
(

− i

~
Ĥdt− γ

8
(x̂− 〈x̂〉ψ)2dt+

γ

2
(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt)

)

|ψ(t)〉

=
((

− i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψ)2

)

dt+

√
γ

2
(x̂− 〈x̂〉ψ) dW

)

|ψ(t)〉, (3.53)

which is the It̂o stochastic Schrödinger equation for continuous position measurement.
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3.5 Deduction of the stochastic master equation from the stochastic
Schrödinger equation

In this section we show how to deduce the stochastic master equation from a given Itô stochastic
Schr̈odinger equation. We start with the following Itô stochastic Schrödinger equation:

d|ψ(t)〉 =
(

− i

~
Ĥdt− γ

8
(x̂− 〈x̂〉ψ)2dt+

γ

2
(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt)

)

|ψ(t)〉. (3.54)

For pure states the density operator

ρ̂(t) = |ψ(t)〉〈ψ(t)|, (3.55)

implying that
dρ̂(t) = (d|ψ(t)〉)〈ψ(t)|+ |ψ(t)〉(d〈ψ(t)|) + d|ψ(t)〉d〈ψ(t)|. (3.56)

It is important to note that we cannot ignore thed|ψ(t)〉d〈ψ(t)| term in equation (3.56) since terms
containing(dW )2 do not vanish according to Itô rules. To simplify calculations we abbreviate
equation (3.54) as follows:

d|ψ(t)〉 = B̂|ψ(t)〉, (3.57)

where

B̂ =
(

− i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψ)2

)

dt+
γ

2
(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt). (3.58)

This in turn implies that

B̂† =
( i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψ)2

)

dt+
γ

2
(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt). (3.59)

The operatorB̂ is neither self-adjoint, as can be deduced from equations (3.58) and (3.59) nor
unitary since

B̂†B̂ = B̂B̂† =
γ

4
(x̂− 〈x̂〉)2dt. (3.60)

Substituting equation (3.57) into equation (3.56), we obtain

dρ̂(t) = B̂ρ̂(t) + ρ̂(t)B̂† + B̂ρ̂(t)B̂†. (3.61)

Evaluating each term on the right hand side of equation (3.61) we obtain:

B̂ρ̂(t) = − i

~
Ĥρ̂(t)dt− γ

8
(x̂− 〈x̂〉ψ)2ρ̂(t)dt+

γ

2
(x̂− 〈x̂〉ψ)ρ̂(dQ− 〈x̂〉ψdt), (3.62)

ρ̂(t)B̂† =
i

~
ρ̂(t)Ĥdt− γ

8
ρ̂(x̂− 〈x̂〉ψ)2dt+

γ

2
ρ̂(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt) (3.63)
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and

B̂ρ̂(t)B̂† =
γ

4
x̂ρ̂(t)x̂dt− γ

4
〈x̂〉ψx̂ρ̂(t)dt−

γ

4
〈x̂〉ψρ̂(t)x̂dt+

γ

4
〈x̂〉2ψρ̂(t)dt. (3.64)

Substitutingequations (3.62), (3.63) and (3.64) into equation (3.61) yields the following:

dρ̂(t) = − i

~
Ĥρ̂(t)dt+

i

~
ρ̂(t)Ĥdt+

γ

2
ρ̂(x̂− 〈x̂〉ψ)(dQ− 〈x̂〉ψdt)

+
γ

2
(x̂− 〈x̂〉ψ)ρ̂(dQ− 〈x̂〉ψdt)−

γ

8
(x̂− 〈x̂〉ψ)2ρ̂(t)dt−

γ

8
ρ̂(x̂− 〈x̂〉ψ)2dt

+
γ

4
x̂ρ̂(t)x̂dt− γ

4
〈x̂〉ψx̂ρ̂(t)dt−

γ

4
〈x̂〉ψρ̂(t)x̂dt+

γ

4
〈x̂〉2ψρ̂(t)dt

= − i

~
[Ĥ, ρ̂(t)]dt+

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− 〈x̂〉ρ̂dt)

− γ

8
x̂2ρ̂(t)dt− γ

8
ρ̂(t)x̂2dt+

γ

4
x̂ρ̂(t)x̂dt

= − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt+

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQ− 〈x̂〉ρ̂dt), (3.65)

which is the master equation. The master equation preserves the pure state propertyρ̂2 = ρ̂. This
was highlighted by Díosi [14]. The pure state property implies that for the state change

ρ̂+ dρ̂ = (ρ̂+ dρ̂)2 = ρ̂2 + ρ̂(dρ̂) + (dρ̂)ρ̂+ dρ̂dρ̂. (3.66)

From equation (3.66), it follows that we need to prove that

dρ̂ = ρ̂(dρ̂) + (dρ̂)ρ̂+ dρ̂dρ̂. (3.67)

The left hand side of equation (3.67) is given by equation (3.65). We now evaluate the terms on the
right hand side as follows:

ρ̂(dρ̂) =− i

~
dt

〈Ĥ〉ρ̂ρ̂−ρ̂Ĥ
︷ ︸︸ ︷

(ρ̂Ĥρ̂− ρ̂2Ĥ)−γ
8
dt(

〈x̂2〉ρ̂ρ̂
︷︸︸︷

ρ̂x̂2ρ̂ +

ρ̂x̂2

︷︸︸︷

ρ̂2x̂2−2

〈x̂〉ρ̂ρ̂x̂
︷ ︸︸ ︷

ρ̂x̂ρ̂x̂)

+
γ

2
(dQ− 〈x〉ρ̂dt)(ρ̂x̂ρ̂+ ρ̂2x̂− 2〈x̂〉ρ̂ρ̂2

︸ ︷︷ ︸

〈x̂〉ρ̂ρ̂+ρ̂x̂−2〈x̂〉ρ̂ρ̂

), (3.68)

(dρ̂)ρ̂ =− i

~
dt

Ĥρ̂−〈Ĥ〉ρ̂ρ̂
︷ ︸︸ ︷

(Ĥρ̂2 − ρ̂Ĥρ̂)−γ
8
dt(

〈x̂2〉ρ̂ρ̂
︷︸︸︷

ρ̂x̂2ρ̂ +

x̂2ρ̂
︷︸︸︷

x̂2ρ̂2−2

〈x̂〉ρ̂x̂ρ̂
︷ ︸︸ ︷

x̂ρ̂x̂ρ̂)

+
γ

2
(dQ− 〈x〉ρ̂dt)(ρ̂x̂ρ̂+ x̂ρ̂2 − 2〈x̂〉ρ̂ρ̂2

︸ ︷︷ ︸

〈x̂〉ρ̂ρ̂+x̂ρ̂−2〈x̂〉ρ̂ρ̂

), (3.69)
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dρ̂dρ̂ =
γ

4
dt(

〈x̂〉ρ̂x̂ρ̂+x̂ρ̂x̂−2〈x̂〉ρ̂x̂ρ̂+〈x̂2〉ρ̂ρ̂+〈x̂〉ρ̂ρ̂x̂−2〈x̂〉2
ρ̂
ρ̂

︷ ︸︸ ︷

x̂ρ̂x̂ρ̂+ x̂ρ̂2x̂− 2〈x̂〉ρ̂x̂ρ̂2 + ρ̂x̂2ρ̂+ ρ̂x̂ρ̂x̂− 2〈x̂〉ρ̂ρ̂x̂ρ̂

−2〈x̂〉ρ̂ρ̂x̂ρ̂− 2〈x̂〉ρ̂ρ̂2x̂+ 4〈x̂〉2ρ̂ρ̂2
︸ ︷︷ ︸

−2〈x̂〉2
ρ̂
ρ̂−2〈x̂〉ρ̂ρ̂x̂+4〈x̂〉2

ρ̂
ρ̂

). (3.70)

We now sum up equations (3.68), (3.69) and (3.70) to obtain

ρ̂(dρ̂) + (dρ̂)ρ̂+ dρ̂dρ̂ =− i

~
(Ĥρ̂− ρ̂Ĥ)dt− γ

8
(ρ̂x̂2 + x̂2ρ̂− 2x̂ρ̂x̂)dt

+
γ

2
(dQ− 〈x̂〉ρ̂dt)(x̂ρ̂+ ρ̂x̂− 2〈x̂〉ρ̂ρ̂)

=− i

~
[Ĥ, ρ̂]dt− γ

8
[x̂, [x̂, ρ̂]]dt+

γ

2
(dQ− 〈x̂〉ρ̂dt){x̂− 〈x̂〉ρ̂, ρ̂}

=dρ̂. (3.71)

3.6 Summary

In this chapter we showed that one can derive the equations of motion governing the evolution
of the state of a quantum system whose position is continuously being observed by considering an
experiment in which a sequence of unsharp position measurements, represented by positive operator
valued measures, is performed in the Barchielli limit. We presented straight forward methods to
derive the master equations for continuous measurement of position in both the selective and non-
selective regimes, as well as the stochastic Schrödinger equation. To derive both the stochastic
master equation and stochastic Schrödinger equation, one only need to apply the stochastic calculus,
which was suggested by Diósi [14]. We also showed that given the stochastic Schrödinger equation,
one can deduce the corresponding master equation, and that the stochastic master equation preserves
the pure state condition.
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Chapter 4

Monitoring the state of an individual
quantum system

4.1 Introduction

In 2006 Díosi and his co-authors [15] introduced the concept of estimating the state of a quantum
system, which is undergoing continuous selective measurement by means of a stochastic differential
equation, which would be updated by the results of the measurement of the state of the system. The
evolution of the estimated state would then be simulated numerically in a computer. Therefore, the
scheme introduced in [15] can be used to monitor the state of the quantum system in real time.
The ability to monitor the state of a quantum system makes it possible to control the state of the
system in the sense that we can always apply unitary transformations to drive the system state to a
desired one. In Chapter 3 we presented a new technique to derive both the master equation and the
stochastic Schrödinger equation for continuous measurement of position. In this Chapter we apply
the same technique to derive the master equation as well as the stochastic Schrödinger equation for
the evolution of the estimated state. We explicitly derive both the stochastic master equation and
the stochastic Schrödinger equation for the estimation of position as a way to show that with the
new derivation technique one does not need to know special tricks like the ones in [15] to derive the
equations.

4.2 Stochastic Master Equation for Continuous Position Estimation

We represent measurements by the same Kraus operatorsM̂x̄ as in Chapter 3. The estimated wave
function evolves in a similar fashion as the real one. The only difference is that it is updated using
measurement results from the true wave function. If, at a timet, we estimate the state of our system
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with the density operator̂ρe(t) thenafter a timeτ

ρ̂e(t) → ρ̂e(t+ τ) =
1

pρ̂e(x̄)
ÛM̂x̄ρ̂

e(t)M̂ †
x̄Û

†, (4.1)

wherepρ̂e(x̄) cannot be interpreted as the probability of obtaining the measurement resultx̄, but
normalization, and is given by:

pρ̂e(x̄) =tr

{ 1√
2πσ2

exp
(

− (x̂− x̄)2

2σ2

)

ρ̂e(t)
}

=
1√
2πσ2

tr

{

exp
(

− x̂2 − 2x̄x̂+ x̄2

2σ2

)

ρ̂e(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{

exp
(

− x̂2 − 2x̄x̂

2σ2

)

ρ̂e(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{(

1− x̂2 − 2x̄x̂

2σ2
+

1

2!

(

− x̂2 − 2x̄x̂

2σ2

)2
+O(σ−6)

)

ρ̂e(t)
}

=
1√
2πσ2

exp
(

− x̄2

2σ2

)

tr

{(

1+
x̄

σ2
x̂−

=0 in the limit
︷ ︸︸ ︷
( 1

2σ2
− x̄2

2σ4

)

x̂2

− x̄

2σ4
x̂3 +

1

8σ4
x̂4 +O(σ−6)

︸ ︷︷ ︸

vanish in the limit

)

ρ̂e(t)
}

≈ 1√
2πσ2

exp
(

− x̄2

2σ2

)(

tr

{

ρ̂e(t)
}

+ tr

{ x̄x̂

σ2
ρ̂e(t)

})

=
1√
2πσ2

exp
(

− x̄2

2σ2

)(

1 +
x̄

σ2
〈x̂〉ρ̂e

)

. (4.2)

Thequantity 1
pρ̂e (x̄)

in equation (4.1) is given by

1

pρ̂e(x̄)
≈

√
2πσ2 exp

( x̄2

2σ2

)(

1− x̄

σ2
〈x̂〉ρ̂e +

x̄2

σ4
〈x̂〉2ρ̂e

)

, (4.3)

afterapplying a series expansion on the right hand side of the inverse of equation (4.2). Similarly,
the measurement operators can be expanded as follows:

M̂x̄ =
1√
4πσ2

exp
(

− (x̂− x̄)2

4σ2

)

=
1√
4πσ2

exp
(

− x̄2

4σ2

)

exp
(−x̂2 + 2x̂x̄

4σ2

)

=
1√
4πσ2

exp
(

− x̄2

4σ2

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

. (4.4)
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To simplify the evaluation of equation (4.1), we first simplify the measurement part,

1

pρ̂e(x̄)
M̂x̄ρ̂

e(t)M̂ †
x̄,

by substituting equations (4.3) and (4.4) and obtain

M̂x̄ρ̂
e(t)M̂ †

x̄

pρ̂e(x̄)

=
(

1− x̄

σ2
〈x̂〉ρ̂e +

x̄2

σ4
〈x̂〉2ρ̂e

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

ρ̂e(t)

×
(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

=
(

1− x̄

σ2
〈x̂〉ρ̂e +

x̄2

σ4
〈x̂〉2ρ̂e

)(

ρ̂e(t) +
x̄

2σ2
x̂ρ̂e(t) +

x̄

2σ2
ρ̂e(t)x̂− 1

4σ2
x̂2ρ̂e(t)− 1

4σ2
ρ̂e(t)x̂2

+
x̄2

8σ4
x̂2ρ̂e(t) +

x̄2

8σ4
ρ̂e(t)x̂2 +

x̄2

4σ4
x̂ρ̂e(t)x̂− x̄

8σ4
x̂3ρ̂e(t)− x̄

8σ4
ρ̂e(t)x̂3

+
1

32σ4
x̂4ρ̂e(t) +

1

32σ4
ρ̂e(t)x̂4 − x̄

4σ4
x̂2ρ̂e(t)x̂+

1

16σ4
x̂2ρ̂e(t)x̂2 +O(σ−6)

)

=
(

1− x̄

σ2
〈x̂〉ρ̂e +

x̄2

σ4
〈x̂〉2ρ̂e

)(

ρ̂e(t) +
x̄

2σ2
{x̂, ρ̂e(t)} − 1

8σ2
[x̂, [x̂, ρ̂e(t)]]− 1

8σ2
{x̂, {x̂, ρ̂e(t)}}

+
x̄2

8σ4
{x̂, {x̂, ρ̂e(t)}} − x̄

8σ4
{x̂3, ρ̂e(t)}+ 1

32σ4
{x̂4, ρ̂e(t)}

− x̄

4σ4
x̂2ρ̂e(t)x̂+

1

16σ4
x̂2ρ̂e(t)x̂2 +O(σ−6)

)

. (4.5)

After applying the Barchielli limit, equation (4.5) becomes:

M̂x̄ρ̂
e(t)M̂ †

x̄

pρ̂e(x̄)

=
(

1− x̄τγ〈x̂〉ρ̂e + x̄2τ2γ2〈x̂〉2ρ̂e
)(

ρ̂e(t) +
x̄τγ

2
{x̂, ρ̂e(t)} − τγ

8
[x̂, [x̂, ρ̂e(t)]]

− τγ

8
{x̂, {x̂, ρ̂e(t)}}+ x̄2τ2γ2

8
{x̂, {x̂, ρ̂e(t)}} − x̄τ2γ2

8
{x̂3, ρ̂e(t)}+ τ2γ2

32
{x̂4, ρ̂e(t)}

− x̄τ2γ2

4
x̂2ρ̂e(t)x̂+

τ2γ2

16
x̂2ρ̂e(t)x̂2 +O(σ−6)

)

. (4.6)
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In order for us to further simplify equation (4.6), we introduce the same stochasticquantitydQ as
as we did in Chapter 2. Substituting(dQ) for x̄τ into equation (4.6) we obtain:

M̂x̄ρ̂
e(t)M̂ †

x̄

pρ̂e(x̄)

=
(

1− (dQ)γ〈x̂〉ρ̂e + (dQ)2γ2〈x̂〉2ρ̂e
)(

ρ̂e(t) +
(dQ)γ

2
{x̂, ρ̂e(t)} − τγ

8
[x̂, [x̂, ρ̂e(t)]]

− τγ

8
{x̂, {x̂, ρ̂e(t)}}+ (dQ)2γ2

8
{x̂, {x̂, ρ̂e(t)}} − (dQ)τγ2

8
{x̂3, ρ̂e(t)}

+
τ2γ2

32
{x̂4, ρ̂e(t)} − (dQ)τγ2

4
x̂2ρ̂e(t)x̂+

τ2γ2

16
x̂2ρ̂e(t)x̂2 +O(σ−6)

)

. (4.7)

We now apply It̂o rules to equation (4.7). We therefore re-write equation (4.7) as follows:

M̂x̄ρ̂
e(t)M̂ †

x̄

pρ̂e(x̄)

=
(

1− (dQ)γ〈x̂〉ρ̂e + τγ〈x̂〉2ρ̂e
)(

ρ̂e(t) +
(dQ)γ

2
{x̂, ρ̂e(t)} − τγ

8
[x̂, [x̂, ρ̂e(t)]]

− τγ

8
{x̂, {x̂, ρ̂e(t)}}+ τγ2

8γ
{x̂, {x̂, ρ̂e(t)}}

)

=
(

1− (dQ)γ〈x̂〉ρ̂e + τγ〈x̂〉2ρ̂e
)(

ρ̂e(t) +
(dQ)γ

2
{x̂, ρ̂e(t)} − τγ

8
[x̂, [x̂, ρ̂e(t)]]

)

=ρ̂e(t)− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

(dQ)γ

2
{x̂, ρ̂e(t)} − (dQ)γρ̂e(t)〈x̂〉ρ̂e

− τγ〈x̂〉ρ̂e
2

{x̂, ρ̂e(t)}+ τγ〈x̂〉2ρ̂e ρ̂e(t)

=ρ̂e(t)− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

(dQ)γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)} −

τγ〈x̂〉ρ̂e
2

{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}

=ρ̂e(t)− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(dQ− τ〈x̂〉ρ̂e). (4.8)
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We now apply the unitary evolution to obtain

ρ̂e(t+ τ)

=
1

pρ̂e(x̄)
ÛM̂x̄ρ̂

e(t)M̂ †
x̄Û

†

=
(

1− i

~
Ĥτ +O(τ2)

)(

ρ̂e(t)− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(dQ− τ〈x̂〉ρ̂e)

)

×
(

1+
i

~
Ĥτ +O(τ2)

)

=ρ̂e(t)− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(dQ− τ〈x̂〉ρ̂e)−

i

~
Ĥτ ρ̂e(t) + ρ̂e(t)

i

~
Ĥτ

=ρ̂e(t)− iτ

~
[Ĥ, ρ̂e(t)]− τγ

8
[x̂, [x̂, ρ̂e(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(dQ− τ〈x̂〉ρ̂e). (4.9)

For an infinitesimal time incrementdt equation (4.9) reduces to

dρ̂e(t) =− i

~
[Ĥ, ρ̂e(t)]dt− γ

8
[x̂, [x̂, ρ̂e(t)]]dt+

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(dQ− 〈x̂〉ρ̂edt)

=− i

~
[Ĥ, ρ̂e(t)]dt− γ

8
[x̂, [x̂, ρ̂e(t)]]dt+

γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}(〈x̂〉ρ̂ − 〈x̂〉ρ̂e)dt

+

√
γ

2
{x̂− 〈x̂〉ρ̂e , ρ̂e(t)}dW, (4.10)

which is the master equation for continuous estimation of position in the selective regime.

4.3 Itô Stochastic Schr̈odinger Equation for Continuous Position Es-
timation

The stochastic Schrödinger equation of estimation is derived in a similar way as the one for mea-
surement in Chapter 3. If the state of the system at a timet is given by|ψe(t)〉, then after a timeτ
the state of the system

|ψe(t)〉 → |ψe(t+ τ)〉 = ÛM̂x̄|ψe(t)〉
√

〈ψe(t)|M̂ †
x̄M̂x̄|ψe(t)〉

=
ÛM̂x̄|ψe(t)〉
√
pψe

(x̄)
. (4.11)

We shall now take the same approach as in the previous section. We will evaluate the measurement
part first in order to simplify the derivation. The quantitiesÛ , M̂x̄ andpψe

(x̄) are given in equations
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(3.7), (4.4) and (4.3) respectively. We will now evaluate

1
√
pψe

(x̄)
=

1
√

1√
2πσ2

exp
(

− x̄2

2σ2

)(

1 + x̄
σ2 〈x̂〉ψe

)

=
4
√
2πσ2 exp

( x̄2

4σ2

) 1
√
(

1 + x̄
σ2 〈x̂〉ψe

)

=
4
√
2πσ2 exp

( x̄2

4σ2

)(

1− x̄

2σ2
〈x̂〉ψe

+
3x̄2

8σ4
〈x̂〉2ψe

)

. (4.12)

In turn,

M̂x̄|ψe(t)〉
√
pψe

(x̄)

=
(

1− x̄

2σ2
〈x̂〉ψe

+
3x̄2

8σ4
〈x̂〉2ψe

)(

1− x̂3x̄

8σ4
+
x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

|ψe(t)〉.
(4.13)

Applying the Barchielli limit to (4.13), we obtain

M̂x̄|ψe(t)〉
√
pψe

(x̄)
=
(

1− τγx̄

2
〈x̂〉ψe

+
3τ2γ2x̄2

8
〈x̂〉2ψe

)

×
(

1− τ2γ2x̂3x̄

8
+
τ2γ2x̂2x̄2

8
+
τγx̂x̄

2
+
τ2γ2x̂4

32
− τγx̂2

4

)

|ψe(t)〉. (4.14)
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SubstitutingdQ for τ x̄ andsubsequently applying Itô rules equation (4.14),

M̂x̄|ψe(t)〉
√
pψe

(x̄)
=
(

1− γ(dQ)

2
〈x̂〉ψe

+
3γ2(dQ)2

8
〈x̂〉2ψe

)

×
(

1− τγ2(dQ)x̂3

8
+
γ2(dQ)2x̂2

8
+
γ(dQ)x̂

2
+
τ2γ2x̂4

32
− τγx̂2

4

)

|ψe(t)〉

=
(

1− γ(dQ)

2
〈x̂〉ψe

+
3τγ

8
〈x̂〉2ψe

)(

1+
τγx̂2

8
+
γ(dQ)x̂

2
− τγx̂2

4

)

|ψe(t)〉

=
(

1− γ(dQ)

2
〈x̂〉ψe

+
3τγ

8
〈x̂〉2ψe

)(

1− τγx̂2

8
+
γ(dQ)x̂

2

)

|ψe(t)〉

=
(

1− τγx̂2

8
+
γ(dQ)x̂

2
+

3τγ

8
〈x̂〉2ψe

− γ(dQ)

2
〈x̂〉ψe

− τγx̂

4
〈x̂〉ψe

)

|ψe(t)〉

=
(

1− τγx̂2

8
+
τγx̂

4
〈x̂〉ψe

− τγ

8
〈x̂〉2ψe

+
γ(dQ)x̂

2

− γ(dQ)

2
〈x̂〉ψe

+
τγ

2
〈x̂〉2ψe

− τγx̂

2
〈x̂〉ψe

)

|ψe(t)〉

=
(

1− τγ

8
(x̂− 〈x̂〉ψe

)2 +
γ(dQ)

2
(x̂− 〈x̂〉ψe

)− τγ

2
〈x̂〉ψe

(x̂− 〈x̂〉ψe
)
)

|ψe(t)〉

=
(

1− τγ

8
(x̂− 〈x̂〉ψe

)2 +
γ

2
(x̂− 〈x̂〉ψe

)(dQ− τ〈x̂〉ψe
)
)

|ψe(t)〉. (4.15)

Substituting equations (3.7) and (4.15) into (4.11),

|ψe(t+ τ)〉 =
(

1− i

~
Ĥτ

)(

1− τγ

8
(x̂− 〈x̂〉ψe

)2 +
γ

2
(x̂− 〈x̂〉ψe

)(dQ− τ〈x̂〉ψe
)
)

|ψe(t)〉

=
(

1− i

~
Ĥτ − τγ

8
(x̂− 〈x̂〉ψe

)2 +
γ

2
(x̂− 〈x̂〉ψe

)(dQ− τ〈x̂〉ψe
)
)

|ψe(t)〉

⇒ ∆|ψe(t)〉 =
(

− i

~
Ĥτ − τγ

8
(x̂− 〈x̂〉ψe

)2 +
γ

2
(x̂− 〈x̂〉ψe

)(dQ− τ〈x̂〉ψe
)
)

|ψe(t)〉. (4.16)

For an infinitesimal increment of the timedt equation (4.16) reduces to

d|ψe(t)〉 =
(

− i

~
Ĥdt− γ

8
(x̂− 〈x̂〉ψe

)2dt+
γ

2
(x̂− 〈x̂〉ψe

)(dQ− 〈x̂〉ψe
dt)

)

|ψe(t)〉

=
((

− i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψe

)2 +
γ

2
(x̂− 〈x̂〉ψe

)(〈x̂〉ψ − 〈x̂〉ψe
)
)

dt

+

√
γ

2
(x̂− 〈x̂〉ψe

)dW
)

|ψe(t)〉, (4.17)

which is the It̂o stochastic Schrödinger equation for continuous position estimation.
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4.4 Convergence

The theory of monitoring the state of a single system relies on the asymptotic convergence of the
estimated state to the real one, in a reasonable finite time. To measure the convergence of the
estimated state to the real one we calculate the Uhlmann fidelity [58], which tells us how well two
quantum states overlap with each other. This fidelity is given by

F (ψ1(x, t), ψ2(x, t)) =
∣
∣
∣

∞∫

−∞

ψ∗
1(x, t)ψ2(x, t) dx

∣
∣
∣

2
, (4.18)

for two normalized wave functionsψ1(x, t) = 〈x|ψ1(t)〉 andψ2(x, t) = 〈x|ψ2(t)〉, where|x〉 is an
eigenstate of the position operatorx̂. In the density operator formalism, the fidelity between two
stateŝρ1(t) andρ̂2(t) is given by

F (ρ̂1(t), ρ̂2(t)) = tr

{√√

ρ̂1(t)ρ̂2(t)
√

ρ̂2(t)
}

. (4.19)

Uhlmannfidelity takes values in the range [0,1]. We shall use the density operator formalism to
argue that the estimated stateρ̂e of the system, which evolves according to equation (4.10), con-
verges to the real statêρ almost always. The proof of this convergence can be found in [15]. Below
we shall point out the key components of the proof. Instead of using the fidelity measure given in
(4.19), we can use the pure state condition,tr{ρ̂2} = 1, because the solutionŝρ(t) of the master
equation (3.46) for long timest are pure states, (see [18, 15]). From the pure state condition:

tr

{

ρ̂2
}

= 1, (4.20)

we can deduce that
tr

{

ρ̂eρ̂
}

= 1, (4.21)

implies that the two pure stateŝρe andρ̂ are equal, and

tr

{

ρ̂eρ̂
}

= 0, (4.22)

implies that the two states have no overlap. Therefore the quantitytr

{

ρ̂eρ̂
}

is bounded the same

way as fidelity, which is defined by equation (4.19). To prove convergence it suffices to show that for
different stateŝρe andρ̂, which are evolving according to equations (4.10) and (3.46) respectively,

d
〈

tr

{

ρ̂eρ̂
}〉

st
≥ 0, (4.23)
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implying that the average overlap between the two statesρ̂e andρ̂ monotonicallyincreases until it
asymptotically reaches unity. We now expand the left hand side of equation (4.23) as follows:

d
〈

tr

{

ρ̂eρ̂
}〉

st
=
〈

tr

{

d(ρ̂eρ̂)
}〉

st

=
〈

tr

{

dρ̂eρ̂+ ρ̂edρ̂+ dρ̂edρ̂
}〉

st

=
〈

tr

{

dρ̂eρ̂
}

+ tr

{

ρ̂edρ̂
}

+ tr

{

dρ̂edρ̂
}〉

st
. (4.24)

In order to simplify our calculations we will calculate the termstr{dρ̂eρ̂}, tr{ρ̂edρ̂}, andtr{dρ̂edρ̂}
individually as follows:

tr

{

dρ̂eρ̂
}

=− i

~
dt
[

tr

{

Ĥρ̂eρ̂
}

− tr

{

Ĥρ̂ρ̂e
}]

− γ

8
dt
[

tr

{

x̂2ρ̂eρ̂
}

+ tr

{

x̂2ρ̂ρ̂e
}

− 2 tr
{

x̂ρ̂ex̂ρ̂
}]

+
γ

2
dt
(

〈x〉ρ̂ − 〈x〉ρ̂e
)[

tr

{

x̂ρ̂eρ̂
}

+ tr

{

x̂ρ̂ρ̂e
}

− 2〈x〉ρ̂etr
{

ρ̂eρ̂
}]

+

√
γ

2
dW

[

tr

{

x̂ρ̂eρ̂
}

+ tr

{

x̂ρ̂ρ̂e
}

− 2〈x〉ρ̂etr
{

ρ̂eρ̂
}]

, (4.25)

tr

{

ρ̂edρ̂
}

=− i

~
dt
[

tr

{

Ĥρ̂ρ̂e
}

− tr

{

Ĥρ̂eρ̂
}]

− γ

8
dt
[

tr

{

x̂2ρ̂eρ̂
}

+ tr

{

x̂2ρ̂ρ̂e
}

− 2 tr
{

x̂ρ̂ex̂ρ̂
}]

+

√
γ

2
dW

[

tr

{

x̂ρ̂eρ̂
}

+ tr

{

x̂ρ̂ρ̂e
}

− 2〈x〉ρ̂tr
{

ρ̂eρ̂
}]

(4.26)

and

tr

{

dρ̂e dρ̂
}

=
γ

4
dt
[

2 tr
{

x̂ρ̂ex̂ρ̂
}

− 2
(

〈x〉ρ̂ + 〈x〉ρ̂e
)

tr

{

x̂ρ̂eρ̂
}

−2
(

〈x〉ρ̂ + 〈x〉ρ̂e
)

tr

{

x̂ρ̂ρ̂e
}

+ 4〈x̂〉ρ̂e〈x̂〉ρ̂tr
{

ρ̂eρ̂
}

+tr

{

x̂2ρ̂eρ̂
}

+ tr

{

x̂2ρ̂ρ̂e
}]

. (4.27)
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Substituting equations (4.25), (4.26) and (4.27) into (4.24), we obtain

d
〈

tr

{

ρ̂eρ̂
}〉

st
=
〈γ

2
dt
(

〈x〉ρ̂ − 〈x〉ρ̂e
)[

− 2〈x〉ρ̂etr
{

ρ̂eρ̂
}]

+
√
γ dW

[

tr

{

x̂ρ̂eρ̂
}

+ tr

{

x̂ρ̂ρ̂e
}

− 2〈x〉ρ̂etr
{

ρ̂eρ̂
}]

+ γ dt〈x̂〉ρ̂e〈x̂〉ρ̂tr
{

ρ̂eρ̂
}

+ γ dt tr
{

x̂ρ̂ex̂ρ̂
}

− 〈x̂〉ρ̂etr
{

x̂ρ̂ρ̂e + x̂ρ̂eρ̂
}〉

st

=tr

{

x̂ρ̂ex̂ρ̂+ 〈x̂〉2ρ̂e ρ̂eρ̂− 〈x̂〉ρ̂e(x̂ρ̂ρ̂e + x̂ρ̂eρ̂)
}

=tr

{

(x̂− 〈x̂〉ρ̂e)ρ̂e(x̂− 〈x̂〉ρ̂e)ρ̂
}

=tr

{

ρ̂
1

2 (x̂− 〈x̂〉ρ̂e)ρ̂e(x̂− 〈x̂〉ρ̂e)ρ̂
1

2

}

≥ 0, (4.28)

which is what we had to show in order prove that the estimated state converges to the real one.

4.5 Remark

Continuous, unsharp, measurement of the state of a quantum system does not violate the rules of
quantum mechanics. Given an individual quantum system whose state is unknown, one cannot
deduce it by continuous observation because observing the state continuously drives it into a differ-
ent one. Nevertheless, the continuous measurement with state-estimation scheme presented in this
thesis enables one to prepare quantum states, monitor and control them.
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Chapter 5

Numerical Simulation

5.1 Introduction

In this chapter we present the method to numerically simulate the monitoring of the position of a
hydrogen atom, which is subject to several potentials. This constitutes to performing the experiment
on a computer. For computational simplicity, we simulated the evolution of the stochastic wave
function rather than the density matrix of the system. While there are several methods to numerically
integrate stochastic differential equations, we shall only discuss a few: which include the Euler
scheme and the second order weak scheme [30, 10, 47], which was suggested by Platen. The other
methods can be found in [30, 10, 49, 31, 22, 40, 47]. Our stochastic differential equations are of the
form,

dψ(x, t) = a(ψ(x, t))dt+ b(ψ(x, t))dWt, (5.1)

(see equations (3.53) and (4.17)) whereψ(x, t) = 〈x|ψ(t)〉 is the wave function of the system at a
timet, a(ψ(x, t)) is a slowly varying function called the drift term,b(ψ(x, t)) is a rapidly fluctuating
function called the diffusion term anddWt is an infinitesimal increment of the Wiener processW
at a timet. A way to derive the numerical integration scheme for equation (5.1), is to perform the
Itô-Taylor expansion of the equation to a certain order and then deduce a discrete scheme. The
theory of It̂o-Taylor expansions is covered comprehensively in [30, 47, 49]. Here we shall only give
a summary of the technique. To simplify the calculations we shall useψt to representψ(x, t). The
integral version of the differential equation (5.1) is therefore given by:

ψt = ψt0 +

t∫

t0

a(ψs) ds+

t∫

t0

b(ψs) dWs. (5.2)

The simplest iterative scheme, the Euler scheme, can be derived by directly discretizing equation
(5.1) in the manner that we will explain below. To solve the equation in the time interval[0, T ], we
divide the interval intoN equal partitions such that each partition is of the size∆t = T/N . We
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thus define a discretization∆τ := {tk : k = 0, 1, . . . , N : t0 < t1 < . . . < tN = T}. Equation
(5.1) can therefore be solved using the following discrete iterative formula:

ψk+1 = ψk + a(ψk)∆t+ b(ψk)∆Wk, (5.3)

wherek runs from0 to n− 1, ∆Wk =Wtk+1
−Wtk andψk0 = ψ0 an initial guess of the solution.

Equation (5.3) is called the Euler scheme and converges with strong order 0.5. A discrete time
approximationψ̃, constructed on the time discretization∆τ , is said to converge with strong orderp
at a timet to the solutionψ of the stochastic differential equation (5.1) if there exist a constantC,
which does not depend on∆t, such that

〈|ψt − ψ̃t|〉 ≤ C∆tp. (5.4)

On the other hand a discrete time approximationψ̃, constructed on the time discretization∆τ , is
said to converge with weak orderp at a timet to the solutionψ of the stochastic differential equation
(5.1) if for each functiong there exist a constantC, which does not depend on∆t, such that

〈|g(ψt)− g(ψ̃t)|〉 ≤ C∆tp, (5.5)

see [49, 47]. The random variables∆Wk are independent and normally distributed with expectation
value0 and variance∆t. One way to generate∆Wk in a computer simulation is to use∆Wk =
ξk
√
∆t, whereξk arestandard normally distributed random variables that are generated using the

Box-Muller method [9]. A C programming language library to implement the Box-Muller method
can be found in [50]. A modified version of the Euler scheme, which has a strong convergence of
order1 was proposed by Milstein [39]. We will encounter it later. Firstly we shall go through the
theory of It̂o-Taylor expansions.

5.2 Itô-Taylor expansions

Itô-Taylor expansions are the stochastic analogy of deterministic Taylor expansions. In fact, the
deterministic Taylor expansion is more often the convenient starting point in deriving the stochastic
counterpart. Let us consider the following differential equation:

d

dt
Xt = a(Xt), (5.6)

with initial valueXt0 for t ∈ [t0, T ]. The differential equation (5.6) can be written symbolically in
the following way:

dXt = a(Xt) dt, (5.7)

and more precisely represented by the following integral equation:

Xt = Xt0 +

t∫

t0

a(Xs) ds. (5.8)
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If a satisfies the Lipschitz condition:

|a(x)− a(y)| ≤ C|x− y|, (5.9)

as well as the linear growth bound condition:

|a(x)| ≤ C(1 + |x|), (5.10)

whereC > 0 is some constant (see [51, 47]), then for any functionf of Xt,

d

dt
f(Xt) =

dx

dt

∂

∂x

[

f(Xt)
]

=a(Xt)
∂

∂x

[

f(Xt)
]

. (5.11)

Fromequation (5.11) we define an operatora∂/∂x as follows:

a
∂

∂x
f(Xt) := a(Xt)

∂

∂x
f(Xt). (5.12)

Theintegral version of equation (5.11) can be written as follows:

f(Xt) = f(Xt0) +

t∫

t0

a
∂

∂x

[

f(Xs)
]

ds. (5.13)

If f(x) = x, then (a∂/∂x)f = a(Xs) and (a∂/∂x)2f = (a∂/∂x)[a(Xs)]. Thus we obtain
equation (5.8) from (5.13). We now apply relation (5.13) to the functionf = a(Xs) in (5.8) to
obtain

Xt =Xt0 +

t∫

t0

[

a(Xt0) +

s∫

t0

a
∂

∂x

[

a(Xu)
]

du
]

ds

=Xt0 +

t∫

t0

a(Xt0)ds+

t∫

t0

s∫

t0

a
∂

∂x

[

a(Xu)
]

du ds

=Xt0 + a(Xt0)

t∫

t0

ds+

t∫

t0

s∫

t0

a
∂

∂x

[

a(Xu)
]

du ds. (5.14)

If we apply the relation (5.13) tof = (a∂/∂x)[a(Xu)] in (5.14), we obtain the following integral
equation:

a
∂

∂x
a(Xu) = a

∂

∂x

[

a(Xt0) +

u∫

t0

a
∂

∂x

[

a(Xv)
]

dv
]

. (5.15)
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We now substitute equation (5.15) into (5.14) to obtain

Xt =Xt0 + a(Xt0)

t∫

t0

ds+

t∫

t0

s∫

t0

a
∂

∂x

[

a(Xt0) +

u∫

t0

a
∂

∂x

[

a(Xv)
]

dv
]

du ds

=Xt0 + a(Xt0)

t∫

t0

ds+

t∫

t0

s∫

t0

a
∂

∂x

[

a(Xt0)
]

du ds+

t∫

t0

s∫

t0

u∫

t0

a2
∂2

∂x2

[

a(Xv)
]

dv du ds

=Xt0 + a(Xt0)

t∫

t0

ds+ a
∂

∂x

[

a(Xt0)
]

t∫

t0

s∫

t0

du ds+

t∫

t0

s∫

t0

u∫

t0

a2
∂2

∂x2

[

a(Xv)
]

dv du ds.

(5.16)

We can continue the scheme apply relation (5.13) to(a∂/∂x)2[a(Xv)] the same way as we have
done tof = (a∂/∂x)[a(Xu)] andf = a(Xs) for as long asa(Xv) is smooth and differentiable.
However, from comparing equations (5.8), (5.14) and (5.16) we can clearly see a pattern, which we
will generalize below as follows:

Xt =Xt0 + a(Xt0)

t∫

t0

ds1 + a
∂

∂x

[

a(Xt0)
]

t∫

t0

s1∫

t0

ds2 ds1

+ a2
∂2

∂x2

[

a(Xt0)
]

t∫

t0

s1∫

t0

s2∫

t0

ds3 ds2 ds1

+ an−1 ∂
n−1

∂xn−1

[

a(Xt0)
]

t∫

t0

. . .

sn−1∫

t0

dsn . . . ds1

+

t∫

t0

. . .

sn∫

t0

an
∂n

∂xn

[

a(Xsn+1
)
]

dssn+1
. . . ds1. (5.17)

We can explicitly evaluate all of the integrals, except the last, in equation (5.17). The single integral
evaluates tot− t0 and the multiple integrals are evaluated using the following formula:

t∫

t0

. . .

sm∫

t0

dsm+1 . . . ds1 =
1

(m+ 1)!
(t− t0)

m+1, (5.18)
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for m = 1, 2, . . . , n− 1. Substituting equation (5.18) into equation (5.17), we obtain

Xt = Xt0 +
n−1∑

m=0

(t− t0)
m+1

(m+ 1)!
am

∂m

∂xm

[

a(Xt0)

]

+

t∫

t0

. . .

sn∫

t0

an
∂n

∂xn

[

a(Xsn+1
)
]

dssn+1
. . . ds1.

(5.19)
Equation (5.19) is the Taylor expansion int of equation (5.8). From equation (5.19) we can derive
iterative schemes of desired order of convergence to solve equation (5.6) by settingt − t0 = ∆t
and ignoring the multiple integral term. For example, ifn = 1 one obtains the deterministic Euler
scheme. Now that we have the general idea on how to Taylor-expand ordinary differential equations,
we are in a position to attempt the same for stochastic differential equations of the form

dXt = a(Xt) dt+ b(Xt) dWt. (5.20)

Equation (5.20) can be written precisely in the following way:

Xt = Xt0 +

t∫

t0

a(Xs) ds+

t∫

t0

b(Xs) dWs. (5.21)

According to It̂o’s lemma [28], a functionf of a stochastic variableXt that evolves according to
equation (5.20) is given by:

f(Xt) =f(Xt0) +

t∫

t0

[

a(Xs)
∂

∂x
f(Xs) +

1

2
b2(Xs)

∂2

∂x2
f(Xs)

]

ds

+

t∫

t0

b(Xs)
∂

∂x
f(Xs)dWs. (5.22)

The last integral terms in equations (5.21) and (5.22) are called Itô integrals and cannot be treated
as Riemann integrals. The technique to evaluate them is covered extensively in [47, 30, 49]. Taking
a similar approach as in the deterministic case we define operators

L0 = a
∂

∂x
+

1

2
b2
∂2

∂x2
(5.23)

and

L1 = b
∂

∂x
(5.24)

asfollows:

L0Xt := a(Xt)
∂

∂x
f(Xt) +

1

2
b2(Xt)

∂2

∂x2
f(Xt) (5.25)
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and

L1Xt := b(Xt)
∂

∂x
f(Xt). (5.26)

For f(x) = x equation (5.22) reduces to equation (5.21). Applying relation (5.22) tof = a(Xs)
andf = b(Xs) in equation (5.21), we obtain

Xt =Xt0

+

t∫

t0

(

a(Xt0) +

s∫

t0

L0a(Xu) du+

s∫

t0

L1a(Xu)dWu

)

ds

+

t∫

t0

(

b(Xt0) +

s∫

t0

L0b(Xu) du+

s∫

t0

L1b(Xu)dWu

)

dWs

=Xt0 + a(Xt0)

t∫

t0

ds+ b(Xt0)

t∫

t0

dWs

+

t∫

t0

s∫

t0

L0a(Xu) du ds+

t∫

t0

s∫

t0

L1a(Xu) dWu ds

+

t∫

t0

s∫

t0

L0b(Xu) du dWs +

t∫

t0

s∫

t0

L1b(Xu)dWu dWs. (5.27)

If we apply the relation (5.22) tof = L0a(Xu), f = L1a(Xu), f = L0b(Xu), andf = L1b(Xu)
in (5.27) we get the following:

L0a(Xu) = L0a(Xt0) +

u∫

t0

L2
0a(Xv) dv +

u∫

t0

L1L0a(Xv) dWv, (5.28)

L1a(Xu) = L1a(Xt0) +

u∫

t0

L0L1a(Xv) dv +

u∫

t0

L2
1a(Xv) dWv, (5.29)

L0b(Xu) = L0b(Xt0) +

u∫

t0

L2
0b(Xv) dv +

u∫

t0

L1L0b(Xv) dWv, (5.30)

L1b(Xu) = L1b(Xt0) +

u∫

t0

L0L1b(Xv) dv +

u∫

t0

L2
1b(Xv) dWv. (5.31)
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Substituting equations (5.28), (5.29), (5.30) and (5.31) into (5.27), we obtainthe following:

Xt =Xt0 + a(Xt0)

t∫

t0

ds+ b(Xt0)

t∫

t0

dWs

+ L0a(Xt0)

t∫

t0

s∫

t0

du ds+ L1a(Xt0)

t∫

t0

s∫

t0

dWu ds

+ L0b(Xt0)

t∫

t0

s∫

t0

du dWs + L1b(Xt0)

t∫

t0

s∫

t0

dWu dWs

+

t∫

t0

s∫

t0

u∫

t0

L2
0a(Xv) dv du ds+

t∫

t0

s∫

t0

u∫

t0

L1L0a(Xv) dWv du ds

+

t∫

t0

s∫

t0

u∫

t0

L0L1a(Xv) dv dWu ds+

t∫

t0

s∫

t0

u∫

t0

L2
1a(Xv) dWv dWu ds

+

t∫

t0

s∫

t0

u∫

t0

L2
0b(Xv) dv du dWs +

t∫

t0

s∫

t0

u∫

t0

L1L0b(Xv) dWv du dWs

+

t∫

t0

s∫

t0

u∫

t0

L0L1b(Xv) dv dWu dWs +

t∫

t0

s∫

t0

u∫

t0

L2
1b(Xv) dWv dWu dWs. (5.32)

We can re-write equation (5.32) in the following way,

Xt =Xt0 + a(Xt0)

t∫

t0

ds+ b(Xt0)

t∫

t0

dWs + L1b(Xt0)

t∫

t0

s∫

t0

dWu dWs +R, (5.33)
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where

R = L0a(Xt0)

t∫

t0

s∫

t0

du ds+ L1a(Xt0)

t∫

t0

s∫

t0

dWu ds+ L0b(Xt0)

t∫

t0

s∫

t0

du dWs

+

t∫

t0

s∫

t0

u∫

t0

L2
0a(Xv) dv du ds+

t∫

t0

s∫

t0

u∫

t0

L1L0a(Xv) dWv du ds

+

t∫

t0

s∫

t0

u∫

t0

L0L1a(Xv) dv dWu ds+

t∫

t0

s∫

t0

u∫

t0

L2
1a(Xv) dWv dWu ds

+

t∫

t0

s∫

t0

u∫

t0

L2
0b(Xv) dv du dWs +

t∫

t0

s∫

t0

u∫

t0

L1L0b(Xv) dWv du dWs

+

t∫

t0

s∫

t0

u∫

t0

L0L1b(Xv) dv dWu dWs +

t∫

t0

s∫

t0

u∫

t0

L2
1b(Xv) dWv dWu dWs. (5.34)

Next we evaluate the integrals in (5.33) as follows:

t∫

t0

ds = t− t0, (5.35)

t∫

t0

dWs =Wt −Wt0 , (5.36)

and
t∫

t0

s∫

t0

dWu dWs =
1

2

[

(Wt −Wt0)
2 − (t− t0)

]

. (5.37)

Substitutingequations (5.35), (5.36) and (5.37) into (5.33), we obtain

Xt = Xt0 + a(Xt0)[t− t0] + b(Xt0)[Wt −Wt0 ]

+
1

2
b(Xt0)

∂

∂x
b(Xt0)

[

(Wt −Wt0)
2 − (t− t0)

]

+R, (5.38)
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If we replace our stochastic variableXt with ψt andapply the discretization∆τ to equation (5.38)
as we did to equation (5.1) we obtain the following iterative formula:

ψk+1 = ψk + a(ψk)∆t+ b(ψk)∆Wk

+
1

2
b(ψk)

∂

∂x
b(ψk)

[

∆W 2
k −∆t

]

, (5.39)

by settingt − t0 = ∆t, Wt −Wt0 = ∆Wt and truncating the remainder. Equation (5.39) is the
Milstein scheme [39].

5.3 Second order weak scheme

In this section we give a summary on how to derive the second order weak scheme, which we used
to numerically simulate the monitoring of the wave function of the hydrogen atom that is subjected
to several potentials. The second order weak scheme was suggested by Platen [30, 10, 47] and has
also been used in [53]. In order for us to derive the scheme we start with equation (5.32) written in
the following way:

Xt =Xt0 + a(Xt0)

t∫

t0

ds+ b(Xt0)

t∫

t0

dWs

+ L0a(Xt0)

t∫

t0

s∫

t0

du ds+ L1a(Xt0)

t∫

t0

s∫

t0

dWu ds

+ L0b(Xt0)

t∫

t0

s∫

t0

du dWs + L1b(Xt0)

t∫

t0

s∫

t0

dWu dWs +R, (5.40)
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where

R =

t∫

t0

s∫

t0

u∫

t0

L2
0a(Xv) dv du ds+

t∫

t0

s∫

t0

u∫

t0

L1L0a(Xv) dWv du ds

+

t∫

t0

s∫

t0

u∫

t0

L0L1a(Xv) dv dWu ds+

t∫

t0

s∫

t0

u∫

t0

L2
1a(Xv) dWv dWu ds

+

t∫

t0

s∫

t0

u∫

t0

L2
0b(Xv) dv du dWs +

t∫

t0

s∫

t0

u∫

t0

L1L0b(Xv) dWv du dWs

+

t∫

t0

s∫

t0

u∫

t0

L0L1b(Xv) dv dWu dWs +

t∫

t0

s∫

t0

u∫

t0

L2
1b(Xv) dWv dWu dWs. (5.41)

We then evaluate the integrals in equation (5.40), using the scheme given in [30, 47] as follows:

t∫

t0

ds = t− t0, (5.42)

t∫

t0

dWs =Wt −Wt0 , (5.43)

t∫

t0

s∫

t0

du ds =
1

2
(t− t0)

2, (5.44)

t∫

t0

s∫

t0

dWu dWs =
1

2

[

(Wt −Wt0)
2 − (t− t0)

]

, (5.45)

t∫

t0

s∫

t0

dWu ds := ∆Z, (5.46)

and
t∫

t0

s∫

t0

du dWs = (Wt −Wt0)(t− t0)−∆Z, (5.47)
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where∆Z is Gaussiandistributed with mean〈∆Z〉 = 0, variance〈∆Z2〉 = 1
3∆t

3 andcovariance
〈∆Z ∆W 〉 = 1

2∆t
2. In a numerical simulation one can generate∆W and ∆Z using the following

formulas:
∆W = ξ1

√
∆t (5.48)

and

∆Z =
1

2

(

ξ1 +
1√
3
ξ2

)

∆t
3

2 , (5.49)

whereξ1 and ξ2 are independent standard Gaussian distributed random variables. Substituting
equations (5.42) through to (5.47) into (5.40), we obtain

Xt =Xt0 + a(Xt0)(t− t0) + b(Xt0)(Wt −Wt0)

+
1

2
L0a(Xt0)(t− t0)

2 + L1a(Xt0)∆Z

+ L0b(Xt0)[(Wt −Wt0)(t− t0)−∆Z]

+
1

2
L1b(Xt0)

[

(Wt −Wt0)
2 − (t− t0)

]

+R. (5.50)

If we replace our stochastic variableXt with ψt and apply the discretization∆τ to equation (5.51),
we obtain the following iterative formula:

ψk+1 =ψk + a(ψk)∆t+ b(ψk)∆W

+
1

2
L0a(ψk)∆t

2 + L1a(ψk)∆Z

+ L0b(ψk)[∆W ∆t−∆Z]

+
1

2
L1b(ψk)

[

∆W 2 −∆t
]

, (5.51)

after truncating the remainder and settingt − t0 = ∆t. Equation (5.51) is the second order weak
Taylor scheme that was given in [30]. If we go on and replace the derivatives inL0 andL1 with
finite differences, we obtain the following scheme, which was given by Platen [30, 10]:

ψk+1 = ψk

+
1

2

(

a(ψk) + a ˜(ψk)
)

∆t

+
1

4

(

b(ψ+
k ) + b(ψ−

k ) + 2b(ψk)
)

∆Wk

+
1

4

(

b(ψ+
k )− b(ψ−

k )
)(

∆W 2
k −∆t

)√
∆t, (5.52)

with
ψ̃k = ψk + a(ψk)∆t+ b(ψk)∆Wk (5.53)
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and
ψ±
k = ψk + a(ψk)∆t± b(ψk)

√
∆t. (5.54)

Given the stochastic Schrödinger equations (3.53) and (4.17) for the true wave functionψ and
estimated wave functionψe in one spatial dimensionx, the termsa andb are given by the following:

a(ψk) =
(

− i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψk

)2
)

ψk, (5.55)

b(ψk) =
γ

2
(x̂− 〈x̂〉ψk

)ψk, (5.56)

a(ψek) =
(

− i

~
Ĥ − γ

8
(x̂− 〈x̂〉ψe

k
)2 +

γ

2
(x̂− 〈x̂〉ψe

k
)(〈x̂〉ψk

− 〈x̂〉ψe
k
)
)

ψek (5.57)

and
b(ψek) =

γ

2
(x̂− 〈x̂〉ψe

k
)ψek, (5.58)

whereĤ is the Hamiltonian of the system given by

Ĥ =
p̂2

2m
+ V (x), (5.59)

p is the momentum of the hydrogen atom,m = me +mp is the rest mass of the hydrogen atom,
me is the rest mass of electron,mp is the mass of proton andV (x) is the potential energy at a point
x. The numerical simulations are performed in the non-relativistic frame. The initial true wave
functionψ(x, t0) is given by the following function:

ψ(x) =
1

4
√

2πσ2x
exp

(

− ikx
)

exp
(−(x− x̄)2

4σ2x

)

, (5.60)

wherek = p/~ is the wave number,̄x is the expectation value ofx andσx is the standard deviation
of x. Wave functions of the form ofψ(x) are referred to as Gaussian because they generate normal
probability distributions,

̺(x) = ψ(x)∗ψ(x) = |ψ(x)|2 = 1
√

2πσ2x
exp

(−(x− x̄)2

2σ2x

)

. (5.61)

So far we have only discretized time but in order for us to perform a numerical simulation in a
computer we need to discretize space as well. We introduce a discretization∆x := {xj : j =
0, 1, . . . ,M : x0 = xl < x1 < . . . < xM = xr} of the interval[xl, xr] by dividing the interval into
M equal partitions. The width of each partition is therefore given by∆x = (xr − xl)/M .
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Our numerical scheme requires that we give the position representation of themomentum oper-
ator p̂ in the kinetic energy term of the Hamiltonian̂H as well as evaluate the expectation value of
x̂. From quantum mechanics we know that

p̂ = −i~∇ = −i~ ∂
∂x

(5.62)

in one spatial dimension. This implies that

p̂2

2m
ψ = lim

∆x→0

~
2

2m

(ψj+1 + ψj−1 − 2ψj
∆x2

)

. (5.63)

Theexpectation value of̂x is evaluated as follows:

〈x̂〉ψ =

∞∫

−∞

xψ∗ψ dx = lim
M→+∞

M∑

j=0

xjψ
∗
jψj∆x. (5.64)

The variance ofx, which we denote by∆x2 is therefore given by

∆x2 = 〈x̂2〉 − 〈x̂〉2 =
∞∫

−∞

x2ψ∗ψ dx−
(

∞∫

−∞

xψ∗ψ dx
)2

= lim
M→+∞

M∑

j=0

x2jψ
∗
jψj∆x−

(

lim
M→+∞

M∑

j=0

xjψ
∗
jψj∆x

)2
. (5.65)

Equation (5.60) through to (5.65) also apply to the estimated wave function.

5.4 Numerical Results

The continuous measurement and estimation of the position of a hydrogen atom was numerically
simulated using the second order weak scheme, which we described earlier. The simulations were
limited to one-dimensional wave functions, due to limitations in computational power. Nevertheless,
we managed to simulate the dynamics of the real and estimated wave functions of a free hydrogen
atom, as well as an atom bounded in the potentials: harmonic

V (x) =
1

2
mω2x2, (5.66)

anddouble well,

V (x) = −8E

w2
x2 +

16E

w4
x4, (5.67)
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wherem is the rest mass of the hydrogen atom,ω is angular frequency,x is position,w is the dis-
tance from minima to minima in the double well potential, andE is the energy gap between minima
and maxima (see figure 5.2). This was the first time the dynamics of the state of a quantum particle
undergoing continuous measurement in the harmonic potential was investigated. The harmonic po-
tential is shown in figure 5.1. The important point which we intended to show through the numeric
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Figure 5.1: Harmonic potential.

simulationsis that the weak measurement and state estimation scheme is suitable for monitoring
the position of a single quantum system, in our case hydrogen atom, in real time irregardless of the
potential in which the system is bound. This means that we were interested more in the convergence
of the estimated state to the real one.

For the simulations that involved single runs we set our initial parameters as follows:
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Figure 5.2: Double well potential.

• width of the real wave functionδ = 10 µm,

• width of the estimated wave functionδe = 5 µm,

• position of the centre of the real wave packetx0 = 0 m relative to the chosen centre of the
simulated region,

• position of the centre of the estimated wave packetx0e = +50m relative to the chosen centre
of the simulated region,

• the wave numberk = 0m−1,

• angular frequencyω = 250 rad.s−1,

• distance between the two minimas in the double well potentialw = 189 µm,
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• energy difference between minima and maxima energies of the double well potentialE =
1.2× 10−11 eV ,

• measurement strengthγ = 1× 1013 m−2s,

• spatial resolution∆x = 1 µm,

• temporal resolution∆t = 100 ns,

• simulated region in spaceR = [−200, 200] µm, where we chose the zero point to be the
centre of the region.

5.4.1 Preliminary

Before performing any numerical simulations we tested the random number generator to verify if
it could generate normally-distributed random number sets of the required size, which in our case
was900000. We also verified if each set would be independent of each other. We had to perform
these tests because we did not devise the program implementation of the random number generator
on our own, but rather borrowed it from Numerical Recipes [50]. The result of the former test is
shown in figure 5.3 and the result of the latter test is shown in figure 5.4. To obtain figure 5.3,
we generated a set of900000 random numbers, determined the relative frequency of its subsets,
which we obtained by dividing the interval[−10, 10] into smaller intervals of width0.01, and then
plotted the distribution of the relative frequency. The red line represents the distribution of the
relative frequency whilst the black line represents the normal probability distribution with mean0
and variance1. From figures 5.3 and 5.4 we can conclude that the random number generator was
fit for use in our numerical simulations since the relative frequency curve reasonably approximates
the standard normal distribution and each data set follows a different sample path.

5.4.2 Convergence

As suggested by the theory, the convergence of the estimated wave function to the real wave func-
tion was observed in all the three cases, which we investigated. If we look at figures 5.5 a) 5.6 a)
and 5.7 a), we can see that the fidelity starts at0, and in time it rises until it asymptotically reaches
unity. This means that even if the estimated wave function and the true wave function do not over-
lap initially, given enough time, they fully overlap each other and the estimated wave function fully
describes the state of the system.

The argument in the previous paragraph is further strengthened by the results shown in figures 5.8,
5.9 and 5.10. These results were obtained after running the simulations1000 times with the same
initial conditions, for each of the three cases, and determining the average fidelity and its standard
deviation at specific times. Again we see that the average fidelity starts at0 and then rises until it
reaches unity. The average fidelity curve is smooth whereas the one for the single runs is wiggly.
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Figure 5.3: The comparison between the relative frequency of the generatedrandom numbers (red)
with the standard normal distribution (black). A sample of900000 random numbers was generated.

The wiggly behaviour stems from the stochastic evolution of both the true and the estimated wave
functions. The error bars in figures 5.8, 5.9 and 5.10 confirm that, indeed, fidelity is a stochastic
variable for the cases that we investigated. This implies that, given the same initial conditions, the
fidelity takes a different path for each of the runs.

For single runs, the convergence time of the wave functions for the free particle was found to be
approximately9ms, whilst the convergence time for the hydrogen atom in the harmonic and double
well potentials was found to be8.5ms and10ms, respectively. The wave functions for the particle
in the harmonic potential converge faster than in the case of the free particle or particle in the double
well potential due to the fact that harmonic potential bounds the particle in a much smaller region
in space as compared to the other two cases.
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Figure 5.4: Sequences of the first forty random numbers generated on threetest runs of the Gaussian
random number generator.

5.4.3 Effects of continuous selective measurement

Figures 5.5 c) and d), 5.6 c) and d), and 5.7 c) and d) illustrate the effects of selective measurement.
To explain the phenomena we first focus our attention on the free particle case. In the absence
of measurement, the Gaussian wave function spreads indefinitely. Indeed the evolution equations
(3.53) and (4.17) become normal Schrödinger equations, which are diffusive in nature. Selective
measurement localizes the wave function (that is, it give the wave function a finite width) as shown
in figure 5.5 d). We see that in the case of the free hydrogen atom, the standard deviation of the
position (which is a measure of the width of the wave function) starts at the value we set initially
(10 µm and5 µm for the true and estimated wave functions respectively) and then it decreases
(in the case of the true wave function) and rises (in the case of the estimated wave function) until
it reaches a value of about9 µm and stays almost constant until a time of0.05s, where the wave
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functions hit one of the boundaries of our domain of x-values for the first timecausing the width to
fall sharply. The wave functions also hit boundaries at times0.065s and0.08s. The fall in the size
of the width of the wave function at the boundaries is merely due to the fact that the boundaries are
not mathematically well defined. This implies that if we had simulated a larger region in space the
dips would not have occurred at those times. This is different, however, in the case where we have
potentials where we expect the widths of the wave functions to fall each time the particle moves
towards higher potentials. This is clearly illustrated in figure 5.7 d) for the case of the hydrogen
atom in the double well potential. If we compare the position (given in figure 5.7 c)) with standard
deviation of position (given in figure 5.7 d)), we can see that every time the particle moves towards
a region with higher potential energy its width falls and each time it moves towards the centre of
either potential wells the width increases. However, it is interesting to see that in the case where we
bound our particle in the harmonic potential the wave functions seem to maintain a constant width
(as indicated by a standard deviation of position of about8.5 µm), which they attain at time0.01s.

Selective measurement also makes the hydrogen atom take a random walk when it absorbs en-
ergy from the measuring device. Again it is easier to explain this phenomena using a free hydrogen
atom. We already know that in the absence of measurement our wave functions diffuse. When
this happens the centre of the wave packet does not move. Now in the case where we measure the
position non-selectively, we get the localization of the wave packet but again the centre of the wave
packet remains stationary. In case of selective measurement, the centre of the wave function moves
each time a measurement is taken on the system. The motion is random and hence the term ‘random
walk’ is used. The behaviour is illustrated by the wiggly and irregular nature of plots of the position
of the hydrogen atom over time shown in figures 5.5 c), 5.6 c), and 5.7 c).

5.4.3.1 The variation of estimated convergence time with measurement strengthγ

Konrad and Uys [33] applied the theory of continuous measurement and estimation to the problem
monitoring the state of a two level system undergoing Rabi oscillations in the presence of various
noises. They investigated the dependence of the convergence time on the measurement strengths.
Clearly in the case where there was no classical noise (Fig. 4b of [33]) they obtained results sug-
gesting some power law variation. We followed a similar approach, by keeping all the other free
parameters constant and varying only the measurement strengths, and obtained similar results as
shown in figures 5.11, 5.12 and 5.13. It is important to note that the results we present here are for
single runs of the numerical simulations whilst Konrad and Uys plotted the average values of several
runs. Our results are however quite encouraging, especially in the case of the free particle where we
get reasonably linear variation. In order to approximate the convergence time, we took the numer-
ical value of the asymptotic fidelity to be0.999995, which is reasonably close to1. However, this
value can be improved in future investigations in order to obtain a more accurate convergence time.
By letting the convergence time be denoted bytc we can derive the power law from the following
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Figure 5.5: Results of the simulation of the evolution of the one dimensional wave functionof a free
hydrogen atom whose position is continuously monitored. a) The evolution of fidelity with time. b)
The variation of averaged measurement results with time. c) The variation of the mean position of
the atom with time. d) The variation of the deviation of position with time.
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Figure 5.6: Results of the simulation of the evolution of the one dimensional wave functionof a
hydrogen atom in a harmonic potential whose position is continuously monitored. a) The evolution
of fidelity with time. b) The variation of averaged measurement results with time. c) The variation
of the mean position of the atom with time. d) The variation of the deviation of position with time.
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Figure 5.7: Results of the simulation of the evolution of the one dimensional wave functionof
a hydrogen atom in a double well potential whose position is continuously monitored. a) The
evolution of fidelity with time. b) The variation of averaged measurement results with time. c) The
variation of the mean position of the atom with time. d) The variation of the deviation of position
with time.
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Figure 5.8: The variation of average fidelity (with error bars) with time for a freehydrogen atom.

expression:
log10 tc = µ log10 γ + κ, (5.68)

whereµ andκ are constants. Raising both sides of equation (5.68) to base10, we obtain the
following:

tc = 10µ log10 γ+κ

= 10κ γµ

= α
(γ

β

)µ

, (5.69)

whereα/βµ = 10κ, β is a constant with the units ofγ andα is a constant with units of time. To test
relation (5.69), we fitted the convergence data for the free hydrogen atom to the equation using the
Marquardt-Levenberg algorithm provided in Gnuplot and generated the blue line in fig 5.11, thus
confirming the power law. For this case the constantsκ andµ were calculated to be−0.455965
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Figure 5.9: The variation of average fidelity (with error bars) with time for a hydrogenatom in the
harmonic potential.

and3.84223 respectively. In future, in order to obtain more accurate values ofκ andµ, mean data
from several runs of the simulation will be used as was done by Konrad and Uys. It would also be
interesting, in the future, to see howα, β andµ will vary if we vary the several free parameters in
stochastic differential equations and also to verify if the speculated power law holds in cases where
the atom is bounded in different potentials.
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Figure 5.10: The variation of average fidelity (with error bars) with time for a hydrogenatom in the
double well potential.
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particle.
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Figure 5.12: The variation of convergence timetc with the measurement strengthsγ for a particle
in the harmonic potential.
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Figure 5.13: The variation of convergence timetc with the measurement strengthsγ for a particle
in the double well potential.
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Chapter 6

Conclusionand Outlook

6.1 Conclusion

Continuous monitoring of the position of a single quantum system is possible. In this thesis we
showed that a scheme, which involves initially estimating the state (wave function) and then up-
dating it using integrated results from a quick succession of unsharp position measurements can be
used for this purpose. From the numerical simulations it is conclusive that given enough time the
estimated wave function converges to the true wave function, and the dynamics of the estimated
wave function effectively describes the dynamics of the system. In fact, one of the major highlights
of the work presented in this thesis was the discovery, through numerics, of the power law variation
of convergence time with measurement strengths for the free particle, with the results for the particle
trapped in the harmonic and double well potentials suggesting a similar variation. This is a great
leap forward in that such a law provides an experimenter with a tool that enables him to reasonably
estimate the amount of time required for the estimated state to converge to the true one; that is, it
makes ‘enough time’ quantifiable.

The monitoring scheme is mathematically described by three coupled Ito stochastic differential
equations: one that describes the evolution of the true state of the system (equation (3.53)), one
that describes the evolution of the integrated measurement results (equation (3.39)) and one that
describes the evolution of the estimated state (equation (4.17)). We went a step further from just
borrowing these equations from the sources in which they were first published (the first two can
be found in [14] and the last one in [15]) to providing an alternative, and quite simplified, way
to derive these equations from basic quantum mechanics, through the application of generalized
position observables (represented by positive operator-valued measures), and not standard position
measurements, which are described by the collapse of the wave function. In fact generalized mea-
surement theory provides a more accurate description of the quantum measurement process, and is
mathematically plausible because it is derived from the theory of measures.
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6.2 Outlook

Moving forward, the most immediate task would be to probe the convergence law further. Whilst
in this thesis we have exercised the liberty to vary just the measurement strengths in order to deter-
mine the convergence law, it is important to know how the parameters given in the law vary with
the other experimental parameters. In doing so we come up with an explicit law which enables the
experimenter to accurately approximate the convergence time, given his or her experimental set up.

The second task would be to expand the numerical simulations to 2- and eventually 3-dimensional
spaces. To achieve this it would require solving the problem of numerics from a computational point
of view, with a goal of improving performance. This would involve the use of transformations and
advanced computing algorithms in conjunction with high performance computing platforms, such
as message passing interface (MPI) or graphics programing units (GPU’s).
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[3] Jürgen Audretsch, Lajos Diósi, and Thomas Konrad. Estimating the postmeasurement state.
Phys. Rev. A, 68(3):034302, Sep 2003.

[4] L. Ballentine. Limitations of the projection postulate.Foundations of Physics, 20:1329–1343,
1990. 10.1007/BF01883489.

[5] A. Barchielli, L. Lanz, and G. Prosperi. A model for the macroscopic description and continual
observations in quantum mechanics.Il Nuovo Cimento B (1971-1996), 72:79, 1982.

[6] C.H. Bennett, G. Brassard, and A.K. Ekert. Quantum cryptography. InProgress in Atomic
physics Neutrinos and Gravitation, proceedings of the XXVIIth Rencontre de Moriond Series:
Moriond Workshops, held January 25-February 1, 1992, at Les Arcs, Savoie, France. Pub-
lished by Editions Frontieres, 1992, p. 371, volume 1, page 371, 1992.

[7] C.H. Bennett, G. Brassard, et al. Quantum cryptography: Public key distribution and coin
tossing. InProceedings of IEEE International Conference on Computers, Systems and Signal
Processing, volume 175. Bangalore, India, 1984.

[8] Max Born. Quantenmechanik der Stoßvorgänge.Zeitschrift f̈ur Physik A Hadrons and Nuclei,
38(11):803–827, November 1926.

[9] G.E.P. Box and M.E. Muller. A note on the generation of random normal deviates.The Annals
of Mathematical Statistics, 29(2):610–611, 1958.

[10] HP Breuer and F. Petruccione.Open quantum systems. Oxford university press, 2002.

[11] Carlton M. Caves and G. J. Milburn. Quantum-mechanical model for continuous position
measurements.Phys. Rev. A, 36(12):5543, Dec 1987.

67



[12] J.I. Cirac and P. Zoller. Quantum computations with cold trapped ions.PhysicalReview
Letters, 74(20):4091–4094, 1995.

[13] W. Czaja. Remarks on naimark’s duality.PROCEEDINGS-AMERICAN MATHEMATICAL
SOCIETY, 136(3):867, 2008.

[14] L. Diosi. Continuous quantum measurement and ito formalism.Phys. Lett. A, 129(8-9):419,
1988.

[15] Lajos Diosi, Thomas Konrad, Artur Scherer, and Juergen Audretsch. Coupled Ito equations of
continuous quantum state measurement, and estimation. Sep 2006.

[16] P.A.M. Dirac. The principles of quantum mechanics.The International Series of Monographs
on Physics, Oxford: Clarendon Press, 1947, 1, 1947.

[17] AC Doherty, TW Lynn, CJ Hood, and HJ Kimble. Trapping of single atoms with single
photons in cavity qed.Physical Review A, 63(1):013401, 2000.

[18] AC Doherty, SM Tan, AS Parkins, and DF Walls. State determination in continuous measure-
ment.Physical Review A, 60(3):2380, 1999.

[19] A.K. Ekert. Quantum cryptography based on bells theorem.Physical review letters,
67(6):661–663, 1991.

[20] Vera Frerichs and Axel Schenzle. Quantum zeno effect without collapse of the wave packet.
Phys. Rev. A, 44:1962–1968, Aug 1991.

[21] K. Garapo and T. Konrad. Alternative derivation of the master equation for a particle in an ex-
ternal field subject to continuous measurement. InProceedings of SAIP2011, the 56th annual
conference of the South African Institute of Physics, pages 780–785, 2011.

[22] C. W. Gardiner.Handbook of stochastic methods for physics, chemistry, and the natural sci-
ences, volume 2nd. Springer-Verlag, 1985.

[23] N. Gisin. Stochastic quantum dynamics and relativity.Helv. Phys. Acta, 62(4):363, 1989.

[24] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography.Reviews of modern
physics, 74(1):145–195, 2002.

[25] W. Heisenberg and C. Eckart.The physical principles of the quantum theory, volume 22.
Dover Pubns, 1930.

[26] Henry Helson.The spectral theorem. Springer-Verlag New York, Inc., New York, NY, USA,
1986.

68



[27] Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland. Quantumzeno effect.
Phys. Rev. A, 41:2295–2300, Mar 1990.

[28] K. Ito. On stochastic differential equations.Memoirs of the American Mathematical Society,
4:1–51, 1951.

[29] T. Kailath. Naimark dilations, state-space generators and transmission lines. Technical report,
DTIC Document, 1984.

[30] P. E. Kloeden and E. Platen.Numerical Solution of Stochastic Differential Equations. Springer,
Berlin, 1992.

[31] Peter E. Kloeden, Eckhard Platen, and Henri Schurz. Stochastic differential equations. InNu-
merical Solution of SDE Through Computer Experiments, Universitext, pages 63–90. Springer
Berlin Heidelberg, 1994. 10.1007/978-3-642-57913-42.

[32] T. Konrad. Less is More - On the Theory and Application of Weak and Unsharp
Measurements in Quantum Mechanics. PhD thesis, Fachbereich Physik, Mathematisch-
Naturwissenschaftliche Sektion, Universität Konstanz, 2003.

[33] T. Konrad and H. Uys. Maintaining quantum coherence in the presence of noise through state
monitoring.Phys. Rev. A, 85:012102, Jan 2012.

[34] K. Kraus. States, Effects, and Operations.Lecture Notes in Physics, 190, 1983.

[35] H. Mabuchi, J. Ye, and H.J. Kimble. Full observation of single-atom dynamics in cavity qed.
Applied Physics B: Lasers and Optics, 68(6):1095–1108, 1999.

[36] M. Mafu. Security of quantum cryptography protocols-novelty and realizations. Master’s
thesis, University of KwaZulu-Natal, 2010.

[37] MM Malamud and SM Malamud. Spectral theory of operator measures in hilbert space.ST
PETERSBURG MATHEMATICAL JOURNAL C/C OF ALGEBRA I ANALIZ., 15(3):323–374,
2004.

[38] A. Marais. Security and entanglement in differential-phase-shift quantum key distribution.
Master’s thesis, University of KwaZulu-Natal, 2009.

[39] G. N. Milstein. Approximate integration of stochastic differential equations.Theo. Prob.
Appl., 19:583, 1974.

[40] GN Milstein and MV Tretyakov. Stochastic numerics for mathematical physics. Scientific
Computation. Springer-Verlag, Berlin, 2004.

69



[41] B. Misra and E.C.G. Sudarshan. The zenos paradox in quantum theory. Journal of Mathemat-
ical Physics, 18(4):756, 1977.

[42] M.A. Naimark. On a representation of additive operator set functions. InDokl. Akad. Nauk
SSSR, volume 41, pages 359–361, 1943.

[43] MA Naimark. Uber spektral funktionen ernes symmetrischen operator, izvestia akad.Nauk
SSSR, 17:285–296, 1943.

[44] Michael A. Nielsen and Isaac L. Chuang.Quantum Computation and Quantum Information.
Cambridge University Press, 1 edition, October 2000.

[45] P. Olofsson.Probability, statistics, and stochastic processes. Wiley-Interscience, 2005.

[46] E. Platen. A generalized taylor formula for solutions of stochastic equations.Sankhȳa: The
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Appendix A

Onedimensional source code

constants.h

#ifndef CONSTANTS_H
#define CONSTANTS_H
/ * =========================================================================================== * /
/ * Include some header files here * /
/ * =========================================================================================== * /
#include <math.h>
/ * =========================================================================================== * /
/ * Define some constants here * /
/ * =========================================================================================== * /
#define A (1 / sqrt(sqrt(2 * PI * sx * s * sx * s)))
#define Ae (1 / sqrt(sqrt(2 * PI * sxe * s * sxe * s)))
#define sx 5
#define sxe 5
#define kx 0
#define kxe 0
#define xglo -200
#define xgup 200
#define xglot (xglo - xres)
#define xgupt (xgup + xres)
#define xlower (xglo - 2 * xres)
#define xupper (xgup + 2 * xres)
#define x0 0
#define x0e 50
#define xsize ((xupper - xlower) / xres + 1)
#define PI 3.14159265
#define s 1e-6
#define dx (xres * s)
#define end 100001
#define gx (1 / (sigma_x * sigma_x * tau))//(sigma_x * sqrt(tau))
#define sigma_x 1e-5
#define sigma_y 1e-5
#define tau 1e-4
#define ELECTRONMASS 9.1093897e-31
#define dt 5e-8
#define HBAR 1.05457266e-34
#define m (PROTONMASS + ELECTRONMASS)

72



#define PI 3.14159265
#define progress 500
#define PROTONMASS 1.6726231e-27
#define qx (dx / s)
#define qx2 (sqrt(dt) / (sqrt(gx))) //(sqrt(dt) / (gx * dt))
#define record 50
#define xres 1
#define ux1 (I * HBAR * dt / (2 * m * dx * dx))
#define u1 (I * HBAR / (2 * m))
#define u2 (I * m * dt / HBAR)
#define mx1 (dt * dx * dx * gx / 8) //(dt * dx * dx / (8 * gx * gx))
#define mx2 (dx * sqrt(dt) * sqrt(gx) / 2) //(dx * sqrt(dt) / (2 * gx))
#define mx3 (sqrt(dt) * dx * sqrt(gx)) //(sqrt(dt) * dx / gx)
#define width 52
#define height 3
#define rows 25
#define cols 80
#define px ((cols - width) / 2)
#define py ((rows - height) / 2)
#define px1 px
#define py1 (py - 10)
#define px2 (px + 23)
#define py2 (py + 3)
/ * =========================================================================================== * /
#endif

main.c

/ *
COMMENT: This file contains the main function of the program...

* /
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include "constants.h"
int main(int argc, char * argv[])
{

/ * =========================================================================================== * /
/ * Declaration of variables * /
/ * =========================================================================================== * /
_Complex double * psi;
_Complex double * psie;
double * pot;
long t1, t2;
/ * =========================================================================================== * /
/ * Declaration of functions * /
/ * =========================================================================================== * /
void plot_phase_wavefunction();
void plot_data();
void make_movie();
void record_initial(_Complex double * phi, _Complex double * phie);
void initialize(_Complex double * phi, _Complex double * phie, double * pot);
void prog_done();
void second_order_weak(_Complex double * phi, _Complex double * phie, double * pot);
/ * =========================================================================================== * /
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/ * Dynamic allocation of memory for wave function and potential array * /
/ * ============================================================================= ============== * /
psi = malloc(xsize * sizeof(_Complex double));
psie = malloc(xsize * sizeof(_Complex double));
pot = malloc(xsize * sizeof(double));
if(psi == NULL || psie == NULL || pot == NULL)
{

fprintf(stderr, "out of memory\n");
exit(EXIT_FAILURE);

}
/ * =========================================================================================== * /
/ * Call functions to the Simulation * /
/ * =========================================================================================== * /
//system("make clean");
t1 = time(NULL);
//initialize(psi, psie, pot);
//record_initial(psi, psie);
//second_order_weak(psi, psie, pot);
//plot_phase_wavefunction();
//plot_data();
make_movie();
/ * =========================================================================================== * /
/ * Free memory * /
/ * =========================================================================================== * /
free(psi);
free(psie);
free(pot);
/ * =========================================================================================== * /
/ * Done!!! * /
/ * =========================================================================================== * /
t2 = time(NULL);
printf("\n total time: %ld\n", t2 - t1);
prog_done();
return 0;
/ * =========================================================================================== * /

}

initialize.c

/ *
COMMENT: This file contains the function that initializes the wave functions and the potential...

* /
#include "constants.h"
#include <stdlib.h>
#include <stdio.h>
#include <complex.h>
void initialize(_Complex double * phi, _Complex double * phie, double * pot)
{

/ * =========================================================================================== * /
/ * Declare and initialize variables * /
/ * =========================================================================================== * /
int x, y;
double prob = 0.0, probe = 0.0;
/ * =========================================================================================== * /
/ * Initialize wave functions and potential * /
/ * =========================================================================================== * /
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for(x = xlower; x <= xupper; x += xres)
{

phi[(x - xlower) / xres]
= A * cexp(-I * kx * x * s - (x - x0) * s * (x - x0) * s / (4 * sx * s * sx * s));
phie[(x - xlower) / xres]
= Ae * cexp(-I * kxe * x * s - (x - x0e) * s * (x - x0e) * s / (4 * sxe * s * sxe * s));
pot[(x - xlower) / xres] = 0.5 * m * 1e6 * x * s * x * s;
prob += dx * cabs(phi[(x - xlower) / xres]) * cabs(phi[(x - xlower) / xres]);
probe += dx * cabs(phie[(x - xlower) / xres]) * cabs(phie[(x - xlower) / xres]);

}
/ * =========================================================================================== * /

}

second_order_weak.c

/ *
COMMENT: This file contains the function that simulates the dynamics

of the wave functions using the second order weak scheme...

* /
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <time.h>
#include <omp.h>
#include "constants.h"
#include <curses.h>
void second_order_weak(_Complex double * phi, _Complex double * phie, double * pot)
{

/ * ======================================================================================== * /
/ * Declaration of variables * /
/ * ======================================================================================== * /
_Complex double * dummyphi;
_Complex double * dummyphie;
_Complex double * phi_t;
_Complex double * phi_m;
_Complex double * phi_p;
_Complex double * phie_m;
_Complex double * phie_p;
_Complex double * phie_t;
_Complex double part1, part2t, part2pm;
char datafile[500];
char phasefile[500];
double norm_t, norm_p, norm_m;
double norme_t, norme_p, norme_m;
double xb, xbe;
double norm, norme;
double fidelity, finalfid;
double varx, varxe;
double deviation, deviatione;
double ranx, rany;
double Qx, mqx;
FILE * p9;
int ixp1, ixp2, ixp3, ix, x;
int ixc, ixl, ixr;
int tstep;
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long seedx = 0 - (long)time(NULL);
/ * ============================================================================= =========== * /
/ * Declataion of functions which are called in this function * /
/ * ======================================================================================== * /
void clean_up();
void current_progress(int step);
void initial_progress();
double gasdev(long * idum);
void create_files();
void pfrecord(_Complex double * phi, _Complex double * phie, int tmstp);
void frecord1(int timestep, double xbar, double xbare, double fidelity, double varx,

double varxe, double devx, double devxe, double mx);
void calc_norm_all(_Complex double * phi_t, _Complex double * phi_p, _Complex double * phi_m,

_Complex double * phie_t, _Complex double * phie_p, _Complex double * phie_m,
double * normt, double * normp, double * normm, double * normet,
double * normep, double * normem);

void calc_quant_all(_Complex double * phi, _Complex double * phie, double * ab, double * ab2,
double * abe, double * abe2, double * fid, double * nm, double * nme);

/ * ======================================================================================== * /
/ * Allocate memory using malloc() * /
/ * ======================================================================================== * /
dummyphi = malloc((xsize - 4) * sizeof(_Complex double));
dummyphie = malloc((xsize - 4) * sizeof(_Complex double));
phi_m = malloc((xsize - 2) * sizeof(_Complex double));
phi_p = malloc((xsize - 2) * sizeof(_Complex double));
phi_t = malloc((xsize - 2) * sizeof(_Complex double));
phie_m = malloc((xsize - 2) * sizeof(_Complex double));
phie_p = malloc((xsize - 2) * sizeof(_Complex double));
phie_t = malloc((xsize - 2) * sizeof(_Complex double));
if(dummyphi == NULL || dummyphie == NULL || phi_m == NULL || phi_p == NULL || phi_t == NULL ||

phie_m == NULL || phie_p == NULL || phie_t == NULL)
{

fprintf(stderr, "out of memory\n");
exit(EXIT_FAILURE);

}
/ * ======================================================================================== * /
/ * Display initial progress * /
/ * ======================================================================================== * /
initial_progress();
/ * ======================================================================================== * /
/ * Second Order Weak Scheme * /
/ * ======================================================================================== * /
create_files();
tstep = 1;
Qx = 0;
while(tstep < end)
{

ranx = gasdev(&seedx);
calc_quant_all(phi, phie, &xb, &varx, &xbe, &varxe, &fidelity, &norm, &norme);
Qx += (qx * xb + qx2 * ranx);
/ *

* COMMENT: Display the progress of the program at pre-defined intervals

* /
if((tstep%progress) == 0)
{

current_progress(tstep);

76



}

/ *
* COMMENT:Record quantities to data files...

* /
if((tstep%record) == 0)
{

mqx = Qx / tstep;
frecord1(tstep, xb, xbe, fidelity, varx, varxe, sqrt(varx), sqrt(varxe), mqx);
pfrecord(phi, phie, tstep);

}

/ *
* COMMENT: Calculate the tilde values...

* ixc and iyc are the indices of the central values

* /
for(ixc = 1; ixc <= xgupt - xglot + 1; ixc += xres)
{

/ *
* COMMENT: Indices to dereference the phi and phie arrays...

* /
ixl = ixc - 1;// starts at memory address 0
ixr = ixc + 1;// starts at memory address 2

part1
= phi[ixc] / norm
+ ux1 * (phi[ixl] + phi[ixr] - 2 * phi[ixc]) / norm
- u2 * pot[ixc] * phi[ixc] / norm
- mx1 * (x - xb) * (x - xb) * phi[ixc] /norm;
part2t
= mx2 * (x - xb) * phi[ixc] / norm * ranx;
part2pm
= mx2 * (x - xb) * phi[ixc] / norm;
phi_t[ixl] = part1 + part2t;
phi_p[ixl] = part1 + part2pm;
phi_m[ixl] = part1 - part2pm;

part1
= phie[ixc] / norme
+ ux1 * (phie[ixl] + phie[ixr] - 2 * phie[ixc]) / norme
- u2 * pot[ixc] * phie[ixc] / norme
- mx1 * (x - xbe) * (x - xbe) * phie[ixc] /norme;
part2t
= mx2 * (x - xbe) * phie[ixc] / norme * ranx;
part2pm
= mx2 * (x - xbe) * phie[ixc] / norme;
phie_t[ixl] = part1 + part2t;
phie_p[ixl] = part1 + part2pm;
phie_m[ixl] = part1 - part2pm;

}

/ *
* COMMENT: Calculate the norms of the tilde wave functions...

* /
calc_norm_all(phi_t, phi_p, phi_m, phie_t, phie_p, phie_m, &norm_t,

&norm_p, &norm_m, &norme_t, &norme_p, &norme_m);
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/ *
* COMMENT:Calculate the new wave functions...

* /
for(x = xglo; x <= xgup; x += xres)
{

ix = (x - xglo) / xres;
ixp1 = (x - xglo) / xres + 1;
ixp2 = (x - xglo) / xres + 2;
ixp3 = (x - xglo) / xres + 3;

dummyphi[ix]
= phi[ixp2] / norm
+ 0.5 * (ux1 * ((phi[ixp1] + phi[ixp3] - 2 * phi[ixp2]) / norm
+ (phi_t[ix] + phi_t[ixp2] - 2 * phi_t[ixp1]) / norm_t)
- u2 * pot[ixp2] * (phi[ixp2] / norm + phi_t[ixp1] / norm_t)
- mx1 * (x - xb) * (x - xb) * (phi[ixp2] / norm + phi_t[ixp1] / norm_t))
+ 0.25 * (mx2 * (x - xb) * (phi_p[ixp1] / norm_p + phi_m[ixp1] / norm_m
+ 2 * phi[ixp2] / norm) * ranx)
+ 0.25 * (mx2 * (x - xb) * (phi_p[ixp1] / norm_p
- phi_m[ixp1] / norm_m) * ((ranx * ranx) - 1));

dummyphie[ix]
= phie[ixp2] / norme
+ 0.5 * (ux1 * ((phie[ixp1] + phie[ixp3] - 2 * phie[ixp2]) / norme
+ (phie_t[ix] + phie_t[ixp2] - 2 * phie_t[ixp1]) / norme_t)
- u2 * pot[ixp2] * (phie[ixp2] / norme + phie_t[ixp1] / norme_t)
- mx1 * (x - xb) * (x - xb) * (phie[ixp2] / norme + phie_t[ixp1] / norme_t))
+ 0.25 * (mx2 * (x - xb) * (phie_p[ixp1] / norme_p + phie_m[ixp1] / norme_m
+ 2 * phie[ixp2] / norme) * (ranx + mx3 * (xb - xbe)))
+ 0.25 * (mx2 * (x - xb) * (phie_p[ixp1] / norme_p
- phie_m[ixp1] / norme_m) * ((ranx + mx3 * (xb - xbe)

* (ranx + mx3 * (xb - xbe)) - 1)));
}
/ *

* COMMENT: Update our wave functions...

* /
for(x = xglo; x <= xgup; x += xres)
{

ix = (x - xglo) / xres;
ixp2 = (x - xglo) / xres + 2;

phi[ixp2] = dummyphi[ix];
phie[ixp2] = dummyphie[ix];

}
tstep++;

}
/ * ======================================================================================== * /
/ * Clean up * /
/ * ======================================================================================== * /
clean_up();
free(phi_m);
free(phie_m);
free(phi_p);
free(phie_p);
free(phi_t);
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free(phie_t);
free(dummyphi);
free(dummyphie);
/ * ============================================================================= =========== * /

}

ran1.c

/ *
COMMENT: This file was obtained from NUMERICAL RECIPES...

It is works in conjuction with "gasdev.c"...

* /
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

float ran1(long * idum)
{
int j;
long k;
static long iy=0;
static long iv[NTAB];
float temp;

if ( * idum <= 0 || !iy) {
if (-( * idum) < 1) * idum=1;
else * idum = -( * idum);
for (j=NTAB+7;j>=0;j--) {
k=( * idum)/IQ;

* idum=IA * ( * idum-k * IQ)-IR * k;
if ( * idum < 0) * idum += IM;
if (j < NTAB) iv[j] = * idum;
}
iy=iv[0];
}
k=( * idum)/IQ;

* idum=IA * ( * idum-k * IQ)-IR * k;
if ( * idum < 0) * idum += IM;
j=iy/NDIV;
iy=iv[j];
iv[j] = * idum;
if ((temp=AM * iy) > RNMX) return RNMX;
else return temp;
}
#undef IA
#undef IM
#undef AM
#undef IQ
#undef IR
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#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

gasdev.c

/ *
COMMENT: This file was obtained from NUMERICAL RECIPES...

It works in conjuction with the file "ran1.c"
to generate Gaussian distibuted random numbers...

* /
#include <math.h>

float gasdev(long * idum)
{
float ran1(long * idum);
static int iset=0;
static float gset;
float fac,rsq,v1,v2;

if ( * idum < 0) iset=0;
if (iset == 0) {
do {
v1=2.0 * ran1(idum)-1.0;
v2=2.0 * ran1(idum)-1.0;
rsq=v1 * v1+v2 * v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac=sqrt(-2.0 * log(rsq)/rsq);
gset=v1 * fac;
iset=1;
return v2 * fac;
} else {
iset=0;
return gset;
}
}

calc_norm_t.c

/ *
COMMENT: This files contains the function that calculates

the norms of our tilde wave functions...
It makes use of lots of pointers to
pass variables by reference...

* /
#include "constants.h"
#include <math.h>
#include <stdlib.h>
#include <complex.h>
void calc_norm_all(_Complex double * phi_t, _Complex double * phi_p, _Complex double * phi_m,

_Complex double * phie_t, _Complex double * phie_p, _Complex double * phie_m,
double * normt, double * normp, double * normm,
double * normet, double * normep, double * normem)

{
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/ * =========================================================================================== * /
/ * Declare variables * /
/ * =========================================================================================== * /
int x;
/ * =========================================================================================== * /
/ * Initialize variables * /
/ * =========================================================================================== * /

* normt = 0.0;

* normp = 0.0;

* normm = 0.0;

* normet = 0.0;

* normep = 0.0;

* normem = 0.0;
/ * =========================================================================================== * /
/ * Calculate quantities * /
/ * =========================================================================================== * /
for(x = xglot; x <= xgupt; x += xres)
{

* normt += dx * cabs(phi_t[(x - xglot) / xres]) * cabs(phi_t[(x - xglot) / xres]);

* normp += dx * cabs(phi_p[(x - xglot) / xres]) * cabs(phi_p[(x - xglot) / xres]);

* normm += dx * cabs(phi_m[(x - xglot) / xres]) * cabs(phi_m[(x - xglot) / xres]);

* normet += dx * cabs(phie_t[(x - xglot) / xres]) * cabs(phie_t[(x - xglot) / xres]);

* normep += dx * cabs(phie_p[(x - xglot) / xres]) * cabs(phie_p[(x - xglot) / xres]);

* normem += dx * cabs(phie_m[(x - xglot) / xres]) * cabs(phie_m[(x - xglot) / xres]);
}

* normt = sqrt( * normt);

* normp = sqrt( * normp);

* normm = sqrt( * normm);

* normet = sqrt( * normet);

* normep = sqrt( * normep);

* normem = sqrt( * normem);
/ * =========================================================================================== * /

}

calc_quantities.c

/ *
COMMENT: This file contains the function that computes the following quantities

(Given the true and estimated wave functions):
fidelity, norm, mean position and position variance...
NOTE: It makes use of lots of pointers to pass variables by reference...

* /
#include "constants.h"
#include <stdlib.h>
#include <complex.h>
#include <omp.h>
void calc_quant_all(_Complex double * phi, _Complex double * phie, double * ab, double * ab2,

double * abe, double * abe2, double * fid, double * nm, double * nme)
{

/ * =========================================================================================== * /
/ * Declare and initialize variables * /
/ * =========================================================================================== * /
_Complex double fidelity = 0.0;
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double prob;
double probe;
int x, y;

* nm = 0.0;

* nme = 0.0;

* ab = 0.0;

* abe = 0.0;

* ab2 = 0.0;

* abe2 = 0.0;
/ * =========================================================================================== * /
/ * Calculate quantities * /
/ * =========================================================================================== * /
for(x = xglo; x <= xgup; x += xres)
{

prob = cabs(phi[(x - xlower) / xres]) * cabs(phi[(x - xlower) / xres]);
probe = cabs(phie[(x - xlower) / xres]) * cabs(phie[(x - xlower) / xres]);

* nm += dx * prob;

* nme += dx * probe;

* ab += x * dx * prob;

* abe += x * dx * probe;

* ab2 += x * x * dx * prob;

* abe2 += x * x * dx * probe;
fidelity += conj(phie[(x - xlower) / xres]) * phi[(x - xlower) / xres] * dx;

}

* nm = sqrt( * nm);

* nme = sqrt( * nme);

* ab2 -= ( * ab) * ( * ab);

* abe2 -= ( * abe) * ( * abe);

* fid = cabs(fidelity) * cabs(fidelity);
/ * =========================================================================================== * /

}

graphics.c

/ *
COMMENT: This file contains functions that display the progress

on the console...

* /

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <omp.h>
#include "constants.h"
#include <curses.h>
/ * =========================================================================================== * /
/ * Variable declaration for progress display * /
/ * =========================================================================================== * /
WINDOW* mainwin, * childwin, * childwin1, * childwin2;
int ch;
char prog[50], prog1[20];
int pind;
int tempp, percent = 0;
int flag = 0;
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/ * =========================================================================================== * /
void initial_progress()
{

/ * =========================================================================================== * /
/ * Display initial progress * /
/ * =========================================================================================== * /
strcpy(prog, ""); //Necessary... To assign an empty string to the variable prog...
if ((mainwin = initscr()) == NULL)
{

fprintf(stderr, "Error initialising ncurses.\n");
exit(EXIT_FAILURE);

}
start_color();
if(has_colors())
{

init_pair(8, COLOR_WHITE, COLOR_RED);
}
childwin2 = subwin(mainwin, 3, 6, py2, px2);
box(childwin2, 0, 0);
childwin1 = subwin(mainwin, 10, width, py1, px1);
box(childwin1, 0, 0);
mvwaddstr(childwin1, 2, 10, "Stochastic Simulation Ver. final");
mvwaddstr(childwin1, 3, 14, "Written by Kevin Garapo");
mvwaddstr(childwin1, 4, 12, "As part of Masters Research");
mvwaddstr(childwin1, 5, 11, "At University of KwaZulu-Natal");
mvwaddstr(childwin1, 6, 16, "(c) February 2011");
mvwaddstr(childwin1, 7, 11, "email: kevingarapo@gmail.com");
color_set(8, NULL);
childwin = subwin(mainwin, height, width, py, px);
box(childwin, 0, 0);
mvaddstr(py2 + 1, px2 + 4, "%");
for(pind = 1; pind <= 1; pind++)
{

strcat(prog, "");
sprintf(prog1,"%3d", 0 * pind * 2);
mvaddstr(py2 + 1, px2 + 1, prog1);
refresh();
mvaddstr(py + 1, px + 1, prog);
refresh();
mvaddstr(1, 1, "");
refresh();

}
/ * =========================================================================================== * /

}

void current_progress(int step)
{

/ * =========================================================================================== * /
/ * Display the progress of the program at pre-defined intervals * /
/ * =========================================================================================== * /
if((step%progress) == 0)
{

tempp = (int)(100 * step / (end - 1));
if((tempp % 2) != 0 )
{

tempp -= 1;
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flag = 1;
}
if(tempp > percent)
{

for(pind = percent; pind < tempp; pind += 2)
{

strcat(prog, " ");
}
mvaddstr(py + 1, px + 1, prog);
refresh();

}
sprintf(prog1,"%3d", tempp + flag);
mvaddstr(py2 + 1, px2 + 1, prog1);
refresh();
mvaddstr(1, 1, "");
refresh();
flag = 0;
percent = tempp;

}
/ * =========================================================================================== * /

}

void clean_up()
{

/ * =========================================================================================== * /
/ * Clean up display * /
/ * =========================================================================================== * /
delwin(childwin);
delwin(childwin1);
delwin(childwin2);
delwin(mainwin);
endwin();
refresh();
/ * =========================================================================================== * /

}

create_files.c

/ *
COMMENT: This file contains the function that

creates the data files to store plot data....

* /
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <time.h>
#include "constants.h"

void create_files()
{

/ * =========================================================================================== * /
/ * Declare variables * /
/ * =========================================================================================== * /
FILE * p1, * p2, * p3, * p4, * p5, * p6, * p7, * p8;
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/ * =========================================================================================== * /
/ * Create data files and close them * /
/ * =========================================================================================== * /
p1=fopen("quantitative/mean.dat","wb");
p2=fopen("quantitative/mean1.dat","wb");
p3=fopen("quantitative/fidelity.dat","wb");
p4=fopen("quantitative/variance.dat","wb");
p5=fopen("quantitative/variance1.dat","wb");
p6=fopen("quantitative/stdev.dat","wb");
p7=fopen("quantitative/stdev1.dat","wb");
p8=fopen("quantitative/results.dat","wb");
fclose(p1);
fclose(p2);
fclose(p3);
fclose(p4);
fclose(p5);
fclose(p6);
fclose(p7);
fclose(p8);
/ * =========================================================================================== * /

}

record.c

/ *
COMMENT: This file contains the function that records

wave functions and phases to data files...

* /
#include "constants.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
void pfrecord(_Complex double * phi, _Complex double * phie, int tmstp)
{

/ * =========================================================================================== * /
/ * Declare and initialize variables * /
/ * =========================================================================================== * /
char dtfile[500];
char dtfile1[500];
FILE * fp, * fp1;
int x, flag = 0, flag1 = 0;
/ * =========================================================================================== * /
/ * Open data files, record data and close * /
/ * =========================================================================================== * /
sprintf(dtfile, "wavefunction/data%.6d.dat", tmstp);
sprintf(dtfile1, "phase/data%.6d.dat", tmstp);
fp = fopen(dtfile,"wb");
fp1 = fopen(dtfile1,"wb");
for(x = xglo; x <= xgup; x += xres)
{

fprintf(fp,"%d\t%f\t%f\n", x, cabs(phi[(x - xlower) / xres]) * cabs(phi[(x - xlower) / xres]),
cabs(phie[(x - xlower) / xres]) * cabs(phie[(x - xlower) / xres]));
if(cabs(phi[(x - xlower) / xres]) < 1e-3 && cabs(phie[(x - xlower) / xres]) < 1e-3)

fprintf(fp1,"%d\t%f\t%f\n", x, 0.0, 0.0);
else if(cabs(phi[(x - xlower) / xres]) < 1e-3 && cabs(phie[(x - xlower) / xres]) > 1e-3)
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fprintf(fp1,"%d\t%f\t%f\n", x, 0.0,
fmod(carg(phie[(x - xlower) / xres]) / cabs(phie[(x - xlower) / xres]), 2 * PI));

else if(cabs(phi[(x - xlower) / xres]) > 1e-3 && cabs(phie[(x - xlower) / xres]) < 1e-3)
fprintf(fp1,"%d\t%f\t%f\n", x,
fmod(carg(phi[(x - xlower) / xres]) / cabs(phi[(x - xlower) / xres]), 2 * PI), 0.0);

else
fprintf(fp1,"%d\t%f\t%f\n", x,
fmod(carg(phi[(x - xlower) / xres]) / cabs(phi[(x - xlower) / xres]), 2 * PI),
fmod(carg(phie[(x - xlower) / xres]) / cabs(phie[(x - xlower) / xres]), 2 * PI));

}
fclose(fp);
fclose(fp1);
/ * =========================================================================================== * /

}

plots_and_movies.c

/ *
COMMENT: This file contains the functions that plots data

using GNUPLOT and generates movies using ffmpeg...

* /
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <omp.h>
#include "constants.h"
void plot_phase_wavefunction()
{

/ * =========================================================================================== * /
/ * Declare variables * /
/ * =========================================================================================== * /
char dtfile[500];
char dtfile1[500];
char outfile[500];
char outfile1[500];
FILE * gnuplotPipe;
int x;
/ * =========================================================================================== * /
/ * Open pipe, plot data using Gnuplot and close * /
/ * =========================================================================================== * /
printf("Plotting data...\n");
for(x = 0; x < end; x += record)
{

gnuplotPipe = popen("gnuplot -persist","w");
if (gnuplotPipe)
{

fprintf(gnuplotPipe, "set style data lines\n");
fprintf(gnuplotPipe, "set border 31 lw 2\n");
fprintf(gnuplotPipe, "set style line 1 lt 1 lw 3\n");
fprintf(gnuplotPipe, "set style line 2 lt 2 lw 3\n");
fprintf(gnuplotPipe, "set style line 3 lt 3 lw 3\n");
fprintf(gnuplotPipe, "set key box linestyle 1\n");
fprintf(gnuplotPipe,

"set terminal jpeg enhanced font \"FreeSansOblique.ttf,40\" size 1500,1500\n");
fprintf(gnuplotPipe, "set xrange [%d:%d]\n", xlower, xupper);

86



sprintf(dtfile, "wavefunction/data%.6d.dat", x);
sprintf(dtfile1, "phase/data%.6d.dat", x);
sprintf(outfile, "wavefunction/%.6d.jpeg", x / record);
sprintf(outfile1, "phase/%.6d.jpeg", x / record);
fprintf(gnuplotPipe, "set label ’%0.6fs’ at 10,150000 center textcolor lt 1\n",

(float)x * dt);
fprintf(gnuplotPipe, "set xlabel ’Distance (10ˆ{%d} m)’\n", (int)log10(s));
fprintf(gnuplotPipe, "set ylabel ’Probability Density’\n");
fprintf(gnuplotPipe, "set yrange [0:200000]\n");
fprintf(gnuplotPipe, "set output ’%s’\n", outfile);
fprintf(gnuplotPipe,
"plot \"%s\" using 1:2 w l ls 1 title ’True’,\"%s\" using 1:3 w l ls 3 title ’Estimate’\n",

dtfile, dtfile);
fprintf(gnuplotPipe, "set label ’%0.6fs’ at -150,3.5 center textcolor lt 1\n",

(float)x * dt);
fprintf(gnuplotPipe, "set yrange [-10:10]\n");
fprintf(gnuplotPipe, "set ylabel ’Phase (rad)’\n");
fprintf(gnuplotPipe, "set output ’%s’\n", outfile1);
fprintf(gnuplotPipe,
"plot \"%s\" using 1:2 w l ls 1 title ’True’,\"%s\" using 1:3 w l ls 3 title ’Estimate’\n",

dtfile1, dtfile1);
fflush(gnuplotPipe);
fclose(gnuplotPipe);

}
}
/ * =========================================================================================== * /

}

void plot_data()
{

/ * =========================================================================================== * /
/ * Declare variables * /
/ * =========================================================================================== * /
FILE * gnuplotPipe;
/ * =========================================================================================== * /
/ * Open pipe, plot data using Gnuplot and close * /
/ * =========================================================================================== * /
printf("Plotting quantitative data...\n");
gnuplotPipe = popen("gnuplot -persist","w");
if (gnuplotPipe)
{

fprintf(gnuplotPipe, "cd ’quantitative’\n");
fprintf(gnuplotPipe, "load \"plot.p\"\n");
fflush(gnuplotPipe);

}
fclose(gnuplotPipe);
/ * =========================================================================================== * /

}

void make_movie()
{

/ * =========================================================================================== * /
/ * Make movies using ffmpeg * /
/ * =========================================================================================== * /
//system("ffmpeg -r 10 -i wavefunction/%06d.jpeg wavefunction.mp4");
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//system("ffmpeg -r 10 -i phase/%06d.jpeg phase.mp4");
system("ffmpeg -r 10 -i wavefunction/%06d.jpeg wavefunction.avi");
system("ffmpeg -r 10 -i phase/%06d.jpeg phase.avi");
/ * =========================================================================================== * /

}

record_initial.c

/ *
COMMENT: This file contains the function that records the

initial wave functions and phases to data files...

* /
#include "constants.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <omp.h>

void record_initial(_Complex double phi[], _Complex double phie[])
{

/ * =========================================================================================== * /
/ * Declare and initialize variables * /
/ * =========================================================================================== * /
FILE * fp, * fp1, * fs;
int x, flag = 0, flag1 = 0;
/ * =========================================================================================== * /
/ * Open data files, record data and close * /
/ * =========================================================================================== * /
fp = fopen("wavefunction/data000000.dat","wb");
fp1 = fopen("phase/data000000.dat","wb");
for(x = xglo; x <= xgup; x += xres)
{

fprintf(fp, "%d\t%f\t%f\n", x,
cabs(phi[(x - xlower) / xres]) * cabs(phi[(x - xlower) / xres]),
cabs(phie[(x - xlower) / xres]) * cabs(phie[(x - xlower) / xres]));
if(cabs(phi[(x - xlower) / xres]) < 1e-3 && cabs(phie[(x - xlower) / xres]) < 1e-3)

fprintf(fp1,"%d\t%f\t%f\n", x, 0.0, 0.0);
else if(cabs(phi[(x - xlower) / xres]) < 1e-3 && cabs(phie[(x - xlower) / xres]) > 1e-3)

fprintf(fp1,"%d\t%f\t%f\n", x, 0.0,
fmod(carg(phie[(x - xlower) / xres])/ cabs(phie[(x - xlower) / xres]), 2 * PI));
else if(cabs(phi[(x - xlower) / xres]) > 1e-3 && cabs(phie[(x - xlower) / xres]) < 1e-3)

fprintf(fp1,"%d\t%f\t%f\n", x,
fmod(carg(phi[(x - xlower) / xres]) / cabs(phi[(x - xlower) / xres]), 2 * PI), 0.0);
else

fprintf(fp1,"%d\t%f\t%f\n", x,
fmod(carg(phi[(x - xlower) / xres]) / cabs(phi[(x - xlower) / xres]), 2 * PI),
fmod(carg(phie[(x - xlower) / xres]) / cabs(phie[(x - xlower) / xres]), 2 * PI));

}
fclose(fp);
fclose(fp1);
/ * =========================================================================================== * /

}

record_quant.c
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/ *
COMMENT:This file contains the function that records plot data...

* /
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <time.h>
#include "constants.h"
void frecord1(int timestep, double xbar, double xbare, double fidelity, double varx,

double varxe, double devx, double devxe, double mx)
{

/ * ======================================================================================== * /
/ * Declare variables * /
/ * ======================================================================================== * /
FILE * p1, * p2, * p3, * p4, * p5, * p6, * p7, * p8;
/ * ======================================================================================== * /
/ * Open data files, record data and close * /
/ * ======================================================================================== * /
p1=fopen("quantitative/mean.dat","a");
p2=fopen("quantitative/mean1.dat","a");
p3=fopen("quantitative/fidelity.dat","a");
p4=fopen("quantitative/variance.dat","a");
p5=fopen("quantitative/variance1.dat","a");
p6=fopen("quantitative/stdev.dat","a");
p7=fopen("quantitative/stdev1.dat","a");
p8=fopen("quantitative/results.dat","a");
fprintf(p1, "%e\t%e\n", timestep * dt, xbar);
fprintf(p2, "%e\t%e\n", timestep * dt, xbare);
fprintf(p3, "%e\t%e\n", timestep * dt, fidelity);
fprintf(p4, "%e\t%e\n", timestep * dt, varx);
fprintf(p5, "%e\t%e\n", timestep * dt, varxe);
fprintf(p6, "%e\t%e\n", timestep * dt, devx);
fprintf(p7, "%e\t%e\n", timestep * dt, devxe);
fprintf(p8, "%e\t%e\n", timestep * dt, mx);
fclose(p1);
fclose(p2);
fclose(p3);
fclose(p4);
fclose(p5);
fclose(p6);
fclose(p7);
fclose(p8);
/ * ======================================================================================== * /

}

Makefile

#
#Makefile:
#
OBJ = main.o calc_quantities.o record.o plots_and_movies.o initialize.o
record_initial.o term_fmt.o second_order_weak.o calc_norm_t.o
ran1.o gasdev.o create_files.o record_quant.o graphics.o
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CC = gcc
CFLAGS = -lm -lncurses
OUT = main
$(OUT): $(OBJ)
$(CC) $(OBJ) -o $(OUT) $(CFLAGS)

clean:
rm -f * .[o]; rm -f * .dat; rm -f phase/ * .dat;

rm -f wavefunction/ * .dat; rm -f phase/ * .jpeg;
rm -f wavefunction/ * .jpeg; rm -f * .mpeg
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