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Abstract 

 
The main limiting factor in broadband powerline communications is the presence of impedance 

discontinuities in the wired channel. This phenomenon is present in both outdoor and indoor 

powerline communication (PLCs) channels.  It has been established that the impedance of the 

electrical loads and line branching are the main causes of impedance discontinuities in PLC channel 

networks. 

 

Accurate knowledge of the expected impedances of the corresponding discontinuity points would be 

vital in order to characterize the channel for signal transmission. However, the PLC channel network 

topologies lead to different branching structures. Additionally, the existence of a myriad of electrical 

loads, whose noise and impedance vary with frequency, are a motivation for a rigorous design 

methodology in order to achieve a pragmatic channel model. 

 

In order to develop such a channel model, an approach similar to the one applied in radio propagation 

channel modeling is adopted, where specific attenuation determined at a point is used in predicting the 

attenuation for the entire power cable length. Therefore, the powerline is modeled with the 

assumption of a randomly spread multitude of scatterers in the vicinity of the channel with only a 

sufficient number of impedance discontinuity points. The line is considered as a single homogeneous 

element with its length divided into a grid of small areas with dimensions that range from 0.5 to 3 

mm. Thus, each small area transmits an echo and the forward scattered response gets to the receiver. 

With this approach, point specific attenuation along the line is proposed and used to derive the 

channel transfer function. 

 

Measurement results show that both the analytical specific attenuation model developed in this work 

and the channel transfer function are feasible novel ideas in PLC channel network characterization. It 

is seen from the measurements that the signal attenuation is directly proportional to the number of 

branches, and this is in line with the findings of previous researchers. 

 
A comparison between the  measured values and the simulation results of the frequency response 

shows a very good agreement. The agreement demonstrates applicability of the models in a practical 

enviroment. Thus we conclude that the models developed do not require knowledge either of the link 

topology or the cable models but requires an extensive measurement campaign. 
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1 Introduction 

 
The powerline communication (PLC) channel exhibits unfavorable transmission properties. It is 

characterized by a frequency selective transfer function, attenuation that increases with length and 

frequency, and severe narrowband interference [Biglieri, (2003)].  In order to overcome these 

difficulties, a lot of effort has been undertaken to characterize and model the powerline channel 

[Meng et al., (2004), Barmada, (2006)]. A complete understanding of the behaviour of broadband 

PLC channel is important when setting up the channel  transmission lines or when simulating the 

performance of such complicated communication technologies [Amirshahi, (2006), R´oka, (2008), 

Katayama et al., (2006), Mujčić et al., (2004)]. Today, several models have been proposed for 

characterizing the PLC channel like those in [Dlh´aˇn and Farkaˇ (2008), Guillet et al., (2009)]. An 

interesting approach was introduced in [Zimmermann et al., (2002), Philipps, (2000)] that describes 

the PLC channel by its multipath behaviour. 

 

The multipath propagation of the powerline communication channel (PLC) arises from the presence 

of several branches and impedance mismatches that cause multiple reflections. Each path is 

comprised of scattering points that are reflected a specific number of times at specific points of 

discontinuity along its routes. The scattering points are located where impedance mismatch occurs. In 

such models, not only the desired signal, but also one or more delayed and attenuated versions of the 

transmitted signal get to the receiver. Further, a detailed discussion of scattering points’ spatial 

allocation, in which path amplitude distributions and path arrival time distributions are proposed to 

follow the lognormal distribution for different number of branches is well presented in 

Papaleonidopoulos et al., (2003). In their investigation, Güzelgöz et al., (2011) established that the 

first arrival path is distinguishable from the other paths in the sense that it experiences less reflection 

and less attenuation along its propagation path, giving it a favorable position with regard to signal 

detectability. In their study, the statistics of the first arrival path were initially investigated. It was 

shown that the first arrival path can be defined by Log-Normal probability density function (PDF). It 

was also observed that the mean of the approximating Log-Normal variable decreases with an 

increasing number of branches between transmitter and receiver, while its variance increases. The 

same observation was made when the maximum number of branches that extend out of a branching 

node is increased. 

 

However, despite these unique approaches, the PLC channel remains an important research area of 

interest because the existing solutions to the inherent problems need to be refined further, and as such, 

     Chapter One 
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we still do not have a universally accepted model of the PLC channel like the COST models for the 

mobile radio channel. 

 

In this thesis, the first arrival path is investigated and the powerline is modeled as one single element 

with its length divided into a grid of small areas with dimensions ranging from 0.5 to 3 mm where 

each small area transmits an echo and the forward scattered response gets to the receiver. The 

scattering point is assumed to be small and spherical in shape, and then Mie scattering technique is 

applied in order to determine the point specific attenuation based on forward scattering.  

  Problem formulation 1.1

 
The powerline network is the most ubiquitous network compared to similar networks in the world, 

and that it reaches every socket in the household, which makes the installation of the PLC channel 

system relatively cost-effective, since no additional wire infrastructure needs to be laid out. However, 

as research shows, the PLC channel presents a very harsh environment for high-frequency 

communication signals, with three critical channel parameters: noise, impedance, and attenuation, 

being highly unpredictable and variable in time, frequency, and location. Therefore a concerted effort 

is needed to accurately characterize the powerline. In addition, while some effort has been made to 

model the low and medium voltage lines, mainly from a narrowband perspective, further inputs are 

needed to characterize broadband powerlines. This work therefore seeks to investigate and develop 

general models for the channel transfer function from a broadband point of view. 

 

Thus, for this study, the questions that face the researcher are:  

 

(i) What is the appropriate model for the PLC medium that takes into account the channel 

loading, attenuation, multipath, and impedance mismatch?  

 

(ii) How would this model be used to determine an optimal communications option for PLC?  

 Motivation and Objectives 1.2

 
The majority of people in developing countries stay in rural areas where some of them have access to 

electricity; but majority of them do not have access to the internet. Deployment of dedicated mobile 

and wireless network communications is not economically feasible because the return on investment 

is low for service providers due to the low purchasing power of the populace which is mainly poor. 

Therefore, the PLC channel would be a more attractive technology in such a case since its convenient 

outlets (power sockets) serve as connection ports from each room in a home, office or factory for the 

services such as internet, video conference, Voice over IP, Video streaming, and E-commerce 
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connectivity, etc. Additionally, the fact that this communication technology uses the existing power 

network renders it very cost effective.  

 

PLC technologies are grouped into narrowband PLC (NB-PLC), operating usually below 500 kHz, 

and broadband PLC (BB-PLC), operating usually at frequencies above 1.8 MHz, [Galli et al., (2011). 

Recent studies are focused mainly on the frequencies up to 30 MHz, [Zimmermann, (2002)]. This is 

due to the increasing demand for broadband data transmission, which utilizes BB-PLC. This is the 

focus of the current research work where we propose models that are valid up to 100 MHz.  

 

In summary, this research involves the evaluation and testing of the foregoing models with the desire 

of developing a universal PLC channel model with the following objectives: 

 

1. To investigate and develop the transfer characteristics for powerline communications at low 

voltages. 

2. To use simulations to verify existing models and develop similar models by varying different 

parameters in those models. 

3. To use analytical models to verify the simulation models. 

4. To verify the analytical models with measurements on a test bed. 

 Outline of the thesis 1.3

 
The outline of the thesis is as follows:  

 

Chapter one starts with a short introduction touching on the progress made in PLC technology channel 

modelling, challenges facing the PLC channel and the characteristics of the transmission medium. 

This is then followed by the problem formulation, motivation and objectives and finally the outline of 

the thesis.  

 

Chapter two gives a summary of the propagation mechanism in PLC channels. This revolves around 

the PLC channel characteristics; which includes the multipath characteristics and the path amplitude 

statistics of PLC channels. This chapter focuses on reflection and transmission coefficients at the 

branching and termination points, attenuation in PLC channels and analysis of the first arrival path. 

 

 In Chapter three, we focus more on developing a new PLC channel model and investigating the 

impact of load, line length and diameter of the transmission line on the channel transfer function over 

the frequency range of 1-20 MHz.  
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In Chapter four, we investigate the influence of the number of branching nodes and then provide a 

unique scattering distribution model for PLC channels. The model is based on the validation of the 

assumption of a randomly spread multitude of scatterers in the vicinity of the channel that only 

requires a sufficient number of impedance discontinuity points. We consider the line as one single 

element, and its length is divided into a grid of small areas or scattering points with dimensions 

ranging from 0.5 to 3 mm. We also study Mie scattering theories and their application to branching 

nodes in order to determine the attenuation in PLC channels and a power law model is proposed 

where only the number branching nodes is needed to estimate the specific attenuation.  

 

In Chapter five, measurements are done to ascertain the accuracy of the models developed in Chapter 

three and four, and come up with an appropriate channel transfer function using different ‘live’ power 

network configurations. 

  Contributions  1.4

 

As the title of the thesis implies, “Channel Characterization for Broadband Powerline 

Communications,” all the chapters in this thesis are aimed at making significant contributions to this 

topic. Below is the summary of the significant contributions in this work: 

  

 Proposition of empirical PLC channel attenuation models that depict the number of 

nodes dependency on attenuation along a powerline network path per length operating at 

different frequencies up to 100 MHz.  

 

 Development of PLC channel attenuation model along the powerline network with a 

number of branching nodes. The PLC channel model is regarded as comprising of scattering 

points or small area scattering based on the validation of the assumption of a randomly spread 

multitude of scatterers in the vicinity of the channel that only requires a sufficient number 

impedance discontinuity points. But due to the fact that the requirement of having a minimum 

number of branches within two branching nodes has to be met, the PLCs power law model is 

proposed.  

 

 Formulation of theoretical PLC channel attenuation models for the prediction of 

specific attenuation on powerline network first arrival path link from the scattering properties 

of scattering points or small area scattering and Log-normal small area scattering size 

distribution models. This is achieved by utilizing the Mie scattering theory for metallic 

spheres on the scattering points, and mathematical integration analysis. Furthermore, 
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preliminary study of scattering points’ size distribution for different number of branching 

nodes for PLC channels has also been investigated.  

 

 Publications in Journal and Conference Proceedings  1.5

 

The work in this thesis has been published in the following conference proceedings and journals: 

 

1. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Modelling of Broadband Powerline 

Communication Channels,” SAIEE, Vol. 102 (4) December 2011. 

 

2. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Semi-empirical Model for Broadband 

Powerline Communication Channels,” submitted to IERI  Journal of  Information 

Engineering Letters, accepted for publication, June. 2013. 

 

3. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Attenuation Model for Indoor Multipath 

Broadband PLC Channels,” IEEE-ICEAA, Cape town, South Africa, September, 2012, ISBN: 

978-1-4673-0405-4.  

 

4. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Novel Approach for Powerline 

Communication channel Modelling,” IEEE Power & Energy Society, POWER AFRICA 2012, 

Johannesburg, South Africa, July, 2012, ISBN: 978-1-4673-2548-6. 

 

5. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Scattering Points Size Distribution for 

Indoor Broadband PLC Channels,” PIERS, Malaysia, March, 2012, ISSN: 1559-9450. 

 

 

6. C. T. Mulangu, T. J. O. Afullo and N. M. Ijumba, “Estimation of Specific Attenuation due to 

Scattering Points for Broadband PLC Channels,” PIERS, Malaysia, March, 2012, ISSN: 

1559-9450. 
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2 Propagation Mechanism and Characteristics in PLC Channels 
 

 Introduction 2.1

 

In this chapter, we focus on the propagation mechanisms of the signal through the powerline network 

at high frequency range, such as: reflection, transmission and scattering. In PLC channels, a 

transmitted signal travelling from the source to the receiver suffers reflections at impedance 

discontinuities along its path to the receiver. Therefore, only part of the signal that is sent at the 

transmitter reaches the receiver. This signal comprises of different signal components that are delayed 

and attenuated in different degrees.  

 Propagation Mechanism 2.2

 

Reflection occurs when the propagating wave impinges upon an object whose dimensions are very 

large compared to its wavelength. Güzelgöz et al., (2011) observed that the first arrival path signal is 

easily distinguishable from the other paths in the sense that it experiences less reflection and less 

attenuation along its propagation path, giving it a favorable position in terms of detectability. On the 

contrary, scattering is one of the most difficult phenomena to analyze in closed form and it usually 

occurs when the propagating wave impinges upon an object whose dimensions are very small 

compared to the wavelength of the propagating signal. 

 Transmission line Discontinuities and Signal Attenuation 2.3

 

The main loss mechanisms of low voltage power cables at signal frequencies used in powerline 

communications are dielectric losses, resistive losses and coupling losses. The radiation losses are 

significant if the separation of the conductors is an appreciable fraction of the wavelength (Tomasini, 

2001). Figure 2.3-1below shows a generator of voltage    and internal impedance    connected to the 

load impedance    through a length d of a transmission line of characteristic impedance   . We wish 

to determine the voltage    and current at the load in terms of the generator voltage. 

 

 

Figure 2.3-1Two-conductor transmission line. 

Chapter Two 
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2.3.1 Transmission Line Parameters 

 
A transmission line can be defined as any structure or medium that guides electromagnetic (EM) 

waves from one location to another. The transmission line has two conductors carrying current to 

support an EM wave, which is transverse electromagnetic (TEM) or quasi-TEM mode. For the TEM 

mode: 

HaZE nTEM


 ˆ , Ea

Z
H n

TEM


 ˆ

1
, and 




 TEMZ .                          (2.1) 

 

where,   is electric field,   is magnetic field and   is the impedance of the wave. 

The current and the EM wave have different characteristics. When an  EM wave propagates into 

different dielectric media, partial reflection and partial transmission will occur as shown in Figure 2.3-

2. And, this propagation obeys  Snell’s law, that is: 

 

2

1

1

2

1

2

2

1

sin

sin

r

r

p

p

i

t

v

v

n

n












  and                                     (2.2) 

 

where    is the angle subtended between the incident ray and the normal to the interface, and    is the 

angle subtended between the refracted ray and the normal to the interface. The 

quantities    and    are termed as the refractive indices of media 1 and 2, respectively. The law of 

refraction follows directly from the fact that the speed   with which light propagates through a 

dielectric medium is inversely proportional to the refractive index of the medium. Now,     is the 

speed of light in medium 1, whereas     is the speed of light in medium 2. The refractive index n is 

rooted in the material relative permittivity   .    and    are termed the wave impedance of media 1 

and 2. 

 

  
 

Figure 2.3-2 Propagation of the electromagnetic wave into different dielectric media. 
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The reflection coefficient: 
0

0
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  and the transmission coefficient: 
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 of EM waves can be 

expressed as follows for both perpendicular and parallel polarization:  
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 In the case of parallel polarization, 
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In case of normal incidence, 
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The model parameters are derived from the equivalent-circuit model of a transmission line section so 

as to obtain the transfer function of the channel, as shown in Fig.2.3-3, and Equations (2.6) and (2.7) 

below.  

 
Figure 2.3-3 Equivalent-circuit model of transmission line section 
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The quantities ),( tzv , ),(),,( tzitzzv  and ),( tzzi   denote the instantaneous voltages and 

currents at locations z and zz  . R, L, G and C are the per unit length resistance (Ω/m), inductance 

(H/m), conductance (S/m) and capacitance (F/m), respectively. 

 
Transmission line equations: In higher frequency range, the transmission line model is utilized to 

analyze EM power flow. 
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If we set (   )      ( )      (   )      ( )     , then, we can write the following: 
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where, the propagation coefficient   is given by: 

 

  

))(( CjGLjRj  
                                      (2.8) 

 

where     is the attenuation coefficient and   is the phase  coefficient. 

 

This implies that : 
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and, the characteristic impedance is given by:  
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Table 2.3-1 below shows the distributed parameters of two-wire and coaxial transmission lines. Here, 

   and     are the permeability and conductivity of the metal conductors, respectively;         are the 

radius of the central and outer conductors for the coaxial line, respectively;   is the separation 

distance between conductors.   
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The voltage reflection coefficient of the load impedance    is given by: 
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and the transmission coefficient by: 

                                                                            (2.12) 

 

Figure 2.3-4 shows MATLAB simulations of the reflection coefficient of a coaxial transmission line 

of 100 m length in the frequency range 10 to 100 MHz. 

 

In the case of a lossless and distortionless transmission line, the propagation speed of the 

electromagnetic wave    is given by: 

 

   
 

√  
 

 

√               
                                              (    ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3-1 Distributed parameters of two-wire and coaxial transmission lines 

 

Parameter Two-wire line Coaxial line Units 

𝑅 

 

  
𝑅𝑠
 𝜋𝑎

  
 

𝜋𝑎
 
𝜋𝑓𝜇

𝜎
 

 

 𝜋
 
 

𝑎
 
 

𝑏
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𝜎
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𝐺 
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𝑐𝑜𝑠ℎ−  𝐷  𝑎  
 

 𝜋𝜎

𝑙𝑛 𝑏 𝑎  
 

𝑆/𝑚 
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 Channel Characterization for Broadband Powerline Communications  

11 

 

 

 

where both   and    are the permeability and permittivity of a vacuum respectively. The relative 

permeability    and permittivity    are the parameters of the insulation material of the transmission 

line. For PVC insulation, (       ) and         , where,    is the speed of the light. 

 

The distribution of the current on the cross-sectional area of the conductor is described with a variable 

penetration or skin depth,  , given by : 

  
 

√ 
  
         

                                                                (    ) 

 

where   is the angular frequency of the signal propagating in the transmission line,      is the relative 

permeability of the conductor material, and    is the conductivity of the conductor material. 

 

 

2.3.2 Signal Attenuation 

 

Transmission line discontinuities are caused by mechanical connections, changes in cable type or load 

appliances and cause coupling losses. The amount of coupling losses depend, for example, on the 

topology of the distribution network, the signal frequency, the characteristics of the cabling and the 

characteristics of the devices connected to the distribution network. The resistive losses of the 

 

 
Figure 2.3-4 The reflection coefficient of the coaxial transmission line. 
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conductor are caused by the finite conductivity of conductors. At high frequencies, the current is 

forced to flow on the surface of the conductor due to skin effect; the resistive losses increase as a 

function of frequency with the relation of  √  .  

 

Dielectric losses occur in the insulation material. The polarised molecules inside the insulation 

material are synchronised to the frequency of the electric field. The friction between the molecules 

causes power losses each time the electric field changes polarity. In addition, the resistivity of the 

insulation material is finite. The existence of leakage currents in the insulation material also causes 

losses. The losses of the insulation material are expressed by the loss tangent or dissipation factor, 

    .  

 

Figures 2.3-5 and 2.3-6 below show the attenuation (in dB/m) versus the characteristic impedance of a 

coaxial transmission line using polyethylene (       ) as the dielectric medium, that has a solid 

copper inner conductor of radius a = 2 mm and a copper outer conductor of inner radius b. The outer 

conductor is much thicker than the skin depth, and the ratio b/a varies from 1.5 to 10 and negligible 

losses are assumed. The attenuation decreases as the characteristic impedance increases; and this is 

explained in Fig. 2.3-7 which shows that characteristic impedance increases when copper outer 

conductor of inner radius b varies from 4.5 to 10 mm. The attenuation is inversely proportional to the 

characteristic impedance. Fig. 2.3-8 and 2.3-9 show the attenuation as function of frequency. Fig. 2.3-

8 shows the specific attenuation for coaxial transmission line with inner conductor of radius a = 0.8 

mm and a copper outer conductor of inner radius b = 2 mm. The highest attenuation is 0.35 dB and 

the lowest is 0.245 dB whilst in Fig. 2.3-9, the specific attenuation for coaxial transmission line with 

inner conductor of radius a = 2 mm and a copper outer conductor of inner radius b = 4.5 mm, has the 

highest attenuation of 0.258 dB and the lowest of 0.23 dB. This shows that there is higher conductor 

attenuation for a cable with an inner conductor of radius a = 0.8 mm and a copper outer conductor of 

inner radius b = 2 mm, than for a cable of an inner conductor of radius a = 2 mm and a copper outer 

conductor of inner radius b = 4.5 mm.  
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Figure 2.3-5 Specific attenuation of coaxial copper line with inner conductor radius a = 0.8 mm and a 

copper outer conductor of inner radius b varies from 1.5 to 10 mm. 

 

 
Figure 2.3-6 Specific attenuation of coaxial copper line with inner conductor of radius a = 2 mm and a 

copper outer conductor of radius b varying from 4.5 to 10 mm. 
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Figure 2.3-7 Specific attenuation of coaxial copper line with inner conductor of radius a = 2 mm and 

an outer conductor of radius b varying from 4.5 to 10 mm. 

 

 

Figure 2.3-8 Specific attenuation for coaxial transmission line with inner conductor of radius a = 0.8 

mm and an outer conductor of radius b = 2 mm. 
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Figure 2.3-9 Specific attenuation for coaxial transmission line with inner conductor of radius a = 2 

mm and an outer conductor of radius b = 4.5 mm. 

 

 

Figure 2.3-10 Specific attenuation for transmission line, [Ahola, (2002)]. 

 

Ahola, (2001) presented a formula for the specific attenuation as a function of frequency using the 

power curve fitting algorithm as shown in Fig. 2.3-10: 
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2.3.3   Refractivity of a Metal 

 

In a transmission line, the metal of complex electric permittivity     
  is embedded in a dielectric 

medium of permittivity      
 . A scattering point in this medium is illuminated by a plane wave of 

angular frequency      /  =   /   and     /  is the wave number,   the wavelength in the 

medium. The refractive index with respect to the medium is given by: 

 

   
     
    

                                                                                             (    )  

 

 where,   and    are the permittivity and permeability of the metal; and    and    are the permittivity 

and permeability of the medium.  

 

The complex refractive index  ( ), being a function of frequency  , is related to the complex relative 

dielectric permittivity  ( ) of metal at lower frequencies as given in Feynman et al., (1964):  

 

                          ( )  √     ⁄ (   )                                                            (    ) 

 

where,  is the electric conductivity of the conductor and   is the permittivity of the free space. At 

lower frequencies, from Equation (2.17), we observe that the real and imaginary parts of refractive 

index  ( ), have the same magnitude. With such a large imaginary part of  ( ), the wave is rapidly 

attenuated in the metal, [Feynman et al., (1964)]. In the case of copper, for frequencies less than 

        (Plasma frequency),           ( ℎ       )− , [Feynman et al., (1964)]. 

 

2.3.4 Theory of Dielectric Material 

 

The polyvinyl chloride (PVC) is the insulating material of choice for LV power cables. However, 

rubber or polyethylene is used for higher temperature grading needs in the insulation of power cables. 

The insulating and conducting materials have a critical influence on the power cable characteristics in 

the high frequency range. However, it is almost impossible to make any realistic and practical 

definition of the overall PVC dielectric characteristics, since they rely mainly on factors like the exact 

insulating material composition, frequency range of operation, temperature ranges and variations, etc, 

[Liu, et al., (2001)]. 
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The parameters of greatest interest are the conductivity, σ, and the permittivity, ε, since these govern 

the dielectric attenuation. Permittivity is a complex quantity, whereby: 

          
 

 
,                                 (2.18) 

 

where   is the electric flux density,    the electric field strength,   is the dielectric constant,   ( 

           −  
 

 
) is the permittivity of free space,   

  is the relative dielectric constant,     

    
   is the dielectric loss factor and   

   is the relative dielectric loss factor of the dielectric. The real 

and imaginary parts of the permittivity may be represented as a set orthogonal axes as in Fig. 2.3-11.  

  

 

Dielectric loss can also be expressed in terms of the loss tangent, that is: 
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According to Lin, (1991) the   
  of PVC is in the range of           for 10 MHz to 100 MHz. 

Dielectric losses of PVC insulation material are about 50-100 times larger than those of polyethylene 

(Harper, 1975).       

 

 

 

 

 

 

 

                                       

 

 

2.3.5 Scattering parameters 

 

''Scattering parameters'' or ''S-parameters'' are used in electrical engineering, electronic engineering, 

and communications systems engineering to describe the electrical behaviour of linear electrical 

networks when under various steady state stimuli by small signals.  They are among a family of 

parameters used in electronics engineering, other examples being: Y-parameters, Z-parameters, H-

parameters, T-parameters and ABCD-parameters. Although applicable at all frequencies, S-

parameters are mostly measured and specified for networks operating at radio and microwave 

frequencies. For a generic multi-port network, it is assumed that all ports except the one or a pair 

under consideration are terminated with loads identical to the system impedance and each of the ports 

is allocated a number      ranging from   to  , where   is the total number of ports. For port  , the 

 
Figure 2.3-11: Complex dielectric 
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associated S-parameter definition is in terms of incident and reflected 'power waves',    and    

respectively. These power waves are normalised versions of the corresponding incident and reflected 

travelling voltage waves,   
  and   

− respectively, in accordance with transmission line theory. They 

are related to the system impedance Z0, as given in the expressions below: 

 

   
  
 

√  
                                                                            (    ) 

and, 

   
  
−

√  
                                                                              (    ) 

 

For all ports of the entire network, the reflected power waves may be defined in terms of the S-

parameter matrix and the incident power waves by the following matrix equation: 

 

(

  
  
 
  

)  (
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)                                (    ) 

 

The S-parameter matrix for the 2-port network is probably the most common and it serves as the basic 

building block for the higher order matrices. In this case the relationship between the incident, 

reflected power waves and the S-parameter matrix is given by: 

 
  
  
   

      
      

  
  
  

                                          (    ) 

  

Expanding the matrices into equations gives: 

                                                                     (    ) 

and 

                                                                   (    ) 

 

Each equation gives the relationship between the incident and reflected power waves at each of the 

networks ports 1 and 2 in terms of the network's individual S-parameters,    ,    ,     and    . If one 

considers an incident power wave    at port 1, there may result from it waves exiting from either port 

1 itself (  ) or port 2 (  ). However if, according to the definition of S-parameters, port 2 is 

terminated with a load (Z0) identical to the system impedance then    will be totally absorbed making 

a2 equal to zero. Therefore, we have: 
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                                                                     (    ) 

and 

    
  
  

                                                                       (    ) 

 

Similarly, if port 1 is terminated in the system impedance then a1 becomes zero, giving: 

 

    
  
  

                                                                          (    ) 

 

and 

    
  
  

                                                                           (    ) 

 

 

If the 2-port network under consideration is a non-reciprocal device such as an amplifier operating at 

small signal levels in its linear region and ports 1 and 2 are the input and output respectively, each of 

the S-parameters is equal to the following common amplifier parameters: 

 S11  : which is the input port voltage reflection coefficient 

 S12 : which is the reverse voltage gain 

 S21 : which is the forward voltage gain  

 S22 : which is the output port voltage reflection coefficient  

All such S-parameters are complex quantities so they are expressed in magnitude and phase and, in 

general, are dependent on frequency. Therefore the frequency must be defined together with the 

system impedance for S-parameter measurements across a device under test (DUT) as shown in Fig. 

2.3-12 below. 

 

 

Figure 2.3-12: S-parameter measurements with the network analyzer 
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 PLC Channel Characteristics  2.4

2.4.1  Multipath Characteristics  

 
Several authors have addressed the issue of channel modeling for narrow-band and broadband 

powerline communications, for low, medium, and high voltage lines. The characterization of the PLC 

channel transmission environment focuses on the multi-path signal propagation, the signal 

attenuation, the noise scenario and electromagnetic compatibility. 

 

Meng et al. (2004) presented a wonderful approach to develop the transfer characteristics of a 

broadband powerline communication channel in which the low voltage powerline is approximated as 

a transmission line with two intrinsic parameters, namely the characteristic impedance and the 

propagation constants for a lumped-circuit model. This model is tested against practical measurements 

conducted on existing powerlines. In an addition, Bermuda et al., (2006) presented an innovative 

channel model for the broadband characterization of powerlines in the presence of time-varying loads. 

The model is characterized by taking into account both measured and geometrical channel 

characteristics, with the channel described by a two-port scattering matrix derived from a wavelet-

based expansion of the input and output quantities. The upper and lower bounds for the channel 

response in the presence of varying loads are also derived, thus resulting in a statistical 

characterization of the channel. The proposed method can be used for both known and unknown or 

indeterminate network topologies. 

 

In another input to multipath modelling, R´oka and Urminsk´ (2008) presented experimental 

measurements for verification of the parametric model for PLC reference channels in the real PLC 

channel environment. The information presents a broad knowledge base for the design of the PLC 

channel modem that can be used for practical deployment of the PLC channel data transmission 

systems. Amirshahi and Kavehrad (2006) also presented a channel model suitable for multi-wire 

overhead medium voltage lines. The model is used to evaluate the multipath channel response and 

associated capacity limit in several power distribution grids for applications in broadband over PLC.  

 

All in all, according to Biglieri (2003), the challenges that PLC channels face consists of investigating 

the power network’s characteristics as a communication channel under the following study areas: 

(i) Frequency-varying and time-varying attenuation of the medium 

(ii) Dependence of the channel model on location, network topology and connected loads 

(iii) High inference due to noisy loads 

(iv) High nonwhite background noise 
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(v) Various forms of impulse noise 

(vi) Electromagnetic compatibility (EMC) issues that limit available transmitted power.  

 

Figure 2.4-1 is an illustration of what plagues the PLC channel. Biglieri (2003) and Chen and Chiueh 

(2002) observed that there is no universal PLC channel model that has been accepted like is with the 

case of COST models for mobile radio channels.  

 

Having different paths or lengths and terminated loads tapered to the main path, the impedance of the 

PLC channel significantly varies with the frequency in the range of a few ohms to a few kilo-ohms. 

When assumed to be linear, the PLC channel presents notches due to reflections and cancellations 

caused by impedance mismatches, and as a consequence, the signal propagates in different ways. 

Therefore, the PLC channel is better presented as a multipath environment with frequency-selective 

attenuation. In addition, there is a change  in the frequency response when an electrical device is 

switched on or off, thus the PLC channel is time-varying. Attenuation of the signal in a powerline 

consists of all the coupling losses which are very high in powerline in the range from 40dB/km to 100 

dB/km resulting in a very low SNR at the receiver. 

 

 

 

 

Figure 2.4-1 Block diagram of PLC channel  

 

During the literature survey, we replicated some of the results obtained by the researchers mentioned 

above. Here we present the multipath model proposed by Zimmerman et al., (2002) in Fig. 2.4-3 with 

four paths.  Table 2.4-1 shows the parameters of the model. 

 

+
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Figure 2.4-2: Powerline network with multiple branches at a single node [Anatory et al., (2005)]. 

 
In Figure 2.4-2,    is the total number of branches connected say at node ‘1’ and terminated in any 

arbitrary load. Let      and   , represent any branch number, any referenced (terminated) load, 

number of reflections (with total L number of reflections), respectively, [Anatory et al., (2005)]. 

 

Table 2.4-1 Parameters of the multipath model. 

 

 

 

 

  Figure 2.4-3 PLC channel transfer function, [Zimmerman et al., (2002)]. 

Path No. 1 2 3 4 

delay in μs 1.0 1.25 1.76 2.64 

equivalent length in m 150 188 264 397 

Weighting factor gi 0.4 -0.4 -0.8 -1.5 

k = 0,5 ao=0 ao=8 10-6 
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 PLC Channel Noise Modeling 2.5

 
The main sources of disturbance in the PLC channel environment are coloured background noise, 

narrow-band interference, and impulsive noise.  The coloured background noise is caused by a 

summation of numerous noise sources with low powers. Its power spectral density (PSD) varies with 

frequency in the range 0 to 30 MHz, and significantly increases in the lower frequencies, and also 

with the time in terms of minutes or even hours (see for example R´oka and Urminsk´ (2008)). 

Narrowband noise is caused by amplitude modulation (AM) radio broadcasts, and can thus be 

modelled using modulated sinusoids. There are three main types of impulsive noise [R´oka and 

Urminsk´ (2008)]:  

 

 Periodic impulsive noise asynchronous with the main frequency — caused by switching on 

and off of power supplies and AC/DC power converters. Its spectrum is a discrete line 

spectrum with a repetition rate in the range between 50 and 200 kHz. 

 

 Periodic impulsive noise synchronous with the main frequency - caused by rectifiers located 

in the power supplies operating synchronously with the main cycle. Its PSD decreases with 

frequency and the repetition rate is 50 Hz to 110 Hz. 

 

 Asynchronous impulsive noise - caused by impulses generated by the switching transient 

events in the network. It is considered as the worst noise in the PLC channel environment 

because of its magnitude that can easily reach several dB (even 50 dB and higher) over other 

noise types. 

 

Katayama et al., (2006) proposed a mathematically accurate model of narrowband powerline noise 

based on experimentation. The noise was expressed as a Gaussian process. The noise waveform 

generated with this model showed a good agreement with that of the actual measured noise.  

 

Mujčić et al., (2004) also presented an experimental modeling of corona noise over a 400 kV 

overhead powerline. The algorithm for measuring variations in the corona noise level was described 

on the basis of noise samples as shown in Fig. 2. 5-1. An appropriate computer model of the corona 

noise compliant with the measurement results was then proposed. 
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Figure 2.5-1 Generations of background and corona noise  

 

 The first step in modeling relative corona noise is by expressing it by a mathematical function. The 

dependence of an instantaneous corona noise voltage to the 50 Hz power frequency can be 

approximated by three cosine signals with a period T1=1/(3*50) seconds and amplitude Ui max, given 

by [Mujčić et al., (2004)]: 

 

  ( )  
     

 
[      

  

  
  ]                                                       (    )    

          

where the voltage Uimax stands for the maximum RMS value on a particular phase of a powerline and 

the voltage Uimin stands for the minimum RMS value . From the known dependence of the 

instantaneous corona noise voltage on the 50 Hz power frequency, the average RMS value is defined 

as: 
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Equation (2.32) shows the modification of (2.30) to incorporate the background noise, Umin  as:  

 

  ( )  
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[      

  

  
  ]                      (    )         

 

In fact, the author proposed a model where the background and corona noise are synthesized by 

filtering the white noise source and multiplying it by function U which describes its dependence on 

the power frequency. The impact of weather conditions is represented by a different block average 

RMS and a ratio of three peaks. The average RMS and the ratio of the three peaks block have two 

outputs. The first output is the average RMS of the corona noise which multiplies samples of the 

white noise. The second output holds values of relative corona noise amplitudes Uimax on a particular 

phase for the block dependence on the power frequency.  

 

xx
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The noise-shaping filter can be described by: 

 

 ( )  
 

  ∑    
−  

   

                                                     (    ) 

 

where    is set of coefficients. 

 

Dlh´aˇn and Farkaˇ, (2008) analyzed the capability of Orthogonal frequency division multiplexing 

(OFDM) as an error correcting code if used for transmission over channel with asynchronous 

impulsive noise. New decoding algorithms of OFDM-RS code are presented with emphasis on low 

implementation complexity. The decoding and error correcting capability of these new algorithms has 

been evaluated in a series of simulations. As a test channel model for simulations, the PLC channel 

was selected.  

 

Guillet et al., (2009) also studied the parameters of impulsive and other noise types generated by load 

commutation in the powerline network. They proposed a new approach for controlling the 

commutation instant of the load; which reduces the asynchronous impulsive noise emitted by a 

resistive load by up to 15 dB.  

 Modulation Techniques 2.6

 
Biglieri (2003) noted that the selection of an appropriate modulation scheme for the PLC channel 

must account for three major factors, namely:  

 

(i) The presence of noise and impulsive disturbances, causing a relatively low signal-to-noise 

ratio. 

(ii) The time-varying, frequency-selective nature of the channel. 

(iii) Regulatory constraints with regard to EMC and EMI that limit the transmitted power. 

 

This therefore calls for the choice of either a robust solution or an adaptive modulation and coding 

scheme. Some of the possible modulation schemes are discussed below. 

2.6.1  Single- Carrier Modulation 

 
Most basic modulation schemes make use of a single carrier at a frequency fo. On the other hand, the 

information is encoded in terms of amplitude, phase, or frequency changes of the carrier. However, 

since PLC channel introduces strong intersymbol interference (ISI), powerful detector and 

equalization techniques are called for. The deep frequency notches present in the channel transfer 
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function prevent the use of linear equalizers, as the noise enhancement they cause is a serious 

drawback on such a noisy channel. 

2.6.2  Spread Spectrum Modulation 

 
The basic digital elements of a spread spectrum digital communication system are illustrated in 

Fig. 2.6-1. From this figure, we see that the channel encoder, decoder, modulator and demodulator 

are the basic elements of a conventional digital communication system. In addition to these 

elements, a spread spectrum system employs two identical pseudorandom sequence generators, one 

which interfaces with the modulator at the transmitting end and the second, which interfaces with 

the demodulator at the receiving end. These two generators produce a pseudorandom or 

pseudonoise (PN) binary-valued sequence that is used to spread the transmitted signal in frequency 

at the modulator and despread the received signal at the demodulator. Spread spectrum techniques 

(SST) are a good choice for PLC channel due to their immunity against selective attenuation and 

all kinds of narrowband interference. An additional interesting feature of SST, especially with 

regard to EMC, is the low power spectral density of the transmitted signal. Moreover, media access 

can be accomplished by code-division multiple access (CDMA), offering multiple access without 

global coordination or synchronization. However spread spectrum requiring low SNR has bad 

modulation efficiency.   

 

 

 
 

Figure 2.6-1Spread spectrum system digital communication system 

 

2.6.3  Multi Carrier Modulation 

 
The basic concept of this technique is the conversion of incoming data flow into a set of independent 

sub-channels, each of them used to modulate different carriers that are transmitted simultaneously.  

Multicarrier techniques include two most common forms of modulations which are OFDM and 

discrete multitone (DMT). In the discrete implementation of OFDM, often called DMT, the ISI can be 

completely eliminated through the use of a cyclic prefix. The sub channels in OFDM need not be 

contiguous, so a large continuous block of spectrum is not needed for high rate multicarrier 

communications.  
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In wireless communications, some studies on the impact of multipath on OFDM systems are 

investigated in Okada et al., (1993) and Vandendorpe et al., (1993). Nevertheless, because the 

channel characteristics of wireless communications are different from those of powerline 

communications, study of the multipath effect on the PLC channel is needed with regard to this 

modulation technique. The OFDM modulation process is well adapted to such environment because 

first, it uses in its scheme a cyclic prefix which brings a good immunity against inter symbol 

interference and then, the equalizer is easy to implement. Fig. 2.6-2 shows the transmission OFDM 

process. 

  
 

Figure 2.6-2 OFDM Transceiver process 

 

 Coding Schemes  2.7

 
PLC channel is a hostile channel that needs forward error correction (FEC) coding, interleaving, 

automatic repeat request (ARQ) for reliability of data communication, as shown in Fig.2.7-1. The 

encoded bits are applied to the modulator for transmission and received signals are then 

demodulated and decoded. It also includes transmit and receive controllers that exchange 

information via feedback channels. 

 

The basic idea behind coding and interleaving is to randomize the location of errors that occur in 

bursts, since most codes designed for AWGN channels do not work well when there is a long 

sequence of errors. Thus, the interleaver disburses the location of errors occurring in bursts such that 

only a few simultaneous errors occur, which can typically be corrected by most AWGN codes. 
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The spreading out of burst errors is accomplished by an interleaver and the error correction is 

accomplished by the code as shown in Fig.2.7-2. 

 

 

   Figure 2.7-1 Block diagram of ARQ system 

 
 

 

  

Figure 2.7-2 Interleaving method for burst error channel  

  

 

 

                      

Figure 2.7-3 Block diagram of OFDM with BCM  

 

OFDM can be successfully joined with coding by using bit interleaved coded modulation as 

shown in Fig. 2.7-3.  

 

 Powerline Communications Standard 2.8

 

The European committee for electrotechnical standardization (CENELEC) on powerline 

communications differs from the standards applied in the USA or in Japan.  The European standard is 

presented in the European standard EN 50 065-1 (CENELEC, 1991), where the frequency band A (9 

– 95 kHz) is reserved for the use in distribution companies and the frequency bands B (95 – 125 kHz), 

C (125 – 140 kHz) and D (140 – 148.5 kHz)  are reserved for domestic use. A special carrier sense 

multiple access (CSMA) protocol is defined for the frequency band C (125 – 140 kHz). The 

characteristic of the standard (CENELEC, 1991) is the limiting of the maximum output voltage of the 
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transmitter. It does not primarily define the power spectral density of the transmitted signal. For the 

American or Japanese standard, the frequencies almost up to 500 kHz can be used for powerline 

communications. 

 Chapter Conclusion 2.9

 

In this chapter, we have addressed the characterization of the PLC channel environment while 

focusing on multi-path signal propagation, signal attenuation, noise and electromagnetic compatibility 

issues. We have observed that the PLC channel is a horrible channel with high attenuation up to 60 

dB/km in the frequency range from 1 to 20 MHz. We have also considered man-made noise in the 

channel. The presence of different types of noise calls for the use of either a robust solution or 

adaptive modulation and coding schemes so as to attain optimal performance of the PLC channel.  

Until now, there is no universally accepted model for the transfer function of powerline channel as 

there are many parameters that need to be known or measured before determining the transfer 

function. In the next chapter, several channel PLC models from multipath propagation principles have 

been suggested. We then propose a channel model based on Monte Carlo approach to get the 

transmission line parameters with the cable length taken into consideration. 
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3 Modeling of Broadband Powerline Communication Channels 

 Introduction 3.1

 
Considerable efforts have been recently devoted to the determination of accurate channel models for 

the powerline communication environment, both for indoor and outdoor networks. Powerline 

communications have been used as a communication medium for many years in low bit-rate 

applications like automation of fault management in power distribution systems and remote meter 

reading [Hudson et al., (1976), Lokken et al., (1976)]. However, the characterization of the transfer 

function is a non-trivial task since PLC channel characteristics change depending on the topology, 

frequency of operation, and attenuation suffered in a given link. The attenuation depends more on the 

network topology and connected loads. The amplitude characteristic shows that, even at short 

distances, deep narrowband notches with attenuation occur, which can even be higher than the one of 

longer distances. These notches result from reflections and multipath propagation. This behavior is 

very similar to the one of mobile radio channels. 

 

The conversion of networks designed to distribute electric power into communication media has been 

the subject of extensive research carried out over the last few years. The growing demand on 

information exchange calls for high rate data transmission, which will in turn requires the utilization 

of the power grid in the frequency range at least up to 30 MHz. Several problems are caused by the 

frequency dependent nature of the power grid: the presence of time varying loads, as well as by the 

structure of the grid itself. An aspect that may provide solutions for the many problems present today 

is the proper modeling of the power grid as a communication medium, and with a time-varying delay. 

 

Several channel models from multipath propagation principles have been suggested [Philipps, (1999), 

Philipps, (1998)]. The work presented in Philipps, (1998) and Matov, (2004) is in fact very close to 

the approach introduced herein. The Philipps model was based on evolutionary strategy to get lumped 

circuit parameters of the SRC load, however, the model did not take the length of cable into 

consideration. The model proposed here is based on Monte Carlo approach to get the transmission 

line parameters as shown in Fig. 3.1-1, and Equations (3.1) and (3.2) below to get the SRC of the load 

with cable length taken into consideration.  

 

 

Chapter Three 
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Figure 3.1-1Two-conductor distributed transmission line. 
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In these equations x denotes the longitudinal direction of the line and R, L, G and C are the per unit 

length resistance (Ω/m), inductance (H/m), conductance (S/m) and capacitance (F/m) of transmission 

line respectively. 

 

 Transmission Line Parameters 3.2

 

Anatory et al., (2004) have defined transmission parameters for the PLC channel system from a 

primary substation to the customer bracket. The separation distance D, between conductors is much 

greater than the radius, a of the conductors, hence the capacitance C, inductance L, and AC resistance 

R per loop meter are given by Equations (3.3), (3.4) and (3.5) respectively, [Hudson et al., (1976), 

Lokken et al., (1976)]. 
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Here    and     are the permeability and conductivity of the metal conductors, respectively. The 

propagation coefficient   is given by 
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where     is the attenuation coefficient and   is the phase  coefficient. Also the attenuation function is 

given by Equation (3.7), where   is the length of the cable,  
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The characteristic impedance    can be expressed as: 
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The impedance seen looking into a generalized transmission line terminated by the load    is: 
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and if the load terminal is short-circuited, i.e. ZL = 0, (3.9) becomes, 
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Similarly, if the load terminal is open-circuited, i.e.       (3.9) becomes, 
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From  (3.8) and (3.10), 
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In the lossless transmission line     can be expressed as: 
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 Transfer channel Function 3.3

 

The well-known transfer function H(f) is the multipath model proposed by Philipps (1999) and 

Zimmerman et al., (1999). The echo model of Philipps presents the channel impulse response as a 

superposition of N Dirac pulses representing the superposition of signals from N different paths as 

shown in Eq. (3.15).  

 ( )  ∑|  |   
−     ( −    )                                                               (    )

 

   

 

 

where    is a complex factor and    is the delay time. Zimmerman (1999) proposed an adapted echo 

model that contains an additional attenuation factor. The multipath signal illustrated in Fig. 3.3.-1 is 

investigated and analyzed simply as the link with a branch that consists of three segments (1), (2) and 

(3) with the lengths L1, L2 and L3 and the characteristic impedances ZL1, ZL2 and ZL3, respectively. We 

assume that A and C are matched, which means ZA = ZL1 and ZC = ZL2. B and D are reflection points, 

with reflection coefficients r1B ,  r3B, r3D  and the transmission coefficients are denoted as t1B, t3B. With 

these assumptions, the link can have an infinite number of propagation paths due to multiple 

reflections. Each path i has a weighting factor gi, representing the product of the reflection and 

transmission coefficients along the path, with the standard condition: 
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Figure 3.3-1 One tap cable multipath signal propagation 
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Then the transfer function H(f) in the frequency range from 500 kHz to 20MHz is  expressed as: 

                  

 ( )  ∑    
−(     )     

−    
  
                             (    )

 

   

 

 

 

where N is the number of paths of propagation, 0a , 1a and k are parameters from frequency-

dependent attenuation. The relevant parameters are not derived from component properties, but 

from channel measurements, di its length and pv is the propagation speed.   

 

Figure 3.3-2 is an example of a PLC network with four paths, [Zimmerman et al., (1999), Zimmerman 

et al., (2002)] which considers the transfer function H(f) in (3.17) and uses the data in Table 3.3-1, )]. 

 

In the earlier work by Anatory et al., [Anatory et al., (2005), Anatory et al., (2007a), Anatory et al., 

(2007b), Anatory et al., (2007c), Anatory et al., (2006)], a generalized transfer function of the PLC 

channel is presented as:  
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where, NT is the total number of branches connected at the node  and terminated in any arbitrary load.  

This was achieved by letting n, m M,    ( ) and    , represent any branch number, any referenced 

(terminated) load, number of reflections (with total L number of reflections), transfer function 

between line n to a referenced load m, and the transmission factor at the referenced load m, 

respectively. 

 

 

 

 

 

 

 

Table 3.3-1 parameters of the multipath model [Zimmerman et al., (1999), Zimmerman et al., 

(2002)]. 

Path No 1 2 3 4 

Delay in μs 1.0 1.25 1.76 2.64 

Equivalent length in m 150 188 264 397 

Weighting factor gi 0.4 -0.4 -0.8 -1.5 

K=0.5 a0 = 0 a1 = 0 
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They also proposed the signal contribution factor mn  given by (3.19a), where nm is the reflection 

factor at node B, [Anatory et al., (2005)], between line n to the referenced load m. γn is the 

propagation constant of line n that has line length  ln . All terminal reflection factors PLn in general are 

given by (3.19b), except at source where L1 = s is the source reflection factor. 

 

Philipps’ measurements indicate that the impedance of the electrical loads can be described by one or 

few resonant circuits (SRC) that consist of resistance R, capacitance C and inductance L as shown in 

Fig. 3.3-3. The impedance Zs of the resonant circuit is frequency-dependent and can be described by: 

 

  ( )          
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At resonance frequency the    given by: 
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                                                                  (    ) 

 

The impedance is minimal with an imaginary part of the impedance equal to zero and a real part equal 

to R. The transfer function H(f) is: 

 ( )  
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                                                                (    ) 

 

where, Zo is the characteristic impedance of the line. 

 

And the quality factor of the resonance circuit is defined by: 
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Figure 3.3-2 Multipath model from [Zimmerman et al., (2002)] 
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where Q is a function of the width of the notch: the higher the Q, the narrower the notch. 

 

Philipps [Philipps, (1999)] describes the transfer function H(f) as the  overall function of each 

resonant circuit transfer function Hi(f), expressed as: 

 

 ( )  ∏  ( )

 

   

                                                                      (    ) 

 

Each resonant circuit is described by three parameters: resistance R, inductance L and capacitance 

C. In addition, the characteristic impedance Z has to be defined in this case, and it corresponds to 

the measurement in [Philipps, (1999)], where Z is 90 Ohm. Also in order to fit a model with N 

resonant circuits to a measured transfer function,      parameters have to be optimized. The 

author carried out the optimization by means of an evolutionary strategy. Table 3.3-2 summarizes 

the values of the parameters and the resulting resonance frequencies and Q factor by means of an 

evolutionary strategy.  Fig. 3.3-4 shows the simulation of the Philipps model. 

 

 
Figure 3.3-3 Series resonant circuit 

  

  
Figure 3.3-4 Transfer function of the series resonance model 
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 Proposed Transfer Function 3.4

 

The Philipps model was based on evolutionary strategy to get lumped circuit parameters of the SRC 

load, however, the model did not take the length of cable in consideration. 

 

The model we are proposing is based on Monte Carlo approach to get transmission line parameters as 

shown Fig. 3.1-1, to get the SRC of the load, and with cable length taking in consideration. Once we 

have all parameters of the branch, we use equations (3.20) and (3.22) to generate the transfer function 

of the transmission line using MATLAB tool. Here we consider multiple branches at a single node as 

 

 

 
Figure 3.3-5 Simulation network model 

 

Table 3.3-2 Set of parameters of series resonance circuits model 

 
No R in Ohm L in μH C in nF fres in MHz Q 

1 21.4 0.137 10.8908 4.122 0.165 

2 12.1 8.264 0.1334 4.793 20.640 

3 67.9 18.919 0.0197 8.238 14.431 

4 46.4 11.948 0.0103 14.324 23.183 

5 19.6 1.008 0.0273 30.357 9.799 

 

Table 3.3-3 Set of parameters of proposed model 

 
Branch Length in m Lm in 

μH/m 

Cm in 

nF/m 

fm in MHz Q R 

AB 70 20.692 2.635 0.596 3.6725 0.0080 

BC 10 2.668 0.4171 4.77 2.0403 0.0013 

BD 12 3.201 0.501 4.77 1.2242 0.0016 

BF 10 2.667 0.418 4.77 3.6725 0.0013 

BE 3 0.8803 0.1376 14.37 9.7673 0.00043 
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shown in Fig. 3.3-5, AB is the distributed branch from the distribution transformer to the customer’s 

pole. 

 

Here, we refer to BC, BD, BE and BF as end user branches (receivers) and the AB branch is from the 

distribution transformer (transmitter). ZoA, ZoC, ZoD, ZoE and ZoF represent characteristic impedances of 

each one of the branches and all of them are terminated by load, RC, RD, RE, and RF. AB link is the 

customer pole with 70 m, radius rm of conductor is 7 mm and the spacing between the conductors dm is 

18 mm. The end user branches are BD = 12 m; BF = 10 m; BC = 10 m; BE=3 m, radius r of 

conductor is 6.5 mm, and the space between conductors D is 17 mm. Based on Equations (3.3), (3.4) 

and (3.5) and the network parameters, we carry out the lump circuit parameters as at the customers 

end, with L= 26.677 μH/m, C =16.683 nF/m and R is given for different frequencies as summarized 

in the Table 3.3-3. As R is small compared to the resistive load terminated by each branch, we 

neglected it. 

 

We consider the network as shown in Fig. 3.3-5 from the first configuration, and Table 3.3-3. We 

observe that by varying the length of the branch, we change the position of the resonance frequency of 

the transfer function, meaning the position of the notch. The lower the length of the line, the higher is 

the resonance frequency as shown in Fig. 3.4-1 and 3.4-2. To fit our model into the existing one, we 

fixed the loads as follows: RAB = 95 Ω at distance of 35 m, RBC =20Ω at distance of 10 m, RBD = 75Ω 

at distance of 10 m, RBE=25 Ω at distance of 3.32 m and RBF = 8.4 Ω at distance of 10 m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4-1 Transfer function model 
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However there are some differences between the proposed model and Philipp’s model transfer 

characteristics. This is due to the fact that the proposed model peaks for the parallel resonance occur 

at different frequencies compared to Philipps model. For example, the peaks for the proposed model 

occur at the following frequencies:  0.5, 10 and 20 MHz and for Philipps model the peaks occur at the 

following frequencies:  7, 11 and 18 MHz. 

 

By setting the number of degrees of freedom at 42, the proposed model leads to an average root-

mean-square error (RMSE) test statistic value of approximately 3.3 dB.  
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while chi-square (  ) statistic test is given by: 
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where {            } is experiment data set; {  
    

    
     

 } is theoretical model data set. And, 

       where df is the number of degrees of freedom. The significance level used in this work is 

1%. In our case, n = 42, df = 41, then           and    statistic threshold = 74.75. 

 

 
Figure 3.4-2 Phase response of the transmission Line 
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The second configuration consists of changing the radius rm of the main cable, the space between 

conductors D and radius r at the customer end. It is observed that notches become narrow. This 

implies that the quality factor Q is lower at resonance frequencies such as at 0.5, 4.77 and 14.6 MHz 

as the loads are higher according to Equation (3.21). 

 

We vary the radius rm of the main cable, from 7 mm to 9 mm and the space between conductors D 

from 18 mm to 20 mm, at the user customer end; and radius r from 6.5 mm to 7 mm and the space 

between conductors D from 17 mm to 19 mm. Figures 3.4-3 and 3.4-4 show that the amplitude of the 

 

 
Figure 3.4-3 Amplitude response with a and D varying 

 

 
Figure 3.4-4 Phase response with r and D varying 
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notches increase, which implies that the transfer function also depends on these two parameters. 

 

For the third configuration, we vary the loads only. First of all, we increase all five resistive loads as 

follows: RAB = 350 Ω, RBC =65Ω, RBD = 80Ω, RBE=12 Ω and RBF = 30 Ω. It is observed that the 

sharpness of the curve tends to be flat as indicated in Figures 3.4-5 and 3.4-6, meaning the quality 

factor Q decreases when resistive load connected is increased. Also, the notches move backward 

compared to Philipps model. 

 

 
Figure 3.4-5 Amplitude response with resistance loads increased 

 

 
Figure 3.4-6 Phase response with resistance loads increased. 
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 Chapter Conclusion 3.5

 

Currently there is no universal model for the transfer function of the powerline as there are many 

parameters that need to be known or measured before determining the transfer function. The model 

suggested here using transmission line parameters is comparable to the SRC model of Philipps, which 

is based on the evolutionary strategy with the root mean square error of 1.62 dB. In addition, the 

model is dynamic with lengths of branches and load. The Philipps model does not give enough 

information about the influence of length on the transfer function. By setting the number of degrees of 

freedom to 42, the proposed model leads to an average RMS value of approximately 5.2 dB. With the 

same conditions, the Philipps model leads to an average RMS value of approximately 1.62 dB. In the 

next chapter, we consider the line as one single element, and its length is divided into a grid of small 

areas or scattering points with dimensions ranging from 0.5 to 3 mm. The relationship between the 

specific attenuation versus the number of branching nodes and specific attenuation versus frequency 

power laws are then determined.  
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4 Semi-empirical Model for Indoor Broadband Powerline 

Communication Channels 

 Introduction  4.1

 
In this chapter we investigate the effect of the number of branching nodes in the PLC network and 

derive a scattering distribution model for PLC channels. The model is based on the assumption of a 

randomly spread multitude of scatterers in the vicinity of the channel that only requires a sufficient 

number of impedance discontinuity points [Sabih Güzelgöz, (2011)]. We considered the line as one 

single element, and its length is divided into a grid of small areas or scattering points with dimensions 

ranging from 0.5 to 3 mm. The relationship between the specific attenuation versus number of 

branching nodes and specific attenuation versus frequency power laws are then determined. 

 Scattering Points Size Distribution for Indoor Broadband PLC Channels 4.2

 
The multipath propagation of the powerline communication channel (PLC) arises from the presence 

of several branches and impedance mismatches that cause multiple reflections. Each path comprises 

of scattering points that reflect the signal a specific number of times at specific points of discontinuity 

along its routes. In Papaleonidopoulos (2002), scattering points’ spatial allocation, by which path 

amplitude distributions and path arrival time distributions are obtained, they are shown to follow the 

lognormal distribution for different number of branches. Borrowing from those findings, in this 

chapter, a model based on the validation of the assumption of a randomly spread multitude of 

scatterers in the vicinity of the channel that only require a sufficient number of impedance 

discontinuity points is proposed [Sabih Güzelgöz, (2011)]. We considered the line as one single 

element, and its length is divided into a grid of small areas with dimensions ranging from 0.5 to 3 

mm.  

 

However, the power cable structure of an electric power network is designed and optimized primarily 

for 50 or 60 Hz, and not as a communication medium at high frequency (HF). Furthermore, its 

transfer properties display considerable variation across the HF band [Papaleonidopoulos (2002), 

Malack (1976)]. First, wave propagation techniques through the use of distributed-element 

transmission line models are required in order to explain HF signal propagation over powerlines, as 

corresponding wavelengths are comparable to distances usually found within indoor grids [Malack 

(1976)]. Secondly, due to the variation of the loads, indoor electric power networks show certain 

time-variance, which is well dominated by wave propagation principles rather than those of classical 

circuit types [Papaleonidopoulos (2002)]. 

Chapter Four 
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Several reflections are caused by the joints of the network’s cables, connection boxes, serial 

connections of cables with different characteristic impedances, and in general, points of discontinuity, 

due to impedance mismatches that occur [Zimmermann (1999), [Philips (1999)], and these can be 

generally referred to as “scatterers”. Multipath propagation constitutes the principal broadband signal 

transfer mechanism over electric power network, by virtue of which the PLC channel links are 

characterized as strongly fading channels [Zimmermann (1999)]. Therefore, each path comprises of 

signals that are reflected at specific number of times at specific scattering points of discontinuity 

along its routes.  

 

4.2.1  Multipath Propagation Model 

 
Papaleonidopoulos (2002)’ proposed assumptions based on indoor electric network’s topology are 

adopted with regard to scattering points’ special allocation, by which path amplitudes are 

demonstrated to follow the lognormal distribution. Verification of the statistical modeling is 

established, involving path inventory through simulations. 

 

The path amplitude distribution within a group k is given as the function of the random variable    

that displays the normal distribution according to Papaleonidopoulos (2002),  and forming the arrival-

time sequence set (            
), of the channel considered. The channel response is given by: 

 

  ( )  |  |   
−                                                                                      (   ) 

 

 

where |  | is a constant. As the path amplitude of each group is exponentially dependent on a 

normally distributed random variable, it therefore follows the Log-normal distribution, having the 

mean parameter equal to (     |  |), and the variance equal to   
 . The corresponding probability 

density function (PDF) is given by: 
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And forming the amplitude sequence set of the channel, as considered in Papaleonidopoulos (2002), 

given by: 
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The transmission of an impulse  ( ) through a multipath environment with L paths results in a train 

of delayed impulses [Papaleonidopoulos et al., (2003)] given by:  

 

 (    )    ∑   
     −     (     )

 

   

                                        (   ) 

where, 

    
  
 
 

  
 / 

                                                                                    (   ) 

 

 (   
   ) is reflection factor of the ith path, given by: 

 

   
    ∏    ∏    

  

   

  

   

                                                              (   )   

 

where         present the number of reflection and transmission coefficients included in path ,     is 

the path’s length and   is the group velocity of propagation,         represent transmission and 

reflection coefficients, respectively. With this observation, the transmission characterization along the 

direct path (   ) is essential for understanding the first arrival path. 

 

We note here that the reflection factor of the first arrival path is composed of only the transmission 

coefficients experienced along the direct path stemming from the impedance discontinuities at the 

branching nodes. So, calculating it is sufficient in order to characterize the reflection factor of the first 

arrival path. 

 

  

Figure 4.2-1 PLC channel network analysis 
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Figure 4.2-2 Reflection and transmission at a branching node. 

 

Also, we can have it in equivalent frequency response, [Papaleonidopoulos et al., (2003)], expressed 

as:                                 

 ( )    ∑   
     −     −     

 

   

        

(4.7) 

   ∑   
     −   

 

   

               

where,   is the propagation coefficient. 

 

Figure 4.2-1, shows the direct propagation path between the transmitter and the receiver operating on 

a PLC channel system that consists of several branching nodes denoted by   . These branches 

extending from each branching node may be terminated by an electrical load or lead to another 

branching node depending upon the network structure. 

 

In transmission line theory, reflection and transmission coefficients at a branching node are expressed 

by considering parallel connections of extended branches as follows [Lindell, (2001)]: 

 

  
(  //   //  )    
(  //   //  )    

                                                    (   ) 

 

where    is characteristic impedance of the incident signal and    is characteristic impedance of 

branching node. If all branches are equal to each other (  ), Eq. 4.8 can be expressed as: 

 

  
   

 
    

 

 
                                                              (   ) 

 

where   refers to the total number of branches extending from a particular branching node as shown 

in Fig. 4.2-2. Referring to Fig. 4.2-1, and assuming that the transmitter and the receiver are matched to 
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the impedance of the corresponding characteristic impedance of the cable for the sake of simplicity, 

   
    is composed of multiplication of   transmission coefficients as follows: 
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where   (         ) is the number of paths extending from a branching node, including the path 

on which the incident signal propagates. Note that the phase term   of the reflection factor is 0 for this 

particular case since    cannot be a complex number (   
      ). 

 

Equation (4.10) can be expressed as: 

    (|  |)       ∑                                                      (     )

 

   

 

 

whre Y is an RV with the following mean,   and variance,   : 
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where n is used to refer to both the branching node itself and the number of the branches extending 

from it. The mean and variance as shown in Fig. 4.2-2 are related to the number of branching nodes 

with the following two equations: 

 

                 −                                              (      ) 
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To confirm that a branching occurs at the nodes,   and   must be greater then or equal to three (3). 

Putting this statement into consideration, we arrive at the conclusion that, [Güzelgöz et al., (2011)]: 

  
  

     
  

  

(   ) 
                                                  (     ) 

 

Having a homogeneous PLC channel medium is physically very difficult even though the same type 

of cable is used throughout the network due to the variety of factors that affect the characteristic 

impedance. 
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In this chapter, we consider the line as one single element, and its length is divided into a grid of small 

areas with dimensions range from 0.5 to 3 mm as in Figure 4.2-3. Thus, each small area transmits an 

echo and the forward scattered response gets to the receiver. With this approach, specific attenuation 

can be determined using Olsen’s model for specific attenuation. In this case, the number of branching 

nodes is considered like rain rate and raindrops are presented by small areas. This analogy is 

presented in Figure 4.2-3 below. 

4.2.2  Scattering Points Approximation Model 

 
In this section, we propose the lognormal distribution model for scattering points that involve nodes 

and number of the branching nodes in the channel of the transmission line that we will later use in the 

next section, with the Mie scattering theory in order to determine the specific signal attenuation in the 

network.  

 

 
 

Figure 4.2-3 Variance and mean of Y with 𝑍𝑜      𝑎𝑛𝑑 𝑑𝑒  𝑈         ] 

 

 

 

Figure 4.2-4 Indoor PLC channel model 
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The efficiencies    for the interaction of radiation with a sphere of radius a are cross sections    

normalized to the geometrical particle cross section,        where i stands for extinction (  

   ), absorption (     ), and scattering (     ). Energy conservation requires that [Mulangu, 

(2009), Mätzler, (2002b), Bohren, (2004)]: 
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The key parameters for Mie calculations are the Mie Coefficients    and    required to compute the 

amplitudes of the scattered field.  The index n  runs from 1 to  , but the infinite series occurring in 

Mie formulas can be truncated at a maximum     , given in Bohren, (2004): 

 

          /                                                                              (    ) 

 

This value is used in this computation. The size parameter is given by kax  . 

In [Papaleonidopoulos (2002), Sabih Güzelgöz (2011)], the estimation of the path amplitude 

distribution is done using Log-normal distribution with two parameters,    and  . In our current 

model, we included a third parameter    as in equation below: 
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where    is the number of impedance discontinuity points. The independent input,    is the mean 

diameter of the small area. The input parameters        and   are obtained by using Monte Carlo 

simulations with corresponding branching nodes ( ) to yield the following set of expressions: 

 

      
                                                                 (     ) 

 

                                                      ( )                                                     (     )    
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          ( )                                                     (     )  

 

where                and    all represent the regression coefficients of input parameters 

corresponding to the Log-normal model. Table 4.2-1 shows the applied regression fittings for the 

proposed lognormal model, according to the input parameters for the number of branching nodes as 

described in (4.21). We note that the fitted results of the values    show dependency to the number of 

branching nodes ( ). Figures 4.2-5 to 4.2-9 show the small areas scattering distribution  models 

developed for PLC channel for different number of branching nodes ( ):                 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2-5 Scattering point size distribution for PLC channel with twenty branching nodes 

 

 

Figure 4.2-6 Scattering point size distribution for PLC channel with ten branching nodes 
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The small areas scattering distribution and probability density distribution in the indoor single-phase 

networks show that there are more scattering points at lower diameter sizes where the mean peak 

diameter is about 0.8 mm. This implies more signal reflections in this range of diameters. This would 

imply that in this range of diameters more signal attenuation will occur. The results show that the 

distributions do not depend on indoor network topology. Also, the results obtained will be used 

together with Mie scattering to determine the attenuation constant for the PLC channels. 

 

 

Figure 4.2-7 Scattering point size distribution for PLC channel with fifteen branching nodes 
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Figure 4.2-8 Scattering point size distribution for PLC channel with four branching nodes 

 
Table 4.2-1 Model parameters 

 

                  

73.1 0.285  -0.479 0.003 0.072 0  

 

 

 
 

Figure 4.2-9 Probability density function of scattering points for PLC channel 
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 Estimation of Specific Attenuation due to Scattering Points for Broadband PLC 4.3

Channels 

 

In Subsection 4.2.2, we have studied Mie scattering theories as applicable to branching nodes in order 

to determine the attenuation in PLC channels and a power law model is proposed where only the 

number of branching nodes is needed to estimate the specific attenuation. 

 

The low voltage (LV) power network is a new option for providing access for high-speed 

communications. This option supports the concept of broadband powerline communications (PLC). 

With this system, it is possible to build an in-house communication network or access the internet in a 

very cost-effective way. 

 

In this section, we investigate the effect of the number of branches and the numbers of reflections that 

occur at each node. The Mie scattering theory is then applied to the nodes in the network to determine 

the resulting specific signal attenuation in the network. The frequency of interest ranges between 10 

MHz and 100 MHz. 

4.3.1  Specific Attenuation Model and Optimization 

 

The amplitude of an electromagnetic wave travelling through a volume, containing N identical 

scattering particles with diameter D, at any distance  , decreases by the factor of  −  . The attenuation 

coefficient   is given by: 

 

          ( )                                                                 (    ) 

 

The attenuation of the wave is then given in dB as follows: 

 

         
 

 −  
                                                       (    ) 

 

and the specific attenuation in dB/km is given by: 

 

                                                                          (    ) 

 

     /  ]           ∫  ( )    ( )                           (    )

 

 

 

 

 From Mätzler (2002b) and Mulangu et al., (2009) the expression in (4.25) is given as:     
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     /  ]       ∫    ( )    ( )                                  (    )

 

 

 

4.3.1.1  Optimization of the Estimated Model 

 

The specific powerline attenuation model is formulated based on the Log-normal distribution model 

discussed in Subsection 4.2.2 of this work. Ahola et al., (2002) and Ahola, (2003) presented a formula 

for the specific attenuation as a function of frequency using the power curve fitting algorithm. 

 

Figures 4.3-1 and 4.3-2 below show the specific powerline attenuation models calculated from 

theoretical model, Ahola model and the scattering model. In Fig. 4.3-1 and 4.3-2 where there is no 

branching node, at 10 MHz, the theoretical model gives the highest attenuation values for frequencies 

up to 88 MHz. The scattering model is seen to give lower attenuation at lower frequencies, but 

increases rapidly at frequencies above 88 MHz.  This behavior is due to the fact that Mie scattering is 

not accurate at lower frequencies. 

4.3.1.2 Power Law Model for Specific Powerline Attenuation 

 

Figure 4.3-3 below shows the specific powerline attenuation models calculated from theoretical model 

with 4 mm diameter and optimized model. The estimated model is given by:  

 

     −                                                           (    ) 

 

where f is the frequency in MHz. 
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Figure 4.3-1 Comparison of estimated specific attenuation model for PLC channel 

  

 
 

Figure 4.3-2 Regression fitting for specific attenuation in dB. 

The root-mean-square error (RMSE) test and the chi-square   statistic test are used to optimize the 

proposed model. The expressions for the two are given in Equations (3.25) and (3.26) respectively. 

 

In the case of    , (N-1) degrees of freedom are applied to determine the significance level of the 

preferred model. The significance level used in this work is 1%. The RMSE indicates the deviation of 

the proposed specific attenuation model from theoretical model. Therefore, the model with the least 

the error is fitted. On the other hand,    indicates the closeness of the proposed specific attenuation 

model with the theoretical model. 

 

y = 0.0008x0.9601 
R² = 0.9511 

0.001

0.01

0.1

10 20 30 40 50 60 70 80 90 100

Sp
e

ci
fi

c 
A

tt
e

n
u

at
io

n
 (

1
/m

) 

Frequency (MHz) 

Ahola Model

Theoretical Attenuation

Scattering Model

Estimated Model

y = 0.0067x0.9601 
R² = 0.9511 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

Sp
e

ci
fi

c 
A

tt
e

n
u

at
io

n
 (

d
B

/m
) 

Frequency (MHz) 

Ahola Model

Scatterng Model

Theoretical Attenuation

Estimated Model



 Channel Characterization for Broadband Power Line Communications  

 

60 

 

In this work, as shown in Fig. 4.3-5 and Fig. 4.3-6, with 30 degrees of freedom, the    equals      

with the threshold value given as 37.566 at 1% significance level. With the same degrees of freedom, 

the RMSE is 0.078 dB/m.  

 

From Fig. 4.3-4 and 4.3-7 and Table 4.4-1, the specific attenuation is reported for different number of 

branching nodes.  However, the specific attenuation is not linear due to the fact that the dielectric 

characteristics and the skin effect decrease at frequencies above 1 MHz. Conductance of the cable is 

also nonlinear as it is directly affected by both the dielectric characteristics and the skin effect. The 

nonlinearity of resistance and conductance of the cable cause the specific attenuation to be nonlinear 

as a function of frequency.  

 

 

 

Figure 4.3-3 Optimized model for specific powerline attenuation. 
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Figure 4.3-4: Model for 4 and 6 branching nodes at 10-100 MHz. 

 
 

 
 

 

Figure 4.3-5: Models for 5 and 10 branching nodes at 10-100 MHz. 
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Figure 4.3-6: Models for 13 and 21 branching nodes at 10-100 MHz. 

 

 

 
 

Figure 4.3-7: Models for 4 and 8 branching nodes at 10-100 MHz. 
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where   and   are coefficients to be determined and   is the numbers of the branching nodes. Figures 

4.3-8 to 4.3-10 below show the specific powerline attenuation models calculated from scattering 

models using a different set of frequencies. In Figure 4.3-8 where the frequencies used are 10, 16.7 

and 21.7 MHz, respectively, the number of the branching nodes   is employed in the estimation of   

and   through a regression fitting procedure. It is observed that the fitted model has a high coefficient 

of goodness (       ) indicating a good fit to proposed model. We found          and 

         for 10 MHz;          and          for 16.7 MHz;          and          

for 21.7 MHz. Table 4.3-2 summarises the results of the regression coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3-2 Power law attenuation parameters for different frequencies. 

 

Freq(MHz) 10  16.7 21.5  27.8  35.9 46.4  59.9  77.4 100  

  0.0023 0.0074 0.0133 0.0237 0.0385 0.0768 0.1398 0.2582 0.491 

  0.9689 0.9765 0.9781 0.9877 0.0403 1.013 1.0322 1.0559 1.0762 

   0.9859 0.9863 0.9867 0.9871 0.9847 0.988 0.9887 0.9891 0.9888 

 

 

Table 4.3-1 Attenuation parameters for different number of branching nodes at 10 – 100 MHz. 

 

Number of the  

Branching 

nodes  

 

Model 

 

Parameters Coeff. of goodness 

R
2
 

 

2 
𝑎  86x10

-4
  

0.974 k 0.9615 

 

4 
𝑎  95x10

-4
  

0.974 k 0.9094 

 

5 
𝑎  93x10

-4
  

0.9884 k 0.9298 

 

6 
𝑎  92x10

-4
  

0.9892 k 0.9546 

 

8 
𝑎  101x10

-4
  

0.9705 k 0.9927 

 

10 
𝑎  204x10

-4
  

0.9664 k 0.9044 

13 𝑎  198x10
-4

  

0.9609 k 0.9609 

21 𝑎  233x10
-4

  

0.9652 k 0.9918 
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Figure 4.3-8 Specific attenuation at 10, 16.7 and 21.5 MHz with number of branching nodes 

 
 

 
 

Figure 4.3-9 Specific attenuation at 27.8, 35.9 and 46.4 MHz with number of branching nodes 
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Figure 4.3-10 Specific attenuation at 59.9, 77.4 and 100 MHz with number of branching nodes 

 

 

 Phase shift Due to Number of Branching Nodes in the PLC Channels 4.4

 
The phase shift model is formulated based on the propagation constant discussed in Section 2.4 of this 

work. The propagation constant as given in Equation (2.10) can also be expressed as: 

 

))(( CjGLjRj                                               (4.29) 

 

Branching nodes induce phase shift (deg/m) in the channel. Oguchi (1966) earlier proposed that the 

expression for the propagation constant can also be modeled using Mie scattering as given in Equation 

(4.30): 

 

  
  

  
∫  ( ) ( )    

 

 

                                          (    ) 

 

where,  ( ) is the scattering amplitude function of a scatterer with diameter D in the forward 

directions and    is the free space wave number. And later on, Oguchi (1981) derived the attenuation, 

  in dB and phase shift,   in degrees as: 
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   (  )                                                     (    ) 

 

where   is the propagation path length. 

 

In practical applications, it is necessary to express attenuation and phase shift by an approximate 

power law or linear law in the frequency range. This is given as: 

 

        
                

                                          (    ) 

 

where                and   are parameters that depend on scattering point distribution, the reflective 

index of wire and temperature. The parameters                and   in Equation (4.33) were 

determined using  power regression between the specific attenuation, specific phase shift and 

frequency at a fixed number of branching nodes, as shown in Fig. 4.4-2 to 4.4-6, where    is zero in 

the frequency range of 10 to 100 MHz. Table 4.4-1 summarizes the phase shift parameters for 

different number of  branching nodes. 

 
 

Figure 4.4-1 Specific Phase shift for scattering points (2 branching nodes) using lognormal 

distribution.  
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Figure 4.4-2 Specific Phase shift for scattering points (8 branching nodes) using lognormal 

distribution 

 

 

 

 

  
 

Figure 4.4-3 Specific Phase shift for scattering points (15 branching nodes) using lognormal 

distribution 
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Figure 4.4-4 Specific Phase shift for scattering points (20 branching nodes) using lognormal 

distribution 

 

 
Figure 4.4-5 Specific Phase shift for scattering points (8 branching nodes) using lognormal 

distribution 

 

Fig. 4.4-6 shows specific phase shift as function of branching nodes. The phase shift decrease as 

branching nodes increase. 
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Figure 4.4-6 Phase shift for scattering points using lognormal distribution 
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Table 4.4-1 Phase Shift parameters for frequency range of 10-100 MHz 

Number of the  

Branching 

nodes  

 

Model Parameters 

 

Coeff. of goodness 

R
2
 

 

2 

β0 -0.025  

1 𝜀 0 

β1 -0.3 

 

4 

β0 -0.52  

1 𝜀 2.7 

β1 -0.63 

 

5 

β0 -0.4  

0.99 𝜀 0 

a1 -0.219 

 

8 

β0 -0.11  

0.98 𝜀 0 

β1 -1.3 

 

15 

β0 -0.21  

0.99 𝜀 0 

β1 2.5 

 

20 

β0 -0.25  

0.99 𝜀 0 

β1 -3.1 
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 Frequency Response for PLC Channel 4.5

4.5.1.1 ABCD Parameters of the Network 

 

The two-wire transmission line can be modeled as two-port network using ABCD parameters as 

shown in Fig. 4.5-1, [Starr et al., (1999)]. The ABCD parameters can be expressed in the following 

matrix relation in order to satisfy the port voltage and current dependency on the source and load 

impedances, as: 

 

[
  
  
]  [

  
  

]  [
  
  
]                                             (    ) 

 

 
In the case of a cascade of two-port networks, as shown in Fig. 4.5-2 below, the ABCD parameters of 

this network will be the matrix multiplication of ABCD matrices for each individual two-port network 

as expressed in Equation (4.35) below: 

 

[
  
  

]  [
    

    
] [
    

    
]                                     (    ) 

 
Figure 4.5-1: Two-port network model of two-wire transmission line 

 

 

 

  
 

Figure 4.5-2: A Cascade two-port networks model of two-wire transmission line 

 
 

The transfer function of the network in Fig. 4.5-1 and Fig. 4.5-2  using the ABCD model can be calculated by 

      ⁄ . The fact that         ⁄  as in Fig. 4.5-1, means that the transfer function can be expressed as: 

 

  
  
  

 
  

               

                                    (    ) 
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The ABCD matrix for a transmission line with characteristic impedance of    and propagation constant of   and 

a length of   can be expressed as: 

 

[
  
  

]  [
     (  )        (  )

  −      (  )      (  )
]                             (    ) 

 

4.5.1.2 Simulation of a Segmented Transmission Line 

 
The chain matrix theory was used to compute the transfer function of transmission lines since the 

analytical models of attenuation constant and phase constant were derived from Sections 4.3 and 4.4. 

The transmission line channel with two branching points as shown in Fig. 4.5-3, and the segmented 

piece of the cable is modelled as a four terminal network represented by an ABCD matrix as shown in 

Fig. 4.5-4 and Fig. 4.5-5. The parameters  ,  ,   , and    in Fig. 4.5-5 corresponding to the 

transmission line segments (1),(3), and (5) are the four terminal constants of the transmission matrix 

expressed as: 

 

[
    

    
]  [

   ℎ        ℎ   
  −    ℎ   

]                                 (    ) 

 

where, ,   is the propagation constant,    is the length of the i-th cable, and    is the characteristic 

impedance. The transmission matrix of the branch cables (2) and (4) is given as: 

 

 [
  

   ⁄  
]                                                                (    ) 

 

Where    is the equivalent impedance of the bridge tap, given by: 

 

      
         (  )

          (  )
                                                          (    ) 

 

 

 
Figure 4.5-3: Network configuration for two-wire transmission line 
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Figure 4.5-4: Network configuration for two-wire transmission line equivalent  

 

 

 
Figure 4.5-5: Network configuration for two-wire transmission line as ABCD matrix 

 

 
Figure 4.5-6: The frequency response of a 40 m two-wire tansmission with two-branch of length 5 m each 

terminated by a load of 50Ω. 
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Figure 4.5-7: The frequency response of a 40 m two-wire tansmission with two open-circuited branches of 

length 5 m each. 

 

 
Figure 4.5-8: The phase shift of a two-wire tansmission with two open-circuited branches of length 5 m each. 

 

 

Therefore, the ABCD matrix of the network denoted by [T], is given as 

 

 

  ]  ⌊
    

    
⌋ [

  

   
( )⁄  

] [
    

    
]  [

  

  
( )

 
] [
    

    
]           (    ) 

 

 

And the equivalent to the transfer function of the network is the reciprocal of A in [T], [Tsuzuki et al., 

(2002)]. Fig. 4.5-6, 4.5-7 and Fig. 4.5-8 show the simulation of transfer function and phase shift of 

two-wire transmission line with segments (2) and (4) terminated by  50 Ω each by the using two-port 
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network modeling in MATLAB. The input parameters in Fig. 4.5-6, Fig. 4.5-7 and Fig. 4.5-8 are the 

characteristic impedance     and the propagation constant   which are used to describe a transmission 

line. The analytical models of the attenuation constant   and the phase constant   are derived in 

Sections 4.3 and 4.4 while    is derived in Section 3.2. For the topology in Figure 4.5-3, which has 

two branching points or taps, the following parameters were used: 

 

                              −          and                .                                             (4.42) 

 

 Chapter Conclusion 4.6

 
There are a lot of factors that influence the reliable communication of high-speed data in single-phase 

LV networks. Among these factors, the distribution of scattering points that lead signal attenuation is 

the main one, which must be studied extensively.  

 

In Section 4.2, an analytical model of scattering size distribution and probability density distribution 

in broadband PLC channels is presented. The analysis performed show that there are more scattering 

points at lower diameter sizes of branches in indoor networks where the peak is reached at a mean 

diameter of 0.8 mm, which implies more reflections of the signal. In fact, there is extensive coupling 

and uncoupling of appliances connecting to the branches of this mean diameter in indoor single-phase 

networks. But on the high diameter range (above 2 mm), scattering points are smaller and the 

reflection is less. Also, the results show the independency of the distributions towards the indoor 

network topology. 

 

In Section 4.3, a specific attenuation model of a powerline network using Mie scattering theory was 

developed at the nodes where mismatch occurs. The proposed model was estimated for different 

number of branching nodes. By using the frequency range of 10 MHz to 100 MHz, we compared the 

proposed model with the theoretical attenuation. The results showed that the proposed model 

underestimates the attenuation at the frequencies below 20 MHz and overestimates the attenuation 

value at the frequencies above 50 MHz compared to the theoretical attenuation. Also, we developed a 

power law model that relies on the knowledge of the number of branching nodes in the network and 

thus, the attenuation can be predicted from this model. We also investigated the phase shift that occurs 

in the PLC channel due to a varying number of branches. Finally, the analytical models of the 

attenuation constant   and the phase constant   are derived in Sections 4.3 and 4.4 and    derived in 

Section 3.2, were used  in the two-port model in order to simulate the channel frequency response. In 

Chapter five, channel measurements are done to ascertain the accuracy of the models developed. 
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Chapter Five 

5 Channel Model Validation Using Measurements 

 Introduction 5.1

The measurements were carried out with an oscilloscope, vector analyzer and a function generator. To 

protect the sensitive equipment from the damaging 220 V / 50 Hz signal used for power distribution, 

passive coupling circuits were used. A schematic of the setup is shown in Figure 5.1-1. 

 

Function generator
Coupling 

circuit
PLC Channel Oscilloscope

Vector analyzer

Coupling 
circuit

 
Figure 5.1-1 Schematic diagram for measurements. 

 

 
 

Figure 5.1-2 System setup for measurements 

 

  Measurement Devices 5.2

5.2.1  Network Analyzer  

 
This piece of equipment is needed to analyze open, short-circuit and load impedances at different 

frequencies while connected at selected powerline network configurations. The Rohde & Schwarz 
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ZVL13 Network Analyzer was used. This is a general-purpose network analyzer with comprehensive 

functionality to support network and impedance measurements for electronic devices from LF to RF, 

with the following characteristics:  

 Frequency range of 9 kHz to 13.6 GHz  

 50 ohm S-parameter test set  

 Output Power: -27 dBm / 20 V DC  

  

5.2.2  Oscilloscope  

 

This scope enables us to analyze the signal and noise in the time domain as a time series. The 

oscilloscope used was the Tektronix TDS2024B Oscilloscope with the following characteristics; 

 200 MHz, 4 channels  

 2GS/s Real time  

 2.5K Record Length 

 Color or Monochrome LCD Display  

 Removable Data Storage using the Front-panel USB Port 

 Seamless PC Connectivity through the USB Device Port, with Open Choice
®
 and NI Signal 

Express
®
 PC Software 

 Advanced Triggers including Pulse Width Trigger and Line-selectable Video Trigger 

 FFT Standard on All Models 

 12 Automatic Measurements 

5.2.3 Signal Generator  

 
The signal generator was used as our signal source during testing. The TEKTRONIX - 

AFG3102 - FUNCTION GENERATOR, ARBITRARY was used. This signal generator has 

the following characteristics: 

 FUNCTION GENERATOR, ARBITRARY 

 Signal Generator Type: Arbitrary, Function 

 Bandwidth: 100MHz 

 Modulation Type: AM, FM, FSK, PM, PWM 

 Supply Voltage Range: 100V to 240V 

 External Height: 156.3mm 

 External Width: 329.6mm 

 External Depth: 168mm 
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 Plug Type: Euro, UK 

 Series: AFG3000 

 Sweep Rate Range: 1Hz to 50MHz lin/log 

 Measurement Techniques 5.3

 
A series of input impedance measurements was carried out for two PVC flexible low voltage power 

cables. The type of cable under consideration is generally used in building wiring in South Africa as 

shown in Fig. 5.3-1. The measured cables type was CABTYRE CABLE- FLEXIBLE WIRING 

CABLE (300/500 V) and the dimensions of the cables are:            and             . 

The longest cable was 100 m and its diameter was 3.0 mm, and the shortest cable was 50 m and 

diameter was 2.0 mm. In order to determine the characteristic impedance of transmission line cable 

from measured data, the input impedance was measured when the cable end was opened-circuited and 

then when it was short-circuited. 

  

 

 
Figure 5.3-1: PVC insulated flexible cable. 

5.3.1  Input Impedance Measurements 

 
The characteristic impedance of a transmission line is determined by performing two input impedance 

measurements. The input impedance has to be measured when the cable end is open and short-

circuited. When the cable end is short-circuited, the voltage at the end is zero and when the cable end 

is open, the current at the end is zero.  The network analyzer used can only measure the scattering 

parameters (S) that are then converted to impedance parameters (Z). The measurement scheme is 

shown in Fig.5.3-2. 
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R&S ZVL13

R&S NETWORK ANALYZER ZVL13

20 nF
20 nF 20 nF

20 nF

BNC to BNC Cable

BNC to BNC Cable

CABTYRE CABLE- FLEXIBLE WIRING CABLE (300/500 V) 

1:1  (50 Ω
)

1:1  (50 Ω
)

 

Figure 5.3-2: Measurements setup using network analyzer. 

 

 
The voltage ratio   (A port of the network analyzer) to    (Reference port) is given as: 

 

  
  

 

 
         

             

  
         

          

                                                  (   ) 

 

Since    is the output and input impedance of the network analyzer,   = 50Ω. Then         is given 

by: 

  

        
     
     

                                                                       (   ) 

 

If        then    is zero and so            

So   

    
  
  

|
     

                                                               (   ) 

 

So when        then input impedance    |              , therefore: 

 

    
      
      

                                                                  (   ) 

Which implies that: 
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                                                            (   ) 

 

Table 5.3-1 shows the sample of the measurement parameters. We measured the magnitude and angle 

of     for open and short circuit, both in dB and linear. We also measured the imaginary and real parts 

of the same.  

 

Table 5.3-1: Measured     data 

 

Freq 
[MHz] 

S11[SClin] S11[SC°] S11[OCRe] S11[OCIm] S11[OC°] S11[OC Lin] 

10 0.230767 -7.99596 0.133493 -0.17636 -52.6315 0.221684 

10.45 0.250235 -17.8383 -0.08895 -0.13262 -123.684 0.160586 

15.4 0.291987 -32.6099 -0.07213 0.01488 170.0826 0.074046 

19.45 0.320258 -51.7511 -0.02053 -0.04353 -117.996 0.048313 

23.05 0.354855 -58.8807 -0.05027 -0.00473 -175.582 0.050496 

26.65 0.397986 -76.1365 -0.02213 0.0305 126.9319 0.041109 

33.4 0.513416 -120.282 0.025434 -0.0041 4.317777 0.018785 

40.15 0.476296 -152.948 0.006563 -0.00129 -18.3872 0.008526 

50.05 0.573068 151.2981 -0.00479 -0.00906 -107.718 0.010949 

60.4 0.607185 94.37352 -0.01316 0.008199 152.8286 0.017771 

70.3 0.66437 44.60826 0.007233 0.00182 8.467035 0.008014 

80.2 0.651217 -8.22218 -0.00121 0.002935 151.5859 0.001023 

90.1 0.714541 -45.9243 0.072786 -0.06753 -37.535 0.086602 

100 0.773982 -98.3332 -0.0071 0.00282 178.9864 0.006776 

 

In Figure 5.3-3, we consider the 100 m of cable lengths with cross-section of 4 mm
2
 and without 

branching nodes. We first measured the propagation speed in the transmission line terminated by 

equivalent impedance to characteristic impedance, (Z = Z0 = 50 Ω) at 100 MHz as shown in Fig. 5.3-2 

below. The measured time difference    between the sending end and the receiving end of the sine 

wave signal was 750 nS. The snapshot in Figure 5.3-3 below shows the sending end and the receiving 

end of the signal. The trigger holdoff was set at 500 nS. The corresponding propagation velocity is 

given by: 

 

   
 

  
 

    

      −   
         

 

 
                        (   ) 

 

where,   is the length of the transmission line cable. The propagation velocity can be also written as 

function of the speed of light   as        
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Figure 5.3-3: Measurement set up of the propagation speed of transmission line 

 

 

 
 

Figure 5.3-4: Snap shot of the sending end (yellow) and receiving end (blue) of the signal in a 100 m long 

transmission line 

 

The complex input impedance          for the cable with length L, is given by: 

 

              ℎ(  )                                                         (    )


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


 

Figure 5.3-5: Net input impedance measured when the cable end is open-circuited as a function of 

frequency in the range of 10 – 100 MHz. 

 

 
 

Figure 5.3-6: Complex input impedance measured when the cable end is open as a function of 

frequency in the range of 10 – 100 MHz. 

 

 
Similarly, when the end of the cable is short-circuited, which means,     , the equation for the 

input impedance          is given by: 

 

               (  )                                                                   (   ) 
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Figure 5.3-7: Input impedance measured when the cable end is short-circuited as a function of 

frequency in the range of 10 – 100 MHz. the length of the cable is 100 m. 

 

 
 

Figure 5.3-8: The real (continuous) and imaginary (dashed) of input impedance measured when the 

cable end is short-circuited as a function of frequency in the range of 10 – 100 MHz; the length of the 

cable is 100 m. 

 
The equation for the characteristic impedance is combining Equations 5.7 and 5.8: 
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Figure 5.3-9: Characteristic impedance of the cable as a function of frequency in the range of 10 – 100 MHz; the 

length of the cable is 100 m. 

 

 

 
 

Figure 5.3-10: Phase of the characteristic impedance of the cable as a function of frequency in the range of 10 – 

100 MHz; the length of the cable is 100 m. 

 

From Figures 5.3-3 to 5.3-5, we observe that at the cable end there is impedance mismatch. In these 

figures, there are repeated notches at lower frequencies up to about 55 MHz. In Figure 5.3-3, we 

observed local peaks along all of frequency range of interest. The maximum impedance value is 14 Ω 

at 10 MHz while the minimum value is 0 Ω at 80 MHz in Fig. 5.3-5. In Figure 5.3-7, the impedance 

increases with frequency, it gets the maximum of 399 Ω and the minimum of 70 Ω. In Fig. 5.3-5, the 

effects of the impedance mismatch, which causes multiple reflections in the cable, can be seen. In the 

characteristic impedance graph, there are recurring notches and peaks. At the impedance peak, the 
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cable behaves like a parallel resonance circuit and at the impedance minimum, it behaves like a serial 

resonance circuit. For a lossless cable, there is infinite input impedance when the cable is in parallel 

resonance and zero when the cable is in serial resonance. The input impedance phase at resonant 

frequency is always zero while it is hundreds of ohms in parallel resonance, when the signal 

frequency is low. The peaks get less pronounced as the signal frequency increases up to 80 MHz then 

increases sharply up to the maximum of 38 Ω at 92 MHz. This implies that as the frequency is 

increased, the cable losses increase proportionately. If the cable was infinitely long, at high 

frequencies, the signal would be reflected back and attenuated completely due to impedance mismatch 

in the cable end before reaching the sending point again.  

 

Figure 5.3-11 shows a 40 m transmission line with diameter of 2.0 mm, with two 5 m branches. 

During the measurement, the cable was matched with a characteristic impedance ZL = 50 Ω. 

 
When the load,      is not connected and the end of the cable is opened,           can be written using 

Equation (5.1). Fig.5.3-12 below shows the relationship between          and the frequency.  The 

maximum value of the open circuit impedance is 11 Ω at 10 MHz while the minimum value is 0 Ω at 

80 MHz. Fig. 5.3-13 shows the real and imaginary parts of the input impedance. At lower frequencies, 

both component of impedance are highly varying but stabilizes at 40 MHz and beyond.   

 

 
Figure 5.3-11: Network configuration  

   

 

 

 

 

 

 

 

 

 

 

 

 



 Channel Characterization for Broadband Power Line Communications  

 

89 

 

 

 
 

Figure 5.3-12: Input impedance measured when the cable end is open as function of frequency in the 

range of 10 – 100 MHz; the length of the cable is 40 m with bridge taped with 5 m branch each. 

 

 

 
 

Figure 5.3-13: Input impedance measured when the cable end is open as function of frequency in the 

range of 10 – 100 MHz; the length of the cable is 40 m with bridge taped with 5 m branch each. 

 
Similarly, when the end of the cable is short-circuited, this means,      , the equation for the input 

impedance          given in Equation (5.2) above. Figure 5.3-14 below shows the relationship 

between            and the frequency. The input impedance short-circuited is 280 Ω at the maximum 

at 73 MHz and 60 Ω as the minimum at 10 MHz. Figure 5.3-15, shows the complex input impedance 

where repeating notches and peaks are observed over the frequency range of interest.  
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Figure 5.3-14: Input impedance measured when the cable end is short-circuited as a function of 

frequency in the range of 10 – 100 MHz; the length of the cable is 40 m with bridge taped with 5 m 

branch each. 

 

 

 
 
Figure 5.3-15: The real (continuous) and image (dashed) of input impedance measured when the cable 

end is short-circuited as function of frequency in the range of 10 – 100 MHz; the length of the cable is 

40 m with bridge taped with 5 m branch each. 

 

Then    is determined by using the expression in Equation 5.3 and Figure 5.3-16 below shows the 

relationship between     and the frequency. In the characteristic impedance graph, the peaks get less 

pronounced as the signal frequency increases, the maximum of 40 Ω in the range of 12 to 15 MHz 

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

Im
p

u
t 

Im
p

e
d

an
ce

 S
h

o
rt

 c
ir

cu
it

  (
Ω

) 

Frequency  (MHz) 

-400

-300

-200

-100

0

100

200

300

400

10 20 30 40 50 60 70 80 90 100

Z1
1

 S
h

o
rt

 c
ir

cu
it

  (
Ω

) 

Frequency  (MHz) 

Imag(Zsc)

Real(Zsc)



 Channel Characterization for Broadband Power Line Communications  

 

91 

 

and the minimum of 6 Ω at 80 MHz. This implies that as the frequency is increased, the cable losses 

increase proportionately. The input impedance phase at resonant frequency is always zero as seen Fig. 

5.3-17. The peaks get less pronounced as the signal frequency increases throughout the frequency 

range of interest.  

 

 
 

Figure 5.3-16: Characteristic impedance of the cable as function of frequency in the range of 10 – 50 MHz; the 

length of the cable is 40 m with bridge taped with 5 m branch each. 

 

 

 
 

Figure 5.3-17: Phase of the characteristic impedance of the cable as function of frequency in the range of 10 – 

100 MHz; the length of the cable is 40 m with bridge taped with 5 m branch each. 
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The characteristic impedances of the power cables used for measurements are low compared to those 

of conventional cables used for data transfer, and this is due to the dimensions of the conductor when 

compared to its layer of insulation. This arises from the design perspective of low voltage power 

cables, which is to carry low voltages and heavy currents. Generally, the characteristic impedances 

range between 5 to 50 ohms, and they are dependent on the type of the cable and the type of the signal 

coupling used. These results are in line with observations made by Aloha et al., (2002) and Aloha et 

al., (2003).  

 

5.3.2  Attenuation Measurements 

 

The attenuation has been calculated from the input impedance measured data using the propagation 

constant, Equation (5.10), below and the attenuation is the real part of it.  

 

  
 

 
      ℎ 

        
        

                                        (    )     

 

The experimental attenuation of PVC insulated low voltage power cables increases as a function of 

frequency, even though the relationship of frequency and the attenuation coefficient is not linear. The 

reasons for the nonlinear behavior of the attenuation coefficient are the dielectric characteristics of the 

PVC insulation material and skin effect. According to Ahola (2003), both the dielectric constant and 

the dissipation factor of PVC decrease as a function of frequency at frequencies higher than 1 MHz. 

Figure 5.3-18 shows the experimental powerline attenuation for the two configurations.  

 

 

 
Figure 5.3-18: The specific attenuation of two configuration transmission line. 
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The frequency in these configurations ranging from 10 MHz to 100 MHz resulted in attenuation range 

of 0.2 dB/m and 95 dB/m along the two branches transmission line and 0.15 dB/m and 0.6 dB/m 

along the path for a transmission line without branching. It is observed from these curves that each 

configuration has its own attenuation values despite the fact that it may be of the same frequency 

values. In addition, the two-branching configuration experiences comparatively higher attenuation as 

expected. Again, it can be seen from the measurements that the signal attenuation is directly 

proportional to the number of branches, and this is the ascertation made by many previous 

researchers. 

 

The power-law model was found to result in the best fit for the measured data. Consequently, for the 

two branches transmission line, with f denoting the frequency in MHz, the fitted model for the 

specific attenuation, α (dB/m) may be expressed as: 

 

        −                                                            (    ) 

 

And for no branches transmission line, the fitted model can be expressed as: 

 

         −                                                           (    ) 

 Analysis of Powerline Attenuation Models 5.4

 

Figures 5.4-1 to 5.4-2 below show the specific attenuation plots for two network configurations of 

transmission lines along with Ahola model and our analytical model. Figure 5.4-1 shows, the first 

configuration, the experimental powerline attenuation, with no branching nodes. The estimated model 

shown in Equation (4.26) may also be reproduced here as: 

 

       −                                                            (    ) 

 

 The analytical model RMSE is 0.11 dB while the Ahola model has RMSE is 0.16 dB.  

 

Figure 5.4-1 shows the fitted specific attenuation of two branching nodes of transmission line of 2.5 

mm
2
 compared with the Ahola model and the analytical model which is summarized in Table 4.3-1, 

using Equation (5.14), as: 

 

       −                                                            (    ) 
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Based on RMSE, the analytical model shows the least error with 0.10 dB/m while Ahola model 

depicts an RMSE error of 0.40 dB/m. The higher attenuation in transmission line can be attributed to 

dielectric loss as it is shown in Chapter 2 that at higher frequencies, the attenuation due to PVC 

insulation increases. 

 

 

  
Figure 5.4-1: The specific attenuation of a transmission line without branches, calculated from 

measured data and estimated model derived from scattering model. 

 

 

 

 

Figure 5.4-2: The specific attenuation of a transmission line with two branching points, calculated 

from measured data and estimated model derived from scattering model. The length of the cable is 40 

m with bridge taped with 5 m branch each. 
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 PLC Channel Network Measurements 5.5

 

Figure 5.3-11 shows the  network topology where the length of the cable is 40 m with bridge taped 

with 5 m branch each and the channel frequency and phase response were measured using the 

network analyzer. The simulation and measurement of channel transfer responses of the two 

branching point transmission line are shown in Figure 5.5-1 Figure 5.5-2 below. In addition, Figure 

5.5-2 shows the simulation and measurement of phase shifts of the two branching points transmission 

line with no load at the branches end. 

 

The simulated and measured frequency responses shown in Fig. 5.5-1 were very close throughout the 

observation frequency of interest ranging up to 80 MHz. However, at higher signal frequencies for the 

two-port network, slightly larger differences between simulation and the measurement results were 

observed. Based on RMSE, the analytical model shows an error of 2.01 dB as compared to the 

measured model. These results are in line with observations made by Ahola et al., (2002) and Ahola 

et al., (2003). 

 

 

 

Figure 5.5-1: Channel transfer response with 50Ω load at the branches end. 
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the cable models but requires an extensive measurement campaign. Based on RMSE, the analytical 

model shows an error of 2.1 dB as compared to the measured model. 

 

 

Figure 5.5-2: Channel transfer response  with the branches open-circuited. 

 

  

Figure 5.5-3: The phase shift of a bridged tap with the branches open-circuited. 
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 Chapter Conclusion  5.6

 
In an attempt to validate the analytical framework developed in Chapter 3 and Chapter 4, the 

measurement data was a vital component of the work. Therefore, this chapter has been useful in the 

discussion of the measurements with respect to the so developed analytical model for powerline 

parameters especially the S and Z. The S-parameters were measured and stored from the network 

analyzer for further analysis.  Z-parameters were derived in order to determine characteristic 

impedance and attenuation from open and short-circuit impedances. The specific attenuation for no-

branch network powerline configuration is evaluated by comparing the Ahola model and the 

analytical model.  Based on RMSE, the analytical model shows the least error of 0.10 dB/m while the 

Ahola model exhibits an RMSE error value of 0.186 dB/m for two-wire transmission line. In addition, 

for the bridged-taped/ two-branch network transmission line the analytical model shows the least error 

of 0.10 dB/m while Ahola model has 0.40 dB/m. Again, it can be seen from the measurements that the 

signal attenuation is directly proportional to the number of branches, and this is the ascertation made 

by many previous researchers. The standard transmission matrix theory and two-port network models 

were applied as a modelling tool. The simulated and measured frequency responses were very close 

for frequencies up to 15 MHz. However, at higher signal frequencies, slightly higher differences 

between the two-port network model and the measurement results were similarly observed as reported 

by Ahola et al., (2002) and Ahola et al., (2003). The attenuation of the signal in the PLC channel is 

determined by the cable characteristics, cable length, network topology and electric appliances 

connected to the network.  

 

A comparison between the  measured values and the simulation results of the frequency response 

shows a very good agreement. The agreement demonstrates applicability of the models in a practical 

enviroment. The frequency response periodic ripples are caused by reflections in an open branch. A 

small frequency response ripple is due to unmatched impedance between the transmitter and receiver. 

Thus we conclude that the models developed do not require knowledge either of the link topology or 

the cable models but requires an extensive measurement campaign.  
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6 Conclusions and Recommendation for Future Work 

 

 Conclusions 6.1

 
In Chapters four and five, the main results of this thesis work are summarised. The main scientific 

contribution in this research work is comprised of measurements, analysis and modelling of low 

voltage power cables (CABTYRE CABLE- FLEXIBLE WIRING CABLE (300/500 V)) in the 

frequency range 10 MHz – 100 MHz.  

 

In Chapter four, we modelled the transmission line as one single element, by dividing its length into a 

grid of small areas, where each small area transmits an echo and the forward scattered response gets 

to receiver based on the validation of the assumption of a randomly spread multitude of scatterers in 

the vicinity of the channel that only requires a sufficient number impedance discontinuity points.  

 

There are many factors that influence reliable high-speed data communication on single-phase low 

voltage (LV) networks. Among these, the distribution of scattering points that lead to signal 

attenuation is a critical one, which must be studied extensively. By knowing the amplitude 

distributions of the first path in the network, which followed a lognormal distribution, the scatterers 

distribution was derived. The input parameters        and   were obtained by using Monte Carlo 

simulations with a corresponding number of branching nodes( ).  

 

In Section 4.2, an analytical model of scattering size distribution and probability density distribution 

in broadband PLC channels is presented. The analysis performed show that there are more scattering 

points at lower diameter sizes of branches of indoor networks where the peak is reached at a mean 

diameter of 0.8 mm, which implies more reflections of the signal. In fact, there is extensive coupling 

and uncoupling of appliances connecting to the branches of this mean diameter in indoor single-phase 

networks. But on the high diameter range (above 2 mm), scattering points are smaller and the 

reflection is less. Also, the results show the independency of the distributions towards the indoor 

network topology. 

 

In Section 4.3, a specific attenuation model of a powerline network using Mie scattering theory was 

developed at the nodes where mismatch occurs. The proposed model was estimated for different 

Chapter Six 



 Channel Characterization for Broadband Power Line Communications  

 

99 

 

number of branching nodes. By using the frequency range of 10 MHz to 100 MHz, we compared the 

proposed model with the theoretical attenuation. The results showed that the proposed model 

underestimates the attenuation at the frequencies below 20 MHz and overestimates the attenuation 

value at the frequencies above 50 MHz compared to the theoretical attenuation. Also, we developed a 

power law model that relies on the knowledge of the number of branching nodes in the network and 

thus, the attenuation can be predicted from this model. We also investigated the phase shift that occurs 

in the PLC channel due to a varying number of branches. 

In chapter five, the characteristics of two low voltage power cables (CABTYRE CABLE- FLEXIBLE 

WIRING CABLE (300/500 V)) were measured and modelled in the frequency band 10 MHz – 100 

MHz. From the measurements, the transmission line parameters of the cables were determined and the 

attenuation results obtained were very close to those obtained using the analytical model. 

 

The characteristic impedances of the power cables used for measurements are low compared to those 

of conventional cables used for data transfer, and this is due to the dimensions of the conductor when 

compared to its layer of insulation. This arises from the design perspective of low voltage power 

cables, which is to carry low voltages and heavy currents. Generally, the characteristic impedances 

range between 5 to 50 ohms, and they are dependent on the type of the cable and the type of the signal 

coupling used.  

 

The attenuation of the signal in the transmission line increases as a function of frequency. In the 

frequency band 10 MHz – 100 MHz, the main loss mechanism of the low voltage power cable is the 

dielectric loss of the PVC insulation material used. From the measurements, due to the fact that we 

recorded the lowest characteristic impedances at 80 MHz, the signal attenuation in the two bridge-

taped transmission line is approximately 0.95 dB/m at the signal frequency of 80 MHz and it is 

approximately 0.60 dB/m for a transmission line without any branches at the same frequency. Thus, 

the attenuation is inversed proportional to the characteristic impedances. 

 

The standard transmission matrix theory and two-port network models were applied as a modelling 

tool. The simulated and measured frequency responses were very close for frequencies up to 15 MHz. 

However, at higher signal frequencies, slightly higher differences between the two-port network 

model and the measurement results were observed. The attenuation of the signal in the PLC channel is 

determined by the cable characteristics, cable length, network topology and electric appliances 

connected to the network. 

 

In the CENELEC frequency band 3-148.5 kHz, the losses in low voltage transmission line cable are 

low. Notches in the frequency responses of PLC channels may occur. These are caused by the serial 
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resonances of the electric appliances connected to the network. Due to the fact that the length of 

cabling is limited and the carrier frequencies are relatively low, the notches and peaks in the 

frequency response caused by the standing waves are rare. The phase response in the CENELEC band 

can be considered to be relatively linear due to the missing standing waves.  

 

In the studied frequency range of 10 MHz – 100 MHz, for the measurements done, the attenuation of 

the signal in the PLC channels increases due to the increasing losses of the cabling. The length of the 

transmission line does not limit the formation of standing waves. Additionally, electric appliances 

connected to the network are mismatched loads in the whole frequency band. Hence, standing waves 

are formed which can be noticed in the frequency responses of the power-line channels as frequently 

repeating notches and peaks. Correspondingly, the phase response at the frequencies of notches and 

peaks is nonlinear and may cause problems in data transfer applications. Lastly, it is seen from the 

measurements that the signal attenuation is directly proportional to the number of branches, and this 

confirms the findings made by previous researchers in the same field. 

 

In summary, this thesis puts forward a different class of modeling approach towards powerline 

communications. Much emphasis is made for the no-branch and two-branch network to validate the 

proposed framework. Overall, the measurement results show that both the analytical specific 

attenuation model so developed in this work and the channel transfer function are feasible novel ideas 

in PLC channel network characterization.  A comparison between the  measured values and the 

simulation results of the frequency response shows a very good agreement. Thus, we conclude that the 

models developed do not require knowledge either of the link topology or the cable models but 

requires an extensive measurement campaign.  

 Recommendation for Future work 6.2

Designs that incorporate multiple-branch network will provide more insight into the future of such 

modeling for powerline communications. Besides, the provably practical assumptions of the scattering 

point sizes may require more regression analysis if optimization is to be taken into account. Also, 

possible enhancements to improve on the performance of the PLC channels, like coding and 

modulation are worth exploring. Modeling and characterization of the channel noise through 

measurements also provide an avenue for possible future work.  
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