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Abstract 
GE-model and equations of state are used to describe and predict phase equilibria. Current models 

have varying capabilities and some display selectivity for certain special mixtures. While many 

models are superior to others in their performance, all models share a common deficiency, the 

inability to simultaneously describe vapour-liquid (VLE) and liquid-liquid equilibria (LLE). 

Current models require separate parameters to describe the two equilibria. This formed the 

motivation for a non-linear transformation which was formulated by Rarey (2005). 

The transformation was applied to the concentration space. The clear advantage of such a 

transformation was that it could be easily applied to any model. The flexibility of the model was 

drastically increased. The effects were investigated on the local composition models, in particular 

the UNIQUAC model resulting in the FlexQUAC model. The model was used to regress a host of 

VLE and LLE data sets contained in the Dortmund Data Bank (DDB). The transformation had the 

desired effect on the flexibility of the model and the model was now able to describe VLE and 

LLE. 

However a symmetric transformation applied to the concentration space might not be effective in 

the description of systems exhibiting large difference in molecular size. This is a clear 

disadvantage of the proposed FlexQUAC model. In order to allow the model to cater to 

asymmetric systems, the transformation is now applied to the surface fraction of the residual 

contribution of the UNIQUAC model. The Guggenheim-Staverman expression in the combinato­

rial part was not transformed. Both the original combinatorial term and the more suitable 

modification of Weidlich and Gmehling (1987) were used. The newly formed model was called 

the FlexQUAC-Q model. 

The development of the FlexQUAC-Q model, derivation of activity coefficient expressions, 

model implementation and its performance analysis form the basis for this research study. 

The activity coefficient of the new model had to be re-derived due to the application of the 

transformation to the residual contribution of the UNIQUAC equation. The computation of the 

activity coefficient was programmed in FORTRAN and integrated into the regression tool 

(RECVAL) of the Dortmund Data Bank (DDB). The RECVAL tool was used to regress data sets 
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contained in the DDB. Results obtained were comparable to those obtained using the GEQUAC 

model. 

The regression was also performed in EXCEL for the three models (UNIQUAC, FlexQUAC, 

FlexQUAC-Q). The regression in EXCEL was more rigorous and was used for the comparison of 

the objective functions and to obtain a set of unique model parameters for each data set. The 

performance of the FlexQUAC-Q model was assessed utilizing the same data sets used to analyse 

the performance of the FlexQUAC model. The model's performance was assessed in the 

regression of 4741 binary VLE data sets, 13 ternary VLE data sets and carefully select ternary 

LLE cases. 

The minor mean relative reduction of about 3% of the objective function using FlexQUAC-Q 

compared to FlexQUAC was observed compared to a reduction by about 53% relative to the 

UNIQUAC-results. 

It was necessary to illustrate that the new model does not degenerate the model's existing 

capabilities (e.g. ability to predict multi-component mixtures from binary data) and that the model 

performs as well as or superior to the UNIQUAC model. FlexQUAC-Q performed similarly to 

FlexQUAC. However the improvement in the qualitative description of data sets exhibiting 

asymmetry is apparent. Herein lies the justification of such a modification and this illustrates the 

preference of such a model when asymmetric systems are being considered. 

In addition, the FLEXQUAC-Q model can be adapted to be implemented into a group 

contribution method, a distinct advantage over the previous model FlexQUAC. The equations for 

the application of a non-linear transformation to a functional group activity coefficient model, 

UNIFAC are also explored in this study. The resulting model is referred to as FlexFaC. 

- n -



PREFACE 

The research presented in this thesis was performed at the University of KwaZulu-Natal, 

Durban from January 2004 to October 2007 (Part time basis from July 2005 - October 

2007). The research was supervised by Professor D. Ramjugernath, Dr J. Rarey and 

Professor J. D. Raal. 

This thesis is presented as the full requirement for the degree M.Sc. in Chemical 

Engineering. All the work presented in this thesis is original, unless otherwise stated and has 

not (in whole or part) been submitted previously to any tertiary institute as part of a degree. 

Thishendren Naidoo 

St. No. 200266703 

As the candidate's supervisor, I, Prof. D. Ramjugernath, have approved this thesis for 

submission. 

Prof. D. Ramjugernath 



ACKNOWLEDGEMENTS 

I would like to acknowledge the following people for their contribution to this work 

• My supervisors, D r J. Rarey [Carl von Ossietzky University, Oldenburg, Germany], 

Prof. D. Ramjugernath, Prof. J. D. Raal for their wealth of ideas, wisdom, support 

and inspiration. Working with them has been a pleasure and has broadened my 

horizon. 

• O n a personal note, my parents, Dahyalan and Devi and my family. This task would 

not be possible if it were not for your immense guidance and support. 

• My friends Krishni and Dhee for their support and friendship. 

To my colleagues, Ildephonse, Myriam, Masha, Prelan, Shailendra, Mohammed, Yash, Viran, 

Minal, Scott, Avin, Jason, Ettiene, Tyrone, Alex, Salvannes, Vivek, Ranjeetha for their 

friendship, guidance and support. 

- iv-



TABLE OF CONTENTS 
ABSTRACT i 
PREFACE Hi 
ACKNOWLEDGEMENTS iv 
TABLE OF CONTENTS v 
LIST OF FIGURES viii 
LIST OF TABLES xiii 
NOMENCLATURE xv 

CHAPTER 1 INTRODUCTION 1 

CHAPTER 2 THEORETICAL ASPECTS OF EQUILIBRIA 4 

2.1 INTRODUCTION 4 

2.2 GIBBS ENERGY 6 

2.3 PHASE EQUILIBRIA 8 

2.4 FUGACITY COEFFICIENT 10 

2.5 ACTIVITY COEFFICIENT 12 

2.6 COMPUTATION METHODS FOR VLE 13 

2.7 LIQUID-LIQUID EQUILIBRIUM 16 

2.8 REPRESENTATION OF TERNARY LIQUID-LIQUID EQUILIBRIUM 17 

2.9 COMPUTATION OF LIQUID-LIQUID EQUILIBRIUM WITH THE K-F ACTOR METHOD 20 

2.10 DATA QUALITY AND M O D E L SELECTION 21 

2.10 LIQUID SOLUTION THEORIES AND EVOLUTION OF G E -MODELS 22 

2.10.1 Introduction 22 
2.10.2 Lattice Theory 23 
2.10.3 Flory-Huggins 26 
2.10.4 Wilson's extension of Flory-Huggin's equation 27 
2.10.5 Two - Liquid Theory 28 

2.10GE-MODELS 30 
2.10.1 Introduction 30 
2.10.2 Margules 30 
2.10.3 Redlich-Kister 32 
2.10.4 VanLaar 32 
2.10.5 Wilson 33 
2.10.6 NRTL 35 
2.10.7 UNIQUAC 36 

2.11 GROUP CONTRIBUTION METHODS 39 

2.11.1 ASOG 40 
2.11.2 UN1FAC 44 
2.11.3 GEQUAC 49 

CHAPTER 3 LITERATURE REVIEW 56 

3.1 INTRODUCTION 56 

3.2 ADVANTAGE OF MODELS 59 

3.3 DISADVANTAGES 60 

3.3.1 Weak Theoretical Basis 60 
3.3.2 Poor Model Performance due to Few Parameters 61 
3.3.3 Inability to Simultaneously Describe VLE and LLE 62 

3.4 IMPROVING THE CONCENTRATION DEPENDENCE OF G E - MODELS 63 

3.4.1 Introduction 63 
3.4.2 Method 1: Combining Two Models 64 

3.4.2.1 Introduction 64 



TABLE OF CONTENTS 

3.4.2.2 Combination of Modified Wilson and Redlich Kister Equation 64 
3.4.2.3 Evaluation of Combined Model Equation 66 

3.4.3 Use of Additional Parameters 69 
3.4.3.1 Introduction 69 
3.4.3.2 Multiplication by a Concentration Dependent Factor 69 
3.4.3.3 Correction Factor 71 
3.4.3.4 Evaluation of the Method 73 

3.4.4 Non-linear Concentration Transformation 77 
3.4.4.1 Introduction 77 
3.4.4.2 The Formulation of Transformation 77 
3.7.3 Procedure for Calculating Activity Coefficient 80 
3.7.4 Performance of the FlexQUAC Model 82 

CHAPTER 4 SIMULTANEOUS REGRESSION & SOFTWARE TOOLS 86 

4.1 INTRODUCTION 86 

4.2 SIMULTANEOUS REGRESSION OF PHASE EQUILIBRIUM DATA 89 

4.3 OBJECTIVE FUNCTION 90 

4.4 CALCULATION METHOD 91 

4.5 MAXIMUM-LIKELIHOOD PRINCIPLE 94 

4.6 THE SIMPLEX-NELDER-MEAD METHOD 95 

4.6.1 The Theory of the Simplex-Nelder-Mead Method 95 
4.6.2 Reflection 96 
4.6.3 Expansion 97 
4.6.4 Contraction 97 
4.6.5 The Simplex-Nelder-Mead Algorithm 98 
4.6.6. Utilisation of the Simplex-Nelder-Mead Method :.....« 100 

4.7 DORTMUND DATA BANK (DDB) 101 

4.7.1 History of the DDB .T. ,...101 
4.7.2 Software Tools 103 

4.7.2.1 Data Viewer (Dortmund Data Bank) 104 
4.7.2.2 ARTIST 105 
4.7.2.3 Process Synthesis 106 
4.7.2.2 ARTIST 107 
4.7.2.3 Process Synthesis 107 
4.7.2.4. Recval 107 

CHAPTER 5 DEVELOPMENT & IMPLEMENTATION OF THE FLEXQUAC-Q MODEL 116 

5.1 INTRODUCTION 116 

5.2 DEFICIENCIES OF THE F L E X Q U A C MODEL 117 

5.3 SOME NOTES ON THE COMBINATORIAL PART OF UNIQUAC 121 

5.4 DERIVATION OF THE F L E X Q U A C - Q MODEL 122 

5.4.1 Re-formulation of the UNIQUAC-Equation 122 
5.4.2. Derivation of the Activity Coefficient Expressions 124 
5.4.3 Derivation of Relevant Vectors 126 
5.4.4 Derivation of Jacobian Matrices 130 

5.4.4.1 Analytical derivation for the differentiation of 0 with respect to the mole number vector n 
(Jacobian matrix for UNIQUAC) 130 

5.4.4.2 Analytical derivation for the differentiation of f(&) with respect to the mole number vector n 

(Jacobian matrix for FlexQUAC-Q) 131 
5.5 CALCULATION OF ACTIVITY COEFFICIENTS USING THE GROUP CONTRIBUTION APPROACH ( F L E X F A C ) 

135 
5.6 IMPLEMENTATION OF F L E X Q U A C - Q IN FORTRAN 136 

5.6.1 Preliminary Check 136 

- vi -



TABLE OF CONTENTS 

5.6.2 Simplifications in MathCAD 138 
5.6.3 Activity Coefficient Calculation Subroutine in FORTRAN 141 
5.6.4 Implementation in RECVAL 147 

5.7 IMPLEMENTATION IN EXCEL 148 

CHAPTER 6 RESULTS & DISCUSSION 152 

6.1 CONSISTENCY CHECK 152 

6.2 PERFORMANCE EVALUATION OF F L E X Q U A C - Q MODEL 155 

6.2.1 Binary VLE Data 156 
6.2.1.1 Excel Regression 156 
6.2.1.2 RECVAL Regression 158 

6.2.2 Ternary VLE Data 167 
6.2.2.1 Verification of Regression of Constituent Binary VLE and Calculated Ternary VLE Data - Regression 
using Original Combinatorial Term 168 
6.2.2.2 Ternary VLE Calculations from Binary Interaction Parameters 171 

6.2.3 Simultaneous Description of VLE & LLE 173 
6.2.4 Ternary LLE Data 175 

6.2.4.1 Regression of Binary Data in RECVAL 175 
6.2.4.2 Ternary LLE Calculation 176 

CHAPTER 7 CONCLUSION & RECOMMENDATIONS 178 

APPENDIX A 187 
Al - UNIQUAC DERIVATION 188 
A2 - FlexQUAC-Q DERIVATION 192 
A3 - FORTRAN IMPLEMENTATION 217 

APPENDIX B 220 
Bl -IMPLEMENTATION IN FORTRAN. 221 
B2 - IMPLEMENTATION IN EXCEL 233 

APPENDIX C 252 
CI-CONSISTENCY CHECK 253 
C2 - BINARY VLE RESULTS - Refer to CD 
C3 -TERNARY VLE RESULTS AND CALCULATIONS - Refer to CD 

Calculations with Original Combinatorial Term 
Testing Binary VLE Data set 11573 - Methanol-Hexane 259 
Testing Binary VLE Data set 11570 - Methanol-Cyclohexane 265 
Testing Binary VLE Data set 11567 - Hexane-Cyclohexane 271 
Testing Ternary VLE Data set 11564 277 

C4 - TERNARY LLE CALCULATION 
LLE Activity Coefficient Verification 283 

- Vll -



LIST OF FIGURES 

FIGURE 2-1 DEPICTION OF VAPOUR AND LIQUID PHASES IN AN EQUILIBRIUM STATE 9 

FIGURE 2-2 THE DIFFERENT TERNARY LLE TYPE DIAGRAMS 18 

FIGURE 2-3 EFFECT OF TEMPERATURE ON TERNARY LLE .A - FEED SOLVENT, B - SOLUTE, S - EXTRACTION 
SOLVENT (PERRY, 1997) 19 

FIGURE 2-4 EFFECT OF TEMPERATURE ON TERNARY LLE 19 

FIGURE 2-5 ALGORITHM FOR THE CALCULATION OF MULTICOMPONENT LLE USING THE K-FACTOR METHOD 
20 

FIGURE 2-6 DISTINCTION BETWEEN CONSISTENCY AND ACCURACY 21 

FIGURE 2-7 LATTICE BEFORE AND AFTER INTERCHANGE (PRAUSNITZ, 1969) 24 

FIGURE 2-8 LATTICE MODEL FOR A POLYMER CHAIN IN SOLUTION, SYMBOLS REPRESENT SOLVENT 

MOLECULES (O) AND POLYMER-CHAIN SEGMENTS W 27 

FIGURE 2-9 THE TWO CELL TYPES FORMING THE BASIS OF THE TWO-LIQUID THEORY 29 

FIGURE 2-10 ACETONE MOLECULE WITH TWO METHYL (HIGHLIGHTED IN RED) INTERACTION GROUPS AND 
ONE CARBONYLIC INTERACTION GROUP (HIGHLIGHTED IN BLUE) (WWW.WORLDOFMOLECULES.COM).43 

FIGURE 2-11 ACETONE MOLECULE WITH TWO METHYL (HIGHLIGHTED IN RED) INTERACTION GROUPS, ONE 
CARBONYLIC CARBON INTERACTION GROUP (HIGHLIGHTED IN BLUE) AND ONE CARBONYLIC 
INTERACTION OXYGEN GROUP (HIGHLIGHTED IN WHITE) (WWW.WORLDOFMOLECULES.COM) 43 

FIGURE 2-12 DEPICTION OF HOW MOLECULES ARE FRAGMENTED INTO STRUCTURAL GROUPS 44 

FIGURE 2-13 RELATIVE DEVIATIONS BETWEEN EXPERIMENTAL AND PREDICTED DATA FOR 3300 CONSISTENT 

VLEDATA SETS (HTTP://134.106.215.86/UNIFAC/) 47 

FIGURE 2-14 INFINITE DILUTION ACTIVITY COEFFICIENTS PREDICTION FOR COMPARISON OF VARIOUS MODELS 
(HTTP://134.106.215.86/UNIFAC/) 48 

FIGURE 2-15 MODIFIED UNIFAC (DORTMUND) INTERACTION MATRIX (HTTP://134.106.215.86/UNIFAC/) 48 

FIGURE 2-16FRAGMENTATION OF MOLECULAR SURFACE FOR KETONE-ALKANE AND ALCOHOL-ALKANE 
MIXTURES FOR THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 51 

FIGURE 2-17 HEXANE-ACETONE SYSTEM AS FITTED BY THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 53 

FIGURE 2-18 HEXANE-ETHANOL SYSTEM AS FITTED BY THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 
54 

FIGURE 2-19 HEPTANE-ETHANOL H E DATA AS FITTED BY THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 
54 

FIGURE 2-20 PREDICTION OF LLE FOR METHANOL-HEXANE SYSTEM (EHLKER & PFENNIG, 2002) 55 

http://www.worldofmolecules.com
http://www.worldofmolecules.com
http://134.106.215.86/UNIFAC/
http://134.106.215.86/UNIFAC/
http://134.106.215.86/UNIFAC/


LIST OF FIGURES 

FIGURE 3-1: THE LINK BETWEEN BINARY AND MULTI-COMPONENT DATA 58 

FIGURE 3-2 A) X-Y DATA - B) SEPARATION FACTOR, a)2 - CALCULATED USING UNIQUAC GE-MODEL 

PARAMETERS FROM LLE AND FROM THE REGRESSION OF VLE-DATA FOR THE SYSTEM WATER (1) -1 -

PENTANOL(2) (CHO, ET AL 1984) AT 101.3 KPA TOGETHER WITH EXPERIMENTAL XYP-DATA (RAREY, 

2005) 62 

FIGURE 3-3 PREDICTION OF VLE DATA (+ VLE DATA - FISCHER, 1991) USING NRTL AND UNIQUAC GE-
MODEL PARAMETERS FROM L L E AT 50°C FOR WATER (L)-L-BUTANOL 63 

FIGURE 3-4 LIQUID-LIQUID EQUILIBRIUM FOR METHYLCYCLOHEXANE (1) AND METHANOL (2) — MODIFIED 

WILSON EQUATION (BENDOVA ET AL, 2003) 66 

FIGURE 3-5 LIQUID-LIQUID EQUILIBRIUM FOR METHYLCYCLOHEXANE (1) AND N, N-DIMETHYLFORMAMIDE 

(2), — MODIFIED WILSON EQUATION; - - - MODIFIED UNIFAC METHOD (BENDOVA ET AL, 2003) 67 

FIGURE 3-6 EXCESS ENTHALPY FOR METHYLCYCLOHEXANE(I) AND METHANOL(2), O, 298.15 K; • ; 313.15K; 
(THIN LINES - THE MODIFIED U N I F A C METHOD, BOLD LINES — THE MODIFIED WILSON EQUATION) 
(BENDOVA ET AL, 2003) 68 

FIGURE 3-7 EXCESS ENTHALPY FOR METHYLCYCLOHEXANE(I) AND N,N-DIMETHYLFORMAMIDE(2), o, 298.15 
K;o;313.15K; (THIN LINES - THE MODIFIED UNIFAC METHOD, BOLD LINES — THE MODIFIED WILSON 

EQUATION) 69 

FIGURE 3-8 CALCULATED AND OBSERVED LIQUID-LIQUID EQUILIBRIA WHERE THE BINODAL CURVE SHOWS 

ONLY MODEST ASYMMETRY (PRAUSNITZ ET AL, 1985) 7 4 

FIGURE 3-9 CALCULATED AND OBSERVED LIQUID-LIQUID EQUILIBRIA WHERE THE BINODAL CURVE SHOWS 
STRONG ASYMMETRY (PRAUSNITZ ETAL, 1985) 75 

FIGURE 3-10 CALCULATED SELECTIVITIES DISPLAY DRASTIC IMPROVEMENTS WHEN THE CORRECTION 

FACTOR IS USED (PRAUSNITZ ET AL, 1985) 76 

FIGURE 3-11 PREDICTED LIQUID-LIQUID EQUILIBRIA FOR ACETONITRILE (1)- CYCLOHEXANE (2) AND 
BENZENE (3) AT 25°C (PRAUSNITZ ET AL, 1985) 76 

FIGURE 3-12 DEPICTION OF THE EFFECTS OF SIZE, SYMMETRY AND SHAPE ON G E CURVES 77 

FIGURE 3-13 RELATIVE GAIN IN OBJECTIVE FUNCTION (A) VERSUS THE GEOMETRIC MEAN OF THE ACTIVITY 
COEFFICIENTS AT INFINITE DILUTION CALCULATED FROM THE UNIQUAC REGRESSION (RAREY, 2005,) 

: 82 

FIGURE 3-14 REGRESSION RESULTS FOR THE SYSTEM TETRAHYDROFURAN-WATER AT T=298.15K USING THE 

UNIQUAC-AND FLEXQUAC-MODEL (RAREY, 2005) 83 

FIGURE 3-15 COMPARISON OF THE PREDICTIVE PERFORMANCE BETWEEN THE UNIQUAC AND FLEXQUAC 

MODELS FOR TERNARY MIXTURES (RAREY, 2005) 84 

FIGURE 3-16 SIMULTANEOUS CORRELATION OF VLE AND LLE USING FLEXQUAC GE-MODEL PARAMETERS 

FROM LLE DATA AND V L E DATA FOR THE SYSTEM WATER (1) - 1-PENTANOL (2) ( • - V L E DATA, • -

LLE DATA, • - AZEOTROPIC DATA, V L E CALCULATION, L L E CALCULATION, AZEOTROPIC 

COMPOSITION CALCULATION) (RAREY, 2005) 84 

- ix -



LIST OF FIGURES 

FIGURE 4-1 THE SEQUENCE OF STEPS REQUIRED FOR REGRESSION AND CALCULATION OF EXPERIMENTAL 
DATA 88 

FIGURE 4-2 LLE FOR A TYPE 1 SYSTEM (A) ORIGINAL UNIQUAC (B) MODIFIED UNIQUAC FOR ALCOHOL 

SYSTEMS (C) MODIFIED UNIQUAC WITH BINARY PARAMETERS CALCULATED FROM BINARY VLE 
DATA AND TERNARY TIE-LINE DATA (PRAUSNITZ, ET AL 1980) 90 

FIGURE 4-3 BUBBLE PRESSURE COMPUTATION PROCEDURE 93 

FIGURE 4-4 REPRESENTATION OF REFLECTION FOR SIMPLEX-NELDER-MEAD ALGORITHM 96 

FIGURE 4-5 REPRESENTATION OF EXPANSION FOR SIMPLEX-NELDER-MEAD ALGORITHM 97 

FIGURE 4-6 REPRESENTATION OF CONTRACTION FOR SIMPLEX-NELDER-MEAD ALGORITHM 98 

FIGURE 4-7 FLOW DIAGRAM OF THE SIMPLEX-NELDER-MEAD ALGORITHM 99 

FIGURE 4-8 FLOWCHART OF THE EXCEL PROGAM FOR DATA REGRESSION 100 

FIGURE 4-9 DIFFERENT APPLICATIONS OF THE DDB (WWW.DDBST.DE) 102 

FIGURE 4-10 RATE OF EXPANSION OF THE DDB SINCE 1986 (WWW.DDBST.DE) 102 

FIGURE 4-11 VARIOUS SOFTWARE TOOLS AVAILABLE IN THE DDB SOFTWARE PACKAGE (WWW.DDBST.DE) 
103 

FIGURE 4-12 QUERY DIALOG OF THE DATA VIEWER (WWW.DDBST.DE) 104 

FIGURE 4-13 PURE COMPONENT BASIC DATA FOR ETHANOL (WWW.DDBST.DE) 105 

FIGURE 4-14 VARIOUS AVAILABLE BINARY DATA FOR THE SYSTEM ETHANOL-WATER (WWW.DDBST.DE) 106 

FIGURE 4-15 OPTIONS AVAILABLE IN THE'EDIT'MENU 109 

FIGURE 4-16 LIQUID MIXTURE MODEL SELECTION WINDOW 110 

FIGURE 4-17 VAPOUR MIXTURE MODEL SELECTION MODEL 110 

FIGURE 4-18 REGRESSION PARAMETER PROGRAM WINDOW i l l 

FIGURE 4-19 INITIAL PARAMETER PROGRAM WINDOW 112 

FIGURE 4-20 DATA WEIGHTS PROGRAM WINDOW 113 

FIGURE 4-21 DATA WEIGHTS PROGRAM WINDOW FOR INDIVIDUAL DATA POINTS 113 

FIGURE 4-22 DATA BANK WEIGHTS PROGRAM WINDOW 114 

FIGURE 4-23 THE VARIOUS OPTIONS AVAILABLE IN THE RESULTS OPTION 115 

FIGURE 4-24 THE GRAPHICS PROGRAM WINDOW 115 

http://www.DDBST.de
http://www.DDBST.de
http://www.DDBST.de
http://www.DDBST.de
http://www.DDBST.de
http://www.DDBST.de


LIST OF FIGURES 

FIGURE 5-1 COMPARISON OF THE EFFECTS ON LNY VALUES BY COMPARING (A) UNIQUAC TO FLEXQUAC 

WITH THIRD INTERACTION PARAMETER 5 1 2 = (B) 0.1 AND (c ) 0.2 AS A FUNCTION OF MOLAR 

COMPOSITION FOR THE SYSTEM WATER-TETRAHYDROFURAN 118 

FIGURE 5-2 COMPARISON OF THE EFFECTS ON LNY VALUES BY COMPARING (A) UNIQUAC TO FLEXQUAC 

WITH THIRD RNTERACTION PARAMETER 812 = (B) 0.1 AND (C) 0.2 AS A FUNCTION OF SURFACE FRACTION 

FOR THE SYSTEM WATER-TETRAHYDROFURAN 118 

FIGURE 5-3 LOGARITHM OF THE RATIO OF ACTIVITY COEFFICIENTS VERSUS MOLE FRACTION FOR VARIOUS 
SYSTEMS 119 

FIGURE 5-4 LOGARITHM OF THE RATIO OF ACTIVITY COEFFICIENT VERSUS (A) MOLE FRACTION (B) SURFACE 

FRACTION FOR THE PURPOSES OF COMPARISON FOR VARYING VALUES OF THE 812 = (A) 0, (B) 0.2, (C) 0.4 

120 

FIGURE 5-5 ALGORITHM DETAILING THE IMPLEMENTATION OF THE FLEXQUAC-Q MODEL IN FORTRAN.... 146 

FIGURE 5-6 THE RECVAL LIQUID SELECTION MODEL OPTIONS, WHERE THE FLEXQUAC-Q MODEL CAN BE 

ENABLED VIA THE USE OF THE CONTROL STRING, MODQFLEX 148 

FIGURE 5-7 ALGORITHM DETAILING THE IMPLEMENTATION OF THE FLEXQUAC-Q MODEL IN EXCEL CODE 151 

FIGURE 6-1 LARGEST DEVIATION OBSERVED IN A CERTAIN PERCENTAGE OF THE SORTED DATA SET 

REGRESSIONS 157 

FIGURE 6-2 RESIDUAL PLOT FOR PRESSURE IN RECVAL FOR THE SYSTEM HEXANE-ETHANOL 159 

FIGURE 6-3 DESCRIPTION OF TETRAHYDROFURAN-WATER SYSTEM AT 298K (SIGNER ET AL , 1969) BY THE 

UNIQUAC AND FLEXQUAC-Q MODELS 159 

FIGURE 6-4 HEXANE-ACETONE EXPERIMENTAL DATA [T= 268.15K, 293.15K - (RALL ET. AL 1959), T = 
308.15K - (KUDRYAVTSEVA ET. AL 1963), T = 313.15K - (KOLASINSKA ET AL. 1982)] FITTED BY THE 
FLEXQUAC-Q MODEL 161 

FIGURE 6-5 HEXANE-ACETONE SYSTEM AS FITTED BY THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 161 

FIGURE 6-6 HEPTANE-ETHANOL H E DATA (T= 283.15K, 323.15K-LIETZMANN ET.AL 1994, T = 333.15K, 
348.15K-VAN NESS ET.AL 1976) AS FITTED BY THE FLEXQUAC-Q MODEL 163 

FIGURE 6-7 HEPTANE-ETHANOL H E DATA AS FITTED BY THE GEQUAC MODEL (EHLKER & PFENNIG, 2002) 
163 

FIGURE 6-8 EFFECT OF FLEXIBILISATION ((A) A12=0, (B) A12=0.2)) ON AN ARBITRARY MIXTURE WITH A 

SURFACE ARE RATIO OF 6 TO 1 164 

FIGURE 6-9 LEFT AND RIGHT REGION OF THE PXY-DIAGRAM FOR THE SYSTEM 2-BUTANOL (1) - WATER (2) 

AT 45.04°C TOGETHER WITH EXPERIMENTAL XYP-DATA (ESCOBEDO-ALVARADO G.N., SANDLER S.I., 

1999) AND CURVES CALCULATED FROM FLEXQUAC USING DIFFERENT VALUES OF 812 (A: 0.0, B: 0.05, 

C: 0 .1 , D: 0.15, E: 0.2, F: 0.22, G: 0.25). INTERACTION PARAMETERS WERE REGRESSED TO LIQUID-

LIQUID EQUILIBRIUM (MARONGIU B., FERINO I., ET AL, 1984.) COMPOSITION (DASHED LINES) 165 

-xi -



LIST OF FIGURES 

FIGURE 6-10 LEFT REGION OF PXY-DIAGRAM FOR THE SYSTEM 2-BUTANOL (1) - WATER (2) AT 45.04°C 
TOGETHER WITH EXPERIMENTAL XYP-DATA (ESCOBEDO-ALVARADO G.N., SANDLER S.I., 1999) AND 

CURVES CALCULATED FROM FLEXQUAC-Q USING DIFFERENT VALUES OF 812 (A: 0.0, B: 0.05, C: 0 .1 , D: 

0.15, E: 0.17, F: 0.20). INTERACTION PARAMETERS WERE REGRESSED TO LIQUID-LIQUID EQUILIBRIUM 

(MARONGIU B., FERINO L, ET AL, 1984.) COMPOSITION (DASHED LINES) 165 

FIGURE 6-11 PXY-DIAGRAM FOR THE SYSTEM 2-BUTANOL (1) - WATER (2) AT 45.04°C TOGETHER WITH 

EXPERIMENTAL XYP-DATA (ESCOBEDO-ALVARADO G.N., SANDLER S.I., 1999) AND CURVES 

CALCULATED FROM FLEXQU AC-Q USING DIFFERENT VALUES OF 6I2 (A: 0.0, B: 0.05, c: 0.1, D: 0.15, E: 

0.17, F: 0.20). INTERACTION PARAMETERS WERE REGRESSED TO LIQUID-LIQUID EQUILIBRIUM 

(MARONGIU B., FERINO I., ET AL, 1984.) COMPOSITION (DASHED LINES) 166 

FIGURE 6-12 COMPARISON OF THE UNIQUAC, FLEXQU AC AND FLEXQU AC-Q MODELS FOR SELECTED 

TERNARY MIXTURES 171 

FIGURE 6-13 SIMULTANEOUS DESCRIPTION OF VLE AND LLE USING FLEXQU AC-Q GE MODEL PARAMETERS 

FROM REGRESSION OF LLE AND V L E DATA FOR WATER (1)- 1-PENTANOL (2) [ • - V L E DATA (CHO ET. 

AL. 1984), • - LLE DATA ( D D B , 2006) , • - AZEOTROPIC DATA (DDB, 2006) , — V L E CALCULATION, -

- - L L E CALCULATION, AZEOTROPIC DATA] 174 

FIGURE 6-14 SEPARATION FACTOR AS A FUNCTION OF LIQUID MOLE COMPOSITION USING FLEXQU AC-Q GE 

MODEL PARAMETERS DERIVED FROM THE SIMULTANEOUS REGRESSION OF V L E AND L L E DATA FOR 
THE SYSTEM WATER ( 1 ) - 1-PENTANOL (2) AT 101.3KPA (CHO, OCHI & KOJIMA, 1984) 174 

FIGURE 6-15 BINODALE CURVES IN THE TERNARY SYSTEM METHANOL( 1) - ACETONE(2) - CYCLOHEXANE 

(3 ) AT 25°C(NAGATA, 1984) FROM FLEXQUAC-Q CALCULATIONS 177 

- X l l -



LIST OF TABLES 
TABLE 2-1 CLASSIFICATION OF THE DIFFERENT TERNARY SYSTEMS 17 

TABLE 2-2 DATA TYPES USED IN THE OBJECTIVE FUNCTION AND THE TYPE OF INFORMATION THAT THEY 

DELIVER (GMEHLING AND RAREY, 2005) 46 

TABLE 2-3 MODEL PARAMETERS FOR KETONE-ALKANE AND ALCOHOL-ALKANE MIXTURES REQUIRED FOR 

THE GEQUAC MODEL 51 

TABLE 3.1 IMPLEMENTATION OF EXCESS GIBBS ENERGY MODELS IN PROCESS SIMULATORS 59 

TABLE 3.2 TERNARY SYSTEMS INVESTIGATED IN THE EVALUATION OF THE FLEXQUAC MODEL (RAREY, 

2005) 85 
TABLE 4-1 DIFFERENT COMPUTATION TYPES FOR VLE DATA 92 

TABLE 5-1 SUMMARY OF CONVENIENCE VARIABLES THAT WERE DEFINED DUE TO THE HIGH FREQUENCY IN 

WHICH THEY APPEAR IN OTHER DEFINITIONS 139 

TABLE 5-2 SUMMARY OF THE VARIABLES AND THEIR DEFINITIONS USED IN THE FORTRAN SUBROUTINE .... 143 

TABLE 6-1 COMPARISON OF ACCURACY OF OUTPUT DATA VALUES IN BOTH MATHCAD AND FORTRAN FOR THE SYSTEM DLETHYL-ETHER(L) AND ACETONITRILE(2) WITH X] = 0 AND X2 = 1 TO ASSESS ACCURACY 
OF FLEXQUAC-Q ACTIVITY COEFFICIENT CALCULATION 154 

TABLE 6-2 DIFFERENT TYPES OF DATA SETS THAT WERE SIMULTANEOUSLY REGRESSED FOR THE SYSTEM 

HEXANE-ACETONE 160 

TABLE 6-3 DIFFERENT TYPES OF DATA SETS THAT WERE SIMULTANEOUSLY REGRESSED FOR THE SYSTEM 

ETHANOL-HEPTANE 162 

TABLE 6-4 TERNARY DATA SET COMPONENTS AND UNIQUAC SURFACE FRACTION PARAMETERS (Q) AND 

CALCULATED SURFACE FRACTION RATIO FOR THE CONSTITUENT BINARY SYSTEMS 167 

TABLE 6-5 TERNARY VLE SYSTEM CYCLOHEXANE-METHANOL-HEXANE WITH THE CONSTITUENT BINARY 

V L E DATA SYSTEMS (GORAL ET. AL. 2000) 168 

TABLE 6-6 MATHCAD RESULTS FOR THE CALCULATION OF THE ACTIVITY COEFFICIENT FOR SYSTEM 

METHANOL-HEXANE (GORAL ET. AL. 2000) 169 

TABLE 6-7 EXCEL REGRESSION AND CALCULATION RESULTS FOR SYSTEM METHANOL-HEXANE (GORAL ET. 
AL.2000) 169 

TABLE 6-8 MATHCAD RESULTS FOR THE CALCULATION OF THE ACTIVITY COEFFICIENTS FOR THE SYSTEM 

METHANOL-CYCLOHEXANE (ORACZ ET. AL. 1996) 169 

TABLE 6-9 EXCEL REGRESSION AND CALCULATION RESULTS FOR SYSTEM METHANOL-CYCLOHEXANE 

(ORACZ ET.AL. 1996) 170 

TABLE 6-10 MATHCAD RESULTS FOR THE CALCULATION OF THE ACTIVITY COEFFICIENTS FOR THE SYSTEM 
HEXANE-CYCLOHEXANE (GORAL ET. AL. 2000) 170 



LIST OF TABLES 

TABLE 6-11 EXCEL REGRESSION AND CALCULATION RESULTS FOR SYSTEM HEXANE-CYCLOHEXANE (GORAL 

ET.AL.2000) 170 

TABLE 6-12 CALCULATION OF TERNARY VLE DATA FROM BINARY INTERACTION PARAMETERS 173 

TABLE 6-13 MAXIMUM SURFACE AREA RATIO FOR EACH BINARY SYSTEM 175 

TABLE 6-14 THE BINARY VLE AND LLE DATA REGRESSED FOR THE PURPOSE OF OBTAINING BINARY 

INTERACTION PARAMETERS 176 

TABLE 6-15 BINARY INTERACTION PARAMETERS OBTAINED FROM REGRESSION FOR THE THREE BINARY 

SYSTEMS 176 

TABLE 6-16 RESULTS FROM EXCEL CALCULATION COMPARED WITH MATHCAD RESULTS TO VERIFY 

ACCURACY 177 

-xiv-



Nomenclature 
List of 

A 

Cp 

ft 
A 

f° 

G 

H 

J 

n 

NA 

P 

q 

r 

R 

S 

T 

U 

V 

X 

y 

z 

Symbols 

Helmhotz free energy 

heat capacity 

fugacity of pure component i 

fugacity of component i in a mixture 

standard state fugacity 

Gibbs free energy 

enthalpy 

joule 

number of moles 

Avagadro's number 

pressure 

surface parameter in UNIQUAC equation 

volume parameter in UNIQUAC equation 

universal gas constant 

entropy 

temperature 

internal energy 

molar volume 

liquid mole fraction 

vapour mole fraction 

coordination number in UNIQUAC equation 

Greek Letters 

a non-randomness parameter in NRTL equation 

y Activity coefficient 

5 additional parameter in FlexQUAC/ FlexQUAC-Q equation 

x parameter in UNIQUAC equation 



NOMENCLATURE 

e 
• 
n 
X 

Superscripts 

E 

id 

ig 

0 

R 

0 0 

surface fraction in UNIQUAC equation 

fugacity coefficient 

chemical potential 

Boltzmann factor 

excess property 

ideal solution 

ideal gas 

standard state 

residual property 

used to represent activity coefficient at infinite dilution 

Subscripts 

comb 

i j 

ij 

res 

combinatorial part in UNIQUAC equation 

component identification 

interaction between components i and j 

residual part in UNIQUAC equation 

Overbars 

partial molar property 

property of component in a mixture 

Abbrevia 

AZD 

DDB 

GC 

LLE 

SLE 

VLE 

tions 

azeotropic data 

Dortmund Data Bank 

group contribution 

liquid liquid equilibrium 

solid liquid equilibrium 

vapour liquid equilibrium 

- XVI -



Chapter 1 Introduction 
Everyday, man relies on his ability to accurately predict information and thereby reduce the 

margin for error and uncertainty. Scientific knowledge has burgeoned over time and has further 

developed our fundamental understanding in a plethora of fields and subjects. This understanding 

coupled with mathematics has enabled us to describe, model and quantify many aspects of 

interest. This can range from predicting daily weather patterns to economic indicators. Hence the 

applicability of predictive models can invariably be seen in everyday life. 

Predictive models have become indispensable in the chemical industry, especially in the case 

where equilibrium data is unavailable. Phase equilibrium is perhaps one of the most important 

subjects in physical chemistry. Despite this being a fairly old field of research, much needs to be 

learned to improve the theoretical aspects of phase equilibria. Classical thermodynamics provides 

a framework for quantifying phase equilibria via pressure, temperature and chemical potential. At 

equilibrium these properties are equal for each component in all phases. The challenge lies in 

relating this chemical potential or fiigacity to measurable quantities i.e. temperature, pressure and 

composition. In the case of real gas mixtures, the deviation from ideal gas mixtures is 

encompassed in a fiigacity coefficient which is modeled by an appropriate equation of state. A 

fiigacity coefficient can also be defined for the deviation in the liquid phase and can be modeled 

by an equation of state, preferably at elevated pressures. While in the case of a liquid phase, the 

ratio of fiigacity of a component at some pressure, temperature and composition, to a 

corresponding fiigacity at the mixture temperature and some specified pressure and composition, 

defines the activity coefficient of that component. The activity coefficient is modeled by excess 
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Gibbs free energy and this property quantifies the departure from an ideal solution in the case of 

the liquid phase. 

Industries that use separation processes promoted further research into mixture thermodynamics. 

The accurate description of a multicomponent mixture became crucial for the design, synthesis 

and optimization of chemical processes. Separation processes like distillation are energy intensive 

and the ability to model and predict the behaviour of the multicomponent system in question is of 

paramount importance to ensure optimal and profitable operability. As a consequence, many 

commercial process simulators and physical property data banks have been developed which have 

radically improved our ability to model and predict multicomponent systems. The increase in 

computational speed of computers has also proven beneficial to the prediction of data. 

Despite all these efforts, only a few mixture models are broadly used to correlate binary systems 

and predict the real behavior of multicomponent liquid non-electrolyte phases (Wilson, NRTL 

and UNIQUAC). All these models were developed more than 25 years ago and all of them suffer 

from several shortcomings discussed in detail by Rarey (2005). 

Rarey (2005) developed a mathematical procedure to improve the existing models and the results 

were discussed in detail with reference to the UNIQUAC equation. The modified equation 

(FlexQUAC) was much better able to correlate binary phase equilibrium data and even allowed a 

simultaneous description of vapour-liquid and liquid-liquid equilibria. 

The test of the new model focused to a great part on vapour-liquid equilibria and most data used 

described systems with components of rather similar size. As already suggested in the previous 

paper, in the case of mixtures of large and small molecules, a transformation of the mole fraction 

scale might not be a good choice. In these cases, the transformation would mainly affect the 

activity coefficient of the large component. 

This research study presents a non-linear flexibilisation of the surface fraction in the residual part 

of the UNIQUAC equation (FlexQUAC-Q). GE, when plotted as a function of the surface fraction 

- 2 -



CHAPTER 

ONE 

is usually a symmetric function with the maximum near 0.5. The combinatorial part of the 

equation is not transformed. 

The performance of FlexQUAC-Q is compared to UNIQUAC and FlexQUAC using a similar set 

of data as in the previous paper. 
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Chapter 2 Theoretical Aspects 
of Equilibria 
2.1 Introduction 

In the realm of thermodynamics, a theoretically correct description of a liquid mixture and its 

behaviour remains quite complex. A thermodynamic}st essentially measures different types of 

data experimentally and uses mathematical expressions to model trends in data so as to establish a 

tangible link between measurable and immeasurable quantities. Mathematical expressions can 

employ different levels of theory ranging from fully empirical to complex theoretical. 

Experiments are usually setup to record phase equilibrium data or excess properties. Phase 

equilibrium data could refer, for example to vapour-liquid equilibrium (VLE) or liquid-liquid 

equilibrium (LLE) depending on the nature of the chemical mixture and the presiding conditions 

of the mixture i.e. temperature and pressure. 

The FlexQUAC-Q model that was developed in this research study is an excess Gibbs energy 

model based on the existing UNIQUAC model. Prior to the development and derivation of this 

model, an in depth study of some introductory thermodynamics is necessary. 

The concept of Gibbs energy is introduced here. The Gibbs energy state function is an important 

generating property in thermodynamics. Phase equilibrium is examined in this chapter and the 

equations that describe it are presented. Chemical potential and its relation to phase equilibrium is 

also explained to help the reader to establish the link between this property and phase 
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equilibrium. Both fugacity and activity coefficient relate chemical potential to measurable 

properties. Fugacity coefficients are usually used to quantify the departure from ideality for real 

gases via residual properties. The activity coefficient is preferred when defining the departure of 

real liquids from ideality. In this research study the liquid phase departure from ideality for 

experimental VLE and LLE data was computed from derived FlexQUAC-Q activity coefficient 

expressions. 

The concepts of LLE are discussed briefly. As part of the performance assessment of the 

FlexQUAC-Q model, ternary LLE is calculated and compared to the experimental data. Hence, 

an understanding of the types of ternary data was necessary. These are illustrated and discussed. 

The ternary LLE calculations in this research study were performed using the K-factor method. 

The algorithm for this method is detailed here. 

Some commentary on data quality and model selection is presented here to emphasise the 

importance of accurate measurement of data. Consistent data can be inaccurate and lead to 

inaccurate prediction of data. It is vital that the reader understand how the quality of experimental 

data impacts on the accuracy of predicting data. 

Since the focus of this research study is the development of an excess Gibbs energy model, some 

liquid solution theory is discussed. Some of the commonly used excess Gibbs energy models e.g. 

UNIQUAC, were developed from liquid solution theory. In this chapter, lattice theory, Flory 

Huggins and two liquid theory are discussed to give a reader an indication of how liquid solution 

theory evolved. 

An overview of the excess Gibbs energy models is detailed here. The reviewed models include 

Margules, Redlich Kister, Van Laar, Wilson, NRTL and UNIQUAC. The advantages, 

disadvantages and the range of application for each model are discussed. Before undertaking the 

development of the FlexQUAC-Q model, it was vital to first understand the ability of each of the 

existing models. Since the FlexQUAC-Q model has its roots in the UNIQUAC model, a more 

comprehensive discussion of the model and its derivation is presented. 

- 5 -
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Group contribution methods are discussed briefly. The ASOG, UNIFAC and GEQUAC methods 

are discussed. The FlexQUAC-Q model can be extended to group contribution methods. This is 

discussed further in Chapter 5. The newly formed group contribution method, FlexFAC should 

be able to describe both VLE and LLE simultaneously. The GEQUAC model is a fairly complex 

group contribution method that achieves impressive results. However, these results are 

comparable to that of FlexQUAC. While the GEQUAC model has a theoretical basis, both 

FlexQUAC and FlexQUAC-Q are formulated from a non-linear transformation applied to the 

UNIQUAC model. In Chapter 6, the results obtained from the regression from the FlexQUAC-Q 

model is used to make a comparison with the GEQUAC model. 

Thermodynamics has been elucidated in great depth by several authors including Abbott and Van 

Ness (1996) and Perry and Green (1998). An extensive description and discussion of various 

experimental apparatus was for example given by Raal and Muhlbauer (1998). This chapter 

proceeds to give a brief overview of the fundamental treatment of equilibria and other basic 

concepts which needed to be understood to develop the FlexQUAC-Q model. 

2.2 Gibbs Energy 

Classical thermodynamics provides a number of state functions, the most well known being 

internal energy (U), enthalphy (H), Helmholtz energy (A) and Gibbs free energy (G). Gibbs free 

energy is quantified in J/mol. Changes in these functions depend on the changes in two, or in case 

of open systems with material exchange with the surrounding, three state variables. Commonly 

used state variables are temperature T, entropy (S), pressure (P), volume (V), chemical potential 

(u) and mole number (n). If these two or three state variables are kept constant, the state function 

is also a potential with a minimum value at equilibrium. The Gibbs energy is a convenient state 

function since it is a potential function at constant temperature, pressure and number of moles in 

the system. The Gibbs energy is an important generating property since it provides a tangible link 

between equilibrium, mathematics and classical thermodynamics. 
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For a closed system in equilibrium, the change in the total system Gibbs energy is given by: 

d(nG) = {nV)dP-{nS)dT 

~d{nG) 
= nV 

= -nS 

2-1 

P,n 

where 

V - molar volume 

S - molar entropy 

P - pressure 

T - temperature 

n - mole number 

Thus at constant T and P (the typical case of practical interest) the change of G in equilibrium 

must be zero. Equation 2-1 is applicable to a system without exchange of material with the 

surrounding. To evaluate the vapour-liquid equilibrium problem one has to consider the case of 

mutual exchange of material between the phases. 

In this case the Gibbs energy function is also influenced by a change in the amount of material. 

Hence, 

nG = g(P,T,n],n2,...«,) 

where n; refers to the mole number of the components 

d(nG) = 
~d{nG)~ 

dP 
dP + 

Jr,« 

'd(nG)~ 

dT 
dT + Z 

P,n 

~d{nG) 

dn, 
dn, 

PJ,n„ 
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d{nG) = (n V)dP - (nS)dT + £ 
d{nG) 

dn, 
dn, 

-\P,T,n. 

2-2 

The last term in the equation above is termed the chemical potential. 

~d{nG) 
M,= dn, 

P,T,n„ 

2-3 

Thus the fundamental property relation is derived. 

d(nG) = (n V)dP - (nS)dT + J ] /d,dnt 2-4 

The Gibbs energy function plays an integral role in the computation of other system properties. 

2.3 Phase Equilibria 

Equilibrium refers to a state of'no change'. In the context of vapour-liquid equilibrium, it refers to 

a case when 'two or more phases reach a state of equilibrium wherein all tendency for further 

change has ceased' (Prausnitz, 1969). 

The diagram below illustrates this concept of equilibrium exhibited in the VLE case. The phases 

are "closed" to the external environment since they cannot exchange mass beyond the system 

boundary. The internal system is regarded as "open" since mass and energy transfer is allowed via 

the phase boundary. The phases are in both thermal equilibrium (Ta = Tp, zero* law of 

thermodynamics) and in mechanical equilibrium (P™ = Pp). 

- 8 -
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Phase a: Vapour 

Phase P: Liquid 

Figure 2-1 Depiction of vapour and liquid phases in an equilibrium state 

The phases are denoted by 1 and 2. 

Writing Equation 2-4 in terms of the corresponding phases: 

d(nGa )=(nVa)dP- (nSa )dT + £ tfdnf 2-5 

d(nG
/3)={nV/})dP-(nS

fi)dT + YdMfdn!3 2-6 
i 

The overall system change is found as the sum of the changes individual phases. Equation 2-1 for 

a closed system implies that in order for equilibrium conditions to hold: 

YjJu»dn?+YJM?dn?=0 2-7 

Introducing the concept of mass conservation implies that 

dnf = -dnf 

and 

- 9 -
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In order for this condition to be valid, it follows that 

/l,B = Hf 2-8 

and this can be extended to any number of phases. 

This is the key aspect that must be met for equilibrium to be satisfied and provides the starting 

point for one to relate |i to measurable properties. 

2.4 Fugacity Coefficient 

In order for the concept of chemical potential to be used in phase equilibrium, it needs to be 

quantified. However, it usually cannot be determined readily by experimental means. Thus it is 

necessary to relate this quantity to some measurable properties i.e. T, P and V. The concept of 

fugacity is utilized to relate chemical potential to measurable properties. Consider an ideal gas 

maintained at constant temperature: 

D T 7 

dG = VdP = -— dP = nRTd In P 2-9 
P 

Integration leads to 

G = G* +RT\n\^r 1 P 
2-10 

where G* is the value of G at a reference pressure P*. 

For a real mixture containing component i, the fugacity, denoted by ft then 

dG=RTd\n^-

-10 -
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• f° refers to the standard fugacity. Common standard fugacities are the ideal gas state at 1 

atm or that of the pure liquid. 

Here G; refers to the partial molar Gibbs free energy which is equivalent to u.,. Therefore 

integration yields: 

fit=RTln^-+0(T) 2-11 

Here 0(T) refers to the constant resulting from integration and is a function of temperature only. It 

is equal to the chemical potential of component i in the reference state. The criterion for 

equilibrium then emerges. 

f,a=f,P 2-12 

The fugacity coefficient is defined as follows: 

/ 
<p = — 2-13 

P 

With reference to a species in solution for component i, it becomes 

The fugacity coefficient is used extensively to account for the departure of real gases from 

ideality via the use of residual properties. In general, a residual property is defined as 

MR =M-Mig 
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where 

• M-property of the real fluid 

• Mlg- property of the ideal fluid 

For detailed procedures on the computation of fugacity coefficient, the reader is referred to the 

texts by Abbott et al. (1996) and Prausnitz (1969). 

2.5 Activity Coefficient 

The computation of the fugacity coefficient requires integration of the difference between the 

Gibbs free energy of the ideal and real fluid from a state, where both are identical (ideal gas state 

at zero pressure) to the system state. This means that an equation of state has to be available, that 

describes the real fluid behaviour with sufficient accuracy at any pressure below the system 

pressure. In order to give reliable results for the fugacity coefficients in the liquid phase, it must 

also provide reliable results in the two-phase region. This is the reason why often a different 

procedure is used for the calculation of the liquid fugacity. Using the pure saturated liquid at 

system pressure and temperature as a convenient reference state, the description of the liquid 

phase real behaviour is facilitated by the introduction of an activity coefficient, j{. 

f 
Yi = T 2-15 

xJ,S(P) 

The standard state fugacity of pure component i is represented by f,s{P) • The liquid phase uses 

a property analogous to the residual property to account for the non-ideality. This property is the 

excess property. 

ME =M-Mid 

Mld refers to the property of an ideal solution. 
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Ideal solution behaviour is characterized by the following equation: 

juf =Gi+RT\nxi 2-16 

Real solution behaviour can then be described by: 

fi, =Gl+RT\nylxl 2-17 

Therefore 

H-tf^-Gf-RTXay, 2-18 

Thus one obtains the partial molar Gibbs energy. 

QE 

—!— = ]nyl 2-19 
RT 

2.6 Computation Methods for VLE 

Many engineering and design problems require the solution of the VLE. Consider a 

multicomponent system comprising N components then the independent variables are T, P, N-l 

liquid phase mole fractions and N-l vapour phase mole fractions. It follows that there are 2N 

independent variables. The phase rule dictates that N of these variables must be fixed in order to 

determine the N remaining variables. The remaining N variables are determined for the 

simultaneous solution of N equilibrium relations: 

/ / = / / ( i= l ,2 , . . . ,N) 2-20 
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Typically, T or P and the liquid-phase or vapour-phase composition are specified which 

establishes the N variables. The N variables in question can then be determined. 

In particular, many VLE systems exhibit low pressure that a simple equation of state is sufficient 

for the description of the vapour phase. Gibbs excess energy equations can be used to obtain 

liquid activity coefficients. The liquid phase fugacity of species i is: 

/ / = Y,*ifi 

and the corresponding vapour phase fugacity is: 

It follows from Equation 2-20 that 

Y,X,f, = h,P 2-21 

This represents the gamma/phi formulation for VLE calculations. The fugacity f\ of the pure 

compressed liquid i is evaluated at T and P of the equilibrium mixture. This is done via two steps: 

first by calculating the fugacity coefficient of saturated vapour for pure species i at temperature T 

and vapour pressure P = P*"' and then secondly by evaluating the change in fugacity of the 

liquid with a change in pressure to a value above or below P™'. Thus/ is derived as 

Equation 2-21 can be rewritten as 

Yixtpr =<*>,ytP 

v^p-p;"') 
RT 
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When the vapour and liquid phase can be considered as ideal then Equation 2-22 reduces to a 

simple expression. In the case of an ideal gas then the fugacity coefficients (f>j and (/)*"' are unity 

and for all practical purposes O, = 1. The activity coefficients are also unity in the case of an 

ideal solution. Thus Equation 2-22 becomes 

ytP = x,Pr' 2-23 

This is Raoult's law. It represents the most rudimentary relation for VLE. Hence it fails to 

adequately describe real behaviour of most systems. 

At low to moderate pressures, a reasonable assumption, that the ideal gas model adequately 

describes the vapour phase can be made. This provides a more realistic approach and the VLE 

relation can then be expressed as: 

r.x^r^y.P 2-24 

This relation is referred to as modified Raoult's Law. Although this provides a more accurate 

description than that of Raoult's law, its applicability is still limited to components that are sub-

critical. 

The gamma/phi method in general is restricted to systems containing components that are sub-

critical. It is used typically when the system in question exhibits pressure no more than a few 

bars. In addition, it is adequate for the correlation of constant-temperature data. Although the 

local composition GE models do contain some temperature dependence for the parameters, these 

are only an approximate (Perry, 1998). 

where cb = 
J. sal 

9, 
exp 
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Another possible VLE relation is where both liquid and vapour phases are described by an 

equation via fugacity coefficient. In this case the liquid and vapour phase are defined as: 

/ / = fix,P - Liquid 

fiV = tfy,P - Vapour 

Hence 2-20 becomes 

xt#=yttf 2-25 

This approach has found its use in the high pressure domain. Here </> is a function of T, P and 

composition and is evaluated from an appropriate equation of state with the aid of mixing rules. 

However, the use of equation of state for the liquid phase fugacity has been limited to systems 

with small to moderate deviations from ideal solution behaviour. This was attributed to 

inadequacies in empirical mixing rules. Wong and Sandler (1992) developed a new class of 

mixing rules for the cubic equation of state and this has improved its application to VLE. The 

Soave/Redlich/Kwong (SRK) and Peng/Robinson(PR) equations of state in combination with the 

Wong/Sandier mixing rules can accurately correlate and predict VLE data. 

2.7 Liquid-liquid Equilibrium 

For two liquid phases in equilibrium the fugacities of all the components are equal in both phases. 

/ / = / ; 2-26 

Using equations of state and fugacity coefficients, then 

{xtff) =(x,tf) 2-27 
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Using GE model and activity coefficients, then 

(x,7,)'=(x,7,)" 2-28 

From the definition of activity, 

« ,=* , / , 2-29 

it follows that 

a\ = a] 2-30 

2.8 Representation of Ternary Liquid-Liquid Equilibrium 

Ternary data measured under isothermal conditions are represented on ternary diagrams. 

Based on the properties of the constituent binary combinations, ternary systems are classified into 

three common categories. 

Type 

1 

2 

3 

Description 

One binary combination is partially miscible 

Two binary combinations are partially miscible and the third type is completely miscible 

All binary combinations are miscible. 

Table 2-1 Classification of the different ternary systems 

-17-
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Figure 2-2 The different ternary LLE type diagrams 

A typical type 1 system would be water-acetic acid-methylisobutylketone. N-butanol-butyl 

propionate-water is an example of a type 2 system. Often mixtures change type with a change in 

temperature. In Figure 2-3 a system changes from type 2 to type 1 as temperature is increased. 

Types b, f and g can also be obtained from changes in temperature (Figure 2-4). 
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Figure 2-3 Effect of temperature on ternary LLE .A - feed solvent, B - solute, S - extraction solvent 
(Perry, 1997) 

Figure 2-4 Effect of temperature on ternary LLE 
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2.9 Computation of Liquid-liquid equilibrium with the K-Factor 

Method 

Input: 
Total mole numbers n; 

Temperature T 
UNIQUAC parameter estimation 

for n,' 

Calculation of mole numbers n," * 

Calculation of the activity 
coefficients 

Yi'.Yi" 

no 
yes 

Result: Xj', X;" 

New number of moles ninew 

n =• 
i,new 

1+ 

Figure 2-5 Algorithm for the calculation of multicomponent LLE using the K-Factor Method 
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2.10 Data Quality and Model Selection 

It is critical that the thermodynamicist selects the most appropriate model for data reduction based 

on the chemical nature of the mixture (Raal and Muhlbauer, 1998). In cases where an applicable 

model is not apparent, several models may have to be evaluated to assist in choosing the best 

model. 

The quality of equilibrium data has to also be addressed. Data has to meet some criteria in order 

to allow model fitting and prediction of data within a certain tolerable window of error. As a 

preliminary step to the regression process, data has to be checked for thermodynamic consistency. 

In the case of questionable data, one is strongly advised to re-measure data (Raal and Muhlbauer, 

1998). Consistency tests based on the Gibbs-Duhem equation are used primarily to establish the 

credibility of VLE data. These testing procedures are detailed in Abbott et al., 1996. However, its 

application to high pressure VLE data is very difficult. 

If data passes the consistency tests, it is still insufficient to classify it as accurate or of superior 

quality. One has to make the distinction between accuracy and precision in light of experimental 

work. 

Consider the dartboard as an example which clearly illustrates the distinction between the two 

concepts. 

Figure Error! No text of specified style in document.-l Distinction between consistency and accuracy 
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Accuracy of measurement refers to how close a measurement approaches the accepted or correct 

value. Precision refers to the spread of measurements. It is evident from the first dartboard that 

good precision does not necessarily imply a high degree of accuracy. The experimentalist thus 

aims to achieve a good combination of good precision and good accuracy by avoiding personal, 

systematic and random errors where possible. 

One can thus conclude that although VLE data may be consistent, it could still be deemed 

inaccurate. Data may not conform to a model due to the presence of bad data points even though 

an appropriate model was used. In some cases, the data could be accurate but the selected model 

fails to reasonably reproduce the experimental data. For these reasons, it is essential to examine 

the data quality and thereafter select the best suited model. 

2.10 Liquid Solution Theories and Evolution of GE-Models 

2.10.1 Introduction 

Liquid theories have attempted to improve the quality of GE-models by establishing a more 

substantial theoretical basis and thereby enhancing data correlation, extrapolation and prediction. 

The purpose of liquid theory is to be able to meticulously describe the behaviour of a real liquid 

mixture and to quantify the relevant liquid properties. A theoretically correct description of a 

liquid mixture is however an intricate and multi-faceted study and research in this field has not 

yielded a plausible theory that encompasses all dynamics of a liquid mixture. The chemical 

industry is expansive and vast and the notion of a sound theory that has a wide range of 

applicability seems almost inconceivable. Nevertheless existing theories provide a fair basis for 

the development and investigation of models. 

This section aims to provide a brief overview of some of the theories that have been developed 

and to give the reader some insight into the evolution of GE-models. 
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2.10.2 Lattice Theory 

Lattice theory attempts to describe liquid behaviour by recognising the fact that the liquid phase is 

a transition between the solid and gas phase. It follows that a liquid can be envisioned as a real 

gas and the respective properties would be computed by an equation of state. 

The latter option would then be to consider the liquid solution particles to have more restricted 

movement than that of the gas phase and hence the particles are more ordered in their 

configuration. The particles are then assumed to possess a semi-crystalline structure and this 

"structure" is termed a lattice. This forms the basis of the concept supporting lattice theory. 

To adequately describe the behaviour of a liquid mixture one has to consider: 

• Intermolecular forces between similar and dissimilar molecules 

• Molecule size and shape and its effects on lattice configuration 

• Magnitude of intermolecular forces and its effect on lattice configuration. 

Figure 2-7 represents a mixture of 2 components and the configuration of the lattice after mixing. 

Using knowledge of statistical mechanics, expressions for the enthalpy and entropy of mixing can 

be found. 
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Figure 2-7 Lattice before and 

The excess Gibbs energy is given by: 

GE =NAcoxxx2 

where 

• NA - Avagadro's Number 

• co - Interchange Energy 

The interchange energy is defined as: 
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• interchange (Prausnitz, 1969) 

2-31 
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« = z[r12-o.5(rn+r22)] 2-32 
where 

• Z - Coordination Number 

• r u - Potential energy of pair 1-i 

lny, = — x, 2-33 
/ ; kT J 

Here k refers to the Boltzmann constant. 

This theory however assumes a completely random mixture. This argument can only be 

reasonable if all possible interactions (self association between the same components and cross 

association between different components) are either identical or much smaller than RT. In the 

case of a real mixture the energies of interaction are clearly not identical to those in the pure 

fluids. 

Guggenheim utilised a quasi-chemical approximation in conjunction with lattice theory to 

simulate non-random mixtures (Prausnitz, 1969) which produced the following GE expression: 

2-34 

This equation does not produce superior predictive performance in the case of miscible mixtures. 

It does however prove far superior to lattice theory in the case of a mixture involving limited 

miscibility. 

9L 
RT 

co w 1-0.5 
2a> 

7kT 
Jiii JL-\ T~ . 
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2.10.3 Flory-Huggins 

This theory addresses the issue of non-zero entropy by considering the energy evolved upon 

mixing to be zero. This idealised solution is termed an athermal solution. The theory adopts the 

notion of a lattice theory. 

Flory and Huggins assume a polymer molecule simulates chain behaviour and is composed of 

solvent molecule segments. Each segment now replaces a molecule position in the lattice. 

Volume fractions of the solvent and polymer are given respectively by: 

2-35 o , = — • — 

where 

• m - no. of segments 

• ni = no. of solvent moles 

• n2 = no. of polymer moles 

<*>2 
n2 

nx + mn2 

The excess Gibbs energy and activity coefficient expressions for an amorphous polymer are given 

by: 

= Yni InO, 2-36 
RT *? ' 

ln/j =ln l 
V m 

+ 0 2 2-37 

However, since athermal behaviour is not realistic, the equation is modified by including an 

enthalpic term to account for energy of mixing. 

QE 
— = ^/i /ln<D i+^D1<D2(»1+/w/i2) 2-38 
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Figure 2-8 Lattice model for a polymer chain in solution, symbols represent solvent molecules (O) 

and polymer-chain segments <•) 

In Y\ = In 1 - 1 $ , 
m 

f 
+ 1 

m j 
o2+^o2 2-39 

where % is the Flory interaction parameter derived from energy interaction of molecules. 

2.10.4 Wilson's extension of Flory-Huggin's equation 

Wilson used Flory and Huggin's equation and modified it by accounting for molecular 

interactions. Here Wilson considers that there are excess enthalpies and entropies, but that the 

excess volume is zero. Based on a binary case the ratio of the number of molecules around a 

central molecule can be expressed as the product of the ratio of mole fractions and the respective 

Boltzmann factors. The factors are representative of the potential energy interactions (between 

components i-i and i-j). 
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Xj exp 
KRT) 
f 2 \ 

x, exp -A 
KRT , 

2-40 

where Âj and Xa are energies of interaction. 

The local volume fractions are then defined as: 

ft-
OuXu+Vfy 

2-41 

Wilson uses these local volume fractions to replace overall volume fractions ®j in the Flory-

Huggins model. 

— = E^,ln^ 
RT *f ' x, 

2-42 

By introducing the parameters Ay and Ajj the equation reduces to 

RT =-Xx<ln Z x A 
V J 

2-43 

2.10.5 Two - Liquid Theory 

This theory assumes that the properties of a mixture can be related to a hypothetical fluid and can 

be considered to be the composition averages of the constituent components. For the binary case, 

properties are derived by composition averages of the two hypothetical fluids. 
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A central molecule is contained in a region called a molecule cell and is surrounded by molecules 

from the mixture. Thus a binary mixture contains two cell-types with different cell molecules. 

Thus any extensive residual property M of the mixture can be found from M(l), the residual 

property of the fluid of cell type i. 

M = xM1} + x2M
(2) 2-44 

This theory can be extended to an n-component mixture with n types of cells and this is referred 

to as n-fluid theory. This forms the basis for the derivation of the NRTL and UNIQUAC models 

which are discussed shortly. 

it) 

0©0 
Molecule 1 at centre 

0Q 
Moteciile 2 at centre 

Figure 2-9 The two cell types forming the basis of the two-liquid theory 
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2.10 GE-Models 

2.10.1 Introduction 

Since the focus of this research is the modification of GE-models to improve their correlative and 

predictive ability, a brief review of current GE-models is presented here. Models differ based on 

the number of adjustable parameters, applicability to binary and higher system of components, 

their nature (semi-theoretical or empirical) and degree of complexity and ease of computation. 

The chemical nature includes difference in molecular size and self and cross interaction of 

molecules in the mixture. Some models can be extended to multicomponent mixtures; however it 

is usually necessary to first compute binary parameters. 

Activity coefficients are functions of temperature, pressure and composition. The pressure 

dependence is considered to have a negligible influence on the activity coefficient in the low 

pressure range (Abbott et al., 1996). 

The interaction parameters may contain inherent temperature dependence. In order to establish 

temperature dependence for these parameters, a number of isothermal data sets would have to be 

regressed. In the case of regression of isobaric data, the temperature dependence of these 

parameters has to be accounted for and should not be ignored (Prausnitz, 1969). 

This section outlines the applicability of models in addition to advantages and disadvantages to 

assist in choosing the best model. 

2.10.2 Margules 

This is perhaps the most rudimentary equation correlating GE to composition. The simplest form 

is the Porter (2- suffix Margules) equation. 
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RTx^x2 

In yx - Ax\ 

In y2 = Ax\ 

The use of this equation is limiting due to its obvious simplicity. It is symmetric with regard to 

the mole fractions xi and x2. This is however unrealistic since most systems exhibit asymmetric 

behaviour and the model fails in this regard. Thus the model is used for a preliminary estimate of 

trends (Raal and Muhlbauer, 1998). 

QE 

P7\- v
 n ' ll z 

J\1X^X2 

In YX - x] (An + 2(A2l - Ai2 )x,) 2-49 

Iny2 = x,2(A2} + 2(AU - A2l)x2) 2-50 

The 3-suffix expression above was derived to correlate more complex systems (A21 and A12 are 

the model constants). It does provide good reproduction of many non-ideal systems (Prausnitz, 

1969). The model is empirical in nature and assumes that the components of the binary mixture 

have equal molecular size. 

By the introduction of another term the 4-suffix equation is derived. This is appropriate when a 

number of accurate data points have been measured (Prausnitz, 1969). 

Margules equations are only applicable to binary mixtures. Further, the models cannot be 

extended to multicomponent systems due to their empirical nature (Abbott et al., 1996). 

2-45 

2-46 

2-47 
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2.10.3 Redlich-Kister 

J\J. J\,-t Jb-y 

= A + B(x} -x2) + C(x, - x 2 ) 2 + D(xl -x2)
3 +... 2-51 

Here B, C, and D are the model parameters that contain a temperature dependence that is 

determined from experimental data. The number of parameters chosen to represent a mixture is 

determined by the chemical nature of the mixture. Due to the model's construction the even 

powered terms are symmetric with regard to x and the odd powered terms are asymmetric and 

manipulate the shape of the GE plot (Raal and Muhlbauer (1998)). 

RT In Yx = a{l)x2 + b(x)x\ + c(,)x2
4 + J(,)x2

5 2-52 

where 

• a(1) = A + 3B + 5C + 7D 

• b(1) = -4(B + 4C + 9D) 

• c(1) = 12(C + 5D) 

• d(,) = -32D 

This model is as effective as the 3- and 4-suffix Margules model. 

2.10.4 Van Laar 

GE 

By rewriting as a reciprocal expression one obtains a polynomial similar to the Redlich-
RTxlx2 

Kister expansion. 

GV 
/RT 

= B + C{xx-x2) 2-53 
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or 

G' A' A' 

x^x2RT / l i n A l "T" / l ' ) i A") 

2-54 

\nyx=A[2 
Al2xi 

A2lx2 j 
2-55 

l n / 2 =A\ 21 1 + 2gi£2 
Anxx 

1-2 

2-56 

The Van Laar equation was proposed to accommodate for the differences in size of molecules and 

has its foundation in the Van der Waals equation. It can also be derived from Wohl's expansion 

with unlike molecule sizes. Despite the model's ability to account for molecule size differences, it 

is still inadequate in characterizing highly non-ideal systems. This model does not account for 

molecular interactions. 

2.10.5 Wilson 

This model is a pure entropic model. It describes Gibbs excess energy as GE = RT^\n(f(x)). 
i 

Unlike interactions that are used in the Wilson model are solely to quantify the local composition. 

Unlike the Guggenheim model, no enthalpic term is included. This results in problems in 

reproducing larger GE values. 

This equation is derived based on the concept of local composition. Wilson (1964) accounts for 

the size differences in molecules and the intermolecular energy interactions. 
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QE 
= -JCj ln(jCj + x 2A 1 2)-x 2 ln(x2 +xlA.2l) 2-57 

The adjustable parameters are defined as follows: 

Av=— e x P 
V, 

-H 
RT 

2-58 

Here vf refers to the pure liquid molar volumes of the components. A$ is the parameter 

characterising the molecular interactions between components i and j . 

X\2 and X-21 can be considered to be independent of temperature over narrow temperature ranges 

(Prausnitz, 1998). Introducing the parameter's temperature dependence may not produce 

significant differences. The Wilson equation proves its worth in the cases of miscible mixtures, 

notably for mixtures containing polar and non-polar components. Its performance is superior to 

that of Van Laar and the 3- Suffix Margules in these cases. 

The Wilson equation cannot be used for mixtures with extrema in the logarithms of activity 

coefficients (Prausnitz, 1998) and cannot predict liquid immiscibility. This limits its use to totally 

miscible systems. By including a parameter C, this problem was overcome, but this too was not 

without complications. The complexity of the extension to multicomponent mixtures becomes 

problematic. The C parameter increases the interdependence of the parameters. 

Wilson can be extended to multicomponent mixtures where parameters are required for each 

binary pair in the multicomponent mixture. 

^T = -I>>Z(*A,) 2-59 

- 3 4 -



CHAPTER 
TWO 

m \ » j . A 

inyt=-toZ*;A* +1~E „' '* 2-60 

y-i 

2.10.6 NRTL 

This model was developed by Renon and Prausnitz (1968) and is capable of describing liquid 

miscibility. It has wide applicability and noted applicability to highly non-ideal mixtures and 

mixtures exhibiting liquid immiscibility. 

Unlike the Wilson equation, NRTL has the interaction energy in the calculation of the local 

composition (in the exponent) and for the calculation of the total G. However, NRTL has no 

explicit entropic part. 

RT 

f T G T G ^ 
*2 l"21 , '12^12 

. wV I "T" <& 'y V-T -y j J\> •} "T" iAf I V - / 1 •} 

2-61 

ln/j = x '21 
'21 

\2 f r \ 
^ 1 2 ^ 1 2 

\ X \ +-" :2^- r21 J 
+ {x2+xlGuf 

2-62 

In y1 = x\ '12 x G 
421*-721 

\ X 2 + J ( : 1 ^ J 1 2 J 
+ {xi+x2G2ly 

2-63 

6 / i O i l 

jl R T 
2-64 

G , = e x p ( - a , r J 2-65 
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In the case of a binary system the adjustable parameters are Agi2 and Ag2i, which represent the 

Gibbs free energy of interaction. The parameter a is an additional parameter and addresses the 

issue of non-randomness in solution. Monte Carlo simulations have shown that a12 ranges from 

0.20 to 0.47 and thus its value is usually set at 0.3. (Prausnitz, 1969) 

The model has limited explicit temperature dependence and the interdependence of parameters is 

increased (Raal and Muhlbauer, 1998). 

The model can be extended to multicomponent mixtures. 

RT t r ' 
Z T G X 

Jl Jl J 

2-66 

m 

In ft = 
JC,G„ 

a +Y^JL_ 
YaG«Xl M HGUXl 

l=\ 

m 

YjXrTC 
r=l 

m 

IP, 
1=1 

Gn 

X, 

J 

2-67 

2.10.7 UNIQUAC 

This equation is derived using the two-fluid theory. The model was derived to handle miscible 

mixtures using two parameters. Thereby it would be superior to other local composition models. 

The model is an extension of the quasi-chemical theory of Guggenheim. 

Local composition equations for excess Gibbs energy are inconsistent when based on the one-

fluid lattice model. UNIQUAC is based on the two-fluid theory and hence the inconsistencies do 

not apply. A brief derivation based on Maurer & Prausnitz (1978) is presented in Appendix A: Al 
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- UNIQUAC Derivation since UNIQUAC is the precursor to both the FlexQUAC and 

FlexQUAC-Q model. 

(GE\ (GE^ 

yRTj 

fG*\ 

V / combinatorial V / residual 

2-68 

where 

/ 
q,x. In—- + q-,x-y In — 
™ ' O, 2 2 <D 

=;c1ln—- + x , ln—-4 
-IV 7 combinatorial X^ 

QE 

— = -$,x, ln(0, + 6>2r21) - #2x2 ln(#2 + 0,r12) 
JVi residual 

6, , 9i 

• O , = ;d> - _ * & . 
1 ' ^ 2 

-\-i»i i - •X'yt j A I M i - .A*^r^ 

2 y 

2-69 

2-70 

2-71 

Unlike the two former local composition models, UNIQUAC contains both an entropic and 

energy interaction terms which account for two different aspects of real solution behaviour. This 

makes it superior to its predecessors. However UNIQUAC still utilizes the same simplified 

calculation of local composition as Wilson and NRTL. 

The combinatorial part accounts for the varying sizes and shapes of molecules while the residual 

part factors in the presence of intermolecular force interactions (Prausnitz, 1969). The 

combinatorial part requires pure component size and surface fractions (r and Q). These are 

derived from Bondi (1968) or from group contributions (Raal and Muhlbauer, 1998). The binary 

parameters are contained in the residual part of the model. The coordination number Z is usually 

set to a value often. 
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To improve the performance of the model, for mixtures of waters and alcohols, Anderson and 

Prausnitz, (1978) adjusted the q values (q' in this case), q' is found to be smaller than q in the case 

of alcohols and water due to the presence of hydrogen bonding. For all other systems q = q'. 

The two parameters, Tu and x2i are obtained from regression of experimental equilibrium data. 

Aû  is referred to as the characteristic energy and is considered to be a weak function of 

temperature (Prausnitz, 1969). 

The corresponding activity coefficient expression is: 

•nr,=rn7, 
combinatorial + \ny, residual 

JC, 2 ^ O , 
ln/w,—/ =ln—L + T * i l n ^ + °2 

r ^ 
' l l2 

V r2 J 
2-72 

toylmitttarf=^;in(^ + ^ r 2 I ) + ^ ; 
yO{ + 02T2\ Q2+9'\T\2J 

2-73 

where 

h=-z(ri-9i)-(n-^) 

The UNIQUAC model can be extended to multicomponent mixtures. 

GE A . <D, Z A , 0, 
— = 2 j x ' m — H — z ^ 9 / x / m 

RT combinatorial ,=\ Xf 2 ,_[ 

2-74 

f>E m f m 

-A-J residual j=\ I ,= i 
2-75 
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o, z , e,, , o 
I n y ^ l n ^ + ^ l n ^ - H - — S V y - ^ ' ^ Z ^ + ^ ' - ^ Z ^ r L L - 2"76 

x, 2 O, x, p 

0'r,, 

w-> ; / - i 1 ^ 

The major advantages of UNIQUAC that has made it superior to other models are: 

• applicability to multicomponent mixtures 

• applicability to LLE 

• Inherent temperature dependency for many systems valid over a moderate range 

• superior representation for molecules of widely different molecular sizes, suitable for 

non-ideal mixtures 

• its basis for one of the most widely used predictive group contribution method UNIFAC 

The model is however limited by its algebraic complexity and the availability of r and q 

parameters. 

2.11 Group Contribution Methods 

All the models discussed previously utilize interaction parameters which must be obtained from 

the regression of experimental data. When experimental data is limited, the use of group 

contribution methods is preferred. Here a molecule is fragmented into structural groups. It is 

assumed that the functional groups behave as if they were isolated from the molecule they are 

contained in. Thus the intermolecular interactions are "weighted sums of group-group 

interactions" (Prausnitz, 1998). Reduction of experimental data for structural group interaction 

then allows molecular interactions to be quantified. This section briefly reviews some group 

contribution methods. 
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2.11.1 ASOG 

The Analytical solution of groups is based on the solution of groups by Wilson and Deal (1962). 

Here the chemical potential of a component i in solution (equivalent to lny) is considered to be the 

sum of two parts: 

In7, = biy™ + \nyf 2-n 

• In yt relates to the size contribution 

• In yf is related to the interaction of the structural groups of the molecule with the rest of 

the system 

These terms in a sense take into account entropic and enthalpic contributions. 

The size term has its roots in the Flory-Huggins theory: 

In y™ = In Rt + 0.434(l -Ri) 2-78 

• Rj refers to the ratio of solute groups to the total number of groups in the average liquid 

molecule 

vFH 

J 

* V, refers to the number of size groups in each molecular species in solution and the 

summation is taken over all the species 

The interaction term is defined as the difference between the group contribution which occur in 

solution and in the molecular standard states. The summation of all these interactions are 

considered for the groups contained in the molecule. 
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inr,G=IX(inr,-r;) 2-so 
k 

• vkj refers to the number of interaction groups of type k in molecule i 

• r represents the single function of the group composition for both the solution T and the 

molecular liquid standard state T' 

The term T is assumed to have the same value for all molecular mixtures which have the same 

group composition. 'Tcan be considered the 'group activity coefficients' referred to the 

hypothetical standard pure groups"( Derr & Deal, 1969). This function also meets the Gibbs-

Duhem criterion for the 'groups' since the activity for the molecules also satisfy this criterion. 

The ASOG method proposes a definite analytical form for the T function. This is the distinction 

between ASOG and the solution of groups method. Solution of groups utilized binary data to 

obtain the group fraction dependence of the function T. This restricted its use since mixtures with 

only two groups could be handled. The analytical expression for this function allows for 

versatility to treat binary and multicomponent systems and is capable of handling many kinds of 

groups. Derr and Deal (1969) used Wilson as a basis for defining T since it related to excess free 

energy trends. Using the Wilson equation for group activity coefficients, the following equation is 

obtained for a group, k in a mixture comprising N groups: 

lnr t=-ln£*,a t o +0.434 
i=i 

• a is the binary group parameter similar to binary model parameter (Note akk=aii=amm=l) 

• X refers to the group fraction 

The group fraction for group k is the ratio of the total number of groups of k to the total number 

of all types of groups in the mixture. 

JV 

i-Z 
x,a,k 

<-l Z_jXmaim 
m=l 

2-81 
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X% 
Xk = 

Z *,•£"*,• 
2-82 

x refers to the mole fraction 

If one considers a solution comprising two groups (1 and 2) then Equation 2-81 reduces to: 

lnr , = - l n ( X , +X2al2) + 0.434 

lnT2 = -\n(X2 + Xia2l) + 0.434 

1_ X > x l JL 2^21 

(X, x l) + X2 al2 (X2 x l) + Xx a2 

X- ^ x l X]al2 

(X2xl)+Xla2i {Xxx\)+X2a 12 

2-83 

2-84 

The following steps are required for use of ASOG: 

1) Define the groups to be dealt with and their respective group numbers 

2) Calculate group parameters from experimental data 

3) Calculate activity coefficient for new mixtures 

Typically a mixture is split into easily discernable chemical groups that have unique interactions. 

Consider the example of the acetone molecule. It could be fragmented into two methyl groups 

and one carbonylic interaction group with three size groups. The selection of the groups can be 

arbitrary and the total number of size groups does not have to correspond to the total number of 

interaction groups. In this case it would be possible to consider acetone as having two methyl 

with one carbonylic interaction groups (Figure 2-10) with four size groups or two methyl, one 

carbonylic carbon with one carbonylic oxygen interaction groups (Figure 2-11) with four size 

groups. Thus ASOG demonstrates flexibility in its application. However caution and logic should 

be exercised when determining the groups. This should be based on plausible interactions and 

molecule size. Group-pair parameters are obtained from activity coefficients of systems. This 

creates a matrix of group-pairs. These parameters can then be used in the calculation of activity 

coefficients in other new systems. 
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Obtaining a unique set of parameters can be problematic. Extrapolations of group parameters 

across large temperature ranges are not advisable. 

Figure 2-10 Acetone molecule with two methyl (highlighted in red) interaction groups and one 
carbonylic interaction group (highlighted in blue) (www.worldofmolecules.com) 

Figure 2-11 Acetone molecule with two methyl (highlighted in red) interaction groups, one carbonylic 
carbon interaction group (highlighted in blue) and one carbonylic interaction oxygen group 

(highlighted in white) (www.worldofmolecules.com) 
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2.11.2 UNIFAC 

The UNIFAC method (Universal Functional Activity coefficient) uses the UNIQUAC model as 

its basis. It was developed by Fredenslund, Jones and Prausnitz (1975). 

Figure 2-12 Depiction of how molecules are fragmented into structural groups 

The UNIFAC method utilizes the solution of groups theory, whereby a system is regarded as a 

mixture of sub-molecular groups, e.g. CH3~, —OH, --COOH etc. rather than a mixture of 

molecules. The activity coefficients of the molecules are calculated from the activities of these 

groups. The interaction parameters required to find the group activities are regressed using a large 

database. These interaction parameters are independent of the molecules of which the groups 

form part. 

The sub-molecular groups are divided into certain main groups. Interactions are only determined 

between the main groups. The advantage of this method is that the number of possible structural 

groups is much less than the number of different components comprising the entire molecule. 

In yf =f(xl,gi:,rt) 2-85 

Relative Van der Waal's surface: qi = / ,vj Qt 2_86 
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Relative Van der Waal's volume: rt = 2_jVl Rk 2-87 
k 

tar*=£v<'>(tart-iiirf>) 2-88 
k 

^k=f{xi,q„anm) 2-89 

Group interaction parameters, a™, are obtained from the regression of experimental VLE data. 

There have been several modifications to UNIFAC. These include: 

• Original UNIFAC 

• Modified UNIFAC (Lyngby) 

• Modified UNIFAC (Dortmund) 

• Second-order UNIFAC 

• UNIFAC-LL 

• Polymer UNIFAC 

• UNIFAC Free Volume 

The modified UNIFAC (Dortmund) is maintained by Prof. Gmehling and co-workers. The 

parameters are fitted using the entire Dortmund Databank (DDB). Original UNIFAC lacked data 

for compounds of very different size. It had no qualitative information about y(T) and 

extrapolation to infinite dilution was not advisable. 

Modified UNIFAC differs from original UNIFAC with regard to both the combinatorial and 

residual parts. Here the combinatorial part was modified to accurately account for systems that 

exhibit significant differences in molecular size. This gave improved results for asymmetric 

mixtures. The residual part was modified to include a better temperature dependence of the 

interaction parameters. This temperature dependence is crucial since UNIFAC interactions were 

usually fit to experimental VLE data close to 1 atm. This can produce high degree of error if 

extrapolation to higher/lower temperatures or pressures is required. In addition, modified 
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UNIFAC has a wider basis of data including y", HE, CpE, SLE and LLE data. The excess 

enthalpies gave qualitative information about y(T). A combination of these modifications has 

made modified UNIFAC superior and more accurate than UNIFAC. 

Modified UNIFAC uses the following objective function: 

F = W^AVLE+W^MZD+W^W + W^ACp* + Wy„ ^Ay" + WLLEJjALLE + W^ ASLE 

Data Type 

VLE and azeotropic data 

HE(CpE) Gibbs Helmhotz equation 

d]nr,_Hf 

d(l/T) R 

GO 

y 

SLE 

(Eutectic 

Systems) 

, L L A/Vrm, 
Inxfy, = — 

RT 

U.'} 
T 

LLE 

Delivers the required information 

y = f(x) 

y = f(T) - support data at high temperature 

The only reliable information in the dilute 

range and about asymmetric systems 

Supporting data at low temperature (T < 273 

K) 

Often the only information for strong real 

mixtures 

Table 2-2 Data types used in the objective function and the type of information that they deliver 

(Gmehling and Rarey, 2005) 

The predictions obtained from UNIFAC are often very good provided there are interaction 

parameters available. 
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0,61 r 
Ay / % AT 1 K 

D UNIQUAC B Mod, UNIFAC (Do) 

Hi. 

1.89 

AP / kPa 

l 

• UNIFAC • ideal 

Figure 2-13 Relative deviations between experimental and predicted data for 3300 consistent VLE 
data sets (http://134.106.215.86/UNIFAC/) 

Figure shows the relative deviation between the experimental and predicted (composition, 

temperature and pressure) for 3300 data sets as published by the UNIFAC consortium. 

It can also be used to predict activity coefficients at infinite dilution. Figure shows the absolute 

and relative deviation for 12600 data points. 

The UNIFAC and modified UNIFAC parameter matrices are being updated continuously. Figure 

2-15 illustrates the interaction matrix for modified UNIFAC. 
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Figure 2-14 Infinite dilution activity coefficients prediction for comparison of various models 

(http://134.106.215.86/UNIFAC/) 

New Structural 
Groups'. 

_ _ _ _ ! 
47 CONR 
48 CONR. 
49 HCONR 
50 ACCN 
51 NCO 
52 ACS 
53 Epoxy 
54 Anhydrides 
55 Carbonates 
56 Sulfones 
57 ACCHO 
58 ACCOOH 
59 ACCOO 
60 OCCOH 
61 CHS 
62 Laciames 
63 Lactones 
64 Peroxides 
74 Acetals 
75 ACNR2 
76 ACNHR 
77 Furan 
78 cy-CNH 
79 cy-CNR 
80 SiH 
81 SiO 
82 Oxime 
83 ACCO 

| published parameters I and II 

~} published parameters III - VI 

• delivery 1997 

delivery 1998 

delivery 1999 

f j delivery 2000 

~2 delivery 2001 

delivery 2002 

Q delivery 2003 

delivery 2004 

| new or revised parameters 200! 

d no parameters available 

new or revised para­
meters (in progress) 

Figure 2-15 Modified UNIFAC (Dortmund) interaction matrix (http://134.106.215.86/UNIFACA 
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2.11.3 GEQUAC 

Both UNIFAC and ASOG are based on the idea that a molecule interacts with its nearest 

neighbours. This concept was introduced by Guggenheim. However the use of local composition 

in semi-empirical models and group contribution methods are inconsistent. The selection of 

groups is arbitrary and hence different descriptions of the same molecule are obtained. With the 

aid of quantum mechanics, criteria have been established to determine physically consistent 

groups. This has been used with modified UNIFAC and has given better results. More exact 

approaches to Guggenheim's concept have produced, among others, the following models: 

• TASQUAC (Kehiaian, Abusleme and Vera) 

• GTASQUAC (Lacmann et al) - group contribution for multicomponent phase 

equilibrium of organic compounds 

• DISQUAC (Kehiaian et al) - group surface version of Guggenheim-Barker quasi 

chemical lattice theory 

Existing models do not adequately describe associating and non-associating mixtures. This can be 

attributed to the polar and hydrogen bonding interactions that occur between two positions of a 

functional group, the two poles of the dipole and the acceptor and donor site of the hydrogen 

bond. The GEQUAC model was derived with the intention of describing these interactions 

(Egner, Gaube & Pfennig, 1997). 

G ' - G ^ + G * 2-90 

GEQUAC has two parts. The combinatorial part, G^omb is the same as the Guggenheim-

Stavermann term which represents the entropy change of mixing attributed to the differences in 

molecular size and shape. Gm represents the interaction strength, influence of interaction, steric 

effects on mutual orientation and deviations from random mixing. 

The model contains three adjustable parameters to describe mixtures. The intensity of interaction 

is described in terms of free energy. 
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< = < - r « J 2-91 

• (Op refers to the exchange-enthalpy parameter between the surfaces of groups i and j 

• (Ojj refers to the exchange-entropy parameter between the surfaces of groups i and j 

tf =28,-8,-Sj, 2-92 

• s refers to the interaction energy 

The surface area of the site participating in the interaction is defined as: 

qt=—•- 2-93 
Aref 

• Aj refers to the surface area of site i 

• Aref= 2.5 x 109 cm2 mol"1, the surface area of reference particle as defined for the 

UNIQUAC model 

A molecule of component k, comprises Mk groups. 

Mk 

Ik = IVDW = £ ? / 2"94 

;=1 

The volume parameter r, is obtained from normalization with the volume of a standard segment 

Vref = 15.17 cm3 mol"' according to UNIQUAC. 

The number of model parameters is determined by the fragmentation of the molecular structure. 

This is dependent on the type of mixture. If one considers a ketone-alkane or alcohol-alkane 

mixture, then four different surface areas can be defined ( 

Figure 2-16). The alkane molecule can be considered as a weak interaction surface (4). Polar or 

hydrogen bonded molecules comprise two strong interacting surfaces areas 1 and 2, with the rest 
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of the molecule characterized by a weak interacting surface, 3. With this basis, 14 model 

parameters are considered. 

The surface parameter for the alkane would correspond to that of the Van der Waals surface. 

Surface 3 of the strongly interacting component is defined as the difference between Van der 

Waal's surface of the entire molecule and the adjustable surface area of the two poles. 

03 = 4 W - ? l - ? 2 2"95 

strongly interacting 
component 

Figure 2-16Fragmentation of molecular surface for ketone-alkane and alcohol-alkane mixtures for 
the GEQUAC model (Ehlker & Pfennig, 2002) 

Surface Sites 
1 
2 
Group contact 

1-2 

1-3 

2-3 

1-4 

2-4 

3-4 

Surface parameter 
qi 
Q2 

Exchange parameter 
Enthalpic 

< 

< 

co23 

co24 

Entropic 

K 
< 

<4 
< 

< 

K 
Table 2-3 Model parameters for ketone-alkane and alcohol-alkane mixtures required for the 

GEQUAC model 
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Interaction energies for the weakly interacting surfaces, 3 can be considered small, thus a>u is 

assumed to be negligible (co" and a>" are zero by definition). Thirteen model parameters have 

to be determined and this requires a systematic approach to obtain a physically significant 

parameter set. 

The objective function is defined as: 

F(q„^1^l)=^VLE + YdAHl 
2-96 

pexp _ pGEQUAC \ 2 

pexp 
rk 

-•exp -•GEQUAC \ 2 

yexp 
*k 

AVLE3 = X 
N ( „ « P _ ..GEQVAC \ 

Jk Sk 

k-\ y? 

N ( rr£,exp rjEfiEOUAC \ 2 

k-\ 
TT £,exp 

n k 

Since all parameters cannot be fitted simultaneously to all the binary data, priority has to be given 

to the surface parameters q, and q2 of the strong interacting surface sites and the exchange 

enthalpy, co"2 between the surfaces of these 2 poles, qi and q2 were varied in certain limits and 

objective function was evaluated. 

Binary mixtures in a homologous series were investigated. The atomic charge of single ketone 

and alcohol molecules were investigated and it was found that the charge distribution was the 

same within a homologous series of ketones and alcohols. Slight deviations were observed for 

isomers. Hence all surface parameters of poles q! and q2 are constant for all components of the 

homologous series of alcohols and ketones, a" is the same for all binary mixtures within a 

series since they correspond to the same polar sites for each mixture. The components in each 
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series only differ in exchange entropy parameters. &>f2 and ft>f3 refer to the strongly interacting 

components for different components in the homologous series and a>34 refer to the different 

components in the homologous series of alkanes. co^, co^4 and co\4 are set to a constant value. 

co"2, a>"3,a>23, a>"4, co"4 and surface parameters q, and q2 are the adjustable parameters that have 

the same values for all binary mixtures in a homologous series. 

Excellent results were obtained for the binary ketone-alkane and alcohol-alkane systems. 

GEQUAC describes the HE data well. Data was also extrapolated to predict LLE, but the 

description is not very accurate. 

Figure 2-17 Hexane-acetone system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002) 
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Figure 2-18 Hexane-ethanol system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002) 
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Figure 2-19 Heptane-ethanol HE data as fitted by the GEQUAC model (Ehlker & Pfennig, 2002) 
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Figure 2-20 Prediction of LLE for methanol-hexane system (Ehlker & Pfennig, 2002) 

While GEQUAC achieves good results, the model requires many parameters. GEQUAC has a 

plausible theoretical basis since it solves a quasichemical equation. The model is mathematically 

complex. 
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Chapter 3 Literature Review 

3.1 Introduction 

The chemical industry is an ever expanding industry with new components being synthesized to 

cater for varying industrial applications. Researchers have no doubt invested an immense amount 

of time, money and effort over decades to measure equilibrium data. 

The results of years of arduous experimental work have been stored in computerized data banks 

e.g. the Dortmund Data Bank (DDB). The DDB was developed by J. Gmehling and co-workers. 

The current status of the DDB is: 

• Vapour-liquid Equilibrium (VLE) Data - 52180 Isothermal/Isobaric Data sets 

• y00 - Infinite Dilution Activity Coefficients - 44750 Data points for pure solvents and 

mixtures 

• HE - Excess Enthalpy - 17400 Data sets 

• Azeotropic Data -14720 Data sets 

• Liquid-liquid Equilibrium (LLE) Data - 14720 Data sets 
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The DDB has currently 52000 references from 1800 journals and for 18900 compounds. This 

helps the reader to further appreciate the rate at which the amount of physical property 

information is growing annually. 

The experimental setup and measurement of equilibrium data has become a well established 

science over the years. However, it is still an expensive and complex undertaking depending on 

the nature of the chemical components. The cost of the measurement is also a further constraint to 

be factored in when considering the setup and operation of equipment. Equipment cost also varies 

depending on the operating conditions with the cost of high pressure equipment far outranking the 

cost of measuring low pressure equilibrium data. Multi-component data measurements are even 

more complex and the results are of questionable quality. The number of possible chemical 

combinations and permutations is often very large and thus one is limited by the availability of 

data. 

Equilibrium data are a prerequisite for the design, synthesis and operation of separation 

equipment. Thus the design phase is dependent on the availability of equilibrium data. For cases 

where experimental data is not readily available, predictive methods become more crucial. In 

particular for multi-component systems, equilibrium data is predicted from binary interaction 

parameters obtained from experimental binary data. 
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Figure 3-1: The link between binary and multi-component data 

GE-models and equations of state provide the link to predicting multi-component mixture 

behaviour. Inherent in the models are parameters derived from regression of experimental data. It 

follows that the parameters can only be used within a certain range of confidence dictated by the 

temperature and pressure of the data. This limits the use of the parameters to extrapolate data and 

impacts on the margin of error introduced. Further, this limits the extension of the use of the 

binary interaction parameters to predict multi-component data within a certain tolerable window 

of error. The quality of the binary data also determines the quality of the binary parameters and 

the confidence levels in predicting data. Table 3.1 illustrates the availability of some of the more 

common GE-models in commercially available process simulators. It also indicates whether the 
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model is capable of correlating and predicting liquid-liquid equilibria and multi-component phase 

behaviour. 

MODEL 

Margules 

Van Laar 

Wilson 

NRTL 

UNIQUAC 

Aspen 

-

X 

X 

X 

X 

HYSIM 

X 

X 

X 

X 

X 

PROII 

-

X 

X 

X 

X 

Liquid-liquid 

equilibria 

Yes 

Yes 

Yes 

Yes 

Yes 

Multi-component 

Systems 

No 

No 

Yes 

Yes 

Yes 

Table 3.1 Implementation of excess Gibbs energy models in process simulators 

This chapter carefully analyses the use of GE-models in the prediction of equilibrium data. It 

highlights both their advantages and their disadvantages to help the reader understand their 

capabilities. The disadvantages have helped researchers to isolate the problem with current 

models i.e. the concentration dependence. The latter half of this chapter addresses methods 

employed by thermodynamicists, to improve GE-models. 

3.2 Advantage of Models 

GE-models and equations of state are tools for correlating and predicting the real behaviour of 

mixtures e.g. phase equilibrium. Current local composition GE-models (Wilson, NRTL and 

UNIQUAC) boast the following features, which make them practical for engineering purposes: 

• applicability to highly non-ideal mixtures 
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o GE-models have evolved over time and have become able to correlate more non 

ideal systems. Simpler models like Margules were only able to handle symmetric 

systems. This deficiency prompted the development of models that were able to 

handle more realistic asymmetric chemical mixtures. Models gradually evolved 

to contain some theoretical basis which improved their predictive ability (local 

composition models - Wilson, NRTL and UNIQUAC). The Wilson equation 

showed distinct improvements for mixtures containing non-polar and polar 

components but was limited due to its inability to predict liquid immiscibility. 

NRTL and UNIQUAC were later developed and had the ability to predict liquid 

immiscibility in addition to highly non-ideal systems. 

extension to multi-component mixtures from binary data 

o Simpler models were not able to be extended to multi-component mixtures 

(Margules, Van Laar). The binary interaction parameters derived using the 

Wilson, NRTL and UNIQUAC models can be used for multi-component systems 

with considerable accuracy. 

improved extrapolation 

o Models like Margules and Van Laar lack a temperature dependency in their 

interaction parameters and hence cannot be used to extrapolate data to different 

temperatures. The local composition models have temperature dependency in 

their interaction parameters in the form of a Boltzmann term. These models can 

be used with some confidence to extrapolate data to different temperatures. 

mathematical simplicity and numerical stability 

3.3 Disadvantages 

3.3.1 Weak Theoretical Basis 

GE-models are developed either on an empirical, semi-empirical or theoretical basis. Models have 

evolved over time and are now more effective in describing equilibrium behaviour by accounting 

for different sizes of molecules and interactions between molecules. This is possible due to the 
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model's theoretical basis. If one improves this theoretical basis, then the model should 

theoretically become more widely applicable. 

Often a better theoretical basis makes a model more unstable. As one accounts for more 

deviations from ideality in a model, the model rapidly steps up in complexity and the required 

computation time increases drastically. The model could become numerically unstable and 

parameter fitting may lead to multiple solutions. Intensive experimentation is required to quantify 

factors accounting for deviations from ideal behaviour. From a global perspective this is not a 

prudent solution to the problem. Models should ideally be fairly simple and practical for 

engineering purposes since this then serves to provide fair estimates or starting points for 

equipment design. In addition, the research and experimentation required to improve the model 

could be costly, complex and a time consuming process. 

3.3.2 Poor Model Performance due to Few Parameters 

Models have a varying number of parameters based on the complexity of the model. The 

predictive ability of the parameters is dependent on the quality of data and the ability of the model 

to adequately describe the mixture. A model can be modified differently by the introduction of 

parameters or by modifying the model equation itself. 

Study of phase equilibrium data has revealed that pure component parameters can improve the 

description of almost all mixtures of practical interest since many of these of mixtures exhibit 

differences in both size and chemical nature. 

Local composition models have been developed with this crucial idea as its focus. By including 

these pure component parameters the model's fitting capability is increased. The Wilson model 

utilises pure liquid molar volumes. The UNIQUAC model uses the r and q values which are 

representative of volume and surface areas. 
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3.3.3 Inability to Simultaneously Describe VLE and LLE 

Although considerable time has been invested in developing activity coefficient models, no model 

to date can boast the ability to simultaneously describe VLE and LLE data. The correlation of 

VLE data from LLE derived parameters is very inaccurate. This is clearly illustrated in Figure 

3-2a-b. 
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Figure 3-2 a) x-y data - b) Separation factor, an - calculated using UNIQUAC GE-model parameters 

from LLE and from the regression of VLE-data for the system Water (1) - l-Pentanol(2) (Cho, et al 

1984) at 101.3 kPa together with experimental xyP-data (Rarey, 2005) 

Figure 3-2a shows x-y data for the system Water (l)-l-Pentanol (2). The curve predicted from the 

LLE is not steep enough in the homogeneous region. In the case of the regression of the VLE 

data, the immiscible region is over estimated. In Figure 3-2b the separation factor, a12 is 

calculated from LLE parameters and fit by regression of VLE data. It is clear that the prediction 

of this parameter is unsatisfactory in both cases. 
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Figure 3-3 Prediction of VLE data (+ VLE data - Fischer, 1991) using NRTL and UNIQUAC GE-

model parameters from LLE at 50°C for Water (l)-l-ButanoI 

Figure 3-3 shows the correlation of VLE data from calculation using LLE parameters from local 

composition models NRTL and UNIQUAC. Both models fail to adequately describe the left hand 

side homogeneous regions. The curves generated using both models are clearly not steep enough 

in the homogeneous region and the result is an inaccurate description of the data. 

These disadvantages help highlight the problematic areas of the models proposed thus far. 

3.4 Improving the Concentration Dependence of GE- Models 

3.4.1 Introduction 

The advantages and disadvantages presented above provide a holistic perspective of the 

capabilities of current models. It also highlights the fact that the problem lies in the concentration 

dependence of GE-models and if one can propose plausible modifications while still retaining the 

model's current capabilities, then the model would truly be enhanced. This section reviews some 

of the methods employed by researchers to solve this problem, in particular the problem of 

simultaneously describing VLE and LLE. 
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Some researchers have invested time into exploring methods to improve the concentration 

dependence in GE-models. The available methods that were explored by various researchers are 

very limited. Those methods that could be sourced from literature are discussed in this section. 

3.4.2 Method 1: Combining Two Models 

3.4.2.1 Introduction 
A more flexible GE-model could be obtained by combining two models, where both differ in their 

concentration dependence (Rarey, 2005). This newly formed GE-model would have superior 

capabilities since the constituent models would compliment each other. In other words, the 

combined models would be able to correlate data in cases where the both models fail individually. 

The new model should then be able to simultaneously correlate VLE and LLE data provided the 

two models have different concentration dependences (Rarey, 2005). 

3.4.2.2 Combination of Modified Wilson and Redlich Kister Equation 
In support of the concept introduced above, an illustrative example is presented here. LLE data 

and excess enthalpies for two binary systems were correlated utilising a combined GE-model. The 

systems investigated were methylcyclohexane (l)-methanol (2) and methylcyclohexane (l)-n, n-

dimethylformamide (2) (Bendova et al. 2003). Data points for the binodal curves and tie-lines 

were determined for both systems and correlated. The LLE and excess enthalpy data was also 

predicted by the modified UNIFAC method for the purpose of comparison. 

To correlate the data the Wilson and Redlich Kister equations combined. The newly formed 

Modified Wilson equation was then evaluated to assess its ability to correlate data. 

Q = 
frE\ 

RT + 
( G E \ 

J Wilson RT JRedlichKister 

3-1 

fGE\ 

RT 

V, 

/Wilson 
= "I»2>,7f 

w (=i 

exp 
i J 

3-2 
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rQM\ 

KRT; 

N N "ij 

= - Z Z x>xj Z fy* fa - XJ i 3-3 

RedlichKister '=' » ' 

a0=aij+/3j' + 
( v \ 

T* 
3-4 

Bi]k=aljk+Pl]kT' + 
fijk 

v 7 y 
3-5 

0 = Dimensionless excess Gibbs energy 

^jj Pu> Yy» ajjk, Pijk and y ^ - Temperature independent binary parameters 

Vj - molar volume 

X; - mole fraction 

lref 

' Tref= 300 K 

In the Redlich-Kister equation, the number of parameters, n$j is dependent on the system to be 

correlated. T* was introduced in this combined model as a means to improve numerical stability. 

Equations 3-4 and 3-5 show the temperature dependence of the model parameters. 

In this case, the correlation of data was achieved by use of the maximum-likelihood method. This 

method was appropriately chosen since it facilitates the correlation of various types of data 
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simultaneously. Specifically, the excess enthalpy data for the heterogeneous region could be 

included in the simultaneous correlation. 

3.4.2.3 Evaluation of Combined Model Equation 
325 
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Figure 3-4 Liquid-liquid equilibrium for methylcydohexane (1) and methanol (2) — Modified Wilson 

equation (Bendova et al, 2003) 
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Figure 3-5 Liquid-liquid equilibrium for methylcyclohexane (1) and n, n-dimethylformamide (2), — 

Modified Wilson equation; - - - Modified UNIFAC method (Bendova et al, 2003) 

Some literature values for the system methylcyclohexane-methanol were available and these were 

used in conjunction with measured LLE data for correlation purposes. 

The modified Wilson equation fits the LLE data for both systems with excellent accuracy (Figure 

3-4 & Figure 3-5). The prediction obtained from the UNIFAC method for the system 

methylcyclohexane (1) - n, n-dimethylformamide (2) is shown in Figure 3-5. UNIFAC over 

estimates the heterogeneous region when compared to the experimental data. 

The correlation of excess enthalpy in the system methylcyclohexane (1) - n, n-

dimethylformamide (2) (Figure 3-7) by the modified Wilson equation was excellent in 

comparison to the experimental data whilst that for the system methylcyclohexane (1) - methanol 

(2) (Figure 3-6) was satisfactory. UNIFAC is once again used to predict the excess enthalpy for 

both systems. The prediction obtained for the methylcyclohexane (1) - n, n-dimethylformamide 

(2) can be considered satisfactory. In the case of methylcyclohexane (1) - methanol (2), UNIFAC 

inaccurately predicts that the system is homogeneous in the entire concentration range at both 

temperatures, 293.15K and 398.15K. 

J I I 1 . t l I L 

-67-



CHAPTER 
THREE 

The use of the modified Wilson equation in conjunction with the maximum-likelihood principle 

gave a very good correlation with the experimental data. 

Advantage - Good description of both the LLE data and excess enthalpy using a combined model 

and maximum-likelihood principle. 

Disadvantage - 7-8 Interaction parameters were required by the combined model equation to 

obtain a good correlation. 

Disadvantage - Have to select constituent models with some knowledge of the systems being 

correlated to ensure optimal fitting of data by the combined model. 

Figure 3-6 Excess enthalpy for methylcyclohexane(l) and methanol(2), o, 298.15 K; • ; 313.15K; (thin 

lines - the modified UNIFAC method, bold lines — the modified Wilson equation) (Bendova et al, 

2003) 
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Figure 3-7 Excess enthalpy for methylcyclohexane(l) and n,n-dimethylfbrmamide(2), o, 298.15 K; n; 

313.15K; (thin lines - the modified UNIFAC method, bold lines — the modified Wilson equation) 

(Bendova et al, 2003) 

3.4.3 Use of Additional Parameters 

3.4.3.1 Introduction 
A lack of sufficient parameters is a major disadvantage that prevents models from adequately 

describing phase data. The use of additional parameter can drastically improve the fitting 

capability of a model but care should be taken that it does not introduce any intercorrelation 

between existing parameters. The parameter should also not introduce undue complexity with 

regards to use of the model. 

3.4.3.2 Multiplication by a Concentration Dependent Factor 

The work of Prausnitz and Cha (1985) addresses one aspect of the simultaneous representation of 

VLE and LLE. Their work is confined to the study of ternary systems, with the objective of 

improving the prediction of ternary LLE from binary data. This concept has great practical 
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potential in the design phase and operation of distillation equipment where liquid-liquid 

equilibrium is encountered in addition to VLE. 

The method proposed is applicable to Type 1 ternary systems, i.e. a system of two miscible 

binaries and one partially miscible binary composed of non-electrolyte fluids. The method 

modifies the liquid phase non-ideality by modifying the excess Gibbs energy function and hence 

the activity coefficient expressions. 

In predicting ternary LLE, the data of the three constituent binaries are required. Typically, 

models like UNIQUAC and NRTL are extended to ternary systems to obtain an expression for GE 

as a function of mole fractions and binary interaction parameters. The set of parameters obtained 

from binary data is dependent on the quality of the experimental data that is regressed to fit GE. 

Regression of binary VLE usually produces several optimal sets of binary parameters. To obtain a 

unique set of parameters, the experimental data has to be of high accuracy. The use of these 

parameters to extend to ternary systems in the case of ternary VLE is not a concern. 

However, this is a concern in the case of ternary LLE. Ternary LLE exhibits more sensitivity to 

minor changes in molar excess Gibbs energy. Hence, changes in binary parameters have dramatic 

effects on ternary LLE. Coupled with the fact that binary VLE does not produce a unique set of 

binary parameters, one can conclude that ternary LLE cannot be predicted accurately from binary 

data alone. 

Type 1 ternary LLE systems in particular cannot be predicted from binary data alone. Usually, the 

two phase region is over estimated. Prausnitz and Anderson (1978) attempted to rectify this 

shortcoming. Their study showed that a good description of ternary LLE data can be obtained 

from GE model with binary parameters. However, the binary parameters must be obtained by 

utilizing both ternary LLE and binary data. Whilst the response for the prediction of LLE was 

distinctly better, the quality of VLE prediction was consequently reduced. 

The work of Cha et al. (1985) examines the use of a correction factor that will enable the 

simultaneous correlation of both ternary LLE and binary VLE data with good accuracy. 
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3.4.3.3 Correction Factor 

The regression of experimental binary data yields binary interaction parameters which are used to 

predict phase equilibrium data. In the case of ternary phase equilibria, there are 3 binary pairs 

which yield 3 sets of binary interaction parameters. Ternary equilibrium can then be described by 

these binary interaction parameters via GE models written in terms of mole fractions which is 

defined in this study as 
(GE\° 

RT 
123 

Prausnitz proposes that 
(GB\° 

\ R T Jn 
at constant temperature be multiplied by a factor C. C is 

empirical in nature and could be obtained from ternary LLE data. The correction factor has the 

following properties: 

• C = 1 for binary data sets 

• Dependent on composition 

C is defined in such a manner so as to have minimal effects on the ternary VLE and thus retain 

the ability of the derived parameters to accurately predict VLE. 

C = exp[ccc1'
i,x^x3

/l3J 3-6 

a is a constant. 

Therefore the new expression for G is 

( G E \ 

RT 
= C 

fGE\° 

RT 
3-7 

123 V / 123 

X{ is a constant but has to be greater than or equal to unity to prevent singularities in the activity 

coefficients. 
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4 = 

K = 

f~~\ 
X 

\X2 J 

( \ 

VX3 J 

p = K 

3-8 

3-9 

3-10 

Here xt refers to the ternary composition when the absolute value of In C is a maximum. Hence 

four adjustable parameters exist («,/?,x, and x2) for Equation 3-6. 

Assuming, x, = x2 = x3 = — then, /? = ^ = k2 =/l3 

C = expp(x,x2X3 Y J 3-11 

From Equation 3-6 & 3-7, the resulting activity coefficient expression is: 

l n ^ = C l n / , 0 + C 
I 

vx, 
— /tj — /t2 - /I3 

f/aO 
InC 

yRT Jn 

where ln/(° = 

' G ^ ° 
M, 

;?r /123 

3«( 

r,p,/i, 

3-12 

If the Equation 3-11 is used instead then the activity coefficient expression reduces to 

In/, =C\ny?+Cp 
Kx< J 

( r-E\ 
InC 

KRThi-
3-13 
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3.4.3.4 Evaluation of the Method 
Nineteen ternary systems were investigated. The UNIQUAC equation was used to obtain the 

binary system interaction parameters for 16 ternary systems and the remaining 3 sets were 

regressed with NRTL. These parameters were then used to determine 
(GEX 

RT ' 1 2 3 

The ability to correlate data using the correction factor is dependent on the uncorrected model. 

Thus, the uncorrected model itself needs to be a fair approximation which requires the critical 

selection of binary interaction parameters. The binary data that is used should be in the same 

temperature range as the ternary system in question. In case of the partially miscible pair, 

parameters are obtained from mutual solubility data at the ternary system temperature. Here 

again, the accuracy of the mutual solubility data is crucial as minor adjustments in this data can 

dramatically improve the prediction of ternary data (Cha et al, 1985). It must be noted that if the 

uncorrected model results in an unsatisfactory description of the ternary data, then the correction 

factor will not improve the prediction of ternary data significantly since the binary parameters 

used for this system failed to give a fair description of the data. 

Of the 19 ternary systems, 7 were calculated using Equation 3-11 which is based on a simplifying 

assumption. Equation 3-6 was used for the remaining 12 systems. It must be noted that the 

parameters determined in both these cases have no physical significance and are merely used to 

improve the correlation of the ternary LLE. 

Figure 3-8 shows the correlation of 3 ternary systems where the binodal curves exhibit modest 

asymmetry. For these systems, Equation 3-11 was used. Both cases are reflected here (with and 

without the correction). The case without correction shows the prediction obtained by using only 

binary data. It is evident that the description of the ternary data is unsatisfactory. By including the 

correction factor, C, the correlation of ternary data is excellent. 

Figure 3-9 illustrates the effect of the correction factor as applied to 3 ternary systems in which the 

binodal curves exhibits strong asymmetry. Here, Equation 3-6 was used for the calculation 

purposes. Once again, the use of the correction factor provides a superior correlation of ternary 

LLE data as compared to the prediction obtained from the binary data only. 
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Selectivity prediction also improved drastically (Figure 3-10). The predictive ability of the 

correction factor was further evaluated for the system cyclohexane, acetonitrile and benzene. 

Ternary parameters from 45° C are used to predict LLE at 25°C (Figure 3-11). In this case only 

the partially miscible pair's parameters were adjusted. The results achieved show good correlation 

of the system at both temperatures. 

- Kilno*! CWT»G«J« 
- Kith GtnMliM 

/" stHiim \ 

/i&slsollMhMSSO \ 

® / y * • * • > . \<1B 

K̂  /C --?N\ \» 
«U XT j-—-—^3^X20 

"0 ao «S ST "so "xxT 
fated . . 1,2.4-Tririmfi)'!-

/ BENZENE \ oeniont 

.1-Hip! use 
ETB4N0L A 

JJJ / 1 &») «' N*ia>8 Mt t»te PMM at I K \ j g 

yefhcfif! 
30 tOO 

CyelCf«MS 

Figure 3-8 Calculated and observed liquid-liquid equilibria where the binodal curve shows only 

modest asymmetry (Prausnitz et al, 1985) 

It is anticipated that the correction factor will not reach large values as the ternary LLE shows 

more sensitivity to activity coefficients and are not affected by pure-component vapour pressures. 

The systems studied here did not require large corrections to 
rGEY 

RT 
. Although, the correction 

/123 

factor is small, the effects on ternary LLE data have been dramatic. The effect on ternary VLE is 

expected to be minimal given that the magnitude of the correction factor C was never far removed 

from unity (Cha et al, 1985) and since ternary VLE is dictated by the accuracy of pure component 

vapour pressures rather than activity coefficients. This theory was only tested for a single ternary 

- 7 4 -



CHAPTER 

THREE 

system, acetonitrile(l)-n-heptane(2)-benzene(3). Here the correction factor did not compromise 

the accuracy in predicting the ternary VLE system. Cha et al. (1985) conclude that the effect of 

this correction factor on ternary VLE will not be significant. 

Advantage - The correction factor was able to simultaneously correlate VLE and LLE data. 

Disadvantage - The use of the correction factor is limited to the case of the ternary systems and 

may not be applicable to higher order systems. 

Disadvantage - The correction factor ability to correlate ternary LLE is still dependent on model 

selection and binary interaction parameters. If the experimental data is not accurate or the 

uncorrected model fails to give a good description of the data, then the correction factor is futile. 

Figure 3-9 Calculated and observed liquid-liquid equilibria where the binodal curve shows strong 

asymmetry (Prausnitz et al, 1985) 
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Figure 3-10 Calculated selectivities display drastic improvements when the correction factor is used 

(Prausnitz et al, 1985) 
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Figure 3-11 Predicted liquid-liquid equilibria for acetonitrile (1) - cyclohexane (2) and benzene (3) at 

25UC (Prausnitz et al, 1985) 
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3.4.4 Non-linear Concentration Transformation 

3.4.4.1 Introduction 
This empirical modification is proposed by Rarey (2005). The transformation allows one to 

simultaneously correlate VLE and LLE data. However, this transformation of the liquid 

composition does include an additional parameter. An additional parameter has to be used in 

order to simultaneously describe the VLE and LLE. (Rarey, 2005). 

The transformation can be applied to any GE-model. Rarey (2005) investigated the effects of such 

a transformation on the performance of local composition models. The Wilson model is not 

considered here since it is not applicable to LLE data. Thus the UNIQUAC and NRTL models are 

only considered in the performance analysis. 

3.4.4.2 The Formulation of Transformation 
Current two parameter GE-models are able to manipulate the size and symmetry of GE curves. 

The concentration dependence of the model then dictates the shape of the GE curve (Rarey, 2005). 

Figure 3-12 Depiction of the effects of size, symmetry and shape on G curves 

(Rarey, 2005) 
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Therefore, the inclusion of an additional parameter should affect the shape of the GE curve. One 

has to proceed carefully when proposing to incorporate an additional parameter. The following 

should be taken in cognisance with regards to the additional parameter: 

• Will the inclusion of an additional parameter increase the degree of intercorrelation 

between the existing model parameters? 

• Does this parameter compromise the model's existing capabilities? 

Rarey (2005) implemented the additional parameter in the form of a symmetrical, non-linear 

concentration transformation f. The function f shows only little affect on the existing model 

parameters and hence the size and symmetry of the GE is unaffected. The model is now redefined 

as: 

GE=GE(f(x)) 3-14 

The mole fraction in the original GE-model is replaced with the function f. The implementation of 

the transformation is subject to some constraints. It must: 

• be continuous and differentiable 

• satisfy the summation condition /,/*, =1 (derived from the fact that Yx,. = 1) 
i i 

* be defined for systems containing any number of components 

" be symmetrical with respect to liquid molar composition in binary systems 

• obey the boundary conditions,^ = 0 when x; = 0 and/[= 1 when Xi = 1 
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/ , ( * ) - • 

*,• 1 + Z X A 
v k ; 

Zx* 1+ZXA 
k \ i j 

3-15 

Here dikis the additional parameter. It should be noted that dg = 0 and dy = dp. 

Rarey (2005) also suggests another possible transformation that could be used. In this particular 

transformation, only the odd powers should be used. 

/ , ( * ) -

1+Z**Zfo"**)Wrf« 
V * / 

Z Xk l + Z Xl £ (X* " *> )W_1 rf«» 
* V / m 

3-16 

Multi-component systems can be described and the extension of the transformation using higher 

order parameters is possible. 

/ , ( * ) = • 

1 + Z Xk Z (X< - X* )'_1(/-« + Z X* Z X^'« + Z X* Z X' Z Xmfiklm + -
V * / k I k 1 

Z x k l + Z xi Z (x* - xi T~ldk,m + Z x / Z xmekim + Z x i Zx™ Zx«/**». + • 

3-17 

V / m I m n 
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In Yt = 
d{nTQ) 

V dil> JT,P,nj„ 

3-18 

QE 

where Q = 
* RT 

This yields the following expression: 

In ft =Q + nr 
Kdnu 

3-19 

Now, GE is a function of the transformation f(x), which is a function of composition. This has to 

be taken into account when deriving the new activity expression. 

The derivation of the activity coefficient requires the use of the chain rule. 

Kdnu 
3-20 

Here 
KdntJ 

and are vectors while 
ydntJ 

represent a Jacobian or gradient matrix of 

concentration. Thus the expression for activity coefficient is: 
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ln7i =Q{f) + Vf 
fasdsW SQ(f) 

df 
3-21 

/T,P,nJtl 

In the binary case, the Jacobian matrix is derived from the following expression: 

V / = vM 

X, 

z 
k 

( > 

K k J 

; 
i d * 

5«, <9«, 3«; 
3-22 

The differentiation of f has to be performed carefully because of the subscripts. Two cases have to 

be considered, one with identical subscripts and the other where the subscripts are not identical. 

For the case where i = j the elements of the Jacobian have the form, 

df{xt)= 1 
drtj ST 

1 + x, + 5, - 2x, 
(1 + 5,) ̂ 

'T J 

3-23 

For the latter case the elements of the Jacobian have the form, 

drij ST 

x,(l + ^ . ) - 2 x / 

(l + 5,)(l + 5y)> 

Orp 

where 

3-24 
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3.7.4 Performance of the FlexQUAC Model 
The transformation was applied to the UNIQUAC model and since the purpose of the 

transformation was to improve the flexibility of the model, the subsequent model was named 

FlexQUAC. 

The model was first tested with 4000 binary data sets containing pressure composition data (Px 

isothermal data) contained in the DDB. The mean relative squared deviation in pressure was used 

as the objective function to regress the data sets. 

Naturally no big improvements were observed for the cases where the activity coefficients have 

no effect, since these are nearly ideal systems (Figure 3-13). The more non-ideal the systems gets, 

the higher the improvement is. At activity coefficients at infinite dilution greater than four, there 

is a constant improvement of more than 2.5 in the objective function. At coefficients greater than 

15, the plot diverges signalling the onset of LLE behaviour and in these cases the quality of the 

data is very much reduced. 
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Figure 3-13 Relative Gain in objective function (A) versus the geometric mean of the activity 

coefficients at infinite dilution calculated from the UNIQUAC regression (Rarey, 2005) 
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A typical example is given in Figure 3-14 for the system tetrahydrofuran-water. The UNIQUAC 

fit of the data is not precise and the azeotropic point is not described well. FlexQUAC fits the data 

and describes the azeotropic point precisely. Although the difference between the two curves is 

small, the system is more accurately described by FlexQUAC. 

With regards to ternary VLE, the intention was to illustrate that the new model does retain its 

ability to accurately predict higher order systems and that this ability is not compromised. 

Thirteen reliable ternary sets were chosen. Figure 3-15 illustrates that FlexQUAC is superior to 

UNIQUAC in some cases or at worst predicts as well as the UNIQUAC model. Table 3-2 

illustrates the ternary systems investigated. 

250 
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50 

• Signer R..ARM H.,Daeniker H. 
Helv.Chim.Acta 52(8),2347(1969) 
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• - - UNIQUAC 
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0.8 

Figure 3-14 Regression results for the system tetrahydrofuran-water at T=298.15K using the 

UNIQUAC- and FlexQUAC-model (Rarey, 2005) 
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Figure 3-15 Comparison of the predictive performance between the UNIQUAC and FlexQUAC 

models for ternary mixtures (Rarey, 2005) 

x i . y i 

Figure 3-16 Simultaneous correlation of VLE and LLE using FlexQUAC GE-model parameters from 

LLE data and VLE data for the system Water (1) - 1-Pentanol (2) ( • - VLE data, • - LLE data, A -

azeotropic data, — VLE calculation, LLE calculation, azeotropic composition calculation) 

(Rarey, 2005) 
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Ternary Systems 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Ethanol (1) - Acetonitrile (2) - Water (3) 

Acetone (1) - Ethanol (2) - Water (3) 

Ethanol (1) - Water (2) - 1,4-Dioxane (3) 

Acetone (1) - Methylacetate (2) - Acetonitrile (3) 

Benzene (1) - Cyclohexane (2) - Aniline (3) 

n-Hexane (1) - Benzene (2) - Cyclohexane (3) 

1-Heptene (1) - n-Heptane (2) - n-Octane (3) 

T[K] 

293.15 

303.15 

313.15 

313.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

343.15 

343.15 

328.15 

Mean Relative Deviation in P [%] 

UNIQUAC 

7.01 

6.12 

4.46 

1.68 

1.33 

0.56 

1.41 

1.62 

1.08 

0.42 

0.65 

0.65 

1.64 

FlexQUAC 

3.61 

3.82 

2.47 

1.71 

1.36 

0.51 

1.16 

1.32 

1.29 

0.37 

0.83 

0.63 

1.64 

Table 3-2 Ternary systems investigated in the evaluation of the FlexQUAC model (Rarey, 2005) 

The model now adequately describes VLE and LLE simultaneously as illustrated in Table 3-2. 
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Chapter 4 Simultaneous 

Regression & Software Tools 

4.11ntroduction 

The regression of experimental phase equilibrium data facilitates parameter fitting using e.g. an 

excess Gibbs energy model. In Figure 4-1, the process of predicting equilibrium data is broken 

down into two steps. The first step involves the correlation of data to obtain model parameters 

and the second step involves the use of these model parameters in the appropriate excess Gibbs 

energy model or equation of state to interpolate and extrapolate thermodynamic data within a 

certain range of composition, temperature and pressure. 

The accuracy of models is dictated by the model parameters and model equations. The 

experimental data may contain errors that can be attributed to measurement. Thus caution must be 

exercised in the regression step to account for possible errors. This then defines the level of 

confidence in model parameters and the subsequent predictions resulting from the model. 

In order to assess the performance of the FlexQUAC-Q model in this study, phase equilibrium 

data had to be regressed simultaneously. This chapter reviews the important steps in this 
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regression process. The subject of simultaneous regression of phase equilibrium is explained 

further due to its relevance to this research study. Once model parameters are obtained from 

regression of data, different methods are used to calculate mixture data. These methods are 

discussed to illustrate how different types of data measurements are handled. 

The process of regressing thermodynamic data is iterative and requires a certain criterion to be 

satisfied in order to terminate the algorithm. The criteria are contained in the form of an objective 

function. The regression process seeks to either minimize or maximize the objective function 

depending on the application. In the case of phase equilibrium data, the definition of a generic 

objective function would be the difference between the measured and calculated variable and the 

aim of the regression would be to minimize this function. The objective function is also 

dependent on the type of data measurements. The commonly used objective functions and the 

variations on its form are discussed here. 

Since measured data have inherent errors, one has to account for these. This would minimize the 

error in the prediction of thermodynamic data. The maximum-likelihood principle accounts for 

these errors and is summarized here. 

A regression algorithm is required for the regression of thermodynamic data. For the purposes of 

this research study, the regressions were made using the Simplex-Nelder Mead method. The 

theory of the method, the implementation and the application of this method in the Excel 

regression program is presented here to improve the reader's understanding. 

The Dortmund Data Bank, DDB (Gmehling et. al., 2006) is used extensively in this research 

study to obtain thermodynamic mixture data and pure component data. Mixture data obtained 

here was regressed to assess the performance of the FlexQUAC-Q model in the excel program. 

The DDB's simultaneous regression software tool, RECVAL was also used extensively to regress 

mixture data in this study to compare the results with the excel regressions. RECVAL was also 

used to perform regression of mixture data using its array of features that allows the user to 

effectively manipulate the regression of data. A brief overview of this program is presented here 

to aid the reader's understanding of some of the program's innovative capabilities. 

- 87 -



CHAPTER 

FOUR 

Step 1: 
Correlation of Data Start 
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Regression Algorithm -
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Figure 4-1 The sequence of steps required for regression and calculation of experimental data 
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4.2 Simultaneous Regression of Phase Equilibrium data 

Simultaneous regression of different phase equilibrium data is a valuable tool for obtaining an 

accurate description of mixture properties. Different sources of experimental data are available. In 

addition to the data types outlined in Table 4-1, there exists also mutual solubility (LLE), 

azeotropic data, activity coefficients at infinite dilution (y°° data), SLE, HE and CpE data. 

Since the number of data points measured usually exceeds the number of model parameters, a 

regression minimizing the deviation between the experimental data and model calculations has to 

be performed. Hence a unique set of model parameters that reproduces all experimental data with 

sufficient precision is not always obtained. Small errors in the binary parameters lead to larger 

errors in the prediction of multicomponent data. 

Liquid-liquid equilibrium, in particular exhibits significant sensitivity to small changes in the 

activity coefficients (Prausnitz et al, 1980). Hence it is advised to include some LLE data in the 

regression to obtain reliable model parameters. Binary data are mostly inadequate for the 

prediction of ternary LLE data. In this case, some ternary data need to be utilized in the regression 

procedure to obtain suitable binary parameters. Usually ternary tie line data are regressed 

simultaneously together with binary VLE data to obtain optimal binary parameters. Consider an 

arbitrary system A, B and C where A-B is a partially miscible binary system and both B-C and A-

C are completely miscible. For the partially miscible system A-B, the mutual solubility data is 

used to obtain the corresponding binary parameters. VLE data for the remaining miscible binaries 

are used to provide reasonable estimate of model parameters. An optimal set of parameters is 

obtained by simultaneous regression of both the VLE data and the ternary LLE data. 

Figure 4-2 shows a ternary LLE system where both binary VLE and ternary tie-line data was used 

for regression purposes. The two-phase region was not well represented by original UNIQUAC. 

With the use of the ternary tie line data the description of the two phase region is greatly 

improved. 

- 8 9 -



CHAPTER 

FOUR 

3ENZEME 
" JOG 

&—Dolo of VNMfl 
and Ectert (B77) 

at SWC 

100, 
0 " 20 

METHANOL 
40 60 

Mole NMMM 

a 
80 100 

IHffiPTANE 

Figure 4-2 LLE for a type 1 system (a) original UNIQUAC (b) modified UNIQUAC for alcohol 
systems (c) Modified UNIQUAC with binary parameters calculated from binary VLE data and 

ternary tie-line data (Prausnitz, et al 1980) 

4.3 Objective Function 

The focus for regression of thermodynamic data is to minimize the deviation between the 

measured and calculated variable. Several types of objective function can be defined. One 

commonly used objective function is the relative mean squared deviation (RMSD): 

1 2 

n. 

( xrexp _ yc 

X exp 

calc ^ 

) 
4-1 

where 

X;
exp refers to the experimental value of variable X for data point i 

Xf"c refers to the calculated value of variable X for data point i 

n refers to the number of data points 

Some other objective functions are: 

n 
F=-YL(X^J~X^J 4-2 
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~~ Z l Z l «'W exp.i.y 

f=rIS 

' - r Z I 

' y _ y 
cal,i,j exp.i.j 

X. 
exp.ij / 

JT — X 
cal,i,j exp.i.j 

X 
exp,/,y 

4-3 

4-4 

4-5 

In the case of simultaneous regression of different data types the objective function has to account 

for the deviations in different measured variables. Consider a regression of three different 

measured variables, X, Y and Z. The corresponding objective function would have the form: 

1 2 

n , 
W, 

y"exp yrcalc \ l 

VexP 
V Ai J 

+ W, 
yexp ycalc \ 

yexp 
V li J 

+w, 
yexp ycalc \ 

vexp 
V ' ' I 

4-6 

where Wb W2 and W3 are weighting factors. 

Weighting factors can be placed in the objective function to manipulate the weight of individual 

data points, data sets or data types. 

In this study, all the binary VLE data was high precision xPT data. Hence the following objective 

function was used in regression: 

1 " 
fP -P V 

exp.i cak.i 

V aP-> J 4-7 

4.4 Calculation Method 

Chapter 2 reviewed the calculation methods for thermodynamic mixture properties. The 

calculation method is dependent on the type of data measured and experimental setup. Data can 

be measured isothermally (constant temperature) or isobarically (constant pressure) or at constant 
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composition. Isothermal data are usually measured in static cells. In this case the pressure, as a 

function of liquid composition, can be obtained by varying the composition of the system in 

question and by measuring the pressure once phase equilibrium is reached. Thus temperature, 

pressure and liquid mole fractions are obtained experimentally and the vapour mole fraction can 

be calculated. 

Table 4-1 illustrates the distinction between the various data types and the measured and 

calculated variables with the y-(p method as its basis. 

Computation type 

Bubble pressure 

Bubble temperature 

Dew pressure 

Dew temperature 

Controlled variables 

xi; T 

Xi ,P 

y»T 

Yi,P 

Computed Variable 

P,y, 

T.yi 

P,Xj 

T,x, 

Table 4-1 Different computation types for VLE data 

The bubble pressure calculation algorithm is presented here (Figure 4-3) to better explain the 

procedure. In this case the objective function can be defined to minimize the error between 

computed pressure and experimental pressure or both computed and experimental pressure and 

vapour composition, y. The algorithm is an iterative one. Calculation methods for the other 

remaining types are readily accessible in many textbooks e.g. Smith & Van Ness et al. (1996). 

In this case the regression of experimental data provides one with parameters for an appropriate 

excess Gibbs energy model. This model then generates activity coefficients and the unmeasured 

variables are then calculated by a bubble pressure calculation. 

Isobaric data can be regressed in a similar manner as isothermal data. This is provided that the 

model parameters are not strongly dependent on temperature and can be considered negligible. In 

this case the unmeasured variable would be calculated by a bubble temperature iterative 

calculation. 
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Input controlled and measured variables: P,T, 
x; (Using gamma/phi formulation for VLE) 
Set all Oj=1.0 

Evaluate P?al Antoine equation 

Y; — GE model 

'-Z ; 
o, 

Evaluate yi 
x,rtf 

Recalculate <&, 

Z X.Y.P, 

V, 

Output P, yj 

Figure 4-3 Bubble pressure computation procedure 
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4.5 Maximum-Likelihood Principle 

It is anticipated that all measured data will contain some degree of error. Since this directly 

impacts the accuracy of model parameters, it is advisable to accommodate these errors 

statistically. 

Experimental errors are either systematic or random. Systematic errors may arise due to a bias in 

the experimental method (Prausnitz, et al, 1980). The resulting data exhibit a departure from the 

proper value. Systematic errors can be limited to a certain concentration or pressure range. To 

avoid errors of this type, one needs to carefully analyse the experimental procedure and ensure 

good understanding of the equipment before undertaking the measurements. 

Random errors, on the other hand can be accounted for statistically. These errors produce 

uncertainties in the model parameters. The errors are further exasperated when these random 

errors are coupled with the inadequacies of some models. 

The maximum likelihood principle takes into account random errors of both controlled and 

measured variables. This principle postulates that an experimentally determined variable has a 

normal distribution about its exact value and a corresponding variance. Usually the variances are 

specific to the type of experimental equipment. The likelihood function is defined as the joint 

probability of the observed values of the variables for any set of true values of the variables, 

model parameters and error variances. "The best estimates of the measured variables are those 

which maximize this likelihood function with a normal distribution assumed for the experimental 

errors" (Prausnitz et al, 1980). This function is defined as follows: 

o2
p al a2 a2 
rl ': Xil: y«i 

where 
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• M - no. of data points 

• e - measured variable 

• o - estimated true value 

• a2 - estimated variance of the measured variables 

The model parameters that minimize this function represent the optimal parameters. 

4.6 The Simplex-Nelder-Mead Method 

4.6.1 The Theory of the Simplex-Nelder-Mead Method 

The downhill simplex method was modified by Nelder and Mead (1965). This method is 

preferred since it requires only function evaluations. No derivatives are necessary. It can be 

inefficient considering the number of function evaluations it requires. This regression although 

slow, is very stable and is suited for the regression within this research study. 

A simplex is the simplest body in N dimensional space. It consists of N+l vertices and all their 

interconnecting line segments, polygonal faces. In two dimensional space a simplex would 

correspond to a triangle while in three dimensional space it would correspond to a tetrahedron. 

The simplex must enclose some finite N dimensional volume. 

The simplex method is a systematic procedure for generating and testing the candidate vertex 

solutions to a non-linear program. The method requires an initial simplex to be defined in N 

dimensional space as an initial guess. Alternatively, values and step width can be specified for 

each parameter. 

After the worst point (corresponds to the highest value of the objective function) is identified, this 

point is reflected along the centroid through the simplex. The objective function is evaluated at 

this point and if it corresponds to a new minimum, the simplex is expanded along this line. 

However, if the new reflected point is worse than the previous point then the algorithm contracts 

the simplex in one dimension from the worst point. In the event that the new point is worse than 
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the previous points a multiple contraction towards the best point is undertaken. A combination of 

these steps (reflection, expansion, contraction) yields an optimal solution. 

4.6.2 Reflection 
1 N 

The centroid of the N best points in the vertex is x = — T ] x. . xs represents the point to be 

reflected. Let the reflection point be denoted by xr located on the line joining the centroid to xs. It 

is defined by: 

x.. = x + a (X~Xs) 4-8 

Here a is the reflection coefficient. If F\x.) > F\xr) > F\xb) then the reflected point, xr is 

accepted replaces xs. Here x2 represents the vertex which yields the second worst value of the 

target function while xb is the vertex with the best value of the target function. The new simplex is 

re-evaluated. 

Figure 4-4 Representation of reflection for Simplex-Nelder-Mead algorithm 
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4.6.3 Expansion 

If F(xr) < F(xb) then the reflection has produced a new minimum. xr is then expanded to a new 

point xe. 

xe = x + y{xr - x) 4-9 

where 

• y refers to the expansion coefficient 

If F(xe) < F(xb), then xs is replaced by Xs. In the case where F(xe) > F(xb), then the expansion has 

failed and xr replaces xs before restarting. 

Figure 4-5 Representation of expansion for Simplex-Nelder-Mead algorithm 

4.6.4 Contraction 

If F(xr) > F(xz) and/ or F(xr) > F(xs) then a point xc is generated by contraction 

xc = x + p{xs - x) 4-10 
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where 

• P refers to the contraction coefficient 

If F(xc) < F(xs), then xs is replaced by xc. If F(xc) > F(xs) then all Xj are replaced by (XJ + Xb)/2 and 

the entire process is restarted. 

Figure 4-6 Representation of contraction for Simplex-Nelder-Mead algorithm 

4.6.5 The Simplex-Nelder-Mead Algorithm 
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Calculate F(XJ), F(xb), 
F(xz) and F(xs) 

Reflection 
xr -x + a(x-xs) 

No 

Yes 

Expansion 
xe =x + y{xr-x) 

Yes 

x« x e 

No 

No 

Yes 

Contraction 
xc = x + p{xr - x) 

Contraction 
xc = x + p{xr - x) 

No 

Yes 

xs xr 
Xj = (xj+xb)/2 xs - xk 

Figure 4-7 Flow diagram of the Simplex-Nelder-Mead Algorithm 
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4.6.6. Utilisation of the Simplex-Nelder-Mead Method 

The Simplex-Nelder-Mead regression algorithm is used in an Excel program (Figure 4-8) to 

obtain model parameters for the FlexQUAC-Q model. The main program provides the initial set 

of parameters for the regression and then calls the Datafit subroutine which defines the auxiliary 

information for the regression. This sets the step width for the parameters, the stop criterion and 

the maximum number of iterations. These parameters are used by the Simplex-Nelder-Mead 

subroutine (DSIM) for the regression. These parameters are then used by the function AUX to 

perform the bubble temperature calculation and to calculate the objective function. The 

parameters obtained are then displayed on the Excel spreadsheet after the convergence criterion 

has been satisfied. 

Main program 
Initialise model and model parameters 
Call Datafit subroutine 
Output model parameters and 
objective function into Excel sheet 

Datafit 
Set regression criteria 

DSIM 
Simplex-Nelder-Mead 

Algorithm 

Model 
Parameters 

Objective 
Function 

AUX 
1. Perform bubble temperature 

calculation 
2. Calculate objective function 

Figure 4-8 Flowchart of the Excel progam for data regression 
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4.7 Dortmund Data Bank (DDB) 

4.7 .1 History of the DDB 

The Dortmund Data Bank (DDB) was initiated in 1973 by J. Gmehling at the University of 

Dortmund as a tool for the development of a group contribution GE model for VLE in 

collaboration with Lyngby in Denmark. This was later extended to LLE, H , y°°, azeotropic data, 

CpE and SLE for the development of modified UNIFAC. Group contribution equations of state 

(PSRK and VTPR) for the VLE of low boiling compounds were then developed. Next VLE and 

GLE of electrolyte systems were stored. This led to the development of the electrolyte models, 

LIQUAC and LIFAC. Thereafter the pure component data base was initiated for the development 

of estimation methods for pure component properties. 2004 saw the launch of a polymer phase 

equilibrium data bank. In 1989 DDBST GmBH took over further development of the DDB. In 

2000, the DDBST delivered the first windows version of the DDBSP which is a software package 

for data handling, correlation and estimation and process synthesis tools. Storing the huge amount 

of phase equilibrium and excess property data on computer provided the basis for the 

development of predictive methods. The DDB today has earned the reputation as the largest and 

most well established computerized data bank for both pure component and mixture properties. 

The substantial amount of pure component and mixture data in the DDB allows one to fit model 

parameters to various thermodynamic models, including GE models and equations of state for a 

large variety of mixtures. The data is indispensable in process simulation where reliable 

interaction parameters are required. The vast amount of data that often span a large temperature 

and composition ranges are of great importance for the development of group contribution 

methods. In addition the data has greatly aided the development of predictive methods. 
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Figure 4-9 Different applications of the DDB (www.DDBST.de) 

The DDB is updated on a yearly basis. Figure 4-10 illustrates the phenomenal development of the 

DDB. 
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Figure 4-10 Rate of expansion of the DDB since 1986 (www.DDBST.de) 
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4.7.2 Software Tools 

The DDB software package (DDBSP) contains a number of software applications tailored for use 

in industry. The software tools have a range of applicability ranging from data retrieval, 

graphical representation, calculations and property estimation. A short review of DDBSP is 

presented here to enable one to understand its capabilities. The RECVAL software package is 

presented in more detail since it is used extensively in this research. 

DDBST GmbH-Programs Jump Start 2005 

File Help 

Pioyiam Foldei 
JCADDBMA!N\DDBSP2~2\ & Select 

_v Pidgin 
• h Tray 

Data Banks Fit Process Synthesis 

Dortmund 
Data Bank 

(DDB) 

ParamDDB 
Organizer 

Editors 

j ja Edit Mixture Data 

focfl Edit Pure 
\3 Component Data 

Stoff Editor 

GC Models 
Parameters 

/m 
Gen 
Par 

PCP Equations 

RecVat/3 

Equation of States 
Mixing Rules 

Predict Azeotropic 
Points 

°M Residual Curves 

Other 

Predictive 
SRK 

Artist 

Contour Lines 

4 Entrainer 
Selection 

yoO AclCoeff. at 
Inf. Dilution 

ELiU Distillation 
JS Simulation 

DDB 
Configuration 

Literature 

MolProp Predict 

LEAR 

Lida Lida 

(7 AutoStart with Windows 

Figure 4-11 Various software tools available in the DDB software package (www.DDBST.de) 
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4.7.2.1 Data Viewer (Dortmund Data Bank) 

This tool is used to perform data queries for pure component or mixture data. 

_> Dortmund Data Bank 

He £dt Hdp [ZJContoct 

X E s t BoDBStatisdcs ! B^Opdons Q|sDOePreselecoor, f About 

O f i v c r y j j a n g l e Sets! i _ 5e te»*x (ACT)' 

§ 

add Component Cede/5 

^ A d t f j ^ M d a t l i a l 

(type V or'a'to sv*tf» to s*/«J$ort»i* nurabor and tack) 

Add Z c r r C r r ^ * 

(d> Add Compound Ijst 

Search 

Eaference/s Selection 

1 P-edrt 

D06; C;\DWWAIW\Ddb\ Private OOfr C;\C0eWAIWPRVY\ Nnt: 

Figure 4-12 Query dialog of the data viewer (www.DDBST.de) 

The user may specify a component or sets of components for data retrieval. The user can either 

enter a DDB pure component code number or search for the component of interest. After 

searching for the component(s) the data viewer enables the user to view and edit pure component 

or mixture data. The viewer provides a list of important parameters ranging from basic 

information (Antoine constants, molecular weights, boiling points etc.) to UNIFAC and 

UNIQUAC molecular parameters (Figure 4-13). 

If one considers the mixture, ethanol and water, then the data viewer provides a comprehensive 

listing of all available binary data. The user can then navigate through the data to find the 

appropriate data required (Figure 4-14). By right clicking on a data set number, the user can view, 

plot and fit experimental data contained in the data set. The 'fit' option allows the user to select 

the GE model or equation of state and the objective function. 
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Figure 4-13 Pure component basic data for ethanol (www.DDBST.de) 
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4.7.2.2 ARTIST 

This program is used for the estimation of pure component properties using group contribution 

methods. "Using a special coding scheme for molecular structures, ARTIST is able to take into 

account the chemical neighborhood of the individual groups thus implementing chemical know-

how. Special features of some group contribution methods like topological indices and second 

order group corrections are automatically taken into account" (www.DDBST.de). 
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4.7.2.3 Process Synthesis 

This software tool is of particular importance to industry for the prediction of homogeneous and 

heterogeneous azeotropic compositions in multicomponent mixture, calculation of residual curves 

and contour lines and the selection of entrainers for various separation processes. 
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Figure 4-14 Various available binary data for the system ethanol-water (www.DDBST.de) 
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4.7.2.2 ARTIST 
This program is used for the estimation of pure component properties using group contribution 

methods. "Using a special coding scheme for molecular structures, ARTIST is able to take into 

account the chemical neighborhood of the individual groups thus implementing chemical know-

how. Special features of some group contribution methods like topological indices and second 

order group corrections are automatically taken into account" (www.DDBST.de). 

4.7.2.3 Process Synthesis 

This software tool is of particular importance to industry for the prediction of homogeneous and 

heterogeneous azeotropic compositions in multicomponent mixture, calculation of residual curves 

and contour lines and the selection of entrainers for various separation processes. 

4.7.2.4. Recval 

This is the regression tool of the DDB used for the simultaneous regression of phase equilibria 

and excess properties. The data obtained in the Mixview data viewer for a specific chemical 

system can be exported to Recval. 

Recval has the following options: 

• File - Allows user to open projects, generates projects from mixture data files, save 

projects and exit the program 

• Edit - Various options to specify the regression 

• Special - Selectively remove data of different criteria 

• Run - Initiate the regression of data 

• Results - Displays calculation or regression results in tabular or graphical form 

• Options - General options for calculations and plot specifications 

• Help - Comprehensive help system pertaining to use of Recval 

The Recval program is an excellent tool for regression of data. The user is given a multitude of 

options thereby achieving accurate results quickly and efficiently. The graphical interface of the 

- 107-

http://www.DDBST.de


CHAPTER 
FOUR 

program allows for easy navigation and is user friendly. The capabilities presented here are but a 

superficial overview of the program and the true appeal of such a tool can only be realized once 

in use. Its versatility, speed and data handling options make it an indispensable software tool for 

regression of data especially in this research study. 

4.7.2.4.1 Edit Menu 

The Edit menu (Figure 4-15) allows the user to select from various options. This allows the user 

to select the most appropriate liquid and vapour phase models. The regression properties can also 

be tailored to specification. Initial interaction parameters and weighting factors can be assigned. 

The 'Components, Properties' option allows the user to set the models to calculate the pure 

component vapour pressures and liquid density. The vapour pressures can be computed from the 

Antoine, DIPPR or Wagner equations depending on which parameters are available. 

With the 'Liquid Mixture Model Selection' (Figure 4-16) the user can define the appropriate GE 

model to be used. Currently the following models are available: 

Ideal (Raoult's Law) - calculation only 

Margules 

Van Laar (no hE calculation) 

Wilson 

NRTL 

UNIQUAC 

FlexQUAC 

Redlich Kister 

Legendre Polynomial 

Scatchard-Hildebrand 

UNIFAC - calculation only 

mod. UNIFAC (Dortmund) - calculation only 

COSMO-RS 

Recval supports the use of temperature dependence for interaction parameters. The user can 

specify the type of temperature dependence. The constant interaction parameters can adequately 
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predict the VLE data over a narrow temperature range. If the VLE data cover a larger temperature 

range then a temperature dependence of the interaction parameters is required. In the event that 

heats of mixing data are available, then temperature dependence should be utilized since they 

represent the first derivative of the excess Gibbs energy. If the data set contains heats of mixing 

data at various temperatures and they differ significantly; then quadratic temperature dependence 

should be utilized to describe the temperature dependence of the first derivative of GE. This 

would also apply if excess heat capacity data is also available. Excess heat capacity data at 

different temperatures that differ significantly would require higher order temperature 

dependence. This however, is not supported in Recval. 

The temperature dependence options available in Recval are: 

• 1 - Par = A - constant interaction parameter 

* 2 - Par = A + B*T - temperature dependence 

* 3 - Par = A + B*T + C*T2 - quadratic temperature dependence 

i i ifl Fte | Edit Special Run Result Options Window Help 

Components, Properties 

Liquid Mixture models 

Vapor Mixture models 

Regression 

O j I Initial Parameter 

Data/weights 

Data bank weights 

Vapor Pressure Adjust 

Figure 4-15 Options available in the 'Edit' menu 

- 109-

nund 
gression of Pha 



| R E C V A L / 3 - Liquid Mixture Model Selection 
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Figure 4-16 Liquid mixture model selection window 

[ R E C V A L 3 - Vapor Mixture Model Selection 
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Figure 4-17 Vapour mixture model selection model 

The 'Vapour mixture model Selection' (Figure 4-17) option currently supports the ideal vapour 

phase and cubic equations of state. In the event that one or both of the components are carboxylic 

acids, then the default model is set to the chemical theory model. For the cubic equations of state, 

the appropriate mixing rule and alpha functions have to be selected. 

The 'Regression' (Figure 4-18) option allows the user to set the target criteria for convergence and 

the maximum number of iterations. 
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|RECVAL/3 - Regression Parameters 

algorithm | 3 . Simplex-Neldef-Meacl 

step-width 

convergence criterion 

max. number of function calls 

function scaling 

i OK i Cancel 

•1 
0.10D+02 

0.10D-07 

1000 

0.100+01 

Help 

Figure 4-18 Regression parameter program window 

The 'Initial parameter' option allows the user to set initial values for the interaction parameters. 

It sets the step width for the regression. It also allows the user to fix a parameter value by 

deselecting it to exclude it from the regression or by setting its step width to zero. In addition the 

user can use the default starting values, previous regression results, previous starting values or 

load parameters from the DDB. 

The 'data/weights' option (Figure 4-20) allows the user to view the different data weights for each 

data set and data point. The details for each data set can be viewed i.e. type of measurement, no. 

of data points, the reference and consistency tests. The data weights, residual and objective 

function can also be viewed. Individual data points can also be viewed (Figure 4-21). The user has 

the option to remove a data set from the regression by hiding the data set. 
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RECVAL/3 - Regression Parameters 

initial step scale initial step scale 

a12 

a21 

17 

F 
F 
P 
F 
F 
F 
F 
F 
F 
F 
F 

0.00000 10.0001 

0.00000 10.000C nifOf 

reference temperature [K] |~ use default starting values | use previous regression results | use previous starting values 

: r ia group contribution 

| -20000.C | 20000.C 

j -2000aC j 20000.C 

Cancel H* 

Figure 4-19 Initial parameter program window 

The 'data bank weights' (Figure 4-22) option allows the data bank weights to be adjusted. This 

defines the weighting of the different data types in the objective function. This is important since 

the objective function is adding properties that have different units with different orders of 

magnitude. 

The 'Vapour Pressure Adjust' option allows the user to modify the pure component vapor 

pressure values of the two components for each data set used to adjust the vapor pressure 

equation to fit the author's pure component data. 

4.7.2.4.2 Special Menu 

The 'Special' option contains the following options: 

o De-weight data in miscibility gap 
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This option will set the weighting factors of all data points within the 

calculated miscibility gap to zero (not LLE data points). 

Set Data Set Weights 

data set VIE X-V-IPJ-T constant pressure P = 760.00 mmHg ( 1.00000 atm) 

reference 

REINDERS W..DE MINJER CH.flECLTRAV.CHIM.PAYS-BAS 66.573(19471 

pubished in DCDS Volume 1/1 reference number: 

number of data points 

measurement method 

quality 

13 

regression settings — 

weight 

8 1 1.00000 

8 2 100000 

8 3 1.00000 

residual objective function 

0 00000 |061((g_cal-g_exp)/'gLexpr2 ^ J 

0.00000 |162 (T_exp-T_car2-^00 zl 

0.00000 |021|(y_cal-y_exp)4i_expr2 _^J 

total data set residual 0.00000 r hide data set 

point to point test 

area test 

adjust pure component vapor pressure 

17 comp. 1 | 7 comp. 2 

Edit Data Points 

OK Cancel Help 

A 

Figure 4-20 Data weights program window 

Data Port List • Current Data Set 

I • 
0.01600000 

0.03300000 

0.05200000 
0.07200000 

0.09400000 

y 
0.27700001 

0.47900000 

0 60399997 
0.67500001 

0.71899998 

T 

363.25 

35525 

349.35 
345.35 

34265 

P 

760.00 

760.00 

760.00 

760.00 

760.00 

J' 
data set 

DOB* 

datatype [" 

11 

Selected Data Point Detals 

data point number 

liquid mole fraction x1 

vapor mole fraction y1 

temperature [K] 

E
sure Emm Hg] 

its enthalpy hE [J/mol] 

iss heat cap. cPE [J And K] 

nds-code 

activity coefficient 1 

activity coefficient 2 

calc. 

520DD 

343 350 

760 00 

0.000000 

ooooooo 
c OM 

0 000 

0000 

| 0 300 

I o ooo 

Pis [mmHg] 

P2s[mmHg] 

phil 

Phi2 

phis1 

pte2 

000 

1.000000 

1.000000 

' B0O00 

weight 1 

residual 1 

weight 2 

residual 2 

wetght3 

residual3 

total residual 

.M.. 

Help 

1.000000 

0 000000 

1.000000 

ooooooo 
1.000000 

0 000000 

Figure 4-21 Data weights program window for individual data points 
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Uet Data Bank Weights 

VLE 

HE 

ACT 

LLE 

CPE 

HPV 

AZD 

SLE 

| 1.000000 

| 1.000000 

j 1.000000 

| 0.000000 

| 0.000000 

| 1.000000 

| 1.000000 

| 1.000000 

i a* i 
Cancel 

Udp 

Figure 4-22 Data Bank weights program window 

o De-weight LLE above 20 bar 

GE models cannot describe the pressure dependence of LLE data measured above 20 bar. 

For this reason this data is de-weighted. 

o De-weight inconsistent VLE 

All the data sets for which consistency tests were not done will be de-weighted. However 

consistency tests cannot be performed for all data sets in particular for the accurate static 

measurements and this would remove them from the regression completely. 

4.7.2.4.3 Options menu 

The 'Options' menu allows the user: 

• To activate the calculation of azeotropes and LLE in a given temperature range with 

'Regression/Calculations' option 

• The 'Plot' option allows the user to change the settings for the graphics settings for the 

plots generated. 

4.7.2.4.4 Run menu 

This runs the regression based on the settings implemented by the user. 
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4.7.2.4.5 Results Menu 

EErv3 - [RECVAL/3 V 1.3 10/24/01 ] 

ijil File Etft Special Run Result Options Window Help 

Simultaneoi 

Summary 
Graphics 
Table 
Table LLE/AZD 
View log file 

jnd [ 
ion of Phase 

Figure 4-23 The various options available in the Results option 

The 'Summary' option displays the pure component parameters, the mixture data (model and 

binary interaction parameters), the data sets and their references and the objective function. 

The 'Table' option tabulates all experimental and calculated values from all regressed data sets. 

The 'Graphics' (Figure 4-24) option generates various plots for the regressed data. 

IRECVAL 3 - GrapNtdl Results 

select plot 

|i-y-*m ^J 

G exp data and calc curves 
f only experimental doto 

r 
r . 

r 3t>piot 

Dot Plot all 

fiddPtot 

Remove Rot 

Rot Specifications 

Select Qata 

help 

Exit 

Figure 4-24 The graphics program window 

The user can add a specific plot and format existing plots using 'Plot specifications'. The 'Plot' 

option initiates the program DDBMDIPLot which produces the graphical representation of data. 
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Chapter 5 Development & 

Implementation of the 

FlexQUAC-Q Model 

5.11ntroduction 

The development of the new model, FlexQUAC-Q, is based on a non-linear transformation 

proposed by Rarey (2005). The transformation was applied to the concentration space. The 

model, FlexQUAC achieved significant results: impressive reductions in the objective functions 

and has the ability to simultaneously correlate vapour-liquid and liquid-liquid equilibrium data. 

The FlexQUAC-Q model is developed with its core focus being asymmetric systems and with the 

intention of improving the prediction of equilibria data in these cases. In these cases the use of the 

FlexQUAC-Q model would be preferred to the use of the initial model, FlexQUAC. 

This chapter reviews the work undertaken in this research study and is a meticulous guide into the 

development of the FlexQUAC-Q model. This chapter also reviews the steps for deriving, 
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implementing and subsequent testing of the FlexQUAC-Q model. First, the deficiencies of the 

FlexQUAC model are discussed to justify the development of the FlexQUAC-Q model. 

Thereafter, the derivation of the model is elucidated in detail. Next, the model was implemented 

and tested in both Excel and Recval (the regression tool for the DDB after the calculation 

procedure was programmed into Visual Fortran). 

5.2 Deficiencies of the FlexQUAC Model 

In the case of systems where the molecules are of comparable size, the performance of 

FlexQUAC is excellent. However, for the cases of mixtures where the difference in molecular 

size is considerable, then the use of the FlexQUAC model may not be a wise choice. In these 

asymmetric cases the non-linear transformation of the concentration space has a more pronounced 

effect on the activity coefficient of the larger activity coefficient. 

Figure 5-1 illustrates the effects of the FlexQUAC model on the activity coefficient for increasing 

values of the third interaction parameter (812). The UNIQUAC model is also represented here. 

The surface area ratio (ratio of the UNIQUAC q values) of the system represented is 2.72:1.4 

where 2.72 is the q-value for the component tetrahydrofuran and 1.4 represents the q-value for the 

latter component, water. This ratio indicates that the system is typically asymmetric since the 

ratio is 1.94. The increase in 812 appears to have a uniform effect on both sides of the plot. Upon 

closer examination the effects of the third interaction parameter has a more profound effect on the 

lnyi values in the dilute region. At molar composition of zero, the lnyi value increases from 6.68 

to a value of 8 (812 = 0.2) compared to the 1.47 increase in the lnyi value at a molar composition 

of one. 
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9 i 

8 

Figure 5-1 Comparison of the effects on lny values by comparing (a) UNIQUAC to FlexQUAC with 

third interaction parameter 8n = (b) 0.1 and (c) 0.2 as a function of molar composition for the system 

water-tetrahydrofuran 

Now consider the effects of the third parameter as expressed as a function of the surface fraction 

in Figure 5-2. 

Figure 5-2 Comparison of the effects on lny values by comparing (a) UNIQUAC to FlexQUAC with 

third interaction parameter 5 t2 = (b) 0.1 and (c) 0.2 as a function of surface fraction for the system 

water-tetrahydrofuran 
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This plot serves to confirm the idea that the effects of the third parameter are more evident in the 

dilute range rather than the higher concentration range of the larger component, tetrahydrofuran 

in this case. 

Prausnitz (1998) suggests that the nature of a system and the extent of departure from ideality can 

be gauged from a plot of the ratio of the logarithm of activity coefficient. 

(a) (b) 

Figure 5-3 Logarithm of the ratio of activity coefficients versus mole fraction for various systems 

(a) A simple system (b) A complex system (Prausnitz, 1998) 

Simple systems as illustrated in Figure 5-3a result in a straight line. As one encounters more 

complex systems (Figure 5-3b) the line becomes a curve and in the case of more complex systems 

a point of inflection becomes apparent. 

For asymmetric systems the straight line also becomes a curve. However if the logarithm of the 

ratio of the activity coefficient is plotted against the surface fraction, a straight line is obtained 

once more. This can be seen in Figure 5-4. 

Figure 5-4 also shows the effect of flexibilisation of the mole fraction (FlexQUAC). This 

modification can be considered as physically unrealistic. When plotted as function of surface 

fraction, more complex systems usually show a symmetric deviation from linearity. 
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Based on these illustrations a flexibilisation of the UNIQUAC model based on a more adequate 

concentration scale like the surface fraction should lead to a better performance of the FlexQUAC 

model. 

Figure 5-4 Logarithm of the ratio of activity coefficient versus (a) mole fraction (b) surface fraction 

for the purposes of comparison for varying values of the 5i2 = (a) 0, (b) 0.2, (c) 0.4 

-120-



CHAPTER 
FIVE 

5.3 Some Notes on the Combinatorial Part of UNIQUAC 

In the UNIQUAC GE model, GE is calculated from two parts: the combinatorial and the residual 

part. The combinatorial part accounts for the size and shape differences of the molecules in the 

mixture while the intermolecular force interactions are accounted for in the residual part of the 

model. 

The combinatorial part describes the GE of a random athermal mixture via the Guggenheim-

Staverman expression. The required relative Van der Waals surface and volume parameters r and 

q are usually calculated from the surfaces and volumes of the constituent structural groups of the 

molecules. In the case of for example n-alkanes, this yields the surface of stretched molecules, 

which are entropically improbable. Alkanes with a chain length of more than 6 or 7 carbon atoms 

will most likely be present in more or less spherical conformations. This means that while the 

volume parameter r increases linearly with chain length, the surface parameter should increase 

with chain length to the power of %. Kikic et al (1980) empirically modified the combinatorial 

expression using this exponent for a better description of activity coefficients at infinite dilution 

of asymmetric systems and were able to describe retention times in gas chromatography. This 

modification was later carefully analyzed by Weidlich and Gmehling (1987), who found that an 

exponent of % yields a nearly perfect description of asymmetric alkane-alkane systems. Thomas 

and Eckert (1984) had obtained similar results. These modifications are of great importance for 

group contribution methods based on the UNIQUAC equation (mod. UNIFAC, PSRK). In the 

case of the regression of binary mixture data of a single system, shortcomings of the 

combinatorial part can easily be compensated by the residual contribution. 

Here the modification of Weidlich and Gmehling is used in order to achieve a more realistic 

separation of entropic and enthalpic effects: 
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G comb 

RT = 2>>(o;/x,)+^2>,x> 
/ * i 

5-2 

with 

®Jx
i=iilY.<ijxJ 5-3 

5-4 

5-5 

5.4 Derivation of the FlexQUAC-Q Model 

5.4.1 Re-formulation of the UNIQUAC-Equation 

It is assumed in this study that the combinatorial part correctly describes the entropic effects of 

mixing. The combinatorial term of the UNIQUAC model is as follows: 

comb 

RT 
= ^ x , l n ( o ; / x , ) + ^ ^ x , l n 

\ % l x i J 

5-6 

Therefore flexibilisation should only be applied to the residual part. The residual part as such 

contains the binary parameters that are usually obtained from the regression of experimental data. 

In the case of molecules of different sizes, GE
 residuai (x) is a very unsymmetrical function. If 

GE
residuai is plotted as a function of surface fraction then it is usually symmetrical. The surface 

fraction, 0 is defined as: 

5-7 

;=1 
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where x - liquid composition 

q - pure component molecular structure constants 

n - no. of components in the mixture 

To avoid intercorrelation with the binary interaction parameters and to keep the number of 

adjustable parameters small, the FlexQUAC transformation function described in Chapter 3 

should be symmetric (8^ = 5jj). This can be achieved by applying the transformation to the 

surface fraction 0(x) instead of the mole fraction x: 

GE
residuai= GE(®(x)) - UNIQUAC 

GE
res,dua1 = G£7((©(x))) - FlexQUAC-Q 

The resulting model is called FlexQUAC-Q. 

As a first step in the process of modifying the surface fraction, the UNIQUAC equation had to be 

defined as a function of surface fraction. As GE is a molar property, the mole fraction as a 

variable cannot be completely removed from the expressions as the resulting equation could then 

not relate to a mole of mixture anymore. This problem was overcome by separating the function 

into the product of two functions, the first as a function of liquid composition and the latter as a 

function of surface fraction. While the second part calculates GE for a unit surface of mixture 

(G^f), the first part converts this to a mole of mixture. As the molar relative van der Waals 

surface q of a mixture can be calculated as q = V Xjqj , it holds that 

i 

The original expression for the residual part of UNIQUAC is given by the following equation: 

(GE] A , . 
jf\ =-2>,?,ins, 5-8 

V / residual ,=1 
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This can be written as: 

s , -I«0O^ 5-9 
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fG^ 

V / residual 

n n 

= -£*,<&£©,ln5,. = -/i(*)/2(®(*)) 5-10 
1=1 /=i 

Thus the complete model FlexQUAC-Q equation is given by: 

GE=G?omb+RTMx)f2(f(®(m 5-11 

5.4.2. Derivation of the Activity Coefficient Expressions 

From Equation 5-11 an expression for the activity coefficients had to be derived. The activity 

coefficients are defined as the partial molar derivative of the Gibbs energy. 

RTlny, = 
d(nTGE) 

V dn> JT,P.«„ 

5-12 

or \nyi = 
rd{nTQf 

d«< Jr. 

G 
with Q = and nT = ) ] « , 

nTRT 

Here the total mole number nT is equal to 1. As Q can be expressed by the sum, Qcomb + Qres, both 

m 7'comb an<^ \n?rescan ^e derived separately and \nyi can be expressed as: 
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toft =tor«*j+ In ymJ 5-13 

The expression for ln^com4/ can be found in textbooks as 

ln/«,„*,, =1 L + l n ^ + 5? / 
0 O 

l n - ^ + - ^ - l 
CD, 0 , 

5-14 

In the case of the residual expression, the following expression can be used to determine the 

partial molar derivative. 

= Qres + dn. 

5-15 

•'T,P,nl, 

The expression for (dQ^Jdn^can easily be derived with the use of the chain rule of 

differentiation for the case of the UNIQUAC equation: 

[SQm] 
I dm j 

T 

/ 2 (0 )+ / , (* ) 
f3/2(0)' 

l 5 0 , J 

T 
fd&A 
{dntJ 

5-16 

where (dQnJdn), (dfffi/dn,) and (d/2(0)/d0 ;) are vectors and the functions y;(3c)and 

/ 2 (3c) are scalars. (50^/3/jJ is the gradient (Jacobian matrix V0) of the surface fraction vector 

©with respect to the mole numbers. 

However, in case of the FlexQUAC-Q model the function f2 is now a function of / ( 0 ) . In this 

case V / replaces V0 in the expression above and the new expression is: 

(3QS 
{ dnt j 

T 

I dn> J /2 (©)+/.(*) 
g/2(/(e)) ^ / ( 0 ) ^ 

dn. 
5-17 
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This leads to the following result for the residual activity coefficient: 

tay^=e„(/(©))+ /2(0) + /,(x)V/7 5/2(/(Q)) 
5/(0) 

5-18 
/TJ'jn,, 

5.4.3 Derivation of Relevant Vectors 

Having derived the activity coefficient equations, the relevant vectors and the Jacobian matrices 

can be derived. 

The function / , (x) was rewritten in terms of mole numbers using the definition: 

x( =• 5-19 

where n; refers to the mole number of component i. 

Accordingly, / , (x) now becomes 

fXx) = ^-^,qi=fla(n)flb(n) 5-20 

In order to differentiate the above expression, the product rule was applied. The function / , (x) 

was segregated into two parts, / lo(«)and /]A(»)as defined above. Differentiation of the 

individual fragments yielded the following expressions. 
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Hence from the product rule, 

ZM< 

dnj dttj drtj 2sni (y ] 
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Re-substituting x for n leads to: 

-^=2>^)-$ 5-24 

The output from this derivation is a vector with the number of elements corresponding to the 

number of components contained in the mixture in question. 

The scalar function / 2 ( 0 ) is differentiated with respect to the surface fraction vector and yields a 

vector of partial derivatives. 

The function f2(@) can be rewritten as a product of two functions. 

/ 2 (0) = £ 0 > X 0 t r t i , = 2 / 2 a ( 0 ) / 2 i ( 0 ) 5-25 
/ * i 
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The product rule was used to differentiate these two functions. The differentiation was performed 

with respect to ©j. 

df (0) d® ± rfta£e,rw 
^ M = ^ i n y 0 r + © — M 5.26 

d@ d&j tt d®j 

The derivation has to account for two cases, when subscripts i and j are identical and when they 

are not. This is crucial to obtaining the correct analytical expression. First, the case of different 

subscripts is considered. 

= 0 5-27 
d&j 

and: 

k=\ J,i 
5-28 

k=\ 

The derivative of f2 (©) for this case is 

k=l 

Now the case of identical subscripts is derived. Equation 5-26 is still applicable, however in this 

case i and j are identical. Now 

5-29 
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d&j 
= 1 5-30 

^InZ©^,,, 
k=\ 

de, 
5-31 

£©*n, 
t=i 

Thus in this case the derivative is 

0 r . 
l n Z © ^ + ^ ^ - 5-32 

t=i 

( t= l 

Thus combining both cases, the complete expression is obtained. 

# 2 (©) Or, 
flf© F^I^+^^+I 

*:=! z© 
*=1 

i T i , ; 
i=l 

v*=i y 4 = 1 

5-33 

Note that the last term is required to remove the incorrect derivation for i = j introduced by the 

third term. 

Now Tji is 1 and the final result for the above expression is: 

df2(@) 
de, lnZ<V*,y+Z 

f \ 

v / j 

5-34 
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5.4.4 Derivation of Jacobian Matrices 

5.4.4.1 Analytical derivation for the differentiation of 0 with respect to 

the mole number vector n (Jacobian matrix for UNIQUAC) 

Next the Jacobian matrix, V© was derived. The element of the surface fraction vector 0 is 

defined as 

©(*), = 
n,Qi 

J^nkqk 

5-35 

This expression was partially differentiated with respect to nj and mole numbers were back 

substituted for mole fractions. Once again two cases have to be investigated. For the case of 

identical subscripts, the following expression was obtained: 

d<dt 

dni 

Y,xi9iQ)~xi4t9) 
5-36 

/ 

I* 
V 1 

\ 2 

1i 

) 

This expression corresponds to the elements along the main diagonal of the matrix. The case of 

different subscripts yielded the following expression: 

dn. 
xfq, 

V t J 

5-37 

This expression generated the rest of the elements for the matrix. 
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With the Jacobian matrix expressions derived, the derivative of /2(@)can be determined. The 

product of the Jacobian matrix and the vector derivative of the surface fraction corresponds to the 

derivative of f2 («) with respect to mole numbers. 

With the derivatives for both functions computed, the derivative of GE with respect to mole 

numbers could now be undertaken using Equation 5-16. 

5.4.4.2 Analytical derivation for the differentiation of /(©) with respect 

to the mole number vector n (Jacobian matrix for FlexQUAC-Q) 

In FlexQUAC-Q, the modification of the UNIQUAC equation is only applied to the surface 

fraction, 0. The modified surface fraction is 

x,q, 
/ ( © ) = • 

1 + 
5-38 

Z X A 1+ E*#A./ 
\ \ 

V i 

Equation 5-24 is still valid in this case. Equation 5-34 now becomes 

3KN*^-? 
V I 

5-39 

The Jacobian matrix has to be derived. Thus Equation 5-38 is differentiated with respect to mole 

numbers. As before, the surface fraction has to be first converted to an expression in terms of 

mole numbers. 

- 1 3 1 -



CHAPTER 

FIVE 

/ (©) ,= ntqt 

«r +XA4A* 
/<, 

\Jc J 

5-39 

The expression is fragmented to facilitate the differentiation. Hence the differentiation result is 

#(®)=ff, 
yfc j 

+• 
J / ^ A 

/ a 5-40 
< • ; 

Once again, there are two cases to consider with respect to the subscripts. The case of identical 

subscripts is considered first. In this case i = j . The differentiation for term fa is 

dnJ 
= q, 5-41 

The differentiation of fb j fc follows the quotient rule, in which case the derivative is 

W 
dn. \Jc J 

Jb Jc Jc Jb 

fc 
5-42 

The differentiation of fb leads to the following expression 

41 
dn, 

= \ + q,Su 
5-43 
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However the term 5^ is zero in this case and the second term of Equation 5-43 vanishes. 

The differentiation of f results in 

4L 
dn, 

= q, 
V / 

+; 
J k 

»r+Z"M; +Z"*^(l+^A,,) 5-44 

Combining equations from 5-41 to 5-44 and substituting the result into Equation 5-40, one obtains 

the complete expression for the Jacobian elements for the case of identical subscripts. Using 

Equation 5-40, the complete expression in terms of mole fractions is 

dtij 

1 + ZX^A/ 

ff 

( 
\ 

v 
YjXtfk 1 +Z*/4A,/ 

+ Xiq, 

) ) 

^A 1+Zx/^/^./ 
V / 
f 
1 

V 
YaXk1k 1 + Z X ^A, / 

J J 
5-45 

+ *,tf, V 

\C f 

V 

1 1 I / \ 

l + IX?Aa ft 1 + ZX/4A/ + Z**^(l + 9A,,) k 

f 
1 

V 

For the case of different subscripts, the derivative of fa with respect to mole numbers is reduced 

to zero. In this case the differentiation of fb and fc yield the following expressions. 

dn, 
l + q^j 5-46 

4L 
dn, 

Vj 
/ ) k 

Thus, the complete expression in this case is 
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dn. 

5-48 

= x,q, 

r i \ ii ( I I / \Y 

i1 + *A*J Z**?* 1 + Z*'?A,/ " ^ l + Z*!«*« + Z**<?*I1 + *A J) \l + Zx*?*3 
\ * v ' yy v v / ) k A * 

Using the auxiliary variables 

f 

1 
v t 

Zx*^* 1 + Z^A,' 

\ \ 

j 

SB=^xkqkS: 
k 

5c=Z^rf2 

k 

s,D=ZW1 + <7A,,) 

this leads to 

Fori=j 

df(@), 
dn. = % 

rSA 
X+Xp+sfbx+s?} 
S" S 

5-49 

For i^ j 

dn, ~ 'q> Sc 5-50 

With this derivation complete the activity coefficient can be computed from Equation 5-18. 
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5.5 Calculation of Activity Coefficients using the Group 

Contribution Approach (FlexFAC) 

In UNIFAC, the extension of the UNIQUAC model to group contribution, the residual activity 

coefficient of component i (yKsi) is calculated from the difference of the group activity 

coefficients of the structural groups in the mixture (TM) and the pure component i ( P 0 ) : 

tar„,=I*f>(r?-rf) 5-51 

where vk denotes the frequency of group k in component i. The group activity coefficients are 

calculated in the same way as in UNIQUAC. In FlexFAC, analogous to Equation 5-18 the 

following expressions are used: 

inir =e^(/(€r»+ 
M\\ 

f2(@
M) 

5-52 

+ MXM)Vf 

Inl^-fiS (7(©(0)) 

+ /,(* ( , ))V/' 

fdf2CmM))^ 
8f(&M) 

g/2(7(Q(0)) 
a/(0(") 

+ 

/r,?,n„ 

/ 2 ( © ( , ) ) 

5-53 

JT,P,nh 

where XM and X(,) are the group fraction vectors in the mixture and the pure component i. Q^ 

and QW are calculated analogously to Equation 5-10 as 

QtL=fx(xu)f2WXM)) 5-54 

Q% = Mxw) f2Wxm)) 5-55 
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5.6 Implementation of FlexQUAC-Q In Fortran 

5.6.1 Preliminary Check 

As a preliminary test, before any programming of the activity coefficient calculation subroutine 

was undertaken, the FlexQUAC and the re-formulated UNIQUAC model equations were checked 

against the original UNIQUAC model using a numerical example in MathCAD (Appendix A -

FlexQUAC-Q Derivation). 

Here the residual parts of the original UNIQUAC and re-formulated UNIQUAC equations were 

compared to see if the same result was obtained for any given input data. Hence, the both model 

equations were defined. The necessary derivatives and Jacobian matrices were defined. In 

addition, to further establish the accuracy of the analytical derivatives, numerical derivatives in 

terms of elementary finite difference methods were used as a rigorous checking device. This was 

a necessary exercise that would serve to identify analytical derivatives that were inaccurately 

defined. 

For the reformulated version of the UNIQUAC model, the analytical derivatives of / i(x) were 

first determined in terms of mole numbers and then back substituted in terms of mole fractions. 

This exercise had a twofold benefit, initially as a checking device to identify any errors. This 

derivative was then compared to a numerical derivative. Since /j(x) is a function of mole 

fraction, the numerical derivative was computed in this way: 

dfxjx) fx{x + eps)-fx(x-eps) 
= -j r 5-30 

dn numerical 2{eps) 

Here eps refers to a tolerance of 10"\ When the analytical and numerical derivatives are compared 

the difference should ideally be less then this tolerance. 

Next, the derivative f2 (0J was derived together with its appropriate numerical derivative. In this 

case the numerical derivative is computed by a change in the surface fraction, ©. 
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df2{&) _f2(@ + eps)-f2(&-eps) 

d& numerical 2(eps) 
5-57 

Here the both derivatives were found to be within acceptable tolerance. 

As a next step, the Jacobian matrix (V©) is computed. Here the numerical derivative is expressed 

as: 

d&(x) _ 0(x + eps) - ®(x - eps) 

dn numerical lyeps) 
5-58 

Next, the derivatives of f2y&) by mole numbers were computed analytically and numerically. 

Hence the residual activity coefficients were computed analytically and numerically. The 

comparison of the two results was good. 

Similarly, the derivatives of / 2 (/(©(*))) by./(@) a nd t n e Jacobian V/ were computed. In this 

case the following numerical derivatives apply: 

4f2(f{f)) _f2{f(&)+eps)-f2(f(@)-eps) 
5-59 

numerical 

df{&) 
dn numerical 

f 
Vl J-(x+eps^ 

I-eps -f 
n 

o \ + eps 

lyeps) 
5-60 

Thereafter the numerical and analytical residual activity coefficients were compared and found to 

have negligible difference. 
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5.6.2 Simplifications in MathCAD 

Some of the derived expressions were far too complex to be programmed as they appear in the 

previous MathCAD file (Appendix A - A2 FlexQUAC-Q Derivation). The derivatives and 

matrices require careful computation. In addition, the distinct disadvantages to programming such 

long expressions in FORTRAN were: 

• Difficulty in computing and programming 

• Difficulty to trace through code and identify errors 

In short this approach was not an intelligent one, since troubleshooting would be problematic. A 

more prudent solution to this would be to simplify some the more complex expressions obtained 

in the derivations. This would ease the programming and enable one to manage the computation 

of complex expressions by fragmenting them. This would also help to isolate errors in 

computations to specific parts of expressions. 

This simplification was undertaken in MathCAD once more using the same numerical example. 

(cf Appendix A-A3 Fortran Implementation) The purpose of computing the simplified formulae 

simultaneously with the new expressions were for comparison and to ensure that no errors were 

encountered in this simplification process. 

The following variables (cf Table 5-1) were introduced as they appear frequently in other larger 

expressions and from a programming perspective, the computation of these terms would reduce 

the number of variables used, eliminate repetition and redundancy and facilitate better 

understanding of the code. 

These variables reduce the complexity of some terms: 

1) Definition of/̂  

n 

f2:= V x • thetfx. • ln/sf) 

i = l 

2) Derivative of/2 b y / 0 ) 

df2.:=suml.+ In/Sf.) 
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Variable Definition Actual Equation 

thetafx 
thetafx. := Q. • 1+ Z W 8 ^ i+Z*rft^ 

V *=i 

sthetfx sthetfx := T x • thetafx. 

Z^wJi+S**^ 
*=1 

thetfx thetafx. 
thetfx. := -

1 sthetfx 
R, 1+ Z^^A-

Zx*?* 
k 

( 
1 + 

( \ 

K i ) ) 

Sf 
Sf. '. := > x. • thetfx. • x; ; 

i Z-i J J J'1 

j = l 

L/PK 

Suml n x - thetfx. • i ; j 
s u m l . : = ^ -

Sf. 
1 

SJ n 
sv=Z v<v(1+(vM 

k = l 

Table S-1 Summary of convenience variables that were defined due to the high frequency in which 

they appear in other definitions 
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JacobianFQl := for i e l..n 

for me 1..n 

Jac . <—|thetfx • x | -
m , i V m i / 

Jac 

SJ -x 
m 1 

Q. x 

Jac . <- Jac . + 
m,i m,i thetfx. • sthetfx 

Jac . <— Jac . + 1 if i = m 
m,i m,i 

Jac . <- Jac . • thetfx. 
m,i m,i I 

sthetfx thetfx. • sthetfx 

x • Q. • Q • 5; , 
l ^ i ^ m '>' 

if i * m 

The above expressions were used to compute the Jacobian, V / . The Jacobian was analysed 

carefully to find repeated terms. As explained earlier, the differentiation to obtain the Jacobian 

V / involves two cases, one with identical subscripts and the latter which involve different 

subscripts. Hence the above expressions presents two different expressions for each case (one for 

i=m (main diagonal) and i^m (rest of the matrix)). It was observed that some terms were common 

to both cases. 

The Jacobian simplification follows a sequence of steps: 

Step 1: The terms in the two expressions are replaced by other variables 

Step 2: A new variable is defined, SJ since it appears in both cases 

Step 3: SJ is substituted into the expression and the term A is multiplied into the 

bracketed expression. In this case A(B/C) = 0 / as defined earlier 

Step 4: 0 / is multiplied into the bracketed terms 

Step 5: The term Q{BlC) is repeated and can be simplified to @ / lx 

Step 6: The term A/C is repeated and can be replaced by &f JB 

Step 7: It is best to eliminate the mole fraction from the denominator of certain terms by 

the use of other variables to avoid division by zero. At this stage a more convenient 

variable can be introduced, © ^ . 0 ^ = @/x, therefore 0 / S = ®fix/B. 
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Step 8: It is now evident that a common factor of 0 ^ can be removed from both 

expression. Three terms are common to both expressions: 

x, SJ(x,Q,n) .x 
0fi(x,Q,n)i • x. 

B(x,Q,n). ' C(x,Q) 

Step 9: Hence, from careful observation and variable manipulation more compact 

expressions were derived for the Jacobian. As a final check, the simplified result is 

compared with the initial expression. The two correspond exactly. 

5.6.3 Activity Coefficient Calculation Subroutine in FORTRAN 

This section presents a description detailing the programming in the Fortran subroutine. To allow 

better understanding of the programming, the subroutine makes use of the variables previously 

defined in the Mathcad file {cf Appendix A - A3 Fortran implementation and Table 5-1). Some 

new variables are also summarised in the Table 5-2. 

An algorithm (Figure 5-5) is also presented here to elucidate the programming as contained in the 

subroutine. The subroutine accomplishes the task of computing the activity coefficient via six 

steps: 

1) Get interaction parameters 

2) Calculate combinatorial activity coefficient 

3) Perform auxiliary calculations for the new FlexQUAC-Q model 

A-f rl-f 

4) Calculate relevant derivatives ( — , - " - and Jacobian matrix) 

dn dn 

5) Calculate the residual activity coefficient 

6) Calculate the FlexQUAC-Q activity coefficient 
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Variable 

Lmodcomb34 

Lmodcomb23 

lmodqflex 

X 

t 

act 

he 

cpe 

aij 

alphaij 

aijt 

tau 

SXR 

SXQ 

SXQP 

F 

V 

Lgamc 

sthetfx 

Meaning 

Logical Variable - Activates the % exponent on 

combinatorial term 

Logical Variable - Activates the % exponent on 

combinatorial term 

the 

the 

Logical Variable - Activates the FlexQUAC-Q model 

Mole fraction 

Temperature 

Activity Coefficient 

Excess Enthalpy 

Excess heat capacity 

Interaction parameter 

8« 

Temperature dependence of interaction parameter 

X,j 

i 

t 

9, 

7 

r, 

Xx^ 
i 

• **J combinatorial 

i 

( > 

K i J 

Cont... 
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Variable 

Sumk_array 

Thetfx 

dfldn 

Jac 

df2dn 

lgamr 

Meaning 

f > 
1 + Z M A ; 

k / ) 

9, 
K i J 

Derivative of fl wrt mole numbers 

Jacobian matrix 

Derivative of f2 wrt mole numbers 

myresidual 

Table 5-2 Summary of the variables and their definitions used in the Fortran subroutine 
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START 

Call procedure setpar - cf Section 1 Appendix 
B:B1 Implementation in Fortran 

• Calculate interaction parameters for 
given temperature and their 
temperature derivative (aij, aijt & 
alphaij) 

Calculate Combinatorial Part - cf Section 2 
Appendix B:B1 Implementation in Fortran 

SXQ^x.q, 
i 

SXR^xf, 
i 

Fl=qi/SXQ = qJYjx,qi=@l 

V,=rl/SXR = riIYJx,r,=Ol 

CI = - l + O,/©,+ln(0,/<D,) 

The user selects the choice for combinatorial term 

\gamc = \nycomb=\- ' +aln 

(a = 3/4,2/3orl) 

t \ 

Ytf -sq, 
0 o ^ 

-l + l n ^ - + - ^ 

v < 

Cf Section 3 Appendix B.l.I Implementation in Fortran 

Tau = Ty = exp{- AM fJ / RT) 

sumk _ array t =1 + 2 ] x
}qfii, 

f 
thetfic^q, \ + Y,xj(ijSij 

V J 
r 

sthetfa = £ Xfli ! + Z * ft fit 

( 

thethafi -
thetfaj 

sthetjx 

q, 1+2>>*A 
v J 

Z^U+Z^A Cont. 
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^=Zx7V / 2 e^^=Z-
xfli ! + Z x ^ Jk 

j ^m 1 +ZX^A 
T*> 

Cf Section 4 Appendix B.l.l Implementation in Fortran 
: Compute fl, f2 & GE

 residm, 

sumk - V xjqj 

f\ = -sumk 
f 

xfq, 
f2 = x,thethafl\n{Sf) = 

1+2>/?A 
V J 

Z*<?< X+Y.xj<ij5ij 

Into) 

<£—,- / l* /2 

Cf Section 5 - Appendix B:l.l Implementation in Fortran 
: Derivative of fl 

dfldn, = -</,. - /*! 

Cf Section 6 - Appendix B:l.l Implementation in Fortran 
: Derivative of f2 

( \ 
xj1j 

1+Z**^ 
V * 

« 

^9 Zx/̂ / 1+Z**?A 
df2dtheti = ̂ A = Y J- ^ S ^ + In S/" 

J0 Y 5/; 

Cont... 
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Cf Section 7 - Appendix 5:7.7 Implementation in Fortran 

Compute Jacobian Matrix 

Jacjj = qtx, 
xfl* 

* y t 

ffji £*rfA,| ?^ ( 1 + 9 A ' } zW1+2>*A, 
k J k V 

If i = j (main diagonal of Jacobian Matrix) then Jac ( = Joe ( +1 

Mr Else Joe,, = Jac j t H—7 

9, 
Jac,, = Joe , x -

1 + Z X M J 
V J 

1+Y,*/1AJ 

* \ J 

Cf Section 8 Appendix BAA Implementation in 
Fortran 

: Derivative of f2 wrt mole numbers 

dfldrij = —— = V Jac, x dfldthetj 
dn , 

Cf Section 9: Compute Activity Coefficient 

lg amrt = In yresidual = flx dfldnt + fix dfWn, + Gfemdual 

act) = y - exp(lg amr; +lga/wcj 

END 

Figure 5-5 Algorithm detailing the implementation of the FlexQUAC-Q model in Fortran 
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5.6.4 Implementation in RECVAL 

With the subroutine complete, it was added to RECVAL, the regression software tool. To allow 

the user to select the appropriate model, a subroutine matflex was programmed. This subroutine 

uses logical variables to activate a specific model. In addition, this subroutine allows the user to 

choose from the different variations of the UNIQUAC combinatorial term. 

In Figure 5-6 RECVAL's liquid mixture model program window is illustrated. In the section 

model flavours, the user is prompted to select the appropriate. The user can select one of these 

options: 

1. modqflex - This activates the FlexQUAC-Q model with original combinatorial 

term 

2. modcomb34 - This activates the % modification of the combinatorial term 

2 
3. modcomb23 - This activate the — modification of the combinatorial term 

3 

The combinatorial term options can be selected in conjunction with the FlexQUAC-Q option. 

However, only one combinatorial variation can be selected at a time. 
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RECVAL/3 - Liquid Mixture Model Selection 

liquid mixture model 

number of parameters 

7 - FLEXQUAC 
OK 

temperature dependence 1 1 . p M . A ( c o m t a n t ] " T ] 

temperature dependence — — > 
(3rd parameter) M - Par = A (constant) j r j 

adjust pure component p ^ 
vapor pressure to H F 
author's measurement 

model flavours (click Help for options) 

modqflex 

Cancel 

Help 

Figure 5-6 The RECVAL liquid selection model options, where the FlexQUAC-Q model can be 

enabled via the use of the control string, modqflex. 

5.7 Implementation in Excel 

With the use of macros, the regression of equilibrium data was possible. The programming code 

is contained in Appendix B-B2 Implementation in Excel. A simple algorithm is presented here to 

aid in the understanding of the regression procedure (Figure 5-7). 

The program begins by reading data from the DDB and selecting the appropriate worksheet in 

Excel for data output. This Excel program makes use of a DDB add-in feature which a library of 

computational procedures utilised by the DDB software to perform various equilibrium data 

calculations. 

The experimental equilibrium data is stored in a text file. This file is accessed and all the relevant 

data is displayed on the Excel worksheet. The file contains the DDB set no, component codes and 
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component names. It also enables the retrieval of pure component molecular constants, Antoine 

constants and the experimental VLE data. 

A liquid model is then selected. Some preliminary calculations are then performed to obtain 

partial pressures and activity coefficients. The formulas for the calculation of pressure and the 

vapour mole fraction are set into the Excel worksheet. 

An initial set of interaction parameters are set for the regression. The program first uses the 

UNIQUAC model. The interaction parameters are passed into a subroutine, datafit which contains 

the various criteria for the regression i.e. step width for each parameter, maximum number of 

iterations and stop criteria. This procedure then inputs these parameters into the simplex 

regression subroutine where the regression takes place. The results of the regression are displayed 

on the worksheet. The residual value from this regression is calculated from the sum of the 

deviation of the calculated pressure from the experimental pressure and is stored. The regression 

is made more robust by assigning a new set of parameters a further three times and performing 

the regression. In each instance the residual corresponding to the set of regressed parameters is 

stored. At the conclusion of the final regression, all the residuals are compared and the lowest 

residual corresponds to the optimal regression parameters. This set of parameters is used to 

regress the data once more. 

Thereafter the infinite dilution activity coefficients and the relative absolute deviation in pressure 

are calculated. 

The interaction parameters are reset and a similar procedure is used to regress the data using the 

FlexQUAC-Q model. 

In the case of the ternary VLE data, the constituent binary VLE systems are considered first. 

These binary VLE systems are regressed and the parameters obtained are used in the calculation 

of the ternary VLE data. 
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START 

Read data from DDB 
Formats excel data sheet for output 
Selects either binary VLE regression or 
ternary VLE calculation - cf Section 1 -
Appendix B: 2.1 Excel code 

Opens data file and outputs the 
following on the spreadsheet (cf Section 
2 — Appendix B: 2.1 Excel code): 
• DDB Data set no 
• No of data points 
• Reference No 
• Type of data (constant temperature 

or pressure) 
" Retrieve component codes, 

empirical formula and component 
names 

• Retrieve pure component molecular 
constants (r, q) 

• Retrieve Antoine constants 
• Retrieve experimental data 

t ~ 
• Select liquid model - cf Section 3 -

Appendix B: 2.1 Excel code 

Adjust Vapour Pressure 
and calculate vapour 
pressure - cf Section 4 -
Appendix B -2.1 Excel code 

lnPsal =A + -
B 

T + C 

Calculate activity coefficients - cf 
Section 5 - Appendix B -2.1 Excel code 

X,P; 

Calculate partial pressure - cf Section 
6 - Appendix B - 2.1 Excel code 

P,=yf 
Cont... 
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Write calculation formulas for P and y to 
spreadsheet - cf Section 7 - Appendix B -2.1 
Excel code 

•}sat 

pcal=Yjx>yf p>s 

cal risat 
cal *ifi *t 

y, = peal 

Deviation: 

Dev 
f pexp _ peal \ 

pexp 

Residual = V 
>exp teal \ 

,exp 

Initialise regression parameters 
- Appendix 

ai2 = 

a2i = 

cf Section 6 
B- 2.1 Excel code 
50 cal/mol 
60 cal/mol 

Activate UNIQUAC model 

i ' 

Call Regression Procedure - cf Section 
9- Appendix B-2.1 Excel code 

i ' 

Calculate infinite dilution activity 
coefficients and Relative Absolute Deviation 
and output to worksheet - cf Section 10-
Appendix B-2.1 Excel code 

i ' 
Activate FlexQUAC-Q model and initialise 
model parameters - cf Section 11 — Appendix 

B-2.1 Excel code 

Call Regression Procedure - cf Section 
12- Appendix B-2.1 Excel code 

Calculate infinite dilution activity 
coefficients and Relative Absolute Deviation 

and output to worksheet - cf Section 13-
Appendix B-2.1 Excel code 

Figure 5-7 Algorithm detailing the implementation of the FlexQUAC-Q model in excel code 
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Chapter 6 Results & Discussion 

6.1 Consistency Check 

Due to the complexity of the mathematics (Chapter 5) involved in the derivation of the 

FlexQUAC-Q model and its restructuring and implementation in the programming code; one has 

to verify the correctness of the final implementation. It was vital to establish that the mathematics 

and the output of the programmed subroutine are consistent. As outlined previously in Chapter 5 

the model was first simplified in Mathcad and thereafter implemented in a Fortran subroutine and 

integrated into the existing DDB regression tool, RECVAL. 

For the purpose of checking, data for the binary VLE system diethyl ether and acetonitrile were 

used (Joukovsky 1934). The data set was regressed using RECVAL program which contained the 

newly implemented Fortran subroutine to calculate activity coefficients for the FlexQUAC-Q 

model. This yielded optimal regression parameters. In addition, output statements were included 

at strategic points of the subroutine so that the numerical values of the pertinent variables can be 
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tabulated. The purpose of generating output to a text file is two fold; firstly, since it allows easy 

tracing through the subroutine code by monitoring the value of critical variables and secondly, it 

simplifies the process of identifying any errors substantially and the troubleshooting process. The 

Fortran subroutine generates a text file and the file records the values of the different values of the 

pertinent computational variables as the subroutine advances through the process of regression. 

A Mathcad file was designed to generate numerical output for any given set of optimal 

parameters and mole fraction. Coupled with the Fortran output file, the process of identifying any 

source of errors became more manageable. 

The pertinent variables and their respective values in both the Mathcad file and the Fortran file 

are summarised in Table 6-1. The output from both files is in excellent agreement. The rest of the 

activity coefficients are computed for the rest of the experimental data contained in the data file. 

This data is summarised in the mathcad file (CI - Consistency Check cf Appendix C) and the 

output from the Fortran file in a text file (Flexq - cf Appendix C). This data further corroborates 

the accuracy of the Fortran subroutine. 

Variable 

X 

T 

Regression parameters 

Hi/combinatorial 

X 

sthetfx 

Mathcad Fortran 

xi = 0; x2 = 1 

293 K 

( 0 497.605^ 
Au:= 

V-76.972 0 ) 

"-0.209" 

0 

( 0 0.1786̂  
5:= 

^0.1786 0 j 

"1.00 1.14" 

0.426 1.00J 

1.724 

r-0.208" 

0 

"1.00 1.14" 

0.426 1.00 

1.723 

Cont... 
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Variable 

Thetfx 

thetafx 

thethaf 

Sf 

fl/ - sumk 

G 

^J residual 

dfx 

dn 

df2 
d® 

SJ 

Jac 

df2 
dn 

•nYresidual 

Y 

Mathcad 

"2.288" 

1 

"3.945" 

1.723 

"0" 

1 

"1.14" 

1 

-1.724 

0 

0 

-

-1.292 

0 

"0.588" 

1 

"2.653" 

1.724_ 

-

" 2.288 0" 

-2.288 0 

-1.01" 

0 

"1.743" 

0 

"4.638" 

1 

Fortran 

"2.288" 

1 

"3.944" 

1.723 

"0" 

1 

"1.14" 

1 

-1.723 

0 

0 

-

-1.292 

0 

"0.588" 

1 

"2.652" 

1.723 

-

" 2.288 0" 

-2.288 0 

"—1.01" 
0 

"1.742" 

0 

"4.638" 

1 

Table 6-1 Comparison of accuracy of output data values in both Mathcad and Fortran for the system 

Diethyl-ether(l) and Acetonitrile(2) with xf = 0 and x2 = 1 to assess accuracy of FlexQUAC-Q activity 

coefficient calculation 

-154-



CHAPTER 
SIX 

6.2 Performance Evaluation of FlexQUAC-Q Model 

The consistency check served to confirm the accuracy of the Fortran subroutine and facilitated the 

subsequent performance evaluation of the FlexQUAC-Q model. 

The performance analysis of the FlexQUAC-Q model followed a similar procedure to the one 

employed by Rarey (2005). 

• Does the model give improved correlation of experimental binary VLE-data? 

• Is the flexibilised model able to predict multicomponent VLE from binary data with a 

quality similar to (or even better than) the original model? 

• Can the model be used for the simultaneous regression of VLE- and LLE-data? 

• Is the model able to predict the ternary LLE-behavior from binary data alone? 

For convenience the test of correlative and predictive ability with respect to vapour-liquid 

equilibria will be conducted using the same set of experimental data as in the previous work. 

In this way, one can logically determine the effectiveness of the model compared to UNIQUAC 

and its precursor, the FlexQUAC model. In addition, the analysis would enable one to determine 

where the model shows marked improvement and verify if the model proves superior in the case 

of asymmetric systems. As a first step also, the FlexQUAC-Q model needs to demonstrate that is 

at least comparable with the former models and that it performance is not degenerative. 
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6.2.1 Binary VLE Data 

6.2.1.1 Excel Regression 

As a first test the FlexQUAC-Q-model was applied to the correlation of binary VLE data stored 

in the Dortmund Data Bank (DDB) using only one additional parameter. Different techniques are 

employed for the measurement of VLE data. Very high precision xPT-data are available using the 

static method as described by van Ness et. al. In this method the pressure in an equilibrium cell 

with known amounts of the components is measured at fixed temperature. The concentrations in 

the liquid and vapour phase are iteratively calculated using an nVT-flash calculation. A 

comparative test of the UNIQUAC, FlexQUAC and FlexQUAC-Q model was performed on this 

type of data whereby only data sets with 10 or more data points were used. The use of static 

measurements and much more precise pressure values (compared to the determination of the 

vapour composition) was always strongly advocated by Van Ness. 

The resulting 4741 data sets were regressed individually using the Excel program with all three 

models with the mean relative squared deviation in pressure as objective function F: 

1 2 fP -P V 

expj calcj 

p 
expj 

6-1 

The primary focus of the analysis was to establish the extent of the relative reduction of the 

objective function of the FlexQUAC-Q model compared to both FlexQUAC and UNIQUAC. 

The objective functions (F) of the 4741 regressed binary VLE data sets (cf Appendix C - C2 -

Binary VLE results) were arranged in ascending order for each of the three models. Each 

objective function corresponds to a percentage of the total data set and in so doing a cumulative 

percentage was created. Then, the deviation in pressure was plotted versus the percentage of data 

(Figure 6-1) to better understand the performance of the three models. 
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The minor mean relative reduction of about 3% of the objective function using FlexQUAC-Q 

compared to FlexQUAC was observed compared to a reduction by about 53% relative to the 

UNIQU AC-results. While in case of UNIQUAC approx. 48% of the data sets showed a final 

objective function of 10"3, in case of the Flex-models this was achieved by about 63% of the data 

FlexQUAC-Q with the Weidlich and Gmehling combinatorial term behaves very similar to the 

FlexQUAC-Q model with the original combinatorial term. 

This proves that both Flex-models perform nearly identical compared to UNIQUAC. It should be 

noted, that the improvement expected in case of asymmetric systems for the new transformation 

will not be strongly visible in case of vapour-liquid equilibria as the data sets are usually for 

components of similar vapour pressure and molecular size. Components very different in size 

usually have significantly different vapour pressures and present no problem in distillation. In 

case of liquid-liquid equilibria the vapour pressure has no influence and the phase equilibrium is 

determined only by the real behavior of the liquid. 

1.E+00 

at
io

 

> 

cu a> 
.> 3 

5 8 
CD <u 
» - 1 _ 

ro 
CD 

E 
*-• 
CO 
CD 
en 
«-JO 

1.E-01 

1.E-02 

1.E-03 

1.E-04 

1.E-05 

1.E-06 

UNIQUAC 

FlexQUAC 

FlexQUAC-Q 
-i 1 — | — i — r 

0% 

1 — I — f 

40% 20% 40% 60% 80% 

percentage of the data 

inrw 

Figure 6-1 Largest deviation observed in a certain percentage of the sorted data set regressions 
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6.2.1.2 RECVAL Regression 

Since RECVAL performs simultaneous regression of various types of data, it provided another 

way to test the performance of FlexQUAC-Q. Although the Flex-models were evaluated with a 

battery of binary VLE data, it would also be necessary to assess whether the model is able to 

correlate other data type simultaneously. 

The functionality of RECVAL allows one to select a binary system from the DDB. Thereafter all 

the available experimental data sets of different types (activity coefficients, azeotropic data, 

excess heat capacity, excess enthalpy, VLE, LLE, SLE etc) can be exported to RECVAL for 

regression. In RECVAL, the regression can be adjusted with the use of weighting factors to 

assign more or exclusive importance to a specific type of data. The weighting factors should be 

set such that each data type gives similar total deviation. 

However, not all experimental data are reliable and contradictory or false data result in erroneous 

predictions {cf Chapter 2-2.10 Data quality and model selection). RECVAL tracks the impact of 

each data point on the objective function by plotting residuals (Figure 6-2). Here one is able to 

ascertain which data set or data points have the largest deviation and these can be removed from 

the regression. 

For the system tetrahydrofuran-water (Figure 6-3), UNIQUAC's fit of the data is not precise and 

the azeotropic point is not described well. FlexQUAC-Q performs as well as FlexQUAC. It fits 

the data and describes the azeotropic point precisely. Although the difference between the two 

curves is small, the qualitative description of the system is very different. 
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0.015 

I 
1 0.010 

1 

0.005 

nnnn 

— 

— 

g - " • ! W J - L — — I mm 

m 

-

These data points 
. belong to a data set 

which are inconsistent 
and should be 

the regression 

• . " • " 

0 10000 20000 30000 40000 50000 
P/mmHg 

(1)HEXANE 
(2) ETHANOL 

plot type: res -p (no ) 
constant property: none 

Figure 6-2 Residual plot for pressure in RECVAL for the system hexane-ethanol 

0.4 0.6 

Xi 

UNIQUAC 

FlexQUAC-Q 

Figure 6-3 Description of tetrahydrofuran-water system at 298K (Signer et a l , 1969) by the 
UNIQUAC and FlexQUAC-Q models 
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Consider the system hexane-acetone. The UNIQUAC surface parameters (q), are 3.856 and 

2.3360 for hexane and acetone respectively. This represents a moderately asymmetric system. A 

simultaneous regression of available data for this system was done in RECVAL. Table 6-2 shows 

the various data types used in the regression. Some data sets were omitted from the regression 

using the filtering process outlined above. 

Data type 

VLE 

LLE 

cP* 

He 

Activity coefficient 

Azeotropic data 

No. of data sets 

19 

11 

1 

10 

48 

69 

Table 6-2 Different types of data sets that were simultaneously regressed for the system hexane-
acetone 

While UNIQUAC fails to give an accurate description in this case, both FlexQUAC and 

FlexQUAC-Q behave similarly and give an excellent description of the data. GEQUAC also 

provides an accurate description of the binary data (Figure 6-5). This model is an exact quasi-

chemical multisegment model. Whilst GEQUAC provides such accuracy it must be noted that 

this model is complex and requires 14 parameters to obtain such an accurate description. This is 

in contrast to the FlexQUAC-Q which uses a non-linear transformation of surface fraction with 

only one additional parameter. FlexQUAC-Q is considerably simpler and produces the same 

accuracy. 
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T = 313.15 K 

hexanei Yhexane 

Figure 6-4 Hexane-acetone experimental data [T= 268.15K, 293.15K - (Rail et. al 1959), T = 308.15K 
- (Kudryavtseva et. al 1963), T = 313.15K - (Kolasinska et al. 1982)] fitted by the FlexQUAC-Q 

model 

Figure 6-5 Hexane-acetone system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002) 
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For the system ethanol-heptane, the UNIQUAC surface parameters are 1.972 (q,) and 4.396 (q2) 

respectively. This indicates that the system is asymmetric (q2/qi = 2.23). This system was 

regressed simultaneously with the data sets detailed in Table 6-3. 

Data type 

VLE 

cP
f c 

HK 

Activity coefficient 

Azeotropic data 

No. of data sets 

41 

17 

29 

73 

72 

Table 6-3 Different types of data sets that were simultaneously regressed for the system ethanol-
heptane 

Figure 6-6 shows the correlation of HE data by the FlexQUAC-Q model. Since the experimental 

data contain CpE data at various temperatures, it was appropriate to use quadratic temperature 

dependence for the interaction parameters in RECVAL. UNIQUAC failed to give a good 

description of HE data. Once again the description of the data using the FlexQUAC-Q model is 

comparable to the accuracy of the description achieved by the GEQUAC (Figure 6-7) group 

contribution methods. 
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Figure 6-6 Heptane-ethanol HE data (T= 283.15K, 323.15K - Lietzmann et.al 1994, T = 333.15K, 
348.15K - Van Ness et.al 1976) as fitted by the FlexQUAC-Q model 
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Figure 6-7 Heptane-ethanol II data as fitted by the GEQUAC model (Ehlker & Pfennig, 2002 
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Figure 6-8 shows the effect of flexibilisation with the FlexQUAC model for an arbitrary mixture 

with a surface area ratio of 6 to 1 as function of mole fraction and surface fraction. In the plot vs. 

mole fraction, most of the changes in the activity coefficients occur in the left side of the diagram. 

The modifications by flexibilisation on the other hand are similar on both sides. The effect of 

flexibilisation at low concentrations of component 1 is most pronounced while at high 

concentrations it is confined to a small range. FlexQUAC-Q should be able improve the quality of 

the data prediction based on this more adequate concentration scale. 

Figure 6-8 Effect of flexibilisation ((a) 5i2=0, (b) 512=0.2)) on an arbitrary mixture with a surface are ratio of 6 
tol . 

Figure 6-9 shows the left and right homogeneous region of the moderately asymmetric mixture 2-

butanol-water. The surface area ratio for this mixture is 2.178 (q2-butanoi is 3.048 and qwater is 1.4). 

While on the right hand side of the miscibility gap a FlexQUAC parameter of 0.22 is sufficient, 

the pressure on the left hand side still looks underpredicted. 

Figure 6-10 shows the regression of the system 2-butanol-water for various values of the 

interaction parameter, 5n- A value of 0.20 for the parameter 812 corresponds to the best 

description of the data for the left homogeneous region. 
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Figure 6-9 Left and right region of the Pxy-diagram for the system 2-Butanol (1) - Water (2) at 
45.04°C together with experimental xyP-data (Escobedo-Alvarado G.N., Sandler S.I., 1999) and 
curves calculated from FlexQUAC using different values of 5i2 (a: 0.0, b: 0.05, c: 0.1, d: 0.15, e: 0.2, f: 
0.22, g: 0.25). Interaction parameters were regressed to liquid-liquid equilibrium (Marongiu B„ 
Ferino I., et al, 19S4.) composition (dashed lines) 

Figure 6-10 Left region of Pxy-diagram for the system 2-Butanol (1) - Water (2) at 45.04°C together 
with experimental xyP-data (Escobedo-Alvarado G.N., Sandler S.I., 1999) and curves calculated 
from FlexQUAC-Q using different values of 6« (a: 0.0, b: 0.05, c: 0.1, d: 0.15, e: 0.17, f: 0.20). 
Interaction parameters were regressed to liquid-liquid equilibrium (Marongiu B., Ferino I., et al, 
1984.) composition (dashed lines) 
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In accordance with the definition of both the FlexQUAC and FlexQUAC-Q models, a value of 812 

= 0 the both models degenerate back to the original UNIQUAC model. From Figure 6-11 it is 

evident that UNIQUAC fails to give an accurate description of the data. In the case of 

FlexQUAC, a good description of the data is obtained at a value of approximately 0.23 (Rarey, 

2005). Although a value of 0.20 gives a good description for the left region, the right region is not 

accurately described. 

However, FlexQUAC-Q additional parameter 8l2, is intended to have a more pronounced effect 

on the larger component in the mixture, 2-butanol is this case. Figure 6-10 confirms that 

FlexQUAC-Q parameter does have the desired effect on the curvature in the left region. For a 

gradual increase in the Si2 value, the fit of the data becomes better progressively. In the case of 

FlexQUAC, the curvature of the left region does not rise adequately as higher values of 8i2 are 

approached and hence the description is not entirely accurate. 

Figure 6-11 Pxy-diagram for the system 2-Butanol (1) - Water (2) at 45.04°C together with 
experimental xyP-data (Escobedo-Alvarado G.N., Sandler S.I., 1999) and curves calculated from 
FlexQUAC-Q using different values of 8,2 (a: 0.0, b: 0.05, c: 0.1, d: 0.15, e: 0.17, f: 0.20). Interaction 
parameters were regressed to liquid-liquid equilibrium (Marongiu B., Ferino I., et al, 1984.) 
composition (dashed lines) 
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6.2.2 Ternary VLE Data 

Ternary VLE data was then used to assess the performance of FlexQUAC-Q compared to 

UNIQUAC. The data of P. Giercyz (1964) was used to test the performance of the FlexQUAC 

model. Ternary homogeneous data sets were carefully selected and they were all measured in the 

same laboratory and the diversity of systems vary from strong positive to strong negative 

deviations from Raoult's law. The data set comprised 13 ternary VLE data sets and 39 binary 

VLE data sets. The binary data for the 39 data sets were regressed using the FlexQUAC-Q model 

(both original combinatorial and Weidlich & Gmehling's combinatorial term) and these 

parameters were then used to calculate the ternary VLE data {cf Appendix C -C3 - Ternary VLE 

Results - Original Combinatorial and Ternary VLE results & Weidlich and Gmehling). 

DDB 
Ternary 

Data 
Set No. 

11564 

11565 

11566 
11582 
11583 

6192 

7057 

8209 

7053 

5331 

2654 

2657 

5971 

Component 
1 

Methanol 

Acetone 

Ethanol 

Acetone 

Ethanol 

Acetone 

Benzene 

n-Hexane 

1-Heptene 

Component 
2 

n-Hexane 

Methanol 

Acetonitrile 

Ethanol 

Water 

Acetonitrile 

Cyclohexane 

Benzene 

n-Heptane 

Component 
3 

Cyclohexane 

Chloroform 

Water 

Water 

1,4 Dioxane 

Methanol 

Aniline 

Cyclohexane 

n-Octane 

qi 

1.432 

2.336 

1.972 

2.336 

1.972 

2.336 

2.4 

3.856 

4.184 

q2 

3.856 

1.432 

1.724 

1.972 

1.4 

1.724 

3.24 

2.4 

4.396 

qa 

3.24 

2.41 

1.4 

1.4 

2.64 

1.432 

2.816 

3.24 

4.936 

Maximum surface ratio 
Comp 
1 & 2 

2.693 

1.631 

1.144 

1.185 

1.409 

1.355 

1.350 

1.607 

1.051 

Comp 
1 & 3 

2.263 

1.032 

1.409 

1.669 

1.339 

1.631 

1.173 

1.190 

1.180 

Comp 
2 & 3 

1.190 

1.683 

1.231 

1.409 

1.886 

1.204 

1.151 

1.350 

1.123 

Table 6-4 Ternary data set components and UNIQUAC surface fraction parameters (q) and 
calculated surface fraction ratio for the constituent binary systems 

Table 6-4 lists the components for each of the thirteen ternary systems and the individual 

component UNIQUAC surface parameter, q. The maximum surface ratio is calculated as the ratio 

of the UNIQUAC surface parameter of the larger component to that of the smaller component. 

This gives an indication of the degree of asymmetry. From this calculation, one can infer that the 

systems are very moderately asymmetric, with a higher degree of asymmetry observed for the 

system ethanol- water- l,4dioxane. Hence, it is expected that the FlexQUAC-Q model should not 
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produce any significant reduction in objective function as compared to the FlexQUAC model 

since the degree of asymmetry is not pronounced. 

6.2.2.1 Verification of Regression of Constituent Binary VLE and 
Calculated Ternary VLE Data - Regression using Original 
Combinatorial Term 

The ternary VLE system cyclohexane-methanol-hexane (DDB data set no. 11564) calculations in 

Excel were verified with the calculations from Mathcad using the original combinatorial term. 

Binary VLE Data - Original Combinatorial Term 

Ternary 
Data 
Set 

11564 

Binary 
Set 

No. 
11573 
11570 
11567 

T° 

IK 
293.15 
293.15 
293.15 

No. 
of 

Data 
Pts 
46 
25 
10 

Component 

1 
Methanol 
Methanol 
Hexane 

Component 

2 
Hexane 
Cyclohexane 
Cyclohexane 

FlexQUAC-Q 

ai2 
44.682 
82.003 

-105.905 

a2i 
1212.436 
982.553 
133.687 

5i2 
0.078 
0.195 
0.073 

Yi00 

37.879 
55.911 
1.199 

y2oo 

27.853 
36.912 
1.138 

Table 6-5 Ternary VLE system cyclohexane-methanol-hexane with the constituent binary VLE data 
systems (Goral et. al. 2000) 

The parameters summarized in Table 6-5 were used in the Mathcad calculations to verify the 

calculations of the activity coefficients at experimental liquid composition and the activity 

coefficients at infinite dilution. 

Refer to Appendix C-C3 - Ternary VLE Results and Calculations 11564 Ternary Check (Printed 

file - The Mathcad file is available on CD in the Appendix C folder). Due to the large number of 

data sets for the binary systems methanol-hexane and methanol-cyclohexane (Data sets 11573 

and 11570 respectively) only ten liquid molar compositions were selected for the calculation in 

Mathcad. The full experimental data set and calculated results are available on CD in the folder, 

Appendix C - Ternary VLE Results and Calculation - Original Combinatorial. The results from 

the Excel regression and the Mathcad files are in excellent agreement (cf Table 6-6 - Table 6-11). 
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Xl 
0 

0.0002 
0.00076 
0.1483 
0.859 

0.9502 
0.9773 
0.9915 
0.9993 

1 

Yi 
37.879 
37.867 
37.422 
7.406 
1.097 
1.017 
1.004 
1.001 

1 
1 

Y2 
1 
1 
1 

1.124 
6.495 
13.483 
19.522 
24.178 
27.519 
27.853 

Table 6-6 Mathcad results for the calculation of the activity coefficient for system Methanol-hexane 
(Goral et. al. 2000) 

Experimental Data 
X l 

0.00000 

0.00002 

0.00076 

0.14830 

0.85920 

0.95020 

0.97730 

0.99150 

0.99930 

1.00000 

P 
121.21 

121.36 

124.44 

209.79 

209.04 

180.54 

148.21 

119.71 

99.08 

97.51 

Calculated Data 
calc 

yi 
37.879 

37.866 

37.421 

7.4062 

1.0972 

1.0168 

1.0039 

1.0005 

1.0000 

1 

„ calc 
Y2 

1 

1 

1.0000 

1.1238 

6.4954 

13.482 

19.521 

24.178 

27.518 

27.852 

P calc 
121.21 

121.28 

123.89 

223.11 

202.78 

177.78 

149.39 

121.65 

99.78 

97.51 

Table 6-7 Excel regression and calculation results for system Methanol-hexane (Goral et. al. 2000) 

Xl 
0 

0.00058 
0.00277 
0.01225 
0.05726 
0.0901 
0.8257 
0.9002 
0.939 

1 

Yi 
55.911 
55.171 
52.49 
42.7 

19.022 
12.11 
1.162 
1.073 
1.033 

1 

Y2 
1 
1 
1 

1.002 
1.03 
1.068 
4.508 
7.551 
11.679 
36.912 

Table 6-8 Mathcad results for the calculation of the activity coefficients for the system Methanol-
cyclohexane (Oracz et. al. 1996) 
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Experimental 
Data 

X1 

0.00000 
0.00058 
0.00277 
0.01225 
0.05726 
0.09010 
0.82570 
0.90020 
0.93900 
1.00000 

P 
kPa 
77.53 
82.63 
105.48 
141.66 
162.98 
166.50 
167.24 
161.85 
151.47 
97.54 

Calculated Data 

„ calc 
Yl 
55.911 
55.170 
52.489 
42.699 
19.022 
12.110 
1.1616 
1.0726 
1.0330 

1 

Y2 
1 

1.0000 
1.0000 
1.0016 
1.0303 
1.0677 
4.5083 
7.5507 
11.679 
36.912 

• calc 

kPa 
77.53 
80.61 
91.50 
127.73 
181.55 
181.75 
154.48 
152.61 
149.86 
97.54 

Table 6-9 Excel regression and calculation results for system Methanol-cyclohexane (Oracz et. al. 
1996) 

Xi 
0 

0.1004 
0.1899 
0.2941 
0.3968 
0.4928 
0.5946 
0.6901 
0.7969 

1 

Yi 
1.199 
1.124 
1.086 
1.059 

1 
1.029 
1.019 
1.012 
1.006 

1 

Y2 
1 

1.003 
1.009 
1.017 
1.026 
1.036 
1.048 
1.061 
1.08 

1.138 

Table 6-10 Mathcad results for the calculation of the activity coefficients for the system Hexane-
cyclohexane (Goral et. al. 2000) 

Experimental Data 
X i 

0.00000 

0.10040 

0.18990 

0.29410 

0.39680 

0.49280 

0.59460 

0.69010 

0.79690 

1.00000 

P 
77.53 

83.66 

88.32 

93.45 

98.04 

102.14 

106.34 

110.14 

114.11 

121.20 

Calculated Da 
calc 

Yi 
1.1987 

1.1242 

1.0863 

1.0586 

1.0406 

1.0285 

1.0187 

1.0116 

1.0055 

1.0000 

„ calc 
Y2 
1.0000 

1.0031 

1.0088 

1.0170 

1.0262 

1.0359 

1.0477 

1.0610 

1.0800 

1.1381 

ta 
"ca lc 

77.53 

83.64 

88.37 

93.40 

98.04 

102.17 

106.35 

110.11 

114.12 

121.20 

Table 6-11 Excel regression and calculation results for system Hexane-cyclohexane (Goral et. al. 
2000) 
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6.2.2.2 Ternary VLE Calculations from Binary Interaction Parameters 

Table 6-12 and Figure 6-12 contains a summary of the mean relative deviation in pressure for the 

constituent binary VLE systems and the corresponding calculation of ternary VLE data 

accompanied with y" for the binary systems. 

As in the case of FlexQUAC, FlexQUAC-Q performs better than UNIQUAC for systems with 

medium to large deviations from Raoult's law. This improved performance is seen for the ternary 

system Methanol (1) - n-Hexane(2) - Cyclohexane (3). Naturally, no improvements were 

observed for systems with small deviations from Raoult's law. 

The objective for evaluating FlexQUAC-Q in calculating ternary VLE data from binary VLE data 

was purely to verify that the model retains its predictive capability. The results obtained illustrate 

that model modification does achieve this. 

Figure 6-12 Comparison of the UNIQUAC, FlexQUAC and FlexQUAC-Q models for selected 
ternary mixtures 
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System 
Methanol (1) - n-Hexane (2) 

Methanol (1) - Cyclohexane (2) 
n-Hexane (1) - Cyclohexane (2) 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Methanol (1) - Cyclohexane (2) 

Methanol (1) - n-Hexane (2) 

n-Hexane (1) - Cyclohexane (2) 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Methanol (1) - Cyclohexane (2) 

Methanol (1) - n-Hexane (2) 

n-Hexane (1) - Cyclohexane (2) 

Methanol (1) - n-Hexane (2) - Cyclohexane (3) 

Acetone (1) - Chloroform (2) 

Acetone (1) - Methanol (2) 

Chloroform (1) - Methanol (2) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Acetone (1) - Chloroform (2) 

Acetone (1) - Methanol (2) 

Chloroform (1) - Methanol (2) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Acetone (1) - Chloroform (2) 

Acetone (1) - Methanol (2) 

Chloroform (1) - Methanol (2) 

Acetone (1) - Methanol (2) - Chloroform (3) 

Ethanol (1) - Acetonitrile (2) 

Acetonitrile (1) - Water (2) 

Ethanol (1)-Water (2) 

Ethanol (1) - Acetonitrile (2) - Water (3) 

Acetone (1) - Ethanol (2) 

Acetone (1)-Water (2) 

Ethanol (1)-Water (2) 

Acetone (1) - Ethanol (2) - Water (3) 

Ethanol (1) - 1,4-Dioxane (2) 

Water (1) - 1,4-Dioxane (2) 

Ethanol (1)-Water (2) 

Ethanol (1) - Water (2) - 1,4-Dioxane (3) 

Acetone (1) - Acetonitrile (2) 

Acetone (1) - Methylacetate (2) 

Methylacetate (1) - Acetonitrile (2) 

Acetone (1) - Methylacetate (2) - Acetonitrile (3) 

T/K 
293.15 

293.15 

293.15 

293.15 

303.15 

303.15 

303.15 

303.15 

313.15 

313.15 

313.15 

313.15 

313.15 

313.15 

313.15 

313.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

323.15 

RADinP/% 

UNIQUAC 

3.25 

7.49 

0.06 

7.01 

7.01 

4.36 

0.07 

6.12 

4.17 

3.30 

0.02 

4.46 

0.34 

0.06 

0.43 

1.68 

0.34 

0.06 

0.33 

1.33 

0.36 

0.19 

0.33 

0.56 

0.26 

1.23 

0.39 

1.41 

0.13 

0.33 

0.23 

1.62 

0.19 

1.64 

0.21 

1.08 

0.17 

0.03 

0.06 

0.42 

FlexQUAC 

1.52 

4.68 

0.02 

3.61 

3.14 

1.91 

0.06 

3.82 

2.62 

0.77 

0.03 

2.47 

0.35 

0.02 

0.43 

1.71 

0.35 

0.02 

0.33 

1.36 

0.36 

0.08 

0.33 

0.51 

0.19 

0.16 

0.39 

1.16 

0.02 

0.04 

0.23 

1.32 

0.12 

1.64 

0.21 

1.29 

0.17 

0.03 

0.04 

0.37 

FlexQUAC-
Q 

2.37 

6.59 

0.02 

3.54 

4.45 

2.89 

0.06 

4.78 

4.17 

1.43 

0.03 

2.93 

0.37 

0.02 

0.43 

1.70 

0.37 

0.02 

0.33 

1.34 

0.36 

0.09 

0.33 

0.53 

0.19 

0.18 

0.39 

1.27 

0.02 

0.07 

0.23 

1.50 

0.12 

1.64 

0.21 

1.27 

0.17 

0.03 

0.04 

0.36 

y" (FlexQUAC-Q) 
(l)in 

(2) 

37.88 

55.91 

1.20 

58.01 

37.64 

1.17 

58.08 

36.13 

1.12 

0.36 

2.01 

2.53 

0.36 

2.01 

2.62 

0.33 

2.01 

2.58 

3.21 

12.93 

5.57 

2.15 

9.44 

5.38 

2.48 

9.34 

5.65 

1.01 

1.14 

1.29 

(2) in 
(1) 

27.85 

36.91 

1.14 

29.16 

26.50 

1.10 

7.01 

25.70 

1.10 

0.46 

1.98 

9.21 

0.46 

1.98 

8.09 

0.53 

2.05 

8.56 

3.68 

7.79 

2.63 

2.00 

5.67 

2.67 

2.93 

10.84 

2.61 

1.00 

1.12 

1.34 

Cont... 
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System 
Benzene (1) - Cyclohexane (2) 

Cyclohexane (1) - Aniline (2) 

Benzene (1) - Aniline (2) 

Benzene (1) - Cyclohexane (2) - Aniline (3) 

Benzene (1) - Cyclohexane (2) 

n-Hexane (1) - Cyclohexane (2) 

n-Hexane (1) - Benzene (2) 

n-Hexane (1) - Benzene (2) - Cyclohexane (3) 

1-Heptene (1) - n-Heptane (2) 

1-Heptene (1) - n-Octane (2) 

n-Heptane (1) - n-Octane (2) 

1-Heptene (1) - n-Heptane (2) - n-Octane (3) 

T/K 
343.15 

343.15 

343.15 

343.15 

343.15 

343.15 

343.15 

343.15 

328.15 

328.15 

328.15 

328.15 

RAD in P / % 

UNIQUAC 

0.10 

0.97 

0.22 

0.65 

0.26 

0.25 

0.17 

0.65 

0.03 

0.38 

0.11 

1.64 

FlexQUAC 

0.07 

0.33 

0.22 

0.83 

0.26 

0.25 

0.17 

0.63 

0.03 

0.11 

0.11 

1.64 

FlexQUAC-
0 

0.07 

0.34 

0.24 

0.83 

0.26 

0.25 

0.17 

0.49 

0.03 

0.12 

0.12 

1.67 

y8 (FlexQUAC-Q) 
(l)in 

(2) 

1.46 

7.25 

1.85 

1.32 

1.05 

1.54 

1.08 

1.22 

1.07 

(2) in 
(1) 

1.53 

9.31 

2.20 

1.47 

1.04 

1.56 

1.10 

1.64 

1.21 

Table 6-12 Calculation of ternary VLE data from binary interaction parameters 

6.2.3 Simultaneous Description of VLE & LLE 

Chapter 3 reviewed the common deficiencies of Gibbs excess energy models. A common 

deficiency shared by all models is the inability to simultaneously describe VLE and LLE. 

FlexQUAC was able to simultaneously describe VLE and LLE as demonstrated by Rarey (2005). 

Although the transformation in the FlexQUAC-Q model is applied to the surface fraction the 

ability to simultaneously describe VLE and LLE should be retained. 

The same example analysed in the case of the FlexQUAC is presented here. Figure 3-2 illustrates 

the prediction of VLE using parameters obtained from the regression of VLE and LLE data using 

the UNIQUAC model. 

Figure 6-13 shows the simultaneous description of the VLE, LLE and azeotropic data using the 

FlexQUAC-Q model. 
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Figure 6-13 Simultaneous description of VLE and LLE using FlexQUAC-Q GE model parameters 
from regression of LLE and VLE data for water (1)- 1-pentanol (2) [• - VLE data (Cho et. al. 1984), 
• - LLE data (DDB, 2006), A - azeotropic data (DDB, 2006), — VLE calculation, - - - LLE 
calculation, — Azeotropic data] 

Figure 6-14 Separation factor as a function of liquid mole composition using FlexQUAC-Q G model 
parameters derived from the simultaneous regression of VLE and LLE data for the system Water (1) 
- 1-Pentanol (2) at 101.3kPa (Cho, Ochi & Kojima, 1984) 
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6.2.4 Ternary LLE Data 

Ternary LLE calculations were performed using binary VLE and LLE data. 

The ternary system Methanol (l)-Acetone (2) -Cyclohexane(3) (Campbell et. al. 1972) at 

298.15K was investigated. Binary VLE data was regressed in the cases of the systems methanol-

acetone and acetone-cyclohexane to yield binary interaction parameters. In the case of the system 

methanol-cyclohexane, LLE data was used solely to obtain the interaction parameters. As 

explained in Chapter 4-4.1 Simultaneous Regression of Phase Equilibrium Data, it is advisable 

that some LLE data be included in this type of regression to improve the accuracy in predicting 

ternary LLE. 

No. 

1 

2 

3 

Component 1 

Methanol 

Methanol 

Acetone 

Component 2 

Acetone 

Cyclohexane 

Cyclohexane 

qi 

1.432 

1.432 

2.336 

qa 

2.336 

3.24 

3.24 

Maximum surface area ratio 

1.63 

2.26 

1.39 

Table 6-13 Maximum surface area ratio for each binary system 

All systems exhibit moderate asymmetric behaviour and FlexQUAC-Q will not show any drastic 

improvements in the correlation of binary VLE data. 

6.2.4.1 Regression of Binary Data in RECVAL 

The binary data of each constituent system was regressed in RECVAL to obtain interaction 

parameters for the ternary LLE calculation. 

Table 6-14 shows the various VLE and LLE data sets that were regressed for the respective binary 

constituent systems. 
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System 

Methanol(l) - Acetone(2) 

Methanol(l) - Cyclohexane(3) 

Acetone(2) - Cyclohexane(3) 

Data set 

VLE Data 

LLE Data 

VLE Data 

Puri et. al. 1974 

Tasicet. al. 1978 

Oraczet. al. 1996 

Campbell et. al. 1976 

Nagataet. al. 1983 

Rhim et. al. 1975 

Tamiret. al. 1981 

Campbell et. al. 1972 

Pierotti et. al. 1959 

Temperature/ K 

298.15 

298.15 

293.15/303.15 

298.15 

298.15 

298.15 

298.15 

298.15 

298.15 

Table 6-14 The binary VLE and LLE data regressed for the purpose of obtaining binary interaction 
parameters 

System 

Methanol( 1) - Acetone(2) 

Methanol(l) - Cyclohexane(3) 

Acetone(2) - Cyclohexane(3) 

Interaction Parameters/ cal/mol 

a12= 164.0496 

a2i = 79.7562 

a13= 16.0264 

a3i= 1287.072 

a23 = -14.6356 

a32= 499.1818 

FlexQUAC-Q 8 

Parameter 

0 

0.004 

0.15 

Table 6-15 Binary interaction parameters obtained from regression for the three binary systems 

6.2.4.2 Ternary LLE Calculation 

The binary interaction parameters obtained from RECVAL were used in an Excel calculation 

program to perform the ternary LLE calculation. 

The calculated activity coefficients in Excel were verified with the use of a MathCAD file - Refer 

to Appendix C - Ternary LLE Calculations. The two results are in excellent agreement (Table 

6-16). 
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Excel Ca 

Molar compositions 
calculated by K factor 
method 

X-i X2 X3 

0.11996 
0.19836 
0.42971 

0.00000 
0.03309 
0.09217 

0.88004 
0.76856 
0.47813 

culations 
Calculated Activity 

Coefficients 

Y1' Y2" Ys" 
7.49989 
4.25414 
1.87743 

4.88610 
2.70253 
1.45976 

1.05611 
1.18922 
1.87781 

Mathcad Calculations 
Calculated Activity 
Coefficients 

Yi" li Ys' 
7.5 

4.254 
1.877 

4.886 
2.703 
1.46 

1.056 
1.189 
1.878 

Table 6-16 Results from Excel calculation compared with Mathcad results to verify accuracy 
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Figure 6-15 Binodale curves in the ternary system Methanol(l) - Acetone(2) - Cyclohexane (3) at 
25°C (Nagata, 1984) from FlexQUAC-Q calculations 

Figure 6-15 shows the results of the ternary LLE calculation and the effect of varying the 

FlexQUAC-Q parameter 813. 8,3 = 0 corresponds to the UNIQUAC equation. The immiscible 

region in this case is over estimated. As this parameter is increased, the prediction of the 

immiscible region improves (813 = 0.05). 
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Chapter 7 Conclusion & 
Recommendations 

In this study the non-linear transformation proposed by Rarey (2005) was further developed. It 

was observed that if the surface fraction of the UNIQUAC model was transformed in a similar 

way, then the resulting model (FlexQUAC-Q) could provide a more suitable description of 

asymmetric systems. 

The transformation was applied to the residual part of the UNIQUAC equation and the activity 

coefficient equations had to be derived. The combinatorial term was not modified, however both 

the original Guggenheim-Stavermann expression and that of Weidlich and Gmehling (1987) were 

used in conjunction with the transformed residual term. Since GE could not be expressed as an 

explicit function of surface fraction, the residual part was split into two parts. The first part was a 

function of liquid composition and the latter part was a function of surface fraction. This re­

formulated version of the UNIQUAC model was tested against the original for verification and 

both were in excellent agreement. The transformation was then applied to the surface fraction in 
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the latter part and the activity coefficient expressions were derived and checked via both 

numerical and analytical derivatives. 

The equations were first simplified and then programmed into a Fortran subroutine for 

implementation into the regression tool, RECVAL of the DDB. An EXCEL program was also 

developed. This program utilized the Fortran subroutine to compute the activity coefficients from 

the FlexQUAC-Q model. The regression in EXCEL provided the binary model parameters for 

comparing the UNIQUAC, FlexQUAC and FlexQUAC-Q (Guggenheim-Stavermann and 

Weidlich-Gmehling combinatorial terms) models. 

The FlexQUAC-Q model was subjected to a similar performance evaluation as that of its 

precursor, the FlexQUAC model. Data from the DDB was utilized to compare the models with 

the objective function defined as the mean relative squared deviation in pressure. A minor mean 

relative reduction of about 3% of the objective function using FlexQUAC-Q compared to 

FlexQUAC was observed compared to a reduction by about 53% relative to the UNIQUAC-

results. While in case of UNIQUAC approx. 48% of the data sets showed a final objective 

function of 10"3, in case of the Flex-models this was achieved by about 63% of the data. This 

illustrated that the both FlexQUAC and FlexQUAC-Q behave similarly. 

It was also observed that the results obtained using both FlexQUAC and FlexQUAC-Q models 

and be compared to that of the GEQUAC model. GEQUAC (Ehlker and Pfennig, 2002) is an 

exact quasi-chemical multisegment model, which follows a more exact approach to 

Guggenheim's concept of local composition. GEQUAC's ability to accurately predict non-ideal 

systems is noteworthy; however its mathematical complexity and large number of model 

parameters prove to be a disadvantage. Both Flex-models boast considerable simplicity when 

compared to GEQUAC and contain only one additional parameter in addition to the two existing 

UNIQUAC model parameters. Both models also produce accurate descriptions of non-ideal 

systems with a quality comparable to that of GEQUAC. 

Due to its greatly increased flexibility, FlexQUAC-Q now allows one to regress a much larger 

range of binary data within their experimental uncertainty than was possible with NRTL and 
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UNIQUAC. This could significantly increase the reliability of pre-regressed parameters 

distributed e.g. with process simulation software. 

Ternary VLE data calculations were performed with the FlexQUAC-Q model and compared to 

FlexQUAC and UNIQUAC. Model interaction parameters were obtained from the regression of 

the binary VLE data. The constituent binary VLE data sets of the thirteen ternary VLE data sets 

showed moderate asymmetry and it was expected that FlexQUAC-Q would not have any 

significant improvement in the correlation of data when compared to the FlexQUAC model. 

However, the correlation of the binary VLE data did improve when compared to UNIQUAC and 

consequently there was an improvement in the prediction of ternary VLE data. FlexQUAC-Q's 

prediction of the ternary VLE data is comparable to that of FlexQUAC. It is evident that the 

UNIQUAC model's predictive capability is retained in FlexQUAC-Q. 

FlexQUAC was able to describe VLE and LLE simultaneously. The previously used system 

Water-1-Pentanol was used to test whether the ability to simultaneously correlate VLE and LLE 

was retained by FlexQUAC-Q. FlexQUAC-Q succeeded in correlating both VLE and LLE data. 

Ternary LLE data was also used to evaluate the performance of FlexQUAC-Q. FlexQUAC-Q 

gives a better description of the immiscible region while UNIQUAC over estimates this region. 

The performance evaluation of FlexQUAC-Q has revealed that it has no superior effect on the 

correlation of data when compared to FlexQUAC. Although FlexQUAC has achieved significant 

results and improved the accuracy and quality of data representation, its full benefit cannot be 

exploited since it cannot be extended to the group contribution method UNIFAC. This is due to 

manner in which the transformation was applied to UNIQUAC. In the case of FlexQUAC-Q, the 

transformation was applied directly to the surface fraction and hence the model can be extended 

to the group contribution method. The model equations were defined in this study and the 

subsequent model is referred to as FlexFAC. 

Current group contribution methods cannot simultaneously describe VLE and LLE. Hence 

separate parameterizations are required. The newly formed FlexFAC model should be able to 

simultaneously describe both VLE and LLE. In addition to its use as a predictive GE model, 
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FlexFAC can also be used in group contribution equation of states via a GE mixing rule like 

PSRK, VTPR or MHV2. 

As a next step a comparison of FlexFAC with the UNIFAC method should be conducted. A 

realistic test of the group contribution equation FlexFAC, either as a GE-model or in combination 

with an equation of state via an appropriate GE mixing rule, will require the regression of a group 

interaction parameter matrix to a large amount of data. 
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APPENDIX A - UNIQUAC DERIVATION 

A brief derivation based on Maurer & Prausnitz (1978) is presented here since UNIQUAC is the 

precursor to both the FlexQUAC and FlexQUAC-Q model. 

Here a binary mixture containing molecules of component 1 and 2 with arbitrary size and shape is 

considered. Component 1 has n segments with external surface area proportional to qi. 

Analogously, component 2 has r2 segments and external surface area proportional to q2. For a 

unisegmental molecule which is small and spherical, r = q = 1. In the case of chain molecules the 

ratio of q to r becomes less than one and as the chain increases in number of segments, this ratio 

approaches 2/3. 

In this derivation a unisegmental molecule is considered here. If one considers that the 

intermolecular forces are restricted to a small range and coupled with pair-wise additivity, then 

the energy required to vaporize this molecule to ideal gas state corresponds to —ZU\X . Here 

Z refers to the coordination number. Pure liquid is represented by (0) and £/„ refers to the 

potential energy of the two neigbouring molecules of the molecule 1. This molecule is then 

condensed into the hypothetical fluid (indicated by (1)). In this case the molecule now has Zm6u 

neighbours of species 1 and Z(1)#21 neighbours of species 2. The local surface fraction of 

component 1 is defined as 6n about central molecule 1. Similarly G2X represents the local surface 

fraction of component 2, about the central molecule 1. Hence 0n +92\
 = 1 • With the assumption 

that Z(1)is the same as Z<0), then the energy associated with the condensation process is 

—Z^jC/,*!1' +02i^2i)J- With the same idea, molecule 2 can be vaporized from the pure liquid to 

a second hypothetical fluid . 

In the context of Xj moles of fluid 1 and x2 moles of fluid 2, then the mixture extensive 

configurational property M is M = x,M(1) +x2M<2) where M(1)and M (2 )are the extensive 

configurational property for hypothetical fluid 1 and 2 respectively. 

Thus the total energy of mixing, UE corresponding to the transfer of Xi moles of species 1 from 

the pure liquid 1 and x2 moles of species 2 from the pure liquid 2 into the two-liquid mixture is 
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UE=y2ZxxNA[qx{enU^ + 02lU$ ~U^\+Y2Zx2NA[q2{922U% + 0nU$ -U™)] A-l 

where NA is Avagadro's number. The local surface fractions must obey the conservation 

equations; hence 0u+02l =1 and 0U + 022=l. Assume that U^ = UX{
0)and U22 = U{

22 and 

Equation A-l reduces to 

UE = y2ZNA[xxenqfijlx -Un) + x20uq2(Un -U22)] A-2 

Wilson (1964) assumed that the local compositions are related to overall compositions via 

Boltzmann factors. This is the crucial idea in this derivation. Hence, 

&2L=61 

0n 0i 
exp \/7(u*-uny 

/ 2 kT 
A-3 

0U 6X 

—ti- = —exp 
022 @2 

/2 Z 
{Un-U22) 

kT 
A-4 

where 

0X = ^ ! and 02 = ^2 
xxqx+x2q2 xiql+x2q2 

Thus the fundamental relation based on the two fluid theory is 

UE -xxqx02xAu2x +x2q20nAun A-5 

where 

02Qxp(-Au2l/RT) 
21 0x+02exp(-Au2X/RT) 

e 0xexp(-Aul2/RT) 
12 02+0xexp(-Auu/RT) 
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Au2,=±Z(U2l-Uu)NA 

Aun=-Z{Un-U22)NA 

Now the excess Helmhotz energy, AE can be expressed as 

d{AElT) E 

d(l/T) 

Integrating from 1/T0 to 1/T yields the following result 

A-6 

^-=fcu'd(yT)+B A-7 

where 

• B is the constant of integration 

B can be evaluated by letting 1/To approach zero. 

At high temperatures, an athermal mixture is formed and Guggenheim's equation for athermal 

mixtures of molecules of arbitrary size and shape is suitable as a boundary condition. 

( AE\ fSE\ 

athermal R combinatorial 

-xx In—L + JC2 In—- + —Z 
x, 

( 
, 0i qxxx In ^^ix2 In 

V O 
A-8 

2 J 

where 

• <D, = x,r, 
1 1 "^ 0 1 

<D2 = 
A i / i "l ^ -j I -y 

Using the assumption that Au2i and Au12 are independent of temperature, then it follows at low 

pressure \AE)TV « (G£ )T p. Hence 
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APPENDIX A - UNIQUAC DERIVATION 

( AE\ 

\RT
 JT, 

(n*\ 

yRTj 

frE\ 

T,P V / combinatorial 
+ 

rG*\ 
V / residual 

A-9 

where 

=x , ln— L + x 2 ln—-H— 
xv 1 combinatorial X^ X^ 2. 

( 

\ 

l @\ 1 @7 

q,x. In —— + q-,x2 In—- A-10 
27 

residual 

= -qxxA ln(#, +02T2l)-q2x2 \n(02 + ^ r 1 2 ) A-ll 
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Appendix A 

A2 - FlexQUAC-Q Derivation 

Test Using Numerical Example 

TEST SYSTEM : 1.DIETHYL ETHER, 2. ACETONITRILE 
Please note that all numerical evaluations are highlighted in yellow and have been calculated for x1 = 1 

pefinition of parameters] 

general tolerance criterion 

number of components n 

range variables 

epsl = 10 

n:= 2 

k:= 1..n j := l . .n i:= l . .n 

Liquid mole fra 

UNIQUAC Pa 

M 

x(xx) := 
f XX *̂ 

U -xxy 

R:= 

Au:= 

'3.395^1 

v 1-87 j 
Q:= 

^3.016N 

,1.724, 

f 0 497.605N 

v-76.972 0 j 

Universal Gas Constant cal/mol K 

5f(d) := 
0 d 

A 0 
d:= 0.1786 

RG:= 1.9872 

T:= 273.15 + 20.5 
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TG,J,AU,T) := exp — 
\ R G T 

©o(x,Q,i,n):= 
n 

k = l 

jrface Fraction 

So(x,Q,Au,T,i,n):= V 0o(x,Q,j,n) • T(j,i,Au,T) 

j = l 

gE_RTreso(x,T,Au,Q,n) := - V x. • Q. • ln(so(x,Q,Au,T,i,n)) Original residual part of UNIQUAC 

i = l 

Section 1: UNIQUAC Model rewritten 

n n 
gE_RTresol(x,T,Au,Q,n):= - V x . Q . - V 0o(x,Q,i,n) • ln(so(x,Q,Au,T,i,n)) 

= 1 i = l 

gE RTresol(x(l),T,Au,Q,n) =0 
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The function 0o can be defined as a vector: 0(nn,Q,n) := for i e 1.. n 

ret. <-
1 n 

Z nnk'Qk 
k = l 

ret 

0(x(l),Q,n) = 

Section 2: Derivation of GE/RT by n for Original UNIQUAC using functions f 1 and f2 

B 
GE residual is the product of two functions: 

f l x ( x , Q ) : = - V x . Q . f2x(x,T,Au,Q,n):= V 0o(x,Q,i,n) • ln(so(x,Q,Au,T,i,n)) 

i= 1 i = l 

Now we want to derive GE by n. Following the product rule, this is 

gE_RTreso_dn(x,T,Au,Q,n) = flx_dn(x,Q) • f2x(x,T,Au,Q,n) + flx(x,Q) • f2x_dn(x,T,Au,Q,n) 

a 
[Analytical Dervation of f1 

B 
Now f1x(x,Q) can be re-written as a function of mole numbers f1n(nn,Q) 

fln(nn,Q) := 
( " 1 

i = 1 
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This is the product of 2 functions flan and flbn 

with the derivations 

n 

i = l 

flandn(nn) := -
1 

( n \ 

S nni 

2 

flbn(nn,Q) := 
( n ^ 

Z n n i Q i 
M = i J 

flbn_dn(nn,Q,j) := Q 

Using the product rule, it holds that fin dn(nn,Q,i) = flan(nn) • flbn_dn(nn,Q,i) + flbn(nn,Q) • flandn(nn) 

This leads to -Q 
I nniQi 

fln_dn(nn,Q,j) 

Z nni 
i = l 

L + izl 
< n ^ 

Z nni 
u-1 , 

Using nn. = x. and ^ n „ . = l ^ | e a d g tQ f l_dn(x,QJ):=-Q j +£ x.-Q. 

i = l i = l 

Putting f1 into vector form: 

dfldn(x,Q,n) := for m e 1.. n 

ret -Q + V x.-Q. 
m i / J l ^i 

i = l 

ret 

dfldn(x(l),Q,n) = 
0 

1.292 
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H-

frslumerical Derivation of f1 | 

dfl©d©N(x,Q,n):= for i e 1.. n 

for me 1..n 

eps <- 0 

eps.«- epsl 

ret. 
fln(x + eps,Q) - fln(x - eps,Q) 

2.eps! 

ret 

dfl©d©N(x(l),Q,n) 
0 

V1-292; 

dfl©d©N(x(l),Q,n) - dfldn(x(l),Q,n) = 
-4.122 x 10 ) 
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1 Analytical Derivation of f2 
B 

Now f2 is a function of 0 and we want toflexibilize 0. This means we need f20_d© and d©_dn. 
Because f2© is not a vector, f20_d© is a vector and d©_dn is a Jacobian matrix. 

f20_d© is always the same (only depends on the UNIQUAC-equation). 

d©_dn is different for original UNIQUAC and the Flex-version. Maybe you can ask a mathematician, how to combinethe Jacobians d©_dx and dx_dn 
to get d©_dn. This would make things more easy. 

from the UNIQUAC equation given above: f2©(x,T,Au,Q,n) := V 0o(x,Q,i,n) • In V 0o(x,Q,j,n) • x(j,i,Au,T) 

again, this calls for the product rule 

ET 
f2 is the sum of a product of two functions f2a and f2b. This product is a scalar. The derivation is done by ©j. There are 2 cases: i = j and i <> j ! ! ! ! 

f20a(©,Q,i,n) := 0o(x,Q,i,n) 
f20b(©,Q,i,n):= In V ©o(x,Q,k,n)-x(k,i,Au,T) 

We use the assumption i<>j for the derivation, then substract the wrong term (where i = j) and add the correct derivation of this term. 

T(J,J,AU,T) 
For i<>j the derivation of f20ai with respect to 0j is zero. The derivation of f20bj with respect to 0j is 

£ ©o(x,Q,k,n)-T(k,i,Au,T) 

k = l 

So for the case i<>j following the product rule the derivation is V 

i = i 

O l n ^ ©o(x,Q,j,n)T(j,i,Au,T) + 0o(x,Q,i,nV 
c(j,i,Au,TJ 

V ©o(x,Q,k,n)-x(k,i,Au,T) 

k = l 
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which is 

= 1 

0o(x,Q,i,n) 
c(j,i,Au,TJ 

V 0o(x,Q,k,n)-x(k,i,Au,T) 

k = l 

we need to substract the case i = j for which we used the wrong derivation. In this case X:: = 1 

Casel(x,QJ,n):= V 0o(x,Q,i,n) 
x(j,i,Au,T) 

©o(x,Q,j,n) 
x(j,j,Au,T) 

i = l ^ 0o(x,Q,k,n)x(k,i,Au,T) 

k = l 

^ ©o(x,Q,k,n)-x(k,j,Au,T) 

k = l 

Casel(x(l),Q,j,n) 

0 
j 1.141 

For the i = j case the derivation of f20ai wrt 0j is 1. The derivation of f20bi wrt to 0j is 

So for the case i = j the derivation is: in ^ 0o(x,Q,k,n)-x(k,j,Au,T) 

[k 

x(j,j,Au,T) 

+ 0o(x,Q,j,n) 

^ 0o(x,Q,k,n)-x(k,j,Au,T) 

x(j,j,Au,T) 

since x. = 1 

k = 1 

£ 0o(x,Q,k,n)x(k,j,Au,T) 

k = l 

Case2(x,Q,j,n) := In V ©o(x,Q,k,n)-x(k,j,Au,T) 

k = 1 

+ ©o(x,Q,j,n) 
x(j,j,Au,T) 

V 0o(x,Q,k,n)-x(k,j,Au,T) 

k = 1 
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Case2(x 

1 
-0.853 

I 

(l) ,Q,j ,n) 

So the complete derivation is: 

df20d0o(x,Q,j,n) := Casel(x,Q,j,n) + Case2(x,Q,j,n) 

df20d©o(x(l),QJ,n) 

1 
0.288 

Putting f2 in vector form: 

df20d0(x,Q,n) := for i e 1.. n 

ret. <-df20d0o(x,Q,i,n) 

ret 

df20d©(x(l),Q,n) 
1 

0.288 

0 

B 
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[Numerical Derivation of f2 

0 

The numerical derivation has to be 
performed at 0(x) but the change must 
be in 0, not in x 

f2©C0,T,Au,Q,n):= V © j l n V ©j • x(j,i,Au,T) 

0 = 1 i = l 
0(x(l),Q,n) = 

df2©d©N(nn,Q,n) := for i e 1.. n 

for me l..n 

eps <- 0 m 

eps. <- epsl 

f20(0(nn,Q,n) + eps,T,Au,Q,n) - f20(0(nn,Q,n) - eps,T,Au,Q,n) 

2.eps! 
ret. <— 

I 

ret 

df20d0N(x(l),Q,n) 
1 

0.288 

0 

[Comparison of Analytical and Numerical derivativ 

To\ 

n 
df20d©N(x(l),Q,n) - df20d©(x(l),Q,n) 

-5.264 x 10 

V-4.301 x 10 J 
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Via Partial Numerical Derivation of of each Summand in V. 

f20i(0,T,Au,Q,n,i) := 0 j - In £ ©j-x(j,i,Au,T) 

df20id0jN(nn,Q,n):= for i e 1.. n 

for me l..n 

eps <- 0 v m 

eps. <— epsl 

df20id0jN(x(l),Q,n) = 
1 0 , 

1.141 -0.853; 

for j e 1.. n 

ret. 
UJ 

f20i(0(nn,Q,n) + eps,T,Au,Q,n,j) - f20i(0(nn,Q,n) - eps,T,Au,Q,n,j) 

2.eps! 

ret 

EL 

n 
V df20id0jN(x(l),Q,n)i; 

1 = 1 

1 
0.288 
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[Section 3: Derivation of Jacobian matrix for surface fraction 

S 

Analytical Derivation of 0 by n 

Jacobian0(x,Q) := for k e 1.. n 

for m e 1..n 

( " ^ 
Qm 

Jac, <- -
k,ra 

S \ Q k 
Vk = l J 

" W ^ m 

A \ 2 

i n i 

S xkQk 
[k = \ ) 

-x Q Q. 
m ^m ^k 

Jac, <- if k 5* m 
k,m 2 

1 n 

z v°* 
U=i j 

Jac 

JacobianO(x(l),Q) = 
V-0.572 0.572J 

if k = m 

Numerical Derivation of © byTT 

JacobianN0(x,Q,n) := for i e 1.. n 

for m e 1..n 

eps <— 0. 

eps. <- epsl 

I — — — , Q , n 

x 2 < - 0 

1 - epsl 

x+ eps 

1 + epsl 

for m e 1.. n 

,Q,n 

x2 - x l m m 
Jac. <— 

l>m 2 -eps l 

Jac 

JacobianN0(x(l),Q,n) = 
0 0 

-0.572 0.572 
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Comparison of Analytical and Numerical derivatives 

Jacobian©(x(0.098),Q) - JacobianNO(x(0.098),Q,n) = 
1.369 x 10 9 1.846 x 10 " 

-1.795 x 10" 10 4.343 x 10~ 9 

s 

Now f2 was derived by ©o. This derivative need to be multiplied by the Jacobian of © by n to calculate the derivative 
of f2 by n 

B" 
df2dn(x,Q,n) := Jacobian0(x,Q) • df20d0(x,Q,n) 

df2dn(x(l),Q,n) = 
0 

V-0.407; 

H-

0 
df2dnN(x,Q,n) := JacobianN0(x,Q,n) • df20d0N(x,Q,n) 

df2dnN(x(l),Q,n) = 
0 

^-0.407y 

0 
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0 
lis gives for dgE_res/Rl 

dgE_RTresl_dn(x,T,Au,Q,n) := (dfldn(x,Q,n) • f2x(x,T,Au,Q,n) + flx(x,Q) • df2dn(x,Q,n)) 

dgE_RTresl_dn(x(l),T,Au,Q,n) = 
0 ^ 

1-227; 

0 

0 
TestdgE_res/ umerically 

dgE_RTresl_dnN(x,T,Au,Q,n) := (dfl0d0N(x,Q,n) • f2x(x,T,Au,Q,n) + flx(x,Q) • df2dnN(x,Q,n)) 

dgE_RTresl_dnN(x(l),T,Au,Q,n) = 
U 

0 

221) 

EL 

0 
lny_resl(x,T,Au,Q,n) := dgE_RTresl_dn(x,T,Au,Q,n) + gE_RTresol(x,T,Au,Q,n) 

a 
] \ ( Q \ 

lny_reslvx(l),T,Au,Q,nJ = 
\\.22l) 
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lny_reslN(x,T,Au,Q,n):= dgE_RTresl_dnN(x,T,Au,Q,n) + gE_RTresol(x,T,Au,Q,n) 

lny_reslN(x(l),T,Au,Q,n) 
1.227 

B-

|FLEXQUAC-QJ 

GE residual [FLEXQUAC] is the product of two functions: 

0f(x,Q,5,i,n):= 

x. • Q. • 
1 1 

1 + 
< n VI 

E V<V8U 
_ U=i J. 

n 

I V<V 
_k = l 

( " 
1 + J V<V*k,l 

I 1=1 

\ 

/_ 

New surface fraction definition which includes the FlexQUAC-Q pa 

0fn(x,5,Q,n):= for i e 1.. n 

ret. <- x. • Q. 
i I ^ i 

ret 

1 + Z x k Q k 5 i ' k 

n ( n 

E w 
k = l 

1 + Z x i 
I 1=1 

y 
•Q^fik . i 

) . 
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Sf(x,Q,Au,T,5,i,n):= V 0f(x,Q,6J,n) • t(j,i,Au,T) 

j = l 
Sf(x(l),Q,Au,T,Sf(d),l,nJ = 1 

Sf(x(l),Q,Au,T,5f(d),2,n) = 0.426 

flx(x,Q) := - V y Q. f20f(x,T,Q,5,n) := V 0f(x,Q,6,i,n) • ln(sf(x,Q,Au,T,6,i,n)) 

i= 1 i = l 

flx(x(l),Q)=-3.016 f20f(x(l),T,Q,5f(d),n) = O~ 

gE_RTresf(x,T,Au,Q,8,n):= - V x . Q . . V 0f(x,Q,8,i,n) • ln(sf(x,Q,Au,T,6,i,n)) 

i = l i = l 

gE_RTresf(x(l),T,Au,Q,8f(d),n) = 0 

Section 4: Analytical Derivation of f2 by 

df2©fd©f(x,Q,8,j,n):= V 

= 1 

0f(x,Q,8,i,n)-T(j,i,Au,T) 

n 

£ 0f(x,Q,8,k,n)-T(k,i,Au,T) 

k = l 

+ In ^ 0f(x,Q,8,k,n)T(k,j,Au,T) 

k = l 
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r u i u i i y i n v c u u i I U I I I I . 

df2d0f(x,Q,6,n):= for i e 1.. n 

ret. <- df20fd0f(x,Q,6,i,n) 

ret 

df2d0f(x(l),Q,5f(d),n) = 
1 

0.288 

0 

The numerical derivation has to be 
performed at 0(x) but the change must 
be in 0, not in x 

f20f(0fh,T,Au,Q,n):= V ©fhj-ln V ©fiij • x(j,i,Au,T) 

U = i 

df20fd0N(x,Q,5,n):= for i e 1.. n 

for me 1.. n 

eps <r- 0 m 

eps. <r- epsl 

f20f(0fn(x,S,Q,n) + eps,T,Au,Q,n) - f20f(0fn(x,S,Q,n) - eps,T,Au,Q,n)N 

ret. <— 
I 2.eps! 

ret 

df20fd0N (x( 1), Q, 8f (d), n) 
0.288 
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Compariso _i k.i : i ~ j : — 

and Numerical derive 
To\ 

11 
df20fd0N(x(l),Q,8f(d),n) - df2d©f(x(l),Q,8f(d),n) = 

-5.264 x 10 

-4.301 x 10 J 

0 

B 

Section 5: Analytical Derivation of ©f by n | 

The derivation of thetha by n is made easier by breaking the expression into fragments and then using differentiation rules to obtain the derivation. 

Theta = A (B/C) 

Hence it follows: 

0fh derived by n gives 

— derived by n gives 

J L A I M ^ I A 
^dn ) C l̂ dn C 

(A \ 
4-B 

Vdn J 
c + 

(A ^ 

Vdn ; 
.B 
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JacobianFQl(x,Q,8,n) := for i e 1.. n 

for me 1..n 

Jac . <- x. • Q. • 
m,i 1 ^i 

(l + Q m -5 i , m ) -
n 

S v<V 
k = l 

f 1 + Ix> 
1 1 = 1 

\ 

•Q, -8k , l 

J 
- V 

( 1 + Ix, 
i 1=1 

> 

• Q l ' 5 m , l 

n 
+ Z X k' Q k-( 1 + Qm-8k.m 

) k = l 

Z v<v 
k = l 

1 + X Y^-5^1 

k 1 = 1 

Jac. <- Q. 
i,m I 

1 + Z V<V8u 
k = l 

S V<V 
k = l 

n 
1 + Z YQi'5k> 

v 1 = 1 

+ X. r<V 

n 

S V<V 
( n Y 

1 + S YQi"5k>> 
_k = i I 1 = 1 J. 

- <V 
f n 1 1 + S Y<V8u 
I 1 = 1 j 

+ 

k 

/ 

z v^ 
k = l 

n 
1 + Z Y<= 

1 = 1 

Jac 

JacobianFQl(x(l),Q,5f(d),n) 
0 0 

-0.88 0.88J 

0 
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0 

[Numerical Derivation of ©f by n| 

JacobianN2pQ(nn,Q,5,n) := for i e 1.. n 

for me 1..n 

eps <- 0. 

eps. <— epsl 

nnl <- 0fn 
9 f h r n n - e p s 

1̂ 1 - epsl 
,6,Q,n 

. nn + eps „ 
nn2 <-0fn| — ,6,Q,n 

1 + epsl 
for m e 1.. n 

Jac 
nn2 - nnl m m 

>m 2 -eps l 

Jac 

JacobianN2FQ(x( 1), Q, of (d), n) = 
0 0 

-0.88 0.88 

Comparison of Analytical and Numerical derivatives | 

JacobianFQl(x(l),Q,5f(d),n) - JacobianN2FQ(x(l),Q,8f(d),n) 
y-i.7i7x io oy 
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Now f2 was derived by 0f. This derivative need to be multiplied by the Jacobian of 0 by n to calculate the derivative 
r f2 by n o f l • 

0 

df2fdn(x,Q,5,n) := JacobianFQl(x,Q,8,n) • df2d0f(x,Q,8,n) 

df2fdn(x(l),Q,8f(d),n) 
0 

y-0.626y 

0 

B~ 

Now test df2dn numerically 

df2fdnN(x,Q,5,n) := JacobianN2FQ(x,Q,6,n) • df20fd0N(x,Q,8,n) 

0. 

df2fdnN(x(l),Q,5f(d),n) = 
-0.626 

Compar ison of Analytical and Numerical derivatives 

df2fdn(x(l),Q,8f(d),n) - df2fdnN(x(l),Q,8f(d),n) 
-1.76 x 10 
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0 

s 

f20f(x,T,Q,8,n):= V 0f(x,Q,5,i,n) • ln(sf(x,Q,Au,T,S,i,n)) 

dgE_RTresf_dn(x,T,Q,6,n) := f20f(x,T,Q,8,n) • dfldn(x,Q,n) + flx(x,Q) • df2fdnN(x,Q,8,n) 

dgE_RTresf_dn(x( 1), T, Q, 8f (d), n) 
11.888 

f20f(x,T,Q,8,n):= V 0f(x,Q,S,i,n) • ln(sf(x,Q,Au,T,8,i,n)) 

= 1 

dgE_RTresf_dnN(x,T,Au,Q,8,n) := (f20f(x,T,Q,8,n) • dfldn(x,Q,n) + flx(x,Q) • df2fdnN(x,Q,8,n)) 

0. 

dgE_RTresf_dnN(x(l),T,Au,Q,8f(d),n) = 
1.888 

Comparison of Analytical and Numerical derivatives 

dgE_RTresf_dn(x(l),T,Q,8f(d),n) - dgE_RTresf_dnN(x(l),T,Au,Q,8f(d),n) = 
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Calculate ln_gamma_res using dgE_resf/RT / di 

0 

0 

lny_resf(x,T,Au,Q,5,n) := dgE_RTresf_dn(x,T,Q,5,n) + gE_RTresf(x,T,Au,Q,8,n) 

lny_resf(x(l),T,Au,Q,8f(d),n) = 
1.888 

lny_resflN(x,T,Au,Q,5,n) := dgE_RTresf_dnN(x,T,Au,Q,5,n) + gE_RTresf(x,T,Au,Q,5,n) 

lny_resflN(x(l),T,Au,Q,6f(d),n) = 
yl.888y 

Comparison of Analytical and Numerical derivatives 

lny_resf(x(l),T,Au,Q,8f(d),n) - lny_resflN(x(l),T,Au,Q,Sf(d),n) = 

w 
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Now this output for residual activity coefficients is checked with the analytical expressions of the original UNIQUA 
model 

Combinatorial Part 

n n R. Q. 
r(x,R,n) := V x • R q(x,Q,n) := V x • Q <Kx,R,i,n) := ' 0(x,Q,i,n):= ' 

^-» ' ' *-> ' ' r(x,R,n) q(x,Q,n) 
i = l i = l 

gE_RTcomb(x,T,Au,R,Q,n):= V x. • ln(<t>(x,R,i,n)) + 5 • Q. • In 

i = l 

^e(x,Q, i ,n)V 

<|>(x,R,i,n) 

Analytical Expression for Acticity Coefficient for Original UNIQUAC equatiofr 

lny_combo(x ,T,R,Au,Q,n):= for i e 1.. n 

ret. <- 1. -<|)(x,R,i,n) + ln(<|>(x,R,i,n)) + 5 • Q. • In 
Q(x,Q,i,n)^ 

V<t>(x,R,i,n) 

(Kx,R,i,n) _ j 

0(x,Q,i,n) 

ret 

lny_combo(x( l),T,R,Au,Q,n) = 
0 ^ 

v-0.141y 

So(x,Q,Au,T,i,n):= V 0o(x,Q,j,n) • x(j,i,Au,T) 

j = l 
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InyresoVx, I ,Au,Q,n,J := for i s 1.. n 

ret. <- Q. 
i 1 

, („ ( ~ . ™ . \\ <r-i r®°(x,Q,k,n) • x(i,k,Au,T) 

k = l 
So(x,Q,Au,T,k,n) 

ret 

lny(x,T,Au,R,Q,n):= for i e 1.. n 

ret. <- l.-<|>(x,R,i,n) + ln(<j>(x,R,i,n)) + 5 • Q. • In 

+ Q: 

'©(x.Q.i .n)" 

<|>(x,R,i,n), 

(|>(x,R,i,n) _ l 

0(x,Q,i,n) 

l .-ln(So(x,Q,Au,T,i ,n))- V 

k = l 

©(x .Q.k .n) -^- x(i,k,Au,T) 

So(x,Q,Au,T,k,n) 

ret 

lny(x(l),T,Au,R,Q,n) = 
1.086 

lny_o(x,T,R,Au,Q,n) := lny_combo(x,T,R,Au,Q,n) + lny_reso(x,T,Au,Q,n) 

lny_o(x(l),T,R,Au,Q,n) 
yl.086y 

exp(lny_o(x(l),T,R,Au,Q,n)) = 
1 

2.962 Original U ty coefficient | 
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Original UNIQUAC ilytical (UNIQUAC rewritteny] Numerical (UNIQUAC Rewritten) 

Inyj-eso (x(l),T,Au,Q, n) 
1.227;! 

lny_resl(x(l),T,Au,Q,n) 
1.227 

lny_reslN(x(l),T,Au,Q,n) = 
0 

1.227 

lny_reso(x(l),T,Au,Q,n) - lny_resl(x(l),T,Au,Q,n) = 

w 

lny_reso(x( 1), T, Au, Q, n) - lnyres 1N(X( 1), T, Au, Q, n) 
>y3.539x 10 ) 

1 FlexQUAC-(j 

lnyf(x,T ,R,Au,Q,5,n) := lny_combo(x,T,R,Au,Q,n) + lny_resf(x,T,Au,Q,8,n) 

f 0 >* 
lnyf(x(l),T,R,Au,Q,5f(d),n) 

V 1.747, 

exp(lnyf(x(l),T,R,Au,Q,5f(d),n)) 
5.735 

FlexQUAC-Q activity coefficients 
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Appendix A 

A3 • Fortran Implementation 

Test Using Numerical Example] 

Components: 1 - acetone 
2 - chloroform 
3 - methanol 

acetone := 1 
chloroform := 2 
methanol := 3 

n:= 3 
i:= l..n 
j : = l..n 

pure Component Parameters^ general epsi 10 

R:= 

( 2.5735^ 

2.87 Q:= 

(2336\ 

2.41 

lj.431lj ^ 1.432 J 

FlexQUAC-Q Parameters: 

Au:= 

( 0 -340.663 431.709 ̂  

169.453 0 1307.65 K 

^-104.734 -273.252 0 / 

1.98721 

8:= 

( 0 0.1 0.2^ 

0.1 0 0.3 

V0.2 0.3 0 
333K 

Ejjoje fractions 

x:= .3 

Residual Part FLEXQUAC - Q 

The complex terms of the original are simplified into more convenient terms to enable efficient 
programming in the FORTRAN subroutine. The simplified terms (shown in yellow) are compared to the 
original derivation in the previous file (shown in green). 

-217-



thetfx. := Q. 1+ Z V<V8i.k 

sthetfx := y x. • thetfx. 

i 

thetfx. 
thetfx. := 

sthetfx 

Sf.:= V x. • thetfx. • x; 
i La J J J ' 

j = l 

GE residual 

« - - ! x iQ i 
= 1 

f2 := V x. • thetfx. • ln/Sf \ 

i = l 

gE_RTresf := fl • f2 

sthetfx = 2.507 2.50T 

thetfx = 

f 1.106^ 

1.194 

^0.775; 

Sf = 

'0.972^ 

1.382 

^0.532; 

fl =-1.997 -1.99' 

f2 = -0.089 -0.08c 

gERTresf = 0.177 
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I 

Auxiliary Variables 

suml 

n x. • thetfx. • x; ; 
1 J ' 1 

r = S " Sf. 
i = l 

df2.:= suml.+ ln(Sf.j 

sv= £ v<v(1+(vM 
k = l 

df2 = 

' 1.05 \ 

0.928 

^0.744j 

SJ = 

f 2.433^ 

2.58 

V2.508J 

f 1.05 ^ 

0.928 

V0.744J 

f 2.433^1 

2.58 

U-508J 

Jacobian Matrix 

JacobianFQl := for i e 1.. n 

for m € 1.. n 

Jac . <—/thetfx • x\ -
m , i \ m i / 

SJ x. 
m 1 

Q . x . 
1 1 

sthetfx thetfx. • sthetfx 
1 

x. • Q. • Q • 8j m 
1 ^1 ^ m l'm . 

Jac . <— Jac . + if 1 * m 
m'» m'» thetfx. • sthetfx 

1 Jac . <— Jac . + 1 if i = m 
m,i m,i 

Jac . <- Jac . • thetfx. 
m,i m,i 1 

Jac 

JacobianFQl = 

f 0.697 -0.388 -0.309^ 

-0.391 0.686 -0.296 

^-0.229 -0.224 0.453 ; 

f 0.697 

-0.391 

V-0.229 

-0.388 

0.686 

-0.224 

-0.309^ 

-0.296 

0.453 J 
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Derivatives 

df2/dn 

df2dn := JacobianFQl • df2 

d(GE/RT)/dn 

df2dn = 

( 0.142 "\ 

6.504 x 10~3 

v -0.111 J 

dgE_RTresf := fl • df2dn + f2 • (-Q - fl) 
dgERTresf = 

f-0.254") 

0.024 

^ 0.172 J 

f-0.254^ 

0.024 

I 0-172 J 

Iny, residual 

lnyresf := dgERTresf + gERTresf 
lnyresf = 

f-0.076"| 

0.201 

L 0.35 ) 

f-0.076^ 

0.201 

V 0.35 J 
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B1. Implementation in Fortran 
1.1 FlexQUAC-Q Code: 

This is the fortran subroutine code to calculate the activity coefficient using the FlexQUAC-Q 
model. 

C 

integer*2 function iactqflex (x,T,act,he,cpe,pmh,pmc) 

C 

c FlexQUAC-Q flexibilizes the surface fraction in the residual part only 

c 

C 

This section contains all the pertinent variable declarations 

c 

c 

> 

> 

> 

> 

> 

> 

> 

> 

use 

use 

use 

implicit none 

logical*4 

common 

character 

integer(4) 

character 

real*8 

real*8 

peqmodule 

dflib 

dflogm 

lmodcomb34, lmodcomb23, Imodqflex, Imodflexnum 

/flexquac/ lmodcomb34, lmodcomb23, Imodqflex, Imodflexnum 

cbuf*80 

retlog 

filescrp*255 

x(MKO),t,act(MKO),he,cpe,pmh(MKO),pmc(MKO) 

aij(mko,mko), 

aijt(mko,mko), 

alphaij(mko,mko), 

TAU(mko,mko),ftau, 

sxr,sxq,sxqp,ss(mko),ss1 (mko),dgE_dn(mko),f1 ,f2, 

sftji.sftu, 

F(mko),Fp(mko), 

V(mko), 

x1(mko), 
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> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

integer 

rg, 

xsum, 

xsave, 

her, 

dQdx(mko), dQdn(mko), Jac(mko,mko), Q.sum, sumd(mko), d , 

Igamc(mko), 

B(mko), 

c, 
Sf(mko), thetafx(mko), dfldn(mko), df2dn(mko),lgamr(mko), 

df2dthet(mko), 

SJ(mko), 

sthetfx, 

sumk_array(mko), 

thetfx(mko), 

thethaf(mko), sumk.ge 

i,j,ia,i1,ki,kj, ierr, ilog 

This section creates a text file for computation output to allow for comparison 

between FORTRAN and Mathcad results 

ilog = 1 

if (ilog.eq.1) then 

open (186, file = filescrp('flexq.txt'), access: 

write (186,*) 

write (186,*) 

write (186,*) 

end if 

x = ', (x(i),i=1 ,peq%ncomp) 

T = \ T 

='append') 
i 

Section 1: Calculate interaction parameters for given temperature and their 

temperature derivative and outputs the values to the text file 
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RG= =1.98721 dO 

Call setpar (t,aij,aijt,alphaij) 

if (ilog.eq.1) then 

write (186,*)' aij' 

do j=1, peq%ncomp 

write (186,*) (aij(ij).i 

enddo 

write (186,*)" aijf 

do j=1, peq%ncomp 

write (186,*) (aijt(ij), 

enddo 

write (186,*)'delta' 

do j=1, peq%ncomp 

=1,peq%ncomp) 

=1 ,peq%ncomp) 

write (186,*) (alphaij(i,j),i=1 ,peq%ncomp) 

enddo 

endif 

Section 2: 

SXQ 

SXQP 

SXR 

DOKJ 

Calculate combinatorial part (UNIQUAC, unchanged or 

= 0. 

= 0. 

= 0. 

= 1,peq%NCOMP 

SXQ = 

SXR = 

enddo 

DOKh 

The user 

•• SXQ + X(KJ) * peq%uniq(KJ) 

= SXR + X(KJ) * peq%unir(KJ) 

= 1,peq%NCOMP 

F(KI) 

V(KI) 

C1 

= peq%uniq(KI) / SXQ 

= peq%unir(KI) / SXR 

= -1.d0 + V(KI)/F(KI) + LOG(F(KI)A/(KI)) 

determines the choice of combinatorial term 

UNIQUAC-3/4) 
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peq%uniq(KI) 

LOG(V(KI)) -

C1 

enddo 

if (lmodcomb34) then 

*C1 

LGAMC(KI) = 1 .dO -

else if (lmodcomb23) then 

5.d0* 

else 

endif 

LGAMC(KI) = 1 .dO -

peq%uniq(KI) * C1 

LGAMC(KI) = 1.dO-

if (ilog.eq.1) then 

write (186,*) 

V(KI) ** 

V(KI) ** 

V(KI) + 

' Igamc' 

75d0 + .75d0 * LOG(V(KI)) - 5.d0 

.66666666d0 + .66666666d0 * 

LOG(V(KI)) + 5.d0 * peq%uniq(KI) * 

write (186,*) (lgamc(i),i=1,peq%ncomp) 

endif 

Section 3: Calculation of variables and output the values to the text file 

c Calculate t and outputs the value to the text file 

doi = 1,peq%NCOMP 

do j = 1 ,peq%NCOMP 

tau(ij) = dexp(dble(-aij(i,j)/(RG*T))) 

enddo 

enddo 

if (ilog.eq.1) then 

write (186,*)'tau' 

do j=1, peq%ncomp 

write (186,*) (tau(i,j),i= 

enddo 

endif 

=1,peq%ncomp) 
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if (abs(x(1)-0.03080).lt.1.e-5) then 

continue 

endif 

The following variables (sthetfx & thetfx) are defined and calculated as per the 

Mathcad file. The output is sent to the text file 

sthetfx = 0. 

do i = 1, peq%ncomp 

sumk_array(i) = 1. 

do j = 1, peq%ncomp 

sumk_array(i) = sumk_array(i) + x(j) * peq%uniq(j) * alphaij(i, j) 

enddo 

thetfx(i) = peq%uniq(i) * sumk_array(i) 

sthetfx = sthetfx + (x(i) * thetfx(i)) 

enddo 

if (ilog.eq.1) then 

write (186,*)'sthetfx' 

write (186,*) sthetfx 

write (186,*)'thetfx' 

write (186,*) (thetfx(i),i= 

endif 

=1,peq%ncomp) 

c Computation of Sf and computation of surface fraction 

do i = 1, peq%ncomp 

thethaf(i) = thetfx(i) / sthetfx 

enddo 

if (ilog.eq.1) then 

write (186,*)' thethaf 

write (186,*) (thethaf(i), i=1,peq%ncomp) 
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do i = 1, 

doj = 

endif 

peq%ncomp 

Sf(i) = 

1, peq0/ 

enddo 

enddo 

= 0 

ncomp 

Sf(i) = 

if (ilog 

endif 

Sf(i) + x(j) * tau(j, i) ' 

eq.1) then 

write (186,*)'Sf 

write (186,*) (Sf(i), 

' thethaf(j) 

=1 ,peq%ncomp) 

Section 4: Computation of f1, f2 and ^residual and outputs the values to the text file 

c Computation of f1 and f2 

sumk = 0. 

Do i = 1, peq% ncomp 

sumk = sumk + x(i) * peq%uniq(i) 

enddo 

if (ilog 

endif 

f1 = -sumk 

sumk = 0. 

do i = 1, peq%ncomp 

sumk = sumk + x(i) * 

enddo 

f2 = sumk 

.eq.1) then 

write (186,*) 

write (186,*) 

sumk' 

sumk 

thethaf(i) * Log(Sf(i)) 
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if (ilog.eq.l)then 

write (186,*) 

write (186,*) 

endif 

c Computation of GFresidual 

Ge = f1 * f2 

if (ilog.eq.1) then 

write (186,*) 

write (186,*) 

endif 

f2' 

f2 

Ge' 

Ge 

Section 5 -

Doi = 1 

enddo 

Compute derivative of f1 and record output in text file 

peq%ncomp 

dfldn(i) = -peq%uniq(i) - f1 

if (ilog.eq.1) then 

write (186,*)' dfldn' 

write (186,*) (dfldn(i), 

endif 

=1,peq%ncomp) 

Section 6: 

Do 

Derivative of f2 wrt to surface fraction and output of value to text file 

i = 1, peq%ncomp 

sumk_array(i) = 0. 
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enddo 

do j = 1, peq%ncomp 

sumk_array(i) = sumk_array(i) + 

enddo 

df2dthet(i) = sumk_array(i) + Log(Sf(i)) 

if (ilog.eq.1) then 

write (186,*) df2dthef 

write (186,*) (df2dthet(i), 

endif 

(xG)*tau(i,j)*thethafG))/SfG) 

i=1,peq%ncomp) 

Section 7: 

> 

> 

Do 

Computation ofJacobian Matrix 

i = 1, peq%ncomp 

SJ(i) = 0. 

Do j = 1, peq%ncomp 

SJ(i) = SJ(i) + x(j) * peq%uniqG) * (1 + peq%uniq(i) * 

enddo 

enddo 

do i 

if (ilog.eq.1) then 

write (186,*) 'SJ' 

write (186,*) (SJ(i),i= 

endif 

= 1, peq%ncomp 

do j = 1, peq%ncomp 

l,peq%ncomp) 

JacG, i) = (peq%uniq(i) * x(i)) / (thethaf(i) * sthetfx) 

+ (-(thethaf(j) * 

alphaiJG, i)) 

x(i)) - ((SJG) * x(i)) / sthetfx)) 

If(i.eq.j) Jac(j, i) = (JacG, i) + 1) 

If (i .ne. j) JacG, 0 = Jac(j. 0 + 

* peq%uniqG) 

JacG, i) = JacG, i) * thethaf(i) 

(x(i) * peq%uniq(i) 

* alphaij(i, j)) / (thethaf(i) * sthetfx) 
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enddo 

enddo 

if (ilog.eq.1) then 

write (186,*)'Jac' 

do j=1, peq%ncomp 

write (186,*) (Jac(i,j),i=1>peq%ncomp) 

enddo 

endif 

Section 8: Compute derivative of f2 wrt to mole numbers 

do i = 1, peq%ncomp 

df2dn(i) = 0. 

do j = 1, peq%ncomp 

df2dn(i) = df2dn(i) + Jac(i, j) * 

enddo 

enddo 

if (ilog.eq.1) then 

write (186,*)' df2dn' 

write (186,*) (df2dn(i) 

endif 

df2dthet(j) 

i=1,peq%ncomp) 

Section 9: Computation of (^residual and residual 

sumk = 0 

do = 1,peq%ncomp 

Igamr(i) = f1 * df2dn(i) + f2 *df1dn(i) 

act(i) = EXP(lgamr(i) + Igamc(i)) 

enddo 

if (ilog.eq.1) then 

write (186,*) Igamr' 

activity coefficients 

+ Ge 
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end if 

iactqflex=0 

if (ilog.eq.1) then 

close (186) 

endif 

return 

end 

write (186,*) (lgamr(i),i=1,peq%ncomp) 

write (186,*)'act' 

write (186,*) (act(i),i=1,peq%ncomp) 

1.2 Model Selection Code 
The code of this subroutine allows the user to select between the FlexQUAC and FlexQUAC-Q 

model. 

SUBROUTINE matflex (ERROR) 

C 
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C model initialisation routine for FlexQUAC, QFIexQUAC 

C 

Variable dec 

use 

use 

use 

use 

use 

use 

IMPLICIT none 

logical*4 

common 

user32 

kernel32 

dflogm 

dfcom 

dfauto 

peqmodule 

lmodcomb34, lmodcomb23, Imodqflex.lmodflexnum 

Imodqflex.lmodflexnum 

integer 

integer*4 

ghwndMain = 

peq%iusedcp 

/flexquac/ lmodcomb34, lmodcomb23, 

ierror, index 

ret, 

0 

= 1 

ghwndMain 

! use delta_cP for SLE calculation 

c get model control options from control-string 

c lmodcomb34 to use the 3/4-modification of the combinatorial part (as in 

mod. UNIFAC) 

lmodcomb34 = .false. 

if (index(peq%control,'modcornb34').ne.O) lmodcomb34 = .true. 

c lmodcomb23 to use the 2/3-modification of the combinatorial part (Kikic) 

lmodcomb23 = .false, 

if (index(peq%control,'modcomb23').ne.O) lmodcomb23 = .true. 

c only one of modcomb23 and modcomb34 allowed 

if (lmodcomb23.and.lmodcomb34) then 
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ret = MESSAGEBOX( ghwndMain, 

modcomb34 allowed. modcomb34 selected.'c, 

> Warning'c, MB_OK) 

lmodcomb23 = .false. 

endif 

'only one of modcomb23 and 

c Imodqflex to use the surface fraction flexibilisation only in 

combinatorial part 

c 

Imodqflex = .false. 

if (index(peq%control,'modqflex').ne.O) Imodqflex = 

numerical flexibilisation for testing purpose 

Imodflexnum = .false. 

if (index(peq%control,'numflex').ne.O) Imodflexnum 

return 

end 

.true. 

= .true. 

the 

B2. Implementation in Excel 
2.1 Excel Code 

Sub Main() 

Variable Declarations 

Dim inkr(8) As Long, inkrmod(8) As Long, xxx As Single stringscr As String' ' 2 
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Dim x(1 To 5) As Double, y(5) As Double, he As Double, cpe As Double, dq(5) As 

Double, grad_x(5, 5) As Double, grad_fx(5, 5) As Double, dQdn(5) As Double 

Dim act(1 To 5) As Double, pmh(1 To 5) As Double, pmc(1 To 5) As Double 

Dim single_set As Integer, irowstart As Integer, datafile As String, irowAs Integer, i As 

Integer, j As Integer 

Dim imiss As Integer, icod As Integer, iso As Integer, ibest As Integer 

Dim ename As String, dname As String, empform As String, casn As String 

Dim runi As Single, quni As Single, q As Double 

Dim antA As Single, antB As Single, antC As Single, iberL As Integer, iberH As Integer 

Dim anthA As Single, anthB As Single, anthC As Single, iberhL As Integer, iberhH As 

Integer 

Dim ilast As Integer, xn As Double, t As Double, p As Double 

Dim iret As Long 

Section 1 

Call DDB_2.D_ReadDDBenv 

Worksheets("Data_Sheet").Select 

Call prepare_d_sheet ' Formats the excel spreadsheet 

single_set = 0 

irowstart = 3 

imodel = 2 

fit_tertest = True 

rework_fq = True ' this goes through the results and refitts the cases where FQ 

is worse than F 

workpath = "C:\Thishen\Masters Work\flexquac Q projectsMEXCEL" 

'datafile = 'VLE_binary.TXT" 

•datafile = "VLE_all1.TXT" 

IffitJertestThen 

datafile = "VLE_ternary_test.TXT" 

End If 

nline tertest = 2 
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Dim wst3 As Object 

Set wst3 = Worksheets("Tabelle3") 

If rework_fq Then 

Dim set2line(30000) 

Forjlinerw = 4To6000 

buf = wst3.Cells(jlinerw, 1) 

If IsNumeric(buf) And buf <> "" Then 

set2line(buf) = jlinerw 

End If 

Next jlinerw 

End If 

Section 2 

Open workpath & datafile For Input As #30 

irow = 2 

While Not EOF(30) 

1: 

Worksheets("Data_Sheet").Cells(23, 2) = 0) 

If fit_tertest = True Then 

t ' set d toO 

nsetjertest = Worksheets("tertest").Cells(nline_tertest, 6) 

Worksheets("Data_Sheet").Cells(2,12) = 

End If 

' read dataset from file 

DoEvents 

With vleset 

Input #30, .ncomp, .iso, .nval, .PT, .nref, 

.iddb 

For i = 1 To .nval 

Forj = 1 To .ncomp-1 

Input #30, .x(j, i) 

nset_tertest 

icod(1), .icod(2), .icod(3), .icod(4), .iset, i, i, 
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Nextj 

Forj = 1 To .ncomp-1 

Input #30, .y(j,i) 

Nextj 

Select Case .iso 

Case 1, 3, 5, 7 

Input #30, .p(i) 

.t(i) = .PT-273.15 

Case 2, 4, 6, 8 

Input #30, .t(i) 

•P(i) = PT 

Case 9 

Input #30, .p(i), .t(i) 

End Select 

Next i 

End With 

If vleset.ncomp <> 2 And fit_tertest = False Then 

GoTol 

End If 

' use dataset? 

Worksheets("Data_Sheet").Cells(2, 10) = vieset.iset 

If fit_tertest <> True Then 

If vleset. nval < 10 Then GoTo 1 

If vieset.iset = 5049 Then GoTo 1 ' this dataset has one pure component vapor 

pressure = 0 

If vieset.iset = 23067 Then GoTo 1 ' this dataset has one pure component vapor 

pressure = 0 

If vleset.iso <> 3 Then GoTo 1 

If rework_fq Then 

If set2line(vleset.iset) < 1 Then GoTo 1 
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'If set2line(vleset.iset) < 310 Then GoTo 1 

' If wst3.Cells(set2line(vleset.iset), 23) < 1.05 Then GoTo 1 

End If 

Else 

If vieset.iset <> nset_tertest Then 

GoTol 

Else 

iii = iii + 1 

End If 

End If 

irow = irow + 1 

If rework_fq Then 

irow = set2line(vleset.iset) 

End If 

If irow < irowstart Then GoTo 1 

'write dataset to sheet 

Range("A26: P200") .Select 

Selection.ClearContents 

Range("A1").Select 

With Worksheets("Data_Sheet") 

.Cells(4, 3) = vieset.iset 

.Cells(5, 3) = vleset.iso 

.Cells(6, 3) = vleset.nval 

.Cells(7, 3) = vleset.PT 

Select Case vleset.iso 

Case 1, 3, 5, 7 

.Cells(7, 4) = "Deg C" 

Case 2, 4, 6, 8 
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.Cells(7, 4) = "mm Hg" 

Case 9 

.Cells(7, 3) ="" 

End Select 

.Cells(8, 3) = vleset.nref 

.Cells(10, 3) = vleset.icod(1) 

.Cells(11,3) = vleset.icod(2) 

.Cells(4, 3) = vleset.iset 

.Cells(4, 3) = vleset.iset 

For i = 1 To vleset.nval 

.Cells(25 + i, 1) = vleset.x(1, 

.Cells(25 + i, 2) = vleset.y(1, 

.Cells(25 + i, 3) = vleset.p(i) 

.Cells(25 + i, 4) = vleset.t(i) 

Next i 

' MsgBox "continue?" 

'retrieve additional information 

imiss = 0 

For i = 1 To vleset.ncomp 

icod = vleset.icod(i) 

Call DDB_Stoff_name(icod, 

.Cells(9 + i, 4) = empform 

.Cells(9 + i, 5) = ename 

Call DDB_Stoff_rqinkr(icod, 

.Cells(14 + i, 2) = runi 

If runi < 0.01 Then imiss = 1 

vleset.runi(i) = runi 

.Cells(14 + i, 3) = quni 

vleset.quni(i) = quni 

If quni < 0.01 Then imiss = 1 

i) 

i) 

ename, dname, empform, casn) 

runi, quni, inkr, inkrmod) 
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Call DDB_Stoff_antoine(icod, antA, antB, antC, iberL, iberH, anthA, anthB, anthC, 

iberhL, iberhH) 

If antA < 0.01 Then imiss = 1 

.Cells(14 + i, 4) = antA 

.Cells(14 + i, 5) = antB 

.Cells(14 + i, 6) = antC 

vleset.Ant(1, i) = antA 

vleset.Ant(2, i) = antB 

vleset.Ant(3, i) = antC 

.Cells(14 + i, 7) = iberL 

.Cells(14 + i, 8) = iberH 

Next i 

Section 3 - Select liquid model 

Call peq.settype(0, itypejmodel, ilmodel_FlexQUAC) 

Call peq.settype(0, itype_ncomp, CLng(vleset.ncomp)) 

For i = 1 To vleset.ncomp 

Call peq.settype(i, itypejcod, CLng(vleset.icod(i))) 

Next i 

For i = 1 To vleset.ncomp 

Call peq.settype(i, itype_vap, 1)' 1 - Antoine (low pressure) 

Call peq.settype(i, itype_den, 1)' 1 - no Poynting correction 

Call peq.settype(i, itype_adj, 1)' adjust 

Next i 

Call peq.init_pure(0) ' read pure component properties from ST0FF1 etc. 

Call peq.initjmodel ' initialize liquid model 

Section 4 

Adjust pure component vapor pressure 
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For j = 1 To vleset.ncomp -1 

vleset.padj(j) = 1 

For i = 1 To vleset.nval 

If vleset.x(j, i) > 0.9999999 Then 

vleset.padj(j) = vleset.p(i) / (10 A (vleset.Ant(1, j) - vleset.Ant(2, j) / (vleset.Ant(3, 

j) + vleset.t(i)))) 

If vleset.padj(j) < 0.1 Then vleset.padj(j) = 1 

End If 

Next i 

Nextj 

ilast = vleset.ncomp 

vleset.padj(ilast) = 1 

For i = 1 To vleset.nval 

xn = 1# 

For j = 1 To ilast -1 

xn = xn - vleset.x(j, i) 

Nextj 

If xn > 0.99999999 Then 

vleset.padj(ilast) = vleset.p(i) / (10 A (vleset.Ant(1, ilast) - vleset.Ant(2, ilast) / 

(vleset.Ant(3, ilast) + vleset.t(i)))) 

If vleset.padj(ilast) < 0.1 Then vleset.padj(ilast) = 1 

End If 

Next i 

Forj = 1 To ilast 

.Cells(14 + j , 9) = vleset.padjO) 

Call peq.setpar(j, 1,1,3, Log(vleset.padj(j))/Log(10#)) 

Nextj 

Calculate pure component vapor pressures 

If vleset.iso <> 6 And vleset.iso <> 9 Then 

Fori = 1 To vleset.nval 
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t = .Cells(25 + i, 4) 

Forj = 1 To 2 

p = vleset.padjG) * 10 A (.Cells(14 + j , 4) - .Cells(14 + j , 5) / (.Cells(14 + j , 6) +1)) 

.Cells(25 + i, 4 + j) = p 

vleset.ps(j, i) = p 

Nextj 

Next i 

End If 

Section 5 - Calculate activity coefficients 

If vleset.iso < 3 Then 

For i = 1 To vleset.nval 

p = .Cells(25 + i, 3) 

If .Cells(25 + i, 1) > 0.0000001 And .Cells(25 + i, 1) < 0.9999999 Then 

.Cells(25 + i, 7) = .Cells(25 + i, 2) * p / .Cells(25 + i, 1) / .Cells(25 + i, 5) 

.Cells(25 + i, 8) = (1# - .Cells(25 + i, 2)) * p / (1# - .Cells(25 + i, 1)) / .Cells(25 + i, 

6) 

vleset.act(1, i) = .Cells(25 + i, 7) 

vleset.act(2, i) = .Cells(25 + i, 8) 

End If 

Nexti 

End If 

Section 6 - Calculate partial pressures 

If vleset.iso < 3 Or iso = 6 Then 

For i = 1 To vleset.nval 

p = .Cells(25 + i, 3) 

.Cells(25 + i, 9) = .Cells(25 + i, 2) * p 

.Cells(25 + i, 10) = (1# - .Cells(25 + i, 2)) * p 

Nexti 

End If 
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Section 7 - write formulas for P and y to grid 

For i = 1 To vieset.nval 

.Cells(25 + i, 13) = "=RC[-12]*RC[-2]*RC[-8] +(1.-RC[-12])*RC[-1]*RC[-7]" 

.Cells(25 + i, 14) = "=RC[-13]*RC[-3]*RC[-9]/RC[-1]" 

.Cells(25 + i, 15) = "=((RC[-12]-RC[-2])/RC[-12])A2" 

Next i 

.Cells(21, 6) = "=SUM(R[5]C[9]:R[" & CStr(24 + vieset.nval) & "]C[9])M 

Section 8 

Application.Calculation = xlManual 

Set initial parameters for original model 

ibest = 1 

.Cells(20, 2) = 50# 

.Cells(21,2) = 60# 

.Cells(22, 2) = 0.3 

.Cells(23, 2) = 0# 

.Cells(23, 3) = 0# 

Worksheets("Tabelle3").Select 

ilog = Application.Wait(Now() + TimeValue("0:00:03")) 

Worksheets("Data_Sheet").Select 

If rework_fq Then 

GoTo second_model 

End If 

Call peq.settype(0, itypejmodel, ilmodel_UNIQUAC) 

Call peq.setstring(1,"") 

Section 9 - Regression Procedure 
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Call datafit 

Call results2sheet 

res(1, 1) = .Cells(21,6) 

res(1,2) = .Cells(20,2) 

res(1,3) = .Cells(21,2) 

res(1,4) = .Cells(22, 2) 

res(1,5) = .Cells(23, 2) 

.Cells(20, 2) = -1#*res(1,2) 

If (.Cells(20, 2) > 5000#) Then .Cells(20, 2) = 

If (.Cells(20, 3) > 5000#) Then .Cells(21, 2) = 

Call datafit 

Call results2sheet 

res(2, 1) = .Cells(21,6) 

res(2, 2) = .Cells(20, 2) 

res(2, 3) = .Cells(21,2) 

res(2, 4) = .Cells(22, 2) 

res(2, 5) = .Cells(23, 2) 

If res(2, 1) < res(ibest, 1) Then ibest = 2 

.Cells(20,2) = res(1,2) 

.Cells(21,2) = -1#*res(1,3) 

If (.Cells(20, 2) > 5000#) Then .Cells(20, 2) = 

If (.Cells(20, 3) > 5000#) Then .Cells(21, 2) = 

.Cells(22, 2) = res(1,4) 

.Cells(23, 2) = res(1,5) 

Call datafit 

Call results2sheet 

res(3, 1) = .Cells(21,6) 

res(3, 2) = .Cells(20, 2) 

res(3, 3) = .Cells(21,2) 

.Cells(20, 2)/10# 

.Cells(21,2)/10# 

.Cells(20, 2)/10# 

.Cells(21,2)/10# 
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res(3, 4) = .Cells(22, 2) 

res(3, 5) = .Cells(23, 2) 

If res(3, 1) < res(ibest, 1) Then ibest = 3 

.Cells(20, 2) = -1#*res(1,2) 

.Cells(21,2) = -1#*res(1,3) 

If (.Cells(20, 2) > 5000#) Then .Cells(20, 2) = .Cells(20, 2) /10# 

If (.Cells(20, 3) > 5000#) Then .Cells(21, 2) = .Cells(21, 2) /10# 

.Cells(22, 2) = res(1,4) 

.Cells(23, 2) = res(1,5) 

Call datafit 

Call results2sheet 

res(4, 1) = .Cells(21,6) 

res(4, 2) = .Cells(20, 2) 

res(4, 3) = .Cells(21,2) 

res(4, 4) = .Cells(22, 2) 

res(4, 5) = .Cells(23, 2) 

If res(4, 1) < res(ibest, 1) Then ibest = 4 

.Cells(20, 2) = res(ibest, 2) 

.Cells(21,2) = res(ibest, 3) 

.Cells(22, 2) = res(ibest, 4) 

.Cells(23, 2) = res(ibest, 5) 

Call datafit 

Call results2sheet 

Calculate 

Application.ScreenUpdating = False 

End With 

Section 10 - Calculate gamma infinite 
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x(1) = 0# 

x(2) = 1# 

t = vleset.t(1) +273.15 

On Error Resume Next 

Call peq.actcal(x, t, act, he, cpe, pmh 

On Error GoTo 0 

pmc, 

Sheets("Data_Sheet").Cells(20, 9) = act(1) 

x(1) = 1# 

x(2) = 0# 

t = vleset.t(1) +273.15 

On Error Resume Next 

Call peq.actcal(x, t, act, he, cpe, pmh 

On Error GoTo 0 

pmc, 

Sheets("Data_Sheet").Cells(21, 9) = act(2) 

Sheets("Data_Sheet").Select 

Calculate Relative absolute deviation in 

pdev = 0# 

For i = 1 To vleset.nval 

p = Sheets("Data_Sheet").Cells(25 + i, 3) 

peal = Sheets("Data_Sheet").Cells(25 + i 

pdev = pdev + Abs((p - peal) / p) 

Next i 

pdev = pdev / vleset.nval * 100# 

Sheets("Data_Sheet").Cells(3,10) = pdev 

Copy results to Excel spreadsheet 

Call copy_cell("C4", "a" & CStr(irow + 

Call copy_cell("C5", "b" & CStr(irow + 

Call copy_cell("C6", "c" & CStr(irow + 

Call copy_cell("C7", "d" & CStr(irow + 

Call copy_cell("C8", "e" & CStr(irow + 

1)) 

1)) 

1)) 

1)) 

1)) 

iret) 

iret) 

pressure 

13) 
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Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

Call copy_ 

cell("C10" 

cel l fCH" 

cell("B20" 

cell("B21" 

cell("B22" 

cell("F21" 

cell("l20", 

cell("l21", 

cell("J3"," 

"f' & CStr(irow + 1)) 

"g"&CStr(irow+1)) 

"h" & CStr(irow H 

" i " & CStr(irow + 

" j " & CStr(irow + 

"k" & CStr(irow + 

"z" & CStr(irow + 

"aa" & CStr(irow • 

ab" & CStr(irow + 

If single_set = 1 Then 

Sheets("Data_Sheet").Select 

Sheets( "Data_Sheet").Copy Before 

Sheets("Data_Sheet (2)").Select 

Sheets( 

Sheets( 

End If 

'Data_Sheet (2)").Name =" 

"Data_Sheet"). Select 

Application.ScreenUpdating = True 

DoEvents 

• 1 ) ) 

1)) 

1)) 

1)) 

1)) 

H ) ) 

1)) 

=Sheets(1) 

UNIQUAC" 

Section 11: Second regression using FlexQUAC-Q model 

Call peq.settype(0, itypejmodel, ilmodel_FlexQUAC) 

'Call peq.setstring(1, "modqflex modcomb34") 

Call peq.setstring(1, "modqflex") 

'Callpeq.setstring(1,"") 

With Sheets("Data_Sheet") 

If Not reworkjq Then 

.Cells(20, 2) = .Cells(20, 2) * 0.9 
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.Cells(21,2) = 

.Cells(23, 2) = 

.Cells(23, 3) = 

If .Cells(22, 3) 

.Cells(21 

0.1 

0.05 

2)* 

> 0.599 Then 

1.05 

.Cells(22, 2) = = 0.3 

Section 12 - FlexQUAC-Q data regression 

ibest = 1 

Call datafit 

Call results2sheet 

.Cells(23, 3) = 0.05 

Call datafit 

Call results2sheet 

res(1,1) = .Cells(21,6) 

res(1,2) = .Cells(20, 2) 

res(1, 3) = .Cells(21, 2) 

res(1,4) = .Cells(22, 2) 

res(1,5) = .Cells(23, 2) 

.Cells(23, 3) = 0.05 

Call datafit 

Call results2sheet 

If lsNumeric(.Cells(21, 6)) Then 

res(2, 1) = .Cells(21,6) 

Else 

res(2, 1) = 1E+30 

End If 

res(2, 2) = .Cells(20, 2) 

res(2, 3) = .Cells(21,2) 

res(2, 4) = .Cells(22, 2) 

res(2, 5) = .Cells(23, 2) 

If res(2, 1) < res(ibest, 1) Then ibest = 2 
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'.Cells(20, 2) = res(1, 2) 

\Cells(21,2) = -1#*res(1,3) 

•.Cells(22, 2) = res(1, 4) 

'.Cells(23, 2) = 0.1 

'Call datafit 

'res(3, 1) = .Cells(21,6) 

Yes(3, 2) = .Cells(20, 2) 

Yes(3, 3) = .Cells(21,2) 

"res(3, 4) = .Cells(22, 2) 

'.Cells(23, 2) = 0.1 

'If res(3, 1) < res(ibest, 1) Then ibest = 3 

'.Cells(20, 2) = -1#*res(1,2) 

\Cells(21,2) = -1#*res(1,3) 

'.Cells(22, 2) = res(1, 4) 

'.Cells(23, 2) = 0.1 

'Call datafit 

'res(4, 1) = .Cells(21,6) 

Yes(4, 2) = .Cells(20, 2) 

'res(4, 3) = .Cells(21,2) 

'res(4, 4) = .Cells(22, 2) 

Yes(4, 5) = .Cells(23, 2) 

'If res(4, 1) < res(ibest, 1) Then ibest = 4 

.Cells(20, 2) = res(ibest, 2) 

.Cells(21,2) = res(ibest, 3) 

.Cells(22, 2) = res(ibest, 4) 

.Cells(23, 2) = res(ibest, 5) 

Call datafit 

Call results2sheet 

Else 

.Cells(20, 2) = wst3.Cells(set2line(vleset.iset), 12) 
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.Cells(21,2) = 

.Cells(22, 2): 

.Cells(23, 2) = 

.Cells(23, 3) i 

Call datafit 

= wst3.Cells(set2line(vleset. 

= wst3.Cells(set2line(vleset. 

iset), 13) 

iset), 14) 

= wst3.Cells(set2line(vleset.iset), 15) 

= wst3.Cells(set2line(vleset. 

Call results2sheet 

End If 

Calculate 

Application.ScreenUpdating = False 

End With 

iset), 16) 

Section 13 

Calculate gamma infinite 

peq.Log (0) 

x(1) = 0# 

x(2) = 1# 

t = vleset.t(1) +273.15 

On Error Resume Next 

Call peq.actcal(x, t, act, he, 

On Error GoTo 0 

cpe pmh 

Sheets("Data_Sheet").Cells(20, 9) = £ 

x(1) = 1# 

x(2) = 0# 

t = vleset.t(1) +273.15 

On Error Resume Next 

Call peq.actcal(x, t, act, he, 

On Error GoTo 0 

cpe 

Sheets("Data_Sheet").Cells(21, 

peq.Log (0) 

pmh 

pmc, 

ict(1) 

pmc, 

9) = act(2) 

iret) 

iret) 
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Calculate relative absolute deviation in pressure 

pdev : 

Fori = 

P = 

= 0# 
: 1 To vleset.nval 

Sheets("Data_Sheet").Cells(25 + i, 3) 

peal = Sheets("Data_Sheet").Cells(25 + i, 13) 

pdev = pdev + 

Next i 

pdev : 

Abs((p - peal) / p) 

= pdev / vleset.nval * 100# 

Sheets("Data_Sheet").Cells(3,10) = pdev 

Copy results to Excel spreadsheet 

If Not rework_fq Then 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

Else 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

Cal 

End If 

Sheet 

copy_cell( 

copy_cell| 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

copy_cell( 

"B20" 

"B21" 

"B22" 

"B23" 

"F21" 

"120", 

"121", 

"J3", ' 

"B20" 

"B21" 

"B22" 

"B23" 

"F21" 

"120", 

"121", 

"J3",' 

T&CStr(irow + 1)) 

"m"&CStr(irow+1)) 

"n"&CStr(irow + 1)) 

"o"&CStr(irow + 1)) 

"p"&CStr(irow + 1)) 

"ad"&CStr(irow + 1)) 

"ae"&CStr(irow+1)) 

af'&CStr(irow + 1)) 

"q" & CStr(irow)) 

"r" & CStr(irow)) 

"s" & CStr(irow)) 

"t" & CStr(irow)) 

"u" & CStr(irow)) 

"ag" & CStr(irow)) 

"ah" & CStr(irow)) 

ai" & CStr(irow)) 

3("Data_Sheet").Select 
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Application.Calculation = xIAutomatic 

Application.ScreenUpdating = True 

If single_set = 1 Then 

Sheets("Data_Sheet").Select 

Sheets("Data_Sheet").Copy Before:=Sheets(1) 

Sheets("Data_Sheet (2)").Select 

Sheets("Data_Sheet (2)").Name = "FLEXQUAC" 

Sheets("Data_Sheet").Select 

Sheets("x-P").Select 

ActiveChart.ChartArea.Select 

ActiveChart.SeriesCollection(2).Values = "=UNIQUAC!R26C13:R200C13" 

ActiveChart.SeriesCollection(3).Values = "=FLEXQUAC!R26C13:R200C13" 

End If 

Sheets("Data_Sheet").Select 

If fit_tertest = True Then 

Close (30) 

Open workpath & datafile For Input As #30 

nline_tertest = nline_tertest + 1 

End If 

If irow Mod 30 = 0 Then ActiveWorkbook.Save 

Wend 

Close (30) 

End Sub 
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APPENDIX C 
C1 - Consistency Check 

Test Using Numerical Example - VLE Data Set 420 

jlNARY SYSTEM - DIETHYL ETHER, ACETONITRH 

n:= 2 
i := 1.. n 
j : = l . .n 

general 

[Parameters 

epsl = 10 

Pure Component Parameters 

Rl := 
^3.395^ 

1.87 y 
Q:= 

3.016 

U-724J 

|FlexQUAC-Q Model Parameters^ 

Au: 
f 0 497.605^ 

v-76.972 0 , 

Temperature 

T:= 273.15 + 20.50 

0 0.1786^ 

0.1786 0 , 

^ure Gas Constant 

R:= 1.98721 

Liquid Mole Fraction 

exQUAC - Q: R 

TJ j := exp 
v R - T 

T = 

( 1 0.426^ 

Vl.141 1 j 
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Surface Fraction 

( 

thetafx. := Q. • 
n 1+ I v<V8u 

v k = l 

Iv sthetfx := > x. • thetafx. 

thetafx. 
i 

3.945 

1.724 

= 

sthetfx = 1.724 

thetafx. 
thetfx. := 

1 sthetfx 
thetfx = 

'2.288^ 

V 1 ) 

thethaf. := x. • thetfx. 
i I i 

Sf.:= V x. • thetfx. • T ; ; 
i Z J J J J ' 

j = l 

thethaf. 
I 

~0 

Sf = 
(\ 

K 

J41> 

i ; 

Residual Gibbs Energyl 

n 

i = i 

n 

f2 := V x. • thetfx. • ln/Sf.] 

i = l 

fl =-1.724 

f2 = 0 

gERTresf := fl • f2 

perivative of f1 by mole numbers 

dfldn := -Q - fl 

gE RTresf = 0 

dfldn = 
^ 1 2 9 2 1 

V u J 
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derivative of f2 by surface fraction 

n x. • thetfx. • T ; J 
suml. := y^ -

Sf. 
i = l 

df2. := suml. + lm 
( s f i ) 

Jacobian matrix 

sv= Z vM l + (vM 
k = l 

JacobianFQl := for i s 1..n 

for me 1..n 

Jac . < (thetfx 
' * i ) -

SJ x. 
m 1 

Jac 

sthetfx 

x. • Q. • Q • &i, 

m,i 
Jac . + 

m»1 thetfx. • sthetfx 

Jac . <- Jac . + 1 if i = m 
m,i m,i 

Jac . <— Jac . • thetfx. 
m,i m, I I 

Jac 

JacobianFQl = 
2.288 -2.288 

0 0 
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Derivative of f2 by mole numbers 

df2dn := JacobianFQl • df2 
df2dn = 

-1.011 

Residual Activity Coefficient 1 

dgE_RTresf := fl • df2dn + f2 • (-Q - fl) 

lnyresf := dgERTresf + gERTresf 

(1.743 > 
dgE RTresf = 

I 0 j 

lnyresf = 
^ 1.743 "> 

V 0 j 

Combinatorial Part 

r(x,Rl):= V x . R l . q(x,Q):= £ X.-Q. 

i = l i = l 

Rl. 
<|)(x,R,i,n):= Q; 

r(x,Rl) 0(x ,Q, i ,n) := 
q(x,Q) 

ICombinatorial Term - Gibbs Energy 

gE_RTcomb(x,T,Au,Rl,Q,n) := V x. • ln((|)(x,Rl,i,n)) + 5 • Q. 

i = 1 

• O. • In 
Q(x,Q,i,n) 

^<|>(x,R,i,n) 
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[Combinatorial Activity Coefficient 

lny_combo(x,T,Au,Q,n) := for i e 1.. n 

ret. <- 1. - <|>(x,Rl,i,n) + ln(<)>(x, 

ret 

lny_combo(x,T,Au,Q,n) = 
-0.209^| 

V 0 

Activity Coefficient 

lny(x,T,Au,Q,n) := lnY_combo(x,T,Au,Q,n) + lnyresf 

lny(x,T,Au,Q,n) = 
0 

exp(lny(x,T,Au,Q,n)) = 
^4.638^1 

1 
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Summary of Results 

x0:= 

xl := 

x2:= 

x3:= 

x4:= 

x5:= 

0.0980 "\ 

0.902 J 

0.2040" 

0.796 , 

0.38" 

0.62 j 

0.7530N 

0.247 , 

exp(lrvy(xO,T,Au,Q,n)) = 

exp(liry(xl,T,Au,Q,n)) = 

exp(lny(x2,T,Au,Q,n)) = 

exp(lny(x3,T,Au,Q,n)) = 

exp(lny(x4,T,Au,Q,n)) = 

exp(lnY(x5,T,Au,Q,n)) = 

'4.638 

< 1 

4.897^ 

0.997 

5.123 

0.989 

5.396 

0.969 

'5.674 

v 0.91 

'5.714 

^0.868 

Results of Recval| 

data set :VLE 420 type of data: x,y,P,(T) 
•eference : JOUKOVSKY N.I.,Bull.Soc.Chim.Belg. 43(10),397(1934). 

consistency tests: 1 - 2-o 

constant values: 
temperature 
sxp. sat. vapor pressure 
calc. sat. vapor pressure 
3xp. sat vapor pressure 

= 20.50 degree C 
Ps1 = 447.10 mm Hg 
Ps1 = 447.10 mm Hg 
Ps2 = 70.60 mm Hg 

calc. sat. vapor pressure Ps2 = 70.60 mm Hg 

P P 
[mm Hg] [mm Hg] 
exp. calc. 

70.60 
176.00 
251.00 
321.60 
405.00 

70.60 
176.78 
232.82 
307.60 
414.99 

x1 
[-] 

exp. 

0.0000 
0.0980 
0.2040 
0.3800 
0.7530 

x1 
[-] 

calc. 

0.0000 
0.0980 
0.2040 
0.3800 
0.7530 

y1 
[-] 
exp. 

0.0000 
0.6150 
0.7500 
0.8310 
0.9310 

y1 
[-] 

calc. 

act l 
[-] 
exp. 

act l 
[-] 

calc. 

act 2 

exp. 

act 2 
[-] 

calc. 

0.0000 0.00000 4.63812 1.00000 1.00000 
0.6299 2.47034 2.54132 1.06405 1.02752 

2.06395 1.88657 0.7391 
0.8318 1.57300 1.50591 
0.9257 1.11997 1.14112 

1.11660 1.08106 
1.24167 1.18216 
1.60252 1.76718 

447.10 447.10 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 0.00000 5.73548 
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APPENDIX C 
Testing Binary VLE Data Set 11573- Methanol - Hexane 

arameters 
n:= 2 
i := 1.. n 
j : = l . .n 

general epsl • 10 

^ure Component Parameters! 

DDB Data Set No: 11573 (Set 1) 

Components: 1. Methanol 
2. Hexane 

Rsetl := 
r'l.4311> 

^4.4998; 

f 
Qsetl := 

V 

1.4320 

3.856 

FlexQUAC-Q Model Parameters 

Set1 -11573 

Au setl := 
0 44.68176 

1212.435978 0 
5 setl := 

0 

0.07816629 

0.07816629 

0 

Temperature | 

T:= 273.15 + 20 

Pure Gas Constant 

R:= 1.98721 

|Vlole Fraction 

x(xx) := 
f xx >^ 

\\-TBL) 
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x(Au,i,j) := exp 
' -Auj,j 

v R-T 

xn(Au,n) := for i € 1.. n 

for j e 1.. n 

ret. . <— x(Au,i,j) 
i.J J 

ret 

Surface Fraction 

thetafx(x,Q,8,i):= Q. 1+ E W8*.* 
k = l 

sthetfx(x,Q,o) := V x. • thetafx(x,Q,5,i) 

thetfx(x,Q,8,i):= 
thetafx(x,Q,S,i) 

sthetfx(x,Q,s) 

thethaf(x,Q,5,i) := x. • thetfx((x,Q,5,i)) 

Sf(x,Au,Q,8,i):= V x. • thetfx(x,Q,5,j) • xn(Au,n)j 

j = l 

Residual Gibbs Energy 

n 
fl(x,Q):=-£ x.Q. 
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f2(x,Au,Q,5):= V x.-thetfx(x,Q,8,i) • ln(sf(x,Au,Q,8,i)) 

i = l 

gE_RTresf(x,Au,Q,8) := fl(x,Q) • f2(x,Au,Q,s) 

derivative of f1 by mole numbers 

dfldn(x,Q) := -Q-f l (x ,Q) 

derivative of f2 by surface fraction | 

n x. • thetfx(x,Q,8,i) • xn(Au,n)j ; 
suml(x,Au,Q,8,j):= V -, ? 

^ Sf(x,Au,Q,8,i) 
i = l 

df2(x,Au,Q,8,i) := suml(x,Au,Q,8,i) + ln(sf(x,Au,Q,8,i)) 

df2n(x,Au,Q,8,n) := for i s l..n 

ret. <-df2(x,Au,Q,8,i) 

ret 

Jacobian matrix 

Sj(x,Q,8,i):= JT x k - Q k - ( l + Q.-8 k , i ) 

k = l 
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JacobianFQl(x,Q,§) := for i E 1.. n 

for me 1..n 

Sj(x,Q,S,m)-x. 
Jac . < |thetfx(x,Q,8,m) • x.| 7 r- + 7 

m ' 1 V V sthetfx(x,Q,5) thetfx(x,Q,8,ij • sthetfxl 

Q . x . 
1 I 

Jac . <- Jac . + 
x. • Q. • Q • 6; m 

m ' j m ' ; thetfx(x,Q,5,i)-sthetfx(x,Q,5) 
if i * m 

Jac . <— Jac . + 1 if i = m 
m,i m,i 

Jac . <—Jac . • thetfx(x,Q,8,i) 
m,i m,i 

Jac 

Derivative of f2 by mole numbers 

df2dn(x,Au,Q,8) := JacobianFQl(x,Q,s) • df2n(x,Au,Q,5,n) 

Residual Activity Coefficient] 

dgE_RTresf(x,Au,Q,5) := fl(x,Q) • df2dn(x,Au,Q,5) + f2(x,Au,Q,5) • (-Q - fl(x,Q)) 

lny_resf(x,Au,Q,5) := dgE_RTresf(x,Au,Q,5) + gE_RTresf(x,Au,Q,5) 

Combinatorial Part 

r(x,R_l):= ^T x.-R_l. 

i = l 

q(x,Q):= £ x.Q. 
i = l 

<|>(x,R_l,i,n):= 
R 1. 

- i 

r(x,RJ) 0(x,Q,i,n):= 
q(x,Q) 
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Combinatorial Term - Gibbs Energy 

gE_RTcomb(x,T,Au,R_l,Q,n) := V x. • ln(<|)(x,R_l,i,n)) + 5 • Q. 

= 1 

In 
f 0(x,Q,i,n) V 

<j)(x,R_l,i,n)X 

Combinatorial Activity Coefficient 

lny_combo(x,T,Au,Q,R_l,n) := for i e 1.. n 

ret. <- !.-<|>(x,R_l,i,n) + ln((j)(x,R_l ,i,n)) + 5 • Q. 
f
t f 0(x,Q,i,n) ^ 
In 

^ ( x , R _ l , i , n ) ^ 

ret 

Activity Coefficient 

lny(x,T,Au,Q,R_l,8,n) := lny_combo(x,T,Au,Q,R_l,n) + lny_resf(x,Au,Q,5) 

Due to the large number of data points only ten experimental points were chosen for evaluation 

pata Set: 11573 

m:= 1.. 10 

xxl 

0 

0.00002 

0.00076 

0.14830 

.85920 

.95020 

.97730 

.99150 

.99930 

V 1 ) 
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Calculated activity coefficient 1 

x1 
0.00000 
0.00002 
0.00003 
0.00027 
0.00076 
0.00188 
0.00233 
0.00609 
0.00829 
0.02319 
0.02443 
0.04142 
0.07120 
0.08599 
0.10228 
0.14830 
0.85920 
0.90070 
0.93490 
0.93970 
0.94420 
0.95020 
0.95400 
0.95540 
0.96600 
0.97200 
0.97730 
0.98240 
0.98393 
0.98666 
0.98710 
0.98989 
0.99150 
0.99268 
0.99430 
0.99488 
0.99670 
0.99713 
0.99750 
0.99848 
0.99850 
0.99895 
0.99920 
0.99930 
0.99962 
1.00000 

y1 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

ACT/ 8 1 0 

37.8790355 
37.8669076 
37.8608456 
37.7157579 
37.4219022 
36.7619577 
36.5013114 
34.419854 
33.2774383 
26.7700909 
26.3113184 
21.005933 
14.8285048 
12.7115861 
10.8640556 
7.40620343 
1.09720694 
1.05530301 
1.02704195 
1.02366029 
1.02064372 
1.016868 
1.0146315 
1.01383926 
1.00843618 
1.00588408 
1.0039668 
1.00244497 
1.00205394 
1.00143491 
1.00134481 
1.00083785 
1.00059717 
1.0004456 
1.00027249 
1.00022052 
1.0000925 
1.00007012 
1.00005331 
1.00001981 
1.00001929 
1.00000948 
1.00000551 
1.00000422 
1.00000125 

1 

ACT 2
c a l c 

1 
1 

1.00000001 
1.00000058 
1.00000461 
1.00002812 
1.00004313 
1.00029106 
1.00053554 
1.00400337 
1.00442676 
1.01213088 
1.03325778 
1.0469099 
1.06411922 
1.12380039 
6.49547206 
8.65868707 
11.7521736 
12.3462347 
12.9519807 
13.8427652 
14.4621654 
14.7022183 
16.7576171 
18.1399616 
19.521622 

21.0173987 
21.5018201 
22.4110961 
22.5632939 
23.5671428 
24.1785112 
24.642375 
25.302006 
25.5448249 
26.3305069 
26.52156 

26.6876788 
27.1354329 
27.144675 
27.3542508 
27.4717399 
27.5189628 
27.6708949 
27.8529634 

exp|lnyjx/xxl \,T,Au_setl,Q_setl,R_setl,8_setl,n)i 

37.879 

37.867 

37.422 

7.406 

1.097 

1.017 

1.004 

1.001 

1 

1 

Calculated activity coefficient 2 

exp(lny/x/xxl \,T,Au_setl,Q setl,R_setl 

1 

1 

1 

1.124 

6.495 

13.843 

19.522 

24.178 

27.519 

27.853 

5_setl,n|2]| 

I 
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APPENDIX C 

n:= 2 
i := 1.. n 
j := l..n 

general 

parameters 

pure Component Parameters! 

epsl • 10 

R set2:= 
1.43 l O fl.4320^ 

Q_set2: 
3.24 

plexQUAC-Q Model Parameters^ 

Au set2 := 
0 82.00264 

982.5527 0 
5 set2 := 

0 0.195406 

0.195406 0 

Temperature | 

T:= 273.15 + 20 

pure Gas Constant] 

R:= 1.98721 

Mole Fraction 

x(xx) 
f xx > 

1 - XX 
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x(Au,i,j) := exp 
IR-TJ 

i(Au,nj := for i e 1.. n 

for j e 1.. n 

ret .<- x(Au,i,j) 
*J J 

ret 

Surface Fraction 

thetafx(x,Q,8,i):= Q. • 
l+ S w8*.* 

k = l 

sthetfx(x,Q,5) := V x. • thetafx(x, Q, 8, i) 

thetfx(x,Q,8,i):= 
thetafx(x,Q,S,i) 

sthetfx(x,Q,5) 

thethaf(x,Q,8,i) := x. • thetfx((x,Q,8,i)) 

Sf(x,Au,Q,8,i):= V x. • thetfx(x,Q,8,j) • Tn(Au,n)jj 

j = l 

Residual Gibbs Energy 

f l (x ,Q):=-^T x.-Q. 

i= 1 

f2(x,Au,Q,s):= V x. • thetfx(x,Q,6,i) • ln(sf(x,Au,Q,8,i)) 
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gE_RTresf(x,Au,Q,5) := fl(x,Q) • f2(x,Au,Q,8) 

derivative of f1 by mole numbers 

dfldn(x,Q):= - Q - f l ( x , Q ) 

derivative of f2 by surface fraction | 

n x. • thetfx(x,Q,8,i) • xn(Au,n)j i 
suml(x,Au,Q,5, j ) := V 7 r 

^ Sf(x,Au,Q,8, i) 
i = l 

df2(x,Au,Q,5,i) := suml(x ,Au,Q,8 ,0 + ln(sf(x,Au,Q,8, i)) 

df2n(x,Au,Q,8,n):= for i e 1.. n 

ret. *- df2(x,Au,Q,6,i) 

ret 

Jacobian matrix 

Sj(x,Q,8,i):= JT x k - Q k - ( l + Q . - 8 k ; i ) 

k = l 

JacobianFQl(x,Q,8):= for i e 1.. n 

for m e 1..n 

S j (x ,Q,8 ,m)-x . 
Jac . < (thetfx(x,Q,8,m) • x.| -, r - -r 

m ' ' V V sthetfx(x,Q,8) thetfx(x,Q,8, \) • sthetfxl 

x. • Q. • Q • 8; m 

l l ^m 1>m 

Q . x . 
^i I 

Jac . <— Jac . + 
m> • m ' ' thetfx(x,Q,8,i) • sthetfx(x,Q,s) 

if i * m 

Jac . <— Jac . + 1 if i = m 
m,i m,i 

Jac . <—Jac . • thetfx(x,Q,8,i) 
m,i m,i ^ 

Jac 
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Derivative of f2 by mole numbers | 

df2dn(x,Au,Q,5) := JacobianFQl(x,Q,5) • df2n(x,Au,Q,5,n) 

Residual Activity Coefficient 

dgE_RTresf(x,Au,Q,5) := fl(x,Q) • df2dn(x,Au,Q,6) + f2(x,Au,Q,8) • (-Q - fl(x,Q)) 

lny_resf(x,Au,Q,8) := dgE_RTresf(x,Au,Q,8) + gE_RTresf(x,Au,Q,5) 

Combinatorial Part 

r(x,R_l):= V x.-R_l. 

i= 1 

q(x,Q):= ^ x.-Q. 

i = l 

R 1. 
<Kx,R_l,i,n) := 

r(x,R_l) 0(x,Q,i,n):= 
q(x,Q) 

Combinatorial Term - Gibbs Energy 

gE_RTcomb(x, T, Au, R_l, Q,n) := V x. • ln(cj)(x, R_l, i,n)) + 5 • Q. in 
Q(x,Q,i,n) 

<))(x,RJ,i,n) 
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Combinatorial Activity Coefficient | 

lny_combo(x,T, Au, Q, R_l,n) := for i e 1.. n 

ret. <- l.-(|)(x,R_l,i,n) + ln(<|>(x,R_l,i,n)) + 5 • Q. • [ In 

ret 

f 0(x,Q,i,n) ^ 

>(x,R_l , i ,n) , 

Activity Coefficientl 

lny(x,T,Au,Q,R_l,8,n) := lny_combo(x,T,Au,Q,R_l,n) + tny_resf(x,Au,Q,o) 

Due to the large number of data points only ten experimental points were chosen for evaluation 

xx2 := 

0 ^ 

0.00058 

0.00277 

0.01225 

0.05726 

0.09010 

0.82570 

0.90020 

0.93900 

1 

m:= 1.. 10 
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Calculated activity coefficient 1 

x1 
0.00000 
0.00007 
0.00058 
0.00152 
0.00277 
0.00402 
0.00730 
0.01225 
0.02257 
0.04035 
0.05726 
0.08700 
0.09010 
0.14040 
0.50980 
0.82570 
0.82860 
0.85060 
0.86600 
0.90020 
0.91350 
0.93900 
0.96090 
0.98110 
1.00000 

y1 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

ACV3'0 

55.9110671 
55.8210037 
55.1706174 
53.9980554 
52.4896917 
51.0370477 
47.4725252 
42.6995838 
34.6503068 
25.0243742 
19.022098 
12.5869184 
12.1101572 
7.11176535 
1.66374603 
1.16160115 
1.1579917 
1.13087982 
1.11226364 
1.07264952 
1.05822761 
1.03307152 
1.01539091 
1.00407599 

1 

ACT2
calc 

1 
1.00000006 
1.00000386 
1.00002644 
1.00008732 
1.00018291 
1.00059476 
1.00164052 
1.00534241 
1.01597045 
1.03032453 
1.06372872 
1.06772649 
1.14356175 
2.04791272 
4.50838104 
4.57602772 
5.18143162 
5.73011147 
7.55071402 
8.61589462 
11.6794471 
16.2487462 
23.7524267 
36.9120802 

12.11 

Calculated activity coefficient 2 

f A[JI 111 J 1 At A A ^ 1 , — » v._. , •„^>^"5 *-* b C l — , 11 J _> || 

1 

1.002 

1.03 

1.068 

4.508 

7.551 

11.679 

36.912 
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APPENDIX C 
VLt: uata aet n o b / - r-iexane exane 

n:= 2 
i:= l . .n 
j : = l . .n 

general epsl = 10 

parameters 

|?ure Component Parameters^ 

SBIHH^ Set No: 11567 

Components: 1. Hexai 
2. Cyclohex; 

R set3 := 
4.4998 

4.0464 
Q_set3 := 

/ 

3.856 

3.24 

FlexQUAC-Q Model Parameters 

Au set3 := 
0 -105.905 

133.687 0 
5 set3 := 

0 

0.073377 

0.073377 

0 

Temperature 

T:= 273.15 + 20 

Pure Gas Constant! 

R:= 1.98721 

|Vlole Fraction | 

x(xx) := 
1 - xx 
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T(Au,i,j):= exp 
r-Aui,A 

i(Au,n) := for i e 1.. n 

for j e 1.. n 

ret. . <- t (Au, i , j ) 

ret 

Surface Fraction 

thetafx(x,Q,S,i):= Q. • 
{ 1+ E v<v5u 
I k = i 

sthetfx(x,Q,8) := V x. • thetafx(x,Q,5,i) 

thetfx(x,Q,5,i):= 
thetafx(x,Q,S,i) 

sthetfx(x,Q,8) 

thethaf(x,Q,8,i) := x. • thetfx((x,Q,5,i)) 

n 

Sf(x,Au,Q,8, i) := \* x. • thetfx(x,Q,5,j) • Tn(Au,n)j(j 

j = l 

Residual Gibbs Energy] 

n 

f l ( x , Q ) : = - ^ x . Q . 

i = l 
n 

f2(x,Au,Q,8):= V x. • thetfx(x,Q,8,i) • ln(sf(x,Au,Q,8, i)) 

i = l 

gE_RTresf(x,Au,Q,8) := fl(x,Q) • f2(x,Au,Q,s) 
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Derivative of f1 by mole numbers 

dfldn(x,Q):= -Q-f l (x ,Q) 

derivative of f2 by surface fraction [ 

n x. • thetfx(x,Q,8,i) • tnVAu.n)^ 
suml(x,Au,Q,5,j) := V j r 

^ Sf(x,Au,Q,5,i) 
= 1 

df2(x,Au,Q,5,i) := suml(x,Au,Q,5,i) + ln(sf(x,Au,Q,5,i)) 

df2n(x,Au,Q,5,n) := for i e l . . n 

ret. <- df2(x,Au,Q,8,i) 

ret 

Jacobian matrix 

Sj(x,Q,5,i):= ^ Xk-Qk"(1 + Q i " 5 k ' j ) 
k = l 

JacobianFQl(x,Q,5):= for i G 1.. n 

for me 1 ..n 

Sj(x,Q,5,m) • x. 
Jac . < (thetfx(x,Q,8,m) • x.) -, r- -r 

m ' ' V V sthetfx(x,Q,5J thetfxU,Q,5,i) • sthetfxl 
x. • Q. • Q • 5; m l I m ' '" ' 

Q r x . 

Jac . <— Jac . + m ' ; m ' ; thetfx(x,Q,5,i)-sthetfx(x,Q,5) 

Jac . <— Jac . + 1 if i = m 
m,i m, I 

Jac . <— Jac . • thetfx(x,Q,8,i) 

if i * m 

m . i m , i 

Jac 
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Derivative of f2 by mole numbers 

df2dn(x,Au,Q,5) := JacobianFQl(x,Q,8) • df2n(x,Au,Q,5,n) 

Residual Activity Coefficient] 

dgE_RTresf(x,Au,Q,8) := fl(x,Q) • df2dn(x,Au,Q,8) + G ( X , A U , Q , 8 ) • (-Q - fl( 

lny_resf(x,Au,Q,8) := dgE_RTresf(x,Au,Q,5) + gE_RTresf(x,Au,Q,5) 

Combinatorial Part 

r(x,R_l):= ^ x.-R_l. 

i = l 

q(x,Q):= £ Y Q i 
i = 1 

<|>(x,R_l,i,n): 
R 1. 

r(x,R_l) 
Q; 

0(x,Q,i,n):= 
q(x,Q) 

Combinatorial Term -Gibbs Energy 

gE_RTcomb(x,T,Au,RJ,Q,n) := V x.- ln((|>(x,R_l,i,n)) + 5 • Q. 

= 1 

In 
®( 

> ( x 
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Combinatorial Activity Coefficient | 

lnY_combo(x,T, Au, Q, R_l,n) := for i e 1.. n 

ret. <- l.-«|»(x,R_l,i,n) + ln((|)(x,R_l,i,n)) + 5 • Q. • 
^ 0(x,Q,i,n) N 

«t»(x,R_l,i,n)y 

ret 

Activity Coefficient 

lny(x,T,Au,Q,R_l,8,n) := lny_combo(x,T,Au,Q,R_l,n) + lny_resf(x,Au,Q,5) 

Due to the large number of data points only ten experimental points were chosen for evaluation 

m:= 1.. 10 

xx3 := 

0 

0.10040 

0.18990 

0.29410 

.39680 

.49280 

.59460 

.69010 

.79690 

1 
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x1 
0.00000 
0.10040 
0.18990 
0.29410 
0.39680 
0.49280 
0.59460 
0.69010 
0.79690 
1.00000 

y1 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

ACT-,03'0 

1.19876306 
1.1242232 
1.08632083 
1.05866376 
1.04066399 
1.0285493 
1.01878546 
1.01163415 
1.00550579 

1 

A C T 2
c a l c 

1 
1.00311836 
1.00885893 
1.01708316 
1.02626148 
1.03590216 
1.04773029 
1.06108816 
1.08004384 
1.13814471 

Calculated activity coefficient 1 

Calculated activity coefficient 2 

exp( lny(x/xx3mj, T, Au_set3, Q_set3, R_set3,5_set3, n) 2| 

1 
1.003 

1.009 

1.017 

1.026 

1.036 

1.048 

1.061 

1.08 

| I. I.So 
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APPENDIX C 
Resting Ternary VLE Data Set 11564 

TERNARY SYSTEM - CYCLOHEXANE, METHANOL & HEXANJ 

n:= 3 
i := 1.. n 
j : = 1-n 

general 

^ure Component Parameters" 

Q:= 

f 3.24 N 

1.4320 

v 3.856 , 

FlexQUAC-Q Model Parameters 

( 0 982.5527 133.687 ^ 

82.00264 0 44.68176 

^-105.905 1212.436 0 

epsl = 10 
- 8 

6:= 

0 

0.195406 

0.195406 0.073377 > 

0 0.07816629 

V0.073377 0.07816629 0 

Temperature | 

T:= 273.15 + 20 

Pure Gas Constant! 

R:= 1.98721 

Mole Fraction 

x(xx,xxl) := 

A XX 

xxl 

^1 - xx - x x l , 
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T J J : = exp 
-Au i.J 

R T V K -

Surface Fraction 

thetafx(x,i) := Q. • 
1+ Z w8*.* 

V k = l 

sthetfx(x) := y x. • thetafx(x,i) 

thetfx(x,i):= 
thetafx(x,i) 

sthetfx(x) 

thethaf(x,i) := x. • thetfic(x,i) 

Sf(x,i) := y x. • thetfx(x,j) • T ; ; 

j = l 

Residual Gibbs Energy 

f l(x):=-£ X.-Q. 
i = l 

f2(x) := V x. • thetfx(x,i) • ln(Sf(x,i)) 

i = l 

eE_RTresf(x) := fl(x) • f2(x) 



derivative of f1 by mole numbers 

dfldn(x):= -Q- f l (x ) 

Derivative of f2 by surface fraction 

sum 

n x.- thetfx(x,i) • t i j 
l(x,j):=y J -

Lu Sf(x,i) 
i = l 

df2(x,i) := suml(x,i) + ln(Sf(x,i)) 

df2n(x,n) := for i e 1.. n 

ret. <- df2(x,i) 

ret 

pacobian matrix 

SJ(x,i):= £ x k -Q k - ( l + Q.-5k) i) 

k = l 

JacobianFQl(x):= for i e 1.. n 

for me 1..n 

Jac . < /thetfx(x,m) • x.̂  -
SJ(x,m) • x. Qj-x. 

Jac Jac 

sthetfx(x) thetfx(x,i) • sthetfx(x) 

x. • Q. • Q • 5; m l ^ i Tn 1 ' m 

m ' ' m ' ' thetfx(x,i)-sthetfx(x) 
if i * m 

Jac . <— Jac . + 1 if i = m 
m,i m,i 

Jac . <— Jac . • thetfx(x,i) 
ra,i m,i v ' 

Jac 
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df2dn(x) := JacobianFQl(x) • df2n(x,n) 

Residual Activity Coefficient] 

dgE_RTresf(x) := fl(x) • df2dn(x) + f2(x) • (-Q - fl(x)) 

lnyj-esf(x) := dgERTresf (x) + gERTresf(x) 

Combinatorial Part 

r(x,Rl):= £ X.-R1. q(x,Q):= J ] x.-Q. 

i = l i = l 

Rl. 
(|>(x,R,i,n) := 

r(x,Rl) ©(x,Q,i,n):= 
q(x,Q) 

[Combinatorial Term - Gibbs Energy 

gE_RTcomb(x,T,Au,Rl,Q,n) := V x. • ln(i|)(x,Rl,i,n)) + 5 • Q. • In! 

i = l 

0(x,Q,i,n) 

$(x,R,i,n))J 
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Combinatorial Activity Coefficient 1 

lny_combo(x,T,Au,Q,n) := for i e 1.. n 

ret. <- 1. - <t>(x,Rl,i,n) + ln((|>(x,Rl, 

ret 

Activity Coefficient! 

lny(x,T,Au,Q,n) := lny combo(x,T,Au,Q,n) + lnyresf(x) 

xl:= 

( .7620 ̂  

0.68320 

.16510 

0.05470 

.51900 

.0992 

.0982 

.4313 

.1192 

.3072 

0.0723 

0.0242 

0.1817 

0.0314 

^0.0138 J 

x2: 

f0.05750^! 

0.15570 

0.79600 

0.93160 

0.20010 

0.8471 

0.8128 

0.1274 

0.7589 

0.1262 

0.7944 

0.9304 

0.1297 

0.8496 

V 0.9313 j 

-281-



X1 

0.76270 
0.71780 
0.68320 
0.65260 
0.21200 
0.16510 
0.13440 
0.10320 
0.05470 
0.59530 
0.54520 
0.51900 
0.1669 
0.1293 
0.1217 
0.0992 
0.0846 
0.0459 
0.0982 
0.0705 
0.0383 
0.455 

0.4313 
0.4144 
0.1192 
0.1005 
0.0573 
0.3186 
0.3072 

0.294 
0.0723 
0.0641 
0.0453 
0.0242 
0.0246 
0.1922 
0.1817 
0.1793 
0.0314 
0.0259 
0.0138 

x2 

0.05750 
0.11300 
0.15570 
0.19350 
0.73800 
0.79600 
0.83390 
0.87110 
0.93160 
0.08250 
0.15970 
0.20010 
0.7427 
0.8007 
0.8129 
0.8471 

0.87 
0.9294 
0.8128 
0.8656 
0.9269 
0.0795 
0.1274 
0.1617 
0.7589 
0.7967 
0.8841 
0.0938 
0.1262 
0.1638 
0.7944 
0.8157 
0.8698 
0.9304 
0.9313 
0.0797 
0.1297 
0.1412 
0.8496 
0.8707 
0.9313 

FlexQUAC-Q 

A C T ^ 
1.046521425 
1.111746669 
1.175491452 
1.239710689 
3.237323761 
4.001228333 
4.820527554 
6.132819176 
10.98756218 
1.081368566 
1.180840969 
1.245008707 
3.319094419 
4.164166927 
4.413815022 
5.346011639 
6.249540806 
10.99851704 
4.498530865 
6.203115463 
10.94617653 
1.082150817 
1.132399321 
1.176479697 
3.568854094 
4.180143833 

7.20947361 
1.092914343 
1.122941852 
1.165987372 
4.23600769 

4.716980934 
6.65099144 

11.83656693 
11.93829346 
1.078157783 
1.111484289 
1.121904612 
5.959610462 
6.942171574 
12.35376072 

ACTY* 1 0 

15.77245331 
8.683210373 
6.110939026 
4.745593071 
1.272613645 
1.194775939 
1.146621943 
1.10152328 

1.037474513 
11.15514278 
5.935912609 
4.627930164 
1.264445424 
1.185048103 
1.169265389 
1.126492262 
1.099438071 
1.037687182 
1.166317701 
1.101709247 
1.038428426 
11.26332855 
7.522862434 
5.922548294 

1.23870194 
1.186648846 
1.08037889 

10.02684498 
7.728416443 
5.965173244 
1.18604064 
1.15803647 

1.093111634 
1.033547759 
1.032914996 
11.87164211 
7.806948662 
7.178976536 
1.112957954 
1.089020371 
1.031419158 

ACT3
c a l c 

1.055819869 
1.08885026 

1.142140627 
1.205356717 
3.772146463 
4.596377373 
5.413010597 
6.626318932 
10.65252209 
1.061445117 
1.150584698 
1.218364358 
3.774218559 
4.651935101 
4.899792194 
5.784268379 
6.603644848 
10.51953793 
4.897271156 
6,458520412 
10.35733032 

1.0582546 
1.10923326 

1.157258272 
3.959941149 
4.570548058 
7.303123951 
1.070585012 
1.108476281 
1.161972165 
4.541873932 
4.989784718 
6.703318596 
10.86916542 

10.9572649 
1.052734256 
1.110529184 
1.126340747 
6.00107336 

6.828286648 
11.11178398 

pcac 

kPa 
230.8555 
239.5729 
236.2022 
232.7506 
223.2851 
220.5814 
218.7671 
217.4477 
211.1212 
241.2257 
244.4242 

242.261 
234.2579 
231.4064 
230.6482 
228.8402 
227.2196 
219.3188 
239.1165 
235.6493 
226.4862 
246.7018 
253.9609 
253.9462 
243.9713 
242.0387 
235.8115 
259.7089 
263.7281 
264.0503 
251.7709 
250.7666 
246.5026 
234.1463 
233.2826 
268.0845 
275.8677 
276.0324 
257.4666 
255.7456 
240.8683 

Pdcv 

kPa 
0.207808 
4485532 

-0.045061 
-3.763261 
-13.37539 
-16.02582 
-17.58679 
-16.65303 
-6.820871 
-1.167669 
-1.075595 
-3.878791 
-12.41516 
-15.37329 
-15.93149 
-16.57961 
-15.93371 
-7.635908 
-14.66267 
-15.14337 
-8.347845 
-3410954 
0.381784 

-0.566177 
-10.54108 
-13.60691 
-14.22122 
1.196842 
2.682926 
2.338492 

-11.56747 
-12.985 

-13.66265 
-7.807158 
-8.030854 
3.839528 
7.836432 
7.441099 

-11.32461 
-11.83238 
-7.671285 

exp^lny^xlm,x2mj,T,Au,Q,njij 

expAWx/xlm,x2m),T,Au,Q,nj3) 

1.056 

1.142 

4.596 

10.653 

1.218 

5.784 

4.897 

1.109 

3.96 

1.108 

4.542 

10.869 

1.111 

6.001 

11.112 

1.047 

1.175 

4.001 

10.988 

1.245 

5.346 

4.499 

1.132 

3.569 

1.123 

4.236 

11.837 

1.111 

5.96 

12.354 

exp(lnY^xlm,x2m),T,Au,Q,n)2) 

15.764 

6.111 

1.195 

1.037 

4.628 

1.126 

1.166 

7.523 

1.239 

7.728 

1.186 

1.034 

7.807 

1.113 

1.031 
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„„,.,„„,,„. , 

Appendix C 

Ternary LLE Calculation - Methanol - Acetone 
Cyclohexane 

Test Using Numerical Example) 

Components: 1 - methanol methanol := 1 
2 - acetone acetone := 2 
3 - cyclohexane cyclohexane := 3 

R: Q:= 

f 1.432 N 

2.3360 

v 3.24 , 

FlexQUAC-Q Parameters: 

GC:= 1.98721 

n:= 3 
i:= l..n 
j : = 1-n 

|Pure Component Parameters^ general epsi 10 

Au:= 

( 0 164.0496 16.0264 ̂  

79.7562 0 -14.6356 

V1287.072 499.1818 0 , 

8:= 

0 0 0.0004^ 

0 0 0.15 

V0.0004 0.15 0 , 
tesla:= 298.15 

ft/lole fractions: 

T i ; j:=exp 

f - A " i J ^ 
GC • tesla 

( 1 0.758 0.973 ̂  

0.874 1 1.025 

V0.114 0.431 1 

Combinatorial Part 

i(x,R,n):= V 3t-R. q(x,Q,n) := ^ x. • Q. <|)(x,R,i,n) := 

i = l 

R. 

r(x,R,n) 
0(x,Q,i,n):= 

q(x,Q,n) 

gE_RTcomb(x,T,Au,R,Q,n) := V y ln((|)(x,R,l,n)) + 5 • Q; 

i = l 

In 
0(x,Q,i,n) 

<t>(x,R,i,n) 
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Analytical Expression for Acticity Coefficient for Original UNIQUAC equatiofr 

lny_combo(x,T,R,Ag,Q,n) := for i e 1.. n 

ret. <- l.-<|>(x,R,i,n) + ln(<|>(x,R,i,n)) + 5 • Q. • (ln( Q ( x ' Q ' ' ' n ) 

U(x,R, i ,n ) . 

ret 

FLEXQUAC-Q 

Residual Parti 

f n N\ 
thetafx(x,Q,5,i,n):= Q. • 

sthetfx(x,Q,n) := V x. • thetafx(x,Q,8,i,n) 

1+ Z V<V5U 
V k = l 

.. t , C n fi . ^ thetafx(x,Q,6,i,n) 
thetfx(,x,Q,5,i,n; := 

sthetfx(x,Q,n) 

Sf(x,Q,5,i,n):= V x. • thetfx(x,Q,§,j,n) • Tj; 

j = l 

3E residual 

f l ( x , Q ) : = - £ x . Q . 

i = l 

n 
f2(x,Q,5,n):= V x. • thetfx(x,Q,6,i,n) • ln(sf(x,Q,8,i,n)) 

<Kx,i 
0(x,< 

i = l 

gE_RTresf(x,Q,§) := fl(x,Q) • f2(x,Q,6,n) 
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n x. • thetfx(x,Q,5,i,n) • Tji 
suml(x,Q,S,j,n):= V -, r 

^ Sf(x,Q,5,i,n) 
i = l 

df2(x,Q,5,i,n) := suml(x ,Q,5 , i ,n) + ln(sf(x ,Q,5, i ,n)) 

df2(x,Q,6,i,n) = 

df2n(x,Q,8,n) for i e l . .n 

ret. <-df2(x ,Q,8, i ,n) 

ret 

Sj(x,Q,5,i,n):= ^T \ • Qk" (l + Of 5k,i) 

k = l 

Q acoDian i Misfi 

JacobianFQl (x, Q, 5, n) for i € 1.. n 

for m e 1..n 

S j (x ,Q,5 ,m,n) -x . Q. 
Jac . < |thetfx(x,Q,8,m,n) • x.\ 1 ; > 

m >' V V sthetfx(x,Q,n) thetfx(x,Q,8,i,n. 

Jac . <— Jac 
x. • Q. • Q - 5 ; m 

m,i m,i thetfx(x,Q,8,i,n)-sthetfx(x,Q,n) 

Jac . <r- Jac . + 1 if i = m 
m,i m,i 

Jac . <- Jac . • thetfx(x, Q, 8, i, n) 

if i * m 

m,i m,i 

Jac 
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df2/dn 

df2dn(x,Q,6,n) := JacobianFQl(x,Q,5,n) • df2n(x,Q,5,n) 

M(GE/RT)/dn | 

dgE_RTresf(x,Q,8,n) := fl(x,Q) • df2dn(x,Q,5,n) + f2(x,Q,6,n) • (-Q - fl(x,Q)) 

lny_resf(x,Q,5,n) := dgE_RTresf(x,Q,8,n) + gE_RTresf(x,Q,5) 

lny(x,i,R,Q,n) := lny_resf(x,Q,6,n)i+ lnY_combo(x,T,R,Au,Q,n)j 

Y(x,i,R,Q,n) := exp(lny(x,i,R,Q,n)) 

xl := 

f.H9963> 

0 

^.880037; 

x2:= 

f0.198356^ 

0.033085 

i^0.768559j 

x3:= 

ro.429705^ 

0.092166 

^0.478129j 

Y(xl,i,R,Q,n) 

4^886" 

1.056 

Y(x2,i,R,Q,n) = y(x3,i,R,Q,n) 

4.254 

2.703 

1.189 

1.877 

1.46 

1.878 
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