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Abstract

GF-model and equations of state are used to describe and predict phase equilibria. Current modets
have varying capabilities and some display selectivity for certain special mixtures. Whiie many
models are superior to others in their performance, all models share a common deficiency, the
inability to simultaneously describe vapour-liquid (VLE) and liquid-liquid equilibria (LLE).
Current models require separate parameters to describe the two equilibria. This formed the

motivation for a non-linear transformation which was formulated by Rarey (2005).

' The transformation was applied to the concentration space. The clear advantage of such a
transformation was that it could be easily applied to any model. The flexibility of the model was
drastically increased. The effects were investigated on the local composition models, in particular
the UNIQUAC model resulting in the FlexQUAC model. The model was used to regress a host of
VLE and LLE data sets contained in the Dortmund Data Bank (DDB). The transformation had the

" desired effect on the flexibility of the model and the mode! was now able to describe VLE and

LLE. '

However a symmetric transformation applied to the concentration space might not be effective in
. the description of systems exhibiting large difference in molecular size. This is a clear
~ disadvantage of the proposed FlexQUAC model. In order to allow the model to cater to
asymmetric systems, the transformation is now applied to the surface fraction of the residual
contribution of the UNIQUAC model. The Guggenheim-Staverman expression in the combinato-
rial part was not transformed. Both the original combinatorial term and the more suitable
modification of Weidlich and Gmehling (1987) were used. The newly formed model was called
the FlexQUAC-Q model.

The development of the FlexQUAC-Q model, derivation of activity coefficient expressions,

model implementation and its performance analysis form the basis for this research study.

The activity coefficient of the new model had to be re-derived due to the application of the
transformation to the residual contribution of the UNIQUAC equation. The computation of the
activity coefficient was programmed in FORTRAN and integrated into the regression tool
(RECVAL) of the Dortmund Data Bank (DDB). The RECVAL tool was used to regress data sets
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contained in the DDB. Results obtained were comparable to those obtained using the GEQUAC

model.

The regression was also performed in EXCEL for the three models (UNIQUAC, FlexQUAC,
FlexQUAC-Q). The regression in EXCEL was more rigorous and was used for the comparison of
the objective functions and to obtain a set of unique model parameters for each data set. The
performance of the FlexQUAC-Q model was assessed utilizing the same data sets used to analyse
the performance of the FlexQUAC model. The model’s performance was assessed in the
regression of 4741 binary VLE data sets, 13 temary VLE dala sets and carefully select ternary
LLE cases.

The minor mean relative reduction of about 3% of the objective function using FlexQUAC-Q
compared to FlexQUAC was observed compared to a reduction by about 53% relative to the
UNIQUAC-results.

It was necessary to illustrate that the new model does not degenerate the model’s existing
capabilities (e.g. ability to predict muiti-component mixtures from binary data) and that the modei
performs as well as or superior to the UNIQUAC model. FlexQUAC-Q performed similarly to
FlexQUAC. However the improvement in the qualitative description of data sets exhibiting
asymmetry is apparent. Herein lies the justification of such a modification and this iliustrates the

preference of such a model when asymmetric systems are being considered.

In addition, the FLEXQUAC-Q model can be adapted to be implemented into a group
contribution method, a distinct advantage over the previous model FlexQUAC. The equations for
. the application of a non-linear transformation to a functional group activity coefficient model,
UNIFAC are also explored in this study. The resulting model is referred to as FlexFaC.
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Chapter 1 Introduction

Everyday, man relies on his ability to accurately predict information and thereby reduce the
margin for error and uncertainty. Scientific knowledge has burgeoned over time and has further
developed our fundamental understanding in a plethora of fields and subjects. This understanding
coupled with mathematics has enabled us to describe, model and quantify many aspects of
interest. This can range from predicting daily weather patterns to economic indicators. Hence the

applicability of predictive models can invariably be seen in everyday life.

Predictive models have become indispensable in the chemical industry, especially in the case
where equilibrium data is unavailable. Phase equilibrium is perhaps one of the most impertant
subjects in physical chemistry. Despite this being a fairly old field of research, much needs to be
learned to improve the theoretical aspects of phase equilibria. Classical thermodynamics provides
a framework for quantifying phase equilibria via pressure, temperature and chemical potential. At
equilibrium these properties are equal for each component in all phases. The challenge lies in
relating this chemical potential or fugacity to measurable quantities i.e. temperature, pressure and
composition. In the case of real gas mixtures, the deviation from ideal gas mixtures is
encompassed in a fugacity coefficient which is modeled by an appropriate equation of state. A
fugacity coefficient can also be defined for the deviation in the liquid phase and can be modeled
by an equation of state, preferably at elevated pressures. While in the case of a liquid phase, the
ratio of fugacity of a component at some pressure, temperature and composition, to a
corresponding fugacity at the mixture temperature and some specified pressure and composition,

defines the activity coefficient of that component. The activity coefficient is modeled by excess
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Gibbs free energy and this property quantifies the departure from an ideal solution in the case of
the liquid phase.

Industries that use separation processes promoted further research into mixture thermodynamics.
The accurate description of a multicomponent mixture became crucial for the design, synthesis
and optimization of chemical processes. Separation processes like distillation are energy intensive
and the ability to model and predict the behaviour of the multicomponent system in question is of
paramount importance to ensure optimal and profitable operability. As a consequence, many
commercial process simulators and physical property data banks have been developed which have
radically improved our ability to model and predict multicomponent systems. The increase in

computational speed of computers has also proven beneficial to the prediction of data.

Despite all these efforts, only a few mixture models are broadly used to correlate binary systems
and predict the real behavior of multicomponent liquid non-electrolyte phases {Wilson, NRTL
and UNIQUAC). All these models were developed more than 25 years ago and all of them suffer
from several shortcomings discussed in detail by Rarey (2005).

Rarey (2005) developed a mathematical procedure to improve the existing models and the results
were discussed in detail with reference to the UNIQUAC equation. The modified equation
(FlexQUAC) was much better able to correlate binary phase equilibrium data and even allowed a

simuitaneous description of vapour-liquid and liquid-liquid equilibria.

The test of the new model focused to a great part on vapour-liquid equilibria and most data used
described systems with components of rather similar size. As already suggested in the previous
paper, in the case of mixtures of large and small molecules, a transformation of the mole fraction
scale might not be a good choice. In these cases, the transformation would mainly affect the

activity coefficient of the large component.

This research study presents a non-linear flexibilisation of the surface fraction in the residual part
of the UNIQUAC equation (FlexQUAC-Q). GE, when plotted as a function of the surface fraction
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is usually a symmetric function with the maximum near 0.5. The combinatorial part of the

equation is not transformed.

The performance of FlexQUAC-Q is compared to UNIQUAC and FlexQUAC using a similar set

of data as in the previous paper.




Chapter 2 Theoretical Aspects
of Equilibria

2.1 introduction

In the realm of thermodynamics, a theoretically correct description of a liquid mixture and its
behaviour remains quite complex. A thermodynamicist essentially measures different types of
data experimentally and uses mathematical expressions to model trends in data so as to establish a
tangible link between measurable and immeasurable quantities. Mathematical expressions can
employ different levels of theory ranging from fully empirical to complex theoretical.
Experiments are usually setup to record phase equilibrium data or excess propertics. Phase
equilibrium data could refer, for example to vapour-liquid equilibrium (VLE) or liquid-liquid
equilibrium (LLE) depending on the nature of the chemical mixture and the presiding conditions

of the mixture i.e. temperature and pressure.

The FlexQUAC-Q model that was developed in this research study is an excess Gibbs energy
model based on the existing UNIQUAC model. Prior to the development and derivation of this

model, an in depth study of some introductory thermodynamics is necessary.

The concept of Gibbs energy is introduced here. The Gibbs energy state function is an important
generating property in thermodynamics. Phase equilibrium is examined in this chapter and the
equations that describe it are presented. Chemical potential and its relation to phase equilibrium is

also explained to help the reader to establish the link between this property and phase
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equilibrium. Both fugacity and activity coefficient relate chemical potential to measurable
properties. Fugacity coefficients are usually used to quantify the departure from ideality for real
gases via residual properties. The activity coefficient is preferred when defining the departure of
real liquids from ideality. In this research study the liquid phase departure from ideality for
experimental VLE and LLE data was computed from derived FlexQUAC-Q activity coefficient

expressions.

The concepts of LLE are discussed briefly. As part of the performance assessment of the
FlexQUAC-Q model, ternary LLE is calculated and compared to the experimental data. Hence,
an understanding of the types of ternary data was necessary. These are illustrated and discussed.
The ternary LLE calculations in this research study were performed using the K-factor method.

The algorithm for this method is detailed here.

Some commentary on data quality and model selection is presented here to emphasise the
importance of accurate measurement of data. Consistent data can be inaccurate and lead to
inaccurate prediction of data. It is vital that the reader understand how the quality of experimental

data impacts on the accuracy of predicting data.

Since the focus of this research study is the development of an excess Gibbs energy model, some
liquid solution theory is discussed. Some of the commonly used excess Gibbs energy models ¢.g.
UNIQUAC, were developed from liquid solution theory. In this chapter, lattice theory, Flory
Huggins and two liquid theory are discussed to give a reader an indication of how liquid solution
theory evolved.

An overview of the excess Gibbs energy models is detailed here, The reviewed models include
Margules, Redlich Kister, Van Laar, Wilson, NRTL and UNIQUAC. The advantages,
disadvantages and the range of application for each model are discussed. Before undertaking the
development of the FlexQUAC-Q model, it was vital to first understand the ability of each of the
existing models, Since the FlexQUAC-Q model has its roots in the UNIQUAC model, a more

comprehensive discussion of the model and its derivation is presented.
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Group contribution methods are discussed briefly. The ASOG, UNIFAC and GEQUAC methods
are discussed. The FlexQUAC-Q model can be extended to group contribution methods. This is
discussed further in Chapter 5. The newly formed group contribution method, FlexFAC shouid
be able to describe both VLE and LLE simultaneously. The GEQUAC model is a fairly complex
group contribution method that achieves impressive results. However, these results are
comparable to that of FlexQUAC. While the GEQUAC model has a theoretical basis, both
FlexQUAC and FlexQUAC-Q are formulated from a non-linear transformation applied to the
UNIQUAC model. In Chapter 6, the results obtained from the regression from the FlexQUAC-Q
model is used to make a comparison with the GEQUAC model.

Then‘nodynahics has been elucidated in great depth by several authors including Abbott and Van
Ness (1996) and Perry and Green (1998). An extensive description and discussion of various
experimental apparatus was for example given by Raal and Muhibauer (1998). This chapter
proceeds to give a brief overview of the fundamental treatment of equilibria and other basic

concepts which needed to be understood to develop the FlexQUAC-Q model.

2.2 Gibbs Energy

Classical thermodynamics provides a number of state functions, the most well known being
internal energy (U), enthalphy (H), Helmholtz energy (A) and Gibbs free energy (G). Gibbs free
energy is quantified in J/mol. Changes in these functions depend on the changes in two, or in case
of open systems with material exchange with the surrounding, three state variables. Commonly
used state variables are temperature T, entropy (S), pressure (P), volume (V), chemical potential
(1) and mole number (n). If these two or three state variables are kept constant, the state function
is also a potential with a minimum value at equilibrium. The Gibbs energy is a convenient state
function since it is a potential function at constant temperature, pressure and number of moles in
the system. The Gibbs energy is an important generating property since it provides a tangible link

between equilibrium, mathematics and classical thermodynamics.
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For a closed system in equilibrium, the change in the total system Gibbs energy is given by:

d(nG) = (nV)dP - (nS)dT 2-1
[M] =nV
or 1,
[%]P.ﬂ =

where

" V- molar volume
= S -molar entropy
s P —pressure

» T -temperature

" - mele number

Thus at constant T and P (the typical case of practical interest) the change of G in equilibrium
must be zero. Equation 2-1 is applicable to a system without exchange of material with the
surrounding. To evaluate the vapour-liquid equilibrium problem one has to consider the case of

mutual exchange of material between the phases.

In this case the Gibbs energy function is also influenced by a change in the amount of material.
Hence,

nG = g(P,T,n,n,,.n)

where n; refers to the mole number of the components

d(nG)= [Q(é%o@] dP + [%’f_)]de + Z [ia’:f—;)-jl dn,

Tr” P'T'”jﬂ'
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d(nG);(nV)dP-(nS)dT +ZF’$] | dn, 22

The last term in the equation above is termed the chemical potential.

)uf = |:§..(n_G):| 2-3
ol ) - -

on,

Thus the fundamental property relation is derived.
d{nG) = (nV)dP - (nS)dT + Y pi,dn, 24

The Gibbs energy function plays an integral role in the computation of other system properties.

2.3 Phase Equilibria

Equilibrium refers to a state of 'no change'. In the context of vapour-liquid equilibrium, it refers to
a case when 'two or more phases reach a state of equilibrium wherein all tendency for further
change has ceased' (Prausnitz, 1969).

The diagram below illustrates this concept of equilibrium exhibited in the VLE case. The phases
are "closed" to the external environment since they cannot exchange mass beyond the system
boundary. The internal system is regarded as "open” since mass and energy transfer is allowed via
the phase boundary. The phases are in both thermal equilibrium (T* = TP, zero® law of

thermodynamics) and in mechanical equilibrium (P“ = PF),
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Phase a:: Vapour

Phase (3: Liquid

Figure 2-1 Depiction of vapour and liquid phases in an equilibrium state

The phases are denoted by 1 and 2.

Writing Equation 2-4 in terms of the corresponding phases:

d(nG®)= (v JaP —(nS= )T + 3 ptdn? 2.5

d(nG’B) = (nVﬂ)dP - (nSﬁ)dT + Zp,ﬂdnf 2-6
i

The overall system change is found as the sum of the changes individual phases. Equation 2-1 for

a closed system implies that in order for equilibrium conditions to hold:

D uldnf +) pldnf =0 2-7

Introducing the concept of mass conservation implies that

dn® = —dn?

and

>l - wf Yt =0

-9
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In order for this condition to be vatid, it follows that
H=pf 28

and this can be extended to any number of phases.

This is the key aspect that must be met for equilibrium to be satisfied and provides the starting

point for one to relate p to measurable properties.

2.4 Fugacity Coefficient

In order for the concept of chemical potential to be used in phase equilibrium, it needs to be
quantified. However, it usvally cannot be determined readily by experimental means. Thus it is
necessary to relate this quantity to some measurable properties i.e. T, P and V. The concept of
fugacity is utilized to relate chemical potential to measurable properties. Consider an ideal gas

maintained at constant temperature:

dG =VdP = %dp = nRTdIn P 2.9
Integration leads to
G=G‘+ern(;J 2-10

where G* is the value of G at a reference pressure P*.

For a real mixture containing component i, the fugacity, denoted by f, then

-

dG, = RTdIn i—
J

-10 -
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= f“refers to the standard fugacity. Common standard fugacities are the ideal gas state at 1

atm or that of the pure liquid.

Here G; refers to the partial molar Gibbs free energy which is equivalent to p. Therefore

integration yields:

M =RTln%+9(T) 2-11

Here 6(T) refers to the constant resulting from integration and is a function of temperature only. It
is equal to the chemical potential of component i in the reference state. The criterion for

equilibrium then emerges.
fr=f* Z 2-12

The fugacity coefficient is defined as follows:

Q) = i 2-13
P
With reference to a species in solution for component i, it becomes
@, = /A 2-14

»P

The fugacity coefficient is used extensively to account for the departure of real gases from

ideality via the use of residual properties. In general, a residual property is defined as

MR=M-M*

-11-
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where
® M - property of the real fluid
= M%- property of the ideal fluid

For detailed procedures on the computation of fugacity coefficient, the reader is referred to the
iexts by Abbott et al. (1996) and Prausnitz (1969).

2.5 Activity Coefficient

The computation of the fugacity coefficient requires integration of the difference between the
Gibbs free energy of the ideal and real fluid from a state, where both are identical (ideal gas state
at zero pressure) to the system state. This means that an equation of state has to be available, that
describes the real fluid behaviour with sufficient accuracy at any pressure below the system
pressure. In order to give reliable results for the fugacity coefficients in the liquid phase, it must
also provide reliable results in the two-phase region. This is the reason why often a different
procedure is used for the calculation of the liquid fugacity. Using the pure saturated liquid at
system pressure and temperature as a convenient reference state, the description of the liquid

phase real behaviour is facilitated by the introduction of an activity coefficient, ;.

Y

Ji

—— 215
xJ; ()

Y=

The standard state fugacity of pure component i is represented by f°(P). The liquid phase uses

a property analogous to the residual property to account for the non-ideality. This property is the

©XCESS property.
ME=M-M"

M refers to the property of an ideal solution.

-12-
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Ideal solution behaviour is characterized by the following equation:
2 =G, +RTnx, 2-16
Real solution behaviour can then be described by:

#, =G, +RTInyzx, 217

Therefore
u—u¢ =G -G*=RTny, 2-18

Thus one obtains the partial molar Gibbs energy.

gE
—=lny 2-19
RT |

2.6 Computation Methods for VLE

Many engineering and design problems require the solution of the VLE. Consider a

multicomponent system comprising N components then the independent variables are T, P, N-1

liquid phase mole fractions and N-1 vapour phase mole fractions. It follows that there are 2N

independent variables. The phase rule dictates that N of these variables must be fixed in order to

determine the N remaining variables. The remaining N variables are determined for the

simultaneous solution of N equilibrium relations:

=7 (=1,2,..,N) 2-20

-13-
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Typically, T or P and the liquid-phase or vapour-phase composition are specified which

establishes the N variables. The N variables in question can then be determined.
In particular, many VLE systems exhibit low pressure that a simple equation of state is sufficient

for the description of the vapour phase. Gibbs excess energy equations can be used to obtain

liquid activity coefticients, The liquid phase fugacity of species i is:

fl=rxf

and the corresponding vapour phase fugacity is:
7, = ¢ v, P
It follows from Equation 2-20 that

yr'xff:f =¢?ny}) 2-21

This represents the gamma/phi formulation for VLE calculations. The fugacity £ of the pure
compressed liquid i is evaluated at T and P of the equilibrium mixture. This is done via two steps:

first by calculating the fugacity coefficient of saturated vapour for pure species i at temperature T

and vapour pressure P = P°" and then secondly by evaluating the change in fugacity of the

!

liquid with a change in pressure to a value above or below P . Thus £ is derived as

fi=orp exp[— il il ‘f’f”’)}

Equation 2-21 can be rewritten as

y:x:me’ =@y P 2-22

-14-
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- RT

1 L _ psat
where (I)j = i{ exp{... M]
9,
When the vapour and liquid phase can be considered as ideal then Equation 2-22 reduces to a

simple expression. In the case of an ideal gas then the fugacity coefficients :;3,. and @™ are unity

and for all practical purposes @, =1. The activity coefficients are also unity in the case of an

ideal solution. Thus Equation 2-22 becomes

yP=xP" 2-23
This is Raoult’s law. It represents the most rudimentary relation for VLE. Hence it fails to

adequately describe real behaviour of most systems.

At low to moderate pressures, a reasonable assumption, that the ideal gas model adequately
describes the vapour phase can be made. This provides a more realistic approach and the VLE

relation can then be expressed as:
;ij‘_}::‘“” =yP 2-24

This relation is referred to as modified Raoult’s Law. Although this provides a more accurate
description than that of Raoult’s law, its applicability is still limited to components that are sub-

critical,

The gamma/phi methed in general is restricted to systems containing components that are sub-
critical. It is used typically when the system in question exhibits pressure no more than a few
bars. In addition, it is adeguate for the correlation of constant-temperature data. Although the
local composition GF models do contain some temperature dependence for the parameters, these

are only an approximate (Perry, 1998).

-15-
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Another possible VLE relation is where both liquid and vapour phases are described by an

equation via fugacity coefficient. In this case the liquid and vapour phase are defined as:

fl=éixP - Liquid

£ =¢yP -  Vapour
Hence 2-20 becomes

x4 =yd 225

This approach has found its use in the high pressure domain. Here gi? is a function of T, P and

composition and is evaluated from an appropriate equation of state with the aid of mixing rules.
However, the use of equation of state for the liquid phase fugacity has been limited to systems
with small to moderate deviations from ideal solution behaviour. This was attributed to
inadequacies in empirical mixing rules. Wong and Sandler (1992) developed a new class of
mixing rules for the cubic equation of state and this has improved its application to VLE. The
Soave/Redlich/Kwong (SRK) and Peng/Robinson{PR) equations of state in combination with the

Wong/Sandler mixing rules can accurately correlate and predict VLE data.

2.7 Liquid-liquid Equilibrium
For two liquid phases in equilibrium the fugacities of all the components are equal in both phases.
f=f 226

Using equations of state and fugacity coefficients, then

14 "

(x,-f??,-'{') = (x:' ';D.-L ) 2-27

-16 -
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Using G® model and activity coefficients, then

() = (o) 228
From the definition of activity,

a,=x7 2-29
it follows that\

a; =aj 2-30

2.8 Representation of Ternary quuid-Liquid Equilibrium

Ternary data measured under isothermal conditions are represented on temary diagrams.

Based on the properties of the constituent binary combinations, ternary systems are classified into

three common categories.

Type | Description

1 One binary combination is partially miscible

2 Two binary combinations are partially miscible and the third type is completely miscible

3 All binary combinations are miscible.

Table 2-1 Classification of the different ternary systems

-17 -
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1 3 | 31 3 1 O | 3
Typel b: Type 2 (Transient ¢ Type2 d: Type 2 (Con- & Type 2 (The 2
Frequency: 75% between (ype | & Frequency: 20% structed from 2 curves from d
2) type | disgrams) have merged)
Frequency: 2% Frequency: <1% Frequency: <1%
2
1 3 1 3 1 3 1 3
 Istand curve g: Type | (Evolved h: Type | (Tie lines i; 3 coexisting liquid
Frequency: <1% from Fby a with nogalive phases (a, b, ¢)
temperature slopes Frequency: <1%
change Frequency: <1% :
Freaueney: <1%

Figure 2-2 The different ternary LLE type diagrams

A typical type 1 system would be water-acetic acid-methylisobutylketone. N-butanol-butyl
propionate-water is an example of a type 2 system. Often mixtures change type with a change in
temperature. In Figure 2-3 a system changes from type 2 to type 1 as temperature is increased.
Types b, f and g can also be obtained from changes in temperature (Figure 2-4),

- 18-
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Figure 2-3 Effect of temperature on ternary LLE .A — feed solvent, B — solute, S — extraction solvent

(Perry, 1997)

Temperatur €

140

68

Figure 2-4 Effect of temperature on ternary LLE
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2.9 Computation of Liquid-liquid equilibrium with the K-Factor
Method

Input:

Total mole numbers n,
Temperature T
UNIQUAC parameter estimation
for n;’

\ 4
Calculation of mole numbers n;”’ 7y

A

Calculation of the activity
coefficients

Yy

New number of moles n; pey,

r

_ A,
imew "
'
fyf n:
O

’
O n
" 7;2:";

n

A 4

Result: x;°, x;"’

Figure 2-5 Algorithm for the calculation of multicomponent LLE using the K-Factor Method

«20 =



CHAPTER
TWO

2.10 Data Quality and Model Selection

It is critical that the thermodynamicist selects the most appropriate model for data reduction based
on the chemical nature of the mixture (Raal and Muhlbauer, 1998). In cases where an applicable
model is not apparent, several models may have to be evaluated to assist in choosing the best
model.

The quality of equilibrium data has to also be addressed. Data has to meet some criteria in order
to allow model fitting and prediction of data within a certain tolerable window of error. As a
preliminary step to the regression process, data has to be checked for thermodynamic consistency.
In the case of questionable data, one is strongly advised to re-measure data (Raal and Muhlbauer,
1998). Consistency tests based on the Gibbs-Duhem equation are used primarily to establish the
credibility of VLE data. These testing procedures are detailed in Abbott et al., 1996. However, its
application to high pressure VLE data is very difficult.

If data passes the consistency tests, it is still insufficient to classify it as accurate or of superior
quality. One has to make the distinction between accuracy and precision in light of experimental

work.

Consider the dartboard as an example which clearly illustrates the distinction between the two

concepts.

good precision but poor precision and good precision and
poor accuracy poor accuracy good accuracy

Figure Error! No text of specified style in document.-1 Distinction between consistency and accuracy
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Accuracy of measurement refers to how close a measurement approaches the accepted or correct
value. Precision refers to the spread of measurements. It is evident from the first dartboard that
good precision does not necessarily imply a high degree of accuracy. The experimentalist thus
aims to achieve a good combination of good precision and good accuracy by avoiding personal,

systematic and random errors where possible,

One can thus conclude that although VLE data may be consistent, it could still be deemed
inaccurate. Data may not conform to a model due to the presence of bad data points even though
an appropriate model was used. In some cases, the data could be accurate but the selected model
fails to reasonably reproduce the experimental data. For these reasons, it is essential to examine

the data quality and thereafter select the best suited model.

' 2.10 Liquid Solution Theories and Evolution of G5-Models

2.10.1 Introduction

Liquid theories have attempted to improve the quality of GF-models by establishing a more
substantial theoretical basis and thereby enhancing data correlation, extrapolation and prediction.
The purpose of liquid theory is to be able to meticulously describe the behaviour of a real liquid
mixture and to quantify the relevant liquid properties. A theoretically correct description of a
liquid mixture is however an intricate and multi-faceted study and research in this field has not
yielded a plausible theory that encompasses all dynamics of a liquid mixture. The chemical
industry is expansive and vast and the notion of a sound theory that has a wide range of
applicability seems almost inconceivable. Nevertheless existing theories provide a fair basis for

the development and investigation of models.

This section aims to provide a brief overview of some of the theories that have been developed

and to give the reader some insight into the evolution of GE-models.
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2.10.2 Lattice Theory

Lattice theory attempts to describe liquid behaviour by recognising the fact that the liquid phase is
a transition between the solid and gas phase. It follows that a liquid can be envisioned as a real

gas and the respective properties would be computed by an equation of state.

The latter option would then be to consider the liquid solution particles to have more restricted
movement than that of the gas phase and hence the particles are more ordered in their
configuration. The particles are then assumed to possess a semi-crystalline structure and this

"structure” is termed a lattice. This forms the basis of the concept supporting lattice theory.

To adequately describe the behaviour of a liquid mixture one has to consider:

® [Intermolecular forces between similar and dissimilar molecules
»  Molecule size and shape and its effects on lattice configuration

®=  Magnitude of intermolecular forces and its effect on lattice configuration.

Figure 2.7 represents a mixture of 2 components and the configuration of the lattice after mixing.
Using knowledge of statistical mechanics, expressions for the enthalpy and entropy of mixing can
be found. -
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AFTER
EXCHANGE

Figure 2-7 Lattice before and after interchange (Prausnitz, 1969)

The excess Gibbs energy is given by:

G* =N axx,

where
= N, - Avagadro's Number

= @ - Interchange Energy

The interchange energy is defined as:

231
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o=2Z[[, ~0.5(T, +T,,)] 232
where
n 7 - Coordination Number

= I',,- Potential energy of pair 1-i

Iny,=-=x 2-33
kT’

Here k refers to the Boltzmann constant.

This theory however assumes a completely random mixture. This argument can only be
reasonable if all possible interactions (self association between the same components and cross
association between different components) are either identical or much smaller than RT. In the
case of a real mixture the energies of interaction are clearly not identical to those in the pure
fluids.

Guggenheim utilised a quasi-chemical approximation in conjunction with laitice theory to

simulate non-random mixtures (Prausnitz, 1969) which produced the following GF expression:

E
G_=2x1x2 1_0.5(2_a)}xlx2 + ... 2-34
RT kT zkT

This equation does not produce superior predictive performance in the case of miscible mixtures.
It does however prove far superior to lattice theory in the case of a mixture involving limited

miscibility,
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2.10.3 Flory-Huggins

This theory addresses the issue of non-zero entropy by considering the energy evolved upon
mixing to be zero. This idealised solution is termed an athermal solution. The theory adopts the

notion of a lattice theory.

Flory and Huggins assume a polymer molecule simulates chain behaviour and is composed of
solvent molecule segments. Each segment now replaces a molecule position in the lattice.

Volume fractions of the solvent and polymer are given respectively by:

O = = ——

= 235
n +mn,

where
" m - no. of segments
", =ne. of solvent moles

" n, = no. of polymer moles

The excess Gibbs energy and activity coefficient expressions for an amorphous polymer are given

by:

E ) :
——~=Zn,. In®, 2-36
RT %

Iny, = lnl:] —[l —i':lb2 H+(1—l}1}2 2-37
m m

However, since athermal behaviour is not realistic, the equation is modified by including an

enthalpic term to account for energy of mixing.

G* _
F:an In®, + 7O, (7 +mn,) 2-38
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Figure 2-8 Lattice model for a polymer chain in solution, symbols represent solvent molecules (@)

and polymer-chain segments

Iny, =ln[l—(I—llsz]+(l—l)¢'2 + y @3 2-39
m m

where y is the Flory interaction parameter derived from energy interaction of molecules.

2.10.4 Wilson's extension of Flory-Huggin's equation

Wilson used Flory and Huggin's equation and modified it by accounting for molecular
interactions. Here Wilson considers that there are excess enthalpies and entropies, but that the
excess volume is zero. Based on a binary case the ratio of the number of molecules around a
central molecule can be expressed as the product of the ratio of mole fractions and the respective
Boltzmann factors. The factors are representative of the potential energy interactions (between

components i-i and i-j).
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where A;; and X;; are energies of interaction.
The local volume fractions are then defined as:
X
; T 2.41
DX, U, X,

Wilson uses these local volume fractions to replace overall volume fractions @; in the Flory-

Huggins model.

GE é: .
= - In 2L
T Zx, nx,- 2-42

By introducing the parameters A; and A;; the equation reduces to
GE
E=—Zx, In ZxJAUJ 2-43
4 4

2.10.5 Two - Liquid Theory

This theory assumes that the properties of a mixture can be related to a hypothetical fluid and can
be considered to be the composition averages of the constituent components. For the binary case,

properties are derived by composition averages of the two hypothetical fluids.
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A central molecule is contained in a region called a molecule cell and is surrounded by molecules
from the mixture. Thus a binary mixture contains two cell-types with different cell molecules.
Thus any extensive residual property M of the mixture can be found from MY, the residual

property of the fluid of cell type i.
M =x,MY + x,M? 244

This theory can be extended to an n-component mixture with n types of cells and this is referred
to as n-fluid theory. This forms the basis for the derivation of the NRTL and UNIQUAC models
which are discussed shortly,

Molecule 1 at centre Molecule 2 at centre

Figure 2-9 The two cell types forming the basis of the two-liquid theory
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2.10 GE-Models

2.10.1 Introduction

Since the focus of this research is the modification of G®-models to improve their correlative and
predictive ability, a brief review of current GF-models is presented here. Models differ based on
the number of adjustable parameters, applicability to binary and higher system of components,
their nature (semi-theoretical or empirical) and degree of complexity and ease of computation.
The chemical nature includes difference in molecular size and self and cross interaction of
molecules in the mixture. Some models can be extended to multicomponent mixtures; however it

is usually necessary to first compute binary parameters,

Activity coefficients are functions of temperature, pressure and composition. The pressure
dependence is considered to have a negligible influence on the activity coefficient in the low
pressure range (Abbott et al., 1996).

The interaction parameters may contain inherent temperature dependence. In order to establish
temperature dependence for these parameters, a number of isothermal data sets would have to be
regressed. In the case of regression of isobaric data, the temperature dependence of these

parameters has to be accounted for and should not be ignored (Prausnitz, 1969).

This section outlines the applicability of models in addition to advantages and disadvantages to

assist in choosing the best model.

2.10.2 Margules

This is perhaps the most rudimentary equation correlating G® to composition. The simplest form

is the Porter (2- suffix Margules) equation.
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G* = 2-45
RTx x,
Iny, = Ax: 2-46
Iny, = Ax] 2-47

The use of this equation is limiting due to its obvious simplicity. It is symmetric with regard to
the mole fractions x, and x». This is however unrealistic since most systems exhibit asymmetric
behaviour and the model fails in this regard. Thus the model is used for a preliminary estimate of
trends (Raal and Muhlbauer, 1998).

GE

=A,x, +A4,x | 2-48
RTx,x, 21%) 12%2

Iny, =x§(A|2 +2(A2| _Alz)xl) 2-49

Iny, = xlz(Azl + 24, = 4, )x,) 2-50

The 3-suffix expression above was derived to correlate more complex systems (A, and A, are
the model constants). It does provide good reproduction of many non-ideal systems (Prausnitz,
1969). The model is empirical in nature and assumes that the components of the binary mixture

have equal moiecular size.

By the introduction of another term the 4-suffix equation is derived. This is appropriate when a

number of accurate data points have been measured (Prausnitz, 1969).

Margules equations are only applicable to binary mixtures. Further, the models cannot be

extended to multicomponent systems due to their empirical nature (Abbott et al., 1996).
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2.10.3 Redlich-Kister

GE
RTxx,

= A+B(x, - x,)+C(x, - x,) +D(x, - x,)’ +...  2-51

Here B, C, and D are the model parameters that contain a temperature dependence that is
determined from experimental data. The number of parameters chosen to represent a mixture is
determined by the chemical nature of the mixture. Due to the model's construction the even
powered terms are symmetric with regard to x and the odd powered terms are asymmetric and
manipulate the shape of the G® plot (Raal and Muhlbauer (1998)).

RTIny, = a"x2 +5Mx3 +cVx} +d0x 2-52

where
= aV=A+3B+5C+7D
= b'V=-4(B+4C+9D)
» "=12(C+5D)
= d"=-32D

This model is as effective as the 3- and 4-suffix Margules model.

2.10.4 Van Laar

3

By rewriting as a reciprocal expression one obtains a polynomial similar to the Redlich-

RTx x,

Kister expansion.

XX,

GE
RT

= B+C(x, - x,) 2-53
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or
E t '
G~ _ 4,4, 254
x %, RT  Al,x, + 4,x,
A T
Iny, = A;z[l +~—:ﬁ} 2-55
A%,
AL x _2
lny2=zﬂ{l+ f‘z] 2-56
A%

The Van Laar equation was pfoposed to accommodate for the differences in size of molecules and
has its foundation in the Van der Waals equation. It can also be derived from Wohl's expansion
with unlike molecule sizes. Despite the model's ability to account for molecule size differences, it
is still inadequate in characterizing highly non-ideal systems. This model does not account for

molecular interactions.

2.10.5 Wilson

This model is a pure entropic model. It describes Gibbs excess energy as G* = RTZ In( /" (x)).

Unlike interactions that are used in the Wilson model are solely to quantify the local composition.
Unlike the Guggenheim model, no enthalpic term is included. This results in problems in

reproducing larger G* values.

This equation is derived based on the concept of local composition. Wilson (1964) accounts for

the size differences in molecules and the intermolecular energy interactions.
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E
g—r ==X, l]‘l(}t‘l +x2Au)—x2 ln(xz +xlA2I.) 2-57

The adjustable parameters are defined as follows:

v, —AA4,
A, =—Lexp ’ 2-58
Yoy RT

i

Here v; refers to the pure liquid molar volumes of the components. A; is the parameter

characterising the molecular interactions between components i and j.

A1z and A, can be considered to be independent of temperature over narrow temperature ranges
(Prausnitz, 1998). Introducing the parameter's temperature dependence may not produce
significant differences. The Wilson equation proves its worth in the cases of miscible mixtures,
notably for mixtures containing polar and non-polar components. Its performance is superior to

that of Van Laar and the 3- Suffix Margules in these cases.

The Wilson equation cannot be used for mixtures with extrema in the logarithms of activity
coefficients (Prausnitz, 1998) and cannot predict liquid immiscibility. This limits its use to totally
miscible systems. By including a parameter C, this problem was overcome, but this too was not
without complications. The complexity of the extension to multicomponent mixtures becomes

problematic. The C parameter increases the interdependence of the parameters.

Wilson can be extended to multicomponent mixtures where parameters are required for each

binary pair in the multicomponent mixture.

.(f_=_ xInd x A 2-59
RT Z ! Z(! U)

i '
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m

2

xi'A ik

m

Iny, =—In{z.rjA,gJ+l—

/=1

2.10.6 NRTL

i=1

A

x .AU.
=1

This model was developed by Renon and Prausnitz (1968) and is capable of describing liquid

miscibility. It has wide applicability and noted applicability to highly non-ideal mixtures and

mixtures exhibiting liquid immiscibility.

Unlike the Wilson equation, NRTL has the interaction energy in the calculation of the local

composition (in the exponent) and for the calculation of the total G. However, NRTL has no

explicit entropic part.

G* 7,Gy 7,,Gy,
— =X, e
RT x+xG; X+ %G
[ G, Y G
Iny, = x2 721[ 21 } _}{ APAV)
i x, +x,Gy, (xz +x,G,2)
[ & Y .G
lny2=x,2 712[ 12 ] +[ 21Uy -
i X, +x,Gy, (x, +x2G2|)
_ 8~ 8u
T, =
RT

Gy = exp(— a,.jrﬁ)

|

2-61

2-62

2-63

2-64

2-65
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In the case of a binary system the adjustable parameters are Ag), and Ag,,, which represent the
Gibbs free energy of interaction. The parameter ¢ is an additional parameter and addresses the
issue of non-randomness in solution. Monte Carlo simulations have shown that ¢, ranges from
0.20 t0 0.47 and thus its value is usually set at 0.3. (Prausnitz, 1969)

The model has limited explicit temperature dependence and the interdependence of parameters is
increased (Raal and Muhlbauer, 1998).

The model can be extended to multicomponent mixtures.

m

G E El Z rﬁ GJ"" xf

7l X, —F‘m 2-66
= ZGﬁxl
=1
Zfﬂij » ¥ G ( Z.".".T_,?G:_,;f
Iny, == +y L, — =L 2-67
ZG,,x, s ZGﬁ.x{ ZG&.x,
i=l =1 f=1
2.10.7 UNIQUAC

This equation is derived using the two-fluid theory. The model was derived to handle miscible
mixtures using two parameters. Thereby it would be superior to other local composition models.

The model is an extension of the quasi-chemical theory of Guggenheim.

Local composition equations for excess Gibbs energy are inconsistent when based on the one-
fluid lattice model. UNIQUAC is based on the two-fluid theory and hence the inconsistencies do
not apply. A brief derivation based on Maurer & Prausnitz (1978) is presented in dppendix 4: A1
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— UNIQUAC Derivation since UNIQUAC is the precursor to both the FlexQUAC and
FlexQUAC-Q model,

where

Gl -
RT RT combinatorial RT restdual

Gt D, o, Z 8, 6,

i =x In—+x,In—+—| g,x, In—+¢,x, In—= 2-69
RT combiratonal X X, 2 @1 ch

GE |

RT resicuat =—4% ]n(91 +9272|)_42x2 ]n(ez +91712) 2-70

— @, =22
X\ + X0 X h X0

Unlike the two former local composition models, UNIQUAC contains both an entropic and

energy interaction terms which account for two different aspects of real solution behaviour. This

makes it superior to its predecessors. However UNIQUAC still utilizes the same simplified

calculation of local composition as Wilson and NRTL.

The combinatorial part accounts for the varying sizes and shapes of molecules while the residual

part factors in the presence of intermolecular force interactions (Prausnitz, 1969). The

combinatorial part requires pure component size and surface fractions (r and Q). These are
derived from Bondi (1968) or from group contributions (Raal and Muhlbauer, 1998). The binary

parameters are contained in the residual part of the model. The coordination number Z is usually

set to a value of ten.
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To improve the performance of the model, for mixtures of waters and alcohols, Anderson and
Prausnitz, (1978) adjusted the q values (q' in this case). q' is found to be smaller than q in the case

of alcohols and water due to the presence of hydrogen bonding. For all other systems q=q'.
The two parameters, T, and 1, are obtained from regression of experimental equilibrium data.
Auy is referred to as the characteristic energy and is considered to be a weak function of

temperature (Prausnitz, 1969).

The corresponding activity coefficient expression is:

ln y:‘ = ln yi combinatonal + In yﬁ resichual

D, Z 6,
In =In—t+=g In—L++®,|/ -LI 2-72
y 1 combinatorial xl 2 ql q)l [ , 2 ]
Ny, ow =—4 (@ +6.7,,)+6%¢ i iaF: 2-73

where

I, =‘§*(r1 _ql)_(rl "1)

The UNIQUAC model can be extended to multicomponent mixtures.

G—B len ’+ i Juslni 2-74
RT combinatonial jml 2 ] q’ ' (D

GE'
R s~ —Z q.x, ln[§ 7, J 2.75

i=l
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nt ] 9'
Iny, = ln£+zq,l le -q! ln[zejrﬂJ+q, ,Z—m— 2-76
X, 2 X jml J=1 _lze;rk
13

k=]

The major advantages of UNIQUAC that has made it superior to other models are:

= applicability to multicomponent mixtures

s applicability to LLE

® Inherent temperature dependency for many systems valid over a moderate range

= superior representation for molecules of widely different molecular sizes, suitable for
non-ideal mixtures

® jts basis for one of the most widely used predictive group contribution method UNIFAC

The model is however limited by its algebraic complexity and the availability of r and g

parameters.

2.11 Group Contribution Methods

All the models discussed previously utilize interaction parameters which must be obtained from
the regression of experimental data. When experimental data is limited, the use of group
contribution methods is preferred. Here a molecule is fragmented into structural groups. It is
assumed that the functional groups behave as if they were isolated from the molecule they are
contained in. Thus the intermolecular interactions are “weighted sums of group-group
interactions” (Prausnitz, 1998). Reduction of experimental data for structural group interaction
then allows molecular interactions to be quantified. This section briefly reviews some group

contribution methods,

-39



CHAPTER
TWO

211.1 ASOG

The Analytical solution of groups is based on the solution of groups by Wilson and Deal (1962).
Here the chemical potential of a component i in solution (equivalent to Iny) is considered to be the

sum of two parts:
Iny, =lny/™ +my’ 2-77

* Iny™ relates to the size contribution

* InyF is related to the interaction of the structural groups of the molecule with the rest of
the system

These terms in a sense take into account entropic and enthalpic contributions.

The size term has its roots in the Flory-Huggins theory:
Iny/¥ =InR, +0.434(1-R,) 2-78

® R, refers to the ratio of solute groups to the total number of groups in the average liquid

molecule

R =1 2-79

» v¥ refers to the number of size groups in each molecular species in solution and the

summation is taken over all the species

The interaction term is defined as the difference between the group contribution which occur in
solution and in the molecular standard states. The summation of all these interactions are

considered for the groups contained in the molecule.
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Iny’ =>v, (ln r,-I; ) 2-80
k

» v, refers to the number of interaction groups of type k in molecule i
= I represents the single function of the group composition for both the solution I and the

molecular liquid standard state "’

The term T’ is assumed to have the same value for all molecular mixtures which have the same
group composition. “I can be considered the ‘group activity coefficients’ referred to the
hypothetical standard pure groups™( Derr & Deal, 1969). This function also meets the Gibbs-

Duhem criterion for the ‘groups’ since the activity for the molecules also satisfy this criterion.

The ASOG method proposes a definite analytical form for the I' function. This is the distinction
between ASOG and the solution of groups method. Solution of groups utilized binary data to
obtain the group fraction dependence of the functionI”. This restricted its use since mixtures with
only two groups could be handled. The analytical expression for this function allows for
versatility to treat binary and muiticomponent systems and is capable of handling many kinds of
groups. Derr and Deal (1969) used Wilson as a basis for defining I since it related to excess free
energy trends. Using the Wilson equation for group activity coefficients, the following equation is

obtained for a group, k in a mixture comprising N groups:

InT, =—In> X, +04341-3 K| 1
k o Thatt <) par Z Xm a,,
=1

® ais the binary group parameter similar to binary model parameter (Note a,=a,;=2,,=1)

s X refers to the group fraction

The group fraction for group k is the ratio of the total number of groups of k to the total number
of all types of groups in the mixture.
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—_ ¥
X, ==~~~
Sy
; P

» X refers to the mole fraction

2-82

If one considers a solution comprising two groups (1 and 2) then Equation 2-81 reduces to:

X, x1 X.a
InT, =-In{X, + X,a,,)+0.434 1 - ! - 2720 2-83
l ( l : 12) |: (X1><1)+Xzalz (X2X1)+XI021J
X, x1 X,a |
InT, =—in(X, + X 0.434)1- 2 - 1712 2-84
ni, I'l( s+ lazl)+ | 4{ (szl)+X]a2] (X]X1)+X2a]2_

The following steps are required for use of ASOG:
1) Define the groups to be dealt with and their respective group numbers
2) Calculate group parameters from experimental data

3) Calculate activity coefficient for new mixtures

Typically a mixture is split into easily discernable chemical groups that have unique interactions.
Consider the example of the acetone molecule. It could be fragmented into two methyl groups
and one carbonylic interaction group with three size groups. The selection of the groups can be
arbitrary and the total number of size groups does not have to correspond to the total number of
interaction groups. In this case it would be possible to consider acetone as having two methyl
with one carbonylic interaction groups (Figure 2-10) with four size groups or two methyl, one
carbonylic carbon with one carbonylic oxygen interaction groups (Figure 2-11) with four size
groups. Thus ASOG demonstrates flexibility in its application. However caution and logic should
be exercised when determining the groups. This should be based on plausible interactions and
molecule size, Group-pair parameters are obtained from activity coefficients of systems. This
creates a matrix of group-pairs. These parameters can then be used in the calculation of activity

coefficients in other new systems.
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Obtaining a unique set of parameters can be problematic. Extrapolations of group parameters

across large temperature ranges are not advisable.

Figure 2-10 Acetone molecule with two methyl (highlighted in red) interaction groups and one
carbonylic interaction group (highlighted in blue) (www.worldofmolecules.com)

Figure 2-11 Acetone molecule with two methyl (highlighted in red) interaction groups, one carbonylic
carbon interaction group (highlighted in blue) and one carbonylic interaction oxygen group
(highlighted in white) (www.worldofmolecules.com)

s 4%
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2.11.2 UNIFAC

The UNIFAC method (Universal Functional Activity coefficient) uses the UNIQUAC model as
its basis. It was developed by Fredenslund, Jones and Prausnitz (1975).

Figure 2-12 Depiction of how molecules are fragmented into structural groups

The UNIFAC method utilizes the solution of groups theory, whereby a system is regarded as a
mixture of sub-molecular groups, e.g. CH;--, --OH, --COOH etc. rather than a mixture of
molecules. The activity coefficients of the molecules are calculated from the activities of these
groups. The interaction parameters required to find the group activities are regressed using a large
database. These interaction parameters are independent of the molecules of which the groups

form part.

The sub-molecular groups are divided into certain main groups. Interactions are only determined
between the main groups. The advantage of this method is that the number of possible structural

groups is much less than the number of different components comprising the entire molecule.
In ?/sc = f(xn% ol ) 2-85

Relative Van der Waal's surface: q; = ZVF}Q& 2-86
k
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Relative Van der Waal’s volume: r= ZVE}R,t 2-87
k
Iy =S v(nT, I[P} 288
= ,

I,=f (x,.,q!.,am 2-89
Group interaction parameters, a,, are obtained from the regression of experimental VLE data.
There have been several modifications to UNIFAC. These include:

®  Original UNIFAC

» Modified UNIFAC (Lyngby)

»  Modified UNIFAC (Dortmund)
»  Second-order UNIFAC

s  UNIFAC-LL

*  Polymer UNIFAC

s UNIFAC Free Volume

The modified UNIFAC (Dortmund) is maintained by Prof. Gmehling and co-workers. The
parameters are fitted using the entire Dortmund Databank (DDB). Original UNIFAC lacked data
for compounds of very different size. It had no qualitative information about y(T) and

extrapolation to infinite dilution was not advisable.

Modified UNIFAC differs from original UNIFAC with regard to both the combinatorial and
residual parts. Here the combinatorial part was modified to accurately account for systems that
exhibit significant differences in molecular size. This gave improved results for asymmetric
mixtures. The residual part was modified to include a better temperature dependence of the
interaction parameters. This temperature dependence is crucial since UNIFAC interactions were
usually fit to experimental VLE data close to 1 atm. This can produce high degree of error if

extrapolation to higher/lower temperatures or pressures is required. In addition, modified
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UNIFAC has a wider basis of data including ¥°, H, Cp~, SLE and LLE data. The excess

enthalpies gave qualitative information about ¥(T). A combination of these modifications has

made modified UNIFAC superior and more accurate than UNIFAC.

Modified UNIFAC uses the following objective function:

F=Wyp ) AVLE+W, 50 ) AZD+ W, D AH® + W0 Y ACP" +1,. 3 Ay™ +Wyyp 3 ALLE+ Wy, 3 ASLE

Data Type Delivers the required information
VLE and azeotropic data y = 1(x)
H5(Cp®) Gibbs Helmhotz equation y = f(T) — support data at high temperature
dlny, Hf
a(/T) R
v The only reliable information in the dilute
range and about asymmetric systems
SLE Ah Supporting data at low temperature (T < 273
L L m,T,,‘, T .
Inx 'y =- 1- K) .
(Eutectic RT T,
Systems)
LLE Often the only information for strong real

mixtures

Table 2-2 Data types used in the objective function and the type of information that they deliver
(Gmehling and Rarey, 2005)

The predictions obtained from UNIFAC are often very good provided there are interaction

parameters available.
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Figure 2-13 Relative deviations between experimental and predicted data for 3300 consistent VLE
data sets (http:/134.106.215.86/UNIFAC/)

Figure shows the relative deviation between the experimental and predicted (composition,

temperature and pressure) for 3300 data sets as published by the UNIFAC consortium.

It can also be used to predict activity coefficients at infinite dilution. Figure shows the absolute

and relative deviation for 12600 data points.

The UNIFAC and modified UNIFAC parameter matrices are being updated continuously. Figure
2-15 illustrates the interaction matrix for modified UNIFAC.
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Figure 2-14 Infinite dilution activity coefficients prediction for comparison of various models

(http://134.106.215.86/UNIFAC/)
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Figure 2-15 Modified UNIFAC (Dortmund) interaction matrix (http://134.106.215.86/UNIFAC))
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2.11.3 GEQUAC

Both UNIFAC and ASOG are based on the idea that a molecule interacts with its nearest
neighbours. This concept was introduced by Guggenheim. However the use of local composition
in semi-empirical models and group contribution methods are inconsistent. The selection of
groups is arbitrary and hence different descriptions of the same molecule are obtained. With the
aid of quantum mechanics, criteria have been established to determine physically consistent
groups. This has been used with modified UNIFAC and has given betfer results. More exact

approaches to Guggenheim’s concept have produced, among others, the following models:

s TASQUAC (Kehiaian, Abusleme and Vera)

*  GTASQUAC (Lacmann et al) — group contribution for multicomponent phase
equilibrium of organic compounds

»  DISQUAC (Kehiaian et al) — group surface version of Guggenheim-Barker quasi
chemical lattice theory

Existing models do not adequately describe associating and non-associating mixtures. This can be
attributed to the polar and hydrogen bonding interactions that occur between two positions of a
functional group, the two poles of the dipole and the acceptor and donor site of the hydrogen
bond. The GEQUAC model was derived with the intention of describing these interactions
(Egner, Gaube & Pfennig, 1997).

G =G, +GE 29

GEQUAC has two parts. The combinatorial part, Go‘fm is the same as the Guggenheim-
Stavermann term which represents the entropy change of mixing attributed to the differences in
molecular size and shape. Gift represents the interaction strength, influence of interaction, steric

effects on mutual orientation and deviations from random mixing.

The model contains three adjustable parameters to describe mixtures. The intensity of interaction

is described in terms of free energy.
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G _ H $
@, =0, - Ta)ﬂ 2-91

. @ j}' refers to the exchange-enthalpy parameter between the surfaces of groupsiand j

. a)ﬁ refers to the exchange-entropy parameter between the surfaces of groups i and j

H o
W, =26,-8,-¢, 2-92

» ¢ refers to the interaction energy

The surface area of the site participating in the interaction is defined as:

g, =—" 2-93

s A, refers to the surface area of site i
o A=2.5x%10° cm® mol”, the surface area of reference particle as defined for the
UNIQUAC model

A molecule of component k, comprises M, groups.

My
9 = GQvpw = Zqi 2-94

i=]

The volume parameter r, is obtained from normalization with the volume of a standard segment
Vyee= 15.17 cmy’ mol™ according to UNIQUAC.

The number of model parameters is determined by the fragmentation of the molecular structure.
This is dependent on the type of mixture, If one considers a ketone-alkane or alcohol-alkane
mixture, then four different surface areas can be defined (
Figure 2-16). The alkane molecule can be considered as a weak interaction surface (4). Polar or

hydrogen bonded molecules comprise two strong interacting surfaces areas 1 and 2, with the rest
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of the molecule characterized by a weak interacting surface, 3. With this basis, 14 model

parameters are considered.

The surface parameter for the alkane would correspond to that of the Van der Waals surface.
Surface 3 of the strongly interacting component is defined as the difference between Van der

Waal’s surface of the entire molecule and the adjustable surface area of the two poles.

93 = 9w —41 — 4> 2-95

strongly interacting alkane
component

Figure 2-16Fragmentation of molecular surface for ketone-alkane and alcohol-alkane mixtures for
the GEQUAC model (Ehlker & Pfennig, 2002)

Surface Sites Surface parameter
1 qu
2 [¢F)
Group contact Exchange parameter
Enthalpic Entropic
- H S
12 ’p @y
i wf,; a’l‘ss
_ H s
B3 y3 W3
- H S
bl W4 Wy
< H 5
24 @y @y,
= H S
4 @3y @y

Table 2-3 Model parameters for ketone-alkane and alcohol-alkane mixtures required for the
GEQUAC model
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Interaction energies for the weakly interacting surfaces, 3 can be considered small, thus a)ﬁ is

assumed to be negligible (a);' and @7 are zero by definition). Thirteen model parameters have

to be determined and this requires a systematic approach to obtain a physically significant
parameter set.

The objective function is defined as:

Flg,0"0S)= S AVLE+Y AH® 296

>

k-1

» AVLE, (
v (T - TGEQUAC 2
. AVIE, = [ ]
-1

P - PGEQUAC ]2

y GEQUAC
« AVLE, = Z *T]
k-1 Yi

JEe® _ py EGEQUAC JZ

N
» E _ k &
AH _Z( HE,exp
k

Since all parameters cannot be fitted simultaneously to all the binary data, priority has to be given

to the surface parameters q, and q; of the strong interacting surface sites and the exchange
enthalpy, a)f;‘r between the surfaces of these 2 poles. q; and q; were varied in certain limits and

objective function was evaluated.

Binary mixtures in a homologous series were investigated. The atomic charge of single ketone
and alcohol molecules were investigated and it was found that the charge distribution was the
same within a homologous series of ketones and alcohols. Slight deviations were observed for

isomers. Hence all surface parameters of poles q; and g, are constant for all components of the
homologous series of alcohols and ketones. a);f is the same for all binary mixtures within a

series since they correspond to the same polar sites for each mixture. The components in each
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series only differ in exchange entropy parameters. @;, and @, refer to the strongly interacting
components for different components in the homologous series and @;, refer to the different
components in the homologous series of alkanes. @3;, @}, and ®;, are set to a constant value.

ol ol 0k, 0 0k and surface parameters q; and g, are the adjustable parameters that have

the same values for all binary mixtures in a homologous series.

Excellent results were obtained for the binary ketone-alkane and alcohol-alkane systems.
GEQUAC describes the H® data well. Data was also extrapolated to predict LLE, but the

description is not very accurate.

¥ I ¥ T v T v T T
- hexane + acetone R experimenf
0 GEQUAC
i r'=308.15K [41] f

7=293,15K [42}

0,0 0,2 0,4 0,6 03 1,0
Nhexanes Vhcxane

Figure 2-17 Hexane-acetone system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002)
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240 |- hexane + ethanol ' x ::xperil‘nem .
] 7'=1353.15 K [43] GEQUAC
200 | i
160 T'=343.15K {43]
ig; 120 #
= - T=1333.15 K [43
80 7=318.15 K [44]
OF 7=298.15 K [45) .
L 2 :
0 1 | I |
0,0 0,2 0.4 0,6 0,8 1,0
Xhexanes Vhiexane

Figure 2-18 Hexane-ethanol system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002)
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Figure 2-19 Heptane-ethanol H" data as fitted by the GEQUAC model (Ehlker & Pfennig, 2002)
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Figure 2-20 Prediction of LLE for methanol-hexane system (Ehlker & Pfennig, 2002)

While GEQUAC achieves good results, the model requires many parameters. GEQUAC has a

plausible theoretical basis since it solves a quasichemical equation. The model is mathematically

complex,
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Chapter 3 Literatui'e Review

3.1 introduction

The chemical industry is an ever expanding industry with new components being synthesized to
cater for varying industrial applications. Researchers have no doubt invested an immense amount

of time, money and effort over decades to measure equilibrium data.

The results of years of arduous experimental work have been stored in computerized data banks
~ ¢.g. the Dortmund Data Bank (DDB). The DDB was developed by J. Gmehling and co-workers.
The current status of the DDB is:

*  Vapour-liquid Equilibrium (VLE) Data - 52180 Isothermal/Isobaric Data sets

»  y* - Infinite Dilution Activity Coefficients - 44750 Data points for pure solvents and
mixtures

s HE - Excess Enthalpy - 17400 Data sets

= Azeotropic Data - 14720 Data sets

» Liquid-liquid Equilibrium (LLE) Data - 14720 Data sets
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The DDB has currently 52000 references from 1800 journals and for 18900 compounds. This
helps the reader to further appreciate the rate at which the amount of physical property

information is growing annually.

The experimental setup and measurement of equilibrium data has become a well established
science over the years. However, it is still an expensive and complex undertaking depending on
the nature of the chemical components. The cost of the measurement is also a further constraint to
be factored in when considering the setup and operation of equipment. Equipment cost also varies
depending on the operating conditions with the cost of high pressure equipment far outranking the
cost of measuring low pressure equilibrium data. Multi-component data measurements are even
more complex and the results are of questionable quality. The number of possible chemical
combinations and permutations is often very large and thus one is limited by the availability of

data,

Equilibrium data are a prerequisite for the design, synthesis and operation of separation
equipment. Thus the design phase is dependent on the availability of equilibrium data, For cases
where experimental data is not readily available, predictive methods become more crucial. In
particular for multi-component systems, equilibrium data is predicted from binary interaction

parameters obtained from experimental binary data.
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MULTI-COMPONENT
DATA

Figure 3-1: The link between binary and multi-component data

GE-models and equations of state provide the link to predicting multi-component mixture
behaviour. Inherent in the models are parameters derived from regression of experimental data. It
follows that the parameters can only be used within a certain range of confidence dictated by the
temperature and pressure of the data. This limits the use of the parameters to extrapolate data and
impacts on the margin of error introduced. Further, this limits the extension of the use of the
binary interaction parameters to predict multi-component data within a certain tolerable window
of error. The quality of the binary data also determines the quality of the binary parameters and
the confidence levels in predicting data. Table 3.1 illustrates the availability of some of the more

common GE-models in commercially available process simulators. It also indicates whether the
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model is capable of correlating and predicting liquid-liquid equilibria and multi-component phase

behaviour.
MODEL Aspen HYSIM PROII Liquid-liquid Multi-component
equilibria Systems

Margules - X - Yes No

Van Laar X X X Yes No
Wilson X X X Yes Yes

NRTL X X X Yes Yes
UNIQUAC X X X Yes Yes

Table 3.1 Implementation of excess Gibbs energy models in process simulators

This chapter carefully analyses the use of G"-models in the prediction of equilibrium data. It
highlights both their advantages and their disadvantages to help the reader understand their
capabilities. The disadvantages have helped researchers to isolate the problem with current
models i.e. the concentration dependence. The latter half of this chapter addresses methods

employed by thermodynamicists, to improve G"-models.

3.2 Advantage of Models

G"-models and equations of state are tools for correlating and predicting the real behaviour of
mixtures e.g. phase equilibrium. Current local composition G"-models (Wilson, NRTL and

UNIQUAC) boast the following features, which make them practical for engineering purposes:

= applicability to highly non-ideal mixtures

L B
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o GEF-models have evolved over time and have become able to correlate more non
ideal systems. Simpler models like Margules were only able to handle symmetric
systems. This deficiency prompted the development of models that were able to
handle more realistic asymmetric chemical mixtures. Models gradually evolved
to contain some theoretical basis which improved their predictive ability (local
composition models — Wilson, NRTL and UNIQUAC). The Wilson equation
showed distinct tmprovements for mixtures containing non-polar and polar
components but was limited due to its inability to predict liquid immiscibility.
NRTL and UNIQUAC were later developed and had the ability to predict liquid
immiscibility in addition to highly non-ideal systems.

= extension to muiti-component mixtures from binary data

o Simpler models were not able to be extended to multi-component mixtures
(Margules, Van Laar). The binary interaction parameters derived using the
Wilson, NRTL and UNIQUAC models can be used for multi-component systems
with considerable accuracy.

* improved extrapolation

o Models like Margules and Van Laar lack a temperature dependency in their
interaction parameters and hence cannot be used to extrapolate data to different
temperatures. The local composition models have temperature dependency in
their interaction parameters in the form of a Boltzmann term. These models can
be used with some confidence to extrapolate data to different temperatures.

* mathematical simplicity and numerical stability

3.3 Disadvantages

3.3.1 Weak Theoretical Basis

GF-models are developed either on an empirical, semi-empirical or theoretical basis. Models have
evolved over time and are now more effective in describing equilibrivm behaviour by accounting

for different sizes of molecules and interactions beiween molecules. This is possible due to the
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model's theoretical basis. If one improves this theoretical basis, then the model should

theoretically become more widely applicable.

Often a better theoretical basis makes a model more unstable. As one acbounts for more
deviations from ideality in a model, the model rapidly steps up in complexity and the required
computation time increases drastically. The model could become numerically unstable and
parameter fitting may lead to multiple solutions. Intensive experimentation is required to quantify
factors accounting for deviations from ideal behaviour. From a global perspective this is not a
prudent solution to the problem. Models should ideally be fairly simple and practical for
engineering purposes since this then serves to provide fair estimates or starting points for
equipment design. In addition, the research and experimentation required to improve the model

could be costly, complex and a time consuming process.

3.3.2 Poor Model Performance due to Few Parameters

Models have a varying number of parameters based on the complexity of the model. The
predictive ability of the parameters is dependent on the quality of data and the ability of the model
to adequately describe the mixture. A model can be modified differently by the introduction of

parameters or by modifying the model equation itself.

Study of phase equilibrium data has revealed that pure component parameters can improve the
description of almost all mixtures of practical interest since many of these of mixtures exhibit

differenices in both size and chemical nature,

Local composition models have been developed with this crucial idea as its focus. By including
these pure component parameters the model's fitting capability is increased. The Wilson model
utilises pure liquid molar volumes. The UNIQUAC model uses the r and q values which are

representative of volume and surface areas.
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3.3.3 Inability to Simultaneously Describe VLE and LLE

Although considerable time has been invested in developing activity coefficient models, no model
to date can boast the ability to simultaneously describe VLE and LLE data. The correlation of
VLE data from LLE derived parameters is very inaccurate. This is clearly illustrated in Figure
3-2a-b.

1
15

v 4
o8 ! Ry
- "] regression to
13 L I e VLE-data
experimental L~ ng .

06 1 ] » LLE -
f/ x4=0.436 12 L .
s 7 | 5 .
ol d LLE from fit _| 1 :
K to VLE-data .
X1=0.354 """N..h
10 — S predicted from LLE —F—<
\
a2 \
{ T b) -
a) .
ol | 8
o 0.1 02 03 0.4 05 06 0 9405 04 0.15 02 025 03 035 04 0.45
X4 X4

Figure 3-2 a) x-y data - b) Separation factor, &,;~ calculated using UNIQUAC GE-model parameters
from LLE and from the regression of VLE-data for the system Water (1) - 1-Pentanol(2) (Cho, et al
1984) at 101.3 kPa together with experimental xyP-data (Rarey, 2005)

Figure 3-2a shows x-y data for the system Water (1)-1-Pentanol (2). The curve predicted from the
LLE is not steep enough in the homogeneous region. In the case of the regression of the VLE
data, the immiscible region is over estimated. In Figure 3-2b the separation factor, a,, is
calculated from LLE parameters and fit by regression of VLE data. It is clear that the prediction

of this parameter is unsatisfactory in both cases.
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Figure 3-3 Prediction of VLE data (+ VLE data - Fischer, 1991) using NRTL and UNIQUAC GE-
model parameters from LLE at 50°C for Water (1)-1-Butanol

Figure 3-3 shows the correlation of VLE data from calculation using LLE parameters from local
composition models NRTL, and UNIQUAC. Both models fail to adequately describe the left hand
side homogeneous regions. The curves generated using both models are clearly not steep enough

in the homogeneous region and the result is an inaccurate description of the data.

These disadvantages help highlight the problematic areas of the models proposed thus far.

3.4 Improving the Concentration Dependence of G*- Models

3.4.1 Introduction

The advantages and disadvantages presented above provide a holistic perspective of the
capabilities of current models. It also highlights the fact that the problem lies in the concentration
dependence of GE-models and if one can propose plausible modifications while still retaining the
model's current capabilities, then the model would truly be enhanced. This section reviews some
of the methods employed by researchers to solve this problem, in particular the problem of

simultaneously describing VLE and LLE.
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Some researchers have invested time into exploring methods to improve the concentration
dependence in GE-models. The available methods that were explored by various researchers are

very limited. Those methods that could be sourced from literature are discussed in this section.

3.4.2 Method 1: Combining Two Models

3.4.2.1 Introduction
A more flexible GE-model could be obtained by combining two models, where both differ in their

concentration dependence (Rarey, 2005). This newly formed GF-model would have superior
capabilities since the constituent models would compliment each other. In other words, the
combined models would be able to correlate data in cases where the both models fail individually.
The new model should then be able to simultaneously correlate VLE and LLE data provided the

two models have different concentration dependences (Rarey, 2005).

3.4.2.2 Combination of Modified Wilson and Redlich Kister Equation

In support of the concept introduced above, an illustrative example is presented here, LLE data
and excess enthalpies for two binary systems were correlated utilising a combined GE-model. The
systems investigated were methylcyclohexane (1)-methanol (2) and methylcyclohexane (1)-n, n-
dimethyiformamide (2) (Bendova et al. 2003). Data points for the binodal curves and tie-lines
were determined for both systems and correlated. The LLE and excess enthalpy data was also

predicted by the modified UNIFAC method for the purpose of comparison.

To correlate the data the Wilson and Redlich Kister equations combined. The newly formed

Modified Wilson equation was then evaluated to assess its ability to correlate data.

E E
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E N N y
(%} =-2 fofoBUk (x,. - xf)k_] 3-3
Re dlichKister

=1 fH

a,=a,+p,T +(;“'J 3-4
NEL
B,=a,+B,T + {%} 3.5
E
s O= T Dimensionless excess Gibbs energy

" &, B Vi Gijke Biik and yix— Temperaturg independent binary parameters
» V, —molar volume

s x, — mole fraction

[ ] T* = _T_
Ty
s T.=300K

In the Redlich-Kister equation, the number of parameters, n; is dependent on the system to be
correlated. T* was introduced in this combined model as a means to improve numerical stability.

Equations 3-4 and 3-5 show the temperature dependence of the model parameters.

In this case, the correlation of data was achieved by use of the maximum-likelihood method. This

method was appropriately chosen since it facilitates the correlation of various types of data
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simultaneously. Specifically, the excess enthalpy data for the heterogeneous region could be

included in the simultaneous correlation.

3.4.2.3 Evaluation of Combined Model Equation

325 e ———y
zc |- -
NS E
anf
53¢
acof
25+
20}
265
260} S o

TIK

3
)
It

»

Figure 3-4 Liquid-liquid equilibrium for methylcyclohexane (1) and methanol (2) --- Modified Wilson
equation (Bendova et al, 2003)
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Figure 3-5 Liquid-liquid equilibrium for methylcyclohexane (1) and n, n-dimethylformamide (2), ---
Modified Wilson equation; - - - Modified UNIFAC method (Bendova et al, 2003)

Some literature values for the system methylcyclohexane-methanol were available and these were

used in conjunction with measured LLE data for correlation purposes.

The modified Wilson equation fits the LLE data for both systems with excellent accuracy (Figure
3-4 & Figure 3-5). The prediction obtained from the UNIFAC method for the system
methylcyclohexane (1) - n, n-dimethylformamide (2) is shown in Figure 3-5. UNIFAC over

estimates the heterogeneous region when compared to the experimental data.

The correlation of excess enthalpy in the system methylcyclohexane (1) - n, n-
dimethylformamide (2) (Figure 3-7) by the modified Wilson equation was excellent in
comparison to the experimental data whilst that for the system methylcyclohexane (1) - methanol
(2) (Figure 3-6) was satisfactory. UNIFAC is once again used to predict the excess enthalpy for
both systems. The prediction obtained for the methylcyclohexane (1) - n, n-dimethylformamide
(2) can be considered satisfactory. In the case of methylcyclohexane (1) - methanol (2), UNIFAC
inaccurately predicts that the system is homogeneous in the entire concentration range at both
temperatures, 293.15K and 398.15K.
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The use of the modified Wilson equation in conjunction with the maximum-likelihood principle

gave a very good correlation with the experimental data.

Advantage - Good description of both the LLE data and excess enthalpy using a combined model
and maximume-likelihood principle.

Disadvantage — 7-8 Interaction parameters were required by the combined model equation to
obtain a good correlation.

Disadvantage - Have to select constituent models with some knowledge of the systems being

correlated to ensure optimal fitting of data by the combined model.
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|

Figure 3-6 Excess enthalpy for methylcyclohexane(1) and methanol(2), o, 298.15 K; o; 313.15K; (thin
lines — the modified UNIFAC method, bold lines --- the modified Wilson equation) (Bendova et al,
2003)
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Figure 3-7 Excess enthalpy for methylcyclohexane(1) and n,n-dimethylformamide(2), o, 298.15 K; o;
313.15K; (thin lines — the modified UNIFAC method, bold lines --- the modified Wilson equation)

(Bendova et al, 2003)

3.4.3 Use of Additional Parameters

3.4.3.1 Introduction
A lack of sufficient parameters is a major disadvantage that prevents models from adequately

describing phase data. The use of additional parameter can drastically improve the fitting
capability of a model but care should be taken that it does not introduce any intercorrelation
between existing parameters. The parameter should also not introduce undue complexity with

regards to use of the model.

3.4.3.2 Multiplication by a Concentration Dependent Factor

The work of Prausnitz and Cha (1985) addresses one aspect of the simultaneous representation of
VLE and LLE. Their work is confined to the study of ternary systems, with the objective of
improving the prediction of ternary LLE from binary data. This concept has great practical
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potential in the design phase and operation of distillation equipment where liquid-liquid

equilibrium is encountered in addition to VLE.

The method proposed is applicable to Type 1 ternary systems, i.e. a system of two miscible
binaries and one partially miscible binary composed of non-electrolyte fluids. The method
modifies the liquid phase non-ideality by modifying the excess Gibbs energy function and hence

the activity coefficient expressions.

In predicting ternary LLE, the data of the three constituent binaries are required. Typically,
models like UNIQUAC and NRTL are extended to ternary systems to obtain an expression for G
as a function of mole fractions and binary interaction parameters. The set of parameters obtained
from binary data is dependent on the quality of the experimental data that is regressed to fit G.
Regression of binary VLE usually produces several optimal sets of binary parameters. To obtain a
unique set of parameters, the experimental data has to be of high accuracy. The use of these

parameters to extend to temary systems in the case of ternary VLE is not a concern.

However, this is a concern in the case of ternary LLE. Ternary LLE exhibits more sensitivity to
minor changes in molar excess Gibbs energy. Hence, changes in binary parameters have dramatic
effects on ternary LLE. Coupled with the fact that binary VLE does not produce a unique set of
binary parameters, one can conclude that ternary LLE cannot be predicted accurately from binary

data alone.

Type 1 ternary LLE systems in particular cannot be predicted from binary data alone, Usually, the
two phase region is over estimated, Prausnitz and Anderson (1978) attempted to rectify this
shortcoming. Their study showed that a good description of temary LLE data can be obtained
from G® model with binary parameters. However, the binary parameters must be obtained by
utilizing both ternary LLE and binary data. Whilst the response for the prediction of LLE was
distinctly better, the quality of VLE prediction was consequently reduced.

The work of Cha et al. (1985) examines the use of a correction factor that will enable the

simultaneous correlation of both temary LLE and binary VLE data with good accuracy.
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3.4.3.3 Correction Factor

The regression of experimental binary data yields binary interaction parameters which are used to
predict phase equilibrium data. In the case of ternary phase equilibria, there are 3 binary pairs
which yield 3 sets of binary interaction parameters. Ternary equilibrium can then be described by

these binary interaction parameters via G© models written in terms of mole fractions which is

G7Y
defined in this study as | —
RT 123

E L]
Prausnitz proposes that (EJ at constant temperature be multiplied by a factor C. C is
123

empirical in nature and could be obtained from ternary LLE data. The correction factor has the
following properties:

»  C =1 for binary data sets

& Dependent on composition

C is defined in such a manner so as to have minimal effects on the ternary VLE and thus retain

the ability of the derived parameters to accurately predict VLE.
C= explaxf' xFx ] 36
* ¢ isaconstant.

Therefore the new expression for G is

E EN?
RT 123 RT 123

Aiis a constant but has to be greater than or equal to unity to prevent singularities in the activity

coefficients.
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A, = (L’}B 39
X3
=2 3-10

Here x; refers to the ternary composition when the absolute value of In C is a maximum. Hence

four adjustable parameters exist («, £, %, and X, ) for Equation 3-6.

Assuming, Z=Z=Z=% then, f=4 =4, =4,

C= expla(x|x2x3 Y J 311
From Equation 3-6 & 3-7, the resulting activity coefficient expression is:

A GEY
Iny. =Clny*+C| -4 -4, - A4, [InC] — 3-12

123

where Iny =

N AT P

If the Equation 3-11 is used instead then the activity coefficient expression reduces to

END
Iny,=Clny) + Cﬁ(i - 3]111 C(f:_f‘] 3-13
X.

! 123
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3.4.3.4 Evaluation of the Method
Nineteen ternary systems were investigated. The UNIQUAC equation was used to obtain the

binary system interaction parameters for 16 ternary systems and the remaining 3 sets were

E o
regressed with NRTL. These parameters were then used to determine {%} .
3

The ability to correlate data using the correction factor is dependent on the uncorrected model.
Thus, the uncorrected model itself needs to be a fair approximation which requires the critical
selection of binary interaction parameters. The binary data that is used should be in the same
temperature range as the ternary system in question. In case of the partially miscible pair,
parameters are obtained from mutual solubility data at the ternary system temperature. Here
again, the accuracy of the mutual solubility data is crucial as minor adjustments in this data can
dramatically improve the prediction of ternary data (Cha et al, 1985). It n.1ust be noted that if the
uncorrected model results in an unsatisfactory description of the termary data, then the correction
factor will not improve the prediction of ternary data significantly since the binary parameters

used for this system failed to give a fair description of the data.

Of the 19 ternary systems, 7 were calculated using Equation 3-11 which is based on a simplifving
assumption. Equation 3-6 was used for the remaining 12 systems. It must be noted that the
parameters determined in both these cases have no physical significance and are merely used to

improve the correlation of the ternary LLE.

Figure 3-8 shows the correlation of 3 termary systems where the binodal curves exhibit modest
asymmetry. For these systems, Equation 3-11 was used. Both cases are reflected here (with and
without the correction). The case without correction shows the prediction obtained by using only
binary data. It is evident that the description of the ternary data is unsatisfactory. By including the

correction factor, C, the correlation of ternary data is excelient,

Figure 3-9 illustrates the effect of the correction factor as applied to 3 ternary systems in which the
binodal curves exhibits strong asymmeiry. Here, Equation 3-6 was used for the calculation
purposes. Once again, the use of the correction factor provides a superior correlation of ternary

LLE data as compared to the prediction obtained from the binary data only.
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Selectivity prediction also improved drastically (Figure 3-10). The predictive ability of the
correction factor was further evaluated for the system cyclohexane, acetonitrile and benzene.
Ternary parameters from 45° C are used to predict LLE at 25°C (Figure 3-11). In this case only
the partially miscible pair's parameters were adjusted. The results achieved show good correlation

of the system at both temperatures.
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Figure 3-8 Calculated and observed liquid-liquid equilibria where the binodal curve shows only

modest asymmetry (Prausnitz et al, 1985)

It is anticipated that the correction factor will not reach large values as the ternary LLE shows

more sensitivity to activity coefficients and are not affected by pure-component vapour pressures.

E Rl
The systems studied here did not require large corrections to [.G_J . Although, the correction
RT

113
factor is small, the effects on ternary LLE data have been dramatic. The effect on ternary VLE is
expected to be minimal given that the magnitude of the correction factor C was never far removed
from unity (Cha et al, 1985) and since ternary VLE is dictated by the accuracy of pure component

vapour pressures rather than activity coefficients. This theory was only tested for a single ternary
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system, acetonitrile(1)-n-heptane(2)-benzene(3). Here the correction factor did not compromise
the accuracy in predicting the ternary VLE system. Cha et al. (1985) conclude that the effect of

this correction factor on ternary VLE will not be significant.

Advantage - The correction factor was able to simultaneously correlate VLE and LLE data.
Disadvantage - The use of the correction factor is limited to the case of the ternary systems and
may not be applicable to higher order systems.

Disadvantage — The correction factor ability to correlate ternary LLE is still dependent on model
selection and binary interaction parameters. If the experimental data is not accurate or the

uncorrected model fails to give a good description of the data, then the correction factor is futile.
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Figure 3-9 Calculated and observed liquid-liquid equilibria where the binodal curve shows strong

asymmetry (Prauseitz et al, 1985)
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Figure 3-10 Calculated selectivities display drastic improvements when the correction factor is used
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Figure 3-11 Predicted liquid-liquid equilibria for acetonitrile (1) — cyclohexane (2) and benzene (3) at
25°C (Prausnitz et al, 1985)
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3.4.4 Non-linear Concentration Transformation

3.4.4.1 Introduction
This empirical modification is proposed by Rarey (2005). The transformation allows one to

simultaneously correlate VLE and LLE data. However, this transformation of the liquid
composition does include an additional parameter. An additional parameter has to be used in
order to simultaneously describe the VLE and LLE. (Rarey, 2005).

The transformation can be applied to any G"-model. Rarey (2005) investigated the effects of such
a transformation on the performance of local composition models. The Wilson model is not
considered here since it is not applicable to LLE data. Thus the UNIQUAC and NRTL models are

only considered in the performance analysis.

3.4.4.2 The Formulation of Transformation
Current two parameter G"*-models are able to manipulate the size and symmetry of G* curves.

The concentration dependence of the model then dictates the shape of the G curve (Rarey, 2005).
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Figure 3-12 Depiction of the effects of size, symmetry and shape on G* curves
(Rarey, 2005)
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Therefore, the inclusion of an additional parameter should affect the shape of the G* curve. One
has to proceed carefully when proposing to incorporate an additional parameter. The following

should be taken in cognisance with regards to the additional parameter:
= Will the inclusion of an additional parameter increase the degree of intercorrelation
between the existing model parameters?
= Does this parameter compromise the model's existing capabilities?
Rarey (2005) implemented the additional parameter in the form of a symmetrical, non-linear
concentration transformation f. The function f shows only little affect on the existing model

parameters and hence the size and symmetry of the G® is unaffected. The model is now redefined

as:
G* =G*{(f(x) 314

The mole fraction in the original G®-model is replaced with the function f. The implementation of

the transformation is subject to some constraints. It must:

®»  he continuous and differentiable

= satisfy the summation condition Z £, =1{(derived from the fact that Z x,=1)

* be defined for systems containing any number of components
* be symmetrical with respect to liquid molar composition in binary systems

= obey the boundary conditions, f; = 0 when x; = 0 and fi= 1 when x;= 1
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The transformation proposed by Rarey (2005) is as follows:

x,.[l +Zxk5x.k ]
- k
Zxk[l +Zx;5,dJ
K /

i) 3-15

Here dy is the additional parameter. It should be noted that d;; = 0 and d;; = dj.

Rarey (2005) also suggests another possible transformation that could be used. In this particular

transformation, only the odd powers should be used.

x{l DRD T )"'de
> [1 DYDY )’"_]d“m]

3-16

Ji(x)=

Multi-component systems can be described and the extension of the transformation using higher

order parameters is possible.

x‘.[l + Zka(‘xi =X )Hdm + Zxkzx:em + Zxkzxfzxmﬁﬂm +]
% 7 % ] % T m
;xk(1+2x12(xk —X )m_ldk-'m +Z,xfzxmekfm "‘fozxmzxnfumn +)

3-17

f(x) =
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3.7.3 Procedure for Calculating Activity Coefficient

The activity coefficient is derived from

on,

i

Iny, = ("fi(r!_TQ)} 3-18
TP, o

E

RT

This yields the following expression:

Iny, =Q+nr{§—Q] o
TP

i

Now, G* is a function of the transformation f(x), which is a function of composition. This has to

be taken into account when deriving the new activity expression,

0=0(r(x))

The derivation of the activity coefficient requires the use of the chain rule.
F) .
Q2| | 3-20
on, of \on,

5 2 | 9 |
Here —Q and —Q are vectors while i represent a Jacobian or gradient matrix of
on, of on,

!

concentration. Thus the expression for activity coefficient is:
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af T.Pjt;,;
In the binary case, the Jacobian matrix is derived from the following expression:
%1+ ) x6,
5 :[ ; ’ ‘k] nnr +nr'znk5fﬁ-
x(1+) x,0, | =&
6f(x ] ? ¢ Z o niznkzn.‘aﬂ
Vf =Ll = = S 3-22
on, on; on,

The differentiation of f has to be performed carefully because of the subscripts. Two cases have to

be considered, one with identical subscripts and the other where the subscripts are not identical.

For the case where i = j the elements of the Jacobian have the form,

2
af(xi]=L 1+xj+Sj_2xjﬂiﬂ ' 3-23
6nj. ST ST .

For the latter case the elements of the Jacobian have the form,

af(xf)=L{xf(1+dg)_2xf£1:9ﬂ(l_+§_]) ) 3.24
on, S Sy
where
= S = Zxkdi'k
F
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3.7.4 Performance of the FlexQUAC Model
The transformation was applied to the UNIQUAC model and since the purpose of the

transformation was to improve the flexibility of the model, the subsequent model was named
FlexQUAC,

The model was first tested with 4000 binary data sets containing pressure composition data (Px
isothermal data) contained in the DDB. The mean relative squared deviation in pressure was used

as the objective function to regress the data sets.

Naturally no big improvements were observed for the cases where the activity coefficients have
no effect, since these are nearly ideal systems (Figure 3-13). The more non-ideal the systems gets,
the higher the improvement is. At activity coefficients at infinite dilution greater than four, there
is a constant improvement of more than 2.5 in the objective function. At coefficients greater than

15, the plot diverges signalling the onset of LLE behaviour and in these cases the quality of the

data is very much reduced.
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Figure 3-13 Relative Gain in objective function (A ) versus the geometric mean of the activity
coefficients at infinite dilution calculated from the UNIQUAC regression (Rarey, 2005}
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A typical example is given in Figure 3-14 for the system tetrahydrofuran-water. The UNIQUAC
fit of the data is not precise and the azeotropic point is not described well. FiexQUAC fits the data
and describes the azeotropic point precisely. Although the difference between the two curves is

small, the system is more accurately described by FlexQUAC.

With regards to ternary VLE, the intention was to illustrate that the new model does retain its
ability to accurately predict higher order systems and that this ability is not compromised.
Thirteen reliable ternary sets were chosen. Figure 3-15 illustrates that FlexQUAC is superior to
UNIQUAC in some cases or at worst predicts as well as the UNIQUAC model. Table 3-2

illustrates the ternary systems investigated.

250
200 4
o
-
& 100 ‘
= Signer R.,ARM H..Daeniker H.
Helv.Chim.Acta 52(8),2347(1969)
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- - - UNIQUAC
0 L — L L L]
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X4

Figure 3-14 Regression results for the system tetrahydrofuran-water at T=298.15K using the
UNIQUAC- and FlexQUAC-model (Rarey, 2005)
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Figure 3-15 Comparison of the predictive performance between the UNIQUAC and FlexQUAC

models for ternary mixtures (Rarey, 2005)
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Figure 3-16 Simultaneous correlation of VLE and LLE using FlexQUAC G"-model parameters from
LLE data and VLE data for the system Water (1) — 1-Pentanol (2) (M - VLE data, ¢ - LLE data, A -

azeotropic data, — VLE calculation, "

LLE calculation, ”~ azeotropic composition calculation)

(Rarey, 2005)
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Ternary Systems T[K] | Mean Relative Deviation in P [%%]
UNIQUAC FlexQUAC
Methanol (1) - n-Hexane (2) - Cyclohexane (3) 293.15 7.01 361
Methanol (1} - n-Hexane (2) - Cyclohexane (3) 303.15 6.12 3.82
Methanol (1} - n-Hexane (2) - Cyclohexane (3) 313.15 4.46 2.47
Acetone (1) - Methanol (2) - Chloroform (3) 313158 1.68 1.71
Acetone (1) - Methanol (2) - Chloroform (3) 323.15 1.33 1.36
Acetone (1) - Methanol (2) - Chloroform (3) 323.15 0.56 0.51
Ethanol (1) - Acetonitrile (2) - Water (3) 323.15 1.41 1.16
Acetone (1) - Ethanol (2) - Water (3) 323.15 1.62 1.32
Ethanol (1} - Water (2} - 1,4-Dioxane (3) 323.15 1.08 1.29
Acetone (1) - Methylacetate (2) - Acetonitrile (3) 323.15 0.42 0.37
Benzene (1) - Cyclohexane (2) - Aniline (3) 34315 0.65 0.83
n-Hexane (1) - Benzene (2) - Cyclohexane (3) 343.15 0.65 0.63
1-Heptene (1) - n-Heptane (2) - n-Octane (3) 328.15 1.64 1.64

Table 3-2 Ternary systems investigated in the evaluation of the FlexQUAC model (Rarey, 2005)

The model now adequately describes VLE and LLE simultaneously as illustrated in Table 3-2.
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Chapter 4 Simultaneous

Regression & Software Tools

4.1 Introduction

The regression of experimental phase equilibrium data facilitates parameter fitting using e.g. an
excess Gibbs energy model. In Figure 4-1, the process of predicting equilibrium data is broken
down into two steps. The first step involves the correlation of data to obtain model parameters
and the second step involves the use of these model parameters in the appropriate excess Gibbs
energy model or equation of state to interpolate and extrapolate thermodynamic data within a

certain range of composition, temperature and pressure.

The accuracy of models is dictated by the model parameters and model equations. The
experimental data may contain errors that can be attributed to measurement. Thus caution must be
exercised in the regression step to account for possible errors. This then defines the level of

confidence in model parameters and the subsequent predictions resulting from the model.

In order to assess the perforrnance of the FlexQUAC-Q model in this study, phase equilibrium

data had to be regressed simultanecusty. This chapter reviews the important steps in this
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regression process. The subject of simultaneous regression of phase equilibrium is explained
further due to its relevance to this research study. Once model parameters are obtained from
regression of data, different methods are used to calculate mixture data. These methods are

discussed to illustrate how different types of data measurements are handled.

The process of regressing thermodynamic data is iterative and requires a certain criterion to be
satisfied in order to terminate the algorithm. The criteria are contained in the form of an objective
function. The regression process seeks to either mimimize or maximize the objective function
depending on the application. In the case of phase equilibrivin data, the definition of a generic
objective function would be the difference between the measured and calculated variable and the
aim of the regression would be to minimize this function. The objective function is also
dependent on the type of data measurements. The commonly used objective functions and the

variations on its form are discussed here.

Since measured daia have inherent errors, one has to account for these. This would minimize the
error in the prediction of thermodynamic data. The maximum-likelihood principle accowmts for

these errors and is summarized here,

A regression algorithm is required for the regression of thermodynamic data. For the purposes of
this research study, the regressions were made using the Simplex-Nelder Mead method. The
theory of the method, the implementation and the application of this method in the Excel

regression program is presented here to improve the reader’s understanding.

The Dortmund Data Bank, DDB (Gmehling et. al., 2006) is used extensively in this research
study to obtain thermodynamic mixture data and pure component data. Mixture data obtained
here was regressed to assess the performance of the FlexQUAC-Q model in the excel program.
The DDB’s simultaneous regression software tool, RECVAL was also used extensively to regress
mixture data in this study to compare the results with the excel regressions. RECVAL was also
used to perform regression of mixture data using its array of features that aliows the user to
effectively manipulate the regression of data. A brief overview of this program is presented here

to aid the reader’s understanding of some of the program’s innovative capabilities.
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Step 1:
Correlation of Data

Laboratory
Experiment

Y

Regression Algorithm —
to minimize specified

Measured
Variables

objective function until

satisfactory convergence

Y

Model
Parameters
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.Eguation of state

Temperature
Dew Pressure/
Temperature Calculations

Modified Raoult’s Gamma-Phi Phi-Phi
Law Method Method
¥
Bubble Pressure/ + GE Model

Step 2:
Prediction of Data

Equation of State

Figure 4-1 The sequence of steps required for regression and calculation of experimental data
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4.2 Simultaneous Regression of Phase Equilibrium data

Simultaneocus regression of different phase equilibrium data is a valuable tool for obtaining an
accurate description of mixture propertics. Different sources of experimental data are available. In
addition to the data types outlined in Table 4-1, there exists also mutual solubility (LLE),

azeotropic data, activity coefficients at infinite dilution (y” data), SLE, HF and CpE data,

Since the number of data points measured usually exceeds the number of model parameters, a
regression minimizing the deviation between the experimental data and model calculations has to
be performed. Hence a unigue set of model parameters that reproduces all experimental data with
sufficient precision is not always obtained. Small errors in the binary parameters lead to larger

errors in the prediction of multicomponent data.

Liquid-liquid equilibrium, in particular exhibits significant sensitivity to small changes in the
activity coefﬁqients (Prausnitz et al, 1980). Hence it is advised to include some LLE dqta in the
regression to obtain reliable model parameters. Binary data are mostly inadequate for the
prediction of ternary LLE data. In this case, some ternary data need to be utilized in the regression
procedure to obtain suitable binary parameters. Usually termary tie line data are regressed
simultaneously together with binary VLE data to obtain optimal binary parameters. Consider an
arbitrary system A, B and C where A-B is a partiaily miscible binary system and both B-C and A-
C are completely miscible. For the partially miscible system A-B, the mutual solubility data is
used to obtain the corresponding binary parameters. VLE data for the remaining miscible binaries
are used to provide reasonable estimate of model parameters. An optimal set of parameters is

obtained by simultaneous regression of both the VLE data and the temary LLE data.

Figure 4-2 shows a ternary LLE system where both binary VLE and ternary tie-line data was used
for regression purposes. The two-phase region was not well represented by original UNIQUAC.
With the use of the temmary tie line data the description of the two phase region is greatly

improved.
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Figure 4-2 LLE for a type 1 system (a) original UNIQUAC (b) modified UNIQUAC for alcohol
systems (c) Modified UNIQUAC with binary parameters calculated from binary VLE data and
ternary tie-line data {Prausnitz, et al 1980)

4.3 Objective Function .

The focus for regression of thermodynamic data is to minimize the deviation between the
measured and calculated variable. Several types of objective function can be defined. One

commonly used objective function is the relative mean squared deviation (RMSD):

n exp _ yragic :
F= 12[%} 4-1

no

where

» X refers to the experimental value of variable X for data point i

* X refers to the calculated value of variable X for data point i

= nrefers to the number of data points

Some other objective functions are:

F = %ZZ(XN.’,;’J _chp_i.j)z 4-2
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F= %ZZ Xcaf,l"f - X“P-f-_l" 4-4
. expi, f
_ l Xcaa‘,f‘j - Xexp.f.j |
F= , ZZ Xexp,;_'j 5

In the case of simultaneous regression of different data types the objective function has to account
for the deviations in different measured variables. Consider a regression of three different

measured variables, X, Y and Z. The corresponding objective function would have the form:

n exp _ yreale z exp _ yreale 2 exp _ pcalc 2
F=l3 WI[XE X;Y } +W2(Y,- Y:’ } +W{z,- zf J »

no

whe}'e W, W, and W are weighting factors.

Weighting factors can be placed in the objective function to manipulate the weight of individual

data points, data sets or data types.

In this study, all the binary VLE data was high precision xPT data. Hence the following objective

function was used in regression:

2
18P, —P
F:‘— exphi cale {

i=1 expi

4.7

4.4 Calculation Method

Chapter 2 reviewed the calculation methods for thermodynamic mixture properties. The
calculation method is dependent on the type of data measured and experimental setup. Data can

be measured isothermally {constant temperature) or isobarically (constant pressure) or at constant
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composition. Isothermal data are usvally measured in static cells. In this case the pressure, as a
function of liguid composition, can be obtained by varying the composition of the system in
question and by measuring the pressure once phase equilibrium is reached. Thus temperature,
pressure and liquid mole fractions are obtained experimentally and the vapour mole fraction can

be calculated.

Table 4-1 illustrates the distinction between the various data types and the measured and

calculated variables with the v-¢ method as its basis.

Computation type | Controlled variables | Computed Variable
Bubble pressure X, T P,v
Bubble temperature X;, P T,y
Dew pressure vio T P, x;
Dew temperature v, P T, %

Table 4-1 Different computation types for YLE data

The bubble pressure calculation algorithm is presented here (Figure 4-3) to better explain the
procedure. In this case the objective function can be defined to minimize the error between
computed pressure and experimental pressure or both computed and experimental pressure and
vapour composition, y,. The algorithm is an iterative one. Calculation methods for the other

remaining types are readily accessible in many textbooks e.g. Smith & Van Ness et al. (1996).

In this case the regression of experimental data provides one with parameters for an appropriate
excess Gibbs energy model. This model then generates activity coefficients and the unmeasured

variables are then calculated by a bubble pressure calculation.

Iscbaric data can be regressed in a similar manner as isothermal data. This is provided that the
model parameters are not strongly dependent on temperature and can be considered negligible. In
this case the unmeasured vanable would be calculated by a bubble temperature iterative

calculation.
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Input controlled and measured variables: P,T,
x; (Using gamma/phi formulation for VLE}
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Y- G model
X,y P
P: A4 sai
ey
L 4
) _Psat
Evaluate y, = Vil
O o

Recalculate @,

) 4

Sal

Xy, P
Recalculate P = Z_r}:(i)x_

i

&P < tolerance (&)

Output P, v

Figure 4-3 Bubble pressure computation procedure
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4.5 Maximum-Likelihood Principle

It is anticipated that all measured data will contain some degree of error. Since this directly

impacts the accuracy of model parameters, it is advisable to accommodate these errors

statistically.

Experimental errors are either systematic or random, Systematic errors may arise due to a bias in
the experimental method (Prausnitz, et al, 1980). The resulting data exhibit a departure from the
proper value. Systematic errors can be limited to a certain concentration or pressure range. To
avoid errors of this type, one needs to carefully analyse the experimental procedure and ensure

good understanding of the equipment before undertaking the measurements.

Random errors, on the other hand can be accounted for statistically. These errors produce
uncertainties in the model parameters. The erors are further exasperated when these random

errors are coupled with the inadequacies of some models.

The maximum likelihood principle takes into account random errors of both controlled and
measured variables. This principle postulates that an experimentally determined variable has a
normal distribution about its exact value and a corresponding variance. Usually the variances are
specific to the type of experimental equipment. The likelihood function is defined as the joint
probability of the observed values of the variables for any set of true values of the variables,
model parameters and error variances. “The best estimates of the measured variables are those
which maximize this likelihood function with a normal distribution assumed for the experimental

errors” (Prausnitz et al, 1980}, This function is defined as follows:

2 2
Xk Yiti

s-% (e";ze*)z I i 10 N S B R s
P

i=l

where
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* M - no. of data points
s ¢ —measured variable
= g —estimated true value

¥ . . s
1 g - estimated variance of the measured variables

The model parameters that minimize this function represent the optimal parameters.

4.6 The Simplex-Nelder-Mead Method

4.6.1 The Theory of the Simplex-Nelder-Mead Method

The downhill simplex method was modified by Nelder and Mead (1965). This method is

preferred since it requires only function evaluations. No derivatives are necessary. It can be

inefficient considering the number of function evaluations it requires. This regression although

slow, is ver)f stable and is suited for the regression within this research study.

A simplex is the simplest body in N dimensional space. It consists of N+1 vertices and all their
- interconnecting line segments, polygonal faces. In two dimensional space a simplex would

correspond to a triangle while in three dimensional space it would correspond to a tetrahedron.

The simplex must enclose some finite N dimensional volume.

The simplex method is a systematic procedure for generating and testing the candidate vertex
solutions to a non-linear program. The method requires an initial simplex to be defined in N
dimensional space as an initial guess. Alternatively, values and step width can be specified for

each parameter.

After the worst point (corresponds to the highest value of the objective function) is identified, this
point is reflected along the centroid through the simplex. The objective function is evaluated at

this point and if it corresponds to a new minimum, the simplex is expanded along this line.

However, if the new reflected point is worse than the previous point then the algorithm contracts

the simplex in one dimension from the worst point. In the event that the new point is worse than
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the previous points a multiple contraction towards the best point is undertaken. A combination of

these steps (reflection, expansion, contraction) yields an optimal solution.

4.6.2 Reflection

. L T :
The centroid of the N best points in the vertex is x = ——Z X; . X represents the point to be

i
reflected. Let the reflection point be denoted by x, located on the line joining the centroid to x,. It
is defined by: '

¥ =xi+alx-x,) 48

r

Here o is the reflection coefficient. If F (x__)> F (xr)z F (xb) then the reflected point, X, is

accepted replaces x,. Here x, represents the vertex which yields the second worst value of the
target function while x, is the vertex with the best value of the target function. The new simplex is

re-evaluated,

Xs

Xy

X

Figure 4-4 Representation of reflection for Simplex-Nelder-Mead algorithm
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4.6.3 Expansion

If F(x,) < F(xy) then the reflection has produced a new minimum. X, is then expanded to a new

point x,.
xX,=x+ y(xr - If) 4-9
where

» yrefers to the expansion coefficient
If F(x.} < F(x,), then X, is replaced by x.. In the case where F(x,) > F(x,), then the expansion has

failed and %, replaces x; before restarting.

Figure 4-5 Representation of expansion for Simplex-Nelder-Mead algorithm

4.6.4 Contraction

If F(x,) > F(x.} and/ or F(x,) > F(x,) then a point x, is generated by contraction

x,=x+px -3) 410

C
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where

= P refers to the contraction coefficient

If F(x.) < F(x;), then x is replaced by x.. If F(x.) > F(x;) then all x; are replaced by (x; + x,)/2 and

the entire process is restarted.

Figure 4-6 Representation of contraction for Simplex-Nelder-Mead algorithm

4.6.5 The Simplex-Nelder-Mead Algorithm

- 08 -
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Figure 4-7 Flow diagram of the Simplex-Nelder-Mead Algorithm
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4.6.6. Utilisation of the Simplex-Nelder-Mead Method

The Simplex-Nelder-Mead regression algorithm is used in an Excel program (Figure 4-8) to
obtain model parameters for the FlexQUAC-Q model. The main program provides the initial set
of parameters for the regression and then calls the Datafit subroutine which defines the auxiliary
information for the regression. This sets the step width for the parameters, the stop criterion and
the maximum number of iterations. These parameters are used by the Simplex-Nelder-Mead
subroutine (DSIM) for the regression. These parameters are then used by the function AUX to
perform the bubble temperature calculation and to calculate the objective function. The
parameters obtained are then displayed on the Excel spreadsheet after the convergence criterion

has been satisfied.

Main program
Initialise model and model parameters
Call Datafit subroutine -
Qutput model parameters and
objective function into Excel sheet

Y

Datafit
Set regression criteria

F 3

Y

DSIM
I Simplex-Nelder-Mead
Algorithm
F 3
Objective
Function
Model
Parameters
L 4
AUX
1. Perform bubble temperature
calculation

2. Calculate objective function

Figure 4-8 Flowchart of the Excel progam for data regression
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4.7 Dortmund Data Bank (DDB)

4.7.1 History of the DDB
The Dortmund Data Bank {DDB) was initiated in 1973 by J. Gmehling at the University of

Dortmund as a tool for the development of a group contribution G* model for VLE in
collaboration with Lyngby in Denmark. This was later extended to LLE, HE, ¥*, azeotropic data,
Cp® and SLE for the development of modified UNIFAC. Group contribution equations of state
(PSRK. and VTPR) for the VLE of low boiling compounds were then developed. Next VLE and
GLE of electrolyte systems were stored. This led to the development of the electrolyte models,
LIQUAC and LIFAC. Thereafter the pure component data base was initiated for the development
of estimation methods for pure component properties. 2004 saw the launch of a polymer phase
equilibrium data bank. In 1989 DDBST GmBH took over further development of the DDB. In
2000, the DDBST delivered the first windows version of the DDBSP which is a software package
for data handling, correlation and estimation and process synthesis tools. Storing the huge amount
of phase ethbnum and excess property data on computer provrcled lhe basis for the
development of predlctlve methods. The DDB today has earned the reputanon as the largest and

most well established computerized data bank for both pure component and mixture properties.

The substantial amount of pure component and mixture data in the DDB allows one (o fit model
parameters to various thermodynamic models, including G® models and equations of state for a
large variety of mixtures. The data is indispensable in process simulation where reliable
interaction parameters are required. The vast amount of data that often span a large temperature
and composition ranges are of great importance for the development of group contribution

methods. In addition the data has greatly aided the development of predictive methods.
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Figure 4-9 Different applications of the DDB (www.DDBST.de)

The DDB is updated on a yearly basis. Figure 4-10 illustrates the phenomenal development of the
DDB.
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Figure 4-10 Rate of expansion of the DDB since 1986 (www.DDBST.de)
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4.7.2 Software Tools

The DDB software package (DDBSP) contains a number of software applications tailored for use
in industry. The software tools have a range of applicability ranging from data retrieval,
graphical representation, calculations and property estimation. A short review of DDBSP is
presented here to enable one to understand its capabilities. The RECVAL software package is

presented in more detail since it is used extensively in this research.

Figure 4-11 Various software tools available in the DDB software package (www.DDBST.de)
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4.7.2.1 Data Viewer (Dortmund Data Bank)

This tool is used to perform data queries for pure component or mixture data.

Figure 4-12 Query dialog of the data viewer (www.DDBST.de)

The user may specify a component or sets of components for data retrieval. The user can either
enter a DDB pure component code number or search for the component of interest. After
searching for the component(s) the data viewer enables the user to view and edit pure component
or mixture data. The viewer provides a list of important parameters ranging from basic
information (Antoine constants, molecular weights, boiling points etc.) to UNIFAC and

UNIQUAC molecular parameters (Figure 4-13).

If one considers the mixture, ethanol and water, then the data viewer provides a comprehensive
listing of all available binary data. The user can then navigate through the data to find the
appropriate data required (Figure 4-14). By right clicking on a data set number, the user can view,
plot and fit experimental data contained in the data set. The ‘fit’ option allows the user to select

the G* model or equation of state and the objective function.
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Figure 4-13 Pure component basic data for ethanol (www.DDBST.de)

4.7.2.2 ARTIST

This program is used for the estimation of pure component properties using group contribution
methods. “Using a special coding scheme for molecular structures, ARTIST is able to take into
account the chemical neighborhood of the individual groups thus implementing chemical know-
how. Special features of some group contribution methods like topological indices and second

order group corrections are automatically taken into account” (www.DDBST.de) .
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4.7.2.3 Process Synthesis

This software tool is of particular importance to industry for the prediction of homogeneous and

heterogeneous azeotropic compositions in multicomponent mixture, calculation of residual curves

and contour lines and the selection of entrainers for various separation processes.

FUREEE T SO S T S S

Figure 4-14 Various available binary data for the system ethanol-water (www.DDBST.de)
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4.7.2.2 ARTIST

This program is used for the estimation of pure component properties using group contribution
methods. “Using a special coding scheme for molecular structures, ARTIST is able to take into
account the chemical neighborhood of the individual groups thus implementing chemical know-
how. Special features of some group contribution methods like topological indices and second

order group corrections are automatically taken into account” (www.DDBST.de) .

4.7.2.3 Process Synthesis

This software tool is of particular importance to industry for the prediction of homogeneous and
heterogeneous azeotropic compositions in multicomponent mixture, calculation of residual curves

and contour lines and the selection of entrainers for various separation processes.

4.7.2.4. Recval

This is the regression tool of the DDB used for the simultaneous regression of phase equilibria
and excess properties. The data obtained in the Mixview data viewer for a specific chemical

system can be exported to Recval.

Recval has the following options:
® File — Allows user to open projects, generates projects from mixture data files, save
projects and exit the program
=  Edit — Various options to specify the regression
= Special — Selectively remove data of different criteria
®  Run - Initiate the regression of data
®  Results - Displays calculation or regression results in tabular or graphical form
®  Options — General options for calculations and plot specifications

*  Help — Comprehensive help system pertaining to use of Recval

The Recval program is an excellent tool for regression of data. The user is given a multitude of

options thereby achieving accurate results quickly and efficiently. The graphical interface of the
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program allows for easy navigation and is user friendly. The capabilities presented here are but a
superficial overview of the program and the true appeal of such a tool can only be realized once
in use. Its versatility, speed and data handling options make it an indispensable software tool for

regression of data especially in this research study.

4.7.2.4.1 Edit Menu

The Edit menu {(Figure 4-15) allows the user to select from various options. This allows the user
to select the most appropriate liquid and vapour phase models. The regression properties can also

be tailored to specification. Initial interaction parameters and weighting factors can be assigned.

The ‘Components, Properties’ opiion allows the user to set the models to calculate the pure
component vapour pressures and liquid density. The vapour pressures can be computed from the

Antoine, DIPPR or Wagner equations depending on which parameters are available,

With the ‘Liguid Mixture Model Selection’ (Figure 4-16) the user can define the appropriate G*
model to be used. Currently the following models are available:

* Ideal (Raoult’s Law) — calculation oniy

*  Margules

*  Van Laar (no h® calculation)

s Wilson

* NRTL

= UNIQUAC
»  FlexQUAC

* Redlich Kister
» Legendre Polynomial
» Scatchard-Hildebrand
= UNIFAC — calculation only
*  mod. UNIFAC (Dortmund) — calculation only
= COSMO-RS
Recval supports the use of temperature dependence for interaction parameters. The user can

specify the type of temperatore dependence. The constant interaction parameters can adequately
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predict the VLE data over a narrow temperature range. If the VLE data cover a larger temperature
range then a temperature dependence of the interaction parameters is required. In the event that
heats of mixing data are available, then temperature dependence should be utilized since they
represent the first derivative of the excess Gibbs energy. If the data set contains heats of mixing
data at various temperatures and they differ significantly; then quadratic temperature dependence
should be utilized to describe the temperature dependence of the first derivative of G". This
would also apply if excess heat capacity data is also available. Excess heat capacity data at
different temperatures that differ significantly would require higher order temperature

dependence. This however, is not supported in Recval.

The temperature dependence options available in Recval are:

= |-Par=A - constant interaction parameter
» 2-Par=A+B*T - temperature dependence
*  3-Par=A +B*T + C*T’ - quadratic temperature dependence

v3 - [RECYAL/3 ¥ 1.3 10/24/01 ]

esilt aatians Yindow
=sUiL LGNS i iaaby

und

gression of Pha

Figure 4-15 Options available in the ‘Edit’ menu
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Figure 4-17 Vapour mixture model selection model

The “Vapour mixture model Selection’ (Figure 4-17) option currently supports the ideal vapour
phase and cubic equations of state. In the event that one or both of the components are carboxylic
acids, then the default model is set to the chemical theory model. For the cubic equations of state,

the appropriate mixing rule and alpha functions have to be selected.

The ‘Regression’ (Figure 4-18) option allows the user to set the target criteria for convergence and

the maximum number of iterations.
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Figure 4-18 Regression parameter program window

The ‘Initial parameter’ option allows the user to set initial values for the interaction parameters.
It sets the step width for the regression. It also allows the user to fix a parameter value by
deselecting it to exclude it from the regression or by setting its step width to zero. In addition the
user can use the default starting values, previous regression results, previous starting values or

load parameters from the DDB.

The ‘data/weights’ option (Figure 4-20) allows the user to view the different data weights for each
data set and data point. The details for each data set can be viewed i.e. type of measurement, no.
of data points, the reference and consistency tests. The data weights, residual and objective
function can also be viewed. Individual data points can also be viewed (Figure 4-21). The user has

the option to remove a data set from the regression by hiding the data set.
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Figure 4-19 Initial parameter program window

The ‘data bank weights' (Figure 4-22) option allows the data bank weights to be adjusted. This
defines the weighting of the different data types in the objective function. This is important since
the objective function is adding properties that have different units with different orders of

magnitude.

The ‘Vapour Pressure Adjust’ option allows the user to modify the pure component vapor
pressure values of the two components for each data set used to adjust the vapor pressure

equation to fit the author’s pure component data.

4.7.2.4.2 Special Menu

The ‘Special’ option contains the following options:

o De-weight data in miscibility gap
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This option will set the weighting factors of all data points within the

calculated miscibility gap to zero (not LLE data points).

Figure 4-21 Data weights program window for individual data points
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Figure 4-22 Data Bank weights program window

o De-weight LLE above 20 bar

G" models cannot describe the pressure dependence of LLE data measured above 20 bar.

For this reason this data is de-weighted.

o De-weight inconsistent VLE

All the data sets for which consistency tests were not done will be de-weighted. However
consistency tests cannot be performed for all data sets in particular for the accurate static

measurements and this would remove them from the regression completely.

4.7.2.4.3 Options menu

The ‘Options’ menu allows the user:

To activate the calculation of azeotropes and LLE in a given temperature range with

‘Regression/Calculations’ option

= The ‘Plot’ option allows the user to change the settings for the graphics settings for the

plots generated.

4.7.2.4.4 Run menu

This runs the regression based on the settings implemented by the user.

-114 -



CHAPTER
FOUR

4.7.2.4.5 Results Menu

Figure 4-23 The various options available in the Results option

The ‘Summary’ option displays the pure component parameters, the mixture data (model and

binary interaction parameters), the data sets and their references and the objective function.

The *Table’ option tabulates all experimental and calculated values from all regressed data sets.

The ‘Graphics’ (Figure 4-24) option generates various plots for the regressed data.

Figure 4-24 The graphics program window

The user can add a specific plot and format existing plots using ‘Plot specifications’. The *Plot’

option initiates the program DDBMDIPLot which produces the graphical representation of data.
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Chapter 5 Development &
Implementation of the
FlexQUAC-Q Model

5.1 Introduction

The development of the new model, FlexQUAC-Q, is based on a non-linear transformation
proposed by Rarey (2005). The transformation was applied to the concentration space. The
model, FlexQUAC achieved significant results: impressive reductions in the objective functions
and has the ability to simultaneously correlate vapour-liquid and liquid-liquid equilibrium data.
The FlexQUAC-Q model is developed with its core focus being asymmeitric systems and with the
intention of improving the prediction of equilibria data in these cases. In these cases the use of the
FlexQUAC-Q model would be preferred to the use of the initial model, FlexQUAC.

This chapter reviews the work undertaken in this research study and is a meticulous guide into the

development of the FlexQUAC-Q model. This chapter also reviews the steps for deriving,
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implementing and subsequent testing of the FlexQUAC-Q model. First, the deficiencies of the
FlexQUAC model are discussed to justify the development of the FlexQUAC-Q model.
Thereafier, the derivation of the model is elucidated in detail. Next, the model was implemented
and tested in both Excel and Recval (the regression tool for the DDB after the calculation
procedure was programmed into Visual Fortran).

5.2 Deficiencies of the FlexQUAC Model

In the case of systems where the molecules are of comparable size, the performance of
FlexQUAC is excellent. However, for the cases of mixtures where the difference in molecular
size is considerable, then the use of the FlexQUAC model may not be a wise choice. In these
- asymmetric cases the non-linear transformation of the concentration space has a more pronounced

effect on the activity coefficient of the larger activity coefficient.

_ Figure 5-1 illustrates the effects of the FlexQUAC model on the activity coefficient for increasing
values of the third interaction parameter (8,;). The UNIQUAC model is also represented here.
The surface area ratio (ratio of the UNIQUAC q values) of the system represented is 2.72:1.4
where 2.72 is the g-value for the component tetrahydrofuran and 1.4 represents the g-value for the
latter component, water. This ratio indicates that the system is typically asymmetric since the
ratio is 1.94. The increase in 5,7 appears to have a uniform effect on both sides of the plot. Upon
closer examination the effects of the third interaction parameter has a more profound effect on the
Iny; values in the dilute region. At molar composition of zero, the Iny, value increases from 6.68
. to a value of 8 (8;; = 0.2) compared to the 1.47 increase in the Iny, value at a molar composition

of one.
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Figure 5-1 Comparison of the effects on Iny values by comparing (a) UNIQUAC to FlexQUAC with
. third interaction parameter 8,; = (b) 0.1 and (c) 0.2 as a function of molar composition for the system

water-tetrahydrofuran

Now consider the effects of the third parameter as expressed as a function of the surface fraction

in Figure 5-2,

10

Figure 5-2 Comparison of the effects on Iny values by comparing (a) UNIQUAC to FlexQUAC with
third interaction parameter §;; = (b) 0.1 and (c) 0.2 as a function of surface fraction for the system

water-tetrahydrofuran
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This plot serves to confirm the idea that the effects of the third parameter are more evident in the
dilute range rather than the higher concentration range of the larger component, tetrahydrofuran

in this case.
Prausnitz (1998) suggests that the nature of a system and the extent of departure from ideality can

be gauged from a plot of the ratio of the logarithm of activity coefficient.
oz i T ] T L3 T T T T
ca Lo .
o~
é_? asl- .
o 0 o
: £,
3
=0,
~0.5~ —
-0.2 -0 1 I 1 1
(] a a2 0.4 0.6 0B o
Xy
(a) (b)
Figure 5-3 Logarithm of the ratio of activity coefficients versus mole fraction for various systems

(a) A simple system (b) A complex system (Prausnitz, 1998)

Simple systems as illustrated in Figure 5-3a result in a straight line. As one encounters more
complex systems (Figure 5-3b) the line becomes a curve and in the case of more complex systems

a point of inflection becomes apparent.
For asymmetric systems the straight line also becomes a curve. However if the logarithm of the

ratio of the activity coefficient is plotted against the surface fraction, a straight line is obtained

once more. This can be seen in Figure 5-4.
Figure 5-4 also shows the effect of flexibilisation of the mole fraction (FlexQUAC). This
modification can be considered as physically unrealistic, When plotted as function of surface

fraction, more complex systems usually show a symmetric deviation from linearity.
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Based on these illustrations a flexibilisation of the UNIQUAC model based on a more adequate

concentration scale like the surface fraction should lead to a better performance of the FlexQUAC
model.

£
= :
E 9 0.5 '
5 B
-10
x1
(a)

(b)

Figure 5-4 Logarithm of the ratio of activity coefficient versus (a) mole fraction (b) surface fraction

for the purposes of comparison for varying values of the & = (a) 0, (b) 0.2, (¢) 0.4
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5.3 Some Notes on the Combinatorial Part of UNIQUAC

In the UNIQUAC G* model, GF is calculated from two parts: the combinatorial and the residual
part. The combinatorial part accounts for the size and shape differences of the molecules in the
mixture while the intermolecular force interactions are accounted for in the residual part of the
model.

Gt =Gt

com + g o 51
The combinatorial part describes the G* of a random athermal mixture via the Guggenheim-
Staverman expression. The required relative Van der Waals surface and volume parameters r and
q are usually calculated from the surfaces and volumes of the constituent structural groups of the
molecules. In the case of for example n-alkanes, this yields the surface of stretched molecules,
which are entropically improbable. Alkanes with a chain length of more than 6 or 7 carbon atoms
will most likely be present in more or less spherical conformations. This means that while the
volume parameter r increases linearly with chain length, the surface parameter should increase
with chain length to the power of %. Kikic et al (1980) empirically modified the combinatorial
expression using this exponent for a better description of activity coefficients at infinite dilution
of asymmetric systems and were able to describe retention times in gas chromatography. This
| modification was later carefully analyzed by Weidlich and Gmehling (1987), who found that an
exponent of % yields a nearly perfect description of asymmetric alkane-alkane systems. Thomas
and Eckert (1984) had obtained similar results. These modifications are of great importance for
group contribution methods based on the UNIQUAC equation (mod. UNIFAC, PSRK). In the
case of the regression of binary mixture data of a single system, shortcomings of the

combinatorial part can easily be compensated by the residual contribution.

Here the modification of Weidlich and Gmehling is used in order to achieve a more realistic

separation of entropic and enthalpic effects:
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GE e,/
RT Zx ln((I) fx) Zq ((D ; J 5-2
with
et/x.‘=QI/quxj 53
D, /x, =r,/erx}. 54

: /xf 344 /Z r3”x 55

5.4 Derivation of the FlexQUAC-Q Model

5.4.1 Re-formulation of the UNIQUAC-Equation

It is assumed in this study that the combinatorial part correctly describes the entropic effects of

mixing. The combinatorial term of the UNIQUAC model is as follows:

GE Zx ln(cb fx) 2Zq,x,. ln{@)*’,x’} 56
i

RT D, /x,

Therefore flexibilisation should only be applied to the residual part. The residual part as such
contains the binary parameters that are usually obtained from the regression of experimental data.
In the case of molecules of different sizes, G® regidua (x) is a very unsymmetrical function. If
GE esiaua 15 Plotted as a function of surface fraction then it is usually symmetrical. The surface
fraction, ® is defined as:

oF)= 24 57
254,

=l
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where X - liquid composition

q - pure component molecular structure constants

=

- no, of components in the mixture

To avoid intercorrelation with the binary interaction parameters and to keep the number of
adjustable parameters small, the FlexQUAC transformation function described in Chapter 3
should be symmetric (§;; = §;;). This can be achieved by applying the transformation to the

surface fraction @(x) instead of the mole fraction x:

G* resiaoa= G* (@(E)) - UNIQUAC
GE residual = G £ j ((C:)(?c))) - FIEXQUAC-Q

The resulting model is called FlexQUAC-Q.

As a first step in the process of modifying the surface fraction, the UNIQUAC equation had to be
defined as a function of surface fraction. As G is a molar property, the mole fraction as a
variable cannot be completely removed from the expressions as the resulting equation could then
not relate to a mole of mixture anymore. This problem was overcome by separating the function
into the product of two functions, the first as a function of liquid composition and the latter as a

function of surface fraction. While the second part calculates G® for a unit surface of mixture
(GZ), the first part converts this to a mole of mixture. As the molar relative van der Waals

surface q of a mixture can be calculated as 5= Z x,g, » it holds that

Gi, =D xq,-Gaf

The original expression for the residual part of UNIQUAC is given by the following equation:

G’ C
[—) = —z xq;InS, 58
RT residual
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where S is defined as:

S, = Z o)z, 5-9
i

This can be written as:

[G_E} = —i qu*'i@f In S, = —ﬁ (J'E)f2 (é(f)) 5-10
RT residual

=1 i=l
Thus the complete model FlexQUAC-Q equation is given by:

Gf =GE, +RT /() £,(fOG) 51

5.4.2, Derivation of the Activity Coefficient Expressions

From Equation 5-11 an expression for the activity coefficients had to be derived. The activity

coefficients are defined as the partial molar derivative of the Gibbs energy.

o In Y, = (a(nrg)] with = G and He = Zni
) T.PH, RT f

Here the total mole number nr is equal to 1. As Q can be expressed by the sum, g, + 0, both

Iny,. and In7_ can be derived separately and Iny,can be expressed as:
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Iy, =Iny , tIny,, 513
The expression for Iny,,, ,can be found in textbooks as

e .9 _ 514
@, O,

In the case of the residual expression, the following expression can be used to determine the

1) i}
Inymm,,,, = l—;'_+lnx—*+5q{

partial molar derivative.

on

i

lnyres: _QN$+[ Q’mJ
T 518

=0+ [5(/1(5:’) fg(f(é(sc'))))J
& T.Pa.

The expression for (80, /én)can easily be derived with the use of the chain rule of
differentiation for the case of the UNIQUAC equation:

(5 oo 2] o

ani ¥ j

where (30, /on), (&f,()/on) and (afz(é)/a@ )} are vectors and the functions f,(¥)and

£,(%)are scalars. (p® ,/0n,) is the gradient (Jacobian matrix V®) of the surface fraction vector

& with respect to the mole numbers.

However, in case of the FlexQUAC-Q model the function f; is now a function of f (©). In this

case Vf replaces V@ in the expression above and the new expression is:

0. Y (7O, o s of B.GON) (7O, ¢ 1
(222 (280 110 1ce{ 2L [ 70

¥ [}
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This leads to the following result for the residual activity coefficient:

(@)

¥

AT - =
Iny,,, =Qm(?(é))+[?%%} fZ((:))"'f](f) V}'—T[@tz(f(@))J 518

5.4.3 Derivation of Relevant Vectors

Having derived the activity coefficient equations, the relevant vectors and the Jacobian matrices

-~ can be derived.

The function f, (.?E) was rewritten in terms of mole numbers using the definition:

where ry; refers to the mole number of component i.

Accordingly, f,(%) now becomes

£(®)= -SL;Z nq, = £, () 5-20

i

In order to differentiate the above expression, the product rule was applied. The function fl(})
was segregated into two parts, f, (r'i)and f,b(ﬁ)as defined above. Differentiation of the

individual fragments yielded the following expressions.
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af,,(n) 1
:5' =— 5 521
n, Zn,.
Yuln) _ s22
on, !
Hence from the product rule,
_ Zn q,
n
@;( ) f;a aflb flb f;a R q 5-23
", Z” [Z J
Re-substituting x for n leads to:
3
f (") =2(x4)-7 5-24

The output from this derivation is a vector with the number of elements corresponding to the

number of components contained in the mixture in question.

The scalar function fz(C:))is differentiated with respect to the surface fraction vector and yields a

vector of partial derivatives.

The function fz(@) can be rewritten as a product of two functions.

£©)=30,In3 0, =3 £, ® 525
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The product rule was used to differentiate these two functions. The differentiation was performed

with respect to ©;,

R dan@krk_,.
%.(9) =£”_ln2®kr“ +O, —f=L 526
d® a(-)] k=1 ’ d(aji

The derivation has to account for two cases, when subscripts i and j are identical and when they
are not. This is crucial to obtaining the correct analytical expression. First, the case of different

subscripts is considered.

—L =0 5-27

and:

16 =—2 528
d 29.&7&,;
k=l
The derivative of f,(®)for this case is
er,.
n'—-"" £39
ZOHH
k=l

Now the case of identical subscripts is derived. Equation 5-26 is still applicable, however in this

case i and j are identical, Now
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i,
—=1 5-30
doy
dind ©,r
; kY ky 1.“
oz 5-31
! Z@kf“
k=l
Thus in this case the derivative is
n O
InY O+ 532
= @,r,,
k=1

Thus combining both cases, the complete expression is obtained.

df; ((:)) < ®:7;',r < O i ®:7.
fﬁzh‘Z@k’k.;*n + Y| |- 5.33

=l =1
ZG).Q- Tes Z 0,7, Z:,@k Tei
k=l k= k=1

Note that the last term is required to remove the incorrect derivation for i = j introduced by the
third term.

Now 1;;is 1 and the final result for the above expression is:

dfz(e) l ;J(
———=Ind» O, . + 5-34
j Z Tk . Z Z@{ 7,
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5.4.4 Derivation of Jacobian Matrices

5.4.4.1 Analytical derivation for the differentiation of & with respect to

the mole number vector 7 (Jacobian matrix for UNIQUAC)

Next the Jacobian matrix, V©& was derived. The element of the surface fraction vector Q is

defined as

OF), =l 5-35
anQk
k

This expression was partially differentiated with respect to n; and mole numbers were back
substituted for mole fractions. Once again two cases have to be investigated. For the case of

identical subscripts, the following expression was obtained:

Zxﬁ.‘q ; — X4 g
49, — i ’ ’ 5-36

" [z

This expression corresponds to the elements along the main diagonal of the matrix. The case of

different subscripts yielded the following expression:

a9,  -xq; §-37
dn

[z

This expression generated the rest of the elements for the matrix.
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With the Jacobian matrix expressions derived, the derivative of fz(@)) can be determined. The
product of the Jacobian matrix and the vector derivative of the surface fraction corresponds to the

derivative of £, (n) with respect to mole numbers.

With the derivatives for both functions computed, the derivative of G® with respect to mole

numbers could now be undertaken using Equation 5-16.

5.4.4.2 Analytical derivation for the differentiation of 7(©) with respect

to the mole number vector 7 (Jacobian matrix for FlexQUAC-Q)

In FlexQUAC-Q, the modification of the UNIQUAC equation is only applied to the surface
fraction, @. The modified surface fraction is

afifTmea))
pnal1e(3eaa

Eguation 5-24 is still valid in this case. Equation 5-34 now becomes

2 é r;k

The Jacobian matrix has to be detived. Thus Equation 5-38 is differentiated with respect to mole

numbers. As before, the surface fraction has to be first converted to an expression in terms of

mole numbers.
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By +an‘h5u
X

-f (&J 5-39
Z”k‘?k (”T + Z"{%d&,f} s

f (é); =hn,4,

The expression is fragmented to facilitate the differentiation, Hence the differentiation result is

ﬂ@L%[&}i{&] ;o sw

dn, dn\f. ) dn /.

S

Once again, there are two cases to consider with respect to the subscripts. The case of identical

subscripts is considered first. In this case i = j. The differentiation for term £, is
- =4 5-41

The differentiation of f,/ f, follows the quotient rule, in which case the derivative is

d (@]Jn—fc'fb

5-42
dn\ £, £
The differentiation of f, leads to the following expression
LA =1+g4,,, 5-43
dn |

s
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However the term §;; is zero in this case and the second term of Equation 5-43 vanishes.

The differentiation of £ resuits in

c_z'f_ B ("T +Z”ﬂ; JJJ+Z"M*( 1+94,) S-44

Combining equations from 5-41 to 5-44 and substituting the result into Equation 5-40, one obtains
the complete expression for the Jacobian elements for the case of identical subscripts. Using

Equation 5-40, the complete expression in terms of mole fractions is

‘ 3\
dn ] I 2) "
J th‘h(l"‘zqu-'é‘“J Zxqu(l+2x,q,. HJ
x 7
[]+Zxqu5i.k](qf(l+Zx.‘q!‘5j,.*} Zxqu(l+q, kr)}
7

P
2
Zxqu(l + szQJ§k.JJ
k {

5-45

For the case of different subscripts, the derivative of f, with respect to mole numbers is reduced

to zero. In this case the differentiation of f, and £, yield the following expressions.

b = I1+¢,6,, 5-46

dn ’

d
di = qf'[”? + z ”1‘?.!5;!) * z "4, (1 + qfé'*‘.f) 47
n, i k

Thus, the complete expression in this case is
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P [1 : qjéi.j[zkuI(l * Zx,q,c?“ ]] _(Q,{l £ foqf(stJ T Zxqu(l + '-?;‘%.,;JJ(I 1 Zx;.q;‘é'.-,;‘}
a_’f(@),. _— 3 7 7 k %
n i

2
! zxafh[i "'Z%%‘ﬂ,f]

Using the auxiliary variables
S*=1+) x,q,0,,
]
5% = Zku;:Sf
k

5°=Y x,q,84
k

S‘P = Z X (] + 9;§k.i)
k

this leads to

Fori=j

dn, 8% ige

1

df (0), =q{§i + 5 (57 4 5 :S."*S.“))J 5-49

Fori#j

@),  S"(1+q,5,,)-5/(q,5;+5")
T =X,q, S('

4

5-50

With this derivation complete the activity coefficient can be computed from Equation 5-18.
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5.5 Calculation of Activity Coefficients using the Group
Contribution Approach (FlexFAC)

In UNIFAC, the extension of the UNIQUAC model to group contribution, the residual activity

coefficient of component i (¥, ,) is calculated from the difference of the group activity

coefficients of the structural groups in the mixture (I ) and the pure component i (I"*):
Iy, =2 v (@ -1 551
4

where v{” denotes the frequency of group k in component i. The group activity coefficients are

calculated in the same way as in UNIQUAC. In FlexFAC, analogous to Equation 5-18 the

following expressions are used:

XMy
&

",

InT} = Q¥ (f(& ))+[ ] 1:(&")

5-52

+ﬁ(f”)Vfr[

afz(fgé”))J
FO )y,

~ = oY L
InT{" = :.::(f@"’»{—aﬁ;j )] 1,89

5-53

vy vrT| L2l
+ [H(XY) f[ FON

w}
TPty
where X™ and X are the group fraction vectors in the mixture and the pure component i. O
and Q' are calculated analogously to Equation 5-10 as
O, = LHXY) [(&(XY)) 554
=X LOXT) 555
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5.6 Implementation of FlexQUAC-Q in Fortran

5.6.1 Preliminary Check

As a preliminary test, before any programming of the activity coefficient calculation subroutine
was undertaken, the FlexQUAC and the re-formulated UNIQUAC model equations were checked
against the original UNIQUAC model using a numerical example in MathCAD (Appendix 4 —
FlexQUAC-Q Derivation).

Here the residual parts of the original UNIQUAC and re-formulated UNIQUAC equations were
compared to see if the same result was obtained for any given input data. Hence, the both model
equations were defined. The necessary derivatives and Jacobian matrices were defined. In
addition, to further establish the accuracy of the analytical derivatives, numerical derivatives in
terms of elementary finite difference methods were used as a rigorous checking device. This was
a necessary exercise that would serve to identify analytical derivatives that were inaccurately
defined,

For the reformulated version of the UNIQUAC model, the analytical derivatives of f,(:'é) were

first determined in terms of mole numbers and then back substituted in terms of mole fractions.

This exercise had a twofold benefit, initially as a checking device to identify any errors. This
derivative was then compared to a numerical derivative. Since f,(¥) is a function of mole
fraction, the numerical derivative was computed in this way:

df, (%) _ f(G+eps)- £, (G -eps) 5.56

dn  mmenca 2(eps)

Here eps refers to a tolerance of 10, When the analytical and numerical derivatives are compared

the difference should ideally be less then this tolerance.

Next, the derivative fz(C:)) was derived together with its appropriate numerical derivative. In this

case the numerical derivative is computed by a change in the surface fraction, ©.
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c#z((:)) _ J@(é+eps)—f2(@)—eps)
d®  rumericat 2(eps)

5-57

Here the both derivatives were found to be within acceptable tolerance.

As a next step, the Jacobian matrix (V@) is computed. Here the numerical derivative is expressed

do(x) _ 0% +eps)— O3 —eps)
dn  ymerica 2(eps)

5-58

Next, the derivatives of f, ((:)) by mole numbers were computed analytically and numerically.

Hence the residual activity coefficients were computed analytically and numerically. The

comparison of the two results was good.

Similarly, the derivatives of fz(?(@)(}))) by A®) and the Jacobian Vf were computed. In this

case the following numerical derivatives apply:

df, fl® _ fi?(@)+eps)— fZU(C:))—eps) 5.50
d‘? c:)f numertcal 2(€’p S)
Aaf X—eps||_ A gl ¥t+eps
g0 AL
an  mumericat B 2(eps) "

Thereafter the numerical and analytical residual activity coefficients were compared and found to

have negligible difference.
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5.6.2 Simplifications in MathCAD

Some of the derived expressions were far too complex to be programmed as they appear in the
previous MathCAD file (dppendix 4 — A2 FlexQUAC-Q Derivation). The derivatives and
matrices require careful computation. In addition, the distinct disadvantages to programming such
long expressions in FORTRAN were:

» Difficulty in computing and programming

»  Difficulty to trace through code and identify errors

In short this approach was not an intelligent one, since troubleshooting would be problematic. A
more prudent solution to this would be to simplify some the more complex expressions obtained
in the derivations. This would ease the programming and enable one to manage the computation
of complex expressions by fragmenting them. This would also help to isolate errors in

computations to specific parts of expressions.

This simplification was undertaken in MathCAD once more using the same numerical example.
(cf Appendix A — A3 Fortran Implementation) The purpose of computing the simplified formulae
simultaneously with the new expressions were for comparison and to ensure that no errors were

encountered in this simplification process.

The following variables (cf Table 5-1) were introduced as they appear frequently in other larger
expressions and from a programming perspective, the computation of these terms would reduce
the number of variables used, eliminate repetition and redundancy and facilitate better

understanding of the code.

These variables reduce the complexity of some terms:
1) Definition of /5

f2:= i X - thetfx. In(Sfi)

i=1
2) Derivative of /,by A®)
df2, = suml, + InfSf;)
1 1

i
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Variable Definition Actual Equation
thetafx n n
thetafxi = Qi' 1+ Z X Qk -8 q;[l+zxk4k5:.kJ
k=1
k=1
sthetfx sthetf := )" x,- thetafx;

Z x4, [1 + Z X i 0, 4 J
; k=1

thetfx ll'lt:tafxi
thetfx. := s q,-[l "{; X, 040, 4 J]

SR

Sf =
Sfi = i xj . thetij "), ;f(@)l, LEY
j=1
Sum1 N 6 x-thetfx. - 1j i Z f(('-:"')_)‘J 7,
: i=1 Sfi d ;fG)Jfﬂ
S) "
8J,:= i K Qk-(l + Q- Sk,;) ;xk%(]'“ﬂ‘su)
k=1

Table 5-1 Summary of convenience variables that were defined due to the high frequency in which

they appear in other definitions
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JacobianFQ1 := | for i¢ l.n
for mel.n
m’ Ki Qi ' xi
Jac A——(thetfx -x.])— +
m. 1 m sthetfx thetfxi- sthetfx

"ri.Qi'("m'Bi""l
Jac .«Jac  + —— ifizm
m,i m,1 thetfxi - sthetfx

Jac .«Jac .+1 ifi=zm
m, m,l

L] £l

Jac_ .« Jac_ .- thetfx
m,t m, i 1

Jac

The above expressions were used to compute the Jacobian, Vf. The Jacobian was analysed

carefully to find repeated terms. As explained earlier, the differentiation to obtain the Jacobian

Vf involves two cases, one with identical subscripts and the latter which involve different

subscripts. Hence the above expressions presents two different expressions for each case (one for
i=m (main diagonal} and i¥m (rest of the matrix)). It was observed that some terms were common

to both cases.
The Jacobian simplification follows a sequence of steps:

= Step I: The terms in the two expressions are replaced by other variables

= Step 2: A new variable is defined, SJ since it appears in both cases

® Step 3: SJ is substituted into the expression and the term A is multiplied into the
bracketed expression. In this case A4(B/C) = @f as defined earlier

" Step 4: ©f is multiplied into the bracketed terms
«  Step 5: The term {B/CY} is repeated and can be simplified to O, /x
= Step 6: The term 4/C is repeated and can be replaced by © , /B

" Step 7: It is best to eliminate the mole fraction from the denominator of certain terms by
the use of other variables to avoid division by zero. At this stage a more convenient

variable can be introduced, @, . @, = @/x, therefore @/B=0 ,x/B.
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» Step & It is now evident that a common factor of @, can be removed from both

expresston. Three terms are common to both expressions:

X V(x.Q,m); - X
~ Of nYi - ¥ - ——————]
Bram, T g

«  Step 9: Hence, from careful observation and variable manipulation more compact
expressions were derived for the Jacobian. As a final check, the simplified result is

compared with the initial expression. The two correspond exactly.

5.6.3 Activity Coefficient Calculation Subroutine in FORTRAN

This section presents a description detailing the programming in the Fortran subroutine. To allow
better understanding of the programming, the subroutine makes use of the variables previously
defined in the Mathcad file (¢f Appendix A — A3 Fortran implementation and Table 5-1). Some

new variables are also summarised in the Table §-2,

An algorithm (Figure 5-5) is also presented here to elucidate the programming as confained in the

subroutine. The subroutine accomplishes the task of computing the activity coefficient via six

steps:

1} Get interaction parameters
2) Calculate combinatorial activity coefficient

3) Perform auxiliary calculations for the new FlexQUAC-Q model
a
dn

4) Calculate relevant derivatives (Z—jr‘ ,—=and Jacobian matrix)
n

5) Calculate the residual activity coefficient
6) Calculate the FlexQUAC-Q activity coefficient
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Variable Meaning
Lmodcomb34 Logical Variable - Activates the % exponent on the
combinatorial term
Lmodcomb23 Logical Variable - Activates the 3 exponent on the
combinatorial term
Imodgflex Logical Variable - Activates the FlexQUAC-Q model
X Mole fraction
t Temperature
act Activity Coefficient
he Excess Enthalpy
cpe Excess heat capacity
aij Interaction parameter
alphaij 3
aijt Temperature dependence of interaction parameter
tau Tij
SXR me_
R 2%,
SXQP Zx,q,'
F q,
254,
\" r,
2.
Lgamc Imcombi:natot‘ial
sthetfx

Zx,q,.[l * foq;'5f.J'J
i 7

Cont...

T~
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Variable Meaning
Sumk_array

1+ ijqﬁ,._j

r
Thetfx
g| 1+ ijqu‘sr,j
i

dfidn Derivative of f1 wrt mole numbers
Jac Jacobian matrix
df2dn Derivative of £2 wrt mole numbers
lgamr InTmidual

Table 5-2 Summary of the variables and their definitions used in the Fortran subroutine
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( START )

Y

Call procedure setpar — ¢f Section 1 Appendix
B:BI Implementation in Fortran
= Calculate interaction parameters for
given temperature and their
temperature derivative (aij, ajjt &
alphaij)

v

Calculate Combinatorial Part — ¢f Section 2
Appendix B:BI Implememation in Fortran

SXQ=3 x4,

SXR = in,;;
F =q,/SXQ = q:/Zx,-q, =0,
V,=r/SXR = r/z xr =,

Cl=-1+,/0®, +n(®, /)
v

The user selects the choice for combinatorial term

{a=%,23o0rl)

a

n r
lgamec=Iny,,, =1- —+aln -
2 2
i '

—Sq,[—l+lng+?i}
®, ©

! i

Y
Cf Section 3 Appendix B: 1.1 Impiementation in Fortran
Tau=rt, = expl— Au, RT)

sumk _array, =1+ x,q,0,
j
the{ﬁl = qr{l + Zx;qua.-_,r ]
-
sthetfx = Zx,qi.[l + ijqﬁyJ
i 7

q,.[l "'foq;"qu
thethaf, = theifs, _ !

sthetfx ( 1
Zx,q,. 1 "'Z%%‘if Cont...
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A 4

T

x4, [1 SR TN )
Sf, = x,7 thethaf, =) k
: ’ Zxrgz(““zxqué'u}
! i

Ji

Y

Cf Section 4 Appendix B:1.1 Implementation in Fortran
: Compute f1, 2 & G* resitual

sumk = Z X4,
fl=—sumk

xq, (I + Z x}.q_;.é'fj J
"
Z X4, [1 T Z xfgf‘su'
] 1

foesiduuf = flx f2

12 = xthethaf, In(Sf) =

In(Sf,)
J

3

Cf Section 5 - Appendix B: 1.1 Implementation in Fortran
: Derivative of f1

dfldn, =—q, - f1

y

Cf Section 6 - Appendix B: 1.1 Implementation in Fortran
: Derivative of {2

xj.qj{1+2x,tq*5b]ry
&

ZxJQI[l +Zxk9&§ﬂ}
L £ +In§
2y ik

df 2dthet, = U2
)

Cont...
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h 4

Cf Section 7 - Appendix B:1.1 Implementation in Fortran
Compute Jacobian Matrix

S, = Zx;'q;'(l + qi5jf)
J
q.x xiqj(l+;xkqa€(l+qJ!5t.j)) xrzkuk(l+Qj5&.j)
it k

q,(l +Zx,(q,‘5k.,} ;x*qk(l-kq’é‘k'j) Zx:;‘h [1+ZXJ‘I:JMJ
k k !
If i = j (main diagonal of Jacobian Matrix) then Jac,, = Jac,, +1

‘xi QJ

‘f.i[l +ij‘.?,f‘5r.j}
1
q,.(l +ijqj5f_1]
¥
me{“fzxﬁ%}
k )

Jac,, =

Else Jac = Jac” +

Jacj‘,. = Jacj,[. X

h 4

Cf Section 8 Appendix B:1.1 Implementation in
Fortran
: Derivative of £2 wrt mole numbers

df2dn =42 < S Jac, , x df 2dthet,
dn 5 '
v
Cf Section 9: Compute Activity CoefTicient
]g am?: = ln }/nes:dm." = fl x dedn; +f2X d.fldne + Grii-:dna."
act, = y = exp(lgamr, +1game,)

END

Figure 5-5 Algorithm detailing the implementation of the FlexQUAC-Q model in Fortran
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5.6.4 Implementation in RECVAL

With the subroutine complete, it was added to RECVAL, the regression software tool. To allow
the user to select the appropriate model, a subroutine matflex was programmed. This subroutine
uses logical variables to activate a specific model. In addition, this subroutine allows the user to

choose from the different variations of the UNIQUAC combinatorial term.

In Figure 5-6 RECVAL’s liquid mixture model program window is illustrated. In the section

model flavours, the user is prompted to select the appropriate. The user can select one of these

options:
1. modgflex — This activates the FlexQUAC-Q model with original combinatorial
term
2. modcomb34 - This activates the % modification of the combinatorial term

2
3. modcomb23 - This activate the 5 modification of the combinatorial term

The combinatorial term options can be selected in conjunction with the FlexQUAC-Q option.

However, only one combinatorial variation can be selected at a time.
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RECVAL/3 - Liquid Mixture Model Selection

- —— — g K
liquid mixture model [ 7- FLEXQUAC -l |
number of parameters [ = _J ____Qa:lcal .:
emperature depen Hep |
temperature Konce ' 1-Par = A [constant) v/ _
temperature dependence .
(3rd parameter) | 1-Par=A [constant) hd|
adjust pure component - =
vapor pressure to v comp. 1 v comp. 2
author's measurement

model flavours (click Help for options)

Figure 5-6 The RECVAL liquid selection model options, where the FlexQUAC-Q model can be

enabled via the use of the control string, modgflex.

5.7 Implementation in Excel

With the use of macros, the regression of equilibrium data was possible. The programming code
is contained in Appendix B — B2 Implementation in Excel. A simple algorithm is presented here to
aid in the understanding of the regression procedure (Figure 5-7).

The program begins by reading data from the DDB and selecting the appropriate worksheet in
Excel for data output. This Excel program makes use of a DDB add-in feature which a library of
computational procedures utilised by the DDB software to perform various equilibrium data

calculations.

The experimental equilibrium data is stored in a text file. This file is accessed and all the relevant

data is displayed on the Excel worksheet. The file contains the DDB set no, component codes and
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component names. It also enables the retrieval of pure component molecular constants, Antoine
constants and the experimental VLE data.

A liquid model is then selected. Some preliminary calculations are then performed to obtain
partial pressures and activity coefficients. The formulas for the calculation of pressure and the

vapour mole fraction are set into the Excel worksheet,

An initial set of interaction parameters are set for the regression. The program first uses the
UNIQUAC model. The interaction parameters are passed into a subroutine, datafit which contains
the various criteria for the regression i.e. step width for each parameter, maximum number of
iterations and stop criteria. This procedure then inputs these parameters into the simplex
regression subroutine where the regression takes place. The results of the regression are displayed
on the worksheet. The residual value from this regression is calculated from the sum of the
deviation of the calculated pressure from the experimental pressure and is stored. The regression
is made more robust by assigning a new set of parameters a further three times and performing
the regression. In each instance the residual corresponding to the set of regressed parameters is
stored. At the conclusion of the final regression, all the residuals are compared and the lowest
residual corresponds to the optimal regression parameters. This set of parameters is used to

regress the data once more.

Thereafier the infinite dilution activity coefficients and the relative absolute deviation in pressure

are calculated.

The interaction parameters are reset and a similar procedure is used to regress the data using the
FlexQUAC-Q model.

In the case of the temary VLE data, the constituent binary VLE systems are considered first.
These binary VLE systeins are regressed and the parameters obtained are used in the calculation
of the ternary VLE data,
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=  Read data from DDB

= Formats excel data sheet for output

= Selects either binary VLE regression or
temary VLE calculation - ¢f Section { -
Appendix B: 2.1Excel code

¥

Opens data file and outputs the

following on the spreadsheet (¢f Section

2 — Appendix B: 2.1Excel code):

» DDB Data set no

= No of data points

*  Reference No

= Type of data (constant temperature
Or pressure)

®  Retrieve component codes,
empirical formula and component
names

»  Retrieve pure component molecular
constants (1, ¢)

»  Retrieve Antoine constants

»  Retrieve experimental data

v

" Select liquid model - ¢f Section 3 -
Appendix B: 2. 1Excel code

h

Adjust Vapour Pressure
and calculate vapour
pressure - ¢f Section 4 —
Appendix B -2.1 Excel code

InP* =4+
T+C

r

Calculate activity coefficients - of
Section 5 — Appendix B -2.1 Excel code

- y.!P
yl' x‘})lsa!'

L 2

Calculate partial pressure - ¢f Section
6 — Appendix B - 2.1 Excel code

F=yF

¥

Cont...

N
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Write calculation formulas for P and y to
spreadsheet - ¢f Section 7 — Appendix B -2.1
Excel code

Pca.f = Z xiy::a-‘Psal

i

cal psar
cal xiy:' PI'

Vi Pca."
Deviation:
( Pexp - Pcan‘ }2
Dev={f =1
Pexp
. Pexp _ Pca! 2
Residual = Z _PeT_
¥

Initialise regression parameters - cf Section 6
— Appendix B — 2.1 Excel code
a;2= 50 cal/mol
ay = 60 cal/mol

Yy
Activate UNIQUAC model

b

Call Regression Procedure - ¢f Section
9— Appendix B - 2.1 Excel code

h 4

Calculate infinite dilution activity
coefficients and Relative Absolute Deviation
and output to worksheet - ¢f Section 10 —
Appendix B — 2.1 Excel code

r
Activate FlexQUAC-Q model and initialise

model parameters - ¢f Section 11 — Appendix
B - 2.1 Excel code

v

Cail Regression Procedure - ¢f Section
{2— Appendix B — 2.1 Excel code

¥

Calculate infinite dilution activity
coefficients and Relative Absolute Deviation
and output to worksheet - ¢f Section 13 -
Appendix B — 2.1 Excel code

—
Figure 5-7 Algorithm detailing the implementation of the FlexQUAC-Q meodel in excel code
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Chapter 6 Results & Discussion

6.1 Consistency Check

Due to the complexity of the mathematics (Chapter 5) involved in the derivation of the
FlexQUAC-Q mode! and its restructuring and implementation in the programming code; one has
to verify the correctness of the final implementation. It was vital to establish that the mathematics
and the output of the programmed subroutine are consistent. As outlined previously in Chapter 5
the model was first simplified in Mathcad and thereafter implemented in a Fortran subroutine and

integrated into the existing DDB regression tool, RECVAL.

For the purpose of checking, data for the binary VLE system diethyl ether and acetonitrile were
used (Joukovsky 1934). The data set was regressed using RECVAL program which contained the
newly implemented Fortran subroutine to calculate activity coefficients for the FlexQUAC-Q
model. This yielded optimal regression parameters. In addition, output statements were included

at strategic points of the subroutine so that the numerical values of the pertinent variables can be
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tabulated. The purpose of generating output to a text file is two fold; firstly, since it allows easy
tracing through the subroutine code by monitoring the value of critical variables and secondly, it
simplifies the process of identifying any errors substantially and the troubleshooting process. The
Fortran subroutine generates a text file and the file records the values of the different values of the

pertinent computational variables as the subroutine advances through the process of regression.

A Mathcad file was designed to generate numerical output for any given set of optimal
parameters and mole fraction. Coupled with the Fortran output file, the process of identifying any

source of errors became more manageable.

The pertinent variables and their respective values in both the Mathcad file and the Fortran file
are summarised in Table 6-1. The output from both files is in excellent agreement. The rest of the
activity coefficients are computed for the rest of the experimental data contained in the data file.
This data is summarised in the mathcad file (C/ - Consistency Check ¢f Appendix C) and the
output from the Fortran file in a text file (Flexg — ¢f Appendix C). This data further corroborates

the accuracy of the Fortran subroutine.

Variable Mathcad Fortran

X =0x=1

T 293K

Regression parameters __( 0 497.605] 5'_( 0 0.1786]
76972 0 0.178 0

1Y combinatorial -0.209 -0.208
) ]

T .06 1.14 1.0¢ 1.14

{0.426 1.00} ]:0.426 1.00}
sthetfx 1724 1723

Cont...
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Variable Mathcad Fortran
Thettx [2.288] 2,288
i 1 | i 1
thetafx 13.945] 3.944
_1.723_ _1.723
thethaf 0 0
1 1
sf 1.14 1.14
1 1
f1/ - sumk -1.724 -1.723
2 0 0
G residual 0 0
ﬁ -1.292 -1.292
dn 0 0
_t_f[z_ 0.588 | [0.588
do ] 1
SJ 2.653] [2.652]
1.724 | 1 .T23_
Jac 2288 O 2288 0
-2288 0 -2288 0
_c_fji [—1.01] [—1.01
an 0 0
1Y regidual 1.743 [1.742]
b 0 - b 0 -
¥ [4.638' [4.638'
1 1

Table 6-1 Comparison of accuracy of output data values in both Mathcad and Fortran for the system

Diethyl-ether(1) and Acetonitrile(2) with x, = 0 and x, = 1 to assess accuracy of FlexQUAC-Q activity

coefficient caleulation
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6.2 Performance Evaluation of FlexQUAC-Q Model

The consistency check served to confirm the accuracy of the Fortran subroutine and facilitated the

subsequent performance evaluation of the FlexQUAC-Q model.

The performance analysis of the FlexQUAC-Q model followed a similar procedure to the one
employed by Rarey (2005).

Does the model give improved correlation of experimental binary VLE-data?

» s the flexibilised model able to predict multicomponent VLE from binary data with a
quality similar to (or even better than) the original model?

*  Can the model be used for the simultaneous regression of VLE- and LLE-data?

» Is the model able to predict the ternary LLE-behavior from binary data alone?

For convenience the test of correlative and predictive ability with respect to vapour-liquid

equilibria will be conducted using the same set of experimental data as in the previous work.

In this way, one can logically determine the effectiveness of the model compared to UNIQUAC
and its precursor, the FlexQUAC model. In addition, the analysis would enable one to determine
where the model shows marked improvement and verify if the model proves superior in the case
of asymmetric systems. As a first step also, the FlexQUAC-Q model needs to demonstrate that is

at least comparable with the former models and that it performance is not degenerative.
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6.2.1 Binary VLE Data

6.2.1.1 Excel Regression

As a first test the FlexQUAC-Q-model was applied to the correlation of binary VLE data stored
in the Dortmund Data Bank (DDB) using only one additional parameter. Different techniques are
employed for the measurement of VLE data. Very high precision xPT-data are available using the
static method as described by van Ness et. al. In this method the pressure in an equilibrium cell
with known amounis of the components is measured at fixed temperature. The concentrations in
the liquid and vapour phase are iteratively calculated using an nVT-flash calculation. A
comparative test of the UNIQUAC, FlexQUAC and FlexQUAC-Q model was performed on this
type of data whereby only data sets with 10 or more data points were used. The use of static
measurements and much more precise pressure values (compared to the determination of the

vapour composition) was always strongly advocated by Van Ness,

The resulting 4741 data sets were regressed individually using the Excel program with all three

models with the mean relative squared deviation in pressure as objective function F:

2

1P, P,
F=— PO LT
né[ P ]

£xpt

61

The primary focus of the analysis was 10 establish the extent of the relative reduction of the
objective function of the FlexQUAC-Q model compared to both FlexQUAC and UNIQUAC.

The objective functions (F) of the 4741 regressed binary VLE data sets {c¢f Appendix C — C2 -
Binary VLE results) were arranged in ascending order for cach of the three models. Each
objective function corresponds to a percentage of the total data set and in so doing a cumulative
percentage was created. Then, the deviation in pressure was plotted versus the percentage of data

(Figure 6-1) to better understand the performance of the three models.
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The minor mean relative reduction of about 3% of the objective function using FlexQUAC-Q
compared to FlexQUAC was observed compared to a reduction by about 53% relative to the
UNIQUAC-results. While in case of UNIQUAC approx. 48% of the data sets showed a final
objective function of 107, in case of the Flex-models this was achieved by about 63% of the data
FlexQUAC-Q with the Weidlich and Gmehling combinatorial term behaves very similar to the
FlexQUAC-Q model with the original combinatorial term.

This proves that both Flex-models perform nearly identical compared to UNIQUAC. It should be
noted, that the improvement expected in case of asymmetric systems for the new transformation
will not be strongly visible in case of vapour-liquid equilibria as the data sets are usually for
components of similar vapour pressure and molecular size. Components very different in size
usually have significantly different vapour pressures and present no problem in distillation. In
case of liquid-liquid equilibria the vapour pressure has no influence and the phase equilibrium is

determined only by the real behavior of the liquid.

£ 1.E+00 ;

= ] ﬂ

o 4

= 1.E01 4

2 5 UNIQUAC /

°  1E02 | \

o @ ] 2

235 ] \ 2

=8 1E03 -

@ 5 =

S 160

= ] X FlexQUAC

% 1.E05; -

> % FlexQUAC-Q

s 1E06 frm—meeerememeeee—

0% 20% 40% 60% 80% 100%

percentage of the data

Figure 6-1 Largest deviation observed in a certain percentage of the sorted data set regressions
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6.2.1.2 RECVAL Regression

Since RECVAL performs simultaneous regresston of various types of data, it provided another
way to test the performance of FlexQUAC-Q. Although the Flex-models were evaluated with a
battery of binary VLE data, it would also be necessary to assess whether the model is able to

correlate other data type simultaneously.

The functionality of RECVAL allows one to select a binary system from the DDB. Thereafter all
the available experimental data sets of different types (activity coefficients, azeotropic data,
excess heat capacity, excess enthalpy, VLE, LLE, SLE etc) can be exported to RECVAL for
regression. In RECVAL, the regression can be adjusted with the use of weighting factors to
assign more or exclusive importance to a specific type of data. The weighting factors should be

set such that each data type gives similar total deviation.

However, not all experimental data are reliable and contradictory or false data result in erroneous
predictions (¢f Chapter 2 — 2.10 Data quality and model selection). RECVAL tracks the impact of
each data point on the objective function by plotting residuals (Figure 6-2). Here one is able to
ascertain which data set or data points have the largest deviation and these can be removed from

the regression,

For the system tetrahydrofuran-water (Figure 6-3), UNIQUAC’s fit of the data is not precise and
the azeotropic point is not described well. FlexQUAC-Q performs as well as FlexQUAC. 1t fits
the data and describes the azeotropic point precisely. Although the difference between the two

curves is small, the qualitative description of the system is very different.
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(1) HEXANE
(2) ETHANOL

0.020 plot type: res -p (no )
constant property’ none

These data points
+ Délong 1o a data set
~ which are inconsistent

0.015p— 5 and should ba
removed from
the regression
% 0.010—
]
0.005p—

O TSSO TSRO WIS oo MNP, ANl L
0

10000 20000 30000 40000 50000
PimmHg

Figure 6-2 Residual plot for pressure in RECVAL for the system hexane-ethanol

25

P/ kPa

— UNIQUAC
--- FlexQUAC-Q

0 0.2 0.4 0.6 0.8 1
X4

Figure 6-3 Description of tetrahydrofuran-water system at 298K (Signer et al , 1969) by the
UNIQUAC and FlexQUAC-Q models
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Consider the system hexane-acetone, The UNIQUAC surface parameters (q), are 3.856 and
2.3360 for hexane and acetone respectively. This represents a moderately asymmetric system. A
simultaneous regression of available data for this system was done in RECVAL. Table 6-2 shows
the various data types used in the regression. Some data sets were omitted from the regression

using the filtering process outlined above.

Data type No. of data sets
VLE 19
LLE 11
Cp* 1
H* 10
Activity coefficient 43
Azeotropic data 69

Table 6-2 Different types of data sets that were simulianeously regressed for the system hexane-
acetone

While UNIQUAC fails to give an accurate description in this case, both FlexQUAC and
FlexQUAC-Q behave similarly and give an excellent description of the data. GEQUAC also
provides an accurate description of the binary data (Figure 6-5). This model is an exact quasi-
chemical multisegment model. Whilst GEQUAC provides such accuracy it must be noted that
this model is complex and requires 14 parameters to obtain such an accurate description. This is
in contrast to the FlexQUAC-Q which uses a non-linear transformation of surface fraction with
only one additional parameter. FlexQUAC-Q is considerably simpler and produces the same

accuracy.
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80 T=ITTER

T=30815K

T=29315K

20
T=268.15K |
10 - £ =t ————— - *
pp——————— -
0 - r . . . . . . .
0 0.1 0.2 0.3 04 0.5 06 07 0.8 0.9 1

Xhexaner Yhexane

Figure 6-4 Hexane-acetone experimental data [T= 268.15K, 293.15K - (Rall et. al 1959), T = 308.15K
— (Kudryaviseva et al 1963), T = 313.15K — (Kolasinska et al. 1982)] fitted by the FlexQUAC-Q

model
30 . 1 ¥ ¥ T T ¥ T
- hexane + ascione B experimen!
L ' GEQUAC -
3 T'=308.15K [41]
60 e . -
50
"va'
B, 407 T=293.15 K [42]
o,
30
20
= 268.15K [42)
ettt ]
0 i 1 2 [] i l — . 1
0,0 0.2 04 0,6 03 L0
Xhexanes Phexmne

Figure 6-5 Hexane-acetone system as fitted by the GEQUAC model (Ehlker & Pfennig, 2002)
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For the system ethanol-heptane, the UNIQUAC surface parameters are 1.972 (q,) and 4.396 (q,)
respectively. This indicates that the system is asymmetric (q)/q, = 2.23). This system was

regressed simultaneously with the data sets detailed in Table 6-3.

Data type No. of data sets
VLE 41
Cp* 17
H* 29
Activity coefficient 73
Azeotropic data 72

Table 6-3 Different types of data sets that were simultaneously regressed for the system ethanol-
heptane

Figure 6-6 shows the correlation of H® data by the FlexQUAC-Q model. Since the experimental
data contain Cp® data at various temperatures, it was appropriate to use quadratic temperature
dependence for the interaction parameters in RECVAL. UNIQUAC failed to give a good
description of HF data. Once again the description of the data using the FlexQUAC-Q model is
comparable to the accuracy of the description achieved by the GEQUAC (Figure 6-7) group

contribution methods.
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Figure 6-6 Heptane-ethanol HE data (T=283.15K, 323.15K — Lietzmann et.al 1994, T = 333.15K,

348.15K — Van Ness et.al 1976) as fitted by the FlexQUAC-Q model
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GEQUAC
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Figure 6-7 Heptane-ethanol H" data as fitted by the GEQUAC model (Ehlker & Pfennig, 2002
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Figure 6-8 shows the effect of flexibilisation with the FlexQUAC model for an arbitrary mixture
with a surface area ratio of 6 to 1 as function of mole fraction and surface fraction. In the plot vs.
mole fraction, most of the changes in the activity coefficients occur in the left side of the diagram.
The modifications by flexibilisation on the other hand are similar on both sides. The effect of
flexibilisation at low concentrations of component 1 is most pronounced while at high
concentrations it is confined to a small range. FlexQUAC-Q should be able improve the quality of

the data prediction based on this more adequate concentration scale.
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Figure 6-8 Effect of flexibilisation ((a) 6,,=0, (b} ,;=0.2)) on an arbitrary mixture with a surface are ratio of 6
to L.

Figure 6-9 shows the left and right homogeneous region of the moderately asymmetric mixture 2-
butanol-water. The surface area ratio for this mixture is 2.178 (Qobuane 15 3.048 and qu. is 1.4).
While on the right hand side of the miscibility gap a FlexQUAC parameter of 0.22 is sufficient,

the pressure on the left hand side still looks underpredicted.

Figure 6-10 shows the regression of the system 2-butanol-water for various values of the
interaction parameter, ;.. A value of 0.20 for the parameter 3, corresponds to the best

description of the data for the ieft homogeneous region.

-164 -




CHAPTER
SIX

0 oot o 0% 0u 00 006 03 04 05 0% 07 08 08 1

R iy L ]

Figure 6-9 Left and right region of the Pxy-diagram for the system 2-Butanol (1) — Water (2) at
45.04°C together with experimental xyP-data (Escobedo-Alvarado G.N., Sandler S.1., 1999) and
curves calculated from FlexQUAC using different values of §;, (a: 0.0, b: 0.05, c: 0.1, d: 0.15, e: 0.2, f:
0.22, g: 0.25). Interaction parameters were regressed to liquid-liquid equilibrium (Marongiu B.,
Ferino L., et al, 1984.) composition (dashed lines)
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Figure 6-10 Left region of Pxy-diagram for the system 2-Butanol (1) — Water (2) at 45.04°C together
with experimental xyP-data (Escobedo-Alvarado G.N., Sandler S.I., 1999) and curves calculated
from FlexQUAC-Q using different values of §;; (a: 0.0, b: 0.05, c¢: 0.1, d: 0.15, e: 0.17, f: 0.20).
Interaction parameters were regressed to liquid-liquid equilibrium (Marongiu B., Ferino 1., et al,
1984.) composition (dashed lines)
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In accordance with the definition of both the FlexQUAC and FlexQUAC-Q models, a value of §,,
= ( the both models degenerate back to the original UNIQUAC model. From Figure 6-11 it is
evident that UNIQUAC fails to give an accurate description of the data. In the case of
FlexQUAC, a good description of the data is obtained at a value of approximately 0.23 (Rarey,
2005). Although a value of 0.20 gives a good description for the left region, the right region is not

accurately described.

However, FlexQUAC-Q additional parameter §,,, is intended to have a more pronounced effect
on the larger component in the mixture, 2-butanol is this case. Figure 6-10 confirms that
FlexQUAC-Q parameter does have the desired effect on the curvature in the left region. For a
gradual increase in the 3y, value, the fit of the data becomes better progressively. In the case of
FiexQUAC, the curvature of the left region does not rise adequately as higher values of §,; are

approached and hence the description is not entirely accurate.
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Figure 6-11 Pxy-diagram for the system 2-Butanol (1) — Water (2) at 45.04°C together with
experimental xyP-data (Escobedo-Alvarado G.N,, Sandler S.1., 1999) and curves calculated from
FlexQUAC-Q using different values of &;; (a: 0.0, b: 0.05, c: 0.1, d: 0.15, e: 0.17, f: 0.20). Interaction
parameters were regressed to liquid-liquid equilibrium (Marengiu B., Ferino L, et al, 1984.)
composition (dashed lines)
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6.2.2 Ternary VLE Data

Ternary VLE data was then used to assess the performance of FlexQUAC-Q compared to
UNIQUAC. The data of P. Giercyz (1964) was used to test the performance of the FlexQUAC
model. Ternary homogeneous data sets were carefully selected and they were all measured in the
same laboratory and the diversity of systems vary from strong positive to strong negative
deviations from Raoult’s law. The data set comprised 13 ternary VLE data sets and 39 binary
VLE data sets. The binary data for the 39 data sets were regressed using the FlexQUAC-Q model
(both original combinatorial and Weidlich & Gmehling’s combinatorial term) and these
parameters were then used to calculate the ternary VLE data (¢f Appendix C — C3 - Ternary VLE
Results — Original Combinatorial and Ternary VLE results & Weidlich and Gmehling).

DDB
Ternary Maximum surface ratio
Data Component | Component | Component Comp | Comp | Comp
Set No. 1 2 3 91 92 Qs |1&2 [1&3 |2&3
11564
11565
11566 Methanol n-Hexane Cyclohexane | 1.432 | 3.856 | 3.24 2,693 2.263 1.190
11582
11583
6192 Acetone Methanol Chloroform 2.336 | 1.432 | 2.41 1.631 1.032 1.683
7057 Ethanol Acetonitrile Water 1972 |1 1.724 | 14 1.144 1.409 1.231
8209 Acetone Ethanol Water 23361972 | 14 1.185 1.669 1.409
7053 Ethanol Water 1,4 Dioxane 1972 | 1.4 2.64 1.409 1.339 1.886
5331 Acetone Acetonitrile Methanol 2.336 | 1.724 | 1.432 [ 1.355 1.631 1.204
2654 Benzene Cyclohexane | Aniline 24 | 3.24 [ 2816 | 1.350 1.173 1.151
2657 n-Hexane Benzene Cyclohexane | 3.856 | 2.4 3.24 | 1607 1.190 1.350
5971 1-Heptene n-Heptane n-Octane 4.184 | 4.396 | 4936 | 1.051 1.180 1.123

Table 6-4 Ternary data set components and UNIQUAC surface fraction parameters (q) and
calculated surface fraction ratio for the constituent binary systems

Table 6-4 lists the components for each of the thirteen ternary systems and the individual
component UNIQUAC surface parameter, q. The maximum surface ratio is calculated as the ratio
of the UNIQUAC surface parameter of the larger component to that of the smaller component.
This gives an indication of the degree of asymmetry. From this calculation, one can infer that the
systems are very moderately asymmetric, with a higher degree of asymmetry observed for the

system ethanol- water- 1,4dioxane. Hence, it is expected that the FlexQUAC-Q model should not
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produce any significant reduction in objective function as compared to the FlexQUAC model

since the degree of asymmetry is not pronounced.

6.2.2.1 Verification of Regression of Constituent Binary VLE and

Calculated Ternary VLE Data - Regression using Original

Combinatorial Term

The ternary VLE system cyclohexane-methanol-hexane (DDB data set no. 11564) calculations in

Excel were verified with the calculations from Mathcad using the original combinatorial term.

Binary VLE Data - Original Combinatorial Term
Binary No.
Ternary | Set T of | Component | Component FlexQUAC-Q
Data Data
Set No. K | Pts 1 2 a 2 812 | e [ >
11573 | 293.15 | 46 | Methanal Hexane 44682 | 1212.436 | 0.078 | 37.879 | 27.853
11670 | 293.15 25 Methanol Cyclohexane 82.003 982.553 | 0195 | 55.911 | 36.912
11564 11567 | 29315 | 10 [ Hexane Cyclohexane -105.905 | 133687 | 0.073 | 1199 [ 1.138

Table 6-5 Ternary VLE system cyclohexane-methanol-hexane with the constituent binary VLE data
systems (Goral et. al. 2000)

The parameters summarized in Table 6-5 were used in the Mathcad calculations to verify the
calculations of the activity coefficients at experimental liquid composition and the activity

coefficients at infinite dilution.

Refer to Appendix C — C3 - Ternary VLE Results and Caleulations 11564 Ternary Check (Printed
file - The Mathcad file is available on CD in the Appendix C folder). Due to the large number of
data sets for the binary systems methanol-hexane and methanol-cyclohexane {Data sets 11573
and 11570 respectively) only ten liquid molar compositions were selected for the calculation in
Mathcad. The full experimental data set and calculated results are available on CD in the folder,
Appendix C — Ternary VLE Results and Calculation — Original Combinatorial. The results from
the Excel regression and the Mathcad files are in excellent agreement (cf Table 6-6 - Table 6-11).
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X4 11 Y2

0 37.879 1

0.0002 37.867 1

0.00076 | 37.422 1
0.1483 7.406 1.124
0.859 1.097 6.495
0.9502 1.017 13.483
0.9773 1.004 19.522
0.9915 1.001 24,178
0.9993 1 27.519
1 1 27.853

(Goral et. al. 2000)

Table 6-6 Mathcad results for the calculation of the activity coefficient for system Methanol-hexane

Experimental Data Calculated Data

X1 P M calc Yzcalc Pcalc
0.00000 121.21 37.879 1 121.21
0.00002 121.36 37.866 1 121.28
0.00076 124.44 37.421 1.0000 123.89
0.14830 209.79 7.4062 1.1238 223.11
0.85920 209.04 1.0972 6.4954 202.78
0.95020 180.54 1.0168 13.482 177.78
0.97730 148.21 1.0039 19.521 149.39
0.99150 119.71 1.0005 24.178 121.65
0.99930 99.08 1.0000 27.518 99.78
1.00000 97.51 1 27.852 97.51

X1 Y1 Y2
0 55.911 1
0.00058 | 55.171 1
0.00277 | 52.49 1
0.01225 | 42.7 1.002
0.05726 | 19.022 | 1.03
0.0901 | 12.11 1.068
0.8257 | 1.162 | 4.508
0.9002 | 1.073 | 7.551
0.939 | 1.033 | 11.679
1 1 36.912

cyclohexane (Oracz et. al. 1996)

Table 6-7 Excel regression and calculation results for system Methanol-hexane (Goral et. al. 2000)

Table 6-8 Mathcad results for the calculation of the activity coefficients for the system Methanol-
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cyclohexane (Goral et. al. 2000)

Experimental Data Calculated Data
X4 e 1™ 1 Peaic |
0.00000 77.53 1.1987 1.0000 77.53
0.10040 83.66 1.1242 1.0031 83.64
0.18990 88.32 1.0863 1.0088 88.37
0.29410 93.45 1.0586 1.0170 93.40
0.39680 98.04 1.0406 1.0262 98.04
0.49280 102.14 1.0285 1.0359 102.17
0.59460 106.34 1.0187 1.0477 106.35
0.69010 110.14 1.0116 1.0610 110.11
0.79690 114.11 1.0055 1.0800 114.12
1.00000 121.20 1.0000 1.1381 121.20

2000)

Experimental
Data Calculated Data
P Pcalc
X1 kPa 7% v.* | kPa
0.00000 77.53 55.911 1 77.53
0.00058 82.63 55.170 1.0000 80.61
0.00277 105.48 52.489 1.0000 91.50
0.01225 141.66 42.699 1.0016 | 127.73
0.05726 162.98 19.022 1.0303 | 181.55
0.09010 166.50 12.110 1.0677 | 181.75
0.82570 167.24 1.1616 4.5083 | 154.48
0.90020 161.85 1.0726 7.5507 | 152.61
0.93900 151.47 1.0330 11.679 | 149.86
1.00000 97.54 1 36.912 97.54
Table 6-9 Excel regression and calculation results for system Methanol-cyclohexane (Oracz et. al.
1996)
X1 Y1 12
0 1.199 1
0.1004 1.124 1.003
0.1899 1.086 1.009
0.2941 1.059 1.017
0.3968 1 1.026
0.4928 1.029 1.036
0.5946 1.019 1.048
0.6901 1.012 1.061
0.7969 1.006 1.08
1 1 1.138

Table 6-10 Mathcad results for the calculation of the activity coefficients for the system Hexane-

Table 6-11 Excel regression and calculation results for system Hexane-cyclohexane (Goral et. al.
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6.2.2.2 Ternary VLE Calculations from Binary Interaction Parameters

Table 6-12 and Figure 6-12 contains a summary of the mean relative deviation in pressure for the
constituent binary VLE systems and the comesponding calculation of termary VLE data

accompanied with ¥~ for the binary systems.

As in the case of FlexQUAC, FlexQUAC-Q performs better than UNIQUAC for systems with
medium to large deviations from Raoult’s law. This improved performance is seen for the ternary
system Methanol (1) — n-Hexane(2) — Cyclohexane (3). Naturally, no improvements were

observed for systems with small deviations from Raoult’s law,

The objective for evaluating FlexQUAC-Q in calculating ternary VLE data from binary VLE data
was purely to verify that the model retains its predictive capability. The results obtained illustrate

that model modification does achieve this.

= UNIQUAC
# FlexQUAC
FlexQUAC-Q

Pressure (%)

O =N W b OO~ ®

Relative Average Deviation in
T

1 2 3 4 5 6 7 8 9 10 11 12 13
Data Set

Figure 6-12 Comparison of the UNIQUAC, FlexQUAC and FlexQUAC-Q models for selected
ternary mixtures
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RAD in P/ % y= (FlexQUAC-Q)
FlexQUAC- (1)in (2) in
System T/K | UNIQUAC | FlexQUAC Q @) (1)
Meshuniol (1)~ n-Hexsce (2) 293.15 325 1.52 237 3788 | 2785
Methanol (1) - Cyclohexane (2) 293.15 749 4.68 6.59 5591 36.91
n-tieacine (1) y¥lohexine2) 20315 | 006 0.02 0.02 120 114
Methanol (1) - n-Hexane (2) - Cyclohexane (3) 293.15 7.01 3.61 3.54
Methanol (1) - Cyclohexane (2) 303.15 7.01 3.14 445 58.01 29.16
Methanol (1) - n-Hexane (2) 303.15 436 1.91 2.89 3764 26.50
n-Hexane (1) - Cyclohexane (2) 303.15 0.07 0.06 0.06 1.17 1.10
Methanol (1) - n-Hexane (2) - Cyclohexane (3) 303.15 6.12 3.82 4.78
Methanol (1) - Cyclohexane (2) 313.15 417 262 417 58.08 7.01
Methanol (1) - n-Hexane (2) 313.15 3.30 0.77 143 36.13 25.70
n-Hexane (1) - Cyclohexane (2) 313.15 0.02 0.03 0.03 1.12 1.10
Methanol (1) - n-Hexane (2) - Cyclohexane (3) 313.15 4.46 2.47 2.93
Acetone (1) - Chloroform (2) 313.15 0.34 035 037 0.36 0.46
Acetone (1) - Methanol (2) 313.15 0.06 0.02 0.02 2.01 1.98
Chloroform (1) - Methanol (2) 313.15 0.43 0.43 0.43 2.53 9.21
Acetone (1) - Methanol (2) - Chloroform (3) 313.15 1.68 1.71 1.70
Acetone (1) - Chloroform (2) 323.15 0.34 035 037 0.36 0.46
Acetone (1) - Methanol (2) 323.15 0.06 0.02 0.02 2.01 1.98
Chloroform (1) - Methanol (2) 323.15 0.33 033 033 262 8.09
Acetone (1) - Methanol (2) - Chloroform (3) 323.15 1.33 1.36 1.34
Acetone (1) - Chloroform (2) 323.15 0.36 0.36 0.36 0.33 0.53
Acetone (1) - Methanol (2) 323.15 0.19 0.08 0.09 2.01 2.05
Chloroform (1) - Methanol (2) 323.15 033 0.33 033 2.58 8.56
Acetone (1) - Methanol (2) - Chloroform (3) 323.15 0.56 0.51 0.53
Ethanol (1) - Acetonitrile (2) 32315 0.26 0.19 0.19 3.21 3.68
Acetonitrile (1) - Water (2) 323.15 1.23 0.16 0.18 1293 779
Ethanol (1) - Water (2) 323.15 0.39 0.39 0.39 5.57 263
Ethanol (1) - Acetonitrile (2) - Water (3) 323.15 1.41 1.16 1.27
Acetone (1) - Ethanol (2) 323.15 0.13 0.02 0.02 2.15 2.00
Acetone (1) - Water (2) 323.15 0.33 0.04 0.07 9.44 567
Ethanol (1) - Water (2) 323.15 0.23 023 0.23 5.38 2.67
Acetone (1) - Ethanol (2) - Water (3) 323.15 1.62 1.32 1.50
Ethanol (1) - 1.4-Dioxane (2) 323.15 0.19 0.12 0.12 248 293
Water (1) - 1,4-Dioxane (2) 323.15 1.64 1.64 1.64 934 10.84
Ethanol (1) - Water (2) 323.15 0.21 0.21 0.21 5.65 261
Ethanol (1) - Water (2) - 1,4-Dioxane (3) 323.15 1.08 1.29 1.27
Acetone (1) - Acetonitrile (2) 323.15 0.17 0.17 0.17 1.01 1.00
Acetone (1) - Methylacetate (2) 32315 0.03 0.03 0.03 1.14 1.12
Methylacetate (1) - Acetonitrile (2) 323.15 0.06 0.04 0.04 1.29 1.34
Acetone (1) - Methylacetate (2) - Acetonitrile (3) 323.15 0.42 0.37 0.36
Cont...

-172 -




CHAPTER

SIX
RAD in P/ % 18 (FlexQUAC-Q)
FlexQUAC- {1}in (2)in
System T/ K | UNIQUAC | FlexQUAC Q ()] (1))
Benzene {1) - Cyclohexane (2) 343.15 .10 07 0.07 1.46 1.53
Cyclohexane (1) - Aniline (2) 343.15 0.97 0.33 0.34 7.25 93]
Benzene (1) - Aniline (2) 343.15 0.22 022 0.24 1.85 220
B (1) - Cyclohexane (2) - Aniline (3} 343.15 0.65 0.83 0.83
Benzene (1) - Cyclohexane (2) 343.15 026 026 0.26 1.32 1.47
n-Hexane (1) - Cyclohexane (2) 343.15 .25 0.25 0.25 1.05 1.04
n-Hexane (1) - Benzene (2) 343.15 0.17 0.17 0.17 1.54 1.56
n-Hexane (1) - Benzene (2) - Cyclohexane (3) 343.15 0.65 0.63 0.49
1-Heptene (1} - n-Heptane (2) 328.15 0.03 0.03 0.03 1.08 1.10
1-Heptene (1) - n-Octane (2) 328.15 0.38 0.11 0.12 1.22 1.64
n-Heptane (1) - n-Octane {2) 328.15 .11 011 0.12 1.07 121
t-Heptene (1) - n-Heptane (2) - n-Octane (3) 328.15 1.64 1.64 1.67

Table 6-12 Calculation of ternary VLE data from binary interaction parameters

6.2.3 Simultaneous Description of VLE & LLE

Chapter 3 reviewed the common deficiencies of Gibbs excess energy models. A common

deficiency shared by all models is the inability to simultaneously describe VLE and LLE,

FlexQUAC was able to simultaneously describe VLE and LLE as demonstrated by Rarey (2005).
Although the transformation in the FlexQUAC-Q model is applied to the surface fraction the
ability to simultaneously describe VLE and LLE should be retained.

The same example analysed in the case of the FlexQUAC is presented here. Figure 3-2 illustrates

the prediction of VLE using parameters obtained from the regression of VLE and LLE data using

the UNIQUAC model.

Figure 6-13 shows the simultaneous description of the VLE, LLE and azeotropic data using the

FlexQUAC-Q model.
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Figure 6-13 Simultaneous description of VLE and LLE using FlexQUAC-Q G* model parameters
from regression of LLE and VLE data for water (1)- 1-pentanol (2) [m - VLE data (Cho et. al. 1984),
¢ - LLE data (DDB, 2006), A — azeotropic data (DDB, 2006), --- VLE calculation, - - - LLE
calculation, — Azeotropic data]

16

14

12 —
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Figure 6-14 Separation factor as a function of liquid mole composition using FlexQUAC-Q G* model
parameters derived from the simultaneous regression of VLE and LLE data for the system Water (1)
— 1-Pentanol (2) at 101.3kPa (Cho, Ochi & Kojima, 1984)
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6.2.4 Ternary LLE Data

Ternary LLE calculations were performed using binary VLE and LLE data.

The ternary system Methanol (1)-Acetone (2) —Cyclohexane(3) (Campbell et. al. 1972) at
298.15K was investigated. Binary VLE data was regressed in the cases of the systems methanol-
acetone and acetone-cyclohexane to yield binary interaction parameters. In the case of the system
methanol-cyclohexane, LLE data was used solely to obtain the interaction parameters. As
explained in Chapter 4 — 4.1 Simultaneous Regression of Phase Equilibrium Data, it is advisable

that some LLE data be included in this type of regression to improve the accuracy in predicting

ternary LLE.

No. | Component 1 | Component 2 q q: Maximum surface area ratio
1 Methanol Acetone 1.432 | 2.336 1.63

2 Methanol Cyclohexane 1.432 3.24 2.26

3 Acetone Cyclohexane 2.336 3.24 1.39

Table 6-13 Maximum surface area ratio for each binary system

All systems exhibit moderate asymmetric behaviour and FlexQUAC-Q will not show any drastic

improvements in the correlation of binary VLE data.

6.2.4.1 Regression of Binary Data in RECVAL

The binary data of each constituent system was regressed in RECVAL to obtain interaction

parameters for the ternary LLE calculation.

Table 6-14 shows the various VLE and LLE data sets that were regressed for the respective binary

constituent systems.
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System Data set Temperature/ K
Methanol(1) — Acetone(2) VLE Data Puri et. al. 1974 298.15

Tasic et. al. 1978 298.15

Oracz et. al. 1996 293.15/303.15

Campbell et. al. 1976 | 298.15
Methanol(1) — Cyclohexane(3) | LLE Data Nagata et. al. 1983 298.15
Acetone(2) — Cyclohexane(3) | VLE Data Rhim et. al. 1975 298.15

Tamir et. al. 1981 298.15

Campbell et. al, 1972 | 298.15

Pierotti et. al. 1959 298.15

Table 6-14 The binary VLE and LLE data regressed for the purpose of obtaining binary interaction
parameters

System Interaction Parameters/ cal/mol FlexQUAC-Q &
| Parameter
Methanol(1} — Acetone(2) ap = 164.0496 0
a,; = 79.7562
Methanol(1) — Cyclohexane(3) | a;; = 16.0264 0.004
a; = 1287.072
Acetone(2) — Cyclohexane(3) | an= -14.6356 0.15

a;; = 499.1818

Table 6-15 Binary interaction parameters obtained from regression for the three binary systems

6.2.4.2 Ternary LLE Calculation

The binary interaction parameters obtained from RECVAL were used in an Excel calculation

program to perform the ternary LLE calculation.

The calculated activity coefficients in Excel were verified with the use of a MathCAD file — Refer

to Appendix C — Ternary LLE Calculations. The two results are in excellent agreement (Table

6-16).

- 176 -




CHAPTER
SIX

Excel Calculations

Mathcad Calculations

Calculated Activity

Calculated Activity

Molar compositions Coefficients Coefficients
calculated by K factor
method

X' X' X3' 11 Y2' s’ T Y2' s’
0.11996 | 0.00000 [ 0.88004 | 7.49989 | 4.88610 | 1.05611 7.5 4.886 1.056
0.19836 | 0.03309 | 0.76856 | 4.25414 | 2.70253 | 1.18922 4.254 2.703 1.189
0.42971 | 0.09217 | 0.47813 | 1.87743 | 1.45976 | 1.87781 1.877 1.46 1.878

Table 6-16 Results from Excel calculation compared with Mathcad results to verify accuracy

(2) Acetone
. /\
da=f,
/ 813 =0.05 \
0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
(1) Methanol (3) Cyclohexane

Figure 6-15 Binodale curves in the ternary system Methanol(1) — Acetone(2) — Cyclohexane (3) at
25°C (Nagata, 1984) from FlexQUAC-Q calculations

Figure 6-15 shows the results of the ternary LLE calculation and the effect of varying the
FlexQUAC-Q parameter ;3. 8,3 = 0 corresponds to the UNIQUAC equation. The immiscible

region in this case is over estimated. As this parameter is increased, the prediction of the

immiscible region improves (8;5= 0.05).
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Chapter 7 Conclusion &
Recommendations

In this study the non-linear transformation proposed by Rarey (2005) was further developed. It
was observed that if the surface fraction of the UNIQUAC model was transformed in a similar
way, then the resulting model (FlexQUAC-Q) could provide a more suitable description of

asymmetric systems.

The transformation was applied to the residual part of the UNIQUAC equation and the activity
coefficient equations had to be derived. The combinatorial term was not modified, however both
the original Guggenheim-Stavermann expression and that of Weidlich and Gmehling (1987) were
used in conjunction with the transformed residual term. Since G could not be expressed as an
explicit function of surface fraction, the residual part was split into two parts. The first part was a
function of liquid composition and the latter part was a function of surface fraction. This re-
formulated version of the UNIQUAC model was tested against the original for verification and

both were in excellent agreement. The transformation was then applied to the surface fraction in
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the latter part and the activity coefficient expressions were derived and checked via both

numerical and analytical derivatives.

The equations were first simplified and then programmed into a Fortran subroutine for
implementation into the regression tool, RECVAL of the DDB. An EXCEL program was also
developed. This program utilized the Fortran subroutine to compute the activity coefficients from
the FlexQUAC-Q model. The regression in EXCEL provided the binary model parameters for
comparing the UNIQUAC, FlexQUAC and FlexQUAC-Q (Guggenheim-Stavermann and

Weidlich-Gmehling combinatorial terms) models.

The FlexQUAC-Q model was subjected to a similar performance evaluation as that of its
precursor, the FlexQUAC model. Data from the DDB was utilized to compare the models with
the objective function defined as the mean relative squared deviation in pressure, A minor mean
relative reduction of about 3% of the objective function using FlexQUAC-Q compared to
FlexQUAC was observed compared to a reduction by about 53% relative to the UNIQUAC-
results. While in case of UNIQUAC approx. 48% of the data sets showed a final objective
function of 107, in case of the Flex-models this was achieved by about 63% of the data. This
illustrated that the both FlexQUAC and FlexQUAC-Q behave similarly.

It was also observed that the results obtained using both FlexQUAC and FlexQUAC-QQ models
and be compared to that of the GEQUAC model. GEQUAC (Ehlker and Pfennig, 2002) is an
exact quasi-chemical multisegment model, which follows a more exact approach to
Guggenheim’s concept of local composition. GEQUAC’s ability to accurately predict non-ideal
systems is noteworthy; however its mathematical complexity and large number of model
parameters prove to be a disadvantage. Both Flex-models boast considerable simplicity when
compared to GEQUAC and contain only one additional parameter in addition to the two existing
UNIQUAC model parameters. Both models also produce accurate descriptions of non-ideal

systems with a quality comparable to that of GEQUAC.

Due to its greatly increased flexibility, FlexQUAC-Q now allows one to regress a much larger
range of binary data within their experimental uncertainty than was possible with NRTL and
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UNIQUAC. This could significantly increase the reliability of pre-regressed parameters

distributed e.g. with process simulation software.

Temary VLE data calculations were performed with the FlexQUAC-Q model and compared to
FlexQUAC and UNIQUAC. Model interaction parameters were obtained from the regression of
the binary VLE data. The constituent binary VLE data sets of the thirteen ternary VLE data sets
showed moderate asymmetry and it was expected that FlexQUAC-Q would not have any
significant improvement in the correlation of data when compared to the FlexQUAC model.
However, the correlation of the binary VLE data did improve when compared to UNIQUAC and
consequently there was an improvement in the prediction of ternary VLE data. FlexQUAC-Q}’s
prediction of the ternary VLE data is comparable to that of FlexQUAC. It is evident that the
UNIQUAC model’s predictive capability is retained in FlexQUAC-Q.

FlexQUAC was able to describe VLE and LLE simultaneously. The previously used system
Water-1-Pentanol was used to test whether the ability to simultaneously correlate VLE and LLE
was retained by FlexQUAC-Q. FlexQUAC-Q succeeded in correlating both VLE and LLE data.

Temary LLE data was also used to evaluate the performance of FlexQUAC-Q. FlexQUAC-Q

gives a better description of the immiscible region while UNIQUAC over estimates this region.

The performance evaluation of FlexQUAC-Q has revealed that it has no superior effect on the
correlation of data when compared to FlexQUAC. Although FlexQUAC has achieved significant
results and improved the accuracy and quality of data representation, its full benefit cannot be
exploited since it cannot be extended to the group contribution method UNIFAC. This is due to
manner in which the transformation was applied to UNIQUAC. In the case of FlexQUAC-Q, the
transformation was applied directly to the surface fraction and hence the model can be extended
to the group contribution method. The mode! equations were defined in this study and the

subsequent model is referred to as FlexFAC.

Current group contribution methods cannot simultaneously describe VLE and LLE. Hence
separate parameterizations are required. The newly formed FlexFAC model should be able to

simultaneously describe both VLE and LLE. In addition to its use as a predictive GF model,
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FlexFAC can also be used in group contribution equation of states via a G® mixing rule like
PSRK, VTPR or MHV2.

As a next step a comparison of FlexFAC with the UNIFAC method should be conducted. A
realistic test of the group contribution equation FlexFAC, either as a G-model or in combination
with an equation of state via an appropriate G* mixing rule, will require the regression of a group

interaction parameter matrix to a large amount of data.
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APPENDIX A - UNIQUAC DERIVATION

A brief derivation based on Maurer & Prausnitz (1978) is presented here since UNIQUAC is the
precursor to both the FlexQUAC and FlexQUAC-Q model.

Here a binary mixture containing molecules of component 1 and 2 with arbitrary size and shape is
considered. Component 1 has r; segments with external surface area proportional to q.
Analogously, component 2 has r; segments and external surface area proportional to ;. For a
unisegmental molecule which is small and spherical, r = g = 1. In the case of chain molecules the
ratio of q to r becomes less than one and as the chain increases in number of segments, this ratio

approaches 2/3.

In this derivation a unisegmental molecule is considered here. If one considers that the

intermolecular forces are restricted to a small range and coupled with pair-wise additivity, then

. . . . 1
the energy required to vaporize this molecule to ideal gas state corresponds to EZ Oy©  Here

Z refers to the coordination number. Pure liquid is represented by (0) and Ul(f” refers to the
potential energy of the two neigbouring molecuies of the molecule 1. This molecule is then
condensed into the hypothetical fluid (indicated by (1)). In this case the molecule now has Z “)9”
neighbours of species 1 and Z™"@, neighbours of species 2. The local surface fraction of
component | is defined as &, about central molecule 1. Similarly &,,represents the local surface
fraction of component 2, about the central molecule 1. Hence 6,, +8,, =1. With the assumption

that ZMis the same as Z”, then the energy associated with the condensation process is
1
EZ 6, U +6’2,U§P]. With the same idea, molecule 2 can be vaporized from the pure liquid to

a second hypothetical fluid .

In the context of x, moles of fluid 1 and x, moles of fluid 2, then the mixture extensive
configurational property M is M =x M"Y +x,M® where M"Vand M‘” are the extensive

configurational property for hypothetical fluid 1 and 2 respectively.

Thus the total energy of mixing, UF corresponding to the transfer of x, moles of species 1 from

the pure liquid 1 and x, moles of species 2 from the pure liquid 2 into the two-liquid mixture is
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U = yzleNA [‘h (911U|(}) +0,Uy ‘Ul(?))]"‘%Z"zNA [‘J’z(gzng) +6,U _Uég))] A-1
where N, is Avagadro’s number. The local surface fractions must obey the conservation

equations; hence 8, +8,, =1 and 6, +8,, =1. Assume that U’ =U and U3} =USy and

Equation A-1 reduces to
Uf= % ZN, [xlgzl‘h(Uzl - Un)"‘ nglzqz(Ulz - Uzz)] A-2

Wilson (1964) assumed that the local compositions are related to overall compositions via

Boltzmann factors. This is the ¢rucial idea in this derivation, Hence,

?ﬂ= gﬁ-exp-—%z (Uzlk}Un)] A-3

6y _ ﬂexp-— % A w lzk_TU 2 )] Ad

where

. g = A% and g, = _ Xody
x4, +X:4; X g, +x,9,

Thus the fundamental relation based on the two fluid theory is

Ut = x40 A1y, + x,q,0,,Au, A-5

where
6, exp(— A“zl/RT)
8, + 6, exp(— Au,, /RT)
_ 6, exp(~Au,/RT)
0, +6, exp(- Au,, /RT)

" Oy =
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1
* Auy = EZ(UZI —UII)NA

1
¢ Ay, = EZ(Ulz _Uzz)NA

Now the excess Helmhotz energy, A can be expressed as

£
da®/) _ e o
d(/7)
Integrating from 1/T, to 1/T yields the following result

A . |
= I;LU dT)+B A7

where
* B is the constant of integration

B can be evaluated by letting 1/To approach zero.

At high temperatures, an athermal mixture is formed and Guggenheim’s equation for athermal

mixtures of molecules of arbitrary size and shape is suitable as a boundary condition,

E E
(—4—} =—[S—} =x ln—(I)—'+Jnc2 ln&+lZ[q|xl ln£+q2x2 lne—z}A-s
RT athermal R combinatorial X X, 2 4 1 @ 2

where

. O = X7
X5 +x2rz

X4 F

= 2
n (I)z __— s s
X h +x2r2

Using the assumption that Au,, and Au,; are independent of temperature, then it follows at low

pressure (AE)”, & (G‘E )r ». Hence
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—| == == +| — A9
RT Fi's RT TP RT combinatorial RT residual
where
E
. O =xi]n9‘—+len-qi+g~ q,% lni+q2len& A-10
RT combinatorial X Xy 2 (D] @2
GE
. Emﬂdw =g ln(91 +9272;)_Q2x2 ]“(02 + 6]1712) A-11
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[Test Using Numerical Example]

[TEST SYSTEM : 1.DIETHYL ETHER, 2. ACETONITRILE]|

Please note that all numerical evaluations are highlighted in yellow and have been calculated for x, =1

general tolerance criterion epsl =10~
number of components n ni=2
range variables ki=1.n j=1l.n i=1l.n
XX
Liquid mole fraction X(XX) = The variable xx allows the user to perform the calculations for varying liquid mole compositions
1 —xx
UNIQUAC Parameters 3.395 3.016
187 “\1.724
Model interaction parameters 0 497.605
Au =
76972 0
FlexQUAC Q Parameter 5(d) 0d
(e do
d = 0.1786
URNESENCESIOoRSIERIcalfeIk RG - 19372
System Temperature / K T = 273.15 + 20.5

-192-



-Au;
t(i,j,Au,T):: exp( u"‘l)

RG-T

St 5 o (x-Q)
®Qbn)= — = — Surface Fraction
Z X Q
et

n
so(x,Q,Au,T,i,n) := z ©0(x,Q,j,n) - t(j,i,Au,T)
=1

n
gE_RTreSO(x,T,Au,Q,n) = —Z xi-Qi-In(SO(x,Q,Au,T,i,n)) Original residual part of UNIQUAC

i=1

n n
gE_RTresol(x,T,Au,Q,n) = —Z xi‘Qi- 2 ®o(x,Q,i,n) - in(So(x,Q,Au.T.i,n))

i=1 i=1

gE RTresol{x(1),T,Au,Q,n) =0 |
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The function ®o can be defined as a vector: ®@(nn,Q,n):= |for ie l.n
()

Z mn, - Qp

k=1

ret. «

ret

1
|®(x{1).0,n) B [0)

- — L F
GE residual is the product of two functions:
n n
flx(x,Q) := ~Z X. - Q; 2x(x,T,Au,Q,n) = Z ®0(x,Q,i,n) - In(So(x,Q,Au, T,i,n))
i=1 i=1
Now we want to derive GE by n. Following the product rule, this is
gE_RTrcso_dn(x,T,Au,Q,n) = flx_dn(x,Q) - ﬂx(x,T,Au,Q,n) + flx(x,Q) - ﬂx_dn(x,T,Au,Q,n)
[ . = - -
T —— R
Now f1x(x,Q) can be re-written as a function of mole numbers fin(nn,Q) n

fln(nn,Q) = Z nn, - Qi
n
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flbn(nn, Q) = Z nn, - Qi

3 m, i=1

This is the product of 2 functions f1an and f1bn -1

with the derivations

flan_dn(nn) := — fibn_dn(nn,Q,j) :== Qj

Using the product rule, it holds that fin_dn(nn,Q,i) = flan(nn) - flbn_dn(nn,Q,i) + flbn(nn,Q) - flan_dn(nn)

This leads to - iz
e fin_dn(nn,Q,j) := b g 2

Using nn, =x. and Z nn, = 1 this l6ads 16 f1_dn(x,Q,j) = ~Q.i + Z X, Qi

i=1 i=1

Putting f1 into vector form:

dfldn(x,Q,n):= | for me l.n

0
dn(x(1),Q.n) =
i (].292)
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dflI®@dON(x,Q,n):= | for ie l..n

for me l.n
eps, < 0
eps; < epsl
fl = =
ret. « | S1x + eps, Q) — fln(x — eps, Q)
' 2.epsl

ret

0

0
df1I®@dON(x(1),Q,n) —dﬂdn(x{l},Q,n)=[ th
—4.122x 10
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Now f2 is a function of @ and we want to flexibilize ©. This means we need f20_d® and de_dn.
Because f2@ is not avector, f2@_d® is a vector and d@_dn is a Jacobian matrix.

f20_do is always the same (only depends on the UNIQUAC-equation).

de_dn is different for original UNIQUAC and the Flex-version. Maybe you can ask a mathematician, how to combine the Jacobians d®_dx and dx_dn
to get d®_dn. This would make things more easy.

n n
from the UNIQUAC equation given above: f26(x,T,Au,Q,n) == Z ©0(x,Q,i,n) - | Z ©(x,Q,j,n) - t(j,i,Au,T)
i=1 j=1
again, this calls for the product rule

. e S —

f2 is the sum of a product of two functions f2, and f2,,. This product is a scalar. The derivation is done by ©j. There are 2 cases: i =jand i <> j!!!!

n
peb(e,Q,i,n) = In Z @o(x,Q,k,n) - 1(k,i,Au,T)
k=1

fzga(@,Q, isn) = @{)(X,Q,i,ﬂ)

We use the assumption i<>j for the derivation, then substract the wrong term (where i = j) and add the correct derivation of this term.

t(Li,Au,T)

For i<>j the derivation of f20,; with respect to 6, is zero. The derivation of f20,; with respect to G)j is
n

Z @o(x,Q,k,n) - t(k,i,Au,T)
-

n n

So for the case i<>j following the product rule the derivation is Z 0-In Z ®o(x,Q,j,n) ‘[(j,i,Au,T) + @o(x,Q,i,n) I(J’I’M’T)

n
i=1 j=1 Z ®o(x,Q,k,n) - t(k,i,Au,T)
k=1
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which is .
©®o(x,Q,i,n) T(.l.l,flu,T)

n
i=1 Z @o(x,Q,k.n)-t(k.i,Au,T)
k=1

we need to substract the case i = j for which we used the wrong derivation. In this case t; = 1

n i & %
Casel(6,Quj,m) = 3 ©0(x,Q,i,m)- el b0.) ~60(x,Q.j.n)- (i)
. n n
el > @o(x,Q.k.n)- t(k,i,Au,T) ®o(x,Q,k,n) - t(k,j,Au,T)
Casel(x(1),Q,j,n) =
0
1.141
For the i = j case the derivation of 26, wrt ©) is 1. The derivation of 20, wrt to © is (j,j,Au,T) since 7; = 1
n
Z &{X,Q,k;ﬂ) " T(k!jséu;T)
k=1
o o g . _ 1(j,j,Au,T)
So for the case i = j the derivation is: In Z ®o(x,Q,k,n) - T(k,J,Au,T) + Go(x,Q,j,n) -
. > ©0(x,Qk.n): t(k,j,Au,T)
k=1
n
i.j,Au,T
Case2(x,Q.j,n) = | Inf Y ©0(x,Q.k,m) - 7lk,j,Au,T) | + ©0(x,Qj,n) - £(1.j.u.7)
k=1

n
Z ©o(x,Q,k,n) - t(k,j,Au,T)
fomd
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Case2(x(1),Q,j,n) =
1
-0.853

So the complete derivation is:

df2@d®o(x,Q, j,n) := Casel(x,Q, j,n) + Case2(x,Q,j,n)

df20dGo(x(1),Q,j,n) =
1
0.288

Putting f2 in vector form:

df20dO(x,Q,n):= | for ie l..n
ret, « df20dGo(x,Q,i,n)

ret

1
df20de(x(1),Q,n) =
(x(1),Q,n) [0.288)
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v
n n
The numerical derivation has to be 26(e,T,Au,Q,n) = Y ol Y o t(j,i,Au,T) : NE
performed at ©(x) but the change must - — HD,Qa)=|
be in ©, not in x = B
df20dON(nn,Q,n):= | for ie l..n
for me 1..n
eps < 0
eps; epsl
— (ﬂ@(@(nn,Q,n) + eps,T,au,Q,n) — ﬂ@(@(nn,Q,n) - eps,T,Au,Q,n)
i
ret
df20dON(x(1),Q,n) .
" 0288
L - — S

df26dON(x(1),Q,n) - d20dO(x(1),Q,n) =

-5264x 10

—4.301x 10

10

11
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n
£26i(e,T,Au,Q,n,i) == ©;- 1 z ;- (j,i,Au,T)
s

df20idOjN (nn,Q,n) :=

for iel.n
for me 1..n

eps 0
eps; « epsl

for je 1..n

©(nn,Q,n) + eps,T,Au,Q,n,j) - 26i(O(nn,Q,n) — eps,T,Au,Q,n, j)

df20idOjN (x(1),Q,n) =(

0
1.141 -0.853

J

ret. .
l!J

. [Q@i(

ret

2.epsl

=1

1
0.288

n
D" df26ideiN (x(1),Q,n);, § =
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Analytical Derivation of © by n |

Jacobian®(x,Q) := | for ke 1..n

for me l..n

Qm[z xk'Qk}_Xk'(‘)k'Qm
k=1

Jack,m “

2

i
k=1

" U &

D % Q
k=1

Jac — if k#m

k,m

Jac

-0.572 0.572

0 0
Jacobian®(x(1),Q) = ( J

if k=m
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rerical Derivation of @ by n |

JacobianN@®(x,Q,n):= | for ie l..n
for me l.n

eps, < 0.

eps; < epsl

x1 « 6] =— qn
1 —epsl

@ X + eps .Qun
1 + epsl

for me l..n
x2 —xl
m m

Jac. & —
b0 2 - epsl

Jac

0 0
J bianN 1 ,Q, =
acobianN@(x(1),Q,n) (_0.572 0.572}




9 11

1.369x 10 1.846 x 10

Jacobian®(x(0.098),Q) — JacobianN®(x(0.098),Q,n) = {

10 9

-1.795x 10~ 4343x 10

=
df2dn(x,Q,n) := Jacobian®(x, Q) - df20dO(x,Q,n)

dﬂdﬂ(xﬂ).Q,nP[_o 407)

U df2dnN(x,Q,n) := JacobianNG®(x,Q,n) - d20dON(x,Q,n)

df2dnN(x(1),Q,n) = (_0-407)
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- Thishwn for doE MSRERRE G ERREY SRR SR e e,
=

dgE_RTres]_dn(x,T,Au,Q,n) == (dfidn(x,Q,n) - 2x(x,T,Au,Q,n) + fIx(x,Q) - df2dn(x,Q,n))

1.227

dgE_RTresl_dn(x(l),T,Au,Q,n)=[ " )

- ViHEETReNRY ) PR SR S R e e e .
g

dgE RTresl_dnN(x,T,Au,Q,n) := (dfi@dON(x,Q,n) - £2x(x, T,Au,Q,n) + fix(x,Q) - df2dnN(x,Q,n))

0
dgE RTresl dnN(x(1),T,Au,Q,n) = [szj

[~
Iny_resl(x,T,Au,Q,u) = dgE_RTresl_dn(x,T,&U,Q,n) + gE._RTresol(x,T,Au,Q,n)
Iny_res1(x(1), T,Au,Q,n) =( ° ]
= 1.227
=




=

lm(_reslN(x,T,Au,Q,n) = dgE_RTresl_an(x,T,Au,Q,n) + gE_RTreaol(x,T,Au,Q,n)

Iny_resIN(x(1),T,Au,Q,n) =( 0
-_— ? 3 3 » 1'227

GE residual [FLEXQUAC] is the product of two functions:

n
Q1+ Y X% Q-Bik

of(x,Q,8,i,n) = k= New surface fraction definition which includes the FlexQUAC-Q parameter

n n

Z xk-Qk- I+Z xI-Ql-Bk,]

| Lk= . I=1

E)fn(x,ﬁ,Q,n) = |for iel..n

n
L+ Z X Q. 8k
k=1
retiexi-Qi- . -
D x5 Q I+Z X Q- 8,1
k= ™ ]
ret
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(x Q,Au,T,d,i, n Z Gf(x Q.,6,]j, n) (j,i,Au,T)
[st{x(1),Q,Au, T,5f(d),1,n) =1 |

j=1
[stlx(1),Q,Au, T,8f(d),2,n) = 0.426 |
n n
ﬂX(K,Q) = _Z xi " Qi Q@f(x,T,Q,S,n) = Z Gf(stsa’i;n) 8 ln(Sf(x,Q,Au,T,ﬁ,i,n))
[fix(x(1),Q) = 3.016 ] [2ef(x(1),T,Q.5f(d),n) =0 |
n n
gE RTresf(x T,Au,Q,d, n Z Z x Q.,4,i, n ln(Sf(x Q,Au,T,38,i n))

|gE_RTresf(x(1),T,Au,Q,8f(d),n) =0 |

= @f(x,Q,S,i,n)- t(j,i’AuaT)

n
d20£def (x,Q,8,j,n) := z n Z of(x,Q,8,k,n) - t(k,j,Au,T)
n

i=1 Z G)f(x,Q’ﬁ,k,n) -tlk,i,Au,T) w=il
k=1




T uLully ni voulun 1.

df2def(x,Q,5,n) == | for ie 1..n
ret, anefief(x,Q,s,i,n)

ret

1
df2d 1),Q,8f(d),n) =
of(x(1),Q,5f(d),n) [0'288]

n n
The numerical derivation has to be nof(ef,T,Au,Q,n) = Z Ofn; - In Z ofn; - t(j,i,Au,T)
performed at ®@(x) but the change must

be in ®, not in x i=1 j=1

df26fdeN(x,Q,5,n):= | for ie 1.n
for me l.n

eps 0

eps, « epsl

s [Q@f(@fn(x,&,Q,n) + eps,T,Au,Q,n) - ﬂ@f(@fn(x,ﬁ,Q,n) - eps,T,Au,Q,n)}
i 2.epsl

ret

o
df20fdON\x(1),Q,éf(d),n) =
(x(1),Q,8f(d),n) \0.288]
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— 10
-5.264
d201dON (x(1),Q,56(d),n) - d2d0f(x(1),Q,5f(d),n) =| 0 'O

—4301x 10

11

The derivation of thetha by nis made easier by breaking the expression into fragments and then using differentiation rules to obtain the derivation.
Theta = A (B/C)

Hence it follows:

©fn derived by n gives [d_A]_E 3 [d_E)_A

d d
B derived by n gives (—BJC + [—C]-B
C dn
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JacobianFQl(x,Q,ﬁ,n) = |for iel.n

for mel.n

1= I=1 k=1

[(qu-si,m)-[i xk-Qk{1+i x]-Ql-akJﬂ{Qm-[u ; xT-Q]-am,]J+ i xk-Qk-(l+Qm-8k‘m:
k=1 |

2
ExaltEvas
k=1

Jac, « Q.- +x-Q.-

Jac

JacobianFQ1(x(1),Q, 5£(d) n):( o ¢ ]
B ~0.88 0.88
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JacobianNZFQ(nn,Q,G,n) = | for ie l.n
for me l..n

eps < 0.
eps; < epsl

nn — eps

nnl « @fn( ,S,Q,nJ

1 —epsl

2 « Ofn| = 5 Q,n
1 + epsl

for me l..n

nn2 - nnl
m m

Jac,
Lm 2 - epsl

Jac

. 0 0
Jacob1anN2pq(x(1 ),Q.5f(d),n) = (ﬂo 88 0 88]

0 0
JacobianFQ1(x(1),Q,5f(d),n) — JacobianN2pq(x(1),Q,8f(d),n) = ik ]
—1717x 10 ° 0
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df2fdn(x,Q,5,n) := JacobianFQ1(x,Q,5,n) - df2def(x,Q,5,n)

daf2fdn(x(1),Q,5f(d) n)=( . ]
A ~0.626

df2fdnN(x,Q,5,n) = Jacobimnzpq(x,Q,S,n) - dR26fdeN(x,Q,5,n)

dfzfan(x(l),Q.af(d),n)=( ’ )

—0.626

0
df2fdn(x(1),Q,5f(d),n) - df2fdnN(x(1),Q,5f(d),n) = [ - g]
-1.76 x 10
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)
n
2ef(x,7,Q,8.n) = 3" ©f(x,Q,,i,n)- In(sflx,Qau,T,5,i,n))
i=1
dgE RTresf dn(x,T,Q,5,n) := 20f(x,T,Q,5,n) - dfldn(x,Q,n) + flx(x,Q) - df2fdnN(x,Q,5,n)
0
d R f d-n s by 'aaf d » ==
gE RTresf (x(l) T,Q,5f(d),n) [1.888]
[+

Ch
n
nef(x,T,Q,5,n) := Z of(x,0,8,i,n) - In(sf(x,Q,Au,T,5,i,n))

dgE RTresf dnN(x,T,Au,Q,8,n) == (R20f(x,T,Q,5,n) - dfldn(x,Q,n) + fix(x,Q) - df2fdnN(x,Q,5,n))

0
dgE_RTresf dnN(x(1),T,Au,Q,5f(d),n) = [1 sss]

2 — N . R

Comparison of Analytical and Numerical derivatives

0
dgE RTresf dn(x(1),T,Q,5f(d),n) — dgE_RTresf dnN(x(1),T,Au,Q,5f(d),n) = [0)
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InY_resf(x,T,Au,Q,S,n) = dgE_RTresf-_dn(x,T,Q-B’“) # gE—RTme(x’T’Au‘Q,B’n)

Iny_resf(x(1),T,Au,Q,5f(d) “)=( ; )
M LR | it ? 1.888

Iny_resfIN(x, T,Au,Q,5,n) := dgE_RTresf dnN(x,T,Au,Q,8,n) + gE RTresf(x,T,Au,Q,3,n)

0
lw_resﬂn(x(1),T,Au,Q.6f(d).n) = ( 1.888)

Ilﬂr_resf(x(l),T,Au,Q.Gf(d),n) ~ Iny_resfIN(x(1), T, Au,Q,5f(d),n) = [EJ
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n n R. Q

i(x,R,n) := Zl xR, q(x,Q,n):= ’Z| X Q, ¢(x,R,i,n) = e O(x,Q,i,n) = G
i= b=
3 O(x,Q,i,n)
gE_RTcomb(x,T,Au,R,Q,n) := Z [xi-in(dl(X.R,i,n)) +5-Q: ln(—¢:::R::::) D

i=1

lny_combo(x,T,R,Au,Q,n) = |for iel..n

ret « 1.~ 0(x,R,i,n) + In(é(x,R,i,n)) + 5 - Q- [ln(ﬁ)(x,Q,i,n)J g B, IJ

¢(x,R,i,n) 0(x,Q,i,n)
ret

—0.141

0
iny_combo(x(1),T,R,Au,Q,n) =[ ]

n
So(x,Q,Au,T,i,n) e Z @o(x,Q.j,n)—r(j,i,au,T)
j=1
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Iny resolx,1,Au,Q,n):= Jtor iel.n

n
, ®o(x,Q,k,n) - t(i,k,Au,T)
e Qi' l:l' - ln(So(x,Q,Au,T,l,n)) - kzl [ So(x,Q,Au,T,k,n) )

ret

Iny(x,T,Au,R,Q,n) = |for ie l.n

ret. < 1. — d(x,R,i,n) + n(6(x,R,i,n)) + 5- Q.- In @“"Q‘i’"))+ b RoL0) 1)
’ FUeR,i,0) ) 0(x,Q,i

n)
[@(X,Q,k,n} * xk‘ T(isk’AusT)
So(x,Q,Au,T,k,n)

+Qi-I:l. - In(So(x,Q,Au,T,i,n)) _ i

k=1

ret

0
Iny(x(1),T,Au,R,Q,n) =[ ]

1.086

Iny_o(x,T,R,Au,Q,n) 1= Iny_combo(x,T,R.Au,Q,n) + ]m_reso(x,T,Au,Q,n)

0
i 1 sTsRsA L4 =
“LO(X{ ) 5 n) [1.086)

|
exp(iny_olx(1),T,R,Au,Q,n)) = (2.962]
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0
Iny_reso(x(1), T, Au,Q,n) - Iny_res1(x(1),T,Au,Q,n) = (0)

3.539x 10

Reformulated UNIQUAC (Analytical) compared to original UNIQUAC
0 Reformulated UNIQUAC (Numerical) compared to original UNIQUAC
lnfy_reSO(X(l),T:Au!Q’n) — ilrf_l'eSlN(x“),T,Au,Q,ﬂ) = { 9]

Inyf (x, T,R,Au,Q,8,n) := Iny_combolx, T,R,Au,Q,n) + Iny_resf(x,T,Au,Q,5,n)

0
1 1),T,R,Au,Q,5f(d),n) =
myf (x(1) u,Q,f(d),n) [1.747)

.|| FlexQUAC-Q activity coefficients
ol 010 =1
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[Test Using Numerical Example}

Components: 1 - acetone acetone := 1 n=3
2 - chloroform chloroform := 2 i=1.n
3 - methanol methanol := 3 iz
Pure Component Parameters: general  epsl =10 °
25735 2336
Ri=| 287 Q:=| 241
14311 1.432
FlexQUAC-Q Parameters:|
0  -340.663 431.709 0 01 02
169.453 0  1307.65 |K sl 6 63 R
Ao \Z104734 273252 0 45 BA '
1.98721
Mole fractions]
3
x=1.3
4

Residual Part FLEXQUAC - Q

The complex terms of the original are simplified into more convenient terms to enable efficient
programming in the FORTRAN subroutine. The simplified terms (shown in yellow) are compared to the

original derivation in the previous file (shown in green).
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n
thetfx, = Q.- | 1 + Z X Q- 8ik

k =

sthetfx := Z X, thetl’xi

thetfxi
thetfx. ==
I sthetfx
n
Sf'i = Z xj-thetij-tj,i
=l

n
fl:= —Z xi-Qi

1=

f2:= i X, thetfi, - In(Sfi)

i=1

gE RTresf := f1 - 2

-218-

sthetfx = 2.507 [2:507

1.106
thetfx = | 1.194
0.775
0972
Sf =| 1.382
0.532
Fi
oo
[gE_RTresf =0.177 [o177




n o x.-thetfx. - 1j
1 1 ¥

sumlj = Z —Sf-——

1.05
dmi = sumli+ II’l(Sfi) df2 =| 0.928
0.744
n 2.433
Sii= 3 %o Qe(1+ Q- ki) sy=| 258
k=1 2.508
JacobianFQ1 := | for ie 1..n
for me l.n
e %%
Jac .« -(thetfx -x.)- +
m, 1 m 1 sthetfx ﬂletfxi-sthetfx
xi‘Qi'Qm"Si,m
Jac .« Jac .+ —o-—— jifi¥m
m, 1 m,1 thetfxi- sthetfx
Jac .« Jac_ .+ 1 ifi=m
m,i m,i
Jac .« Jac .- thetfx.
m,i m, i i
Jac
0.697 -0.388 -0.309
JacobianFQI1 =| -0.391 0.686 -0.296
-0.229 -0.224 0.453
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df2dn := JacobianFQI - df2

dgE RTresf := fl - df2dn + f2. (-Q - f1)

Iny resf := dgE RTresf + gE RTresf

-220-

0.142

df2dn = 6.504 % 10 3

—0.111

~0.254
dgE RTresf =| 0.024
0.172

-0.076
Iny resf =| 0.201
0.35
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APPENDIX

B
B1. Implementation in Fortran
1.1 FlexQUAC-Q Code:
This is the fortran subroutine code to calculate the activity coefficient using the FlexQUAC-Q
model.
C
integer*2 function iactgflex (x,T,act,he,cpe,pmh,pmc)
C
c FlexQUAC-Q flexibilizes the surface fraction in the residual part only
c
C
This section contains all the pertinent variable declarations
use peqmodule
use dflib
use dfiogm
implicit none
logical*4 Imodcomb34, Imodcomb23, Imodgflex, Imodflexnum
commeon fflexquac/ Imodcomb34, Imodcomb23, Imodgflex, Imodflexnum
character chuf*80
c integer(4)  retiog
character filescrp*255
real*s x(MKQ},t,act{MKO),he,cpe, pmh(MKO),pmc(MKOQ)
real*8 aij(mko,mko},
> aljt(mko,mko},
> alphaijimko,mkao},
> TAU(mko,mko),ftau,
> $Xr,sxq,sxqp,ss(mko),ss1({mko),dgE_dn{mko), 1.2,
> sftji,sftu,
> F(mko},Fp(mko),
> V(mko),
> x1(mko),
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v V v v VvV

v

Vv VvV VvV vV Vv Vv VvV VvV

infeger

rq,
xsum,
xXsave,
her,

dQdx(mko), dQdn(mko), Jac(mko,mko), Q,sum, sumd(mko), ¢1,

Igame(mko),

B(mko),

C,

Sf(mko), thetafx(mko), df1dn{mko), df2dn{mko),Igamr{mko},
df2dthet{mko),

SJ(mko),

sthetfx,

sumk_array(mko),

thetfx(mko),

thethaf(mko), sumk.ge

i,j,ia,11,ki.kj, ierr, ilog

This section creates a text file for computation output to allow for comparison
between FORTRAN and Mathcad resuits

itog=1

if (ilog.eq.1) then

endif

open (186, file = filescrp(‘flexq.txt’), access="append")
write (186,*) ' start subroutine '
write {186,*) "x ="', (x(i},i=1,peq%nhcomp)

write (186,%)'T="T

Section 1: Calculate interaction parameters for given temperature and their

temperature derivative and outputs the values to the text file
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RG=1.98721d0
Call setpar (1,aij,aijt, alphaij)

if {ilog.eq.1) then
write (186,%) " aij’
do j=1, peq%ncomp
write (186,*) (aij(i,)),i=1,peq%ncomp)
enddo
write (186,%) ' aijt’
do j=1, peq%ncomp
write (186,*) {(aijt(i,)),i=1,peq%ncomp)
enddo
write (186,*) ' delta’
do j=1, peq%ncomp
write (186,*} {alphaij(ij),i=1,peq%ncomp)
enddo
endif

Section 2: Calculate combinatorial part (UNIQUAC, unchanged or UNIQUAC-3/4)

SXQ =0.
SXQP =0.
SXR =0.

DO KJ = 1,peq%NCOMP
SXQ = SXQ + X(KJ) * peq%uniq(KJ}
SXR = SXR + X(KJ} * peq%unir(KJ)

enddo

DO Kl = 1,peq%NCOMP
F(KI} = peq%unigq(Kl) / SXQ
V(KI)  = peq%unir(Kl) / SXR
C1 = -1.d0 + V(K)/F(KI) + LOG(F(KI)/V(KI)}

The user determines the choice of combinatorial term
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if (Imodcomb34) then
LGAMC(KI) = 1.d0 - V(KI) ** .75d0 + .75d0 * LOG(V(KI)) - 5.d0
peq%unig(Kl) * C1
else if {Imodcomb23) then
LGAMC(KI) = 1.d0 - V(KI) ** .66666666d0 + .66666666d0 *
LOG(V(KI)) - 5.d0 * peq%.unig(Kl) * C1
else
LGAMC(KI) = 1.d0 - V(KI) + LOG(V(KI)) + 5.d0 * peq%uniq(KI) *
C1
endif
enddo

if (ilog.eq.1) then

write (186,%) ' Igamc'

write (186,) (Igamc(i},i=1,peg%ncomp)
endif

Section 3: Calculation of variables and output the values to the text file
c Calculate © and outputs the value to the text file
do i = 1,peq%NCOMP
do j = 1,peq%NCOMP
tau(i,j) = dexp(dble(-aij(i,j)/(RG*T)))
enddo
enddo

if (ilog.eq.1) then
write (186,%) ' tau'
do j=1, peq%ncomp
write (186,*) (tau(i,j),i=1,peq%ncomp)
enddo
endif
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if (abs(x(1)-0.03080}.1t.1.e-5) then
continue
endif
The following variables (sthetfx & thetfx) are defined and calculated as per the
Mathcad file. The output is sent to the text file
sthetfx = 0.
doi =1, peq%ncomp
sumk_array(i) = 1.
doj =1, peq¥%ncomp
sumk_array(i) = sumk_array(i) + x(j) * peg%uniafj) * alphaij(i, j)
enddo
thetfx(i) = peq%unig(i) * sumk_array(i)
sthetfx = sthetfx + (x(i) * thetfx(i})
enddo

if {ilog.eq.1) then

write (186,%) ' sthetfx’

write (186,") sthetfx

write (188,*} ' thetfx'

write (186,*) (thetfx(i),i=1,peq%ncomp)
endif

¢ Computation of Sf and computation of surface fraction

doi=1, peq¥%ncomp
thethaf(i) = thetfx(i) / sthetfx
enddo

if {ilog.eq.1) then
write (186,*) ' thethaf
write (186,%) (thethaf(i),i=1,peq%ncomp)
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endif

doi=1, peq%ncomp
Sf(i)=0
do j =1, peg%ncomp
Sf(i) = Sf() + x(j) * tau(j, i) * thethaf{(j)
enddo
enddo

if (ilcg.eq.1) then

write (186,*) ' S

write (186,%) (8f(i),i=1,peq%ncomp)
endif

Section 4: Computation of f1, £2 and G ,siq.a and outputs the values to the text file
¢ Computation of ff and f2
sumk = 0.
Do i =1, peq%ncomp
sumk = sumk + x(i) * peq%uniq(i)

enddo
if {ilog.eq.1) then
write (186,*) ' sumk’
write (186,*) sumk
endif
f1 = -sumk
sumk = 0.

doi=1, peq%ncomp

sumk = sumk + x(i) * thethaf(i) * Log(Sf(i))
enddo
f2 = sumk
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if (ilog.eq.1) then
write (186,*) ' f2'
write (186,*) f2
endif

¢ Computation of G esiqual
Ge=f1"*f2

if (ilog.eq.1) then
write (186,*) ' Ge'
write (186,*) Ge
endif

Section 5 - Compute derivative of f1 and record output in text file

Doi =1, peq%ncomp
df1dn(i) = -peq%uniq(i) - f1
enddo

if (log.eq.1) then

write (186,*) ' df1dn’

write (186,*) (df1dn(i),i=1,peq%ncomp)
endif

Section 6: Derivative of f2 wrt to surface fraction and output of value to text file

Doi =1, peq%ncomp
sumk_array(i) = 0.

-228 -




APPENDIX
B

doj =1, peq%ncomp
sumk_array(i) = sumk_array(i) + (x{j) * tau(i, j) * thethaf(j)) / Sf(j)
enddo
df2dthet(i} = sumk_array(i) + Log(S(i))
enddo

if (ilog.eq.1) then

write (186,*} ' df2dthet’

write (186,%) (df2dthet(i),i=1,peq%ncomp)
endif

Section 7: Computation of Jacobian Matrix

Doi=1, peq%ncomp
SJ(i)=0.
Do j =1, peq%ncomp
SJi) = SJ(i) + x(j) * peq%uniq() * (1 + peq%uniq(} * alphaij(j, i))
enddo
enddo
if (ilog.eq.1) then
write (186,*) ' SJ'
write (186,*) (8J(i),i=1,peg%ncomp)
endif

doi=1, peq%ncomp
doj =1, peq%ncomp

Jacqj, i} = (peq%uniq(i) * x(i)} / {thethaf(i) * sthetfx)

> _ + (-(thethaf(j) * x(i)) - ((SJ(j) * x(i)) / sthetfx))
If (i .eq. j) Jac(j, i} = (Jac(j, i) + 1)
If (i .ne. j) Jacyj, i} = Jac(j, i) + (x{i) * peqSuniq(i)

> * peq%uniq() * alphaij(i, j)) / (thethaf(i) * sthetfx)
Jac(j, i} = Jac(j, i) * thethaf(i)
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enddo
enddo

if (ilog.eq.1) then
write (186,*) ' Jac'
do j=1, peg%ncomp
write (188,%) (Jac(i,j},i=1,peq%ncomp)
enddo
endif

Section 8: Compute derivative of 2 wrt to mole numbers

do i =1, peq%ncomp
df2dn(i} = 0.
do j =1, peq¥%ncomp
df2dn{i) = df2dn(i} + Jac(i, j) * df2dthet())
enddo
enddo
if {ilog.eq.1) then
write (186,*) ' df2dn’
write (186,) (df2dn(i),i=1,peq%ncomp)
endif

Section 9: Computation of G%,.s.a and residual activity coefficients
sumk =0
do i = 1,peq%ncomp
lgamr(i) = f1 * df2dn(i) + 2 * df1dn(i) + Ge
act(i) = EXP(lgamr(i) + lgamc(i))
enddo

if (ilog.eq.1) then
write (186,") ' Igamr’
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endif
iactgflex=0
if (ilog.eq.1) then
close (186)
endif

return
end

write (186,*) (lgamr(i),i=1,peq%ncomp)
write (186,%) ' act'
write (186,%) (act(i},i=1,peg%ncomp)

1.2 Model Selection Code
The code of this subroutine allows the user to select between the FlexQUAC and FlexQUAC-Q

model.

C

SUBROUTINE matflex (IERROR)

C
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o

model initialisation routine for FlexQUAC, QFlexQUAC

Variable dec
use user32
use kernel32
use dflogm
use dfcom
use dfauto
use pegmodule
IMPLICIT none
logical*4 Imodcomb34, Imodcomb23, Imodgfiex,Imodflexnum
common fflexquac/ Imodcomb34, Imodcomb23,

Imodgfiex,Imodfiexnum

integer ierror, index
integer*4 ret, ghwndMain

ghwndMain = 0
peq%iusedcp = 1 ! use delta_cP for SLE calculation
c get model control options from control-string
c Imodcomb34 to use the 3/4-modification of the combinatorial part (as in
mod. UNIFAC)
Imodcomb34 = false.
if (index{peq%control,'modcomb34'}.ne.0) Imodcomb34 = .true.
c Imodcomb23 to use the 2/3-modification of the combinatorial part (Kikic)
imodcomb23 = false.
if (index(peg%control,'modcomb23').ne.0) imodcomb23 = .true.
c only one of modcomb23 and modcomb34 allowed

if (Imodcomb23.and.Imodcomb34) then
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ret = MESSAGEBOX( ghwndMain, 'only one of modcomb23 and
modcomb34 allowed. modcomb34 selected.'c,
>  'Warning'c, MB_OK}
Imodcomb23 = false.
endif

c Imodgflex to use the surface fraction flexibilisation only in the
combinatorial part

Imodgfiex = false.

if (index(peq%control,'modgflex’).ne.0) Imodgflex = .true.

c numerical flexibilisation for testing purpose
Imodfiexnum = false.
if (index({peg%control,'numfiex’).ne.0) Imodflexnum = .true.

return
end

B2. Implementation in Excel
2.1 Excel Code

Sub Main(}

Variable Declarations
Dim inkr(8) As Long, inkrmod(8) As Long, xxx As Single, stringscr As String * 2
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Dim x(1 To 5) As Double, y(5) As Double, he As Double, cpe As Double, dq(5) As
Double, grad_x(5, 5) As Double, grad_fx(5, 5) As Double, dQdn(5) As Double

Dim act(1 To 5) As Double, pmh(1 To 5) As Double, pmc(1 To 5) As Double

Dim single_set As Integer, irowstart As Integer, datafile As String, irow As Integer, i As
Integer, j As Integer

Dim imiss As Integer, icod As Integer, iso As Integer, ibest As Integer

Dim ename As String, dname As String, empform As String, casn As String

Dim runi As Single, quni As Single, g As Double

Dim antA As Single, antB As Single, antC As Single, iberL As Integer, iberH As Integer
Dim anthA As Single, anthB As Single, anthC As Single, iberhL As Integer, iberhH As
Integer

Dim ilast As Integer, xn As Double, t As Double, p As Double

Dim iret As Long

Section 1

Call DDB_2.D_ReadDDBenv
Worksheets("Data_Sheet").Select

Call prepare_d_sheet ‘ Formats the excel spreadsheet

single_set =0
irowstart = 3
imodel = 2
fit_tertest = True
rework_fqg=True 'this goes through the results and refitts the cases where FQ
is worse than F
workpath = "C:\Thishen\Masters Work\flexquac Q projects\EXCEL"
'datafile = "VLE_binary. TXT"
'datafile = "VLE_all1.TXT"
If fit_tertest Then
datafile = "VLE_ternary_test. TXT"
End If
nline_tertest = 2

D30



file://C:/Thishen/Masters

APPENDIX
B

Dim wst3 As Object
Set wst3 = Worksheets("Tabelle3")

If rework_fq Then
Dim set2line(30000)
For jlinerw = 4 To 6000
buf = wst3.Cells(jlinerw, 1)
If IsNumeric(bufy And buf <> "™ Then
set2line(buf) = jlinerw
End If
Next jlinerw
End If

Section 2
Open workpath & datafile For Input As #30
irow = 2
While Not EQF(30)
1:
Worksheets("Data_Sheet").Cells(23, 2) = 0# 'setdto 0
If fit_tertest = True Then

nset_tertest = Worksheets("tertest").Cells(nline_tertest, 6)

Worksheets("Data_Sheet").Cells(2, 12) = nset_tertest
End If
' read dataset from file
DoEvents
With vieset _

Input #30, .ncomp, .iso, .nval, .PT, .nref, .icod(1), .icod(2), .icod(3), .icod(4), .iset, i, i,
.iddb

Fori=1Yo .nval

Forj=1To .ncomp-1
Input #30, .x(j, i)
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Next
Forj=1To .ncomp-1
Input #30, .y(j, i)
Next j
Select Case .iso
Case1,3,5,7
Input #30, .p(i)
i) =.PT-273.15
Case 2,4,6,8
Input #30, ()
p(iy=.PT
Case 9
Input #30, .p(), .t(i)
End Select
Nexti
End With

If vieset.ncomp <> 2 And fit_tertest = False Then
GoTo 1
End If

' use dataset?
Worksheets("Data_Sheet").Cells(2, 10) = vleset.iset
If fit_tertest <> True Then

if vieset.nval < 10 Then GoTo 1

If vieset.iset = 5049 Then GoTo 1’ this dataset has one pure component vapor
pressure =0

If vieset.iset = 23067 Then GoTo 1' this dataset has one pure component vapor
pressure =0

If vieset.iso <> 3 Then GoTo 1

If rework_fq Then

If set2line(vlieset.iset) < 1 Then GoTo 1
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'If set2iine(vieset.iset} < 310 Then GoTo 1
' If wst3.Cells(set2line(vieset.iset), 23) < 1.05 Then GoTo 1

End If
Else
If vieset.iset <> nset_tertest Then
GoTo 1
Eise
i = i + 1
End If
End If
irow = irow + 1
If rework_fq Then
irow = setZline(vleset.iset)
End If

If irow < irowstart Then GoTo 1

'write dataset to sheet

Range("A26:P200").Select
Selection.ClearContents
Range("A1").Select
With Worksheets("Data_Sheet")
.Cells(4, 3) = vleset.iset
.Cells(5, 3) = vieset.iso
.Cells(6, 3) = vleset.nval
Celis(7, 3) = vleset.PT
Select Case vleset.iso
Case1,3,5,7

.Cells(7, 4) ="Deg C"
Case2,4,6,8
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.Cells(7, 4) = "mm Hg"
Case 9
Cells(7,3)=""
End Select
.Cells(8, 3) = vleset.nref
.Cells(10, 3) = vleset.icod(1)
.Cells(11, 3) = vleset.icod(2)
.Cells(4, 3) = vieset.iset
.Cells(4, 3) = vleset.iset
Fori=1 To vleset.nval
.Cells(25 +1i, 1) = vleset.x(1, i)
.Cells(25 + i, 2) = vieset.y(1, i)
.Cells(25 +1i, 3) = vleset.p(i)
.Cells(25 + i, 4) = vleset.t(i)
Next i
' MsgBox "continue?"

'retrieve additional information

imiss =0
Fori=1 To vleset.ncomp
icod = vleset.icod(i)
Call DDB_Stoff_name(icod, ename, dname, empform, casn)
.Cells(9 +i, 4) = empform
Cells(9 +1i, 5) = ename
Call DDB_Stoff_rqinkr(icod, runi, quni, inkr, inkrmod)
.Cells(14 + i, 2) = runi
If runi < 0.01 Then imiss = 1
vleset.runi(i) = runi
.Cells(14 + i, 3) = quni
vleset.quni(i) = quni
If quni < 0.01 Then imiss = 1
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Call DDB_Stoff_antoine(icod, antA, antB, antC, iberl, iberH, anthA, anthB, anthC,
iberhL, iberhH)
If antA < 0.01 Then imiss = 1
.Cells{14 +i, 4) = antA
.Cells(14 +i, 5) = antB
.Cells(14 +i, 6) = antC
vieset. Ant(1, i) = antA
vieset Ant(2, i) = antB
vieset. Ant(3, i) = antC
Cells(14 +i, 7) = iberL
Cells(14 +i, 8) = iberH
Nexti

Section 3 - Select liquid model
Call peq.settype(0, itype_Imodel, iimodel_FlexQUAC)
Call peq.settype(0, itype_ncomp, CLng{vleset.ncomp))
Fori =1 To vieset.ncomp

Call peq.settype(i, itype_icod, CLng{vieset.icod(i)})
Nexti

Fori =1 To vleset.ncomp
Call peq.settype(i, itype_vap, 1) ' 1 - Antoine ( low pressure)
Call peqg.settype(i, itype_den, 1) ' 1 - no Poynting correction
Call peq.settype(i, itype_adj, 1) ' adjust

Nexti

Call peq.init_pure(0) ' read pure component properties from STOFF1 etc.
Call peq.init_Imodel ' initialize liquid model

Section 4
Adjust pure component vapor presstre
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Forj=1To vieset.ncomp - 1
vleset.padj(j) =1
Fori=1 To vieset.nval
If vieset.x(j, i) > 0.9999999 Then
vieset.padj(j) = vieset.p(i) / (10 * (vleset. Ant(1, j) - vieset.Ant(2, j) / (vieset.Ant(3,
j) + vieset.(i))))
If vieset.padj(j) < 0.1 Then vleset.padj(j) = 1
End If
Next i
Next |
ilast = vleset.ncomp
vleset.padj(ilast) = 1
Fori=1 To vieset.nval
xn = 1#
Forj=1Toilast-1
Xn = xn - vleset.x(j, i)
Next
If xn > 0.99999999 Then
vleset.padj(ilast) = vleset.p(i) / (10 * (vleset.Ant(1, ilast) - vieset.Ant(2, ilast) /
(vleset. Ant(3, ilast) + vleset.(i))))
If vieset.padj(ilast) < 0.1 Then vieset.padi(ilast) = 1
End If
Nexti
Forj=1To ilast
.Cells(14 + j, 9) = vleset.padj(j)
Call peq.setpar(j, 1, 1, 3, Log(vleset.padj(j)) / Log(10%#))
Next

Calculate pure component vapor pressures

If vleset.iso <> 6 And vileset.iso <> 9 Then
Fori=1 To vleset.nval
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t = Celis(25 + i, 4)

Forj=1To2
p = vieset.padj(j) * 10 * (.Cells(14 + j, 4) - .Cells(14 + j, 5) / (.Cells{14 +j, 6) + t))
LCells(25+i,4+))=p
vleset.ps(j, i) =p

Next j

Next i
End if

Section 5 - Calculate activity coefficients

If vieset.iso < 3 Then
Fori=1 To vieset.nval

p =.Cells(25 +i, 3)

It .Cells(25 + i, 1) > 0.0000001 And .Cells(25 +1, 1) < 0.9999999 Then
Celis(25 +i, 7) = Cells(25 +i, 2) *p / .Cells(25 + i, 1) / .Cells(25 + i, 5)
Cells(25 +1i, 8) = (1# - .Cells(25 +1i, 2)) * p / (1#- .Cells(25 +i, 1)} / .Cells(25 +1i,

6)
vieset.act(1, i} = .Cells{25 +i, 7)
vleset.act(2, i) = .Cells(25 + i, 8)
End If
Nexti
End If
Section 6 - Calculate partial pressures

If vieset.iso < 3 Oriso =6 Then
Fori=1To vleset.nval
p = .Cells{25 +i, 3)
Cells(25 +i,9) = .Cells(25 +i, 2) * p
Cells(25 +i, 10) = (1# - .Celis(25 +i, 2)) * p
Nexti
End If
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Section 7 - write formulas for P and y to grid

Fori=1 To vleset.nval
Cells(25 +i, 13) = "=RC[-12]*"RC[-2]*'RC[-8] +(1.-RC[-12])*RC[-1]*RC[-7]"
Cells(25 + i, 14) = "=RC[-13]*RC[-3]*RC[-9)/RC[-1]"
Cells(25 +i, 15) = "=((RC[-12]-RC[-2])/RC[-12])*2"

Nexti

.Cells(21, 6) = "=SUM(R[SIC[9):R[" & CStr(24 + vieset.nval) & "JC[9])"

Section 8
Application.Calculation = xIManuat

Set initial parameters for original model
ibest =1

.Cells(20, 2) = 50#

Cells(21, 2) = 60#

Cells(22,2)=0.3

Cells(23, 2) = O#

Cells(23, 3) = O#

Worksheets("Tabelle3").Select
ilog = Application.Wait(Now() + TimeValue("0:00:03")}
Worksheets('Data_Sheet").Select

If rework_fg Then
GoTo second_model
End If

Call peqg.settype(0, itype_Imodel, iimodel_UNIQUAC)
Call peq.setstring(1, ™)

Section 9— Regression Procedure
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Call datafit

Call results2sheet
res(1, 1) = .Cells(21, 6)
res(1, 2) = .Cells(20, 2)
res{1, 3) = .Cells(21, 2)
res(1, 4) = Cells(22, 2)
res(1, 5) = .Cells(23, 2)

Cells(20, 2) = -1#*res(1, 2)

If (.Cells(20, 2) > 5000#) Then .Cells(20, 2} = .Cells(20, 2) / 10#
If (.Cells{20, 3) > 5000#) Then .Cells{21, 2) = .Cells(21, 2) / 10#
Call datafit

Call results2sheet

res(2, 1) = .Cells(21, 6)

res(2, 2) = .Cells(20, 2)

res(2, 3) = .Cells(21, 2)

res(2, 4) = Cells(22, 2)

res(2, 5) = .Celis(23, 2)

If res(2, 1) < res(ibest, 1) Then ibest = 2

.Cells(20, 2) =res(1, 2)

.Cells(21, 2) = -1# * res{1, 3}

If (.Celis(20, 2) > 5000#) Then .Cells(20, 2) = .Cells(20, 2) / 10#
If (.Cells(20, 3) > 5000#) Then .Cells(21, 2) = .Cells(21, 2) / 10#
Cells(22, 2) =res(1, 4)

Cells(23, 2) =res(1, 5)

Call datafit

Call results2sheet

res(3, 1) = .Cells(21, 6)

res(3, 2) = .Cells(20, 2)

res(3, 3) = .Cells(21, 2)
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res(3, 4) = .Cells(22, 2)
res(3, 5) = .Cells(23, 2)
If res(3, 1) < res(ibest, 1) Then ibest =3

.Cells(20, 2) = -1# *res(1, 2)

Cells(21, 2) =-1# * res(1, 3)

If (.Cells{20, 2) > 5000#) Then .Cells(20, 2} = .Cells(20, 2) / 10#
If {.Cells(20, 3) > 5000#) Then .Cells(21, 2) = .Cells(21, 2) / 10#
Celis(22, 2) = res(1, 4)

Cells(23, 2) = res(1, 5)

Call datafit

Call results2sheet

res(4, 1) = .Cells(21, 6)

res(4, 2) = .Cells(20, 2)

res(4, 3) = .Cells(21, 2)

res(4, 4) = .Cells(22, 2}

res(4, 5) = .Cells(23, 2)

If res(4, 1) < res(ibest, 1) Then ibest = 4

.Cells(20, 2) = res(ibest, 2)
.Cells(21, 2) = res(ibest, 3)
Celis(22, 2) = res(ibest, 4)
.Cells(23, 2) = res(ibest, 5)
Call datafit

Call resultsZsheet

Calculate
Application.ScreenUpdating = False
End With

Section 10 - Calculate gamma infinite
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x(1) = O#

x(2) = 1#

t = vleset.t(1) + 273.15

On Error Resume Next

Call peqg.actcal(x, t, act, he, cpe, pmh, pmc, iret)
On Error GoTo 0
Sheets("Data_Sheet”).Cells(20, 9) = act{1)
x(1}=1#

x(2) = O#

t = vieset.t(1) + 273.15

On Error Resume Next

Call peq.actcal(x, t, act, he, cpe, pmh, pmc, iret)
On Error GoTo 0
Sheets("Data_Sheet").Celis(21, 9) = act(2)
Sheets("Data_Sheet").Select

Calculate Relative absolute deviation in pressure
pdev = O#
Fori=1To vieset.nval

p = Sheets{"Data_Sheet").Cells(25 + i, 3)

pcal = Sheets("Data_Sheet").Cells(25 + i, 13)

pdev = pdev + Abs{((p - pcal) / p)
Next i
pdev = pdev / vleset.nval * 100#
Sheets("Data_Sheet").Cells(3, 10) = pdev

Copy results to Excel spreadsheet

Call copy_cell{("C4", "a" & CStr(irow + 1))
Call copy_cell("C5", "b" & CStr(irow + 1))
Call copy_cell("C8", "c" & CStr(irow + 1)}
Call copy_cell("C7", "d" & CStr(irow + 1))
Call copy_cell("C8", "e" & CStr(irow + 1))
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Call copy_cell("C10", "* & CStr(irow + 1})
Call copy_cell{"C11", "g" & CStr(irow + 1))
Call copy_cell("B20", "h" & CStr{irow + 1))
Call copy_cell("B21", "i" & CStr(irow + 1))
Call copy_celi("B22", " & CStr(irow + 1))
Call copy_cell("F21", "k" & CStr(irow + 1))
Call copy_cell("120", "z" & CStr(irow + 1))
Call copy_cell("121", "aa" & CStr(irow + 1))
Call copy_cell("J3", "ab" & CStr{irow + 1))

If single_set =1 Then
Sheets("Data_Sheet").Select
Sheets("Data_Sheet"). Copy Before:=Sheets(1)
Sheets("Data_Sheet (2)").Select
Sheets("Data_Sheet (2)").Name = "UNIQUAC"
Sheets("Data_Sheet").Select

End If

Application.ScreenUpdating = True
DoEvents

Section 11: Second regression using FlexQUAC-Q mode!

Call peq.settype(0, itype_Imodel, iimodel_FlexQUAC)
'‘Call peq.setstring(1, "modqflex modcomb34”)

Call peq.setstring(1, "modgflex")

'Call peg.setstring(1, ")}

With Sheets("Data_Sheet")
if Not rework_fq Then
.Cells(20, 2) = Cells(20, 2) * 0.9
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Cells(21, 2) = Cells(21, 2) * 1.05
Cells(23, 2) = 0.1
Cells(23, 3) = 0.05

If .Cells(22, 3) > 0.599 Then .Cells(22, 2) = 0.3

Section 12 - FlexQUAC-Q data regression
ibest = 1
Call datafit
Call results2sheet
.Cells(23, 3)=0.05
Call datafit
Call results2sheet
res(1, 1) = .Cells{21, 6)
res(1, 2) = .Cells(20, 2)
res(1, 3) = .Cells(21, 2)
res(1, 4) = .Cells(22, 2}
res(1, 5) = .Cells(23, 2)

.Cells(23, 3) =0.05

Call datafit

Call results2sheet

If IsNumeric(.Cells(21, 6)) Then
res(2, 1} = .Cells(21, 6)

Else
res(2, 1) = 1E+30

End If

res(2, 2) = .Cells(20, 2)

res(2, 3) = .Cells(21, 2)

res(2, 4) = .Celis(22, 2)

res(2, 5) = .Cells(23, 2)

If res(2, 1) < res(ibest, 1) Then ibest =2
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".Cells(20, 2} =res(1, 2)
"Cells(21, 2) = -1# * res(1, 3)
"Cells(22, 2) = res(1, 4)
"Cells(23, 2) = 0.1

'Call datafit

res(3, 1) = .Cells(21, 6)
‘res(3, 2) = .Cells(20, 2)
'res(3, 3) = .Cells(21, 2)
'res(3, 4) = .Cells(22, 2)
‘Cells(23, 2) = 0.1

'If res(3, 1) < res(ibest, 1) Then ibest = 3

".Cells{20, 2) = -1# * res{1, 2)
"Cells(21, 2) = -1# * res(1, 3)
"Cells(22, 2) =res(1, 4)
"Cells(23, 2) = 0.1

'Call datafit

'res(4, 1) = .Cells{21, 6)
‘res{4, 2) = .Cells(20, 2)
'res(4, 3) = .Cells(21, 2)
'res(4, 4) = .Cells(22, 2)
'res(4, 5) = .Cells(23, 2)

'If res(4, 1) < res(ibest, 1) Then ibest = 4

.Cells(20, 2) = res(ibest, 2)
.Cells(21, 2} = res(ibest, 3)
.Celis(22, 2) = res(ibest, 4)
.Cells(23, 2) = res(ibest, 5)
Call datafit
Call results2sheet
Else
.Cells(20, 2) = wst3.Cells(set2line(vleset.iset), 12)
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Cells(21, 2) = wst3.Celis(set2line(vleset.iset), 13)
.Cells{22, 2) = wst3.Cells(set2line(vieset.iset), 14)
Cells(23, 2) = wst3.Cells(set2line(vleset.iset), 15)
.Cells(23, 3) = wst3.Cells(set2line(vleset.iset), 16)
Call datafit
Call results2sheet

End If

Calculate
Application. ScreenUpdating = False
End With

Section 13

Calculate gamma infinite

peq.Log (0)

x(1) = O#

x(2) = 1#

t = vleset.t(1) + 273.15

On Error Resume Next

Call peqg.actcal(x, t, act, he, cpe, pmh, pmc, iret)
On Error GoTo 0
Sheets("Data_Sheet").Cellg(20, 9) = act(1)

x(1) = 1#

x(2) = O#

t = vieset.t(1) + 273.15

On Error Resume Next

Call peq.actcal(x, t, act, he, cpe, pmh, pmc, iret)
On Error GoTo 0
Sheets("Data_Sheet").Cells(21, 9) = act(2)
peq.Log (0)
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Calculate relative absolute deviation in pressure
pdev = 0#
Fori=1To vleset.nval
p = Sheets("Data_Sheet").Cells{25 +1i, 3)
pcal = Sheets("Data_Sheet").Cells(25 +1i, 13)
pdev = pdev + Abs((p - pcal) / p}
Nexti
pdev = pdev / vleset.nval * 100#
Sheets("Data_Sheet").Cells(3, 10) = pdev

Copy results to Excel spreadsheet

If Not rework_fq Then
Call copy_cell("B20", "I" & CStr(irow + 1)}
Call copy_cell("B21", "m" & CStr(irow + 1)}
Call copy_cell("B22", "n" & CStr(irow + 1))
Call copy_cell("B23", "0" & CStr(irow + 1))
Call copy_cell{("F21", "p" & CStr{irow + 1))
Call copy_cell("120", "ad" & CStr{irow + 1)}
Call copy_cell("121%, "ae" & CStr{irow + 1))
Call copy_celi("J3", "af" & CStr{irow + 1))

Else
Call copy_cell("B20", "q" & CStr(irow))
Call copy_cell("B21", "r" & CStr(irow))
Call copy_celi("B22", "s" & CStr(irow))
Call copy_cell("B23", "t" & CStr(irow))
Call copy_cell("F21", "u”" & CStr(irow))
Call copy_cell("120", "ag" & CStr{irow))
Call copy_cell("121", "ah" & CStr(irow))
Call copy_cell("J3", "ai" & CStr(irow))

End If
Sheets("Data_Sheet").Select
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Application.Calculation = xlAutomatic
Application.ScreenUpdating = True

If single_set = 1 Then
Sheets("Data_Sheet"). Select
Sheets("Data_Sheet").Copy Before:=Sheets(1)
Sheets("Data_Sheet (2)").Select
Sheets("Data_Sheet (2)").Name = "FLEXQUAC"
Sheets("Data_Sheet").Select
Sheets("x-P").Select
ActiveChart.ChartArea.Select
ActiveChart.SeriesCollection(2).Values = "=UNIQUAC!R26C13:R200C13"
ActiveChart.SeriesCollection(3).Values = "=FLEXQUAC!R26C13:R200C13"

End If

Sheets("Data_Sheet").Select

If fit_tertest = True Then
Close (30)

Open workpath & datafile For Input As #30
nline_tertest = nline_tertest + 1

End If

If irow Mod 30 = 0 Then ActiveWorkbook.Save

Wend

Close (30)

End Sub
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APPENDIX C



B general
n

Pure Component Parameters |

3.395] 3.016
R1:= =
[ 1.87 (1.724)

FlexQUAC-Q Model Parameters |

0 497.605
Au = &=
-76.972 0

T:= 273.15 + 20.50

Pure Gas Constant|

R := 198721

—Aui‘j
Tj,ji= exp B

0

-253-

epsl =10

0.1786
0.1786 0

Liquid Mole Fraction |




Burface Fraction |
n

thetafxi:= Q-1+ Z Xk'Qk'ai,k
k=1

sthetfx := Z x, - thetafx,

thetafxi

etfx. :
1 gthetfx

thethaf =X thetfxi

n
Sf.:= Z xj-ﬂletij-tj,i
i=1

Residual Gibbs Energy|

n
i g™ -—Z xi—Qi

i=1

f2:= i X, - thetfx. ln(Sfi)

i=1

gE RTresf := f1-f2

Derivative of f1 by mole numbers |

dfldn = -Q - fl
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Derivative of f2 by surface fraction |

0 x.-thetfx. - tj
i i b

in = surnli + ln(Sfi)

Uacobian matrix |

n
SJ; = Z xk-Qk-(l +Qi-6k,5)
k=1

JacobianFQl := | for ie 1..n

for mel..n
S)h % Q%
Jac .e-—(thetfx -x.)— +
m, 1 m 1 sthetfx thetfxi—sthetfx
% Q- Qp+Bim
Jac .« Jac .+ ——— ifi#m
m,i m, i

Jac

thetfx, - sthetfx

Jac .« Jac .+ 1 ifi=m
m,i m, 1

Jac_ .« Jac_ .- thetfx.
m, i i
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Derivative of f2 by mole numbers |

df2dn := JacobianFQ1 - df2

Residual Activity Coefficient |

dgE RTresf := f1 - df2dn + f2- (-Q — f1)

Iny resf := dgE_RTresf + gE RTresf

n n
n(x,R1) := Z x.- Rl q(x,Q) = Z X Q
i=1 i=1
RI.
- 1 Q.
xR, 1,0) o= n(x,R1) 0(x,Q,i,n) = e

q(x,Q)

Combinatorial Term - Gibbs Energy |

n -
gE RTcomb(x,T,Au,R1,Q,n) = Z [x.- In(¢(x,R1,i,n)) + 5- Q.- IH(MD
ot ' '\ o(xR,i,n)
i=
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Combinatorial Activity Coefficient |

[ny_combo(x,T,Au,Q,n) = |for iel.n

ret. « 1. — d(x,R1,i,n) + In(d(x,R1,i,n)) + 5- Q.- ln[ B(X’Q‘i’")J y 8!
. : o(x,R1,i,n)) O(x,
ret

-0.209
lny_combo(x,T,Au,Q,n)=[ 0 }

Activity Coefficient]|

ln'y(x,T,Au,Q,n) = ln’y_combo(x,T,Au,Q,n) + Iny_resf

Iny(x, T,Au,Q,n) = [1'234)

exp(m(x;r,au,o,n)){“’f”j
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exp(lrry(x4,T,Au,Q,n)) =

o=} ool 1, m.0.0) = ()
= (20%) cplnk 1. 00.0.0) = 27
an (2299) calnboa, 1, 00,00 = *12)
o () el 720000 = ()
s (o)

( o)

1] exp(ln‘r(xS,T,Au,Q,n)) =

data set : VLE 420 type of data: x,y,P,(T)
reference : JOUKOVSKY N.I.,Bull.Soc.Chim.Belg. 43(10),397 (1934).

consistency tests: 1-- 2-0

constant values:

temperature =  20.50 degree C
Lexp. sat. vapor pressure Ps1=  447.10 mm Hg
calc. sat. vapor pressure  Ps1= 447.10 mm Hg
exp. sat vapor pressure Ps2=  70.60 mm Hg
calc. sat. vapor pressure Ps2 = 70.60 mm Hg

P P x1 X1 y1 y1 act 1 act 1 act2 act2
[mmHg] [mmHg] [] [-] [-] ] [-] [] [-] [
exp. calc. exp. calc exp. calc. exp. calc. exp. calc.

70.60 70.60 0.0000 0.0000 0.0000 0.0000 0.00000 4.63812 1.00000 1.00000
176.00 176.78 0.0980 0.0980 0.6150 0.6299 2.47034 2.54132 1.06405 1.02752
251.00 232.82 0.2040 0.2040 0.7500 0.7391 2.06395 1.88657 1.11660 1.08106
321.60 307.60 0.3800 0.3800 0.8310 0.8318 1.57300 1.50591 1.24167 1.18216
405.00 414.99 0.7530 0.7530 0.9310 0.9257 1.11997 1.14112 1.60252 1.76718
44710 447.10 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 0.00000 5.73548
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I
oo

n:.=
-lli 11:1 general epsl = 10

1.4311 1.4320
R _setl := Q setl =
B 4.4998 3.856

FlexQUAC-Q Model Parameters |

0 4468176 0 0.07816629
Au_setl := & _setl :=
1212.435978 0 0.07816629 0

emperature

T:= 273.15+ 20
Pure Gas Constant] ole Fraction

XX
R = 1.98721 X(XX) == [
1 —xx
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file:////-tbl

—AU:
I(Au,i,j) = exp( UI’]J

R-T

m(au,n) = | for iel.n
for je l.n

ret, j<— T(Au,i.j)

ret

Surface Fraction |

n
thetafi(x,Q,3,i) = Q- [ 1+ )" % Q ik
k=1

s(hetfx(x,Q,S) = in . thetafx(x,Q,& ,i)

i

thetafx(x,Q.5.,i)

therfx(x,Q,ﬁ,i) =
sthetfx(x,Q,é)

thethaf(x,Q,3, 1) := X thetfx((x,Q,8,i))

n
Sf(x,Au,Q,ﬁ,i) = Z X thetfx(x,Q,S,j) . ‘m(&u,n)j,i
j=1

Residual Gibbs Energy]

n
ﬂ(X,Q) = _Z xi' QI

i=1
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n
Q(X,AU,Q,B) = Z xi-thetfx(x,(},é,i)-In(Sf(x,Au,Q,&,i))
i=1

gE_RTresf(x,Au,Q,ﬁ) = fl(x,Q) - ﬁ(x,Au,Q,ﬁ)

Derivative of f1 by mole numbers |

dfldn(x,Q) := -Q — f1(x,Q)

Derivative of f2 by surface fraction |

X, thetfx(x,Q,ﬁ,i) . Tn(AU,l'l)j’i

n
sumi(x,Au,Q,3, ) Z_: sf(x,Au,Q,8,i)

df2(x,Au,Q,3,i) = sumi(x,Au,Q,5,i) + In(Sf(x, Au,Q,5,i))

df2n(x,Au,Q,6,n) = |for iel.n
ret, « df2(x,Au,Q,85,i)

ret

Jacobian matrix |

n

si(x,Q.3, Z X Q1+ Q- 3,i)
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JacobianFQ1(x,Q,5) == | for ie 1..n

for me 1..n

SJ(K,Q,S,IT]) N xi Qi : xi
Jac_ .« —(thetfx(x,Q,B,m) . x‘) - +
. 1 sthetfx(x,Q,S) thetfx(x,Q,S,i) . sthetfx!
xi' QI Qm' 5i,m

if i#m

Jac .« Jac
m,1

]

.+
M1 thetfx(x,Q,8,1) - sthetfx(x,Q,8)

Jac .« Jac_ .+ 1 ifi=m
m,i m,i

Ja(:m,i — Jacm,i- thetfx(x,Q,ﬁ,l)

Jac

Derivative of f2 by mole numbers |

df2dn(x,Au,Q,8) == JacobianFQ1(x,Q,8) - df2n(x,Au,Q,5,n)

Residual Activity Coefficient |

deE RTresf(x,Au,Q,8) := fi(x,Q) - df2dn(x,Au,Q,8) + £2(x,Au,Q,5) - (-Q - f1(x,Q))

lm{_resf(x,Au,Q,ﬁ) = dgE_RTresf(x,Au,Q,S) + gE_RTresf(x,Au,Q,ﬁ)

i(x,R_1):= Z X R_1, q(x,Q) = Z X, Q.

R_li
¢(x,R_1,i,n) :=

O(x,Q,i,n) =
n(x,R 1) (x,Q,i,n) Q)
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Combinatorial Term - Gibbs Energy |

n

gE_RTcomb(x,T,Au,R_l ,Q,n) = Z (x.- ln(cb(x,R_l,i,n}) +5:Q.- In(MD
! ! ¢(x,R_1,i,n)

Combinatorial Activity Coefficient |

lrry_combo(x,T,Au,Q,R_l,n) = |Jfor iel.n

ret. « 1. — ¢(x,R_1,i,n) + 1n(¢{x,R_1,i,n)) +5-Q.-|In M] :
: J ¢(x,R_1,i,n)

ret

Activity Coefficient|

tny(x,T,Au,Q,R_l ,S,n) L2 Iny_combo(x,T,Au,Q,Rﬁl ,n) - lny_resf(x,Au,Q,E)

Due to the large number of data points only ten experimental points were chosen for evaluation

mi:=1..10 {0

0.00002

0.00076

0.14830
.85920
.95020
97730
99150
.99930

xx1 =

O
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x1 y1 ACT " |aCT, ™
0.00000] _0.00000] 37.8790355 1
0.00002 0.00000] 37.8669076 1
0.00003 0.00000| 37.8608456]| 1.00000001
0.00027 0.00000] 37.7157579] 1.00000058
0.00076 0.00000] 37.4219022) 1.00000461
0.00188 0.00000] 36.7619577| 1.00002812
0.00233 0.00000{ 36.5013114| 1.00004313
0.00609 0.00000] 34.419854| 1.00029106
0.00829 0.00000] 33.2774383| 1.00053554
0.02319 0.00000| 26.7700909| 1.00400337
0.02443 0.00000] 26.3113184] 1.00442676
0.04142 0.00000] 21.005933| 1.01213088
0.07120 0.00000] 14.8285048| 1.03325778
0.08599 0.00000] 12.7115861 1.0469099
0.10228 0.00000| 10.8640556| 1.06411922
0.14830 0.00000] 7.40620343| 1.12380039
0.85920 0.00000] 1.09720694| 6.49547206
0.80070 0.00000] 1.05530301| 8.65868707
0.93490 0.00000] 1.02704195| 11.7521 7264
0.93970 0.00000] 1.02366029| 12.3462347
0.94420 0.00000]| 1.02064372| 12.9519807
0.95020 0.00000] 1.016868| 13.8427652
0.95400 0.00000] 1.0146315| 14.4621654
0,95540 0.00000] 1.01383926| 14.7022183
0.96600 0.00000] 1.00843618] 16.7576171
0.97200 0.00000| 1.00588408| 18.1399616
0.97730 0.00000] 1.0039668| 19.521622
0.98240 0.00000] 1.00244497| 21.0173987
0.98393 0.00000] 1.00205394| 21.5018201
0.98666 0.00000] 1.00143491| 22.4110961
0.98710 0.00000] 1.00134481| 22.5632939
0.9898¢ 0.00000] 1.00083785] 23.5671428
0.99150 0.00000] 1.00059717| 24.1 ?8511_2_
0.99268 0.00000] 1.0004456| 24642375
0.99430 0.00000] 1.00027249| 25.302006
0.99488 0.00000] 1.00022052| 25.5448249
0.99670 0.00000] 1 .000_0_925 26.3305069
0.99713 0.00000] 1.00007012 26.52156
0.99750 0.00000] 1.00005331| 26.6876788
0.99848 0.00000] 1.00001981| 27.1354329|
0.99850 0.00000] 1.00001929| 27.144675
0.99895 0.00000] 1.00000948| 27.3542508
0.99920 0.00000] 1.00000551] 27.4717399
0.99930 0.00000] 1.00000422| 27.5189628
0.99962 0.00000] 1.00000125| 27.6708949
1.00000 0.00000 1| 27.8529634
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Calculated activity coefficient 1

Calculated activity coefficient 2




: general epsl=10"°

FlexQUAC-Q Model Parameters |

0 82.00264 0 0.195406

Au_set2 = O set2 =

B 982.5527 0 0.195406 0

T:=273.15+ 20
Pure Gas Constant| ole Fraction

XX
R := 198721 X(xx) = ( )
I —2x
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—Auj_;
t(&u,i,j) = exp( I"")

R-T

rn(Au,n) = | for iel.n
for jel.n

rt’:ti j<— t(Au,i,j)

]

ret

Surface Fraction |

thetafx(x,Q,8,i) = Q.| 1 + Z X, - Q- 8k
k=1

sthetfx(x,Q,8) == Z X thetatx(x,Q.5.1)

thetafx(x,Q, d, i)

thetfx(x,Q,8,i) =
i sthetfx(x,Q,ﬁ)

thethaf(x,Q,B,i) =X thetfx((x,Q,S,i))

n
Sf(x.au,Q.E,i) = Z xi‘thetfx(x,Q,ﬁ,j)-tn(Au,n)j‘i
j=1
Residual Gibbs Energy|

f1(x,Q) == —Z X+ Q,

i=1

n
2(x,Au,Q,8) = Z x. - thetf(x,Q, 3, i) - In(sf(x, Au,Q,8,1))

i=1
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gE RTresf(x,Au,Q,8) := fi(x,Q) - f2(x,Au,Q,5)

Derivative of f1 by mole numbers |

dfldn(x,Q) := -Q — f1(x,Q)

Derivative of f2 by surface fraction |

Xi . theth(X, Q,B,l) ' ‘I:]'l(ﬁu,n)_i‘i
sf(x,Au,Q,8,i)

n
suml(x,Au,Q,é,j) = Z
i=1

df2x,Au,Q,5,i) := sumi(x,Au,Q,8,i) + In(sf(x,Au,Q,5.,i))

dQn(x,Au,Q,cS,n) = |for iel..n
ret, « df2(x,Au,Q,5,i)

ret
Pacobian matrix |
n
Six,Q,8,1):= 3" % Q- (1+Q; 8,
k=1

JacobianFQl(x,Q,tS) = |for iel.n
for me 1..n

s1(x,Q,8,m) - x. Q.- x

i i

Jac_ .« thetfx(x, ,S,m)-x - +
m, i { @ ‘) sthetfx(x,Q,8)  thetfx(x,Q,5, i) - sthetfxl

XI-QI Qm‘5i,m
Jac .« Jac_ .+
m, i m,i - thetfx(x,Q,8,i) - sthettx(x,Q,8)

Jac .« Jac_ .+ 1 ifi=m
m, i m, i

L

if im

Jacm e Jacm, i t]'letfx(x,Q,B, 1)

Jac
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Derivative of f2 by mole numbers |

df2dn(x, Au,Q,5) := JacobianFQ1(x,Q,8) - df2n(x,Au,Q,5,n)

Residual Activity Coefficient |

deE_RTresf(x,Au,Q,8) == fl(x,Q) - df2dn(x, Au,Q,8) + 2(x,Au,Q,8) - (-Q - f1(x,Q))

lny_resf(x,Au,Q,&) 3= dgE_RTresf(x,Au,Q,S) + gB_RTresf(x,Au,Q,é)

n 1]
r(x,R_1):= Z x-R_1, q(x,Q) = Z X Q
i=1 i=1
R 1.
. . ==y Q.
ROxR Latm)= r(x,R 1) O(x,Q,i,n) := N

q(x,Q)

Combinatorial Term - Gibbs Energy |

n

gE_RTcomb(x, T,Au,R_1,Q,n) = Z‘ (xi- In($(x,R_1,i,m) +5- Q.- ln[—%Q’i'—“’D
— "o Le(x,R_1,i,n)
1=
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Combinatorial Activity Coefficient |

lny_combo(x,T,Au.Q,R_l,n) = |for iel.n

Activity Coefficient|

]m((x,T,Au,Q,R_l ,B,n) = ]ny_combo(x,T,Au,Q,R_l ,n) + lny_resf(x,&u,Q,B)

ret < 1. = $(x,R_1,i,m) + In(p(x,R_1,i,m) + 5 Q- [m(

ret

O(x,Q,i,n)

o(x,R_1,i,n)

Due to the large number of data points only ten experimental points were chosen for evaluation

\

0
0.00058
0.00277
0.01225
0.05726
0.09010
0.82570
0.90020
0.93900

1

\
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x1 y1 AGT S0 - lRoy e
0.00000] __ 0.00000| 55.9110671 1
0.00007] __0.00000] 55.8210037] 1.00000006
0.00058] ___0.00000] 55.1706174] 1.00000386
0.00152] __0.00000| 53.9980554] 1.00002644
0.00277] ___0.00000] 52.4896917| 1.00008732
0.00402] ___0.00000] 51.0370477] 1.00018291
0.00730] __ 0.00000] 47.4725252] 1.00059476
0.01225] __0.00000] 42.6995838] 1.00164052
0.02257| ___0.00000| 34.6503068] 1.00534241
0.04035] __ 0.00000| 25.0243742| 1.01597045
0.05726] ___0.00000] _19.022098| 1.03032453
0.08700] __0.00000] 12.5869184| 1.06372872
0.09010] __0.00000] 12.1101572] 1.06772649
0.14040] __ 0.00000] 7.11176535] 1.14356175
0.50980] ___ 0.00000] 1.66374603| 2.04791272
0.82570] __0.00000] 1.16160115| 4.50838104
0.82860] ___0.00000] _1.1579917| 4.57602772
0.85060] ___0.00000] 1.13087982] 5.18143162
0.86600] __0.00000] 1.11226364] 5.73011147
0.90020] __0.00000] 1.07264952| 7.55071402
0.91350] __ 0.00000] 1.05822761] 8.61589462
0.93900] __ 0.00000| 1.03307152] 11.6794471
0.96090] __ 0.00000] 1.01539091| 16.2487462
0.98110] __ 0.00000] 1.00407599| 23.7524267
1.00000] ___0.00000 1] _36.9120802
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Calculated activity coefficient 1

Calculated activity coefficient 2




n=2
i:
Jiu

‘; general epsl =107 °

]

4.4998 3.856
R setd:= Q set3 =
4.0464 - 3.24

FlexQUAC-Q Model Parameters |

0 —105.905 0 0.073377
Au_set3 := 8 set3 =
133.687 0 0.073377 0
T:=273.15+ 20
Pure Gas Constant|
XX
R := 1.98721 i) i [ ]
I —xx
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m(Au,n):= for ie l.n
for je 1.n

reti i < t(Au,i,j)

ret

Surface Fraction |

n
thetafx(x,Q,S,i) e Qi' 1+ Z "k'Qk'ai,k
k=1

sthetfx(x,Q,B) - in- thetafx(x,Q,é,i)

Ihetafx(x, Q,5, i)

thetfx{x,Q,6,i) =
ett(x,Q.5.) sthetfx(x,Q,8)

thethaf(x,Q,8,i) == X, thetfx((x,Q,8,1))

n

Sf(x,Au,Q,B,i) e Z xj-thetfx(x,Q,E,j)-tn(Au,n)j i

j=1

Residual Gibbs Energy|

n
f(x,Q:=-Y x-Q
i=1
n

2(x,Au,Q,8) == Z X thetfx(x,Q,5,1) - In(Sf(x,Au,Q,5,i))

¢E RTresf(x,Au,Q,8) = fi(x,Q) - f2(x,Au,Q,8)
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Derivative of f1 by mole numbers |

dfldn(x,Q) := -Q — f1(x,Q)

Derivative of f2 by surface fraction |

B thetfx(x,Q,8,i) - tn(au,n)j g

suml(x,Au,Q,ﬁ,j) = Z Sf(x AL.Q.6 i) -

df2(x,Au,Q,5,i) := sumi(x,Au,Q,8,i) + In(sf(x,Au,Q,5,i)

den(x,&u,Q,ﬁ,n) = |for iel..n
ret, « dﬂ(x,Au,Q,B, i)

ret

Yacobian matrix |

n
si(6,Q.8,i) = Y x - Q- (1+Q-3k,i)
k=1

JacobianFQI(x.Q,(‘S) = (for iel.n

for me l..n

si(x,Q,8,m) - x; Q- x;
Jacm e ~(thetfx(x,0,5,m) X)) =

+
sthetfx(x,Q.cS) thetfx{x,Q,S, i) - sthetfx!

% Q- Q- 8i,m
Jac .« Jac .+
m, i m i thetfx(x,Q,8,i) - sthetfx(x,Q,8)
Jac .«Jac .+ 1 ifi=m
m,1 m,1

if i=m

2 ]

Jai:m s Jacm, . thetfx(x,Q,5, t)

£

Jac
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Derivative of f2 by mole numbers |

df2dn(x, Au,Q,5) == JacobianFQ1(x,Q,8) - df2n(x,Au,Q,5,n)

Residual Activity Coefficient |

dgE_RTresf(x,Au,Q,5) = fI(x,Q) - df2dn(x,Au,Q,8) + f2(x,Au,Q,3) - (-Q - fI(x,Q))

Iny resf(x,Au,Q,8) = dgE RTresf(x,Au,Q,8) + gE RTresf(x,Au,Q,5)

n n
r(x,R 1) := Z X R_1 q(x,Q) = Z X< Q
i=1 i=1
R 1.
: — 1 Q.
o(x,R_1,i,n) = - T i
(xs !]! e
r(x,R 1) Q.i,n) 19

Combinatorial Term - Gibbs Energy |

n

gE RTcomblx, T,Au,R_1,Q,n) = }" [x.. n(o(x,R_1,i,m) +5-Q.- 1{___@(""1”*’“) D
- 1 1 o(x,R_1,i,n)
1=
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Combinatorial Activity Coefficient |

]ny_combu(x,T,Au,Q,R_l,n) = |foriel..n

ret, & L= ¢(x,R_L,i,n) + n(0(x,R_1,i,m) + S-Qi‘(ln(—w)-

o(x,R _1,i,n)

ret

Activity Coefficient]

lnT(x,T,Au,Q,R_] ,6,11) = Iny_combo(x,T,Au ,Q,R 1 ,n) + [ny_resf(x,Au,Q,B)

Due to the large number of data points only ten experimental points were chosen for evaluation

m:=1.10 0

0.10040
0.18990
0.29410
.39680
49280
.59460
.69010
.79690
1

Xx3 =
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x1 y1 ACT ™™ |ACT,™
0.00000 0.00000| 1.19876306 1
0.10040 0.00000 1.1242232| 1.00311836
0.18990 0.00000| 1.08632083| 1.00885893
0.29410 0.00000| 1.05866376| 1.01708316
0.39680 0.00000| 1.04066399| 1.02626148
0.49280 0.00000 1.0285493| 1.03590216
0.59460 0.00000| 1.01878546| 1.04773029
0.69010 0.00000| 1.01163415| 1.06108816
0.79690 0.00000| 1.00550579| 1.08004384
1.00000 0.00000 1] 1.13814471

Calculated activity coefficient 1

Calculated activity coefficient 2
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=g
0]
(%]

epsl =10

el i
.1.

Pure Component Parameters |

4.0464 3.24

R1:=| 14311 Q:=| 1.4320
4.4998 3.856
FlexQUAC-Q Model Parameters |
0 982.5527 133.687
82.00264 0 44.68176

—105.905 1212.436 0

Au =

0.073377
0.07816629
0

0 0.195406

0.195406 0

O
0.073377 0.07816629

T:= 27315 + 20
ole Fraction
XX

xx1
1 —xx — xx1

Pure Gas Constant|
X(xx,xx1) =

R = 1.98721
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—Aui,i
5 Rl e

Burface Fraction |

n
thetafi(x,i) == Q- [ 1+ ) X - Q- Bik
k=1

sthetfx(x) := Z x, - thetafx(x, i)

i

thetafx(x,i)

thetfx(x,i) :=
.0 sthetfx(x)

thethaf(x,i) == X, thetfx(x,1)

n
Sf(x,i) = Z xj - thetfx(x, J) - 7j j
i=1

Residual Gibbs Energy|

n

f1(x) = —Z X Q,

i=1
n
£2(x) = z x, - thetfx(x, 1) - In(SF(x, 1))
pe]

gE RTresf(x) := f1(x) - f2(x)
-278-



Derivative of f1 by mole numbers |

dfldn(x) := -Q — f1(x)

Derivative of f2 by surface fraction |

n X, thetfx(x,i) - T

suml(x,j) = Z STD)

i=1

df2(x,i) ;= suml(x,i) + In(Sf(x,i))

df2n(x,n):= | for ie l..n
reti « df2(x,1)

ret

Vacobian matrix |

n
SI(x,i) = Z xk.Qk.(l + Q- 5k,i)
k=1

JacobianFQI(x):= | for ie l..n
for me l.n

SJ(x,m) - X,

Jac < —(thetfx(x,m) C X,

Jac_ .« Jac_ .+
m.1 m, 1 thetfx(x,i) - sthetfx(x)

Jac .« Jac .+ 1 ifi=m
m, i m, i

Jac_ . < Jac_ .- thetfx(x,i)
m,i m, i

Jac
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') sthetfx(x) thetfx(x,i) - sthetfx(x)



Derivative of f2 by mole numbers |

df2dn(x) := JacobianFQ1(x) - df2Zn(x,n)

Residual Activity Coefficient |

dgE RTresf(x) := fl1(x) - df2dn(x) + f2(x) - (-Q — f1(x))

Iny_resf(x) := dgE RTresf(x) + gE RTresf(x)

r(x,R1) := Z xRl q(x,Q) = z X Q

i=1 1=:]

RI, o
o(x,R,i,n) = o . i
( ’Q’ ’n) := T
HxR1) BT Q)

Combinatorial Term - Gibbs Energy |

gE RTeomb(x,T,Au,R1,Q,n) =

(xi- ln(¢(x, Rl,i,n)] +5:Q: ],{MD

¢(x,R,i,n)

n
i=1
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Combinatorial Activity Coefficient |

Iny_combo(x,T,Au,Q,n) = |for ie l.n

Activity Coefficient]

ret. < 1. = (x,R1,i,n) + in(o(x,R1,i,n)) + 5 - Q- (ln(

ret

lny(x,T,Au,Q,n) = lny_combo(x,T,Au,Q,n) + Iny_resf(x)

¥li=

7620 )
0.68320
16510
0.05470
51900

0992

0982

4313

1192

3072
0.0723
0.0242
0.1817
0.0314

0.0138

(0.05750 ")
0.15570
0.79600
0.93160
0.20010
0.8471
0.8128

x2:=| 0.1274

0.7589

0.1262

0.7944

0.9304

0.1297

0.8496

| 0.9313
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4 o(x,1

O(x,Q,i,n)
o(x,R1,i,n)

O(x,



0.9294

L5 .

0.76270| 0.05750| 1.046521425| 15.77245331| 1.055819860| 2308556] 0.
0.71780] 0.11300] 1.111746669] 8.663210373] 1.08885026] 239.5729] 4.485532
0.68320] 0.15570] 1.175491452] 6.110939026| 1.142140627| 236.2022| -0.045061
0.85260] 0.19350] 1.239710689| 4.745593071| 1.205356717| 232.7506| -3.763261
0.21200] 0.73800 3.237323761| 1.272613645| 3772146463 223.2851] -13.37539
0.16510] 0.79600[ 4.001228333[ 1.194775939] 4.596377373| 220.5814] -16.02582
0.13440] 0.83350[ 4. 5.413010597| 218.7671] -17.58679
0.10320| 0.87110| 6. 626318932] 217.4477] -16.65303
0.05470] 0.93160] 1 0.65252208] 211.1212| -6.820871
0. 0.08250] 14278] 1.061445117| 241.2257) -1.16766
0.54520] 0.15€ .1808 5.935912609] 1.150584698] 244 4242 _-_*,0?5595|
051 o.:aomg’ 1.245008707| 4.627930164| 1.218364358| 242.261| -3.878791
0.1689]  0.7427| 3.3190944 3_1_26«45424 3.774218559| 234.2579]-12.4151
0.1263]  0.8007] 4.164166927] 1.185048103| 4.651935101] 231.4064| -15.3732
0.1217| _0.8129] 4.413815022| 1.169265389| 4.899792194| 230.6482-15.93149
00982| 0.8471| 5346011639] 1.126492262| 5.784268379| 228 8402|-16.57961
0.0846 0.87| 6.249540806] 1.099438071| 6.603644848| 227.2196|-15.93371)

10.09851704] 1.037687182] 10.51953793] 219,

exp(lny(x{xlm,me),T,Au,Q,n)l) =

1.047

1475

4.001

10.988

1.245

5.346

4.499

1.132

3.569

1.123

0.8128| 4.498530865 1.166317701] 4
0.8656 !.203115463| 1.101709247] 6

BO7271156] 239.1

458520412 235.€

4.236

00383 0.9269] 10.94617653| 1.038428426| 10.36733032] 226 4862

0 0.0795] 1.082150817] 11.26332855] _ 1.0582646] 246.7018] -3.410054
04313 0.1274| 1.132399321| 7.522862434| 1.10023326| 253.9600] 0.381784,
04144] _0.1617] 1.176479607| 5922548204| 1.157256272| 2530462/ -0.566177,
01192 0.7580| 3.568854004| 1.03870194] 3.050041149| 2430713| -10.54108|
01005 0.7967] 4.180143833| 1.186648846| 4.570548058] 242 0367 -13.60691
00573 _0.8841] 7.2004736 1.0603?889| 7.303123051] 236.8115] 1422122
03186 0.0038| 1.092914343| 10.02684498| 1.070585012| 250.7089] 1.196842
0.3072| _0.1262| 1.120941852| 7.728416443] 1.108476281] 263.7281| 2.
0294 0.1638] 1.165087372| 5.965173244] 1.161972165] 264.0503] 2.
00723 _0.7044| 4.23600760| 1.18504064| 4 541873032| 251.7700] -1
00641| _0.8157| 4.716980034] 115803647

0.0453| 0.8608| 6.65000144| 1.093111634

0.0242] _0.0304] 11.63656603| 1033547750

0.0246] _0.0313| 11.93620346| 1.032914996

0.1922] _0.0797| 1.078157783| 1187164211

0.1817| _0.1297| 1.111484289] 7.806048662

01793 0.1412] 1.121904612] 7.178976536

0.0314] _0.6496] 5959610462

0.0259] _0.8707] B¢

0.0138] _0.0313| 12.35376072| 1.031419158] 11.11178398| 240.8683

11.112

exp(ln}'(x(xlm,xzm),T,Au,Q,n)3) =

1.056
1.142
4.596
10.653
1.218
5.784
4.897
1.109
3.96
1.108
4.542
10.869
1.111
6.001
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11.837

1.111

5.96

12.354

exp(lny(x(xlm,xzm),T,Au,Q,n)z) -

15.764

6.111

1.195

1.037

4.628

1.126

1.166

7.523

1.239

7.728

1.186

1.034

7.807

1.113

1.031




Components: 1 - methanol methanol = 1 n:=3
2 - acetone acetone := 2 fit=1un
3 - cyclohexane cyclohexane := 3 j=1uin
1.4311 1.432
R:=| 2.5735 Q:=1 23360
4.0464 3.24
GC = 1.98721
0 164.0496 16.0264 0 0 0.0004
Au = | 79.7562 0 -14.6356 0 = 0 0 0.15 tesla .= 298.15
1287.072 499.1818 0 0.0004 0.15 0

~Auj | 1 0.758 0.973
1,5 P 56 - tesla t=|0874 1 1.025
0.114 0431 1

n n R. Q.
. 1 ) 1
et TE R Th R L e e e e

i=1 i=1

n .
gE RTcomb(x, T, Au,R,Q,n) := Z (x.- In(¢(x,R,i,n)) + 5- Q.- ln[———-@(x’Q"’n)D
' P (R i,m)

i=1
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Iny_combo(x,T,R,Ag,Q,n) = |for iel.n

ret, ¢ 1.~ o(x,R,i,n) + (6(x,R,i,m) + 5- Q.- (h{@(x‘Q’i’"]) Lo

d(x,R,i,n) O(x,(

ret

FLEXQUAC - Q

n
thetafx(x,Q,&,i,n):= Qi- 1+ Z xk'leai»k
k=il

sthetfx(x,Q,n) = in- thetafx(x,Q,ﬁ,i,n)
i

. thetafx(x,Q,S,i,n)
thet ,Q,6,i,n) =
¢ fx(x ke n) sthetfx(x,Q,n)

n
Sf(x,Q,ﬁ,i,n) = Z xj . thetfx(x,Q,S,j,n) Ty
i=1

n
fl(x,Q) = —Z X Qi
j=1
n
2(x,Q,8,n) == Y = thetfx(x,Q,5,i,n) - In(sf(x,Q,5,i,n))

¢E RTresf(x,Q,8) = fI(x,Q) - f2(x,Q,5,n)
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n o x- thetfx(x,Q.8,i,n) - 1y ;

sumi(x,Q,8,j,n) == Z

sf(x,Q,8,i,n)

daf2x,Q,5,i,n) = sumi(x,Q,8,i,n) + In(st(x,Q,5,i,n))

af2(x,Q.5,i,n) =
| ]
df2n(x,Q,8,n) == | for ie 1..n

ret, < af2(x,Q,8,i,n)

ret

n
si(x,Q,8,i,n) = xk-Qk-(l +Qi-6k_i)
=1

k

JacobianFQl(x,Q,S,n) = |for iel.n

for me 1..n

X —

Jacmsi «— —(therfx(x,Q,B, m,n) .

SJ(x,Q,S,m,n) X Q.

| : -
! sthetfx(x,Q,n) thetfx{x,Q,S ,i,n

Xi’Qi'Qm'ai,m

if izm

Jac .« Jac
m

Jac .« Jac .+1 ifi=m
m,1 m,l1

] £l

1

Jac
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o+
»1 m,1 thetfx(x,Q,ﬁ,i,n) - sthetfx(x,Q,n)

.lacm < .lacm‘ . thetfx(x,Q,S,:,n)



dedn(x,Q,a ,n) = JacobianFQI(x,Q,é ,n) . dﬂn(x,Q,ﬁ ,n)

dgE RTresf(x,Q,8,n) == f1(x,Q) - df2dn(x,Q,8,n) + £2(x,Q,8,n) - (-Q - f1(x,Q))

]m(_resf(x, Q,S,n) = dgEﬂRTresf(x,Q,S,n) 4 gE_RTresf[x,Q,&)

Iny(x,i,R,Q,n) := !ny_resf(x,Q,E,n)i + Iny_combo(X,T,R,Au,Q,n)i

¥(x,i,R,Q,n) = exp(lny(x, i,R,Q,n})

119963 0.198356 0.429705
5 Wi 0 x2 := | 0.033085 x3:= ] 0.092166
.880037 0.768559 0.478129

y(x1,i,R,Q,n) = v(x2,i,R,Q,n) = v(x3,i,R,Q,n) =
7.5 4.254 1.877
4.886 2,703 1.46
1.056 1.189 1.878
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