
UNIVERSITY OF KWAZULU-NATAL

Determination of Quantum Entanglement
Concurrence using Multilayer Perceptron

Neural Networks

Author:
Lishen GOVENDER

Supervisors:
Prof. Francesco PETRUCCIONE

Dr. Ilya SINAYSKIY

Submitted in fulfilment of the requirements
for the degree of Master of Science

in the

School of Chemistry and Physics
University of KwaZulu-Natal

December 2017

Preface

The research contained in this thesis was completed by the candidate while based in
the School of Chemistry and Physics of the College of Agriculture, Engineering and
Science, University of KwaZulu-Natal, Westville Campus, South Africa. The research
was financially supported by South African Research Chair Initiative (SARChI).

The contents of this work have not been submitted in any form to another university
and, except where the work of others is acknowledged in the text, the results reported
are due to investigations by the candidate. As the candidate’s supervisors, we have
approved this dissertation for submission.

Supervisor: Prof. Francesco Petruccione

Signed:

Date:

Co-Supervisor: Dr. Ilya Sinayskiy

Signed:

Date:

iii

Declaration of Authorship
I, Lishen GOVENDER, declare that this thesis titled, “Determination of Quantum En-
tanglement Concurrence using Multilayer Perceptron Neural Networks” and the work
presented in it is my own. I confirm that:

• The research reported in this thesis, except where otherwise indicated or ac-
knowledged, is my original work.

• This thesis has not been submitted in full or in part for any degree or examination
to any other university.

• This thesis does not contain other persons’ data, pictures, graphs or other infor-
mation, unless specifically acknowledged as being sourced from other persons.

• I have acknowledged all main sources of help.

• This thesis does not contain text, graphics or tables copied and pasted from the
Internet, unless specifically acknowledged, and the source being detailed in the
report and in the References sections.

Signed:

Date:

v

Publications

Publication: L. Govender, I. Sinayskiy and F. Petruccione, “Determining concurrence
using Artificial Neural Networks” (In Preparation)

vii

“I think I can safely say that nobody understands quantum mechanics. ”

– Richard P. Feynman

viii

Abstract

Artificial Neural Networks, inspired by biological neural networks, have seen widespread
implementations across all research areas in the past few years. This partly due to re-
cent developments in the field and mostly due to the increased accessibility of hard-
ware and cloud computing capable of realising artificial neural network models. As
the implementation of neural networks and deep learning in general becomes more
ubiquitous in everyday life, we seek to leverage this powerful tool to aid in furthering
research in quantum information science.

Concurrence is a measure of entanglement that quantifies the "amount" of entangle-
ment contained within both pure and mixed state entangled systems [1]. In this thesis,
artificial neural networks are used to determine models that predict concurrence, par-
ticularly, models are trained on mixed state inputs and used for pure state prediction.
Conversely additional models are trained on pure state inputs and used for mixed state
prediction. An overview of the prediction performance is presented along with analy-
sis of the predictions.

ix

Acknowledgements
I would like to thank my project supervisors, Prof. Francesco Petruccione and Dr. Ilya
Sinayskiy for their continuous support, invaluable advice and guidance, without which
this work would not have been possible.

This research is supported by the South African Research Chair Initiative of the De-
partment of Science and Technology and National Research Foundation.

xi

Contents

Preface iii

Declaration of Authorship v

Publications vii

Abstract ix

Acknowledgements xi

Contents xiii

Notations xvii

1 Quantum Information 1
1.1 Mathematical Formalism of Quantum Mechanics 1

1.1.1 Hilbert Space . 1
Vectors in Hilbert Space . 1
Eigenvectors . 2
Hermitian Matrices . 2
Unitary Matrices . 3
Schmidt Decomposition . 3

1.1.2 The Schrödinger equation . 4
Time Dependent . 4
Time Independent . 4
Quantum Superposition . 5

1.2 Basics of Quantum Information . 5
1.2.1 Entanglement . 6

What is Entanglement? . 6
History of Entanglement . 6
Basic Formalism of Bipartite Entanglement 7

1.3 Measures of entanglement . 8
1.3.1 Positive Partial Transpose (PPT) 8
1.3.2 Entanglement of Formation . 9
1.3.3 Von Neumann Entropy . 9
1.3.4 Purity . 10

1.4 Concurrence . 10
1.4.1 Concurrence determination of an entangled two-qubit pure state 10
1.4.2 Concurrence determination of an entangled two-qubit mixed state 11

xiii

2 Machine Learning 13
2.1 Evolution of Machine Learning . 13
2.2 Popular Machine Learning techniques . 14

2.2.1 Supervised Learning . 14
Regression Analysis . 15
Support Vector Machines . 16
Decision Tree . 17
Random Forest . 17

2.2.2 Unsupervised Learning . 17
K-means clustering . 18
Apriori algorithm . 18

2.2.3 Reinforcement Learning . 18
2.3 Artificial Neural Networks . 20

2.3.1 Development of Neural Networks 20
2.3.2 Advantages and Disadvantages of Neural Networks versus other

machine learning techniques . 21
2.3.3 Basic Topology of an Artificial Neural Network 22
2.3.4 Popular types of Artificial Neural Networks 24

Multi-Layer Perceptron Neural Network 24
Convolutional Neural Network (ConvNet) 25
Simple Recurrent Neural Network 26

2.4 Machine Learning and its relationship with Physics 26
2.4.1 Artificial Neural Networks in Physics 27
2.4.2 Machine Learning and Quantum Physics 27
2.4.3 Quantum Neural Network . 28

3 Data generation, preprocessing and Neural Network Structure 29
3.1 Data Generation . 29

3.1.1 Generating random pure states . 29
3.1.2 Generating random mixed states 30

Random number generation . 31
Using the random numbers to generate our mixed states 32

3.2 Data Preprocessing: . 32
3.2.1 Feature Scaling . 32

3.3 Artificial Neural Network Implementation 33
3.3.1 TensorFlow and Keras . 33
3.3.2 Construction of the implemented artificial neural networks . . . 34
3.3.3 One Hidden Layer Neural Network 35

Training on one hidden layer neural network 36
3.3.4 Two Hidden Layer Neural Network 37

Training on two hidden layer neural network 38
3.3.5 Three Hidden Layer Neural Network 39

Training on three hidden layer neural network 39

4 Concurrence Prediction using Neural Networks 41
4.1 Error Metrics . 41

Root Mean Squared Error and Mean Absolute Error 41
Mean and Standard Deviation of Error distribution 42
Average Percentage Error . 42

4.2 Prediction on a one hidden layer neural network: 43

xiv

4.2.1 Trained on mixed state inputs . 43
4.2.2 Trained on pure state inputs . 44

4.3 Prediction on a two hidden layer neural network: 45
4.3.1 Trained on mixed state inputs . 45
4.3.2 Trained on pure state inputs . 46

4.4 Prediction on a three hidden layer neural network: 47
4.4.1 Trained on mixed state inputs . 47
4.4.2 Trained on pure state inputs . 48

5 Analysis of Results and Recommendations for further research 51
5.1 Results Analysis . 51
5.2 Recommendations for further research . 56

Appendix A - Python Code 59

References 67

xv

Notations

H : The Hilbert Space

〈.| : A bra from Dirac’s bra-ket notation

|.〉 : A ket from Dirac’s bra-ket notation

〈x|y〉 : Inner product of x and y

⊗ : Tensor Product

† : Denotes complex conjugate transposition (Hermitian conjugation)

i : Imaginary unit equivalent to
√
−1

~ : Planck’s constant

∂
∂t : Partial derivative with respect to time

µ : Reduced mass of the system

∇2 : The Laplacian

Tr(%) : Trace, sum of the diagonal of a square matrix

max{x, y} : Returns the larger value between x and y

C : The actual concurrency of the entangled mixed/pure state.

Ĉ : The predicted concurrency of the entangled mixed/pure state.

Cerror
i : The unnormalised error differential.

C̄error : The average of Cerror
i across the entire dataset

xvii

Chapter 1

Quantum Information

Quantum Information is an intersection of quantum mechanics and information the-
ory which seeks to use quantum mechanical properties to process or store information
- or even a combination of both. It is a broad interdisciplinary field that investigates a
quantum mechanical approach to a variety of information science fields; mainly com-
putation and cryptography. The reason why quantum information research is of in-
credible importance is because there are properties inherent to quantum mechanics,
that the theory suggests can provide significant improvements to classical computa-
tion amongst other things. The two key quantum properties that are central to this are
superposition and entanglement.

This chapter serves as a Literature review to first build up the basic mathematical for-
malism of quantum mechanics that is used within quantum information, and then to
also review quantum information theory with emphasis on the theory that is relevant
to the investigation conducted for this thesis.

1.1 Mathematical Formalism of Quantum Mechanics

Quantum Mechanics is a fundamental field in physics which describes natural phe-
nomena at the smallest scales of energy levels of atoms and subatomic particles. While
the term "Quantum Mechanics" was coined in the early 1920’s by a group of physi-
cists at the University of Göttingen (this group included giants in the field such as Max
Born, Werner Heisenberg and Wolfgang Pauli), the theory of Quantum Mechanics and
the foundations underpinning the field, were laid as early as 1801 when Thomas Young
conducted the double slit experiment and demonstrated the wave nature of light. We
will briefly review the mathematical formalisms of quantum mechanics, with an em-
phasis on the theory that is central to understand quantum information.

The fundamental mathematic theory that will be covered in this section can be found
in numerous linear algebra and mathematical physics textbooks [2]-[4].

1.1.1 Hilbert Space

Vectors in Hilbert Space

A Hilbert space H is a real or complex inner product space (a pre-Hilbert space as
such) that is also considered to be a complete metric space with respect to the distance
function that is induced by the inner product. When we state thatH is a complex inner
product space, this means that H is a complex vector space on which there is an inner
product 〈x, y〉 associating a complex number to each pair of elements x, y of H that
satisfies the following properties:

1

2 Chapter 1. Quantum Information

• 〈x, y〉 = 〈y, x〉 - The inner product of a pair of vectors is equal to the complex
conjugate of the inner product of the swapped vectors.

• 〈αx1 + βx2, y〉 = α〈x1, y〉+ β〈x2, y〉 - It is linear in the first variable.

• 〈x, αy1 + βy2〉 = ᾱ〈x, y1〉+ β̄〈x, y2〉 - It is anti-linear in the second variable.

• 〈x, x〉 ≥ 0 - The inner product of an element with itself is positive definite.

• ||x|| =
√
〈x, x〉 - The norm is given by this real-valued function.

• d(x, y) = ||x − y|| =
√
〈x− y, x− y〉 - The distance function, which implies that

firstly it is symmetric with respect to x and y and secondly that the distance must
be positive.

• |〈x, y〉| ≤ ||x|| ||y|| - The equality holds if and only if x and y are linearly depen-
dent. This inequality is the fundamental Cauchy-Schwarz inequality.

• If x1, y1 ∈ H1 and x2, y2 ∈ H2, then the inner product on the tensor product
is defined as〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉.This formula then extends by
sesquilinearity to an inner product onH1 ⊗H2.

Eigenvectors

David Hilbert coined the term spectral theory in his original formulation of Hilbert
space theory, the theory encompasses the extension of eigenvalue and eigenvector the-
ory from a single square matrix to a much broader theory of the structure of operators
in a multitude of mathematical spaces.

In this section we briefly review the basis of spectral theory - eigenvalues and eigen-
vectors.

• In linear algebra, an eigenvector is a non-zero vector that only changes by a scalar
factor when a linear transformation is applied to it. We formally identify it by the
equation T (~v) = λ~v, where T (~v) is a linear transformation from a vector space V
over a field F . λ is a scalar known as the eigenvalue associated with eigenvector
~v.

• If vector space V is finite-dimensional, then the linear transformation T can be
represented as a square matrix A and the vector ~v as a column vector which
would render the mapping T (~v) as a matrix multiplication on one side and scal-
ing a column vector on the other side, of which the equation is given by, A~v = λ~v

Hermitian Matrices

A Hermitian matrix is a complex square matrix with its defining property being that it
is equal to its own complex conjugate transpose, ie every matrix element aij = aji. As
such, Hermitian matrices are considered to be a complex extension of real symmetric
matrices.

Hermitian matrices are of significant interest to us because the matrix that describes
a quantum system (density matrix) belongs to a subset of Hermitian matrices. It is
therefore important to understand the properties of the Hermitian matrix. Some of the
important properties of Hermitian matrices are as follows:

Chapter 1. Quantum Information 3

• All elements of the main diagonal (aij for i = j) are real, this necessary because
they have to be equal to their complex conjugate.

• Due to complex conjugation, entries on the off-diagonal elements cannot be sym-
metric unless the matrix only has real entries.

• Every Hermitian matrix is a normal matrix ie, AA† = A†A.

• The sum of any two Hermitian matrices is Hermitian and the inverse of an in-
vertible Hermitian matrix is Hermitian as well.

• Considering Hermitian matrix A with dimension n, all eigenvalues are real and
matrix A will always have n linearly independent eigenvectors.

Unitary Matrices

A complex square matrix U is unitary if its conjugate transpose is equal to its inverse,
i.e. U † = U−1, consequentially it is then implied that U †U = UU † = I where I is the
identity matrix. The unitary matrix is the complex version of an orthogonal matrix.

Unitary matrices are of significant interest in quantum mechanics, since they retain the
norms and thus the probability amplitudes. Some of the mathematical properties of
unitary matrices that are of interest to us are:

• U †U = UU † - Implies U is normal.

• U = eiH - Any unitary matrix U can be written in this form, where e is the matrix
exponential and H is a Hermitian matrix.

• U †HU = Λ = diag[λ1, ..., λn] - We can use a particular unitary matrix U to convert
a Hermitian matrix H to a diagonal matrix Λ (all off diagonal elements of Λ are
zero).

• The general expression of any 2× 2 unitary matrix is:

U =

[
a b

−eiϕb∗ eiϕa∗

]
,

where a and b represents the phase and ϕ is the angle between a and b. It stands
to reason then that |a|2 + |b|2 = 1. The determinant of a matrix in this form is
given by det(U) = eiϕ.

Schmidt Decomposition

The Schmidt decomposition is a way of expressing a vector as the tensor product of
two inner product spaces. Its main application is in quantum information theory, in
particular with determining whether a state is separable or not.

Theorem 1.1 Let H1 and H2 be Hilbert spaces of dimensions n and m respectively. We
assume that n ≥ m. For any vector w in the tensor product spaceH1 ⊗H2, there exists
orthonormal sets {u1, ..., un} ∈ H1 and {v1, ..., vn} ∈ H2 such that w =

∑m
i=1 αiui ⊗ vi,

where the scalars αi are real, non-negative and as set, uniquely determined by w.

4 Chapter 1. Quantum Information

Consider that the vector w forms the rank 1 matrix ρ = ww∗, then the partial trace of ρ
(with respect to A or B) is a diagonal matrix whose non-zero elements are |αi|2. Essen-
tially the Schmidt decomposition shows that on either subsystem the reduced state of
ρ, will have the same spectrum.

That brings us to the Schmidt rank, if we consider the values αi (always positive) in the
Schmidt decomposition of w, the values αi are known as the Schmidt coefficients. The
Schmidt rank is defined as the number of coefficients of w, counted with multiplicity.

If we can expressw as a tensor product u⊗v thenw is called a separable state, if we can-
not express w like this then w is said to be an entangled state. Hence from the Schmidt
decomposition, we can see that w is entangled if and only if w has Schmidt rank greater
than 1 and consequentially two subsystems that partition a pure state are entangled if
and only if their reduced states are mixed states.

The Von Neumann entropy (also known as the entropy of entanglement) is a direct
consequence of this property of the Schmidt rank. (We give a brief overview of the Von
Neumann entropy in section 1.3.2).

1.1.2 The Schrödinger equation

The Schrödinger equation is a fundamental equation in quantum mechanics that gov-
erns the time evolution of the wave function of a non-relativistic particle (system). We
could say analogously that the Schrödinger equation is to a quantum mechanical parti-
cle (system) what Newton’s second law is to a classical particle (system). We can solve
the Schrödinger equation to determine how a quantum particle evolves over time, just
as we can use Newton’s second law to solve for a classical particles’ future position and
momentum.

In this section we briefly describe the Schrödinger equation mathematically and discuss
quantum superposition, which mathematically refers to a property of solutions to the
Schrödinger equation.

Time Dependent

The general form of the Schrödinger equation is the time-dependent Schrödinger equa-
tion which describes the system evolving with time,

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t). (1.1)

To solve or apply the Schrödinger equation, the Hamiltonian needs to be defined to
account for the kinetic and potential energy of the particle/s. The resulting partial
differential equation can be solved for the wave function which contains information
about the system.

Time Independent

The time-dependent Schrödinger equation described in equation (1.1), predicts that
wave functions can form "standing waves" called stationary states, that we describe us-
ing the time-independent Schrödinger equation. Understanding and solving for these

Chapter 1. Quantum Information 5

stationary states is of particular importance because it simplifies the task of solving for
the time-dependent Schrödinger equation. The general time-independent Schrödinger
equation is given by,

ĤΨ = EΨ. (1.2)

.
When we say that equation (1.2) is time-independent we mean that the Hamiltonian
Ĥ is not dependent on time explicitly. However, even in this case the overall wave
function still has a time dependency. Also from a linear algebra point of view, equation
(1.2) is an eigenvalue equation and in this sense the wave function Ψ is an eigenfunction
of the Hamiltonian operator with eigenvalues given by E.

Quantum Superposition

Quantum superposition is a key property of quantum mechanics that mathematically
refers to a set of solutions of the Schrödinger equation. Essentially it means that any
two or more quantum states can be superposed and the result will be another valid
quantum state, basically since the Schrödinger equation is linear, any linear combi-
nation of solutions will also be a solution. Schrödinger famously described quantum
superposition using the thought experiment we now call "Schrödinger’s cat" [4].

Quantum superposition has many implications across quantum mechanics, but ar-
guably the most interesting is that it led to the development of a new branch of quan-
tum physics called quantum information. Quantum Superposition, along with quan-
tum entanglement, form the basis of quantum information theory - to put it simply
where classically we can reduce information and calculations to be described by a sin-
gle bit, that’s either 0 or 1 quantum superposition allows us to describe things in a
superposition of 0 and 1,

|ψ〉 = α|0〉+ β|1〉. (1.3)

|ψ〉 is known as a qubit (quantum-bit) and where a classical bit is either 0 or 1 consid-
ering equation (1.3), our qubit |ψ〉 can be described by an infinite amount of superposi-
tions of |0〉 and |1〉 provided the amplitudes α and β adhere to rule that the sum of the
square of all amplitudes is equal to one. (in the case of equation (1.3) |α2| + |β2| = 1)
[4].

1.2 Basics of Quantum Information

Quantum Information is described as a field that merges quantum mechanics with
computer science, on a fundamental level, the concept is rooted in the idea that quan-
tum bits are analogous to classical bits while offering significant advantages (discussed
in the previous section) and when combined with quantum entanglement theory, quan-
tum information provides us with a more powerful way of processing and understand-
ing information.

Historically the main research done in quantum information has been to develop the
theoretical framework for a quantum computer as well as develop the framework for
much more robust cryptographic methods (such as Quantum Key Distribution) that

6 Chapter 1. Quantum Information

FIGURE 1.1: Central to the theory of entanglement is the idea that mea-
suring the spin of one particle affects the spin of its entangled particle

uses the inherent properties of quantum entanglement (namely the no-cloning theo-
rem). We’ve already discussed quantum superposition in the previous section so in
this section we briefly discuss entanglement and then measures of entanglement with
emphasis on the concurrence measurement which is being investigated in this thesis.

1.2.1 Entanglement

What is Entanglement?

Quantum entanglement is the physical phenomenon that occurs when particles interact
in such a way that the quantum properties and quantum state of each particle cannot be
described independently of the other particles, even when these particles are separated
by a large distance the a quantum state must be described for the system as a whole
[5].

History of Entanglement

The counter intuitive theory surrounding quantum entanglement was first explored
in 1935 by Albert Einstein, Boris Podolsky and Nathan Rosen in a joint paper. In this
paper they discuss the EPR (Einstein–Podolsky–Rosen) Paradox [6], which in essence
is about the fact that particles that have quantum properties can interact in a way that
makes it possible to measure both the position and the momentum of the particles more
accurately than Heisenberg’s uncertainty principle would allow.

The only way Heisenberg’s uncertainty principle was not being invalidated was if mea-
suring one particle would instantaneously affects the other. This idea posed a new
problem, this implied superluminal communication between particles, something that
should be impossible according to the theory of relativity. The research paper goes on
further to discuss that the EPR paradox shows that quantum theory was incomplete
and should be extended with "hidden variables" [6]. This "hidden variables" idea was
that the state of the particles being measured carried some hidden variables, whose
values would determine, right from the moment of separation, what the outcomes of
the spin measurements were going to be.

In 1964 John Bell proposed a mechanism to test for the existence of these hidden vari-
ables posited by the EPR paradox, and he developed his famous inequality as the basis
for such a test. He showed that if the inequality were ever not satisfied, then it would
be impossible to have a local hidden variable theory that accounted for the spin experi-
ment. This led to John Bell’s now famous theorem [7], which in its simplest form states:

Chapter 1. Quantum Information 7

Theorem 1.1: No physical theory of local hidden variables can ever reproduce all of the predic-
tions of quantum mechanics.

Implicit to this theorem is the idea that the deterministic nature of classical physics is
essentially not capable of describing quantum mechanics. Bell expanded on the the-
orem to supply what would become the conceptual groundwork for the Bell test ex-
periments, which would eventually confirm the validity of his statement and quash
Einstein’s proposition of hidden variables. What had previously been a philosophi-
cal debate suddenly had testable consequences. Bell’s experiment has since been per-
formed in the laboratory, verifying the predictions of quantum mechanics and dramat-
ically contradicting local hidden-variable theories. Mathematically we can clarify the
statement in Theorem 1.1 by using the CHSH inequality, which is a generalisation of
Bell’s inequality. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and
Richard Holt, who described it in a much-cited paper published in 1969 [41]. The in-
equality is given as,

Ch(a, c)− Ch(b, a)− Ch(b, c) ≤ 1,

where Ch denotes the correlation as predicted by any hidden variable theory and a,
b and c refer to three arbitrary settings of the two analysers. Bell inequalities concern
measurements made by observers on pairs of particles that have interacted and then
separated. This inequality is explained in great detail in previously published literature
(for example [41]) and is still of much interest to physicists that continue to research Bell
inequalities to improve our understanding on quantum entanglement [42].
The simplest example of entanglement is represented by the Bell states. The Bell states
are four specific maximally entangled quantum states of two-qubits states and are de-
fined as:

|Φ−〉 =
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B),

|Φ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B),

|Ψ−〉 =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B),

|Ψ+〉 =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B).

(1.4)

Basic Formalism of Bipartite Entanglement

While entanglement is often considered to just be a property in quantum physics, it is
of much interest to researchers due to the huge potential of quantum information and
quantum computation. This section will only cover two qubit entanglement mainly for
the sake of brevity but also because the entangled states that are investigated in this
thesis are only two qubit entangled pure and mixed states. First, let us consider how to
determine if a two qubit pure state is entangled or not.

Proposition 1.1: Any bipartite pure state |ΨAB〉 ∈ HAB = HA⊗HB is called entangled
if and only if it can not be written as a product of two vectors corresponding to Hilbert
spaces of subsystems: |ΨAB〉 = |ψA〉 ⊗ |φB〉.

8 Chapter 1. Quantum Information

While proposition 1.1 deals with all two qubit pure states [8], unfortunately due to
the decoherence phenomenon, in laboratories we unavoidably deal with mixed states
rather than pure states, so we need to consider how to determine if a two qubit mixed
state is entangled or not.

Proposition 1.2: Any bipartite state %AB defined on Hilbert space HAB = HA ⊗HB is
separable if and only if it can neither be represented nor approximated by the states of
the form %AB =

∑k
i=1 (pi%

i
A ⊗ %iB) where %iA and %iB are defined on local Hilbert spaces

HA andHB .

In conclusion, to decide whether or not a two qubit mixed state is entangled or not,
we apply Proposition 1.2 to the mixed state and we find that the mixed state is not
separable then we deduce that it is entangled [8].

1.3 Measures of entanglement

When quantum theory was in its infancy, entanglement was mostly considered to be a
qualitative feature of quantum theory and it was the quantum behavior that most no-
ticeably distinguished quantum theory from classical physics theory and intuition. The
eventual development of Bell’s inequalities has made entanglement distinctly quanti-
tative.

There are quiet a few properties that are governed by the non-separability of an entan-
gled quantum system, properties such as momentum, position, spin and polarisation
are all affected by the "entanglement" of the system, but none of these describe how
entangled the system is or rather it’s not possible to determine if we can quantify the
level or "amount" of entanglement by comparing these values on its own in its current
state, thus several different measures of entanglement were developed and are studied
according to different goals. We will briefly discuss some of the more popular ones.

1.3.1 Positive Partial Transpose (PPT)

If we consider the density matrix ρ which is a density matrix that represents two quan-
tum mechanical systems ρ1A and ρ2A (Note that the superscripts 1 and 2 denotes sub-
system 1 and sub-system 2), the criterion by which we determine whether or not the
systems ρ1A and ρ2A are separable or not is called the positive partial transpose (or Peres-
Horodecki criterion) [9].

Particularly, it is used to determine the separability of mixed states where Schmidt de-
composition does not apply. It is however important to note that the PPT is only con-
clusive in the 2× 2 and 2× 3 dimensional cases, in higher dimensions more advanced
tests would need to done to determine separability. We define the PPT as follows:

The density matrix ρ has to be separable as a sum of direct products,

ρ =
∑
A

wA(ρ1A)⊗ (ρ2A), (1.5)

Chapter 1. Quantum Information 9

where the positive weights wA satisfy
∑
wA = 1. The partial transpose is then defined

as,

ρTB = I ⊗ T (ρ), (1.6)

only part of the state is transposed, to be more precise I ⊗ T (ρ) is the identity map
applied to the system ρ1A and the transposition map T (ρ) applied to the system ρ2A.
The PPT definition is better understood if we define ρ in matrix form.

ρ =

A11 A12 . . . A1n

A21 A22
...

. . .
An1 Ann

 , (1.7)

then the partial transpose is given by;

ρTB =

AT

11 AT
12 . . . AT

1n

AT
21 AT

22
...

. . .
AT

n1 AT
nn

 . (1.8)

Where n = dimHA, and each element (Aij) is a square matrix of dimension m =
dimHB .

The PPT criterion essentially states that if ρ is separable, then the partial transpose
matrix ρTB is made up of density matrices with non-negative eigenvalues. Conversely
we can say that if density matrix ρTB has a negative eigenvalue then density matrix ρ
will certainly be entangled.

1.3.2 Entanglement of Formation

In 1998 William K Wootters published an article in the Physical Review Letters (PRL)
[1] that introduced us to the idea of entanglement of formation as well as concurrence
in quantum entanglement. Entanglement of formation shares a lot of similarities with
entanglement cost, namely that entanglement of formation quantifies how many Bell
states (equation (1.4)) are needed to prepare many copies of |ψ〉 using the LOCC proce-
dure. In the same article he showed that we can determine the concurrence C for both
a pure state and a mixed state of two entangled qubits that could eventually be used to
determine the entanglement of formation but is a measure of entanglement in its own
right.

1.3.3 Von Neumann Entropy

A two qubit pure state system can be written as a superposition of basis states |00〉, |01〉,
|10〉 and |11〉. Each basis state has an associated amplitude α such that the two qubit
entangled system can be described as follows,

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, (1.9)

where the probability of measuring a certain basis state |ij〉 is given by |αij |2.The bipar-
tite Von Neumann entropy E is defined with respect to a bipartition of our state into

10 Chapter 1. Quantum Information

two partitions A and B. Then for a given pure state density matrix ρAB = |Ψ〉〈Ψ|AB the
bipartite Von Neumann entropy is given by

E = S(ρA) = −[ρAlnρA] = −Tr[ρBlnρB] = S(ρB), (1.10)

where ρA = TrB(ρAB) and ρB = TrA(ρAB) and E ranges from 0 to ln2 with 0 being a
quantum state that is not entangled and ln2 being a quantum state that is maximally
entangled [10].

1.3.4 Purity

Purity is a measure of quantum mixed states, giving information on how much a state
is mixed. While purity is not a measure of entanglement, it is a useful measure that
can assist in better understanding our entangled mixed states in comparison to the
entangled pure states. Purity is a scalar defined as,

γ ≡ Tr(ρ2), (1.11)

where ρ is the density matrix of a mixed state. The purity ranges from 1
d to 1 where d

is the dimension of the Hilbert space upon which the mixed state is defined, so in the
case of bipartite entanglement for the reduced state of each qubit would be 0.5 ≤ γ ≤ 1,
or 0.25 ≤ γ ≤ 1 for two qubits [8]. For the case when γ = 1 this implies that our state is
a pure state.

1.4 Concurrence

Concurrence C ranges between 0 to 1 with 0 meaning the qubits are not entangled and
1 meaning that the qubits are maximally entangled, the four Bell States (see equation
(1.4)) for example are all maximally entangled (C = 1). For our research we will only
be dealing with everything in-between, that being systems with concurrence values
greater than zero and less than one. We will discuss the theory and mathematical for-
mulation of how to determine the concurrence of a two qubit system (both pure and
mixed states) as concurrence is the measure of entanglement that is central to our re-
search.

1.4.1 Concurrence determination of an entangled two-qubit pure state

Consider density matrix ρ that represents a pair of quantum systems A and B, all pos-
sible pure-state decompositions of ρ with all ensembles of states |ψi〉 and probabilities
p such that,

ρ =
∑
i

pi|ψi〉〈ψi|. (1.12)

Wootters formula for entanglement makes use of the "spin flip" transformation. For a
single qubit pure state the spin flip is defined by

|ψ̃〉 = σy|ψ∗〉, (1.13)

Chapter 1. Quantum Information 11

where |ψ∗〉 denotes the complex conjugate of |ψ〉 and σy denotes the Pauli matrix(
0 −i
i 0

)
.

With the introduction of the spin flip we can now define the concurrence C for a two
qubit pure state as

C(ψ) = |〈ψ|ψ̃〉|. (1.14)

Conveniently, for a two qubit pure state we can use only the probability amplitudes
of the basis states to determine the concurrence. Consider the general pure state of a
two qubit system |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, using equation (1.13) along with
equation (1.14), we get

C(ψ) = 〈ψ|σy ⊗ σy|ψ∗〉 = 2|ad− bc| (1.15)

1.4.2 Concurrence determination of an entangled two-qubit mixed state

Consider density matrix ρ that represents a two qubit mixed state, the concurrence C
of this system is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (1.16)

where the λi’s are the eigenvalues in decreasing order (λ1 > λ2 > λ3 > λ4 > 0) of the
Hermitian matrix

R ≡
√√

ρρ̃
√
ρ (1.17)

where ρ̃ denotes the spin-flipped state of ρ; ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

Equation (1.16) is also valid for determining the concurrence of pure state density ma-
trices [1].

Chapter 2

Machine Learning

Machine learning is a sub-discipline of computer science that can be described as a
way to give computers the ability to learn without being explicitly programmed [11].
Machine Learning has far reaching consequence in modern society and everyday life.
What is interesting is that we rarely consider or even know that a machine learning
process has taken place to enable an action on a piece of technology.

Examples range from a camera recognising a persons face and thus being able to focus
on it, to a search engine like Google auto-filling your search bar depending on various
analytics like your search history, popular trending searches at that very moment and
the websites you have visited immediately before making the search. These and count-
less more implementations are a direct result of the progress that continues to be made
in the field of machine learning.

2.1 Evolution of Machine Learning

Machine Learning in computer science can be traced as far back as the 1950s when
researchers were using simple algorithms derived from statistical methods to process
data in a far more autonomous way then we were used to.

While machine learning and artificial intelligence as a whole were both very interest-
ing topics throughout the twentieth century, interest in the field died down for a very
long time, in particular because computers were just not powerful enough to drive
the research experimentally. That changed in the 1990s when personal computers be-
came more accessible, the widespread availability of much more powerful computers
reignited interest in machine learning and all things computer science. The result was
that machine learning research experienced a renaissance. Research shifted from being
knowledge-driven in the past to a more elegant data-driven approach [12].

In the twenty-first century machine learning began to gain momentum. Kernel meth-
ods such as support vector machines and artificial neural networks lead the way in
solving a host of problems unique to machine learning - for instance handwriting
recognition, and complex multi-variable classification problems such as protein clas-
sification in medical science [13].

It is 2017 and machine learning is at the peak of its powers and continues to get more
influential and pervasive in life as we know it. Businesses and governments are collec-
tively accumulating petabytes of data on its customers and citizens and they are using
machine learning to process that data. Data has become a valuable resource; arguably

13

14 Chapter 2. Machine Learning

FIGURE 2.1: The first step of a supervised learning method is to take
known inputs and known ouputs and use that to generate a model.

the most valuable resource given that the top 3 most valuable companies in the world
are Apple, Alphabet (Google) and Amazon, three tech companies that are known for
their data-centric business models [14].

Apart from data processing, machine learning has a few other important applications.
The one most relevant is object recognition; from the computer reading handwriting to
it identifying people and other objects in images and videos. Improvements in a com-
puter’s ability to recognise and correctly classify an object is of increasing importance
and as we develop better ways to do this efficiently and accurately it will lead to many
advancements in society. Self driving cars will benefit greatly from being able to better
understand the world around them, a dual camera system with depth perception can
replace a plethora of current authentication methods such as security cards or keys; or
even be used in combination with current security measures to increase the security of
a system.

2.2 Popular Machine Learning techniques

There are three major machine learning fields. Supervised learning, unsupervised
learning and reinforcement learning. Within those fields there are many machine learn-
ing techniques that are used, we will briefly review some of the more popular ones.

2.2.1 Supervised Learning

Supervised learning, in the context of machine learning, is a system in which both the
input data and desired output data are provided. Both the input and output data are
labelled for classification to provide a learning basis. From this learning basis a model
is developed which will be able to process new input data and find the correct output
based on the data that the model was trained with. This can crudely be seen as a two-
step process.

Chapter 2. Machine Learning 15

FIGURE 2.2: The second step of a supervised learning method involves
using the model from Step One, along with new unseen input data, and

then generating new predicted output data.

All supervised learning methods use the process shown in Fig. 2.1 to create a model,
some methods explicitly determine a model in one go and some methods will itera-
tively update the model using Baysian inference methods or a combination of both.

Once a model has been trained and tested to ensure it does not over-fit the data, it
can then be implemented. Implementation is where the magic happens so to speak.
The model takes in completely new data and churns out predicted outputs as shown
in Fig. 2.2. One of the strengths of machine learning is that model implementation
(Fig. 2.2 - step two) does not take nearly as much processing power as it takes to train
a model (Fig. 2.1 - step one), this key characteristic of machine learning in general
is the driving force behind the growing popularity and reliance on machine learning.
Models can be created and trained on powerful supercomputers and clusters and then
be implemented almost anywhere from a personal laptop to a cellphone.

Regression Analysis

Regression analysis encompasses a wide range of machine learning techniques, with
the two most ubiquitous ones being linear regression and logistical regression.

Linear regression is usually any person’s first encounter with machine learning, it
scales up and down very well and is fairly intuitive to understand. The most basic
single variable linear regression takes the form of y = ax + b where a and b are fixed
values and x is the input variable. We can use this to predict an output y using the
process shown in Fig. 2.1 and Fig. 2.2.

Logistical regression is somewhat similar to linear regression except that the outputs
are binary, this is useful for "Yes/No" problems or classification problems with two
classifiers. Logistical regression is often used in combination with various other ma-
chine learning methods and is the foundation of more sophisticated machine learning
methods such as decision tree learning and random forest learning.

16 Chapter 2. Machine Learning

FIGURE 2.3: A support vector machine with two possible hyperplanes.

Support Vector Machines

A Support Vector Machine (SVM) is a supervised binary classification machine learning
method. For example, given a set of points of two types in N dimensional place, a
support vector machine generates a dimensional hyperplane to separate those points
into two groups.

A support vector machine model is a representation of the input data as points in space,
mapped in a way that the inputs of the separate categories are divided by a clear dis-
tance that is as wide as possible. If we consider Fig. 2.3 we see that both hyperplane A
and hyperplane B are valid hyperplanes for separating the groups, but hyperplane B
comes much closer to both the blue and red inputs, thus hyperplane A is a more opti-
mal hyperplane for classifying the inputs. New inputs are then mapped into the same
space and the result is that we use the hyperplane to make a prediction on the category
of the new inputs.

Chapter 2. Machine Learning 17

FIGURE 2.4: A simple example of the structure of a decision tree, there
are only two possible outcomes, blue or green but there are multiple

ways to get either outcome.

Decision Tree

Decision tree is a supervised learning algorithm that is mainly used in classification
problems. In decision tree we split the dataset or sample into two or more homoge-
neous sets based on the most significant differentiator in input variables.

As we see from Fig. 2.4, the aim of the decision tree is to investigate only the relevant
features during the outcome prediction process, this will not only increase the accuracy
of the prediction, but significantly reduce the resources required to make that predic-
tion.

Random Forest

The name random forest is given aptly because this machine learning method combines
many decision tree algorithms. The combining of many decision trees not only allow
for more complex models but also aids in reducing variance of a single decision tree
[15].

2.2.2 Unsupervised Learning

Unsupervised machine learning is the branch of machine learning that infers a function
or model to determine and describe hidden structures from "unlabelled" data. Since the
data that we input are unlabelled, there is no way to validate the accuracy of the model.
This learning of unlabelled data to give us an output that we cannot determine the ac-
curacy of is arguably the main characteristic of unsupervised learning since it is what
distinguishes it the most from supervised learning and reinforcement learning.

The learning process does not require labels and thus this unsupervised learning is
completely data driven and hence better suited to finding the underlying structure of
the data, structures which may sometimes be too abstract or unintuitive for a person
to see especially when considering big data. While this is the main advantage of un-
supervised learning it is also in a way its main disadvantage, since not having labels

18 Chapter 2. Machine Learning

and validation data means that the unsupervised learning algorithm could find non-
sensical patterns that do not have significance and by the time this is realised a lot of
computational resources have already been spent.

K-means clustering

K-means clustering is a technique for finding groups of data that are similar within a
given dataset, these groups are called clusters. For example it attempts to group indi-
viduals in a population together by similarity, but it is not driven by a specific purpose
nor does it have any idea on what kind of groups it will form (main feature of unsu-
pervised learning).

K-means clustering has found an important application in feature learning [16] on big
data, as mentioned in Chapter 2.2, we often do not know if we can find useful patterns
in a "big-data" data set and that is mostly because we often do not know the features
contained within the dataset. K-means clustering provides the means to learn the fea-
tures or rather the labels of the dataset and once we have that we can use a supervised
learning algorithm to try and find patterns within those labels.

A simple example of feature learning is as follows, imagine we need to process 1 billion
jpeg photographs and we want to know about all of the different objects within those
images. K-means provides a way for us to label all of those objects autonomously and
then once we have the labels for all the objects we can use those labels with our images
to train a supervised learning algorithm to find out where those objects appear in new
photographs, without the feature learning power of K-means clustering it would take
a lot of time to find all the labels within a dataset that contains one billion images.

Apriori algorithm

The Apriori algorithm derives its name from the Latin phrase "a priori" which means
logic or knowledge derived from theoretical deductions rather than from experience
or observation. The apriori algorithm shares many similaries with K-means clustering,
however they do have a few differences that make each method better for different sit-
uations.

K-means clustering is computationally less sensitive to unnormalised data which makes
it more robust with predictions involving datasets with large variance. The apriori al-
gorithm thanks to its simplicity is easier to implement, and easier to parallelise across
multiple central processing units (CPU’s) or graphical processing units (GPU’s) mak-
ing training more efficient [17].

2.2.3 Reinforcement Learning

While reinforcement learning is not very commonly used in research or industrial ap-
plications, it is arguably the machine learning method that has the most potential. Re-
inforcement learning is a concept that is very familiar to us because it is how we all
begin learning from infancy. An oversimplified example - a baby taking its first step,
takes a large step and falls down (punishment), then takes a smaller step and keeps its
balance (reward). The baby now knows smaller steps are better because the reward is

Chapter 2. Machine Learning 19

FIGURE 2.5: The three branches of machine learning [18].

not falling down - and that is basically what reinforcement learning is. It is a goal ori-
ented reward vs punishment system. Since humans (it can be said that most animals)
learn using reinforcement learning at a fundamental level, reinforcement learning is
one of our best hopes for true artificial intelligence.

We have briefly discussed the three branches of machine learning, so to summarise and
clearly differentiate between the three branches of machines learning, lets take a look
at the differences.

As we can see from Fig. 2.5 supervised learning requires the most information with
regards to the model development, it is task driven so it is very well defined and needs
to have both the data and labels in order to learn. Unsupervised learning, while not
needing labels, still needs data in order to learn, in order to recognise patterns and in
most cases determine how to classify the data. Reinforcement learning on the other
hand does not require either of these things and as such learns in a more organic way.
While we are a long way off from having the necessary computational power to imple-
ment a reinforcement learning algorithm capable of taking in vast amounts information
from the environment and learning in the way that a biological brain would, machine
learning practitioners are actively developing the framework which would hopefully
facilitate the creation of true artificial intelligence.

20 Chapter 2. Machine Learning

FIGURE 2.6: The structure of a typical neuron [19].

2.3 Artificial Neural Networks

To begin understanding an artificial neural network (ANN) we first need to look at
what it is inspired by - a biological neural network. Humans, like nearly all other an-
imals, have a brain. In a human brain there are billions of neurons. At a fundamental
level these neurons are responsible for our ability to "think", it stores our memories,
when our eyes see something or our ears hear something, those visual and aural sig-
nals are processed by the neurons in our brain, an example of the structure of typical
neuron in a human brain is shown in Fig. 2.6.

While the billions of neurons in our brain serve thousands of different functions, the
structure of these neurons are all the same, this is a remarkable thing to consider, that
at the most basic level the neurons in our brains are all the same. Whether it is respon-
sible for our ability to see, hear, touch, move, complete simple tasks like breathing or
blinking and complex tasks like building a house or driving a car - the structure of the
neurons that are responsible for all of those tasks remain the same.

The fact that all our tasks are completed by neurons that are the same is what led to the
inspiration for artificial neural networks. If our brains can learn a multitude of tasks
from these biological neurons, then maybe we can develop artificial neurons to learn a
multitude of tasks as well.

2.3.1 Development of Neural Networks

In 1943 Warren McCulloch and Walter Pitts created a mathematical model for neu-
ral networks called threshold logics [20]. This work led to the application of neural
networks to artificial intelligence. Through the 1950s and 1960s the underlying the-
ory of artificial neural networks were developed, in 1958 Frank Rosenblatt introduced
the idea of the perceptron, an algorithm for pattern recognition [21]. In 1969 machine
learning research by Seymour Papert and Marvin Minsky showed a key issue with the
computational machines that processed neural networks, that being, computers did not
have enough processing power to adequately handle the vast amount of mathematical
computations required by large neural networks, this discovery led to the stagnation
of ANN research [22].

Chapter 2. Machine Learning 21

Six years on from Papert’s and Minsky’s critical research, interest in artificial neural
networks were renewed thanks to work done by Paul Werbos on the back-propagation
algorithm which accelerated the training of multi-layer networks. Beyond this interest
in artificial neural networks steadily grew and while other machine learning methods
such as support vector machines and regression models were more popular, ANN the-
ory was still being tentatively developed as researchers realised computational devices
were getting more powerful at a rate that would make ANN machine learning possible
in the near future.

One of the most important events with regards to the development of artificial neural
networks and possibly a key turning point in the field was Yann LeCun’s application
of neural networks to character recognition in 1998, his convolutional neural networks
(CNN’s) or ConvNets [23] as he called it sparked widespread interest in artificial neural
networks across the machine learning and computer science field. We are into the 21st

century and the implementation of artificial neural networks have slowly become more
prevalent in all facets of life, some would even say more pervasive when combined
with the Internet of Things (IoT) and the exponentially growing amount of data that
companies have accumulated (Big Data) artificial neural networks look set to change
the world and how we live in it.

2.3.2 Advantages and Disadvantages of Neural Networks versus other ma-
chine learning techniques

Artificial neural networks have a host of advantages over other machine learning tech-
niques, ranging from it is ability to approximate any function regardless of its linearity
to significant improvements in model accuracy when compared to other machine learn-
ing techniques, but the greatest advantage that artificial neural networks have over
other machine learning techniques is its scalability. Its ability to train huge amounts of
data relatively quickly especially when making use of CPU and GPU parallelisation,
has made it the model of choice of most big data implementation, especially data that
is heteroscedastic due to the hidden layers in an ANN being able to learn "hidden"
non-linear relationships in the data without them being explicitly defined or known to
begin with.

Of course artificial neural networks are not without its disadvantages. If there were no
disadvantages it would make other simpler models like regression and decision trees
obsolete. One of the key disadvantage is that artificial neural networks are essentially
a "black box" so once a model is trained, even if it works well and achieves excellent
prediction accuracy, it is difficult to understand why and the machine learning practi-
tioner can only speculate and guess why the model worked so well and what hidden
non-linear relationships the ANN has "discovered" to aid with prediction. Apart from
that artificial neural networks do not seem to work as well on small datasets as it does
on large datasets, and often times increasing the dataset or number of perceptrons are
the only ways to improve model accuracy, increasing both of these things can result in
a significant increase in computational power requirements.

22 Chapter 2. Machine Learning

FIGURE 2.7: The basic structure of a simple artificial neural network.

2.3.3 Basic Topology of an Artificial Neural Network

We have already looked at the structure of a biological neural network and we have
discussed how the theory surrounding artificial neural networks was developed. We
now take a brief look at the mathematical structure of a basic ANN and then review
some of the popular ANN structures and implementations.

An artificial neural network at the very least has 3 layers, an input layer, a hidden layer
and an output layer. It is important to note that an ANN can have any number of
hidden layers and varying the number of hidden layers can greatly assist with solving
non-linear problems. The input layer is the layer that data is fed into. Generally we
need one neuron per feature in our data and some neural network configurations add
a neuron for the bias term which we will discuss later. The hidden layer(s) don’t have
a specific structure or a general rule to follow, given the nature of artificial neural net-
works the number of hidden layers and the number of neurons per layer are tweaked
on a model basis and while there are "rules of thumb" to consider when determining
hidden layer structure, there is currently no way to determine what the ideal hidden
layer structure would be for a particular model.

Now that we have a better understanding of the neural network topology, let us dis-
cuss the mathematics behind how they work. Artificial neural networks are inspired
by how biological neural networks work, ANNs however are not nearly as complex,
in fact ANNs are essentially a whole lot of matrix multiplications - or to generalise
especially when considering Convolutional Neural Networks - tensor products. If we
consider the simple model in Fig. 2.7 there are four inputs (Ii) and thus the input layer
has four neurons. We have five neurons in our hidden layer (Hj), these hidden neu-
rons are each initialised to different random values between 0− 1. Each input makes a
connection to each hidden layer. A product occurs between Ii and Hj , these are called

Chapter 2. Machine Learning 23

FIGURE 2.8: Some of the popular activation functions that are used[24].

weights (Wij), since our hidden neurons are initialised to different values, the weights
are all different values. Our model has a total of twenty weights between our input
layer and hidden layer.

Each neuron in the hidden layer will consider each weight and send this weight through
an activation function. We use different activation functions based on the type of prob-
lem. For example, a sigmoid function as shown in Fig. 2.8 may be preferred for a
problem with a binary output (Yes or No) while a rectified linear unit (ReLU) function
may be preferred for a problem with a probabilistic output. After passing through the
activation functions these weights are summed for each neuron in the hidden layer
and they are sent to the output neuron. Again the output neuron will pass all of the
weights it received through another activation function and then determine an output.
This predicted output is compared to the actual output and depending on how close
the prediction was, the hidden layers will tweak the Hj value using an optimiser such
as gradient descent and repeat the whole process to try and make a better prediction.
If the new prediction improves, it keeps making small changes in the same direction.
If the prediction gets worse the it will make larger changes in the opposite direction.

The process of "looking over" the data and passing it through the layers is known as
the training phase. This is when our network learns. After the network has looked at
all the data we then go into the validation phase. We input new data that’s unseen by
the network and compare the predicted outputs to the known outputs. This phase is to
ensure that the errors in the training phase are similar in magnitude to errors of unseen
data. This is done to minimise over-fitting.

After we have trained our network and validated the prediction to make sure there
is no over-fitting we then go on to the testing phase. The testing phase is done after
we’ve completely trained our model and we want to see how well the model actually
performs. So to summarise:

Training Phase: Neurons learn and generate a prediction, weights are created between
the input layer and hidden layer and these weights change as our neural network

24 Chapter 2. Machine Learning

FIGURE 2.9: The basic structure of a feed-forward neural network.

learns.

Validation Phase: The network takes in new inputs and generates predictions. If these
predictions show the same error margins as the training data then all is well and the
training phase begins again to reduce the error. If the error margin is different, this
means the model is over-fitted, training resumes but this time with reinitialising some
or all of the weights, depending on the optimiser used.

Testing Phase: The model has been trained and the validation phase shows that there
is minimal over-fitting We then give our neural network new unseen input data and
see if it can make predictions as accurately as it was during the training and validation
phase. If it can then the model is ready to be implemented.

2.3.4 Popular types of Artificial Neural Networks

In section 2.3.3 we gave a generalised and simplified explanation for how artificial
neural networks work. However, not all artificial neural networks work this way, in
fact there are many different types of artificial neural networks and some of them work
very differently from one another. We will briefly review some of the more popular
types of artificial neural networks.

Multi-Layer Perceptron Neural Network

A multi-layer perceptron (MLP) contains one or more hidden layers (apart from one in-
put and one output layer). While the single-layer perceptron neural network contains
no hidden layers (it has just an input layer and an output layer) and can only learn
linear functions, multi layer perceptron can also learn non-linear functions.

Multi-layer perceptron neural networks belong to the class of neural networks called
feed-forward neural networks (see Fig. 2.9); this simply means that connections are
formed in the forward direction between layers. For example if the network has two

Chapter 2. Machine Learning 25

FIGURE 2.10: On the left hand side is a normal image of a dog playing
outside. On the right hand side is the same image, but convolved with

itself.

hidden layers, the input will pass through the first layer, then from the first hidden
layer it will pass go through the second hidden layer and then the output.

Convolutional Neural Network (ConvNet)

Convolutional neural networks or ConvNets also belong to the feed-forward neural
network class. ConvNets share many similarities with multi layer perceptron net-
works. The difference, however, is that the ConvNet can have one or many hidden
convolutional layers; these convolutional layers are the core building blocks of a Con-
vNet.

To differentiate between a ConvNet and multi-layer perceptron without getting into
the mathematical and statistical theory, we can say that the key differences are that:

1. A lot of the weights are forced to be the same - think of this to be analogous to
what happens when an image is being convolved (see Fig. 2.10). This signifi-
cantly improves training time.

2. Many of the weights are forced to be zero, again to reduce training time.

3. A sub-sampling happens so that the layers get progressively smaller. We can
think of this as simple image resolution down scaling. Like the previous two
points, the aim of this is to reduce training time.

Considering the differences between multilayer perceptrons and ConvNets then, we
can see that the key idea is to reduce training time, this is particularly useful for image
recognition, where for example sub-sampling our data (pixels) does not destroy the
integrity of it or make it significantly difficult to recognise a pattern.

26 Chapter 2. Machine Learning

FIGURE 2.11: The basic structure of a recurrent nueral network.

Simple Recurrent Neural Network

A recurrent neural network is structurally very different from a feed forward neural
network, while weights only move forward in a feed-forward network, in a recurrent
network they move sideways (between neurons in the same layer) as well as back-
wards, for example from the second hidden layer to the first hidden layer (see Fig.
2.11).

When comparing the multi layer perceptron neural network with the recurrent neural
network, if we take the same number of layers for each network and the same num-
ber of neurons in each layer, we see that a recurrent neural network contains signif-
icantly more weights. More weights means more information can be extracted from
the network per a single pass through from our dataset, when compared to multi layer
perceptron neural networks. Since these extra weights are "moving sideways" they are
recurring within the network, hence the name recurrent neural network. The primary
advantage of this recurrent property is that the network can now detect changes over
time [39].

2.4 Machine Learning and its relationship with Physics

Machine Learning is an important tool for data and function analysis, not just in physics
research, but across all science fields. For physics in particular, there are numerous
fields of research which are heavily dependent on machine learning techniques. Nearly
all experimental physics needs some kind of data processing or function approximation
to be done, whether it is linear regression or artificial neural networks machine learn-
ing plays an important role in the analysis and understanding of data driven physics.

In this section we take a look at a few interesting intersections of physics and machine
learning.

Chapter 2. Machine Learning 27

FIGURE 2.12: When considering the interdisciplinary field of "Quantum
Machine Learning we can break it down further into four subcategories"

[25].

2.4.1 Artificial Neural Networks in Physics

While artificial neural networks have only recently begun to gain popularity, physicists
have been implementing artificial neural network models for a very long time. In the
early 1990’s feed-forward neural networks were used by particle physicists to solve a
handful of problems. Feed-forward neural networks were mainly used to solve classi-
fication problems, such as for particle identification or separating light quark jets from
heavy quark jets [26].

Physicists are not stopping at implementing neural networks to solve physics prob-
lems, but are also taking it one step further and are improving neural network imple-
mentation. Solid state physicists are using memristors (memory resistor) to develop
application-specific integrated circuits called neuromorphic chips [27] with the sole
purpose of making neural network training and testing more efficient, both in terms
of power consumption and computational time.

2.4.2 Machine Learning and Quantum Physics

In Chapter 1 and up until now in Chapter 2, we have been building up Quantum In-
formation theory and Machine Learning theory independently. In this section we seek
to build links between the two disciplines and different ways in which each field can
contribute to each other.

Fig. 2.12 presents a well defined overview to the relationship between Machine learn-
ing and Quantum physics. Training classical data on a classical system is currently
what machine learning is about. However quantum physics can still play a role in this
process with quantum inspired machine learning methods [28]. Training quantum data
on a classical machine could still somewhat be seen as classical machine learning, but
it is still very useful and often times can produce very interesting results.

There is a lot of excitement around the next subcategory which is training classical
data on quantum based computational devices. The reason is because if we are able

28 Chapter 2. Machine Learning

to successfully implement this, it would revolutionise the way big data is processed
and could profoundly change the field of machine learning. The current popular tech-
nique used in machine learning is deep learning or more specifically artificial neural
networks, which uses matrix or more accurately, tensor multiplication. Calculating the
product of extremely large matrices with millions of rows and columns is something
that would receive significant speed ups on a quantum computer [29].

Lastly is training quantum data on a quantum based computational device. This is
of great interest to physicists and it makes intuitive sense that quantum algorithms
would be better suited to understanding a lot of the quantum properties and features
of a dataset containing quantum information that we still don’t understand completely.

2.4.3 Quantum Neural Network

Quantum neural networks merge the theory of quantum mechanics with neural net-
works. There are two branches of quantum neural networks. The first branch has to
do with trying to find a link between quantum mechanics and a biological neural net-
work. The second branch is to use quantum information theory to improve current
artificial neural network models, as well as to develop the quantum information the-
ory to implement artificial neural networks on quantum computers in such a way that
the artificial neural network makes use of the advantages allowed by quantum com-
puting. One of the candidates for such an implementation is on a dissipative quantum
computer which itself is based on the theory of open quantum systems [30].

One notable recent realisation of a Quantum Neural Network is the Ising model im-
plemented by the National Institute of Informatics and the University of Tokyo. The
goal of their implementation is to solve various NP-hard mathematical problems such
as the Max-Cut problems. One possible real world application could include helping
to ease traffic congestion by finding optimal routes [31].

If a quantum neural network can be realised on a quantum computer it would be of
tremendous value to various research fields such as quantum chemistry, molecular bi-
ology or astrophysics.

Chapter 3

Data generation, preprocessing and
Neural Network Structure

3.1 Data Generation

For this investigation we generated over 3 million entangled two qubit pure state den-
sity matrices as well as over 3 million entangled two qubit mixed state density matrices.
In this section I will briefly review the mathematics behind the pure state generation
and mixed state generation, as well as the random number generation used for con-
structing mixed states. It is important to note that the generation of the density matri-
ces and calculation of the corresponding concurrence values which were used for this
investigation was done by my supervisor Dr. Ilya Sinayskiy. The Python implementa-
tion of the following mathematical procedures can be found in appendix A1.

3.1.1 Generating random pure states

The mathematical procedure for numerically generating a two qubit entangled pure
state is fairly straightforward. The first step is to generate random 4×4 unitary matrices
[36]. To do this we first generate a 4× 4 matrix M that contains complex elements from
a standard normal distribution (N (0, 1)). We start with a matrix given as

M1 =

x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

 ,

and each element xij is determined randomly from a normal distribution.
Then we define,

M2 =

y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33

 ,

where again each element is determined randomly from a normal distibution. M is
then defined as,

M = M1 + iM2,

29

30 Chapter 3. Data generation, preprocessing and Neural Network Structure

so that matrix M is essentially a random complex matrix containing random complex
numbers with both real and complex components. After that we perform QR decom-
position on matrix M , which gives us

M = QR,

where M is decomposed into a product of two matrices Q and R with matrix Q being
an orthogonal matrix, then matrix R is an upper triangular matrix. We then take the
diagonal of matrix R (rij , where i = j) and normalise it,

RD =

r00
|r00|

r11
|r11|

r22
|r22|

r33
|r33|

Once we have RD we then define our random unitary matrix,

U = QRD.

To generate the random pure state density operators, we take a column of a random
4× 4 unitary matrix U so that,

|ψ〉 =
U

2
(|00〉+ |01〉+ |10〉+ |11〉).

This essentially lets us generate 4 independent complex numbers c0, c1, c2 and c3 ac-
cording to the normal distribution. We can then write it as,

|ψ〉 = c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉.

Where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1. This procedure generates random two qubit pure
state composite systems. We then determine the pure state density matrix,

ρpure = |ψ〉〈ψ|

The next step is to use equation (1.15) to determine the concurrence of our composite
density matrix ρpure. We discard the density matrix if the concurrence is zero and keep
it if the concurrence is greater than zero [32].

3.1.2 Generating random mixed states

The theory and concepts provided in the journal article titled "On the volume of the set
of mixed entangled states" by K Życzkowski, P Horodecki, A Sanpera, and M Lewen-
stein (namely Appendix A of the article) was used as a basis for generating the random
numbers and thus the random state density matrices [33]. As such we will review that
procedure briefly, then show how the two qubit mixed state density matrices were gen-
erated.

We determine our two qubit mixed state density matrix by applying the random uni-
tary matrix U on the diagonal matrix D, such that

ρmixed = UDU †.

Chapter 3. Data generation, preprocessing and Neural Network Structure 31

FIGURE 3.1: The distribution of the angle α of the eigenvalues of the
unitary matrices. (λ = eiα)

The random unitary matrix U will be generated in the same procedure described in
section 3.1.1, all that needs to be done is to construct the valid diagonal matrix D so
that we may begin generating random mixed density matrices ρmixed. Fig 3.1 shows
that the distribution of the angles (α) of the eigenvalues of randomly generated unitary
operators with described above algorithm (see section 1.1.1, theory on unitary matrices)
[4]. It is clear from the picture that as expected the distribution is uniform.

Random number generation

The aim is to construct a uniform distribution of 4 real, non-zero numbers that satisfy,

Λ1 + Λ2 + Λ3 + Λ4 = 1. (3.1)

Since we are subject to the constraint given by equation (3.1), we just need to determine
Λ1,Λ2 and Λ3 then we can get Λ4 by manipulating equation (3.1). First we generate
ξ1, ξ2, ξ3 and ξ4 which are 4 random numbers on the normal distribution in the interval
(0, 1). We can then define our Λ’s as,

Λ1 = 1− ξ
1
3
1 ,

Λ2 = [1− ξ
1
2
2](1− Λ1),

Λ3 = [1− ξ3](1− Λ1 − Λ2) and

Λ4 = 1− Λ1 − Λ2 − Λ3.

If we sum Λ1-Λ4 we see that the sum equals to 1, so our method adheres to the con-
straint in equation (3.1). We generate the string of numbers in this fashion so that the
spectrum of the random density matrices are uniform.

32 Chapter 3. Data generation, preprocessing and Neural Network Structure

Using the random numbers to generate our mixed states

We now use our 4 random numbers (Λ1-Λ4) to create a diagonalised matrix,

D =

Λ1 0 0 0
0 Λ2 0 0
0 0 Λ3 0
0 0 0 Λ4

 .

Finally just like with the pure state density matrices, we apply equation (1.16) to ρmixed

to determine the concurrence of our composite mixed state density matrix, we discard
all density matrices where the concurrence is equal to zero and keep them if they are
greater than zero.

3.2 Data Preprocessing:

The density matrices for our entangled mixed states and entangled pure states that
were generated in python are in the form of,

% =

d1 x1 + iy1 x2 + iy2 x3 + iy3

x1 − iy1 d2 x4 + iy4 x5 + iy5
x2 − iy2 x4 − iy4 d3 x6 + iy6
x3 − iy3 x5 − iy5 x6 − iy6 d4

 . (3.2)

Considering this form we can see that as expected they are Hermitian matrices. Look-
ing at the data contained within the density matrix, we can see that there are a total
of 16 parameters to consider - that’s four real numbers on the diagonal (d1-d4) and six
imaginary numbers on the off-diagonal made up of six real parts (x1-x6) and six imag-
inary parts (y1-y6). While we have 16 parameters that we can use as inputs to train our
neural network, we can consider the following constraint:

Tr(%) = d1 + d2 + d3 + d4 = 1. (3.3)

This means that if we know any three of the diagonal numbers in our density matrix,
we can determine the fourth unknown diagonal number by using the constraint shown
in equation (3.2), ie one diagonal term can be seen as a linear combination of the other
three, which makes it redundant. As such we can omit it from training; having one less
input parameter will reduce the time it takes to train our network while not affecting
the accuracy our model. Considering our dataset, we will omit d4 and we will train our
neural network on 15 inputs.

3.2.1 Feature Scaling

Feature scaling is a process used to standardize the range of independent variables or
features of data. In the case of our dataset inputs range between -1 to 1 and as such
feature scaling should not be necessary. However, when investigating the minimum
and maximum for each input we found that a lot of features have different ranges,
some are between -1 to 1 while others are between 0 to 1. Some even have very small

Chapter 3. Data generation, preprocessing and Neural Network Structure 33

ranges such as between 0 to 0.4, so we decided to rescale our data. We can rescale our
data to any range using the following equation,

f ′ =
f −min(f)(b− a)

max(f)−min(f)
, (3.4)

where f is the value being rescaled, a is the lower bound of our new scale, b is the
upper bound and f ′ is the rescaled value. While our neural network is designed to
implement batch normalisation to overcome internal covariate shift, normalising all of
our inputs using the process defined in equation (3.3) will help reduce internal covari-
ate shift, thus reduce training time and improve the accuracy of the neural network
[34].

In particular, since all of our hidden layers use an activation function with a range from
0 to 1, our inputs that range between −1 to 1 will have to immediately undergo batch
normalisation before being processed by the neural network as such; normalising our
inputs prior to training will save significant computational time when compared to
batch normalisation which will have to normalise inputs each time after data is pro-
cessed.

3.3 Artificial Neural Network Implementation

In Chapter 2 we discussed general artificial neural network topologies. Now we take a
closer look at how we have implemented one of those topologies in our research. For
our investigation we will be implementing a multi layer perceptron neural network.
This implementation will be done on python using the Keras library which is back-
ended by the TensorFlow library, both of which are powerful tools for developing and
implementing artificial neural networks. We will briefly review these two neural net-
work libraries then discuss in detail the structure and key characteristics of the neural
network models that we implemented.

3.3.1 TensorFlow and Keras

TensorFlow is an open-source software library used for data driven tasks. It was devel-
oped by the Google Brain team for internal use but was made available to the public in
November 2015. It is a math library primarily used for machine learning applications,
namely neural networks. It is named TensorFlow for the similarities between math-
ematical tensors and the multi dimensional arrays often used for image recognition
models in machine learning. Initially one of the main strengths that TensorFlow had
over other neural network libraries was its ability to parallelise neural network train-
ing across multiple GPUs and whilst there are now some libraries that can now also do
this, none of them do it as efficiently as TensorFlow.

Keras is an open source library developed by François Chollet, a Google engineer.
Keras only deals with neural network development and implementation. While Ten-
sorFlow is a math library Keras serves as a "container" as such for many deep learning
libraries such as TensorFlow, Theano and MXNet, amongst others. The goal of Keras is
to be an interface rather than an end-to-end machine-learning framework. It presents a
higher-level, simpler, more intuitive set of abstractions, that make it easy to configure
neural networks even if the user does not have a strong programming background.

34 Chapter 3. Data generation, preprocessing and Neural Network Structure

3.3.2 Construction of the implemented artificial neural networks

When constructing a neural network model within the Keras framework, there were
various model parameters that we needed to decide on. The choices that we make on
these parameters would ultimately affect model accuracy and after analysing our re-
sults. An investigation into which neural network parameters were used could provide
insight on why our model performed the way it did.

We will briefly discuss the choice in parameters and then take a look at the three differ-
ent structures that will be used for training. We will also discuss why we chose those
structures.

• Activation Function - In every single hidden layer neuron, the weight that each
of those neurons outputs is "governed" or decided by the activation function that
we choose. For our model we chose ReLU (Rectified Linear Unit) primarily be-
cause ReLU is known to be the best activation function when the output being
considered is a regression output [40] as opposed to a classification output. We
did try tanh and sigmoid activation functions as well in early models and they
both did not perform as well as ReLU.

• Initialiser - When inputs are first sent to the hidden layer, the weights of the
hidden layer need to be a value to start of with. We have the option of random
values, zeroes, ones or we can even initialise each weight to an exact value that
we want by giving it an array to initialise from. Ultimately, the the choice of the
initialiser does not have a big impact on the model accuracy or the training time,
but rather how long it takes for our training to converge to a good model. We
chose to initialise our weights to a standard normal distribution (N (0, 1)).

• Loss function - The loss function (sometimes called error function or cost func-
tion) is simply a mathematical function that is dependent on the model’s internal
learn-able parameters which are used in computing the target values(Y) from the
set of inputs(X) used in the model. We chose the mean squared error estimator
as the loss function for our model. Our neural network is trained with the goal of
lowering our loss function to as close to zero as possible, which brings us to our
optimiser.

• Optimiser - Our optimisation function is integral to the performance of our neu-
ral network model. It will affect both the time it takes to train the model and the
accuracy of the model. The optimisers job is to minimize the loss function, for
our implementation we used the Adam optimiser which is a variation of stochas-
tic gradient descent. The reason we chose Adam optimisation is because a lot of
recent research has shown that it generally performs the best out of all the opti-
misers [35].

• Epochs and Patience - In machine learning, an epoch is a single pass through the
entire training set, generally having a high number of epochs is not advised since
"looking at" the same data many times has a tendency of causing over-fitting
We set the epochs at an arbitrarily high value (Epochs = 1000), since training a
single epoch took between 3-10 minutes, this meant that our training could run
for as long as 7 days if left unchecked. This brings us to our next parameter, the
patience function. Within Keras there is a patience function that allows us to stop
our training early if our validation loss stops improving for a number of epochs

Chapter 3. Data generation, preprocessing and Neural Network Structure 35

(we used patience = 10 epochs). So if our model didn’t improve after ten epochs
in a row, our training would stop and Keras returned the model that had the best
accuracy.

• Training, Validation and Test Split - Our two datasets had 3.2 million density
matrices each. We needed to split each dataset into three parts. A sub-dataset
used for training, a sub-dataset used for validation (to prevent over-fitting) and
the third sub-dataset was used for testing our model. We went with Training
set = 3 000 000, Validation set = 100 000 and Test set = 100 000. The process of
training yielded predicted concurrence outputs, to determine the quality of our
model, the predicted concurrence is compared to the actual concurrence, the dif-
ference between actual and predicted is represented by model loss graphs, which
demonstrates how the model accuracy changes over time.

3.3.3 One Hidden Layer Neural Network

FIGURE 3.2: The one hidden layer network structure.

Our one hidden layer neural network was designed with 5000 neurons in the hidden
layer (see Fig. 3.2), as a result the neural network contained 80000 trainable parameters
(weights). According to a lot of artificial neural network resources, a one hidden layer
network is capable of efficiently learning features and hidden features of non linear
data.

36 Chapter 3. Data generation, preprocessing and Neural Network Structure

Training on one hidden layer neural network

FIGURE 3.3: Loss data for the one hidden layer neural network that was
trained on mixed state inputs.

Our one hidden layer neural network trained on mixed state inputs (Fig. 3.3) per-
formed curiously during training when compared to all the other models that were
trained. It was the only model where the validation loss was generally much worse
than the training loss over 50 epochs. This suggests that the model could be over-fitted,
something we will know for sure once we attempt to make predictions on the model.
The best model was saved on the 39th epoch with a validation loss of 0.0008466684.

FIGURE 3.4: Loss data for the one hidden layer neural network that was
trained on pure state inputs.

The one hidden layer neural network that was trained on pure state data (Fig. 3.4) also
behaved curiously, but unlike the model in Fig. 3.3 which shows signs of over-fitting,
this model seems to be returning validation loss values lower than training loss values,
this is something that technically should not happen so we tried to investigate what
could be causing this before proceeding with further training.

It turned out that this was due to the setting we used for our batch size, we used a
batch size of 4000 throughout training. Our training set was 3 000 000 density matrices
and our neural network processed 4000 at a time. Doing the processing in pieces was

Chapter 3. Data generation, preprocessing and Neural Network Structure 37

necessary since training was done on a machine with 8GB of RAM. Keras would itera-
tively update the loss after every batch of 4000 density matrices.

To explain by example, after the first batch in an epoch, the training loss would be
0.002. If the training loss for the next batch is 0.001 then Keras would output our train-
ing loss as 0.0015. Basically the average loss is taken over all the batches per a single
epoch. When training a single epoch we had 750 batches, the result of which meant that
the model always appeared like the validation test set was performing better than the
training test set, which is not possible. At the very least we are certain that over-fitting
is not an issue given the validation performance. The best model was saved on the 19th

epoch with a validation loss of 0.0001862786.

3.3.4 Two Hidden Layer Neural Network

FIGURE 3.5: The two hidden layer network structure.

Our two hidden layers neural network contained 500 neurons in the first hidden layer
and 250 neurons in our second hidden layer (see Fig. 3.5). At a glance one may think
that this neural network implementation contains less parameters (weights) than our 5
000 neuron one hidden layer neural network, but in actuality this neural network con-
tains 132 750 trainable parameters. This is due to the multiplicative nature of weights
between layers. In our first neural network we had a structure of 15-5000-1, so that is
(15×5000)+(5000×1) = 80000. For our two hidden layer neural network which has a
structure of 15-500-250-1, this calculation becomes (15×500)+(500×250)+(250×1) =
132750. So whilst our two hidden layer network uses 85% less neurons than the one
hidden layer neural network, the two hidden layer neural network still contained 66%
more parameters to train.

38 Chapter 3. Data generation, preprocessing and Neural Network Structure

Training on two hidden layer neural network

FIGURE 3.6: Loss data for the two hidden layer neural network that was
trained on mixed state inputs.

Training mixed state density matrices on our two hidden layer neural network demon-
strated our first instance of how the neural network model self corrects over-fitting. If
we consider Fig. 3.6, we see that at the 21st epoch, the validation loss spiked. This
means that our model was over-fitted. When when the neural network detected the
over-fitting, it rolled back the weights to the weights used for epoch 20 and proceeded
to apply the cost function again, albeit with a different learning rate. The best model
was saved on the 41st epoch with a validation loss of 0.0015933322.

FIGURE 3.7: Loss data for the two hidden layer neural network that was
trained on pure state inputs.

The pure state model training for the two hidden layer neural network (Fig. 3.7) fol-
lowed the same trend as its one hidden layer counterpart shown in Fig. 3.4 The best
model was saved on the 47th epoch with a validation loss of 0.0000635506787148.

Chapter 3. Data generation, preprocessing and Neural Network Structure 39

3.3.5 Three Hidden Layer Neural Network

FIGURE 3.8: The three hidden layer network structure.

Finally, our three hidden layer neural network contained 350 neurons in the first hidden
layer, 200 neurons in our second hidden layer and 100 neurons in our third hidden layer
(see Fig. 3.8). Again due to the multiplicative nature we discussed, our three hidden
layer neural network contained 93 850 trainable parameters (weights).

Training on three hidden layer neural network

FIGURE 3.9: Loss data for the three hidden layer neural network that
was trained on mixed state inputs.

The best model we got when training mixed state inputs on our three hidden layer
neural network (see Fig. 3.9) was saved on the 44th epoch with a validation loss of
0.000112616956433. This also happened to be the best validation loss across all mixed
state models.

40 Chapter 3. Data generation, preprocessing and Neural Network Structure

FIGURE 3.10: Loss data for the three hidden layer neural network that
was trained on pure state inputs.

The best pure state input trained model on our three hidden layer neural network (see
Fig. 3.10) was saved on the 46th epoch with a validation loss of 0.0000451485884696, like
the mixed state three hidden layer model, this was our best validation loss, suggesting
that a deeper neural network performs better for concurrence prediction using density
matrices.

Chapter 4

Concurrence Prediction using
Neural Networks

After constructing our neural networks and training them, we’re now ready to test
our networks and see how they perform on completely unseen data. We have three
different network structures that were used and each structure yielded two models,
one model trained on mixed states and another model trained on pure states. In total,
we have six models that were trained and we will be investigating how our two test
datasets perform on each model.

In order to make sense of the predictions that our models will be making, we need to
use a few error analysis metrics. The metrics that were used will be briefly described
along with the acceptable error range that defines whether the results are good or bad.
While the error ranges were arbitrarily chosen at the start, they represent a reasonable
accuracy that would allow us to implement the model for use with other applications.

4.1 Error Metrics

Each time after we trained the neural network, we tested each neural network model
on two unseen datasets. One dataset contained features from 100 000 entangled mixed
state density matrices and the other dataset contained features from 100 000 entangled
pure state density matrices. The results of our tests provided us with concurrence pre-
dictions. Since we already know the actual concurrencies of the density matrices, we
can analyse the predicted error. Various error metrics were used to aid us with analysis.
We will briefly discuss how each error metric was implemented.

Root Mean Squared Error and Mean Absolute Error

Root Mean Squared Error (RMSE) =

√∑n
i=1(Ci − Ĉi)2

n

Where Ci is the actual concurrence for each entangled density matrix, Ĉi is the pre-
dicted concurrence for each entangled density matrix and n is the total number of den-
sity matrices in the dataset.

Mean Absolute Error (MAE) =

∑n
i=1 |Ci − Ĉi|

n

41

42 Chapter 4. Concurrence Prediction using Neural Networks

Acceptable error range for RMSE: ±0.02

Acceptable error range for MAE: ±0.02

Root mean squared error and mean absolute error share a lot of similarities and will of-
ten return similar values (With root mean squared error being slightly larger by design)
except that since the errors are squared before being summed it gives a larger weighting
to large errors. Since large errors are undesirable for our prediction, we used root mean
squared error as the loss function for training our neural network, as such to maintain
consistency it’s the most useful metric to consider when analysing the implementation
of our model.

Mean and Standard Deviation of Error distribution

Cerror
i = Ci − Ĉi

C̄error =

∑n
i=1C

error
i

n

Standard Deviation = σ =

√√√√ 1

n

n∑
i=1

(Cerror
i − C̄error)2

Acceptable error range for Mean: ±0.03

Acceptable error range for Standard Deviation: ±0.03

The manner in which we calculated this metric means that it is not useful to analyse the
numbers on their own, since we do not apply any method of normalising the negative
errors. The negative errors will mostly cancel the positive errors and the mean of the
error distribution will end up very small and very inaccurate and as a result of that,
the standard deviation will be of little use outside of analysing the error distribution.
We did however need to determine the values Cerror

i to plot a histogram distribution
of the errors to better investigate the magnitude of the errors across the entire dataset.
Since we found that the error distributions often followed a Gaussian distribution, we
made note of the standard deviation and mean of the distribution which should come
in handy to plot a probability density function of the error distribution.

Average Percentage Error

Average Percentage Error =
Root Mean Squared Error

CMax − CMin
× 100

Acceptable error range for Average Percentage Error: ±3%

The average percentage error is tied to and is simply an extension of the root mean
squared error. We divided the root mean squared error by the range of our values to
normalise it and took that as a percentage value which is much more palatable to a
wider audience compared to unnormalised error metrics.

Chapter 4. Concurrence Prediction using Neural Networks 43

4.2 Prediction on a one hidden layer neural network:

4.2.1 Trained on mixed state inputs

FIGURE 4.1: On the left is a table containing error metrics for the one hidden layer neu-
ral network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

After training the one hidden layer neural network on mixed state data, we used it to
predict both mixed state concurrence and pure state concurrence. As per Fig. 4.1 our
model predicted mixed state inputs accurately and the error distribution was clearly
Gaussian.

FIGURE 4.2: On the left is a table containing error metrics for the one hidden layer neu-
ral network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled pure state con-

currence on the neural network.

Next we used the model to predict pure state inputs, considering our model had been
trained on mixed state data, pure states were completely "unknown" to our model and
yet it predicted the concurrence of the pure state inputs fairly accurately when com-
pared to the mixed state prediction. When considering Fig. 4.2 however, there are two
interesting things to note, one is that the errors showed a bias towards being less than
zero, considering how we determined these errors (see section 4.1). This means that
more often than not the neural network was predicting a concurrence that was larger

44 Chapter 4. Concurrence Prediction using Neural Networks

than the actual concurrence. The second notable thing is that the distribution was not
as symmetric as the mixed state.

4.2.2 Trained on pure state inputs

FIGURE 4.3: On the left is a table containing error metrics for the one hidden layer neu-
ral network trained on pure state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

We then trained our one hidden layer network using pure state data and the results
were even more intriguing. When we used this model to predict mixed state inputs -
which is completely unseen to the neural network - it failed miserably. Looking at Fig.
4.3 we see that the errors range between−0.4 to 0.1 while at-least 90% of the errors were
less than zero, which means our neural network model was almost always predicting
a larger concurrence than the actual concurrence.

FIGURE 4.4: On the left is a table containing error metrics for the one hidden layer neu-
ral network trained on pure state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled pure state con-

currence on the neural network.

We then tried to predict pure states on this model and it predicted the pure states accu-
rately. The fact that our model predicted pure states accurately tells us that our model
was trained correctly (something that was in doubt after failing to predict mixed states).
However, the error distribution shown in Fig. 4.4 was interesting because just like the
distribution in Fig. 4.3 and Fig. 4.2 it was not a proper Gaussian distribution.

Chapter 4. Concurrence Prediction using Neural Networks 45

4.3 Prediction on a two hidden layer neural network:

Moving on to our two hidden layer network, we were expecting marginally better pre-
dictions across the board, since in theory an additional hidden layer should help our
model learn nuanced hidden features in our data.

4.3.1 Trained on mixed state inputs

FIGURE 4.5: On the left is a table containing error metrics for the two hidden layers neu-
ral network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

Fig. 4.5 shows exactly what we expect by now, that when predicting mixed state con-
currence on our two hidden layer neural network that was trained on mixed state in-
puts, both the root mean squared and mean absolute error were better when compared
to the corresponding result in our one hidden layer neural network and our distribu-
tion was clearly Gaussian.

FIGURE 4.6: On the left is a table containing error metrics for the two hidden layers neu-
ral network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled pure state con-

currence on the neural network.

46 Chapter 4. Concurrence Prediction using Neural Networks

Interestingly enough the accuracy on pure state concurrence prediction got slightly
worse, furthermore the error distribution in Fig. 4.6 looks less Gaussian to the cor-
responding one layer error distribution (Fig. 4.2) and just like our one hidden layer
distribution, it is not centred around zero but rather has a strong bias for negative er-
rors. So both the one and two layer network trained on mixed state data are mostly
predicting concurrence values that are larger than the actual concurrence.

4.3.2 Trained on pure state inputs

FIGURE 4.7: On the left is a table containing error metrics for the two hidden layers neu-
ral network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

Somewhat surprisingly the two hidden layer neural network trained on pure states
still cannot predict mixed state inputs (as per Fig. 4.7), with the errors actually getting
worse.

FIGURE 4.8: On the left is a table containing error metrics for the two hidden layers neu-
ral network trained on pure state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled pure state con-

currence on the neural network.

Predicting pure state concurrence however is not a problem, with our two hidden layer
neural network, with predictions being more accurate than its one hidden layer coun-
terpart.

Chapter 4. Concurrence Prediction using Neural Networks 47

4.4 Prediction on a three hidden layer neural network:

On to our three hidden layer models, we followed the same procedure as with the one
layer and two layer models.

4.4.1 Trained on mixed state inputs

FIGURE 4.9: On the left is a table containing error metrics for the three hidden layers
neural network trained on mixed state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

At this point we see a result that we expected before training any models. we observe
that when we train our network on a certain type of data (either mixed or pure) and
then try to predict the same type of data, it predicts it accurately. This is something that
was expected and for mixed states at-least and is clearly confirmed by the similar error
distributions seen in Fig. 4.1, Fig. 4.5 and Fig. 4.9.

FIGURE 4.10: On the left is a table containing error metrics for the three hidden layers
neural network trained on mixed state density matrices and on the right the correspond-
ing histogram showing the error of the test dataset when predicting entangled pure state

concurrence on the neural network.

Like our first three hidden layer test, this follows the trend we’ve seen with the corre-
sponding error analysis tests done in Fig. 4.2 and Fig. 4.6. Our neural network that
was trained on mixed states (Fig. 4.10), once again accurately predicts pure states and
once again has a slight tendency to make concurrence predictions that are larger than

48 Chapter 4. Concurrence Prediction using Neural Networks

the actual predictions. This is an interesting result that we will discuss further in the
next chapter.

4.4.2 Trained on pure state inputs

FIGURE 4.11: On the left is a table containing error metrics for the three hidden layers
neural network trained on pure state density matrices and on the right the corresponding
histogram showing the error of the test dataset when predicting entangled mixed state

concurrence on the neural network.

Confusingly our three hidden layer neural network trained on pure states predicts
mixed state data significantly much worse (see Fig. 4.12) than the corresponding one
and two layer neural networks (Fig. 4.4 and Fig. 4.8). In fact if we look at Fig. 4.11 we
see that most of our errors are over −0.5. This means that out model was excessively
over-predicting the concurrence value. If the three hidden layer neural network made
predictions that had an error distribution that was similar or slightly less, that would
be a result that’s expected, but for the three hidden layer neural network to perform so
much worse than the one and two hidden layer network is remarkable and something
that we will discuss further.

FIGURE 4.12: On the left is a table containing error metrics for the three hidden layers
neural network trained on pure state density matrices and on the right the correspond-
ing histogram showing the error of the test dataset when predicting entangled pure state

concurrence on the neural network.

Like we have mentioned on Fig. 4.9, our prediction on the neural network that has
been trained on the same type of data, is excellent and the results shown in Fig. 4.12

Chapter 4. Concurrence Prediction using Neural Networks 49

are no different.

Figures 4.1, 4.4, 4.5, 4.8, 4.9 and 4.12 are all error distributions of errors where the data
being predicted was the same type as the data used to train the neural network (either
pure or mixed) as such these predictions don’t tell us anything significant but rather
serve as a baseline and measure of accuracy when interpreting the other case - where
our models were used to predict a data type that it has not seen before.

Chapter 5

Analysis of Results and
Recommendations for further
research

5.1 Results Analysis

Some of the results presented in Chapter 4 are very interesting, particularly because
there were results that were unexpected. Firstly lets look at the results that were pos-
itive. That is when we trained our neural networks using mixed state data and tried
to predict pure state data. For all three predictions (see Fig. 4.2, Fig. 4.6 and Fig. 4.10)
our model successfully predicted the pure state concurrence values. There was how-
ever one interesting caveat - that our error distributions for these cases showed bias
towards a negative error, which in our case meant that our model was more often than
not predicting concurrence values that were larger than the actual concurrence values
of the pure state matrices. This is interesting when we consider the distribution of
concurrence values within our datasets.

FIGURE 5.1: The distribution of concurrence values across our 3.2 mil-
lion entangled pure state density matrix dataset.

51

52 Chapter 5. Analysis of Results and Recommendations for further research

FIGURE 5.2: The distribution of concurrence values across our 3.2 mil-
lion entangled mixed state density matrix dataset.

When we consider Fig. 5.1 we see that the distribution of concurrence values in our
entangled pure state dataset is spread out very well when compared to our entangled
mixed state concurrence distribution. In fact looking at Fig. 5.2, it turns out that more
than 90% of our entries have a concurrence value of less than 0.4. This is what’s inter-
esting. Recall what we discussed earlier; our neural networks trained on mixed state
data, was predicting pure state concurrence values that were larger than the actual pure
state concurrence. If we consider that our mixed state neural network has mostly been
trained on concurrence values that are very low, it is counterintuitive that the model is
predicting values that are larger. Predicting slightly smaller values would be expected
but not slightly larger.

To take this interesting observation further, we would like to analyse the behavior of
our best mixed state model. When considering the error metrics, the neural network
trained on mixed state inputs that predicted pure state concurrence, the best was our
three hidden layer neural network. Considering our model testing dataset, lets split
that data set into two subsets; subset A being values with the actual concurrence ≤ .4
and subset B being values with the actual concurrence > 0.4.

Chapter 5. Analysis of Results and Recommendations for further research 53

FIGURE 5.3: Subset A contained concurrence values ≤ .4.

FIGURE 5.4: Subset B contained concurrence values > 0.4.

Once we split our dataset, we then determined the errors for each subset and plot-
ted histograms for each subset (see Fig. 5.3 and Fig. 5.4). Surprisingly both error
histograms show the same bias towards predicting a concurrence value that is larger
than the actual concurrence. This means that the bias is not a result of our mixed state
trained neural networks "learning" concurrence values that were mostly less than 0.4,
but rather the bias is an inherent feature of predicting pure state concurrence on a neu-
ral network trained on mixed states. We can confirm this by training another mixed
state neural network on a larger mixed state data set on a neural network that contains
more neurons and then investigate the error variance. If predicting a slightly larger
concurrence is an inherent feature of this type of prediction, then that neural network
while being slightly more accurate, should show the same bias we have seen across all
three mixed state trained neural networks in our investigation.

After everything said about the bias of the pure state predictions, our mixed state

54 Chapter 5. Analysis of Results and Recommendations for further research

trained neural networks are nonetheless predicting pure state concurrence values ex-
ceptionally well and since the bias we are seeing in the error is uniform across all con-
currence values, we could introduce a function after prediction to offset or shift that
bias and centre our error distribution around zero. It would be interesting to see what
function offsets the bias accurately and if the same function works for all our pure state
predictions on the different mixed state trained neural networks, then try to under-
stand why that function works.

That brings us to our next interesting result, predicting mixed state concurrence on
pure state trained neural networks. Considering Fig. 4.3, Fig. 4.7 and Fig. 4.11. It’s safe
to say that our pure state trained neural networks do not predict mixed states well at
all. Lets apply the same school of thought we did for pure state prediction on mixed
state trained neural networks. We know our concurrence distribution for mixed states
heavily favours low concurrence density matrices. Whilst the concurrence distribution
for pure state density matrices is quiet even, if we look at Fig. 5.1 we see that our
distribution does contain more density matrices with higher concurrence values (>
0.4) than lower ≤ .4. Again lets follow the same procedure as before. The pure state
model that predicted mixed states the best was surprisingly the one hidden layer neural
network, so we will split the mixed state prediction dataset into two subsets, Subset C
(≤ .4) and Subset D (> 0.4).

FIGURE 5.5: Subset C contained concurrence values ≤ .4.

Chapter 5. Analysis of Results and Recommendations for further research 55

FIGURE 5.6: Subset D contained concurrence values > 0.4.

Again considering Fig. 5.5 and Fig. 5.6, we see the same trend that we saw in Fig. 5.3
and Fig. 5.4 (that the magnitude of the concurrence being predicted has no effect on
the accuracy). Both Fig. 5.5 and Fig. 5.6 along with the all the mixed state predictions
on pure state trained neural networks (Fig. 4.3, Fig. 4.7 and Fig. 4.11) all exhibit the
same traits. The mixed state prediction on pure state trained networks is very bad and
the prediction is almost always higher than the actual value. In some cases as seen
in Fig. 4.11 the neural network was predicting concurrence values of 0.8 and higher
for entangled mixed state density matrices that had an actual concurrence of 0 to 0.2,
essentially getting it horribly wrong. In fact when we consider our three hidden layer
neural network, the predictions were so bad that we would have got more accurate
predictions had we just chosen random values between 0 and 1.

So what could be the reason for mixed state prediction on pure state trained neural
networks failing so badly? Well, there are three possible explanations:

The first explanation regards the functions being approximated by our neural net-
works. For our model that works (predicting pure states on a mixed state trained neural
network), we could say that those neural networks are "learning" how to approximate
equation (1.16). Equation (1.16) is valid for both mixed states and pure states, and as a
result of learning this generalised function, it can approximate the concurrence of pure
states. Now, when we consider training neural networks on pure state input, it could
be that our neural network is "learning" how to approximate equation (1.15) which is
a function that can only calculate the concurrence of pure state inputs. Unfortunately,
due to the black box nature of neural networks, there is no easy way to verify whether
this is actually what is happening and it is important to note that our pure state concur-
rence values were determined using the generalised equation (1.16) and not equation
(1.15). So in essence our pure state neural network learnt to approximate a function
that played no part in how the data was formed.

The second explanation relates to the geometry of the space of density matrices. Math-
ematically, density matrices belongs to the space of convex bounded hermitian trace
class operators acting on the vectors of the Hilbert space (ρ ∈ S(H)) [37]. In this space

56 Chapter 5. Analysis of Results and Recommendations for further research

pure states are represented by projection operators. It is known that the set of projectors
in S(H) is of the measure zero. This means that projectors “occupy” an unmeasurably
small corner of S(H) and mixed states are a very typical state in S(H). In any large
enough random section of mixed states (Tr(ρ2) 6= 1) there will be enough mixed states
which are close to all pure states, such that an artificial neural network trained using
mixed state inputs could accurately approximate the concurrence of the pure states,
however, the converse statement is not true [38]. If this hypothesis is correct then a
consequence of this is that mixed states with a low purity may be difficult to predict.
We can test this by determining the purity (see section 1.3.4) of all our entangled mixed
states and then investigate the prediction performance in relation to the purity. If this
explanation is correct then mixed states of a higher purity - in particular mixed states
with purity close to 1 should be predicted correctly, while mixed states with a low pu-
rity should be predicted incorrectly.

The third explanation which is less likely, is actually a simpler idea. It could just be
that we did not have enough data. In early model testing which we did not cover in
this investigation, we noticed that as we began to train our network with more and
more data - we started on ten thousand density matrices, then one hundred thousand,
then one million and then finally three million - as we increased the size of the dataset
we noticed a trend, that the accuracy of the predictions would improve significantly
as we gave it more training data. This makes intuitive sense considering how neural
networks work. So could training a neural network on fifteen million pure state den-
sity matrices or perhaps one hundred million pure state density matrices allow us to
reduce the error on mixed state prediction enough that it’s viable? If it does reduce the
error significantly then that would invalidate our first two explanations regarding the
approximation of the simpler function.

5.2 Recommendations for further research

Moving forward there are a lot of possibilities for future research both directly related
to the work within this paper and more broadly looking at neural network implemen-
tation for many other applications within the field of quantum physics.

Firstly considering our research, we have already discussed in this chapter an expan-
sion on predicting pure state concurrence using mixed state trained neural networks,
by both increasing the size of the dataset being trained and by introducing a function
to offset the bias in prediction. Then for mixed state prediction on pure state trained
neural networks, there are a few things we can examine further. Firstly, how much of
an impact would training on a larger dataset have, then secondly a nice idea by my co-
supervisor Dr. Ilya Sinayskiy was to try and find a way to "force" our pure state trained
neural network to learn the more complex function (equation (1.16)) that is capable of
generalising mixed states well - note this assumes that indeed our pure state trained
neural network does learn how to predict concurrence by approximating the simpler
equation (1.15), something we need to prove first.

Beyond that there are different investigations we can do with the same dataset for ex-
ample an idea posed by Dr. Maria Schuld was to omit inputs from our training data
(look at equation (3.2) and (3.3)) and investigate if our training data still contained
enough information for concurrence prediction. We could omit some of the inputs that

Chapter 5. Analysis of Results and Recommendations for further research 57

are not on the diagonal (x1-x6) and then also maybe omit some or all of our diagonal
elements (d1-d4) or a combination of those and then see how well we are able to predict
concurrence.

Then, not considering density matrices and entanglement measures, there is still an
endless amount of novel implementations of neural networks that we can investigate
in quantum information science.

Appendix A - Python Code

A1 - Data Generation Code

The Python code below was used to generate our two qubit entangled mixed states and
two qubit entangled pure states. After that it determined the concurrence of the corre-
sponding entangled states, then save the density matrix elements and the concurrence
in a csv file.

1 import numpy as np
2 import pandas as pd
3 from numpy import l i n a l g as LA
4

5 # def ine a s e t f u n c t i o n s to generate random s t a t e v e c t o r s and densi ty matr ices
6

7 def H(matr) :
8 re turn matr . con j () . T
9

10 def randU (n) :
11 X = (complex (1 , 0) ∗np . random . randn (n , n) +complex (0 , 1) ∗np . random . randn (n , n))

/np . s q r t (2)
12 q , r = LA. qr (X)
13 r = r . diagonal ()
14 r = np . diag (r/np . absolute (r))
15 re s = np . dot (q , r)
16 re turn r es
17

18 def vecnorm (x) :
19 re turn np . s q r t (x . dot (x . con j ()))
20

21 def randP (n) :
22 p = np . ones (n)
23 p = np . dot (randU (n) ,p)
24 p = p/vecnorm (p)
25 re turn p
26

27 def toDM(x) :
28 re turn np . outer (x , x . con j ())
29

30 # funct ion to generate random s t r i n g of 4 numbers
31 def rand4st () :
32 ks = np . random . rand (3)
33 re s = np . zeros (4)
34 re s [0] = 1−(ks [0]) ∗∗ (1 . 0 / 3 . 0)
35 re s [1] = (1−(ks [1]) ∗∗ (1 . 0 / 2 . 0)) ∗(1− re s [0])
36 re s [2] = (1− ks [2]) ∗(1− r es [0]− r es [1])
37 re s [3] = 1 − r es [0] − r es [1] − r es [2]
38 re turn r es
39

40 # funct ion to c r e a t e random 4∗4 densi ty matrix
41 def randDMn () :
42 p = np . diag (rand4st ())
43 U = randU (4)
44 p = np . dot (U, p)

59

45 p = np . dot (p ,H(U))
46 re turn p
47

48 # funct ion to determine concurrence
49 def Conc1 (x) :
50 r = x . con j ()
51 sy = np . array ([[0 , complex (0 , −1)] , [complex (0 , 1) , 0]])
52 sy2 = np . kron (sy , sy)
53 r = np . dot (sy2 , r)
54 r = np . dot (r , sy2)
55 r = np . dot (x , r)
56 EV = LA. e i g v a l s (r) . r e a l
57 EV[: : − 1] . s o r t ()
58 EV = np . s q r t (np . abs (EV))
59 re turn np . maximum(0 ,EV[0]−EV[1]−EV[2]−EV [3])
60

61 # funct ion to c r e a t e random 4∗4 densi ty matrix
62 def randDMnBELL () :
63 b e l l 1 = np . array ([[0 . 5 , 0 , 0 , 0 . 5] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 . 5 , 0 , 0 , 0 . 5]])
64 b e l l 2 = np . array ([[0 . 5 , 0 , 0 , − 0 . 5] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [− 0 . 5 , 0 , 0 , 0 . 5]])
65 b e l l 3 = np . array ([[0 , 0 , 0 , 0] , [0 , 0 . 5 , 0 . 5 , 0] , [0 , 0 . 5 , 0 . 5 , 0] , [0 , 0 , 0 , 0]])
66 b e l l 4 = np . array ([[0 , 0 , 0 , 0] , [0 , 0 . 5 , − 0 . 5 , 0] , [0 , − 0 . 5 , 0 . 5 , 0] , [0 , 0 , 0 , 0]])
67 L = rand4st ()
68 p = L [0]∗ b e l l 1 +L [1]∗ b e l l 2 +L [2]∗ b e l l 3 +L [3]∗ b e l l 4
69 U = randU (4)
70 p = np . dot (U, p)
71 p = np . dot (p ,H(U))
72 re turn p
73

74 # funct ion to transform DM 4∗4 to l i s t 15 parameters
75 def fromDMtoARpCC(x) :
76 re s = []
77 re s . append (x [0 , 0] . r e a l)
78 re s . append (x [1 , 1] . r e a l)
79 re s . append (x [2 , 2] . r e a l)
80 re s . append (x [0 , 1] . r e a l)
81 re s . append (x [0 , 1] . imag)
82 re s . append (x [0 , 2] . r e a l)
83 re s . append (x [0 , 2] . imag)
84 re s . append (x [0 , 3] . r e a l)
85 re s . append (x [0 , 3] . imag)
86 re s . append (x [1 , 2] . r e a l)
87 re s . append (x [1 , 2] . imag)
88 re s . append (x [1 , 3] . r e a l)
89 re s . append (x [1 , 3] . imag)
90 re s . append (x [2 , 3] . r e a l)
91 re s . append (x [2 , 3] . imag)
92 re s . append (Conc1 (x))
93 re turn np . array (r es)
94

95 def ClassC (x , bins=None) :
96 i f b ins i s None :
97 bins = 20
98 #−−−−−−−
99 p = Conc1 (x)

100 i f p==0:
101 r es = 0
102 e l i f i n t (p∗bins) <p∗bins :
103 r es = i n t (p∗bins) +1
104 e l s e :
105 r es = i n t (p∗bins)

60

106 re turn r es
107

108 # generate random p r o j e c t o r (|a><a |)
109 def randSW (n) :
110 re turn toDM(randP (n))
111

112 c o l l i s t = [’ f01 ’ , ’ f02 ’ , ’ f03 ’ , ’ f04 ’ , ’ f05 ’ , ’ f06 ’ , ’ f07 ’ , ’ f08 ’ , ’ f09 ’ , ’ f10 ’ ,
’ f11 ’ , ’ f12 ’ , ’ f13 ’ , ’ f14 ’ , ’ f15 ’ , ’ conc ’]

113 t r a i n = pd . DataFrame (columns= c o l l i s t , dtype= ’ f l o a t ’)
114 NTries = 100000
115

116

117 p r i n t (’ Data generat ion s t a r t e d . . . ’)
118

119 DBcounter = 0
120 f o r i in range (NTries) :
121

122 # f o r pure s t a t e
123 p = randSW (4)
124

125 # f o r mixed s t a t e
126 #p = randDMn ()
127

128

129 c = ClassC (p)
130 i f c ! = 0 :
131 t r a i n . l o c [DBcounter] = fromDMtoARpCC(p)
132 DBcounter=DBcounter+1
133 i f i % 5000 == 0 :
134 p r i n t (’ −> processed ’ , i , ’ out of ’ , NTries)
135

136 p r i n t (’ t o t a l # of records added ’ , DBcounter)
137 p r i n t (t r a i n . i n f o ())
138 t r a i n . to_csv (" train_concp3m . csv ")

61

A2 - Model Training Code

The Python code below was used to import our datasets containing the pure and mixed
state density matrices, then create and train the model to predict concurrence.

1 " " "
2 @author : l i s h e n
3 " " "
4

5 import pandas as pd
6 import numpy as np
7

8 # Read t r a i n i n g d a t a s e t i n t o X and Y
9 dataframe = pd . read_csv (" train_conc_p3m . csv ")

10 d a t a s e t = dataframe . values
11 X = d a t a s e t [: , 1 : 1 6] . astype (f l o a t)
12 Y = d a t a s e t [: , 1 7] . astype (f l o a t)
13

14 # read v a l i d a t i o n d a t a s e t i n t o X_valid and Y_valid
15 val id = pd . read_csv (" val idat ion_mixed . csv ")
16 val id1 = va l id . values
17 X_valid = val id1 [: , 1 : 1 6] . astype (f l o a t)
18 Y_valid = val id1 [: , 1 7] . astype (f l o a t)
19

20

21 # Define the neural network
22 from keras . models import Sequent ia l
23 from keras . l a y e r s import Dense , BatchNormalization
24 from keras . opt imizers import SGD, adam
25 from keras . c a l l b a c k s import EarlyStopping , ModelCheckpoint , History , Cal lback
26 from keras . models import model_from_json
27

28

29 def build_nn () :
30 model = Sequent ia l ()
31 model . add (Dense (1 5 , input_dim =15 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
32

33 # 3 l a y e r model
34 model . add (BatchNormalization ())
35 model . add (Dense (3 5 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
36 model . add (BatchNormalization ())
37 model . add (Dense (2 0 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
38 model . add (BatchNormalization ())
39 model . add (Dense (1 0 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
40

41 # 2 l a y e r model
42 # model . add (BatchNormalization ())
43 # model . add (Dense (5 0 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
44 # model . add (BatchNormalization ())
45 # model . add (Dense (2 5 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
46

47 # 1 l a y e r model
48 # model . add (BatchNormalization ())
49 # model . add (Dense (5 0 0 0 , i n i t = ’ normal ’ , a c t i v a t i o n = ’ r e l u ’))
50

51 # No a c t i v a t i o n needed in output l a y e r (because r e g r e s s i o n)
52 model . add (Dense (1 , i n i t = ’ normal ’))
53

54 # Addit ional parameters f o r tweaking i f using s t o c h a s t i c gradient descent (
sgd)

55 # epochs = 100

62

56 # l e a r n i n g _ r a t e = 0 . 1
57 # decay_rate = l e a r n i n g _ r a t e / epochs
58 # momentum = 0 . 8
59 # sgd = SGD(l r = l e a r n i n g _ r a t e , momentum=momentum, decay=decay_rate ,

nesterov=Fa lse)
60 # Compile Model
61 model . compile (l o s s = ’ mean_squared_error ’ , opt imizer= ’adam ’)
62 p r i n t (model . summary ())
63

64 # save model s t r u c t u r e to j son f i l e
65 model_json = model . t o _ j s o n ()
66 with open (" model_structure350 −200−100. j son " , "w") as j s o n _ f i l e :
67 j s o n _ f i l e . wri te (model_json)
68 # save model weights to HDF5 f i l e
69 p r i n t (" Saved model to disk ")
70 re turn model
71

72

73 model_path = ’ model_weights350−200−100_mixed . h5 ’
74

75 # prepare c a l l b a c k s
76 c a l l b a c k s = [
77 EarlyStopping (
78 monitor= ’ v a l _ l o s s ’ ,
79 pat ience =10 ,
80 verbose =1) ,
81

82 ModelCheckpoint (
83 model_path ,
84 # monitor = ’ v a l _ l o s s ’ ,
85 monitor= ’ l o s s ’ ,
86 save_best_only=True ,
87 verbose =0)]
88

89 # Evaluate model
90 from keras . wrappers . s c i k i t _ l e a r n import KerasRegressor
91 from sklearn . metr i cs import mean_squared_error
92

93

94 # def ine evaluat ion parameters
95

96 es t imator = KerasRegressor (
97 bui ld_fn=build_nn ,
98 epochs =500 ,
99 b a t c h _ s i z e =4000 ,

100 verbose =0
101)
102

103 # seed s t a r t i n g point to ensure r e p r o d u c i b l i l t y of r e s u l t s
104 seed = 7
105 np . random . seed (seed)
106

107

108 h i s t o r y = es t imator . f i t (
109 X ,
110 Y ,
111 epochs = 500 , # i n c r e a s e i t to 20−100 to get b e t t e r r e s u l t s
112 v a l i d a t i o n _ d a t a =(X_valid , Y_valid) ,
113 verbose =1 ,
114 c a l l b a c k s =c a l l b a c k s ,
115 s h u f f l e =True

63

116)
117

118

119 # save l o s s and v a l i d a t i o n l o s s data of each epoch
120 pd . DataFrame (h i s t o r y . h i s t o r y) . to_csv (" his tory350 −200−100Nmixed . csv ")
121

122

123 p r i n t (es t imator . p r e d i c t (X_valid))
124 p r i n t ()
125 p r i n t (’MSE t r a i n : { } ’ . format (mean_squared_error (Y , es t imator . p r e d i c t (X)))) #

mse t r a i n
126

127 # check performance on v a l i d a t i o n s e t
128 p r i n t (’MSE val : { } ’ . format (mean_squared_error (Y_valid , es t imator . p r e d i c t (

X_valid))))

64

A3 - Model Testing and Error Analysis

The Python code below was used to import the trained models, test the models, deter-
mine error metrics and save the results of predictions.

1 " " "
2 @author : l i s h e n
3 " " "
4 import pandas as pd
5 import numpy as np
6 from keras . models import model_from_json
7 from sklearn . metr i cs import mean_squared_error , mean_absolute_error
8

9

10 # Read pure s t a t e t e s t d a t a s e t i n t o X and Y
11 dataframe = pd . read_csv (" t ra in_conc_p . csv ")
12 d a t a s e t = dataframe . values
13 X = d a t a s e t [: , 1 : 1 6] . astype (f l o a t)
14 Y = d a t a s e t [: , 1 7] . astype (f l o a t)
15

16

17 # Read mixed s t a t e t e s t d a t a s e t i n t o X1 and Y1
18 dataframe1 = pd . read_csv (" train_conc_un . csv ")
19 d a t a s e t 1 = dataframe1 . values
20 X1 = d a t a s e t 1 [: , 1 : 1 6] . astype (f l o a t)
21 Y1 = d a t a s e t 1 [: , 1 7] . astype (f l o a t)
22

23 # def ine min and max v a r i a b l e s f o r c a l c u l a t i n g average percentage e r r o r
24 maxp = np . amax (Y)
25 maxm = np . amax (Y1)
26 minp = np . amin (Y)
27 minm = np . amin (Y1)
28

29 j s o n _ f i l e = open (’ model_structure350 −200−100. j son ’ , ’ r ’)
30

31 loaded_model_json = j s o n _ f i l e . read ()
32 j s o n _ f i l e . c l o s e ()
33 loaded_model = model_from_json (loaded_model_json)
34

35

36 # load weights i n t o loaded model
37 loaded_model . load_weights (" model_weights350−200−100_mixed . h5 ")
38

39

40 p r i n t (" Loaded model from disk ")
41

42

43 # evaluate loaded model on t e s t data
44 loaded_model . compile (l o s s = ’ mean_squared_error ’ , opt imizer= ’adam ’)
45 score = loaded_model . evaluate (X , Y , verbose =1)
46 score1 = loaded_model . eva luate (X1 , Y1 , verbose =1)
47

48 # c r e a t e p r e d i c t i o n arrays f o r computing p r e d i c t i o n e r r o r metr ics
49 predic tp = loaded_model . p r e d i c t (X)
50 predictm = loaded_model . p r e d i c t (X1)
51

52 # p r i n t ("% s : %.2 f%%" % (loaded_model . metrics_names [1] , score [1]∗1 0 0))
53 p r i n t ("%s : %.2 f%%" % (loaded_model . metrics_names [1] , score1 [1]∗1 0 0))
54 p r i n t
55 p r i n t (’================ ’)
56 p r i n t (’ Pure S t a t e S t a t s ’)

65

57 p r i n t
58 p r i n t (’MSE t e s t : { } ’ . format (mean_squared_error (Y , predic tp)))
59 p r i n t (’RMSE t e s t : { } ’ . format (mean_squared_error (Y , predic tp) ∗∗0 . 5))
60 p r i n t (’MAE t e s t : { } ’ . format (mean_absolute_error (Y , predic tp)))
61 p r i n t
62 errorp = (mean_squared_error (Y , predic tp) ∗∗0 .5/(maxp − minp)) ∗100
63 errorp1 = np . around (errorp , decimals = 2)
64 p r i n t " Percentage e r r o r : %s %%\n" % errorp1
65 p r i n t
66 p r i n t (’================= ’)
67

68 p r i n t (’ Mixed S t a t e S t a t s ’)
69 p r i n t
70 p r i n t (’MSE t e s t : { } ’ . format (mean_squared_error (Y1 , predictm)))
71 p r i n t (’RMSE t e s t : { } ’ . format (mean_squared_error (Y1 , predictm) ∗∗0 . 5))
72 p r i n t (’MAE t e s t : { } ’ . format (mean_absolute_error (Y1 , predictm)))
73

74

75 p r i n t
76 errorm = (mean_squared_error (Y1 , predictm) ∗∗0 .5/(maxm − minm)) ∗100
77 errorm1 = np . around (errorm , decimals = 2)
78 p r i n t " Percentage e r r o r : %s %%\n" % errorm1
79 p r i n t (’================== ’)
80

81 # save a c t u a l and predic ted concurrence data to csv f i l e f o r p o s s i b l e f u r t h e r
a n a l y s i s (such as graphs)

82 np . s a v e t x t (" y_comp_350−200−100_mixed . csv " , zip (Y , predictp , Y1 , predictm) ,
d e l i m i t e r =" , ")

66

References

[1] W Wootters. “Entanglement of Formation of an Arbitrary State of Two Qubits”. In:
Physical Review Letters 80.10, (Mar. 1998), pp. 2245–2248.

[2] G Strang. "Introduction to Linear Algebra, 5th edition". Wellesley-Cambridge Press,
(2016).

[3] M Nielsen, I Chuang. "Quantum Computation and Quantum Information 10th an-
niversary edition". Cambridge University Press, (2016).

[4] S Hassani. "Foundations of mathematical physics". Allyn and Bacon, (1991).

[5] J Bub. “Quantum Entanglement and Information”. In: The Stanford Encyclopedia
of Philosophy, (2017).

[6] A Einstein , B Podolsky, N Rosen. "Can Quantum-Mechanical Description of Physi-
cal Reality Be Considered Complete?". In: Phys. Rev. 47, 777, (1935).

[7] J Bell "On the Einstein-Poldolsky-Rosen paradox" In: Physics Vol 1, (1964).

[8] R Horodecki, P Horodecki, M Horodecki, K Horodecki, "Quantum entanglement".
Rev.Mod.Phys.81, (2009), pp. 865-942.

[9] A Peres. “Separability Criterion for Density Matrices”. In: Phys. Rev. Lett. 77,
(Aug. 1996), pp. 1413–1419.

[10] D Janzing. "Entropy of Entanglement". In: Greenberger, (2009), pp. 205–209.

[11] A Samuel. "Some Studies in Machine Learning Using the Game of Checkers". In:
IBM Journal of Research and Development 3 (3), (1959).

[12] B Marr. "A Short History of Machine Learning - Every Manager Should Read".
Forbes. Retrieved 28 Sep 2016.

[13] R Cuingnet. "Spatial regularization of SVM for the detection of diffusion alter-
ations associated with stroke outcome". In: Medical Image Analysis 15 (5), (2011), pp.
729–737.

[14] http://dogsofthedow.com/largest-companies-by-market-cap.htm.

[15] T Hastie, R Tibshirani, J Friedman, "The Elements of Statistical Learning (2nd ed.)"
Springer (2008), pp. 587–588.

67

[16] A Coates, H Lee, A Ng. "An analysis of single-layer networks in unsupervised
feature learning". In: Int’l Conf. on AI and Statistics, (2011).

[17] C Charliepaul, G Gnanadurai. "Comparison of k-mean algorithm and apriori algo-
rithm–An analysis". In International Journal On Engineering Technology and Sciences,
(July 2014), pp. 2349-3968.

[18] https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-
learning-implementation/.

[19] https://commons.wikimedia.org/wiki/File:Neuron.svg

[20] W McCulloch, W Pitts. "A Logical Calculus of Ideas Immanent in Nervous Activ-
ity". In: Bulletin of Mathematical Biophysics. 5 (4), (1943), pp. 115–133.

[21] F Rosenblatt. "The Perceptron: A Probabilistic Model For Information Storage And
Organization In The Brain". In: Psychological Review 65 (6), (1958), pp. 386–408.

[22] M Minsky, S Papert. "Perceptrons: An Introduction to Computational Geometry"
(The MIT Press), (1969)

[23] Y LeCun, L Bottou, Y Bengio, P Haffner. "Gradient Based Learning Applied to
Document Recognition" In: Proceedings of IEEE 86(11), (1998), pp. 2278–2324.

[24] https://medium.com/machine-learning-world/how-to-debug-neural-networks-manual-
dc2a200f10f2

[25] M Schuld, https://commons.wikimedia.org/wiki/File:Qml_approaches.tif.

[26] H Kolanoski. “Applications of artificial neural networks in particle physics”. In:
Nuclear Instruments and Methods in Physics Research A 367, (1995), pp. 14-20.

[27] D Monroe."Neuromorphic computing gets ready for the big time". In: Communi-
cations of the ACM. 57, (2014), pp. 13–15.

[28] E Stoudenmire, D Schwab. "Supervised Learning with Quantum-Inspired Tensor
Networks". In: Advances in Neural Information Processing Systems 29, 4799, (2016).

[29] X Zhang, XM Zhang, ZY Xue. "Quantum hyperparallel algorithm for matrix mul-
tiplication". In: Nature Publishing Group, (April 2016).

[30] M Schuld, I Sinayskiy, F Petruccione. “The quest for a Quantum Neural Network”.
In: Quantum Information Processing 13, (2014).

[31] K Zyczkowski. “On the volume of the set of mixed entangled states”. In: Phys.Rev.
A58, (1998).

[32] S Ioffe, C Szegedy. "Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift". In: arXiv:1502.03167, (Feb 2015).

68

[33] S Ruder. "An overview of gradient descent optimization algorithms". In: arXiv:1609.04747,
(Sep 2016).

[34] K Zyczkowski. “Generating random density matrices”. In: J. Math. Phys. 52,
(2011).

[35] https://qnncloud.com/document/WhitePaper-En.

[36] E Prugovečki. "Quantum mechanics in Hilbert space, 2nd edition". Academic
Press, (1981).

[37] F Mezzadri. “Generating random density matrices”. In: Notices of the AMS, Vol.
54 (2007), pp. 592-604.

[38] J von Neumann. "Mathematical Foundations of Quantum Mechanics, 1st edition".
Princeton University Press, (1955).

[39] M Karim, S Rivera. "Comparison of feed-forward and recurrent neural networks
for bioprocess state estimation". Computers and Chemical Engineering, Volume 16,
Supplement 1, (1992), pp. 369-377.

[40] I Goodfellow. "Deep Learning (Adaptive Computation and Machine Learning se-
ries)". The MIT Press, (2016)

[41] J Clauser, M Horne, A. Shimony, R.A. Holt. "Proposed experiment to test local
hidden-variable theories", Phys. Rev. Lett. (1969)

[42] B Hensen, H Bernien. "Loophole-free Bell inequality violation using electron spins
separated by 1.3 kilometres", Nature volume 526, (2015), pp. 682–686

69

	Preface
	Declaration of Authorship
	Publications
	Abstract
	Acknowledgements
	Contents
	Notations
	Quantum Information
	Mathematical Formalism of Quantum Mechanics
	Hilbert Space
	Vectors in Hilbert Space
	Eigenvectors
	Hermitian Matrices
	Unitary Matrices
	Schmidt Decomposition

	The Schrödinger equation
	Time Dependent
	Time Independent
	Quantum Superposition

	Basics of Quantum Information
	Entanglement
	What is Entanglement?
	History of Entanglement
	Basic Formalism of Bipartite Entanglement

	Measures of entanglement
	Positive Partial Transpose (PPT)
	Entanglement of Formation
	Von Neumann Entropy
	Purity

	Concurrence
	Concurrence determination of an entangled two-qubit pure state
	Concurrence determination of an entangled two-qubit mixed state

	Machine Learning
	Evolution of Machine Learning
	Popular Machine Learning techniques
	Supervised Learning
	Regression Analysis
	Support Vector Machines
	Decision Tree
	Random Forest

	Unsupervised Learning
	K-means clustering
	Apriori algorithm

	Reinforcement Learning

	Artificial Neural Networks
	Development of Neural Networks
	Advantages and Disadvantages of Neural Networks versus other machine learning techniques
	Basic Topology of an Artificial Neural Network
	Popular types of Artificial Neural Networks
	Multi-Layer Perceptron Neural Network
	Convolutional Neural Network (ConvNet)
	Simple Recurrent Neural Network

	Machine Learning and its relationship with Physics
	Artificial Neural Networks in Physics
	Machine Learning and Quantum Physics
	Quantum Neural Network

	Data generation, preprocessing and Neural Network Structure
	Data Generation
	Generating random pure states
	Generating random mixed states
	Random number generation
	Using the random numbers to generate our mixed states

	Data Preprocessing:
	Feature Scaling

	Artificial Neural Network Implementation
	TensorFlow and Keras
	Construction of the implemented artificial neural networks
	One Hidden Layer Neural Network
	Training on one hidden layer neural network

	Two Hidden Layer Neural Network
	Training on two hidden layer neural network

	Three Hidden Layer Neural Network
	Training on three hidden layer neural network

	Concurrence Prediction using Neural Networks
	Error Metrics
	Root Mean Squared Error and Mean Absolute Error
	Mean and Standard Deviation of Error distribution
	Average Percentage Error

	Prediction on a one hidden layer neural network:
	Trained on mixed state inputs
	Trained on pure state inputs

	Prediction on a two hidden layer neural network:
	Trained on mixed state inputs
	Trained on pure state inputs

	Prediction on a three hidden layer neural network:
	Trained on mixed state inputs
	Trained on pure state inputs

	Analysis of Results and Recommendations for further research
	Results Analysis
	Recommendations for further research

	Appendix A - Python Code
	References

