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ABSTRACT 
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the main cause of death 

from a single infectious agent. Although a quarter of the world population is estimated to be 

infected with TB, only 5–10% of these individuals will develop active disease during their 

lifetime, suggesting that the immune system is highly effective at containing Mtb infection in 

most people. Extensive analysis of T-cells in blood has, however, failed to identify correlates 

of protection in humans, which is a prerequisite for rationale vaccine design. A likely 

explanation for this failure is that most memory T-cells in lung tissue do not recirculate in 

blood. Indeed, adoptive transfer of lung T-cells from infected mice protects recipients from 

Mtb challenge whereas transfer of blood T-cells does not. While the crucial role of T-cells in 

controlling Mtb infection is well appreciated, the role of B cells and humoral immunity in TB 

disease is unclear. Furthermore, human studies that directly compare the B-cell involvement 

in TB between infected lung tissue and matched peripheral blood are lacking. Therefore, this 

study was based on the premise that studying the human adaptive immune responses to Mtb 

at the site of infection would provide new findings that are not present in the systemic 

circulation. Thus, we hypothesised that the lung T and B-cell responses to TB in humans are 

fundamentally different from those in the blood, because they involve cells that do not 

recirculate (particularly T-cells). The overall aim was to determine the phenotype, function 

and TB specificity of adaptive immune responses (T and B-cells) at the site of TB disease 

and to understand how they correlate with the responses detectable in circulation. To achieve 

this, a cohort of study participants undergoing medical lung resection for tuberculosis related 

lung pathologies was established 

  

The results presented in this thesis show that lung T-cells are different from peripheral blood 

T-cells in terms of phenotype, function, and specificity. Lung tissue contains a distinct 

population of effector memory T-cells expressing canonical markers of Tissue Resident 

Memory (Trm) T-cells, including CD69 and CD103, which are expanded during active TB 

disease. These Trm are highly functional, are enriched for IL-17 and IFN-γ secreting cells, 

and are depleted by HIV co-infection, compared to matched blood samples. In addition, they 

are highly enriched for TB-specific T-cells, including TB-specific Th17 and regulatory T-cell 

subsets. Th17 TB-specific T-cells in the lung negatively correlate with plasma cytokine 

markers of inflammation, suggesting an important role for this subset in human lung in 

limiting disease severity. Interestingly, although CD103 expressing T-cells produce the 

highest levels of cytokine by non-specific stimulation, TB-specific T-cells in the lung lack 



 xxi 

CD103 expression. Finally, detailed phenotyping of lung Trms was conducted using Mass 

cytometry and a panel of 40 T-cell markers. This confirmed patterns of expression of markers 

that are consistent with published data, including CXCR3, PD1, KLRG1 and other integrins. 

 

The existence of Trms in TB infected lung tissue was also investigated by global TCR 

sequencing. This revealed a significant clonal expansion of T-cells in the lung tissue 

compared to peripheral blood, consistent with a non-recirculating tissue resident memory 

population. When T-cells from blood and lung tissue were pre-sorted by flow cytometry 

before TCR sequencing, the results clearly demonstrated that the lung tissue is made of up to 

20% clonally expanded T-cell clones that do not recirculate. This approach was also used to 

investigate the potential contribution of non-classical, donor unrestricted T-cells to lung 

immunity. By flow cytometry and TCR sequencing, we show that unconventional T-cells 

such as mucosal associated invariant T-cells (MAIT), germline-encoded mycolyl-reactive 

(GEM) T-cells and γδ T-cells are all depleted in peripheral blood of TB infected individuals 

compared to healthy controls while iNKT cells are not. However, this is unlikely to be due to 

recruitment to the site of disease, as no subset was consistently expanded in the lung, GEMs 

were rarely detected and γδ T-cells were present at a much lower frequency than in matched 

blood. Indeed, this study demonstrates the presence of unique and expanded γδ T-cells in TB 

infected lung that are absent in circulation, suggesting some DURTs may also exist as non-

recirculating lung resident memory cells.  

 

Analysis of B-cells in individuals with TB revealed skewing of blood B-cell phenotypes in 

both active and latent TB infection and an enrichment of total B-cells in the lung compared to 

matched blood. Lung B-cells were mainly of memory B-cell phenotype including 

plasmablasts, and, like T-cells, were enriched for the expression of the Trm marker CD69, 

suggesting that B-cells in the lung probably do not recirculate. This potential Trm B-cell 

population was enriched for B-cell activation markers, CD95 and HLA-DR, suggesting 

involvement at the site of disease. However, using TB-specific BAITs, the frequency of TB 

specific B-cells in the lung tissue was found to be lower compared to TB specific B-cells in 

blood. The functional role of B-cells in TB disease warrants further investigation. 

 

These results provide clear evidence of compartmentalization of the adaptive immune 

responses to Mtb in the human lung, which maybe important when interpreting data from 

human PBMC for correlates of protection or vaccine response. 
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CHAPTER 1: OVERVIEW OF ADAPTIVE IMMUNE RESPONSES TO 

TUBERCULOSIS 

 
1.1 Tuberculosis disease 
 
Despite tuberculosis (TB) being a disease of antiquity (Dubos and Dubos 1952), it still causes 

more deaths (1.7 million in 2016) than HIV (http://www.who.int/tb/en/) (WHO  2017). 

Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, is estimated to have infected 

23% of the current human population (Houben and Dodd 2016) and progressed to cause 

active disease in 10.4 million people in 2016 (figure 1) (WHO 2017). Many years of 

coevolution of Mtb with  humans has resulted in an infection that induces partial immunity, 

where the host survives most of the time and so does the pathogen (Ernst 2018). Indeed, most 

people that encounter Mtb do not progress to active TB disease and are considered to have 

latent TB infection (LTBI) (O'Garra et al 2013; Jeyanathan et al 2018; Ernst 2018). Although 

only 5% - 10% of people progress to active TB disease, a person with active TB is estimated 

to transmit TB to an average of 10 other people per year, super spreaders (Kline, Hedemark, 

and Davies 1995; Curtis et al. 1999; Ypma et al. 2013) may infect as many as 200, so 

progression from LTBI to active TB occurs at a rate sufficient to sustain the global epidemic 

(Ernst 2018).  

 

South Africa remains one of the highest burdened countries in all three WHO-defined 

tuberculosis categories: tuberculosis, multi-drug resistant (MDR) tuberculosis, and 

tuberculosis/HIV coinfection cases (Ismail et al. 2018). Moreover, sputum-positive TB 

prevalence in South Africa was 5% among symptomatic participants who remained 

unidentified by the health system (Claassens et al. 2013), mainly due to low rates of TB 

screening and testing (Kweza et al. 2018). Of additional concern, is the fact that active TB 

among healthcare workers (HCWs) in South Africa was 1565 per 100,000 in 2015 - more 

than double the notification rate in the general adult population (WHO  2016). Although mine 

workers are estimated to contribute a disproportionately large number of Mtb infections in 

South Africa on a per-capita basis, mine work contribute only a small fraction of overall Mtb 

infections in South Africa (Chang et al. 2018). This disproportionate infection rate in the 

population requires that control efforts should be intensified. 
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Figure 1: Estimates TB incidence rates, 2016. Source, WHO Global Tb report 2017. 

 

In high burden settings, like South Africa, TB has its peak incidence in early adulthood, 

affecting the most economically productive age-groups (Heemskerk et al. 2015). Infection 

with HIV (figure 2) greatly increases the chances of an individual developing active TB 

following exposure (primary TB), or of having reactivation of latent disease (post primary 

TB), with the probability increasing as immunosuppression advances (Lin and Flynn 2010). 

In general, HIV coinfection increases the chance of developing active TB disease from 10% 

lifetime risk in individuals with latent TB to a 10 % annual risk (Światowa Organizacja 

Zdrowia 2008). Other risk factors for developing active TB include smoking, occupational 

lung damage, social networking pattern, diabetes and other co-morbidities (Heemskerk et al. 

2015). 
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Figure 2: Estimated HIV prevalence in new and relapse TB cases, 2016. Source, WHO Global 
TB report 2017. 
 
 
TB is spread through the air by people with active pulmonary disease, so mechanisms that 

promote release of bacteria from the lungs benefit the bacteria, and TB is unique in its ability 

to exploit adaptive immune responses (through inflammatory lung tissue damage) to promote 

its transmission (Heemskerk et al 2015; Cadena et al 2017; Ernst 2018). TB is curable, but 

despite the availability of anti-TB drugs, there were an estimated 500,000 new cases of drug-

resistant TB in 2016 (WHO 2017), suggesting that TB treatment could have been inadequate 

or that there were high mutation rates of Mtb bacilli. The inadequacy of drug treatment can 

also result from a combination of factors such as the patient inability to access drugs due to 

lack of time, money, stock-outs, shut downs or the drug doses may be inappropriate due to 

the presence of comorbidities. Thus, alternative TB control strategies like improved vaccine 

and vaccination strategies are warranted. Cure rates are lower with resistant strains, the drugs 

are more costly and more toxic, and drug-resistant Mtb can be transmitted to other individuals 

(Shah et al. 2017). Given that approximately 90% of people who are infected with Mtb do not 

develop active TB disease proves that the immune system is capable of containing the disease 

and provide sufficient premise that a vaccination strategy has a realistic chance of TB disease 

eradication. This is greatly supported by a recent clinical trial of a new subunit TB vaccine 

from Glaxo Smithkline, M72/AS01E, which showed a 54% efficacy in preventing 
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progression to active TB in infected adults (Van Der Meeren et al. 2018). However, there 

clearly remains room for improvement and understanding the mechanisms of protective 

immunity to TB are key to this. Specifically, more data is crucially needed on the 

immunological processes that occur at the site of TB disease in humans since correlates of 

protection identified from studies of systemic immune signatures vary depending on the age 

group studied (Fletcher et al 2016) while other blood signatures reveal correlates of 

tuberculosis disease risk (Petruccioli et al 2016). 

 

1.2 Initial immune events upon TB infection 
 

Among the earliest immune cells that respond against Mtb are the alveolar macrophages and 

dendritic cells. Macrophages, dendritic cells and other innate immune cells recognize 

mycobacterial structures, termed pathogen associated molecular patterns (PAMPs), via 

membrane associated pattern recognition receptors (PRRs), of which the most studied are the 

Toll-like receptors (TLR2, TLR4, TLR9) (Mittal et al. 2018; Blanc et al. 2017; Schurz et al. 

2015). On interaction with the TLRs, signalling pathways are activated which lead to the 

production of predominantly proinflammatory cytokines, such as TNF, IL-1b, IL-12 and 

nitric oxide (Kleinnijenhuis et al. 2009; van Crevel, Ottenhoff, and van der Meer 2002).  

 

Mycobacteria are phagocytosed by these innate immune cells and should be destroyed 

through phagosome-lysosome fusion and acidification (by H2O2 and other reactive oxygen 

intermediates).  However, Mtb appears to have the ability to subvert this process and evade 

destruction (Sullivan et al. 2012). Essentially, early immune response mediated through 

macrophages can have three major results; (1) cell necrosis, (2) apoptosis and, (3) survival of 

the infected macrophages. If the cell undergoes necrosis, mycobacteria are released and may 

infect new macrophages or disseminate, whereas an apoptotic cell membrane is not 

compromised and the bacteria are destroyed with the macrophage (Heemskerk et al. 2015). 

Survival of infected macrophages, on the other hand, enables the mycobacteria to persist and 

even proliferate before the adaptive immune response is activated. This happens when Mtb 

antigen specific T-cells have been selected in the regional lymph nodes and generally occurs 

only 2 – 6 weeks (depending on host) after primary infection (Sáenz et al. 2013; Grace and 

Ernst 2016). This process is initiated by dendritic cells, important mediators between the 

innate and adaptive immune response, which phagocytose in the lung and present 

mycobacterial antigens to naïve T-cells after migrating to regional lymph nodes (Pancholi, 
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Steinman, and Bhardwaj 1992; Baird et al. 1995; Shafiani et al. 2013, Enamorado et al 2018). 

Following priming in lymph nodes, activated CD4+ T-cells migrate to the lungs to impede 

mycobacterial progressive growth, in part through activation of macrophages. IFN-γ is key to 

this process and it’s production by T-cells is essential in macrophage activation and 

intracellular mycobacterial killing (Flynn et al. 1993). Other cytokines play important roles in 

the immune response to TB, including TNF-α, produced by macrophages, dendritic cells and 

T-cells, which is central to granuloma formation, macrophage induction and has 

immunoregulatory properties (Singh et al. 2011). The important role TNF-α cytokine has 

been clearly demonstrated by the observation of increased risk of tuberculosis in patients 

treated with all TNF-α antagonists for major conditions including rheumatoid arthritis, 

ulcerative colitis, ankylosing spondylitis, psoriatic arthritis among other conditions (Bruns et 

al. 2009; Miller and Ernst 2009; Zhang et al. 2017). Data on T-cell functionality and 

specificity assays in the human tuberculous lung in this thesis are robustly measured by TNF-

α production after intracellular cytokine staining of simulated cells. Other cytokines including 

IFN-γ, IL-2 and IL-17 were also measured.  

 

1.3 Tuberculosis granuloma 

Most TB infections are localized in the lung, resulting in pulmonary TB disease. Some 

patients present with a more lethal phenotype of disseminated extra-pulmonary TB disease 

such as TB meningitis (Thwaites and Tran 2005). However, this study is focused on 

pulmonary TB, particularly immune responses within the lung, which is therefore the 

emphasis of this review. Following inhalation of virulent Mtb - containing aerosol droplets 

into the alveoli of the lung, the bacteria are phagocytosed by resident alveolar macrophages 

(Russell 2007). This creates an early influx of phagocytic cells, including more alveolar 

macrophages, neutrophils, and dendritic cells (DCs) that arrive to this infection focus which 

marks the beginning of the formation of a granuloma (Flynn and Chan 2001; O’Garra et al. 

2013). Cytokines, chemokines and other inflammatory mediators produced and secreted by 

these cells, mainly by macrophages, recruit additional leukocytes from the circulation to the 

site of infection (Ramakrishnan 2012).  The resulting granulomas are highly cellular 

structures that contribute to limiting the spread of Mtb (Reece and Kaufmann 2012; Silva 

Miranda et al. 2012; Cadena, Fortune, and Flynn 2017). Observations in M. marinum 

zebrafish model helped to characterize the earliest cells that are recruited to the infection site 

and found that macrophages, and not neutrophils, were the most dominant phagocytosing 
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cells in the first 4 days post infection (Clay et al. 2007). In a different animal model, studies 

with both Mtb (Wolf et al. 2007) and M. bovis BCG (Humphreys et al. 2006) in the mouse 

suggested that there is early infection of alveolar macrophages, various populations of DCs, 

and neutrophils (Tsai et al. 2006). The use of reporter strains of Mtb, for example green 

fluorescent protein (GFP)-labelled Mtb, have further revealed not only the diversity but also 

the dynamic interplay between host cells and bacteria, as studied in animal models especially 

in the mouse (Wolf et al. 2007; Sukumar et al. 2014). These observations demonstrate the 

diverse range of early phagocytic responder cells to Mtb infection and implicate their initial 

influence on the progression of early disease. 

 

 
 

 
Figure 3: Schematic representation of tuberculosis granuloma. Cellular organization of the 

pathological hallmark of TB disease showing arrangement of immune cells around Mtb bacilli. 

Image reproduced from Cadena et al 2017 
 

TB granulomas are highly heterogenous in nature and, the lungs usually contain multiple 

infection foci (Subbian et al. 2015; Gideon et al. 2015; Cadena, Fortune, and Flynn 2017). Of 
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note, granulomas in Mtb-infected human lungs mature and evolve independently of each 

other, determined primarily by local immunity and bacteria-derived factors (Fukusumi et al. 

2013; Hunter 2011; Ulrichs et al. 2005). In most cases, at the centre of the granuloma, 

heavily infected macrophages that are unable to control bacillary growth undergo necrosis, 

releasing Mtb as well as host cell contents into the extracellular milieu (Subbian et al. 2015). 

These bacilli can be phagocytosed by newly arriving macrophages, resulting in further 

recruitment and activation of immune cells, and the formation of larger and more 

differentiated granulomas (Russell et al. 2009; Dannenberg 2006). In some granulomas, the 

necrotic centre may undergo caseation and liquefaction, ultimately leading to cavity 

formation ( Kim et al. 2010; Cardona 2011). Cavitation facilitates dissemination of the 

infecting bacilli from the granuloma via the airways to the external environment (Kaplan et 

al. 2003; Grosset 2003). The mechanisms that define controlling granulomas, whose global 

effect would result in latency, are less clearly defined (Marakalala et al. 2016), and this is 

further complicated by the observation in non-human primate studies where macaques with 

active TB as well as those with latent TB had sterile granulomas (Lin et al. 2014). Data 

suggest that controlling granulomas (sometimes to the level of lesional sterilization) is a 

consequence of the level of bacterial killing in the individual lesions and this happens at the 

induction of adaptive immune responses (Lin et al. 2014).  Lin et al found that fibrocalcific 

lesions contain less viable bacteria and represent sites of bacterial control whereas caseous 

sites are associated with poor control (Lin et al. 2014). 
 

Evidence from non-human primates and humans suggest that at the granuloma level, there 

exists an association between the maturation state of a lesion and the level of immune-

stimulation (Kim et al. 2010; Lin et al. 2014; Gideon et al. 2015; Cadena, Fortune, and Flynn 

2017). In general, cavitary lesions with numerous acid-fast bacilli (AFB) appear to be 

immunologically more active, while the fibrotic nodules and other lesions with scanty or no 

AFB appear less active (Subbian et al. 2015). Consequently, granulomas play a crucial role in 

the control of Mtb infection and establishment of latency (LTBI) as well as in the spread of 

the disease (active TB).  These data support the hypothesis that the outcome of Mtb infection 

is determined at the granuloma level and the sum total of granulomas are collectively 

responsible for disease outcome at the total host level (Gideon et al. 2015). 

 

Thus, the TB granuloma is the pathological hallmark of pulmonary TB disease. Complete 

granuloma formation requires the adaptive immune responses, orchestrated mainly by T-cells 
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(Flynn et al. 2015; Marakalala et al. 2016; Kauffman et al. 2018; Cadena, Fortune, and Flynn 

2017).  Upon the development of adaptive immunity, granulomas acquire a more intact 

structure with the macrophage-rich centre surrounded by CD4+ and CD8+ T-cells and B-cells 

resulting in a lymphocytic cuff at the periphery of the structures (Marakalala et al. 2016; 

Kauffman et al. 2018; Cadena, Fortune, and Flynn 2017; Gautam et al. 2018). Heterogeneity 

of granuloma is not only limited to the cell composition but also to the functionality of the 

cells. Functional dynamics of T-cells with respect to cytokine profile and bacterial burden of 

individual granulomas in the macaque model showed that each granuloma is independent 

with respect to total cell numbers, frequency of T-cells, patterns of cytokine response and 

bacterial burden within an individual host and among animals (Gideon et al. 2015). 

Therefore, the complex organization of granulomas, with their populations of macrophages 

and lymphocytes suggest that there is significant cross-talk between cell types, and that for 

granulomas to function properly there needs to be coordination between these cell types 

(Flynn et al. 2015; Kauffman et al. 2018). 

 

1.4 T-cells: beyond the granuloma formation 

The essential role of T-cells in controlling Mtb infection has been demonstrated by several 

lines of evidence, in both animal models and human infections.  Data from knock out studies 

show that Mtb infection of mice deficient in CD4+ T-cells results in higher bacterial burdens 

in the lung and other tissues and in shortened survival compared with infection of 

immunocompetent mice (Flory, Hubbard, and Collins 1992; Ladel et al. 1995; Caruso et al. 

1999; Mogues et al. 2001; Green, Difazio, and Flynn 2013; Sakai et al. 2016). Non-human 

primates depleted of CD4+ T-cells are also highly susceptible to Mtb infection (Flynn and 

Chan 2001; Yao et al. 2014). During latent infection in macaques, depleting CD4+ T-cells 

with antibody for up to 14 weeks resulted in half of the animals developing reactivation of 

TB (Lin et al. 2012; Yao et al. 2014). In humans coinfected with TB and HIV, CD4+ T-cell 

deficiency leads to poor granuloma formation, a higher frequency of progression to active 

TB, a higher frequency of disseminated extrapulmonary disease, and higher mortality 

(Selwyn et al. 1989; Chaisson et al. 1987; Perlman et al. 1997; Grace and Ernst 2016; Murray 

et al. 2018).  

 

Data suggests that the protective role of T-cells during Mtb infection goes beyond just the 

frequency of T-cells but crucially the quality and type of immune molecules they produce.  In 
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the lung, T-cells are required for their macrophage-activating and cytolytic activities, which 

are essential for control of not only initial Mtb infection but also persistence of the infection 

(Cooper and Khader 2008; Flynn and Chan 2001; Flynn and Ernst 2000; O’Garra et al. 

2013). T-cells are significant sources of pro-inflammatory cytokines IFN-γ and TNF-a, that 

are necessary for macrophage activation and protection. Other T-cell produced cytokines 

such as IL-2 or IL-17 have been reported to stimulate proliferation, activate local cells, or 

recruit cells from the periphery to the primary site of Mtb infection (Algood, Lin, and Flynn 

2005; Cooper and Khader 2008; O’Garra et al. 2013; Brighenti and Andersson 2012; Khader 

and Gopal 2010; Millington et al. 2007). On the other hand, anti-inflammatory/regulatory 

cytokines such as IL-10 are also produced by T-cells at the site of infection (Redford, 

Murray, and O’Garra 2011). These anti-inflammatory cytokines may be important in 

reducing pathology, although this remains controversial. Studies indicate that additional T-

cell cytokines, such as GM-CSF, may play a direct role in Mtb control within the lung, 

although the details are less clear (Rothchild et al. 2014, 2017). Finally, lung lesion 

associated T-cells also express cytolytic and antimicrobial factors including perforin, 

granzyme B, and granulysin, which may have direct anti-Mtb activity (Flynn et al. 2015).  

 

Although T-cells produce different kinds of cytokines during Mtb infection, available data 

indicate that Th1 polarized effector responses play a central role in host resistance to TB 

(Sáenz et al. 2013; Grace and Ernst 2016). For example, in non-human primates, it has been 

observed that despite the loss of CD4+ T-cells, control of infection did not correlate with 

decreased IFN-γ production, suggesting that the loss of CD4+ T-cells may result in 

suboptimal CD8+ T-cell responses (Lin et al. 2012; Yao et al. 2014). Finally, humans with 

inborn errors in genes involving IFN-γ signalling, and mice deficient in IFN-γ signalling or 

T-bet are all extremely susceptible to Mtb infection (Cooper et al. 1993; Flynn et al. 1993; 

van Crevel, Ottenhoff, and van der Meer 2002; Filipe-Santos et al. 2006; North and Jung 

2004; Sullivan et al. 2005).  

 

Improvements in techniques of studying immune cells in infected tissues have increased our 

understanding of the T-cell responses to Mtb infection in the lung. Data from mouse model 

has elegantly demonstrated that in tuberculosis infected lung, the CD4+ T-cell response 

against Mtb is composed of two major subsets that either enter the lung parenchyma or reside 

within the vasculature (Sakai et al. 2014) allowing investigators to tease out the contribution 
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of each subset, within the same tissue, in Mtb control. Unfortunately, the same group did not 

observe the same phenomenon in non-human primate model of tuberculosis in a later study 

(Kauffman et al 2017). From these two incongruent results in two different animal models, it 

is unclear which of the two models mimic events that occur in the human lung during TB 

disease. On the basis of cell surface markers, the parenchymal effectors express CXCR3 and 

are PD-1hi/CD69hi, likely reflecting their access to antigen within the tissue. In contrast, most 

of the vasculature CD4+ T-cells express CX3CR1 and have a more terminally differentiated 

phenotype (KLRG1hi/T-bethi). By studying the granuloma, it has been shown that the 

important role of CD4+ T-cells in controlling Mtb infection is dependent on direct contact 

between the CD4+ T-cells and infected antigen presenting cells (Srivastava and Ernst 2013; 

Kauffman et al. 2018). Thus, it is likely that the enhanced protective capacity of the 

parenchymal-homing subset (Sakai et al. 2014) is principally due to its ability to gain access 

to the infected cells in the granuloma; conversely, the relative ineffectiveness of the 

CX3CR1+ subset is likely due to its inability to enter the lung tissue.  

 

The role of PD-1 expressing CD4+ T-cells during TB infection continues to be appreciated 

but whether these cells are protective (especially in humans) is not yet clear. Lázár-Molnár et 

al demonstrated protective role of PD-1 in mouse model following aerosol Mtb infection 

(Lázár-Molnár et al. 2010). PD-1–deficient mice showed dramatically reduced survival 

compared with wild-type mice. They showed that the lungs of the PD-1−/− mice showed 

uncontrolled bacterial proliferation and focal necrotic areas with predominantly neutrophilic 

infiltrates, but a lower number of infiltrating T and B-cells. Proinflammatory cytokines, 

including TNF-α, were significantly increased in the lung and sera of infected PD-1−/− mice, 

consistent with an aberrant inflammation. Additionally, microarray analysis of lungs infected 

with Mtb between PD-1−/− and wildtype mice showed that the PD-1 pathway is required to 

control excessive inflammatory responses after Mtb infection in the lungs (Lázár-Molnár et 

al. 2010). Thus, PD-1 is essential for containment Mtb infection and prolonged survival. 

Although IFN-γ is important for controlling Mtb, excessive production by parenchymal 

CD4+ T-cells exacerbates lung infection and leads to the early death of the host (Sakai et al. 

2016). Sakai and colleagues demonstrated that PD-1 facilitates host resistance to Mtb by 

preventing the detrimental over-production of IFN-γ by CD4+ T-cells by specifically 

suppressing the parenchymal accumulation of, and pathogenic IFN-γ production by the 

CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T-cells that otherwise mediates 

control of Mtb infection. Mucosal BCG vaccination induced antigen-specific CD4+ T-cells 
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that were PD-1+ KLRG1− were recently associated with enhanced protection against Mtb 

infection (Bull et al. 2018), most importantly, these cells were exclusively present within the 

lung parenchyma and airways. However, these lung parenchymal PD-1+ KLRG1− CD4+ T-

cells decreased with time after mucosal BCG vaccination. 

 

Whereas animal models show protective role for PD-1 in TB, human studies show 

association of PD-1 with high bacterial burden and disease progression. PD-1 expression on 

CD4+ or Th1 lymphocytes was associated with a high extent of disease, as defined by a 

higher radiographic score of active TB patients implying that the percentage of PD-1 is 

induced by TB bacilli, and that it increases with disease progression (Shu et al. 2017). 

Furthermore, ex vivo stimulation of peripheral blood lymphocytes with PMA and ionomycin 

showed a significantly higher expression of PD-L1 on CD4+IFN-γ+ and CD4+IL-17+ T-cells 

in tuberculosis infected subjects than healthy controls. Shen and colleagues reported 

increased expressions of PD-1 and its ligands on CD4+ T-cells among patients with active 

tuberculosis (Shen et al. 2016). By blocking PD-1/PD-L pathway, there was an enhanced 

proliferation of Mtb -specific CD4+ T-cells in vitro and inhibition of the PD-1/PD-L pathway 

helped to control M. bovis bacillus Calmette-Guerin (BCG) replication in macrophages co-

cultured with CD4+ T-cells in vitro. Thus, the PD-1/PD-L pathway inhibits not only Mtb-

specific CD4+ T-cell-mediated immunity but also innate immunity, such as phagocytosis of 

macrophages in active TB. Most recently, Day et al observed higher levels of PD-1 on Th1 

cytokine-producing Mtb-specific CD4+ T-cells from patients with smear-positive TB, 

compared with smear-negative TB and LTBI, which decreased after completion of anti-TB 

treatment. By in vitro stimulation of PBMC with Mtb antigens, they demonstrated that PD-1 

is induced on proliferating Mtb-specific CD4+ T-cells and that Th1 cytokine production 

capacity is preferentially maintained within PD-1+ proliferating CD4+ T-cells, compared 

with proliferating Mtb-specific CD4+ T-cells that lack PD-1 expression (Day et al. 2018). 

Thus, expression of PD-1 on Mtb-specific CD4+ T-cells was indicative of mycobacterial 

antigen exposure and treatment response in human TB.  However, cases of patients 

developing acute pulmonary tuberculosis during immune checkpoint inhibitor treatment does 

show that continued abrogation of PD-1 expression in humans can be detrimental. One such 

case was a patient with relapsed Hodgkin’s lymphoma who was receiving pembrolizumab (2 

mg/kg) and in whom fever, and unintentional weight loss developed after the fifth cycle. 

Tuberculosis infection was confirmed by Mtb growth on a sputum culture (Lee, Chan, and 

Tang 2016). In yet another case, active TB (positive for acid-fast bacilli and positive 
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polymerase chain reaction) developed in a patient with advanced non-small cell lung cancer 

treated with third-line nivolumab after the eighth cycle of nivolumab (Fujita, Terashima, and 

Mio 2016).  

 

Beyond the conventional T-cells, are the donor unrestricted T-cells (mucosa associated 

invariant T-cells - MAIT, invariant natural killer T-cells – iNKT, Germline encoded T-cells – 

GEM and γδ T-cells) that also have been shown to have a protective role in tuberculosis. 

MAIT-cells respond to cells infected with bacterial pathogens without prior exposure to that 

pathogen, produce cytokines and are cytotoxic (Sharma et al. 2015; Wong, Ndung’u, and 

Kasprowicz 2017). In MR-1 deficient murine models, MAIT-cells were associated with early 

protection against bacterial pathogens, including mycobacteria (Gold, Napier, and Lewinsohn 

2015). Thus, these cells may act as early sensors of Mtb infection in airways and provide 

early cytokines to activate macrophages against infection. Mtb-reactive MR1-restricted T-

cells were found in the peripheral circulation of humans including those with no evidence of 

previous exposure to Mtb (Gold et al. 2010). Interestingly, they were found at much lower 

levels in individuals with active tuberculosis. The few MAIT-cells that remain in circulation 

during active pulmonary tuberculosis have diminished functional capacity, producing less 

IFN-g upon stimulation and decreased transcription of effector genes (IFN-g, TNF-a, IL-17F, 

granulysin and granzyme B) (Jiang et al. 2014; Kwon et al. 2015). CD1b-restricted T-cell 

numbers including GEM T-cells are enriched in peripheral blood and at the site of infection 

during active TB, expand and contract markedly according to pathogen burden, and therefore 

can be markers of disease severity (Montamat-Sicotte et al. 2011). Activated iNKT-cells 

enhance host resistance to Mtb and when cocultured with Mtb-infected macrophages, iNKT-

cells do inhibit intracellular Mtb replication (Rothchild et al. 2014). In addition, iNKT 

produce GM-CSF that is essential for immunity to Mtb in the lung. A recent study reported 

significant increase in the frequency of MAIT and iNKT-cells in individuals with latent Mtb 

infection compared with active Mtb infection, or uninfected controls (Paquin-Proulx et al. 

2018). The role of γδ T-cells in the immune response to Mtb was first reported in 1989 (Janis 

et al. 1989) and additional work has demonstrated that the activation of γδ T-cells appear 

rapidly following Mtb infection, and γδ T-cells provide protective immunity against Mtb 

infection with the combined properties of both innate and adaptive immunity (Casetti and 

Martino 2008; Holtmeier and Kabelitz 2005; Davey et al. 2011). 
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In summary, it is clear that different types of T-cells are involved in the control of 

tuberculosis. While the conventional T-cell roles are more studied, increasing data show that 

donor unrestricted T-cells act as a link between innate and adaptive immunity to tuberculosis. 

The impact of immune checkpoint blockade therapy in control of other conditions like cancer 

brings into focus the role played by T-cell exhaustion markers in containment of Mtb 

infection. 

  

1.5 Peripheral blood signatures predict TB disease progression 
 
Due to the ease of access to blood samples, our understanding of human immune responses to 

tuberculosis have come from studies of systemic circulation. Recent efforts including 

unbiased approaches employing “omics” technologies, as well as more directed, hypothesis-

driven approaches have identified correlates of TB risk (reviewed in detail by Petruccioli et al 

2016). Indeed, there have been correlates of TB risk including commercial or traditional tests 

for LTBI diagnosis that use RD1-specific immune response in IGRA and immune 

sensitization to PPD in TST that have been validated in children and adults (Sester et al 2011; 

Rangaka et al 2012; Ottenhoff et al 2012). Unbiased molecular tests revealed that mRNA 

expression signature of 16 interferon response genes was a correlate of TB risk in adolescent 

African population (Zak et al 2016). T-cell activation markers such as HLA-DR-expressing 

CD4+ T-cells was associated with an increased risk of TB in infants (Tameris et al 2013; 

Fletcher et al 2016). Furthermore, blood cell counts, for instance, elevated 

monocyte/lymphocyte ratio in African adult population have also been shown to be a 

correlate of TB risk (Naranbhai et al 2014; Baldridge et al 2010). Thus, although only a 

handful of studies have identified biomarkers of progression to TB, the available data point to 

the common biological processes, including immune activation, IFN responses and changes 

in peripheral blood myeloid and lymphoid cells which have been clinically validated and are 

associated with risk of TB. Several other biomarkers are being explored as correlates of TB 

risk and their validation is an area of ongoing research (reviewed in Petruccioli et al 2016). 

 

While the studies highlighted above have identified correlates of TB risk, other studies have 

identified biomarkers associated with protection. BCG IFN-g ELISPOT and Ag85A IgG were 

identified as correlates of protection following vaccination of infants with BCG (Fletcher et 

al 2016). Host blood-based biomarkers (CD38, HLA-DR, and Ki-67–expressing) on Mtb-

specific CD4+ T cells were shown to discriminate between ATB and LTBI.  Furthermore, 
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treatment success was associated with decreased frequencies of CD38+IFN-g+, HLA-

DR+IFN-g+, and Ki-67+IFN-g+CD4+ T cells, which mirrored culture conversion, providing 

a set of tools for monitoring treatment response and cure (Adekambi et al 2015). A recent 

multi-cohort study showed that CD16 and NK cells play a key role in maintaining LTBI state 

and the frequency of these cells were shown to go down during ATB, and NK cells are 

restored after successful treatment suggesting that these cells can predict TB outcomes 

(Chowdhury et al 2018). 

 

It is evident that the correlates identified from blood perform differently based on age group 

and region studied. For example, while biomarkers based on T-cell activation predict 

progression of disease (Tameris et al 2013; Fletcher et al 2016), the same biological process 

was shown to discriminate between ATB and LTBI and can be used to monitor treatment 

outcomes (Adekambi et al 2015). Studying immune responses to TB in humans at the 

primary site of disease, the lung, could potentially provide a clearer picture or provide 

additional evidence of reliable correlates of disease control. 

 

1.6 T-cell immune responses to TB in blood versus lung  
 

Majority of the vaccine studies in humans have been done using blood samples, with results 

indicating responses in circulation and not at the site of disease (Gideon et al. 2015; Flynn et 

al. 2015). Crucially, to date these studies have failed to consistently identify a correlation 

between the circulating immune response and protection (Beverley et al. 2014), and reliable 

correlates of protection for TB disease are still lacking. Until the time of induction of 

adaptive immunity, Mtb grows logarithmically, but the appearance of T-cells in the lungs 

correlates with inhibition of growth, indicating their importance in controlling infection 

(Beverley et al. 2014). Thus, the containment of challenge mycobacteria may not be due to an 

influx of cells from the periphery but rather expansion of T-cells already present in the lung 

tissue (Connor et al. 2010). From the mouse model, although systemic immunity may confer 

some degree of containment, it does not prevent establishment of infection as Mtb continues 

to grow unchecked for greater than 10 days (Beverley et al. 2014).  Thus, the control of the 

early phase of Mtb growth is likely to require local lung immune responses and therefore a 

better understanding of mucosal immunity is vital in order to design effective mucosal 

vaccines. 
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Lung granulomas provide the most direct measure of the actual responses induced by Mtb at 

the site of disease/infection. It is, however, acknowledged that the relationship between T-cell 

responses in blood and lung tissues are complex (Flynn et al. 2015). Even bronchoalveolar 

lavage (BAL) T-cell responses, which are considered to be a closer match to the lung T-cell 

responses, differ from the responses in the monkey tuberculous granuloma (Lin et al. 2006). 

Differences in the T-cell responses might be further complicated by the existence of a 

spectrum of infection at both local and systemic levels in animals and humans (Flynn et al. 

2015). Animal studies have reported a substantial range of bacterial burden between different 

granuloma within each animal, reiterating that the extent of immune containment varies even 

at the primary site of TB infection (Flynn et al. 2015).  

 

In contacts of active TB patients and those with paucibacillary pulmonary disease, Mtb 

Ag85-specific T-cell responses are detected in the BAL but not in the peripheral blood, 

indicating compartmentalization of Ag85-specific cells to the lungs (Schwander et al. 2000). 

The sample size used in this study was relatively small making it hard to draw major 

conclusions from the results. However, this observation suggests that sampling of blood 

would miss some individuals who already have active TB and remain potential source of 

transmission. In general, however, active TB patients with higher bacterial loads have antigen 

specific CD3+ T-cell responses in both the BAL and blood, although responses are generally 

higher in the BAL near the site of infection, than the peripheral blood (Schwander et al. 1996; 

Boras et al. 2007). Reports from non-human models of Mtb suggest that locally initiated 

immune responses have an important role in the early control of Mtb infection after exposure, 

although definitive evidence for their role in mediating protection in humans is yet to be 

ascertained (Beverley et al. 2014).  

 

1.7 Tissue resident memory T-cells 

Following antigen encounter in lymph nodes (LNs), naïve T-cells undergo rapid proliferation, 

giving rise to differentiated effector T-cells and long lived memory T-cells that are 

distributed more broadly throughout the body (Beura et al. 2015). On re-exposure, memory 

T-cells are able to mount a more rapid and robust response to the antigen, (Cauley and 

Lefrançois 2013; Mueller et al. 2013), which is the basis of vaccine efficacy. There is 

growing evidence that this memory response is most effective if it is positioned at the site of 

pathogen infection. This is possible as a subset of memory cells, called Tissue Resident 
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Memory (Trm) cells (Sakai et al. 2014), can persist in tissue for an extended period without 

recirculating in blood, ready to rapidly respond to a new infection. 

 

Activated T-cells migrate into inflamed tissue under the guidance of chemokines, integrins 

and adhesion molecules (David Masopust and Schenkel 2013). T-cells that encounter their 

specific antigen at the infection site expand and receive tissue-specific cues that influence 

their function and memory potential (Gray, Westerhof, and MacLeod 2018). Following 

pathogen clearance, some of these effector memory T-cells remain within the tissue site and 

form a Trms population ready for the next pathogen encounter. Trms have been described in 

many non-lymphoid tissues, including the skin, gut, female genital tract and the lungs, 

typically at the sites of initial infectious exposure and often at a mucosal surface. As a result 

of this positioning, Trms can play a critical role in subsequent immune challenge by 

accelerating clearance of local reinfections at these mucosal surfaces (Masopust et al. 2001; 

Schenkel and Masopust 2014; Gebhardt and Mackay 2012; Park and Kupper 2015; Mueller 

and Mackay 2016). A direct consequence of this tissue tropism, is that Trms are typically 

absent from blood (Teijaro et al. 2011; Hogan, et al. 2001), which can have profound 

implications for their study in humans, in whom peripheral blood mononuclear cells 

(PBMCs), are often the main substrate for studying immune responses.  

 

Trm cells vary in phenotype and function, depending on the tissue they reside in (Gebhardt et 

al. 2013; Cauley and Lefrançois 2013; Mackay et al. 2013a; Perdomo et al. 2016). The study 

of the biology and role of Trms is complicated by the need to differentiate cells truly isolated 

from the lung parenchyma from circulating cells contaminating the sample. Much of the 

biology of Trm has been worked out in mice and has relied on several novel approaches; 

notably, intravenous labelling of circulating cells just prior to sacrifice to distinguish cells in 

circulation (labelled) to those in tissue (unlabelled);  or the use of Fingolimod (FTY720), a 

drug which prevents T-cell egress from lymph nodes and thus blocks new recruitment of 

memory cells into tissue sites (Anderson et al. 2012, 2014; Knudson et al. 2016; Gray, 

Westerhof, and MacLeod 2018; Mohammed and Harikumar 2017; Connor et al. 2010; 

Sawicka et al. 2003; David Masopust and Soerens 2019). Although these techniques are not 

applicable to humans, they have confirmed that many of the cell surface markers used in 

animal models are shared in humans, notably high CD69 expression together with CD103 

(Kumar et al. 2017; Thome et al. 2014). While CD69 is expressed by the majority of Trms, 

CD103 is mostly expressed on a subset of Trm, primarily CD8+ T-cells (Kumar et al. 2017). 
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Numerous other cell surface markers have been associated with Trm cells, including the 

upregulation of CD49a (an adhesion molecule), CXCR6, CD101, PD-1, and loss of CD62L 

and the chemokine receptor CX3CR1. Although there does not appear to be lung specific 

Trm marker(s) per se, those that have been associated with T-cell residency within the lung 

are highlighted in table 1. 
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Table 1: Cell surface markers of Trms in humans validated in animal models. 

Marker Tissue 
measured in 

Pathogen/condition 
studied 

Reference 

CD103(integrin αE 
which combines with 
integrin β7 to form 
αEβ7 heterodimer) 

Upregulated 
in: Skin, Lung, 
FRT, Kidney, 
Gut 

Mycobacterium 
tuberculosis, Influenza, 
HSV, LCMV, 

(Sathaliyawala et al. 2013; 
Mackay et al. 2012; Beura et 
al. 2015; Gebhardt et al. 
2018) 

CD11a (ITGAL-1: 
integrin alpha L 
which combines with 
β2 to form LFA-1) 

Upregulated 
in: Lung, Skin 

Influenza, Asthma, 
Allergy, Leishmania 
major 

(Neyt, GeurtsvanKessel, and 
Lambrecht 2016; Trischler et 
al. 2016; Knight et al. 2014) 

CD49a (VLA-1: 
integrin α subunit that   
combines with 
integrin β1 subunit to 
form α1β1 
heterodimer) 

Upregulated 
in: Lung 

Mycobacterium 
tuberculosis, Influenza 

(Perdomo et al. 2016; 
Haddadi et al. 2017; Ray et 
al. 2004; McMaster et al. 
2018) 

VLA-4(α4β1: 
integrin dimer 
composed of α4 
(CD49d) subunit and 
β1(CD29 subunit) 

Upregulated 
in: Lung 

Mycobacterium 
tuberculosis 

(White et al. 2015; Walrath 
and Silver 2011; Taylor et al. 
2008) 

CD69(Binds to and 
downregulates 
S1PR1)  

Upregulated 
in: Skin, Lung, 
FRT, Kidney, 
Gut 

Mycobacterium 
tuberculosis, Influenza, 
HSV, LCMV, 

(Sathaliyawala et al. 2013; 
Mackay et al. 2013; 
Masopust and Picker 2012; 
Beura et al. 2018)  

CD101 Upregulated 
in: Skin, 
intestines, 
Liver, Lung 

Plasmodium (Bagot et al. 1997; Schey et 
al. 2016; Fernandez-Ruiz et 
al. 2016; Kumar et al 2017) 

CD44 Upregulated 
in: Lung 

Influenza (Topham and Reilly 2018; 
Hogan et al. 2001) 

CD62L Downregulated 
in: Gut, Skin, 
Lung, Lymph 
Node 

HIV, Vaccinia virus (Sathaliyawala et al. 2013; 
Brinkman et al. 2013; Zaric 
et al. 2017) 

 

 

1.7.1 Formation and maintenance of tissue resident memory T-cells  

Understanding the signals driving the formation and maintenance of Trm cells is crucial if 

they are to be exploited by novel vaccination strategies. Trm cells derive from precursors 

entering tissues during the effector phase of immune responses and remain positioned within 

these compartments (Schenkel and Masopust 2014; Turner and Farber 2014).  For this to 

occur, they must adapt to local survival cues, resist shedding into the lumen at mucosal 

epithelial surfaces, and ignore egress signals (Masopust and Schenkel 2013; Mueller et al. 

2013). The transition of recruited T-cells to Trm under normal conditions appears to require 
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simultaneous tissue damage and TCR signaling on antigen exposure (Khan et al. 2016; 

Takamura et al. 2016; McMaster et al. 2018). Thus, whilst on-going inflammation may 

recruit non-specific T-cells from circulation, only those that encounter their cognate antigen 

should set up tissue residency. However, this is not always the case (Casey et al. 2012; 

Mackay et al. 2012) and may vary according to location. Flu-specific Trms in the upper 

respiratory tract, but not in lung tissue, for example, can develop independently of local 

cognate antigen recognition (Pizzolla et al. 2017), possibly as a consequence of localized 

production of cytokines such as IL-15 (Mackay et al. 2013; Schenkel et al. 2016). 

Nonetheless, any infection in non-lymphoid tissue that is antigenic and causes pathology has 

the potential to establish a Trm population at that site. 

 

One consequence of TCR activation in general, is temporary upregulation of surface CD69 

(Ferenczi et al. 2000; González-Amaro et al. 2013; Cibrián and Sánchez‐Madrid 2017), the 

canonical Trm marker, which in turn interacts with sphingosine-1-phosphate receptor 

1(SIPR1) and downregulates its expression (Cyster and Schwab 2012; Matloubian et al. 

2004; Shiow et al. 2006; Schober et al. 1999; Skon et al. 2013) . In tissue this is crucial, as it 

prevents cells from following the SP1 chemokine gradient back into circulation, and therefore 

results in prolonged retention and local memory formation (Mackay et al. 2015). However, it 

is not clear how CD69 expression is sustained in cells that become Trm, and whether all 

CD69+ve T-cells identified in tissue at any given time are actually Trm. Indeed, although it is 

widely accepted as a good marker, there is some evidence that not all Trm constitutively 

express CD69 (Schenkel and Masopust 2014). Another molecule that may help retain Trm in 

tissue is the integrin αE (CD103) (Casey et al. 2012; Mackay et al. 2013; Wakim, 

Woodward-Davis, and Bevan 2010), which forms a heterodimer with the integrin ß7 and 

binds E-cadherin (Cepek et al. 1994), a glycoprotein constitutively expressed by epithelial 

cells. Therefore, CD103 is thought to be particularly important for retaining Trm at the 

epithelial surfaces of mucosal barriers such as the lung. Other integrins thought to be 

involved in retention of Trm in the lung and other non-lymphoid tissue sites are highlighted 

in Table 1. 

 

The mechanistic details of how Trm responsiveness and longevity is maintained remains an 

area of much on-going research. In central memory T-cell populations, enhanced lifespan and 

proliferative capacity is associated with a shift in metabolism towards endogenous lipids and 
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oxidative phosphorylation (Buck et al. 2017). Similarly, skin CD8+ Trm appear to rely on 

fatty acid β-oxidation to support their long-term survival, although via exogenous lipid 

uptake (Pan et al. 2017). In addition, RNA sequencing of Trms in both animal models and 

humans shows there is a distinct transcriptional profile associated with tissue residency 

(Hombrink et al. 2016; Oja et al. 2017). Thus, transcriptional and metabolic reprogramming 

probably underlie the formation and maintenance of Trm within their tissue niches. Two 

recent publications have elegantly shed light on the dynamics of Trm cell formation and 

maintenance in situ. First, using intra-vital imaging of the female genital tract revealed that 

CD8+ Trm cells continually patrol the tissue, but pause and rapidly expand after LCMV 

challenge (Beura et al. 2018). These data are important, as they remove the image of Trm as a 

sedentary cell waiting for its pathogen to land and provide a clear mechanism by which a 

relatively small number of Trm can effectively protect a large organ or mucosal barrier. In 

this study, LCMV infection also triggered the recruitment of recirculating memory T-cells, 

but the expansion of pre-existing Trm, was independent of this process and far outweighing 

that of memory cells recruited from circulation (Beura et al. 2018). In a separate study, Park 

and colleagues demonstrated that newly recruited T-cells could establish a Trm population in 

the skin without displacement of the pre-existing Trm pool. This is also important as it 

demonstrates that multiple Trm cell specificities can be stably maintained within the tissue 

(Park et al. 2018). Together these studies provide a clear mechanistic rationale for how 

vaccine induced Trm could possibly protect a large organ such as the lung and establish 

against the backdrop of Trm to other respiratory pathogens that are likely to already be 

present (Purwar et al. 2011).    

 

From the perspective of Mtb infection, it is unfortunate that the majority of work on the 

biology of Trm has focused on tissues other than the lung. Moreover, there is evidence that 

Trm populations are not as stable in lung tissue as they are in organs such as the skin (Slütter 

et al. 2017; Wu et al. 2014). However, observations of long-lived Trms against respiratory 

pathogens in the lungs of both mice and humans have been made (Turner et al. 2014; Teijaro 

et al. 2011; Purwar et al. 2011). Although more work is needed, it seems reasonable to 

assume that life time exposure to lung pathogens, should build up a repertoire of Trms that 

patrol the lung and are poised to rapidly respond to new re-infection or re-activation of latent 

disease, as may be the case in TB. Indeed, regularly low level exposure to Mtb antigen, either 

through transitory blip in latency (Kiazyk and Ball 2017), or exposure to Mtb or other 
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environmental mycobacteria might be expected to facilitate TB-specific Trm maintenance in 

the human lung.  

 

1.7.2 Trafficking of T-cells to the lung during tuberculosis.  

Direct contact between CD4+ T-cells and antigen presenting cells is required for a robust T-

cell response to Mtb infection (Srivastava and Ernst 2013). T-cells within the lung can be 

divided into parenchymal and intravascular subsets. In TB infected mice, T-cells that cross 

the lung vasculature into the parenchyma express CXCR3 and are negative for Killer Cell 

Lectin Like Receptor G1 (KLRG1), while intravascular CD4+ T-cells express CX3CR1 and 

expressed a more terminally differentiated, KLRG1hi /T-bethi, phenotype (Sakai et al. 2014). 

Importantly, when adoptively transferred to naïve mice, CXCR3+ve KLRG1-ve CD4+ T-

cells from the lung parenchyma of TB infected mice provided better immune protection than 

their blood counterpart (Sakai et al. 2014; Reiley et al. 2010). Although this observation was 

not reported in non-human primate model of TB (Kauffman et al 2017), it does suggest, at 

least in the mouse, that the parenchyma derived CD4+ T-cells express the markers that allow 

them to home directly back to the lung and contact Mtb infected macrophages. Upregulation 

of CXCR3 is likely to be key, as increased levels of CXCR3 ligands, such as IP-10, in the 

lung are required for T-cell lung recruitment (Jeyanathan et al. 2017). Indeed IP-10, along 

with other CXCR3 ligands (MIG and I-TAC) are all expressed in the granulomas of TB-

infected lungs and contribute to their formation (Seiler et al. 2003). This suggests a model 

whereby primed T-cells are recruited to the lung parenchyma upon TB infection in a 

CXCR3-dependent manner and are positioned within granulomas along a chemokine gradient 

(Sakai et al. 2014; Woodworth et al. 2017). Once at the granuloma the combination of TCR 

triggering and signaling from tissue damage should provide the conditions to establish a 

population of Trm. The classic granuloma structure is defined by a “cuff” of T-cells 

surrounding a core of infected phagocytes. Moreover, granuloma associated T-cells have 

been described in the structure of  inducible bronchioalveolar lymphoid tissue (iBALT) 

thought to be protective in TB infection (Ulrichs et al. 2004; Khader et al. 2011). Whether 

these T-cells are TB-specific Trm cells is not known, but, given these conditions, it is 

certainly biologically plausible.   
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1.7.3 Evidence of Trm activity against Tuberculosis 

Although there are relatively few studies that have directly investigated the role of Trms in 

TB infection, the evidence they provide is compelling. In an early study, Connor et al used 

FTY720, to negate recall responses from lymph nodes, and found that administration of the 

drug during infection but after vaccination (with BCG), had no effect on vaccine efficacy 

(Connor et al. 2010).  Giving FTY720 prior to vaccination, however, diminished protection, 

showing recruitment of vaccine specific T-cells to the lung from secondary lymphoid organs 

was essential to protection. Mice in this study were all vaccinated sub-cutaneously with no 

adjuvant, showing that lung Trm formation is possible under these circumstances, although it 

was unlikely to have been optimal. Again exploiting the properties of FTY720, Flórido et al. 

2018 recently showed that mice intranasally vaccinated with a recombinant influenza A virus 

vaccine expressing an immunodominant Mtb epitope from antigen 85A (PR8.p25), were 

protected from subsequent infection with Mtb when further T-cell recruitment to the lung was 

blocked (Flórido et al. 2018). Importantly, treatment of unvaccinated mice with FTY720 

significantly increased lung mycobacterial burden upon infection, confirming that, in the 

absence of pathogen specific T-cell population in the lung, recruitment of newly primed T-

cells from circulation is required. In both studies, however, once priming has occurred, 

further recruitment from circulation is not needed, implying the protective T-cells are already 

at the site of disease in the lung. 

 

Rather than blocking peripheral T-cell recruitment as a way of demonstrating the importance 

of tissue resident T-cells, other groups have sought to specifically boost lung Trm via novel 

vaccination routes. Intratracheal injection of BCG, for example, has been shown to improve 

vaccine activity, and reduce lung burden of Mtb by nearly 2 logs at the highest dose, 

compared to sub-cutaneous BCG (Aguilo et al. 2014). This was associated with a much 

higher frequency of TB-specific CD4+ T-cells in lung homogenate, although the responding 

cells were not phenotyped for Trm markers. Copland and colleagues sought to enhance Trm 

formation by boosting BCG vaccinated mice with intranasal application of Bacillus subtilis 

spores coated with TB antigens (Copland et al. 2018). This approach improved protection 

over BCG vaccination alone and was associated with an expansion of CD69+CD103+ Trm 

cell type in the lungs that was not seen with either BCG alone or uncoated spores. Boosting 

BCG vaccinated mice via intranasal or intratracheal administration of nanoparticles coated 

with Mtb antigens was also found to induce CD69+CD103+ TB-specific lung Trm compared 

to subcutaneous BCG alone or uncoated nanoparticle (Hart et al. 2018). In both studies, the 
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vaccine induced expansion of lung Trms was associated with improved protection from 

subsequent TB challenge. However, in neither case was the activity of these cells formally 

tested by adoptive transfer or other approaches. Intranasal boosting with a Sendai virus 

vectored TB vaccine, SeV85AB, was also found to elicit antigen-specific CD103+ CD4+ and 

CD8+ T-cell responses in the lung and was associated with a reduction of mycobacterial load 

in lung and spleen compared to subcutaneous BCG alone (Hu et al. 2017). Interestingly, in 

this case protection was exclusively mediated by CD8+ T-cells as protection was lost when 

these cells were depleted, which was not the case in the BCG vaccinated group.  

 

Perdomo and colleagues found that both intratracheal and intranasal administration of BCG 

enhanced the generation of both CD4+ and CD8+ CD69+ Trms, that expressed high levels of 

CD103 and CXCR3, and improved protection against subsequent Mtb challenge, compared to 

subcutaneous BCG (Perdomo et al. 2016). These authors went a step further, by adoptively 

transferring airway T-cells, via intratracheal injection, into naïve mice, demonstrating they 

can mediate protection compared to control mice receiving only PBS. However, these finding 

are complicated by the fact that transferred cells were derived from BAL fluid rather than 

lung parenchyma. The protection offered by cells with a CD69+ Trm phenotype, was not 

different from those lacking this marker. In addition, the authors did not test T-cells from 

either unvaccinated or subcutaneous BCG vaccinated mice by adoptive transfer to 

demonstrate any superiority of Trm generated by airway vaccination. Novel vaccine 

candidates have also been used in the mouse model to generate lung homing T-cells. Using a 

prime boost vaccination approach, Woodworth et al observed that subcutaneous vaccination 

(three times) with a cationic adjuvanted protein-based TB vaccine (H56/CAF01) generated 

circulating CD4+ T cells with accelerated lung-homing properties post-Mtb exposure 

(Woodworth et al. 2017). In this study, H56 vaccinated mice had low mycobacterial burden 

in the lungs, and TB-specific CD4+ T-cells in the lung were multifunctional. 

 

All the above studies were done in mice, which, although highly informative, lacks many of 

the features of human pulmonary TB infection, including the generation of caseating lung 

granuloma. Non-Human Primate (NHP) models are generally considered to more closely 

reflect the pathology of human TB but studying Trm in these animals comes with additional 

challenges. Intravenous injection of BCG in NHPs has been shown by several groups to 

provide superior protection to standard intradermal inoculation (Sharpe et al. 2016), and 

surprisingly, vaccination by this route can boost lung Trm responses (Kaveh et al. 2011). 
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Others have used mucosal vaccination with BCG or subunit vaccines to significantly boost 

TB-specific lung T-cell responses (White et al. 2015; Darrah et al. 2014) with better disease 

outcome following Mtb challenge although this was due more to a reduction in lung damage 

than an effect on mycobacterial burden (Wong et al. 2016). Kaushal and colleagues examined 

the effect of mucosal vaccination with BCG or the attenuated SigH Mtb mutant vaccine strain 

(Kaushal et al. 2015). Interestingly, in their hands BCG had little impact on the lung T-cell 

response and only offered minor protection. However, the SigH mutant greatly boosted lung 

T-cell responses and induced the formation of inducible bronchioalveolar lymphoid tissue 

(iBALT) thought to be protective in TB infection (Ulrichs et al. 2004; Khader et al. 2011). 

Importantly, this was associated not only with reduced lung pathology, but a significant 

reduction in lung mycobacterial burden and survival of all animals from an otherwise lethal 

infection (Kaushal et al. 2015). More recently, mucosal vaccination with BCG, but not 

intradermal, was found to protect NHP from repeated low does exposure through the 

induction of IL-17 producing T-cell response in the airway (Sharpe et al. 2016). Taken 

together these studies in mice and NHP suggest that TB vaccination strategies that induces 

lung or airway Trm are significantly more protective than those that do not. 

 

As mentioned, one of the key challenges in these experiments is distinguishing parenchymal 

Trm cells from contaminating PBMCs in lung homogenate (Schenkel and Masopust 2014). 

Sakai et al. directly addressed this issue when they used intravenous infusion of fluorescently 

labelled anti-CD45 antibody immediately prior to removing the lungs, which labels blood 

leucocytes but the label does not have time to penetrate tissue (Sakai et al. 2014). This system 

was then used to study the activity of lung resident T-cells by aerosol infecting mice with 

Mtb, removing their lungs at 30 days and FACs sorting the parenchymal and blood T-cells 

from lung homogenate based on the presence of anti-CD45 fluorescent antibody. Adoptive 

transfer of these cells, to naïve, TCRα−/− transgenic mice, prior to Mtb infection, 

demonstrated parenchymal T-cells, which expressed the Trm CXCR3+KLRG1- phenotype, 

had far greater activity than circulating T-cells (18 fold vs 4 fold reduction in lung bacterial 

burden) (Sakai et al. 2014). This observation was confirmed in a follow-up study from the 

same group, where it was found that IFN-gamma production by CXCR3+KLRG1- lung T-

cells was not a major component of this protective effect (Sakai et al. 2016). Indeed, 

expression of the inhibitory T-cell surface molecule PD-1 was critical to limit IFN-gamma 

production and prevent lethal lung pathology. This highlights the fact that Trm activity, 

though associated with a protective effect, can have pathological consequences when not 
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regulated. Parallel observations were made by Moguche and colleagues, who found that TB 

specific CXCR3+KLRGI-PD1+ CD4+ T-cells preferentially homed to the lung parenchyma 

and rapidly expanded on antigen re-encounter (Moguche et al. 2015). Adoptive transfer of 

this subset into TCR KO mice resulted in 10-fold greater reduction in lung CFU compared to 

KLRG1+PD1- CD4+ T-cells, supporting the superior antimycobacterial activity of the Trm-

like subset. Importantly, the authors also demonstrated this subset had characteristics of long-

lived memory cells, as adoptively transferred KLRG1-PD1+ CD4+ T-cells persisted in lung 

parenchyma in the absence of antigen stimulation, whilst the KLRG1+ subset did not. In this 

study, the authors noted intriguing similarities between the protective Trm-like subsets and 

Follicular Helper T-cells (Tfh), which both appear to rely on the transcription factor BCL6.  

Torrado et al. also found KLRG1-PD1+ T-cell preferentially homed to the lung parenchyma 

and provided superior protection from Mtb infection when adoptively transferred to TCR KO 

mice (Torrado et al. 2015) and found the protective Trm subset was preferentially generated 

by knocking out the IL27 receptor, implicating this signaling pathway in inhibiting Trm 

development. Both studies also highlight an important role for IL-2 in maintaining protective 

lung Trm. Although adopting differing approaches, these studies all provide direct 

experimental evidence of the importance of T-cells that readily enter the lung parenchyma 

and establish persistent memory populations in controlling Mtb infection. Importantly, taken 

together these data also demonstrate two key factors. First, that non-protective T-cells 

phenotypes that do not migrate into the lungs are generated by TB infection, and possibly by 

vaccination. Secondly, that vaccine strategy can affect the proportion of Trms cells in the 

lung. This provides both a potential reason for why circulating TB specific T-cells do not 

generally correlate with immune protection and hope that human TB vaccine efficacy may be 

improved through novel vaccination strategies. 

 

As highlighted above, the generation of lung Trms by vaccination depends on a number of 

factors. TB specific Trms can be generated by initial mucosal vaccine administration (Hart et 

al. 2018; Perdomo et al. 2016; Kaushal et al. 2015b); as prime boost strategy to improve 

efficacy of BCG vaccine (Z. Hu et al. 2017; Copland et al. 2018; Hart et al. 2018) or multiple 

boosts subcutaneously (Woodworth et al. 2017). Furthermore, the vaccine vector can also 

influence the type of T-cells (CD4+ or CD8+) that will confer the greatest protective 

immunity (Hart et al. 2018; Copland et al. 2018; Z. Hu et al. 2017).  The role of Trm in TB 

protection still needs further experimental confirmation, particularly in NHPs, but induction 
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of this subset has the potential to improve early control of infection and maybe even provide 

sterilizing immunity.  

 

1.8 Impact of HIV coinfection on T-cells during TB disease 
 
Although a substantially increased risk of TB and its extra-pulmonary dissemination is 

strongly correlated with CD4+ T-cell depletion in individuals infected with HIV-1 (Bell and 

Noursadeghi 2018), the precise mechanisms involved are less clear, particularly at the 

primary site of TB disease - the lung. T-cell depletion is evident in peripheral blood, in the 

respiratory tract and at the site of tuberculin skin test (TST) challenge (Bell et al. 2016; 

Kalsdorf et al. 2009; Geldmacher et al. 2010), although absolute cell counts can be preserved 

in well controlled HIV infection (Bunjun et al. 2017). End stage HIV is associated with 

severely reduced levels of CD4+ T-cells that are a primary source of IFN-γ critical in the 

control of Mtb infection in mice, and likely in humans (Cooper et al. 1993; Flynn et al. 

2015b). Importantly, Mtb-specific CD4+ T-cells are depleted from the periphery early after 

HIV infection in humans. Indeed, HIV may preferentially target Mtb-specific memory CD4+ 

T-cells (Geldmacher et al. 2010, 2008).  

 

TB disease enhances CCR5+ expression and/or the frequency of CCR5+CD4+ T-cells in the 

absence and presence of HIV co-infection (Juffermans et al. 2001; Wolday et al. 2005; Kabue 

et al. 2013; Haridas et al. 2015), probably as a result of chronic immune activation, and these 

cells are highly susceptible to infection by HIV. A strong CD4+ T-cell response to Mtb might 

directly lead to enhanced HIV replication. In in vitro studies, a primary subtype AE HIV-1 

isolate replicated to a greater extent in CD4+ T-cells from PPD-responsive donors compared 

to CD4+ T-cells from PPD-anergic donors after PPD stimulation (Ranjbar et al. 2004). 

Supporting this, higher viral loads are consistently detected in TB/HIV co-infected patients 

versus patients singly infected with HIV who exhibit similar levels of immunosuppression 

(Day et al. 2004; Barnabas et al. 2011; Haridas et al. 2015). 

 

In comparison to uninfected controls, HIV-infected individuals showed contraction of Mtb-

specific CD4+ T-cells co-expressing lineage transcription factors FoxP3 and T-bet upon in 

vitro proliferation, which was inversely associated with HIV viral load and plasma 

TNF concentrations (Riou et al. 2016). HIV infection was also associated with a contraction 

of Mtb-specific CD4+ T-cells expressing the Th1 phenotype CXCR3+CCR5+CCR4-, a 
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major subset contributing to Mtb-specific responses in HIV-uninfected individuals with 

asymptomatic Mtb infection (Strickland et al. 2017). From these studies, it is suggestive that 

T-cell polarization and differentiation of Mtb-specific T-cells are negatively affected by HIV 

infection and the associated pro-inflammatory milieu. 

 

Other T-cell effector functions, long-term memory capacity and tissue-homing potential may 

also be important in protection against TB and can be affected by HIV co-infection (Nemes, 

Scriba, and Hatherill 2018). HIV infection was associated with increased in vivo turnover of 

Mtb-specific CD4+ T-cells, Mtb antigen-induced cell death ex vivo and decreased in vitro 

proliferation (Day et al. 2017). Mtb-specific CD8+ T-cell in vitro proliferation as well as 

cytotoxic potential are also affected negatively by HIV coinfection (Kalokhe et al. 2015). 

Thus, these observations suggest that HIV infection may affect long-term memory potential 

of Mtb-specific T-cells. 

 

HIV-1-infected T-cells may also contribute to the increased risk of TB in early HIV-1 disease 

before substantial depletion of peripheral blood CD4+ T-cell counts (Geldmacher et al. 2010). 

HIV-1 DNA was detected more frequently in Mtb-specific T-cells. These T-cells produced 

high levels of IL-2, which made them more permissive to HIV-1 infection. In comparison to 

the total memory T-cell population or memory T-cells that specifically recognize human 

cytomegalovirus, Mtb-specific T-cells were preferentially depleted in early HIV-1 infection 

(Bell et al. 2016). These data suggest that the depletion of these cells is a direct result of 

HIV-1 infection. However, the functional relevance of the reduced T-cell recruitment was not 

clear, as comparable levels of IFN-γ inducible gene expression were found in the groups with 

and without HIV-1. Thus, IFN-γ activity as a surrogate of robust CD4+ T-cell responses to 

mycobacterial antigens was preserved in early HIV-1 disease, despite previous reports of 

preferential depletion of Mtb-specific T-cells. Therefore, these data suggest that the increased 

risk of TB in patients infected with HIV-1 is not solely mediated by T-cell depletion, as has 

been reported in literature (Nemes, Scriba, and Hatherill 2018; Singh et al. 2016; Moir and 

Fauci 2009). 

 

Increased immunosuppression in HIV positive patients with LTBI infection is associated with 

a loss of polyfunctional Mtb-specific CD4+ T-cell responses, which were restored following 

ART (Sutherland et al. 2010). BAL fluid from HIV positive patients with LTBI showed a 

reduced Mtb-specific polyfunctional as well as bi- and mono-functional CD4+ T-cell 
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frequencies compared to those from patients without HIV (Kalsdorf et al. 2009; Jambo et al. 

2011).  

 

As CD4+ T-cell protection against Mtb is conferred by the pro-inflammatory cytokines that 

they produce, the proportions of polyfunctional Mtb-reactive T-cells, which produce the pro-

inflammatory cytokines IFN-γ, TNF and IL-2, are also depleted in individuals infected with 

HIV-1 (Kalsdorf et al. 2009). Thus, HIV-1 depletes T-cell populations that are likely to be 

functionally important for protection against TB. Viral load in HIV patients with LTBI 

inversely correlated with Mtb - specific IL-2-expressing CD4+ T-cells that were positive for 

TNF-a or IFN-γ, while the Mtb-specific CD8+ T-cell population did not have inverse 

correlation with viral load (Day et al. 2008).  This data suggests preferential depletion or 

impaired function of IL-2–secreting Mtb-specific CD4+ T-cells under conditions of high 

levels of HIV-1 viremia. Transcriptional profiling of biopsy samples taken from the site of 

the TST challenge in humans confirmed that T-cell recruitment and IFN-γ activity were both 

substantially reduced in patients co-infected with HIV-1 and TB, with blood CD4+ T-cell 

counts of <200 or >200 per mL, indicative of advanced HIV-1 disease (Bell et al. 2016). 

 

A functional role for Th17 and Th22 T-cell populations in protection against TB, primarily  

in mouse models is based on their role in the recruitment of phagocytic cells including 

macrophages (Cruz et al. 2010; Nandi and Behar 2011; Treerat et al. 2017). The depletion or 

impairment of these T-cell subtypes during primary HIV-1 infection (Brenchley et al. 2008; 

Kim et al. 2012; Murray et al. 2018b) may therefore contribute to differences in the immune 

response to Mtb in patients co-infected with HIV-1 compared with patients not infected with 

HIV-1 (Bell and Noursadeghi 2018).  

 

MAIT-cells are also depleted in HIV-1 infection (Saeidi et al. 2016). MAIT-cells are 

activated by Mtb and are enriched at the site of TB disease (Jiang et al. 2014). Therefore, 

their depletion in HIV-1 infection may attenuate a component of host immune responses to 

Mtb. MAIT-cells are not infected by HIV-1 and their depletion is thought to be caused indi-

rectly by immune activation (Bell and Noursadeghi 2018). Compared to the general 

population, the risk of active TB remains higher in patients infected with HIV-1 even after 

becoming established on effective ART (Gupta et al. 2012). Thus, the failure of ART to 
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restore the T-cell repertoire, including MAIT-cells (Heather et al. 2015; Cosgrove et al. 

2013), may also be an important factor in the persistently elevated risk of TB. 

 

1.9 Role of B-cells in TB disease 
 
While the initial aim of the project was to look at T-cell immunity to TB in the lung, I 

observed (in different assays) that granulomatous TB lung was unexpectedly rich in B-cells, 

and the frequency was enriched in lung tissue compared to blood. Thus, I also sought to 

investigate the role played by B-cells in TB infected human lung. Whereas multiple lines of 

evidence support the importance of cellular immunity, the role of humoral immunity in TB is 

unclear (Kozakiewicz et al. 2013; Achkar and Casadevall 2013).  For example, active TB has 

variously been associated with no changes in circulating B-cell frequencies (Barcelos et al. 

2006), an increase (Wu et al. 2009) or a decrease (Corominas et al. 2004; Hernandez et al. 

2010) compared to healthy controls. Also compared to healthy donors, LTBI individuals are 

reported to have decreased B-cell frequencies (Corominas et al. 2004), whereas those 

successfully treated for TB had increased B-cell frequencies (Barcelos et al. 2006). 

Furthermore, patients with MDR TB were found to have decreased frequencies of 

unswitched, IgD+CD27+ B-cells and decreased plasma cell frequencies, which are frequently 

observed during chronic inflammation (Abreu et al. 2014).  

 

Although B-cell and antibody deficiencies are not risk factors for human TB disease 

(Glatman-Freedman and Casadevall 1998), mice lacking B-cells or the ability to secrete 

antibodies are more susceptible to infection (Maglione, Xu, and Chan 2007; Torrado et al. 

2013; Vordermeier et al. 1996), and depletion of B-cells in non-human primates (NHPs) 

resulted in increased lesional bacterial burden (Phuah et al. 2016). Elevated Ag85Aspecific 

IgG titers was identified as a correlate of lower risk of TB disease in a post hoc analysis of 

the MVA85A vaccine trial (Fletcher et al. 2016) and Fc-mediated antibody effector function 

in Mtb control was recently reported (Lu et al. 2016) suggesting a possible role for antibodies 

in Mtb protective immunity. 

 

B-cells can act as professional antigen presenting cells, provide co-stimulatory signals, 

produce cytokines and can exert immunoregulatory properties (Joosten et al. 2016). 

Antibodies can exert their functions in mycobacterial infection in two ways: by the direct 

blocking of host cell invasion and neutralization of bacterial products, or indirectly through 
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Fc-mediated complement and cell activation mechanisms through Fc receptors (Ravetch and 

Clynes 1998). Antibodies, plasma cells, and antibody-responsive innate immune cells bearing 

Fc receptors (FcR) have been reported in animal model TB granulomas (Phuah et al. 2012; 

Tsai et al. 2006), suggesting that they may play a role in the antimicrobial response.  

 

Fc-mediated antibody functions have been reported in tuberculosis (Maglione et al. 2008;  

Sutherland et al. 2014; Machado et al. 2013) and other infections such as influenza (DiLillo 

et al. 2014), HIV (Bournazos et al. 2014; Hessell et al. 2007), Ebola (Olinger et al. 2012; 

Schmaljohn and Lewis 2016), and malaria (Bergmann-Leitner et al. 2006; Pleass 2009). 

These Fc effector functions are regulated immunologically via two features of the antibody 

Fc domain: (1) through Fc class-switch recombination selecting different isotypes (i.e., 

immunoglobulin G [IgG], IgM, IgA, IgD, and IgE) and/or subclasses (e.g., IgG1, 2, 3, 4) and 

(2) the posttranslational addition of distinct glycan species on the Fc domain of antibodies, 

specifically at asparagine 297 on IgG (Vidarsson, Dekkers, and Rispens 2014; Lu et al. 

2016). Antibody glycosylation varies with age, sex, disease state, treatment, infection, and 

vaccination, which likely reflect the highly sensitive and dynamic processes that actively alter 

antibody effector function during an inflammatory response (Ackerman et al. 2013; 

Gardinassi et al. 2014; Mahan et al. 2016; Parekh et al. 1989), like tuberculosis. 

 

Recent data have shown that some individuals exposed to Mtb with evidence of LTBI are 

able to mount protective antibody responses to prevent additional active infection (Lu et al. 

2016; Li et al. 2017). Plasmablast antibody response to Mtb infection in humans generates 

functionally active antibodies and anti-TB B-cell response spreads from the lung to the 

periphery independently of active TB disease in humans (Zimmermann et al. 2016). 

Furthermore, general B-cell function is impaired during active TB and LTBI and this B-cell 

dysfunction compromises cellular host immunity during Mtb infection (Joosten et al. 2016). 

 

Mtb-infected B-cell-deficient mice lungs display exacerbated inflammation, with enhanced 

neutrophil recruitment (Maglione, Xu, and Chan 2007; Kozakiewicz et al. 2013), which is 

associated with excessive lung pathology and with poor bacillary control in genetically 

susceptible mice (Eruslanov et al. 2005; Keller et al. 2006). B-cells and the humoral immune 

response modulate T-cell immunity including the development of memory T-cell responses 

during infection (Lund and Randall 2010; Maglione and Chan 2009) and vaccine-induced 

protection against secondary challenge with other intracellular pathogens such as Chlamydia 
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(Igietseme et al. 2004) and Francisella (Rawool et al. 2008). B-cell-depletion with rituximab 

treatment revealed that B-cells may enhance or diminish the IL-17/Th17 response (Hamel et 

al. 2008; Matsushita et al. 2008). Experimental evidence suggests that humoral immunity 

plays a role in regulating the Th1 response in TB (Maglione et al. 2008; Kozakiewicz et al. 

2013) and a subset of B-cells in the blood of humans with tuberculosis infection can suppress 

Th17 response (Zhang et al. 2012; Kozakiewicz et al. 2013). The inflammation regulatory 

role of B-cells during Mtb infection can be strain and infection phase specific (Maglione, Xu, 

and Chan 2007; Bosio, Gardner, and Elkins 2000; Kozakiewicz et al. 2013). 

 

At the site of TB disease, B-cells are a conspicuous cellular component of the lung 

granulomatous response in tuberculous mice (Slight et al. 2013; Tsai et al. 2006; Maglione, 

Xu, and Chan 2007; Gonzalez-Juarrero et al. 2001; Turner et al. 2001; Khader et al. 2009), 

nonhuman primates (Slight et al. 2013; Phuah et al. 2012), and humans (Slight et al. 2013; 

Tsai et al. 2006; Ulrichs et al. 2004, 2005). B-cells form prominent aggregates with 

characteristic features of the germinal center (Slight et al. 2013; Maglione, Xu, and Chan 

2007; Khader et al. 2009; Ulrichs et al. 2004, 2005). However, the mechanistic involvement 

of these cells in the granulomatous response remains unclear, as does much of the detail. For 

example, whilst Mtb specific antibodies are readily detected in blood (Li et al. 2017; Lu et al. 

2016), the specificity of granuloma associated B-cells, in humans at least, is completely 

unknown. Overall, it is clear that there is a B-cell response to human TB infection, however, 

more work is needed to better understand the nature of this response and what role it may 

play in TB immunopathogensis. 

 

1.10 Hypothesis  

In this study, it is hypothesized that adaptive immune responses to Mtb infection at the site of 

disease are different from the immune responses in circulation and these responses at the site 

of infection determine the outcome of TB disease.  

 

1.11 Study aims and objectives  

Most of what is known on human immune responses to Mtb infection has been learnt from 

studies done in blood, yet TB is primarily a disease of the lung tissue. Furthermore, these 

studies have failed to provide correlates of protection in TB disease to date. A cohort of study 

participants undergoing medical lung resection for tuberculosis related lung pathologies was 
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established to learn the phenotype, function and TB specificity of adaptive immune responses 

at the site of TB disease and to understand how they correlate with the responses detectable 

in circulation. Specifically, the objectives of the study were: 

 
1. To characterize the phenotype of T and B-cells in human lung tissue during TB 

disease and compare with those in systemic circulation.  
 

2. To determine the functionality of lung tissue resident memory T-cells in active TB 
disease and previous treated TB cases.  
 

3. To determine specificity of and magnitude of response of TB specific lung T-cells 
during TB disease and compare with systemic responses. 
 

4. To characterize the phenotype of B-cells and evaluate B-cells function in TB infected 
human lung tissue.  
 

5. To determine the impact of HIV co-infection on the feature of lymphocytes within the 
lung. 
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CHAPTER 2: CHARACTERIZATION OF T-CELLS IN TUBERCULOSIS 

INFECTED HUMAN LUNG  

 

2.1 Introduction 

The literature review provided in chapter 1 has identified the research gaps that exist in 

understanding how the human body responds to Mtb infection especially in the lung, the 

primary site of disease. There are very limited human studies that look at tissue resident T-

cell responses to Mtb in the lung tissue itself. Where attempts have been made to study Mtb at 

the primary site of infection, such studies have been limited to studying the alveolar space by 

analysing bronchoalveolar lavage (BAL) fluid. Thus, a cohort of study participants 

undergoing medically indicated lung resections for TB related pathologies was set up at 

AHRI to investigate the T-cell immune responses to Mtb in fresh lung tissue and compare 

these findings to responses measured in peripheral blood.  

 

T-lymphocytes have been shown to be critical for the prevention of primary disease on initial 

Mtb infection, and the development of post primary TB once latent infection has been 

established  (Torrado and Cooper 2010; Cooper and Flynn 1995; Flynn 2004; Flynn and 

Chan 2005; O’Garra et al. 2013). However, in humans, responses are generally measured in 

blood so very little is known about T-cell function in lung tissue, the site of infection 

(Sathaliyawala et al. 2013; Gideon et al. 2015). Despite having plenty of data generated from 

studies on systemic immune responses, the correlates of protection in tuberculosis are still 

unknown. Many questions remain unanswered regarding the functional characteristics of T-

cells in TB-infected human lung, including the extent to which systemic T-cell responses 

predict the T-cell responses in the lung. Much of what is known about T-cell function in 

tuberculous lungs comes from animals models, none of  which develop the full spectrum of 

lung involvement seen in human tuberculosis (Gideon et al. 2015). 

 

Due to the recruitment of activated T-cells to the site of disease, T-cell responses are thought 

to be enriched in the lung when compared to the systemic circulation (Gideon et al. 

2015).  These concepts are supported by studies from small animal models where whole lung 

homogenates were studied (Jafari et al. 2009;  Jafari et al. 2008), and from studies using cells 

from pleural TB (Wilkinson et al. 2005) or bronchoalveolar lavage (BAL) from active TB 

patients (Brighenti and Andersson 2012; Forbes et al. 2008) and non-human primates (Fuller, 
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Flynn, and Reinhart 2003). Overall, animal studies have shown that responses to TB 

measured in circulation do not exactly mirror the responses at the site of the disease (Gideon 

et al. 2015; Gordon et al. 2017). 

 

After initial encounter with an infection, non-recirculating memory T-cells, here referred as 

tissue resident memory T-cells (Trms), remain positioned at common portals of re-infection, 

including barrier tissues such as the mucosae and skin (Gebhardt et al. 2009; Skon et al. 

2013; Masopust et al. 2010; Wakim et al. 2013; Hofmann and Pircher 2011; Jiang et al. 

2012). Due to their position, Trms can confer quick response against homologous re-

infections (Teijaro et al. 2011; Shin and Iwasaki 2012; Mackay et al. 2012; Hogan et al. 

2001; T. Wu et al. 2014b). Mucosal vaccination against TB confers superior protection 

compared to parenteral vaccination (Connor et al. 2010; Perdomo et al. 2016) suggesting 

existence of tissue specific compartmentalization of response to TB following vaccination, 

and that these responses can be protective. This is expected as other respiratory viral 

infections are known to induce resident memory T-cells that persist in the lung tissue and the 

lung airways following infection clearance (Hogan et al. 2001; Teijaro et al. 2011; Turner et 

al. 2014).  Understanding the biology of TB specific T-cells will support efforts to design 

optimal immunological interventions. Here, a detailed study of lung Trms in participants with 

TB related lung pathologies was performed to characterize T-cell immunity to TB at the site 

of disease.  

 

2.2 Materials and methods 

2.2.1 Participants 

TB infected lung tissue samples and blood were obtained from participants undergoing 

surgical resections due to severe lung complications, including haemoptysis, bronchiectasis, 

shrunken or collapsed lung or non-responsive infection, at the King Dinuzulu hospital in 

Durban, KwaZulu-Natal and Inkosi Albert Luthuli Central Hospital (IALCH) in Durban, 

KwaZulu-Natal. TB negative control samples were obtained as healthy tissue margins from 

lung cancer resections or inflammatory lung disease. All participants provided written 

informed consent and the study obtained ethical approval from the Biomedical Research 

Ethics Committee of the University of KwaZulu-Natal, the Department of health and the 

hospital management. All assays were conducted with approval of the AHRI biosafety 

committee. Detailed demographics data of the study participants is provided in table 2. TB 
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and HIV infection status was confirmed by a number methods including self-reporting (for 

HIV) by participants at enrolment followed by a confirmatory rapid test on arrival of samples 

in the laboratory; chest X-ray results analysed by dedicated cardio-thoracic surgeons and 

pathologist, in addition  clinical history data documented on individual’s previous TB 

episodes and anti-TB medication administered. Furthermore, histology reports of lung tissue 

collected on the day of resection together with Gene X-pert and/or microbiology culture 

results was provided for the participants.  

 

2.2.2 PBMC isolation 

Blood was collected in BD vacutainer (Sodium heparin) tubes (BD, Plymouth, UK) and 

transported to the laboratory and processed upon arrival. Peripheral blood mononuclear cells 

(PBMCs) were isolated from whole blood using the Ficoll-Histopaque (Sigma) density 

gradient centrifugation and used fresh in assays or frozen in liquid nitrogen in freezing media 

(90% FBS containing 10% DMSO) for later use. Approximately 30ml of whole blood was 

layered onto 10ml of Ficoll-Histopaque and centrifuged for 20 minutes at 2000 rpm at 18oC 

(with breaks off). The buffy coat was gently removed using a Pasteur pipette and transferred 

to a new 50ml centrifuge tube and topped up to 50ml with PBS and washed by spinning at 

2000 rpm for 5 minutes at 18oC. After washing step, the cell pellet dislodged by pipetting up 

and down then washed one more time with 30ml of PBS. Cells were resuspended in 10ml of 

PBS and 10μl mixed with 10μl of Trypan blue dye and cell count determined in an automated 

cell counter (BioRad). Cells were then used fresh or frozen until when needed. 

  

2.2.3 Lung Processing  

 Lung tissue of approximately 3 cm3 was isolated from different areas of resected lungs, 

corresponding to the most diseased (A), intermediate (B), and healthiest tissue (C). The 

operating surgeon classified the tissue based on their experience and the pre-operative 

radiological data. Each sample was washed in multiple changes of HBSS (BioWhittaker) and 

then diced into approximately 1 mm3 pieces and re-suspended in 8mls of pre-warmed 

digestion media (R10 (RPMI supplemented with 10% FCS, 2 mM L-glutamate, 100 U/ml 

Penstrep), containing 0.5 mg/ml collagenase D (Roche) and 40 U/ml DNaseI (Roche), and 

transferred to GentleMACS C-tubes (Miltenyi) for mechanical digestion as per the 

manufacturer’s instructions, using the lung disassociation programme. The suspension was 

incubated for 30 minutes at 37o C, subjected to an additional mechanical digestion step 
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followed by another 30-minute incubation step at 37o C. The resulting suspension was 

strained through a 70 μ m cell strainer, washed twice in HBSS, and cell viability and count 

determined using Automatic cell counter (Bio-Rad).  

 

2.2.4 Cell surface, Intracellular cytokine and transcription factor staining  

Fresh lung cells and PMBCs or frozen PBMCs cells were plated in each well of a round 

bottom 96-well plate and incubated in the presence of MTB300 peptide (2ug/ml). MTB300 is 

an MHC class II restricted mega pool of 300 epitopes of Mtb proteins spanning both the cell 

wall and secretory proteins (Lindestam Arlehamn et al. 2013). Where frozen cells were used, 

the cells were thawed and washed with R10 containing 40 U/ml DNase I, then resuspended in 

R10 medium and rested in the incubator for at least four hours before start of stimulation. 

Incubation in the presence of mixture of PMA(0.5uL/200uL) and Ionomycin (0.3uL/200uL) 

or in the absence of stimuli were used as positive and negative controls, respectively. Cells 

were incubated for 1 h at 37° C, at which point Golgi Stop solution and Golgi Plug (BD 

Biosciences) was added to each well for the remaining 4 h. Cells were collected after the 5 h 

stimulation and then surface stained with the antibody panel (see appendix I), followed by 

intracellular cytokine staining for IFN-γ, TNF-α, IL-2 and IL-17 using BD Permwash Kit 

(BD Pharmingen, CA, USA) as per manufacturer’s instructions. For measurement of 

transcription factors, the eBioscience Fixation/Permeabilization kit was used for intracellular 

staining of cells and blocked with 20% goat serum for 20 mins prior to antibody 

staining.  Data acquisition was performed using Aria Fusion or Aria III cytometers (BD) and 

analyzed using FlowJo Software v.9.9 (Treestar Inc, Ashland, OR). In cases when stimulation 

was not performed, single cell suspensions from lung and PBMC were incubated with 

antibody mix for 20 minutes in the dark followed by washing twice with PBS before fixation 

in 2% PFA prior to acquisition on FACS Aria Fusion. 

 

2.2.5 Plasma Cytokine Analysis  

Plasma samples were collected from whole blood and frozen at –80°C for later use. Analyte 

levels were quantified using a multi-plex high-sensitivity Milliplex Map Kits (Millipore) on a 

Bio-Plex 200 system (Bio-Rad) using manufacturer’s instructions. The panel included the 

following analytes: IFN-a2, IL-1β, IL-2, TNF-α, IL-12 (p70), IL-12 (p40), IL-6, IL-10, IL-4, 

IL-17a, IL-22, IL-21, TGF- β1 and IL-13. 
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2.2.6 Mass cytometry staining 

Frozen lung cells and PBMC (isolated as outlined in 2.2.2 and 2.2.3) were thawed and 

washed with FACS buffer containing 40 U/ml DnaseI. Lung cells were counted and stained 

in 100μl containing APC-CD45 (1:20) in a 96-well round bottom plate and incubated on ice 

for 20 mins.  100μl of cold FACS buffer was added and the plate centrifuged for 1500rpm for 

3 minutes at 4oC, the supernatant was discarded, and the pellet resuspended in 100μl cold 

cyFACS buffer. Thawed PBMCs were counted in 1ml of cold cyFACS buffer and 3x106 live 

cells resuspended in 100μl of cold cyFACS buffer. Both lung cells and PBMC were kept on 

ice while antibody cocktail was being prepared. 

 

A calculated amount of cyFACS buffer was added into 0.1μm Ultrafree® centrifugal filter 

unit followed by appropriate volume of each antibody into the filter unit. The antibody 

cocktail was then centrifuged at 14000 rpm for 3 minutes at 4oC. The flow through antibody 

cocktail was used to stain the cells. 100μl APC-CD45 positive lung cells was mixed with 

100μl of PBMC from the same individual in a 96-well round bottom plate. The total number 

of cells stained varied between 3 – 6x106.  The mixed samples were then centrifuged at 

1500rpm for 3 minutes at 4oC and supernatant discarded.  The cells were resuspended in 

100μl of freshly diluted cisplatin (1:1500 in cyFACS buffer) and incubated on ice for 5 

minutes. 100μl of cyFACS was added to the cells to quench the reaction then centrifuged at 

1500rpm for 3 minutes at 4oC and supernatant discarded. Cells were resuspended in 50μl of 

cyFACS buffer containing anti-human CD294 CRTH2 (diluted 1:10) and anti-human Ƴδ 

TCR (dilute 1:25) primary antibody. Cells were incubated at 37oC for 15 minutes followed by 

addition of 150μl of cyFACS buffer and centrifuged at 1500rpm for 3 minutes at 4oC.After 

discarding the supernatant, 200μl of cyFACS buffer was added followed by an additional 

washing step. Cells were resuspended in 50μl of antibody cocktail panel solution, incubated 

on ice for 30 minutes. After addition of 150μl of cyFACS buffer, cells were washed, 

supernatant discarded followed by another washing step in cyFACS buffer. Cells were further 

washed once in 200μl of PBS then resuspended in 150μl of freshy reconstituted 2% PFA. The 

plate was sealed with an adhesive sealing film and stored overnight at 4oC. The plate was 

centrifuged at 1800 rpm for 3 minutes at 4oC, supernatant discarded followed by one more 

wash in 200μl of cyFACS buffer. The cells were then resuspended in 150μl of cold freezing 

media and stored at -80oC until later for CyTOF acquisition. 
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After thawing, cells were washed in 1x permeabilization buffer and each sample was 

incubated with 50μl of intracellular antibody in 1x permeabilization buffer for 30 min on ice. 

Cells were washed twice, and each sample was barcoded with a unique combination of two 

distinct palladium barcodes for 30 min on ice. After washing, cells were resuspended in 250 

nM iridium intercalator (DNA staining) in 2% paraformaldehyde/PBS at RT. Cells were 

washed and adjusted to 0.5 million cells per ml H2O together with 1% equilibration beads 

(EQ Four element calibration beads, Fluidigm) for acquisition on a CyTOF® Helios system. 

 

2.2.6.1 CyTOF Data analysis 

Signals for each parameter were normalized based on EQ beads added to each sample. Any 

zero values were randomized using a custom Rscript that uniformly distributes values 

between minus-one and zero. Each sample was manually de-barcoded followed by gating on 

DNA+ cells. Immune cells were identified by gating on live (cisplatin-) CD45+ cells and 

tissue and PBMCs from the same donor were further identified according to the tissue-

specific live cell barcode tag (APC-CD45). Subset identification followed a traditional gating 

cascade according to the lineage markers using FlowJo (Tree Star Inc) software. High 

dimensional data analysis was performed using immunoSCAPE’s cloud-based analytical 

pipeline tool Cytographer®. For the visualization of high dimensionality data, Uniform 

Manifold Approximation and Projection (UMAP) as dimensionality reduction technique 

(Becht et al, 2018) was used. Phenotypic dissection was performed using the PhenoGraph 

clustering algorithm (Levine et al. 2015). Marker expression intensities were represented as 

heatmaps and expression plots. Dot plots and UMAP plots were displayed using Flowjo. 

 

2.2.7 Statistical analysis 

All statistical analyses were performed using GraphPad Prism version 6.0 (GraphPad 

Software, Inc.). Comparisons of two groups were done with a paired or unpaired student’s t-

test (Wilcoxon test or Mann-Whitney test respectively). Comparisons of more than two 

groups were done using two-way ANOVA. P- value of 0.05 and below were considered 

statistically significant. Where appropriate, correction for multiple comparison was carried 

out using the Bonferroni method. 
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2.3 Results 

The characteristics of the study population is shown in table 2 below. Participants were 

defined as previous TB cases based on chest x-ray results and documented clinical history of 

previous TB episodes and when the individuals indicated they had finished their TB therapy 

months before the date of lung resection surgery. Histology reports were also used to define 

participants as either active TB or previous TB. Majority of the TB cases were drug 

susceptible although there were few cases of MDR TB and a single case of XDR TB. Main 

comorbidities included consolidation/nodules, Cavitary lung, interstitial lung disease, 

bronchiectasis and mycetoma. Over 90% of the participants coinfected were on ART 

treatment and those who could not remember their ART regimen were marked as ‘unknown’ 

although they indicated they were on antiretroviral medication. Approximately 70% of HIV 

infected participants had no detectable virus in plasma. Due to the difficulty of extracting 

single cell suspension from the lung tissue, particularly the most diseased samples, the data 

presented here are only from those samples in which % live cells was >50% of total 

lymphocytes. In addition lung tissue samples in which %CD45+ cells was less than 10% 

were not included in the analysis.  

 

 

 

 

 

 

 

 

 

 

  



 40 

Table 2: Demographic information of the study participants 

Characteristics of study participants           

  Active TB  Previous TB  Cancer Control 

Characteristic (n = 43)   (n = 26)   (n = 9) 

Sex, No. (%)       

         Female 14(32.6)   13(50)   5 (55.6) 

         Male 29(67.4)  13 (50)  4 (44.4) 

Age (y), Median (range)           

        All Subjects 40 (20 -66)  37 (20 - 65)  50 (27 - 63) 

        Female 40 (20 - 60)   35 (20 -53)   54 (27 - 63) 

        Male 41 (20 - 66)  38 (20 -65)  37  (32 - 59) 

HIV, No. (%)           

         Positive  29 (67.4)  13 (50)  0 (0) 

                         CD4 Count; Mean (range)µ 484.4 (166 - 814)   300 (30 - 785)     

                         Viral Load#       

                                 Suppressed, i.e, <40 copies/ml (No, (%)) 20 (68.9)   10(76.9)     

                                 Unsuppressed, i.e, >40 copies/ml; (No, (%)) 670 - 15489; 9 (31)  450 - 1041; 3 (23)   

                         Antiretroviral Therapy regimen  Odiumune/Atrioza/Tribuss     

         Negative 14 (32.6)  13 (50)  9 (100) 

 Other lung pathologiesℑ, No. (%)           

         Cavitary lung 22 (51.2)  4 (15.4)  3 (33) 

         Bronchiectasis 12 (27.9)   9 (34.6)     

         Mycetoma 8 (18.6)  0    

         Fibrosis 0   4 (15.4)     

         Aspergilloma 0  4 (15.4)    

         Interstitial lung disease 19 (44.2)   0     

         Consolidation/Nodules 21 (48.8)  0    

Smoking history, No. (%)           

         Smokers 10 (23)  4 (15.4)    

         Non-smokers 33 (77)   22 (84.6)     

TB treatment outcomes, No. (%)       

         Drug susceptible   35 (81.4)   26 (100)     

         MDR TB 3 (6.9)      

         XDR TB 5 (11.6)         

Treatment regimen Combination therapyΩ         
 

Notes: 
µ = CD 4 count unavailable for three HIV infected individuals (both active TB) 
# = Viral load value for two active TB not available 
ℑ = Some individuals had more than one lung pathology 
Ω = Combination of any two or three of these drugs: 
Rifafour/Pyradoxine/Streptomycin/Rifinah/Tenzidone/Pyrazinamide/Isoniazid/Kanamycin/Moxifloxacin/ 
Clofazimine 
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2.3.1 Phenotype of T cells in TB infected human lung 

2.3.1.1 Recruitment of T cells to the lung in TB cases is dysregulated by HIV co-

infection 

Due to the nature of lung homogenate it is not possible to perform a full blood count to obtain 

relevant HIV metrics such as CD4 count. Therefore, we determined the ratio of CD4:CD8 T-

cells in fresh lung tissue of study participants, as skewing of the CD4:CD8 ratio in blood is a 

hallmark of HIV infection. Overall, and in non-TB controls, the CD4:CD8 in lung tissue 

appears to be lower than in the blood (approximately 1:1 vs 2:1 in the blood of healthy 

control), although all subjects examined had some existing lung condition (either active or 

previous TB or cancer), which may have impacted this ratio. None-the-less we observe a 

significantly lower CD4:CD8 ratio in the lung of HIV co-infected patients when compared to 

patients without HIV, regardless of whether they have active TB or had a previous TB 

infection (figure 1a). Interestingly, this difference is most striking in the subjects with 

pervious TB, perhaps exacerbated by reduced ongoing recruitment of T-cells to the lungs of 

these individuals. A similar trend was observed in the PBMC, although the differences 

between HIV+ and –ve subjects did not reach statistical significance (figure 1b). However, in 

comparison to healthy control PBMCs, there was a significantly low CD4:CD8 ratio in active 

TB and previous TB co-infected with HIV. All HIV positive subjects were on ART, and thus 

HIV co-infection leads to a significant skewing of the lung CD4:CD8 ratio that persists with 

antiretroviral therapy. 
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Figure 2.1: Ratio of CD4:CD8 T-cells in (a) lung and (b) PBMCs. HIV+ participants are on 

ART and control samples are participants with no history of TB and are HIV negative. 

Statistically significant non-parametric t-test (Mann-Whitney tests) p values are shown. 
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2.3.1.2 Identification of lung tissue resident memory T-cells 

Human lung is a highly vascularized organ and cells isolated from the lung will always 

contain cells from the systemic circulation that were present in the lung at the time of tissue 

resection. In an attempt to distinguish non-recirculating cells in the lung tissue, we stained 

lung homogenate with three common markers for tissue resident T-cells, CD69, CD103 and 

CD62L. CD103 has been routinely used in studying virus specific responses in human lung 

tissue (Hombrink et al. 2016; Gordon et al. 2017) while CD69 has been reported in the 

murine study of tuberculosis (Sakai et al. 2014) and several other human studies 

(Sathaliyawala et al. 2013; Schenkel and Masopust 2014b; Steinert et al. 2015; Beura et al. 

2018).  It has also been reported that tissue resident cells down regulate their expression of 

CD62L in previous studies (Schenkel and Masopust 2014; Kløverpris et al. 2016) making it a 

suitable marker to distinguish T-cells in the two compartments. The utility of these markers is 

made clear by flow cytometry staining, which shows that T-cells within lung homogenate are 

highly enriched for CD69 and CD103, and downregulate the expression of CD62L in 

comparison to blood T-cells (figure 2.2a). 

 

The proportion of cells within homogenate vary between subjects (figure 2.2b), which may 

reflect disease state or level of blood contamination. However, overall CD69 and CD103 

expression was significantly higher (P<0.0001) in both CD4+ and CD8+ cells in the lung 

than PBMC (figure 2.2c). The median of lung CD4+CD69+ T-cells was 47.89% (1.58 – 

69.2) versus 1% (0.07 – 8.9) in PBMCs; and lung CD8+CD69+ T-cells 49.9% (2.9 – 78.1) 

versus 2.1% (0.15 – 7.75).  Lung CD4+ expressing CD103+ had a median frequency of 

10.6% (0.17 – 40.3) versus 0.57% (0.07 – 8.78) in PBMC; lung CD8+CD103+ T-cells 

21.94% (3.8 – 67.7) versus 1.6% (0.26 – 9.71). Conversely, the expression of CD62L was 

reduced in tissue compared to PBMC (p = 0.0026 for CD4+CD62L+; p < 0.0001 for 

CD8+CD62L+) (figure 2.2c). Lung CD4+CD62L+ median 25.5% (0.3 – 47.6) versus PBMC 

CD4+CD62L+ median 57.29% (8.45 – 84.84); Lung CD8+CD62L+ median 7.05% (0.04 – 

27.05) versus PBMC CD8+CD62L+ median 26.85% (3.26 – 63.04). Consistent with the 

importance of CD69 expression in the biology of Trm, the majority of CD103 T-cells co-

express this marker.   

 

The similarity in expression levels of CD69 on CD4 and CD8 T-cells from lung homogenate 

is in line with the overall CD4:CD8 ratio of 1:1 reported above. There was a significant 

higher expression of CD103 in CD8+ T cells than in CD4+ T-cells in the lung (figure 2.2d). 
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This is expected, given previous reports of CD103 expression on lung T-cells (Sathaliyawala 

et al. 2013). However, it is clear that a CD103+ve CD4+ T-cell population is present in TB 

infected lung, which is important, as this subset in particular is thought to be the most 

biologically active during tuberculosis within this tissue (Yang et al. 2018). Finally, the 

presence of CD103+ and CD69+ T-cells in the lung was confirmed by 

immunohistochemistry staining of fixed lung tissue (figure 2.2e). Taken together, these 

markers appear to reliably identify T-cells in the lung that are not in circulation and were 

therefore used to distinguish these cells in further analyses.  

 

 

 
 

Figure 2.2: Identification of tissue resident T-cells. a) Representative flow cytometry plots 

showing staining of CD103, CD69 and CD62L on CD4+ and CD8+ T-cells in PBMC and lung 

tissue. 
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Figure 2.2: Identification of tissue resident T-cells. b) Stacked bar graphs of CD103 and 

CD69 co-staining of CD4+ and CD8+ from lung tissue and PBMC in cancer control, previous 

TB and active TB samples. 
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Figure 2.2: Identification of tissue resident T-cells. c) cumulative frequency of CD103, 

CD69 and CD62L in matched PBMC and lung tissue. Non-parametric T (Wilcoxon test) 

p values are shown. 
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Figure 2.2: Identification of tissue resident T-cells. d) Frequency of CD103 and CD69 on 

lung and peripheral blood CD4+ and CD8+ T-cells during TB disease. Non-parametric 

T (Wilcoxon test) p values are shown. 
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Figure 2.2: Identification of tissue resident T-cells. e) Immunohistochemistry staining of 

formalin fixed lung tissue, white arrows show cells staining for three markers (CD4, 

CD69 and CD103).  
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2.3.1.3 Tissue resident memory T-cells are expanded in tuberculosis infected human 
lung 
 

We next examined whether active TB and/or HIV coinfection has an impact on the frequency 

of CD103+ and CD69+ T-cells within the lung. Samples were defined as active TB or 

previous TB as explained in sections 2.2.1 and 2.3 above. As stated, the majority of 

individuals (70%) in our lung cohort are HIV+ve, therefore we first sought to determine 

whether or not HIV+ and HIV- subjects could be analysed together. Overall, HIV co-

infection appears to have no impact on the frequency of CD103+ve CD4 T-cells, irrespective 

of TB status (figure 2.3a). However, the frequency of CD8+CD103+ tended to be higher in 

HIV positive than HIV negative, although the difference did not reach statistical significance 

(figure 2.3a). CD69 expression, was consistently higher on both CD4 and CD8 T-cells in 

lung homogenate from HIV+ individuals, significantly in the previous TB group (figure 

2.3a). Consequently, impact of on-going TB infection was analysed separately in regardless 

of HIV status (figure 2.3b). In HIV infected individuals, the frequency of CD103+ve and 

CD69 +ve CD4 and CD8 T-cells was consistently higher in those with active TB disease 

compared to those with previous TB (figure 2.3c), reaching significance for CD103+ve CD8 

T-cells. The same trend was observed in HIV uninfected subjects, (figure 2.3a), with CD103 

and CD69 expression being highest in subjects with active compared to those with previous 

TB, and those with no history of TB (cancer controls; all of whom are HIV-ve) (figure 2.3b). 

In contrast, there were no differences in the frequencies of CD103 and CD69 expression in 

PBMC of the participants with the different disease states (figure 2.3d). Taken together, these 

data suggest that Trm, as defined by the expression of CD103 and/or CD69 are expanded in 

the lung during active TB infection. As expected, this population declines following the 

resolution of disease, but a detectable population of both CD69+ and CD103+ CD4+ and 

CD8+ T-cells persist, consistent with a resident memory T-cell population. The impact of 

HIV co-infection is not entirely clear, however, it certainly does not deplete CD4+ve Trm, as 

might have been predicted. The apparent expansion of CD8+ Trms, although not consistent 

across all subsets, is in line with clinical descriptions of HIV caused CD8 T-cell alveolitis 

(Neff et al. 2015). 
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Figure 2.3: Lung tissue resident memory T-cells during TB disease (a) Frequency of CD103 and 

CD69 on lung CD4+ and CD8+ T-cells in active and previous TB with or without HIV. No 

significant differences observed (non-parametric Mann-Whitney t-test).  
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Figure 2.3: Lung tissue resident memory T-cells during TB disease (b - c) Frequency of CD103 

and CD69 in the lung of TB cases and cancer control participants showing effect of HIV 

coinfection. Non-parametric Mann-Whitney t-test p values are indicated. 

 



 52 

 
Figure 2.3d: Frequency of CD103 and CD69 in systemic circulation in TB cases and cancer 

control participants. No significant difference in cell frequencies regardless of the disease status. 

Non-parametric Mann-Whitney t-test p values are indicated. 
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2.3.1.4 Lung T-cells are predominantly effector memory  

To further confirm the existence of Trms within TB infected human lung tissue, we next 

examined the memory profile of T-cells within lung homogenate. T-cell memory subsets and 

their diverse distribution in lymphoid, mucosal and other non-lymphoid sites are integral to 

their protective capacity and long-term maintenance (Bevan 2011; Masopust and Picker 

2012; Sheridan and Lefrançois 2011; Teijaro et al. 2011). However, in humans, studies on T-

cell activation and memory have been largely limited to T-cells isolated from blood, and 

there are limited studies regarding human T-cell activation and differentiation in tissue sites 

(Sathaliyawala et al. 2013; Hombrink et al. 2016; Gordon et al. 2017).  

 

To investigate differentiation phenotype of T-cells in the lung, CD4 and CD8 T-cells were 

further classified on the basis of co-expression of CD45RA and CCR7 into Naïve 

(CD45RA+CCR7+), Central Memory (CD45RA-CCR7+), Effector Memory (CD45RA-

CCR7-) and Terminally differentiated effector memory (CD45RA+CCR7-) phenotypes. As 

expected for Trm, the majority of CD4+ lung T-cells displayed an effector memory 

phenotype (median 81%), followed by central memory (median 11.45%; figure 2.4a). Naïve 

and terminally differentiated phenotypes where much less frequent, with a median of 2.6% 

and 4.3% respectively (figure 2.4a). Again, as expected, matched PBMC samples were 

dominated by naive CD4+ T-cells (median 37.6%), followed by effector memory (28.2%), 

central memory (17.3%) and terminally differentiated cells 10.2% (figure 2.4a). A similar 

pattern was observed for lung CD8+ T-cells, although less dominated by effector memory 

cells (median 56.3%) and with higher levels of terminally differentiated effector cells 

(24.7%), compared to central memory (8.2%) and naïve cells (7.34%) (figure 2.4a). Again, 

this was strikingly different from PBMC, which were similarly dominated by naïve T-cells.  

The fact that we observe such a profound skewing of memory phenotypes within the lung 

homogenate strongly supports the enrichment of distinct CD4 and CD8 Trm populations 

within the lung homogenate. 

 

To further confirm this, we next examined the expression of these markers on the CD69+ and 

CD103+ and – subsets respectively (figure 2.4 b-c). As one would predict, Lung 

CD4+CD69+ and CD8+CD69+ cells, contained significantly more effector memory cells and 

fewer of all other memory subsets (figure 2.4b). CD103+ CD8 T-cells are also highly 

enriched for effector memory T-cells whereas CD103+ and CD103- CD4 T-cells had similar 

differentiation phenotypes (figure 2.4c). Overall these data confirm that CD69 and CD103 
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positive T-cells in lung homogenate represent a distinct Trm subset, that is highly enriched 

for cells with effector memory phenotype 

 

 
 

Figure 2.4: Differentiation of T-cells on the basis of co-expression of CCR7 and CD45RA. a) 

Comparison between PBMC and lung tissue (b) CD69+ and CD69- lung tissue (c) CD103+ and 

CD103- lung tissue. Statistics; non-parametric Mann-Whitney t-test for PBMC vs lung and 

Wilcoxon t-test for lung tissue subsets . 
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2.3.1.5 CD69+ lung T cells express high levels of T cell exhaustion marker PD-1  

During chronic viral infections T cells become exhausted and express more PD-1 inhibitory 

receptor (Yi, Du, and Zajac 2009; Fröhlich et al. 2009). Higher frequencies of PD-1+ T cells 

are observed in systemic circulation of patients with active pulmonary tuberculosis and PD-1 

blockade in vitro can enhance TB-specific IFN-γ production (Singh et al. 2013). In mice, PD-

1 deficiency boosts Mtb-specific TH1 cell expansion and effector functions, but rather than 

leading to enhanced bacterial control, the increased production of IFN-γ by CD4+ T-cells 

drives large necrotic lesions and leads to accelerated death of the host (Barber et al. 2011; 

Sakai et al. 2016) suggesting that uncontrolled production of IFN-γ is harmful during Mtb 

infection and that particularly PD-1 is important in keeping IFN-γ production under check. 

Indeed, it was reported recently that two cancer patients who were on long-term anti-PD-1 

blockade had reactivated Mtb infection one of whom died from TB related complications 

(Barber et al. 2019). 

 

Since there is a high TB antigen load in the lung compared to systemic circulation, the 

expression of T-cell exhaustion markers, PD-1, CTLA-4 and TIM-3, were measured in T-

cells from lung and PBMC. PD-1 expression was variable in both lung and PBMC, although 

this appeared to be more pronounced in the lung (figure 2.5a). Overall, PD-1 expression in 

the lung was not significantly higher than in matched PBMC in either CD4+ or CD8+ T-cells 

(CD4+ T-cells median 9.2% (0.07 – 55.7) vs 9.7% (2.6 – 27.8), and lung CD8+ median 11% 

(0.1 – 85.7) vs median 7.1 (0.5 – 29.2). However, some individuals had markedly increased 

expression of PD-1 in the lung (figure 2.5a). Again, in an attempt to focus on Trm, the 

expression of PD-1 on CD69+ or CD69- T-cells was compared in lung tissue and peripheral 

blood. Regardless of the site measured, PD-1 expression was higher in CD69+ T-cells than 

CD69- T-cells (figure 2.5b), reflecting the dual role of PD-1 as an activation marker as well 

as a marker of tissue residency (Torrado et al. 2015; Moguche et al. 2015). Thus, the impact 

of HIV coinfection on PD-1 expression was measured, but only on CD69+ T-cells. 

Interestingly in the lung tissue, PD-1 expression was higher in HIV- participants than HIV 

coinfected individuals in both CD4+ and CD8+ T-cells (figure 2.5c) although fewer 

individuals were used for this analysis and it does not reach statistical significance. The 

frequency of PD-1 in peripheral blood CD69+ T-cells was similar between HIV- and HIV+ 

participants or marginally higher in HIV+ (figure 2.5c).  
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In contrast to PD-1, the frequency of other markers of immune exhaustion, CTLA-4 and 

TIM-3, were higher in circulation than in the lung tissue (figure 2.5d - e), although only TIM-

3+CD8+ difference between PBMC and lung reached statistical significance. In addition, 

frequency of CTLA-4 and TIM-3 tended to be higher in peripheral blood of HIV+ than HIV- 

, although the difference was not statistically significant, while their frequency in the lung 

tissue was not affected by HIV coinfection (figure 2.5 d-e), the small sample size in each 

subgroup does not allow definitive conclusions to eb drawn from this observations. 

Unfortunately, the flow cytometry panels used at the time of study did not allow co-staining 

of PD-1 and cytokines, and so information is unavailable on PD-1 expression levels on TB-

specific T-cells. However, these data do suggest variable PD-1 expressing T-cells in the lungs 

of individuals with active TB infection, and furthermore, that this is affected by HIV.  
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Figure 2.5: T-cell exhaustion markers.  a) Frequency of PD-1 on CD4 and CD8 T-cells in 

circulation and in the lung in participants with TB cases coinfected with or without HIV 

coinfection. b) Frequency of PD-1 on CD69+ or CD69- T-cells in lung tissue and peripheral 

blood. Statistics; non parametric Mann-Whitney t-test (PBMC vs Lung) and Wilcoxon t-test 

(CD69+ vs CD69-). 
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Figure 2.5: T-cell exhaustion markers. c) PD-1 frequency on CD69+ T-cells stratified on 

participants based on HIV status. Statistics; non parametric Mann-Whitney t-test. 
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Figure 2.5: T-cell exhaustion markers. (d) Frequency of CTLA-4 and (e)TIM-3 on CD4 and 

CD8 T-cells in circulation and in the lung in participants with TB cases coinfected with HIV or 

HIV negative participants.  Statistics; non parametric Mann-Whitney t-test. 
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2.3.2 Lung T cells are superior cytokine producers than T cells in circulation 
 
The hallmark of memory T cells is their rapid functional recall within hours of stimulation 

(Sathaliyawala et al. 2013; Gideon et al. 2015). First, because CD69 is also a marker of T-cell 

activation, we first sought to understand the effect of ex vivo stimulation with PMA + 

ionomycin on CD103 and CD69 expression in the lung homogenate. The frequency of CD69 

expressing T-cells was significantly increased following 5hr simulation but CD103 

expression was not altered (figure 2.6a).  

 

Important roles of T-cell produced cytokines such as IFN-g, IL-2, TNF-a, and IL-17 during 

TB have been demonstrated in animal model studies, with a subset of these cytokines 

demonstrated to be critical in humans as well (Flynn and Bloom 1996; O’Garra et al. 2013; 

Algood, Lin, and Flynn 2005; J. Lee and Kornfeld 2010; Lin et al. 2010; Green, Difazio, and 

Flynn 2013) . Using matched lung cells and PBMC, TNF-a, IL-2, IFN-g and IL-17 were 

measured by intracellular cytokine staining. Overall, lung CD4 T-cells produced higher levels 

of all cytokines than PBMCs, reaching significance for TNF-a, IFN-g and IL-17 (figure 

2.6b). The same trend was observed for CD8 T-cells, significant for IFN-g and IL-17. The 

presence of IL-17 producing T-cells in the lung is particularly notable, and suggestive of a 

Th-17 subset. For CD4 T-cells, CD69+ subset contained the highest frequency of cytokine 

positive cells, although this may have been a bystander effect of stimulation, as shown above. 

However, the CD69+CD103+ subset contained the highest frequency of cytokine positive 

cells for all 4 cytokines (figure 2.6c); suggesting these T-cells are the most highly functional 

in lung tissue, as CD103 expression itself is not affected by stimulation. This difference is 

less pronounced in CD8 T-cells, in which the CD69-CD103- subset appear equally functional 

(figure 2.6d).  In general, the CD103+CD69- subset appear to be the least functional. To 

further investigate the difference between CD103+ and CD103- T-cells in the lung we 

examined the memory subset make up of these 2 populations. No difference was observed for 

CD4 T-cells except for TEMRA that was significantly higher in CD103+, but CD103+ CD8 

T-cells tended to be enriched for central memory cells and CD103- for naïve and TEMRA 

cells (figure 2.6 e).  

 

Next, the effect of HIV co-infection on cytokine production was determined (figure 2.6f-g). 

In total lung homogenate there was a trend for lower production of TNF-a and IL-2 by CD4s 

(figure 2.6f) and TNF-a by CD8s (figure 2.6g) in individuals with HIV co-infections, 
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reaching significance for CD8s. However, for CD4+ T-cells, these differences which were 

not observed in matched blood (figure 2.6f-g), were much more striking when focusing on 

Trms (figure 2.6h). Production of TNF-a , IL-2 and IL-17 were all significantly lower in 

CD69+ CD4+ T-cells from HIV+ individuals. Interestingly, IFN-g production was 

unaffected. Only TNF-a production was affected in Trms of the CD8+ T-cells (figure 2.6i). 

This reveals significant reduction in the ability of CD69+ T-cells from HIV co-infected lungs 

to produce TNF-a, IL-2 and IL-17 and in the ability of CD8 T-cells to make TNF-a.  
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Figure 2.6: Functionality of lung T-cells. a) Effect of ex-vivo stimulation of lung T-cells on 

expression of CD103 and CD69. Statistics; non-parametric Wilcoxon t-test. 
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Figure 2.6: Functionality of lung T-cells. (b) production of cytokines by lung and PBMC CD4+ 

and CD8+ T-cells after 5hr stimulation with PMA + ionomycin.  Statistics; non-parametric 

Mann-Whitney t-test. 
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Figure 2.6: Functionality of lung T-cells.  (c) frequency of cytokines produced by lung tissue 

resident memory T-cells in CD4+ lung T-cells. Statistics; one-way ANOVA 
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Figure 2.6: Functionality of lung T-cells.  (d) frequency of cytokines produced by lung tissue 

resident memory T-cells in CD8+ lung T-cells. Statistics; one-way ANOVA 
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Figure 2.6: Functionality of lung T-cells. (e) frequency of cytokine production by tissue resident 

memory T-cells in the lung.  (f) effect of HIV on cytokine production by CD4+ and T-cells in 

circulation and in the lung. Statistics; non-parametric Wilcoxon t-test for paired comparisons 

and Mann-Whitney for unpaired comparisons. 
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Figure 2.6: Functionality of lung T-cells. (g) Effect of HIV on cytokine production by CD8+ and 

T-cells in circulation and in the lung. Statistics; non-parametric Mann-Whitney t-test. 
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Figure 2.6: Functionality of lung T-cells. (h) cytokine production by tissue resident memory 

CD4+ T-cells after non-specific stimulation with PMA+ ionomycin. Statistics; non-parametric 

Mann-Whitney t-test.  
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Figure 2.6: Functionality of lung T-cells. (i) cytokine production by tissue resident memory 

CD8+ T-cells after non-specific stimulation with PMA+ ionomycin. Statistics; non-parametric 

Mann-Whitney t-test.  

 

 
 
 
 
 

 



 70 

2.3.3 Specificity of lung T cells in tuberculosis 

2.3.3.1 TB specific T cell responses are enriched at the site of infection  

Next, the frequency of TB specific T-cells in lung homogenate and matched  PBMC was 

measured by intracellular cytokine staining after stimulation with a mega pool of 300 TB 

peptides (MTB300) (Lindestam Arlehamn et al. 2013). The data showed here are values after 

subtraction of cells with no stimulant added; negative values after subtraction were assigned 

an arbitrary value of zero. T-cell responses producing TNF-a, were most abundant and 

frequent in both lung and blood, being detected in all but one subject studied (figure 2.7a).  

TB specific cells producing the other cytokines were generally of lower frequency and 

entirely absent in some individuals. Examining TNF-a and IL-2 producing cells alone, we 

observe a highly significant enrichment of TB-specific CD4 T-cells in the lung both in 

comparison to matched blood samples (figure 2.7a) and between all lung and blood samples 

analysed from the lung cohort (matched PBMC not always available; figure 2.7b). The 

median frequency of TB T-cell in lung homogenate was compared to blood was X vs Y for 

TNF-a (median blood = 0.4835 vs median lung = 2.399) and X vs Y for IL-2 (median blood 

= 0.05 vs median lung = 0.503)  (p=0.0002 and P=0.002, respectively). Although less 

frequent, TB-specific Th-17 T-cells (producing IL-17), were also more often detected in the 

lung homogenate compared to matched blood (15/20 vs 6/17; P = 0.022 (Fisher’s exact test)). 

Surprisingly, the same pattern was however not observed for IFN-g, expression of which was 

highly variable, and no overall significant difference were observed. In stark contrast to data 

generated using non-specific stimulation, there was no difference in TB-specific cytokines 

between HIV coinfected and HIV negative participants, although the median values were 

marginally higher in the HIV negative groups (figure 2.7c).  

 

Next, TB-specific cytokine production was analysed in relation to the Trm markers utilised. 

Again, surprisingly considering the data from non-specific stimulation, CD103+ T cells, 

irrespective of CD69 expression, produced very little or no cytokine in response to TB 

peptide stimulation (Fig.2.7d). This may be consistent with the lack of PD-1 expression on 

the CD103+ subset, as PD-1 is known to be upregulated in response to antigen stimulation. 

The frequency of cytokine producing cells in the CD103-ve fraction are roughly evenly 

divided between CD69+ and CD69- cells for TNF-a and IL-2. However, in CD69+ cells 

there is a trend for lower production of IFN-g and higher production of IL-17. This is 

consistent with a general enrichment of Th17 in the lung. In general, and again contrary to 
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non-specific stimulation, HIV coinfection did not appear to affect the ability of lung Trm 

cells to produce TB-specific cytokines (figure 2.7d). As expected, TB-specific cytokine 

positive CD4+ lung T cells were mainly effector memory phenotype (figure 2.7e).  

 

Finally, the polyfunctionality of TB specific T cell responses in the lung was analysed and 

found that majority of the response was TNF-a mono-functional particularly in active TB 

and previous TB cases (figure 2.7f). However bifunctional T cells producing, TNF-a+IL-17+ 

or TNF-a+IL-2+ are present and appear to be enriched in participants with active TB (figure 

2.7f). In addition, TB-specific T cell responses in the lung are not dysregulated by HIV 

coinfection and that the TB-specific responses are mainly effector memory lung T cells.  
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Figure 2.7: M. tuberculosis specific T cells in the lung.  Frequency of CD4+ cytokine-producing 

T-cells in peripheral blood and lung tissue after stimulation with MTB-300 peptide pool, 

matched blood and lung (a) and all blood and lung samples (b). (c) impact of HIV co-infection 

on TB-specific cytokine production by lung CD4+ T-cells; Statistics; non parametric Wilcoxon 

t-test for paired comparisons and Mann-Whitney for unpaired comparisons.  
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Figure 2.7: M. tuberculosis specific T-cells in the lung. d) lung tissue resident memory T- 

cells TB specific cytokine production. HIV coinfection does not affect TB-specific 

cytokine production by lung Trms.  



 74 

 
 
Figure 2.7: M. tuberculosis specific T-cells in the lung. (e) Phenotype of TB-specific 

cytokine producing lung CD4+ T cells. Statistics; one-way ANOVA 
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2.3.3.2 TB specific regulatory T-cells in the lung 

In several diseases, regulatory T-cells (T-regs) play a central role in the prevention of 

autoimmunity and in the control of immune responses by down-regulating the effector 

function of CD4+ or CD8+ T-cells (Semple et al. 2013). The expression of the forkhead box 

P3 transcription factor, Foxp3, on T-cells is fundamental for the development and function of 

these suppressive cells (Fontenot et al. 2005; Hori, Nomura, and Sakaguchi 2003). 

Unfortunately, given the multiple parameters measured simulateneously, our antibody panel 

did not contain CD25 antibody and ,thus, the expression of T-regs in the lung and circulation 

was analysed by measuring the frequency of FoxP3 on CD4+ T-cells. Overall, there was a 

higher frequency of FoxP3+ cells in circulation than in the lung (figure 2.8a), suggesting 

regulatory cells are not enriched in the lung in general, even during active disease. Moreover, 

the frequency of FoxP3 was not affected by HIV co-infection in both circulation and at the 

site of disease (figure 2.8a).  

 

Analysis of expression of FoxP3 on CD103 and CD69 T-cells in the lung showed that 

CD103+ cell in particular lack FoxP3 (figure 2.8b). However, the frequency of TB-specific 

Tregs in the lung was highly enriched compared to matched blood (figure 2.8c).  Thus, 

although FoxP3 expression in the lung tends to be lower in circulation, TB-specific T regs are 

highly enriched in the lung. We did not measure the canonical regulatory cytokine IL-10, but 

we did detect varying levels of TNF-a, IL-2, IFN-g,  and IL-17 by FoxP3 positive TB-

specific T-cells  in the lung (median frequency of 6.4%, 2.9%, 4% and 7.5% 

respectively)(figure 2.8d). Taken together, these data show an enrichment of TB-specific 

responses in the lung compared to blood, which although largely TNF-a mono-functional, 

are also skewed towards Th17 and regulatory subsets compared to matched blood. In 

addition, they suggest that, although CD103 lung T-cells are highly functional, they are 

unlikely to be participating directly in the TB immune response as they do not make 

cytokines in response to TB stimulation, are not regulatory and do not express PD-1 which 

would be indicative of exhausted T-cells. 
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Figure 2.8: Regulatory T cells in the lung. a) Comparison of FoxP3+ expression on CD4+ T-cells 

in systemic circulation and lung. b) FoxP3+ levels in tissue resident memory T-cells. Statistics; 

non parametric Mann-Whitney t-test 
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Figure 2.8: Regulatory T cells in the lung. (c) Comparison of cytokine positive cells that are 

FoxP3 expressing in peripheral blood and lung (d) Frequency of TB-specific cytokines 

production by FoxP3+ CD4+ T-cells in the lung. Statistics; non parametric Mann-Whitney t-test 

for two group comparisons. 
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2.3.4 Plasma cytokines and TB disease at site of infection and systemic circulation 
 
Plasma cytokine levels have been used in TB to understand different aspects of the disease 

progression including response to treatment, the difference between latent and active TB and 

predict likelihood of relapse following treatment (Walzl et al. 2011; Mihret et al. 2014; Djoba 

Siawaya et al. 2009). Plasma cytokine levels of 14 different analytes were measured by 

Luminex assay and levels between active TB, previous TB and cancer control participant 

groups compared.  

 

First, to determine the effect of treated HIV on plasma cytokine levels, active and previous 

TB participants were grouped into those with or without HIV. No statistically significant 

difference between HIV groups for all the analytes measured were observed (figure 2.9a). We 

therefore ignored HIV status and grouped individuals into those with ATB, previous TB and 

non-TB controls. Surprisingly, we detected no significant differences in cytokine levels 

between active and previous TB participants (figure 2.9b), and only for IL-4 did we detect a 

significant difference between subjects with ATB and non-TB cancer controls, (p=0.0099; 

figure 2.9b). However, although not significant, IL-10 was undetectable in 7/18 subjects with 

ATB compared to 1/21 subjects with either previous TB or non-TB cancer controls (P = 

0.0149 Fisher’s exact test). Interleukin -10 is a known regulator of immune response and has 

been reported in most infectious diseases including TB (Fiorentino et al. 1991; Redford, 

Murray, and O’Garra 2011). Therefore, to test if this indicated a subset on subjects with ATB 

in whom systemic disease was more prevalent, we next correlated IL-10 levels with other 

circulating cytokines. There was no correlation between IL-10 with any of the cytokines in 

the previous TB group. However, there was a significant positive correlation between IL-10 

and the other cytokines except for TGF-b, IL-12(p70) and IL-13 in active TB group (figure 

2.9c), supporting the hypothesis that some individuals in the ATB group have more extensive 

disease than others. In light of this, we next correlated plasma cytokine levels with lung and 

peripheral blood CD4:CD8 ratio. We observe a strong positive correlation between IL-10, IL-

1b and IL-4 and lung CD4:CD8 in active TB group (figure 2.9 d), but not the previous TB 

group. No correlations were observed between any cytokine and peripheral CD4:CD8 count. 

In a small subset of participants (active TB and previous TB) in whom FoxP3+ T-cells were 

measured by flow cytometry, a correlation of the frequency of regulatory T-cells 
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(CD4+FoxP3+) in lung and peripheral blood was done. Lung T reg cells correlated positively 

with IL-12 (p40) while peripheral T reg cells positively correlated with IFN-a2 (figure 2.9e). 

 

Finally, we asked whether TB specific T-cell responses in the lung correlated with plasma 

cytokine levels in a subset of participants with active TB or previous TB. The frequency of 

lung CD4+ cytokine producing cells after stimulation with MTB300 peptide compared with 

plasma cytokine levels. There were no correlations between TNF-a and IL-2 in the lung 

tissue with any of the plasma cytokines measured. However, we observed a negative 

correlation between IFN-g in the lung and plasma IL-4 (figure 2.9f), and also a negative 

correlation between IL-17 in the lung and plasma IL-2 and IL-1ß (figure 2.9g). Although this 

analysis was done on a small number of the study participants such that active and previous 

TB cases could not be separated, the trend is generally the same between these two patient 

groups (figure 2.9 f-g). This observation suggests a role of lung Trm IL-17 and IFN-g 

producing T-cells in the lung against TB disease.  

 



 81 

 
 
 
Figure 2.9: Plasma cytokine levels. HIV coinfection does not have an effect on plasma analytes 

in active TB and previous TB cases (a) Statistics; non parametric Mann-Whitney t-test for two 

groups comparisons.  

 

 



 82 

 
 
Figure 2.9: Plasma cytokine levels. No differences in most plasma cytokine levels between active 

TB and previous TB compared to cancer controls except for IL-6 and IL-4 (b). Statistics; non 

parametric Mann-Whitney t-test for two groups comparisons.  
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Figure 2.9: Plasma cytokine levels. (c) Positive Correlation of plasma cytokines with IL-10 for 8 

of the 13 analytes measured.  
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Figure 2.9: Plasma cytokine levels. Correlation of plasma cytokines with CD4:CD8 ratio in the 

lung of active TB participants (d) and FoxP3+ (e). Red data points (active TB), black data 

points previous TB. 
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Figure 2.9: Plasma cytokine levels.  (f-g) correlation of plasma cytokines with Mtb-specific CD4+ 

T-cells in the lung, IFN-g producing CD4+ T-cells (f) and IL-17 producing CD4+ T-cells 

(g). Red data points (active TB), black data points previous TB. 
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2.3.5 High-dimensional mass cytometry (CyTOF) immune profiling of lung tissue T-

cells 

All the data we have presented above looking at lung Trms have been generated on the basis 

of their identification by expression of CD103 and CD69 on T-cells as measured flow 

cytometry staining. However, these markers are not perfect and do not identify all the Trms. 

Indeed, although it is widely accepted as a good marker, there is some evidence that not all 

Trms constitutively express CD69 (Skon et al 2013; Schenkel and Masopust 2014). In 

addition, CD103 (Integrin αE) is just one of the many integrins that can interact with 

cadherins on the epithelial surfaces (Cepek et al 1994; Wakim et al 2010; Casey et al 2012).   

 

With these limitations in mind, we performed a pilot study on a few lung samples using a 

different approach to phenotype T-cells in the lung by mass cytometry (CyTOF). In CyTOF, 

antibodies are labelled with heavy metal ion tags (Bendall et al 2011; Finck et al 2013; 

Zunder et al 2015), and this is particularly important as it gets around the problem of 

autofluorescence which is a serious limitation, especially for lung cells. Furthermore, because 

fluorochrome spectral overlap is not an issue with CyTOF, it allows for staining of many 

markers in one single run than most flow cytometers can allow. The number of cells 

recovered from lung tissue can be a limiting factor at times due to the disease state of the 

patients. We therefore devised a method in which lung cells were pre-tagged with a 

fluorescent labelled CD45 antibody before mixing with autologous PBMC to bulk up the 

numbers to efficiently run on CyTOF. Once data is acquired, cells from the two 

compartments can be easily identified based on fluorescent labelled CD45 staining (figure 

2.10a). Figure 2.10b shows the gating strategy used for cell subset identification based on 

respective lineage markers.  

 

Using UMAP as dimensionality reduction technique (Becht et al. 2018), we show clustering 

of subsets of lung tissue CD4+ and CD8+ T-cells (figure 2.10 c-d). In agreement with the 

flow cytometry data, CD69 cells are clustered together with CD103 cells, and CD69 also 

clusters together with other integrins (ITGβ7 and CD49a),  tissue homing chemokines 

(CCR5, CCR6) and does not cluster with CD62L, suggesting that CD69+ve is a marker for 

T-cells in the tissue and not circulation. Marker expression and intensities are shown as 

heatmaps with phenograph plots for lung tissue CD4+ and CD8+ T-cells (figure 2.10 e-d). 

Again considering CD69 expression, CD69+ve cells (identified as high intensity staining) 

also appears in high intensity staining for markers that have been associated with tissue 
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specific T-cells, such as integrins (CD103, ITGβ7 and CD49a), markers of tissue residency 

and/or activation (PD-1), tissue homing markers (CCR5 and CCR6) and low intensity 

expression of CD62L. In the context of TB disease, markers that have been associated with a 

protective T-cell phenotype such as CXCR3, PD-1, ICOS (Sakai et al 2014 and 2016, 

Moguche et al 2015, Bull et al 2018) also showed high intensity with CD69+ve cells. 

Similarly, markers associated with poor outcomes in Mtb infection (KLRG1) lowly 

expressed on CD69+ve cells (Sakai et al 2014). From the heatmaps, it is evident that the lung 

tissue has very low levels of NK cells based on CD16 and CD56 staining intensity. Thus, 

with all caveats in place, such as cell loss during tissue processing, CD69 in combination 

with CD103 that we used in the flow cytometry panel identified most of the lung Trms as 

confirmed by CyTOF as an alternative staining approach.  
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Figure 2.10: Mass cytometry (CyTOF) high dimensional phenotyping of lung T-cells. (a) 

Representative plots for live cell barcoding strategy and exclusion of PBMC from lung 

tissue cells based on APC-CD45 staining. (b) Representative plots for lineage markers 

classical gating strategy to identify cells subsets. (c- d) Lung T-cell subset composition – 

high density visualization based on UMAP plotted as UMAP1 (x-axis) vs UMAP2 (y-

axis) for each cell type. Lung tissue CD4+ T-cells (c) and Lung tissue CD8+ T-cells (d). 

(e-f) Heatmap of staining intensity of T-cell subsets. Lung tissue CD4+ T-cells (e) and 

CD8+ T-cells (f), phonograph clustering (left) identified 20 clusters (cluster 1-20). 
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2.4 Discussion 

Our knowledge about human T-cell immune responses during TB disease has been generated 

from studies done on peripheral blood. Despite this vast data from peripheral blood, these 

studies have not shown consistent and reliable correlates of protection against Mtb infection, 

a key pre-requisite for an effective vaccine. With this limitation, it is imperative that more 

studies in the human lung, the primary site in Mtb infection, are conducted to identify 

potential correlates of protection. In this study we have provided a detailed analysis of T-cell 

phenotype, functionality and specificity in fresh human lung tissue mononuclear cells in 

comparison with T-cells in circulation in participants with TB disease with or without HIV 

coinfection. As a control, we also analyzed lung tissue and blood samples from lung cancer 

participants. The definition of participant groups is outlined in the methodology section.  

 

To study cells in the lung tissue, we had to first identify T-cells that are resident in the lung 

which do not recirculate in blood. Although there are different techniques of identifying 

tissue specific T-cells mostly worked out in mouse experiments, such as parabiosis, 

intravenous labelling of circulating cells just prior to sacrifice to distinguish cells in 

circulation (labelled) from those in tissue (unlabelled), and the use of Fingolimod (FTY720), 

a drug which prevents T-cell egress from lymph nodes and thus blocks new recruitment of 

memory cells into tissue sites, these techniques are not applicable in humans. However, they 

have confirmed that many of the cell surface markers used in animal models are shared in 

humans, notably high CD69 expression together with CD103 (Thome et al 2014; Kumar et al 

2017). Thus, we used these two cell surface markers of tissue resident T-cells together with 

CD62L to identify lung Trms as previously reported by others (Hombrink et al 2016, Oja et 

al 2017, Pizzolla et al 2017, Sathaliyawala et al 2013).  

 

In comparison to peripheral blood, lung T-cells can be divided into two subsets based on their 

CD69 expression; CD69- and CD69+. In the tissue, CD69+ cells also express CD103 

resulting in a tissue specific subset of CD103+CD69+ T-cells. Furthermore, lung CD69+ T-

cells down regulate the expression of CD62L. Tissue-resident memory T-cells are derived 

from precursors that entered tissues during the effector phase of immune responses and 

remained positioned within this compartment (Schenkel and Masopust 2014). Once in the 

tissues, recruited T-cells must resist tissue egress cues to remain at these sites for extended 

periods and establish residency. One mechanism of egress from tissues depends on gradual 

T-cell sensitization to sphingosine-1 phosphate receptor 1 (S1PR1)-dependent chemotactic 
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gradients (Arnon et al. 2011; Lo et al. 2005; Shannon et al. 2012). Thus, T-cells in tissue 

downregulate S1PR1 by transiently reducing expression of the transcription factor kruppel-

like factor 2 (KLF2) (Preston et al. 2013; Skon et al. 2013; Grayson et al. 2001). S1PR1 

downregulation is concomitantly associated with upregulation of CD69 expression (Cyster 

and Schwab 2012; Matloubian et al. 2004; Schober et al. 1999; Shiow et al. 2006; Skon et al. 

2013). It is noteworthy that tissue egress being a continuous process would explain the 

variability in CD69 expression in the lung tissue as reported here. Direct comparison of T-

cells based on CD69 expression in circulation and tissue show that T-cells in these two 

compartments are different suggesting that tissue resident T-cell phenotypic signatures are 

acquired only after migration to destination tissues of residence as proposed by previous 

literature (Schenkel and Masopust 2014). Indeed, CD69 is induced on tissue resident memory 

T-cells after they migrate to sites of residence (Mackay et al. 2013; Masopust et al. 2006; 

Skon et al. 2013). 

 

On the other hand, CD103 expression is associated with intestinal immune cell populations 

and tissue infiltrating effector CD8+ T-cells in mice (Schön et al. 1999; Sheridan and 

Lefrançois 2011) and epithelial barrier of human lung (Hombrink et al. 2016; Oja et al. 

2017). We have shown that there is up to ten-fold enrichment of CD103 expression on lung 

tissue T-cells compared to circulation suggesting that most of the lung CD103+ cells are not 

recirculating. It has also been reported that the majority of putative tissue resident memory 

cells in many organs do not express CD103 (Casey et al. 2012; Schenkel, Fraser, and 

Masopust 2014; Beura et al. 2018). Thus, while CD103 expression is indicative of residence, 

it is likely that many memory tissue resident T-cells do not depend on, nor even express 

CD103. 

 

As expected, lung tissue T-cells down regulate the expression of CD62L compared to T-cells 

in circulation. CD62L (L-selectin) belongs to the family of cell adhesion molecules which 

contribute to leukocyte tethering and rolling along the luminal surface of venules (Shenkel 

and Masopust 2014). When T-cells enter tissues, they downregulate the expression of CD62L 

to prevent re-entry into the circulation thereby establishing residency.  

 

One of the ways in which tissue resident T-cells are maintained at the site of infection is 

when the memory T-cells that enter the infection site from circulation engage their cognate 

antigen (Schenkel and Masopust 2014; von Andrian and Mackay 2000; Ulrich H. von 
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Andrian and Mempel 2003; Beura et al. 2015). The observation that total lung CD4+ and 

tissue resident T-cells are higher in active TB cases than previous TB cases or cancer control 

participants agrees with this hypothesis since a fraction of the total CD4+ T-cells that enter 

the lung would include memory recirculating T-cells that engage the cognate antigen in the 

lung. This would lead to downregulation of S1PR1that occurs concomitantly with increased 

CD69 expression.  

 

Previously, in a nonhuman primate TB model, it was reported that T-cells are continuously 

recruited to the non-sterile granulomas, resulting in increased total cell count, T-cell number 

and increase size of the granuloma, while the sterile granulomas are maintained with the 

minimum required cell numbers for the continued maintenance (Gideon et al. 2015). It is 

probable that this is the case for previous TB participants who had eliminated TB antigens by 

chemotherapy resulting in less recruitment of cells to the lung. 

 

Apart from the cell surface markers, we used T-cell differentiation to identify phenotypic 

differences between T-cells in the lung and those in peripheral blood. We reasoned that T-

cells in lung tissue would be more activated by the pathogens they encounter in the tissue. 

Therefore, the expression of the lymph node homing receptor CCR7 together with CD45RA 

was analyzed to define the functional subsets of T-cells (Rufer et al. 2003; Sallusto, Geginat, 

and Lanzavecchia 2004).  In comparison with peripheral T-cells that are mainly of naïve 

phenotype, lung tissue T-cells have predominantly effector memory phenotype. This 

observation is in agreement with an earlier study where cells from different tissues – spleen, 

lung, ileum, jejunum, colon and lung lymph node – were mainly effector memory while 

blood cells were majorly of naive phenotype (Sathaliyawala et al. 2013). These results 

demonstrate that the differentiation and maintenance of CD4+ and CD8+ T-cells within an 

individual is compartmentalized with T-cells in lung tissue being more differentiated most 

likely in response to the pathogens encountered in the airway. Importantly, we also observed 

that within the lung, CD69+ T-cells were more effector memory than CD69- T-cells, again 

suggesting that CD69+ T-cells in the lung are different from cells that are CD69- which 

mostly consist of blood contaminating cells from circulation.  
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Functionality of T-cells is often measured by their ability to produce cytokines upon in vitro 

stimulation.  T-cells secreting IFN-g, TNF-a and IL-17 are generally assumed to be necessary 

for activation of macrophages and initiation of antimicrobial activity (O’Garra et al. 2013; 

Algood, Lin, and Flynn 2005; Peters and Ernst 2003). Thus, we measured the production of 

TNF-a, IL-2, IFN-g and IL-17 by lung tissue and peripheral blood T-cells after non-specific 

stimulation with PMA + ionomycin. In general, lung tissue T-cells had a higher median 

frequency of cytokines TNF-a, IL-2, IFN-g and IL-17 than peripheral blood T-cells. The 

marked enrichment of Th17 (IL-17 producing) cells in the lung tissue compared to peripheral 

blood is worth mentioning as these cells have been reported to be involved in early control 

Mtb infection (Cruz et al. 2010; Nandi and Behar 2011; Treerat et al. 2017). This increased 

functionality of lung tissue T-cells can be explained in part by the fact that they are mostly 

effector memory while peripheral blood is of naive phenotype.  Ex-vivo stimulation of lung 

T-cells revealed that CD69+ cells but not CD103+ cells were upregulated suggesting the role 

of CD69 as an activation marker (Meng et al. 2016; Chawansuntati et al. 2015) in addition to 

being a marker of tissue residency. Within the lung tissue, most cytokine production came 

from bona fide Trm cells, that is, CD69+CD103+ and/or CD69+CD103- T-cell subsets.  

 

Having established that lung T-cells were superior cytokine producers, polyfunctional and 

enriched for Th17 cells, we addressed the issue of their TB specificity. To do this, lung tissue 

cells and PBMCs were stimulated with an MHC class II restricted peptide pool of TB 

antigens – MTB300 (Lindestam Arlehamn et al. 2013) for 5 hours. We hypothesized that TB-

specific T-cell responses are enriched at the site of infection compared to circulation as it has 

also been reported that responses to tissue specific diseases at the site of infection are not 

necessarily mirrored in circulation (Gideon et al. 2015; Gordon et al. 2017). We have shown 

that TB-specific responses are enriched at the site of infection than in circulation for TNF-a, 

IL-2 and IL-17 cytokines but surprisingly not for IFN-g.  Again, the enrichment of TB-

specific Th17 cells in the lung is commendable. Our results show that it is more likely to 

detect IL-17 production in the lung than in peripheral blood, suggesting that these cells are 

probably absent in circulation during chronic TB or they do exist in much lower frequency in 

blood that they are often missed. Previous study looking at BAL TB-specific cytokine 

responses also reported enriched cytokine production at the site of disease (BAL) than PBMC 

(Jambo et al. 2011). Unlike in non-specific stimulation, Mtb-specific lung tissue CD4+ T-

cells were mainly CD103-CD69+ and CD103-CD69- subsets. This observation is in line with 
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the suggestion that lung homogenate consists of two populations of memory T-cells; 

recirculating and localized memory T-cell subsets as reported in mouse models.  However, 

even the CD103-CD69- cells in the lung are not the same as blood T-cells as we observed 

lower frequency of these cytokines except IFN-g in blood than lung.  Previous studies in the 

mouse model reported that the pulmonary CD4 T-cell response against Mtb is comprised of 

two major subsets that either enter the lung parenchyma or reside within the vasculature 

(Reiley et al. 2010; Sakai et al. 2014). 

 

Multiple cytokine production by antigen specific T-cells is an important measurement of their 

functionality, and is thought to be associated with antigen load (Harari et al. 2005; Millington 

et al. 2007). As to which cytokine is the most important contributor on its own to the control 

of Mtb, the available literature is divided in their conclusion. Whereas studies done in human 

peripheral blood suggest that IFN-g is the key cytokine produced by CD4+ T-cells (Green, 

Difazio, and Flynn 2013; Tameris et al. 2013; Jasenosky et al. 2015; Urdahl 2014) it was 

reported that protective lung pulmonary CD4+ T-cells produce less IFN-g compared to non-

protective lung CD4+ T-cells in the mouse model (Sakai et al. 2014). In our hands, compared 

to cancer control lung, there was a higher frequency of TNF-a+IL-2+ and TNF-a+IL-17+ 

bifunctional T-cells in active TB participants suggesting important roles for IL-2 and IL-17 

cytokines. It was only TNF-a+IL-17+ bifunctional T-cells that was different between cancer 

control and active TB in systemic circulation.  Given that we used an MHC class II restricted 

peptide pool to test the specificity of T-cells in the lung, we were unable to pick any CD8+ T-

cell responses and we cannot rule out the contribution of this T-cell subset immune response 

in TB at the site of disease in humans. 

 

Next, we investigated other T-cell features that have impact on T-cell immune responses to 

infections such as immune regulation and exhaustion. Regulatory T-cells play a central role 

in the prevention of autoimmunity and in the control of immune responses by down-

regulating the effector function of T-cells (Semple et al. 2013). Thus, we measured the level 

FoxP3 on T-cells in lung tissue and peripheral blood. Contrary to our expectation, we found a 

high expression of FoxP3+ in circulation than at the site of TB disease. Our findings are in 

contrast with an earlier study in which T-regs at the site of disease were higher than in the 

blood of TB participants (Geffner et al. 2014). The difference between our study and Geffner 

et al could be explained by the difference in samples studied (lung tissue vs pleural fluid) 
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and/or the stage of TB (chronic TB vs early diagnosed TB pleurisy). From studies in 

peripheral blood, available data is inconclusive. Higher percentage of CD4+FoxP3+ T-cells 

in the blood of TB participants compared to healthy controls (Chen et al. 2007; Guyot-Revol 

et al. 2006; Hougardy et al. 2007), no difference in the frequency of CD4+CD25+FoxP3+ T-

regs between TB participants and healthy controls (Chiacchio et al. 2009), and a lower 

frequency of T-regs in TB participants than healthy controls living in a TB endemic area 

(Roberts et al. 2007) have been reported. Within the lung tissue, CD69+ T-cells were 

enriched for FoxP3+ compared to CD103+ cells. Indeed, CD69 has been reported to control 

T-cell differentiation (de la Fuente et al. 2014). However, and of particular interest, we 

observed that the TB specific T-cells at the site of TB disease were enriched for T-regs than 

TB specific T-cells in circulation suggesting that too much immune regulation of Mtb-

specific T-cells occurs in the lung, and probably explains the ineffectiveness of enriched T-

cell responses in the lung to control the infection. A possible limitation of our definition of 

regulatory T-cells is the lack of CD25 in our antibody staining panel due to many parameters 

we measured simultaneously and the limitation of number of colours our flow cytometer 

could accommodate. We argued, however, that measuring transcription factor, FoxP3, was a 

better indicator regulatory cells than using CD25 alone which is also expressed by activated 

T-cells. 

 

In chronic infections, including TB, T-cells can become exhausted (Egen et al. 2011; 

Fenhalls et al. 2000; Theron et al. 2012).  Therefore, we measured the expression of T-cell 

exhaustion markers – PD-1, CTLA-4 and TIM-3 – in lung homogenate and peripheral blood 

T-cells. The role of PD-1 in Mtb infection is particularly important as it has been shown in 

mouse studies that PD-1 is essential to prevent  immune pathology from excessive IFN-γ 

production (Sakai et al 2016), mice lacking PD-1 are highly susceptible to Mtb infection 

(Lázár-Molnár et al. 2010), and protective role of PD-1+ve T-cells in non-human primates 

has also been reported (Moguche et al 2015). In humans, individuals receiving PD-1 

blockade immunotherapy for cancer treatment are at an increased risk of reactivating TB 

disease (Barber et al 2019). We observed that PD-1 expression was variable in both lung 

tissue and peripheral blood, although more variable in the lung.  Within the lung, PD-1 

expression was predominantly higher in CD69+ T-cells than CD69- T-cells, in agreement 

with the fact that PD-1 can also be a marker of activated T-cells. There was a general trend of 

CTLA-4 and TIM-3 lower expression in the lung tissue compared to peripheral blood but we 
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did not detect T-cells that co-expressed both PD-1 with either TIM-3 or CTLA-4 as was 

observed by others  in the mouse model (Jayaraman et al 2016; Booty et al. 2016).  

 

Immune activation and tissue destruction in the lung can be inferred from the analytes 

measured in circulation. Thus, we measured cytokines in plasma by Luminex. The cytokine 

levels between active and previous TB were identical except for TGF-1b, IL-4 and IL-6 

where the median levels were less in the previous TB group. To a large extent, these findings 

do not agree with previous studies, in which there were more clear differences between TB 

groups studied (Mihret et al. 2014; Djoba Siawaya et al. 2009; Walzl et al. 2011). However, 

our results need to be put into context in comparison to earlier reports. First, majority of the 

participants in our TB groups have documented history of long-term lung tissue destruction 

from other conditions like bronchiectasis, aspergilloma and shrunken lung tissue all of which 

would contribute to immune activation. Second, active TB group participants are on anti-TB 

therapy at the time of lung resection thus the effect of treatment on plasma cytokines cannot 

be ruled out. Thirdly, although cancer control group have no documented history of TB, 

immune activation from metastasis of lung cells could probably have an impact on the 

analytes measured in circulation.  

 

Our cytokine results in conjunction with tissue specific measurements described earlier 

allowed us to make interesting observations and revealed important differences. First, since 

IL-10 is a well-known immune regulator (Fiorentino et al. 1991; Couper, Blount, and Riley 

2008; Redford, Murray, and O’Garra 2011), IL-10 levels was correlated with the rest of the 

cytokines and only in active TB group was there correlation with cytokines IL-4, IL-1b, IFN-

a2, TNF-a, IL-17a, IL-2, IL-21, IL-12 (p40) and IL-12(p70). This observation suggests that 

more tissue destruction of the lung during active TB results in production of inflammatory 

cytokines that are released into the general circulation. Secondly, only in active TB did IL-

1b, IL-10 and IL-4 correlate positively with CD4:CD8 ratio in the lung and not peripheral 

circulation, no such association was observed in the previous TB group. Thirdly, frequency 

of FoxP3+ cells in lung correlated with IL-12 (p40) while peripheral blood T-regs correlated 

positively with IFN-a2. These two observations highlight the differences in the impact of TB 

infection on lung tissue and blood. Surprisingly, there was no correlation between IL-10 and 

CD4+FoxP3+ suggesting that plasma IL-10 could be produced by other immune cells, for 

example, monocytes and macrophages are a major source of IL-10, during TB disease. 
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Indeed, dendritic cells have been shown to produce IL-10 during Mycobacterium infection 

(Demangel, Bertolino, and Britton 2002; Madura Larsen et al. 2007; Roque et al. 2007; 

Couper, Blount, and Riley 2008). Lastly, and most importantly, we were able to compare the 

level of Mtb-specific T-cells in lung tissue with plasma cytokine markers of inflammation as 

an indicator of disease severity. We found a negative correlation between plasma IL-4 and 

CD4+ IFN-g+ lung tissue T-cells, and negative correlation of both IL-2 and IL-1b with CD4+ 

IL-17+ lung tissue T-cells. The association with IL-17 producing T-cells in the lung is 

noteworthy as this subset of cells was also less frequent in peripheral circulation.  

 

Loss of CD4+ T-cells through HIV coinfection exacerbates TB susceptibility and reactivation 

of latent TB (Day et al 2008; Geldmacher et al 2010; Nemes et al 2018; Bell and 

Noursadeghi 2018). We simultaneously investigated the impact of HIV coinfection on Trm 

phenotype, function and specificity. We observed that HIV coinfection modulates 

recruitment of T-cells to the site of disease during Mtb infection by dysregulating recruitment 

of CD4+ T-cells to the lung of during TB. In the absence of HIV, frequency of tissue resident 

T-cells in lung expands in active TB disease which is diminished after clearance of TB 

antigens. We found a decreased production of  TNF-a, IL-2 and IL-17 in participants 

coinfected with HIV than those without HIV after non-specific stimulation of T-cells. 

However, in contrast to nonspecific stimulation, Mtb-specific lung CD4+ T-cell responses 

were unaffected by HIV coinfection. This observation is different from a previous study in 

which reduced TB-specific polyfunctional as well as monofunctional CD4+ T-cells was 

reported in BAL cells of HIV coinfected participants compared to HIV naive (Kalsdorf et al. 

2009; Jambo et al. 2011).  This difference can be explained by the type of samples studied. 

We found that PD-1 expression was higher in lung tissue T-cells of TB participants without 

HIV coinfection than those co-infected with HIV, while PD-1 levels in blood was 

comparable between the groups. This observation is important in light of literature showing 

that PD-1 expression on Mtb-specific T-cells has a protective role and provides a probable 

role through which HIV exacerbates TB disease. However, we did not measure PD-1 

expression on TB-specific T-cells to confirm this suggestion. We found no significant 

differences in the levels of plasma cytokines between participants with treated HIV or 

without HIV regardless of TB disease status. These results are in agreement with an earlier 

study where levels of pro-inflammatory cytokines (IFN-g, IL-12 (p40) and TNF-a) and anti-
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inflammatory cytokines (IL-4 and IL-10) in TB participants with or without HIV were similar 

(Mihret et al. 2014). 

 

In summary, results presented here suggest that T-cell immune responses to Mtb are 

compartmentalised between lung tissue and peripheral blood. The differences in immune 

responses between these two sites can be explained in part by the existence of tissue specific 

T-cells (Trms) that do not recirculate. IL-17 cells in the lung are of particular interest as they 

appear to be the most depleted in circulation and also correlated negatively with plasma 

cytokine markers of inflammation as indicators of disease severity. Identification of Trms in 

human tissue is still a challenge as it relies on cell surface markers that in themselves are not 

perfect. However, with high dimensional immune phenotyping of T-cells in the lung by 

CyTOF, we conclude that CD69 and CD103 identified majority of lung Trms and thus 

reliable markers for studying Trms in human lung.  
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CHAPTER 3: T-CELL RECEPTOR REPERTOIRES IN HUMAN LUNG 

TISSUE AND BLOOD DURING TUBERCULOSIS DISEASE 

3.1 Introduction 
 

In the previous chapter I characterized Trm cells in TB infected lung tissue and provided 

evidence to support the existence of TB specific T-cell functional subsets in the lung that are 

not well represented in circulation. However, these could result from compartment specific 

functional differences and not due to the existence of non-recirculating TB-specific Trm. An 

alternative question is to ask whether T-cells in the lung and blood of TB infected subjects 

target the same antigens, which was not tested using antigen pool such as MTB300. 

Unfortunately, the lung tissue sections available did not provide sufficient material to conduct 

a traditional antigen screen, especially given the size of the TB proteome. Moreover, relevant 

antigen might include non-peptide ligands seen by “unconventional” T-cells. Therefore, in 

this chapter I examined the TCR repertoires in blood and matched lung tissue to look for 

evidence of TB-specific Trm within infected human lung tissue. 

  

Recognition of foreign antigens by T-cells is a central part of the immune response. 

Mediating this recognition are T-cell receptor (TCR) heterodimers, which like antibodies, 

have the ability to create vast numbers of different variable (V) region sequences through 

DNA rearrangement and other mechanisms (Davis et al. 1998). The adaptive immune system 

can generate an estimated 1014 unique alpha beta TCRs, providing the capacity to recognize 

an enormous range of distinct antigens (Davis and Bjorkman 1988; Venturi et al. 2008; 

Jenkins et al. 2010; Plumlee et al. 2013; Nunes-Alves et al. 2015). However, thymic selection 

constraints ensure that unique TCRs in any individual are far fewer than the number of 

potential TCRs (Venturi et al 2008, Jenkins et al 2010, Nunes-Alves et al 2015). The 

diversity of the TCR arises from three principal mechanisms: 1) V, D, and J segments 

generate combinatorial diversity; 2) imprecise recombination and insertion of non-templated 

‘N’ sequences at the Vβ D, DJβ and Vα Jα junctions; and 3) random assortment between 

TCRα and TCRβ chains (Qi et al. 2014). In majority of cases, alpha beta TCRs binds its 

cognate peptide antigen in the context of specific cell surface major histocompatibility 

complex (MHC) proteins which are encoded by the highly polymorphic human leukocyte 

antigen (HLA) loci HLA-A, HLA-B, and HLA-C class II alleles, thus, a TCR’s antigen 

specificity is further modulated by HLA context (Emerson et al. 2017). 
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The size of the T-cell response generally correlates with the abundance of antigen-specific T-

cells in the naïve repertoire (that is, precursor frequency) (Obar, Khanna, and Lefrançois 

2008; Kotturi et al. 2008; Jenkins and Moon 2012). Paradoxically, pathogen-specific T-cell 

responses are often focused on a small number of the available antigenic epitopes and use a 

narrow TCR repertoire. This phenomenon is termed “immunodominance” (Nunes-Alves et 

al. 2015). If the number of antigen-specific T-cells in the naïve repertoire is limiting, 

clonotypic dominance could arise by a “founder” effect in which few T-cells are primed and 

expand, leading to T-cell populations of restricted diversity (Nunes-Alves et al 2015). 

Regardless, upon antigen recognition, activated T-cells proliferate by clonal expansion and 

some become part of the memory compartment, where they can reside for many years as 

clonal populations of cells with identical TCR rearrangements by virtue of their descent from 

a common naive T-cell (Arstila et al. 1999; Neller et al. 2013; Robins et al. 2009). 

Distinct from the conventional ab T-cells, are the γδ T-cells containing TCRγ and TCRδ 

chains with diverse structural and functional heterogeneity (Zhao, Niu, and Cui 2018). 

Whereas peptide antigen recognition by conventional ab T-cells is strictly under the control 

of the MHC complex, γδ T-cells recognize their antigens in different ways and the rules 

governing how γδ T-cells recognize antigens are less clear. In general, γδ T-cells described to 

date target lipid-based antigens bound to MHC-like surface molecules of the CD1 family. In 

addition, γδ T-cells can be stimulated by certain stress or heat-shock proteins (Hsp) generated 

by a variety of cells during stress (Shinnick, Vodkin, and Williams 1988).  

In addition to conventional ab-T-cells, that recognize antigens in the context of polymorphic 

MHC complexes resulting in high restriction between individuals, ‘donor unrestricted’ alpha 

beta T-cells also exist (Van Rhijn and Moody 2015). That is, certain T-cells recognize 

antigens presented by non-polymorphic proteins that are present in all donors and are thus not 

“restricted” by the genotype of the donor. These non-polymorphic molecules include CD1a, 

CD1b, CD1c, CD1d, MR1, and HLA-E, all of which are expressed as protein heterodimers 

on the surface of APCs in a similar or identical form among nearly all humans (van Rhijn and 

Moody 2015). Among the currently well described donor unrestricted T-cells (DURTS), 

mucosa associated invariant T (MAIT) and invariant NKT (iNKT) recognize antigens 

presented by MR1 and CD1d respectively. The essential defining feature of iNKT and 

MAIT-cells is the expression of invariant TCRs with two key properties: expansion of T-cells 

with many similar, but nonidentical, TCR sequences (intradonor conservation) and 
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recapitulation of these patterns among nearly all humans (interdonor conservation) (van Rhijn 

and Moody 2015). iNKT-cells use invariant TCR α-chains of TRAV10 joined to TRAJ18 

(Turner et al. 2006) while iNKT b chain almost always uses TRBV25-1 (Porcelli et al. 1993; 

Lantz and Bendelac 1994), but without a preferred J gene or a fixed length, (Turner et al. 

2006). MAITs express TCRs with a-chains that use TRAV1-2 joined to TRAJ33 that pair 

with TRBV20-1 or TRBV6-1 (Porcelli et al. 1993; Tilloy et al. 1999). TRAJ20 and TRAJ12 

have also been associated with MAITs. The fact that MAIT and iNKT-cells are activated or 

expanded in all humans, even at a very young age (van Der Vliet et al. 2000; Martin et al. 

2009; Gold et al. 2013), suggests that selecting antigens are widespread and most likely are 

not limited to one pathogen.  CD1b present antigens to donor unrestricted germline-encoded 

mycolyl lipid-reactive (GEM) T-cells (Chancellor et al. 2017; Van Rhijn et al. 2014, 2013; 

Van Rhijn and Moody 2015). Both GEM T-cells and MAIT-cells express TRAV1-2, but they 

use different joining genes and different TCR b-chains to recognize their antigens without 

cross-reactivity (van Rhijn and Moody 2015).  

 

Although DURTS are to a large extent defined by their expression of shared TCRs between 

all or most individuals within a population, conventional T-cell TCRs can also be shared 

between different individuals, though typically much less frequently and only between 

subjects that express the same restricting MHC molecule. These TCRs are referred to as 

public T-cell receptors, in which a particular antigen is targeted by the same TCR sequence in 

multiple individuals. Although the mechanisms are not entirely clear, they may result when 

the space of potential high-avidity TCR chains that could bind to a particular antigen–MHC 

complex includes one or more TCR chains that also have a high likelihood of existing in the 

naive repertoire at any given time (Venturi et al. 2008; Li et al. 2012). TCR sequences 

associated with a public T-cell response to a particular antigen will only be intermittently 

observed in the naive compartment of subjects who have not been exposed to that antigen 

(Emerson et al. 2017). However, T-cells carrying these TCR sequences undergo clonal 

expansion upon antigen encounter, which increases the probability that these sequences will 

be detected in the repertoire of exposed subjects ( Li et al. 2012; Emerson et al. 2017). Public 

T-cell responses have been reported in infectious diseases, such as cytomegalovirus (CMV), 

Epstein–Barr virus (EBV), Clostridium tetani, parvovirus, herpes simplex virus (HSV), HIV, 

and influenza, as well as in malignancies and autoimmunity (Venturi et al. 2008; Hanjie Li et 

al. 2012).  
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3.1.1 TCR expansion as a measure of immune response to infectious diseases 
 
Measures of T-cell activity, like cytokine production, in response to invading infections are 

the consequence of T-cell activation which is triggered by TCR engaging antigen ligand in 

the right context of presenting molecule. Ideally, only the clones that are specific to a given 

antigen expand when the TCR repertoire is engaged by the cognate antigen resulting in a 

highly specific response. However, T-cell cross-reactivity is an essential characteristic of 

antigen recognition (Gras et al. 2012; Mason 1998), with some estimates proposing that a 

single T-cell can recognize up to a million different peptide-MHC complexes (Wooldridge et 

al. 2012). Analysis of the TCR expansions during infections provides an opportunity to 

identify and study in detail antigen specific T-cells and this information can guide vaccine 

design approaches.  

 

Identification of signatures of CMV exposure history on the T-cell repertoire by 

immunosequencing revealed that only a few of the CMV-reactive TCRβ sequences 

previously reported in the literature were either seen more often in CMV+ subjects or were 

more abundant in CMV+ subjects than in CMV− subjects (Emerson et al. 2017). This 

observation could be explained by the stringent criteria used by Emerson et al to define 

CMV-reactive TCRβ sequences that may have excluded other previously described public 

TCRs for CMV. Also, it has been established that a large majority of T-cell responses are 

private rather than public (Venturi et al. 2008).   

 

Apart from host factors, T-cell responses are also governed by the type of infectious agent. 

For pathogens that rapidly mutate, a diverse T-cell response could benefit the host by 

efficiently detecting escape mutants, while a biased response could be detrimental. For 

slowly replicating pathogens that encode numerous antigens, the relation between diversity 

and protection is less clear (Nunes-Alves et al. 2015). Immunodominant T-cell responses in 

patients with tuberculosis have been suggested to be both a correlate of protection and a 

marker of disease progression (Tully et al. 2005; Luo et al. 2012; Jacobsen et al. 2007; Du et 

al. 2010) suggesting, in part, that during the course of TB disease, there are differences in 

antigenic insults that the T-cells must contend with.  

 

In a mouse model of Mtb, TCR bias was found to emerge soon after T-cell priming in the 

lymph node and becomes more extreme during chronic infection (Nunes-Alves et al 2015). In 
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the same model, it was observed that TCR affinity significantly affects immunodominance 

(Nunes-Alves et al. 2015; Carpenter et al. 2016) but was not the only contributor. 

Inflammatory environment and tissue-specific cues influence the fate of individual T-cells 

during infection (Plumlee et al. 2013) and all these factors may contribute to the 

establishment of immunodominant T-cell responses during tuberculosis (Nunes-Alves et al 

2015). Although there was a high precursor frequency (a large naive repertoire pool), only a 

few of these T-cell clones were significantly represented in the final immune response 

following challenge of mice with Mtb indicating that a high precursor frequency is not a 

prerequisite for immunodominance during chronic infection (Nunes-Alves et al 2015). 

 

Spectratyping of peripheral blood T-cells from tuberculosis patients revealed TCR skewing 

compared to healthy controls (Jacobsen et al. 2007; Yang, Xu, et al. 2013). Extreme TCR 

bias was noted primarily in the setting of severe clinical disease, raising the possibility that 

TCR bias is associated with disease progression (Luo et al. 2012; Jacobsen et al. 2007). 

Counter to this interpretation is the presence of highly skewed TCR repertoires in lung 

granulomas from patients with latent tuberculosis (Tully et al. 2005). Clonal T-cell 

expansions in the lungs of patients with active disease compared to the frequency of T-cells 

in the peripheral blood of normal donors has also been reported. Within TB infected lungs, 

TCR bias at the level of the granuloma may be driven by heterogeneity in bacteria and 

bacterial antigens, as well as the persistent immune response. Therefore, the links between 

TCR bias, functional capacity of T-cells and protection during tuberculosis remain 

incomplete (Nunes-Alves et al 2015). The above studies have primarily focused on tracking 

the T-cell response to TB via conventional TCR receptor expansion, which, as discussed are 

complicated by limited publicity. In contrast, the shared nature of DURT TCRs would appear 

to make them ideal for tracking by this method. 

 

3.1.2 Donor unrestricted T-cells in tuberculosis infection  

Although the criteria for definition of cells that make up the DURTs is expanding, four types 

of cells have been described as DURTs: MAITs, iNKTs, GEM T-cells and γδ T-cells.  

MAITs respond to cells infected with bacterial pathogens without prior exposure to that 

pathogen, produce cytokines and are cytotoxic (Sharma et al. 2015; Wong, Ndung’u, and 

Kasprowicz 2017). MAIT-cells are uniquely activated by small molecule vitamin B 

metabolites presented by the ubiquitously expressed and non-polymorphic MHC-class 1-like 
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molecule, MR1 (Kjer-Nielsen et al. 2012; Reantragoon et al. 2012; López-Sagaseta et al. 

2013; Corbett et al. 2014). In MR-1 deficient murine models, MAIT-cells were associated 

with early protection against bacterial pathogens, including mycobacteria (Gold, Napier, and 

Lewinsohn 2015). Thus, these cells may act as early sensors of Mtb infection in airways and 

provide early cytokines to activate macrophages against infection. 

 

Mtb-reactive MR1-restricted T-cells were found in the peripheral circulation of humans 

including those with no evidence of previous exposure to Mtb. Interestingly, they were found 

at much lower levels in individuals with active tuberculosis (compared with those with no 

history of exposure, or those with evidence of latent infection) (Gold et al. 2010). It has also 

been confirmed by other studies that MAIT-cell frequencies are decreased during active 

tuberculosis (and non-tuberculosis mycobacterial lung disease) in diverse geographic settings 

(Sharma et al. 2015; Le Bourhis et al. 2010; J. Jiang et al. 2014; Kwon et al. 2015). Indeed, 

peripheral depletion of MAIT-cells does not appear to be disease specific and low levels of 

peripheral MAIT-cells found in individuals with cystic fibrosis experiencing pulmonary 

exacerbations due to Pseudomonas aeruginosa (Smith et al. 2014), non-streptococcal sepsis 

(Grimaldi et al. 2014) and cholera (Leung et al. 2014). In TB, the degree of peripheral MAIT 

depletion correlates with disease severity and may be reversed with antibiotic treatment 

during recovery from illness (Sharma et al 2015, Kwon et al 2015).  

 

The few MAIT-cells that remain in circulation during active pulmonary tuberculosis have 

diminished functional capacity, indicated by reduced IFN-g production upon stimulation and 

decreased transcription of effector genes (IFN-g, TNF-a, IL-17F, granulysin and granzyme B) 

(Jiang et al. 2014; Kwon et al. 2015). In addition, these functionally impaired MAIT-cells 

express higher levels of pro-apoptotic markers and higher levels of PD-1 than MAIT-cells 

from non-tuberculous patients (Jiang et al 2014, Kwon et al 2015). In vitro blockade of PD-1 

can increase IFN-g production in circulating MAIT-cells from patients with tuberculosis 

(Jiang et al 2014). 

 

One potential reason for the loss of MAIT cells from the circulation during disease is that 

these cells migrate to the site of infection. Indeed, as suggested by the name, MAITs were 

originally associated with the mucosal immune response. Mtb-reactive MAIT-cells have been 

identified in healthy uninfected human lung tissue (Gold et al. 2010), in two Mtb- infected 
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human lungs, and were enriched in the ascites fluid from a single patient with tuberculosis 

peritonitis (Le Bourhis et al. 2010) . However, in contrast and in a larger study, Jiang et al. 

2014 found diminished frequencies of MAIT-cells in pleural fluid from patients with 

tuberculosis pleuritis and no expansion of MAIT-cells in the peritoneal fluid of patients with 

tuberculosis peritonitis. Thus, it remains unclear whether MAIT-cell depletions in bacterial 

infections are due to redistribution to mucosal sites. 

 

CD1b-restricted T-cell numbers, including GEMs, are reported to be enriched in peripheral 

blood and at the site of infection during active TB, expand and contract markedly according 

to pathogen burden, and therefore can be markers of disease severity (Montamat-Sicotte et al. 

2011). By histology, CD1b expression was confirmed in lung biopsies from patients with 

active pulmonary TB (Chancellor et al. 2017) and a protective role for this molecule has been 

reported in leprosy (Sieling et al. 1999; Inkeles et al. 2016). Thus, T-cell responses directed 

to bacterial lipids presented by CD1b are important for infection containment, including Mtb. 

 

The role of γδ T-cells in the immune response to Mtb was first reported in 1989 (Janis et al. 

1989) and additional work has demonstrated that the activation of γδ T-cells appear rapidly 

following Mtb infection, and γδ T-cells provide protective immunity against Mtb infection 

with the combined properties of both innate and adaptive immunity (Casetti and Martino 

2008; Holtmeier and Kabelitz 2005; Davey et al. 2011). However, it has also been reported 

that γδ T-cells in peripheral blood are present in increased proportions in a fraction of 

patients with tuberculosis or sarcoidosis (Balbi et al. 1993) and some clonotypic γδ T-cells 

exhibited clonal expansion during BCG infection and re-infection (Chen and Letvin 2003). A 

subset of γδ T-cells, Vγ9Vδ2 T-cells, play an important role in the protective immune 

responses to Mtb infection (Chen 2016). It was shown that they can expand in response to the 

stimulation of Mtb antigens in vitro and in vivo ( Shen et al. 2002; Esin et al. 1996; Huang et 

al. 2012). Thus, γδ T-cells are clearly altered during TB disease and respond to Mtb infection. 

 

The iNKT cells antimicrobial function was originally based on the recognition of microbial 

lipid or glycolipid molecules presented by the MHC-like molecule CD1d, and activated 

iNKT cells can enhance host resistance to Mtb (Rothchild et al. 2014). Administration of 

αGalCer, which activates iNKT cells in vivo, significantly prolongs the survival of 

susceptible mouse strains following Mtb infection and this effect is synergistic with 

antibiotics (Chackerian et al. 2002; Sada-Ovalle et al. 2010). αGalCer activates human iNKT 
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cells to lyse Mtb-infected macrophages and kill intracellular bacteria (Gansert et al. 2003). 

Additionally, BCG vaccination is more effective when it is conjugated with αGalCer 

(Venkataswamy et al. 2009), probably by activating iNKT cells and enhance bacterial killing. 

iNKT cells can also restrict bacterial growth without αGalCer influence. For instance, iNKT 

cells cultured with Mtb-infected primary macrophages stimulate antimicrobial activity that 

restricts bacterial growth and adoptive transfer of iNKT cells limits bacterial growth in vivo 

(Sada-Ovalle et al. 2008). In clinical studies, a decrease of iNKT cells in the periphery is 

a marker of active disease compared to latent infection or healthy controls (Im et al. 2008; 

Montoya et al. 2008; Sutherland et al. 2009). A recent study reported that the frequency of 

iNKT cells was increased in subjects with latent Mtb infection compared with uninfected 

individuals or subjects with active infection, but HIV coinfection had a deleterious impact on 

these cells (Paquin-Proulx et al. 2018). Despite these findings of iNKT cell activation 

leading to enhanced Mtb control, iNKT cells are dispensable in the murine model of chronic 

tuberculosis infection (Behar et al. 1999; Sugawara et al. 2002; Sousa et al. 2000). 

 

In this chapter, I examine both the conventional and unconventional alpha beta and gamma 

delta TCR repertoire of matched blood and lung tissue from subjects with active TB to look 

for differences between the circulating and lung resident T-cell compartments. In addition, 

this provides the opportunity to examine whether HIV co-infection effects the lung TCR 

repertoire. TCR sequencing was done using Adaptive Biotechnologies Corp. (Seattle, WA) 

ImmunoSEQ assay (http://www.immunoseq.com) providing direct comparison of TCR from 

blood and lung tissue.  
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3.2 Methods 

The study participants are described in section 2.2.1 of the thesis.  

 

3.2.1 DNA extraction 

DNA was extracted from snap frozen lung tissue, PBMC and sorted lung cells using DNeasy 

Blood and Tissue kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer 

instructions. For whole lung tissue, different areas of resected lungs, were removed by the 

operating surgeon, corresponding to their assessment of the most diseased (A), intermediate 

(B), and healthiest tissue (C); based on their experience and the pre-operative radiological 

data. Homogenate was added to a 2ml tube containing 100µL Zarconia beads (BioSpec) and 

then bead beaten 5 times (7000rpm, 60s) with 30s on ice between intervals in MagNA Lyser 

(Roche Diagnostics GmbH, Germany). The concentration and purity of DNA was determined 

using NanoDrop Lite Spectrophotometer (Thermo Scientific).  

 

3.2.2 Cell sorting 

Lung cells and PBMC (obtained as indicated in chapter 2) were stained with surface 

antibodies and a live dead cell marker (near IR, Invitrogen) for 20 minutes at room 

temperature, washed twice with PBS and sorted using BD FACS ARIA. Cells were directly 

sorted into RLT buffer (Qiagen) + 1% β-Mercaptoethanol. Lysates were snap frozen on dry 

ice and stored at -80°C until when needed for DNA extraction. The following antibodies were 

used in the panel: anti-CD45 V500 Horizon clone HI30 (BD Biosciences), anti-CD3 Brilliant 

Violet 785 clone OKT3 (Biolegend), anti-CD4 Brilliant Ultra Violet 496 clone SK3 (BD 

Bioscience), anti-CD8 Brilliant Violet 605 clone RPA-T8 (Biolegend), anti-CD69 Brilliant 

Ultra Violet 395 clone FN50 (Brilliant Horizon) 

 

3.2.3 Immunosequencing 

For TCR-beta and alpha high-throughput sequencing, known quantities of purified genomic 

DNA were sequenced by Adaptive Biotechnologies Corp. (Seattle, WA) using the 

ImmunoSEQ assay (http://www.immunoseq.com) as previously described (Lepore et al 

2014). Due to differences in sample input, DNA from PBMCs was sequenced using the deep 

sequencing option while lung tissue DNA was sequenced using the survey option. Raw 

HiSeq sequence data were pre-processed to remove errors in the primary sequence of each 

read and to compress the data. To remove both PCR and sequencing errors, a nearest-
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neighbour algorithm was used to collapse the data into unique sequences by merging closely 

related sequences. After data clean-up, analysis was done using the ImmunoSEQ analyser 

toolset.  

 
3.2.4 Definition of donor unrestricted T-cells 
 
To determine the frequency of iNKT, GEM, MAIT and γδ T cell subsets, we searched for 

TCR features that are indicative of the different T cell subsets (Appendix III). The TCR 

sequences that we used to define the DURTs have been reported in literature (Greenaway et 

al 2013, Gras et al 2016, van Rhijn and Moody 2015). For iNKT we used the invariant 

combinations of TRAV10/TRAJ18 for a consensus sequence CVVSDRGSTLGRLYF with a 

CDR3α length of 15 amino acids and there was only one unique CDR3α sequence. For GEM 

T cells an invariant combination of TRAV01-02/TRAJ9 with a CDR3α length of 13 amino 

acids with a consensus sequence of CAVRNTGGFKTIF was used. In addition, we extended the 

definition of GEMS to CAVRxTGGFKTIF or CAVLxTGGFKTIF where ‘x’ is any amino acid 

substitution at position five of the sequence. There were 40 unique CDR3α sequences identified for 

all the GEM T-cells. With regards to MAIT cells, a combination of TRAV01-02/TRAJ33 with a 

CDR3α length of 12 amino acids with a consensus sequence CAVRDSNYQLIW was used to 

define ‘classic’ MAIT cells. With the same TRAV/TRAJ combination, we expanded the MAIT 

sequence to ‘extended MAIT sequence of CAVxDSNYQLIW where x = R,A,K,L,M,S,T,V amino 

acid substitution at position four of the classic sequence but with same CDR3α length. We also 

broadened the definition of MAIT cells to the same TRAV/TRAJ combination but with a 

CDR3α length of 11 -15 amino acids. We called this ‘MAIT-like’ TCRs. There was a total of 

47 CDR3α sequences identified for all the MAIT classes. 
 
As for γδ-TCRs, we used V genes of Vδ1,2,3,4 (TRAV14), 5(TRAV23), 6(TRAV29), 

7(TRAV36) and 8 (TRAV38) in combination with Jδ1,2,3,4. The CDR3 length for the γδ-T 

cells was variable. There were multiple numbers of unique CDR3α sequences for the γδ T-cells.  

 
3.2.5 Statistics 

A two-tailed student’s t-test was used for normally-distributed data to compare two groups. 

One-way or Two-way ANOVA were used to compare more than two groups (where 

applicable), followed by Bonferroni or Sidak post-tests. A p value < 0.05 was considered to 

be statistically significant. Statistical analyses were performed using Prism V8 (GraphPad 

Software, San Diego, CA). 
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3.3 Results 

3.3.1 Population characteristics and sequence quality control.  

Sequencing of TCRA/D and TCRB loci was done from a total of 37 individuals in a cohort of 

participants with either active or previous tuberculosis or non-TB controls as described 

previously. In addition, PBMC from twelve healthy control participants (HIV negative TB 

negative) was sequenced in a similar manner. The details of these study subjects are outlined 

in Table 3. All the participants who were coinfected with HIV were on antiretroviral therapy 

while active TB participants were on anti-TB therapy combination of any two of the drug 

regimens shown in table 3. Definition of participants into TB groups was as explained in 

section 2.2.1 

 

Table 3: Characteristics of chronic tuberculosis participants 
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Deep sequencing of blood and/or PBMC and survey level sequencing of tissue samples 

generated enough templates for further TCR analysis (table 4a and b). Samples that did not 

meet the threshold were not included in the downstream analysis. In total, 79 samples of 

PBMC, blood and multiple tissue samples were analysed. 

 

Table 4 a & b: Sequencing products after quality control check. Deep sequencing (blood 

and PBMC) and survey sequencing (lung tissue). a - TCRA/D; b - TCRB  
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3.3.2 Donor unrestricted T-cells are depleted in peripheral circulation in tuberculosis 

First, due to the ease of identifying DURT TCR sequences, we examined the impact of TB on 

MAIT-cells, iNKT-cells, GEM T-cells and gamma-delta T-cells in peripheral blood of 

healthy control and chronic TB participants. Furthermore, frequency of these cells was also 

measured in lung tissue T-cells from chronic TB participants.  

 

In line with other reports, by flow cytometry, there was a significant reduction in MAIT-cells 

frequency in TB cases compared to healthy controls (figure 3.1a). There was no significant 

difference in total γδ T-cells between TB cases and controls (figure 3.1b) but staining for γδ 

T-cell subsets revealed significant reduction in the frequency of Vδ2 and Vγ9Vδ2 in TB 

cases compared to healthy controls. Vδ1 T-cells, on the other hand, were significantly higher 

in TB cases than healthy controls (figure 3.1 c – e). Consistent with this, bulk TCR 

sequencing showed reduction in the frequency of MAIT-cells and total γδ in circulation of 

TB cases compared to healthy controls although reduction in total γδ T-cells did not reach 

significance (figure 3.1 f-h). In addition, the frequency of GEM TCRs was significantly 

lower in TB cases, which was not assessed by flow cytometry as it required CD1b tetramers. 

No differences in the frequency of iNKTs was observed by TCR sequencing, again not 

assessed by flow cytometry, for the same reason.  

 

Next, by TCR sequencing, we examined DURT frequency in lung tissue from TB subjects. 

Within the TB cases, the frequency of MAIT-cells was marginally higher in the lung than 

peripheral circulation, but this did not reach significance (figure 3.1f) but was significantly 

lower than in the blood of healthy donors. Total γδ T-cells were significantly lower in lung 

tissue compared to circulation for both TB cases and controls (figure 3.1g), while GEM T-

cells frequency was similar between lung tissue and circulation for TB cases (figure 3.1h). 

Finally, the frequency of iNKT-cells was similar between all groups (figure 3.1i).  

 

Sequencing techniques may sometimes be affected by primer bias resulting into unequal 

amplification. To ensure that TCR sequencing results were a true reflection of DURT cell 

frequency, a comparison of frequency of T-cells by flow cytometry and TCR sequencing was 

done. A positive and significant Spearman correlation is shown between frequencies of 

MAIT-cells, total γδ T-cells, Vδ1 T-cells and Vδ2 T-cells as measured by flow cytometry and 

TCR sequencing (figure 3.1j-m). This observation supports the validity of global TCR 

sequencing as method for enumerating T-cell frequency.  
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Figure 3.1: Frequency of donor unrestricted T-cells (DURTs). DURT-cells in peripheral 

blood of healthy controls and TB cases measured by flow cytometry (a – e). Statistics; 

non-parametric Mann-Whitney t-test 
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Figure 3.1 Frequency of donor unrestricted T-cells (DURTs). DURT-cells in peripheral 

blood (healthy control and TB cases) and lung tissue (Lung) as measured by TCR 

sequencing (f – i). Statistics; non-parametric Mann-Whitney t-test 
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Figure 3.1 Frequency of donor unrestricted T-cells (DURTs). Spearman correlation of 

frequency of DURTs as measured by flow cytometry and TCR sequencing (j – m), black 

circles (healthy controls), red circles (TB cases). 
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3.3.3 Peripheral blood CD8+ MAIT-cells are the most depleted in tuberculosis 

MAIT-cells are defined as CD3+CD8+ or CD3+ double negative for CD4 and CD8 T-cells 

that have T-cell receptors encoded by the TRAV1-2 genes and are restricted by non-classical 

molecule MR-1 (Morris et al 2016). By both flow cytometry and TCR sequencing, MAIT-

cells were depleted in peripheral circulation of TB cases compared to healthy controls (figure 

3.1a, f &j). However, TCR sequencing does not distinguish between CD8 and CD4 T-cell 

subsets. Therefore, to determine which subset was most affected using flow cytometry γδ- 

CD3+ T-cells were divided into four populations based on expression of CD4 and CD8 

(figure 3.2a) then frequency of MAIT cells (Va7.2+CD161+CD26+ cells) analysed in each 

compartment for healthy controls and TB cases (figure 3.2b). Using this classification, the 

majority of MAIT cells were CD3 double negative (CD4-CD8-) in both healthy controls and 

TB cases (figure 3.2b). However, MAIT-cells in this T-cell sub population were not 

significantly depleted in active TB (figure 3.2c). All other MAIT subsets were significantly 

lower in TB cases compared to controls, with the most striking effect observed in the 

CD3+CD8+ T-cells subset (figure 3.2c).  
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Figure 3.2: MAIT-cell frequency in T-cell subsets. (a) Representative FACS plots of 

expression of CD4 and CD8 on γδ-CD3+ T-cells. (b) The frequency of MAIT cells in 

subpopulation of γδ-CD3+ T-cells.  
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Figure 3.2: MAIT-cell frequency in T-cell subsets. (c) impact of tuberculosis on MAIT-

cells in different γδ-CD3+ T-cells subsets. Statistics; non parametric Mann-Whitney t- 

test.  
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3.3.4 Clonality and relatedness of T-cells in blood and lung tissue 

Having focused on DURT cells to validate this approach we next examined the total TCR 

repertoire in blood and matched lung samples. First, quantitation of the extent T-cell 

expansion was done by comparing the clonality score for each sample. The clonality score is 

a measure of degree of TCR expansion within a repertoire that is robust to sampling depth 

and normalizes for differences in deep and survey sampling. The clonality score values range 

from 0 – 1, in which a value of 1 would represent a monoclonal population. Clonality score 

were calculated using the Adaptive on-line analysis tool as described. Multiple lung tissue 

samples were taken from each individual to examine heterogeneity in the TCR repertoire 

within the lung. Figure 3.3a shows all subjects sampled, with the red dots indicating 

individual tissue sections and the blue dots PBMC. Not all individuals have data from both 

matched blood and lung and the number of separate lung sections from each individual varies 

between 1 and 3. However, in general, tissue samples from the same individual have a similar 

clonality and the tissue clonality is higher than in matched blood (figure 3.3a). Cumulatively, 

there is a significantly higher clonality score in lung tissue samples than in periphery while 

there is no difference in clonality between lung pieces (figure 3.3 b). Clonality correlation 

between tissue and blood was done by plotting the average tissue clonality against peripheral 

blood clonality score. Although the tissue clonality is higher than blood clonality, the two are 

marginally correlated (figure 3.3c). Overall this suggest a significant clonal expansion of T-

cells within TB infected lung tissue compared to matched blood, consistent with the existence 

of an expanded memory T-cell pool within this organ.  

 

An alternative global measure of TCR repertoire characteristics is the Morisita index, which 

quantifies the overall similarity between repertoires; where Morisita’s score of 0 represents 

no overlap and 1 represents perfect correlation of clonal overlap and frequencies. An example 

of this is shown in figure 3.3d, were two different tissue samples from the same individual 

have very similar TCR repertoire, generating a high Morisita’s index, while matched tissue 

and blood can have quite different TCR repertoire, giving a low Morisita index value (figure 

3.3d). In these plots each dot represents a different TCR sequence, and in the second 

comparison, dots on either the X or Y axis therefore represent TCRs that were not seen in 

either the blood or lung. In total, there was a higher Morisita’s index in lung-vs-lung than 

periphery-vs-lung (figure 3.3e) demonstrating that T-cell repertoires from lung tissues are 

more similar than T-cell repertoires from lung and blood in the same individual. Further, 

there is no difference in Morisita’s index within lung pieces (figure 3.3e).  Thus, lung tissue 
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from TB infected individuals is both clonally expanded and distinct from that of matched 

blood. However, these data do not support the existence of a high degree of TCR 

heterogeneity within the same lung. 

 

 
 

Figure 3.3: T-cell receptor repertoire measurement. a) Representative clonality values 

of participants showing matched blood and lung tissue samples with different disease 

states. (b) Cumulative clonality between blood and lung tissue, and between lung tissue 

pieces. (c)  Correlation between clonality in circulation and tissue. Statistics; non-

parametric Mann-whitney t-test and one way ANOVA. 
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Figure 3.3: T-cell receptor repertoire measurement. (d) Representative Morisita’s index 

plot between two lung pieces of the same individual (left) and between lung tissue and 

blood of the same individual (right). (e) Cumulative comparison of Morisita’s index 

between peripheral circulation and lung (left) and within lung tissue pieces (right). 

Lung section – most diseased (A); moderate pathology (B) and least diseased (C).  

Statistics; non-parametric Mann-whitney t-test and one-way ANOVA. 
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3.3.5 Effect of active TB disease and HIV on T-cell clonality in blood and tissue 
 
As discussed in the previous chapter the TB lung cohort is divided into those subjects with 

evidence of active TB disease, those with previous TB disease presumed to no longer be 

active and non-TB control. Thus, we next examined effect of TB disease status, in addition to 

HIV co-infection on the TCR repertoire. Overall, with the caveat that numbers in some 

groups are small, we find no significant differences in clonality score between any of the 

patient groups (figure 3.4a). HIV coinfection has an effect on TCR clonality in tissue, but 

there was no difference between clonality in tissue of TB negative and TB positive 

participants (figure 3.4a - c). In PBMC, by comparison, although TB had no difference in 

clonality of TCR in the peripheral blood when compared with previous TB, participants 

coinfected with HIV had a significantly higher clonality of TCR in circulation than 

participants without HIV (figure 3.4d - f). This effect can also be observed when plotting the 

paired clonality scores for PBMC and lung tissues (averaged across all lung pieces sequenced 

for that subject). Overall, clonality is higher in lung tissue, but this only true in subjects 

without HIV co-infection (figure 3.4g - i).  

 

To explore the effect of HIV further, we treated every lung tissue piece as an independent 

sample and stratified on the basis of HIV status. By analyzing the data this way, we found 

there were fewer productive rearrangements (43,000 ± 4,000 vs. 28,000 ± 2,400, p=0.0024), 

and higher clonality (0.240 ± 0.08 vs 0.208 ± 0.06, p=0.0022) in the lung lesions of HIV 

positive subjects than in seronegative participants (figure 3.4k-l). This data suggests there are 

fewer CD3 T-cells within the lungs of HIV co-infected subjects but a higher clonal 

expansion, which could be consistent with the relative loss of CD4 T-cells and expansion of 

CD8 T-cells observed in the lungs of HIV co-infected subjects reported in the previous 

chapter.  
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Figure 3.4: Effect of Active TB and HIV on T-cell clonality in tuberculosis. (a-c) TCR 

clonality in lung tissue. (d-f) TCR clonality in peripheral blood. (g - i) Paired TCR 

clonality in paired peripheral blood and lung tissue. Statistics, Non-parametric T-test 

(unpaired samples - Mann-Whitney), paired samples (Wilcoxon test). 
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Figure 3.4: Effect of HIV on T-cell clonality in tuberculosis. (k-l) Productive 

rearrangements and clonality of T-cells in lung tissue by HIV co-infection. Statistics, 

Non-parametric Mann-Whitney t-test. 
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3.3.6 Distribution of unique T-cell clones 
 
Next to further explore the contribution of CD4 and CD8 T-cells to the TCR repertoire in the 

lung we identified an additional 5 subjects with suspected active TB but no HIV co-infection 

and FACS sorted lung T-cell subsets for TCR sequencing. For this subset of participants, we 

sequenced the alpha chain of the TCR.  

 

Based on FACS data discussed in chapter 2, CD4 and CD8 T-cells were sorted based on the 

expression of CD69, with the hypothesis that CD69+ve T-cells should be enriched for Trm 

subsets whilst CD69-ve T-cells would be more like circulating blood samples. DNA was 

extracted from sorted T-cells and sequenced using the Adaptive platform as before.  

 

Figure 3.5a-b shows the data from all 5 subjects sequenced, and clearly shows that the clonal 

enrichment observed in the lung is likely to derive primarily from CD4+ve T-cells. In all 

subjects, clonality score was higher in lung T-cells than matched blood and was generally 

higher in the CD69+ compared to CD69-ve fraction in the lung (figure 3.5a). However, this 

was not the case for CD8 T-cells, in which differences in clonality were less consistent 

(figure 3.5b). This is clearly seen when pooling the data from all 5 subjects, where CD69+ 

CD4+ T-cells sorted from the lung collectively have a significantly higher clonality score 

than PBMC (figure 3.5c); but in the same comparison for CD8 T-cells the clonality score is 

not different (figure 3.5d). Overall these data suggest that the clonal expansion observed in 

TB infected lung tissue, in the absence of HIV, is driven by CD4 T-cells. This is in contrast 

to observations from viral infection of the lung, which have generally focused on CD8+ve T-

cells but is consistent with the importance of CD4+ve T-cells to the TB immune response.  

 

To further drill down on the differences between CD69+ve and CD69-ve T-cells, we 

searched each fraction for the presence of unique TCR clonotypes that were clonally 

expanded. An example of this is shown in figure 3.5e, where clonally expanded cells are 

represented by any dots outside the red dotted line, with unique TCRs those on the X or Y-

axis. Just comparing lung cells, in all individuals there were more unique and clonally 

expanded TCR clonotypes in the CD69+ fraction than the CD69-ve fraction, consistent with 

non-recirculating Trm clonotypes. In addition, and again consistent with the above 

observation, this was far more apparent in CD4+ T-cells than CD8+ve T-cells (figure 3.5 

f&i). The same trend is seen when comparing CD69+ve T-cells with matched blood, which 



 130 

shows there is an average of 200 unique and clonally expanded in CD69+ve CD4 lung T-

cells but almost none in the blood (figure 3.5g). Again, the same trend is seen in CD8 T-cells, 

but to a lesser extent (figure 3.5j). Interesting, unique clonally expanded TCR clonotypes are 

also seen in the CD69-ve lung T-cells compared to matched blood (figure 3.5 h&k). As 

expected, they are less frequent than in the CD69+ve fraction. However, there presence does 

suggest the potential existence of non-recirculating T-cell clones in the lung that lack CD69 

expression. This is biologically plausible, as data from animal models does suggest that some 

Trms lack CD69 expression and Trms can develop even in CD69 knock mice (Schenkel and 

Masopust 2014). Taken together these data strongly support the existence of clonal expanded 

T-cells in the lung that are not found in circulation and may include TB specific Trm. This is 

further supported by the fact that, in these TB infected subjects, this is primarily seen in the 

CD4 compartment, which is known to be central to the TB adaptive immune response.  
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Figure 3.5: Distribution of T-cell clones. (a- d) Clonality of TCR in sorted CD4 and CD8 

T-cells from systemic circulation and lung tissue. All samples from HIV negative 

participants and pre-FACS sorted before DNA extraction. Numbers on the x-axis (in 

a&b) refer to participant identification number. Statistics, non-parametric Mann-

Whitney t- test. 
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Figure 3.5: Distribution of T-cell clones. (e) Representative distribution of unique T-cell 

clones within CD69+ and CD69- lung T-cells and CD69- blood T-cells.  

 

 

 
 
 
 
 
 
 
 
 



 133 

 
Figure 3.5: Distribution of T-cell clones. (f-k) Cumulative data of unique clones in 

sorted lung T-cells and blood T-cells.  
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3.3.7 Contribution of unconventional T-cells on TCR repertoire clonality  
 
As DURTs such as MAITs are have a limited TCR repertoire and are present at a high 

frequency, we were interested to test to what extent they had an impact on TCR clonality. 

Using an extended definition of donor unrestricted T-cells (DURTs) (Appendix table III), 

conventional T-cell clonality was compared to overall clonality to determine if overall 

clonality was skewed by the unconventional T-cells. First, the clonality of on each sample 

was calculated after removing DURT TCRs. Surprisingly, the results show that clonality 

appeared to be unaffected by the exclusion of unconventional T-cells in all subjects (figure 

3.6a).  Next, using this combined definition of DURTS we compared DURT frequency in 

healthy controls with TB cases found an overall decline in frequency of DURTs in blood of 

TB cases compared to healthy controls, consistent with data show earlier (figure 3.1a-e). 

Examining the data this way, clearly shows that γδ T-cells are the most abundant DURT 

TCR, followed by MAITS, iNKTs and GEMS (figure 3.6b), and the frequency of these 

different DURT subsets does not appear to vary between lung different lung tissue fractions 

in the same lung  (figure 3.6c). Taken together, the total T-cell clonality is not affected by 

unconventional T-cells present in the sequenced sample and γδ T-cells is the most frequent of 

the DURTs in both blood and lung tissue.  
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Figure 3.6: Contribution of DURTS on the clonality of T-cells. (a) Correlation of 

conventional T-cell clonality with the overall clonality. Conventional T-cell clonality 

calculated after subtraction of clonality of unconventional T-cells (gd T-cells, iNKT, 

MAIT and GEM T-cells). (b) Frequency of TCRs in blood of healthy control, 

participants with active TB and lung tissue of active TB positive HIV negative 

individuals. (c) Frequency of unconventional TCRs in lung tissue pieces.  
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3.3.8 Frequency of DURT TCRs in the lungs of subjects with active or prior TB and 

HIV co-infection 

Having explored the impact of active TB and HIV co-infection on the overall TCR repertoire, 

we next examined the impact of these clinical phenotypes on specific DURT cell frequencies 

in the blood and lung. The invariant TCRα of iNKT was detected in 77/79 lung or blood 

samples (figure 3.7a), but was not significantly enriched in the lung compared to the 

peripheral blood of any subgroup, nor did the frequency differ between HIV negative and 

HIV positive subjects, in either the blood or in the lung (figure 3.7a). Therefore, while nearly 

all subjects had iNKT-cells present in their blood and lung tissue, there did not appear to be 

any consistent increase or decrease in iNKT-cells associated with any disease group or 

compartment. 

 

Although MAIT cells TCRs have been defined, there is growing data to suggest that MAIT 

TCRs are more heterogonous than initially believed (Greenaway et al 2013). Therefore, for 

MAIT cells we used three definitions (see appendix III) to identify MAIT TCRs: a) classic 

MAIT TCR; b) extended MAIT TCR (MAITExt); and c) MAIT-like TCR, the “total” MAIT 

repertoire (classic + extended + MAIT-like) were detected in 78/79 samples (figure 3.7b). 

With this extended definition, the frequency of total MAIT TCRs were not significantly 

enriched in lung lesions compared to peripheral blood, except for participants with previous 

TB and HIV co-infection (figure 3.7b). This suggests the marginal increase in MAIT 

frequency in the all lung samples observed in figure 3.1f is driven by the previous TB HIV 

positive subgroup. It is hard to speculate what the reasons for this association might be, 

however, it does indicate that MAIT cells per se are not depleted from the lung tissue in HIV 

infected individuals. In addition, we see no clear expansion of either MAITs or iNKTs in the 

lung of subjects with active TB compared to those with prior TB or non-TB controls. For γδ 

T-cells, as previously observed in figure 3.6b, their frequency was higher in the blood of HIV 

negative participants with active TB (figure 3.7c), but otherwise, they did not appear to be 

significantly enriched in the lungs of participants in any of the disease subgroups. Thus, 

based on these data, there did not appear to be any data supporting the idea that DURTs are 

specifically or preferentially recruited to the site of active TB lesions. 

 

As for MAITs, we expanded the definition of CD1-rectricted TCR beyond the canonical 

published GEM TCR sequence. The CD1b-restricted T-cell recognizing GMM is encoded by 

TRAV01-02 and TRAJ09 (van Rhijn et al 2013). Its CDR3α amino acid sequence is 
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“CAVRNTGGFKTIF,” which is the result of a rearrangement of amino acids in the motif.  

By expanding the motif to include ‘classic’ GEM TCRs (i.e., CAVRDTGGFKTIF) and 

GEM-like TCRs (CAVXXTGGFKTIF), all TCRα rearrangements was searched using the 

motif CAVXXTGGFKTIF. The most frequently detected clonotypes in lung were 

CAVRNTGGFKTIF (‘classic’ n=45/45), CAVRDTGGFKTIF (n=45/45), and 

CAVLNTGGFKTIF (n=38/45). Of the 26 AA clonotypes identified, all used Jα9; but only 

~10% used Vα1-02; instead, the most common (47%) was Vα20. Although these TCRs were 

commonly detected within the cohort, their abundance was generally low (figure 3.7d). One 

participant with previous TB HIV positive (193) had significant increases in classic GEM – 

but the frequency was similar in blood and lung. 
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Figure 3.7: Donor unrestricted T-cells in blood (open circles) and lung tissue (solid 

circles). (a) iNKT-cells (b) total (classic + extended + MAIT-like) MAIT-cells (c) γδ T-

cells and (d) GEM T-cell in blood and lung sections (A, B C). Statistics – non parametric 

Mann-Whitney t-test p = * (< 0.05), p = *** (< 0.001) 
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3.3.9 TCRδ clonotypes in the lung 
 
Finally, we focused on the TCRδ clonotypes to see if there was any evidence of 

compartmentalization of γδ T-cells within TB infected lung tissue. Over 30,000 unique TCRδ 

clonotypes were found among the participants studied. Surprisingly, of the 10,737 found in 

the lung, only 15.6% were also found in the blood (figure 3.8a). While there were individual 

variations in which Vδ gene segments were used, the Vδ1 gene was most frequently used by 

the TCRδ clonotypes in the lung irrespective of disease state (figure 3.8b). This is somewhat 

different to blood where the distribution of Vδ1 and Vδ2 were roughly even (figure 3.8c). 

Overall, gene segment use in the lung was skewed towards Vδ1, and a population of Vδ1Jδ3 

T-cells was more apparent in the lung than in blood. 

 

Next, the top 10 most abundant TCRδ clonotypes from each sample were examined.  The top 

10 PBMC TCRδ clonotypes consisted of 270 sequences, of which 269 were unique. For the 

lung samples, there were 319 unique clonotypes from 430 sequences (figure 3.8d). Of these, 

72 were shared with blood.  These top 10 TCRδ clonotypes accounted for an average of 56 ± 

17.5% (range 13-90%) of all TCRδ clonotypes in the lung sample (figure 3.8e). This fraction 

was significantly lower among HIV negative participants with active TB compared to HIV 

positive subjects with active TB or HIV negative participants with previous TB (figure 3.8e). 

This may suggest that HIV negative participants with active TB have a more diverse γδ T-

cell response to Mtb.  
 

These “top 10” clonotypes were further evaluated to determine which ones were truly 

enriched in the lung by determining their frequency in blood relative to the sum of the lung 

samples (1-3 samples per participant). For the 72 TCRδ clonotypes that were abundant both 

in blood and in lung, most were present at a relatively low frequency (<0.001) or were more 

abundant in blood (figure 3.8f - left). Only 6 of the 72 were increased >5-fold in the lung. 

Then, the remaining 247 TCRδ clonotypes were compared. Of these, 143 were present at a 

frequency >0.001 and most were >5-fold enriched in the lung (figure 3.8f - middle). Based on 

these results, all of 30,000 TCRδ clonotypes were evaluated in this manner. With this 

approach, 106 unique TCRδ clonotypes were identified that were both abundant (productive 

frequency >0.001) and lung-enriched (lung/blood >5) present at the lung frequency.  From 

then clonotypes that were abundant or were enriched in the lung (lung/blood ratio >5) were 

defined (figure 3.8f - right). 
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Figure 3.8: Distribution of unique δ-TCR clonotypes. (a) A venn diagram of all unique 

δ-TCR clonotypes from all participants. (b) The use of Vδ1, Vδ2, or Vδ3 gene segments 

by δ-TCR clonotypes in the lung. (c) An analysis of the pairing of Vδ1, Vδ2, or Vδ3 with 

Jδ1, Jδ2, Jδ3, or Jδ4, gene segments. (d) An overlap of 269 unique “top 10” δ-TCR 

clonotypes from blood vs. the 319 unique δ-TCR clonotypes from lung. (e) The percent 

of total δ-TCR sequences represented by the “top 10 abundant” clonotypes in each 

sample, categorized by clinical subgroup. (f) δ-TCR clonotypes preferentially detected 

in the lung; left, the 72 clonotypes shared with the “top 10” blood clonotypes; middle, 

the remaining 247 “top 10” lung clonotypes”; right, all 30,673 unique clonotype. 

Statistics, Mann-Whitney t-test. p = * (< 0.05), p = ** (< 0.001). 
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3.3.10 Enriched and abundant TCRδ T-cells in the lung. 

Although the 106 unique TCRδ clonotypes represent fewer than 1% of the 10,737 unique 

clonotypes identified in the lung, they make up 43% of the productive TCRδ rearrangements. 

In considering the CDR3δ lengths of these clonotypes, this population appeared to be 

skewed, with a bias towards a length of 19 (figure 3.9a, left). To ensure the results were not 

due to sequencing errors, the distribution of CDR3δ lengths based on their productive 

frequency (figure 3.9a, right) was also determined. This analysis shows that the abundant 

TCRs in the lung are biased towards a CDR3δ length of 15 or 19. This skewing is apparent in 

the total population of lung TCRδ clonotypes and becomes more obvious after selecting for 

lung-enriched clonotypes, and especially those that are enriched and abundant. Thus, even 

though total frequency of TCRδ+ T-cells is reduced in the lung compared to the blood during 

TB infection, many clonotypes found in the lung are not detected in blood and are enriched 

and abundant in the lung. As an example of the abundance and enrichment of these 106 

TCRδ clonotypes, twelve distinct clonotypes from 10 subjects are shown (figure 3.9b). 

Several are enriched more than 100-fold in the lung and are present with productive 

frequencies of >1%. 
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Figure 3.9: Enriched and abundant δ-TCR clonotypes. (a) The distribution of CDR3δ 

lengths based on the relative frequency (left) or abundance (right) of all unique 

clonotypes or clonotypes enriched in the lung, or enriched and abundant in lung. (c) Of 

the 106 enriched and abundant δ-TCR clonotypes detected in lung, productive 

frequency of the top 12 in blood and lung are shown. 
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3.4 Discussion 
 
I observed that T-cell immune responses to Mtb infection in the human lung were different, 

in terms of cell types and magnitude of response, from systemic circulation responses. We 

used a different approach of analysis of TCR in blood and lung tissue in participants with 

chronic TB cases and lung cancer controls as well as healthy controls (TB negative, HIV 

negative) to confirm that there were tissue resident T-cells in the lung that do not recirculate 

in blood. Since the TCR repertoire is a mirror of the human immune response, its 

characteristics have been widely investigated in infectious and other diseases to study the 

state of the immune system and the progression of these diseases (Sabet et al. 2007; Wells et 

al. 2007; Clarêncio et al. 2006; Chaudhry et al. 2013; Di Sante et al. 2015; O’Connell et al. 

2014; Schrama, Ritter, and Becker 2017). TCR repertoire can reflect the function, status and 

composition of T-cell populations (Degauque et al. 2011; Torikai et al. 2012).   

 

T-cells express an antigen-specific TCR, which enables recognition of foreign peptide 

antigens vastly when bound to MHC molecules (Garcia et al. 1996; DeWitt et al. 2018). 

Among genetically unrelated individuals that share a dominant MHC allele, a minority of T-

cells recognizing a common viral peptide share a common TCR-b sequence (Venturi et al. 

2008). Thus, generalizing information derived from TCR sequences is often limited to the 

dominant MHC type, rarely present in >40% of a given population (Santos et al. 2016). TCR 

repertoire diversity of both ab and γδ T-cells can be affected by clonal expansion following 

the stimulation of Mtb antigens and affects a patient’s immune response to the pathogen (Luo 

et al. 2012; Cheng et al. 2018). 

 

TCR repertoire analysis results in this study showed that there was a higher clonal expansion 

of T-cells and many unique T-cell clones in the lung than peripheral blood. However, 

clonality was not different between lung pieces.  To eliminate the effect of ‘contaminating’ 

blood in lung tissue T-cell clonality, cells from lung tissue and matched blood were FACS 

sorted based on expression of CD69 cell surface marker followed by extraction of DNA for 

alpha TCR immunosequencing. CD69 is expressed by tissue resident memory T-cells 

(discussed in detail in chapters1 and 2) and TCR analysis of Lung CD69+ cells showed that 

not only was clonal expansion higher in lung CD69+ T-cells than PBMC, but there were also 

more unique T-cell clones compared to Lung CD69- or PBMC. This observation is in 

agreement with flow cytometry data that showed tissue resident memory T-cells in the lung 
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that are absent in circulation. Additionally, because in general Lung CD69- T-cells have 

higher clonality than blood cells but less clonality than lung CD69+ T-cells, this suggests that 

the lung has another population of cells that does not express CD69, in agreement with flow 

cytometry data discussed earlier and other studies (Schenkel and Masopust 2014; Hombrink 

et al. 2016; Oja et al. 2017).  

 

The TCR sequencing approach we employed enabled us to identify DURT TCRs as well as 

conventional TCRs in the same sample. We thus sought to find out if the DURTs we detected 

in our samples skewed the overall clonality reported. The frequency of DURTs did not affect 

the overall clonal expansion of T-cells and could imply that there are shared features between 

conventional and unconventional TCRs in the TB cases, as has been reported earlier. T-cells 

specific for a lipid antigen presented by the highly conserved antigen-presenting molecule 

CD1b shared several features with T-cells specific for peptide antigens restricted by 

polymorphic MHC (DeWitt et al. 2018). Comparison of percent productive TCRs of 

unconventional T-cells between lung pieces showed no difference between the pieces, and γδ 

T-cells were constantly higher than GEM, iNKT and MAIT-cells. 

  

Among the unconventional T-cells, the γδ T-cells are thought to play a critical role in anti-

Mtb immunity (Casetti and Martino 2008; Holtmeier and Kabelitz 2005; Davey et al. 2011). 

Results presented here are in agreement with previous studies as the frequency of total γδ T-

cells, Vδ2 and Vγ9Vδ2 were depleted in peripheral circulation of TB cases compared to 

healthy controls. From sequencing results, total γδ T-cells were depleted in the lung tissue 

compared to the peripheral circulation of TB cases, suggesting that these cells are not 

recruited to the lung during TB. However, Vδ1 cells were expanded in the peripheral blood 

of TB cases compared to healthy controls as shown by FACS staining. Since the antibody 

panel for FACS staining did not contain markers for all the γδ T-cell subsets, the observation 

that only Vδ1 cells were enriched in the TB cases suggests effect of Mtb on the γδ T-cells 

probably varies according to subset.  

 

γδT-cells in peripheral blood can also be present in increased proportions in some individuals 

with tuberculosis (Balbi et al. 1993) and some clonotypic γδ T-cells exhibited clonal 

expansion during BCG infection and re-infection (Chen and Letvin 2003). This observation is 

different from our own and could be explained by the nature of participants studied by Balbi 

et al and those studied here. While our study looked at chronic TB cases, Balbi study was 
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done on early active TB, and our study could not report on the early changes that occur on γδ 

T-cells at the onset of active TB disease. Although there was an overall high frequency of γδ 

T-cells in the systemic circulation than lung, there were unique and abundant γδ T-cell clones 

in the lung that were not shared with γδ T-cells in peripheral circulation, and lung γδ T-cells 

were skewed towards the use of CDR3δ length of 15 and 19. This suggests the existence of 

tissue specific non-recirculation γδ T-cell clones in the lung. This is in agreement with a 

previous study of Bordetella pertussis in which aerosol infection of mice established γδ T 

cells with a Trm cell phenotype (CD69+CD103+) (Misiak et al. 2017). The functional role of 

these lung tissue-specific γδ T-cell clones in tuberculosis warrant further investigation 

particularly in newly diagnosed active TB individuals.  

 

MAIT-cells may act as early sensors of Mtb infection in airways and provide early cytokines 

to activate macrophages against infection. By both flow cytometry and TCR sequencing, 

there was depletion of MAIT-cells in the peripheral blood of TB cases compared to healthy 

controls. It has also been confirmed by other studies that MAIT-cell frequencies are 

decreased during active tuberculosis (and non-tuberculosis mycobacterial lung disease) in 

diverse geographic settings (Sharma et al. 2015; Le Bourhis et al. 2010; Jiang et al. 2014; 

Kwon et al. 2015). The MAIT TCR motif can be variable and using both classic and 

extended definition of MAIT sequences based on TRAV01-02 TRAJ33 (Greenaway et al. 

2013), MAIT-cells were detected in 78/79 samples analyzed from TB cases. There was an 

enrichment of MAIT-cells in the lung but not PBMC of participants with previous TB HIV 

positive suggesting that HIV probably does not deplete MAIT cells in the lung tissue or the 

possibility of non-recirculating MAIT-cells in the lung.  

 

In this study, frequency of GEM and iNKT-cells was not measured by FACS due to 

unavailability of tetramers or a suitable cell surface marker. From TCR sequencing, there was 

a significant loss of GEM T-cells in peripheral blood and lung of TB cases compared to 

healthy control peripheral blood. No compartment specific differences within in TB cases 

was observed for GEM T-cells. Surprisingly, the frequency of iNKT-cells was similar 

between healthy controls and TB cases and between compartments of TB cases. This is in 

contrast to most clinical studies that have been done on early Mtb infection (Sutherland et al. 

2009; Im et al. 2008; Montoya et al. 2008), however, iNKTs are dispensable in chronic TB in 

mice studies (Behar et al. 1999; Sugawara et al. 2002; Sousa et al. 2000). Compared to other 

DURTs, GEM T-cells and iNKT-cells were, in general, present in very low frequencies.  
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The CDR3 length has a profound effect on the shape of TCR, and the analysis of CDR3 

length variation can reveal the structure-function relationships of different TCRs recognizing 

specific antigens (Rock et al. 1994; Cheng et al. 2018). The unique CDR3 length distribution 

of the δ chain exhibited a single/multi-peak-shaped pattern (Gaussian distribution) in total 

blood and lung clonotypes, similar to a previous study looking at TCR beta variable gene 

family in PBMCs from healthy donors (Yang et al. 2013). However, most of the unique and 

enriched clonotypes in the lung were skewed towards a length of 19 amino acids confirming 

that the clonotypes found in the lung are not detected in blood, consistent with a tissue 

resident T-cell clone. 

 

Studies between peripheral blood and pleural fluid from patients with tuberculous pleuritis 

observed significant changes in the TCRB repertoire of T lymphocytes between peripheral 

blood and the pleural fluid (Gambón-Deza et al. 1995). Expanded T-cell clones were found in 

the pleural effusion (Zhou et al. 2013; Luo et al. 2012; Gambón-Deza et al. 1995) compared 

to PBMC.  Oligoclonal expansions in the - pleural effusion mononuclear cells - PEMCs was 

shown by Li and colleagues (Li et al. 2014). In contrast, the TCR repertoire in peripheral 

blood was polyclonal and there was just a fraction of TCR repertoire overlapping between 

pleural effusion and peripheral blood. We observed a higher clonality of T-cell clones in lung 

tissue than peripheral circulation in this study. While it is likely that in comparison there are 

more TB antigens in the lung tissue than systemic circulation which is driving the clonal 

expansion of T-cells, it is also possible that clonality in the lung is driven by more effector 

memory T-cells in the lung tissue compared to blood cells that are mainly naive as described 

in chapter 2 of this thesis. Indeed, it was shown that TB specific memory T-cells were readily 

expanded in the mouse lung following Mtb challenge (Carpenter et al. 2016b). 

 

The epidemic of tuberculosis has been exacerbated by the HIV pandemic which affects the 

ability of T-cells, particularly CD4 T-cells, to mount a robust and appropriate response to 

Mtb. In our hands, although HIV coinfected individuals were on anti-retroviral therapy, HIV 

had a significant effect on T-cell clonality especially in systemic circulation compared to lung 

tissue. The impact of HIV coinfection on Mtb-specific T-cell repertoires in the lung warrant 

extensive investigation.  

 

We have provided a comprehensive analysis of the TCR of both conventional and 

unconventional T-cells in peripheral blood and lung tissue in a cohort of chronic TB 
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participants, providing insights into the dynamics of the TCR repertoire at the site of TB 

disease and in circulation.  For comparison, peripheral blood from healthy controls was 

studied to measure changes in T-cells in TB disease. Since TCR repertoire diversity can be 

influenced by many factors including other coinfections, the extent of the likely contribution 

of TCRs specific to non-TB antigens is not clear in these findings. However, the study has 

shown that HIV infection has significant contribution to the clonal expansion of T-cells, and 

this was tested formally in a subset of HIV negative participants. Given that participants with 

active TB were on anti-TB treatment, the effect of treatment has also not been measured and 

it was reported that chemotherapy can substantially change the TCR repertoire (Luo et al. 

2012).  It was shown that TCR repertoire diversity inversely correlated with disease severity 

as patients with mild disease had the highest relative complexity while severely infected 

patients had the lowest complexity (Luo et al 2012).  

 

In summary, we have shown that DURTs (except Vδ1 T-cells – enriched – and iNKT – 

unchanged) are depleted in peripheral circulation of chronic TB cases and also shown that 

there is high clonal expansion of T-cell clones at the site of TB disease than in systemic 

circulation. Some of the expanded clones are unique to the lung and are not shared with T-

cell clones in circulation. In agreement with flow cytometry data discussed in chapter 2 of 

this thesis, there are tissue specific T-cells that either do not recirculate or that recirculate but 

very infrequently between lung and blood as evidenced by more unique T-cell clones in lung 

CD69+ T-cells compared to blood T-cells from the same individual. HIV coinfection remains 

a key driver of TB pathology and has been shown here to increase the clonality of T-cells, 

particularly in circulation. Although no differences were observed between lung tissue pieces, 

even from the same individual, it is possible this observation could be different in initial TB 

infection and was missed by the fact that this cohort was made of chronic TB cases. Indeed, 

heterogeneity of immune responses at the granuloma level has been observed in animal 

model studies where infection course is easy to track, and coinfections are limited.  
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CHAPTER 4: CHARACTERIZATION OF B-CELLS IN TUBERCULOSIS: 

PHENOTYPE AND FUNCTIONAL ROLE 

4.1 Introduction 

Whereas this thesis was initially set out to study T-cells in TB infected human lung and 

understand how they differed from T-cells in peripheral blood in terms of phenotype, 

function and specificity, I constantly observed that there was an enrichment of B-cells in TB 

infected human lung compared to peripheral blood.  Thus, I set out to also characterize the B-

cell phenotypes in blood and lung tissue in the context of TB disease and also measured the 

specificity of B cells in the two compartments together with lung associated lymph nodes. 

These findings are extensively explained in this chapter.  

 

It is acknowledged that T-cells are important for the control of TB disease. By contrast, the 

significance of B-cells and humoral immunity in shaping the immune response to Mtb is less 

clear (Maglione and Chan 2009; Casadevall and Pirofski 2011; Glatman-Freedman and 

Casadevall 1998).  Detailed studies of how B-cells affect tuberculosis immunity are 

somewhat limited and have mostly been done in mice. However, these studies do provide 

evidence that B-cells and humoral immunity are necessary for the development of optimal 

anti-TB immunity and for restricting excessive inflammation in the acute phase of infection 

(Maglione, Xu, and Chan 2007; Vordermeier et al. 1996; Bosio, Gardner, and Elkins 2000; 

Kozakiewicz et al. 2013; Maglione et al. 2008; Torrado et al. 2013; Maglione and Chan 

2009). Infection of B-cell deficient mice with Mtb, for example, results in enhanced 

pathology and increased bacterial loads (Vordermeier et al. 1996; Maglione, Xu, and Chan 

2007), depending on the route of infection, either the lung (Maglione et al 2007) or systemic 

(Vordemeier et al 1996). The lungs of Mtb-infected B-cell-deficient mice display enhanced 

neutrophil recruitment (Maglione et al 2007) which is associated with excessive lung 

pathology and with poor bacillary control (Eruslanov et al. 2005; Keller et al. 2006).  

Moreover, increased lung pathology and Mtb dissemination outside the lung in B-cell 

deficient mice, could be prevented by adoptive transfer of B-cells, but not immunoglobulins 

(Bosio, Gardner, and Elkins 2000), suggesting B-cell activity in TB maybe not be limited to 

antibody production. In support of this, B-cell-depletion with rituximab has been shown to 

alter the IL-17/Th17 response (Hamel et al. 2008; Hu et al. 2007; Matsushita et al. 2008), 

although the effect was not consistent. In addition, a subset of B-cells in the blood of humans 

with tuberculous infection can suppress Th17 response (Zhang et al. 2012) and it has been 
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shown that B-cells can regulate the pulmonic inflammatory response, in the early acute phase 

of TB (Kozakiewicz et al. 2013). Differences between antibody functional profiles between 

LTBI and active TB have been linked to differential activation of innate immunity and Mtb 

killing within primary macrophages, suggesting that antibodies may not only mark disease 

states but also contribute functionally to infection outcome (Lu et al. 2016). Overall, these 

studies support a role for B-cells in the immune response to TB, generally by limiting lung 

damage. 

 

Within the TB infected lung, B-cells, plasma cells, antibodies and antibody-responsive innate 

immune cells bearing Fc receptors (FcR) are all abundant in TB granulomas (Phuah et al. 

2012; Tsai et al. 2006). By histology, B-cells are a conspicuous cellular component of the 

lung granulomatous response in tuberculous mice (Slight et al. 2013; Tsai et al. 2006; 

Maglione, Xu, and Chan 2007; Gonzalez-Juarrero et al. 2001; J. Turner et al. 2001; Khader et 

al. 2009), non-human primates (Slight et al. 2013; Phuah et al. 2012), and humans (Slight et 

al. 2013; Tsai et al. 2006; Ulrichs et al. 2004, 2005). B-cells form prominent aggregates with 

characteristic features of the germinal center (Slight et al 2013, Maglione et al 2007, Khader 

et al 2009, Ulrichs et al 2005, Ulrichs et al 2004). A recent detailed study in non-human 

primates at the granuloma level revealed that B-cells can significantly modulate cytokine 

production, bacterial burden, and inflammation levels in the TB lesions (Phuah et al. 2016). 

Here, B-cell cytokine production within granulomas was found highly variable, even among 

individual granulomas from the same animal, and there was a higher median CFU in 

granuloma that lacked B-cells. This variability in the immunologic environment among 

granulomas within the lung has previously been reported for T-cells in the same system 

(Gideon et al. 2015b), and suggest that B-cells have a role in controlling infection in at least a 

subset of granulomas or animals (Phuah et al 2016).  

 

The canonical function of B-cells is the production of pathogen specific antibodies. 

Antibodies may function in TB in several ways. They exert their functions by either directly 

blocking of host T-cell invasion and neutralization of bacterial products, or indirectly through 

Fc-mediated complement and cell activation mechanisms through Fc receptors (Ravetch and 

Clynes 1998). Antibodies may also form immune complexes with soluble bacterial antigens 

or enter the cell through pinocytosis/endocytosis and recognize bacteria in endosomal 

compartments (Lu et al. 2016). Furthermore, intracellular FcRs, such as TRIM21 (McEwan 

et al. 2013), may allow for the recognition of bacterial components within the cytoplasm. 
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Since the granulomas contain an array of immune cells beyond macrophages (Nunes-Alves et 

al. 2014; Tsai et al. 2006; Ulrichs et al. 2004), the ultimate impact of functional antibodies is 

likely to be a product of how they direct bacterial fate within macrophages as well as engage 

the collaborative activity of the local cellular microenvironment (Lu et al. 2016). Multiple 

studies suggest mAbs play a role in murine models of TB infection (Achkar and Casadevall 

2013; Balu et al. 2011; Buccheri et al. 2009; Hamasur et al. 2004; Pethe et al. 2001; 

Teitelbaum et al. 1998, 1999). Passive immunization of mice with either human or murine 

polyclonal sera showed protection against infection (Roy et al. 2005; Guirado et al. 2006). 

Immune sera from infected mice was also able to reverse the lung neutrophilia and the 

excessive Th17 response in B-cell-deficient mice with TB (Kozakiewicz et al. 2013). This is 

biologically plausible as immunoglobulins are known to be effective modulators of 

inflammation (Casadevall and Pirofski 2011; Brady 2005). In human TB, the transfer of 

antibodies from healthcare workers but not active TB patients showed moderate protection 

against Mtb in an aerosol mouse challenge model (Li et al. 2017). In this study, three of the 

seven healthcare workers who made protective antibody responses were IGRA negative, 

suggesting a protective antibody response could have prevented latent TB infection. In a 

separate study, antibodies from individuals with LTBI were found to enhance several 

macrophage responses against intracellular Mtb, including phagolysosomal maturation and 

inflammasome activation independent of pyroptosis, that could lead to increase bacterial 

control (Lu et al. 2016).  

 

The protective function of anti-MTB antibodies, at least in part, may depend on the target 

antigen and host cell type, the local environment, and the route of administration (mucosa vs. 

periphery) (Falero-Diaz et al. 2000; Pethe et al. 2001; López et al. 2009; Chambers, Gavier-

Widén, and Hewinson 2004; Hamasur et al. 2004; Williams et al. 2004; Roy et al. 2005). 

Antibodies from patients with active TB disease have been reported to recognize a different 

repertoire of Mtb antigens than those from individuals with controlled latent TB, and 

antibody titers correlated with mycobacterial burden (Achkar and Casadevall 2013). 

Recently, it was demonstrated that antibody levels did not correlate with total B-cell 

frequencies within the same sample, as patients with very low B-cell frequencies still had 

average levels of PPD reactive antibodies (Joosten et al. 2016).  

 

In addition to antibody production, B-cells may also have both direct and indirect influence 

on TB infection by modulating immune responses to Mtb infection as antigen-presenting 
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cells or through the production of cytokines (Glatman-Freedman and Casadevall 1998; 

Teitelbaum et al. 1998; Bosio, Gardner, and Elkins 2000; Chambers, Gavier-Widén, and 

Hewinson 2004; Roy et al. 2005; Maglione et al. 2008; Maglione, Xu, and Chan 2007; 

Achkar, Chan, and Casadevall 2015). Antigen uptake by B-cells typically occurs via the B-

cell-receptor; however, live mycobacteria can also infect B-cells through macropinocytosis, 

resulting in MHC class II antigen presentation (Lombardi et al. 1987; Zhu et al. 2016). B-

cells and the humoral immune response modulate T-cell immunity, including the 

development of memory T-cell responses during infection (Lund and Randall 2010; 

Maglione and Chan 2009) and vaccine-induced protection against secondary challenge with 

intracellular pathogens such as Chlamydia (Igietseme et al. 2004) and Francisella (Rawool et 

al. 2008). Regulatory B-cells may play an important role in modulating inflammation during 

infection, although this may depend on the Mtb strain and phase of infection (Magniole et al 

2007, Bosio et al 2000, Kozakiewicz et al 2013). 

 

There is no consensus in the variation of B-cell dynamics during TB disease in humans, as B-

cell frequencies in active TB have been reported to be unaltered (Barcelos et al. 2006); 

increased (Wu et al. 2009); or decreased (Corominas et al. 2004; Hernandez et al. 2010) 

compared to healthy controls. Compared to healthy donors, LTBI individuals have been 

reported to have decreased B-cell frequencies (Corominas et al 2004), whereas those 

successfully treated for TB had increased B-cell frequencies (Barcelos et al 2006). In 

addition, patients with multi-drug resistant (MDR) TB were reported to have decreased 

frequencies of unswitched, IgD+CD27+ B-cells and decreased plasma cell frequencies, 

which are frequently observed during chronic inflammation (Abreu et al. 2014). Plasma cells 

differentiate from activated memory B-cells, a population that is relatively upregulated in 

LTBI and patients with active TB, suggesting that Mtb does not alter the normal development 

of antibody producing cells and thus also allow the production of Mtb specific antibodies. 

Acute plasmablast response to Mtb originates from reactivated memory B-cells and indicates 

a mucosal origin (Zimmermann et al. 2016). There were no differences in antibody levels 

between patients with active TB disease and those successfully treated for TB, supporting 

that plasma cell differentiation and function of differentiated plasma cells is not affected in a 

similar manner as total B-cell function in those with active TB disease (Joosten et al. 2007). 

In this chapter, the phenotype and specificity of B-cells to Mtb is investigated in detail. In the 

first set of experiments, a cohort of HIV negative participants with active TB, LTBI cases and 
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healthy controls was used. The second study in the lung and lung lymph nodes is done using 

tissue obtained from the TB lung cohort outlined earlier.  

4.2 Methods 

4.2.1 PBMC and Single cell suspension  

B-cells were isolated from PBMC and lung tissue as indicated in section 2.2.1. The B-cell 

phenotype panel is detailed in the appendix section.  

 

4.2.1 Immunohistochemistry staining  

Formalin fixed paraffin embedded tissue sections were cut into 4uM thick serial sections 

using Shandon Finesse 325 microtome (Thermo Scientific).  After sectioning onto 

microscope slides, tissue sections were deparaffinized in xylene and rehydrated in a series of 

ethanol dilutions. Sections were incubated 10 min in 3% hydrogen peroxide to quench 

endogenous peroxidase. The sections were then stained with the following antibodies: anti-

CD3 antibody (SP7) (ab16669), Abcam, MA, USA; anti-CD68 monoclonal antibody (KP1), 

Abcam, MA, USA; anti-CD20 monoclonal antibody (mAb) clone L26 (Abcam). The slides 

were acquired using Nanozoomer 2.0RS (Hamamatsu)  

 

4.2.2 Conjugation of biotinylated protein antigens. 

Varying amounts of streptavidin – APC or streptavidin - PE was added to 10µg of 

biotinylated protein five times, each time mixing up and down by pipetting. After every 

addition of streptavidin, the protein was incubated at room temperature for 20 mins away 

from direct light. After the fifth addition of streptavidin, every protein – streptavidin 

conjugate was 125µL in volume. Finally, 5µL Biotin (ThermoFischer) to quench unbound 

streptavidin to give a final bait volume of 130µL. The conjugated protein was stored at 4oC 

for no more than 28 days before use.  

 

4.2.3 B-cell baiting with biotinylated protein antigen 

Streptavidin antigen baits, 5uL of bait per 5 x 10^6 cells were incubated for 20 mins on ice in 

the dark followed by washing twice with PBS. The cells were then surface stained with 2uL 

of surface antibody per test (see antibody appendix) for 20 minutes on ice in the dark 

followed by washing twice with PBS. Live dead cell marker (near IR, Invitrogen) at a 

dilution of 1:200 was added together with cell surface antibodies. After final wash, cells were 
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resuspended in 2% PFA and acquired on FACSARIA Fusion and data analysed using FlowJo 

Software v.9.9 (Treestar Inc, Ashland, OR). 
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4.3 Results 

4.3.1 Low frequency of B-cells in peripheral circulation in active and latent TB infection 

There is no clear consensus on how B-cell frequencies change in humans during TB disease 

(Joosten et al. 2016). Therefore, we first sought to determine the phenotype of peripheral 

blood B-cells in our study population, using PBMCs from participants with active TB 

(GeneXpert positive) treatment naive, latent TB and healthy controls (the last two categories 

defined based on Quantiferon TB gold interferon gamma release assay test). Phenotyping was 

carried out using a limited number of markers and the gating strategy in figure 4.1a. Overall, 

there were significantly fewer total B-cells (CD19+CD45+) in subjects with active or latent 

TB compared to healthy control, but, surprisingly, no differences between LTBI and active 

TB groups (figure 4.1b). Total B-cells were further analyzed for the co-expression of the B-

cell phenotype makers CD21 and CD10. Although these are not standard B-cell phenotypic 

markers they were chosen as CD21- B-cells have been described in several conditions of 

chronic immune activation (Thorarinsdottir et al. 2016), and are comprised of activated 

memory and atypical B-cells; and atypical B-cells have been reported to be elevated in active 

TB (Joosten et al 2016). The addition of CD10 allows identification of immature or 

transitional B-cells. The majority of B-cells in the PBMCs of all subjects are CD21+CD10 

negative, but this is significantly higher in subjects with LTBI compared to either healthy 

controls or individuals with active TB (figure 4.1c). In agreement with published work, the 

great majority of CD21- B-cells in PBMCs were CD10-, conforming to an activated memory 

or atypical phenotype rather than transitional B-cells (Thorarinsdottir et al 2016). Consistent 

with their presence in chronic inflammatory conditions, these CD21-CD10- B-cells were 

significantly higher in subjects with active TB compared to both healthy controls and those 

with LTBI (figure 4.1d). Finally, there was a higher frequency of immature CD21+CD10+ B-

cells in healthy controls than in either subjects with LTBI or active TB (figure 4.1e). The 

difference between subjects with active TB and LTBI was not significant, although the 

frequency of immature B-cells tended to be lower in the active TB group. Overall, these data 

suggest a distinct transition between healthy controls and disease states in the B-cell 

compartment within PBMCs, although more precise phenotyping is required. In addition, 

they clearly confirm other studies demonstrating that TB infection in humans induces a B-cell 

response that is detectable in peripheral blood.  
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Figure 4.1: B-cells frequencies in peripheral blood. a) B-cell phenotype gating strategy 

on peripheral blood.  
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Figure 4.1: B-cells frequencies in peripheral blood. b-e) Frequency of B-cell phenotypes, 

total B-cells (CD19+) (b); CD21+ CD10- B-cells (c); CD21-CD10- B-cells (d) and 

immature B-cells (CD21+CD10+ B-cells (e). Healthy controls (HC) and Latent TB 

(LTBI) defined based on the Quantiferon TB gold test. Statistics; non-parametric 

Mann-Whitney t-test. 
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4.3.2 B-cells are enriched in the lung in chronic TB  
 
One possible explanation for the observed difference in B-cell frequencies in peripheral 

circulation of healthy controls, LTBI and active TB participants (figure 4.1) is that B-cells get 

recruited to the lung, the primary site of infection during TB disease. To test this hypothesis, 

B-cells from fresh lung tissue of a cohort of participants with chronic TB who underwent 

lung resection were analyzed together with blood from the same cohort. As a fraction of total 

CD45+ve cells we observed a relative enrichment of CD19+ve B-cells in the lung compared 

to PBMC from the same cohort (figure 4.2 a (matched) and b (all samples). For comparison, 

we measured the total T-cells frequencies in lung and blood from the same subjects and 

found no significant difference (figure 4.2c). Presence of B-cells in lung was confirmed by 

immunohistochemistry staining of lung tissue from the same cohort. Figure 4.2d shows a 

representative example in which abundant B-cell clusters, staining positive for the B-cell 

marker CD20, can be observed in comparison to CD3+ve T-cells and CD68+ve 

macrophages. Additional staining of B-cell marker CD20 in other lung samples are shown in 

figure 4.2e. These cells are clearly found within the lung parenchyma and are not limited to 

the vascular system. Moreover, as shown in this image, CD20+ve B-cells are typically found 

in distinct clusters, suggestive of inducible Bronchio Alveolar Lymphoid Follicles (iBALT) 

(Moyron-Quiroz et al. 2006; Rangel-Moreno et al. 2006). These have previously been 

described in close proximity to TB lesions in mouse and NHP models of TB infection 

(Kaushal et al 2015), and in human TB infected lung tissue (Ulrichs et al. 2004).  
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Figure 4.2: Enriched B-cell in lung of TB cases of previous TB episodes or active 

disease:  B-cells frequencies in matched blood and lung tissue samples (a) and all 

samples (b); T-cell frequencies in PBMC and lung are unaltered (c). Statistics; non-

parametric Wilcoxon t-test for paired comparisons and Mann-Whitney for unpaired 

comparisons. 
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Figure 4.2: Enriched B-cell in lung of TB cases. (d) histology staining of lung tissue from 

TB infected lung showing numerous B-cell clusters in the lung (middle image), cross 

reference of the same tissue section with CD3 and CD68 is provided.  
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Figure 4.2: Enriched B-cell in lung of TB cases. (e) histology staining of lung tissues 

(three different samples) from TB infected lung showing numerous B-cell clusters 

(CD20+ve B cell stain) in the lung (blue circles). 
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4.3.3 High frequency of memory B-cells in the lung including plasmablasts 
 
To explore the memory and activation status of B-cells enriched in the lung during TB 

infection we examined co-expression of CD27 and CD38 to distinguish naïve B-cells 

(CD27CD38-) from total memory B-cells (CD27+); transitional B-cells (CD27-CD38+) and 

plasma blasts (CD27++CD38++). The representative flow cytometry plot is shown in figure 

4.3a. In addition to PBMC and lung tissue, lung lymph nodes from a fraction of the same 

participants were available and analyzed. There was a significantly greater proportion of 

memory B-cells in the lung than in PBMC and lymph nodes (figure 4.3b). Memory B-cells 

were also significantly enriched in lung lymph nodes compared to matched blood (figure 

4.3b). Plasmablasts, were significantly enriched in lung tissue compared to PBMC figure 4.3c 

(matched) and 4.3 d (all samples). Plasmablasts were also higher in lung tissue than lung 

lymph nodes but the difference did not reach statistical significance. In addition, the 

difference between plasmablasts in lung lymph nodes and PBMC did not reach statistical 

significance (figure 4.3d). Finally, there was a significantly lower frequency of both naïve 

and transitional B-cells in lung compared to both PBMC and lung lymph nodes (figure 4.3e, 

f). Thus, lung tissue from subjects with active or prior TB infection are enriched for memory 

B-cells and antibody secreting plasma cells. This enrichment of B-cell memory phenotypes in 

the lung tissue supports the existence of a distinct population of B-cells with in the lung 

parenchyma that may not be represented in circulating blood.   
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Figure 4.3: B-cell phenotypes in blood, lung and lung lymph nodes of chronic TB 

participants. (a) Representative FACS plots, samples pre-gated on CD19+CD45+ cells. 

Total memory B-cells (magenta gate), plasmablast (black gate), transitional B-cells 

(green gate) and Naïve B-cells (orange gate (b)Memory B-cells (after subtracting 

plasmablasts). (c -d) frequency of plasmablasts in matched lung – blood and all samples. 

(e) transitional B-cells and (f) naïve B-cells. Statistics; non-parametric Mann-Whitney t-

test for unpaired comparisons and Wilcoxon for paired comparisons. 
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4.3.4 Evidence of Tissue resident B-cells within TB infected lung 
 
To further explore the B-cells observed within the lung tissue for subjects infected with TB, 

we next examined expression of markers of tissue residency and immune activation (CD69, 

HLA-DR), and the pro-apoptotic death receptor Fas or CD95, on B-cell in PBMC, lung and 

lung lymph nodes. Lung tissue was enriched for CD69+ve B-cells compared to peripheral 

blood B-cells and lung lymph nodes (figure 4.4 a). Recent data suggest that the lung contains 

tissue resident B-cells, which, like their T-cell counterparts, express high levels of CD69 

(Allie et al 2019). In line with this, CD69 expression was higher on B-cells in lung 

homogenate than in either PBMC or lung lymph nodes (figure 4.4a). Consistent with a Trm 

phenotype, CD69+ve B-cells in the lung are predominantly memory cells rather than naïve 

B-cells or plasmablasts (figure 4.4b). Indeed, in the lung the frequency of CD69+ve B-cells is 

similar to that of CD69+ve T-cells (figure 4.4c), whilst CD69+ve T-cells are much more 

abundant in the lung lymph nodes. Overall, these data support the existence a population of 

Trm B-cells within TB infected lung tissue, which, like Trm T-cells, may have limited 

recirculation in the blood. 

 

B-cell memory arises from antibody class switching from IgM to other immunoglobulin 

isotypes (Tangye et al. 2002) and most memory B-cells would be IgM-ve (Fondere et al. 

2003; Tuaillon et al. 2006). However, IgM+ve memory B-cells have also been described on 

the basis of expression of CD27 and these IgM+ve memory B-cells are thought to be 

generated independently of germinal center (Tangye and Good 2007; Weller et al. 2004; 

Küppers et al. 1993). Thus, we measured frequency of IgM in peripheral blood, lung tissue 

and lung lymph nodes (figure 4.4 d-f). Peripheral blood CD19+ B-cells had a significantly 

higher level of IgM+ve expressing cells than IgM-ve cells (figure 4.4 e). Consistent with a 

memory phenotype, the majority of B-cells in the lung tissue were IgM-ve, while the lung 

lymph nodes had equal expression of IgM+ve and IgM-ve cells (figure 4.4e). Within the lung 

tissue, CD69- B-cells were predominantly IgM-ve while some of CD69+ B-cells were also 

IgM+ve (figure 4.4f). There was no difference between IgM+ve and IgM-ve in the lung 

lymph nodes on the basis of CD69 expression (figure 4.4f) 

 

An expanded CD95+ve population of B-cells has been described in individuals with immune 

thrombocytopenia (Flint et al. 2016). In addition, CD95 is reported to be upregulated on 
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activated memory B-cells (Wei, Jung, and Sanz 2011) supporting the hypothesis that CD69 

expression on these cells relates to tissue residence rather than activation. We therefore 

measured CD95 levels in lung tissue and lung lymph nodes in a few participants in our cohort 

(figure 4.4g). In both lung tissue and lung lymph nodes, the mean fluorescent intensity (MFI) 

of CD95 was higher in CD69+ve B-cells than CD69-ve B-cells. This data is consistent with 

the previous report of CD95 upregulation on memory B cells (Wei, Jung, and Sanz 2011). As 

with CD95, HLA-DR expression on B-cells has been associated with activation (Wei, Jung, 

and Sanz 2011). Furthermore, HLA-DR expression has been reported to be lower on memory 

B-cells than on naïve B-cells (Harp et al. 2010). Indeed, we observed that in the lung tissue 

and lung lymph nodes, the MFI of HLA-DR was significantly higher on CD69+ B-cells than 

on CD69- B-cells (figure 4.4h). Therefore, low of expression of HLA-DR on lung B-cells is 

consistent with a tissue resident, non-activated B-cell population within the human lung. We 

observed that HLA-DR expression was much higher on B-cells than T-cells in all 

compartments (figure 4.4i), reflecting their role as antigen presenting cells. The fact that 

HLA-DR expression is reduced on B-cells in the lung (figure 4.4j) but remains high in lung 

associated lymph nodes is consistent with a role for B-cells in antigen presentation in the 

latter compartment, but not in the lung. 
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Figure 4.4: Expression of CD69 on B-cells; (a) total CD19+ B-cells in all three sample 

types sampled, (b) expression of B-cell phenotypes in the lung tissue (c) paired 

comparison of CD69 expression on B-cells (CD19+) T-cells (CD3+). LLN = lung lymph 

node. Statistics; non-parametric Mann-Whitney t-test for unpaired comparisons and 

Wilcoxon for paired comparisons. 
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Figure 4.4: Frequency of IgM on B-cells; (d) representative flow cytometry plots of lung 

tissue. 
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Figure 4.4: Frequency of IgM on B-cells (e) total CD19+ B-cells in blood, lung tissue and 

lung lymph nodes, (f) IgM expression on CD69+ and CD69- B-cells in lung tissue and 

lung lymph nodes. Statistics; non-parametric paired Mann-Whitney t-test 
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Figure 4.4: Expression of apoptosis marker - CD95 – (g) and activation marker -HLA-

DR – (h) on B-cells on CD69-ve and CD69+ve B-cells in lung tissue and lung lymph 

nodes. Statistics; non-parametric paired Mann-Whitney t-test.  
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Figure 4.4: Expression of HLA-DR. (i) paired comparison of HLA-DR on B-cells 

(CD19+) and T-cells (CD3+), (j) HLA-DR on B-cells in lung tissue and lung lymph 

nodes. Statistics; non parametric Mann-Whitney t-test.  
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4.3.5 Apparent lack of TB specificity in lung tissue and lung lymph node B-cells  
 
Having found evidence of a potential tissue resident B-cell population within TB infected 

human lung tissue, we next asked whether, as for T-cells Trm, these B-cells were enriched 

for TB specificity. To test for specificity of B-cells to TB, we used a B-cell baiting method 

that uses biotin coated with antigen, which then bind to B-cells recognizing the coating 

antigen via their surface B-cell receptor (BCR) (Marttila et al. 2000; Lu et al. 2016). A total 

of four biotinylated antigens were used to generate Mtb specific baits – ESAT-6/CP-10, 

Ag85A/B, LAM and PPD. In our hands these reagents had a high background and to counter 

this, a negative control sample in which both streptavidin PE and APC fluorochromes were 

added to PBMC was used to set the gates. Only B-cells binding high levels of both PE and 

APC baits were considered as bona fide TB specific B-cells (figure 4.5a). For PBMC, bait 

positive B-cells were pre-gated on activated, IgM- B-cells while for lung tissue (and lymph 

nodes) bait positive B-cells were pre-gated on total memory B-cells. Surprisingly, Mtb 

specific B-cells, as measured by this method, were less frequent, as a fraction of total B-cells, 

in lung tissue from TB infected subjects and lung lymph nodes than in matched PBMC 

samples, reaching statistical significance in lung lymph nodes (figure 4.5b). This data does 

not rule out the possibility that alternative antigen targets, or epitopes conformations, are 

more important in the lung and were missed. In addition, plasmablasts B-cells, which are 

enriched in our lung samples, express low level of BCR, and thus may not bind the Mtb baits 

efficiently. Thus, future work is needed to confirm this finding. 
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Figure 4.5: Frequency of Mtb specific B-cells. (a) Representative flow cytometry plots of 

PBMC and lung of the same participant. Bona fide TB specific B-cells in black diagonal 

gate. (b) Cumulative frequency of TB specific B-cells in the PBMC, lung and lymph 

node captured by TB specific baits (all samples left and matched samples right).  

Statistics; non-parametric Mann-Whitney t-test for unpaired comparisons and 

Wilcoxon for paired comparisons. 
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4.4 Discussion 
 
While cellular immunity is important, the role of humoral immunity in tuberculosis is 

uncertain (Achkar, Chan, and Casadevall 2015; Kozakiewicz et al. 2013). However, new data 

from human studies show that individuals with latent and active TB have divergent humoral 

signatures and antibodies in latent TB infection can drive macrophages to kill intracellular 

bacteria (Lu et al. 2016). Furthermore, general B-cell function is impaired during active TB 

and LTBI, and this B-cell dysfunction compromises cellular host immunity during Mtb 

infection (Joosten et al. 2016). To further explore the potential role of B-cells in human 

tuberculosis, analysis of B-cell phenotype and specificity during infection and TB disease 

was carried out on peripheral blood of participants with active TB, latent TB infection (LTBI) 

and healthy controls. In addition, using the AHRI TB lung cohort, B-cells were analyzed at 

the site of disease in fresh human lung tissue and lung lymph nodes. Consistent with previous 

work (Joosten et al 2016), we find that total B-cell frequency is diminished in subjects with 

LTBI and active TB, compared to controls, and that the frequency of certain specific B-cell 

subsets differs between subjects with active infection and LTBI. In the lung, we find that B-

cells are present in the lung tissue homogenate of TB infected individuals and make up a 

greater fraction of total CD45+ve leukocytes than in matched blood. Histological staining of 

sections taken from these lung samples confirm the presence of CD20 expressing B-cells 

within the lung parenchyma, typically clustered together in iBALT like structures. Using a 

subset of lung samples, with matched blood and lung lymph nodes we find B-cells within the 

lung homogenate predominantly possess a memory phenotype, with very few naïve cells; 

whilst both blood and lung lymph nodes are primarily made up of naïve cells. Phenotyping of 

these cells shows a high fraction express the canonical T-cell Trm marker CD69. Together 

with strong skewing towards a memory phenotype, and the clustering of B-cells within 

iBALT like structures, this suggests that human TB infected lung tissue contains a population 

of tissue resident B-cells that are likely to be distinct from those in circulation. In addition, 

both lung tissue and lung lymph nodes are enriched for plasma blasts B-cells, compared to 

matched blood, implying active antibody secretions within the lung and draining lymph 

nodes of these individuals. However, using fluorescent TB-baits we are unable to identify a 

significant population of TB specific B-cells with either lung tissue or lung lymph nodes. 

Indeed, the frequency of B-cells binding to TB baits was significantly lower in both tissues 

than in matched blood samples. 



 175 

Considering the blood data, it is important to note that B-cell phenotyping is highly complex 

and definitions between studies are not always consistent. Moreover, for practical reasons, 

many of the classical markers of B-cell differentiation, such and CD27 and IgD were not 

included together in one staining antibody cocktail. However, despite these limitations, the 

frequency of total B-cells and immature B-cells in subjects with LTBI and active TB, and an 

enrichment of CD21- B-cell in active TB alone, are in agreement with a previous study by 

Joosten et al. (Joosten et al. 2016). In this study, they went on to show that atypical B-cells 

from subjects with active TB, defined as CD21-CD27-, displayed impaired proliferation, 

immunoglobulin- and cytokine- production (Joosten et al 2016). Similar, exhausted B-cells 

have also been reported in other conditions like HIV (Moir and Fauci 2014). However, using 

our markers we are unable to distinguish atypical and activated memory B-cells, both of 

which lack CD21 and CD10. The apparent enrichment of CD21+CD10- B-cells specifically 

within subjects with LTBI is intriguing. However, as above, conclusions from this 

observation are limited, as several different B-cell subsets fall within this definition, 

including naïve and conventional memory B-cells. Thus, more in-depth phenotyping is 

clearly required to explore this observation further. 

 

The decrease of B-cells in systemic circulation of participants with LTBI and active TB could 

result from a recruitment of B-cells to the site of TB disease in the lung. Although, for this 

lung project healthy control lung samples were not available and so it is not possible to 

compare our finding with healthy non-TB infected controls. It is notable, however that the 

relative enrichment of B-cells in the lung compared to PBMC is greater than that for T-cells 

in the same subjects. An 8-fold increase in absolute number of B-cells in mouse lungs during 

Mtb infection was reported compared to very early stages of infection and these levels 

remained elevated during chronic infection (Tsai et al. 2006). Moreover, by histology, these 

lungs showed a strong clustering of B-cells together with dendritic cells (DCs), surrounded 

by T-cells (Tsai 2006), similar to the B-cell clusters observed in histological sections from 

our TB infected lung tissue. These B-cell follicles or iBALT, have been reported in human 

lungs affected by TB disease previously (Maglione, Xu, and Chan 2007; Turner et al. 2001; 

Ulrichs et al. 2004). Several studies suggest that the organization of B-cells into defined 

structures in the lung during TB is particularly important as B-cells interact with 

macrophages and T-cells (Maglione et al. 2008; Monson et al. 2011; Parker 1993; Martinez, 

Helming, and Gordon 2009; Nimmerjahn and Ravetch 2008) and can affect differential 

macrophage activation states and T helper cell polarization depending on antigen presentation 
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or cytokine secretion. In addition, B-cell and macrophages can interact by Fc receptor 

engagement, which can further modulate pro- or anti-inflammatory reactions (Gallo, 

Gonçalves, and Mosser 2010; Willcocks, Smith, and Clatworthy 2009). Consequently, the B-

cells in the lung can possibly modulate the local environment of tuberculous granulomas via 

a range of pathways (Phuah et al. 2016). 

 

The observation that memory B-cells and plasmablasts are enriched in the lung is of interest 

as these are the B-cell subsets that would produce and secrete antibodies during reactivation 

of TB disease in individuals with LTBI who fail to contain Mtb within solid granulomas 

(Small et al. 1994). Unfortunately, this study did not test antibody profiles in lung 

supernatants or peripheral circulation and is an area that needs to be explored further. It is 

worth noting that the interpretation of such antibody profile results needs to be put into 

context and the phase of TB disease of the cohort studied must be clearly defined as factors 

such as treatment, disease state and infection can affect antibody profiles (Lu et al. 2016). 

There were similar levels of naïve and transitional B-cells in lung lymph nodes and 

peripheral circulation reflecting that B-cells from lymph nodes seed into the general 

circulation before they home into the lung in response to infection.  

 

The expression of CD69 on B-cells in lung homogenate has been interpreted as evidence of 

the existence of a population of lung tissue resident B-cells in our TB infected lung. The fact 

that we also observe an enrichment of memory B-cells in lung compared to matched PBMCs 

would seem to support this hypothesis, and the existence of iBALT suggests one potential 

physical location for such a population. Although researchers have primarily focused on 

tissue resident T-cells, a recent study demonstrated the existence of antigen specific lung 

resident B-cells that did not recirculate in blood and were important for the early immune 

response to influenza (Allie et al. 2019). These tissue resident B-cells expressed high levels 

of CD69, supporting our hypothesis that at least a fraction of the B-cells within TB infected 

human lung tissue might be non-recirculating resident memory B-cells. Given the diseased 

state of the lung tissue studied, however, it is possible that upregulation of CD69 related to 

immune activation rather than upregulation of a tissue resident program. The fact that 

expression of HLA-DR is low on the lung B-cells argues against this, as this marker is 

reported to be upregulated on activated B-cells (Wei, Jung, and Sanz 2011), but we cannot 

exclude this possibility. In addition, CD95 and HLA-DR themselves have distinct functional 

roles in B-cells that may be of relevance to the activity of B-cells within the lung. Indeed, we 
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observed a higher MFI of both CD95 and HLA-DR on CD69+ve B-cells, but not CD69-ve B-

cells, in the lung tissue and lung lymph nodes. CD95 or Fas is a member of the tumor 

necrosis factor receptor family that can mediate apoptosis following binding it’s ligand 

CD95L or FasL, via recruitment of a number of proapoptotic factors including caspase-8 to 

form the death-inducing signaling complex (Peter et al. 2015; Jalali et al. 2018). It is likely 

therefore, that lung B-cells are more resistant to apoptotic cell death, at least through this 

pathway. HLA-DR is an MHC class II molecule and speaks to the role of B-cells as 

professional antigen presenting cells. Thus, the high expression of HLA-DR on B-cells from 

lung lymph nodes is expected. In addition, as lung tissue and lung lymph nodes were 

acquired from the same subjects as a part of the lung resection procedure and processed in the 

same way, the fact that HLA-DR expression is significantly different between lung and 

lymph node B-cells argues against the differences observed between tissue and blood B-cells 

being an artefact of sample processing. Lower HLA-DR expression in the lung could also 

relate to skewed memory subsets as naïve B-cells tend to express higher levels of HLA-DR 

than memory cells (Harp et al. 2010).  

 

To further characterize the B-cells and the observation that peripheral blood cells were 

mainly of a naïve phenotype while lung tissue B-cells were of a memory phenotype (based on 

expression of CD27 and CD38), we measured the expression of IgM on B-cells, as 

immunoglobulin class switching by B-cells is one of the mechanisms through which memory 

B-cells are generated. Our observation that lung tissue B-cells are mainly IgM-ve while 

peripheral blood B-cells are IgM+ve points to the fact the B-cells in the lung are more 

affinity matured and thus consist of a memory phenotype. However, IgM+ memory B-cells 

have also been observed as some CD27+ B-cells that have undergone somatic hypermutation 

do not undergo isotype class switching (Klein, Rajewsky, and Küppers 1998; Maurer et al. 

1990; Agematsu et al. 1997). Together with their CD69 expression, it is possible that some of 

the IgM-ve B-cells in the lung tissue do not recirculate in blood, consistent with the idea of 

tissue resident memory B-cells. 

 

Although our phenotyping data have shown that B-cells in lung tissue are mainly memory B-

cells and likely some of them are tissue specific (on the basis of CD69 expression), there 

were surprisingly, fewer antigen specific B-cells in the lung tissue and lung lymph nodes 

compared to systemic circulation. This result could be explained by the observation that 

plasmablasts were enriched in lung tissue than peripheral circulation. Plasmablasts are known 
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to be efficient antibody producing B-cells and probably could not bind our antigen baits well 

via the B-cell receptor. Additionally, it is possible that there are alternative antigen targets, or 

epitope conformations that are more important in the lung and were missed by our assay. 

 

The functional role of B-cells and humoral immunity during TB disease is less clear, with 

human studies providing conflicting results often depending on the phase of TB disease of 

the cohort studied. This study has provided additional key insights on B-cells dynamics that 

occur during human TB disease especially at the site of infection. In addition to providing 

evidence that that B-cells are indeed recruited to the lung during TB disease (in line with 

observation that B-cells are depleted in circulation in LTBI and active TB individuals), the 

data shows that B-cells in the lung are mainly memory B-cells and plasmablasts that are 

probably not recirculating in blood based on CD69 expression. However, by the method 

employed in this study, there were fewer TB specific B-cells in the lung. Since there is a 

higher frequency of plasmablasts in the lung, additional functional assays like ELISA and 

ELISPOT are recommended on lung tissue and systemic circulation.  
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CHAPTER 5: SYNOPSIS OF RESEARCH FINDINGS 
5.1 Introduction 

This thesis reports on the various experiments used to address the main objective of learning 

the phenotype, function and TB specificity of adaptive immune responses at the site of TB 

disease and understanding how they correlate with the responses detectable in circulation. It 

was hypothesised in this study that adaptive immune responses to Mtb infection at the site of 

disease are different from the immune responses in circulation and these responses at the site 

of infection determine the outcome of TB disease.  A cohort of study participants undergoing 

medical lung resection for tuberculosis related lung pathologies from which fresh lung tissue 

and matched peripheral blood were obtained was used to investigate the adaptive immune 

responses to TB in the lung and systemic circulation. An array of immunological techniques 

including flow cytometry and cell sorting, mass cytometry, T-cell receptor sequencing, 

immunohistochemistry and histology were used to address the specific objectives set out in 

this thesis of which findings are summarised below. 

 

5.2 Phenotype of T-cells in human lung tissue and peripheral blood during TB disease 

The initial step in studying fresh lung tissue T-cells and peripheral blood T-cells involved 

identification of non-recirculating tissue specific T-cells in order to distinguish them from T-

cells in systemic circulation. These non-recirculating tissue specific T-cells are referred to as 

tissue resident memory (Trm) T-cells. To this end, cell surface markers CD103, CD69 and 

CD62L that have been well characterised as tissue resident memory T-cell markers 

(Sathaliyawala et al. 2013; Masopust and Picker 2012; Mackay et al. 2013; Kløverpris et al. 

2016c) were used to stain CD4+ and CD8+ T-cells from lung tissue and peripheral blood 

mononuclear cells (PBMCs). In conformity with the previous studies, this thesis has shown 

that by flow cytometry staining, lung T-cells are enriched for CD69 and CD103 but 

downregulate the expression of CD62L in comparison to blood T-cells. These markers were 

validated in a more comprehensive staining of lung tissue by mass cytometry (CyTOF). Thus, 

these markers reliably identified T-cells in the lung tissue that are not in circulation reliably 

distinguishing them from T-cells in systemic circulation. 

 

In addition to identification of lung Trm cells by cell surface staining, other T-cell phenotype 

markers were analysed between lung tissue and PBMCs including T-cell memory, T-cell 

exhaustion markers and expression of T-cell regulation transcription factor, FoxP3. By 

further characterizing T-cells based on co-expression of CD45RA and CCR7 (Rufer et al. 
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2003; Sallusto, Geginat, and Lanzavecchia 2004), we have shown that lung tissue T-cells are 

mainly effector memory phenotype (CD45RA-CCR7-) while blood T-cells are mainly of a 

naïve phenotype (CD45RA+CCR7+). Within the lung tissue, CD69+ T-cells are also 

predorminantly effector memory phenotype than CD69- T-cells. This effector memory 

phenotype of lung tissue T-cells suggests that lung cells are better poised for immunological 

function than peripheral T-cells.  We have shown that the expression of PD-1 on CD4+ and 

CD8+ T cells was varied in both lung and PBMC, and PD-1 expression was enriched on 

CD69+ than CD69- T-cells in both lung tissue and PBMC. On the contrary, there was 

generally a higher frequency of CTLA-4 and TIM-3 in circulation than in the lung tissue.  

 

Contrary to our expectation, there was a higher frequency of FoxP3+ CD4+ T-cells in 

circulation than in the lung tissue. Within the lung tissue, FoxP3 was least expressed on 

CD103+ CD4+ T-cells. However, there was an enrichment of FoxP3 on lung tissue TB-

specific T-cells than on peripheral blood TB-specific T-cells. Taken together, these 

observations confirm that lung tissue T-cells are phenotypically different from peripheral 

blood T-cells and this difference has an impact on how T-cells in both compartments respond 

to Mtb infection.  

 

T-cell receptor sequencing as an alternative approach of studying the difference between T-

cells in the lung tissue and peripheral blood T-cells is also reported in this thesis. The size of 

the T-cell response, in general, correlates with the abundance of antigen-specific T-cells in 

the naïve repertoire (Obar, Khanna, and Lefrançois 2008; Kotturi et al. 2008; Jenkins and 

Moon 2012). Following antigen recognition, activated T-cells proliferate by clonal expansion 

and some become part of the memory compartment, where they can reside for many years as 

clonal populations of cells with identical TCR rearrangements by virtue of their descent from 

a common naive T-cell (Arstila et al. 1999; Neller et al. 2013; Robins et al. 2009). We 

postulated that there is a difference in clonal T-cell expansion between T-cells resident in the 

lung and recirculating T-cells in systemic circulation. Our TCR sequencing data shown in 

this thesis have revealed two main differences between lung tissue and peripheral blood T-

cells. Firstly, there is a higher clonal T-cell expansion in TB infected human lung than 

matched blood, an observation that agrees with the earlier finding that lung T-cells are mainly 

effector memory. This clonal expansion in the lung is driven by CD4+ T-cells in the lung and 

not CD8+ lung T-cells as shown from sequencing pre-sorted T-cells. Secondly, and most 

important, is the existence of high frequency (up to 20% of total T-cells in the lung) unique 
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T-cell clones in the lung that do not recirculate. This finding agrees with the other results in 

this thesis of the existence of CD103+CD69+ T-cells only in the lung but not in circulation. It 

is likely that these non-recirculating unique T-cell clones in the lung are the ones that would 

be highly enriched for Mtb specificity. In line with this, we have shown the existence of 

unique and expanded γδ T-cells in TB infected lung tissue that are not in circulation. 

However, this thesis did not conduct definitive experiments to confirm the Mtb specificity of 

these expanded unique T-cell clones. 

 

5.3 Functionality of lung tissue resident memory T-cells during TB disease 

Functional recall within hours of stimulation is a signature of memory T-cells (Sathaliyawala 

et al 2013; Gideon et al 2015) and functionality of T-cells is often measured by their ability to 

produce cytokines upon in vitro stimulation.  Comparison of cytokine production between 

blood and lung tissue T-cells showed that there was a higher production of TNF-a, IL-2, 

IFN-g and IL-17 cytokines by lung tissue T-cells than in systemic circulation after non-

specific stimulation. Interestingly, Th17 (IL-17 cytokine producing) T-cells are particularly 

enriched in TB infected human lung. Within the lung tissue, CD103+CD69+ and CD103-

CD69+ subsets produced the most cytokines. This superior functionality of lung tissue T-

cells could be mediated, in part, by the fact that they express mostly effector memory 

phenotype.  

 

5.4 Specificity and magnitude of TB specific T-cells in lung tissue and systemic 

circulation 

T-cells that produce multiple cytokines such as IFN-g, IL-2, TNF-a, IL-17 and IL-10 to TB 

have been shown in animal model studies and a subset of these cytokines demonstrated to be 

critical in humans as well (Flynn and Bloom 1996; O’Garra et al. 2013; Algood, Lin, and 

Flynn 2005; Lee and Kornfeld 2010; Lin et al. 2010; Green, Difazio, and Flynn 2013). Using 

an MHC class II -restricted mega Mtb peptide pool to measure cytokine production by  

intracellular cytokine staining, we observed that lung tissue bulk CD4+ T-cells produced 

TNF-a, IL-2, IFN-g and IL-17 cytokines but the main cytokine produced was TNF-a. Since 

TB is primarily a disease of the lung tissue and the observation that lung T-cells are mainly 

effector memory phenotype, we postulated that T-cell responses to Mtb are enriched in the 

lung tissue than peripheral blood. Indeed, comparison of cytokine production between site of 

disease and systemic circulation revealed that TB specific responses are highly enriched in 
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the lung for TNF-a, IL-2 and IL-17. Of note, IL-17 cytokine responses are more frequent in 

lung tissue samples than blood samples suggesting that these responses are often missed 

when measured in blood alone. Interestingly, IFN-g level was similar between PBMC and 

lung tissue T-cells. Analysis of lung Trm T-cells for TB-specific cytokine production showed 

that CD103+ CD4+ T-cells produced the least cytokines across all the four cytokines. TB-

specific cytokine positive CD4+ lung T-cells were also mainly effector memory phenotype. 

Although the majority of the responses in the lung was TNF-a mono-functional, when 

compared to cancer control participants, bifunctional lung T-cells producing TNF-a+IL-17+ 

or TNF-a+IL-2+ was significant in TB cases. Finally, the frequency of TB-specific T-reg 

cells was enriched in the lung tissue than matched blood particularly on TNF-a and IL-17 

producing cells.  The higher expression of FoxP3 on TB-specific lung tissue T-cells than on 

matched blood TB-specific T-cells suggests that these effector T-cells, though enriched in the 

lung are sub-optimal in controlling Mtb.  

 

5.5 Phenotype and specificity of B-cells in TB infected human lung tissue 

From literature, the significance of B-cells and humoral immunity in shaping immune 

response to the Mtb is inexhaustive (Maglione and Chan 2009; Casadevall and Pirofski 2011; 

Glatman-Freedman and Casadevall 1998). We hypothesised that B-cell phenotypes change 

during the course of TB disease and that there is a difference in the phenotype of B-cells in 

the lung tissue and peripheral blood. An initial phenotyping of B-cells in peripheral blood of 

healthy control (IGRA negative), latent TB (IGRA positive) and active TB participants 

showed that total B-cell frequency is depleted in blood of active TB participants but there 

exists an expansion of atypical B-cells in the blood of active TB participants. The observation 

that B-cells are depleted in systemic circulation of active TB participants is in agreement with 

a previous study (Joosten et al. 2016) and suggests that B-cells are possibly recruited to the 

lung during active TB. To test this hypothesis, B-cell frequencies between fresh lung tissue 

and matched blood were compared. Indeed, there was an enrichment of B-cells in the lung 

compared to peripheral circulation, and the B-cells in the lung are organised in follicular 

structures as described by other reports (Kaushal et al 2015; Ulrichs et al 2014, Tsai et al 

2006). Like lung T-cells, the B-cells in the lung express high levels of CD69 suggesting that 

they probably do not recirculate. Furthermore, lung tissue B-cells are mainly memory B-cells 

while PBMC are mainly naïve B-cells. Although there is an enrichment of B-cells in TB 
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infected human lung, there are surprisingly fewer Mtb-specific B-cells in the lung compared 

to TB-specific B-cells in circulation. 

 

5.6 Impact of HIV coinfection on the features of lymphocytes within the lung 

There is a substantial increased risk of TB and its extra-pulmonary dissemination is strongly 

correlated with CD4+ T-cell depletion in individuals infected with HIV-1 (Bell and 

Noursadeghi 2018). T-cell depletion is evident in peripheral blood, in the respiratory tract and 

at the site of tuberculin skin test (TST) challenge (Bell et al. 2016; Kalsdorf et al. 2009; 

Geldmacher et al. 2010), although absolute cell counts can be preserved in well controlled 

HIV infection (Bunjun et al. 2017). We observed a significantly lower CD4:CD8 ratio in the 

lung of HIV co-infected participants when compared to patients without HIV, regardless of 

whether they had active TB or a previous TB infection. Although a similar trend was 

observed in the PBMC, the difference did not reach statistical significance suggesting that 

HIV dysregulates recruitment of T-cells to the lung during TB disease. In general, there was a 

trend of a lower lung tissue CD69+ T-cell frequency in participants without HIV compared to 

those coinfected with HIV. HIV coinfection did not affect the frequency of CD103 in lung 

tissue T-cells while the frequency of both markers in peripheral blood was not altered by 

HIV. PD-1 expression on lung tissue T-cells was lower in HIV coinfected individuals while 

the levels of PD-1 on peripheral blood T-cells was not affected by HIV coinfection. On the 

other hand, while HIV coinfection had no effect on CTLA-4 and TIM-3 frequency in lung 

tissue T-cells, the frequency of CTLA-4 and TIM-3 was higher on peripheral blood of HIV 

coinfected individuals, particularly on CD8+ T-cells.  

 

T-cell receptor sequencing revealed that HIV coinfection had a bigger impact on T-cell 

clonality of blood T-cells with HIV negative participants having a lower blood T-cell 

clonality. This high clonal expansion of T-cells in the periphery of HIV coinfected 

participants masked tissue clonal expansion of T-cell clones in lung tissue in this subgroup of 

participants.  

 

HIV coinfection had an impact on cytokine production by lung T-cells following nonspecific 

ex vivo stimulation with PMA + ionomycin. There was a lower production of TNF-a, IL-2 

and IL-17 by lung tissue CD4+ T-cells in HIV coinfected participants than those without HIV 

while IFN-g production by CD4+ lung T-cells was not affected by HIV coinfection. The level 
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of cytokine production by lung CD8+ lung tissue T-cells was similar regardless of HIV 

status, except for TNF-a that was significantly higher in HIV negative participants. Within 

the lung tissue, HIV coinfection had major impact on CD103+CD69+ and CD103-CD69+ T-

cell subset where there was significantly lower cytokine production in coinfected 

participants. Unlike nonspecific stimulation, TB-specific cytokine production by lung tissue 

T-cells was not affected by HIV coinfection suggesting that there is no preferential depletion 

of TB-specific T-cells at the site of TB disease.  

 

5.7 Conclusion and recommendations 

This thesis has provided a detailed investigation of adaptive immune responses to Mtb in the 

human lung by comparing fresh lung tissue T and B-cell phenotype, function and specificity 

with matched peripheral blood in individuals with TB disease. Results reported here have 

clearly demonstrated that there are compartmentalized responses by T and B-cells to Mtb in 

the human lung and this compartmentalization is driven by cells with different phenotypes 

between blood and lung tissue, including lung tissue specific non-recirculating T-cells 

(Trms).  These results provide new insights of immune events that occur only in the lung and 

may be important when interpreting data from human PBMC for correlates of protection or 

vaccine response. The most significant findings in this thesis are, firstly, the enrichment of 

Th17 cells in the lung that are less frequent in circulation and these cells are the most 

depleted in HIV coinfection; in addition, the loss of these cells correlates with elevated 

plasma IL-1β levels which is a marker of disease severity. Secondly, we have shown the 

existence of unique and expanded γδ-T cells in TB infected human lung that are not in 

circulation. Finally, our data suggests the existence of tissue resident B-cells in TB infected 

human lung that are probably absent in circulation. 

 

There are potential limitations of this thesis, first being the nature of lung tissue samples that 

were available. The participants enrolled in this study are individuals with advanced chronic 

TB disease who have failed therapy in most cases, while others have pathological sequalae 

associated with previous TB episode like bronchiectasis. The implication of this is that we 

did not address the early immune events that occur in the lung in acute TB disease. The thesis 

also made use of lung tissue from participants with lung cancer as negative controls because 

of the experimental, logistical and ethical challenges of getting fresh lung samples from 

healthy individuals. Secondly, TB-specificity was measured using MHC class II restricted 
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peptides that is not suitable for measuring CD8+ T-cell responses which have been reported 

to be important in mouse models and in viral vectored vaccines against TB. Thirdly, our 

antibody panel for identification of regulatory T-cells lacked CD25 antibody because were 

limited by the number of fluorochrome channels in the cytometer and many parameters we 

measured simultaneously. We also did not conduct inhibition assays to test the regulatory 

nature of the cells we identified as T-regs on the basis of FoxP3 expression.  

 

From the results presented in this thesis, it is recommended that: 

a) The functional roles of B-cells in TB infected human lung be studied further to 

provide further evidence to explain the observation that despite high enrichment of B-

cells in TB infected lung tissue than peripheral blood, there are fewer TB-specific B-

cells in the lung compared to blood. 

b) The specificity of TB-specific T-cells in the lung tissue be investigated further using a 

broad array of TB-antigens that are not MHC restricted to identify other cell types 

apart from CD4+ T-cells that are functional in the lung. 

c) Additional experiments to formally test the specificity of unique, expanded non-

recirculating T-cell clones in the lung be done. 

d) The results of this thesis should be considered in designing novel TB vaccines to 

come up with formulations that generate and establish Trm cells in the lung which can 

make rapid responses to Mtb upon exposure.  
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APPENDICES 
APPENDIX I: ANTIBODIES USED IN FLOW CYTOMETRY 

anti-CD45 V500 Horizon clone HI30 (BD Biosciences) 

anti-CD3 Brilliant Violet 785 clone OKT3 (BioLegend) 

anti-CD4 Brilliant Ultra Violet 496 clone SK3 (BD Bioscience) 

anti-CD8 Brilliant Violet 605 clone RPA-T8 (BioLegend) 

anti-CD19 FITC clone HIB19 (BD Bioscience) 

anti-CD62L PE-Cy5 (BD Pharmingen) 

anti-CD103-APC clone Ber-ACT8 (BD Biosciences) 

anti-CD45RA Brilliant Violet 650 clone HI100 (BD Biosciences) 

anti-CCR7 PerCP-Cy5.5 clone G043H7 (BioLegend) 

anti-CD25 Brilliant Violet 711clone BC96 (BioLegend) 

anti-CD56 Brilliant Violet 711 clone HCD56(BioLegend) 

anti-CD16 Brilliant Violet 650 clone 3G8 (BioLegend) 

anti-CD69 Brilliant Ultra Violet 395 clone FN50 (Brilliant Horizon) 

anti-TNFα Alexa700 clone Mab11 (BD Biosciences) 

anti-IL-2 PE-CF594 clone 5344.111 (BD Biosciennces) 

anti-IFN-g PE-Cy7 clone 4S.B3 (BD Biosciences) or Brilliant Violet 421 clone 4S.B3 

(BioLegend) 

anti-IL-17 PE clone BL168 (Biolegend) 

anti-PD-1 Brilliant Violet 421 clone EH12.1 (BD Biosciences) 

anti-CTLA-4 PE L3D10 (Biolegend) 

anti-TIM-3 Alexa 700 (R&D Systems) 

anti-FoxP3 eFlour 450 clone PCH101(eBioscience) 

anti-CD19 Brilliant Violet 650 clone HIB19 (BioLegend) 

anti-CD27 Brilliant Violet 510 clone O323 (BioLegend) 

anti-CD3 Brilliant Violet 711 clone OKT3 (BioLegend) 

anti-CD38 Alexa Flour 700 clone HIT2 (BioLegend) 

anti-IgM PerCP- Cy5.5 clone MHM-88 (BioLegend) 

anti-CD21 Brilliant Violet 450 clone B-ly4 (BD Biosciences)  

anti-CD14 Brilliant Violet 711 clone M5E2 (BioLegend) 

anti-CD10 PECy5 (BD Pharmingen) 

anti-γδ TCR PE clone B1 (BioLegend) 

anti-Vδ1 TCR FITC clone TS8.2 (Thermo Scientific) 
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anti-Vδ2 TCR PerCp Cy5.5 clone B6 (BioLegend) 

anti-Vγ9 TCR APC clone B3 (BioLegend) 

anti-Va7.2 Brilliant Violet 711 clone 3C10 (BioLegend) 

anti-CD26 PE-Cy5 clone BA5b (BioLegend) 

anti-CD161 Brilliant Violet 605 clone HP-3G10 (BioLegend). 
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APPENDIX II: CyTOF T-CELL MARKERS 
 
Marker No. T cell Panel 

1 CD45 
2 CD14 
3 CD57 
4 CD16 
5 CD19 
6 TCR-γδ 
7 Vδ2 
8 Vα7.2 
9 CD56 
10 HLA-DR 
11 CD8a 
12 CD4 
13 CD3 
14 CD69 
15 CD45RO 
16 CCR7 
17 KLRG-1 
18 CD27 
19 ICOS 
20 CD103 
21 OX40 
22 TIM-3 
23 PD-1 
24 CD161 
25 CD127 
26 CD25 
27 CD28 
28 CD39 
29 CD49A 
30 TIGIT 
31 CRTH2 
32 CXCR5 
33 Integrin β7 
34 CD62L 
35 CCR4 
36 CCR6 
37 CD107a 
38 CXCR3 
39 CXCR1 
40 CCR5 

 
NOTE: All the markers were designed and validated by ImmunoSCAPE  
(https://www.immunoscape.com) who collaborated with us on CyToF immune phenotyping 
before shipping over to AHRI, Durban for staining of samples. 
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APPENDIX III: DONOR UNRESTRICTED T-CELLS 
 GEM 

extended 
iNKT MAIT 

extended 
MAIT-like γδ-TCR 

Vα TRAV01-02 TRAV10 TRAV01-02 TRAV01-02 Vδ1,2,3, 
4(TRAV14), 
5(TRAV23), 
6(TRAV29), 
7(TRAV36), 
8(TRAV38) 

Jα TRAJ9 TRAJ18 TRAJ33 TRAJ33 Jδ1,2,3,4 

CDR3α 
length 

13 15 12 11 - 15 Variable 

Number of 
Unique 
CDR3α 

sequences 

40 1 8 39 Multiple 

Consensus 
sequence 

CAVRxTGGFKTIF 
CAVLxTGGFKTIF 

x=any amino acid 

N/A CAVxDSNYQLIW 
x=R,A,K,L,M,S,T,V 

MAIT score = 1 N/A 

Reference 

sequences 

CAVRATGGFKTIF 
CAVRRTGGFKTIF 
CAVRDTGGFKTIF 
CAVRCTGGFKTIF 
CAVRETGGFKTIF 
CAVRQTGGFKTIF 
CAVRGTGGFKTIF 
CAVRHTGGFKTIF 
CAVRITGGFKTIF 
CAVRLTGGFKTIF 
CAVRKTGGFKTIF 
CAVRMTGGFKTIF 
CAVRNTGGFKTIF 
CAVRFTGGFKTIF 
CAVRPTGGFKTIF 
CAVRSTGGFKTIF 
CAVRTTGGFKTIF 
CAVRWTGGFKTIF 
CAVRYTGGFKTIF 
CAVRVTGGFKTIF 
CAVLATGGFKTIF 
CAVLRTGGFKTIF 
CAVLNTGGFKTIF 
CAVLDTGGFKTIF 
CAVLCTGGFKTIF 
CAVLETGGFKTIF 
CAVLQTGGFKTIF 
CAVLGTGGFKTIF 
CAVLHTGGFKTIF 
CAVLITGGFKTIF 
CAVLLTGGFKTIF 
CAVLKTGGFKTIF 
CAVLMTGGFKTIF 
CAVLFTGGFKTIF 
CAVLPTGGFKTIF 
CAVLSTGGFKTIF 
CAVLTTGGFKTIF 
CAVLWTGGFKTIF 
CAVLYTGGFKTIF 
CAVLVTGGFKTIF 

CVVSDRGSTLGRLYF CAVRDSNYQLIW 
CAVADSNYQLIW 
CAVKDSNYQLIW 
CAVLDSNYQLIW 
CAVMDSNYQLIW 
CAVSDSNYQLIW 
CAVTDSNYQLIW 
CAVVDSNYQLIW 

CAALDSNYQLIW 
CAAMDSNYQLIW 
CAASDSNYQLIW 
CAASKAAGNKLTF 
CAAVDSNYQLIW 
CAFMDSNYQLIW 
CAGLDSNYQLIW 
CAGMDSNYQLIW 
CAIMDSNYQLIW 
CAPLDSNYQLIW 
CAPMDSNYQLIW 
CAPSGSARQLTF 
CASMDSNYQLIW 
CASMDSSYKLIF 
CATMDSNYQLIW 
CAVESNSGYALNF 
CAVGDSNYQLIW 
CAVGYSSASKIIF 
CAVIDSNYQLIW 
CAVLDSSYKLIF 
CAVLNTGGFKTIF 
CAVLSNDYKLSF 
CAVMDSSYKLIF 
CAVNNNNDMRF 
CAVPNSGGSNYKLTF 
CAVPSGGSYIPTF 
CAVQDSNYQLIW 
CAVRDGDYKLSF 
CAVRDGNYQLIW 
CAVRDNDYKLSF 
CAVRDNFNKFYF 
CAVRDRDYKLSF 
CAVRDRDYQLIW 
CAVRDSDYKLSF 
CAVRDSSYKLIF 
CAVRDTGFQKLVF 
CAVRRDDKIIF 
CAVSDSSYKLIF 
CVPMDSNYQLIW 

N/A 

Reference Gras et al 2016, van 

Rhijn and Moody 

2015, DeWitt et al 

2018 

 Greenaway et al 

2013 

Website  
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APPENDIX IV: GATING STRATEGY FOR TRM CELLS 

 
 

 
Gating strategy for the identification of Trm cells based on the expression of CD103, CD69 

and CD62L. Trm cells are gated from CD4+ and CD8+ live CD45+CD3+ T-cells.  
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APPENDIX V: T-CELL DIFFERENTIATION IN PBMC AND LUNG 

 
 

Representative plots of CD4+ and CD8+ T-cells in PBMC and lung tissue on the basis of co-

expression of CD45RA and CCR7 markers. CD4+ and CD8+ T-cells identified using the 

gating strategy in appendix IV. Naïve T-cells (CD45RA+CCR7+), Central memory (CM) T-

cells (CD45RA-CCR7+), Effector memory (EM) T-cells (CD45RA-CCR7-) and terminally 

differentiated effector memory T-cells (TEMRA) (CD45RA+CCR7-). 
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APPENDIX VI: TB SPECIFIC T-CELLS IN CIRCULATION AND SITE OF 

DISEASE 

 
Representative flow cytometry plots showing enrichment of Mtb-specific responses in lung 

homogenate compared to matched PBMC (~ 10.5% vs 1.1% for TNF-a). CD4+ T-cells 

identified using the gating strategy shown in appendix IV. 

 


