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Abstract

In recent years there has been a growing need for ubiquitous access to wireless network services.

Wireless networks are expected to deliver specific minimum quality of service (QoS) requirements

regarding high data rates, lower latency, and low power consumption to user mobile devices.

Satisfying these increasing QoS expectations in recent wireless networks such as fourth generation

(4G) and fifth generation (5G) is affected by challenges including spectrum efficiency, energy

efficiency and interference among others. To address these challenges there is need to develop better

media access control (MAC) protocols, implement changes in architectural infrastructure

incorporating macro and small cells to enable higher capacity, and design appropriate resource

allocation (RA) optimization algorithms based on modern artificial intelligence (AI) algorithms such

as biologically inspired algorithms. With this perspective, his work considers the application

biologically inspired algorithms for uplink RA in 4G and 5G scenarios.

In the first part of the work, Long Term Evolution Advanced (LTE-A) which is a ratified access

technology for 4G is considered. A heterogeneous network (HetNet) model based on macro and

small cells is developed. In particular, the focus is on the uplink which employs Single Carrier

Frequency Division Multiple Access (SC-FDMA). SC-FDMA technology requires special resource

block allocation patterns due to the subcarrier adjacency and exclusivity restriction resulting in

resource allocation problems. Unlike traditional analytical combinatorial resource allocation

schemes, this work proposes alternative biological inspired resource allocation schemes for

SC-FDMA due to their advantages of simple implementation compared to other analytical methods.

The performance of the developed schemes, Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO) and the proposed hybrid Adaptive Particle Ant Swarm Optimization (APASO),

is investigated and compared to that of the analytical model based on Lagrangian optimization. The

performance and complexity of the biological algorithms is observed to be near-optimal with APASO

outperforming the traditional PSO and ACO algorithms in resource allocation.

The second part of the work considers RA in 5G NOMA access schemes that are able to multiplex
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Abstract

multiple users on a resource element. The features of 5G heterogeneous networks have necessitated

the development of hybrid NOMA schemes combining the merits of the individual NOMA schemes

for optimal performance. Considering a HetNet scenario, a hybrid access model based on power

domain NOMA (PD-NOMA) and sparse code multiple access (SCMA) referred to as power domain

sparse code multiple access (PD-SCMA) is developed. The hybrid technologies on 5G networks

make complex air interfaces resulting in new resource allocation (RA) and user pairing (UP)

challenges aimed at limiting the multiplexed users interference. Furthermore, common analytical

techniques for evaluating the performance of the schemes lead to unrealistic network performance

bounds necessitating alternative schemes. This work explores the feasibility of a hybrid power

domain sparse code non-orthogonal multiple access (PD-SCMA) that integrates both power and code

domain multiple access on an uplink network with small cell user equipments (SUEs) and macro cell

user equipments (MUEs). Alternative biological RA/UP schemes; the ant colony optimization

(ACO), particle swarm optimization (PSO) and a hybrid adaptive particle swarm optimization

(APASO) algorithms, are proposed. Performance results indicate that the developed APASO

outperforms both the PSO and ACO in sum rate and energy efficiency optimization on application to

the PD-SCMA based heterogeneous network. In general, APASO appears to outperform PSO and

ACO by more than 14.39% while its best saturation performance is approximately 8.22% of

Langragian technique.
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Preface

“When wireless is perfectly applied the whole earth will be converted into a huge brain, which in fact

it is, all things being particles of a real and rhythmic whole. We shall be able to communicate with

one another instantly, irrespective of distance."

—Nikola Tesla

University of KwaZulu-Natal, September 8, 2020
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1. INTRODUCTION AND BACKGROUND

1 Introduction and Background

In modern society, wireless communication plays an important part in different aspects of life. There

exist numerous instances of how wireless communication has revolutionized living standards of

modern society. The proliferation of smart phones provides a platform for a wide variety of end-user

mobile applications which have increased meteorically in recent years. A vast range of services can

now be offered using mobile communication devices. For instance, smart phones can be equiped

with life-saving technology (e.g. tele-medicine apps) which provides access to medical services to

improve lives of people in remote areas. They can also provide education based services such as

tele-education, or marketing services for business environments like tele-marketing. Mobile users

also rely heavily on their mobile phones as they navigate many other different aspects of their lives.

The applications that they use require specific quality of service (QoS) requirements from operators

such as higher data rate and reduced power consumption for their mobile terminals. Needless to say,

mobile communication is no longer a luxury but it is now a necessity to have in order to sustain a

reasonable quality of life.

The high demand for ubiquitous access to wireless communication services has increased the need

for access to network resources from consumers. To service this increasing user demands enhanced

media access control (MAC) protocols need to be implemented together with changes in infrastructure

architecture (including macro and small cells) to increase capacity. Improved RA algorithms motivated

by latest artificial intelligence (AI) algorithms such as nature-inspired algorithms need to be applied

for RA in wireless communication networks. As radio spectrum is a finite and scarce resource [1],

hence resource management in next generation wireless networks (NGWNs) is crucial in servicing

user demand. In light of this realization, research in resource allocation in NGWNs has intensified

in recent years. Motivated by this perspective this work focuses on developing MAC protocols and

effecting infrastructure changes using macrocells and small cells to increase capacity, and applying

RA algorithms based on biologically inspired algorithms to optimize sum-rate and energy efficiency

of uplink long term evolution advanced (LTE-A) and non-orthogonal multiple access (NOMA) 5G

networks. We consider resource allocation using metaheuristic algorithms as alternatives to widely

investigated analytical techniques.

This chapter outlines evolution of wireless networks, conducts literature review on fourth generation

networks including LTE-A MAC protocols, and 4G challenges and mitigation strategies. Literature

review on fifth generation networks, macrocell and small cell architectures, and non-orthogonal

multiple access (NOMA) schemes is also presented. After discussing 5G challenges and existing

2
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2. EVOLUTION OF WIRELESS NETWORKS

mitigation strategies, the research problem is formulated followed by vividly explained research

objectives and methodology .

2 Evolution of wireless networks

The evolution of wireless communication networks from the 1st generation which provided

voice-based 2G GSM networks to all IP-based 3G, 4G and 5G networks has been fueled by the

ever-increasing demand for high quality services by consumers [2]. The first generation (1G) of

mobile phones invented in the early 1980s provided only voice services based on Advanced Mobile

Phone System. It was based on frequency division multiple access (FDMA) using a bandwidth of

824-894 MHz and speed of 2.4 kbps [2]. It relied solely on 150MHz analog signal and suffered from

poor voice quality, poor handoff, poor battery life and security [3]. The second generation (2G) of

wireless networks employing global system for mobile communication (GSM) surfaced in the late

1980s [4]. These systems utilized digital signals and could provide text and pictorial messages. They

operated in a bandwidth of 30 to 200 KHz. Although they offered improved voice quality and

multimedia message (MMS) services at low speeds they could not handle video content and still

experienced coverage challenges in areas where digital signals were weak.

Third generation (3G) technology which combined Time Division Multiple Access (TDMA) and

GSM emerged in the year 2001 [5]. These systems based on packet switching technology consist of a

core network and radio access network provides CDMA2000, Wideband-CDMA, and World-wide

Interoperability for Microwave Access (WiMax). Third generation networks referred to as universal

mobile telecommunication system (UMTS) offered data services with higher speed, more bandwidth

and faster data rates enabling internet protocol (IP) based applications with video content [6]. Fourth

generation networks which utilized orthogonal frequency division multiple access (OFDMA) in

downlink and single-carrier frequency division multiple access (SC-FDMA) in uplink transmission

were subsequently developed to improve on 3G [7]. The 3rd Generation Partnership Project (3GPP)

defined the standards for Long Term Evolution Advanced (LTE-A) to serve as the 4G standard

besides WiMax [8]. Due to higher data rates, services such as multimedia messaging, video chatting,

and high definition TV content is provided by the 4G based networks. Fifth generation (5G)

networks which are currently under development are aimed at providing ubiquitous and massive

connectivity, high data rates, very low end-to-end latency, higher energy efficiency and efficient

spectrum utilization [9]. Various multiple access schemes such as Non-orthogonal multiple access

(NOMA), massive MIMO, filtered multicarrier waveforms such as generalized frequency division

multiplexing (GFDM), filter bank multicarrier (FBMC), universal filtered multicarrier (UFMC), etc

3
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3. FOURTH GENERATION (4G) NETWORKS

are expected to be adopted in implementing 5G technologies [10]. 5G is anticipated to have a vast

range of applications from personal usage in virtualized homes with internet of things (IoTs), reliable

healthcare systems, to large-scale industrial applications in automation (e.g. self-driving vehicles)

and smart grids [11]. An elaborate account summarizing the evolution of wireless networks is

presented in [8]. This work focuses on capacity improvement of 4G and 5G networks. Their

architectures, protocols and challenges are discussed in the sections that follow.

3 Fourth generation (4G) networks

3.1 LTE/LTE-A Architecture

Long Term Evolution (LTE) supports only packet-switched networks in contrast to prior cellular

systems which also employed circuit-switched technology. The architecture comprises of evolved

packet system (EPS) which is responsible for routing IP traffic from a packet data network (PDN) to

UE [12]. Figure 1 shows components of the EPS that include the mobility management entity

(MME), serving gateway (S-GW), eNodeB (eNB) as well as associated interfaces between the nodes.

The eNodeBs are interconnected using the X2 interface and connected to the evolved packet core

(EPC) by S1 interfaces [12]. Although the 3GPP defines standards regarding how resource allocation

can be carried out in 4G networks, operators can implement RA depending on their own

requirements [13]. For instance, the eNB in figure 1 can be employed to implement RA algorithms

for handling user scheduling functions. The RA on the X2 interface is the subject of this work.

Fig. 1: 4G LTE/LTE-A architecture [14]

4
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3. FOURTH GENERATION (4G) NETWORKS

3.2 LTE-A Protocols

3.2.1 Orthogonal Frequency Division Multiple Access (OFDMA)

In OFDMA systems, both time and/or frequency resources are used distinguish multiple user signals

as shown in figure 2 [15]. LTE-A utilizes OFDMA in downlink to simultaneously assign subcarriers

to users. OFDMA is advantageous as it achieves enhanced spectrum utilization and can easily adapt to

challenging channel conditions without complex time-domain equalization. It can reduce intersymbol

interference (ISI) and is robust against narrow-band co-channel interference [16]. However, OFDMA

also suffers from drawbacks such as sensitivity to Doppler shifts, sensitivity to carrier frequency offset

and drift than single carrier systems.

The following works consider applications RA in OFDMA. An investigation of multi-user diversity

of OFDMA for different scheduling algorithms such as max-rate, proportional fair scheduling, rate

craving greedy algorithm, etc. is performed in [17]. The performance of the algorithms is evaluated

in terms of fairness and throughput. The performance of OFDMA based RA schemes using uniform

and dynamic power allocation in LTE multi-user and multicasting scenarios is considered in [18]. A

joint chunk, power and bit allocation is proposed to solve the RA problem. Optimal power allocation

techniques in OFDMA femtocell networks are developed in [19]. Lagrangian based convex

optimization methods are employed to derive optimized EE solutions.

Fig. 2: 4G OFDMA architecture [15]

3.2.2 Single Carrier Frequency Division Multiple Access (SC-FDMA)

SC-FDMA also referred to as Discrete Fourier Transform (DFT) spread OFDM has been adopted

by 3GPP as uplink LTE communication method. SC-FDMA utilizes single carrier modulation at the

5
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3. FOURTH GENERATION (4G) NETWORKS

transmitter while frequency domain equalization is applied at the receiver [20]. A major advantage

of SC-FDMA over OFDMA in uplink communications is that it has lower peak average power ratio

(PAPR) that helps to prolong UE terminal battery life [21] . A drawback of SC-FDMA is its inherent

contiguity constraint that requires that if a user is to be assigned two or more resource blocks (RBs),

such RBs should be adjacent to each other [22]. This forms part of the investigation of this work.

Figure 3 shows the architecture of SC-FDMA transmission and receiving scheme showing processes

that input data undergoes in SC-FDMA. At the transmitter a baseband modulator converts binary input

to a multilevel sequence of complex numbers followed by a discrete Fourier transform (DFT) process

that produces a frequency domain representation of the input symbols. After the subcarrier mapping

process, steps similar to OFDMA such as cyclic prefix insertion and parallel to serial conversion are

performed before the signal is transmitted through the wireless channel and data recovered in the

receiver by reversing processes carried out at the transmitter. A thorough account of the mechanics

behind SC-FDMA processes is presented in [23].

The following works consider RA in SC-FDMA. QoS based RA in SC-FDMA is examined in [24].

Matching and resource assignment algorithms are applied to different data traffic types, and their

performance analyzed. RA implementing power efficient scheduling in uplink localized SC-FDMA

is addressed in [25]. Mathematically based methods incorporating column-generation are applied

to derive optimal methods. Adaptive RA to maximize sum-rate given proportional rate constraints

in uplink SC-FDMA is addressed in [26]. A Lagrangian based sub-optimal algorithm is proposed.

Channel aware LTE-A uplink RA scheduling algorithm is introduced in [27]. The proposed algorithm

utilizes a user ratio parameter that plays a trade-off between system throughput, fairness and user

throughput based on different channel conditions. Work on RA and power control to alleviate the

effect of interference in device-to-device (D2D) communications in LTE-A uplink networks is outlined

in [28]. RA and power control in SC-FDMA targeting minimum sum-power while satisfying users’

QoS requirements is presented in [29]. Power allocation method for both localized and interleaved

SC-FDMA is then offered. SC-FDMA femtocell based LTE-A uplink network with FUE admission

and interference aware RA is discussed [30]. Joint admission control and RA algorithm and heuristic

algorithm are employed to solve the developed optimization problem.

These works highlight advancements from other LTE applications. A group based uplink RA in

M2M LTE-A communication is explored in [31]. In this scenario, group leaders facilitate the RA

process for members that have data to transmit. In [32], IoT on LTE network is utilized as a backhaul

for IoT based communication and RA algorithm to improve data rate and lower latency is outlined.

Research on various security issues concerning LTE and LTE-A networks is undertaken in [33].

6
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3. FOURTH GENERATION (4G) NETWORKS

Fig. 3: 4G SC-FDMA architecture [23]

Challenges with respect to security vulnerabilities existent in architecture and design of LTE/LTE-A

networks are identified and solutions reviewed. The performance of cooperative LTE-A networks

regarding achievable rate in assigned subcarriers and power allocation is evaluated in [34]. A

two-step technique that determines the data rate and then allocates power among subcarriers is

implemented. QoS constrained RA scheduling for an LTE SC-FDMA system is outlined in [35].

Different scheduling approaches aimed at enhancing system throughput are discussed.

Uplink channel and buffer-aware RA algorithm for application in multi-cell LTE-A network is

designed in [36]. Joint subcarrier and power allocation algorithms for SC-FDMA based femtocell

networks is derived in [37]. The optimization problem is formulated with respect to cross-tier

interference, FUE data rate requirements and SC-FDMA constraints. A low complexity sub-optimal

algorithm for subcarrier allocation is then proposed. A study of energy efficient power allocation

considering QoS constraints is done in [38]. After formulating the EE maximization problem, it is

solved using a chaotic particle swarm optimization (CPSO) algorithm. The modification of these

approaches is used in this work.
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4. FIFTH GENERATION (5G) NETWORKS

3.3 4G Challenges and Mitigation approaches

One of the challenges of 4G networks as identified in [39] is integrating non-IP based and IP based

devices on a single platform and ensuring satisfactory QoS for user applications. Compared to the

previous generations of technologies, there is increasing complexity in infrastructure concerning the

need for multi-mode end-user terminals with corresponding complexity increases in billing systems

due to the heterogeneous nature of 4G networks [40]. There are also concerns regarding the

implementation of security issues to ensure users’ information is protected [41]. The

inter-connectivity and inter-working involved in 4G networks increases their vulnerability. There is a

possibility of incompatible roaming frequencies which may occur as a result of different countries

using different spectrum for 4G applications [42]. Congestion control presents a crucial issue in 4G

networks necessitating the implementation of intelligent admission control and scheduling

methods [40]. In order to access 4G services, multi-mode user terminals must choose their desired

wireless system. The selection process is, however, complicated in 4G heterogeneous networks due

to differences in wireless technologies and access protocols [43]. In summary, capacity improvement

is the main challenge. Common mitigation approaches involve utilizing software defined radio

technologies to scan for available networks. Radio resource allocation and packet scheduling

strategies are crucial in enhancing the performance of OFDMA networks [44]. Works outlining how

RA improves OFDMA performance are subsequently discussed. In [44], energy-efficient random

access procedures and MAC protocols in LTE are also identified as one of the vital strategies of

reducing random access overload that can result in high collision probability and energy wasting. A

combination of network and user-oriented quality of experience (QoE) optimization approaches is

recognized as a promising strategy to tackle QoE issues present in LTE networks. The high capacity

requirements in recent wireless communication networks necessitate a shift towards 5G deployments

involving improved access techniques and RA methodologies.

4 Fifth generation (5G) networks

This work mainly focuses on the capacity improvement of 5G networks through architectural changes

and protocol improvements. These are presented next.

4.1 5G Architecture

There are diligent efforts from network operators to improve the digital landscape by addressing

challenges such as increasing network capacity, energy efficiency, spectrum utilization as well as

offering better scalability for a larger number of connected devices to service the constantly

8
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4. FIFTH GENERATION (5G) NETWORKS

increasing mobile data traffic [8]. Stemming from expected trends of user demands in the 5G system,

the IMT-2020 has identified the following broad categories that need to be supported [45].

1. Enhanced Mobile Broadband (eMBB): To provide for enhanced bandwidth, wide-area coverage,

spectral efficiency and signal efficiency in comparison to 4G, the 3GPP has definmed eMBB as

one of the fundamental use cases for the 5G New Radio (NR) [46].

2. Ultra reliable and low latency communications (URLLC): The 5G system will be applicable in

mission critical activities such as autonomous driving, emergency services and remote control

that need very low latency requirements. URLLC enables support for stringent latency

requirements (typically in the range of 1ms) for mission critical activities [47].

3. massive Machine Type Communication (mMTC): mMTC are realized through automatic data

communication between intelligent devices with minimal human interaction. mMTC

deployment will, however, face challenges of high numbers of devices with non-delay sensitive

data. The diversity of mMTC devices will yield a wide range of data traffic patterns which will

put further strain on already constrained spectrum thus making spectrum resource allocation an

uphill exercise [48].

In [49], a two-tier 5G network architecture composed of a radio access network (RAN) and network

cloud is illustrated. The network consists of technologies such as massive MIMO, network function

virtualization (NVF), software defined networks (SDNs) and small cells that enable optimized

network resource utilization for enhanced user quality of experience (QoE). Figure 4 depicts the

implementation of this concepts in a typical 5G network. The feasibility of the recommended

architecture is validated through a proof of concept which is outlined in the work, and important

issues and challenges encountered for 5G implementation discussed. In [50], an SDN based network

is proposed to provide a simplified and unified approach for routing management and mobility in 5G

networks. The characteristics of 5G networks on which this work focuses is presented next.

4.2 Macrocell-Small cell networks

The high quality of service (QoS) requirements expected from cellular networks influenced by the

need for high data rate, low latency and massive connectivity has motivated the concept of cell

densification. The deployment of small cells in cellular networks can help increase throughput and

capacity. Not only do small cells enhance signal reception indoors enabling high quality of service

for various user applications but also facilitates frequency reuse between macrocells and femtocells

resulting in improved network capacity and revenue for the operator [1]. Considering the increased

9
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4. FIFTH GENERATION (5G) NETWORKS

Fig. 4: 5G architecture [49]

pressure on limited radio resources and the costly utilization of more bandwidth [51], the deployment

of heterogeneous networks (HetNets) consisting of macrocells and smalls has emerged as an

appealing solution as it enables small cell base stations to be adjacent to mobile user devices. It is

common practice to set up small cells in indoor environments allowing offloading of indoor user

traffic and facilitating outdoor traffic to small cells. This enables HetNets to have seamless handover

and smart offloading that increases overall spatial reuse [51]. High performance HetNets can be built

using dense small cells of various sizes and macro base stations (MBSs). In [52], a small cell

network for internet of things (IoTs) applications in 5G systems is developed. The network consists

of small cell base stations that can switch on/off depending on the traffic load. Small cells are aimed

at enhancing cellphones indoor performance given that an estimated 80% of cellphone calls transpire

in offices, hotels, mall and homes [53].

4.2.1 Macrocell Networks

The implementation of early cellular networks featured the deployment of macrocells providing radio

access in long range (km) scenarios. Macrocells can offer broad coverage and are often characterized

by antenna masts that are ground-based or erected on rooftops and other structures. Macrocell users

are serviced by an MBS. The MBS usually transmits at high power (in the order of 10W) compared

10
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4. FIFTH GENERATION (5G) NETWORKS

small cell base stations. Enhancing the efficiency of the transceiver can significantly improve the

performance of users in the macrocell.

4.2.2 Microcell Networks

Microcells provide and extend coverage for low-cost devices operating on GSM networks . An

investigation of the performance of spectral efficiency in a macrocell-microcell network with respect

to signal-to-interference and spectral efficiency is outline in [54]. As microcells are introduced to the

macrocell environment a study of the impact of reuse factors is conducted. Research on the

deployment of urban microcells (UMi) and urban macrocells (UMa) for 5G systems operating in 6

GHz to 100 GHz is presented in [55]. Wireless channel specifications such as path loss, shadow

fading and blockage modelling of both UMi and UMa are described.

4.2.3 Picocell Networks

With a motive of improving system capacity, one of the effective methods is to implement efficient

frequency reuse by sectioning the macro-cell into numerous small cells such as pico-cells. In Macro-

Picocell networks, Pico eNBs are deployed inside the coverage of Macro eNBs. Different cases in

which imbalances between macrocells and picocells are considered in [56] and the performance of

cell selection methods that overcome the challenges evaluated. Additional cell selection algorithms

that employ load-driven control to determine optimal user association are developed in [57]. Picocells

can be deployed indoor or outdoor to offer improved coverage in residential and urban areas. Specific

details regarding output power and cell radii are described in Table 1.

Table 1: Evolution of small cells [53]

Licensed Small-Cells

Femto Pico Micro/Metro Macro

Indoor/Outdoor Indoor Indoor/Outdoor Outdoor Outdoor

Number of users 4 to 16 32 to 100 200 200 to 1000+

Max. output power 20 to 100mW 250mW 2 to 10W 40 to 100W

Max. cell radius 10 to 50m 200m 2km 10 to 40km

Bandwidth 10MHz 20 MHz 20,40MHz 60 to 75 MHz

Technology 3G/4G/Wi-Fi 3G/4G/Wi-Fi 3G/4G/Wi-Fi 3G/4G

MIMO 2 × 2 2 × 2 4 × 4 4 × 4

Backhaul DSL,fiber Microwave,mm Fiber,microwave Fiber,microwave
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4.2.4 Femtocell Networks

Femtocells are the smallest denomination of small cells in wireless communication networks.

Femtocell implementation is customer-friendly and can be easily installed by end users making them

convenient low cost solutions to tackling the problem of poor coverage indoors [1]. Fibre optic or

digital subscriber line (DSL) links serve as connections to femtocells [58] . Not only do subscribers

enjoy benefits in terms of enhanced signal quality, power efficiency and throughput but also network

operators have increased spectral efficiency and network capacity [59]. Resource management is

highlighted as a vital aspect in maximizing throughput while preserving fairness among femto user

equipments (FUEs) in LTE femtocell networks [60]. A packet scheduling scheme is proposed in the

study which aims to achieve optimized aggregate throughput and average throughput among UEs.

An approach to manage interference for uplink femtocell-macrocell networks using power control is

outlined in [61]. Considering a multicell setup consisting of macrocells overlaid with femtocells, a

demonstration of how power control can be used to minimize different types of interference in the

system is presented. Interference can be very challenging in two-tier macrocell-femtocell networks.

The nature of the two main types of interference that usually arises in two-tier networks is cross-tier

interference and co-tier interference. An analysis of interference in downlink femto-macrocell

network is done in [62]. An architecture that adopts interference based RA algorithms aimed at

maximizing the throughput of the network is proposed. The implementation of femtocells in

macrocells necessitates efficient frequency planning to mitigate the effect of interference between

network layers. A dynamic frequency reuse technique is developed in [63] to minimize interference

in femtocell-macrocell networks. The method reuses the spectrum of adjacent macrocells to protect

femtocell users especially those at the cell edge. Dynamic spectrum assignment involving cognitive

radio (CR) based approaches to effectively reuse macrocell radio frequency (CF) resources for indoor

femtocells is outlined in [64]. It is proposed that the developed interference management can have

cost efficient benefits for operators.

There are different types of access control in femtocells as identified [65];

• Closed Subscriber Group (CSP): In this mode, only subscribers are able to get access to

femtocell resources.

• Open Access: In this scenario, all users are permitted to access femtocell services. Macrocell

users passing by can thus acquire femtocell access.

• Hybrid Access: In this model, particular resources are reserved for registered subscribers while

a certain level of open access is also granted for all users.

12
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The characteristics of the cellular structures are summarized in table 1. The utilization of small cells

in macrocells is one of the methods used to increase capacity in the network models developed in this

work.

4.3 NOMA Access Schemes

4.3.1 Power Domain Non-orthogonal Multiple Access (PD-NOMA)

Power domain NOMA is recognized as the basic access method that exploits different power levels

of users in the network (resulting from power control or naturally) to separate them [66]. It employs

successive interference cancellation (SIC) to iteratively subtract and decode higher power signals

from the superposition encoded signal while treating other embedded signals as noise. The

fundamental principles under-laying power-domain NOMA techniques are studied in [67] with figure

5 illustrating application of SIC to derive users signals. The performance of integrating PD-NOMA

with other well-established wireless communication methodologies such as multiple input multiple

output (MIMO), cooperative communication, power allocation, etc. is examined. A power domain

cyclic spread multiple access (PDCSMA) is designed for a NOMA system in [68]. Superposition

coding (SC) and cyclic spreading applied at the transmitter is combined with symbol level SIC at the

receiver to improve system BER. The advantages of PD-NOMA are that it accomplishes high

spectral efficiency by serving multiple users on same time and frequency resources, and is able to

mitigate interference using SIC. However, disadvantages of PD-NOMA come with the additional

decoding complexity (compared to OMA systems) and possibility of errors rippling through the

decoding process if one user makes an error [69].

Fig. 5: PD-NOMA transceiver model [70]

4.3.2 Multi-User Shared Access (MUSA)

MUSA is a potential non-orthogonal transmission scheme with grant-free access for 5G mobile

communication systems employing both code-domain and power-domain techniques in its
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operation [71]. Work considering MUSA for IoT applications is outlined in [72].MUSA embraces a

grant-free strategy that provides access using both power domain and code domain methods.

Complex short length sequences that enable massive connectivity at minimum control signal

overhead and power consumption are applied to each user’s data [72], [73]. An example of the

application of MUSA spreading and SIC in a MUSA transceiver is illustrated in figure 6. Each user’s

data is spread using complex spreading codes that not only facilitate massive connectivity but also

help minimize power consumption and signalling overhead for users in the same RB [71], [73].

MUSA utilizes blind detection based minimum mean square error successive interference

cancellation (MMSE-SIC) to reduce the challenge of interference between users. MUSA’s

superiority compared to other NOMA access schemes is empowered by its high

overloading,grant-free transmission and vigorous blind detection approach. The probability of

spreading sequence collision is minimized by the vast number of available spreading sequences.

MUSA, however, suffers from performance degradation due to propagation errors resulting from the

application of SIC [71]. There is increased weight on the importance of designing spreading

sequences as it is significant in reducing interference among users.

Fig. 6: MUSA transceiver model [73]

4.3.3 Interleaved Based NOMA (IDMA)

Introduced in [74], the IDMA NOMA scheme enables massive connectivity for users. The

fundamental construct governing IDMA is the application of a combination of user-specific

interleavers and low-rate channel coding as demonstrated in figure 7. The fundamental idea behind

IDMA is utilizing interleavers for each user in combination with low-rate channel coding as seen in

figure 7. As a wideband scheme it supports implementation of medium complexity multi-user
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detectors [75]. IDMA is derived from CDMA and possesses attractive CDMA traits such as diversity

against fading as well as mitigation to user interference from neighboring cells [76]. IDMA is

desirable for its high overloading and high spectral efficiency capability. As identified in [77], some

of the advantages of IDMA are summarized as:

− IDMA enables iterative low cost methods for multi-user detection (MUD).

− Power controlled IDMA achieves near capacity multi-user sum-rate.

− Decentralized power control IDMA offers reasonably higher throughput compared to

conventional ALOHA in random access scenarios.

− Data aided channel estimation (DACE) coupled IDMA can exploit massive multiple input

multiple output (MIMO) systems.

Fig. 7: IDMA transceiver model [75]

4.3.4 Pattern Division Multiple Access (PDMA)

The PDMA 5G NOMA access scheme developed in [78] introduces a technique of employing

PDMA patterns for mapping user data to a resource pool composed of time, frequency, spatial

resources or their various combinations. The designed PDMA patterns serve to not only distinguish

user signals using common resources but also to enhance system performance with reasonable

detection complexity. The multiplexing of users on same resource elements(REs) is illustrated in

figure 8. As observed in the figure, RE3 has been allocated to users 1, 2,3 and 5. The performance of

PDMA in downlink fully loaded wireless network is evaluated in [79]. PDMA with SIC is proposed
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to improve both spectral efficiency and system throughput subject to challenges such as novel

multiple access (NMA) receiver and power allocation. The joint design of transmitter and receiver in

PDMA enables low-complexity SIC based multi-user detection to be developed. PDMA patterns are

designed for different users to achieve diversity disparity at symbol level and power disparity at

resource element level [80]. An investigation of the outage performance and sum-rate of uplink

PDMA system is undertaken in [81]. A case of three users sharing two resource blocks (RBs) is

considered, and closed form expressions for outage probability and sum-rate are developed. A study

of PDMA massive machine type communications (mMTC) grant-free(GF) transmissions is done

in [82]. The performance of the proposed GF-PDMA is evaluated in terms of uplink resource

allocation.

Fig. 8: PDMA transceiver model [78]

4.3.5 Sparse Code Multiple Access (SCMA)

Sparse code multiple access (SCMA) is an enhanced low density signature (LDS) method following

the basic principles of CDMA employing low density spreading sequences [83]. SCMA enables the

combination of QAM symbol mapping and spreading by using multi-dimensional codewords in

SCMA codebooks. The SCMA encoding process that maps REs to codebooks is demonstrated in

figure 9. SCMA employs multidimensional constellations to minimize collisions and receiver

complexity to enable massive connectivity. The encoder in figure 9 implements mapping of resource

elements to users through codebooks with message passing algorithm (MPA) being used at the

receiver to decode transmitted data [84]. In addition to reducing detection complexity, codebooks

used in SCMA map input coded bits using multi-dimensional modulation that helps introduce

shaping gain which is one of the major advantages of SCMA. One of the disadvantages of SCMA is

high detection and decoding complexity that increases with increasing number of users and larger

constellations [71]. Studies on SCMA have been carried out in the following works. In [85], slight

modifications to SCMA decoding are implemented to the deterministic message passing algorithm

(DMPA) to improve performance and convergence. Hardware architectures based on Max-log MPA

are discussed with timing and folding techniques proposed. Message passing algorithm (MPA) is
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4. FIFTH GENERATION (5G) NETWORKS

often used to achieve low complexity decoding of sparse codewords at the receiver of SCMA.

In [86], additional complexity reduction approaches are developed to decrease SCMA decoding

complexity. Both transmitter SCMA codebook design and corresponding low complexity decoding

methods are proposed. Another low complexity detection design aimed at decreasing computational

complexity by combining adaptive Gaussian approximation and mean and variance feedback

schemes is studied in [87]. The application of stochastic computing in designing low complexity

SCMA detectors is investigated in [88]. The process of designing SCMA codebooks using

permutations is outlined in [89]. The proposed system entails converting the considered codebooks

into multi-user CDMA and then using an iterative decoder. A downlink multidimensional SCMA

codebook design technique based on constellation rotation and interleaving in presented in [90].

Different codebook designs for power or spectral efficiency are generated and shown to have superior

BER performance to existing downlink SCMA codebooks. Iterative multi-user receivers for uplink

SCMA taking advantage of diversity and coding gains are developed in [91].

Fig. 9: SCMA encoding with K=6,N=4, J=2 [84]

In [92], the NOMA concept aimed at enhancing radio resource management for future radio access

(FRA) in the 2020s and beyond is outlined. A basic NOMA downlink system employing successive

interference cancellation (SIC) is investigated. A study of receiver and resource allocation

optimization for uplink NOMA 5G networks is done in [93]. The derived method involves both

applying iterative multi-user detection and decoding and subcarrier and power allocation algorithms

to maximize users’ sum-rate. Resource allocation for uplink power domain NOMA (PD-NOMA) is

17



i
i

“output” — 2020/9/8 — 2:50 — page 18 — #38 i
i

i
i

i
i

4. FIFTH GENERATION (5G) NETWORKS

undertaken in [94]. The developed optimization problem is solved using many-to-many matching

algorithm with additional iterative water-filling and geometric programming employed for power

allocation. Cloud radio access network (C-RAN) represents an important network architecture as it

enables central processing. An efficient RA technique for downlink NOMA C-RAN systems is

presented in [95]. A sub-optimal user-pairing and power allocation algorithm is then applied to

derive optimization solutions. The architecture of a typical 5G network is illustrated in figure 4

whereby a HetNet consisting of macrocells and small-cells with advanced MAC protocols are

considered to increase network capacity.

4.4 5G Challenges and mitigation strategies

5G networks were standardized in 2018 and deployments expected to be rolled out in 2020 [45].

In their drive to achieve increased throughput, low-latency and high spectral efficiency, operators

encounter major challenges due to interference, spectrum scarcity and increased energy consumption

in 5G network deployment. A thorough review of the challenges and mitigation strategies is found

in [96] [97]. The challenges addressed by this work are emphasized next.

4.4.1 Interference

In heterogeneous networks (HetNets) two common types of interference are usually identified

namely cross-tier and co-tier interference. Cross-tier interference exists between users in different

network layers while co-tier (which may consist of inter and intra small-cell interference)

interference occurs among users in same network layer [98]. One of the major challenges in HetNets

is inter-cell interference [99]. This problem is exacerbated by unplanned deployment of small cells

where operators possess limited control on small cells’ location. Different types of interference

existent in HetNets are illustrated in figure 10. Table 2 below outlines different instances of

interference that occur in two-tier HetNets as well as their dynamics. Interference in wireless

networks is a constraint to capacity and needs to be minimized through application of effective MAC

protocols.

4.4.2 Spectrum Scarcity

With the advent of the fourth industrial revolution which will be characterized by extensive

applications of internet of things (IoT) and new 5G use cases, the already strained spectrum is going

to experience more pressure. In an attempt to service the ever-increasing data demands from mobile

users, there has been a growing trend in large-scale deployments of low power small cells overlaid in

macrocells to address the issue of spectrum scarcity [100]. Spectrum optimization in dense
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Fig. 10: Nature of interference in heterogeneous wireless networks

Table 2: Different cases of interference in HetNets [53]

Agressors Victims Interference type Trasmission

mode

MBS small-cell UE Cross-tier interference Downlink

macrocell UE (MUE) SBS Cross-tier interference Uplink

SBS MUE Cross-tier interference Downlink

SUE MBS Cross-tier interference Downlink

SBS SUE Co-tier interference Downlink

SUE SBS Co-tier interference Uplink

SUE SUE Intra-cell interference Uplink/Downlink

heterogeneous networks requires efficient resource scheduling and interference

management [101], [102], sum-rate maximization [103], [104] and high spectral efficiency [105].

Massive MIMO is expected to add pressure on already strained spectrum. Although massive MIMO

has been proposed to offer diversity and compensate effects of path loss in 5G networks [106].
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4.4.3 Heterogeneous Networks (HetNets)

To address the challenge of high data demand from users, HetNets which consist of macrocells

overlaid with small cells is envisioned to be a promising solution to relieve pressure on limited

spectrum resources [100]. Work considering dynamic RA in hybrid automatic repeat and request

(HARQ) is done in [107]. Mathematical models for analyzing throughput and developing distributed

RA policies in donwlink and uplink HetNets are presented. Theoretical formulations of multi-tier

networks assuming random spatial models is constructed in [108] with practical performance

constraints possible challenges that restrict operators in maximizing network capacity also outlined.

Software defined networks (SDN) have been proven to have promising potential in enhancing 5G

performance. However, there is still need to advance SDN concepts such that they can be applicable

at network infrastructure level (e.g. carrier network). Development of unified cellular programmable

interface to enable SDN infrastructure implementation and establishing global standardization are

other challenges facing SDNs [99].

4.4.4 Energy Efficiency

Due to the meteoric increase in popularity of smart devices that require high capacity from access

fourth and fifth generation networks, the energy demand from recharging such devices has been

become significant [109]. Therefore, research interests in energy efficiency (EE) studies have

increased in recent years. QoS based EE consideration for uplink LTE networks in

machine-to-machine (M2M) or human-to-human (H2H) instances is studied in [110]. After

formulating the EE optimization problem, it is transformed into a mixed integer problem (MIP)

which is then solved using canonical duality method. Optimization of energy efficiency in uplink

SC-FDMA is considered in [111]. A low complexity optimal power allocation algorithm to maximize

EE is presented and its performance compared to conventional power allocation methods. A study on

efficiency and fairness scheduling in resource allocation for uplink SC-FDMA is conducted in [112].

Various frequency domain packed schedulers with fairness, transmit power, price of fairness as

performance metrics are described. Efforts to maximize energy efficiency RA in downlink NOMA

by implementing subcarrier and power allocation is presented in [113]. Sub-optimal matching

subchannel allocation algorithms that solve the optimization problem are proposed. Energy efficiency

optimization is considered for a NOMA downlink system in [114]. The resulting non-convex

optimization problem is solved using a difference of two convex functions (DC) approach. Power

allocation methods for NOMA multicast-unicast systems involving different cognitive radio NOMA

(CR-NOMA) technologies are designed in [115]. The approaches are evaluated in terms of outage
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probability. After considering challenges and the existing mitigation approaches in literature, the

following research problem is formulated and objectives and methodology subsequently outlined.

5 Research Problem Formulation and Motivation

Recent wireless communication networks such as the fourth (4G) and fifth (5G) generation networks

are expected to meet particular minimum requirements in terms of quality of service (QoS). There is

need to improve network capacity by developing MAC protocols with better performance, by

implementing heterogeneous networks (consisting of macro and small cells) with increased capacity,

and applying more efficient resource allocation algorithms based on modern artificial intelligence

(e.g. nature inspired algorithms). The developed schemes should aim at alleviating existing wireless

communication environment challenges such as interference and spectrum efficiency. Biologically

inspired computational algorithms have been proven in a myriad of engineering applications to offer

satisfactory solutions within reasonable execution time. Motivated by this perspective, this work

seeks to answer the following questions. Can we develop hybrid network architectures that can

improve capacity? Can we apply multiple MAC protocols on the models and finally can biologically

inspired algorithms be applied to improve capacity?

6 Research Objectives

The following identified objectives are the focus of this thesis:

1. To provide a detailed critical literature review of LTE-A and NOMA technologies.

2. To develop and investigate a HetNet model based on LTE-A and evaluate the performance of

nature-inspired algorithms solutions based on particle swarm optimization (PSO) ant colony

optimization (ACO), and a developed hybrid algorithm embracing the merits of PSO and ACO

referred to as Adaptive Particle Ant Swarm Optimization (APASO) for resource allocation in

uplink LTE-A (SC-FDMA).

3. To develop and investigate a hybrid NOMA HetNet model based on PD-NOMA and SCMA

and evaluate the performance of proposed RA biological algorithms namely particle swarm

optimization (PSO) ant colony optimization (ACO), and a developed hybrid algorithm

embracing the merits of PSO and ACO termed Adaptive Particle Ant Swarm Optimization

(APASO).
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7 Research Methodology

This work contributes to knowledge by considering the application of metaheuristic and analytical

optimization tools, apart from MATLAB simulations. Nature-inspired metaheuristic approaches

studied are particle swarm optimization (PSO), ant colony optimization (ACO) and the proposed

adaptive particle ant swarm optimization (APASO). Analytical methods based on convex

optimization and Lagrangian dual technique are utilized to compare the performance of the

biological algorithms. The energy efficiency optimization problem is formulated and solved first

using the biological methods whose performance is subsequently compared to the well-established

convex optimization approximation approach. The analytical tools and algorithms used in the

methodology are discussed in detail next.

The considered optimization methods are termed as metaheuristic algorithms. “Meta-" is a Greek

word that means “beyond" or “higher", and “heuristic" describes a class of stochastic algorithms used

to solve optimization problems although not always guaranteeing best solutions at all applications

[116]. Metaheuristic algorithms often perform better as compared to simple heuristics [117]. Inspired

by natural processes, metaheuristics are characterized by having diversification and intensification

as two fundamental phases in their operation. Diversification involves random exploration of the

search space to discover good quality solutions to the optimization problem, while intensification is

the exploitation of the obtained solutions. The balance between exploration and exploitation is crucial

in the satisfactory performance of metaheuristic algorithms. Hence they were found favourable and

applied in this work. Metaheuristics can be categorized into population-based and trajectory-based

algorithms. Examples of population-based algorithms are genetic algorithm (GA), particle swarm

optimization (PSO), ant colony optimization (ACO). A good example of a trajectory-based algorithm

is simulated annealing (SA) [116].

7.1 PSO

Preliminary studies relating to the behavior of flocks or herds of animals hunting for food were

considered in the Boid’s Model [118]. Drawing on this inspiration, the particle swarm optimization

(PSO) search technique was developed. PSO is based on the behavior of a flock of birds or a school

of fish searching for food in nature. Initially proposed by [119] it models potential random solutions

as a swarm of particles. Each particle in the swarm has a position and a velocity. In searching for

better solutions each particle iteratively updates its previously best fitness position and adjusts its

velocity in the direction of its personal best and that of the best particle in the swarm (global best).

The advantages of PSO reside in its simple implementation that requires few parameters to adjust
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while sustaining robustness, fast convergence and short computational times. It can also be efficient

in obtaining solutions to problems that pose difficulty to solve using accurate mathematical

approaches. Nonetheless, PSO might not be suitable to scattering problems and can have premature

convergence or be trapped in local minimum in complex problems cases [120]. The potential of PSO

to be able to derive near-optimal solutions for NP-hard problems is the reason why it was considered

for this study.

7.1.1 Principle of operation

PSO utilizes a swarm of particles travelling through a multi-dimensional search space. Let pij(t) and

vij(t) be the position and velocity vectors of the ith particle in the jth dimension at time t. Then a

PSO algorithm that governs particle in d-dimensional is updated according to the following velocity

and position equations as described in [119], [121]

vt+1
ij = ωvtij + rt1C1(p

best,t
ij − pij) + rt2C2(p

global,t
ij − pij), (1)

pt+1
ij = ptij + vt+1

ij . (2)

The variables pbest,tij and pglobal,tij in (1) represent the personal and global best positions, ω is referred to

as the inertia of the particle, r1 and r2 are random variables in the range 0 ≤ r1, r2 ≤ 1, while C1 and

C2 are cognition and social acceleration coefficients respectively. Parameter selection and conditions

relating to the convergence of the PSO algorithm are investigated in [122].

7.1.2 Description of PSO algorithm parameters

1. Fitness function: A particles often represents a solution to the optimization problem to be

solved. Each particle is evaluated using a fitness function which is associated to the

optimization problem. A fitness value is then assigned to each particle to ascertain the

suitability of the particle to solving the problem. The aim is to select particles with high fitness

values and to communicate these high fitness value positions to other members of the swarm

such that the entire swarm evolves to better solutions.

2. Position: The position vector of the particle stores locations of feasible solutions in the search

space [123]. The dimension of the position vector depends on the nature of the optimization

problem under consideration. During its exploration each particle instantaneously updates its

position according to equation (2).
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3. Velocity: Particles move about in the search space with velocity, vtij , in equation (1). The

dimension of the velocity vector is equivalent to the position vector and is used to move particles

towards personal best and global best values of the swarm.

4. Personal best and Global best values: Each particle stores its previously best personal fitness

value and the highest fitness value in the entire swarm of particles is designated the global best

of the swarm [124]. As the swarm flies over the search space, the personal and global values are

updated if new values which are better than the stored values are discovered.

5. Inertia : Particles inertia weight factor is a key element in balancing the exploration and

exploitation processes as particles move about the search space. Although the original PSO

model did not have inertia incorporated in it, constant inertia was introduced in [125]. Further

experiments involving various inertia updating strategies are outlined in [126].

6. Social and Personal acceleration coefficients : Social and personal ‘learning’ acceleration

coefficients are weights that pull particles towards current personal and global best values of

the swarm. Common practice in the implementation of the PSO is to strive for a trade-off

between extremely high or low values of these coefficients [121]. Extremely high values

usually cause sudden movements of particles which risk them being trapped in false optimal

values while extremely low values of the coefficients result in high computational cost of the

PSO.

7. Random factors: Randomness of the PSO algorithm is introduced via coefficients rt1 and rt2 in

equation (1). These variables enable search space exploration and are often selected as uniform

numbers in the range [0,1] [122].

7.1.3 Applications of PSO algorithm

A PSO approach for cloud based social applications to optimize QoS is presented [127]. The

performance of the PSO is compared to that of the greedy algorithm regarding its RA efficiency. A

PSO power allocation (PA) technique for downlink NOMA networks is considered in [128]. The

developed PSO PA is aimed at maximizing energy efficiency in the network. Work on RA using PSO

to improve Quality of Experience (QoE) while ensuring fairness among users in downlink LTE is

done in [129]. The RA problem for different traffic classes is formulated in PSO framework and PSO

performance compared to other throughput maximization algorithms. Joint mode selection and RA

using PSO is explored in [130]. The fitness function of particles is constructed to provide solutions

that maximize system throughput. PSO based RA for LTE device-to-device(D2D) communication
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intended to improve throughput is outlined in [131]. The performance of the proposed PSO in

assigning resource blocks to users is compared to that of random allocation method. A PSO

application for energy efficiency in 5G Network Base Stations is defined in [132]. Based on HetNet

scenarios with separate data and control planes, PSO is employed to derive energy saving solutions

for base stations. PSO based RA and scheduling in production management scenarios is illustrated

in [133]. Different instances of how solutions are mapped to particles are presented.

7.2 ACO

The ant colony optimization (ACO) paradigm introduced by [134] is a cooperative search mechanism

imitating the behavior of ants as they forage for food in nature. In the beginning ants search

randomly in the environment to discover shortest routes between the food source and the nest. In

routes in which they have discovered food, they leave pheromone trails for other ants to follow in

future travels. The advantages of ACO are that it can yield satisfactory solutions due to its parallel

search capability in the ant population. It has also guaranteed convergence. Nevertheless, its

disadvantages are that the probability distribution of its solutions can change per iteration, and it has

uncertain time to convergence [120]. The parallel search ACO characteristic that enables it to procure

good solutions quickly is what made it attractive for application in this work.

7.2.1 Principle of operation

The ant colony optimization metaheuristic has popular applications in travelling salesman problems

(TSP) and assignment type problems (ATP). In TSP scenarios, the interest is attempting to find the

shortest path from the food source to the nest. In the TSP problem, the pheromone, τij , on the path

i− j between nodes i and j is updated according to

τij(t+ 1) = ρτij + ∆τij , (3)

where t is the number of iterations, ρ is the pheromone evaporation rate (0 < ρ < 1), ∆τij is the

deposited pheromone on each iteration by each ant and is given by

∆τij =
m∑
a=1

∆τaij (4)

where m is the number of ants and

∆τaij = pa =


Q
La
, if the ath ant walks on edge(i, j)

0, otherwise,
(5)
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where Q is a constant and La is the length of tour of the ath ant. The visibility or heuristic function in

this case is defined as

ηi,j =
1

di,j
, (6)

where di,j =
√

(xi − xj)2 + (yi − yj)2. The probability, pija , of choosing a certain particular path,

pija =


[τij ]

α[ηij ]
β∑

a∈Sij
[τij ]α[ηij ]β

0, otherwise,
(7)

where α, β are pheromone and heuristic function weights, Sij is the set of possible routes. ACO has

been applied in assignment type problems(ATP) in which each ant incrementally builds a solution by

assigning tasks to agents subject to particular constraints [135]. In such scenarios, resource allocation

is implemented in a manner that optimizes system performance. The pheromone mechanism provides

a means of communication between ants regarding which tasks are suitable to which agents. Let the

aggregate pheromone intensity of allocating task i to agent j be denoted as τi,j . Assuming that ηi,j is

the heuristic value representing the desirability of assigning agent j to task i, then the probability, pa,

of ant a selecting task i for agent j is given by

pa =


[τi,j ]

α[ηi,j ]
β∑

j∈Ja[τi,j ]α[ηi,j ]
β
,

0, otherwise.
(8)

where α and β are pheromone and heuristic function weights, Ja is the set of available agents. The

pheromone updating rule for choosing an agent to a task is updated as

τi,j ← (1− ρ) · τi,j + ρτo, (9)

where τo is the initial pheromone concentration and ρ is the pheromone evaporation rate (0 < ρ < 1).

7.2.2 Description of ACO algorithm parameters

1. Fitness function The fitness function is utilized to evaluate the efficiency of ants in deriving

solutions to the optimization problem under consideration. Each path is assessed using the

fitness function which is modelled using the problem to be solved and a fitness value is

associated with each path. Since paths generated by ants as they walk about the search space

are analogous to solutions to the optimization problem, paths with higher fitness values will be

preferred as they represent better solutions to the problem.
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2. Pheromone updating rule: As ants travel from the nest to food source searching for food they

deposit a chemical called to as pheromone on the ground. The process of preromone trail-

laying and trail-following serves as indirect communication referred to as “stigmergy" [136].

Ants communicate through modifications to the environment using pheromones for other ants

to follow this trails to find the food source. In ACO problem solving applications, pheromone is

laid on desirable solutions so that such solutions can be frequented more often as long as they

yield satisfactory results.

3. Heuristic Function: Indicates the desirability of ants to chose particular destinations in their

travels. Paths in which food sources are closer to the nest are more appealing to ants as they are

more likely to have higher pheromone intensity.

4. Probability rule During their expeditions ants select paths to follow based on a probability

rule(s). The probability rule is constituted by a combination of various factors such as local

pheromone intensity and heuristic function values, ants memory based on its past trips and the

nature of the problem [137].

7.2.3 Applications of ACO algorithm

An example of spectrum allocation based on ant colony optimization to a home area network in

Internet of Things (IoTs) application is studied in [138]. The algorithm is employed to provide fair

resource assignment in cloud based machine-to-machine communication. ACO RA in cloud

computing environment is considered in [139]. An analysis of ACO in dynamic resource scheduling

in cloud computing scenarios is then performed. ACO is investigated in terms of static and adaptive

heuristic control to improve the quality of its solutions [135]. Applications in local search and

component selection heuristics for generalized assignment problems are then considered. An

improved ACO combining differential evolution and variable neighbourhood search processes is

developed in [140] . It is applied in spectrum assignment RA instances of cognitive radio networks

modelled using graph theory. ACO for RA and anomaly detection in communication networks is

explored in [141]. Its performance is evaluated with respect to power control, throughput and

convergence in CDMA networks, and analyzed in its efficiency for anomaly detection in computer

networks. ACO is also utilized to derive quasi optimal solutions for circular consecutive k-out-of-n

systems in [142].

27



i
i

“output” — 2020/9/8 — 2:50 — page 28 — #48 i
i

i
i

i
i

7. RESEARCH METHODOLOGY

7.3 Convex Optimization

Convex optimization has recently gained popularity in resource allocation applications in wireless

communication and networking environments. Consider a standard convex optimization problem

min
x∈R⊆P

f(x), (10)

where x is a vector that represents optimization variable, f : Pn → P , P is a set of convex functions

for minimization, R is a set of feasible solutions. Among the techniques of convex optimization the

Lagrange dual principle is famous in wireless communication optimization problems. It involves the

application of Lagrange multipliers and Karush-Kuhn-Tucker (KKT) conditions to establish

optimality. In the Lagrange duality method the optimal solution of a dual problem under

consideration is presented as a vector of KKT multipliers.

The Lagrange technique is employed to optimize the number of FUEs allocated spectrum resources

with FUEs transmitting at optimal power. The EE optimization problem is developed and solved

following fractional transformation [143]. Considering the joint user scheduling and power allocation

in [144], an optimal RA strategy based on the Lagrange optimization model is defined as

min
x∈Z⊆Pn

fq(x) (11)

s.t.

gq(x) ≤ 0 q = 1, 2, . . . , r,

hq(x) = 0 q = 1, 2, . . . , s,

where fq(x) is the objective function, gq and hq(x) are inequality and equality constraints which are

affine and x is the optimization variable. Solutions to equation (11) will provide values that minimize

fq(x) for all values of (x) given q = 1, 2, . . . , r and q = 1, 2, . . . , s ∈Z.

Consider a convex optimization problem with constraints as outlined in equation (11), the Lagrangian

function, L(Pn × P r × P s), is given by

L(x, λ, γ) = f0(x) +

r∑
q=1

λqgq(x) +

s∑
q=1

γqhq(x), (12)

where λ ∈ P r and γ ∈ P s are optimization variables of λq and γq with gq(x) and hq(x) inequality and

equality constraints respectively. These variables are often referred to as Lagrangian dual variables or

simply Lagrange multipliers [145]. Lagrange multipliers that yield optimal values are denoted as p∗

and correspond to the minimum value of the objective function

p∗ = min{f0(x) : gq(x) ≤ 0, q = 1, 2, . . . , r, hq(x) = 1, 2, . . . , s}. (13)
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The vector variable is optimal if f(x∗) = p∗. It is possible to have more than one optimal point in the

set of feasible solutions [146]

There have been studies conducted on the application of convex optimization for resource allocation in

wireless communication networks. Work illustrating the application of convex optimization in RA in

wireless communication networks is presented in [147]. It is demonstrated how RA functions that may

not necessarily be concave can be solved using the dual domain framework. QoS and fairness based

convex optimization RA for wireless cellular and Ad Hoc networks is proposed in [148]. Convex

optimization formulations are a developed with a target to optimize the overall system throughput

subject to constrains such as power, probability of outage and data rates. Further work detailing

convex optimization based RA in multi-antenna systems is outlined in [149].

In this research MAC protocols are developed for both uplink 4G and 5G networks using HetNet

models consisting of macrocells and small cells to increase capacity. RA based algorithms motivated

by biological algorithms are implemented to enhance radio resource utilization. The following

sections outline research contributions considering application of PSO, ACO and the developed

hybrid algorithm Adaptive Particle Ant Swarm Optimization (APASO) embracing the merits of both

PSO and ACO. The performance of the biological algorithms is compared to that of the analytical

Lagrange method.

8 Research Main Contribution

The research has resulted into the following main papers.

Contributions of Papers

Paper A : Alternative Energy Efficient Resource Allocation Algorithms for Uplink LTE-A

Networks, under review

Abstract:

Long Term Evolution Advanced (LTE-A) access technology employs Single Carrier Frequency

Division Multiple Access (SC-FDMA) on the uplink to minimize power consumption. SC-FDMA

technology requires special resource block allocation patterns due to the subcarrier adjacency and

exclusivity restriction resulting in resource allocation problems. Unlike the traditional analytical

combinatorial resource allocation schemes, this work proposes alternative biological inspired

resource allocation schemes for SC-FDMA due to their advantages of simple implementation

compared to other analytical methods. The performance of the developed schemes, Particle Swarm
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Optimization (PSO), Ant Colony Optimization (ACO) and the proposed hybrid Adaptive Particle Ant

Swarm Optimization (APASO), is investigated and compared to that of the analytical model based on

Lagrangian optimization. The performance and complexity of the biological algorithms is observed

to be near-optimal with APASO outperforming the traditional PSO and ACO algorithms in resource

allocation.

Paper B: Biological Resource Allocation Algorithms for Heterogeneous Uplink PD-SCMA

NOMA Networks, In press

Abstract

Due to their ability to multiplex users on a resource element (RE), Non-orthogonal multiple access

(NOMA) techniques have gained popularity in 5G network implementation. The features of 5G

heterogeneous networks have necessitated the development of hybrid NOMA schemes combining the

merits of the individual NOMA schemes for optimal performance. The hybrid technologies on 5G

networks make complex air interfaces resulting in new resource allocation (RA) and user pairing

(UP) challenges aimed at limiting the multiplexed users interference. Furthermore, common

analytical techniques for evaluating the performance of the schemes lead to unrealistic network

performance bounds necessitating alternative schemes. This work explores the feasibility of a hybrid

power domain sparse code non-orthogonal multiple access (PD-SCMA). The scheme integrates both

power and code domain multiple access on an uplink network of small cell user equipments (SUEs)

and macro cell user equipments (MUEs). Alternative biological RA/UP schemes; the ant colony

optimization (ACO), particle swarm optimization (PSO) and a hybrid adaptive particle swarm

optimization (APASO) algorithms, are proposed. The performance results indicates the developed

APASO outperforming both the PSO and ACO in sum rate and energy efficiency optimization on

application to the PD-SCMA based heterogeneous network.
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1. ABSTRACT

c© 2019

1 Abstract

Long Term Evolution Advanced (LTE-A) access technology employs Single Carrier Frequency

Division Multiple Access (SC-FDMA) on the uplink to minimize power consumption. SC-FDMA

technology requires special resource block allocation patterns due to the subcarrier adjacency and

exclusivity restriction resulting in resource allocation problems. Unlike the traditional analytical

combinatorial resource allocation schemes, this work proposes alternative biological inspired

resource allocation schemes for SC-FDMA due to their advantages of simple implementation

compared to other analytical methods. The performance of the developed schemes, Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO) and the proposed hybrid Adaptive Particle Ant

Swarm Optimization (APASO), is investigated and compared to that of the analytical model based on

Lagrangian optimization. The performance and complexity of the biological algorithms is observed

to be near-optimal with APASO outperforming the traditional PSO and ACO algorithms in resource

allocation.

2 Introduction

The Long Term Evolution Advanced (LTE-A) access technology utilizes Orthogonal Frequency

Division Multiple Access (OFDMA) on the downlink and Single Carrier Frequency Division

Multiple Access (SC-FDMA) on the uplink for communication. SC-FDMA is employed on the

uplink due to its ability to resist multipath fading and its low Peak Average Power Ratio (PAPR).

Resource Blocks (RBs) in SC-FDMA are transmitted in a manner that results in lower Peak Average

Power Ratio (PAPR) when compared to OFDMA. The lower PAPR makes mobile terminals more

power efficient by reducing the battery power consumption of User Equipments (UEs). However, this

comes at a cost of exclusivity and contiguity/subcarrier adjacency RB allocation restrictions [1]. The

exclusive restriction, applicable to both downlink and uplink, requires one user assigned to one RB

whereas in the subcarrier adjacency restriction users can only be assigned multiple subcarriers that

are adjacent to each other. The LTE-A resource allocation (RA) constraints and challenges demand

the development of efficient resource pattern allocation strategies hence the focus of this work.

Mathematical algorithms are commonly used for resource allocation in LTE-A networks.

In [2] [3], [4], game theory has been implemented to solve the resource allocation problem modelled

as a game in which UEs are represented as players and network resources are distributed according to
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UE quality of service (QoS) requirements. When a Nash equilibrium is reached, the system is

considered to be operating at optimum. These models are disadvantaged in their slow convergence to

optimal solutions. Greedy algorithms have also been employed in resource allocation applications as

they are easy to implement. At each instant in their execution, they choose a local optimum in the

hope that selecting a local optimum at each step will result in an optimal solution to the optimization

problem. However, greedy algorithms do not always reach global optimum solution. In most works,

LTE-A uplink resource allocation problem is usually characterized as an NP-hard combinatorial

optimization problem which is often formulated as a Binary Integer Problem (BIP). The benefits of

defining the RA problem as a BIP is that it encapsulates SC-FDMA constraint requirements. The

introduction of RB contiguity constraint in LTE-A uplink RA results in an NP-hard problem making

exhaustive search for solutions computationally expensive. Most works have addressed the LTE-A

SC-FDMA RA problem using Lagrange dual decomposition method. This often requires defining the

Lagrange function and mathematically solving the RA optimization problem. The Lagrange dual

decomposition has been proposed to offer optimal solutions although it is mathematically rigorous.

One of the disadvantages of Lagrange optimization is that non-convex problems sometimes need to

undergo relaxation to be converted into convex problems before optimization leading to approximate

solutions.

Though rarely used in LTE-A resource allocation, biologically motivated algorithms based on natural

behavior of organisms are suitable for alleviating the RA constraints and dynamism of LTE-A uplink.

The adaptive nature of these biologically motivated algorithms can be suited to dynamic wireless

environments. These meta-heuristic algorithms are simple to implement once potential optimization

solutions can be encoded into the algorithms’ respective framework. However, it might be challenging

to model feasible solutions into meta-heuristic natural structures. Genetic algorithm (GA) [5] is based

on Charles Darwin’ natural selection theory in which good genes survive while bad ones are discarded

by selection, crossover and mutation processes. In the application of GA in RB scheduling in LTE,

RBs are represented as genes that build chromosomes which are feasible scheduling solutions to the

optimization problem. Ant Colony Optimization (ACO) [6] mimics the behavior of ants foraging for

food in nature. Ants communicate indirectly with other ants in the colony using “stigmergy” whereby

they leave a trail called pheromone for other ants to follow in order to find food. Potential solutions

to optimization problem are represented as routes generated by ants as they travel in the seach space.

The inherent parallelism and positive feedback characteristics of ACO are desirable for finding good

solutions hence their choice of application in LTE-A resource allocation. However, random ant tours

in the beginning of the algorithms can result in slow convergence. Motivated by the behavior of a

flock of birds or a school of fish searching for food in nature, Particle Swarm Optimization (PSO) [7]
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is grounded on simple social interaction observations of birds. Birds search for food as a swarm

and communicate locations of their previous findings with each other to maximize their exploration

discoveries. In PSO, particles represent possible solutions to the problem under consideration. PSO

algorithm is attractive in allocating resources in LTE-A networks due to its simple implementation

and efficiency in solving continuous problems, hence its application. Our proposed hybrid Adaptive

Particle Ant Swarm Optimization (APASO) harnesses the merits of both PSO and ACO to improve

speed of convergence. This will save on computing resources, required by PSO and ACO, while

achieving near optimal solutions. This work proposes the application of PSO, ACO and the developed

hybrid APASO algorithm for LTE-A uplink RA. These methods have not been previously applied in

literature for SC-FDMA resource scheduling. The performance of these methods is comparable to the

approximate Langragian model that normally provides the upper bound [8] and can be prohibitively

difficult to apply in certain RA scenarios for SC-FDMA [9], therefore alternative and simpler RA

techniques need to be developed and is the motivation of this work.

The rest of the paper is organized as follows: Section 2 outlines related work on LTE uplink RA and

previous hybridization applications of the above mentioned algorithms. Section 3 describes the

system model to be adopted in the paper and how the RA problem is formulated. Section 4

formulates the LTE-A scheduling problem, followed by analytical Lagrangian solution of the

problem under consideration and the application of alternative LTE-A uplink RA approaches.

Section 5 shows performance evaluation results, and Section 6 concludes the paper.

3 Related Work

Mathematical algorithms have been used for resource allocation in wireless networks. A game

theoretic model for resource allocation in multi-service SC-FDMA wireless networks is presented

in [2]. A user-centric distributed non-cooperative multilateral bargaining model that entices users to

select their preferred discount factors is developed. In [3], a buffer aware resource scheduling scheme

that considers buffer size, channel condition, and packet delay in allocating frequency resources is

proposed. It employs game theory to implement a negotiation mechanism in allocation of RBs

between UEs depending on different UE QoS requirements. The authors in [4] consider game theory

resource allocation for multi-service SC-FDMA. In [10] the authors present a unified graph labelling

algorithm in which the channel allocation in SC-FDMA is modelled as an acyclic graph. Joint

optimal chunk and power allocation in uplink SC-FDMA is conducted in [11] in which optimum

resource chunk assignment is represented as maximum weighted matching problem on a bipartite

graph. In [12] the authors develop low complexity channel dependent scheduling using greedy
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algorithm to increase sum-rate capacity of uplink SC-FDMA. The authors in [13], propose a

proportional fair scheduling method based on greedy algorithm for uplink single carrier FDMA and

utility-based schemes to improve sum rate capacity of the system. In [14] an enhanced two-step

greedy resource allocation algorithm that achieves higher spectral efficiency than conventional

greedy algorithms is proposed. Another enhanced greedy dynamic subcarrier allocation for

SC-FDMA that performs better than Hungarian algorithm and traditional greedy algorithms is

outlined in [15].

Analytical models based on Mixed Integer Programming (MIP) have been applied for resource

allocation in LTE-A networks. In [16], the authors study uplink resource allocation algorithms for

SC-FDMA systems. They develop BIP models for rate constraint among users with minimum

number of subchannels. A joint resource allocation and adaptive modulation for SC-FDMA is

proposed in [17]. In this work the problem is formulated as a BIP and converted into a continuous

space canonical dual problem which resembles concave maximization problem. In [18], an iterative

power efficient scheduler that solves BIP problem for uplink LTE is proposed. In [8], a QoS aware

power efficient scheduler for the LTE uplink is introduced with the authors exploring power efficient

scheduling for mixed streaming services in uplink LTE systems aimed at minimizing total

transmission power for users. The optimization problem is formulated as a BIP problem, and then

solved using low complexity greedy algorithm. Studies on power allocation in SC-FDMA have been

performed in [19], [20]. In [19] a joint RB and power allocation is developed to maximize sum

throughput while adhering to all SC-FDMA constraints and QoS requirements of M2M devices. The

optimization problem is solved using Lagrange duality method. A study of uplink scheduling and

power allocation with M2M/H2H in LTE-A networks is performed in [20]. A sum-throughput

optimization resource allocation problem is formulated and solved using Lagrange dual

decomposition algorithm. In [21] a mixed integer nonlinear programming (MINLP) power and

channel allocation problem aimed at maximizing the sum throughput of active cell users and feasible

device to device multicast groups is presented. The authors in [22] explore uplink resource allocation

in LTE-A networks with the aim of maximizing total throughput of the cell given exclusivity,

adjacency and power constraints pertaining to SC-FDMA. In their work they describe heuristic

algorithms for allocating physical resource blocks and power in LTE-A uplink.

Research efforts considering energy efficiency in SC-FDMA have been done in [23], [24], [25], [26].

In [23], a joint user pairing and resource allocation with QoS restrictions for SC-FDMA is

investigated. A multi-user energy efficient scheduler for SC-FDMA with queue state information

(QSI) and QoS constraints is designed. An investigation of maximizing energy efficiency in
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SC-FDMA is done in [24]. To address the energy efficiency the authors compare the optimal energy

efficient resource allocation and heuristic sub-optimal energy efficient resource allocation algorithms.

A design of a QoS based energy efficient SC-FDMA is explored in [25]. After formulating the

optimization problem with the aim of maximizing the overall capacity through power and RB

allocation, it is solved using canonical duality theory. A study of energy efficient resource and power

allocation for underlay multicast Device-to-Device (D2D) transmission is undertaken in [26]. An

optimization model with the aim of maximizing energy efficiency of D2D is constructed, and a

heuristic model for channel and power allocation is applied.

To our knowledge the works that involve biological resource allocation in SC-FMDA are done in (27 to

30). A genetic algorithm in resource scheduling in LTE uplink is presented in [27]. Potential solutions

to the non-convex optimization problem that arises due to SC-FDMA constraints are generated as

chromosomes and a fitness function is then used to evaluate all chromosomes and desirable ones

selected. An RB allocation scheme based on genetic algorithm and coordination over theX2 interface

for non-mobile users is presented in [28]. The aim of the work is to optimize RB assignment using GA

and maximizing channel capacity by exploiting information exchange over the X2 interface. A study

of resource allocation for uplink LTE in mixed traffic environments based on GA is carried out in [29].

A three step GA based scheduling algorithm with a demonstration of how to code chromosomes with

feasible scheduling solutions is outlined and the performance the algorithm evaluated on throughput

and packet delay metrics. In [30] the authors examine how to optimize RB allocation in cloud radio

access network for LTE, based on genetic algorithm. There is limited work on the application of

combinations of biological schemes for resource allocation in uplink LTE-A, though applied in other

scenarios. In [31], an ant colony particle swarm optimization algorithm is developed to optimize data

clustering processes. The design of truss structures using particle ant swarm optimization is developed

in [32]. In [33], PSO is employed to optimize an ant colony system parameters in specified Travelling

Salesman Problems. Additional applications of particle swarm optimization are outlined in [34], [35].

The popularity of application of conventional RA methods such as game theory, greedy algorithm,

analytical and GA remains undoubted. The same cannot be said of metaheuristic algorithms such as

PSO, ACO and their hybrids, especially for RA on LTE uplink. Motivated by this perspective, this

work makes the following contributions: it formulates the RA problem for uplink LTE-A network

with exclusivity and contiguity constraints, investigates the application of metaheuristic algorithms

(ACO and PSO) resource scheduling in SC-FDMA and proposes an Adaptive Particle Ant Swarm

Optimization (APASO) resource scheduling for SC-FDMA, and finally, compares the performance

of the proposed algorithms to that of the analytical Lagrangian based optimization. The developed
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results indicate near-optimal performance of metaheuristic algorithms when compared to analytical

Lagrangian-based optimization with APASO outperforming PSO and ACO.

4 System Model

In this work, the uplink of a heterogeneous multi-user LTE-A network using SC-FDMA is considered.

Assume a two-tier macrocell environment populated with base stations and user equipments (UEs). A

macro base station (MBS), which serves as the eNodeB, is located at the center and serves M MUEs.

The macrocell is overlaid with F femto base stations (FBS) with each FBS serving K FUEs. FUEs

and MUEs share a set of N = {1, ..., N} orthogonal Resource Block(RB)s. Each RB consists of 12

subcarriers as stipulated by the LTE-A specification [1]. The eNodeB manages the transmission of the

K FUEs randomly distributed in the environment. After evaluating the channel conditions for each

Transmission Time Interval (TTI), the resource scheduling algorithm in the eNodeB allocates RBs

according to each UE’s channel Signal-to-Interference-plus-Noise power Ratio (SINR). The channel

is modelled as a block Rayleigh fading channel.

Fig. A.1: Heterogeneous macrocell-femtocell network architecture

Considering the heterogeneous network of Fig.A.1, the received signal at the ith FBS from the

49



i
i

“output” — 2020/9/8 — 2:50 — page 50 — #70 i
i

i
i

i
i

4. SYSTEM MODEL

kthFUE on the nth RB, yFBS,ik,n , is given by

yFBS,ik,n (t) = hFUE,ik,n (t)
√
PFUE,ik,n xFUE,ik,n︸ ︷︷ ︸

Desired signal

+
K∑
l 6=k

hFUE,il,n (t)
√
PFUE,il,n xFUE,il,n︸ ︷︷ ︸

Ik,n

+
M∑
m=1

hMUE
m,n (t)

√
PMUE
m,n xMUE,i

m,n︸ ︷︷ ︸
ICT

,

(A.1)

where xFUE,ik,n and, xFUE,il,n are message symbols from kth and lth FUEs on nth RB at the ith FBS,

xMUE,i
m,n are message symbols from mth MUE on nth RB at the ith FBS, hFUE,ik,n is the channel gain

of kth FUE on nth RB connected to the ith FBS, hFUE,il,n are channel gains from other FUEs utilizing

the same RB connected to the same FBS, hMUE
m,n is the channel gain of mth MUE on nth RB in the

vicinity of the ith FBS, PFUE,ik,n is the transmit power of the kth FUE on the nth RB served by the ith

FBS, PFUE,il,n is the transmit power of other FUEs utilizing the nth RB connected to the same FBS,

PMUE
m,n is the transmit power of the mth MUE transmitting on the nth RB close to the FBS. Ik,n is the

interference from other FUEs’ transmissions connected to the same FBS in the network to FUE k, and

ICT is cross-tier interference between transmissions of the MUEs and the FUEs.

The SINR, ΓFUE,ik,n , of kth FUE on the nth RB connected to the ith FBS is given by

ΓFBS,ik,n =
|hFUE,ik,n (t)|2PFUE,ik,n (t)∑K

l 6=k |h
FUE,i
l,n |2PFUE,il,n + IMn + σ2

, (A.2)

where IMn =
∑M

m=1 |h
MUE,i
m,n (t)|PMUE

m,n , σ2 is additive white Gaussian Noise(AWGN). The data rate

, RFUE,ik,n , of kth FUE connected to ith FBS using RB n is given by

RFUE,ik,n (t) = Blog2(1 + ΓFBS,ik,n ), (A.3)

where B is the bandwidth of each RB in a small cell. It is assumed that all N RBs are reused at each

Femto Base Station (FBS). Let µi,k,n be a binary variable that represents the allocation of nth RB to

kth UE in ith FBS, defined as

µi,k,n =


0, if UEk is not assigned RB,

1, if UEk is assigned RB.

(A.4)

The average throughput of small cells can be expressed as

CFBS =

F∑
i=1

K∑
k=1

N∑
n=1

µi,k,nR
FUE,i
k,n . (A.5)

The total power consumed in all small cells is

PFBST =
F∑
i=1

K∑
k=1

N∑
n=1

µi,k,nP
FUE,i
k,n + Pi,C , (A.6)
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5. RESOURCE BLOCK SCHEDULING

where Pi,C is the power consumed by each femto base station to service FUEs connected to it. Energy

efficiency (EE) for each femto cell is defined as

ηe(R,P ) =
CFBS

PFBST

. (A.7)

The optimization problem relating to energy efficiency of the entire network can then be formulated

as

max
µi,k,n,P

FUE,i
k,n ≥0

{ηe(R,P )}, (A.8)

subject to :

C1 :
N∑
n=1

µi,k,nR
FUE,i
k,n ≥ RFUEmin ,

C2 :
N∑
n=1

µi,k,nP
FUE,i
k,n ≤ Pmax,

C3 : PFUE,ik,n ≥ 0,

C4 :
K∑
k=1

N∑
n=1

µi,k,nP
FUE,i
k,n ≤ ICT∀n,

C5 : µi,k,n ∈ 0, 1,

C6 :
N∑
n=1

µi,k,n ≤ 1,

where C1 sets the minimum QoS requirement for kth FUE using nth RB on the ith FBS, C2 restricts

the trasmit power of FUEs served by the ith FBS, C3 ensures that the transmit power of FUEs is

non-negative, C4 enforces the maximum tolerable cross-tier interference, ICT , is not exceeded. C5

and C6 are exclusivity constraints that ensure that an RB allocation pattern is only used by one FUE

in each FBS.

5 Resource block scheduling

The objective of most resource scheduling algorithms is to utilize the available channel information

to allocate resources and ensure that data is transmitted on RBs with good channel gains. After

formulating the resource allocation problem in SC-FDMA using Binary Integer Problem (BIP), the

optimal solution can be derived using analytic methods such as Lagrangian optimization,

meta-heuristic algorithms such as PSO, ACO or the developed APASO.

A binary user pattern allocation matrix, APT,PRB,n consisting of row vectors

RBn = {RB1, RB2, ..., RBN} resource blocks and column vectors PTp = {PT1, PT2, ..PTP }
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5. RESOURCE BLOCK SCHEDULING

possible RB allocation patterns is constructed. It is noted in [8] that the number of allocation

patterns, P , for N RBs is given by

P =

[
1

2
(N(N + 1))

]
. (A.9)

Considering a scenario with 4 RBs the allocation patterns are P = 11 (including no allocation). The

RB pattern allocation matrix adhering to the adjacency and contiguity constraint is given by

APT,pRB,n =


0 1 0 0 0 1 0 0 1 0 1

0 0 1 0 0 1 1 0 1 1 1

0 0 0 1 0 0 1 1 1 1 1

0 0 0 0 1 0 0 1 0 1 1

 . (A.10)

The matrix can be explained as follows; the first column represents pattern 1, PT1, where no RBs are

allocated to any user, the second column, PT2, where RB1 is allocated to a user, whereas 7th column,

PT7 where RB2 and RB3 are allocated to a single user, etc. Note that matrix has the contiguity and

exclusivity constraints embedded in it. The column order can change but the patterns remain the same.

To illustrate how this allocation matrix is used to assign RBs to user equipment k , let

µnk =


1, if UE k is assigned RB n

0, Otherwise.

(A.11)

Note that µnk ⊆ µi,k,n of equation (A.4). For a case where one user UE1 is allocated one RB and the

second user UE2 is allocated two RBs, the possible allocation will be given by the matrix,APT,nUE,k, of

dimension K ×N , where K is the maximum number of users given by

APT,pUE,k = µnkA
PT,p
RB,n =

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

 , (A.12)

where UE1 is allocated PT3 hence utilizes RB2 and UE2 is allocated PT8 and hence utilizes RB3

and RB4 (see equation A.10 ). Note that no user can be allocated two patterns and two users cannot

share the same RB at the same time i.e. some patterns cannot be used at the same time e.g. PT4 and

PT8 as there would be no exclusivity in RB3. These limitations are the ones that make resource

allocation on LTE-E uplink complicated. The RB and user pattern allocation matrix AUE,kRB,n can be of

the form
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AUE,kRB,n =


1 0 . . . 0

0 1 . . . 0

0 0 . . . 1

0 0 . . . 1

 , (A.13)

where UE1 is allocated PT2 hence utilizes RB1, UE2 is allocated PT3 hence utilizes RB2 and UEK

is allocated PT8 and hence utilizes RB3 and RB4. Noting that only one user can be allocated an RB,

it collapses into a RB scheduling vector , Vsc[RBn] given by

Vsc[RBn] = [UE1UE2 . . . UEK ], (A.14)

where UEi is allocated RBn (the index of the scheduling vector). Different combinations of the

allowed scheduling vector results in different performance parameters. The determination of the right

combination is important in the system optimization and thus different optimization algorithms are

required to determine the optimal allocation. These are presented below.

5.1 Lagrangian Optimization

The optimization problem in equation (A.8) is non-convex. To apply Lagrangian optimization

solution, equation (A.8) needs to be converted from its non-convex nature into a convex problem.

Following nonlinear fractional programming Dinkelbach approach in [36], the transformed

optimization problem in equation (A.8) is written as

max
µn,k,p≥0

F∑
i=1

K∑
k=1

N∑
n=1

µi,k,nR
FUE
i,k,n︸ ︷︷ ︸

CFBS∗

−ηe(
F∑
i=1

K∑
k=1

N∑
n=1

µi,k,nP
FUE,i
k,n + Pi,C)︸ ︷︷ ︸

PFBS∗T

. (A.15)

This subtractive form of the objective function will be optimized when CFBS∗−ηePFBS∗T = 0. It can

be noted that equation (A.15) is monotonically decreasing with respect to ηe and an iterative approach

can be employed to derive η∗e which is the optimal energy efficiency. The Lagrangian function to the

transformed objective function in equation (A.15) can then be formulated as

L(R,P, ηe,Θ) = CFBS∗−ηePFBS∗T +γ(

N∑
n=1

µi,k,nRk,n−RFUE,imin )+λ(Pmax−
N∑
n=1

µi,k,nP
FUE,i
k,n )+

ρ(ICT −
K∑
k=1

N∑
n=1

µi,k,nP
FUE,i
k,n ) +

F∑
i=1

K∑
k=1

δ(1−
N∑
n=1

µi,k,n), (A.16)
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where Θ = (γ ≥ 0, λ ≥ 0ρ ≥ 0, δ ≥ 0) are duality variables for constraints C1, C2, C4 and C6. The

constraints C3 and C5 are absorbed by KKT conditions. The dual problem, Ω(ηeγ, λ, ρ, δ), and its

constraints can be expressed as [17]

Ω(ηe, γ, λ, ρ, δ) = min
γ,λ,ρ,δ

L(γ, λ, ρ, δ) = min
γ,λ,ρ,δ

max
R,P

L(ηe, γ, λ, ρ, δ), (A.17)

subject to

N∑
n=1

K∑
k=1

µn,kA
PT,n
RB,k = 1,

µk,n ∈ 0, 1,

N∑
n=1

µk,n = 1,

0 ≤ PFUE,ik,n ≤ Pmax.

In solving, decompose Ω(γ, λ, ρ) into L = F ×N subproblems to be independently solved for each

RB allocation. For instance, the lth subproblem can be represented as

max
Ul,Pl,Il

Ll(Ul, Pl, Il,Θ), (A.18)

where Ul is the vector Ul = [µ1, µ2, . . . , µK ] which is all zeros except at the allocated RB pattern,

Pl is the power allocation matrix at lth allocation pattern, and Il is the cross tier interference in lth

subproblem. Note that equation (A.18) is subject to the same constraints of equation (A.17). The

Lagrangian in equation (A.16) can be rewritten as

L({P}, {U}, ηe,Θ) =
F∑
i=1

N∑
n=1

Li,n({P}, {U},Θ) +
N∑
n=1

ρICT −
F∑
i=1

K∑
k=1

RFUE,imin +
F∑
i=1

K∑
k=1

δk,n,

(A.19)

where

Li,n({P}, {U},Θ) =

K∑
k=1

µi,k,nR
FUE,i
k,n +

K∑
k=1

ηeP
FUE,i
k,n − λPFUE,ik,n −

K∑
k=1

δk,n. (A.20)

The optimal value for subproblems is then solved using KKTs to obtain

PFUE,ik,n =
PFUE,i∗k,n

µi,k,n
= min

{(
(1 + γi,k,n)B

(1 + γi,k,n)(ΓFBS,ik,n )B + ln2(ηe + λ+ IMn )

)+

, Pmax

}
, (A.21)
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where IMn = ρhMUE,i
m,n The partial derivative of the Lagrangian with respect to µi,k,n from equation

(A.20) is
∂Li,n
∂µi,k,n

= Si,k,n − δk,n, (A.22)

where

Si,k,n = (1 + γk,f )Blog2

(
1 +

PFUE,ik,n |hFUE,ik,n |2

Ik,n + ICT + σ2

)
− (1 + γk,f )

B

N

(
1 +

PFUE,ik,n |hFUE,ik,n |2

Ik,n + ICT + σ2

)
− λPFUE,ik,n − ρPFUE,ik,n hMUE,i

k,n . (A.23)

µi,k,n = 1

∣∣∣∣k∗ = maxSi,k,n. (A.24)

Having solved all the subproblems of equation (A.18), a subgradient method is employed to update

dual vectors (γ, λ, ρ) as follows

γt+1 = γt − α1

[ N∑
n=1

µn,kR
FUE,i
k,n −RFUEmin

]
, (A.25)

λt+1 = λt − α2

[
Pmax −

N∑
n=1

µn,kP
FUE,i
k,n

]
. (A.26)

ρt+1 = ρt − α3

[
ICT −

K∑
k=1

N∑
n=1

µn,kP
FUE,i
k,n

]
,∀n (A.27)

where α1,α2, and α3 are step sizes. The Lagrangian optimization process is implemented as indicated

in Algorithm 1.

5.2 Particle Swarm Optimization(PSO)

5.2.1 Principle of Operation

In the basic PSO [7], each particle represents a potential solution to the objective function F (x) where

x is the decision vector in D dimensional search space. An ith particle has a position in the search

space represented by position vector xi = [xi1, xi2, . . . , xiD] and it moves about in the search space

with velocity vi = [vi1, vi2, . . . , viD]. As particles travel in the search space they evalute the fitness

function (f ) related to F (x) and store the position of their highest personal fitness, fpbest, and that of

the entire swarm, fgbest. Given a swarm of Pn particles, the personal best, Pi,fpbest , and global best

values, Pi,fgbest , of the particles can be expressed as

Pi,fpbest = arg min[fpbest, xid], (A.28)
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Algorithm 1: Iterative Resource Allocation Algorithm

1 Initialize Ithn , λ,ν,µ ,PFUEk,n (uniform power),ηe{th}

2 while (convergence not reached) do

3 repeat for i=1: F do

4 for k =1:K do

5 for n =1:N do

6 Determine µi,k,n, equation (A.24),

7 Calculate data rate, RFUE,ik,n , equation (A.5),

8 Calculate PFUEk,n , equation (A.21),

9 Compute ηe, equation (A.21),

10 end

11 end

12 end

13 Update dual variables (γ, λ, ρ) equation (A.25), (A.26), (A.27).

14 until convergence to dual optimum.

15 end

Pi,fgbest = arg min[fgbest, xid], (A.29)

At each instant particles update their velocity vector to attain their previous best fitness and migrate

towards the swarm’s global best fitness value. Each particles velocity, vt+1
id , is computed according to

vt+1
id = wvtid + c1r1(Pi,fpbest − xtid) + c2r2(Pi,fgbest − xtid), (A.30)

where w is particles inertia, Pi,fpbest is the personal best position of the particle, c1 and c2 are personal

and social learning rates respectively. The variables r1 and r2 are random values normally in the range

0 to 1. The particle’s position is updated as

xt+1
id = xtid + vt+1

id , (A.31)

where vid is the velocity vector with an equivalent dimension D as the position vector. The dimension

of the search space is problem specific.

5.2.2 PSO resource block scheduling
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In application of PSO to LTE-A RA, particles represent feasible solutions to the resource scheduling

optimization problem. The fitness function, F (x), is the energy efficiency optimization problem of

equation (A.8) expressed as

F (x)⇔ max{ηe(R,P )}. (A.32)

As particles “fly” over the search space to discover UE-RB assignments which yield good energy

efficiency solutions, they evaluate the fitness function in equation (A.32). A particle in this instance

is a 1 × N vector representing the allocation of N RBs to the K UEs. In every Transmission Time

Interval (TTI), the position of each particle, xid represents a feasible RB assignment and is constructed

to form the resource scheduling vector defined as a position vector xid = [xi1, xi2, . . . , xiN ],

xid ⇔ Vsc[RBn], (A.33)

where Vsc[RBn] is given by equation (A.14). Particles then update their personal best positions which

correspond to the best scheduling solution the particle has discovered thus far. The global best particle

position is updated if the personal best of the particle at that instant is found to be better than the

current global best position. The implemented scheduling algorithm is outlined in Algorithm 2.

5.3 Ant Colony Optimization (ACO)

5.3.1 Principle of Operation

In ACO, a discrete combinatorial optimization problem is modelled using a construction graph. The

optimization problem is modelled as a graph coloring problem represented by G = (V,E) where V

is the number of vertices and E is the number of edges. In the Ant Colony Optimization Assignment

Type Problem (ACO ATP) [37], [38] i nodes are assigned j colors where items are represented as

nodes on the graph and objects to be assigned as colors. Artificial ants create paths which represent

feasible solutions as they travel through the graph. In each path, ants choose a path Pi,j which

represents an assignment of j objects to i items, and evaluate the fitness function Fi,j(x) which is

related to the objective function being optimized.

Pi,j = max{Fi,j(x)}. (A.34)

They choose the optimal path, P opi,j , that maximizes the fitness function F opij ,

P opi,j = max{F opi,j (x)}. (A.35)
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Algorithm 2: PSO SC-FDMA Resource Scheduling

1 Input:

2 UEs: U = { 1,...,k,...,UEK }

3 RBs: R = {1,...,n,... RBN }

4 Initialize: c1, c2, r1, r2, w

5 while (convergence not reached) do

6 for i=1:F do

7 for n =1:N do

8 Generate random positions of particles, equation (A.31).

9 Perform RA, equation (A.14) ,

10 Update available resources, equation A.8 (C5&C6),

11 Determine the throughput equation (A.5),

12 Determine power, equation (A.6),

13 Evaluate particle fitness, equation (A.32),

14 Update,fpbest, equation (A.28),

15 if Pi,fgbest > Pi,fgbest then

16 Update, Pi,fgbest , equation (A.29),

17 end

18 Implement power allocation in RBs while ensuring it is below the total power PT ,

19 Continue process until convergence reached or number of iterations exceeded.

20 end

21 end

22 end
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An ATP ACO set up usually requires two probabilistic rules for choosing nodes and colors. The first

probability, p
′
i,j(t), for ant a choosing the next node when it is at node i, is given by

p
′
i,j(t) =

τ
′α
i,j(t)η

′β
i,j(t)∑

j∈Ski (t)
τ
′α
i,j(t)η

′β
i,j(t)

, (A.36)

where,α, β are weighting factors for pheromone, τ
′
i,j , and desirability, η

′
i,j , and Ski (t) is set of feasible

nodes from ant a at node i. The desirability of ant a choosing the next node is given by the heuristic

function, η
′
i,j(t),

η
′
i,j(t) =

1 + |Nk
unassigned|

1 + |Nnei,i|
, (A.37)

where |Nk
unassigned| is the number of neighbours to the current node that have not been allocated

objects, and |Nnei,i| is the number of neighbors from the perspective of the ant when at node i. The

pheromone in previously chosen nodes is defined as

τ
′
i,j(t) =

F besti,j

|N best
i (t)|

, (A.38)

where F besti,j is the fitness function of best ant, and N best
i is the set of feasible nodes from the

perspective of best ant at node i. The second probability, p
′′
i,o(t), of choosing an object to assign for

the current node from the set of objects, No is given by

p
′′
i,o(t) =

τ
′′α
i,c (t)η

′′β
i,o (t)∑

j∈No τ
′′α
i,c (t)η

′′β
i,o (t)

, (A.39)

where the heuristic function, η
′′
i,o, is defined as

η
′′
i,o(t) =

1 + nprevious−best
1 + navailable−obj

, (A.40)

where nprevious−best is the number of elements in the set of previously assigned objects, navailable−obj

is the number of objects available for allocation. The pheromone, τ
′′
i,c, is updated using

τ
′′
i,c(t) =

nprevious−best

|NBest
i (t)|

. (A.41)

The fitness function Fi,j of each path which represents a solution to the optimization problem is

calculated along each path and paths with higher fitness have more pheromones deposited on them.

5.3.2 Ant Colony Optimization(ACO) RA scheduling

59



i
i

“output” — 2020/9/8 — 2:50 — page 60 — #80 i
i

i
i

i
i

5. RESOURCE BLOCK SCHEDULING

On application to LTE-A RA UEs are represented by nodes and RB allocation patterns are associated

with colors. A graph coloring property that no two adjacent nodes (UEs) have same colors is observed

while also respecting the SC-FDMA requirement that if a UE is to be allocated more than one RB,

such RBs should be contiguous. A path that represents the assignment of n RBs to k UEs can be

formulated from equation (A.14) as

Pk,n ⇔ Vsc[RBn]. (A.42)

The optimal path, P opk,n, that maximizes optimization function is

P opk,n ⇔ Ṽsc[RBn]⇔ max{Fk,n(x)}. (A.43)

The fitness function, Fk,n(x) is given by

Fk,n = max{ηe(R,P )}. (A.44)

As ants traverse the search space they leave pheromone in paths that have higher fitness, i.e. RB

allocations that have desirable energy efficient transmission rates in their path for other ants to follow

in future travels. A colony of scheduling decisions is build by ants based on tours in which they

discovered optimal sum rates. The applied ACO SC-FDMA Resource Scheduling algorithm is

summarized in algorithm 3.

5.4 Adaptive Particle Ant Swarm Optimization (APASO)

5.4.1 Principle of Operation

Artificial ant particles possessing both attributes of PSO and ACO are created and randomly initialized

in the search space. For all ant particles the fitness function, F (x), is computed. To improve the

performance of PSO a pheromone-guided mechanism is employed to indicate ant particles with more

fitness. In [39], it is outlined how the inertia weight provides a balance between exploration and

exploitation. Having a higher inertia weight in the beginning enables global search, while a lower

inertia weight in later stages of algorithm execution improves convergence towards personal and global

best values. In our proposed APASO we consider the modification of ant particles inertia weight as

w ⇔ τinter, (A.45)

where τinter is the inter ant particle pheromone given by

τinter = ζ

( ∣∣∣∣∣min(F tpbest(x), F t(x))

max(F tpbest(x), F t(x))

∣∣∣∣∣
)
, (A.46)
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Algorithm 3: ACO SC-FDMA Resource Scheduling

1 Input: UEs: U = { 1,...,k,...,UEK}

2 RBs: R = {1,...,n,... RBN }

3 Initialize: α , β , ρ

4 while (convergence not reached) do

5 for i=1:F do

6 for k=1:K do

7 for n =1:N do

8 Begin ant search for RBs in R that satisfy (A.8, C1).

9 Select UEs, equation (A.36)

10 Assign RBs, equation (A.39).

11 Update available resources, equation A.8 (C5&C6).

12 Determine the throughput, equation (A.5)

13 Calculate power consumption, equation (A.6)

14 Evaluate fitness function, equation (A.44).;

15 Update pheromone for higher fitness functions, equation (A.38) & (A.41).

16 Implement power allocation in RBs while ensuring it is below the total power PT ;

17 Continue process until convergence reached or number of iterations exceeded.;

18 end

19 end

20 end

21 end
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5. RESOURCE BLOCK SCHEDULING

where ζ is a control parameter in the range [0,1], and F t(x) is the mean fitness of all ant particles at t,

and F tpbest(x) is personal best fitness of ant particles at t. For a D-dimensional space, an ant particle

has velocity, vt+1
id and position, xtid, defined by

vt+1
id = τinterv

t
id + c1r1(p

t
pb − xtid) + c2r2(p

t
gb − xtid), (A.47)

xt+1
i = xti + vt+1

i , (A.48)

where ptpb and ptgb are personal best and global best of ant particles defined similar to equations (A.28)

and (A.29) respectively. In equation (A.45) applying the inter ant particle (τinter) pheromone to the

first term on the right hand side of the equation enables diversity of ant particles’ search in early

iterations of the algorithm while increasing convergence in later iterations.

5.4.2 Adaptive Particle Ant Swarm Optimization (APASO) Scheduling

The proposed hybrid technique aims to exploit advantages of PSO and ACO to attain superior

performance to the conventional algorithms. In the beginning stage of the scheduling process, PSO

generates new random particle ants, and the ACO based pheromone mechanism generates

pheromones for ant particles to mark solutions with higher fitness values. It is these favourable

qualities of the PSO and ACO that have motivated the hybridization of PSO and ACO in the proposed

APASO. The position of an ant particle is modelled as scheduling vector in a particular TTI as

xid ⇔ Vsc[RBn], (A.49)

where Vsc[RBn] is defined as equation (A.14). The fitness function is formulated to solve the

optimization problem in equation (A.8)

F (x)⇔ max{ηe(R,P )}. (A.50)

Each ant particle then stores its position together with its fitness value, and keeps updating velocity

in equation (A.47) so that the ant particles maintain their migration towards better solutions. The

mechanics of the APASO algorithm for RB scheduling in SC-FDMA is summarized in algorithm 4.

5.5 Computational Complexity of Algorithms

One of the challenges of metaheuristic algorithms is the difficulty in computing their time complexity

as they do not guarantee finding global optimal solution. Following the work of [40], the time
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5. RESOURCE BLOCK SCHEDULING

Algorithm 4: APASO SC-FDMA Resource Scheduling

1 Input:

2 UEs: U = { 1,...,k,...,UEK }

3 RBs: R = {1,...,n,... RBN }

4 Initialize c1, c2, r1, r2, w,τinter while (convergence not reached) do

5 for i=1:F do

6 for n =1:N do

7 Initialize random ant particles search, Allocate resources, equation (A.14), Determine

the throughput, equation (A.5),

8 Distribute pheromone τinter, equation (A.46),

9 Evaluate fitness function for all ant particles, equation (A.50),

10 Update the velocity and position vectors for ant particles, equations (A.47) & (A.48),

11 Update pheromone, equation (A.46),

12 Implement power allocation in RBs while ensuring it is below the total power PT ,

13 Continue process until convergence is reached or number of iterations exceeded.

14 end

15 end

16 end
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6. PERFORMANCE EVALUATION

complexity of a metaheuristic algorithm depends on number of iterations, Nite, and the number of

ants, Nants or particles, Nparticles, and their running times. ACO time complexity, TACO, depends on

the length of ant tours:

TACO = Nite × (Nants × (Ttour + Tsel)), (A.51)

Ttour is the running time it takes each ant hunting for food, and updating the pheromone on its track

back to the nest, Tsel is the running time while assessing pheromones from previous travels and

selecting those with better pheromones. Similarly, for the PSO the time complexity, TPSO, can be

estimated as

TPSO = Nite × (Nparticles × (Tpos + TvelUp)), (A.52)

where Tpos is the running times for encoding and evaluating fitness of particles, and TvelUp is the time

when the PSO is updating velocities of particles. In the case of the hybrid APASO algorithm the time

complexity, TAPASO, can be written as

TAPASO = Nite × (Nantparticles × (Tpos + TmodV el)), (A.53)

where Nantparticles is the number of ant particles, TmodV el is the time for changing the velocity of ant

particles to aggregate ant particles with previously higher fitness by applying pheromones as inertia

weight.

6 Performance Evaluation

The simulation model is based on the uplink of 3GPP LTE-A network. A bandwidth of 5MHz with

each RB having 180 kHz spacing (giving a total of 25 RBs per TTI) is assumed. As specified by

the 3GPP each TTI is equivalent to 1ms and consists of 25RBs. In the network, the coverage radius

of the macrocell is 500m and that of the femtocell is 10m. A minimal distance of 40m between

FBSs is assumed, and a minimal distance of an MUE and an FBS is 15m. Where not specified, 5

MUEs uniformly distributed in the cell coverage area and 10 FUEs evenly distributed among FBSs

are considered. A target BER of 10−3 is assumed. The channel model is represented by small scale

Rayleigh fading, large scale path loss and log normal shadowing. Power spectral density of noise is

-174dBm/Hz. It is assumed that base stations have perfect channel state information (CSI), and that

the duration of CSI feedback and scheduling decisions between users and base stations is negligible.

The rest of the simulation parameters are summarized in Table 1 and Table 2.

Fig. A.2 illustrates the effect of increasing power on sum throughput in the network. As the transmit

power increases the SINR of FUEs increases which results in the sum- throughput of the system

increasing. The analytic Lagrangian performs better than the metaheuristic algorithms with APASO
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6. PERFORMANCE EVALUATION

Table A.1: Simulation Parameters

System Parameters Value

Bandwidth 5MHz

bandwidth per subchannel 180 kHz

Transmit time interval(TTI) 1 ms

Carrier Frequency 2.6 GHz

Noise power spectral density −174 dBm/Hz

FBS static power,Pi,C 21 dBm

Radius of macrocell 500m

Radius of femtocell 10m

per subchannel peak power, P peakk,n 10 mW

per user max power,Pmaxk 200mW

Shadowing Lognormal,σ = 8 dB

Multipath Fading Rayleigh

Table A.2: Simulation parameters for evolutionary algorithms

ACO PSO APASO

α =1.5 c1=c2 = 2 α =1, c1 =c2 = 1.5

β =2 w =1 β =1 , w=τinter

ρ =0.05 wd = 0.99 ζ = 0.4

ants = 10 particles = 10 particleants = 10

outperforming the PSO and ACO. Note that the gradient of the graphs reduce to a saturation point

due to excess power leading to increased interference in the network. As illustrated in Fig. A.3 the

throughput capacity, from equation (A.5), of the system increases as the number of FUEs increases

implying that an increasing number of UE-RB allocation results in increased RB utilization efficiency,

and hence higher sum throughput of the system. This exemplifies multi-user diversity. Across all

algorithms the gradient of the curves decreases due to decreasing number of RBs allocated to each

FUE as FUE devices increase. The performance of all three algorithms is below that of the optimal

analytic Lagrangian optimization algorithm with the APASO performing better than the PSO and ACO

due to the inter ant particle pheromone in APASO helping to aggregate best performing ant particle.

As expected, the optimal Lagrangian is observed to have better throughput performance [21], [41].

Fig. A.4 compares the transmit power vs average channel gain for the three algorithms with the
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6. PERFORMANCE EVALUATION

Fig. A.2: Throughput vs Transmit Power when N = 25 and K = 12, per subchannel peak power, P peakk,n = 10mW, per user

max power,Pmaxk = 200mW. The power spectral density of noise is assumed to be -174dBm/Hz.

Fig. A.3: Throughput vs No of FUEs when the N = 25 and K = 12. Power spectral density of noise assume to be -174 dBm

analytic Lagrange dual algorithm being used as a benchmark. As channels with better SINR are

discovered by optimization algorithms the transmit power of FUEs is reduced to meet the throughput
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6. PERFORMANCE EVALUATION

Fig. A.4: Average transmitted power per user per TTI, per subchannel peak power, P peakk,n = 10mW, per user max

power,Pmaxk = 200mW. The power spectral density of noise is assumed to be -174dBm/Hz.

Fig. A.5: Sum-transmit power vs Number of FUEs, per subchannel peak power, P peakk,n = 10mW, per user max power,Pmaxk

= 200mW. The power spectral density of noise is assumed to be -174dBm/Hz.
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6. PERFORMANCE EVALUATION

Fig. A.6: Energy efficiency vs Minimum system throughput for different minimum rate requirements, per subchannel peak

power, P peakk,n = 10mW, per user max power,Pmaxk = 200mW.

requirements while minimizing FUE terminal power consumption. APASO has lower average

transmit power as compared to PSO and ACO with the analytical Lagrangian having the lowest

power consumption. The sum transmit power of FUEs versus the number of FUEs is shown in Fig.

A.5. It can be observed that the APASO consumes less power than traditional PSO and ACO. This

implies that the proposed APASO is able to search for RBs with better channel gains than other

metaheuristic algorithms, and then adjust power allocated accordingly to meet minimum UE QoS

requirements. This will help sustain UE battery life for longer periods. The optimal Lagrangian has

lowest transmit power, a performance similar to that in [17] where it has lowest sum power as

compared to the other proposed methods.

The energy efficiency versus minimum system throughput for each algorithm is illustrated in Fig. A.6

. The ACO has the lowest Energy Efficiency in terms of lower transmitted bits per joule, while the

hybrid APASO outperforms the other meta-heuristic algorithms because of its ability to discover RBs

with better SINR as compared to PSO and ACO resulting in enhanced throughput-to-power ratio in

equation (A.7). Fig. A.7 shows that as the power is increased, the energy efficiency also increases. A

higher transmit power leads to increased throughput and ultimately higher energy efficiency. There is a

saturation point of the energy efficiency as power allocation has to be restricted below the interference

threshold.
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6. PERFORMANCE EVALUATION

Fair distribution of resources among users is also one of the desirable metrics in resource allocation

algorithms. A common approach to evaluating fairness is by employing Jains Fairness Index which is

formulated as

J =

(∑
K
k=1R

FUE,i
k,n

)2

K ×
∑

K
k=1(R

FUE,i
k,n )2

. (A.54)

From Fig. A.8, the fairness index is lower in APASO, PSO than in ACO. In simulations, FUEs

Fig. A.7: Energy Efficiency vs Power when N=25, K = 12, per subchannel peak power, P peakk,n = 10mW, per user max

power,Pmaxk = 200mW.

with the best channel conditions are assigned more resources to optimize the sum throughput of the

network while those with lower channel conditions are allocated less RBs. It can be observed that

the hybrid algorithm exhibits less fairness than conventional PSO and ACO as it is more focused on

maximizing throughput to power ratio, hence higher energy efficiency, by assigning better SINR RBs

to FUEs with better channel conditions. The analytic Lagrangian method awards more RBs to users

with higher metrics resulting in other users being starved of system resources. This low fairness is

also observed in the Lagrangian application of [8].

In Fig. A.9 the running times of the algorithms have been measured using the MATLAB tic-toc

function . It can be noted from Fig. A.9 that APASO has the lowest running time when compared to

the PSO, ACO. The cooperation of the PSO and ACO enhances the performance in terms of reaching
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6. PERFORMANCE EVALUATION

Fig. A.8: Comparison of Jain’s Fairness index of algorithms

Fig. A.9: Running time (tic-toc) vs Number of iterations

near optimal solutions faster. This implies that computational time complexity in equation (A.53) is

lower than that in equations (A.51) and (A.52).
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6. PERFORMANCE EVALUATION

The convergence of each algorithm was evaluated by plotting an average of 1000 TTIs for each

algorithm as illustrated in Fig. A.10. The minimum system requirement is fixed at 200 kbps for this

Fig. A.10: Average Energy Effiency vs Number of iterations when minimum system requirement is 200kpbs, per subchannel

peak power, P peakk,n = 10mW, per user max power,Pmaxk = 200mW.

simulation and each algorithm is run several times. The developed APASO is observed to converge

faster than PSO and ACO. The pheromone guided nature of APASO improves the convergence of the

algorithm towards better fitness values being reached faster.
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1. INTRODUCTION

Abstract

Due to their ability to multiplex users on a resource element (RE), Non-orthogonal multiple access

(NOMA) techniques have gained popularity in 5G network implementation. The features of 5G

heterogeneous networks have necessitated the development of hybrid NOMA schemes combining the

merits of the individual NOMA schemes for optimal performance. The hybrid technologies on 5G

networks make complex air interfaces resulting in new resource allocation (RA) and user pairing

(UP) challenges aimed at limiting the multiplexed users interference. Furthermore, common

analytical techniques for evaluating the performance of the schemes lead to unrealistic network

performance bounds necessitating alternative schemes. This work explores the feasibility of a hybrid

power domain sparse code non-orthogonal multiple access (PD-SCMA). The scheme integrates both

power and code domain multiple access on an uplink network of small cell user equipments (SUEs)

and macro cell user equipments (MUEs). Alternative biological RA/UP schemes; the ant colony

optimization (ACO), particle swarm optimization (PSO) and a hybrid adaptive particle swarm

optimization (APASO) algorithms, are proposed. The performance results indicate the developed

APASO outperforming both the PSO and ACO in sum rate and energy efficiency optimization on

application to the PD-SCMA based heterogeneous network.

1 Introduction

Non-orthogonal multiple access (NOMA) has emerged as a viable candidate for 5G access network

protocols. Normally, Orthogonal multiple access (OMA) schemes have exclusivity constraints when

allocating users to a resource element (RE) namely; timeslot for frequency division multiple access

(FDMA), subcarrier frequency for orthogonal frequency division multiple access (OFDMA) and

spreading code for code division multiple access (CDMA) based schemes. The significance of

NOMA is co-multiplexing users on the same spectrum resource elements (SREs) via power domain

(PD) or code domain (CD) at the transmitter and successfully separating them at the receiver by

multi-user detection (MUD) schemes. This culminates in enhanced spectral efficiency when

compared to conventional OMA techniques. NOMA schemes permit controllable interference by

non-orthogonal resource allocation albeit increase in receiver complexity [1]. However, the

multiplexing of multiple users on limited REs results in cross-tier and inter-tier interference for

heterogeneous networks necessitating the development of new optimal radio resource allocation

(RRA) algorithms to alleviate the user pairing problems.

Two main classes of NOMA are identified as [2]; power domain NOMA (PD-NOMA) and code
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1. INTRODUCTION

domain NOMA (CD-NOMA). In PD-NOMA, different power levels based on each user’s channel

quality conditions are used to multiplex multiple users on the same time-frequency resources. At the

receiver of PD-NOMA, users are distinguished by their power levels using successive interference

cancellation (SIC). CD-NOMA is grounded on classic CDMA principles that apply sparse spreading

sequences or non-orthogonal low cross-correlation sequences. In [3], multiple NOMA schemes based

on low density spreading (LDS) sequences such as sparse code multiple access (SCMA), multi-user

shared access (MUSA), pattern division multiple access (PDMA) are presented. Among various

NOMA schemes SCMA exhibits improved link-level performance compared to other code domain

methods [4]. In [5], the performance of two NOMA schemes (PD-NOMA and SCMA) is compared.

Considering resource allocation in heterogeneous network scenarios for both multiple access (MA)

techniques, SCMA is observed to outperform PD-NOMA. A joint RRA and SIC ordering algorithm

is proposed for downlink power domain sparse code multiple access (PSMA) based wireless

networks [6]. Matching theory and sub-modularity principles are applied to maximize sum-rate over

codebook assignment. An investigation of RRA in multiple input multiple output (MIMO)-SCMA in

cloud radio access networks is done in [7]. Beamforming, joint codebook allocation and user

association are separately implemented to solve the developed sum-rate maximization optimization

problem. To further improve the performance of the traditional NOMA schemes and optimize their

performance on heterogeneous networks by combining their individual merits, hybrid schemes are

required. This work proposes a hybrid NOMA scheme that integrates PD-NOMA and SCMA on the

uplink of the 5G heterogeneous network called power domain SCMA (PD-SCMA). The feasibility of

such a system, especially so the development of a hybrid-generalized-SIC (HG-SIC) receiver that

combines both power and code diversity, the RRA schemes and the pairing of both MUEs and SUEs,

on such a hybrid access technology network, is a challenging task that needs to be undertaken.

Mathematical based algorithms have been applied for resource allocation in SCMA NOMA

networks [2]. There are numerous works that have solved the resource allocation (RA) problem in

SCMA using analytical Lagrangian optimization based approach. This generally involves defining

the Lagrange function and solving the corresponding dual problem. Lagrangian optimization can

provide optimal solutions although it is mathematically rigorous. One of the challenges of

Lagrangian optimization is the difficulty that arises when dealing with non-convex problems which

usually requires relaxation to be transformed into convex problems leading to approximate boundary

solutions. More accurate alternative methodologies are required, hence the proposal of applying

biologically inspired algorithms. Biologically inspired algorithms are seldom applied for RA in

NOMA, despite the fact that they can provide optimization solutions in NOMA networks. Their

adaptive characteristic makes them appropriate for the constantly changing wireless network
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conditions. Meta-heuristic algorithms have the advantage of simple implementation once

optimization solutions can be formulated into the algorithms’ framework. However, it can be

challenging to represent feasible solutions into meta-heuristic algorithm structures.

Ant colony optimization (ACO) [8] emulates the behaviour of ants rummaging for food in nature.

During their searching expeditions ants communicate with each other using indirect communication,

referred to as “stigmergy”. They accomplish this by leaving pheromone trails for other ants to follow

towards food sources. The paths generated by ants during their tours represent potential solutions to

the optimization problem. ACO has an inherent parallel and positive feedback mechanism which

makes it attractive for finding user multiplexing in NOMA. Random tours in the beginning of the

algorithm can reduce its performance. Introduced in [9], Particle swarm optimization (PSO) is based

on simple social interaction of birds. Birds often search for food as a swarm and communicate

information regarding their findings within the flock to maximize their discoveries. In PSO, particles

represent potential solutions to the optimization problem. Due to its simple implementation and

efficiency in solving continuous problems, PSO is attractive for enabling sharing of resources in

NOMA. Biological optimization algorithms can be effective in procuring solutions to non-convex

problems that often arise in RA in SCMA. To our knowledge there is limited work on the application

of biological optimization methods in literature for uplink SCMA NOMA RA except the work

in [10] .

The proposed PD-SCMA for 5G networks enables a new transmission policy that allows more than

two MUEs and FUEs to be co-multiplexed over the same RE. The developed HG-SIC receiver

combines both the power and diversity (patterns) gain in MUD. The scheme jointly optimizes the

combinatorial problem of subchannel assignment and power allocation to maximize the overall

system energy efficiency (EE) of the small cells. Power resources are chosen as the fundamental

multiplexing domain between the MUEs and SUEs, and code domain as the key multiplexing domain

in the sparse code multiplexing of the SUEs. The complexity of the system requires alternative RA

algorithms. The work then develops alternative metaheuristic Biological RRA based on ant colony

optimization and particle swarm optimization for optimizing EE resource allocation in hybrid

heterogeneous networks (HetNets). The performance of this algorithms is compared to the analytical

Lagrangian based approach [11], which provides upper performance bounds and can easily result in

system design parameter overestimation.

The rest of the paper is organized as follows: Section II outlines related work on EE RA in SCMA

and previous hybridization applications of the above mentioned algorithms. Section III describes the

system model to be adopted in the paper, and Section IV shows how the EE problem is formulated.
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Section V develops the RA and encoding. The application of RA algorithms is outlined in Section VI

with the receiver algorithm developed in Section VII.Section VIII evaluates the performance of the

algorithms and Section IX concludes the paper.

2 Related Work

Mathematical based resource allocation methods have been studied in previous works. Research on

codebook based RA for uplink SCMA with the objective of optimizing subcarrier and power allocation

to maximize total sum-rate is conducted in [2]. The derived optimization problem is solved using a

matching algorithm. RA for NOMA adopting game theory approaches is presented in [12]. A user

subchannel soap matching algorithm is proposed to solve the RA problem. Game theory based uplink

power control (PC) in a NOMA system consisting of two interfering cells is done in [13]. A distributed

PC algorithm is developed and proven to converge to the Nash equilibrium. Power minimization

efforts for NOMA are done in [14]. Solutions to the considered NP-hard optimization problem are

derived through relaxation and application of convex methods. Work on RA in SCMA enabling ultra

reliable low latency communications is considered in [15]. With the aim of maximizing transmit

rate assuming finite block-length codes, the optimization problem is solved using Lagrangian based

methods and an iterative algorithm implemented. A comparison of the mathematical lagrangian based

algorithms to the biologically inspired algorithms for a NOMA based HetNet has not been done in

literature. Adaptive codebook design and allocation in energy saving SCMA networks is presented

in [16]. Joint codebook assignment followed by power allocation is then applied. Uplink contention

based SCMA for 5G networks is studied in [17]. System-level solutions are derived for UL SCMA

networks in 5G radio access scenarios.

PSO application in maximizing energy efficiency subject to minimal sum-rate requirement on an

uplink multi-user SCMA system is done in [10]. The non-convex EE maximization problem is solved

using cooperative coevolutionary particle swarm optimization (CCPSO) algorithm. A power

allocation algorithm based on PSO for application on downlink NOMA systems is developed in [18].

A fitness function is defined for energy efficiency and its performance evaluated through simulations.

A PSO motivated power allocation technique for downlink NOMA IoT enabled systems is presented

in [19]. The performance of the designed PSO approach is compared to conventional PA methods

such as equal power allocation and water-filling. User-pairing schemes employing PSO based

methods are investigated in [20]. The considered channel-aware strategies enable transmitters to

minimize transmit power for multiplexed users while satisfying minimum QoS constraints for all

users. A dynamic spectrum allocation method involving an enhanced PSO with mutation properties
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is outlined in [21]. The applied PSO is utilized to solve the non-convex power and rate optimization

problem that arises. The application of PSO on NOMA based HetNets has rarely been done.

Generally, in different fields, ACO application in rate adaptive RA with proportional fairness using

ACO is done in [22]. ACO is applied to solve the subcarrier allocation and sub-optimal power

allocation subsequently implemented. An ACO approach to solve project scheduling problems is

given in [23]. A two-pronged pheromone updating and evaluation mechanism is implemented for

ants to find new solutions. In [24], parameters of an ACO algorithm are optimized in the travelling

salesman problem (TSP) applications. An example of the application of hybrid ACO and PSO to

optimize workflow scheduling in a cloud environment is demonstrated in [25]. The proposed method

is aimed at minimizing overall workflow-time and reducing costs. A hybrid heuristic algorithm

composed of PSO and ACO is conceived for task scheduling scenarios in fog computing smart

production lines in [26]. The proposed technique is targeted at enhancing the energy efficiency of

resource limited devices with high power consumption. Hybrid ACO based algorithms for NOMA

based networks have been implemented in seldom.

For general RA in NOMA mainly on the downlink, a unified framework that examines the energy

efficiency of an SCMA low complexity algorithm is investigated in [4]. Optimization of RA in

dual-hop relays for multi-user SCMA is studied in [11] with a two-step joint codebook and power

allocation subsequently presented. An RA strategy for SCMA based downlink system with the aim

of maximizing system throughput is outlined in [27]. Proportional fair (PF) and modified largest

weighted delay first algorithm (M-LWDF) are applied to solve the optimization problem. Regarding

RA on the uplink, spectrum sharing between LTE and SCMA for resource allocation is conducted

in [28]. Heuristic algorithms with a target of maximizing overall attainable data rate are

implemented. Device-to-device (D2D) communication in uplink SCMA targeting sum-rate

maximization is considered in [29]. A low-complexity two-step algorithm combining heuristic and

inner approximation method is employed to solve the optimization problem. In [30], spectral

efficiency in uplink SCMA considering channel state information (CSI) estimations is presented. An

application of SCMA to wireless multicast communication to increase multicast capacity is done

in [31]. A sub-optimal algorithm that handles power and codebook assignment separately is then

proposed. Efforts to maximize sum-rate and fairness in uplink SCMA using joint channel and power

are illustrated in [32]. Iterative algorithms that jointly allocate codebooks and transmit power in

subcarriers are implemented with convex programming used to optimize performance. In [33], a

power domain SCMA in which the power domain and code domain NOMA paradigms are combined

in transmitting multiple user signals over a subcarrier on the downlink is presented. SCMA

81



i
i

“output” — 2020/9/8 — 2:50 — page 82 — #102 i
i

i
i

i
i

3. SYSTEM MODEL

codebooks are reused by multiple users employing power domain NOMA (PD-NOMA) to transmit

signals non-orthogonally. A joint power domain and SCMA downlink system is also developed

in [34]. MPA combined with SIC is implemented in the receiver. A network model that applies

hybrid PD-SCMA technology to a two tier HetNet uplink featuring MUEs and SUEs user pairing

with cross tier interference has not been developed.

There is limited work on the application of ant colony optimization and particle swarm optimization

and their hybrids in resource allocation on power domain sparse code multiple access networks.

Thus, the focus of this work is to develop hybrid power domain SCMA optimization problem

framework, investigate the application of metaheuristic algorithms (ACO and PSO and a developed

hybrid) resource allocation, compare the performance of the proposed algorithms to the analytical

Lagrangian based optimization which shows possibilities of system overestimation.

3 System Model

The network model is a two-tier HetNet consisting of a centralised single macro base station (MBS)

uniformly populated by a set of Si = {1, 2, . . . , F} centralised small cell base stations (SBSs) and M

MUEs as in Figure B.1. Each of the F small cells is populated with K uniformly distributed SUEs.

Fig. B.1: System model

As in [2], it is assumed an SUE is represented as an SCMA layer and each user is assigned a RE. The

REs are shared among SUEs while MUEs are co-multiplexed over the same time-frequency resources

using PD-NOMA. In the uplink HetNet model, REs can be reused between MUEs and SUEs in small

cells as PD-NOMA is coupled with SCMA in MUE communication, while only SCMA is employed

in small cells.

The network total bandwidth B, is divided into N REs occupying a bandwidth Bsc = B/N . The

transmitter assigns power level, PSUE,ik,n , to the the kth SUE in ith SBS on the nth RE and also allocates
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transmit power, PMUE,i
m,n , to the mth MUE associated with in ith SBS on the nth RE. Let hSUE,ik,n and

hMUE,i
m,n denote the channel gain of the kth SUE to the ith SBS on the nth RE, and the channel gain

of the mth MUE on the nth RE associated with the ith SBS. Define V SUE,I
K,N = [µSUE,ik,n ]F×K×N as

the RE HG-NOMA transmitter RE matrix for small cells where µSUE,ik,n = 1 implies that the kth SUE

connected to the ith SBS has been assigned the nth RE. In a similar manner, VMUE,I
M,N can also be

defined such that VMUE,I
M,N = [µMUE,i

k,n ]M×N as the HG-NOMA RE matrix where µMUE,i
k,n = 1 means

that the nth RE has been allocated to themth MUE in the ith SBS . Based on the hybrid power domain

SCMA paradigm following the work in [33], the received signals can be detected using MPA and SIC.

This consideration allows for the reuse of REs among MUEs and SUEs.

Focusing on the small cell network, the received signal of the kth SUE on the nth RE in the ith SBS,

ySUE,ik,n , after SUEs multiplexing is expressed as

ySUE,ik,n (t) = V SUE,I
k,n (

√
PSUE,ik,n hSUE,ik,n sSUE,ik,n )︸ ︷︷ ︸
Desired signal

+
K∑
j 6=k

V SUE,I
j,n (

√
PSUE,ij,n hSUE,ij,n sSUE,ij,n )

︸ ︷︷ ︸
Ik,n

+
M∑
m=1

VMUE,I
m,n (

√
PMUE,i
m,n hMUE,i

m,n sMUE,i
m,n )︸ ︷︷ ︸

ICT

+wi,k,n, (B.1)

where sSUE,ik,n is the kth SUE message symbol on the nth RE in ith SBS, sMUE,i
m,n is the message

symbol of the mth MUE on the nth RE affiliated with the ith SBS. Ik,n is the intra-tier interference

and ICT denotes the cross-tier interference from the M MUEs. wi,k,n is the noise vector modelled

as Additive Gaussian White Noise (AGWN). The RE matrices V SUE,I
K,N and VMUE,I

K,N are determined

in Section V. It is assumed that each base station has perfect knowledge of channel state information

(CSI).

4 Problem Formulation

The signal to noise-plus interference (SINR) of kth SUE in ith SBS using nth RE, ΓSUE,ik,n , is given by

ΓSUE,ik,n =
V SUE,I
k,n PSUE,ik,n |hSUE,ik,n |2

Ik,n + ICT + E{|σ|2}
, (B.2)

where σ2 is the additive white gaussian noise (AWGN). The upper bound of the attainable sum rate of

each user can be expressed as

RSUE,ik,n = log2(1 + ΓSUE,ik,n ). (B.3)
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The total rate of the system can be expressed as

Rtot =
F∑
i=1

N∑
n=1

K∑
k=1

µSUE,ik,n log2(1 + ΓSUE,ik,n ), (B.4)

The total power,Ptot, consumed by the system can be written as

Ptot =
F∑
i=1

K∑
k=1

N∑
n=1

PSUE,ik,n +KPsta, (B.5)

where Psta is the SUEs static power. The energy efficiency,ηe, of the system is defined as [10]

ηe =
Rtot
Ptot

. (B.6)

Therefore, the energy efficiency optimization problem considering minimum rate requirements can be

formulated as

max
V SUE,Ik,n ,PSUE,ik,n ≥0

{ηe(Rtot, Ptot)}, (B.7)

subject to :

C1 :

F∑
i=1

K∑
k

N∑
n=1

µSUE,ik,n RSUE,ik,n ≥ Rmink,n ,

C2 :
N∑
n=1

µSUE,ik,n PSUE,ik,n ≤ Pmax,

C3 : PSUE,ik,n ≥ 0,

C4 :
K∑
i=1

µSUE,ik,n +
M∑
i=1

µMUE,i
k,n ≤ df ,

C5 :

K∑
i=1

µSUE,ik,n +

M∑
i=1

µMUE,i
k,n ≤ ds,

C6 : µSUE,ik,n orµMUE,i
k,n ∈ {0, 1},

Rmink,n in C1 is the minimum system sum-rate required for the SUEs, Pmax in C2 is the maximum

transmit power of SUEs, df in C4 is the degree of RE which means that a RE can be used at most by

df users, C5 implies that the maximum number of REs utilized by each user is ds, set to ds = 3 in this

work to minimize receiver complexity.
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5 Resource Allocation and Encoding

5.1 Power Allocation

To allocate power to SUEs, a well established method of water-filling [35] is adopted due to its simple

implementation. Assuming initial minimum power allocation level, let {h̃SUE,ik,n } be a sorted sequence

of channel gains which is positive and monotonically decreasing. Define di as the step depth written as

di = 1

h̃SUE,ik,n

, for i = 1, 2, . . . , N , where N is the number of channels. Then the step depth difference,

δi,j , can be expressed as

δi,j = di − dj =
1

h̃SUE,ik,n

− 1

h̃SUE,jk,n

(1 ≤ i, j ≤ N), (B.8)

The power allocation vector level, PSUE,ik,n , can be obtained using [35]

PSUE,ik,n =

{
Pmax −

N−1∑
i

δi,j

}+

. (B.9)

The implemented power allocation is shown in Algorithm 5.

Algorithm 5: Water-filling based Power Allocation

1 Input: N, Pmax

2 Output: P = {PSUE,ik,n |∀i ∈ N}

3 Initialize minimum power allocation, PSUE,ik,n , across REs

4 for i=1:F do

5 for k=1:K do

6 for n=1:N do

7 Sort SUEs based on their channel conditions, equation (B.2)

8 Update power allocation vector P using equation (B.8), (B.9)

9 end

10 end

11 Continue process until convergence reached or number of iterations exceeded.

12 end

5.2 SCMA Encoding

The encoding where REs are mapped to a set of C codebooks with the number of codebooks that can

be generated determined as C =
(
L
J

)
is used [3], [33]. The SCMA encoding process in which log2Q
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binary bits are mapped to L-dimensional codewords of size Q is illustrated in Figure B.2. Each

codebook is assumed to contain Q codewords with length L which are transmitted over orthogonal

radio resources (such as OFDMA subcarriers). The L-dimensional codewords that constitute a

codebook are sparse vectors with J non-zero entries where J < L. In this scenario, the overloading

factor can be defined as λ = K/L. For the kth SUE on the nth RE in ith small cell (SUEik,n), and

the mth macro cell user on nth RE in the proximity of ith small cell (MUEim,n), a codebook is

allocated with codebook reuse being allowed as in [33]. As codebooks are transmitted on different

wireless channels , the MPA receiver can still recover the data streams without collisions. Codebook

reuse can improve both the overloading factor and the number of connections to enable massive

connectivity. Optimal SCMA decoding is achieved using the maximum a priori (MAP) decoding [36]

but the message passing algorithm (MPA) which offers approximate performance at reduced

decoding complexity is considered in this work.

Fig. B.2: Example of SCMA encoding with K=6 SUEs,L=4 REs, J=2

5.3 Resource Allocation

Consider the scenario where the kth user is allocated a maximum of ds REs (equation B.7 C5). Let

the UE-to-RE matrix, Ak, be a N × ds matrix where rows represent REs in the system. To preserve

the sparsity of SCMA, there is only one non-zero entry in each column of Ak which corresponds to

the RE designated to the kth user. For instance, if ds = 2, N = 4, and user 1 is allocated the first and

third REs, its spreading matrix could be expressed as
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A1 =


1 0

0 0

0 1

0 0

 . (B.10)

For K users in the system, the corresponding SCMA spreading matrix of size N × (Kd(s)) is given

by

ANk = [A1, A2, . . . , AK ]. (B.11)

In (B.11), the columns are derived in the following manner. The columns belonging to the kth user

are in the range (k − 1)ds + 1 to kds. For example, an SCMA system with K = 6, N = 4, ds = 2

operating at full-load could have the following spreading matrix,

AKN =


1 0 0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

 . (B.12)

Having derived the spreading matrix in (B.12) UE-RE correlation can be encapsulated in a factor

matrix defined as Fnk = [f1, f2, . . . , fK ], where fnk = 1 implies that kth UE occupies nth resource

element and fnk = 0 means no resources have been assigned. The elements of the factor matrix

are computed from fk = diag(AkA
T
k ). Consequently, the factor matrix for the previous example in

(B.12) is given by

Fnk =


1 0 1 0 0 1

0 1 1 0 1 0

1 0 0 1 1 0

0 1 0 1 0 1

 . (B.13)

The first column of Fnk represent the first UE is allocated the first and third REs. Similarly, the second

UE is assigned the second and fourth REs as shown in the second column of Fnk , and the rest of the

UEs are assigned as illustrated in the remaining columns of Fnk . The first row represents the first RE

which is utilized by the first, third and sixth UEs. The UE-RE scheduling vector,V n
sc, can be succinctly

written as

V n
sc[RE]⇔ [UE1, UE2, . . . , UEK ], (B.14)

where UEk is allocated a set of ds REs based on the root mean square (RMS) values of the channel

gains. Note that the RA matrices V SUE,I
k,n and VMUE,I

k,n of Section III are a subsets of V n
sc[RE].
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6 Applicaiton of RA Algorithms

The conventional application of the lagrangian method in optimization of (B.7) is as in [37]. In the

alternative algorithms, user to RE pairing is performed using biological algorithms based on channel

conditions. At the beginning of the RA process, the biological algorithms embark on a random search

for UE to RE pairs based on SINR conditions. The random explorations are utilized to initialize

the algorithms in their respective frameworks. Considering the constantly changing wireless channel

conditions, the adaptive nature of the biological algorithms is exploited to discover channels in which

UEs have better SINR so as to maximize the data rate at minimum transmit power.

6.1 Lagrangian Based Optimization

The optimization problem in (B.7) is a non-convex problem that needs to be transformed using

nonlinear fractional programming Dinkelbach approach [37] before it can be solved using convex

based techniques such as Lagrangian optimization. The optimization problem in (B.7) can be

re-written as

max
µSUE,ik,n ,PSUE,ik,n ≥0

{Rtot − ηe(Ptot)}, (B.15)

It can be proven that the optimal solution of the subtractive form of the optimization problem in (B.15)

is reached when Rtot − ηe(Ptot)} approaches zero. If the objective function in (B.7) has undergone

transformation to reduce the non-convex complexity by assuming the binary variable µSUE,ik,n to be

continuous, then the Lagrangian function can be expressed as

L(R,P, ηe,Ω) = Rtot − ηe(Ptot)}

− λ(

N∑
n=1

µSUE,ik,n RSUE,ik,n −Rmink,n )− γ(

J∑
j=1

µSUE,ik,n − df )

− α(
K∑
k=1

µSUE,ik,n − ds)− β(Pmax −
N∑
n=1

µSUE,ik,n PSUE,ik,n ), (B.16)

where Ω = (λ ≥ 0, γ ≥ 0, α ≥ 0, β ≥ 0) are Lagrange multipliers for relaxed constraints. Constraints

in C3 and C6 are absorbed by Karush-Kuhn-Tucker (KKT) conditions. The dual function can be

defined as

g(ηe,Ω) = max
RSUE,ik,n ,PSUE,ik,n

L(P,R, ηe,Ω), (B.17)

The dual problem can correspondingly be expressed as

min
RSUE,ik,n ,PSUE,ik,n

g(ηe,Ω), (B.18)
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In solving the Lagrangian function, (B.16) is decomposed into a master problem and K × N

subproblems. The solution of each subproblem is derived by iteratively solving the subproblem in the

corresponding SBS. The equation in (B.16) can be written as

L(R,P, ηe,Ω) = Lin + λ(Rmink,n ) − γ(df ) − α(ds) − β(Pmax), (B.19)

where

Lin =

N∑
n=1

µSUE,ik,n RSUE,ik,n +

K∑
k=1

ηeP
SUE,i
k,n

− λ(RSUE,ik, )− γdf − α(ds)− β(PSUE,ik,n ). (B.20)

Optimal transmit power is obtained by applying KKT conditions in combination with optimization

methods,

PSUE,ik,n =
Bsc(1 + γ)∑K

j 6=k Bsc(1 + γ)(ΓSUE,ij,n ) + ln2(λ+ χMUE,i
k,n )

, (B.21)

where χMUE,i
k,n = µMUE,i

k,n hMUE,i
k,n . The subgradient method is employed to update Lagrangian dual

variables as follows

λt+1 = λt − ζt1
[
RSUE,ik,n −Rmink,n

]+
, (B.22)

βt+1 = βt − ζt2
[
Pmax −

N∑
n=1

µi,k,nP
SUE,i
k,n

]+
, (B.23)

where ζt1 and ζt2 are step sizes of iteration t ∈ {1, 2, . . . , Imax}. When the step sizes are sufficiently

small, the Lagragian multipliers converge to equilibrium points. The implemented scheduling

algorithm is as outlined in Algorithm 6.

6.2 Particle Swarm Optimization(PSO)

6.2.1 Principle of Operation

In the basic PSO [9], a particle represents a viable solution to the objective function F (x) where x is

the decision vector in D dimensional search space. The ith particle position in the search space can be

expressed as a position vector xi = [xi1, xi2, . . . , xiD] which roves in the search space with velocity

vi = [vi1, vi2, . . . , viD]. As particles traverse the search space, a fitness function (f ) related to F (x) is

evaluated for each particle and the positions of highest personal fitness values of particles, fpbest, and
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Algorithm 6: Lagrangian PD-SCMA Resource Scheduling

1 Input: Maximum number of iterations, Imax

2 Initialize maximum number of iterations Imax Initialize energy efficiency ηe and equal power

allocation,PSUE,ik,n across REs

3 while (convergence not reached or maximum iterations exceeded) do

4 for i=1:F do

5 for n =1:N do

6 Initialize Lagrange multipliers (λ, γ, α, β)

7 Given ηe, compute PSUE,ik,n equation (B.21 ) ,

8 Update available resources, equation (B.7) (C5&C6),

9 Determine the throughput, equation (B.4),

10 Update Lagrange multipliers according to (B.22), (B.23),

11 Continue process until convergence reached or number of iterations exceeded.

12 end

13 end

14 end

the best fitness value of the entire swarm, fgbest, are stored. Given a swarm of Pn particles, with the

personal best values, Pi,fpbest , and global best value, Pi,fgbest , of the particles can be expressed as

Pi,fpbest = arg min[fpbest, xid], (B.24)

Pi,fgbest = arg min[fgbest, xid], (B.25)

Particles instantaneously update their velocity vector to attain their previous best fitness and migrate

towards the swarm’s global best fitness value. Each ith particle’s dth dimension has velocity, vt+1
id ,

calculated according to

vt+1
id = wvtid + c1r1(Pi,fpbest − xtid) + c2r2(Pi,fgbest − xtid), (B.26)

where w is particles inertia, Pi,fpbest is the personal best position of the particle, c1 and c2 are personal

and social learning factors respectively. The variables r1 and r2 are random values normally in the

range 0 to 1. Particles’ dth dimension position is updated as

xt+1
id = xtid + vt+1

id , (B.27)
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where vid is the velocity vector with an equivalent dimension as the position vector. The dimensions

of the search space varies based on the nature of the optimization problem under consideration.

Information pertaining to particles’ current positions and their personal bests is stored in matrices Xp

and Yp respectively.

Xp =


x1,1 x1,2 · · · x1,F

x2,1 x2,2 · · · x2,F
...

...
. . .

...

xsk,1 xsk,2 · · · xsk,F

 , (B.28)

Yp =


y1,1 y1,2 · · · y1,F

y2,1 y2,2 · · · y2,F
...

...
. . .

...

ysk,1 ysk,2 · · · ysk,F

 . (B.29)

The ith row of Xp is a F -dimensional vector concatenating all current position vectors xi from K

particles.

6.2.2 PSO RE scheduling

In application of PSO to SCMA RA, particles represent feasible solutions to the RE scheduling

optimization problem which involves codebooks assignment to users. The fitness function, F (x), is

the energy efficiency optimization problem of equation (B.7) expressed as

F (x)⇔ max{ηe(R,P )}. (B.30)

As particles traverse the search space to discover UE-RE assignments which yield good energy

efficiency solutions, they evaluate the fitness function of equation (B.30). A particle in this instance

represents the multiplexing of K SUEs using L-dimensional codewords over N subcarriers to solve

the optimization problem of equation (B.7) with the associated constraints. In every Transmission

Time Interval (TTI), the position of each particle, xid represents a feasible RE assignment and is

constructed to form the resource scheduling vector defined as a position vector

xid = [xi1, xi2, . . . , xiN ],
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xid ⇔ V n
sc[RE], (B.31)

where V n
sc[RE] is given by equation (B.14). Particles then update their personal best positions which

corresponds to the best scheduling solution the particle has discovered thus far. The global best particle

position is updated if the personal best of the particle at that instant is detected to be better than the

current global best position. The implemented scheduling algorithm is outlined in Algorithm 7.

Algorithm 7: PSO PD-SCMA Resource Scheduling

1 Input:

2 UEs: U = { 1,...,k,...,UEK }

3 REs: R = {1,...,n,... REN }

4 Initialize: c1, c2, r1, r2, w

5 while (convergence not reached) do

6 for i=1:F do

7 for n =1:N do

8 Generate random positions of particles and store them, equation (B.27) & (B.28).

9 Perform RA, equation (B.14) ,

10 Update available resources, equation (B.7) (C5&C6),

11 Determine the throughput, equation (B.4),

12 Allocate power, Algorithm 1,

13 Evaluate particle fitness, equation (B.30),

14 Update,fpbest, equation (B.24)& (B.29),

15 if Pi,fgbest > Pi,fgbest then

16 Update, Pi,fgbest , equation (B.25) ,

17 end

18 Allocate power, Algorithm 5,

19 Continue process until convergence is reached or number of iterations exceeded.

20 end

21 end

22 end

6.3 Ant Colony Optimization (ACO)
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6.3.1 Principle of Operation

A typical ACO application involves modelling a discrete combinatorial optimization problem as a

construction graph. The optimization problem is formulated as a graph coloring problem represented

by G = (V,E) where V is the number of vertices and E is the number of edges. In the Ant Colony

Optimization Assignment Type Problem (ACO ATP) [38], [39], i nodes are assigned j colors where

items are assumed to be nodes on the graph and objects are represented by colors. Artificial ants

generate paths which are feasible solutions as they travel through the graph. In each path, ants choose

a path Pi,j which represents an assignment of j objects to i items, and evaluate the fitness function

Fi,j(x) which is related to the objective function being optimized.

Pi,j = max{Fi,j(x)}. (B.32)

They choose the optimal path, P opi,j , that maximizes the fitness function F opij ,

P opi,j = max{F opi,j (x)}. (B.33)

An ATP ACO set up often requires two probabilistic rules for choosing nodes and colors. The first

probability, p
′
i,j(t), for ant a choosing the next node when it is at node i, is given by

p
′
i,j(t) =

τ
′α
i,j(t)η

′β
i,j(t)∑

j∈Ski (t)
τ
′α
i,j(t)η

′β
i,j(t)

, (B.34)

where α, β are pheromone weighting factors, τ
′
i,j , is the pheromone intensity, η

′
i,j is the desirability,

and Ski (t) is set of feasible nodes from ant a at node i. The desirability of ant a choosing the next

node is given by the heuristic function, η
′
i,j(t),

η
′
i,j(t) =

1 + |Nk
unassigned|

1 + |Nnei,i|
, (B.35)

where |Nk
unassigned| is the number of neighbours to the current node that have not been allocated

objects, and |Nnei,i| is the number of neighbors from the perspective of the ant when at node i. The

pheromone in previously chosen nodes is defined as

τ
′
i,j(t) =

F besti,j

|N best
i (t)|

, (B.36)
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where F besti,j is the fitness function of best ant, and N best
i is the set of feasible nodes from the

perspective of best ant at node i. The second probability, p
′′
i,o(t), of choosing an object to assign for

the current node from the set of objects, No, is given by

p
′′
i,o(t) =

τ
′′α
i,c (t)η

′′β
i,o (t)∑

j∈No τ
′′α
i,c (t)η

′′β
i,o (t)

, (B.37)

where the heuristic function, η
′′
i,o, is defined as

η
′′
i,o(t) =

1 + nprevious−best
1 + navailable−obj

, (B.38)

where nprevious−best is the number of elements in the set of previously assigned objects, navailable−obj

is the number of objects available for allocation. The pheromone, τ
′′
i,c, is updated using

τ
′′
i,c(t) =

nprevious−best

|NBest
i (t)|

. (B.39)

The fitness function Fi,j of each path which represents a solution to the optimization problem is

calculated along each path and paths with higher fitness have more pheromones deposited on them.

6.3.2 Ant Colony Optimization(ACO) RA scheduling

On application to SCMA RA, UEs are represented by nodes and RE allocation patterns are associated

with colors. A path that represents the assignment of n REs to k UEs can be formulated from equation

(B.14) as

Pk,n ⇔ V n
sc[RE]. (B.40)

The optimal path, P opk,n, that maximizes optimization function is

P opk,n ⇔ Ṽ n
sc[RE]⇔ max{Fk,n(x)}. (B.41)

The fitness function, Fk,n(x) is given by

Fk,n = max{ηe(R,P )}. (B.42)

As ants traverse the search space they leave pheromone in paths that have higher fitness, i.e. RE

allocations that have desirable energy efficient transmission rates in their path for other ants to follow

in future travels. A colony of RA scheduling decisions is build by ants based on tours in which they

discovered optimal sum rates. The applied ACO SCMA resource scheduling algorithm is summarized

in Algorithm 8.

94



i
i

“output” — 2020/9/8 — 2:50 — page 95 — #115 i
i

i
i

i
i

6. APPLICAITON OF RA ALGORITHMS

Algorithm 8: ACO PD-SCMA Resource Scheduling

1 Input:

2 UEs: U = { 1,...,k,...,UEK}

3 REs: R = {1,...,n,... REN }

4 Initialize: α , β , ρ

5 while ( convergence not reached) do

6 for i=1:F do

7 for k=1:K do

8 for n =1:N do

9 Begin ant search for REs in R that satisfy (B.7, C1).

10 Perform RA, equation (B.14),

11 Update available resources, equation B.7 (C5&C6).

12 Determine the throughput, equation (B.4)

13 Allocate power, Algorithm 5,

14 Evaluate fitness function, equation (B.41).

15 Update pheromone for higher fitness functions, equation (B.36) & (B.39).

16 Continue process until convergence reached or number of iterations exceeded.

17 end

18 end

19 end

20 end
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6.4 Adaptive Particle Ant Swarm Optimization (APASO)

6.4.1 Principle of Operation

Artificial ant particles possessing both attributes of PSO and ACO are created and randomly initialized

in the search space. For all ant particles the fitness function F (x) is computed. To improve the

performance of PSO a pheromone-guided mechanism is employed to indicate ant particles with more

fitness. In [40], it is outlined how the inertia weight provides a balance between exploration and

exploitation. Having a higher inertia weight in the beginning enables global search, while a lower

inertia weight in later stages of algorithm enhances convergence towards personal and global best

values. In our proposed APASO we consider the modification of ant particles inertia weight as

w ⇔ τinter, (B.43)

where τinter is the inter ant particle pheromone given by

τinter = ζ

( ∣∣∣∣∣min(F tpbest(x), F t(x))

max(F tpbest(x), F t(x))

∣∣∣∣∣
)
, (B.44)

where ζ is a control parameter in the range [0,1], and F t(x) is the mean fitness of all ant particles at

t, and F tpbest(x) is personal best fitness of ant particles at t. For a d-dimensional space, an ant particle

has velocity, vt+1
id and position, xtid, defined by

vt+1
id = τinterv

t
id + c1r1(p

t
pb − xtid) + c2r2(p

t
gb − xtid), (B.45)

xt+1
i = xti + vt+1

i , (B.46)

where ptpb and ptgb are personal best and global best of ant particles defined similar to equations (B.24)

and (B.25) respectively. In equation (B.45) applying the inter ant particle (τinter) pheromone to the

first term on the right hand side of the equation enables diversity of ant particles’ search in early

iterations of the algorithm while increasing convergence in later iterations.

6.4.2 Adaptive Particle Ant Swarm Optimization (APASO) Scheduling

The proposed hybrid technique aims to exploit advantages of PSO and ACO to attain superior

performance to the conventional algorithms. In the beginning stage of the scheduling process, PSO

generates new random particle ants, and the ACO based pheromone mechanism generates
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pheromones for ant particles to mark solutions with higher fitness values. It is these favourable

qualities of the PSO and ACO that have motivated the hybridization of PSO and ACO in the proposed

APASO. The position of an ant particle is modelled as scheduling vector in a particular TTI as

xid ⇔ V n
sc[RE], (B.47)

where V n
sc[RE] is defined as equation (B.14). The fitness function is formulated to solve the

optimization problem in equation (B.7) as

F (x)⇔ max{ηe(R,P )}. (B.48)

Each ant particle then stores its position together with its fitness value, and keeps updating velocity

in equation (B.45) so that the ant particles maintain their migration towards better solutions. The

mechanics of the APASO algorithm for RE scheduling in SCMA is summarized in Algorithm 9.

Algorithm 9: APASO PD-SCMA Resource Scheduling

1 Input:

2 UEs: U = { 1,...,k,...,UEK }

3 REs: R = {1,...,n,... REN }

4 Initialize c1, c2, r1, r2, w,τinter while (convergence not reached) do

5 for i=1:F do

6 for n =1:N do

7 Initialize random ant particles search,

8 Allocate resources, equation (B.14),

9 Determine the throughput, equation (B.4),

10 Distribute pheromone τinter, equation (B.44),

11 Evaluate fitness function for all ant particles, equation (B.48),

12 Update the velocity and position vectors for ant particles, equations (B.45) & (B.46),

13 Update pheromone, equation (B.44),

14 Allocate power, Algorithm 5,

15 Continue process until convergence is reached or number of iterations exceeded.

16 end

17 end

18 end

97



i
i

“output” — 2020/9/8 — 2:50 — page 98 — #118 i
i

i
i

i
i

7. RECEIVER ALGORITHM AND COMPLEXITY

7 Receiver Algorithm and Complexity

To detect and decode the received signal, the kth SUE at ith SBS using codebook c detects and removes

signals of df − 1 users. Denoting the mean channel gains of users superimposed on codebook c as

H̃SUE,i
k,c , the receiver algorithm is outlined in Algorithm 10.

Algorithm 10: PD-SCMA Based Receiver

1 Input:

2 Received signal from all orthogonal subcarriers, Channel gain matrix for all users, H̃SUE,i
k,c

3 Initialize maximum number of iterations Imax

4 Set H̃SUE,i
k,n = min H̃SUE,i

k,c

5 Apply MPA on the received signal

6 Output V SUE,I
k,n (

√
PSUE,ik,b hSUE,ik,n xSUE,ik,n ) (SUE k signal on codebook n in ith SBS).

7 Apply SIC on resulting signal

8 ySUE,ik,n = ySUE,ik,n − (V SUE,I
k,n (

√
PSUE,ik,b hSUE,ik,n xSUE,ik,n )

9 Set H̃SUE,i
k,c = H̃SUE,i

k,c − H̃SUE,i
k,n

10 Repeat process until all SUEs data has been decoded.

Assume that a codebook in PD-SCMA is allocated to df users at the same time with each SUE

applying MPA df times and implementing SIC (df -1) times in the process of detecting and decoding

transmitted data. In the case where C codebooks are assigned to df SUEs, the complexity of the

receiver can be approximated as

O(Imax|ν|p(C)(df )), (B.49)

where ν is the codebook size, Imax is the maximum number of iterations, p is the non-zero elements

of factor matrix Fnk = f1, . . . , fn.

8 Performance Evaluation

In simulations, it is assumed that SUEs are randomly distributed in small cells which are uniformly

distributed in the macrocell coverage area. The radii of the macrocell and small cells are 500m and

20m respectively, and minimum distance between the small cells and MBS is 40m. The system

bandwidth is considered to be 10 MHz with the channel model assumed to characterized by small

scale Rayleigh fading with large scale path loss and 8dB log-normal shadowing . The maximum

transmit power is 21 dBm and Psta = 18 dBm. The minimum data rate is assumed to be 5 Mbps.
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Figure B.3 shows a plot of sum-rate vs number of users in the network. As the number of users

increases the sum-rate of the system increases, although the gradient of the sum-rate curve decreases

with increasing number of users. APASO offers better performance than the PSO and ACO achieving

performance close to the analytical Lagrangian.

Fig. B.3: Sum-rate vs Number of users

Figure B.4 illustrates the variation of the sum-rate of the system vs total transmit power of users. As

the transmit power is increased the sum-rate of the system increases until a saturation point is reached

beyond which further transmit power increases do not yield increased sum-rate capacity of the system.

The developed APASO outperforms the other biological algorithms, with the Lagrangian providing an

upper bound.

The performance of the Lagrangian in figures B.3 and B.4 is similar to that demonstrated in [33].

In figure B.5, it is noted that as the number of users increases the energy efficiency of the systems

decreases. Although the EE is higher in the beginning, it starts deteriorating with additional users in

the system indicating that after the system has reached saturation, increasing number of users

compromises the performance of the system. The performance of the algorithms follows a similar

trend from Lagrangian to ACO.

In figure B.6, the EE of the algorithms is recorded as they are executed. The developed APASO
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Fig. B.4: Sum-rate vs Total Power

Fig. B.5: Energy efficiency vs Number of iterations

achieves higher EE and saturates faster than the other conventional biological algorithms. The

pheromone mechanism adopted in APASO enhances its ability to find higher fitness ant particle

solutions with higher EE. To evaluate the fairness of the algorithms in distributing resources among
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Fig. B.6: Energy efficiency vs Number of iterations

users in the network, Jain’s fairness metric is embraced. It is defined as in [32] which can be

expressed as

J =

(∑
K
k=1R

FUE,i
k,n

)2

K ×
∑

K
k=1(R

FUE,i
k,n )2

. (B.50)

In equation (B.50), the index has a range of 1/J (no fairness) to 1 (perfect fairness). In Figure B.7, the

fairness performance of the considered algorithms is outlined. The ACO is observed to outperform

other algorithms in terms of fairness as it has higher fairness index overall. This implies that the

‘colony’ of solutions derived using pheromone mechanism enables it to share resources more fairly

among users albeit at the expense of maximizing the sum-rate. Its performance is followed by PSO

and APASO with lagrange showing the worst performance. This implies that though the lagrangian

algorithm provides better performance in terms of sum rate and energy efficiency, its the least fair.

A comparison of PD-NOMA, SCMA and PD-SCMA RA with application of APASO was investigated

and the results of Figures B.8 to B.10 developed. In Figure B.8 the system sum rate versus total

number of users is plotted. As it can be observed, the hybrid PD-SCMA has significantly higher sum

rate than the other NOMA techniques. Figure B.9 shows the system sum rate versus total transmit

power for the three MA schemes. The hybrid PD-SCMA outperforms the two conventional NOMA
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Fig. B.7: Fairness vs Number of users

Fig. B.8: Sum-rate vs Number of users for different MA schemes using APASO

methods. A comparison of the energy efficiency of the three considered MA schemes against the

number of iterations is displayed in Figure B.10. PD-SCMA is seen to perform better than the other
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Fig. B.9: Sum rate vs total transmit power using APASO for different MA schemes

Fig. B.10: Energy efficiency vs Number of iterations for different MA schemes using APASO

two traditional NOMA approaches. The enhanced performance of PD-SCMA as compared to the

conventional NOMA MA schemes can be attributed to the ability of PD-SCMA to merge access
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features of PD-NOMA and SCMA.

9 Conclusion

In this paper, the performance of nature-inspired algorithms, PSO, ACO and the developed hybrid

APASO is investigated regarding sum-rate maximization, energy efficiency and fairness in a hybrid

power domain SCMA setup. The investigative results show that the performance of APASO is better

than the conventional biological algorithms (PSO and ACO) with respect to sum-rate and energy

efficiency. However, ACO is observed to have a higher fairness index than the other considered

algorithms. The developed results also show that the common Lagrangian based optimization can

lead to system performance overestimation. PD-SCMA is observed to outperform the other

considered traditional MA schemes when only APASO is employed for RA. Future work will

consider more evolved hybrids with other advanced variants of biological algorithms that have been

proven to be efficient in solving NP-hard problems. Furthermore, the performance of succeeding

models should feature extended aspects like signaling overhead, channel uncertainty and many others

for conclusive deductions.
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1. SUMMARY OF RESEARCH CONTRIBUTION

Conclusion
To conclude this thesis we will consider a summary of research contributions accomplished in this

work and propose potential future research objectives that can be pursued in relation to this study.

In the introduction a detailed account of the evolution of wireless communication networks

(including 4G and 5G networks) was presented. Research motivation, methodology as well as

contributions were also lucidly expressed in the introduction. Notwithstanding their advantages of

higher data rates, 4G/5G networks experience challenges of interference management and EE due to

HetNet deployments aimed at maximizing overall system capacity. Resource allocation regarding

finite resources such as spectrum and energy is thus crucial in optimizing the performance of these

networks. This necessitates continuous efforts to investigate intelligent solutions as alternatives for

already established analytical methods. This work developed architectural network models for

multi-tier heterogeneous 4G LTE-A and 5G NOMA networks on the uplink. Metaheuristic

approaches namely particle swarm optimization (PSO) and ant colony optimization (ACO) and the

developed adaptive particle ant swarm optimization (APASO) were used for the RA of the new

models. The performance analysis results show improved performance in terms of throughput,

transmit power sum rate and energy efficiency.

1 Summary of research contribution

In paper A, RB allocation in SC-FDMA using meta-heuristic algorithms as alternatives to the

conventional methods that are usually employed to solve the NP-hard non-convex problem that arises

was considered. A hybrid particle swarm ant colony optimization methodology to embrace desirable

traits of traditional PSO and ACO algorithms. Simulation results reveal that the hybrid APASO is

able to attain better throughput as the number of UEs in the network increases than PSO and ACO.

APASO reaches saturation faster than traditional algorithms and hence lower running time.

Although, the ACO achieved better fairness in distributing resources than other methods, the

proposed hybrid APASO had better energy efficiency performance than the other considered

metaheuristic algorithms. The developed APASO has improved convergence compared to PSO and

ACO. The performance of the metaheuristic algorithms is comparable to the approximate Lagrange

technique that provides an upper performance bound.

In paper B, the performance of nature-inspired algorithms, PSO, ACO and the developed hybrid

APASO is investigated regarding sum-rate maximization, energy efficiency and fairness in a hybrid

power domain SCMA setup. The investigative results show that the performance of APASO is better
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2. FUTURE WORK

than the conventional biological algorithms (PSO and ACO) with respect to sum-rate and energy

efficiency. However, ACO is observed to have a higher fairness index than the other considered

algorithms. The developed results also show that the common Lagrangian based optimization can

lead to system performance overestimation. PD-SCMA is observed to outperform the other

considered traditional MA schemes when only APASO is employed for RA.

2 Future Work

Future work will consider more evolved hybrids with other advanced variants of biological algorithms

that have been proven to be efficient in solving NP-hard problems. Furthermore, the performance of

succeeding models should feature extended aspects like signaling overhead, channel uncertainty and

many others for conclusive deductions. The algorithms will then be evaluated from the computation

model structures point of view. Descriptive statistical approaches would be valuable in analysing

biological algorithm performance in future work.
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