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ABSTRACT 

A linear rese rvo ir ccll model is presen ted which is proposed as a good candidate for real 

time nood forecasting applications. The model is des igned to be com putational])' efficien t 

since it should be able to run 011 Cl P. C and must operate ontitle in rcal time. The model 

parameters and forecas ts can be easi ly upda ted in order to a llow fo r a morc accurate 

forecast based on real time obscrvat ions of st ream now and ra in fall. 

T he final model. once calibrated. should be able to opera te c tTcct ivcly w ithout req uiring 

highly sk illed and knowledgeable operators. Thus it is hoped to provide a tool which can be 

incorpo rated into an early warning sys tem 101' mit iga tion or Il oad damage. giving wale I' 

resources ma nagers the extra lead-timc to implcmcnt any contingency plans which may be 

neccssary to ens ure the safety ofpeoplc and prevent damage to property. 

The Llse of' linear modcls for descr ibi ng hyd rol ogical systems is nOI new. however the 

model presented in this thes is depa rt s fi'oll1 prev ious implcmentations. A particu la r 

dcparture is the nove l method lLsed in the conve rsion of observed to effec ti ve rainl~lll. The 

physical processes that result in the rainfall to runofr conversion arc non-linear in na ture. 

Mos t ortlle signifi cantllon-linearity results from rainfall losses , w hich occur large ly due 10 

evaporation and human extraction. T he rcmain ing rainfall is convertcd 10 runoff. T hese 

losses are pan icularly signi ficant in the Soul h African climate and in somc regions may be 

as much as 70-90 % of the total observed ra infall. Loss paramcters arc an intcgral part of 

the model formulati on and allow for losses to be dealt w ith di rect ly. Thus. input to the 

model is observed rainfall and not the "effecti vc" ra infall normally associated with 

concept ual catchment models. 

The mode l is fonnu la1 ed in Fi ni1e Difference form s imiln r 10 an A ll to Regressive Moving 

Averagc (ARMA) model; it is thi s formula tion w hich provides the required computatio nal 

effi c iency. T he J\RMA eq uat ion is <l discretely coinc ident form o f thc Sl<ltc-Spacc 

equa tions thal govern the response of an arrangement of linear reservoi rs. This result s in a 

functi onal re lationship betwcen the reservoir response constants and the /\RMA 

cocrlicients, w hich guara ntees stationarity ort lle A RM /\ model. 
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CHAPTER I INTRODUCTION 

In Ihis chapter the physical processes invo/l'ed in the modelling (?l a calchmen/ are 

inll'od llced. 711e ailll i.v 'f) give an overview (?f /he ,'arioux lJIodelling approaches a vailahle. 

and fo explain fhe se/ection (?/Ihe parlicl/lar approach adOfJled in/his s/fldy. A poin! 10 he 

highlighted is the I1IQj o/' non-linearilY inlhe loss processes. 

1. 1 BAC KGH.OUND 

T he research reported here has been conducted with funding li'om the Water Research 

COl11mi ss ion ( WRC). The study came about as .. I result or c<l rli cr WRC proj ects prov iding Cl 

fac ility fo r recording rainfall ral es at high te mporal ( live minute inte rval s) a nd spatial ( I 

km2) resoluti on. th ro ugh the llse o f weather radar (c .g Malhc r ct a l. . 19(7). With the 

development of the " String of Beads" Rainfa ll Model (Pegram & C lothier. 1(99); the 

ex tensio n o f thi s techno logy to a rea l timc fl ood fo recasting applicatio n is an obv iolls way 

to ga in new practi ca l bene fit s from the products ari sing out o f previo ll s projects. A linear 

rese rvo ir ce ll model is presented which is proposed as a good cand idate 10 1' rea l lime fl ood 

fo recasting appli ca tions. T he model is des igncd to be computatio na lly effi cient s ince it 

should be able to run on a P.C and mLlst operate o nlinc in real time. The model parameters 

and fo recasts can be eas il y updated in o rder to a llow to r a mo re accura te fo recast based o n 

real ti me observatio ns or stream fl ow and rainhl ll. 

T he fina l model. o nce calibrated. should be able \0 o perate e ffecti ve ly witho ut requIring 

hi ghly skill ed and knowledgeablc o pera tors. Thus it is hoped. by including short te rm (a 

fc\,,' ho urs ahead) ra infa ll fo recasts. to provide a too l which can be incorpo rated into an 

early warning system fo r mitiga tion or flood damage: giving water resources manage rs the 

extra lead-timc to implement any contingency plans which may be nccessary to ensure the 

safety o f people and prevent damage to property. Th is can prov ide a parti cular bene fit in 

fhe South A fi'ican context d ue to the s ignificant numbers o f pcopl e who li ve in in fo rmal 

se ttlements often si tuatcd in flood pro ne a reas. 

Fu lly di stributcd phys ica ll y bascd and complex conceptual catchment modc ls, uSlllg 

physical ana logies, a re cOlllputati ona lly expensive (for flood forecasting) and havc 

s ig nifi cant data requircments. The approach fo llowed here has been to use a s imple linear 

conceptual n'amcwo rk , tQ red uce the da ta requiremcnts and maintain pars imony. The use o f 

linear models for describing hydrological systcms is nol new, howevcr the model presented 



C HA PTER I INTRO DUCTION 

in this thes is departs fro111 prev ious implementations . A patti c ular departure is the method 

used in the conversion of observed 10 effecti ve ra infall. T he physic<ll processes that result in 

the rainfal l to runoff conversion arc nO Il-li near in nature . Most of the s ignificant nOI1 -

linearity res ults from rainfall losses. which occur large ly due to evaporation and human 

extraction. The remaining rainfitll is converted to runoff. These losses arc particularly 

s ignificant ;n the SOllth African climate and in some regions may be as 11luch as 70-90 % of 

the lolal observed rainfa ll. A loss parameter is an integral part of the model formulation and 

a llows f'or losses to be dealt with directly. Thus, input to the mode l is observed rain fall and 

notthc "c ITcctivc" rainfall no rmally assoc iatcd wi th conccptual catchmcnt modcls. 

The modcl is forl11ulatcd in Fini tc Diffcrcnce 1'01'111 s imi lar to an Auto Rcgrcssivc Moving 

Average (ARMA) modc l: it is this formula tion that prov ides the requircd computational 

efficiency. The ARMA equation is a d iscrete ly coincident lorm of the State-Space 

equations that govern the response or a concept ual arrangement of linear reservoirs. T his 

res ults in a functiona l relationship be tween the rescrvoir response constants and the ARMA 

coeflic ients. which guarantees s tat ionari ty of the ARMA mode l. 

T he three reservoir feed forward mode l is ap plied to the Licbcnbergsvlei s tudy catchment 

as a semi-distributed l11ulti-cc ll model. The responses /i'OIll each or the cells a rc linearly 

Sli mmed at the catchmcnt o utlct to produce the total catchll1ent res ponse. Good model fit s 

to se lected calib ration events are achieved lls ing Monte Carlo and Metro polis based 

automatic optimization routines. 

1.2 RAINFALL TO R UN O FI: CONVEH.SION I' ROCESSES 

A success ful catchment model m ust be able to reaso nably d up lica te Iwo major hyd ro logical 

processes occurri ng on the catchmcnt. T he firs t is the rainla ll to runoff convers ion process, 

which de fines the proportion o r ra in El l1 to reac h the channeL Some of the raint-a ll will be 

lost due to the effects of evapora tion o r other withdrawals. the remaining portion w il l rcach 

the river via overland or subs urface now. e~lch of which has a different trave l lime to reach 

the channe l. The second process. that of c hannel routing. takes place w ith the runofT being 

rouled dovm the river. once it has e ntered the channel. The rainfall to ru no ff conversion 

process is highly non-linear in nature and it is thi s that proves to be the main diHicu lty in 

2 



C I-IAPTER I INTRODUCTION 

strc<llllllow modelling. Channel routing can be reasonably approximated as a linear process 

(Todini & Oo::;si. 1986). prov ided backwater clTeets arc negl igible. 

Several modelling approaches can be lollmvccl. The most natural wou ld be \0 attempt to 

model the physica l processes Iha! a rc actually occurring on the catchment. To do so 

requires an understanding or ,\ vcry complex system in great dcwiL Sill<:c Ihis is an 

cxccptionally difficult lask J. number or approximations arc usually required in order to 

decrease the cOl11plexity or the problem. At the o ther cnd or the spectrum or models is a 

purdy mathematical model. Transfer functions like the Instantaneous Unit I-I yd rograph 

perform a linenr conversion of er rec ti vc rainfa ll input to runofL implicitly assuming that the 

conversion processes arc time invariant for a particular catchmcnt. Bccause a si mple 

anal ysis o f the physical proct:sses w il! confirm that th is is not ac tually the casc. it is 

suggcst~d that a compromise between physical ,md mathcmatically based modelling 

~lpproi.lches could y ie ld usefu l rcsults wh il e avoidi ng some complexity. Th is conceptual 

type 01" model allcmpts to lincarizc parts or the convers ion and ro uting tasks while ll si ng 

some teclmiquc or introducing the r..:-quired non-li nearity illlo the system. where it is most 

nceded. 

1.2.1 Loss PROCESS ES 

The volu me of rainfall whi ch reaches the channel. and when it arrives. depends on a 

number of' things. When the rainfflll impacts the surface of the catchment a proportio n wi ll 

infiltrate into the soi l while the rest will become direct runo ff llowing over the surface to 

reach the channel. The ra te at which infiltration to the so il sto re can occur is dependent on 

the hydraulic conducti vity of the soi l as \>,'ell as the degrce of satura tion. The hydraulic 

conductivi ty is a functi on of the soil type and does not va ry 'with timc but the re is a large 

spatial (and some temporal) var iability due to groullli CUVt;:f pruviding t;:xt ra flu w paths. 

through cracks and macro pores. ot her than those inherent in the soi l structure. 'fh e 

ca tchmcnt moisture condition varies considerably with time dcpending on the recent histo ry 

of rai n fn ll and other c limat ic conditions on the catchment. Therefore 10 determine the rate 

of infiltration as input to a physicall y based module requires a detailed knowledge of the 

soil types and corresponding 1l10 iSIllrC slates on the catchment at a llY given time. 

3 



CI-IAPTER I INTRODUCTION 

Once infiltration into the soi l has occurred the water may travel \0 the channel as 

subsurlace flow or more s lowly as groundwalcr seepage. WaleI' may either be taken up by 

the roots of plants and lost due to cvapolranspiration or be lost due \0 direct evaporat ion 

frol11 the upper layers of the soi 1 and frce waler Sllrf~ICCS. 

When attempling 10 model a catchment using a physically based modelling approach. each 

of the above processes must be slIccessfully modelled in order to determine what ends up in 

the channe l. Infiltration models re ly 011 determining the flow rate of wate r through a soil. 

thi s process can be described by Darcy's equation (Darey. 1856) 

" <iN q = - 1\, --

d= 

"here LJ is the flow rale pCI' unit area. 1\ is the hydraulic conductivity and dl-/ represents 
£I:: 

the diflerclll;c in head along the direction of flow. This li near equation only applies to a 

saturated soil that is homogeneous and isotropic, 

Richard ([ 931) presented a general equation for unsteady unsaturated flow in three 

dimcnsions. Richard"s equation 101' onc dimcnsion is given as 

00 = ~(J) 00 + K) 
01 0= 0= 

where 0 is the so il moisture content. f represents lime and D is the so il water diffusivity, 

Two well-known infi ltration models presented by Il orton (1940) and Philip (1957) arc 

app roximate solutions to the one-dimcnsiol1<l] fo rm of Richards's equation. The Green­

Ampt method (G reen & Ampt. 1911) uses an approximation of thc physical theo ry for 

\\ hich a dircct analytical solution can be found. 

Taking these in turn, Il orton"s equation (1 Iorton. 1940) is: 

where./(Ij is the potcntial rate or infiltralion..l~ is the initial potcntial rate . ./; is the constant 

rate reached at equilibrium conditions, , is time and k is a decay constant. The potential 

infiltration rate can on ly be realized if there is sufficient watcr to pond at the soi l surfacc. If 

the ra te of precipitat ion is less than the infiltration potential. all rainfall \v ill infilt rate until 

the potential infiltration rate has sufficiently reduced. When the ra tc of precipitation is 
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channel from the soil store (Figure 1,1) h.-ts a much slower response lime and may often be 

ignored lor the purposes or event based modelling. However. it should be taken in to 

account in a continllous streal11110w model. 

Rainfall 

Evaporation 

Surface Direct Runoff 

Channel 1----- Total Runoff 

Transpiration 

Soil 

Figure 1.1: Ilo\\' observed rainf<lll is converted to total runoff 

The loss l110dule o r a Iypical catchl11ent model is used 10 dete rmine what volume of tile 

observed ra infal l is converted to effective rainnlll: which must then be rOllted overland and 

along the channel. The remaining rainfall may be considered as a loss. The mantler in 

which this loss component is determined and then removed from the observed rainbll 

sequence w ill have a signifi cant effect on the arrival times and magnitudes ortlle (d isc rete) 

inputs to the routing module. T he choice of" loss model wi ll therefore have a significan t 

effect on the eventual s trealll now outputs. 

Var ious types of loss models have becn proposed histo ri ca lly. al l of these are approximatc, 

as the physica l processes resu lt ing in the losses a rc not c learly determinable. Followi ng is Cl 

d isc lI ss ion o f some o rthe more common ly used methods to determine the effecti ve rainfal l. 

The losses can be removed in severa l ways. Assuming that the bu lk o f the losses occurring 

are due to infiltration losses which decrease exponen ti a ll y w ith time a n initial loss can be 

removed. The total vo lume of loss can be establi shed by integrating the loss rate over the 

period of the rainfall event under consideration. In this case, the en tire loss vo lume is 

removed from the begi nning of the storm and the remaining rainfall is then the e ffecti ve 

ra in. A Iternatively. a continuing loss approach can be lI sed where losses arc removed 
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Ihroughollllhc event . T he rcmovalmay he made at a constan t ra te or as a proportion orllle 

recorded rai nfall depth during each period. Combination inilial-c(}l1litlllOl/s or il1i1ial­

l)mpOrlional loss models arc somet imes used (llil1 et al.. 19(8). Tlu.:sc methods of loss 

removal arc known as index Iypes. 

Bras (1990) has suggested the fol lowing model 

/(/) =.1; +U;)-j: )e ·II(~\,.-+I' . 

\\hieh is a l110dilicd 110l"lon equation wilh !/ 3fJ a 30 day antecedent prec ipitation index. t;, 
and ./;. are as for I-Iorton's equHtion. P is the acculllulated rainfall du ring the event under 

considerat ion a nd B is Cl parameter 10 be estimated for Ihe catchment. T he exponentia l 

decay Icrm e nsures tha t the bulk or the losses occur near the beginning of the s torm. this 

corresponds w ith Ollr understanding of the physical mcchan isms producing the losscs. 

T he SCS method of loss determination may also he used but the parameters would need 

adjustment for loenl cond itions as it is a sem i-em pirical method based on observations of 

catchments in the United States. The mcthod is based 011 the asslLmption Ih m the lollowi ng 

equation ho lds 

F P 
-" ::: --"'---
.\' 1' - / 

" 

where }~, is the depth o f precip itation which in filtra tes after the initial abstrac tion /a has 

been removed. S is a hypothetical "'maximum retention" for the ca tchment. P is the totnl 

precip itation during the storm and Pt' is the excess prec ipitat ion. Us ing continuity and the 

empirical relation /" = 111'<; it lollows that 

f' _ (1) - 1118) 1 

" P +( I - II1)S 
( 1 . 1 ) 

whe re the coefficient III IS a fac tor to be dec ided. T he United States department of 

Agr iculture suggests a value of 0.2 (NEH-4. 1972). Schmidt and Schulze (1987) suggest 

that thi s valLJc is too high (for SOlllh Africa) and recommend the use 01'0.1 as a reasona ble 

va lue. 
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A dilllcnsionlcss curve number (101' S ill inches) is defined as 

eN = 1000 
IO + S 

and tabulated values of these curve numbers for a var iety or different so il ty pes and 

antecedent mois ture conditions arc availab le. Once Cl curve number has been chosen li'ol11 

such a table. the value ors can be calculated. Equation 1.1 is then tlsccl lO find the effective 

prec ipitat ion from a known value of P. The temporal d istribution or the SCS abstractions 

could be determined using a combination iniliai-conlinuing loss l11ethod. computed at 

convenient di sc rete limcstcps (Chow cl al.. [988). 

1.2.2 OVERLAND FLOW AND ClIANNEL ROLJT1N( j 

Overl and !low refe rs to that portion of surface runoff which nows down !lal s loping 

surfaces s lIch as hill slopes. it can be considered di stinc t from now along the small channels 

and rills which even tuall y jo in the 111ain channel. The water is thought ul"as 110wing across 

the s urface in a shallow shee t. w ilh the flow processes olien dominated by viscous effects. 

General !low rOll ting m<ly be characterized as being cither lumpcd or di stributed. Lumped 

routing calculates /lows at a particular position with respect to time whi le d istributed 

routing calculates flo\ovs at a number of different positions along thc n ow path with respect 

to time. 

The attractiveness or lumped rOLlting mcthods lies mainly in their si mplicity when 

compared wi th di stributed methods. Their basis is the eq uation or the conservation of mass 

and as such they are governed by the continu ity equation 

) "s 1(1) -((1) = -", 
which. in the context of st ream f"1ow, states that the rate o r change of storage in a rive r reach 

is equal 10 the differencc bctween inflow and outllow from the reach. Three bas ic types of' 

lumped routing mcthods arc cOllllllonly used 

• Level pool rou ti ng assumes that thc water surface is leve l throughou t the reach and is 

genera ll y Llsed fo r routing !lows through la rge reservoirs. 
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• Routing methods applicable 10 channels where a s loped SUrl~lCC profile is accounted for 

in the storage flow relationship. For example the Muskingulll method ( McCarthy. 

1938). 

• Linear systems described by convolut ion integrals such a!) the linear reservoir first 

introduced by Zoch (1934). 

In order to determine acc urately the properties ora flood wave a t posi1ions of inter cs I along 

the river reach. distributed routing methods can be employed. but arc compulalionally 

expensive. The Sainf-Venom equat ions 101' onc-dimensional unsteady flow provide the full 

so lution. The conservation of mass equation in differential forlll is 

a(AV) + aA _q =0 
ax 0' 

with A representing the cross-sec tional area. V the ve locity. q is the lateral inflow, , time 

ancl x the di stance along the channel centre-line. The equation of 1110mClllu!l1 conservation 

IS 

-+V-+< -- 5; +S' = 0 av av (Oy ) 
0/ OX 'ox U I 

with g the gravitational acceleration. y the depth or the water in Ihe chan nel. 5;0 Ihe bed 

s lope and Sf the friction slope for the channel. No genera l analytical sol utions to these 

equations have been found but they can be so lved numerically. 

Ap proximate methods for routing flo\" I down the channel have been develo ped. particularly 

before the advent and CO mmon use of compute rs for numerica l computations. Most or these 

methods igno re o r linearizc some of the terms in the full equa tion in order la make it 

possible 10 find fin analytical solution. 

T he Kinematic IVOW equation Ignores the local acceleration(o V /(1) , convec ti ve 

accelera tion (V av/ox) and pressure(t: oy/ox) terms in the momentulll eq uation reducing il 

to 

The KinClllH1ic form therefore ma kes the assum ption Ihat the gravity and fi-ict ion forces 

balance each o ther and conl inui ty is the o nly condition to be satisfied . This form onl y 

accounts for the effect of translation on the wave front. 
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T he D[flilSiol7 n'l/Fe model includes the pressure term in the momentum equation 

accounting for backwater effects as wc ll as translation. The m om entulll equation for thi s 

type of model is g iven as 

ay _ ."'/1 + S , = 0 
clX 

1.3 PIIYSICA LLY BAS ED MODELS 

Phys ically based mode ls attem pt 10 reproduce the physical processes 0 11 the carchmenl . 

which produce the flow s occurri ng in the chanllel. They arc fully di stributed model s based 

011 the partia l differentia l equations describing catchment fl ow processes. Binlcy et a l. 

( 1989) li st: 

"Models such as the Systeme Hydrologique Europeen (SHE) 

Hydrology Distributed Model ( IHDM) ... " 

and the Institute of 

S uch complex models req uire vc ry deta iled inf"{mnation on the curren t state and 

characteri st ics o rlhe ca tchmcnl. Data such as lerrain information. vegctat ion type. soil type 

and properties as \ve ll a s climati c va ri ab les are oftcn required. The compl exity o r thi s type 

of Illodel requires sk illed operators and. oftcn. significant computing resources to run 

properl y. The advan tage o f complex phys ica l models is that they result in an improved 

unde rstanding of the processes involved in the production ofstreallltlow. 

These ca tchment models are effective ly equivalenl ID semi-<ii stributed conceptua l models in 

the sense thal they a rc lumped a t thc gri d scale and as sllch not spatially continllolls. Large 

increases in the number of grid points wi ll increase Ihc complex ity and data requirements of 

the model but will not necessa ril y provide s ignificant improvements in the accuracy of the 

ou tput. 

The s pati al resolut ion o f the model will a lso have an e ffect on model paralllcterizatiol1. 

Bevan ( 1989) showed that Ihe expec ted variance in parameter estimates aC lUally decreases 

wi lh increasi ng grid s ize. This suggests that increasing the spat ial resolution could 

introduce diniculties in calibration o f the mode l. and provides a ll arg ument supporting 

spatially lumped modelling techniques. /\ Iso noted by Bevan is the fact that the governing 

equa tio ns tor the phys ical processes be ing mode lled a re based on homogeneous systems at 

10 
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vcry small sca les. 11 is not clearly known whet her these eq uatio ns arc still relevant at grid 

resolutions with spatia ll y averaged parameters. 

1.4 MATIIEMATICAL MoOELS 

Mathematically based strcalllnow models may be either determinis tic. a tt em pting 10 

reproduce the nows actually observed. or Stochastic. reprod uci ng a set of !lows having the 

sallle sWlistical properties as historically observed now records. Each or these may be 

lIseful for Iload prediction. A stochastically based model can pred ict the most likely future 

Ilows condi tioned on the current !lows. This simply takes into account w hat has happened 

in the paSI and hence infe rs what Illay happen in the future: it does not a ttempt to reproduce 

that which ac tually wi ll happcn. A deterministic modcl lIses somc kind o r rUll ctional 

relationship between rain l~111 inputs and stre<lm f1o w OLltPLlts to try 10 predictlile future fl ows 

which wi ll actually OCC Ll I'. An examplc o ra stoehast ic model \voulJ be a lime series model 

"here Ihe model parameters 10 be esti mated arc uUIO-regrcssivc and/or moving average 

components. 

1.5 CONCEPTUAL MODELS 

Conccptual catchmcnt models lI se the concepts or physical models and awly mathematical 

tcchniques 10 reducc the complexity while retaining the characteris ti cs or the physical 

processes which produce slrcam llow. An example or a s impl c conceptual model is thcahc 

model ( Fie ring. 1967). It is a 4 paramctcr state based annua l strcaml10w model with o nly 

onc storage e lemcnt and is represented sche lllatica lly in Figure 1.2. The model proportions 

Ihe prec ipitation input. acculllulatcd in an interval. into three parts. These arc Base tlow 

rec harge (g iven by £Ipa which moves 10 a ground water storage. the second component is an 

evapotranspira tion loss which is removed from the systcm (given by bP/) and Ihe 

Qu ick llow portion \vhich contributes directly to strc3mnow (g iven as (I -a-b)?,). The 

groll ndwHlcr storage conlributes <I proportion to the tolal strc<lmnow so that 

Q, = {I-a-"JP, + c,\ ',. , 

w here S, = .,,',_1 + aPt - CS/.I 

" 
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P, 

bP, ----=1---.!(~I.::":.h~)~I'~, __ ~ 
ill\ •• --_. (), 

LS_·' _'_'_' _'_'_'P_' _'_S_'.'--.J~ 

" 

Figure [ .2: Schematic of the ahc model 

Input to the abc model 

21 3' 4' 
Time 

Fi gure 1.3 : Example input sequence to the abc model 

Flow responses from the abc model 

1\ 

'" \It W 
_ b = 0.75 

_ b =O 

; l~~ ../~ 
0 

0 '0 20 30 40 50 
Time 

Figure 1.4: Generated now responses from the abc model 
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figure 1.4 illustrates the effect ofl bc loss term in thcahe Illodel. The response of the l110del 

to a randomly generated sequence or pul ses. between zero and ten units ( Figure 1.3). is 

plotted for two separate values o f the loss paral1leter b. The other two parameters are fixed . 

There is a clear red uction in the magnitude or the st rcalllllow (as expected) lor the case 

where Ihe loss parameter is used. In addition. there is a slight smoothing effect which is not 

.iust an artifact of the difference in sca le between the two seq uences. It nppcms to come 

from the fact that a re latively larger proportion orlhe rainfall is routed through the storage. 

The obe model uses s imple fo rmulations far each of the Ill,~ior processes occurri ng to 

produce H stream flow estimClle. COl11bi nations of linear rese rvoirs (s lI ch as the cell model s 

10 be introduced in Chapter 2) may al so be used 10 represent ce rtain phys ical components of 

the ca tchment such as groundwCltcr storage and surfnce runoff. Many concept ual 

a rrangel11en ts can be used. Some successful conceptual model s arc more complex. 

Examples of such 1ll0dds arc TOI'MODEL and the ARNO (Todini, 19(6) 1110del. A basic 

descript ion of TOP MOD EL is given below. 

TOPMODEL can be v iewed as a simplified aquife r model (AFOR ISM. 1 (96). The so il 

moisture accounting modu le keeps a record of the depth or the wate r ta ble. The depth is 

expressed in terlll s of the amount o f water needed to bring the water ta ble to the s llfl~1ce. 1 I' 

the waleI' table reaches the surface in a particular grid square. then that area is considered 10 

be temporarily imperviolls and all rainfall input to the area (other than that lost through 

cvapotranspiral ion or interception sto rage) becomes runofr. The so il sto rage is initialized by 

assuming tha t the catchment has experienced a lo ng dry spell. The initial depth of the water 

table can then be calculated ('rom the stream nO\N. because there is 110 direct rllnoff 

occurnng. The strcamtlow in the channel is composed of dircct runoff from the tcmporarily 

imperviolls nrcas and lateral inflow from the so il storage. Routing or the flow down the 

channel is ac hieved us ing a Kinematic or Parabo lic (Franch in i e t al.. 19(6) scheme. 

TOPMODEL can be pars imonioLlsly described by three paramctcrs and a topological index 

(Franchin i et al.. 19(6). 
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,~'III11I11WJ': 

T1w IIIt!iol' physical processes involved ill fhe cOI11'eI'siOI1 or /'(lil1/all fo rllnoll hal'(~ /u.'en 

presented (111£/ /)rief/)' di.\'cl/.\'sed A nUll/her of difJerem II/odellin,!!. plIrodiglllX "mlt! heen 

cOI1lIJ(lrcd and fhe l/oliOIl ot/inear transFer jllllc /ion\' (Iu he expanded 011 ;11 ( '//lIp/er 2; hus 

hecn il1lrodllced. If IS (I C()II(..'('PIIW/ frons/er /llnction type of cOlchllleJ1l Illude!. which will bc' 

joclfssed upon in fhe remainder of fhe lex' nU! loss {:ulI1poncn/. which i.\ pari (4 fhe aht: 

mocJeI discussed in Ihis chapter. hecumes (1/1 inlegrll! pad (!! the catchlllent /1/ot/el 

.forl/lll laled in ('I/(Ip/er J and applied;11 Chapfcrs.J and 5. 
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The IIwt/ellin,l!. strategy (u/opled in (his sflltiy H'lI.\' hosed (}11 fhe choice 0/ (f linca/" Iral1.~ler 

lime/i(}1I aPIJroach rafher tlian u physically hosed calcl1l1/(:11I modd, 7his choice H'O,\' lIIade 

il1 lite il1leresls (~l parsimony as fhe forger number of /wrOlllelers ollen associated 1IIi,II 

phYSical J/1odels COI1 he dU/h.:"I, to esti/J/ate. Jakelllul1 & I/ornberger (/993) provide many 

examples ./i"ol1/ hydrological litera/lire sl.Ippo/'lin,l!. (his premise om/ according /0 Bevan 

(1989): 

"There is a great danger of overparameterization if it is attempted to simulate all 

hydrological processes thought 10 be relevant , and fit those parameters by optimization 

against an observed discharge record .. It appears that three to five parameters should be 

sufficient to reproduce most of the information in a hydrological record ." 

Transfer .Iimc/ions also have reduced data relllliremenfs, for calibration. when cOli/pared 

lI'ifh p/~)lsicalll1(Jdel.\': rc(:()/"{A (~lr{/i,.!/(tll (111(1 sllbscqlfel1l sfreOl/!/low arc s/!1l1dent. In this 

case. II lhere online IIpdafing lI 'illreqllire illllJroving eslill/ates (!/ the I'arallle/ers il1 reallillle 

10 redllce dd/erences helll'een/i:Jrecast and ohserved/loll's il is illlJ)ol'tclI1llhot Ihe I/Iodel be 

cOlllplltOlional/yej/iciel1/. A conceptllaf model hased on (/ linew' fr(/l1.~ler/;l1'IcfioJ1 approach 

!)()s.\·e.\·ses red/lced catcillllenl data col/ecliun reqllirelllenls. has (//1 ae/wllt/agc uver 

physically based //Iodel.\' ill terllls (~l Ihe number (~l Ill/ramcters required and is 

cOllllllltal/(ma//y high~y ejjicienl. 

These ideas will he exlended lI'ifh the il1lrodlfclhm (~la IXlrlicular type oltinear model. Ihe 

Uncal' Reservoir. Effectt'l-·c cOl1cepllwl cale/llllenl model.\· can he designed ./i"OlJl 

cOIll hinCllions (?llinear reservoir .... · mTan,f!,ed il1 serie.\' or paral/eI. The re .... pol1se/;l1u:tions/i)/· 

individual reservoirs cal1 he de./lned in lerlJlx (~/exponel1fiaI IRF"'s.fi·olll which OUfputs can 

he easily calclllaled. The responses ji'ol/1 variolls cOlllbinaliol1s (!f reservoirs are alsC) well 

known, and in many cases can be represenled exaclly hy a gamma /I.II1Cliol1 or in a 

dtt(erence equation form. The response .Iimctions are hased on Ihe cOI1/inuily re/at ion. 

I/Jeanin~ thallhe input la Ihe.\'e lIIodels /IIusl he Ihe ej/eclive rain/cilt (/i"o/1/ Ihe lIIodel 's point 

(?l view) .Ihr the calchmel1l. Hie losses fill/si Iherefore he sepal'olely determined. 
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2.1 SYSTEM TIIEOI~Y 

A sys tem can be defined as a concep tual or phys ical object Ihal produces n response 10 

input. T he irans lonnation or an input to output does not have to be linear in nature. A 

catchment can be considered to be a sys tem that receives input (precip itation ) and produces 

an output (strc3mnOW). If Ihe non-lincarity" s can be cons idered to integrate o ut over tillle 

then Cl catchment may be considered as a lincar system and modelled Llsing a lincar Transfer 

Function (C how Cl al.. 1988). 

If a system operates 0 11 an input r{l) to produce an Olltput q(t). thell the sys tem is linear it: 

f'or rd!} producing Cf lff} and 1"](1) producing (/2ff) i1 follows Ih(111 ) (I) = r df) + r !(f) results in 

'I.d!) = (jiff) + (IJ(I); and c.:r(1) producesClf{l) wherc <: is a constant. The s implest case to deal 

with is thm of a sys tem which accepts a sing le lumped input and produces a s ing le o utpu\. 

In thc case of hyd rology these are: the mcan rainhlll ra te over the catchment nrea being 

considered and the streall1!low response frolll thi s nrea. For tlli s case. the olltPll l to an 

infinites imally short duration pulse or unit vo lume is given by the impul se response 1/ (1). 

The un it impul se is defined as the Dime de/(o function aCt): 

, 
Jt)( / -I,,)dl = I 

6(1- (11 ) = 0 when 1 '#. 1(1 

A general input x(f) can be thought of as being made up of an inlinile number o r we ighted 

della runct ions 

" 
x(i ) = J,,(i - r)x(r)dr 

The impulse response 11(1) is del"incd as the sys tem response when the input x(t) is a delta 

function (Dooge. 1973), i.e when x(l) = 0(1) thcnthe sys tem output (f{f) = 1I (f) . Therefore, 

for a general cont inuolls input sequence X(I) (a series of impulses) the output q(f) is g iven 

by integrat ing the weighted outpu t from each o f the delta functions (s ince the system is 

linear) 
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, 

,,(I) ~ f X(T) II(1 - T)dT 

T his operation is a convol ution o ften re presented as q(!} = x(1) * 11(1}. 

I r wc consider the sys tem to be causa l (output on ly begins a ncr the input has occurred) so 

Ih~t the limits of intcgrnlion call be changed; the response to an isolated input starting at 

lime ze ro can be rep resented as 

, 
q(t) = J.:r( r) If{l - r)dr 

" 
wh ich is the continuous response fo r <I causal. lime invariant. linear system IQ a general 

input x(r). 

The continuous 10l"m o f Ihe convol ution integral is however not very use ful when dealing 

wi th di sc rete data so a discrete version may be developed . A rectangular pul se of Ic ngthd 

l1ncl unit volume can be dclincd to repl.ace the Dirac delta functi on 

1 
1'(1 - kd) ~­

t! 
for kt! < I < (k+ /)t! 

P(! - kd) = 0 for a ll o ther f 

As for the continuolls case. a genera l form of input is g iven by a weighted s lImmati on o f 

pu lses 

• 
,(I) ~ L,(kd)/'(I- kdl 

In place or the impul se response /1 (1) wc define h (t) as the system pulse res ponse fUllctioll. 

Where '1 (/) ::: 11(1) if the input to the system is a unit vo lune pu lse at a rate or lid over a 

finite pcriod cl. In that case. the di screte convo lution equation for the syste m ca ll be wr itte n 

as 

00 

'IV) ~ L,(kdlh(1 - kd ) . -
If wc aga in cons ider a causal system. we can change the limits of the summation to y ield 

, 
11(1) ~ L r(kd)h(1 - hi) (2. 1 ) 

~~ () 
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w here I is the current time and h(l) is the con tinuous systelll pul se response function. The 

output q(t) and the pulse response "(t) arc defined continuously and the input 1'(1) is defined 

in i.I d iscrete manller. 

A discrete formulation of equation 2. 1 IS 

, 
€I , = L')I'I (2.2) 

, ,1> 

whe re f is the time measured in equally spaced interval s. ClI is the system output sampled at 

an instant. 1', is the input pulse and h/ the ordinates 01'11(1) sampled at evenl y spaced di sc rete 

intervals. 

The operations invol ved in predic ting the response from a system w ith Cl known respo nse 

function arc linear. This case or calcula tion (by convolut ion) is what makes system theory 

so attractive. despite its limitations in dea li ng w ith non-linearity (Doogc. 1973 ). 

2.2 SYSTEi\ I RESPONSE FUNCTIONS 

The response of a lin e~lr system to va rious types or input can be charac ter ized by it s 

respo nse runctions. These a rc the Pulse, Step and Impul se responses. For an input of a unit 

vo lume at a rate of l Id over a finite pe riod £I the sys tem output is the d period unit pu lse 

response. The system response 10 any number of pu lses can be found by Cl convol uti on o r 

the input pulses wilh the impulse response functio n or discrete ly by numerical convol ution 

w ith Ihe d iscrete un it pulse response. The input must however be at constant rates over 

interva ls or d. The step response function is simply ,111 accumula tion of the ordinates or a 

constant pu lse response of a unit rate and must therefore reach a maximum value or unity. 

The usefulness of the step respo nse function is in derivi ng pul se responses for different 

period pulses. An impu lse response function characteri zes the response ora sys lcm 10 i.l unit 

input occurring in an iniinitesimally short space or time. Figure 2 .1 (Chow et aI., 1988 : 

p209) illust ra tes these different response function s f'or a single linear reservoir w ith a 

sto rage constant of" 3 time uni ts and a pul se input length of 2 time un it s. The equat ions 

governing the linear rese rvoir' s response will be developed la te r in Sections 2.5 and 2. 6. 
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CHAPTER 2 LINEAR TRANSFER FUNCTIONS 
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/ --Impulse response 

/ --Pulse response 
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Figure 2.1 : Response functions for a linear reservoir (after Chow et al.. 1988) 

2.3 IDENTIFICATION OF RESPONSE FuNCTIONS 

The calculation of system outputs using the convolution equation relies on having some 

knowledge of the system' s response function. Identification of this response function is 

therefore an important aspect of the modelling procedure. The classical approach is: given 

an appropriate input (effective rainfall) and the specification of a linear transfer function 

model, it is computationally straightforward to obtain the output (Direct Runoff) via 

convolution. However the difficulty lies in finding a suitable transfer function model for the 

catchment based on historical observations of rainfall and runoff. The problem of model 

identification is one of deconvolution. If the system were truly linear, the input and output 

known, and error free, then the determination of a unique pulse response function is 

straightforward. 

This could be done in several ways. The most obvious is to solve the set of convolution 

equations simultaneously in reverse to obtain the values of the pulse response function. Let 

r, and q" t = J, 2, ... ,11 respectively be the (known) sequence of pulsed input to and the 

instantaneous records of output from the linear system described in discrete form by hk ; k 

~ O. I •...• p, the System Operation Function (Dooge, 1973 : plO) or Transfer Function 

(Chow et al .• 1988: p203). Then the output is given as for equation 2.2 
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, 
'/ = '"' rh I L..... I I -I 

,,<I 

,-
(I , = L r,h, I 

1_11 

for f :::; /' 

lor , > p 

For the situation where' > fJ lhe upper l il11i t o f the summation is set eq ual to p si nce the 

unit pu lse response has a fini te le ngth . a ft cr which all it' s o rd inates arc ze ro . T he idea is 

then to line! the coeffi c ients or h,. I lo",cvcr 10 reverse th is ca lcuhnio n procedure (a 

procedure o ften ca ll ed dcconvoJ ut ion) is illhcrc llI ly numericall y unstab le. r he coefficients 

o f h, IllLlst be non-negative in order to sat is fy phys ica l constraints since a positi ve input 

cannot result in Cl negati ve fl ow response. T he measurement errors encountered in real data. 

a lo ng w ith the non- lineari ty inhe re nt in the syste m . inva ri ab ly result in negat ive coc llicients 

be ing produced in h, whe n de ri ved by decollvo lul io ll . 

2.3. 1 T [{J\NSFORI'-'[ M I ~TI [OI)S 

T ransform methods (c.g. Fourier o r Laplacc) can be Ll sed to dclcrmi nc Ihe pulse respo nse 

funct io n. A s uita ble tra nsfo rm is fOllnd 1'0 1' whi ch Ihe deco nvo luti o n cq ui valc nt in Ihe 

tra nsfo rmcd space is a s imple o pe ratio n. He nce the Irans lo rm o f the pu lse respo nse can be 

easi ly fo und a nd back trans fo rmcd to find the actual pul se respo nse. 

Thi s can be accomplished using ( fo r exampl e) the Fo uri e r T rans fo rm as fo llows: 

I rJ 1( .... ) and R(s) are respecti ve ly the T ransfe r Functio n ( in the freque ncy doma in) a nd the 

(Fouri e r) T rans form o r the input seq ue nce. Ihe nQ(s) . the estima te or the Trans fo rmed 

OLltpu t (assu mi ng tha t /I (s) is know n) is g ive n as 

U (s) ~ lI (s) // (s) 

A lternative ly if I/ (s) is no t kno \vn. wc can (theoretica lly) o bta in Q(s) from the o bserved 

o utput a nd fi nd 

// (s) ~ f)(s l / lI (s ) 

T his can the n be back- trans formed to o bta in h{l). This is o f eourse all well known ( Dooge. 

1973). 
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CHAPTER 2 LINEAR TRANSFER FUNCTIONS 

Investigation s of transform l11ethods making llse of the Fast FOUl'jet" Trans/()["Ill did not 

produce satisl~lclory result s. because or the instabiliti es a lluded In above. An example o f a 

Transfer Fu nction (TF) round in thi s way is shown in Figure 2.2. also shown is the input 

unci o utput. The rain /llll and subsequent slreamnow response were obtai ned from observed 

data o n the Licbcnbcrgsv lc i. The osc illat ions clearly shown in the laiL of the derived 

transfer function. arc typicall y produced from this kind or analysis. This is the numerical 

instability commonly encolllltered in numer ica l clcconvo iutio n and diffe re ntiation . Note Ihat 

the area under the trans/c r fUllction in Fi gure 2.2 IS::::: 0. 3. Thi s is the ratio of the tolal output 

to the total input. g ivi ng an idea of the proportion of observed rainl~lll tha t becomes 

clTeclivc rainf~dl o n the Liebcnbergsv le i catchment. Trying to find a tra ns fer function which 

rel ates input and o utput directl y. as was done herc. com plicates the s itua tion s ince the 

trans fer function is requ ired to do two things: first it Ill ust convert observed to e ffective 

rain fall and second it must convert thi s effective rainfnll into direct runolf. II lllay prove 

hcneficial to perform these cOll vcr.s io n:> in two separate steps. 
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Figure 2.2: Trnns fe r Function fo und makin g use or Fast Fo urier Trans form s 
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CHAPTER 2 LINEAR TRANSFER FUNCTIONS 

2.4 TilE INSTANTANEOUS UN IT HVOROCRAPII (lU".) 

The Unit Il ydrograph was first presented by Sherlllan (1932). and is defined as the direct 

runoff hydrograph resulting from a unit de pth of excess precip itation occurring over a ii nite 

time period. It is ca tchment specific and Illust be defined in terms of the storm duration 

l'!"Om which i l was deri ved (Chow ct al.. (988). It is I ~lirl y easy to scc that the unit 

hyclrograph is ac tually equivalent to a discrete pul se response function fo r the c~ltchl1lent. 

The U nit I lydrograph requires that the fo llowing assumptions ho ld for the ctlt chmcnl or 
concern 

• 7,le properfies (?lllte cGac.:hlllenf are rime im'oricmf. Th is implies that fo r any identical 

s torms the runo rf response or the catchme nt will be ide nti cal. This properly does not 

ho ld exactly. s ince the past rainfall hi s tory arlccts thc wet ness of the catchmcnt and 

hence Ihe proportion o frullofTwhich w ill occur from Cl givc n :-. tOI"I11. 

• The s!,afial disfrihllfiol1 (~/ raif!R"1 o\'(:r fhe cafchmenf is un{jimn. This rC(luirC111cnt w ill 

11 0 t ho ld even if the catchme nt is subdivided into small sub-areas. However. if the 

number o f sub-i:lrCaS is la rge cnoug h. cach may be trea ted thi s way. 

• The rOil?/ldl inlel1si()I dllring the slOl'1II r emains cOI1.\HlI11 dllring each "iscl'de interval. 

T his is 1101 true. Ilowcver. if the time intervals are short e nough. compared to the 

response time of the individual sub-areas. then th is cOllld be assLlmed to ho ld. 

• 711(' principle (d lineal' .\'//perposifion hold~·. 

T he IU I-I is equi va len t 10 the impulse response of a ca tchn'Cllt. It is a more general fo rm 

than the unit hydrograph, s ince it can be applied to any combination of inputs. 

A derivative of the IUH is the Geomorphological Unit I-I ydrograph (Rodrigucz-lt urbe & 

Va ldes. 1979). T he G U I-I theory attcmpts to make llse of phys ical catchment characte ri stics 

s llch a s stream- le ng th and drainage patt erns to establ ish whm the lU l l should be on 

previously ungauged catchments. Nash and S hamscldin (1998). in a rccen t review or the 

thcory _ suggest a rcla tionship between the complex ity of the drainagc pa llcrn and the 

skewness of the resulting lUll but conclude that thi s re lationship is untested and that the 

scale of the IUI-1 has nOI been dete rlllined from geomorphologicul attr ibu tes. They went 011 
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10 s how that a linear combination ofGalll ma functions could equally \Veil subs titut e [-or the 

G UI L These arc convolutions of exponential IRF' s w hich cOllle from trees of cascades of 

lincar re servoirs. They arc strictly only applicable to direct funoff. Thi s sti l l Icaves the 

problem o r determining the effective rainlaH input [0 the system . 

2.5 RrSI'ONSE FUNCTIONS OF L I NEA I~ STOI(AGE ELEMENTS 

Each linear reservoir relates storage (,\') 10 o Ulflow ((/) us ing the re latio n ....... = kq where k is a 

constant. The impube. SICP and pu lse response functions can be derived [i·om Ihis relation 

and the continui ty eq uation: 

dS 
- = /(!) - q{!) 
ill 

w here 1(1) is the cont inuous input as a function oftimc. 

Following the development of Chow 1.:1. al. (1988) the (unit) Impulse response 11(1) of a 

s ingle reservoir is thus round to be 

I ' 
If(t) =-e ' 

k 

The Step response g(t) is the response o r the reservoir to a con ti nuous input at a unit rate 

and is 

, 
g(I) = I - e ' 

The unit Pul se response function 11(1) gives the response o r the reservoir 10 an input or unit 

amount over a time period /).1. Thi s implies that the input is occurring at a constant intens ity 

of 1/6.1 during the time period frolll 0 to /).1 and is zero e lsew here. The pulse response 

function h(t) is 

I ' 
h(1) =-(I -e ' ) 

t;1 

I \1 - I 

17(1 ) = - le '- lie ' 
t;1 

~, 

h(t) = /,e ' 

for o < t =::; llt 

for t > Ilt 

w here r is a constant. Examples of these for k = 3 arc given in Figure 2 .1. 
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T his treatment can be general ized so that Cl number of reservoirs can be combined in ser ies 

or parallel to produce a sui table lincar catchment model. The pul se response functions frolll 

the individual elemental storages arc com bined in Cl ca tch ment model pul se response 

function. which Illay consist of a larger number of ord inates than the num ber o r different 

storage res ponse parameters delini ng the model. There is thus a hidden structure in th is 

type of model. as well as parsimony. with Ihe di stinct advantage Ihal a ll tile ordinates o f 

h(k) arc guaranteed non-negati ve. 

2 .() LINEAR RESERVOIR MODELS 

A number of different conceptual models mak ing lIse of linear reservoirs have been 

proposed and llsed success ful ly. Formulations fo r various arrangements of reservoi rs have 

been deve loped. Nash (1957) sugges ted that a catchment could be represented by a series of 

11 linear reservoirs wi th ident ical storage co nstants k. The output from the catchment is the 

convolllt ioll of the input to the bst reservo ir in the cha in with it s impul se response fUllction. 

Si nce the input 10 thi s reservo ir is g iven by the impul se response of the previous reservoir 

in the chain. it is clear that the IOlal impu lse response of a ll the reservo irs is the result o fn 

success ive convolutions of the reservoir response function. T he resulting general impu lse 

response funct ion fo r Ihi s a rrangement is 

1 (/)"' - ' 
1/ (t ) = -ckco1-::-( ,-:-, ) k e I 

(2.]) 

The function 11(/) is the gamma probability d istribution fUJlction. r (n) is the gamma 

function: its valucs C~1I1 be read from standard tab les. r(n) is equi valc l1t to (n- I ).' for in tege r 

va lues ofn. 
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Figure 2.3: Impulse response functions for a single reservoir and cascades of equal 
reservoirs (with k = 15 time periods). 

Figure 2.3 shows the effect on the system impulse response function, of routing inputs 

through a cascade of equal reservoirs. These are impulse responses for the Nash (J 957) 

linear cascade shown in Figure 2.4. The most striking difference between the three IRF' s 

shown is the lag time which is introduced between the start of the response and the peak. 

For a single reservoir there is no time delay. with the reservoir instantly filled at time zero, 

the response begins immediately. The peak response occurs at the time when the last 

reservoir in the chain has its maximum storage, hence the peak response for the case of a 

single reservoir is at time zero. As more reservoirs are added to the series, the peak occurs 

later. There is also an attenuation effect as the number of reservoirs is increased. The 

magnitude of the peak is reduced and the mean length of the response (of significant 

magnitude, since the response is infinite) is increased with the number of reservoirs. By 

introducing a lag, and smoothing the input sequence, it is possible for realistic looking 

hydrographs to be produced when routing «noisy" rainfall inputs through arrangements of 

linear reservoirs. 
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, 

ch--GJ------CQ ----------[Q-------GJf---~~ 
1 2 3 n-1 n 

Figure 2.4: The Linear cascade (Nash. 1(57) 

Dooge (1959) presented a di stributed input cascade model. This formulation was dirrerent 

from the Nash (1957) linear cascade in that it divided the total effective input eq ually 

between each reservoir in the chain . Figures 2.4 and 2 .5 illustrate the dilTcrcncc between 

the linear cascade and the dist ri buted input cascade. 

1 2 3 n-1 n 

Figure 2.5: The Distributed input cascade (Dooge. 1(59) 

Linear reservoirs can be used slIccess full y to produce sem i-dist r ibuted ccllmodels (Pcgram 

& Diskin. 1987a). This type or model treats the ca tchment 10 be 1l1odclcd as a number or 

cells. Each cell is a sub-catchment of the larger catchment and the divi sions a rc ll sllal ly 

made along wate rshed boundaries. The ind ividual ce ll s are then treated as lumped models 

each represented by an arrangement of linear reservoirs. The input to each ce ll is lI sually 

the e.ffeclive rainfall for that parI of the catchment and the outputs of upstream ce ll s. Thi s 

implies that some kind of loss function or model is app lied to the observed rainfall in order 

to calcula te the ~t!eclive precipitat ion. It is interesting to notc that the d istributed input 

cascade (Dooge, 1959) is in effect a cell model with a s ingle reservoir to represent each cell 

and an assum ption ora unilorm rainfall distribution over the catchment (Pegralll & Diskill. 

1987a). The inputs to ench cell (lre the dist riblllcd ra in fa ll inpul and the output I"rom the 

upstream reservoir. A s imilar cell model presented by Diskin & Simpson (1978) consists of 

a cascade of pairs of unequal reservoi rs. In this model. each cell cou ld receive a different 
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ra inlal l input. equal to the effecti ve rainfall occurring over its area. Laurcnson ( 1964) 

presented a ce ll model with a cascade of non-linear sLoragcs. each receivi ng as input the 

ra infa ll excess fo r the cel l and the output fromlhc upstream cell. Pcgram & Diskin (\987a) 

ci te H model (Disk in, 1(84) in which the chan nel input IQ each ce ll is rouled thro ugh a 

single reservoi r and the rai nlail input through a pair of unequal reservoirs. The combined 

Olltput ji'OIll these i s then the c hannel input 10 the nexl ce ll in the series. 

The Matlilold cclllllodcl (Pegralll & Diskin . 1987:1. b a nd c) is s imilar to a di st ri buted input 

cascade with the precipi tation input to each ce ll fi rst routed th rough a single reservoir. Each 

ce ll C~l n be though t o r as having Cl sur tacc ru noff c lement and a channel routing e lement. 

The surr .. ce element for each cell receives .. port ion or the d istributed input for the 

catchment. The resulting output from the surrncc c lement is then routed by a channe l 

clement. \\ hich h;:ls .. response parameter proportional to the di stance or the cel l rrom the 

catchment outlet. The response par::II11 cter ror the sllr l ~lee clement is assumed constant 

th roughout the c~ltc hment. but the inpulto each cel l is scaled by the proportion o r its a rea to 

the total catchment area. 

, 
~ 
c 

, 
~ 

N········· ·· ····· , 
c 

+ 

Figure 2.6: The Manifold ccl l modcl ( Pegram & Diskin. 1987a) 
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,)'11111I11ary: 

This chap/er introduced the COI1CCP' (~l {J linea/' frtll1.~ler .lime/ion and il's Ilsex .for 

determilling the s/l'etlll!/IOll'ji'flllI a ("O(cIlIllCI1I. rITe .'ysfem response/llnClion CUll he IIsed as 

1)(11'/ (~r a parsill/oniolls cOl/cep'l/al G(llchlllCnf model. with cOI"II'o/ul io/1 Cl/lw/ion,- pr()\,iding 

II (C()IIIPIlf(jli()I1{J/~)1 efficient) procedure jiw ca/culaling fhe -\)ISfCIII OUfput .from a gil'cn 

seqllence (~lil1pllls. These ideas 1l'e/'c eXTended lI'ilh the inlrodm:fio/1 (~lll purliclf/a,- 'ype (!/ 

lineal' /1/odel. Ihe Linear Reservoir. 

~I.foclive cOl7cepl llal catchment II/odels ClIn he deSigned ji'OIll c(}lIIbinOl iol1s (!l linear 

reservoirs arranged in series or paral/cl. The r e.\jJol1se .lime/ions ji)/" individual reservoirs 

are defined ;11 lefllls (?I exp(}nenriaI IR F"s./i'ol/1 which Oll/P"ts can he easily calclIlated The 

rcspolIse,\' ./i'oJ/l variolls cUlllhinLlli(Jns (~I re,\"(! /"I'uirs are also well known, Lll/d ill lIIany cases 

CO/I he represented exac/~)' hy a gall/ilia ./ill1c1iul1 or ;n (f difference equation ./iml1, The 

re.'J)()fl.w: /ill1C1iofls ore hosed on the COl1lil1llily relaliol1. meaning Ihal the inpul 10 these 

lIIodels I1Il1sl he the e./lect h'e r({;I?lcllI (1;"011/ the model 's po; nl (~/ !'iew) ./in- / he catchment, The 

losses II1l1sl therejim: he sepllrafe~) ' deterlllined. 

Linear reselToirs can he used fo develop sellli-diSlrilmled eell models. The individual cells 

ore I/"eoled as IlIIlIpet! areas //Iodeled hy an arrangement (~l linear reservoirs. '/111! 

parsimonio1ls ... ·,rllcllll"e (~lfhis kind (~llllodel is altroctive when parameter liffil1,!!. processes 

are considered. III ('hopter J, the ideas presenled hy the Manifold mudel will he extended 

to a J reservoir./ced-j()I"lI'al"(/ //Iodellha! ix sellli-dislri/Jlffed il1 1Ulll/re. 
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Discrelely c.:oincidenf d!fli.:n:/1ce equal ion .thrills (~l continlfous linear lIIodels are a 

convenient l1'oy /0 handle the discrete nO/lire (!l/~) 'dr()l()gic(l1 dala hecallse they have a 

sl/wll nllmber l?l (erms. (117£/ Iheir .f0rl/llllo/ion as a conl/ollllion lends ilsC!110 high '\JJeed 

cOlllp"tatiol1. The dd/'ercnce eqlfalion .!iwl1Is tleriFed here (lrc similar in appearonce fO (he 

A IIlo-Re}!.ressivc il'/OI'inJ!, A l'croge (11 R MA) lime series model de.w.:rihed f~)' Box (/17£1 Jenkins 

(IV?()) . I/oll'cvcr, fhere is lIjill1Cliol1ol relafionship helween the linear reserFoir parameTers 

and Ihe A R MA coej/lcienls. which gl/(l/"ol1fees slallona,-;Iy. 7111: discreleiy !:oincidem .form 

./hr Cl general 3 reservoir /eedjiJI'1FOrd cell II/odel is derived and .\'/U1I" 11 to collapse ((J 0 

mIll/her (d·particlllar/orll1s. The IISC /~f t/iis model 10 represent a large catchment consisting 

1!/"1II0IlY cells will he t..!escrihed in (·lll.Ipler -I. 

Thc /1/odel parolllc/er./iltin,l.!. process required fhe IIse (!lun oplimi=oliol1leclmiqllc slliwhle 

./ill" lIIil1ill1i=Olioll (?/"a./iI11ClilJl1lhofllloy exhihil highly non-linear hel1aviolfl". j\i{ol1le ('{//"/n 

leclllli(llIeS are employed to el/S/fre Ihal a glo/Jol minimul1I is ./iJllnd. A l1I()d[/fed simplex 

search /"OIllinc il/corporaling lite 1t4ell"opolis 0/gOl"i111l11 find IIsing A40llle Carlo fechniqlles 

was IIsed as fi1e./imcfiol1 lIIil7ill1i::.aliol1 loo/. A Icasl S(lflw·e.y./illin,l!, criterion was flsed as a 

measure (?l!lte "goodness·· oj/if helll'een fhe ohserved 011£1 ("aleulafed hyd/"og/"flphs. 

3.1 DIFFEll.CNCE EQUATIONS A N D TIME SEIH ES ANALYSIS 

Var ious 1l10dels for Ihe analysis of discre te lime ser ies were described by Box and Jenki ns 

(1970). These types of model had in facI been npplied to Hyd ro logy s incc the introduc tion 

or the un it hydrograph (Shcl"lllan. 1932). which is simply a linear filter translormi ng excess 

rainrall to direct runofr. The di stingui shing feature being that the input to the Box-Jenk ins 

ARMA-models is assumed to be whi te no ise. whereas the input to the hydrolog ical linear 

models is e rfective rainf~lll. Quirnpo (1967) used a movi ng average model to generate daily 

stream nows and l<ller (1971) showed Ihat the autocorre lat ion fu nction 101' white noise 

rOLlted through a single linear reservoir is Cl lirst order autoregressive process. Q'Conno r 

(1976) sho\-ved tha t cascades of linear rese rvoirs could be modelled , in some cases. by 

fIlllo regress ive and ARMA models or tile ty pe described by Box and .I enkins. Earli e r Spolia 

and C handc r ( 1974) had introduced 11 simi lar ARMA formulat ion for cascades of reservoirs 

with the particular case of two reservoirs in series bei ng presented in detail. They had also 

established that a st ructural relationshi p exists between the ARMA coefficients and the 
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reservoir parameters. Pegram ( 1980) derived an ARrvtA representation for a general multi­

laye red ll1ulti -c0111parlmenta l rese rvoi r model. using a State-Space appro<lch. lie furt her 

est imated the effective input 101' the Illodel from observed strC<lm!low records. O'Canner 

(1982) provides a transfe r function app roach for dete rmin ing the cl iscrctcly coi ncident 

ditTcrcncc equation for ll1s of con ti nuoLls parametric mode ls such as the Nash ( 1959) 

cascade. J n the ir int roduction or Ihe manifold cell model. Di sk in & Pcgram ([ 987c) deri ved 

the discretely co incident pscudo-A RM A form f'or two unequal reservoi rs in series. 

3. 1.1 AUTOREGRESSIVE Mc)[)u .s 

A utorcgrcss ivc ti me se ries mode ls make lIse or a lincar com bination or past values of the 

process. to be model led . as a means or predicting future va lues. Followi ng Box and .lenkins 

( 1970) trea tment. let =1., fo r () S i S 11 be the sampled v.lllles of an assumed sta tionary 

Gallssian prm;ess a t equally spaced temporal interval s. Further lel y,., be the dev iatio ll s of 

the process from il's (stationary) mean. The process may then be mode lled as an 

A utorcgress ive process 01" order p. wi th the fol lowing form 

Where the (A's arc the auto regrcssive weights and (/, is a random shock te rm. The shock 

term is drawn from a Normal di stri bution assumcd la have zero mcan and a variance w hich 

Illust be est imated from past observa tions of the process to be modelled. The introduction 

oflhe backward shi ft opcrator B. for which /J.VI = )'1_1 and f1YI = .)it-i. a llows the A R model to 

be wri tten in a more condensed form as 

I/>(B)" = " , 

where the AR operator is 

1/>( B) = I - 1/>, B - t/!, B' - ... - 1/>,.13" 

3. 1.2 MOVIN(I A V I ~ I{"CiE IVIUI)ELS 

A moving average model defines the curre nt va lue of a process as 11 linear combi nati on of 

w hite no ise shocks a,. Thus a Moving Average model oforderq is 
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\vhe re the mov ing (I veragc we ights Oi arc nol constrained to be pos itive nor S LlIll to uni ty . 

As was the case for the A Ul oregrcss ivc model , wc can de fine a Moving Average operato r 

0(13) ~ 1 - (), /3 - 0 , /3 ' - .. . - 0" /3" 

sllch that the Moving Ave rage model may be w ritten in a conde nsed fo rm as 

Y , = O( lJ)o, 

3. 1.3 C()I'vIIJ INAT1()N Ai '" I ORE(iRESSIVE-MoVI NCi A VERAtiE M ODEI .S 

T he specification o f a mixed A utorcgress ivc Mov ing Average (A RM A) model IS g iven as 

fo llows 

T his is an A RM A ( p.'!) process. It fo llows eas il y ihat equa tion 3. 1 call a lso be expressed in 

te rms o f the A uto rcgressivc a nd Mov ing Average ope rato rs. ue fincd earli e r. g iving the 

(,;o ndcnscd form ror a gene ral A RM A model as 

~( /3)y, ~ O(/J)a, 

Box and Je nkins ( 1970) a lso show that Ihi s fo rm is eq ui va le nt to a tra nsfe r func tio n mode l 

);_1 1-'+ , \' +,v + 
,- ' "./\ , ' 1./ ,-I ' 2.1\ , - 2 ... 

w he re VI is the response of a syste m 10 a seq uence of inputs XI. X,./. XI_1 .. , a nd the we ig hts 

VI! . VI . " 1 .. . re present the im pulse response func tion descri bed in C ha pter 2. 

3.2 DISCRETELY COI NCIDENT DIFFERENC E EQUATION FOI~ I"I S 

The di scre te ly coi nc ident fo rm of a continuous mode l re fers to a discre te mode l formulation 

that is exactly coinc ide nt w ith the continuous fo rm, at di screte sample po ints (O 'Connor. 

1982). [n the pa rti cula r case o f linear ce ll mode ls, the combinatio ns of (continuous) 

expone nti al s, w hich de fine the pulse response functions o f an arrangeme nt o f li near 

rese rvo irs, may be exactl y re presented at di scre te tilll este ps by diffe re nce equatio ns (Spo lia 

& Chancier. 1974 ; O 'Connor. 1976: Pegram. 1980; O 'Connor. 1982: Di skin & Pegram , 

1987 ; .Iake man & Ho rnbe rger, 1993). The fo rtn of these diffe rence equat ions is sim il ar in 

appearance to the ARMJ\ time seri es mode ls of Box and .I enkins ( Equation 3. 1). The 

fo rmul ati on is as follo ws 
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I' ' I 

)" = L I/I'YH + I D/,t, r-I 
, 1 /LU 

\vhcrc the x,'s arc the pulsed railll~lll inputs \0 the model. t represents the lag between the 

precipitntion input and the time a t which it produces a response from the model andy, is the 

resulting stream fl ow response. 

3.3 FOI:tJ\ I ULATION OF A MOI>EL FOR A S l i~'GLE C ATC II MENT CE LL 

The feed forward ce ll model com pri sing three lincar rese rvo irs. presented here d iffe rs from 

the specifica tion of the ce ll models discllssed in C haple r 2. The mode ls previously 

mentioned a re all conserva ti ve in nature . meaning that the vol ume of output must equal the 

volume of input. as no losses can occ ur in the system. The spec ifica tion g iven he re allows 

losses 10 ocellI" from any or all or the line,lr rese rvo irs in the cOllceplllal <IIT<lngcment 

comprising each cd l. Essentially th is allows a si ngle trans fer function ( in difference 

eq uation form) 10 represent the entire rainfall 10 stream flow convers ion process. It is 

suggested that thi s a pproach is novel. 

The exponent ia l n:.tture of the reservoir pulse response func tion results in a loss removal 

which i ~ al so exponent ial. The majority or the loss model s described in Chapter I have 

formulations t hat a rc based on an exponential decay lerm: these modc ls a ttcmpt to mimic 

the phys ical processes or inliltra tion. [t follows that a llowing the losses 10 "drain" from the 

rese rvo irs is analogous, in some sense, to Ihe physica l processes of inli lt ration thought to be 

the major contributing fnc tol" to losses. In this nppronch. as in Fier ing'sahc model (Fie ring, 

(967). Ihere is no need fo r Cl separate loss model ID es timate the effect ive rainfa ll ; input 10 

the mode l is s imply the observed (pulsed) rainfa ll at nn appropriate [ago Thi s ex tension to 

the linear modelling approach whi ch has becn a core c lement in thi s s tudy, makes H usefu l 

addition to the modelling armoury. 

The discrete ly coi nc ident A RM /\ fo rmulation, 101' the gene ral linea r three reservoir reed 

lo rward mode l \"" ilh losses (F igure 3. 1). is determined rollowing Diskin and Pegrarn 's 

(1987e) treatment to r a cascade of l wo unequal reservo irs, and was developed s pcci li ca lly 

for thi s study. 
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l' I' t.'cipi taliOIl 

,", 
L(lSS Loss 

~~ 

s, 
S ./k~ 

S, lk, S./k .. 1-==-* Stl'~lIlIInOW 

I,oss 

S,/I", S ,/k , 

Figu re 3.1: 1\ genera l [inc<l1' 3 reservoir Iced forward model w ith (poss ible) losses /i'om 
each reservoir. 

The (continuous lime) S taLe-Space representation for the arrangement in Figure 3. 1 IS g i ven 

hy the following set ofdirrcrcnlial equations 

,\,,(1 ) =_[_1 +_1 + _1 ) .I" ,(I)+I"(/-T) 
kl k1 k ~ 

" 1 [I I) ", , (1)= - "' ,(/) - -+- ", , (I) 
- k, k l k

f
• -

,\" , (1) =_1.1",(1)+_1 S, (I) _(_I +_1 ) .1", (1) 
k ~ k l - k! k7 

where '~',(/) is the time deri vative of the storage in the ;'111 reservoir al time I. S,(I) is th l..! 

sequence of sto rage's in the ;'lh reservo ir. the k,'s arc the response constants 10 1' each o f the 

reservo irs and r{l-r} is the lagged (by r irllc rva ls) sequence of prec ipitatio n inputs 10 the 

system. The resulting strcamllowY(I) is 

y(1) = _I .1", (1) 
k, 
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To s;mpliry notation. le t a = I /k, . h = Ilk) . C = I l kJ .d = I l k". e = I/k~ . ./ = I l k(j and 

g = / Ik -. The der ivation or the ex tended model fo llows Di skin and P!.!gr:ull ( 1987c) closely. 

Stmc Eq uations: 

S,(I) = - (o + h + (.')S ,(1) + r(l - r) 

S, (I) = as, (I) - (c + /).\' , (1) 

S , (I) = hS, (I) + cS, (I) - (d+g).) , (I) 

)'(1) = dS, (I) 

These equations can be written in matrix lorm. omitting the integer hlg r (f<u' simplicity) 

,\ '(1) = I IS(I) + IJ /'(1) (3.2) 

.I'(/) = C ' S (I) (1 .1) 

where 

[

- (a + h + e) 

.-1 = (I 

h 

- 1('+ f) 
- (£I + gJ (' 

fi =[~l and C ' =[0 0 dj 

Solving equation 3.2 for 5,(1) and substitu ting into eq uation 3.3 y ields 

y(l) = C ' {e ,(,' ' .)(1 ,, ) + Se 'I' ,,' fi /'(a)da } 

'" 

No\v making the assumption of pulsed input I"k and wri ti ng in a d isc re te fo rm (i ntroducing 

some new notation) 

" .<" A = e I \l S ._1 + P r A f e r(V tt)da (3.4) 

" 
(3,5) 
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( '/ (: ' J', = ,1, (3.6) 

Int roducing the backward shin operator B where 115·;/.; = 51·~.' and /J',"it = '\k~1 allows eq uation 

3.5 to be rewritten as 

(i - 0/J)S, ~ HfJ r, 

Combining equations 3.6 and 3.7 

Us ing the fllet that 

equation 3.8 hCCDIllC$ 

)" ~ (i - 0/Jr' HfJ r, 

(i - 0Bt' ~ "dj(l - 0B) 
del(l - 0 B) 

del(J - 0B»)', ~ C ' adj(J - 0 B)/IfJ r, 

(3.7) 

(3. 8) 

(3.9) 

Equation 3.9 is in the form ,pfB)'/.; = O(J)jr/.; i.e . in the form of a standard ARMA equation . 

Wc Inust now solve for the Autoregrcssivc fjJ(1J) and Moving Average ()(/J) opera to rs. 

To evaluate r/>(IJ} note that Ci == e 1\' call be wr itten as G = (Je 'I\' U I w here VDU I is the 

canonical decompos ition orA and D is the diagonal mat rix o f c igc ll va lllcs A.iC r A. 

The it, a rc the so lutions to det [iU - A] = 0 where 

[

it+a+h+t' 

2/-A= - (I 

-h 

A.+c+( 

-c 

solutions arc AI = -(<I+b+c). A2 = -(c+O and AJ = -(d+g). (3.10) 

It follows that the mat ri x Q = c/'\/ has only diagonal elements Cf , = c ,,·\I . so that wc can 

now write 
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Onc c lement in each co lumn of U CWl he chosen arbitrarily (c.g Fra lc igh & I3cauregard. 

1990) 

therefore 

where \I = (lilt 1111 113Y. WC solve for the unknowlls using the f~lC I that [A - A/ I ]/1, = 0, 

where 11 , is the r Ill column of U. l3y successive ly substi tuting the /t,"s wc can obwin the 

fo llow ing solutions for the unknowns 

(3. 11 ) 

Solving for (i 

where 

(3. 12) 

The AUlorcgressive operator «13) becomes 

,p( E) ~ dct(l -GB) ~ (l-q,8)( I - q, B)( I - q ,8) 
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To lind 11 wc note that the defin ite integrallor the exponential ora l11atrix is given as 

" f e ,(vII)da =U/J ' [e \,,,- ,, \II, ]u I (3 . 13) 

" 

w here U and U ' are as before and D-/ is the inverse or the diagona l matri x of A,' S. It 

foll ows from 3.4, 3.5 and 3. 13 that 

11 = LID ' [Q-/ ju ' 

o III itt ing the tedious algebra 

where 

also 

HfJ = 

Introducing some add iti onal notation for s implification . the Mov ing Average operator fJ(/J) 

becomes 

0(8) = C ' aJj(/ - CiIJ)HfJ 
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\\ here 

(3.14) 

,.(",- 1) 
Y~ 

X, 

Fin;d ly the clilTcrcllcc cqu .. ltion representa tion of the model is [nunc! by expandi ng eq uation 

3.9 and apply ing the A R and MA opermors. this hns similar lonn to an A RM A (3, 2) model 

\\ jlh 

0" ~ (a - S -y)d 

0, ~ [a(I/, + " ,) - " ('" + ",) - y(", + '/0 )}/ 

0, ~ -(a",,,, - Sq,,!, - Y</I ", ~I 

where q, for i I. 2. 3 arc (Scc equation 3. J 2) given as: 

(3.15) 

and where a, t5 .. nd yarc given above in 3. 14. Where 111/. IIl,. 1111 and v fi re (Eq uation 3. 11 ) 

given as 
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and . final lY_A, IQI' i = I . 2. J are g iven as in 3. IO : 

I~ I = -(a+ b+c) 

1.., ~ -(c+ l) 

/", = -(d+g) 

The coe rfi c icnts fA and 0, arc dete rmined entirely by the values or the reservO ir respo nse 

parame te rs (a. h . ... g ) and automaticall y sa ti sfy the usual s tability conditions required for n 

determini sti c model (that the sign or the eigcllvalucs is posi ti ve) which is ak in 10 the 

s lationarily conditions <lssocialcd w ith ARMA models. A lthough the ex press ions fo r the 

diffe re nce equation parameters are quit e complicated. they only need to be cal c ulated once 

and aftcr thi s do nol change. during the computation o f a gi ven response. In a true 

s tochasti c ARMA mode l the 00 te rm is equal to onc and the inputs /', are re placed by a 

w hite no ise process. This diffe re nce equation (3. 15) provides the response from cach cell. 

with the total c<llc hmc tll response be ing a linear summatio n o f these o utput s; as w ill be 

explained in C hapter 4. 

3.3. 1 F UNCTIONAL R E:LATIONSl lIJ' BJ':T WEEN LIN EA R RESERVOIR 

ANI) ARMA PA RAMETER S 

The differe nce equation coe ffic ients a rc defined In tc rms of the rese rvoir response 

paramcte rs . This runctional rc lationship bet\vecll the linea r reservoir and dif'fere nce 

equation pa rameters e nsures that the model produces a sens ible pulse re sponse func tion 

regardless of the c ho ice of parameters . The rese rvo ir pa ramcte rs can be c hosen e nti re ly 

independently of each other and the resulting pulse response is uncond it ionall y s tab le (non­

osc illatory) and non-negati ve . 
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It is the State-Space formulation that provides these attractive properties. since no out fl ows 

can occur li"o l11 an empty rese rvoir. In this way. it can be guaranteed that negative nows 

will not occur. The derived diflc rcncc equation torm (using equation 3. [ 5) of the model 

corresponds exact ly to the State-Space ( from eq uation 3.5 and 3.6) form as shown in Figure 

3.2 for an example where k, = 10. k] = 29, k./ = 13. k" = 14, k5 = 106
• kr, = 25. k7 = 10(, and 

the 3 reservoir ccllmode l is fed by a unit vo lume pul se w ith a duration often tilll e periods. 

0 .025 

0.02 

0.015 

0.01 
., 

0 .005 

o 
o 10 20 30 40 50 60 

Time 

70 

-- State/Space 

o ARMA 

80 90 100 

Figure 3.2: Compari sons ora pulse response fUll ction f'or the State-Space and pseudo­
ARM" representations orlhe 3 l inear reservoir model 

3 .4 STAOILlTY 

As discussed ea rli er the three reservo ir model has an unconditionally stable and non­

negative pul se response fun ction. However, thcre arc stability problems wh ich occur when 

trying to lit model paramcters ll sing the dilfcrence equation fo]"m of the model. There arc 

two cond itions to gaur,:Ul lee stabilit y. first the three starling val ues ll1ust be sen sible ( i.e the 

model should be able to reproduce them) and second if" an y o f the s tarting va lues are ze ro, 

then the input at the corresponding timcpstcp should a lso be zero. 
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The condition imposed on the rainfall wi ll be di sc Llssed lifs!. [I S it is eas iest 10 understand. 

B y examining eq uation 3. 15 it is c lear that an immediate response to rainfall input occurs 

when 00 is non-zero. [I follows IIUlI fory/( == () r k_r must also be zero. The starting va lues 

should be parI ora seque nce of outputs produced (or poss ibly produced) by the mode l. 

T he A Lltorcgress ivc operator requires the three previous values 01'.1'1 in order to ca lculate the 

curren t va lue. In a filting proced ure w hich attelllpts 10 match Ihe mode l output to an 

observed now hydrogra ph. by adjust ing the model pa rameters. it makes sense to se lec t the 

initial starting va lues to match the observed fl ow response. In so doi ng wc hope to start 

w ith thc ca tchment in the cor rect sto rage state. The diffi c ulty is that we are reprcsenting the 

catc hme nt with a model whic h by de finiti on is a simplification of lhe phys ical catchment 

processes. The sequc nce of nows produccd by tbe catchment sa ti s fi es the principle of 

continuity and cannot ha vc rcsulted (i'om anything bu t [t positive s toragc ill thc ca tchme nt. 

The onl y way for the model 10 reproduce exact ly thi s sequcnce of flows may be by 

a ll owing a negati ve s tarling storage to occur in onc. or marc. of the rese rvo irs. A negati ve 

s torage is a physica l imposs ibility. a nd the full S tate-Spacc equations do not allow sllch a 

s ituation to ar ise. The pseudo-ARMA formulation o fthc model is exac tl y equi va lent to the 

Sta te -Space re presentation. but the princ iple of G IGO (Garbage In G arbage Out) applics . If 

the model is s ta rted with a scquence of valucs whic h it could not have produced in realit y. 

then the resul t ing ou tput w ill ve ry likely be unstable. 

Having establi shed that it is the starting va lues produci ng the s tab ility problems. the 

apparent solution is to determ ine the rel ations hi p betwee n success ive va lues produced by 

the mode l and simply se lect starting va lues whic h conform to these s pecifications . Stability 

can be g ua ranteed fo r the di rrerence equation form o f 3 cascade of two unequal reservo irs. 

such as that deri ved by O 'Connor ( 1982) or Dis kin & Peg ram ( 1987c). Exam ining the A uta 

Regress ive po rtion of the difference equat ion form. and constraining Yt 10 be non-negat ive 

can establi sh the cr iterion for s tabil it y. The result. g iven in Appendi x A. is that the ra tio or 

success ive va lues must be suc h that 

y, , " -- >e ' 
Y'~l 
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where k, is the longer a/" the reservoi r response times. By ensur ing that the starting val ues 

se lected from the obse rved flow reco rd meet thi s c r ite rion it is poss ible to g uarantee a 

stable two-rese rvoi r Illodel. regardless of the parameter va lues c hosen. 

The three reservoir model needs three starling va lues tQr its pscuc!o-ARMA fo rm. It was 

not poss ible to establi sh a re lationship between the th ree s tarting v<ll ues and the va lues or 
(j,. as was done fo r the Iwo rese rvo ir case. Until such il relationship can be de te rmined. the 

only way 10 nbsolulcly guarantee stability of the model is by using the State-Sp<1ce 

formulati on with positive initial storagcs. This will entail ex tra computing lime during the 

p<:,ramcter fitting procedure. as a record of the previous s torage in each rese rvo ir must no\V 

be maintained. During ca libration. there lo re. the calculat ion of the ne\V storage in each 

reservoi r must no\V take the place or the s im ple diffe rence equat ion computations . 

Neverthe less the pseudo-ARM;\ lormulation \Viii still be used in an operational s ituation 

w here the paramete r set has already been se lected. The starting values can be set to zero. 

the equivalent of Cl dry catc hmenl. From thi s s tarting posi ti on the Illodel can be run in 

fo recast mode. acce pting the most recentl y observed rainfall inputs and projecting a 

poss ible future sequence or fl ov."s. 

Figure 3.3 shows the kind of unphys ica l re sponse that can result from the wrong c ho ice or 

starling values. The plot in Figure 3.4 shows the response 1'01' the S<l lll e parameter se t with a 

d iffere nt choice or s tarting values. Much explorat ion of the phenomenon reveals that. the 

negative response appears to OCCllr when the stHrting val ues are suc h that the second 

deri vative. or tile ollt puty/ w ith respect to time. d
2

;, is negative (around a local peak), and 
<il 

the curvatu re is g reater than the Illodel cou ld have produced. I f the second de rivative is 

posit ive (around a loca l trough). the magnitude of the curV<lture has not becn fou nd to havc 

an effect on the model 's s tability . This apparent ly anomalous s it uation does make phys ical 

sense. The relative val ues o r the model response parnlllc tcrs dclerm ine the magnitude of the 

curvature produced once inpu t to the Illodel has stopped. A ny addi tional input occurring at 

or near the peak response timc can on ly result in a reduction in the c urvaturc. It is therefo re 

essential that s tarting va lues chosen near the peak response do not ha ve a curvature g reate r 

than the minimum a llowable. Inputs occurri ng on the recess ion limb of the response w ill 

tend to produce a sharp upturn (sec the pu lse responscs in Fig ure 3. 8) s ince the model has 
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an immediate response to input. as described earli er. Thus. choosing start ing values which 

arc 0 11 a sleep upturn is less likely to produce a negative response. A simple way to avo id 

the problem o f instab ility is to se lec t the starting va lues ormodel fl ow (not storages) from a 

relati vely !lat porlion of the hydrograph. or at the sta rt or thc risi ng limb. In l11 os1 cases. thi s 

crite rion has been surtic ic l1t to ensure Cl stable response from the model. 1100\cver. a more 

preci se dclinitiol1 or this cr ite rion wou ld be prclc rabl c. Thi s lorm is still convenient for 

event modelling and makes for casy implementation. 
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Figure 3.3: 1\ I1cguti vc response from n three reservoi r arrangement 
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Figure 3.4: A non-negat ive response from <.l three reservoir arrangement 
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3.5 PARTICULAR FORMS 

The general form of the three-reservoir model has great flexibility in its application to 

catchment modelling. A careful choice of parameter values allows specialization of the 

model to represent an entire family of linear reservoir models. This can be done by 

selecting extreme (physically unlikely) values for any of the reservoir response parameters 

k;. The selection of a very long (> 106 time periods) response time results in a slow draining 

of the reservoir. effectively blocking that particular flow path and removing the connection 

from the formulation . In a similar way the selection of a very quick « I time period) 

response time can «hide", or completely open, an inter-reservoir connection thus removing 

its influence from the model. Using suitable combinations of extreme response values. the 

general three linear reservoir model with loss terms can he "collapsed" to a number of 

particular forms. These may be a single reservoir, a cascade of two or three reservoirs 

(equal or unequal), a pair of parallel reservoirs or the three linear reservoir arrangement of 

Figure 3. 1. All of these variations may include a loss term. or combination of loss terms, to 

suit the modelling requirements. The effect of including loss terms is illustrated in Figure 

3.5. 

0 .03 ,------------------------:-:--:----, 
No Loss 

0.025 -\-- _.=-----------------

0.02 

0.015 

0.01 

0 .005 

o 20 40 60 80 100 
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Loss from SI 
Loss from Sz 
Loss from S) 
Loss from all 
reservoirs 

120 140 

Figure 3.5: Comparison of some pulse response functions for the 3 reservoir model 
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It is a s imple matter to have a scpnratc conccptll<1 1 arrangemen t tor each of the cells by 

lix ing some paramete r val llcs a t the ce ll leve l. There may be cases whe re thi s ki nd of 

flex ibility is lI scful. The specification of a single difference equation fo rmulation w ill 

simplilY the modelling procedure from a computat ional standpoint. Figures 3.6 and 3.7 

show a comparison of the pulse response functions for a single reservo ir. a cascade of two 

reservo irs and the eq ui va len t collapsed lonns of the general three reservoir model. The 

pulse is of Cl unit vo lume and has a duration of 10 time periods. Figure 3.8 shows the 

pseudo-Impulse response funct ions 10 1' the three linear reservo ir model I.:ollapscd to a single 

reservoir. two and three reservoir cascade. with equal response times. The red uc tion of the 

model 10 these forms is made by allowing k;J. kj . kr. and k- to approach in finity. c reating a 

three rese rvoir cascade. The two rese rvoi r cascade is produced by further allowing k, to 

approach ze ro. T he s ingle rese rvoi r lonn is reached by further allowing both k, and kJ to 

app roach ze ro. T he pscudo-IRF is the res ponse func tion 10 1' a unit pul se input. w ith a 

duration of onc time pe ri od . Figure 3. 8 should be compared to Fi gu re 2.3. which shows the 

true IR Fs calculated usi ng the continuolls formu lation (Eq uat ion 2.3 ) and the same 

reservoi r res ponse time (k = 15 time peri ods). 
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Figure 3.6: Comparison of the pulse response function for a single reservoir and the 
equivalent collapsed form of the 3-1inear reservoir model 
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Figure 3.7: Comparison of the pulse response function for a cascade of two unequal 
reservoirs and the equivalent collapsed fann of the 3-linear reservoir model 
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Figure 3.8: Impulse response functions for the 3 linear reservoir model reduced to 1,2 & 3 
reservoir cascades (compare with Figure 2.3, Chapter 2) 

3.6 RANDOM NUMBER GENERATORS-AN APPRAISAL 

The optimization method chosen relies heavily on random number generation. The 

generation of a truly random set of numbers with a computer algorithm is a difficult task. A 

computer is a totally deterministic predictable machine and although it is possible to 

generate a random sequence of numbers using the internal clock, this sequence is not 

repeatable. However. if a sequence of numbers can be shown to be statistically independent 

of one another then they may be considered as a random sequence. The optimization 

techniques employed here require the generation of long sequences of random numbers to 

be effective. It is therefore essential that a good generator be selected for this task. A short 

appraisal of their relative merits therefore seems in order. 

The usual way to provide random numbers is to generate a sequence of uniform random 

deviates lying between 0 and m . A linear congruential generator has the following fonn 

I j ., = (ai , +cjmod(m) 

Where the I/s are integer numbers. Ip .} is the uniformly distributed random deviate. The 

multiplier a and incrementer c are positive valued integers chosen (presumably) to produce 

the longest possible sequence of unifonn deviates. By taking the modulus of (al j + c) it is 

48 



CHAPTER 3 MODEL DEVELOPMENT AND OPTIMIZATION 

guaranteed that Ihe ,/+,"5 wi ll be in the rnngc () 10 11/-/ ( inc lusive), s ince the modulus 

operat ion has only 11/ possible outcomes. The seq uence of' dcviatcs wi ll the refore eventually 

repeal it se lf. The maximum sequence length (period o f the generato r) is defined by the 

chosen value of 111. The choice of initial I, (random seed) wil l determine where in the 

seq uence the generator will start. 

Linear congrucl1lial genera tors lend to exhibit serial correlations between successive ca[ls. 

Thi s man ifests itself in banding phenomena when sets of n s uccessive random numbers 

from a sequence arc lIsed to plot poinls in 11 dimensional space. Thus the poillls are not 

uniforml y di stributed throughout the parameter space but tend to lie 0 11 a number of disti nc t 

planes (Press ct al.. 1992). 'fhi s is especially problematic when tile random deviates are 

bcing used in Monte Carlo based npplicalions. which rely on a comple te investigation of 

the entire parameter space. 

Park and Miller (1988) suggest Ihal a multiplicativc gcnerato r o f the form 

1 HI = (01 / )rnod(lII) 

is capable of gcncrating random sequences whieh are as good as those produced by any or 

the linear congrucntia l types wh ich have va lues of c grea te r than zero. The minimal 

standard generator that they suggest has the following va ll1es 

Cl = 16807 1/1 = 2 147483647 

The rando m number generator used in thi s study ( Press et al.. 19(2) is based on this 

minimal standard. but uses an additional shuming algorithm (Klluth. 1(81 ) 10 ge t rid orthe 

low order se ri cd correlations which may be assoc iated with the generator. The period of thi s 

generator, approximately 2x 1 oy. is considered Illore than adequate for the use which is to be 

made of it, s ince the number of success ive calls to the generator is se ldo m greater than 

abou t 106
, 11 s hould also be noted that the parameler fitting algorithm actually re lics on 

shorter port ions orthe random sequence in the order or 105
. or less. The generator produces 

noating point precis ion random deviates lying between zero and one, These deviates can 

then be used to se lect random numbers within the ap propr iate bounds by a linear scaling. 
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3 .7 OI~Tl l"IIZAT'ON TECIINIQUES 

Optimization of tile model parameter set refers 10 the process by which a parameter set is 

selected 10 minimize the value of a chosen object ive function. In thi s s tudy. the o bjective 

function to be minim ized is the Slim or squared diffe rences between the observed 

strcam ll ow hydrograph being 1lnalyzcd and the model output lIsing observed rainHlI 1 as 

input. The o plimi zatio l1 routine chosen to pcrronn this minimization should be capable of 

making a thorough search of the relevant reg ion of the parameter space. because the 

complex non-linea r rainfa ll to runofr conversion re lat ionshi p is likely to have a parameter 

space contai ning a number of sub-opt imal local 111 iI11111a. 

3.7.1 TIlE SIM1'LEX SEAR('II ROUTINE 

The basi s ortbe oplimization method lI sed is Ihe downhill sim plex search routine (Nelder & 

Mead. 1965). This routine is a multi-d imensional function minimization a lgorithm. The 

search is not directional in the sense o f function derivat ives. but moves towards the optimal 

point in the paramete r space by finding slIccess ively lowcr val ucs of the o~icctive function. 

For a funct io n depending on !1 parameters, an initiall1-dimensional s implex is constructed 

as a starting point for the algor ithm. T his choice of ini tial simplex is usually made to 

co incide wi th the reg ion or pa ramete r space where a minimum is expected . The objec tive 

function is then cvaluated at each of the 11+1 vertices of the s im plex. The ve rtex w ith the 

highest va lue orl he objecti ve function is re nccted through the o pposite face orthe s im plex 

and the va lue of the objecti ve function eval uated at that point. 11" the va lue has dec reased 

then a further move is made in Ihc sallle direction othe r\Vise the initial po in t is retained. A 

cont raction in onc or many dimensions to\Vards the lowest point is a lso possible. All of the 

expansions and cont ractions are made in such a way that the si mplex remains n O/l­

dege nerate (i t Illllst enclose a finite vo lume in n dimens ional space). A ny move to a point 

with Cl lower va lue of the objec ti ve func tion is acce ptcd wh il e a move rcsulting in a large r 

va lue of the obj ective function wil l a lways be rejec ted. In thi s way the simplex tumbles and 

contracts toward Cl region where a minimum ror the objective function may be found. 
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3.7.2 M()NTE CARI ,t) TEe l lN1Ql l ES AND TIlE M ETROPOIJS ALGOI{rn IM 

The downhi ll s implex met hod is most like ly to converge to the nearest minimulll s ince it 

w ill a lways acce pt a downhill s le p. In s ituations v.'ith ma ny dimens ions it is probable that 

many loca l minima (at least relative to the machine prec ision) Illay occur in the parameter 

space. making location o rlhe g lobalminim llrn a diffi cu lt task. Thi s problem may be solved 

through the ap plication of Montc Carlo techniques. A sequence of random starting 

simp lexcs is selec ted whi ch f~I IJ w ithi n the par<1I11ctcr space. The downhi ll simplex 

algori thm is ap pl ied to each or these and their respecti ve mi ni ma and paramete r sets 

recorded. afte r a reasonable number of iterations. Provided a sufficient number o f starting 

si mplexcs arc chosen and their di stribution through the parameter space is uni fo rm , the 

g lobal minimum can be taken as occurr ing at Ihe besl position overall. 

Simulatcd annealing using the Metropol is algo rithm (Met ropolis ct al.. 1(53) J11i:1kt: oS UoSt: uf 

a random walk through the parameter space in an att cmpt to di scover the g lobal mini mum. 

This tcchnique has bccn uscd successfull y to sol ve mini mization problem s invo lving large 

numbers of independent var iables. SLlch as in Ihe des ign of e lectronic systems (K irkpatri ck 

et aI. , 1(83). The a lgo rithm is based on the ana logy of Ihe phys ica l process of annea li ng 

where a so lidify ing substance wil l arrangc it s molecules in such a \",ay that the lowest 

cnergy sta te is achieved if the coo ling process occurs suffici ently slowly. T he sta te can be 

thought o f as the val ue or the objec tive function (/:.,~) at a g ivcn point in the parameter space. 

The algorithm will move f"ram a poi nt with state E, la a point having state £2 with a 

probabi li ty p. 

[-11.,-1'1),\/] 
p =e 

Where k is the Bol tzmann constant and T is the curren t '1empera turc". I r £ 2 is less than £ , 

the n fJ wil I be greate r than I. I n thi s case p is set 10 r and the step is accepted. I n thi s way a 

favourab le (downhill ) step is a lways acce pted with an uphill step somctimes being 

accepted . Different choices o r probabi lity d istri bution may be made fo r di ffere nt 

opt imization problems. 

The vari able T is initi ally at the maxi mum expected scalc or the pro bl cm. The va lue o r thi s 

va riable is reduced, HnCr a numbcr of steps. us ing an app ropr iate scheme. As it is reduced 
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the like lihood of an uphill step be ing ",cccplcd is reduced. AI la rge va lues orT the major 

m inima a re explored and the algorithm provides an opportunity to escape from large local 

minima and investigate a greater portion of the parame te r space. As the variable is reduced 

in magnitude the algorithm allows f'or more focLlsscd inves tigation of minima. A furthe r 

advantage or the algorithm is that it Illay be adapted to allow for the assessment of 

uncertainty in parameter estimates (Kuczcra & Parent. 1998). 

3.7.3 TilE MODIFIED SIMPLEX SEARCH 

The minimizat ion routine chosen (AMEBSA) is a modified vers ion orllle downhill simplex 

method that incorporates the Metropolis algorithm (Press ct. al. . 1992). The val ue of the 

objective func tion assoc iated with eaeh of the simplex vertices is increased by a 

logarithmi ca lly d ist ri buted unirorm random deviate . proportional in Illagnitude 10 the 

va ri able: T. !\ s imilarly proportioned th:v iale is sublraued I'rom the fu nction val ue 

associated wi th each new point tried by the search process. The Metro polis a lgorithm is 

applied indirectl y in that a downhill step is always accepted but the re is also a possibility or 

uphi ll steps being accepted. If the function value at the new simplex vertex is lower tha n at 

the old po in t then the randomly disturbed function value at the new point w ill always be 

lower than the disturbed runction vnlue at the old pos ition and the move accepted. There a re 

two possibi lities in the case where the ru nction value at a new s implex point is higher than 

at the prev iolls position. T he disturbed value associated w ith the new poin t has the 

possibili ty of being either higher or lower than the disturbed value at the old position 

resulti ng in the poss ible acce ptance of an uph il l move. 

The advantage or Llsing this Illethod as an opt im izat ion 1001 is it s great nexibil ily . T he 

rout ine can be u~ed in ei ther of [he fo llowing W::lys dependi ng on 1he fu nc1ion bei ng 

min imized. I f the value of T is initia lized as a large value and the maxim um num ber of 

iterations a llowed is a lso set to be a large number: then the algori thm can operate in a 

pure ly "sim ulated anneal ing" mode. The parameter space w il l be complete ly investiga ted 

with the best local mi nimum or scale T bei ng selected a t each step. A ner a red uction in the 

magni tude o r T the region w ithin the minim um can then be searched ror furt he r minima 

within a confi ned region of the parameter space. The process conti nues in thi s way unt il T 

reaches ze ro (and the a lgo rithm red uces. exaclly. to the standa rd downhi ll si mplex search) 
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or the maXimlll11 number of itera tions allowed is reached. A lternat ive ly i f the initial T is set 

to zero and the maxi mum number of iterations made small. a large number of resta rts can 

be Illade from randoml y d ist ributed starting si lllp lcxcs w ithin the paramete r space. Each of 

the restarts performs a "cheap" mi nimization not requiring much computing effort. however 

if a sufficient number or restart s arc made to provide a complete inves tigation of the 

parameter space then the global minimum is l ikely to be found . 

3.8 J)£SC ll lI 'TlON OFTIIE Frnl NC ALconlTIIM 

The parameter fi tting was carried oul by minimiz ing the Slim or squa red dirlcrenccs 

hetween a n observed s trC<lmnOW hydrog raph and the ca lculated hyd rograph produced by 

the model. T he a lgo rithm adopted was 10 lit s ub-sections of the fl ow event. onc at a time, 

and to ealculatc the total sum of sq uared di fferences fo r the enti re event. A compute r 

program was written in the C language to implcment this procedure. A n o ut line o f the Illain 

poi nts folIO\·..,s. 

The parameter litling process of minimization varies slightl y depending on whether the 

catchment is bei ng treated as Cl sing le cellar as a number or ce ll s. The case where the 

catchment has bcen divided into a numbcr o r cell s wil l be d iscusscd here: the part icula r 

casc of a s ing le ce ll is an obvious spec ialization of the treatment . 

The hourly flow data for the period of investiga tion are read into memory fro m a lex t m e. 

The nrsl .\·ub-evel1l is selected from the en tire record and stored in a separate mcmory array. 

A sub-event is defined as that portion o r the hyd rograph w hi ch li es between t\,\/O troughs or 

" local minima" in the hydrograph (Figure 3.9). The ratio bet\veen succcssive now values is 

used to determine whethe r a data poi nt is o n the ri s ing limb or the recess ion. I f consecutive 

va lues of the ratio change from being greater than onc (a recess ion) 10 bei ng less than Ol1 e 

(a ris ing limb), a trough is dcnned. These local minima on the hydrograph mark the 

beginning and end of each sub-event , except for the fi rst and last sub-events. The start or 

the first sub-event is determ ined by the sta rt of the da ta to be analysed and it 's end point by 

the first trough. The end of the data, si mil arly , dete rm ines the end poin t of the last s ub­

event. The sub-event se lection algorithm used here is ve ry s imple, only deciding ira change 

in the hydrograph s lope is Dceming. The algorithm does not di sting uish between sub-events 

of d iffering magnitudes, thi s was nol deemed necessary f'or the parti cula r now sequences 
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selected for the analysis (see Chapter 5). The inclusion of a morc sophisticated algorithm 

would likely improve the fitting procedure as relatively small (in terms of the peak value) 

fluctuations in flow would not be unnecessarily analysed as separate sub-events. 

The contributing rainfall for each of the cells, over the time period of the sub-event, IS 

selected at the minimum integer lag. The function minimization routine is then 

implemented for the required range of integer lags. Once a best fit parameter vector has 

been determined for a sub-event at each of the rainfall lags within the range, a new sub­

event is selected and the process repeated . 

~ '----------------------------'I 

500 i--- -------0 .... --------------1 

? 
400 t----\ 

e 
- 300 • o 

'" 200 

100 1--- -------

o ~-_-_-___ -_-_-_-_~ 
61000 62CXX) 63000 64000 65000 66000 67000 68000 69000 70000 

Time (min~) 

Figure 3.9: A selected sub-event (shown in red) 

At each rainfall lag a random starting simplex within the bounded parameter space IS 

selected. This simplex is transfonned into an unbounded domain using the logit transfonn. 

For a 5 x 5 b Y is unbounded if y = In[x -a] (logit transform) 
b - x 

The Modified Simplex Search (MSS) is then carried out in the unbounded domain (in log 

space), with the parameter values (in normal space) being determined by the reverse Logit 

transformation at each function evaluation. Each parameter is chosen independently of the 

others, so there is no need to condition the value of one parameter on another. 

If Y is unbounded a S x 5 b if [beY +a] . x = (reverse loglt transfonn) 
I +eJ' 
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The minimum function v~iluc and corresponding parameter se t is recorded. A number of 

Monte Carlo restart s arc made usi ng randomly se lected initial si mplcxcs and the overall 

minimum function va lue and parameter set reco rded. The evaluations of the objective 

fu nction proceed by applying the three-reservoi r model to each ce ll and summing their 

contr ibutions. This wi ll be fully described in Figure 4. 10 ancl thc surrounding lex! (Chapter 

4). Two random sequences me used during this process. the fi rs t is lIsed to generate the 

starting s irnplcxcs and the second is used by the MSS algor ithm to produce the disturbed 

objective func tion va lues. The nowchan in Figure 3. 10 shows schcll1atical ly how the fitting 

procedure was des igned. 
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Figure 3. 10: Flow chart for the parameter fitti ng procedure 
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Stlll/mw}': 

;J geneI'll! Ihree reserlloir .Iced jOl"11Iord lIIodel, wilh loss terl/lS, hw been prescl1led. 

IJis"/'e/cly ('o-incident pscudo-A RMA (lnd 5itole-.\jJace representations 0/ the lIIodel have 

heen developed ,fiJI/owing Diskin & Pegram's (l987c) treatment 0/ a cascade of 111'0 

unequal reservoirs. /1 has heen shown "1lI1 'he genera/model can he collapsed to Cl numher 

({particular/hrms, lFilh or lI'ilhoUf !osse,\', The grearflexihilil)' of,his/llllli1y (?fsuh-models 

cOllld he oj"greol I/se ill Ihe del'e/oplIIC!1I1 (d cel! /lun/cls sI/ch as those descrihed in Chapter 

2. ?'lw applica tio /1 (?/ litis model f () ales! ca fchlllenl is descr ihed;11 ('hop /er -I. 

7'l1is Chap/er al.m pro vided {/ description (d 'he Atonle Carlo oml silllllh lled annealing 

met/lOll,' 1I.,'ed in the II/odel fillillg prOL'e,\'s, The lilling procedure makes use {~l a l1Iod!/ied 

simplex search routine illcorporatill~ fhe: Metropolis al?,orithm and A/onle Carlo restarts 10 

lIIinimi:e the ()/~iecti"e jUl/ct ion The algorithm 1I,\'c"I IO ./il Ihe model OlltpUI to a number (?l 

ohscrved rai1rfhll-l'Il11o(( cI'em,,' has heen explained The reSUII,\' (!i the .lils that were 

achieved are presented ill ('flaP/er 5. 
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The practical apphcolirll1 (~f the lincar reserl'Ojr model introduced ill Chapter 2 ond 

deve/oped in ('hop/er J is applied /0 II 1l'cl/-inSfrlllJlCl1fed clIfclllll(!I1/. '/'lit! SIIIl(Y was carried 

OU! IIsing rain{all ami s/rcan!llolll dala for fhe Liebenhergsvlei lest catchment near 

Bethlehem. freeipilofiun dala Were ohlaillcd /rolll the SOIlIh Aji';ea/1 Weather Bureau 's 

(SA WB) Melcor%gica/ .~·)'slel1ls and Tee/lI1o/vgy (METS )~») leolll based 01 Bethlehem. 

while pow dara /rol11 fhe /11'0 ''''reamgcwges 011 Ihe catchment were ohfained (roll/ the 

IJeparfmCI7I (~( WaleI' A/Tail's wnt Fores/I) ' (DIVA F). A description or fhe sludy catchment 

lInd !he II/odel's al'I,/I(.'lIl;o/7 is provided. The isslle {?/s/Jafial disfrihllliol1 in rail?/clll is also 

discussed The cafe/lIlIen/ was suhdil'ided info a 11I/lIther (~f cclIs (.m/,..cafchlltcl1l,\) coch ol 

which receired 1I scparate rain/all input, jOlIl1(/ using the Imap,e ",o,\'king lec/1I1iqtle. ()tI/P"IS 

jrolll clJ(:h cell are linearly xUlI/med 10 product, Ihc /("al calchmenl OllfpUl, A comparison is 

lIIade betl1'een Ihis sellli-distribuled cell model amI the Man!lhld model ql Pegral11 & Diskil1 

(198 70, h and c) 
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4.1 L1EBENBERGSVLEI 

The Liebenbergsvlei catchment is a subcatchment of the Vaal, situated near Bethlehem in 

the Free State Province. The portion used in the study covers an area of approximately 3600 

km2 and has a relatively gentle slope. The vegetation is predominantly dry thornveld with 

high levels of evapotranspiration. The catchment with its quaternary sub-catchment 

boundaries is shown in Figure 4.1. 

Belhlehem 

MRL5 Radar· 

Figure 4 .1: The portion of the Liebenbergsvlei catchment used in this study, showing the 
approximate position of the MRL5 radar. 

This catchment is in a fairly dry region of the country with an average annual rainfall total 

of 650 mm. It receives most of this precipitation during the summer season, which ranges 

from October to February. The mean annual runoff volume from this portion of the 

catchment for the twenty-one year period from ] 978 up and including 1998 was ] 26x 1 06 

m3
. The equivalent average precipitation volume is 2412x I 06 m3

. This suggests that on 

average there is a loss of more than 95 percent in the conversion from rainfall to runoff. 

4.2 RADAR COVERAGE 

A mosaic of eleven weather radars provide partial coverage of South Africa. The wetter 

eastern portion of the country is relatively well covered by the radar mosaic. The data 

stream from each radar is connected to the METSYS offices at Witbanksfontein and the 
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data arc co ll ected there in rca l time and nrchivcd in MDV (Meteorological Data Volume) 

formal. 'fhe racial's h.lVC an efTecti ve radius or operation or approx imatel y 100 km. Outside 

or this range the <H.:curacy or the dala reduces signifi cantly. Rain rates arc calculated rrol11 

the returned power by the METSYS soH ware. us ing the MH rshall -Pa lmcr relationsh ip 

(Marshall & Palmcr. 1948) 

z ~ 200/1'" 

w here R is the rain ral e in Illlll/hr a nd Z is the ret urned pO\\ CI" in DB £:. 

rigurc 4 .2 shows the position and range or the raclars. wilh the stud y ca tchment ind icated. 

There is particularly good coverage or the Free S tal e prov ince. K \\fa-Zul u Natal. Gaulcng. 

MpUlna la nga a nd the Northern province . These eastern a nd central regions arc where the 

hulk orthe country's populmio n li ves. 

The SAWB 's MRL5 \\ca lher radar (Figure 4.3) to the NOrlh \V..:~ 1 0[" Oethlehc l11 provides 

full covcrage of the Licbcnbcrgsv lei catchme nt. cst ima ting rea l-timc ra in rates at a spatial 

resolution of I kl11 ~ . The tcmporal reso lution is a t. a pproxi mnte ly, li ve-minute inte rvals. 

The da tn from the mda r" s full volume scnns arc s tored in floating point prec is ion by SA WO 

in the MDV format. The MDV files may thcn be converted to Windo\\s bitlllap images 

"hieh provide both a vis ual and quantitative represe ntation o f thc data field . In thi s way 

c urrent and accurate cstimates of prec ipitation are avai lable which is of prime impa rlance 

in llash n ood prediction (Georgakakos, 1987). 
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4.2.1 TilE Bit MAl' 1i\ IMiL FORMAT 

The Bitmap image formal is designed to store raster image dat:l in <l \\ay Ihal is independent 

or the manner in which specific hardware devices specify colour schemes. The file i::. 

fi.mmlltcd in the 10110wing \\ay: l1illllOP hcoder- ' Biflllap ill/orl1l(lfioll- Image DOlo. The 

tile header conl:;l ins an indicato r that the file is in fact a billllap as wcll as the size orlhc tile 

and the si£c of the image dma. The information sec tion or the fil e contains details or the 

image size (ill pixels). the image reso lu t ion (pixcls/rnctrc). the numbe r or bits per pixcl 

(used la determine the size of the colour paleLte) and the co lour palette information: tor 

more detail reter to Pcgrmn & Cloth ier (1999). The image data is slOred as n 1\\'1.) 

dimcnsional array. Pi xc l va lucs are slorcd row-wisc from Icli 10 righl and the rows arc 

stored from bottom to top. This means that the origin or (he data is al the bottom leli hand 

corncr or the image. When the image is vic\\ed Ihe colour represented by the v<lluc at 1;:i:ll.:h 

pixcl is d isplayed in the appropriate position. 

'-----__ --'I • File header 

'----_--'I . Billnap informalion 

• 

Figu re 4.4: Schemalic representation of the bitmap fi le format 

4.2.2 D/\ r/\ R EPRESENTATION 

The MDV format radar data were viewed and processed in the form of bi t map images. The 

instantaneous rain rate at a height of two kilometres above the level of the radar is 

represen ted by the co lour on each pi xci of the image. Each CA PPI (Constant Alti tude Plan 
, 

Position Indicator) bitmap has a reso lution at which' pixe l represents I kl11-. The chosen 

256-colo ul" pa lette uses Cl logarithlllic<llly di stributed colour seq uence to di splay an integer 
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range of rainfall rates between 0 and 100 mm/hr. Figure 4.5 shows an example of a CAPPI 

displayed using this colour palette and the rain rates indicated by the pixel values. This 

image shows many convective rainfall clusters with a number of very intense storm cells 

(indicated by the red and black areas) . The ground clutter in the lower right hand corner of 

the image is caused by the Maluti mountains. This image was recorded at 14:22 on the 5th 

of October 1998. 

o 20 40 60 80 100 
(mmfhr) 

.' 

Figure 4.5: A CAPPI bitmap showing the colour palette and associated rain rates 

4.3 RAINGAUGE NETWORK 

The Licbcnbcrgsvlci catchment is covered by a nearly rectangular network of 45 tipping 

bucket raingauges, of which 36 are situated on the portion of the catchment under study 

(Figure 4.6). The gauges are on a grid spacing of roughly 10 km by 10 km. A data logger is 

attached to each gauge and records the date, time, event count and various flags for each tip 

event. The gauges record 0.2 mm of rain per tip which means that the Joggers memory can 

record 510 mm of rain since there is enough storage for 2550 events (Terblanche et. ai, 

1997). 

The data obtained lTom METSYS contained a record of the tips, as recorded by the data 

loggers, for each of the gauges on the catchment. A computer program was written which 

searches through these records and accumulates the hourly rainfall depth for each gauge. 

Hours not experiencing any tips were filled with zero records. 
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The raingaugl.! network is considered suitab ly regular in natun.: to alIO\\ for Cl s imple mean 

o r the gauges 10 he lI sed as the a ve rage rainlall lie ld : rat her than us ing an area lly weighted 

U\ I.! ragc. slI ch as that obt'lined rrolll T hicsscn po lygons. or more sophisticated interpolation 

algorithms making use or techniques such as llluhiquadrics to li t the optimal SU rf~ICC 10 the 

data. Th is is bccausc these methods would have given nearl y equal \\eight to each gauge 

\\ ilh much morc I.! ITorl. The uvcragc rain depth was the refore taken to be the 111ean or the 

depths recorded hy each gauge tor any g iven lime peri od. 

, .. 

Fig urc 4.6: Approx imate pos itio ning orlhe Licbcnbergsvlci rain-gauge network o n the six 
Quaternary sub-catchments. 

-lA STREAi\ I FLOW MEf\ S IJI~£I\ I ENT ANI) LOSSES 

Strc<llllflow data 1'01' the catchmcnt unde r study \Ve re ob tnincd from DWA f. A 

s trc'-l mgaug ing weir IS situa ted at the ca tchment outlet and Ihe records me availab le as 

br!';ukpoi nt sln.:amIlO\.\f data. The cima were 1101 recorded Ht regular d iscre te intervals . 

making it dif'ficult to use . A computer program was written 10 calcllble Ihe streamflow at 

regular intervals. A linear interpola tion was used be tween the data points and the entire 

s tream fl ow record was trea ted in thi s way. 

For the cel l mode l developed in Chapte r 3 losses arc delined as that proportion of obscrved 

rainl~111 \\hich is not convertcd to streamflow at the catchment outlet. The magnitude of 

Ihcse losses from thi s catchment wcre calculatcd so that somc idea or the loss proport ion 

cou ld be obtaincd . Losscs occurring on an event were c<llculatcd for a numbcr of cvents by 

comparing. vo lllmctri ca lly. the ra infall input to and Ihe runorf' from Ihe ca tchmcnt. The loss 
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proportions calculmcd in th is \\ay \"ere in Ihe range of 70 95 %. Ihi s means that most of 

the precipitation occurring on the catchment is lost belort: n.!aching the gaug ing s tatio n. For 

thi s reason. it "as cl l..:c idccl that a rainl~lll 10 runoff con version mockl for thi s catchmen t 

would need a good method of removing losses 10 cope \V ith thi s situation. 

"'-=' SIJIl-CATCIl i\IENT DIVISION 

Th~ LiebcnbcrgsvJc i c~lI chmc lll was treated in onc of 1\\0 \\ays during the model lilting 

process. it \\as e ither lumped and treated as a s ing le ce ll or it \HIS div ided inlo s ix ce ll s 

lIsing the qualt:rnary sub-catchment boundaries (Midg lcy ct al .. 19(4) shown in Fig ure 4.7. 

Thi :; sub-divis ion v.as chosen in order 10 account for the spalia l var iability in rainf~ill und to 

provide ve rsatilit y in the catchmcnl model const rained by the IOpography and topology. 

The quaternary s uhc;:uchmcnls wc re used s ince they a rc de fined by thei r watcrs hed 

boundaries and part or the precipitation occurring \\ ithin each arca must CVCllIu[llIy 

r.:o ntri hutc 10 stre<-l mll o\\ a t its channel outlet. TIIl I ~. the cOlllri bu tions 1"1'0 111 each quate rnary 

c; lI chmcnt 1.11 the ealc ilmcnl OU11C1 could be linearl y s Ull1mcd to pn)(.luc (; Ihe total (;(1 tc l1m(;111 

n.::;ponse to a complex rainficld . 

4.5. 1 SPATtAL DISTRIBUTION OF R AINFALL 

From preliminary investi gat ions and observat ion or the radar image sequences. it is c lea r 

Ihat va riatio n in the spatial di stributi on of rainfall could. in some cases. be an importanl 

J ~H.: tor on thi s cillchment due to it s long narrow shape. The ClIS lIlll (doubl e mass) pl ots in 

Fi gurc 4.8 illustrate thi s po int. What these plots show is Ihe hourly-accumulated rainl~dl 

to ta ls over a mo nth f'or Cl chosen gaugc on the catchmt:i1I plo ued aga insl the same 

accumulation for thc rest. Gaugcs 6 and 30 wcre selected: the ir locations arc s hown in 

Figure 4.7. I f rainJ~lIl werc to occur unifQrmly across the entire catchmcnt there would be a 

direct linear re lationship be tween the total and individual accumulati ons. The plot fo r gauge 

6 initially s hows no increase in the rainfall co llec ted by the gauge whi le the total depth for 

the e;'lIchmcnt is increas ing s ignificantly. The plot f'or gauge 30 does not exhibit thi s trcnd 

al Ihis timc. but shows a linear increasc in depth ill concert with the increase in towl rain rail 

over the catchmcllt. Later in the month this bt:haviour is reversed w ith gauge 30 showing no 

increase whi le the accumu lalions fQr gauge 6 and the catchmcnt as a who le (fi'olll 2300111111 
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10 3000111111) arc sc(.;1l to increase. The double mass curve for each 01" these gauges is Iypical 

of olher gauges in its vic inity. These ob$crvations clearly ind ica te Ih~ spa tial va riation in 

ra in!'all over thL: catchment. s ince the two gauges arc f~lr apart and nearby gauges sho\.\ 

s imilar do uble mass plo ts. The n; a 50n 1'0 1' <.:hoosing a semi-d is tributed approach (b) 

cOlllpa rll11cnta lizing the ca tchment) is to capture the csscncl.! o flhi s spa tial variation. 

liaUl;C 30~ 

.-
- Ciaugl: 6 

Figur!.! .. l, 7: Posit ion or relevant gnugcs on the Licbenbcrgsvlc i ca tchment 
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Figure 4.X: (bug!.: accumu lat ions fo r the month of Octolx: r 1995 

.. .J..5.2 1i\IAGE M ASK ING 

In o rder to determ ine the average rainf~t ll occurring over each of the S I X quate rnary 

:-ubcalci llllt:J1t <1I t:a!) a l,;u llIpult:r prugralJl was writlt:n whk:h t:uuld ex trat: t the relevant data 

from e ither the ra ingaugc or radar data se ts. T he method followed was \0 use an appropriatc 

tcmplate 10 " mask" the ('I\ PP I imagcs. I loUl·ly acculllulations of ra infall based on the rain 

rates occurring only ovcr a parti cular sub-catchmcnt area wcrc then computcd .. allowing thc 

spat ial distri bution of rainfall occurring over the ca tchment to be accounted for. The 

average hourly depth occurring over that area was caicu lmcd and output to a suitably 
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formatted text file. A more detailed description of the programming logic is contained In 

Appendix B of this document. 

Figure 4.8: Example of CAP PI masking, the sequence 1 - 12 in intensities and 13 - 15 in 
depths <all scaled in mm/hr) 

Figure 4.8 shows a numbered sequence of twelve CAPPl images, which span a period of 

one hour. image IJ shows the accumulated depth of rainfall during the onc hour period in 

millimetres. All the colours on the images are scaled in millimetres per hour. The remaining 

two images (14 & 15) are, respectively, the accumulated image with a masked region 

removed and the rainfall depths occurring over the masked area only_ It is important to 

distinh'Uish between the CAPPl's on the left, which indicate the instantaneous rain rate (in 

mm/h). and the images on the right showing the integration of the CAPPJ data over an hour. 

the average rain rate from each of the pixels in the 12 instantaneous images accumulated as 

a depth. 

All the CAPPI data were treated in this way. In cases where there were less than twelve 

images in an hour the best estimate of the accumulated depth was made with whatever data 

were available. This entire process was automated so that long runs of images could be 

accumulated and masked over each of the six quaternary sub-catchment masks. 
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r he In asks thcmsclvt.!s were defined as bilmap images. T he quatCnlU f) ca tch1ll(,,!nt 

boundaries were o bta ill l.;c\ from GI S data available as pan of a WRC n.! POrl (M idg lcy et al.. 

19(4). !\ high-resolu tion bitmap image was produced from the vector based Ci IS data using 

the An:l'ie lV so ftware package. The va rious sub-catchments wcn..: then isolated and saved as 

sq mralc images. each o f which was scaled 10 the same (pixcl: d is tance) reso lution as the 

CA PPI"s. Em:h mask image was finally processed to position it correc tly on Cl 200x200 

pixcl reso lution image. Th is \\as done 10 faci lita te the maski ng procedure because the 

C'}\ PPI "s were ccntcrcd 0 11 an image of lh is size a t Cl resolution of I pixd: 1 km 2
. 

-L 6 SUI'EHPOSIT ION OF CELL OUTPIJTS 

Each qua te rnary ~ ubcatc hmcnt is treated as a s ing le ce ll mode lled by a three rese rVOi r 

Illodel as specified in C lwpter 3. Each o f the cells receives separate rai nl~lll input sequences 

as (!r.; te rln ined by the maski ng proced ure. The out put fro m each of the ce ll s is calcula ted 

u"i ng iI s ingh.: set of general ca tchment pa rameters which a rc sc;:il cd fo r each ce ll accord ing 

I n ils physical chnrnclc ri C:: li cc:: (Diskin & Pcgrnm . 1 CJR 7c). These c harac te ri sti es rln: an an:nl 

paramete r and a ch.mlle l pa ramete r. The area l paramete r is s imp ly the area o f the cd l as a 

proportion of the to tal c,lI chment mea. T11I.: channel pa rameter is ca lc llla ted as the ratio 

C//rL w here CL is the d istancc a lo ng the longest co llec tor of a pa rti cular ce ll to the 

stn.:am-gaugi llg stat io n and TL is the lo ngest o f the d istances cnlculated in thi s way. 

Phys icall y the areal pa ramcter a llows scaling o f the cells contribution to to tal strealllllow 

since the sub-catchment a rea will be s ignificant in dctermining the vo lu l11e o r rainf~lll input 

received and hence the runofT volul11e. The channcl pa rameter a llows a represcntatio n o r the 

tra ve l ti me assoc ia ted \\ ith each cell. The ce ll wi th the lo ngest tr;:\vc! di stance alo ng thl.! 

channel w ill o bvio lls ly have the ratio (CUr L) equal to uni ty and the othe r ce ll s w ill have 

ra tios (and re lative travel timcs) lowcr than thi s maximum lravc l time. 

As an example o r how thi s paramete r scaling was used ; cons ide r a fo rm o flhe mode l w here 

:I s ingle loss te rm is inc luded and thc removal made from the sllb-surl ~lce linear reservo ir 

( Fi gure 4 .9) . The de lay paramete rs (maintaining the notation of Fi gure 3. 1, C ha pter 3) 

associa ted with each pa th arc shown: these are scaled us ing the ce ll scnling pa rameters 

desc ribed above. The pa ramete r kl is scaled by the a real parameter: thi s is bec,lusc il is 

considered to represent the ground watc r recha rge, which is large ly proportiona l to the 
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surl ilcc area through \\ hich this infiltration can occur. Thl.: paral11ch.:r k:! i:-; sca kd by the 

s(lllarc root or the area] parameter. \'\ hi eh can be thought to rcprcsl!llt the average distance 

of overland !low to the channel. Simi larly. kl is scal ed by Ilw square root of the area! 

parallH.:tcr since it Ciln be conceptualized as representing th L: di stance to the channel via 

groullc\ walc r seepage. The channel scaling parameter scales the channel nO\\ pm-mm.:!er k j • 

as a lo nger channe l should result in a longer response time. The loss parameter k(, is SCilled 

hy Ih l..! area I parameter because the cvapo lranspiration losses ca ll he considered 10 he 

proportional to the :If!,!;! of the ce ll under considera tio n. These sc~dings hdp to Ilwtch the 

lllotlc l to the g ross physica llcatures o rthe catchmcnt. nKlinl<1ining re lati ve pars imo ny. 

~~[~~[J--'S~'''-I~k.,---;~~ Streamflow 

Fig ure 4.9: Schcmatic ora 3 linear reservo ir reed forward linear catchment mode l 

rhe stream!lov. contributio n o r ench celL all/,e c(f/(.:hmel1f mll/el. is lincarl y combined wi th 

th l..! others to producc the total s tream flow from the catchmen t. I; igure 4.10 shows an 

example or thi s process. Each cell' s position is shown on the ('/\P PI and the contributio ns 

from cdls C83/\ ('8317 (each modelled as three linea r reservoirs with Cl loss term as in 

Figure 4 .9) a rc al so shown . The combined strcaml10w at any ti111C is s imply the sum of thc 

contributions from each cell. 
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Combined Streamflow 

Figure 4 .10: Linear combination of cell outputs 

The similarities between the structure of this model and the Manifold cell model presented 

by Pegram & Diskin (1987. and c) should be noted . The Manifold model routes the 

distributed inputs to each cell through two reservoirs in series; the first has a response time 

which is assumed constant throughout the catchment irrespective of the size of the cell 

while the second has a response time which is proportionaJ to the distance of the cell from 

the catchment outlet. These reservoirs can be conceived of as a surface runoff component 

and a channel element respectively. The model presented here is similar in the respect that 

it is also a feed forward model in which the input is routed by a channel element before 

being summed at the catchment outlet. The response time of the channel element is 

proportioned according to the distance aJong the channel from the catchment outlet. The 

differences are the third reservoir, representing a sub-surface flow response, and the loss 

components, which allow for the observed precipitation (rather than the computed effective 

precipitation) to be used as input to the model. 
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Further d iffe rences occur in the mnnncr In which the vanous reservOir response 

components arc treated for each cell. The manifold model treats the surface rUllorf 

parameter as a constant for c<lch cell through the catchment. and scaks the input to the ce ll 

:'lccord ing to its re la tive arca. T his is not the case fo r the model prl.!scnlcd here. as discllssed 

ea rl ier. 

,\'111111110 ry : 

n/c LiehenherJ.!..\\'/ei ClIlc:hl1lcnI has been descl'ihed ond has heel1 IIsed liS 1I Sfll£~)J catchment 

jo/' fhe applicatio/l 0/ the lim:ar reservoir lI10del infrocillced in ('fll/fue/' J. The appliC:Clfiol1 

uf fhe !incol" reSCl"l'o;r cell lIIodel 10 Ifte Uehenhergsvlei C(lfe/III/cm has Iwcn discllssed in 

detail. Thi.l' ('/mpfer a/so prtJl'ided a de.\'criplioll (?/Ihe spclfia/ IIll1sking technique applied 10 

Ihe CAPPI radar £laW, l1y I1wskin~ Ihe illJ(,/~es all lIVeI'lI}!.e roill rale OI'er ecu .. :h cell is 

('Oll/p"led. aI/oH/in)!. fhe II/odel /0 OL'('O/l/lf/c)I"fhe "'pmia/ di,\"frihllf;()11 0/ raiJ!fall di.\'clIssed in 

,,,'eclio/1 .1,5, /. The ClIfehl1lenl was suh-dil'ided illlo six cells .. eaeh orwhich was modelled (.I.'" 

(Ill wTCll7gemel7f o{ Ihrec linear re.\'ermirs (( '/wpler J) , A sil1glc sel or cale/ullelll 

IUII'wlle/ers is used '/'hese parameters are scaled according 10 Ihe gross physical 

dwrm..:lerixfics (~{ a parliclI/ol' cell. amI the respolIse./rol1llhe cell (lIffhe ellfehmel1f Oll/Iel) 

cO/c; II/aled. Thc {!fm 's .//'0111 cach cell (Ire slIIlIlIIed 10 prodllce 'he IOwl .flow ./iwl/ fhe 

cafe/IIHenl (F"i}!,lfre .1, /0 and xII/Tolll/din!!, lexf) .. The semi-dislrilmled x/rIlC/llre (~lfhe model 

presel1led here is similar fo fhe MOl1iji,ld cell model descrihed in ('hop/er 2 (PegrmJ/ & 

Diskin, /98 70) , 
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This chaptcl' presents Ihe results of {he pU/'{flllelerjillin,1.? a/goril/i1Jl descrihed in ('//{Ip'e/' J . 

11 '/1('11 I/scd to ./il Ihe l/tree reservoir model to hOlh ,'YI1t1/C!.lica/~)' dcril'ctl om/ his/oriL:al(I ' 

ohserved inpllf/oll/lulI seqllences. The f!WI1I!!itclllred seqllences l1 'ere IIsed as ({ check on the 

IIsejiilncss (lnd {fCCI//'(f{Y (~r fhe .filling pmcedllJ'e. 711e model H'as then filled to three 

ohserved.llooc/ (' l 'ems 011 fhe Liehenher/!.svlei clIlclill7CI1f (."CC Chop/er -Ill)/' (/ dcscrip fion or 
till: cofc!lI l/cm) . ,("'()lIIe cundilior/oJ/iJrC(:asls ({re a/so prescl1led !I discllssion on ralic/ali(m 

oldie/hIed 11/odel parm}}ClerS cOllc/lldes Ihe ( 'Iw/Jlel' , 

:;.1 TESTI NG TilE P A ltAMETE lt FITTING ALGOn ITII I\1 

Bd'orc ~mbarki ng 0 11 all attempt to fit the general model to historical data from th(,:: study 

cHtchmcnt . it \Vas nccessary to tcst the paramete r litting algo rithm. Thi s was done by 

gencr8ting artilicial strcn111llo w res ponses 1'1'0111 the model in var io us conlig urations vl ith 

known paramcter va lues . The optimization roUli nc desc ri bed in C haplcr 3 was then ~l pplicd 

to the 11lallul~ICllll'cd Oll tput sequences 10 recover the " unsee n" parameters. A hig h degree or 
success is to be ex pected in recovering Ihe parameter values. since the mode l is abl e 10 

exact ly match the response orthe sys tcm which produced the o utput (thi s is not the case 101' 

rainfall and rUllofrobscrvations on <I real catchment ). 

The art ilic ial rainta.ll input sequcnce shown in Figure 5.2 wus Llsed 10 produce !low 

s(:qllcnccs ( 100 hours in Icng th ) n 'O Ill the mode l wi th lixed paramctcr vatues. T here was no 

lug applied to the input seq uence. The first model config uratio n tes ted \Vas the collapsed 

form representing a sing le lillea r rcservo ir. Thc paramcter values used arc g iven in Tablc 

5. !. The lit was carr ied oul allowing k-/ to be free and fixin g the remaini ng parameter val ues 

at the va lues indicated in Table 5. 1. f'igure 5.1 shows the model configuration 

scllemalically. 

Pluamctcr k, 1{2 k, k, I{::; k c, k , 

V~lIu c (hI'S) 10' 10-) 10' 10 I a" 10' 106 

Table 5. 1: Parameter values fo r s ingle rescrvoi r rcprcscntmion 
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Figure 5. 1: Schematic of " single reservoir" model configuration 
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Figure 5.2: Artificial rainfall input sequence 

The resulting stream flow sequence and the best fitted estimate thereof are shown in Figure 

5.3. The scatter plot (Figure S.4) indicates the areas of the parameter space where the 

minimum objective function value was found at each Montc Carlo iteration. Five thousand 

M onte Carlo iterations were carried out from random starting points in the parameter space 

(each parameter in the range 0.1 - 10000 hours) with 500 iterations of the AMEBSA 

algorithm (Press et al .. 1992) from each starting point. The processing time was 

approximately 25 seconds on a Pentium 350 MHz machine. 
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Figure 5.3: Streamflow responses for a single reservoir representation 
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'" Figure 5.4: Plot showing the optimum parameter value of k4 at each Monte Carlo restart 

Figure 5.4 clearly shows the global minimum to be in the near vicinity of to hours, the 

value used to generate the sequence of flows . 

The artificial rainfall sequence shown in Figure 5.2 was used to generate flow sequences 

from representations of the model equivalent to cascades of two (Figure 5.5) and three 

(Figure 5.6) reservoirs, respectively. Table 5.2 gives the chosen values of each parameter. 
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Parameter k, k, k" k. "" ... k, 

2 reservoir cascade 10· 15 10· 10 10· 10· 10" 

3 reservoir cascade 14 10" 12 10 10· 10· 10· 

Table 5.2: Parameter vaJues for 2 and 3 reservoir cascades 

For each of these representations 5000 Monte Carlo iterations were carried out from 

random starting points in the parameter space with 500 iterations of the arnebsa algorithm 

(Press et al ., 1992) from each starting point. The processing time for the 2 reservoir cascade 

was approximately one minute on a Pentium 350 MHz machine. The time to fit the] 

reservoir cascade was around five minutes. 

Fully closed conduit 

Fully open conduit 
....: 

S,/ks 

St/k, 

....: [~ 5,1 ... S,Ik, 

Figure 5.5 : A "two reservoir cascade" configuration of the model 

Fully closed conduit 

Fully open conduit 

S,/ks 
A 

S,tk, 
S,t", 

S,Ik. 

Figure 5.6: A "three reservoir cascade" configuration of the model 
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Figure 5.7: Streamflow responses for a "2 reservoir cascade" 
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Figure 5.8: Streamflow responses for a "3 reservoir cascade" 

Figure 5.9 shows the scatter plots generated from the fitting process for the model collapsed 

to a 2 reservoir cascade. The parameters kl and k, were fitted, with the other parameters 

fixed at the values indicated in Table 5.2. There are two obvious regions where distinct 

minima are found . An explanation for this phenomenon is the fact that the response from 

the cascade of two reservoirs (in series) for the case where kJ = 10 and k4 = 15 is the same 

as for the case when kl = 15 and k4 = 10 (the order in which the reservoirs appear doesn>t 

affect the response). 
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Figure 5.9: Scatter plots for "2 reservoir cascade" 

The plots for the three reservoir cascade (Figure 5. 10) show a similar situation to that 

experienced for the case of the two reservoir cascade. Each of the three parameters (k!. k]. 

"4) can lake on one of three "optimum" values (10, 12 or 14 hours) . This is because the 

order in which the three reservoirs appear is not important, provided the input is routed 

through all three in succession. The circular collection of points (evident in the plot of kJ 

against I<J as well as the plot of k, against "4) indicates the region where the global optimum 

is to be found . The other dense cluster of points on the plots is due to a local minimum, 

which may have trapped a standard gradient search routine. 
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A streamflow sequence using the full three reservoir feed forward model was also 

generated with selected parameter values (Table 5.3). All seven parameters were fitted with 

the global optimum giving a difference between generated and fitted output of 0.03 mJ/s on 

average over 100 data points. The generated flows and fitted flows are shown in Figure 

5. 11 below. 

Parameter k, k, kl ks k" ks 

Value (hrs) 14 19 12 10 23 14 

Table 5.3: Chosen parameter values for the full three reservoir model 
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Figure 5.11 : Streamtlow responses for the full 3 reservoir model 
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It should be noted that the parameter interchangeability evident in Figures 5.9 and 5.10 is 

limited to the situation where the reservoirs are arranged in series. In this case there is 

redundancy in the parameter estimation as the order of the reservoirs does not affect the 

final outflows. This is overcome in a practical situation by fixing the relative values of the 

parameters so that for example we ensure kl > kl > k) . As soon as any parallel links are 

introduced the reservoir configuration is effectively frozen . An example of this is the 

example given in Table 5.3 and Figure 5. 11 . 
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Figure 5. 12: Example scatter plot showing a clustering of points ncar the optimum 

The ability of the fitting process to accurately recover the parameter values for synthetically 

derived sequences (with the model in a number of different configurations) gives 

confidence for the fitting of parameters to observed sequences. The use of Monte Carlo 

techniques allows for a good investigation of the parameter space and provides many 

insights into the parameter relationships and the shape of the various surfaces. Situations 

such as that shown in Figure 5. IO and the surrounding text justify the application of Monte 

Carlo fitting techniques. 

5.2 FI1TINC THE GENERAL THREE RESERVOIR FEED FORWARD MODEL 

Three historical flooding events were selected from the available rainfall and runoff data 

sets. The general fonn of the three reservoir model (all 7 response parameters free) was 

then fitted to each of these events in turn. Three different fitting combinations were used. 

First a single set of parameters (treating the catchment as a single cell) was fitted to 

minimize the objective function, over the entire event. Subsequently. the fitting procedure 

described in Chapter 3 was used and the event automatically divided into a number of sub­

events. The second fitting combination used the technique of fitting for each sub-event, but 

treated the catchment as a single lumped cell. The third option was to fit the model to the 
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catchment, where the catchment was represented as six separate cells in a semi-distributed 

manner (Chapter 4). The results of the fits for each of these three events follow in 

chronological order. 

5.2. 1 EVENT ONE - DECEMBER 1995 

Event onc is 360 hours in length, starting on the 16th of December and ending on the 3 1st of 

December 1995 . The maximum discharge of 242.6 m3/s was reached during the second of 

three main peaks. Figure 5.13 shows the precipitation input for this event. 
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Figure 5. \3 : Rainfall series for December 1995 

~ 

For the case where a single set of parameters was fitted to the entire event, the lowest value 

of the objective function occurred with the rainfall lagged by three hours. The sum of 

squared differences between the observed and fitted hydrograph was 226 221.4 m'/s2. This 

means that the average difference between the observed and fitted values is 25 m3/s. A plot 

of these flows is given in Figure 5. 14. 
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Figure 5. 14: Observed and fitted streamflow for December 1995 
(single cell , single parameter set for the entire event) 

Figure 5.15 shows similar plots for a range of precipitation lags between zero and nine 

hours. For lag times greater than this, the fit is much poorer. Although the peaks are not 

well matched, it is encouraging that the model is able to mimic the general behaviour of the 

observed hydrograph. 
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Figure 5.15: Observed and fitted streamflow for December 1995 
(single cell, single parameter set for the entire event) 
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The fits are greatly improved by using the algorithm described in Chapter 3. For the case 

where the catchment was treated as a single lumped cell (with separate parameters for each 

sub-event), the sum of squared differences between the observed and fitted flows sequences 

was 31 138 m6/s2 for a rainfall Jag of five hours. This equates to an average difference 

between observed and fitted flows of 9.3 ml/s at each timestep, which is less than half the 

difference obtained by fitting for the entire event as a whole. The observed and fitted 

streamflows are plotted in Figure 5.16. Figure 5.17 gives plots for a range of lags. The best 

fit for event one when the catchment was sub-divided into six cells occurred for a rainfall 

lag of five hours. In this case the sum of squared differences (28 782.4 m'/s') was slightly 

lower than for the case of a single cell. The average difference at each timestep was 

therefore 8.9 m3/s. Figures 5. 18 and 5.19 show plots of the fitted and observed flows. 
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Figure 5. 16: Observed and fitted stream flow for December 1995 
(single cell, separate parameter set for each sub-event) 
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Figure 5.17: Observed and fitted streamflow for December 1995 
(single cell, separate parameter set for each sub-event) 
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Figure 5. 18: Observed and fitted streamflow for December 1995 
(six cells, separate parameter set for each sub-event) 
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Figure 5. 19: Observed and fitted streamflow for December 1995 
(six cells, separate parameter set for each sub-event) 

5.2.2 EVENT TWU - FEBRUARY 1996 

The second event studied was a major flood event occurring between the lOth and 201h of 

February 1996. The peak discharge recorded at the gauge on the Liebenbergsvlei was 562 

m3/s. Close co-operation between the Department of Water Affairs and the South African 

Weather Bureau ensured that the consequences of this flood were mitigated. The 

Liebenbergsvlei is a sub-catchment of the Vaal catchment. The peak flood discharge 

entering the Vaa! dam was 4700 mJ/s. Maximum outflow from the dam was reduced to 

2300 m3/s. This was achieved using rainfall information obtained from the MRLS weather 

radar at Bethlehem. A flood routing model at the Department of Water Affairs was used to 

route the input and make decisions on how much water to release from the already full Vaal 

dam in order to prevent overtopping of the wall and subsequent downstream flooding. The 

rainfall sequence generating this event is shown in Figure 5.20. 
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Figure 5.20 : Rainfall sequence for February 1996 

The fit achieved when fitting a single set of parameters for the entire event is shown in 

Figure 5.21. The lowest value of the objective function (914 847 m6/s2
) was found for a 

rainfa ll lag of nine hours. The average difference between observed and fitted flows over 

226 hours was 63.6 m3/s. The fits for a full range of rainfall lags are shown in Figure 5.22. 
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Figure 5.2 1: Observed and fitted streamflow for February 1996 
(single cell, single parameter set for the entire event) 
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Figure 5.22: Observed and fitted streamflow for February 1996 
(single cell, single parameter set for the entire event) 
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Figure 5.23 : Observed and fitted streamflow for December 1995 
(single cell, separate parameter set for each sub-event) 

When the sub-event fitting procedure was used the degree of fit was greatly improved, this 

visual improvement can be seen in Figures 5.23 and 5.25 . When the catchment was treated 

as a single lumped cell, the value of the objective function was at a minimum (42 265 

rn6/s2
) for a rainfall lag of four hours. The average difference between observed and fitted 

flows was 13 .8 ml/ s. The objective function value with the catchment divided into six cells 

was 51 510 m6/s2
, at a rainfalllag of three hours. The average difference between observed 

and fitted streamflows is therefore 15 . 1 m3/s. The fits over a range of lags are indicated in 

Figures 5.24 and 5.26. 
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Figure 5.24: Observed and fitted streamflow for February 1996 
(six cells, separate parameter set for each sub-event) 
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Figure 5.25 : Observed and fitted streamflow for February 1996 
(single cell. separate parameter set for each sub·event) 
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Figure 5.26: Observed and fiUed streamflow for February 1996 
(six cells, separate parameter set for each sub-event) 
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5.2.3 EVENTTIlREE - NOVEMBERlDECEMBER 1998 

The third event for occurred between the 161h of November and the 7'h of December 1998. 

The maximum discharge was 129 ml/s. Figure 5.27 shows the rainfall sequence that 

contributed to the streamflows. 
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Figure 5.27 : Rainfall sequence for NovemberlDecembcr 1998 

The fit achieved when using a single set of parameters for the entire event was not very 

good at all. The minimum value of the objective function, at a lag of three hours, was 

319385 m6/s2
. Over the 474 hour long event. this produces an average difference between 

observed and fitted streamflows of26 ml/s. This average difference is twenty percent of the 

peak discharge. Figures 5.28 and 5.29 show plots of the fits achieved. 

A significant improvement in the fit is made by using the sub-event fitting algorithm. With 

the catchment lumped as a single cell the optimum value of the objective function drops to 

6464 m6
/ 5

2
, Reducing the average difference between observed and fitted values to 3.7 

mJ/s, now less than three percent of the peak discharge. The plots are given in Figures 5.30 

and 5.32. 

With the catchment suh-divided into six cells the optimum fit occurs at a rainfall lag of 7 

hours. the objective function value is 5445 m6
/5

2
, The corresponding average difference 

between fitted and observed discharges is now 3.4 ml/s, 2.6 percent of the maximum 

discharge. The results are shown in Figures 5.31 and 5.33 . 

93 



.. 
"-
E 
3: 
0 
u. 

CHAPTERS RESULTS 

Lag 3 

140 
I- Observed - Fitted I 

120 

100 

80 . 

60 

40 

20 

O +-~~---,----~--~---,----~--~ 
460000 465000 470000 475000 480000 485000 490000 495000 

Minutes from the start of the year 

Figure 5.28: Observed and fitted streamflow for November/December 1998 
(single cell, single parameter set for the entire event) 
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Figure 5.29: Observed and fitted stream flow for NovemberlDecember 1998 
(single cell. single parameter set for the entire event) 
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Figure 5.30: Observed and fitted streamnow for November/ December 1998 
(single cell , separate parameter set for each sub-event) 
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Figure 5.31 : Observed and fitted strearnflow for NovemberfDecember 1998 
(six cells, separate parameter set for each sub-event) 
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Figure 5.32: Observed and fitted streamflow for NovemberlDecember 1998 
(single cell, separate parameter set for each sub-event) 
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Figure 5.33 : Observed and fitted streamflow for NovemberlDecember 1998 
(six cells, separate parameter set for each sub-event) 
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5 .3 CON DITIONAL FOltECASTS 

Forecasts of futu re strci1m nOW call be made llSlI1g parameters cond itioned on c urrent 

ob:;;crvations. Us ing a conditi onal forecasting technique s lIch as this e nsures that the 

p<lralllc tcrs being used to produce estimates of the streamllO\v rcnecI the current moisture 

sl<l te of the catchment. The moisture condition o f the ca tchme nt va ries w ith time and has a 

s ignilican t e ffec t on the systems response 10 a given prec ipitation input. Figures 5 .35 and 

5.36 show an example or strci1mno\V est imation using conditional parameter sets for the 

February 1996 event. The seven reservoir response parameters ,"vere adjusted to produce the 

best ri! (in a sum of squared dilTc rc llccs sense) to va rious portions of the observed 

:-:;l rc<1mllow hydrograph. The resulting "forecasts' · are the models response 10 the 

subseq uently o bserved rainfall using the conditiona l parameter se t. The plots show what 

!lows the mode l would have predicted as the rai nfall observat ions were rece ived in real 

lime. The Jilted parameters are indica ted in fi gure 5.37. with k5 being o mitted as it 

maintains a constant va lue of 10(1 hours. The mean va lue of each parameter over thi s event 

is g iven in T c:lbl e 5.4 . 

Panllllctc l' kl 1{2 kj k, I{:; I{(, 1{7 

Valu e (hl"s) 5.7 8 23 85 56.63 804 23. 14 10(1 10645 .20 4.42 

Table 5.4: Mean parameter values fo r the full three reservoir model 

Looking at the mean parameter values one can sce that the flow paths associa ted wi th k j . k5 

and k7 arc effectively blocked. since the corresponding response times arc very long. The 

resulting model eonJig ura tion is a 3 reservoir cascade wi th a loss fro m the second reservoir 

(Fig ure 5.34). 
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Figure 5.34: A 3 reservo ir cascade with loss from the second reservoir. 
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Figure 5.35: Conditional streamflow simulation with parameters fitted by minimizing the 
sum of squared differences on different portions of the flow record 
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Figure 5.36: Conditional streamflow simulation with parameters fitted by minimizing the 
sum of squared differences on different portions of the flow record 

101 



k, 

20 

15 

10 

5 

o 
59700 

CI-IAPTER 5 

64700 69700 

Minutes from the start of the year 

25 

20 

15 

10 

5 

o 
59700 64700 69700 

Minutes from the start of the year 

10740 
10720 
10700 
10680 
10660 
10640 
10620 
10600 
10580 ,~ 
10560 L'-______ _ 

59700 64700 69700 

Minutes from the start of the year 

k, 

RESULTS 

238580 

238575 1_ - '1 
238570 
238565 
238560 
238555 
238550 
238545 
238540 
238535 

59700 64700 69700 

Minutes from the start of the year 

50 
45 
40 
35 
30 

k4 25 

k, 

20 
15 
10 
5 
o '---------
59700 64700 69700 

Minutes from the start of the year 

12 

10 

8 

6 

4 

2 

o 
59700 64700 69700 

Minutes from the start of the year 

Figure 5.37: Parameters lined by minimizing the sum o f squared d ilTcrcnccs on diffe rent 
portions orthc flow record 
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Forecasting in the true sense of the word, implies that there is no prior knowledge of future 

inputs. Figures 5.40 and 5.41 indicate what forecasts of future flows are produced when 

there is no future infonnation available. As would be expected; with no input, the reservoirs 

produce a streamflow recession draining according to the values of the response parameters 

and reservoir storages. Figure 5.38 is a «close up" view and shows that the forecast with no 

infonnation into the future is actually Quite good up to 2 hours ahead, after this the forecast 

is rather poor. 
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Figure 5.38: Forecast deviation from observed streamflow values 

Figure 5.39 shows a similar "close up" and indicates that the model is able to produce a far 

better forecast when the parameters have been fitted on a recession. This is because the 

catchment behaves reasonably linearly on the recession as most of the non-linearity>s occur 

in the observed to effective rainfall conversion process (see Chapter 2). 
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It is clear from figure 5.37 that there is significant temporal variation in the parameter 

values. for this event. The lead time for which we can expect a fairly accurate forecast also 

varies (Figures 5.38 and 5.39), When we are not expecting any more rain a confident 

forecast of the (linear) recession can be made for several hours ahead. However. if more 

rainfall does occur the forecast based on currcnt knowledge cannot be made with great 

confidence. 

A number of options are available to improve the lead time and confidence in forecasts. 

Firstly conditional forecasts of the expected rainfall can be made using a rainfall simulation 

model of some kind. The lead time during which we can be confident in the rainfall 

forecasts will allow an increase in the lead time for forecasting of streamflow using the 

current parameter set. Another option is incremental updating of the forecast, using 

recursive estimation techniques (such as the Kalman filter) to improve the forecast at each 

timestep. This requires obtaining the most current observations of streamflow and 

comparing them to the equivalent forecast values, the model parameters or states can then 

be updated to produce the optimal forecast. 
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5." MODEL V t\LlI)ATlOi\ ' 

V~l1idalion of' the fitted Illodel parameters. 011 data that wasn", used in the calibration 

procedure. cou ld not be carri ed out. The reason 101' Ihis is that a single optima l parameter 

S(.!\ could not be identified from the events anal ysed. Identification or such parameter se t 

was made difficult by the unavailability of consistent rainf~1l 1 da ta. For example. there is no 

radar data avai lable for the la lcr part of the event in February 1996. as the radar wenl down. 

Rainf~lll data from the logging raingaLlgcs were used in litling this even\. Conversely. 1'01' 

the event occurring dur ing November and December 1998. only radar data were obtained. 

The use of' two different input data sources cannot produce a sensibk si ngle panU11clcr SCt. 

Anot hcr diniculty encountcrcd was the conversion of the radar data sto rage format to the 

current M DV format. from late 1998 onwards. Rain rates stored using the o ld storage 

format do [1ot seem 10 match those found llsing the MDV format. another source of 

difticully in ca librating the model. 'rlle current consisten t lI se o f u single a rchi ving format 

w ill hoperully ensure that calibration using later data Si,;ts \-v ill produce a more sens ible 

n..:sult. Thl.:! f~1cl that the model tits arc reasonabl y close to the observed stre11mllow record is 

encouraging. This indicates that the model has great llexibility. A further point to note is 

that si nce there is evidence of temporal variati on in the parameters (whi ch is ex pec ted due 

to tile cOll tinually vary ing moisture state of the catchment) it is morc bCllclicial to make use 

of recursive techn iq ues for producing the opt imal forecast. This allows for updating of the 

forecasts based on previous observa ti ons and current inputs. 
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,\ ' /fIIII/IlI/] ': 

The fiffill}!, procedure descrihed il1 ('flap/er 3/1(1.\' hecnllsed 10 re('(JI'er Ihe p(lrameler.\' /j·om 

,\ylllhelically deril 'ccI strcam/low sequences. The,\'c ,H:qIlCI1CCS lI 'cre !)roe/ueed lI'illl Ihe model 

in 1I J1III1Iher (~I cOf?/i}!,,,rllfions. The filled parameter sels IIm 't! heen shown to ma/ch the 

elw.rcll porol11cfers (I/11I0Sf (!x(lclly. (IS expecled. The Alonlc Carlo appr()ach 10 parameter 

/ilfiJ1)!, tillS aI/owed insight into rhe heJlO1'iour of the paroll/ctcr,\' lI'illlill fhe hounded 

/)(IralllC!fer space. Three his/o/'ical events /tal'e! heen /lsed 10 calih/,afe the //Iodel pal'amelers. 

(;()()£/ /ifS. il1 terms of Ihe Icos/ sfjuoJ'cs criterion. hOl'e! heel1 (lchicl'eti /-/OIl'Cl'CJ'. 

discrepancies il1 Ihe data record have nol (d/owed (I single o/)lilllllll1 parallleter sel In he 

idel1li/if!d. l/a/illalio/1 (~rlhe mode! has no! heell adeqllUldy "wTied 0111, 
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711e lfjJplicUfiol1 0/ IlIe II/odel to (f lIew cafci1l11enl ll'dl /101111'0/(\1 reqllire a process (~l 

caliiJrClliol7. If cuiihroliol1 procedllre/IJr Cl gallged ClIfchll1em is ,\'IIggesled. The./hc/oJ's I() he 

cOl/sidered inc.:lllde (/ decision on IlIhelher ((J slIh-divide IlIe co/elllllenl or 'real il as £/ sin;,:/e 

illIJlJ}(Jd cell. The (fmi/ahilily ol roe/a/' data is a/so an impor/ul1! }(u:/ol'. 11 's acc1Iracy ill 

rejlecling tile (lcflflIl rain ra/es ru.x/I/""ing is less ill/pur/ani !}/'ol'ided {here is {/ dejined 

lineal" relufitmship (no' necessarily kl1Olvn) helll'CCI1 Ihe rain rales occllr/"in,\!. and 'he rales 

re/lee/cd il1 the CAI'l l / dUfa. '/lie model parol1lclers shollld ,will he ohle 10 COl1l1er' this 

I)S(!lIdu-raill rale into lITe ohserl'ed s'reoll!/lol1l response.. as long liS fhe radar is recording 

H'h('/1 ;/'s ra;'l;ng or 110/ and ((the re/a/hmshil) is l'ea.wnah~)llil7e(/r. 

6. 1 D /\TA REQUlH.EI\\ ENTS 

Thl' prcst:ntcd modI.:!! is only applicab le to gauged catchments. s ince the calibration 

procedure to fit the model parameters requires some historic",1 data. The advantage or lI sing 

rachir to establish thl! precipitation input is that the only gauging requircment is a 

st rc<\mgauge. I r there ,Ire existing raingauges on the catchment thell they can be Ll sed to 

supplement the rainfall mca:;UJ'cmcnts obtained from the radar. The great advantage of 

using radar is the spatial and temporal resolution tlWl can be achieved (Chapter 6). T hi s 

<1 11 0\"/5 the spa tia! dist ribut ion of rainfall discussed in Chapter 7 to be incorpora tcd into the 

model through cau.;hlllcnt sub-division. 

The requirements for application or the model to a new catchment arc 

• A re!ellletering strcwlIgallge i .\· avadahle. This is m.:ccssary so that a data se t for 

calibration of the model is provided. Real time fe recasting utili zes online updating of" 

stream flow es timates and will require up to date measuremcllIS ol'stream!low. 

• 'lhere i.\' coverage (~l rhe carchlllem by weather radar. To provide the spatial and 

temporal rainl:, ll input 10 the catchment. 

• 'l'eielllerering raingulIgcs would he adl'{lI7tagcolIs. This is not a strict requirement but 

additiona l input data is always helpful. especia lly if' the rndar fa ils fer some reason. 

Some rainguuges arc needed to val idatc the radar accumulations. but data loggi ng 

gauges me suitable fe r thi s . 
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(1.2 A SUGGESTEn CALIBRATION PROCEIH IIU: 

l liwing established that the catchment meets the necessary requirements 1'01' app lication of 

the model to flood ron.:casting. the following calibration procedure is suggested 

• 1~\fr{lC:1 (f rL'/Jfesell/afil'C! hix/orical stream/low ,H:qU('IICC: 01 n:)!,II/ar ciiscreJ<! lilllcs/cp,\'. 

The timcslcp will be determined by the ICll1po rnl resolution or available precipitation 

data and the expected time-sca le of the catchment response. Dq1t~nding on how the now 

rate is 1l1l.:aslIrl!d and subsequently archived: some interpolation or stn:amtlow ",dues 

may bl,,'! necessary to gel llow daw. in the requi red format. 

• /)elerlllil1c fhe UJ/1(J'ihllfillg /Jrecipiflllioll inpllls prodllcing 'he s,rcmJ!/lol1'. The 

catchment and sub-catchmcllt boundaries will have to be estHbl ished and used to Ill<lsk 

thl! radar data. Accumulated rainfall over discrete illtervnls will then need to be 

ca klllatl!d. If rain gauge data is available 101' the calibration data Set. and the subsequent 

forecasting uperation. thcn a suitable merged r~lilljield 11111) be determined. 

• 1::rolllil1e Ihe il1l'lIl (flld Olllplll daltt sels for n}l1sislenc)'. Before embarking on the model 

culibration procedure. it is essential that some quality control be carried out on the data 

se ts to minimize the cffect of incoll!) istencies. Good calibration and verificat ion or the 

model cannot be achieved with poor data se ts. 

• Fil lIIodel !WrWl1elers 10 ohserved dma sels. Using the parameter fitting procedure 

desc ribed ill Chapter 3 (or" suit"ble alternative) find the model confi gurat ion and 

corresponding parameter set which produces the best lit between the model OUlput and 

observed streamflmv. Treat the catchment as ~I s ing le cell initially. 

• ' ·crificati()11 o( Ihe parameter sel. Use the filled model configuration and paramctcr set 

to produce flow estimates from historical data 110t lIsed 111 the determination of the 

parameters. Eswblish the "goodness'- of the modcl jit 10 the observed data. If a 

sat i s f~lcto ry lit is achieved thell the parameter se t may be adop tcd for forecas ting. If a 

sat is lactory lit cannot be achieved, try titting the parameters us ing more than onc cell. 
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6.3 OI' E ll.ATlONAL A pPLI CATI ON O F TIl E M Ol)u. 

Th!.: purpose in developing Ihis model has been to apply il 111 a Hood forecasting 

appJi cu li o ll . A lthough the operati Oll<l1 use or the model has no t been fully tes ted. the 

i()]low ing is cnvisngcd . 

• ( '{I/ihrof iol1 of'lhe lIIodel /0 Ihe particII/or corchmclI l . T his invo lves curry ing out the 

calibrati on procedure desc ri bed in sec tion 6 .1 ~Ibove. to lit rcprcsenlC1li ve parameters 10 1' 

the t11odl.!l . 

• ( '/lOose a .'ilorl ing poin! Oil 'he recel1fZY ohserved s /ream/lo ll ' r ecord. Select stable 

starL ing va lucs fo r the model 10 ensure that the fo recast ing process starts suitably close 

10 some observed st rc<lml1ows. 

• I"0J1"('C(fSf 1IIIII r e flo l1's IIsing (he " '/lI T e l1f /'o il?/ it// inpllfs. Use the parameters round during 

thc c~dibration procedure to fo recast Ii.lture nows us ing the dil Tc renee eq uati on rOr111 of 

the li ncar n:scrvoir ce ll model. T he lates t rainlil ll inputs are obtained online li·olll radar 

or ld l.'ll1ctcrillg rail\gaug~s . 

• ;/1'1)ly on ol1line corr ecl io/"l I Jrocedllre. To ensure that there is a ma intained 

corn.::spolld e nc~ between the forecast fl ows and the observed strc<lmll ow readings. as 

these hecome ava ila ble. some kind of fast correction procedure will need to be appli ed. 

T his may be as s impl e as replac ing the forecast fl ows with the .1c tua!iy observed values 

a1 cach times tep. ensuring that the forecast is proceeding from a feas ible positi on. An 

onli n\;.: p,lnlmcter upclil ting procedure lllay also be employed. Such a paramcter updating 

procedure would make use of a cOlllp lI tat ionally e fli cicnt optimiza tion algorit hm to 

rccompute <1n optimal parameter vector at each times tep. T he parameter vector can be 

computed based a ll a fi xed number or previo ll s data. Each ncw optimization would be 

carried out using virtually the same info rmat ion and good starti ng values. ensuri ng that 

computational load is not too great. Conditional lo rccasts based un the currcnt 

catchment state can then be made. 
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• Use file jiJrcclIsf jlOlI' l'ltl//c.\' as a deci.\";oll making wo/. The fi.wcci.lsts w ill provide an 

indication as 10 whether or not flooding can be expected. I)roj ccrcd flows above a 

certain critical magnitude call be aUlOllwtically reportee! to the relevant disaster 

management author ities. 

(lA CONCLLJS IONS 

This study has presented a gt:ncralized lincar reservoir model module. The Illode! can be 

concept uali zed III terms of' a surface. sub-surf~lcc and channel sto rage. eac h or wh ic h is 

represented by a linear storage dClllcnl incorporating a linear loss term. The discrete 

observed raillf~lll depths. during a g iven time period. arc inputs to the model. The inputs 

l:1111.!J' the lirs t reservoir ancl reed forward into the remaining reservoirs. the OlLtput is the 

o UI!l ow from the final reservo ir. 

Si..:k:c ling eXlreme parameter values can c reate "open" (instantaneous transfer) or "c losed" 

(no transfer) links between the vario lLs reservoi rs. By varying wh ich links arc open or 

clnsi..:d. the ll10del can be col lapsed 10 ~ I number of reduced Corll1s. This n exibi lity al lows the 

Illodel [0 opi..:rate in a Ilumber ofpi..: rl11utations ranging from a single linear rcservoir through 

cascades. or parallel arrangemen ts. to the general model lorlll. All of these Illay include 

variolls combinat ions of loss te rms. 

T he model is a semi-distributed multi-cell type. with the st udy catchment being divided inlO 

~I number or ce ll s and the mode l outputs from eac h cell sUlllmed a t the ca tchm e nt outlet to 

give the towl strcamnow 11'0111 the catc hment (C hapter 4). Parameter fittin g lI s ing an 

autommic optimization a lgorit hm (Chapter 3). produced encou raging correspo ndence 

between the observed and fitted stream fl ow records for three ra infall -runoff events of up to 

nineteen days in length (Chapter 5). 

The model has been formu lated as a difference equatio n in A RM A rorm. It has a deJ-ined 

re lat io nship betwecn til e reservo ir response parameters and thc pscudo-ARMA coefficients. 

,;"hi ch guaran tees statiomu'ity (given non-negative inputs). In this lo rm. the model is hi ghly 

eomputat iona l1 y effi cient. The input to the model comes fi-Olll high-reso lution space-t imc 

radar data. further enhancing its potential as a rea l time flood forccasting model. 
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Ihl! mode l formulati o n is ull conditionally s table. allowing the paramete r values to be 

c hosen independently of each other. Ilowcvcr. instab il it y of the model. in pscudo-A RMJ\ 

form. may res ult from a poor c hoice or initial now va lues (Chapte r 3). Thi s issue will need 

\0 he full y addressed before o pcl"ntionai use can be tnacle of the mode l. however. a sensible 

starting point lor each sub-event is the upturn of the hyd rograph. The full s late-space 

r...:prcscntation of the model does 110t produce any instab ility . pro\ idcd the initial sto r~l gcs 

arc positive. The ab ility of the model 10 rcpn .. :scnl many conceptual reservoir arrangements 

makes it a lI se ful tool. 
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STA ntE STA llTING VA L UES Fon TIl E Two J.l.[SE lt VO m CASCA DE 

p,ec:rtion 

S ' ----'S"',"-/kO:,'------i~1 S ' _--,S""",/k"'---i~ '---__ ' __ r - :-- L _ __ ' __ i .,. St reamflow 

For u zero input si tuati on. i.e. 1", = 0 for al l f. the pscudo-ARMA form red uces IQ 

\\ here 

f/>1 = -q l q ~ 

Equations j\ 1 and A2 can be \\fitten in the follo\\ing matri x form 

[ lO,] [ I][Y,_,] 
Y HI = fJ1 fiJl y , 

eq ui va len tl y 

-I~I /1-' Y = Y 

with 

-, [y, ,] y = 
y, 

(A I ) 

(1\2) 

(A3) 

and j/ "I 2x2 square matrix. Considering a sequence o f equat ion A3 it follows that wc can 

wr ite 

.f"'" = A" j? (M) 

The canonical decomposition of A is 
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\\ here /.) is tht: diagonal matrix of cigcnvalucs and ( ' contains th l.! corresponding 

cigl:l1vcctors. 

I ~qlla l ion /\4 becomes 

)''''' = UD"U Iy' 

'" The cigcnvalucs A/ arc the solutions to dCI(A - A/) = 0 and al\:: fI , = (' , 

Expanding equation 1\5 

I ][1f1" 
If, ][ 'I, -I][Y, ,] 

If,'' - lf ~ 1 )" 

[
,] I [ " ) ,.,. I _ (h 

- lId 
)',." (I . - q~ q ~ 

From equation A6. \\c tind that 

rhe cond itions to g uarantee A 7 nOIl-negalivc arc 

and 

NOIing tha t 

a "+1 - h''' ' 
'-'-----'C- = a" + a" I" + ... + (lh" I + h" 

{/-h 

eq uation AS becomes 

.1L > " .(h (£/1 - (12 
y , I (q . - th 
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~> et, 

)" I (I I ") + CI, 
a 

wlH.:re 

hu large 11. a» q/' thcn.:fot'c ensure 
\ ' 

-'-'- > </ , 
Y, I 
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MIIf..:h or the d(l{o lll1{/~)'sis mu/ lI/odeljilfil1x .If)/' 'hi.\" s/lfdy rC11lfired spec{lit: .\"(~fiwore /0 he 

lI'rille1/. 'fhe ,.elJ1aiJ7iJ'/~ ta.\'ks wert' pel.'fimned usin~ a cOlllmercially avai/obie spreads/wet 

/)(tcko,ge and image eJifiJ1;!, .\"(?/hll are. This ofJpelUlix pro "ides a more dellliled descripfio/1 (~r 

fhe l'CtriOIlS (. pr()~"{/IJ1S lIIentioned throllghollt this lex!. 

B.I nAINGAlJGE ACCW\IlJLATION 

The I i ppi ng bucket rai ngaugc da ta. provided by M ETS VS. were in the formal illustrated ill 

Figure B I. Th~ firs t column or data cOllta ins Ihe gauge identifier. The next six columns of 

\\\'o digi t integer llumbers represent. the year. month. day. hour. minute and second at 

which th~ reading was taken. The next col umn (accurate to Iwo decimal places) is the 

rainfall depth represented by each tip: always 0.2111111. Colum n 9 s hows the number of days 

so t~lr in the current year. The final column is a tip count. 

stn yy mm dd hh mm ss r . rr yd count 

LOOl 96 03 01 " 16 13 0 . 00 060 00000 
LOOl 96 03 01 23 27 '5 0 . 20 060 00002 
LOOl % 03 01 23 32 51 0 . 20 060 00003 
LOOl 96 03 02 00 47 54 0 . 20 061 00004 
LOOl 96 03 02 00 53 10 0 . 20 061 00005 

Figure B I : Example of tipping bucket gauge data 

Each data lile stores an entire mon th 's data. \vith the data 101' each of the 45 gauges 

follovving consecuti vely. Every gauge makes at least one reading per day to confirm that 

the gauge was operational each clay o f the month. This f01"111<11 is not useful as an input 

sequencc to the model. A computer program was written to correctly format the data so that 

it could be lIsed as input to the model. The average rainfhll over the ca tchmcnt. or sub­

catchment, was OUlput in the required formal. shown in Figurc B2. 

Year Time Deplh 

1996 36420 1. 75 
1996 36480 0 . 40 
1996 36540 0 . 00 
1996 36600 0 . 05 
1996 36660 0 . 15 

Figure 82: Example of correctly formalted output from the raingaugc ;lccu111ulation 
program 
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Each reco rd in the lo rmatlcci output file co ntains. the year. the lim<: in minutes fro m till: 

s tart or that year and the accumulated de pth (mm) or rai n l ~1 11 during the o ne hour pe ri od 

start ing a1 the time ind icated. 

The a lgorithm lI sed to fo rmat the data is 

• Rend firsllinc of data . 

• Dckrlllinc the time from the s tart o r lhe yea r ( in minutes) \0 the c nd o f the fi rs t a nd last 

hours in the current month . 

• A l locate Cl memory arrny . large enough to ho ld the hourly ra in nlll acc lIll1uimions 10 r 

eac h gauge. every hour or the month. 

• W hile the c nd o rlhe fil e has not been reached 

• W hile the g' lUgC id l,;! lltilic r is the salll e as the current onc 

• Rt:ad Ihe nex t line of data . 

• C alculate the lime from the s ta rt o f the year. 

• If the lillle is less Ih'111. o r eq ual to. the c nd o f the c urrent hour: acid the tip dc pth 

la the c urre nt ho urs rUllning tot,-l1. 

• E lse I I' the time is g reate r than the e nd of the curre nt hour: w rite the J'unnlllg 

tOlal to the a ppropriat e place in the me mory array. ini tial ize lhe ru nn ing to ta l to 

ze ro a nd increment the c urre nt hOLl r. 

• II' the c nd o r the month has been reached: initia lize the c urre nt hour to the s tart of 

the 1110nth. 

• E lse: While the e nd o f the month has not been reached. 

• Infil1t he memory bl oc ks with zeros. 

• Ca lc ulate the a verage precip itation de pth for the re leva nt gauges 10 1' eac h ho ur o f the 

mont h a nd w rite the result s to a lormalled text fil e. 
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B.2 ST IU~ Ai\ I FLO\V INTEHI'OLATION 

The breakpoint str~a1l1nOW claw obtained from D\VI\ F me not ro rnwtlcd for casy 

compari son with the nw dc! output. 11 was necessary to write <l convers ion program which 

wou ld ~x tract the re levant !lo\V rates and inte rpo late be l\veen tht: m w here required . I\. linear 

interpo la ti o n was lI sed between po ints w hich did nol coi1l(; iC\c w ith the correct d isc re te 

inte rvals. T hi s was done for s impli c ity. and because the brcnkpoints a rc (by defini tio n) the 

poin ts w he re the cont inuous !low rCL:ord dev iates fro m a st raight line. 

T hl,.' a lgo ri th m lor thi s program is as fo llows 

• While the cnd o r fil e has 11 0 \ been reached 

• Read a line or cia ta. 

• Calcul ate the lime ( in mi nutes) from the start o f the yea r. 

• \Vrit l.;! the year. ti mc and now ratc to a ll intermed iate file. 

• Cl os~ the primary dala !i le. 

• Read Ihe first line o f the intermediate fil e . 

• Determine the t illle to the starl of the hour after the firs t record. 

• While it is 1101 the c nd o rlll e intermed iate j·ilc 

• Read the next line o f data . 

• I r th e time is after the current hour. 

• Linearl y interpolate between the previous and current nows to ca lculate thc fl ow 

for thi s hour. 

• Write the !l ow and currcnt hour to filc. 

• Replace the previolls !low with the current onc. 

• I ncrement the current hour 

• El se I rthc time is prior to thc currcnt ho ur: update previous fl ow. 
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B .3 CA I'I'\ MASKI NG 

The CA P PI masking program accepls as input the lile path to the first Ci\PP I and the 

number of consecLLtive CAI)Pl's 10 be processed. In addition. input is the path IQ the first 

mi.lsk image ;:lIld the number or co nseclltive images \vilb which the C!\ [) Pl data must be 

lnnski.:d. T he output is a Ilumber or lexl fi le!'). containing hourly rainfall accumulations. 

lorm<lllCd as shown in Figure 132. The original bitmap images remain unchanged. 

The algorithm llsed is 

• Open the lirst CAP P] bilmap. 

• Dc tt: rminc the lime (in milllllcs) /i'om the start or the year to the c nd o r the hour during 

which the CAPPI cia!;] was recorded. 

• ;\II01..:<llc i.lmemory array large enough 10 hold the rain rale i<)r each pi xci on the CAPPI. 

• 0Pl'll the mask image. 

• Dclillt' <.I "I11<.1S"'· 101' the mcmory array, 

• Writ!.! thc rain ratcs, 101' pi.'\cls fnlling w ith in thc maskcd region. to thc appropr iate placc 

in the mcmory array. 

• V·/hik there are sti llmorc CA Pprs to process. 

• Open the next CAP PI. 

• I r thc time is during thc current hour 

• Incn":l11 L!nt the n..:lcva nt va lues in the memory a rray by thc ncw rai n rates. 

• Inc rcmcnt the CA PPI coun t 

• Else Ir the ti me is ancr the c urrent ho ur 

• Calculate the rain hil l depth during the currelll hour by div iding the values in the 

memory array by the num bcr orCA Ppr s recorded duri ng thc hour. 

• In itia lize thc memory array. 

• Initial ize thc CAPP I count. 
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• Increment Ihe current hOllr. 

• Incrcll1<':llt the relevant va lues in the memory array by Ihe new rain rates. 

• Increment Ihe CA PPI count 

• Rl!pc<lt the above 1'01' each mask region. 

BA P A ll..A ,\I ETE Il. FITTI NG 

Thl! nO\\ chart in Chapter g (Figure ~.2) provides an adequall! description of the algorithm 

Llsed in the parameter lilting process. The followin g pages contain an exa mpl e o r the 

inforll1ation li k used by Ihe tilting program. A ll linl!s begi nning with the hash (#) symbol 

arc CO llllllents and ignored by the program . A separate copy o r Ih is ti le wa)) lIsed for fits of 

the variou s model configurations. \:vith the appropriate changes made. 
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~ A typical information 
It Nav/Oec-199B Model 4 
It Above are comments on 
It catchment , as well as 

file for the parameter fitting process . 
Six cells 

the event date and number of cells in the 
the model configuration used . 

K Channel parameters for each cell . 
It These are calculated as the ratio CL/TL . 
It Where CL is the distance along the longest collector of the cell 
K to the gauging station . 
~ TL is the longest of the distances calculated in this way. 

chClnnclt:83A 1 . 0000 
ch<JnneIC838 0 . 9123 
channelC83C 0 . 6491 
channelC83D 0 . 9386 
channelC83E 0 . 5351 
channeIC83F 0 . 4035 

It Areal parameters for the cells . 
It The parameters are the area of the cell taken as a proportion of 
It the total catchment area . 

,He..-1C83.A 0 . 2054 
,ueilC838 0 . 0713 
~1reaC83C 0 . 2290 
areaC83D 0 . 1294 
areaC83E 0 . 118 
areaC83F 0 . 2464 

ff conversion factors from mm/hr to m Is . 
H The rainfall totals are in mm/hr but streamflow is in m Is . 

c0!'1versionC83A 
conversionC838 
conversionC83C 
conversionC83D 
conversionC83E 
conversionC83r 

338 . 6111 
117 . 5 
377 . 5 
213 . 3333 
195 . 2777 
406 . 1111 

H Path to text file of observed flows . 

OBSERVED l'LOW \\FLOWMASTER\process\flowsC8H020 . txt 

H Name of working directory to create . 

WORKING DIR \\FLOWMASTER\process\median40 

H Paths to save calculated flows and parameters . 

CALCULATED PARAMETERS \\FLOWMASTER\process\median40\parameters . t x t 
CALCULATED FLOWS \\FLOWMASTER\process\median40\streamflow . txt 
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U P,uhs to save incermediate flows and parameters . 

PARAMETER ESTIMATE 
STREAM FLOW ESTIMATE 

\\FLOWMASTER\process\median40\pA . txt 
\\FLOWMASTER\process\median40\sA . txc 

U Year in which to start fitting . 

~;TART YEAR 1998 

U Minutes tram the start of the year to the first record . 

START MINUTES 452340 

U Length of record to analyse (Hours) . 

SlZE 636 

H Path to first text file of observed rainfall . 
ff The files must be named in the following format 
ff C83A . txt , C83B . txt .... Ca3F . txt 

RECORDED RAIN 
\\FLOWMASTER\Accumulated Rain Data\11 12 1998 Ca3A . txt 

# The number of ~ell ' s in the catchment . 

CELL NUMBER 1 

U Determines where the losses are taken from in the model . 
U A "comment" paramet.er to keep track of the model configuration . 
« l->Loss from tank 1 
« 2->Loss from tank 2 
11 tank 3 3->Loss from 
11 tanks 1&2 4->Loss trom 
11 tanks 1&3 5->Loss from 
« Lanks 2&3 6->Loss from 
« 7->Losses from all Lanks 

MODEL NUMBER 4 

1
" 
-, 
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H The lank response parameters (Hours) 
H Zero or negative values indicate that 
fI fitted . 

the parameter is to be 

~ 

~ 

Posi live 
fixed . K 

values indicate the value at which the parameter is 
10' if the reservoir is "closed" . 

K1 
K2 
K3 
K4 
K5 
K6 
K7 

-1 
-1 
-1 
-1 
-1 
-1 
1000000 

# The minimum lag (Hours) . 

START LAG 5 

fI The maximum lag (Hours) 

END LAG 8 

It Initial 
~ Defines 

Lemperature 
a scale for 

for 
the 

the Metropolis annealing schedule . 
random fluctuations , which is reduced 

" after a given number of iterations . 

::.NITIAL TEMP 10000 

It The number of iterations before the Metropolis temperature is 
reduced . 

ITERATIONS 2000 

fI The mnximum number of iterations allowed in total 
" (for each restart) 

MAXIMUM ITERAT I ONS 20000 

» The number of restarts from ra ndom simple xes . 

RESTARTS 25 

# The choice of annealing schedule to reduce the Metropolis 
11 temperature . 
ff Schedule 1 reduces temp . e x ponentially . 
11 Schedule 2 reduces temp . l i near l y . 
H Schedule 3 reduces temp . based on the differe nce between t h e 
ff lowest objective value on the currenL simplex and the lowest 
ij found at previous temperatures . 

ANNEALING SCHEDULE 1 
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11 Vi'llue of exponent for schedule 1. 

ALPHA 2 . 43 

H Linear temperature reduction factor [or schedule 2 . 

EPSILON 1.0E-3 

n Factor of order onc , to scale the difference in values at 
n simplex vertices , Schedule 3 . 

BETA 2 

# Biqgest factor by which the temperature may be reduced during 
11 one step . Schedule 3 . 

GAMMA 7 . 5E-1 

11 Stopping tolerance for the 
H amebsa algorithm (Press et al ., 1992) . 

FUNCTION TOLERANCE 1 . Oe-B 

I! The upper bound for the reservoir response parameters . 
H This value Rllows the response time tu ~e essentially infinite . 

KMAX 10000 

I! The lower bound for the reservoir response parameters . 
If This value allows the response time to be negligible . 

KMIN 0 . 001 
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