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Abstract

In this thesis we study the conformal geometry of static and non-static spherically

symmetric spacetimes. We analyse the general solution of the conformal Killing vector

equation subject to integrability conditions which place restrictions on the metric func-

tions. The Weyl tensor is used to characterise the conformal geometry, and we calculate

the Weyl tensor components for the spherically symmetric line element. The accuracy

of our results is verified using Mathematica (Wolfram 2010) and Maple (2009). We

show that the standard result in the conformal motions for static spacetimes is in-

correct. This mistake is identified and corrected. Two nonlinear ordinary differential

equations are derived in the classification of static spacetimes. Both equations are

solved in general. Two nonlinear partial differential equations are derived in the classi-

fication of non-static spacetimes. The first equation is solved in general and the second

equation admits a particular solution. Our treatment is the first complete classification

of conformal motions in static and non-static spherically symmetric spacetimes using

the Weyl tensor.
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Chapter 1

Introduction

The theory of general relativity provides the best description of the behaviour of the

gravitational field. In general relativity we take the spacetime to be a four dimensional

differentiable manifold endowed with a symmetric metric tensor field. The matter

content of the universe can be treated as a relativistic fluid and is described by the

symmetric energy momentum tensor. The Einstein field equations relate the matter

content to the curvature of spacetimes. Determining explicit solutions to the Einstein

field equations is necessary for astrophysical and cosmological applications.

Spacetimes admitting a symmetry play an important role in general relativity.

There are different types of vector symmetries on a manifold, namely those generated

by Killing vectors, conformal Killing vectors and homothetic vectors. Without im-

posing a symmetry condition, solving the Einstein field equations becomes a difficult

task. Symmetry properties are also used to put structure on the set of solutions of the

Einstein equations by a classification scheme based on the groups of motions or other

invariant vectors. In this sense, conditions put on the metric tensor field in space-

time would be of interest in obtaining new solutions to the field equations. There are

symmetries which arise from geometric quantities other than the metric tensor field;

for instance conditions can be placed on the curvature, e.g. Ricci collineations. Some
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of these have been extensively studied by Maartens and Maharaj (1986), Duggal and

Sharma (1999) and Stephani et al (2003)

The traditional approach used to find exact solutions of Einstein field equations

is to specify the form of the metric and the type of fluid. However this method often

leads to physically unreliable astrophysical or cosmological models. One way around

this problem is to assume that the spacetime has a conformal symmetry. Therefore

conformal symmetries have been extensively studied in the literature. Conformal sym-

metries have the geometric property of preserving the structure of the null cone by

mapping null geodesics to null geodesics. They are physically significant as they gen-

erate constants of the motion along null geodesics for massless particles. Conformal

symmetries have been applied to cosmology in different spacetimes. The conformal

geometry has been studied in Robertson-Walker spacetimes by Maartens and Maharaj

(1986) and Keane and Barrett (2000). A detailed analysis of conformal vectors has

been undertaken by Maartens and Maharaj (1991) and Keane and Tupper (2004) in

pp-wave spacetimes. Maartens et al (1986) investigated the kinematic and dynamic

properties of conformal Killing vectors in anisotropic fluids. Castejon-Amenedo and

Coley (1992) and Hansraj et al (2005) have considered the applications of conformal

symmetries in conformally related spacetimes. Comprehensive analysis of the confor-

mal geometry, especially in spherically symmetric spacetimes, and their kinematical

and dynamical quantities were performed by Coley and Tupper (1990a, 1990b, 1994).

The conformal Killing vector was explicitly derived in static spacetimes (Maharaj et al

(1995) and Maartens et al (1995, 1996)) and non-static case (Moopanar and Maharaj

(2013)) with spherical symmetry. There are various applications of conformal motions

in relativistic astrophysics. Herera et al (1984) and Herera and Ponce de Leon (1985)

use conformal motions in modelling an anisotropic sphere. Rahaman et al (2010) stud-

ied the role of pressure anisotropy with conformal symmetry. Mak and Harko (2004)

studied charged strange stars with a quark equation of state. Esculpi and Aloma (2010)
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generated anisotropic relativistic charged fluid spheres with a linear barotropic equa-

tion of state. Usmani et al (2011) extended the concept of a Bose-Einstein condensate

to gravity to construct gravastars. Herrera et al (2012) studied irreversible dissipative

processes and Landau damping in relativistic stellar systems.

For this thesis we follow the work of Maartens et al (1995), who examined the

classification of conformal motions in static symmetric spacetimes. We complete their

analysis for static spacetimes and attempt to extend this classification to the non-static

spacetimes.

We now provide an outline of this thesis:

Chapter 2 gives an overview of the elements of differential geometry and general

relativity which are essential for the work covered in later chapters of this thesis. The

concept of a manifold is briefly explained. This provides the foundation for looking at

other important tensors such as the Riemann, Ricci, Weyl and Einstein tensors. The

Einstein field equations satisfy the conservation laws through the Bianchi identity.

In particular we study the Weyl tensor and its symmetries. In this chapter we also

analyse properties of the Lie derivative and its properties. We conclude the chapter by

studying the conformal Killing equation. This equation is useful to later calculations

and represent an important part of this thesis.

In Chapter 3 static and non-static spherically symmetric spacetimes are examined.

We consider the static and the non-static cases separately. The conformal Killing vector

equation is solved and the general solution is subject to a set of integrability conditions.

This work on conformal motions for these spacetimes has been extensively studied

earlier by Maartens et al (1995) and by Moopanar and Maharaj (2013). We have

used both Mathematica (Wolfram 2010) and Maple (2009) to verify the calculations

presented in this and the subsequent chapters. The conformal geometry may be written

more compactly by introducing a new transformation.

In Chapter 4 we derive the non-zero Weyl tensor components for the static spheri-
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cally symmetric spacetimes. We use these components to calculate the Lie derivatives

of the Weyl tensor components. The classification depends on whether the Weyl ten-

sor vanishes. We compare our results with those shown in the work of Maartens et al

(1995) and identify an error in that paper. We then give a complete classification of

conformal motions in static spacetimes.

In Chapter 5 we follow the procedure as in Chapter 4 for non-static spherically

symmetric spacetimes. By calculating the Lie derivatives of the Weyl tensor compo-

nents we present a complete classification of conformal motions subject to integrability

conditions. Again the classification depends on whether the Weyl tensor components

vanish. We generate two nonlinear partial differential equations; the first equation has

a general solution and the second equation has a particular solution.

In the conclusion we review the results obtained. We believe some of the results

obtained in this thesis are original. Our analysis provides a complete classification of

conformal motions in both static and non-static spherically symmetric spacetimes.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we consider the basic elements of differential geometry and general

relativity. Differential geometry is an indispensable tool in analysing the mathematical

aspects of general relativity. At the foundation of the subject is the concept of a

manifold. A manifold is an abstraction of the concept of a smooth surface in Euclidean

space. This generalisation has proved useful in general relativity as we encounter

smooth sets which cannot be presented as subsets of Euclidean space. It is on this

differentiable manifold that we define the metric tensor field. We also define a number

of tensors which form the fundamental part of our study, namely the Riemann, Weyl,

Ricci and Einstein tensors. The Weyl tensor in particular is the crucial quantity

that enables us to complete the classification of the conformal geometry in subsequent

chapters. We then introduce the Lie derivative, Lie algebras and the conformal Killing

vector. These provide the framework for the work covered in the remaining chapters.

We also briefly introduce the Einstein field equations in general relativity.
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2.2 Differential geometry

2.2.1 Differentiable manifolds

An n-dimensional differentiable manifold M is a topological space which locally re-

sembles the structure of Euclidean space Rn. Formally an n-manifold is defined as

follows:

Definition 2.2.1 (Manifold). An n-dimensional differential manifold M is a con-

nected Hausdorff topological space such that for every neighbourhood Ux of a point

x ∈M the following conditions hold:

i) There exists a one-to-one mapping αx with

αx : Ux 7→ Rn,

where αx is called the map of Ux.

ii) If the neighbourhoods Ux and Uy, x, y ∈M , are such that Ux ∩ Uy ̸= ∅ and if αx

is a map of Ux and αy is map of Uy, then the mappings αy ◦ αx
−1 and αx ◦ αy

−1

are mappings of Rn into itself.

For this thesis we restrict our analysis to a 4-dimensional differentiable manifold

where each point in M can be uniquely described by coordinates xa = (x0, x1, x2, x3),

where x0 is the timelike coordinate and x1, x2 and x3 are spatial coordinates.

2.2.2 Tensors

Tensors are invariant quantities defined on the manifold M . The analysis of physical

phenomena does not depend on our choice of a coordinate system. This necessitates

the study of tensors as these are quantities that remain invariant in all coordinate

systems. Some of the important tensors relevant to our study are described below.
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Metric tensors

The main object of study in general relativity is the metric tensor g. It is a symmetric

tensor of order two and is a function of the coordinates xa. The invariant distance

between two neighbouring points on the manifoldM is represented by the line element

ds2 = gabdx
adxb, (2.1)

where g is non-degenerate and symmetric. The fundamental theorem of Riemannian

geometry implies the existence of the metric connection. The connection coefficients

are given by

Γa
bc =

1

2
gad(gbd,c + gcd,b − gbc,d), (2.2)

where commas represent partial differentiation. The connection coefficients do not

transform tensorially; the definition (2.2) ensures the covariant derivative transforms

as a tensor. The components Γa
bc are also known as the Christoffel symbols of the

second kind.

Riemann curvature tensor

The Riemann curvature tensor, or simply the Riemann tensor R, plays a central role

in describing the geometry of curved spacetimes. Apart from measuring the extent to

which a manifold is locally equivalent to Rn, it is also used to generate other tensors,

e.g. Ricci and Weyl tensors. The components of the Riemann tensor are given by

Ra
bcd = Γa

bd,c − Γa
bc,d + Γe

bdΓ
a
ce − Γe

bcΓ
a
de. (2.3)
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The Riemann tensor possesses important algebraic symmetries which may be used to

simplify many calculations. These are given below

Rabcd = −Rbacd = −Rabdc, (2.4)

Rabcd = Rcdab, (2.5)

Rabcd +Radbc +Racdb = 0. (2.6)

These symmetries reduce the number of independent components of the Riemann ten-

sor from n4 to 1
12
n2(n2−1) in a manifold of dimension n. For a 4-dimensional manifold,

the Riemann tensor has twenty independent components. In addition the Riemann

tensor also satisfies the Bianchi identity

Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0, (2.7)

where semi-colons represent covariant differentiation.

Ricci tensor, Ricci scalar and Einstein tensor

The contraction of the Riemann tensor across the first and third indices produces the

Ricci tensor. This is defined by

Rbd = gacRabcd. (2.8)

The Ricci tensor has 1
2
n(n+1) independent components in an n-dimensional manifold;

in a 4-dimensional spacetime the number of independent components is ten. From
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equation (2.5) it follows that the Ricci tensor is symmetric. Further contracting the

Ricci tensor, we obtain the Ricci scalar

R = gabRab. (2.9)

The Einstein tensor is defined by

Gab = Rab −
1

2
Rgab. (2.10)

The Einstein tensor is divergence-free so that

Gab
;b = 0.

This identity is used to derive the conservation laws from the Einstein field equations.

This result makes the Einstein tensor a natural choice in deriving the field equations,

since the Ricci tensor itself is not divergence-free.

Weyl tensor

TheWeyl tensor plays an important role in this thesis. It represents the tidal forces that

a body experiences when moving along a geodesic. It has the same symmetries as the

Riemann tensor with the extra condition that it is trace-free, i.e. it is a Riemann tensor

with the Ricci terms subtracted out. Hence the Weyl tensor contains information about

how the shape of an object is distorted by tidal forces whilst the volume is preserved

as there are no Ricci terms. An important property of the Weyl tensor is that it

remains invariant under conformal transformations. Hence it is sometimes known as

the conformal tensor. For any manifold with dimension n ⩾ 3 the Weyl tensor is given
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by

Cabcd = Rabcd −
1

2
(gabRcd − gadRbc − gbcRad + gbdRac)−

1

6
R(gadgbc − gacgbd). (2.11)

The Weyl tensor satisfies the following symmetries

Cabcd = −Cbacd = −Cabdc, (2.12)

Cabcd = Ccdab, (2.13)

Cabcd + Cadbc + Cacdb = 0. (2.14)

A manifold of dimension n ⩾ 4 is said to be conformally flat if and only if the Weyl

tensor vanishes.

2.2.3 Lie theory

Symmetries that exist in the manifold M play an important role as they simplify the

number of unknown functions in many calculations of physical importance in astro-

physics and cosmology. Lie derivatives are a natural way of analysing these symmetries

as they provide a coordinate independent way in which to describe symmetries on the

manifold M .

Lie algebra

Definition 2.2.2 (Lie algebra). A Lie algebra is a vector space V on which a product

[X,Y] of vectors X, Y, Z ∈ V is defined as follows:

i) [X,Y] is bilinear,
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ii) [X,X] = 0,

iii) [X,Y] = −[X,Y] (Anti-symmetry),

iv) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0 (Jacobi identity).

The product [X,Y] is known as the Lie bracket and is defined by

[X,Y] = XY −YX. (2.15)

where products on the right represent composition of functions.

Lie derivative

The Lie derivative LX along a vector field X is a very important concept in differential

geometry that tells us how a geometric object changes as it is pushed along the curve

of a given tangent vector. It plays a central role in defining symmetries on manifolds

and describing conservation laws.

Definition 2.2.3 (Lie derivative). The Lie derivative for an arbitrary tensor field

T a1a2···am
b1b2···bn along a vector X is given by

LXT
a1a2···am

b1b2···bn = XcT a1a2···am
b1b2···bn,c

−T ca2···am
b1b2···bnX

a1
,c − · · · − T a1a2···c

b1b2···bnX
am

,c

+T a1a2···am
cb2···bnX

c
,b1 + · · ·+ T a1a2···am

b1b2···cX
c
,bn . (2.16)

The Lie derivative LX satisfies the following properties:
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i) LX preserves tensor type, i.e. LXT is a tensor field of the same type as T ,

ii) LX is linear and satisfies the Leibniz rule for differentiation,

iii) LX commutes with contraction,

v) LXY = [X,Y] for all vector fields Y,

vi) L[X,Y] = LXLY − LXLY for all vector fields X and Y.

Lie group

A Lie group is a manifold that also has a group structure, i.e. it is manifold in the sense

of Definition 2.2.1, and in addition the set of points of this manifold form an algebraic

group. The manifold structure allows us to consider the notion of smoothness which

would not be possible in more general groups.

Definition 2.2.4 (Lie group). Let M be an n-dimensional differentiable manifold.

Then M is a Lie group if the following are satisfied:

i) M is a group in the usual algebraic sense,

ii) the group multiplication

m :M ×M −→M,

and the group inverse

i :M −→M,

are both smooth maps.

12



Every Lie group defines a unique Lie algebra and conversely every Lie algebra

defines a unique Lie group. For this investigation we utilise the symmetries of the

metric tensor field on manifolds. These concepts are considered in great detail by

Choquet-Bruhet et al ( 1977), Dubrovin et al (1984, 1985) and Stephani et al (2003).

Conformal Killing vector

A Killing vector leaves the metric unchanged and leads to a conservation law. There

are some useful ways to consider symmetries that are not Killing symmetries. We

introduce a more general notion of a symmetry by considering the case of a conformal

Killing vector. In this thesis we are concerned with groups of conformal symmetries

which preserve the metric up to a factor. The conformal Killing vector field is defined

by the following relation

LXgab = 2ψgab, (2.17)

where ψ = ψ(xa) is the conformal factor. The set of all conformal Killing vectors

generates a Lie algebra with basis {XI}. The elements of the basis {XI} are related

by

[XI ,XJ ] = CK
IJXK

where CK
IJ are the structure constants of the group. The structure constants satisfy

CK
IJ = −CK

JI (anti-symmetry),

CK
LMC

M
IJ+C

K
IMC

M
JL + CK

JMC
M

LI = 0 (Lie identity).
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The integrability condition for the existence of the conformal vector (2.17) is given by

LXC
a
bcd = 0, (2.18)

as established by Hall and Steele (1991).

2.3 Field equations

Einstein field equations are the general relativistic generalisation of Newton’s gravita-

tional laws. Einstein postulated that the field equations should indicate how energy

and matter curve spacetime and that they must obey the conservation laws. The

matter content is described by the symmetric divergence-free tensor

Tab = (µ+ p)uaub + pgab + qaub + qbua + πab, (2.19)

called the energy-momentum tensor. In this definition µ is the proper density, p is the

isotropic pressure, qa is the energy flux vector and πab is the anisotropic stress tensor.

The vector u is timelike and unit (uaua = −1). The energy-momentum tensor (2.19)

is coupled to the Einstein tensor (2.10) via the Einstein field equations. This generates

the system

Rab −
1

2
Rgab =

8πG

c2
Tab, (2.20)

where G is the gravitational constant and c is the velocity of light. The system (2.20)

is a system of non-linear partial differential equations, and a large part of research in

general relativity is concerned with finding exact solutions to this system. The equa-

tions (2.20) constitute a system of nonlinear differential equations, which determine
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the behaviour of the gravitating system in the presence of matter. Exact solutions

to (2.20) relevant to astrophysics and cosmology are given by Krasinski (1997) and

Stephani et al (2003).
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Chapter 3

Spherically symmetric spacetimes

3.1 Introduction

Spherically symmetric spacetimes are widely used in applications in cosmology and

astrophysics. In this chapter we investigate the conformal geometry of static and non-

static spherically symmetric spacetimes. Killing vectors are relatively well known as

indicated in the work of Stephani et al (2003). Conformal symmetries will be analysed

in this chapter as they remain an important area of research. We give the general

solution of the conformal Killing equation and the conformal factor for both static and

non-static spherical spacetimes. This solution is subject to integrability conditions

which place restrictions on the gravitational potentials. In §3.2 we consider the confor-

mal geometry of static spherically symmetric spacetimes, and give the general form of

the conformal Killing vector and the conformal factor first obtained by Maharaj et al

(1995). Maartens et al (1995) adopted a notation to express the solution more com-

pactly and we provide this form as well. In §3.3 the general solution of the conformal

Killing vector and conformal factor for the non-static spherically symmetric spacetimes

is given. This solution was first obtained by Moopanar and Maharaj (2013).
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3.2 Static spacetimes

3.2.1 Spacetime geometry

The general form of the line element for static spherically symmetric spacetimes is

given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2), (3.1)

in comoving coordinates. The quantities ν(r) and λ(r) represent the gravitational

potentials. The metric (3.1) admits four Killing vectors

ξ0 =
∂

∂t
, (3.2a)

ξ1 =
∂

∂ϕ
, (3.2b)

ξ2 = cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ
, (3.2c)

ξ3 = sinϕ
∂

∂θ
+ cosϕ cot θ

∂

∂ϕ
, (3.2d)

as the spacetime is static and invariant under rotations.

3.2.2 Conformal geometry

To generate the conformal geometry for static spherically symmetric spacetimes we

need to find the conformal vector X = (X0, X1, X2, X3) and the conformal factor

17



ψ. The conformal Killing vector equation (2.17) for the line element (3.1) can be

decomposed into the system:

νrX
1 +X0

t = ψ, (3.3a)

−e2νX0
r + e2λX1

t = 0, (3.3b)

−e2νX0
θ + r2X2

t = 0, (3.3c)

−e2νX0
ϕ + r2 sin2 θX3

t = 0, (3.3d)

λrX
1 +X1

r = ψ, (3.3e)

e2λX1
θ + r2X2

r = 0, (3.3f)

e2λX1
ϕ + r2 sin2 θX3

r = 0, (3.3g)

X1 + rX2
θ = rψ, (3.3h)

X2
ϕ + sin2 θX3

θ = 0, (3.3i)

X1 + r cot θX2 + rX3
ϕ = rψ. (3.3j)

Note that (3.3) comprises a system of coupled first order differential equations. The

system (3.3) can be integrated to yield X and ψ subject to integrability conditions.
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This was achieved by Maharaj et al (1995) and Maartens et al (1995, 1996). We have

re-derived this solution and verified that it is correct with the help of Mathematica

(Wolfram 2010). We do not give the integration procedure for the above system and

simply present the general solution below. The components for the conformal vector

are

X0 = r2e−2ν sin θ(At sinϕ− Bt cosϕ)− r2e−2νCt cos θ + E + a0, (3.4a)

X1 = r2e−2λ sin θ(−Ar sinϕ+ Br cosϕ) + r2e−2λCr cos θ +D, (3.4b)

X2 = cos θ(A sinϕ− B cosϕ) + C sin θ + a1 sinϕ+ a2 cosϕ, (3.4c)

X3 = csc θ(A cosϕ+ B sinϕ) + cot θ(a1 cosϕ− a2 sinϕ) + a3. (3.4d)

The conformal factor is given by

ψ = r2 sin θ sinϕ
(
− νre

−2λAr + e−2νAtt

)

+r2 sin θ cosϕ
(
νre

−2λBr − e−2νBtt

)

+r2 cos θ
(
νre

−2λCr − e−2νCrr
)
+ νrD + Et. (3.4e)

The quantities A,B, C,D and E are arbitrary functions of t and r, and a0-a3 are

constants. These quantities arise from the integration process. In the integration, the
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following integrability conditions are generated

e2ν(r2e−2νAt)r + r2Atr = 0, (3.5a)

r2νre
−2λAr − r2e−2νAtt − λrr

2e−2λAr − (r2e−2λAr)r = 0, (3.5b)

re−2λAr +A− r2(νre
−2λAr − e−2νAtt) = 0, (3.5c)

e2ν(r2e−2νBt)r + r2Btr = 0, (3.5d)

r2νre
−2λBr − r2e−2νBtt − λrr

2e−2λBr − (r2e−2λBr)r = 0, (3.5e)

re−2λBr + B − r2(νre
−2λBr − e−2νBtt) = 0, (3.5f)

e2ν(r2e−2νCt)r + r2Ctr = 0, (3.5g)

r2νre
−2λCr − r2e−2νCtt − λrr

2e−2λCr − (r2e−2λCr)r = 0, (3.5h)

re−2λCr + C − r2(νre
−2λCr − e−2νCtt) = 0, (3.5i)

(r−1 − νr)D − Et = 0, (3.5j)

e2νEr − e2λDt = 0, (3.5k)
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νrD + Et − λrD −Dr = 0. (3.5l)

The solution (3.4) gives the most general conformal symmetry of the static spheri-

cally symmetric spacetime (3.1). The equations (3.5) act as integrability conditions

restricting the forms of the gravitational potentials. The metric functions ν(r) and

λ(r) depend on the functions A,B, C,D and E .

The above solution can be expressed in a more compact form by making use of the

following transformation adopted by Maartens et al (1995, 1996). We introduce the

new variables

Ai = (A1, A2, A3)

≡ (B̃,−Ã, C),

ηi = (η1, η2, η3)

= (sin θ sinϕ, sin θ cosϕ, cos θ),

A0 ≡ E ,

A4 ≡ D.

Using this notation, the solution (3.4) can be transformed to

X0 = −r2e−2νAi
tηi + A0 + a0, (3.6a)
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X1 = r2e−2λAi
rηi + A4, (3.6b)

X2 = −Ai(ηi)θ + a1 sinϕ+ a2 cosϕ, (3.6c)

X3 = − csc2 θAi(ηi)ϕ + cot θ(a1 cosϕ− a2 sinϕ) + a3. (3.6d)

The conformal factor is then given by

ψ = r2(νre
−2λAi

r − e−2νAi
tt)ηi + A0 + νrA

4. (3.6e)

The integrability conditions become

(re−νAi
t)r = 0, (3.7a)

e2(λ−ν)Ai
tt + Ai

rr + (2r−1 − λr − νr)A
i
r = 0, (3.7b)

Ai
tt + e2(ν−λ)(r−1 − νr)A

i
r + r−2e2νAi = 0, (3.7c)

A4
r + (λr − r−1)A4 = 0, (3.7d)

e2νA0
r − e2λA4

t = 0, (3.7e)

A0
t + (νr − r−1)A4 = 0. (3.7f)
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Equations (3.6) and (3.7), equivalent to (3.4) and (3.5) respectively, have a compact

and transparent form. They comprise the most general conformal structure for the

static spherically symmetric spacetimes (3.1). Observe that the angular dependence

on the θ and ϕ coordinates has been completely determined in the conformal vector

X and conformal factor ψ. There is freedom only in the t and r coordinates. Also

note that the conformal geometry has a dependence in the timelike coordinate t even

though the spacetime is static. The integrability conditions restrict the forms of the

potentials ν and λ. The Einstein field equations provide further constraints on the

behaviour of the gravitational field.

3.3 Non-static spacetimes

3.3.1 Spacetime geometry

The general form of the line element for non-static spherically symmetric spacetimes

is given by

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
, (3.8)

in suitable coordinates. The quantities ν(t, r) and λ(t, r) represent gravitational po-

tentials. In this line element the coordinate system is simultaneously comoving and

isotropic. The non-vanishing kinematical quantities are the acceleration u̇a and the

expansion Θ. The spacetime (3.8) is invariant under the action of rotational Killing

vectors. The Lie algebra is spanned by the following three linearly independent Killing

vectors

ξ1 =
∂

∂ϕ
, (3.9a)

23



ξ2 = cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ
, (3.9b)

ξ3 = sinϕ
∂

∂θ
+ cosϕ cot θ

∂

∂ϕ
, (3.9c)

for the spacetime (3.8).

3.3.2 Conformal geometry

The conformal Killing vector equation (2.17) is decomposed into the following system

of ten coupled partial differential equations for the metric (3.8):

νtX
0 + νrX

1 +X0
t = ψ, (3.10a)

e2λX1
t − e2νX0

r = 0, (3.10b)

r2e2λX2
t − e2νX0

θ = 0, (3.10c)

r2e2λ sin2 θX3
t − e2νX0

ϕ = 0, (3.10d)

λtX
0 + λrX

1 +X1
r = ψ, (3.10e)

r2X2
r +X1

θ = 0, (3.10f)

r2 sin2 θX3
r +X1

ϕ = 0, (3.10g)
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λtX
0 + (r−1 + λr)X

1 +X2
θ = ψ, (3.10h)

sin2 θX3
θ +X2

ϕ = 0, (3.10i)

λtX
0 + (r−1 + λr)X

1 + cot θX2 +X3
ϕ = ψ. (3.10j)

The system (3.10) maybe integrated to yield X and ψ subject to integrability condi-

tions. This was done by Moopanar and Maharaj (2013). Here we simply state the

results from the integration. The components of the conformal vector are

X0 = r2e2(λ−ν) sin θ(Ct sinϕ−Dt cosϕ)− r2e2(λ−ν)It cos θ + J , (3.11a)

X1 = −r2 sin θ(Cr sinϕ−Dr cosϕ) + r2Ir cos θ +K, (3.11b)

X2 = cos θ(C sinϕ−D cosϕ) + cos θ(a1 sinϕ− a2 cosϕ)

−a3 sinϕ+ a4 cosϕ+ I sinϕ, (3.11c)

X3 = csc θ(C cosϕ+D sinϕ) + csc θ(a1 cosϕ+ a2 sinϕ)

− cot θ(a3 cosϕ+ a4 sinϕ) + a5, (3.11d)

and the conformal factor is given by
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ψ = r2 sin θ sinϕ
(
e2(λ−ν)Ctt + (2λt − νt)e

2(λ−ν)Ct − νrCr
)

−r2 sin θ cosϕ
(
e2(λ−ν)Dtt + (2λt − νt)e

2(λ−ν)Dt − νrDr

)

−r2 cos θ
(
e2(λ−ν)Itt + (2λt − νt)e

2(λ−ν)It − νrIr

)

+Jt + νtJ + νrK, (3.11e)

where C,D, I,J and K are arbitrary functions of t and r, and a1-a5 are constants.

These quantities arise from the integration process. In the integration the following

integrability conditions are generated

Ctr + (r−1 + λr − νr)Ct = 0, (3.12a)

Dtr + (r−1 + λr − νr)Dt = 0, (3.12b)

Itr + (r−1 + λr − νr)It = 0, (3.12c)

e2(λ−ν)Ctt + Crr + (λt − νt)e
2(λ−ν)Ct + (2r−1 + λr − νr)Cr = 0, (3.12d)

e2(λ−ν)Dtt +Drr + (λt − νt)e
2(λ−ν)Dt + (2r−1 + λr − νr)Dr = 0, (3.12e)

e2(λ−ν)Itt + Irr + (λt − νt)e
2(λ−ν)It + (2r−1 + λr − νr)Ir = 0, (3.12f)

r2e2(λ−ν)Ctt + r2(λt − νt)e
2(λ−ν)Ct + r2(r−1 + λr − νr)Cr + C + a1 = 0, (3.12g)
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r2e2(λ−ν)Dtt + r2(λt − νt)e
2(λ−ν)Dt + r2(r−1 + λr − νr)Dr +D + a2 = 0, (3.12h)

r2e2(λ−ν)Itt + r2(λt − νt)e
2(λ−ν)It + r2(r−1 + λr − νr)Ir + I = 0, (3.12i)

e2λKt − e2νJr = 0, (3.12j)

Jt + (λt − νt)J + (r−1 + λr − νr)K = 0, (3.12k)

Jt +Kr + (λt − νt)J + (λr − νr)K = 0. (3.12l)

The result (3.12) places further restrictions on the gravitational potentials ν and λ.

These potentials are dependent on C,D, I,J and K.

We again adopt the procedure used by Maartens et al (1995, 1996), to express the

above solution in a more compact form. However, note that in this case the potentials

also depend on the coordinate t. We first let

C̃ = C + a and D̃ = D + a.

We then introduce new variables as follows

Ai = (A1, A2, A3)

= (C̃, D̃,−I),
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ηi = (η1, η2, η3)

= (sin θ sinϕ, sin θ cosϕ, cos θ),

A0 = J ,

A4 = K.

Using the above notation (3.11) can be transformed into the following form

X0 = r2e2(λ−ν)Ai
tηi + A0, (3.13a)

X1 = −r2Ai
rηi + A4, (3.13b)

X2 = Ai(ηi)θ − a3 sinϕ+ a4 cosϕ, (3.13c)

X3 = csc2 θAi(ηi)ϕ − cot θ(a3 cosϕ+ a4 sinϕ) + a5. (3.13d)

The conformal factor is then given by

ψ = r2
[
e2(λ−ν)Ai

tt + (2λt − νt)e
2(λ−ν)Ai

t − νrA
i
r

]
ηi + A0

t + νtA
0 + νrA

4. (3.13e)

The integrability conditions (3.12) are then transformed to

28



Ai
tr + (r−1 + λr − νr)A

i
t = 0, (3.14a)

e2(λ−ν)Ai
tt + Ai

rr + (λt − νt)e
2(λ−ν)Ai

t + (2r−1 + λr − νr)A
i
r = 0, (3.14b)

r2e2(λ−ν)Ai
tt + r2(λt − νt)e

2(λ−ν)Ai
t + r2(r−1 + λr − νr)A

i
r + Ai = 0, (3.14c)

e2λA4
t − e2νA0

r = 0, (3.14d)

−A0
t + (λt − νt)A

0 + (r−1 + λr − νr)A
4 = 0, (3.14e)

−A0
t + A4

r + (λt − νt)A
0 + (λr − νr)A

4 = 0. (3.14f)

Equations (3.13) and (3.14) are equivalent to (3.11) and (3.12), respectively. They

comprise the most general conformal geometry for the non-static spherically symmetric

spacetimes (3.8). As in the static case we observe that the angular dependence on

the θ and ϕ coordinates has been completely determined in the conformal vector X

and the conformal factor ψ, and there is freedom only in the t and r coordinates.

The integrability conditions restrict the forms of the potentials ν and λ. Clearly the

Einstein field equations will also further restrict the conformal symmetry.

29



Chapter 4

Classification of conformal motions

in static spacetimes

4.1 Introduction

Classification of symmetries is important as this helps to identify spacetimes of phys-

ical interest with a symmetry property. It provides a deeper insight into spacetime

geometry and helps to produce new solutions to the Einstein field equations. It can

also help to invariantly describe known models. In this chapter we classify conformal

symmetries in terms of the Weyl tensor which represents tidal forces. We first consider

the Weyl tensor components for the static line element (3.1). In §4.2 we calculate the

non-zero components of the Weyl tensor in static spherical spacetimes. The accuracy

of these components has been verified using both Mathematica (Wolfram 2010) and

Maple (2009). In §4.3 we review the result obtained by Maartens et al (1995), and

identify an error in their conclusion. In §4.4 we impose the first integrability condition

and classify the conformal geometry in terms of conformally flat and non-conformally

flat spacetimes. The nonlinear differential equation in both cases can be integrated in

general. In so doing, we rectify the error in the Maartens et al (1995) paper.
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4.2 Weyl tensor

The Weyl tensor plays an important role in our classification scheme. We calculate

the Weyl tensor components for the line element (3.1) by using the definition (2.11).

The results have been verified with the assistance of Mathematica (Wolfram 2010) and

Maple (2009). The non-zero components of the Weyl tensor for the line element (3.1)

are

C0
101 = −1

3

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
, (4.1a)

C0
202 =

1

6
r2e−2λ

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
, (4.1b)

C0
303 =

1

6
r2 sin2 θe−2λ

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
, (4.1c)

C1
212 =

1

6
r2e−2λ

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
, (4.1d)

C1
313 =

1

6
r2 sin2 θe−2λ

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
, (4.1e)

C2
323 = −1

3
r2 sin2 θe−2λ

[
νrr + νr

2 − λrνr + r−1(λr − νr) + r−2(1− e2λ)
]
. (4.1f)

It is convenient to introduce the quantity

Λ = νrr + νr
2 − λrνr + r−1(λr − νr) + r−2(1− e2λ), (4.2)
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so that we can rewrite (4.1) as

C0
101 = −1

3
Λ, (4.3a)

C0
202 =

1

6
r2e−2λΛ, (4.3b)

C0
303 =

1

6
r2 sin2 θe−2λΛ, (4.3c)

C1
212 = C0

202, (4.3d)

C1
313 = C0

303, (4.3e)

C2
323 = −2C0

303. (4.3f)

The introduction of the quantity Λ assists in the classification scheme for the conformal

symmetry. When Λ = 0 all components of the Weyl tensor vanish and the spacetime

is conformally flat.

4.3 Earlier results

In this section we state the results obtained by Maartens et al (1995) in their work

on the classification of conformal motions in static spacetimes. The motivation for

including these results is to point out an error in their calculations which will be

corrected in the next section. We use the same notation adopted in that paper to ease
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comparison with their results. The equivalent of (4.2) is

Γ = νrr + νr
2 − λrνr + r−1(λr − νr) + r−2(1− e2λ). (4.4)

Then Maartens et al (1995) claimed that

LξC
0
101 = 0 ⇒ Γ(A1

r cos θ cosϕ+ A2
r cos θ sinϕ− A3

r sin θ) = 0, (4.5)

where ξ is the conformal Killing vector. (Note that in the above paper the first equality

is incorrectly expressed as LξC
0
201 = 0). Hence if Γ ̸= 0, then Ai

r = 0. From this

condition it was observed that

LξC
0
202 = 0

⇒(r2e−2λΓ)rA
4 + 2r2e−2λΓ[sin θ(A1 cosϕ+ A2 sinϕ) + A3 cos θ] = 0, (4.6)

which leads to the conclusion that

Γ ̸= 0 ⇒ Ai = 0 and (r2e−2λΓ)rA
4 = 0. (4.7)

However (4.5) is not true as we will show in the next section. The restrictions obtained

in (4.6) and (4.7) are therefore not correct. Consequently, the results of Maartens et al

(1995) need to be modified.

4.4 Integrability conditions

In this section we give the accurate version of the results discussed in the previous

section. If we apply the general Lie derivative formula (2.16) to the Weyl tensor
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components given in (4.3) we obtain

LXC
0
101 = −1

3
X1Λr −

2

3
X1

rΛ, (4.8a)

LXC
0
202 =

1

6
(r2e−2λΛ)rX

1 +
2

6
r2e−2λΛX2

θ, (4.8b)

LXC
0
303 =

1

6
X1(r2 sin2 θe−2λΛ)r +

1

6
X2(r2 sin2 θe−2λΛ)θ

+
2

6
r2 sin2 θe−2λΛX3

ϕ, (4.8c)

LXC
1
212 = LXC

0
202, (4.8d)

LXC
1
313 = LXC

0
303, (4.8e)

LXC
2
323 = −2LXC

0
303. (4.8f)

For the existence of the conformal symmetry (2.18) holds. Hence (4.8d), (4.8e) and

(4.8f) are identically satisfied for vanishing tidal forces. Thus we do not utilise them

in further calculations.

Now we consider(4.8c). Simplifying the right hand side we get

LXC
0
303 =

1

6
(r2e−2λAi

rηi + A4)[2r(1− rλr)Λ + r2Λr] sin
2 θe−2λ

+
1

6
[−Ai(ηi)θ + a1 sinϕ+ a2 cosϕ](2r

2 sin θ cos θe−2λΛ)
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+
2

6
r2 sin2 θe−2λΛ[− csc2 θAi(ηi)ϕϕ − cot θ(a1 sinϕ+ a2 cosϕ)]

=
1

6

{
r2e−2λAi

r[2r(1− rλr)Λ + r2Λr] + 2ΛAi − 2ΛAi
}
r2 sin2 θe−2ληi

+A4[2r(1− rλr)Λ + r2Λr]e
−2λ sin2 θ

−2

6
r2ΛAie−2λ[sin θ cos θ(ηi)θ + (ηi)ϕϕ]

+
2

6
r2e−2λΛ(a1 sinϕ+ a2 cosϕ)(sin θ cos θ − sin2 θ cot θ)

= sin2 θLXC
0
202 −

2

6
r2ΛAie−2λ[sin2 θηi + sin θ cos θ(ηi)θ + (ηi)ϕϕ]. (4.9)

The last trigonometric term vanishes identically, so (4.9) has the simple form

LXC
0
303 = sin2 θLXC

0
202. (4.10)

Equation (4.10) is satisfied identically because of the condition (2.18). For this reason

(4.8c) is not used in further calculations.

The remaining conditions to be considered are (4.8a) and (4.8b). With the help of

(3.6), (4.8a) and (4.8b) yield

LXC
0
101 = −1

3

{
r2Ai

rΛr + 2Λ[2r(1− rλr)A
i
r + r2Ai

rr]
}
e−2ληi

−1

3
(A4Λr + 2A4

rΛ), (4.11)
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LXC
0
202 =

1

6
(r2e−2λAi

rηi + A4)[2r(1− rλr)Λ + r2Λr]e
−2λ

+
2

6
r2e−2λΛAiηi

=
1

6

{
e−2λAi

r[2r(1− rλr)Λ + r2Λr] + 2ΛAi
}
r2e−2ληi

+[2r(1− rλr)Λ + r2Λr]e
−2λA4. (4.12)

By invoking the integrability condition (2.18) we have LXC
0
101 = 0 and LXC

0
202 = 0.

Then using the linear independence of trigonometric functions we obtain the following

conditions

[r2Λr + 4r(1− rλr)Λ]A
i
r + 2r2Ai

rrΛ = 0, (4.13a)

ΛrA
4 + 2ΛA4

r = 0, (4.13b)

[2r(1− rλr)Λ + r2Λr]e
−2λAi

r + 2ΛAi = 0, (4.13c)

[2r(1− rλr)Λ + r2Λr]A
4 = 0. (4.13d)

The equations in the system (4.13) are the necessary and sufficient conditions for

the integrability conditions (2.18) to be satisfied. The structure of the system (4.13)

suggests that there is a natural classification system for the conformal symmetries of

the static spherically symmetric spacetimes (3.1). We consider the two cases

i) Λ = 0,

ii) Λ ̸= 0.
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This classification naturally separates the spacetimes into conformally flat (Λ = 0) and

non-conformally flat (Λ ̸= 0) categories.

Case I : Λ = 0

This case has vanishing Weyl tensor. From (4.2) we obtain

νrr + νr
2 − λrνr + r−1(λr − νr) + r−2(1− e2λ) = 0. (4.14)

This second order nonlinear partial differential equation is difficult to solve. However,

it can be solved using the procedure adopted by Herrera et al (2001) in their work on

conformally flat anisotropic spheres. We first write (4.14) in the following form

[e−2λνr
r

]
r
+ e−2(ν+λ)

[e2ννr
r

]
r
−

[e−2λ − 1

r2

]
r
= 0. (4.15)

Next we introduce new variables

y = e−2λ , νr =
ur
u
. (4.16)

This transforms (4.15) into

yr +
2[urr − ur

r
+ u

r2
]

[ur − u
r
]

y − 2u

r2[ur − u
r
]
= 0. (4.17)

Equation (4.17) is a first order differential equation in y and its integrating factor is

given by

exp
{
2

∫
[urr − ur

r
+ u

r2
]

[ur − u
r
]

dr
}
=

[
ur −

u

r

]2
. (4.18)
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Multiplying both sides of (4.17) by the integrating factor and simplifying we get

d

dr

[(
ur −

u

r

)2

y
]
=

2u

r2

[
ur −

u

r

]

=
d

dr

[u2
r2

]
. (4.19)

Integrating (4.19) we obtain

[
ur −

u

r

]2
y =

u2

r2
+ c1, (4.20)

where c1 is a constant of integration, which is the same as

[ur
u

− 1

r

]2
y =

1

r2

[
1 + c1r

2u−2
]
. (4.21)

We can change back to the original variables using u = eν to get

[
νr −

1

r

]2
e−2λ =

1

r2

[
1− c2r2e−2ν

]
(4.22)

where we have set c1 = −c2. Equation (4.22) can be written as

νr −
1

r
=

eλ

r

√
1− c2r2e−2ν . (4.23)

Rearranging (4.23) and integrating with respect to r we get

∫
νr − 1

r√
1− c2r2e−2ν

dr =

∫
eλ

r
dr. (4.24)
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Now let

α = cre−ν . (4.25)

Then

dα = −cre−ν
[
νr −

1

r

]
dr

= −α
[
νr −

1

r

]
dr. (4.26)

Thus (4.24) becomes

−
∫

dα

α
√
1− α2

=

∫
eλ

r
dr. (4.27)

Upon integration this gives

sech−1(α) =

∫
eλ

r
dr + C̃, (4.28)

where C̃ is a constant. Simplifying (4.28) we obtain

eν = cr cosh
[ ∫ eλ

r
dr + C̃

]
. (4.29)

The result (4.29) is the general solution of the nonlinear equation (4.14).

Gathering all this information leads to the theorem:

Theorem 4.4.1. In a static spherically symmetric spacetime which is conformally flat,

i.e. Λ = 0, the gravitational potentials ν and λ are related by the equation

eν = cr cosh
[ ∫ eλ

r
dr + C̃

]
,
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where C̃ is a constant. The conformal Killing vector X is given by (3.6) and the

functions A0(t, r), A4(t, r) and Ai(t, r) are arbitrary.

Case II: Λ ̸= 0

This case is not conformally flat. We can write (4.13a) in the form

(Ai
r)r +

[Λr

2Λ
+

2

r
− 2λr

]
Ai

r = 0, (4.30)

If we consider this as a first order equation in Ai
r then we can integrate to get

Ai
r =

e2λ

r2Λ1/2
h1(t). (4.31)

where h1(t) is a function that arises in the integration process. Substituting (4.31) into

(4.13c) we obtain

Ai = − 1

2Λ1/2

[
2(
1

r
− λr) +

Λr

Λ

]
h1(t), (4.32)

and we have an explicit form for Ai. From (4.13b), we have

A4 =
g1(t)

Λ1/2
, (4.33)

where g1(t) is a function of integration. It remains to solve (4.13d). Substitute (4.33)

in (4.13d) to get

[2r(1− rλr)Λ + r2Λr]g1(t) = 0.

This leads to two subcases:
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Case II(a) : g1(t) = 0

For this subcase we have

A4 = 0 ,

Ai = − 1

2Λ1/2

[
2
(1
r
− λr

)
+

Λr

Λ

]
h1(t).

The above forms, together with (3.7e) and (3.7f), imply

A0
r = 0, A0

t = 0.

Hence

A0 = C,

where C is a constant.

Case II(b) : g1(t) ̸= 0

This case implies that

2r(1− rλr)Λ + r2Λr = 0.

We can solve the above equation to obtain

Λ =
e2λ

r2
k. (4.34)

41



where k is a constant. Then (4.2) and (4.34) give

νrr + νr
2 − λrνr + r−1(λr − νr) + r−2[1− (1 + k)e2λ] = 0. (4.35)

Equation (4.35) is a highly nonlinear equation. Fortunately the method utilised in

Case I may also be applied to solve (4.35). We believe that (4.35) is a new equa-

tion that arises in conformal symmetries of static spacetimes and has not been solved

previously. We first write (4.35) in the following form

[e−2λνr
r

]
r
+ e−2(ν+λ)

[e2ννr
r

]
r
−

[e−2λ − (1 + k)

r2

]
r
= 0. (4.36)

We introduce the variables

y = e−2λ , νr =
ur
u
.

Then (4.36) becomes

yr +
2[urr − ur

r
+ u

r2
]

[ur − u
r
]

y − 2(1 + k)u

r2[ur − u
r
]
= 0. (4.37)

We multiply (4.37) by the integrating factor.

exp
{
2

∫
[urr − ur

r
+ u

r2
]

[ur − u
r
]

dr
}
=

[
ur −

u

r

]2
.

Then (4.37) can be expressed as

d

dr

[(
ur −

u

r

)2

y
]
= (1 + k)

d

dr

[u2
r2

]
, (4.38)
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which can be integrated to give

[
ur −

u

r

]2
y = (1 + k)

u2

r2
+ c2, (4.39)

where c2 is a constant of integration. If we transform back to the original variables

using u = eν then (4.39) becomes

[
νr −

1

r

]2
e−2λ = (1 + k)

1

r2

[
1− c̃2r2e−2ν

]
, (4.40)

where we have set c2
1+k

= −c̃2. This equation gives

νr −
1

r
=

√
1 + k

eλ

r

√
1− c̃2r2e−2ν . (4.41)

Rearranging (4.41) and integrating with respect to r we get

∫
νr − 1

r√
1− c̃2r2e−2ν

dr =
√
1 + k

∫
eλ

r
dr. (4.42)

Now let

β = c̃re−ν . (4.43)

Then

dβ = −c̃re−ν
[
νr −

1

r

]
dr

= −β
[
νr −

1

r

]
dr. (4.44)
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Thus (4.42) becomes

−
∫

dβ

β
√

1− β2
=

√
1 + k

∫
eλ

r
dr. (4.45)

Upon integrating this gives

sech−1(β) =
√
1 + k

∫
eλ

r
dr + C̃1, (4.46)

where C̃1 is a constant. Simplifying (4.46) we obtain

eν = c̃r cosh
[√

1 + k

∫
eλ

r
dr + C̃1

]
, (4.47)

where C̃1 is a constant of integration.

We conclude from (4.13c), (4.33) and (4.34) that

Ai = 0 , A4 = re−λg1(t).

Using (3.7f) we see that

A0
t = (1− rνr)e

−λg1(t).

Integrating this we obtain

A0 = (1− rνr)e
−λg2(t) + g3(r),

where g2(t) =
∫
g1(t)dt, and g3(r) is a function of integration.

We gather all these results in the following theorem:
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Theorem 4.4.2. For static spherically symmetric spacetimes which are non-conformally

flat, i.e. Λ ̸= 0, we have either A4 or Ai must vanish. The two cases are given by:

a)

A4 = 0,

A0 = C, a constant

Ai(t, r) = − 1

2Λ1/2

[
2
(1
r
− λr

)
+

Λr

Λ

]
h1(t),

where h1(t) is arbitrary.

b)

A4(t, r) = re−λg1(t),

Ai(t, r) = 0,

A0(t, r) = (1− rνr)e
−λg2(t) + g3(r),

where g1(t) and g3(r) are arbitrary functions and g2(t) =
∫
g1(t)dt.

Furthermore, the gravitational potentials are related by the equation

eν = c̃r cosh
[√

1 + k

∫
eλ

r
dr + C̃1

]
,

where k, c̃ and C̃1 are constants.
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Theorem 4.4.1 and Theorem 4.4.2 represent the classification of the conformal

geometry in static spherically symmetric spacetimes in terms of the Weyl tensor. We

emphasize that this classification is the most general in terms of the Weyl tensor.

It is remarkable that the nonlinear differential equations relating the gravitational

potentials can be solved in general. The potentials ν and λ are related by the hyperbolic

function cosh. Also note that the theorems correct the Maartens et al (1995, 1996)

result. Their analysis is simpler because the nonlinear differential equations (4.14) and

(4.35) do not arise due to the mistake in their integrability conditions. As we have

demonstrated these nonlinear equations lead to a more rich structure in the conformal

geometry directly involving the gravitational potentials. Our analysis completes the

general solution and classification of conformal motions in static spherically symmetric

spacetimes.
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Chapter 5

Classification of Conformal motions

in non-static spacetimes

5.1 Introduction

In this chapter we consider the classification of symmetries in terms of conformal

motions for non-static spherical spacetimes. We classify the conformal symmetries in

terms of the Weyl tensor which represents tidal forces. We first calculate the Weyl

tensor components for the non-static line element (3.8) in §5.2. We have checked the

correctness of these expressions with Mathematica (Wolfram 2010) and Maple (2009).

We then use these Weyl tensor components to calculate the Lie derivatives in §5.3.

We apply the integrability condition (2.18) to classify the conformal motions for these

spacetimes. Two cases arise which are distinguished by the vanishing or non-vanishing

of the Weyl tensor. In the first case we explicitly obtain a relationship relating the

metric functions by solving a nonlinear second order partial differential. In the second

case we find that the metric functions are related via a nonlinear third order partial

differential equation for which particular solutions exist.
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5.2 Weyl tensor

As in Chapter 4 the Weyl tensor is crucial for the classification scheme of the conformal

symmetries. Below we give all the non-vanishing independent Weyl tensor components

of the line element (3.8). The nonzero components for the spacetime (3.8) are

C0
101 = − 1

3r

[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
, (5.1a)

C0
202 =

1

6
r
[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
, (5.1b)

C0
303 =

1

6
r sin2 θ

[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
, (5.1c)

C1
212 =

1

6
r
[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
, (5.1d)

C1
313 =

1

6
r sin2 θ

[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
, (5.1e)

C2
323 = −1

3
r sin2 θ

[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
. (5.1f)

Observe that if we set

Ψ = (λr − νr) + r(λr − νr)
2 − r(λrr − νrr), (5.2)
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we can rewrite (5.1) as

C0
101 = − 1

3r
Ψ, (5.3a)

C0
202 =

1

6
rΨ, (5.3b)

C0
303 =

1

6
r sin2 θΨ, (5.3c)

C1
212 = C0

202, (5.3d)

C1
313 = C0

303 (5.3e)

C2
323 = −2C0

303. (5.3f)

The accuracy of these components has been verified by use of both Mathematica (Wol-

fram 2010) and Maple (2009).

5.3 Lie derivative

In this section we apply the general formula given in (2.16) to the Weyl tensor com-

ponents (5.3) to obtain

LXC
0
101 = − 1

3r
Ψt

[
r2e2(λ−ν)Ai

tηi + A0
]

+
[
− r2Ai

rηi + A4
][

− 1

3r
Ψr +

1

3r2
Ψ
]
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− 2

3r
Ψ
[
− (r2Ai

rr + 2rAi
r)ηi + A4

r

]
, (5.4a)

LXC
0
202 =

1

6
rΨt

[
r2e2(λ−ν)Ai

tηi + A0
]
+

1

6

[
− r2Ai

rηi + A4
][
rΨr +Ψ

]

+
1

3
rΨ

[
Ai(ηi)θθ

]
, (5.4b)

LXC
0
303 =

1

6
r sin2 θΨt

[
r2e2(λ−ν)Ai

tηi + A0
]

+
1

6
sin2 θ(rΨr +Ψ)

[
− r2Ai

rηi + A4
]

+
1

3
r sin θ cos θΨ

[
Ai(ηi)θ − a3 sinϕ+ a4 cosϕ

]

+
1

3
r sin2 θΨ

[
csc2 θAi(ηi)ϕϕ + cot θ(a3 sinϕ− a4 cosϕ)

]
, (5.4c)

LXC
1
212 = LXC

0
202, (5.4d)

LXC
1
313 = LXC

0
303, (5.4e)

LXC
2
323 = −2LXC

0
303. (5.4f)

We note that (5.4d)-(5.4f) do not provide new information as they are multiples of

(5.4b) and (5.4c). Thus we do not consider them in further calculations. If we re-

arrange (5.4a)-(5.4c) in terms of linearly independent trigonometric functions, we get
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the following

LXC
0
101 =

[
− 1

3
rΨte

2(λ−ν)Ai
t −

1

3
(Ψ− rΨr)A

i
r +

2

3
Ψ(rAi

rr + 2Ai
r)
]
ηi

+
[
− 1

3r
ΨtA

0 + (− 1

3r
Ψr +

1

3r2
Ψ)A4 − 2

3r
A4

r

]
, (5.5a)

LXC
0
202 =

[1
6
r3Ψte

2(λ−ν)Ai
t −

1

6
r2(rΨr +Ψ)Ai

r −
1

3
rΨAi

]
ηi

+
1

6

[
rΨtA

0 + (rΨr +Ψ)A4
]
, (5.5b)

LXC
0
303 =

[1
6
r3Ψte

2(λ−ν)Ai
t −

1

6
r2(rΨr +Ψ)Ai

r

]
ηi sin

2 θ

+
1

6

[
rΨtA

0 + (rΨr +Ψ)A4
]
sin2 θ

+
1

3
rΨAi(ηi)θ sin θ cos θ +

1

3
rΨAi(ηi)ϕϕ. (5.5c)

We simplify (5.5c) as follows

LXC
0
303 =

[1
6
r3Ψte

2(λ−ν)Ai
t −

1

6
r2(rΨr +Ψ)Ai

r −
1

3
rΨAi +

1

3
rΨAi

]
ηi sin

2 θ

+
1

6

[
rΨtA

0 + (rΨr +Ψ)A4
]
sin2 θ

+
1

3
rΨAi(ηi)θ sin θ cos θ +

1

3
rΨAi(ηi)ϕϕ

= sin2 θLXC
0
202 +

1

3
rΨAi

[
ηi sin

2 θ + (ηi)θ sin θ cos θ + (ηi)ϕϕ

]
. (5.6)
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We use the condition (2.18) and simplify the trigonometric functions on the right hand

side of the above equation. Thus (5.6) has the simple form

LXC
0
303 = sin2 θLXC

0
202. (5.7)

Equation (5.7) is identically satisfied, and as a result, we only need consider (5.5a) and

(5.5b) for our analysis. By invoking the integrability condition (2.18) on equations

(5.5a) and (5.5b) and using the linear independence of the trigonometric functions we

obtain the following conditions

−1

3
rΨte

2(λ−ν)Ai
t −

1

3
(Ψ− rΨr)A

i
r +

2

3
Ψ(rAi

rr + 2Ai
r) = 0, (5.8a)

− 1

3r
ΨtA

0 + (− 1

3r
Ψr +

1

3r2
Ψ)A4 − 2

3r
ΨA4

r = 0, (5.8b)

1

6
r3Ψte

2(λ−ν)Ai
t −

1

6
r2(rΨr +Ψ)Ai

r −
1

3
rΨAi = 0, (5.8c)

rΨtA
0 + (rΨr +Ψ)A4 = 0. (5.8d)

If we multiply (5.8a) by 1
2
r2 and add the resulting equation to (5.8c) we obtain the

following

(r2Ai
rr + rAi

r − Ai)Ψ = 0. (5.9)
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Similarly, if we multiply (5.8b) by 3r2 and add the resulting equation to (5.8d) we

obtain the following

(A4
r − r−1A4)Ψ = 0. (5.10)

In order for the above equations to be satisfied we look at the two cases for which

this is possible, i.e.

i) Ψ = 0,

ii) Ψ ̸= 0.

Case I : Ψ = 0

This case is equivalent to

(λr − νr) + r(λr − νr)
2 − r(λrr − νrr) = 0, (5.11)

were we have used (5.2). This is a nonlinear second order equation with two unknown

functions λ and ν. It is possible to reduce this equation in terms of a single unknown

function. If we let

w(t, r) =
(λr − νr)

r
, (5.12)
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then equation (5.11) is transformed into

wr = rw2, (5.13)

which is a separable first order partial differential equation. Solving (5.13) yields

w = − 2

r2 + 2a1(t)
, (5.14)

where a1(t) is a function of integration. Then (5.12) and (5.14), give

λr − νr = − 2r

r2 + 2a1(t)
. (5.15)

Integrating (5.15) we obtain

λ− ν = −ln[r2 + 2a1(t)] + a2(t), (5.16)

where a2(t) is another function of integration.

Theorem 5.3.1. In non-static spherically symmetric spacetimes, which are confor-

mally flat, i.e. Ψ = 0, the functions, A0(t, r), A4(t, r) and Ai(t, r) are arbitrary. Fur-

thermore, the gravitational potentials are related by the formula

λ− ν = −ln[r2 + 2a1(t)] + a2(t),

where a1(t) and a2(t) are arbitrary functions of integration.
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Case II : Ψ ̸= 0

For this case (5.9) reduces to

r2Ai
rr + rAi

r − Ai = 0. (5.17)

Equation (5.17) is an Euler-Cauchy partial differential equation. Solving this equation

we obtain

Ai = rF i(t) + r−1Gi(t), (5.18)

where F i and Gi are functions of integration. Substituting (5.18) into (5.8a) or (5.8c),

we obtain

−rΨte
2(λ−ν)(rF i

t + r−1Gi
t) + (rΨr −Ψ)(F i − r−2Gi)

+2Ψ
[
r(2r−3Gi) + 2(F i − r−2Gi)

]
= 0. (5.19)

Simplifying this equation we get

−e2(λ−ν)(r2F i
t +Gi

t)
[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
t

+(rF i − r−1Gi)
[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]
r
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+(3F i + r−2Gi)
[
(λr − νr) + r(λr − νr)

2 − r(λrr − νrr)
]

= 0. (5.20)

Equation (5.20) is a third order non-linear partial differential which is given in terms

of the difference between the potentials λ and ν. This equation is difficult to solve in

general. We can simplify the equation substantially if we let

w(t, r) =
λr − νr

r
. (5.21)

Then (5.20) becomes

− exp
{
2

∫ r

sw(t, s)ds
}[
r2F i

t +Gi
t

][
r2(rw − wr)

]
t

+(rF i − r−1Gi)
[
r2(rw − wr)

]
r

+(3F i + r−2Gi)
[
r2(rw − wr)

]
= 0. (5.22)

The two functions λ and ν have been replaced by the single function w in (5.22).

Equation (5.22) is simpler but remains nonlinear and a general solution is not obvious.

There may be transformations, other than (5.21), that could lead to a general solution;

we will pursue this avenue in future research. Clearly particular solutions to (5.20) are

possible. For example

λ− ν ≡ f(t)

does not depend on the radial coordinate r and (5.20) is satisfied.

56



Now (5.10) reduces to

A4
r − r−1A4 = 0. (5.23)

On solving the differential equation (5.23) we obtain

A4 = rF 4(t), (5.24)

where F 4(t) is a function of integration. Thus, from (5.8b) or (5.8d), A0 is given by

A0 = −rΨr +Ψ

Ψt

F 4(t). (5.25)

Theorem 5.3.2. In non-static spherically symmetric spacetimes which are non-conformally

flat, i.e. Ψ ̸= 0, the functions A0(t, r), A4(t, r) and Ai(t, r) are given by

A0 = −rΨr +Ψ

Ψt

F 4(t),

A4 = rF 4(t),

Ai = rF i(t) + r−1Gi(t).

The gravitational potentials ν and λ are related by the following non-linear partial
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differential equation

− exp
{
2

∫ r

sw(t, s)ds
}[
r2F i

t +Gi
t

][
r2(rw − wr)

]
t

+(rF i − r−1Gi)
[
r2(rw − wr)

]
r

+(3F i + r−2Gi)
[
r2(rw − wr)

]
= 0,

where rw = λr − νr.

We believe this investigation is the first attempt to classify the conformal geometry

in non-static spacetimes in terms of the Weyl tensor. In Case I we obtained a partial

differential equation which we solved in general to obtain a solution which relates the

potentials ν and λ. This is a new result. In Case II we obtained a highly nonlinear

partial differential equation which we could not solve in general. We transformed this

equation into an equivalent form and showed particular solutions are possible. This is

also a new result. In Chapter 4 the integrability conditions were ordinary differential

equations. Here the integrability conditions are partial differential equations which are

more difficult to solve because the potentials ν and λ depend on both r and t. Our

analysis completes the classification of conformal motions in non-static spherically

symmetric spacetimes subject to finding the general solution of (5.22).
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Chapter 6

Conclusion

Our main objective in this thesis was to classify conformal symmetries in static and

non-static spherically symmetric spacetimes. We first analysed the classification in

static spacetimes following the work of Maartens et al (1995). We calculated the Weyl

tensor components and the Lie derivatives of these components. From our calculations

we identified an error in the work of Maartens et al (1995) which we went on to correct.

Using the integrability condition for the existence of conformal symmetry we derived

two cases for our classification: the conformally flat case and the non-conformally

flat case. In both cases we derived nonlinear second order ordinary differential equa-

tions which we solved in general. The solution to these nonlinear equations helped us

complete the classification of conformal motions in static spacetimes. We then anal-

ysed the classification of conformal symmetries in non-static spacetimes. Following

the same procedure as in the static case, we calculated the Weyl tensor components

and their respective Lie derivatives. The two cases of the conformally flat and the

non-conformally flat spacetimes arose in our analysis. In the conformally flat case a

nonlinear second order partial differential equation was identified and solved in general

to give a complete classification of conformal motions in non-static spacetimes. The

non-conformally flat case contains a nonlinear partial differential equation for which
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only particular solutions have been found.

We now provide an outline of the results obtained in this investigation:

• In Chapter 2 we discussed some aspects of differential geometry that are impor-

tant in our study. We introduced some important tensors which are widely used

in general relativity. In particular we discussed the Weyl tensor which plays a

crucial role in the study of conformal symmetries. The conformal Killing equation

was also introduced.

• In Chapter 3 the general solution of the conformal Killing vector equation was

presented in spherically symmetric spacetimes. We considered both the static

and non-static cases. In each case the solution was given subject to integrability

conditions that placed further restrictions on the metric functions. We adopted

the work of Maartens et al (1995,1996) to write the conformal geometry and their

integrability conditions in a more compact form.

• In Chapter 4 we presented the non-vanishing Weyl tensor components for static

spherically symmetric spacetimes. We proceeded to use these values to calculate

the Lie derivatives. We identified an error in the paper by Maartens et al (1995)

which is corrected in this thesis. Two cases arose in our classification, namely

the conformally flat and the non-conformally flat case. In the conformally flat

case we derived the following second order partial differential equation

νrr + νr
2 − λrνr + r−1(λr − νr) + r−2(1− e2λ) = 0. (6.1)

This equation was solved in general. It is interesting to observe that our approach

was similar to the method followed by Herera et al (2001) in the evolution of

anisotropic general relativistic spheres. For the non-conformally flat case we
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derived the nonlinear second order differential equation

νrr + νr
2 − λrνr + r−1(λr − νr) + r−2[1− (1 + k)e2λ] = 0. (6.2)

We solved (6.2) in the same manner as (6.1). We presented results from the two

cases in the form of theorems. This completed the classification of conformal

motions in static spacetimes.

• In Chapter 5 we followed the approach of Chapter 4 for the non-static spherically

symmetric spacetimes. Two cases arose in our analysis, namely the conformally

flat case and the non-conformally flat case. For the conformally flat case we

derived the following nonlinear partial differential equation

(λr − νr) + r(λr − νr)
2 − r(λrr − νrr) = 0. (6.3)

Equation (6.3) was integrated in general. For the non-conformally flat case we

derived the third order nonlinear partial differential equation

− exp
{
2

∫ r

sw(t, s)ds
}[
r2F i

t +Gi
t

][
r2(rw − wr)

]
t

+(rF i − r−1Gi)
[
r2(rw − wr)

]
r

+(3F i + r−2Gi)
[
r2(rw − wr)

]
= 0. (6.4)

Equation (6.4) has particular solutions but a general solution remains outstand-

ing. We presented our results in the form of a theorem. This completed our
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general classification of conformal symmetries in non-static spherically symmet-

ric spacetimes.

In this thesis we have demonstrated the power of using the Weyl tensor in clas-

sifying the conformal geometry in spherically symmetric spacetimes. This suggests

that it may be worthwhile analysing the role of the Weyl tensor in other spacetimes of

physical interest.
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