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Abstract

Most existing models have considered the immunological processes occurring within the host

and the epidemiological processes occurring at population level as decoupled systems. We

present a new model using continuous systems of non linear ordinary differential equations by

directly linking the within host dynamics capturing the interactions between Langerhans cells,

CD4+ T-Cells, R5 HIV and X4 HIV and the without host dynamics of a basic compartmental

HIV/AIDS, susceptible, infected, AIDS model. The model captures the biological theories

of the cells that take part in HIV transmission. The study incorporates in its analysis the

differences in time scales of the fast within host dynamics and the slow without host dynamics.

In the mathematical analysis, important thresholds, the reproduction numbers, were computed

which are useful in predicting the progression of the infection both within the host and without

the host. The study results showed that the model exhibits four within host equilibrium

points inclusive of three endemic equilibria whose effects translate into different scenarios at

the population level. All the endemic equilibria were shown to be globally stable using Lyapunov

functions and this is an important result in linking the within host dynamics to the population

dynamics, because the disease free equilibrium point ceases to exist. The linked models had

no effect on the basic reproduction numbers of the within host dynamics but on the basic

reproduction number of the population dynamics. The effects of linking were observed on

the endemic equilibrium points of both the within host and population dynamics. Therefore,

linking the two dynamics leads to the increase in the viral load within the host and increase in

the epidemic levels in the population dynamics.
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Chapter 1

INTRODUCTION

The dynamics of infectious diseases affect populations in many hierarchical levels which can be

summarized as from omics to population dynamics. Understanding the dynamics of infection

at these levels will definitely enhance the prognosis and diagnosis of infections as well as inter-

ventions. Therefore, we focus, in this study, on two of the hierarchical levels and investigate

the effects of linking the infection dynamics between these two levels. The levels are (i) the

immunological dynamics and (ii) the epidemiological dynamics. We study the interactions be-

tween different cells that take part in HIV transmission from the within host dynamics to the

population dynamics and from the population dynamics to within the host dynamics because

important relationships exist between what is happening in the host and what is occurring at

the population level. The evidence of this existing relationship is that the study of patterns

and disease conditions in defined populations are caused by parasites that either go into the

host from the population or from within the host to the population to cause infections.

This study will focus on Langerhans cells and CD4+ T-cells which are immune cells of the

immune system. The immune system is a system of many biological structures and processes

within an organism that protects an organism against diseases. To function properly, the im-

mune system must detect a wide variety of agents, known as pathogens, from viruses to parasitic

worms, and distinguish them from the organism’s own healthy tissues.
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1.1 Background Information

Langerhans cells are antigen-presenting immune cells of the skin and mucosa which contain

large organelles called Birbeck granules. They are present in all layers of the epidermis, but

most prominent in the stratum spinosum. They also occur in the papillary dermis, particulary

around blood vessels, as well as in the mucosa of the mouth, foreskin and vagina [34].

Langerhans cells have two main functions. Firstly, they are an integral part of the body’s

total defense system [35] where they help protect the body by keeping dangerous microbes

from entering it and defending the skin from infection through stimulating allergic reactions.

Secondly, they act as a medium of infection for HIV transmission [36] where even if they capture

antigens and degrade them they loose their antigen presenting property and pass on the HIV

to the CD4+ T-cells. Thus, during this process, Langerhans cells get infected and when they

come in contact with the CD4+ T-cells, they pass the virus to the CD4+ T-cells.

The CD4+ T-cells also called CD4 cells, T-helper cells or T4 cells are white blood cells that are

an essential part of the immune system [12]. Millions of CD4+ T-cells are produced by the body

to assist with the immunity maintenance. The CD4+ T-cells are called helper cells because one

of their main roles is to send signals to activate the body’s immune response when they detect

”intruders” like viruses or bacteria to the other types of immune cells including CD8 killer cells

which then destroys the infectious particles. CD4+ T-cells do not have the ability to kill the

infectious particle [12].

Human Immunodeficiency Virus (HIV) is the virus that causes Acquired Immunodeficiency

Syndrome (AIDS). HIV as a retrovirus, kills or damages the cells of the body’s immune sys-

tem. Langerhans cells and CD4+ T-cells are some of the target cells for HIV. A retrovirus

is a single-stranded positive-sense RNA virus with a DNA intermediate and, as an obligate
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parasite, targets a host cell. Once inside the host cell cytoplasm, the virus uses its own reverse

transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern,

thus retro (backwards). This new DNA is then incorporated into the host cell genome by an

integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell

then treats the viral DNA as part of its own genome, translating and transcribing the viral

genes along with the cell’s own genes, producing the proteins required to assemble new copies

of the virus. It is difficult to detect the virus until it has infected the host. At that point, the

infection will persist indefinitely [37].

HIV is transmitted primarily by unprotected sexual intercourse with an infected person through

certain bodily fluids like blood, semen, pre-seminal fluid , rectal fluids and vaginal fluids. It is

also spread by contaminated blood transfusions and hypodermic needles. Women with HIV can

transmit the virus to their babies during pregnancy, delivery or breastfeeding. HIV-infected

people taking anti-retroviral therapy can still infect others through unprotected sex and needle

sharing [13].

HIV has four stages of infection namely, the primary(acute) infection stage, clinically asymp-

tomatic stage, symptomatic HIV infection stage and the progression to AIDS stage. Firstly, the

primary phase lasts for 2 to 3 weeks and is often accompanied by short flu-like illnesses such as

fever, headache, and rash. During this stage, there is a large amount of HIV in the peripheral

blood and the immune system begins to respond to the virus by producing HIV antibodies and

cytotoxic lymphocytes. The CD4+ T-cells count at this stage is 500 per microliter. Secondly,

the clinically asymptomatic stage lasts for an average of ten years and as its name suggests,

is free from major symptoms although there may be swollen glands. The level of HIV in the

peripheral blood drops to very low levels but individuals remain infectious and HIV antibodies

are detectable in the blood. The CD4+ T-cells count in this stage is 350 to 499 per microliter.

Thirdly, the symptomatic HIV infection stage is when the immune system becomes severely

damaged by HIV. This may be due to the lymph nodes and tissues getting burnt out because

of the years of activity and also due to new mutants which are more pathogenic leading to more
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T-helper cells destruction. The body in this phase fails to keep up with replacing the T-helper

cells that are lost. Emergence of opportunistic infections is used as an identifier in this stage

and the CD4+ T-cells count is 200 to 349 per microliter. Lastly, the AIDS stage is when the

immune system becomes more and more damaged that the individual develops increasingly

severe opportunistic infections such as tuberculosis, pneumonia and cancers. Here, the number

of CD4+ T-cells lowers to 200 per microliter leading to an AIDS diagnosis [13, 12].

HIV uses several receptors to bind and infect host cells. We shall focus on two of the several

cell surface chemokine receptors namely chemokine co-receptor type 5, CCR5 and chemokine

co-receptor type 4, CXCR4 as co-receptors for HIV infection. These are known as R5 HIV and

X4 HIV respectively. CCR5 is a protein on the surface of white blood cells that is involved in

the immune system as it acts as a receptor for chemokine receptor that infects Langerhans cells

and CD4+ T-cells. R5 is a type of HIV that uses co-receptor CCR5 to bind and infect immune

cells. Receptors are membrane proteins that take part in communication between the cell and

the outside world. A chemokine co-receptor is a cell surface receptor that binds a signalling

molecule in addition to a primary receptor in order to facilitate ligand recognition and initiate

biological processes, such as entry of a pathogen into a host cell. CXCR4 referred to as X4 is a

protein encoded by the CXCR4 gene in humans. CXCR4 is one of several chemokine receptors

that HIV can use to infect CD4+ T-cells and Langerhans cells. HIV uses CCR5 and CXCR4

to enter and infect both Langerhans cells and CD4+ T-cells. The entry of HIV into its target

cells is facilitated by the prior binding to the cell surface molecule CD4 and the secondary co-

receptors, CCR5 and CXCR4. In early HIV infection, R5 viruses are mostly dominant while a

receptor switch towards X4 viruses occurs in about 50% of the infected individuals. X4 viruses

are associated with the progression of the disease [38].

Once HIV enters the body from the population, Langerhans cells as the initial targets of infec-

tion captures the virus and degrades it using Langerin that produces birbeck granules. When

the Langerhans cells are overwhelmed by the virus, they present it to the naive T-cells and

are responsible for the infection of CD4+ T-cells. HIV then attaches itself to the protein CD4
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present on the surface of CD4+ T-cells using CXCR4 to enter into CD4+ T-cells. HIV then

duplicates itself increasing its potential to kill the CD4+ T-cells and as a result the infected cells

outnumber the healthy CD4+ T-cells making them unavailable to immune defence. Therefore

HIV weakens the immune system putting an individual at risk of developing opportunistic in-

fections because of low CD4+ T-cells and ultimately the individual develops AIDS which leads

to death [35, 36].

Genetic research indicates that HIV originated in west-central Africa during the late 19th

or early 20th century. AIDS was first recognized by the United States Centers for Disease

Control and Prevention (CDC) in 1981 and its cause was identified in the early part of the

decade. HIV/AIDS has had a great impact on society, as an illness [11].

HIV/AIDS epidemic is defined by the HIV prevalence in the general population. HIV preva-

lence is the percentage of the population living with HIV. In a population, the individuals at

risk of getting the infection are those that are sexually active, ages 15 − 49. HIV/AIDS is

considered a pandemic, a disease outbreak which is present over a large area and is actively

spreading [11]. At population level, HIV can be transmitted from infected or AIDS individuals

to susceptible individuals.

The two mechanisms of HIV infection are cell-to-cell and cell-free infection. Cell-to-cell in-

fection occurs when the virus is transmitted by a host from one cell to another through cell

communication. Cell-free infection occurs when the free virus infects the host cells by pene-

trating into the cell. Therefore, for immunological and epidemiology dynamics, HIV is either

spread through cell-to-cell or cell-free infection mechanisms.
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1.2 Problem Statement

Most HIV/AIDS models showed that HIV states are based on CD4+ T-cells cells as the target

cells infected by HIV such that the analysis of Langerhans cells has not been given enough

attention in as far as its contribution towards HIV progression is concerned during the primary

phase of HIV infection. Further, they has been not much research on CXCR4 and CCR5. It

is therefore worthy exploring the effects of these two types of cell surfaces that R5 HIV and

X4 HIV uses to infect cells in a host. Again most existing models have considered within host

dynamics models and population models as decoupled systems and do not link them explicitly.

We therefore develop a within host mathematical model to investigate the infections of Langer-

hans cells and CD4+ T-cells with R5 HIV and X4 HIV. We also review a basic population

model to investigate the population dynamics of HIV/AIDS. We shall connect the two models

to develop an immuno-epidemiology model linking the within host dynamics to the population

dynamics to investigate insights on how the two may affect each other. Mathematical theories

will be used to abstract biological processes into mathematical formulas and analysis will be

transferred back to the biological explanations.

1.3 Aim

The aim of the study is to use mathematical models to investigate the effects of the link between

within host and the epidemiology of HIV infection through studying within host model dynamics

of R5 HIV and X4 HIV and the population dynamics of HIV infection.

1.4 Objectives

The objectives of the study are:
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1. To develop a within host mathematical model that captures the interactions between

Langerhans cells, CD4+ T-cells, R5 virus and X4 virus during the primary phase of HIV

infection.

2. To review an epidemiological dynamics model for HIV infection.

3. To develop a model linking the within host dynamics to the epidemiological dynamics.

4. Analyze the mathematical models in objectives 1, 2 and 3 analytically and carry out

numerical simulations using data from published literature.

1.5 Significance of the Study

The emergence of diseases combines two elements, the introduction of the pathogen into the

human and its subsequent spread and maintenance within the population. The study and

analysis of linking within host dynamics and without host dynamics in HIV infection may be

used as a basis of understanding how the viral load and the CD4 count are affected in the course

of HIV infection. It also helps us to understand the several pathways that the virus uses to

invade and infect a host from the population to the within host and vice versa. Mathematical

models based on underlying transmission mechanisms of HIV might help the medical and

scientific community understand better how the disease spreads in the community. The outcome

of this study may help the government, countries, public health sectors to establish policies and

plans for administering treatment mechanisms as they will keep track of the emergence and

spread of the virus.

1.6 Scope of the Study

This chapter has provided a general overview of biological theories of the interactions between

different cells that take part in HIV transmission from the population level to within the host

and viceversa. Chapter 2 contains a review of the studies that were done by other researchers

and also some preliminary concepts which will be used for mathematical model analysis. In
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chapter 3, a within host dynamics mathematical model will be formulated and analysed and

a basic population dynamics mathematical model will be reviewed and analyzed in detail. In

Chapter 4 we link the within host dynamics and the population dynamics and detailed analysis

of the linked models are provided. Chapter 5 provides numerical simulations of our models

and discuss the results from the simulations, give possible recommendations and conclusion

based on the model results. Finally Chapter 6 will contain a detailed discussion of results,

observations, conclusion, strength and weakness of the models and future work to be done.
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Chapter 2

LITERATURE REVIEW AND

PRELIMINARY CONCEPTS

2.1 Introduction

This chapter reviews published research conducted by different researchers to get the general

information on within host models focusing on infection of Langerhans cells and CD4+T-cells

with the R5 HIV and X4 HIV. We also review models on population dynamics and immuno-

epidemiological dynamics, where within host dynamics are explicitly linked to population dy-

namics. We shall select a few studies that we will review as building blocks to our study. In

the preliminary concepts, definitions and major concepts that will be used in the mathematical

analysis of the models will be defined and discussed in detail.

2.2 Literature Review

Sugaya et al [41] studied how HIV infected Langerhans cells preferentially transmit to prolif-

erating autologous CD4+T-cells memory T-cells located with Langerhans cell T-cell clusters

experimentally. The purpose of their study was to examine the nature of the CD4+T-cells that

becomes infected by HIV-infected Langerhans cells. They infected human Langerhans cells with
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tissue explants ex vivo and three days later cocultured HIV-infected Langerhans cells with dif-

ferent subsets of autologous CD4+T-cells. Their results showed that HIV infected Langerhans

cells infected CD4+T-cells compared to naive CD4+T-cells. The infected CD4+T-cells were

more frequently detected in conjugates of Langerhans cells and autologous CD4+T-cells. Their

results suggested that T-cells becomes activated and preferentially get infected though cluster

formation with infected Langerhans cells rather than getting infected with free virus produced

by single HIV-infected Langerhans cells or CD4+T-cells. Their results highlighted that close

interactions between Langerhans cells and CD4+T-cells are important for optimal HIV replica-

tions within specific subsets of CD4+T-cells. However they concentrated on experiments and

no mathematical analysis was carried out to ensure validation of mathematical results to the

biological set up of the infection process.

Mbongo et al [20] studied a stochastic model for Langerhans cells and HIV dynamics in vivo.

In their study, they derived and analyzed a stochastic model explaining the dynamics of HIV,

CD4+ T-cells and Langerhans cells interactions under therapeutical interaction in vivo. Their

model results showed that HIV states should not be based on CD4+ T-cells as the target cells

infected by HIV. The findings illustrated the role of Langerhans cells as a central hub of interac-

tion and information exchange during HIV infection. Yet, they did not capture the degradation

effects of HIV by Langerhans cells and did not specify the type of HIV that prefers infecting

the Langerhans cells and the CD4+ T-cells.

Culshaw et al [27] developed a delay differential equation model for HIV infection of CD4+T-

cells. Their study aimed to simplify the model by A.S Perelson et al and introduce a discrete

time delay to the model to describe the time between infection of a CD4+T-cells and the emis-

sion of viral particles on a cellular level. Their results suggested that intracellular delay can

cause the cell and virus populations to fluctuate in the early stage of infection, in a longer term

they will converge to the infected steady state values. However, they focused on CD4+T-cells
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being initial targets of HIV infection and ignored the contribution of other immune cells such

as the Langerhans cells that contributes to HIV infection progression during early infection of

the virus.

Kamp [38] investigated the HIV co-receptor switch from a dynamical perspective. He devel-

oped a model to investigate the conditions under which the receptor switch occurs. The model

allowed him to investigate the evolution of viral strains within a probabilistic framework along

the three stages of disease from primary, latent to the onset of AIDS with a sudden increase

in viral load which goes with the impairment of the immune system. The model investigated

the evolution of the viral quasi species in terms of R5 viruses and X4 viruses which directly

translates into the composition of viral load and consequently the question of the co-receptor

switch. The model results managed to explain the co-receptor switch as a result of a dynamical

change in the underlying environmental conditions in the host. Still, they did not specify the

type of HIV that prefer infecting the type of different host cells.

Zhilan et al [21] developed a mathematical model for coupling within and between host dynam-

ics in an environmentally-driven infection disease. Their work presented a model for the linking

of within and between host dynamics through their connection to a contaminated environment.

Their model results provided new insights into the effects of each of the processes on the other

and showed that new properties can emerge from the coupled system and more complex dy-

namics may be expected. But, their model is more appropriate for only environmentally driven

infections with indirect links. In the case of HIV infection, direct links are required to capture

the connections.

Gagira et al [25] investigated a mathematical model framework for linked within-host and be-

tween host dynamics for infections with free living pathogens in the environment. In their
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study, they linked the within host dynamics and the between host dynamics by identifying

the within host and between host variables and parameters associated with the environmental

dynamics of the pathogen. The results in their study were significant for the current ongoing

efforts to develop new theoretical modeling framework of the evolution of infectious diseases.

Nevertheless, they did not identify a generalized framework for linking within host dynamics

and population dynamics of infectious diseases.

Another study by Gil et al [24] introduced the evolution of virulence: Interdependence, con-

straints, and selection using nested models. In their study, they explicitly examined ideas and

assumptions that studies which examine selection at both scales assume that between- and

within-host selection are necessarily in conflict using a model of within-host viral dynamics

nested within a model of between-host disease dynamics. Their approach allowed them to

evaluate the direction of selection at the within and between-host levels and identify situations

leading to conflict and accord between the two levels of selection. Their results indicated that

the general assumptions that both virulence and transmission increase with parasite load do not

necessarily lead to a conflict in selection at the between and within-host levels. They proposed

the understanding of the within host dynamics and their link to the epidemiological level as

being necessary steps towards a general theory of the evolution of parasite virulence. Again for

HIV direct links are required.

Jen et al [26] studied an immuno-epidemiological model with threshold delay: a study of the

effects of multiple exposures to a pathogen. Their model incorporated two main features: (i)

the epidemiological model included within host pathogen dynamics for an infectious disease,

(ii) the susceptible individuals to the infection experience a series of exposures via the pathogen

before becoming infectious. Their results constituted an important step towards articulating an

integrated and more refined epidemiological theories that can influence between host- pathogen

interactions, epidemiological mixing, and disease spread.
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Maia et al [23] developed the linking of immunological and epidemiological dynamics of HIV; a

case of super infection. In their study, they aimed to formulate a two strain model that linked

immunological and epidemiological dynamics across scales. They linked their models through

the age-since-infection structure of the epidemiological variables. Their results showed that

on within host scales, the two strains eliminate each other with the strain with the larger im-

munological basic reproduction number persisting. They found a possibility of superinfection

on the population scale with the strain with larger immunological reproduction number super

infecting the strain with the smaller immunological reproduction number. They also found that

that the between host transmission and the disease induced death rate depended on the within

host viral load. However,in their within host dynamics model, they only considered infection

of CD4+ T-Cells and ignored the contribution of Langerhans cells to HIV infection. They also

did not specify the type of viral strains that they were studying.

A number of researchers , the likes of Johnson, Baryarama et al and Sani et al [28, 29, 30, 31]

developed and analyzed compartmental SIA HIV/AIDS models. In their models, Johnson [28]

studied an introduction to the mathematics of HIV/AIDS modeling. Their study presented

a basic SI model of HIV transmission and discussed how the model could be improved to al-

low for greater accuracy in modeling of HIV transmission by introducing survival functions.

Nonetheless, their model was not structured by age and therefore of limited use in long term

population projections. Sani et al [29] formulated a stochastic model for the spread of HIV in

a heterosexual mobile population, under the assumption of a constant and varying population

sizes. In their model, they derived deterministic and diffusion analogues using convenient re

scaling techniques to analyze the stability conditions and equilibrium behaviors. Again their

model was not structured by age. Baryarama et al [30, 31] developed an HIV/AIDS model

incorporating complacency for the adult population, in their model they assumed complacency

as a function of the number of AIDS cases in a community with an inverse relation. Their

model analysis showed that complacency resulting from dependence of HIV transmission on
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the number of AIDS cases in a community leads to damped periodic oscillations in the number

of infective with oscillations more marked at lower rates of progression to AIDS. Their study

revealed that prolonged survival of AIDS cases may lower the endemic equilibrium level of HIV

infection. Still, they did not specify the age of the adult population. In the other model, they

developed an HIV/AIDS model with variable force of infection for the adult population. The

main finding of their research was that in settings with high recruitment rates, the HIV epi-

demic reaches peak prevalence when the rate of new infections is still higher than the removal

of those infected with HIV. All the models that we reviewed provided interesting results. We

reviewed a basic SIA model in our study because for the linking purposes of the within host

dynamics to the population dynamics, we wanted to start with a simple case and see the general

overview of the effects of linking the within host to the population before we start adding some

parameters to get more insights.

2.3 Preliminary Concepts

2.3.1 The Reproduction Number (R0)

Van den Driessche and Watmough [1] defines the basic reproduction number (R0) as the average

number of second generation infections produced by a typical infective person in a totally sus-

ceptible population. In their approach, they assumed that there are n compartments of which

m are infected, x̄ = (x1, x2, . . . , xn), where x̄ is the disease free equilibrium (DFE) point and xi

denotes the number of individuals in the ith compartment. The matrix Fi(x̄) is defined to be

the rate of new infections into compartment i and the transition matrix Vi(x̄) = V−i (x̄)−V+
i (x̄),

where V+
i is the rate of transfer of individuals into compartment i by all other means and V−i

is the rate of transfer of individuals out of the compartment i. The next generation matrix is

defined by FV −1 from the matrices of partial derivatives of Fi, Vi evaluated at x̄. F =
[

∂Fi(x̄)
∂xj

]

and V =
[

∂Vi(x̄)
∂xj

]
, where i, j = 1, . . . , m.

14



The entries of FV −1 give the rate at which infected individuals in xj produce new infections

in xi times the average length of time an individual spends in a single visit to compartment j.

R0 therefore is given by the spectral radius(ρ),the largest eigenvalue of the matrix FV −1. Thus

R0 = ρ(FV −1).

2.3.2 The Jacobian Matrix and Characteristic Equation

A Jacobian matrix is a matrix of all first order partial derivatives of a vector-valued function [2].

Suppose F : Rn → Rm is a function, where F is given by m-real valued component functions

F1 (x1, . . . , xn) , . . . , Fm (x1, . . . , xn). The partial derivatives of all these functions with respect

to the variables x1, . . . , xn (if they exist) can be organized in an m×m matrix. The Jacobian

matrix J of F is given as follows:

J =




∂F1

∂x1
· · · ∂F1

∂xn

...
...

...

∂Fm

∂x1
· · · ∂Fm

∂xn




A characteristic equation of a matrix is the equation in one variable λ of the form det(J−λI) = 0

where det is the determinant of a matrix, I is the m×m identity matrix and J is the Jacobian

matrix. The solutions of the characteristic equation are precisely the eigenvalues of the matrix

J .

2.3.3 The Routh Hurwitz Criterion [3, 39]

Routh Hurwitz stability criterion is a mathematical test that is a necessary and sufficient con-

dition for the stability of a linearized system. The Routh Hurwitz matrices give necessary

conditions for all roots of the characteristic polynomial to have negative real parts implying

local stability.

Given a characteristic polynomial P (λ) = λn + a1λ
n−1 + . . . an−1λ + an where the coefficients

ai are real constants, i = 1, . . . , n. The n Hurwitz matrices of the characteristic polynomial are
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given by

B1 =
∣∣∣a1

∣∣∣ , B2 =

∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣
, B3 =

∣∣∣∣∣∣∣∣∣

a1 1 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣
, Bn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
0 0 0 0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where aj = 0 if j > n. The roots of the characteristic polynomial P (λ) are non positive or

have non positive real parts if and only if all Hurwitz matrices are non-negative. det(Bj) > 0,

j = 1, 2 . . . , n.

Example 2.3.4. For n=2, the characteristic equation is P (λ) = λ2 + a1λ + a2 = 0 and the

corresponding Hurwitz matrix is

B2 =

∣∣∣∣∣∣
a1 1

0 a2

∣∣∣∣∣∣
,

det(B2) = a1a2 > 0. The Routh-Hurwitz conditions are a1 > 0, a2 > 0.

Example 2.3.5. For n=3, the characteristic equation is P (λ) = λ3 + a1λ
2 + a2λ + a3 = 0 and

the corresponding Hurwitz matrix is

B3 =

∣∣∣∣∣∣∣∣∣

a1 1 0

a3 a2 a1

0 0 a3

∣∣∣∣∣∣∣∣∣
,

det(B3) = a3(a1a2 − a3) > 0. The Routh-Hurwitz conditions are a1 > 0, a3 > 0 and a1a2 > a3.

The Routh Hurwitz conditions, however, can sometimes be very difficult to apply if n ≥ 3.

Other methods for determining local stability like the Corollary of Gershgorin Circle Theorem

can be easily applied for an n× n matrix.
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2.3.6 Descartes Rule of Signs[39]

Considering the nth polynomial

f(λ) = λn + a1λ
n−1 + . . . + an = 0 (2.1)

and without loss of generality an > 0. Letting A be the number of sign changes in the sequence

of coefficients an, an−1, . . . , a0 and ignoring the ones that are zeros. Descartes rule of signs

states that there are at most A roots of the given polynomial (2.1) which are real and non-

negative. Further, the rule states that there are A − 2K, K ≥ 0 and K ∈ Zk real positive

roots. If we let ω = −λ and again applying the Descartes rule of signs we obtain A− 2K real

negative roots.

2.3.7 Equilibrium Points [3]

We consider an autonomous system of differential equations of the form

dx

dt
= f(x), x(t0) = x0 (2.2)

where x(x1, x2, . . . , xn)T , f(x) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . fn(x1, x2, . . . , xn))T and

f does not depend explicitly on t

An equilibrium point x∗ ∈ Rn is called an equilibrium point of (2.2) if

f(x∗) = 0

Equilibrium points of dynamical systems represent constant solutions of the system and there-

fore give an indication of the long term behavior of the system. Intuitively, this means that the

state of the system is not changing.

The Disease Free Equilibrium Point(DFE)

The DFE is defined as the point at which no disease is present in the population. It is the

point where the infected population is zero [4].

17



The Endemic Equilibrium Point

The Endemic equilibrium point is defined as the point at which the disease is present in the

population [4].

2.3.8 Stability Analysis

The stability theory in mathematics is used to analyze the stability of the solutions of differential

equations and trajectories of dynamical systems under small perturbations of initial conditions.

It helps us to understand what happens when we perturb a system. The analysis allows us to

determine whether or not a system is stable, unstable or will be stable if perturbed [5].

Local Stability

An equilibrium point x∗ of the system (2.2) is said to be locally stable provided that , if the

initial values x0 is sufficiently close to x∗ then the solution x(t) remains close to x∗ for all

t ≥ 0.Thus an equilibrium point x∗ is stable if for each ε > 0 there exists a δ > 0 such that

‖ x0 − x∗ ‖< δ ⇒‖ x(t)− x∗ ‖< ε

The critical point x = x∗ is called unstable if it is not stable [3]. Intuitively,we say that an

equilibrium point is locally stable if all solutions which start near x∗, that is, the neighborhood

of x∗ remain close to x∗ for all time.

Local Stability(Lyapunov Indirect Method)[3]

Theorem 2.3.1. Let x∗ be an equilibrium point of the system of differential equations

dx

dt
= f(x), x(0) = x0

where f : D → Rn is continuously differentiable and D is a neighborhood of the x∗, Let the
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Jacobian matrix at x∗ be

A =
∂f

∂x
|x=x∗

such that the linearized system is

du

dt
= Au, u = x− x∗

then

1. x∗ is asymptotically stable if Re (λi(A)) < 0 for i = 1, . . . , n.

2. x∗ is unstable if Re (λi(A)) > 0 for at least one i.

Re (λi(A)) designates the real part of the ith eigenvalues of A. Since A is only defined at x∗,

stability determined by the indirect method is restricted to small neighborhood of x∗. For this

reason, it is called local stability .

Global Stability and Lyapunov functions(Lyapunov’s direct method)[3]

Definition 2.3.2. A continuously differentiable function V : Rn −→ R+ is said to be

1. positive definite in a region U of Rn that contains the origin if

(a) V (0) = 0,

(b) V (x) > 0, for x ∈ U and x 6= 0.

2. negative definite in a region U of Rn that contains the origin if

(a) V (0) = 0,

(b) V (x) < 0,

3. V (x) is said to be

(a) positive semi-definite if V (x) ≥ 0 for x ∈ U and x 6= 0.
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(b) negative semi-definite if V (x) ≤ 0 for x ∈ U and x 6= 0.

Theorem 2.3.3. (Lyapunov Stability) let x = 0 be an equilibrium point for a system de-

scribed by: ẋ = f(x) where U −→ Rn is a locally Lipschitz and U ⊂ Rn a domain that contains

the origin.

Let V : U −→ R be a continuously differentiable, positive function in U .

1. If V̇ (x) =
[

∂V
∂x

]T
f(x) ≤ 0, then x = 0 is a stable equilibrium point.

2. If V̇ (x) < 0, then x = 0 is an asymptotically stable equilibrium point.

In both cases V is called a Lyapunov function. If the conditions hold for all x ∈ Rn and

‖ x ‖→ ∞ implies that V (x) → ∞, then x = 0 is asymptotically stable in 3a and globally

asymptotically stable in 3b.

According to [10], the most commonly used Lyapunov functions are:

1. Quadratic Functions:

V (x) =
c1

2
(x1 − x∗1)

2 +
c2

2
(x2 − x∗2)

2 + . . . +
cn

2
(xn − x∗n)2

where the equilibrium points are given by x∗1, x
∗
2,. . ., x∗n.

2. Voltera Functions:

V (x) = c1

(
x1 − x∗1 − x∗1ln

(
x1

x∗1

))
+ c2

(
x2 − x∗2 − x∗2ln

(
x2

x∗2

))
+ . . .

+ cn

(
xn − x∗n − x∗nln

(
xn

x∗n

))
.

3. Composite Functions:

V (x1, x2, . . . , xn) =
c

2

[
n∑

i=1

(xi − x∗i )

]2

.

Intuitively, the global stability means that the system will come to the equilibrium point from

any possible starting point (there is no ”nearby” condition).
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2.3.9 The Fixed Point Theorem

Let I be a set and let f : I −→ I be a function that maps I into itself and such a function is

often called, a transformation, or a transform on I. A fixed point of f is an element of Ii of I

for which f(I) = Ii [7]. We use the fixed point theory to obtain the existence of the endemic

equilibria. We find their existence under some specific conditions, where f(Ii) is the disease

incidence for stage i, i = 1, 2, . . . , n and Ii is the infection class. The non-linear function f is

assumed to satisfy the following assumptions:

1. f(0) = 0,

2. f ′(Ii) > 0,

3. f ′′(Ii) < 0,

4. limI→+∞ f(Ii) = C < +∞.

The function f is an increasing, bounded and convergent with no change of convexity on a

finite interval [8]. Let y be the solution of y = f(y),that is, y is a fixed point of f . Consider

the dynamics of the distances yv − y between iterates yv and a fixed point y(v = 0, 1, 2, . . . , n).

If y(v+1) = f(y(v)) and y = f(y), then

y(v+1) − y = f(y(v))− y =
∂f(y)

∂y

(
y(v) − y

)
+ high order terms.

The local stability is then governed by the liberalization (to high order terms)

y(v+1) − y = L((y(v) − y),

which implies

y(v) − y = Lv((y(0) − y),

L denotes the Jacobian matrix fy of the n2 first order partial derivatives of f , evaluated at y.

Then there exists a set of n linearly independent eigenvectors wk with eigenvalues µk such that

the initial distance
(
y(0) − y

)
can be written as a linear combination, and y(v)−y = Lv((y(0)−y)

implies

y(v) − y = Lv

n∑

k=1

ckW
k =

n∑

k=1

ckL
vW k =

n∑

k=1

ckµ
v
kW

k,
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which shows that convergence y(v) −→ y can only take place for v −→ ∞ when | µk |< 1 for

all k = 1, 2, . . . , n [9].

Theorem 2.3.4. Assume that all eigenvalues µk of L lie inside the unit circle. i.e | µk |< 1.

Then, locally, the iterates y(v) converge towards y, which is a stable fixed point. If | µk |< 1, the

fixed point is stable. If | µk |> 1, the fixed point is unstable and the iterates y(v) moves away

from y or it diverges.

Summary

In this chapter we reviewed different views that different researchers have on within host focus-

ing on Langerhans cells, CD4+ T cells, R5 HIV and X4 HIV and also reviews on population

dynamics. Concepts that will be used in the model analysis have also been defined and a de-

tailed explanation on how to calculate them has been provided. We use studies in this chapter

as building blocks to the formulation of within host mathematical models with direct link to

the population dynamics of HIV infection in the next chapters.
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Chapter 3

THE IMMUNOLOGICAL AND

EPIDEMIOLOGICAL DYNAMICS

OF HIV INFECTION

Immunological dynamics are the dynamics that focus on the aspects of the immune system

inside all living organisms. Epidemiological dynamics are the dynamics that deal with the

incidence, distribution and control of a disease in a population. This chapter presents a within

host mathematical model on immunological dynamics of HIV infection inside a host and a

without host mathematical model on epidemiological dynamics of HIV infection outside the

host.

3.1 THE IMMUNOLOGICAL DYNAMICS

3.1.1 Introduction

This section presents a basic co-infection within host mathematical model that captures the

interactions between Langerhans cells, CD4+ T-cells, R5 HIV and X4 HIV during the primary

phase of HIV infection. Langerhans cells are initial targets for HIV following sexual exposure
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to the virus. Langerhans cells provide an efficient means for HIV to gain access to lymph node

T-cells. According to [13], HIV is spread easily in the early stages of infection because during

this time, large amounts of the virus are being produced in the body leading to an increase

in the viral load. The viral load is the amount of active HIV in the blood [12]. The higher

the viral load, the more active HIV is present in the blood. During this stage, the Langerhans

cells as the initial targets of infection, captures the virus and degrades it, but when they are

overwhelmed they are infected and transmit the virus to the CD4+ T-cells. The virus uses

CD4+ T-cells to replicate itself and this results in high levels of virus replication within the

CD4+ T-cells which leads to the destruction of the CD4+ T-cells resulting in fast progression

of HIV infection in the body. The increase in viral load over time eventually leads to more and

more CD4+ T-cells getting infected and eventually crippling the immune system to an extent

that it fails to produce HIV antibodies and cytotoxic lymphocytes to defeat the virus. The

effects of continued HIV infection leads to a decline in the CD4 count. The study in [12] defines

a CD4 count as a test that measures the number of CD4 cells in a sample of blood, it is an

important indicator of how well the immune system is working.

We shall formulate a basic within host model and analyze it by proving that the model is

positively invariant and bounded in a feasible region, calculating the basic reproduction number

and determining equilibrium points and their stability. We aim to answer the question: What

are the effects of combined infection of Langerhans cells and CD4+ T-cells with R5 HIV and

X4 HIV on the CD4 count and viral load during the primary phase of HIV infection?

3.1.2 Model Formulation

The infection of Langerhans cells and CD4+ T-cells by the R5 HIV and X4 HIV involves the

following variables: healthy Langerhans cells L, latently infected Langerhans cells LT , infected

Langerhans cells LI , healthy CD4+ T-cells C, infected CD4+ T-cells CI and two HIV strains

namely R5 HIV and X4 HIV.
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The healthy Langerhans cells are the first line of immune defense against HIV since they

are found on the surface of the skin and are ideally situated to efficiently capture pathogens

that enter the body. Latently infected Langerhans cells are cells infected by HIV which cannot

transmit nor produce the virus but act as a reservoir for the virus. Infected Langerhans cells

are the cells that have the virus and have the ability to produce and transmit it to the healthy

Langerhans cells and healthy CD4+ T-cells. The heathy CD4+ T-cells also are the command

cells of the immune system. They are a type of white blood cells playing a major role in

protecting the body from infection by sending signals to other types of immune cells which

then destroy the foreign or infectious particle presented to them. Infectious CD4+ T-cells , are

infected CD4+ T-cells by the virus that can produce the virus and transmit it to other cells

in the body. CCR5 and CXCR4 are cell surfaces that HIV uses to penetrate and infect host cells.

The healthy Langerhans cells are produced from the bone marrow at a constant rate π and

die naturally at a constant rate µ. The healthy Langerhans cells are removed from their class

through infection by the R5 HIV, X4 HIV, infected Langerhans cells and infected CD4+ T-cells

with a force of infection λ1 = β1(VR5 + η3VX4 + η2CI + η1LI) which is the rate at which a

susceptible langerhans cell can be infected by an infected cell. β1 is the probability that a

contact between a healthy Langerhans cell and either the R5 HIV, X4 HIV, infected Langer-

hans cells or infected CD4+ T-cells results in a successful infection. The rates of infection by

these infectious classes differ due to the fact that during early infection, there are more R5 HIV

cells in circulation with a few X4 HIV cells, infected CD4+ T-cells and infected Langerhans

cells. We account for the differences in infection by introducing the parameters η1, η2 and η3

which are related by 0 < η3 < η2 < η1 < 1 . To explain the derivation of this relationship, we

apply inequalities and assume that the R5 virus is more abundant followed by infected Langer-

hans cells, followed by infected CD4+ T-cells, followed by the X4 virus [18]. This assumption

transfers to their contribution towards the rates of successful infection. The rate of successful

infection for R5 virus is β1 > 0 and the rate of successful infection by infected langerhans cells

is β1η1. Thus, β1 > β1η1 and implies that η1 < 1. Similarly, the rate of successful infection
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by infected CD4+ T-cells is β1η2. Thus, β1 > β1η1 > β1η2 and implies η2 < η1 < 1. The rate

of successful infection by the X4 virus is β1η3. Thus, β1 > β1η1 > β1η2 > β1η3 and implies

η3 < η2 < η1 < 1.

η3 is the measure with which the probability of a successful infection of a healthy Langer-

hans cells by the X4 HIV is reduced due to the less abundance of X4 HIV compared to the

R5 HIV, infected Langerhans cells and infected CD4+ T-cells. η2 is the measure with which

the probability of a successful infection of a healthy Langerhans cells by the infected CD4+

T-cells is reduced due to the abundance of the infected CD4+ T-cells compared to the R5 HIV,

infected Langerhans cells and X4 HIV. η1 is the measure with which the probability of a suc-

cessful infection of a healthy Langerhans cells by the infected Langerhans cells is reduced due

to the abundance of infected Langerhans cells compared to the R5 HIV, infected CD4+ T-cells

and X4 HIV. We shall assume that the saturation of infection of Langerhans cells is due to

the degradation of the virus by healthy Langerhans cells. We shall use the average saturation

defined by the average value of the function 1
A+L

given by ω = 1
T

∫ T

0
1

1+L
dt over a time interval

[0, T ]. This means that 0 ≤ ω < 1.

When the healthy Langerhans cells are infected, they change their status to become latently in-

fected Langerhans cells LT . The latently infected Langerhans cells are not capable to transmit

the virus to the healthy Langerhans cells because the virus lies dormant within them. They act

as a reservoir for the virus and remain quiescent before they become infectious. The latently

infected langerhans cells die naturally at a constant rate µ and get activated to an infectious

mode when the virus begins to produce large amounts of viral particles inside the cell thus

move to the infectious class LI at a constant rate γ.

The virus first attaches itself and fuses with the Langerhans cells. Then the viral RNA is

converted into DNA and the virus uses the hosts cells machinery to replicate itself during a

process called reverse transcription. New copies of HIV are then formed and when they ma-

ture, the cause the host cell to burst releasing themselves into the blood. The virus leaves the
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infected Langerhans cell through budding off or lysis killing the cell that produces them at a

constant rate δ. During the production of viral cells by the infectious Langerhans cells, more

R5 cells are produced with a proportion ε than X4 viral cells so that 0.5 < ε ≤ 1, ε = 1 means

that all of the R5 viral particles are produced by the infected Langerhans cells. We assume that

lysis killing is the dominant viral production mechanism since more viral cells are produced

in this process than through budding off. During lysis killing, the virus particles burst out of

the host cell into the extracellular space resulting in the death of the cell. Once the virus has

escaped from the host cell, it is ready to enter a new healthy cell. The infectious Langerhans

cells die naturally at a constant rate µ. We assume that each actively infectious Langerhans

cell produces an average number of N viral particles. The new viral particles then circulate

freely in the blood as a new source of infection and infect the healthy Langerhans cells and the

healthy CD4+ T-cells.

The CD4+ T-cells are produced from thymus at a constant rate π4 and die naturally at a

constant rate µ4 .The healthy CD4+ T-cells leave their class through infection from the R5

HIV, X4 HIV, infected Langerhans cells and infected CD4+ T-cells with a force of infection

λ2 = β2(VX4 + σ3VR5 + σ2CI + σ1LI) where β2 is the probability that a contact between a

healthy CD4+ T-cells and either R5 HIV, X4 HIV, infected Langerhans cells and infected

CD4+ T-cells results in a successful infection. The parameters σ1 , σ2 and σ3 are related by

0 < σ3 < σ2 < σ1 < 1. The justification of the relationship of the σ’s is similar to the one for η’s

in the Langerhans cells. σ3 is the measure with which the probability of a successful infection

of a healthy CD4+ T-cells by the R5 HIV is reduced due to the abundance of the R5 HIV

compared to the X4, infected Langerhans cells and infected CD4+ T-cells. σ2 is the measure

with which the probability of a successful infection of a healthy CD4+ T-cells by the infected

CD4+ T-cells is reduced due to the abundance of the infected CD4+ T-cells compared to the

R5 HIV, X4 HIV and infected Langerhans cells. σ1 is the measure with which the probability

of a successful infection of a healthy CD4+ T-cells by the infected Langerhans cells is reduced

due to the presence of infected Langerhans cells compared to the R5 HIV, X4 HIV and infected
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CD4+ T-cells. This means more infection is caused by the X4 HIV followed by the infected

Langerhans cells, infected CD4+ T-cells, and the R5 HIV.

When infected, the healthy CD4+ T-cells either remain latent or progress to the actively in-

fected CD4+ T-cells. We only consider the actively infectious CD4+ T-cells and accounting

for the latently infected CD4+ T-cells by assuming a proportion θ, 0 < θ < 1 become actively

infectious. Thus the latent reservoir is accounted for by the proportion 1− θ. This allows us to

leave out the latently infected CD4+ T-cells population and yet be able to account for them.

The viral particles multiply in the infectious CD4+ T-cells class and force the cell to burst and

die at a rate ρ producing an average number of M viral particles per each actively infectious

cell. During the production of viral cells by the infectious CD4+ T-cells, more X4 viral cells

are produced with a proportion φ compared to the R5 viral cells, where 0.5 < φ ≤ 1. The

infectious CD4+ T-cells also die naturally at a constant rate µ4.

The R5 HIV population grows through the bursting of infectious Langerhans cells and in-

fectious CD4+ T-cells at rates δεNLI and ρ(1− φ)MCI respectively. The X4 HIV population

grows through the bursting of infectious CD4+ T-cells and infectious Langerhans cells at a rate

ρφMCI and δ(1− ε)NLI respectively. The two viral strains have a natural life span where they

die naturally at a constant rate µv. The R5 and X4 virus are also degraded by Langerin inside

the healthy Langerhans cells at a rate α. Langerin causes the breakdown of HIV particles and

blocks viral transmission. It is also able to scavenge viruses from the surrounding environment,

thereby preventing infection. We assume that the degradation of the virus is saturated.

The forces of infection λ1 and λ2 incorporate two mechanisms of infection namely the cell-to-

cell HIV infection where a healthy cell is infected by an infectious cell and the cell-free HIV

infection where a free virus infects a healthy cell.

The model diagram for the dynamics of HIV infection is given in Figure 3.1.
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Figure 3.1: Model diagram for the within host dynamics

The mathematical model formulated using the guiding assumptions and model diagram 3.1 are

given by the following system of non-linear ordinary differential equations:

dL

dt
= π − (ωλ1 + µ)L, (3.1)

dLT

dt
= ωλ1L− (µ + γ)LT , (3.2)

dLI

dt
= γLT − (µ + δ)LI , (3.3)

dC

dt
= π4 − (λ2 + µ4)C, (3.4)

dCI

dt
= θλ2C − (µ4 + ρ)CI , (3.5)

dVR5

dt
= δεNLI + ρ(1− φ)MCI − (µv + ωαL) VR5, (3.6)

dVX4

dt
= ρφMCI + δ(1− ε)NLI − (µv + ωαL) VX4, (3.7)

where
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λ1 = β1(VR5 + η3VX4 + η2CI + η1LI), (3.8)

λ2 = β2(VX4 + σ3VR5 + σ2CI + σ1LI). (3.9)

3.1.3 Positivity and Boundedness of Solutions

For the system of differential equations, we need to prove that all the variables remain non-

negative such that the solutions of the systems of equations with positive initial conditions

remain positive for all time t ≥ 0 and that all the solutions are bounded for all t ≥ 0. The

region is called the biologically feasible region where the model will be biologically meaningful.

This means that the dynamics of the Langerhans cells, CD4+ T-cells, R5 and X4 HIV popula-

tions should remain positive in all our analysis.

Theorem 3.1.1. All solutions of the system of differential equations are positive for all t > 0,

and there exists a Q > 0 such that all positive solutions satisfy L(t), LT (t), LI(t), C(t), CI(t),

VR5(t), VX4(t) < Q for all large t.

To prove the positivity of solutions, we suppose by contradiction that ti, i = 1, 2, 3, 4, 5, 6, 7 are

the first times when L(t), LT (t), LI(t), C(t), CI(t), VR5(t), VX4(t) reach zero respectively and

t0 = min{ti}.

Firstly, if t0 = t1, we assume t1 6= t2, t1 6= t3, t1 6= t4, t1 6= t5, t1 6= t6, t1 6= t7 and L(t) < 0 in

[0, t1] and L(t1) = 0, LT (t1) > 0, LI(t1) > 0, C(t1) > 0, CI(t1) > 0, VR5(t1) > 0, VX4(t1) > 0

for all t ∈ [0, t1].

From (3.1)

dL

dt
= π − (ωλ1 + µ)L ≥ −(ωλ1 + µ)L,

L(t) ≥ L(0)e
R t
0 −(ωλ1(s)+µ)ds,
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at t = t1

L(t1) ≥ L(0)e
R t1
0 −(ωλ1(s)+µ)ds > 0

This is a contradiction to the fact that L(t1) = 0. Therefore L(t) ≮ 0 in [0, t1] neither will

L(t1) = 0.

∴ L(t) > 0

Secondly, if t0 = t2, we assume t2 6= t3, t2 6= t4, t2 6= t5, t2 6= t6, t2 6= t7 and LT (t) < 0 in [0, t2]

and LT (t2) = 0, L(t2) > 0, LI(t2) > 0, C(t2) > 0, CI(t2) > 0, VR5(t2) > 0, VX4(t2) > 0 for all

t ∈ [0, t2].

From (3.2)

dLT

dt
= ωλL− (µ + γ)LT ≥ −(µ + γ)LT ,

LT (t) ≥ LT (0)e−(µ+γ)t

at t = t2

LT (t2) ≥ LT (0)e−(µ+γ)t2 > 0

This is a contradiction to the fact that LT (t2) = 0. Therefore LT (t) ≮ 0 in [0, t2] neither will

LT (t2) = 0.

∴ LT (t) > 0

Thirdly, if t0 = t3, we assume t3 6= t4, t3 6= t1, t3 6= t2 ,t3 6= t5, t3 6= t6, t3 6= t7 and LI(t) < 0 in

[0, t3] and LI(t3) = 0, L(t3) > 0, LT (t3) > 0, C(t3) > 0, CI(t3) > 0, VR5(t3) > 0, VX4(t3) > 0

for all t ∈ [0, t3].

From (3.3)

dLI

dt
= γLT − (µ + δ)LI ≥ −(µ + δ)LI

LI(t) ≥ LI(0)e−(µ+δ)t
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at t = t3

LI(t3) ≥ LI(0)e−(µ+δ)t3 > 0

This is a contradiction to the fact that LI(t3) = 0. Therefore LI(t) ≮ 0 in [0, t3] neither will

LI(t3) = 0.

∴ LI(t) > 0

Fourthly, if t0 = t4, we assume t4 6= t5, t6, t7, t3, t2, t1 and C(t) < 0 in [0, t4] and L(t4) = 0,

LT (t4) > 0, LI(t4) > 0, CI(t4) > 0, VR5(t4) > 0, VX4(t4) > 0 for all t ∈ [0, t4].

From (3.4)

dC

dt
= π4 − (λ2 + µ4)C ≥ −(λ2 + µ4)C

C(t) ≥ C(0)e
R t
0 −(λ2(s)+µ4)ds

at t = t4

C(t4) ≥ C(0)e
R t4
0 −(λ2(s)+µ4)ds > 0

This is a contradiction to the fact that C(t4) = 0. Therefore C(t) ≮ 0 in [0, t4] neither will

C(t4) = 0.

∴ C(t) > 0

Fifthly, if t0 = t5, we assume t5 6= t6, t7, t4, t3, t2, t1 and CI(t) < 0 in [0, t5] and CI(t5) = 0,

L(t5) > 0, LT (t5) > 0, C(t5) > 0, LI(t5) > 0, VR5(t5) > 0, VX4(t5) > 0 for all t ∈ [0, t5].

From (3.5)

dCI

dt
= θλ2C − (µ4 + ρ)CI ≥ −(µ4 + ρ)CI

CI(t) ≥ CI(0)e−(µ4+ρ)t
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at t = t5

CI(t5) ≥ CI(0)e−(µ4+ρ)t5 > 0

This is a contradiction to the fact that CI(t5) = 0. Therefore CI(t) ≮ 0 in [0, t5] neither will

CI(t5) = 0.

∴ CI(t) > 0

Lastly, if t0 = t6 and t0 = t7, and VR5(t6) < 0 ∈ [0, t6] and VX4(t7) < 0 ∈ [0, t7], and VR5(t6) = 0

and VX4(t6) = 0 for all t ∈ [0, t6] and t ∈ [0, t7].

From (3.6) and (3.7) and at t = t6 and t = t7

dVR5

dt
≥ − (ωαL(t) + µv) VR5 ≥ VR5(0)e−

R t6
0 (ωαL(t)+µv)t6 > 0

dVX4

dt
≥ − (ωαL(t) + µv) VX4 ≥ VX4(0)e−

R t7
0 (ωαL(t)+µv)t7 > 0

A contradiction to the fact that VR5(t6) = 0 and VX4(t7) = 0. Therefore VR5(t) and VX4(t) ≮ 0

in [0, t6] and [0, t7] respectively. Neither will VR5(t6) = 0 and VX4(t7) = 0.

∴ VR5(t) > 0 and VX4(t) > 0

The contradiction holds for t1, t2, t3, t4, t5, t6, t7 →∞. All the cases have been considered and

a contradiction has been found for each case. Therefore, there is no such ti, i = 1, 2, 3, 4, 5, 6, 7.

This means L(t) > 0, LT (t) ≥ 0, LI(t) ≥ 0, C(t) > 0, CI(t) ≥ 0, VR5(t) ≥ 0, VX4(t) ≥ 0, for all

large t ≥ 0.

We have proved that our solutions are restricted in a positive region and that the initial con-

ditions that were chosen inside the region will always stay positive and our model will give

positive projections.

To prove boundedness, having assured that we are dealing with positive solutions in a pos-
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itive region, we now prove that the solutions are globally bounded meaning that they all have

a common upper bound and that none of them can blow to infinity.

Using a Lyapunov function, we prove that L(t), LT (t), LI(t), C(t), CI(t),VR5(t), VX4(t) are

bounded.

Let Y (t) = L(t) + LT (t) + LI(t) + C(t) + CI(t) + VR5(t) + VX4(t) = Ltot + Ctot + Vtot

where

Ltot = π − µLtot − δLI , Ctot = π4 − µ4Ctot − λ2(1− θ)C − ρCI

Vtot = δεNLI + ρ(1− φ)MCI − (αωL + µv) VR5 + ρφMCI + δ(1− ε)NLI − (αωL + µv) VX4

and

Ltot ≤ π

µ
= L∗tot

Ctot ≤ π4

µ4

= C∗
tot

Vtot ≤ δNL∗0 + ρMC∗
0

αωL∗0 + µv

= V ∗
tot

Ẏ (t) ≤ π − µLtot − δLI + π4 − µ4Ctot − λ2(1− θ)C − ρCI + δεNLI+

ρ(1− φ)MCI − (αωL + µv) VR5 + ρφMCI + δ(1− ε)NLI − (αωL + µv) VX4

34



set µtot = min{µ, µ4, µv}, Y (t) = Ltot + Ctot + Vtot

Y (t) ≤ π + π4 − µtotY (t) + δ(N − 1)LI + ρ(M − 1)CI − λ2(1− θ)C

≤ π + π4 − µtotY (t) + δNLtot + ρMCtot,

≤ π + π4 − µtotY (t) + δ∗(Ltot + Ctot), δ∗ = max{δN, ρM}
≤ π + π4 − µtotY (t) + δ∗Y (t)− δV ∗

tot,

≤ π + π4 − (µtot − δ∗)Y (t),

Y (t) ≤ π + π4

µtot − δ∗
+

(
Y (0)− π + π4

µtot − δ∗

)
e−(µtot−δ∗)t

lim
t→∞

supY (t) ≤ π + π4

µtot − δ∗
when µtot > δ∗

Defining Q = π+π4

µtot−δ∗ , then Ltot + Ctot + Vtot ≤ Q ∀t ≥ 0.

Hence, we obtain a boundedness of Y(t), that is, there exists Q > 0 such that all the solutions

satisfy 0 ≤ L(t), LT (t), LI(t), C(t), CI(t), VR5(t), VX4(t) ≤ Q for all large t.

Remark 3.1.4. The concept of positive invariance ensures that positive solutions are preserved

and bounded in that positive region both mathematically and biologically. Populations under

consideration should always be positive or non-negative thus mathematical solutions from the

model will have a biological meaning and predictions from the mathematical solutions can be

biologically verified.

3.1.5 Disease Free Equilibrium Point

The disease free equilibrium point is the equilibrium point which occurs when there are no R5

viruses and X4 viruses, infected Langerhans cells and infected CD4+ T-cells in an individual’s

body.

In our model, equating the right hand side of the system of differential equations (3.1)-(3.7) to

zero and considering that L∗T = L∗I = C∗
I = V ∗

R5 = V ∗
X4 = 0 we solve for L∗ and C∗, denoting
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L∗ = L0 and C∗ = C0

L0 =
π

µ
, C0 =

π4

µ4

.

Thus, the disease free equilibrium point of the system of equations denoted E0 is given by

E0 = (L0, 0, 0, C0, 0, 0, 0) .

3.1.6 The Basic Reproduction Number (R0)

One of the most important parameters that explains conditions under which the infection is

cleared or persists in a population, is the basic reproduction number denoted as R0. From

our model it is defined as the expected number of secondary infections that result when either

infected by Langerhans cells, infected CD4+ T-cells , R5 HIV or X4 HIV are introduced in a

completely susceptible cell population of Langerhans cells and CD4+ T-cells. The calculation of

the basic reproduction number helps us to analyze the existence and stability of the disease free

equilibrium point and the endemic equilibrium point which depends on its values. The basic

reproduction number will be computed using the next generation matrix used by Watmough

and Van Den Drissche in [1].

We consider a matrix Fi, the rate of appearances of new infections in compartment i,

F =




β1(VR5 + η3VX4 + η2CI + η1LI)ωL

0

β2θ(VX4 + σ3VR5 + σ2CI + σ1LI)C

0

0




.

The Jacobian matrix of F , evaluated at the disease free equilibrium point E0 gives rise to a

matrix F given by
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F =




0 β1η1ωL0 β1η2ωL0 β1ωL0 β1η3ωL0

0 0 0 0 0

0 β2θσ1C0 β2θσ2C0 β2θσ3C0 β2θC0

0 0 0 0 0

0 0 0 0 0




.

We consider the transition matrix V ,

V =




(µ + γ)LT

(µ + δ)LI − γLT

(µ4 + ρ)CI

ωαVR5L + µvVR5 − δεNLI − ρ(1− φ)MCI

ωαVX4L + µvVX4 − ρφMCI − δ(1− ε)NLI




.

The Jacobian matrix of V , evaluated at the disease free equilibrium point E0 gives rise to a

matrix V given by

V =




(µ + γ) 0 0 0 0

−γ (µ + δ) 0 0 0

0 0 (µ4 + ρ) 0 0

0 −δεN −ρ(1− φ)M ωαL0 + µv 0

0 −δ(1− ε)N −ρφM 0 ωαL0 + µv




.

The inverse matrix of V, denoted V −1 is given as
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V −1 =




1
(µ+γ)

0 0 0 0

γ
(µ+γ)(µ+δ)

1
(µ+δ)

0 0 0

0 0 1
(µ4+ρ)

0 0

γNδε
(µ+γ)(µ+δ)(ωαL0+µv)

A B C 0

D Nδ(1−ε)
(µ+δ)(ωαL0+µv)

F 0 G




,

where

A =
Nδε

(µ + δ)(ωαL0 + µv)
, B =

Mρ(1− φ)

(µ4 + ρ)(ωαL0 + µv)
,

C =
1

(ωαL0 + µv)
, D =

Nδγ(1− ε)

(µ + γ)(µ + δ)(ωαL0 + µv)
,

F =
Mφρ

(µ4 + ρ)(ωαL0 + µv)
, G =

1

ωαL0 + µv

.

The next generation matrix denoted FV −1 is

FV −1 =




a b c d e

0 0 0 0 0

f g h i j

0 0 0 0 0

0 0 0 0 0




,

where
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a =
β1ωL0γ

(µ + γ)(µ + δ)

[
η1 +

δεN

ωαL0 + µv

+
η3Nδ(1− ε)

ωαL0 + µv

]
,

b =
β1ωL0

(µ + δ)

[
η1 +

δεN

ωαL0 + µv

+
η3Nδ(1− ε)

ωαL0 + µv

]
,

c =
β1ωL0

(µ4 + ρ)

[
η2 +

Mρ(1− φ)

ωαL0 + µv

+
η3Mρφ

ωαL0 + µv

]
,

d =
β1ωL0

ωαL0 + µv

, e =
β1η3ωL0

ωαL0 + µv

,

f =
β2θC0γ

(µ + γ)(µ + δ)

[
σ1 +

σ3Nδε

ωαL0 + µv

+
Nδ(1− ε)

ωαL0 + µv

]
,

g =
β2θC0

(µ + δ)

[
σ1 +

σ3Nδε

ωαL0 + µv

+
Nδ(1− ε)

ωαL0 + µv

]
,

h =
β2θC0

(µ4 + ρ)

[
σ2 +

σ3Mρ(1− φ)

ωαL0 + µv

+
Mρφ

ωαL0 + µv

]
,

i =
β2θσ3C0

ωαL0 + µv

, j =
β2θC0

ωαL0 + µv

.

From the next generation matrix, FV −1 , a is the number of secondary infections caused by

one latently infected Langerhans cell to produce new latently infected Langerhans cells. b is the

number of secondary latently infected Langerhans cells produced by actively infected Langer-

hans cells. c is the number of latent infected Langerhans cells produced by infected CD4+

T-cells. d is the number of latent infected Langerhans cells produced by the R5 virus and e

is the number of latent infected Langerhans cells produced by the X4 virus. f is the number

of secondary infections caused by one infected CD4+ T-cell to produce new Latent infected

Langerhans cells. g is the number of secondary CD4+ T-cell infections produced by infected

Langerhans cells. h is the number of secondary infected CD4+ T-cells infections produced by

infected CD4+ T-cells. i is the number of infected CD4+ T-cells produced by the R5 virus and

j is the number of infected CD4+ T-cells produced by the X4 virus.
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Therefore, the basic reproduction ratio which is the spectral radius of the next generation

matrix, FV −1 is given by

R0 =
1

2

[
(a + h) +

√
a2 + 4cf − 2ah + h2

]
,

=
1

2

[
(a + h) +

√
(a− h)2 + 4cf

]
.

Where

1. a is the local basic reproduction number of Langerhans cells due to infection emanating

from infected Langerhans cells and the free virus produced by infected Langerhans cells.

2. h is the local basic reproduction number of CD4+ T-cells due to infection propagated

from infected CD4+ T-cells and the free virus produced by infected CD4+ T-cells.

3. c is the local basic reproduction number of Langerhans cells due to infection primarily

from infected CD4+ T-cells and the free virus produced from CD4+ T-cells.

4. f is the local basic reproduction number of CD4+ T-cells due to infection by infected

Langerhans cells and the free virus produced by infected Langerhans cells.

3.1.7 Endemic Equilibrium Point

We calculate the endemic equilibrium points in terms of the forces of infection λ∗1 and λ∗2. We

set the right hand side of the equations of the model (3.1)-(3.7) to zero and

(3.1) becomes

π − (ωλ∗1 + µ)L∗ = 0

L∗ =
π

(ωλ∗1 + µ)
.

Similarly, setting equation (3.2)-(3.7) to zero yields
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L∗T =
πλ∗1

(ωλ∗1 + µ)(µ + γ)
, L∗I =

γπλ∗1
(ωλ∗1 + µ)(µ + γ)(µ + δ)

,

C∗ =
π4

(λ∗2 + µ4)
, C∗

I =
θπ4λ

∗
2

(λ∗2 + µ4)(µ4 + ρ)
,

V ∗
R5 =

δεNπγλ∗1
(µ + γ)(µ + δ) [µv(ωλ∗1 + µ) + ωαπ]

+
ρ(1− φ)Mλ∗2θπ4(ωλ∗1 + µ)

(λ∗2 + µ4)(µ4 + ρ) [µv(ωλ∗1 + µ) + ωαπ]
,

V ∗
X4 =

ρφMθπ4λ
∗
2(ωλ∗1 + µ)

(λ∗2 + µ4)(µ4 + ρ) [µv(ωλ∗1 + µ) + ωαπ]
+

δ(1− ε)Nγπλ∗1
(µ + γ)(µ + δ) [µv(ωλ∗1 + µ) + ωαπ]

.

and

λ∗1 = β1 (V ∗
R5 + η1V

∗
X4 + η2C

∗
I + η3L

∗
I)

λ∗2 = β2 (V ∗
X4 + σ1V

∗
R5 + σ2C

∗
I + σ1L

∗
I)

Case 1. λ∗1 = λ∗2 = 0

This corresponds to the disease free equilibrium point, where there are no infected Langerhans

cells, infected CD4+ T-cells, R5 HIV and X4 HIV in an individual’s body. Therefore E0 =

(L∗0, 0, 0, C
∗
0 , 0, 0, 0.)

L∗0 =
π

µ
, C∗

0 =
π4

µ4

.

Case 2. λ∗1 = 0, λ∗2 6= 0

This is where there are no infected Langerhans cells but infected CD4+ T-cells and R5 viruses

and X4 viruses produced by infected CD4+ T-cells in an individual’s body.

E1 = (L∗, 0, 0, C∗, C∗
I , V

∗
R5, V

∗
X4.) .

L∗ =
π

µ
, L∗T = L∗I = 0,

C∗ =
π4

(λ∗2 + µ4)
, C∗

I =
θπ4λ

∗
2

(λ∗2 + µ4)(µ4 + ρ)
,

V ∗
R5 =

ρ(1− φ)Mθπ4λ
∗
2µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
, V ∗

X4 =
ρφMθπ4λ

∗
2µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
.

Substituting the new expressions of L∗, L∗T , L∗I , C
∗, C∗

I , V
∗
R5, V

∗
X4 into the force of infection

λ∗2 = β2(V
∗
X4 + σ3V

∗
R5 + σ2C

∗
I ) yields

λ∗2 = β2

(
ρφMθπ4λ

∗
2µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ3ρ(1− φ)Mθπ4λ
∗
2µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ2θπ4λ
∗
2

(λ∗2 + µ4)(µ4 + ρ)

)
,
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which reduces to

λ∗2

(
1− ρφMθπ4µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ3ρ(1− φ)Mθπ4µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ2θπ4

(λ∗2 + µ4)(µ4 + ρ)

)
= 0.

Either

λ∗2 = 0

which corresponds to the disease free equilibrium or

1− ρφMθπ4µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ3ρ(1− φ)Mθπ4µ

(λ∗2 + µ4)(µ4 + ρ)(ωαπ + µvµ)
+

σ2θπ4

(λ∗2 + µ4)(µ4 + ρ)
= 0

which then reduces to

λ∗2 = µ4

[
β2θC

∗
0

µ4 + ρ

(
σ2 +

σ3Mρ(1− φ)µ

ωαπ + µvµ
+

Mρφµ

ωαπ + µvµ

)
− 1

]

λ∗2 = µ4 [Rc
0 − 1] , Rc

0 = h.

Where Rc
0 is the local reproduction number of the CD4+ T-cells

For existence of E1, we require Rc
0 > 1.

Case 3. λ∗1 6= 0, λ∗2 = 0

This is where there are infected Langerhans cells, R5 viruses and X4 viruses produced by

infected Langerhans cells but no infected CD4+ T-cells in an individual’s body.

E2 = (L∗, L∗T , L∗I , C
∗, 0, V ∗

R5, V
∗
X4) ., where

L∗ =
π

(ωλ∗1 + µ)
, L∗T =

πλ∗1
(ωλ∗1 + µ)(µ + γ)

,

L∗I =
γπλ∗1

(ωλ∗1 + µ)(µ + γ)(µ + δ)
, C∗ =

π4

(µ4)
, C∗

I = 0,

V ∗
R5 =

δεNγπλ∗1
(µ + γ)(µ + δ) [µvµ(ωλ∗1 + µ) + ωαπ]

,

V ∗
X4 =

δ(1− ε)Nγπλ∗1
(µ + γ)(µ + δ) [µvµ(ωλ∗1 + µ) + ωαπ]

.
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Substituting the new expressions of L∗, L∗T , L∗I , C
∗, C∗

I , V
∗
R5, V

∗
X4 into the force of infection

λ∗1 = ωβ1(VR5 + η3VX4 + η1LI) yields

λ∗1 = ωβ1

(
δεNγπλ∗1

Q
+

η3δ(1− ε)Nγπλ∗1
Q

+
η1γπλ∗1

(µ + γ)(µ + δ)(ωλ∗1 + µ)

)
,

where Q = (µ + γ)(µ + δ) [µvµ(ωλ∗1 + µ) + ωαπ] ,

which reduces to

λ∗1 (1− r1 − r2 − r3) = 0,

where

r1 =
ωβ1δεNγπ

(µ + γ)(µ + δ) [µvµ(ωλ∗1 + µ) + ωαπ]
, r2 =

ωβ1η3δ(1− ε)Nγπ

(µ + γ)(µ + δ) [µvµ(ωλ∗1 + µ) + ωαπ]
,

r3 =
ωβ1η1γπ

(ωλ∗1 + µ)(µ + γ)(µ + δ)
.

Either

λ∗1 = 0 which corresponds to the disease free equilibrium point

or

1− r1 − r2 − r3 = 0.

To find the other equilibrium points, we consider the expression 1 − r1 − r2 − r3 = 0 which

when expressed in terms of λ∗1 gives

a2λ
∗2
1 + a1λ

∗
1 + a0 = 0, (3.11)

where

a2 =
[
ω2µv(µ + γ)(µ + δ)

]
,

a1 = (µ + γ)(µ + δ)
[
ωµv + ω2απ + ωµµv

] (
1−Rl

0

)
+

(
ω2β1γπ

)
,

a0 = (µ + γ)(µ + δ)
[
µ2µv + µωαπ

] (
ω2β1η1γπ2α

) (
1−Rl

0

)
.
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Rl
0 = a.

Solving for λ∗1, we have two roots

λ∗1a =
−a1 +

√
a2

1 − 4a2a0

2a2

, λ∗1b =
−a1 −

√
a2

1 − 4a2a0

2a2

1. If Rl
0 = 1 then a0 = 0, a1 > 0, a2 > 0. Therefore λ1a = 0, and λ1b = −a1

a2
will present a

non-feasible equilibrium point.

2. If Rl
0 < 1 then a0 > 0, a1 > 0, a2 > 0. Therefore, no positive equilibrium point because

according to Descartes rule of signs, there is no sign change from the coefficients of (3.11).

3. If Rl
0 > 1 then a0 < 0, a1 > 0, a2 > 0. The co-efficient a1 of (3.11) could be positive or

negative when Rl
0 > 1. In either case there is one sign change and one positive equilibrium

point. Therefore, the positive equilibrium point is λ1a > 0 and λ1b < 0 will have a negative

equilibrium point and according to Descartes rule of signs, there is only one sign change

in the coefficients of (3.11).

Therefore for existence of the equilibrium point E2, we require Rl
0 > 1

Case 4. λ∗1 6= 0, λ∗2 6= 0

This is where there are infected Langerhans cells , infected CD4+ T-cells , R5 viruses and X4

viruses in an individuals body.

E3 = (L∗, L∗T , L∗I , C
∗, C∗

I , V
∗
R5, V

∗
X4) .

L∗ =
π

ωλ∗1 + µ
, L∗T =

λ∗1
τ1(ωλ∗1 + µ)

, L∗I =
λ∗1

τ2(ωλ∗1 + µ)
,

C∗ =
π4

(λ∗2 + µ4)
, C∗

I =
λ∗2

τ3(λ∗2 + µ4)
,

V ∗
R5 =

λ∗1
τ4(λ∗1 + τ8)

+
λ∗2(ωλ∗1 + µ)

τ5(λ∗2 + µ4)(λ∗1 + τ8)
,

V ∗
X4 =

λ∗2(ωλ∗1 + µ)

τ6(λ∗2 + µ4)(λ∗1 + τ8)
+

λ∗1
τ7(λ∗1 + τ8)

.

where
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τ1 =
(µ + γ)

π
, τ2 =

(µ + γ)(µ + δ)

πγ
, τ3 =

(µ4 + ρ)

π4θ
,

τ4 =
(µ + γ)(µ + δ)

δεNγπ
, τ5 =

(µ4 + ρ)

ρ(1− φ)Mθπ4

, τ6 =
(µ4 + ρ)

ρφMθπ4

,

τ7 =
(µ + γ)(µ + δ)

δ(1− ε)Nγπ
, τ8 =

µvµ + ωαπ

µvω
, τ9 =

ωαπ

µv

.

Substituting expressions L∗, L∗T , L∗I , C
∗, C∗

I , V
∗
R5, V

∗
X4 into the two forces of infection λ∗1 and λ∗2,

we obtain

λ1 = β1

(
λ∗1

τ4(λ∗1 + τ8)
+

λ∗2(ωλ∗1 + µ)

τ5(λ∗2 + µ4)(λ∗1 + τ8)
+

η3λ
∗
2(ωλ∗1 + µ)

τ6(λ2 + µ4)(λ1 + τ8)
+

η3λ
∗
1

τ7(λ∗1 + τ8)

)

+ β1

(
η2λ

∗
2

τ3(λ∗2 + µ4)
+

η1λ
∗
1

τ2(ωλ∗1 + µ)

)
,

λ2 = β2

(
λ∗2(ωλ∗1 + µ)

τ6(λ∗2 + µ4)(λ∗1 + τ8)
+

λ∗1
τ7(λ∗1 + τ8)

+
σ3λ

∗
1

τ4(λ∗1 + τ8)
+

σ3λ
∗
2(ωλ∗1 + µ)

τ5(λ∗2 + µ4)(λ∗1 + τ8)

)

+ β2

(
σ2λ

∗
2

τ3(λ∗2 + µ4)
+

σ1λ
∗
1

τ2(ωλ∗1 + µ)

)
.

The equilibrium points of the model can be obtained by finding the fixed points of the equations

κ(λ1, λ2) =


κ1(λ1, λ2)

κ2(λ1, λ2)




given by,

κ1(λ1, λ2)

κ2(λ1, λ2)


 =


β1

(
λ∗1

τ4(λ∗1+τ8)
+

λ∗2(ωλ∗1+µ)

τ5(λ∗2+µ4)(λ∗1+τ8)
+

η3λ∗2(ωλ∗1+µ)

τ6(λ2+µ4)(λ1+τ8)
+

η3λ∗1
τ7(λ∗1+τ8)

+
η2λ∗2

τ3(λ∗2+µ4)
+

η1λ∗1
τ2(ωλ∗1+µ)

)

β2

(
λ∗2(ωλ∗1+µ)

τ6(λ∗2+µ4)(λ∗1+τ8)
+

λ∗1
τ7(λ∗1+τ8)

+
σ3λ∗1

τ4(λ∗1+τ8)
+

σ3λ∗2(ωλ∗1+µ)

τ5(λ∗2+µ4)(λ∗1+τ8)
+

σ2λ∗2
τ3(λ∗2+µ4)

+
σ1λ∗1

τ2(ωλ∗1+µ)

)



clearly, (λ∗1, λ
∗
2) = (0, 0) is a fixed point which corresponds to the disease free equilibrium point.

Theorem 3.1.2. There exists a unique fixed point (λ∗1, λ
∗
2), λ∗1 > 0, λ∗2 > 0 satisfying κ(λ∗1, λ

∗
2) =

(
λ∗1
λ∗2

)
corresponding to the endemic equilibrium point E3.
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Proof. For each fixed λ1 > 0, we consider real valued functions depending on λ2:

κλ1
1 (λ2) = β1

(
λ∗1

τ4(λ∗1 + τ8)
+

λ∗2(ωλ∗1 + µ)

τ5(λ∗2 + µ4)(λ∗1 + τ8)
+

η3λ
∗
2(ωλ∗1 + µ)

τ6(λ2 + µ4)(λ1 + τ8)
+

η3λ
∗
1

τ7(λ∗1 + τ8)

)
.

+ β1

(
η2λ

∗
2

τ3(λ∗2 + µ4)
+

η1λ
∗
1

τ2(ωλ∗1 + µ)

)
.

so that

κλ1
1 (0) = β1

(
λ1

τ4(λ1 + τ8)
+

η3λ1

τ7(λ1 + τ8)
+

η1λ1

τ2(ωλ1 + µ)

)
> 0.

and

lim
λ2→∞

κλ1
1 (λ2) = β1

(
λ1

τ4(λ1 + τ8)
+

(ωλ1 + µ)

τ5(λ1 + τ8)
+

η3(ωλ1 + µ)

τ6(λ1 + τ8)
+

η3λ1

τ7(λ1 + τ8)

)

+ β1

(
η2

τ3

+
η1λ1

τ2(ωλ1 + µ)

)
< ∞

Thus 0 < κλ1
1 (λ2) < ∞ so that the function κλ1

1 (λ2) is bounded for every fixed λ1 > 0.

The first derivative of κλ1
1 (λ2) with respect to λ2 is given by

∂κλ1
1 (λ2)

∂λ2

= β1

(
µ4(ωλ1 + µ)

τ5(λ1 + τ8)(λ2 + µ4)2
+

η3µ4(ωλ1 + µ)

τ6(λ1 + τ8)(λ2 + µ4)2
+

η2µ4

τ3(λ2 + µ4)2

)
> 0

The second derivative of κλ1
1 (λ2) with respect to λ2 is

∂2κ
λ1(λ2)
1

∂2λ2

= −2β1

(
µ4(ωλ1 + µ)

τ5(λ1 + τ8)(λ2 + µ4)4
+

η3µ4(ωλ1 + µ)

τ6(λ1 + τ8)(λ2 + µ4)4
+

η2µ4

τ3(λ2 + µ4)3

)
< 0

Since
∂κλ1

1 (λ2)

∂λ2

> 0 and
∂2κλ1

1 (λ2)

∂2λ2

< 0, the function κλ1
1 (λ2) is an increasing concave down

function which has no change in convexity in the bounded domain. This implies that there

exists a unique point λ∗2 > 0 satisfying κλ1
1 (λ∗2) = λ∗2.
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For λ∗2 we consider the following real-valued function depending on λ1

κ
λ∗2
2 (λ1) = β2

(
λ∗2(ωλ∗1 + µ)

τ6(λ∗2 + µ4)(λ∗1 + τ8)
+

λ∗1
τ7(λ∗1 + τ8)

+
σ3λ

∗
1

τ4(λ∗1 + τ8)
+

σ3λ
∗
2(ωλ∗1 + µ)

τ5(λ∗2 + µ4)(λ∗1 + τ8)

)

+ β2

(
σ2λ

∗
2

τ3(λ∗2 + µ4)
+

σ1λ
∗
1

τ2(ωλ∗1 + µ)

)
,

κ
λ∗2
2 (0) = β2

(
λ∗2µ

τ6τ8(λ∗2 + µ4)
+

σ3λ
∗
2µ

τ5τ8(λ∗2 + µ4)
+

σ2λ
∗
2

τ3(λ∗2 + µ4)

)
> 0,

lim
λ1→∞

κ
λ∗2
2 (λ1) = β2

(
λ2ω

τ6(λ2 + µ4)
+

1

τ7

+
σ3

τ4

+
σ3λ2ω

τ5(λ2 + µ4)
+

σ2λ2

τ3(λ2 + µ4)
+

σ1

τ2ω

)
< ∞

The real valued function is bounded for every fixed λ∗2 > 0.

Therefore,

∂κ
λ∗2
2 (λ1)

∂λ1

= β2

(
λ2τ9

τ6(λ2 + µ4)(λ1 + τ8)2
+

τ8

τ7(λ1 + τ8)2
+

σ3τ8

τ4(λ1 + τ8)2

)

+ β2

(
σ3λ2τ9

τ5(λ2 + µ4)(λ1 + τ8)2
+

σ1µ

τ2(ωλ1 + µ)2

)
> 0

The second derivative of κ
λ∗2
2 (λ1) with respect to λ1 is

∂2κ
λ∗2
2 (λ1)

∂2λ1

= −2β2

(
λ2τ9

τ6(λ2 + µ4)(λ1 + τ8)3
+

τ8

τ7(λ1 + τ8)4
+

σ3τ8

τ4(λ1 + τ8)4

)

− 2β2

(
σ3λ2τ9

τ5(λ2 + µ4)(λ1 + τ8)3
+

σ1µ

τ2(ωλ1 + µ)4

)
< 0.

which implies that the real valued function κ
λ∗2
2 (λ1) is an increasing concave down function

which has no change in convexity in the positive domain. This means that there exists λ∗1 > 0

satisfying κ
λ∗2
2 (λ∗1) = λ∗1. Therefore, we have a unique fixed point (λ∗1, λ

∗
2) corresponding to the

endemic equilibrium point E3.
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3.1.8 Global Stability Analysis of Equilibrium Points

Stability Analysis of the DFE (E0)

We shall prove that the disease free equilibrium point is globally stable by means of Lyapunov

functions.

Theorem 3.1.3. The disease free equilibrium, E0 is globally asymptotically stable in the posi-

tively invariant region Ω if R0 ≤ 1

Proof. Define H0 : {(L,LT , LI , C, CI , VR5, VX4) ∈ Ω : L > 0, C > 0} −→ R by

H0 =
(
L− L∗ − L∗log L

L∗
)

+ a1LT + a2LI +
(
C − C∗ − C∗log C

C∗
)

+ a3CI + a4VR5 + a5VX4

The time derivative of H0 computed along the solutions of the model is

Ḣ0 =

(
1− L∗

L

)
L̇ + a1L̇T + a2L̇I +

(
1− C∗

C

)
Ċ + a3ĊI + a4

˙VR5 + a5
˙VX4,

=

(
1− L∗

L

)
(π − β1ω(VR5 + η3VX4 + η2CI + η1LI)L− µL)

+ a1(β1ω(VR5 + η3VX4 + η2CI + η1LI)L− (µ + γ)LT )

+ a2(γLT − (µ + δ)LI)

+

(
1− C∗

C

)
(π4 − β2(VX4 + σ3VR5 + σ2CI + σ1LI)C − µ4C)

+ a3(θβ2(VX4 + σ3VR5 + σ2CI + σ1LI)C − (µ4 + ρ)CI)

+ a4 (δεNLI + ρ(1− φ)MCI − µvVR5 − αωVR5L)

+ a5 (ρφMCI + δ(1− ε)NLI − µvVX4 − αωVX4L) .

Collecting the linear terms of LT , LI , CI , VR5, VX4 we obtain the following set of equations and

solve for a1, a2, a3, a4 by setting the coefficients of LT , LI , CI , VR5, VX4 to zero as
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− a1(µ + γ) + a2γ = 0,

a1β1ωη1 − a2(µ + δ) + a3θβ2σ1 + a4δεN + a5δ(1− ε)N = 0,

a1β1ωη2 + a3θβ2σ2 − a3(µ4 + ρ) + a4ρ(1− φ)M + a5ρφM = 0,

a1β1ω + a3θβ2σ2 − a4µv − a4αωVR5L = 0,

a1β1ωη3 + a3θβ2 − a5µv − a5αωVX4L = 0.

This yields

a4 =
a1β1ω + a3θβ2σ3

µv + αωL
, a5 =

a1β1ωη3 + a3θβ2

µv + αωL
,

a3 =
a1β1ωη2 + a3θβ2σ2 + a4ρ(1− φ)M + a5ρφM

(µ4 + ρ)
,

a2 =
a1β1ωη2 + a3θβ2σ1 + a4δεN + a5δ(1− ε)N

(µ + δ)
,

a1 =
a2γ

(µ + γ)
.

Substituting the expressions a1, a2, a3, a4, a5 in the equation of H0 and simplifying, we obtain

Ḣ0 =

(
1− L∗

L

)
(π − β1ω(VR5 + η3VX4 + η2CI + η1LI)L− µL)

+

(
1− C∗

C

)
(π4 − β2(VX4 + σ3VR5 + σ2CI + σ1LI)C − µ4C)

= −µ

L
(L− L∗)2 − µ4

C
(C − C∗)2 < 0

Ḣ = 0 when L = L∗ and C = C∗ and all the infectious classes are zero at this point. This

means that the DFE is the only equilibrium point E0 that exists at that particular singleton

and according to LaSalles invariant principle and the properties of the constructed Lyapunov

function, the DFE is globally asymptotically stable.
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Stability Analysis of the Endemic Equilibrium E1

We shall prove that the endemic equilibrium point E1 is globally stable by means of Lyapunov

functions.

Theorem 3.1.4. The endemic equilibrium, E1 is globally asymptotically stable in the positive

region Ω if R0 > 1.

Proof. Using the same method as in Theorem 3.1.3, we define H1 : {(C, CI , VR5, VX4) ∈ Ω :

C > 0, CI > 0, VR5 > 0, VX4 > 0} −→ R by

H1 =
(
C − C∗ − C∗log C

C∗
)

+
(
CI − C∗

I − C∗
I log

CI

C∗I

)
b2

+
(
VR5 − V ∗

R5 − V ∗
R5log

VR5

V ∗R5

)
b3 +

(
VX4 − V ∗

X4 − V ∗
X4log

VX4

V ∗X4

)
b4,

where

b2 =
b3ρ(1− φ)M + b4ρφM

((µ + ρ)− β2θσ2)
, b3 =

b2β2θσ3

µv + αωL
, b4 =

b2β2θ

µv + αωL
,

and

Ḣ1 = −µ4

C
(C − C∗)2 +

b2

CI

(CI − C∗
I ) +

b3

VR5

(VR5 − V ∗
R5) +

b4

VX4

(VX4 − V ∗
X4) ≤ 0

If CI ≤ C∗
I , VR5 ≤ V ∗

R5, VX4 ≤ V ∗
X4.

Hence global stability of the endemic equilibrium point, E1 is proved.

Stability Analysis of the Endemic Equilibrium E2

Theorem 3.1.5. The endemic equilibrium, E2 is globally asymptotically stable in the positive

region Ω if R0 > 1

Proof. Similarly as in proof of Theorem 3.1.3, we define H2 : {(L,LT , LI , VR5, VX4) ∈ Ω : L >

0, LI > 0, LT > 0, VR5 > 0, VX4 > 0} −→ R by

H2 =
(
L− L∗ − L∗log L

L∗
)

+
(
LT − L∗T − L∗T logLT

L∗T

)
d2

50



+
(
LI − L∗I − L∗I log

LI

L∗I

)
d3 +

(
VR5 − V ∗

R5 − V ∗
R5log

VR5

V ∗R5

)
d4 +

(
VX4 − V ∗

X4 − V ∗
X4log

VX4

V ∗X4

)
d5

where

d2 =
d3γ

(µ + γ)
, d3 =

d2β1ωη1 + d4δεN + d5δ(1− ε)N

µ + δ
,

d4 =
d2β1ω

µv + αωL
, d5 =

d2β1ωη3

µv + αωL
,

so that

Ḣ2 = −µ

L
(L− L∗)2 +

d2

LT

(LT − L∗T ) +
d3

LI

(LI − L∗I)

+
d4

VR5

(VR5 − V ∗
R5) +

d5

VX4

(VX4 − V ∗
X4) ≤ 0

If L ≤ L∗, LT ≤ L∗T , LI ≤ L∗I , VR5 ≤ V ∗
R5, VX4 ≤ V ∗

X4.

Thus, global stability of the endemic equilibrium point, E2.

Stability Analysis of the EE, E3

We shall prove the global Stability of endemic equilibrium point E3.

Theorem 3.1.6. If R0 > 1 then the unique endemic equilibrium E∗
3 of the system of differential

equations (3.1) -(3.7) is globally asymptotically stable in the feasible region Ω.

Proof. Define H3 : {(L,LT , LI , C, CI , VR5, VX4) ∈ Ω : L > 0, LT > 0, LI > 0, C > 0, CI >

0, VR5 > 0, VX4 > 0} −→ R by

V =
[
L− L∗ − L∗ ln

(
L
L∗

)]
+ c2

[
LT − L∗T − L∗T ln

(
LT

L∗T

)]
+ c3

[
LI − L∗I − L∗I ln

(
LI

L∗I

)]

+
[
C − C∗ − C∗ ln

(
C
C∗

)]
+ c5

[
CI − C∗

I − C∗
I ln

(
CI

C∗I

)]
+ c6

[
VR5 − V ∗

R5 − V ∗
R5 ln

(
VR5

V ∗R5

)]

+ c7

[
VX4 − V ∗

X4 − V ∗
X4 ln

(
VX4

V ∗X4

)]
,
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with

c2 =
γc3

µ + γ
,

c3 =
c2β1ωη1 + c5β2θσ2 + c6δεN + c7δ(1− ε)N

(µ + δ)
,

c5 =
c2β1ωη2 + c6ρ(1− φ)M + c7ρφM

((µ4 + ρ)− β2θσ2)
,

c6 =
c2β1ω + c5β2θσ3

µv + αωL
c7 =

c2β1ωη3 + c5β2θ

µv + αωL
.

so that

Ḣ3 = −µ

L
(L− L∗)2 +

c2

LT

(LT − L∗T ) +
c3

LI

(LI − L∗I)−
µ4

C
(C − C∗)2

+
c5

CI

(CI − C∗
I ) +

c6

VR5

(VR5 − V ∗
R5) +

c7

VX4

(VX4 − V ∗
X4) ≤ 0

Ḣ3 < 0 If LT ≤ L∗T , LI ≤ L∗I , CI ≤ C∗
I , VR5 ≤ V ∗

R5, VX4 ≤ V ∗
X4, L ≤ L∗, C ≤ C∗.

Therefore, global stability of the endemic equilibrium point E3 is ensured.

Remark 3.1.9. Our model revealed four scenarios,

1. The disease free case where they are no infected Langerhans cells and no infected CD4+

T-cells in the body.

2. An endemic case where they are infected Langerhans cells and no infected CD4+ T-cells.

3. An endemic case where they are infected CD4+ T-cells cells and no infected Langerhans

cells.

4. An endemic case where they are infected Langerhans cells and infected CD4+ T-cells.
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3.2 THE EPIDEMIOLOGICAL DYNAMICS

3.2.1 Introduction

This section presents a basic compartmental SIA population model that captures the interac-

tions between sexually active individuals. We review one of the basic models developed by May

and Anderson [16] as a basis for discussing how mathematical models are developed and used

to represent the dynamics of HIV. We formulate a model, prove its positivity and bounded-

ness, calculate the reproduction number (Rp
0) and determine the equilibrium points and their

stability. We aim to investigate the population dynamics of HIV/AIDS that is mostly spread

through sexual contacts targeting the risk group 15− 49 years of age.

3.2.2 Model Formulation

The SIA model involves the following variables, Susceptible individuals (S), Infected individuals

(I) and AIDS individual (A). We consider a sexually active population of size Np divided into

susceptible individuals, infected individuals and AIDS individuals. Susceptible individuals are

members of the population who are at risk of becoming infected. Infected Individuals are the

people who have been infected, have the HIV virus and can infect others. At this stage, the

viral load begins to rise and the CD 4 count begins to decline in the body of such individuals.

The AIDS individuals are the ones that their HIV status has developed to AIDS and this is

the advanced stage of HIV infection. This is the stage that occurs when the immune system

cannot fight against infections and one becomes vulnerable to infections and infection related

cancers called opportunistic infections. At this stage, the CD 4 count is less than 200 [13].

We assume the force of infection, λ0, which is the rate at which susceptible individuals become

infected by infected individuals and AIDS individuals so that their number decreases at a rate

λ0S while the number of infected increases at the same rate. Individuals are recruited due to

sexual activity at a rate Λ0 as a source of susceptible individuals. The natural death rate is

denoted by d0 in all the populations and the disease induced death is denoted by δ0. We assume
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that AIDS individuals die naturally or from the disease. γ0 is the progression rate of infected

individuals to the AIDS class, It can take many years for people with the virus to develop

AIDS. η0 is the contact rate of AIDS individuals and susceptible individuals where η0 > 1. The

model diagram for the population dynamics is given in Figure 3.2.

γ
0
 I

d
0
 S

SΛ
0

λ
0
 S δ

0
 AI I

d
0
 A

d
0
 I

A

Figure 3.2: Model diagram for the Population Dynamics

The model equations that describe the assumptions are given as a system of non linear ordinary

differential equations below:

dS

dt
= Λ0 − λ0S − d0S, (3.12)

dI

dt
= λ0S − (d0 + γ0)I, (3.13)

dA

dt
= γ0I − (d0 + δ0)A, (3.14)

where

λ0 =
β0(I + η0A)

Np
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and

Np = S + I + A.

3.2.3 Positivity and Boundedness of Solutions

Theorem 3.2.1. Let S(0) > 0, I(0) ≥ 0, A(0) ≥ 0. The solutions of S(t), I(t), A(t) are

positively invariant for all t ≥ 0 in the region Ω = {(S, I, A) ∈ R3
+|0 ≤ S, I, A ≤ Λ0

d0
}

for t ≥ 0 equation (3.12) becomes

dS

dt
+ (λ0 + d0)S = Λ0,

whose solution is

S(t) = S(0)e(−(d0t+
R t
0 λ0(s)ds)) + e(−(d0t+

R t
0 λ0(s)ds))

[∫ t

0

Λ0e
(ds+

R s
0 λ0(r)dr)ds

]
> 0.

From equation (3.13) and (3.14), we obtain;

dI

dt
≥ −(d0 + γ0)I and

dA

dt
≥ −(d0 + δ0)A,

which becomes

I(t) ≥ I(0)e−(d0+γ0)t ≥ 0 and A(t) ≥ A(0) ≥ e−(d0+δ0)t ≥ 0.

Therefore, all state variables are non-negative. To prove boundedness of solutions, we consider

the total number of HIV/AIDS population of the people as S + I + A = Nptot by adding the

right hand sides of equations (3.12) to (3.14) such that;

dNptot

dt
= Λ0 − d0N − δ0A ≤ Λ0 − d0N. (3.15)

Solving (3.15) we have

Np ≤
(

Np(0)− Λ0

d0

)
ed0t +

Λ0

d0

.
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Taking the limit supremum of Np as t −→∞

lim
t→∞

supNp ≤ Λ0

d0

= S0

This means that

S(t) ≤ S0, I(t) ≤ S0, A(t) ≤ S0.

Since 0 ≤ S ≤ S0, 0 ≤ I ≤ S0, 0 ≤ A ≤ S0, we have S, I, A ≤ S0. Thus all state variables

are bounded above by Λ0

d0
. Since all state variables are positive and bounded in R3

+, then the

region Ω is positively invariant.

3.2.4 The Reproduction Number (Rp
0)

In this model, Rp
0 is defined as the expected number of second generation infections caused by

the infected individuals and AIDS individuals in a totally susceptible population. Using the

next generation method [1] , the reproduction number for the model is

Rp
0 =

β0(d0 + δ0 + γ0η0)

(d0 + γ0)(d0 + δ0)

3.2.5 Disease Free Equilibrium Point

The disease free equilibrium point occurs when there is no infection in the body of susceptibles

and is obtained by setting the infectious classes I∗ = A∗ = 0 and is given by

E0 = (S0, 0, 0), S0 =
Λ0

d0
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3.2.6 Local Stability of the DFE

The Jacobian matrix of the system (3.12) to (3.14) evaluated at the DFE is given by;

JE0 =




−d0 −β0 −β0η0

0 β0 − (d0 + γ0) β0η0

0 γ0 −(d0 + δ0)


 .

One of the eigenvalues of the Jacobian matrix JE0 is λ1 = −d0 < 0. The other two are solutions

of the characteristic equation

λ2 + a1λ + a0 = 0

where a1 = 2d0 + δ0 + γ0 − β0 and a2 = (1−Rp
0)

The solutions of the characteristic equation are

λ2,3 =
−a1 ±

√
a2

1 − 4a0

2
.

Therefore all eigenvalues have negative real parts when a0 > 0 and that is when Rp
0 < 1.

The disease free equilibrium point E0 of the system of equations (3.12) to (3.14) is locally stable

when Rp
0 < 1

3.2.7 Endemic Equilibrium Point

To determine the endemic equilibrium point of the system, we solve the system of equations

S∗, I∗, A∗ by setting the RHS of (3.12) to (3.14) to zero to obtain

E∗
1 =

(
Λ0(d0 + γ0 + δ0)(R

p
0 − 1)

Ψ
,
Λ0(d0 + δ0)(R

p
0 − 1)

Ψ
,
γΛ0(R

p
0 − 1)

Ψ

)

where Ψ = d0(d0 + γ0 + δ0)R
p
0 + δ0γ0(R

p
0 − 1)

Therefore, the solutions of S∗,I∗ and A∗ are positive when Rp
0 > 1.

Theorem 3.2.2. The endemic equilibrium point E∗
1 of the system (3.12) to (3.14) exists only

when Rp
0 > 1
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3.2.8 Local Stability of the Endemic Equilibrium Point

Theorem 3.2.3. The Endemic Equilibrium Point of the system (3.12) to (3.14) is locally

asymptotically stable when Rp
0 > 1.

Proof. Let J(E∗
1) be the Jacobian matrix of the system of equations (3.12) to (3.14) evaluated

at endemic equilibrium point

J(E∗
1) =




− (γ0+d0)I∗(Rp
0−1)

S∗Rp
0

− d0
(γ0+d0)I∗

N∗ − β0

Rp
0

(γ0+d0)I∗
N∗ − β0η0

Rp
0

(γ0+d0)I∗(Rp
0−1)

S∗Rp
0

− (γ0+d0)I∗
N∗ + β0

Rp
0
− (γ0 + d0) − (γ0+d0)I∗

N∗ + β0η0

Rp
0

0 γ0 −(d0 + δ0)


 .

The characteristic equation of the Jacobian matrix is given by

λ3 + a2λ
2 + a1λ + a0 = 0

where

a2 = A2 +
(γ0 + d0)(d0 + δ0)(R

p
0 − 1)

d0 + γ0 + δ0

a1 = A1 +
(γ0 + d0)(d0 + δ0)(2d0 + δ0 + γ0)(R

p
0 − 1)

d0 + γ0 + δ0

a0 =
(γ0 + d0)

2(d0 + δ)2(Rp
0 − 1)2

Rp
0(γ0 + d0 + δ0)

+
d0(γ0 + d0)(d0 + δ)(Rp

0 − 1)

Rp
0

and;

A1 = d0(d0 + δ) +
β0d0η0γ0

(d0 + δ)Rp
0

A2 = 2d0 + δ0 +
β0η0γ0

(d0 + δ0)R
p
0

Using the Routh-Hurwitz criterion, to determine conditions for Re(λ) < 0 we require;

a0 > 0, a2 > 0 and a0a1 − a2 > 0.

Clearly, a0 > 0, a2 > 0 if Rp
0 > 1, and

a0a1 − a2 = A1A2 +
A1(d0 + γ0)(d0 + δ0)(R

p
0 − 1)

(d0 + γ0 + δ0)
+ A3 + A4 > 0
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and;

A3 = d0 + (d0 + γ0 + δ0)(R
p
0 − 1))

(γ0 + d0)
2(d0 + δ0)

2(Rp
0 − 1)2

(d0 + γ0 + δ0)2Rp
0

A4 = A2d0R
p
0 + (d0 + γ0 + δ0)

(
d0(R

p
0 − 1) + (d0 + δ0)R

p
0 +

β0η0γ0

d0 + δ0

)
(γ0 + d0)(δ0 + d0)(R

p
0 − 1)

(d0 + γ0 + δ0)R
p
0

Therefore a0a1 − a2 > 0 if Rp
0 > 1.

Since all conditions for the Routh-Hurwitz are satisfied, therefore all eigenvalues are nega-

tive or have negative real parts and the endemic equilibrium point is locally asymptotically

stable when Rp
0 > 1. This result suggests that the virus will remain in the population if the

reproduction number is greater than one and all the infected individuals will produce more

than one new infected individual.

Summary

In section 3.1, we formulated and analyzed a within host dynamics mathematical model that

captured the interactions between Langerhans Cells, CD4+ T-cells, R5 virus and X4 virus in

the early stages of HIV infection. We proved that the model had a positive region and that

all solutions were positive and bounded in that region. The basic reproduction number was

calculated and we noticed that the model revealed four sub local basic reproduction numbers

(i) from the Langerhans cells due to the infection emanating from infected Langerhans cells

and the free virus. (ii) From the CD4+ T-cells due to infection from infected CD4+ T-cells and

the free virus. (iii) From the Langerhans cells due to the infection coming from the infected

CD4+ T-cells and the free virus produced from the infected CD4+ T-cells. (iv) And from the

CD4+ T-cells due to infection caused by infected Langerhans cells and the free virus produced

by the infected Langerhans cells. Equilibrium points which help us tell the behavior of the

solutions were calculated and we found out that the model had four equilibrium points, one

was the disease free equilibrium point E0 and three were endemic equilibrium points. The first

endemic equilibrium point E1 represented a case where a person had only infected CD4+ T-cells
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in the body. The second endemic equilibrium point E2 showed a case where a person had only

infected Langerhans cells in the body. The last endemic equilibrium point E3 represented a

person that had both infected CD4+ T-cells and Langerhans cells in the body. The existence

of E0, E1, E2 depended on the value of the basic reproduction number while the existence of

E3 was dependent on a fixed point using the fixed point theorem. Global stability analysis

using Lyapunov functions was proved and the model showed that all the endemic equilibrium

points were globally asymptotically stable. The importance of global stability is that it helps

us to link the immunological dynamics to the epidemiological dynamics in a way that the fast

immunological dynamics are already at equilibrium when linking them to the slow epidemio-

logical dynamics.

In section 3.2, we reviewed a basic compartmental SIA HIV/AIDS model that captured the dy-

namics of a basic population model. We proved that the region Ω was biologically feasible. The

basic reproduction number that explains conditions under which the infection is cleared or per-

sists in a population was calculated and we observed that when Rp
0 < 1 meant that the virus will

reduce in the population and when Rp
0 > 1 showed that the virus will persist in the population.

The model showed that it had two equilibrium points, the disease free and the endemic equi-

librium points. Both equilibrium points were proved to be locally stable. We used the Routh

Hurwitz criterion to prove that the endemic equilibrium point was locally asymptotically stable.

Having analyzed the within host and without host dynamics of HIV infection in the early stages,

we introduce the linked models. We shall use direct linking method which is more appropriate

for models involving HIV transmission.
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Chapter 4

LINKING WITHIN HOST

DYNAMICS TO POPULATION

DYNAMICS

4.1 Introduction

We present in this chapter a model linking the within host dynamics and the population dy-

namics of HIV/AIDS infection. We make use of a direct linking of the epidemiological and

immunological dynamics with the assumption that hosts acquire infection by direct sexual con-

tact with infected individuals. Thus, if the number of contacts with the infected individuals

are high, then the spread of infection in the population is also high. We also make use of the

global stability of the endemic equilibrium points of the within host dynamics since by introduc-

ing the linked dynamics, the within host dynamics disease free equilibrium point ceases to exist.

We use linear functions as linking functions because in the early infection stages of HIV, the

viral load grows proportionally to the number of infected cells available but we acknowledge

that for long term dynamics, linking functions should be saturation functions since the viral

load is relatively constant in the chronic phase of HIV. We seek to investigate how the within-
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host infection can affect the population level of infection and how the infection in the population

can affect the within host level of infection.

4.2 Linking Functions

In this paper, we used linear functions because we were modeling the early stages of HIV

infection. We reckon that one can use any type of functions convenient to what is being

modeled. Examples of linking functions can be found in the studies in [21, 22, 23, 25].

4.2.1 Properties of Linking Functions from within host dynamics to

population dynamics

The linking functions used in this study satisfy the following conditions and the explanation

thereof is given in remark 4.2.2.

1. β3(0, 0) = 0 , β3(VX4, VR5) > 0, β3(0, VR5) > 0, β3(VX4, 0) > 0.

2. β′3(VX4, VR5) > 0, β′3(0, VR5) > 0, β′3(VX4, 0) > 0.

3. β′′3 (VX4, VR5) ≤ 0, β′′3 (0, VR5) ≤ 0, β′′3 (VX4, 0) ≤ 0.

Remark 4.2.2.

1. β3(0, 0) = 0. shows that when there are no viruses in the body then we cannot have

infected individuals, thus no viral load and no infection in both the within host and

no infection is transmitted to the population. β3(VX4, VR5) > 0 shows that the rate of

transmission of HIV in the population is an increasing function of both the VX4 virus

and the VR5 virus from within host dynamics. The infection comes from both viruses.

β3(0, VR5) > 0 shows that if an individual transmits only VR5 virus, the rates of this

transmission is an increasing function of VR5 and the infection progresses in the population

because of VR5 virus transmission. β3(VX4, 0) > 0 shows that if an individual transmits
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only VX4 virus, the rates of this transmission is an increasing function of VX4 and the

infection progresses in the population because of VX4 virus transmission.

2. β′3(VX4, VR5) > 0, shows that the rate of HIV transmission to the population is an increas-

ing function of both the VX4 virus and the VR5 virus. β′3(0, VR5) > 0 and β′3(VX4, 0) > 0

shows the increasing functions for the rate of HIV transmission of the R5 virus and X4

virus respectively.

3. β′′3 (VX4, VR5) ≤ 0, β′′3 (0, VR5) ≤ 0, β′′3 (VX4, 0) ≤ 0 shows an increasing rate of transmission

with a concave down function, thus infection of the VX4 virus and the VR5 virus increases

to a global maximum point and cannot go beyond the bounded region.

4.2.3 Properties of Linking Functions from the population dynamics

to the within host dynamics

Linking population dynamics affects the viral load where we assume that the rate of shedding

of the virus is proportional to the number of infected individuals sexually active in the popu-

lation. The functions we use are fpi(I, A) = f(I +η0A) where f is a constant of proportionality.

In the case of Langerhans cells dominated dynamics, f = ζlp and f = (1 − ζl)p. In the case

of the CD4+T-cells dominated dynamics, f = ζcp and f = (1 − ζc)p. In the case of the

combined infection for the Langerhans cells and the CD4+T-cells dynamics, f = 1− (ζc + ζl)p

and f = (ζc + ζl)p. The absence of the VR5 virus transmission to the population shows that

the contact rate by the infected individuals is ζl = 0 in the Langerhans cells and ζc = 1 in the

CD4+T-cells. For both the Langerhans cells and the CD4+T-cells, the contact rate by infected

individuals is ζl + ζc = 1 where 0 ≤ ζc + ζl ≤ 1. On the other hand, the absence of the VX4

virus in the population entails that the contact rate made by the infected individuals is ζl = 1

in the Langerhans cells and ζc = 0 in the CD4+T-cells. For both the Langerhans cells and the

CD4+T-cells, ζl + ζc = 0 where 0 ≤ −(ζc + ζl) ≤ 0.
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4.2.4 Implementing Linking Functions in the Model

From the linking functions the within host dynamics to the population dynamics will affect the

force of infection. We explain all the scenarios of linking these dynamics.

Langerhans Cells and Population Dynamics

We assume that the rate of infection of each individual at population level depends linearly

on the density of both VX4 and VR5 viruses. Thus β is transformed to be a linear function of

VX4 and VR5 yielding β(VX4+VR5)
Vmax

, ηoi > 1, ηoi is the measure with which the probability of a

successful infection of a susceptible individual by an AIDS individual is reduced due to less

abundance of AIDS individuals compared to infected individuals. We shall denote β3 = β
Vmax

,

the carrying capacity of the virus. Therefore, the linking function is β3(VX4 +VR5). Thus if the

individual has virus predominantly from Langerhans cell dynamics, then the force of infection

at the population level is given by λ0l = β3(VX4+ηoiVR5)(I+η0A)
N0

. For the Langerhans cells, the

population can be linked to the within host dynamics by ζlpl(I + η0A), where ζl is the rate

at which contact is made and pl is the probability of successful introduction of the virus into

the host by the infected individual with the R5 virus per coital acts. For the X4 virus, the

population can be linked by the remaining proportion to yield (1− ζl)pl(I + η0A).

CD 4+ T cells to Population Dynamics

To link the within host CD 4+ T cells dynamics to the population dynamics, we modify the

force of infection, λ0c to λoi. = β3(ηoi.VX4+VR5)(I+η0A)
N0

. The force of infection shows that an

infected individual can either transmit VX4 or VR5 virus with VX4 being dominant since the

CD4+T cells are mostly infected by the X4 virus. We assume that every contact will result in

shedding of the viruses back into the individual at a rate proportional to the available infectious

population and AIDS population with ζc as a constant of proportionality and pc the probability

of successful shedding per coital acts. In the population, the virus can be linked to the within

host by ζcpc(I +η0A), which captures the introduction of the virus into the host by the infected

individual with the X4 virus and (1 − ζc)pc(I + η0A), is the introduction of the virus into the
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host by the infected individual with R5 virus.

Linking Within Host Cells to Population Dynamics

The linking function for the within host dynamics of Langerhans cells and the CD 4+ T cells

to the population is λ0a = β3(ηbVX4+(1−ηb)VR5)(I+η0A)
N0

, ηb is the measure of the probability of

successful infection of the susceptible population by the infected individuals. In this case,an

infected person can either transmit VX4 or VR5 virus into the body. The amount depends on

the cells that the virus is targeting at that moment that becomes dominant to infection than

the other. The linking functions from the population to both Langerhans cells and CD 4+ T

cells are (1 − (ζc + ζl))pl(I + η0A) for the VR5 and (ζc + ζl)pc(I + η0A) for the VX4 so that

0 ≤ ζc + ζl ≤ 1.

4.3 Model Formulation

We shall present the linked model informed by the three endemic equilibrium states E1, E2, E3

from the within host dynamics namely: the Langerhans cells dominating, CD4+T-cells domi-

nating and combined Langerhans cells and CD4+T-cells at equilibrium. These will lead to the

cases of the effects thereof. We will determine the impact of these cases in the forthcoming

subsections.
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The full model for the linking Langerhans cells, CD4+T-cells and the population is

dL

dt
= π − (ωλ12 + µ)L,

dLT

dt
= ωλ12L− (µ + γ)LT ,

dLI

dt
= γLT − (µ + δ)LI ,

dC

dt
= π4 − (λ21 + µ4)C,

dCI

dt
= θλ21C − (µ4 + ρ)CI ,

dVR5

dt
= (1− (ζc + ζl))pl(I + η0A) + ρ(1− φ)MCI + δεNLI − (µv + ωαL)VR5,

dVX4

dt
= (ζc + ζl)pc(I + η0A) + ρφMCI + δ(1− ε)NLI − (µv + ωαL)VX4,

dS

dt
= Λ0a − λ0S − d0S,

dI

dt
= λ0aS − (d0 + γ0)I,

dA

dt
= γ0I − (d0 + δ0)A,

where

λ12 = β1(VR5 + η3VX4 + η2CI + η1LI),

λ21 = β2(VX4 + σ3VX4 + σ2CI + σ1LI),

λ0a =
β3(ηbVR5 + (1− ηb)VX4)(I + ηioA)

N0
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4.4 Submodels

Case 5. Langerhans Cells and Population dynamics

dL

dt
= π − (ωλ11 + µ)L,

dLT

dt
= ωλ11L− (µ + γ)LT ,

dLI

dt
= γLT − (µ + δ)LI ,

dVR5

dt
= ζlpl(I + η0A) + δεNLI − (µv + ωαL)VR5,

dVX4

dt
= (1− ζl)pl(I + η0A) + δ(1− ε)NLI − (µv + ωαL)VX4,

dS

dt
= Λ0l − λ0lS − d0S,

dI

dt
= λ0S − (d0 + γ0)I,

dA

dt
= γ0I − (d0 + δ0)A,

where

λ11 = β1(VR5 + η3VX4 + η1LI),

λ0l =
β3(VX4 + ηioVR5)(I + ηioA)

N0

.

Case 6. CD4+T-cells and Population dynamics

dC

dt
= π4 − (λ22 + µ4)C,

dCI

dt
= θλ22C − (µ4 + ρ)CI ,

dVR5

dt
= (1− ζcpc)(I + η0A) + ρ(1− φ)MCI − (µv + ωαL)VR5,

dVX4

dt
= ζcpc(I + η0A) + ρφMCI − (µv + ωαL)VX4,

dS

dt
= Λ0 − λ0cS − d0S,

dI

dt
= λ0cS − (d0 + γ0)I,

dA

dt
= γ0I − (d0 + δ0)A,
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where

λ22 = β2(VX4 + σ3VR5 + σ2CI),

λ0c =
β3(VR5 + ηioVX4)(I + ηioA)

N0

4.5 Model Analysis

A common approach to analyzing linked systems is to take advantage of the different time scales

of the processes being modeled. An important biological feature of the coupled system is that

the within-host dynamics occurs on a faster time scale while the population dynamics occurs

on a slow time scale. For analysis of the coupled model, we follow the same approach as in [22]

and assume that the within host dynamics are fast compared to the dynamics of the population

which allows us to analyze the within host dynamics while treating the population dynamics

as constants. Thus our analysis will entail computing the positive endemic equilibrium points

of the within host system combining Langerhans cells and CD4+T-cells dynamics with the

linking functions being treated as constants, and substituting the equilibrium points into the

population dynamics. To balance the time scales, we introduce a slow time variable τb = εbt

where 0 < εb ¿ 1. We consider the parameters associated with the dynamics at the population

level to be small based on the assumption that the population dynamics occur on a slower time

scale than the within host dynamics.

We denote ′.′ = d
dt

and ′′′ = d
dτb

and let Λ0 = εbΛ̃0, βi = εbβ̃i, d0 = εbd̃0, γ0 = εbγ̃0 N0 = εbÑ0

δ = εbδ̃.

4.5.1 The balanced time scales dynamics

Case 7. The subsystem for the within host dynamics of the Langerhans cells and CD4+T-cells

of the full model which corresponds to the Endemic equilibrium point E3 in the within host

dynamics is a fast system with equations
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Table 4.1: Balanced time scales for within host dynamics and population dynamics

Equations with respect to fast dynamics Equations with respect to slower time τb

L̇ = π − (ωλ12 + µ)L εbL
′ = π − (ωλ12 + µ)L

L̇T = λ12L− (µ + γ)LT εbL
′
T = λ12L− (µ + γ)LT

L̇I = γLT − (µ + δ)LI εbL
′
I = γLT − (µ + δ)LI

Ċ = π4 − (λ21 + µ4)C εbC
′ = π4 − (λ21 + µ4)C

ĊI = θλ21C − (µ4 + ρ)CI εbC
′
I = θλ21C − (µ4 + ρ)CI

˙VR5 = εb(1−(ζc+ζl))p(I+η0A)+ρ(1−φ)MCI +

δεNLI − (µv + ωαL)VR5

εbV
′
R5 = (1−(ζc+ζl))p(I+η0A)+ρ(1−φ)MCI +

δεNLI − (µv + ωαL)VR5

˙VX4 = εb(ζc + ζl)p(I + η0A) + ρφMCI + δ(1 −
ε)NLI − (µv + ωαL)VX4

εbV
′
X4 = (ζc + ζl)p(I + η0A) + ρφMCI + δ(1 −

ε)NLI − (µv + ωαL)VX4

Ṡ = εb

(
Λ̃0 − λ̃0aS − d̃0S

)
S′ = Λ̃0 − λ̃0aS − d̃0S

İ = εb

(
λ̃0aS − (d̃0 + γ̃0)I

)
I ′ = λ̃0aS − (d̃0 + γ̃0)I

Ȧ = εb

(
γ̃0I − (d̃0 + δ̃0)A

)
A′ = γ̃0I − (d̃0 + δ̃0)A

Case 8. The subsystem for the within host dynamics Langerhans cells in case (5) which cor-

responds to the Endemic equilibrium point E2 in the within host dynamics can be considered

as a fast system with equations
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Table 4.2: Balanced time scales for within host Langerhans cells dynamics and population

dynamics

Equations with respect to fast dynamics Equations with respect to slower time τb

L̇ = π − (ωλ11 + µ)L εbL
′ = π − (ωλ11 + µ)L

L̇T = ωλ11L− (µ + γ)LT εbL
′
T = ωλ11L− (µ + γ)LT

L̇I = γLT − (µ + δ)LI εbL
′
I = γLT − (µ + δ)LI

˙VR5 = εbζlpl(I +η0A)+ δεNLI − (µv +ωαL)VR5 εbV
′
R5 = ζlpl(I +η0A)+ δεNLI − (µv +ωαL)VR5

˙VX4 = εb(1−ζl)pl(I+η0A)+δ(1−ε)NLI−(µv +

ωαL)VX4

εbV
′
X4 = (1−ζl)pl(I+η0A)+δ(1−ε)NLI−(µv +

ωαL)VX4

Ṡ = εb

(
Λ̃0 − λ̃0lS − d̃0S

)
S′ = Λ̃0 − λ̃0lS − d̃0S

İ = εb

(
λ̃0lS − (d̃0 + γ̃0)I

)
I ′ = λ̃0lS − (d̃0 + γ̃0)I

Ȧ = εb

(
γ̃0I − (d̃0 + δ̃0)A

)
A′ = γ̃0I − (d̃0 + δ̃0)A

Case 9. The subsystem for the within host dynamics of the CD4+T-cells in (6) which corre-

sponds to the endemic equilibrium point E1 in the within host dynamics can also be considered

as a fast system with equations

Table 4.3: Balanced time scales for within host CD4+T-cells dynamics and population dynamics

Equations with respect to fast dynamics Equations with respect to slower time τb

Ċ = π4 − (λ22 + µ4)C εbC
′ = π4 − (λ22 + µ4)C

ĊI = θλ22C − (µ4 + ρ)CI εbC
′
I = θλ22C − (µ4 + ρ)CI

˙VR5 = εb(1 − ζcpc)(I + η0A) + ρ(1 − φ)MCI −
(µv + ωαL)VR5

εbV
′
R5 = (1 − ζcpc)(I + η0A) + ρ(1 − φ)MCI −

(µv + ωαL)VR5

˙VX4 = εbζcpc(I+η0A)+ρφMCI−(µv+ωαL)VX4 εbV
′
X4 = ζcpc(I+η0A)+ρφMCI−(µv+ωαL)VX4

Ṡ = εb

(
Λ̃0 − λ̃0S − d̃0S

)
S′ = Λ̃0 − λ̃0cS − d̃0S

İ = εb

(
λ̃0cS − (d̃0 + γ̃0)I

)
I ′ = λ̃0cS − (d̃0 + γ̃0)I

Ȧ = εb

(
γ̃0I − (d̃0 + δ̃0)A

)
A′ = γ̃0I − (d̃0 + δ̃0)A

To analyze the fast system dynamics, we let εb = 0 and the population dynamics become Ṡ = 0,

İ = 0 and Ȧ = 0. Which implies that S, I and A are constants. We denote these constant
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populations as S = S0, I = I0 and A = A0. Therefore, our within host system from Table 4.1

will be

L̇ = π − (ωλ12 + µ)L

L̇T = ωλ12L− (µ + γ)LT

L̇I = γLT − (µ + δ)LI

Ċ = π4 − (λ21 + µ4)C

ĊI = θλ21C − (µ4 + ρ)CI

˙VR5 = (1− (ζc + ζl))p(I + η0A) + ρ(1− φ)MCI + δεNLI − (µv + ωαL)VR5

˙VX4 = (ζc + ζl)p(I + η0A) + ρφMCI + δ(1− ε)NLI − (µv + ωαL)VX4.

To analyze the population dynamics, we let εb = 0 and the within host dynamics parameters

become constants. Therefore, the equations for our system will be

S ′ = Λ̃0 − λ̃0aS − d̃0S

I ′ = λ̃0aS − (d̃0 + γ̃0)I

A′ = γ̃0I − (d̃0 + δ̃0)A

The same analysis can be done for the two sub-models of the Langerhans cells and the CD4+T-

cells in Table 4.2 and Table 4.3 respectively. We have analysed a scenario where εb = 0, on the

other hand, if εb > 0, the rules for singular perturbation theory may be applied.

Remark 4.5.2.

1. The reproduction number of the fast system of the within host Langerhans cells is

Rlf
0 =

β1ωL0γ

(µ + γ)(µ + δ)

[
η1 +

δεN

(ωαL0 + µv)
+

η3Nδ(1− ε)

(ωαL0 + µv)

]
.

We note that the coupled system with the external virus from infected individuals as new
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infections and without external virus from infected individuals as new infections has the

same reproduction number with the isolated Langerhans cells system. The system has

a no disease free and one endemic equilibrium point E1f = (L∗, L∗T , L∗I , V
∗
R5, V

∗
X4). Thus

setting the right hand side of the equations to zero and calculating in terms of the force

of infection λ11. Using a similar approach from chapter 3, we get

L∗ =
π

(ωλ∗11 + µ)

L∗T =
πλ∗11

(ωλ∗11 + µ)(µ + γ)
, L∗I =

γπλ∗11

(ωλ∗11 + µ)(µ + γ)(µ + δ)
,

V ∗
R5 =

ζlpl(I0 + η0A0) + δεNπγλ∗11

(µ + γ)(µ + δ) [µv(ωλ∗11 + µ) + ωαπ]

V ∗
X4 =

(1− ζl)pl(I0 + η0A0) + δ(1− ε)Nγπλ∗11

(µ + γ)(µ + δ) [µv(ωλ∗11 + µ) + ωαπ]

When we substitute the new expressions of L∗, L∗T , L∗I , V
∗
R5, V

∗
X4 into λ11, we get

λ∗211 =
−u1 +

√
u2

1 − 4u2u0

2u2

and

u2 =
[
ω2µv(µ + γ)(µ + δ)

]
,

u1 = (µ + γ)(µ + δ)
[
ωµv + ω2απ + ωµµv

] (
1−Rlf

0

)
+

(
ω2β1γπ

)
,

u0 = (µ + γ)(µ + δ)
[
µ2µv + µωαπ

] (
ω2β1η1γπ2α

) (
1−Rlf

0

)
.

Rlf∗
0 =

β1ωL0γ

(µ + γ)(µ + δ)

[
η1 +

(ζlpl(I0 + η0A0) + δεN)

ωαL0 + µv

+
η3((1− ζl)pl(I0 + η0A0) + Nδ(1− ε))

ωαL0 + µv

]
,

For existence of Elf , we require that Rlf∗
0 > 1. And we observe that Rlf∗

0 > Rl
0.
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2. The reproduction number of the fast system of the CD4+T-cells is

Rcf
0 =

β2θC0

(µ4 + ρ)

[
σ2 +

σ3ρ(1− φ)M

(ωαL + µv)
+

ρMφ

(ωαL + µv)

]
.

We notice that the linked system with the external virus from infected individuals as new

infections and without external virus from infected individuals as new infections has the

same reproduction number with the unlinked CD4+T-cells system.

Again, the system has a no disease free case and an endemic equilibrium point E1c =

(C∗, C∗
I , V

∗
R5, V

∗
X4). Using a similar approach from chapter 3, we set right hand side of the

equations to zero and calculate in terms of the force of infection λ22 and get

C∗ =
π4

(λ∗22 + µ4)
C∗

I =
θπ4λ

∗
22

(µ4 + λ∗22)(µ4 + ρ)
,

V ∗
R5 =

(1− ζc)pc(I0 + η0A0) + ρ(1− φ)Mθπ4λ
∗
22µ

(λ∗22 + µ4)(µ4 + ρ)(ωαπ + µv)

V ∗
X4 =

ζcpc(I0 + η0A0) + ρφMθπ4λ
∗
22µ

(λ∗22 + µ4)(µ4 + ρ)(ωαπ + µv)

The equilibrium point E1c exists when there are infected CD4+T-cells and substituting

the new expressions of C∗, C∗
I , V

∗
R5, V

∗
X4 in the force of infection λ22, we get

λ∗22 = β2 (V ∗
X4 + σ3V

∗
R5 + σ2C

∗
I ) ,

which reduces to

λ∗22 = µ4C
∗
0

[
Rcf

0 − 1
]
,

and
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Rcf
0 = β2θ

µ4+ρ

(
σ2 + σ3(1−ζc)pc(I0+η0A0)+Mρ(1−φ)µ

ωαπ+µvµ
+ ζcpc(I0+η0A0)+Mρφµ

ωαπ+µvµ

)
,

where Rcf
0 is the local reproduction number of the linked model of CD4+T-cells to the

population. For existence of Elc, we require Rcf
0 > 1. We also notice that Rcf∗

0 > Rc
0

3. The reproduction number of the fast system of both the Langerhans cells and CD4+T-

cells linked to the population is

Rb
0 =

1

2

[
(Rlf

0 + Rcf
0 ) +

√
(Rlf

0 −Rcf
0 )2 + 4cf

]

where

(a) Rlf
0 is the local reproduction number of the linked fast model of the Langerhans cells

(b) Rcf
0 is the local reproduction number of the linked fast model of the CD4+ T-cells

(c) c is the local reproduction number of linked Langerhans cells due to infection pri-

marily from infected CD4+ T-cells and the free virus produced from CD4+ T-cells.

(d) f is the local reproduction number of linked CD4+ T-cells due to infection by infected

Langerhans cells and the free virus produced by infected Langerhans cells.

Again, for the endemic equilibrium point Elfc = L∗, L∗T , L∗I , C
∗, C∗

I , V
∗
R5, V

∗
X4, we set the

right hand side of the equations to zero and calculate in terms of the forces of infection

λ12 = β1(VR5 + η3VX4 + η2CI + η1LI) and λ21 = β2(VX4 + σ3VR5 + σ2CI + σ1LI). Using

the fixed point theorem approach in chapter 3, we have a unique fixed point (λ∗12, λ
∗
21)

corresponding to the endemic equilibrium point Elfc
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4. The reproduction number of the slow system associated with the combined infection of

Langerhans cells and CD4+T-cells is

Rs
0 =

β0(d0 + δ0 + γ0η0)(ηbVX40 + (1− ηb)VR50)

(d0 + γ0)(d0 + δ0)

The reproduction number of the slow system associated with the infection of Langerhans

cells only is

Rsl
0 =

β0(d0 + δ0 + γ0η0)(VX40 + ηioVR50)

(d0 + γ0)(d0 + δ0)

The reproduction number of the slow system associated with the infection of CD4+T-cells

is

Rsc
0 =

β0(d0 + δ0 + γ0η0)(ηioVX40 + VR50)

(d0 + γ0)(d0 + δ0)

From the reproduction numbers, the within host dynamics are independent of the pop-

ulation dynamics while as the population dynamics is dependent on the VR5 viruses and

VX4 viruses from the within host. The endemic equilibrium point is

Es∗
p =

(
Λ0(d0 + γ0 + δ0)(R

s
0 − 1)

Ψ
,
Λ0(d0 + δ0)(R

s
0 − 1)

Ψ
,
γΛ(Rs

0 − 1)

Ψ

)

where Ψ = d0(d0 + γ0 + δ0)R
s
0 + δ0γ0(R

s
0 − 1) and Es∗

p of the system exists only when

Rs
0 > 1. Again here we observe that Rs

0 > Rp
0. Using the same analysis, the endemic

equilibrium point associated with infection from Langerhans cells only, Esl∗
p of the system

exists only when Rsl
0 > 1 and the endemic equilibrium point associated with infection

from CD4+ T-cells only Esc∗
p of the system exists only when Rsc

0 > 1.

4.6 Summary

This chapter analyzed how linking the within host dynamics affect the population dynamics and

viceversa. We linked Langerhans cells HIV dynamics to the population dynamics, CD4+ T-cells
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HIV dynamics to the population dynamics and both Langerhans cells and CD4+ T-cells HIV

dynamics to the population dynamics. We introduced linking functions that showed how the

within host dynamics affected the population dynamics and also how the population dynamics

affected the within host dynamics. The linked dynamics showed that if there is no virus in the

within host means that there is no virus transferred to the population level, and the presence

of viruses in the within host means the presence of viruses in the population dynamics. The

within host dynamics are considered to be fast systems while the population dynamics are slow

systems. We introduced separation of time scales and changed the time scales which allowed

the within host dynamics processes and the population dynamics processes to occur at the same

time scales. The basic reproduction numbers were calculated and we found out that for the

within host dynamics, the basic reproduction numbers were the same for the isolated models and

linked models. For the population model the basic reproduction number for the linked model

was greater than the one of the decoupled system, in the population dynamics, the value of the

basic reproduction number had additional parameters associated with the fast system. The fast

dynamics were already at equilibrium such that when introducing the linking dynamics, the

disease free equilibrium point ceased to exist and the linked within host systems were always

at the endemic equilibrium point. The equilibrium points of the fast system dynamics had

new parameters associated with the slow system dynamics , also the equilibrium points of the

slow system dynamics had other parameters associated with the fast system dynamics. In both

within host dynamics and population dynamics, the endemic equilibrium levels we increased

due to the effects of linking. The linking functions in our model express the fact that an increase

in sexual contact rate also increases the viral load of the individual.
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Chapter 5

Numerical Simulations

5.1 Introduction

This chapter presents numerical simulations to enhance the understanding of the predictions

of the analytical results. The data was obtained from published literature and some parameter

values were estimated, guided by biological principles used in model formulation, because some

are not known due to lack of data and difficulty to measure the values. Real data required to

test the model predictions is not easy to obtain due to the nature of the study that requires data

from human subjects therefore prediction are purely theoretical in nature. Numerical results

will help to draw important conclusions and to also give an understanding of linking the within

host dynamics to the without host dynamics. We illustrate the simulation results using graphs

plotted from MATLAB which shows the trends of the variables over a period of time.

5.2 Parameter Estimation for Within-host Dynamics

This section presents the parameter values for the within-host dynamics of the Langerhans

cells, CD4+ T-cells, R5 HIV and X4 HIV. The parameter values and units are explained in

detail in Tables 5.1.
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Table 5.1: Within Host Model Parameters for LC and CD4+ T-cells HIV dynamics

parameter Values Units References

π 1.5 cells/day−1 estimated

µ 0.002 day−1 [20]

β1 0.00001 day−1 [20]

η3 0 < η3 < η2 < η1 < 1 day−1 see text

η2 0 < η2 < η1 < 1 day−1 see text

η1 0 < η1 < 1 day−1 see text

ω 0 < ω < 1 day−1 see text

γ 0.035 day−1 assumed

δ 0.025 day−1 assumed

ε 0.5 < ε ≤ 1 virions/cell see text

M [200,1000] virions/cell [17]

π4 20 cells/day−1 [27].

µ4 [0.02,0.24] day−1 [15]

β2 0.000024 day−1 [17]

σ3 0 < σ3 < σ2 < σ1 < 1 day−1 see text

σ2 0 < σ2 < σ1 < 1 day−1 see text

σ1 0 < σ1 < 1 day−1 see text

θ 0 < θ < 1 day−1 see text

ρ 0.239 day−1 [17]

N 500 virion/cell [20]

φ 0.5 < φ ≤ 1 day−1 see text

α [2,9] day−1 [32]

µv 2.4 day−1 [33]

For the within host model, the initial conditions were assumed to be 1000cells/mm−3 healthy

Langerhans cells, 1000cells/mm−3 healthy CD 4+T cells , no latently infected Langerhans cells,

3cells/mm−3 of infected Langerhans cells and 2cells/mm−3 of infected CD 4+T cells. We also

assumed a population of 0.001mm−3 of the R5 virus and 0.001mm−3 of the X4 virus meaning

one virus of each strain was introduced in a population of 1000cells/mm−3 healthy Langerhans
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cells and healthy CD 4+T cells [17].

5.3 Parameter Estimation for Without-host Dynamics

We shall use parameter estimates guided by the data for South Africa and acknowledge that

the same analysis can be performed for any other country using the data available for that

country. We consider the population of sexually active individuals which will be from 15 − 49

years. We shall extract data for this age group and estimate the initial conditions and some pa-

rameters associated with this group. The South Africa Statistical release P0302 [14], estimates

the mid-year total population of 2015 as 54,960,000. The total number for HIV positive sexu-

ally active adults aged 15−49 years was estimated to be 16.6% of the sexually active population.

We shall estimate the total population N0 from the age groups 15 − 49 that is sexually ac-

tive. According to [14], the mid year population estimated by population age group, 15 − 20

was 5124373, 20 − 24 was 5302246, 25 − 29 was 5232254, 30 − 34 was 4307693, 35 − 39 was

3774921, 40 − 44 was 3204952 and 45 − 49 was 273858. Therefore, the total number of the

15−49 age group was 29,705,039=N0. The total number of people living with HIV in 2015 was

estimated at approximately 6.19 million. For adults aged 15− 49 years, an estimated 16.6% of

the population was HIV. Therefore I + A = 16.6
100

× 6.19 = 1, 027, 540. There is no separation

of Infected individuals and AIDS individuals from the data. For our model, I0=1, 027, 540 and

A0=0. The initial conditions were assumed to be 28, 677, 494 for the susceptible individuals

(S0) and was calculated with the assumption that S + I + A = N , therefore, S = N − (I + A),

S = 29, 705, 039− 1, 027, 540 and S = 28, 677, 494.

The life expectancy at birth was 60.6 years for males and 64.3 years for females. To esti-

mate the death rate, we shall assume that the life expectancy of the population is the average

of 60.6 and 64.3 which is 62.45. Thus death rate is estimated as the reciprocal of the average life

expectancy. Therefore d0=
1

62.45
=0.01601. The percentage of AIDS deaths in 2015 was 30.5%,

79



this gives the estimate of deaths due to AIDS as δ0=
30.5
100

=0.305. The median time from HIV

infection to death was 10.5 years for men and 11.5 years for women. Therefore the average

progression rate from HIV to death for both populations is 11 years. Thus, the progression

rate γ0 = 1
11

yields 0.0911. The transmission rate β0 is estimated between 0 and 1. To esti-

mate the recruitment rate, we note that at the disease free equilibrium point, S0 = Λ0

d0
, so that

S0 × d0 = Λ0. Since S0 = 28, 677, 494 and d0 = 0.1601, then Λ0 = 459, 126.6309.

Table 5.2 shows the parameters of the without host dynamics

Table 5.2: Without Host Model Parameters

Parameter Value Units References

Λ0 459,126.6309 pop year−1 [14]

d0 0.01601 year−1 [14]

δ0 0.305 year−1 [14]

γ0 0.0911 year−1 [14]

η0 η0 > 1 year−1 see text

β0 [0, 1] year−1 estimated

5.4 Parameter Estimation for Linking Functions

The linking functions parameters, meaning and their values are given in Table 5.3. We assume

the introduction of the R5 virus and X4 virus from the population to the within as 0 ≤ ζc+ζl ≤ 1

.
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Table 5.3: Linking Functions Parameters

parameter Meaning Value References

ζl successful introduction of R5

from the population to within

[0,1] estimated

ζc successful introduction of X4

to within from the population

[0,1] estimated

pl probability of successful infec-

tion of R5

[0,1] estimated

pc probability of successful infec-

tion of X4

[0,1] estimated

5.5 Simulations - The Ideal Scenario

5.5.1 Within Host Dynamics

We want to observe the impact of R5 HIV and X4 HIV infection on the Langerhans cells and

CD4+T-cells within the host during early HIV infection. In Figure 5.1, we observe that the

healthy Langerhans cells initially decrease possibly due to infection of R5 HIV and X4 HIV.

The decrease in the healthy Langerhans cells causes the increase of the latently infected Langer-

hans cells and later followed by the increase of the infected Langerhans cells. In Figure 5.2

R5 viruses increase to higher levels than the X4 viruses because during early HIV infection,

R5 viruses are the ones that prefer infecting the Langerhans cells. The decrease of the virus

due to death or degradation and other infectious classes causes a slight growth of the healthy

Langerhans cells at a later stage of the infection. The results suggest that a decrease of the

healthy Langerhans cells and a resultant increase in the infected Langerhans cells may lead

to the enhanced infection of healthy CD4+ T-cells. This is most likely to happen during the

antigen presentation process.
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Figure 5.1: HIV Langerhans cells population

dynamics
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Figure 5.2: Virus population for the Langerhans

cells

In Figure 5.3, we observe that CD4+ T-cells population will start decreasing possibly with

infection by R5 HIV and X4 HIV. As the number of the healthy CD4+ T-cells decreases,

the number of the infected CD4+ T-cells increases and this result is in agreement with the

literature to say the infection causes virus replication in the CD4+ T-cells and this leads to the

fast progression of HIV infection towards the development of AIDS as the CD4 count decreases

below 500, below this level one requires intervention. In Figure 5.4, we observe an increase in

the R5 virus and X4 virus, X4 virus being dominant as it is the one that prefers to infect the

CD4+ T-cells.
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Figure 5.3: HIV CD4+ T-Cells population dy-

namics
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Figure 5.4: Virus population for the CD4+ T-

cells population
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In Figures 5.5 and 5.6 we observe the dynamics of combined effects of Langerhans cells and

CD4+ T-cells with R5 and X4 HIV. In Figure 5.5, we observe that after possible infection by

any of the two virus strains, the healthy Langerhans cells start to decrease causing an increase

of the latent infected Langerhans cells and infected Langerhans cells which later affects the

CD4+ T-cells leading to their decrease and an increase of the infected CD4+ T-cells. Figure

5.6 shows the increase of the virus populations to high peaks before settling at equilibrium

levels. The increase of the virus populations is associated with the decrease of Langerhans cells

and decrease of CD4+ T-cells in Figure 5.5. The eventual decrease in the virus population is

associated with a corresponding increase of the healthy Langerhans cells population till they

reach their equilibrium values. The viral population initially grows in a switching dominant

manner but eventually settles at equilibrium, the X4 virus remained dominant over the R5

virus. Therefore, we note that, in the combined infection scenarios, X4 viruses dominate the

R5 viruses.
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Figure 5.5: Langerhans and CD4+ T-Cells pop-

ulation
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Figure 5.6: Virus population for Langerhans &

CD4+ T-Cells population

5.5.2 Population Dynamics

This section presents the dynamics of the SIA population model. In Figure 5.7 we observe

that the susceptible population begins to decrease at a lower equilibrium. The decrease in the

susceptible population leads to an increase in the infected population and after some time, an

increase in of the infected individuals leads to an increase of the population in the AIDS stage.
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The scenario is expected in a situation where there is no intervention.
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Figure 5.7: SIA population

5.6 Simulations- The Linking Scenario

5.6.1 Linking Population to in-host dynamics at equilibrium

Having observed the trends of the ideal situations of the within host dynamics and the popula-

tion dynamics separately, we also investigated the effects that linking the within host dynamics

at equilibrium has to the population dynamics.

Within host CD4+ T-cells dynamics to Population dynamics

In Figure 5.8, the within host CD4+ T-cells dynamics were linked to the population dynamics.

From the graphs, we observed a decrease in the susceptible populations and an increase of the

infectious populations. The linked susceptible graph was much lower than the unlinked one and

also the linked infectious and AIDS graphs were higher than the unlinked ones. The results

suggest that linking the CD4+ T-cells dynamics to Population dynamics leads to an increase in

infection dominantly by the X4 viruses because the CD4+ T-cells are associated with infection
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by the X4 virus.
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Figure 5.8: Population dynamics linked to

CD4+ T-Cells dynamics

Within host Langerhans Cells dynamics to population dynamics

In Figure 5.9, the trends are similar to the graph trends observed in Figure 5.8. However,

in Figure 5.9, the results suggest that linking Langerhans cells dynamics to the population

dynamics may lead to an increase in infection mostly by the R5 virus because Langerhans cells

are associated with infection dominantly from the R5 viruses.
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Figure 5.9: Population dynamics linked to

Langerhans

Within host Langerhans & CD4+ T-cells dynamics to population dynamics

In Figure 5.10, we observed the link between within host Langerhans cells and CD4+ T-Cells

dynamics to the population dynamics. The observation of the trends in graphs was similar

to that in Figure 5.9 and Figure 5.8 , were they was a decrease in susceptible population

and later an increase in the infectious populations. We notice that linking combined within

host Langerhans cells and CD4+ T-cells dynamics to the population dynamics leads to the

populations reaching their peaks within the earliest times compared to when the within host

cells (Langerhans cells and CD4+ T-cells) dynamics are linked to population separately. This

result may occur because the infected individual at this stage, is transmitting both the R5 and

X4 viruses.
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Figure 5.10: Population dynamics linked to

Langerhans cells and CD4+T-Cells

Graph for all scenarios

Figure 5.11 shows a summary for the linking of the within host Langerhans and CD4+ T-cells

dynamics to the population dynamics. The graphs reveals that the combined effects of the

Langerhans cells and CD4+ T-cells dynamics contributes more in increasing the infectious and

AIDS stage individuals, followed by the contribution effects of the infected CD4+ T-cells cell

dynamics and the least contribution comes from the the infected Langerhans cells dynamics.
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5.6.2 Linking Within Host Cell Dynamics and Population Dynamics

Evolving with Time

Within host Langerhans Cells dynamics

We study the effects of linking Langerhans cells dynamics to the population in Figures 5.12,

Figure 5.13 and Figure 5.14. In Figure 5.12, we notice that with time, as the population

dynamics are infected with the viruses, we have more infections but later as the virus population

in Figure 5.14 decreases, it triggers a slight growth in the susceptible population in Figure 5.12

at a later stage. Again as the individual transmits viruses to the within host dynamics, Figure

5.13 shows that the external virus from the population will increase infection of the cells, hence

more infected cells.
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Figure 5.12: Population dynamics linked to Langerhans cells
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Figure 5.13: Langerhans cells linked to popula-

tion dynamics
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Figure 5.14: Virus of Langerhans linked to pop-

ulation dynamics

Within host CD4+ T-Cells dynamics

Here, the analysis is similar with the Langerhans cells such that when the CD4+ T-Cells are

linked to the population dynamics, more X4 viruses are going to the population and inside

the host more CD4+ T-Cells get infected as shown in Figure 5.16. For the virus population in

Figure 5.17, it increases in the early stages and at a later stage settles down to an equilibrium

value. We observe that VX4 virus is dominant because it is type of virus strain that prefers to

infect the CD4+ T-Cells. In Figure 5.15, the susceptible population decreases due to infection

89



from both the external virus from the population dynamics and the internal virus from the

within host dynamics. Their decrease leads to an increase in the infected populations and

AIDS populations.
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Figure 5.15: Population dynamics linked to CD4+ T-Cells
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Figure 5.16: CD4+ T-Cells linked to population

dynamics
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Figure 5.17: Virus for CD4+ T-Cells linked to

population dynamics

Within host Langerhans and CD4+ T-Cells dynamics Combined

Linking both the within host cells dynamics to the population dynamics, in Figure 5.19, we

notice that VX4 virus is dominant when we combine within host dynamics Langerhans cells

and CD4+ T-Cells. This proves that VX4 virus, is associated with the progression of HIV
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infection. Figure 5.18 shows that the increase in infected populations and AIDS populations

due to infection by R5 virus and X4 virus decreases the susceptible populations.
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Figure 5.18: Population dynamics linked to

CD4+ T-Cells and Langerhans
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Figure 5.19: Virus for within host cells linked

to population dynamics

5.7 Summary

This chapter provided insights on the prediction of the analytical results. The numerical sim-

ulation results were presented by graphs that showed trends of the within host dynamics and

the population dynamics over a period of time. The population dynamics were linked to the to

within host dynamics at equilibrium. The within host dynamics were also linked to population

with time. The results obtained here helped us to draw conclusions towards the understanding

of the linking of the within host dynamics to the population dynamics. From the graphs, we

observed that the linked graphs showed immediate effects on the infection progression than the

unlinked graphs. We also observed that linking both Langerhans cells and CD4+ T-cells to

the population increased infection compared to when the within host cells were linked to the

population dynamics separately. The graphs showed that the combined effects of linking within

host Langerhans cells and CD4+ T-cells contribute to an increase in infection, followed by the

effects of the infection by the CD4+ T-cells and the infection by Langerhans cells showed to be

the least in contributing to infection. The results suggests that linking the two dynamics leads

to an increase in viral load thus increasing infection in both the within host and the population.
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Chapter 6

Discussion of Results and Conclusion

6.1 Discussion of Results

We developed and analyzed mathematical models for within host dynamics and reviewed a

without host mathematical model. We introduced linking dynamics to develop and analyze a

model linking within host dynamics to population dynamics. In the within host dynamics, the

interaction between different cells that take part in HIV transmission that is Langerhans cells

and CD4+ T-cells from the within host to the population were analyzed. In the population

dynamics, a basic HIV/AIDS compartmental model was reviewed.

In the first model, we formulated a basic co-infection within host mathematical model that

captured the interactions between Langerhans cells, CD4+ T-cells, CCR5 HIV and CXCR4

HIV during the early stages of HIV infection. We aimed to find out the effects of combined

infection of Langerhans cells and CD4+ T-Cells with CCR5 HIV and CXCR4 HIV on the CD4

count and the viral load during the primary phase of HIV infection. We first proved that the

state variables of the model were positive and bounded in the positive region to make sure

that the region in which our model was analyzed was biologically feasible. We calculated the

basic reproduction number and observed that it was dominated by the second generation in-

fections from infected Langerhans cells, infected CD4+ T-Cells, CCR5 HIV and CXCR4 HIV.

The basic reproduction number had four sub-local reproduction numbers; the first one was
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for the Langerhans cells with infection emanating from the infected Langerhans cells and the

free virus produced from the infected Langerhans cells. The second was for the CD4+ T-cells

with infection originating from the infected CD4+ T-cells and the free virus produced from the

infected CD4+ T-cells. The third was for the Langerhans cells with infection emerging from the

infected CD4+ T-Cells and the free virus from the CD4+ T-cells. The last was for the CD4+

T-cells with infection rising from the infected Langerhans cells and the free virus produced by

the infected Langerhans cells. From the model, we had two forces of infection. One showed

the rate at which Langerhans cells were infected by infected Langerhans cells, infected CD4+

T-cells, CCR5 HIV and CXCR4 HIV. The other force of infection showed the rate at which

CD4+ T-cells get infected by CCR5 HIV, CXCR4 HIV, infected Langerhans cells and infected

CD4+ T-cells.

From the basic reproduction numbers, we observed that if we switch off infection from both

the infected Langerhans cells, the infected CD4+ T-Cells, CCR5 HIV and CXCR4 HIV, then

we have a disease free case. If we have infection from infected Langerhans cells, infected CD4+

T-Cells, CCR5 HIV and CXCR4 HIV, then the basic reproduction number depends on effects

of all the infectious classes. If we switch off infection from the infected Langerhans cells only,

then the basic reproduction number only depends on the contribution from the infected CD4+

T-Cells and the virus produced by the infected CD4+ T-cells. Switching off infection from

the infected CD4+ T-Cells, then the basic reproduction number only depends on the contri-

bution of the infected Langerhans cells and the virus produced by the infected Langerhans cells.

The model had four equilibrium points, the disease free equilibrium point E0 and three en-

demic equilibrium points points E1, E2, E3. E1 was associated with infection from the infected

CD4+ T-cells only, E2 was connected with infection from the infected Langerhans cells only

and E3 was coupled with infection from both the infected Langerhans cells and infected CD4+

T-cells. The existence and stability of the equilibrium points depended on the values of the ba-

sic reproduction numbers. The disease free equilibrium point existed for all values of the basic

reproduction number and was stable when the basic reproduction number was less the unity
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and unstable when the basic reproduction number was more than one. The endemic equilibrium

point E1, related to infection by CD4+ T-cells only, was stable when the sub-local reproduction

number associated with infection by infected CD4+ T-cells and the virus produced from the

infected CD4+ T-cells was greater than one. The endemic equilibrium point E2, affiliated to

infection by Langerhans cells-HIV infection, was stable when the sub-local reproduction num-

ber associated with infection from Langerhans cells and the virus produced from the infected

Langerhans cells was greater than one. The last endemic equilibrium point E3, with combined

infection of Langerhans cells and CD4+ T-cells was proved to be an increasing concave down

function that had no change in convexity in the feasible region. This showed that there was a

unique fixed point corresponding to the endemic equilibrium point E3 that was stable.

Threshold conditions for stability of the equilibrium points were established using Lyapunov

functions. We constructed a logarithmic Lyapunov function and proved that the time deriva-

tives computed along the solutions of the model were less than zero for the disease free equi-

librium point and less than or equal to zero for the endemic equilibrium point. Therefore we

found that the disease free equilibrium point and the three endemic equilibrium points were

globally asymptotically stable in the feasible region.

Our within host model revealed four scenarios, a disease free case where they were no infected

Langerhans cells, infected CD4+ T-Cells , CCR5 HIV and CXCR4 viruses in the body. An

endemic case where there were infected CD4+ T-cells, CCR5 viruses and CXCR4 viruses only

in the body, an endemic case where there were only infected Langerhans cells, CCR5 HIV and

CXCR4 viruses only in the body, and an endemic case where they were both infected Langer-

hans cells and infected CD4+ T-cells in the body.

In the second model, we reviewed and analyzed a basic compartmental susceptible, infected,

AIDS model. This model captured the interactions between susceptible individuals, infected

individuals and AIDS individuals of a sexually active population targeting the risk group 15-49

years of age. We choose to review a basic population model to get the general overview of

94



the effects of linking the within host dynamics to the population dynamics. All state vari-

ables were proved to be non-negative and bounded in the non-negative region. The feasible

region was shown to be positively invariant. We computed the basic reproduction number and

showed that it depended on parameters associated with HIV infected and AIDS individuals.

The mathematical analysis carried out showed the existence of a disease free equilibrium point

and an endemic equilibrium point. Conditions for stability were established through the basic

reproduction number. It was shown that the disease free equilibrium point existed for all values

of the basic reproduction number and was stable for values of the basic reproduction number

less than unity. The endemic equilibrium point was locally asymptotically stable when the

reproduction number was greater than one.

Then we investigated the effects of directly linking the within host dynamics to the population

dynamics. Global stability of the within host dynamics was an important aspect that helped us

to link the two systems together because the within host disease free equilibrium point ceases

to exist when the linked dynamics are introduced. The within host dynamics are already at

equilibrium at this point. We used direct linking since HIV infection is spread directly between

individuals through sexual contacts. We used linear functions because in the early stages of HIV

infection, the viral load grows proportionally to the number of cells available. We introduced

linking functions that showed the impact of the virus both at the population level and the

immunological level. The properties that we used for our linked model satisfied biological

assumptions that is, if there is no virus, then there is no infection and infection offset when at

least one of the viruses or both were present.

We formulated three linked sub-models. Firstly, we linked Langerhans cells HIV within host

dynamics to the population dynamics. Secondly, we linked CD4+ T-cells HIV within host dy-

namics to the population dynamics and lastly, we combined Langerhans cells and CD4+ T-cells

HIV within host dynamics and linked them to the population dynamics. The linking of within

host dynamics and population dynamics has the consequences of using different time scales.

Within host dynamics occur at a faster time scale and the population dynamics occur at a

slow time scale. We adjusted the time scales by introducing a scaling factor in both dynamics
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so that both the within host dynamics and the population dynamics occur at the same time

scale. The subsystems of the linked sub-models corresponded to the three endemic equilibrium

scenarios of the within host dynamics. The basic reproduction numbers for the linked model

dynamics were calculated. We observed that the subsystem of the linked within host dynamics

models had the same reproduction numbers as the decoupled systems of the unlinked within

host dynamics. The basic reproduction number of the linked population model was modified by

parameters from the within host dynamics. The result was that the basic reproduction number

of the linked population dynamics model was greater than the basic reproduction number of

the basic population model dynamics. This suggests that ignoring within host dynamics may

underestimate the effects that they have on the population dynamics.

The linked sub-models had no disease free equilibrium point because when introducing linking

dynamics, the fast dynamics are already at equilibrium such that the disease free equilibrium

point ceases to exist thus the linked systems are always at the endemic equilibrium point. We

found the endemic equilibrium points of the linked systems and observed that the existence of

the endemic equilibrium points depended on the values of the local basic reproduction numbers

associated with the linked models of the Langerhans cells to population dynamics, CD4+ T-cells

to population dynamics and both Langerhans cells and CD4+ T-cells to population dynamics.

The endemic equilibrium points of the linked within host model dynamics had additional terms

from the population dynamics. The linked sub-model of Langerhans cells to the population

dynamics was stable when the sub-local basic reproduction number associated with infection

of Langerhans cells, infection from the population dynamics and the virus produced from the

infected Langerhans cells was greater than one. The linked sub model of the CD4+ T-cells to

the population dynamics was stable when the sub local basic reproduction number associated

with infection of CD4+ T-cells, infection from the population dynamics and the virus produced

from the infected CD4+ T-cells was greater than one. Further, the linked sub-model of the

combined infection of Langerhans cells and CD4+ T-cells had a unique fixed point that corre-

sponded to the equilibrium point and was stable.
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The linked model had effects on both the endemic equilibrium points of the within host dy-

namics and the endemic equilibrium points of the population dynamics such that the within

host dynamics had additional terms from the population dynamics in their equilibrium values

and the population dynamics endemic equilibrium point had additional terms from the within

host dynamics in its equilibrium values.

Numerical simulations were carried out to enhance the predictions of theoretical results and we

observed the patterns of the ideal situations of the within host dynamics and the population dy-

namics. We observed the patterns of the linked within host dynamics of the Langerhans cells to

the population dynamics, the CD4+ T-cells to the population dynamics and both Langerhans

cells and CD4+ T-cells to the population dynamics. From the ideal situations, we observed

that the healthy populations started to decrease because of the infection by the both the CCR5

HIV and CXCR4 HIV in both the Langerhans and CD4+ T-cells populations, the decrease of

the healthy populations led to an increase in the latent populations and later an increase in

the infectious populations. In the Langerhans cells populations, we observed that the CCR5

virus was dominant and the CXCR4 virus was the one that was dominant in the CD4+ T-cells

population. When we combined the Langerhans and CD4+ T-cells populations, the CXCR4

virus was the one that was dominant suggesting that it is the CD4+ T-cells that are associated

with the progression of HIV infection. There was an increase in infection when the infected

Langerhans cells dynamics and infected CD4+ T-cells dynamics were combined, followed by

the the infection by the CD4+ T-cells only and then infection by the Langerhans cells only.

This result suggests that even though Langerhans cells are the initial targets of HIV infection,

they are the least in contributing infection, CD4+ T-cells contribute infections more than the

Langerhans cells, however, a combination of both is deadly.

From the linked dynamics simulations, we observed that the linked dynamics model brings more

CCR5 HIV and CXCR4 HIV in the individuals thus increasing infection. From the within host

dynamics, apart from the internal virus that is there, there is an external virus coming from

the population and in the population dynamics, there is an additional infection coming from
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the within host dynamics. The linked model dynamics reached their peaks earlier compared to

the unlinked models.

A number of studies in [21, 23, 25] have investigated the connection between within host

dynamics and population dynamics. Our study is similar to the studies done in [21, 23, 25]

because we both considered linking of the within host dynamics and the population dynamics.

Nevertheless our study was different from the others in a way that we directly linked the within

host dynamics to the population dynamics because HIV can be transmitted directly from one

person to another. The direct linking can also be used for all infectious diseases that can be

transmitted directly. In particular the studies in, [21] used a contaminated environment to

link the within host dynamics to the population dynamics such that their model can only be

appropriate for environmentally driven infections, thus indirect links. The study in [23] used

the age-since-infection structure of the population dynamics variables to link the within host

dynamics to the population dynamics. The Study in [25] also linked within host dynamics to

population dynamics with a free living pathogen in the environment but they did not generalize

a framework for the linking.

6.2 Conclusion

Our result suggest that linking the within host dynamics to the population dynamics has the

potential to increase the viral load whilst decreasing the CD4 count within the host. At the

population level only members of infected and AIDS individuals increase. Even though the

actual data needed for the models might not be accurate or even available, such modeling is

still vital in investigating how changes in the various assumptions and parameters affect the

course of the epidemic.
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6.3 Strengths and Weaknesses

Our model has provided insights in coupling dynamics with different timescales. We managed to

directly link the within host dynamics to the population dynamics using the global stability of

the within host dynamics. However, we were unable to obtain real data for the within dynamics

to test the model. Some parameter values are not found in literature and were estimated, thus

their effects need to be checked using sensitivity analysis.

6.4 Future Work

We acknowledge that more work can be done to improve the predictions of the model for

instance using saturation functions for linking the dynamics in chronic stages of infection.

The work can be developed further to include real data if it can be obtained. We can also

include stochasticity since the infection dynamics during early infection are random. We can

also include intervention methods. We can also incorporate multi-strain environment models

and their effects of linking coupled with co-infection with other diseases such as malaria and

tuberculosis. Omics to population dynamics can also be included. Further, we can use HIV

infection data to fit the models and predict future outcomes of interventions and suggest policy

statements guided by the findings of the project.
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