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Abstract 

The continued widespread contamination of the subsurface environment by microbial 

pathogens and chemical wastes has resulted in an increased interest in the factors that 

influence microbial transport through porous media. 

In this work a numerical study is undertaken to determine the influence of various 

processes that contribute to microbial transport in porous media. The evaluations were 

conducted by the simulation of a typical macroscopic transport model, using a novel 

numerical technique referred to as the Green Element Method (GEM). This 

computational method applies the singular boundary integral theory of the Boundary 

Element Method (BEM) to a discretised domain in a typical Finite Element Method 

(FEM) procedure. 

Three models are presented to evaluate the effects of the various parameters and 

factors: a constant porosity model was formulated to verify the GEM formulation against 

an analytical solution, a variable porosity linear model was developed and used for the 

simulation of the transport process involving first order type clogging, and a variable 

porosity nonlinear model used to evaluate effects of nonlinear type clogging. All three 

models were validated by simulations in specific applications in which analytical or 

deduced solutions were available. The parameters and factors evaluated included the 

effects of substrate concentrations, decay rates, source concentrations (boundary 

conditions), flow velocity, clogging rates, dispersivity, point and distributed sources, 

and nonlinear clogging. 

The results show that the trends predicted were consistent with the trends expected 

from theory. The conditions that enhanced bacteria transport included high velocities, 

low decay rate constants, high substrate concentrations, and low clogging rates. The 

range of dispersivities investigated showed little variation in the bacteria concentration 



in the longitudinal direction. Reduction in porosity resulted in retardation of the 

migrating plume. Conditions that led to significant loss in porosity are high bacteria 

loadings and high growth rates. 

The GEM formulation showed no restrictions or limitations in solving transient linear 

and transient nonlinear applications. In the nonlinear application, the Newton Raphson 

algorithm was successfully used for the iterative solution procedures. In addition, the 

GEM formulation easily facilitated the application of distributed and point sources in the 

problem domain. 

Short Title: Bacteria Transport through Porous Media 

Key words: bacteria transport, Green element method, biologically reactive 

contaminants, transport modelling. 
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Chapter One 

Introduction 

The continued widespread contamination of surface water and subsurface water 

(aquifer) by microbial pathogens and chemical wastes has resulted in an increased 

interest in the factors that influence microbial transport. The areas of application in 

South Africa in which microbial I bacteria transport through porous media is of 

significance include: environmental pollution, groundwater contamination, 

bioremediation, and artificial recharge of aquifers. In this study a new numerical 

procedure is presented for the simulation of biologically reactive contaminants in 

porous media. 

1.1. Background 

In South Africa, the provision of potable water to its previously excluded population is 

rapidly out-pacing its current available capacity. Furthermore, comparatively low and 

varied rainfall, averaging about 502mm per annum'as compared to a world average of 

802 mm per annum, makes South Africa a relatively arid country (Fuggle and Rabie, 

1994). The need to consider groundwater as an additional source of water to peri­

urban and rural areas, and to supplement the requirements in rapidly growing urban 

areas, is increasing. Several studies relating to groundwater utilization were 

undertaken by the Water Research Commission (WRC). These included: 

A study to establish the magnitude of groundwater contamination originating 

from formal and semi-formal settlements (WRC, 1999a). The aquifers underlying 

some of these settlements could act as a cheap source of drinking water. The 

study found that the major source of pollutants emanating from these settlements 

were domestic (liquid and solid) and sanitation waste, and therefore the 
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significant pollutants were micro-organisms, organics and nutrients. 

A study to determine the extent of groundwater and storm-water run-off 

contamination from septic tank and soak away systems (WRC,1999b), found 

these to be a major source of microbial pollution. It reported that, due to lack of 

legislation and control, poor location, poor design, and lack of maintenance of 

these systems, which are widely used in South African coastal resorts, were a 

major source of pollution to groundwater and lagoons. 

A study to determine the extent of groundwater pollution from agricultural 

activities (WRC,1999c), namely, intensive animal husbandry, and the use of 

sewer sludge as fertilizer, reported elevated dissolved organic carbon (DOC) 

levels and feacal pollution in the groundwater. 

The recharge of the Atlantis Aquifer ( situated 50 km north of Cape Town) with 

purified sewer water and storm-water run-off, to meet the increase in domestic 

and industrial demands for water (Botha,1987), showed varying concentrations 

of feacal coliforms in samples drawn near the infiltration pans. 

Additional sources of groundwater contamination by bacteria are contamination from 

landfill leachate and from sewer line leaks. A useful application for bacteria transport 

through porous media models, is in the process of bioremediation of contaminated 

soils. Van Zyl (1998) provides a comprehensive review of the status of bioremediation 

in South Africa. 

The most obvious way to check on pollution of aquifers, would be to monitor it 

continuously. This method is time consuming , expensive and only yields passive 

information, i.e. pollution is detected only after an aquifer becomes contaminated. It 

does not provide the information to prevent or contain the pollution, or even clean up 
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contaminated environments (i.e. soils / aquifers). 

The most viable approach to predict and manage microbial contamination of aquifers 

and bioremediation processes, is through the use of contaminant transport models. 

These models are a mathematical representation of the physical, chemical and 

biological processes that a pollutant undergoes in the subsurface environment. The 

mathematical models are attractive because they offer a relatively rapid and 

inexpensive way to assess potential contaminations of the subsurface environment. 

The two ways of solving the transport equations/models are analytical methods and 

numerical methods. Whilst the strength of the analytical methods is the derivation of 

exact solutions, these can only be obtained for a narrow range of simplified 

applications. The usefulness of the exact solution is that they provide a check for the 

numerical solutions which can be subjected to a variety of errors. The two most widely 

used techniques for solving transport equations are the Finite Difference Method (FDM) 

and the Finite Element Method (FEM). Several modified and new techniques have 

emerged to overcome some of the inefficiencies of the traditional FDM and FEM. These 

include: Particle Tracking Method, Integrated Finite Difference Method, Moving Finite 

Element Method, Mixed Finite Element Method, Boundary Element Method (BEM), and 

the Green Element Method (GEM). 

Sato (1992) and Ramchandran (1994), highlighted the principle differences between 

the domain methods (FDM and FEM) and the boundary method (BEM), by comparing 

the advantages and disadvantages of these methods in some applications. The most 

notable advantages listed by Sato (1992) is the high degree of accuracy and the 

simplicity of the BEM formulation in linear applications. Onyejekwe (1996a) and 

Taigbenu (1999) noted that the lack of applications of BEM to nonlinear applications 

was indicative of the numerical difficulty encountered in applying the BEM to nonlinear 

transient problems. 
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A numerical method that has the capacity to handle nonlinearity, heterogeneity, and 

point and distributed sources I sinks without any simplifications or restrictions is an 

essential requirement to solve practical applications of the transport equations. 

A relatively new computational method, referred to as the Green Element Method 

(GEM), applies the singular boundary integral theory of the Boundary Element Method 

(BEM) to a discretised domain in a typical Finite Element Method (FEM) procedure. 

This methodology combines the accuracy of BEM and the flexibility of FEM, resulting in 

a more versatile computation technique. The applications of GEM to several nonlinear 

transient problems by Taigbenu (1998;1999), Onyejekwe (1995,1996;1998a,b,c,d), and 

Onyejekwe et al. (1998;1999), Taigbenu and Onyejekwe (1995; 1997a,b; 1998) have 

shown the ease of application, accuracy, and robustness of the method. 

1.2. Objectives of Study 

The objective of this study are three fold: 

i) To develop the mathematical model for Microbial transport through porous 

media. 

ii) To solve the transport model by the Green Element Method (GEM) and to 

validate the results by comparison to analytical or experimental results. 

iii) Using this procedure to evaluate the effects of the various mechanisms and 

processes (linear and non-linear) that contribute to microbial transport through 

porous media. 

1.3. Approach and Thesis Organisation 

Microbial transport through porous media is a complex phenomenon and it would not 

be possible to cover all aspects in detail in this limited study. This present study is 

therefore limited to: 

i) Literature review of bacteria transport models and numerical procedures 

used to solve contaminant transport models. 
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ii) Review of bacteria transport model adopted by this study. 

iii) GEM formulation of adopted model. 

iv) Model verification by comparing the results to an analytical solution for a 

specific application. 

v) Simulation of the GEM transport modells in different applications. 

The remaining chapters will cover the following aspects: 

Chapter Two provides a literature review on microbial transport models, factors 

influencing microbial transport, and numerical procedures used to solve transport 

equations. 

Chapter Three gives an overview of the processes associated with microbial transport, 

and establishes the transport model adopted by this study. 

In Chapter Four the GEM formulation for the adopted transport model is systematically 

developed. 

Chapter Five provides an overview of the numerical, computational and verification 

procedures. 

Chapter Six is devoted to the verification of the GEM model and the application of the 

model for different scenarios. 

In Chapter Seven the results and the discussion thereof are presented. 

The main results and conclusions are listed in Chapter Eight. This chapter also 

includes a discussion of possible future work. 

The overall thesis organisation is depicted pictorially in Figure 1.1 
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Chapter Two 

Literature Review 

The purpose of this chapter is to present a literature review of microbial transport 

through porous media, factors that influence microbial transport, and numerical 

procedures used to solve contaminant and microbial transport models 

2.1. Microbial Transport 

Corapcioglu and Haridas (1984) reported on the various transport and retention 

mechanisms experienced by micro-organisms at a macroscopic level. The study 

analyzed the various transport processes of dispersion, convection, Brownian 

motion, chemotaxis and tumbling, deposition, adsorption, decay and growth 

kinetics of bacteria. These processes were expressed in mathematical terms that 

could be incorporated into physical transport models. The differences between 

bacteria and virus transport were also investigated. 

Corapcioglu and Haridas (1985) developed mathematical models to predict the 

spatial and temporal distribution of the microbial concentration and nutrient 

concentration in porous media. The models presented included all the 

mechanisms outlined in their previous work (1984). The coupled models were 

solved by the Galerkin method and simulated for the case of a 14 cm soil 

column. The model developed included the effects of changing porosity due to 

clogging, however the changes to dispersivity were not included. 

Molz et al. (1986) developed mathematical models that were based on pore 

scale transport processes. The models developed assumed that, bulk of the 

micro-organisms in an aquifer grow in micro-colonies attached to the matrix 
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surfaces where the growth and degradation processes occurred. The pore scale 

approach results in small values for the dispersions, and therefor-e the solutions 

to the models were obtained by an Eulerian - Lagrangian numerical procedure. 

Baveye and Valocchi (1989) reported on the developments of mathematical 

models for microbial transport prior to 1989. The study highlighted the existence 

of three different conceptual frameworks for bacteria growth and biologically 

reacting solute transport in saturated porous media. The different frameworks 

were described as : the biofilm model, the micro-colony model, and the 

macroscopic model. The fundamental differences between these models are that 

the bio-film and micro-colony models are based on pore scale processes, 

whereas in the macroscopic model , the pore scale processes are neglected and 

the biomass is assumed to react with the macroscopic bulk fluid substrate 

concentrations. In the final analysis it was concluded that the macroscopic 

transport equations for each of the formulations are formally identical. 

Taylor and Jaffe (1990a,b,c,d) adopted the bio-film model to investigate the 

changes to porosity, permeability, and disperSivity resulting from the bio-film 

growth. This work also investigated the effects of pulsed substrate loadings, and 

flow-rate and flow duration on the clogging of the porous media by the biomass. 

The equations derived to predict changes to dispersivity, porosity and 

permeability correlated to the tracer experiments conducted in a bio-film column 

reactor. 

Harvey and Goradedian (1991) used colloid filtration theory to model the 

movement of bacteria through a contaminated sandy aquifer. The filtration model 

commonly used for packed bed filtration was modified and used to predict the 

transport of indigenous bacteria moving down-gradient within a plume of 

organically contaminated groundwater. It was concluded that there were several 
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uncertainties in applying filtration theory to problems involving the transport of 

bacteria in groundwater. 

In a comprehensive review of transport models, Dickinson (1991) concluded 

that the use of existing contamination models and those describing colloidial 

transport are inadequate to describe microbial transport. The review also 

includes a list of field studies that were done, to quantify microbial transport and 

to determine realistic values for the transport parameters. 

Hornberger et al. (1992) used a simplified form of the macroscopic model to fit 

solutions to a range of experimental results to establish the effects of grain size, 

type of organisms and ionic strength of water on the variability of dispersion, 

deposition and entrainment coefficients . The study concluded that the 

macroscopic model of Corapcioglu and Haridas (1985) successfully described 

some of the important characteristics of transport of bacteria through porous 

media. 

The influence of the chemical and physical c6nditions of the groundwater and 

the solid matrix on the various microbial transport processes, has received 

considerable attention. These are briefly reviewed here: 

Harvey (1991) and Mc Inerney (1991) provided comprehensive reviews of 

factors that influence microbial transport in groundwater. The reviews 

highlighted the complex interactions that exists between the processes that 

affect transport, and the chemical and physical properties of the subsurface 

environment. Scholl and Harvey (1992) investigated the effects of surface 

sediment characteristics and pH. Le Blanc (1993) reported on the field and 

laboratory studies of the physical, chemical and micro-biological processes that 

affect transport in a sewage contaminated aquifer at Cape Cod. Bengtsson and 

Lindquist (1995) investigated the effects of microbial concentration on the 
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sorption processes. Wan et al.(1995) reported on the significance of bacteria 

sedimentation on the transport process. Weiss et al.(1995) investigated the 

effect of bacteria cell shape on the transport process. Vandevevere et al.(1995) 

proposed models to predict the change in hydraulic conductivity due to microbial 

activity in different textured media. Ryan and Elimelech (1996) reviewed the 

various physio-chemical and engineering aspects of colloid mobilization and 

transport in groundwater. Wu et al. (1996) reported on experimental work done 

to determine the reduction in hydraulic conductivity due to microbial growth. 

Ryan et al. (1999) investigated the effects of chemical agents and chemical 

perturbations on the mobilization and transport of colloids. Keely et al. (1999) 

reviewed aspects of microbial physiology, and outlined the type of information 

needed to predict contaminant movement and transformation in groundwater. 

The general conclusions from the literature review on factors that influence 

microbial transport can be summerised as : The transport of bacteria is 

controlled by the: specific bacteria type, the nature of the soil, and the climate of 

the environment. Specific factors affecting the survival of bacteria include 

temperature, organic matter, moisture content, pH and the presence of other 

microorganisms. Migration is controlled by moisture content, pH, salt species 

and concentration, soil properties (sand, silt, clay), organic matter and hydraulic 

conditions. Whilst all these factors have been shown experimentally to playa 

role in the transport of microorganisms in the subsurface, most of the data is 

described qualitatively rather than quantitatively. In some cases, too few data 

were generated to describe the results mathematically. In others the results are 

microorganism specific that they cannot easily be generalised to describe all 

situations. Figure 2.1 attempts to show the interactions and interrelationships of 

the parameters and factors involved in the transport of bacteria through porous 

media. 
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2.2. Numerical Procedures 

A variety of analytical and numerical solution procedures have been developed 

for use in groundwater applications. The procedures reviewed here are 

restricted to solutions of contaminant and microbial transport. As indicated in 

chapter one, the two most common techniques used to solve the transport 

equations are FDM and FEM. Due to the dual nature of the transport equation 

i.e. parabolic nature at diffusion domination and hyperbolic nature at advection 

domination, various hybrids of these techniques have been developed to 

improve the numerical efficiency of these methods. These include: Particle 

Tracking Method, Integrated Finite Difference Method, Moving Finite Element 

Method, Mixed Finite Element Method, Boundary Element Method (BEM), and 

Green Element Method (GEM). Figure 2.2 shows Ramachandran's (1994) 

classification of the major numerical solution techniques used to solve 

differential equations. A comprehensive discussion on each of the techniques is 

beyond the scope of this study, however, a comprehensive summary of the 

techniques is given in Table 2.1 . A further comparison of the major techniques 

will be given in chapter four. This summary complements the summary given by 

the National Research Council (1990). 

2.3. Summary 

The literature review in this chapter has provided the necessary information to 

make an informed decision in selecting an appropriate model for the microbial 

transport process, and the appropriate numerical solution procedure for the 

governing partial differential equation. It is also evident from the review that 

there are several critical and complicating features which need to be considered 

when modeling microbial transport : 

• Microbial growth is dependant on other species (substrate) being present, 

therefore it may be required that the fate of one or more substrate/s need 

to be modeled. The interactions between these models must be properly 
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determined. 

• Biomass growth and accumulation lead to loss of permeability. This 

change to porosity may lead to change in flow paths and dispersivity. This 

requires models to be interactively coupled. 

• The various constants and coefficients used in these models are highly 

application and location specific. Most of these values are not directly 

measurable and need to be determined from experimental studies. 

In the next chapter I an overview of the transport processes of the adopted model will 

be given. 

Original 
Formulation 

~ , 
Weak Fomulation 
(Integrating once) 

, , 
Inverse Formulation 
(Integrating twice) 

~ 

.... 
~ 

~ 

Finite Difference 
Collocation 

Original Galerkin 

Finite Element 
Galerkin Methods 

Boundary Elements 
Integral Methods 
Green Element** 

Figure 2.2 Classification of the major techniques for numerical solutions to 

differential equations (Ramachandran, 1994) (** added in by the author 

of this work) 
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Table 2.1. 

Method 

Analytical 

Semi -

analytical 

Finite 

Element 

Method 

Finite 
Difference 

Method 

Boundary 
Element 

Method 

Methods of 

characteristics 

Green 
Element 
Method 

Summary of Solution Procedures for Contaminant and Bacteria 

Transport Models 

Description of method Application References 

a closed form solution of the governing equation, 3D leachate migration Huyakom et al. (1987) ; 
continuous in space and time [EPA, 1997] Contaminant transport Leiz and Dane (1990) ; Goltz and 

Roberts (1986) ; 
Virus transport Sun and Chrysikopoulos ( 1995) 

analytical solutions are evaluated using contMlinant transport Celia et.al.(1989) ; 
approximative techniques, resulting in a solution landfill leachate Rowe and Booker (1995) 
discrete in either space or time domain [EPA, 1997] 

a discrete technique for solving the given POE contaminant transport Guymon (1970); Gohardi and 
wherein the domain of interest is represented by a Venutielli (1995) ; Pepper and 
finite number of mesh- or grid points, and the Stephenson(1995) ; Arbogast 
information between these points is obtained by and Wheeler (1995) 
interpolation using piecewise continuous 
polynomials; the resulting set of linear or nonlinear Bacteria transport Corapcioglu and Haridas (1985); 
algebraic equations is solved using directly or Taylor and Jaffe (1990) 
iterative solving techniques [EPA, 1997] 

a discrete technique for solving the given POE by : landfill leachate Straub and Lynch (1982) 
1) replacing the continuous domain of interest by a Contaminant transport Oster et al. (1970) ; Buikis et a/. 
finite number of mesh- or grid points representing (1995) 
the average sub-{jornain properties, and 2) by Bacteria Transport Tan et a/. (1994) 
approximating the derivatives of the POE for each 
of these points using finite differences; the resulting 
set of linear or nonlinear algebraic equations is 
solved using directly or iterative solving techniques 
[EPA,1997] 

a method in which the boundary value problem is Contaminant transport Taigbenu and Liggett (1986) 
expressed in terms of an integral equation; this 
equation is solved by apprOximating the boundary 
by series of straight lines or flat surfaces, and 
making simplifying assumptions regarding the 
behavior of the solutions along the boundary 
elements [EPA,1997] 

Breaks the equation into two parts, one accounting Contaminant transport Morshed and Kaluarachi (1995) ; 
for dispersion and one accounting for advection, Vachabe et al. (1995) 
and replacing each of these with an equivalent microbial transport Clement et al. (1996) ; MoIz et al. 
system of ODE's [EPA, 1997] .(1986) 

a method in which the singular integral theory of the Contaminant transport Onyejei<we (1995, 1996b, 1998d) 
boundary element method is implemented in an Taigebenu (1998, 1999) 
element by element method over the whole domain 

[Onyejei<we, (1996a)] 
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Chapter Three 

Overview of Bacteria Transport Processes 

The purpose of this chapter is to present a brief overview of the processes that are 

associated with microbial transport in porous media. The transport model adopted by 

this work will also be analyzed. 

3.1. Transport Processes 

The transport of any species in porous media is controlled by a variety of physical , 

chemical and biological processes. Some of these processes enhance the spreading of 

a contaminant plume, and some may retard the spread of the plume. The processes 

involved will depend on the type of species being investigated , i.e. is the species 

miscible, immiscible, suspended solids, colloidal, organic, inorganic, etc. and on the 

chemical and physical properties of the subsurface environment. A brief description of 

some of the processes will now be presented. 

3.1.1. Physical Processes 

Advection - is the movement of the contaminant caused by the actual flow of 

the bulk fluid . Advection is the primary process by which 

contaminants move in the subsurface. The overall impact of 

advection is the movement of contaminants away from the source. 

The net flux due to advection in a control volume can be expressed 

mathematically as: 

(3.1 ) 

where v f is the bulk fluid velocity (em / s or m / h) , () is the 
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Diffusion 

Dispersion -

porosity, and e is the species concentration (g / ml or kg / m 3
). 

is the movement of contaminant in response to a concentration 

gradient. Diffusion transport will dominate in situations of low f1ow­

rates and in low permeability media. Diffusion is also a dominating 

mechanism in micro-colony and bio-film models. The net flux due 

to diffusion in a control volume can be expressed mathematically 

as: 

(3 .2) 

where DB is the diffusion (cm 2 
/ s or m2 

/ h) coefficient, and V e 

is the species concentration gradient 

is the mixing and spreading of contaminant caused by a variation 

of velocity of the bulk fluid. This is due to the tortuous nature of 

flow through porous media. Figure 3.1 attempts to illustrate this 

mechanism. The net flux due to diffusion in a control volume can 

be expressed mathematically as: 

J D = - Dm vee (3.3) 

where Dm is the dispersion coefficient (cm 2 
/ s or m2 

/ h) 

Figure 3.2 gives a visual indication of the effect of advection, diffusion and 

dispersion will have on a typical contaminant concentration profile in the 

subsurface environment. 
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Figure 3.1. Effect of Advection, Diffusion, Dispersion 

on contaminant profile 

Figure 3.2. The effects of advection and dispersion 

is the physical trapping of suspended solids I colloids within the 

solid matrix. This generally results when the suspended particles 

are bigger than the pore opening. 
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Sedimentation - settling of suspended solids I colloids due to lack of buoyancy 

offered by the bulk fluid . This usually results from sudden reduction 

in velocity or change in flow path of the bulk fluid.The net flux due 

to sedimentation in a control volume can be expressed 

mathematically as: 

Declogging -

Chemotaxis -

Tumbling 

where v is the settl ing velocity (em / s or m / h) g 

(3.4) 

is the release of trapped solids I colloids from the solid matrix into 

the bulk fluid. 

is the movement of bacteria, induced by the presence of substrate 

gradient. Bacteria tend to propel themselves towards a richer food 

supply. The net flux due to advection in a control volume can be 

expressed mathematically as: 

(3.5) 

where v m = k m V In C F ,C is the species (biomass) concentration, 

k m is called the migration rate or chemotactic coefficient, and 

C F is the substrate concentration. 

is the chaotic, random movement of bacteria. It may be viewed as 

analogous to Brownian motion. The net flux due to tumbling in a 

control volume can be expressed mathematically as: 

(3.6) 

where DT is the effective diffusivity or motility coefficient, and V C 

is the species concentration gradient 
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3.1.2. Chemical Processes 

Sorption this is the general term that is used to describe the process by 

which a species from the bulk fluid is attached to the solid matrix 

or detached from the solid matrix into the bulk fluid. It includes: 

adsorption 

Absorption 

Ion exchange -

Desorption -

attachment of species to the surface of the 

solid matrix by physical or chemical forces. 

transport of species into the interior of the solid 

matrix. 

adsorption, with a charge for charge 

replacement of ionic species on a surface by 

other species from the bulk fluid. 

is the opposite of the above mechanisms. 

The effects of the sorption processes on a typical contaminant 

profile is illustrated in figure 3.3. 
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Figure 3.3. The effects of sorption processes on contaminant profile 

The various mechanisms that contribute to the clogging and de-clogging processes in 

bacteria transport is depicted pictorially in figure 3.4. 

• Suspended bacteria 

o Adsorption process 

• Straining effect - pore size smaller than partical 
Sedimentation 
Unplugging of blocked pore 

Plugging of pores 

Desorption process 

Figure 3.4. Clogging and de-clogging processes 

in bacteria transport 
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Transformation - contaminants can be transformed into other compounds by 

complex reactions. The main types of reactions are; hydrolysis 

reactions, oxidation - reduction reactions, acid- base reactions, 

dissolution, precipitation, and complex formations. 

3.1.3. Biological Processes 

Biodegradation - is the conversion of other organic and or inorganic species by 

micro-organisms. This is generally achieved via enzymatic 

reactions. 

Biomass growth - under the right conditions (availability of substrate and electron 

donor), there will be growth of the biomass. This generally means 

the production of new cell mass. The growth of biomass is 

assumed to follow Monod's equation, which describes a 

relationship between the concentration of a limiting substrate and 

the growth rate of micro-organisms. This relationship referred to as 

the specific growth rate, is expressed as: 

PmCF 
P= 

Ks + CF 

where Jim is the maximum growth rate achievable when 

(3.7) 

C F >->- Ks ' when the concentration of all other essential nutrients 

are unchanged, CF is the essential substrate concentration, and 

Ks is that value of the concentration of the substrate when Jim has 

half its maximum value. 

Biomass Decay - this is a natural life cycle process, and the life span is different for 

different organisms. The decay of biomass / micro-organisms is 
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often expressed as an irreversible first order reaction. The rate of 

decay is proportional to the specific decay rate constant k d and the 

concentration of the biomass. 

3.2. Transport Model 

In this study the macroscopic model of Corapcioglu and Haridas (1985) is adopted. The 

application of the continuity equation will be used to introduce the various factors or 

processes that are included in the macroscopic model. In the macroscopic model, only 

processes that affect the microbial concentration in the bulk fluid will be considered. 

The continuity equation states: 

The sum of all fluxes into and out of the control volume plus I 
minus any processes which consume or create species within 
the control volume must equal a change in the concentration of 
the species within the volume. 

The sum of fluxes J (in 1- dimension) comprises ~f: diffusion, dispersion, advection, 

chemotaxis, tumbling, and gravitational settling. This can be expressed as: 

J = J B + J c + J r + J D + J A + Js 

= ( -DalJ ~) + o( Ck. Jl~CF - Dr ~) + ( -DDO ~) + (/lv/C) + (/lvgC) 

Brownian Chemotaxis and Tumbling Diffusion Advection Se dim entation 

Which can be written as 
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J = -(DB + Dr + DD)(J ~ + (vm + vI + vg)OC 

JC 
= -D()-+ u(}C 

Ox 

where 

The sorption processes can be expressed as: 

Ra = kcCn- 8)C- kyPB(j 

where: R is the rate of deposition of particles on grains, 
a 

k cand k y are the clogging (includes adsorption, straining, 

entrapment, etc) and declogging rates respectively, 

(3.8) 

(3.9) 

(J is the volume of deposited bacteria per volume of bulk solid, 

and P B is the density of the bacteria. 

The sources of micro-organisms, namely microbial growth can be expressed as 

where: 

(3.10) 

11 is the specific growth rate, and is related to the essential 

substrate concentration C F by the following expression: 

and 11m is the maximum growth rate achievable when C F >->- K; , 

and the concentration of all the other essential nutrients is 

unchanged, C F is the essential substrate concentration , and 

K i is that value of the concentration of the substrate where the 
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specific growth rate has half its maximum value. 

The sinks of micro-organisms, namely microbial decay, can be expressed as 

Rd = -kdBC (3.11) 
f 

where: kd is the specific decay rate of the suspended bacteria. 

The macroscopic mass conservation equation in one dimension for bacteria in a 

porous medium is given by: 

which can written as: 

oc* * * 02C* {}C* ' * 
-+kC -ka =D -u-+kC 

t3t c Y t3x 2 t3x 

where: C* = BC, k = j.J - k d , and a* = psa 

(3.12) 

(3.13) 

In order to solve the bacteria transport model, the volume of the absorbed or deposited 

bacteria needs to be determined. To determine the volume of the deposited bacteria, 

we apply the continuity equation to the adsorbed bacteria. Performing a material 

balance, for the bacteria absorbed on the grains, we have 

rate of change of bacteria on the solid = rate of deposition + rate of growth 
- rate of decay 
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(3.14) 

where: R is the net deposition rate, and is mathematically expressed by 
a 

equation 3.9 as: 

Ra = kcCn- 5)C- kyPB CY 

R is the growth rate of the deposited bacteria, and is expressed as: 
gs 

(3.15) 

R is the decay rate of the deposited bacteria, and is expressed as: 
ds 

(3.16) 

which can finally be expressed as 

* 
oC! * * * * -- = k C - k C! + IIC! - kdC! Ot c y r 

(3.17) 

= [fl- (kd + ky )]C! * + kc C* 

where: C· = BC, • 
and CY = PBCY (3.18) 

For the purpose of completeness, the model for the essential substrate will be given. 

This is done to show the interactions between the various equations. The transport 

equation for the essential substrate will not be deduced as has been done above but 

merely stated. 

The substrate transport equation can be expressed as: 
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substrate adsorbed Mechanical diffusion advection consumptiom due (3.19) 

on grains Dispersion to bacteria growth 

where, RF = [- ,uy-1ec] + [- ,uy-lpCY], i.e it is the substrate consumption by the 

suspended bacteria, and the adsorbed bacteria respectively, and y-l is the true cell 

yield i.e. the mass of cell produced per unit mass of substrate removed. 

The amount of substrate absorbed onto the grains can be approximated using the 

adsorption isotherm relationship of: 

(3.20) 

where the values for ka and m are determined experimentally. Assuming that m =1, we 

have 

which can be written as 

(3.22) 

3.3. Summary 

In this chapter the models for bacteria and substrate transport were stated. The various 

processes of these transport equations were briefly discussed. The equations clearly 

show the interactions that exists between these models, namely: 

• the dependance of the substrate equation (3.22) on the bacteria concentration, 

• the dependance of bacteria growth (3.13) on substrate concentration, 
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• both transport equations require the value of the volume of adsorbed bacteria 

0', 

• the volume of the adsorbed bacteria (3.17) is a function of substrate and 

bacteria concentrations. 
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Chapter Four 

Green Element Formulation 

The numerical procedure adopted by this study to solve the equations presented in 

chapter three, is the Green Element Method (GEM). In addition to the review on 

numerical procedures given in chapter two, a brief comparison of Finite Difference 

Method, Finite Element Method, Boundary Element Method, and Green Element 

Method will be given in this chapter for completeness, and the GEM formulation of the 

bacteria transport equation (eqn.3.12) will be systematically developed. 

4.1. Comparison of Numerical Techniques 

All the above numerical procedures involve replacing the continuous form of the 

governing partial differential equation by a finite number of algebraic equations. The 

resulting set of linear or non linear algebraic equations are solved using direct or 

iterative solving techniques. 

The two most commonly used numerical methods applied in developing numerical 

models are the finite difference and finite element methods. Both these methods 

approximate differential operators on subregions in the domain, hence direct 

connections exist only between neighbouring elements, therefore the coefficient 

matrices generated by these methods have relatively few non zero coefficients in any 

given matrix row. The finite difference approach is less cumbersome to implement, but 

the method usually requires special modifications to define irregular boundaries, 

heterogenous domains and complex boundary conditions. The finite difference method 

is applied to the original differential equation without any reduction in the order of the 

differential equation. In the finite element method the order of the differential equation 

is usually reduced by one. 
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Equations in the differential form can often be replaced by equations in integral form. 

The Boundary Element Method utilizes this fact by transforming the differential operator 

defined in the domain to integral operators defined on the boundary. In this method 

only the boundary is discretized. However, the method requires that the solution at one 

node must directly involve every node on the boundary, hence the resulting coefficient 

matrix is fully populated. A comprehensive comparison of Boundary Element Method to 

Finite Difference Method and Finite Element Method are given by Ramachandran 

(1994), and Sato (1992). 

Onyejekwe (1996a) classified the Green Element Method (GEM) as a coupled 

boundary element - finite element procedure in that it implements the singular integral 

theory of Boundary Element Method in an element by element method over the whole 

domain. This method as with Finite Element Method results in a sparsely populated 

matrix. A comprehensive comparison of the Green Element Method to the Boundary 

Element Method is given by Taigbenu (1999). 

The robustness of GEM and its advantages over other methods in a range of 

applications are comprehensively covered in studies by Taigbenu (1998;1999) , 

Onyejekwe (1995; 1996a,b; 1997a,b; 1998a,b,c; 1999), Taigbenu and Onyejekwe 

(1995;1997a,b; 1998;1999). A worked example in Appendix A illustrates the 

computational capability and accuracy of the GEM as compared to FEM. 

4.2. Green Element Formulation of the Bacteria Transport Equation 

The Green element formulation converts a differential equation (that is at least twice 

differentiable) into an integral form using Green's second identity. The application of 

GEM to solve the bacteria transport equation (3.12) requires the following steps: 

1) Integral representation of the governing differential equation . 

2) Discretisation of the resulting equation over the problem domain. 

3) A finite element solution to determine the field variables . 
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The bacteria transport equation is restated here, and is recast into a form that will 

facilitate its transformation. 

• ~2 C· ::Jr"'. IJC • • v v\..- kC. 
-+kC-k(J'=D 2-U~+ Of c y Ox VA 

which can be rewritten as: 

where: K = kc - (JL - k d ) 

(4.1 ) 

(4.2) 

(4.3) 

To cast the bacteria transport equation into an integral form, Green's second identity is 

used. For two functions G(x,x i ) and ¢(x,t) which are twice differentiable, the Green's 

second identity is given by: 

(4.4) 

d
2
G(x,xJ 

where dx 2 is the proposed complementary differential equation, and is of the 

form 

for - 00 ~ x ~ 00 (4.5) 

where J is the Dirac delta function . Equation 4.5 has a fundamental solution, referred 

to as the free space Green's function, of the form: 
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(4.6) 

Where k is an arbitrary constant, and its value is usually chosen to be the length of the 

longest element of the domain. The derivative of free space Green's function with 

respect to x can be expressed as: 

(4.7) 

where H is the Heaviside function and is defined as 

Introducing equations 4.2, 4.5, 4.6, and 4.7 into equation 4.4, yields 

(4.8) 

Using the sieving properties of the Dirac delta function , and an extended definition of 

the Heaviside function , we have 

X, 

f ¢(x,t )o(x - xJcll = l ¢(x,t) 
Xo 

(4.9) 

H( XL - Xi ) - H( Xi - XL) = {I, 
0, Xi = XL 

H(xo - Xi) - H(Xi - xo) = {-I, 
0, 

(4.10) 
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where A has a value of 1 if the source pointxj is within the computational domain or 0.5 

if it is located at the boundaries. Recasting equation 4.8 in a compact form, we have 

(4.11) 

Equation 4.11 is the integral representation of the governing transport equation. This 

equation is now applied to a discretised domain. Discretising the problem domain into 

M line elements, a typical element is denoted by the interval [x; - x~], where x~ and 

x; represent nodes 1 and 2, respectively, of a typical element in the problem domain. 

The pictorial representation of the discretisation of the spatial domain is shown in 

figure 4.1. 

Element: 

Node : 
1 2 3 " m-2 m-l m .. ----.---~.-- -··-v··--··--··--"· 

2 I 3 4 m-l m 

~-~ 
1 m+l 

Xl x2 

Note: T Is the lenght of the longest element in an unequally discretised domain 

Figure 4.1. Discretisation of the Spatial Domain 

To evaluate the line integral over a typical element, there is the need to prescribe a 

distribution for u, ¢' (j. and d% over each element. To accomplish this, the 
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following set of linear element interpolation functions are used, 

(4.12) 

d¢(x,t) ~ Q .(1') d¢(t) = Q (;) d¢{t) + Q (;) d¢{t) 
dt J ~ dt I dt 2 dt 

where Q I (;) and Q 2 ( ; ) are shape functions , and are defined as 

(4 .13) 

where ; is a local co-ordinate system whose origin is at x ~, and is expressed as 
e x - x 

; = ze I => dx = ze; where ze is the length of the element. (4.14) 

Substituting equations 4.7; 4.9, 4.12, and 4.13 in equation 4.11, and applying it to a 

typical element, yields the discretised form of the integral equation representing the 

governing transport equation. This is given by: 

M X

2 [t3¢e 1 ~l - 2D2:¢e(xpt) + J(lx - x:l+ ke)o~ It + Onu;q;Je + K¢; - ky (J *~ dx+ 

q¢;(x, t)[H(x- x;)- H(x; - x)]- ¢;(x,t)[H(x- x~ ) - H(x~ - x)]] (4.15) 

-q(lx- x;l+ k)q;; - (Ix - x~ l + k)q; t ] = 0 

Since information is required from each of the nodes in an element, two discretised 
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equations are obtained from equation 4.15, by considering the position of the source 

nodes at x 1 and x2 respectively. If the source node X i is at the location Xl ' we 

obtain: 

Similarly , if the source node Xi is at the location X 2 ' we obtain: 

t q;t -;; + (I + z) 9't -1 9';) + 
e=1 

I 1'( 1'(1- ;) + I) Q f7~ + Q nU:9'; + K¢; - kyO" OJ Jd; ~ 0 

We note that: 

and we, let k = /, where / is the length of the longest element. If the domain is 

equally disretised, then / = /. 

(4.16) 

(4.17) 

Equations 4.16 and 4.17 are combined to give a system of discrete element equations . 

Expressing the system of equations in compact matrix form yields: 

(4.18) 

Where 

I 
L~ = 

-1 
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(3/+21) 

(31+ 21) 

If the velocity of the transporting fluid is uniform, that is U(t) = u( x, t) , it is no longer 

necessary to express the velocity in terms of interpolation functions. Therefore 

equation 4.18 will taken on the following form: 

~ (DR.e + T~ K)J. e + (DL~. + T~U)rne + Te[iJ¢; - k (j *e).] = 0 (4.19) 
~ IJ IJ If} IJ IJ 't' } IJ :Jf Y 
e=! U ' 

Various techniques can be used to the evaluate the temporal term in equation 4.19. In 

this work, the temporal derivative will be approximated using the finite difference 

scheme. This results in the temporal derivative being replaced by: 

dt 
~ = 

I1t I1t 
o ~ a ~ 1 (4.20) 
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Where tm+l is the current time level where the solution is required, tm is the previous 

time level, a is a weighting factor which determines the position within the temporal 

element at which the temporal derivative will be determined, and I1t = tm+l - tm. Whilst 

the value for a varies from 0 to 1, the conventional values used in FDM and FEM are: 

o (fully explicit scheme), 0.5 (Crank-Nicholson scheme), 0.67 (Galerkin's scheme), and 

1 (fully implicit scheme). Since the temporal derivative is being evaluated at 

t m+ 1 = t m + al1 t , all the other terms will be evaluated at this time as well. Therefore the 

discretised weighted expression for the transport equation is given by: 

(4.21 ) 

The resulting discretisation of the temporal domain 'and the spatial domain is shown 

schematically in figure 4.2. 

Equation 4.21 represents the Green Element Method formulation of the Bacteria 

transport equation. We note that in the above expression , only the primary dependant 

variable at the current time ¢t ,m+l), and the concentration gradient at the current time 

~y,m+l) are the only unknowns. The inclusion of a source term f(x,t) , wi" result in a 

GEM model of the following form: 
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M 
~ (DRe Te K)).(e ,m+l) + a(DL~. + T~U)rn~e,m+l) + 
~ a ij+ ij Ifj IJ IJ 't') 

e=l 

(1 - )(DR~ + T~ K)). ~e,m) + (1- a)(DL~. + T~ U)rn ~e ,m) + a I) IJ If) IJ IJ 't') 

). (e ,m+ I) ). e ,m) 
If.)=----' __ ----=.lfj_ [k *(e,m+l) (1 )k * (.e,m) ] + - - a (j j + - a y(j) 

T~ At y 

IJ ) (aft ,m+l) + (1- a )f/,m 

Temporal 
Domain 

t + a At m 

t ), ( e ,m) (e ,m ) 
'f'jl rp j 

m 

=0 

2 3 " N-2 N-I N 
•• ----4eJ---.. ·--<·---v .. • . . 

2 34m-I m m+ l 

Spatial Domain 

Figure 4.2. Spatial and temporal discretisation 

A global matrix system representing the problem, can be expressed as: 

(4.22) 

Elements 

Nodes 

(4.23) 

where Ai} is the coefficient matrix, and Bi is the right hand side vector which receives 

contributions from boundary conditions, initial data and sources or sinks. 
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4.3 Summary 

In this chapter, we briefly compared the common numerical techniques, and developed 

the GEM model for bacteria transport. We note that the model consists of the following 

terms: a diffusive term, a convective term, two linear reaction terms, a transient term, 

and a source term. 

In Appendixes A and B, simpler applications are formulated and solved using the 

Green Element method. A linear homogenous steady state problem, and a 

heterogenous steady state problem are solved by manual calculations. These worked 

examples serve to show: the computational procedures, ease, and the capabilities of 

GEM. 

In the next chapter, the computational and verification procedures will be briefly 

discussed. 
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Chapter Five 

Computational and Model Verification Procedures 

Although the mathematical development of the GEM formulation for bacteria transport 

has been discussed in the previous chapter, the ability of the GEM formulation to 

describe bacteria transport through porous media needs to be verified. In this chapter 

the procedure to verify the model is discussed. The numerical and computational 

procedures to implement the GEM formulation is also provided in this chapter. 

5.1. Model Verification Procedures 

The verification of the transport can be done in two ways: it can be tested against field 

data, or it can be tested against an analytical solution. Since fully defined data is 

lacking, the GEM formulation will be tested against an analytical solution. In this work, 

the GEM formulation for bacteria transport is verified against a simplified analytical 

solution presented by Corapcioglu and Haridas (1985). The analytical solution is given 

for a semi-infinite column with the following boundary and initial conditions: 

c* (0,1) = C; 
c*(x,o) = 0 

5.1 

c* (00 ,I) = 0 

a*(x,O) = 0 

(5.1 ) 



where 10 is the first-kind zero-order modified Bessel function. 

The numerical solutions obtained via the GEM formulation will be compared to the 

analytical solutions for the condition of constant porosity and the following parameter 

values: 

D = 0.04 em2 
/ s 

k = 6 X 10-3 S-1 
c 

u = 0.003 em/ s 

k = 6 X 10-5 S-1 
Y 

The boundary and initial conditions will be as stated above. 

During the simulation of the equation 5.1, overflow and singularity problems were 

experienced. The overflow problem was due to the upper limit of the first integral being 

set at infinity. When the this upper limit was replaced with a finite limit, results obtained 

were the same as Corapcioglu and Haridas (1985). The singularity problem arose when 

the lower limit of integration in time was zero. To overcome this, the lower limit was set 

at a non-zero value. The analytical results obtained are shown in Figures 5.1 and 5.2. 

The oscillating effect observed in Figure 5.2 for the first section of the temporal domain 

results from the software used to plot these graphs: 

Its noted that the analytical solution provided by Corapcioglu and Haridas (1985) is 

based on the assumption that the porosity is constant through the spatial and temporal 

domains. Whilst this may be valid for low bacteria loadings and negligible growth rates, 

this may not be true for sewage plumes and in bioremediation applications. Therefore 

in this study two numerical procedures are proposed: a model that neglects changes to 

porosity, which will be used to verify the GEM with the analytical model, and a model 

that includes changes to porosity, which will be used by this study. 
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In addition, several studies have reported that some of the processes (adsorption, 

straining, sedimentation, etc) that lumped into the clogging term, deviate from linear 

kinetics. Saiers and Hornberger (1994) reported that the clogging process of some 

colloidal matter can be expressed by second order kinetics. Yates and Yates (1991) 

reported that all attempts to predict the degree of adsorption on the basis of either soil 

properties (such as pH, organic matter content and clay content) or characteristics of 

the microorganisms (such as its isoelectric point) have not been successful. 

It is suggested by this study that the option to express the clogging process as a non -

linear should be considered. Therefore an additional GEM model which includes 

clogging as a non linear process will be presented. In this work non linear clogging 

term will be defined as keen •. 

5.2. Numerical Procedures 

In order to formulate a computational procedure, we need to revisit the governing POE 

describing bacteria transport through porous media, and its associated equations, to 

establish the interactions between the equations. In chapter three, the three equations 

that fully described the transport of bacteria were established . These were equations 

3.12,3.16, and 3.17. 

As has been alluded earlier, three bacteria transport models will be presented: 

i) A model in which the porosity remains constant throughout the spatial and 

temporal domains. 

ii) A model that includes changes to porosity throughout the spatial and 

temporal domains. 

iii) A model that will evaluate the effect of non linear type clogging. 

The models listed in (i) and (ii) will be referred to as the linear transport model, and the 

model in (iii) will be referred to as the non linear transport model. 
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In this work, it is assumed that all the essential substrates are in abundance (as will be 

case in sewage plumes). Therefore it will be assumed that the substrate transport 

equation does not interact with bacteria transport equation. The equation that will be 

interacting with the bacteria transport equation is the adsorbed species continuity 

equation. Restating the bacteria transport equation and absorbed species continuity 

equations, we have: 

oc* * * 0 2 
C * oc* * 

--+kC -ker =D - u--+ kC 
!}t e y !}x 2 !}x (5.2) 

where: C * =BC, k = P -kd' and er · =PBJ 

and 

• 
oer • * • • ---;Jt = keC - k yt5 + per - kder 

= [k - ky ]er · + keC · 

(5.3) 

where: C · = BC, 

Since the substrate are in abundance, p will be constant, and therefore k will be 

constant. This term will represent either the net growth or net decay depending on the 

values assigned to k. 

Whilst the GEM formulation for bacteria transport has been developed, a solution 

procedure for the adsorbed species continuity equation is required. In this study we 

adopted a numerical method to solve the initial value differential equation . The 

numerical method solution can be stated as: 

(j ;ce,m+l) = er ;ce,m) + D,. t· f {er ;ce,m); cy,m) } 

5.5 
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5.2.1.Numerical procedure for linear transport equation 

The equations applicable to the linear transport model are equations S.2 

and S.3. The essential difference between the constant porosity and variable 

porosity models is that, the variable porosity model accounts the variation in the 

porosity and velocity in the problem domain. 

In the constant porosity model we determine the values of the lumped variables: 

and 
aBC oc* 

rp ----- -
Ox Ox 

(S.S) 

In the final representation of the results we have 

C;* BoC; C; 
------
C~ - BoCa - Co 

(S.6) 

For the variable porosity model we recast our equations in the following form: 

rJC k y {j * a2 c OC 
-t k C- = D-- - u-t kC 
t3t C B; Ox 2 Ox 

O(J' * * * . * ---;;t = k/)iC - ky 5 + P(J' - kd(J' 

= [k- k ](J'* + k B.C y C I 

(S.7) 

We note that in this model, the variation in porosity will result in the variation of 

the velocity. In this work, the change to velocity will be accounted for in a simple 

ratio relationship, which is represented by: 

B; 
u · =-u 

I B 0 
o 

(5.8) 

B. 
where B: is the ratio of the changed porosity to the initial (original) porosity. 

The value of the changed porosity can be determined by: 
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O. = 00 - (Y. 
I I where 

• 
(ji 

(j -­i-

PB 
(5.9) 

Even though the velocity is porosity dependant, applying the law of mass conservation 

indicates that, in a one dimensional application, the velocity should remain constant 

throughout the problem domain. The change in porosity at the beginning of the problem 

domain dictates the value for the velocity through the rest of the domain. Therefore the 

change in velocity can be determined as: 

(5.11 ) 

The transport model in its GEM formulation has been developed in chapter four, but will 

be restated here: 

Constant porosity model: 

M 

~ a(DR~ + T~ K)-h (e,m+l) + a (DL~. + T~U)m (e ,m+l) + 
~ I) I) If j I) ' I) 't' j 
e= 1 

-hj(e ,m+ I ) _ -hje,m) 
_If ___ If __ [k .(e,m+l) (1- )k .(e,m)] 

A t a y (j j + a y (J" j + 
~ u =0 

(aft ,m+l) + (1- a)f/,m) 

(5.12) 
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Variable porosity model: 

Whilst the GEM formulation for this model has not been derived from first 

principles, the procedure is identical to those outlined in chapter four. The final 

formulation is merely stated here. 

M 

I a(DR; + 1ij~ K)¢?,m+l) + a(DL~. + 1ij~U)rpy,m+l) + 
e=l 

(1- a)(DR; + T; K)¢?,nt) + (1- a)(DL~. + T;U)rp y ,m) + 

¢y,m+l) _ ¢;,m) [aky(J' * ~:,m+ l ) (1- a)ky(J' *je,m) 1 
!1t - (r ,m+i + ee,m + 

) } 

(5.13) 

= 0 

The numerical methodology to solve these models will be as follows: The values 

for C* and (j * are known at t=O for the whQle spatial domain, therefore we 

i) solve the adsorbed bacteria continuity equation for the next temporal 

node i.e obtain the values of o*m+l for the whole spatial domain, 

ii) If the formulation includes porosity changes then, determine 

iii) solve the bacteria transport equation for this temporal node to obtain 

values for c*m+l for the whole spatial domain 

This procedure is illustrated in figure 5.3. 
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5.2.2. Numerical procedure for non linear transport equation 

The proposed non linearity to the transport equation is in the clogging term. Therefore 
t 

equations 5.2 and 5.3 will be modified as follows: 

k * 2 
DC + k Cn _ y (j = D rJ C _ u t3C + kC 
rJt c e 1Jx2 IJx 

(5.13) 

where: 

and 

O(J* kcn* k s:* * k * -;;t= c - yU +jJ(J - d(J 
(5.14) 

= [k- ky](J* + kcCn* 

where k C'n = k BCn = k ( B -~) Cn 
c ceO 

PB 
(5.15) 

The development of the GEM formulation for non linear transport equation is identical 

to the procedure outlined in chapter four. Therefore just the final expression will be 

stated here: 

M 

" a(DR~ - T~ k)d. ~e,m+! ) + a(DL~. + T~U)rn~e ,m+!) + i...J lj lj If) lj lj 't' ) 
e=! 

(1- a )(DR~ - T~ k)d. (e,m) + (1- a)(DL~. + TeU)rn (e ,m) + 
lj lj If) lj lj 't' ) 

(5.16) 
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To solve the non linear model, an iterative solution procedure is required. The iterative 

procedures that could be used include: Newton Raphson, Picard, and the Chord slope 

methods. In this work the Newton Raphson algorithm will be used. The Newton Raphson 

procedure can be summerized as: 

where: 

and 

J _(m+l,k) . 11 u(m+l,k+l) = _ g(m+l ,k) 
IJ J I 

J (m+l ,k ) = 
1J 

cJu T. 
Oi DR T k 1J k T ~n-lm+l 

::J~ ¢ _=¢( m+l ,k) = a ij - a ij + IJ.t + an c ij'fj , 
u'fj J J 

Ogi [ ] 
-- _ ( m+l.kl = a DLlJ-- + TlJ--U 

::Jrp fP --fP U, - J J 
) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

We note that in determining the Jacobian matrix, the primary variable that appears in 

the adsorbed species continuity equation 5,15 is omitted, This is due to the numerical 

procedure adopted (equation 5.4) to solve equation 5.15. Equation 5.4 does not require 
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the current value for the primary variable (i.e fjJ ; ,m+l) in its solution procedure. The 

numerical procedure for solving the non linear model is illustrated in figure 5.4. 

5.3. Computational Procedures 

The computational code used for this work is based on the code developed by 

Onyejekwe (2000) for other linear and non-linear GEM applications. Modifications to the 

original code include: 

• increasing data input requirements 

• inclusion of vab subroutine - this subroutine computes the values for (Y ; m+l . 

• Inclusion of procedures to determine changes in porosity 

• changes to the coefficient matrix subroutine (ASSMBLN) and to the 

subroutine(RIGHTLN) that computes the right hand side of the global matrix for 

the linear model. 

• changes to the coefficient matrix subroutine (ASSMBL) and to the 

subroutine(RIGHT) that computes the right hand side of the global matrix for the 

non linear model. 

The resulting structure for the computational code for the linear and non linear models 

are shown in Figure 5.4. and Figure 5.5 respectively. A brief description of the 

computational code for the 3 models presented, and sample input and output files are 

outlined in Appendix C. 

5.4.Summary 

In this chapter the approach to solving the coupled system was given. This included: a 

description of the verification and numerical procedures, and a brief overview the 

computer programme structures. 

In the Chapter Six, the GEM model will be validated against analytical results, and 

several applications will be considered. 
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Chapter Six 

Application of GEM Model 

The merit of any transport model lies in its flexibility to simulate various applications. In 

this chapter, the GEM formulation will be compared to analytical results obtained by 

Corapcioglu and Haridas (1985). The validated model will then be used to evaluate the 

effects of the various parameters on bacteria transport. These include: 

• The effects of ground water flow-rate and dispersivity on the bacteria 

concentration profile. 

• The effect of the net growth I net decay rate on the concentration profile 

and the changes to the porosity. 

• The effects of clogging and declogging rates on the bacteria 

concentration profile and the changes to porosity. 

• The effects of non - linear clogging on the bacteria concentration profile 

and the changes to porosity . 

• The effect of substrate concentration on the bacteria concentration profile. 

• The effect of source concentrations on the bacteria concentration profile 

Thus far, references have been made to the GEM formulation's accuracy and range of 

applicability . In addition to this , the formulation has its strength in being able to 

compute distributed sources, and concentrated point sources at any point in its domain. 

6.1. GEM Model Verification 

As indicated in chapter five, the analytical solution for a specific application will be 

used to verify the GEM formulation. It should be noted that the analytical solution 

provided is based on the assumption that there are no changes to the porosity. 

Therefore a constant porosity GEM formulation will be tested against the analytical 
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solution. 

6.1.1 Constant Porosity Model Verification 

The GEM model and the numerical and computational procedures were outlined 

in chapter five. The constant porosity is simulated for the same conditions as 

those used by Corapcioglu and Haridas (1985) for the simulation of the 

analytical model. Therefore the following conditions and parameters were used 

for the verification: 

D = 0.04 em2 
/ s 

k =6x10-3
S-

1 
c 

* * C (o,t) = Co 

u = 0.003 em/ S 

k = 6 X 10-5 S-I 
y 

* C (oo ,t) = 0 * C (x,o) = 0 * (5 (x,O) = 0 

The results obtained from the simulations of the analytical and GEM models are 

shown in Table 6.1 and Table 6.2. 

Table 6.1 Comparison of Analytical and GEM solutions 

at 50, 100, and 1000 seconds 

Time 50 seconds 100 seconds 

Distance Analytical GEM Analytical GEM 

0 1.000 1.000 1.000 1.000 

2 0.305 0.305 0.406 0.401 

4 0.024 0.044 0.125 0.128 

6 0.006 0.002 0.027 0.027 

8 0.000 0.000 0.003 0.003 

10 0.000 0.000 0.000 0.000 

12 0.000 0.000 0.000 0.000 

6.2 

1000 seconds 

Analytical GEM 

0.993 1.000 

0.502 0.503 

0.252 0.252 

0.126 0.125 

0.063 0.060 

0.055 0.025 

0.051 0.000 



Table 6.2. Comparison of Analytical and GEM solutions 

at 1 cm, 2 cm, and 4 cm 

Distance 1 centimeter 2 centimeter 

Times Analytical GEM Analytical GEM 

0 0.00 0.00 0.00 0.00 

200 0.691 0.691 0.470 0.471 

400 0.707 0.705 0.498 0.495 

600 0.705 0.709 0.498 0.501 

800 0.713 0.712 0.506 0.506 

1000 0.706 0.714 0.501 0.510 

1200 0.706 0.717 0.509 0.513 

4 centimeter 

Analytical GEM 

0.00 0.00 

0.203 0.204 

0.242 0.241 

0.248 0.250 

0.252 0.254 

0.252 0.258 

0.254 0.261 

Graphical comparisons of the results are shown in Figure 6.1 and Figure 6.2. 

-.- analy tical at 50s 
. .• .. GEM at 50s 

1.0 
... - analy tical at 1005 
- .. . GEM at 1005 
..... - analy tical at 10005 

0.8 .-& .. GEM at 10005 

0.6 
a 

U 

·u 0.4 

0.2 

0.0 

-0.2 
3 8 13 

Distance (em) 

Figure 6.1 Comparison of Analytical and Constant Porosity Model 

solutions at 50s, 100s, and 1000s 
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Figure 6.2 Comparison of Analytical and Constant Porosity 

Model solutions at 1 cm, 2cm and 4cm 

The results shown in the figures 6.1 and 6.2 show excellent correlation between 

the analytical and GEM models.This indicates that the GEM formulation can be 

used with confidence. The difference between the analytical and numerical 

solutions increases at larger times. This is explained by the boundary condition 

at 12 cm for the numerical solution which forces the solution to zero at all times, 

while the analytical solution for a semi-infinite domain attains non-zero values at 

every x at larger times. 

6.1.2 Variable porosity model and Nonlinear Model Verification 

Since analytical solutions do not exist for variable porosity and nonlinear 

applications, the verification will be done differently. It is assumed that since the 

constant porosity model has been verified against an analytical solution, this 
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model can be used for verifying the variable porosity and nonlinear models. 

The variable porosity model and the nonlinear model were verified by comparing 

the solutions obtained from these models for an application in which the 

changes in porosity are negligible. The results obtained were then compared to 

the solution obtained by the constant porosity model at the same conditions. For 

the nonlinear model, the reaction order of clogging will be assigned the value of 

one. The parameters used to simUlate all three models is presented in Table 6.3. 

The comparison of the results is shown in Figure 6.3. 

Table 6.3 Simulation parameters 

Parameter Symbol Simulation values 

Dispersion coefficient D 0.02 m2h-1 

Density of Bacteria PB 1000 kg.m-3 
Clogging rate constant kc 23.4 h- I 

Declogging rate constant ky 1566 h- I 

Specific decay constant kd 36 x 10-4 h- I 

Moned half constant Ks 2 kg.";-3 
Maximum growth constant Pm 0.15 h- I 

Flow velocity U 1.0 m.h- I 

Initial porosity n 0.6 
Bacteria source concentration C 0.1 kg.m-3 

Substrate concentration Cs 0.1 kg.m-3 

Domain length 
4.0m 

Number of elements 40 
Number of iterations 5 

Convergence Tolerance 1 x 10-6 

Differencing weight a 0.67 

Time step I1t 05 hours 
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Figure 6.3 Comparison of the 3 GEM models for 

the parameter values given in table 6.3 

6.2. The effects of the various parameters on bacteria transport. 

From the governing partial differential equation (equation 3.12) which is restated here, 

it can be seen that several parameters influence the transport of bacteria in the 

subsurface environment. The GEM formulation will be used to evaluate the effects of 

some of these parameters. 

aBC 
+ kcBC - kyPB(j = 

a 2 c 8C 
iJt DB ax 2 - uB ax - kdBC + j.1BC ± F 

(6.1 ) 

i i i i i i i i 
Transient Clogging Declogging Dispersion Advection Decay Growth Source 

Term Term Term Term Term Term Tenn {Sink 
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6.2.1. The effects of groundwater flow-rate 

The transport microbial contaminants will be influenced by the movement of 

groundwater. The factors that influence groundwater flow in an existing aquifer 

are: the rate of abstraction from aquifer, the rate of recharge (natural or artificial) 

of the aquifer, the hydraulic gradient and the changes to porosity (due to 

bacterial growth). Most of these influences can be the result of seasonal 

variations in water levels. The degree of influence of the groundwater flow-rate 

will be evaluated by considering reasonable variation in velocities. It will be 

assumed that all other parameters are constant. 

6.2.2. Variation to Dispersivity 

This parameter is greatly influenced by changes to the porosity of the aquifer. 

These changes in relation to bacteria transport, could result from microbial 

growth of species attached to solid matrix, clogging (adsorption, sedimentation 

and filtration) and de-clogging of the pores. Since this study is restricted to a one 

dimensional model, only the effects of longitudinal dispersivity can be evaluated . . 

6.2.3. Variation in Clogging and De-clogging Rates 

The clogging process being a lumped parameter (consisting adsorption, 

sedimentation, and filtration effects) has been the focus of many studies. Most 

studies concluded that the processes of clogging and de-clogging are greatly 

influenced by the chemical and physical properties of the subsurface 

environment. In the study by Saiers and Hornberger (1994) it was reported that 

the clogging process of some colloidal matter can be expressed by higher order 

kinetics. In this work the evaluation will be two fold: 

i) the effect of clogging rates, using the linear model 

ii) the effect of clogging reaction order, using the nonlinear clogging model. 
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6.2.4. Variation in net growth I decay rate. 

The effect of this parameter on the transport equation is two fold: 

• it is directly related to the primary variable, and 

• it impacts on the changes to porosity 

As has been indicated previously, there are many factors that influence the 

growth and decay rates, especially presence of substrate, presence of 

predators, and the chemistry (toxicity) of the subsurface environment. Therefore 

the rates can be considered to be site specific, and need to be determined 

experimentally. In this application, the following range will be assumed: negative 

rate, zero rate, and positive rate. This will give some indication of the bacteria 

concentration profile and changes to porosity. 

6.2.5 Variation in substrate concentrations 

The survival and growth of bacteria has a primary dependency on the substrate 

concentrations. Whilst this study assumes a constant substrate concentration in 

the migrating plume, the effects of different concentrations will be evaluated. 

6.2.6 Variation in source concentrations (Boundary conditions) 

This application is very relevant to bioremediation applications, where the rate of 

clean up is dependant on bacteria concentration. The movement of bacteria in a 

remediation site is key to the efficiency of the process. Hence, the variation in 

bacteria loading will be evaluated. 

It should be noted that factors in 6.2.4, 6.2.5, and 6.2.6 are interrelated. 

6.2.7 Effect of Distributed and point sources 

In chapter one, potential sources of microbial contamination of the groundwater 

were discussed. These included, septic tanks and soak systems, ruptured sewer 

lines, informal settlements, use of sewage sludge as fertilisers, landfill sites, and 
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artificial recharge of aquifers using purified sewage water. Therefore, the 

contamination of a typical aquifer may have many source points. In this 

application, the GEM formulation is tested on its capacity to handle distributed 

and concentrated sources. 

6.3 Summary 

In this chapter, the three models developed in this work namely: 

• the constant porosity model 

• the variable porosity model and , 

• the nonlinear clogging model 

were verified , and the parameters and processes to be evaluated using these models 

were outlined . 
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Chapter Seven 

Results and Discussion 

From the work presented thus far, it is evident that the phenomenon of bacteria 

transport through porous media posses more complications than the transport of 

conservative substances. Whilst attempts to investigate the impact of the various 

factors on bacteria transport will be made, it must be noted that most of these factors 

cannot be studied in isolation. In chapter six, the three transport models were validated, 

and the factors to be evaluated were outlined. In this chapter, the results and the 

analysis of the results are presented. 

7.1 General Observations 

Several factors may complicate the simplified modelling approach described thus far. A 

brief discussion of some of these factors is provided here to indicate the potential 

problems associated with microbial transport modelling in the subsurface environment. 

The diverse range of bacteria with varying growth and decay rates, 

adsorption and desorption rates, and sizes of bacteria may exist in a 

typical sewage plume. Some of the differences are several orders of 

magnitude. The use of average values for computational purposes may 

render the model inadequate to correctly predict the migration of a 

sewage plume. 

Harvey (1991) reported that the verification of existing models by field 

observations is problematic, owing to the complexity of the models and 

the number of parameters that need to be determined apriori. 
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The complex nature, both physical and chemical will have a major impact 

on almost all the processes that are used to describe bacteria transport. 

For example, the chemical condition of the groundwater will affect the 

following processes - decay, growth, attachment, and detachment. Under 

the same conditions some of the processes are enhanced, whilst others 

are retarded. Therefore the lack of correct information on an aquifer may 

render the model inadequate to predict the behaviour of a migrating 

plume. 

The ability of microbial movement by self propulsion in response to a 

stimuli, may contribute vast difference between simulation results and 

filed observations, especially in low velocity and stagnant groundwaters. 

7.2. Transport Model Simulations 

Notwithstanding the above list of complications, the GEM formulations of the transport 

model were simulated in a range of applications to determine the general trends in 

bacteria transport through porous media. A typical set of defaults settings, listed in 

Table 7.1, were established and used throughout this work. Deviations from the default 

values were necessary to establish effects of the various parameters, and when certain 

phenomenon I process are being illustrated. 

7.2.1 Comparison of Constant Porosity and Variable Porosity Models 

The motivation for developing the variable porosity model described by equation 

5.13 was based on the assumption that the contribution to the reduction to 

porosity by some of the processes will be significant. The processes most likely 

to contribute to reduction in porosity are: source concentration, clogging rates, 

declogging rates, growth rate, decay rate and substrate concentration. It must be 

noted that most of these processes are interrelated. 
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It has already been shown in chapter six that for the conditions in which the 

changes to porosity were negligible, both the constant porosity model (eqn. 

5.12) and variable porosity model (eqn. 5.12) produced exactly the same results 

(see Figure 6.3). However, if there is significant changes to the porosity, then 

the ability of the constant porosity model to produce meaningful results is 

questioned. Both the models have been tested in an application in which the 

resulting change in porosity is approximately 33 % . The parameter values used 

were: source concentration (10 kg.m-3
) ,clogging rate constant (80 h- I

) ,and 

velocity (1.5 m.h- I
) ,the rest of the values are default setting values shown in 

Table 7.1. The comparison of the results obtained from the simulations of both 

models is shown in Figure 7.1 . 
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The comparison shown if Figure 7.1 show that the difference in predictions may 

be as large as 15 % in this application. Whilst this over prediction may be 

considered as a safety factor in the applications of groundwater pollution , this 

may lead to high inefficiencies in bio-remediation applications. 

In this work, the variable porosity model (eqn. 5.130 will be used in all 

simulations except those involving nonlinear clogging . The added advantage of 

the variable porosity model is that, additional information regarding porosity 

changes, velocity changes and dispersivity changes can be obtained from this 

model. Figure 7.2 show the changes to the porosity in the problem domain for 

the application evaluated above . 
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7.2.2. General illustration 

There are several factors influencing the transport of bacteria through the 

subsurface environment. Some of these will retard the migrating plume, whilst 

others may enhance this migration. To illustrate the potential seriousness of 

bacteria contamination, a simulation under favourable conditions has been done. 

The results for a simulation of the variable porosity model (eqn. 5.13) to illustrate 

the behaviour of a typical plume, is shown in Figure 7.3. The bacteria 

concentration profile obtained were for conditions of net positive growth(Le 

growth rate is higher than decay rate) within the contaminant plume. The values 

for the model parameters are listed in Table 7.1 as simulation values. 

The simulation results indicate that under the right conditions, the transport 

of bacteria through the subsurface environment could be fairly significant. 
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Table 7.1 Simulation parameters 

Parameter Symbol Default Settings Simulation values 

Dispersion coefficient D 0.02 m2h-1 0.02 m2h-1 

Density of Bacteria PB 1000 kg.m-3 1000 kg.m-3 

Clogging rate constant kc 23.4 h- I 23.4 h- I 

Declogging rate constant ky 1566 h- I 1566 h- I 

Specific decay constant kd 36 x 10-3 h-' 36 X 10-4 h-' 
Monad half constant Ks 2 kg.m-3 2 kg.m-3 

Maximum growth constant Jim 0.15 h-1 15 h- I 

Flow velocity U 1.0 m.h- I 1.0 m.h- I 

I nitial porosity n 0.6 0.6 
Bacteria source concentration C 0.1 kg.m-3 0.1 k - 3 g.m 
Substrate concentration Cs 0.01 kg.m-3 0.1 k -3 g.m 
Domain length 4.0m 4.0m 
Time step I1t OS hours OS hours 

Number of elements 40 40 

Number of iterations 5 5 

Convergence tolerance 1 x 10-6 1 X 10-6 

Differencing weighting a 0.67 0.67 

7.2.3 Influence of model parameters on bacteria transport 

As alluded to earlier, several factors influence the movement of bacteria in the 

subsurface environment. The degree of influence of these factors will now be presented. 

The governing PDE is restated here, and will be used as a point of reference for most of 

the discussions that follow. 
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aBC a 2 c ac 
+ kcBC - kyPB CY = DB 2 -uB--kdBC+JlBC±F 

Ot Ox Ox (7.1) 

i i i i i i i 1 
Transient Clogging Declogging Dispersion Advection Decay Gmwth Source 

Term Term Term I Sink Term Term Term Term 

7.2.3.1. Flow velocity 

The impact of flow velocity on bacteria transport was determined by simulating 

the variable porosity model (eqn 5.13) at three different velocities. The values 

used for the simulation were: 

velocity range : 0.5 m.h- l 1.0 m.h- l ,and 1.5 m.h- l 

The other parameter values will be those given in Table 7.1. as default values. 

The results obtained from the variable porosity model are shown in Figure 7.4. 

and Figure 7.5. The profiles obtained are at 5 hours and 24 hours after initial 

discharge, and at conditions that results in a net decay. 

The results presented are consistent with theory - higher velocities will increase 

the advective transport of bacteria, resulting in a greater migration of the 

bacteria. Changes in velocity may also affect the rates of sedimentation, 

chemotaxis and tumbling , and declogging. The results indicate that for a set 

velocity, the profile of the advancing plume will be similar throughout the domain. 

Any changes to the porosity will result in a velocity reduction . This reduction of 

velocity may lead to a higher hydraulic gradient, which may eventually lead to 

higher declogging rates. To determine the effects of the hydraulic gradient on 

bacteria transport, the model will need to be coupled to the groundwater flow 

model. 
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7.2.3.4. Substrate Concentration 

The relationship between the substrate concentration and the bacteria growth 

rate is shown in equation 3.7. The relationship shows that higher substrate 

concentrations will result in higher growth rate constants. The influence of the 

substrate concentration on bacteria transport was determined by simulating the 

variable porosity model (eqn. 5.13) for three substrate concentrations . The 

values used for the simulation are: 

1 x 10-2 kg.m-3
, 1 x 10-1 kg. m-3 and 1 kg.m-3 

The other parameter values will be those given in Table 7.1. as default values. 

The results obtained from the variable porosity model are shown in Figure 7.9. 

The profiles obtained are at 24 hours after initial discharge. 

The influence of the substrate concentration results from its influence on the 

growth rate constant which given by: 

PmCS 
P= 

Ks + Cs 
(7.3) 

The growth rate constant affects both the transport equation and adsorbed 

species continuity equation shown in equation 7.1 and equation 7.2 respectively. 

The results show that for concentrations greater than the minimum substrate 

concentration, there is substantial growth within the migrating plume. Unlike the 

retarded plume that was encountered for high source concentrations, the profile 

of the migrating plume for high substrate concentrations will be similar to that 

shown in Figure 7.1. It should be noted that in these simulations, it is assumed 

that substrate concentration is constant throughout the migrating plume. 

The kinetic "constants" in the Monod equation can be subject to change in 

response to changes in temperature, the nature of the substrate, and the 
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chemical and physical properties of the subsurface environment. Therefore 

caution should be used in the application of Monod growth kinetics when there 

are temporal and spatial changes in any of these conditions in the aquifer. 
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Figure 7.9. The effect of substrate concentration 

on the bacteria concentration profile 

7.2.3.5. Decay 

The process of decay is a natural process with living organisms. However the 

rate at which this occurs is very dependant on the physical and chemical 

conditions of the subsurface environment. The influence of decay rate constants 

on bacteria transport was determined by simulating the variable porosity model 

(eqn. 5.13) for three decay rate constant values. The values used for the 

simulation were: 

7.14 



The other parameter values will be those given in table 7.1. as default values. 

The results obtained from the variable porosity model are shown in Figure 7.10. 

The profiles obtained are at 24 hours after initial discharge. 

The influence of the decay rate is only significant when it exceeds the growth 

rate of the bacteria. This can be seen from the following relationship that relates 

the growth and decay terms: 

Net Growth Rate = fl- kd 

_ f..imCs _ k 
- d 

Ks + Cs 

(7.4) 

The migration of the bacteria plume will be influenced by the amount of substrate 

present, immaterial of whether all other conditions promote growth or decay .The 

decay rate constants simulated here, all result in a negative growth rate, and will 

be - 2.83 x 10-3 h- I 
, - 0.035 h- I ,and - 0.36 h- I respectively. The results 

indicate that with high decay rates, the concentration of bacteria in the migrating 

plume is greatly reduced. Another factor which affects the bacteria population is 

the presence of predators. 
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7.2.3.6. Clogging process 

The evaluation of the clogging process has been approached in two ways: the 

effect of clogging rates, and the effect of nonlinear clogging.The influence of 

clogging rates on bacteria transport was determined by simulating the variable 

porosity model (eqn. 5.13) for three clogging rate values . The values used for 

the simulation were: 

10 h - I 
, 23.4 h - I 

, and 50 h - 1 

The other parameter values will be those given in Table 7.1 . as default values. 

The results obtained from the variable porosity model are shown in Figure 7.11. 

The profiles obtained are at 5 hours after initial discharge, and at conditions that 

results in a net decay. 
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The clogging process is greatly affected by the chemical and physical properties 

of the subsurface environment ego The filtering effect is dependant on the pore 

sizes, the adsorption of bacteria onto the solid matrix will be dependent on the 

type of grains, the ph and ionic strength of the ground water. Since clogging is a 

retarding effect, an increase the clogging constant will result in decreasing 

migration of the bacteria plume. 
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In the evaluation of nonlinear clogging, the nonlinear model described by 

equation 5.16 was simulated for conditions where the clogging order was varied 

from 1 to 1.5. It should be noted that due to the lack of information in literature 

relating to non linear clogging, the rate constants used are assumed to equal that 

used for the linear model. However, irrespective of the actual values, the 

resulting trends will be similar to those shown in Figure 7.12. The simulation was 

done at default values shown in Table 7.1. The profiles obtained are at 5 hours 
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after initial discharge, and at conditions that results in a net decay. 
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From equations 7.1 and 7.2 it can be seen that the clogging term is affected by 

two parameters: the clogging rate constant, as well as the bacteria concentration. 

Since the clogging process is a function of the bacteria concentration, the degree 

of retardation will be concentration dependant as has been seen in Figure 7.13. 

For both the linear and nonlinear models, the effect of higher bacteria 

concentrations lead to greater retardation of the bacteria plume. From the 

comparison of Figure 7.13 and Figure 7.7, it is evident that the source 

concentration will have a greater effect in the nonlinear model than in the linear 

model. The difference between the models is only in the clogging terms, which is 

shown below: 

the linear model (eqn. 5.13) has a clogging term defined by kcC ,and 
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the nonlinear model (eqn. 5.16) has a clogging term defined by keen . 
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7.2.3.7.Effect of Distributed and point sources 

One of the strong points of the GEM formulation is its ability to handle both 

distributed and point sources throughout the problem domain. Here typical 

bacteria profiles are projected for the following scenarios: 

I. Distributed sources with net growth conditions 

II. Distributed sources with net decay conditions 

III. Point sources with net growth conditions 

IV. Point sources with net decay conditions 

For the distributed sources, the following conditions were applied: 

initial source concentration (0.1 kg.m-3
) 

distributed source concentration (0.05 kg.m-3
) 

decay rate constant (36 x 10-3 h- I
) For net growth conditions 
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decay rate constant 

domain size 

(36 X 10-2 h- I
) For net decay conditions 

4 meters 

The results obtained are shown in Figure 7.14 and Figure 7.15 

For the point sources, the following conditions were applied: 

initial source concentration (0.1 kg.m-3
) 

distributed source concentration (0.01 kg.m-3
) 

decay rate constant 

decay rate constant 

domain size 

point source position 

(36 X 10-3 h- I
) For net growth conditions 

(36 x 10-2 h- I
) For net decay conditions 

50 meters 

25 meters 

The results obtained are shown in Figure 7.16 and Figure 7.17 

Whilst the results have not been tested against field data, the results reflect the 

typical profiles that is expected in this types of application. From a qualitative 

description, these profiles are consistent with theory. 

Since the capacity of the GEM to handle both distributed and point sources 

throughout the problem domain is one of its greatest advantage over other 

computational methods, further discussion of this computational procedure is 

provided here. 
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The recharge term in all the formulations presented (eqns. 5.12, 5.13, and 5.16) 

in this work takes into account both concentrated or point and distributed sources 

I sinks. This can be expressed mathematically as: 

I(x) 

Total 
Recharge 

Point 
sources I sinks 

+ 
Distributed 

sources I sinks 

(7.5) 

The Distributed source I sink term is either given as a constant value throughout 

the domain or it may be expressed as a function of the domain. Whereas point or 

concentrated sources are represented mathematically as: 

Np 

Jp(X) = I Qjb'(x- Xj) (7.6) 
j= l 

where Q is the strength of the i-th source or sink located at X i , and N p is the 

total number of sources I sinks. 

If there are point or concentrated sources I sinks , then we have to ensure that 

the effects of such sources I sinks are accounted for at the correct nodes and 

elements.To illustrate the computational method to account for point sources I 

sinks, consider a typical element R and its adjacent elements in the problem 

domain as shown in the Figure 7.18. 

Distributed Source 

ElementR -1 

Point 
Source 
Case 1 

Point 
Source 
Case 2 

Point 
Source 
Case 3 

Xj 2 

Element R ElementR+l 

Figure 7.18 The effects of Point sources I sinks on the element I s 
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In general, the contribution of the point sources to the nodal equations of a 

typical element can be expressed as: 

Case 1 -

Ne 

F;l = I Qj( Xj - x~ + T) 
j=l 

and (7.7) 

Ne 

F;2 = I Qj (x; - x j + T) 
j=l 

If the point source / sink is at the first node of element R, then, the point 

source / sink will effect element R -1 and element R. The resulting total 

recharge term for each of nodal equations will be: 

element R- 1 

node 1: 

T f R-I() T I"R- I T jR- I 
Ij j X = IIJ I + 12 2 

node 2 

'T' fR-I() 'T' I"R-I 'T' jR- I 
1 2j j X = 121J I + 122 2 

where 

Np 

I"R- I F R- I F R- I F R- 1 ~ Q ( R- I ~l ) 
J I = dl + pI = dl + L....J j x j - XI + 

j=1 

and 

Np 

j R- I FR- I F R- 1 FR- 1 ~ (R- I ~) 
2 = d2 + p2 = d 2 + L....J Qj X 2 - X j + I 

j = 1 

similarly for element R we have 
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Case 2-

element R 

node 1: 

Tljf/(x) = 1;1~R + 1;2f2R 

node 2 

Tzjf/(x) = Tzl~R + Tz2f2R 

where 
Np 

~R = Fd~ + Fp~ = F~ + I QJ Xj - xf + T) 
j = l 

and 

N p 

f/ = Fd~ + Fp~ = F:t~ + I QJ x: -x j + T) 
j = l 

where F~ represents the distributed source / sink 

If the point sources I sinks are between nodal points, then the only 

element affected will the element R. therefore the resulting nodal 

equations will be: 

element R 

node 1: 

1;jf/(x) = 1;1~R + 1;2f/ 

node 2 

Tzjf/(x) = 1:211/ + ~2f/ 

where 
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Case 3-

Np 

fIR = Fd~ + Fp~ = Fft + I Qj(Xj - XI
R + T) 

j=1 
and (7.13) 

Np 

f2R = Fd~ + Fp~ = Fd~ + I QAx: - Xj + T) 
j= ' 

If the point source I sink is at the last node of element R, then, the point 

source I sink will effect element R and element R + 1. The resulting total 

recharge term for each of nodal equations will be: 

element R 

node 1: 

1;jf/(x) = 1;1f..R 
+ 1;2// 

node 2 

7; jf/(x) = 7;1f.. R + 7;2f/ 

where 
Np 

f..R = Fd~ + Fp~ = Fd~ + L QA Xj - x j

R + T) 
j=1 

and 

Np 

f2 R = Fd~ + Fp~ = ~~ + L Qj (x: - x j + T) 
j=1 

(7.14) 

(7.15) 

Similarly for element R +1, we have 
element R+ 1 

node 1: 

1;j~R+I (x) = 1;,f..R+' + 1;2//+1 

node 2 

7;j~R+'(X) = 7;,f.. R+' + 7;2//+1 

where 
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Np 

j"R+I _ FR+I + FR+I = FR+I + ~ Q .(X . _ XR+I + T) 
J I - dl pI dl f..J J J I 

j=l 

and 
Np 

f R+I - FR+I + FR+l = FR+I + ~ Q .(X R+1 
- X. + T) 

2 - d2 p2 d2 f..J J 2 J 
j = l 

7.3 Summary 

(7.17) 

The results obtained show the general relative trends that could be associated with 

bacteria transport in porous media. The modelling of bacteria transport is complicated 

by a number of processes that affect bacterial transport behaviour. Several of these 

processes show inter-dependance and interactions between various parameters. The 

general trends observed were: 

~ Higher velocities lead to greater bacteria plume migration. 

~ Higher source concentrations show retarded plume migration, this results from 

the decrease in porosity at the beginning of the domain. However, the migrating 

plume will have a higher bacteria concentration. 

Substrate concentrations above the minimum promotes bacteria growth within 

the plume, resulting in higher bacteria concentrations within the plume. 

The effect of the decay rate constant is dependent on the substrate 

concentration. If the decay rate is greater than the growth rate, then the 

migrating plume will have a lower bacteria concentration. 

The growth and concentration of bacteria have a greater effect in reducing the 

porosity than the clogging processes of adsorption, sedimentation and sieving. 

The reaction order of the clogging process greatly influences the migration of the 

plume. For low source concentrations, higher orders have resulted in greater 

migration, whereas, for high source concentrations the plume will be more 

retarded. 
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Chapter Eight 

Conclusion and Recommendations 

The objectives of this study were to evaluate the influence of the various processes 

and parameters related to bacteria transport through porous media, and to broaden 

the application of the Green Element Method (GEM) to biologically reactive 

transport systems. 

To meet these objectives, the bacteria transport model proposed by Corapcioglu 

and Haridas(1985) was adopted. The governing partial differential equation was 

transformed into a Green Element Method Formulation. Three different GEM models 

were presented: 

• a constant porosity model - this model assumed that the porosity of the 

medium remained unchanged throughout the spatial and temporal 

domains. This model was used to test the accuracy of the GEM 

formulation by verifying it against an analytical solution. 

• 

• 

a variable porosity model - this model accounted for changes in 

porosity and the subsequent changes to velocity. This model was 

verified against the constant porosity model for an application in which 

the porosity changes were negligible. 

a non linear clogging model - in this model , the reaction order of the 

clogging term was changed to orders greater than unity. This resulted 

in the governing partial differential equation becoming a nonlinear 

partial differential equation . The numerical and computational 

procedures had to be modified to facilitate an iterative solution. This 

was successfully done using the Newton Raphson Algorithm. The 

model was verified against the constant porosity model in an 
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application where the changes to porosity were negligible, and the 

reaction order of clogging was set to unity. This model also accounted 

for changes to porosity and velocity. 

The verified models were simulated in various applications, to evaluate the impact 

of the various parameters. The following sections summarise the results of these 

simulations. 

Bacteria Transport 

The modelling of bacteria transport is complicated by a number of processes 

that affect bacterial transport behaviour. Several of these processes show 

inter-dependance and interactions between various parameters. The general 

trends observed were: 

~ Higher velocities lead to greater bacteria plume migration. 

~ Higher source concentrations show retarded plume migration, this 

results from the decrease in porosity at the beginning of the domain. 

However, the migrating plume will have a higher bacteria 

concentration. 

Substrate concentrations above the minimum promotes bacteria 

growth within the plume, resulting in higher bacteria concentrations 

within the plume. 

The effect of the decay rate constant is dependent on the substrate 

concentration. If the decay rate is greater than the growth rate, then 

the migrating plume will have a lower bacteria concentration . 

The growth and concentration of bacteria have a greater effect in 

reducing the porosity than the clogging processes of adsorption, 

sedimentation and sieving. 

The reaction order of the clogging process greatly influences the 

migration of the plume. For low source concentrations , higher orders 

have resulted in greater migration, whereas, for high source 

concentrations the plume will be more retarded . 
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It is evident that there are several critical and complicating features which 

need to be considered when modelling bacteria transport. In addition, the 

various constants and coefficients used in these models are very specific to 

the type of organism, and the chemical and physical properties of the 

subsurface environment. Most of these values are not directly measurable 

and need to be determined from experimental studies. 

Green Element Method 

~ the governing partial differential equations, both linear and non linear 

were easily transformed into the GEM formulation with no simplifying 

assumptions or restrictions, 

the variation of the various quantities within a typical element were 

represented by linear interpolation functions. 

the formulation allows for non uniform discretisation of the problem 

domain, 

the non linear model computation was easily facilitated using the 

Newton Raphson algorithm 

the formulation has the capacity to accommodate both distributed and 

point sources Isinks 

the hand calculations in the appendices show the ease of application 

of the Method and its extent of application. 

These points indicate that the Green Element Method is fairly powerful 

computational method, that can be used as a solution procedure for many 

applications, including nonlinear transient problems with multiple sources I 

sinks in the problem domain. 

Further study addressing the following aspects is recommended: 

1. Investigate the transport of bacteria in a domain where the substrate 

concentration is reducing due to consumption by the bacteria i.e a coupled 

bacteria - substrate system. 
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2. Development of a two dimensional GEM model, to determine the full extent of 

plume spreading and migration. 

3. Development of radial system formulation to study the effects at injection 

wells. 

4. Testing the models against field or experimental data 
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Appendix A 

Worked Example - Heterogenous Heat Transfer 

This example serves to illustrate the ease with which heterogenous problems can be 

solved using GEM. This example clearly shows the computational advantages and 

resulting accuracies achieved when compared to FEM. The GEM solution is compared 

to FEM solution presented by Burnett (1987). 

Statement of Problem 

Natural convective heat loss 

STEEL t COPPER ~ STEEL t 
q = 0.1 ~() ) ) ) T = O·C 

x = O x = 4{) x= 60 x = 100 

Figure A.1. Heat Conduction along a heterogenous rod, with convection from the 

lateral surface 

Figure A.1 depicts a thin, cylindrical rod, 1 m long, composed of two different materials: 

a center section 20 cm long made of copper, and two end sections, each 40 cm long 

made of steel. The circular cross section, with a radius of 2 cm. Heat is flowing into the 

left end at a steady rate of 0.1 cal / sec-cm2
. The temperature of the right end is 

maintained at a constant DoC. The rod is in contact with air at an ambient temperature 

of 20°C, so there is free convection from the lateral surface. The governing differential 

equation is can be expressed as : 

A-I 



d [ dT{ X)] hi [ ] 
- dx K{x) dx + A T{x) - Too = Q{x) B.1 

where, Q{x) is the internal heat source and is equal to zero. 

eal- em 
k = 0.12 ----:--

steel sec- em2 
0 C 

0-< X -< 40 

K{x) = 
eal- em 

k = 0.92----:--
copper sec- em2 °C 

40 -< X -< 60 

eal- em 
k = 0.12----

steel sec- em2 
0 C 

60 -< X -< 100 

and 

hi 4 cal - = 15x 10- 3 
A sec- em °C 

and 
hiT cal 
__ <Xl = 3x 10-3 3 

A sec- em 

GEM Solution 

Since one of the boundary conditions is given in ter.ms of flux, i.e. 

q{O) = 0.1 eal.s-1.em-2
, 

the GEM formulation will be developed to include the flux term. This formulation will be 

referred to as the GEM -Flux Formulation. 

Consider the situation where the diffusivity (K) varies with distance (x). Mathematically 

this could be represented by : 
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d d~ 
-(K{x))-t f(x) = 0 
dx dx-

l.e. 

dK(x) d~ d2~ 
dx . dx t K(x). dx2 ± F(x) = 0 

therefore 

d2~ f(x) dK(x) d~ 1 
=> dx2 = ± K(x) - dx . dx . K (x ) 

Application of the Green Element Method to the above problem: 

As before, the GEM formulation converts a differential equation (that is at least twice 

differentiable) into an integral form using Greens Second Identity. The application of 

GEM to solve the above differential equation requires the following steps: 

.. Integral representation of the governing differential equation 

.. Discretisation of the resulting integral equation over the problem domain 

.. A finite element type solution to determine the field variables 

We start by converting the governing differential equation into its integral form, using 

Greens 2nd Identity, which is formally represented as: 

rearrangmg 

X 2 dG X2 d 2¢ dG X 2 d¢ X 2 -f ¢ dx2 dx + f G dx2 dx + ¢ dx - G- = 0 
Xl Xl dx 

Xl Xl 

As before, 
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where 

1=1 Xi E[Xo,XL ] 

1 = 0.5 Xi = Xo or 

NOTE: This is where the flux term is introduced 

and r G d
2
¢ = r G(+ j{x) __ 1_. dK{x) . d¢)dx 

x, dx 2 x, - K{x) K{x) dx dx 

= r G j{x) dx- r(~. dK{x) d¢)dx 
x, K{x) x, K{x) dx dx . 

= r~[hl¢{X) _ hITCIJ]dx_ r(~.dK{X) d¢)dx 
x, K{x) A A x, K{x) dx dx 

The resulting equations from the above equation will depend on the type variation the 

Diffusivity (K), and temperature ( ¢ ) has within the domain (x). In this regard, the 

following types of variations are considered in this problem: 

~ for the temperature, we elect to use the linear interpolation function of : 

¢(x) = n j¢j = n ~ ¢le + n ~¢; 

for the diffusivity , we elect to use 
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This implies that K is constant within an element. 

where 
hi 

B e --- ~ 

AKe 
and 

-Gd
¢ X2 = ~(IX2 _ Xi 1+ k)( ~ ) -~ (Ix, - xii t k) (; ] 

dx Xl 2 Ke 2 e 1 

at node 1 

d ¢ X

2 

1 [ ( q J ( q) 1 - G dx = 2 (21) K - I K 
Xl e 2 e 1 

at node 2 

Therefore, the resulting GEM-Flux formulation for this application is 

( ) 
L. 1 

R + BY "' . + ~Ij • q - ~ F = 0 
Ij Ij '1") K ) K 1 

e e 
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where 

[
-I 211] 

Lij = -21 

I 

Tij = 1 J n j G(S'S)~S 
o 

1 [ 31 + 1 3~ + 21] 
- 6 31 + 21 31 + 21 

Discretising the problem domain into five equal elements, we have: 

Element I Element 2 Element 3 Element 4 ElementS 

2 3 4 5 

¢/ ¢; ¢12 
¢; ¢13 ¢; ¢14 ¢24 ¢IS 

q)) ) 2 2 3 3 4 4 5 
q2 q) q2 q) q2 q) q2 q) 

Since continuity exists between the adjacent elements, this implies 

¢/ = ¢I 

¢2' = ¢,2 = ¢2 

¢i = ¢,3 = ¢3 

¢{ = ¢,4 = ¢4 

¢24 = ¢,5 = ¢5 

¢: = ¢6' 

. 
I 

ql = q) 
I 2 

q2 = q, = q2 
2 3 

q2 = q, = q3 
3 4 

q2 = q, = q4 
4 5 

q2 = ql = q5 
5 

q2 = q6 

6 

¢; 

q; 

Note: If a domain is discretised into M elements, then the number of nodes = M+1. 

Since there are 2 equations per element, the number of equations will be 2 M. 

Taking continuity between adjacent elements into account, the resulting number 

of unknowns will be 2 X (M+ 1). This implies that at least two of the "unknowns" 
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need to supplied as boundary conditions. 

For the diffusivity interpolation chosen for this problem, we have 

-I KI+KI -2 K2 + K2 
K 1 2 = 0.12 K 1 2 = = 2 2 
-3 K3 + K3 -4 K4 + K4 
K 1 2 = 0.92 K 1 2 = = 2 2 
-5 K 5 + K 5 

K 1 2 = 0.12 = 2 

Since the recharge is a constant, this implies 

[- Ie] (20) F{ = F{ = Gole 1+2 = (3x 10-3)20 20+ 2 = 1.8 

~3 F;3 1.8 
1(3 = 1(3 = 0.92 = 1.957 

Therefore, 

[
-20 40] 

Lij = -40 20 

20[ 80 100] 
Tij = 6 100 100 

[-1 1] 
Rij = 1 -1 
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A step by step procedure showing how the element equations and the global matrix are 

assembled, is now given. Restating the GEM-Flux formulation for this application in 

matrix notation, we have 

( ) 
L.. 1 

R .. + BT. "' . + 1]. q - -;:::;- F = 0 
I] I] 'f'J K J K I 

e e 

Therefore the equations for a typical element N will be as follows: 

at node 1 

( ) Lll ( ) L12 1 n 
Rll + BT; 1 ¢n + -;::::;-. q n + R12 + BT;2 ¢n+l + -;::::;-. q n+l = -;::::;-~ 

Kn Kn Kn 

The resulting system of equations for the whole problem domain will be: 

Element 1 

node 1 

node 2 

- 0.667 ¢1 + 1.417 ¢2 + 333.33Q2 = 166.67 x 0.1 + 15 

Note: the entry of the known boundary conditions into the right hand side i.e all known 
quantities will be transferred onto the right hand side 
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Element 2 

node 1 

Element 3 

node 1 

node 2 

Element 4 

node 1 

node 2 

- O.667¢2 - 166.67q2 + 1.417¢3 + 333.33Q3 = 15 

1.417¢12 - 333.33Q2 - O.667¢3 + 166.67Q3 = 15 

- O.957¢3 - 21.74Q3 + 1.05¢4 + 43.478Q4 = 1.957 

- O.667¢4 - 166.67Q4 + 1.417¢s + 333.33Qs = 15 
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Element 5 

node 1 

node 2 

- O.667¢s - 166.67Qs + 333.33Q6 = 15+ 0 

1.417¢5 - 333.33Q5 + 166.67Q6 = 15+ 0 

Note: known values are transferred onto the right hand side of the equality. 

Here we demonstrate how the global matrix is assembled 

Let 

(R" + T;,Br = ~~ 
(lSI + T;,Br = ~~ 

(R12 + T;2 Br = ~; 

(lS2 + T;2 Br = ~~ 

where the following notation will apply 

P':- ~ Element 

~lJ .. .--- ~ 

Node Node variable 
(row index) (column index) 

Applying this notation to the current problem, where q, and ¢6 are given as the 

boundary conditions, we will show how the global matrix is constructed. Following 

standard matrix notation implies: 

~ all the coefficients of the unknown variables are entered into the coefficient 

matrix 
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~ the unknown variables form the vector matrix 

~ all the known quantities including the boundary conditions are entered into the 

right hand side matrix 

~\ ~~ 

Pz11 Pz~ 

0 ~~ 

0 P2~ 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Coefficient 
Matrix 

L~2 
0 0 

KI 
L~2 

0 0 
KI 
L~I 

~; 
L~2 

KI KI 
L~I 

Pz; 
L~2 

K2 K2 

0 ~~ 
L~I 
K3 
L~I 

0 Pz~ 
K3 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

~~ 

Pz~ 

~~ 

P2~ 

0 

0 

0 

0 

0 

0 

L~2 
K3 
L~2 
K3 
L~I 
K4 
L~I 
K4 

0 

0 

Vector of 
Unknowns 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

~~ 
L~2 
K4 
L~2 

Pz~ 
K4 

~~ 
L~I 
K5 

Pz~ 
L;I 

K5 

A-ll 

0 

0 

0 

0 

0 

0 

0 

0 

L~2 
K5 
L;2 

K5 

¢I 

¢2 

q2 

¢3 

q3 
• = 

¢4 

q4 

¢5 

q5 

q6 

Vector of 
Known 

Quantities 

F,I 
I L~I --;:::;- - -;:::;- q I 

KI KI 
F,I 

2 L~I 
--;:::;- - -;:::;-q I 
KI KI 

F,2 
I 

K2 
F,2 

2 

K2 
F,3 

I 

K3 
F,3 

2 

K3 
F,4 

I 

K4 
F,4 

2 

K4 
F;5 5 
--;:::;- - ~ 2 ¢ 6 
K5 
F2

5 
5 

--;:::;- - Pz2 ¢ 6 
K5 



The resulting global matrix is 

-0.667 1.417 33333 0 0 0 0 0 0 0 ¢1 31.67 

1.417 -0.667 166.67 0 0 0 0 0 0 0 ¢2 4833 

0 -0.667 -166.67 1.417 33333 0 0 0 0 0 q2 15.00 

0 1.417 -33333 -0.667 166.67 0 0 0 0 0 ¢3 15.00 

0 0 0 -0.957 -21.74 1.05 43.478 0 0 0 q3 1.957 
• 1.957 0 0 0 1.05 -43.478 -0.957 21.74 0 0 0 ¢4 

0 0 0 0 0 -0.667 -166.67 1.417 33333 0 q4 15.00 

0 0 0 0 0 1.417 -33333 -0.667 166.67 0 ¢S3 15.00 

0 0 0 0 0 0 0 -0.667 -166.67 33333 qs 15.00 

0 0 0 0 0 0 0 1.417 -33333 166.67 q6 15.00 

Table A.1. Table of GEM Results and FEM results (Burnett, 1987) 

Node GEM FEM FEM 

5 elements 5 elements 44 elements 

discretization discretization discretization 

Temperature Flux Temperature Flux Temperature Flux 

1 40.95 1 40.94 0.074 40.94 0.098 

2 28.49 0.056 28.47 0.061 28.47 0.058 

3 20.66 0.042 20.61 0.044 20.61 0.042 

4 19.75 0.042 19.71 0.044 19.71 0.042 

5 12.04 0.054 12.03 0.059 12.03 0.054 

6 0 0.096 0 0.072 0 0 .092 
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Figure A.1 Temperature Profile Comparison of GEM and FEM Results 
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Figure A.2 Flux Profile Comparison of GEM and FEM Results 
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General Comments : 

It can be clearly seen from Figure B.2, some of the advantages offered by the Green 

element method, in particular: 

~ It offers the same accuracy of the computer generated FEM solution compared 

to the hand calculations of the GEM 

A simple 5 element discretisation in the GEM formulation offers the same 

accuracy of a 44 element discretisation in the FEM formulation in the 

computation of the flux. Note that this is achieved with even the most basic 

interpolation relationship for the diffusion coefficient term (Le. average values 

within the element) 

The GEM Flux formulation overcomes the problem of discontinuties that is 

generally experienced with the typical gradient formulation d¢ 
dx 
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Appendix B 

Worked Example - Biofilm Mass Transfer 

A biofilm is a mixed population of micro-organisms that are part of a stable thin film. 

Inside the biofilm, organic substrates are decomposed. The substrate must diffuse from 

the exterior solution into the biofilm. In certain biofilms along solid surfaces, the 

decomposition of the substrate within the biofilm can be assumed to be zero order 

when the substrate concentration is very high, i.e. 

where A is the substrate 

The differential equation governing the concentration of the substrate within the biofilm 
is: 

for the following boundary conditions of : 

the analytical solution is given by : 

k
O 

[X2 1 C =_A_ ---Lx +C 
A D L AO 

eff 

dCA = k~ [~_ 1] 
dx Deff L 
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GEM Solution: 

The GEM formulation converts a differential equation (that is at least twice 

differentiable) into an integral form using Greens 2nd Identity. The application of GEM 

to solve the above differential equation requires the following steps: 

• Integral representation of the governing differential equation 

• Discretisation of the resulting integral equation over the problem domain 

• A finite element type solution to determine the field variables. 

We start by converting the governing differential equation into its integral form, using 

Green's second identity, which is formally represented as: 

d 2G 
where dx 2 is the complementary differential equation, and is given by 

d 2G 
dx 2 = o( X - Xi) , and which has a fundamental s,olution of 

G = ~ (Ix - Xi I + k) , and its first derivative with respect to x is : 

dG l[ 
dx = "2 H( x - Xi) - H( Xi - x)] ,where, H is the Heaviside function, and has the 

following properties: 

H(x- x;} = {~ 

Therefore Green's second function becomes 
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where, by the properties of the Dirac-Delta function, we have 

d¢ d¢1 also let - = fna' and, - = fn L ' therefore we have , dx Xo 't' dx XI 't' 

-22¢; + [H(XL - x;)- H(x; - XJ]qJL - [[H(Xo - x;)- H(x; - xo)]qJo]- (lx L - x;l+ k)qJL 

+(Ixo - x;l+ k)qJo + ~ fL(lx- x;l+ k)~ = 0 
Deff Xo 

Discretising the domain into M elements, we have, 

M -22¢ie + [H(x~ - xn - H(x: - xn]rp1- [H(x~ - xn - H(x: - x~)]rp; 

~l -(lx~ - x71 + k' )9'~ + (Ix; - x71 + k' )9'; + k~ f' (Ix' - x71 + k')dx 
Dejf Xo 

=0 

For equally discretised elements of length I (i.e k = I), a node by node analysis will 

result in the following: 

at node 1, where Xi = XI' we have 
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at node 2, where Xi = X 2 , we have 

In matrix notation, the above equations can be represented as 

M 

L Rij¢j + Lijf/Jj + F; = 0 
e=1 

where 

[-1 1] 
Rij = 1 -1 and 

For constant source I sink, we have that, 

e e(- rJ F; = aol 1+ 2" 

e 
where a =_A 

, 0 D 
ejJ 

-
Discretising the problem domain into 4 equal elements, we have r = I = k = 025L 

Applying the following conditions to the example: 

k O 
_ A_ = 0.1 
D eff 

L = 1, 

Therefore 
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[025 
Lij = 050 

-050] 
-025 

F;e = F2
e = 0.0094 

The resulting global matrix is 

025 1 -050 0 0 0 0 0 fPl 0.0094 

050 -1 -025 0 0 0 0 0 ¢2 -1.0094 

0 -1 025 1 -050 0 0 0 fP2 -0.0094 

0 1 050 -1 -025 0 0 0 ¢3 -0.0094 
• = 

0 0 0 -1 025 1 -050 0 fP3 -0.0094 

0 0 0 1 050 -1 -0.25 0 ¢4 -0.0094 

0 0 0 0 0 -1 0.25 1 fP4 -0.0094 

0 0 0 0 0 1 050 -1 ¢s -0.0094 

A matrix solver is used to find a solution to the above matrix. 

Table B.1 Comparison of Results of GEM Solution and Analytical Solution 

Domain Size Analytical Solution GEM Solution 

L Primary Flux Primary Flux 

Variable¢ rp Variable¢ rp 

0.00 1.00 -0.100 1.00 -0.100 

0.25 0.978 -0.075 0.978 -0.075 

0.50 0.962 -0.050 0.962 -0.050 

0.75 0.953 -0.025 0.953 -0.025 

1.00 0.950 0.00 0.950 0.00 
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Figure B.1 Graphical Comparison of GEM and Analytical Solutions 

B-6 



Appendix C 

Programme Details 

In this work, three computer programmes were developed to simulate the three GEM 

formulated models for bacteria transport through porous media. Herein a brief 

description of the three programmes, and sample input and output files are 

provided. These programmes, coded in Fortran, were developed from a core 

programme developed by Onyejekwe (2000). All three programmes and the relevant 

input data files are provided in the attached diskette. 

Programme 1: BactCP 

This programme simulated the constant porosity bacteria transport model 

which was developed to test the accuracy of the GEM formulation against 

analytical solutions. This model described by equation 5.12, assumed that 

the porosity of the porous media (aquifer) remained unchanged throughout 

the spatial and temporal domains. In this programme two coupled equations 

are solved simultaneously: 

the governing transport model (linear POE) described by 

equation 5.12, and 

the adsorbed species continuity equation (initial value ODE) 

described by equation 5.7. 

The computational algorithm and programme flowsheet are given in Figure 

5.3 and Figure 5.5 respectively. The results obtained from this programme 

are shown graphically as the GEM solutions in Figures 6.1 and 6.2. 
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Programme 2: BactVaripor 

This programme simulated the variable porosity bacteria transport model. 

This model described by equation 5.13, accounted for the changes in 

porosity of the porous media (aquifer) and the subsequent changes to the 

flow velocity throughout the spatial and temporal domains. In this 

programme a set of coupled equations are solved simultaneously: 

the governing transport model (linear POE) described by 

equation 5.13, 

the adsorbed species continuity equation (initial value ODE) 

described by equation 5.7, 

equation 5.9, which calculates changes to the porosity due to 

bacteria growth and the clogging process, 

equation 5.11, which calculates the change to flow velocity 

due to porosity changes. 

The computational algorithm and programme flowsheet are given in Figure 

5.3 and Figure 5.5 respectively. Sample input data files and resulting output 

files shown in Figures C.1 and C.2 respectively. 
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Programme 3: BactNLclog 

This programme simulated the nonlinear clogging bacteria transport 

model. This model described by equation 5.16, is based on the 

assumption that the clogging process is described by a nonlinear 

clogging term. In addition, this model also accounts for the changes in 

porosity of the porous media (aquifer) and the subsequent changes to the 

flow velocity throughout the spatial and temporal domains. In this 

programme a set of coupled equations are solved simultaneously: 

the governing transport model (nonlinear POE) described by 

equation 5.16, 

the adsorbed species continuity equation (initial value ODE) 

described by equation 5.14, 

equation 5.9, which calculates changes to the porosity due 

to bacteria growth and the clogging process, 

equation 5.11, which calculates the change to flow velocity 

due to porosity changes. 

The governing transport equation is a nonlinear partial differential 

equation. This requires an iterative numerical and computational 

procedures to facilitate a solution. This was successfully done using the 

Newton Raphson Algorithm. The computational algorithm and programme 

flowsheet are given in Figure 5.4 and Figure 5.6 respectively. The results 

obtained from this programme are shown graphically in Figure 7.12 and 

Figure 7.13. 

C - 3 



1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 
26. 

List of Typical Input Requirements for 

Bacteria Transport Programmes 

READ (5,'(A)') TITLE 
READ (lCR,*) KEY1,KEY2,KEY3 
READ(5,*) DIFFS = substrate diffusivity 

READ(5,*) DIFFB = bacteria diffusivity 

READ(5,*) velx = velocity 

READ(5,*) xmgr = maximum growth rate constant 

READ(5,*) xpore = porosity of medium 

READ(5,*) chmgr = Ks = conc. At which growth rate is half the maximum 

READ(5,*) tcy = true cell yield 

READ(5,*) bdr = bacteria decay rate 

READ(5,*) clog = clogging rate 

READ(5,*) sden = soil density 

READ(5,*) bden = bacteria density 

READ(5,*) xka = adsorption coefficient 

READ(5,*) cs = substrate concentration 

READ(5,*) xky = declogging rate 

READ(5,*) xn = clogging reaction order 

READ(5,*) RMS = Convergence tolerance , 
NSTOP = Maximum number of iterations allowed 

READ(5,*) INAT = 1 if it is a time-dependent problem; = 0 if it is steady 
state 

IF(INAT .EQ. 1) THEN 
READ(ICR,*) NSUB = Number of divisions of the time dimension , 

TIME = Initial time , 
ICOND = 1 if the boundary data change with time; = 0 if boundary 

data are steady 
READ(ICR,*) NWRITE(I) = the number of time steps to skip before solution is 

printed, 
TDIV(I) = is the time step of each time subdivision, 
TLEVEL(I) = is the time limit of each time subdivision, 

READ(5,*) ISCHEME = 2 for the 2-level time scheme; = 3 for the 3-level time 
scheme 

READ(5, *) THETA = Finite difference time weigthing factor; it takes any 
value between 0.0 and 1.0 for the 2-level scheme and 
between 1.0 and 2.0 for the 3-level scheme. 

READ(5,*) NSEG = Number of segments into which the 1-D spatial 
dimension is divided 

READ (5,*) X(1),NSP(1) 
READ (5,*) X(IEND),NSP(M) 

X is the x-coordinate of the node of the segment 
NSP = Number of additional nodes generated excluding 
the end nodes 
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27) 
28) 

29) 

30) 
31) 

32) 

33) 

34) 

READ(5,*) NTYP(1),TMP 
READ(5,*) NTYP(2),TMP 

NTYP = 

TMP = 
READ(5,*) NFINIT = 

IF(NFINIT .EQ. 0) THEN 
READ(5, *) POT ELSE 
READ(5,*) NNODES = 

IF(NNODES .GE. 1) THEN 
READ(5,*) J,U 

READ(5, *) nrech 
IF(NRECH .EQ. 0) THEN 

READ(5,*) RAIN 
READ(5,*) npoint 

IF(NPOINT .GE. 1) THEN 
READ(5,*) K,V 

for first node for first equation 
for last node for first equation 
1 if the external node is a flux type, or 2 if it is a 
Dirichlet type 
is the value of the boundary data at the external node 
1 if the data at initial time at the nodes are read from 
the data file; = 0 if the data at initial time are uniform 
or given by a functional relationship. 

READ(5,*) (CHIO(I) ,1=1 ,NGLOBE) 
No. of external of nodes at which initial flux values 
should be specified 

Specify node number, and initial flux value the where J 
= Node number; U = flux Value 

then identify the strength and position of the point 
sources where K is the location and V is the 
magnitude of the point source 
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I-D. Bacteria Transport - variable porosity 
o 0 0 Key 1, Key2, key3 
2.e-2 DIFFS 
2.e-2 
1.0 
15.e-2 
0.6 
2 
0.04 
36.e-3 
23.4 
1740 
1000 
1 
1.e-2 
1.566 
1.e-6 4 
1 
1 0 0 
1 0.5 24 
2 
0.67 
1 
0.0 39 
4 0 
2 1.e-1 
2 0.000 
o 
0.0 
o 
1 
1 
2 1.e-1 

DIFFB 
VELX 
XMGR 
XPORE 
XKS 
TCY 
BDR 
CLOG 
SDEN 
BDEN 
XKA 
CS 
XKY 
convergence tolerance number of iterations 
Inat 
Nsub initialtime ICOND 
nwrite tdiv tlevel 
I SCHEME 
theta 
Nseg 
XminAddnode 
length nodes generated 
bc(1),node1 ntyp(l)= 1 or 2(fluxldirichlet) 
bc(2), node2 ntyp(2)=1 or 2(fluxldirichlet) 
OOnite 
pot 
nnodes 
nrech 
number of point sources 

Figure C.1 Sample Input Data File for BactVaripor 
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I-D. Coupled Bacteria Transport problem- Variable porosity 
substrate diffusivity 2.000000E-02 
bacteria diffusivity = 2.000000E-02 
velocity 1.000000 
max. growth rate contant 1.500000E-01 
porosity = 6.000000E-01 
Xks = 2.000000 
true cell yield = 4. 000000E-02 
bacteria decay rate 3. 600000E-02 
clogging rate = 23.400000 
soil density = 1740.000000 
bacteria density 1000.000000 
adsorption coefficient = 1.000000 
substrate concentration = 1.000000E-02 
declogging rate 1.566000 
...... NUMBER OF NODES = 41 

... ... NATURE OF BOUNDARY CONDS. (STEADY=O; UNSTEADY=l) = 0 
INITIAL TIME = .0000; TIME LIMIT = 24.0000 

.. ... TIME .... . = 24.0000 
Node No. Location Primary Flux Porosity 

Variable 
1 .000 .1000E+00 -.5453E-01 .5991E+00 

2 .100 .9469E-01 -.5163E-01 . 5992E+00 

3 .200 . 8967E-0 1 -.4889E-01 . 5992E+00 

4 .300 .8491E-01 -.4630E-01 . 5993E+00 

5 .400 . 8040E-0 1 -.4386E-01 . 5993E+00 

6 .500 .7613E-01 -.4163E-01 .5993E+00 
7 .600 . 7207E-01 -.3975E-01 . 5994E+00 
8 .700 .6816E-01 -.3857E-01 . 5994E+00 
9 .800 .6431E-01 -.3855E-01 . 5994E+00 
10 .900 .6039E-01 -.4021E-01 .5995E+00 
11 l.000 .5621E-01 -.4371E-Ol . 5995E+00 
12 1.100 .5160E-Ol -.4882E-Ol . 5996E+00 
13 1.200 .4643E-Ol -.5436E-Ol . 5996E+00 
14 1.300 .4074E-01 -.5936E-Ol . 5997E+00 

Figure C.2 Sample Output File for BactVaripor 
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15 1.400 .3466E-Ol -.6142E-Ol . 5997E+00 
16 l.500 .2851E-Ol -.6194E-Ol . 5998E+00 
17 1.600 .2251E-Ol -.5528E-Ol . 5998E+00 
18 1.700 . 1724E-Ol -.5490E-01 . 5999E+00 
19 1.800 .1230E-Ol -.3143E-Ol . 5999E+00 
20 1.900 .1109E-Ol -.3978E-02 . 5999E+00 
21 2.000 .1022E-Ol -.1514E-Ol . 5999E+00 
22 2.100 . 8277E-02 -.1987E-Ol . 5999E+00 
23 2.200 .6594E-02 -.1405E-Ol . 5999E+00 
24 2.300 .5417E-02 -.9729E-02 .6000E+00 
25 2.400 .4604E-02 -.6708E-02 .6000E+00 
26 2.500 .4041E-02 -.4714E-02 .6000E+00 
27 2.600 .3636E-02 -.3482E-02 .6000E+00 
28 2.700 .3326E-02 -.2798E-02 .6000E+00 
29 2.800 .3064E-02 -.2505E-02 .6000E+00 
30 2.900 .2816E-02 -.2484E-02 .6000E+00 
31 3.000 .2561E-02 -.2631E-02 .6000E+00 
32 3.100 .2288E-02 -.2849E-02 .6000E+00 
33 3.200 . 1993E-02 -.3026E-02 .6000E+00 
34 3.300 . 1685E-02 -.3126E-02 .6000E+00 
35 3.400 . 1375E-02 -.2996E-02 .6000E+00 
36 3.500 .1084E-02 -.2906E-02 .6000E+00 
37 3.600 .8150E-03 -.2190E-02 .6000E+00 
38 3.700 .6061E-03 -.2680E-02 .6000E+00 
39 3.800 .3880E-03 .1014E-03 .6000E+00 
40 3.900 .3486E-03 -.5451E-02 .6000E+00 
41 4.000 .OOOOE+OO .1006E-Ol .6000E+00 

Figure C.2 Sample Output Data File for BactVaripor - continued 
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