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ABSTRACT 

 

Metabolic rate (MR) and digestive duration are thermally dependant, and energy usage 

changes as body temperature (Tb) changes.  Increased Tb during digestion causes a rapid 

increase in VO2 and a shorter postprandial metabolic response known as specific dynamic 

action (SDA).  SDA is the additional energy expended above standard metabolic rate 

(SMR) to carry out functions associated with meal digestion and assimilation.  SDA is 

affected by prey size, prey type and body mass (Mb).  Liquid meals require less energy to 

digest and assimilate than intact prey items resulting in a lower metabolic scope and 

reduced postprandial metabolic response.  Digestive efficiency and metabolism are also 

affected by the level of dietary specialization which can lead to increased digestive 

efficiency in terms of duration and energy used for digesting preferred prey items.  Here, I 

investigated the effects of Mb, Tb and ontogeny on standard and digestive MR of two 

dietary specialists, Dasypeltis scabra and D. inornata.  Dasypeltis scabra, found 

throughout South Africa, and D. inornata, endemic to the eastern parts of South Africa and 

western part of Swaziland, digest only the liquid contents of freshly laid bird eggs and 

should have a lower energy cost of digestion and assimilation than other snake species 

consuming intact prey containing bones, fur or chitinous carapace.  To test the effect of 

changes in Tb on the metabolic response of Dasypeltis, pre- and postprandial metabolic 

responses of adult D. inornata and adult and neonate D. scabra were compared.   SMR and 

SDA were quantified at five ambient temperatures 20, 25, 27, 30, 32°C using closed 

system respirometry.  SMR was measured for 3 days twice a day at 08h00 and 20h00.  

Thereafter, snakes were fed a meal of chicken egg equivalent to 20% of Mb and oxygen 

uptake (VO2) was measured for an additional 5 days at 08h00 and 20h00,  and then once a 

day at 08h00 for an additional 7 – 10 days.  Increased Tb resulted in increases in metabolic 

response variables for all groups.  Variation in Tb significantly affected SDA (kJ kg
-1

) of 

D. scabra adults and neonates and D. inornata adults.  There were few significant 

interspecific and ontogenetic differences across all temperature trials.  Within five days 

after meal consumption for all groups at 32°C, postprandial VO2 rates peaked at 3.16 - 3.73 

times preprandial rates (scope), lower than most other snake species.  The optimal 

digestion temperature appears to be around 32°C in terms of duration, but may be higher to 

optimize digestion.  Across the range of temperatures (20 - 32°C) and masses (3.98 – 

71.33g), the duration of significantly elevated VO2 was on average 1.5 - 2 days longer for 
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D. scabra adults and neonates than D. inornata.  Digestion duration ranged from 6.5 - 13.5 

days for D. inornata and from 7.5 - 16.5 days for D. scabra adults and neonates.  Digestive 

duration was longer for D. scabra than other snake species that consume meals of intact 

prey of similar size, at the same temperature.  Dasypeltis species expended less total 

energy for digestion and used a smaller proportion of total energy consumed for digestion 

than other snake species at similar temperatures.  Lower maintenance and digestive costs 

suggest that energy is conserved for allocation to other functions during periods of low 

prey availability.  In addition, Dasypeltis species may rely on thermoregulation to 

capitalize on reduction in energy output and to increase energy savings between meals.   
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Chapter 1 – Literature Review 

 

1.1 Introduction 

 

In ectotherm physiology, various extrinsic and intrinsic factors such as environmental 

condition, photoperiod, circadian rhythm and the state of arousal/stress affect physiological 

systems (Cano and Nicieza 2006; de Souza et al. 2004; McDonald 1976; Peterson 1987; 

Stevenson et al. 1985).  Temperature and metabolic rate are important factors that 

influence ecology and other biological functions (Angilletta et al. 2002b; Huey 1982; 

Skoczylas 1970).  Metabolic rate is thermally sensitive (Lillywhite 1987), and changes in 

body temperature (Tb) can affect biochemical reaction rates (Seebacher and Franklin 

2005).  The highly labile nature of a reptile‟s Tb and the sensitivity of biochemical 

processes to changes in Tb suggest that some level of thermoregulation is critical to 

survival and performance (Blouin-Demers and Nadeau 2005; Cowles and Bogert 1944; 

Hardy 1979).   

Reptilian Tb is affected by numerous factors linked to behavioural 

thermoregulation. These factors include reproductive state (Hutchison et al. 1966), 

thermoregulation differences between genders (Brown and Weatherhead 2000), thermal 

inertia related to body mass (Mb; Tanaka 2005), ecdysis vs. nonecdysis (McDonald 1976), 

digestive state (Stevenson et al. 1985), environmental factors (Christian and Bedford 1996) 

and season (Diaz 1997; Kiss et al. 2009).  In turn, variation in Tb affects overall 

performance with respect to behavioural and physiological functions (Huey and Kingsolver 

1989; Lillywhite 1987; Seebacher 2005).  Locomotion (Cano and Nicieza 2006; Stevenson 

et al. 1985), metabolism and digestive efficiency (Greenwald and Kanter 1979; Regal 

1966; Secor et al. 2007), juvenile mortality (Brown et al. 2004), foraging (Van Damme et 

al. 1991), growth (Andrews 1982; Angilletta 2001a) and total activity time (Melville and 

Swain 1997) are regulated by a reptile‟s ability to maintain Tb at or near an optimal level.  

Gender determination and hatchling success, while not directly regulated by Tb, are 

temperature dependent in some oviparous species during embryonic development (Janzen 

and Paukstis 1991) and can be affected by parental brooding which increases the 

incubation temperature (Hutchison et al. 1966). 

The relationship between a reptile‟s Tb and performance is described by an 

asymmetric function known as a performance curve (Figure 1.1).  Performance curves 
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illustrate the thermal sensitivity of a physiological process and the relative performance of 

the reptile over a range of Tb known as the performance breadth (Angilletta 2001b; Huey 

and Kingsolver 1989).  Optimal performance of physical and biochemical processes is 

achieved at a specific Tb known as the optimal temperature (To; after Blouin-Demers et al. 

2003) or within a restricted range of preferred temperatures (Tset after Hertz et al. 1993; 

delimited by Tsetmin and Tsetmax ).  Optimal performance can vary for different functions and 

therefore, different processes can have different distinct To (Du et al. 2000; Van Damme et 

al. 1991; Xu et al. 1999).  The critical thermal limits, delimited by CTmin and CTmax (Huey 

and Stevenson 1979) are associated with the extreme ends of the tolerance zone. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Performance curves illustrating the variation between a narrow and wide 

performance breadth and the optimal performance range on either side of the optimal 

temperature (To) at which performance is maximized.  Critical lethal temperatures, 

delimited by CTmin and CTmax form the upper and lower boundary limits of the tolerance 

zone.  (Adapted from Huey and Stevenson, 1979; for variation in curve shape see Huey 

and Kingsolver, 1989). 
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The performance curve illustrates that the rate of a physiological process increases 

over a range of Tb up to To and then declines beyond that point (Angilletta et al. 2002a; 

Huey 1982).  Optimal temperatures for reptilian biological functions generally vary 

between 25 and 35 C (Al-Johany and Al-Sadoon 1996; Avery 1982; Bennett 2004; Du et 

al. 2000).  Body temperatures above 35 C can lead to increased stress related to an 

overload in heat gain and a Tb above 40 C is often lethal (Withers 1992).   

Variation in To for different performance functions suggests that not all processes 

are being optimized at the same time (Xiang et al. 1996).  For example, in the Grass 

Lizard, Takydromus septentrionalis, To for sprint speed was 32 C, whereas To for food 

passage was 36 C (Xiang et al. 1996).  Ecologically, this may impart a selective and 

energetic advantage.  Reducing energetic demands for optimization of a specific function 

and instead selecting a preferred body temperature (Tsel or Tpref) which allows adequate 

functioning of multiple processes instead of optimal functioning of a single process can 

occur (Du et al. 2000; Huey 1982).  Theoretically, To is selected to maximize fitness over 

the performance breadth, but in reality many ectotherms do not achieve To because most 

are imperfect thermoregulators and experience a range of Tb resulting in differences in 

asymmetry of performance breadths (Martin and Huey 2008). 

Performance breadths vary intra- and interspecifically for the same physiological 

process (Angilletta et al. 2002a), which affects species adaptability to thermal changes in 

the environment, their distribution and overall success (Glanville and Seebacher 2006).  

Selection of thermal environments that are relatively stable result in an individual 

experiencing less variation in Tb (Huey 1991) and a narrower performance breadth 

(Gilchrist 1995).  Conversely, heterogeneous environments can cause large fluctuations in 

Tb, increased phenotypic flexibility and a wider performance breadth (Kassen 2002).  In 

closely related species with overlapping distributions, the species with a larger distribution 

experiencing greater environmental heterogeneity should develop a wider performance 

breadth as a more successful strategy (Huey and Hertz 1984).  

A thermally constant environment should favour a species capable of achieving 

specific To more often within a narrow temperature range (Blouin-Demers and Nadeau 

2005).    This trade-off between performance breadth and To in reptiles, referred to as the 

„jack-of-all-temperatures is a master of none‟ hypothesis (Huey and Hertz 1984), is also 

viewed as a plausible explanation for the selection of a specialist versus generalist strategy. 

If costs associated with flexible responses to environmental conditions outweigh benefits 
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selective pressures would increase towards specialization (Gilchrist 1995; Huey and 

Slatkin 1976).  Therefore, measuring performance across a range of temperatures for 

individuals and populations is important not only to determine the adaptive capacity to 

temperature changes but to assess the degree of flexibility within a trait that may have long 

term implications to the survival of a species.   

The adaptive capacity known as phenotypic flexibility is defined as changes in an 

individual‟s phenotype related to the degree of plasticity in the expression of the genotype.  

It is considered an adaptive response to rapid increases in environmental heterogeneity 

(Seebacher 2005).  The ability to adjust to increasing environmental stochasticity and then 

quickly reverse the adjustment may impart a selective advantage (Piersma and Drent 

2003).  In contrast, populations with limited behavioural, physiological or morphological 

trait flexibility would have a minimal response to rapid environmental shifts (Bacigalupe et 

al. 2004).  Thus in homogeneous environments, selective pressures on trait flexibility 

decrease if costs associated with increased flexibility are greater than the advantages 

(Sinclair et al. 2006). 

Studies of the impact of phenotypic flexibility have recently focused on 

metabolism, defined as the energy expended at a cellular level for the biochemical 

synthesis, transportation and assimilation of nutrients (Braefield and Llewellyn 1982).  

Metabolic rate (MR), the energy used per unit of time and for the breakdown of materials, 

varies inter- and intraspecifically.  Metabolic rate is influenced by changes in Tb which can 

affect other life-history traits (Angilletta 2001b).  In ectotherms, and specifically snakes, 

sensitivity to changes in temperature is more pronounced than in endotherms because they 

rely predominantly on external sources for heating and cooling (Withers 1992).  Studies 

show that in reptiles, in particular, temperature shifts significantly affect MR (Dorcas et al. 

2004; Zaidan and Beaupre 2003) and digestion (Secor 2009). 

   

1.2 Metabolism 

 

Metabolism and associated components, including digestive assimilation and efficiency, 

are measured in three ways (Schmidt-Nielsen 1997):  

1. The difference between total energy intake and energy excreted in faecal matter and 

urine. 

2. The determination of total heat production of the animal. 
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3. The volume of oxygen consumed in oxidative processes. 

Various endogenous and exogenous factors can affect a reptile‟s MR including, Tb (Al-

Johany and Al-Sadoon 1996), ecdysis (Thompson and Withers 1999), digestion (Secor and 

Faulkner 2002), reproductive state (Finkler 2006), season (Southwood et al. 2006), time of 

day (Roe et al. 2004), age (McCue and Lillywhite 2002), gender (Beaupre and Zaidan 

2001) and Mb (Dorcas et al. 2004).  In addition, the size, type and content of a meal also 

influence MR during digestion (Bontrager et al. 2006; Janes and Chappell 1995; Secor et 

al. 2007; Toledo et al. 2003).  Larger prey items and intact prey that contain bones, feathers 

or fur have been shown to increase MR relative to digestion of liquid or small meals 

(Boback et al. 2007; Secor 2003).  Metabolic rate increases when Tb increases and is 

influenced by the process of ecdysis, digestion and reproductive state.  Season affects MR 

indirectly.  Factors associated with changes in season, including temperature shifts, 

resource availability and activity levels influence total energy available, energy consumed 

and energy used (Andrade et al. 2004; Bennett and Dawson 1976). The two most 

influential and widely studied factors that affect MR are Mb and Tb.   

Much of the variation in MR is attributable to Mb.  Metabolic rate scales 

allometrically to Mb illustrated by the equation MR = aM
b
, where 'a' is the mass 

coefficient, 'M' is mass and 'b' is the mass exponent (Withers 1992).  If „b‟ = 1, then MR 

would be directly proportional to Mb, but if „b‟ varies from one then MR is not directly 

proportional to Mb and the relationship is not linear.  The relationship between Mb and MR 

is most often curvilinear (Withers 1992).  As Mb increases, whole animal MR increases 

(Bennett and Dawson 1976; Roe et al. 2005) but not at the same rate, an indication of why 

„b‟ is not usually equal to one.  To factor out the effect of Mb on MR, mass-specific MR is 

used for intra- and interspecific comparisons.  The effect of Mb can be accounted for by 

making the relationship linear using the equation (log10 MR) = (log10 a) + b(log10 Mass).  

Variation in MR can then be analyzed intra and interspecifically.  

The existence of a universal value for the mass exponent continues to be debated 

(Gillooly et al. 2001; Kleiber 1975; White et al. 2006).  Use of a standardized mass 

exponent of 0.75 or 0.67 is no longer broadly accepted for most reptiles, mammals or birds 

as it is highly variable between species (Andrews and Pough 1985; McNab 2008; White et 

al. 2007).  For reptiles, the mass exponent varies considerably between 0.50 and over 1.0 

(for example see Andrews and Pough 1985; Maxwell et al. 2003; Secor and Boehm 2006; 

Thompson and Withers 1992); suggesting that the relationship between and within 

reptilian groups is not linear, and MR is not directly proportional to Mb. 
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 Variation in MR is also affected by digestive state and activity level.  Standard 

metabolic rate (SMR) is the baseline measurement of metabolic rate in a postabsorptive 

resting reptile in the inactive phase of their daily activity cycle at a specified temperature 

(Withers 1992).  The increase above SMR related to digestion in an absorptive reptile is 

known as specific dynamic action (SDA; Coulson and Hernandez 1979; Jobling and 

Davies 1980; Secor 2009).  

 

1.2.1. Standard Metabolic Rate and Resting Metabolic Rate 

 

In reptiles, the minimum energetic requirement to sustain vital physiological functions or 

the maintenance cost of survival is SMR (Bedford and Christian 2001; Bennett and 

Dawson 1976).  Standard MR can be measured by the volume of oxygen (VO2) consumed, 

carbon dioxide produced or both using indirect calorimetry on a fasted, resting (unstressed) 

animal in the dark during the inactive phase of their diel cycle (Bennett and Dawson 1976; 

McDonald 1976; Withers 1992; Zaidan 2003).  The conditions under which SMR is 

measured and the statistical determination of SMR vary between studies, but is most 

frequently measured as an average of the lowest 25% or 50% of all metabolic 

measurements over a certain period of time or as the lowest measure of MR for a 

consistent period within the sampling time (i.e., the lowest MR that is consistent for one 

hour; Hopkins et al. 2004; Roe et al. 2004).     

Measurements of SMR may underestimate maintenance costs that free-ranging 

ectotherms incur because it ignores ecologically important conditions normally 

experienced by ectotherms in the field, including digestive state (i.e., whether the animal is 

absorptive or post-absorptive), time of day, season and reproductive state (Niewiarowski 

and Waldschmidt 1992).  In the field, movement due to predator avoidance or Tb 

regulation (for example see Al-Johany and Al-Sadoon 1996; Birchard et al. 2006; Finkler 

2006; Penick et al. 2002) and fasting duration can affect SMR increasing maintenance 

costs (Bennett and Dawson 1976).  Prolonged periods of fasting and inactivity can 

significantly depress SMR measurements (Withers 1993).  Bedford and Christian (2001) 

found that fasting for 56 and 45 days in adult and hatchling Water Pythons, Liasis fuscus, 

respectively, significantly lowered SMR compared to that of postabsorptive but not fasted 

L. fuscus.  Niewiarowski and Waldschmidt (1992) suggest that SMR may not be an 

ecologically relevant measurement of maintenance MR because it underestimates MR as 
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most animals in the wild will have food in their stomachs and variable rates of O2 

consumption during inactive periods. 

Resting metabolic rate (RMR) is sometimes used in lieu of SMR (Bennett and 

Dawson 1976).  By definition, RMR is less restrictive in terms of testing because the 

animal can be measured at any time under illuminated conditions in a fasted, resting state 

(Zaidan 2003), or resting in a thermoneutral state, but that is not necessarily postabsorptive 

(Blatteis et al. 2003).  Nevertheless, a large number of studies use SMR as a benchmark for 

comparing inter- and intraspecific MR and minimum maintenance costs (Christian et al. 

1999; Hopkins et al. 2004; Secor and Diamond 2000; White et al. 2006; Zaidan 2003).   

Standard MR describes the minimum energy required to maintain vital life 

functions, but additional energy must be acquired through feeding to perform other 

physiological processes and to build energy reserves during periods of food scarcity.  

While feeding and digestion add valuable energy and nutrients to the total sum available, 

the process to complete digestion uses a proportion of the energy consumed.  During 

feeding, energy demands increase leading to an increase in oxygen uptake rates which is 

referred to as specific dynamic action.  To determine the amount of energy allocated 

directly to feeding and digestion, leaving the remaining energy for other processes, it is 

necessary to measure the total energy consumed and used during digestion and assimilation 

of nutrients.   

 

1.2.2. Specific Dynamic Action 

 

One of the most frequently studied effects on ectotherm metabolism is feeding and 

digestion because cellular metabolism provides the energy required for most other physical 

and physiological functions.  The feeding process and digestion of prey items may cause 

an increase in MR and Tb through behavioural thermoregulation (Greenwald and Kanter 

1979) or endogenous heat production (e.g., Python molurus; Marcellini and Peters 1982 

and Crotalus durissus; Tattersall et al. 2004).  Elevation of MR and the associated 

increases in energetic expenditure above SMR after feeding is termed specific dynamic 

action (SDA; see McCue 2006; and Secor 2009 for historical derivation of SDA).  Specific 

dynamic action is the total energetic cost associated with the breakdown and digestion of 

food and nutrient assimilation including transportation and absorption (Beaupre 2005; 

Kleiber 1975; Secor 2009).   
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Specific dynamic action can be calculated similarly to SMR based on VO2 

consumed or CO2 produced, but is usually converted to an energetic equivalent in kJ 

(Gessaman and Nagy 1988).  To convert SDA measurements of VO2 to energy equivalents 

(kJ), a respiratory quotient (RQ, VCO2/VO2; Withers 1992) for uricotelic animals of 

between 0.70 and 0.80, and an energy equivalent of 18.4 kJ/g protein or 19.8 kJ/L O2 can 

be assumed resulting in a small error of 1.5% for typical carnivores that digest a meal 

composition of 80:15:5 (protein: fat: carbohydrates; Gessaman and Nagy 1988).  Many 

studies also quantify the time to peak MR following feeding, the peak MR, the duration of 

elevated metabolism, and/or the factorial scope (Peak MR/ SMR or RMR; Robert and 

Thompson 2000; Secor et al. 2007).   

Measurements of MR, factorial scope, digestive efficiency and duration are 

influenced by multiple factors and are highly variable within and between species.  

Changes in Tb (Wang et al. 2003), ecdysis (Thompson and Withers 1999), age (Slip and 

Shine 1988a), Mb (Secor and Faulkner 2002), meal size (Roe et al. 2004) and meal type 

(Pan et al. 2005a, 2005b) can significantly affect the SDA response.  Greater protein 

content in a meal and larger meals also influence the duration of SDA and peak VO2 

(Coulson and Hernandez 1979; Robert and Thompson 2000).   Factorial scope can be up to 

17 times greater than SMR in P. molurus (Secor and Diamond 1995) and 18.5 times 

greater for Boa constrictor (Secor and Diamond 2000), but less than two for species of 

Testudines (Pan et al. 2005a), Squamates (Robert and Thompson 2000) and Crocodylians 

(Starck et al. 2007).  In addition, the increased MR often coincides with an increase in Tb 

to optimize digestive functioning known as postprandial thermophily (Bontrager et al. 

2006; Sievert and Andreadis 1999; Tattersall et al. 2004). 

As Tb increases, the SDA response and the scope increase, while the duration of 

elevated metabolism is reduced resulting in a shorter digestion period (Greenwald and 

Kanter 1979; Secor et al. 2007).  In reptilian feeding studies, the majority of species tested 

completed digestion within 10 - 14 days, when temperatures ranged between 25 - 35°C 

(Andrade et al. 1997; Bedford and Christian 2001; Groβmann and Starck 2006).  At 

temperatures below 25°C, the duration of digestion is longer for many species (Sievert et 

al. 2005), but digestive efficiency and assimilation are relatively independent of 

temperature (Greenwald and Kanter 1979; McConnachie and Alexander 2004; Wang et al. 

2003).  Skoczylas (1970) found that digestion in the Grass snake, Natrix natrix was 

significantly slowed or completely hindered at temperatures of 15°C and 5°C, respectively, 

resulting in regurgitation of the meal.  In the Flat lizard, Platysaurus intermedius wilhelmi 
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feeding ceased below 12°C (Alexander et al. 2001).  There are exceptions, however, and 

some species fail to show postprandial thermophily (Tu and Hutchison 1995) or significant 

variation in SDA between different meal types (Grayson et al. 2005).    

In environments characterized by highly erratic or seasonally fluctuating food 

sources, reptiles exhibit adaptive biochemical and physiological responses to food 

deprivation (Wang et al. 2006), including gut atrophy and the down-regulation of organs 

that are energetically expensive to maintain (Holmberg et al. 2002).  After feeding, 

increases in MR coincide with the expansion or thickening of internal organs including the 

liver, epithelial mucosa and the small intestine (Bramwell 2006; Groβmann and Starck 

2006; Starck and Beese 2002).  Upon ingestion of a meal, significant SDA responses 

relative to SMR levels were recorded in intermittent feeders and extreme sit-and-wait 

foragers, including P. molurus, and the Timber Rattlesnake, Crotalus horridus.  Large 

SDA responses may occur because of the significant energy expenditure required in the 

physiological upregulation of the gut after long periods of food deprivation (Secor and 

Diamond 1995; Zaidan and Beaupre 2003).  

Further studies on the physiological effects of feeding and fasting in reptiles will aid 

in understanding:  

1. The intra- and interspecific variation of pre- and postprandial metabolic responses.  

2. The effect of temperature on digestive efficiency, digestive rate and cellular 

modifications in reptiles that have different foraging modes. 

3. The evolutionary and adaptive implications that the cost of digestion has on 

distribution. 

4. The physiological implications that dietary specialization may have on energetic 

costs and savings in trophic specialists.   

 

Increased dietary specialization may lead to more efficient prey handling and 

digestion for preferred prey relative to dietary generalists in terms of time and energy 

expended (Britt and Bennett 2008). Since extinction risk and prey depletion increases with 

increased specialization, selective pressures would dictate that, for the preferred prey item, 

prey handling and digestion would need to be more time and energy efficient to be 

advantageous (Berumen and Pratchett 2008; Mori and Vincent 2008).  In general, 

specialization evolves when there is increased efficient use of a resource or if interspecific 

competition is increased (Futuyma and Moreno 1988).   
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1.3 Dietary Specialization 

 

Selective pressures towards specialization often do not follow an outwardly visible pattern, 

but it is generally assumed that specialization is associated with a set of observable trade-

offs in fitness and performance (Futuyma and Moreno 1988),  a narrower niche breadth,  

resource abundance and density dependence (i.e., the number of other individuals 

undertaking the same strategy; Wilson and Yoshimura 1994).  Phenotypic, habitat and 

behavioural specialization can lead to greater efficiency in prey acquisition and energy 

assimilation (Britt and Bennett 2008; Cruz-Neto et al. 2001; Mori and Vincent 2008), 

predator avoidance (Kumagai 2008) and general physiological processes such as 

thermoregulation (Gilchrist 1995).  Recent studies have shown that increased intraspecific 

variation as a result of population increases and greater intrapopulation competition may be 

an important influencing factor for behavioural and physiological divergence and 

specialization, which over evolutionary time periods could lead to speciation (Bolnick et 

al. 2003; Tinker et al. 2008).   

Increased specialization in habitat or dietary preference can also be an effective 

strategy in non-seasonal environments characterized by low levels of stochasticity and 

fluctuations in resource availability (Wilson and Yoshimura 1994).  Competition theory 

suggests that in stable environments, the risk increases for niche overlap between species 

due to increased species richness and carrying capacity saturation resulting in increased 

competition and the probability of competitive exclusion (Begon et al. 1996).  In this 

context, increased intraspecific competition for space and prey could generate a selective 

advantage for increased specialization as discovered in Anolis lizards in the Bahamas 

(Losos et al. 1994).   

The extent of specialization within a population can be variable and is influenced by 

an individual‟s preferences (Spencer et al. 1998).  Populations that have a wide niche 

breadth in terms of dietary requirements and prey selection are considered trophic 

generalists.  Yet, within the population there are individuals that may utilize only one or a 

small subset of the total available prey items, effectively making them trophic specialists 

(Fox and Morrow 1981).  True dietary specialists in which the population as a whole feeds 

on few prey types, even when suitable alternatives are available, have a narrower resource 

base than generalists (Holbrook and Schmitt 1992).  A narrow trophic niche constrains 
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adaptability and increases vulnerability to climatic changes that alter food availability 

(Berumen and Pratchett 2008; Smith and Remington 1996).   

Williams et al. (2008) suggest that heritable variation that limits distribution reduces 

the adaptive capacity of a specialized species during rapid climatic shifts independent of 

population size.  Extreme dietary specialization is, therefore, considered to be a dangerous 

strategy contradictory to an evolutionary stable strategy because of the risks associated 

with prey availability and habitat changes (Smith and Remington 1996). Although 

specialists may have a higher tolerance for lower prey densities, they can have longer patch 

residence times than generalist species making them more vulnerable to habitat 

degradation and extinction (Sloggett et al. 2008).   

Although feeding is an important factor particularly in the radiation and evolution 

of snakes (Gans 1961; Greene 1983), dietary specialization in snakes is considered rare 

because natural selection has favoured generalists capable of adapting to adverse 

conditions (Smith and Remington 1996).  Most snakes are carnivorous dietary generalists 

that actively search for prey or are opportunistic sit-and-wait foragers.  Morphologically, 

they have evolved unique adaptations for ingesting prey several times greater than the 

diameter of their head allowing for capture of multiple prey types (Cundall 1987).  Prey 

usually consists of mammals, birds, reptiles, amphibians and fish, but many species also 

include eggs in their diets (Orians and Janzen 1974).  Very few species of snake feed 

solely on eggs (see Coleman et al. 1993; Gardner and Mendelson 2003).  Thus, snakes in 

the genus Dasypeltis are among a select group in their dietary requirements and 

morphology.  Dasypeltis is one of only two genera which are known obligate feeders of 

whole, freshly laid bird eggs (de Queiroz and Rodríguez-Robles 2006; Groβmann and 

Starck 2006; Isemonger 1962).  Elachistodon westermanii, found in parts of Nepal, India 

and Bangladesh, is the only other snake with known similarities in feeding mechanism and 

dietary preference of freshly laid bird eggs (Gartner and Greene 2008).  

The question then arises of how two species of the same genus with very similar 

dietary requirements, ecological, behavioural and morphological traits successfully co-

exist in overlapping distributions?  Brown (1984) suggests that closely related species with 

a relatively recent common ancestor differ significantly in very few or even one niche 

dimension due to evolutionary constraints on morphology, physiology or behaviour.  

Competition theory, however, predicts  that competitors for the same resource should show 

morphological, behavioural, ecological or physiological differentiation as a result of niche 

differentiation if they are to coexist (Begon et al. 1996).  In order for co-existence over an 
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evolutionary and ecological time-scale, Tinker et al. (2008) propose that a high degree in 

similarity and overlap of preferences (dietary, spatial or ecological), behaviour and 

distribution is the result of an abundance of available prey or a food-rich environment.  If 

this is the case, Dasypeltis species that have a high degree of similarity in preferences and 

dietary requirements may be able to coexist because of increased prey availability.  While 

prey abundance can enable the coexistence of species with similar preferences, variation in 

physiological tolerance limits may play a part in distribution differences and range 

limitations between similar species (Futuyma and Moreno 1988).   

Furthermore, dietary specialization would predictably lead to increased efficiencies 

in food handling and digestion leading to energy savings.  Relative to other snake species 

with different feeding behaviours (frequent vs intermittent feeders) and food preferences 

(egg meal vs rodent meal), dietary specialists, Dasypeltis inornata and D. scabra should 

exhibit lower metabolic postprandial responses owing to the liquid content of their meal 

(Boback et al. 2007) and increased efficiency due to specialization for feeding on a select 

prey type (Britt and Bennett 2008).  Therefore, the metabolic rate of D. scabra and D. 

inornata, was estimated and compared to investigate interspecific differences in MR and 

digestion.     

 

1.4 Aims, Objectives and Predictions 

 

AIMS 

The aim of this study was to investigate the effect of temperature, age and body mass on 

pre- and postprandial metabolic rates in adult and hatchling D. scabra and in adults of D. 

inornata to determine if significant variation exists intra- and interspecifically. 

 

OBJECTIVES 

A. To determine metabolic rate using closed system respirometry on fasted and fed 

snakes at five temperatures experienced by snakes in the wild, 20, 25, 27, 30 and 

32°C 

B. To determine significant inter- and intraspecific differences in MR between species 

and age groups the following variables were measured as described by Secor and 

Faulkner (2002): 

1. Body mass (g) 
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2. SMR (ml O2 g
-1

 and ml O2 g
-1

 h
-1

) 

3. Peak O2 (ml O2 g
-1

 and ml O2 g
-1

 h
-1

) 

4. Scope of peak O2 (peak O2/SMR) 

5. Duration of postprandial response which is significantly 

elevated above SMR 

6. SDA (kJ and kJ kg
-1

) 

7. SDA coefficient (% of the meal‟s energy content)  

PREDICTIONS 

As in other species, it is predicted that at higher temperatures the SDA response will be 

greater relative to SMR, but the duration of elevated MR will be shorter because of the 

liquid content of the diet.  It is also predicted that there will be significant interspecific 

differences and intraspecific ontogenetic differences between adults and neonates related to 

body mass and age effects.  It is expected that body mass and age will account for much of 

the variation in MR for absorptive and postabsorptive snakes.  Furthermore, it is predicted 

that mass-specific SMR will be lower in neonates than adults as an energy conservation 

measure, and may be linked to the rarity of very small bird eggs (≤ 5 mm in diameter) in 

South Africa.  Finally, I predict that SDA will also be lower in neonates in order to allocate 

more energy for rapid growth rather than the digestive process.    

 

1.5 Study Animal  

 

1.5.1. General Taxonomy 

 

Dasypeltis is a highly specialized genus within the Colubridae (Marais 2004).  Presently, 

eight species, all endemic to Africa, have been identified.  Dasypeltis is considered a 

monophyletic genus (Gravlund 2001) with recent taxonomic studies based on 

mitochondrial DNA sequencing suggesting that the closest extant sister taxon is the genus 

Boiga (Kelly et al. 2003; Lawson et al. 2005).  Although morphological differences exist 

within the D. scabra population of South Africa, recent DNA evidence suggests that only 

the population found in the Northern Cape of South Africa may be a different species.  

Mitochondrial DNA evidence indicates that the remaining populations across South Africa, 

however morphologically different, are not distinct species (Bates et al. 2009). 
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1.5.2. General Biology 

 

Dasypeltis species have evolved a highly specialized feeding mechanism for consuming 

bird eggs (Rabb and Snedigar 1960).  Having significantly reduced dentition and 

exceptionally pliable skin covering the bottom jaw, whole freshly laid eggs are swallowed. 

The shell is then punctured by modified vertebral hypapophyses projecting anteroventrally 

from the oesophagus, the liquid contents swallowed and the shell regurgitated in a 

compacted boat-like shape (Gartner and Greene 2008).  The size of the egg ingested 

relative to body size and jaw length is significantly larger than an egg consumed by 

facultative oophagous snakes such as Elaphe obsoleta (Rabb and Snedigar 1960) and 

Lampropeltis getula (Gartner and Greene 2008).  A 52.0 g D. scabra with a head diameter 

of 10 mm was reported to have consumed a 70.4 g duck egg measuring 46mm in diameter 

at its widest point (Krupa 1985) 

Dasypeltis species lack defence and predation mechanisms commonly found in 

other species including venom, constrictive ability and teeth (Gans 1961), but have evolved 

a form of Batesian mimicry of Viperid species with overlapping distributions (Branch 

1998; Gans and Richmond 1957).  The main models for mimicry include species from the 

genera Echis, Bitis and Causus (Gans 1961).  Mimicry may be the result of increased 

exposure to predators.  Due to their foraging behaviour of actively seeking out the eggs of 

ground and arboreal nesting bird eggs, they are frequently exposed to potential predators 

(Gans and Richmond 1957).  In South Africa, a D. scabra was found dead, hanging from a 

Common Fiscal Shrike, Lanius collaris, nest with three recently ingested egg yolks in its 

stomach (Bruderer 1991).  Dasypeltis have also been known to rob nests of birds that are 

several orders of magnitude heavier than they are.  On Schaapen and Meeuw islands off 

the Western Cape coast of South Africa, regurgitated egg-shells from Cape Cormorant, 

Phalacrocorax capensis, Kelp Gull, Larus dominicanus, and Rock Pigeon, Columba livia, 

nests were found.  The regurgitated shells were boat-shaped which is characteristic of an 

egg regurgitated by Dasypeltis species (Dyer 1996).  

 

1.5.3 Study Species 

 

For this study, the MR for two species from the genus Dasypeltis was investigated.  

Dasypeltis scabra (Common or Rhombic Egg-eater; n = 22) and D. inornata (Southern 
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Brown Egg-eater; n = 4; Figure 1.2) share many behavioural, ecological and morphological 

qualities.  They are predominantly nocturnal, but there have been reports of D. scabra 

feeding during the day (Harvey pers. comm.
1
).  Daspeltis species are often found in old, 

unused termitaria (Alexander pers. comm.
2

) and may rely on them for refuge and 

brumation.  Behavioural mimicry of local Viperids is evident in both species, but 

colouration mimicry appears to exist only for D. scabra which mimics the behaviour and 

coloration of the Rhombic Night Adder, Causus rhombeatus, (Marais 2004).  

Morphologically, both species have small heads with minimal tapering between the head 

and body, large eyes and a vertical pupil (Branch 1998).  Highly agile, D. inornata and D. 

scabra have excellent climbing abilities allowing them to feed on the eggs of ground-

nesting and arboreal avian species.  The species are similar in body size reaching average 

lengths up to 75cm, although D. inornata can grow to over 1m in length (Marais 2004).    
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2
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Plant, and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa 



16 

 

 

a. 

     

b. 

         

Figure 1.2 a.) Dasypeltis inornata, Southern Brown Egg-eater b.) Dasypeltis scabra, 

Common/ Rhombic Egg-eater 

 

The seasonality of available avian eggs for consumption by Dasypeltis species is 

debatable.  Groβmann and Starck (2006) indicated that these snakes were restricted to a 

distinctly seasonal food source based on the avian breeding season characterized by short 

periods of prey abundance and long periods of fasting in between.  Bramwell  suggested 
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that the avian breeding season in the Transvaal region of South Africa was less seasonal 

than originally thought.  No evidence is provided, however, to suggest that these snakes are 

capable of digesting during cold winter temperatures, nor that the available eggs are chosen 

by Dasypeltis species. The study indicated that only two snakes examined were caught in 

the winter and makes no mention of egg being found in the gut of these two snakes, but 

does mention that the only food item found in the gut of 30% of the snakes was egg 

(Bramwell 2006).  

Increases in the size and function of the gastrointestinal tract, normally associated 

with ambush foragers that experience long periods of fasting, suggests that D. scabra may 

also experience periods of fasting between meals (Groβmann and Starck 2006).  The 

increase in size of the intestine, liver and heart was similar to other snake species that rely 

on digestive down-regulation in between meals to conserve energy (Groβmann and Starck 

2006).  Long fasting intervals are normally associated with large bodied sit-and-wait 

foragers capable of consuming a meal equivalent to 50% or more of their Mb (Bedford and 

Christian 2001; Marcellini and Peters 1982; McCue et al. 2005; Secor and Diamond 1995; 

Shine and Fitzgerald 1996; Tattersall et al. 2004).  Dasypeltis species are not, however, 

large-bodied, but rather slender snakes whose meal sizes are normally less than 50% of Mb. 

During periods of low prey availability, these snakes may require down regulation of 

internal organs to sustain them.   

With scant ecological and behavioural data, much of the necessary hard-line data to 

substantiate these theories is unavailable.  In addition, food preference of both species is 

relatively unknown apart from the occasional report of nest predation in select avian 

studies (Table 1.1).  Based on the number of avian species breeding year round in South 

Africa, the actual number of bird species whose eggs are preyed upon by Dasypeltis 

species may be substantially larger than the anecdotal accounts of nest predation described 

in Table 1.1.  As there are currently no ecological studies directly associated with the 

behaviour or nest predation in the wild for Dasypeltis, Table 1.1 simply presents an idea of 

the size of eggs some of the snakes are selecting and possible egg preference.  There are 

currently no known published records of nest predation for D. inornata but it is predicted, 

based on their capacity for arboreal movement, that there is a strong link to an arboreal 

lifestyle and a diet containing eggs of tree-nesting birds. 
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Table 1.1 Reports of nest predation by Dasypeltis scabra in South Africa 

Species Location/ Province 

General Egg-

Laying Season 

Peak Egg-

Laying* 

Mean Egg 

Size (mm)* Study 

Common Fiscal Shrike (Lanius collaris) Limpopo Oct. - Mar. Aug. - Dec.  23.5 x 17.7 (Bruderer 1991) 

Cape Cormorant (Phalacrocorax capensis) 
Schaapen Island 

(Western Cape) year-round Sept. - Feb. 54.6 x 35.5 (Dyer 1996) 

Kelp Gull (Larus dominicanus) 
Meeuw Island 

(Western Cape) late Sept. - Jan. Oct. 72.0 x 48.6 (Dyer 1996) 

Rock Pigeons (Columba livia) 
Schaapen and Meeuw 

Islands (Western Cape) year- round  n/a 39.0 x 29.0 (Dyer 1996) 

Red-Collared Widowbirds (Euplectes ardens) KwaZulu-Natal Oct. - Mar. Nov. - Feb.  18.9 x 13.6 (Pryke and Lawes 2004) 

Namaqua Sandgrouse (Pterocles namaqua) Northern Cape Aug - Jan.  Aug. - Jan. 36.1 x 25.2 (Lloyd 2004) 

Karoo Prinia (Prinia maculosa) Western Cape July - Jan. Aug. - Nov. 16.4 x 11.7 (Nalwanga et al. 2004) 

Cape Bulbul (Pycnonotus capensis) Eastern Cape Sept. - Mar.  Oct. - Nov. 23.6 x 17.1 (Krüger 2004) 

*Egg size and laying information adapted from Roberts Birds of Southern Africa VII edition (Hockey et al. 2005) 

1
8
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1.5.4. Distribution and Ecology 

 

Dasypeltis species are found in various habitat types including savannah, montane forest, 

rain forest, semi-arid desert and coastal regions at both high and low altitudes (Gans 1960; 

Marais 2004; Trape and Mane 2006).  Dasypeltis scabra has a larger distribution than D. 

inornata, and within South Africa their ranges overlap considerably.  The overall 

distribution of D. scabra extends from the southern Cape region in South Africa into the 

horn of Africa and includes biomes ranging from open forest and savannah to arid regions, 

and is excluded only from true desert and closed-canopy forest areas (Branch 1998).  

Dasypeltis scabra has scattered populations throughout most of South Africa, but is 

heavily concentrated in the northern, north-eastern and south-western regions.  The newly 

separated species, D. scabra loveridgei, once part of the D. scabra complex, extends from 

central Namibia south into Calvinia and Williston in the Northern Cape (Bates et al. 2009).  

Dasypeltis inornata has a more limited range and is endemic to the eastern parts of South 

Africa including KwaZulu-Natal, the Eastern Cape and Mpumalanga and western 

Swaziland (Figure 1.3).  A disjunct population also occurs in the northern part of Limpopo 

province.  It is most commonly found in open coastal woodland and moist savannah 

(Marais 2004).  
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Figure 1.3 Distribution of Dasypeltis scabra and D. inornata in South Africa and 

Swaziland adapted from the Avian Demography unit online virtual museum species 

distribution maps (Southern African Reptile Conservation Atlas 2009 

http://vmus.adu.org.za/vm_sp_summary.php).  Included is the recently discovered distinct  

lineage of D. scabra loveridgei (Bates et al. 2009).
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Populations of D. scabra are found throughout South Africa across a wide rainfall 

gradient.  Mean annual precipitation (MAP) ranges from less than 100 mm in parts of D. 

scabra‟s range to more than 1200 mm of rainfall annually.  Dasypeltis inornata appears to 

be restricted to areas with higher annual rainfall (MAP ≥ 600 mm) along the eastern part of 

South Africa (Figure 1.4; Schulze et al. 2008).  Much of the rainfall in this area occurs 

during the summer months and peak avian breeding/hatching season (Schulze et al. 2008).  

MAP ranged from 400 – 600 mm for the D. scabra population sampled in this study and 

from 800 – 1000 mm for the D. inornata sample from KwaZulu-Natal (Table 1.2).     

 

Figure 1.4 Map of average yearly rainfall in South Africa with overlay of Dasypeltis 

inornata distribution.  Note that D. inornata distribution coincides with areas that receive 

higher average annual rainfall.  Map adapted from Schulze et al. (2008).  

 

In KwaZulu-Natal the avian breeding season extends from spring through early fall, 

(October – March) and egg-laying peaks from November to February (Table 1.2).  Daily 

temperatures during the peak egg-laying season can range by 15°C from morning to night 

Dasypeltis  inornata  distribution 

Average Yearly Rainfall 
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time (Table 1.2).  Temperature minima and maxima in the Northwest province are 

generally 2 - 2.5°C higher than the corresponding data from the KwaZulu-Natal province.    

 

 

Table 1.2 Ecological data for sampled populations of Dasypeltis scabra from the 

Northwest Province and D. inornata from KwaZulu-Natal 

 

Province 

 

KwaZulu-Natal Northwest  

Peak avian breeding season Oct. - Mar.  Sept. - Mar. 

Mean annual temperature (°C) 18 – 22 18 – 20 

Mean monthly temperature range (°C) 10.0 – 30.0 12.5 – 32.5 

Rainfall period Mid - Late Summer Mid Summer 

Mean annual precipitation (mm) 800 – 1000 400 – 600 

Median monthly rainfall range (mm) 60 – 120 40 – 100 

Avian information adapted from Hockey et al. 2005.  Ecological data adapted from                   

Schulze et al. 2008. 
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Chapter 2 - The effect of temperature, body mass and age on 

metabolic rate in the Colubrid dietary specialists, Dasypeltis 

scabra and Dasypeltis inornata 

 

2.1 Abstract 

 

The additional energy required for digestion and nutrient assimilation – known as specific 

dynamic action (SDA) - and the duration of gastric breakdown is affected by multiple 

factors including, body temperature (Tb), meal type and meal size.  Liquid meals require 

less energy to digest than intact prey items consisting of bones and fur.  The level of 

specialization in a species can also affect digestive efficiency as more specialized species 

would predictably be more efficient feeding on preferred prey types.  Dasypeltis species 

are trophic specialists that feed solely on freshly laid bird eggs, digesting only the liquid 

contents.  To examine the effect of specialization, changes in Tb and meal type on the SDA 

response, we quantified and compared the pre- and postprandial metabolic response of 

adult and neonate Dasypeltis scabra and adult D. inornata using closed system 

respirometry.  We measured O2 consumption rates (VO2) at five temperatures (20, 25, 27, 

30 and 32°C) and found that peak VO2 increased with temperature, and the peak was 

reached sooner and then a more rapid decline back to maintenance metabolic rates (SMR) 

occurred.  The SDA response decreased in duration by half when Tb increased from 20 to 

32°C.  Energy used during digestion (kJ) varied between temperatures but increased as Tb 

increased for all groups.  Increased Tb led to significant increases in metabolic response 

variables for all snake groups, but there was limited significant intra- and interspecific 

variation in mass specific MR. Adult D. inornata and neonate D. scabra tended to have 

higher pre- and postprandial metabolic rates than adult D. scabra.  Metabolic scope (2.23 – 

3.73) and SDA (0.38 – 13.19kJ) were some of the lowest reported for any snake species 

across temperature trials.  Duration of digestion was, however, 1 – 2 days longer than most 

species for a meal similar in mass at the same Tb.  Specialization and digestion of liquid 

meals may play a part in reducing the energy demand during feeding, but fail to show 

added benefit in terms of a decrease in duration of digestion.     
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2.2 Introduction 

 

Nutrient assimilation supplies the energy necessary for maintenance, activity, growth and 

reproduction (Congdon et al. 1982).  Meal digestion, in turn, requires energy due to the 

cost of gastric breakdown, transport, assimilation and synthesis of nutrients (Coulson and 

Hernandez 1979; Secor 2003).  Among vertebrates, the postprandial metabolic response is 

characterized by a rapid increase in metabolic rate (MR), followed by a slower decline to 

pre-feeding levels, the duration of which is determined by the time it takes to fully digest 

and assimilate a meal (Secor 2009).   The cumulative energy expended above the 

maintenance metabolism (basal or standard metabolic rate; SMR) related to ingestion, 

digestion and assimilation of a meal is commonly referred to as specific dynamic action 

(SDA; reviewed by McCue 2006 and Secor 2009). 

Similar to other measures of metabolism (basal, standard, activity), SDA is 

influenced by body temperature (Tb; Secor et al. 2007), body mass (Mb; Roe et al. 2005) 

and body composition (reviewed by Secor 2009).  In addition, characteristics of the meal, 

including meal type (Secor and Faulkner 2002), size (Secor and Diamond 1997) and 

composition (Boback et al. 2007), can have a significant impact on postprandial MR and 

the SDA response.  Feeding frequency can also affect the SDA response.  For a given 

relative meal size and Tb, infrequently feeding snakes experience a larger and longer 

postprandial metabolic response, and hence a greater SDA than frequently feeding species 

related to gut up-regulation (Secor and Diamond 2000).   

Although a wealth of studies have explored the effects of animal and meal 

characteristics on SDA in snakes, few have examined differences due to unique feeding 

habits and dietary specialization (Britt and Bennett 2008; Groβmann and Starck 2006).  

While many snakes are generalist carnivores that include not only invertebrates and 

vertebrates in their diet, but eggs as well, some species are trophic specialists feeding 

solely on squamate eggs (e.g.,  Prosymna spp.; Broadley 1979; Oligodon formosanus; 

Coleman et al. 1993) or bird eggs (Dasypeltis; Gartner and Greene 2008).  Yet, only two 

SDA studies are known to have included eggs as a meal choice (Christel et al. 2007; 

Groβmann and Starck 2006) even though meal type and composition affect the SDA 

response.   

Digesting intact meals comprised of bones, tissue, chitinous carapace or fur is 

energetically costly (Boback et al. 2007; Secor et al. 2007).  Including liquid meals in a 
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diet would save energy.  Less energy is expended to break down a liquid meal relative to 

an intact meal (Christel et al. 2007).  Over an evolutionary timescale, it is possible that a 

diet that was less energetically expensive to digest may have been advantageous and 

influenced the selective process in the egg-eating specialization of snakes.  In theory, 

energy savings based on liquid egg consumption should be most apparent in a species that 

specializes on digesting the liquid contents as specialization often coincides with increased 

efficiency.  Thus, Dasypeltis species which are specialized feeders of the liquid contents of 

freshly laid bird eggs will be used to investigate whether digestive costs are less for a 

liquid diet.   

At 30°C for a chicken egg meal equal to 20% of Mb, D. scabra exhibited a lower 

peak MR and a reduced postprandial metabolic response relative to other snake species 

consuming a similar sized meal at the same temperature because of the lack of enzymatic 

breakdown (Groβmann and Starck 2006).  Realistically, Dasypeltis species encounter a 

larger range of ecologically relevant ambient temperatures (Ta) at which they could 

consume eggs based on the extended length of the egg-laying season (Hockey et al. 2005).  

Therefore, to examine the sensitivity of metabolic rate to Tb changes, the postprandial 

metabolic response was quantified across a range of ecologically relevant Tb 

predetermined by environmental conditions and distribution (20 - 32°C; see Schulze et al. 

2008 for ecological data).   In addition, interspecific, age and Mb effects were also 

examined using neonate and adult D. scabra and adult D. inornata.  It was predicted that 

the reduction in the postprandial metabolic response would be similar across all groups and 

that regardless of age or species or Tb, all Dasypeltis groups tested would exhibit reduced 

peak MR and postprandial responses relative to other species.  Finally, it was predicted that 

increases in Tb would result in higher peak MR and a more rapid return to baseline MR.  

   

2.3 Materials and Methods 

 

2.3.1 Animals and Their Maintenance 

 

Dasypeltis scabra is a widespread egg-specialist found throughout much of the southern 

and eastern parts of Africa, while D. inornata has a limited distribution, endemic to the 

eastern parts of South Africa and western Swaziland.  For this study, we measured post-

feeding metabolic responses and quantified SDA of adult and neonate D. scabra and adult 
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D. inornata.  Four D. inornata were wild-caught in KwaZulu-Natal, South Africa, and 10 

adult D. scabra were wild-caught in the Northwest Province, South Africa.  Neonate D. 

scabra (n = 12) were hatched from clutches laid in the laboratory by six of the D. scabra 

adults.  Neonates were classified as snakes six months or younger.  Body mass and snout-

vent length (SVL) averaged 68.0 ± 6.1g and 650 ± 80mm, respectively for adult D. 

inornata, 54.5 ± 2.80g and 517 ± 32mm for adult D. scabra and 4.78 ± 0.13g and 230 ± 

7mm for neonate D. scabra. 

  Snakes were housed in custom-made wooden and glass terraria (60 x 30 x 45cm or 

90 x 30 x 60cm) within a temperature-controlled room and maintained on a 12L:12D cycle 

at 24 ± 2 C.  Snakes were fed 2 or 3 eggs once every 3-4 weeks with water available ad 

libitum.  Eggs were obtained from local bird breeders and included those of Budgerigar, 

Melopsittacus undulatus, Common Quail, Coturnix coturnix, Japanese Quail, Coturnix 

japonica and Bantum Chicken, Cochin bantum. 

2.3.2 Experimental Procedure and Measurement of Oxygen Consumption 

 

Closed-system respirometry was used to measure oxygen consumption rates (VO2) of 

fasted and fed snakes (see Secor and Nagy 1994; Vleck 1987) at Ta of 20, 25, 27, 30 and 

32°C.  The sequence of trials was randomized, and trials were conducted in the following 

order 25, 32, 27, 20 and 30°C. Prior to metabolic trials, snakes were fasted for a minimum 

of three weeks to ensure they were postabsorptive.  All metabolic trials were conducted in 

a constant environment room with a 12L:12D cycle.  Before each trial, snakes were 

weighed and placed individually into plastic opaque air-tight respirometry chambers (430 – 

2600ml) and allowed to acclimate to the chambers for a minimum of 48 hours.  

Respirometry chambers were fitted with incurrent and excurrent air ports, each attached to 

a 3-way stop cock.  Silicon tubing (5 mm θ) attached to the stop cocks and air pump via 

gang valves allowed air to pass freely through the chamber.   

For all metabolic measurements, an initial 50ml air sample was withdrawn from the 

excurrent air port and then both the incurrent and excurrent air ports were closed.  One 

hour later, the excurrent port was opened and a second 50ml sample was withdrawn.  After 

withdrawing the second air sample, both air ports were reopened and room air was pumped 

continuously through each chamber.  The 50ml air samples were pumped (100ml min
-1

; 

New Era Pump NE-510, Wantagh, New York, USA) through a column of water absorbent 

(Drierite; W.A. Hammond Drierite Co., Xenia, OH, USA) and CO2 absorbent (soda lime) 
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into an O2 analyzer (Ametek S-3A/1, AEI Technologies, Pittsburgh, Pennsylvania, USA).  

Whole-animal (ml O2 h
-1

) and mass-specific (ml O2 g
-1

 h
-1

) rates of O2 consumption were 

calculated and corrected for standard pressure and temperature.  Ambient temperature and 

pressure were measured using a Kestrel 4000 Pocket Weather Tracker (Nielsen-Kellerman, 

Boothwyn, Pennsylvania, USA).   

Each metabolic trial began by measuring fractional oxygen consumption of fasted 

snakes to determine individual standard metabolic rate (SMR).  Measurements of VO2 for 

each fasted snake were conducted twice a day at 08h00 and 20h00 for three consecutive 

days.  After the final SMR measurement, snakes were tube-fed a meal of mixed yolk and 

albumen chicken egg equal to 20% of body mass.  Following feeding, snakes were 

returned to their respirometry chambers and VO2 was measured twice a day (08h00 and 

20h00) for the next five days.  Thereafter measurements were taken each morning at 08h00 

for 7-12 additional days.  Water was provided ad libitum. 

To calculate SMR and mass-specific SMR (MSMR) the following equations were 

adapted from Vleck (1987): 

Equation 1. 

SMR (ml O2 h
-1

) = (Vc – Vs – Vw)*((Fi/100) – (Fe/100))*(P/1000)*t 

Equation 2. 

MSMR (ml O2 g
-1

 h
-1

) = [(Vc – Vs – Vw)*((Fi/100) – (Fe/100))*(P/1000)*t] / Mb 

Where Vc = volume of the chamber 

            Vs  = volume of the snake (1g was assumed to equal 1ml) 

            Vw = volume of the water and water tray in chamber 

             Fi  = initial fractional concentration of O2 

             Fe  = final fractional concentration of O2 

             P   = pressure standardized to STP 

             t   = time (h)  

             Mb = body mass (g) 

 

2.3.3 Quantification of SDA and Statistical Analysis  

 

Postprandial and SMR measurements indicated that both Dasypeltis species including 

neonates exhibited a distinct circadian rhythm of night-time activity as VO2 measured at 

20h00 averaged 42.5% greater than at 08h00.  The SDA response was therefore quantified 
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based on O2 consumption values at 0800h to reduce the effect of elevated metabolic rate 

not related to digestion and assimilation.  For each metabolic trial the following variables 

were quantified:  

1. SMR (lowest VO2 measured in postabsorptive snake during the inactive phase of the 

diel cycle),  

2. Peak VO2 (recorded after feeding),  

3. Digestive scope of peak VO2 (peak VO2/SMR),  

4. Duration (post-feeding significant elevation of VO2 above SMR),  

5. SDA (kJ and kJ/kg; total energy expended related to digestion over the duration of 

significantly elevated VO2 quantified as the area under the curve of elevated VO2 

levels minus SMR which significantly differed from SMR),  

6. SDA coefficient (SDA quantified as a percentage of the energetic content of a meal).   

 

SDA was calculated as the additional O2 consumed above SMR over the duration of 

significantly elevated consumption rates and that value multiplied by 19.8 J ml
-1

 O2 

assuming the catabolism of the dry matter was 65% protein, 35% fat and 5% carbohydrate 

and a respiratory quotient (RQ) of 0.72 (Gessaman and Nagy 1988).  The energy content of 

the meal was calculated by multiplying the meal wet mass by the energy equivalent (kJ g
-1

 

wet mass) determined using bomb calorimetry.  Chicken egg yolk and albumen were 

individually freeze dried.  Freeze-dried samples (0.5g) were ignited in a bomb calorimeter 

(isothermal CP500, Digital Data Systems, Randburg, Johannesburg, South Africa) to 

determine dry mass energy content.  Wet mass energy equivalent of the egg excluding the 

shell (7.59 kJ g
-1

) was calculated as the product of the individual wet mass energy 

equivalents for yolk and albumen and the individual masses of the yolk and albumen 

divided by the average mass of an egg (Davies unpubl.
3
).   

A repeated-measures analysis of variance (RMANOVA) was used for each SDA 

trial to determine significant effects of time (duration) between pre- and post-feeding VO2 

with days as the within subjects effects.    Post-hoc Tukey pairwise mean comparisons 

were employed to determine the duration when post-feeding VO2 returned to levels not 

significantly different from SMR indicating that while digestion may not have ceased, the 

                                                 

 

 

3
 Dr. Debbie Davies, University of KwaZulu-Natal, School of Agricultural Sciences, Animal and Poultry 

Science, Private Bag X01 Scottsville Pietermaritzburg, South Africa 3209. 
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energy cost of digestion was not significantly different than maintenance costs.  It should 

be noted that this method of determining SDA duration may result in a bias towards shorter 

rather than longer SDA duration as a result of the discrepancy between noise to signal ratio 

(i.e. snakes that exhibit low postprandial metabolic responses relative to SMR).  To test for 

significant effects of temperature and taxon on metabolic variables intraspecifically, 

general linear model repeated measures analysis of covariance (GLM rmANCOVA, body 

mass as the covariate) were performed on whole-animal data for SMR, peak VO2 and SDA 

(kJ) to account for changes in individuals‟ body mass across trials.  For mass-specific 

metabolic measurements, general linear models repeated-measures analysis of variance 

(GLM rmANOVA) were used.  Concurrently, post-hoc pairwise means comparisons 

(Tukey) were used to identify specific significant differences among treatments and taxa.  

For interspecific and ontogenetic tests between D. scabra adults and neonates, ANOVA 

and ANCOVA (body mass as the covariate) tests were carried out on individual 

temperatures for whole-animal and mass-specific metabolic measurements.  Least squares 

regression analysis was used to examine the relationship between mass and specific 

metabolic variables.  Body mass, SDA, SMR and peak VO2 were log10 transformed to 

normalize distributions and linearize relationships for comparison purposes.  Resultant P 

values and F values with degrees of freedom from the repeated-measured ANOVA and 

GLM rmANCOVA are reported, and P values of selected significant pairwise mean 

comparisons are provided. The level of statistical significance was designated as P < 0.05 

and mean values were reported as means ± 1 SE.  Statistical tests were performed using 

Statistica 9.0 (Statsoft®, Tulsa, Okalahoma USA). 

 

2.4 Results 

 

2.4.1 Body Temperature Effects 

 

In both pre- and postprandial adult and neonate D. scabra and D. inornata, as Tb increased, 

VO2 consumption increased, as well as scope and SDA coefficient.  For D. inornata and D. 

scabra, whole animal and mass-specific (ml O2 h
-1 

and ml O2 h
-1

 g
-1

) SMR and peak VO2 

were significantly affected by changes in Tb (Table 2.1).  Body mass was highly significant 

as a covariate for D. inornata SMR and peak VO2 (SMR F1,14 = 69.333, P < 0.0001, Peak 

VO2 F1,14 = 22.398, P =0.0003), but was only a significant covariate for peak VO2 at 20 
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and 25°C for D. scabra adults (F1, 2 = 252.203, P = 0.0039, F1, 2 = 398.218, P = 0.0025).  

Non-significant P-values for D. inornata and D. scabra adults Mb indicated that time as a 

factor across trials did not have a significant effect on gain in Mb for adults.   

Neonates exhibited significant differences in mass-specific SMR and whole animal 

and mass-specific peak VO2 as Tb increased (Table 2.1).  Body mass did not account for a 

significant amount of the variation in SMR (0.016 < F1, 2 < 4.154, 0.2058 < P < 0.9207) or 

peak VO2 (0.0486 < F1, 2 < 11.809, 0.0752 < P < 0.8459) for D. scabra neonates, but was 

significantly different between the beginning and the end of the temperature trials.  Scope, 

SDA (kJ kg
-1

) and SDA coefficient were significantly affected by changes in body 

temperature for D. scabra adults and neonates (Table 2.1).   

While the factorial scope was not significantly different across temperature trials for 

D. inornata (F4, 12 = 1.310, P = 0.3211), mass-specific SDA was significantly affected by 

Tb changes and the SDA coefficient was borderline significant (Table 2.1)   For each 

species and age group, however, post-hoc tests revealed that while Tb changes had 

significantly affected metabolic responses, each metabolic variable did not differ 

significantly among all temperatures but only between specific mean comparisons (Table 

2.1).  Significant differences occurred most often between 20°C and the other four 

temperature trials. 

An increase in Tb from 20 to 32°C resulted in a greater than 200% and 300% 

increase in SMR and peak VO2 respectively for all three groups of snakes.  The effect of 

increased Tb on SDA resulted in a similar trend seen in other metabolic variables and as Tb 

increased, SDA increased for D. scabra adults and neonates and D. inornata.  In addition, 

increases in Tb resulted in increases in the proportion of energy required for digestion 

relative to the total energy consumed for all three taxa.  The SDA coefficient more than 

doubled from 20 to 32°C for all groups.  Over the range of Tb tested (20 - 32°C), MR for 

mass-specific SMR and peak VO2 increased by a factor (Q10) of 2.69 and 3.41 for D. 

inornata, 2.82 and 3.77 for D. scabra adults and 2.77 and 4.06 for D. scabra neonates.   

Changes in Tb also had an effect on the postprandial metabolic response (SDA 

response).  Post-hoc Tukey tests revealed that as Tb increased, the return to preprandial 

VO2 rates from peak VO2 was more rapid resulting in a shorter duration of significantly 

elevated VO2 rates above SMR (Figure 2.1).  In general for all groups, an increase in Tb 

from 20 to 32°C reduced the postprandial metabolic response by half (Figure 2.1).  For the 

same meal size and type at the same temperature, the duration to digest the meal was 

consistently shorter for D. inornata than for D. scabra.  Neonates digested the meal in a 
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shorter time period than adults except at the highest and lowest trial temperatures (Table 

2.1 and Figure 2.1).    
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Variable F P

Dasypeltis inornata

no. per trial = n

Body Mass (g) 65.20 ± 14.23 61.66 ± 12.74 62.93 ± 12.94 71.33 ± 16.32 65.08 ± 13.59 F4,12 = 2.765 0.0770

SMR (ml O2 h
-1

) 1.03 ± 0.20
a

1.70 ± 0.38
a,b

2.30 ± 0.45
b,c

3.14 ± 0.67
c

3.27 ± 0.58
c F4,14 = 18.891 < 0.0001

SMR (ml O2 g
-1 

h
-1

) 0.02 ± 0.0007
a

0.03 ± 0.002
b

0.04 ± 0.003
c

0.04 ± 0.001
c,d

0.05 ± 0.003
d F4,12 = 62.866 < 0.0001

Peak VO2 (ml O2 h
-1

) 2.36 ± 0.48
a

4.00 ± 0.52
a,b

6.66 ± 1.39
b,c

8.81 ± 2.00
c

10.15 ± 1.90
c F4,14 = 11.754 0.0002

Peak VO2 (ml O2 g
-1 

h
-1

) 0.04 ± 0.004
a

0.07 ± 0.01
a,b

0.11 ± 0.01
b,c

0.12 ± 0.005
c,d

0.17 ± 0.02
d F4,12 = 27.981 < 0.0001

Scope (Peak VO2/SMR) 2.33 ± 0.24 2.64 ± 0.42 2.90 ± 0.13 2.76 ± 0.10 3.16 ± 0.31 F4,12 = 1.3101 0.3211

Duration (days)

SDA (kJ) 6.00 ± 1.59 9.93 ± 1.14 10.84 ± 2.57 13.18 ± 3.03 13.19 ± 3.33 F4,14 = 2.026 0.1458

SDA (kJ kg
-1

) 94.75 ± 16.38
a 182.10 ± 35.12

a,b 184.10 ± 34.68
a,b 186.91 ± 17.92

a,b 216.37 ± 39.42
b F4,12 = 3.564 0.0388

SDA coefficient (%) 6.24 ± 1.08 12.00 ± 2.31 12.13 ± 2.28 12.31 ± 1.18 13.55 ± 2.75 F4,12 = 3.093 0.0577

Dasypeltis scabra  adults

no. per trial = n

Body Mass (g) 54.23 ± 7.37 47.31 ± 6.52 51.20 ± 6.19 59.08 ± 8.27 54.53 ± 5.69 F4,28 = 0.585 0.6758

SMR (ml O2 h
-1

) 0.70 ± 0.12
a

1.48 ± 0.18
b

1.69 ± 0.18
b

2.37 ± 0.35
c

2.40 ± 0.32
c F4,8 = 2.454 < 0.0001

SMR (ml O2 g
-1 

h
-1

) 0.01 ± 0.0009
a

0.03 ± 0.003
b

0.04 ± 0.003
b

0.04 ± 0.003
b

0.04 ± 0.004
b F4,24 = 10.793 < 0.0001

Peak VO2 (ml O2 h
-1

) 1.53 ± 0.25
a

3.10 ± 0.34
b

4.24 ± 0.38
c

5.73 ± 0.74
d

7.22 ± 0.53
d F4,8 = 4.823 0.0283

Peak VO2 (ml O2 g
-1 

h
-1

) 0.03 ± 0.002
a

0.07 ± 0.004
b

0.09 ± 0.01
b

0.10 ± 0.01
b

0.14 ± 0.01
c F4,28 = 21.307 < 0.0001

Scope (Peak VO2/SMR) 2.23 ± 0.09
a

2.18 ± 0.19
a

2.62 ± 0.21
a,b

2.47 ± 0.12
a,b

3.30 ± 0.32
b F4,28 = 4.179 0.0089

Duration (days)

SDA (kJ) 3.89 ± 0.68
a

6.18 ± 1.12
a,c

6.76 ± 0.96
a,c

9.90 ± 1.36
b

9.12 ± 0.82
b,c F4,8 = 2.772 0.1026

SDA (kJ kg
-1

) 72.29 ± 8.91
a

129.70 ± 19.79
a,b

137.92 ± 17.06
a,b

182.49 ± 25.00
b

178.72 ± 21.18
b F4,28 = 7.195 0.0004

SDA coefficient (%) 4.76 ± 0.59
a

8.54 ± 1.30
a,b

9.09 ± 1.12
a,b

12.02 ± 1.65
b

11.77 ± 1.40
b F4,28 = 7.195 0.0004

Dasypeltis scabra  neonates

no. per trial = n

Body Mass (g) 4.66 ± 0.27
a

3.98 ± 0.20
b

4.46 ± 0.27
a,c

5.30 ± 0.26
a,d

4.45 ± 0.28
a,b,c F4,28 = 12.005 0.0001

SMR (ml O2 h
-1

) 0.07 ± 0.0005
a

0.11 ± 0.01
a,b

0.14 ± 0.01
b,c

0.19 ± 0.01
c,d

0.21 ± 0.009
d F4,8 = 0.804 0.5552

SMR (ml O2 g
-1 

h
-1

) 0.01 ± 0.0009
a

0.03 ± 0.002
b

0.03 ± 0.002
b

0.04 ± 0.003
b

0.05 ± 0.004
c F4,28 = 24.944 < 0.0001

Peak VO2 (ml O2 h
-1

) 0.16 ± 0.01
a

0.32 ± 0.02
b

0.44 ± 0.04
c

0.56 ± 0.03
c

0.79 ± 0.05
d F4,8 = 5.277 0.0222

Peak VO2 (ml O2 g
-1 

h
-1

) 0.03 ± 0.001
a

0.08 ± 0.003
b

0.10 ± 0.008
b

0.11 ± 0.006
b

0.18 ± 0.02
c F4,24 = 33.771 < 0.0001

Scope (Peak VO2/SMR) 2.39 ± 0.12
a

2.94 ± 0.21
a,b

3.36 ± 0.28
a,b

3.12 ± 0.29
a,b

3.73 ± 0.26
b F4,28 = 3.364 0.0228

Duration (days)

SDA (kJ) 0.38 ± 0.03
a

0.81 ± 0.05
a,b

0.64 ± 0.07
a,b

1.03 ± 0.08
b

1.02 ± 0.06
b F4,8 = 0.357 0.8328

SDA (kJ kg
-1

) 81.96 ± 5.83
a

206.97 ± 17.29
b,c

146.22 ± 12.94
b

198.69 ± 17.8
b,c

235.33 ± 20.58
c F4,28 = 14.662 < 0.0001

SDA coefficient (%) 5.40 ± 0.38
a

13.63 ± 1.14
b,c

9.63 ± 0.85
b

13.09 ± 1.17
b,c

15.50 ± 1.36
c F4,28 = 14.662 < 0.0001

Note: Variables are defined in the text. Values are presented as mean ± 1 SE. P and F values result from GLM rmANOVA for body mass, meal size, SMR

(ml O2 g
-1

h
-1

), Scope, Peak VO2 (ml O2 g
-1

h
-1

), SDA (kJ kg
-1

) and SDA coefficient. The P and F values from whole animal variables including SMR (ml

O2 h
-1

), Peak VO2 (ml O2 h
-1

) and SDA (kJ) result from GLM rmANCOVA (body mass as the covariate). Superscript letters that differ denote significant

differences (P  < 0.05)  between means among temperature treatments determined from post-hoc pairwise mean comparisons (Tukey tests) for each variable.

11 8 11 11 8

16.5 12.5 9.5 8.5 7.5

8 9 10 8 9

14.5 13.5 10.5 9.5 7.5

4 4 4 4 4

13.5 12.5 7.5 6.5 6.5

Table 2.1. Body mass, meal size, pre- and postfeeding whole animal and mass-specific metabolic response variables including standard metabolic rate (SMR), 

peak oxygen consumption, scope of peak, duration, specific dynamic action (SDA) and SDA coefficient for Dasypeltis inornata  and D. scabra  adults and 

neonates in response to five temperature treatments.
Temperature (°C)

20 25 27 30 32
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Figure 2.1 Mean VO2 (ml O2 h
-1

) of Dasypeltis inornata and Dasypeltis scabra adults and 

neonates prior to (day 0) and up to 18 days after the ingestion of  chicken egg meals equaling  

20% of  snake body mass at body temperatures (Tb) of 20, 25, 27, 30 and 32°C. For all 

temperature trials D. inornata n = 4,   D. scabra adults n = 8 - 10, D. scabra neonates n = 8 - 11.  

Error bars represent ± 1 SE.  Note that with an increase in Tb after feeding, oxygen uptake is 

elevated and the SDA response is shorter.  



34 

 

2.4.2 Inter- and Intraspecific Comparison 

 

With few exceptions, metabolic variables measured did not vary significantly between D. 

scabra adults and D. inornata at each temperature.  Mass did not vary significantly 

between the two groups at any temperature; therefore, significant results of ANOVA and 

ANCOVA are reported for whole-animal and mass-specific metabolic variables.  At 20°C, 

mass-specific MR varied significantly (F1, 10 = 5.7261, P = 0.0378), while peak VO2 (ml O2 

g
-1

 h
-1

) was borderline significant (F1,10 = 4.6683, P = 0.0561).  Peak VO2 (ml O2 h
-1

) was 

significantly different between the two groups at 27°C (F1, 11 = 5.1539, P = 0.0443) and 

30°C (F1, 9 = 5.2887, P = 0.0470).  Mass as the covariate was highly significant and 

accounted for much of the variation at both 27°C (F1, 11 = 12.2066, P = 0.0050, r
2
 = 0.52) 

and 30°C (F1, 9 = 35.5811, P = 0.0002, r
2
 = 0.75).  The exceptions were significantly lower 

in D. scabra adults than D. inornata adults (Figure 2.2).  While generally not statistically 

significantly different, D. inornata whole-animal and mass-specific mean values for 

metabolic variables were on average higher than those measured for D. scabra adults.   

Only mass-specific metabolic variables were compared between D. scabra adults 

and neonates to eliminate the effects of differences in Mb.  At 20°C, mass-specific peak 

VO2 (ml O2 g
-1

 h
-
1) varied significantly between adults and neonates (F1, 17 = 5.6873 P = 

0.0290).  At 25°C, mass-specific peak VO2 (F1, 15 = 5.5336 P = 0.0327), the factorial scope 

(F1, 15 = 7.4469 P = 0.0155), SDA (kJ kg
-1

; F1, 15 = 8.4408 P = 0.0109) and the SDA 

coefficient (F1, 15 = 8.4408 P = 0.0109) were statistically significantly different between the 

two groups of snakes.  Scope (F1, 19 = 4.3196 P = 0.0514) and mass-specific peak VO2 (F1, 

15 = 4.1806 P = 0.0589) were also borderline significantly different at 27°C and 30°C 

respectively.  Comparatively, adults exhibited lower mean values of mass-specific peak 

VO2, SDA, the SDA coefficient and scope of peak VO2 (Table 2.1 and Figure 2.2a).   

To determine mass exponents, SMR, peak VO2 and SDA were plotted against Mb 

for D. inornata and D. scabra with adults and neonates combined (Figure 2.3).  Body 

temperature and meal size were held constant at 30°C and 20% of body mass respectively.  

SMR scaled with a mass exponent of 0.94 for D. inornata and 1.03 for D. scabra (Figure 

2.3).  Peak VO2 and SDA scaled with mass exponents of 1.01 and 0.96 respectively for D. 

inornata.  Mass exponents for peak VO2 and SDA for D. scabra were 0.95 and 0.93 

respectively.  With mass exponents close to 1.00, metabolic rate appears to increase 

proportionally with Mb for both species and Mb accounts for a significant portion of the 

variability within MR intraspecifically except for neonates (Figure 2.3).    
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Figure 2.2 a.) Intra- and interspecific comparison of mass-specific standard metabolic rate 

(SMR; ml O2 g
-1

 h
-1

) and peak VO2 (ml O2 g
-1

 h
-1

) plotted for each temperature for 

Dasypeltis inornata and D. scabra adults and neonates.  b.) Intra- and interspecific 

comparison of standard metabolic rate (ml O2 h
-1

) and peak VO2 (ml O2 h
-1

) plotted for 

each temperature for Dasypeltis inornata and D. scabra adults and neonates.  Note D. 

inornata SMR (    ), D. inornata peak VO2 (   ), D. scabra adult SMR (    ), D. scabra adult 

peak VO2 (    ), D. scabra neonates SMR (   ), D. scabra neonates peak VO2 (   ).   Error 

bars that cannot be seen outside of the shape have been omitted.  
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Figure 2.3 Peak VO2 (ml O2 h
-1

), SMR (ml O2 h
-1

) and SDA (kJ) plotted against body   

mass (g) on a log10 - log10 scale for (a.) Dasypeltis scabra - adults and neonates and (b.) 

adult Dasypeltis inornata.  Data were log transformed prior to generation of equations.  

Data generated for plots originated from experimental trials at 30°C where snakes were fed 

liquid contents of chicken egg equivalent to 20% of body mass.  Note SDA kJ (   ), Peak 

VO2 ml h
-1

 (    ), SMR ml h
-1

  (    ). 
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2.5 Discussion 

 

Dasypeltis inornata and D. scabra adults and neonates exhibit a metabolic response similar 

to infrequently feeding snake species (Ott and Secor 2007a; Secor and Diamond 2000; 

Zaidan and Beaupre 2003) including up-regulation of the gastrointestinal tract (Bramwell 

2006; Groβmann and Starck 2006).  The metabolic response also included a significant rise 

in VO2 after feeding and a peak in VO2 normally within 48h of meal ingestion.  Thereafter, 

oxygen consumption returned to resting levels at a slower rate (see Secor 2009 for 

diagrammatic representation of a typical response).  Results also suggest that digestive 

response in both D. scabra adults and neonates and D. inornata are thermally sensitive and 

digestive duration and energy expended during digestion vary with changes in Tb. 

Current studies typically compare SDA among snakes at 25°C and 30°C and a meal 

size ranging from 20 – 25% of Mb (Ott and Secor 2007b; Toledo et al. 2003; Zaidan and 

Beaupre 2003).  Yet, many species encounter much higher temperatures and may select 

higher Tb than 30°C for digestion through behavioural thermoregulation and microhabitat 

selection (Alexander et al. 2001; Regal 1966; Slip and Shine 1988b). Inclusion of a higher 

maximum trial temperature up to 35°C may be appropriate in future digestive studies for 

Dasypeltis species.   

Although not all snakes are effective thermoregulators and may fail to show 

postprandial thermophily (Rice et al. 2006), the efficacy of thermoregulation can affect 

digestive function (Cowles and Bogert 1944).  The thermoregulatory ability and preferred 

Tb for digestion for D. scabra and D. inornata is unknown.  Differences observed in 

digestive duration across trials (Table 2.1) may indicate that Dasypeltis species are more 

efficient at digesting at higher Tb and may select a temperature above 32°C for optimal 

digestion.  Previous studies show that the duration of the metabolic response to feeding 

ranges from two days for the frequently feeding snake Thamnophis sirtalis  (Peterson et al. 

1998) to 12 days for the ambush forager Crotalus cerastes (Secor and Diamond 2000).  A 

meal equivalent to 25% of Mb at 30°C takes an average of 7 ± 0.4 (n = 24) days to digest 

while a meal equal to 20% of Mb at the same temperature requires an average of 5.4 ± 1.3 

days  to digest (n = 3; calculated from data in Secor 2009 excluding Groβmann and Starck 

2006 study).  These figures are, however, based on a number of infrequently feeding 

species that typically consume large meals (> 50% of Mb) of intact prey items containing 

bone and/or fur.  The digestion duration for D. inornata fell within the range of other 
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species at the same temperature and meal size and was 2-3 days shorter than digestive 

duration of D. scabra adults and neonates.  For a meal equivalent to 20% of body mass at 

30°C, the duration of the digestive response for D. scabra adults and neonates was 9.5 and 

8.5 days, respectively.  Groβmann and Starck (2006) found that D. scabra needed on 

average of 11 days to digest a meal of the same size at the same temperature.  Adult and 

neonate D. scabra appear to require more time than other snakes to digest a meal of 20% 

of Mb at 30°C.   

Studies have shown prey type and composition can also affect metabolic response 

(Grayson et al. 2005; McCue et al. 2005; Secor and Boehm 2006; Secor et al. 2007).  

Consuming ground, cooked or liquid meals has been shown to reduce the digestive effort 

and the duration of metabolic response relative to the time and energy required for 

consuming intact prey items (Boback et al. 2007; Christel et al. 2007).  Dietary specialists 

have also been shown to be more efficient at assimilating prey items due to morphological, 

behavioural and physiological specializations conferring an energetic advantage (Britt and 

Bennett 2008; Mori and Vincent 2008). 

Based on the dietary specialization and the liquid content of the diet of Dasypeltis, 

it was predicted that these snakes would be more efficient at consuming meals in terms of 

duration of digestion and overall energy required to digest prey items.  It was expected that 

Dasypeltis would have required less time to digest because liquid meals should require less 

enzymatic breakdown.  While the scope and SDA coefficient for both Daspyeltis species 

are some of the lowest reported for snakes, with similar results reported in Groβmann and 

Starck (2006), the duration of the metabolic response was longer than expected, but both 

species of Dasypeltis did exhibit lower SDA (kJ kg
-1

) relative to other species digesting a 

meal of 20% of Mb at 30°C.  The average SDA for other species was 328.56 ± 71.98 (data 

for other species was adapted from review Secor 2009).  SDA (kJ kg
-1

) for D. scabra 

adults and neonates was 182.49 ± 25.00 and 198.69 ± 17.80, respectively and 186.91 ± 

17.92 for D. inornata.  Dasypeltis scabra may take longer on average to digest a meal, but 

generally, both Dasypeltis species appear to use less energy to digest the contents.  

Whether this decrease in energy expended for digestion is related to meal type or 

advantages of dietary specialization is unknown. 

Longer digestion periods may have associated physiological implications that may, 

in turn, have implications for energy budgets, reproduction, foraging and growth in the 

individual.  Although most species are capable of consuming another meal during 

digestion, it is often the case that, during digesting or directly following consumption of a 



39 

 

meal, a snake‟s movement is curbed leaving less time for foraging (Garland and Arnold 

1983; Shine and Shetty 2001).  Thus, less foraging may result in less prey encounters and 

ultimately, less energy intake hindering growth.  Physiologically, increased digestion 

duration may point to variation in the capacity and strength of digestive secretions to break 

down a meal even in liquid form.  Although some snakes consume intact prey, shorter 

digestion durations because of increased strength in enzymatic breakdown or other 

physiological variation may confer digestive advantages.  

The ability to assimilate more energy or to minimize the amount of energy spent 

digesting a meal relative to the energy consumed would have added advantages (Lillywhite 

1987) particularly for snakes that encounter seasonally available prey items.  Energy saved 

on digestion can be used elsewhere during periods of low prey availability.  Although 

Dasypeltis species are considered active foragers, due to the seasonal availability of avian 

eggs, feeding bouts may range from intermittent during winter months to abundant feeding 

during peak egg-laying months.  The annual variability in prey availability may increase 

selective pressures to conserve energy.  The lower SDA coefficient of Dasypeltis species 

relative to other snakes suggests that less energy is being spent on digestion relative to that 

consumed.  The conservation of energy during digestion may allow for allocation to 

increased foraging time when prey is not readily abundant, or in the case of neonates for 

growth.  Furthermore, down-regulating the gastrointestinal tract in Dasypeltis may also 

help to conserve energy between meals and during longer fasting periods (Bramwell 2006; 

Groβmann and Starck 2006).    

 

2.5.1 Body Temperature, Age and Species Effects 

 

Increases in Tb resulted in increases in metabolic variables including SMR, peak VO2 and 

SDA when holding meal type and size constant, a pattern consistently seen in other species 

(McCue and Lillywhite 2002; Secor and Faulkner 2002; Skoczylas 1970; Zaidan and 

Beaupre 2003).  In all Dasypeltis groups, as Tb increased, peak VO2 and SMR increased at 

proportionally similar rates. At higher Tb, peak VO2 was reached within 72h of meal 

consumption, which is slightly longer than other species (Andrade et al. 1997; Hopkins et 

al. 2004; Secor 2003).  At Tb below 27°C, peak VO2 was less distinct and the rapid rise in 

oxygen consumption was minimal for all groups resulting in relatively flat postprandial 

metabolic responses and a longer duration of digestion.  There were few significant 
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differences between digestive metabolic scopes except between the lowest and the highest 

trial temperatures for D. scabra adults and neonates.   

Increased Tb led to increases in minimum maintenance (SMR) and digestive costs 

(SDA).  At temperatures of 30°C or higher, digestion is energetically costly, accounting for 

12 – 16% of the total energy consumed, similar to other species (Andrade et al. 1997; 

McCue et al. 2005).  Although maintenance and feeding at higher temperatures is more 

energetically costly, many species do behaviourally select for increased Tb during digestion 

(Beck 1996; Sievert et al. 2005; Touzeau and Sievert 1993).  Selecting for increased Tb 

during digestion may be related to decreasing digestive duration during periods of prey 

abundance, but not necessarily to increasing digestive efficiency (Greenwald and Kanter 

1979; Wang et al. 2003).  In ecologically relevant terms for Dasypeltis species, increased 

temperatures coincide with prey abundant periods during summer (peak egg laying 

season).  Dasypeltis scabra and D. inornata may exhibit postprandial thermophily to 

capitalize on consuming large numbers of eggs while they are more abundant.  Further 

thermoregulatory studies are needed to determine if Dasypeltis species 1.) effectively 

thermoregulate, and the preferred Tb or set point range and 2.) exhibit postprandial 

thermophily.   

At lower temperatures, SDA appeared to be less costly in terms of energy expended 

to digest.  In the case of Dasypeltis species, 20°C is not outside of the relevant ecological 

temperatures that would normally be experienced in early spring, late fall or winter 

months.  If Dasypeltis feeds in any of these months, even rarely, then they would have the 

capacity to digest a meal at 20°C, but the process may be hindered or not as effective in 

extracting energy from the meal as at higher Tb.  While snakes did not regurgitate the 

meals and defecation did occur, in some instances up to two weeks after feeding (pers. 

obs.), the amount of digestion taking place was most likely less than at higher Tb.  The 

result looks like “cheaper” digestion at lower Tb, but may simply be the result of digesting 

less of the meal.  Some species are not able to digest at this temperature and simply 

regurgitate the meal indicating digestion was arrested at 20°C (Wang et al. 2003), but not 

for Dasypeltis.  The ability of Dasypeltis species to digest meals at lower Tb may be related 

adaptive traits over an evolutionary time frame or simply because the enzymatic 

breakdown required to digest a liquid meal is less than one containing bones and fur.   

The metabolic response for D. inornata and D. scabra is lower than other active 

foragers and ambush foragers (Table 2.2) and was, in fact, one of the lowest postprandial 

metabolic responses recorded for snakes.  The lower scope and SDA (kJ) is related to a 
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reduction in the energy and effort required to initiate gastric breakdown, nutrient 

catabolism and biosynthesis of a liquid meal (Christel et al. 2007; Coulson and Hernandez 

1979; Secor 2009).  Other snake species that were fed intact rodent meals of the same size 

(20 – 25% of Mb) and at the same Tb required more energy to digest (Table 2.2; Boback et 

al. 2007).  Overall, other active and ambush foraging snakes had metabolic scopes that 

were at least double that of the Dasypeltis species tested.  The digestive effort in other 

species requires a larger proportional increase in energy expenditure above SMR to 

complete digestion (Secor 2009); which suggests that, foods higher in energy content, 

more frequent feeding bouts or larger meals are required to satisfy the energy demands 

related to increased gastric breakdown costs.       

To date few studies have tested digestive efficiency between an intact meal and an 

egg meal, but preliminary results suggest that meals consisting of the yolk and albumen of 

eggs require less energy to digest than intact rodent meals.  Christel (2007) found that the 

Gila monster, Heloderma suspectum, used 24% less energy to digest and assimilate the 

liquid contents of an egg than an intact rodent meal of equal mass.  Metabolic scope was 

19% less for H. suspectum digesting egg versus an intact rodent meal (Christel et al. 2007).  

While H. suspectum can weigh 5 to 10 times that of an average adult Dasypeltis, the 

metabolic variation for digesting an intact rodent meal and an egg meal emphasizes the 

variability in costs associated with digesting different meal types.  For a meal of only 10% 

of Mb, H. suspectum used 43.2 kJ to digest and assimilate the egg (Christel et al. 2007), 

whereas, D. inornata and D. scabra used only 13.18 and 9.90 kJ, respectively for a meal 

equivalent to 20% of Mb.  Although meal sizes would be very different because Mb are 

different between H. suspectum, D. scabra and D. inornata, as a proportion of total body 

size, Dasypeltis species used less energy to digest the same meal type.   

Pre- and postprandial metabolic response can vary due to ontogenetic differences, 

and may influence the energy expended for digestion.  Neonates can exhibit higher 

metabolic rates presumably as a cost to synthesize new tissues (Beaupre and Zaidan 2001).  

In this study, mass-specific SMR and SDA generally, did not differ significantly between 

adults and neonates but mass-specific peak VO2 was greater for neonates than adults.  

Neonates also used more energy during digestion relative to that consumed as their SDA 

coefficients were on average 17% higher than adult SDA coefficients.  While energy 

expended during digestion was greater across all temperature trials for neonates, 

differences may be the remnant of ratio calculations and mass scaling relationships.   
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Increased postprandial MR in younger animals is common as more energy is 

expended for the purposes of rapid growth, but there is conflicting evidence of significant 

differences in SMR/RMR between adults and neonates (Beaupre and Zaidan 2001; Nagy 

2000).  Few studies have examined an added “growth cost” during digestion (Beaupre and 

Zaidan 2001; Nagy 2000).  The increased energy expenditure of neonates exhibited in this 

study may provide preliminary evidence that there is added cost to neonates during 

digestion related to growth requirements.      

 Variation between Dasypeltis species and between neonate and adult D. scabra did 

occur for some metabolic response variables, but was usually not significantly different.  

Body mass affected whole animal metabolic measurements, but after factoring out Mb 

effects by using mass specific metabolic measurements, significant variation inter- and 

intraspecifically was still minimal.  Results for D. inornata are, however, preliminary as 

the small sample size may have skewed the actual metabolic relationship inter- and 

intraspecifically.  Thus, the relationship between mass and certain metabolic response 

variables (Figure 2.3b) may be less linearly associated, resulting in mass exponents that 

vary from one.  However, the general trend that increases in Tb increase the energy 

expended for maintenance and digestion but decrease digestion duration is consistent with 

that observed in other species (Bontrager et al. 2006; McCue and Lillywhite 2002; Toledo 

et al. 2003; Zaidan and Beaupre 2003).   

Finally, it should be noted that the bias created by the method used for determining 

SDA duration was considered, but while duration estimates may have erred on the shorter 

side, SDA calculations are technically only supposed to include digestive costs.  Including 

additional energy expenditure not significantly different to SMR levels could lead to 

inflated costs of digestion, as the point at which digestion stops and maintenance 

metabolism begins is not easily determined if the noise to signal ratio is limited.  If SDA 

duration were taken as the point of no difference between SMR and SDA, the total energy 

cost associated with digestion would also include maintenance costs not associated with 

digestion.  In future studies, a possible solution to determining digestive duration could be 
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to define the end of digestion as the point at which elevated VO2 is different from SMR by 

a preselected percent (i.e., 5% difference from SMR; Alexander pers. comm.).
4
 

                                                 

 

 

4
 Professor Graham Alexander, Ecophysiological Studies Research Programme, Department of Animal, 

Plant, and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa 
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Table 2.2  Metabolic variables and conditions for SDA studies of various species of  snake 

Species 

Mb  

(g) 

Tb 

(°C) 

Meal  

Size 

 (% of 

Mb) 

Meal 

Type Scope 

Duration 

(Days) 

SDA 

 (kJ) 

SDA 

coefficient 

(%) 

Intermittent 

feeder (I)/ 

Active 

forager (A) Study 

Acrantophis dumerili 206 30 25.1 Rodent 7.60 6 67.6 21.9 I (Ott and Secor 2007a) 

Agkistrodon piscivorus 139 25 23.4 Fish 5.70 9.2 37.1 26.5 I (McCue and Lillywhite 2002) 

Boa constrictor 69.8 30 25 Rodent 7.83 6 25.4 29.0 I (Ott and Secor 2007a) 

Boa constrictor 137 30 20 Rodent 3.96 4.8 34.4 16.8 I (Toledo et al. 2003) 

Boa constrictor 346 30 25.1 Rodent 18.50 8 232.0 33.0 I (Secor and Diamond 2000) 

Coluber constrictor 223 30 25 Rodent 5.40 4 68.9 15.0 A (Secor and Diamond 2000) 

Crotalus cerastes 127 30 26 Rodent 7.86 9 60.0 23.0 I (Secor et al. 1994) 

Crotalus cerastes 161 30 25 Rodent 9.90 12 73.2 21.0 I (Secor and Diamond 2000) 

Crotalus durissus 42 30 20 Rodent 3.72 3 7.3 12.2 I (Andrade et al. 1997) 

Dasypeltis scabra 47 30 20 Egg 1.97 11 8.9 13.2 A/I (Groβmann and Starck 2006) 

Dasypeltis scabra 59 30 20 Egg 2.47 9.5 9.9 12.0 A/I This study 

Dasypeltis scabra 47.3 25 20 Egg 2.18 13.5 6.2 8.5 A/I This study 

Dasypeltis inornata 71.3 30 20 Egg 2.76 6.5 13.2 12.3 A/I This study 

Dasypeltis inornata 61.6 25 20 Egg 2.64 13.5 6.0 6.2 A/I This study 

Lampropeltis getula 188 30 24.8 Rodent 7.00 4 56.0 14.0 A (Secor and Diamond 2000) 

Lamprophis fuliginosus 16.3 25 20 Rodent 5.10 6 3.3 14.5 A (Roe et al. 2004) 

Masticophis flagellum 273 30 25 Rodent 5.90 5 70.4 13.0 A (Secor and Diamond 2000) 

4
4
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Species 

Mb  

(g) 

Tb 

(°C) 

Meal  

Size 

 (% of 

Mb) 

Meal 

Type Scope 

Duration 

(Days) 

SDA 

 (kJ) 

SDA 

coefficient 

(%) 

Intermittent 

feeder (I)/ 

Active 

forager (A) Study 

Morelia spilota 64.8 30 25 Rodent 8.03 5 15.1 18.7 I (Ott and Secor 2007a) 

Morelia spilota imbricataa 130 30 23 Rodent 6.31 6 52.6 22.1 I (Thompson and Withers 1999) 

Nerodia fasciata fasciata 30.2 25 19.7 Fish 5.64 3.5 5.4 21.1 A (Hopkins et al. 2004) 

Pituophis melanoleucus 732 30 25.1 Rodent 8 5.0 211 14.0 A (Zaidan and Beaupre 2003) 

Python brongersmai 763 30 25 Rodent 11.30 8 322.0 23.1 I (Ott and Secor 2007b) 

Python molurus 300 30 20 Rodent 8.59 
 

118 24.5 I (Overgaard et al. 2002) 

Python molurus 500 30 20 Rodent 6.30 8 248.0 31.0 I (Wang et al. 2003) 

Python molurus  690 30 25 Rodent 15.30 8 420.0 30.0 I (Secor and Diamond 1997) 

Python molurus  719 30 25 Rodent 14.50 6 317.0 24.5 I (Ott and Secor 2007b) 

Python molurus  736 30 25 Rodent 17.10 8 438.0 29.8 I (Secor and Diamond 1995) 

Python molurus  2394 30 25 Rodent 16.80 8 1259 26.5 I (Secor 2003) 

Python regius  147 30 25 Rodent 5.23 10 51.7 18.8 I (Starck et al. 2004) 

Python regius  147 30 25 Rodent 4.74 9 17.4 6.7 I (Starck and Wimmer 2005) 

Python regius  715 30 25 Rodent 9.90 8 326.0 25.1 I (Ott and Secor 2007b) 

Python reticulatus  730 30 25 Rodent 10.4 7 340 25.6 I (Ott and Secor 2007b) 

Python sebae  706 30 24.9 Rodent 11.70 6 347.0 27.3 I (Ott and Secor 2007b) 

Metabolic variables defined in Table 2.1. Table adapted from review by Secor (2009).   

4
5
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Chapter 3 - Concluding remarks 

 

Understanding the physiology of a species has become an integral part of conservation 

efforts as the stability of vertebrate populations decreases due to climatic changes and 

anthropogenic pressures.  Through physiological studies, analysis of the extent of 

variability in a trait and the response of particular traits to environmental changes can 

provide a comprehensive understanding of the adaptability potential or potential tolerance 

to temperature changes (Piersma and Drent 2003).  In large part, species are unable to cope 

with and adapt to current climatic changes because of the rapidity with which changes are 

occurring (Pullin 2002).  Species at highest risk face not only anthropogenic pressures, but 

may also have limited distributions, low population densities and population limiting life-

history traits such as low fecundity and slow growth rates (Purvis et al. 2000).  Highly 

specialized and rare species also face higher extinction risks because of inherent limitations 

for suitable alternatives (Boyles and Storm 2007; Foufopoulos and Ives 1999; Julliard et al. 

2004; Sorensen and Dearing 2004).  Climatic changes may include increases in seasonal 

temperatures.  While negative for some species, increases in environmental temperatures 

could be beneficial for some ectotherms and more specifically, snakes.  

In South Africa, it is predicted that mean ambient temperatures could rise by 2 C by 

2050 (Erasmus et al. 2002).  Many reptiles are effective thermoregulators through 

behavioural (Anderson et al. 2005; Avery 1982; Bennett 2004) and physiological means 

(Brown and Au 2009; Tattersall et al. 2004) and have wide thermal tolerances (Alexander 

et al. 1999), such that a 2 C increase in ambient temperature would most likely have little 

negative effect on most species.  In fact, thermoregulatory behaviour is closely linked to 

optimizing digestive performance and energy gain (Angilletta et al. 2002a).  Digestive 

performance is, in turn, sensitive to changes in body temperature (Tb; Angilletta et al. 

2002a; Greenwald and Kanter 1979), and is often optimized at higher selected Tb (Beck 

1996; Slip and Shine 1988b).  Reptilian species that are not as effective at 

thermoregulating may also benefit from increases in Ta as passive conformity to higher Tb 

may optimize or improve various performance functions at a lower energetic cost (Huey 

and Slatkin 1976).  

Dasypeltis scabra and D. inornata both exhibited increased digestive performance 

(i.e. shorter digestion durations) at higher Tb.  Additional studies to determine their 

preferred Tb or range of preferred Tb (Tset; Hertz et al. 1982) would provide a better 
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understanding of how increased Tb would affect digestive performance and what Tb 

optimizes digestive performance.  A thermoregulatory study could also determine if 

Dasypeltis species exhibit postprandial thermophily.  It is possible that a 2 C increase in Ta 

would have no effect on Dasypeltis species if they are effective behavioural 

thermoregulators.  Even if Dasypeltis are passive thermoconformers, if available Ta allow 

for selection of habitats that lead to higher Tb, optimization of digestive performance 

would still be possible via thermoconformation.     

While physiological performance in Dasypeltis may not be hindered by small 

increases in Ta, bird breeding seasons and egg-laying is expected to be change because of 

climate changes.  Climatic changes in temperature can cause either shifts in peak egg-

laying season or variation in clutch size, regardless if it is related to microevolutionary 

adaptation or phenotypic plasticity (Dunn 2004; Winkler et al. 2002).  Breeding is 

occurring earlier and migrant species are migrating sooner (Both et al. 2004; Cotton 2003; 

Walther et al. 2002).  Reductions in bird populations and local extirpations are also 

possible due to climate change (Simmons et al. 2004; Wichmann et al. 2003), which could 

certainly affect the number of eggs available for consumption by Dasypeltis.  Indirectly 

then climate change may affect the availability of prey for Dasypeltis.  If birds breed 

earlier and egg-laying season occurs sooner, prey will be abundant during periods of colder 

temperatures.  Selection of higher Tb may not be possible depending on how early the egg-

laying season occurs.  If the egg-laying season advances relatively little, changes in 

available temperatures during prey abundance will be minor and most likely insignificant.  

In areas where Dasypeltis scabra and D. inornata distributions overlap, competition may 

also increase as a result of the increased demand for scarce resources if bird populations 

and, in turn, the number of available eggs are reduced.     

At higher Tb, D. scabra and D. inornata used more consumed energy for digestion 

leaving less energy available for other functions.  While the energy required to digest the 

egg meal at 20°C was substantially less than that at 25 or 30°C for both D. scabra and D. 

inornata, the probable cause was that the snakes were digesting less of the food.  Thus 

digestion was actually more costly because net energy gained from digestion was less than 

that at higher Tb.  While less consumed energy is spent on digestion at lower Tb (smaller 

SDA coefficient), the duration of digestion is extended.  If the time to digest a meal is 

extended, more time is taken to extract essential nutrients and assimilate energy.  Longer 

digestion and assimilation times translate into less energy being immediately available for 

other vital functions including continued foraging and reproduction.   



48 

 

The thermal dependence of metabolic rate (MR) is clear as changes in Tb affected 

the pre- and postprandial metabolic performance of each group.  Higher Tb led to decreases 

in digestion duration suggesting that the optimal temperature (To) for digesting quickly is 

at or above 32°C.  The preferred Tb (Tsel) for Dasypeltis species may vary within a larger 

range, however, because optimization of different functions occurs at different times 

depending on the circumstances the individual is faced with in the environment including,  

reproductive status, predator abundance and resource availability.  Since the thermal 

optima vary, Tsel may vary to maximize specific functions at different times or will be 

constant allowing multiple processes to function at a moderate but not optimal level 

(Angilletta et al. 2002a).  The variation in performance also suggests that there is 

phenotypic flexibility in MR and some level of plasticity which affords adaptive responses 

to changes in climate conditions.  The distinct trophic specialization in Dasypeltis species 

may, however, hinder the level of flexibility for MR. 

Results of this study which identify some benefits to specializing on egg-eating 

(liquid contents) are preliminary, but do suggest that there is less energy expended to 

digest egg yolk and albumen as a result of a reduction in enzymatic breakdown.  If eggs are 

available, selective pressure should maintain or increase the level of dietary specialization 

further increasing digestive efficiencies and reducing energy expenditure.  Future studies 

comparing other facultative oophagous species will determine whether Dasypeltis species 

gain an energetic advantage over other species by specialized feeding behaviour and 

consuming only liquid meals.  Determining minimum metabolic energy requirements in all 

trophic guilds of snake is most important because if minimum maintenance requirements 

are not met, there will be an energy shortage for carrying out other processes (Zaidan 

2003).  Physiological studies are therefore essential in forming a comprehensive 

understanding of a species niche and its adaptive capacity to environmental changes 

(Garland and Adolph 1991). 
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