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Abstract 
 

The school timetabling problem is a common optimization problem faced by many primary 

and secondary schools.  Each school has its own set of requirements and constraints that 

are dependent on various factors such as the number of resources available and rules 

specified by the department of education for that country.  There are two objectives in this 

study.  In previous studies, genetic algorithms have only been used to solve a single type of 

school timetabling problem.  The first objective of this study is to test the effectiveness of a 

genetic algorithm approach in solving more than one type of school timetabling problem.  

The second objective is to evaluate a genetic algorithm that uses an indirect representation 

(IGA) when solving the school timetabling problem.  This IGA approach is then compared to 

the performance of a genetic algorithm that uses a direct representation (DGA).  This 

approach has been covered in other domains such as job shop scheduling but has not been 

covered for the school timetabling problem.   

 

Both the DGA and IGA were tested on five school timetabling problems.  Both the algorithms 

were initially developed based on findings in the literature.  They were then improved 

iteratively based on their performance when tested on the problems.  The processes of the 

genetic algorithms that were improved were the method of initial population creation, the 

selection methods and the genetic operators used. 

 

Both the DGA and the IGA were found to produce timetables that were competitive and in 

some cases superior to that of other methods such as simulated annealing and tabu search.  

It was found that different processes (i.e. the method of initial population creation, selection 

methods and genetic operators) were needed for each problem in order to produce the best 

results.  When comparing the performance of the two approaches, the IGA outperformed the 

DGA for all of the tested school timetabling problems. 
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Chapter 1 - Introduction 

1.1 Purpose of the study 
The school timetabling problem is a common problem faced by many schools.  School 

timetabling problems vary between different schools and different countries in terms of the 

constraints specified by the educational system of that country.  In most schools, timetables 

are manually designed and teachers usually set aside a week or a weekend for this, thus 

taking up valuable time in the process.  In addition to being a time-consuming process, the 

manual design of a timetable is subject to human error and may not satisfy all the 

constraints. 

 

Genetic algorithms attempt to mimic the evolutionary process.  They have been previously 

used successfully to solve combinatorial optimization problems, specifically educational 

timetabling problems such as examination timetabling and university course timetabling.  In 

previous studies, each genetic algorithm was evaluated on solving a particular type of school 

timetabling problem with a specific set of constraints i.e. each algorithm was tailored to solve 

that specific problem.  As a result, it is unknown as to how each of these genetic algorithms 

will fare when applied to more than one type of school timetabling problem, each having a 

different set of constraints when compared to another [JACO06].   

 

The first objective of this thesis is to study the effectiveness of a genetic algorithm in solving 

more than one type of school timetabling problem where each type of problem differs in 

terms of the set of constraints used and the resources of the problem.  This genetic 

algorithm, referred to in this study as DGA, uses a direct representation where each 

individual represents a timetable.   

 

From the literature, it is clear that a genetic algorithm using an indirect representation has 

not been studied.  This approach has been successfully used in domains such as job shop 

scheduling and examination timetabling but has not been looked at for the school timetabling 

problem.  The second objective is to develop and evaluate a genetic algorithm that uses an 

indirect representation (IGA) when solving the school timetabling problem.  The IGA will be 

evaluated by comparing its performance to that of the DGA. 

1.2 Objectives 
The objectives of this thesis are: 
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 Based on the analysis of the literature, implement a genetic algorithm approach for 

solving the school timetabling problem and evaluate it on more than one type of 

school timetabling problem. 

 Develop and evaluate a genetic algorithm approach that uses an indirect 

representation when solving the school timetabling problem. 

1.3 Contributions to the study 
This thesis makes the following contributions: 

 

Major contributions 

 

 In investigating genetic algorithms to solve different types of school timetabling 

problems with different sets of constraints, it was found that different processes 

(method of initial population creation, selection method and genetic operators used) 

were needed in order to solve each problem.   

 There has been no previous work investigating indirect representations in genetic 

algorithms when solving the school timetabling problem and it was found that this 

genetic algorithm (IGA) performed better than a genetic algorithm using a direct 

representation (DGA). 

 

Minor contributions 

 

 It was clear that the use of a sequential construction method (SCM) produced better 

results (in terms of both feasibility and timetable quality) when used with the genetic 

algorithm. 

 When solving the school timetabling problems in this study, it was found that the use 

of a less elitist variant tournament selection was found to be a good alternative to 

standard tournament selection.  In several cases, the genetic algorithm using variant 

tournament selection performed better than the genetic algorithm that used standard 

tournament selection (in terms of finding feasible timetables). 

1.4 Thesis layout 
Following this introduction, Chapter 2 presents an overview of the school timetabling 

problem.  Commonly used terms related to this problem are explained and the most 

common constraints of the problem are outlined. 
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Chapter 3 discusses previous work on the school timetabling problem.  This chapter 

describes the school timetabling problems that various authors attempted to solve, the 

methods that were used to solve the problem and the results obtained. 

 

Chapter 4 firstly covers the standard genetic algorithm described by Goldberg [GOLD89].  

This chapter also looks at recent modifications that were made to the processes involved in 

genetic algorithms in order to solve various problems or improve performance. 

 

Chapter 5 provides a detailed description of previous work that applied genetic algorithms or 

evolutionary algorithms to solve the school timetabling problem.  This includes the processes 

of the genetic algorithm that were used (initial population generation, selection methods and 

genetic operators) as well as the results obtained. 

 

Chapter 6 discusses the methodology and experimental setup used to evaluate both the 

direct representation genetic algorithm approach (DGA) and the indirect representation 

genetic algorithm approach (IGA). 

 

Chapter 7 presents a genetic algorithm approach that uses a direct representation to solve 

the selected school timetabling problems.  This section describes the representation used, 

initial population generation, timetable evaluation, the selection methods, and the mutation 

operators that are considered. 

 

Chapter 8 presents a genetic algorithm approach that uses an indirect representation to 

solve the selected school timetabling problems.  Similar to Chapter 7, this chapter describes 

the representation used, the creation of the initial population, the fitness function used to 

evaluate an individual, selection methods used and the genetic operators considered. 

 

Chapter 9 discusses and compares the performance of both approaches (described in 

chapters 7 and 8) when solving the five school timetabling problems. 

 

Chapter 10 provides a summary of the results in the study and ideas for future research. 
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Chapter 2 - An overview of the school 
timetabling problem 

This chapter outlines the school timetabling problem.  The chapter begins by providing a 

definition of the school timetabling problem.  The chapter then describes the constraints that 

are commonly faced by schools.  These constraints fall into one of two categories, namely 

hard constraints and soft constraints.  Hard constraints are requirements that must be 

fulfilled.  The chapter ends by describing soft constraints, which are preferences that the 

school would like to implement but are not necessary for a feasible timetable. 

2.1 The School timetabling problem 
The school timetabling problem is a scheduling problem that involves the allocation of school 

resources in a particular manner so as to fulfill a set of requirements specified by the school.  

Common school resources include teachers, venues and classes. 

 

A school timetable consists of a set of periods (timeslots).  Each period must be occupied by 

a group of one or more tuples where each tuple consists of a combination of one or more 

resources such as classes, teachers, subjects or rooms. 

 

Figure 2.1 shows an example of four tuples consisting of a class, a teacher, a subject and a 

venue.  Table 2.1 shows an incomplete timetable with four tuples allocated to it.  A full list of 

tuples is specified by the school and all tuples must be allocated to the timetable in a manner 

that will satisfy the requirements set by the school.  The feasibility (usability) and quality of a 

timetable are dependent on whether the timetable satisfies the rules of the school.  These 

rules are referred to as constraints. 

 

TUPLE 1

Teacher:  SMK

Class:  5B

Subject:  English

Venue:  Room 23

TUPLE 2

Teacher:  GS

Class:  4A

Subject:  

Geography

Venue:  Room 25

TUPLE 3

Teacher:  SML

Class:  5B

Subject:  Zulu

Venue:  Room 23

TUPLE N

Teacher:  ABC

Class:  1A

Subject:  

Foundation

Venue:  Room 1

Figure 2.1:  Examples of tuples 
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Table 2.1:  Class timetable example 

Day Period 1A 4A 5B 

1 1   Zulu:  SML (Room 23) 

1 2 Foundation:  ABC 

(Room 1) 

Geography:  GS (Room 

25) 

English:  SMK (Room 

23) 

1 3    

1 4    

 

Any constraint specified by the school will fall into one of two categories.  The first category 

is hard constraints.  A hard constraint is a rule that must be met when considering the 

allocation of tuples to the timetable.  When all hard constraints are satisfied, the timetable is 

said to be feasible.  A violation of any of the hard constraints results in a timetable that 

cannot be used.  This is known as an unfeasible timetable. 

 

The second category of constraints, soft constraints, are specifications made by the school, 

the teacher, or any other resource to improve the quality of the timetable.  Violation of soft 

constraints may still result in a feasible timetable.  Soft constraints may also contradict each 

other, meaning that removing a soft constraint violation may violate another soft constraint.  

Thus, it may not be possible to satisfy all soft constraints and the aim is to therefore 

minimize the soft constraint cost of the timetable in order to improve the quality of the 

timetable. 

 

The ideal timetable is one that has zero hard constraint violations (feasible) and a minimum 

number of soft constraint violations (high quality).  The most common hard and soft 

constraints are listed in sections 2.2 and 2.3 below. 

2.2 Common hard constraints 
This section lists the most common hard constraints identified in studies on the school 

timetabling problem. 

2.2.1 Lesson requirements 
This constraint specifies that all class-teacher meetings (lessons) specified by the school 

must be scheduled the required number of times.  No class-teacher tuples must be left out of 

the timetable.  This is a common requirement specified by all schools.   

2.2.2 Clashes 
A clash occurs when a single resource is allocated to two or more periods or other resources 

at the same time.  The three most common clashes are: 
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 Class clashes – When two or more classes are allocated to the same teacher/venue 

during the same period.   

 Teacher clashes - When two or more teachers are allocated to the same venue/class 

during the same period. 

 Venue clashes – When two or more teachers or classes have been allocated to the 

same venue. 

 

Table 2.2 shows a class clash occurring during period 3 where the teacher SML is required 

to teach two different classes at the same time.  The table also shows a venue clash where 

classes 4A and 5B are scheduled to be taught at the gym at the same time (see period 4).  

These two situations are regarded as clashes unless the school requirements state that it is 

acceptable for these two classes to share a venue or teacher at the same time.  The clashes 

constraint is a common requirement of all timetabling problems including Beligiannis et al. 

[BELI08], Abramson [ABRA91b], Birbas et al. [BIRB97] and Schaerf et al. [SCHA01]. 

 

Table 2.2:  Clashes during periods 3 (teacher) and 4 (venue) 

Day Period 1A 4A 5B 

1 1   Zulu:  SML (Room 23) 

1 2 Foundation:  ABC 

(Room 1) 

Geography:  GS  

(Room 25) 

English:  SMK  

(Room 23) 

1 3 Zulu:  SML (Room 1) Zulu:  SML (Room 25)  

1 4  Physical Education:  TM 

(Gym) 

Physical Education: WB 

(Gym) 

2.2.3 Consecutive period requirements 
A consecutive period requirement specifies that certain tuples that use the same resources 

be allocated consecutively.  For example, two tuples containing the same class, teacher and 

venue should be allocated consecutively, where one tuple is placed in period 2 while the 

next tuple is placed in period 3.  Table 2.3 shows an example of this.  This requirement often 

occurs when teachers find that one period is not enough to sufficiently cover the subject 

matter and require two or more consecutive periods.  The placement of two or three 

consecutive tuples that use the same resources is referred to as double or triple periods 

respectively.  This constraint is considered by Abramson et al. [ABRA91a], Bufe et al. 

[BUFE01], Di Stefano et al. [DIST01] and Cerdeira-Pena et al. [CERD08].  A consecutive 

period requirement can also be specified as a soft constraint by a school as proposed by 

Bello et al. [BELL08].   
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Table 2.3:  Double period allocation during periods 2 and 3 (Class 5B) 

Day Period 1A 4A 5B 

1 1   Zulu:  SML (Room 23) 

1 2 Foundation:  ABC 

(Room 1) 

Geography:  GS (Room 

25) 

English:  SMK (Room 

23) 

1 3 Zulu:  SML (Room 1) Zulu:  HHH (Room 25) English:  SMK (Room 

23) 

1 4  Physical Education:  TM 

(Gym) 

Physical Education: 

WB (Gym) 

 

2.2.4 Co-teaching and subclasses 

According to Beligiannis et al. [BELI08], a co-teaching requirement occurs when two or more 

classes are divided into two or more temporary classes.  Each temporary class contains a 

subset of students from different classes and each temporary class is allocated to a 

particular teacher and is taught a specific subject.  For example, all grade 10 classes in a 

school divide and form two temporary language classes.  One temporary class is taught 

French while the other is taught Spanish.  The teachers are allocated to both classes with no 

clash being recorded. 

 

According to Beligiannis et al. [BELI08], a subclass requirement occurs when a single class 

is split into two or more groups and each group is taught a subject by a different teacher.  

For example, in physical education, a class is divided into males and females with the boys 

being taught by a male teacher and the girls being taught by a female teacher.  In this case, 

two or more teachers are allocated to the same class and no clash is recorded. 

2.2.5 Specialized venues 
Certain venues contain specialized equipment for specific subjects.  For example, physical 

education is held on the school grounds or the gym allowing the class and teacher to use 

sports and gym equipment.  Computer lessons or biology lessons should be allocated to 

venues where there are computers and microscopes respectively.  A hard constraint would 

be for particular lessons to be allocated to specialized venues.  Jacobsen et al. [JACO06] 

address this problem for the German school timetabling problem.  Another requirement may 

also specify that lessons must be taught in venues that are able to accommodate the size of 

the class.  For example, a class of 40 students must only be allocated to venues that are 

able to hold 40 or more students.   
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2.2.6 Teacher availability 
Beligiannis et al. [BELI08] and Valouxis et al. [VALO03], when dealing with the Greek school 

timetabling problem, had to address the problem of teacher availability.  Certain teachers are 

only available to teach during certain periods of the day or certain days of the week.  This 

may be due to teaching duties in other schools or various other duties (such as meetings or 

administration duties) that make them unavailable to teach.  For example, a headmaster that 

teaches may be unavailable to teach in the late afternoons due to administrative duties 

and/or parent meetings.  Thus to allocate the headmaster to the last few periods of the day 

would be a violation.  Another example would be a teacher that specializes in a subject and 

is required to teach in two different schools.  He/she would therefore only be available to 

teach on certain days for one school and the remaining days for the other.  Allocation of this 

resource to a day when that teacher is unavailable would be a violation.  This constraint can 

also be defined as a soft constraint. 

2.3 Common soft constraints 

2.3.1 Daily teacher/subject limits 
A common requirement is the limitation of the number of lessons a teacher is allocated per 

day.  This could also be applied to subjects where there is a limit on the number of times the 

subject is taught to a particular class in a day.  For example, a class should only be taught 

English twice in a day.  An advantage of this constraint is that the subjects are spread 

equally throughout the week and a public holiday will have a minimum impact on the number 

of lessons missed.  Setting a daily limit on the number of lessons taught by a particular 

teacher would prevent the teacher from being overworked on one day and underutilized on 

another.  This constraint is addressed by Beligiannis et al. [BELI08] and Valouxis et al. 

[VALO03] when solving different Greek school timetabling problems. 

2.3.2 Compact timetables 
A compact timetable is a timetable where all lessons occur consecutively with no free (idle) 

periods between lessons.  This requirement could be specified for both teachers and/or 

classes.   

 

For example, the timetable below (Table 2.4) for teacher A would be regarded as a compact 

timetable as the teacher has no free periods between his/her first and last lesson.  The 

timetable for teacher B has two free periods so this timetable is not as compact as the 

timetable produced for teacher A.  The objective of this constraint would be to minimize the 

number of free periods for each teacher or class. 
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Table 2.4:  Compact timetable (Teacher A) and a timetables with gaps (Teacher B) 

Teacher A  1A:PE 2C:Maths 7A:Geog 7B:Bio     

Teacher B 2A:Eng 3A:Eng  4B:Math  5C:Math    

 

Compact timetable constraints are addressed by Beligiannis et al. [BELI08], Desef et al. 

[DESE06], Schaerf et al. [SCHA01] and De Haan et al. [DEHA07] among others.  This 

constraint has been known to be specified as a hard constraint. 

2.3.3 Replacement teachers 
This requirement differs from the teacher availability constraint in that with the teacher 

availability constraint, it is known from the beginning of the school term that the teacher will 

be unavailable on a particular day or at a particular time (due to other commitments such as 

teaching in another school).  With the replacement teacher constraint, a substitute teacher 

replaces the originally allocated teacher only if he/she cannot attend on a particular day due 

to unforeseen circumstances.  The most common example is that a teacher is ill and that 

another teacher must replace him/her. 

2.3.4 Resource preferences 
It may be necessary to allocate a resource to a specific period on the timetable.  For 

example, a requirement may state that mathematics should be taught in the morning 

sessions (periods before noon).  There may be a request for physical education lessons to 

be placed later in the day due to weather (cold mornings) or field conditions (wet fields).  A 

teacher may also request that their lessons be allocated on specific days, for example from 

Monday to Thursday, allowing them to perform other duties or activities on a Friday.  Some 

teachers may request that their lessons be allocated to the morning periods, while others 

may request periods that are in the afternoon [VALO08].  This constraint could also be 

categorized as a hard constraint in some schools.  Jacobsen et al. [JACO06] and Di Stefano 

et al. [DIST01] address this constraint for the German school timetabling problem. 

2.4 The school timetabling problem as a multi-objective problem 
For the school timetabling problem, the satisfaction of hard constraints cannot be seen as a 

multi-objective problem since all these constraints must be met ([BURK08], [SAGI06], and 

[PAIS09]).   

 

In their study of examination scheduling, Burke et al. [BURK08], Sagir [SAGI06] and Pais et 

al. [PAIS09] found that fulfilling of soft constraints could be seen as a multi-objective 

problem.  Burke et al. [BURK08] found that grouping constraints according to the 
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stakeholders involved (i.e. the students and the administrators) reduced the complexity of 

the problem.  In the three studies, the soft constraints were considered as sub-objectives 

and the number of violations for each of the sub-objectives had to be minimized.  A similar 

approach can be applied for the school timetabling problem when dealing with timetable 

quality (soft constraints).  In this case, each soft constraint will be regarded as a sub-

objective. 

2.5 Chapter summary 
This chapter covers the main aspects of the school timetabling problem.  The chapter begins 

by providing a definition of the problem and describes the common constraints that must be 

fulfilled in order to make a timetable feasible and of a high quality.  Schools usually define 

these constraints based on the needs of the school, the resources available and the rules 

specified by the department of education for that country. 
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Chapter 3 - Previous work on the 
school timetabling problem 

This chapter describes previous research conducted to solve the school timetabling problem.  

Some of the techniques reported below include tabu search, simulated annealing, constraint 

programming, neural networks and particle swarm optimization.  Hybrid techniques 

incorporating multiple methods or approaches are also covered here.  Research regarding 

genetic or evolutionary algorithms is discussed in Chapter 5. 

3.1 The tabu search 

3.1.1 Tabu search description 
The tabu search is a metaheuristic originally introduced by Glover [GLOV89].  Starting from 

a candidate solution (also known as a potential solution), the tabu search is a local search 

algorithm that moves from one candidate solution to another candidate solution (referred to 

as a neighbour) until some problem dependent termination criteria has been met.  Moving 

from a candidate solution to a neighbour is accomplished using a move operator, where a 

single change is made to the candidate solution resulting in its neighbour.  A neighbourhood 

is defined as a set of neighbours that occur as a result of implementing a single move to a 

candidate solution. 

 

In order to prevent the search from cycling (returning to a previously encountered area of the 

search space), a tabu list is kept.  This tabu list stores a set of k recent candidate solutions.  

Alternatively, previous moves that have been applied to candidate solutions can also be 

stored in the tabu list [SCHA96].  A move is rejected if it results in a candidate solution that is 

in the tabu list.  Another move must then be made.   

 

As described by Glover [GLOV97], an advantage of the tabu search is its use of the tabu list.  

This list resembles a form of memory, preventing the search algorithm from returning to 

previous candidate solutions.  A disadvantage of the tabu search is that the focus is always 

on a single candidate solution.  Thus, the possibility arises that a large area of the search 

space is not covered [LUKE12], [ZDAN02]. 
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3.1.2 Applications of tabu search to the school timetabling problem 
Schaerf [SCHA96] presented a tabu search algorithm to solve an Italian school timetabling 

problem.  The problem has the following hard and soft constraints with each constraint being 

given a specific weighting: 

 

 Timetables must be compact. 

 Lessons of a particular subject must not be repeated in a day. 

 Daily teaching limits must be met. 

 Requirements involving specialized rooms must be met. 

 Teacher availability requirements must be met. 

 Movement from one venue to another between consecutive periods should be 

minimized. 

 

A timetable was represented using a matrix structure (two-dimensional array).  In this 

representation, the rows represented the periods of the week and each column represented 

a teacher.  The cells contained the class that will be taught by the teacher during that period.  

The author did not make mention of how a venue is represented.  An initial solution was 

randomly generated.  Neighbours were formed by applying one of two types of moves.  The 

first type was a move that randomly chooses a tuple and moves the tuple from one part of 

the timetable to another.  The second type of move, a double move, was composed of a 

single move and an optional second move if the first move resulted in a constraint violation.  

A tabu list was kept which stored a predefined number of unacceptable moves.  The tabu 

search terminated after a set number of iterations or when a feasible solution was found.  

The tabu search was applied to three Italian school timetabling problems, with each school 

differing in the number of teachers and lessons.  The tabu search produced feasible 

timetables for all three of the schools.  The timetable structure adopted was appropriate as 

the matrix structure best represents a timetable (discussed further in section 5.4.1).   

Besides using only single moves to swap tuples in the timetable, the authors also introduced 

the concept of double moves in order to repair any constraint violations caused by the first 

move.  Hill climbing, where moves resulting in constraint violations are rejected, could have 

been used instead.  The tabu search employed, however, did produce acceptable results for 

all three schools as feasible timetables with only a few soft constraint violations were 

generated. 

 

Desef et al. [DESE06] used a tabu search to solve the German school timetabling problem 

that was subject to the following hard constraints: 
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 No class clashes, teacher clashes and venue clashes. 

 Teacher and room availability constraints must be met. 

 Co-teaching and subclass requirements must be met. 

 Double period requirements must be met. 

 

The soft constraints for the problem are the following: 

 

 Lessons of a particular subject should be evenly distributed over the week for each 

class.   

 There should be no free periods for the first four periods of the day. 

 

In this paper, a tuple was defined as a complex lesson unit (CLU).  In the event of a double 

period requirement, the two tuples involved in the double period were combined into a single 

CLU with a double period attribute, thus fulfilling the double period requirement.  

Furthermore, a set of CLUs were combined to form the lessons of the week (i.e. the class 

timetable) for a particular class.  Each timetable was represented as a set of period vectors.  

The period vectors contain the list of CLUs for each class for the week.  An initial solution 

was created where the CLUs with the fewest number of feasible periods on the timetable 

were allocated first.  The selected CLU was then allocated to the earliest possible period that 

resulted in a minimized hard constraint cost.  The tabu search was applied in two ways.  The 

first application allowed the tabu search to move from one neighbour to another using single 

moves (making a single change to the timetable).  The second application of the tabu search 

only allowed moves that did not violate constraints.  Two tabu lists were kept.  The first list 

was a tabu list that stored previous moves (similar to that described in section 3.1.1) and the 

second was a frequency list that kept track of how often CLUs moved around the timetable.  

A move was rejected if it was in the first tabu list or if the frequency of the related CLU 

exceeded a particular frequency value.  The timetables produced using this tabu search was 

better or equivalent in terms of quality when compared to timetables produced manually by 

the school staff.  Creating an initial solution by first allocating CLUs with the fewest feasible 

periods was an important factor that contributed towards the good performance of the tabu 

search as the number of violations would have been fewer than if a random allocation 

method had been used. 
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3.2 Integer or linear programming 

3.2.1 Integer or linear programming description 
According to Wolsey [WOLS98], integer programming is a method that attempts to solve 

optimization problems using discrete or integer variables.  Each variable represents a 

constraint of a problem.  Binary variables can also be used to symbolize decision events 

such as when to buy or sell or to represent whether a switch is on or off.  In terms of 

optimization problems, the objective of the integer programming method is to minimize the 

cost of a function while ensuring that various constraints related to the problem are met.  The 

integer programming method determines the best possible combination of resources to 

allocate.  A disadvantage of integer programming is that the method can only be applied to 

situations where mathematical equations are formulated [WOLS98].  Thus the method 

cannot be applied to many real world problems.  Another problem with integer programming 

is that the element of risk or uncertainty cannot be considered in the formula. 

3.2.2 Application of integer programming to the school timetabling 

problem 
Birbas et al. [BIRB97] constructed Greek school timetables using an integer programming 

approach.  The hard constraints for the problem are: 

 

 There must be no clashes. 

 Each teacher should teach at least one lesson per day. 

 

The soft constraints for the problem are: 

 

 Even distribution of subjects taught per week. 

 Certain subjects should be taught at the beginning of the day. 

 Certain subjects should not be taught during the last period of a day. 

 All class timetables should be compact. 

 Certain periods should be left empty for teachers to conduct other duties. 

 

Each period was represented using a variable        where a, b, c, d and e represent the 

day, period, class, teacher and subject respectively.  Each variable was binary in nature and 

was allocated a value of 1 if it is included in the final solution i.e. a value of 1 is given to the 

variable if it has been allocated a subject, class and teacher to a specific day or period.  The 

objective of the model was to find a violation free timetable from all the possible 

combinations.  The integer programming method was applied to a Greek school timetabling 

problem with six classes and 17 subjects.  The timetables created using this method were 
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described as optimal. The approach attempts to find a feasible, high quality timetable by 

determining the best possible combination of tuples such that the timetable cost was 

minimized.  While this technique does allow for a thorough exploration of all possible values, 

no time element was included in the results and it is not known how long the system would 

have taken to find the best timetables. 

3.3 Tiling algorithms 
Kingston [KING05] proposed a tiling algorithm to solve the Australian school timetabling 

problem.  The hard constraints for the problem are: 

 

 No class clashes or teacher clashes. 

 There must be an even distribution of lessons taught by teachers during the week. 

 Teacher availability requirements must be met. 

 Certain subjects must be allocated to specific venues. 

 

The soft constraints are: 

 

 There should be an even distribution of lessons for classes throughout the week. 

 Co-teaching and subclass requirements should be met. 

 The number of daily lessons allocated to each teacher should be within a specified 

range. 

 

A tile is a group of lessons placed together.  Each tile has a height and a width.  The height 

specifies the number of resources required while the width indicates the number of times 

that the lessons have been requested.  To create a timetable, all tuples were placed onto 

tiles.  These tiles were then placed in major columns and each major column was given an 

index number.  The column indices were then allocated to the timetable where each column 

was spread evenly throughout the week.  These tiles were then allocated to the timetable.  

By adopting this approach, several subjects were taught as double or triple periods.  An 

unspecified tree search was used to allocate tuples to columns such that no lessons are 

split.  Each lesson was classified as vertical, runaround or easy.  A vertical classification 

indicated that the lessons must run simultaneously.  A runaround classification indicated that 

each meeting should be placed in different columns and an easy classification symbolized 

either a vertical or runaround strategy could be used.  Tiles were allocated to the timetable 

using three methods.  The first method involved a worst case scenario where tiles with the 

least number of resources available were allocated.  The second method involved adding 



16 
 

weightings to tiles.  Tiles that had a greater resource usage took priority in terms of 

allocation.  The third method allocated tiles that involved co-teaching and subclass 

combinations.  High quality timetables were obtained in an acceptable time.  The study 

singled out tiling algorithms and resource allocation as the key innovations. 

3.4 Simulated Annealing 

3.4.1 Introduction to simulated annealing 
Simulated annealing was originally established by Kirkpatrick et al. [KIRK83].  This 

metaheuristic is inspired from the process of annealing in metallurgy.  Annealing describes 

the way in which the heating and cooling of molten metal takes place in order to remove 

defects.  As metal is cooled, its atoms freeze into the positions that they are in, giving the 

metal its brittle shape that a person may be aiming for.  Heating of the metal allows the 

atoms to unfreeze and move more freely.  With simulated annealing, the atoms represent 

elements of a given problem.  For example, in the school timetabling problem, atoms 

represent tuples on the timetable.  These atoms are cooled into position as the algorithm 

pushes the candidate solution closer to a problem specific ideal state.  In the event that the 

candidate solution moves further away from the ideal state, the elements are heated 

allowing them to move through the solution.  In simulated annealing, a candidate solution is 

changed using the move concept described earlier in the tabu search.  A single move results 

in the forming of another candidate solution (called a neighbour) and a group of neighbours 

is referred to as a neighbourhood.  Simulated annealing is seen as a stochastic search and 

optimization technique [KIRK83] and thus the moves made are usually random in nature. 

 

One of the advantages of simulated annealing, according to Elmohamed et al. [ELMO98], is 

the relative ease of implementation.  The simulated annealing technique also has the ability 

to approach a global optimum [BUSE03].  However there is often a trade-off between 

attaining an optimal solution and the time taken to find a solution.  A common disadvantage 

found with simulated annealing is the difficulty in defining an optimal cooling schedule 

[COEL07].  This is an important factor that could prevent premature convergence. 

3.4.2 Applications of simulated annealing to the school timetabling 

problem 
Abramson [ABRA91b] developed a system to solve the Australian school timetabling 

problem.  The list below describes the hard and soft constraints of the problem. 

 

 No class clashes, teacher clashes and venue clashes. 
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 Classes must be allocated to rooms that can accommodate them. 

 Double period requirements must be met. 

 

The soft constraints for the problem are: 

 

 Teacher preferences should be met. 

 Certain lessons should only be taught a maximum number of times per day. 

 

Abramson used the simulated annealing algorithm in which the atoms represented tuples on 

a timetable.  The paper does not make mention of how a timetable is represented, but a 

three-dimensional array representation is illustrated with each dimension representing a 

period, a day of the week and an array of tuples (indicating the tuples that will be scheduled 

during a particular period on a certain day).  The cooling and heating process was 

dependent on the timetable cost, which was determined by counting the number of 

constraint violations.  As the cost was lowered, the temperature was lowered and an 

increasing number of tuples were fixed (“frozen”) to the periods that they had been 

scheduled in.  If the cost increased, the tuples were “heated”, resulting in an increase in the 

number of tuples that could have been swapped.  The system was applied to generated data 

sets as well as an Australian high school timetabling problem.  Ten data sets were created 

and solutions were found for all but one data set.  The results were described as promising 

and future work would look at improving this method of solving optimization problems.  The 

cube representation, while appropriate, could have been difficult to implement due to the 

structure having three dimensions.   

 

Liu et al. [LIU09] developed a system to solve the Greek school timetabling problem.  The 

hard constraints of the problem are: 

 

 No clashes. 

 Teacher availability requirements must be met. 

 All class timetables must be compact. 

 All free periods must be during the last period of the day. 

 

The soft constraints for the problem are: 

 

 Compact timetables for teachers. 

 A daily teacher balance in terms of the number of lessons taught. 
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 Avoidance of repetition of subjects during a day. 

 Teacher preferences should be met. 

 

A timetable was represented using a two-dimensional matrix where the rows represent the 

class and the columns represent the periods of the week.  A cell in the matrix stored the 

teacher that would be meeting that particular class during the specified period.  Changes to 

the timetable were made by swapping of tuples.  The authors defined a neighbourhood as all 

the candidate solutions that could be reached by performing a set of one or more swaps on 

a candidate solution.  The swapping process involved searching for and swapping of 

constraint violating tuples.  The algorithm was applied to the HDTT data sets provided by 

Smith et al. [SMIT03] and a Greek school timetabling problem.  Based on the results 

presented, it was found that the simulated annealing approach managed to produce high 

quality timetables when compared to the simulated annealing and neural network 

approaches developed by Smith et al. [SMIT03].  The authors stated that the idea of 

combining their neighbourhood strategy with other metaheuristics required further research.  

The use of multiple swaps rather than only single swaps was instrumental in assisting the 

simulated annealing technique in finding high quality, feasible timetables.  The concept of 

using moves that focused on constraint violations (rather than just swapping of randomly 

chosen tuples) also contributed to the success of the approach. 

3.5 Constraint programming 

3.5.1 Constraint programming description 
Bartak [BART99] describes constraint programming as the development of computational 

systems that are based on constraints.  The main objective of the constraint programming 

technique is to solve a problem by identifying the constraints within the problem area and 

then finding a solution that satisfies all these constraints.  A set of variables are defined 

where each variable represents an element of the problem (for example, variables could 

represent the tuples or lessons in the school timetabling problem).  Each variable holds a 

single value which must be chosen from a specified range of values.  These values could 

vary and be anything from integers, strings or a range of situations depending on the type of 

problem [BART99].  The constraints restrict the values that each variable can hold at one 

particular time.  The two most common branches of constraint programming are constraint 

satisfaction and constraint solving.  Constraint satisfaction is the more common approach 

and deals with problems involving a finite domain such as resource allocation while 

constraint solving deals with problems involving an infinite or more complex domain such as 

production planning. 
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Some applications of constraint programming include resource allocation, scheduling 

problems, software configuration and production planning. 

3.5.2 Applications of constraint programming to the school timetabling 

problem 
Valouxis et al. [VALO03] used a constraint programming method to solve the Greek school 

timetabling problem.  The hard constraints for the problem are as follows: 

 

 No class clashes and teacher clashes. 

 Class timetables must be compact.  Any free periods must be at the end of the day. 

 Teacher allocations should be equally balanced throughout the week. 

 The number of times a teacher meets a class in a day to teach a particular subject 

should be balanced throughout the week. 

 

The soft constraints are as follows: 

 

 Teacher preferences should be met. 

 Teacher timetables should be compact. 

 

The system was applied to the school timetabling problem faced by Greek high schools.  

The problems consist of varying sizes of classes (ranging from five to nine) and teachers 

(ranging from 11 to 23).  The system found optimal timetables for two of the four problems.  

These two solutions were found in approximately 15 to 20 minutes.  For the two larger data 

sets, the author concluded that the timetables produced, while not optimal, were satisfactory.  

The time taken by the constraint satisfaction approach to find solutions to these problems 

was approximately one hour.  Similar to integer programming, the constraint programming 

technique needs to evaluate several combinations of variable values and determine whether 

or not these values violate the constraints specified.  Due to the large number of 

permutations that could exist, finding the ideal solution may be a time consuming process. 

 

The school timetabling problem that Marte [MART07] attempted to solve had the following 

hard constraints.  The problem contained no soft constraints. 

 

 No clashes. 

 Teacher availability requirements must be met. 

 Co-teaching and subclass requirements must be met. 
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 Teacher lessons must be evenly distributed throughout the week. 

 The number of days that a teacher works for must be within a specified range. 

 The number of days that a class has lessons must be within a specified range. 

 

A timetable was represented as a matrix consisting of rows (days) and columns (periods).  

The approach used included the following techniques: 

  

 Backtracking, where a candidate solution is built and once this candidate solution 

can no longer be improved (referred to as a dead end), the process returns to a  

previous candidate solution and continues to make changes to the candidate 

solution until some termination criteria has been met [ROSS06]. 

 Constraint propagation, which prevents tuples or combinations of tuples from being 

allocated to specific periods since they would violate a constraint [ROSS06]. 

 Dead-end driven learning and restarting strategies, where the system keeps track of 

moves that could no longer improve the timetable by storing this information in 

memory.  The algorithm learns from this by searching a different area of the search 

space [FROS94]. 

 

Information regarding constraints that were not fulfilled was stored and the search strategy 

was then changed accordingly.  The approach was applied to six German school timetabling 

problems.  Good results were found and further research would address other constraints 

and improve the quality of the timetables produced.  The use of a matrix representation was 

justified as this structure bests represents an actual school timetable.  Good results were 

found for large problems in less than a minute, indicating that the constraint programming 

approach is more than capable of solving the German school timetabling problem. 

3.6 Particle Swarm Optimization 

3.6.1 Introduction to particle swam optimization 
Particle swarm optimization, introduced by Kennedy et al. [KENN95], is a technique that was 

originally used to simulate social behaviour.  Particle swarm optimization begins by 

developing and evaluating an initial population of candidate solutions (known as particles) 

and attempts to find an optimal solution by evolving these candidate solutions over a 

predefined number of iterations. 

 

During every iteration, the particles move from one position in the search space to another.  

The movements of these particles are guided by two factors; the position of the best particle 
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in the search space (gbest) and each candidate’s own best position (pbest).  The velocity of 

each particle is calculated in order to determine the new location of that particle.  The 

calculation of the velocity involves the use of gbest, pbest, the particles’ current position and 

a random value.  The above process continues until either an optimal solution is found or 

until some problem specific termination criteria stops the iteration process. 

 

Particle swarm optimization has been applied to many problems including optimization 

problems, security solutions and in the medical field amongst others.  Advantages of the 

approach include ease of implementation and that a minimal number of parameters require 

tuning. 

3.6.2 Application of particle swarm optimization to the school timetabling 

problem 
Beligiannis et al. [BELI12] attempted to solve the Greek school timetabling problem.  This 

problem had the following set of hard constraints: 

 

 Teacher availability requirements must be met. 

 No class clashes or teacher clashes. 

 All free periods for classes must be allocated to the last period of the day. 

 Co-teaching and subclass requirements must be met. 

 

The soft constraints for the problem are: 

 

 The number of teaching periods for each teacher should be evenly distributed over 

the days that he/she is available at the school. 

 Teacher timetables should be compact. 

 The number of free periods should be uniformly distributed amongst all teachers 

while free periods for each teacher should be uniformly distributed amongst all days 

that he/she is available at the school. 

 Subjects taught to each class should be evenly distributed throughout the week 

 

A timetable was represented using a two-dimensional matrix where each column 

represented a period while each row represented a class.  Each cell in the matrix 

represented the teacher (or teachers) that would engage with a class during a particular 

period.  The subject being taught was not represented as this was found to increase both the 

search space and the complexity of the problem.  Teachers were assumed to know the rules 

of the school and the subjects that they were required to teach.  The cost of the timetable 
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was calculated by finding the weighted sum of the constraint violations.  For the PSO 

algorithm, 150 particles were used and were evolved over 8000 generations (iterations).  

Particles that were considered weak were deactivated but no explanation was given as to 

how this was done.  Timetables were evolved through the swapping of tuples as well as a 

column move approach.  All swaps that reduced the timetable cost were accepted and 

swaps that increased the cost were accepted with a given probability.  In the column move 

approach, the tuples from a randomly chosen period in a timetable are copied and moved to 

the corresponding period of another randomly chosen timetable.  The tuples that were 

originally in that period are reallocated to other periods in the timetable.  The performance of 

the PSO metaheuristic was compared to the performance of a genetic algorithm, a constraint 

programming approach, a column generation approach and against the actual timetable 

used by the school.  The PSO algorithm was found to be very efficient and produced better 

quality timetables than the other techniques.  The removal of subjects as part of the problem 

was effective in reducing the complexity of the problem.  The column move approach was a 

novel approach not used in other studies and contributed towards maintaining diversity 

among the population of particles by moving columns of tuples and reallocating replaced 

tuples. 

3.7 Hybrid algorithms 
This section describes papers that have solved various school timetabling problems by using 

combinations of different techniques. 

 

Avella et al. [AVEL07] addressed an Italian high school timetabling problem by using a 

combination of local search algorithms, namely simulated annealing and a VLSN (Very 

Large Scale Neighbourhood) search.  The hard constraints for this problem are as follows: 

 

 No clashes. 

 Certain lessons must be allocated to specific periods. 

 Class timetables must be compact. 

 Some teachers have one day off a week (full-time) while others have more than one 

day free (part time). 

 

In addition to hard constraints, the soft constraints are: 

 

 Teacher preferences should be met. 

 Teacher timetables should be compact. 
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 Teacher lessons should be evenly distributed throughout the week. 

 No teacher should be allocated more than one period of teaching during afternoon 

sessions. 

 

A two phased approach was used.  The first phase used simulated annealing to find feasible 

timetables and the second phase used a VLSN search (integer programming) to improve the 

quality of the feasible timetables found.  In the first phase, timetables were created by 

randomly allocating tuples to periods.  As the cost of the timetable was reduced, the tuples 

placed in the violation free periods were fixed to their allocated periods.  As the cost 

increased, the tuples were “heated”, allowing these tuples to be included in the swapping 

process if required.  The system was firstly applied to the benchmark data sets provided by 

Abramson [ABRA93].  Feasible timetables were produced for all data sets and these results 

were compared to the results obtained by Smith et al. [SMIT03].  The simulated annealing 

part of the system performed better (in reducing the hard constraint cost) than the neural 

network and simulated annealing methods presented by Smith et al. [SMIT03].  The authors 

also applied their approach to two Italian high school timetabling problems.  Their results 

were compared to the timetables generated using a commercial software package.  Feasible 

solutions were found for all problems and the VLSN search was found to reduce the number 

of soft constraint violations.  The VLSN search managed to reduce the number of soft 

constraint violations by approximately 20% when compared to the commercial software 

alternative.  This VLSN search also managed to reduce the soft constraint cost of four 

randomly generated timetables.  The authors concluded that simulated annealing found 

feasible solutions and the VLSN search improved the quality of the timetables. 

 

A three phase approach was adopted by Alvarez-Valdez et al. [ALVA96] to solve the 

Spanish school timetabling problem.  This approach used two separate tabu search methods 

to respectively address the hard constraints and the soft constraints.  The hard constraints 

for this problem are the following: 

 

 No clashes. 

 Teacher availability requirements must be met. 

 Each subject is taught to a particular class at most once in a day. 

 Double period requirements must be met. 

 

The only soft constraint is that all class timetables should be compact.  The first phase 

involved creating a candidate solution.  Tuples were allocated in order of urgency i.e. tuples 
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with the fewest violation free periods were allocated first.  In the event of two or more tuples 

having the same urgency, then teacher urgency is used as a tie-breaker i.e. teachers with 

the fewest number of violation-free periods are given priority.  A tabu search was applied in 

phase two and was able to find feasible solutions very quickly as the initial solution did not 

contain many constraint violations.  The tabu list had a variable length instead of a fixed 

length as the tabu search with a variable length list produced better results.  Phase three 

involved resolving the only soft constraint of compactness.  A tabu search was once again 

used and the results produced were described as good.  The authors concluded that they 

had developed a program to obtain good solutions that satisfied all of the hard constraints.  

The quality of the timetables was also found to be better than the solutions that were 

produced manually.  The multiphase approach was found to be successful in finding 

feasible, high quality timetables.  The first phase of creating timetables by allocating tuples 

with the fewest feasible periods first contributed a great deal towards finding a feasible 

solution.  The tabu search could then remove the remaining hard constraint violations.  A 

separate tabu search used to reduce the soft constraint cost also proved to be successful.  

Another contributing factor was the changing of the length of the tabu list whenever a 

predefined number of moves were performed.  This was found to have improved the results 

since a changing list size would reduce the probability of cycling when increased and 

increased the exploration of the search space when decreased. 

 

De Haan et al. [DEHA07] solved the school timetabling problem using a combination of a 

graph colouring problem and a tabu search.  The hard constraints of the problem are: 

 

 Each lesson of a particular subject must be taught on different days. 

 Double period requirements must be met. 

 Teacher availability requirements must be met. 

 Timetables for lower grade classes must be compact. 

 

The only soft constraint was that teacher timetables and higher grade class timetables 

should be compact.  A four phase approach was used.  The first phase dealt with optional 

subjects taken by classes in the upper grades.  A branch and bound algorithm was used to 

place students into groups such that each group contained a set of students doing the same 

optional subjects.  The second and third phases involved the construction of a feasible 

timetable.  In the second phase, the tuples involving the upper grades were allocated in 

order of tuples with the fewest feasible periods on the timetable.  In phase three, a graph 

colouring heuristic was used to allocate the remaining tuples (involving the lower grades).  In 
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a graph colouring problem, the vertices represent the lessons and these vertices are 

coloured according to the period to which they have been allocated.  When an edge joins 

two nodes of the same colour, a clash occurs.  The fourth phase was used to improve 

timetable quality (including allocation of rooms and resources) by using a tabu search.  The 

authors stated that not all constraints were incorporated into their system.  An empirical 

comparison was performed with the actual timetable used by the school and it was found 

that there was a significant reduction in the number of free periods for teachers (reduced 

from 128 to 48). 

 

Bello et al. [BELL08] used a combination of both a graph colouring algorithm and a tabu 

search to solve a school timetabling problem that is subject to the following hard constraints: 

 

 No class clashes and teacher clashes. 

 Teacher availability requirements must be met. 

 Each class must have a maximum of two lessons with the same teacher per day. 

 

The soft constraints for the problem are: 

 

 Teachers should be allocated to teach in the least number of days possible. 

 Double period requirements should be met. 

 Teacher timetables should be compact. 

 

A timetable was represented using a two-dimensional matrix.  Initial solutions were created 

using a greedy algorithm.  No details were provided as to how the greedy algorithm chooses 

and allocates tuples.  The timetable fitness in terms of both feasibility and quality was 

determined by finding the weighted sum of all the constraint violations.  The authors used a 

graph colouring algorithm to find a feasible timetable.  In this algorithm, a vertex of the graph 

represents a lesson.  Two nodes of the same colour that are joined by an edge represent a 

clash.  The graph was coloured using a tabu search method.  The system was applied to 

three Brazilian school timetabling problems as well as two artificial school timetabling 

problems.  The authors found that this hybrid approach produced competitive results when 

compared to two other tabu search approaches from two unpublished studies. 

 

Schaerf et al. [SCHA01] solved the school timetabling problem by alternating between two 

different local search techniques, namely hill climbing and a tabu search.  These two 
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techniques are alternated until a solution can no longer be improved.  The hard constraints 

for the problem are: 

 

 No clashes. 

 Consecutive period requirements must be met. 

 

The soft constraints are: 

 

 Class timetables should be compact. 

 If lessons are not scheduled as doubles or quadruples and they are repeated on a 

day, then these lessons should be separated. 

 Class-teacher lessons should be evenly distributed throughout the week. 

 Teacher preferences should be met. 

 The same lesson should not be taught to a class more than once in a day. 

 Movement between venues should be minimized. 

 

A candidate solution was created by randomly allocating tuples to the timetable.  Hill 

climbing was then applied where moves were accepted only when the fitness of the 

candidate solution had improved or had not changed.  The search terminated when the 

solution could no longer be improved or when a fixed number of iterations had been 

performed.  The second phase was the application of the tabu search, which continuously 

made moves until the timetable could no longer be improved.  A variable length tabu list was 

used that decreased when several improvements were made and increased when moves 

resulted in an increase in timetable cost.  The alternation of the tabu search and hill climbing 

continued for a given number of iterations.  If a local optimum is reached, a shifting penalty 

strategy was employed.  This strategy involved changing the weightings of each constraint in 

the cost function, allowing the tabu search to continuously explore a new area of the search 

space.  While no results were formally provided, the authors found that the alternating 

method worked well for the school timetabling problem.  

3.8 Comparative studies 
This section describes research that compared different methods used to solve the school 

timetabling problem. 

 

A Hopfield neural network [ROJA96] was developed by Smith et al. [SMIT03] to solve the 

school timetabling problem.  This technique was compared to many others techniques used 
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for scheduling, namely tabu search, greedy search and simulated annealing.  These 

approaches were tested using the benchmark data sets provided by Abramson et al. 

[ABRA93].  The only constraint for this problem is that there must be no teacher clashes, 

class clashes or venue clashes.  The results showed that the neural networks could perform 

just as well as the simulated annealing technique.  When comparing the neural network to 

the greedy search, it was found that the neural network produced more feasible timetables, 

while the greedy search was able to find feasible timetables in a much faster time. 

 

Jacobsen et al. [JACO06] compared a hybrid tabu search and the constraint programming 

approach in solving the school timetabling problem.  The following are the hard constraints 

for the problem: 

 

 No clashes. 

 Teacher availability requirements must be met. 

 Double period requirements must be met. 

 Co-teaching requirements must be met. 

 Certain lessons must be allocated to specific periods. 

 

The following are the soft constraints for the problem: 

 

 Class timetables should be compact. 

 Any free periods should be scheduled at the end of the day. 

 

A solution was created using two vectors, a room vector and a period vector.  Periods were 

allocated to double period tuples and co-teaching tuples using the period vector while 

venues were allocated to tuples using the room vector.  An initial solution was created by 

firstly sorting lesson requirements in order of difficulty (tuples that have the least number of 

feasible periods were allocated first) and allocating them to periods using a graph colouring 

algorithm.  The tabu search was then applied in order to reduce the hard constraint cost and 

soft constraint cost of the timetable.  In this tabu search, two types of neighbourhoods were 

explored, namely a period neighbourhood and a room neighbourhood.  This tabu search 

incorporated hill climbing, meaning that a new candidate solution was only accepted if the 

constraint cost was reduced.  If the hard constraint cost was the same, then the solution was 

kept only if the quality improved.  Two tabu lists were kept, namely a standard tabu list (as 

described in section 3.1) and a frequency tabu list that was used to avoid the movement of 

tuples that made little difference to the number of violations of a timetable.  A comparison of 
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the hybrid approach and constraint programming was performed and no difference was 

found in terms of feasibility or timetable quality. 

3.9 Chapter Summary 
This chapter described several techniques previously used to solve the school timetabling 

problem.  Some studies used a single approach to solve the school timetabling problem 

while a few used hybrid approaches that incorporated two or more techniques.  Each 

problem differed with respect to the constraints that had to be fulfilled as well as the number 

of resources that needed to be allocated.  In addition, other observations are listed below. 

 

 Most studies made use of a two-dimensional array in order to represent a timetable.  

The advantages of this approach are discussed in further detail in section 5.4.1. 

 Timetables were created either randomly or using heuristics.  In this case, heuristics 

refer to rules that must be followed when choosing the order of tuple allocation or 

when choosing which period to allocate the tuple to.  The use of heuristics, especially 

allocating tuples based on the number of feasible periods available, proved to be 

effective and any remaining violations were easily removed using the approach 

implemented. 

 In order to reduce the cost of the timetable, a tuple swapping strategy was commonly 

used.  Most swaps involved randomly choosing tuples with some studies 

incorporating hill climbing i.e. only accepting swaps that reduce the constraint cost of 

the timetable.  One approach that also assisted in finding good solutions is to 

conduct swaps by searching for violation causing tuples.  This increased the 

probability of at least removing a constraint violation. 

 Another observation was that while some studies attempted to reduce hard and soft 

constraints simultaneously, other studies such as Alvarez-Valdez et al. [ALVA96] 

chose a phased approach where attempts were made to first find feasible timetables 

and then reduce the soft constraint cost.  Avella et al. [AVEL07] chose to use two 

different techniques to respectively reduce each of the hard constraint cost and soft 

constraint cost of the timetable. 
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Chapter 4 - Introduction to Genetic 
Algorithms 

4.1 Introduction 
Genetic algorithms fall under the category of evolutionary computing, a rapidly growing area 

of artificial intelligence where problems are solved based on theories of biological evolution 

such as natural selection and genetic inheritance [OBIT98].  Holland [HOLL92] describes a 

genetic algorithm as an algorithm that can emulate the evolutionary process.  Research 

shows that genetic algorithms are able to solve complex problems that humans find difficult 

to interpret and solve.  Genetic algorithms are often used to solve combinatorial optimization 

problems.  An advantage of genetic algorithms, when applied to problems such as the 

school timetabling problem, is that while many other algorithms produce only one solution at 

a particular time, a genetic algorithm has the capability of producing more than one solution 

by using mechanisms such as niching [MAHF95].  This allows for the possibility of providing 

the user with a choice of solutions [ABRA91a].   

 

Section 4.2 describes the biological inspiration for genetic algorithms.  Section 4.3 provides 

an overview of the algorithmic structure of the standard genetic algorithm used by Goldberg 

[GOLD89].  Section 4.4 describes some of the advances made in genetic algorithms to solve 

various problems and section 4.5 summarizes key points discussed in this chapter. 

4.2 Biological background 
All living organisms consist of cells.  Each cell consists of a common set of chromosomes, 

which are strings of DNA.  DNA is the hereditary material found in all organisms.  Parts of 

the DNA may vary from one organism to another.  These variations produce different 

characteristics such as different eye colour, skin tone, personality, etc.  During reproduction, 

new organisms (called offspring) are produced.  Often, the DNA of an offspring is different 

from that of the parent(s).  The DNA contributes towards the organism’s probability of 

survival in its environment.  The fitness of an organism is a measure of its chances of 

survival in that environment [GOLD89]. 

4.3 Genetic Algorithm Overview 
According to Goldberg [GOLD89], a genetic algorithm begins by creating a population of 

individuals. This population is referred to as the initial population.  Each individual in the 
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population is then evaluated using a fitness function.  A selection process is then applied 

where fitter individuals from the population become parents.  Fitness proportionate selection 

is used to select two individuals as parents.  Two offspring are produced by applying a 

crossover genetic operator (with probability pc) to the selected parents.  A mutation genetic 

operator (with probability pm) is then applied to each of the offspring.  The resultant offspring 

are added to a new population and are evaluated using the fitness function.  This process of 

evaluation, selection and creation of a new generation of offspring continues until some 

termination criteria have been met.  The termination criteria are problem dependent and may 

involve reaching a generation limit or if an individual in the population fulfils all the criteria 

specified by the problem.  The genetic algorithm presented by Goldberg [GOLD89] is shown 

in Figure 4.1 below. 

 

Gen = 0 
Create and evaluate initial population 
Repeat 
 J = 1 
 Repeat 
  Select two individuals from population (A and B) 
  If crossover occurs with probability pc 
   Offspring C and D = Application of crossover operator to A and B 
  Else 
   Offspring C and D = Copy of A and B 
  If mutation occurs with probability pm 
   Apply mutation to offspring C and D 
  End If 
  Evaluate C and D 
  Add C and D to new population 
  J = J + 2 
 Until J > Population Size 
 Old Population replaced by New Population 
Until Termination criteria have been met 

Figure 4.1:  Genetic algorithm [GOLD89] 

 

Sections 4.3.1 to 4.3.5 discuss the genetic algorithm process in greater detail. 

4.3.1 Initial population generation 
The population size N is a parameter value that specifies the population size.  In the genetic 

algorithm presented by Goldberg [GOLD89], all individuals in the initial population are 

created randomly.  Each individual is represented as a binary string with each bit in the 

string being a 1 or a 0. 

4.3.2 Fitness function 
A fitness function is an objective function that is used to assess each individual in the 

population [GOLD89].  A fitness measure is calculated using the fitness function and this 
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fitness measure indicates how close an individual is to satisfying the problem specific 

criteria.  The fitness function plays an important role in guiding the evolution of the 

population. 

4.3.3 Selection method 
In the standard genetic algorithm [GOLD89], fitness proportionate selection is used to 

choose parents.  The first step is to find the sum of all the fitness values of each individual in 

the population.  Each individual has a probability (pi) of being selected based on that 

individual’s fitness.  In order to calculate the probability of each individual (pi), each 

individual’s fitness (fi) is divided by the total fitness of all the individuals.  The equation is 

shown below. 

 

   
  

∑   
 

 

 

The number of times each individual will be placed in a mating pool is then determined by 

multiplying the probability pi by the number of individuals in the population (n). 

 

Table 4.1 shows a population of five individuals and their fitness values.  The sum of the 

fitness values of all the individuals adds up to 200.  The fourth column shows each 

individual’s probability of selection followed by the number of times they will appear in the 

mating pool (fifth column).  The example shown in Table 4.1 assumes that a higher fitness 

value indicates a fitter (better) individual. 

 

Table 4.1:  Fitness values of individuals and total fitness 

ID no Individual Fitness value 

(  ) 
% of total (  ) Number of 

occurrences in 
mating pool (pi * n) 

1 101110001 45 45 / 200 = 0.225 0.225 * 5 = 1.125 ≈ 1 

2 111000111 10 10 / 200 = 0.050 0.050 * 5 = 0.250 ≈ 0 

3 101010101 60 60 / 200 = 0.300 0.300 * 5 = 1.500 ≈ 2 

4 000000001 70 70 / 200 = 0.350 0.350 * 5 = 1.750 ≈ 2 

5 100010001 15 15 / 200 = 0.075 0.075 * 5 = 0.375 ≈ 0 

TOTALS 200 100%  

 

Based on the calculations performed in Table 4.1, the individuals in the mating pool are 

individual 1 (once), individual 3 (twice) and individual 4 (twice).  Parents are then selected by 
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randomly choosing individuals from the mating pool.  In the example above, individual 2 and 

individual 5, the least fit individuals, will not be selected as parents.   

 

A common issue found when using fitness proportionate selection is that the fittest individual 

can be selected as a parent more often than other individuals due to a high selection 

pressure (all individuals in the population are included in the selection method).  This 

reduces genetic diversity; especially if the fitness variance is high (a low fitness variance 

indicates that the fitness values of the individuals in the population are very close while a 

high fitness variance indicates that there are large differences between the fitness values of 

the individuals).  As a result the genetic algorithm may converge prematurely (offspring 

produced can no longer be better than the parents) [BLIC95]. 

4.3.4 Genetic operators 
This section describes the mutation and crossover genetic operators.   

4.3.4.1 Mutation 

The purpose of the mutation operator is to maintain genetic diversity and prevent premature 

convergence by making random changes to an individual.  Figure 4.2 shows an example of 

the application of the standard mutation operator described by Goldberg [GOLD89] (also 

known as bit-flip mutation).  The first and fifth positions have been randomly selected and 

their values changed.  In the example below, the assumption is made that each bit is 

independent of each other.  In the event that there are bits that are dependent on other bits, 

then the implementation of the mutation operator will need to be modified. 

 

Parent X (Mutation points) 111000110010011 

Offspring of Parent X 011010110010011 

Figure 4.2:  Mutation Example 

4.3.4.2 Crossover 

The crossover operator is a local search operator that combines two parents to produce two 

offspring.  This operator explores a specific area of the search space with the objective being 

to produce better offspring from good parents. 

 

In the genetic algorithm used by [GOLD89], offspring are created by combining string 

fragments (portions of the string) which are obtained from each of the parents.  The 

fragments are determined by using a randomly chosen crossover point.  This method is 

referred to as one point crossover and an example is shown in Figure 4.3.   
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In the example, the randomly chosen crossover point is selected and divides the string into 

two fragments.  The first fragment (all characters before the selected crossover point) from 

parent X and the second fragment from parent Y (all characters after the crossover point) 

are combined to form offspring Z1.  Offspring Z2 is produced using the second fragment of 

parent X and the first fragment of parent Y. 

 

Parent X 01100111010101 

Parent Y 11111000011110 

Resultant offspring Z1 01100000011110 

Resultant offspring Z2 11111111010101 

Figure 4.3:  One point Crossover example and resultant offspring 

4.3.5 Control parameters 
There are two main control parameters that have to be set.  These values will affect the 

performance of the algorithm. 

 

 Population size – A larger population size increases computational effort but also 

allows the algorithm to explore a larger area of the search space during the initial 

generations.  Smaller population sizes will reduce the time taken per generation but 

may mean that large areas of the search space are not explored during the initial 

generations (depending on the complexity of the problem). 

 Genetic operator probability – This parameter specifies the probability of the genetic 

operator being applied to an individual.  In the case of mutation, if the mutation 

probability is too high, then the genetic algorithm becomes more of a random search 

and will take longer to converge.  A low mutation probability reduces genetic diversity 

and the algorithm may converge prematurely.  In the case of crossover, a high 

crossover probability may result in the algorithm converging quickly but prematurely 

while a low crossover probability will reduce the local search and as a result reduce 

the convergence rate.  The ideal genetic operator probabilities will vary depending on 

the problem [SRIN94].   

4.4 Advances in Genetic Algorithms 
The genetic algorithm detailed in sections 4.3.1 to 4.3.5 describes the standard genetic 

algorithm used by Goldberg [GOLD89].  However, genetic algorithms have been modified to 

solve various problems.  Some of these modifications have been influenced by the 

development of other evolutionary computing techniques such as genetic programming.  



34 
 

Sections 4.4.1 to 4.4.5 describe some of the common changes made to the genetic 

algorithm. 

4.4.1 Control models 
A control model describes the way in which a genetic algorithm is executed.  These models 

control the way in which the newly created offspring are introduced into the population.  

Sastry and Goldberg [SAST05] refer to these control models as replacement techniques.  

Bruce [BRUC95] describes three different control models, namely the generational, steady-

state and varying population size control models. 

 

Generational control model - For every generation, a new population consists entirely of 

offspring created by parents from the previous generation (offspring could be duplicates of 

parents).  This model is one of the most common and popular models that have been used 

as it is very easy to implement but does require an extra control parameter (the number of 

generations).  This control model is also known as the replace all model [SAST05].  An 

advantage of the generational control model over the steady-state model is that since all 

individuals in the population are replaced, the probability of maintaining genetic diversity 

increases (how offspring are created will also affect genetic diversity). 

 

In the steady-state control model, only a single population is used and offspring are 

immediately added to the population by replacing the least fit individuals.  The individuals 

chosen for replacement are selected using an inverse selection method that favours 

individuals with poor fitness values.  In terms of computational resources, this model uses 

only a single population and therefore uses less memory than the generational control model 

[BRUC95].  An extra control parameter indicating the number of individuals to replace is 

required.  If the number of individuals that are replaced is small, then the algorithm may 

converge quickly but prematurely (this will also depend on the design of the genetic 

operators).  If the number of individuals to be replaced is increased, then genetic diversity 

increases and the convergence rate is reduced.  

 

Research has shown that, depending on the problem, different population sizes may be 

preferred at different stages of evolution [HINT96].  The varying population size model, 

which could be implemented as a variation of either the generational control model or the 

steady-state control model, changes the size of the population from one generation (or 

iteration) to another depending on the fitness of the individuals in the population.  Poorer 

fitness among individuals results in an increase in the population size for the next generation 

in order to diversify the search and possibly improve the overall fitness.  If good fitness 
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values are found in the population, then the population size decreases for the next 

generation (or iteration) in order for the algorithm to converge to a single solution [BRUC95]. 

4.4.2 Individual representation 
Rather than using binary strings, many other representations have been used depending on 

the type of problem that must be solved.  Other representations used include single or multi-

dimensional arrays, strings, vectors, and tree structures ([AFFE09], [BEAS93]). 

4.4.3 Initial population creation 
The initial population should represent and cover as much of the search space as possible 

(known as uniform coverage).  This reduces the possibility of the algorithm converging 

prematurely.  Having no duplicate individuals in the initial population increases the diversity 

of a population and allows for a greater coverage of the search space.   

 

In the standard genetic algorithm, individuals in the initial population are created randomly.  

Some studies such as [CART96], [CALD97] and [RAMS93] have created individuals in the 

initial population by using a set of rules (referred to as heuristics).  These heuristics assist in 

the creation of a fitter initial population which could improve the probability of finding 

acceptable solutions ([BEAS93], [RAMS93] and [DIAZ07]).  In the case of the school 

timetabling problem, an example of a heuristic would be to give priority to teachers that 

teach the most number of lessons.  In scheduling problems, an initial population may also 

consist of previous solutions with the objective being to improve the quality of these 

solutions.  In the case of the school timetabling problem, a previous solution could be the 

timetable that was used in the previous year or a timetable that was manually created by the 

staff. 

4.4.4 Tournament Selection 
One of the most commonly used selection methods, other than fitness proportionate 

selection, is tournament selection.  A group of individuals are randomly chosen from the 

population.  The fittest individual of the group (called a tournament) is selected as a parent.  

The tournament size is problem dependant and must be specified.  A small tournament size 

(low selection pressure) results in a more random based selection.  A large tournament size 

(greater selection pressure) results in the selection method becoming more elitist i.e. 

stronger individuals have a better chance of being selected.  Tournament selection is easy to 

implement and is faster (in runtime) than fitness proportionate selection.   
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Best = Randomly chosen individual 
For Loop = 2 to T 
{ 
 Ind = Randomly select participant as Contender 
 If Fitness(Ind) is better than Fitness(Best) 
  Best = Ind 
} 
Parent = Best 

Figure 4.4:  Standard tournament selection algorithm 

4.4.5 Genetic operators 
In the standard genetic algorithm, crossover and mutation are used as genetic operators.  In 

recent work, genetic algorithms have been implemented using only the mutation operator 

[BEAS93].  The motivation for this type of genetic algorithm is based on organisms in nature 

that reproduce asexually.  In his review of previous work, Beasley [BEAS93] reports that a 

genetic algorithm using only mutation resembles a primitive form of evolution.  Spears 

[SPEA93] found that a suitably modified mutation operator may perform just as well as the 

crossover operator. 

 

As genetic algorithms were used to solve various problems, standard genetic operators were 

found to be insufficient when applied to different problem domains.  These operators were 

then varied or changed based on the problem domain.  Section 4.4.5.1 covers different types 

of mutation operators while section 4.4.5.2 covers the different types of crossover operators 

that were cited in the literature.  Section 4.4.5.3 describes the reproduction operator.  Finally, 

section 4.4.5.4 discusses the difference between application rates and operator probabilities. 

4.4.5.1 Mutation 

Goldberg initially described mutation as a secondary operator [GOLD89].  However, the use 

of different representations for solving problems and the development of evolutionary 

algorithms have resulted in a greater reliance on the mutation operator to explore the search 

space. 

 

Boundary mutation is used for individuals that are represented using integers or float values 

[OBIT98].  With this mutation, a gene changes to an upper or lower bound value.  For 

example, consider an individual 6-3-4-7.  A boundary mutation will result in changing the 4 to 

a lower or upper bound value such as 0 or 10.  The resultant offspring will be either 6-3-0-7 

or 6-3-10-7.   

 

Uniform mutation [OBIT98] changes the gene to a random value within a specified range.  In 

the previous example, the first gene (6) will change to a random value where the range is 
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specified by the user.  If the range is set between 0 and 4, then the resultant offspring will be 

1-3-4-7, 2-3-4-7 or 3-3-4-7. 

4.4.5.2 Crossover 

Besides the one point crossover described in section 4.3.4.2, several other variants of the 

crossover operator exist. 

 

Two point crossover [SPEA91a] selects two crossover points and the bits between the 

crossover points are exchanged between individuals.  In the example in Figure 4.5, two 

crossover points are selected.  The fragments between these two crossover points are 1110 

and 0000 for each parent respectively.  These fragments are then swapped between the 

parents resulting in offspring Z1 and Z2. 

 

Parent X 01100111010101 

Parent Y 11111000011110 

Resultant offspring Z1 01100000010101 

Resultant offspring Z2 11111111011110 

Figure 4.5:  Two point crossover 
 

In uniform crossover [SPEA91a], bit positions of the two parents are randomly selected.  The 

bits in these positions are then swapped between the parents resulting in offspring Z1 and 

Z2.  In the example in Figure 4.6, five bit positions are randomly selected.  The values in 

these bit positions are swapped between parents resulting in offspring Z1 and Z2.  The 

uniform crossover operator is used to provide a greater exploration of the search space and 

is controlled by the number of bits that will be exchanged between parents [SPEA91b].   

 

Parent X (crossover points in bold) 01100111010101 

Parent Y (crossover points in bold) 11111000011110 

Resultant offspring Z1 01100001011100 

Resultant offspring Z2 11111110010111 

Figure 4.6:  Uniform crossover 
 

Goldberg et al. [GOLE89] implemented the “Cut and Splice” crossover operator.  This 

operator is similar to the one point crossover operator with the exception that each parent 

may have a different crossover point as depicted in Figure 4.7.  This results in two or more 

offspring having different string lengths.  According to Mitchell [MICH98], producing 

individuals with varying string lengths is advantageous as the probability of a string 

containing the necessary information to produce an acceptable solution is greater. 
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Parent X (crossover points in bold) 01100111010101 

Parent Y (crossover points in bold) 11111000011110 

Resultant offspring Z1 011000011110 

Resultant offspring Z2 1111100111010101 

Figure 4.7:  “Cut and Splice” crossover operator 
 

Eiben et al. [EIBE94] considered a multiparent crossover operator.  In this case, crossover is 

applied to three or more parents resulting in three or more offspring.  According to Eiben 

[EIBE95], the use of more than two parents allows for greater diversity, thus reducing the 

possibility of premature convergence.   

 

Figure 4.8 illustrates a crossover operator involving three parents W, X and Y resulting in an 

offspring Z1, Z2 and Z3.  The first fragment from parent W, the second fragment from parent 

X and the third fragment from parent Y result in offspring Z1.  This is an example of diagonal 

crossover and involves two crossover points.  Alternative implementations of this operator 

include choosing multiple crossover points as well as recombination based on occurrence 

(the bits that are included the most in the parents are included in the offspring [EIBE94]) or 

fitness (the number of bits from each parent is proportional to the fitness of the parent). 

 

Parent W 111100001111 

Parent X 001100110011 

Parent Y 101010101010 

Resultant offspring Z1 111100111010 

Resultant offspring Z2 001110101111 

Resultant offspring Z3 101000000011 

Figure 4.8:  Diagonal crossover operator 

4.4.5.3 Reproduction 

According to Banzhaf [BANZ98], the reproduction operator creates an offspring by copying 

the parent (the offspring is an exact duplicate of the parent). 

4.4.5.4 Genetic operator probability versus genetic operator application rate 

In the standard genetic algorithm [GOLD89], each genetic operator is applied with a given 

probability.  Genetic operator application rates can also be used and differ from operator 

probabilities in that it specifies how many individuals in the new population are created using 

each genetic operator.  For example, having crossover and mutation application rates of 

70% and 30% respectively indicate that 70% of the offspring are created using the crossover 
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operator while 30% of the offspring are created using only the mutation operator.  A high 

mutation application rate results in a more random search while the local search is reduced.  

As a result, the genetic algorithm will take longer to converge.  A high crossover application 

rate will result in a more local search which may increase the possibility of premature 

convergence. 

4.5 Chapter Summary 
This chapter provided a description of the genetic algorithm.  Initially, the standard genetic 

algorithm implemented by Goldberg [GOLD89] was described.  However, in order to use 

genetic algorithms to solve various problems, it may be necessary to modify the genetic 

algorithm in terms of the representation used, initial population generation, selection 

methods and genetic operator design.  The advancements described in section 4.4 are 

some of the more common variations made to the standard genetic algorithm. 
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Chapter 5 – Genetic algorithms and the 
School Timetabling Problem 

This chapter describes previous work on the application of evolutionary algorithms to the 

school timetabling problem with a specific focus on genetic algorithms.  The following is 

described for each study:  the school timetabling problem and its constraints, the 

representation used, initial population generation, selection methods, genetic operators used 

and the results obtained.  Section 5.1 deals with genetic and evolutionary algorithms used to 

solve the school timetabling problem.  The problem has also been solved by combining 

genetic algorithms with other techniques and section 5.2 describes this type of research.  

Section 5.3 reports on comparative studies involving genetic algorithms when solving the 

school timetabling problem.  Section 5.4 provides an overview of the lessons learnt based on 

the experiences reported in these studies. 

5.1 Evolutionary or genetic algorithms 
Bedoya et al. [BEDO04] developed a genetic algorithm to solve the school timetabling 

problem.  The hard constraints for the problem are: 

 

 No class clashes or teacher clashes. 

 A class must be taught a particular subject a maximum of once in a day. 

 

This problem did not have any soft constraints.  A matrix representation was used with each 

row representing a class and each column representing a period.  All initial timetables were 

created by randomly allocating the tuples to the timetable.  Each constraint was allocated a 

weighting based on its priority and the fitness value (measure) was calculated by finding the 

weighted sum of the constraint violations.  Clashes were given the highest priority as a clash 

free timetable is at least usable.   Fitness proportionate selection was used.  A generational 

control model was adopted.  The crossover operator was not implemented as recombination 

of two timetables would result in duplicate or missing tuples and would require repair 

operators to deal with this problem.  This repair operator will need to find all duplicate or 

missing tuples and reallocate them to the timetable, adding to the processing overhead.  The 

only genetic operator used was the mutation operator which searched for and swapped 

constraint violating tuples.  Repair operators were not needed for this operator since tuples 

are swapped within the timetable and thus no tuples would be duplicated or lost during 
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mutation.  The genetic algorithm was applied to a small problem involving four classes, 10 

subjects and 19 teachers.  The approach induced timetables that satisfied all the constraints. 

 

Di Steffano et al. [DIST01] developed a genetic algorithm to solve the Italian school 

timetabling problem.  The hard constraints for the problem are as follows: 

 

 Room constraints - The size of the room must accommodate the size of the class. 

 No class clashes, teacher clashes or venue clashes. 

 Teacher availability requirements must be met. 

 Certain lessons must be allocated to specific periods. 

 Lunch breaks must be at different hours for each class. 

 

The soft constraints for the problem are: 

 

 Subject preferences should be met. 

 Lessons should be evenly distributed throughout the week. 

 Timetables should be compact. 

 Distances between venues must be as short as possible. 

 

Each individual in the population was represented as an integer array with the length being 

the total number of tuples.  The array index represented the tuple reference number and the 

integer value stored in each cell was the period allocated to that particular tuple.  When 

creating a timetable, certain tuples (specified by the school) had to be allocated to specific 

periods so these tuples were allocated first.  The remaining tuples were then randomly 

allocated to the timetable.  Tournament selection was used.  The generational control model 

was used with elitism incorporated whereby the best individual in the population is copied 

across to the next generation.  Crossover was applied followed by an intelligent mutation 

operator and an improvement mutation operator.  Intelligent mutation reduced the number of 

hard constraint violations by incorporating hill climbing (only swaps that improved the cost of 

the timetable were accepted).  Improvement mutation searched for and removed free 

periods in the timetable.  As a result, all tuples after the free period were then moved one 

period forward.  The changes resulting from the improvement mutation were only accepted if 

the timetable remained feasible.  The algorithm followed a phased approach where soft 

constraints were only dealt with once the hard constraints of the timetables were satisfied.  

The authors describe the results as remarkable due to the positive feedback provided by the 

school administrators.  The timetables created did not require any manual adjustment from 
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the school administrators.  The concept of using an array with the tuple number as an index 

was a good approach that removed the possibility of having duplicate or missing tuples in a 

timetable.  The authors also found that genetic operators could be easily designed using this 

representation. 

 

Caldeira et al. [CALD97] used a genetic algorithm to solve the school timetabling problem for 

a small school.  The hard constraints dealt with are: 

 

 No teacher clashes, venue clashes or class clashes. 

 Teacher availability requirements must be met. 

 

The soft constraints are: 

 

 Class and teacher timetables should be compact. 

 A one hour lunch break should be scheduled for each class between 12:00 and 

15:00. 

 The number of lessons should not exceed a specified daily limit. 

 Lessons for each subject should be evenly distributed throughout the week. 

 Any free periods should be allocated to the end of the day or the beginning of the 

day. 

 Classes and teachers preferences should be met. 

 

The authors used an array to represent the timetable and the array size is determined by the 

number of tuples.  Each array index value is the tuple number and each element in the array 

stores a period of the week.  When creating a timetable, tuples with the fewest feasible 

periods on the timetables are given priority.  The authors found feasible timetables in the 

initial population so the main objective of the genetic algorithm was to optimize the quality of 

these feasible timetables.  The fitness of an individual was the weighted sum of the 

constraint violations.  Fitness proportionate selection was used.  The steady-state control 

model was employed.  The genetic operators used were uniform crossover and mutation.  

To further reduce the constraint cost, a second mutation operator was also introduced that 

looked for constraint violating tuples and moved it to the closest unallocated period.  The 

algorithm was applied to a school timetabling problem with four teachers and four classes for 

which it was able to produce feasible solutions of an acceptable quality. 
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Fernandez et al. [FERN99] solved a large school timetabling problem involving 41 classes, 

109 teachers and 37 venues.  The hard constraints of the problem are: 

 

 No class clashes, teacher clashes or venue clashes. 

 No repetition of subjects in a day. 

 Consecutive period requirements must be met. 

 Teacher availability requirements must be met. 

 An allocated venue must have the capacity to hold the number of students in the 

class. 

 Each class must be allocated a free period during the day for a break. 

 

The soft constraints are: 

 

 Teacher and class timetables should be compact. 

 Class-teacher meetings should be evenly distributed throughout the week. 

 Subjects should be evenly distributed throughout the week. 

 Free periods for class timetables should be moved to either the beginning or the end 

of the day. 

 Teacher preferences should be met. 

 

The timetable was represented as a two-dimensional matrix with the rows representing the 

periods and the columns representing the classes.  Timetables were initially created by 

ordering tuples according to priority.  Lessons with consecutive periods were prioritized first, 

followed by lessons with specific rooms and lastly, teacher priority.  Tuples were allocated to 

the timetable such that the hard constraint cost was minimized.  Each constraint was 

weighted depending on its importance and the fitness value of an individual was calculated 

by the weighted sum of the constraint violations.  Fitness proportionate selection was used.  

The steady-state control model was adopted.  One of three crossover operators and a 

mutation operator were applied.  The three crossover operators were one-point crossover, 

three point crossover and uniform crossover.  A constraint focused mutation operator was 

used that searched for constraint violating tuples and attempted to move them to a feasible 

and empty period on the timetable.  If there are no feasible, empty periods available, then 

the mutation is cancelled.  The timetable induced by the genetic algorithm was compared to 

a manually created timetable and was found to be better as it was feasible and satisfied 

more soft constraint violations.  However, the timetables produced using the manual system 
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were more compact and contained half the number of free periods when compared to the 

timetables found by the genetic algorithm. 

 

Abramson et al. [ABRA91a] developed a genetic algorithm to solve the school timetabling 

problems for a group of generated data sets.  The only constraint for this problem was that 

there must be no class clashes, teacher clashes or venue clashes.  The timetable was 

represented as an array of periods with each period containing a set of tuples.  The 

timetables in the initial population were randomly created.  The cost of the timetable was 

determined by counting the number of clashes.  Individuals from the population were 

randomly selected as parents.  The genetic operators used were one point crossover and 

mutation, both of which incorporated hill climbing.  In most cases, the implementation of the 

crossover and mutation operators resulted in a loss of tuples.  This problem was solved 

using a repair operator which removed duplicate tuples and included missing tuples.  This 

repair operator added to the processing overhead of the overall algorithm but was a 

necessary process.  The genetic algorithm was applied to nine data sets.  The number of 

classes, teachers and venues vary between three and 15 with a constant of thirty periods 

per week.  Feasible timetables were found for each of the data sets.  The study also 

investigated the concept of parallel processing and this was found to substantially reduce the 

algorithm runtime. 

 

Beligiannis et al. [BELI08] solved the Greek school timetabling problem.  The hard 

constraints for the problem are: 

 

 No class clashes or teacher clashes. 

 Teacher availability requirements must be met. 

 Any free periods must be allocated to the last period of the day. 

 All subclass and co-teaching requirements must be met. 

 

The soft constraints are: 

 

 Teacher timetables should be compact. 

 Free periods should be uniformly distributed amongst all teachers and free periods 

for each teacher should be uniformly distributed amongst all days he/she is available 

at school. 

 The number of teaching periods for each teacher should be evenly distributed over 

the days that he/she is available at the school. 
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 Repetition of subjects in a day should be minimized. 

 

A timetable was represented by a two-dimensional array with a row representing a class, a 

column indicating a specific period and the intersection of each row and column specifying 

the teacher that is required to meet the class at that time.  The subjects taught were not 

considered as it was assumed (by the authors) that teachers knew which subjects they were 

required to teach as well as the number of periods required to teach that subject.  A 

randomly generated initial population was created.  The fitness of each individual was 

calculated by the weighted sum of the constraint violations with clashes given the highest 

weighting so that the timetables were at least usable.  A linear rank selection method was 

used and the steady-state control model was employed.  The crossover operator was not 

applied because trial runs found that it did not improve the performance of the algorithm.  

Mutation was the only genetic operator used and involved the swapping of either two 

randomly chosen tuples or two constraint violating tuples.  Swaps were designed such that 

teacher availability and co-teaching requirements were not violated.  The algorithm was 

applied to seven data sets, with the number of teachers ranging from 18 to 35 and the 

number of classes ranging from six to 13.  Feasible timetables that were of a good quality 

were induced and these timetables were found to be better than that of two other effective, 

unnamed algorithms.   

 

Filho et al. [FILH01] implemented a genetic algorithm to assist administrative staff at a 

Brazilian school.  The hard constraints are that there must be no class clashes or teacher 

clashes.  The only soft constraint was teacher period preferences.  Tuples were ordered 

according to higher teacher seniority (primary heuristic) followed by teachers with the largest 

number of preferences (secondary heuristic).  These tuples were allocated to randomly 

chosen periods in the timetable.  The algorithm used a generational control model with a 

varying population size.  Three mutation operators were implemented with two of these 

mutation operators aimed at removing class clashes and teacher clashes respectively.  The 

third mutation operator (teacher preference operator) attempted to reduce the soft constraint 

cost.  The authors concluded that the results were promising and would aid teachers in a 

task that normally took a very long time. 

 

Tongchim [TONG99] proposed solving the school timetabling problem by using three parallel 

processing models of genetic algorithms.  The models used in this case were the coarse-

grained genetic algorithm, the fine-grained model and the master-slave model.  The hard 

constraints for this problem are listed below. 
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 No class clashes, teacher clashes and venue clashes for specialized subjects. 

 Lesson preferences must be met. 

 

The problem did not have any soft constraints.  A 2n array representation was used where n 

is the number of subjects (each subject is taught by a different teacher).  Each cell stored a 

tuple consisting of the venue and the period.  The fitness of an individual was the sum of all 

the constraint violations.  The selection method used was tournament selection with a 

tournament size of three.  The genetic operators applied were mutation and crossover.  The 

first model, a master-slave model used a single population.  The processes of fitness 

evaluation and application of genetic operators were each performed in parallel 

(simultaneously).  The second model, a coarse grained model, divided the population into 

multiple subpopulations, which evolved independently with little or no interaction with other 

subpopulations.  Each subpopulation was evolved on a different processor.  The third model, 

a fine grained model, used a larger number of parallel processors and divided the population 

into a larger number of subpopulations.  The coarse grained genetic algorithm was the best 

performing genetic algorithm and was also the easiest to implement.   

 

Bufe et al. [BUFE01] used a hybrid algorithm to solve the German school timetabling 

problem.  The hard constraints are: 

 

 No teacher clashes, class clashes or venue clashes. 

 Co-teaching requirements must be met. 

 Teacher availability requirements must be met. 

 Certain subjects must be held in specific venues. 

 

The soft constraints are: 

 

 Any free periods for classes should be placed at the end of the day. 

 Certain teachers should have a minimum number of free days per week. 

 Some lessons that require double periods and fortnightly allocation should be met. 

 Subjects for each class should be evenly distributed throughout the week. 

 Class and teacher timetables should be compact. 

 

A two-dimensional matrix was used to represent a timetable.  Initial timetables are created 

by randomly selected tuples and allocating them to feasible periods such that the hard and 

soft constraint cost is minimized.  The genetic algorithm follows the steady-state control 
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model, where 40 percent of the worst individuals in the population are replaced by newly 

created offspring.  Three mutation operators were used and involved removing allocated 

tuples, placement of unallocated tuples and swapping of two tuples respectively.  The 

algorithm was applied to a problem that involved 61 teachers, 23 classes, 49 venues and 

351 lessons.  No feasible timetables had been induced.  Conclusions were made that future 

research regarding the use of intelligent operators that minimize the cost of initial timetables 

and mutation operators that search for constraint violations was necessary. 

 

Wilke et al. [WILK02] attempted to solve the German school timetabling problem with the 

following hard constraints: 

 

 Teacher and class timetables must be compact. 

 Free periods for teachers for breaks. 

 Any free periods must be allocated towards the end of the day. 

 Certain subjects must be evenly distributed throughout the week. 

 One free period to be allocated to classes for a lunch break. 

 Some lessons must be taught in dedicated rooms. 

 All co-teaching and subclass requirements must be met. 

 

The only soft constraint is that teacher preferences should be met.  An individual in the 

population was represented as a two-dimensional matrix with the rows representing the days 

of the week and the columns representing the periods.  Each cell in the timetable was 

allocated a tuple consisting of an assigned room, a subject and a class-teacher combination.  

Individuals in the initial population were randomly created.  The cost of the timetable was 

determined by the weighted sum of the constraint violations.  The best two individuals of 

each generation are chosen as parents and the remaining parents are chosen using fitness 

proportionate selection.  One of two crossover operators (one point and two point crossover) 

were randomly chosen and applied followed by three mutation operators.  The two mutation 

operators swap lessons and randomly reallocate rooms respectively.  The third mutation 

operator makes a copy of the best timetable in the population and then makes one swap 

between two tuples.  Mutation operators that focus on soft constraints are applied if the 

genetic algorithm converges prematurely.  The approach was applied to a large German 

high school timetabling problem.  While most hard constraints were satisfied, feasible 

timetables were not induced. 
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5.2 Genetic algorithms with other techniques 
Zuters [ZUTE07] implemented a neural network as part of a genetic algorithm to solve the 

school timetabling problem.  This paper was a continuation of a previous study and 

attempted to use neural networks as a fitness function.  These neural networks were trained 

using previous timetables as well as randomly generated timetables.  This study focused 

only on timetable quality.  The soft constraints for the problem are: 

 

 Teacher lessons should be evenly distributed throughout the week. 

 Class timetables should be compact. 

 Lessons should start as early in the day as possible. 

 Subjects for each class should be evenly distributed throughout the week. 

 

A matrix representation was used with each row representing a class and the columns 

representing the periods.  Each cell contained a subject that would be taught to the class 

during that particular period.  This representation was chosen as room and teacher details 

were not available.  Details of initial population generation as well as the selection method 

used were not provided.  Mutation was the only genetic operator.  Four separate fitness 

functions were used to assess each soft constraint.  The main objective of this study was to 

determine whether any of the fitness functions could be replaced by a neural network.  

Zuters found that the neural network could replace only one of the four fitness functions.  

The function that could be replaced assessed the constraint dealing with starting lessons as 

early as possible. 

 

Nurmi et al. [NURM07] used a combination of a genetic algorithm and tabu search to solve 

the school timetabling problem for schools in Finland.  The hard constraints of the problem 

are the following: 

 

 No class clashes, teacher clashes or venue clashes. 

 Lesson preferences must be met. 

 Teacher, class and venue availability requirements must be met. 

 

The soft constraints of the problem are the following: 

 

 Class and teacher timetables should be compact. 

 The lessons for some classes should be placed as late in the day as possible i.e. 

initial periods for the day should be free periods. 
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 The lessons for some classes should end as early as possible on particular days. 

 Each teacher should teach a set number of lessons in a day within a specified range. 

 Teacher day and period preferences should be met. 

 A class should only be taught a specific subject once in a day. 

 

Information regarding representation, timetable creation and selection method used was not 

provided.  Mutation was the only genetic operator and involved making a number of moves 

(swaps).  Mutation incorporated both hill climbing and a tabu list.  Hill climbing ensured that 

moves did not result in an increase in the constraint cost of the timetable.  The tabu list 

stored moves that would result in a return to a previous candidate solution.  The genetic 

algorithm was applied to the HDTT benchmark problem [ABRA91a] and real world primary 

and secondary school timetabling problems.  The algorithm was only able to find solutions to 

some of the data sets in the benchmark problem but did find feasible timetables for the real 

world problems.  The use of a tabu search was identified as an important factor in improving 

the performance of the mutation operator. 

 

Cerdeira-Pena et al. [CERD08] implemented a hill climbing approach, a genetic algorithm 

and two hybrid algorithms to solve the school timetabling problem. 

 

The hard constraints for the problem are: 

 

 No teacher clashes or class clashes. 

 Co-teaching and subclass requirements must be met. 

 Teacher availability requirements must be met. 

 Double period requirements must be met. 

 

The soft constraints for this problem are: 

 

 Maximum daily teaching limits for teachers should not be exceeded. 

 Each teacher should have his/her lessons evenly distributed throughout the week. 

 Teacher timetables should be compact. 

 Subjects should be evenly distributed throughout the week. 

 Teacher preferences should be met. 

 

Each timetable was represented as a two-dimensional matrix with the rows of the table 

representing periods while each column represented a teacher.  A cell of the matrix indicated 
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the class and subject.  The cost of a timetable was determined by counting the number of 

constraint violations.  The initial population consisted of previous solutions and randomly 

generated timetables.   

 

The hill climbing approach (called RNA) explored the search space using double moves (a 

single swap and an optional second swap if a constraint violation occurs from the first swap).  

This process continued until no further improvements could be made to the timetable after a 

specified number of moves. 

 

Two genetic algorithms were implemented with the algorithms differing only in the selection 

method used.  In the first selection method (GAT), two parents are chosen, each from two 

pairs of randomly selected individuals.  The second selection method (GAT4C) differs from 

the first in that four parents (rather than two) are selected and selection is without 

replacement.  Genetic operators used were one point crossover and a mutation operator that 

made random swaps.   

 

The final two approaches combined the hill climbing (RNA) algorithm with each of the 

genetic algorithms.  The hybrid approach alternated the genetic algorithm and the RNA 

approach with the genetic algorithm applied first.  The RNA approach was applied to each 

individual in the population and produced the offspring for a new generation.  The alternation 

between the RNA approach and the genetic algorithm continued until a generation limit was 

reached. 

 

The algorithms were applied to three sets of school data.  The first school had six co-

teaching and subclass groups, 70 classes and approximately 16 teachers.  The best 

performing algorithm was the hybrid algorithm using the GAT4C selection method.  The 

second problem contained 27 co-teaching and subclass groups, 333 classes and 71 

teachers and best results were found with the hybrid algorithm using the GAT selection 

method.  The third problem involved a Spanish high school with 11 teachers and 33 classes.  

The hybrid algorithm using the GAT4C selection method produced the best results.  The 

authors concluded that, overall, the best performing algorithms were the hybrid approaches. 

 

Rahoual and Saad [RAHO06] solved the school timetabling problem by hybridizing a genetic 

algorithm and tabu search.  The hard constraints are: 

 

 No class clashes or teacher clashes. 

 Certain subjects must be allocated to specific periods. 
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The only soft constraint for the problem is that teacher preferences should be met.  Each 

timetable was represented as an array, with the array index indicating the tuple number.  

Each tuple in the array is allocated to a period and a teacher.  Timetables were created by 

allocating tuples to randomly chosen periods but no details were provided as to how the 

tuples were selected.  The fitness of a timetable was determined by calculating the weighted 

sum of the constraint violations.  A steady-state control model was used.  Crossover and 

three mutation operators were used to create offspring.  Each mutation operator focused on 

a particular constraint and incorporated both hill climbing (swapping of tuples was only 

accepted if the constraint cost was reduced) and a tabu list (to prevent cycling in terms of 

performing the same swap and returning to previous solutions). 

 

The approach was tested on benchmark data sets provided by Abramson [ABRA91a] and 

the performance was found to be equivalent to that of the simulated annealing technique and 

the tabu search used by Abramson [ABRA93].  The approach was also tested using four 

generated data sets.  The first set had 64 subjects, 12 teachers and 16 venues.  The second 

set involved 100 subjects, 21 teachers and 25 venues.  The third data set involved 150 

subjects, 26 teachers and 31 venues.  Data set four had 200 subjects, 33 teachers and 37 

venues.  The performance of the genetic algorithm using the constraint focused mutation 

operators performed better when compared to a genetic algorithm using a standard mutation 

operator that randomly swaps tuples.  The hybrid algorithm found good results and the 

authors found that the tabu search minimized the possibility of premature convergence.  This 

approach was also tested against a real world case study involving 500 groups, 3000 

teachers, 5000 subjects and 200 venues.  The manual creation of a timetable for this 

problem took approximately four weeks.  In comparison to the manual approach, the genetic 

algorithm approach solved the problem in less than an hour. 

 

The authors concluded that the hybrid algorithm provided great flexibility and efficiency.  A 

contributing factor towards the success of the algorithm was the use of three separate 

mutation operators that were each dedicated to reducing the cost of one specific constraint.  

Another key contributing factor was the use of the tabu search incorporated with the 

mutation operator. 

5.3 Comparative studies 
Colorni et al. [COLO98] implemented simulated annealing, a genetic algorithm and tabu 

search to solve the school timetabling problem.  The approaches were applied to benchmark 
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problems as well as an Italian high school timetabling problem.  The hard constraints for the 

school are: 

 

 No class clashes or teacher clashes. 

 All class timetables must be compact. 

 

The soft constraints for the problem are: 

 

 Each teacher should have between two and four teaching periods a day. 

 A different teacher should be allocated to the last period for each day. 

 Lessons should be evenly distributed throughout the week. 

 Double period requirements should be met. 

 Teacher timetables should be compact. 

 

A two-dimensional matrix was used to represent a teacher timetable where the rows 

represent the teachers and the columns represent the periods of each day.  Each cell in the 

matrix represented a teacher activity such as teaching and development lessons.  The initial 

population was randomly created.  The selection method used was fitness proportionate 

selection.  The genetic operators used were crossover and mutation.  Repair operators were 

used to remove duplicate tuples and to reallocate missing tuples caused by the genetic 

operators.  The authors found that all three approaches performed better than the manual 

system.  The tabu search produced better timetables than the genetic algorithm, with 

simulated annealing producing timetables with the most constraint violations.  While the tabu 

search performed the best, the genetic algorithm produced a population of solutions 

providing users with a choice of timetables.   

 

The school timetabling problem in the study conducted by Wilke et al. [WILK08] involved a 

German secondary school timetabling problem with 113 teachers, 100 rooms and 43 

classes.  The hard constraints for the problem are as follows: 

 

 No class clashes, teacher clashes and venue clashes.   

 Classes must be allocated to rooms that can accommodate the number of students 

in the class. 

 

This problem did not involve any soft constraints.  The four algorithms used were tabu 

search, simulated annealing, a genetic algorithm and the branch and bound algorithm.  
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Specifics regarding each of the algorithms were not provided.  The tabu search performed 

200 moves per iteration.  The simulated annealing technique was given a time limit of two 

hours to find a feasible solution.  The genetic algorithm used a population size of 30 and ran 

for a time of two hours.  The fittest individual and 5% of the individuals were automatically 

selected as parents.  No selection method was mentioned and the genetic operators used 

were mutation and crossover.  For the branch and bound algorithm, the hard constraint 

regarding the minimum number of lessons per day was not considered.  The simulated 

annealing technique performed the best, producing feasible solutions for all runs.  The other 

techniques did not induce feasible solutions. 

5.4 Chapter Summary 
Based on the literature reviewed in this chapter, it is clear that the standard genetic algorithm 

used by Goldberg [GOLD89] has not been used as is and variations had to be made to the 

majority of the genetic algorithms in order to induce satisfactory solutions to the school 

timetabling problems.  The following sections describe the most common changes reported 

in the literature as well as how the genetic algorithm approach in this study will be 

implemented (discussed in further detail in Chapter 7 and Chapter 8). 

5.4.1 Representation 
In the literature, either an array representation ([CALD97], [FERN99], [DIST01], [ABRA91a], 

[TONG99], and [RAHO06]) or a matrix representation ([BEDO04], [BELI08], [BUFE01], 

[NURM07], [CERD08], [WILK02] and [COLO98]) was used.  The array representation is 

easily implemented and no repair operators are needed when using the crossover operator.  

The matrix representation directly represents a timetable, immediately satisfies certain 

constraint violations such as avoidance of class or teacher clashes (since a row or column 

could represent a teacher or a class) and allows for easy implementation of genetic 

operators e.g. swapping tuples within rows or columns.  This study will use a matrix 

representation because of the advantages stated above. 

5.4.2 Control model 
Most studies opted for the generational ([BEDO04], [DIST01], [ABRA91a], [BELI08], 

[NURM07], [FILH08] and [CERD08]) or steady-state models ([CALD97], [FERN99], 

[BUFE01] and [COLO98]).  For this study, a generational model will be adopted as the 

majority of the studies had successfully implemented this model. 

5.4.3 Initial population generation 
When creating a timetable, tuples are either randomly selected ([BEDO04], [FERN99], 

[ABRA91a], [BELI08], [CERD08], [WILK02]) or selected using heuristics ([FILH01] and 
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[CALD97]) such as teacher priority and the least number of feasible periods (this has been 

called saturation degree in a study by Carter [CART96]).  Once a tuple is selected, it is then 

randomly allocated to a period ([ABRA91a], [BELI08], [FILH01], [CERD08], [WILK02]) or 

allocated to a period that minimized the hard (or soft) constraint cost ([FERN99], [DIST01]).  

This study will assess the effect of randomly choosing tuples for allocation against choosing 

tuples using heuristics.  Once selected, a tuple will be allocated to the period that minimizes 

the hard and soft constraint cost.  This strategy will minimize the overall cost of the initial 

population and increase the probability of finding a feasible timetable of a high quality. 

5.4.4 Selection method 
Most of the studies used either fitness proportionate selection ([BEDO04], [CALD97], 

[FERN99] and [WILK02]) or tournament selection ([DIST01], [TONG99] and [CERD08]) as 

these were the most popular selection methods.  For this study, the tournament selection 

method will be used due to ease of implementation (individuals in the tournament are 

randomly chosen and the best individual is selected as a parent) and reduction in 

computational time [BLIC95] (fewer individuals are evaluated and used in tournament 

selection than in fitness proportionate selection). 

5.4.5 Genetic operators 
Most studies implemented the mutation and crossover operators.  Studies that used a matrix 

representation ([ABRA91a], [BUFE01], [WILKE02] and [COLO98]) required the use of repair 

operators after crossover was applied in order to remove duplicate tuples and to reallocate 

missing tuples.  Since this study will use a matrix representation, crossover will not be used 

in order to avoid the extra processing overhead that occurs when using repair operators. 

 

In all the studies, mutation involved the swapping of tuples between periods.  Some studies 

randomly swapped tuples while others ([DIST01], [FILH01] and [BUFE01]) searched for and 

swapped tuples that caused constraint violations to successfully solve their respective 

problems.  Studies by [DIST01], [ABRA91a], [CERD08] and [RAHO06] incorporated hill 

climbing as part of the genetic operators to solve their respective problems.  This study will 

use constraint focused mutation operators (similar to those used by [DIST01], [FILH01] and 

[BUFE01]) and will assess the performance of the genetic algorithm when using these 

operators with and without hill climbing. 

5.4.6 Single phase versus multiphase 
Most of the studies presented addressed hard and soft constraints in a single phase with 

varying degrees of success.  Three studies ([AVEL07], [ALVA96] and [DIST01]) successfully 

used a multiphase approach that addressed timetable quality only if hard constraints had 
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been satisfied.  This study will test the performance of a genetic algorithm when using a 

single phase approach and a multiphase approach. 

5.4.7 School Timetabling Problems 
From the previous work, it is evident that each of the genetic algorithms in the literature has 

only been evaluated for one specific type of school timetabling problem and has not been 

tested generally for different types of problems.  This study will investigate the use of a 

genetic algorithm approach to solve different types of school timetabling problems i.e. school 

timetabling problems with different sets of constraints.  It was also found that school 

timetabling problems differed between countries and while problems from Australia, Brazil, 

Italy, Spain and Greece were addressed, no research was done on the South African school 

timetabling problem which also differs from the other problems in terms of constraints and 

resources. 
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Chapter 6 - Methodology 

6.1 Introduction 
This chapter outlines the methodology used in order to attain the objectives described in 

Chapter 1.  Section 6.2 re-emphasizes the two objectives as well as how each objective will 

be met.  Section 6.3 describes the hypothesis testing that will be conducted to test the 

significance of results.  Section 6.4 covers the selected school timetabling problems that will 

be used.  Section 6.5 provides a brief overview of the hardware and software used in this 

study. 

6.2 Fulfilling the objectives of the study 
This section outlines the methodology used to fulfill the objectives listed in Chapter 1.  

Section 6.2.1 outlines the methodology for the first objective of using a genetic algorithm 

approach to solve different types of school timetabling problems.  Section 6.2.2 describes 

the methodology for the second objective of evaluating a genetic algorithm that uses an 

indirect representation to solve the school timetabling problem.   

 

Genetic algorithms start from random points in the search space and hence a single run may 

not produce a solution.  Thus for each objective, thirty random number generator seed 

values will be tested for each process and each parameter value (the same set of seed 

values will be used when testing each process and each parameter).  The significance of 

any results will be tested using hypothesis tests (described in section 6.3). 

6.2.1 Objective One 
The first objective (as outlined in Chapter 1) is to test the effectiveness of genetic algorithms 

in solving different types of school timetabling problems.  An initial genetic algorithm 

approach based on the literature review (outlined in section 5.4 of Chapter 5) will be 

implemented.  This will be referred to as a direct genetic algorithm (DGA) approach as the 

algorithm will evolve the timetables directly.  The performance of the DGA will be improved 

iteratively by changing the processes of the genetic algorithm (if required) i.e. the 

representation, fitness calculation, the method of initial population generation, selection 

method and genetic operators.  The control parameter values will also be fine-tuned in order 

to improve performance.  These changes will be made based on the evaluation of the 

system when applied to the problems.  This type of methodology is referred to as 

implementation driven research where the emphasis is on iteratively refining a system until it 

accomplishes the objectives that are required [JOHN11].  In the event that the DGA 
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performs poorly (i.e. feasible solutions cannot be found), then an analysis will be performed 

to find reasons for poor performance.  The DGA will then be refined based on the reasons 

identified.  The DGA will be tested on five school timetabling problems (described in section 

6.4).   

6.2.2 Objective Two 
The second objective is to evaluate the performance of a genetic algorithm that uses an 

indirect representation when solving the school timetabling problem.  All studies on the 

school timetabling problem (see Chapter 3 and Chapter 5) successfully used a direct 

representation that searched a solution space for an optimal timetable.  Previous studies in 

the domain of job shop scheduling ([ABDE10]) and exam timetabling ([TERA95]) used a 

genetic algorithm with an indirect representation consisting of a string of instructions capable 

of building a schedule.  The genetic algorithm using this representation was found to be very 

effective and according to Gutierrez et al. [GUTI02], reduced the search space.  Research 

regarding genetic algorithms that use an indirect representation has not been conducted for 

the school timetabling problem and this study will evaluate this approach.  A genetic 

algorithm using an indirect representation (IGA) will be applied to the five school timetabling 

problems described in section 6.4.  Iterative improvements will be made to the IGA if 

necessary.  The performance of the IGA will be compared to the performance of the DGA as 

well as other methods from the literature that solved the same school timetabling problems.   

6.3 Hypothesis testing 
Hypothesis tests are conducted to test for the significance of the results where applicable.  

Z-tests are used and the levels of significance, critical values and decision rules used for 

these tests are listed in Table 6.1.   
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Table 6.1:  Levels of significance, critical values and decision rules 

P Critical Value Decision Rule 

0.01 2.33 Reject H0 if Z > 2.33 

0.05 1.64 Reject H0 if Z > 1.64 

0.1 1.28 Reject H0 if Z > 1.28 

6.4 The School Timetabling Problems 
This section describes five types of school timetabling problems that will be used to assess 

the performance of the IGA and DGA (in terms of feasibility and quality).  The first problem, 

the Abramson (or HDTT) problem, was introduced by Abramson et al. [ABRA93] and was 

the most commonly cited problem in the literature.  This problem was chosen as most 

studies provided results which can be used for comparison purposes.  Although there were 

several school timetabling problems discussed in the literature, only two of these problems 

were made publicly available by the authors at the time of this research.  These two 

problems were two Greek school timetabling problems introduced by Beligiannis et al. 

[BELI08] and Valouxis et al. [VALO03] respectively and will also be used.  Finally, two South 

African school timetabling problems are used as problems from the South African 

educational system, which differs from the other school timetabling problems in terms of 

constraints and timetable structure, have not been covered in the literature.  For the two 

Greek problems and the two South African problems, sample timetables (timetables 

provided by the authors) were made available.  An empirical comparison will be made 

between these sample solutions and the timetables induced by the DGA and IGA. 

 

Section 6.4.1 covers the Abramson problem (also known as the HDTT problem).  Section 

6.4.2 and section 6.4.3 respectively describe the two Greek school timetabling problems.  

Finally, section 6.4.4 and 6.4.5 describes the two South African school timetabling problems 

(Lewitt and Woodlands).   

6.4.1 The Hard Defined TimeTable (HDTT) school timetabling problem 
The HDTT problem is a generated (non-real) school timetabling problem that was studied by 

[ABRA93], [RAHO06], [SMIT03] and [LIU09].  Each data set in the problem has the following 

characteristics: 
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Table 6.2:  Characteristics of HDTT data sets 

Data set No. of teachers No. of Venues No. of Classes Total No. of 
Periods 

HDTT4 4 4 4 30 

HDTT5 5 5 5 30 

HDTT6 6 6 6 30 

HDTT7 7 7 7 30 

HDTT8 8 8 8 30 

 

The only hard constraint for the problem is that there must be no class clashes, teacher 

clashes and venue clashes (HC1).   

 

When compared to other problems in the literature, the Abramson problem appears to be 

simple with a small number of classes, teachers and venues and only one constraint (no 

clashes).  This, however, does not imply that the problem is easy to solve.  Three studies 

([RAHO06], [LIU09] and [SMIT12]) have described this problem as difficult since all the 

timetables produced (teacher, class and venue) must be dense i.e. each class, teacher and 

venue must be assigned to every period of the week with no free periods.  No other problem 

found in the literature required timetables with this degree of density. 

 

The mathematical formulation of the fitness function for this problem is simply the sum of all 

the clashes of a given timetables.  The formula for the fitness function for this problem is 

shown below: 

 

Min f(obj) = (class clashes + teacher clashes + venue clashes) ≥ 0 

 

In the formula above, the objective is to minimize the number of clashes.  A fitness value of 0 

indicates that a feasible timetable has been found. 

6.4.2 The Valouxis Greek school timetabling problem 
This problem was introduced by Valouxis et al. [VALO03].  The problem involves 15 

teachers and six classes.  A school week is comprised of five days and each day has seven 

periods.  The hard constraints for this problem are: 

 

 No class clashes or teacher clashes (HC1). 

 Class timetables must be compact.  Any free periods must be allocated to the end of 

the day (HC2). 

 A teacher’s workload must be evenly distributed throughout the week (HC3). 
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 Lessons must be evenly distributed throughout the week (HC4). 

 

The soft constraints for the problem are as follows: 

 

 Teacher preferences should be met (SC1). 

 Teacher timetables should be compact (SC2). 

 

Unlike the HDTT problem described in section 6.4.1, this problem contains a greater number 

of constraints that must be satisfied.  This study has four hard constraints and two soft 

constraints and is equivalent to other studies in the literature in terms of average number of 

constraints.  In a study of school timetable difficulty by Van Heuvan van Staerling [VANH12], 

it was found that one of these constraints, namely the teacher availability constraint, is 

classified as a difficult constraint to solve.  The two distribution constraints have normally 

been specified as soft constraints in other studies ([CALD97], [LIU09], [BELI08] and 

[AVEL07]) but are specified as hard constraints in this study.  This increases the difficulty of 

the problem as these constraints must be met rather than minimized. 

 

Based on the constraints listed above, the formulation of the fitness function is shown below 

and follows the format of a similar formulation used by Beligiannis et al. [BELI08]: 

 

     (   )  ∑(    )    

 

   

 

 

In the above formula, HCVX is the number of violations in the timetable for hard constraint 

HCX.  For this function, the calculated value must be greater than or equal to 0 and the 

objective is to minimize f(obj).  A feasible timetable is found if f(obj) = 0.   

 

The formulation of the fitness function to calculate the soft constraint cost is a summation of 

the number of violations for each of the listed soft constraints. 

 

     (   )  ∑(    )    

 

   

 

 

In the formula above, SCVX represents the number of soft constraint violations in the 

timetable for soft constraint SCX.  The calculated fitness value must be greater than or equal 
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to 0.  A lower soft constraint cost indicates a better quality timetable.  Therefore the objective 

is to minimize the soft constraint cost. 

6.4.3 The Beligiannis Greek school timetabling problem 
Beligiannis et al. [BELI08] introduced the Greek high school timetabling problem.  This 

problem has seven data sets, each with a varied number of classes and teachers.  Only six 

of the seven data sets were used because one of the data sets (high_school_06) has an 

error, where the total number of lessons for certain classes is more than the number of 

periods available.  The six data sets used have the following characteristics: 

 

Table 6.3:  Characteristics of the Beligiannis data set 

Problem code No. of 
teachers 

No. of classes No. of co-
teaching and 
subclass 
requirements 

Total no. of 
periods 

High_school_01 (HS1) 11 34 18 35 

High_school_02 (HS2) 11 35 24 35 

High_school_03 (HS3) 6 19 0 35 

High_school_04 (HS4) 7 19 12 35 

High_school_05 (HS5) 6 18 0 35 

High_school_07 (HS7) 13 35 20 35 

 

The hard constraints for this timetabling problem are: 

 

 No class clashes or teacher clashes (HC1). 

 Teacher availability requirements must be met (HC2). 

 Any free periods must be allocated to the last period of the day (HC3). 

 All subclass and co-teaching requirements must be met (HC4). 

 

The soft constraints are: 

 

 Teacher timetables should be compact.  If this is not possible, then the number of 

free periods should be minimized (SC1). 

 Free periods should be uniformly distributed amongst all teachers while free periods 

for each teacher should be uniformly distributed amongst all days he/she is available 

at school (SC2). 

 The number of teaching periods for each teacher should be evenly distributed over 

the days that he/she is available at the school (SC3). 
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 Classes should not have the same lesson in successive periods and, if possible, not 

even on the same day (SC4). 

 

There are eight constraints in total that need to be addressed which is more than most 

problems found in the literature.  According to Van Heuvan Van Staerling [VANH12], the 

subclass and co-teaching requirements as well as the teacher availability requirements are 

difficult constraints to solve.  There are also four soft constraints that need to be minimized 

which is more than most of the problems discussed in the literature.  Thus, this problem is 

one of the more challenging problems when compared to the other problems in the literature. 

 

Based on the above constraints, the formulation of the fitness function to calculate the hard 

constraint cost is shown below.  The formulation follows a similar format to that used by 

Beligiannis et al. [BELI08]. 

 

     (   )  ∑(    )

 

   

   

 

In the above formula, HCVX is the number of violations for hard constraint HCX.  For this 

function, the calculated value must be greater than or equal to 0 and the objective is to 

minimize f(obj).  A fitness value of 0 is desired as it indicates that the timetable is feasible. 

 

The formulation of the fitness function to calculate the soft constraint cost is similar to the 

above formula: 

 

     (   )  ∑(    )

 

   

   

 

SCVX represents the number of soft constraint violations for soft constraint SCX.  The 

calculated fitness value must be greater than or equal to zero.  A lower soft constraint cost 

indicates a better quality timetable thus the objective is to minimize the value of the above 

function. 

6.4.4 The Woodlands Secondary school timetabling problem 
The Woodlands secondary school data set has 30 classes, 40 teachers and 44 subjects.  A 

school week is comprised of seven periods in a day and there are six days in a school week.  

The hard constraints for the problem are the following: 
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 No teacher clashes or class clashes (HC1). 

 All subclass and co-teaching requirements must be met (HC2). 

 

The soft constraints are the following: 

 

 Class-period allocation preferences should be met (SC1). 

 Teacher preferences should be met (SC2). 

 Co-teaching and subclass allocation preferences should be met (SC3). 

 

The Woodlands problem has the largest number of teachers, classes and subjects when 

compared to the other problems in this study.  While the total number of constraints is 

slightly less than the average number of constraints in the literature, the problem does have 

subclass and co-teaching requirements, a constraint that is difficult to solve according to 

[VANH12].  Unlike the Beligiannis problem, the number of classes and teachers involved in 

the subclass and co-teaching requirements are more than two thus increasing the difficulty 

of the problem.  In addition, all class timetables must be dense (no free periods for classes). 

 

The formulation of the fitness function that calculates the hard constraint cost is shown 

below: 

 

     (   )  ∑(    )

 

   

   

 

HCVX represents the number of hard constraint violations for each hard constraint HCX.  The 

objective is to minimize the cost of the timetable and a feasible timetable is one that has a 

hard constraint cost of 0.  The formulation for the fitness function used to determine the 

quality of the timetable is shown below: 

 

     (   )  ∑(    )

 

   

   

 

The objective is to minimize f(obj).  SCVX represents the number of soft constraint violations 

in the timetable for soft constraint SCX.   
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6.4.5 The W.A. Lewitt primary school timetabling problem 
W.A. Lewitt Primary school has 19 teachers, 16 classes and 14 subjects.  Each school day 

consists of a maximum of 11 periods and each school week is comprised of five days.  The 

timetable structure differs based on grade.  Some grades are not allocated the full 11 

periods in the day.  The hard constraints for this problem are the following: 

 

 No teacher clashes, class clashes and in some cases venue clashes (HC1). 

 For all classes, mathematics must only be taught in the mornings (HC2). 

 Co-teaching requirements must be met (HC3). 

 Double period requirements must be met (HC4). 

 

The only soft constraint is that there must be a balance in the number of lessons a class is 

taught per day (SC1). 

 

This problem has four hard constraints and one soft constraint.  This results in a total of five 

constraints which is one less than the average number of constraints for the problems in the 

literature.  Two of the constraints, double periods and co-teaching requirements, are 

categorized as difficult according to [VANH12] and [SMIT12].  The majority of the lessons in 

this problem are specified as double periods, thus increasing the difficulty of the problem.  

 

The mathematical formulation of the fitness function to calculate the hard constraint cost of a 

timetable for this problem is shown below: 

 

     (   )  ∑(    )

 

   

   

 

In the above formulation, HCVX represents the number of hard constraint violations for each 

hard constraint HCX.  Thus the fitness value is determined by the sum of the number of hard 

constraint violations for each hard constraint HCX.  The objective is to minimize f(obj) and a 

feasible timetable is one that has no hard constraint violations. 

 

The mathematical formulation for the single soft constraint cost of lesson balance throughout 

the week is shown below: 

 

f(obj) = SCV1 ≥ 0 
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SCV1 is the number of violations for soft constraint SC1.  f(obj) must be minimized and a 

lower value indicates a better quality timetable. 

6.5 System implementation details 
The GA system was developed using Visual C++ 2008 and 2010.  The random number 

generator function available in C++ is used to generate random numbers.  The programs 

were developed on a computer with the following specifications:  Intel Core 2 Duo CPU 

P8600 @ 2.40GHz, 2.00 GB RAM, Windows XP/Windows 7 Enterprise OS. 

 

Simulations (trial and final) were run on several machines, namely: 

 Intel Core 2 Duo CPU @ 2.40 GHz, 2.00 GB RAM, Windows XP/Windows 7 

Enterprise OS. 

 Intel Core I7 870 CPU @ 2.93 GHz, 4.00 GB RAM, Windows 7 64-bit OS. 

 Intel Core I7 860 CPU @ 2.80 GHZ, 4.00 GB RAM (3.49 Usable), Windows 7 32-bit 

OS. 

 Pentium Dual Core @ 2GHZ, 2.00 GB RAM, Windows Vista. 

 Center for High Performance Computing.  See www.chpc.ac.za/sun for cluster 

specifications 

 

Results of simulations as well as analysis and calculations for hypothesis testing were 

performed using Microsoft Excel 2007 and 2010. 

6.6 Chapter Summary 
This chapter provides an overview of the methodologies used to achieve the objectives 

described in Chapter 1.  The hypothesis test that will be used to test for statistical 

significance is then covered.  The two genetic algorithm approaches will be applied to five 

school timetabling problems which are also described in this chapter.  This chapter 

concludes by providing the technical specifications for the study. 

 

 

  

http://www.chpc.ac.za/sun
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Chapter 7 - A Genetic Algorithm 
Approach using a Direct Representation 

This chapter describes a genetic algorithm approach that uses a direct representation (DGA) 

to solve the school timetabling problem.  The chapter includes the overall genetic algorithm, 

the representation used, heuristics used during initial population creation, selection methods, 

genetic operators and control parameters. 

7.1 Overall algorithm 
The studies in the literature incorporated either a single phase approach that addressed hard 

and soft constraints simultaneously or a two phased approach that addressed hard and soft 

constraints separately (see section 5.4 in Chapter 5).  It was intended that a comparison of 

both these approaches would be conducted as part of the requirements for objective one 

(section 6.2.1 of Chapter 6).  While conducting initial runs, it was observed that the single 

phase approach performed poorly when applied to the five school timetabling problems.  

While feasible timetables were found, the quality of these timetables was poor and had twice 

as many soft constraint violations as the timetables induced using a two phased approach.  

The reason for this was that most of the swaps performed to reduce the soft constraint cost 

were rejected due to an increase in the hard constraint cost of the timetable.  The average 

cost and best cost for the trial runs (single phase) are shown in Table 7.1. 

 

Table 7.1:  Trial runs for single phase approach 

 Beligiannis 
(HS7) 

Beligiannis 
(HS4) 

Valouxis Lewitt Woodlands 

Average 
HC Cost 

0 0 0 1.44 1.5 

Average 
SC Cost 

210.78 118.11 82.89 27 11.5 

Best HC 
Cost 

0 0 0 0 0 

Best SC 
Cost 

201 106 73 23 11 

 

As a result of the above observations, a two phased approach will be adopted.  Phase 1 

implements a genetic algorithm to find feasible timetables.  During Phase 2, a genetic 

algorithm is once again used, but is aimed at improving the quality of the timetables 

(minimizing the soft constraint cost) while maintaining feasibility.  Phase 2 is only performed 

if feasible timetables are found during Phase 1.  Both Phase 1 and Phase 2 will follow the 

generational control model with a fixed population size for each generation.  The 
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generational control model was chosen as most studies in the literature adopted this 

approach. 

 

The genetic algorithms used in Phase 1 and Phase 2 differ from the genetic algorithm 

described in Chapter 4 in that the crossover operator is not implemented.  As discussed in 

section 5.4 (Chapter 5), the use of a crossover operator would require repair operators to 

remove duplicate tuples and add missing tuples.  The operator is therefore not used in order 

to avoid the extra processing overhead of the repair operators.   

 

Section 7.2 describes how the initial population is created.  Section 7.3 discusses timetable 

evaluation with respect to feasibility and quality.  Section 7.4 describes the selection 

methods that are used while section 7.5 discusses the application of the proposed mutation 

operators.  Finally, section 7.6 covers the control parameters for the DGA approach in this 

study. 

7.2 Initial population creation 
This section describes how the initial population is created.  Section 7.2.1 describes the 

direct representation used.  Section 7.2.2 discusses the algorithm for creating the initial 

population.  Section 7.2.3 covers how the requirements of class-teacher meetings are 

converted to tuples.  Section 7.2.4 describes the sequential construction method as a means 

to create individuals of the initial population.  This section also outlines the different 

heuristics that will be used when selecting which tuple gets priority in terms of allocation.  

Finally, section 7.2.5 covers how the initial population is created for Phase 2. 

7.2.1 Representation 
Each individual in the population is a timetable that is represented using a two-dimensional 

matrix.  As discussed in section 5.4 (Chapter 5), this was the most commonly used 

representation in previous studies.  An illustration of this representation is shown in Figure 

7.1.  The rows of the timetable represent the periods for the week.  Each column represents 

a class.  The intersection (cell) of a row (period) and column (class) stores the remaining 

information in the tuple, usually the teacher, venue and subject.  This representation 

removes the possibility of class clashes while teacher or venue clashes can be easily 

calculated by counting the number of duplicates in each of the rows.  Other constraint 

violations can also be calculated by counting these violations when they occur based on the 

day/period. 
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 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

1 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

2 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

3 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

4 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

5 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

6 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 

7 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Teacher/ 

Venue 
Figure 7.1:  Sample timetable structure 

 

In Figure 7.1, the first column and first row indicating the period and class label respectively 

have been included for reference purposes and are not part of the structure.  Each cell in 

the matrix contains the necessary information related to the lesson i.e. the teacher, venue, 

subject and other resources if necessary.  The timetabling problem related to Figure 7.1 

involves allocating a teacher and a venue to a class for each period.   

7.2.2 Initial population creation process 
A population of N individuals must be created to form the initial population (N is a control 

parameter).  Each individual in the initial population is created using a sequential 

construction method (SCM) which is described in more detail in section 7.2.4. 

7.2.3 Converting the class-teacher lessons list into a list of tuples 
Each school specifies a requirements list consisting of all the class-teacher-venue meetings 

that must be allocated to the timetable.  Table 7.2 shows a sample of the requirements list.  

Each of the meetings is then converted into individual tuples (as seen in Table 7.3).   

 

Table 7.2:  List of class-teacher lessons 

Meeting No Teacher Class Venue Lessons Double? 

1 A 10b 12 4 1 

2 B 12c 13 3 0 

3 C 5d 4 7 0 

 

The three meetings in Table 7.2 are converted into 14 rows of tuples, 4 rows for meeting 

number 1, 3 rows for meeting number 2 and 7 rows for meeting number 3.  A portion of 

these tuples are shown in Table 7.3.  As meeting number 1 has a double period 
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specification, only two occurrences (rather than four) of this meeting are reflected in Table 

7.3.  The “Double/Single” column value for these tuples is set to 1.  This indicates that two 

double period tuples must be allocated to the timetable. 

 

Table 7.3:  Tuple table 

Meeting No Teacher Class Venue Double/Single 

1 A 10b 12 1 

1 A 10b 12 1 

2 B 12c 13 0 

2 B 12c 13 0 

2 B 12c 13 0 

3 C 5d 4 0 

3 C 5d 4 0 

… … … … … 

 

7.2.4 The sequential construction method (SCM) 
The algorithm for the sequential construction method to create an individual for the initial 

population is shown in Algorithm 7.1 below.  This method has not been discussed in 

previous studies and it is anticipated that this method would improve the overall fitness of the 

initial population and thus improve the possibility of finding feasible timetables.  The effect of 

the SCM on the performance of the DGA approach will be covered in Chapter 9. 

 

Algorithm 7.1:  Sequential Construction Method 

For LoopSCM = 1 to X 
 While all tuples NOT allocated 
  Use heuristic(s) to find tuple to allocate 
  Allocate tuple to timetable (avoid violations) 
 End While 
 Calculate fitness of timetable 
End Loop 
BESTSCM = Best timetable (lowest violation count) created from LoopSCM 
Add timetable BESTSCM to initial population 

 

The sequential construction method creates X timetables (individuals) where X is a control 

parameter (SCM size).  Each timetable in the SCM is created as follows: 

 

 Sort the list of tuples in order of how difficult the tuple is to schedule.  Heuristics have 

been successfully used in previous studies to assess difficulty (see section 5.4 in 

Chapter 5).  The low level heuristics used in this study to assess difficulty are 
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explained in further detail in section 7.2.4.1.  Secondary heuristics are used in the 

event that two or more tuples have the same difficulty.  If secondary heuristics cannot 

find a difference in the difficulty between the tuples, then the tuple is randomly 

selected. 

 Allocate each tuple to a feasible period (if possible) in the timetable.  Allocation of 

tuples should avoid hard constraint violations if possible.  If a feasible period cannot 

be found, then allocate the tuple to a randomly chosen period in the timetable.  In the 

event that the timetabling problem includes soft constraints and there is more than 

one feasible period available, then the tuple is allocated to a minimum penalty 

timeslot i.e. a period that will result in a minimum soft constraint cost if the tuple is 

allocated to it.  If several periods are both feasible and result in the minimum soft 

constraint cost, then the tuple is randomly allocated to one of these minimum penalty 

timeslots.  The minimum penalty timeslot was also implemented by many studies in 

the literature (see section 5.4 in Chapter 5). 

 Once all tuples have been allocated to the timetable, then evaluate the timetable by 

counting the number of hard and soft constraint violations. 

 

The timetable with the best fitness (i.e. the lowest number of hard constraint violations) is 

added to the initial population.  If two or more timetables have an equal best fitness, then the 

timetable with the better quality is added to the initial population.  The SCM is implemented 

whenever an individual needs to be added to the initial population i.e. as many times as the 

initial population size. 

7.2.4.1 Low-level Construction heuristics 

The following sections describe the low-level construction heuristics that will be used to 

select tuples to allocate to the timetable.  These construction heuristics can be used as 

primary or secondary heuristics.   A primary heuristic is the first heuristic that is used to 

choose between tuples.  Secondary heuristics are used as tie breakers.   

Random Allocation 

When using this heuristic, a tuple is randomly chosen from the list and is allocated to the 

timetable.  In Table 7.3, any of the tuples could be chosen first.  The random heuristic is 

applied continuously until all tuples have been placed in the timetable.   

Largest degree 

This heuristic gives priority to the tuple with the most number of lessons.  In Table 7.1 above, 

meeting number 3 has the most occurrences (7 lessons).  Any one of the seven tuples from 

meeting number 3 will then be allocated to a period in the timetable.  As a result of the 

allocation, the number of lessons left to allocate for meeting number 3 is reduced by one 
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(from 7 to 6).  The remaining list of tuples still to be allocated is then resorted and the next 

tuple with the most lessons is allocated to the timetable.  This continues until all tuples have 

been allocated. 

Consecutive periods 

Priority in terms of allocation is given to the tuples that must be allocated as double periods.  

In Table 7.1, meeting number 1 has a double period requirement so tuples corresponding to 

this meeting are given priority and two of the four tuples are allocated to the timetable.  One 

of these tuples is allocated to a period in the timetable and the other is placed in an adjacent 

position either above or below the first allocation.  If a double period tuple cannot be 

accommodated, then it must be split into two single period tuples (if specified as a constraint, 

then this will adversely affect the cost of the timetable).   

Co-teaching and subclasses 

In a co-teaching or subclass heuristic, priority is given to tuples that include multiple classes 

that form several subgroups or a single class that is split into two or more groups.  These 

tuples are added to the timetable first to ensure that all subclass or co-teaching requirements 

are met. 

Session priority 

Tuples containing resources that must be allocated to specific periods of the day are given 

priority when being scheduled.  This is done to allow these tuples to be allocated to their 

required periods before any other tuples (with no session priority) can be placed in those 

periods. 

Teacher degree 

When using this heuristic, priority is given to tuples with teachers that have to teach the most 

number of lessons.  All tuples related to this teacher then get preference and one of these 

tuples is then allocated to the timetable. 

Class degree 

This is similar to the teacher degree where priority is given to the tuples involving the class 

with the most lessons.  For example, higher grades that have 45 lessons in the week are 

given priority over lower grades that have 33 lessons in a week.  Therefore the tuples that 

involve the higher grades are allocated first (if given priority), followed by the tuples involving 

the lower grades. 

Number of available days 

The tuples involving the teacher with the least number of days get priority and one of these 

tuples is then allocated to the timetable.  For example, Teacher A, who is only available for 

two days in the week, is given a higher priority than teacher B who is available for five days 
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in a week.  Therefore, the tuples involving teacher A are allocated before the tuples involving 

teacher B. 

Saturation degree 

The saturation degree heuristic, used by Carter [CART96] in examination timetabling, 

involves calculating the number of feasible periods available for each tuple.  A feasible 

period is one that does not result in any hard constraint violations upon allocating the tuple to 

it.  Priority is given to the tuple with the least number of feasible periods available.  The 

tuples are allocated to periods in the timetable in this order, potentially reducing the number 

of violations when the timetable is populated.  An example is shown in Table 7.4 (this table is 

similar but not related to Table 7.3). 
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Table 7.4:  Tuple list with saturation degree 

Meeting No Teacher Class Venue Double (1) 

/Single (0) 

Saturation 

Degree 

1 A 10b 12 0 30 

1 A 10b 12 0 30 

1 A 10b 12 0 30 

1 A 10b 12 0 30 

2 B 12c 13 0 30 

2 B 12c 13 0 30 

2 B 12c 13 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

3 A 5d 4 0 30 

4 D 10b 1 0 30 

4 D 10b 1 0 30 

4 D 10b 1 0 30 

4 D 10b 1 0 30 

4 D 10b 1 0 30 

4 D 10b 1 0 30 

5 C 12c 12 0 30 

5 C 12c 12 0 30 

5 C 12c 12 0 30 

5 C 12c 12 0 30 

 

Initially, all tuples have the same saturation degree (i.e. the number of periods) as the 

timetable is empty.  The first tuple found is placed in the minimum penalty timeslot in the 

timetable as illustrated in Table 7.5 below, and removed from the tuple list. 
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Table 7.5:  Timetable with tuple added 

 5d … 10b … 12c 

1      

2      

3   A:  12   

4      

5      

6      

 

The saturation degree for each tuple is revised, leaving any tuples involving class 10b or 

teacher A or venue 12 with one less available space in the timetable.  The revised table with 

the new saturation degree values is shown in Table 7.6. 
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Table 7.6:  Tuple list with updated saturation degree 

Meeting No Teacher Class Venue Double/Single Saturation 

Degree 

1 A 10b 12 1 29 

1 A 10b 12 1 29 

1 A 10b 12 1 29 

2 B 12c 13 1 30 

2 B 12c 13 1 30 

2 B 12c 13 1 30 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

3 A 5d 4 1 29 

4 D 10b 1 1 29 

4 D 10b 1 1 29 

4 D 10b 1 1 29 

4 D 10b 1 1 29 

4 D 10b 1 1 29 

4 D 10b 1 1 29 

5 C 12c 12 1 29 

5 C 12c 12 1 29 

5 C 12c 12 1 29 

5 C 12c 12 1 29 

 

Once a tuple has been allocated, the saturation degree is updated.  Priority is given to tuples 

with the lowest saturation degree.  As shown in the example in Table 7.6 above, after 

allocation all tuples containing class 10b, teacher A or venue 12 now have 29 available 

periods that will not result in hard constraint violations.  The tuples containing other teachers 

and venues are not affected.  During the next iteration of the allocation process, all tuples 

with a saturation degree of 29 are given priority and one of these tuples (chosen using 

secondary heuristics) will be allocated to the timetable.  This process continues until all 

tuples have been allocated to the timetable. 
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7.2.5 Initial population creation during Phase 2 
Phase 2 focuses on improving the quality of the timetables i.e. reducing the soft constraint 

cost.  Phase 2 only occurs if at least one feasible timetable is found during Phase 1.  The 

population size (N) for both phases is the same.  Three scenarios are possible with regard to 

the initial population of Phase 2: 

 

1. Phase 1 produces more than N feasible timetables (over several generations) before 

the last generation is reached - In this case, the initial population for Phase 2 

contains the first N feasible timetables (N is the population size used in Phase 1).  As 

soon as N feasible individuals are added to the initial population of Phase 2, Phase 1 

ends.  In this event, Phase 1 may not reach the final generation. 

2. The number of feasible timetables produced by Phase 1 is less than N - The initial 

population for Phase 2 will contain all the feasible timetables found in Phase 1.  The 

remaining population members are randomly chosen from the feasible timetables in 

the last generation of Phase 1. 

3. Phase 1 does not produce any feasible timetables - In this case, Phase 2 is not 

needed as no feasible timetables are produced and the run will terminate and be 

considered unsuccessful in finding a feasible timetable. 

7.3 Evaluating a timetable for feasibility and quality 
Two separate evaluations are performed to respectively determine the feasibility and quality 

of a timetable.  In Phase 1, a fitness function is used to evaluate the feasibility of an 

individual.  In Phase 2, an individual is evaluated based on the soft constraint cost (quality).  

The fitness functions described in sections 7.3.1 and 7.3.2 are used to calculate the hard 

constraint cost and soft constraint cost respectively. 

7.3.1 Evaluating the feasibility of a timetable (Phase 1) 
A timetable is evaluated in terms of feasibility by counting the number of hard constraint 

violations.  A feasible timetable is one with a fitness value of zero, indicating no hard 

constraint violations.  At least one hard constraint violation results in a timetable not being 

feasible.  The greater the number of hard constraint violations, the further the timetable is 

from being feasible.   

7.3.2 Evaluating the quality of a timetable (Phase 2) 
The quality of a timetable is determined by counting the number of soft constraint violations.  

A lower soft constraint cost indicates that a better quality timetable has been produced.  Soft 

constraints often conflict with each other and thus it may not be possible to remove all soft 
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constraint violations.  The objective, therefore, is to minimize the number of soft constraint 

violations.   

7.4 Selecting a parent 
In Phase 1, individuals are selected as parents based on their hard constraint cost.  During 

Phase 2, selection of parents is based on an individual’s soft constraint cost.  The following 

sections describe standard tournament selection and a modified version of it named variant 

tournament selection. 

7.4.1 Standard tournament selection 
Standard tournament selection was covered in section 4.4.4 of Chapter 4.  A group of T 

individuals (known as a tournament) are randomly chosen from the population.  The fittest of 

the T individuals is selected as a parent. 

7.4.2 Variant tournament selection (VTS) 
Variant tournament selection (VTS) is a less elitist variation of standard tournament 

selection.  VTS differs from standard tournament selection in that the selected parent is not 

always the best individual but weaker individuals in the tournament also have a chance to be 

selected as parents.  The first individual included in the tournament is given the status of 

champion.  The current champion is then placed in a match against other individuals 

(contenders) in the tournament.  The winner is either the fitter individual or is randomly 

chosen from the two individuals regardless of fitness.  Algorithm 7.2 outlines variant 

tournament selection. 

 

Algorithm 7.2:  Variant tournament selection 

Current Champion = Randomly selected individual from population 
For Loop = 2 to Tournament Size 
{ 
 Contender = Randomly selected individual from population 
 Choose a random number from 1 to 3 
 If Random number is 1 
  Current Champion remains the same 
 Else If Random number is 2 
  Current Champion = Contender 
 Else If Random number is 3 
  If Fitness(Contender) is better than Fitness(Champion) 
   Current Champion = Contender 
} 
Parent = Current Champion 
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7.5 Genetic operators for Phase 1 
The only genetic operator used is mutation (reasons for not implementing the crossover 

operator has been discussed in section 5.4.5 in Chapter 5).  This study will follow a similar 

approach to that of studies in the literature (see section 5.4.5 in Chapter 5) where the 

mutation operators involved swapping teachers (or venues) between positions in the 

timetable.  In the literature, some studies (such as [ABRA91a] and [DIST01]) incorporated 

hill climbing with their mutation operators.  This study will test the mutation operators with 

(lines 2 to 20 of Algorithm 7.3) and without (lines 21 to 28 of Algorithm 7.3) hill climbing.  In 

hill climbing, an offspring is rejected if its fitness is worse than the fitness of the parent.  If the 

constraint cost is reduced or remains the same, then the swap is deemed successful.  Lines 

12 to 15 for Algorithm 7.3 reflect this evaluation.   

 

Algorithm 7.3:  Mutation operator 

1. Obtain parent using selection method 
2. If Hill climbing is used 
3. { 
4.  HillClimbingSteps = 0 
5.  Do 
6.  { 
7.   Offspring = Copy Parent 
8.   For MutLoop = 1 to Swaps 
9.   { 
10.    Mutate Offspring 
11.    Evaluate Fitness of Offspring 
12.    If (OffspringFitness < PreviousOffspringFitness) 
13.     Accept swap 
14.    Else 
15.     Reject Swap 
16.   } 
17.   HillClimbingSteps++ 
18.  } 
19.  While (ParentFitness < OffspringFitness) AND (HillClimbingSteps < 500) 
20. } 
21. Else If Hill Climbing is not used 
22. { 
23.  For MutLoop = 1 to Swaps 
24.  { 
25.   Mutate Offspring 
26.   Evaluate Fitness of Offspring 
27.  } 
28. } 
29. Add Offspring to new generation 
 

Mutation of the offspring is performed in lines 10 and 25.  Sections 7.5.1 to 7.5.3 describe 

the Phase 1 mutation operators implemented by the genetic algorithm.  Section 7.5.4 

describes the concept of hill climbing. 
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7.5.1 Two violation mutation (2V) 
This mutation operator searches for two cells that contain hard constraint violations.  The 

two teachers (or venues) are then swapped within the timetable possibly resulting in the 

removal of hard constraint violations.  This implementation was based on the mutation 

operators used by Di Stefano et al. [DIST01] and Filho et al. [FILH01]. 

 

An example of an application of this mutation operator is illustrated in Figure 7.2 and 

explained below.  T1 represents teacher 1 being allocated to class 1 during period 1.  While 

a venue could be involved, it is not represented as it is not part of the example below. 

 

  Class 
  Period 1 2 3 4 
  1 T1 T2 T3 T4 
  

2 T1 T1 T2 T4 
Clash here as T1 allocated to 2 

classes 

3 T4 T3 T2 T1 
  4 T3 T4 T1 T2 
  

5 T3 T3 T2 T4 
Clash here as T3 allocated to 2 

classes 

6 T2 T4 T4 T3 
Clash here as T4 allocated to 2 

classes 

Figure 7.2:  Finding 2 violations 

 

The timetable segment in Figure 7.2 shows three clashes.  In period 2, T1 has been 

allocated to both classes 1 and 2.  In period 5, T3 has been allocated to two classes and in 

period 6, T4 has been allocated to 2 classes.  The mutation operator firstly locates a clash, 

so it finds any one of the three teacher clashes.  In this example, the clash found is in period 

2, class 2.  The two remaining possible clashes are during periods 5 and 6 where T3 and T4 

clash respectively.  Any one of the two clashes can be chosen.  If T4 in period 6 is chosen 

as the second clashing tuple, then the contents of this cell and the contents of the first cell 

with a clash are swapped.  This resultant mutation means that T4 moves to period 2 and T1 

moves to period 6 (for class 2).  This change is shown in Figure 7.3.  The above example 

only reflects clashes but this mutation operator applies to any hard constraint violation.  For 

example, if the availability constraints specify that T2 is not available to teach during period 

6, then this is regarded as an availability violation.  The constraint violation, once identified, 

is then swapped with another cell with a hard constraint violation. 
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  Class 
  Period 1 2 3 4 
  1 T1 T2 T3 T4 
  

2 T1 T4 T2 T4 
Clash here as T4 allocated to 2 

classes 

3 T4 T3 T2 T1 
  4 T3 T4 T1 T2 
  

5 T3 T3 T2 T4 
Clash here as T3 allocated to 2 

classes 

6 T2 T1 T4 T3 
 Figure 7.3:  Resultant timetable after 2 violation swap – Example 1 

 

The swap shown in Figure 7.3 will fix the clashing situation in row 6, but the swap will result 

in a new clash occurring in period 2 where T4 is being allocated to two classes.  If T3 in 

period 5 were to be swapped instead of T4, then the following (Figure 7.4) occurs: 

 

  Class 
  Period 1 2 3 4 
  1 T1 T2 T3 T4 
  2 T1 T3 T2 T4   

3 T4 T3 T2 T1 
  4 T3 T4 T1 T2 
  5 T3 T1 T2 T4   

6 T2 T4 T4 T3 
Clash here as T4 allocated to 2 

classes 

Figure 7.4:  Resultant timetable after 2 violation swap – Example 2 

 

This is the ideal scenario as the swap has fixed two clashes.  The worst case scenario will 

be for a swap to result in another clash.  Note that the swaps only occur within a selected 

column (class) in order to avoid the movement of teachers to classes that they are not 

required to teach. 

7.5.2 One violation mutation (1V) 
This mutation operator, also based on the operators used by [DIST01] and [FILH01], follows 

the same procedure as 2V mutation with the difference being that only one constraint 

violation is located rather than two.  Once a constraint violation is found, a second timeslot is 

then randomly chosen.  The contents in the second timeslot may or may not result in a hard 

constraint violation but must be randomly chosen from the same class (column) as the first 

teacher in order to avoid the allocation of teachers to classes that they are not required to 

teach.  Once chosen, the contents of the two cells are swapped.  This results in three 

possible scenarios: 
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 Worst Case:  A swap results in two constraint violations. 

 Middle Case:  A constraint violation is removed but causes a new constraint violation 

in another location. 

 Best Case:  The second cell chosen has a constraint violation and both violations are 

removed. 

7.5.3 Hill climbing versus non-hill climbing operators 
Genetic operators are potentially destructive in that they could continuously result in 

offspring that are worse than the parents [BANZ98].  Hill climbing will prevent this by only 

accepting swaps that improve the fitness of the individual.  The disadvantage of hill climbing 

is that it is susceptible to local minima i.e. the algorithm will reach an area of the search 

space that appears to be promising (heading towards convergence) by ensuring that 

offspring always improve but instead the algorithm convergences prematurely [BEAS93].  As 

mentioned in section 5.4, this study will evaluate the use of mutation operators with and 

without hill climbing. 

 

Similar to the studies by [CERD08] and [RAHO06], when hill climbing is used, it is 

implemented within the mutation process.  While the timetable is being mutated, the 

currently mutated version is compared to either the parent or the timetable from the previous 

swap (if this swap has improved fitness).  If the fitness of the new version is better than the 

current version, then the swap is accepted.  If the older version has a better fitness then the 

swap is rejected.  A limit is used to prevent the problem of premature convergence (to a local 

minimum) and to prevent long runtimes when the offspring cannot be further improved (lines 

4, 17 and 19 in Algorithm 7.3).  The mutation operators with hill climbing are referred to as 

two violation hill climbing (2VH) and one violation hill climbing (1VH) while the non-hill 

climbing operators are referred to as two violation non-hill climbing (2VNH) and one violation 

non-hill climbing (1VNH).   

7.6 Genetic operators for Phase 2 
The main objective of Phase 2 is to improve the quality of feasible timetables that have been 

produced during Phase 1.  This section describes the mutation operators that are aimed at 

reducing the soft constraints cost of the individual.  Three of the four operators discussed in 

this section are based on the mutation operators used in the literature.  Hill climbing is used 

for all the operators in this phase to ensure that timetable feasibility is maintained and that 

timetable quality improves.  Trial runs listed below (Table 7.7) also found that operators used 
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with hill climbing produce better timetables than operators without hill climbing.  Sections 

7.6.1 to 7.6.4 describe the mutation operators used for Phase 2 of the DGA approach. 

 

Table 7.7:  Trial runs for non-hill climbing mutation operators (Phase 2) 

 Beligiannis 

(HS7) 

Beligiannis 

(HS4) 

Valouxis Lewitt 

Average HC Cost 0 0 0 0.67 

Best HC Cost 0 0 0 0 

Average SC Cost 186.55 94 74.22 26 

Best SC Cost 174 88 68 22 

 

7.6.1 Random Swap 
The random swap was used in most studies in the literature to address both hard and soft 

constraint violations ([BELI08], [WILK02], and [TONG99]).  This mutation operator randomly 

selects two cells from the same class and swaps the contents of these cells.  Two randomly 

selected cells are shown in Figure 7.5.  The chosen cells must be in the same class in order 

to prevent the movement of teachers to classes that they are not required to teach. 

 

  Class 

  Period 1 2 3 4 

  1 T1 T2 T3 T4 

  2 T3 T1 T2 T7 1st Randomly selected cell 

3 T4 T3 T2 T1 

  4 T3 T4 T5 T2 

  5 T3 T6 T2 T4 2nd Randomly selected cell 

6 T2 T4 T8 T3 

 Figure 7.5:  Selecting cells in a random swap 

 

The contents allocated to the two randomly chosen cells are then swapped.  In Figure 7.5, if 

the randomly selected cells contain T1 (class 2, period 2) and T6 (class 2, period 5), then 

these two teachers are swapped where T6 moves to period 2 and T1 moves to period 5 as is 

shown below (Figure 7.6). 
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  Class 

  Period 1 2 3 4 

  1 T1 T2 T3 T4 

  2 T3 T6 T2 T7 T6 now in this position 

3 T4 T3 T2 T1 

  4 T3 T4 T5 T2 

  5 T3 T1 T2 T4 T1 now in this position 

6 T2 T4 T8 T3 

 Figure 7.6:  Resultant random swap 

7.6.2 Row swap 
The row swap begins by randomly selecting two different rows (which represent periods).  

The tuples in these rows are then swapped between the periods.  The reason for using this 

mutation operator is that since all resources in the row are being swapped with resources in 

another row, new clashes cannot occur due to the resultant swap.  However, this mutation 

can adversely affect the cost of other constraints such as the teacher availability constraint 

(a row swap may result in a teacher being moved to a day or period when they are 

unavailable to teach) and double period constraints (a double period is split due to a row 

swap).  An example of a row swap resulting in a double period constraint violation is shown 

below: 

 

  Row swap conflicting with hard constraint violation       

  

       

  

Period 1A 1B 1C 4A 4B 5C 

 

  

1 Found Found Found Eng Afk Math 

 

  

2 Found Found Found Eng NSc Math 

 

SWAP ROW 2 with 

ROW 3 

3 Found Found Afk Acc PE Afk 

 

  

  
      

 

  

Period 1A 1B 1C 4A 4B 5C 

 

  

1 Found Found Found Eng Afk Math 

 

  

2 Found Found Afk Acc PE Afk 

 

2 doubles are split 

3 Found Found Found Eng NSc Math   HC violation occurs 
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Figure 7.7:  Consequence of a row swap results in double period split violation 

As can be seen in Figure 7.7, a row swap may not cause any clashes, but the two double 

periods involving English and Mathematics have been separated resulting in two double 

period constraint violations. 

7.6.3 One violation mutation (1V) 
This operator is similar to the one described in section 7.5.2, however, this operator 

searches for soft constraint violations.  The procedure begins by firstly locating a cell where 

a soft constraint violation occurs.  Another cell is randomly chosen and the contents of the 

two cells are swapped resulting in the possibility that the soft constraint violation would be 

removed. 

7.6.4 Two violation mutation (2V) 
This operator, similar to the hard constraint version described in section 7.5.1, searches for 

two cells with soft constraint violations.  Once found, the contents within the two cells are 

swapped.  This could result in at least two soft constraint violations being removed. 

7.7 Control parameters 
The different control parameters used for the algorithm are outlined below and will affect the 

performance of the algorithm. 

 

 SCM size – This parameter value indicates the number of timetables to create, of 

which the best timetable is added to the initial population.  For example, an SCM size 

of one indicates that the first timetable created is added to the initial population.  An 

SCM size of 20 indicates that 20 timetables will be created with the best timetable 

being added to the initial population.  A larger SCM value will result in a fitter initial 

population but an increase in runtime. 

 Population size – This was defined previously in section 4.3.5 (Chapter 4). 

 Tournament size – This was defined previously in section 4.4.4 (Chapter 4). 

 Number of swaps – This parameter value indicates the number of swaps that are 

performed when applying the mutation operator.  It is anticipated that a low number 

of swaps will improve the individual but not at a sufficient rate.  By increasing the 

number of swaps, the individual is improved at a faster rate.  If this parameter value 

is set too high, then improvements are made until a point where the remaining swaps 

do not affect the cost of the individual.  The effect of using different swap parameter 

values is discussed in greater detail in Chapter 9. 
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 Number of generations – This parameter value specifies the maximum number of 

generations for both phases.  If the maximum number of generations is too low, the 

genetic algorithm may not be given enough generations to converge.  If the 

generation limit is too high, then the algorithm will converge before the generation 

limit is reached and the extra generations will unnecessarily increase the runtime of 

the program.   

7.8 Chapter Summary 
This chapter presents a genetic algorithm approach that uses a direct representation.  The 

chapter discusses the representation, initial population generation and the evaluation of 

each timetable in terms of feasibility and quality.  The chapter then goes on to describe the 

selection methods and the mutation operators that will be available for use.  Each of the 

heuristics used to create the initial population, the selection methods and the genetic 

operators listed will be compared in order to determine an ideal combination that will solve 

the five school timetabling problems listed in Chapter 6. 
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Chapter 8:  A Genetic Algorithm 
Approach using an Indirect 
Representation 

Chapter 7 discussed a genetic algorithm that uses a direct representation where each 

individual was a timetable.  This chapter describes a genetic algorithm that uses an indirect 

representation (referred to as IGA) where each individual is a string of instructions that are 

implemented to build a timetable.  Section 8.1 describes the overall algorithm for the IGA.  

Section 8.2 covers the initial population generation.  Section 8.3 describes how each 

individual is evaluated.  Section 8.4 and section 8.5 respectively cover the selection method 

and genetic operators used.  Section 8.6 lists the control parameters used for the IGA. 

8.1 Overall Algorithm 
Similar to the DGA described in Chapter 7, the IGA approach also uses two phases.  Phase 

1 implements a genetic algorithm that evolves a population of strings where each string 

contains instructions that are used to build a timetable.  The first phase of the IGA ends 

when a feasible timetable is built using the instructions of an individual string.  Phase 2 then 

implements a genetic algorithm that evolves a population of strings containing instructions 

that improve the quality of the timetable found in Phase 1.  The genetic algorithms in both 

phases use standard tournament selection and the genetic operators used are mutation and 

crossover.  The algorithms for Phase 1 and Phase 2 differ in terms of the fitness function 

and the set of instructions used.  The aim of Phase 1 is to produce a string that builds a 

feasible timetable while the aim of Phase 2 is to produce a string that best improves the 

quality of the feasible timetable found in Phase 1.  

8.2 Initial Population Creation 
This section describes the creation of the initial population.  The representation used for the 

IGA is described in section 8.2.1.  Section 8.2.2 outlines the algorithm for creating the initial 

population.  Section 8.2.3 describes the sequential construction method (SCM) which is 

used to create an individual in the initial population.  Finally, section 8.2.4 covers the creation 

of the initial population during Phase 2.   

8.2.1 Instruction String Representation 
Each individual in the population is a string consisting of a specified set of characters, each 

representing an instruction used to build or change a timetable.  These characters are 
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randomly chosen and allocated to the string.  The set of characters and its associated 

instruction are listed in the table below: 

 

Table 8.1:  Instructions used to build a timetable 

Character Instruction 

  

A Allocation – Add an unallocated tuple to the 
timetable. 

D De-allocation – Remove an allocated tuple 
from the timetable. 

1 Mutation operator 1 (1VNH described in 
chapter 7). 

2 Mutation operator 2 (2VNH described in 
chapter 7). 

3 Mutation operator 3 (1VH described in 
chapter 7). 

4 Mutation operator 4 (2VH described in 
chapter 7). 

5 Phase 2 Mutation operator 1 – Random 
swap with hill climbing (Described in chapter 
7). 

6 Phase 2 Mutation operator 2 – Random row 
swap with hill climbing (described in chapter 
7). 

7 Phase 2 Mutation operator 3 – 1VH that 
searches for soft constraint violations. 

8 Phase 2 Mutation operator 4 – Varies 
depending on problem.  Discussed in results 
chapter. 

 

In Table 8.1 above, the instructions labelled “1” to “8” are the mutation operators used by the 

DGA.  In addition, the instruction labelled “A” is used to allocate a tuple to the timetable and 

the instruction labelled “D” is used to remove (de-allocate) a tuple from the timetable.  The 

“A” and “D” instructions are based on the timetable builders used by Bufe et al. [BUFE01].  

These timetable builders randomly selected tuples and allocated them to the timetable such 

that the hard constraint cost was minimized. 

 

The length of the initial string is equal to the number of tuples that need to be allocated.  

Additionally, some characters have a better probability of being chosen than others.  For 

example, it was found through observation that the allocation instruction (A) must have a 

greater probability of being selected than the de-allocation instruction (D) in order to produce 

a greater number of complete timetables.   

 

An example of an instruction string is ADA3DA4AA34DDDA.  In this string, the first 

instruction, the allocation instruction, allocates a tuple to a period in the timetable.  
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Thereafter, the de-allocation instruction will remove the tuple from the timetable (resulting in 

an empty timetable).  The allocation instruction is then applied and an unallocated tuple is 

placed in the timetable.  The next instruction to be called is mutation operator 3.  This 

indicates the application of the 1VH operator described earlier in Chapter 7.  The de-

allocation instruction is then applied.  The allocation instruction then allocates another tuple 

to the timetable.  This is followed by the application of mutation operator 4 (2VH), the 

allocation of two more tuples (AA), the application of two more mutation operators (34), three 

de-allocation instructions (DDD) and finally, the placement of an unallocated tuple (A). 

8.2.2 Algorithm for Initial Population Creation 
Algorithm 8.1 lists the steps that are involved when creating the initial population for Phase 

1.  The variable N represents the population size and is a control parameter.  The variable M 

indicates the SCM size and is also a control parameter.  As can be seen in the algorithm 

below, Phase 1 ends if an instruction string is able to produce a feasible timetable in the 

initial population.  

 

Algorithm 8.1:  Initial Population Creation 

Begin 
 For LoopIP = 1 to N 
  For LoopSCM = 1 to M 
   Create HeuristicString 
   Create timetable using HeuristicString 
   Evaluate HeuristicString by evaluating timetable 
   BestHeuristicString = HeuristicString that induces most fit timetable 
   If Feasible Timetable Found 
   { 
    End Phase 1 
    Feasible Timetable carried over to Phase 2 
   } 
  End Loop 
  Add BestHeuristicString to initial population 
 End Loop 
End 

8.2.3 The Sequential Construction Method (SCM) 
The SCM is similar to the SCM incorporated by the DGA in Chapter 7.  This method creates 

M instruction strings (M is a control parameter) and the string that produces the best 

timetable (evaluation discussed in section 8.3) is added to the population.   

8.2.4 Phase 2 Initial Population Creation 
The first feasible solution found is carried over to Phase 2.  A population of strings are 

created with each string containing a combination of instructions that will be used to improve 

the quality of the timetable found in Phase 1.  Similar to the initial population of Phase 2 in 

the DGA, the SCM was not implemented. 
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8.3 Evaluating an individual in the population 
Each instruction string is evaluated by building a timetable.  The fitness value of the 

individual is calculated by counting the number of hard constraint violations (Phase 1) and 

soft constraints violations (Phase 2) of the timetable produced. 

 

The process of creating a timetable using the instruction string is shown in Algorithm 8.2.  If 

an allocation instruction (“A”) is executed, then the tuple with the lowest saturation degree 

(i.e. the tuple with the fewest number of violation free periods) is allocated to a period that 

does not violate any hard constraints (if possible).  The saturation degree heuristic 

(described in Chapter 7) was chosen as it was found to be the best performing heuristic from 

the three that were tested using the DGA (see Chapter 9).  If a de-allocation (“D”) instruction 

is executed, then a randomly chosen tuple is removed from the timetable.  If a mutation 

instruction is executed, then that specific mutation operator is executed on the timetable (see 

Table 8.1).  If there are no hard constraint violations, then these instructions are not applied. 

 

Algorithm 8.2:  Creating a timetable 

Begin 
 For each character in heuristic string 
 { 
  If character = “A” 
   If all tuples are allocated 
    Do nothing 
   Else 
    Find tuple that is most difficult to allocate (Saturation degree) 
    Allocate tuple to timetable 
    Resort unallocated tuple list in order of difficulty 
  Else If character = “D” 
   If timetable is empty 
    Do nothing 
   Else 
    Randomly select tuple from timetable 
    Remove tuple and return to unallocated tuple list 
  Else If character = “1” or “2” or “3” or “4” (or “5” or “6” or “7” or “8”) 
   If the hard (or soft) constraint cost = 0 
    Do nothing 
   Else 
    Apply associated mutation operator 
 } 
End 

8.4 Selecting a parent 
Parents are selected using standard tournament selection.  This selection method was 

described in Chapter 4 (section 4.4.4). 
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8.5 Genetic Operators 
This section describes the crossover and mutation genetic operators used in both phases of 

the IGA. 

8.5.1 Mutation 
Mutation is applied by randomly choosing a character from the string and replacing it with 

another randomly selected character from the instruction set.  An example of the application 

of the mutation operator is shown below (Figure 8.1): 

 

Parent (randomly selected character underlined): 
ADADAAA341212AD1A34AAAD 
 
Randomly chosen character = “A” 
 
Resultant offspring (Single character replaced) 
ADADAAA341A12AD1A34AAAD 

Figure 8.1:  Mutation of heuristics string 
 

In the example above, the 11th character of the string (2) has been randomly chosen.  This 

character is replaced by another randomly selected character in the instruction set, in this 

case the “A” character which represents an allocation operator. 

8.5.2 Crossover 
The “Cut and Splice” crossover operator [GOLE89] is used and creates offspring with 

different string lengths.  The use of variable string lengths increases the probability that the 

individual will have all the information necessary to produce an optimal solution ([MICH98]).   

 

For this operator, a randomly chosen crossover point is selected for each of the two 

individuals.  The points may differ between the selected individuals.  Figure 8.2 below shows 

an example of two strings.  The crossover points and affected characters (instructions) are 

shown in bold and are underlined. 

 

Parent 1 (randomly selected character sets underlined) 
ADADAAA341212AD1A34A 
Parent 2 (randomly selected character sets underlined) 
DA31AAA4321444ADADAD 

Figure 8.2:  Selection of crossover points 
 

Offspring 1 is produced by taking the fragment before the crossover point of Parent 1 and 

exchanging it with the fragment before the crossover point of Parent 2.  The second offspring 

is formed using the remaining instructions.  The resultant crossover is shown below (Figure 

8.3). 



91 
 

 

Resultant Individual 1 after crossover 
ADADAAA341212AD21444ADADAD 
Resultant Individual 2 after crossover 
DA31AAA431A34A 

Figure 8.3:  Resultant offspring after crossover 
 

The two offspring form part of a new generation of individuals.  As can be seen in Figure 8.3, 

the crossover operator has also resulted in the length of the strings being changed.   

8.6 Control Parameters 
The parameters used for the IGA are the following: 

 

 SCM Size. 

 Population Size. 

 Tournament Size. 

 Number of swaps. 

 Mutation Application Rate – Defined in Chapter 4 (section 4.4.5.4). 

 Crossover Application Rate – Defined in Chapter 4 (section 4.4.5.4). 

 Maximum number of generations. 

8.7 Summary 
This chapter describes a genetic algorithm that uses an indirect representation.  The chapter 

begins by describing the overall IGA.  This is followed by the description of how an individual 

is represented, how the initial population is generated for both phases of the IGA and how 

each individual is evaluated.  The chapter then goes on to describe how selection occurs 

and the genetic operators used to create offspring.  Finally the chapter covers the control 

parameters of the IGA.    
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Chapter 9 – Results and discussion 

9.1 Introduction 
This chapter discusses the results obtained when applying both the DGA and IGA 

approaches to the five school timetabling problems.  Both approaches were able to induce 

feasible timetables and the quality of the timetables were competitive if not better than 

timetables produced using other methods.  For the DGA, it was found that different methods 

of initial population generation, selection methods and mutation operators were needed in 

order to solve each school timetabling problem.  When comparing the two approaches, the 

IGA performed better than the DGA. 

 

Section 9.2 provides an analysis of the performance of the DGA when modifying the 

processes of the algorithm.  The processes that will be changed include the method for initial 

population creation, the selection methods and the mutation operators used.  Section 9.3 

reports on the fine-tuning of the DGA parameters.  Section 9.4 and section 9.5 covers the 

performance of the IGA when solving the five school timetabling problems.  In section 9.6, 

timetables induced by the DGA and IGA are compared against timetables produced using 

other methods. 

9.2 DGA process evaluation 
This section reports on the effects of different processes used with the DGA when applied to 

each problem.  The DGA is run using sets of different genetic algorithm processes, each of 

which have already been discussed in Chapter 7.  Based on the performance of the DGA, a 

decision is taken as to which process to use.   

9.2.1 The Abramson benchmark school timetabling problem (HDTT) 
This section describes the performance of the DGA approach when applied to the HDTT 

school timetabling problem.  Section 9.2.1.1 describes the performance of the DGA with 

different low-level construction heuristics for each data set.  Section 9.2.1.2 discusses the 

best selection method for the different data sets and section 9.2.1.3 discusses the best 

mutation operator to use for each of the data sets.  As this problem does not consider any 

soft constraints, Phase 2 is not implemented. 

9.2.1.1 Comparison of low-level construction heuristics 

One of three primary construction heuristics is used to construct the initial population.  These 

heuristics are random allocation, largest degree heuristic and the saturation degree.  If two 
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or more tuples have the same largest degree or saturation degree, then the random 

allocation heuristic is used as a tie breaker.  Table 9.1 lists the other processes and 

parameter values that were used when testing the three primary construction heuristics. 

 

Table 9.1:  Processes and parameter values to test best low-level construction 
heuristic (HDTT problem) 

Constant Methods and Operators 

Selection VTS 

Mutation 2 Violation Non Hill Climbing (2VNH) 

Constant Parameter Values 

SCM 100 

Population Size 1000 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates and average number of generations taken to find a solution are shown in 

Table 9.2 below.  The average number of constraint violations and standard deviations are 

listed in Table 9.3.  Based on the tables below, the DGA performed best when using the 

saturation degree heuristic. 

 

Table 9.2:  Performance comparison with different construction heuristics 

  Success Rates   
Average number of generations 

taken to find solution 

  Random 
Largest 
degree 

Saturation 
degree 

  Random 
Largest 
degree 

Saturation 
Degree 

HDTT4 100.00% 100.00% 100.00% HDTT4 3 2 1 

HDTT5 100.00% 96.67% 100.00% HDTT5 9 7 2 

HDTT6 43.33% 53.33% 56.67% HDTT6 21 18 7 

HDTT7 20.00% 20.00% 20.00% HDTT7 39 30 15 

HDTT8 0.00% 3.33% 6.67% HDTT8 50 47 20 

 

In Table 9.2, the success rates for data sets HDTT4 and HDTT5 are very high with feasible 

timetables being found for almost every run.  In addition, the feasible timetables are found 

within ten generations.  The DGA using the saturation degree finds feasible timetables in at 

most two generations for data sets HDTT4 and HDTT5.  These data sets have a relatively 

small number of resources and are not as constrained as the HDTT6, HDTT7 and HDTT8 

data sets.  Results using other methods (described in section 9.6.1) also show that feasible 

timetables were easily induced for these two data sets.   
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The success rate for the DGA drops as the number of resources increases for the problem 

(HDTT6, HDTT7 and HDTT8).  The averages in Table 9.3 indicate that the DGA using the 

saturation degree produces timetables with very few constraint violations when compared to 

the DGA using the other construction heuristics.  The saturation degree heuristic contributes 

to the low averages by producing a fitter initial population than when using the other two 

construction heuristics.  The results listed below are similar to that of other methods used in 

the literature, thus indicating the difficulty of these data sets. 

 

Table 9.3:  Average constraint violations (and standard deviations) found for different 
construction heuristics 

 Random Largest Degree Saturation Degree 

HDTT4 0 (0) 0 (0) 0 (0) 

HDTT5 0 (0)  0.07 (0.37) 0 (0) 

HDTT6 1.13 (1.01) 0.93 (1.01) 0.87 (1.01) 

HDTT7 1.60 (0.81) 1.60 (0.81) 1.63 (0.85) 

HDTT8 15.07 (7.44) 4.07 (3.26) 2.00 (0.64) 

 

A bar chart showing a comparison of the three heuristics is given in Figure 9.1 below.  The x-

axis represents the data sets that were used and the y-axis represents the success rates.  

The success rate is the percentage of runs that have produced feasible timetables.   For 

example in data set HDTT5, the GA approach using the largest degree heuristic produces 

feasible timetables for 29 of the thirty runs performed.  This results in a 96.67% success 

rate. 
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Figure 9.1:  Comparison of success rates for each heuristic 
 

Each heuristic, when used with the DGA, creates at least one clash free timetable for the 

data sets HDTT4, HDTT5, HDTT6 and HDTT7.  The DGA using the random allocation 

heuristic does not produce any feasible solutions for the HDTT8 data set.  The bar chart 

illustrates an inverse relationship between the success rate and the number of resources 

available for each data set.  As the number of teachers, classes and venues increase, the 

data sets become more constrained.  Thus, the difficulty in obtaining a solution increases. 

 

Two hypotheses are tested to determine whether the saturation degree is statistically better 

than the random allocation and largest degree heuristics.  The first hypothesis is that the 

saturation degree heuristic performs better than the random allocation heuristic and the 

second hypothesis is that the saturation degree performs better than the largest degree 

heuristic.  The hypotheses and the corresponding Z-values are shown in Table 9.4. 

 

Table 9.4:  Hypotheses and Z-values for feasibility 

Hypothesis 
Z Values 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

H0:  µRA = µSD;  HA:  µRD > 

µSD 

0.00 5.48 1.02 0.16 9.58 

H0:  µLD = µSD;  HA:  µLD > 

µSD 

0.00 0.00 0.26 0.16 3.40 
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The table shows that the saturation degree heuristic is significantly better than the random 

allocation heuristic for data sets HDTT5 and HDTT8.  This is significant at all levels (see 

Table 6.3 in Chapter 6).  A Z-value of 3.4 indicates that the saturation degree performs 

significantly better than the largest degree heuristic for data set HDTT8. 

 

Figure 9.2 shows the average number of generations that the DGA takes to find a solution 

when applying each of the three heuristics.  The x-axis lists the data sets for the problem 

and the y-axis is the number of generations taken to find a feasible solution. 

 

 

Figure 9.2:  Average number of generations taken per data set 
 

The DGA approach using the saturation degree produces solutions in the fewest number of 

generations.  As was stated earlier, this is due to the ability of the saturation degree to 

produce an initial population of individuals with good fitness values.  The disadvantage of the 

saturation degree is that the runtime taken to produce the initial population may be slower 

than the random and largest degree heuristics due to the processing overhead of the 

saturation degree when recalculating the number of violation free periods for each 

unallocated tuple.  The column chart shows a trend that the GA approach will take more 

generations to produce feasible timetables if the resources of the problem increase.   

 

The saturation degree heuristic is chosen as the best heuristic for this problem due to its 

higher success rate and its ability to produce solutions in fewer generations.  The low 

averages and standard deviations listed in Table 9.3 also indicated that this heuristic was the 

most consistent in terms of producing the least number of constraint violations over the thirty 

runs conducted. 
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9.2.1.2 Comparison of selection methods 

The two selection methods tested with the DGA are standard tournament selection and 

variant tournament selection.  The other processes and parameter values used to test the 

selection methods are listed below in Table 9.5.   

 

Table 9.5:  Processes and parameter values to test best selection method (HDTT 
problem) 

Constant Heuristics and Operators 

Creation Saturation Degree 

Mutation 2VNH 

Constant Parameter Values 

SCM 100 

Population Size 1000 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates and average number of generations taken to find solutions for each data 

set are listed in Table 9.6.  The averages and standard deviations are listed in Table 9.7. 

 

Table 9.6:  Results comparison for selection methods used 

  Success Rate   Average number of generations 

  Standard Variant   Standard Variant 

HDTT4 100.00% 100.00% HDTT4 1 1 

HDTT5 93.33% 100.00% HDTT5 1 2 

HDTT6 33.33% 56.67% HDTT6 3 7 

HDTT7 10.00% 20.00% HDTT7 8 15 

HDTT8 6.67% 6.67% HDTT8 12 20 

 

Table 9.7:  Average constraint violations and standard deviations for different 
selection methods 

 Standard Variant 

HDTT4 0 (0) 0 (0) 

HDTT5 0.13 (0.51) 0 (0) 

HDTT6 1.33 (0.96) 0.87 (1.01) 

HDTT7 1.93 (0.74) 1.63 (0.85) 

HDTT8 2.23 (0.82) 2 (0.64) 
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Figure 9.3 and Figure 9.4 are bar chart illustrations of the results in Table 9.6.  Figure 9.3 

depicts the success rates found for each data set when using the two selection methods.  

The success rates are determined by dividing the total number of feasible timetables found 

with the total number of runs conducted per method.  The DGA approach with either 

selection method produces a 100% success rate for the data set HDTT4.   

 

 

Figure 9.3:  Comparison of success rates for various selection methods 
 

Figure 9.3 illustrates that at least one clash free timetable is found for all data sets when 

using the DGA approach with either of the selection methods.  The DGA using variant 

tournament selection performs better than standard tournament selection when applied to 

data sets HDTT5, HDTT6 and HDTT7.  No difference is found between selection methods 

for data sets HDTT4 and HDTT8. 

 

Figure 9.4 is a column chart showing the average number of generations required to find a 

solution.  The x-axis represents the data sets and the y-axis lists the average number of 

generations between 0 and 25.   
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Figure 9.4:  Column chart showing average generations for each selection method 
 

The column chart shows that the DGA using standard tournament selection requires fewer 

generations to produce a clash free timetable than the DGA using variant tournament 

selection.  Standard tournament selection is designed to always choose the best individual 

from the tournament while variant tournament selection is designed to provide an opportunity 

for weaker tournament participants to become parents as well.  The disadvantage of 

standard tournament selection is that the elitist nature of the method results in the algorithm 

converging too quickly (to a local optimum) when the DGA is applied to data sets HDTT6, 

HDTT7 and HDTT8.  The less elitist variant tournament selection allowed for a better 

exploration of the search space and thus better results are found. 

 

A single hypothesis is used to test whether the DGA using variant tournament selection 

produces fewer violations than the DGA using standard tournament selection.  Table 9.8 

shows the hypothesis and the Z-values for each data set. 

 

Table 9.8:  Hypotheses and Z-values for timetable feasibility 

Hypothesis 
Z-Values 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

H0:  µstd = µvar; 
HA:  µstd > µvar 

0.00 1.44 1.84 1.46 1.23 

 

Significant results are found for HDTT5, HDTT6 and HDTT7 at the 10% level while there is 

no statistically significant difference between using the standard or variant selection methods 

when applying the DGA to data sets HDTT4 and HDTT8. 
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The number of generations used varies between the data sets.  The DGA approach using 

standard tournament selection has a lower success rate than the DGA approach using 

variant tournament selection but does manage to produce results within a fewer number of 

generations.  However, due to a higher success rate for three out of the five data sets, the 

variant tournament selection method is chosen. 

9.2.1.3 Comparison of mutation operators 

In this study, the DGA is tested using one of four mutation operators described in Chapter 7.  

The first two mutation operators involve hill climbing along with either the one violation 

mutation operator (1VH) or the two violation mutation operator (2VH).  The remaining two 

operators involve using either the one violation mutation operator (1VNH) or the two violation 

mutation operator (2VNH) without hill climbing.  The processes and parameter values that 

were kept constant are listed in Table 9.9. 

 

Table 9.9:  Processes and parameter values to test best mutation operator 
(HDTT problem) 

Constant Heuristics and Operators 

Creation Saturation Degree 

Selection Variant 

Constant Parameter Values 

SCM 100 

Population Size 1000 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

A comparison of the performance of each of the operators (in terms of success rate) is 

shown in Table 9.10. 

 

Table 9.10:  Comparison of success rates for mutation operators 

  SUCCESS RATE Average number of generations 

  2VH 1VH 2VNH 1VNH 2VH 1VH 2VNH 1VNH 

HDTT4 93.33% 76.67% 100.00% 0.00% 1 4 1 NA 

HDTT5 16.67% 16.67% 100.00% 0.00% 3 8 2 NA 

HDTT6 0.00% 0.00% 56.67% 0.00% NA NA 7 NA 

HDTT7 0.00% 0.00% 20.00% 0.00% NA NA 16 NA 

HDTT8 0.00% 0.00% 6.67% 0.00% NA NA 20 NA 
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Table 9.10 shows that the DGA using the 2VNH operator performs better than the DGA 

using any of the other mutation operators.  The use of the DGA with the 2VNH operator 

results in at least one feasible timetable being produced when applied to any of the data 

sets.  The DGA with the hill climbing mutation operators find feasible timetables for the 

smaller data sets HDTT4 and HDTT5 but not for the larger and more constrained data sets 

(HDTT6, HDTT7 and HDTT8). 

 

The averages and standard deviations listed in Table 9.11 also indicate that the 2VNH 

mutation operator performs best.  The DGA using the 1VNH operator performed worst and 

was not able to induce feasible timetables for even the smallest data set (HDTT4).  The 

performance of the DGA using the 2VH and 1VH were similar and feasible timetables were 

found for the HDTT4 and HDTT5 data sets only. 

 

Table 9.11:  Average constraint violations (and standard deviations) for each mutation 
operator 

 2VH 1VH 2VNH 1VNH 

HDTT4 0.13 (0.51) 0.47 (0.86) 0 (0) 48.23 (1.96) 

HDTT5 1.67 (0.76) 1.7 (0.79) 0 (0) 68.87 (2.11) 

HDTT6 3.27 (0.78) 3.4 (0.81) 0.87 (1.01) 90.47 (1.98) 

HDTT7 7.2 (1.06) 7.47 (1.11) 1.63 (0.85) 109.07 (4.63) 

HDTT8 9.53 (1.48) 9.93 (1.57) 2 (0.64) 131.37 (3.62) 

 

Three hypotheses are tested and the corresponding Z-values for each data set are listed in 

the table below (Table 9.12).  The three hypotheses are: 

 

 Two violation non hill climbing (2VNH) produces fewer violations than the one 

violation non hill climbing operators (1VNH). 

 2VNH produces fewer violations than the one violation hill climbing operator (1VH). 

 2VNH produces fewer violations than the two violation hill climbing operator (2VH). 
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Table 9.12:  Hypotheses and corresponding Z-values showing feasibility 

Hypotheses 
Z-Values 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

H0:  µ1VNH = µ2VNH; 

HA:  µ1VNH > µ2VNH 
134.81 178.52 221.06 124.98 191.45 

H0:  µ1VH = µ2VNH; 

HA:  µ1VH > µ2VNH 
2.97 11.72 10.71 22.90 25.55 

H0:  µ2VH = µ2VNH; 

HA:  µ2VH > µ2VNH 
1.44 12.04 10.29 22.39 25.58 

 

The DGA using the 2VNH mutation operator performs better than the DGA approach using 

either of the hill climbing operators.  The hypothesis tests confirm these results at all levels 

of significance (see Table 6.3 in Chapter 6).  The only exception is the comparison between 

the DGA approach using the 2VH and 2VNH operators when applied to data set HDTT4 

where the 2VNH operator is better at a 10% level of significance only.   

 

From the operators tested, the 2VNH operator is the best mutation operator as the genetic 

algorithm using this operator finds at least one feasible timetable for all data sets and 

performs better than the other mutation operators at significant levels of at least 10%. 

9.2.2 The Valouxis Greek school timetabling problem 
This section covers the performance of different processes of the DGA when applied to the 

Valouxis problem.  The processes that are covered for this problem are the low-level 

construction heuristics (section 9.2.2.1), the Phase 1 selection method (section 9.2.2.2), the 

Phase 1 mutation operator (section 9.2.2.3), the Phase 2 selection method (section 9.2.2.4) 

and the Phase 2 mutation operator (section 9.2.2.4). 

9.2.2.1 Comparison of low-level construction heuristics 

As described in Chapter 7, one of three primary heuristics is used with the DGA, namely 

random allocation, largest degree and saturation degree.  A secondary heuristic comparing 

the teacher degree (teachers with the most class-teacher lessons) is used in the event of 

ties.  In the event of further ties, a third heuristic that compares teacher availability is used 

(teachers with the fewest days available are given priority). 

 

In order to select the best of the three heuristics, the performance of each heuristic is 

compared.  The processes and parameter values that were kept constant are listed in Table 

9.13 below. 
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Table 9.13:  Processes and parameter values to test best low-level construction 

heuristic (Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Selection Variant 

Mutation 1 Violation Hill Climbing (1VH) 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates, average hard constraint (HC) violations, standard deviations, and 

average quality for each low-level construction heuristic are shown below in Table 9.14.  The 

average quality is the average number of soft constraint violations from all the feasible 

timetables found. 

 

Table 9.14:  Performance comparison of construction heuristics 

Success Rates 

Random Largest Degree Saturation 

100.00% 86.67% 83.33% 

Average HC violations (and standard deviations) 

Random Largest Degree Saturation 

0 (0) 0.13 (0.35) 0.17 (0.38) 

Average Quality (Feasible Timetables) 

Random Largest Degree Saturation 

52.88 52.43 47.20 
 

All three heuristics, when used separately with the DGA, produce high success rates of 80% 

and above.  The DGA with the random allocation heuristic produces the most number of 

feasible timetables.  The low averages and standard deviations indicate that for each run, 

feasible solutions were found or timetables with only one or two hard constraint violations 

were produced.  In terms of quality, the DGA using the saturation degree performs best, 

producing timetables with five fewer soft constraint violations on average. 
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The results from the hypothesis tests support the above statement that the genetic algorithm 

using the random allocation heuristic produces timetables with the fewest number of hard 

constraint violations.  The hypotheses and the Z-values are shown in Table 9.15.   

 

Table 9.15:  Hypotheses and corresponding Z-values 

Hypothesis Z-value – Feasibility Z-value – Quality 

H0:  µSAT = µRAND; 

HA:  µSAT > µRAND 
2.41 2.33 

H0:  µSAT = µLARGE; 

HA:  µSAT > µLARGE 
0.36 0.30 

H0:  µLARGE = µRAND; 

HA:  µLARGE > µRAND 
2.11 2.12 

 

Although the success rates for the random allocation and largest degree heuristics are 

higher, the DGA using the saturation degree heuristic produces better quality timetables i.e. 

timetables with fewer soft constraint violations.  The frequency chart below (Figure 9.5) 

illustrates this.  The x-axis of the frequency chart shows the average soft constraint cost over 

thirty runs and the y-axis lists the number of timetables produced for each range. 

 

 

Figure 9.5:  Frequency diagram for quality using various heuristics 
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Figure 9.5 illustrates that the DGA using the saturation degree heuristic produces 17 feasible 

timetables that each have between 30 and 50 soft constraint violations.  While the DGA 

using the random allocation heuristic produces more feasible timetables, the DGA using the 

saturation degree produces more timetables of a higher quality. 

 

In order to test the statistical significance of the above conclusion, an independent sample t-

test is conducted.  The results are summarized in the table below. 

  

Table 9.16:  Summary of results for independent sample t-test 

Heuristic N Mean Std Deviation 
Std. Error 

Mean 

     

Saturation 30 0.7333 0.44978 0.08212 

Random 30 0.2667 0.44978 0.08212 

 

The mean values in Table 9.16 indicate a greater preference towards the saturation degree 

heuristic.  The calculated p-value is less than 0.05, concluding that at a 5% level of 

significance, the DGA using a saturation degree heuristic produces more timetables of a 

higher quality than the DGA using the random allocation heuristic. 

 

In conclusion, while the success rates are in favour of the random allocation heuristic, there 

is a case for the saturation degree heuristic as it produces better quality timetables on 

average.  For this problem, the saturation degree heuristic is therefore chosen as the low-

level construction heuristic. 

9.2.2.2 Comparison of Phase 1 selection methods 

The DGA is tested using standard tournament selection and variant tournament selection.  

When testing these two methods, the following processes and parameter values remained 

constant (Table 9.17): 
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Table 9.17:  Processes and parameter values to test best selection method 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates, average hard constraint cost, standard deviations and average quality 

(soft constraint cost) for the DGA using each selection method is shown in Table 9.18 below. 

 

Table 9.18:  Results for selection methods (Phase 1) 

Success Rates 

Standard Variant 

70.00% 83.33% 

Average HC Cost (and standard deviations) 

Standard Variant 

0.3 (0.47) 0.17 (0.38) 

Average Quality (Feasible Timetables) 

Standard Variant 

53.19 47.20 

 

A success rate of at least 70% is found over thirty runs when the DGA is used with either of 

the selection methods.  Variant tournament selection allows for a greater exploration of the 

search space as it also allows weaker individuals from the tournament to be selected as 

parents.  The DGA with the variant tournament selection also produces better quality 

timetables on average than the DGA with standard tournament selection.   

 

From Table 9.18, it is concluded that the DGA using variant tournament selection performs 

better than the DGA using standard tournament selection.  Hypothesis tests are conducted 
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to determine the statistical significance of the above statement.  The Z-values for both 

feasibility and quality are listed in Table 9.19 below. 

 

Table 9.19:  Hypotheses and Z-values for feasibility and quality 

Hypotheses Z-values 

H0:  µSTD = µVAR; HA:  µSTD > µVAR (Feasibility) 1.22 

H0:  µSTD = µVAR; HA:  µSTD > µVAR (Quality) 1.26 

 

Based on the results of the hypothesis tests (Table 9.19), there is insufficient evidence to 

state that the DGA using variant tournament selection is statistically better than the DGA 

using standard tournament selection. 

 

Figure 9.6 illustrates a frequency chart showing the quality of the timetables produced when 

using the DGA with standard tournament selection and variant tournament selection. 

 

 

Figure 9.6:  Frequency chart showing quality for selection methods 
 

The frequency chart above indicates that the DGA with variant tournament selection 
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selection.  68% of the feasible timetables produced by the DGA with variant tournament 

selection had between 30 and 50 soft constraint violations compared to the DGA using 

standard tournament selection where only 24% of the feasible timetables produced had soft 

constraint violation counts of between 30 and 50.  Variant tournament selection is the 

chosen selection method as it produces a higher success rate and better quality timetables 
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on average.  The DGA using variant tournament selection also produces the timetable with 

the fewest number of soft constraint violations (39). 

9.2.2.3 Comparison of Phase 1 mutation operators 

Four mutation operators are tested.  As discussed in the previous chapter, the four mutation 

operators, 2VNH, 2VH, 1VNH and 1VH, are tested separately with the DGA approach.  The 

other processes and control parameter values that were kept constant are given in Table 

9.20 and a summary of the results for each mutation operator is shown in Table 9.21. 

 

Table 9.20:  Processes and parameter values to test best mutation operator 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

Table 9.21:  Results for mutation operators (Phase 1) 

Success Rates  Success Rates 

2VH 1VH 2VNH 1VNH 

0.00% 83.33% 0.00% 0.00% 

Average HC Cost (and standard deviation) Average HC Cost (and standard deviation) 

2VH 1VH 2VNH 1VNH 

7 (0.93) 0.17 (0.38) 66 (0.45) 77 (4.17) 

Average Quality (Feasible Timetables) Average Quality (Feasible Timetables) 

2VH 1VH 2VNH 1VNH 

 NA 47.20  NA NA  

 

Table 9.21 above indicates that only the DGA using the 1VH mutation operator manages to 

produce feasible timetables.  The poor performance of the 2VNH and 1VNH operators 

emphasizes the importance of hill climbing for this problem.  The DGA using the non-hill 
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climbing operators averaged 66 and 67 constraints violations respectively.  It was 

determined that these mutation operators, when removing a constraint violation, caused 

another hard constraint violation in the timetable.  This is especially true for this problem 

where one of the hard constraints is a balance in teacher lessons throughout the week (other 

school timetabling problems have listed this as a soft constraint).  For example, the mutation 

operator moves a constraint violating tuple to a period that results in another teacher’s 

workload being over the specified limit for that day.  In the case of the non-hill climbing 

mutation operators, this is made worse in that swaps that increase the timetable cost are 

retained.  The DGA approach using the other mutation operators do not produce any 

solutions and thus the best mutation operator is the 1VH mutation operator.  The 1VH 

operator found tuples that resulted in constraint violations and swapped them with any 

randomly chosen tuple.  Hill climbing assisted in only accepting swaps that improved the 

timetable while rejecting swaps that increased the hard constraint cost. 

9.2.2.4 Comparison of Phase 2 selection methods 

Standard tournament selection and variant tournament selection are implemented separately 

with the DGA approach and the performance of each method is compared.  The processes 

and control parameter values used are shown below. 

 

Table 9.22:  Processes and parameter values to test best Phase 2 selection method 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates and average quality obtained after thirty runs per algorithm are shown in 

Table 9.23. 
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Table 9.23:  Results for selection methods (Phase 2) 

Success rate 

Standard Variant 

83.33% 83.33% 

Average Quality (Feasible Timetables) 

Standard Variant 

50.04 47.20 

Standard deviation - Quality 

Standard Variant 

5.89 4.90 

 

During Phase 2, the DGA aims to improve the quality of the feasible timetables produced 

from Phase 1.  Therefore, the success rates for both methods are the same and the quality 

of solutions using the DGA with either selection method needs to be compared.  Table 9.23 

indicates that the DGA using variant tournament selection (47.20) performs better than 

standard tournament selection DGA (50.04).  A hypothesis stating that variant tournament 

selection is better than standard tournament selection is tested.  A Z-value of 0.03 was 

found, indicating that there is no statistically significant difference between the performances 

of the two selection methods.  

 

The frequency of results obtained using the two methods also need to be observed.  The 

frequency chart below (Figure 9.7) shows the difference between the DGA using standard 

tournament selection and the DGA using variant tournament selection (VTS). 

 

 

Figure 9.7:  Frequency chart showing quality for selection methods 
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Figure 9.7 illustrates that the DGA using variant tournament selection produces more 

timetables in the range between 30 and 50 (68% of the timetables produced fall in this 

range) than the DGA using standard tournament selection (48% of the timetables produced 

fall in this range).  The best selection method is therefore variant tournament selection due 

to its ability to produce better quality timetables.  The variant tournament selection DGA also 

produces the timetable with the least number of soft constraint violations (39). 

9.2.2.5 Comparison of Phase 2 mutation operators 

In order to improve the quality of timetables, four soft constraint mutation operators are 

individually applied with the DGA.  The performance of each DGA using a different mutation 

operator is then compared.  The processes and parameter values used are listed in Table 

9.24 below.   

 

Table 9.24:  Processes and parameter values to test best Phase 2 mutation operator 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The average quality and best timetables for each mutation operator after thirty runs is listed 

in Table 9.25. 
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Table 9.25:  Results for mutation operators (Phase 2) 

Average Quality (Feasible Timetables) 

Random Swap Row Swap 2V 1V 

47.20 73.24 47.00 65.08 

Best Results 

Random Swap Row Swap 2V 1V 

39 58 36 54 

Standard deviation – Quality 

Random Swap Row Swap 2V 1V 

4.90 10.43 4.80 6.88 

 

Based on the table above, the two best mutation operators are the random swap mutation 

operator and the two violation (2V) mutation operator.  The DGA with these mutation 

operators produce average soft constraint violation costs of 47.20 and 47.00 respectively.  

The row swap operator performed the worst due to multiple tuples of a row being swapped 

resulting in more soft constraint violations (such as the morning afternoon preference) and 

hard constraint violations (teachers being moved to days that they are unavailable to teach). 

 

Hypothesis tests are conducted to determine the significance of the results.  The hypotheses 

are focused on comparing the random swap operator and the 2V operator to the other 

mutation operators as well as each other.  Five hypotheses are tested and are listed below: 

 

 Random Swap (RaS) produces better quality timetables than 1V. 

 Two Violation (2V) swapping produces better quality timetables than 1V. 

 RaS produces better quality timetables than RS. 

 2V produces better quality timetables than RS. 

 2V produces better quality timetables than RaS. 

 

The hypotheses and the resultant Z-values found are shown in the table below (Table 9.26). 

 

Table 9.26:  Hypotheses and Z-values for quality 

Hypotheses Z-values 

H0:  µ1V = µRaS; HA:  µ1V > µRaS 11.60 

H0:  µ1V = µ2V; HA:  µ1V > µ2V 11.81 

H0:  µRS = µRaS; HA:  µRS > µRaS 12.38 

H0:  µRS = µ2V; HA:  µRS > µ2V 12.52 

H0:  µRaS = µ2V; HA:  µRaS > µ2V 0.16 
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The Z-values listed in Table 9.26 indicate that the random swap and 2V mutation operators 

perform significantly better than the row swap and 1V mutation operators.  There is no 

significant difference between the performance of the random swap and the 2V mutation 

operators.  The frequency chart for the two operators is shown below. 

 

 

Figure 9.8:  Frequency chart showing quality for two mutation operators 
 

Figure 9.8 illustrates that the frequencies between the random swap operator and the 2V 

operator are the same.  This further confirms the hypothesis that there is very little difference 

between the two mutation operators in terms of performance.  The DGA approach with the 

2V mutation operator produced the best timetable with 36 soft constraint violations 

compared to the DGA using the random swap operator (39 soft constraints violations).  

While either mutation operator could be applied to produce quality timetables, the two 

violation (2V) mutation operator is chosen as it produced a timetable of a higher quality 

(fewer soft constraint violations). 

9.2.3 The Beligiannis Greek high school timetabling problem 
This section describes the performance of the DGA when applied to the Beligiannis Greek 

high school timetabling problem.  The first section outlines the performance of the DGA 

approach with different low-level construction heuristics.  Section 9.2.3.2 discusses the 

performance of the two selection methods used with the DGA during Phase 1.  Section 

9.2.3.3 reports on the performance of the DGA when using different Phase 1 mutation 

operators.  Section 9.2.3.4 describes the performance of the DGA when applying two 

different selection methods during Phase 2.  Finally, section 9.2.3.5 explains the 
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performance of the DGA when using different mutation operators that focus on improving the 

quality of timetables. 

9.2.3.1 Comparison of low-level construction heuristics 

One of three low-level construction heuristics is applied with the DGA.  These heuristics are 

the saturation degree, the largest degree and the random allocation heuristics.  For all three 

heuristics, all tuples involving co-teaching and subclasses are allocated to the timetable first 

(primary heuristic).  The remaining class-teacher tuples are allocated thereafter.  Table 9.27 

lists the common processes and parameter values used when testing each of the 

construction heuristics. 

 
Table 9.27:  Processes and parameter values to test best construction heuristic 

(Beligianis problem) 

Constant Methods and Operators 

Phase 1 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

Table 9.28 shows the success rates found for each heuristic when applied to the data sets. 

 

Table 9.28:  Results for different heuristics 

Success Rates 

  Saturation Random Largest Degree 

HS1 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 

HS5 3.33% 56.67% 76.67% 

HS7 100.00% 100.00% 100.00% 
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A bar chart depicting the success rates listed in Table 9.28 is shown below (Figure 9.9). 

 

 

Figure 9.9:  Success rates for each heuristic 
 

Figure 9.9 illustrates that feasible timetables are found for all runs when the DGA (using any 

heuristic) is applied to data sets HS1, HS2, HS3, HS4 and HS7.   

 

For the data set HS5, the DGA using the largest degree heuristic performs best, producing 

the most feasible timetables.  No reason could be found as to why the results of HS5 differed 

to that of the other data sets.  Hypothesis tests are performed to check the significance of 

this result.  Two hypotheses are tested for feasibility for the data set HS5.  These 

hypotheses are: 

 

 The largest degree (LD) produces fewer hard constraint violations than the random 

allocation heuristic (RA). 

 LD produces fewer hard constraint violations than the saturation degree heuristic 

(SD). 

 

The hypotheses and Z-values are listed in Table 9.29. 

 

Table 9.29:  Hypotheses and Z-values for feasibility for data set HS5 

Hypotheses Z-values 

H0:  µRA = µLD; HA:  µRA > µLD 1.65 

H0:  µSD = µLD; HA:  µSD > µLD 12.27 
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From the Z-values in Table 9.29, it is statistically confirmed that the DGA using the largest 

degree heuristic performs better than the DGA using saturation degree or random allocation 

(for data set HS5). 

 

In order to select the best heuristic for the remaining data sets (HS1, HS2, HS3, HS4 and 

HS7), the quality of the timetables produced needs to be assessed since the DGA produces 

feasible timetables for all runs.  Table 9.30 lists both the average number of soft constraint 

violations and the standard deviations found for each data set when the DGA using each of 

the three heuristics is applied. 

 

Table 9.30:  Average quality for each heuristic 

Average Soft Constraint Violations (and standard deviations) 

  Saturation Random Largest Degree 

HS1 120.20 (3.75) 154.37 (6.54) 143.00 (3.91) 

HS2 129.60 (3.79) 160.47 (5.02) 147.33 (6.84) 

HS3 47.37 (4.13) 59.80 (4.52) 51.33 (5.47) 

HS4 72.57 (3.82) 83.50 (5.86) 83.40 (4.73) 

HS5 52.00 (NA) 52.29 (6.89) 46.35 (6.26) 

HS7 143.23 (4.31) 184.37 (5.71) 159.60 (4.88) 

 

A bar chart depicting the average quality for each data set is shown below.  The x-axis 

represents each data set and the y-axis lists the average number of soft constraint violations 

per data set.  As mentioned in earlier chapters, a lower soft constraint cost indicates a higher 

quality timetable. 

 

 

Figure 9.10:  Bar chart showing quality for each heuristic 
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Figure 9.10 shows that, with the exception of data set HS5, the DGA with the saturation 

degree heuristic produces the best quality timetables.  The relatively low standard deviations 

for the saturation degree also indicate that for all thirty runs, the genetic algorithm using this 

construction heuristic consistently produced timetables very close to the average quality 

timetable.  Hypothesis tests are conducted to determine if the average quality of the DGA 

using the saturation degree is significantly better than the DGA using the other two low-level 

heuristics.  The hypotheses tested are: 

 

 Saturation degree (SD) produces fewer soft constraint violations than random 

allocation (RA). 

 Saturation degree (SD) produces fewer soft constraint violations than largest degree 

(LD). 

 

The Z-values for the above hypotheses for data sets HS1, HS2, HS3, HS4, and HS7 are 

shown in Table 9.31. 

 

Table 9.31:  Hypotheses and Z-values for quality for various data sets 

Hypotheses 
Z-values 

HS1 HS2 HS3 HS4 HS7 

H0:  µRA = µSD; HA:  µRA > µSD 8.17 8.49 6.53 0.07 18.05 

H0:  µLD = µSD; HA:  µLD > µSD  23.03 12.41 3.17 9.76 13.76 

 

The Z-values found and listed in Table 9.31 confirms that the DGA using saturation degree 

produces better quality timetables than the DGA using either of the other two heuristics.  The 

Z-values further confirm the results illustrated in Figure 9.10.  Significant results are found on 

all levels (1%, 5% and 10%).  For data set HS4, A Z-value of 0.07 indicates that there is no 

difference between using the saturation degree and the random allocation heuristic to 

improve timetable quality. 

 

Due to the high quality of timetables obtained for data sets HS1, HS2, HS3, HS4, and HS7, 

the best timetable construction heuristic for these data sets is the saturation degree.  For the 

data set HS5, the largest degree is the chosen heuristic used to create the initial population. 

9.2.3.2 Comparison of Phase 1 selection methods 

The two selection methods available for Phase 1 are standard tournament selection and 

variant tournament selection.  When testing the performance of these two selection 

methods, the following processes and parameter values remained constant.   
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Table 9.32:  Processes and parameter values to test best selection method 
(Beligianis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for data set HS5) 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates found for each data set are shown in the table below.  Figure 9.11 is a bar 

graph of the data in Table 9.33. 

 

Table 9.33:  Success rates for selection methods (Phase 1) 

Success Rates 

  Standard Variant 

HS1 100.00% 100.00% 

HS2 100.00% 100.00% 

HS3 100.00% 100.00% 

HS4 100.00% 100.00% 

HS5 36.67% 76.67% 

HS7 100.00% 100.00% 
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Figure 9.11:  Success rates for selection methods 
 

The DGA approach using either of the selection methods produces feasible timetables for all 

runs when applied to data sets HS1, HS2, HS3, HS4 and HS7.  For the data set HS5, 

variant tournament selection is the best selection method due to this DGA producing more 

feasible timetables over the thirty runs.  When testing this conclusion using a hypothesis 

test, a Z value of 3.38 indicates that the DGA using variant tournament selection performs 

better than the DGA using standard tournament selection.  Table 9.34 shows the average 

quality and standard deviations for each data set when applying the DGA approach with 

each of the selection methods. 

 

Table 9.34:  Average quality for each selection method (Phase 1) 

Average Soft Constraint Violations (and standard deviations) 

  Standard Variant 

HS1 122.73 (5.51) 120.20 (3.75) 

HS2 131.07 (3.89) 129.60 (3.79) 

HS3 47.47 (3.95) 47.37 (4.13) 

HS4 73.03 (4.05) 72.57 (3.82) 

HS5 50.18 (6.37) 46.35 (6.26) 

HS7 143.93 (4.87) 143.23 (4.31) 

 

The DGA using variant tournament selection produces better quality timetables for all data 

sets.  Hypothesis tests are used to determine the significance of this conclusion.  The 

hypothesis being tested is that the DGA approach using VTS produces better quality 

timetables than the DGA approach using standard tournament selection.  The Z-values for 

each data set are shown in Table 9.35. 
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Table 9.35:  Hypothesis and Z-values for quality for various data sets 

Hypothesis 
Z-values 

HS1 HS2 HS3 HS4 HS5 HS7 

H0:  µSTD = µVAR; HA:  µSTD > µVAR 2.08 1.48 0.10 0.46 3.38 0.59 

 

The hypothesis stating that the DGA using variant tournament selection produces better 

quality timetables than the DGA using standard tournament selection is statistically 

significant for data sets HS1 (5% and 10% significance levels), HS2 (10% significant level), 

and HS5 (all levels).  Z values of 0.10 for data set HS3, 0.46 for data set HS4 and 0.59 for 

data set HS7 indicate that there is no difference between the performances of the selection 

methods when applied to these data sets.  Variant tournament selection is chosen as the 

selection method to choose parents. 

9.2.3.3 Comparison of Phase 1 mutation operators 

Mutation is used to evolve the timetables and reduce the hard constraint cost of each 

timetable.  With the exception of data set HS5, it is determined that the evolutionary process 

is not needed to produce feasible timetables.  Many of the timetables created using the 

saturation degree heuristic are already feasible.  Any mutation operator could be used to 

successfully remove the remaining hard constraint violations from unfeasible timetables. 

 

For completeness, the success rates found when applying the DGA approach with each 

mutation operator are shown in Table 9.37.  Table 9.36 below shows the processes and 

parameter values used to test each mutation operator. 
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Table 9.36:  Processes and parameter values to test best mutation operator 
(Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for data set HS5) 

Selection Variant 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

100% success rates are produced when the DGA is applied to all data sets except data set 

HS5. 

 

Table 9.37:  Success rates for mutation operators (Phase 1) 

Success Rates 

  2VH 1VH 2VNH 1VNH 

HS1 100.00% 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 100.00% 

HS5 0.00% 76.67% 0.00% 100.00% 

HS7 100.00% 100.00% 100.00% 100.00% 

 

When applied to data set HS5, the DGA approach with the 1VNH mutation operator 

produces the most feasible timetables when compared to the success rates using other 

mutation operators.  A hypothesis test is conducted for feasibility for the data set HS5.  The 

hypothesis states that the DGA using the 1VNH operator performs better than the DGA 

approach using the 1VH operator.  A Z value of 2.08 indicates that the null hypothesis is 

rejected in favour of the alternate hypothesis at 5% and 10% levels of significance.  When 

the DGA is applied to the data set HS5, the 1VNH operator is chosen as the best mutation 

operator due to a higher success rate.  As mentioned earlier, a genetic algorithm is not 

required in order to produce feasible timetables for the other data sets. 
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9.2.3.4 Comparison of Phase 2 selection methods 

Standard tournament selection and variant tournament selection are utilized as selection 

methods for Phase 2 of the algorithm.  The timetables obtained when applying the DGA 

approach with either of the two methods are evaluated and compared.  Phase 2 of the DGA 

approach focuses on reducing the soft constraint cost of the timetables.  Therefore, the 

quality of the timetables produced is evaluated rather than the success rates.   

 

Table 9.38:  Processes and parameter values to test best Phase 2 selection method 
(Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for data set HS5) 

Selection Variant 

Mutation 1VH (1VNH for data set HS5) 

Phase 2 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The average qualities and standard deviations of the timetables produced by the DGA using 

each of the selection methods are listed below. 

 

Table 9.39:  Tabling comparing quality produced by selection methods (Phase 2) 

Average Quality (and standard deviations) 

  Standard Variant 

HS1 115.67 (5.99) 120.20 (3.75) 

HS2 121.63 (7.54) 129.60 (3.79) 

HS3 46.53 (4.07) 47.37 (4.13) 

HS4 73.30 (4.77) 72.57 (3.82) 

HS5 55.53 (7.97) 59.00 (5.28) 

HS7 138.97 (6.23) 143.23 (4.31) 

 

The average qualities in Table 9.39 indicate that the DGA using standard tournament 

selection produces better quality timetables than the DGA using variant tournament 

selection.  The DGA using variant tournament selection only performs better when applied to 
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data set HS4.  A hypothesis is tested to determine if the DGA using variant tournament 

selection performs better than the DGA using standard tournament selection when applied to 

data set HS4.  A Z-value of 0.66 indicates that there is no statistically significant difference in 

performance. 

 

Hypothesis tests are also used to test for quality for data sets HS1, HS2, HS3, HS5, and 

HS7.  The hypothesis states that the DGA using the standard tournament selection produces 

better quality timetables than the DGA using variant tournament selection.  Table 9.40 

shows the Z-values of the tests. 

 

Table 9.40:  Hypothesis and Z-values for quality 

Hypothesis 
Z-values 

HS1 HS2 HS3 HS5 HS7 

H0:  µVAR = µSTD;  

HA:  µVAR > µSTD 
3.51 5.17 0.79 1.99 3.06 

 

Based on the Z-values in the table above, it is concluded that for data sets HS1, HS2 and 

HS7, the DGA using standard tournament selection performs better than the DGA using 

variant tournament selection (at all levels of significance).  For data set HS5, the alternate 

hypothesis is favoured at 5% and 10% levels of significance.  When testing data sets HS3 

for quality, a Z-value of 0.79 suggests that there is no difference in performance between the 

two selection methods.   

 

In conclusion, the best method of selection during Phase 2 is standard tournament selection 

as it produces better quality timetables when the DGA is applied to five out of the six data 

sets. 

9.2.3.5 Comparison of Phase 2 mutation operators 

At this stage, the main objective of the DGA is to improve the quality of the feasible 

timetables obtained from Phase 1.  To evolve the timetables, four mutation operators are 

considered, namely random swap, row swap, one violation mutation and two violation 

mutation.  When testing each of these mutation operators, the following processes and 

parameter values were used (Table 9.41): 
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Table 9.41:  Processes and parameter values to test best Phase 2 mutation operator 
(Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for data set HS5) 

Selection Variant 

Mutation 1VH (1VNH for data set HS5) 

Phase 2 

Selection Standard 

Constant Parameter Values 

SCM 10 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The table below shows the average quality and standard deviations produced over thirty 

runs when applying the DGA with each operator. 

 

Table 9.42:  Average Quality and standard deviations obtained for different mutation 
operators (Phase 2) 

Average Soft Constraint Violations (and standard deviations) 

  Random Swap Row Swap 1V 2V 

HS1 115.67 (5.99) 159.27 (4.96) 115.10 (7.02) 117.70 (6.30) 

HS2 121.63 (7.54) 173.20 (5.03) 122.87 (8.34) 123.13 (7.60) 

HS3 46.53 (4.07) 68.73 (2.46) 48.00 (3.99) 47.90 (4.45) 

HS4 73.30 (4.77) 91.03 (3.10) 74.27 (4.28) 73.23 (4.72) 

HS5 55.53 (7.97) 105.37 (5.90) 57.43 (7.95) 66.37 (5.96) 

HS7 138.97 (6.23) 181.33 (6.98) 138.13 (7.44) 140.13 (6.49) 

 

The row swap mutation operator is immediately removed as a candidate for best mutation 

operator as the DGA with this operator produces the worst quality timetables on average.  

This is due to many of the swaps being rejected as they resulted in moving teachers to days 

when they are unavailable to teach.  Hypothesis tests also find that the row swap operator 

performs the worst at all levels of significance. 

 

For data set HS1, the DGA using the 1V operator performs slightly better than the DGA 

approach using the random swap operator.  For data sets HS2, HS3 and HS5, the DGA 

approach using the random swap operator provides the best quality timetables.  For data set 
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HS4, the DGA approach using the 2V operator produces the best quality timetables.  For 

data set HS7, the DGA approach using the 1V operator performs best.  For data set HS5, 

the DGA approach using the random swap operator produces timetables with the lowest 

number of constraint violations on average.  Hypothesis tests are conducted for quality for all 

the data sets.  The hypotheses and corresponding Z-values for each data set are listed in 

Table 9.43.  

 

Table 9.43:  Hypotheses and Z-values 

Data set HS1 

H0:  µ2V = µRaS;  

HA:  µ2V > µRaS 

H0:  µ2V = µ1V;  

HA:  µ2V > µ1V 

H0:  µRaS = µ1V;  

HA:  µRaS > µ1V 

1.28 1.51 0.33 

Data set HS2 

H0:  µ2V = µ1V;  

HA:  µ2V > µ1V 

H0:  µ2V = µRaS;  

HA:  µ2V > µRaS 

H0:  µ1V = µRaS;  

HA:  µ1V > µRaS 

0.13 0.77 0.60 

Data set HS3 

H0:  µ1V = µ2V;  

HA:  µ1V > µ2V 

H0:  µ1V = µRaS;  

HA:  µ1V > µRaS 

H0:  µ2V = µRaS;  

HA:  µ2V > µRaS 

0.10 1.41 1.24 

Data set HS4 

H0:  µ1V = µRaS;  

HA:  µ1V > µRaS 

H0:  µ1V = µ2V;  

HA:  µ1V > µ2V 

H0:  µRaS = µ2V;  

HA:  µRaS > µ2V 

0.83 0.89 0.05 

Data set HS5 

H0:  µ2V = µ1V;  

HA:  µ2V > µ1V 

H0:  µ2V = µRaS;  

HA:  µ2V > µRaS 

H0:  µ1V = µRaS;  

HA:  µ1V > µRaS 

4.92 5.96 0.92 

Data set HS7 

H0:  µ2V = µRaS;  

HA:  µ2V > µRaS 

H0:  µ2V = µ1V;  

HA:  µ2V > µ1V 

H0:  µRaS = µ1V;  

HA:  µRaS > µ1V 

0.71 1.11 0.47 

 

The best mutation operators vary depending on the data set.  For data set HS1, the random 

swap and 1V operators are found to have performed significantly better than the two 

violation mutation operator (10% level of significance).  There is, however, no significant 
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difference between these two mutation operators when applied to HS1.  For data sets HS2, 

HS4 and HS7, no statistically significant difference is found when comparing the 

performance of the three operators.  From the Z-values for data set HS5, a conclusion is 

made favouring the use of either the 1V mutation operator or the random swap operator.  

The Z-values for data set HS3 allows for the conclusion that the random swap operator 

performs better than the one violation operator at a 10% level of significance.   

 

Based on the results above, it is concluded that the best mutation operator varies depending 

on the data set.  For the remainder of the runs, the one violation (1V) mutation operator will 

be used when applying the DGA to data sets HS1, HS2, HS3, HS4 and HS7.  The random 

swap operator will be used when applying the DGA to data set HS5. 

9.2.4 W.A. Lewitt primary school timetabling problem 
This section discusses the performance of the DGA approach when applied to the W.A. 

Lewitt primary school timetabling problem.  Section 9.2.4.1 describes how the DGA 

performed with different low-level construction heuristics.  Section 9.2.4.2 reports on the 

performance of the DGA using each of the two selection methods.  Section 9.2.4.3 describes 

the performance of the DGA when using different mutation operators.  Sections 9.2.4.4 and 

section 9.2.4.5 details the Phase 2 performance of the DGA in terms of selection method 

and mutation operators. 

9.2.4.1 Comparison of low-level construction heuristics 

The DGA uses one of three low-level construction heuristics. These heuristics are the 

saturation degree, the random allocation and the largest degree heuristic described in 

Chapter 7.  In order to satisfy the double period constraint specified by the school, all tuples 

that are set as double periods are first allocated to the timetable.   
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Table 9.44:  Processes and parameter values to test best construction heuristic 
(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Selection Variant 

Mutation Hybrid mutation 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 200 

Generations 50 

 

The results of using the DGA approach with each of the three construction heuristics are 

shown in Table 9.45.  These are used as secondary heuristics with the consecutive periods 

heuristic as the primary heuristic. 

 

Table 9.45:  Results for best heuristic 

Success Rates 

Saturation Random Largest Degree 

40.00% 6.67% 10.00% 

Average Hard Constraint Violations (and standard deviations) 

Saturation Random Largest Degree 

0.73 (0.69) 2.13 (1.2) 2.37 (1.27) 

Average Quality (Feasible Timetables) 

Saturation Random Largest Degree 

12.25 12.00 9.67 

Standard deviations (Quality) 

Saturation Random Largest Degree 

5.38 1.41 3.79 

 

Table 9.45 shows that the DGA using the saturation degree heuristic produces the largest 

number of feasible timetables.  On average, the DGA using the saturation degree produces 

the fewest number of hard constraint violations.  An observation made was that the fitness of 

the initial populations of the DGA when using the random allocation and largest degree 
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heuristics were very high.  The evolutionary process was then unable to induce feasible 

timetables. 

 

Hypothesis tests are conducted for feasibility.  The hypotheses tested and the Z-values are 

shown in Table 9.46. 

 

Table 9.46:  Hypotheses and Z-values for feasibility 

Hypothesis Z-value 

H0:  µLD = µSD; HA:  µLD > µSD 6.07 

H0:  µRA = µSD; HA:  µRA > µSD 5.55 

 

The Z-values in the table above allow for the null hypothesis to be rejected in favour of the 

alternate hypothesis at all levels of significance.  This means that the DGA using the 

saturation degree heuristic performs better than the DGA using either the random allocation 

or largest degree heuristics.  The DGA using the saturation degree heuristic also produces 

the best quality timetable with the fewest number of soft constraint violations (7). 

9.2.4.2 Comparison of Phase 1 selection methods 

The two selection methods are variant tournament selection and standard tournament 

selection.  The constant processes and parameter values used to test the two selection 

methods are listed in Table 9.47. 

 
Table 9.47:  Processes and parameter values to test best selection method 

(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Mutation Hybrid mutation 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 200 

Generations 50 
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The success rate, average quality and standard deviations produced is listed in Table 9.48 

and the frequency diagram is shown in Figure 9.12. 

 

Table 9.48:  Success rates and average quality for selection methods (Phase 1) 

Success Rates 

Variant Standard 

40.00% 43.33% 

Average Quality (Feasible timetables) 

Variant Standard 

12.25 10.54 

Standard deviation 

Variant Standard 

5.38 3.36 

  

 

Figure 9.12:  Frequency chart showing quality for two selection methods 

 

Table 9.48 indicates that the DGA using standard tournament selection produces a slightly 

higher success rate and better quality timetables than the DGA approach using variant 

tournament selection.  The standard deviation also indicates that the quality of the timetables 

produced tend to be close to the mean.  The frequency chart (Figure 9.12) shows that more 

quality timetables are produced when using the DGA with standard tournament selection.  A 

hypothesis is tested in order to determine the better selection method.  The hypothesis 

states that the DGA using standard tournament selection performs better than the DGA 

using variant tournament selection method (in terms of feasibility).  A Z-value of 0.17 
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indicates that there is no statistically significant difference in the performance of the two 

selection methods. 

 

Standard tournament selection is chosen as the selection method due to its slightly higher 

success rate in producing feasible timetables.  The frequency chart also indicates that DGA 

using standard tournament selection produces more timetables of better quality than when 

using variant tournament selection. 

9.2.4.3 Comparison of Phase 1 mutation operators 

Four mutation operators were considered and the DGA was applied using each of these 

mutation operators.  From all the runs conducted, only one feasible timetable was produced.  

The low success rates produced indicate that the mutation operators are not sufficient in 

producing feasible timetables.  The complexity of the problem and the large number of 

double periods to be allocated contribute to the poor performance of the mutation operators.  

In addition, all tuples must be allocated to all available periods.  An alternative mutation 

operator was considered incorporating a combination of 2VH, 1VH and a random swap.   

 
Table 9.49:  Processes and parameter values to test best mutation operator 

(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 200 

Generations 50 

 

The success rates and average hard constraint costs of the DGA using each of the mutation 

operators as well as the hybrid operator are listed in Table 9.50.   

 

  



131 
 

Table 9.50:  Success rates using different genetic operators (Phase 1) 

Success Rates 

2VH 1VH 2VNH 1VNH Hybrid 

0.00% 3.33% 0.00% 0.00% 43.33% 

Average Hard Constraint Cost (and standard deviation) 

2VH 1VH 2VNH 1VNH Hybrid 

4.57 (1.43) 2.97 (1.07) 16.4 (4.69) 110.67 (13.92) 0.77 (0.82) 

 

The success rates listed in Table 9.50 indicate that the DGA using the hybrid operator is far 

superior to the DGA using any of the other mutation operators.  When using the DGA 

approach with either the 2VH or 1VH operators, the average number of hard constraint 

violations ranges from 3 to 5, while the average number of violations when using either the 

2VNH or 1VNH operators ranges from 16 (2VNH) to 111 (1VNH).  Two factors that 

contributed to the success of the hybrid operator are the fact that three operators were being 

applied, thus increasing the probability of finding and removing a constraint violation.  This 

also increased the number of swaps by a factor of three.  A third factor is the mix of finding 

constraint violating tuples and random tuples, thus potentially increasing the probability of 

moving to a new area of the search space.  

 

The number of feasible timetables produced by the DGA using the hybrid mutation operator 

was greater than the single feasible timetable produced by the DGA using the 1VH operator.  

A hypothesis is tested for feasibility.  This hypothesis states that the DGA using the hybrid 

mutation operator performs better than the DGA using the 1VH operator.  A Z-value of 8.97 

indicates that at all levels of significance, the performance of the DGA using the hybrid 

operator is better than the DGA using the 1VH operator. 

9.2.4.4 Comparison of Phase 2 selection methods 

Phase 2 of the DGA focuses on improving the quality of the timetables.  The DGA is used 

with either variant tournament selection or standard tournament selection.  Table 9.51 lists 

the processes and parameter values used when testing each selection method. 
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Table 9.51:  Processes and parameter values to test best Phase 2 selection method 
(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid mutation 

Phase 2 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 200 

Generations 50 

 

When analyzing the results, no difference in performance is found when comparing the 

performance of the DGA with the two selection methods.  The average quality of the 

timetables produced is exactly the same.  According to the frequency diagram below (Figure 

9.13), the DGA using either selection method produces timetables of an equivalent quality.  

The DGA using either selection method produces the same number of timetables that have 

between 0 and 9 (and between 10 and 19) soft constraint violations. 
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Figure 9.13:  Frequency chart for two selection methods 
 

Thus, either selection method can be used for Phase 2.  Hypothesis tests are not conducted 

as the average qualities of the timetables produced when using either method is the same. 

9.2.4.5 Comparison of Phase 2 mutation operators 

In order to improve the quality of the timetables produced from Phase 1, the DGA uses one 

of four mutation operators during Phase 2.  These operators are the random swap, 1V 

mutation, 2V mutation and the row swap operators.  The row swap mutation operator was 

immediately not considered since this mutation was found to conflict with the hard constraint 

regarding double periods.  The processes and parameter values used when testing the 

mutation operators are listed below. 
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Table 9.52:  Processes and parameter values to test best Phase 2 mutation operator 
(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid mutation 

Phase 2 

Selection Variant 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 200 

Generations 50 

 

The average quality of the DGA when using each mutation operator is listed in the table 

below (Table 9.53) 

 

Table 9.53:  Average quality produced using different soft mutation operators 

Average Quality 

Random Swap 1V  2V 

10.54 15.62 24.31 

 

It is evident from the table above that the DGA using the random swap operator produces 

the best quality timetables.  The frequency diagram (Figure 9.14) also illustrates that the 

random swap produces better quality timetables. 
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Figure 9.14:  Frequency chart showing quality for different soft mutation operators 

 

The DGA using the random swap operator produces timetables that have between 6 and 15 

soft constraint violations.  Hypothesis tests are conducted for quality and two hypotheses are 

established.  The first hypothesis states that the DGA using the random swap performs 

better than the DGA using the 1V operator.  The second hypothesis states that the DGA 

using the random swap performs better than the DGA using the two violation (2V) operator.  

Z-values of 0.05 and 0.02 respectively indicate that there is no significant difference when 

choosing between the mutation operators.  While not statistically significant, the random 

swap is the chosen mutation operator to use when addressing soft constraint violations.  The 

DGA using this operator produces better quality timetables on average. 

9.2.5 The Woodlands secondary school timetabling problem 
This section describes the performance of the DGA when applied to the Woodlands 

secondary school timetabling problem.  Section 9.2.5.1 reports on the performance of the 

DGA with different low-level construction heuristics.  Sections 9.2.5.2 and 9.2.5.4 discusses 

the results when comparing the DGA using two different selection methods for Phase 1 and 

Phase 2 respectively.  Sections 9.2.5.3 and 9.2.5.5 cover the performance of the DGA using 

the different mutation operators for Phase 1 and Phase 2 respectively. 

9.2.5.1 Comparison of low-level construction heuristics 

Three low-level construction heuristics are individually used to create an individual in the 

initial population.  The three construction heuristics are the saturation degree, random 
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allocation and largest degree.  For the largest degree and saturation degree heuristics, 

several secondary heuristics are used for selecting tuples in the event of ties.  These 

secondary heuristics, in order of importance are: 

 

 Co-teaching and subclass requirements take precedence over single class tuples. 

 In the event that two tuples are both single class tuples or co-teaching or subclass 

tuples, then priority goes to the tuple with the greater number of lessons for the week. 

 In the event that two tuples have the same number of lessons in the week, then 

priority goes to the tuples with the greater number of teachers involved for that tuple.  

This secondary heuristic only applies to co-teaching tuples. 

 In the event that the two tuples use the same number of teachers, then priority goes 

to the tuple with the class that are taught by the greater number of teachers 

throughout the week. 

 

The secondary heuristics were determined based on observation.  Only the DGA using the 

saturation degree heuristic was able to find feasible timetables.   

 

Table 9.54:  Processes and parameter values to test best construction heuristic 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 75 

Generations 50 

 

The success rates and average hard constraint cost found for the DGA approach using each 

heuristic is shown in the table below (Table 9.55). 
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Table 9.55:  Success rates found for different heuristics 

Success Rates 

Random Largest Degree Saturation 

0.00% 0.00% 23.33% 

Average Hard Constraint Cost (and standard deviations) 

Random Largest Degree Saturation 

72.93 (8.99) 49.24 (7.43) 2.07 (1.62) 
 

The DGA using the saturation degree heuristic produced seven feasible timetables from the 

30 runs.  On average, there are 9.41 soft constraint violations found per timetable.  The DGA 

using random allocation creates timetables with approximately 72 hard constraint violations 

(on average) and the DGA using the largest degree heuristic creates timetables with 

approximately 49 hard constraint violations (on average).  The best performing timetable 

construction heuristic is therefore the saturation degree.  This construction heuristic creates 

timetable with a low number of hard constraint violations, allowing for the mutation operators 

to evolve the individuals into feasible timetables.  The DGA using the largest degree or 

random allocation heuristics creates initial population individuals with too many hard 

constraint violations.  The mutation operators were not able to remove all the violations in 

the required number of generations. 

9.2.5.2 Comparison of Phase 1 selection methods 

A DGA using standard tournament selection and variant tournament selection are 

individually implemented and the results are compared.  When testing the performance of 

the two selection methods, the following processes and parameter values were used: 
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Table 9.56:  Processes and parameter values to test best selection method 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 75 

Generations 50 

 

The success rates and average quality of timetables obtained are listed in the table below 

(Table 9.57). 

 
Table 9.57:  Results obtained using two different selection methods (Phase 1) 

Success Rate 

Standard Variant 

40.00% 23.33% 

Average Quality 

Standard Variant 

8.50 9.43 

Standard deviation 

Standard Variant 

1.51 2.23 

 

The DGA approach using standard tournament selection produces more feasible timetables.  

The timetables produced are also of a better quality.  Standard tournament selection is 

therefore chosen as the best selection method when choosing parents.  When conducting a 

hypothesis test for feasibility, a Z-value of 1.39 indicates that the DGA using standard 

tournament selection performs better than the DGA using variant tournament selection at a 

10% level of significance.  The vastly superior success rate and better quality allows for the 

conclusion that standard tournament selection be used to select parents during Phase 1. 
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9.2.5.3 Comparison of Phase 1 mutation operators 

Four mutation operators are used separately with the DGA.  These operators are the 2VH, 

1VH, 2VNH and 1VNH operators discussed in Chapter 7.  While testing these operators, the 

processes and parameter values listed in Table 9.58 were used. 

 
Table 9.58:  Processes and parameter values to test best mutation operator 

(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 75 

Generations 50 

 

The success rates and average quality found when using the DGA with each of the four 

mutation operators are shown below. 

 

Table 9.59:  Results obtained using different mutation operators (Phase 1) 

Success Rate 

2VH 1VH 2VNH 1VNH 

23.33% 40.00% 0.00% 0.00% 

Average HC Violations (and standard deviations) 

2VH 1VH 2VNH 1VNH 

2.27 (1.8) 1.80 (1.85) 49.13 (33.69) 900.07 (112.8) 

Average Quality 

2VH 1VH 2VNH 1VNH 

8.14 8.50 NA NA 

 

The success rates listed in Table 9.59 indicate that the DGA using the 2VNH or the 1VNH 

operators do not produce any feasible timetables.  The DGA did find feasible timetables 

when using the 1VH or 2VH operators.  The large difference in the average number of hard 

constraint violations indicates the importance of hill climbing when addressing this school 
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timetabling problem.  Similar to the Lewitt and Abramson problem, the Woodlands problem 

requires that all tuples are allocated to all available periods with no free periods.  With the 

addition of subclass and co-teaching requirements that involve several classes and 

teachers, the probability of clashes when swapping increases (thus the need for hill 

climbing).  The DGA using the 1VH operator produces more feasible timetables while the 

DGA using the 2VH operator produces better quality timetables.  Hypothesis tests are 

conducted for feasibility.  The hypothesis tested is that the DGA using the 1VH operator 

performs better than the DGA using the 2VH operator.  A Z-value of 0.99 is calculated, 

indicating that there is not enough evidence to suggest that there is a statistically significant 

difference in performance between the two mutation operators.  The 1VH operator is chosen 

as the preferred mutation operator due to the high success rate obtained. 

9.2.5.4 Comparison of Phase 2 selection methods 

For Phase 2, standard tournament selection and variant tournament selection are 

considered when selecting parents.   

 

Table 9.60:  Processes and parameter values to test best Phase 2 selection method 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Mutation Random swap 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 75 

Generations 50 

 

The calculated success rates and average qualities are exactly the same and can be seen in 

Table 9.61 below.  Therefore, either selection method can be used. 
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Table 9.61:  Results using two selection methods (Phase 2) 

Success Rate 

Standard Variant 

40.00% 40.00% 

Average Quality 

Standard Variant 

8.50 8.50 

 

9.2.5.5 Comparison of Phase 2 mutation operators 

Four mutation operators are used during Phase 2 to improve the quality of the feasible 

timetables.  The four mutation operators are the random swap, 1V mutation, 2V mutation 

and the row swap.  The 2V and 1V mutation operators are not considered as these mutation 

operators had difficulty in addressing subclass and co-teaching violations (tuples were often 

swapped with non-subclass or non-coteaching tuples, resulting in this constraint not being 

satisfied).   

 

Two new mutation operators were considered; with both operators being variations of the 1V 

mutation operator.  The first new operator finds a single soft constraint violation.  If the 

violation found involves subclass violations, then the entire row is swapped rather than just 

the cells involved.  This mutation is referred to as 1 violation subclass row swap (1VSRS).  

The second new operator is a one violation row mutation where the entire row of a cell 

containing any soft constraint violation is swapped with a randomly chosen row.  This 

mutation operator is referred to as the 1 violation row swap (1VR).  The use of the row swap 

was justified as swapping of rows rather than specific tuples prevents the possibility of 

clashes and prevents tuples involved in subclass or co-teaching requirements from being 

separated.  Table 9.62 lists the processes and parameter values used when testing each 

mutation operator. 
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Table 9.62:  Processes and parameter values to test best Phase 2 mutation operator 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid mutation 

Phase 2 

Selection Standard 

Constant Parameter Values 

SCM 10 

Population Size 500 

Tournament Size 10 

Swaps per mutation 75 

Generations 50 

 

The average qualities found for the DGA approach using each mutation operator is listed in 

the table below (Table 9.63). 

 

Table 9.63:  Results obtained using proposed soft mutation operators (Phase 2) 

Average Quality (Feasible Timetables) 

Random Swap (RaS) Row swap (RS) 1VSRS 1VR 

8.50 6.92 5.00 6.92 

Standard deviation 

Random Swap (RaS) Row swap (RS) 1VSRS 1VR 

1.51 0.79 1.41 0.79 

 

The DGA using the 1VSRS produces the best quality timetables with an average of five soft 

constraint violations per feasible timetable produced.  The frequency distribution (Figure 

9.15) showing the number of quality timetables produced also indicates that this mutation 

operator performs better than the other operators.  From all the feasible timetables 

produced, the DGA using this mutation operator produces the best timetable with three soft 

constraint violations.  Based on the quality obtained and the frequency chart shown below, 

the best mutation operator is the 1VSRS mutation where rows are swapped only when a co-

teaching/subclass violation is found. 
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Figure 9.15:  Frequency chart showing quality for proposed soft mutation operators 

 

Hypothesis tests are conducted for quality and three hypotheses are tested.  The 

Hypotheses are: 

 

 The DGA using the 1VSRS operator performs better than the DGA using the RaS 

 The DGA using the 1VSRS performs better than the DGA using RS 

 The DGA using the 1VSRS performs better than the DGA using 1VR 

 

The hypotheses and corresponding Z-values are listed in Table 9.64. 

 

Table 9.64:  Hypotheses and Z-values for quality 

Hypothesis Z-value 

H0:  µRaS = µ1VSRS;  

HA:  µRaS > µ1VSRS 
0.01 

H0:  µRS = µ1VSRS;  

HA:  µRS > µ1VSRS 
0.01 

H0:  µ1VR = µ1VSRS;  

HA:  µ1VR > µ1VSRS 
0.01 

 

From the Z-values, it is concluded that there is no statistically significant difference in 

performance between any of the mutation operators.  This is due to the average cost and the 

standard deviation values of the results being close to each other.  The chosen Phase 2 

mutation operator is the 1VSRS mutation operator.  The DGA using this mutation operator 
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produces the better quality timetables more frequently than the DGA using the other tested 

operators. 

9.2.6 Best performing DGA processes 
Table 9.65 shows a summary of all the heuristics, selection methods and genetic operators 

that were chosen for each of the data sets. 

 

Table 9.65:  Summary of best heuristics, methods and operators for each data set 

 PHASE 1 PHASE 2 

Data Set Primary 
construction 
Heuristic 

Secondary 
heuristics 

Selection 
Method 

Genetic 
Operators 

Selection 
Method 

Genetic 
Operator 

HDTT4 Saturation  Std/Variant 2VNH   

HDTT5 Saturation  Variant 2VNH   

HDTT6 Saturation  Variant 2VNH   

HDTT7 Saturation  Variant 2VNH   

HDTT8 Saturation  Standard 2VNH   

Valouxis Saturation Teacher 
lessons, 
Teacher 
availability 

Variant 1VHC Variant Random 
Swap 

HS1 Saturation SubClass/Co
-Teaching 

Variant 1VHC Standard 1 Violation 

HS2 Saturation SubClass/Co
-Teaching 

Variant 1VHC Standard 1 Violation 

HS3 Saturation SubClass/Co
-Teaching 

Variant 1VHC Standard 1 Violation 

HS4 Saturation SubClass/Co
-Teaching 

Variant 1VHC Variant 1 Violation 

HS5 Largest 
Degree 

SubClass/Co
-Teaching 

Variant 1VNH Standard Random 
Swap 

HS7 Saturation SubClass/Co
-Teaching 

Variant 1VHC Standard 1 Violation 

Lewitt Saturation Double 
Periods 

Standard Hybrid Variant Random 
Swap 

Woodlands Saturation SubClass/Co
-Teaching, 
Teachers 
involved in 
Co-Teaching, 
Teacher 
lessons 

Standard 1VHC Standard Hybrid 

 

In terms of the construction heuristic, with the exception of data set HS5, the DGA using the 

saturation degree heuristic was able to produce the most number of feasible timetables.  In 

addition, the quality of the timetables produced was better than when using the other low-

level heuristics.  Hypothesis tests conducted indicate that the saturation degree heuristic 

performs better than both the random allocation and largest degree heuristics.  This is due to 
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the ability of the saturation degree to continuously revise priorities for tuples every time an 

allocation is performed.  As a result, a strong initial population is created allowing the 

mutation operators to remove the few remaining constraint violations.  In the event that two 

or more tuples have the same saturation degree value, secondary heuristics must be 

applied.  The secondary heuristics used may vary depending on the complexity and size of 

the problem. 

 

In terms of Phase 1 selection, the choice of variant or standard tournament selection vary 

between problems.  The objective of this phase is to find feasible timetables.  The DGA 

approach using the more elitist standard tournament selection performed better when 

applied to the tightly constrained problem sets such as HDTT8, Lewitt and Woodlands.  The 

DGA approach using the variant tournament selection performed better when applied to the 

smaller and less complex HDTT data sets and the Valouxis and Beligiannis problems. 

 

The chosen mutation operator for Phase 1 varies depending on the problem.  The best 

mutation operator involves searching for a violation and swapping it with either another 

violation or any random tuple.  A hill climbing strategy may be adopted but is not always the 

best option as is found when solving the Abramson problem.  When applying the approach 

to the Abramson problem, it is found that hill climbing adversely affects the performance of 

the DGA.  When conducting hypothesis tests, it is found that the DGA using the mutation 

operators listed in the table above performs better than the DGA using the other mutation 

operators tested. 

 

Similar to Phase 1, the best selection method to use for Phase 2 varies between problems.  

In the case of the Lewitt and Woodlands problems, either selection method can be used.  

For the Lewitt, Woodlands and Valouxis problems, hypothesis tests conducted found that 

there is no significant difference in performance when comparing the DGA using the different 

selection methods.  For the Beligiannis problems, hypothesis tests statistically show (for 

three out of the five data sets) that the DGA using variant tournament selection performed 

better than the DGA approach using standard tournament selection. 

 

As with Phase 1, there is no single dominant mutation operator for Phase 2 and the choice 

of the mutation operator depends on the problem.  In the case of the Woodlands problem, a 

1VH mutation operator is used where a row swap occurs in the event of a soft constraint 

violation for tuples that have subclasses or co-teaching requirements. 
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9.3 Fine-tuning of DGA control parameter values 
This section provides a discussion on the fine-tuning of the control parameter values.  The 

fine-tuning is performed by hand [EIBE99], i.e. experimenting with the DGA using different 

parameter values and choosing the parameter value that produced the best results.  It must 

be noted that parameters are not independent and different sets of parameter values may 

perform better than others.  However, experimentation using different combinations of 

parameter values will be a time consuming process that will involve a large number of 

experiments.  It is thus practically unfeasible and as a result the parameter values obtained 

in this study cannot be regarded as optimal.  

 

Each parameter is fine-tuned while other processes and parameter values remain constant.  

Similar to experiments conducted by Caldeira [CALD97], Tongchim [TONG99], Sarmady 

[SARM07], Goldberg et al. [GOLE89], and Sigl [SIGL03], between three and four values are 

tested per parameter with each value being within a specified range.  The tested parameters 

along with the range of values being tested are listed in Table 9.66 below.  The range of 

population sizes are based on the population sizes used in studies by Goldberg et al. 

[GOLE89], Spears [SPED91] and Zitzler [ZITZ99].  In the study by Xie [XIE09], tournament 

sizes of between 5 and 20 were used and similar values are tested in this study. 

 

Table 9.66:  Ranges for each parameter value 

Parameter Tested range Note: 

SCM size 1 to 100 Only applicable to Phase 
1. 

Population size 200 to 1000 Constant population size 
adopted for every 
generation. 

Tournament size 5 to 20 Applicable to tournament 
selection for Phase 1 and 
Phase 2. 

Swaps 20 to 200 Applicable to mutation 
operators for Phase 1 and 
Phase 2. 

Maximum number of 
generations 

20 to 75 Applicable to Phase 1 and 
Phase 2. 

 

Based on the performance of the algorithm with the different parameter values, a decision 

will be made as to which parameter values to use. 

9.3.1 The Abramson benchmark school timetabling problem 
This section describes the results of fine-tuning the parameter values for the Abramson 

benchmark problem. 
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9.3.1.1 Fine tuning the SCM size 

The SCM creates and evaluates a set of timetables with the best timetable being added to 

the initial population.  The processes of the genetic algorithms as well as the parameter 

values used when testing each SCM size is listed in the table below: 

 

Table 9.67:  Processes and parameter values to test best SCM size (HDTT problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 2VNH 

Constant Parameter Values 

Population Size 1000 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

Table 9.68 lists the success rates found when using each SCM size as well as the number of 

generations required to find a solution. 

 

Table 9.68:  SCM parameter value – Performance comparison 

  SUCCESS RATE   AVERAGE GEN SOLUTION FOUND 

  SCM Size   SCM Size 

  SCM Size 1 SCM Size 50 SCM Size 100   SCM Size 1 SCM Size 50 SCM Size 100 

HDTT4 100.00% 100.00% 100.00% HDTT4 2 1 1 

HDTT5 93.33% 100.00% 100.00% HDTT5 5 2 2 

HDTT6 46.67% 63.33% 56.67% HDTT6 9 6 7 

HDTT7 20.00% 23.33% 20.00% HDTT7 19 16 15 

HDTT8 6.67% 6.67% 6.67% HDTT8 40 26 20 

 

The table shows that the DGA manages to produce feasible solutions for all SCM values 

tested.  The average hard constraint (HC) cost and the standard deviations are shown in 

Table 9.69. 
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Table 9.69:  Average HC Cost (and standard deviation) for different SCM values 

 SCM Size 1 SCM Size 50 SCM Size 100 

HDTT4 0 (0) 0 (0) 0 (0) 

HDTT5 0.13 (0.51) 0 (0) 0 (0) 

HDTT6 1.07 (1.01) 0.73 (0.98) 0.87 (1.01) 

HDTT7 1.6 (0.81) 1.57 (0.9) 1.63 (0.85) 

HDTT8 1.9 (0.55) 1.9 (0.55) 2 (0.64) 

 

By observing the success rates, it is noted that for each parameter value, there is very little 

difference in performance.  The DGA finds feasible timetables for almost every run when 

applied to the data sets HDTT4 and HDTT5.  As the number of requirements increases, the 

success rate begins to fall.  Figure 9.16 illustrates that the DGA using an SCM value of 50 

produces more feasible timetables than when using other SCM parameter values, but the 

difference is small.  Based on the SCM values tested, it is concluded that the SCM does not 

play a major role in producing feasible timetables for the Abramson school timetabling 

problem. 

 

 

Figure 9.16:  Success rates for various SCM Values 
 

Figure 9.17 illustrates the average number of generations required to find a solution for each 

data set.  The algorithm takes the longest time (in generations) to find a solution when no 

SCM is used.  The main difference is found when using SCM values of 50 and 100 for the 

final data set (HDTT8), with the difference being 5 generations apart.  From the SCM values 

tested, a value of 50 will be used as the DGA produces a slightly higher success rate when 

using this value. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Data Set 

Success Rates for Varied SCM Parameter 
Values 

SCM Size 1

SCM Size 50

SCM Size 100



149 
 

 

 

Figure 9.17:  Bar chart showing average generations for each SCM size 

9.3.1.2 Fine-tuning the population size 

Initially, smaller population sizes were attempted but as can be seen in Table 9.70, results 

were poor as feasible timetables were only induced for the smaller data sets.  As the number 

of resources increases, the search area becomes larger and the DGA using smaller 

population sizes of 50 and 100 performed poorly. 

 

Table 9.70:  Trial runs using population sizes of 100 and 50 

Average HC Violations (and best HC cost):  Population size = 100 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

0 (0) 1.11 (0) 1.78 (0) 2.89 (2) 3.33 (0) 

Average HC Violations (and best HC cost):  Population size = 50 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

1.33 (0) 1.55 (0) 2.22 (2) 2.67 (2) 4.33 (2) 

 

As a result of the poor performance using smaller population sizes, larger population sizes of 

500, 750 and 1000 were considered.  Table 9.71 lists the processes and parameter values 

that were kept constant when testing the different population sizes. 
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Table 9.71:  Processes and parameter values to test best population size (HDTT 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 2VNH 

Constant Parameter Values 

SCM Size 50 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The success rates and the number of generations taken to find a solution are shown in Table 

9.72. 

 

Table 9.72:  Population Size results 

  SUCCESS RATE   AVERAGE GEN SOLUTION FOUND 

  Pop Size   Pop Size 

  500 750 1000   500 750 1000 

HDTT4 100.00% 100.00% 100.00% HDTT4 1 1 1 

HDTT5 86.67% 100.00% 100.00% HDTT5 3 2 2 

HDTT6 33.33% 46.67% 63.33% HDTT6 6 6 6 

HDTT7 3.33% 20.00% 23.33% HDTT7 18 14 16 

HDTT8 3.33% 0.00% 6.67% HDTT8 34 50 26 

 

Table 9.73 lists the average cost (and standard deviations) found when using the DGA with 

different population sizes. 

 

Table 9.73:  Average hard constraint violations (and standard deviations) for different 
population sizes 

 Population Size 

 500 750 1000 

HDTT4 0 (0) 0 (0) 0 (0) 

HDTT5 0.27 (0.69) 0 (0) 0 (0) 

HDTT6 1.33 (0.96) 1.07 (1.01) 0.73 (0.98) 

HDTT7 1.97 (0.41) 1.6 (0.81) 1.57 (0.9) 

HDTT8 2.3 (0.7) 2.3 (0.6) 1.9 (0.55) 
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From Table 9.72 and 9.73 above, it appears that an increase in the population size not only 

resulted in more feasible timetables, but the average number of constraint violations was 

also reduced.  A bar graph of the success rates for different population sizes is depicted 

below (Figure 9.18): 

 

 

Figure 9.18:  Bar chart showing success rates for various population sizes 
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performs best when using this value. 

9.3.1.3 The best tournament size 

The tournament size parameter determines the number of participants to be considered 

during the selection phase of the DGA approach.  Table 9.74 lists the processes and 

parameter values used when testing the different tournament sizes. 
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Table 9.74:  Processes and parameter values to test best tournament size (HDTT 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 2VNH 

Constant Parameter Values 

SCM Size 50 

Population size 1000 

Swaps per mutation 20 

Generations 50 

 

Table 9.75 shows the success rates and the average number of generations taken to find a 

solution.  Table 9.76 shows the average hard constraint cost and the standard deviations 

found when running the DGA with the different tournament sizes. 

 

Table 9.75:  Tournament size results 

  SUCCESS RATE   AVERAGE GEN SOLUTION FOUND 

  Tournament Size   Tournament Size 

  5 10 15 20   5 10 15 20 

HDTT4 100.00% 100.00% 100.00% 100.00% HDTT4 1 1 1 1 

HDTT5 100.00% 100.00% 96.67% 100.00% HDTT5 2 2 2 2 

HDTT6 56.67% 63.33% 76.67% 56.67% HDTT6 8 6 6 5 

HDTT7 30.00% 23.33% 20.00% 10.00% HDTT7 20 16 14 14 

HDTT8 6.67% 6.67% 3.33% 3.33% HDTT8 33 26 29 20 

 

Table 9.76:  Average HC Cost (and standard deviations) 

 Tournament Size 

 5 10 15 20 

HDTT4 0 (0) 0 (0) 0 (0) 0 (0) 

HDTT5 0 (0) 0 (0) 0.07 (0.37) 0 (0) 

HDTT6 0.87 (1.01) 0.73 (0.98) 0.47 (0.86) 0.87 (1.01) 

HDTT7 1.4 (0.93) 1.57 (0.9) 1.6 (0.81) 1.83 (0.65) 

HDTT8 1.93 (0.58) 1.9 (0.55) 2 (0.45) 2.03 (0.49) 

 

A bar graph depicting the success rate of each tournament size is shown below: 
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Figure 9.19:  Column chart showing success rates for various tournament sizes 
 

Feasible solutions are found when using any tournament parameter value with the success 

rates differing for each data set.  For data sets HDTT4 and HDTT5, high success rates of at 
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use is 15, while for HDTT7; the best tournament size to use is 5.  For the HDTT8 data set, 

the algorithm performs best when using tournament sizes of 5 and 10.  A bar chart showing 

the time taken to find solutions in terms of generations is shown below (Figure 9.20). 

 

 

Figure 9.20:  Column chart showing average generations for various tournament sizes 
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The chart illustrates a relationship between the tournament size and the number of 

generations in which solutions are found.  A disadvantage of a higher tournament size is that 

the genetic algorithm converged prematurely due to the higher selection pressure.  While 

feasible solutions are found in a fewer number of generations, the success rate is affected 

as the algorithm converges prematurely.  To conclude, the best tournament size is 

dependent on the problem.  A tournament size of 10 is used as this tournament size 

provides a fair balance between the success rate and number of generations taken to find a 

solution. 

9.3.1.4 Fine-tuning the number of swaps 

The mutation operator performs a number of swaps to reduce hard constraint violations.  

Table 9.77 lists the processes and parameter values used to test the different number of 

swaps.  A table listing the success rates and average number of generations to find a 

solution for each swap parameter value is shown below in Table 9.78. 

 

Table 9.77:  Processes and parameter values to test best swaps per mutation (HDTT 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 2VNH 

Constant Parameter Values 

SCM Size 50 

Population size 1001 

Swaps per mutation 200 

 

Table 9.78:  Results based on number of swaps 

  SUCCESS RATE   AVERAGE GEN SOLUTION FOUND 

  Swaps   Swaps 

  20 50 100 200   20 50 100 200 

HDTT4 100.00% 100.00% 100.00% 100.00% HDTT4 1 1 1 1 

HDTT5 100.00% 100.00% 100.00% 100.00% HDTT5 2 1 1 1 

HDTT6 63.33% 76.67% 80.00% 100.00% HDTT6 6 5 3 2 

HDTT7 23.33% 23.33% 40.00% 46.67% HDTT7 16 10 7 6 

HDTT8 6.67% 10.00% 6.67% 13.33% HDTT8 26 19 12 12 

 

A bar chart depicting the success rates for each data set is shown below (Figure 9.21). 



155 
 

 

Figure 9.21:  Bar chart showing success rates for various numbers of swaps 

 

As can be seen in Figure 9.21 and Table 9.78, there appears to be a relationship between 

the success rate and number of swaps.  The success rate increases as the number of swaps 

increase.  An increase in the number of swaps also affects the number of generations taken 

to find a solution as can be seen in the column chart in Figure 9.22. 

 

 

Figure 9.22:  Column chart showing average generations for each swap parameter 
value 
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of swaps to be used for the DGA is 200 due to the increase in success rate and the 

reduction in generations taken to find a solution. 

9.3.1.5 Maximum number of generations 

Initially, the maximum number of generations is set to fifty.  While conducting tests described 

in sections 9.3.1.1 to 9.3.1.4, it was found that either a solution is found before generation 50 

or the algorithm converges prematurely.  Thus the generation limit for this problem will be set 

at fifty generations. 

9.3.2 The Valouxis school timetabling problem 
This section describes the fine-tuning of the parameter values for the DGA when applied to 

the Valouxis school timetabling problem and the results obtained. 

9.3.2.1 Fine-tuning the SCM size 

The SCM parameter value sets the number of timetables to develop when creating a single 

individual of the initial population.  Once these timetables are created, they are evaluated 

and the fittest timetable is added to the initial population.   

 
Table 9.79:  Processes and parameter values to test best SCM size (Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation 2 Violation 

Constant Parameter Values 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

The influence of the SCM parameter values on success rates, average HC violations and 

average timetable quality is shown in Table 9.80 below. 
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Table 9.80:  Results for various SCM values 

Success Rate 

SCM = 1 SCM = 10 SCM = 50 

70.00% 83.33% 93.33% 

Average HC Cost (and standard deviations) 

SCM = 1 SCM = 10 SCM = 50 

0.3 (0.47) 0.17 (0.38) 0.07 (0.25) 

Average Quality (Feasible Timetables) 

SCM = 1 SCM = 10 SCM = 50 

49.86 47.00 46.89 

 

When using the DGA approach with an SCM value of 50, a 93.33% success rate is found 

over thirty runs.  This is the highest success rate when compared to using SCM values of 1 

and 10.  Over the thirty runs conducted, the DGA approach with an SCM size of 50 also 

produces the best quality timetables on average.  In terms of runtime, a DGA approach with 

a larger SCM size may take longer as more timetables are produced for every individual of 

the initial population. 

 

A frequency chart, showing the distribution of timetables in terms of quality, is shown below: 

 

 

Figure 9.23:  Frequency chart showing quality for various SCM values 
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rate obtained when using this value.  The DGA also produces the best quality timetables on 

average when using an SCM size of 50. 

9.3.2.2 Fine-tuning the population size 

The DGA is tested using three different population sizes (500, 750 and 1000) and the results 

are evaluated and compared in order to determine the population size that produces the best 

success rate and timetable quality.  Trial runs using smaller population sizes of 50 and 100 

were attempted and it was found that feasible timetables were not always produced.  

Additionally, the quality of the feasible timetables was poor when compared to timetables 

produced using larger population sizes.  The results of the trial runs are shown below.  The 

low success rates indicate that the initial coverage of the search space was too small and 

the evolutionary process found difficulty in finding feasible solutions. 

 

Table 9.81:  Trial runs using small population sizes (Valouxis) 

 Population size = 100 Population size = 50 

Success rate 40% 20% 

Average HC Cost 0.78 1.22 

Best HC Cost 0 0 

Average SC Cost 51.75 58.5 

Best SC Cost 46 57 

 

The following table shows the processes and parameters used when testing the effect of 

different population sizes on the performance of the DGA. 
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Table 9.82:  Processes and parameter values to test best population size (Valouxis 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation 2 Violation 

Constant Parameter Values 

SCM Size 50 

Tournament Size 10 

Swaps per mutation 20 

Generations 50 

 

A summary of the performance of the algorithm using each of the population sizes is shown 

in Table 9.83 below. 

 

Table 9.83:  Results for various population sizes 

Success Rate 

Pop = 500 Pop = 750 Pop = 1000 

73.33% 93.33% 100.00% 

Average HC Cost (and standard deviations) 

Pop = 500 Pop = 750 Pop = 1000 

0.27 (0.45) 0.07 (0.25) 0 (0) 

Average Quality (Feasible Timetables) 

Pop = 500 Pop = 750 Pop = 1000 

48.68 46.89 45.53 
 

Using a population size of 1000 allows the DGA to find feasible solutions for all thirty runs 

that are conducted.  The difference in quality when using different population sizes is small, 

with the DGA producing between 45 and 46 soft constraint violations when using population 

sizes of 750 and 1000 respectively.  A frequency chart showing the number of timetables 

found in each soft constraint cost is displayed below (Figure 9.24). 
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Figure 9.24:  Frequency chart showing quality for various population sizes 

 

The frequency chart illustrates that the DGA using a population size of 1000 produces more 

feasible timetables that contain between 30 and 50 soft constraint violations than when using 

any of the other tested population sizes.  A population size of 1000 will therefore be used 

due to the DGA producing the highest success rate when using this population size.  Better 

quality timetables are also produced when using this population size. 

9.3.2.3 Fine-tuning the tournament size 

The DGA is run with three tournament sizes of 5, 10 and 15.  The following table (Table 

9.84) displays the processes and parameter values used to test for the best tournament size. 
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Table 9.84:  Processes and parameter values to test best tournament size (Valouxis 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation 2 Violation 

Constant Parameter Values 

SCM Size 50 

Population Size 1000 

Swaps per mutation 20 

Generations 50 

 

The success rates, average HC cost and average timetable quality found when using 

different tournament sizes are shown in the table below. 

 
Table 9.85:  Results for various tournament sizes 

Success Rates 

5 10 15 

100% 100% 93.33% 

Average HC Cost (and standard deviations) 

5 10 15 

0 (0) 0 (0) 0.07 (0.25) 

Average Quality (Feasible timetables) 

5 10 15 

46.03 45.53 46.68 
 

The DGA produces high success rates when using all tested tournament sizes.  The 

difference in timetable quality when using different tournament sizes is very small.  A 

tournament size of 10 produces timetables with the best average quality of approximately 45 

soft constraint violations per feasible timetable.  The timetable with the best quality is 

produced when using a tournament size of 15 (37 soft constraint violations).  The frequency 

chart (Figure 9.25) shows the distribution of timetables with regard to quality. 
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Figure 9.25:  Frequency chart showing quality for various tournament sizes 

 

For all runs, the DGA using all tournament sizes produces at least one timetable with soft 

constraint costs of between 30 and 39.  The majority of the timetables generated contain 

between 40 and 49 soft constraint violations.  In conclusion, a tournament size of 10 

produces the best performance in terms of average timetable quality (although the difference 

is small).  The frequency chart also shows that the DGA produces better quality timetables 

more frequently when using a tournament size of 10. 

9.3.2.4 Fine-tuning the number of swaps 

The DGA is tested using four different swap parameter values.  The objective is to determine 

the best swap parameter value to use.  Table 9.86 lists the processes and parameter values 

used when testing the DGA with each of the swap parameter values.  
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Table 9.86:  Processes and parameter values to test best swap parameter value 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation 2 Violation 

Constant Parameter Values 

SCM Size 50 

Population Size 1000 

Tournament Size 10 

Generations 50 

 

Table 9.87 shows the success rates and average timetable quality found when the DGA is 

run with different swap parameter values. 

 

Table 9.87:  Results for different number of swaps per mutation 

Success Rate 

Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200 

100% 100% 100% 100% 

Average Quality (Feasible Timetables) 

Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200 

44.63 42.47 41.97 41.03 
 

The DGA produces feasible timetables when using any swap parameter value.  Based on 

the average quality of the timetables produced, a trend is shown where increasing the 

number of swaps results in an improvement of the quality of the timetable.  This also affects 

the runtime as more swaps result in the algorithm taking longer to reach the generation limit.  

The best timetable found contains 35 soft constraint violations and is found when using a 

swap parameter value of 100.  The frequency diagram (Figure 9.26) below illustrates the 

distribution of timetables in terms of quality when using different swap parameter values. 
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Figure 9.26:  Frequency chart showing quality for various swap values 

 

Figure 9.26 clearly shows that the majority of timetables created contain between 40 and 49 

soft constraint violations.  For all runs, eight timetables are found that have between 30 and 

39 soft constraint violations when running the genetic algorithm with a swap parameter value 

of 100.  A swap value of 100 will therefore be used because of the high success rate 

obtained as well as having produced the most high quality timetables. 

9.3.2.5 Maximum number of generations 

In order to determine the best number of generations to use, the convergence point of the 

algorithm must be determined.  Three generation parameter values are tested with the 

following processes and parameter values being constant. 
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Table 9.88:  Processes and parameter values to test best number of generations 
(Valouxis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Variant 

Mutation 1VH 

Phase 2 

Selection Variant 

Mutation 2 Violation 

Constant Parameter Values 

SCM Size 50 

Population Size 1000 

Tournament Size 10 

Swaps per mutation 100 

 

The success rates listed in Table 9.89 indicate that feasible timetables are produced for all 

three tested generation values.  In terms of quality, generation values of 50 and 75 produce 

the same quality timetables for all runs.  This means that before this point, the algorithm has 

converged between generations 20 and 50.  For the Valouxis problem, a generation 

parameter value of 50 is used.  The timetables do not improve in quality after 50 

generations. 

 

Table 9.89:  Results for different number of generations per phase 

Success Rates 

20 50 75 

100% 100% 100% 

Average Quality 

20 50 100 

43.43 41.97 41.97 

 

9.3.3 The Beligiannis Greek school timetabling problem 
The following sections outline the fine-tuning process for control parameter values when 

applying the DGA to the Beligiannis high school timetabling problem. 

9.3.3.1 Fine-tuning the SCM size 

The sequential construction method creates a set of timetables with the best timetable being 

added to the initial population.  The SCM is called X times where X is the size of the 
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population.  Table 9.90 lists the processes and parameter values used to test the DGA using 

the different SCM values. 

 

Table 9.90:  Processes and parameter values to test SCM size (Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for HS5) 

Selection Variant 

Mutation 1VH (1VNH for HS5) 

Phase 2 

Selection Standard 

Mutation 1 Violation (Random swap for HS5) 

Constant Parameter Values 

Population Size 750 

Tournament Size 10 

Swaps per mutation 20 

Number of generations 50 

 

The DGA is tested using four SCM values and the success rates are listed below. 

 

Table 9.91:  Success rates for various SCM parameter values 

Success Rates 

  SCM = 1 SCM = 10 SCM = 25 SCM = 50 

HS1 100.00% 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 100.00% 

HS5 100.00% 100.00% 100.00% 100.00% 

HS7 100.00% 100.00% 100.00% 100.00% 

 

An SCM parameter value of 1 indicates that no SCM is used.  Table 9.91 shows that for all 

runs, all SCM values produce feasible timetables.  In order to determine the best SCM value, 

the average quality of the timetables produced must be compared.  The average timetable 

quality found for each data set by applying the DGA with different SCM parameter values is 

shown in the Table 9.92. 
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Table 9.92:  Average quality found per data set using different SCM parameter values 

Average Quality (and standard deviation) 

  SCM = 1 SCM = 10 SCM = 25 SCM = 50 

HS1 117.67 (8.1) 115.10 (7.02) 114.03 (5.83) 115.77 (8) 

HS2 120.27 (7.24) 122.87 (8.34) 123.20 (7.03) 122.53 (7.32) 

HS3 49.27 (4.83) 48.00 (3.99) 48.20 (5.23) 48.20 (4.06) 

HS4 75.83 (4.59) 74.27 (4.28) 73.63 (4.30) 74.03 (5.40) 

HS5 57.40 (7.83) 55.53 (7.97) 57.47 (8.88) 54.80 (8.56) 

HS7 139.80 (6.12) 138.13 (7.44) 137.33 (5.65) 137.53 (6.13) 

 

For the data sets HS1, HS4 and HS7, an SCM value of 25 produces the best quality 

timetables.  An SCM value of 1 and 10 produce the best quality timetables for data sets HS2 

and HS3 respectively.  When applied to data set HS5, the DGA produces the best quality 

timetables when using an SCM value of 50.  When using this SCM value, the number of 

average soft constraint violations is reduced by at least one. 

 

The success rates and average quality vary between data sets.  Any of the tested SCM 

values could be used and feasible timetables are produced.  In terms of quality, the ideal 

SCM parameter value varies between data sets.  An SCM size of 25 is used when 

conducting the remaining tests for this problem. 

9.3.3.2 Fine-tuning the population size 

Three population sizes of 200, 500 and 750 are tested and 100% success rates are 

achieved when applying the DGA to all of the data sets, meaning that the DGA using any of 

the three population sizes tested manages to produce feasible timetables for every run (see 

Table 9.95).  Trial runs using smaller population sizes were also attempted.  While feasible 

timetables were found, timetable quality was poor when compared to larger population sizes 

(see Table 9.93). 

 

Table 9.93:  Trial runs for smaller populations sizes (Beligiannis problem) 

Populations size = 100 

 HS1 HS2 HS3 HS4 HS5 HS7 

Average SC cost 125.78 136.78 53.56 79.11 75.13 145.44 

Best SC cost 117 128 44 73  62 133 

Population size = 50 

 HS1 HS2 HS3 HS4 HS5 HS7 

Average SC cost 128 140.78 54.89 83.89 73.38 150.67 

Best SC cost 117 131 52 79 63 145 

 



168 
 

Table 9.94 below shows the processes and parameter values that are kept constant when 

testing each population size. 

 

Table 9.94:  Processes and parameter values to test population size (Beligiannis 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for HS5) 

Selection Variant 

Mutation 1VH (1VNH for HS5) 

Phase 2 

Selection Standard 

Mutation 1 Violation (Random swap for HS5) 

Constant Parameter Values 

SCM size 25 (50 for HS5) 

Tournament Size 10 

Swaps per mutation 20 

Number of generations 50 

 

Table 9.95:  Success rates for different population sizes 

Success Rates 

  Pop Size = 200 Pop Size = 500 Pop Size = 750 

HS1 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 

HS5 100.00% 100.00% 100.00% 

HS7 100.00% 100.00% 100.00% 

 

In order to determine the best population size, timetable quality must also be compared.  

The average timetable quality found when the DGA approach is applied to each data set 

using different population sizes is listed in Table 9.96. 
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Table 9.96:  Average quality produced for different population sizes 

Average Soft Constraint Violations (and standard deviations) 

  Pop Size = 200 Pop Size = 500 Pop Size = 750 

HS1 120.03 (7.91) 117.40 (6.09) 114.03 (5.83) 

HS2 129.40 (8.27) 125.83 (8.79) 123.20 (7.03) 

HS3 51.57 (5.67) 49.80 (3.97) 48.20 (5.23) 

HS4 76.60 (5.12) 74.07 (4.76) 73.63 (4.30) 

HS5 61.70 (10.82) 59.30 (10.55) 54.80 (8.56) 

HS7 143.07 (8.41) 138.00 (6.51) 137.33 (5.65) 

 

The table shows that for all data sets, a population size of 750 produces the best quality 

timetable on average.  The column chart in Figure 9.27 illustrates the results listed in Table 

9.96.  Figure 9.27 shows that the best quality timetables are produced when using the 

largest population size of 750. 

 

 

Figure 9.27:  Column chart showing quality of different population sizes 

 

The population size to be used is 750 as the DGA approach found better quality timetables 

when using this parameter value. 
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The DGA is run using different tournament sizes of 5, 10 and 15.  The processes and 
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shown in the Table 9.98. 
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Table 9.97:  Processes and parameter values to test best tournament size (Beligiannis 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for HS5) 

Selection Variant 

Mutation 1VH (1VNH for HS5) 

Phase 2 

Selection Standard 

Mutation 1 Violation (Random swap for HS5) 

Constant Parameter Values 

SCM size 25 (50 for HS5) 

Population size 750 

Swaps per mutation 20 

Number of generations 50 

 

Table 9.98:  Success rates produced for various tournament sizes 

Success Rates 

  Tourn Size = 5 Tourn Size = 10 Tourn Size = 15 

HS1 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 

HS5 100.00% 100.00% 100.00% 

HS7 100.00% 100.00% 100.00% 

 

In order to determine the tournament size, the average quality of timetables produced also 

needs to be analyzed.  The quality of timetables produced using the DGA approach with 

different tournament sizes are listed in Table 9.99. 

 

Table 9.99:  Average quality produced using different tournament sizes 

Average SC Cost (and standard deviations) 

  Tourn Size = 5 Tourn Size = 10 Tourn Size = 15 

HS1 115.37 (5.13) 114.03 (5.83) 114.30 (7.19) 

HS2 122.13 (6.64) 123.20 (7.03) 121.87 (8.02) 

HS3 46.20 (4.53) 48.20 (5.23) 47.43 (4.64) 

HS4 71.70 (3.94) 73.63 (4.3) 72.07 (4.56) 

HS5 52.63 (7.76) 54.80 (8.56) 57.90 (7.34) 

HS7 137.60 (6.31) 137.33 (5.65) 136.90 (6.75) 
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Table 9.99 shows that for each data set, the DGA approach could use different tournament 

sizes in order to produce better quality timetables.  For the larger data sets with more 

classes and teachers (HS1, HS2 and HS7), a tournament size of between 10 and 15 

performs best (higher selection pressure) while for the smaller size data sets (HS3, HS4 and 

HS5), a tournament size of 5 produces the best quality timetables (lower selection pressure).  

With the exception of data set HS5, the tournament size is set to 15.  For data set HS5, a 

tournament size of 5 will be used as the average quality of timetables produced using this 

tournament size are found to be better than when using other tournament sizes. 

9.3.3.4 Fine-tuning the number of swaps 

This fine-tuning test determines the number of swaps that the mutation operator must 

perform when applied to each individual.  Swap values of 20, 50, 100 and 200 were tested 

with the following processes and parameter values (Table 9.100): 

 

Table 9.100:  Processes and parameter values to test best number of swaps 
(Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for HS5) 

Selection Variant 

Mutation 1VH (1VNH for HS5) 

Phase 2 

Selection Standard 

Mutation 1 Violation (Random swap for HS5) 

Constant Parameter Values 

SCM size 25 (50 for HS5) 

Population size 750 

Tournament size 15 (5 for HS5) 

Number of generations 50 

 

The success rate and average quality found for the DGA approach using four different swap 

parameter values is shown in Tables 9.101 and 9.102. 
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Table 9.101:  Success rates produced using different swap parameter values 

Success Rates 

  Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200 

HS1 100.00% 100.00% 100.00% 100.00% 

HS2 100.00% 100.00% 100.00% 100.00% 

HS3 100.00% 100.00% 100.00% 100.00% 

HS4 100.00% 100.00% 100.00% 100.00% 

HS5 100.00% 56.67% 13.33% 0.00% 

HS7 100.00% 100.00% 100.00% 100.00% 

 

Table 9.102:  Average quality produced using different swap parameter values 

Average SC Cost (and standard deviations) 

  Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200 

HS1 114.30 (7.19) 112.60 (6.63) 109.33 (6.72) 107.20 (6.21) 

HS2 121.87 (8.02) 118.20 (7.90) 117.77 (5.82) 113.23 (7.83) 

HS3 47.43 (4.64) 45.13 (3.14) 45.00 (3.95) 42.47 (3.69) 

HS4 72.07 (4.56) 71.77 (4.87) 69.70 (4.15) 68.80 (4.25) 

HS5 52.63 (7.76) 51.94 (7.39) 48.50 (9.88) NA 

HS7 136.90 (6.75) 135.70 (5.64) 135.17 (5.81) 130.40 (6.08) 

 

Tables 9.101 and 9.102 show that, with the exception of data set HS5, 100% success rates 

are found when using the DGA approach with any swap parameter value.  The average 

quality must be used to determine the best swap parameter value.  With the exception of 

data set HS5, the DGA produces the best quality timetables when a swap parameter value 

of 200 is used.  This conclusion is also be made when observing the column chart below 

(Figure 9.28). 

 

 

Figure 9.28:  Average quality found for different swap parameter values 
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The column chart also shows the effect on quality of timetables produced when increasing 

the swap parameter value.  The table also indicates an inverse relationship between the 

number of swaps and the resultant number of soft constraint violations i.e. as the number of 

swaps increase, the number of soft constraint violations decrease.  This trend is observed 

when the DGA is applied to any of the data sets.   

 

Therefore, the best value for the number of swaps parameter is 200.  For the HS5 data set, 

the best number of swaps is set to 20 as this swap parameter value produces the most 

number of feasible timetables. 

9.3.3.5 Maximum number of generations 

Generation parameter values of 20, 50 and 75 are used and the performance of the DGA is 

evaluated for each generation parameter value.   

 

Table 9.103:  Processes and parameter values to test best number of generations 
(Beligiannis problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree (Largest degree for HS5) 

Selection Variant 

Mutation 1VH (1VNH for HS5) 

Phase 2 

Selection Standard 

Mutation 1 Violation (Random swap for HS5) 

Constant Parameter Values 

SCM size 25 (50 for HS5) 

Population size 750 

Tournament size 15 (5 for HS5) 

Number of swaps 200 (20 for HS5) 

 

The results are displayed below and show the success rates and average quality of the 

timetables obtained. 
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Table 9.104:  Success rates for varying number of generations 

Success Rates 

  Gens = 20 Gens = 50 Gens = 75 

HS1 100% 100% 100% 

HS2 100% 100% 100% 

HS3 100% 100% 100% 

HS4 100% 100% 100% 

HS5 0% 100% 100% 

HS7 100% 100% 100% 

 

Table 9.105:  Average quality produced for different generation parameter values 

Average SC Cost 

  Gens = 20 Gens = 50 Gens = 75 

HS1 107.73 107.20 107.17 

HS2 113.50 113.23 113.23 

HS3 42.47 42.47 42.47 

HS4 68.80 68.80 68.80 

HS5 NA 52.63 52.33 

HS7 130.80 130.40 130.40 

 

100% success rates are found for all data sets except when using 20 generations for data 

set HS5.  This indicates that for this data set, the DGA has not yet converged.  In terms of 

timetable quality, the DGA converges before generation 20 for data sets HS3 and HS4 (the 

smaller data sets in terms of requirements, teachers and classes).  For the data sets HS1 

and HS5, timetable quality stops improving after generation 50 while for data sets HS2 and 

HS7, timetables stop improving after generation 20.  The best number of generations (from 

the values tested) for all data sets is 75 as the algorithm would have converged at this point. 

9.3.4 The W.A. Lewitt primary school timetabling problem 
This section describes the fine-tuning process when the DGA approach is applied to the 

W.A. Lewitt primary school timetabling problem.  All parameter values except the SCM size 

are used for both Phase 1 and Phase 2 of the approach. 

9.3.4.1 Fine-tuning the SCM size 

The performance of the DGA is compared using four SCM values.  These values are 1, 10, 

20 and 50.  The following processes and parameter values were kept constant when testing 

these SCM values. 
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Table 9.106:  Processes and parameter values to test best SCM size (Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

Population size 500 

Tournament size 10 

Number of swaps 200 

Number of generations 50 

 

The success rates and average quality of timetables produced using the DGA approach with 

each SCM value is shown in Table 9.107. 

 

Table 9.107:  Success rates and average quality obtained using different SCM 
parameter values 

Success Rates 

SCM = 1 SCM = 10 SCM = 20 SCM = 50 

26.67% 43.33% 60.00% 33.33% 

Average HC Cost (and standard deviations) 

SCM = 1 SCM = 10 SCM = 20 SCM = 50 

1.10 (0.8) 0.77 (0.82) 0.63 (0.89) 1.03 (1.00) 

Average Quality (and standard deviations) 

SCM = 1 SCM = 10 SCM = 20 SCM = 50 

10.50 (2.93) 10.54 (3.36) 10.83 (2.55) 10.70 (2.87) 

 

The best success rate is obtained when using a SCM value of 20.  In terms of average 

quality, there is very little difference found when using any of the SCM values tested.  The 

frequency diagram (Figure 9.29) also indicates that 6 out of the 18 (33%) timetables 

produced using an SCM value of 20 contain between 0 and 9 soft constraint violations.  The 

DGA with an SCM value of 10 produces 38% of the timetables in this range. 
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Figure 9.29:  Frequency chart showing quality for different SCM values 

 

Based on the success rates and the frequency chart, the DGA approach with an SCM of 20 

performs better than any other of the SCM values tested.  The DGA approach also produces 

the best quality timetable when using this parameter value (6 soft constraint violations).  An 

SCM size of 20 will therefore be used. 

9.3.4.2 Fine-tuning the population size 

Initially, a lower population size of 50 was attempted, but only one feasible timetable was 

found from the initial runs and each run had an average of two hard constraint violations.  

The genetic algorithm is then run using population sizes of 100, 200 and 500 respectively.  

The performance of the algorithm using each population size is then compared.  The 

processes and parameter values used when testing the different population sizes are listed 

in Table 9.108. 
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Table 9.108:  Processes and parameter values to test best population size (Lewitt 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM size 20 

Tournament size 10 

Number of swaps 200 

Number of generations 50 

 

The success rates, average HC cost and average quality for the DGA using each population 

size is shown in Table 9.109. 

 

Table 9.109:  Results obtained for different population sizes 

Success Rates 

Pop Size = 100 Pop Size = 200 Pop Size = 500 

16.67% 36.67% 60.00% 

Average HC Cost (and standard deviations) 

Pop Size = 100 Pop Size = 200 Pop Size = 500 

1.6 (1.19) 1.03 (1.13) 0.63 (0.89) 

Average Quality (and standard deviations) 

Pop Size = 100 Pop Size = 200 Pop Size = 500 

11.80 (1.92) 9.82 (2.23) 10.83 (2.55) 

 

Table 9.109 shows that there is a relationship between an increase in the success rate and 

an increase in the population size.  The DGA approach with a population size of 500 

produces the highest success rate followed by a population size of 200 and a population size 

of 100.  In terms of timetable quality, the average number of soft constraint violations is 

lowest when using a population size of 200.  The difference in quality when comparing 

population sizes of 200 and 500 is less than one soft constraint violation.  The frequency 

chart below (Figure 9.30) provides more details in terms of timetable quality. 
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Figure 9.30:  Frequency chart showing quality for various population sizes 
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Table 9.110:  Processes and parameter values to test best tournament size (Lewitt 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM size 20 

Population size 500 

Number of swaps 200 

Number of generations 50 

 

The success rates and average quality of the timetables produced is shown in Table 9.111. 

 

Table 9.111:  GA approach performance when using two tournament sizes 

Success Rates 

Tournament Size = 10 Tournament Size = 20 

60.00% 30.00% 

Average Quality (Feasible timetables) 

Tournament Size = 10 Tournament Size = 20 

10.83 11.22 

 

By observing the success rates, it is concluded that the DGA using a tournament size of 10 

performs the best.  The DGA approach using this tournament size produces the most 

feasible timetables.  The low success rate when using a tournament size of 20 indicates that 

the selection pressure was too high.  This resulted in the algorithm converging prematurely. 

 

The frequency chart below (Figure 9.31) also shows that a sufficient number of high quality 

timetables are produced when using a tournament size of 10.  The tournament size that will 

be used is therefore 10. 
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Figure 9.31:  Frequency chart showing quality for various tournament sizes 
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Table 9.112:  Processes and parameter values to test best number of swaps (Lewitt 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM size 20 

Population size 500 

Tournament size 10 
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The success rates, average HC cost and average quality of the timetables produced when 

applying each of these parameter values are shown in the table below (Table 9.113). 
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Table 9.113:  Results produced using various swap parameter values 

Success Rates 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200 

26.67% 16.67% 23.33% 60.00% 

Average HC Cost (and standard deviations) 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200 

1.27 (1.01) 1.23 (0.82) 1.2 (0.92) 0.63 (0.89) 

Average Quality (and standard deviations) 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200 

11.63 (4.00) 11.60 (2.3) 10.86 (1.57) 10.83 (2.55) 

 

From Table 9.113, it can be seen that the highest success rate is obtained when the genetic 

algorithm is run using a swap parameter value of 200.  The number of swaps also affects the 

quality of the timetables produced where the average soft constraint cost decreases as the 

swap parameter value increases.  The frequency chart below (Figure 9.32) shows the 

distribution of timetables with regard to soft constraint violations. 

 

 

Figure 9.32:  Frequency chart showing quality using various swap parameter values 
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success rate in producing feasible timetables and its ability to produce timetables of a high 

quality.   

9.3.4.5 Maximum number of generations 

This parameter indicates the number of generations for each phase.  The performance of the 

DGA approach using each generation parameter value is shown in Table 9.114. 

 

Table 9.114:  Processes and parameter values to test best number of generations 
(Lewitt problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation Degree 

Selection Standard 

Mutation Hybrid 

Phase 2 

Selection Variant 

Mutation Random swap 

Constant Parameter Values 

SCM size 20 

Population size 500 

Tournament size 10 

Number of swaps 200 

 

Table 9.115:  Results produced using different generation parameter values 

Success Rate 

Generations = 20 Generations = 50 Generations = 75 

40.00% 60.00% 60.00% 

Average Quality 

Generations = 20 Generations = 50 Generations = 75 

11.17 10.83 10.83 

 

When testing the DGA approach using 20 generations, the success rate and average quality 

calculated over the thirty runs is found to be 40% and 11.17 respectively.  After 50 

generations, the success rate and average quality is found to be 60% and 10.83 

respectively.  After 75 generations, the success rate and average quality of timetables are 

found to be the same as the success rate and average timetable quality of generation 50.  

This indicates that the algorithm converges between generations 20 and 50.  The number of 
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generations is therefore set to 50 as timetable quality could not be improved any further after 

50 generations. 

9.3.5 The Woodlands secondary school timetabling problem 
This section describes the results of fine-tuning the parameters of the DGA for the 

Woodlands secondary school timetabling problem.  All parameter values except the SCM 

size are used for both Phase 1 and Phase 2 of the approach. 

9.3.5.1 Fine-tuning the SCM size 

The DGA approach is tested using four SCM sizes.  While testing the different SCM values, 

all processes of the DGA and other parameter values are kept constant (see Table 9.116) 

 

Table 9.116:  Processes and parameter values to test best SCM Size (Woodlands 
problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Selection Standard 

Mutation 1 Violation swap with combination row swap 

Constant Parameter Values 

Population size 500 

Tournament size 10 

Number of swaps 75 

Number of generations 50 

 

The success rates, average HC costs and average quality of timetables found when using 

each SCM value is shown in the table below (Table 9.117). 
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Table 9.117:  Results using various SCM values 

Success Rate 

SCM = 1 SCM = 5 SCM = 10 SCM = 20 

16.67% 26.67% 40.00% 40.00% 

Average HC Cost (and standard deviation) 

SCM = 1 SCM = 5 SCM = 10 SCM = 20 

2.8 (2.14) 2.13 (1.66) 1.8 (1.85) 1.6 (1.61) 

Average Quality (Feasible timetables) 

SCM = 1 SCM = 5 SCM = 10 SCM = 20 

4.60 5.50 5.00 4.75 

 

The DGA approach using SCM values of 10 and 20 produce the highest success rates.  In 

terms of quality, the DGA using an SCM value of 20 produces slightly better quality 

timetables on average.  The best possible timetable is also found when the DGA uses an 

SCM value of 20 (two soft constraint violations).  The frequency chart (Figure 9.33) below 

shows the distribution of the quality of the timetables found. 

 

 

Figure 9.33:  Frequency chart for the two best SCM values 
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to the other SCM values. 
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9.3.5.2 Fine-tuning the population size 

The algorithm is run using population sizes of 200, 500 and 750 respectively.  Lower 

population sizes of 50 and 100 were initially tested and only two feasible timetables were 

induced (from ten runs) and each run had an average of 3 hard constraint violations.  Table 

9.118 lists the processes and parameter values that were kept constant when testing each of 

the population sizes of 200, 500 and 750. 

 

Table 9.118:  Processes and parameter values to test best population Size 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Selection Standard 

Mutation 1 Violation swap with combination row swap 

Constant Parameter Values 

SCM size 20 

Tournament size 10 

Number of swaps 75 

Number of generations 50 

 

The success rates, average HC costs and average timetable quality found when running the 

DGA with each population size is shown in the table below (Table 9.119). 

 

Table 9.119:  Results using various population sizes 

Success Rates 

Population Size = 200 Population Size = 500 Population Size = 750 

26.67% 40.00% 46.67% 

Average HC Cost (and standard deviations) 

Population Size = 200 Population Size = 500 Population Size = 750 

2.47 (2.08) 1.6 (1.61) 1.33 (1.42) 

Average Quality (and standard deviations) from feasible timetables 

Population Size = 200 Population Size = 500 Population Size = 750 

5.00 (1.93) 4.75 (1.71) 4.36 (0.93) 

 

As with the other problems addressed, Table 9.119 shows that an increase in the population 

size produces better success rates.  An increase in the population size also shows an 
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improvement in the quality of the feasible timetables.  The DGA using a population size of 

750 produces the best quality timetables on average.  Many of these timetables had 

between 3 and 4 soft constraint violations.  While no optimal solutions (containing two soft 

constraint violations) are found, the increase in the success rate and the reduction of the 

average soft constraint cost results in a population size of 750 being chosen as the 

population size. 

9.3.5.3 Fine-tuning the tournament size 

To determine the best tournament size to use, the genetic algorithm is run using various 

tournament sizes.   

 

Table 9.120:  Processes and parameter values to test best tournament Size 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Selection Standard 

Mutation 1 Violation swap with combination row swap 

Constant Parameter Values 

SCM size 20 

Population size 750 

Number of swaps 75 

Number of generations 50 

 

The following table shows the success rates, average HC costs and average timetable 

quality when applying each tournament size (Table 9.121). 
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Table 9.121:  Results for various tournament sizes 

Success Rates 

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20 

43.33% 46.67% 36.67% 

Average HC Cost (and standard deviations) 

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20 

1.4 (1.5) 1.33 (1.42) 1.6 (1.52) 

Average Quality (and standard deviations) 

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20 

4.46 (1.45) 4.36 (0.93) 4.45 (1.21) 

 

The DGA produces more feasible timetables when using a tournament size of 10.  The best 

quality timetables are also found when using this tournament size.  The best timetable is 

found when using a tournament size of 5 (two soft constraint violations).  The frequency 

chart showing the quality of timetables produced for each tournament size is displayed 

below in Figure 9.34. 

 

 

Figure 9.34:  Frequency chart for various tournament sizes 
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and average timetable quality found for the DGA approach using each of the swap 

parameter values is shown in the table below (Table 9.123). 

 

Table 9.122:  Processes and parameter values to test best number of swaps 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Selection Standard 

Mutation 1 Violation swap with combination row swap 

Constant Parameter Values 

SCM size 20 

Population size 750 

Tournament size 1 

Number of generations 50 

 

Table 9.123:  Results using various swap parameter values 

Success Rate 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150 

46.67% 50.00% 63.33% 66.67% 

Average HC Cost (and standard deviations) 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150 

1.2 (1.24) 1.4 (1.59) 0.8 (1.13) 0.73 (1.11) 

Average Quality (and standard deviations) 

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150 

4.36 (1.22) 5.47 (2.50) 4.58 (1.39) 4.60 (1.39) 

 

The above table shows that an increase in the swap parameter value results in an increase 

in the number of feasible timetables produced.  The DGA approach using a swap parameter 

value of 50 produces the best timetables in terms of average quality.  The best possible 

timetable is also produced when using this parameter value i.e. a feasible timetable with two 

soft constraint violations.  A similar timetable is also produced when the DGA is run using a 

parameter value of 100.  When using a parameter value of 150, the DGA manages to 

produce two optimal timetables from the thirty runs conducted.  The frequency diagram for 

the results produced is shown below (Figure 9.35). 
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Figure 9.35:  Frequency chart for varying number of swaps 

 

The frequency chart shows that the DGA with 150 swaps produces the most number of 

timetables with soft constraint violations between 2 and 4.  Based on the success rate and 

the frequency chart, the best number of swaps to use is 150.  

9.3.5.5 Maximum number of generations 

In order to determine the number of generations to use, the DGA approach is run using three 

different generation parameter values.  Table 9.124 lists the processes and parameter 

values of the DGA that were constant when testing the maximum number of generations to 

use. 
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Table 9.124:  Processes and parameter values to test best number of generations 
(Woodlands problem) 

Constant Methods and Operators 

Phase 1 

Heuristic Saturation degree 

Selection Standard 

Mutation 1VH 

Phase 2 

Selection Standard 

Mutation 1 Violation swap with combination row swap 

Constant Parameter Values 

SCM size 20 

Population size 750 

Tournament size 1 

Number of swaps 150 

 

The performance of the DGA using each generation parameter value tested is shown in the 

table below (Table 9.125). 

 

Table 9.125:  Results for varying number of generations 

Success Rates 

Gens = 20 Gens = 50 Gens = 75 

43.33% 66.67% 66.67% 

Average Quality 

Gens = 20 Gens = 50 Gens = 75 

4.23 4.60 4.50 

 

When the algorithm reaches 20 generations, the algorithm has still not converged as the 

success rate shows an increase in the number of feasible timetables after 20 generations.  

The success rates at generations 50 and 75 are the same, indicating that at some point after 

generation 50, the maximum number of feasible timetables have been produced.  The 

average quality produced at 75 generations is slightly better than that of 50.  This indicates 

that timetable quality may be improved after 50 generations.  The number of generations is 

therefore set to 75. 

9.3.6 Summary of fine-tuning 
Table 9.126 shows the parameter values that were selected based on the tests conducted in 

section 9.3. 
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Table 9.126:  Parameter values for each data set 

Data Set SCM Population 
Size 

Tournament 
Size 

Swaps per 
Mutation 

Generations 

HDTT4 50 1000 10 200 50 

HDTT5 50 1000 10 200 50 

HDTT6 50 1000 10 200 50 

HDTT7 50 1000 10 200 50 

HDTT8 50 1000 10 200 50 

Valouxis 50 1000 10 100 50 

HS1 – HS7 
(excluding HS5) 

25 750 15 200 50 

HS5 50 750 10 20 75 

Lewitt 20 500 10 200 50 

Woodlands 20 750 10 150 75 

 

The sequential construction method is found to be useful in reducing the number of hard 

constraint violations of the initial population.  An SCM value of at least 20 is recommended. 

 

From the population sizes tested, a trend is observed where an increase in population size 

results in an increase in the success rate.  Smaller population sizes of 100 and 50 were 

initially tested, but very few feasible timetables were induced.  In addition, these timetables 

were of a poor quality.  The advantages of an increase in the success rate for finding 

feasible timetables, combined with an improvement in timetables quality, conclude that a 

population size of at least 500 must be used.   

 

The best tournament size to use will vary depending on the problem.  For all problems, the 

DGA performs best when using a tournament size of either 10 or 15.  In many cases, there 

was only a small difference in quality and success rate when comparing the DGA with 

different tournament sizes. 

 

For most data sets, a trend is found where increasing the number of swaps results in an 

improvement in the success rate and the average quality of the timetables produced.  From 

the tests conducted, a swap parameter value of at least 150 swaps per mutation is required.  

The only exception was data set HS5 where reducing the number of swaps improved the 

feasibility and quality of timetables produced.   

 

For the generations limit, it was found that at least 50 generations are required before the 

algorithm converges.  This value is also adequate for Phase 1 as feasible timetables are 

found before generation 50. 
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9.4 IGA – Results and discussion 
This section reports on the performance of the IGA (described in Chapter 8) when applied to 

the five school timetabling problems.  The performance of the IGA is compared to that of the 

DGA in order to determine the better approach and this was tested for statistical 

significance.  In order to make the comparison of the two approaches as fair as possible, the 

parameter values used for the IGA are the same parameter values used by the DGA (see 

section 9.3). 

 

Section 9.4.1 describes the IGA when applied to the Abramson school timetabling problem.  

Section 9.4.2 discusses the performance of the IGA approach when applied to the Valouxis 

Greek school timetabling problem.  The Beligiannis Greek school timetabling problem is then 

covered in Section 9.4.3.  Sections 9.4.4 and 9.4.5 respectively describe the results of 

applying the IGA to the W. A. Lewitt Primary and Woodlands Secondary school timetabling 

problems. 

9.4.1 The Abramson School Timetabling Problem 
The following table lists the parameter values and the instructions used to build timetables 

for the HDTT problem. 

 

Table 9.127:  Parameter values and instruction set used for Abramson problem 

SCM 50 

Population Size 1000 

Tournament Size 10 

Maximum Generations 50 

Crossover Rate 80% 

Mutation Rate 20% 

Swaps per mutation 200 

Instruction set A, D, 3 (1VH), 4 (2VH) 

 

Initially, the IGA contained non-hill climbing operators in the instruction set.  However, the 

IGA did not perform well and the non-hill climbing operators were removed from the 

instruction set.  The line chart below (Figure 9.36) illustrates how each instruction in a 

sample string affects the hard constraint cost of a partially complete timetable.  In this line 

chart, the x-axis represents the instructions of the sample string and the y-axis is the hard 

constraint cost.  
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Figure 9.36:  Effect of each instruction on the hard constraint cost (HDTT8) 

 

In Figure 9.36, instructions 1 and 2 represent non-hill climbing mutation operators and 

instructions 3 and 4 represent hill climbing mutation operators.  As can be seen, whenever 

instruction 1 (1VNH) is executed, the cost of the individual increases in most cases.  In the 

case of the 2VNH operator, if the cost is above 30, then the operator improves the cost of 

the timetable.  In cases where the cost is low (below 20), the 2VNH operator is found to 

increase the cost.  Whenever the hill climbing operators (instructions 3 and 4) are applied, it 

was found that the cost was reduced.  The above diagram represents only one sample 

string.  Several strings were tested and similar results were found.  It is also interesting to 

note that the DGA performed best when using a non-hill climbing operator (2VNH) while the 

IGA performs best when using hill climbing operators. 

 

The success rates for the IGA and DGA (from section 9.2) when applied to each data set are 

listed in Table 9.128 below.  The IGA induces feasible timetables for all runs. 

 

Table 9.128:  Success rates comparison – DGA vs IGA 

Success Rates – DGA 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

100% 100% 100% 46.67% 13.33% 

Success Rates – IGA 

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

100% 100% 100% 100% 100% 

 

While both algorithms perform well for data sets HDTT4, HDTT5 and HDTT6, the IGA 

approach outperforms the DGA for data sets HDTT7 and HDTT8.  Hypothesis tests were 
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performed to test the statistical significance of the statement.  The following table lists the 

hypotheses and Z-values: 

 

Table 9.129:  Hypothesis tests for HDTT7 and HDTT8 

Data set Hypothesis Z-value 

HDTT7 H0:  µDGA = µIGA; HA:  µDGA > µIGA 5.76 

HDTT8 H0:  µDGA = µIGA; HA:  µDGA > µIGA 13.73 

 

From the hypothesis tests conducted, it is concluded that the performance of the IGA is 

better than that of the DGA for data sets HDTT7 and HDTT8.  This result is confirmed at all 

levels of significance. 

9.4.2 The Valouxis School Timetable Problem 
The parameter values listed in Table 9.130 were used when applying the IGA to the Valouxis 

problem.  The table also shows the instruction sets that were used for Phase 1 and Phase 2 

respectively.   

 

Table 9.130:  Parameter values and instruction set used for Valouxis problem 

SCM 50 

Population Size 1000 

Tournament Size 10 

Maximum Generations 50 

Crossover Rate 80 

Mutation Rate 20 

Swaps per mutation 100 

Instruction set – Phase 1 A, D, 3 (1VH), 4 (2VH) 

Instruction set – Phase 2 A, D, 5 (Random swap), 6 (Row Swap), 7 (1V), 8 (2V) 

 

Similar to the instruction set used for the Abramson problem, the non-hill climbing operators 

were not included in the Phase 1 instruction set as they performed poorly.  This poor 

performance was found to be consistent with the performance of the DGA where the non-hill 

climbing operators performed poorly (see section 9.2.2.3).  Figure 9.37 shows a line chart 

depicting the effect of each instruction (in a sample instruction string) on the hard constraint 

cost of the timetable. 
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Figure 9.37:  Effect of each instruction on the hard constraint cost (Valouxis problem) 

 

In Figure 9.37, the cost of the timetable is reduced when using the hill climbing operators 

(instructions 3 and 4).  This is shown in the middle portion of the instruction string that 

consists only of allocation, de-allocation and hill climbing mutation operators.  The 

application of the non-hill climbing operators results in an increase in cost.  Similar to the 

IGA, the 2VNH operator appears to improve the cost only when it is above 30 while the 

application of the operator results in an increase in the cost if it is below 10.  The 1VNH 

operator performs poorly, resulting in an increase in the cost of the timetable whenever it is 

applied.  Similar results were found for other strings that were tested.  As a result of their 

poor performance, the non-hill climbing operators are removed from the instruction set.  For 

Phase 2, no mutation operators were omitted as the quality of the timetables produced were 

found to be competitive.   

 

Table 9.131 compares the performance of the IGA and DGA when applied to the Valouxis 

school timetabling problem.  Thirty runs were conducted for each approach. 

 

Table 9.131:  Performance Comparison for the Valouxis Problem 

 IGA DGA 

Success Rate 100% 100% 

Average Quality 34 41.97 

Standard Deviation 0 3.29 

Best SC Cost 34 35 
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Both the IGA and DGA are able to induce feasible timetables for every run conducted.  The 

difference in performance is found in terms of the quality of the timetables produced.  The 

IGA is able to find an instruction string capable of reducing the soft constraint cost (the 

quality of the timetable) to 34 while the timetables produced by the DGA are found to 

average 41.97.  The best timetable produced using the DGA contains 35 soft constraint 

violations. 

 

A hypothesis test is conducted to determine the statistical significance of the above 

conclusion.  A Z-value of 13.28 indicates that the IGA outperforms the DGA at all levels of 

significance. 

9.4.3 The Beligiannis Greek School Timetabling Problem 
Table 9.132 lists the parameter values and instruction sets that were used when the IGA is 

applied to the problem. 

 

Table 9.132:  Parameter values and instruction set used for Beligiannis problem 

SCM 25 

Population Size 750 

Tournament Size 15 

Maximum Generations 50 

Crossover Rate 80 

Mutation Rate 20 

Swaps per mutation 200 

Instruction set – Phase 1 A, D, 1 (1VNH), 2 (2VNH), 3 (1VH), 4 (2VH) 

Instruction set – Phase 2 A, D, 5 (Random Swap), 6 (Row Swap), 7 (1V), 8 (2V) 

 

Table 9.133 provides a summary of the performance of the IGA in terms of success rate, 

average quality and standard deviations (soft constraint cost).  Similar to the DGA, the IGA 

was able to induce feasible timetables for all thirty runs conducted for each data set.   
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Table 9.133:  Results summary for IGA applied to Beligiannis Problem 

Success rates 

HS1 HS2 HS3 HS4 HS5 HS7 

100% 100% 100% 100% 100% 100% 

Average Quality (Average SC Cost) 

HS1 HS2 HS3 HS4 HS5 HS7 

77.37 79.00 18.47 46.03 19.30 105.40 

Standard deviations (SC Cost) 

HS1 HS2 HS3 HS4 HS5 HS7 

6.51 8.12 0.86 1.52 4.11 4.95 

 

Figure 9.38 displays a bar graph comparing the average quality of the timetables produced 

by both the IGA and the DGA when applied to the Beligiannis school timetabling problem.   

 

 

Figure 9.38:  Average Timetable Quality induced by DGA and IGA 

 

Figure 9.38 illustrates that, for all the data sets, the timetables produced by IGA have far 

fewer soft constraint violations on average than the timetables produced by the DGA 

approach.  Hypothesis tests were conducted to test for the significance of this conclusion.  

Table 9.134 lists the hypotheses and associated Z-values.   
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Table 9.134:  Hypothesis tests for quality 

Data set Hypothesis Z-value 

HS1 H0:  µDGA = µIGA; HA:  µDGA > µIGA 18.16 

HS2 H0:  µDGA = µIGA; HA:  µDGA > µIGA 16.62 

HS3 H0:  µDGA = µIGA; HA:  µDGA > µIGA 34.67 

HS4 H0:  µDGA = µIGA; HA:  µDGA > µIGA 27.60 

HS5 H0:  µDGA = µIGA; HA:  µDGA > µIGA 20.79 

HS7 H0:  µDGA = µIGA; HA:  µDGA > µIGA 17.47 

 

From the Z-values listed in the table above, it is concluded that the IGA induces better 

quality timetables than the DGA.  This is confirmed at all levels of significance. 

9.4.4 The Lewitt Primary School Timetabling Probem 
The IGA was applied to the W.A. Lewitt Primary school timetabling problem using the 

following parameter values and instruction sets. 

 

Table 9.135:  Parameter values and instruction set used for Lewitt problem 

SCM 20 

Population Size 500 

Tournament Size 10 

Maximum Generations 50 

Crossover Rate 80% 

Mutation Rate 20% 

Swaps per mutation 200 

Instruction set – Phase 1 A, D, 2 (2VNH), 3 (1VH), 4 (2VH) 

Instruction set – Phase 2 A, D, 5 (Random Swap), 7 (1V), 8 (2V) 

 

The 1VNH operator was not included in the instruction set as it had performed poorly.  This 

was found to be consistent with the tests conducted using the DGA (see section 9.2.4.3) 

where the 1VNH operator was the worst performing operator.  Figure 9.39 shows the effect 

of each instruction (in a sample instruction string) on the hard constraint cost of a partially 

complete timetable.   
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Figure 9.39:  Effect of each instruction on hard constraint cost (Lewitt problem) 

 

The hill climbing operators perform the best and reduce the hard constraint cost in most 

cases.  The 1VNH operator seems to only improve the hard constraint cost when it is above 

60.  When applied at a point when the hard constraint cost is low, the 1VNH operator tends 

to increase the cost of the timetable.  The 1VNH operator was therefore not included in the 

Phase 1 instruction set.  The 2VNH operator was found to be effective when the constraint 

cost was high but was not able to further reduce constraint violations when the cost was 

below 20.  

 

From the thirty runs conducted, 28 feasible timetables are found compared to the 18 feasible 

timetables found by the DGA.  The two timetables that are not feasible have two hard 

constraint violations and one hard constraint violation respectively.  In terms of quality, the 

feasible timetables average 7.61 soft constraint violations.  This is better than the DGA 

which averages 10.83 soft constraint violations per timetable.  A hypothesis test was 

conducted for feasibility.  The hypothesis tested is that the IGA produces fewer hard 

constraint violations than the DGA.  A Z-value of 2.90 is calculated, indicating that the 

performance of the IGA is significantly better than the DGA.   A hypothesis test was not 

conducted for quality since there were not enough feasible timetables produced by the DGA. 

9.4.5 The Woodlands secondary school timetabling problem 
The IGA uses the following parameter values and instruction sets to solve the Woodlands 

Secondary school timetabling problem. 
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Table 9.136:  Parameter values and instruction set used for Woodlands problem 

SCM 20 

Population Size 750 

Tournament Size 10 

Maximum Generations 50 

Crossover Rate 80% 

Mutation Rate 20% 

Swaps per mutation 150 

Instruction set – Phase 1 A, D, 1 (1VNH), 2 (2VNH), 3 (1VH), 4 (2VH) 

Instruction set – Phase 2 A, D, 5 (Random Swap), 6 (Row Swap), 7 (1V), 8 (1V Row 

Swap) 

 

Despite the poor performance of the non-hill climbing operators reported in section 9.2.5.3, 

the IGA managed to induce feasible timetables using an instruction set (Phase 1) consisting 

of all the mutation operators.  The Phase 2 instruction set also incorporated all the soft 

constraint mutation operators tested with the DGA. 

 

Table 9.137 summarizes the results that were found after conducting thirty runs using 

different seed values.  This table also compares the success rates and average quality with 

that of the results obtained using the DGA approach. 

 

Table 9.137:  Results comparison for IGA and DGA 

 IGA DGA 

Success Rate 100% 66.67% 

Average quality 2.37 4.5 

Standard deviation 0.56 1.36 

 

The IGA achieves a 100% success rate and from the thirty feasible timetables, twenty of 

these have the minimum number of constraint violations of two.  The IGA approach is far 

more effective than the DGA where only twenty out of the thirty runs produce feasible 

timetables and from these twenty feasible timetables, only two have the minimum number of 

soft constraint violations. 

 

Hypothesis tests were conducted to evaluate the significance of these results.  In terms of 

feasibility, a Z-value of 3.61 is obtained, allowing for the conclusion that the IGA approach 

performs better than the DGA approach. 
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9.5 Discussion of IGA versus DGA Results 
From the results in section 9.4, it is concluded that the IGA is a far more effective approach 

for solving the school timetabling problem than the DGA and this was found to be statistically 

significant.  Table 9.138 lists the average runtime, success rate, and average quality 

obtained when the DGA and IGA are applied to each problem. 

 

Table 9.138:  Summary of DGA and IGA performance for each problem 

 DGA IGA 

 
Average 

Time 
Best Time 

Success 
% 

Average 
Quality 

Average 
Time 

Best 
Time 

Success 
% 

Average 
Quality 

HDTT4 10 mins 9mins 100% NA 11 mins 10 mins 100% NA 

HDTT5 16 mins 15 mins 100% NA 20 mins 26 mins 100% NA 

HDTT6 25 mins 25 mins 100% NA 68 mins 1 hour 100% NA 

HDTT7 44 mins 42 mins 47% NA 235 mins 4 hrs 100% NA 

HDTT8 65 mins 64 mins 13% NA 678 mins 5 hrs 100% NA 

Valouxis 58 mins 58 mins 100% 41.97 669 mins 2 hrs 100% 34.00 

HS1 133 mins 133 mins 100% 107.20 3 days 3 days 100% 77.37 

HS2 131 mins 131 mins 100% 113.23 3 days 10 hrs 100% 79.00 

HS3 46 mins 46 mins 100% 42.47 3 days 3 days 100% 18.47 

HS4 53 mins 53 mins 100% 68.80 3 days 3 days 100% 46.03 

HS5 18 mins 18 mins 100% 52.63 2 days 1.5 hrs 100% 19.30 

HS7 202 mins 202 mins 100% 130.40 3 days 1 day 100% 105.40 

Lewitt 269 mins 269 mins 60% 10.83 7 days 1 day 93% 7.61 

Woodlands 1 day 1 day 67% 4.50 1.5 days 3 mins 100% 2.37 

 

With the IGA, feasible solutions were quickly induced for the real world problems (Greek and 

South African schools) and the remaining time was spent in improving timetable quality.  The 

increased runtimes for the IGA are mainly due to the evaluation process where a timetable is 

created or improved for every string (individual).  The longer runtimes are justified due to the 

high success rates (when comparing HDTT7, HDTT8 and the Lewitt and Woodlands 

problem) as well as the vast improvement in timetable quality (for all real world problems). 

 

One possible reason for the performance of the IGA is that the search space was reduced.  

The number of possible permutations of timetables for each problem is far greater than the 

number of permutations of different instruction strings available.  Kazarlis et al. [KAZA07], 

Aickelin [AICK04] and Ross [ROSS94] also observed a reduction in the search space when 

using an indirect representation in other problem domains.  Kazarlis et al. attributed this to a 

less constrained and complicated search space since the building of the schedule is not 

directly performed by the genetic algorithm.  Further research will also involve investigating 

the search areas of the DGA and IGA respectively. 
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9.6 Comparison with Other Studies 
This section compares the timetables produced by the DGA and the IGA approaches with 

timetables produced using other methods.  Similar to studies by [SMIT03] and [BELI12], the 

comparisons made are empirical in nature.  A thorough comparison is not possible as it is 

not known as to whether the methods that are being compared have been fine-tuned or not.  

Statistical tests cannot be performed for these comparisons as the studies have not provided 

sufficient data (averages and standard deviations) to perform these tests.  The purpose of 

the comparison is to simply show that the IGA and DGA approaches are capable of inducing 

acceptable, high quality timetables.   

 

For the Abramson problem, the performance of the IGA and DGA are compared to methods 

used in other studies (see section 9.6.1).  For the Greek school timetabling problems, 

timetables were made available by Beligiannis et al. [BELI08] and Valouxis [VALO09] 

respectively and are compared to the timetables induced using the IGA and DGA.  For the 

South African school timetabling problems, the timetables induced using the IGA and DGA 

are compared to the actual school timetables used by each school.  In order to fairly assess 

the timetables, a common fitness function was used to evaluate the hard constraint and soft 

constraint cost. 

9.6.1 Abramson benchmark problem set comparison 
Table 9.139 lists the best cost (BC) and average cost (AC) of timetables created using 

different timetable construction techniques.  The best cost indicates the lowest hard 

constraint cost and the average cost indicates the average number of hard constraint 

violations over twenty runs conducted for each technique.  The last two rows in the table lists 

the performance of the approaches used in this study.  The techniques listed in the table are: 

 

 SA1 – A simulated annealing method implemented by [ABRA93]. 

 SA2 – A simulated annealing algorithm implemented by [RAND00]. 

 TS – A tabu search tested by [RAND00]. 

 GS – The greedy search method by [RAND00]. 

 NN-T2 – A neural network employed by [SMIT03]. 

 NN-T3 – A neural network employed by [SMIT03]. 

 Hybrid – A hybrid approach incorporating simulated annealing and a VLSN by 

[AVEL07]. 

 SA3 – A simulated annealing method implemented by [LIU09]. 

 DGA – Direct representation genetic algorithm used in this study. 

 IGA – Indirect representation genetic algorithm used in this study. 
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Table 9.139:  Results comparison for Abramson problem 

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8 

SA1 
BC: Unknown 

AC: Unknown 

BC: 0 

AC: 0.67 

BC: 0 

AC: 2.5 

BC: 2 

AC: 2.5 

BC: 2 

AC: 8.23 

SA2 
BC: 0 

AC: 0 

BC: 0 

AC: 0.3 

BC: 0 

AC: 0.8 

BC: 0 

AC: 1.2 

BC: 0 

AC: 1.9 

TS 
BC: 0 

AC: 0.2 

BC: 0 

AC: 2.2 

BC: 3 

AC: 5.6 

BC: 4 

AC: 10.9 

BC: 13 

AC: 17.2 

GS 
BC: 5 

AC: 8.5 

BC: 11 

AC: 16.2 

BC: 19 

AC: 22.2 

BC: 26 

AC: 30.9 

BC:  29 

AC: 35.4 

HNN1 
BC: 0 

AC: 0.1 

BC: 0 

AC: 0.5 

BC: 0 

AC: 0.8 

BC: 0 

AC: 1.1 

BC: 0 

AC: 1.4 

HNN2 
BC: 0 

AC: 0.5 

BC: 0 

AC: 0.5 

BC: 0 

AC: 0.7 

BC: 0 

AC: 1 

BC: 0 

AC: 1.2 

Hybrid 
BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0.1 

BC: 0 

AC: 0.6 

SA3 
BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0.4 

DGA 
BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 1.06 

BC: 0 

AC: 1.73 

IGA 
BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

BC: 0 

AC: 0 

 

Based on the best cost and average cost obtained, the IGA performs best as this approach 

found feasible timetables for all runs conducted.  The DGA approach is also very 

competitive, finding solutions for all data sets and performing better than the simulated 

annealing, tabu search and genetic search approaches.  The neural network approaches 

perform slightly better than the DGA.  Avella’s Hybrid approach and the simulated annealing 

method used by [LIU09] produce timetables with fewer clashes (on average) than the DGA. 

9.6.2 The Valouxis Greek school timetabling problem 
A timetable created using a constraint programming approach is obtained from a paper by 

Valouxis et al. [VALO03].  No other techniques applied to this problem could be found.  The 

first column of Table 9.140 lists each of the hard and soft constraints of the problem.  The 

second, third and fourth columns indicate a count of the number of violations for each study.   



204 
 

 

Table 9.140:  Comparison of timetables from GA approach and constraint 
programming approach 

Hard Constraint 
Constraint 

programming 
DGA IGA 

Clashes 37 0 0 

Free periods 0 0 0 

Illegal teacher 

placements 

4 0 0 

Teacher average 

violations 

9 0 0 

Teacher class average 

violations 

6 0 0 

Total 56 0 0 

Soft Constraints    

AM-PM preference 

violations 

34 34 34 

Teacher free periods 11 1 0 

Total 45 35 34 

 

As can be seed in Table 9.140, the timetable created using the constraint programming 

approach is unfeasible with 56 hard constraint violations.  The majority of these violations 

are teacher clashes.  The best timetable produced by both the DGA and the IGA contains no 

hard constraint violations and is thus feasible.  Upon closer analysis of the timetable 

produced by [VALO03], it was found that the published timetable may be incorrect. The 

schedules of two of the classes are exactly the same resulting in 35 of the 37 clashes.  In 

terms of quality, both the IGA and DGA produce several better quality timetables than the 

timetable induced using constraint programming.  This was the only timetable that was 

available and attempts to contact the author to request other timetables were unsuccessful.   

9.6.3 The Beligiannis Greek school timetabling problem 
Beligiannis et al. [BELI08] used an evolutionary algorithm approach to solve the Greek high 

school timetabling problem and introduces seven data sets.  The best timetable obtained 

from tests conducted and described in section 9.3.3.5 (DGA) and section 9.4 (IGA) is 

compared with the sample timetables that were made available by [BELI08]. 

9.6.3.1 Data set HS1 

Table 9.141 lists the number of hard and soft constraint violations for the timetables 

produced using each method. 
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Table 9.141:  Comparison of GA approaches and Beligiannis results (HS1) 

 

Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 0 0 0 

Co-teaching and Subclasses 0 0 0 

Total 0 0 0 

Soft Constraints 
  

 

Gaps 31 11 4 

Teacher gap distribution 24 8 0 

Teacher daily gap distribution 5 1 3 

Daily average 66 57 47 

Repeats 13 19 9 

Total 139 96 63 

 

The timetables produced using all three methods are feasible (no hard constraint violations).  

The better timetable is determined by evaluating the number of soft constraint violations and 

as can be seen, the timetable produced using the IGA has the fewest number of soft 

constraints.  This timetable has 33 fewer soft constraint violations than the DGA and 76 

fewer soft constraint violations than the evolutionary algorithm [BELI08].   

9.6.3.2 Data set HS2 

Table 9.142 shows the comparison of the timetables produced using the evolutionary 

algorithm by [BELI08] and the two approaches used in the current study. 

 

Table 9.142:  Comparison of GA approaches and Beligiannis results (HS2) 

 

Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 0 0 0 

Co-teaching and Subclasses 0 0 0 

Total 0 0 0 

Soft Constraints 
  

 

Gaps 42 12 0 

Teacher gap distribution 21 7 0 

Teacher daily gap distribution 11 2 0 

Daily average 83 65 56 

Repeats 18 13 10 

Total 175 99 66 
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Once again, the evolutionary algorithm and both the DGA and IGA produce feasible 

timetables with no hard constraint violations.  In terms of quality, the DGA approach 

produces 76 fewer soft constraint violations than the evolutionary algorithm. The IGA 

produced the best of the three timetables with 66 soft constraint violations.  From these 66 

violations, there were no free periods i.e. all teacher timetables were compact.  This 

timetable (found by the IGA) also had the fewest daily average violations and the fewest 

repeat lessons. 

9.6.3.3 Data set HS3 

Table 9.143 lists the number of violations for each timetable produced by the three different 

approaches.  This data set contained no co-teaching and subclass requirements. 

 

Table 9.143:  Comparison of GA approach and Beligiannis results (HS3) 

 

Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 0 0 0 

Co-teaching and Subclasses NA NA NA 

Total 0 0 0 

Soft Constraints 
  

 

Gaps 17 2 0 

Teacher gap distribution 13 2 0 

Teacher daily gap distribution 4 0 0 

Daily average 24 19 13 

Repeats 3 11 4 

Total 61 34 17 

 

All three approaches found feasible timetables when applied to data set HS3.  In terms of 

quality, the IGA produced the best timetable with half the number of violations as the DGA.  

Similar to the HS2 data set, the IGA finds a timetable with no free periods.  The timetable 

induced by the DGA contained the most number of repeat lesson violations.  The 

evolutionary algorithm by [BELI08] produced a timetable with the fewest number of repeats. 
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9.6.3.4 Data set HS4 

This section compares the performance of the three approaches when applied to the HS4 

data set. 

 

Table 9.144:  Comparison of GA approach and Beligiannis results (HS4) 

 
Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 0 0 0 

Co-teaching and Subclasses 0 0 0 

Total 0 0 0 

Soft Constraints 
  

 

Gaps 32 5 0 

Teacher gap distribution 14 3 0 

Teacher daily gap distribution 10 1 0 

Daily average 46 45 38 

Repeats 0 5 5 

Total 102 59 43 

 

The timetables produced by all three approaches are feasible and can be used by the 

schools.  When observing the soft constraint violations, the IGA finds compact timetables for 

all teachers (no free periods).  The timetable found using the evolutionary algorithm contains 

no repeats, but the most number of free periods.  Overall, the timetable induced by the IGA 

was of the best quality. 
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9.6.3.5 Data set HS5 

This section compares the timetables produced when applying the approaches to data set 

HS5.  This data set is similar to data set HS3, as there are no co-teaching and subclass 

requirements. 

 

Table 9.145:  Comparison of GA approach and Beligiannis results (HS5) 

 
Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 0 0 0 

Coteaching and Subclasses NA NA NA 

Total 0 0 0 

Soft Constraints 
  

 

Gaps 8 5 0 

Teacher gap distribution 8 3 0 

Teacher daily gap distribution 0 1 0 

Daily average 27 24 14 

Repeats 0 7 1 

Total 43 40 15 

 

Once again, the timetables produced by all three approaches are found to be feasible with 

zero hard constraint violations.  The difference in quality between the timetable produced by 

the evolutionary algorithm ([BELI08]) and the timetable produced by the DGA is just three 

soft constraint violations in favour of the DGA.  For this data set, the timetable produced 

using the DGA contains seven repeat violations while the evolutionary algorithm by [BELI08] 

manages to prevent any repeat violations and provides an even distribution of teacher daily 

free periods.  Overall, the timetable produced by the IGA has the best quality.  This timetable 

contains no free periods, 14 daily average violations and only one repeat lesson violation. 
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9.6.3.6 Data set HS7 

This final section compares the timetables produced by the three approaches when applied 

to the HS7 data set.  This data set was the largest of the data sets, containing the most 

number of classes and teachers. 

 

Table 9.146:  Comparison of GA approach and Beligiannis results (HS7) 

 
Beligiannis DGA IGA 

Hard Constraint 
 

   

Total clashes 0 0 0 

Last period violations 0 0 0 

Unavailability violations 52 0 0 

Co-teaching and Subclasses 18 0 0 

Total 70 0 0 

Soft Constraints 
  

 

Gaps 58 10 35 

Teacher gap distribution 25 7 1 

Teacher daily gap distribution 18 1 5 

Daily average 99 81 51 

Repeats 26 18 6 

Total 226 117 98 

 

The timetable produced using the DGA and IGA approaches were feasible while the sample 

timetable provided by [BELI08] was found to be unfeasible due to several unavailability 

violations as well as co-teaching and subclasses requirements that were not fulfilled.  The 

timetable produced by the DGA approach was found to be feasible and was found to have 

117 soft constraint violations.  The timetable found by the IGA was again found to be of the 

highest quality with 98 soft constraint violations.  The timetable provided by the author may 

be incorrect as [BELI08] states that feasible timetables are found for all data sets. 

9.6.4 W.A. Lewitt primary school problem 
A comparison is made between the timetable produced by the DGA and IGA approaches in 

this study and the actual timetable (developed using commercial software) used by the 

school.  The actual timetable used by Lewitt has no clashes but does have one double 

period violation where the double period has to be split into two separate single periods 

during the day.  Despite this violation, the school still chose to use the timetable.  The 

timetable produced by the DGA and the IGA approaches have no clashes and all double 

period lessons are correctly allocated.  In terms of quality, the actual timetable and the 

timetable produced using the DGA are of a similar quality with six constraint violations.  The 

timetable produced using the IGA was of a better quality and had 3 soft constraint violations.   
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The main problem that faces the staff of W. A. Lewitt School is that the system currently 

employed by the school does not cater for double periods.  These double periods have to be 

placed manually by the staff member.  As a result, the staff member is also required to 

manually move tuples around in order to accommodate the double periods and to prevent 

resultant clashes.  Both the DGA and the IGA developed in this study address all hard 

constraint requirements and the quality of the timetables produced is similar, if not better 

than that of the timetable used by the school. 

9.6.5 Woodlands data set 
A comparison is made between a timetables produced by the DGA, the IGA and the actual 

timetable (developed using commercial software) used by Woodlands secondary school.  All 

three timetables were feasible.  The timetables were also of an equivalent quality with only 

two soft constraint violations. 

9.7 Chapter summary 
This chapter firstly covers the performance of the DGA and its effect on each of the school 

timetabling problems when changing the different processes (initial population generation, 

selection methods and genetic operators).  The chapter then describes the process of fine-

tuning the DGA.  The performance of the IGA is then covered and the performance of this 

approach is compared to that of the DGA.  Finally, timetables obtained using the two genetic 

algorithm approaches are compared to timetables created using other techniques from the 

literature or to actual school timetables.  
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Chapter 10 - Conclusions and Future 
Research 

10.1 Introduction 
This chapter provides the overall conclusions based on the findings of the study.  Two 

objectives were outlined in Chapter 1 of this thesis.  Section 10.2 presents each objective 

and conclusions based on the results presented in Chapter 9.  The chapter ends by 

discussing future extensions to the research presented in this thesis (section 10.3). 

10.2 Objectives and Conclusions 
 

Objective:  Based on the analysis of the literature, implement a genetic algorithm approach 

for solving the school timetabling problem and evaluate it on more than one type of school 

timetabling problem. 

 

Conclusion: 

A genetic algorithm approach was developed based on an analysis of the literature.  This 

genetic algorithm approach, referred to in this study as a DGA due to using a direct 

representation, was able to induce feasible timetables for five different school timetabling 

problems.  The timetables were of a high quality when compared to timetables produced 

using other methods. 

 

The study showed that the genetic algorithm approach performed better when construction 

heuristics are used to guide the search when creating the initial population.  A sequential 

construction method (SCM) was also used and in some cases, it was found that the use of 

the SCM not only assisted in finding feasible solutions but also improved the quality of the 

timetables produced.  

 

A variant tournament selection (VTS) was introduced and was based on standard 

tournament selection, but gave an opportunity for weaker individuals in the tournament to be 

selected as parents.  In many cases, this selection method was found to have performed 

better with the DGA than standard tournament selection, especially during Phase 1 of the 

DGA. 
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When solving the Woodlands, Lewitt, Valouxis and Beligiannis school timetabling problems, 

it was found that the use of the mutation operators with hill climbing was necessary in order 

to produce feasible timetables.  Similar results were reported in the literature where hill 

climbing improved the performance of the genetic algorithm.  The type of mutation operator 

to use varied for each problem. 

 

A conclusion can be made that different construction heuristics (primary and secondary), 

different selection methods and different mutation operators were required to produce the 

best results for each problem. 

 

Objective:  To evaluate a genetic algorithm that uses an indirect representation when 

solving the school timetabling problem. 

 

Conclusion: 

It was found that the IGA performed well and produced feasible solutions.  It also 

outperformed the DGA in terms of both finding feasible timetables and producing better 

quality timetables.  One possible reason that was hypothesized was that the IGA had a 

smaller search space to explore than the DGA as the IGA had fewer combinations to create 

an instruction string than when considering the different combinations of tuple allocations 

when creating a timetable. 

10.3 Future research 
Based on the research, future extensions of this work will include the following: 

 

 Previous studies (discussed in Chapter 2) have classified the examination timetabling 

problem as a multi-objective problem.  This involved the grouping of soft constraints 

in order to reduce the complexity of the problem.  Future research will look at 

addressing the school timetabling problem as a multi-objective problem. 

 From the results described in Chapter 9, it was found that for the DGA, each problem 

requires different sets of heuristics, selection methods, genetic operators and control 

parameter values in order to produce feasible, high quality timetables.  Determining 

the best processes and the fine-tuning of the DGA control parameters was performed 

using a “by hand” (manual) approach.  Future work would look at automating this 

process using a meta-genetic algorithm as described by Eiben [EIBE99] in order to 

find the best possible combination of initial population generation method, selection 
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method, mutation operators and parameter values.  Future work would also 

investigate the use of parameter tuning tools such as F-Race. 

 From the results in Chapter 9, it was concluded that the IGA performed better than 

the DGA.  One possible reason identified for the better performance was the size of 

the search space explored by the two approaches.  Another area of investigation 

would be the difference in the fitness landscape when using each of the approaches.   

 The GA approaches developed during this study is for research purposes only.  The 

staff of primary or secondary school may have difficulty using the program as they 

would require a basic background in genetic algorithms in order to run the program 

and configure the parameter settings.  Future development will include the 

development of a user interface and an interactive timetabling system that allows the 

user to play a role in the development of the timetable.  Examples of user roles would 

include: 

o specifying the data set,  

o choosing from a list of constraints that the algorithm must consider, 

o applying weights or priorities to the constraints, 

o pre-allocation of specific tuples to the timetable,  

o the adjustment of a generated timetable to suit their preferences,  

o the choice of timetables from a population of feasible timetables, 

o printing the chosen solution as a class, teacher, venue and/or student 

timetable. 

 The Abramson benchmark problem is a common problem that has been solved using 

a variety of techniques such as tabu search, simulated annealing and neural 

networks.  Future research would include using these techniques to solve the other 

school timetabling problems discussed in this study.  The performance of these 

techniques can then be compared to the DGA and IGA approaches. 
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Appendix A – School Timetabling 
Problem data 

A.1 Abramson data sets 
 

NUMBER OF TEACHERS =          4 
NUMBER OF SUBJECTS =         20 
NUMBER OF CLASSES =          4 
NUMBER OF ROOM AVAILABLE =          4 
NUMBER OF REQUIREMENTS =        120 

Figure A.1:  HDTT4 Details 

2  2  1  2 
1  1  1  2 
1  1  1  6 
2  2  3  2 
2  5  1  2 
0  4  3  2 
1  2  1  0 
2  2  1  2 
2  1  1  2 
0  0  5  1 
2  1  4  1 
6  1  2  1 
3  1  2  1 
1  4  1  4 
3  3  2  1 
2  0  1  1 

Figure A.2:  HDTT4 Requirements 

NUMBER OF TEACHERS =          5 
NUMBER OF SUBJECTS =         20 
NUMBER OF CLASSES =          5 
NUMBER OF ROOM AVAILABLE =          5 
NUMBER OF REQUIREMENTS =        150 

Figure A.3:  HDTT5 Details 
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1  0  0  1  2 
2  0  1  3  1 
0  0  1  2  1 
1  2  3  1  0 
0  2  1  4  1 
4  0  3  1  3 
0  1  0  1  3 
0  1  2  1  1 
1  0  3  0  0 
2  1  0  2  0 
2  2  0  0  2 
3  2  1  2  1 
1  0  3  1  1 
3  0  0  0  3 
1  0  0  1  1 
1  2  0  0  1 
0  2  3  1  0 
2  0  2  0  4 
1  3  0  2  1 
1  1  0  2  1 
1  1  1  1  1 
0  3  0  0  0 
1  2  3  1  0 
1  2  1  1  1 
1  3  2  2  1 

Figure A.4:  HDTT5 Requirements 

NUMBER OF TEACHERS =          6 
NUMBER OF SUBJECTS =         20 
NUMBER OF CLASSES =          6 
NUMBER OF ROOM AVAILABLE =          6 
NUMBER OF REQUIREMENTS =        180 

Figure A.5:  HDTT6 Details 

1  0  1  1  0  3 
0  2  0  0  0  0 
0  1  0  1  0  0 
1  0  2  1  0  1 
2  1  1  2  2  1 
0  1  1  1  1  2 
2  1  1  0  2  0 
0  0  1  0  2  3 
0  0  0  0  2  1 
1  0  0  0  0  0 
0  2  1  2  2  1 
3  0  1  1  1  0 
2  1  1  1  0  0 
1  0  3  0  1  0 
0  0  1  1  2  1 
1  1  1  1  1  2 
1  1  1  0  0  0 
1  1  2  0  1  0 
0  2  0  0  2  1 
0  1  1  2  0  2 
0  2  0  0  3  0 
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1  1  2  1  0  0 
1  0  1  0  1  2 
1  0  0  1  1  1 
0  1  0  0  0  3 
0  1  0  3  1  0 
3  0  1  4  0  2 
2  0  1  0  0  1 
2  1  0  0  0  0 
1  1  0  0  1  1 
0  1  1  0  2  0 
0  3  2  1  0  0 
0  1  0  2  1  1 
1  2  2  3  0  0 
1  0  0  0  1  0 
1  1  1  1  0  1 

Figure A.6:  HDTT6 Requirements 

NUMBER OF TEACHERS =          7 
NUMBER OF SUBJECTS =         20 
NUMBER OF CLASSES =          7 
NUMBER OF ROOM AVAILABLE =          7 
NUMBER OF REQUIREMENTS =        210 

Figure A.7:  HDTT7 Details 

1  0  0  0  2  1  2 
0  1  1  0  0  1  1 
0  1  0  1  1  0  0 
0  0  0  1  1  1  0 
1  0  3  0  0  1  1 
0  1  0  1  0  0  1 
0  0  1  1  1  1  1 
2  0  0  1  2  1  0 
0  1  2  1  0  0  0 
0  0  0  0  2  1  0 
1  0  0  0  1  0  0 
1  0  0  0  0  0  1 
4  1  1  3  1  0  0 
1  0  0  1  0  1  0 
0  0  1  1  0  2  0 
1  1  0  0  2  1  0 
1  0  1  0  1  0  0 
0  0  2  1  0  1  0 
0  1  1  0  0  1  2 
3  0  0  0  0  0  1 
0  1  2  0  2  0  0 
0  0  0  0  0  1  4 
0  1  0  1  0  0  0 
0  1  1  2  1  1  2 
0  0  1  1  0  0  1 
1  0  2  0  0  1  2 
1  0  0  0  0  0  0 
0  2  0  1  1  0  1 
0  2  0  0  0  1  0 
0  0  0  1  0  1  1 
0  0  0  1  0  4  0 
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0  1  0  1  0  0  0 
2  0  0  0  0  0  1 
1  2  0  0  4  0  0 
2  0  0  1  2  0  2 
0  0  0  0  0  1  1 
1  2  1  0  0  1  0 
0  2  0  1  0  1  0 
1  1  2  2  1  0  3 
2  0  1  1  1  1  0 
0  2  0  0  1  0  0 
0  0  0  0  0  0  0 
0  2  0  1  0  1  0 
0  1  3  0  2  1  0 
0  2  1  0  0  1  0 
2  0  1  2  0  0  1 
0  0  1  0  0  1  0 
0  0  0  1  0  0  1 
1  1  1  1  1  0  0 

Figure A.8:  HDTT 7 Requirements 

NUMBER OF TEACHERS =          8 
NUMBER OF SUBJECTS =         20 
NUMBER OF CLASSES =          8 
NUMBER OF ROOM AVAILABLE =          8 
NUMBER OF REQUIREMENTS =        240 

Figure A.9:  HDTT8 Details 

1  0  0  1  0  1  1  1 
0  1  0  1  0  0  1  0 
0  0  0  0  1  1  0  0 
0  0  0  1  0  0  1  0 
1  0  0  1  0  1  1  1 
0  0  1  3  0  0  1  0 
0  1  1  0  1  0  1  1 
0  1  0  0  0  1  1  0 
1  0  0  0  0  1  2  0 
1  1  1  1  0  1  1  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  0  1  0 
1  0  0  0  0  2  1  1 
1  0  0  0  0  0  1  0 
2  1  0  1  2  1  0  0 
1  0  0  0  2  0  0  1 
2  0  1  0  0  0  0  1 
0  0  0  2  0  1  1  0 
1  0  1  0  1  1  0  1 
0  0  0  2  1  0  2  1 
0  0  0  0  0  0  0  1 
0  1  1  0  0  0  0  0 
2  1  1  0  0  0  0  1 
1  0  1  0  0  1  0  0 
0  1  0  2  1  0  1  0 
0  1  1  0  0  0  0  0 
1  1  1  3  1  0  1  0 
0  0  0  0  1  1  2  0 
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1  0  0  1  0  1  0  0 
0  0  0  0  0  2  0  0 
0  0  0  1  1  0  0  1 
0  2  0  1  0  0  0  0 
0  0  0  0  0  0  0  2 
0  0  1  0  0  0  0  1 
0  0  0  0  1  1  0  0 
0  1  0  0  1  1  1  1 
1  0  0  1  2  0  0  0 
1  0  2  0  0  0  1  1 
0  0  0  0  2  0  0  0 
1  0  1  1  0  2  0  3 
0  2  0  0  0  0  0  1 
1  1  0  0  0  0  1  0 
1  0  3  0  0  0  0  0 
0  0  1  1  1  0  2  0 
1  0  1  0  1  1  1  0 
1  1  0  0  0  1  0  0 
1  0  2  1  0  0  0  0 
0  0  1  0  0  1  0  1 
0  1  0  0  0  0  0  1 
0  1  0  0  0  0  0  2 
0  2  0  0  1  0  1  0 
0  0  2  0  1  0  0  1 
0  1  0  1  0  0  1  2 
1  1  0  2  1  1  0  1 
1  0  0  0  2  0  0  0 
0  0  1  0  0  0  1  0 
0  2  1  0  0  1  1  0 
0  1  2  0  1  2  0  1 
0  2  0  0  0  2  0  0 
1  0  0  0  1  0  0  1 
0  1  0  0  1  0  0  0 
0  0  1  2  0  1  0  0 
0  0  1  0  0  0  0  0 
2  1  0  0  1  0  0  0 

Figure A.10:  HDTT8 Requirements 
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A.2 Valouxis data set 
 

Teachers: 15 
Classes: 6 
Sessions: 2 

Figure A.11:  Valouxis Details 

Teacher Class Section Total Hours Days Desired Shift 

ID C1 C2 C3 C4 C5 C6   Mo Tu We Th Fr Early Late 

T1 3 3 3 3 2 2 16 1 1 1 1 1 0 1 

T2 9 0 8 0 0 0 17 1 1 1 1 1 1 0 

T3 0 9 0 8 0 0 17 1 1 1 1 1 1 0 

T4 2 0 0 0 8 8 18 1 1 1 1 1 1 0 

T5 0 2 2 2 4 4 14 1 1 1 1 0 0 1 

T6 2 2 2 2 2 2 12 1 1 1 0 0 0 1 

T7 2 2 2 2 2 2 12 1 1 1 1 1 0 1 

T8 3 3 3 3 2 2 16 1 1 1 1 1 0 1 

T9 1 1 1 1 1 1 6 0 0 0 1 1 0 1 

T10 0 0 1 1 1 1 4 0 0 0 0 1 1 0 

T11 4 4 4 2 2 2 18 1 1 1 1 1 0 1 

T12 4 4 4 4 0 0 16 1 1 1 1 1 1 0 

T13 0 0 0 2 6 6 14 1 1 1 1 0 1 0 

T14 3 3 3 3 2 2 16 1 1 1 1 1 0 1 

T15 2 2 1 1 0 0 6 1 0 0 0 1 0 1 

Total 35 35 34 34 32 32 202               

Figure A.12:  Valouxis requirements 
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A.3 Beligiannis data sets 

 
Figure A.13:  High_school_01 details and requirements 

 

 
Figure A.14:  High_School_02 details and requirements 
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Number of Classes 6 
            Number of Teachers  19 
            Number of Days 5 
            Hours per Day 7 
            MaxNo of Splits 0 
              Days A1 A2 B1 B2 G1 G2 

1_T 1 1 1 1 1 0 0 0 0 0 0 0 0 5 1 0 0 

2_T 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 

3_T 1 1 1 1 1 0 0 0 0 6 3 2 1 0 0 0 0 

4_T 1 1 1 1 1 9 2 9 2 0 0 0 0 0 0 0 0 

5_T 1 1 1 1 1 0 0 0 0 4 2 4 2 4 2 6 2 

6_T 1 1 1 1 1 2 1 2 1 0 0 4 2 4 2 7 3 

7_T 1 1 1 1 1 0 0 0 0 4 1 4 1 4 1 4 1 

8_T 1 1 1 0 1 4 1 4 1 0 0 0 0 0 0 0 0 

9_T 1 1 1 1 1 2 1 2 1 5 2 5 2 0 0 1 1 

10_T 1 1 1 1 1 2 1 2 1 0 0 0 0 6 3 5 2 

11_T 0 1 1 0 1 3 1 3 1 0 0 3 1 0 0 0 0 

12_T 0 1 0 1 0 0 0 0 0 3 1 0 0 3 1 3 1 

13_T 1 1 1 1 1 3 1 3 1 2 1 2 1 2 1 2 1 

14_T 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

15_T 1 1 1 1 1 3 1 3 1 3 1 3 1 2 1 2 1 

16_T 0 0 1 0 1 1 1 1 1 2 1 2 1 0 0 0 0 

17_T 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

18_T 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 

19_T 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

Figure A.15:  High_School_03 details and requirements 
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Number of Classes 7 
                        Number of Teachers  19 
                        Number of Days 5 
                        Hours per Day 7 
                        Maxno of Splits 12 
                          Days 1 2 3 4 5 6 7 Classes 

1_T 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

2_T 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

3_T 1 1 1 1 1 2 1 2 1 2 1 3 2 2 1 5 2 2 1 0 0 0 0 0 0 0 0 0 0 

4_T 1 1 1 1 1 4 1 0 0 6 2 4 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5_T 1 1 1 1 1 7 3 6 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6_T 1 1 1 1 1 0 0 0 0 0 0 4 1 4 1 6 3 5 2 0 0 0 0 0 0 0 0 0 0 

7_T 1 1 1 1 1 0 0 5 2 0 0 0 0 2 1 4 1 8 3 0 0 0 0 0 0 0 0 0 0 

8_T 1 1 1 1 1 0 0 0 0 0 0 4 1 4 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 

9_T 1 1 1 1 1 4 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10_T 1 1 1 1 1 2 1 2 1 2 1 1 1 0 0 5 3 5 3 0 0 0 0 0 0 0 0 0 0 

11_T 1 1 1 1 1 2 1 2 1 2 1 4 2 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12_T 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 0 0 0 0 0 0 0 0 0 

13_T 1 1 1 1 1 6 2 0 0 6 2 5 2 0 0 0 0 0 0 1 3 4 0 0 0 0 0 0 0 

14_T 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 6 0 0 0 0 0 0 

15_T 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

16_T 1 1 1 1 1 0 0 6 2 6 2 1 1 5 2 0 0 4 2 2 3 5 7 0 0 0 0 0 4 

17_T 0 1 0 1 0 1 1 1 1 1 1 2 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

18_T 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 1 2 3 4 5 0 

19_T 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 0 0 0 0 1 2 3 4 5 0 

Figure A.16:  High_School_04 details and requirements 
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Number of Classes 6 
             Number of Teachers  18 
             Number of Days 5 
             Hours per Day 7 
             MaxNo of Splits 0 
               Days 1 2 3 4 5 6 

1_T 1 1 1 0 1 4 1 0 0 0 0 0 0 0 0 0 0 

2_T 1 1 1 1 1 4 2 2 1 4 2 4 2 2 1 2 1 

3_T 1 1 1 1 1 0 0 0 0 4 1 4 1 4 2 4 2 

4_T 1 1 1 1 1 5 2 5 2 0 0 0 0 4 1 4 1 

5_T 1 1 1 1 1 0 0 4 1 4 2 4 2 3 1 3 1 

6_T 1 1 1 1 1 0 0 0 0 4 1 4 1 0 0 0 0 

7_T 1 1 1 1 1 4 1 4 1 0 0 0 0 4 1 4 1 

8_T 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 

9_T 1 1 1 1 1 0 0 0 0 5 3 3 2 3 2 3 2 

10_T 1 0 1 1 1 2 1 2 1 0 0 2 1 0 0 0 0 

11_T 0 1 1 1 0 3 1 3 1 0 0 0 0 0 0 0 0 

12_T 0 0 1 1 1 0 0 0 0 3 1 3 1 3 1 3 1 

13_T 1 1 1 1 1 3 1 5 2 2 1 2 1 2 1 2 1 

14_T 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 

15_T 0 1 0 1 1 3 2 3 2 2 1 2 1 0 0 0 0 

16_T 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

17_T 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

18_T 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 

Figure A.17:  High_School_05 details and requirements 
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Figure A.18:  High_School_07 details and requirements 
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A.4 Lewitt data set 
1 9 9 9 9 9 
2 9 9 9 9 9 
3 9 9 9 9 9 
4 9 9 9 9 9 
5 9 9 9 9 9 
6 11 10 10 10 9 
7 11 10 10 10 9 
8 11 11 11 11 9 
9 11 11 11 11 9 
10 11 11 11 11 9 
11 11 11 11 11 9 
12 11 11 11 11 9 
13 11 11 11 11 9 
14 11 11 11 11 9 
15 11 11 11 11 9 
16 11 11 11 11 9 

Figure A.19:  Lewitt Periods for each class labeled 1 to 16 
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School Details            
Number of Classes 16           
Number of Teachers 19           
Number of Subjects 14           
Number of Days 5           
Periods Per day 11           
            
Class Subject Teacher 1 Teacher 2 Times Clash Double Triple Session
 SReq   
1A Fnd             KN  0  45 0 0 0 4 1 
1B Fnd             VP  0  45 0 0 0 4 1 
1C Fnd             AM  0  45 0 0 0 4 1 
 
2A Fnd             NDG  0  45 0 0 0 4 1 
2B Fnd             SN  0  45 0 0 0 4 1 
 
3A Afk             NH  0  3 0 1 0 7 0 
3A Fnd             HPB  0  45 0 0 0 7 0 
3A Lfe             AM  0  2 0 1 0 7 0 
 
3B Afk             NH  0  3 0 1 0 7 0 
3B Fnd             RM  0  37 0 0 0 7 0 
3B Lfe             KN  0  1 0 0 0 7 0 
3B Lfe             NH  0  2 0 1 0 7 0 
3B Lfe             VP  0  2 0 0 0 7 0 
3B Lfe             NDG  0  2 0 0 0 7 0 
3B Zul             HPB  0  3 0 1 0 7 0 
 
4A ACc             SB  0  3 0 1 0 7 0 
4A Afk             JM  0  5 0 0 0 7 0 
4A EMS             JM  0  3 0 1 0 7 0 
4A Eng             US  0  11 0 1 0 7 0 
4A LOr             KND  0  3 0 1 0 7 0 
4A LRE             NDG  0  1 0 0 0 7 0 
4A Mth             US  0  10 0 1 0 4 1 
4A NSc             US  0  2 0 1 0 7 0 
4A NSc             US  0  2 0 0 0 7 0 
4A PEd             AM  SMK  2 1 1 0 7 0 
4A SSc             JM  0  2 0 1 0 7 0 
4A SSc             JM  0  2 0 0 0 7 0 
4A Tch             KS  0  1 0 0 0 7 0 
4A Tch             KS  VBS  2 1 1 0 7 0 
4A Zul             NFM  0  4 0 0 0 7 0 
 
4B ACc             SB  0  3 0 1 0 7 0 
4B Afk             JM  0  5 0 0 0 7 0 
4B EMS             JM  0  3 0 1 0 7 0 
4B Eng             US  0  11 0 1 0 7 0 
4B LOr             KND  0  3 0 1 0 7 0 
4B LRE             US  0  1 0 0 0 7 0 
4B Mth             US  0  10 0 1 0 4 1 



236 
 

4B NSc             US  0  2 0 1 0 7 0 
4B NSc             US  0  2 0 0 0 7 0 
4B PEd             KN  SMK  2 1 1 0 7 0 
4B SSc             JM  0  2 0 1 0 7 0 
4B SSc             JM  0  2 0 0 0 7 0 
4B Tch             KS  0  1 0 0 0 7 0 
4B Tch             KS  VBS  2 1 1 0 7 0 
4B Zul             NFM  0  4 0 0 0 7 0 
 
5A ACc             NFM  0  3 0 1 0 7 0 
5A Afk             JM  0  5 0 0 0 7 0 
5A EMS             YM  0  3 0 1 0 7 0 
5A Eng             KND  0  11 0 1 0 7 0 
5A LOr             JM  0  3 0 1 0 7 0 
5A LRE             AD  0  1 0 0 0 7 0 
5A Mth             AD  0  10 0 1 0 4 1 
5A NSc             KND  0  2 0 1 0 7 0 
5A NSc             KND  0  2 0 0 0 7 0 
5A PEd             NFM  KS  2 1 1 0 7 0 
5A SSc             AD  0  2 0 1 0 7 0 
5A SSc             AD  0  2 0 0 0 7 0 
5A Tch             KS  0  1 0 0 0 7 0 
5A Tch             KS  DN  2 1 1 0 7 0 
5A Zul             NFM  0  4 0 0 0 7 0 
 
5B ACc             NFM  0  3 0 1 0 7 0 
5B Afk             JM  0  5 0 0 0 7 0 
5B EMS             YM  0  3 0 1 0 7 0 
5B Eng             KND  0  11 0 1 0 7 0 
5B LOr             JM  0  3 0 1 0 7 0 
5B LRE             KND  0  1 0 0 0 7 0 
5B Mth             AD  0  10 0 1 0 4 1 
5B NSc             KND  0  2 0 1 0 7 0 
5B NSc             KND  0  2 0 0 0 7 0 
5B PEd             VP  AD  2 1 1 0 7 0 
5B SSc             AD  0  2 0 1 0 7 0 
5B SSc             AD  0  2 0 0 0 7 0 
5B Tch             KS  0  1 0 0 0 7 0 
5B Tch             KS  DN  2 1 1 0 7 0 
5B Zul             NFM  0  4 0 0 0 7 0 
 
5C ACc             NFM  0  3 0 1 0 7 0 
5C Afk             JM  0  5 0 0 0 7 0 
5C EMS             YM  0  3 0 1 0 7 0 
5C Eng             KND  0  11 0 1 0 7 0 
5C LOr             JM  0  3 0 1 0 7 0 
5C LRE             NDG  0  1 0 0 0 7 0 
5C Mth             AD  0  10 0 1 0 4 1 
5C NSc             KND  0  2 0 1 0 7 0 
5C NSc             KND  0  2 0 0 0 7 0 
5C PEd             AD  KS  2 1 1 0 7 0 
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5C SSc             AD  0  2 0 1 0 7 0 
5C SSc             AD  0  2 0 0 0 7 0 
5C Tch             KS  0  1 0 0 0 7 0 
5C Tch             KS  DN  2 1 1 0 7 0 
5C Zul             NFM  0  4 0 0 0 7 0 
 
6A ACc            SB  0  3 0 1 0 7 0 
6A Afk            SMK  0  5 0 0 0 7 0 
6A EMS            DN  0  3 0 1 0 7 0 
6A Eng            SB  0  11 0 1 0 7 0 
6A LOr            KS  0  3 0 1 0 7 0 
6A LRE            SN  0  1 0 0 0 7 0 
6A Mth            VBS  0  10 0 1 0 4 1 
6A NSc            SB  0  2 0 1 0 7 0 
6A NSc            SB  0  2 0 0 0 7 0 
6A PEd            SN  VBS  2 1 1 0 7 0 
6A SSc            SB  0  2 0 1 0 7 0 
6A SSc            SB  0  2 0 0 0 7 0 
6A Tch            KS  0  1 0 0 0 7 0 
6A Tch            KS  NFM  2 1 1 0 7 0 
6A Zul            NFM  0  4 0 0 0 7 0 
 
6B ACc            SB  0  3 0 1 0 7 0 
6B Afk            SMK  0  5 0 0 0 7 0 
6B EMS            DN  0  3 0 1 0 7 0 
6B Eng            SB  0  11 0 1 0 7 0 
6B LOr            KS  0  3 0 1 0 7 0 
6B LRE            KN  0  1 0 0 0 7 0 
6B Mth            VBS  0  10 0 1 0 4 1 
6B NSc            SB  0  2 0 1 0 7 0 
6B NSc            SB  0  2 0 0 0 7 0 
6B PEd            KS  AD  2 1 1 0 7 0 
6B SSc            SB  0  2 0 1 0 7 0 
6B SSc            SB  0  2 0 0 0 7 0 
6B Tch            KS  0  1 0 0 0 7 0 
6B Tch            KS  DN  2 1 1 0 7 0 
6B Zul            NFM  0  4 0 0 0 7 0 
 
7A ACc            SMK  0  3 0 1 0 7 0 
7A Afk            SMK  0  5 0 0 0 7 0 
7A EMS            YM  0  3 0 1 0 7 0 
7A Eng            YM  0  11 0 1 0 7 0 
7A LOr            SMK  0  3 0 1 0 7 0 
7A LRE            SN  0  1 0 0 0 7 0 
7A Mth            DN  0  10 0 1 0 4 1 
7A NSc            SMK  0  2 0 1 0 7 0 
7A NSc            SMK  0  2 0 0 0 7 0 
7A PEd            SMK  YM  2 1 1 0 7 0 
7A SSc            DN  0  2 0 1 0 7 0 
7A SSc            DN  0  2 0 0 0 7 0 
7A Tch            KS  0  1 0 0 0 7 0 
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7A Tch            KS  VBS  2 1 1 0 7 0 
7A Zul            NFM  0  4 0 0 0 7 0 
 
7B ACc            SMK  0  3 0 1 0 7 0 
7B Afk            SMK  0  5 0 0 0 7 0 
7B EMS            YM  0  3 0 1 0 7 0 
7B Eng            YM  0  11 0 1 0 7 0 
7B LOr            SMK  0  3 0 1 0 7 0 
7B LRE            YM  0  1 0 0 0 7 0 
7B Mth            DN  0  10 0 1 0 4 1 
7B NSc            SMK  0  2 0 1 0 7 0 
7B NSc            SMK  0  2 0 0 0 7 0 
7B PEd            SMK  YM  2 1 1 0 7 0 
7B SSc            DN  0  2 0 1 0 7 0 
7B SSc            DN  0  2 0 0 0 7 0 
7B Tch            KS  0  1 0 0 0 7 0 
7B Tch            KS  VBS  2 1 1 0 7 0 
7B Zul            NFM  0  4 0 0 0 7 0 

Figure A.20:  Lewitt details and requirements 

 

Type Class Tchr Subj FromDay ToDay FromPrd ToPrd Sched NumPer 
1 -1 US Mth 1             5 1             4 1 10 
1 -1 AD Mth 1             5 1             6 1 10 
1 -1 VBS Mth 1             5 1             4 1 10 
1 -1 DN Mth 1             5 1             4 1 10 
0 1A -1 Fnd 1             5 1             9 1 45 
0 1B -1 Fnd 1             5 1             9 1 45 
0 1C -1 Fnd 1             5 1             9 1 45 
0 2A -1 Fnd 1             5 1             9 1 45 
0 2B -1 Fnd 1             5 1             9 1 45 

Figure A.21:  Lewitt Scheduled Requirements 

A.5 Woodlands data set 
8A 
8B 
8C 
8D 
8E 
8F 
8G 
9A 
9B 
9C 
9D 
9E 
10A 
10B 
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10C 
10D 
10E 
11A 
11B 
11C 
11D 
11E 
11F 
11G 
12A 
12B 
12C 
12D 
12E 
12F 

Figure A.22:  Class list for Woodlands 

Type Grade Cl/T Subj FromDay ToDay FromPrd ToPrd Schedule 
0 12 C ENG 1                6 3                3 1 
1 -1 AK -1 1                6 6                6 0 
2 10 5 -1 1                6 3                3 1 

Figure A.23:  Preferences for Woodlands 

 

SCHOOL DETAILS 
NUMBER OF CLASSES 30 
NUMBER OF TEACHERS 40 
NUMBER OF SUBJECTS 44 
PERIODS IN DAY 7 
DAYS IN WEEK 6 
 
Teacher Grade Class Subject Meetings 
EL 10 1 ML 7 
EL 10 2 ML 7 
EL 10 B LO 2 
EL 10 C LO 2 
EL 10 D LO 2 
EL 8 A AC 4 
EL 8 B AC 4 
EL 8 C AC 4 
EL 8 D AC 4 
EL 8 G LO 2 
 
PM 10 B AFR 7 
PM 10 C AFR 7 
PM 10 D AFR 7 
PM 10 E AFR 7 
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PM 9 A AFR 5 
PM 9 E AFR 5 
 
TA 11 E RP 1 
TA 10 5 EGD 6 
TA 9 A TEC 4 
TA 9 B TEC 4 
TA 9 C AC 4 
TA 9 C TEC 4 
TA 9 D AC 4 
TA 9 D TEC 4 
TA 9 E TEC 4 
TA 8 F LO 2 
 
FS 10 A ENG 7 
FS 10 C ENG 7 
FS 10 D ENG 7 
FS 8 B ENG 5 
FS 8 D ENG 5 
FS 8 G NSC 6 
 
RTS 11 E BS 6 
RTS 9 A EMS 4 
RTS 9 B EMS 4 
RTS 9 B RP 1 
RTS 9 C EMS 4 
RTS 9 D EMS 4 
RTS 9 E EMS 4 
RTS 8 A LO 2 
RTS 8 B LO 2 
RTS 8 C LO 2 
RTS 8 G EMS 4 
 
SS 10 5 EGD2 6 
SS 8 A TEC 4 
SS 8 B TEC 4 
SS 8 C TEC 4 
SS 8 D LO 2 
SS 8 D TEC 4 
SS 8 D RP 1 
SS 8 E TEC 4 
SS 8 F TEC 4 
SS 8 G TEC 4 
 
MP 10 3 BS 6 
MP 10 C RP 1 
MP 10 E BS 6 
MP 8 A EMS 4 
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MP 8 B EMS 4 
MP 8 C EMS 4 
MP 8 D EMS 4 
MP 8 E EMS 4 
MP 8 F EMS 4 
 
AR 12 B ENG 7 
AR 12 B RP 1 
AR 12 D ENG 7 
AR 12 D RP 1 
AR 12 F ENG 7 
AR 10 B ENG 7 
AR 10 E ENG 7 
 
CG 11 C ENG 7 
CG 11 C RP 1 
CG 11 D ENG 7 
CG 11 D RP 1 
CG 9 A ENG 5 
CG 9 C ENG 5 
CG 9 E ENG 5 
CG 9 E RP 1 
CG 8 F ENG 5 
 
MVG 11 A ENG 7 
MVG 11 E ENG 7 
MVG 11 G ENG 7 
MVG 11 G RP 1 
MVG 9 B AFR 5 
MVG 9 C AFR 5 
MVG 9 D AFR 5 
 
PN 12 1 ML2 7 
PN 12 6 ML3 7 
PN 11 5 ML2 7 
PN 10 E RP 1 
PN 9 C MAT 7 
PN 9 D MAT 7 
 
RT 12 3 LS 6 
RT 10 A LS 6 
RT 10 B LS 6 
RT 8 A NSC 6 
RT 8 C NSC 6 
RT 8 E NSC 6 
 
RLN 12 E DA 6 
RLN 11 2 DA 6 
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RLN 11 6 DA 6 
RLN 10 E DA 6 
RLN 9 A AC 4 
RLN 9 B AC 4 
RLN 9 E AC 4 
 
TVV 12 A AFR 7 
TVV 12 C AFR 7 
TVV 11 B AFR 7 
TVV 11 E AFR 7 
TVV 10 A AFR 7 
TVV 10 A RP 1 
 
USM 12 3 PSC 6 
USM 12 A PSC 6 
USM 11 4 PSC 6 
USM 11 A PSC 6 
USM 10 A PSC 6 
USM 9 D NSC 6 
 
YH 12 1 MAT 7 
YH 12 6 ML 7 
YH 12 F RP 1 
YH 11 1 ML 7 
YH 10 1 MAT2 7 
YH 10 2 MAT 7 
 
TP 9 A RP 1 
TP 8 A AFR 5 
TP 8 B AFR 5 
TP 8 C AFR 5 
TP 8 D AFR 5 
TP 8 F AFR 5 
TP 8 G ENG 5 
TP 8 G AFR 5 
 
SB 12 2 BS 6 
SB 12 3 BS 6 
SB 12 4 BS 6 
SB 12 C BS 6 
SB 11 6 BS 6 
SB 11 F BS 6 
 
SSM 12 4 TOU 6 
SSM 11 3 TOU 6 
SSM 11 G TOU 6 
SSM 10 4 TOU 6 
SSM 8 C HSS 4 
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SSM 8 E HSS 4 
SSM 8 F HSS 4 
 
TIL 12 B AFR 7 
TIL 12 D AFR 7 
TIL 11 A AFR 7 
TIL 11 A RP 1 
TIL 11 C AFR 7 
TIL 11 F AFR 7 
 
DPE 12 4 GEO 6 
DPE 11 2 GEO 6 
DPE 11 7 GEO 6 
DPE 10 4 GEO 6 
DPE 9 A HSS 4 
DPE 9 B HSS 4 
DPE 9 D HSS 4 
 
FJ 12 1 ML 7 
FJ 12 6 ML2 7 
FJ 11 5 ML3 7 
FJ 11 E ML 7 
FJ 11 G ML 7 
FJ 10 D RP 1 
 
GMR 12 B LO 2 
GMR 12 C LO 2 
GMR 12 D LO 2 
GMR 12 E LO 2 
GMR 12 F LO 2 
GMR 11 B LO 2 
GMR 11 C LO 2 
GMR 11 D LO 2 
GMR 11 E LO 2 
GMR 11 F LO 2 
GMR 11 G LO 2 
GMR 9 A LO 2 
GMR 9 B LO 2 
GMR 9 C LO 2 
GMR 9 D LO 2 
GMR 9 E LO 2 
GMR 8 A RP 1 
GMR 8 E LO 2 
GMR 8 E RP 1 
 
ADK 12 2 IT 6 
ADK 12 7 CAT 6 
ADK 11 5 ML 7 
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ADK 11 7 IT 6 
ADK 10 B RP 1 
ADK 9 A MAT 7 
ADK 9 C RP 1 
ADK 8 B RP 1 
ADK 8 C RP 1 
 
ATM 12 3 LS2 6 
ATM 11 3 LS 6 
ATM 11 B LS 6 
ATM 8 B NSC 6 
ATM 8 D NSC 6 
ATM 8 F NSC 6 
 
DI 9 B MAT 7 
DI 9 E MAT 7 
DI 8 D MAT 7 
DI 8 E MAT 7 
DI 8 F MAT 7 
DI 8 F RP 1 
 
LAN 12 3 HOS 6 
LAN 12 4 CON 6 
LAN 12 7 CON 6 
LAN 11 6 CON 6 
LAN 11 7 HOS 6 
LAN 10 5 CON 6 
 
PG 12 5 GEO 6 
PG 11 4 GEO 6 
PG 10 B GEO 6 
PG 9 C HSS 4 
PG 8 A MAT 7 
PG 8 C MAT 7 
 
NS 12 2 ACC 6 
NS 12 5 ECO 6 
NS 12 C ECO 6 
NS 11 3 ACC 6 
NS 11 4 ECO 6 
NS 11 6 ECO 6 
 
TCP 9 E HSS 4 
TCP 8 B MAT 7 
TCP 8 E AC 4 
TCP 8 F AC 4 
TCP 8 G MAT 7 
TCP 8 G AC 4 
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TCP 8 G HSS 4 
TCP 8 G RP 1 
 
PH 12 1 MAT2 7 
PH 12 6 MAT 7 
PH 11 1 MAT 7 
PH 11 5 MAT 7 
PH 10 1 MAT 7 
 
SMA 12 A ENG 7 
SMA 12 A RP 1 
SMA 12 E ENG 7 
SMA 12 E RP 1 
SMA 11 B ENG 7 
SMA 11 B RP 1 
SMA 11 F ENG 7 
SMA 11 F RP 1 
 
ZK 9 B ENG 5 
ZK 9 D ENG 5 
ZK 9 D RP 1 
ZK 8 A ENG 5 
ZK 8 C ENG 5 
ZK 8 E ZUL 5 
ZK 8 E ENG 5 
 
DMO 12 3 EGD 6 
DMO 12 5 EGD 6 
DMO 11 2 EGD 6 
DMO 11 3 EGD 6 
DMO 11 7 EGD 6 
 
LMD 12 A LO 2 
LMD 11 4 HIS 6 
LMD 11 7 HIS 6 
LMD 11 A LO 2 
LMD 10 3 HIS 6 
LMD 10 A LO 2 
LMD 10 E HIS 6 
 
SIT 12 E AFR 7 
SIT 12 F AFR 7 
SIT 11 D AFR 7 
SIT 11 G AFR 7 
SIT 10 E LO 2 
 
NMG 12 3 ACC 6 
NMG 12 C ACC 6 
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NMG 11 6 ACC 6 
NMG 10 A ACC 6 
NMG 10 B ACC 6 
 
AK 9 A NSC 6 
AK 9 B NSC 6 
AK 9 C NSC 6 
AK 9 E NSC 6 
 
SSN 8 A HSS 4 
SSN 8 B HSS 4 
SSN 8 D HSS 4 
 
HAJ 12 C ENG 8 

Figure A.24:  Woodlands details and requirements 

 

1 12 A 
1 12 B 
1 12 E 
 
2 12 A 
2 12 B 
 
3 12 A 
3 12 B 
3 12 D 
3 12 E 
3 12 F 
 
4 12 D 
4 12 E 
4 12 F 
 
5 12 B 
5 12 D 
 
6 12 C 
6 12 D 
6 12 F 
 
7 12 F 
 
1 11 A 
1 11 C 
 
2 11 E 
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2 11 F 
 
3 11 A 
3 11 C 
3 11 D 
 
4 11 B 
4 11 C 
4 11 E 
 
5 11 B 
5 11 D 
5 11 F 
 
6 11 B 
6 11 C 
6 11 D 
6 11 G 
 
7 11 A 
7 11 D 
7 11 F 
7 11 G 
 
1 10 A 
1 10 C 
1 10 E 
 
2 10 B 
2 10 D 
 
3 10 C 
3 10 D 
 
4 10 C 
4 10 D 
 
5 10 C 
5 10 D 

Figure A.25:  List of Split and Subclasses for Woodlands 

 


