
A Study of Genetic Algorithms for
Solving the School Timetabling

Problem

by

Rushil Raghavjee

Submitted in fulfillment of the academic
requirements for the degree of
Master of Science in the
School of Computer Science,
University of Kwazulu-Natal,
Pietermaritzburg

April 2013

As the candidate’s supervisor, I have approved this dissertation for submission

Signed: ____________________

Name: Prof. Nelishia Pillay

Date: ____________________

i

PREFACE

The experimental work described in this dissertation was carried out in the School of

Computer Science, University of Natal, Pietermaritzburg, from January 2007 to April 2013,

under the supervision of Professor Nelishia Pillay.

These studies represent original work by the author and have not otherwise been submitted

in any form for any degree or diploma to any tertiary institution. Where use has been made

of the work of others it is duly acknowledged in the text.

Rushil Raghavjee – Candidate (Student number: 201295456)

Prof. Nelishia Pillay - Supervisor

ii

DECLARATION 1 - PLAGIARISM

I, Rushil Raghavjee (Student number: 201295456) declare that

1. The research reported in this thesis, except where otherwise indicated, is my
original research.

2. This thesis has not been submitted for any degree or examination at any other
university.

3. This thesis does not contain other persons’ data, pictures, graphs or other
information, unless specifically acknowledged as being sourced from other
persons.

4. This thesis does not contain other persons' writing, unless specifically
acknowledged as being sourced from other researchers. Where other written
sources have been quoted, then:
a. Their words have been re-written but the general information attributed to

them has been referenced
b. Where their exact words have been used, then their writing has been placed

in italics and inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the
Internet, unless specifically acknowledged, and the source being detailed in the
thesis and in the References sections.

Signed: _____________________________________

iii

DECLARATION 2 - PUBLICATIONS

DETAILS OF CONTRIBUTION TO PUBLICATIONS that form part and/or include
research presented in this thesis

Publication 1:
R. Raghavjee, N. Pillay. An Application of Genetic Algorithms to the School Timetabling

Problem. In C. Cilliers, L. Barnard, R Botha (Eds.) Proceedings of SAICSIT 2008. Eastern

Cape, South Africa. Pages 193-199. ACM Press. October 2008. Citations: 11.

Publication 2:
R. Raghavjee, N. Pillay. Evolving Solutions to the School Timetabling Problem. In

Proceedings of NABiC 2009. Coimbatore, India. Pages 1524-1527. IEEE Press.

December 2009. Citations: 2.

Publication 3:
R. Raghavjee, N. Pillay. An Informed Genetic Algorithm for the High School Timetabling

Problem. In Proceedings SAICSIT 2010. Pretoria, South Africa. Pages 408-412. ACM

Press. October 2010. Citations: 3.

Publication 4:
R. Raghavjee, N. Pillay. Using Genetic Algorithms to Solve the South African School

Timetabling Problem. In Proceedings NABiC 2010. Kitakyushu, Japan. Pages 286-292.

IEEE Press. December 2010. Citations: 3.

Publication 5:
R. Raghavjee, N. Pillay. The Effect of Construction Heuristics on the Performance of a

Genetic Algorithm for the School Timetabling Problem. In Proceeding of SAICSIT 2011.

Cape Town, South Africa. Pages 187-194. ACM Press. October 2011.

Signed:

_____________________ ____________________
Rushil Raghavjee Prof. Nelishia Pillay

iv

Abstract

The school timetabling problem is a common optimization problem faced by many primary

and secondary schools. Each school has its own set of requirements and constraints that

are dependent on various factors such as the number of resources available and rules

specified by the department of education for that country. There are two objectives in this

study. In previous studies, genetic algorithms have only been used to solve a single type of

school timetabling problem. The first objective of this study is to test the effectiveness of a

genetic algorithm approach in solving more than one type of school timetabling problem.

The second objective is to evaluate a genetic algorithm that uses an indirect representation

(IGA) when solving the school timetabling problem. This IGA approach is then compared to

the performance of a genetic algorithm that uses a direct representation (DGA). This

approach has been covered in other domains such as job shop scheduling but has not been

covered for the school timetabling problem.

Both the DGA and IGA were tested on five school timetabling problems. Both the algorithms

were initially developed based on findings in the literature. They were then improved

iteratively based on their performance when tested on the problems. The processes of the

genetic algorithms that were improved were the method of initial population creation, the

selection methods and the genetic operators used.

Both the DGA and the IGA were found to produce timetables that were competitive and in

some cases superior to that of other methods such as simulated annealing and tabu search.

It was found that different processes (i.e. the method of initial population creation, selection

methods and genetic operators) were needed for each problem in order to produce the best

results. When comparing the performance of the two approaches, the IGA outperformed the

DGA for all of the tested school timetabling problems.

v

Table of Contents

A Study of Genetic Algorithms for Solving the School Timetabling Problem 1

PREFACE ... i

DECLARATION 1 - PLAGIARISM ... ii

DECLARATION 2 - PUBLICATIONS .. iii

Abstract .. iv

Table of Contents ... v

List of Figures .. xiii

List of Tables ... xvi

List of Algorithms ...xxi

Chapter 1 - Introduction ... 1

1.1 Purpose of the study ... 1

1.2 Objectives.. 1

1.3 Contributions to the study .. 2

1.4 Thesis layout ... 2

Chapter 2 - An overview of the school timetabling problem .. 4

2.1 The School timetabling problem ... 4

2.2 Common hard constraints .. 5

2.2.1 Lesson requirements .. 5

2.2.2 Clashes ... 5

2.2.3 Consecutive period requirements ... 6

2.2.4 Co-teaching and subclasses ... 7

2.2.5 Specialized venues ... 7

2.2.6 Teacher availability .. 8

2.3 Common soft constraints .. 8

2.3.1 Daily teacher/subject limits ... 8

2.3.2 Compact timetables ... 8

2.3.3 Replacement teachers ... 9

2.3.4 Resource preferences .. 9

2.4 The school timetabling problem as a multi-objective problem .. 9

2.5 Chapter summary.. 10

Chapter 3 - Previous work on the school timetabling problem ... 11

3.1 The tabu search ... 11

vi

3.1.1 Tabu search description ... 11

3.1.2 Applications of tabu search to the school timetabling problem ... 12

3.2 Integer or linear programming ... 14

3.2.1 Integer or linear programming description ... 14

3.2.2 Application of integer programming to the school timetabling problem 14

3.3 Tiling algorithms .. 15

3.4 Simulated Annealing ... 16

3.4.1 Introduction to simulated annealing ... 16

3.4.2 Applications of simulated annealing to the school timetabling problem 16

3.5 Constraint programming ... 18

3.5.1 Constraint programming description ... 18

3.5.2 Applications of constraint programming to the school timetabling problem 19

3.6 Particle Swarm Optimization .. 20

3.6.1 Introduction to particle swam optimization .. 20

3.6.2 Application of particle swarm optimization to the school timetabling problem................. 21

3.7 Hybrid algorithms.. 22

3.8 Comparative studies ... 26

3.9 Chapter Summary ... 28

Chapter 4 - Introduction to Genetic Algorithms ... 29

4.1 Introduction .. 29

4.2 Biological background ... 29

4.3 Genetic Algorithm Overview ... 29

4.3.1 Initial population generation ... 30

4.3.2 Fitness function .. 30

4.3.3 Selection method ... 31

4.3.4 Genetic operators .. 32

4.3.4.1 Mutation ... 32

4.3.4.2 Crossover .. 32

4.3.5 Control parameters .. 33

4.4 Advances in Genetic Algorithms ... 33

4.4.1 Control models ... 34

4.4.2 Individual representation ... 35

4.4.3 Initial population creation .. 35

4.4.4 Tournament Selection .. 35

vii

4.4.5 Genetic operators .. 36

4.4.5.1 Mutation ... 36

4.4.5.2 Crossover .. 37

4.4.5.3 Reproduction .. 38

4.4.5.4 Genetic operator probability versus genetic operator application rate 38

4.5 Chapter Summary ... 39

Chapter 5 – Genetic algorithms and the School Timetabling Problem .. 40

5.1 Evolutionary or genetic algorithms ... 40

5.2 Genetic algorithms with other techniques ... 48

5.3 Comparative studies ... 51

5.4 Chapter Summary ... 53

5.4.1 Representation ... 53

5.4.2 Control model .. 53

5.4.3 Initial population generation ... 53

5.4.4 Selection method ... 54

5.4.5 Genetic operators .. 54

5.4.6 Single phase versus multiphase ... 54

5.4.7 School Timetabling Problems... 55

Chapter 6 - Methodology ... 56

6.1 Introduction .. 56

6.2 Fulfilling the objectives of the study ... 56

6.2.1 Objective One .. 56

6.2.2 Objective Two .. 57

6.3 Hypothesis testing ... 57

6.4 The School Timetabling Problems ... 58

6.4.1 The Hard Defined TimeTable (HDTT) school timetabling problem 58

6.4.2 The Valouxis Greek school timetabling problem ... 59

6.4.3 The Beligiannis Greek school timetabling problem ... 61

6.4.4 The Woodlands Secondary school timetabling problem ... 62

6.4.5 The W.A. Lewitt primary school timetabling problem ... 64

6.5 System implementation details .. 65

6.6 Chapter Summary ... 65

Chapter 7 - A Genetic Algorithm Approach using a Direct Representation 66

7.1 Overall algorithm .. 66

viii

7.2 Initial population creation... 67

7.2.1 Representation ... 67

7.2.2 Initial population creation process .. 68

7.2.3 Converting the class-teacher lessons list into a list of tuples .. 68

7.2.4 The sequential construction method (SCM) .. 69

7.2.4.1 Low-level Construction heuristics ... 70

Random Allocation .. 70

Largest degree... 70

Consecutive periods .. 71

Co-teaching and subclasses .. 71

Session priority .. 71

Teacher degree ... 71

Class degree .. 71

Number of available days ... 71

Saturation degree ... 72

7.2.5 Initial population creation during Phase 2 ... 76

7.3 Evaluating a timetable for feasibility and quality ... 76

7.3.1 Evaluating the feasibility of a timetable (Phase 1)... 76

7.3.2 Evaluating the quality of a timetable (Phase 2) ... 76

7.4 Selecting a parent ... 77

7.4.1 Standard tournament selection ... 77

7.4.2 Variant tournament selection (VTS) .. 77

7.5 Genetic operators for Phase 1 .. 78

7.5.1 Two violation mutation (2V) .. 79

7.5.2 One violation mutation (1V) .. 80

7.5.3 Hill climbing versus non-hill climbing operators .. 81

7.6 Genetic operators for Phase 2 .. 81

7.6.1 Random Swap .. 82

7.6.2 Row swap ... 83

7.6.3 One violation mutation (1V) .. 84

7.6.4 Two violation mutation (2V) .. 84

7.7 Control parameters ... 84

7.8 Chapter Summary ... 85

Chapter 8: A Genetic Algorithm Approach using an Indirect Representation 86

ix

8.1 Overall Algorithm .. 86

8.2 Initial Population Creation .. 86

8.2.1 Instruction String Representation .. 86

8.2.2 Algorithm for Initial Population Creation... 88

8.2.3 The Sequential Construction Method (SCM) ... 88

8.2.4 Phase 2 Initial Population Creation .. 88

8.3 Evaluating an individual in the population ... 89

8.4 Selecting a parent ... 89

8.5 Genetic Operators ... 90

8.5.1 Mutation .. 90

8.5.2 Crossover ... 90

8.6 Control Parameters ... 91

8.7 Summary ... 91

Chapter 9 – Results and discussion ... 92

9.1 Introduction .. 92

9.2 DGA process evaluation .. 92

9.2.1 The Abramson benchmark school timetabling problem (HDTT) ... 92

9.2.1.1 Comparison of low-level construction heuristics ... 92

9.2.1.2 Comparison of selection methods .. 97

9.2.1.3 Comparison of mutation operators .. 100

9.2.2 The Valouxis Greek school timetabling problem ... 102

9.2.2.1 Comparison of low-level construction heuristics ... 102

9.2.2.2 Comparison of Phase 1 selection methods ... 105

9.2.2.3 Comparison of Phase 1 mutation operators ... 108

9.2.2.4 Comparison of Phase 2 selection methods ... 109

9.2.2.5 Comparison of Phase 2 mutation operators ... 111

9.2.3 The Beligiannis Greek high school timetabling problem ... 113

9.2.3.1 Comparison of low-level construction heuristics ... 114

9.2.3.2 Comparison of Phase 1 selection methods ... 117

9.2.3.3 Comparison of Phase 1 mutation operators ... 120

9.2.3.4 Comparison of Phase 2 selection methods ... 122

9.2.3.5 Comparison of Phase 2 mutation operators ... 123

9.2.4 W.A. Lewitt primary school timetabling problem .. 126

9.2.4.1 Comparison of low-level construction heuristics ... 126

x

9.2.4.2 Comparison of Phase 1 selection methods ... 128

9.2.4.3 Comparison of Phase 1 mutation operators ... 130

9.2.4.4 Comparison of Phase 2 selection methods ... 131

9.2.4.5 Comparison of Phase 2 mutation operators ... 133

9.2.5 The Woodlands secondary school timetabling problem ... 135

9.2.5.1 Comparison of low-level construction heuristics ... 135

9.2.5.2 Comparison of Phase 1 selection methods ... 137

9.2.5.3 Comparison of Phase 1 mutation operators ... 139

9.2.5.4 Comparison of Phase 2 selection methods ... 140

9.2.5.5 Comparison of Phase 2 mutation operators ... 141

9.2.6 Best performing DGA processes .. 144

9.3 Fine-tuning of DGA control parameter values .. 146

9.3.1 The Abramson benchmark school timetabling problem ... 146

9.3.1.1 Fine tuning the SCM size ... 147

9.3.1.2 Fine-tuning the population size .. 149

9.3.1.3 The best tournament size ... 151

9.3.1.4 Fine-tuning the number of swaps ... 154

9.3.1.5 Maximum number of generations .. 156

9.3.2 The Valouxis school timetabling problem .. 156

9.3.2.1 Fine-tuning the SCM size... 156

9.3.2.2 Fine-tuning the population size .. 158

9.3.2.3 Fine-tuning the tournament size .. 160

9.3.2.4 Fine-tuning the number of swaps ... 162

9.3.2.5 Maximum number of generations .. 164

9.3.3 The Beligiannis Greek school timetabling problem ... 165

9.3.3.1 Fine-tuning the SCM size... 165

9.3.3.2 Fine-tuning the population size .. 167

9.3.3.3 Fine-tuning the tournament size .. 169

9.3.3.4 Fine-tuning the number of swaps ... 171

9.3.3.5 Maximum number of generations .. 173

9.3.4 The W.A. Lewitt primary school timetabling problem ... 174

9.3.4.1 Fine-tuning the SCM size... 174

9.3.4.2 Fine-tuning the population size .. 176

9.3.4.3 Fine-tuning the tournament size .. 178

xi

9.3.4.4 Fine-tuning the number of swaps ... 180

9.3.4.5 Maximum number of generations .. 182

9.3.5 The Woodlands secondary school timetabling problem ... 183

9.3.5.1 Fine-tuning the SCM size... 183

9.3.5.2 Fine-tuning the population size .. 185

9.3.5.3 Fine-tuning the tournament size .. 186

9.3.5.4 Fine-tuning the number of swaps ... 187

9.3.5.5 Maximum number of generations .. 189

9.3.6 Summary of fine-tuning ... 190

9.4 IGA – Results and discussion ... 192

9.4.1 The Abramson School Timetabling Problem .. 192

9.4.2 The Valouxis School Timetable Problem .. 194

9.4.3 The Beligiannis Greek School Timetabling Problem .. 196

9.4.4 The Lewitt Primary School Timetabling Probem.. 198

9.4.5 The Woodlands secondary school timetabling problem ... 199

9.5 Discussion of IGA versus DGA Results ... 201

9.6 Comparison with Other Studies .. 202

9.6.1 Abramson benchmark problem set comparison ... 202

9.6.2 The Valouxis Greek school timetabling problem ... 203

9.6.3 The Beligiannis Greek school timetabling problem ... 204

9.6.3.1 Data set HS1 .. 204

9.6.3.2 Data set HS2 .. 205

9.6.3.3 Data set HS3 .. 206

9.6.3.4 Data set HS4 .. 207

9.6.3.5 Data set HS5 .. 208

9.6.3.6 Data set HS7 .. 209

9.6.4 W.A. Lewitt primary school problem ... 209

9.6.5 Woodlands data set ... 210

9.7 Chapter summary.. 210

Chapter 10 - Conclusions and Future Research .. 211

10.1 Introduction .. 211

10.2 Objectives and Conclusions .. 211

10.3 Future research ... 212

Bibliography .. 214

xii

Appendix A – School Timetabling Problem data .. 223

A.1 Abramson data sets .. 223

A.2 Valouxis data set ... 228

A.3 Beligiannis data sets ... 229

A.4 Lewitt data set .. 234

A.5 Woodlands data set .. 238

xiii

List of Figures

FIGURE 2.1: EXAMPLES OF TUPLES ... 4

FIGURE 4.1: GENETIC ALGORITHM [GOLD89].. 30

FIGURE 4.2: MUTATION EXAMPLE ... 32

FIGURE 4.3: ONE POINT CROSSOVER EXAMPLE AND RESULTANT OFFSPRING ... 33

FIGURE 4.4: STANDARD TOURNAMENT SELECTION ALGORITHM .. 36

FIGURE 4.5: TWO POINT CROSSOVER ... 37

FIGURE 4.6: UNIFORM CROSSOVER .. 37

FIGURE 4.7: “CUT AND SPLICE” CROSSOVER OPERATOR .. 38

FIGURE 4.8: DIAGONAL CROSSOVER OPERATOR .. 38

FIGURE 7.1: SAMPLE TIMETABLE STRUCTURE .. 68

FIGURE 7.2: FINDING 2 VIOLATIONS ... 79

FIGURE 7.3: RESULTANT TIMETABLE AFTER 2 VIOLATION SWAP – EXAMPLE 1 ... 80

FIGURE 7.4: RESULTANT TIMETABLE AFTER 2 VIOLATION SWAP – EXAMPLE 2 ... 80

FIGURE 7.5: SELECTING CELLS IN A RANDOM SWAP .. 82

FIGURE 7.6: RESULTANT RANDOM SWAP .. 83

FIGURE 7.7: CONSEQUENCE OF A ROW SWAP RESULTS IN DOUBLE PERIOD SPLIT VIOLATION 84

FIGURE 8.1: MUTATION OF HEURISTICS STRING .. 90

FIGURE 8.2: SELECTION OF CROSSOVER POINTS ... 90

FIGURE 8.3: RESULTANT OFFSPRING AFTER CROSSOVER .. 91

FIGURE 9.1: COMPARISON OF SUCCESS RATES FOR EACH HEURISTIC ... 95

FIGURE 9.2: AVERAGE NUMBER OF GENERATIONS TAKEN PER DATA SET .. 96

FIGURE 9.3: COMPARISON OF SUCCESS RATES FOR VARIOUS SELECTION METHODS ... 98

FIGURE 9.4: COLUMN CHART SHOWING AVERAGE GENERATIONS FOR EACH SELECTION METHOD 99

FIGURE 9.5: FREQUENCY DIAGRAM FOR QUALITY USING VARIOUS HEURISTICS .. 104

FIGURE 9.6: FREQUENCY CHART SHOWING QUALITY FOR SELECTION METHODS ... 107

FIGURE 9.7: FREQUENCY CHART SHOWING QUALITY FOR SELECTION METHODS ... 110

FIGURE 9.8: FREQUENCY CHART SHOWING QUALITY FOR TWO MUTATION OPERATORS 113

FIGURE 9.9: SUCCESS RATES FOR EACH HEURISTIC .. 115

FIGURE 9.10: BAR CHART SHOWING QUALITY FOR EACH HEURISTIC .. 116

FIGURE 9.11: SUCCESS RATES FOR SELECTION METHODS ... 119

FIGURE 9.12: FREQUENCY CHART SHOWING QUALITY FOR TWO SELECTION METHODS 129

FIGURE 9.13: FREQUENCY CHART FOR TWO SELECTION METHODS ... 133

FIGURE 9.14: FREQUENCY CHART SHOWING QUALITY FOR DIFFERENT SOFT MUTATION OPERATORS 135

FIGURE 9.15: FREQUENCY CHART SHOWING QUALITY FOR PROPOSED SOFT MUTATION OPERATORS 143

FIGURE 9.16: SUCCESS RATES FOR VARIOUS SCM VALUES .. 148

FIGURE 9.17: BAR CHART SHOWING AVERAGE GENERATIONS FOR EACH SCM SIZE 149

FIGURE 9.18: BAR CHART SHOWING SUCCESS RATES FOR VARIOUS POPULATION SIZES 151

FIGURE 9.19: COLUMN CHART SHOWING SUCCESS RATES FOR VARIOUS TOURNAMENT SIZES 153

xiv

FIGURE 9.20: COLUMN CHART SHOWING AVERAGE GENERATIONS FOR VARIOUS TOURNAMENT SIZES 153

FIGURE 9.21: BAR CHART SHOWING SUCCESS RATES FOR VARIOUS NUMBERS OF SWAPS 155

FIGURE 9.22: COLUMN CHART SHOWING AVERAGE GENERATIONS FOR EACH SWAP PARAMETER VALUE 155

FIGURE 9.23: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS SCM VALUES 157

FIGURE 9.24: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS POPULATION SIZES 160

FIGURE 9.25: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS TOURNAMENT SIZES 162

FIGURE 9.26: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS SWAP VALUES 164

FIGURE 9.27: COLUMN CHART SHOWING QUALITY OF DIFFERENT POPULATION SIZES 169

FIGURE 9.28: AVERAGE QUALITY FOUND FOR DIFFERENT SWAP PARAMETER VALUES 172

FIGURE 9.29: FREQUENCY CHART SHOWING QUALITY FOR DIFFERENT SCM VALUES 176

FIGURE 9.30: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS POPULATION SIZES 178

FIGURE 9.31: FREQUENCY CHART SHOWING QUALITY FOR VARIOUS TOURNAMENT SIZES 180

FIGURE 9.32: FREQUENCY CHART SHOWING QUALITY USING VARIOUS SWAP PARAMETER VALUES 181

FIGURE 9.33: FREQUENCY CHART FOR THE TWO BEST SCM VALUES ... 184

FIGURE 9.34: FREQUENCY CHART FOR VARIOUS TOURNAMENT SIZES.. 187

FIGURE 9.35: FREQUENCY CHART FOR VARYING NUMBER OF SWAPS .. 189

FIGURE 9.36: EFFECT OF EACH INSTRUCTION ON THE HARD CONSTRAINT COST (HDTT8)............................... 193

FIGURE 9.37: EFFECT OF EACH INSTRUCTION ON THE HARD CONSTRAINT COST (VALOUXIS PROBLEM)............... 195

FIGURE 9.38: AVERAGE TIMETABLE QUALITY INDUCED BY DGA AND IGA ... 197

FIGURE 9.39: EFFECT OF EACH INSTRUCTION ON HARD CONSTRAINT COST (LEWITT PROBLEM) 199

FIGURE A.1: HDTT4 DETAILS ... 223

FIGURE A.2: HDTT4 REQUIREMENTS ... 223

FIGURE A.3: HDTT5 DETAILS ... 223

FIGURE A.4: HDTT5 REQUIREMENTS ... 224

FIGURE A.5: HDTT6 DETAILS ... 224

FIGURE A.6: HDTT6 REQUIREMENTS ... 225

FIGURE A.7: HDTT7 DETAILS ... 225

FIGURE A.8: HDTT 7 REQUIREMENTS .. 226

FIGURE A.9: HDTT8 DETAILS ... 226

FIGURE A.10: HDTT8 REQUIREMENTS ... 227

FIGURE A.11: VALOUXIS DETAILS .. 228

FIGURE A.12: VALOUXIS REQUIREMENTS .. 228

FIGURE A.13: HIGH_SCHOOL_01 DETAILS AND REQUIREMENTS .. 229

FIGURE A.14: HIGH_SCHOOL_02 DETAILS AND REQUIREMENTS ... 229

FIGURE A.15: HIGH_SCHOOL_03 DETAILS AND REQUIREMENTS ... 230

FIGURE A.16: HIGH_SCHOOL_04 DETAILS AND REQUIREMENTS ... 231

FIGURE A.17: HIGH_SCHOOL_05 DETAILS AND REQUIREMENTS ... 232

FIGURE A.18: HIGH_SCHOOL_07 DETAILS AND REQUIREMENTS ... 233

FIGURE A.19: LEWITT PERIODS FOR EACH CLASS LABELED 1 TO 16 ... 234

FIGURE A.20: LEWITT DETAILS AND REQUIREMENTS ... 238

FIGURE A.21: LEWITT SCHEDULED REQUIREMENTS .. 238

FIGURE A.22: CLASS LIST FOR WOODLANDS .. 239

FIGURE A.23: PREFERENCES FOR WOODLANDS .. 239

FIGURE A.24: WOODLANDS DETAILS AND REQUIREMENTS .. 246

xv

FIGURE A.25: LIST OF SPLIT AND SUBCLASSES FOR WOODLANDS .. 247

xvi

List of Tables

TABLE 2.1: CLASS TIMETABLE EXAMPLE... 5

TABLE 2.2: CLASHES DURING PERIODS 3 (TEACHER) AND 4 (VENUE) ... 6

TABLE 2.3: DOUBLE PERIOD ALLOCATION DURING PERIODS 2 AND 3 (CLASS 5B) ... 7

TABLE 2.4: COMPACT TIMETABLE (TEACHER A) AND A TIMETABLES WITH GAPS (TEACHER B) 9

TABLE 4.1: FITNESS VALUES OF INDIVIDUALS AND TOTAL FITNESS .. 31

TABLE 6.1: LEVELS OF SIGNIFICANCE, CRITICAL VALUES AND DECISION RULES .. 58

TABLE 6.2: CHARACTERISTICS OF HDTT DATA SETS .. 59

TABLE 6.3: CHARACTERISTICS OF THE BELIGIANNIS DATA SET.. 61

TABLE 7.1: TRIAL RUNS FOR SINGLE PHASE APPROACH .. 66

TABLE 7.2: LIST OF CLASS-TEACHER LESSONS .. 68

TABLE 7.3: TUPLE TABLE ... 69

TABLE 7.4: TUPLE LIST WITH SATURATION DEGREE ... 73

TABLE 7.5: TIMETABLE WITH TUPLE ADDED .. 74

TABLE 7.6: TUPLE LIST WITH UPDATED SATURATION DEGREE .. 75

TABLE 7.7: TRIAL RUNS FOR NON-HILL CLIMBING MUTATION OPERATORS (PHASE 2) 82

TABLE 8.1: INSTRUCTIONS USED TO BUILD A TIMETABLE .. 87

TABLE 9.1: PROCESSES AND PARAMETER VALUES TO TEST BEST LOW-LEVEL CONSTRUCTION HEURISTIC (HDTT

PROBLEM) ... 93

TABLE 9.2: PERFORMANCE COMPARISON WITH DIFFERENT CONSTRUCTION HEURISTICS 93

TABLE 9.3: AVERAGE CONSTRAINT VIOLATIONS (AND STANDARD DEVIATIONS) FOUND FOR DIFFERENT

CONSTRUCTION HEURISTICS ... 94

TABLE 9.4: HYPOTHESES AND Z-VALUES FOR FEASIBILITY ... 95

TABLE 9.5: PROCESSES AND PARAMETER VALUES TO TEST BEST SELECTION METHOD (HDTT PROBLEM) 97

TABLE 9.6: RESULTS COMPARISON FOR SELECTION METHODS USED .. 97

TABLE 9.7: AVERAGE CONSTRAINT VIOLATIONS AND STANDARD DEVIATIONS FOR DIFFERENT SELECTION METHODS 97

TABLE 9.8: HYPOTHESES AND Z-VALUES FOR TIMETABLE FEASIBILITY .. 99

TABLE 9.9: PROCESSES AND PARAMETER VALUES TO TEST BEST MUTATION OPERATOR 100

TABLE 9.10: COMPARISON OF SUCCESS RATES FOR MUTATION OPERATORS ... 100

TABLE 9.11: AVERAGE CONSTRAINT VIOLATIONS (AND STANDARD DEVIATIONS) FOR EACH MUTATION OPERATOR

 .. 101

TABLE 9.12: HYPOTHESES AND CORRESPONDING Z-VALUES SHOWING FEASIBILITY 102

TABLE 9.13: PROCESSES AND PARAMETER VALUES TO TEST BEST LOW-LEVEL CONSTRUCTION HEURISTIC (VALOUXIS

PROBLEM) ... 103

TABLE 9.14: PERFORMANCE COMPARISON OF CONSTRUCTION HEURISTICS .. 103

TABLE 9.15: HYPOTHESES AND CORRESPONDING Z-VALUES ... 104

TABLE 9.16: SUMMARY OF RESULTS FOR INDEPENDENT SAMPLE T-TEST .. 105

TABLE 9.17: PROCESSES AND PARAMETER VALUES TO TEST BEST SELECTION METHOD 106

xvii

TABLE 9.18: RESULTS FOR SELECTION METHODS (PHASE 1) ... 106

TABLE 9.19: HYPOTHESES AND Z-VALUES FOR FEASIBILITY AND QUALITY ... 107

TABLE 9.20: PROCESSES AND PARAMETER VALUES TO TEST BEST MUTATION OPERATOR 108

TABLE 9.21: RESULTS FOR MUTATION OPERATORS (PHASE 1) .. 108

TABLE 9.22: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 SELECTION METHOD (VALOUXIS PROBLEM)

 .. 109

TABLE 9.23: RESULTS FOR SELECTION METHODS (PHASE 2) ... 110

TABLE 9.24: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 MUTATION OPERATOR (VALOUXIS

PROBLEM) ... 111

TABLE 9.25: RESULTS FOR MUTATION OPERATORS (PHASE 2) .. 112

TABLE 9.26: HYPOTHESES AND Z-VALUES FOR QUALITY .. 112

TABLE 9.27: PROCESSES AND PARAMETER VALUES TO TEST BEST CONSTRUCTION HEURISTIC 114

TABLE 9.28: RESULTS FOR DIFFERENT HEURISTICS .. 114

TABLE 9.29: HYPOTHESES AND Z-VALUES FOR FEASIBILITY FOR DATA SET HS5 .. 115

TABLE 9.30: AVERAGE QUALITY FOR EACH HEURISTIC ... 116

TABLE 9.31: HYPOTHESES AND Z-VALUES FOR QUALITY FOR VARIOUS DATA SETS .. 117

TABLE 9.32: PROCESSES AND PARAMETER VALUES TO TEST BEST SELECTION METHOD 118

TABLE 9.33: SUCCESS RATES FOR SELECTION METHODS (PHASE 1) ... 118

TABLE 9.34: AVERAGE QUALITY FOR EACH SELECTION METHOD (PHASE 1) .. 119

TABLE 9.35: HYPOTHESIS AND Z-VALUES FOR QUALITY FOR VARIOUS DATA SETS ... 120

TABLE 9.36: PROCESSES AND PARAMETER VALUES TO TEST BEST MUTATION OPERATOR 121

TABLE 9.37: SUCCESS RATES FOR MUTATION OPERATORS (PHASE 1) .. 121

TABLE 9.38: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 SELECTION METHOD (BELIGIANNIS

PROBLEM) ... 122

TABLE 9.39: TABLING COMPARING QUALITY PRODUCED BY SELECTION METHODS (PHASE 2) 122

TABLE 9.40: HYPOTHESIS AND Z-VALUES FOR QUALITY ... 123

TABLE 9.41: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 MUTATION OPERATOR (BELIGIANNIS

PROBLEM) ... 124

TABLE 9.42: AVERAGE QUALITY AND STANDARD DEVIATIONS OBTAINED FOR DIFFERENT MUTATION OPERATORS

(PHASE 2) ... 124

TABLE 9.43: HYPOTHESES AND Z-VALUES .. 125

TABLE 9.44: PROCESSES AND PARAMETER VALUES TO TEST BEST CONSTRUCTION HEURISTIC (LEWITT PROBLEM) . 127

TABLE 9.45: RESULTS FOR BEST HEURISTIC... 127

TABLE 9.46: HYPOTHESES AND Z-VALUES FOR FEASIBILITY ... 128

TABLE 9.47: PROCESSES AND PARAMETER VALUES TO TEST BEST SELECTION METHOD 128

TABLE 9.48: SUCCESS RATES AND AVERAGE QUALITY FOR SELECTION METHODS (PHASE 1) 129

TABLE 9.49: PROCESSES AND PARAMETER VALUES TO TEST BEST MUTATION OPERATOR 130

TABLE 9.50: SUCCESS RATES USING DIFFERENT GENETIC OPERATORS (PHASE 1) .. 131

TABLE 9.51: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 SELECTION METHOD (LEWITT PROBLEM)

 .. 132

TABLE 9.52: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 MUTATION OPERATOR (LEWITT PROBLEM)

 .. 134

TABLE 9.53: AVERAGE QUALITY PRODUCED USING DIFFERENT SOFT MUTATION OPERATORS 134

TABLE 9.54: PROCESSES AND PARAMETER VALUES TO TEST BEST CONSTRUCTION HEURISTIC (WOODLANDS

PROBLEM) ... 136

xviii

TABLE 9.55: SUCCESS RATES FOUND FOR DIFFERENT HEURISTICS ... 137

TABLE 9.56: PROCESSES AND PARAMETER VALUES TO TEST BEST SELECTION METHOD 138

TABLE 9.57: RESULTS OBTAINED USING TWO DIFFERENT SELECTION METHODS (PHASE 1) 138

TABLE 9.58: PROCESSES AND PARAMETER VALUES TO TEST BEST MUTATION OPERATOR 139

TABLE 9.59: RESULTS OBTAINED USING DIFFERENT MUTATION OPERATORS (PHASE 1) 139

TABLE 9.60: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 SELECTION METHOD (WOODLANDS

PROBLEM) ... 140

TABLE 9.61: RESULTS USING TWO SELECTION METHODS (PHASE 2) ... 141

TABLE 9.62: PROCESSES AND PARAMETER VALUES TO TEST BEST PHASE 2 MUTATION OPERATOR (WOODLANDS

PROBLEM) ... 142

TABLE 9.63: RESULTS OBTAINED USING PROPOSED SOFT MUTATION OPERATORS (PHASE 2) 142

TABLE 9.64: HYPOTHESES AND Z-VALUES FOR QUALITY .. 143

TABLE 9.65: SUMMARY OF BEST HEURISTICS, METHODS AND OPERATORS FOR EACH DATA SET 144

TABLE 9.66: RANGES FOR EACH PARAMETER VALUE ... 146

TABLE 9.67: PROCESSES AND PARAMETER VALUES TO TEST BEST SCM SIZE (HDTT PROBLEM) 147

TABLE 9.68: SCM PARAMETER VALUE – PERFORMANCE COMPARISON ... 147

TABLE 9.69: AVERAGE HC COST (AND STANDARD DEVIATION) FOR DIFFERENT SCM VALUES 148

TABLE 9.70: TRIAL RUNS USING POPULATION SIZES OF 100 AND 50 .. 149

TABLE 9.71: PROCESSES AND PARAMETER VALUES TO TEST BEST POPULATION SIZE (HDTT PROBLEM) 150

TABLE 9.72: POPULATION SIZE RESULTS ... 150

TABLE 9.73: AVERAGE HARD CONSTRAINT VIOLATIONS (AND STANDARD DEVIATIONS) FOR DIFFERENT POPULATION

SIZES .. 150

TABLE 9.74: PROCESSES AND PARAMETER VALUES TO TEST BEST TOURNAMENT SIZE (HDTT PROBLEM) 152

TABLE 9.75: TOURNAMENT SIZE RESULTS .. 152

TABLE 9.76: AVERAGE HC COST (AND STANDARD DEVIATIONS) .. 152

TABLE 9.77: PROCESSES AND PARAMETER VALUES TO TEST BEST SWAPS PER MUTATION (HDTT PROBLEM) 154

TABLE 9.78: RESULTS BASED ON NUMBER OF SWAPS ... 154

TABLE 9.79: PROCESSES AND PARAMETER VALUES TO TEST BEST SCM SIZE (VALOUXIS PROBLEM) 156

TABLE 9.80: RESULTS FOR VARIOUS SCM VALUES ... 157

TABLE 9.81: TRIAL RUNS USING SMALL POPULATION SIZES (VALOUXIS) .. 158

TABLE 9.82: PROCESSES AND PARAMETER VALUES TO TEST BEST POPULATION SIZE (VALOUXIS PROBLEM) 159

TABLE 9.83: RESULTS FOR VARIOUS POPULATION SIZES .. 159

TABLE 9.84: PROCESSES AND PARAMETER VALUES TO TEST BEST TOURNAMENT SIZE (VALOUXIS PROBLEM) 161

TABLE 9.85: RESULTS FOR VARIOUS TOURNAMENT SIZES .. 161

TABLE 9.86: PROCESSES AND PARAMETER VALUES TO TEST BEST SWAP PARAMETER VALUE (VALOUXIS PROBLEM)

 .. 163

TABLE 9.87: RESULTS FOR DIFFERENT NUMBER OF SWAPS PER MUTATION ... 163

TABLE 9.88: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF GENERATIONS (VALOUXIS PROBLEM)

 .. 165

TABLE 9.89: RESULTS FOR DIFFERENT NUMBER OF GENERATIONS PER PHASE .. 165

TABLE 9.90: PROCESSES AND PARAMETER VALUES TO TEST SCM SIZE (BELIGIANNIS PROBLEM) 166

TABLE 9.91: SUCCESS RATES FOR VARIOUS SCM PARAMETER VALUES .. 166

TABLE 9.92: AVERAGE QUALITY FOUND PER DATA SET USING DIFFERENT SCM PARAMETER VALUES 167

TABLE 9.93: TRIAL RUNS FOR SMALLER POPULATIONS SIZES (BELIGIANNIS PROBLEM) 167

TABLE 9.94: PROCESSES AND PARAMETER VALUES TO TEST POPULATION SIZE (BELIGIANNIS PROBLEM) 168

xix

TABLE 9.95: SUCCESS RATES FOR DIFFERENT POPULATION SIZES .. 168

TABLE 9.96: AVERAGE QUALITY PRODUCED FOR DIFFERENT POPULATION SIZES ... 169

TABLE 9.97: PROCESSES AND PARAMETER VALUES TO TEST BEST TOURNAMENT SIZE (BELIGIANNIS PROBLEM) 170

TABLE 9.98: SUCCESS RATES PRODUCED FOR VARIOUS TOURNAMENT SIZES ... 170

TABLE 9.99: AVERAGE QUALITY PRODUCED USING DIFFERENT TOURNAMENT SIZES 170

TABLE 9.100: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF SWAPS (BELIGIANNIS PROBLEM) . 171

TABLE 9.101: SUCCESS RATES PRODUCED USING DIFFERENT SWAP PARAMETER VALUES 172

TABLE 9.102: AVERAGE QUALITY PRODUCED USING DIFFERENT SWAP PARAMETER VALUES 172

TABLE 9.103: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF GENERATIONS (BELIGIANNIS

PROBLEM) ... 173

TABLE 9.104: SUCCESS RATES FOR VARYING NUMBER OF GENERATIONS ... 174

TABLE 9.105: AVERAGE QUALITY PRODUCED FOR DIFFERENT GENERATION PARAMETER VALUES 174

TABLE 9.106: PROCESSES AND PARAMETER VALUES TO TEST BEST SCM SIZE (LEWITT PROBLEM) 175

TABLE 9.107: SUCCESS RATES AND AVERAGE QUALITY OBTAINED USING DIFFERENT SCM PARAMETER VALUES ... 175

TABLE 9.108: PROCESSES AND PARAMETER VALUES TO TEST BEST POPULATION SIZE (LEWITT PROBLEM)........... 177

TABLE 9.109: RESULTS OBTAINED FOR DIFFERENT POPULATION SIZES ... 177

TABLE 9.110: PROCESSES AND PARAMETER VALUES TO TEST BEST TOURNAMENT SIZE (LEWITT PROBLEM) 179

TABLE 9.111: GA APPROACH PERFORMANCE WHEN USING TWO TOURNAMENT SIZES 179

TABLE 9.112: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF SWAPS (LEWITT PROBLEM) 180

TABLE 9.113: RESULTS PRODUCED USING VARIOUS SWAP PARAMETER VALUES .. 181

TABLE 9.114: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF GENERATIONS (LEWITT PROBLEM)182

TABLE 9.115: RESULTS PRODUCED USING DIFFERENT GENERATION PARAMETER VALUES 182

TABLE 9.116: PROCESSES AND PARAMETER VALUES TO TEST BEST SCM SIZE (WOODLANDS PROBLEM) 183

TABLE 9.117: RESULTS USING VARIOUS SCM VALUES .. 184

TABLE 9.118: PROCESSES AND PARAMETER VALUES TO TEST BEST POPULATION SIZE (WOODLANDS PROBLEM) .. 185

TABLE 9.119: RESULTS USING VARIOUS POPULATION SIZES .. 185

TABLE 9.120: PROCESSES AND PARAMETER VALUES TO TEST BEST TOURNAMENT SIZE (WOODLANDS PROBLEM) 186

TABLE 9.121: RESULTS FOR VARIOUS TOURNAMENT SIZES ... 187

TABLE 9.122: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF SWAPS (WOODLANDS PROBLEM) 188

TABLE 9.123: RESULTS USING VARIOUS SWAP PARAMETER VALUES ... 188

TABLE 9.124: PROCESSES AND PARAMETER VALUES TO TEST BEST NUMBER OF GENERATIONS (WOODLANDS

PROBLEM) ... 190

TABLE 9.125: RESULTS FOR VARYING NUMBER OF GENERATIONS .. 190

TABLE 9.126: PARAMETER VALUES FOR EACH DATA SET .. 191

TABLE 9.127: PARAMETER VALUES AND INSTRUCTION SET USED FOR ABRAMSON PROBLEM 192

TABLE 9.128: SUCCESS RATES COMPARISON – DGA VS IGA .. 193

TABLE 9.129: HYPOTHESIS TESTS FOR HDTT7 AND HDTT8 .. 194

TABLE 9.130: PARAMETER VALUES AND INSTRUCTION SET USED FOR VALOUXIS PROBLEM 194

TABLE 9.131: PERFORMANCE COMPARISON FOR THE VALOUXIS PROBLEM ... 195

TABLE 9.132: PARAMETER VALUES AND INSTRUCTION SET USED FOR BELIGIANNIS PROBLEM 196

TABLE 9.133: RESULTS SUMMARY FOR IGA APPLIED TO BELIGIANNIS PROBLEM ... 197

TABLE 9.134: HYPOTHESIS TESTS FOR QUALITY ... 198

TABLE 9.135: PARAMETER VALUES AND INSTRUCTION SET USED FOR LEWITT PROBLEM 198

TABLE 9.136: PARAMETER VALUES AND INSTRUCTION SET USED FOR WOODLANDS PROBLEM 200

TABLE 9.137: RESULTS COMPARISON FOR IGA AND DGA ... 200

xx

TABLE 9.138: SUMMARY OF DGA AND IGA PERFORMANCE FOR EACH PROBLEM.. 201

TABLE 9.139: RESULTS COMPARISON FOR ABRAMSON PROBLEM .. 203

TABLE 9.140: COMPARISON OF TIMETABLES FROM GA APPROACH AND CONSTRAINT PROGRAMMING APPROACH

 .. 204

TABLE 9.141: COMPARISON OF GA APPROACHES AND BELIGIANNIS RESULTS (HS1) 205

TABLE 9.142: COMPARISON OF GA APPROACHES AND BELIGIANNIS RESULTS (HS2) 205

TABLE 9.143: COMPARISON OF GA APPROACH AND BELIGIANNIS RESULTS (HS3)....................................... 206

TABLE 9.144: COMPARISON OF GA APPROACH AND BELIGIANNIS RESULTS (HS4)....................................... 207

TABLE 9.145: COMPARISON OF GA APPROACH AND BELIGIANNIS RESULTS (HS5)....................................... 208

TABLE 9.146: COMPARISON OF GA APPROACH AND BELIGIANNIS RESULTS (HS7)....................................... 209

xxi

List of Algorithms

ALGORITHM 7.1: SEQUENTIAL CONSTRUCTION METHOD .. 69

ALGORITHM 7.2: VARIANT TOURNAMENT SELECTION ... 77

ALGORITHM 7.3: MUTATION OPERATOR ... 78

ALGORITHM 8.1: INITIAL POPULATION CREATION ... 88

ALGORITHM 8.2: CREATING A TIMETABLE.. 89

1

Chapter 1 - Introduction

1.1 Purpose of the study
The school timetabling problem is a common problem faced by many schools. School

timetabling problems vary between different schools and different countries in terms of the

constraints specified by the educational system of that country. In most schools, timetables

are manually designed and teachers usually set aside a week or a weekend for this, thus

taking up valuable time in the process. In addition to being a time-consuming process, the

manual design of a timetable is subject to human error and may not satisfy all the

constraints.

Genetic algorithms attempt to mimic the evolutionary process. They have been previously

used successfully to solve combinatorial optimization problems, specifically educational

timetabling problems such as examination timetabling and university course timetabling. In

previous studies, each genetic algorithm was evaluated on solving a particular type of school

timetabling problem with a specific set of constraints i.e. each algorithm was tailored to solve

that specific problem. As a result, it is unknown as to how each of these genetic algorithms

will fare when applied to more than one type of school timetabling problem, each having a

different set of constraints when compared to another [JACO06].

The first objective of this thesis is to study the effectiveness of a genetic algorithm in solving

more than one type of school timetabling problem where each type of problem differs in

terms of the set of constraints used and the resources of the problem. This genetic

algorithm, referred to in this study as DGA, uses a direct representation where each

individual represents a timetable.

From the literature, it is clear that a genetic algorithm using an indirect representation has

not been studied. This approach has been successfully used in domains such as job shop

scheduling and examination timetabling but has not been looked at for the school timetabling

problem. The second objective is to develop and evaluate a genetic algorithm that uses an

indirect representation (IGA) when solving the school timetabling problem. The IGA will be

evaluated by comparing its performance to that of the DGA.

1.2 Objectives
The objectives of this thesis are:

2

 Based on the analysis of the literature, implement a genetic algorithm approach for

solving the school timetabling problem and evaluate it on more than one type of

school timetabling problem.

 Develop and evaluate a genetic algorithm approach that uses an indirect

representation when solving the school timetabling problem.

1.3 Contributions to the study
This thesis makes the following contributions:

Major contributions

 In investigating genetic algorithms to solve different types of school timetabling

problems with different sets of constraints, it was found that different processes

(method of initial population creation, selection method and genetic operators used)

were needed in order to solve each problem.

 There has been no previous work investigating indirect representations in genetic

algorithms when solving the school timetabling problem and it was found that this

genetic algorithm (IGA) performed better than a genetic algorithm using a direct

representation (DGA).

Minor contributions

 It was clear that the use of a sequential construction method (SCM) produced better

results (in terms of both feasibility and timetable quality) when used with the genetic

algorithm.

 When solving the school timetabling problems in this study, it was found that the use

of a less elitist variant tournament selection was found to be a good alternative to

standard tournament selection. In several cases, the genetic algorithm using variant

tournament selection performed better than the genetic algorithm that used standard

tournament selection (in terms of finding feasible timetables).

1.4 Thesis layout
Following this introduction, Chapter 2 presents an overview of the school timetabling

problem. Commonly used terms related to this problem are explained and the most

common constraints of the problem are outlined.

3

Chapter 3 discusses previous work on the school timetabling problem. This chapter

describes the school timetabling problems that various authors attempted to solve, the

methods that were used to solve the problem and the results obtained.

Chapter 4 firstly covers the standard genetic algorithm described by Goldberg [GOLD89].

This chapter also looks at recent modifications that were made to the processes involved in

genetic algorithms in order to solve various problems or improve performance.

Chapter 5 provides a detailed description of previous work that applied genetic algorithms or

evolutionary algorithms to solve the school timetabling problem. This includes the processes

of the genetic algorithm that were used (initial population generation, selection methods and

genetic operators) as well as the results obtained.

Chapter 6 discusses the methodology and experimental setup used to evaluate both the

direct representation genetic algorithm approach (DGA) and the indirect representation

genetic algorithm approach (IGA).

Chapter 7 presents a genetic algorithm approach that uses a direct representation to solve

the selected school timetabling problems. This section describes the representation used,

initial population generation, timetable evaluation, the selection methods, and the mutation

operators that are considered.

Chapter 8 presents a genetic algorithm approach that uses an indirect representation to

solve the selected school timetabling problems. Similar to Chapter 7, this chapter describes

the representation used, the creation of the initial population, the fitness function used to

evaluate an individual, selection methods used and the genetic operators considered.

Chapter 9 discusses and compares the performance of both approaches (described in

chapters 7 and 8) when solving the five school timetabling problems.

Chapter 10 provides a summary of the results in the study and ideas for future research.

4

Chapter 2 - An overview of the school
timetabling problem

This chapter outlines the school timetabling problem. The chapter begins by providing a

definition of the school timetabling problem. The chapter then describes the constraints that

are commonly faced by schools. These constraints fall into one of two categories, namely

hard constraints and soft constraints. Hard constraints are requirements that must be

fulfilled. The chapter ends by describing soft constraints, which are preferences that the

school would like to implement but are not necessary for a feasible timetable.

2.1 The School timetabling problem
The school timetabling problem is a scheduling problem that involves the allocation of school

resources in a particular manner so as to fulfill a set of requirements specified by the school.

Common school resources include teachers, venues and classes.

A school timetable consists of a set of periods (timeslots). Each period must be occupied by

a group of one or more tuples where each tuple consists of a combination of one or more

resources such as classes, teachers, subjects or rooms.

Figure 2.1 shows an example of four tuples consisting of a class, a teacher, a subject and a

venue. Table 2.1 shows an incomplete timetable with four tuples allocated to it. A full list of

tuples is specified by the school and all tuples must be allocated to the timetable in a manner

that will satisfy the requirements set by the school. The feasibility (usability) and quality of a

timetable are dependent on whether the timetable satisfies the rules of the school. These

rules are referred to as constraints.

TUPLE 1

Teacher: SMK

Class: 5B

Subject: English

Venue: Room 23

TUPLE 2

Teacher: GS

Class: 4A

Subject:

Geography

Venue: Room 25

TUPLE 3

Teacher: SML

Class: 5B

Subject: Zulu

Venue: Room 23

TUPLE N

Teacher: ABC

Class: 1A

Subject:

Foundation

Venue: Room 1

Figure 2.1: Examples of tuples

5

Table 2.1: Class timetable example

Day Period 1A 4A 5B

1 1 Zulu: SML (Room 23)

1 2 Foundation: ABC

(Room 1)

Geography: GS (Room

25)

English: SMK (Room

23)

1 3

1 4

Any constraint specified by the school will fall into one of two categories. The first category

is hard constraints. A hard constraint is a rule that must be met when considering the

allocation of tuples to the timetable. When all hard constraints are satisfied, the timetable is

said to be feasible. A violation of any of the hard constraints results in a timetable that

cannot be used. This is known as an unfeasible timetable.

The second category of constraints, soft constraints, are specifications made by the school,

the teacher, or any other resource to improve the quality of the timetable. Violation of soft

constraints may still result in a feasible timetable. Soft constraints may also contradict each

other, meaning that removing a soft constraint violation may violate another soft constraint.

Thus, it may not be possible to satisfy all soft constraints and the aim is to therefore

minimize the soft constraint cost of the timetable in order to improve the quality of the

timetable.

The ideal timetable is one that has zero hard constraint violations (feasible) and a minimum

number of soft constraint violations (high quality). The most common hard and soft

constraints are listed in sections 2.2 and 2.3 below.

2.2 Common hard constraints
This section lists the most common hard constraints identified in studies on the school

timetabling problem.

2.2.1 Lesson requirements
This constraint specifies that all class-teacher meetings (lessons) specified by the school

must be scheduled the required number of times. No class-teacher tuples must be left out of

the timetable. This is a common requirement specified by all schools.

2.2.2 Clashes
A clash occurs when a single resource is allocated to two or more periods or other resources

at the same time. The three most common clashes are:

6

 Class clashes – When two or more classes are allocated to the same teacher/venue

during the same period.

 Teacher clashes - When two or more teachers are allocated to the same venue/class

during the same period.

 Venue clashes – When two or more teachers or classes have been allocated to the

same venue.

Table 2.2 shows a class clash occurring during period 3 where the teacher SML is required

to teach two different classes at the same time. The table also shows a venue clash where

classes 4A and 5B are scheduled to be taught at the gym at the same time (see period 4).

These two situations are regarded as clashes unless the school requirements state that it is

acceptable for these two classes to share a venue or teacher at the same time. The clashes

constraint is a common requirement of all timetabling problems including Beligiannis et al.

[BELI08], Abramson [ABRA91b], Birbas et al. [BIRB97] and Schaerf et al. [SCHA01].

Table 2.2: Clashes during periods 3 (teacher) and 4 (venue)

Day Period 1A 4A 5B

1 1 Zulu: SML (Room 23)

1 2 Foundation: ABC

(Room 1)

Geography: GS

(Room 25)

English: SMK

(Room 23)

1 3 Zulu: SML (Room 1) Zulu: SML (Room 25)

1 4 Physical Education: TM

(Gym)

Physical Education: WB

(Gym)

2.2.3 Consecutive period requirements
A consecutive period requirement specifies that certain tuples that use the same resources

be allocated consecutively. For example, two tuples containing the same class, teacher and

venue should be allocated consecutively, where one tuple is placed in period 2 while the

next tuple is placed in period 3. Table 2.3 shows an example of this. This requirement often

occurs when teachers find that one period is not enough to sufficiently cover the subject

matter and require two or more consecutive periods. The placement of two or three

consecutive tuples that use the same resources is referred to as double or triple periods

respectively. This constraint is considered by Abramson et al. [ABRA91a], Bufe et al.

[BUFE01], Di Stefano et al. [DIST01] and Cerdeira-Pena et al. [CERD08]. A consecutive

period requirement can also be specified as a soft constraint by a school as proposed by

Bello et al. [BELL08].

7

Table 2.3: Double period allocation during periods 2 and 3 (Class 5B)

Day Period 1A 4A 5B

1 1 Zulu: SML (Room 23)

1 2 Foundation: ABC

(Room 1)

Geography: GS (Room

25)

English: SMK (Room

23)

1 3 Zulu: SML (Room 1) Zulu: HHH (Room 25) English: SMK (Room

23)

1 4 Physical Education: TM

(Gym)

Physical Education:

WB (Gym)

2.2.4 Co-teaching and subclasses

According to Beligiannis et al. [BELI08], a co-teaching requirement occurs when two or more

classes are divided into two or more temporary classes. Each temporary class contains a

subset of students from different classes and each temporary class is allocated to a

particular teacher and is taught a specific subject. For example, all grade 10 classes in a

school divide and form two temporary language classes. One temporary class is taught

French while the other is taught Spanish. The teachers are allocated to both classes with no

clash being recorded.

According to Beligiannis et al. [BELI08], a subclass requirement occurs when a single class

is split into two or more groups and each group is taught a subject by a different teacher.

For example, in physical education, a class is divided into males and females with the boys

being taught by a male teacher and the girls being taught by a female teacher. In this case,

two or more teachers are allocated to the same class and no clash is recorded.

2.2.5 Specialized venues
Certain venues contain specialized equipment for specific subjects. For example, physical

education is held on the school grounds or the gym allowing the class and teacher to use

sports and gym equipment. Computer lessons or biology lessons should be allocated to

venues where there are computers and microscopes respectively. A hard constraint would

be for particular lessons to be allocated to specialized venues. Jacobsen et al. [JACO06]

address this problem for the German school timetabling problem. Another requirement may

also specify that lessons must be taught in venues that are able to accommodate the size of

the class. For example, a class of 40 students must only be allocated to venues that are

able to hold 40 or more students.

8

2.2.6 Teacher availability
Beligiannis et al. [BELI08] and Valouxis et al. [VALO03], when dealing with the Greek school

timetabling problem, had to address the problem of teacher availability. Certain teachers are

only available to teach during certain periods of the day or certain days of the week. This

may be due to teaching duties in other schools or various other duties (such as meetings or

administration duties) that make them unavailable to teach. For example, a headmaster that

teaches may be unavailable to teach in the late afternoons due to administrative duties

and/or parent meetings. Thus to allocate the headmaster to the last few periods of the day

would be a violation. Another example would be a teacher that specializes in a subject and

is required to teach in two different schools. He/she would therefore only be available to

teach on certain days for one school and the remaining days for the other. Allocation of this

resource to a day when that teacher is unavailable would be a violation. This constraint can

also be defined as a soft constraint.

2.3 Common soft constraints

2.3.1 Daily teacher/subject limits
A common requirement is the limitation of the number of lessons a teacher is allocated per

day. This could also be applied to subjects where there is a limit on the number of times the

subject is taught to a particular class in a day. For example, a class should only be taught

English twice in a day. An advantage of this constraint is that the subjects are spread

equally throughout the week and a public holiday will have a minimum impact on the number

of lessons missed. Setting a daily limit on the number of lessons taught by a particular

teacher would prevent the teacher from being overworked on one day and underutilized on

another. This constraint is addressed by Beligiannis et al. [BELI08] and Valouxis et al.

[VALO03] when solving different Greek school timetabling problems.

2.3.2 Compact timetables
A compact timetable is a timetable where all lessons occur consecutively with no free (idle)

periods between lessons. This requirement could be specified for both teachers and/or

classes.

For example, the timetable below (Table 2.4) for teacher A would be regarded as a compact

timetable as the teacher has no free periods between his/her first and last lesson. The

timetable for teacher B has two free periods so this timetable is not as compact as the

timetable produced for teacher A. The objective of this constraint would be to minimize the

number of free periods for each teacher or class.

9

Table 2.4: Compact timetable (Teacher A) and a timetables with gaps (Teacher B)

Teacher A 1A:PE 2C:Maths 7A:Geog 7B:Bio

Teacher B 2A:Eng 3A:Eng 4B:Math 5C:Math

Compact timetable constraints are addressed by Beligiannis et al. [BELI08], Desef et al.

[DESE06], Schaerf et al. [SCHA01] and De Haan et al. [DEHA07] among others. This

constraint has been known to be specified as a hard constraint.

2.3.3 Replacement teachers
This requirement differs from the teacher availability constraint in that with the teacher

availability constraint, it is known from the beginning of the school term that the teacher will

be unavailable on a particular day or at a particular time (due to other commitments such as

teaching in another school). With the replacement teacher constraint, a substitute teacher

replaces the originally allocated teacher only if he/she cannot attend on a particular day due

to unforeseen circumstances. The most common example is that a teacher is ill and that

another teacher must replace him/her.

2.3.4 Resource preferences
It may be necessary to allocate a resource to a specific period on the timetable. For

example, a requirement may state that mathematics should be taught in the morning

sessions (periods before noon). There may be a request for physical education lessons to

be placed later in the day due to weather (cold mornings) or field conditions (wet fields). A

teacher may also request that their lessons be allocated on specific days, for example from

Monday to Thursday, allowing them to perform other duties or activities on a Friday. Some

teachers may request that their lessons be allocated to the morning periods, while others

may request periods that are in the afternoon [VALO08]. This constraint could also be

categorized as a hard constraint in some schools. Jacobsen et al. [JACO06] and Di Stefano

et al. [DIST01] address this constraint for the German school timetabling problem.

2.4 The school timetabling problem as a multi-objective problem
For the school timetabling problem, the satisfaction of hard constraints cannot be seen as a

multi-objective problem since all these constraints must be met ([BURK08], [SAGI06], and

[PAIS09]).

In their study of examination scheduling, Burke et al. [BURK08], Sagir [SAGI06] and Pais et

al. [PAIS09] found that fulfilling of soft constraints could be seen as a multi-objective

problem. Burke et al. [BURK08] found that grouping constraints according to the

10

stakeholders involved (i.e. the students and the administrators) reduced the complexity of

the problem. In the three studies, the soft constraints were considered as sub-objectives

and the number of violations for each of the sub-objectives had to be minimized. A similar

approach can be applied for the school timetabling problem when dealing with timetable

quality (soft constraints). In this case, each soft constraint will be regarded as a sub-

objective.

2.5 Chapter summary
This chapter covers the main aspects of the school timetabling problem. The chapter begins

by providing a definition of the problem and describes the common constraints that must be

fulfilled in order to make a timetable feasible and of a high quality. Schools usually define

these constraints based on the needs of the school, the resources available and the rules

specified by the department of education for that country.

11

Chapter 3 - Previous work on the
school timetabling problem

This chapter describes previous research conducted to solve the school timetabling problem.

Some of the techniques reported below include tabu search, simulated annealing, constraint

programming, neural networks and particle swarm optimization. Hybrid techniques

incorporating multiple methods or approaches are also covered here. Research regarding

genetic or evolutionary algorithms is discussed in Chapter 5.

3.1 The tabu search

3.1.1 Tabu search description
The tabu search is a metaheuristic originally introduced by Glover [GLOV89]. Starting from

a candidate solution (also known as a potential solution), the tabu search is a local search

algorithm that moves from one candidate solution to another candidate solution (referred to

as a neighbour) until some problem dependent termination criteria has been met. Moving

from a candidate solution to a neighbour is accomplished using a move operator, where a

single change is made to the candidate solution resulting in its neighbour. A neighbourhood

is defined as a set of neighbours that occur as a result of implementing a single move to a

candidate solution.

In order to prevent the search from cycling (returning to a previously encountered area of the

search space), a tabu list is kept. This tabu list stores a set of k recent candidate solutions.

Alternatively, previous moves that have been applied to candidate solutions can also be

stored in the tabu list [SCHA96]. A move is rejected if it results in a candidate solution that is

in the tabu list. Another move must then be made.

As described by Glover [GLOV97], an advantage of the tabu search is its use of the tabu list.

This list resembles a form of memory, preventing the search algorithm from returning to

previous candidate solutions. A disadvantage of the tabu search is that the focus is always

on a single candidate solution. Thus, the possibility arises that a large area of the search

space is not covered [LUKE12], [ZDAN02].

12

3.1.2 Applications of tabu search to the school timetabling problem
Schaerf [SCHA96] presented a tabu search algorithm to solve an Italian school timetabling

problem. The problem has the following hard and soft constraints with each constraint being

given a specific weighting:

 Timetables must be compact.

 Lessons of a particular subject must not be repeated in a day.

 Daily teaching limits must be met.

 Requirements involving specialized rooms must be met.

 Teacher availability requirements must be met.

 Movement from one venue to another between consecutive periods should be

minimized.

A timetable was represented using a matrix structure (two-dimensional array). In this

representation, the rows represented the periods of the week and each column represented

a teacher. The cells contained the class that will be taught by the teacher during that period.

The author did not make mention of how a venue is represented. An initial solution was

randomly generated. Neighbours were formed by applying one of two types of moves. The

first type was a move that randomly chooses a tuple and moves the tuple from one part of

the timetable to another. The second type of move, a double move, was composed of a

single move and an optional second move if the first move resulted in a constraint violation.

A tabu list was kept which stored a predefined number of unacceptable moves. The tabu

search terminated after a set number of iterations or when a feasible solution was found.

The tabu search was applied to three Italian school timetabling problems, with each school

differing in the number of teachers and lessons. The tabu search produced feasible

timetables for all three of the schools. The timetable structure adopted was appropriate as

the matrix structure best represents a timetable (discussed further in section 5.4.1).

Besides using only single moves to swap tuples in the timetable, the authors also introduced

the concept of double moves in order to repair any constraint violations caused by the first

move. Hill climbing, where moves resulting in constraint violations are rejected, could have

been used instead. The tabu search employed, however, did produce acceptable results for

all three schools as feasible timetables with only a few soft constraint violations were

generated.

Desef et al. [DESE06] used a tabu search to solve the German school timetabling problem

that was subject to the following hard constraints:

13

 No class clashes, teacher clashes and venue clashes.

 Teacher and room availability constraints must be met.

 Co-teaching and subclass requirements must be met.

 Double period requirements must be met.

The soft constraints for the problem are the following:

 Lessons of a particular subject should be evenly distributed over the week for each

class.

 There should be no free periods for the first four periods of the day.

In this paper, a tuple was defined as a complex lesson unit (CLU). In the event of a double

period requirement, the two tuples involved in the double period were combined into a single

CLU with a double period attribute, thus fulfilling the double period requirement.

Furthermore, a set of CLUs were combined to form the lessons of the week (i.e. the class

timetable) for a particular class. Each timetable was represented as a set of period vectors.

The period vectors contain the list of CLUs for each class for the week. An initial solution

was created where the CLUs with the fewest number of feasible periods on the timetable

were allocated first. The selected CLU was then allocated to the earliest possible period that

resulted in a minimized hard constraint cost. The tabu search was applied in two ways. The

first application allowed the tabu search to move from one neighbour to another using single

moves (making a single change to the timetable). The second application of the tabu search

only allowed moves that did not violate constraints. Two tabu lists were kept. The first list

was a tabu list that stored previous moves (similar to that described in section 3.1.1) and the

second was a frequency list that kept track of how often CLUs moved around the timetable.

A move was rejected if it was in the first tabu list or if the frequency of the related CLU

exceeded a particular frequency value. The timetables produced using this tabu search was

better or equivalent in terms of quality when compared to timetables produced manually by

the school staff. Creating an initial solution by first allocating CLUs with the fewest feasible

periods was an important factor that contributed towards the good performance of the tabu

search as the number of violations would have been fewer than if a random allocation

method had been used.

14

3.2 Integer or linear programming

3.2.1 Integer or linear programming description
According to Wolsey [WOLS98], integer programming is a method that attempts to solve

optimization problems using discrete or integer variables. Each variable represents a

constraint of a problem. Binary variables can also be used to symbolize decision events

such as when to buy or sell or to represent whether a switch is on or off. In terms of

optimization problems, the objective of the integer programming method is to minimize the

cost of a function while ensuring that various constraints related to the problem are met. The

integer programming method determines the best possible combination of resources to

allocate. A disadvantage of integer programming is that the method can only be applied to

situations where mathematical equations are formulated [WOLS98]. Thus the method

cannot be applied to many real world problems. Another problem with integer programming

is that the element of risk or uncertainty cannot be considered in the formula.

3.2.2 Application of integer programming to the school timetabling

problem
Birbas et al. [BIRB97] constructed Greek school timetables using an integer programming

approach. The hard constraints for the problem are:

 There must be no clashes.

 Each teacher should teach at least one lesson per day.

The soft constraints for the problem are:

 Even distribution of subjects taught per week.

 Certain subjects should be taught at the beginning of the day.

 Certain subjects should not be taught during the last period of a day.

 All class timetables should be compact.

 Certain periods should be left empty for teachers to conduct other duties.

Each period was represented using a variable where a, b, c, d and e represent the

day, period, class, teacher and subject respectively. Each variable was binary in nature and

was allocated a value of 1 if it is included in the final solution i.e. a value of 1 is given to the

variable if it has been allocated a subject, class and teacher to a specific day or period. The

objective of the model was to find a violation free timetable from all the possible

combinations. The integer programming method was applied to a Greek school timetabling

problem with six classes and 17 subjects. The timetables created using this method were

15

described as optimal. The approach attempts to find a feasible, high quality timetable by

determining the best possible combination of tuples such that the timetable cost was

minimized. While this technique does allow for a thorough exploration of all possible values,

no time element was included in the results and it is not known how long the system would

have taken to find the best timetables.

3.3 Tiling algorithms
Kingston [KING05] proposed a tiling algorithm to solve the Australian school timetabling

problem. The hard constraints for the problem are:

 No class clashes or teacher clashes.

 There must be an even distribution of lessons taught by teachers during the week.

 Teacher availability requirements must be met.

 Certain subjects must be allocated to specific venues.

The soft constraints are:

 There should be an even distribution of lessons for classes throughout the week.

 Co-teaching and subclass requirements should be met.

 The number of daily lessons allocated to each teacher should be within a specified

range.

A tile is a group of lessons placed together. Each tile has a height and a width. The height

specifies the number of resources required while the width indicates the number of times

that the lessons have been requested. To create a timetable, all tuples were placed onto

tiles. These tiles were then placed in major columns and each major column was given an

index number. The column indices were then allocated to the timetable where each column

was spread evenly throughout the week. These tiles were then allocated to the timetable.

By adopting this approach, several subjects were taught as double or triple periods. An

unspecified tree search was used to allocate tuples to columns such that no lessons are

split. Each lesson was classified as vertical, runaround or easy. A vertical classification

indicated that the lessons must run simultaneously. A runaround classification indicated that

each meeting should be placed in different columns and an easy classification symbolized

either a vertical or runaround strategy could be used. Tiles were allocated to the timetable

using three methods. The first method involved a worst case scenario where tiles with the

least number of resources available were allocated. The second method involved adding

16

weightings to tiles. Tiles that had a greater resource usage took priority in terms of

allocation. The third method allocated tiles that involved co-teaching and subclass

combinations. High quality timetables were obtained in an acceptable time. The study

singled out tiling algorithms and resource allocation as the key innovations.

3.4 Simulated Annealing

3.4.1 Introduction to simulated annealing
Simulated annealing was originally established by Kirkpatrick et al. [KIRK83]. This

metaheuristic is inspired from the process of annealing in metallurgy. Annealing describes

the way in which the heating and cooling of molten metal takes place in order to remove

defects. As metal is cooled, its atoms freeze into the positions that they are in, giving the

metal its brittle shape that a person may be aiming for. Heating of the metal allows the

atoms to unfreeze and move more freely. With simulated annealing, the atoms represent

elements of a given problem. For example, in the school timetabling problem, atoms

represent tuples on the timetable. These atoms are cooled into position as the algorithm

pushes the candidate solution closer to a problem specific ideal state. In the event that the

candidate solution moves further away from the ideal state, the elements are heated

allowing them to move through the solution. In simulated annealing, a candidate solution is

changed using the move concept described earlier in the tabu search. A single move results

in the forming of another candidate solution (called a neighbour) and a group of neighbours

is referred to as a neighbourhood. Simulated annealing is seen as a stochastic search and

optimization technique [KIRK83] and thus the moves made are usually random in nature.

One of the advantages of simulated annealing, according to Elmohamed et al. [ELMO98], is

the relative ease of implementation. The simulated annealing technique also has the ability

to approach a global optimum [BUSE03]. However there is often a trade-off between

attaining an optimal solution and the time taken to find a solution. A common disadvantage

found with simulated annealing is the difficulty in defining an optimal cooling schedule

[COEL07]. This is an important factor that could prevent premature convergence.

3.4.2 Applications of simulated annealing to the school timetabling

problem
Abramson [ABRA91b] developed a system to solve the Australian school timetabling

problem. The list below describes the hard and soft constraints of the problem.

 No class clashes, teacher clashes and venue clashes.

17

 Classes must be allocated to rooms that can accommodate them.

 Double period requirements must be met.

The soft constraints for the problem are:

 Teacher preferences should be met.

 Certain lessons should only be taught a maximum number of times per day.

Abramson used the simulated annealing algorithm in which the atoms represented tuples on

a timetable. The paper does not make mention of how a timetable is represented, but a

three-dimensional array representation is illustrated with each dimension representing a

period, a day of the week and an array of tuples (indicating the tuples that will be scheduled

during a particular period on a certain day). The cooling and heating process was

dependent on the timetable cost, which was determined by counting the number of

constraint violations. As the cost was lowered, the temperature was lowered and an

increasing number of tuples were fixed (“frozen”) to the periods that they had been

scheduled in. If the cost increased, the tuples were “heated”, resulting in an increase in the

number of tuples that could have been swapped. The system was applied to generated data

sets as well as an Australian high school timetabling problem. Ten data sets were created

and solutions were found for all but one data set. The results were described as promising

and future work would look at improving this method of solving optimization problems. The

cube representation, while appropriate, could have been difficult to implement due to the

structure having three dimensions.

Liu et al. [LIU09] developed a system to solve the Greek school timetabling problem. The

hard constraints of the problem are:

 No clashes.

 Teacher availability requirements must be met.

 All class timetables must be compact.

 All free periods must be during the last period of the day.

The soft constraints for the problem are:

 Compact timetables for teachers.

 A daily teacher balance in terms of the number of lessons taught.

18

 Avoidance of repetition of subjects during a day.

 Teacher preferences should be met.

A timetable was represented using a two-dimensional matrix where the rows represent the

class and the columns represent the periods of the week. A cell in the matrix stored the

teacher that would be meeting that particular class during the specified period. Changes to

the timetable were made by swapping of tuples. The authors defined a neighbourhood as all

the candidate solutions that could be reached by performing a set of one or more swaps on

a candidate solution. The swapping process involved searching for and swapping of

constraint violating tuples. The algorithm was applied to the HDTT data sets provided by

Smith et al. [SMIT03] and a Greek school timetabling problem. Based on the results

presented, it was found that the simulated annealing approach managed to produce high

quality timetables when compared to the simulated annealing and neural network

approaches developed by Smith et al. [SMIT03]. The authors stated that the idea of

combining their neighbourhood strategy with other metaheuristics required further research.

The use of multiple swaps rather than only single swaps was instrumental in assisting the

simulated annealing technique in finding high quality, feasible timetables. The concept of

using moves that focused on constraint violations (rather than just swapping of randomly

chosen tuples) also contributed to the success of the approach.

3.5 Constraint programming

3.5.1 Constraint programming description
Bartak [BART99] describes constraint programming as the development of computational

systems that are based on constraints. The main objective of the constraint programming

technique is to solve a problem by identifying the constraints within the problem area and

then finding a solution that satisfies all these constraints. A set of variables are defined

where each variable represents an element of the problem (for example, variables could

represent the tuples or lessons in the school timetabling problem). Each variable holds a

single value which must be chosen from a specified range of values. These values could

vary and be anything from integers, strings or a range of situations depending on the type of

problem [BART99]. The constraints restrict the values that each variable can hold at one

particular time. The two most common branches of constraint programming are constraint

satisfaction and constraint solving. Constraint satisfaction is the more common approach

and deals with problems involving a finite domain such as resource allocation while

constraint solving deals with problems involving an infinite or more complex domain such as

production planning.

19

Some applications of constraint programming include resource allocation, scheduling

problems, software configuration and production planning.

3.5.2 Applications of constraint programming to the school timetabling

problem
Valouxis et al. [VALO03] used a constraint programming method to solve the Greek school

timetabling problem. The hard constraints for the problem are as follows:

 No class clashes and teacher clashes.

 Class timetables must be compact. Any free periods must be at the end of the day.

 Teacher allocations should be equally balanced throughout the week.

 The number of times a teacher meets a class in a day to teach a particular subject

should be balanced throughout the week.

The soft constraints are as follows:

 Teacher preferences should be met.

 Teacher timetables should be compact.

The system was applied to the school timetabling problem faced by Greek high schools.

The problems consist of varying sizes of classes (ranging from five to nine) and teachers

(ranging from 11 to 23). The system found optimal timetables for two of the four problems.

These two solutions were found in approximately 15 to 20 minutes. For the two larger data

sets, the author concluded that the timetables produced, while not optimal, were satisfactory.

The time taken by the constraint satisfaction approach to find solutions to these problems

was approximately one hour. Similar to integer programming, the constraint programming

technique needs to evaluate several combinations of variable values and determine whether

or not these values violate the constraints specified. Due to the large number of

permutations that could exist, finding the ideal solution may be a time consuming process.

The school timetabling problem that Marte [MART07] attempted to solve had the following

hard constraints. The problem contained no soft constraints.

 No clashes.

 Teacher availability requirements must be met.

 Co-teaching and subclass requirements must be met.

20

 Teacher lessons must be evenly distributed throughout the week.

 The number of days that a teacher works for must be within a specified range.

 The number of days that a class has lessons must be within a specified range.

A timetable was represented as a matrix consisting of rows (days) and columns (periods).

The approach used included the following techniques:

 Backtracking, where a candidate solution is built and once this candidate solution

can no longer be improved (referred to as a dead end), the process returns to a

previous candidate solution and continues to make changes to the candidate

solution until some termination criteria has been met [ROSS06].

 Constraint propagation, which prevents tuples or combinations of tuples from being

allocated to specific periods since they would violate a constraint [ROSS06].

 Dead-end driven learning and restarting strategies, where the system keeps track of

moves that could no longer improve the timetable by storing this information in

memory. The algorithm learns from this by searching a different area of the search

space [FROS94].

Information regarding constraints that were not fulfilled was stored and the search strategy

was then changed accordingly. The approach was applied to six German school timetabling

problems. Good results were found and further research would address other constraints

and improve the quality of the timetables produced. The use of a matrix representation was

justified as this structure bests represents an actual school timetable. Good results were

found for large problems in less than a minute, indicating that the constraint programming

approach is more than capable of solving the German school timetabling problem.

3.6 Particle Swarm Optimization

3.6.1 Introduction to particle swam optimization
Particle swarm optimization, introduced by Kennedy et al. [KENN95], is a technique that was

originally used to simulate social behaviour. Particle swarm optimization begins by

developing and evaluating an initial population of candidate solutions (known as particles)

and attempts to find an optimal solution by evolving these candidate solutions over a

predefined number of iterations.

During every iteration, the particles move from one position in the search space to another.

The movements of these particles are guided by two factors; the position of the best particle

21

in the search space (gbest) and each candidate’s own best position (pbest). The velocity of

each particle is calculated in order to determine the new location of that particle. The

calculation of the velocity involves the use of gbest, pbest, the particles’ current position and

a random value. The above process continues until either an optimal solution is found or

until some problem specific termination criteria stops the iteration process.

Particle swarm optimization has been applied to many problems including optimization

problems, security solutions and in the medical field amongst others. Advantages of the

approach include ease of implementation and that a minimal number of parameters require

tuning.

3.6.2 Application of particle swarm optimization to the school timetabling

problem
Beligiannis et al. [BELI12] attempted to solve the Greek school timetabling problem. This

problem had the following set of hard constraints:

 Teacher availability requirements must be met.

 No class clashes or teacher clashes.

 All free periods for classes must be allocated to the last period of the day.

 Co-teaching and subclass requirements must be met.

The soft constraints for the problem are:

 The number of teaching periods for each teacher should be evenly distributed over

the days that he/she is available at the school.

 Teacher timetables should be compact.

 The number of free periods should be uniformly distributed amongst all teachers

while free periods for each teacher should be uniformly distributed amongst all days

that he/she is available at the school.

 Subjects taught to each class should be evenly distributed throughout the week

A timetable was represented using a two-dimensional matrix where each column

represented a period while each row represented a class. Each cell in the matrix

represented the teacher (or teachers) that would engage with a class during a particular

period. The subject being taught was not represented as this was found to increase both the

search space and the complexity of the problem. Teachers were assumed to know the rules

of the school and the subjects that they were required to teach. The cost of the timetable

22

was calculated by finding the weighted sum of the constraint violations. For the PSO

algorithm, 150 particles were used and were evolved over 8000 generations (iterations).

Particles that were considered weak were deactivated but no explanation was given as to

how this was done. Timetables were evolved through the swapping of tuples as well as a

column move approach. All swaps that reduced the timetable cost were accepted and

swaps that increased the cost were accepted with a given probability. In the column move

approach, the tuples from a randomly chosen period in a timetable are copied and moved to

the corresponding period of another randomly chosen timetable. The tuples that were

originally in that period are reallocated to other periods in the timetable. The performance of

the PSO metaheuristic was compared to the performance of a genetic algorithm, a constraint

programming approach, a column generation approach and against the actual timetable

used by the school. The PSO algorithm was found to be very efficient and produced better

quality timetables than the other techniques. The removal of subjects as part of the problem

was effective in reducing the complexity of the problem. The column move approach was a

novel approach not used in other studies and contributed towards maintaining diversity

among the population of particles by moving columns of tuples and reallocating replaced

tuples.

3.7 Hybrid algorithms
This section describes papers that have solved various school timetabling problems by using

combinations of different techniques.

Avella et al. [AVEL07] addressed an Italian high school timetabling problem by using a

combination of local search algorithms, namely simulated annealing and a VLSN (Very

Large Scale Neighbourhood) search. The hard constraints for this problem are as follows:

 No clashes.

 Certain lessons must be allocated to specific periods.

 Class timetables must be compact.

 Some teachers have one day off a week (full-time) while others have more than one

day free (part time).

In addition to hard constraints, the soft constraints are:

 Teacher preferences should be met.

 Teacher timetables should be compact.

23

 Teacher lessons should be evenly distributed throughout the week.

 No teacher should be allocated more than one period of teaching during afternoon

sessions.

A two phased approach was used. The first phase used simulated annealing to find feasible

timetables and the second phase used a VLSN search (integer programming) to improve the

quality of the feasible timetables found. In the first phase, timetables were created by

randomly allocating tuples to periods. As the cost of the timetable was reduced, the tuples

placed in the violation free periods were fixed to their allocated periods. As the cost

increased, the tuples were “heated”, allowing these tuples to be included in the swapping

process if required. The system was firstly applied to the benchmark data sets provided by

Abramson [ABRA93]. Feasible timetables were produced for all data sets and these results

were compared to the results obtained by Smith et al. [SMIT03]. The simulated annealing

part of the system performed better (in reducing the hard constraint cost) than the neural

network and simulated annealing methods presented by Smith et al. [SMIT03]. The authors

also applied their approach to two Italian high school timetabling problems. Their results

were compared to the timetables generated using a commercial software package. Feasible

solutions were found for all problems and the VLSN search was found to reduce the number

of soft constraint violations. The VLSN search managed to reduce the number of soft

constraint violations by approximately 20% when compared to the commercial software

alternative. This VLSN search also managed to reduce the soft constraint cost of four

randomly generated timetables. The authors concluded that simulated annealing found

feasible solutions and the VLSN search improved the quality of the timetables.

A three phase approach was adopted by Alvarez-Valdez et al. [ALVA96] to solve the

Spanish school timetabling problem. This approach used two separate tabu search methods

to respectively address the hard constraints and the soft constraints. The hard constraints

for this problem are the following:

 No clashes.

 Teacher availability requirements must be met.

 Each subject is taught to a particular class at most once in a day.

 Double period requirements must be met.

The only soft constraint is that all class timetables should be compact. The first phase

involved creating a candidate solution. Tuples were allocated in order of urgency i.e. tuples

24

with the fewest violation free periods were allocated first. In the event of two or more tuples

having the same urgency, then teacher urgency is used as a tie-breaker i.e. teachers with

the fewest number of violation-free periods are given priority. A tabu search was applied in

phase two and was able to find feasible solutions very quickly as the initial solution did not

contain many constraint violations. The tabu list had a variable length instead of a fixed

length as the tabu search with a variable length list produced better results. Phase three

involved resolving the only soft constraint of compactness. A tabu search was once again

used and the results produced were described as good. The authors concluded that they

had developed a program to obtain good solutions that satisfied all of the hard constraints.

The quality of the timetables was also found to be better than the solutions that were

produced manually. The multiphase approach was found to be successful in finding

feasible, high quality timetables. The first phase of creating timetables by allocating tuples

with the fewest feasible periods first contributed a great deal towards finding a feasible

solution. The tabu search could then remove the remaining hard constraint violations. A

separate tabu search used to reduce the soft constraint cost also proved to be successful.

Another contributing factor was the changing of the length of the tabu list whenever a

predefined number of moves were performed. This was found to have improved the results

since a changing list size would reduce the probability of cycling when increased and

increased the exploration of the search space when decreased.

De Haan et al. [DEHA07] solved the school timetabling problem using a combination of a

graph colouring problem and a tabu search. The hard constraints of the problem are:

 Each lesson of a particular subject must be taught on different days.

 Double period requirements must be met.

 Teacher availability requirements must be met.

 Timetables for lower grade classes must be compact.

The only soft constraint was that teacher timetables and higher grade class timetables

should be compact. A four phase approach was used. The first phase dealt with optional

subjects taken by classes in the upper grades. A branch and bound algorithm was used to

place students into groups such that each group contained a set of students doing the same

optional subjects. The second and third phases involved the construction of a feasible

timetable. In the second phase, the tuples involving the upper grades were allocated in

order of tuples with the fewest feasible periods on the timetable. In phase three, a graph

colouring heuristic was used to allocate the remaining tuples (involving the lower grades). In

25

a graph colouring problem, the vertices represent the lessons and these vertices are

coloured according to the period to which they have been allocated. When an edge joins

two nodes of the same colour, a clash occurs. The fourth phase was used to improve

timetable quality (including allocation of rooms and resources) by using a tabu search. The

authors stated that not all constraints were incorporated into their system. An empirical

comparison was performed with the actual timetable used by the school and it was found

that there was a significant reduction in the number of free periods for teachers (reduced

from 128 to 48).

Bello et al. [BELL08] used a combination of both a graph colouring algorithm and a tabu

search to solve a school timetabling problem that is subject to the following hard constraints:

 No class clashes and teacher clashes.

 Teacher availability requirements must be met.

 Each class must have a maximum of two lessons with the same teacher per day.

The soft constraints for the problem are:

 Teachers should be allocated to teach in the least number of days possible.

 Double period requirements should be met.

 Teacher timetables should be compact.

A timetable was represented using a two-dimensional matrix. Initial solutions were created

using a greedy algorithm. No details were provided as to how the greedy algorithm chooses

and allocates tuples. The timetable fitness in terms of both feasibility and quality was

determined by finding the weighted sum of all the constraint violations. The authors used a

graph colouring algorithm to find a feasible timetable. In this algorithm, a vertex of the graph

represents a lesson. Two nodes of the same colour that are joined by an edge represent a

clash. The graph was coloured using a tabu search method. The system was applied to

three Brazilian school timetabling problems as well as two artificial school timetabling

problems. The authors found that this hybrid approach produced competitive results when

compared to two other tabu search approaches from two unpublished studies.

Schaerf et al. [SCHA01] solved the school timetabling problem by alternating between two

different local search techniques, namely hill climbing and a tabu search. These two

26

techniques are alternated until a solution can no longer be improved. The hard constraints

for the problem are:

 No clashes.

 Consecutive period requirements must be met.

The soft constraints are:

 Class timetables should be compact.

 If lessons are not scheduled as doubles or quadruples and they are repeated on a

day, then these lessons should be separated.

 Class-teacher lessons should be evenly distributed throughout the week.

 Teacher preferences should be met.

 The same lesson should not be taught to a class more than once in a day.

 Movement between venues should be minimized.

A candidate solution was created by randomly allocating tuples to the timetable. Hill

climbing was then applied where moves were accepted only when the fitness of the

candidate solution had improved or had not changed. The search terminated when the

solution could no longer be improved or when a fixed number of iterations had been

performed. The second phase was the application of the tabu search, which continuously

made moves until the timetable could no longer be improved. A variable length tabu list was

used that decreased when several improvements were made and increased when moves

resulted in an increase in timetable cost. The alternation of the tabu search and hill climbing

continued for a given number of iterations. If a local optimum is reached, a shifting penalty

strategy was employed. This strategy involved changing the weightings of each constraint in

the cost function, allowing the tabu search to continuously explore a new area of the search

space. While no results were formally provided, the authors found that the alternating

method worked well for the school timetabling problem.

3.8 Comparative studies
This section describes research that compared different methods used to solve the school

timetabling problem.

A Hopfield neural network [ROJA96] was developed by Smith et al. [SMIT03] to solve the

school timetabling problem. This technique was compared to many others techniques used

27

for scheduling, namely tabu search, greedy search and simulated annealing. These

approaches were tested using the benchmark data sets provided by Abramson et al.

[ABRA93]. The only constraint for this problem is that there must be no teacher clashes,

class clashes or venue clashes. The results showed that the neural networks could perform

just as well as the simulated annealing technique. When comparing the neural network to

the greedy search, it was found that the neural network produced more feasible timetables,

while the greedy search was able to find feasible timetables in a much faster time.

Jacobsen et al. [JACO06] compared a hybrid tabu search and the constraint programming

approach in solving the school timetabling problem. The following are the hard constraints

for the problem:

 No clashes.

 Teacher availability requirements must be met.

 Double period requirements must be met.

 Co-teaching requirements must be met.

 Certain lessons must be allocated to specific periods.

The following are the soft constraints for the problem:

 Class timetables should be compact.

 Any free periods should be scheduled at the end of the day.

A solution was created using two vectors, a room vector and a period vector. Periods were

allocated to double period tuples and co-teaching tuples using the period vector while

venues were allocated to tuples using the room vector. An initial solution was created by

firstly sorting lesson requirements in order of difficulty (tuples that have the least number of

feasible periods were allocated first) and allocating them to periods using a graph colouring

algorithm. The tabu search was then applied in order to reduce the hard constraint cost and

soft constraint cost of the timetable. In this tabu search, two types of neighbourhoods were

explored, namely a period neighbourhood and a room neighbourhood. This tabu search

incorporated hill climbing, meaning that a new candidate solution was only accepted if the

constraint cost was reduced. If the hard constraint cost was the same, then the solution was

kept only if the quality improved. Two tabu lists were kept, namely a standard tabu list (as

described in section 3.1) and a frequency tabu list that was used to avoid the movement of

tuples that made little difference to the number of violations of a timetable. A comparison of

28

the hybrid approach and constraint programming was performed and no difference was

found in terms of feasibility or timetable quality.

3.9 Chapter Summary
This chapter described several techniques previously used to solve the school timetabling

problem. Some studies used a single approach to solve the school timetabling problem

while a few used hybrid approaches that incorporated two or more techniques. Each

problem differed with respect to the constraints that had to be fulfilled as well as the number

of resources that needed to be allocated. In addition, other observations are listed below.

 Most studies made use of a two-dimensional array in order to represent a timetable.

The advantages of this approach are discussed in further detail in section 5.4.1.

 Timetables were created either randomly or using heuristics. In this case, heuristics

refer to rules that must be followed when choosing the order of tuple allocation or

when choosing which period to allocate the tuple to. The use of heuristics, especially

allocating tuples based on the number of feasible periods available, proved to be

effective and any remaining violations were easily removed using the approach

implemented.

 In order to reduce the cost of the timetable, a tuple swapping strategy was commonly

used. Most swaps involved randomly choosing tuples with some studies

incorporating hill climbing i.e. only accepting swaps that reduce the constraint cost of

the timetable. One approach that also assisted in finding good solutions is to

conduct swaps by searching for violation causing tuples. This increased the

probability of at least removing a constraint violation.

 Another observation was that while some studies attempted to reduce hard and soft

constraints simultaneously, other studies such as Alvarez-Valdez et al. [ALVA96]

chose a phased approach where attempts were made to first find feasible timetables

and then reduce the soft constraint cost. Avella et al. [AVEL07] chose to use two

different techniques to respectively reduce each of the hard constraint cost and soft

constraint cost of the timetable.

29

Chapter 4 - Introduction to Genetic
Algorithms

4.1 Introduction
Genetic algorithms fall under the category of evolutionary computing, a rapidly growing area

of artificial intelligence where problems are solved based on theories of biological evolution

such as natural selection and genetic inheritance [OBIT98]. Holland [HOLL92] describes a

genetic algorithm as an algorithm that can emulate the evolutionary process. Research

shows that genetic algorithms are able to solve complex problems that humans find difficult

to interpret and solve. Genetic algorithms are often used to solve combinatorial optimization

problems. An advantage of genetic algorithms, when applied to problems such as the

school timetabling problem, is that while many other algorithms produce only one solution at

a particular time, a genetic algorithm has the capability of producing more than one solution

by using mechanisms such as niching [MAHF95]. This allows for the possibility of providing

the user with a choice of solutions [ABRA91a].

Section 4.2 describes the biological inspiration for genetic algorithms. Section 4.3 provides

an overview of the algorithmic structure of the standard genetic algorithm used by Goldberg

[GOLD89]. Section 4.4 describes some of the advances made in genetic algorithms to solve

various problems and section 4.5 summarizes key points discussed in this chapter.

4.2 Biological background
All living organisms consist of cells. Each cell consists of a common set of chromosomes,

which are strings of DNA. DNA is the hereditary material found in all organisms. Parts of

the DNA may vary from one organism to another. These variations produce different

characteristics such as different eye colour, skin tone, personality, etc. During reproduction,

new organisms (called offspring) are produced. Often, the DNA of an offspring is different

from that of the parent(s). The DNA contributes towards the organism’s probability of

survival in its environment. The fitness of an organism is a measure of its chances of

survival in that environment [GOLD89].

4.3 Genetic Algorithm Overview
According to Goldberg [GOLD89], a genetic algorithm begins by creating a population of

individuals. This population is referred to as the initial population. Each individual in the

30

population is then evaluated using a fitness function. A selection process is then applied

where fitter individuals from the population become parents. Fitness proportionate selection

is used to select two individuals as parents. Two offspring are produced by applying a

crossover genetic operator (with probability pc) to the selected parents. A mutation genetic

operator (with probability pm) is then applied to each of the offspring. The resultant offspring

are added to a new population and are evaluated using the fitness function. This process of

evaluation, selection and creation of a new generation of offspring continues until some

termination criteria have been met. The termination criteria are problem dependent and may

involve reaching a generation limit or if an individual in the population fulfils all the criteria

specified by the problem. The genetic algorithm presented by Goldberg [GOLD89] is shown

in Figure 4.1 below.

Gen = 0
Create and evaluate initial population
Repeat
 J = 1
 Repeat
 Select two individuals from population (A and B)
 If crossover occurs with probability pc
 Offspring C and D = Application of crossover operator to A and B
 Else
 Offspring C and D = Copy of A and B
 If mutation occurs with probability pm
 Apply mutation to offspring C and D
 End If
 Evaluate C and D
 Add C and D to new population
 J = J + 2
 Until J > Population Size
 Old Population replaced by New Population
Until Termination criteria have been met

Figure 4.1: Genetic algorithm [GOLD89]

Sections 4.3.1 to 4.3.5 discuss the genetic algorithm process in greater detail.

4.3.1 Initial population generation
The population size N is a parameter value that specifies the population size. In the genetic

algorithm presented by Goldberg [GOLD89], all individuals in the initial population are

created randomly. Each individual is represented as a binary string with each bit in the

string being a 1 or a 0.

4.3.2 Fitness function
A fitness function is an objective function that is used to assess each individual in the

population [GOLD89]. A fitness measure is calculated using the fitness function and this

31

fitness measure indicates how close an individual is to satisfying the problem specific

criteria. The fitness function plays an important role in guiding the evolution of the

population.

4.3.3 Selection method
In the standard genetic algorithm [GOLD89], fitness proportionate selection is used to

choose parents. The first step is to find the sum of all the fitness values of each individual in

the population. Each individual has a probability (pi) of being selected based on that

individual’s fitness. In order to calculate the probability of each individual (pi), each

individual’s fitness (fi) is divided by the total fitness of all the individuals. The equation is

shown below.

∑

The number of times each individual will be placed in a mating pool is then determined by

multiplying the probability pi by the number of individuals in the population (n).

Table 4.1 shows a population of five individuals and their fitness values. The sum of the

fitness values of all the individuals adds up to 200. The fourth column shows each

individual’s probability of selection followed by the number of times they will appear in the

mating pool (fifth column). The example shown in Table 4.1 assumes that a higher fitness

value indicates a fitter (better) individual.

Table 4.1: Fitness values of individuals and total fitness

ID no Individual Fitness value

()
% of total () Number of

occurrences in
mating pool (pi * n)

1 101110001 45 45 / 200 = 0.225 0.225 * 5 = 1.125 ≈ 1

2 111000111 10 10 / 200 = 0.050 0.050 * 5 = 0.250 ≈ 0

3 101010101 60 60 / 200 = 0.300 0.300 * 5 = 1.500 ≈ 2

4 000000001 70 70 / 200 = 0.350 0.350 * 5 = 1.750 ≈ 2

5 100010001 15 15 / 200 = 0.075 0.075 * 5 = 0.375 ≈ 0

TOTALS 200 100%

Based on the calculations performed in Table 4.1, the individuals in the mating pool are

individual 1 (once), individual 3 (twice) and individual 4 (twice). Parents are then selected by

32

randomly choosing individuals from the mating pool. In the example above, individual 2 and

individual 5, the least fit individuals, will not be selected as parents.

A common issue found when using fitness proportionate selection is that the fittest individual

can be selected as a parent more often than other individuals due to a high selection

pressure (all individuals in the population are included in the selection method). This

reduces genetic diversity; especially if the fitness variance is high (a low fitness variance

indicates that the fitness values of the individuals in the population are very close while a

high fitness variance indicates that there are large differences between the fitness values of

the individuals). As a result the genetic algorithm may converge prematurely (offspring

produced can no longer be better than the parents) [BLIC95].

4.3.4 Genetic operators
This section describes the mutation and crossover genetic operators.

4.3.4.1 Mutation

The purpose of the mutation operator is to maintain genetic diversity and prevent premature

convergence by making random changes to an individual. Figure 4.2 shows an example of

the application of the standard mutation operator described by Goldberg [GOLD89] (also

known as bit-flip mutation). The first and fifth positions have been randomly selected and

their values changed. In the example below, the assumption is made that each bit is

independent of each other. In the event that there are bits that are dependent on other bits,

then the implementation of the mutation operator will need to be modified.

Parent X (Mutation points) 111000110010011

Offspring of Parent X 011010110010011

Figure 4.2: Mutation Example

4.3.4.2 Crossover

The crossover operator is a local search operator that combines two parents to produce two

offspring. This operator explores a specific area of the search space with the objective being

to produce better offspring from good parents.

In the genetic algorithm used by [GOLD89], offspring are created by combining string

fragments (portions of the string) which are obtained from each of the parents. The

fragments are determined by using a randomly chosen crossover point. This method is

referred to as one point crossover and an example is shown in Figure 4.3.

33

In the example, the randomly chosen crossover point is selected and divides the string into

two fragments. The first fragment (all characters before the selected crossover point) from

parent X and the second fragment from parent Y (all characters after the crossover point)

are combined to form offspring Z1. Offspring Z2 is produced using the second fragment of

parent X and the first fragment of parent Y.

Parent X 01100111010101

Parent Y 11111000011110

Resultant offspring Z1 01100000011110

Resultant offspring Z2 11111111010101

Figure 4.3: One point Crossover example and resultant offspring

4.3.5 Control parameters
There are two main control parameters that have to be set. These values will affect the

performance of the algorithm.

 Population size – A larger population size increases computational effort but also

allows the algorithm to explore a larger area of the search space during the initial

generations. Smaller population sizes will reduce the time taken per generation but

may mean that large areas of the search space are not explored during the initial

generations (depending on the complexity of the problem).

 Genetic operator probability – This parameter specifies the probability of the genetic

operator being applied to an individual. In the case of mutation, if the mutation

probability is too high, then the genetic algorithm becomes more of a random search

and will take longer to converge. A low mutation probability reduces genetic diversity

and the algorithm may converge prematurely. In the case of crossover, a high

crossover probability may result in the algorithm converging quickly but prematurely

while a low crossover probability will reduce the local search and as a result reduce

the convergence rate. The ideal genetic operator probabilities will vary depending on

the problem [SRIN94].

4.4 Advances in Genetic Algorithms
The genetic algorithm detailed in sections 4.3.1 to 4.3.5 describes the standard genetic

algorithm used by Goldberg [GOLD89]. However, genetic algorithms have been modified to

solve various problems. Some of these modifications have been influenced by the

development of other evolutionary computing techniques such as genetic programming.

34

Sections 4.4.1 to 4.4.5 describe some of the common changes made to the genetic

algorithm.

4.4.1 Control models
A control model describes the way in which a genetic algorithm is executed. These models

control the way in which the newly created offspring are introduced into the population.

Sastry and Goldberg [SAST05] refer to these control models as replacement techniques.

Bruce [BRUC95] describes three different control models, namely the generational, steady-

state and varying population size control models.

Generational control model - For every generation, a new population consists entirely of

offspring created by parents from the previous generation (offspring could be duplicates of

parents). This model is one of the most common and popular models that have been used

as it is very easy to implement but does require an extra control parameter (the number of

generations). This control model is also known as the replace all model [SAST05]. An

advantage of the generational control model over the steady-state model is that since all

individuals in the population are replaced, the probability of maintaining genetic diversity

increases (how offspring are created will also affect genetic diversity).

In the steady-state control model, only a single population is used and offspring are

immediately added to the population by replacing the least fit individuals. The individuals

chosen for replacement are selected using an inverse selection method that favours

individuals with poor fitness values. In terms of computational resources, this model uses

only a single population and therefore uses less memory than the generational control model

[BRUC95]. An extra control parameter indicating the number of individuals to replace is

required. If the number of individuals that are replaced is small, then the algorithm may

converge quickly but prematurely (this will also depend on the design of the genetic

operators). If the number of individuals to be replaced is increased, then genetic diversity

increases and the convergence rate is reduced.

Research has shown that, depending on the problem, different population sizes may be

preferred at different stages of evolution [HINT96]. The varying population size model,

which could be implemented as a variation of either the generational control model or the

steady-state control model, changes the size of the population from one generation (or

iteration) to another depending on the fitness of the individuals in the population. Poorer

fitness among individuals results in an increase in the population size for the next generation

in order to diversify the search and possibly improve the overall fitness. If good fitness

35

values are found in the population, then the population size decreases for the next

generation (or iteration) in order for the algorithm to converge to a single solution [BRUC95].

4.4.2 Individual representation
Rather than using binary strings, many other representations have been used depending on

the type of problem that must be solved. Other representations used include single or multi-

dimensional arrays, strings, vectors, and tree structures ([AFFE09], [BEAS93]).

4.4.3 Initial population creation
The initial population should represent and cover as much of the search space as possible

(known as uniform coverage). This reduces the possibility of the algorithm converging

prematurely. Having no duplicate individuals in the initial population increases the diversity

of a population and allows for a greater coverage of the search space.

In the standard genetic algorithm, individuals in the initial population are created randomly.

Some studies such as [CART96], [CALD97] and [RAMS93] have created individuals in the

initial population by using a set of rules (referred to as heuristics). These heuristics assist in

the creation of a fitter initial population which could improve the probability of finding

acceptable solutions ([BEAS93], [RAMS93] and [DIAZ07]). In the case of the school

timetabling problem, an example of a heuristic would be to give priority to teachers that

teach the most number of lessons. In scheduling problems, an initial population may also

consist of previous solutions with the objective being to improve the quality of these

solutions. In the case of the school timetabling problem, a previous solution could be the

timetable that was used in the previous year or a timetable that was manually created by the

staff.

4.4.4 Tournament Selection
One of the most commonly used selection methods, other than fitness proportionate

selection, is tournament selection. A group of individuals are randomly chosen from the

population. The fittest individual of the group (called a tournament) is selected as a parent.

The tournament size is problem dependant and must be specified. A small tournament size

(low selection pressure) results in a more random based selection. A large tournament size

(greater selection pressure) results in the selection method becoming more elitist i.e.

stronger individuals have a better chance of being selected. Tournament selection is easy to

implement and is faster (in runtime) than fitness proportionate selection.

36

Best = Randomly chosen individual
For Loop = 2 to T
{
 Ind = Randomly select participant as Contender
 If Fitness(Ind) is better than Fitness(Best)
 Best = Ind
}
Parent = Best

Figure 4.4: Standard tournament selection algorithm

4.4.5 Genetic operators
In the standard genetic algorithm, crossover and mutation are used as genetic operators. In

recent work, genetic algorithms have been implemented using only the mutation operator

[BEAS93]. The motivation for this type of genetic algorithm is based on organisms in nature

that reproduce asexually. In his review of previous work, Beasley [BEAS93] reports that a

genetic algorithm using only mutation resembles a primitive form of evolution. Spears

[SPEA93] found that a suitably modified mutation operator may perform just as well as the

crossover operator.

As genetic algorithms were used to solve various problems, standard genetic operators were

found to be insufficient when applied to different problem domains. These operators were

then varied or changed based on the problem domain. Section 4.4.5.1 covers different types

of mutation operators while section 4.4.5.2 covers the different types of crossover operators

that were cited in the literature. Section 4.4.5.3 describes the reproduction operator. Finally,

section 4.4.5.4 discusses the difference between application rates and operator probabilities.

4.4.5.1 Mutation

Goldberg initially described mutation as a secondary operator [GOLD89]. However, the use

of different representations for solving problems and the development of evolutionary

algorithms have resulted in a greater reliance on the mutation operator to explore the search

space.

Boundary mutation is used for individuals that are represented using integers or float values

[OBIT98]. With this mutation, a gene changes to an upper or lower bound value. For

example, consider an individual 6-3-4-7. A boundary mutation will result in changing the 4 to

a lower or upper bound value such as 0 or 10. The resultant offspring will be either 6-3-0-7

or 6-3-10-7.

Uniform mutation [OBIT98] changes the gene to a random value within a specified range. In

the previous example, the first gene (6) will change to a random value where the range is

37

specified by the user. If the range is set between 0 and 4, then the resultant offspring will be

1-3-4-7, 2-3-4-7 or 3-3-4-7.

4.4.5.2 Crossover

Besides the one point crossover described in section 4.3.4.2, several other variants of the

crossover operator exist.

Two point crossover [SPEA91a] selects two crossover points and the bits between the

crossover points are exchanged between individuals. In the example in Figure 4.5, two

crossover points are selected. The fragments between these two crossover points are 1110

and 0000 for each parent respectively. These fragments are then swapped between the

parents resulting in offspring Z1 and Z2.

Parent X 01100111010101

Parent Y 11111000011110

Resultant offspring Z1 01100000010101

Resultant offspring Z2 11111111011110

Figure 4.5: Two point crossover

In uniform crossover [SPEA91a], bit positions of the two parents are randomly selected. The

bits in these positions are then swapped between the parents resulting in offspring Z1 and

Z2. In the example in Figure 4.6, five bit positions are randomly selected. The values in

these bit positions are swapped between parents resulting in offspring Z1 and Z2. The

uniform crossover operator is used to provide a greater exploration of the search space and

is controlled by the number of bits that will be exchanged between parents [SPEA91b].

Parent X (crossover points in bold) 01100111010101

Parent Y (crossover points in bold) 11111000011110

Resultant offspring Z1 01100001011100

Resultant offspring Z2 11111110010111

Figure 4.6: Uniform crossover

Goldberg et al. [GOLE89] implemented the “Cut and Splice” crossover operator. This

operator is similar to the one point crossover operator with the exception that each parent

may have a different crossover point as depicted in Figure 4.7. This results in two or more

offspring having different string lengths. According to Mitchell [MICH98], producing

individuals with varying string lengths is advantageous as the probability of a string

containing the necessary information to produce an acceptable solution is greater.

38

Parent X (crossover points in bold) 01100111010101

Parent Y (crossover points in bold) 11111000011110

Resultant offspring Z1 011000011110

Resultant offspring Z2 1111100111010101

Figure 4.7: “Cut and Splice” crossover operator

Eiben et al. [EIBE94] considered a multiparent crossover operator. In this case, crossover is

applied to three or more parents resulting in three or more offspring. According to Eiben

[EIBE95], the use of more than two parents allows for greater diversity, thus reducing the

possibility of premature convergence.

Figure 4.8 illustrates a crossover operator involving three parents W, X and Y resulting in an

offspring Z1, Z2 and Z3. The first fragment from parent W, the second fragment from parent

X and the third fragment from parent Y result in offspring Z1. This is an example of diagonal

crossover and involves two crossover points. Alternative implementations of this operator

include choosing multiple crossover points as well as recombination based on occurrence

(the bits that are included the most in the parents are included in the offspring [EIBE94]) or

fitness (the number of bits from each parent is proportional to the fitness of the parent).

Parent W 111100001111

Parent X 001100110011

Parent Y 101010101010

Resultant offspring Z1 111100111010

Resultant offspring Z2 001110101111

Resultant offspring Z3 101000000011

Figure 4.8: Diagonal crossover operator

4.4.5.3 Reproduction

According to Banzhaf [BANZ98], the reproduction operator creates an offspring by copying

the parent (the offspring is an exact duplicate of the parent).

4.4.5.4 Genetic operator probability versus genetic operator application rate

In the standard genetic algorithm [GOLD89], each genetic operator is applied with a given

probability. Genetic operator application rates can also be used and differ from operator

probabilities in that it specifies how many individuals in the new population are created using

each genetic operator. For example, having crossover and mutation application rates of

70% and 30% respectively indicate that 70% of the offspring are created using the crossover

39

operator while 30% of the offspring are created using only the mutation operator. A high

mutation application rate results in a more random search while the local search is reduced.

As a result, the genetic algorithm will take longer to converge. A high crossover application

rate will result in a more local search which may increase the possibility of premature

convergence.

4.5 Chapter Summary
This chapter provided a description of the genetic algorithm. Initially, the standard genetic

algorithm implemented by Goldberg [GOLD89] was described. However, in order to use

genetic algorithms to solve various problems, it may be necessary to modify the genetic

algorithm in terms of the representation used, initial population generation, selection

methods and genetic operator design. The advancements described in section 4.4 are

some of the more common variations made to the standard genetic algorithm.

40

Chapter 5 – Genetic algorithms and the
School Timetabling Problem

This chapter describes previous work on the application of evolutionary algorithms to the

school timetabling problem with a specific focus on genetic algorithms. The following is

described for each study: the school timetabling problem and its constraints, the

representation used, initial population generation, selection methods, genetic operators used

and the results obtained. Section 5.1 deals with genetic and evolutionary algorithms used to

solve the school timetabling problem. The problem has also been solved by combining

genetic algorithms with other techniques and section 5.2 describes this type of research.

Section 5.3 reports on comparative studies involving genetic algorithms when solving the

school timetabling problem. Section 5.4 provides an overview of the lessons learnt based on

the experiences reported in these studies.

5.1 Evolutionary or genetic algorithms
Bedoya et al. [BEDO04] developed a genetic algorithm to solve the school timetabling

problem. The hard constraints for the problem are:

 No class clashes or teacher clashes.

 A class must be taught a particular subject a maximum of once in a day.

This problem did not have any soft constraints. A matrix representation was used with each

row representing a class and each column representing a period. All initial timetables were

created by randomly allocating the tuples to the timetable. Each constraint was allocated a

weighting based on its priority and the fitness value (measure) was calculated by finding the

weighted sum of the constraint violations. Clashes were given the highest priority as a clash

free timetable is at least usable. Fitness proportionate selection was used. A generational

control model was adopted. The crossover operator was not implemented as recombination

of two timetables would result in duplicate or missing tuples and would require repair

operators to deal with this problem. This repair operator will need to find all duplicate or

missing tuples and reallocate them to the timetable, adding to the processing overhead. The

only genetic operator used was the mutation operator which searched for and swapped

constraint violating tuples. Repair operators were not needed for this operator since tuples

are swapped within the timetable and thus no tuples would be duplicated or lost during

41

mutation. The genetic algorithm was applied to a small problem involving four classes, 10

subjects and 19 teachers. The approach induced timetables that satisfied all the constraints.

Di Steffano et al. [DIST01] developed a genetic algorithm to solve the Italian school

timetabling problem. The hard constraints for the problem are as follows:

 Room constraints - The size of the room must accommodate the size of the class.

 No class clashes, teacher clashes or venue clashes.

 Teacher availability requirements must be met.

 Certain lessons must be allocated to specific periods.

 Lunch breaks must be at different hours for each class.

The soft constraints for the problem are:

 Subject preferences should be met.

 Lessons should be evenly distributed throughout the week.

 Timetables should be compact.

 Distances between venues must be as short as possible.

Each individual in the population was represented as an integer array with the length being

the total number of tuples. The array index represented the tuple reference number and the

integer value stored in each cell was the period allocated to that particular tuple. When

creating a timetable, certain tuples (specified by the school) had to be allocated to specific

periods so these tuples were allocated first. The remaining tuples were then randomly

allocated to the timetable. Tournament selection was used. The generational control model

was used with elitism incorporated whereby the best individual in the population is copied

across to the next generation. Crossover was applied followed by an intelligent mutation

operator and an improvement mutation operator. Intelligent mutation reduced the number of

hard constraint violations by incorporating hill climbing (only swaps that improved the cost of

the timetable were accepted). Improvement mutation searched for and removed free

periods in the timetable. As a result, all tuples after the free period were then moved one

period forward. The changes resulting from the improvement mutation were only accepted if

the timetable remained feasible. The algorithm followed a phased approach where soft

constraints were only dealt with once the hard constraints of the timetables were satisfied.

The authors describe the results as remarkable due to the positive feedback provided by the

school administrators. The timetables created did not require any manual adjustment from

42

the school administrators. The concept of using an array with the tuple number as an index

was a good approach that removed the possibility of having duplicate or missing tuples in a

timetable. The authors also found that genetic operators could be easily designed using this

representation.

Caldeira et al. [CALD97] used a genetic algorithm to solve the school timetabling problem for

a small school. The hard constraints dealt with are:

 No teacher clashes, venue clashes or class clashes.

 Teacher availability requirements must be met.

The soft constraints are:

 Class and teacher timetables should be compact.

 A one hour lunch break should be scheduled for each class between 12:00 and

15:00.

 The number of lessons should not exceed a specified daily limit.

 Lessons for each subject should be evenly distributed throughout the week.

 Any free periods should be allocated to the end of the day or the beginning of the

day.

 Classes and teachers preferences should be met.

The authors used an array to represent the timetable and the array size is determined by the

number of tuples. Each array index value is the tuple number and each element in the array

stores a period of the week. When creating a timetable, tuples with the fewest feasible

periods on the timetables are given priority. The authors found feasible timetables in the

initial population so the main objective of the genetic algorithm was to optimize the quality of

these feasible timetables. The fitness of an individual was the weighted sum of the

constraint violations. Fitness proportionate selection was used. The steady-state control

model was employed. The genetic operators used were uniform crossover and mutation.

To further reduce the constraint cost, a second mutation operator was also introduced that

looked for constraint violating tuples and moved it to the closest unallocated period. The

algorithm was applied to a school timetabling problem with four teachers and four classes for

which it was able to produce feasible solutions of an acceptable quality.

43

Fernandez et al. [FERN99] solved a large school timetabling problem involving 41 classes,

109 teachers and 37 venues. The hard constraints of the problem are:

 No class clashes, teacher clashes or venue clashes.

 No repetition of subjects in a day.

 Consecutive period requirements must be met.

 Teacher availability requirements must be met.

 An allocated venue must have the capacity to hold the number of students in the

class.

 Each class must be allocated a free period during the day for a break.

The soft constraints are:

 Teacher and class timetables should be compact.

 Class-teacher meetings should be evenly distributed throughout the week.

 Subjects should be evenly distributed throughout the week.

 Free periods for class timetables should be moved to either the beginning or the end

of the day.

 Teacher preferences should be met.

The timetable was represented as a two-dimensional matrix with the rows representing the

periods and the columns representing the classes. Timetables were initially created by

ordering tuples according to priority. Lessons with consecutive periods were prioritized first,

followed by lessons with specific rooms and lastly, teacher priority. Tuples were allocated to

the timetable such that the hard constraint cost was minimized. Each constraint was

weighted depending on its importance and the fitness value of an individual was calculated

by the weighted sum of the constraint violations. Fitness proportionate selection was used.

The steady-state control model was adopted. One of three crossover operators and a

mutation operator were applied. The three crossover operators were one-point crossover,

three point crossover and uniform crossover. A constraint focused mutation operator was

used that searched for constraint violating tuples and attempted to move them to a feasible

and empty period on the timetable. If there are no feasible, empty periods available, then

the mutation is cancelled. The timetable induced by the genetic algorithm was compared to

a manually created timetable and was found to be better as it was feasible and satisfied

more soft constraint violations. However, the timetables produced using the manual system

44

were more compact and contained half the number of free periods when compared to the

timetables found by the genetic algorithm.

Abramson et al. [ABRA91a] developed a genetic algorithm to solve the school timetabling

problems for a group of generated data sets. The only constraint for this problem was that

there must be no class clashes, teacher clashes or venue clashes. The timetable was

represented as an array of periods with each period containing a set of tuples. The

timetables in the initial population were randomly created. The cost of the timetable was

determined by counting the number of clashes. Individuals from the population were

randomly selected as parents. The genetic operators used were one point crossover and

mutation, both of which incorporated hill climbing. In most cases, the implementation of the

crossover and mutation operators resulted in a loss of tuples. This problem was solved

using a repair operator which removed duplicate tuples and included missing tuples. This

repair operator added to the processing overhead of the overall algorithm but was a

necessary process. The genetic algorithm was applied to nine data sets. The number of

classes, teachers and venues vary between three and 15 with a constant of thirty periods

per week. Feasible timetables were found for each of the data sets. The study also

investigated the concept of parallel processing and this was found to substantially reduce the

algorithm runtime.

Beligiannis et al. [BELI08] solved the Greek school timetabling problem. The hard

constraints for the problem are:

 No class clashes or teacher clashes.

 Teacher availability requirements must be met.

 Any free periods must be allocated to the last period of the day.

 All subclass and co-teaching requirements must be met.

The soft constraints are:

 Teacher timetables should be compact.

 Free periods should be uniformly distributed amongst all teachers and free periods

for each teacher should be uniformly distributed amongst all days he/she is available

at school.

 The number of teaching periods for each teacher should be evenly distributed over

the days that he/she is available at the school.

45

 Repetition of subjects in a day should be minimized.

A timetable was represented by a two-dimensional array with a row representing a class, a

column indicating a specific period and the intersection of each row and column specifying

the teacher that is required to meet the class at that time. The subjects taught were not

considered as it was assumed (by the authors) that teachers knew which subjects they were

required to teach as well as the number of periods required to teach that subject. A

randomly generated initial population was created. The fitness of each individual was

calculated by the weighted sum of the constraint violations with clashes given the highest

weighting so that the timetables were at least usable. A linear rank selection method was

used and the steady-state control model was employed. The crossover operator was not

applied because trial runs found that it did not improve the performance of the algorithm.

Mutation was the only genetic operator used and involved the swapping of either two

randomly chosen tuples or two constraint violating tuples. Swaps were designed such that

teacher availability and co-teaching requirements were not violated. The algorithm was

applied to seven data sets, with the number of teachers ranging from 18 to 35 and the

number of classes ranging from six to 13. Feasible timetables that were of a good quality

were induced and these timetables were found to be better than that of two other effective,

unnamed algorithms.

Filho et al. [FILH01] implemented a genetic algorithm to assist administrative staff at a

Brazilian school. The hard constraints are that there must be no class clashes or teacher

clashes. The only soft constraint was teacher period preferences. Tuples were ordered

according to higher teacher seniority (primary heuristic) followed by teachers with the largest

number of preferences (secondary heuristic). These tuples were allocated to randomly

chosen periods in the timetable. The algorithm used a generational control model with a

varying population size. Three mutation operators were implemented with two of these

mutation operators aimed at removing class clashes and teacher clashes respectively. The

third mutation operator (teacher preference operator) attempted to reduce the soft constraint

cost. The authors concluded that the results were promising and would aid teachers in a

task that normally took a very long time.

Tongchim [TONG99] proposed solving the school timetabling problem by using three parallel

processing models of genetic algorithms. The models used in this case were the coarse-

grained genetic algorithm, the fine-grained model and the master-slave model. The hard

constraints for this problem are listed below.

46

 No class clashes, teacher clashes and venue clashes for specialized subjects.

 Lesson preferences must be met.

The problem did not have any soft constraints. A 2n array representation was used where n

is the number of subjects (each subject is taught by a different teacher). Each cell stored a

tuple consisting of the venue and the period. The fitness of an individual was the sum of all

the constraint violations. The selection method used was tournament selection with a

tournament size of three. The genetic operators applied were mutation and crossover. The

first model, a master-slave model used a single population. The processes of fitness

evaluation and application of genetic operators were each performed in parallel

(simultaneously). The second model, a coarse grained model, divided the population into

multiple subpopulations, which evolved independently with little or no interaction with other

subpopulations. Each subpopulation was evolved on a different processor. The third model,

a fine grained model, used a larger number of parallel processors and divided the population

into a larger number of subpopulations. The coarse grained genetic algorithm was the best

performing genetic algorithm and was also the easiest to implement.

Bufe et al. [BUFE01] used a hybrid algorithm to solve the German school timetabling

problem. The hard constraints are:

 No teacher clashes, class clashes or venue clashes.

 Co-teaching requirements must be met.

 Teacher availability requirements must be met.

 Certain subjects must be held in specific venues.

The soft constraints are:

 Any free periods for classes should be placed at the end of the day.

 Certain teachers should have a minimum number of free days per week.

 Some lessons that require double periods and fortnightly allocation should be met.

 Subjects for each class should be evenly distributed throughout the week.

 Class and teacher timetables should be compact.

A two-dimensional matrix was used to represent a timetable. Initial timetables are created

by randomly selected tuples and allocating them to feasible periods such that the hard and

soft constraint cost is minimized. The genetic algorithm follows the steady-state control

47

model, where 40 percent of the worst individuals in the population are replaced by newly

created offspring. Three mutation operators were used and involved removing allocated

tuples, placement of unallocated tuples and swapping of two tuples respectively. The

algorithm was applied to a problem that involved 61 teachers, 23 classes, 49 venues and

351 lessons. No feasible timetables had been induced. Conclusions were made that future

research regarding the use of intelligent operators that minimize the cost of initial timetables

and mutation operators that search for constraint violations was necessary.

Wilke et al. [WILK02] attempted to solve the German school timetabling problem with the

following hard constraints:

 Teacher and class timetables must be compact.

 Free periods for teachers for breaks.

 Any free periods must be allocated towards the end of the day.

 Certain subjects must be evenly distributed throughout the week.

 One free period to be allocated to classes for a lunch break.

 Some lessons must be taught in dedicated rooms.

 All co-teaching and subclass requirements must be met.

The only soft constraint is that teacher preferences should be met. An individual in the

population was represented as a two-dimensional matrix with the rows representing the days

of the week and the columns representing the periods. Each cell in the timetable was

allocated a tuple consisting of an assigned room, a subject and a class-teacher combination.

Individuals in the initial population were randomly created. The cost of the timetable was

determined by the weighted sum of the constraint violations. The best two individuals of

each generation are chosen as parents and the remaining parents are chosen using fitness

proportionate selection. One of two crossover operators (one point and two point crossover)

were randomly chosen and applied followed by three mutation operators. The two mutation

operators swap lessons and randomly reallocate rooms respectively. The third mutation

operator makes a copy of the best timetable in the population and then makes one swap

between two tuples. Mutation operators that focus on soft constraints are applied if the

genetic algorithm converges prematurely. The approach was applied to a large German

high school timetabling problem. While most hard constraints were satisfied, feasible

timetables were not induced.

48

5.2 Genetic algorithms with other techniques
Zuters [ZUTE07] implemented a neural network as part of a genetic algorithm to solve the

school timetabling problem. This paper was a continuation of a previous study and

attempted to use neural networks as a fitness function. These neural networks were trained

using previous timetables as well as randomly generated timetables. This study focused

only on timetable quality. The soft constraints for the problem are:

 Teacher lessons should be evenly distributed throughout the week.

 Class timetables should be compact.

 Lessons should start as early in the day as possible.

 Subjects for each class should be evenly distributed throughout the week.

A matrix representation was used with each row representing a class and the columns

representing the periods. Each cell contained a subject that would be taught to the class

during that particular period. This representation was chosen as room and teacher details

were not available. Details of initial population generation as well as the selection method

used were not provided. Mutation was the only genetic operator. Four separate fitness

functions were used to assess each soft constraint. The main objective of this study was to

determine whether any of the fitness functions could be replaced by a neural network.

Zuters found that the neural network could replace only one of the four fitness functions.

The function that could be replaced assessed the constraint dealing with starting lessons as

early as possible.

Nurmi et al. [NURM07] used a combination of a genetic algorithm and tabu search to solve

the school timetabling problem for schools in Finland. The hard constraints of the problem

are the following:

 No class clashes, teacher clashes or venue clashes.

 Lesson preferences must be met.

 Teacher, class and venue availability requirements must be met.

The soft constraints of the problem are the following:

 Class and teacher timetables should be compact.

 The lessons for some classes should be placed as late in the day as possible i.e.

initial periods for the day should be free periods.

49

 The lessons for some classes should end as early as possible on particular days.

 Each teacher should teach a set number of lessons in a day within a specified range.

 Teacher day and period preferences should be met.

 A class should only be taught a specific subject once in a day.

Information regarding representation, timetable creation and selection method used was not

provided. Mutation was the only genetic operator and involved making a number of moves

(swaps). Mutation incorporated both hill climbing and a tabu list. Hill climbing ensured that

moves did not result in an increase in the constraint cost of the timetable. The tabu list

stored moves that would result in a return to a previous candidate solution. The genetic

algorithm was applied to the HDTT benchmark problem [ABRA91a] and real world primary

and secondary school timetabling problems. The algorithm was only able to find solutions to

some of the data sets in the benchmark problem but did find feasible timetables for the real

world problems. The use of a tabu search was identified as an important factor in improving

the performance of the mutation operator.

Cerdeira-Pena et al. [CERD08] implemented a hill climbing approach, a genetic algorithm

and two hybrid algorithms to solve the school timetabling problem.

The hard constraints for the problem are:

 No teacher clashes or class clashes.

 Co-teaching and subclass requirements must be met.

 Teacher availability requirements must be met.

 Double period requirements must be met.

The soft constraints for this problem are:

 Maximum daily teaching limits for teachers should not be exceeded.

 Each teacher should have his/her lessons evenly distributed throughout the week.

 Teacher timetables should be compact.

 Subjects should be evenly distributed throughout the week.

 Teacher preferences should be met.

Each timetable was represented as a two-dimensional matrix with the rows of the table

representing periods while each column represented a teacher. A cell of the matrix indicated

50

the class and subject. The cost of a timetable was determined by counting the number of

constraint violations. The initial population consisted of previous solutions and randomly

generated timetables.

The hill climbing approach (called RNA) explored the search space using double moves (a

single swap and an optional second swap if a constraint violation occurs from the first swap).

This process continued until no further improvements could be made to the timetable after a

specified number of moves.

Two genetic algorithms were implemented with the algorithms differing only in the selection

method used. In the first selection method (GAT), two parents are chosen, each from two

pairs of randomly selected individuals. The second selection method (GAT4C) differs from

the first in that four parents (rather than two) are selected and selection is without

replacement. Genetic operators used were one point crossover and a mutation operator that

made random swaps.

The final two approaches combined the hill climbing (RNA) algorithm with each of the

genetic algorithms. The hybrid approach alternated the genetic algorithm and the RNA

approach with the genetic algorithm applied first. The RNA approach was applied to each

individual in the population and produced the offspring for a new generation. The alternation

between the RNA approach and the genetic algorithm continued until a generation limit was

reached.

The algorithms were applied to three sets of school data. The first school had six co-

teaching and subclass groups, 70 classes and approximately 16 teachers. The best

performing algorithm was the hybrid algorithm using the GAT4C selection method. The

second problem contained 27 co-teaching and subclass groups, 333 classes and 71

teachers and best results were found with the hybrid algorithm using the GAT selection

method. The third problem involved a Spanish high school with 11 teachers and 33 classes.

The hybrid algorithm using the GAT4C selection method produced the best results. The

authors concluded that, overall, the best performing algorithms were the hybrid approaches.

Rahoual and Saad [RAHO06] solved the school timetabling problem by hybridizing a genetic

algorithm and tabu search. The hard constraints are:

 No class clashes or teacher clashes.

 Certain subjects must be allocated to specific periods.

51

The only soft constraint for the problem is that teacher preferences should be met. Each

timetable was represented as an array, with the array index indicating the tuple number.

Each tuple in the array is allocated to a period and a teacher. Timetables were created by

allocating tuples to randomly chosen periods but no details were provided as to how the

tuples were selected. The fitness of a timetable was determined by calculating the weighted

sum of the constraint violations. A steady-state control model was used. Crossover and

three mutation operators were used to create offspring. Each mutation operator focused on

a particular constraint and incorporated both hill climbing (swapping of tuples was only

accepted if the constraint cost was reduced) and a tabu list (to prevent cycling in terms of

performing the same swap and returning to previous solutions).

The approach was tested on benchmark data sets provided by Abramson [ABRA91a] and

the performance was found to be equivalent to that of the simulated annealing technique and

the tabu search used by Abramson [ABRA93]. The approach was also tested using four

generated data sets. The first set had 64 subjects, 12 teachers and 16 venues. The second

set involved 100 subjects, 21 teachers and 25 venues. The third data set involved 150

subjects, 26 teachers and 31 venues. Data set four had 200 subjects, 33 teachers and 37

venues. The performance of the genetic algorithm using the constraint focused mutation

operators performed better when compared to a genetic algorithm using a standard mutation

operator that randomly swaps tuples. The hybrid algorithm found good results and the

authors found that the tabu search minimized the possibility of premature convergence. This

approach was also tested against a real world case study involving 500 groups, 3000

teachers, 5000 subjects and 200 venues. The manual creation of a timetable for this

problem took approximately four weeks. In comparison to the manual approach, the genetic

algorithm approach solved the problem in less than an hour.

The authors concluded that the hybrid algorithm provided great flexibility and efficiency. A

contributing factor towards the success of the algorithm was the use of three separate

mutation operators that were each dedicated to reducing the cost of one specific constraint.

Another key contributing factor was the use of the tabu search incorporated with the

mutation operator.

5.3 Comparative studies
Colorni et al. [COLO98] implemented simulated annealing, a genetic algorithm and tabu

search to solve the school timetabling problem. The approaches were applied to benchmark

52

problems as well as an Italian high school timetabling problem. The hard constraints for the

school are:

 No class clashes or teacher clashes.

 All class timetables must be compact.

The soft constraints for the problem are:

 Each teacher should have between two and four teaching periods a day.

 A different teacher should be allocated to the last period for each day.

 Lessons should be evenly distributed throughout the week.

 Double period requirements should be met.

 Teacher timetables should be compact.

A two-dimensional matrix was used to represent a teacher timetable where the rows

represent the teachers and the columns represent the periods of each day. Each cell in the

matrix represented a teacher activity such as teaching and development lessons. The initial

population was randomly created. The selection method used was fitness proportionate

selection. The genetic operators used were crossover and mutation. Repair operators were

used to remove duplicate tuples and to reallocate missing tuples caused by the genetic

operators. The authors found that all three approaches performed better than the manual

system. The tabu search produced better timetables than the genetic algorithm, with

simulated annealing producing timetables with the most constraint violations. While the tabu

search performed the best, the genetic algorithm produced a population of solutions

providing users with a choice of timetables.

The school timetabling problem in the study conducted by Wilke et al. [WILK08] involved a

German secondary school timetabling problem with 113 teachers, 100 rooms and 43

classes. The hard constraints for the problem are as follows:

 No class clashes, teacher clashes and venue clashes.

 Classes must be allocated to rooms that can accommodate the number of students

in the class.

This problem did not involve any soft constraints. The four algorithms used were tabu

search, simulated annealing, a genetic algorithm and the branch and bound algorithm.

53

Specifics regarding each of the algorithms were not provided. The tabu search performed

200 moves per iteration. The simulated annealing technique was given a time limit of two

hours to find a feasible solution. The genetic algorithm used a population size of 30 and ran

for a time of two hours. The fittest individual and 5% of the individuals were automatically

selected as parents. No selection method was mentioned and the genetic operators used

were mutation and crossover. For the branch and bound algorithm, the hard constraint

regarding the minimum number of lessons per day was not considered. The simulated

annealing technique performed the best, producing feasible solutions for all runs. The other

techniques did not induce feasible solutions.

5.4 Chapter Summary
Based on the literature reviewed in this chapter, it is clear that the standard genetic algorithm

used by Goldberg [GOLD89] has not been used as is and variations had to be made to the

majority of the genetic algorithms in order to induce satisfactory solutions to the school

timetabling problems. The following sections describe the most common changes reported

in the literature as well as how the genetic algorithm approach in this study will be

implemented (discussed in further detail in Chapter 7 and Chapter 8).

5.4.1 Representation
In the literature, either an array representation ([CALD97], [FERN99], [DIST01], [ABRA91a],

[TONG99], and [RAHO06]) or a matrix representation ([BEDO04], [BELI08], [BUFE01],

[NURM07], [CERD08], [WILK02] and [COLO98]) was used. The array representation is

easily implemented and no repair operators are needed when using the crossover operator.

The matrix representation directly represents a timetable, immediately satisfies certain

constraint violations such as avoidance of class or teacher clashes (since a row or column

could represent a teacher or a class) and allows for easy implementation of genetic

operators e.g. swapping tuples within rows or columns. This study will use a matrix

representation because of the advantages stated above.

5.4.2 Control model
Most studies opted for the generational ([BEDO04], [DIST01], [ABRA91a], [BELI08],

[NURM07], [FILH08] and [CERD08]) or steady-state models ([CALD97], [FERN99],

[BUFE01] and [COLO98]). For this study, a generational model will be adopted as the

majority of the studies had successfully implemented this model.

5.4.3 Initial population generation
When creating a timetable, tuples are either randomly selected ([BEDO04], [FERN99],

[ABRA91a], [BELI08], [CERD08], [WILK02]) or selected using heuristics ([FILH01] and

54

[CALD97]) such as teacher priority and the least number of feasible periods (this has been

called saturation degree in a study by Carter [CART96]). Once a tuple is selected, it is then

randomly allocated to a period ([ABRA91a], [BELI08], [FILH01], [CERD08], [WILK02]) or

allocated to a period that minimized the hard (or soft) constraint cost ([FERN99], [DIST01]).

This study will assess the effect of randomly choosing tuples for allocation against choosing

tuples using heuristics. Once selected, a tuple will be allocated to the period that minimizes

the hard and soft constraint cost. This strategy will minimize the overall cost of the initial

population and increase the probability of finding a feasible timetable of a high quality.

5.4.4 Selection method
Most of the studies used either fitness proportionate selection ([BEDO04], [CALD97],

[FERN99] and [WILK02]) or tournament selection ([DIST01], [TONG99] and [CERD08]) as

these were the most popular selection methods. For this study, the tournament selection

method will be used due to ease of implementation (individuals in the tournament are

randomly chosen and the best individual is selected as a parent) and reduction in

computational time [BLIC95] (fewer individuals are evaluated and used in tournament

selection than in fitness proportionate selection).

5.4.5 Genetic operators
Most studies implemented the mutation and crossover operators. Studies that used a matrix

representation ([ABRA91a], [BUFE01], [WILKE02] and [COLO98]) required the use of repair

operators after crossover was applied in order to remove duplicate tuples and to reallocate

missing tuples. Since this study will use a matrix representation, crossover will not be used

in order to avoid the extra processing overhead that occurs when using repair operators.

In all the studies, mutation involved the swapping of tuples between periods. Some studies

randomly swapped tuples while others ([DIST01], [FILH01] and [BUFE01]) searched for and

swapped tuples that caused constraint violations to successfully solve their respective

problems. Studies by [DIST01], [ABRA91a], [CERD08] and [RAHO06] incorporated hill

climbing as part of the genetic operators to solve their respective problems. This study will

use constraint focused mutation operators (similar to those used by [DIST01], [FILH01] and

[BUFE01]) and will assess the performance of the genetic algorithm when using these

operators with and without hill climbing.

5.4.6 Single phase versus multiphase
Most of the studies presented addressed hard and soft constraints in a single phase with

varying degrees of success. Three studies ([AVEL07], [ALVA96] and [DIST01]) successfully

used a multiphase approach that addressed timetable quality only if hard constraints had

55

been satisfied. This study will test the performance of a genetic algorithm when using a

single phase approach and a multiphase approach.

5.4.7 School Timetabling Problems
From the previous work, it is evident that each of the genetic algorithms in the literature has

only been evaluated for one specific type of school timetabling problem and has not been

tested generally for different types of problems. This study will investigate the use of a

genetic algorithm approach to solve different types of school timetabling problems i.e. school

timetabling problems with different sets of constraints. It was also found that school

timetabling problems differed between countries and while problems from Australia, Brazil,

Italy, Spain and Greece were addressed, no research was done on the South African school

timetabling problem which also differs from the other problems in terms of constraints and

resources.

56

Chapter 6 - Methodology

6.1 Introduction
This chapter outlines the methodology used in order to attain the objectives described in

Chapter 1. Section 6.2 re-emphasizes the two objectives as well as how each objective will

be met. Section 6.3 describes the hypothesis testing that will be conducted to test the

significance of results. Section 6.4 covers the selected school timetabling problems that will

be used. Section 6.5 provides a brief overview of the hardware and software used in this

study.

6.2 Fulfilling the objectives of the study
This section outlines the methodology used to fulfill the objectives listed in Chapter 1.

Section 6.2.1 outlines the methodology for the first objective of using a genetic algorithm

approach to solve different types of school timetabling problems. Section 6.2.2 describes

the methodology for the second objective of evaluating a genetic algorithm that uses an

indirect representation to solve the school timetabling problem.

Genetic algorithms start from random points in the search space and hence a single run may

not produce a solution. Thus for each objective, thirty random number generator seed

values will be tested for each process and each parameter value (the same set of seed

values will be used when testing each process and each parameter). The significance of

any results will be tested using hypothesis tests (described in section 6.3).

6.2.1 Objective One
The first objective (as outlined in Chapter 1) is to test the effectiveness of genetic algorithms

in solving different types of school timetabling problems. An initial genetic algorithm

approach based on the literature review (outlined in section 5.4 of Chapter 5) will be

implemented. This will be referred to as a direct genetic algorithm (DGA) approach as the

algorithm will evolve the timetables directly. The performance of the DGA will be improved

iteratively by changing the processes of the genetic algorithm (if required) i.e. the

representation, fitness calculation, the method of initial population generation, selection

method and genetic operators. The control parameter values will also be fine-tuned in order

to improve performance. These changes will be made based on the evaluation of the

system when applied to the problems. This type of methodology is referred to as

implementation driven research where the emphasis is on iteratively refining a system until it

accomplishes the objectives that are required [JOHN11]. In the event that the DGA

57

performs poorly (i.e. feasible solutions cannot be found), then an analysis will be performed

to find reasons for poor performance. The DGA will then be refined based on the reasons

identified. The DGA will be tested on five school timetabling problems (described in section

6.4).

6.2.2 Objective Two
The second objective is to evaluate the performance of a genetic algorithm that uses an

indirect representation when solving the school timetabling problem. All studies on the

school timetabling problem (see Chapter 3 and Chapter 5) successfully used a direct

representation that searched a solution space for an optimal timetable. Previous studies in

the domain of job shop scheduling ([ABDE10]) and exam timetabling ([TERA95]) used a

genetic algorithm with an indirect representation consisting of a string of instructions capable

of building a schedule. The genetic algorithm using this representation was found to be very

effective and according to Gutierrez et al. [GUTI02], reduced the search space. Research

regarding genetic algorithms that use an indirect representation has not been conducted for

the school timetabling problem and this study will evaluate this approach. A genetic

algorithm using an indirect representation (IGA) will be applied to the five school timetabling

problems described in section 6.4. Iterative improvements will be made to the IGA if

necessary. The performance of the IGA will be compared to the performance of the DGA as

well as other methods from the literature that solved the same school timetabling problems.

6.3 Hypothesis testing
Hypothesis tests are conducted to test for the significance of the results where applicable.

Z-tests are used and the levels of significance, critical values and decision rules used for

these tests are listed in Table 6.1.

58

Table 6.1: Levels of significance, critical values and decision rules

P Critical Value Decision Rule

0.01 2.33 Reject H0 if Z > 2.33

0.05 1.64 Reject H0 if Z > 1.64

0.1 1.28 Reject H0 if Z > 1.28

6.4 The School Timetabling Problems
This section describes five types of school timetabling problems that will be used to assess

the performance of the IGA and DGA (in terms of feasibility and quality). The first problem,

the Abramson (or HDTT) problem, was introduced by Abramson et al. [ABRA93] and was

the most commonly cited problem in the literature. This problem was chosen as most

studies provided results which can be used for comparison purposes. Although there were

several school timetabling problems discussed in the literature, only two of these problems

were made publicly available by the authors at the time of this research. These two

problems were two Greek school timetabling problems introduced by Beligiannis et al.

[BELI08] and Valouxis et al. [VALO03] respectively and will also be used. Finally, two South

African school timetabling problems are used as problems from the South African

educational system, which differs from the other school timetabling problems in terms of

constraints and timetable structure, have not been covered in the literature. For the two

Greek problems and the two South African problems, sample timetables (timetables

provided by the authors) were made available. An empirical comparison will be made

between these sample solutions and the timetables induced by the DGA and IGA.

Section 6.4.1 covers the Abramson problem (also known as the HDTT problem). Section

6.4.2 and section 6.4.3 respectively describe the two Greek school timetabling problems.

Finally, section 6.4.4 and 6.4.5 describes the two South African school timetabling problems

(Lewitt and Woodlands).

6.4.1 The Hard Defined TimeTable (HDTT) school timetabling problem
The HDTT problem is a generated (non-real) school timetabling problem that was studied by

[ABRA93], [RAHO06], [SMIT03] and [LIU09]. Each data set in the problem has the following

characteristics:

59

Table 6.2: Characteristics of HDTT data sets

Data set No. of teachers No. of Venues No. of Classes Total No. of
Periods

HDTT4 4 4 4 30

HDTT5 5 5 5 30

HDTT6 6 6 6 30

HDTT7 7 7 7 30

HDTT8 8 8 8 30

The only hard constraint for the problem is that there must be no class clashes, teacher

clashes and venue clashes (HC1).

When compared to other problems in the literature, the Abramson problem appears to be

simple with a small number of classes, teachers and venues and only one constraint (no

clashes). This, however, does not imply that the problem is easy to solve. Three studies

([RAHO06], [LIU09] and [SMIT12]) have described this problem as difficult since all the

timetables produced (teacher, class and venue) must be dense i.e. each class, teacher and

venue must be assigned to every period of the week with no free periods. No other problem

found in the literature required timetables with this degree of density.

The mathematical formulation of the fitness function for this problem is simply the sum of all

the clashes of a given timetables. The formula for the fitness function for this problem is

shown below:

Min f(obj) = (class clashes + teacher clashes + venue clashes) ≥ 0

In the formula above, the objective is to minimize the number of clashes. A fitness value of 0

indicates that a feasible timetable has been found.

6.4.2 The Valouxis Greek school timetabling problem
This problem was introduced by Valouxis et al. [VALO03]. The problem involves 15

teachers and six classes. A school week is comprised of five days and each day has seven

periods. The hard constraints for this problem are:

 No class clashes or teacher clashes (HC1).

 Class timetables must be compact. Any free periods must be allocated to the end of

the day (HC2).

 A teacher’s workload must be evenly distributed throughout the week (HC3).

60

 Lessons must be evenly distributed throughout the week (HC4).

The soft constraints for the problem are as follows:

 Teacher preferences should be met (SC1).

 Teacher timetables should be compact (SC2).

Unlike the HDTT problem described in section 6.4.1, this problem contains a greater number

of constraints that must be satisfied. This study has four hard constraints and two soft

constraints and is equivalent to other studies in the literature in terms of average number of

constraints. In a study of school timetable difficulty by Van Heuvan van Staerling [VANH12],

it was found that one of these constraints, namely the teacher availability constraint, is

classified as a difficult constraint to solve. The two distribution constraints have normally

been specified as soft constraints in other studies ([CALD97], [LIU09], [BELI08] and

[AVEL07]) but are specified as hard constraints in this study. This increases the difficulty of

the problem as these constraints must be met rather than minimized.

Based on the constraints listed above, the formulation of the fitness function is shown below

and follows the format of a similar formulation used by Beligiannis et al. [BELI08]:

 () ∑()

In the above formula, HCVX is the number of violations in the timetable for hard constraint

HCX. For this function, the calculated value must be greater than or equal to 0 and the

objective is to minimize f(obj). A feasible timetable is found if f(obj) = 0.

The formulation of the fitness function to calculate the soft constraint cost is a summation of

the number of violations for each of the listed soft constraints.

 () ∑()

In the formula above, SCVX represents the number of soft constraint violations in the

timetable for soft constraint SCX. The calculated fitness value must be greater than or equal

61

to 0. A lower soft constraint cost indicates a better quality timetable. Therefore the objective

is to minimize the soft constraint cost.

6.4.3 The Beligiannis Greek school timetabling problem
Beligiannis et al. [BELI08] introduced the Greek high school timetabling problem. This

problem has seven data sets, each with a varied number of classes and teachers. Only six

of the seven data sets were used because one of the data sets (high_school_06) has an

error, where the total number of lessons for certain classes is more than the number of

periods available. The six data sets used have the following characteristics:

Table 6.3: Characteristics of the Beligiannis data set

Problem code No. of
teachers

No. of classes No. of co-
teaching and
subclass
requirements

Total no. of
periods

High_school_01 (HS1) 11 34 18 35

High_school_02 (HS2) 11 35 24 35

High_school_03 (HS3) 6 19 0 35

High_school_04 (HS4) 7 19 12 35

High_school_05 (HS5) 6 18 0 35

High_school_07 (HS7) 13 35 20 35

The hard constraints for this timetabling problem are:

 No class clashes or teacher clashes (HC1).

 Teacher availability requirements must be met (HC2).

 Any free periods must be allocated to the last period of the day (HC3).

 All subclass and co-teaching requirements must be met (HC4).

The soft constraints are:

 Teacher timetables should be compact. If this is not possible, then the number of

free periods should be minimized (SC1).

 Free periods should be uniformly distributed amongst all teachers while free periods

for each teacher should be uniformly distributed amongst all days he/she is available

at school (SC2).

 The number of teaching periods for each teacher should be evenly distributed over

the days that he/she is available at the school (SC3).

62

 Classes should not have the same lesson in successive periods and, if possible, not

even on the same day (SC4).

There are eight constraints in total that need to be addressed which is more than most

problems found in the literature. According to Van Heuvan Van Staerling [VANH12], the

subclass and co-teaching requirements as well as the teacher availability requirements are

difficult constraints to solve. There are also four soft constraints that need to be minimized

which is more than most of the problems discussed in the literature. Thus, this problem is

one of the more challenging problems when compared to the other problems in the literature.

Based on the above constraints, the formulation of the fitness function to calculate the hard

constraint cost is shown below. The formulation follows a similar format to that used by

Beligiannis et al. [BELI08].

 () ∑()

In the above formula, HCVX is the number of violations for hard constraint HCX. For this

function, the calculated value must be greater than or equal to 0 and the objective is to

minimize f(obj). A fitness value of 0 is desired as it indicates that the timetable is feasible.

The formulation of the fitness function to calculate the soft constraint cost is similar to the

above formula:

 () ∑()

SCVX represents the number of soft constraint violations for soft constraint SCX. The

calculated fitness value must be greater than or equal to zero. A lower soft constraint cost

indicates a better quality timetable thus the objective is to minimize the value of the above

function.

6.4.4 The Woodlands Secondary school timetabling problem
The Woodlands secondary school data set has 30 classes, 40 teachers and 44 subjects. A

school week is comprised of seven periods in a day and there are six days in a school week.

The hard constraints for the problem are the following:

63

 No teacher clashes or class clashes (HC1).

 All subclass and co-teaching requirements must be met (HC2).

The soft constraints are the following:

 Class-period allocation preferences should be met (SC1).

 Teacher preferences should be met (SC2).

 Co-teaching and subclass allocation preferences should be met (SC3).

The Woodlands problem has the largest number of teachers, classes and subjects when

compared to the other problems in this study. While the total number of constraints is

slightly less than the average number of constraints in the literature, the problem does have

subclass and co-teaching requirements, a constraint that is difficult to solve according to

[VANH12]. Unlike the Beligiannis problem, the number of classes and teachers involved in

the subclass and co-teaching requirements are more than two thus increasing the difficulty

of the problem. In addition, all class timetables must be dense (no free periods for classes).

The formulation of the fitness function that calculates the hard constraint cost is shown

below:

 () ∑()

HCVX represents the number of hard constraint violations for each hard constraint HCX. The

objective is to minimize the cost of the timetable and a feasible timetable is one that has a

hard constraint cost of 0. The formulation for the fitness function used to determine the

quality of the timetable is shown below:

 () ∑()

The objective is to minimize f(obj). SCVX represents the number of soft constraint violations

in the timetable for soft constraint SCX.

64

6.4.5 The W.A. Lewitt primary school timetabling problem
W.A. Lewitt Primary school has 19 teachers, 16 classes and 14 subjects. Each school day

consists of a maximum of 11 periods and each school week is comprised of five days. The

timetable structure differs based on grade. Some grades are not allocated the full 11

periods in the day. The hard constraints for this problem are the following:

 No teacher clashes, class clashes and in some cases venue clashes (HC1).

 For all classes, mathematics must only be taught in the mornings (HC2).

 Co-teaching requirements must be met (HC3).

 Double period requirements must be met (HC4).

The only soft constraint is that there must be a balance in the number of lessons a class is

taught per day (SC1).

This problem has four hard constraints and one soft constraint. This results in a total of five

constraints which is one less than the average number of constraints for the problems in the

literature. Two of the constraints, double periods and co-teaching requirements, are

categorized as difficult according to [VANH12] and [SMIT12]. The majority of the lessons in

this problem are specified as double periods, thus increasing the difficulty of the problem.

The mathematical formulation of the fitness function to calculate the hard constraint cost of a

timetable for this problem is shown below:

 () ∑()

In the above formulation, HCVX represents the number of hard constraint violations for each

hard constraint HCX. Thus the fitness value is determined by the sum of the number of hard

constraint violations for each hard constraint HCX. The objective is to minimize f(obj) and a

feasible timetable is one that has no hard constraint violations.

The mathematical formulation for the single soft constraint cost of lesson balance throughout

the week is shown below:

f(obj) = SCV1 ≥ 0

65

SCV1 is the number of violations for soft constraint SC1. f(obj) must be minimized and a

lower value indicates a better quality timetable.

6.5 System implementation details
The GA system was developed using Visual C++ 2008 and 2010. The random number

generator function available in C++ is used to generate random numbers. The programs

were developed on a computer with the following specifications: Intel Core 2 Duo CPU

P8600 @ 2.40GHz, 2.00 GB RAM, Windows XP/Windows 7 Enterprise OS.

Simulations (trial and final) were run on several machines, namely:

 Intel Core 2 Duo CPU @ 2.40 GHz, 2.00 GB RAM, Windows XP/Windows 7

Enterprise OS.

 Intel Core I7 870 CPU @ 2.93 GHz, 4.00 GB RAM, Windows 7 64-bit OS.

 Intel Core I7 860 CPU @ 2.80 GHZ, 4.00 GB RAM (3.49 Usable), Windows 7 32-bit

OS.

 Pentium Dual Core @ 2GHZ, 2.00 GB RAM, Windows Vista.

 Center for High Performance Computing. See www.chpc.ac.za/sun for cluster

specifications

Results of simulations as well as analysis and calculations for hypothesis testing were

performed using Microsoft Excel 2007 and 2010.

6.6 Chapter Summary
This chapter provides an overview of the methodologies used to achieve the objectives

described in Chapter 1. The hypothesis test that will be used to test for statistical

significance is then covered. The two genetic algorithm approaches will be applied to five

school timetabling problems which are also described in this chapter. This chapter

concludes by providing the technical specifications for the study.

http://www.chpc.ac.za/sun

66

Chapter 7 - A Genetic Algorithm
Approach using a Direct Representation

This chapter describes a genetic algorithm approach that uses a direct representation (DGA)

to solve the school timetabling problem. The chapter includes the overall genetic algorithm,

the representation used, heuristics used during initial population creation, selection methods,

genetic operators and control parameters.

7.1 Overall algorithm
The studies in the literature incorporated either a single phase approach that addressed hard

and soft constraints simultaneously or a two phased approach that addressed hard and soft

constraints separately (see section 5.4 in Chapter 5). It was intended that a comparison of

both these approaches would be conducted as part of the requirements for objective one

(section 6.2.1 of Chapter 6). While conducting initial runs, it was observed that the single

phase approach performed poorly when applied to the five school timetabling problems.

While feasible timetables were found, the quality of these timetables was poor and had twice

as many soft constraint violations as the timetables induced using a two phased approach.

The reason for this was that most of the swaps performed to reduce the soft constraint cost

were rejected due to an increase in the hard constraint cost of the timetable. The average

cost and best cost for the trial runs (single phase) are shown in Table 7.1.

Table 7.1: Trial runs for single phase approach

 Beligiannis
(HS7)

Beligiannis
(HS4)

Valouxis Lewitt Woodlands

Average
HC Cost

0 0 0 1.44 1.5

Average
SC Cost

210.78 118.11 82.89 27 11.5

Best HC
Cost

0 0 0 0 0

Best SC
Cost

201 106 73 23 11

As a result of the above observations, a two phased approach will be adopted. Phase 1

implements a genetic algorithm to find feasible timetables. During Phase 2, a genetic

algorithm is once again used, but is aimed at improving the quality of the timetables

(minimizing the soft constraint cost) while maintaining feasibility. Phase 2 is only performed

if feasible timetables are found during Phase 1. Both Phase 1 and Phase 2 will follow the

generational control model with a fixed population size for each generation. The

67

generational control model was chosen as most studies in the literature adopted this

approach.

The genetic algorithms used in Phase 1 and Phase 2 differ from the genetic algorithm

described in Chapter 4 in that the crossover operator is not implemented. As discussed in

section 5.4 (Chapter 5), the use of a crossover operator would require repair operators to

remove duplicate tuples and add missing tuples. The operator is therefore not used in order

to avoid the extra processing overhead of the repair operators.

Section 7.2 describes how the initial population is created. Section 7.3 discusses timetable

evaluation with respect to feasibility and quality. Section 7.4 describes the selection

methods that are used while section 7.5 discusses the application of the proposed mutation

operators. Finally, section 7.6 covers the control parameters for the DGA approach in this

study.

7.2 Initial population creation
This section describes how the initial population is created. Section 7.2.1 describes the

direct representation used. Section 7.2.2 discusses the algorithm for creating the initial

population. Section 7.2.3 covers how the requirements of class-teacher meetings are

converted to tuples. Section 7.2.4 describes the sequential construction method as a means

to create individuals of the initial population. This section also outlines the different

heuristics that will be used when selecting which tuple gets priority in terms of allocation.

Finally, section 7.2.5 covers how the initial population is created for Phase 2.

7.2.1 Representation
Each individual in the population is a timetable that is represented using a two-dimensional

matrix. As discussed in section 5.4 (Chapter 5), this was the most commonly used

representation in previous studies. An illustration of this representation is shown in Figure

7.1. The rows of the timetable represent the periods for the week. Each column represents

a class. The intersection (cell) of a row (period) and column (class) stores the remaining

information in the tuple, usually the teacher, venue and subject. This representation

removes the possibility of class clashes while teacher or venue clashes can be easily

calculated by counting the number of duplicates in each of the rows. Other constraint

violations can also be calculated by counting these violations when they occur based on the

day/period.

68

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

1
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

2
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

3
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

4
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

5
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

6
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue

7
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Teacher/

Venue
Figure 7.1: Sample timetable structure

In Figure 7.1, the first column and first row indicating the period and class label respectively

have been included for reference purposes and are not part of the structure. Each cell in

the matrix contains the necessary information related to the lesson i.e. the teacher, venue,

subject and other resources if necessary. The timetabling problem related to Figure 7.1

involves allocating a teacher and a venue to a class for each period.

7.2.2 Initial population creation process
A population of N individuals must be created to form the initial population (N is a control

parameter). Each individual in the initial population is created using a sequential

construction method (SCM) which is described in more detail in section 7.2.4.

7.2.3 Converting the class-teacher lessons list into a list of tuples
Each school specifies a requirements list consisting of all the class-teacher-venue meetings

that must be allocated to the timetable. Table 7.2 shows a sample of the requirements list.

Each of the meetings is then converted into individual tuples (as seen in Table 7.3).

Table 7.2: List of class-teacher lessons

Meeting No Teacher Class Venue Lessons Double?

1 A 10b 12 4 1

2 B 12c 13 3 0

3 C 5d 4 7 0

The three meetings in Table 7.2 are converted into 14 rows of tuples, 4 rows for meeting

number 1, 3 rows for meeting number 2 and 7 rows for meeting number 3. A portion of

these tuples are shown in Table 7.3. As meeting number 1 has a double period

69

specification, only two occurrences (rather than four) of this meeting are reflected in Table

7.3. The “Double/Single” column value for these tuples is set to 1. This indicates that two

double period tuples must be allocated to the timetable.

Table 7.3: Tuple table

Meeting No Teacher Class Venue Double/Single

1 A 10b 12 1

1 A 10b 12 1

2 B 12c 13 0

2 B 12c 13 0

2 B 12c 13 0

3 C 5d 4 0

3 C 5d 4 0

… … … … …

7.2.4 The sequential construction method (SCM)
The algorithm for the sequential construction method to create an individual for the initial

population is shown in Algorithm 7.1 below. This method has not been discussed in

previous studies and it is anticipated that this method would improve the overall fitness of the

initial population and thus improve the possibility of finding feasible timetables. The effect of

the SCM on the performance of the DGA approach will be covered in Chapter 9.

Algorithm 7.1: Sequential Construction Method

For LoopSCM = 1 to X
 While all tuples NOT allocated
 Use heuristic(s) to find tuple to allocate
 Allocate tuple to timetable (avoid violations)
 End While
 Calculate fitness of timetable
End Loop
BESTSCM = Best timetable (lowest violation count) created from LoopSCM
Add timetable BESTSCM to initial population

The sequential construction method creates X timetables (individuals) where X is a control

parameter (SCM size). Each timetable in the SCM is created as follows:

 Sort the list of tuples in order of how difficult the tuple is to schedule. Heuristics have

been successfully used in previous studies to assess difficulty (see section 5.4 in

Chapter 5). The low level heuristics used in this study to assess difficulty are

70

explained in further detail in section 7.2.4.1. Secondary heuristics are used in the

event that two or more tuples have the same difficulty. If secondary heuristics cannot

find a difference in the difficulty between the tuples, then the tuple is randomly

selected.

 Allocate each tuple to a feasible period (if possible) in the timetable. Allocation of

tuples should avoid hard constraint violations if possible. If a feasible period cannot

be found, then allocate the tuple to a randomly chosen period in the timetable. In the

event that the timetabling problem includes soft constraints and there is more than

one feasible period available, then the tuple is allocated to a minimum penalty

timeslot i.e. a period that will result in a minimum soft constraint cost if the tuple is

allocated to it. If several periods are both feasible and result in the minimum soft

constraint cost, then the tuple is randomly allocated to one of these minimum penalty

timeslots. The minimum penalty timeslot was also implemented by many studies in

the literature (see section 5.4 in Chapter 5).

 Once all tuples have been allocated to the timetable, then evaluate the timetable by

counting the number of hard and soft constraint violations.

The timetable with the best fitness (i.e. the lowest number of hard constraint violations) is

added to the initial population. If two or more timetables have an equal best fitness, then the

timetable with the better quality is added to the initial population. The SCM is implemented

whenever an individual needs to be added to the initial population i.e. as many times as the

initial population size.

7.2.4.1 Low-level Construction heuristics

The following sections describe the low-level construction heuristics that will be used to

select tuples to allocate to the timetable. These construction heuristics can be used as

primary or secondary heuristics. A primary heuristic is the first heuristic that is used to

choose between tuples. Secondary heuristics are used as tie breakers.

Random Allocation

When using this heuristic, a tuple is randomly chosen from the list and is allocated to the

timetable. In Table 7.3, any of the tuples could be chosen first. The random heuristic is

applied continuously until all tuples have been placed in the timetable.

Largest degree

This heuristic gives priority to the tuple with the most number of lessons. In Table 7.1 above,

meeting number 3 has the most occurrences (7 lessons). Any one of the seven tuples from

meeting number 3 will then be allocated to a period in the timetable. As a result of the

allocation, the number of lessons left to allocate for meeting number 3 is reduced by one

71

(from 7 to 6). The remaining list of tuples still to be allocated is then resorted and the next

tuple with the most lessons is allocated to the timetable. This continues until all tuples have

been allocated.

Consecutive periods

Priority in terms of allocation is given to the tuples that must be allocated as double periods.

In Table 7.1, meeting number 1 has a double period requirement so tuples corresponding to

this meeting are given priority and two of the four tuples are allocated to the timetable. One

of these tuples is allocated to a period in the timetable and the other is placed in an adjacent

position either above or below the first allocation. If a double period tuple cannot be

accommodated, then it must be split into two single period tuples (if specified as a constraint,

then this will adversely affect the cost of the timetable).

Co-teaching and subclasses

In a co-teaching or subclass heuristic, priority is given to tuples that include multiple classes

that form several subgroups or a single class that is split into two or more groups. These

tuples are added to the timetable first to ensure that all subclass or co-teaching requirements

are met.

Session priority

Tuples containing resources that must be allocated to specific periods of the day are given

priority when being scheduled. This is done to allow these tuples to be allocated to their

required periods before any other tuples (with no session priority) can be placed in those

periods.

Teacher degree

When using this heuristic, priority is given to tuples with teachers that have to teach the most

number of lessons. All tuples related to this teacher then get preference and one of these

tuples is then allocated to the timetable.

Class degree

This is similar to the teacher degree where priority is given to the tuples involving the class

with the most lessons. For example, higher grades that have 45 lessons in the week are

given priority over lower grades that have 33 lessons in a week. Therefore the tuples that

involve the higher grades are allocated first (if given priority), followed by the tuples involving

the lower grades.

Number of available days

The tuples involving the teacher with the least number of days get priority and one of these

tuples is then allocated to the timetable. For example, Teacher A, who is only available for

two days in the week, is given a higher priority than teacher B who is available for five days

72

in a week. Therefore, the tuples involving teacher A are allocated before the tuples involving

teacher B.

Saturation degree

The saturation degree heuristic, used by Carter [CART96] in examination timetabling,

involves calculating the number of feasible periods available for each tuple. A feasible

period is one that does not result in any hard constraint violations upon allocating the tuple to

it. Priority is given to the tuple with the least number of feasible periods available. The

tuples are allocated to periods in the timetable in this order, potentially reducing the number

of violations when the timetable is populated. An example is shown in Table 7.4 (this table is

similar but not related to Table 7.3).

73

Table 7.4: Tuple list with saturation degree

Meeting No Teacher Class Venue Double (1)

/Single (0)

Saturation

Degree

1 A 10b 12 0 30

1 A 10b 12 0 30

1 A 10b 12 0 30

1 A 10b 12 0 30

2 B 12c 13 0 30

2 B 12c 13 0 30

2 B 12c 13 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

3 A 5d 4 0 30

4 D 10b 1 0 30

4 D 10b 1 0 30

4 D 10b 1 0 30

4 D 10b 1 0 30

4 D 10b 1 0 30

4 D 10b 1 0 30

5 C 12c 12 0 30

5 C 12c 12 0 30

5 C 12c 12 0 30

5 C 12c 12 0 30

Initially, all tuples have the same saturation degree (i.e. the number of periods) as the

timetable is empty. The first tuple found is placed in the minimum penalty timeslot in the

timetable as illustrated in Table 7.5 below, and removed from the tuple list.

74

Table 7.5: Timetable with tuple added

 5d … 10b … 12c

1

2

3 A: 12

4

5

6

The saturation degree for each tuple is revised, leaving any tuples involving class 10b or

teacher A or venue 12 with one less available space in the timetable. The revised table with

the new saturation degree values is shown in Table 7.6.

75

Table 7.6: Tuple list with updated saturation degree

Meeting No Teacher Class Venue Double/Single Saturation

Degree

1 A 10b 12 1 29

1 A 10b 12 1 29

1 A 10b 12 1 29

2 B 12c 13 1 30

2 B 12c 13 1 30

2 B 12c 13 1 30

3 A 5d 4 1 29

3 A 5d 4 1 29

3 A 5d 4 1 29

3 A 5d 4 1 29

3 A 5d 4 1 29

3 A 5d 4 1 29

3 A 5d 4 1 29

4 D 10b 1 1 29

4 D 10b 1 1 29

4 D 10b 1 1 29

4 D 10b 1 1 29

4 D 10b 1 1 29

4 D 10b 1 1 29

5 C 12c 12 1 29

5 C 12c 12 1 29

5 C 12c 12 1 29

5 C 12c 12 1 29

Once a tuple has been allocated, the saturation degree is updated. Priority is given to tuples

with the lowest saturation degree. As shown in the example in Table 7.6 above, after

allocation all tuples containing class 10b, teacher A or venue 12 now have 29 available

periods that will not result in hard constraint violations. The tuples containing other teachers

and venues are not affected. During the next iteration of the allocation process, all tuples

with a saturation degree of 29 are given priority and one of these tuples (chosen using

secondary heuristics) will be allocated to the timetable. This process continues until all

tuples have been allocated to the timetable.

76

7.2.5 Initial population creation during Phase 2
Phase 2 focuses on improving the quality of the timetables i.e. reducing the soft constraint

cost. Phase 2 only occurs if at least one feasible timetable is found during Phase 1. The

population size (N) for both phases is the same. Three scenarios are possible with regard to

the initial population of Phase 2:

1. Phase 1 produces more than N feasible timetables (over several generations) before

the last generation is reached - In this case, the initial population for Phase 2

contains the first N feasible timetables (N is the population size used in Phase 1). As

soon as N feasible individuals are added to the initial population of Phase 2, Phase 1

ends. In this event, Phase 1 may not reach the final generation.

2. The number of feasible timetables produced by Phase 1 is less than N - The initial

population for Phase 2 will contain all the feasible timetables found in Phase 1. The

remaining population members are randomly chosen from the feasible timetables in

the last generation of Phase 1.

3. Phase 1 does not produce any feasible timetables - In this case, Phase 2 is not

needed as no feasible timetables are produced and the run will terminate and be

considered unsuccessful in finding a feasible timetable.

7.3 Evaluating a timetable for feasibility and quality
Two separate evaluations are performed to respectively determine the feasibility and quality

of a timetable. In Phase 1, a fitness function is used to evaluate the feasibility of an

individual. In Phase 2, an individual is evaluated based on the soft constraint cost (quality).

The fitness functions described in sections 7.3.1 and 7.3.2 are used to calculate the hard

constraint cost and soft constraint cost respectively.

7.3.1 Evaluating the feasibility of a timetable (Phase 1)
A timetable is evaluated in terms of feasibility by counting the number of hard constraint

violations. A feasible timetable is one with a fitness value of zero, indicating no hard

constraint violations. At least one hard constraint violation results in a timetable not being

feasible. The greater the number of hard constraint violations, the further the timetable is

from being feasible.

7.3.2 Evaluating the quality of a timetable (Phase 2)
The quality of a timetable is determined by counting the number of soft constraint violations.

A lower soft constraint cost indicates that a better quality timetable has been produced. Soft

constraints often conflict with each other and thus it may not be possible to remove all soft

77

constraint violations. The objective, therefore, is to minimize the number of soft constraint

violations.

7.4 Selecting a parent
In Phase 1, individuals are selected as parents based on their hard constraint cost. During

Phase 2, selection of parents is based on an individual’s soft constraint cost. The following

sections describe standard tournament selection and a modified version of it named variant

tournament selection.

7.4.1 Standard tournament selection
Standard tournament selection was covered in section 4.4.4 of Chapter 4. A group of T

individuals (known as a tournament) are randomly chosen from the population. The fittest of

the T individuals is selected as a parent.

7.4.2 Variant tournament selection (VTS)
Variant tournament selection (VTS) is a less elitist variation of standard tournament

selection. VTS differs from standard tournament selection in that the selected parent is not

always the best individual but weaker individuals in the tournament also have a chance to be

selected as parents. The first individual included in the tournament is given the status of

champion. The current champion is then placed in a match against other individuals

(contenders) in the tournament. The winner is either the fitter individual or is randomly

chosen from the two individuals regardless of fitness. Algorithm 7.2 outlines variant

tournament selection.

Algorithm 7.2: Variant tournament selection

Current Champion = Randomly selected individual from population
For Loop = 2 to Tournament Size
{
 Contender = Randomly selected individual from population
 Choose a random number from 1 to 3
 If Random number is 1
 Current Champion remains the same
 Else If Random number is 2
 Current Champion = Contender
 Else If Random number is 3
 If Fitness(Contender) is better than Fitness(Champion)
 Current Champion = Contender
}
Parent = Current Champion

78

7.5 Genetic operators for Phase 1
The only genetic operator used is mutation (reasons for not implementing the crossover

operator has been discussed in section 5.4.5 in Chapter 5). This study will follow a similar

approach to that of studies in the literature (see section 5.4.5 in Chapter 5) where the

mutation operators involved swapping teachers (or venues) between positions in the

timetable. In the literature, some studies (such as [ABRA91a] and [DIST01]) incorporated

hill climbing with their mutation operators. This study will test the mutation operators with

(lines 2 to 20 of Algorithm 7.3) and without (lines 21 to 28 of Algorithm 7.3) hill climbing. In

hill climbing, an offspring is rejected if its fitness is worse than the fitness of the parent. If the

constraint cost is reduced or remains the same, then the swap is deemed successful. Lines

12 to 15 for Algorithm 7.3 reflect this evaluation.

Algorithm 7.3: Mutation operator

1. Obtain parent using selection method
2. If Hill climbing is used
3. {
4. HillClimbingSteps = 0
5. Do
6. {
7. Offspring = Copy Parent
8. For MutLoop = 1 to Swaps
9. {
10. Mutate Offspring
11. Evaluate Fitness of Offspring
12. If (OffspringFitness < PreviousOffspringFitness)
13. Accept swap
14. Else
15. Reject Swap
16. }
17. HillClimbingSteps++
18. }
19. While (ParentFitness < OffspringFitness) AND (HillClimbingSteps < 500)
20. }
21. Else If Hill Climbing is not used
22. {
23. For MutLoop = 1 to Swaps
24. {
25. Mutate Offspring
26. Evaluate Fitness of Offspring
27. }
28. }
29. Add Offspring to new generation

Mutation of the offspring is performed in lines 10 and 25. Sections 7.5.1 to 7.5.3 describe

the Phase 1 mutation operators implemented by the genetic algorithm. Section 7.5.4

describes the concept of hill climbing.

79

7.5.1 Two violation mutation (2V)
This mutation operator searches for two cells that contain hard constraint violations. The

two teachers (or venues) are then swapped within the timetable possibly resulting in the

removal of hard constraint violations. This implementation was based on the mutation

operators used by Di Stefano et al. [DIST01] and Filho et al. [FILH01].

An example of an application of this mutation operator is illustrated in Figure 7.2 and

explained below. T1 represents teacher 1 being allocated to class 1 during period 1. While

a venue could be involved, it is not represented as it is not part of the example below.

 Class
 Period 1 2 3 4
 1 T1 T2 T3 T4

2 T1 T1 T2 T4
Clash here as T1 allocated to 2

classes

3 T4 T3 T2 T1
 4 T3 T4 T1 T2

5 T3 T3 T2 T4
Clash here as T3 allocated to 2

classes

6 T2 T4 T4 T3
Clash here as T4 allocated to 2

classes

Figure 7.2: Finding 2 violations

The timetable segment in Figure 7.2 shows three clashes. In period 2, T1 has been

allocated to both classes 1 and 2. In period 5, T3 has been allocated to two classes and in

period 6, T4 has been allocated to 2 classes. The mutation operator firstly locates a clash,

so it finds any one of the three teacher clashes. In this example, the clash found is in period

2, class 2. The two remaining possible clashes are during periods 5 and 6 where T3 and T4

clash respectively. Any one of the two clashes can be chosen. If T4 in period 6 is chosen

as the second clashing tuple, then the contents of this cell and the contents of the first cell

with a clash are swapped. This resultant mutation means that T4 moves to period 2 and T1

moves to period 6 (for class 2). This change is shown in Figure 7.3. The above example

only reflects clashes but this mutation operator applies to any hard constraint violation. For

example, if the availability constraints specify that T2 is not available to teach during period

6, then this is regarded as an availability violation. The constraint violation, once identified,

is then swapped with another cell with a hard constraint violation.

80

 Class
 Period 1 2 3 4
 1 T1 T2 T3 T4

2 T1 T4 T2 T4
Clash here as T4 allocated to 2

classes

3 T4 T3 T2 T1
 4 T3 T4 T1 T2

5 T3 T3 T2 T4
Clash here as T3 allocated to 2

classes

6 T2 T1 T4 T3
 Figure 7.3: Resultant timetable after 2 violation swap – Example 1

The swap shown in Figure 7.3 will fix the clashing situation in row 6, but the swap will result

in a new clash occurring in period 2 where T4 is being allocated to two classes. If T3 in

period 5 were to be swapped instead of T4, then the following (Figure 7.4) occurs:

 Class
 Period 1 2 3 4
 1 T1 T2 T3 T4
 2 T1 T3 T2 T4

3 T4 T3 T2 T1
 4 T3 T4 T1 T2
 5 T3 T1 T2 T4

6 T2 T4 T4 T3
Clash here as T4 allocated to 2

classes

Figure 7.4: Resultant timetable after 2 violation swap – Example 2

This is the ideal scenario as the swap has fixed two clashes. The worst case scenario will

be for a swap to result in another clash. Note that the swaps only occur within a selected

column (class) in order to avoid the movement of teachers to classes that they are not

required to teach.

7.5.2 One violation mutation (1V)
This mutation operator, also based on the operators used by [DIST01] and [FILH01], follows

the same procedure as 2V mutation with the difference being that only one constraint

violation is located rather than two. Once a constraint violation is found, a second timeslot is

then randomly chosen. The contents in the second timeslot may or may not result in a hard

constraint violation but must be randomly chosen from the same class (column) as the first

teacher in order to avoid the allocation of teachers to classes that they are not required to

teach. Once chosen, the contents of the two cells are swapped. This results in three

possible scenarios:

81

 Worst Case: A swap results in two constraint violations.

 Middle Case: A constraint violation is removed but causes a new constraint violation

in another location.

 Best Case: The second cell chosen has a constraint violation and both violations are

removed.

7.5.3 Hill climbing versus non-hill climbing operators
Genetic operators are potentially destructive in that they could continuously result in

offspring that are worse than the parents [BANZ98]. Hill climbing will prevent this by only

accepting swaps that improve the fitness of the individual. The disadvantage of hill climbing

is that it is susceptible to local minima i.e. the algorithm will reach an area of the search

space that appears to be promising (heading towards convergence) by ensuring that

offspring always improve but instead the algorithm convergences prematurely [BEAS93]. As

mentioned in section 5.4, this study will evaluate the use of mutation operators with and

without hill climbing.

Similar to the studies by [CERD08] and [RAHO06], when hill climbing is used, it is

implemented within the mutation process. While the timetable is being mutated, the

currently mutated version is compared to either the parent or the timetable from the previous

swap (if this swap has improved fitness). If the fitness of the new version is better than the

current version, then the swap is accepted. If the older version has a better fitness then the

swap is rejected. A limit is used to prevent the problem of premature convergence (to a local

minimum) and to prevent long runtimes when the offspring cannot be further improved (lines

4, 17 and 19 in Algorithm 7.3). The mutation operators with hill climbing are referred to as

two violation hill climbing (2VH) and one violation hill climbing (1VH) while the non-hill

climbing operators are referred to as two violation non-hill climbing (2VNH) and one violation

non-hill climbing (1VNH).

7.6 Genetic operators for Phase 2
The main objective of Phase 2 is to improve the quality of feasible timetables that have been

produced during Phase 1. This section describes the mutation operators that are aimed at

reducing the soft constraints cost of the individual. Three of the four operators discussed in

this section are based on the mutation operators used in the literature. Hill climbing is used

for all the operators in this phase to ensure that timetable feasibility is maintained and that

timetable quality improves. Trial runs listed below (Table 7.7) also found that operators used

82

with hill climbing produce better timetables than operators without hill climbing. Sections

7.6.1 to 7.6.4 describe the mutation operators used for Phase 2 of the DGA approach.

Table 7.7: Trial runs for non-hill climbing mutation operators (Phase 2)

 Beligiannis

(HS7)

Beligiannis

(HS4)

Valouxis Lewitt

Average HC Cost 0 0 0 0.67

Best HC Cost 0 0 0 0

Average SC Cost 186.55 94 74.22 26

Best SC Cost 174 88 68 22

7.6.1 Random Swap
The random swap was used in most studies in the literature to address both hard and soft

constraint violations ([BELI08], [WILK02], and [TONG99]). This mutation operator randomly

selects two cells from the same class and swaps the contents of these cells. Two randomly

selected cells are shown in Figure 7.5. The chosen cells must be in the same class in order

to prevent the movement of teachers to classes that they are not required to teach.

 Class

 Period 1 2 3 4

 1 T1 T2 T3 T4

 2 T3 T1 T2 T7 1st Randomly selected cell

3 T4 T3 T2 T1

 4 T3 T4 T5 T2

 5 T3 T6 T2 T4 2nd Randomly selected cell

6 T2 T4 T8 T3

 Figure 7.5: Selecting cells in a random swap

The contents allocated to the two randomly chosen cells are then swapped. In Figure 7.5, if

the randomly selected cells contain T1 (class 2, period 2) and T6 (class 2, period 5), then

these two teachers are swapped where T6 moves to period 2 and T1 moves to period 5 as is

shown below (Figure 7.6).

83

 Class

 Period 1 2 3 4

 1 T1 T2 T3 T4

 2 T3 T6 T2 T7 T6 now in this position

3 T4 T3 T2 T1

 4 T3 T4 T5 T2

 5 T3 T1 T2 T4 T1 now in this position

6 T2 T4 T8 T3

 Figure 7.6: Resultant random swap

7.6.2 Row swap
The row swap begins by randomly selecting two different rows (which represent periods).

The tuples in these rows are then swapped between the periods. The reason for using this

mutation operator is that since all resources in the row are being swapped with resources in

another row, new clashes cannot occur due to the resultant swap. However, this mutation

can adversely affect the cost of other constraints such as the teacher availability constraint

(a row swap may result in a teacher being moved to a day or period when they are

unavailable to teach) and double period constraints (a double period is split due to a row

swap). An example of a row swap resulting in a double period constraint violation is shown

below:

 Row swap conflicting with hard constraint violation

Period 1A 1B 1C 4A 4B 5C

1 Found Found Found Eng Afk Math

2 Found Found Found Eng NSc Math

SWAP ROW 2 with

ROW 3

3 Found Found Afk Acc PE Afk

Period 1A 1B 1C 4A 4B 5C

1 Found Found Found Eng Afk Math

2 Found Found Afk Acc PE Afk

2 doubles are split

3 Found Found Found Eng NSc Math HC violation occurs

84

Figure 7.7: Consequence of a row swap results in double period split violation

As can be seen in Figure 7.7, a row swap may not cause any clashes, but the two double

periods involving English and Mathematics have been separated resulting in two double

period constraint violations.

7.6.3 One violation mutation (1V)
This operator is similar to the one described in section 7.5.2, however, this operator

searches for soft constraint violations. The procedure begins by firstly locating a cell where

a soft constraint violation occurs. Another cell is randomly chosen and the contents of the

two cells are swapped resulting in the possibility that the soft constraint violation would be

removed.

7.6.4 Two violation mutation (2V)
This operator, similar to the hard constraint version described in section 7.5.1, searches for

two cells with soft constraint violations. Once found, the contents within the two cells are

swapped. This could result in at least two soft constraint violations being removed.

7.7 Control parameters
The different control parameters used for the algorithm are outlined below and will affect the

performance of the algorithm.

 SCM size – This parameter value indicates the number of timetables to create, of

which the best timetable is added to the initial population. For example, an SCM size

of one indicates that the first timetable created is added to the initial population. An

SCM size of 20 indicates that 20 timetables will be created with the best timetable

being added to the initial population. A larger SCM value will result in a fitter initial

population but an increase in runtime.

 Population size – This was defined previously in section 4.3.5 (Chapter 4).

 Tournament size – This was defined previously in section 4.4.4 (Chapter 4).

 Number of swaps – This parameter value indicates the number of swaps that are

performed when applying the mutation operator. It is anticipated that a low number

of swaps will improve the individual but not at a sufficient rate. By increasing the

number of swaps, the individual is improved at a faster rate. If this parameter value

is set too high, then improvements are made until a point where the remaining swaps

do not affect the cost of the individual. The effect of using different swap parameter

values is discussed in greater detail in Chapter 9.

85

 Number of generations – This parameter value specifies the maximum number of

generations for both phases. If the maximum number of generations is too low, the

genetic algorithm may not be given enough generations to converge. If the

generation limit is too high, then the algorithm will converge before the generation

limit is reached and the extra generations will unnecessarily increase the runtime of

the program.

7.8 Chapter Summary
This chapter presents a genetic algorithm approach that uses a direct representation. The

chapter discusses the representation, initial population generation and the evaluation of

each timetable in terms of feasibility and quality. The chapter then goes on to describe the

selection methods and the mutation operators that will be available for use. Each of the

heuristics used to create the initial population, the selection methods and the genetic

operators listed will be compared in order to determine an ideal combination that will solve

the five school timetabling problems listed in Chapter 6.

86

Chapter 8: A Genetic Algorithm
Approach using an Indirect
Representation

Chapter 7 discussed a genetic algorithm that uses a direct representation where each

individual was a timetable. This chapter describes a genetic algorithm that uses an indirect

representation (referred to as IGA) where each individual is a string of instructions that are

implemented to build a timetable. Section 8.1 describes the overall algorithm for the IGA.

Section 8.2 covers the initial population generation. Section 8.3 describes how each

individual is evaluated. Section 8.4 and section 8.5 respectively cover the selection method

and genetic operators used. Section 8.6 lists the control parameters used for the IGA.

8.1 Overall Algorithm
Similar to the DGA described in Chapter 7, the IGA approach also uses two phases. Phase

1 implements a genetic algorithm that evolves a population of strings where each string

contains instructions that are used to build a timetable. The first phase of the IGA ends

when a feasible timetable is built using the instructions of an individual string. Phase 2 then

implements a genetic algorithm that evolves a population of strings containing instructions

that improve the quality of the timetable found in Phase 1. The genetic algorithms in both

phases use standard tournament selection and the genetic operators used are mutation and

crossover. The algorithms for Phase 1 and Phase 2 differ in terms of the fitness function

and the set of instructions used. The aim of Phase 1 is to produce a string that builds a

feasible timetable while the aim of Phase 2 is to produce a string that best improves the

quality of the feasible timetable found in Phase 1.

8.2 Initial Population Creation
This section describes the creation of the initial population. The representation used for the

IGA is described in section 8.2.1. Section 8.2.2 outlines the algorithm for creating the initial

population. Section 8.2.3 describes the sequential construction method (SCM) which is

used to create an individual in the initial population. Finally, section 8.2.4 covers the creation

of the initial population during Phase 2.

8.2.1 Instruction String Representation
Each individual in the population is a string consisting of a specified set of characters, each

representing an instruction used to build or change a timetable. These characters are

87

randomly chosen and allocated to the string. The set of characters and its associated

instruction are listed in the table below:

Table 8.1: Instructions used to build a timetable

Character Instruction

A Allocation – Add an unallocated tuple to the
timetable.

D De-allocation – Remove an allocated tuple
from the timetable.

1 Mutation operator 1 (1VNH described in
chapter 7).

2 Mutation operator 2 (2VNH described in
chapter 7).

3 Mutation operator 3 (1VH described in
chapter 7).

4 Mutation operator 4 (2VH described in
chapter 7).

5 Phase 2 Mutation operator 1 – Random
swap with hill climbing (Described in chapter
7).

6 Phase 2 Mutation operator 2 – Random row
swap with hill climbing (described in chapter
7).

7 Phase 2 Mutation operator 3 – 1VH that
searches for soft constraint violations.

8 Phase 2 Mutation operator 4 – Varies
depending on problem. Discussed in results
chapter.

In Table 8.1 above, the instructions labelled “1” to “8” are the mutation operators used by the

DGA. In addition, the instruction labelled “A” is used to allocate a tuple to the timetable and

the instruction labelled “D” is used to remove (de-allocate) a tuple from the timetable. The

“A” and “D” instructions are based on the timetable builders used by Bufe et al. [BUFE01].

These timetable builders randomly selected tuples and allocated them to the timetable such

that the hard constraint cost was minimized.

The length of the initial string is equal to the number of tuples that need to be allocated.

Additionally, some characters have a better probability of being chosen than others. For

example, it was found through observation that the allocation instruction (A) must have a

greater probability of being selected than the de-allocation instruction (D) in order to produce

a greater number of complete timetables.

An example of an instruction string is ADA3DA4AA34DDDA. In this string, the first

instruction, the allocation instruction, allocates a tuple to a period in the timetable.

88

Thereafter, the de-allocation instruction will remove the tuple from the timetable (resulting in

an empty timetable). The allocation instruction is then applied and an unallocated tuple is

placed in the timetable. The next instruction to be called is mutation operator 3. This

indicates the application of the 1VH operator described earlier in Chapter 7. The de-

allocation instruction is then applied. The allocation instruction then allocates another tuple

to the timetable. This is followed by the application of mutation operator 4 (2VH), the

allocation of two more tuples (AA), the application of two more mutation operators (34), three

de-allocation instructions (DDD) and finally, the placement of an unallocated tuple (A).

8.2.2 Algorithm for Initial Population Creation
Algorithm 8.1 lists the steps that are involved when creating the initial population for Phase

1. The variable N represents the population size and is a control parameter. The variable M

indicates the SCM size and is also a control parameter. As can be seen in the algorithm

below, Phase 1 ends if an instruction string is able to produce a feasible timetable in the

initial population.

Algorithm 8.1: Initial Population Creation

Begin
 For LoopIP = 1 to N
 For LoopSCM = 1 to M
 Create HeuristicString
 Create timetable using HeuristicString
 Evaluate HeuristicString by evaluating timetable
 BestHeuristicString = HeuristicString that induces most fit timetable
 If Feasible Timetable Found
 {
 End Phase 1
 Feasible Timetable carried over to Phase 2
 }
 End Loop
 Add BestHeuristicString to initial population
 End Loop
End

8.2.3 The Sequential Construction Method (SCM)
The SCM is similar to the SCM incorporated by the DGA in Chapter 7. This method creates

M instruction strings (M is a control parameter) and the string that produces the best

timetable (evaluation discussed in section 8.3) is added to the population.

8.2.4 Phase 2 Initial Population Creation
The first feasible solution found is carried over to Phase 2. A population of strings are

created with each string containing a combination of instructions that will be used to improve

the quality of the timetable found in Phase 1. Similar to the initial population of Phase 2 in

the DGA, the SCM was not implemented.

89

8.3 Evaluating an individual in the population
Each instruction string is evaluated by building a timetable. The fitness value of the

individual is calculated by counting the number of hard constraint violations (Phase 1) and

soft constraints violations (Phase 2) of the timetable produced.

The process of creating a timetable using the instruction string is shown in Algorithm 8.2. If

an allocation instruction (“A”) is executed, then the tuple with the lowest saturation degree

(i.e. the tuple with the fewest number of violation free periods) is allocated to a period that

does not violate any hard constraints (if possible). The saturation degree heuristic

(described in Chapter 7) was chosen as it was found to be the best performing heuristic from

the three that were tested using the DGA (see Chapter 9). If a de-allocation (“D”) instruction

is executed, then a randomly chosen tuple is removed from the timetable. If a mutation

instruction is executed, then that specific mutation operator is executed on the timetable (see

Table 8.1). If there are no hard constraint violations, then these instructions are not applied.

Algorithm 8.2: Creating a timetable

Begin
 For each character in heuristic string
 {
 If character = “A”
 If all tuples are allocated
 Do nothing
 Else
 Find tuple that is most difficult to allocate (Saturation degree)
 Allocate tuple to timetable
 Resort unallocated tuple list in order of difficulty
 Else If character = “D”
 If timetable is empty
 Do nothing
 Else
 Randomly select tuple from timetable
 Remove tuple and return to unallocated tuple list
 Else If character = “1” or “2” or “3” or “4” (or “5” or “6” or “7” or “8”)
 If the hard (or soft) constraint cost = 0
 Do nothing
 Else
 Apply associated mutation operator
 }
End

8.4 Selecting a parent
Parents are selected using standard tournament selection. This selection method was

described in Chapter 4 (section 4.4.4).

90

8.5 Genetic Operators
This section describes the crossover and mutation genetic operators used in both phases of

the IGA.

8.5.1 Mutation
Mutation is applied by randomly choosing a character from the string and replacing it with

another randomly selected character from the instruction set. An example of the application

of the mutation operator is shown below (Figure 8.1):

Parent (randomly selected character underlined):
ADADAAA341212AD1A34AAAD

Randomly chosen character = “A”

Resultant offspring (Single character replaced)
ADADAAA341A12AD1A34AAAD

Figure 8.1: Mutation of heuristics string

In the example above, the 11th character of the string (2) has been randomly chosen. This

character is replaced by another randomly selected character in the instruction set, in this

case the “A” character which represents an allocation operator.

8.5.2 Crossover
The “Cut and Splice” crossover operator [GOLE89] is used and creates offspring with

different string lengths. The use of variable string lengths increases the probability that the

individual will have all the information necessary to produce an optimal solution ([MICH98]).

For this operator, a randomly chosen crossover point is selected for each of the two

individuals. The points may differ between the selected individuals. Figure 8.2 below shows

an example of two strings. The crossover points and affected characters (instructions) are

shown in bold and are underlined.

Parent 1 (randomly selected character sets underlined)
ADADAAA341212AD1A34A
Parent 2 (randomly selected character sets underlined)
DA31AAA4321444ADADAD

Figure 8.2: Selection of crossover points

Offspring 1 is produced by taking the fragment before the crossover point of Parent 1 and

exchanging it with the fragment before the crossover point of Parent 2. The second offspring

is formed using the remaining instructions. The resultant crossover is shown below (Figure

8.3).

91

Resultant Individual 1 after crossover
ADADAAA341212AD21444ADADAD
Resultant Individual 2 after crossover
DA31AAA431A34A

Figure 8.3: Resultant offspring after crossover

The two offspring form part of a new generation of individuals. As can be seen in Figure 8.3,

the crossover operator has also resulted in the length of the strings being changed.

8.6 Control Parameters
The parameters used for the IGA are the following:

 SCM Size.

 Population Size.

 Tournament Size.

 Number of swaps.

 Mutation Application Rate – Defined in Chapter 4 (section 4.4.5.4).

 Crossover Application Rate – Defined in Chapter 4 (section 4.4.5.4).

 Maximum number of generations.

8.7 Summary
This chapter describes a genetic algorithm that uses an indirect representation. The chapter

begins by describing the overall IGA. This is followed by the description of how an individual

is represented, how the initial population is generated for both phases of the IGA and how

each individual is evaluated. The chapter then goes on to describe how selection occurs

and the genetic operators used to create offspring. Finally the chapter covers the control

parameters of the IGA.

92

Chapter 9 – Results and discussion

9.1 Introduction
This chapter discusses the results obtained when applying both the DGA and IGA

approaches to the five school timetabling problems. Both approaches were able to induce

feasible timetables and the quality of the timetables were competitive if not better than

timetables produced using other methods. For the DGA, it was found that different methods

of initial population generation, selection methods and mutation operators were needed in

order to solve each school timetabling problem. When comparing the two approaches, the

IGA performed better than the DGA.

Section 9.2 provides an analysis of the performance of the DGA when modifying the

processes of the algorithm. The processes that will be changed include the method for initial

population creation, the selection methods and the mutation operators used. Section 9.3

reports on the fine-tuning of the DGA parameters. Section 9.4 and section 9.5 covers the

performance of the IGA when solving the five school timetabling problems. In section 9.6,

timetables induced by the DGA and IGA are compared against timetables produced using

other methods.

9.2 DGA process evaluation
This section reports on the effects of different processes used with the DGA when applied to

each problem. The DGA is run using sets of different genetic algorithm processes, each of

which have already been discussed in Chapter 7. Based on the performance of the DGA, a

decision is taken as to which process to use.

9.2.1 The Abramson benchmark school timetabling problem (HDTT)
This section describes the performance of the DGA approach when applied to the HDTT

school timetabling problem. Section 9.2.1.1 describes the performance of the DGA with

different low-level construction heuristics for each data set. Section 9.2.1.2 discusses the

best selection method for the different data sets and section 9.2.1.3 discusses the best

mutation operator to use for each of the data sets. As this problem does not consider any

soft constraints, Phase 2 is not implemented.

9.2.1.1 Comparison of low-level construction heuristics

One of three primary construction heuristics is used to construct the initial population. These

heuristics are random allocation, largest degree heuristic and the saturation degree. If two

93

or more tuples have the same largest degree or saturation degree, then the random

allocation heuristic is used as a tie breaker. Table 9.1 lists the other processes and

parameter values that were used when testing the three primary construction heuristics.

Table 9.1: Processes and parameter values to test best low-level construction
heuristic (HDTT problem)

Constant Methods and Operators

Selection VTS

Mutation 2 Violation Non Hill Climbing (2VNH)

Constant Parameter Values

SCM 100

Population Size 1000

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates and average number of generations taken to find a solution are shown in

Table 9.2 below. The average number of constraint violations and standard deviations are

listed in Table 9.3. Based on the tables below, the DGA performed best when using the

saturation degree heuristic.

Table 9.2: Performance comparison with different construction heuristics

 Success Rates
Average number of generations

taken to find solution

 Random
Largest
degree

Saturation
degree

 Random
Largest
degree

Saturation
Degree

HDTT4 100.00% 100.00% 100.00% HDTT4 3 2 1

HDTT5 100.00% 96.67% 100.00% HDTT5 9 7 2

HDTT6 43.33% 53.33% 56.67% HDTT6 21 18 7

HDTT7 20.00% 20.00% 20.00% HDTT7 39 30 15

HDTT8 0.00% 3.33% 6.67% HDTT8 50 47 20

In Table 9.2, the success rates for data sets HDTT4 and HDTT5 are very high with feasible

timetables being found for almost every run. In addition, the feasible timetables are found

within ten generations. The DGA using the saturation degree finds feasible timetables in at

most two generations for data sets HDTT4 and HDTT5. These data sets have a relatively

small number of resources and are not as constrained as the HDTT6, HDTT7 and HDTT8

data sets. Results using other methods (described in section 9.6.1) also show that feasible

timetables were easily induced for these two data sets.

94

The success rate for the DGA drops as the number of resources increases for the problem

(HDTT6, HDTT7 and HDTT8). The averages in Table 9.3 indicate that the DGA using the

saturation degree produces timetables with very few constraint violations when compared to

the DGA using the other construction heuristics. The saturation degree heuristic contributes

to the low averages by producing a fitter initial population than when using the other two

construction heuristics. The results listed below are similar to that of other methods used in

the literature, thus indicating the difficulty of these data sets.

Table 9.3: Average constraint violations (and standard deviations) found for different
construction heuristics

 Random Largest Degree Saturation Degree

HDTT4 0 (0) 0 (0) 0 (0)

HDTT5 0 (0) 0.07 (0.37) 0 (0)

HDTT6 1.13 (1.01) 0.93 (1.01) 0.87 (1.01)

HDTT7 1.60 (0.81) 1.60 (0.81) 1.63 (0.85)

HDTT8 15.07 (7.44) 4.07 (3.26) 2.00 (0.64)

A bar chart showing a comparison of the three heuristics is given in Figure 9.1 below. The x-

axis represents the data sets that were used and the y-axis represents the success rates.

The success rate is the percentage of runs that have produced feasible timetables. For

example in data set HDTT5, the GA approach using the largest degree heuristic produces

feasible timetables for 29 of the thirty runs performed. This results in a 96.67% success

rate.

95

Figure 9.1: Comparison of success rates for each heuristic

Each heuristic, when used with the DGA, creates at least one clash free timetable for the

data sets HDTT4, HDTT5, HDTT6 and HDTT7. The DGA using the random allocation

heuristic does not produce any feasible solutions for the HDTT8 data set. The bar chart

illustrates an inverse relationship between the success rate and the number of resources

available for each data set. As the number of teachers, classes and venues increase, the

data sets become more constrained. Thus, the difficulty in obtaining a solution increases.

Two hypotheses are tested to determine whether the saturation degree is statistically better

than the random allocation and largest degree heuristics. The first hypothesis is that the

saturation degree heuristic performs better than the random allocation heuristic and the

second hypothesis is that the saturation degree performs better than the largest degree

heuristic. The hypotheses and the corresponding Z-values are shown in Table 9.4.

Table 9.4: Hypotheses and Z-values for feasibility

Hypothesis
Z Values

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

H0: µRA = µSD; HA: µRD >

µSD

0.00 5.48 1.02 0.16 9.58

H0: µLD = µSD; HA: µLD >

µSD

0.00 0.00 0.26 0.16 3.40

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

P
e

rc
e

n
ta

ge
s

Data sets

Success rates for each construction
heuristic

Random

Largest

Saturation

96

The table shows that the saturation degree heuristic is significantly better than the random

allocation heuristic for data sets HDTT5 and HDTT8. This is significant at all levels (see

Table 6.3 in Chapter 6). A Z-value of 3.4 indicates that the saturation degree performs

significantly better than the largest degree heuristic for data set HDTT8.

Figure 9.2 shows the average number of generations that the DGA takes to find a solution

when applying each of the three heuristics. The x-axis lists the data sets for the problem

and the y-axis is the number of generations taken to find a feasible solution.

Figure 9.2: Average number of generations taken per data set

The DGA approach using the saturation degree produces solutions in the fewest number of

generations. As was stated earlier, this is due to the ability of the saturation degree to

produce an initial population of individuals with good fitness values. The disadvantage of the

saturation degree is that the runtime taken to produce the initial population may be slower

than the random and largest degree heuristics due to the processing overhead of the

saturation degree when recalculating the number of violation free periods for each

unallocated tuple. The column chart shows a trend that the GA approach will take more

generations to produce feasible timetables if the resources of the problem increase.

The saturation degree heuristic is chosen as the best heuristic for this problem due to its

higher success rate and its ability to produce solutions in fewer generations. The low

averages and standard deviations listed in Table 9.3 also indicated that this heuristic was the

most consistent in terms of producing the least number of constraint violations over the thirty

runs conducted.

0

10

20

30

40

50

60

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

N
o

 o
f

ge
n

e
ra

ti
o

n
s

Data sets

Average Generations

Random

Largest

Saturation

97

9.2.1.2 Comparison of selection methods

The two selection methods tested with the DGA are standard tournament selection and

variant tournament selection. The other processes and parameter values used to test the

selection methods are listed below in Table 9.5.

Table 9.5: Processes and parameter values to test best selection method (HDTT
problem)

Constant Heuristics and Operators

Creation Saturation Degree

Mutation 2VNH

Constant Parameter Values

SCM 100

Population Size 1000

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates and average number of generations taken to find solutions for each data

set are listed in Table 9.6. The averages and standard deviations are listed in Table 9.7.

Table 9.6: Results comparison for selection methods used

 Success Rate Average number of generations

 Standard Variant Standard Variant

HDTT4 100.00% 100.00% HDTT4 1 1

HDTT5 93.33% 100.00% HDTT5 1 2

HDTT6 33.33% 56.67% HDTT6 3 7

HDTT7 10.00% 20.00% HDTT7 8 15

HDTT8 6.67% 6.67% HDTT8 12 20

Table 9.7: Average constraint violations and standard deviations for different
selection methods

 Standard Variant

HDTT4 0 (0) 0 (0)

HDTT5 0.13 (0.51) 0 (0)

HDTT6 1.33 (0.96) 0.87 (1.01)

HDTT7 1.93 (0.74) 1.63 (0.85)

HDTT8 2.23 (0.82) 2 (0.64)

98

Figure 9.3 and Figure 9.4 are bar chart illustrations of the results in Table 9.6. Figure 9.3

depicts the success rates found for each data set when using the two selection methods.

The success rates are determined by dividing the total number of feasible timetables found

with the total number of runs conducted per method. The DGA approach with either

selection method produces a 100% success rate for the data set HDTT4.

Figure 9.3: Comparison of success rates for various selection methods

Figure 9.3 illustrates that at least one clash free timetable is found for all data sets when

using the DGA approach with either of the selection methods. The DGA using variant

tournament selection performs better than standard tournament selection when applied to

data sets HDTT5, HDTT6 and HDTT7. No difference is found between selection methods

for data sets HDTT4 and HDTT8.

Figure 9.4 is a column chart showing the average number of generations required to find a

solution. The x-axis represents the data sets and the y-axis lists the average number of

generations between 0 and 25.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Su
cc

e
ss

 r
at

e
s

Data sets

Standard

Variant

99

Figure 9.4: Column chart showing average generations for each selection method

The column chart shows that the DGA using standard tournament selection requires fewer

generations to produce a clash free timetable than the DGA using variant tournament

selection. Standard tournament selection is designed to always choose the best individual

from the tournament while variant tournament selection is designed to provide an opportunity

for weaker tournament participants to become parents as well. The disadvantage of

standard tournament selection is that the elitist nature of the method results in the algorithm

converging too quickly (to a local optimum) when the DGA is applied to data sets HDTT6,

HDTT7 and HDTT8. The less elitist variant tournament selection allowed for a better

exploration of the search space and thus better results are found.

A single hypothesis is used to test whether the DGA using variant tournament selection

produces fewer violations than the DGA using standard tournament selection. Table 9.8

shows the hypothesis and the Z-values for each data set.

Table 9.8: Hypotheses and Z-values for timetable feasibility

Hypothesis
Z-Values

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

H0: µstd = µvar;
HA: µstd > µvar

0.00 1.44 1.84 1.46 1.23

Significant results are found for HDTT5, HDTT6 and HDTT7 at the 10% level while there is

no statistically significant difference between using the standard or variant selection methods

when applying the DGA to data sets HDTT4 and HDTT8.

0

5

10

15

20

25

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

A
ve

ra
ge

 n
yu

m
b

e
r

o
f

ge
n

e
ra

ti
o

n
s

Data sets

Standard

Variant

100

The number of generations used varies between the data sets. The DGA approach using

standard tournament selection has a lower success rate than the DGA approach using

variant tournament selection but does manage to produce results within a fewer number of

generations. However, due to a higher success rate for three out of the five data sets, the

variant tournament selection method is chosen.

9.2.1.3 Comparison of mutation operators

In this study, the DGA is tested using one of four mutation operators described in Chapter 7.

The first two mutation operators involve hill climbing along with either the one violation

mutation operator (1VH) or the two violation mutation operator (2VH). The remaining two

operators involve using either the one violation mutation operator (1VNH) or the two violation

mutation operator (2VNH) without hill climbing. The processes and parameter values that

were kept constant are listed in Table 9.9.

Table 9.9: Processes and parameter values to test best mutation operator
(HDTT problem)

Constant Heuristics and Operators

Creation Saturation Degree

Selection Variant

Constant Parameter Values

SCM 100

Population Size 1000

Tournament Size 10

Swaps per mutation 20

Generations 50

A comparison of the performance of each of the operators (in terms of success rate) is

shown in Table 9.10.

Table 9.10: Comparison of success rates for mutation operators

 SUCCESS RATE Average number of generations

 2VH 1VH 2VNH 1VNH 2VH 1VH 2VNH 1VNH

HDTT4 93.33% 76.67% 100.00% 0.00% 1 4 1 NA

HDTT5 16.67% 16.67% 100.00% 0.00% 3 8 2 NA

HDTT6 0.00% 0.00% 56.67% 0.00% NA NA 7 NA

HDTT7 0.00% 0.00% 20.00% 0.00% NA NA 16 NA

HDTT8 0.00% 0.00% 6.67% 0.00% NA NA 20 NA

101

Table 9.10 shows that the DGA using the 2VNH operator performs better than the DGA

using any of the other mutation operators. The use of the DGA with the 2VNH operator

results in at least one feasible timetable being produced when applied to any of the data

sets. The DGA with the hill climbing mutation operators find feasible timetables for the

smaller data sets HDTT4 and HDTT5 but not for the larger and more constrained data sets

(HDTT6, HDTT7 and HDTT8).

The averages and standard deviations listed in Table 9.11 also indicate that the 2VNH

mutation operator performs best. The DGA using the 1VNH operator performed worst and

was not able to induce feasible timetables for even the smallest data set (HDTT4). The

performance of the DGA using the 2VH and 1VH were similar and feasible timetables were

found for the HDTT4 and HDTT5 data sets only.

Table 9.11: Average constraint violations (and standard deviations) for each mutation
operator

 2VH 1VH 2VNH 1VNH

HDTT4 0.13 (0.51) 0.47 (0.86) 0 (0) 48.23 (1.96)

HDTT5 1.67 (0.76) 1.7 (0.79) 0 (0) 68.87 (2.11)

HDTT6 3.27 (0.78) 3.4 (0.81) 0.87 (1.01) 90.47 (1.98)

HDTT7 7.2 (1.06) 7.47 (1.11) 1.63 (0.85) 109.07 (4.63)

HDTT8 9.53 (1.48) 9.93 (1.57) 2 (0.64) 131.37 (3.62)

Three hypotheses are tested and the corresponding Z-values for each data set are listed in

the table below (Table 9.12). The three hypotheses are:

 Two violation non hill climbing (2VNH) produces fewer violations than the one

violation non hill climbing operators (1VNH).

 2VNH produces fewer violations than the one violation hill climbing operator (1VH).

 2VNH produces fewer violations than the two violation hill climbing operator (2VH).

102

Table 9.12: Hypotheses and corresponding Z-values showing feasibility

Hypotheses
Z-Values

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

H0: µ1VNH = µ2VNH;

HA: µ1VNH > µ2VNH
134.81 178.52 221.06 124.98 191.45

H0: µ1VH = µ2VNH;

HA: µ1VH > µ2VNH
2.97 11.72 10.71 22.90 25.55

H0: µ2VH = µ2VNH;

HA: µ2VH > µ2VNH
1.44 12.04 10.29 22.39 25.58

The DGA using the 2VNH mutation operator performs better than the DGA approach using

either of the hill climbing operators. The hypothesis tests confirm these results at all levels

of significance (see Table 6.3 in Chapter 6). The only exception is the comparison between

the DGA approach using the 2VH and 2VNH operators when applied to data set HDTT4

where the 2VNH operator is better at a 10% level of significance only.

From the operators tested, the 2VNH operator is the best mutation operator as the genetic

algorithm using this operator finds at least one feasible timetable for all data sets and

performs better than the other mutation operators at significant levels of at least 10%.

9.2.2 The Valouxis Greek school timetabling problem
This section covers the performance of different processes of the DGA when applied to the

Valouxis problem. The processes that are covered for this problem are the low-level

construction heuristics (section 9.2.2.1), the Phase 1 selection method (section 9.2.2.2), the

Phase 1 mutation operator (section 9.2.2.3), the Phase 2 selection method (section 9.2.2.4)

and the Phase 2 mutation operator (section 9.2.2.4).

9.2.2.1 Comparison of low-level construction heuristics

As described in Chapter 7, one of three primary heuristics is used with the DGA, namely

random allocation, largest degree and saturation degree. A secondary heuristic comparing

the teacher degree (teachers with the most class-teacher lessons) is used in the event of

ties. In the event of further ties, a third heuristic that compares teacher availability is used

(teachers with the fewest days available are given priority).

In order to select the best of the three heuristics, the performance of each heuristic is

compared. The processes and parameter values that were kept constant are listed in Table

9.13 below.

103

Table 9.13: Processes and parameter values to test best low-level construction

heuristic (Valouxis problem)

Constant Methods and Operators

Phase 1

Selection Variant

Mutation 1 Violation Hill Climbing (1VH)

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates, average hard constraint (HC) violations, standard deviations, and

average quality for each low-level construction heuristic are shown below in Table 9.14. The

average quality is the average number of soft constraint violations from all the feasible

timetables found.

Table 9.14: Performance comparison of construction heuristics

Success Rates

Random Largest Degree Saturation

100.00% 86.67% 83.33%

Average HC violations (and standard deviations)

Random Largest Degree Saturation

0 (0) 0.13 (0.35) 0.17 (0.38)

Average Quality (Feasible Timetables)

Random Largest Degree Saturation

52.88 52.43 47.20

All three heuristics, when used separately with the DGA, produce high success rates of 80%

and above. The DGA with the random allocation heuristic produces the most number of

feasible timetables. The low averages and standard deviations indicate that for each run,

feasible solutions were found or timetables with only one or two hard constraint violations

were produced. In terms of quality, the DGA using the saturation degree performs best,

producing timetables with five fewer soft constraint violations on average.

104

The results from the hypothesis tests support the above statement that the genetic algorithm

using the random allocation heuristic produces timetables with the fewest number of hard

constraint violations. The hypotheses and the Z-values are shown in Table 9.15.

Table 9.15: Hypotheses and corresponding Z-values

Hypothesis Z-value – Feasibility Z-value – Quality

H0: µSAT = µRAND;

HA: µSAT > µRAND
2.41 2.33

H0: µSAT = µLARGE;

HA: µSAT > µLARGE
0.36 0.30

H0: µLARGE = µRAND;

HA: µLARGE > µRAND
2.11 2.12

Although the success rates for the random allocation and largest degree heuristics are

higher, the DGA using the saturation degree heuristic produces better quality timetables i.e.

timetables with fewer soft constraint violations. The frequency chart below (Figure 9.5)

illustrates this. The x-axis of the frequency chart shows the average soft constraint cost over

thirty runs and the y-axis lists the number of timetables produced for each range.

Figure 9.5: Frequency diagram for quality using various heuristics

0

5

10

15

20

25

30-39 40-49 50-59 60-69 70-79

N
o

 o
f

ti
m

e
ta

b
le

s
p

ro
d

u
ce

d

No. of Soft Constraint Violations

Frequency Chart for Quality of
Timetable

Saturation

Random

Largest Degree

105

Figure 9.5 illustrates that the DGA using the saturation degree heuristic produces 17 feasible

timetables that each have between 30 and 50 soft constraint violations. While the DGA

using the random allocation heuristic produces more feasible timetables, the DGA using the

saturation degree produces more timetables of a higher quality.

In order to test the statistical significance of the above conclusion, an independent sample t-

test is conducted. The results are summarized in the table below.

Table 9.16: Summary of results for independent sample t-test

Heuristic N Mean Std Deviation
Std. Error

Mean

Saturation 30 0.7333 0.44978 0.08212

Random 30 0.2667 0.44978 0.08212

The mean values in Table 9.16 indicate a greater preference towards the saturation degree

heuristic. The calculated p-value is less than 0.05, concluding that at a 5% level of

significance, the DGA using a saturation degree heuristic produces more timetables of a

higher quality than the DGA using the random allocation heuristic.

In conclusion, while the success rates are in favour of the random allocation heuristic, there

is a case for the saturation degree heuristic as it produces better quality timetables on

average. For this problem, the saturation degree heuristic is therefore chosen as the low-

level construction heuristic.

9.2.2.2 Comparison of Phase 1 selection methods

The DGA is tested using standard tournament selection and variant tournament selection.

When testing these two methods, the following processes and parameter values remained

constant (Table 9.17):

106

Table 9.17: Processes and parameter values to test best selection method
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Mutation 1VH

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates, average hard constraint cost, standard deviations and average quality

(soft constraint cost) for the DGA using each selection method is shown in Table 9.18 below.

Table 9.18: Results for selection methods (Phase 1)

Success Rates

Standard Variant

70.00% 83.33%

Average HC Cost (and standard deviations)

Standard Variant

0.3 (0.47) 0.17 (0.38)

Average Quality (Feasible Timetables)

Standard Variant

53.19 47.20

A success rate of at least 70% is found over thirty runs when the DGA is used with either of

the selection methods. Variant tournament selection allows for a greater exploration of the

search space as it also allows weaker individuals from the tournament to be selected as

parents. The DGA with the variant tournament selection also produces better quality

timetables on average than the DGA with standard tournament selection.

From Table 9.18, it is concluded that the DGA using variant tournament selection performs

better than the DGA using standard tournament selection. Hypothesis tests are conducted

107

to determine the statistical significance of the above statement. The Z-values for both

feasibility and quality are listed in Table 9.19 below.

Table 9.19: Hypotheses and Z-values for feasibility and quality

Hypotheses Z-values

H0: µSTD = µVAR; HA: µSTD > µVAR (Feasibility) 1.22

H0: µSTD = µVAR; HA: µSTD > µVAR (Quality) 1.26

Based on the results of the hypothesis tests (Table 9.19), there is insufficient evidence to

state that the DGA using variant tournament selection is statistically better than the DGA

using standard tournament selection.

Figure 9.6 illustrates a frequency chart showing the quality of the timetables produced when

using the DGA with standard tournament selection and variant tournament selection.

Figure 9.6: Frequency chart showing quality for selection methods

The frequency chart above indicates that the DGA with variant tournament selection

produces more timetables of a higher quality than the DGA using standard tournament

selection. 68% of the feasible timetables produced by the DGA with variant tournament

selection had between 30 and 50 soft constraint violations compared to the DGA using

standard tournament selection where only 24% of the feasible timetables produced had soft

constraint violation counts of between 30 and 50. Variant tournament selection is the

chosen selection method as it produces a higher success rate and better quality timetables

0

2

4

6

8

10

12

14

16

18

30-39 40-49 50-59 60-69 70-79 80-89 90-100

N
u

m
b

e
r

o
f

O
cc

u
re

n
ce

s

Soft Constraint Cost Ranges

Frequency chart for Timetable Quality

Standard

Variant

108

on average. The DGA using variant tournament selection also produces the timetable with

the fewest number of soft constraint violations (39).

9.2.2.3 Comparison of Phase 1 mutation operators

Four mutation operators are tested. As discussed in the previous chapter, the four mutation

operators, 2VNH, 2VH, 1VNH and 1VH, are tested separately with the DGA approach. The

other processes and control parameter values that were kept constant are given in Table

9.20 and a summary of the results for each mutation operator is shown in Table 9.21.

Table 9.20: Processes and parameter values to test best mutation operator
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

Table 9.21: Results for mutation operators (Phase 1)

Success Rates Success Rates

2VH 1VH 2VNH 1VNH

0.00% 83.33% 0.00% 0.00%

Average HC Cost (and standard deviation) Average HC Cost (and standard deviation)

2VH 1VH 2VNH 1VNH

7 (0.93) 0.17 (0.38) 66 (0.45) 77 (4.17)

Average Quality (Feasible Timetables) Average Quality (Feasible Timetables)

2VH 1VH 2VNH 1VNH

 NA 47.20 NA NA

Table 9.21 above indicates that only the DGA using the 1VH mutation operator manages to

produce feasible timetables. The poor performance of the 2VNH and 1VNH operators

emphasizes the importance of hill climbing for this problem. The DGA using the non-hill

109

climbing operators averaged 66 and 67 constraints violations respectively. It was

determined that these mutation operators, when removing a constraint violation, caused

another hard constraint violation in the timetable. This is especially true for this problem

where one of the hard constraints is a balance in teacher lessons throughout the week (other

school timetabling problems have listed this as a soft constraint). For example, the mutation

operator moves a constraint violating tuple to a period that results in another teacher’s

workload being over the specified limit for that day. In the case of the non-hill climbing

mutation operators, this is made worse in that swaps that increase the timetable cost are

retained. The DGA approach using the other mutation operators do not produce any

solutions and thus the best mutation operator is the 1VH mutation operator. The 1VH

operator found tuples that resulted in constraint violations and swapped them with any

randomly chosen tuple. Hill climbing assisted in only accepting swaps that improved the

timetable while rejecting swaps that increased the hard constraint cost.

9.2.2.4 Comparison of Phase 2 selection methods

Standard tournament selection and variant tournament selection are implemented separately

with the DGA approach and the performance of each method is compared. The processes

and control parameter values used are shown below.

Table 9.22: Processes and parameter values to test best Phase 2 selection method
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates and average quality obtained after thirty runs per algorithm are shown in

Table 9.23.

110

Table 9.23: Results for selection methods (Phase 2)

Success rate

Standard Variant

83.33% 83.33%

Average Quality (Feasible Timetables)

Standard Variant

50.04 47.20

Standard deviation - Quality

Standard Variant

5.89 4.90

During Phase 2, the DGA aims to improve the quality of the feasible timetables produced

from Phase 1. Therefore, the success rates for both methods are the same and the quality

of solutions using the DGA with either selection method needs to be compared. Table 9.23

indicates that the DGA using variant tournament selection (47.20) performs better than

standard tournament selection DGA (50.04). A hypothesis stating that variant tournament

selection is better than standard tournament selection is tested. A Z-value of 0.03 was

found, indicating that there is no statistically significant difference between the performances

of the two selection methods.

The frequency of results obtained using the two methods also need to be observed. The

frequency chart below (Figure 9.7) shows the difference between the DGA using standard

tournament selection and the DGA using variant tournament selection (VTS).

Figure 9.7: Frequency chart showing quality for selection methods

0

2

4

6

8

10

12

14

16

18

30-39 40-49 50-59 60-69 70-79 80-89 90-100

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

Variant

Standard

111

Figure 9.7 illustrates that the DGA using variant tournament selection produces more

timetables in the range between 30 and 50 (68% of the timetables produced fall in this

range) than the DGA using standard tournament selection (48% of the timetables produced

fall in this range). The best selection method is therefore variant tournament selection due

to its ability to produce better quality timetables. The variant tournament selection DGA also

produces the timetable with the least number of soft constraint violations (39).

9.2.2.5 Comparison of Phase 2 mutation operators

In order to improve the quality of timetables, four soft constraint mutation operators are

individually applied with the DGA. The performance of each DGA using a different mutation

operator is then compared. The processes and parameter values used are listed in Table

9.24 below.

Table 9.24: Processes and parameter values to test best Phase 2 mutation operator
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The average quality and best timetables for each mutation operator after thirty runs is listed

in Table 9.25.

112

Table 9.25: Results for mutation operators (Phase 2)

Average Quality (Feasible Timetables)

Random Swap Row Swap 2V 1V

47.20 73.24 47.00 65.08

Best Results

Random Swap Row Swap 2V 1V

39 58 36 54

Standard deviation – Quality

Random Swap Row Swap 2V 1V

4.90 10.43 4.80 6.88

Based on the table above, the two best mutation operators are the random swap mutation

operator and the two violation (2V) mutation operator. The DGA with these mutation

operators produce average soft constraint violation costs of 47.20 and 47.00 respectively.

The row swap operator performed the worst due to multiple tuples of a row being swapped

resulting in more soft constraint violations (such as the morning afternoon preference) and

hard constraint violations (teachers being moved to days that they are unavailable to teach).

Hypothesis tests are conducted to determine the significance of the results. The hypotheses

are focused on comparing the random swap operator and the 2V operator to the other

mutation operators as well as each other. Five hypotheses are tested and are listed below:

 Random Swap (RaS) produces better quality timetables than 1V.

 Two Violation (2V) swapping produces better quality timetables than 1V.

 RaS produces better quality timetables than RS.

 2V produces better quality timetables than RS.

 2V produces better quality timetables than RaS.

The hypotheses and the resultant Z-values found are shown in the table below (Table 9.26).

Table 9.26: Hypotheses and Z-values for quality

Hypotheses Z-values

H0: µ1V = µRaS; HA: µ1V > µRaS 11.60

H0: µ1V = µ2V; HA: µ1V > µ2V 11.81

H0: µRS = µRaS; HA: µRS > µRaS 12.38

H0: µRS = µ2V; HA: µRS > µ2V 12.52

H0: µRaS = µ2V; HA: µRaS > µ2V 0.16

113

The Z-values listed in Table 9.26 indicate that the random swap and 2V mutation operators

perform significantly better than the row swap and 1V mutation operators. There is no

significant difference between the performance of the random swap and the 2V mutation

operators. The frequency chart for the two operators is shown below.

Figure 9.8: Frequency chart showing quality for two mutation operators

Figure 9.8 illustrates that the frequencies between the random swap operator and the 2V

operator are the same. This further confirms the hypothesis that there is very little difference

between the two mutation operators in terms of performance. The DGA approach with the

2V mutation operator produced the best timetable with 36 soft constraint violations

compared to the DGA using the random swap operator (39 soft constraints violations).

While either mutation operator could be applied to produce quality timetables, the two

violation (2V) mutation operator is chosen as it produced a timetable of a higher quality

(fewer soft constraint violations).

9.2.3 The Beligiannis Greek high school timetabling problem
This section describes the performance of the DGA when applied to the Beligiannis Greek

high school timetabling problem. The first section outlines the performance of the DGA

approach with different low-level construction heuristics. Section 9.2.3.2 discusses the

performance of the two selection methods used with the DGA during Phase 1. Section

9.2.3.3 reports on the performance of the DGA when using different Phase 1 mutation

operators. Section 9.2.3.4 describes the performance of the DGA when applying two

different selection methods during Phase 2. Finally, section 9.2.3.5 explains the

0

2

4

6

8

10

12

14

16

18

30-39 40-49 50-59 60-69 70-79 80-89 90-100

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

2 Violation

Random Swap

114

performance of the DGA when using different mutation operators that focus on improving the

quality of timetables.

9.2.3.1 Comparison of low-level construction heuristics

One of three low-level construction heuristics is applied with the DGA. These heuristics are

the saturation degree, the largest degree and the random allocation heuristics. For all three

heuristics, all tuples involving co-teaching and subclasses are allocated to the timetable first

(primary heuristic). The remaining class-teacher tuples are allocated thereafter. Table 9.27

lists the common processes and parameter values used when testing each of the

construction heuristics.

Table 9.27: Processes and parameter values to test best construction heuristic

(Beligianis problem)

Constant Methods and Operators

Phase 1

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

Table 9.28 shows the success rates found for each heuristic when applied to the data sets.

Table 9.28: Results for different heuristics

Success Rates

 Saturation Random Largest Degree

HS1 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00%

HS5 3.33% 56.67% 76.67%

HS7 100.00% 100.00% 100.00%

115

A bar chart depicting the success rates listed in Table 9.28 is shown below (Figure 9.9).

Figure 9.9: Success rates for each heuristic

Figure 9.9 illustrates that feasible timetables are found for all runs when the DGA (using any

heuristic) is applied to data sets HS1, HS2, HS3, HS4 and HS7.

For the data set HS5, the DGA using the largest degree heuristic performs best, producing

the most feasible timetables. No reason could be found as to why the results of HS5 differed

to that of the other data sets. Hypothesis tests are performed to check the significance of

this result. Two hypotheses are tested for feasibility for the data set HS5. These

hypotheses are:

 The largest degree (LD) produces fewer hard constraint violations than the random

allocation heuristic (RA).

 LD produces fewer hard constraint violations than the saturation degree heuristic

(SD).

The hypotheses and Z-values are listed in Table 9.29.

Table 9.29: Hypotheses and Z-values for feasibility for data set HS5

Hypotheses Z-values

H0: µRA = µLD; HA: µRA > µLD 1.65

H0: µSD = µLD; HA: µSD > µLD 12.27

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HS1 HS2 HS3 HS4 HS5 HS7

Su
cc

e
ss

 R
at

e
s

Data Sets

Success Rates for each heuristic

Saturation

Random

Largest Degree

116

From the Z-values in Table 9.29, it is statistically confirmed that the DGA using the largest

degree heuristic performs better than the DGA using saturation degree or random allocation

(for data set HS5).

In order to select the best heuristic for the remaining data sets (HS1, HS2, HS3, HS4 and

HS7), the quality of the timetables produced needs to be assessed since the DGA produces

feasible timetables for all runs. Table 9.30 lists both the average number of soft constraint

violations and the standard deviations found for each data set when the DGA using each of

the three heuristics is applied.

Table 9.30: Average quality for each heuristic

Average Soft Constraint Violations (and standard deviations)

 Saturation Random Largest Degree

HS1 120.20 (3.75) 154.37 (6.54) 143.00 (3.91)

HS2 129.60 (3.79) 160.47 (5.02) 147.33 (6.84)

HS3 47.37 (4.13) 59.80 (4.52) 51.33 (5.47)

HS4 72.57 (3.82) 83.50 (5.86) 83.40 (4.73)

HS5 52.00 (NA) 52.29 (6.89) 46.35 (6.26)

HS7 143.23 (4.31) 184.37 (5.71) 159.60 (4.88)

A bar chart depicting the average quality for each data set is shown below. The x-axis

represents each data set and the y-axis lists the average number of soft constraint violations

per data set. As mentioned in earlier chapters, a lower soft constraint cost indicates a higher

quality timetable.

Figure 9.10: Bar chart showing quality for each heuristic

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

HS1 HS2 HS3 HS4 HS5 HS7

A
ve

ra
ge

 Q
u

al
it

y

Data set

Quality produced for each method

Saturation

Random

Largest Degree

117

Figure 9.10 shows that, with the exception of data set HS5, the DGA with the saturation

degree heuristic produces the best quality timetables. The relatively low standard deviations

for the saturation degree also indicate that for all thirty runs, the genetic algorithm using this

construction heuristic consistently produced timetables very close to the average quality

timetable. Hypothesis tests are conducted to determine if the average quality of the DGA

using the saturation degree is significantly better than the DGA using the other two low-level

heuristics. The hypotheses tested are:

 Saturation degree (SD) produces fewer soft constraint violations than random

allocation (RA).

 Saturation degree (SD) produces fewer soft constraint violations than largest degree

(LD).

The Z-values for the above hypotheses for data sets HS1, HS2, HS3, HS4, and HS7 are

shown in Table 9.31.

Table 9.31: Hypotheses and Z-values for quality for various data sets

Hypotheses
Z-values

HS1 HS2 HS3 HS4 HS7

H0: µRA = µSD; HA: µRA > µSD 8.17 8.49 6.53 0.07 18.05

H0: µLD = µSD; HA: µLD > µSD 23.03 12.41 3.17 9.76 13.76

The Z-values found and listed in Table 9.31 confirms that the DGA using saturation degree

produces better quality timetables than the DGA using either of the other two heuristics. The

Z-values further confirm the results illustrated in Figure 9.10. Significant results are found on

all levels (1%, 5% and 10%). For data set HS4, A Z-value of 0.07 indicates that there is no

difference between using the saturation degree and the random allocation heuristic to

improve timetable quality.

Due to the high quality of timetables obtained for data sets HS1, HS2, HS3, HS4, and HS7,

the best timetable construction heuristic for these data sets is the saturation degree. For the

data set HS5, the largest degree is the chosen heuristic used to create the initial population.

9.2.3.2 Comparison of Phase 1 selection methods

The two selection methods available for Phase 1 are standard tournament selection and

variant tournament selection. When testing the performance of these two selection

methods, the following processes and parameter values remained constant.

118

Table 9.32: Processes and parameter values to test best selection method
(Beligianis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for data set HS5)

Mutation 1VH

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates found for each data set are shown in the table below. Figure 9.11 is a bar

graph of the data in Table 9.33.

Table 9.33: Success rates for selection methods (Phase 1)

Success Rates

 Standard Variant

HS1 100.00% 100.00%

HS2 100.00% 100.00%

HS3 100.00% 100.00%

HS4 100.00% 100.00%

HS5 36.67% 76.67%

HS7 100.00% 100.00%

119

Figure 9.11: Success rates for selection methods

The DGA approach using either of the selection methods produces feasible timetables for all

runs when applied to data sets HS1, HS2, HS3, HS4 and HS7. For the data set HS5,

variant tournament selection is the best selection method due to this DGA producing more

feasible timetables over the thirty runs. When testing this conclusion using a hypothesis

test, a Z value of 3.38 indicates that the DGA using variant tournament selection performs

better than the DGA using standard tournament selection. Table 9.34 shows the average

quality and standard deviations for each data set when applying the DGA approach with

each of the selection methods.

Table 9.34: Average quality for each selection method (Phase 1)

Average Soft Constraint Violations (and standard deviations)

 Standard Variant

HS1 122.73 (5.51) 120.20 (3.75)

HS2 131.07 (3.89) 129.60 (3.79)

HS3 47.47 (3.95) 47.37 (4.13)

HS4 73.03 (4.05) 72.57 (3.82)

HS5 50.18 (6.37) 46.35 (6.26)

HS7 143.93 (4.87) 143.23 (4.31)

The DGA using variant tournament selection produces better quality timetables for all data

sets. Hypothesis tests are used to determine the significance of this conclusion. The

hypothesis being tested is that the DGA approach using VTS produces better quality

timetables than the DGA approach using standard tournament selection. The Z-values for

each data set are shown in Table 9.35.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HS1 HS2 HS3 HS4 HS5 HS7

Su
cc

e
ss

 R
at

e

Data Sets

Success rate for each selection
method

Standard

Variant

120

Table 9.35: Hypothesis and Z-values for quality for various data sets

Hypothesis
Z-values

HS1 HS2 HS3 HS4 HS5 HS7

H0: µSTD = µVAR; HA: µSTD > µVAR 2.08 1.48 0.10 0.46 3.38 0.59

The hypothesis stating that the DGA using variant tournament selection produces better

quality timetables than the DGA using standard tournament selection is statistically

significant for data sets HS1 (5% and 10% significance levels), HS2 (10% significant level),

and HS5 (all levels). Z values of 0.10 for data set HS3, 0.46 for data set HS4 and 0.59 for

data set HS7 indicate that there is no difference between the performances of the selection

methods when applied to these data sets. Variant tournament selection is chosen as the

selection method to choose parents.

9.2.3.3 Comparison of Phase 1 mutation operators

Mutation is used to evolve the timetables and reduce the hard constraint cost of each

timetable. With the exception of data set HS5, it is determined that the evolutionary process

is not needed to produce feasible timetables. Many of the timetables created using the

saturation degree heuristic are already feasible. Any mutation operator could be used to

successfully remove the remaining hard constraint violations from unfeasible timetables.

For completeness, the success rates found when applying the DGA approach with each

mutation operator are shown in Table 9.37. Table 9.36 below shows the processes and

parameter values used to test each mutation operator.

121

Table 9.36: Processes and parameter values to test best mutation operator
(Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for data set HS5)

Selection Variant

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

100% success rates are produced when the DGA is applied to all data sets except data set

HS5.

Table 9.37: Success rates for mutation operators (Phase 1)

Success Rates

 2VH 1VH 2VNH 1VNH

HS1 100.00% 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00% 100.00%

HS5 0.00% 76.67% 0.00% 100.00%

HS7 100.00% 100.00% 100.00% 100.00%

When applied to data set HS5, the DGA approach with the 1VNH mutation operator

produces the most feasible timetables when compared to the success rates using other

mutation operators. A hypothesis test is conducted for feasibility for the data set HS5. The

hypothesis states that the DGA using the 1VNH operator performs better than the DGA

approach using the 1VH operator. A Z value of 2.08 indicates that the null hypothesis is

rejected in favour of the alternate hypothesis at 5% and 10% levels of significance. When

the DGA is applied to the data set HS5, the 1VNH operator is chosen as the best mutation

operator due to a higher success rate. As mentioned earlier, a genetic algorithm is not

required in order to produce feasible timetables for the other data sets.

122

9.2.3.4 Comparison of Phase 2 selection methods

Standard tournament selection and variant tournament selection are utilized as selection

methods for Phase 2 of the algorithm. The timetables obtained when applying the DGA

approach with either of the two methods are evaluated and compared. Phase 2 of the DGA

approach focuses on reducing the soft constraint cost of the timetables. Therefore, the

quality of the timetables produced is evaluated rather than the success rates.

Table 9.38: Processes and parameter values to test best Phase 2 selection method
(Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for data set HS5)

Selection Variant

Mutation 1VH (1VNH for data set HS5)

Phase 2

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The average qualities and standard deviations of the timetables produced by the DGA using

each of the selection methods are listed below.

Table 9.39: Tabling comparing quality produced by selection methods (Phase 2)

Average Quality (and standard deviations)

 Standard Variant

HS1 115.67 (5.99) 120.20 (3.75)

HS2 121.63 (7.54) 129.60 (3.79)

HS3 46.53 (4.07) 47.37 (4.13)

HS4 73.30 (4.77) 72.57 (3.82)

HS5 55.53 (7.97) 59.00 (5.28)

HS7 138.97 (6.23) 143.23 (4.31)

The average qualities in Table 9.39 indicate that the DGA using standard tournament

selection produces better quality timetables than the DGA using variant tournament

selection. The DGA using variant tournament selection only performs better when applied to

123

data set HS4. A hypothesis is tested to determine if the DGA using variant tournament

selection performs better than the DGA using standard tournament selection when applied to

data set HS4. A Z-value of 0.66 indicates that there is no statistically significant difference in

performance.

Hypothesis tests are also used to test for quality for data sets HS1, HS2, HS3, HS5, and

HS7. The hypothesis states that the DGA using the standard tournament selection produces

better quality timetables than the DGA using variant tournament selection. Table 9.40

shows the Z-values of the tests.

Table 9.40: Hypothesis and Z-values for quality

Hypothesis
Z-values

HS1 HS2 HS3 HS5 HS7

H0: µVAR = µSTD;

HA: µVAR > µSTD
3.51 5.17 0.79 1.99 3.06

Based on the Z-values in the table above, it is concluded that for data sets HS1, HS2 and

HS7, the DGA using standard tournament selection performs better than the DGA using

variant tournament selection (at all levels of significance). For data set HS5, the alternate

hypothesis is favoured at 5% and 10% levels of significance. When testing data sets HS3

for quality, a Z-value of 0.79 suggests that there is no difference in performance between the

two selection methods.

In conclusion, the best method of selection during Phase 2 is standard tournament selection

as it produces better quality timetables when the DGA is applied to five out of the six data

sets.

9.2.3.5 Comparison of Phase 2 mutation operators

At this stage, the main objective of the DGA is to improve the quality of the feasible

timetables obtained from Phase 1. To evolve the timetables, four mutation operators are

considered, namely random swap, row swap, one violation mutation and two violation

mutation. When testing each of these mutation operators, the following processes and

parameter values were used (Table 9.41):

124

Table 9.41: Processes and parameter values to test best Phase 2 mutation operator
(Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for data set HS5)

Selection Variant

Mutation 1VH (1VNH for data set HS5)

Phase 2

Selection Standard

Constant Parameter Values

SCM 10

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The table below shows the average quality and standard deviations produced over thirty

runs when applying the DGA with each operator.

Table 9.42: Average Quality and standard deviations obtained for different mutation
operators (Phase 2)

Average Soft Constraint Violations (and standard deviations)

 Random Swap Row Swap 1V 2V

HS1 115.67 (5.99) 159.27 (4.96) 115.10 (7.02) 117.70 (6.30)

HS2 121.63 (7.54) 173.20 (5.03) 122.87 (8.34) 123.13 (7.60)

HS3 46.53 (4.07) 68.73 (2.46) 48.00 (3.99) 47.90 (4.45)

HS4 73.30 (4.77) 91.03 (3.10) 74.27 (4.28) 73.23 (4.72)

HS5 55.53 (7.97) 105.37 (5.90) 57.43 (7.95) 66.37 (5.96)

HS7 138.97 (6.23) 181.33 (6.98) 138.13 (7.44) 140.13 (6.49)

The row swap mutation operator is immediately removed as a candidate for best mutation

operator as the DGA with this operator produces the worst quality timetables on average.

This is due to many of the swaps being rejected as they resulted in moving teachers to days

when they are unavailable to teach. Hypothesis tests also find that the row swap operator

performs the worst at all levels of significance.

For data set HS1, the DGA using the 1V operator performs slightly better than the DGA

approach using the random swap operator. For data sets HS2, HS3 and HS5, the DGA

approach using the random swap operator provides the best quality timetables. For data set

125

HS4, the DGA approach using the 2V operator produces the best quality timetables. For

data set HS7, the DGA approach using the 1V operator performs best. For data set HS5,

the DGA approach using the random swap operator produces timetables with the lowest

number of constraint violations on average. Hypothesis tests are conducted for quality for all

the data sets. The hypotheses and corresponding Z-values for each data set are listed in

Table 9.43.

Table 9.43: Hypotheses and Z-values

Data set HS1

H0: µ2V = µRaS;

HA: µ2V > µRaS

H0: µ2V = µ1V;

HA: µ2V > µ1V

H0: µRaS = µ1V;

HA: µRaS > µ1V

1.28 1.51 0.33

Data set HS2

H0: µ2V = µ1V;

HA: µ2V > µ1V

H0: µ2V = µRaS;

HA: µ2V > µRaS

H0: µ1V = µRaS;

HA: µ1V > µRaS

0.13 0.77 0.60

Data set HS3

H0: µ1V = µ2V;

HA: µ1V > µ2V

H0: µ1V = µRaS;

HA: µ1V > µRaS

H0: µ2V = µRaS;

HA: µ2V > µRaS

0.10 1.41 1.24

Data set HS4

H0: µ1V = µRaS;

HA: µ1V > µRaS

H0: µ1V = µ2V;

HA: µ1V > µ2V

H0: µRaS = µ2V;

HA: µRaS > µ2V

0.83 0.89 0.05

Data set HS5

H0: µ2V = µ1V;

HA: µ2V > µ1V

H0: µ2V = µRaS;

HA: µ2V > µRaS

H0: µ1V = µRaS;

HA: µ1V > µRaS

4.92 5.96 0.92

Data set HS7

H0: µ2V = µRaS;

HA: µ2V > µRaS

H0: µ2V = µ1V;

HA: µ2V > µ1V

H0: µRaS = µ1V;

HA: µRaS > µ1V

0.71 1.11 0.47

The best mutation operators vary depending on the data set. For data set HS1, the random

swap and 1V operators are found to have performed significantly better than the two

violation mutation operator (10% level of significance). There is, however, no significant

126

difference between these two mutation operators when applied to HS1. For data sets HS2,

HS4 and HS7, no statistically significant difference is found when comparing the

performance of the three operators. From the Z-values for data set HS5, a conclusion is

made favouring the use of either the 1V mutation operator or the random swap operator.

The Z-values for data set HS3 allows for the conclusion that the random swap operator

performs better than the one violation operator at a 10% level of significance.

Based on the results above, it is concluded that the best mutation operator varies depending

on the data set. For the remainder of the runs, the one violation (1V) mutation operator will

be used when applying the DGA to data sets HS1, HS2, HS3, HS4 and HS7. The random

swap operator will be used when applying the DGA to data set HS5.

9.2.4 W.A. Lewitt primary school timetabling problem
This section discusses the performance of the DGA approach when applied to the W.A.

Lewitt primary school timetabling problem. Section 9.2.4.1 describes how the DGA

performed with different low-level construction heuristics. Section 9.2.4.2 reports on the

performance of the DGA using each of the two selection methods. Section 9.2.4.3 describes

the performance of the DGA when using different mutation operators. Sections 9.2.4.4 and

section 9.2.4.5 details the Phase 2 performance of the DGA in terms of selection method

and mutation operators.

9.2.4.1 Comparison of low-level construction heuristics

The DGA uses one of three low-level construction heuristics. These heuristics are the

saturation degree, the random allocation and the largest degree heuristic described in

Chapter 7. In order to satisfy the double period constraint specified by the school, all tuples

that are set as double periods are first allocated to the timetable.

127

Table 9.44: Processes and parameter values to test best construction heuristic
(Lewitt problem)

Constant Methods and Operators

Phase 1

Selection Variant

Mutation Hybrid mutation

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 200

Generations 50

The results of using the DGA approach with each of the three construction heuristics are

shown in Table 9.45. These are used as secondary heuristics with the consecutive periods

heuristic as the primary heuristic.

Table 9.45: Results for best heuristic

Success Rates

Saturation Random Largest Degree

40.00% 6.67% 10.00%

Average Hard Constraint Violations (and standard deviations)

Saturation Random Largest Degree

0.73 (0.69) 2.13 (1.2) 2.37 (1.27)

Average Quality (Feasible Timetables)

Saturation Random Largest Degree

12.25 12.00 9.67

Standard deviations (Quality)

Saturation Random Largest Degree

5.38 1.41 3.79

Table 9.45 shows that the DGA using the saturation degree heuristic produces the largest

number of feasible timetables. On average, the DGA using the saturation degree produces

the fewest number of hard constraint violations. An observation made was that the fitness of

the initial populations of the DGA when using the random allocation and largest degree

128

heuristics were very high. The evolutionary process was then unable to induce feasible

timetables.

Hypothesis tests are conducted for feasibility. The hypotheses tested and the Z-values are

shown in Table 9.46.

Table 9.46: Hypotheses and Z-values for feasibility

Hypothesis Z-value

H0: µLD = µSD; HA: µLD > µSD 6.07

H0: µRA = µSD; HA: µRA > µSD 5.55

The Z-values in the table above allow for the null hypothesis to be rejected in favour of the

alternate hypothesis at all levels of significance. This means that the DGA using the

saturation degree heuristic performs better than the DGA using either the random allocation

or largest degree heuristics. The DGA using the saturation degree heuristic also produces

the best quality timetable with the fewest number of soft constraint violations (7).

9.2.4.2 Comparison of Phase 1 selection methods

The two selection methods are variant tournament selection and standard tournament

selection. The constant processes and parameter values used to test the two selection

methods are listed in Table 9.47.

Table 9.47: Processes and parameter values to test best selection method

(Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Mutation Hybrid mutation

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 200

Generations 50

129

The success rate, average quality and standard deviations produced is listed in Table 9.48

and the frequency diagram is shown in Figure 9.12.

Table 9.48: Success rates and average quality for selection methods (Phase 1)

Success Rates

Variant Standard

40.00% 43.33%

Average Quality (Feasible timetables)

Variant Standard

12.25 10.54

Standard deviation

Variant Standard

5.38 3.36

Figure 9.12: Frequency chart showing quality for two selection methods

Table 9.48 indicates that the DGA using standard tournament selection produces a slightly

higher success rate and better quality timetables than the DGA approach using variant

tournament selection. The standard deviation also indicates that the quality of the timetables

produced tend to be close to the mean. The frequency chart (Figure 9.12) shows that more

quality timetables are produced when using the DGA with standard tournament selection. A

hypothesis is tested in order to determine the better selection method. The hypothesis

states that the DGA using standard tournament selection performs better than the DGA

using variant tournament selection method (in terms of feasibility). A Z-value of 0.17

0

1

2

3

4

5

6

7

8

9

0-9 10-19 20-29 30-39 40-49

C
o

u
n

t

No. of Soft Constraint Violations

Frequency Chart for Quality of
Timetable

Variant

Standard

130

indicates that there is no statistically significant difference in the performance of the two

selection methods.

Standard tournament selection is chosen as the selection method due to its slightly higher

success rate in producing feasible timetables. The frequency chart also indicates that DGA

using standard tournament selection produces more timetables of better quality than when

using variant tournament selection.

9.2.4.3 Comparison of Phase 1 mutation operators

Four mutation operators were considered and the DGA was applied using each of these

mutation operators. From all the runs conducted, only one feasible timetable was produced.

The low success rates produced indicate that the mutation operators are not sufficient in

producing feasible timetables. The complexity of the problem and the large number of

double periods to be allocated contribute to the poor performance of the mutation operators.

In addition, all tuples must be allocated to all available periods. An alternative mutation

operator was considered incorporating a combination of 2VH, 1VH and a random swap.

Table 9.49: Processes and parameter values to test best mutation operator

(Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 200

Generations 50

The success rates and average hard constraint costs of the DGA using each of the mutation

operators as well as the hybrid operator are listed in Table 9.50.

131

Table 9.50: Success rates using different genetic operators (Phase 1)

Success Rates

2VH 1VH 2VNH 1VNH Hybrid

0.00% 3.33% 0.00% 0.00% 43.33%

Average Hard Constraint Cost (and standard deviation)

2VH 1VH 2VNH 1VNH Hybrid

4.57 (1.43) 2.97 (1.07) 16.4 (4.69) 110.67 (13.92) 0.77 (0.82)

The success rates listed in Table 9.50 indicate that the DGA using the hybrid operator is far

superior to the DGA using any of the other mutation operators. When using the DGA

approach with either the 2VH or 1VH operators, the average number of hard constraint

violations ranges from 3 to 5, while the average number of violations when using either the

2VNH or 1VNH operators ranges from 16 (2VNH) to 111 (1VNH). Two factors that

contributed to the success of the hybrid operator are the fact that three operators were being

applied, thus increasing the probability of finding and removing a constraint violation. This

also increased the number of swaps by a factor of three. A third factor is the mix of finding

constraint violating tuples and random tuples, thus potentially increasing the probability of

moving to a new area of the search space.

The number of feasible timetables produced by the DGA using the hybrid mutation operator

was greater than the single feasible timetable produced by the DGA using the 1VH operator.

A hypothesis is tested for feasibility. This hypothesis states that the DGA using the hybrid

mutation operator performs better than the DGA using the 1VH operator. A Z-value of 8.97

indicates that at all levels of significance, the performance of the DGA using the hybrid

operator is better than the DGA using the 1VH operator.

9.2.4.4 Comparison of Phase 2 selection methods

Phase 2 of the DGA focuses on improving the quality of the timetables. The DGA is used

with either variant tournament selection or standard tournament selection. Table 9.51 lists

the processes and parameter values used when testing each selection method.

132

Table 9.51: Processes and parameter values to test best Phase 2 selection method
(Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid mutation

Phase 2

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 200

Generations 50

When analyzing the results, no difference in performance is found when comparing the

performance of the DGA with the two selection methods. The average quality of the

timetables produced is exactly the same. According to the frequency diagram below (Figure

9.13), the DGA using either selection method produces timetables of an equivalent quality.

The DGA using either selection method produces the same number of timetables that have

between 0 and 9 (and between 10 and 19) soft constraint violations.

133

Figure 9.13: Frequency chart for two selection methods

Thus, either selection method can be used for Phase 2. Hypothesis tests are not conducted

as the average qualities of the timetables produced when using either method is the same.

9.2.4.5 Comparison of Phase 2 mutation operators

In order to improve the quality of the timetables produced from Phase 1, the DGA uses one

of four mutation operators during Phase 2. These operators are the random swap, 1V

mutation, 2V mutation and the row swap operators. The row swap mutation operator was

immediately not considered since this mutation was found to conflict with the hard constraint

regarding double periods. The processes and parameter values used when testing the

mutation operators are listed below.

0

1

2

3

4

5

6

7

8

9

0-9 10-19 20-29 30-39 40-49 50-59 60-69

C
o

u
n

t

No. of Soft Constraint Violations

Frequency Chart for Quality of
Timetable

Variant

Standard

134

Table 9.52: Processes and parameter values to test best Phase 2 mutation operator
(Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid mutation

Phase 2

Selection Variant

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 200

Generations 50

The average quality of the DGA when using each mutation operator is listed in the table

below (Table 9.53)

Table 9.53: Average quality produced using different soft mutation operators

Average Quality

Random Swap 1V 2V

10.54 15.62 24.31

It is evident from the table above that the DGA using the random swap operator produces

the best quality timetables. The frequency diagram (Figure 9.14) also illustrates that the

random swap produces better quality timetables.

135

Figure 9.14: Frequency chart showing quality for different soft mutation operators

The DGA using the random swap operator produces timetables that have between 6 and 15

soft constraint violations. Hypothesis tests are conducted for quality and two hypotheses are

established. The first hypothesis states that the DGA using the random swap performs

better than the DGA using the 1V operator. The second hypothesis states that the DGA

using the random swap performs better than the DGA using the two violation (2V) operator.

Z-values of 0.05 and 0.02 respectively indicate that there is no significant difference when

choosing between the mutation operators. While not statistically significant, the random

swap is the chosen mutation operator to use when addressing soft constraint violations. The

DGA using this operator produces better quality timetables on average.

9.2.5 The Woodlands secondary school timetabling problem
This section describes the performance of the DGA when applied to the Woodlands

secondary school timetabling problem. Section 9.2.5.1 reports on the performance of the

DGA with different low-level construction heuristics. Sections 9.2.5.2 and 9.2.5.4 discusses

the results when comparing the DGA using two different selection methods for Phase 1 and

Phase 2 respectively. Sections 9.2.5.3 and 9.2.5.5 cover the performance of the DGA using

the different mutation operators for Phase 1 and Phase 2 respectively.

9.2.5.1 Comparison of low-level construction heuristics

Three low-level construction heuristics are individually used to create an individual in the

initial population. The three construction heuristics are the saturation degree, random

0

2

4

6

8

10

12

14

0-9 10-19 20-29 30-39 40-49

N
o

 o
f

ti
m

e
ta

b
le

s

No. of Soft Constraint Violations

Frequency Chart for Quality of
Timetable

Random Swap

1 Violation

2 Violations

136

allocation and largest degree. For the largest degree and saturation degree heuristics,

several secondary heuristics are used for selecting tuples in the event of ties. These

secondary heuristics, in order of importance are:

 Co-teaching and subclass requirements take precedence over single class tuples.

 In the event that two tuples are both single class tuples or co-teaching or subclass

tuples, then priority goes to the tuple with the greater number of lessons for the week.

 In the event that two tuples have the same number of lessons in the week, then

priority goes to the tuples with the greater number of teachers involved for that tuple.

This secondary heuristic only applies to co-teaching tuples.

 In the event that the two tuples use the same number of teachers, then priority goes

to the tuple with the class that are taught by the greater number of teachers

throughout the week.

The secondary heuristics were determined based on observation. Only the DGA using the

saturation degree heuristic was able to find feasible timetables.

Table 9.54: Processes and parameter values to test best construction heuristic
(Woodlands problem)

Constant Methods and Operators

Phase 1

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 75

Generations 50

The success rates and average hard constraint cost found for the DGA approach using each

heuristic is shown in the table below (Table 9.55).

137

Table 9.55: Success rates found for different heuristics

Success Rates

Random Largest Degree Saturation

0.00% 0.00% 23.33%

Average Hard Constraint Cost (and standard deviations)

Random Largest Degree Saturation

72.93 (8.99) 49.24 (7.43) 2.07 (1.62)

The DGA using the saturation degree heuristic produced seven feasible timetables from the

30 runs. On average, there are 9.41 soft constraint violations found per timetable. The DGA

using random allocation creates timetables with approximately 72 hard constraint violations

(on average) and the DGA using the largest degree heuristic creates timetables with

approximately 49 hard constraint violations (on average). The best performing timetable

construction heuristic is therefore the saturation degree. This construction heuristic creates

timetable with a low number of hard constraint violations, allowing for the mutation operators

to evolve the individuals into feasible timetables. The DGA using the largest degree or

random allocation heuristics creates initial population individuals with too many hard

constraint violations. The mutation operators were not able to remove all the violations in

the required number of generations.

9.2.5.2 Comparison of Phase 1 selection methods

A DGA using standard tournament selection and variant tournament selection are

individually implemented and the results are compared. When testing the performance of

the two selection methods, the following processes and parameter values were used:

138

Table 9.56: Processes and parameter values to test best selection method
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Mutation 1VH

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 75

Generations 50

The success rates and average quality of timetables obtained are listed in the table below

(Table 9.57).

Table 9.57: Results obtained using two different selection methods (Phase 1)

Success Rate

Standard Variant

40.00% 23.33%

Average Quality

Standard Variant

8.50 9.43

Standard deviation

Standard Variant

1.51 2.23

The DGA approach using standard tournament selection produces more feasible timetables.

The timetables produced are also of a better quality. Standard tournament selection is

therefore chosen as the best selection method when choosing parents. When conducting a

hypothesis test for feasibility, a Z-value of 1.39 indicates that the DGA using standard

tournament selection performs better than the DGA using variant tournament selection at a

10% level of significance. The vastly superior success rate and better quality allows for the

conclusion that standard tournament selection be used to select parents during Phase 1.

139

9.2.5.3 Comparison of Phase 1 mutation operators

Four mutation operators are used separately with the DGA. These operators are the 2VH,

1VH, 2VNH and 1VNH operators discussed in Chapter 7. While testing these operators, the

processes and parameter values listed in Table 9.58 were used.

Table 9.58: Processes and parameter values to test best mutation operator

(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 75

Generations 50

The success rates and average quality found when using the DGA with each of the four

mutation operators are shown below.

Table 9.59: Results obtained using different mutation operators (Phase 1)

Success Rate

2VH 1VH 2VNH 1VNH

23.33% 40.00% 0.00% 0.00%

Average HC Violations (and standard deviations)

2VH 1VH 2VNH 1VNH

2.27 (1.8) 1.80 (1.85) 49.13 (33.69) 900.07 (112.8)

Average Quality

2VH 1VH 2VNH 1VNH

8.14 8.50 NA NA

The success rates listed in Table 9.59 indicate that the DGA using the 2VNH or the 1VNH

operators do not produce any feasible timetables. The DGA did find feasible timetables

when using the 1VH or 2VH operators. The large difference in the average number of hard

constraint violations indicates the importance of hill climbing when addressing this school

140

timetabling problem. Similar to the Lewitt and Abramson problem, the Woodlands problem

requires that all tuples are allocated to all available periods with no free periods. With the

addition of subclass and co-teaching requirements that involve several classes and

teachers, the probability of clashes when swapping increases (thus the need for hill

climbing). The DGA using the 1VH operator produces more feasible timetables while the

DGA using the 2VH operator produces better quality timetables. Hypothesis tests are

conducted for feasibility. The hypothesis tested is that the DGA using the 1VH operator

performs better than the DGA using the 2VH operator. A Z-value of 0.99 is calculated,

indicating that there is not enough evidence to suggest that there is a statistically significant

difference in performance between the two mutation operators. The 1VH operator is chosen

as the preferred mutation operator due to the high success rate obtained.

9.2.5.4 Comparison of Phase 2 selection methods

For Phase 2, standard tournament selection and variant tournament selection are

considered when selecting parents.

Table 9.60: Processes and parameter values to test best Phase 2 selection method
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation 1VH

Phase 2

Mutation Random swap

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 75

Generations 50

The calculated success rates and average qualities are exactly the same and can be seen in

Table 9.61 below. Therefore, either selection method can be used.

141

Table 9.61: Results using two selection methods (Phase 2)

Success Rate

Standard Variant

40.00% 40.00%

Average Quality

Standard Variant

8.50 8.50

9.2.5.5 Comparison of Phase 2 mutation operators

Four mutation operators are used during Phase 2 to improve the quality of the feasible

timetables. The four mutation operators are the random swap, 1V mutation, 2V mutation

and the row swap. The 2V and 1V mutation operators are not considered as these mutation

operators had difficulty in addressing subclass and co-teaching violations (tuples were often

swapped with non-subclass or non-coteaching tuples, resulting in this constraint not being

satisfied).

Two new mutation operators were considered; with both operators being variations of the 1V

mutation operator. The first new operator finds a single soft constraint violation. If the

violation found involves subclass violations, then the entire row is swapped rather than just

the cells involved. This mutation is referred to as 1 violation subclass row swap (1VSRS).

The second new operator is a one violation row mutation where the entire row of a cell

containing any soft constraint violation is swapped with a randomly chosen row. This

mutation operator is referred to as the 1 violation row swap (1VR). The use of the row swap

was justified as swapping of rows rather than specific tuples prevents the possibility of

clashes and prevents tuples involved in subclass or co-teaching requirements from being

separated. Table 9.62 lists the processes and parameter values used when testing each

mutation operator.

142

Table 9.62: Processes and parameter values to test best Phase 2 mutation operator
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid mutation

Phase 2

Selection Standard

Constant Parameter Values

SCM 10

Population Size 500

Tournament Size 10

Swaps per mutation 75

Generations 50

The average qualities found for the DGA approach using each mutation operator is listed in

the table below (Table 9.63).

Table 9.63: Results obtained using proposed soft mutation operators (Phase 2)

Average Quality (Feasible Timetables)

Random Swap (RaS) Row swap (RS) 1VSRS 1VR

8.50 6.92 5.00 6.92

Standard deviation

Random Swap (RaS) Row swap (RS) 1VSRS 1VR

1.51 0.79 1.41 0.79

The DGA using the 1VSRS produces the best quality timetables with an average of five soft

constraint violations per feasible timetable produced. The frequency distribution (Figure

9.15) showing the number of quality timetables produced also indicates that this mutation

operator performs better than the other operators. From all the feasible timetables

produced, the DGA using this mutation operator produces the best timetable with three soft

constraint violations. Based on the quality obtained and the frequency chart shown below,

the best mutation operator is the 1VSRS mutation where rows are swapped only when a co-

teaching/subclass violation is found.

143

Figure 9.15: Frequency chart showing quality for proposed soft mutation operators

Hypothesis tests are conducted for quality and three hypotheses are tested. The

Hypotheses are:

 The DGA using the 1VSRS operator performs better than the DGA using the RaS

 The DGA using the 1VSRS performs better than the DGA using RS

 The DGA using the 1VSRS performs better than the DGA using 1VR

The hypotheses and corresponding Z-values are listed in Table 9.64.

Table 9.64: Hypotheses and Z-values for quality

Hypothesis Z-value

H0: µRaS = µ1VSRS;

HA: µRaS > µ1VSRS
0.01

H0: µRS = µ1VSRS;

HA: µRS > µ1VSRS
0.01

H0: µ1VR = µ1VSRS;

HA: µ1VR > µ1VSRS
0.01

From the Z-values, it is concluded that there is no statistically significant difference in

performance between any of the mutation operators. This is due to the average cost and the

standard deviation values of the results being close to each other. The chosen Phase 2

mutation operator is the 1VSRS mutation operator. The DGA using this mutation operator

0

1

2

3

4

5

6

7

8

9

0-2 3-4 5-6 7-8 9-10 11-12 13-14

N
o

 o
f

ti
m

e
ta

b
le

s
p

ro
d

u
ce

d

SC Violation range

Frequency distribution for timetables
produced

Simple Swap

Random Row Swap

1 Violation Swap (Combination
Violation Row Swap Only

1 Violation Row Swap

144

produces the better quality timetables more frequently than the DGA using the other tested

operators.

9.2.6 Best performing DGA processes
Table 9.65 shows a summary of all the heuristics, selection methods and genetic operators

that were chosen for each of the data sets.

Table 9.65: Summary of best heuristics, methods and operators for each data set

 PHASE 1 PHASE 2

Data Set Primary
construction
Heuristic

Secondary
heuristics

Selection
Method

Genetic
Operators

Selection
Method

Genetic
Operator

HDTT4 Saturation Std/Variant 2VNH

HDTT5 Saturation Variant 2VNH

HDTT6 Saturation Variant 2VNH

HDTT7 Saturation Variant 2VNH

HDTT8 Saturation Standard 2VNH

Valouxis Saturation Teacher
lessons,
Teacher
availability

Variant 1VHC Variant Random
Swap

HS1 Saturation SubClass/Co
-Teaching

Variant 1VHC Standard 1 Violation

HS2 Saturation SubClass/Co
-Teaching

Variant 1VHC Standard 1 Violation

HS3 Saturation SubClass/Co
-Teaching

Variant 1VHC Standard 1 Violation

HS4 Saturation SubClass/Co
-Teaching

Variant 1VHC Variant 1 Violation

HS5 Largest
Degree

SubClass/Co
-Teaching

Variant 1VNH Standard Random
Swap

HS7 Saturation SubClass/Co
-Teaching

Variant 1VHC Standard 1 Violation

Lewitt Saturation Double
Periods

Standard Hybrid Variant Random
Swap

Woodlands Saturation SubClass/Co
-Teaching,
Teachers
involved in
Co-Teaching,
Teacher
lessons

Standard 1VHC Standard Hybrid

In terms of the construction heuristic, with the exception of data set HS5, the DGA using the

saturation degree heuristic was able to produce the most number of feasible timetables. In

addition, the quality of the timetables produced was better than when using the other low-

level heuristics. Hypothesis tests conducted indicate that the saturation degree heuristic

performs better than both the random allocation and largest degree heuristics. This is due to

145

the ability of the saturation degree to continuously revise priorities for tuples every time an

allocation is performed. As a result, a strong initial population is created allowing the

mutation operators to remove the few remaining constraint violations. In the event that two

or more tuples have the same saturation degree value, secondary heuristics must be

applied. The secondary heuristics used may vary depending on the complexity and size of

the problem.

In terms of Phase 1 selection, the choice of variant or standard tournament selection vary

between problems. The objective of this phase is to find feasible timetables. The DGA

approach using the more elitist standard tournament selection performed better when

applied to the tightly constrained problem sets such as HDTT8, Lewitt and Woodlands. The

DGA approach using the variant tournament selection performed better when applied to the

smaller and less complex HDTT data sets and the Valouxis and Beligiannis problems.

The chosen mutation operator for Phase 1 varies depending on the problem. The best

mutation operator involves searching for a violation and swapping it with either another

violation or any random tuple. A hill climbing strategy may be adopted but is not always the

best option as is found when solving the Abramson problem. When applying the approach

to the Abramson problem, it is found that hill climbing adversely affects the performance of

the DGA. When conducting hypothesis tests, it is found that the DGA using the mutation

operators listed in the table above performs better than the DGA using the other mutation

operators tested.

Similar to Phase 1, the best selection method to use for Phase 2 varies between problems.

In the case of the Lewitt and Woodlands problems, either selection method can be used.

For the Lewitt, Woodlands and Valouxis problems, hypothesis tests conducted found that

there is no significant difference in performance when comparing the DGA using the different

selection methods. For the Beligiannis problems, hypothesis tests statistically show (for

three out of the five data sets) that the DGA using variant tournament selection performed

better than the DGA approach using standard tournament selection.

As with Phase 1, there is no single dominant mutation operator for Phase 2 and the choice

of the mutation operator depends on the problem. In the case of the Woodlands problem, a

1VH mutation operator is used where a row swap occurs in the event of a soft constraint

violation for tuples that have subclasses or co-teaching requirements.

146

9.3 Fine-tuning of DGA control parameter values
This section provides a discussion on the fine-tuning of the control parameter values. The

fine-tuning is performed by hand [EIBE99], i.e. experimenting with the DGA using different

parameter values and choosing the parameter value that produced the best results. It must

be noted that parameters are not independent and different sets of parameter values may

perform better than others. However, experimentation using different combinations of

parameter values will be a time consuming process that will involve a large number of

experiments. It is thus practically unfeasible and as a result the parameter values obtained

in this study cannot be regarded as optimal.

Each parameter is fine-tuned while other processes and parameter values remain constant.

Similar to experiments conducted by Caldeira [CALD97], Tongchim [TONG99], Sarmady

[SARM07], Goldberg et al. [GOLE89], and Sigl [SIGL03], between three and four values are

tested per parameter with each value being within a specified range. The tested parameters

along with the range of values being tested are listed in Table 9.66 below. The range of

population sizes are based on the population sizes used in studies by Goldberg et al.

[GOLE89], Spears [SPED91] and Zitzler [ZITZ99]. In the study by Xie [XIE09], tournament

sizes of between 5 and 20 were used and similar values are tested in this study.

Table 9.66: Ranges for each parameter value

Parameter Tested range Note:

SCM size 1 to 100 Only applicable to Phase
1.

Population size 200 to 1000 Constant population size
adopted for every
generation.

Tournament size 5 to 20 Applicable to tournament
selection for Phase 1 and
Phase 2.

Swaps 20 to 200 Applicable to mutation
operators for Phase 1 and
Phase 2.

Maximum number of
generations

20 to 75 Applicable to Phase 1 and
Phase 2.

Based on the performance of the algorithm with the different parameter values, a decision

will be made as to which parameter values to use.

9.3.1 The Abramson benchmark school timetabling problem
This section describes the results of fine-tuning the parameter values for the Abramson

benchmark problem.

147

9.3.1.1 Fine tuning the SCM size

The SCM creates and evaluates a set of timetables with the best timetable being added to

the initial population. The processes of the genetic algorithms as well as the parameter

values used when testing each SCM size is listed in the table below:

Table 9.67: Processes and parameter values to test best SCM size (HDTT problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 2VNH

Constant Parameter Values

Population Size 1000

Tournament Size 10

Swaps per mutation 20

Generations 50

Table 9.68 lists the success rates found when using each SCM size as well as the number of

generations required to find a solution.

Table 9.68: SCM parameter value – Performance comparison

 SUCCESS RATE AVERAGE GEN SOLUTION FOUND

 SCM Size SCM Size

 SCM Size 1 SCM Size 50 SCM Size 100 SCM Size 1 SCM Size 50 SCM Size 100

HDTT4 100.00% 100.00% 100.00% HDTT4 2 1 1

HDTT5 93.33% 100.00% 100.00% HDTT5 5 2 2

HDTT6 46.67% 63.33% 56.67% HDTT6 9 6 7

HDTT7 20.00% 23.33% 20.00% HDTT7 19 16 15

HDTT8 6.67% 6.67% 6.67% HDTT8 40 26 20

The table shows that the DGA manages to produce feasible solutions for all SCM values

tested. The average hard constraint (HC) cost and the standard deviations are shown in

Table 9.69.

148

Table 9.69: Average HC Cost (and standard deviation) for different SCM values

 SCM Size 1 SCM Size 50 SCM Size 100

HDTT4 0 (0) 0 (0) 0 (0)

HDTT5 0.13 (0.51) 0 (0) 0 (0)

HDTT6 1.07 (1.01) 0.73 (0.98) 0.87 (1.01)

HDTT7 1.6 (0.81) 1.57 (0.9) 1.63 (0.85)

HDTT8 1.9 (0.55) 1.9 (0.55) 2 (0.64)

By observing the success rates, it is noted that for each parameter value, there is very little

difference in performance. The DGA finds feasible timetables for almost every run when

applied to the data sets HDTT4 and HDTT5. As the number of requirements increases, the

success rate begins to fall. Figure 9.16 illustrates that the DGA using an SCM value of 50

produces more feasible timetables than when using other SCM parameter values, but the

difference is small. Based on the SCM values tested, it is concluded that the SCM does not

play a major role in producing feasible timetables for the Abramson school timetabling

problem.

Figure 9.16: Success rates for various SCM Values

Figure 9.17 illustrates the average number of generations required to find a solution for each

data set. The algorithm takes the longest time (in generations) to find a solution when no

SCM is used. The main difference is found when using SCM values of 50 and 100 for the

final data set (HDTT8), with the difference being 5 generations apart. From the SCM values

tested, a value of 50 will be used as the DGA produces a slightly higher success rate when

using this value.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Data Set

Success Rates for Varied SCM Parameter
Values

SCM Size 1

SCM Size 50

SCM Size 100

149

Figure 9.17: Bar chart showing average generations for each SCM size

9.3.1.2 Fine-tuning the population size

Initially, smaller population sizes were attempted but as can be seen in Table 9.70, results

were poor as feasible timetables were only induced for the smaller data sets. As the number

of resources increases, the search area becomes larger and the DGA using smaller

population sizes of 50 and 100 performed poorly.

Table 9.70: Trial runs using population sizes of 100 and 50

Average HC Violations (and best HC cost): Population size = 100

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

0 (0) 1.11 (0) 1.78 (0) 2.89 (2) 3.33 (0)

Average HC Violations (and best HC cost): Population size = 50

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

1.33 (0) 1.55 (0) 2.22 (2) 2.67 (2) 4.33 (2)

As a result of the poor performance using smaller population sizes, larger population sizes of

500, 750 and 1000 were considered. Table 9.71 lists the processes and parameter values

that were kept constant when testing the different population sizes.

0

5

10

15

20

25

30

35

40

45

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Average number of generations for
solutions

SCM Size 1

SCM Size 50

SCM Size 100

150

Table 9.71: Processes and parameter values to test best population size (HDTT
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 2VNH

Constant Parameter Values

SCM Size 50

Tournament Size 10

Swaps per mutation 20

Generations 50

The success rates and the number of generations taken to find a solution are shown in Table

9.72.

Table 9.72: Population Size results

 SUCCESS RATE AVERAGE GEN SOLUTION FOUND

 Pop Size Pop Size

 500 750 1000 500 750 1000

HDTT4 100.00% 100.00% 100.00% HDTT4 1 1 1

HDTT5 86.67% 100.00% 100.00% HDTT5 3 2 2

HDTT6 33.33% 46.67% 63.33% HDTT6 6 6 6

HDTT7 3.33% 20.00% 23.33% HDTT7 18 14 16

HDTT8 3.33% 0.00% 6.67% HDTT8 34 50 26

Table 9.73 lists the average cost (and standard deviations) found when using the DGA with

different population sizes.

Table 9.73: Average hard constraint violations (and standard deviations) for different
population sizes

 Population Size

 500 750 1000

HDTT4 0 (0) 0 (0) 0 (0)

HDTT5 0.27 (0.69) 0 (0) 0 (0)

HDTT6 1.33 (0.96) 1.07 (1.01) 0.73 (0.98)

HDTT7 1.97 (0.41) 1.6 (0.81) 1.57 (0.9)

HDTT8 2.3 (0.7) 2.3 (0.6) 1.9 (0.55)

151

From Table 9.72 and 9.73 above, it appears that an increase in the population size not only

resulted in more feasible timetables, but the average number of constraint violations was

also reduced. A bar graph of the success rates for different population sizes is depicted

below (Figure 9.18):

Figure 9.18: Bar chart showing success rates for various population sizes

The bar chart illustrates that a population size of 1000 produces more feasible timetables

than the other population sizes tested. The success rates also tend to decrease as the size

and complexity of the problem increases. A population size of 1000 will be used as the DGA

performs best when using this value.

9.3.1.3 The best tournament size

The tournament size parameter determines the number of participants to be considered

during the selection phase of the DGA approach. Table 9.74 lists the processes and

parameter values used when testing the different tournament sizes.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Su
cc

e
ss

 R
at

e

Data set

Success rates for varying population
sizes

Pop Size 500

Pop Size 750

Pop Size 1000

152

Table 9.74: Processes and parameter values to test best tournament size (HDTT
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 2VNH

Constant Parameter Values

SCM Size 50

Population size 1000

Swaps per mutation 20

Generations 50

Table 9.75 shows the success rates and the average number of generations taken to find a

solution. Table 9.76 shows the average hard constraint cost and the standard deviations

found when running the DGA with the different tournament sizes.

Table 9.75: Tournament size results

 SUCCESS RATE AVERAGE GEN SOLUTION FOUND

 Tournament Size Tournament Size

 5 10 15 20 5 10 15 20

HDTT4 100.00% 100.00% 100.00% 100.00% HDTT4 1 1 1 1

HDTT5 100.00% 100.00% 96.67% 100.00% HDTT5 2 2 2 2

HDTT6 56.67% 63.33% 76.67% 56.67% HDTT6 8 6 6 5

HDTT7 30.00% 23.33% 20.00% 10.00% HDTT7 20 16 14 14

HDTT8 6.67% 6.67% 3.33% 3.33% HDTT8 33 26 29 20

Table 9.76: Average HC Cost (and standard deviations)

 Tournament Size

 5 10 15 20

HDTT4 0 (0) 0 (0) 0 (0) 0 (0)

HDTT5 0 (0) 0 (0) 0.07 (0.37) 0 (0)

HDTT6 0.87 (1.01) 0.73 (0.98) 0.47 (0.86) 0.87 (1.01)

HDTT7 1.4 (0.93) 1.57 (0.9) 1.6 (0.81) 1.83 (0.65)

HDTT8 1.93 (0.58) 1.9 (0.55) 2 (0.45) 2.03 (0.49)

A bar graph depicting the success rate of each tournament size is shown below:

153

Figure 9.19: Column chart showing success rates for various tournament sizes

Feasible solutions are found when using any tournament parameter value with the success

rates differing for each data set. For data sets HDTT4 and HDTT5, high success rates of at

least 96% are found when using any tournament size. As the number of requirements

increase, the success rate once again decreases. For HDTT6, the best tournament size to

use is 15, while for HDTT7; the best tournament size to use is 5. For the HDTT8 data set,

the algorithm performs best when using tournament sizes of 5 and 10. A bar chart showing

the time taken to find solutions in terms of generations is shown below (Figure 9.20).

Figure 9.20: Column chart showing average generations for various tournament sizes

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Su
cc

e
ss

 r
at

e

Data set

Success Rate for various Tournament
Sizes

5

10

15

20

0

5

10

15

20

25

30

35

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

A
ve

ra
ge

 n
o

 o
f

ge
n

e
ra

ti
o

n
s

Data sets

Average number of generations for
various Tournament Sizes

5

10

15

20

154

The chart illustrates a relationship between the tournament size and the number of

generations in which solutions are found. A disadvantage of a higher tournament size is that

the genetic algorithm converged prematurely due to the higher selection pressure. While

feasible solutions are found in a fewer number of generations, the success rate is affected

as the algorithm converges prematurely. To conclude, the best tournament size is

dependent on the problem. A tournament size of 10 is used as this tournament size

provides a fair balance between the success rate and number of generations taken to find a

solution.

9.3.1.4 Fine-tuning the number of swaps

The mutation operator performs a number of swaps to reduce hard constraint violations.

Table 9.77 lists the processes and parameter values used to test the different number of

swaps. A table listing the success rates and average number of generations to find a

solution for each swap parameter value is shown below in Table 9.78.

Table 9.77: Processes and parameter values to test best swaps per mutation (HDTT
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 2VNH

Constant Parameter Values

SCM Size 50

Population size 1001

Swaps per mutation 200

Table 9.78: Results based on number of swaps

 SUCCESS RATE AVERAGE GEN SOLUTION FOUND

 Swaps Swaps

 20 50 100 200 20 50 100 200

HDTT4 100.00% 100.00% 100.00% 100.00% HDTT4 1 1 1 1

HDTT5 100.00% 100.00% 100.00% 100.00% HDTT5 2 1 1 1

HDTT6 63.33% 76.67% 80.00% 100.00% HDTT6 6 5 3 2

HDTT7 23.33% 23.33% 40.00% 46.67% HDTT7 16 10 7 6

HDTT8 6.67% 10.00% 6.67% 13.33% HDTT8 26 19 12 12

A bar chart depicting the success rates for each data set is shown below (Figure 9.21).

155

Figure 9.21: Bar chart showing success rates for various numbers of swaps

As can be seen in Figure 9.21 and Table 9.78, there appears to be a relationship between

the success rate and number of swaps. The success rate increases as the number of swaps

increase. An increase in the number of swaps also affects the number of generations taken

to find a solution as can be seen in the column chart in Figure 9.22.

Figure 9.22: Column chart showing average generations for each swap parameter
value

From the column chart illustrated in Figure 9.22, it appears that an increase in the number of

swaps reduces the number of generations required to find a feasible solution. The number

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Data sets

Success rates for various numbers of
swaps per mutation

20

50

100

200

0

5

10

15

20

25

30

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

N
o

 o
f

ge
n

e
ra

ti
o

n
s

Data sets

Average number of generations for
various swap values

20 swaps

50 swaps

100 swaps

200 swaps

156

of swaps to be used for the DGA is 200 due to the increase in success rate and the

reduction in generations taken to find a solution.

9.3.1.5 Maximum number of generations

Initially, the maximum number of generations is set to fifty. While conducting tests described

in sections 9.3.1.1 to 9.3.1.4, it was found that either a solution is found before generation 50

or the algorithm converges prematurely. Thus the generation limit for this problem will be set

at fifty generations.

9.3.2 The Valouxis school timetabling problem
This section describes the fine-tuning of the parameter values for the DGA when applied to

the Valouxis school timetabling problem and the results obtained.

9.3.2.1 Fine-tuning the SCM size

The SCM parameter value sets the number of timetables to develop when creating a single

individual of the initial population. Once these timetables are created, they are evaluated

and the fittest timetable is added to the initial population.

Table 9.79: Processes and parameter values to test best SCM size (Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation 2 Violation

Constant Parameter Values

Population Size 750

Tournament Size 10

Swaps per mutation 20

Generations 50

The influence of the SCM parameter values on success rates, average HC violations and

average timetable quality is shown in Table 9.80 below.

157

Table 9.80: Results for various SCM values

Success Rate

SCM = 1 SCM = 10 SCM = 50

70.00% 83.33% 93.33%

Average HC Cost (and standard deviations)

SCM = 1 SCM = 10 SCM = 50

0.3 (0.47) 0.17 (0.38) 0.07 (0.25)

Average Quality (Feasible Timetables)

SCM = 1 SCM = 10 SCM = 50

49.86 47.00 46.89

When using the DGA approach with an SCM value of 50, a 93.33% success rate is found

over thirty runs. This is the highest success rate when compared to using SCM values of 1

and 10. Over the thirty runs conducted, the DGA approach with an SCM size of 50 also

produces the best quality timetables on average. In terms of runtime, a DGA approach with

a larger SCM size may take longer as more timetables are produced for every individual of

the initial population.

A frequency chart, showing the distribution of timetables in terms of quality, is shown below:

Figure 9.23: Frequency chart showing quality for various SCM values

When using an SCM value of 50, most timetables produced contain between 40 and 49 soft

constraint violations. The DGA with an SCM size of 10 produces the best quality timetable

with 36 soft constraint violations. An SCM value of 50 is chosen due to a higher success

0

5

10

15

20

30-39 40-49 50-59 60-69 70-79 80-89 90-100

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

SCM = 1

SCM = 10

SCM = 50

158

rate obtained when using this value. The DGA also produces the best quality timetables on

average when using an SCM size of 50.

9.3.2.2 Fine-tuning the population size

The DGA is tested using three different population sizes (500, 750 and 1000) and the results

are evaluated and compared in order to determine the population size that produces the best

success rate and timetable quality. Trial runs using smaller population sizes of 50 and 100

were attempted and it was found that feasible timetables were not always produced.

Additionally, the quality of the feasible timetables was poor when compared to timetables

produced using larger population sizes. The results of the trial runs are shown below. The

low success rates indicate that the initial coverage of the search space was too small and

the evolutionary process found difficulty in finding feasible solutions.

Table 9.81: Trial runs using small population sizes (Valouxis)

 Population size = 100 Population size = 50

Success rate 40% 20%

Average HC Cost 0.78 1.22

Best HC Cost 0 0

Average SC Cost 51.75 58.5

Best SC Cost 46 57

The following table shows the processes and parameters used when testing the effect of

different population sizes on the performance of the DGA.

159

Table 9.82: Processes and parameter values to test best population size (Valouxis
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation 2 Violation

Constant Parameter Values

SCM Size 50

Tournament Size 10

Swaps per mutation 20

Generations 50

A summary of the performance of the algorithm using each of the population sizes is shown

in Table 9.83 below.

Table 9.83: Results for various population sizes

Success Rate

Pop = 500 Pop = 750 Pop = 1000

73.33% 93.33% 100.00%

Average HC Cost (and standard deviations)

Pop = 500 Pop = 750 Pop = 1000

0.27 (0.45) 0.07 (0.25) 0 (0)

Average Quality (Feasible Timetables)

Pop = 500 Pop = 750 Pop = 1000

48.68 46.89 45.53

Using a population size of 1000 allows the DGA to find feasible solutions for all thirty runs

that are conducted. The difference in quality when using different population sizes is small,

with the DGA producing between 45 and 46 soft constraint violations when using population

sizes of 750 and 1000 respectively. A frequency chart showing the number of timetables

found in each soft constraint cost is displayed below (Figure 9.24).

160

Figure 9.24: Frequency chart showing quality for various population sizes

The frequency chart illustrates that the DGA using a population size of 1000 produces more

feasible timetables that contain between 30 and 50 soft constraint violations than when using

any of the other tested population sizes. A population size of 1000 will therefore be used

due to the DGA producing the highest success rate when using this population size. Better

quality timetables are also produced when using this population size.

9.3.2.3 Fine-tuning the tournament size

The DGA is run with three tournament sizes of 5, 10 and 15. The following table (Table

9.84) displays the processes and parameter values used to test for the best tournament size.

0

5

10

15

20

25

30-39 40-49 50-59 60-69 70-79 80-89 90-100

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

Pop Size = 500

Pop Size = 750

Pop Size = 1000

161

Table 9.84: Processes and parameter values to test best tournament size (Valouxis
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation 2 Violation

Constant Parameter Values

SCM Size 50

Population Size 1000

Swaps per mutation 20

Generations 50

The success rates, average HC cost and average timetable quality found when using

different tournament sizes are shown in the table below.

Table 9.85: Results for various tournament sizes

Success Rates

5 10 15

100% 100% 93.33%

Average HC Cost (and standard deviations)

5 10 15

0 (0) 0 (0) 0.07 (0.25)

Average Quality (Feasible timetables)

5 10 15

46.03 45.53 46.68

The DGA produces high success rates when using all tested tournament sizes. The

difference in timetable quality when using different tournament sizes is very small. A

tournament size of 10 produces timetables with the best average quality of approximately 45

soft constraint violations per feasible timetable. The timetable with the best quality is

produced when using a tournament size of 15 (37 soft constraint violations). The frequency

chart (Figure 9.25) shows the distribution of timetables with regard to quality.

162

Figure 9.25: Frequency chart showing quality for various tournament sizes

For all runs, the DGA using all tournament sizes produces at least one timetable with soft

constraint costs of between 30 and 39. The majority of the timetables generated contain

between 40 and 49 soft constraint violations. In conclusion, a tournament size of 10

produces the best performance in terms of average timetable quality (although the difference

is small). The frequency chart also shows that the DGA produces better quality timetables

more frequently when using a tournament size of 10.

9.3.2.4 Fine-tuning the number of swaps

The DGA is tested using four different swap parameter values. The objective is to determine

the best swap parameter value to use. Table 9.86 lists the processes and parameter values

used when testing the DGA with each of the swap parameter values.

0

5

10

15

20

25

30

30-39 40-49 50-59 60-69 70-79

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

Tourn Size = 5

Tourn Size = 10

Tourn Size = 15

163

Table 9.86: Processes and parameter values to test best swap parameter value
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation 2 Violation

Constant Parameter Values

SCM Size 50

Population Size 1000

Tournament Size 10

Generations 50

Table 9.87 shows the success rates and average timetable quality found when the DGA is

run with different swap parameter values.

Table 9.87: Results for different number of swaps per mutation

Success Rate

Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200

100% 100% 100% 100%

Average Quality (Feasible Timetables)

Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200

44.63 42.47 41.97 41.03

The DGA produces feasible timetables when using any swap parameter value. Based on

the average quality of the timetables produced, a trend is shown where increasing the

number of swaps results in an improvement of the quality of the timetable. This also affects

the runtime as more swaps result in the algorithm taking longer to reach the generation limit.

The best timetable found contains 35 soft constraint violations and is found when using a

swap parameter value of 100. The frequency diagram (Figure 9.26) below illustrates the

distribution of timetables in terms of quality when using different swap parameter values.

164

Figure 9.26: Frequency chart showing quality for various swap values

Figure 9.26 clearly shows that the majority of timetables created contain between 40 and 49

soft constraint violations. For all runs, eight timetables are found that have between 30 and

39 soft constraint violations when running the genetic algorithm with a swap parameter value

of 100. A swap value of 100 will therefore be used because of the high success rate

obtained as well as having produced the most high quality timetables.

9.3.2.5 Maximum number of generations

In order to determine the best number of generations to use, the convergence point of the

algorithm must be determined. Three generation parameter values are tested with the

following processes and parameter values being constant.

0

5

10

15

20

25

30

30-39 40-49 50-59 60-69 70-79

N
u

m
b

e
r

o
f

Ti
m

e
ta

b
le

s

Soft Constraint Range

Frequency Chart for Quality of
Timetables

Swaps = 20

Swaps = 50

Swaps = 100

Swaps = 200

165

Table 9.88: Processes and parameter values to test best number of generations
(Valouxis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Variant

Mutation 1VH

Phase 2

Selection Variant

Mutation 2 Violation

Constant Parameter Values

SCM Size 50

Population Size 1000

Tournament Size 10

Swaps per mutation 100

The success rates listed in Table 9.89 indicate that feasible timetables are produced for all

three tested generation values. In terms of quality, generation values of 50 and 75 produce

the same quality timetables for all runs. This means that before this point, the algorithm has

converged between generations 20 and 50. For the Valouxis problem, a generation

parameter value of 50 is used. The timetables do not improve in quality after 50

generations.

Table 9.89: Results for different number of generations per phase

Success Rates

20 50 75

100% 100% 100%

Average Quality

20 50 100

43.43 41.97 41.97

9.3.3 The Beligiannis Greek school timetabling problem
The following sections outline the fine-tuning process for control parameter values when

applying the DGA to the Beligiannis high school timetabling problem.

9.3.3.1 Fine-tuning the SCM size

The sequential construction method creates a set of timetables with the best timetable being

added to the initial population. The SCM is called X times where X is the size of the

166

population. Table 9.90 lists the processes and parameter values used to test the DGA using

the different SCM values.

Table 9.90: Processes and parameter values to test SCM size (Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for HS5)

Selection Variant

Mutation 1VH (1VNH for HS5)

Phase 2

Selection Standard

Mutation 1 Violation (Random swap for HS5)

Constant Parameter Values

Population Size 750

Tournament Size 10

Swaps per mutation 20

Number of generations 50

The DGA is tested using four SCM values and the success rates are listed below.

Table 9.91: Success rates for various SCM parameter values

Success Rates

 SCM = 1 SCM = 10 SCM = 25 SCM = 50

HS1 100.00% 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00% 100.00%

HS5 100.00% 100.00% 100.00% 100.00%

HS7 100.00% 100.00% 100.00% 100.00%

An SCM parameter value of 1 indicates that no SCM is used. Table 9.91 shows that for all

runs, all SCM values produce feasible timetables. In order to determine the best SCM value,

the average quality of the timetables produced must be compared. The average timetable

quality found for each data set by applying the DGA with different SCM parameter values is

shown in the Table 9.92.

167

Table 9.92: Average quality found per data set using different SCM parameter values

Average Quality (and standard deviation)

 SCM = 1 SCM = 10 SCM = 25 SCM = 50

HS1 117.67 (8.1) 115.10 (7.02) 114.03 (5.83) 115.77 (8)

HS2 120.27 (7.24) 122.87 (8.34) 123.20 (7.03) 122.53 (7.32)

HS3 49.27 (4.83) 48.00 (3.99) 48.20 (5.23) 48.20 (4.06)

HS4 75.83 (4.59) 74.27 (4.28) 73.63 (4.30) 74.03 (5.40)

HS5 57.40 (7.83) 55.53 (7.97) 57.47 (8.88) 54.80 (8.56)

HS7 139.80 (6.12) 138.13 (7.44) 137.33 (5.65) 137.53 (6.13)

For the data sets HS1, HS4 and HS7, an SCM value of 25 produces the best quality

timetables. An SCM value of 1 and 10 produce the best quality timetables for data sets HS2

and HS3 respectively. When applied to data set HS5, the DGA produces the best quality

timetables when using an SCM value of 50. When using this SCM value, the number of

average soft constraint violations is reduced by at least one.

The success rates and average quality vary between data sets. Any of the tested SCM

values could be used and feasible timetables are produced. In terms of quality, the ideal

SCM parameter value varies between data sets. An SCM size of 25 is used when

conducting the remaining tests for this problem.

9.3.3.2 Fine-tuning the population size

Three population sizes of 200, 500 and 750 are tested and 100% success rates are

achieved when applying the DGA to all of the data sets, meaning that the DGA using any of

the three population sizes tested manages to produce feasible timetables for every run (see

Table 9.95). Trial runs using smaller population sizes were also attempted. While feasible

timetables were found, timetable quality was poor when compared to larger population sizes

(see Table 9.93).

Table 9.93: Trial runs for smaller populations sizes (Beligiannis problem)

Populations size = 100

 HS1 HS2 HS3 HS4 HS5 HS7

Average SC cost 125.78 136.78 53.56 79.11 75.13 145.44

Best SC cost 117 128 44 73 62 133

Population size = 50

 HS1 HS2 HS3 HS4 HS5 HS7

Average SC cost 128 140.78 54.89 83.89 73.38 150.67

Best SC cost 117 131 52 79 63 145

168

Table 9.94 below shows the processes and parameter values that are kept constant when

testing each population size.

Table 9.94: Processes and parameter values to test population size (Beligiannis
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for HS5)

Selection Variant

Mutation 1VH (1VNH for HS5)

Phase 2

Selection Standard

Mutation 1 Violation (Random swap for HS5)

Constant Parameter Values

SCM size 25 (50 for HS5)

Tournament Size 10

Swaps per mutation 20

Number of generations 50

Table 9.95: Success rates for different population sizes

Success Rates

 Pop Size = 200 Pop Size = 500 Pop Size = 750

HS1 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00%

HS5 100.00% 100.00% 100.00%

HS7 100.00% 100.00% 100.00%

In order to determine the best population size, timetable quality must also be compared.

The average timetable quality found when the DGA approach is applied to each data set

using different population sizes is listed in Table 9.96.

169

Table 9.96: Average quality produced for different population sizes

Average Soft Constraint Violations (and standard deviations)

 Pop Size = 200 Pop Size = 500 Pop Size = 750

HS1 120.03 (7.91) 117.40 (6.09) 114.03 (5.83)

HS2 129.40 (8.27) 125.83 (8.79) 123.20 (7.03)

HS3 51.57 (5.67) 49.80 (3.97) 48.20 (5.23)

HS4 76.60 (5.12) 74.07 (4.76) 73.63 (4.30)

HS5 61.70 (10.82) 59.30 (10.55) 54.80 (8.56)

HS7 143.07 (8.41) 138.00 (6.51) 137.33 (5.65)

The table shows that for all data sets, a population size of 750 produces the best quality

timetable on average. The column chart in Figure 9.27 illustrates the results listed in Table

9.96. Figure 9.27 shows that the best quality timetables are produced when using the

largest population size of 750.

Figure 9.27: Column chart showing quality of different population sizes

The population size to be used is 750 as the DGA approach found better quality timetables

when using this parameter value.

9.3.3.3 Fine-tuning the tournament size

The DGA is run using different tournament sizes of 5, 10 and 15. The processes and

parameter values used to test the tournament sizes are listed in the table below (Table

9.97). The results in terms of success rate when using different tournament size values are

shown in the Table 9.98.

40.00

60.00

80.00

100.00

120.00

140.00

HS1 HS2 HS3 HS4 HS5 HS7

Average quality for changing
population sizes

Pop Size = 200

Pop Size = 500

Pop Size = 750

170

Table 9.97: Processes and parameter values to test best tournament size (Beligiannis
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for HS5)

Selection Variant

Mutation 1VH (1VNH for HS5)

Phase 2

Selection Standard

Mutation 1 Violation (Random swap for HS5)

Constant Parameter Values

SCM size 25 (50 for HS5)

Population size 750

Swaps per mutation 20

Number of generations 50

Table 9.98: Success rates produced for various tournament sizes

Success Rates

 Tourn Size = 5 Tourn Size = 10 Tourn Size = 15

HS1 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00%

HS5 100.00% 100.00% 100.00%

HS7 100.00% 100.00% 100.00%

In order to determine the tournament size, the average quality of timetables produced also

needs to be analyzed. The quality of timetables produced using the DGA approach with

different tournament sizes are listed in Table 9.99.

Table 9.99: Average quality produced using different tournament sizes

Average SC Cost (and standard deviations)

 Tourn Size = 5 Tourn Size = 10 Tourn Size = 15

HS1 115.37 (5.13) 114.03 (5.83) 114.30 (7.19)

HS2 122.13 (6.64) 123.20 (7.03) 121.87 (8.02)

HS3 46.20 (4.53) 48.20 (5.23) 47.43 (4.64)

HS4 71.70 (3.94) 73.63 (4.3) 72.07 (4.56)

HS5 52.63 (7.76) 54.80 (8.56) 57.90 (7.34)

HS7 137.60 (6.31) 137.33 (5.65) 136.90 (6.75)

171

Table 9.99 shows that for each data set, the DGA approach could use different tournament

sizes in order to produce better quality timetables. For the larger data sets with more

classes and teachers (HS1, HS2 and HS7), a tournament size of between 10 and 15

performs best (higher selection pressure) while for the smaller size data sets (HS3, HS4 and

HS5), a tournament size of 5 produces the best quality timetables (lower selection pressure).

With the exception of data set HS5, the tournament size is set to 15. For data set HS5, a

tournament size of 5 will be used as the average quality of timetables produced using this

tournament size are found to be better than when using other tournament sizes.

9.3.3.4 Fine-tuning the number of swaps

This fine-tuning test determines the number of swaps that the mutation operator must

perform when applied to each individual. Swap values of 20, 50, 100 and 200 were tested

with the following processes and parameter values (Table 9.100):

Table 9.100: Processes and parameter values to test best number of swaps
(Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for HS5)

Selection Variant

Mutation 1VH (1VNH for HS5)

Phase 2

Selection Standard

Mutation 1 Violation (Random swap for HS5)

Constant Parameter Values

SCM size 25 (50 for HS5)

Population size 750

Tournament size 15 (5 for HS5)

Number of generations 50

The success rate and average quality found for the DGA approach using four different swap

parameter values is shown in Tables 9.101 and 9.102.

172

Table 9.101: Success rates produced using different swap parameter values

Success Rates

 Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200

HS1 100.00% 100.00% 100.00% 100.00%

HS2 100.00% 100.00% 100.00% 100.00%

HS3 100.00% 100.00% 100.00% 100.00%

HS4 100.00% 100.00% 100.00% 100.00%

HS5 100.00% 56.67% 13.33% 0.00%

HS7 100.00% 100.00% 100.00% 100.00%

Table 9.102: Average quality produced using different swap parameter values

Average SC Cost (and standard deviations)

 Swaps = 20 Swaps = 50 Swaps = 100 Swaps = 200

HS1 114.30 (7.19) 112.60 (6.63) 109.33 (6.72) 107.20 (6.21)

HS2 121.87 (8.02) 118.20 (7.90) 117.77 (5.82) 113.23 (7.83)

HS3 47.43 (4.64) 45.13 (3.14) 45.00 (3.95) 42.47 (3.69)

HS4 72.07 (4.56) 71.77 (4.87) 69.70 (4.15) 68.80 (4.25)

HS5 52.63 (7.76) 51.94 (7.39) 48.50 (9.88) NA

HS7 136.90 (6.75) 135.70 (5.64) 135.17 (5.81) 130.40 (6.08)

Tables 9.101 and 9.102 show that, with the exception of data set HS5, 100% success rates

are found when using the DGA approach with any swap parameter value. The average

quality must be used to determine the best swap parameter value. With the exception of

data set HS5, the DGA produces the best quality timetables when a swap parameter value

of 200 is used. This conclusion is also be made when observing the column chart below

(Figure 9.28).

Figure 9.28: Average quality found for different swap parameter values

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

HS1 HS2 HS3 HS4 HS5 HS7

N
o

 o
f

SC
 V

io
la

ti
o

n
s

Data set

Average quality

Swaps = 20

Swaps = 50

Swaps = 100

Swaps = 200

173

The column chart also shows the effect on quality of timetables produced when increasing

the swap parameter value. The table also indicates an inverse relationship between the

number of swaps and the resultant number of soft constraint violations i.e. as the number of

swaps increase, the number of soft constraint violations decrease. This trend is observed

when the DGA is applied to any of the data sets.

Therefore, the best value for the number of swaps parameter is 200. For the HS5 data set,

the best number of swaps is set to 20 as this swap parameter value produces the most

number of feasible timetables.

9.3.3.5 Maximum number of generations

Generation parameter values of 20, 50 and 75 are used and the performance of the DGA is

evaluated for each generation parameter value.

Table 9.103: Processes and parameter values to test best number of generations
(Beligiannis problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree (Largest degree for HS5)

Selection Variant

Mutation 1VH (1VNH for HS5)

Phase 2

Selection Standard

Mutation 1 Violation (Random swap for HS5)

Constant Parameter Values

SCM size 25 (50 for HS5)

Population size 750

Tournament size 15 (5 for HS5)

Number of swaps 200 (20 for HS5)

The results are displayed below and show the success rates and average quality of the

timetables obtained.

174

Table 9.104: Success rates for varying number of generations

Success Rates

 Gens = 20 Gens = 50 Gens = 75

HS1 100% 100% 100%

HS2 100% 100% 100%

HS3 100% 100% 100%

HS4 100% 100% 100%

HS5 0% 100% 100%

HS7 100% 100% 100%

Table 9.105: Average quality produced for different generation parameter values

Average SC Cost

 Gens = 20 Gens = 50 Gens = 75

HS1 107.73 107.20 107.17

HS2 113.50 113.23 113.23

HS3 42.47 42.47 42.47

HS4 68.80 68.80 68.80

HS5 NA 52.63 52.33

HS7 130.80 130.40 130.40

100% success rates are found for all data sets except when using 20 generations for data

set HS5. This indicates that for this data set, the DGA has not yet converged. In terms of

timetable quality, the DGA converges before generation 20 for data sets HS3 and HS4 (the

smaller data sets in terms of requirements, teachers and classes). For the data sets HS1

and HS5, timetable quality stops improving after generation 50 while for data sets HS2 and

HS7, timetables stop improving after generation 20. The best number of generations (from

the values tested) for all data sets is 75 as the algorithm would have converged at this point.

9.3.4 The W.A. Lewitt primary school timetabling problem
This section describes the fine-tuning process when the DGA approach is applied to the

W.A. Lewitt primary school timetabling problem. All parameter values except the SCM size

are used for both Phase 1 and Phase 2 of the approach.

9.3.4.1 Fine-tuning the SCM size

The performance of the DGA is compared using four SCM values. These values are 1, 10,

20 and 50. The following processes and parameter values were kept constant when testing

these SCM values.

175

Table 9.106: Processes and parameter values to test best SCM size (Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

Population size 500

Tournament size 10

Number of swaps 200

Number of generations 50

The success rates and average quality of timetables produced using the DGA approach with

each SCM value is shown in Table 9.107.

Table 9.107: Success rates and average quality obtained using different SCM
parameter values

Success Rates

SCM = 1 SCM = 10 SCM = 20 SCM = 50

26.67% 43.33% 60.00% 33.33%

Average HC Cost (and standard deviations)

SCM = 1 SCM = 10 SCM = 20 SCM = 50

1.10 (0.8) 0.77 (0.82) 0.63 (0.89) 1.03 (1.00)

Average Quality (and standard deviations)

SCM = 1 SCM = 10 SCM = 20 SCM = 50

10.50 (2.93) 10.54 (3.36) 10.83 (2.55) 10.70 (2.87)

The best success rate is obtained when using a SCM value of 20. In terms of average

quality, there is very little difference found when using any of the SCM values tested. The

frequency diagram (Figure 9.29) also indicates that 6 out of the 18 (33%) timetables

produced using an SCM value of 20 contain between 0 and 9 soft constraint violations. The

DGA with an SCM value of 10 produces 38% of the timetables in this range.

176

Figure 9.29: Frequency chart showing quality for different SCM values

Based on the success rates and the frequency chart, the DGA approach with an SCM of 20

performs better than any other of the SCM values tested. The DGA approach also produces

the best quality timetable when using this parameter value (6 soft constraint violations). An

SCM size of 20 will therefore be used.

9.3.4.2 Fine-tuning the population size

Initially, a lower population size of 50 was attempted, but only one feasible timetable was

found from the initial runs and each run had an average of two hard constraint violations.

The genetic algorithm is then run using population sizes of 100, 200 and 500 respectively.

The performance of the algorithm using each population size is then compared. The

processes and parameter values used when testing the different population sizes are listed

in Table 9.108.

0

2

4

6

8

10

12

14

0-9 10-19 20-29 30-39 40-49

N
u

m
b

e
r

o
f

ti
m

e
ta

b
le

s
P

ro
d

u
ce

d

Soft Constraint Violations

Quality of Timetables Produced

SCM = 1

SCM = 10

SCM = 20

SCM = 50

177

Table 9.108: Processes and parameter values to test best population size (Lewitt
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM size 20

Tournament size 10

Number of swaps 200

Number of generations 50

The success rates, average HC cost and average quality for the DGA using each population

size is shown in Table 9.109.

Table 9.109: Results obtained for different population sizes

Success Rates

Pop Size = 100 Pop Size = 200 Pop Size = 500

16.67% 36.67% 60.00%

Average HC Cost (and standard deviations)

Pop Size = 100 Pop Size = 200 Pop Size = 500

1.6 (1.19) 1.03 (1.13) 0.63 (0.89)

Average Quality (and standard deviations)

Pop Size = 100 Pop Size = 200 Pop Size = 500

11.80 (1.92) 9.82 (2.23) 10.83 (2.55)

Table 9.109 shows that there is a relationship between an increase in the success rate and

an increase in the population size. The DGA approach with a population size of 500

produces the highest success rate followed by a population size of 200 and a population size

of 100. In terms of timetable quality, the average number of soft constraint violations is

lowest when using a population size of 200. The difference in quality when comparing

population sizes of 200 and 500 is less than one soft constraint violation. The frequency

chart below (Figure 9.30) provides more details in terms of timetable quality.

178

Figure 9.30: Frequency chart showing quality for various population sizes

The DGA approach with a population size of 500 produces six timetables that have between

4 and 9 soft constraint violations. The frequency chart also shows that the DGA approach

with a population size of 500 produces more timetables of a higher quality than when using

any other population size. For the Lewitt problem, a population size of 500 will be used.

9.3.4.3 Fine-tuning the tournament size

The DGA approach is tested using tournament sizes of 10 and 20. When testing these two

values, the following processes and parameter values were kept constant:

0

2

4

6

8

10

12

14

0-9 10-19 20-29 30-39 40-49

C
o

u
n

t

No. of Soft Constraint Violations

Frequency Chart for Quality of
Timetable

Population Size = 100

Population Size = 200

Population Size = 500

179

Table 9.110: Processes and parameter values to test best tournament size (Lewitt
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM size 20

Population size 500

Number of swaps 200

Number of generations 50

The success rates and average quality of the timetables produced is shown in Table 9.111.

Table 9.111: GA approach performance when using two tournament sizes

Success Rates

Tournament Size = 10 Tournament Size = 20

60.00% 30.00%

Average Quality (Feasible timetables)

Tournament Size = 10 Tournament Size = 20

10.83 11.22

By observing the success rates, it is concluded that the DGA using a tournament size of 10

performs the best. The DGA approach using this tournament size produces the most

feasible timetables. The low success rate when using a tournament size of 20 indicates that

the selection pressure was too high. This resulted in the algorithm converging prematurely.

The frequency chart below (Figure 9.31) also shows that a sufficient number of high quality

timetables are produced when using a tournament size of 10. The tournament size that will

be used is therefore 10.

180

Figure 9.31: Frequency chart showing quality for various tournament sizes

9.3.4.4 Fine-tuning the number of swaps

This parameter sets the number of swaps performed by the mutation operator. The DGA

approach is tested using four parameter values while other processes and parameter values

were kept constant (see Table 9.112).

Table 9.112: Processes and parameter values to test best number of swaps (Lewitt
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM size 20

Population size 500

Tournament size 10

Number of generations 50

The success rates, average HC cost and average quality of the timetables produced when

applying each of these parameter values are shown in the table below (Table 9.113).

0

2

4

6

8

10

12

14

0-9 10-19 20-29 30-39

N
o

 o
f

ti
m

e
ta

b
le

s
p

ro
d

u
ce

d

SC Ranges

Frequency chart for quality of
timetables

Tournament Size = 10

Tournament Size = 20

181

Table 9.113: Results produced using various swap parameter values

Success Rates

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200

26.67% 16.67% 23.33% 60.00%

Average HC Cost (and standard deviations)

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200

1.27 (1.01) 1.23 (0.82) 1.2 (0.92) 0.63 (0.89)

Average Quality (and standard deviations)

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 200

11.63 (4.00) 11.60 (2.3) 10.86 (1.57) 10.83 (2.55)

From Table 9.113, it can be seen that the highest success rate is obtained when the genetic

algorithm is run using a swap parameter value of 200. The number of swaps also affects the

quality of the timetables produced where the average soft constraint cost decreases as the

swap parameter value increases. The frequency chart below (Figure 9.32) shows the

distribution of timetables with regard to soft constraint violations.

Figure 9.32: Frequency chart showing quality using various swap parameter values

Figure 9.32 shows a frequency diagram with timetables that range between 4 and 18 soft

constraint violations. When using a DGA approach with a swap parameter value of 200, six

out of the 18 timetables produced contain between 6 and 9 soft constraint violations. The

timetable with the fewest soft constraint violations was found when using a swap parameter

value of 50. Despite this, the swap parameter value to be used is 200 due to the high

0

1

2

3

4

5

6

7

8

0-3 4-6 7-9 10-12 13-15 16-18 19-21

Ti
m

e
ta

b
le

s
p

ro
d

u
ce

d

SC Violation Range

Frequency chart for quality of
timetables

Swaps = 50

Swaps = 75

Swaps = 100

Swaps = 200

182

success rate in producing feasible timetables and its ability to produce timetables of a high

quality.

9.3.4.5 Maximum number of generations

This parameter indicates the number of generations for each phase. The performance of the

DGA approach using each generation parameter value is shown in Table 9.114.

Table 9.114: Processes and parameter values to test best number of generations
(Lewitt problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation Degree

Selection Standard

Mutation Hybrid

Phase 2

Selection Variant

Mutation Random swap

Constant Parameter Values

SCM size 20

Population size 500

Tournament size 10

Number of swaps 200

Table 9.115: Results produced using different generation parameter values

Success Rate

Generations = 20 Generations = 50 Generations = 75

40.00% 60.00% 60.00%

Average Quality

Generations = 20 Generations = 50 Generations = 75

11.17 10.83 10.83

When testing the DGA approach using 20 generations, the success rate and average quality

calculated over the thirty runs is found to be 40% and 11.17 respectively. After 50

generations, the success rate and average quality is found to be 60% and 10.83

respectively. After 75 generations, the success rate and average quality of timetables are

found to be the same as the success rate and average timetable quality of generation 50.

This indicates that the algorithm converges between generations 20 and 50. The number of

183

generations is therefore set to 50 as timetable quality could not be improved any further after

50 generations.

9.3.5 The Woodlands secondary school timetabling problem
This section describes the results of fine-tuning the parameters of the DGA for the

Woodlands secondary school timetabling problem. All parameter values except the SCM

size are used for both Phase 1 and Phase 2 of the approach.

9.3.5.1 Fine-tuning the SCM size

The DGA approach is tested using four SCM sizes. While testing the different SCM values,

all processes of the DGA and other parameter values are kept constant (see Table 9.116)

Table 9.116: Processes and parameter values to test best SCM Size (Woodlands
problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation degree

Selection Standard

Mutation 1VH

Phase 2

Selection Standard

Mutation 1 Violation swap with combination row swap

Constant Parameter Values

Population size 500

Tournament size 10

Number of swaps 75

Number of generations 50

The success rates, average HC costs and average quality of timetables found when using

each SCM value is shown in the table below (Table 9.117).

184

Table 9.117: Results using various SCM values

Success Rate

SCM = 1 SCM = 5 SCM = 10 SCM = 20

16.67% 26.67% 40.00% 40.00%

Average HC Cost (and standard deviation)

SCM = 1 SCM = 5 SCM = 10 SCM = 20

2.8 (2.14) 2.13 (1.66) 1.8 (1.85) 1.6 (1.61)

Average Quality (Feasible timetables)

SCM = 1 SCM = 5 SCM = 10 SCM = 20

4.60 5.50 5.00 4.75

The DGA approach using SCM values of 10 and 20 produce the highest success rates. In

terms of quality, the DGA using an SCM value of 20 produces slightly better quality

timetables on average. The best possible timetable is also found when the DGA uses an

SCM value of 20 (two soft constraint violations). The frequency chart (Figure 9.33) below

shows the distribution of the quality of the timetables found.

Figure 9.33: Frequency chart for the two best SCM values

As can be seen in the frequency chart, the DGA with an SCM value of 20 produces slightly

more timetables of a higher quality. Only one timetable with two soft constraint violations is

found. The best SCM parameter value from the tested values is 20 as the DGA approach

using this parameter values produces the most number of feasible timetables. The quality of

the timetables when the DGA uses this parameter value is also competitive when compared

to the other SCM values.

0

1

2

3

4

5

6

7

0-2 3-4 5-6 7-8 9-10 11-12 13-14

N
o

 o
f

ti
m

e
ta

b
le

s
p

ro
d

u
ce

d

SC Violations Range

Frequency chart for quality
timetables

SCM = 10

SCM = 20

185

9.3.5.2 Fine-tuning the population size

The algorithm is run using population sizes of 200, 500 and 750 respectively. Lower

population sizes of 50 and 100 were initially tested and only two feasible timetables were

induced (from ten runs) and each run had an average of 3 hard constraint violations. Table

9.118 lists the processes and parameter values that were kept constant when testing each of

the population sizes of 200, 500 and 750.

Table 9.118: Processes and parameter values to test best population Size
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation degree

Selection Standard

Mutation 1VH

Phase 2

Selection Standard

Mutation 1 Violation swap with combination row swap

Constant Parameter Values

SCM size 20

Tournament size 10

Number of swaps 75

Number of generations 50

The success rates, average HC costs and average timetable quality found when running the

DGA with each population size is shown in the table below (Table 9.119).

Table 9.119: Results using various population sizes

Success Rates

Population Size = 200 Population Size = 500 Population Size = 750

26.67% 40.00% 46.67%

Average HC Cost (and standard deviations)

Population Size = 200 Population Size = 500 Population Size = 750

2.47 (2.08) 1.6 (1.61) 1.33 (1.42)

Average Quality (and standard deviations) from feasible timetables

Population Size = 200 Population Size = 500 Population Size = 750

5.00 (1.93) 4.75 (1.71) 4.36 (0.93)

As with the other problems addressed, Table 9.119 shows that an increase in the population

size produces better success rates. An increase in the population size also shows an

186

improvement in the quality of the feasible timetables. The DGA using a population size of

750 produces the best quality timetables on average. Many of these timetables had

between 3 and 4 soft constraint violations. While no optimal solutions (containing two soft

constraint violations) are found, the increase in the success rate and the reduction of the

average soft constraint cost results in a population size of 750 being chosen as the

population size.

9.3.5.3 Fine-tuning the tournament size

To determine the best tournament size to use, the genetic algorithm is run using various

tournament sizes.

Table 9.120: Processes and parameter values to test best tournament Size
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation degree

Selection Standard

Mutation 1VH

Phase 2

Selection Standard

Mutation 1 Violation swap with combination row swap

Constant Parameter Values

SCM size 20

Population size 750

Number of swaps 75

Number of generations 50

The following table shows the success rates, average HC costs and average timetable

quality when applying each tournament size (Table 9.121).

187

Table 9.121: Results for various tournament sizes

Success Rates

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20

43.33% 46.67% 36.67%

Average HC Cost (and standard deviations)

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20

1.4 (1.5) 1.33 (1.42) 1.6 (1.52)

Average Quality (and standard deviations)

Tournament Size = 5 Tournament Size = 10 Tournament Size = 20

4.46 (1.45) 4.36 (0.93) 4.45 (1.21)

The DGA produces more feasible timetables when using a tournament size of 10. The best

quality timetables are also found when using this tournament size. The best timetable is

found when using a tournament size of 5 (two soft constraint violations). The frequency

chart showing the quality of timetables produced for each tournament size is displayed

below in Figure 9.34.

Figure 9.34: Frequency chart for various tournament sizes

The frequency chart shows that nine timetables containing between 3 and 4 soft constraint

violations are found when using a tournament size of 10. This is higher than any of the other

tournament sizes tested. In conclusion, a tournament size of 10 is found to be the best

tournament size from the parameter values tested.

9.3.5.4 Fine-tuning the number of swaps

This parameter specifies the number of swaps that occur during mutation. The DGA is run

using four different swap parameter values. The success rate, average hard constraint cost

0

1

2

3

4

5

6

7

8

9

10

0-2 3-4 5-6 7-8 9-10 11-12 13-14

N
o

 o
f

ti
m

e
ta

b
le

s

SC violation range

Frequency chart

Tournament Size = 5

Tournament Size = 10

Tournament Size = 20

188

and average timetable quality found for the DGA approach using each of the swap

parameter values is shown in the table below (Table 9.123).

Table 9.122: Processes and parameter values to test best number of swaps
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation degree

Selection Standard

Mutation 1VH

Phase 2

Selection Standard

Mutation 1 Violation swap with combination row swap

Constant Parameter Values

SCM size 20

Population size 750

Tournament size 1

Number of generations 50

Table 9.123: Results using various swap parameter values

Success Rate

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150

46.67% 50.00% 63.33% 66.67%

Average HC Cost (and standard deviations)

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150

1.2 (1.24) 1.4 (1.59) 0.8 (1.13) 0.73 (1.11)

Average Quality (and standard deviations)

Swaps = 50 Swaps = 75 Swaps = 100 Swaps = 150

4.36 (1.22) 5.47 (2.50) 4.58 (1.39) 4.60 (1.39)

The above table shows that an increase in the swap parameter value results in an increase

in the number of feasible timetables produced. The DGA approach using a swap parameter

value of 50 produces the best timetables in terms of average quality. The best possible

timetable is also produced when using this parameter value i.e. a feasible timetable with two

soft constraint violations. A similar timetable is also produced when the DGA is run using a

parameter value of 100. When using a parameter value of 150, the DGA manages to

produce two optimal timetables from the thirty runs conducted. The frequency diagram for

the results produced is shown below (Figure 9.35).

189

Figure 9.35: Frequency chart for varying number of swaps

The frequency chart shows that the DGA with 150 swaps produces the most number of

timetables with soft constraint violations between 2 and 4. Based on the success rate and

the frequency chart, the best number of swaps to use is 150.

9.3.5.5 Maximum number of generations

In order to determine the number of generations to use, the DGA approach is run using three

different generation parameter values. Table 9.124 lists the processes and parameter

values of the DGA that were constant when testing the maximum number of generations to

use.

0

1

2

3

4

5

6

7

8

9

10

0-2 3-4 5-6 7-8 9-10 11-12 13-14

N
o

 o
f

ti
m

e
ta

b
le

s

SC Violation Range

Frequency Chart

Swaps = 50

Swaps = 75

Swaps = 100

Swaps = 150

190

Table 9.124: Processes and parameter values to test best number of generations
(Woodlands problem)

Constant Methods and Operators

Phase 1

Heuristic Saturation degree

Selection Standard

Mutation 1VH

Phase 2

Selection Standard

Mutation 1 Violation swap with combination row swap

Constant Parameter Values

SCM size 20

Population size 750

Tournament size 1

Number of swaps 150

The performance of the DGA using each generation parameter value tested is shown in the

table below (Table 9.125).

Table 9.125: Results for varying number of generations

Success Rates

Gens = 20 Gens = 50 Gens = 75

43.33% 66.67% 66.67%

Average Quality

Gens = 20 Gens = 50 Gens = 75

4.23 4.60 4.50

When the algorithm reaches 20 generations, the algorithm has still not converged as the

success rate shows an increase in the number of feasible timetables after 20 generations.

The success rates at generations 50 and 75 are the same, indicating that at some point after

generation 50, the maximum number of feasible timetables have been produced. The

average quality produced at 75 generations is slightly better than that of 50. This indicates

that timetable quality may be improved after 50 generations. The number of generations is

therefore set to 75.

9.3.6 Summary of fine-tuning
Table 9.126 shows the parameter values that were selected based on the tests conducted in

section 9.3.

191

Table 9.126: Parameter values for each data set

Data Set SCM Population
Size

Tournament
Size

Swaps per
Mutation

Generations

HDTT4 50 1000 10 200 50

HDTT5 50 1000 10 200 50

HDTT6 50 1000 10 200 50

HDTT7 50 1000 10 200 50

HDTT8 50 1000 10 200 50

Valouxis 50 1000 10 100 50

HS1 – HS7
(excluding HS5)

25 750 15 200 50

HS5 50 750 10 20 75

Lewitt 20 500 10 200 50

Woodlands 20 750 10 150 75

The sequential construction method is found to be useful in reducing the number of hard

constraint violations of the initial population. An SCM value of at least 20 is recommended.

From the population sizes tested, a trend is observed where an increase in population size

results in an increase in the success rate. Smaller population sizes of 100 and 50 were

initially tested, but very few feasible timetables were induced. In addition, these timetables

were of a poor quality. The advantages of an increase in the success rate for finding

feasible timetables, combined with an improvement in timetables quality, conclude that a

population size of at least 500 must be used.

The best tournament size to use will vary depending on the problem. For all problems, the

DGA performs best when using a tournament size of either 10 or 15. In many cases, there

was only a small difference in quality and success rate when comparing the DGA with

different tournament sizes.

For most data sets, a trend is found where increasing the number of swaps results in an

improvement in the success rate and the average quality of the timetables produced. From

the tests conducted, a swap parameter value of at least 150 swaps per mutation is required.

The only exception was data set HS5 where reducing the number of swaps improved the

feasibility and quality of timetables produced.

For the generations limit, it was found that at least 50 generations are required before the

algorithm converges. This value is also adequate for Phase 1 as feasible timetables are

found before generation 50.

192

9.4 IGA – Results and discussion
This section reports on the performance of the IGA (described in Chapter 8) when applied to

the five school timetabling problems. The performance of the IGA is compared to that of the

DGA in order to determine the better approach and this was tested for statistical

significance. In order to make the comparison of the two approaches as fair as possible, the

parameter values used for the IGA are the same parameter values used by the DGA (see

section 9.3).

Section 9.4.1 describes the IGA when applied to the Abramson school timetabling problem.

Section 9.4.2 discusses the performance of the IGA approach when applied to the Valouxis

Greek school timetabling problem. The Beligiannis Greek school timetabling problem is then

covered in Section 9.4.3. Sections 9.4.4 and 9.4.5 respectively describe the results of

applying the IGA to the W. A. Lewitt Primary and Woodlands Secondary school timetabling

problems.

9.4.1 The Abramson School Timetabling Problem
The following table lists the parameter values and the instructions used to build timetables

for the HDTT problem.

Table 9.127: Parameter values and instruction set used for Abramson problem

SCM 50

Population Size 1000

Tournament Size 10

Maximum Generations 50

Crossover Rate 80%

Mutation Rate 20%

Swaps per mutation 200

Instruction set A, D, 3 (1VH), 4 (2VH)

Initially, the IGA contained non-hill climbing operators in the instruction set. However, the

IGA did not perform well and the non-hill climbing operators were removed from the

instruction set. The line chart below (Figure 9.36) illustrates how each instruction in a

sample string affects the hard constraint cost of a partially complete timetable. In this line

chart, the x-axis represents the instructions of the sample string and the y-axis is the hard

constraint cost.

193

Figure 9.36: Effect of each instruction on the hard constraint cost (HDTT8)

In Figure 9.36, instructions 1 and 2 represent non-hill climbing mutation operators and

instructions 3 and 4 represent hill climbing mutation operators. As can be seen, whenever

instruction 1 (1VNH) is executed, the cost of the individual increases in most cases. In the

case of the 2VNH operator, if the cost is above 30, then the operator improves the cost of

the timetable. In cases where the cost is low (below 20), the 2VNH operator is found to

increase the cost. Whenever the hill climbing operators (instructions 3 and 4) are applied, it

was found that the cost was reduced. The above diagram represents only one sample

string. Several strings were tested and similar results were found. It is also interesting to

note that the DGA performed best when using a non-hill climbing operator (2VNH) while the

IGA performs best when using hill climbing operators.

The success rates for the IGA and DGA (from section 9.2) when applied to each data set are

listed in Table 9.128 below. The IGA induces feasible timetables for all runs.

Table 9.128: Success rates comparison – DGA vs IGA

Success Rates – DGA

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

100% 100% 100% 46.67% 13.33%

Success Rates – IGA

HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

100% 100% 100% 100% 100%

While both algorithms perform well for data sets HDTT4, HDTT5 and HDTT6, the IGA

approach outperforms the DGA for data sets HDTT7 and HDTT8. Hypothesis tests were

0

10

20

30

40

50

60

1114da 13442addd244a a a 2a a a13a a a4233ada a11a 312da 11dada a a a32d212a 121442

H
C

 C
o

st

Instruction string

HC Cost and instruction string

194

performed to test the statistical significance of the statement. The following table lists the

hypotheses and Z-values:

Table 9.129: Hypothesis tests for HDTT7 and HDTT8

Data set Hypothesis Z-value

HDTT7 H0: µDGA = µIGA; HA: µDGA > µIGA 5.76

HDTT8 H0: µDGA = µIGA; HA: µDGA > µIGA 13.73

From the hypothesis tests conducted, it is concluded that the performance of the IGA is

better than that of the DGA for data sets HDTT7 and HDTT8. This result is confirmed at all

levels of significance.

9.4.2 The Valouxis School Timetable Problem
The parameter values listed in Table 9.130 were used when applying the IGA to the Valouxis

problem. The table also shows the instruction sets that were used for Phase 1 and Phase 2

respectively.

Table 9.130: Parameter values and instruction set used for Valouxis problem

SCM 50

Population Size 1000

Tournament Size 10

Maximum Generations 50

Crossover Rate 80

Mutation Rate 20

Swaps per mutation 100

Instruction set – Phase 1 A, D, 3 (1VH), 4 (2VH)

Instruction set – Phase 2 A, D, 5 (Random swap), 6 (Row Swap), 7 (1V), 8 (2V)

Similar to the instruction set used for the Abramson problem, the non-hill climbing operators

were not included in the Phase 1 instruction set as they performed poorly. This poor

performance was found to be consistent with the performance of the DGA where the non-hill

climbing operators performed poorly (see section 9.2.2.3). Figure 9.37 shows a line chart

depicting the effect of each instruction (in a sample instruction string) on the hard constraint

cost of the timetable.

195

Figure 9.37: Effect of each instruction on the hard constraint cost (Valouxis problem)

In Figure 9.37, the cost of the timetable is reduced when using the hill climbing operators

(instructions 3 and 4). This is shown in the middle portion of the instruction string that

consists only of allocation, de-allocation and hill climbing mutation operators. The

application of the non-hill climbing operators results in an increase in cost. Similar to the

IGA, the 2VNH operator appears to improve the cost only when it is above 30 while the

application of the operator results in an increase in the cost if it is below 10. The 1VNH

operator performs poorly, resulting in an increase in the cost of the timetable whenever it is

applied. Similar results were found for other strings that were tested. As a result of their

poor performance, the non-hill climbing operators are removed from the instruction set. For

Phase 2, no mutation operators were omitted as the quality of the timetables produced were

found to be competitive.

Table 9.131 compares the performance of the IGA and DGA when applied to the Valouxis

school timetabling problem. Thirty runs were conducted for each approach.

Table 9.131: Performance Comparison for the Valouxis Problem

 IGA DGA

Success Rate 100% 100%

Average Quality 34 41.97

Standard Deviation 0 3.29

Best SC Cost 34 35

0

10

20

30

40

50

60

70

1 a a 1 3 1 1 1 d 3 a 1 4 a 3 a 4 3 a d d a 3 a a 4 a a a 2 3 2 a a 3 1 2 1

H
C

 C
o

st

Instruction string

HC Cost and instruction string

196

Both the IGA and DGA are able to induce feasible timetables for every run conducted. The

difference in performance is found in terms of the quality of the timetables produced. The

IGA is able to find an instruction string capable of reducing the soft constraint cost (the

quality of the timetable) to 34 while the timetables produced by the DGA are found to

average 41.97. The best timetable produced using the DGA contains 35 soft constraint

violations.

A hypothesis test is conducted to determine the statistical significance of the above

conclusion. A Z-value of 13.28 indicates that the IGA outperforms the DGA at all levels of

significance.

9.4.3 The Beligiannis Greek School Timetabling Problem
Table 9.132 lists the parameter values and instruction sets that were used when the IGA is

applied to the problem.

Table 9.132: Parameter values and instruction set used for Beligiannis problem

SCM 25

Population Size 750

Tournament Size 15

Maximum Generations 50

Crossover Rate 80

Mutation Rate 20

Swaps per mutation 200

Instruction set – Phase 1 A, D, 1 (1VNH), 2 (2VNH), 3 (1VH), 4 (2VH)

Instruction set – Phase 2 A, D, 5 (Random Swap), 6 (Row Swap), 7 (1V), 8 (2V)

Table 9.133 provides a summary of the performance of the IGA in terms of success rate,

average quality and standard deviations (soft constraint cost). Similar to the DGA, the IGA

was able to induce feasible timetables for all thirty runs conducted for each data set.

197

Table 9.133: Results summary for IGA applied to Beligiannis Problem

Success rates

HS1 HS2 HS3 HS4 HS5 HS7

100% 100% 100% 100% 100% 100%

Average Quality (Average SC Cost)

HS1 HS2 HS3 HS4 HS5 HS7

77.37 79.00 18.47 46.03 19.30 105.40

Standard deviations (SC Cost)

HS1 HS2 HS3 HS4 HS5 HS7

6.51 8.12 0.86 1.52 4.11 4.95

Figure 9.38 displays a bar graph comparing the average quality of the timetables produced

by both the IGA and the DGA when applied to the Beligiannis school timetabling problem.

Figure 9.38: Average Timetable Quality induced by DGA and IGA

Figure 9.38 illustrates that, for all the data sets, the timetables produced by IGA have far

fewer soft constraint violations on average than the timetables produced by the DGA

approach. Hypothesis tests were conducted to test for the significance of this conclusion.

Table 9.134 lists the hypotheses and associated Z-values.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

HS1 HS2 HS3 HS4 HS5 HS7

A
ve

ra
ge

 S
C

 C
o

st

Data sets

Quality Comparison for IGA and DGA

IGA

DGA

198

Table 9.134: Hypothesis tests for quality

Data set Hypothesis Z-value

HS1 H0: µDGA = µIGA; HA: µDGA > µIGA 18.16

HS2 H0: µDGA = µIGA; HA: µDGA > µIGA 16.62

HS3 H0: µDGA = µIGA; HA: µDGA > µIGA 34.67

HS4 H0: µDGA = µIGA; HA: µDGA > µIGA 27.60

HS5 H0: µDGA = µIGA; HA: µDGA > µIGA 20.79

HS7 H0: µDGA = µIGA; HA: µDGA > µIGA 17.47

From the Z-values listed in the table above, it is concluded that the IGA induces better

quality timetables than the DGA. This is confirmed at all levels of significance.

9.4.4 The Lewitt Primary School Timetabling Probem
The IGA was applied to the W.A. Lewitt Primary school timetabling problem using the

following parameter values and instruction sets.

Table 9.135: Parameter values and instruction set used for Lewitt problem

SCM 20

Population Size 500

Tournament Size 10

Maximum Generations 50

Crossover Rate 80%

Mutation Rate 20%

Swaps per mutation 200

Instruction set – Phase 1 A, D, 2 (2VNH), 3 (1VH), 4 (2VH)

Instruction set – Phase 2 A, D, 5 (Random Swap), 7 (1V), 8 (2V)

The 1VNH operator was not included in the instruction set as it had performed poorly. This

was found to be consistent with the tests conducted using the DGA (see section 9.2.4.3)

where the 1VNH operator was the worst performing operator. Figure 9.39 shows the effect

of each instruction (in a sample instruction string) on the hard constraint cost of a partially

complete timetable.

199

Figure 9.39: Effect of each instruction on hard constraint cost (Lewitt problem)

The hill climbing operators perform the best and reduce the hard constraint cost in most

cases. The 1VNH operator seems to only improve the hard constraint cost when it is above

60. When applied at a point when the hard constraint cost is low, the 1VNH operator tends

to increase the cost of the timetable. The 1VNH operator was therefore not included in the

Phase 1 instruction set. The 2VNH operator was found to be effective when the constraint

cost was high but was not able to further reduce constraint violations when the cost was

below 20.

From the thirty runs conducted, 28 feasible timetables are found compared to the 18 feasible

timetables found by the DGA. The two timetables that are not feasible have two hard

constraint violations and one hard constraint violation respectively. In terms of quality, the

feasible timetables average 7.61 soft constraint violations. This is better than the DGA

which averages 10.83 soft constraint violations per timetable. A hypothesis test was

conducted for feasibility. The hypothesis tested is that the IGA produces fewer hard

constraint violations than the DGA. A Z-value of 2.90 is calculated, indicating that the

performance of the IGA is significantly better than the DGA. A hypothesis test was not

conducted for quality since there were not enough feasible timetables produced by the DGA.

9.4.5 The Woodlands secondary school timetabling problem
The IGA uses the following parameter values and instruction sets to solve the Woodlands

Secondary school timetabling problem.

0

20

40

60

80

100

a14a1a21a a a234a a a ada a42a1d2da21a a a22ada334a3243adda a11a4a a4222a1a a1a

H
C

 C
o

st

Instruction string

HC Cost and instruction string

200

Table 9.136: Parameter values and instruction set used for Woodlands problem

SCM 20

Population Size 750

Tournament Size 10

Maximum Generations 50

Crossover Rate 80%

Mutation Rate 20%

Swaps per mutation 150

Instruction set – Phase 1 A, D, 1 (1VNH), 2 (2VNH), 3 (1VH), 4 (2VH)

Instruction set – Phase 2 A, D, 5 (Random Swap), 6 (Row Swap), 7 (1V), 8 (1V Row

Swap)

Despite the poor performance of the non-hill climbing operators reported in section 9.2.5.3,

the IGA managed to induce feasible timetables using an instruction set (Phase 1) consisting

of all the mutation operators. The Phase 2 instruction set also incorporated all the soft

constraint mutation operators tested with the DGA.

Table 9.137 summarizes the results that were found after conducting thirty runs using

different seed values. This table also compares the success rates and average quality with

that of the results obtained using the DGA approach.

Table 9.137: Results comparison for IGA and DGA

 IGA DGA

Success Rate 100% 66.67%

Average quality 2.37 4.5

Standard deviation 0.56 1.36

The IGA achieves a 100% success rate and from the thirty feasible timetables, twenty of

these have the minimum number of constraint violations of two. The IGA approach is far

more effective than the DGA where only twenty out of the thirty runs produce feasible

timetables and from these twenty feasible timetables, only two have the minimum number of

soft constraint violations.

Hypothesis tests were conducted to evaluate the significance of these results. In terms of

feasibility, a Z-value of 3.61 is obtained, allowing for the conclusion that the IGA approach

performs better than the DGA approach.

201

9.5 Discussion of IGA versus DGA Results
From the results in section 9.4, it is concluded that the IGA is a far more effective approach

for solving the school timetabling problem than the DGA and this was found to be statistically

significant. Table 9.138 lists the average runtime, success rate, and average quality

obtained when the DGA and IGA are applied to each problem.

Table 9.138: Summary of DGA and IGA performance for each problem

 DGA IGA

Average

Time
Best Time

Success
%

Average
Quality

Average
Time

Best
Time

Success
%

Average
Quality

HDTT4 10 mins 9mins 100% NA 11 mins 10 mins 100% NA

HDTT5 16 mins 15 mins 100% NA 20 mins 26 mins 100% NA

HDTT6 25 mins 25 mins 100% NA 68 mins 1 hour 100% NA

HDTT7 44 mins 42 mins 47% NA 235 mins 4 hrs 100% NA

HDTT8 65 mins 64 mins 13% NA 678 mins 5 hrs 100% NA

Valouxis 58 mins 58 mins 100% 41.97 669 mins 2 hrs 100% 34.00

HS1 133 mins 133 mins 100% 107.20 3 days 3 days 100% 77.37

HS2 131 mins 131 mins 100% 113.23 3 days 10 hrs 100% 79.00

HS3 46 mins 46 mins 100% 42.47 3 days 3 days 100% 18.47

HS4 53 mins 53 mins 100% 68.80 3 days 3 days 100% 46.03

HS5 18 mins 18 mins 100% 52.63 2 days 1.5 hrs 100% 19.30

HS7 202 mins 202 mins 100% 130.40 3 days 1 day 100% 105.40

Lewitt 269 mins 269 mins 60% 10.83 7 days 1 day 93% 7.61

Woodlands 1 day 1 day 67% 4.50 1.5 days 3 mins 100% 2.37

With the IGA, feasible solutions were quickly induced for the real world problems (Greek and

South African schools) and the remaining time was spent in improving timetable quality. The

increased runtimes for the IGA are mainly due to the evaluation process where a timetable is

created or improved for every string (individual). The longer runtimes are justified due to the

high success rates (when comparing HDTT7, HDTT8 and the Lewitt and Woodlands

problem) as well as the vast improvement in timetable quality (for all real world problems).

One possible reason for the performance of the IGA is that the search space was reduced.

The number of possible permutations of timetables for each problem is far greater than the

number of permutations of different instruction strings available. Kazarlis et al. [KAZA07],

Aickelin [AICK04] and Ross [ROSS94] also observed a reduction in the search space when

using an indirect representation in other problem domains. Kazarlis et al. attributed this to a

less constrained and complicated search space since the building of the schedule is not

directly performed by the genetic algorithm. Further research will also involve investigating

the search areas of the DGA and IGA respectively.

202

9.6 Comparison with Other Studies
This section compares the timetables produced by the DGA and the IGA approaches with

timetables produced using other methods. Similar to studies by [SMIT03] and [BELI12], the

comparisons made are empirical in nature. A thorough comparison is not possible as it is

not known as to whether the methods that are being compared have been fine-tuned or not.

Statistical tests cannot be performed for these comparisons as the studies have not provided

sufficient data (averages and standard deviations) to perform these tests. The purpose of

the comparison is to simply show that the IGA and DGA approaches are capable of inducing

acceptable, high quality timetables.

For the Abramson problem, the performance of the IGA and DGA are compared to methods

used in other studies (see section 9.6.1). For the Greek school timetabling problems,

timetables were made available by Beligiannis et al. [BELI08] and Valouxis [VALO09]

respectively and are compared to the timetables induced using the IGA and DGA. For the

South African school timetabling problems, the timetables induced using the IGA and DGA

are compared to the actual school timetables used by each school. In order to fairly assess

the timetables, a common fitness function was used to evaluate the hard constraint and soft

constraint cost.

9.6.1 Abramson benchmark problem set comparison
Table 9.139 lists the best cost (BC) and average cost (AC) of timetables created using

different timetable construction techniques. The best cost indicates the lowest hard

constraint cost and the average cost indicates the average number of hard constraint

violations over twenty runs conducted for each technique. The last two rows in the table lists

the performance of the approaches used in this study. The techniques listed in the table are:

 SA1 – A simulated annealing method implemented by [ABRA93].

 SA2 – A simulated annealing algorithm implemented by [RAND00].

 TS – A tabu search tested by [RAND00].

 GS – The greedy search method by [RAND00].

 NN-T2 – A neural network employed by [SMIT03].

 NN-T3 – A neural network employed by [SMIT03].

 Hybrid – A hybrid approach incorporating simulated annealing and a VLSN by

[AVEL07].

 SA3 – A simulated annealing method implemented by [LIU09].

 DGA – Direct representation genetic algorithm used in this study.

 IGA – Indirect representation genetic algorithm used in this study.

203

Table 9.139: Results comparison for Abramson problem

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

SA1
BC: Unknown

AC: Unknown

BC: 0

AC: 0.67

BC: 0

AC: 2.5

BC: 2

AC: 2.5

BC: 2

AC: 8.23

SA2
BC: 0

AC: 0

BC: 0

AC: 0.3

BC: 0

AC: 0.8

BC: 0

AC: 1.2

BC: 0

AC: 1.9

TS
BC: 0

AC: 0.2

BC: 0

AC: 2.2

BC: 3

AC: 5.6

BC: 4

AC: 10.9

BC: 13

AC: 17.2

GS
BC: 5

AC: 8.5

BC: 11

AC: 16.2

BC: 19

AC: 22.2

BC: 26

AC: 30.9

BC: 29

AC: 35.4

HNN1
BC: 0

AC: 0.1

BC: 0

AC: 0.5

BC: 0

AC: 0.8

BC: 0

AC: 1.1

BC: 0

AC: 1.4

HNN2
BC: 0

AC: 0.5

BC: 0

AC: 0.5

BC: 0

AC: 0.7

BC: 0

AC: 1

BC: 0

AC: 1.2

Hybrid
BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0.1

BC: 0

AC: 0.6

SA3
BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0.4

DGA
BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 1.06

BC: 0

AC: 1.73

IGA
BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

BC: 0

AC: 0

Based on the best cost and average cost obtained, the IGA performs best as this approach

found feasible timetables for all runs conducted. The DGA approach is also very

competitive, finding solutions for all data sets and performing better than the simulated

annealing, tabu search and genetic search approaches. The neural network approaches

perform slightly better than the DGA. Avella’s Hybrid approach and the simulated annealing

method used by [LIU09] produce timetables with fewer clashes (on average) than the DGA.

9.6.2 The Valouxis Greek school timetabling problem
A timetable created using a constraint programming approach is obtained from a paper by

Valouxis et al. [VALO03]. No other techniques applied to this problem could be found. The

first column of Table 9.140 lists each of the hard and soft constraints of the problem. The

second, third and fourth columns indicate a count of the number of violations for each study.

204

Table 9.140: Comparison of timetables from GA approach and constraint
programming approach

Hard Constraint
Constraint

programming
DGA IGA

Clashes 37 0 0

Free periods 0 0 0

Illegal teacher

placements

4 0 0

Teacher average

violations

9 0 0

Teacher class average

violations

6 0 0

Total 56 0 0

Soft Constraints

AM-PM preference

violations

34 34 34

Teacher free periods 11 1 0

Total 45 35 34

As can be seed in Table 9.140, the timetable created using the constraint programming

approach is unfeasible with 56 hard constraint violations. The majority of these violations

are teacher clashes. The best timetable produced by both the DGA and the IGA contains no

hard constraint violations and is thus feasible. Upon closer analysis of the timetable

produced by [VALO03], it was found that the published timetable may be incorrect. The

schedules of two of the classes are exactly the same resulting in 35 of the 37 clashes. In

terms of quality, both the IGA and DGA produce several better quality timetables than the

timetable induced using constraint programming. This was the only timetable that was

available and attempts to contact the author to request other timetables were unsuccessful.

9.6.3 The Beligiannis Greek school timetabling problem
Beligiannis et al. [BELI08] used an evolutionary algorithm approach to solve the Greek high

school timetabling problem and introduces seven data sets. The best timetable obtained

from tests conducted and described in section 9.3.3.5 (DGA) and section 9.4 (IGA) is

compared with the sample timetables that were made available by [BELI08].

9.6.3.1 Data set HS1

Table 9.141 lists the number of hard and soft constraint violations for the timetables

produced using each method.

205

Table 9.141: Comparison of GA approaches and Beligiannis results (HS1)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 0 0 0

Co-teaching and Subclasses 0 0 0

Total 0 0 0

Soft Constraints

Gaps 31 11 4

Teacher gap distribution 24 8 0

Teacher daily gap distribution 5 1 3

Daily average 66 57 47

Repeats 13 19 9

Total 139 96 63

The timetables produced using all three methods are feasible (no hard constraint violations).

The better timetable is determined by evaluating the number of soft constraint violations and

as can be seen, the timetable produced using the IGA has the fewest number of soft

constraints. This timetable has 33 fewer soft constraint violations than the DGA and 76

fewer soft constraint violations than the evolutionary algorithm [BELI08].

9.6.3.2 Data set HS2

Table 9.142 shows the comparison of the timetables produced using the evolutionary

algorithm by [BELI08] and the two approaches used in the current study.

Table 9.142: Comparison of GA approaches and Beligiannis results (HS2)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 0 0 0

Co-teaching and Subclasses 0 0 0

Total 0 0 0

Soft Constraints

Gaps 42 12 0

Teacher gap distribution 21 7 0

Teacher daily gap distribution 11 2 0

Daily average 83 65 56

Repeats 18 13 10

Total 175 99 66

206

Once again, the evolutionary algorithm and both the DGA and IGA produce feasible

timetables with no hard constraint violations. In terms of quality, the DGA approach

produces 76 fewer soft constraint violations than the evolutionary algorithm. The IGA

produced the best of the three timetables with 66 soft constraint violations. From these 66

violations, there were no free periods i.e. all teacher timetables were compact. This

timetable (found by the IGA) also had the fewest daily average violations and the fewest

repeat lessons.

9.6.3.3 Data set HS3

Table 9.143 lists the number of violations for each timetable produced by the three different

approaches. This data set contained no co-teaching and subclass requirements.

Table 9.143: Comparison of GA approach and Beligiannis results (HS3)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 0 0 0

Co-teaching and Subclasses NA NA NA

Total 0 0 0

Soft Constraints

Gaps 17 2 0

Teacher gap distribution 13 2 0

Teacher daily gap distribution 4 0 0

Daily average 24 19 13

Repeats 3 11 4

Total 61 34 17

All three approaches found feasible timetables when applied to data set HS3. In terms of

quality, the IGA produced the best timetable with half the number of violations as the DGA.

Similar to the HS2 data set, the IGA finds a timetable with no free periods. The timetable

induced by the DGA contained the most number of repeat lesson violations. The

evolutionary algorithm by [BELI08] produced a timetable with the fewest number of repeats.

207

9.6.3.4 Data set HS4

This section compares the performance of the three approaches when applied to the HS4

data set.

Table 9.144: Comparison of GA approach and Beligiannis results (HS4)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 0 0 0

Co-teaching and Subclasses 0 0 0

Total 0 0 0

Soft Constraints

Gaps 32 5 0

Teacher gap distribution 14 3 0

Teacher daily gap distribution 10 1 0

Daily average 46 45 38

Repeats 0 5 5

Total 102 59 43

The timetables produced by all three approaches are feasible and can be used by the

schools. When observing the soft constraint violations, the IGA finds compact timetables for

all teachers (no free periods). The timetable found using the evolutionary algorithm contains

no repeats, but the most number of free periods. Overall, the timetable induced by the IGA

was of the best quality.

208

9.6.3.5 Data set HS5

This section compares the timetables produced when applying the approaches to data set

HS5. This data set is similar to data set HS3, as there are no co-teaching and subclass

requirements.

Table 9.145: Comparison of GA approach and Beligiannis results (HS5)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 0 0 0

Coteaching and Subclasses NA NA NA

Total 0 0 0

Soft Constraints

Gaps 8 5 0

Teacher gap distribution 8 3 0

Teacher daily gap distribution 0 1 0

Daily average 27 24 14

Repeats 0 7 1

Total 43 40 15

Once again, the timetables produced by all three approaches are found to be feasible with

zero hard constraint violations. The difference in quality between the timetable produced by

the evolutionary algorithm ([BELI08]) and the timetable produced by the DGA is just three

soft constraint violations in favour of the DGA. For this data set, the timetable produced

using the DGA contains seven repeat violations while the evolutionary algorithm by [BELI08]

manages to prevent any repeat violations and provides an even distribution of teacher daily

free periods. Overall, the timetable produced by the IGA has the best quality. This timetable

contains no free periods, 14 daily average violations and only one repeat lesson violation.

209

9.6.3.6 Data set HS7

This final section compares the timetables produced by the three approaches when applied

to the HS7 data set. This data set was the largest of the data sets, containing the most

number of classes and teachers.

Table 9.146: Comparison of GA approach and Beligiannis results (HS7)

Beligiannis DGA IGA

Hard Constraint

Total clashes 0 0 0

Last period violations 0 0 0

Unavailability violations 52 0 0

Co-teaching and Subclasses 18 0 0

Total 70 0 0

Soft Constraints

Gaps 58 10 35

Teacher gap distribution 25 7 1

Teacher daily gap distribution 18 1 5

Daily average 99 81 51

Repeats 26 18 6

Total 226 117 98

The timetable produced using the DGA and IGA approaches were feasible while the sample

timetable provided by [BELI08] was found to be unfeasible due to several unavailability

violations as well as co-teaching and subclasses requirements that were not fulfilled. The

timetable produced by the DGA approach was found to be feasible and was found to have

117 soft constraint violations. The timetable found by the IGA was again found to be of the

highest quality with 98 soft constraint violations. The timetable provided by the author may

be incorrect as [BELI08] states that feasible timetables are found for all data sets.

9.6.4 W.A. Lewitt primary school problem
A comparison is made between the timetable produced by the DGA and IGA approaches in

this study and the actual timetable (developed using commercial software) used by the

school. The actual timetable used by Lewitt has no clashes but does have one double

period violation where the double period has to be split into two separate single periods

during the day. Despite this violation, the school still chose to use the timetable. The

timetable produced by the DGA and the IGA approaches have no clashes and all double

period lessons are correctly allocated. In terms of quality, the actual timetable and the

timetable produced using the DGA are of a similar quality with six constraint violations. The

timetable produced using the IGA was of a better quality and had 3 soft constraint violations.

210

The main problem that faces the staff of W. A. Lewitt School is that the system currently

employed by the school does not cater for double periods. These double periods have to be

placed manually by the staff member. As a result, the staff member is also required to

manually move tuples around in order to accommodate the double periods and to prevent

resultant clashes. Both the DGA and the IGA developed in this study address all hard

constraint requirements and the quality of the timetables produced is similar, if not better

than that of the timetable used by the school.

9.6.5 Woodlands data set
A comparison is made between a timetables produced by the DGA, the IGA and the actual

timetable (developed using commercial software) used by Woodlands secondary school. All

three timetables were feasible. The timetables were also of an equivalent quality with only

two soft constraint violations.

9.7 Chapter summary
This chapter firstly covers the performance of the DGA and its effect on each of the school

timetabling problems when changing the different processes (initial population generation,

selection methods and genetic operators). The chapter then describes the process of fine-

tuning the DGA. The performance of the IGA is then covered and the performance of this

approach is compared to that of the DGA. Finally, timetables obtained using the two genetic

algorithm approaches are compared to timetables created using other techniques from the

literature or to actual school timetables.

211

Chapter 10 - Conclusions and Future
Research

10.1 Introduction
This chapter provides the overall conclusions based on the findings of the study. Two

objectives were outlined in Chapter 1 of this thesis. Section 10.2 presents each objective

and conclusions based on the results presented in Chapter 9. The chapter ends by

discussing future extensions to the research presented in this thesis (section 10.3).

10.2 Objectives and Conclusions

Objective: Based on the analysis of the literature, implement a genetic algorithm approach

for solving the school timetabling problem and evaluate it on more than one type of school

timetabling problem.

Conclusion:

A genetic algorithm approach was developed based on an analysis of the literature. This

genetic algorithm approach, referred to in this study as a DGA due to using a direct

representation, was able to induce feasible timetables for five different school timetabling

problems. The timetables were of a high quality when compared to timetables produced

using other methods.

The study showed that the genetic algorithm approach performed better when construction

heuristics are used to guide the search when creating the initial population. A sequential

construction method (SCM) was also used and in some cases, it was found that the use of

the SCM not only assisted in finding feasible solutions but also improved the quality of the

timetables produced.

A variant tournament selection (VTS) was introduced and was based on standard

tournament selection, but gave an opportunity for weaker individuals in the tournament to be

selected as parents. In many cases, this selection method was found to have performed

better with the DGA than standard tournament selection, especially during Phase 1 of the

DGA.

212

When solving the Woodlands, Lewitt, Valouxis and Beligiannis school timetabling problems,

it was found that the use of the mutation operators with hill climbing was necessary in order

to produce feasible timetables. Similar results were reported in the literature where hill

climbing improved the performance of the genetic algorithm. The type of mutation operator

to use varied for each problem.

A conclusion can be made that different construction heuristics (primary and secondary),

different selection methods and different mutation operators were required to produce the

best results for each problem.

Objective: To evaluate a genetic algorithm that uses an indirect representation when

solving the school timetabling problem.

Conclusion:

It was found that the IGA performed well and produced feasible solutions. It also

outperformed the DGA in terms of both finding feasible timetables and producing better

quality timetables. One possible reason that was hypothesized was that the IGA had a

smaller search space to explore than the DGA as the IGA had fewer combinations to create

an instruction string than when considering the different combinations of tuple allocations

when creating a timetable.

10.3 Future research
Based on the research, future extensions of this work will include the following:

 Previous studies (discussed in Chapter 2) have classified the examination timetabling

problem as a multi-objective problem. This involved the grouping of soft constraints

in order to reduce the complexity of the problem. Future research will look at

addressing the school timetabling problem as a multi-objective problem.

 From the results described in Chapter 9, it was found that for the DGA, each problem

requires different sets of heuristics, selection methods, genetic operators and control

parameter values in order to produce feasible, high quality timetables. Determining

the best processes and the fine-tuning of the DGA control parameters was performed

using a “by hand” (manual) approach. Future work would look at automating this

process using a meta-genetic algorithm as described by Eiben [EIBE99] in order to

find the best possible combination of initial population generation method, selection

213

method, mutation operators and parameter values. Future work would also

investigate the use of parameter tuning tools such as F-Race.

 From the results in Chapter 9, it was concluded that the IGA performed better than

the DGA. One possible reason identified for the better performance was the size of

the search space explored by the two approaches. Another area of investigation

would be the difference in the fitness landscape when using each of the approaches.

 The GA approaches developed during this study is for research purposes only. The

staff of primary or secondary school may have difficulty using the program as they

would require a basic background in genetic algorithms in order to run the program

and configure the parameter settings. Future development will include the

development of a user interface and an interactive timetabling system that allows the

user to play a role in the development of the timetable. Examples of user roles would

include:

o specifying the data set,

o choosing from a list of constraints that the algorithm must consider,

o applying weights or priorities to the constraints,

o pre-allocation of specific tuples to the timetable,

o the adjustment of a generated timetable to suit their preferences,

o the choice of timetables from a population of feasible timetables,

o printing the chosen solution as a class, teacher, venue and/or student

timetable.

 The Abramson benchmark problem is a common problem that has been solved using

a variety of techniques such as tabu search, simulated annealing and neural

networks. Future research would include using these techniques to solve the other

school timetabling problems discussed in this study. The performance of these

techniques can then be compared to the DGA and IGA approaches.

214

Bibliography

[1] [ABDE10] T. F. Abdelmaguid. Representations in Genetic Algorithm for the Job

Shop Scheduling: A Computational Study. In Software Engineering

and Applications. Volume 3, Pages 1155-1162. 2010.

[2] [ABRA91a] D. Abramson, J. Abela. A Parallel Genetic Algorithm for Solving the

School Timetabling Problem. In Proceedings of the 15th Australian

Conference: Division of Information Technology. Pages 1-11. 1991.

[3] [ABRA91b] D. Abramson. Constructing School Timetables using Simulated

Annealing: Sequential and Parallel Algorithms. In Management

Science. Vol. 37 No 1. Pages 98-113. 1991.

[4] [ABRA93] D. Abramson, H. Dang. School Timetable: a case study in simulated

annealing. In Applied Simulated Annealing, Lecture Notes in

Economics and Mathematical Systems. Chapter 5. Pages 103-124.

1993.

[5] [AFFE09] M. Affenzeller, S. Winkler, S. Wagner, A. Beham. Genetic Algorithms

and Genetic Programming: Modern Concepts and Practical

Applications. Chapman & Hall/CRC. Boca Raton, Florida. 2009.

ISBN 978-1-58488-629-7.

[6] [ALVA96] R. Alvarez-Valdes, G. Martin, J. M. Tamarit. Constructing Good

Solutions for the Spanish School Timetabling Problem. In The Journal

of the Operational Research Society, Vol. 47, No. 10. Pages 1203-

1215. October 1996

[7] [AVEL07] P. Avella, B. D’Auria, S. Salerno, I. Vasil’ev. A computational study of

local search algorithms for Italian high-school timetabling. In The

Journal of Heuristics, Vol. 13, No. 6. Pages 543-556. December 2007

[8] [BANZ98] W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone. Genetic

Programming: An introduction on the Automatic Evolution of Computer

Programs and Its Applications. Morgan Kaufmann Publishers Inc.

1998. ISBN 1-55860-510-X.

[9] [BART99] R. Bartak. Constraint Programming: In pursuit of the Holy Grail. In

Proceedings of the Week of Doctoral Students (WDS99). Part IV.

MatFyz Press. Prague. Pages 555-564. June 1999.

[10] [BEAS93] D. Beasley, D. R. Bull, R. R. Martin. An Overview of Genetic

Algorithms: Part 1 and Part 2, Research Topics. In University

215

Computing 15 (4). Pages 170-181. UCISA. 1993.

[11] [BEDO04] C. F. Bedoya, M. Santos. A Non-Standard Genetic Algorithm

Approach to Solve Constrained School Timetabling Problems. In

Computer Aided Systems Theory – Eurocast 2003, Lecture notes in

Computer Science. Vol. 2809. Pages 26-37. 2004

[12] [BELI08] G. N. Beligiannis, C. N. Moschopoulos, G. P. Kaperonis, S. D.

Likothanassis. Applying evolutionary computation to the school

timetabling problem: The Greek Case. In Computers and Operations

Research. Vol. 35. Pages 1265-1280. 2008.

[13] [BELI12] I. X. Tassopoulos, G. N. Beligiannis. Solving Effectively the School

Timetabling Problem Using Particle Swarm Optimization. In Expert

Systems with Applications 39. Pages 6029-6040. 2012.

[14] [BELL08] G. S. Bello, M. C. Rangel, M. C. S. Boeres. An Approach for the

Class/Teacher Timetabling Problem using Graph Coloring. In The

Proceedings of the 7th International Conference on the Practice and

Theory of Automated Timetabling (PATAT). 2008.

[15] [BIRB97] T. Birbas, S. Daskalaki, E. Housos. Timetabling for Greek High

Schools. In The Journal of the Operational Research Society, Vol. 48,

No. 12. Pages 1191-1200. December 1997.

[16] [BLIC95] T. Blickle, L. Thiele. A Comparison of Selection Schemes used in

Genetic Algorithms. In TIK-Report, No 11. December 1995.

[17] [BRUC95] W. S. Bruce. The Application of Genetic Programming to the Automatic

Generation of Object-Oriented Programs, Phd Dissertation, School of

Computer and Information Sciences, Nova Southeastern University,

1995.

[18] [BUFE01] M. Bufe, T. Fisher, H. Gubbels, C. Hacker, O. Hasprich, C. Scheibel, K.

Weicker, N. Weicker, M. Wenig, C. Wolfangel. Automated Solution of

a highly constrained school timetabling problem – preliminary results.

In Applications of Evolutionary Computing, Lecture notes in Computer

Science. Vol. 2037. Pages 431-440. 2001

[19] [BURK08] E. K. Burke, B. McCollum, P. McMullan, A. J. Parkes. Multi-objective

Aspects of the Examination Timetabling Competition Track. In

Proceedings of PATAT 2008. Montreal, Canada. 2008.

[20] [BUSE03] F. Busetti. Simulated Annealing overview. 2003

[21] [CALD97] J. P. Caldeira, A. C. Rosa. School Timetabling using Genetic Search.

In The proceedings of the International Conference on the Practice and

216

Theory of Automated Timetabling (PATAT). Pages 115-122. 1997.

[22] [CART96] M. W. Carter, G. Laporte. Recent Developments in Practical

Examination Timetabling. In Practice and Theory of Automated

Timetabling: Lecture Notes in Computer Science. Pages 1-21. 1996.

[23] [CERD08] A. Cerdeira-Pena, L. Carpente, A. Farina, D. Seco. New approaches

for the school timetabling problem. In Proceedings of the 7th Mexican

International Conference on Artificial Intelligence. Pages 261-267.

2008.

[24] [COEL07] C. A. Coelho, G. B. Lamont, D. A. Van Veldhuisen. Evolutionary

Algorithms for Solving Multi-Objective Problems. Pages 556 – 557.

Springer. ISBN: 9780387367972. 2007.

[25] [COLO98] A. Colorni, M. Dorigo, V. Maniezzo. In Metaheuristics for High School

Timetabling. In Computational Optimization and Applications. Vol 9.

Pages 275-298. 1998.

[26] [DALT11] J. Dalton. Roulette Wheel Selection. Available:

http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/ Accessed:

2010 Last Updated: May 2011

[27] [DAVI91] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold,

New York, New York. 1991. ISBN 0-442-00173-8.

[28] [DEHA07] P. de Haan, R. Landman, G. Post, H. Ruizenaar. A Four-Phase

Approach to a Timetabling Problem in Secondary Schools. In

Proceedings of the International Conference on the Practice and

Theory of Automated Timetabling (PATAT). 2007.

[29] [DESE06] T. Desef, A. Bortfeldt, H. Gehring. A Tabu Search Algorithm for

Solving the Timetabling-Problem for German Primary Schools

(Abstract). In Proceedings of the International Conference on the

Practice and Theory of Automated Timetabling (PATAT). 2006

[30] [DIAZ07] P. A. Diaz-Gomez, D. F. Hougen. Initial Population for Genetic

Algorithms: A Metric Approach. In Proceedings of the International

Conference on Genetic and Evolutionary Methods. Pages 43-49.

2007.

[31] [DIST01] C. Di Stefano, A. G. B. Tettamanzi. An Evolutionary Algorithm for

solving the School Time-Tabling Problem. In Applications of

Evolutionary Computing, Lecture notes in Computer Science. Vol.

2037. Pages 452-462. 2001.

[32] [DYER08] D. W. Dyer. Evolutionary Computation in JAVA: A Practical Guide to

http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/

217

the Watchmaker Framework. Available:

http://watchmaker.uncommons.org/manual/index.html. Accessed:

2012 Last Updated: 2008

[33] [EIBE94] A. E. Eiben, P-E. Raue, Zs. Ruttkey. Genetic Algorithms with multi-

parent recombination. In Proceedings of the 3rd Conference on Parallel

Problem Solving from Nature. LNCS 866. Springer-Verlag. Pages 78-

87. 1994.

[34] [EIBE95] A. E. Eiben, C. H. M. van Kemenade. Performance of multi-parent

crossover operators on numerical function optimization problems. In

Technical Report TR-95-33. Leiden University. 1995.

[35] [EIBE99] A. Eiben, R. Hinterding, Z. Michalewicz. Parameter Control in

Evolutionary Algorithms. In Evolutionary Computation IEEE

Transactions on 3.2. Pages 124-141. 1999.

[36] [EIBE03] Introduction to evolutionary computing. Augusto Eiben and James

Smith. Springer. ISBN: 9783540401841. 2003

[37] [ELMO98] S. Elmohamed, G. Fox, P. Coddington. A Comparison of Annealing

Techniques for Academic Course Scheduling. In Proceedings of the

2nd International Conference on the Practice and Theory of

Aumtomated Timetabling. Pages 146-166. Syracuse, New York.

1998.

[38] [FERN99] C. Fernandes, J. P. Caldeira, F. Melicio, A. Rosa. High School Weekly

Timetabling by Evolutionary Algorithms. In Proceedings of the Genetic

and Evolutionary Computation Algorithm. Page 1777. 1999.

[39] [FILH01] G. R. Filho, L. A. N. Lorena. A Constructive Evolutionary Approach to

School Timetabling. In Proceedings of the EvoWorkshops on

Applications of Evolutionary Computing, Lecture Notes in Computer

Science. Vol 2037. Pages 130-139. 2001.

[40] [FROS94] D. Frost, R. Dechter. Dead-End Driven Learning. In Proceedings of

the Twelfth National Conference on Artificial Intelligence. Pages 294-

300. Seattle. 1994.

[41] [GHAN03] R. Ghanea-Hercock. Applied Evolutionary Algorithms in Java.

Springer-Verlag. New York. 2003. ISBN 0-387-95568-2.

[42] [GOLD89] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Westley. 1989. ISB 0-201-15767-5.

[43] [GOLE89] D. E. Goldberg, B. Korb, K. Deb. Messy Genetic Algorithms:

Motivation, Analysis, and First Results. In Complex Systems 3 (5).

http://watchmaker.uncommons.org/manual/index.html

218

Pages 493-530. 1989. ISSN 0891-2513.

[44] [GLOV89] F. Glover. Tabu Search. Part 1. ORSA Journal of Computing. Pages

190-206. 1989.

[45] [GLOV97] F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publishers.

Netherlands. 1997. ISBN 0-7923-8187-4.

[46] [GREF86] J. J. Grefenstette. Optimization of Control Parameters for Genetic

Algorithms. In IEEE Transactions on Systems, Man and Cybernetics.

Vol SMC16 No. 1. Pages 122-128. January 1986.

[47] [GROB02] M. Grobner, P. Wilke, S. Buttcher. A Standard Framework for

Timetabling Problems. In Springer-Verlag Lecture Notes in Computer

Science. Vol 2740. Page 25. 2002.

[48] [GUTI02] G. Gutierrez, J. M. Molina, I. Galvan, A. Sanchiz. An Objective

Measure to Compare some Automatic Generation Methods of NN

Architectures. In Systems, Man and Cybernetics. Volume 3. 2002.

[49] [HILL99] R. R. Hill. A Monte Carlo study of Genetic Algorithm Initial Population

Generation Methods

[50] [HINT96] R. Hinterding, Z. Michalewicz, T. C. Peacher. Self-adaptive genetic

algorithms for numeric functions. In Parallel Problem Solving from

Nature, PPSN IV. Pages 420-429. 1996.

[51] [JACO06] F. Jacobsen, A. Bortfeldt, H. Gehring. Timetabling at German

Secondary Schools: Tabu Search verses Constraint Programming. In

Proceedings of the International Conference on the Practice and

Theory of Automated Timetabling (PATAT). Pages 439-442. 2006.

[52] [JOHN11] C. Johnson. Basic Research skills in Computer Science. Available:

http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/basics.html

Retrieved: 2011

[53] [KAZA07] S. Kazarlis, V. Petridis, P. Adamidis, P. Fragkou. Evolutionary

Timetabling with a Priority-Based Indirect Representation. In

Proceedings of the 22nd European Conference on Operational

Research. EURO XXII. Prague. July 8-11 2007.

[54] [KENN95] J. Kennedy, R. Eberhart. Particle Swarm Optimization. Proceedings

of IEEE International Conference on Neural Networks. IV. Pages

1942-1948. 1995

[55] [KING05] J. H. Kingston. A Tiling Algorithm for High School Timetabling. In

Practice and Theory of Automated Timetabling V, Lecture Notes in

http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/basics.html

219

Computer Science. Vol. 3616. Pages 208-225. 2005.

[56] [KIRK83] S. Kirkpatrick, C. D. Gelatt Jr., M. Vecchi. Optimization by Simulated

Annealing. Science. 220(4598). Pages 671-680. 1983.

[57] [LUKE12] S. Luke. Essentials of Metaheuristics. Lulu. Available at

http://cs.gmu.edu/∼sean/book/metaheuristics/. 2012.

ISBN: 978-0-557-14859-2.

[58] [LIU09] Y. Liu, D. Zhang, S. C. H. Leung. A Simulated Annealing Approach

with a new Neighbourhood Structure for the Timetabling Problem. In

Proceedings of GEC 2009, First ACM/SIGEVO Summit on Genetic and

Evolutionary Computing. Pages 381-386. 2009.

[59] [MAHF95] S. W. Mahfoud. Niching Methods for Genetic Algorithms. Phd

Dissertation. Department of General Engineering, University of Illinois.

1995.

[59] [MART07] M. Marte. Towards constraint-based school timetabling. In Annuals of

Research. Vol. 155. No.1. Pages 207-225. November 2007

[60] [MEFF10] K. Meffert. A Brief Introduction to Genetic Algorithms. Available:

http://jgap.sourceforge.net/doc/gaintro.html Retrieved: 2011. Last

Updated: 2010

[61] [MICH98] M. Michell. An Introduction to Genetic Algorithms. MIT Press. 1998.

ISBN: 9780262631853.

[62] [MILL95] B. L. Miller, D. E. Goldberg. Genetic Algorithms, Tournament Selection

and the Effects of Noise. In Complex Systems. Pages 193-212.

1995.

[63] [NAID09] A. Naidoo. Evolving Automata using Genetic Programmings. Masters

Thesis. School of Computer Science, University of Kwazulu Natal.

2009

[64] [NELS91] M. M. Nelson, W. T. Illingsworth. A practical guide to neural nets.

Addison-Wesley Publishing Company Inc. 1991.

ISBN: 0-201-56309-6

[65] [NEUR02] Neurodimension Inc. Mutation. Available:

http://www.nd.com/products/genetic/mutation.htm Retrieved: 2010.

Last Updated: 2002.

[66] [NURM07] K. Nurmi, J. Kyngas. A Framework for School Timetabling Problem. In

Proceedings of the 3rd Multidisciplinary International Scheduling

Conference. Paris, France. 2007

http://jgap.sourceforge.net/doc/gaintro.html
http://www.nd.com/products/genetic/mutation.htm

220

[67] [OBIT98] M. Obitko. Introduction to Genetic Algorithms. Available:

http://www.obitko.com/tutorials/genetic-algorithms/index.php Retrieved:

2010. Last Updated: 1998

[68] [OXFO11] Concise Oxford English Dictionary. Oxford University Press.

Available: http://oxforddictionaries.com/definition/methodology?view=get

Retrieved: 2011. Last updated: 2011.

[69] [PAIS09] T. C. Pais, P. Amaral. Weight Aggregation in a Multi-objective

Approach for Examination Timetabling Problems. 2009.

[70] [PETT93] E. Pettit, K. M. Swigger. An Analysis of genetic-based pattern tracking.

In Proceedings of National Conference of Artificial Intelligence. AAAI

83. Pages 327-332. 1983.

[71] [RAHO06] M. Rahoual, R. Saad. Solving Timetabling Problems by Hybridizing

Genetic Algorithms and Tabu Search. In The Proceedings of the

International Conference on the Practice and Theory of Automated

Timetabling (PATAT). 2006.

[72] [RAMS93] C. L. Ramsey, J. J. Grefenstette. Case-based Initialization of Genetic

Algorithms. In Proceedings of the Fifth International Conference on

Genetic Algorithms. San Mateo, California. Morgan Kaufmann.

Pages 84-91. 1993.

[73] [RAND00] M. Randall. A General Meta-Heuristic Based Solver for Combinatorial

Optimization Problems. In Computational Optimization and

Applications. Vol 20 No 2. Pages 185-210. 2000.

[74] [RAGH08] R. Raghavjee, N. Pillay. An Application of Genetic Algorithms to the

School Timetabling Problem. In Proceedings of SAICSIT 2008. Pages

193-199. ACM Press. 2008.

[75] [RAGH10] R. Raghavjee, N. Pillay. Using Genetic Algorithms to Solve the South

African School Timetabling Problem. In Proceedings of Conference for

Nature and Biologically Inspired Computing 2010 (NaBIC). Pages 286-

292. 2010.

[76] [RAZA11] N. M. Razali, J. Geraghty. Genetic Algorithm Performance with

Different Selection Strategies in Solving TSP. Proceedings of the

World Congress on Engineering 2011. Vol. 2. July 2011.

[77] [ROJA96] R. Rojas. Neural Networks: A Systematic Introduction. Springer.

Berlin, Germany. 1996.

[78] [ROSS06] F. Rossi, P. van Beek, T. Walsh. Handbook of Constraint

http://www.obitko.com/tutorials/genetic-algorithms/index.php
http://oxforddictionaries.com/definition/methodology?view=get

221

Programming. Elsevier Science. ISBN: 9780444527264. 2006.

[79] [SAGI06] M. Sagir. Multi-objective Course Scheduling with Mathematical

Programming and Analytic Network Process. 2006.

[80] [SANT06] B. Santosa. Tutorial Particle Swarm Optimization. 2006

[81] [SARM07] S. Siamak. An investigation on Genetic Algorithm Parameters. Report.

Penang: Universiti Sains Malaysia. 2007.

[82] [SAST05] K. Sastry, D. Goldberg, G. Kendall. Genetic Algorithms. In Search

Methodologies. Pages 97 – 125. Springer. 2005.

[83] [SCHA96] A. Schaerf. Tabu Search Techniques for Large High-School

Timetabling Problems. In IEEE Transactions on Systems,

Management and Cybernetics: Part A. 1996.

[84] [SCHA99] A. Schaerf. A Survey of Automated Timetabling. In Artificial

Intelligence Review 13. Pages 87-127. Kluwer. 1999.

[85] [SCHA01] A. Schaerf, L. Di Gaspero. Local Search Techniques for Educational

Timetabling Problems. In Proceedings of the 6th International

Symposium on Operations Research in Slovenia. Pages 13-23. 2001

[86] [SIGL03] B. Sigl, M. Golub, V. Mornar. Solving Timetabling Scheduling Problem

using Genetic Algorithms. In Information Technology Interfaces, 2003.

ITI 2003. Proceedings of the 25th International Conference in IEEE.

2003.

[87] [SMIT03] K. A. Smith, D. Abramson, D. Duke. Hopfield Neural Networks for

Timetabling: Formulations, Methods, and Comparitive Results. In

Computers and Industrial Engineering. Vol. 44. Pages 283-305.

2003.

[88] [SPEA91] W. M. Spears, V. Anand. A study of Crossover Operators in Genetic

Programming. Methodologies for Intelligent Systems. Pages 409-418.

1991.

[89] [SPEA93] W. M. Spears. Crossover or Mutation? In Foundation of Genetic

Algorithms, Volume 2, Pages 221-237. Kaufmann. 1993.

[90] [SPED95] W. M. Spears, K. De Jong. On the Virtues of Parameterized Uniform

Crossover. In Naval Research Lab. Washington D.C. 1995.

[91] [SRIN94] M. Srinivas, L. M. Patnaik. Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms. In IEEE Transactions on Systems,

Man and Cybernetics, Vol. 24 No. 4. April 1994.

[92] [SUMA08] Evolutionary Intelligence: An introduction to theory and applications

222

with Matlab: S. Sumathi and T. Hamsapriya and P. Surekha. 2008

[93] [SYSW89] G. Syswerda. Uniform crossover in genetic algorithms. In J. D.

Schafer (Ed.) Proceedings of the Third International Conference on

Genetic Algorithms. San Mateo, California. Morgan Kaufmann

Publishers Inc.

[94] [TERA99] H. Terashima-Marin, P. Ross. Evolution of Constraint Satisfaction

Strategies in Examination Timetabling. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO99). 1999.

[95] [TONG99] S. Tongchim. Coarse-Grained Parallel Genetic Algorithm for Solving

the Timetable Problem. In Proceedings of 3rd Annual National

Symposium on Computational Science and Engineering. 1999.

[96] [VALO03] C. Valouxis, E. Housos. Constraint programming approach for school

timetabling. In Computers and Operations Research. Vol 30. Pages

1555-1572. 2003.

[97] [WILK02] P. Wilke, M. Grobner, N Oster. A Hybrid Genetic Algorithm for School

Timetabling. In AI 2002. Advances in Artificial Intelligence, Lecture

Notes in Computer Science. Volume 2557/2002. Pages 455-464.

2002

[98] [WILK08] P. Wilke, J. Ostler. Solving the School Timetabling Problem Using

Tabu Search, Simulated Annealing, Genetic and Branch & Bound

Algorithms. In The Proceedings of the 7th International Conference on

the Practice and Theory of Automated Timetabling (PATAT). 2008

[99] [WOLS98] L. Wolsey. Integer Programming. Wiley-Interscience. ISBN:

9780471283669. 1998.

[100] [XIE09] H. Xie, M. Zhang. Tuning Selection Pressure in Tournament Selection.

In Technical Report Series. School of Engineering and Computer

Science, Victoria University of Wellington. New Zealand. 2009.

[101] [ZDAN02] M. Zdansky, J. Pozivil. Combination Genetic/Tabu Search Algorithm

for Hybrid Flowshops Optimization. Proceedings of ALGORITMY

2002. Conference on Scientific Computing. Pages 230-236. 2002.

[102] [ZITZ99] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications. Volume 63. Shaker. 1999.

[103] [ZUTE07] J. Zuters. Neural Networks to Enrich Fitness Function in a GA-based

School Timetabling Model. In WSEAS Transactions on Information

Science and Applications. Issue 2 Vol. 4. Pages 346-353. February

2007.

223

Appendix A – School Timetabling
Problem data

A.1 Abramson data sets

NUMBER OF TEACHERS = 4
NUMBER OF SUBJECTS = 20
NUMBER OF CLASSES = 4
NUMBER OF ROOM AVAILABLE = 4
NUMBER OF REQUIREMENTS = 120

Figure A.1: HDTT4 Details

2 2 1 2
1 1 1 2
1 1 1 6
2 2 3 2
2 5 1 2
0 4 3 2
1 2 1 0
2 2 1 2
2 1 1 2
0 0 5 1
2 1 4 1
6 1 2 1
3 1 2 1
1 4 1 4
3 3 2 1
2 0 1 1

Figure A.2: HDTT4 Requirements

NUMBER OF TEACHERS = 5
NUMBER OF SUBJECTS = 20
NUMBER OF CLASSES = 5
NUMBER OF ROOM AVAILABLE = 5
NUMBER OF REQUIREMENTS = 150

Figure A.3: HDTT5 Details

224

1 0 0 1 2
2 0 1 3 1
0 0 1 2 1
1 2 3 1 0
0 2 1 4 1
4 0 3 1 3
0 1 0 1 3
0 1 2 1 1
1 0 3 0 0
2 1 0 2 0
2 2 0 0 2
3 2 1 2 1
1 0 3 1 1
3 0 0 0 3
1 0 0 1 1
1 2 0 0 1
0 2 3 1 0
2 0 2 0 4
1 3 0 2 1
1 1 0 2 1
1 1 1 1 1
0 3 0 0 0
1 2 3 1 0
1 2 1 1 1
1 3 2 2 1

Figure A.4: HDTT5 Requirements

NUMBER OF TEACHERS = 6
NUMBER OF SUBJECTS = 20
NUMBER OF CLASSES = 6
NUMBER OF ROOM AVAILABLE = 6
NUMBER OF REQUIREMENTS = 180

Figure A.5: HDTT6 Details

1 0 1 1 0 3
0 2 0 0 0 0
0 1 0 1 0 0
1 0 2 1 0 1
2 1 1 2 2 1
0 1 1 1 1 2
2 1 1 0 2 0
0 0 1 0 2 3
0 0 0 0 2 1
1 0 0 0 0 0
0 2 1 2 2 1
3 0 1 1 1 0
2 1 1 1 0 0
1 0 3 0 1 0
0 0 1 1 2 1
1 1 1 1 1 2
1 1 1 0 0 0
1 1 2 0 1 0
0 2 0 0 2 1
0 1 1 2 0 2
0 2 0 0 3 0

225

1 1 2 1 0 0
1 0 1 0 1 2
1 0 0 1 1 1
0 1 0 0 0 3
0 1 0 3 1 0
3 0 1 4 0 2
2 0 1 0 0 1
2 1 0 0 0 0
1 1 0 0 1 1
0 1 1 0 2 0
0 3 2 1 0 0
0 1 0 2 1 1
1 2 2 3 0 0
1 0 0 0 1 0
1 1 1 1 0 1

Figure A.6: HDTT6 Requirements

NUMBER OF TEACHERS = 7
NUMBER OF SUBJECTS = 20
NUMBER OF CLASSES = 7
NUMBER OF ROOM AVAILABLE = 7
NUMBER OF REQUIREMENTS = 210

Figure A.7: HDTT7 Details

1 0 0 0 2 1 2
0 1 1 0 0 1 1
0 1 0 1 1 0 0
0 0 0 1 1 1 0
1 0 3 0 0 1 1
0 1 0 1 0 0 1
0 0 1 1 1 1 1
2 0 0 1 2 1 0
0 1 2 1 0 0 0
0 0 0 0 2 1 0
1 0 0 0 1 0 0
1 0 0 0 0 0 1
4 1 1 3 1 0 0
1 0 0 1 0 1 0
0 0 1 1 0 2 0
1 1 0 0 2 1 0
1 0 1 0 1 0 0
0 0 2 1 0 1 0
0 1 1 0 0 1 2
3 0 0 0 0 0 1
0 1 2 0 2 0 0
0 0 0 0 0 1 4
0 1 0 1 0 0 0
0 1 1 2 1 1 2
0 0 1 1 0 0 1
1 0 2 0 0 1 2
1 0 0 0 0 0 0
0 2 0 1 1 0 1
0 2 0 0 0 1 0
0 0 0 1 0 1 1
0 0 0 1 0 4 0

226

0 1 0 1 0 0 0
2 0 0 0 0 0 1
1 2 0 0 4 0 0
2 0 0 1 2 0 2
0 0 0 0 0 1 1
1 2 1 0 0 1 0
0 2 0 1 0 1 0
1 1 2 2 1 0 3
2 0 1 1 1 1 0
0 2 0 0 1 0 0
0 0 0 0 0 0 0
0 2 0 1 0 1 0
0 1 3 0 2 1 0
0 2 1 0 0 1 0
2 0 1 2 0 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 1 1 1 1 0 0

Figure A.8: HDTT 7 Requirements

NUMBER OF TEACHERS = 8
NUMBER OF SUBJECTS = 20
NUMBER OF CLASSES = 8
NUMBER OF ROOM AVAILABLE = 8
NUMBER OF REQUIREMENTS = 240

Figure A.9: HDTT8 Details

1 0 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0
1 0 0 1 0 1 1 1
0 0 1 3 0 0 1 0
0 1 1 0 1 0 1 1
0 1 0 0 0 1 1 0
1 0 0 0 0 1 2 0
1 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 2 1 1
1 0 0 0 0 0 1 0
2 1 0 1 2 1 0 0
1 0 0 0 2 0 0 1
2 0 1 0 0 0 0 1
0 0 0 2 0 1 1 0
1 0 1 0 1 1 0 1
0 0 0 2 1 0 2 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
2 1 1 0 0 0 0 1
1 0 1 0 0 1 0 0
0 1 0 2 1 0 1 0
0 1 1 0 0 0 0 0
1 1 1 3 1 0 1 0
0 0 0 0 1 1 2 0

227

1 0 0 1 0 1 0 0
0 0 0 0 0 2 0 0
0 0 0 1 1 0 0 1
0 2 0 1 0 0 0 0
0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0
0 1 0 0 1 1 1 1
1 0 0 1 2 0 0 0
1 0 2 0 0 0 1 1
0 0 0 0 2 0 0 0
1 0 1 1 0 2 0 3
0 2 0 0 0 0 0 1
1 1 0 0 0 0 1 0
1 0 3 0 0 0 0 0
0 0 1 1 1 0 2 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 0 0
1 0 2 1 0 0 0 0
0 0 1 0 0 1 0 1
0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 2
0 2 0 0 1 0 1 0
0 0 2 0 1 0 0 1
0 1 0 1 0 0 1 2
1 1 0 2 1 1 0 1
1 0 0 0 2 0 0 0
0 0 1 0 0 0 1 0
0 2 1 0 0 1 1 0
0 1 2 0 1 2 0 1
0 2 0 0 0 2 0 0
1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0
0 0 1 2 0 1 0 0
0 0 1 0 0 0 0 0
2 1 0 0 1 0 0 0

Figure A.10: HDTT8 Requirements

228

A.2 Valouxis data set

Teachers: 15
Classes: 6
Sessions: 2

Figure A.11: Valouxis Details

Teacher Class Section Total Hours Days Desired Shift

ID C1 C2 C3 C4 C5 C6 Mo Tu We Th Fr Early Late

T1 3 3 3 3 2 2 16 1 1 1 1 1 0 1

T2 9 0 8 0 0 0 17 1 1 1 1 1 1 0

T3 0 9 0 8 0 0 17 1 1 1 1 1 1 0

T4 2 0 0 0 8 8 18 1 1 1 1 1 1 0

T5 0 2 2 2 4 4 14 1 1 1 1 0 0 1

T6 2 2 2 2 2 2 12 1 1 1 0 0 0 1

T7 2 2 2 2 2 2 12 1 1 1 1 1 0 1

T8 3 3 3 3 2 2 16 1 1 1 1 1 0 1

T9 1 1 1 1 1 1 6 0 0 0 1 1 0 1

T10 0 0 1 1 1 1 4 0 0 0 0 1 1 0

T11 4 4 4 2 2 2 18 1 1 1 1 1 0 1

T12 4 4 4 4 0 0 16 1 1 1 1 1 1 0

T13 0 0 0 2 6 6 14 1 1 1 1 0 1 0

T14 3 3 3 3 2 2 16 1 1 1 1 1 0 1

T15 2 2 1 1 0 0 6 1 0 0 0 1 0 1

Total 35 35 34 34 32 32 202

Figure A.12: Valouxis requirements

229

A.3 Beligiannis data sets

Figure A.13: High_school_01 details and requirements

Figure A.14: High_School_02 details and requirements

230

Number of Classes 6
 Number of Teachers 19
 Number of Days 5
 Hours per Day 7
 MaxNo of Splits 0
 Days A1 A2 B1 B2 G1 G2

1_T 1 1 1 1 1 0 0 0 0 0 0 0 0 5 1 0 0

2_T 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1

3_T 1 1 1 1 1 0 0 0 0 6 3 2 1 0 0 0 0

4_T 1 1 1 1 1 9 2 9 2 0 0 0 0 0 0 0 0

5_T 1 1 1 1 1 0 0 0 0 4 2 4 2 4 2 6 2

6_T 1 1 1 1 1 2 1 2 1 0 0 4 2 4 2 7 3

7_T 1 1 1 1 1 0 0 0 0 4 1 4 1 4 1 4 1

8_T 1 1 1 0 1 4 1 4 1 0 0 0 0 0 0 0 0

9_T 1 1 1 1 1 2 1 2 1 5 2 5 2 0 0 1 1

10_T 1 1 1 1 1 2 1 2 1 0 0 0 0 6 3 5 2

11_T 0 1 1 0 1 3 1 3 1 0 0 3 1 0 0 0 0

12_T 0 1 0 1 0 0 0 0 0 3 1 0 0 3 1 3 1

13_T 1 1 1 1 1 3 1 3 1 2 1 2 1 2 1 2 1

14_T 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

15_T 1 1 1 1 1 3 1 3 1 3 1 3 1 2 1 2 1

16_T 0 0 1 0 1 1 1 1 1 2 1 2 1 0 0 0 0

17_T 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

18_T 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0

19_T 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure A.15: High_School_03 details and requirements

231

Number of Classes 7
 Number of Teachers 19
 Number of Days 5
 Hours per Day 7
 Maxno of Splits 12
 Days 1 2 3 4 5 6 7 Classes

1_T 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

2_T 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3_T 1 1 1 1 1 2 1 2 1 2 1 3 2 2 1 5 2 2 1 0 0 0 0 0 0 0 0 0 0

4_T 1 1 1 1 1 4 1 0 0 6 2 4 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5_T 1 1 1 1 1 7 3 6 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6_T 1 1 1 1 1 0 0 0 0 0 0 4 1 4 1 6 3 5 2 0 0 0 0 0 0 0 0 0 0

7_T 1 1 1 1 1 0 0 5 2 0 0 0 0 2 1 4 1 8 3 0 0 0 0 0 0 0 0 0 0

8_T 1 1 1 1 1 0 0 0 0 0 0 4 1 4 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0

9_T 1 1 1 1 1 4 1 4 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10_T 1 1 1 1 1 2 1 2 1 2 1 1 1 0 0 5 3 5 3 0 0 0 0 0 0 0 0 0 0

11_T 1 1 1 1 1 2 1 2 1 2 1 4 2 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12_T 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 0 0 0 0 0 0 0 0 0

13_T 1 1 1 1 1 6 2 0 0 6 2 5 2 0 0 0 0 0 0 1 3 4 0 0 0 0 0 0 0

14_T 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 6 0 0 0 0 0 0

15_T 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

16_T 1 1 1 1 1 0 0 6 2 6 2 1 1 5 2 0 0 4 2 2 3 5 7 0 0 0 0 0 4

17_T 0 1 0 1 0 1 1 1 1 1 1 2 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

18_T 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 1 2 3 4 5 0

19_T 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 0 0 0 0 1 2 3 4 5 0

Figure A.16: High_School_04 details and requirements

232

Number of Classes 6
 Number of Teachers 18
 Number of Days 5
 Hours per Day 7
 MaxNo of Splits 0
 Days 1 2 3 4 5 6

1_T 1 1 1 0 1 4 1 0 0 0 0 0 0 0 0 0 0

2_T 1 1 1 1 1 4 2 2 1 4 2 4 2 2 1 2 1

3_T 1 1 1 1 1 0 0 0 0 4 1 4 1 4 2 4 2

4_T 1 1 1 1 1 5 2 5 2 0 0 0 0 4 1 4 1

5_T 1 1 1 1 1 0 0 4 1 4 2 4 2 3 1 3 1

6_T 1 1 1 1 1 0 0 0 0 4 1 4 1 0 0 0 0

7_T 1 1 1 1 1 4 1 4 1 0 0 0 0 4 1 4 1

8_T 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1

9_T 1 1 1 1 1 0 0 0 0 5 3 3 2 3 2 3 2

10_T 1 0 1 1 1 2 1 2 1 0 0 2 1 0 0 0 0

11_T 0 1 1 1 0 3 1 3 1 0 0 0 0 0 0 0 0

12_T 0 0 1 1 1 0 0 0 0 3 1 3 1 3 1 3 1

13_T 1 1 1 1 1 3 1 5 2 2 1 2 1 2 1 2 1

14_T 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1

15_T 0 1 0 1 1 3 2 3 2 2 1 2 1 0 0 0 0

16_T 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

17_T 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

18_T 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure A.17: High_School_05 details and requirements

233

Figure A.18: High_School_07 details and requirements

234

A.4 Lewitt data set
1 9 9 9 9 9
2 9 9 9 9 9
3 9 9 9 9 9
4 9 9 9 9 9
5 9 9 9 9 9
6 11 10 10 10 9
7 11 10 10 10 9
8 11 11 11 11 9
9 11 11 11 11 9
10 11 11 11 11 9
11 11 11 11 11 9
12 11 11 11 11 9
13 11 11 11 11 9
14 11 11 11 11 9
15 11 11 11 11 9
16 11 11 11 11 9

Figure A.19: Lewitt Periods for each class labeled 1 to 16

235

School Details
Number of Classes 16
Number of Teachers 19
Number of Subjects 14
Number of Days 5
Periods Per day 11

Class Subject Teacher 1 Teacher 2 Times Clash Double Triple Session
 SReq
1A Fnd KN 0 45 0 0 0 4 1
1B Fnd VP 0 45 0 0 0 4 1
1C Fnd AM 0 45 0 0 0 4 1

2A Fnd NDG 0 45 0 0 0 4 1
2B Fnd SN 0 45 0 0 0 4 1

3A Afk NH 0 3 0 1 0 7 0
3A Fnd HPB 0 45 0 0 0 7 0
3A Lfe AM 0 2 0 1 0 7 0

3B Afk NH 0 3 0 1 0 7 0
3B Fnd RM 0 37 0 0 0 7 0
3B Lfe KN 0 1 0 0 0 7 0
3B Lfe NH 0 2 0 1 0 7 0
3B Lfe VP 0 2 0 0 0 7 0
3B Lfe NDG 0 2 0 0 0 7 0
3B Zul HPB 0 3 0 1 0 7 0

4A ACc SB 0 3 0 1 0 7 0
4A Afk JM 0 5 0 0 0 7 0
4A EMS JM 0 3 0 1 0 7 0
4A Eng US 0 11 0 1 0 7 0
4A LOr KND 0 3 0 1 0 7 0
4A LRE NDG 0 1 0 0 0 7 0
4A Mth US 0 10 0 1 0 4 1
4A NSc US 0 2 0 1 0 7 0
4A NSc US 0 2 0 0 0 7 0
4A PEd AM SMK 2 1 1 0 7 0
4A SSc JM 0 2 0 1 0 7 0
4A SSc JM 0 2 0 0 0 7 0
4A Tch KS 0 1 0 0 0 7 0
4A Tch KS VBS 2 1 1 0 7 0
4A Zul NFM 0 4 0 0 0 7 0

4B ACc SB 0 3 0 1 0 7 0
4B Afk JM 0 5 0 0 0 7 0
4B EMS JM 0 3 0 1 0 7 0
4B Eng US 0 11 0 1 0 7 0
4B LOr KND 0 3 0 1 0 7 0
4B LRE US 0 1 0 0 0 7 0
4B Mth US 0 10 0 1 0 4 1

236

4B NSc US 0 2 0 1 0 7 0
4B NSc US 0 2 0 0 0 7 0
4B PEd KN SMK 2 1 1 0 7 0
4B SSc JM 0 2 0 1 0 7 0
4B SSc JM 0 2 0 0 0 7 0
4B Tch KS 0 1 0 0 0 7 0
4B Tch KS VBS 2 1 1 0 7 0
4B Zul NFM 0 4 0 0 0 7 0

5A ACc NFM 0 3 0 1 0 7 0
5A Afk JM 0 5 0 0 0 7 0
5A EMS YM 0 3 0 1 0 7 0
5A Eng KND 0 11 0 1 0 7 0
5A LOr JM 0 3 0 1 0 7 0
5A LRE AD 0 1 0 0 0 7 0
5A Mth AD 0 10 0 1 0 4 1
5A NSc KND 0 2 0 1 0 7 0
5A NSc KND 0 2 0 0 0 7 0
5A PEd NFM KS 2 1 1 0 7 0
5A SSc AD 0 2 0 1 0 7 0
5A SSc AD 0 2 0 0 0 7 0
5A Tch KS 0 1 0 0 0 7 0
5A Tch KS DN 2 1 1 0 7 0
5A Zul NFM 0 4 0 0 0 7 0

5B ACc NFM 0 3 0 1 0 7 0
5B Afk JM 0 5 0 0 0 7 0
5B EMS YM 0 3 0 1 0 7 0
5B Eng KND 0 11 0 1 0 7 0
5B LOr JM 0 3 0 1 0 7 0
5B LRE KND 0 1 0 0 0 7 0
5B Mth AD 0 10 0 1 0 4 1
5B NSc KND 0 2 0 1 0 7 0
5B NSc KND 0 2 0 0 0 7 0
5B PEd VP AD 2 1 1 0 7 0
5B SSc AD 0 2 0 1 0 7 0
5B SSc AD 0 2 0 0 0 7 0
5B Tch KS 0 1 0 0 0 7 0
5B Tch KS DN 2 1 1 0 7 0
5B Zul NFM 0 4 0 0 0 7 0

5C ACc NFM 0 3 0 1 0 7 0
5C Afk JM 0 5 0 0 0 7 0
5C EMS YM 0 3 0 1 0 7 0
5C Eng KND 0 11 0 1 0 7 0
5C LOr JM 0 3 0 1 0 7 0
5C LRE NDG 0 1 0 0 0 7 0
5C Mth AD 0 10 0 1 0 4 1
5C NSc KND 0 2 0 1 0 7 0
5C NSc KND 0 2 0 0 0 7 0
5C PEd AD KS 2 1 1 0 7 0

237

5C SSc AD 0 2 0 1 0 7 0
5C SSc AD 0 2 0 0 0 7 0
5C Tch KS 0 1 0 0 0 7 0
5C Tch KS DN 2 1 1 0 7 0
5C Zul NFM 0 4 0 0 0 7 0

6A ACc SB 0 3 0 1 0 7 0
6A Afk SMK 0 5 0 0 0 7 0
6A EMS DN 0 3 0 1 0 7 0
6A Eng SB 0 11 0 1 0 7 0
6A LOr KS 0 3 0 1 0 7 0
6A LRE SN 0 1 0 0 0 7 0
6A Mth VBS 0 10 0 1 0 4 1
6A NSc SB 0 2 0 1 0 7 0
6A NSc SB 0 2 0 0 0 7 0
6A PEd SN VBS 2 1 1 0 7 0
6A SSc SB 0 2 0 1 0 7 0
6A SSc SB 0 2 0 0 0 7 0
6A Tch KS 0 1 0 0 0 7 0
6A Tch KS NFM 2 1 1 0 7 0
6A Zul NFM 0 4 0 0 0 7 0

6B ACc SB 0 3 0 1 0 7 0
6B Afk SMK 0 5 0 0 0 7 0
6B EMS DN 0 3 0 1 0 7 0
6B Eng SB 0 11 0 1 0 7 0
6B LOr KS 0 3 0 1 0 7 0
6B LRE KN 0 1 0 0 0 7 0
6B Mth VBS 0 10 0 1 0 4 1
6B NSc SB 0 2 0 1 0 7 0
6B NSc SB 0 2 0 0 0 7 0
6B PEd KS AD 2 1 1 0 7 0
6B SSc SB 0 2 0 1 0 7 0
6B SSc SB 0 2 0 0 0 7 0
6B Tch KS 0 1 0 0 0 7 0
6B Tch KS DN 2 1 1 0 7 0
6B Zul NFM 0 4 0 0 0 7 0

7A ACc SMK 0 3 0 1 0 7 0
7A Afk SMK 0 5 0 0 0 7 0
7A EMS YM 0 3 0 1 0 7 0
7A Eng YM 0 11 0 1 0 7 0
7A LOr SMK 0 3 0 1 0 7 0
7A LRE SN 0 1 0 0 0 7 0
7A Mth DN 0 10 0 1 0 4 1
7A NSc SMK 0 2 0 1 0 7 0
7A NSc SMK 0 2 0 0 0 7 0
7A PEd SMK YM 2 1 1 0 7 0
7A SSc DN 0 2 0 1 0 7 0
7A SSc DN 0 2 0 0 0 7 0
7A Tch KS 0 1 0 0 0 7 0

238

7A Tch KS VBS 2 1 1 0 7 0
7A Zul NFM 0 4 0 0 0 7 0

7B ACc SMK 0 3 0 1 0 7 0
7B Afk SMK 0 5 0 0 0 7 0
7B EMS YM 0 3 0 1 0 7 0
7B Eng YM 0 11 0 1 0 7 0
7B LOr SMK 0 3 0 1 0 7 0
7B LRE YM 0 1 0 0 0 7 0
7B Mth DN 0 10 0 1 0 4 1
7B NSc SMK 0 2 0 1 0 7 0
7B NSc SMK 0 2 0 0 0 7 0
7B PEd SMK YM 2 1 1 0 7 0
7B SSc DN 0 2 0 1 0 7 0
7B SSc DN 0 2 0 0 0 7 0
7B Tch KS 0 1 0 0 0 7 0
7B Tch KS VBS 2 1 1 0 7 0
7B Zul NFM 0 4 0 0 0 7 0

Figure A.20: Lewitt details and requirements

Type Class Tchr Subj FromDay ToDay FromPrd ToPrd Sched NumPer
1 -1 US Mth 1 5 1 4 1 10
1 -1 AD Mth 1 5 1 6 1 10
1 -1 VBS Mth 1 5 1 4 1 10
1 -1 DN Mth 1 5 1 4 1 10
0 1A -1 Fnd 1 5 1 9 1 45
0 1B -1 Fnd 1 5 1 9 1 45
0 1C -1 Fnd 1 5 1 9 1 45
0 2A -1 Fnd 1 5 1 9 1 45
0 2B -1 Fnd 1 5 1 9 1 45

Figure A.21: Lewitt Scheduled Requirements

A.5 Woodlands data set
8A
8B
8C
8D
8E
8F
8G
9A
9B
9C
9D
9E
10A
10B

239

10C
10D
10E
11A
11B
11C
11D
11E
11F
11G
12A
12B
12C
12D
12E
12F

Figure A.22: Class list for Woodlands

Type Grade Cl/T Subj FromDay ToDay FromPrd ToPrd Schedule
0 12 C ENG 1 6 3 3 1
1 -1 AK -1 1 6 6 6 0
2 10 5 -1 1 6 3 3 1

Figure A.23: Preferences for Woodlands

SCHOOL DETAILS
NUMBER OF CLASSES 30
NUMBER OF TEACHERS 40
NUMBER OF SUBJECTS 44
PERIODS IN DAY 7
DAYS IN WEEK 6

Teacher Grade Class Subject Meetings
EL 10 1 ML 7
EL 10 2 ML 7
EL 10 B LO 2
EL 10 C LO 2
EL 10 D LO 2
EL 8 A AC 4
EL 8 B AC 4
EL 8 C AC 4
EL 8 D AC 4
EL 8 G LO 2

PM 10 B AFR 7
PM 10 C AFR 7
PM 10 D AFR 7
PM 10 E AFR 7

240

PM 9 A AFR 5
PM 9 E AFR 5

TA 11 E RP 1
TA 10 5 EGD 6
TA 9 A TEC 4
TA 9 B TEC 4
TA 9 C AC 4
TA 9 C TEC 4
TA 9 D AC 4
TA 9 D TEC 4
TA 9 E TEC 4
TA 8 F LO 2

FS 10 A ENG 7
FS 10 C ENG 7
FS 10 D ENG 7
FS 8 B ENG 5
FS 8 D ENG 5
FS 8 G NSC 6

RTS 11 E BS 6
RTS 9 A EMS 4
RTS 9 B EMS 4
RTS 9 B RP 1
RTS 9 C EMS 4
RTS 9 D EMS 4
RTS 9 E EMS 4
RTS 8 A LO 2
RTS 8 B LO 2
RTS 8 C LO 2
RTS 8 G EMS 4

SS 10 5 EGD2 6
SS 8 A TEC 4
SS 8 B TEC 4
SS 8 C TEC 4
SS 8 D LO 2
SS 8 D TEC 4
SS 8 D RP 1
SS 8 E TEC 4
SS 8 F TEC 4
SS 8 G TEC 4

MP 10 3 BS 6
MP 10 C RP 1
MP 10 E BS 6
MP 8 A EMS 4

241

MP 8 B EMS 4
MP 8 C EMS 4
MP 8 D EMS 4
MP 8 E EMS 4
MP 8 F EMS 4

AR 12 B ENG 7
AR 12 B RP 1
AR 12 D ENG 7
AR 12 D RP 1
AR 12 F ENG 7
AR 10 B ENG 7
AR 10 E ENG 7

CG 11 C ENG 7
CG 11 C RP 1
CG 11 D ENG 7
CG 11 D RP 1
CG 9 A ENG 5
CG 9 C ENG 5
CG 9 E ENG 5
CG 9 E RP 1
CG 8 F ENG 5

MVG 11 A ENG 7
MVG 11 E ENG 7
MVG 11 G ENG 7
MVG 11 G RP 1
MVG 9 B AFR 5
MVG 9 C AFR 5
MVG 9 D AFR 5

PN 12 1 ML2 7
PN 12 6 ML3 7
PN 11 5 ML2 7
PN 10 E RP 1
PN 9 C MAT 7
PN 9 D MAT 7

RT 12 3 LS 6
RT 10 A LS 6
RT 10 B LS 6
RT 8 A NSC 6
RT 8 C NSC 6
RT 8 E NSC 6

RLN 12 E DA 6
RLN 11 2 DA 6

242

RLN 11 6 DA 6
RLN 10 E DA 6
RLN 9 A AC 4
RLN 9 B AC 4
RLN 9 E AC 4

TVV 12 A AFR 7
TVV 12 C AFR 7
TVV 11 B AFR 7
TVV 11 E AFR 7
TVV 10 A AFR 7
TVV 10 A RP 1

USM 12 3 PSC 6
USM 12 A PSC 6
USM 11 4 PSC 6
USM 11 A PSC 6
USM 10 A PSC 6
USM 9 D NSC 6

YH 12 1 MAT 7
YH 12 6 ML 7
YH 12 F RP 1
YH 11 1 ML 7
YH 10 1 MAT2 7
YH 10 2 MAT 7

TP 9 A RP 1
TP 8 A AFR 5
TP 8 B AFR 5
TP 8 C AFR 5
TP 8 D AFR 5
TP 8 F AFR 5
TP 8 G ENG 5
TP 8 G AFR 5

SB 12 2 BS 6
SB 12 3 BS 6
SB 12 4 BS 6
SB 12 C BS 6
SB 11 6 BS 6
SB 11 F BS 6

SSM 12 4 TOU 6
SSM 11 3 TOU 6
SSM 11 G TOU 6
SSM 10 4 TOU 6
SSM 8 C HSS 4

243

SSM 8 E HSS 4
SSM 8 F HSS 4

TIL 12 B AFR 7
TIL 12 D AFR 7
TIL 11 A AFR 7
TIL 11 A RP 1
TIL 11 C AFR 7
TIL 11 F AFR 7

DPE 12 4 GEO 6
DPE 11 2 GEO 6
DPE 11 7 GEO 6
DPE 10 4 GEO 6
DPE 9 A HSS 4
DPE 9 B HSS 4
DPE 9 D HSS 4

FJ 12 1 ML 7
FJ 12 6 ML2 7
FJ 11 5 ML3 7
FJ 11 E ML 7
FJ 11 G ML 7
FJ 10 D RP 1

GMR 12 B LO 2
GMR 12 C LO 2
GMR 12 D LO 2
GMR 12 E LO 2
GMR 12 F LO 2
GMR 11 B LO 2
GMR 11 C LO 2
GMR 11 D LO 2
GMR 11 E LO 2
GMR 11 F LO 2
GMR 11 G LO 2
GMR 9 A LO 2
GMR 9 B LO 2
GMR 9 C LO 2
GMR 9 D LO 2
GMR 9 E LO 2
GMR 8 A RP 1
GMR 8 E LO 2
GMR 8 E RP 1

ADK 12 2 IT 6
ADK 12 7 CAT 6
ADK 11 5 ML 7

244

ADK 11 7 IT 6
ADK 10 B RP 1
ADK 9 A MAT 7
ADK 9 C RP 1
ADK 8 B RP 1
ADK 8 C RP 1

ATM 12 3 LS2 6
ATM 11 3 LS 6
ATM 11 B LS 6
ATM 8 B NSC 6
ATM 8 D NSC 6
ATM 8 F NSC 6

DI 9 B MAT 7
DI 9 E MAT 7
DI 8 D MAT 7
DI 8 E MAT 7
DI 8 F MAT 7
DI 8 F RP 1

LAN 12 3 HOS 6
LAN 12 4 CON 6
LAN 12 7 CON 6
LAN 11 6 CON 6
LAN 11 7 HOS 6
LAN 10 5 CON 6

PG 12 5 GEO 6
PG 11 4 GEO 6
PG 10 B GEO 6
PG 9 C HSS 4
PG 8 A MAT 7
PG 8 C MAT 7

NS 12 2 ACC 6
NS 12 5 ECO 6
NS 12 C ECO 6
NS 11 3 ACC 6
NS 11 4 ECO 6
NS 11 6 ECO 6

TCP 9 E HSS 4
TCP 8 B MAT 7
TCP 8 E AC 4
TCP 8 F AC 4
TCP 8 G MAT 7
TCP 8 G AC 4

245

TCP 8 G HSS 4
TCP 8 G RP 1

PH 12 1 MAT2 7
PH 12 6 MAT 7
PH 11 1 MAT 7
PH 11 5 MAT 7
PH 10 1 MAT 7

SMA 12 A ENG 7
SMA 12 A RP 1
SMA 12 E ENG 7
SMA 12 E RP 1
SMA 11 B ENG 7
SMA 11 B RP 1
SMA 11 F ENG 7
SMA 11 F RP 1

ZK 9 B ENG 5
ZK 9 D ENG 5
ZK 9 D RP 1
ZK 8 A ENG 5
ZK 8 C ENG 5
ZK 8 E ZUL 5
ZK 8 E ENG 5

DMO 12 3 EGD 6
DMO 12 5 EGD 6
DMO 11 2 EGD 6
DMO 11 3 EGD 6
DMO 11 7 EGD 6

LMD 12 A LO 2
LMD 11 4 HIS 6
LMD 11 7 HIS 6
LMD 11 A LO 2
LMD 10 3 HIS 6
LMD 10 A LO 2
LMD 10 E HIS 6

SIT 12 E AFR 7
SIT 12 F AFR 7
SIT 11 D AFR 7
SIT 11 G AFR 7
SIT 10 E LO 2

NMG 12 3 ACC 6
NMG 12 C ACC 6

246

NMG 11 6 ACC 6
NMG 10 A ACC 6
NMG 10 B ACC 6

AK 9 A NSC 6
AK 9 B NSC 6
AK 9 C NSC 6
AK 9 E NSC 6

SSN 8 A HSS 4
SSN 8 B HSS 4
SSN 8 D HSS 4

HAJ 12 C ENG 8

Figure A.24: Woodlands details and requirements

1 12 A
1 12 B
1 12 E

2 12 A
2 12 B

3 12 A
3 12 B
3 12 D
3 12 E
3 12 F

4 12 D
4 12 E
4 12 F

5 12 B
5 12 D

6 12 C
6 12 D
6 12 F

7 12 F

1 11 A
1 11 C

2 11 E

247

2 11 F

3 11 A
3 11 C
3 11 D

4 11 B
4 11 C
4 11 E

5 11 B
5 11 D
5 11 F

6 11 B
6 11 C
6 11 D
6 11 G

7 11 A
7 11 D
7 11 F
7 11 G

1 10 A
1 10 C
1 10 E

2 10 B
2 10 D

3 10 C
3 10 D

4 10 C
4 10 D

5 10 C
5 10 D

Figure A.25: List of Split and Subclasses for Woodlands

