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Abstract 
 
Solar ultraviolet radiation is known to have deleterious effects on human skin and is a 

major cause of skin cancer.  Therefore, the topical application of sunscreen preparations 

has gained wide usage for skin protection.  These preparations typically contain a 

variety of chemical absorbers that absorb ultraviolet (UV) radiation and physical 

blockers that scatter, absorb and reflect UV light. The efficacy of sunscreens can be 

estimated by the Sun Protection Factor (SPF) which depends on the UV filters present 

in the formulations. However, although some of these commercial sunscreens have 

beneficial effects, they can also have undesirable results. It is known that the sunscreens 

undergo electronic excitation when exposed to UV light which may make them 

susceptible to photochemical modification. The production of reactive intermediates 

(e.g. free radicals) and stable photoproducts, either due to photoisomerisation or 

photofragmentation is a major concern because these species may be toxic and may lead 

to a reduction in efficacy. Hence a study of the photochemistry of these chemical 

absorbers found in commercial sunscreens is of great importance. 

 

Photostability and broad-spectrum studies of some Australian commercial sunscreen 

products were undertaken by means of spectrophotometric and chromatographic 

methods. The sunscreen products dissolved in methanol solutions were irradiated using 

simulated solar radiation. High performance liquid chromatography (HPLC) was used 

to identify and quantify the active chemical ingredients. UV spectrophotometry was 

used to monitor the spectral absorbance before and after UV exposure of the 

formulations. Our results show that some of the evaluated photoactive chemical 

absorbers currently used in sunscreens are unstable upon UV radiation. This was mainly 

due to either photoisomerisation and/or photofragmentation of some active chemical 

ingredients. 

 

An examination of the photochemistry of 2-ethylhexyl-p-methoxycinnamate (2-

EHMC), an ultraviolet B absorber that was found in all the suncare products 

investigated in this study was undertaken. Irradiation of dilute (~ 10-6 M) solutions of 

EHMC with wavelengths of light greater than 300 nm results in trans - cis- 



 iii 

photoisomerisation leading to a photostationary equilibrium mixture. However, pure or 

concentrated solutions of 2-EHMC upon prolonged irradiation showed additional 

photoproducts. These were isolated by preparative high performance liquid 

chromatography (HPLC) and characterised by nuclear magnetic resonance (1H NMR) 

spectroscopy, which was used to identify them as [2 +2] cycloadducts of 2-EHMC. 

There are 13 possible dimers formed via a [2+2] cycloaddition reaction mechanism 

across the ethylenic double bond, however only the stable and energetically favoured 

isomers were isolated. 

 

In addition, ab initio molecular orbital calculations have been used to investigate the 

structures and the transition states of the various dimers resulting from the cycloaddition 

reactions.  Geometry optimizations and energy calculations were performed with the 

Gaussian 98 program, using the B3LYP density functional and 6-31+G (d) basis set.  

GaussView was used to visualize the transition state structures. The theoretical 

calculations predicted the most stable dimer forms.  The trans-trans configuration at the 

cyclobutane ring of the 2-EHMC adduct gave relatively more stable photoproducts. The 

theoretical results have been confirmed by HPLC isolation experiments, which together 

with the UV spectra of the different products; verify the presence of the different 

conformers of 2-EHMC. 
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CHAPTER 1 

 

Introduction 
 

This thesis describes an investigation of the broad-spectrum protection and 

photostability of several Australian sunscreen products. Australian products were 

chosen in particular because Australia has one of the highest incidences of skin cancer 

worldwide. The reasons for this escalation are largely unknown although many people 

believe it can be imputed primarily to a more frequent and prolonged exposure to solar 

ultraviolet radiation. These topical preparations are of particular interest because they 

afford the consumer some degree of protection against the harmful effects of solar 

ultraviolet (UV) radiation. Thus, photochemical reactions involving these preparations 

are of great concern. In addition, the thesis describes some aspects of the 

photochemistry of the sunscreen absorber, 2-ethylhexyl-p-methoxycinnamate (2-

EHMC) which was present in all the products studied.  

 

1.1        Solar UV radiation 

 

Solar UV radiation can be divided in three broad regions, according to its biological 

effects, namely, the ultraviolet A, B, and C regions [1]. The longest UV wavelengths are 

found in the ultraviolet A (UVA) region of 320 to 400 nm, which was once thought to 

be harmless because of its low energy. The intermediate range is ultraviolet B (UVB) 

from 280 to 320 nm, part of which is absorbed by the stratospheric ozone layer such that 

it does not reach the earth‟s surface. The rays in the third region, the ultraviolet C 

(UVC), are the shortest ranging from 100 to 280 nm. They are the most energetic and 

hence more deleterious. Luckily, these do not reach the earth‟s surface because they are 

absorbed by the ozone layer as well as molecular oxygen and water vapour in the 

atmosphere. In the absence of the stratospheric ozone layer most of the solar UVC 

radiation would penetrate to the earth‟s surface and because of its high energy it would 

destroy animals and plants in a very short time [2].  
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In the last few decades it has been noted that the stratospheric ozone layer, that shields 

us from this harmful UV radiation, is on the decline [2, 3]. The major factor responsible 

for the destruction of the ozone layer is anthropogenic activities. The emissions of 

chlorofluorocarbons (CFCs) in the atmosphere are some of the major contributors. 

These gases, having no natural sources, are non-toxic and inert in the troposphere, but 

are photolysed in the stratosphere, thereby generating reactive chlorine atoms and 

radicals that catalytically destroy ozone. Molina and Rowland received a Nobel Prize 

for chemistry in 1995 for their studies identifying the potential effects of 

chlorofluorocarbons (CFCs) on stratospheric ozone [4]. Other anthropogenic 

contributions to ozone depletion may include global changes in land use and the 

increased emission of nitrogen dioxide as a result of fertilizer applications. The 

emission of greenhouse gases, such as carbon dioxide and oxides of sulfur, into the 

atmosphere also have adverse effects on ozone. This has led to a continuous and steady 

depletion of the ozone protective layer. The depletion of ozone over Antarctica, 

associated with the polar vortex, creating „ozone holes‟ would also increase the 

effective environmental UV-dose. These decreasing concentrations of ozone in the 

stratosphere therefore mean that more UVB radiation can now reach the earth's surface 

[5, 6]. This then radically influences the effects of UV radiation on the environment. 

Thus an increase in the UVB that accompanies ozone depletion will increase the amount 

of biologically active radiation present in ambient sunlight. UVB radiation has long 

been recognized as the principal cause of erythema and skin cancer [7, 8]. It has been 

estimated that a 1% decrease in ozone levels is followed by a 1-2% increase in 

melanoma mortality [9, 10].  

 

In addition, the amount of UV radiation transmitted through the atmosphere depends on 

other variables besides stratospheric ozone. Apart from the thickness of the ozone layer, 

the altitude also influences the amount of UV radiation that reaches the earth [11]. The 

slant angle of the sun is very important. Radiation follows a longer path through the 

ozone layer (and consequently more UV light is filtered out) at high latitudes and in 

winter than in low latitudes or in summer. This means that the highest daily values 

generally occur at the lowest latitudes (tropics) and in summer when the midday sun is 

closest to overhead. In general, the amount of UV radiation at a particular location on 



 3 

the earth‟s surface changes throughout the day and with the season as the sun‟s position 

in the sky changes [12, 13]. 

 

Because of the biological activity of UVB, such increases are likely to have marked 

consequences for humans. Some of these consequences could be beneficial, e.g. a 

greater production of vitamin D in the skin of humans, but is far more likely to be 

detrimental. During an individual‟s lifetime, the skin is continuously exposed to a large 

amount of irradiation from sunlight. The health risks associated with exposure to UV 

include both acute and chronic effects and will vary according to the nature of exposure. 

High doses of UV radiation produce sunburn (erythema) in the human body, immune 

suppression and enhance development of skin cancer [14, 15]. This, of course, varies 

with occupation, recreational habits, geographical factors and clothing [16] . In addition 

to the cosmetic ill-effects of chronic exposure to sunlight, skin which has been damaged 

by sunlight is predisposed to the development of pre-malignant and malignant skin 

tumours. In addition the risk for skin cancer development is also dependent on an 

individual‟s skin characteristics, e.g. skin phototype, genetic predisposition such as the 

DNA repair disorder Xeroderma pigmentosum, and other factors. 

 

1.2 The effects of UV radiation on humans                         

 

There are three major human organ systems whose cells and tissues are commonly 

exposed to solar radiation: the skin, the eye and the immune system. The effects and the 

associated hazards are discussed in the following sections. 

 

1.2.1 Effects on the skin 

 

The skin is composed of three layers. The outer part is the epidermis, which is usually 

75 to 150 μm in thickness, the dermis (middle layer) and subcutaneous tissue (Figure 1). 

The outermost layer of the epidermis is called the stratum corneum and is mainly 

composed of peeling or dead cells (keratinocytes). This thin layer provides an effective 

barrier against water loss, trauma and micro-organisms. The dermis contains the 
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collagen fibres and fibroblasts/fibrocytes that give the skin its elasticity and supportive 

strength. It also supports the numerous blood vessels, nerves and cells of the immune 

system. Hair follicles and sweat glands originate in the dermis and open directly onto 

the skin surface. 

 

Solar UVB radiation is biologically beneficial to humans because it is used for the 

synthesis of vitamin D from 7-deoxycholesterol which is critically important in the 

maintenance of healthy bones [17, 18]. It also produces melanin that is responsible for 

the pigmentation of the skin and is the body‟s most important protection mechanism 

against UV radiation. Furthermore, melanin acts as a scavenger for free radicals [19].  

 

The layer of the skin affected by UVB radiation is the epidermis (the stratum corneum). 

The photons of UVB radiation are absorbed in the first layers of skin, composed of dead 

cells of the stratum corneum, and there is no penetration beyond a few millimetres. 

Hence, the biological effects of UVB radiation are located primarily within the 

epidermis. However, wavelengths in the UVA region are able to penetrate further and 

reach the blood system. Therefore the outermost layer of the skin provides considerable  

 

 
Figure 1 A diagrammatical cross-section through the human skin [20]. 
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protection from sunlight. Although melanin acts as a natural skin sunscreen excessive 

exposure to UV radiation aggravates the photoprotection mechanism and subsequently 

leads to increased risk of skin cancer. Symptoms of sunburn include reddening of the 

skin and, in severe cases, blisters. Whether an individual sunburns or not is dependent 

on many variables: duration and intensity of exposure, season, latitude, altitude, smoke, 

clouds and degree of natural protection afforded by the epidermis. The degree of 

protection is determined by two factors: the thickness of the stratum corneum and the 

quantity of melanin it contains. The severity of the effects of UV radiation on the skin 

depends on skin pigmentation. People with fair skin are more likely than those with 

more pigmented skin to experience erythema, oedema and skin discomfort after sunlight 

exposure and are more likely to develop melanoma than those with darker skin. For 

example, humans living in equatorial Africa have larger amounts of the dark pigment, 

melanin, in their skin to protect the skin against UV radiation than humans from the 

temperate zones [21]. These people are most resistant to sunburn because of the dark 

pigmentation, but are equally vulnerable after long exposure to UVB. For light–skinned 

populations the problems due to UVB radiation are enhanced. People with the most 

sensitive skin can sometimes obtain a moderate to severe sunburn in less than an hour 

[10]. It has also been demonstrated that small amounts of UVA or solar-simulated UV 

are capable of producing cutaneous photodamage. Even suberythemal doses of 

repetitive exposure may lead to photoaging of the skin. Photoaging is the accelerated 

aging of the skin due to long-term exposure to sunlight, particularly UVA radiation 

[22]. Symptoms include loss of skin elasticity, wrinkles, altered pigmentation, and a 

decrease in collagen, a fibrous protein in connective tissue.  

 

Skin cancer is the most common cancer especially among light-skinned people. It is 

well documented that skin cancer can be caused by overexposure to solar UV light [23]. 

There are three types of skin cancers that are associated with UV overexposure, namely, 

basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous melanoma 

(CM). BCC and SCC are generally called non-melanoma skin cancers (NMSC) and, 

although rarely fatal, they can cause disfiguration. About 75% of basal cell carcinomas 

and more than one-half of all squamous cell carcinomas occur on the head and neck, 

which are the sites of highest sun exposure. They also occur on the forearms and hands, 



 6 

or on any part of the body commonly exposed to the sun. These predominantly arise as 

a result of direct damage to the DNA by interaction with UVB radiation [24]. The 

occurrence of non-melanoma skin cancer, for example, is directly correlated with the 

accumulative doses of UV light over a person‟s lifetime [25] . Malignant melanoma 

arising from melanocytes (5 – 10% of epidermal cells) is the least common but most 

dangerous type of skin cancer with about 25% of diagnosed melanomas resulting in 

death.[26]. For example, in the United States of America over 60000 new cases of 

melanoma were diagnosed in 2006 and about 8000 deaths were predicted by the 

American Cancer Society [27]. A history of exposure to large doses of solar radiation 

sufficient to cause sunburn in childhood is particularly important in the formation of 

melanoma which could occur many years later. The incidence of skin cancer increases 

dramatically with age because older people have had more opportunities to be exposed 

to UV radiation and their capacity to repair the damage from UV radiation is diminished 

[28]. 

 

Although not incident on the Earth‟s surface, UV radiation from 245 to 290 nm is 

efficiently absorbed by DNA and causes damage but penetrates poorly into the skin 

[29]. However, UVB irradiation to the skin also has direct effects on biomolecules. The 

four DNA bases (thymine, guanine, cytosine and adenine) have conjugated double 

bonds and can absorb UV radiation and are promoted to a higher energy level. UVB 

induces molecular rearrangements of the DNA with characteristic formation of specific 

photoproducts [30]. These results in a [2 + 2]-cycloaddition between adjacent thymine 

bases in DNA to form cyclobutane-like cis, syn-thymine dimer as the major product (see 

Figure 2). Other pyrimidine dimers that form upon UV radiation are between thymine 

and cytosine as well as between cytosine and cytosine, with the latter being the most 

lethal causing death of cells.  
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Figure 2 The structures of the cyclobutane dimer (cis-syn) , pyrimidine(6-4) pyrimidone 
and Dewar pyrimidinone induced in the thymine dinucleotide TpT [31]  

 

The formation of cyclobutane pyrimidine dimers, such as thymine-thymine, and the (6-

4)  the 6-carbon of the other, is the principal cause of skin cancer as it blocks cell 

replication and transcription [32]. In the presence of UVA radiation the (6-4) 

photoproduct may be converted to its Dewar photoisomer, which although quite 

strained, is stable under physiological conditions [7]. This interaction has recently been 

demonstrated in human skin in vivo [14, 33]. Because the Dewar product is formed from 

the (6-4) product at wavelengths present in sunlight at sea level, it may hitherto play an 

unrecognized, and possibly important, role in the mechanism of sunlight-induced skin 

cancer [7]. Other known effects are the photoisomerisation of trans-cis urocanic acid, 

DNA strand-breaks, DNA-crosslinks, DNA protein crosslinks and the generation of 

reactive oxygen species (ROS) [34]. In general, the action spectra for the formation of 
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the photoproducts in vitro correlate well with the absorption spectrum of DNA, which 

has a maximum absorption at about 260 nm. UVR-induced epidermal DNA 

photoproducts are believed to give rise to mutations, e.g. in the p53 gene, which are 

thought to be the initial processes in UVR-induced skin cancer. DNA damage leads to a 

dramatic increase of the p53 protein. The p53 gene is the most frequent target of genetic 

alteration identified so far in human cancers [35]. The basic function of the p53 protein 

is to maintain a cell in normal status against various extracellular stresses including UV 

radiation. Therefore, when the DNA damage is too severe, p53 induces apoptosis of the 

cell in order to inhibit carcinogenesis. 

 

These DNA photolesions (damage) are repaired by means of the nucleotide excision 

repair complex and other less important repair mechanisms. Formation of cyclobutane 

pyrimidine dimers, if not repaired through nucleotide excision repair, lead to signature 

mutations [36, 37]. The UV signature mutation is associated with dipyrimidine 

sequences, a C:G to T:A mutation, a mutation of this type is known as a transition, and 

is defined as a change from one pyrimidine (cytosine or thymine) or purine (guanine or 

adenine) to the other. The signature mutation caused by ultraviolet light is a CC to TT 

mutation caused when a CC dimer is mismatched with adenine bases during replication. 

Because of these mutations the connection between ultraviolet damage to DNA and 

cancer is quite clear. These CC to TT mutations often show up in the p53 tumour 

suppressor gene in skin cancers, compromising its watchdog function.  

 

Nucleotide excision repair mechanisms play a central role in preventing carcinogenesis. 

Patients with Xeroderma pigmentosum (XP), a rare genetic condition, are deficient in 

nucleotide excision repair and are greatly susceptible to the development of skin cancer 

[38-40]. They have approximately a thousand-fold higher chance of contracting skin 

cancer than normal subjects [7]. This is because the misrepaired DNA damage results in 

mutations and it is mutations in genes coding for proteins involved in the regulation of 

replication bond cell differentiation that lead to skin cancers. Other mutations lead to 

cell death or benign mutants and tumours. A reduced capacity to excise UVB-induced 

pyrimidine dimers leaves a patient at an increased risk of developing skin cancer.  
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Although UVB photons are much more energetic than UVA photons, and are mostly 

responsible for sunburn, suntanning and photocarcinogenesis, UVA is also suspected of 

playing a significant role in photoageing. The intensity of UVA that reaches the earth‟s 

surface is 10 – 100 fold higher than that of UVB. Some studies have shown that more 

photons of UVA (approximately 1000 times) are required to produce erythema 

compared with UVB [41, 42]. Since UVA penetrates the earth‟s atmosphere more 

readily than UVB or UVC, there is therefore more UVA than UVB (depending upon the 

season of the year). The UVB has short wavelength and only penetrates the epidermis 

while the more intense UVA reaches the dermis, the deeper layers of the skin. 

Absorption of UVA induces photobiologic effects within the skin that lead to the visible 

and histological differences of photoaged skin, although mechanisms by which UVA-

induced photodamage occur have not been completely determined. The main initial 

event in the interaction of sunlight with the skin is the generation of excess free radicals, 

mainly ROS. ROS include free radicals like superoxide anion (O2
.-) and the hydroxyl 

radical (.OH.), as well as non-radicals like hydrogen peroxide (H2O2) and singlet oxygen 

(1O2) [43]. These free radicals are at the beginning of a cascade of molecular biological 

events with potential damaging and possible beneficial effects. ROS lead to oxidation of 

DNA, proteins and membrane damage which are considered to be the initial steps with 

respect to photoageing and UV-induced skin cancer. Consequently, the contribution of 

UVA to erythema and to possible skin damage can be considerable, in spite of the fact 

that it is much less damaging per unit photon. To prevent oxidative damage, mammalian 

cells have developed a complex antioxidant system that includes non-enzymatic 

antioxidants such as α-tocopherol, ascorbic acid, glutathione and β-carotenoids and 

enzymatic antioxidants such as superoxide dismutase (SOD), catalase and glutathione 

peroxidase (GPx). 

 

Some studies have shown that absorption of UVA by trans-urocanic acid, a molecule 

found in large amounts in the epidermis of the skin, forms singlet oxygen. The 

formation of singlet oxygen causes photodegradation of the skin and results in 

photoaging of the skin [44] which seems to be a causal factor in some types of cancer. 
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The work of Setlow et al. [45] showed that exposure to UVA radiation could cause 

melonoma as exhibited in Xiphophorus, a special hybrid fish showing the potential role 

of UVA in the pathogenesis of melanoma. This is also a reason to believe that 

melanoma could be caused by exposure to wavelengths longer than UVB such as UVA. 

 

1.2.2 Effects on the eyes 

 

The cornea of the eye, which covers the iris and the lens, is the tissue most susceptible 

to UVB damage. There is little UVB radiation that penetrates past the lens to the 

vitreous humor or the retina, the tissues behind the lens. The most common eye problem 

associated with UV exposure is photokeratatis or snow blindness, an inflammation or 

reddening of the eyeball. Other symptoms include a feeling of severe pain, tearing, 

avoidance of light, and twitching [10]. These symptoms are prevalent not only among 

skiers, but also among people who spend time at the beach or other outdoor locations 

with highly reflective surfaces. Another common ocular disease associated with UVB 

radiation is cataracts, a degenerative loss in transparency of the lens that frequently 

results in blindness unless the damaged lens is removed. Cataracts are the leading cause 

of blindness in humans in the world. More severe, but less widespread, ocular disease is 

squamous cell carcinoma, which affects the cornea and ocular melanoma, which affects 

the iris and the related tissues [46]. 

 

1.2.3 Effects on the immune system 

 

The human skin contains numerous cells that fight infection that are produced by the 

immune system. For example, the Langerhans cells have an antigen-presenting function 

and are an integral part of the immune system. However, Langerhans cells, which 

migrate through the epidermis, are susceptible to damage. UVB exposure initiates a 

series of events that modify gene expression profiles and alters the immune system of 

the skin. As previously mentioned, UVB is responsible for acute skin damage such as 

sunburn (erythema), photoaging of the skin [47-49] and also induces specific DNA 
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damages such as cyclobutane dimers and 6-4 photoproducts between neighbouring 

pyrimidine bases on the same DNA strand which are precursors of skin cancer [50]. The 

Langerhans‟ cells limit damage to the immune system by recognizing and destroying 

malignant cells. However, the incident solar UV radiation interactions can be very 

detrimental for living tissues since they result in photoallergic and phototoxic responses 

[51]. This is because of the enhanced UVB radiation that is linked to suppression of 

these cells. This then reduces resistance to certain tumours and infections. These 

findings suggest that sun exposure favours the induction of suppressor pathways and 

hence may limit immune responses against tumour cells. A decrease of local immune 

system function may contribute to an elevated risk of skin cancer. Some of the examples 

reported for suppressed immune responses to UVB are herpes, tuberculosis, leprosy, 

trichinella, candidiasis, leishmaniasis, listeriosis and Lyme disease [10]. 

 

1.3 Photoprotection 

 

It has been shown that exposure to UV radiation is significant in the induction of skin 

cancers. Although melanin acts as a natural skin photoprotectant, excessive exposure to 

UV radiation aggravates photoprotective mechanisms and subsequently leads to the 

development of skin cancer [15].  With new emerging evidence of the damaging effects 

of UVA rays [52, 53] and the depletion of the ozone layer through the use of 

chlorofluorohydrocarbons, as well as demographic considerations and the popularity of 

modern leisure outdoor lifestyles, the need for photoprotection and the production of 

new, safe, and effective sunscreen filters is paramount. The mainstay of photoptotection 

is broad-spectrum protection and hence the need for developing effective sunscreens to 

help and allow people to spend longer hours in the sun while reducing the adverse 

effects. This has led to an upsurge of industrial production of sunscreens. 

 

Sunscreens are topically applied chemical formulations used to protect a user from the 

deleterious effects of solar UV radiation [54-56]. These topical photoprotectants have 

been in use for at least eighty years. The first commercial sunscreen appeared in 1928 

and contained benzyl salicylate and benzyl cinnamate as the active ingredients [57]. The 

early chemical sunscreens were less efficient at absorbing radiation than modern 
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sunscreens and were easily removed by sweat or swimming. However, modern 

formulations have taken advantage of chemicals which are capable of absorbing larger 

amounts of energy in the broad spectrum range of both UVA and UVB and, due to their 

lipid solubility, are retained on the skin and resist removal from the skin. 

 

In addition, the continuing drive to maintain a healthy skin in today‟s society has also 

created a huge market for topical photoprotectants. There has been a dramatic growth in 

the use of sunscreen agents not only in traditional sunscreen products but for a variety 

of other personal care formulations including facial and body care products. For 

example, sunscreen agents are included in moisturizers, makeup, lipsticks, shampoos 

and hair gels in order to prevent the degradation of cosmetic products by sunlight and to 

provide photoprotection for the consumer. The medical community, through public 

health campaigns, has been at the forefront of alerting the public of the risks associated 

with UV radiation. 

 

Sunscreens when properly applied can considerably reduce the risk of squamous cell 

carcinoma [58, 59]. However in the case of basal cell carcinoma and melanoma, studies 

tend to be controversial as less evidence is adduced to the reduction of their occurrences 

with the use of sunscreens. There have even been cases where there is an increased risk 

for users [59]. A recent study revealed the protection against UV-induced 

immunosuppression by commercial sunscreens [60].  

 

There are two measures of a sunscreen‟s effectiveness: The Sun Protection Factor (SPF) 

and its substantivity, i.e. the ability for the sunscreen product to remain adsorbed on the 

skin despite washing, swimming or perspiration. The (SPF) is defined as the ratio of the 

minimal dose of  UVB expressed as Joules per cm2 required to produce minimal 

erythema on protected skin to that required to produce the same minimal erythema on 

unprotected skin usually assessed about 24 hours after irradiation [61]. This can be 

expressed mathematically as follows: 

 

skin protected-sunscreen-nonin  Dose Erythymal Minimal
skin protected-sunscreenin  Dose Erythymal Minimal  SPF  
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The sun protection factors are determined by measuring protection only against UVB 

radiation. This is done by irradiating the backs of a panel of subjects with skin types I, 

II, and III according to Fitzpatrick skin classification model [62] and estimating the 

minimal erythemal dose by producing sunburn. SPF determinations are done in vivo 

according to the European Cosmetic Toiletry and Perfume Association (COLIPA) 

standards where the erythemal dose in the skin is measured [63]. The determination of 

SPF with UVA is not yet possible on human skin. Evaluation of UVA protection 

remains a problem because of the very large doses required to induce UVA erythema. 

Hence, UVA protection is not considered in SPF testing. However, in vivo methods 

such as immediate pigment darkening (IPD), persistent pigment darkening (PPD) and 

protection factor in UVA are presently being used for evaluating the efficacy of 

sunscreens against UVA. The calculation of the SPF also allows for comparison of 

efficacies between sunscreens as a measure of effectiveness. 

 

Substantivity is the sunscreen‟s ability of maintaining its features on the skin under 

stressful conditions including continued and repetitive water exposure or sweating [64]. 

Otherwise any induced decomposition may reduce its screening effects and generate 

toxic degradation products [65]. There are presently several approaches for improving 

the substantivity of sunscreen formulations, such as natural and synthetic complex 

polymer preparation [66], proper solvent selection [67] and encapsulation processes [68, 

69]. 

 

Although the sunscreen is primarily used as a strategy against sunburn, paradoxically it 

has also been associated with an increased risk for the development of skin cancer. 

There have been reports of increased numbers of skin cancers, which have been 

associated with the indiscriminate increase in the usage of sunscreens [70-73]. Skin 

cancer has become prevalent especially in modern times and maybe the increase can be 

related to the wider use of skin creams either for protective purposes or merely for 

beauty. The adoption of sunscreen usage, may have inadvertently fuelled an increase in 

cutaneous malignant melanoma (CMM) incidence [70, 74]. This is because the use of 

photoprotectants invites prolonged sun exposure and in the end this is followed by 

increased UV radiation reaching the skin [75]. 
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Secondly, another possibility for this sunburn might not be due to a failure of a 

sunscreen per se, but rather due to the failure to use the sunscreen appropriately. 

Although it is recommended that an application thickness of 2 mg cm-2 would suffice 

the reality might be different. This is because people tend to apply far less sunscreen 

than is usually recommended. A number of studies have shown that consumers apply 

approximately one quarter to a half of the amounts used to measure SPF [76, 77]. 

Consequently, the SPF achieved will be considerably less than that expected and in 

many cases it will be half of that indicated by the product label. Therefore the protection 

against solar-induced erythema under real conditions is dependent upon the amount of 

sunscreen applied. When too little is applied it is believed that a lower sun protection 

will result than that indicated on the label [78]. 

 

Thirdly, studies have shown that the skin creams, which contain sunscreen chemical 

absorbers, could photolyse due to absorption of UV radiation to produce photoproducts 

that are carcinogenic or mutagenic [79]. 

 

Therefore the effectiveness of sunscreens depends on their ability to absorb or reflect 

sunlight, their formulation and their ability to withstand contact with water (through 

swimming) or perspiration.  

 

1.4 Sunscreen formulations and their photochemistries 

 

Sunscreens are designed to give a consumer the best possible protection. Therefore, in 

pursuit of this, each sunproduct formulator aims to give the consumer some special 

unique quality that is both aesthetically pleasing and at the same time inexpensive. As a 

result, the number and the ratio of ingredients of each product vary from one brand to 

the next, affecting the performance accordingly. Hence, the protective function of 

sunscreens is determined by the composition of their active ingredients. The present-day 

active ingredients incorporated into the formulations of sunscreens are classified into 

two broad categories, namely: as physical blockers or chemical absorbers.  Table 1 

shows a typical formulation found in a sunscreen.  
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Table 1 The approximate concentrations of some ingredients found in sunscreen 
formulations [61]. 

 

Ingredient Content /% m/m 

Cetyl alcohol 2 

Waxes 1 – 5 

UV-absorbers (actives) 1 – 25 

Stearic Acid 1-5 

Glycerin ≤ 5 

Stearyl dimethicone 10 

Triethanolamine ≤ 1.5 

Preservatives ≤ 1 

Deionised water 55-80 

 

1.4.1 Physical blockers 

 

Physical blockers are mostly inorganic compounds which reduce the amount of light 

penetrating the skin by creating a physical barrier that reflects, scatters or absorb the UV 

light reaching the skin surface. The most commonly used physical blockers include 

substances such as titanium dioxide (TiO2), zinc oxide (ZnO) and iron oxide (Fe2O3). 

However, these substances are pigments which tend to whiten the skin when applied 

and are visible and therefore not aesthetically appealing. However, there are now newer 

micronized (10 – 100 nm) reflecting powders providing broad-spectrum protection 

against UV radiation through a combination of scattering and absorption [80]. Since 

micronized physical sunscreens reflect at wavelengths shorter than the visible spectrum 

they are invisible and thus more cosmetically acceptable. Micronized titanium dioxide is 

also chemically stable and does not cause photoallergic or contact dermatitis [81, 82]. 

Although it is effective in blocking shorter UV wavelengths, it has been reported that 

titanium dioxide can produce a number of functional changes in the cell membrane via 

photolysis [83, 84]. However, there are concerns that TiO2 when irradiated with sunlight 

is photocatalytically active and can penetrate the skin to cause single and double–strand 

breaks in the DNA. Therefore the damage to the skin and subsequent damage to the 
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DNA is a matter of greater concern [85]. Therefore, to reduce the possibility of such 

activity on living tissues TiO2 is often coated when used in cosmetic preparations. 

Microfine zinc oxide is transparent on the skin and does not produce the opaque “pasty” 

colour of zinc oxide as with the larger particle sizes [86].  

 

1.4.2 Chemical absorbers 

 

Chemical absorbers are usually organic compounds having a single or multiple aromatic 

structures often with attached hydrophobic groups (e.g. carbonyl moieties) to improve 

their absorbing properties. They are mostly aromatic acids or their esters or salts with 

the exception of the benzophenones. In fact, the esters are generally either ortho- or 

para- disubstituted aromatic compounds. This allows for electron delocalization, 

thereby allowing the compound to absorb the appropriate wavelength before it reaches 

the skin. 

 

To be able to appreciate the functionality of sunscreen filters, it is important to have a 

brief understanding of their photochemistry. They can be considered to be photon-

absorbing agents. They absorb radiation in the UV region and should undergo rapid 

vibrational relaxation back to the ground state or relax by photoemission. Once in the 

ground state, these molecules absorb another photon thereby repeating the process. In 

this way, the skin is shielded from damage by UV radiation. Therefore, any molecule 

which dissipates absorbed energy via harmless pathways can serve as a sunscreen 

absorber thereby eliminating any possible route to DNA damage. However, this is not 

always the case as the molecule may dissipate this energy as long-wave radiation and 

return to its original ground state or photoisomerisation, photodegradation and 

photosensitization can occur. This may lead to non-UV absorbing photoproducts.  

 

The mechanism of absorption of light by chemical sunscreens and the possible routes 

for the dissipation of energy is illustrated in Figure 3 and will be discussed briefly. 

Firstly a molecule in the ground state absorbs a photon of energy and this causes it to be 

promoted to an excited electronic state. This is the first excited singlet state in which the 

electron spin orientation is maintained. The molecule in the singlet state can return to 
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the ground state by dissipating its energy through several pathways. It does this by 

either emitting its energy thermally as heat through a series of vibrational relaxation 

transitions (non- radiative decay) or as a photon of energy of longer wavelength by a 

process known as fluorescence (radiative decay). Although these are the preferred 

pathways for a sunscreen, as the harmful radiation is dissipated in a harmless way, this 

is not always the case. The molecule in the excited singlet state may also react with 

another molecule to form photoproducts or may transfer its energy by intersystem 

crossing to the triplet state. The triplet excited state can decay to the ground state via 

non-radiative (emission of heat) or radiative de-excitation (emission of a photon). The 

latter process is called phosphorescence as it occurs between two states of different spin. 

 

Since the triplet excited state is long-lived (~10-4 s) it can readily undergo 

photochemical or energy transfer reactions. Among the photochemical reactions are 

processes like photofragmentation, photoisomerisation, cycloaddition and 

photoaddition/substitution reactions. These processes may alter or destroy the UV 

radiation absorption capacity of a sunscreen and are therefore undesirable. A molecule 

in a triplet state is also capable of transferring its energy to a nearby molecule. The 

triplet excited state (D*) acts as an energy donor to molecule (A) which is an acceptor. 

This phenomenon known as photosensitisation is illustrated in reaction (1.1). 

 

    D* + A → D + A*    [1.1] 

 

The donor is referred to as a photosensitiser and this process may only happen if the 

energy of D* is greater than that of A*. Although this may be a desirable pathway for 

energy dissipation, photosensitization can lead to the formation of undesirable and often 

toxic products.  
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Figure 3 A Jablonski diagram showing the deactivation pathways of an excited 
molecule [87]. 
 

Ideally the energy acquired through absorption of solar radiation by active ingredients 

should be dissipated by radiative decay (fluorescence and phosphorescence), self-

quenching or internal conversion and vibrational relaxation. However, photochemical 

reactions that give rise to many products, some with unexpected bond rearrangements 

frequently occur. Because chemical sunscreens are applied topically to the skin in 

relatively high concentrations (up to 25%), contact sensitisation of the skin can occur. 

Similarly, because these chemicals absorb radiation, they have the potential to cause 

photosensitisation of the skin. 

 

The modern UV filters are currently classified into seven broad categories as shown in 

Figure 4 [61]. They are subdivided into different groups based on their ability to absorb 

either UVA or UVB radiation as follows: UVA (benzophenones, anthranilates and 

dibenzoylmethanes) or UVB (p-aminobenzoic acid derivatives, salicylates, cinnamates 

and camphor derivatives) and a few miscellaneous chemicals. Another attractive aspect 

of chemical sunscreens is that they are colourless as they do not absorb visible light and 

are therefore cosmetically acceptable to most people. 
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Cinnamates 

These are basically UVB absorbers.  2-Ethylhexyl-p-methoxycinnamate (2-EHMC) is 

the most commonly used UVB chemical absorber in sunscreen products and is 

commercially available in its trans form. When trans-2-EHMC is  irradiated by UV 

light it has been shown to isomerise to the cis-form [88, 89]. Although both the trans- 

and cis-isomers are good UV absorbers they have different absorption efficacies. This 

isomerisation results in UV absorbance changes during use thereby losing some of its 

absorbing ability. There also exists a photostationary state between the trans- and cis-

isomers during continuous irradiation. In addition, it has also been shown that 

irradiation of pure or neat EHMC causes it to not only to isomerise but also to dimerise 

with itself through a [2 + 2]-cycloaddition reaction forming 13 possible isomers [90]. 

The dimerisation of 2-EHMC reduces further its absorption power. This definitely 

requires some elucidation and it is this aspect that has been investigated in this work. 

 

There is also speculation that 2-EHMC can photobind to constituents of DNA [91]. The 

production of these photoproducts [lesions] could alter the biological function of DNA 

and cause adverse, mutagenic and carcinogenic effects [45, 92]. 2-EHMC has been 

shown to be mutagenic in the Ames Salmonella typhimurium test [93] and an initiator of 

tumours in hairless mice [94], although the relevance of these latter findings to human 

use is unknown. The work of Butt and Christensen [95] has also shown the toxic 

potential of 2-EHMC to mouse cells after UV radiation. This toxicity was attributed to 

the existence of photoproducts after 2-EHMC had been exposed to UV radiation. 

Although the probability of adduct formation between 2-EHMC and constituents of 

DNA could be low there can be a cumulative effect. 
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Para-aminobenzoic acid 

This is a UVB absorber which was initially one of the most widely used products. This 

was an effective agent although harmful side effects have been detected.  It has been 

shown to photofragment and also acts as a triplet state sensitizer converting the 

harmless triplet oxygen 3O2 into the more phototoxic singlet oxygen 1O2 [96]. Para-

aminobenzoic acid (PABA), has been shown to be absorbed by human cells [97] and 

photosensitise the dimerisation of thymine in DNA [97-99]. The photoproducts, which 

besides thymine dimers can include dimers formed between thymine and other nucleic 

acid bases, affect the normal genetic functioning. These photoproducts in the DNA are 

known to be toxic. Oxidized bases in DNA are potentially mutagenic and are also 

implicated in the process of carcinogenesis [98]. Therefore PABA is no longer used and 

it has been replaced as an active ingredient in sunscreens by its esters such as octyl 

dimethyl PABA (padimate-O).  ODPABA has been relatively photostable although the 

work of Roscher et al. [100] showed that it can photodegrade. It has been shown by the 

work of Knowland et al. [101, 102] that can generate free radicals which are known to 

break DNA strands and inflict other damage most notably at guanine-cytosine (GC) 

base pairs [103].  

 

Camphor derivatives 

These benzylidene camphor derivatives are used as UVB absorbers and are often 

combined with other sunscreening agents. A detailed study of some benzylidene 

camphor derivatives has been published [104, 105]. Deflandre et al. [106] showed that 

methylbenzylidene camphor (MBC) can photoisomerise initially but reaches a 

photostable equilibrium between its isomers (i.e. trans/cis). Tarras-Wahlberg et al. [79] 

have observed that MBC in a thin film of an appropriate emulsion underwent an initial 

loss in absorbance due to a trans-cis photoisomerisation before attaining a 

photostationary state under continuous illumination. It has also been reported to have an 

estrogenic activity [107]. 

 

Salicylates 

These are used alongside other UVB absorbers to enhance UVB absorption since on 

their own relatively high concentrations are required as they are very weak UV 



 22 

absorbers. The salicylates have a low molar absorption coefficient. These were found to 

be fairly photostable [108]. 

 

2-Phenylbenzimidazole sulfonic acid 

This is a UVB absorber with an absorption spectrum between 290 and 320 nm and a 

maximum absorption at approximately 302 nm. This is used in conjunction with other 

UVB absorbers. The work of Serpone et al. [109] using solvents of different polarities 

has shown that PBSA can photodegrade. It appears that the degree of photodegradation 

is dependent on the nature of the solvent or emulsion. Sewlall, however, found PBSA to 

be photostable but showed it can actually cause DNA cleavage [110]. This is supported 

by the studies of Stevenson and Davies [111] who showed that although PBSA does not 

bind to the calf thymus DNA it still causes DNA cleavage. 

 

Dibenzyolmethane derivatives 

These are mostly UVA absorbers. The most frequently used UVA absorber is 4-tert-

butyl-4/-methoxydibenzoylmethane (avobenzone or Parsol 1789) which efficiently 

absorbs in the UVA region with a maximum absorption ranging from 350 nm to 360 nm 

depending on the solvent used. Avobenzone exists in two tautomeric forms: the enol-

form and the keto-form. The eno-form is predominant in solution and this is the form 

that is found in sunscreen formulations and is responsible for absorption in the UVA 

region as shown in the work of Andrae et al. [112]. It has been shown that 

dibenzoylmethanes lose much of their UVA absorption capacity after UV radiation 

through tautomerization, fragmentation and formation of new products with distinctly 

altered UV absorption characteristics [79, 113]. Avobenzone has been shown to 

photofragment/photodegrade upon exposure to UV radiation [113, 114] and thus it does 

not only photodegrade but also produces carbon-centred free radicals. The formation of 

free radicals and other short-lived reactive intermediates associated with irradiated 

sunscreen active ingredients has been shown to be toxic [34, 115]. The interaction 

between photoproducts and the thymine and thymidine bases does occur, increasing the 

rate of formation of potentially carcinogenic DNA photoproducts (e.g. the cyclobutane 

type pyrimidine dimers) [116].  Tarras-Wahlberg et al. [79] have also shown the loss of 
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absorption of avobenzone in solution, further reducing its efficacy. In general the 

photostability of avobenzone is largely influenced by solvent effects [117].  

 

Modern sunscreen formulations use avobenzone in combination with 2-EHMC to offer 

broad-spectrum protection. However, investigations have shown that avobenzone seems 

to enhance the photodegradation of EHMC in a formulation where the two are in 

combination [118, 119]. Panday has shown that avobenzone photosensitizes the 

photoisomerisation of 2-EHMC [119]. However, Chatelain et al. [120] have been able 

to photostabilise these avobenzone/2-EHMC combinations by the addition of bis-

ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb).  

 

Benzophenones 

Some of the frequently used benzophenone absorbers are benzophenone-1, 

benzophenone-3, benzophenone-4 and benzophenone-8. Benzophenone-3 is the most 

commonly used benzophenone found in sunscreens and absorbs most efficiently in the 

UVB region and the UVA (320 – 400 nm) range with absorption peaks at 295 and 325 

nm. The work of Serpone et al. [109] has shown benzophenone-3 to be unstable when 

irradiated in either a non-polar or a polar solvent at wavelengths greater than 290 nm. It 

has been shown to act as a photosensitiser in the generation of singlet oxygen [96]. 

There is now evidence that benzophenone-3 can be absorbed systemically following 

topical application to the skin [121]. The work of Sewlall [110] has shown that 

benzophenone-1 and benzophenone-8 cause DNA strand breaks. Schallreuter et al. 

[122] have reported that the oxidation of benzophenone-3 after topical skin application 

causes it to photofragment into benzophenone-3 semiquinone which is a highly potent 

electrophile. This reacts with anti-oxidant systems resulting in their inactivation which 

is harmful to the homeostatis of the epidermis.  

 

Anthranilates 

The most common among these are methyl anthranilate and homomethyl-N-acetyl 

anthranilate. They also tend to have low molar absorption coefficients and hence are 

weak absorbers on their own. Consequently, they are used in combination with other 
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active ingredients to enhance the sun protection factor. They have also been found to 

photosensitise the formation of singlet oxygen in a range of solvent systems [123]. 

 

A cursory look at some studies, however, has indicated that sunscreen active ingredients 

may undergo photofragmentation or photoisomerisation; transfer the energy acquired by 

absorption to other molecules or when applied to the skin react directly with 

biomolecules. Photofragmentation of sunscreen active ingredients is undesirable 

because it causes the absorbing molecule to dissociate into reactive fragments or 

intermediates (e.g. free radicals). In addition, this would reduce the efficacy of the 

sunscreen. 

 

It is therefore apparent that understanding the photochemistry of sunscreens is of prime 

importance. This is particularly important since some side effects such as photoallergic 

contact dermatitis that have been observed in a few people when sunscreens were used 

[51, 124]. There is a wide variety of commercial formulations that are being marketed 

delivering protection against both parts of sunlight radiation (UVA 320-400 nm and 

UVB 280-320 nm). Therefore these UV filters have maximum allowed concentrations 

that have been set by various regulatory authorities in Australia, Europe, Japan and the 

USA. The concentrations of the UV filters in the sunscreen formulations must be 

monitored to assure the labelled SPF in the commercial preparations without exceeding 

the authorized levels. The sun protection factor (SPF) is measure of how one would 

burn while wearing a photoprotectant and when without it. This experimentally derived 

number is intended to provide the consumer with information concerning sunscreen 

products, giving an approximation of its protective effect on the skin against UVB. 

Therefore, a SPF 15 means that a sunbather protected by one of these formulations 

could remain in the sun 15 times as long as before obtaining a burn.  

 

Therefore, in order to ensure adequate photoprotection during usage, the photochemical 

behaviour of sunscreen agents needs to be determined under conditions that parallel 

those encountered in the finished suncare preparations. Consequently, rapid, precise and 

accurate methods for checking the purity and spectroscopic characteristics of these 

products are necessary. Regular analyses are also required in the development of new 
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UV filters to check for their stability. Any photoproducts can also be monitored as part 

of quality control to see if they have any potential for toxic or allergic effects. 

 

1.5 Photostability studies of some commercial sunscreens 

 

Amongst all the properties studied during the formulation of new sunscreen 

preparations, the one major concern that draws special attention is the possible changes 

in screening efficiency under light irradiation. To be effective the filter should be stable 

photochemically in sunlight. Thus, a good UV absorber must dissipate the absorbed 

energy in a manner safe to the consumer. This means that the dissipation of excitation 

energy should proceed at a faster rate than side reactions. The ideal sunscreen is one 

where no photochemical or photosensitizing transformation of its components occurs 

with the formulation or on the skin. A high screening efficiency can only be guaranteed 

if a UV filter is of high photostability. Hence the photostability is of primary importance 

for the effectiveness of sunscreen products, since the decomposition of the UV filters 

under sunlight exposure reduces their expected screening capacity. If a sunscreen 

undergoes photodegradation it loses absorbance and its protective properties are reduced 

below those expected from the level of the active ingredients it contains [79, 125]. 

Therefore, any change in ultraviolet absorption might have undesirable consequences in 

terms of photoprotection or photoxicity, since it is due to a photochemical modification 

of the screening agent involved. The possible formation of photoproducts, their 

chemical reactions and their accumulation on/in human skin may have deleterious 

effects. This form of photoproducts can be irreversible. In this case, it leads to unknown 

photoproducts whose accumulation on the skin may cause damage. On the other hand 

the reaction can be reversible, leading to a photostationary equilibrium which depends 

entirely on the chemical structure of the screening agent, the nature of the cosmetic 

vehicle and the wavelength distribution of the light employed. In this case, a rapid 

change in the absorption of the composition is observed, followed by stabilization when 

equilibrium is reached. 

 

There is no standard method to measure photostability and hence both in vivo and in 

vitro methods are used. The photostability and the photodegradation of sunscreen agents 
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have been studied by many workers by monitoring the absorption spectra over time, e.g. 

the shift in the UV maxima [126] or the irreversible disappearance of the chromophore 

[106]. Maier et al. [127] using a spectroscopic approach, which was based on spectral 

transmission measurements of thin films of sunscreens smeared on the quartz slides, 

observed that commercial sunscreens were photounstable when exposed to solar-

simulated UV radiation. In a similar study, they found that commercial photoprotective 

lipsticks lost protection especially in the UVA region while displaying high 

photostability in the UVB region [128].  

 

Sayre and Dowdy [118] showed that not only did avobenzone contained in sunscreen 

products photodegrade upon exposure to solar-simulated radiation, but that UVB 

absorbers, such as 2-EHMC, also photodegraded when in the presence of avobenzone 

hence also losing its photoprotective capacity. Panday [119] has shown that avobenzone 

photosensitizes the photoisomerisation of trans-EHMC.  

 

Tarras-Wahlberg et al. [79] showed that the absorbance of sunscreens changed after 

irradiation with both UVB and UVA radiation. They used gas chromatography-mass 

spectrophotometry to isolate and identify the resulting photoproducts. The mass-spectral 

analysis showed, for example, that 2-EHMC photoisomerised from the trans- to the cis-

isomer and that this decreased the absorbance. 

 

A detailed study of the trans-cis isomerisation of some benzylidene camphor derivatives 

has been published [104, 105]. Deflandre et al. [106] performed studies which showed 

that methylbenzylidene can photoisomerise initially but reaches a photostationary state 

between its trans- and cis-isomers when exposed to UV radiation. A similar study with 

cinnamic acid derivatives has been reported [129]. Similarly, several works have been 

devoted to the study of p-aminobenzoic acid decomposition [130]. It is known that 

aqueous solutions of p-aminobenzoic acid form several reactive intermediates during 

UV irradiation. These reactive species are capable of reacting with oxygen to produce 

singlet oxygen which is toxic [131]. It has been shown that dibenzoylmethanes lose 

much of their UVA absorbance after UV radiation through tautomerisation, 
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fragmentation and formation of new products with distinctly altered UV absorption 

characteristics [79, 113]. 

 

The efficacy of sunscreen products can also be dependant on the solvent in which they 

are dissolved [132]. It has been observed for various sunscreen absorbers studied in 

different solvents, that their wavelength of maximum absorbance (λmax) and their molar 

absorption coefficients change [133]. The λmax undergoes a red or bathochromic shift in 

moving from non-polar to polar solvents. The work of Serpone et al. [109] 

demonstrated  that the spectral behaviour of the sunscreen products was solvent 

dependent. However, they further suggested that the photochemical changes that take 

place when a chemical filter is exposed to UVB/UVA sunlight need to be determined 

under conditions that parallel those encountered in actual usage of the sunscreen 

products.  

 

Campos et al. [134] have also carried out an assessment of the photostability of 

commercial products of different filter combinations and found that the photostability 

and hence the efficacy was dependent on the nature of the UV filter combinations, as 

the products showed different UVA/UVB ratios with irradiation time. 

 

The lack of photostability of UV filters is now recognized as a common problem for 

sunscreen products, which become degraded by UV radiation thus losing their 

photoprotective characteristics [79, 127], and even becoming photooxidizing agents [96, 

122]. Photodegradation can take place in several steps, which include one or more of the 

active ingredients. The absorbed radiation can excite the absorbing molecules and raise 

them to a higher energy level, which can be very reactive. If the molecule cannot be 

relaxed, bond cleavage and free radicals formation can occur. These free radicals can 

attack a variety of molecules and even form more free radicals. The products of 

photodegradation have the potential to be mutagenic or toxic. 

 

Many groups have studied the photostability of single UV filters or combinations of 

them [104, 135]. Only a few studies have evaluated UV filter stability in ready-to–use 

cosmetic formulations [125]. Most of the studies have been carried out in dilute 
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solutions which may not be suitable as this is less representative of what could happen 

under actual conditions of use. Since the UV filters are normally never used alone and 

are always combined with other UV filters and other numerous excipients, the actual 

concentrations in sunscreen formulations is likely to be different from those used in 

most photochemical investigations. Hence, it is important to determine the 

photostability of the commercially available formulations. 

 

1.6 The aims of this study 

 

The purpose of this study was to assess the photostability and broad-spectrum protection 

of some commercially available Australian sunscreen products before and after 

exposure to solar-simulated radiation. Unlike other studies that have mainly 

concentrated on pure filters we investigated off-the-shelf ready to use formulations. 

Samples were irradiated with solar-simulated radiation and their photochemical changes 

were monitored by both spectroscopic and chromatographic methods. 

 

The efficacy of the sunscreens can be estimated by the Sun Protection Factor (SPF), 

which depends on the UV filter content of the formulation. These substances (i.e. filters) 

need to be in sunscreens in order to obtain the expected protection during the shelf-life 

of the products. It is known that the chemical sunscreens undergo electronic excitation 

when exposed to UV light which may make them susceptible to decomposition [136]. 

Therefore it is of interest to know if any degradation occurs after application of the 

sunscreen product to the skin during a period of sun exposure. UV spectral transmission 

measurements were carried out by the use of ultraviolet (UV/vis) spectrophotometry. 

High performance liquid chromatography (HPLC) was used to separate, identify and 

quantify the chemical absorbers present in the commercial sunscreens before and after 

irradiation. The identity of any photoproducts formed in the suncare products was 

confirmed by high performance liquid chromatography-mass spectrometry. 

 

This study also involved the identification and the quantification of the chemical 

absorbers present in the suncare products by using HPLC. This was done in order to 

check whether the concentrations of the individual chemical UV filters in sunscreen 
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products complied with the recommended amounts stipulated by the European Cosmetic 

Toiletry and Perfumery Association (COLIPA). Since there is no universally accepted 

methodology used to separate and quantify a mixture of filters, an in-house technique 

was developed and validated for the analysis of the commercial sunscreen products. The 

method was based on the extraction of these compounds from their initial matrix 

followed by HPLC analysis. This method offers good reproducibility and low detection 

limits that render it suitable for the routine screening of these compounds in commercial 

sunscreen products. This methodology is discussed in Chapter 2 of the thesis.  

 

Since UVA plays an important role in the induction of skin cancer, chronic photoageing 

and photoimmune suppression it is imperative to evaluate the degree of broad-spectrum 

protection afforded by sunscreens. The in vitro critical wavelength and UVA/UVB ratio 

methods have been used in this study to evaluate the broad-spectrum protection of the 

commercial sunscreen products. The photostability and broad-spectrum assessment of 

the commercial products is described in Chapter 3. 

 

Another aim of this study was to investigate some aspects of the photochemistry of 2-

ethylhexyl-p-methoxycinnamate which was present in all the sunscreen products 

studied. In particular, the photoisomerisation and the photodimerisation reactions of 2-

EHMC, both of which reduce its absorption efficiency, were studied. Solutions of 2-

EHMC were irradiated and the photoproducts were analysed by HPLC. These were 

collected as fractions and were identified by HPLC-MS, NMR and FTIR. In order to 

further understand the mechanisms for their formation some theoretical studies using 

computational methods were carried out to determine the lowest energy geometrical 

structures of the photoproducts of 2-EHMC and hence their relative stabilities. These 

methods were used to elucidate the mechanism of the photodimerisation reaction. This 

aspect of the research is described in Chapters 4 and 6.  
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CHAPTER 2 

 

High performance liquid chromatographic methodology 

for the analysis of commercial sunscreens 

 

2.1 Introduction  

 

There are several analytical techniques that can be utilised in the analysis of sunscreens 

as has been discussed in the extensive review by Salvador et al. [1]. Sunscreen 

formulations are complex since they contain both active and inactive ingredients of 

varied nature. Sunscreens contain a wide variety of chemical absorbers which absorb 

radiation to greater or lesser extent over certain regions of the UV spectrum, thereby 

offering some protection to human skin from the harmful effects of UV radiation [2, 3]. 

Depending upon the range in which they absorb, these chemical absorbers can be 

classified as either UVA or UVB absorbers or both [4]. There are very few single 

chemical actives that are capable of absorbing the full range of the UV spectrum needed 

to provide proper broad-spectrum protection. Therefore the use of sunscreens 

incorporating both UVA and UVB chemical absorbers has become of increasing 

importance because of the need for broadband protection [5, 6]. For this reason the 

sunscreen formulation contains various UV filters at different concentrations whose 

maximum limit is regulated by various authorities in Europe, USA, Japan and Australia. 

Most of these UV filters have a very distinct UV absorption spectrum, which can be a 

useful identification tool, to distinguish amongst them. UV/vis spectroscopy has been 

used mostly to quantitate mixtures of up to two active ingredients [7, 8]. However, UV 

spectroscopic methods alone are insufficient for identification and quantitation. Hence, 

both chromatographic and spectroscopic techniques were used in this study to quantify 

the active ingredients.  
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Chromatographic techniques have been the most widely used methods for both 

quantitative and qualitative analysis of active ingredients in sunscreens [9-13]. High 

performance liquid chromatography (HPLC) is a versatile technique that has enabled 

the simultaneous determination of several active ingredients in sunscreen products [12, 

14, 15]. Chisvert et al. [12] have reported the possibility of simultaneous analysis of 

eighteen active chemical ingredients in both model formulations and commercial 

sunscreens. Another advantageous aspect of HPLC analysis is that it allows for the 

determination of very polar, high molecular mass and/or thermolabile analytes. This is 

achievable by merely altering the chromatographic conditions, e.g. the composition of 

mobile phase or stationary phase or both. In particular, C8 or C18 reversed-phase 

columns have been used for separation and quantitation [1, 16, 17]. Separations carried 

out on normal phase columns like silica gel are much less often used [11]. HPLC also 

has an additional advantage in that it is applicable to all sunscreens without the need for 

any derivatisation of the compounds as in the case of gas chromatography [18]. 

Although gas chromatography is widely used because of its good separation power, 

sometimes the inactive ingredients present in cosmetics give peaks that mask or overlap 

those of the sunscreen agents [19]. This, of course, would be an undesirable scenario.  

In general, the sole requirement of a sample for HPLC analysis is that it is soluble in a 

solvent which will not damage the column or interfere with the detector response. Since 

HPLC is a non-destructive method, the resolved components of a mixture may be 

collected, thus allowing HPLC to be used as a preparative technique. 

 

One of the aims of this study was to develop a rapid and efficient HPLC method for the 

simultaneous determination of the active chemical ingredients found in commercial 

sunscreens. The chromatographic technique devised was used to confirm the identity 

and quantitate the active chemical ingredients in the sun care products. This is important 

since the efficacy of sunscreens is dependent on the UV-filter content of the 

formulation. It is known that the active ingredients can cause photocontact dermatitis 

and allergic reactions [20, 21]. Therefore, the maximum content of each UV-filter in a 

sunscreen is usually legislated and it becomes necessary to monitor their concentrations 

to ensure their compliance with regulations. 
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2.2 Experimental  

2.2.1 Materials 

Twenty five different commercially available sunscreen products were purchased from 

the Australian market. Eleven sunscreens contained only organic chemical filters while 

fourteen had a combination of inorganic and organic chemical filters. Table 2 lists the 

products with details of the active ingredients contained therein and the corresponding 

SPF value. The samples were stored at room temperature and in the dark and opened 

only immediately before analysis.  

 
Table 2 The Australian sunscreens assessed, the active chemical ingredients listed on 
the product packaging and their corresponding SPF values. 

 

Sample 
Code  

SPF Active Ingredients* Protection  range 
UVB UVA 

AU 1 30+ EHMC, AVO, MBC   
AU 2 15+ EHMC, AVO, Benz-3   
AU 3 30 EHMC, PBSA, TiO2   
AU 4 30+ EHMC, OCT, ZnO   
AU 5 30+ EHMC, MBC, ZnO   
AU 6 30+ EHMC, MBC, ZnO   
AU 7 30+ EHMC, AVO, MBC, OT    
AU 8 30+ EHMC, MBC, ZnO   
AU 9 15 EHMC, Benz-3, TiO2   
AU 10 30+ EHMC, AVO, MBC    
AU 11 15 EHMC, AVO    
AU 12 30+ EHMC, MBC, ZnO    
AU 13 30+ EHMC, Benz-3, TiO2   
AU 14 30+ EHMC, MBC, ZnO    
AU 15 30+ EHMC, AVO, OT   
AU 16 30+ EHMC, MBC, ZnO    
AU 17 30+ EHMC, MBC, ZnO   
AU 18 30+ EHMC, AVO, MBC    
AU 19 30+ EHMC, MBC, ZnO    
AU 20 30+ EHMC, Benz-3, HS, ODM-PABA   
AU 21 30+ EHMC, OCT, ZnO   
AU 22 30+ EHMC, OCT, ZnO   
AU 23 15+ EHMC, Benz-3    
AU 24 30+ EHMC, AVO, Benz-3, TiO2    
AU 25 30+ EHMC, AVO   
*EHMC - 2-ethylhexyl-p-methoxycinnamate; AVO - avobenzone; MBC - 4-methylbenzylidene 
camphor; HS - homosalate; Benz-3 - benzophenone-3; PBSA - 2-phenylbenzimidazole sulfonic acid; 
OCT - octocrylene; OT - octyltriazone; ODM-PABA - octyl dimethyl para-aminobenzoic acid (padimate-
O); TiO2  - titanium dioxide;  ZnO - zinc oxide. 
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All reagents and solvents were of analytical or HPLC grade. Methanol and acetonitrile 

were purchased from BDH HiperSolv Chemicals Ltd. The samples of pure UV filters 

were obtained from different sources. Benzophenone-3, avobenzone, 2-ethylhexyl-p-

methoxycinnamate, octocrylene and octyltriazone were obtained from BASF and 4-

methylbenzylidene camphor and 2-phenylbenzimidazole sulfonic acid were obtained 

from Merck. Deionised water was obtained from a Milli-Q50 water purification system 

(Millipore, Bedford, MA, USA) and was used in all procedures. 

 

2.2.2 Chromatographic conditions 

 

The HPLC chromatographic system comprised a Waters 600 multisolvent delivery 

system connected to a Waters 996 photodiode array (PDA) detector and a Perkin-Elmer 

2000 series autosampler. The system was connected to a De‟Mark Pentium II personal 

computer and controlled by using Waters Millennium Version 4.00 software.  

 

A reversed-phase Nucleosil C100 C18 column of 250 mm length, 4.6 mm internal 

diameter and 5 µm particle size was used. A disposable Waters Guard-Pak µ-Bondapak 

C18 pre-column insert was used to protect the analytical column. The detection 

wavelength used was 310 nm for most of the active ingredients except for avobenzone 

which was determined at 360 nm as it does not absorb at 310 nm.  

 

The mobile phase of methanol-water (85:15% v/v) was prepared by using Millipore 

Water from a Milli-Q50 water purifying unit. The solvent was normally prepared by 

measuring out separately the appropriate volumes of methanol and water in a measuring 

cylinder before mixing. This was to avoid inconsistencies in the eluent composition that 

result from the contraction of methanol-water mixtures [22]. The solvent was filtered 

through a Millipore 0.45 µm filter before subsequently feeding it into the reservoir. This 

was then degassed with helium at the rate of 30 mL min-1. The flow rate of the eluent 

was 1 mL min-1. 
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The samples were filtered by passing them through 0.45 µm Millex syringe filters to 

ensure that no particulate matter was introduced into the HPLC column. An injection 

volume of either 10 µL or 20 µL of the sample was used. All experiments were 

performed using isocratic conditions and also at room temperature. 

 

2.2.3 Sample preparation 

 

A mass of 0.5 g of the sunscreen product was transferred into a 50-mL volumetric flask. 

A 20 mL aliquot of HPLC-grade methanol was added to dissolve the active ingredients. 

This was then placed in an ultrasonic bath for 30 minutes to aid the dissolution of the 

active ingredients in the sunscreen. The samples were then diluted to the mark with 

methanol.  

 

In order to test the reliability of the proposed methodology for the extraction of the UV 

filters from the sunscreens, a recovery analysis was carried out by using the standard 

addition method. Therefore several samples were spiked with a known amount of 

analyte and were subjected to the same extraction procedure as the samples.  In short, a 

known amount of a pure active ingredient was spiked into one of the commercial 

sunscreen products. A mass of 0.5 g of the sunscreen plus a known amount of the active 

chemical ingredient was transferred to a 50-mL volumetric flask and dissolved in 

methanol. This was placed in an ultrasonic bath for 30 minutes. The solution was 

filtered through a Millipore 0.45 µm syringe filter. The prepared solution was then 

injected into the HPLC. Three replicate samples were prepared and triplicate injections 

of each sample were performed. The sample injections were interspersed with blank 

injections, so as to eliminate the effects of any carry-over from the previous injections. 

The HPLC analysis for these samples was carried out with the same operating 

conditions as for the standards.  

 

 



 47 

2.2.4 Sample quantitation 

 

The quantitative determination of the UV filters was performed by using external 

standards. Standard stock solutions of the UV-filters were prepared by accurately 

weighing appropriate masses of the pure active chemical ingredients. The weighed 

ingredients were then transferred to 100-mL volumetric flasks and diluted to volume 

with HPLC-grade methanol to make 1 x 10-3 M stock solutions. The stock solutions 

were stored in the dark by wrapping them with aluminium foil to prevent exposure to 

any stray light.  A working set of standard solutions in the concentration range of 1 x 

10-3 M to 1 x 10-6 M was prepared from each stock solution by serial dilution. These 

were used to establish the linear range and calculate the limits of detection and 

quantitation. The lower concentration was the minimum detectable concentration limit 

under our experimental conditions.  

 

2.3 Results and Discussion 

 

2.3.1 Chromatography 

 

The chromatographic method developed was used to confirm the identity of the active 

ingredients in suncare products. It was successfully utilized in the separation of most of 

the components in the samples. An isocratic mobile phase consisting of methanol/water 

was used to accomplish the separation of the active ingredients from each other. 

However, the separation and identification of avobenzone proved problematic especially 

when found in combination with 2-EHMC. The baseline separation gave difficulties due 

to the tailing peak which could cause avobenzone to elute in the same time window as 

2-EHMC. This was overcome by monitoring avobenzone at a wavelength of 360 nm 

which is its wavelength of maximum absorption since 2-EHMC does not absorb in this 

region. 
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2.3.2 Selectivity 

 

A typical HPLC chromatogram of sunscreen sample is shown in Figure 5. Good 

resolution between the examined chromatographic peaks was observed. Table 3 shows 

the retention times observed at the optimum detection wavelength for the sunscreen 

agents investigated in this study.  

 

All retention times were reproducible under the experimental conditions used, the 

average standard deviation being less than 2%. In the actual sample analysis, unknown 

peaks were identified from the retention times, which were checked and confirmed with 

the standards, if necessary. The ingredients in the suncare products were eluted as fairly 

symmetrical peaks and were well resolved from one another (see Figure 5). The method 

was successfully applied to quantify the active ingredients. 

 

Figure 5 A typical chromatogram of a sample of a commercial sunscreen. Separation 
was carried out on a Nucleosil C100 C18 column using 85% (v/v) MeOH/H2O) as the 
mobile phase at a flow rate of 1 mL min-1., injection volume – 10 µL. The detection 
wavelength was set at 310 nm. The order of elution was Benz-3 at 6.3 min, MBC at 9.1 
min, EHMC at 17.18 min and AVO at 19.42 min.  
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Table 3 The parameters of the HPLC analysis of commercial sunscreens. 
 

Active chemical 

ingredients 

Wavelength/nm Retention time/min 

 Detection Maximum 

absorption 

1 2 3 Mean STD 

EHMC 310 310 19.2 19.57 19.46 19.41 0.16 

AVO 360 358 21.47 21.88 21.67 21.67 0.17 

MBC 310 303 9.36 9.46 9.41 9.41 0.04 

Benz-3 310 285, 325 6.3 6.18 6.53 6.45 0.11 

ODM-PABA 310 303 18.36 18.56 18.48 18.47 0.08 

PBSA 310 243, 304 2.1 1.93 2.5 2.03 0.07 

OCT 310 305 11.86 11.56 11.48 11.48 0.16 

OT 310 311 18.61 18.72 18.84 18.72 0.12 

HS 310 308 20.67 20.58 20.52 20.59 0.08 
 
* Chromatographic conditions: eluent 85% v/v MeOH/H2O, flow rate: 1 mL min-1, column: Nucleosil 

C100 C18. 
 

2.3.3 Calibration curves of UV filters 

 

The calibration graphs were constructed by plotting the peak areas versus the 

concentrations of the standards injected on the HPLC column. The calibration curves 

were constructed with at least five different concentrations. The linearity was evaluated 

by least squares linear regression with triplicate determinations at each concentration 

level. The UV absorbance for all the individual analytes was measured at the detection 

wavelength as indicated in Table 3. The data listed in Appendix C (Tables C1 to C9) 

were used to construct the calibration curves shown in Appendix D (Figures D1 to 

D18). 

 

Regression analysis revealed that the calibration curves of all the chemical agents 

considered were linear in the investigated concentration range with correlation 

coefficients greater than 0.992. Their slopes were used in the quantitation of the 
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sunscreen agents contained in the commercial sunscreens. The analytical parameters of 

representative calibration curves are summarised in Table 4. 

 

Table 4 Data obtained by the analytical validation of the active chemical ingredients. 
 

 

Active 

ingredient 

Parameters 

Linearity 

range/ 

10-5 M 

Slope 

(b)/1011 

Standard error of 

slope/106 

R2/ 

 

LOD/ 

µM 

LOQ/ 

µM 

EHMC 2.0-64 2.7 5.0 0.992 0.61 1.83 

Benz-3 6.9-44 1.17 0.86 0.998 0.22 0.73 

AVO 0.5-32 3.71 2.61 0.996 0.21 0.69 

MBC 1.5-140 5.02 0.77 0.997 0.46 1.52 

PBSA 7.7-100 1.26 0.11 0.999 0.22 0.73 

OCT 1.0-30 0.16 0.90 0.997 0.17 0.56 

OT 0.2-14 1.41 0.82 0.999 0.17 0.56 

HS 0.3-20 0.11 0.076 0.993 0.22 0.73 

ODM-PABA 0.3-86 1.02 27.52 0.992 0.27 0.89 

 

On different days, quality control solutions containing individual sunscreen agents were 

used to check the calibration method. The calibration curve could be used on subsequent 

days when the coefficient of variability (CV) of the quality control samples was less 

than 2%, failing which a new calibration curve would be established.  

 

2.3.4 Precision and accuracy 

 

Precision is defined as the intra-day and inter-day variability. The repeatability (intra-

day variability) was established by the relative standard deviation (RSD) calculated 

from three injections of low and high concentrations. This was achieved by evaluating 

the samples at the same concentration and on the same day. Three sample solutions 

were prepared and assayed. 
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The intermediate precision (inter-day variability) was evaluated with the relative 

standard deviation obtained from data of three calibration curves performed on three 

different days. Three different concentrations (low, middle and high) of the standards 

were prepared. The chromatographic precision was evaluated by the repeated analyses 

in triplicate of the same sample. The overall RSD values for the intra-day and inter-day 

precision were better than 3.8%. The method provided good reproducibility and 

sensitivity for the quantification of the active ingredients in the sunscreen products.  

 

The reliability of the HPLC method and therefore its applicability was calculated by the 

recovery yield between the value found with a calibration curve and the true value 

incorporated in the sunscreen preparations. This was achieved by performing recovery 

experiments. The experiments were carried out by spiking with different amounts of 

authentic standards containing a known content of the active ingredients. The samples 

were treated according to the sample preparation procedure described in Section 2.2.3. 

The mean recovery of the filters from the spiked samples was calculated and the results 

are shown in Table 5. The recovery of the method ranged from 94.6 to 103% for all the 

products and showed good correlation over a relatively wide concentration range. It can 

be attested that excellent recoveries and precision were observed. 

 

Table 5 Recovery studies of the active chemical agents in sunscreens. 
 

Active ingredient mass added/g mass found/g % Recovery  

2-EHMC 0.0283 0.0278 98.2 

Benz-3 0.011 0.0108 97.3 

AVO 0.0163 0.0154 94.6 

MBC 0.101 0.096 96.5 

PBSA 0.015 0.0154 102.6 

OCT 0.116 0.118 101.3 

OT 0.113 0.109 96.4 

HS 0.124 0.121 98.3 

ODM-PABA 0.015 0.0146 97.3 
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2.3.5 Limits of detection and quantitation 

 

The limit of detection (LOD) is defined as the lowest amount of analyte which can be 

detected at known confidence interval. This is normally the concentration that leads to a 

signal three times larger than the noise [(S/N) = 3]. It is also defined as the analyte 

concentration that gives a signal equal to yb + 3.3Sb, where yb is the signal of a blank 

and Sb is its standard deviation. In the unweighted least-squares method it is quite 

suitable in practice to use Sy/x instead of Sb and the value of the calculated slope instead 

of yb [23]. It can also be stated as follows: 

 

LOD is [X – Xb] = 3Sb, 

 

where X is the signal from the sample, Xb is the signal from the analytical blank and Sb 

is the standard deviation (SD) of the reading for the analytical blank. 

 

The limit of quantitation (LOQ) is the lowest amount of an analyte which can be 

quantitated and similarly to LOD is defined as [X - Xb] = 10Sb.  This simply means that 

the quantitation limit is a concentration giving a signal that is ten times the magnitude of 

noise level. Thus  

 

b
xSyLOD /3.3  and 

b
xSyLOQ /10  

 

where b is the slope of the regression line. 

 

The LOD and LOQ values were determined based on the standard deviation amongst 

responses and the slope of the regression equation of a curve constructed at the lower 

concentration levels (1-10 µg mL-1). Based on the above equations, the calculated LOD 

and LOQ values are shown in Table 6. 

 

The parameters of the individual calibration curves together with the calculated 

detection limits (three times the signal to noise ratio) are given in Table 6. It is evident 



 53 

that the proposed procedure offers the required sensitivity for the determination of the 

studied compounds at the low and ultra-low concentration levels. 

 

2.3.6 Determination of UV filters in suncare products 

 

The samples were prepared as described in Section 2.2.3. The separation and 

quantitation of the active chemical ingredients was carried out under isocratic elution. A 

volume of 10 µl of the filtered solution of each sample was injected into the HPLC 

instrument and each sample was determined in triplicate. The peaks in the 

chromatograms were identified by comparing their retention times and the UV spectra 

with those of the standards. The retention times of the peaks and the shape of UV 

spectra (λmax) do create a reliable tool to positively identify similar compounds. This 

allowed the confirmation of the active ingredients as given on the product packaging for 

all the commercial products investigated The quantification of the active ingredients 

was carried out by use of external standard calibration curves as described in Section 

2.3.3. Table 6 shows results of the quantitation analysis of the products investigated in 

this study. The amounts of the active ingredients determined in the commercial samples 

were within the permissible levels of the European Cosmetic Toiletry and Perfumery 

Association (COLIPA). 
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Table 6 Calculated % of the active ingredients present in the commercial sunscreens 
 
Product 

Concentration/ % m/m 
2-EHMC MBC AVO Benz-3 PBSA OCT OT HS ODM-PABA 

AU1 7.7±0.83 2.50±0.06 1.91±0.3       
AU2 7.66±0.84  1.0±0.3 2.34±0.3      
AU3 6.91±0.83    1.95±0.4     
AU4 6.64±0.83     1.91±0.3    
AU5 7.87±0.83 2.43±0.06        
AU6 7.00±0.83 2.46±0.06        
AU7 6.89±0.82 3.48±0.06 1.1±0.3    2.4±0.07   
AU8 6.84±0.83 0.97±0.06        
AU9 8.84±0.83   2.35±0.3      
AU10 7.48±0.83 3.17±0.06 1.90±0.3       
AU11 7.33±0.83  1.93±0.3       
AU12 6.91±0.83 0.97±0.06        
AU13 7.49±0.83   2.58±0.3      
AU14 7.48±0.82 2.45±0.06        
AU15 8.8±0.83  1.8±0.3    4.94±0.07   
AU16 6.86±0.83 0.98±0.06        
AU17 7.02±0.83 0.98±0.06        
AU18 7.36±0.83 2.56±0.06 1.9±0.3       
AU19 6.91±0.83 0.98±0.06        
AU20 5.92±0.83   4.1±0.3    2.47±0.2 4.71±0.1 
AU21 9.23±0.83     3.76±0.3    
AU22 8.64±0.83     3.72±0.3    
AU23 6.82±0.83   3.4±0.3      
AU24 7.18±0.83  1.4±0.3 2.7±0.02      
AU25 8.39± 0.83  1.7±0.01       
COLIPA [24] 10 4 5 10 5 10 5 10 10 

*Each value is the mean ± 95% confidence interval of nine determinations. The confidence interval was calculated according to the method 
detailed in Appendix I. The raw data can be found in Appendix H. 



 55 

2.4 Conclusion 

 

A chromatographic method has been developed to separate and quantify the active 

ingredients in commercial sunscreens. The method was evaluated for its validity by 

using a statistical approach and all the parameters (i.e. accuracy, precision, linearity) 

were validated.  The peak areas of the active ingredients had a linear response over a 

wide concentration range. The method was successfully applied for the qualitative and 

quantitative analysis of the active chemical ingredients in the commercial suncare 

products. The results indicated that the HPLC technique could be readily utilised as an 

analytical method for the quantification of the active chemical ingredients. This has also 

shown the utility of HPLC with a PDA detector to accomplish the analysis in a short 

time of less than 20 minutes and the ability to avail UV spectral information of the 

active ingredients present concurrently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

REFERENCES 
 

1. Salvador, A., Chisvert, A., Sunscreen analysis - A critical survey on UV filters 

determination. Analytica Chimica Acta, 2005, 537, (1-2), 1-14. 

2. Gasparro, F.P., Mitchnick, M., Nash, J.F., A review of sunscreen safety and efficacy. 

Photochemistry and Photobiology, 1998, 68, (3), 243-256. 

3. De Gruijl, F.R., Skin cancer and solar UV radiation. European Journal of Cancer, 1999, 

35, (14), 2003-2009. 

4. Lowe, N.J., Shaath, N.A., Sunscreens: Development, Evaluation and Regulatory 

Aspects, ed. N.A. Shaath. 1990, New York: Marcel Dekker, Inc. USA. pp 222-232. 

5. Gasparro, F.P., Sunscreens, skin photobiology, and skin cancer: The need for UVA 

protection and evaluation of efficacy. Environmental Health Perspectives, 2000, 108, 

71-78. 

6. DeBuys, H.V., Levy, S.B., Murray, J.C., Madey, D.L., Pinnell, S.R., Modern 

approaches to photoprotection. Dermatologic Clinics, 2000, 18, (4), 577-590. 

7. Azevedo, J.S., Viana, N.S., Soares, C.D.V., UVA/UVB sunscreen determination by 

second-order derivative ultraviolet spectrophotometry. Farmaco, 1999, 54, (9), 573-

578. 

8. Chisvert, A., Salvador, A., Pascual-Marti, M.C., Simultaneous determination of 

oxybenzone and 2-ethylhexyl 4-methoxycinnamate in sunscreen formulations by flow 

injection-isodifferential derivative ultraviolet spectrometry. Analytica Chimica Acta, 

2001, 428, (2), 183-190. 

9. Vanquerp, V., Rodriguez, C., Coiffard, C., Coiffard, L.J.M., De Roeck-Holtzhauer, Y., 

High-performance liquid chromatographic method for the comparison of the 

photostability of five sunscreen agents. Journal of Chromatography A, 1999, 832, (1-2), 

273-277. 

10. Potard, G., Laugel, C., Baillet, A., Schaefer, H., Marty, J.P., Quantitative HPLC 

analysis of sunscreens and caffeine during in vitro percutaneous penetration studies. 

International Journal of Pharmaceutics, 1999, 189, (2), 249-260. 

11. Simeoni, S., Tursilli, R., Bianchi, A., Scalia, S., Assay of common sunscreen agents in 

suncare products by high-performance liquid chromatography on a cyanopropyl-



 57 

bonded silica column. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 

(2), 250-255. 

12. Chisvert, A., Pascual-Marti, M.C., Salvador, A., Determination of UV-filters in 

sunscreens by HPLC. Fresenius Journal of Analytical Chemistry, 2001, 369, (7-8), 638-

641. 

13. Ikeda, K., Suzuki, S., Watanabe, Y., Determination of Sunscreen Agents in Cosmetic 

Products by Reversed-Phase High-Performance Liquid-Chromatography. Journal of 

Chromatography, 1989, 482, (1), 240-245. 

14. Schakel, D.J., Kalsbeek, D., Boer, K., Determination of sixteen UV filters in suncare 

formulations by high-performance liquid chromatography. Journal of Chromatography 

A, 2004, 1049, (1-2), 127-130. 

15. Meijer, J., Loden, M., Stability Analysis of 3 UV-Filters Using Hplc. Journal of Liquid 

Chromatography, 1995, 18, (9), 1821-1832. 

16. Chisvert, A., Pascual-Marti, M.C., Salvador, A., Determination of the UV filters 

worldwide authorised in sunscreens by high-performance liquid chromatography - Use 

of cyclodextrins as mobile phase modifier. Journal of Chromatography A, 2001, 921, 

(2), 207-215. 

17. Salvador, A., Chisvert, A., An environmentally friendly ("green") reversed-phase liquid 

chromatography method for UV filters determination in cosmetics. Analytica Chimica 

Acta, 2005, 537, (1-2), 15-24. 

18. Granger, K.L., Brown, P.R., The chemistry and HPLC analysis of chemical sunscreen 

filters in sunscreens and cosmetics. Journal of Liquid Chromatography and Related 

Technologies, 2001, 24, (19), 2895-2924. 

19. Paulus, G.L., Gas-Liquid Chromatographic Characterization of Sunscreens in Suntan 

Preparations. Journal of the Association of Official Analytical Chemists, 1972, 55, (1), 

47-54. 

20. Schmidt, T., Ring, J., Abeck, D., Photoallergic contact dermatitis due to combined UVB 

(4-methylbenzylidene camphor and octyl methoxycinnamate) and UVA (benzophenone-

3 and butyl methoxydibenzoylmethane) absorber sensitization. Dermatology, 1998, 196, 

(3), 354-357. 

21. Schauder, S., Ippen, H., Photoallergic and Allergic Contact-Dermatitis from 

Dibenzoylmethanes and Other Sunscreens. Hautarzt, 1988, 39, (7), 435-440. 



 58 

22. Christie, W.W., HPLC and Lipids: A practical guide. 1987: Pergamon Press, Oxford. 

pp.35-41. 

23. Thomsen, V., Schatzlein, D., Mercuro, D., Limits of detection in spectroscopy. 

Spectroscopy, 2003, 18, (12), 112-114. 

24. COLIPA, European Cosmetic, Toiletry and Perfumery Association. COLIPA SPF Test 

Method, Brussels, 1994, 94/289. 

 



CHAPTER 3 

 

A study of the photostability and broad-spectrum 

protection of 25 commercially available Australian 

sunscreens 

 
Walyambillah Waudo1, Bice S. Martincigh1, Harald Maier2 and Konrad Brunnhofer3 
1School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag 

X54001, Durban, 4000, Republic of South Africa, 2Division of Special and 

Environmental Dermatology, Medical University of Vienna, Vienna, Austria and 
3Austrian Consumers’ Association, Vienna, Austria 

 

Abstract 

 

Photostability studies on some commercial Australian sunscreen products were 

undertaken by means of spectrophotometric and chromatographic methods. High 

performance liquid chromatography was used to identify and quantify the active 

ingredients. UV spectrophotometry was used to monitor the spectral absorbance before 

and after UV irradiation of the preparations. The photoinstability and broad-spectrum 

protection of the suncare products was also evaluated by means of in vitro methods, 

namely, the Boots star rating system based on the UVA/UVB ratio, the spectral 

photoinstability and the critical wavelength. Our results show that some of the 

photoactive chemical absorbers commonly being used in sunscreens are unstable upon 

UV radiation. It was noted that upon absorption of UV radiation some of the products 

showed formation of additional photoproducts as revealed by high performance liquid 

chromatography. This was mainly due to either photodegradation and/or 

photoisomerisation of the chemical absorbers, 2-ethylhexyl-p-methoxycinnamate, 4-

methylbenzylidene camphor and avobenzone. Also there were decreases in the 
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absorption of UVA/B sunlight which implies a reduction in the expected 

photoprotection against deleterious solar radiation. The loss is more noticeable in the 

UVA region where all of the products containing avobenzone in their formulations, 

except for one, become photounstable. All the suncare products showed good 

photostability in the UVB range. This further showed that a mere complex filter 

combination did not prevent the photoinactivation of the suncare products. In total eight 

of the twenty five assayed suncare products were found to be photounstable. Yet it was 

these products which initially showed good broad-spectrum protection because they 

contained the long wavelength UVA absorber, avobenzone, in their formulation. The 

photostable products did not afford protection at wavelengths greater than 340 nm. 

 

1. Introduction 

 

Solar radiation is essential to all living organisms on earth as it is a source of energy. 

However, excessive radiation is also known to have deleterious effects on human skin. 

An overexposure to the ultraviolet (UV) radiation part of the solar spectrum is a major 

causal factor in the development of skin cancer, sunburn, photoageing and suppression 

of the immune system [1, 2]. 

 

The growing awareness of the dangers associated with overexposure to UV radiation 

has necessitated measures for photoprotection. Among some of the agents advocated for 

use are sunscreens. Sunscreens are designed to give a consumer the best possible 

protection against harmful UV radiation [3, 4]. Therefore, an effective sunscreen agent 

not only has to be a substance with a large absorption coefficient in the UV region or an 

effective scattering agent (e.g. TiO2) but must also be able to harmlessly dissipate the 

absorbed energy. Sunscreens are topically applied to specifically either prevent or 

reduce UV-induced cellular damage [4]. In addition, the sunscreen should remain on the 

skin surface without penetrating into the systemic circulation [5, 6]. If the UV absorbers 

permeate into the systemic circulation, photoprotection is lost and the skin is susceptible 

to damage from the sun and toxic effects if absorbed. It is also necessary to ensure that 

the screening agent does not interact with any neighbouring molecules either by direct 



 61 

combination or by initiating a photochemical reaction through energy transfer. 

Therefore special attention needs to be paid to the photophysical and photochemical 

behaviour of sunscreen agents.  

 

Sunscreen products contain chemical absorbers, which are mainly organic compounds 

possessing single or multiple aromatic structures sometimes conjugated with carbon-

carbon double bonds and/or carbonyl moieties, and also physical blockers which are 

inorganic oxides, e.g. titanium dioxide (TiO2) and zinc oxide (ZnO). These active agents 

act by either absorbing, reflecting or scattering the UV radiation thus preventing it from 

impinging on the skin. They are normally incorporated in an oil-in-water emulsion 

although sometimes water-in-oil emulsion systems are also used. The sunscreen 

products are highly lipophilic and are easily accumulated on the human skin.  

 

The performance of a sunscreen product is measured in terms of the Sun Protection 

Factor (SPF). The SPF is defined as the ratio of the amount of energy required to 

produce a minimal erythema on sunscreen-protected skin to the amount of energy 

required to produce the same level of erythema on unprotected skin. SPF determinations 

are done in vivo according to the European Cosmetic Toiletry and Perfumery 

Association (COLIPA) standards where only the erythemal dose of UVB is considered. 

This experimentally derived number is intended to provide the consumer with an 

approximation of the protective efficacy of the product on the skin against UVB 

radiation. For example, a SPF of 15 means that a sunbather protected by one of these 

formulations can remain in the sun 15 times longer than without sunscreen before 

obtaining a burn. The measure of SPF is solely based on UVB dosage and presently 

there is no standardized method of measuring the efficacy of UVA blocking sunscreens.  

 

Although UVA radiation is not particularly erythemogenic it is important in many 

photosensitivity reactions and perhaps in long-term effects [7]. It is known to play an 

important role in the induction of skin cancer [8, 9] and so modern sunscreens are 

expected to offer broad-spectrum protection. Since no single active ingredient is capable 

of providing a broad-spectrum absorption or a high enough SPF value, multiple 

individual sunscreen chemical actives are used in combinations of varying 
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concentrations. For example, 2-ethylhexyl-p-methoxycinnamate (2-EHMC), 

benzophenone-3, 4-methylbenzylidene camphor (MBC) and 4-tert-

butylmethoxydibenzoylmethane (avobenzone) are among the UV filters that are usually 

combined in sunscreen formulations because their UV absorption spectra have 

overlapping bands and the mixture allows a good photoprotection in the whole range of 

UVB and UVA radiation. The combinations work synergistically or otherwise to offer 

better protection and tend to be more economical than one sunscreen filter [10]. The 

inorganic agents increase the optical pathway of the photons in the topically applied 

absorbing formulation. In this way more photons are absorbed hence increasing the SPF 

value. 

 

The safety and the efficacy of the UV filters are regulated and approved by national and 

international health authorities. Sunscreen products are normally sold as cosmetic 

products except in the USA where they are considered as drugs and thus regulated by 

the USA Food and Drug Administration. The efficacy of a sunscreen is partly dependent 

on the concentrations of the active UV filters present therein and on the proper product 

application as it has to be applied both evenly and in sufficient amounts to achieve 

adequate protection. Therefore, these UV filters have maximum allowed concentrations 

that have been set by various national regulatory authorities in Australia, Europe, Japan 

and the USA. These chemicals are added to the consumer sunscreen product in amounts 

of up to 10% [11]. This aspect is particularly important as some studies have shown that 

side effects, such as photoallergic contact dermatitis, are experienced in a few people 

when higher concentrations of the sunscreens are applied [12, 13]. However, sunscreen 

efficacy and safety studies have generated controversy concerning the use of 

sunscreens. Several studies have indicated that the use of sunscreens has inadvertently 

increased the high incidence of skin cancer. This could be due to four factors. Firstly, it 

has been shown that people tend to apply less of the suncare product than the normally 

recommended 2 mg cm-2, which is the amount used to determine the SPF value [14, 15]. 

Secondly, the use of sunscreens tends to encourage people to stay longer in the sun than 

they would normally do if they were not wearing a sunscreen, thereby risking greater 

skin damage [16]. Thirdly, since the SPF value is a measure solely based on UVB 

radiation there is an inadvertent exposure to UVA radiation, which tends to cause 
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indirect damage to DNA and hence increases the risk of the development of skin cancer 

[17]. Fourthly, some studies have shown that some sunscreens may tend to break down 

upon UV irradiation and thereby providing less protection and also possibly form toxic 

degradation products which are in contact with the skin. 

 

The lack of photostability of UV filters is now recognized as a common problem for 

sunscreen products, which become experience reduced efficiency by UV radiation thus 

losing their photoprotective characteristics [18, 19], and even becoming photooxidizing 

agents [20, 21]. The photoinstability of some chemical filters can be enhanced when 

two or more organic sunscreen agents are combined in a formulation [22]. The absorbed 

radiation excites the absorbing molecules and raises them to a higher energy level, 

which can be more reactive. An enhanced reactivity of the electronically excited 

molecules can have very adverse effects upon biological systems. If the molecule does 

not undergo relaxation via harmless pathways, bond cleavage and free radicals will 

occur. These free radicals can attack one or more molecules and even form more free 

radicals.  

 

Photodegradation can take place in several steps which include one or more of the 

active ingredients. If a sunscreen undergoes photodegradation or photodecay it loses 

absorption efficiency and its protective properties are reduced below those expected 

from the level of the active ingredients it contains. The possible formation of 

photoproducts, their chemical reactions and their accumulation on/in human skin may 

have deleterious effects. The loss of efficiency in absorption and the formation of 

photodegradation products may induce photoallergy, phototoxic reactions and skin 

irritation [23, 24]. A high screening efficiency can only be guaranteed if a UV filter is of 

high photostability [25, 26]. There is no standard method to measure photostability and 

both in vivo and in vitro methods are used [18, 27]. The photostability and the 

photodegradation of sunscreen agents have been studied by many workers by 

monitoring the spectral changes over time, e.g. the shift in the UV maxima [28] or the 

irreversible disappearance of the chromophore [29]. Maier et al. [18] have shown that 

suncare products lose their protection upon exposure to solar UV radiation. The work of 

Tarras-Wahlberg et al. [19] also indicates the changes in absorbance of sunscreens that 
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were measured before and after irradiation with both UVA and UVB radiation. They 

used gas chromatography-mass spectrometry to isolate and identify the resulting 

photoproducts. Therefore, the photochemical instability of suncare products containing 

various UV filters represents a major challenge to the industry as the nature of the 

photoproducts formed could be toxic. These toxic products may directly or indirectly 

induce oxidative damage on tissue constituents in human skin, just as UVA radiation 

does. Therefore in order to ensure adequate photoprotection during usage the 

photochemical behaviour of sunscreen agents needs to be determined under conditions 

that parallel those encountered in the finished suncare preparations.  

 

Many groups have studied the photostability of single UV filters or combinations of 

them [30, 31]. Only a few studies have analyzed UV filter stability in ready-to–use 

cosmetic formulations [32]. Most of the studies are often carried out in dilute solutions 

which may not be suitable as this is less representative of what could happen under 

actual conditions of use. Since the UV filters are normally never used in isolation as 

they are always combined with other UV filters and other numerous excipients, the 

actual concentrations in sunscreen formulations could be different from those used in 

most photochemical investigations. 

 

In this study, the photostability and broad-spectrum protection of twenty five (25) 

different commercially available products that were purchased from the Australian 

market has been investigated. Unlike other studies that have mainly concentrated on 

pure UV filters we investigated off-the-shelf ready-to-use formulations. We have used 

both spectroscopic and chromatographic techniques to study the photophysical or 

photochemical changes that are likely to take place when commercial sunscreens are 

exposed to UV radiation. The analyses were performed before and after UV exposure. 

The advantage for such a double-barreled approach is that one is able to monitor the 

changes in absorbance and also at the same time monitor the structural changes in the 

UV filters and determine any photoproducts formed. The photoproducts can also be 

monitored as part of quality control in order to determine if they have any potential 

toxic or allergic effects.  
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2. Experimental 

2.1 Materials 

Twenty five different commercially available sunscreen products were purchased from 

the Australian market. Eleven sunscreens contained only organic chemical filters while 

fourteen had a combination of inorganic and organic chemical filters. Table 7 lists the 

products with details of the active ingredients contained therein and the corresponding 

SPF value.  

 

Table 7 The Australian sunscreens assessed, the active chemical ingredients contained 
therein and their corresponding SPF numbers. 

Sample 
Code  

SPF Active Ingredients* Protection range 
UVB UVA 

AU 1 30+ 2-EHMC, AVO, MBC   
AU 2 15+ 2-EHMC, AVO, Benz-3   
AU 3 30 2-EHMC, PBSA, TiO2   
AU 4 30+ 2-EHMC, OCT,  ZnO   
AU 5 30+ 2-EHMC, MBC, ZnO   
AU 6 30+ 2-EHMC, MBC, ZnO   
AU 7 30+ 2-EHMC, AVO, MBC, OT    
AU 8 30+ 2-EHMC, MBC, ZnO   
AU 9 15 2-EHMC, Benz-3, TiO2   

AU 10 30+ 2-EHMC, AVO, MBC    
AU 11 15 2-EHMC, AVO    
AU 12 30+ 2-EHMC, MBC, ZnO    
AU 13 30+ 2-EHMC, Benz-3, TiO2   
AU 14 30+ 2-EHMC, MBC, ZnO    
AU 15 30+ 2-EHMC, AVO, OT   
AU 16 30+ 2-EHMC, MBC, ZnO    
AU 17 30+ 2-EHMC, MBC, ZnO   
AU 18 30+ 2-EHMC, AVO, MBC    
AU 19 30+ 2-EHMC, MBC, ZnO    
AU 20 30+ 2-EHMC, Benz-3, HS, ODM-PABA   
AU 21 30+ 2-EHMC, OCT, ZnO   
AU 22 30+ 2-EHMC, OCT, ZnO   
AU 23 15+ 2-EHMC, Benz-3    
AU 24 30+ 2-EHMC, AVO, Benz-3, TiO2    
AU 25 30+ 2-EHMC, AVO   

*2-EHMC - 2-ethylhexyl-p-methoxycinnamate; AVO - avobenzone; MBC - 4-methylbenzylidene 
camphor; HS - homosalate; Benz-3 - benzophenone-3; PBSA - 2-phenylbenzimidazole sulfonic acid; 
OCT - octocrylene; OT - octyltriazone; ODM-PABA - octyl dimethyl para-aminobenzoic acid 
(padimate-O); TiO2  - titanium dioxide;  ZnO - zinc oxide. 
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The samples were stored at room temperature and in the dark and opened only 

immediately before analysis. 

 

All reagents and solvents were of analytical or HPLC grade. Methanol and acetonitrile 

were purchased from BDH HiperSolv Chemicals Ltd. The samples of pure UV 

sunscreen filters were obtained from different sources. Benzophenone-3, avobenzone, 2-

ethylhexyl-p-methoxycinnamate, octocrylene and octyltriazone were from BASF and 4-

methylbenzylidene camphor and 2-phenylbenzimidazole sulfonic acid were from 

Merck. Deionised water was obtained from a Milli-Q50 water purification system 

(Millipore, Bedford, MA, USA) and was used in all procedures. 

 

2.2 UV irradiation 

 

Sunscreen products were smeared onto quartz glass slides covering an average surface 

area of 10 cm2. The slides were weighed before application of the sunscreen product. 

Each product was applied onto the quartz slides by circular movements of a gloved 

finger according to the method described by Maier et al. [33]. The quartz slides were re-

weighed to check the exact mass of sunscreen product applied. In each case an area 

density of 1.0 ± 0.1 mg cm-2 was applied. It is important to note that the efficacy of a 

sunscreen is highly dependent upon its correct application. The amount used in this 

study was more realistic amount since it has been demonstrated [34, 35] that, in actual 

use, people apply between 0.50 and 1.00 mg cm-2. This amount is significantly lower 

than the COLIPA and FDA [18] recommended application density of 2 mg cm-2 at 

which the SPF of sunscreens is measured [36, 37]. 

 

After application of the sunscreen product, the quartz slides were dried for 30 minutes at 

a constant temperature of 26 ºC and a relative humidity of 50% to allow for moisture 

equilibration. They were then irradiated with a solar simulator (COLIPA Dermasun Dr 

Hönle 400F/5, Dr Hönle Lichttechnik GmbH, Planegg, Germany) using a 

radiometrically-defined homogenous field of irradiance (determined by a Solar Light SL 

5D spectroradiometer, Solar Light, Philadelphia, PA, USA), with increasing UV doses 
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of solar- simulated radiation. The samples were taken for transmission measurements 

after each dose of radiation. Two independent replicate samples of each product were 

prepared and analysed in this manner.  

 

In addition, for those samples that were determined to be photounstable, a weighed 

sample of the suncare product was placed on a Petri-dish and exposed to solar radiation 

for a period of six hours. This was then dissolved in appropriate amounts of methanol 

and the photoproducts formed were determined chromatographically. 

 

2.3 UV spectroscopy 

 

Solutions of pure chemical filters for UV absorption analysis were accurately prepared. 

A 50 mg sample of the pure sunscreen active ingredient was weighed accurately into a 

100-mL volumetric flask and diluted to the mark with methanol. The resulting stock 

solution was serially diluted to make solutions of appropriate concentrations, such that 

their absorbance readings at the wavelength of maximum absorbance fell below 2. This 

is because at higher concentrations there are deviations from linearity according to 

Beer‟s law. All the absorption spectra were acquired with a Perkin Elmer Lambda 35 

double-beam UV/Visible spectrophotometer at a constant spectral bandwidth of 1.0 nm 

using a matched pair of 1 x 1 cm quartz cells. Pure HPLC methanol was used as a 

reference. The UV response for each chemical constituent was measured at its 

wavelength of maximum absorbance. The UV spectra were used as an identification and 

purity check of the compounds separated by high performance liquid chromatography.  

 

For each of the 25 commercial sunscreen products the spectral transmittance, Tλ, for 

both the UVB (280-320 nm) and the UVA ranges (320-400 nm), was measured before 

and after irradiation with 2, 5, 10 and 20 MED of solar-simulated radiation by means of 

a Varian Cary 3E UV/Visible spectrophotometer connected to a Labsphere DRA-CA-30 

integrating sphere.  
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2.3.1 Data Analysis 

 

The determination of the degree of broad-spectrum protection and the photoinstability 

of the 25 sunscreen products was based on three different in vitro approaches: the 

Boots‟ star rating based on spectrophotometric analysis [38], the critical wavelength 

method [39] and the method proposed by Maier et al. [18]. 

 

The transmittance spectrum of a sunscreen product in either the UVA or UVB region 

was averaged in order to produce one value which describes the amount of UVA or 

UVB blocking. The average transmittance in each region is given by  

 

T(UVA)av = 400

320

400

320
T

  and  T(UVB)av = 320

280

320

280
T

  [2.1] 

 

where Tλ is the transmittance at a particular wavelength and Δ  is the measured 

wavelength interval. The percent transmittance blocking for the UVA or UVB region is 

given as 100% - T(UVA)av or 100% - T(UVB)av respectively, where T(UVA)av or 

T(UVB)av is expressed as a percentage.  

 

The spectral transmittance values, T, were converted to spectral absorbance (A) values 

by means of the following formula 

 

   A = 2 - log (%T)     [2.2] 

 

The „UVA ratio‟ (R) was then calculated, which is the ratio of the total absorption in the 

UVA to that in the UVB region.  

 

    R,
UVB
UVA  = 320

280

400

320

A

A
    [2.3] 
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where UVA and UVB are the total absorption in the UVA and UVB regions 

respectively. The Boots star rating is based on the requirement that a good sunscreen 

should have a UVA ratio of greater than 0.6 [38].  

 

The critical wavelength ( c) describes a method for classifying the broad-spectrum 

protection properties of sunscreens throughout the whole of the UV (290 - 400 nm) 

region. This is also determined spectrophotometrically from the UV-spectra, where the 

spectral transmittance, T, is measured and then converted to spectral absorbance by 

means of Equation 2.2. To calculate the critical wavelength, the area under the 

absorbance curve (AUC) is set at 100%.  The critical wavelength, c, is the wavelength 

at which 90% of the area under the curve is reached starting from 290 nm. This is 

essentially the wavelength below which 90% of the sunscreen‟s UV absorbance occurs.  

The following formula (Equation 2.4) according to the work of Diffey [39] is applied: 

 

  c A
290

)(  = 0.9 
400

290
)(A      [2.4] 

 

where A(λ) is the absorbance of the sunscreen product at wavelength λ,  λc is the critical 

wavelength and δλ is the wavelength interval used in the integral summation. A five-

point scale is used to classify suncare products according to the method reported by 

Diffey [40]. 

 

The data obtained from UV-spectrophotometry were also analyzed according to the 

method proposed by Maier et al. [18] in order to determine the photostability or 

photoinstability of the sunscreen products. The change in the spectral transmittance after 

a defined exposure (MED dose), D, at a given wavelength, , ΔT ,D, was calculated 

from the difference between the spectral transmittance before UV exposure, T ,0, and the 

spectral transmittance T ,D for a defined UV dose D, at that wavelength: 

 

  ΔT ,D = T ,0 – T ,D       [2.5] 

 

The quantity ΔT ,D, is referred to as the spectral photoinactivation. 
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The mean difference of the transmittance, ΔT ,D, was calculated for both the UVB (280 

– 320 nm) and UVA (320 - 400 nm) ranges for all the illumination doses applied. The 

criterion for photoinactivation was based on the assumption of the minimum erthyma 

dose of 10 MED which is received on average by the human skin every day. A 

sunscreen product was labelled photounstable if the mean photoinactivation was greater 

than 5% and photostable if the value was less than or equal to 5%.  

 

2.4 High performance liquid chromatography 

 

The chromatographic system comprised a Waters 600 multisolvent delivery system 

connected to Waters 996 photodiode array (PDA) detector and a Perkin-Elmer 2000 

series autosampler. The system was connected to a De‟Mark Pentium II personal 

computer and controlled by using Waters Millennium Version 4.00 software.  

 

Separations were performed on a reversed-phase Nucleosil C100 C18 column of 250 

mm length, 4.6 mm internal diameter and 5 µm particle size fitted with a disposable 

Waters Guard-Pak µ-Bondapak C18 pre-column insert to protect the analytical column. 

A solvent composition of 85:15% (v/v) methanol-water was used for the isocratic 

elution of the samples of suncare products obtained before and after irradiation.  The 

solvent was filtered through a Millipore 0.45 µm filter and was continuously degassed 

with helium before and during use. The flow rate of the eluent was 1 mL min-1. The 

wavelength of detection was set at 310 nm as compromise absorption wavelength that 

allows for satisfactory responses for most analytes, apart from avobenzone that was 

monitored at 360 nm.  

 

Sample solutions were prepared by weighing 50 mg of a suncare product and dissolving 

it in 20 mL of methanol into a 50-mL beaker followed by placement in an ultrasonic 

bath for 30 minutes. The mixture was transferred into a 50-mL volumetric flask and 

diluted to the mark with methanol. The samples were filtered by passing them through 

0.45 µm Millex syringe filters to ensure that no particulate matter was introduced into 

the HPLC column. An injection volume of either 10 µL or 20 µL of the sample was 

used. All experiments were performed at room temperature. 
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Calibration curves obtained by using an external standard method were constructed for 

the quantification of the active ingredients in the suncare products.  These were linear in 

the assayed range of concentrations. The degree of photodegradation was evaluated by 

comparing the peak areas of the sunscreen products of the irradiated samples with those 

obtained by analysing an equivalent amount of the unirradiated samples. 

 

2.5 High performance liquid chromatography – mass spectroscopy studies 

 

An Agilent HPLC 1100 series HPLC/MS instrument (Agilent Technologies, San Jose, 

CA) comprising a quatenary solvent delivery system, an on-line degasser, an 

autosampler, a column thermostat and interfaced to an Agilent LC/MSD Trap 1100 

series was used. The column was an Agilent Zorbax Eclipse XDB-C18 reversed-phase 

column (5 μm, 50 x 4.6 mm). The sample injection volume was 5 μL and the eluent 

flow rate was 1mL min-1.  Liquid chromatography – mass spectroscopy analyses were 

performed in the isocratic mode (85:15% v/v MeOH/H2O). Mass spectra were recorded 

between 100 and 1000 m/z in the atmospheric pressure chemical ionization positive mode. 

The heated capillary temperature was set at 155 oC and the APCI vaporizer temperature 

at 300 oC.  The capillary voltage was 3500 V and the spray voltage 5 kV. 

 

3 Results and Discussion 

 

3.1 Characterisation of samples 

 

Twenty five different samples of commercial sunscreens were purchased from the 

Australian market. The aim of this investigation was to examine the photostability of the 

organic filters in these commercial sunscreens and then determine, if any, the chemical 

structures of the photodegradation or photo-products. Photostability is an essential 

factor for a commercial sunscreen to effectively provide protection against the harmful 

effects of both UVA and UVB solar radiation. The decomposition of the UV filters 

under sunlight exposure reduces their expected screening capacity. All the suncare 



 72 

products investigated in this study contained the UV filters as listed on the container 

labels. Most of the products consisted of at least two chemical absorbers covering both 

the UVA and UVB regions. Only three of the products had four active chemical 

ingredients present. The most common UV absorber was 2-EHMC which was found in 

all the products. MBC was the second most frequently used absorber occurring in 

twelve products while AVO, which is a UVA absorber, was found in ten products. 

Other filters were also found in various permutations with 2-EHMC as shown in Table 8 

which lists the different UV-filter combinations contained in the suncare products 

investigated. A total of twelve different filter combinations were identified and are 

presented in order of increasing complexity. All the sunscreen products containing the 

various filter combinations were analysed for their photostability and for the 

concentrations of the UV filters by means of spectroscopic and chromatographic 

techniques respectively.  

 

Table 8 Details of the active chemical ingredients in the suncare products investigated 
in this study. 
 

Brand code of suncare product Active chemical ingredients 

AU (11, 25) 2-EHMC, AVO 

AU 23 2-EHMC, Benz-3 

AU (1, 10, 18) 2-EHMC,  MBC, AVO 

AU 2 2-EHMC, Benz-3, AVO 

AU (5, 6, 8, 12, 14, 16, 17, 19) 2-EHMC, MBC, ZnO 

AU 3 2-EHMC, PBSA, TiO2 

AU (4, 21, 22) 2-EHMC, OCT, ZnO 

AU (9, 13) 2-EHMC, Benz-3, TiO2 

AU 15 2-EHMC, AVO, OT 

AU 24 2-EHMC, AVO, Benz-3, TiO2 

AU 7 2-EHMC, AVO, MBC, OT 

AU 20 2-EHMC,  Benz-3, HS, ODM-PABA 

*2-EHMC  - 2-ethylhexyl-p-methoxycinnamate; AVO - avobenzone; MBC - 4-methylbenzylidene 
camphor; HS - homosalate; Benz-3- benzophenone-3; PBSA – 2-phenylbenzimidazole sulfonic acid; 
OCT - octocrylene; OT - octyltriazone; ODM-PABA - octyl dimethyl para-aminobenzoic acid 
(padimate-O) 
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The concentrations of the active chemical ingredients in the various products were 

determined by using external standard calibration curves. Table 9 shows the mean 

percentage concentrations (% m/m) determined for the different active ingredients in the 

commercial sunscreens. The concentrations were found to be within the recommended 

levels of the European Cosmetic Toiletry and Perfumery Association (COLIPA).  

 

3.2 Spectroscopic analysis of pure chemical absorbers 

 

The UV absorption spectra of all the pure chemical actives contained in the commercial 

sunscreens were obtained and are displayed in Figure 6. It can be seen that there is an 

overlap of the spectra. Most of these UV filters absorb maximally in the UVB region. 

AVO is the most commonly used UVA filter. Although benzophenone-3 can be 

considered as a UVA filter it, however, only covers the shorter UVAII (320-340 nm) 

wavelength range with maximum absorption at 285 nm in methanol. It is this 

overlapping absorption that becomes useful when the filters are combined together as 

they have an additive effect in absorbance hence improving the overall SPF value of the 

suncare formulation. For example, the combination of a UVB filter (2-EHMC) and 

UVA filter (AVO) results in a wider spectral coverage than would be achieved by the 

individual active agents. The wavelengths of maximum absorption for each of the 

sunscreen filters are listed in Table 10.  
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Table 9 Concentrations of the active chemical ingredients present in the commercial sunscreens investigated [41] 

 
Product 

Concentration/ % m/m 
2-EHMC MBC AVO Benz-3 PBSA OCT OT HS ODM-

PABA 
AU1 7.7±0.83 2.50±0.06 1.91±0.3       
AU2 7.66±0.84  1.0±0.3 2.34±0.3      
AU3 6.91±0.83    1.95±0.4     
AU4 6.64±0.83     1.91±0.3    
AU5 7.87±0.83 2.43±0.06        
AU6 7.00±0.83 2.46±0.06        
AU7 6.89±0.82 3.48±0.06 1.1±0.3    2.4±0.07   
AU8 6.84±0.83 0.97±0.06        
AU9 8.84±0.83   2.35±0.3      
AU10 7.48±0.83 3.17±0.06 1.90±0.3       
AU11 7.33±0.83  1.93±0.3       
AU12 6.91±0.83 0.97±0.06        
AU13 7.49±0.83   2.58±0.3      
AU14 7.48±0.82 2.45±0.06        
AU15 8.8±0.83  1.8±0.3    4.94±0.07   
AU16 6.86±0.83 0.98±0.06        
AU17 7.02±0.83 0.98±0.06        
AU18 7.36±0.83 2.56±0.06 1.9±0.3       
AU19 6.91±0.83 0.98±0.06        
AU20 5.92±0.83   4.1±0.3    2.47±0.2 4.71±0.1 
AU21 9.23±0.83     3.76±0.3    
AU22 8.64±0.83     3.72±0.3    
AU23 6.82±0.83   3.4±0.3      
AU24 7.18±0.83  1.4±0.3 2.7±0.02      
AU25 8.39±0.83  1.7±0.01       

COLIPA  10 4 5 10 5 10 5 10 10 
*Each value is the mean ± 95% confidence interval of nine determinations. The confidence interval was calculated according to the method detailed in Appendix H. 

The raw data can be found in Appendix K. 
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Figure 6 The UV absorption spectra of the pure sunscreen agents dissolved in methanol. 
Absorption spectra were recorded in a 1-cm pathlength quartz cuvette against methanol in the 
reference cell. 
 

Table 10 The wavelengths of maximum absorption of the sunscreen active ingredients. 
 

Active chemical ingredients Wavelength of maximum absorption/nm 
2-EHMC 310 
AVO 358 
MBC 303 
Benz-3 242, 285, 325 
ODM-PABA 303 
PBSA 243, 304 
OCT 305 
OT 311 
HS 306 

 

 

3.3 Investigation of the change in UV absorbance of sunscreen products upon 

irradiation 

 

The photostability of the active ingredients in suncare products was investigated both 

spectroscopically and chromatographically. Since a number of the samples had similar filter 
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combinations (as shown in Table 2) only the results of a representative sample will be 

discussed. The loss of absorbance and hence the efficacy of the suncare product can occur 

because of possible modification occurring to the chemical actives during UV irradiation 

[42].  

 

Eight samples contained 2-EHMC, MBC and ZnO as the main active chemical components, 

i.e. samples AU 5, 6, 8, 12, 14, 16, 17 and 19. Figure 7 shows the UV transmission spectra 

for sample AU 5 obtained before and after exposure to increasing doses of solar-simulated 

UV radiation. It was observed that there was a negligible change in absorbance in the UVB 

region during the time of UV exposure. However, in the UVA region the sample showed 

transmission due to the fact that there was no active chemical agent present to absorb in this 

region since 2-EHMC and MBC are both UVB absorbers. A close observation of the shapes 

of the spectra shows an initial steady increase in transmission from about 340 nm then 

attaining a plateau between 350 nm to 370 nm before another gradual increase. The partial 

absorption in this region can be attributed to the presence of the inorganic filter, namely ZnO. 

The overall shapes of the spectra remained virtually the same during the entire exposure to 

increasing UV radiation. This product was assessed to be photostable and later also assessed 

to be so by the quantitative methods applied to the UV – spectral data.  

 

The samples were also assessed for their photostability by HPLC. This technique is useful 

since it is possible to carry out a quantitative and qualitative analysis of the sunscreen 

ingredients present before and after irradiation. An analysis of irradiated sunscreen samples 

by HPLC was used to provide some information on the type of photoproducts formed in 

photounstable formulations upon exposure to UV radiation. The chromatograms for both the 

unirradiated and the irradiated samples were recorded. HPLC quantitation of suncare 

products was carried out before and after irradiation. The peak areas were used to determine 

the degree of photodegradation. 
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Figure 7 UV transmission spectra of AU 5 with increasing doses of UV radiation. 

 

Figure 8 is a HPLC chromatogram of unirradiated AU 5 showing the two peaks due to 2-

EHMC at 19.453 min and MBC at 9.719 min.  

 

 

Figure 8 The HPLC chromatogram of unirradiated AU 5 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is MBC and 2-EHMC. 
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Upon irradiation the sample showed the emergence of two new peaks associated with the cis-

forms of trans-2-EHMC at 15.224 min and trans-MBC at 10.867 min (Figure 9). It is known 

that trans-2-EHMC photoisomerises to its cis-form upon exposure to UV radiation [43]. The 

trans-MBC can also photoisomerise in more or less the same way as trans-2-EHMC [19].  

 

 

Figure 9 HPLC chromatogram of irradiated AU 5 separated on a Nucleosil C100 C18 column, 
eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and detection 
wavelength of 310 nm. The order of elution is trans-MBC, cis-MBC, cis-2-EHMC and trans-
2-EHMC. 

 

It has been shown that benzylidene camphor filters can undergo E/Z isomerisation in 

irradiated solutions but no degradation was observed [31]. However, Bonda [44] argues that 

not all molecules that isomerise are destructive to the molecule. There might be cases where 

isomerisation is reversible or where it has little effect on the spectral attenuation. This energy 

dissipation can actually contribute to photostability [45]. Samples AU 6, 8, 12, 14, 16, 17 and 

19 which contained the same three active ingredients behaved similarly. 

 

The irradiated sample was also analysed by high performance liquid chromatography-mass 

spectroscopy to ascertain the formation of the photoproducts. Figure 10 shows the HPLC 

chromatogram obtained and has four peaks labelled M1, M2, E1 and E2 which correspond to 

the trans-MBC, cis-MBC, cis-2-EHMC and trans-2-EHMC respectively. Figure 11 is the 

total ion chromatogram obtained and the peaks labelled M1, M2, E1 and E2 correspond to the 

peaks shown in the HPLC chromatogram. The significance of this result was the confirmation 
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that indeed trans-MBC and trans-2-EHMC had photodegraded to their cis-forms upon UV 

irradiation as seen by the value of the molecular masses. 
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Figure 10 HPLC chromatogram of irradiated AU 5 analysed on the Agilent Zorbax Eclipse 
XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, injection volume – 5 µL 
with the Agilent 1100 Series HPLC with UV detection at 310 nm. The order of elution was 
trans-MBC, cis-MBC, cis-2-EHMC and trans-2-EHMC. 
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Figure 11 Mass spectra of the peaks labeled M1, M2, E1 and E2 in Figure 10. 
 

 

Sample AU 3 was the only one that contained 2-EHMC, PBSA and TiO2 as the active 

ingredients. The preparation displayed good photostability in the UVB region but was 

completely transparent in the UVA region (Figure 7). This is consistent with the non-

absorbance in the UVA region of the two chemical actives (i.e. 2-EHMC and PBSA) present. 

The low transmission in the UVAII (320-340 nm) range could be due to the presence of TiO2, 
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which is a physical blocker for UVA radiation [46]. The shapes of the transmission spectra 

remained essentially the same throughout the irradiation period. This product was therefore 

classified as photostable. 

 

Sample AU 3 was also subjected to HPLC studies. Figure 12 shows the HPLC chromatogram 

obtained before irradiation. The unirradiated sample shows the presence of the two 

ingredients, namely, 2-EHMC at 19.79 min and PBSA at 1.99 min. Upon irradiation the 

sample shows the presence of a new peak at 16.267 min as shown in Figure 13. This was 

associated with the photoisomerisation of trans-2-EHMC to the cis-form [47, 48]. PBSA is 

not altered by UV exposure which was also observed in the study by Sewlall [49]. However, 

Serpone et al. [50] seem to suggest otherwise as they have shown that PBSA photodegrades 

upon irradiation with UV light. However, this product was assessed to be stable.  

 

 
 

Figure 12 UV transmission spectra of AU 3 with increasing UV doses of radiation. 
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Figure 13 HPLC chromatogram of unirradiated AU 3 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is PBSA and trans-2-EHMC. 

 

 

Figure 14 HPLC chromatogram of irradiated AU 3 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is PBSA, cis-2-EHMC and trans-2-
EHMC. 
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Samples AU 4, 21 and 22 contained 2-EHMC, OCT and ZnO as the active chemical agents. 

These chemical filters are essentially UVB absorbers. Figure 15 shows the UV transmission 

spectra of AU 4 with increasing dose levels of UV radiation. There was no transmittance 

exhibited in the UVB region. However, there was essentially complete transmission in the 

UVA region and therefore this product offered no protection in the UVA region. The 

presence of octocrylene in the product is normally used to photostabilize 2-EHMC [51]. This 

product was considered to be photostable. 

 

 

Figure 15 UV transmission spectra of AU 4 with increasing doses of UV radiation.  
 

The HPLC chromatogram (Figure 16) shows two peaks due to octocrylene at 11.552 min and 

2-EHMC at 19.216 min. Upon irradiation a new peak was observed at 15.724 min due to the 

isomerisation of trans-2-EHMC to its cis-form as shown in Figure 17. In comparison 

octocrylene, a cyanoacrylate derivative similar to the cinnamates, showed no 

photodegradation. The photostability could be in part attributed to the lack of geometrical 

isomers in this trisubstituted double bond system [52]. 
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Figure 16 HPLC chromatogram of unirradiated AU 4 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, injection volume – 10 µL, flow rate 1 mL min-1 and 
detection wavelength of 310 nm. The order of elution is octocrylene and trans-2-EHMC. 
 

 

 

Figure 17 HPLC chromatogram of irradiated AU 4 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is octocrylene, cis-2-EHMC and trans-
2-EHMC. 
 

 

Samples AU 9 and 13 contained 2-EHMC, Benz-3 and TiO2 in their formulations. Figure 18 

shows the transmission spectra of AU 9. Although Benz-3 is used as a UVA absorber, it 
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absorbs most efficiently in the UVB region and the shorter UVAII (320-340 nm) range with 

two absorption peaks at 285 and 325 nm [53] and also as seen in Figure 1 and Table 4. From 

the spectra, it is evident that this product is photostable even though it covers a very small 

spectral range. However, this product was observed to be transparent in the longer 

wavelength UVA region (340-400 nm). The shapes of the transmission spectra remained 

essentially the same throughout the irradiation period. The presence of TiO2 in the sample is 

responsible for the low transmission observed at the shorter UVA region for this formulation. 

When this sample was compared with sample AU 23 (Figure 15) which had the same active 

chemical agents but did not have any TiO2 a greater transmission was observed in the UVA 

region for AU9. This can be explained by the fact that AU 23 contained more Benz-3 which 

absorbs in the UVAII range.  

 

 

Figure 18 UV transmission spectra of AU 9 with increasing doses of UV radiation. 
 

The HPLC chromatogram (Figure 20) shows the presence of two compounds: Benz-3 at 6.56 

min and 2-EHMC at 19.644 min. Benz-3 offers protection essentially in the UVB region 

although it also provides some protection in the shorter UVA range. Upon irradiaton of the 

sample a new peak appeared at 15.91 min which is associated with photoisomerisation of 

trans-2-EHMC to its cis-form (Figure 20). The cis-form has a lower molar absorption 
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coefficient (1.84 x 104 dm3 mol-1 cm-1) than the trans-2-EHMC (2.45 x 104 dm3 mol-1 cm-1) 

and hence is a less efficient absorber [54]. 

 

 

Figure 19 UV transmission spectra of AU 23 with increasing doses of UV radiation. 
 

 

 

Figure 20 HPLC chromatogram of unirradiated AU 9 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is Benz-3 and trans-2-EHMC. 
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Benz-3 is normally considered a safe and photostable UV filter. However, some studies show 

that in the presence of Benz-3, 2-EHMC tends to photodegrade much faster as Benz-3 seems 

to have a photosensitizing effect [50]. The work of Schallreuter et al. [21] shows that Benz-3 

can be oxidized to yield a photoproduct known as oxybenzone semiquinone.  This is a highly 

potent electrophile as it reacts with antioxidant systems resulting in their inactivation.  This 

would be harmful to the homeostatis of the epidermis [21]. This photoproduct was not 

observed in this work.  

 

 

 

Figure 21 HPLC chromatogram of irradiated AU 9 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL  and 
detection wavelength of 310 nm. The order of elution is Benz-3, cis-2-EHMC and trans-2-
EHMC. 

 

 

Samples AU 11 and 25 contained 2-EHMC and AVO as the active chemical agents. AVO is 

the most commonly used UVA filter. Figure 22 shows the UV transmission spectra of sample 

AU 11. This is a broad spectrum sunscreen. It displayed photostability in the UVB region but 

it lost absorbance in the UVA region upon exposure to increasing doses of UV radiation. 

There is a very marked increase in the loss of absorbance especially at 20 MED. The loss of 

absorbance in the UVA region can be attributed to the photodegradation of AVO, following a 

keto-enol isomerisation as has been shown in other investigations [55-57]. The filter 

combination of AVO and 2-EHMC is known to be photounstable as the two absorbers tend to 
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photodegrade into other products [58]. The presence of AVO tends to enhance the 

photodegradation of 2-EHMC when the two are formulated in combination. The work of 

Panday [59] showed that AVO photosensitises the photoisomerisation of 2-EHMC which 

accounts for some photodegradation in the UVB region. The destabilisation of 2-EHMC in 

the presence of AVO is also probably caused by a photochemical reaction of the two 

compounds, which occurs in a similar way as in the case of the photocyclodimerization of 2-

EHMC with itself [30, 43]. When AVO undergoes photoreactions it may react with 2-EHMC 

to form cycloaddition products and perhaps other photoproducts which may contribute to the 

overall decrease in absorbance [22, 60]. The loss in the absorbance makes this product 

photounstable in the UVA region. 

 

 

Figure 22 UV transmission spectra of AU 11 with increasing doses of UV radiation. 
 

Figure 23 shows the 2-EHMC peak monitored at 310 nm and Figure 24 shows that of AVO 

monitored at 358 nm before irradiation. Upon irradiation there was a second peak associated 

with 2-EHMC appearing at 16.58 min which could be assigned to the cis-isomer.  However, 

after irradiation the presence of the AVO peak was undetectable. This showed that AVO had 

photodegraded.  
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Figure 23 HPLC chromatogram of AU 11 separated on Nucleosil C100 C18 column, eluent 
85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and detection wavelength 
of 310 nm. This shows the peak due to trans-2-EHMC. 

 

 

 

Figure 24 HPLC chromatogram of AU 11 separated on Nucleosil C100 C18 column, eluent 
85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and detection wavelength 
at 358 nm showing the peak due to AVO.  

 

Sample AU 15 consisted of 2-EHMC, AVO and OT as the active ingredients. Figure 25 

shows the transmission spectra of AU 15 obtained upon exposure to varying levels of UV 
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radiation. At 0 MED the product offered broad-spectrum protection covering effectively both 

the UVA and UVB regions. This is a broad-spectrum sunscreen which displays good 

absorption in the UVB region but gradually loses its absorption capacity in the UVA region 

upon increasing doses of UV radiation. The shapes of the transmission spectra were 

significantly changed with increasing UV exposure. The loss of protection in the UVA region 

can be attributed to the photodegradation of AVO as observed for sample AU 11. However, 

the inclusion of OT does not decrease the transmission of UV radiation in the UVA region. 

This is evident in this product as the photoloss is in fact enhanced. Hence this product was 

classified as photounstable. 

 

 
Figure 25 UV transmission spectra of AU 15 with increasing levels of UV radiation  

 

The HPLC chromatogram of unirradiated AU 15 is as shown in Figure 26 whereas Figure 27 

shows the HPLC chromatogram of AVO detected at 360 nm. Figure 28 shows the 

chromatogram obtained after irradiation of the sample. A new peak emerged at 15.47 min 

associated with the cis-form of trans–2-EHMC. The peak due to AVO at 22.54 min has 

reduced significantly in magnitude confirming that indeed the loss of absorbance in the UVA 

region is due to the photodegradation of AVO. Figure 24 shows the reduced peak of AVO 

when it was monitored at 360 nm. OT is meant to stabilize AVO and is normally considered 

photostable upon exposure to UV light [45, 61]. It is believed that AVO is able to transfer the 
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absorbed UV energy to OT instead of undergoing alternative reactions which result in loss of 

its absorption efficiency [44].  This does not appear to be the case here.  

 

 

Figure 26 HPLC chromatogram of unirradiated AU 15 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is OT and trans-2-EHMC. 
 

 

 

Figure 27 HPLC chromatogram of AU 15 separated on Nucleosil C100 C18 column, eluent 
85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and detection wavelength 
at 360 nm showing the peak due to AVO.  
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Figure 28 HPLC chromatogram of irradiated AU 15 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is OT, cis-2-EHMC, trans-2-EHMC 
and AVO. 

 

 

Figure 29 HPLC chromatogram of irradiated AU 15 separated on Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength at 360 nm showing the peak due to AVO  
 

 

Samples AU 1, AU 10 and AU 18 contained 2-EHMC, AVO and MBC as the active agents. 

Figure 30 shows the UV transmission spectra for AU 1. The formulation showed good 

photostability in the UVB region. It is also evident that at 0 MED there is good broad-spectral 

coverage which is in keeping with the expected broad-spectrum filter combination. However, 
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in this formulation there was an initial gradual increase in transmission with increasing doses 

of radiation.  

 

 

Figure 30 UV transmission spectra of AU 1 with increasing doses of UV irradiation. 
 

There was then a marked increase in transmittance as the sample was exposed to 20 MED. 

This change in the UVA region can be attributed to the loss of absorbance of AVO which is 

known to photodegrade upon UV exposure [55]. The presence of MBC is thought to exert a 

photostablizing effect on avobenzone. Berset et al. [62] have reported that even low 

concentrations of MBC (0.5-3%) in a formulation are sufficient to preserve 80-90% of the 

avobenzone from photodegradation. However, here despite the presence of MBC, this 

product was assessed as photounstable in the UVA region as there is a steady increase in 

photoinstability with increase in irradiation dosage. From our results there was no indication 

that MBC reduces the photodegradation of AVO. 

 

The chromatograms for the unirradiated sample are shown in Figures 31 and 32. The 

unirradiated sample shows the presence of the three ingredients 2-EHMC, AVO and MBC. 

The peak due to AVO was clearly observed at wavelength 360 nm as seen in Figure 32.  
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Figure 31 HPLC chromatogram of unirradiated AU 1 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is MBC and trans-2-EHMC. 

 

 

 

 

Figure 32 HPLC chromatogram of unirradiated AU 1 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 360 nm. The order of elution is MBC, trans-2-EHMC (at 19.5 min) 
and AVO. 
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Upon irradiation the sample showed the presence of new peaks as shown in Figure 33. This 

would be associated with the photodegradation of the trans-2-EHMC to the cis-form [19, 47] 

and likewise trans-MBC to its cis-form [19]. The presence of AVO, which is a UVA 

absorber, can be shown effectively when the chromatograms were monitored at 360 nm 

which is the wavelength that it absorbs maximally. Upon irradiation we note the presence of 

AVO was not detected indicating that photodegradation has taken place. 

 

 

Figure 33 HPLC chromatogram of irradiated AU 1 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is trans-MBC, cis-MBC, cis-2-EHMC 
and trans-2-EHMC. 

 

The irradiated sample was also analysed by high performance liquid chromatography-mass 

spectrometry to ascertain the formation of photoproducts. Figure 34 shows the HPLC 

chromatogram obtained and has five peaks labelled A, M1, M2, E1 and E2 which correspond 

to AVO, trans-MBC, cis-MBC, cis-2-EHMC and trans-2-EHMC respectively. Figure 35 is 

the total ion chromatogram obtained and peaks labelled A, M1, M2, E1 and E2 correspond to 

the peaks shown in the HPLC chromatogram. The significance of this result was the 

confirmation that indeed trans-MBC and trans-2-EHMC had photodegraded to their cis-

forms upon UV irradiation as seen by the data for the molecular masses. The intensity of the 

absorption peak of the AVO was also significantly reduced. However, no AVO 

photoproducts were detected.  
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Figure 34 HPLC chromatogram of irradiated AU 1 analysed on the Agilent Zorbax Eclipse 
XDB-C18 column by isocratic elution at a flow rate 1 mL min-1 and injection volume – 5 µL 
with the Agilent 1100 Series HPLC with UV detection at 310 nm. The order of elution, AVO, 
trans-MBC, cis-MBC, cis-2-EHMC and trans-2-EHMC. 
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Figure 35 Mass spectra of the peaks labelled A, M1, M2, E1 and E2 in Figure 34. 
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Samples AU 2 and AU 24 consisted of 2-EHMC, AVO and Benz-3 as the active agents. In 

addition, sample AU 24 contained TiO2 as an inorganic physical blocker. The transmission 

spectra of AU 2 are shown in Figure 36. This product was photostable in the UVB region. 

However, in the UVA region the product gradually loses its absorption efficiency with 

increasing doses of simulated solar radiation. This is due to the transformation of AVO as it 

is known to photodegrade upon exposure to UV radiation [29, 55]. The presence of Benz-3 in 

the sample which absorbs well through the UVAII (320-340 nm) region seems to enhance the 

formulation performance in the UVAII region as there is reduced transmittance when 

compared with sample AU 1. It significantly augments UVB protection when it is employed 

in a given formulation because of an additive effect. However, there was still a marked 

increase in transmission in the longer wavelength range hence the product was considered 

photounstable in the UVA region. 

 

 

Figure 36 UV transmission spectra of AU 2 with increasing doses of radiation.  

 

 

Figure 37 is the HPLC chromatogram showing only the presence of 2-EHMC and Benz-3 

prior to irradiation. AVO was detectable at a wavelength of 360 nm as seen in Figure 38.  
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Figure 37 HPLC chromatogram of unirradiated AU 2 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is Benz-3 and trans-2-EHMC.  
 

 

Figure 38 HPLC chromatogram of unirradiated AU 2 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 360 nm. The order of elution is Benz-3 and AVO. 
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Upon exposure to solar simulated UV radiation a new peak appeared at 15.840 min 

associated with the photoisomerisation of trans-2-EHMC to the cis-isomer (Figure 39). The 

peak due to AVO was no longer detectable at 360 nm implying a complete photodegradation.  

 

 

Figure 39 HPLC chromatogram of irradiated AU 2 separated on a Nucleosil C100 C18 
column, eluent 85% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is Benz-3, cis-2-EHMC and trans-2-
EHMC. AVO was not detectable even at 360 nm. 
 

When AVO is combined with 2-EHMC a bimolecular reaction  pathway leads to the rapid 

photodegradation of both the dibenzoylmethane derivative and 2-EHMC [52]. Although 

AVO is a significant addition to sunscreen products to achieve broad-spectrum UV 

protection, its potential to degrade other ingredients in formulations where it is used raises 

some concerns. AVO on its own is also known to photodegrade and the photodegradation 

products are potentially toxic. 

 

Sample AU 7 was one of the formulations that had a combination of four filters. It consisted 

of 2-EHMC, AVO, MBC and OT as the active filters. Figure 40 shows the UV transmission 

spectra of AU 7. This formulation displayed high photostability in the UVB region but 

gradually loses absorbance during UV exposure with increasing doses of simulated solar 

radiation. This formulation displayed a rather unexpected trend since it was assumed to 

display a high photostability in both the UVA and UVB regions. The presence of the four 

filters, although thought to have a synergistic effect on the overall performance, is not evident 

in this product. The presence of MBC and OT in the formulation has been shown to stabilize 
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the photodegradation of AVO [45]. However, this product was assessed as photounstable 

because of the loss of its absorptivity at higher doses of radiation. 

 

 

Figure 40 UV transmission spectra of AU 7 with increasing doses of radiation.  
 

Sample AU 20 was the other formulation that had a combination of four filters. These were 

2-EHMC, Benz-3, HS and Padimate-O. Figure 41 shows the transmission spectra of the 

sample. This formulation showed good photostability in the UVB region. Benz-3 is 

considered a UVA/UVB filter, for it shows maximum absorbance in the UVAII region at 325 

nm. At wavelengths greater than 325 nm the product is transparent in the UVAI region as 

none of the filters used absorb in this region. This was evident from the minimal change in its 

filtering capacity in the UVA region as seen from the shapes of UV transmission spectra. 

Hence the product was declared as photostable both in the UVA and UVB regions even 

though it did not offer broad spectrum protection.  
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Figure 41 UV transmission spectra of AU 20 with increasing radiation doses. 

 

 

.  

Figure 42 HPLC chromatogram of unirradiated AU 20 separated on a Nucleosil C100 C18 
column, eluent 75% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is Benz-3, HS, ODM-PABA and trans-
2-EHMC. 
 

Figure 42 shows the HPLC chromatogram of AU 20. This formulation presented challenges 

to separate the active ingredients with the eluent composition that had been used for the other 
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samples. The presence of homosalate is known to present difficulties in the separation. 

However, by changing the eluent composition to 75% (v/v) methanol-water, some separation 

as shown in Figure 43 was possible. Upon irradiation the formulation showed another peak at 

15.820 min which is associated with photoismerisation of 2-EHMC (see Figure 38). The 

other chemical ingredients remain unchanged. This formulation was assessed to be 

photounstable from the transmission spectra. 

 

 

Figure 43 HPLC chromatogram of unirradiated AU 20 separated on a Nucleosil C100 C18 
column, eluent 75% MeOH/H2O, flow rate 1 mL min-1 , injection volume – 10 µL and 
detection wavelength of 310 nm. The order of elution is Benz-3, HS, ODM-PABA and trans-
2-EHMC. 
 

 

3.4 In vitro assessment of the photostability of sunscreen products 

 

The mean spectral photoinstabilities of different sunscreen products were calculated 

according to the method described by Maier et al. [18] and the results are presented in Table 

11. A mean photoinstability of ≥ 5% for an irradiation of 10 MED in the UVA (∆TA) or in the 

UVB (∆TB) range was set as the threshold value. This UV exposure corresponds closely to 

the expected amount of radiation the human skin is exposed to daily [62].  
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Of the twenty five sunscreen formulations analyzed, eight, namely, AU 1, 2, 7, 10, 11, 15, 18 

and 25, showed photoinstabilities that were significantly higher than the threshold value of 

5% in the UVA region after exposure to 10 MED radiation. None of the products showed 

photoinstability in the UVB region. Most of the photounstable products showed a steep 

increase in the UV transmission in the range between 330 and 350 nm.  

 

On analyzing the photounstable products it was found that six out of the twelve different 

filter combinations contained AVO and five of these combinations were photounstable as 

shown in Table 11. HPLC quantitation was carried out on the photounstable products to 

determine the degree of photodegradation by using the peak areas. The percentage loss (% 

m/m) of the active ingredients in the different suncare products are listed in Table 11. This is 

in agreement with other studies, which relates this phenomenon to the photodegradation of 

AVO present [18, 33, 34] and hence makes the complete sunscreen product photounstable.  It 

must also be pointed out that all the products that were photounstable also contained 2-

EHMC. A combination of 2-EHMC and AVO has been shown to be unstable by other 

workers [58] in particular because AVO photosensitises the photodegradation of 2-EHMC. 

However, in this work the photostability in the UVB region was not affected. 

 

There was only one product (AU 24) which although it contained AVO, 2-EHMC and Benz-

3 as did AU 2 did not show photoinstability. This can possibly be attributed to the low 

concentration of AVO present. In addition, the inclusion of TiO2 as a UVA physical blocker 

in AU 24 could enhance the overall performance of the formulation. This TiO2 may have 

served to block UV radiation from reaching the AVO and hence reducing AVO 

photodegradation.  Although the photostability behaviour of AVO has been suggested to be 

sensitive to experimental conditions and is highly dependent on the chemical environment 

[63], this was not observable in this study. For example, it is known that AVO is photostable 

in polar protic solvents and photounstable in non-polar and aprotic solvents [59, 64, 65]. 

Nevertheless, AVO is still being used worldwide for broad-spectrum protection. This is 

because it offers a unique absorption spectrum as well as a very high molar absorption 

coefficient [63]. 
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Table 11 Photoinactivation in the UVA (320-380 nm) range, (∆TA %) and the UVB (280 - 
320 nm) range, (∆T B %) for different radiation doses in MED. 

 

 %Transmittance Photoinactivation after UV exposure 

MED         0       2      5       10*        20 

Product TA TB ∆TA ∆TB ∆TA ∆TB ∆TA ∆TB ∆TA ∆TB 

AU1 8.19 4.11 -5.47 0.41 -11.79 -0.25 -21.42 -0.28 -35.13 1.01 

AU2 3.55 0.58 -4.00 0.30 -9.41 -0.05 -16.65 -0.54 -23.62 -1.38 

AU3 31.56 0.54 1.41 0.07 2.55 0.01 3.28 0.10 3.06 0.22 

AU4 20.18 0.23 1.01 -0.56 1.18 0.33 1.74 0.17 1.54 0.33 

AU5 14.71 0.11 1.94 0.18 1.98 0.09 2.17 0.09 2.20 0.16 

AU6 26.99 -0.32 1.93 0.22 2.17 -0.52 2.86 -0.36 2.50 1.06 

AU7 13.04 1.92 -6.07 0.15 -13.98 0.27 -26.47 0.15 -42.09 0.11 

AU8 11.29 -0.05 1.12 0.33 1.35 -0.39 1.49 -0.13 1.20 1.28 

AU9 30.93 3.40 1.76 0.36 1.51 0.16 2.19 0.30 1.83 0.66 

AU10 6.58 2.93 -1.08 0.22 -4.89 -0.33 -10.71 -0.50 -22.57 0.27 

AU11 2.87 0.28 -2.06 0.01 -6.24 -0.28 -15.04 -0.48 -36.19 -0.23 

AU12 9.83 0.07 0.21 0.03 0.02 -0.04 0.04 0.06 -0.02 -0.16 

AU13 20.02 1.48 0.23 -0.06 0.39 0.00 0.50 -0.01 0.74 1.00 

AU14 20.60 0.03 1.31 -0.08 1.66 -0.05 2.21 -0.01 2.11 -0.14 

AU15 2.97 0.90 -3.83 -0.06 -13.09 0.04 -30.99 0.00 -49.07 0.31 

AU16 10.41 0.00 0.34 -0.15 0.26 -0.09 0.61 -0.06 0.55 0.28 

AU17 11.31 -0.31 0.28 -0.54 0.55 -0.34 0.68 -0.40 0.72 -0.41 

AU18 14.49 6.35 -4.05 -0.67 -9.63 -0.99 -18.12 -1.66 -30.24 -2.33 

AU19 7.97 0.35 -0.35 0.27 -0.97 0.31 -1.12 0.37 -1.22 0.66 

AU20 29.47 0.12 0.12 -0.33 0.21 -0.31 0.43 -0.25 0.54 0.65 

AU21 7.75 0.03 0.07 -0.07 0.27 0.02 0.40 0.01 0.33 0.08 

AU22 8.30 0.20 0.09 0.14 -0.50 0.18 -0.19 0.21 -0.09 0.32 

AU23 31.87 0.12 0.29 -0.12 0.53 -0.04 1.18 -0.03 1.47 0.40 

AU24 0.64 0.00 -0.23 0.00 -0.60 0.00 -1.46 -0.02 -3.87 -1.09 

AU25 4.27 -0.05 -2.70 -0.91 -10.00 -0.21 -28.62 -0.33 -64.41 -0.73 
* A photoinstability of ≥5% for an exposure of 10 MED was used to distinguish between photounstable and 

photostable products. 
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Table 12 The photounstable products investigated in this study and the percentage (% m/m) 
loss of active ingredients in the suncare products. 
 

Product % m/m loss of active ingredients 
 2-EHMC AVO MBC Benz-3 OT 

AU 1 19.17 undetectable 2.2 - - 
AU 2 26.90 86.47 - 0 - 
AU 7 18.71 85.65 3.0 - - 

AU 10 29.87 undetectable 2.28 - 0 
AU 11 33.45 undetectable - - - 
AU 15 30.63 91.20 - - 0 
AU 18 19.7 undetectable 1.7 - - 
AU 25 27.85 undetectable - - - 

 

3.5 In vitro assessment of the broad-spectrum UV protection of sunscreen products 

 

The importance for sunscreens to offer broad-spectrum UV protection has gained prominence 

in the formulation of modern sunscreens. This is because of the realisation of the important 

role UVA has in the induction of skin cancer [66]. However, at the moment there is no 

universally accepted methodology that is being used in the assessment of the UVA 

protection. The commonly used in vivo methods are the immediate pigment darkening (IPD), 

persistent pigment darkening (PPD) and the protection factor in the UVA (PFA) [67, 68]. The 

present SPF values are merely based on the determination in vivo on human subjects using an 

erythemal end-point due to exposure to UVB radiation [40]. In this study the critical 

wavelength method and the UVA/UVB ratio have been used to assess the broad-spectrum 

protection of the suncare products. 

 

3.5.1 The critical wavelength method 

 

This is an in vitro method proposed by Diffey [39] to assess broad-spectrum UV protection of 

a sunscreen formulation. The area under the curve in the absorption spectrum was calculated 

for the UVA (320-400 nm) and UVB (290-320) regions after irradiation. The critical 

wavelength was calculated as explained in Section 2.3.1. Table 13 shows the calculated 

critical wavelengths for different MEDs. For the photounstable compounds the critical 

wavelengths tend to decrease with increasing doses of radiation. This is in agreement with the 
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increase in photoinstability in the UVA region as has been discussed for these formulations. 

The spectroscopic data were analyzed for broad-spectrum classification by taking a minimum 

critical wavelength of 370 nm as proposed by Diffey [39]. From this it appears that seven 

products (AU 3, 4, 6, 9, 13, 14, 20 and 23) did not meet this criterion. Although some of these 

products did contain an inorganic filter (either TiO2 or ZnO), it would appear that it does not 

seem to change the status much. There have been some studies that suggest that the presence 

of TiO2 can actually accelerate the photodegradation of AVO [27, 52] and this could be seen 

as loss in absorbance in the UVA region with increasing doses of UV radiation.   

 
Table 13 Calculated critical wavelengths at different MEDs. 

 

Critical wavelength/(nm) at different MED 
Product 0 2 5 10 20 

AU1  378 377 374 370 351 
AU2 377 374 378 361 356 
AU3 360 357 359 359 363 
AU4 369 369 372 368 369 
AU5  374 374 374 373 377 
AU6 369 369 367 369 370 
AU7 373 369 364 354 341 
AU8 375 377 373 375 376 
AU9 358 358 357 358 358 

AU10 379 377 375 374 369 
AU11 376 375 371 368 362 
AU12  373 373 373 372 373 
AU13 365 364 364 365 367 
AU14  370 367 369 368 369 
AU15 376 373 368 353 341 
AU16 372 374 374 371 373 
AU17 376 371 372 373 375 
AU18  377 377 374 372 366 
AU19  373 376 382 374 376 
AU20 355 352 351 351 356 
AU21 372 370 371 370 370 
AU22 370 369 369 369 370 
AU23  351 349 349 349 351 
AU24 380 380 378 376 375 
AU25 374 373 370 357 332 

 

Although these formulations do not meet the broad-spectrum requirement they are all 

photostable. At 10 MED the critical wavelength (λc) has only decreased by 1 to 2 nm (except 
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in the case of AU 20). However, for the photounstable products identified λc is lowered by 5 

to 23 nm. 

 

According to the Boots star rating system, a minimum value of the critical wavelength of 325 

nm was set for a product to claim broad-spectrum protection (see Table 14). Therefore, 

considering this value the formulations investigated in this study would meet the criterion 

even though some did not contain any UVA absorbers. The proposed value of 370 nm by 

Diffey is a better alternative as it eliminates all formulations that did not incorporate a UVA 

filter in their system. This would remove any confusion that may be encountered by the 

consumer and therefore the consumer will be well informed on the level of UV-protection 

when choosing a sunscreen. 

 

Table 14 The critical wavelength ranges and the broad-spectrum-rating (the number of stars). 

 

Broad-spectrum classifications of sunscreens 

Critical wavelength 

(λc)/nm 

Broad-spectrum rating/no. 

of stars 

λc  325 0 

325  λc  335 1 

335  λc  350 2 

350  λc  370 3 

370  λc  4 

 

3.5.2 UVA/UVB ratio method 

 

This method was only applied to the eight photounstable products that had been determined 

by the mean spectral values according to the method proposed by Maier et al. [18]. The area 

under the curve in the absorption spectrum was calculated for the UVA (320 – 400 nm) and 

UVB (290 - 320 nm) regions before and after irradiation. The ratio of the mean UVA to the 

mean UVB absorbance was calculated as described in the method of Diffey [40]. This ratio is 

a measure of the UVA absorbing performance in relation to that in the UVB region. The 

changes of the UVA/UVB ratio under different amounts of irradiation are shown in Table 15 
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and are graphically displayed in Figure 44. It can be observed for the photounstable 

formulations, that the UVA/UVB ratio decreases slightly in the initial stages of irradiation. 

This means that there is simultaneous degradation of both UVA and UVB absorbers. This 

was verified by HPLC analysis which did show photodegradation of the active ingredients 

(mostly 2-EHMC and AVO) in the suncare products. However, with increasing dosage the 

UVA/UVB ratio drops significantly and then levels off implying a faster degradation taking 

place in the UVA region. 

 

Table 15 Changes of UVA/UVB ratio for the photounstable products. 
 

Product Mean Absorbance (A) at different MEDs 
0 2 5 10 20 

AU 1 UVA 0.978 0.785 0.649 0.520 0.378 
 UVB 1.461 1.439 1.370 1.359 1.848 
 UVA/UVB ratio 0.667 0.546 0.474 0.383 0.205 

AU 2 UVA 1.364 1.088 0.915 0.779 0.692 
 UVB 1.850 2.114 2.303 1.938 1.602 
 UVA/UVB ratio 0.737 0.515 0.397 0.402 0.432 

AU 7 UVA 0.831 0.696 0.560 0.439 0.339 
 UVB 1.696 1.793 1.873 1.852 1.596 
 UVA/UVB ratio 0.490 0.388 0.299 0.237 0.212 

AU 10 UVA 1.055 1.001 0.856 0.715 0.537 
 UVB 1.549 1.569 1.492 1.463 1.398 
 UVA/UVB ratio 0.681 0.638 0.574 0.489 0.384 

AU 11 UVA 1.439 1.217 0.988 0.733 0.444 
 UVB 2.567 2.497 2.351 2.104 1.744 
 UVA/UVB ratio 0.561 0.487 0.420 0.348 0.255 

AU 15 UVA 1.378 1.101 0.817 0.571 0.4111 
 UVB 2.137 2.090 2.128 2.049 1.914 
 UVA/UVB ratio 0.645 0.527 0.384 0.279 0.215 

AU 18 UVA 0.749 0.660 0.566 0.456 0.343 
 UVB 1.197 1.157 1.133 1.093 1.078 
 UVA/UVB ratio 0.626 0.570 0.499 0.417 0.318 

AU 25 UVA 1.281 1.111 0.844 0.543 0.288 
 UVB 1.928 1.613 2.241 2.327 1.727 
 UVA/UVB ratio 0.664 0.689 0.377 0.233 0.167 
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Figure 44 The changes of UVA/UVB ratio for the photounstable formulations. 

 

 

A comparison of AU 10 which consisted of 2-EHMC, AVO and MBC and AU 11 that had 2-

EHMC and AVO alone, shows that although these products had similar UVA/UVB ratios at 

the beginning there was a remarkable difference upon exposure to varying doses of 

irradiation. The degradation of AU 11 was much faster than that noted for AU 10. This can 

be explained by the fact that in the presence of AVO the degradation of 2-EHMC is 

enhanced, although the photosensitising effect of AVO on 2-EHMC was not evident at this 

point since there was no change in the photostability of the product in the UVB region. 

However, the HPLC results showed the photoisomerisation of 2-EHMC. In the case of AU 10 

the additional presence of MBC is thought to have a stabilising effect hence lessening the 

degree of photodegradation. This is in accordance with other studies that show that MBC is 

normally incorporated in the formulations to stabilise AVO [62, 69]. However, this aspect 

was difficult to see from the transmission spectra recorded here as there was a steady increase 

in photoinstability in the UVA region with increasing doses of irradiation. The HPLC results 

show that MBC photoisomerises.  
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The UVA/UVB absorption ratio is an indicator of the performance of suncare products. The 

larger the value of the ratio the better the broad-spectrum protection. In general, it would 

appear that the addition of another filter to the AVO/2-EHMC filter combination restores 

some UV-absorbance of the product. The change in the value of UVA/UVB ratio was highest 

in AU 25 which contained only EHMC and AVO.  When compared with other samples like 

AU 1 and AU 18 which contained MBC in addition the reduction in the UVA/UVB ratio is 

much less. This is represented graphically in Figure 39. Although the UVA/UVB ratio drops 

significantly in the first 10 MED it seems to stay at the same level up to 25 MED. The 

UVA/UVB absorption ratio had a good correlation to HPLC analysis especially with 

compounds that had 2-EHMC/AVO filter combination, where the degree of photodegradation 

in the UVA region was high. These data show that the stabilization of UV filters can be 

achieved with an adequate formulation. This would be the case as the UVA/UVB ratio is 

higher for products that have an additional filter as seen for AU1, 2, 7, 10, 15 and 18.  

 

It is common to use the Boots star rating system based on the UVA/UVB ratio according to 

Table 16 for broad-spectrum classification [71]. The values indicate the product loses its 

broad-spectrum coverage as can be seen from the decreasing UVA/UVB ratios for the 

suncare products shown in Table 16.  

 

Table 16 The Boots star rating system 
 

UVA/UVB ratio Stars Category 

0.0 to 0.2 no rating  

0.21 to 0.4 one star minimum 

0.41 to 0.6 two stars moderate 

0.61 to 0.8 three stars good 

0.81 to 0.9 four stars superior 

 0.91 five stars ultra 

 

 

 

Table 17 is a summary of the photostability status for various combinations of filters in the 

suncare products and the degree of broad-spectrum protection afforded.  
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Table 17  Comparison of the photostability and broad-spectrum protection results obtained 
with different methods. 

 

 Transmission spectra HPLC  Maier λc (0 
MED) 

λc (10 
MED) 

Product 320 
nm 

340 
nm 

380 
nm 

S S S B-S B-S 

AU 1    X X X   
AU 2  X X X X X  X 
AU 3  X X  X  X X 
AU 4   X  X  X X 
AU 5   X  X    
AU 6   X  X  X X 
AU 7  X X X X X  X 
AU 8  X X  X    
AU 9  X X  X  X X 

AU 10    X X X   
AU 11    X X X  X 
AU 12   X  X    
AU 13  X X  X  X X 
AU 14  X X  X   X 
AU 15    X X X  X 
AU 16   X  X    
AU 17   X  X    
AU 18    X X X   
AU 19   X  X    
AU 20  X X  X  X X 
AU 21   X  X    
AU 22   X  X  X X 
AU 23   X  X  X X 
AU 24     X    
AU 25    X X X  X 
S – photostable; B–S – broad-spectrum, λc – critical wavelength  

 

From the data presented the following conclusions can be drawn: 

 Visual inspection of the transmission curves and their classification as unstable concurs 

with the photoinactivation method of Maier. This gives credence to the 5% limit set as a 

criterion for photoinstability. 

 On the other hand, HPLC analyses showed that in all the products there was modification 

of the active ingredients. This is due to the fact that all products contained 2-EHMC and 

in each case it photoisomerised. This also occurred in all the 12 products that contained 

MBC which also isomerised. Nine products contained AVO and all photodegraded except 

for AU 24. 
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 Visual inspection of the transmission curves for broad-spectrum protection did not concur 

well with the critical wavelength. Only eight products containing AVO (not AU 2) 

showed low transmission in the UVAI region. However, the critical wavelength classified 

products not containing any absorber that absorb in this region (i.e. were transparent) as 

broad-spectrum (e.g. AU 5, 6, 8, 12, 14, 16, 17, 19). In total the λc classified seventeen 

products as broad-spectrum protectants. 

 Of the eight photounstable products, three products still met the 370 nm λc criterion after 

10 MED of irradiation. 

 After 10 MED of irradiation, 14 products did not meet the 370 nm λc criterion. These are 

the 8 products that originally did not meet the criterion, 5 of the photounstable products 

and AU 20.  

 

This study indicated that the photostability of the sunscreens cannot be wholly determined by 

one technique. Although the spectral information shows that the product does not absorb and 

it is photostable according to Maier‟s method, the HPLC showed the product to be 

photounstable. This was due to photoisomerisation of 2-EHMC, MBC and the 

photodegradation of AVO.  

 

4 Conclusion 

 

The photostabilitity and the ultraviolet broad-spectrum protection of different commercial 

sunscreens were investigated. The results demonstrate that the sunscreen products were 

photostable in the UVB region but those that contained AVO tended to lose their absorptivity 

with increasing doses of UV radiation in the UVA region. Photostability assessment of the 

sunscreens by HPLC showed that the photoinstability was mainly as a result of the 

photoisomerisation of the two chemical absorbers 2-EHMC and MBC and the 

photodegradation of AVO. The loss is more noticeable in the UVA region due to the 

photodegradation of AVO. This decrease in absorbance of the sunscreen agrees with 

previously published reports and has been attributed to either phototautomeristion or 

photodegradation [55, 57]. The loss of absorption, for example, in sunscreen lotions shown 

by the cinnamate [43, 72] derivatives when UV-irradiated is associated with the 

photoisomerisation process while for the dibenzoylmethane derivatives they undergo 

phototautomerisation [29]. The trans-form of 2-EHMC photoisomerises across the ethylenic 
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double bond to yield the cis-form and possibly some photodimers [43]. Since the cis-isomer 

absorbs UV radiation less efficiently than trans-2-EHMC, the photoinduced isomerisation of 

the sunscreen agent decreases its UV-protective capacity [19, 62]. This photoisomerisation 

can be rapid and reversible leading to a mixture of the cis and trans- isomers but it did not 

affect the UVB photostability. However, the impact of AVO photosensitising the 

photodegradation of 2-EHMC was not evident from the UV transmission spectra as there was 

no change in photostability of the product in the UVB region. In this situation the 

isomerisation rate and the photostationary isomer ratio will depend on the compound, the 

spectrum of the light source and the matrix (solvent, co-solutes). Therefore the final 

performance of a sunscreen preparation has a lot to do with the filter mixture and the 

emulsion type. Non-absorbing degradation products can also cause an additional decrease in 

absorbance. Dibenzoylmethane derivatives display loss of absorbance during keto/enol 

tautomerization, fragmentation and formation of new products with distinctly altered UV 

absorption characteristics [19, 55]. The keto-form absorbs at shorter wavelengths (i.e. 260 

nm), with the spectrum showing only weak absorptions in the UVB and UVA regions. 

Similar studies by Maier et al. [18] and  Serpone et al. [50] have shown comparable results. 

The addition of octocrylene to formulations containing dibenzoylmethane sunscreens, such as 

AVO, is thought to improve the overall photostability of the sunscreen formulation. This is 

because octocrylene acts as a quencher of the excited state of avobenzone and hence 

photostabilises avobenzone by removing its excitation energy and dissipating it through a 

non-destructive pathway [73]. However, in this work the presence of octocrylene did not stop 

the photodegradation of AVO. It is well known that the photochemical reaction of 

dibenzoylmethane derivatives depends highly on the formula in which they are incorporated 

and therefore the use of another formula could lead to different results. AVO is known to be 

relatively photostable in polar aprotic solvents like methanol yet relatively photolabile in 

nonpolar and polar aprotic solvents like cyclohexane [59] and DMSO resulting in a number 

of photoproducts. 

 

The photodegaradation of sunscreens can produce some unknown photoproducts with 

unknown toxicological properties whose effect on human skin could be significant [74, 75]. 

In principle, sunscreens are designed for external application to the outermost layers of the 

skin. However, sunscreens may penetrate the skin and also cause dermatological side-effects, 

e.g. dermatitis or allergies [24]. This photodecomposition of the UV filters results in the 

formation of free radicals and other reactive toxic intermediates which may directly or 
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indirectly initiate skin damage. For example, 2-EHMC and MBC have recently been shown 

to penetrate through human skin in vitro and in vivo resulting in nanomolar concentrations [5, 

76-78]. Hence, the function of many other organs may be affected by these two sunscreens, 

either directly by the effects through estrogen receptors or indirectly by toxic effects or 

effects in the thyroid gland [79]. The photoproducts produced could have a deleterious effect 

on human skin, which still remains to be determined. The fact that there is possible 

percutaneous absorption by the human body after topical sunscreen application may lead to 

their bioaccumulation in the fatty tissues [6, 80]. Each chemical product is distributed 

differently in human skin, some are accumulated in the stratum corneum and others penetrate 

the skin. 

 

A broad-spectrum sunscreen provides protection in the whole of the UVB/UVA range. This 

protection should include both UVAI and UVAII. Although most of the suncare products 

indicated on their labels that they were broad-spectrum sunscreens the results showed that 

most of them were only protective in the shorter UVA range. The rapid loss in absorption in 

the UVA region is an unwelcome scenario in that one is exposed to more UVA radiation. 

This is because the UVA-absorbing capacity is reduced and hence the product does not offer 

the kind of protection which one would expect. Since the sun protection factor is a measure 

of the protection against erythema, mainly caused by UVB, it therefore means that the SPF of 

this compound does not change. As a result, when this substance is used, much higher levels 

of UVA penetrate basal cell layers of the epidermis than one would expect from the initial 

absorbance spectrum. Therefore the decrease of the UVA absorptive capacity results in an 

increase of the direct UVA-induced skin damage. It is known that UVA generates more 

oxidative stress and, at levels found in sunlight, it is ten times more efficient than UVB at 

causing lipid peroxidation leading to plasma membrane damage [81, 82]. Therefore, 

individuals relying on sunscreens as their sole form of photoprotection against UV radiation 

are subjected to a greater cumulative sun exposure than anticipated by the consumer. 

 

The data would seem to support the findings reported for South African commercial 

sunscreens by Bunhu [83]. These data demonstrate that formulations which contain 

combinations of octocrylene, octyl salicylate, 2-EHMC, Benz-3 and AVO are not photostable 

during UV exposure. The presence of a second or third filter does not eliminate either 

photoisomerisation or photodegradation. This is because photodegradation of most of these 

compounds occurs simultaneously in a sample, and this might have an additive or possibly 
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even a synergistic effect compounding the photodegradation process. This loss in absorbance 

would imply that there is inadequate UV protection during long hours to UV exposure. In 

addition, solar radiation may lead to the formation of certain by-products with more harmful 

effects than the parent compounds [84].  

 

All sunscreens are aromatic compounds with attached carbonyl groups which can undergo 

efficient intersystem crossing in the excited state to form triplets. The triplets have enough 

energy to act as sensitizers towards normal air, if present, and to produce singlet oxygen. The 

production of singlet oxygen can lead to an attack of the sunscreen agent or any other 

compound present in the sunscreen mixture that is susceptible to oxidation by singlet oxygen. 

Therefore when the sunscreen is applied to the skin, the secondary photoreactions induced by 

the sunscreen agents can be complex.  

 

The performance of a photoactive compound or a combination of photoactive compounds in 

a sunscreen is difficult to predict based on the levels of photoactive compounds in the 

formulation. The stability results of some of the commercial UV filters reported here do 

indicate that perfect photostabilty is still not easily achievable especially when a formulation 

includes one or more photoactive compounds that suffer from relatively rapid 

photodegradation such as 2-EHMC or AVO. Neither the combination of various organic 

filters nor the addition of inorganic filters seems to guarantee photostability. Each sunscreen 

formulation has a particular photochemical behaviour with relation to filter mixture and 

emulsion type. The mixing of two or more sunscreen active agents leads to a photochemistry 

different from the photochemistry of each component alone and the reaction of combined 

sunscreens is strongly concentration and medium dependent. The stability of each product is 

dependent on the solvent environment. In the finished sunscreen formulation the choice of 

ingredients and particularly the choice of filter combination can lead to interactions which 

can give less favourable or often significantly more favourable results. As many studies 

show, UV filters undergo various transformations upon exposure to UV radiation. It is 

therefore important that combining UV absorbers should give an absorption spectrum of the 

end-product with the desired absorption at the highest efficacy and at minimal concentrations 

and costs. The appearance on the market of other UVA sunscreens such as Tinosorb M and S 

which are photostable should be encouraged in modern day suncare formulations.  
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The photostability analysis of commercial sunscreens both spectrophotometrically and 

chromatographically has shown that some of the evaluated suncare products are 

photounstable. The loss is mainly attributed to either photoisomerisation or photodegradation 

of 2-EHMC, AVO and MBC. The combination of 2-EHMC and AVO was unstable 

regardless of which other active chemical ingredients were included in the sunscreen. This 

study has shown the advantage of using both techniques for one can easily identify formation 

of photoproducts. 
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CHAPTER 4 

 

Photochemical studies of 2-ethylhexyl-p-methoxycinnamate 
 

4.1 Introduction 

 

The photochemical behaviour of 2-ethylhexyl-p-methoxycinnamate (trans-2-EHMC; Figure 

45) is of primary importance since it is presently among the most widely used UVB absorbers 

in sunscreen formulations [1, 2]. A purified sample of 2-EHMC (also known as octyl 

methoxycinnamate) is a pale yellow oil immiscible with water and soluble in organic oils and 

solvents such as methanol or ethanol. It absorbs in the UV region between 290 and 320 nm 

with a maximum absorption at approximately 310 nm. Its molar absorption coefficient (ε) is 

2.5 x 104 dm3 mol-1 cm-1 in methanolic solutions [3]. It is this high molar absorption 

coefficient in the UVB spectral region that makes it an important UVB sunscreen filter. It is 

used as an active chemical ingredient in sun care products at an average concentration of 2 - 

5% with a maximum limit of 10% [4].  

 

C C

CH3O

H C

H

O CH2 CH

CH2

CH3

(CH2)3 CH3

O

 
 

Figure 45 Chemical structure of trans-2-EHMC. 

 

The presence of the methoxy group attached to the aromatic ring assists in electron 

delocalization across the molecule necessary for the UV absorption of wavelengths centered 

at 310 nm (see Figure 46). The 2-ethylhexyl chain decreases its water solubility thus making 

it suitable for waterproof/water resistant sunscreen formulations.  
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The photostability of a sunscreen agent is an essential requirement for an effective and safe 

UV filter, since degradation during sunlight exposure will not only decrease the initial 

photoprotective capacity but can also generate harmful photolytic products [5, 6]. Therefore, 

in order to ensure adequate photoprotection during usage, the compound not only should have 

a high absorbance but must also be able to harmlessly dissipate the absorbed energy. 

Otherwise this would expose consumers to these potentially toxic photodegradation products. 

Hence the photochemical behaviour of the sunscreen agents needs to be determined. Another 

important requirement is that sunscreens should remain on the skin surface and should not 

penetrate into the systematic circulation despite perspiration and bathing [7, 8].  
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Figure 46 Electron delocalization in 2-EHMC. 

 

Although 2-EHMC is an efficient UVB absorber, recent studies have shown that it undergoes 

marked photochemical changes upon exposure to sunlight. Morliere et al. [9], by means of 

steady state and laser photolysis, showed a decrease in absorbance of 2-EHMC which was 

solely attributed to photoisomerisation. The trans- and cis-isomers of 2-EHMC were the only 

species present and no other photodegradative products were identified (Figure 47). The 

results showed a fast loss in absorbance during the first five minutes and a decrease in the 

trans- and an increase in the cis-isomer. The rapid loss in absorbance was attributed to 

isomerisation rather than degradation since the cis-isomer is a less efficient UVB absorber 

[10]. Deflandre and Lang [11] incorporated 2-EHMC into an emulsion and then spread the 

emulsion in a very thin film between two finely roughened quartz plates. They irradiated the 

sample with a xenon solar simulator and measured the absorbance before and after 
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irradiation. It was found that 2-EHMC degraded by 4.5% after one hour in sunlight reaching 

a photostationary equilibrium shortly after exposure began. This was then followed by 

photodegradation. The loss in absorbance results in a decrease in the protective capacity. A 

study by Serpone et al. [12] has reported on the photostability of 2-EHMC in different 

organic solvents showing a rapid and significant photodegradation. The degree of 

photodegradation was found to be dependent on the solvent vehicle and its polarity that is 

used in the formulation. Tarres-Wahlberg et al. [13] investigated the photostability of 2-

EHMC by applying a thin film of the sunscreen between two quartz slides and then 

irradiating it. They monitored the changes in the UV absorbance during and after irradiation, 

after which GC-MS was used to isolate and identify the resulting photoproducts. The GC 

revealed the formation of a photoproduct whose mass spectrum was similar to that of the 

original substance; hence it was assigned as the cis-isomer. Similar studies carried out by 

Pattanaargson et al. [14] show that 2-EHMC rapidly undergoes geometrical trans-cis 

isomerisation under the influence of natural sunlight. The establishment of a photostationary 

equilibrium between the two isomers (trans and cis) is also dependent on the polarity of the 

solvents.  
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Figure 47 The photoisomerisation of 2-EHMC. 

 

The UV spectrum of 2-EHMC shows a bathochromic shift of the wavelength of maximum 

absorption (λmax) in the UVB region (290-320 nm) from a non-polar solvent to a polar one 

[15, 16]. The equilibrium was found to shift more to the trans-form of 2-EHMC when less 
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polar solvent was used. In a more recent study of Huong et al. [17] they show that the 

isomerisation process is rapid and that the distribution of the two isomers depends more on 

their chemical environment than on the actual irradiation power. 

 

The investigations of Broadbent et al. [1], making use of capillary supercritical fluid 

chromatography combined with atmospheric pressure chemical ionisation mass spectrometry 

(SCF-APCIMS), showed that commercially available trans-2-EHMC isomerises to the cis-

form upon irradiation with wavelengths of light greater than 300 nm thereby losing some of 

its absorbing ability [1, 18]. There also exists a photostationary state between the trans- and 

cis-isomers during continuous irradiation. Before the equilibrium state is reached, 

degradation is very fast. It has also been shown that irradiation of pure or even solutions of as 

low as 0.1 M 2-EHMC [19] does not only cause it to isomerise but also to dimerise with itself 

through a [2 + 2]-cycloaddition reaction as shown in Figure 48. There is a possible formation 

of about 15 isomers resulting from the cycloaddition as shown in Figure 49 [20]. The 

dimerisation of 2-EHMC further reduces its absorption power. In addition, the extent of 

photodimerisation of 2-EHMC has been shown to be dependent on concentration and the 

polarity of the solvent used.  

 

Similar [2 + 2]-cycloaddition photodimerisation reactions of related cinnamic acid derivatives 

have been studied [21, 22]. It is well established that cinnamic acid derivatives undergo 

photodimerisation through cyclobutane formation at the C-C double bond part of the 

cinnamic moieties on photoirradiation at wavelengths greater than 300 nm. The 

photoreactivity and the structure of the photoproducts are determined predominantly by the 

spatial orientation of the two relevant chromophores. It exhibits a topochemical reaction [23]. 

Some of these cinnamic acids dimerise upon irradiation with UV light in the solid state while 

in dilute solution only trans-cis isomerisation occurs but no dimerisation is observed.  In 

addition to the reversible photoisomerisation which causes a reduction in UV absorption of 

cinnamates, irreversible reactions of p-methoxycinnamates occur in some solvents at the high 

concentrations used in skin care products and these are accompanied by a further reduction of 

UVB absorbance [24]. Photodimerisation across the propenylic double bonds to give trullic 

acid-type products through a [2 + 2] cycloaddition process has been proposed as the likely 

mechanism [24]. 
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Figure 48 The chemical structure of the 2-EHMC dimer. 
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Figure 49 Possible structures of the 2-EHMC dimer adapted from Robinet et al. [20]. 
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There are several studies that show the potential toxicity of 2-EHMC. The mutagenicity of 2-

EHMC was demonstrated in the Ames Salmonella Typhimurium test and as an initiator of 

tumours in mice [25, 26]. Mohammed et al. [27] showed that irradiation of trans-p-[α-14C]-

methoxycinnamic acid (p-MCA) and calf thymus DNA with UV light resulted in the 

incorporation of the radiolabel into DNA. The levels of incorporation were greater for single 

stranded (denatured) DNA as opposed to native DNA. The label was covalently bound to 

DNA and the incorporation involved photocycloaddition of the ethylenic bond on p-MCA 

and the 5, 6-double bond of the pymiridine bases in DNA. Since 2-EHMC is similar in 

structure to methoxycinnamic acid, differing only in that it possesses an ethylhexyl alkyl side 

chain, it is possible then that it would bind to the constituents of DNA in a similar manner 

[28]. The production of these photoproducts [lesions] could alter the biological function of 

DNA of serving as a template for the replication as well as transcription into ribonucleic acid 

(RNA) for protein synthesis. Therefore these lesions can cause lethal, mutagenic and 

carcinogenic effects [29, 30]. Since 2-EHMC dimers form readily in concentrated solutions, 

there is a possibility that in a similar fashion, photoproducts could form between the 2-

EHMC molecule and constituents of DNA like thymine or thymidine. The results obtained by 

Ingouville [19] showed no adduct formation between 2-EHMC and thymine. However, the 

work of Kowlaser [28, 31] showed the formation of a photoproduct between trans-2-EHMC 

and thymidine-5-monophosphate indicating that 2-EHMC has a potential to form mutagenic 

photoproducts in DNA should it penetrate into the nucleus of the cell. 

 

Another potential source of toxicity is the ability of some chemical absorbers to 

photosensitise the formation of pyrimidine dimers which are known to be precursors to skin 

cancer. A study by Aliwell et al.[32] has shown that PABA photosensitised the formation of 

thymine dimer in pUC19 plasmid DNA and this was also observed in the study by Sutherland 

[33].  Bolton et al. [35] showed that PBSA photosensitises thymine dimer formation when 

irradiated with UV light of wavelengths greater than 300 nm. These dimers are known to 

form from the triplet state of the pyrimidine base. However, the lowest triplet excited state for 

thymine, the DNA base with lowest triplet energy, has been determined to be 315 kJ mol-1 

[36]. The lowest triplet energy of 2-EHMC is 239 kJ mol-1 [37]. Since triplet-triplet energy 

transfer occurs for donors whose triplet energies are above, equal to, or 8 to 12 kJ lower than 

the acceptor, it is unlikely that 2-EHMC can photosensitize formation of thymine triplets and 

hence the formation of pyrimidine dimers [32, 33].  
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Studies by Butt and Christensen [38] have shown the toxic potential of 2-EHMC to mouse 

cells after UV irradiation. This toxicity was attributed to the existence of photoproducts after 

2-EHMC had been exposed to UV radiation. Although the probability of adduct formation 

between 2-EHMC and constituents of DNA could be low there can be a cumulative effect. 

Recently some studies have shown that 2-EHMC could have estrogenic properties, thus 

acting as an endocrine active chemical [39, 40]. Allen et al. [41] have also reported the ability 

of 2-EHMC in aqueous solutions to photosensitise the formation of singlet oxygen. Since 

singlet oxygen is a highly reactive oxidant it is likely it will enhance photodegradation with 

consequent diminution of UVB absorbance. Therefore the toxic potential of the UV-induced 

degradation products is of great significance. This will definitely require elucidation, as a 

change in the UV absorption of the compound is harmful in terms of photoprotection and 

phototoxicity. 

 

All of the commercial sunscreens investigated in this study contained trans-2-ethylhexyl-p-

methoxycinnamate as a major active chemical component. It was also of major interest since 

previous workers [1, 19, 31] in our laboratory have shown that formation of photoproducts 

resulting from UV irradiation of 2-EHMC also occurs. The present study focuses on the UV 

spectral changes that 2-EHMC undergoes during exposure to UV radiation, the separation of 

the photoproducts and their identification by using spectroscopic and chromatographic 

techniques. The photodimerisation of 2-EHMC was further investigated by resolving the 

fractions of each dimer chromatographically prior to analysis with Fourier transform infrared 

and nuclear magnetic resonance spectroscopy. 

 

In addition, theoretical studies using computational methods have been carried out to 

determine the lowest energy geometrical structures of some of the photoproducts and hence 

their relative stabilities. This aspect is discussed in Chapter 6. 

 

4.2 Experimental 

4.2.1 Materials 

 

All reagents and solvents were of analytical or HPLC-grade. Methanol and acetonitrile were 

purchased from BDH HiperSolv Chemicals Ltd. The sample of trans-2-EHMC of 98% purity 
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was obtained from BASF and was kept in the dark to avoid any photochemical reactions. 

Deionised water was obtained from a Milli-Q50 water purification system (Millipore, Bedford, 

MA, USA) and was used in all procedures. 

 

4.2.2 Irradiations 

 

The irradiation experiments were carried out by using an Osram HBO 500W/2 high pressure 

mercury lamp as the irradiation source. This was ideal, since the Osram HBO lamp contains a 

specific amount of mercury in a pressurised atmosphere of an inert gas. It is an intense light 

source that consists of mercury emission spectral lines extending from the middle ultraviolet 

to the infrared regions (Figure 50). This made it suitable for the irradiation work, since most 

of the active chemical absorbers in commercial sunscreens that were investigated absorb in 

this region.  

 

Since the lamp has a very high intense source and because of the energy of UV radiation it 

emits, plus the high pressure contained therein, it was operated in an enclosed purpose-built 

housing. The lamp was housed in an insulated box constructed out of mild steel and 

connected to a ventilation system (i.e. an extractor), a Schreiber power supply and an igniter. 

The extractor leads to the outside of the building. This serves to remove any ozone formed by 

UV radiation and also to provide some ventilation around the lamp. The lamp was placed 

vertically in front of a circular aperture fitted with an external bracket onto which a shutter 

gate, a filter holder and a cell holder were attached. The cell holder was designed to hold 

either 1 mm or 1 cm pathlength irradiation cells. A portable fan was placed in front of the 

lamp housing to cool and prevent heat build-up around the filters. The lamp has a lifetime of 

about 400 hours during which time its output in light intensity does not vary significantly. 

The degree of loss of light intensity was monitored by a Black-Ray J221 longwave 

photovoltaic UV intensity meter. The lamp was normally allowed to warm-up for 15 minutes 

before starting the irradiation of any sample. 
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Figure 50 Output of the Osram HBO 500W/2 high pressure mercury lamp [18]. 

 

Since the radiation from the Osram HBO lamp spans over a wide wavelength range of 260 

nm to 700 nm, it was important to isolate those wavelengths of interest by choosing an 

appropriate filter. The filter used in this study was a 10 mm thick Pyrex filter. This filter has a 

short wavelength cut-off of about 300 nm and therefore allows only those wavelengths 

greater than 300 nm to pass through as shown in Figure 51. The filtered optical output of the 

for the HBO mercury lamp is now shown in Figure 52. This was ideal for irradiation 

experiments because it allowed the simulation of natural sunlight incident on the surface of 

the earth. The minimum cut-off wavelength of solar UV radiation at sea level is 290 nm [42]. 

A 10 mm or 1 mm quartz photolysis cell was used in most of the irradiation experiments 

depending on the amount and concentration of the sample. For the case of dilute and large 

samples, 10 mm pathlength quartz cuvettes were used especially when monitoring the 

formation of photoproducts.  
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Figure 51 The transmission spectrum of the 10 mm thick Pyrex filter. 

 
 

      

 

Figure 52 Output of the Osram HBO 500W/2 high pressure mercury lamp in combination 
with a 10 mm thick Pyrex filter [18]. 
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4.2.3 UV-spectral analyses of 2-EHMC 

 

The absorption spectra were acquired with a Perkin Elmer Lambda 35 double-beam UV-

visible spectrophotometer at a constant spectral bandwidth of 1.0 nm using a matched pair of 

1 x 1 cm quartz cells. Pure HPLC methanol was used as a blank. The UV spectra were used 

as an identification and purity check of the compounds separated by high performance liquid 

chromatography. UV spectroscopy was also used to establish the photostability of 2-EHMC 

by monitoring the spectra and the absorbance at the wavelength of maximum absorbance on 

exposure to UV radiation.  

 

4.2.3.1  Determination of the molar absorptivity ( ) of cis-2-EHMC 

 

A pure sample of cis-2-EHMC was separated from a mixture of irradiated trans-2-EHMC by 

fraction collection by semi-preparative HPLC. A 1 x 10-3 M stock solution of cis-2-EHMC in 

methanol was prepared by mass. This solution was then serially diluted to give different 

concentrations of cis-2-EHMC. The absorbance readings were obtained with a Perkin Elmer 

Lambda 35 double-beam UV-visible spectrophotometer at a constant spectral bandwidth of 

1.0 nm using a matched pair of 1 x 1 cm quartz cells. The molar absorptivity of the cis-2-

EHMC isomer was determined from the Beer-Lambert law (A = cl, where A is the 

absorbance, l is the path length in cm, c is the concentration in mol dm-3 and  is the molar 

absorptivity in dm3 cm-1 mol-1).  

 

4.2.4 High performance liquid chromatographic analysis of 2-EHMC solutions 

 

Two types of systems were used for high performance liquid chromatographic analyses in 

this study. These were an analytical and a preparative system. In the analytical mode, a 

Waters 600 multisolvent delivery system was connected to Waters 996 photodiode array 

(PDA) UV detector and also attached was a Perkin-Elmer 2000 series autosampler. The PDA 

detector allows for the acquisition of the absorbance at every wavelength within the 190 

to 900 nm range and therefore a UV spectrum of any component eluting from the column can 

be obtained. The ability to monitor the entire absorbance spectrum of an eluting peak is 

useful information for the identification of the components eluting from the system. The 
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preparative instrument consisted of a Waters Delta Prep 4000 preparative chromatography 

system, a Waters 486 UV variable wavelength detector and Rheodyne 7010 injector. Both 

these systems were connected to a De‟Mark Pentium II personal computer controlled by 

using Waters Millennium Version 4.00 software.  

 

4.2.4.1  Chromatographic conditions 

 

Separations were usually performed on reversed-phase columns of modified silica gel such as 

octadecylsilica (C18). A reversed-phase Nucleosil C100 C18 column of 250 mm length, 4.6 

mm internal diameter and 5 µm particle size stationary phase was used for the analytical 

work. A Waters Guard-Pak -Bondapak C18 pre-column guard was used to protect the 

analytical column. The photoproducts were separated and collected as fractions on a 

Spherisorb S5 ODS (250 mm length, 10 mm internal diameter and 5 µm particle size) semi-

preparative column. The mobile phases used in the separations were aqueous mixtures of 

either methanol or acetonitrile. The mobile phase was normally prepared by measuring out 

separately the appropriate amounts of methanol or acetonitrile and water in a measuring 

cylinder before mixing. This was to avoid inconsistencies in the eluent composition that 

result from the contraction of solvent, for example of methanol-water mixtures [43]. The 

solvent was filtered through a Millipore 0.45 µm filter before subsequently feeding it into the 

reservoir. This was then degassed with helium at the rate of 30 mL min-1. The flow rate of the 

eluent was 1 mL min-1 for the analytical work and 4 mL min-1 for the preparative work. 

 

4.2.4.2  Sample preparation 

 

A solution of approximately 0.1 M trans-2-EHMC was prepared by measuring out 1 mL of 

pure trans-2-EHMC into a 25 mL volumetric flask. This was diluted to the mark with HPLC-

grade methanol. The concentration was calculated from the weighed mass of pure trans-2-

EHMC. This would give approximately 5% (m/v) of 2-EHMC in solution. This is within the 

permissible limits in a sunscreen formulation which falls below the maximum limit of 10%. 

Hence this concentration was felt most appropriate for our analysis. An aliquot of sample was 

transferred into a 400 µL quartz photolysis cuvette by means of a Volac micropipette and the 

cuvette was sealed with a stopper and polythene plastic film to prevent evaporation of the 

solvent during irradiation. Solutions of 2-EHMC were irradiated at wavelengths greater than 
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300 nm by using the Osram HBO 500W/2 high pressure mercury lamp and the 10 mm Pyrex 

filter combination. The irradiations were carried out in a dark room to ensure that any 

formation of photoproducts is wholly attributed to a known quantity of light from the lamp. 

All the solutions were light protected before and after irradiation by wrapping the flask or the 

cuvette containing the sample with aluminium foil. The solutions were kept in a refrigerator 

while covered with aluminium foil to keep off any further light interference prior to HPLC 

analysis.  

 

4.2.4.3  Sample analysis 

 

Unirradiated and irradiated samples were filtered by passing them through 0.45 µm Millex 

syringe filters to ensure that no particulate matter was introduced into the HPLC column. The 

samples were then diluted appropriately before injecting into the HPLC column. An injection 

volume was a 20 µL aliquot of the sample. The flow rate was maintained at 1 mL min-1. A 

mobile phase of 85:15 % v/v methanol-water was used as this was found to give a good 

separation within a reasonable time of less than 30 minutes. The chromatogram was detected 

at 310 nm which is the wavelength of maximum absorbance for 2-EHMC. The identity of the 

compounds separated was determined from the wavelength of maximum absorbance in the 

UV spectra obtained from the PDA detector. The extent of photodegradation was determined 

by comparing the peak areas of trans-2-EHMC from the irradiated samples with those 

obtained by analysis of an equivalent amount of the unirradiated sample. All experiments 

were performed at room temperature.  

 

4.2.5 High performance liquid chromatography separation of photoproducts of 

irradiated 2-EHMC 

 

From UV spectral analysis it was evident that 2-EHMC undergoes photodegradation in 

methanol upon UV irradiation. Therefore to investigate this further a pure sample of trans-2-

EHMC was irradiated for twenty four hours with a HBO 500W/2 high-pressure mercury 

lamp combined with a 10-mm Pyrex filter. This sample was diluted in methanol and an 

aliquot of 100 L of the sample was then injected into the HPLC. The photoproducts were 

collected as fractions on the semi-preparative HPLC system. The eluent system was 93% 

(v/v) methanol/water at a flow rate of 4 mL min-1. The fractions collected were further 
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characterised by FTIR and NMR. The sample of cis-2-EHMC was used to determine its 

molar absorptivity ( ).  

 

4.2.6 High performance liquid chromatographic – mass spectroscopic studies 

 

An Agilent HPLC 1100 series (Agilent Technologies, San Jose, CA) comprising a quatenary 

solvent delivery system, an on-line degasser, an autosampler, a column thermostat and 

interfaced to an Agilent LC/MSD Trap 1100 series mass detector was used. The column was 

an Agilent Zorbax Eclipse XDB-C18 reversed-phase column (5 μm, 50 x 4.6 mm). The 

sample injection volume was 5 μL and the eluent flow rate was 1 mL min-1. Liquid 

chromatographic – mass spectroscopic analysis was performed in the isocratic mode (85:15% 

v/v MeOH/H2O). Mass spectra were recorded between 100 and 1000 m/z in the atmospheric 

pressure chemical ionization (APCI) positive mode. The heated capillary temperature was set 

at 155 oC and the APCI vaporizer temperature at 300 oC. The capillary voltage was 3500 V 

and the spray voltage 5 kV. 

 

4.2.7 Column chromatographic for the separation of 2-EHMC photoproducts 

 

Gravitational column chromatography was carried out by using glass columns wet packed 

with silica gel of particle size of 230-400 mesh ASTM (Merck). This was done in order to 

separate the photoproducts of 2-EHMC formed upon UV irradiation. The mobile phases used 

were varying ratios of hexane, dichloromethane, ethyl acetate and methanol. The solvent that 

gave a good separation was 50% v/v dichloromethane /hexane. Separations and purifications 

were monitored by thin layer chromatography (TLC). TLC was carried out by using 

aluminium sheets pre-coated with silica gel (Merck, 60 F254) with layer thickness of 0.2 mm. 

After eluting with the same solvent system as used for the column, the plates were visualised 

under UV light (at 254 and 366 nm). This was followed by spraying the plates with an 

anisaldehyde reagent (prepared by mixing 100 mL of methanol, 1.25 mL anisaldehyde and 

2.5 ml of concentrated sulphuric acid). 
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4.2.8 Fourier transform infrared analysis of photoproducts 

 

The potassium bromide (KBr) discs were made by the pressed disc technique. The disc was 

then carefully layered between the two dies in the die holder and developed under pressure by 

using a 15 ton manual hydraulic press to produce transparent discs. The infrared spectra of 

trans-2-EHMC and its photoproducts were obtained by spreading a small sample on 

transparent KBr discs. The sample was then placed in a sample holder. The analysis was 

carried out between the wavenumber ranges of 400 - 4000 cm-1. The instrument used was a 

Nicolet Impact 410 spectrophotometer with Omnic FT-IR as the operating software. 

 

4.2.9 Analysis of photoproducts with nuclear magnetic resonance spectroscopy 

 

The chemical structure of the isolated compounds from preparative HPLC was determined by 

nuclear magnetic resonance spectroscopy (NMR). 1H-NMR spectra were measured on a 

Varian Gemini 300 MHz instrument. The isolated samples were dissolved in deuterated 

methanol (CD3OD) containing tetramethylsilane (TMS) as an internal standard. The effect of 

UV irradiation on a sample of trans-2-EHMC was monitored with NMR. The pure sample of 

trans-2-EHMC was dissolved in deuterated methanol and the NMR spectrum was recorded. 

An irradiated sample was also run in deuterated methanol and its respective spectrum was 

recorded. 1H NMR spectra of the photodimers of 2-EHMC were analyzed and the spectral 

parameters and the coupling constants were obtained. The NMR absorption pattern of the 

cyclobutyl protons may have a diagnostic value for the stereochemical assignments. 

 

4.3 Results and Discussion 

 

4.3.1 UV spectral behaviour of trans-2-EHMC upon irradiation 

 

UV spectra of a 3 x 10-6 M solution of trans-2-EHMC were obtained before and after 

exposure to UV irradiation for one hour. Figure 53 shows the resultant UV spectra which 

depict a change in absorbance of trans-2-EHMC indicating that either photoisomerisation 

and/or photodegradation have taken place.  
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Figure 53 Changes in the UV absorption spectrum of trans-2-EHMC on irradiation. 

 

There was a substantial decrease in absorbance at wavelength of 310nm from a value of 1.23 

to 0.86 which is approximately a 30% decrease in just one hour of irradiation. This therefore 

means that the efficiency of trans-2-EHMC as a UVB absorber is compromised [44]. The 

spectra obtained in this study are similar to those of other members in our research group [1, 

19, 31]. Morliere et al. [9] also obtained a similar result where trans-2-EHMC was found to 

photodegrade substantially in just 40 minutes. The identity of the photoproduct was 

confirmed by obtaining HPLC-MS (see Section 4.3.3). The photoproduct was indeed a cis-

isomer. 

 

4.3.2 Effect of irradiation time on the photoisomerisation of 2-EHMC 

 

The effect of irradiation time on the photoisomerisation of trans-2-EHMC was investigated 

by irradiating a 3 x 10-6 M solution of 2-EHMC dissolved in methanol and recording the UV 

spectra after set irradiation periods. The spectra were obtained from 190 nm to 400 nm at 

time intervals of 30 minutes. Figure 54 displays these spectra and show a continuous decrease 

in absorbance. The observed spectral behaviour suggested that 2-EHMC underwent some 

photochemical changes as is evidenced with the gradual decrease in the absorbance. After a 

period of 3 hours of exposure to UV radiation, a photostationary state of the trans-cis 

equilibrium was attained. Since the UVB absorbance of the cis-isomer is less than that of the 
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trans-isomer [1], the resulting absorbance of the photostationary cis-trans mixture is lower 

than that  of the initial trans-isomer.  

 

0

0.5

1

1.5

2

2.5

3

200 250 300 350 400
Wavelength/nm

A
bs

or
ba

nc
e

0 min
30 min
60 min
90 min
120 min
150 min
180 min

 

Figure 54 The changes in the UV absorption spectra of trans-2-EHMC obtained at different 
times of UV irradiation. 
 

The solution was also analysed by HPLC before and after irradiation. The analysis by HPLC 

showed the appearance of a new peak at a shorter retention time attributed to the cis-isomer 

and a closer analysis showed an increase in the formation of the cis-isomer with time until a 

photostationary state was attained. Although Broadbent [18] observed that after the 

establishment of a photostationary state, the cis-isomer is in excess this aspect was not 

observed. This could be due to the high concentration of 2-EHMC (80%) that was initially 

irradiated by Broadbent. It could also be due to different irradiation systems.  The formation 

of the isomers is concentration dependent and is explained in Section 4.3.3. In this work an 

almost 50:50 % ratio of the two isomers was obtained.  

 

An increase in the formation of cis-2-EHMC with increasing irradiation time means that a 

lower absorbance is obtained. The degree of photodegradation was measured by comparing 

the peak areas of both the trans-2-EHMC and cis-2-EHMC from the irradiated sample. The 

peak area of an equivalent amount of the unirradiated sample was also obtained. The peak 

areas of the chromatograms were considered as these are directly proportional to the 
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concentrations of the respective isomers. It was surmised that only the two isomers are 

formed in the dilute solution as has been shown by previous workers in our laboratory [18, 

31]. The percentage ratio of the photoproduct peak areas was also used to evaluate the extent 

of photodegradation. The results of this analysis are shown in Figure 55 which shows the 

increase in concentration of the cis isomer upon irradiation of trans-2-EHMC. The 

photoisomerisation alters the absorption spectrum of trans-2-EHMC resulting in a loss of its 

protective capacity. This is because the cis-isomer has a lower molar absorption coefficient 

than the trans-isomer [45]. 

 

 

Figure 55 A plot showing the photoisomerisation of trans-2-EHMC to cis-2-EHMC with 
increasing time of irradiation. 
 

It was apparent that the dimers were not seen in diluted solutions of 2-EHMC. These results 

are consistent with other studies involving the photochemical dimerisation of cinnamic acids 

and their esters [21]. The formation of the cyclobutane ring at the ethylenic double bond is 

well established. Photochemical cyclodimerisation of cinnamic acid derivatives is highly 

inefficient in dilute solutions due to a very rapid competing trans-cis photoisomerisation [22]. 

This has been supported by studies carried out on the irradiation of dilute solutions of 

cinnamic esters in the presence of several Lewis acids resulting in selective trans- to cis-

photodimerisation to yield photostationary states enriched in the cis-isomers [46].  
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4.3.3 Effect of concentration of 2-EHMC on photoproduct formation  

 

The formation of photoproducts upon UV irradiation of 2-EHMC was investigated for 

different concentrations of trans-2-EHMC ranging from 1 x 10-6 M to pure 2-EHMC. An 

aliquot of each sample was irradiated for 24 hours with the Osram HBO 500W/2 high 

pressure mercury lamp in combination with the 10 mm thick Pyrex filter. These were 

analysed by HPLC. HPLC chromatograms were obtained for both unirradiated and irradiated 

samples of 2-EHMC. Figure 56 shows the chromatogram of a sample of 1 x 10-6 M trans-2-

EHMC dissolved in methanol before irradiation. The UV spectrum for the only peak which 

appears in the HPLC chromatogram shows a wavelength of maximum absorption of 310 nm 

which identifies this as the trans-isomer. Upon irradiation for 24 hours with UV light at 

wavelengths greater than 300 nm, a second peak appears at a shorter retention time. This 

peak exhibits a wavelength of maximum absorption at 304 nm which identifies it as the cis-

isomer (Figure 57).  

 

  

Figure 56 The HPLC chromatogram of 1 x 10-6 M 2-EHMC before irradiation obtained by 
elution on a Nucleosil 100 C18 column. The eluent was methanol/water (90% v/v) at a flow 
rate 1 mL min-1 , injection volume – 10 µL  The detection wavelength was 310 nm. 
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Figure 57 The HPLC chromatogram of 1 x 10-6 M 2-EHMC after irradiation obtained by 
elution on a Nucleosil 100 C18 column. The eluent was methanol/water (90% v/v) at a flow 
rate 1 mL min-1 , injection volume – 10 µL  The detection wavelength was 310 nm. 

 

This observation is consistent with other studies related to 2-EHMC containing products [1, 

14, 17].  The identity of this second peak was confirmed by HPLC-MS studies. The 

corresponding HPLC chromatogram and the mass spectra are shown in Figure 58 and Figure 

59 respectively. The peaks labelled E1 and E2 shows the presence of the cis- and trans-

isomers respectively. This corresponds to those marked similarly in the mass spectra. Both 

the spectra gave a protonated molecular peak [CH3OC6C4=CHC(O)C8H18]H+ at m/z of 291. 

This similarity between the mass spectra confirmed that the two peaks indeed are isomers. 

The peak at m/z of 179 is due the protonated methoxy cinnamic acid 

[CH3OC6H4=CH(O)OH]H+  resulting from fragmentation at the ester bond.  
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Figure 58 HPLC chromatogram of irradiated 1 x 10-6 M trans-2-EHMC analysed on the 

Agilent Zorbax Eclipse XDB-C18 column by isocratic elution at a flow rate 1 mL min-1 , 

injection volume – 5 µL with the Agilent 1100 Series HPLC with UV detection at 310 nm. 

The order of elution was cis-2-EHMC (E1) and trans-2-EHMC (E2). 

 

Figure 59 Mass spectra of the peaks labelled E1 and E2 in Figure 58. 

 

This result is in agreement with studies carried out  by Pattanaargson et al. [47] which 

showed the existence of the two isomers. A pure sample of cis-2-EHMC was separated and 

179.1 

291.2 
+MS, 4.7min #269 

0 

1 

2 

3 
6 x10 

Intens. 

200 400 600 800 1000 1200 1400 1600 m/z 

E2 

127.0 
179.1 

291.2 

581.4 

+MS, 4.3min #240 

0 

1 

2 

3 
5 x10 

Intens. 

200 400 600 800 1000 1200 1400 1600 m/z 

E1 



 146 

collected as a fraction on the Waters Delta Prep 4000 semi-preparative chromatographic 

system. Figure 60 shows the chromatogram of the cis-isomer with its respective UV spectrum 

as a confirmation that indeed a pure cis-isomer was successfully isolated. 

 

Figure 60 The HPLC chromatogram of pure cis-2-EHMC obtained by elution on a Nucleosil 
100 C18 column. The eluent was methanol/water (85% v/v) at a flow rate 1 mL min-1 
injection volume – 20 µL. The detection wavelength was 310 nm. 
 

A UV spectrum of the cis-isomer was obtained on the UV/vis spectrophotometer and is 

shown in Figure 61. The wavelength of maximum absorption is 304 nm showing a 

hypsochromic shift from trans-2-EHMC (310 nm). The molar absorptivity of a pure sample 

of the cis-isomer was determined at 304 nm which is the wavelength of maximum absorption. 

A stock solution of 1 x 10-3 M cis-isomer was prepared in methanol and appropriate 

concentrations obtained by serial dilution. UV spectra were obtained for six concentrations. 

The absorbance was plotted against the various concentrations from which the molar 

absorptivity was calculated (Figure 62). A value of 1.805 x 104 dm3 mol-1 cm-1 was obtained 

and this is lower than that of trans-2-EHMC which is 2.33 x 104 dm3 mol-1 cm-1 at 311 nm  in 

methanol [48]. The lower value therefore means that the cis-isomer is indeed a less efficient 

UVB absorber.  
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Figure 61 UV spectrum of pure cis-2-EHMC dissolved in methanol. 

 

Figure 62 Calibration curve for the determination of the molar absorptivity of cis-2-EHMC in 

methanol at 304 nm. 

 

The formation of dimers was detectable in concentrated solutions of irradiated 2-EHMC. 

Figures 63, 64, 65 and 66 show the chromatograms obtained at different concentrations after 

UV irradiation. The formation of dimers is concentration dependent. It was observed that at 

low concentration of 1 x 10-6 M of 2-EHMC no dimers form. But as the concentration was 

increased from 1 x 10-3M, dimers were observed. 
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Figure 63 The HPLC chromatogram of an irradiated 1 x 10-3 M solution of trans-2-EHMC 
obtained by elution on a Spherisob 5S ODS column. The eluent was methanol/water (93% 
v/v) at a flow rate of 4 mL min-1., injection volume – 20 µL. The detection wavelength was 
310 nm. 
 

 
Figure 64 The HPLC chromatogram of an irradiated 1 x 10-2 M solution of trans-2-EHMC 

obtained by elution on a Spherisob 5S ODS column. The eluent was methanol/water (93% 

v/v) at a flow rate 4 mL min-1, injection volume – 20 µL. The detection wavelength was 310 

nm. 
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Figure 65 The HPLC chromatogram of an irradiated concentrated solution of trans-2-EHMC 
obtained by elution on a Spherisob 5S ODS column. The eluent was methanol/water (93% 
v/v) at a flow rate 4 mL min-1, injection volume – 20 µL. The detection wavelength was 310 
nm. 
 

The dimers were found to elute much later than the isomers. This is due to structural 

differences since the dimers have twice the molecular mass and size of the isomers. In 

addition, due to the bulky ethylhexyl alkyl group, these dimers may be considered to be more 

hydrophobic and non-polar. It is therefore these structural characteristics that make them 

elute after the isomers on a reversed-phase column. This is consistent with reversed-phase 

HPLC in which non-polar compounds are expected to stay longer on the stationary phase and 

elute much later than polar compounds. The presence of these dimers was confirmed with 

HPLC-MS studies. The corresponding HPLC chromatogram and the mass spectra are shown 

in Figure 66 and Figure 67 respectively. Apart from the molecular masses associated with the 

protonated ion [M + H]+ trans/cis isomers at m/z of 291 there were additional peaks with m/z 

of 581. This value is double that of the single isomer which indicated the formation of 

dimers.  
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Figure 66 HPLC chromatogram of irradiated trans-2-EHMC analysed on the Agilent Zorbax 
Eclipse XDB-C18 column by isocratic elution at a flow rate 1 mL min-1 , injection volume – 
5 µL with the Agilent 1100 Series HPLC with UV detection at 310 nm. The order of elution 
was cis-2-EHMC (E1), trans- 2-EHMC (E2) and the dimers (D1, D2, D3). 
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Figure 67 Mass spectra of the peaks labelled E1, E2, D1, D2 and D3 in Figure 66. 

 

4.3.4 Column chromatography for the separation of 2-EHMC photoproducts 

 

Gravity column chromatography was attempted to separate the photoproducts of 2-EHMC 

that were formed during UV irradiation. Although this system showed a complex mixture of 

products as was observed by TLC analysis, they were difficult to separate. This was due to 

the very low concentration of the dimers that are formed after irradiation of 2-EHMC with 

UV light. However, the major products (trans/cis) were successfully isolated and 

characterised by 1H NMR.  
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4.3.5 FTIR analysis of the isomers of 2-EHMC 

 

A sample of irradiated 2-EHMC was separated on a semi-preparative HPLC column and the 

fractions collected. The infrared spectra of trans- and cis- 2-EHMC were obtained in the 

region of 700 - 4000 cm-1 and are shown in Figures 68 and 69 respectively. Both show strong 

absorption bands at around 1710 cm-1 associated with the conjugate ester C=O stretching 

band while the conjugate C=C stretching band shows at around 1600 cm-1. Another distinct 

feature is the bands observed from 2860 to 2960 cm-1 which are due to the presence of the 

ethylhexyl side chain. Although the fingerprint region is generally similar for the two isomers 

the peak occurring at 983 cm-1 was only detectable in the trans-isomer. This peak 

corresponds to the CH rocking deformation vibration of the Ph-CH=CH which is only seen in 

the trans-configuration [49].  

 

 

    

Figure 68 An infrared spectrum of trans-2-EHMC recorded as a thin film on a KBr disc. 
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Figure 69 An infrared spectrum of cis-2-EHMC recorded as a thin film on a KBr disc. 

 

4.3.6 NMR Analysis of the photoproducts of 2-EHMC 

 

The isomers and the dimers of 2-EHMC were separated on the semi-preparative HPLC and 

collected as fractions. They were then analyzed by using NMR.  

 

A comparison of the proton NMR of cis–2-EHMC (Figure 71) with that of the trans-isomer 

(Figure 70) shows a different chemical shift in the region where the aromatic hydrogens 

resonate. The peaks of the cis-product are shifted upfield as compared with those of trans-2-

EHMC. The aromatic hydrogens appear at 6.9 and 7.6 ppm. The two sets of doublets arising 

from the cis-ethylenic hydrogens appear at 5.8 and 6.95 ppm as compared with those of the 

trans-ethylenic hydrogens appearing at 6.4 and 7.6 ppm. The NMR spectral data acquired are 

summarised in Table 18. 

 

 



 154 

Table 18 1H NMR spectral data for trans- and cis-2-EHMC. 
 

 Trans-isomer cis-isomer 

Position δH/ppm δH/ppm 

1 3.82 (3H, s) 3.81 (3H, s) 

3 6.87 (2H, d, J = 8.7 Hz) 6.80 (2H, d, J = 7 Hz) 

4 7.45.(2H, d, J = 8.7Hz) 7.66 (2H, d, J = 7 Hz) 

6 7.64 (1H, d, J = 16Hz) 6.80 (1H, d, J = 12 Hz) 

7 6.32 (1H, d, J = 16Hz) 5.82 (1H, d, J = 12 Hz) 

9 4.08 (2H, d, J = 5Hz) 4.09 (2H, d, J=6 Hz) 

10 1.63(1H, br m) 1.63 (1H, br m) 

11 1.34 (2H, br m) 1.34 (2H, br m) 

12 0.91 (3H, br t) 0.91 (3H, br t) 

13 1.36 (2H, m) 1.36 (2H, m) 

14 1.41 (2H, m) 1.41 (2H, m) 

15 1.34 (2H, br m) 1.34 (2H, br m) 

16 0.94 (3H, t) 0.94 (3H, t) 

 

 

Figure 70 Proton NMR spectrum of trans-2-EHMC acquired in CD3OD. 
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Figure 71 Proton NMR spectrum of cis-2-EHMC acquired in CD3OD. 

 

 

 

Figure 72 Proton NMR spectrum of the dimer of 2-EHMC acquired in CD3OD. 
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Unfortunately, the quantities of the dimers were quite small and they were not effectively 

separated by either gravity column chromatography or the semi-preparative HPLC. A mixture 

of the dimers was instead obtained. Nevertheless, the NMR spectra show a loss of double 

bonds, which is indicative of the formation of the cyclobutane ring. The photodimerisation 

process resulting in the formation of cyclobutane rings was confirmed by the IR and NMR 

spectral changes with the disappearance of the aliphatic carbon–carbon double bonds and 

appearance of aliphatic single carbon–carbon bonds. The UV spectra of the dimers (see 

Figure 65) show that they absorb at a much shorter wavelength predominantly in the UVC 

region. This is in conformity with the absorption of a non-conjugated benzene nucleus. This 

is also in agreement with the knowledge that products resulting from the cycloaddition 

reaction of cinnamate molecules using double bonds effectively cancel the conjugation 

responsible for the absorption of the cinnamates [50]. The photodimerisation of 2-EHMC 

yields cyclobutane derivatives of different stereochemistry [21, 46]. The trans-ethylenic 

hydrogens appear as doublets at 6.32 and 7.64 ppm. The coupling constant is 16 Hz which is 

consistent with trans ethylenic hydrogens [51]. The ortho-coupled aromatic hydrogens can be 

seen to resonate as doublets at 6.87 and 7.45 ppm. The three methoxy hydrogens give a 

strong singlet at 3.82 ppm and the two hydrogens belonging to the –OCH2- group resonate as 

a doublet at 4.08 ppm. The hydrogens of the 2-ethylhexyl group occur as a multiplet in the 

0.9 to 1.7 ppm region, whereas the signals due to the two -CH3 groups appear at 0.9 ppm. The 

methylene hydrogens, the four –CH2 groups appear at 1.27 ppm and those due to the singlet –

CH at 1.6 ppm. The peak at 4.9 ppm is due to the deuterated methanol. 

 

Due to the extremely low yields of the dimers resulting from UV irradiation and in the 

difficulties experienced in separation, computational studies were carried out in order to 

elucidate the stereochemistry, the lowest energies and hence the relative stabilities of the 

different photoproducts. This aspect is discussed in Chapter 6. 

 

 

4.4 Conclusion 

 

UV irradiation of 2-EHMC causes it to photodegrade either through photoisomerisation or 

photodimerisation. Since the cis-isomer absorbs UV radiation less efficiently than trans-2-

EHMC, the photoinduced isomerisation of the sunscreen agent decreases its UV-protective 
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capacity. If the absorption decreases while the shape of absorption curve remains the same, 

then there will be an increase in the intensity or flux of UV radiation, but of the same 

spectrum, reaching the basal epidermal cell layers. If the shape of the absorption spectrum 

also changes by moving to shorter wavelengths then the situation becomes more complicated. 

This can lead to a higher UVB and UVA exposure than expected [13]. 

 

The formation of dimers was found to be concentration dependent as dimerisation was 

observed at concentrations greater than 1 x 10-3 M solutions of 2-EHMC. The dimerisation 

occurs via a [2 + 2]-cycloaddition reaction across the ethylenic double bond. The dimers were 

found to absorb at wavelengths mostly in the UVC region which is consistent with 

cyclobutane type of compounds and hence photodimerisation of 2-EHMC is another cause 

for its loss in absorbance upon irradiation. 

 

Since there is an increasing demand by dermatologists for use of sunscreen agents even in 

non-sunscreen products there is therefore a need to examine the toxic potential of UV-

induced degradation products. Sunscreens are applied topically on large parts of the human 

body. The photodegradation of the sunscreen agent under UV radiation whereby reactive 

radicals, isomers and even photoadducts are formed may or may not penetrate human skin. 

However, the photochemical degradation, although occurring to only a small extent could 

have a cytotoxic effect on the human skin. Future studies should therefore focus on the 

toxicological properties of the photoproducts with the aim of achieving a further 

improvement in cosmetic product safety. 
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CHAPTER 5 

Computational chemistry 

 

5 Introduction 

 

Computational chemistry is a valuable and powerful tool, which simulates chemical 

structures that enhance our understanding of many complex chemical systems [1]. These 

model chemical systems can be used to obtain information, which may be difficult or 

impossible to obtain experimentally. They can be used to calculate reliable equilibrium 

structures for molecules and can also be used to obtain structures of transition states. Such 

calculations have become possible because efficient methods have been developed for the 

calculation of derivatives of the electronic energy with respect to geometrical parameters. 

These derivatives can then be used in optimization procedures to find the geometry with 

minimum energy or locate a saddle point on the potential energy surface. The potential 

energy surface is a mathematical relationship linking molecular structure and the resultant 

energy. So a complete potential energy surface provides for a given collection of atoms 

complete information about all possible chemical structures and all isomerisation pathways 

interconnecting them [2]. Points of interest on the potential energy surface include local 

minima, which correspond to stable structures including intermediates, and maxima or 

saddle points. A saddle point is at its simplest a maximum in one dimension and a 

minimum in the other. Saddle points are important in chemistry because they correspond to 

transition states [3]. Although experimental methods are starting to probe the transition 

state, present computational methods offer the only reliable method by which one can 

routinely determine the structure and energy of a transition state or reaction intermediate 

[4]. Ccommercially available software calculates the electronic structures of the molecules 

and then displays the results graphically. 

 

In this work theoretical studies making use of computational methods have been carried 

out to determine the lowest energy geometrical structures of the photoproducts of 2-EHMC 

and hence their relative stabilities. 
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There are two broad areas of computational chemistry available, namely, molecular 

mechanics or force field derived calculations, and electronic structure methods. A brief 

discussion of each is given in the respective subsequent sections. 

 

5.1 Molecular orbital theory 

 

Molecular orbital (MO) theory is a molecular quantum mechanics approach which utilizes 

one-electron functions or orbitals to approximate the full wavefunction [5]. A MO, Ψ (x, y, 

z), is a function of the Cartesian coordinates of a single electron. This three-dimensional 

function determines the properties of an individual molecule. The probability of finding an 

electron in a particular region or space is given by the electron in the square of Ψ (Ψ 2) (or 

square modulus |Ψ2| if Ψ is a complex conjugate). In qualitative MO theory one always 

employs the linear combination of atomic orbitals (LCAO) approximation in which a 

molecular orbital is written as a linear combination of atomic orbitals centred on the 

various atoms (Equation 4.1) [6]. The overlap between atomic orbitals is determined by 

their energy, orientation, symmetry and size.  

 

   Ψ = Φ1Φ2Φ3 Φn    [4.1] 

 

where Φn is a three dimensional function for an individual electron. 

 

Since the wavefunction is a product of spin-orbitals, the spin value, which can take the 

value of ±½, has to be included. The resulting MO is occupied by up to two electrons of 

opposite spins that are both attracted by the positive nuclei of the atoms. According to 

Pauli‟s Exclusion Principle [7], a MO cannot be occupied by two electrons of the same 

spin and therefore the orbital may be classified as singly or doubly occupied or empty. 

Most molecules have an even number of electrons in their ground states and may be 

represented by orbitals that are either doubly occupied or empty, i.e. closed shell 

wavefunctions. 

 

To date, MO methods represent the most accurate mathematical description of the 

wavefunction of a molecule.  Solving the wavefunction reveals the position of the atoms as 

well as the energy associated for the given geometry of the molecule.  Solving the 
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wavefunction is only possible with various approximations and even with severe 

approximations, only molecules having a limited range of sizes can currently be 

investigated by MO methods. 

 

Various computational chemistry methods have been developed to obtain information of 

the geometry, energy and other characteristics of molecules. Some of these MO methods 

are not used at all. The MO theory is utilized in computational chemistry, with various 

levels of approximations, as will be discussed below. 

 

5.2. Molecular mechanics 

 

Molecular mechanics (MM) models make use of the laws of classical physics to predict the 

structures and properties of molecules [8, 9]. A molecule is viewed as composed of atoms 

held together by bonds and the molecular electronic energy is expressed as the sum of 

bond-stretch, angle-bending, and other kinds of energies. There exist several MM methods 

which are characterized individually by a particular force field. A force field is composed 

of a set of equations which define how the potential energy of a molecule varies with the 

locations of its component atoms, and a series of atom types, defining the characteristics of 

an element within a specific chemical context [8]. The atom types describe different 

characteristics and behaviour for an element depending on its environment. The atom type 

also depends on the hybridisation, charge and the identities of the other atoms to which it is 

bonded. Some typical atom types are the sp3 carbon (carbon bonded to four atoms), non-

aromatic sp2, sp carbon, aromatic carbon, hydrogen bonded to carbon, hydrogen bonded to 

oxygen, hydrogen bonded to nitrogen, etc. MM does not treat the electrons in the molecule 

explicitly but rather the calculations are performed based solely on nuclear interactions [1]. 

 

The electronic effects are included in the force field through parameterisation. A parameter 

is a quantity that is constant for a set of circumstances but may vary for other 

circumstances. This approximation makes MM methods relatively less expensive in terms 

of computation time and hardware, and it can handle far larger molecular systems than 

electronic structure models or MO methods. Because of its ability to handle large 

molecules, MM is widely used to deal with biological molecules. For example, folding of a 

small protein in solution has been modelled by making use of the AMBER force field [10]. 
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The ability to predict a protein‟s three-dimensional structure for its amino acid sequence is 

of major help in areas such as drug design. However, MM methods are limited to problems 

that do not require knowledge of electronic effects; hence it is not usually utilized for 

transition state calculations [11, 12]. The latter calculations require electronic effects that 

lead to bond breaking or formation and the details of orbitals involved in the corresponding 

interactions. It is therefore clear that MM can actually not be classified as a MO based-

method.  

 

5.3 Electronic structure methods 

 

Electronic structure or MO methods of computational chemistry use the laws of quantum 

mechanics instead of classical physics [8, 9].  They seek to solve the Schrödinger wave 

equation which describes the behaviour of an atom or molecule in terms of its wave-like 

(or quantum) nature. This is represented by Equation 4.2 which relates the energy and 

wavefunction of a system 

 

     HΨ = EΨ    [4.2] 

 

where H is the Hamiltonian operator, a differential operator which like the energy in 

classical mechanics, is representative of the sum of kinetic energy and the potential energy 

of the molecule, E is the numerical energy of the system and Ψ is the wavefunction of the 

molecular system. 

 

The Schrödinger wave equation for molecular systems can only be solved approximately. 

By trying to solve the equation, the energy levels of the system can be calculated. Because 

of the mathematical rigour involved, the models work well for small molecules. Exact 

solutions to the Schrödinger equation may only be obtained for simple molecules (e.g. H2) 

because of the inter-electronic repulsion terms in the equation, where the motion of each 

electron depends on the motion of the others. Therefore, approximate methods have to be 

used for larger molecules such as variation methods and the Hartree-Fock self–consistent 

field method, where the calculated approximate energies are all equal or greater than the 

exact energy [5]. 
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The different methods and aspects of computational chemistry namely MM, semi-

empirical, ab initio, and density functional theory (DFT) are commonly referred to as the 

„level of theory‟ applied to calculate the geometry and the energy of a molecule. Both ab 

initio and DFT are concerned with predicting various properties of atomic and molecular 

systems. 

 

5.3.1 The ab initio method 

 

Ab initio methods are derived directly from theoretical principles without including 

experimental parameters in their calculations. In a more fundamental way ab initio 

methods attempt to calculate structures from first principles, using only the atomic 

numbers of the atoms present. The calculations are based solely on the laws of quantum 

mechanics and on the values of a few physical constants: the speed of light, the masses and 

charges of electrons and nuclei, and Planck‟s constant [8]. The advantage of ab initio 

methods is that they eventually converge to the exact solution once all the mathematical 

approximations become sufficiently small. They provide high quality quantitative 

predictions for a broad range of molecules. However, although modern computational 

developments (hardware and software) have increased the size of the systems manageable 

by ab initio methods, they are still very expensive in terms of computer resources and time. 

These methods often take an enormous amount of computer CPU time, memory and disk 

space. 

 

The ab initio methods follow mainly two lines, the Hartree-Fock (HF) approach possibly 

supplemented by the inclusion of electron correlation via second order Moller-Plesset 

perturbation theory (MP2) or alternatively a density functional approach [13]. Within the 

conventional scheme, geometry optimization is usually performed at the HF level and in a 

subsequent single point calculation electron correlation is taken into account. The MP2 

specifies the calculation of the electron correlation energy. Figure 73 illustrates the 

relationship between some of the ab initio methods used [6].  

 

Most of these methods are based on MO methods and the wavefunctions are calculated by 

a self-consistent field (SCF) method using the HF theory. The HF method assumes that the 

electrons move independently and does not make an allowance for electron correlation. 
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However, the effects of electron correlation can be taken into account by configuration 

interaction (CI) or by many-body perturbation theory (MBPT) which ensures that the 

treatment is size extensive and size consistent [14]. The incorrect dissociative behaviour of 

the molecular-orbital wavefunction is a serious deficiency which can be corrected by using 

the multi-configuration self-consistent field (MC-SCF) method, e.g. generalized valence 

bond  (GVB) and complete active space self-consistent field (CASSCF) methods [6]. Most 

of the computational chemistry software packages have these methods embedded in the 

calculation.  

 

Restricted Hartree-Fock (RHF) Unrestricted Hartree-Fock (UHF)
(Wavefunction is a spin eigenfunction) (Wavefunction is not a spin eigenfunction)

GVB

MC-SCF

CASSCF

SD-CI

MRCI

Full CI

Many-body pertubation theory

MP2

MP4

Infinite order
Many-body pertubation theory

Molecular orbital method

self consistent field (SCF)

 (MBPT)

 
Figure 73 Flow chart showing the relationship between ab initio methods [6]. 

GVB – generalized valence bond; MC-SCF – multi-configuration self-consistent field; CASSCF – complete 

active space self-consistent field; SD-CI – spaced configuration interaction; MRCI – multi reference 

configuration interaction; CI – configuration interaction, MP – Moller- Plesset. 

 

Unrestricted Hartree-Fock (UHF) and Restricted Hartree–Fock (RHF are commonly named 

HF) are different approximations of the wavefunction that are used in quantum mechanics 

calculations. The UHF wavefunctions are those that occur when the spin α-electrons are 
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allowed to differ from those of spin β (i.e. they are unpaired). Hence, the UHF 

wavefunction is often used for multiplicities greater than singlets. In RHF calculations the 

electron spins are by default paired and they also occupy the same spatial orbital; hence the 

RHF wavefunction is used for singlet electronic states, for example, the ground states of 

stable organic molecules [15]. Some more theory of this method will be provided below. 

 

5.3.2 Semi-empirical methods 

 

Semi-empirical methods utilise parameters derived from experimental data to simplify the 

computation. These methods introduce various approximations, which reduce the 

computational effort characteristic of ab initio methods, hence they are much faster. The 

major approximation of semi-empirical methods is that only the valence electrons are 

considered in the calculation. The inner shell electrons are treated as part of the nucleus. 

This is rationalized by the fact that electrons involved in chemical bonding are those in the 

valence shell. The second approximation is that the basis set is restricted to a minimal 

representation. This means only a minimal basis set (the number of functions necessary for 

accommodating the electrons in the neutral atom) is used for the valence electrons. For 

example, hydrogen has one basis function and all atoms in the second and third rows of the 

periodic table have four basis functions (one-s and one set of p-orbitals, px, py and pz). For 

transition metals, a set of d-type functions, a s-type function and a set of p-type functions 

are included, for example 3dx2-y2, 3dz2, 3dxy, 3dyz, 3dxz, 4s, 4px, 4py, 4pz. 

 

A common assumption of semi-empirical methods is the zero differential overlap (ZDO) 

approximation, which neglects all products of basis functions depending on the same 

electron coordinates when located on different atoms. Thus some of the elements that 

respond to the overlap between the atomic orbitals on different atoms are set to zero [1]. 

However, it is important to include some of the overlaps in even the simplest semi-

empirical models. To compensate for some of these approximations the specific method 

may include parameters that are assigned on the basis of ab initio calculations or 

experimental data. Hence the various semi-empirical methods differ depending upon how 

many integrals are neglected, and how the parameterization is done. 
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Semi-empirical methods solve an approximate form of the Schrödinger equation that 

depends on having appropriate parameters available for the type of chemical system in 

question. For example, expressions that occur in the Schrödinger equation are set equal to 

the parameters that have been chosen to lead to the best fit of experimental quantities such 

as enthalpies of formation [8]. Semi-empirical methods are applicable to a wide range of 

molecules with almost limitless number of atoms. They can be used, with the exception of 

modelling transition states, to reproduce a variety of experimental data, such as heats of 

formation, dipole moments and ionisation potentials. However, accuracy is limited largely 

because the models are parameterized based upon the results from relatively low level ab 

initio calculations [16]. The most widely used semi-empirical methods are the Austin 

Method (AM1) [17] and the parametric method (PM3) [18, 19] which are implemented in 

programs like MOPAC, AMPAC, HyperChem and Gaussian [20]. They usually give 

satisfactory bond lengths and bond angles hence they can be used to optimize the structure 

of a starting material. In general, semi-empirical methods are faster than ab initio methods 

but also the results obtained can be unreliable if the molecule is significantly different from 

the parameterization set utilized in the chosen method.  

 

5.3.3 Density Functional Theory (DFT) 

 

Density functional theory (DFT) [21] based methods are very similar to ab initio methods 

as they require similar resources and provide similar accuracy. DFT methods do account 

for the effect of electron correlation and are, therefore, a more attractive method than 

normal ab initio calculations that exclude electron correlation. DFT methods owe their 

origin to the work of Hohenberg and Kohn [22] in which they demonstrated that the 

ground state energy of any molecule can be described in terms of the total electron density. 

This means that each molecule has a unique functional form in which the energy and all 

other properties of a ground state molecule are uniquely determined by the ground state 

electron probability density. This system is different to the wavefunction approach of ab 

initio techniques, where the complexity of the wavefunctions increases by a factor of 3N 

for an N-electron system. The complexity of the DFT function is less dependent on the 

system size since electron density has the same variables [23]. The advantage of DFT 

methods is that only the total electron density needs to be considered rather than the 

wavefunction Ψ. A set of orbitals is used to obtain a better approximation to the electron 
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density and the process is repeated until the density and the energy are constant within 

some tolerance. The gradient-corrected functions involve both the values of the electron 

spin densities and their gradients. Becke [24] has introduced functionals consisting of a 

mixture of HF theory and DFT combined with a gradient-corrected correlation. A widely 

used gradient-corrected correlation functional is the Lee, Yang and Parr (LYP) that 

combines with Becke to form BLYP [24, 25]. In general, gradient-corrected or hybrid 

calculations give more accurate results. 

 

In addition to these traditional wavefunction approaches, theoretical calculations based on 

DFT methods have achieved a significant breakthrough during the last decade and they are 

now used worldwide to study the molecular structure and reactivity of chemical systems. 

The advantages of DFT include less demanding computation effort, less computer time 

and, in some cases, better agreement with experimental values. For example, Diels-Alder 

reactions and related cycloadditions have been the subject of several DFT studies showing 

that those that include gradient corrections and a hybrid functional, such as B3LYP 

together with the 6-31+G basis set, lead to potential energy barriers (PEBs) in good 

agreement with experimental results [11]. Despite many successes, DFT does have some 

drawbacks. The major criticism against DFT is that it does not approach the experimental 

answer in a systematic manner by reducing the approximations employed even after using 

a higher level of theory and better basis sets as is the case in ab initio methods [5].  

 

The present study relied heavily on transition state calculations and was limited to RHF 

and DFT calculations. 

 

5.3.4 Hartree-Fock Theory 

 

As described above, HF theory is the basis for MO or electronic structure methods. Below 

follows a short discussion of the principles involved with this theory.  

 

HF theory makes the fundamental approximation that each electron moves in the static 

field created by all other electrons [2]. This approximation involves the replacement of the 

many electron wavefunction by a product of one-electron wavefunctions, namely, the spin 

orbitals. Therefore, there is no allowance made for electron correlation. Each spin orbital is 
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written as a molecular orbital with one of two possible spin parts, α or β. According to the 

Pauli Exclusion Principle only two electrons may occupy a given molecular orbital of a 

ground state molecule and they must be of opposite spin [7]. The orbitals for all the 

electrons are then optimized in a self-consistent fashion subject to a variational constraint. 

The resulting wavefunction, when operated upon by the Hamiltonian, delivers as its 

expectation value the lowest possible energy for a single determinant wavefunction formed 

from the chosen basis set [2].  

 

The HF level of theory is the entry level of ab initio techniques. It is very useful for 

providing initial, first level predictions for many systems. The structures and the 

vibrational frequencies of stable molecules and some transition states can be reasonably 

computed. As such it is a good base level of theory. There are better levels of theory such 

as DFT (not strictly a HF method), MP2, MP4, etc., but they are more expensive with 

regard to hardware resources and time. However, HF theory also has limitations arising 

principally from the fact that effects of electron correlation are neglected making it 

unsuitable for some purposes. For example, it is insufficient for accurate modelling of the 

energetics of reactions and bond dissociation [8].  

 

When fewer approximations are used (i.e. higher level of theory and bigger/or better basis 

sets), then the computed data are in agreement with or approach experimental data. This is 

because larger basis sets impose few constraints on electrons and more accurately 

approximate exact molecular orbitals.  For example, the coupled cluster and quadric 

configuration interaction (QCI) methods represent a higher level treatment of electrons 

beyond MP4 usually providing even greater accuracy [8]. However, they require more 

computational resources. 

 

5.3.5 Basis sets 

 

A basis set is a mathematical description of the orbitals within a system used to perform 

the theoretical calculation [6, 8]. The wavefunction, Ψ, can be expanded in terms of a set of 

atomic orbitals, ҳµ, in the linear combination of atomic orbitals (LCAO) method, to give 

(Equation 4.3) [9] 
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    Ψ =∑ cµxµ     [4.3] 

 

where cμ is the molecular orbital expansion coefficient, and xμ is the basis function of the 

atomic orbital. The linear combination of atomic orbitals is a basis function. The basis 

functions are collectively called basis sets [9]. The coefficient cμ is varied to obtain the 

wavefunction Ψ, which will give the lowest energy in the Schrödinger wave equation. The 

more variational parameters used to describe an individual orbital, the lower the energy. 

However, a situation is reached when the energy is no longer decreased when the number 

of vibrational parameters is increased and then the best single determinant wavefunction is 

obtained. When this occurs, changing the wavefunction Ψ by an infinitesimal amount will 

not alter the energy. The number and the quality of the atomic orbitals xμ determine the 

quality of the molecular orbital expansion coefficient cµ. If there are many electrons in a 

molecule then the number of atomic integrals required increases rapidly and can be as 

many as several million for quite small molecules. For this reason a fast computer which 

has large storage capacity is essential.  

 

The two types of atomic basis functions are the Slater-type atomic orbitals (STOs) and the 

Gaussian-type atomic orbitals (GTOs). The former are not well-suited to numerical work, 

and their use in practical MO calculations has been limited. For example, the use of STOs 

as basis functions in polyatomic molecule calculations produces integrals that are very 

time-consuming to evaluate. Therefore, most molecular quantum-mechanical calculations 

use Gaussian functions instead of STOs as the basis functions [26]. These basis sets, in 

which each orbital is made up of a number of Gaussian probability functions, have 

considerable advantages over STOs. The Gaussian series of programs deals, as the name 

implies, almost exclusively with Gaussian-type orbitals. There are different types of basis 

sets which are discussed in the following sections. 

 

5.3.5.1 Minimal basis sets 

 

This is the simplest type of basis set that contains the minimum number of basis functions 

needed for each atom [8]. Only enough functions are employed to contain all the electrons 

of the neutral atoms. In the case of methane (CH4), for example, a minimal basis set would 

include 1s, 2s and 2p functions on the carbon atom and 1s functions on each of the 

hydrogen atoms. They use fixed-sized (contracted) atomic-type orbitals, e.g. Slater type 
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orbitals (STOs) and Gaussian type orbitals (GTOs). The most common minimal basis set is 

called STO-3G, where a linear combination of three Gaussian type atomic orbitals (GTO-

type) are fitted into Slater-type atomic orbitals (STO) [23]. The STO-3G basis yields 

properties that are reasonably close to limiting values and in view of the relative 

computational times of various expansions, it is this level that has been selected as an 

optimum compromise for widespread application. The individual GTOs are called 

primitive orbitals while the combined functions are called contracted functions. Some other 

commonly used STO-nG basis sets are STO-4G and STO-6G where the STO is fitted onto 

4 and 6 GTOs respectively.   

 

5.3.5.2  Split valence basis sets  

 

In these types of basis set, the number of basis functions per atom are increased which 

make the basis set larger and increases its flexibility [5]. Split valence sets such as 3-21G 

and 6-31G have two sizes of basis function for each valence orbital. As for the case of 

methane there will be two 1s functions for hydrogen and two 1s, two 2s and two 2p 

functions for the carbon atom. By doubling the number of functions, there tends to be a 

significant improvement in the accuracy obtained. Such a basis set is usually described as a 

valence double zeta ( ) basis [27]. The nomenclature is a guide to the contraction scheme. 

The first number indicates the number of primitives used in the contracted core functions. 

The numbers after the hyphen indicate the numbers of primitives used in the valence 

functions.  

 

5.3.5.3  Polarised basis sets 

 

Polarised basis sets add polarisation functions into the split valence basis set [5]. Split 

valence basis sets only expand the virtual size of the orbitals but do not change their 

shapes. Polarized basis sets remove this limitation by adding orbitals corresponding to one 

quantum number of higher angular momentum than the valence orbitals. They add d 

functions for the main group atoms like C, N and O, some add p functions to hydrogen 

atoms and f functions to transition metals. It is important to note that the d functions that 

are added to C, N and O atoms have similar sizes to 2p orbitals, and p functions in 

hydrogen atoms are also similar in size to the 1s orbital, and so on [27, 28]. The primary 

purpose of the polarization functions (d and p functions) is to give additional angular 
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flexibility to the linear combination of atomic orbitals (LCAO) process in forming bonding 

orbitals between pairs of valence atomic orbitals (1s, 2s, 2p, etc.). Polarization functions 

are essential in strained ring compounds because they provide the angular flexibility 

needed to direct the electron density into regions between bonded atoms. They can also be 

used in unstrained compounds for accuracy. An important nomenclature point is that most 

basis sets are defined to use five spherical d functions, except 6-31G (d) which uses six 

Cartesian d functions. The six Cartesian d functions are dx2, dy2, dz2, dxy, dxz, dyz and pure 

spherical d functions are dz2-r2, dx2-y2, dxy, dxz, dyz. Examples of polarized basis sets include 

6-31G(d) and 6-31G(d, p). In other words, polarization functions remove the 

approximation of a perhaps practical limitation on the size of the orbital, by awarding more 

virtual space to the orbital and allowing the mathematical algorithm to “decide” if to use 

the additional space or not. By doing so the calculation requires a bit more time and 

resources, but produces a slightly lower energy structure.  

 

5.3.5.4  Basis sets incorporating diffuse functions 

 

The normal basis sets described above are sometimes inadequate. This is particularly true 

in the case of excited states and in anions where the electron density is more spread out 

over the molecule (i.e. delocalization). Since the electron affinities of the corresponding 

neutral molecules are typically quite low, the extra electron in the anion is only weakly 

bound. Therefore, to account for this anomaly, a model basis function was designed which 

is more spread out. The spreading out of the basis function is called the diffuse function 

[5]. Since highest energy molecular orbitals of anions, molecules with lone pairs, highly 

excited electronic states, and loose supermolecular complexes tend to be much more 

spatially diffuse than normal molecular orbitals, diffuse functions are needed to minimise 

errors in the energy of such systems. To minimise this error in energy, standard basis sets 

like polarized basis sets [3-21G(d), 6-31G(d), etc.] are often augmented with diffuse basis 

functions, which are indicated by adding „+‟ in the basis set name [23]. Diffuse functions 

are typically used as a better treatment for cases where negatively charged species are 

being studied because the ionic radius of an anion increases significantly as compared with 

the corresponding neutral species. Diffuse functions are large versions of s- and p-type 

functions. Thus, 6-31+G(d) indicates that heavy atoms have been augmented with an 

additional one s and one set of p functions. A second „+‟ in 6-31++G(d) indicates the 

presence of s functions on H. 
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5.4 The Gaussian 98 program 

 

This program belongs to a series of electronic structure computer programs beginning with 

Gaussian 70 with the latest being Gaussian 03. The Gaussian program contains a hierarchy 

of procedures corresponding to different approximation methods commonly referred to as 

different levels of theory. These programs are capable of performing ab initio HF 

molecular orbital as well as DFT calculations dealing mainly with Gaussian type orbitals 

based on a LCAO approach. It is capable of computing energies, molecular structures and 

vibrational frequencies in the gas phase or in solution. 

 

5.4.1 The SCAN calculation 

 

A SCAN calculation can be used as an aid to finding an approximate starting structure for 

a normal transition-state optimization. A relaxed SCAN calculation involves changing the 

reaction coordinate from reactants to products, in a step-wise manner. The only constraint 

in this calculation is the required reaction coordinate(s) (i.e. bond length, angle or the 

dihedral angle). The rest of the molecule is then optimized to find the structure with lowest 

possible energy, subject to the imposed constraints, after which the reaction coordinate is 

modified by a prescribed value and in the next step the procedure is repeated. In this study 

only relaxed SCAN calculations were used. The energy of each step was plotted against the 

reaction coordinate. By inspecting the different structures at each step of the scan job, the 

course of the reaction could be followed. The approximate starting structure for a full (non-

restrained) transition-state (TS) optimization can be obtained by manually extracting the 

coordinates of the structure closest to the maxima on the energy versus reaction coordinate 

plot. The structure is then used as the starting geometry for a full (non-restrained) transition 

state optimization, followed by a frequency calculation. A frequency calculation of a true 

transition state produces only one negative eigenvalue that corresponds to the expected 

movement of atoms involved in the specific transition. 
 
 
 
 
 



 177 

5.4.2 Commands used during a SCAN or TS search 

 

(i) GDIIS 

This command is recommended for use with larger systems, tight optimizations and 

molecules with flat potential energy surfaces utilized in the Gaussian 98 program. It is the 

default for semi-empirical calculations.  This command makes use of a smaller step-size 

down the potential energy valley. If this feature is not used, one often gets optimizations 

that overstep the minimum on the potential energy surface, as the default step size is too 

large. This is prevented by decreasing the default stepsize of the optimization algorithm 

through the use of the GDIIS command [20].  

 

(ii) MODREDUNDANT or ModRed 

Modified Redundant coordinates (ModRed) is used in geometry optimization, e.g. the bond 

length to be scanned. The specified coordinates are constrained during a SCAN job, while 

the rest of the structure or coordinates are optimised. The Modred parameters are specified 

below the Cartesian coordinates. 

 

(iii) TS 

This is used as a request for the optimization to use a mathematical search algorithm which 

aims to find local maxima on the potential energy surface (i.e. a transition state) rather than 

a local minimum. 

 

 

(iv) NOEIGENTEST 

The default transition state search in Gaussian 98 makes use of the EigenTest. If only one 

imaginary frequency is found, the calculation continues to find the transition state 

associated with this negative eigenvalue. If more than one imaginary frequency exists, the 

default routine is to terminate the calculations. Since it is practically almost impossible to 

find a starting structure for TS with one and only one negative eigenvalue, the default TS 

calculation terminates very often. In order to overcome this oversensitive search criterion, 

one uses the “NoEigenTest‟‟option which overrides the default search criteria in Gaussian 

98. 
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(v) CALCFC 

This is a specified force constant computed at the first point using the current methods 

available for the HF, MP2, CASSCF, DFT, and semi-empirical methods only.  By default 

Gaussian uses a MNDO (semi-empirical) guess for the solution to the wave function of the 

specified system. The optimization uses this guess as a starting point after which the ab 

initio calculation is „built‟ on this starting point. Since the MNDO guess is based on a 

rather crude or inaccurate method, the calculation could sometimes follow a wrong 

solution for the wavefunction. One observes this by inspecting the geometry of the 

structure produced by the optimization; there are basically two choices: start with a better 

structure, i.e. a structure that was optimized at a lower level of theory, or if a better starting 

structure was already used, use the CalcFc option. 

 

5.4.3 The GaussView Program 

 

This is a graphical user interface that is used in conjunction with Gaussian 98. It is used to 

build molecules for submission to and for viewing results in the Gaussian 98 program. In 

this case GaussView was used to verify the animation of the vibrations associated with 

negative eigenvalues of the different states. 

 

5.5 Transition Structure Modelling 

 

A transition state (TS) is a molecular species that is represented by the maximum on a 

potential energy curve in two-dimensional reaction co-ordinate diagram. An attractive 

feature of computational chemistry is its ability to model species that may be too unstable 

or short-lived to be studied experimentally. Theoritically, it is therefore amenable to study 

transition states, stabilize them and even increase the reaction rate through a theoretical 

modification of the structure.  

 

5.5.1 Determination of transition states 

 

Ab initio methods are also well suited to the calculation of the structures of transition states 

which are characterized by saddle points on the potential energy surface [2]. Although 



 179 

there are new techniques such as femtosecond pulse laser spectroscopy to help in 

experimentally predicting transition states they are still limited to specific systems [28]. 

Therefore the whole process of transition state modelling still relies mainly on 

computational methods. The search for the potential minima and saddle points can be very 

efficient if one can calculate derivatives of the energy with respect to changes in geometry. 

In order to locate maxima (transition states), it is necessary to have fairly accurate initial 

geometries and matrices of the second derivatives of the energy (e.g. Hessian matrix). The 

reason for that is because a typical optimization algorithm does a crude guess of the initial 

solution to the wavefunction of the molecule under investigation. The optimization 

algorithm then starts a series of iterations to solve the wavefunction. If the initial structure 

is too far away from the correct transition state, then the initial guess will not locate the 

correct wavefunction of the specific transition, leading to the wrong solution.  

 

In order to obtain a transition state, it is important to know which parameters represent the 

reaction coordinates involved in the transition. A program for modelling structures 

between reactant and product could be used to perform a linear search for the lowest 

maximum on the energy surface and for this purpose a SCAN job was performed as 

discussed above. This enables the determination of a suitable starting geometry and a 

subsequent full TS optimization. A SCAN calculation is a convenient method to obtain an 

approximate starting structure for a specific transition state at the top of a maximum on the 

potential energy curve. The SCAN job increases/decreases the bond length, angle and 

dihedral angle in a stepwise manner. In each step of a SCAN calculation the molecule is 

optimized while only constraining the specified parameters. The approximate starting 

structure is then manually extracted and used in a normal non-constrained transition state 

optimization. A frequency calculation is performed to confirm that the structure obtained is 

really a transition state and to determine the number of imaginary frequencies. Imaginary 

frequencies are found in the output file as negative eigenvalues. For a transition state only 

one imaginary frequency (negative eigenvalue) is accepted, since it is a first-order saddle 

point. 

 

There are other methods being developed for transition state optimizations. Another 

manual method (for experienced computational chemists) involves guessing the starting 

structure of a transition state and performing a full unrestricted transition search 

(optimization) for it. The course of the movement of atoms during the first part of the 
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optimization then determines the changes that can be made in order to get a better starting 

structure. This approach could be faster; however, it requires experience and understanding 

of the reaction coordinates of a transition state for a specific system.  Once a transition 

state (TS) is located it is important to verify that it is connecting the reactants to products 

by inspecting the atomic motion of the atoms associated with the negative eigenvalue. An 

important method that can be useful for proving the correctness of a transition state 

structure is by using the intrinsic reaction coordinate (IRC) method to find the minimum 

energy path (MEP) from the TS to the local minimum. The intrinsic reaction coordinate is 

defined as the path that would be traced by a classical particle sliding with infinitesimal 

velocity from the transition structure to the minima corresponding to reactants or products. 

If one uses Cartesian coordinates the intrinsic reaction coordinate is the path of steepest 

descent. The intrinsic reaction coordinate can be calculated by taking small steps in the 

direction of steepest descent. At the saddle point the IRC coincides with the transition 

vector (i.e. the eigen-vector corresponding to the negative eigenvalue of the Hessian 

matrix) [29].  

 

In this study an input file for the optimization of the transition state structure was based on 

a simplified diene complex generated by using the “SCAN” function in Gaussian 98. 

Hence ab initio calculations were carried out by using the Gaussian 98 computer program 

at the restricted HF level of theory in order to determine the relative stabilities and 

structures of the 2-EHMC dimers. A variety of starting structures including both the 

isomers and dimers of 2-EHMC were employed. The calculations were carried out on both 

singlet and triplet states.  



 181 

REFERENCES 

 

1. Jensen, F., Introduction to computational chemistry. 1999: John Wiley and Sons, U.K. pp 

1-5. 

2. Cramer, C.J., Essentials of computational chemistry. Theories and Models. 2004,. John 

Wiley and Sons, U.K. pp.7-10. 

3. Hinchliffe, A., Chemical modelling from atoms to liquids, Chechester, England: John 

Wiley and Sons Ltd. pp 171-175. 

4. Atkins, P., de Paula, J., Elements of physical chemistry. 1992: W.H. Freeman and 

Company. pp 371-374. 

5. Hehre, W.J., Radom, L., Schleyer, P.V., Pople, J.A., Ab initio Molecular Orbital Theory. 

1986: John Wiley and Sons, U.S.A, pp 105-110. 

6. Hirst, D.M., A computational approach to chemistry. 1990, Oxford, London: Blackwell 

Scientific Publications. pp.12-15. 

7. Atkins, P.W., Physical Chemistry. 6th ed. 1998, Oxford University Press. pp 362-367. 

8. Foresman, J.B., Frisch, A., Exploring Chemistry with Electronic Structure Methods. 2nd ed. 

1996, Pittsburg, PA: Gaussian, Inc. pp 1-10. 

9. Levine, I.N., Quantum chemistry. 3rd ed. 1983, Boston Allyn and Bacon. pp.24-27. 

10. Duan, Y., Kollman, P.A., Pathways to a protein folding intermediate observed in a 1-

microsecond simulation in aqueous solution. Science, 1998, 282, 740-744. 

11. Alves, C.N., Camilo, F.F., Gruber, J., da Silva, A.B.F, A density functional theory study on 

the molecular mechanism of the cycloaddition between (E)- methyl cinnamate and 

cyclopendantadiene. Chemical Physics, 2004, 306, 35-41. 

12. Engler, E.M., Andose, J.D., von R.Schleyer, P., Critical Evaluation of Molecular 

Mechanics. Journal of American Chemical Society, 1973, 95, 8005-8025. 

13. Hobza, P., Sponer, J., Structure, energetics, and dynamics of the nucleic acid base pairs: 

nonempirical ab initio calculations. Chemical Reviews, 1999, 99, 3247-3276. 

14. Bartlett, R.J., Coupled-cluster approach to molecular structure and spectra: A step toward 

predictive quantum chemistry. Journal of Physical Chemistry, 1989, 93, 1697-1708. 

15. HyperChem computational chemistry, Hypercube, Inc., Canada 1996. pp 36-37. 

16. Young, D., Computational Chemistry: A practical Guide for Applying Techniques to real 

World Problem. 2001, New York: Wiley-Interscience. pp 10-20. 



 182 

17. Dewar, J.S., A new general purpose quantum mechanical molecular model. Journal of 

American Chemical Society, 1985, 107, 3902-3909. 

18. Stewart, J.J.P., Reply to Comments on a comparison of AM1 with the recently developed 

PM3 method Journal of Computational. Chemistry, 1990, 11, 543-544. 

19. Stewart, J.J.P., Optimization of parameters for semiempirical methods. III Extension of 

PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi., Journal of 

.Computational .Chemistry, 1991, 12, 320-341-. 

20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Montgomery, 

J.A.Jr., Vrenen, T., Kudin, K.N., Burrant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., 

Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, 

H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., T. Nakijima, 

T., Honda, M., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, 

J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., 

Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., 

Salvador, A., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, 

M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, 

J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov,B.B., Liu, G., Liashenko, 

A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, 

C.Y., Nanayakkara, A., Challacombe, M., Gill,P.M.W., Johnson, B., Chen, W., Wong, 

M.W., Gonzalez, C., Pople. J.A., Gaussian 03, Revision C.02. 2004, Wallingford CT, 

Gaussian.Inc. 

21. Seminario, J.M., Politzer, P Modern density functional theory: A tool for chemistry. 1998, 

Amsterdam: Elsevier Science. pp 11-15 

22. Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas. Physical Review B, 1964, 136, 

864-866. 

23. Hehre, W.J., A Guide to Molecular Mechanics and Quantum Chemical Calculations. 2003, 

Irvine, Wavefunction, Inc. pp 458-460.  

24. Becke, A.D., Density-functional thermochemistry III. The role of exact exchange. 

Chemical Physics, 1993, 98, 5648-5652. 

25. Lee, C.K., Yang, G., Parr, G., Development of the Colle-Salvetti correlation-energy 

formula into a functional of the electron density. Physical Review B, 1988, 37, 785-789. 

26. Levine, I.N., Physical Chemistry. 5th ed. 2002, New York: McGraw-Hill. pp 714-718. 



 183 

27. Pietro, W.J., Levi, B.A., Henhre, W.J., Stewart, R.F, Molecular Orbital theory of the 

properties of inorganic and organometallic compounds. 1. STO-NG Basis sets for third-

row Main-Group Elements. Inorganic Chemistry, 1980, 19, 2225-2229. 

28. Peitro, W.J., Henhre, W.J. Molecular orbital theory of the properties of inorganic and 

organometallic compounds. 3. STO-3G basis sets for first- and second-row transition 

metals Journal of Computational Chemistry, 1983, 4, 241-251. 

29. Garrett, B.C., Redmon, M.J., Stackler, R., Truhlar, D.G., Baldridge, K.K., Bartol, D., 

Schmidt, M.W., Gordon, M.S., Algorithms and accuracy requirements for computing 

reaction paths by the method of steepest descent, Journal of Physical Chemistry, 1988, 92, 

1476-1488. 

 

http://pubs.acs.org/doi/abs/10.1021/j100317a022
http://pubs.acs.org/doi/abs/10.1021/j100317a022


CHAPTER 6 

 

A computational study of the photodimerisation of 2-

ethylhexyl-p-methoxycinnamate 

 
Walyambillah Waudo, Bice S. Martincigh and H. Gert Kruger 

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag 

X54001, Durban, 4000, Republic of South Africa 

 
Abstract 

 

Theoretical studies using computational methods have been carried out to determine the 

lowest energy geometrical structures of some of the photoproducts generated via the 

photodimerisation of 2-ethylhexyl-p-methoxycinnamate and hence their relative stabilities. 

Ab initio molecular orbital calculations have been used to investigate the structures and the 

transition states of the various dimers resulting from the cycloaddition reactions. Geometry 

optimizations and energy calculations were performed with the Gaussian 98 program, 

using the B3LYP density functional and 6-31+G(d) basis set.  GaussView was used to 

visualize the transition state structures. The results show that the process of ultraviolet 

light-induced cyclodimerisation is through a stepwise mechanism via diradical 

intermediates. The photochemical reaction pathway involves the lowest excited singlet 

state of the different ethylene-ethylene molecular arrangements along the reaction 

coordinate. Due to spin inversion, a triplet radical is formed. The theoretical calculations 

predicted the most stable dimer forms result from isomers with a trans-trans configuration 

along the cyclobutane ring. These dimers are the most likely that were identified by HPLC 

analysis where only seven out of a possible thirteen dimers could be separated.  
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1.  Introduction 

 

The most commonly used ultraviolet B (UVB) sunscreen absorber is 2-ethylhexyl-p-

methoxycinnamate (2-EHMC: Figure 74) which is commercially available as the trans-

isomer [1]. It is classified as a UVB filter because it absorbs the shorter wavelengths (290-

320 nm) of solar UV radiation most effectively, which are regarded as the most harmful to 

human skin [2, 3]. Therefore, its photochemical behaviour is of fundamental interest. 

Previous studies have shown that 2-EHMC is photoreactive at wavelengths above 300 nm 

and isomerizes to its cis-isomer [1, 4, 5]. Irradiation of 2-EHMC with a high-pressure 

mercury lamp and a combination of filters with maximum transmittance greater than 300 

nm shows not only the formation of trans- and cis-isomers but also dimers through self-

dimerisation (Figure 74) [1, 6].  
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Figure 74 2-EHMC trans-cis isomerisation reaction. 

 

When 2-EHMC dimerises 13 possible dimers can potentially form; probably via a [2+2]-

cycloaddition reaction mechanism across the ethylenic double bond (as shown in Figure 

75). The [2+2]-cycloadditions are concerted reactions that proceed via a cyclic transition 

state. All bond breaking and bond formation occurs simultaneously, and no intermediates 

are involved [7].  
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Figure 75 Chemical structure of the 2-EHMC dimer. 
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Figure 76 Possible isomeric structures of the 2-EHMC dimer adapted from Robinet et al. 
[12]. 
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The photodimerisation of trans-2-EHMC can give rise to different 

stereoisomers/diastereoisomers that will depend on the spatial orientation of the groups 

attached to the ethylenic carbon-carbon double bonds. Both isomerisation and dimerisation 

of 2-EHMC reduce its ability of absorbing ultraviolet radiation [8, 9]. The loss of 

absorbance is an unfavourable condition as it reduces the actual efficacy of the sunscreen 

and hence offers less protection to human skin [10, 11].  

 

A high performance liquid chromatographic investigation of the photodimerisation of 2-

EHMC has shown the formation of at least seven dimers. As only very small quantities of 

the dimers of 2-EHMC can be isolated it is very difficult to determine their stereochemistry 

exclusively by spectroscopic means such as infrared (IR) and nuclear magnetic resonance 

(NMR) spectroscopy. Therefore, the aim of this work was to gain some understanding of 

the stereochemistry of these dimers that are formed upon irradiation of 2-EHMC. In 

addition, the mechanism of this reaction was investigated by using ab initio theoretical 

methods. 

 

Studies by quantum-chemical calculations can provide valuable information about the 

nature of the transition states and metastable intermediates which cannot be readily 

characterised by experimental techniques [13]. Such information, as well as details of the 

thermodynamics and the kinetics of the reaction, thereby allows direct insight into 

reactions mechanisms providing data that are complementary to and consistent with 

available experimental results. 

 

No theoretical studies dealing explicitly with the photodimerisation of 2-EHMC have been 

reported. Therefore a systematic ab initio quantum-chemical investigation of the 

mechanism of the photodimerisation of 2-EHMC when exposed to UV radiation was 

carried out. A general mechanism could explain the formation of the various dimers and 

possibly their stereochemistry. Furthermore, a careful theoretical study would give answers 

to a number of concrete questions. For example: 

 Is the formation of the dimers through a stepwise or concerted reaction mechanism? 

 What determines the orientation of the substituents on the cyclobutane ring? 

 Does the mechanism follow a triplet or singlet transition state? 

 What reaction step requires high temperatures to occur, i.e. which is the pathway 

that is energetically or thermodynamically favourable for the reaction sequence? 
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 What are the transition states or intermediates that are preferred? That is, how do the 

geometries of the various intermediates fit into the mechanism? 

 The influence of stereochemistry and substitution pattern at the cyclobutane motif on 

the reactivity. 

Beyond these mechanistic questions, 2-EHMC dimers are interesting structures in that they 

reduce the overall efficacy of trans-2-EHMC which is an active ingredient in sunscreen 

products. Spectral analysis of the dimers does show that they absorb in the UVC region of 

the UV spectrum which is compatible with the non-conjugated benzene nucleus [14]. It has 

been proposed that products resulting from the cycloaddition of two cinnamate molecules 

using double bonds effectively cancel the conjugation responsible for the absorption of the 

cinnamates [15].  

 

The aim of this work was to develop a model, which would include, as far as possible, all 

species and reactions of 2-EHMC. The procedure adopted was to consider a simplified 

molecular model (Figure 77) that would exhibit as close as possible the chemistry of trans- 

and cis-2-EHMC isomers. A computational model was used to determine the relative 

energies of the reactants, transition states, intermediates and products. A simplified model 

has the benefits of using less computer time and resources. Hence, the purpose of this is to 

present computations for a model system and thus provide a general basis for future 

mechanistic discussion and rationalisation of the experimental work. 
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Figure 77  A simplified molecular model for 2-EHMC. 

 

 

1.1 A proposed reaction mechanism 

 

Figure 78 shows a proposed mechanism for the photodimerisation of 2-EHMC. This 

mechanism is proposed based on what is known about such reactions from literature [16, 

17]. The mechanism accounts for the important intermediates and the reaction steps 
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anticipated. It starts with the reactants that may form a precomplex. This unsaturated 

complex can further rearrange through the transition state which eventually forms the 

product. During the [2 + 2]-cycloaddition photodimerisation reaction, the topochemical 

principle predicts that a reaction occurs if the reacting double bonds are parallel to each 

other and their distance in the crystal lattice is less than 4.2 Å [18]. The photodimerisation 

of cinnamic acids is one of the classical examples of a topologically controlled reaction 

[19].  

 

The first step of this [2 + 2]-cycloaddition corresponds to the nucleophilic attack of C2 of 

one monomer to C2′ of the second monomer with the formation of the corresponding 

intermediate. The second step involves the ring closure of these intermediates to give the 

final cycloadducts, achieved by the nucleophilic attack of C3 of one monomer to the C3′ 

position of the second monomer.  
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Figure 78 A proposed reaction mechanism for the photodimerisation reaction. 

 

In the present study the proposed mechanism in Figure 78 was systematically investigated 

with the help of ab initio quantum chemical techniques. Both the singlet and triplet 

potential energy surfaces were studied. 

 

As a first step, the stable conformers of the postulated intermediates were determined and 

confirmed as true minima on the potential energy surface by means of PM3 calculations. In 

the second part of the work, the transition states between the energy minima were located 

and characterised by vibrational frequency calculations of their energies. In this way, a 

complete reaction profile for the proposed mechanism could be obtained that allows for 

conclusions about the preferred reaction pathways and the rate- determining steps.  
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A main characteristic of the present work is a systematic and unbiased approach. For each 

intermediate all theoretically reasonable conformations were considered in the geometry 

optimizations. Ab initio and density functional theory (DFT) levels of calculations were 

performed to gain a better understanding of the correlation between the experimental and 

theoretical results. A systematic DFT study through the localisation of stationary points 

(reactants, transition structures (TS) and products) was carried out on the molecular model 

(Figures 79 and 80). 

 

 

Figure 79 A structure of the working model for the 2-EHMC isomer obtained with the 
BLYP and 6-31G basis set. The Cartesian coordinates of all optimized structures are 
available on CD as supplementary material. 

 

 
Figure 80 A structure of the transition state model for the 2-EHMC dimer obtained with the 
BLYP and 6-31G basis set. 
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Figure 81 is a schematic pathway for the photodimerisation of the simplified proposed 

model.  
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Figure 81 A proposed schematic reaction pathway for the photodimerisation of the 
molecular model of 2-EHMC as shown in Figure 79. 

 

A singlet transition is initially formed because the electrons are still spin paired. This then 

undergoes intersystem crossing to a triplet state where now the electron spins are unpaired. 

The triplet state loses some energy to a form a product (cyclobutane ring adduct). 

 

2. Computational details 

 

The theoretical studies involved two sets of calculations. First, the B3LYP hybrid 

functional in conjunction with the split valence 6-31G(d) basis set was used to obtain the 

optimised geometries of the monomers of 2-EHMC. Secondly, frequency calculations were 

performed at the same level of theory to ensure that the systems represent true minima on 
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the potential energy surfaces. An ab initio study was performed on a series of the thirteen 

theoretical possible 2-EHMC dimers. Semi-empirical calculations using PM3 were also 

carried out for comparison with the ab initio results. All the calculations were performed 

by using the Gaussian 98 computer program, implemented on a Unix workstation.  

 

Starting geometries of the dimers were drawn with the Gaussian 98 program and then 

converted to Gaussian input files. Before running a Gaussian job, the program had to be 

provided with input. The input section to the Gaussian program consists of the molecular 

charge and the spin multiplicity, the symbols of the constituent atoms and a definition of 

the molecular structure, either in the form of Cartesian coordinates or the Z-matrix notation 

which defines the molecular geometry in terms of bond lengths, bond angles and dihedral 

angles. It is also very important that the task to be performed, i.e. whether a single-point 

energy calculation, geometry optimisation or frequency calculation, is specified together 

with the appropriate basis set and the level of theory.  

 

Precaution was taken to ensure that a low energy conformation for molecules was obtained 

as a starting structure for the ab initio calculations. This was done by manual rotation of 

side chain dihedral angles, or by a molecular dynamics investigation using a force field 

method. Geometry optimisations and energy calculations were first performed with PM3 

and RHF/6-31+G(d). Geometry optimisations were then performed without restrictions by 

using B3LYP/6-31+G(d) so as to find the lowest energy structures for the reactants, 

intermediates, transition states and products.  

 

2.1 Energy optimisation of structures 

 

A full geometry optimisation for each of the thirteen dimer products was performed and 

their relative energies were calculated. During an optimisation of a structure the following 

basic mathematical procedure was performed by the computational program. Firstly, the 

software performed a rough guess (normally at the semi-empirical level of theory) of the 

solution of the wavefunction associated with the geometry of the input structure. The 

direction of the steepest descent on the energy surface, its largest energy gradient, was 

selected, and the bond lengths and angles were changed by an automatic mathematical 
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algorithm so as to precede one short step down the energy gradient. All the atoms of the 

molecule were “moved” by the mathematical algorithm so as to obtain the lowest energy 

position for the specific position of the molecule on the energy surface associated with the 

specific wavefunction. The mathematical procedure was repeated again and a new lowest 

energy geometry and energy gradient were found. The entire process was repeated until the 

energy differences between two calculations were reduced to some predetermined limit. 

The final geometry was said to have been optimised with respect to the geometry/energy 

and represents the best molecular parameters that could be obtained from that basis set. 

The same basic mathematical optimisation algorithm was used for molecular mechanics, 

semi-empirical and ab initio calculations. Gaussian 98 performed the optimisation, 

initialised by the OPT [20] keyword, of reactants and products using redundant internal 

coordinates. 

 

The same basic algorithm was also utilised for a transition state optimisation, except that 

the algorithm was changed to search for a maximum on the energy surface and not a 

minimum.  Some advanced methods were also available which made use of the negative 

eigenvalues (following them to find a maximum) associated with the 

wavefunction/transition state. Any transition state is associated with one negative 

eigenvalue only. The movement of atoms associated with the transition should correlate 

with the expected transition (i.e. bond breaking/formation, etc.). When the movement of 

atoms is complicated and it is unclear if the movement of atoms is associated with the 

specific transition, an intrinsic reaction coordinate (IRC) calculation should be performed 

to show that the reactants and products are indeed connected through the specific 

transition.  

 

2.2 Transition-structure modelling of the cinnamates using ab initio methods 

 

In this case an input file for the optimisation of the transition structure based on the 

simplified diene complex shown in Figure 82 was generated by using the “SCAN” function 

in Gaussian 98. 
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Figure 82 A schematic molecular model of the transition structure as obtained with the 
BLYP and 6-31G basis set as seen in Figure 79. 
 

Hence, ab initio calculations were first carried out by using the Gaussian 98 computer 

program at the restricted Hartree-Fock level of theory in order to determine the relative 

stabilities and structures of the dimers. A variety of starting structures including both the 

isomers and dimers of 2-EHMC were employed. The calculations were carried out on both 

singlet and triplet states. Ab initio molecular orbital calculations were also used to 

investigate the structures of the transition states of 2-EHMC. Ab initio calculations are well 

suited for the calculation of transition states which are saddle points on the potential energy 

surface [21].  

 

 

3 Results and Discussion 

 

In an effort to better understand the mechanism of the photodimerisation of 2-EHMC, we 

have performed theoretical ab initio calculations on model structures possessing different 

substitution patterns and stereochemistries at the cyclobutane ring. Most calculations were 

performed by using DFT with B3LYP hybrid functional and the 6-31G(d) basis set. The 

geometries of all the 2-EHMC dimers and the monomer isomers together with their 

corresponding energies were optimised. Initially PM3, RHF/3-21+G and RHF/6-31+G(d) 

were used for geometry optimisations and energy calculations. These results are presented 

in Table 19. The reactants which had a cis-cis configuration along the cyclobutane gave the 

most stable dimers. The cis-isomer is less stable than the trans hence it is more reactive. 

Although the formation of the dimers is a kinetic process, it is possible that not all are 

thermodynamically stable. 
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Table 19 The relative energies of the optimized structures of the dimeric products and 
reactant monomers to that of their respective non-optimized structures. 

 

 

Reactants  

Optimized energies b/kJ mol-1 

Product 

dimera 

Basis set 

Monomers  PM3 RHF/3-21+G RHF/6-31+G 

trans trans d1(tt) -55.495 2.936 84.084 

cis cis d2(cc) -11.108 40.326 124.154 

cis trans d3(ct) -68.529 -47.545 36.824 

cis cis d4(cc) -109.482 -136.097 -49.877 

trans trans d5(tt) -91.792 -55.189 8.954 

cis trans d6(ct) -84.377 -94.663 -27.944 

cis trans d7(ct) -84.223 -36.114 41.513 

cis trans d8(ct) -52.644 -13.891 61.737 

cis cis d9(cc) -43.744 -21.827 67.611 

trans trans d10(tt) -101.039 -120.927 -38.433 

trans trans d11(tt) -76.837 -11.099 57.863 

trans-isomer   -0.794 -2694.411 -2708.059 

cis-isomer   -0.795 -2694.353 -2708 
a Nomenclature as depicted in Figure 76. 
 b Approximate heat of formation ∆Hf  = Eproduct - Ereactant 
 
 

It was clear that the semi-empirical calculations, although much quicker, produced results 

that were inconsistent. This prompted the use of the density functional B3LYP/6-31+G 

which was found more suitable to our system (see Section 3.2).  

 

3.1 The transition structures (TS) 

 

There were no concerted TS that could be obtained. This was for singlet states as well as 

for triplet states. Therefore, the only TS obtained, as discussed below, for this system was a 

stepwise triplet state. It was not specified which of the two reactants were to be triplet 

states, it was left for the calculation to determine that using its optimisation algorithms. 

 



 196 

A relaxed scan was carried out between atom 2 and atom 2′ (see Figure 83). The 

conformational searching was performed by systematically varying the distances (e.g. by 

0.05A) between atoms 2 and 2′ with energy minimization at each step. The energy was 

plotted as a result of the change in reaction coordinate.  The energy profile of this relaxed 

scan gave a maximum at about 2.313 Ǻ (see Figure 84). 

 

Figure 83 The reactants that were used for the transition state. 
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Figure 84 A plot of the energy obtained after each SCAN calculation for different bond 
lengths between the two molecules during a search for an optimum transition state. 
 

 

The structure closest to the maximum on the energy profile was manually extracted and 

used as the input file for a transition state optimisation, followed by a frequency 

calculation. It is possible that the formations of two cyclic products are associated with 

each pair of reactants; depending on the relative orientation of the reactants (i.e. whether it 

is either trans or cis at the ethylenic bond). Figure 85 shows the position of the carbons at 

the ethylenic bond. An initial bond can form between C2 and C2′ as the first transition state 

(TS 1). It is equally possible to have a bond formation between C3 and C3′ as another 

second transition state (TS 2).Therefore, depending on the substituents on those carbons 

one could end up with different geometrical products. 
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Figure 85 The reactants showing the positions of the carbons at the cyclobutane ring. 
 

During a relaxed energy SCAN between the reaction coordinates of the proposed second 

(2nd) TS for the triplet state, it was found that a maximum was not observed (see Figure 

86). This observation was confirmed by a normal optimisation of a starting structure where 

the reaction coordinate of the first TS (triplet state with a transition state “bond” length of 

~2.3Å) was manually reduced to approximately 1.8 Å (after inversion of the one radical 

electron to produce a singlet state molecule). The structure was then optimised as a singlet 

structure by using the normal optimisation algorithm (finding a minimum on the energy 

surface).  The structure collapsed to the product without any delay. One should take into 

consideration that most optimisation algorithms are sensitive enough to be trapped in local 

maxima or minima and that the result mentioned above is sufficient proof that no maxima 

exist between the second transition state (TS 2) and the product.  

 

Table 20 Calculated SCAN energies for the second transition state for the proposed model.  

Bond lengths/nm Energies /H 

2.4593 -538.583121 

2.2593 -538.5957 

2.0593 -538.61114 

1.8593 -538.6283 

1.6593 -538.64208 

1.4593 -538.63672 

2 

2

′ 

3 

3

′ 
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Figure 86 A search for the second transition state. 

 

The proposed mechanism indicates cyclobutane ring formation through a stepwise radical 

mechanism. In this case, the initial step requires the homolytic cleavage of the double bond 

of one reactant to form a diradical. In the presence of sunlight, it is surmised there is 

enough energy to break the double bond, with formation of a single bond between the 

carbons. This diradical initially has the electron spins in the same direction forming a 

singlet intermediate. Then spin inversion is possible in which a triplet radical results. This 

intermediate radical is expected to be highly reactive, which results in rapid carbon-carbon 

bond formation. This reaction, which proceeds in a stepwise fashion via diradical 

intermediates, can be graphically represented as shown in the reaction profile given in 

Figure 81. The reaction profile shows the various stages which a reaction goes through 

whereby the molecule is a precomplex state of singlets before a spin inversion to a triplet 

state.  

 

3.2  Energy calculations of the products 
 

Ab initio molecular orbital calculations were performed on structures of reactants, 

transition states and products of the 2-EHMC model. These were done at the Hartree-Fock 
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level by using the Gaussian 98 program. The 3-21G and 6-31G basis sets were used. 

Although the 3-21G basis set produces inferior results in terms of structure accuracy and 

energy, it was initially used to get the starting stuctures. The starting structures were further 

optimised at the higher level of theory RHF/6-31+G (see Table 21 for the energies). 

However, the density functional B3LYP/6-31+G(d) was found more suitable for our 

system. The most stable dimers that can possibly form have a trans-trans configuration 

along the cyclobutane ring. This can be seen from the low energies, for example, of d1(tt), 

d2(tt) and d5(tt) except d6 (ct) which showed also a stable dimer.  Those dimers that had 

cis-cis configuration gave relatively less stable products. This could be due to steric 

hindrance between the groups along the cyclobutane ring. Table 21 shows the relative 

energies calculated for the reactants, transition states and the products. 

 

Table 21 Relative energies calculated for the various isomeric dimers and the reactants. 

Dimera Relative energiesb [B3LYP/6-31+G(d)] /(kJ mol-1)   
 Transition states Product 
 1c  1d  

d1 (tt) 152.013 152.013 -395.337 
d2 (tt) 154.019 154.019 -393.337 
d3 (ct) 184.619 184.619 -396.247 
d4 (cc) 134.385 134.385 -375.821 
d5 (tt) 171.137 171.137 -398.962 
d6 (ct) 171.567 175.998 -395.337 
d7 (ct) 185.576 185.576 -393.337 
d8 (ct) 186.122 240.634 -396.247 
d9 (cc) 177.273 177.273 -375.821 

d10 (cc) 186.536 186.536 -375.886 
d11 (tt) 160.235 215.344 -389.859 

trans-isomer (t) - - 0 
cis-isomer (c) - - 0.005 

a  Nomenclature as depicted in Figure 76 
b Approximate heat of formation ∆Hf  = Eproduct - Ereactant  
c First transition state 
d Second transition states  
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Figure 87 is a graphic representation of the reaction profile of the reactants.  Since the 

formation of dimers is a kinetic process, however it is possible that all are not 

thermodynamically stable. 
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Figure 87 Reaction profiles for the formation of dimers D1 to D11. 
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4  Conclusions 

 

Direct irradiation of trans-2-EHMC yields a mixture of photoproducts which include cis- 

and trans-isomers and dimers. Because of the difficulties in isolating the dimer 

photoproducts, investigations on the mechanism of formation and relative stabilities of the 

possible dimer structures were carried out by computational methods. Computational 

studies shed some light on the preferred most stable structures and possible reaction 

mechanism. 

 

Although the formation of the products is a kinetic process, it is possible that not all are 

thermodynamically stable. This could be the reason why only seven dimers out of a 

possible eleven were seen in the HPLC analysis. The most stable dimers that can possibly 

form have a trans-trans configuration along the cyclobutane ring.  

 

 The photochemical reaction pathway involves the lowest excited singlet state of the 

different ethylene-ethylene molecular arrangements along the reaction coordinate. Due 

to spin inversion, a triplet radical appears. It is from the triplet state that the final 

products form. 

 This intermediate triplet radical is expected to be highly reactive which 

subsequently results in rapid closure with another radical. The biradical intermediate is 

the determinant in the formation of the product as exhibited by the energy of their 

formation. For example, d1(tt), d2(tt), and  d5(tt)  resulted in much more stable 

products. 

 The trans-trans reactants gave more stable products as compared with cis-cis 

reactants. This is due to a conformation with the least steric hindrance. 

 The results provide valuable insight into a process of ultraviolet light-induced 

cyclodimerisation through a stepwise mechanism via diradical intermediates. This is 

supported by the fact that no concerted transition state could be determined for either 

singlet or triplet states. 

 

In summary, the theoretical studies have provided many interesting results on geometries, 

energies and other properties of these model systems.  The results can either be used 

directly in combination with experimental approaches such as NMR spectroscopy, for 
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example, or they can lead to a better understanding of the underlying principles of 2-

EHMC structures. A challenge for future quantum-chemical studies is the treatment of 

larger molecular systems. The results presented are sufficient to show that the computation 

procedure gives consistent results comparable with the experimental ones. The HPLC 

analysis showed only seven dimers from a possible eleven. It can be argued that these are 

the ones that are thermodynamically possible since they have the lowest energies of 

formation. 
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CHAPTER 7 

 

Conclusions 

 

Sunscreen products have become an integral part of our daily lives. They are no longer just 

for protection of the skin from sunburn but have found use in other personal care 

formulations including facial and body care products. A safe and effective sunscreen 

product is recognised as performing an even important role in protecting us from premature 

skin ageing and skin cancer. An ideal sunscreen should present a high photostability since 

the UV-induced decomposition may decrease its UV light absorption efficacy. The 

prevention of photodegradation would decrease the formation of potentially toxic 

photoproducts and their derivatives, thereby improving the safety of sunscreen 

formulations. 

 

The photostability and the broad-spectrum protection of Australian commercial sunscreens 

have been assessed by using both chromatographic and spectroscopic methods. High 

performance liquid chromatography was used to identify and quantitate the active chemical 

ingredients. UV spectrophotometry was used to monitor the spectral absorbance before and 

after UV exposure of the preparations. All together 25 different sunscreen products 

currently available on the Australian market were investigated. This is among one of the 

few studies that have been carried out on off-the-shelf ready-to-use commercial products.  

 

The results obtained in this investigation show that some of the photoactive chemical 

absorbers commonly being used in sunscreens are unstable upon UV radiation. It was 

noted that upon absorption of UV radiation some of the sunscreens showed formation of   

photoproducts as revealed by high performance liquid chromatography. This shows the 

importance of using complementary analytical techniques as one is able to monitor the 

changes in the UV filters and determine any photoproducts formed. The formation of 

photoproducts was mainly due to either photodegradation and/or photoisomerisation of the 

three chemical absorbers, 2-ethylhexyl-p-methoxycinnamate, avobenzone and 4-

methylbenzylidene camphor. Also there were changes in the absorption of UVA/B 

radiation which implies a reduction in the expected photoprotection against deleterious 
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solar radiation. The loss is more noticeable in the UVA region where most of the 

sunscreens, especially those containing avobenzone in their formulation, were 

photounstable. Unfortunately, avobenzone is the most commonly used UVA absorber. The 

addition of other sunscreen absorbers in the formulation such as 4-methylbenzylidene 

camphor or octocrylene, which are thought to photostabilise avobenzone, did not prevent 

its photodegradation. As it has been shown in this study avobenzone is highly 

photounstable and therefore upon UV exposure the sunscreen loses its broad-spectrum 

protection. This has also been confirmed by critical wavelength and UVA/UVB ratio 

analyses.  The loss of protection in the UVA region is a major concern as the consumer is 

exposed to more UVA radiation which is known to play a significant role in the induction 

of malignant melanoma skin cancer [1, 2]. All the sunscreens showed good photostability 

in the UVB range. This further showed that a mere complex filter combination was not a 

deterrent to the photoinactivation of the suncare products. In total eight of the twenty five 

of the assayed sunscreens were found to be photounstable. 

 

The broad-spectrum protection of the sunscreens was assessed by two in vitro methods, 

namely: the critical wavelength and UVA/UVB ratio. While there was general agreement 

between the methods on the overall status of the sunscreen, it was observed that the 

UVA/UVB ratio would classify some of the sunscreens as being broad-spectrum protective 

even though they did not contain UVA absorbers. Eleven of the sunscreens out the twenty 

five gave broad-spectrum protection. This apparent anomaly could be due to the low 

threshold critical wavelength assigned by this system.  This would call upon formulators to 

review and harmonise the two systems so that there is no ambiguity in interpretation of 

results.  

 

All the sunscreens investigated contained 2-ethylhexyl-p-methoxycinnamate as a UVB 

absorber. Therefore, this study also involved an investigation of the photochemistry of 2-

EHMC. Solutions of 2-EHMC in methanol were irradiated at wavelengths greater than 300 

nm for different irradiation times and were analysed for the formation of photoproducts by 

various analytical techniques. UV-vis spectrophotometry was used to monitor the 

photostability of 2-EHMC. It was observed that 2-EHMC showed a loss in the absorbance 

with increasing irradiation time. This is in agreement with previous studies carried out by 

other researchers in our laboratory [3-5]. This decrease is due to the photoisomerisation 

reaction to the cis-isomer. A photostationary state was reached with a solution of 1 x 10-6 
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M in which trans-2-EHMC was in excess of the cis-isomer. This is contrary to other 

studies that show the cis-isomer present in larger quantities than the trans-isomer at the 

photostationary state. For example, Broadbent [4], using 80% 2-EHMC showed cis-isomer 

to be in excess. This decrease in absorbance reduces the efficacy of trans-2-EHMC since 

the cis-isomer is a less efficient UVB absorber [6].  

 

A pure cis-isomer was obtained by fraction collection on HPLC and its identity was 

confirmed by HPLC-MS, NMR and FTIR techniques. Spectral data were collected for the 

cis-isomer and used to determine its molar absorption coefficient ( ). A value of 1.805 x 

104 dm3 mol-1 cm-1 at 304 nm was obtained and this is lower than that of trans-2-EHMC 

which is 2.33 x 104 dm3 mol-1 cm-1 at 311 nm in methanol [7]. The lower value therefore 

means that the cis-isomer is indeed a less efficient UVB absorber. The loss in absorbing 

efficiency is attributed to the photostationary equilibrium between the trans- and cis-

isomers attained during the photoisomerisation process [8]. 

 

The formation of photoproducts upon UV irradiation of 2-EHMC was investigated for the 

different concentrations of trans-2-EHMC ranging from 1 x 10-6 M to pure 2-EHMC. The 

formation of several high molecular mass compounds, suspected to be dimers, was only 

detectable in solutions of 1 x 10-3 M or greater of irradiated 2-EHMC implying that the 

process is diffusion-controlled. Seven dimers were identified by HPLC although 

theoretically a possible thirteen dimers can form [9]. These results are consistent with other 

studies of the photochemical dimerisation of cinnamic acids and their esters [10, 11]. The 

dimers elute much later than the isomers. This is due to structural differences whereby the 

dimers have twice the molecular mass and size of the isomers. In addition, due the bulky 

ethylhexyl alkyl group, these dimers can be considered to be more hydrophobic and non-

polar. It is therefore these structural characteristics that make them elute after the isomers 

on a reversed-phase column. This is consistent with reversed-phase HPLC in which non-

polar compounds are expected to stay longer on the stationary phase and elute much later 

than polar compounds. The fractions of the photoproducts were collected by semi-

preparative HPLC. However, due to the low yields of the dimers it was difficult to separate 

them successfully. The presence of these dimers was confirmed with HPLC-MS studies.  

However, it should be emphasized that photoisomerisation is the main photochemical 

process when solutions of 2-EHMC are irradiated with UV light. This phenomenon can be 
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observed by spectrophotometry or by HPLC but the determination of the UV spectrum of 

the cis-form is easier by coupling both methods. 

 

An attempt to characterise the dimers was carried out by using FTIR and NMR. The NMR 

spectra did show the loss of the peaks associated with the ethylenic double bond present in 

the monomers. Due to the extremely low yields of the photoproducts the NMR results 

obtained were not adequate to characterise the dimers as either truxinates or truxillates. 

Hence, ab initio and density functional theory (DFT) level of calculations were performed 

to provide a better understanding between the experimental results and the theoretical ones. 

A systematic DFT study through the localization of stationary points for reactants, 

transition states (TS) and products was carried out on a simplified model of 2-EHMC. The 

formation of dimers depends on the orientation of the substituents on the cyclobutane ring. 

The trans-trans configuration along the cyclobutane ring gave relatively more stable 

products than the cis-cis configuration of the reactants. This is due to less steric hindrance. 

Although it is kinetically possible for all the dimers to form, they might not be 

thermodynamically stable. This could be the reason that we are able to see only seven 

dimers by HPLC analysis. The formation of the photoproducts is by a stepwise reaction 

mechanism via diradical intermediates rather than a concerted mechanism. 

 

Despite the low yields, the presence of these photoproducts on the human skin would be of 

major concern. This would be an interesting area of future study to investigate the 

toxicological potency of these sunscreen filter substance degradation products with the aim 

of achieving a further improvement in cosmetic safety. It might be that the cyclobutane 

systems will not likely penetrate the skin due to their molecular size and conformation.  

 

Presently there is no topical or systematic drug or treatment that is available that is capable 

of completely reversing chronic damage due to sunscreen exposure. Although the use of 

topical sunscreens can be an effective strategy for reducing the amount of ultraviolet 

exposure and sunburn, alternative preventive measures have been suggested. In this 

respect, campaigns promoting sun avoidance and sun protection have recently gained 

significant attention. However, some persons because of the nature of their work cannot 

avoid exposure to the sun. Others continue to expose their bodies to the sun for the 

aesthetic value of a golden tan. Therefore, preventive measures will remain for the near 
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future the mainstay of coping with the problem of photoageing as well as with the 

worldwide dramatic increase in the incidence of skin cancer. 

 

One such approach to reduce UVB light-induced photodamages is through 

chemoprevention which by definition is a means of cancer control in which the occurrence 

of the disease can be entirely prevented, slowed or reversed by topical or oral 

administration of naturally occurring or synthetic compounds or their mixtures [12]. These 

chemopreventive compounds are known to be anti-mutagenic, anti-carcinogenic and non-

toxic and have the ability to exert striking inhibitory effects on diverse cellular events 

associated with multistage carcinogenesis. Skin care products supplemented with 

botanicals, in conjunction with the use of sunscreens and educational efforts may be an 

effective approach for reducing UVA-generated ROS-mediated photodamage, 

inflammatory responses and skin cancers in humans. Because of the role of UVB in 

cutaneous damage, the agents that can protect against this radiation could be ideal 

photochemoprotective agents for the skin. 

 

It is hoped that the knowledge gained through the studies of photoinduced reactions of the 

sunscreens, in turn, may be relevant to the solution of a number of pending problems such 

as the development of organic filters possessing unusual stability properties. This 

knowledge will enhance the capacity in the development of protective strategies against 

UV-induced skin damage. Although encapsulation techniques [13-15] are being used to 

stabilise sunscreen products none so far have been completely successful in preventing 

photodegradation. The strategy is to remove ingredients that are unstable and incorporate 

those that are known to improve photostability. Consequently, it is imperative that the 

consumer is provided with reliable information regarding the level of actual sun protection 

being provided by the product he or she is purchasing. This can be accomplished by 

continuing to standardise the current methods being used to determine the efficacy and 

photostability of sun care products. 
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APPENDIX A 

 

Materials 
 

The chemicals used for the purposes of this study are listed below together with the 

manufacturers‟ names and where relevant, the grade of chemical. 

 

A1 Chemicals used for the quantitation of UV filters by HPLC 

 

Methanol (99.8%) BDH HiperSolvTM Chemicals, Ltd. 

Acetonitrile (99.9%) BDH HiperSolvTM Chemicals, Ltd. 

Tetrahydrofuran (99.8%) Lab-Scan Analytical Sciences, Ltd. 

Chloroform (99%) Waters Division of HPLC Pvt, Ltd. 

Dichloromethane (99%) Saarchem 

Isopropanol (99.5%) Sigma-Aldrich  

MBC Merck 

Benz-3 BASF 

AVO BASF 

EHMC BASF 

PBSA Merck 

HS Haamann & Reimer 

OCT BASF 

OT BASF 
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APPENDIX B 

 

Equipment 
 

All the equipment used during this study is listed below. 
 

B1 Equipment for HPLC analysis 

Equipment Manufacturer 

 

600 multisolvent delivery system Waters 

U6K Variable Injector Waters  

Autosampler Series 2000 Perkin-Elmer 

600 Photodiode Array Detector Waters 

996 Photodiode Array Detector Waters 

7010 Rheodyne Injector Waters 

Pentium II 600 MHz Personal Computer De  Marc  

APCCII Personal Computer NEC 

950C DeskJet printer Hewlett Packard 

Guard-Pak -Bondapak C18 precolumn insert Waters 

HPLC Columns: Spherisorb 5ODS(2) Phenomenex 

                            Ultracarb 5ODS(20) Phenomenex 

                 Nucleosil 100 C18   250 x 4.6 mm Grom Analytik 

100 l Airtight Syringe Hamilton Company, 

Nevada, USA 

Ultrasonic bath Ultrasonic Manufacturing 

Company (UMC 20) 

Milli-Q50 ultra pure water apparatus Millipore 

Durapore® 0.45 µm membrane filters Millipore 

Millex-LCR Hydrophilic PFTE 0.45 µm  

syringe filters Millipore 
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B2 Irradiation Equipment 

 

Equipment Manufacturer 

 

HBO 500 W high pressure mercury lamp Osram 

Powerpack for HBO lamp Schrieber 

500 mL Photochemical reactor vessel with 

200 W medium pressure mercury lamp 

and powerpack Hanovia 

J-221 longwave UV intensity meter Blak-Ray 

10 mm thick pyrex filter 

 

B3 Equipment for UV-spectroscopy 

 

Equipment Manufacturer 

Lambda 35 UV/Vis Spectrophotometer Perkin-Elmer 

Quartz Cells, 1 and 10 mm pathlength Pecsa Analytical 

 

B4 Equipment for IR-spectroscopy 

 

15.011 ton manual hydraulic press    Specac 

Impact 400D spectrophotometer    Nicolet 

7440 Colour Pro plotter     Hewlett Packard 

 



APPENDIX C 

 

Calibration data 
 

The tables below present the calibration data for all the active ingredients quantified in this 

study. The calibration curve for each active ingredient is presented in Appendix D. 
 

Table C1: Calibration data for the determination of AVO. 

[Conc] 

/mol dm-3 3.24 x10-4 2.43 x10-4 1.62 x10-4 8.11 x10-5 4.06 x10-5 2.03 x10-5 1.01 x10-5 5.07 x10-6 

Pe
ak

 a
re

as
 

119176546 90801865 56489202 36321490 12191197 6266153 3403214 2151413 
124496979 89499096 62661009 30389596 12215012 6281009 3338895 2173036 
119620317 90389516 57802918 33416213 12957746 6543803 3504065 2100281 
122764483 91990398 51998003 34394958 12975891 6304862 3394958 2179281 
119118332 85785198 56122919 34096774 12503044 6469043 3044405 2265496 
122957705 91125035 56904312 35186337 12577095 6458018 3343402 2198132 
114216875 91869225 58911687 33526437 12184503 6590120 3540650 2256465 
125030744 90296219 59146982 33923893 12048920 6578591 3495107 2204393 
122526437 91434014 58659465 34061082 12256465 6908018 3169213 2127407 

Mean 121100935 90354507 57632944 33924087 12434430 6488846 3359323 2183989 
STD 3399266 1888936 2875834 1601554 343176.4 201561.7 162576.6 54685.91 
RSD/% 2.81 2.09 4.99 4.72 2.76 3.11 4.84 2.50 

 

Table C2: Calibration data for the determination of 2-EHMC. 

[Conc] 

/mol dm-3 6.37 x10-4 5.46 x10-4 4.55 x10-4 3.64 x10-4 1.82 x10-4 9.09 x10-5 4.5 x10-5 2.27 x10-5 

Pe
ak

 a
re

as
 

169792963 147564939 122332065 96609967 52242298 31571191 17567091 14764012 
168997631 147978959 123453821 99843553 53983248 32585125 18325405 14677109 
169659115 147887949 122875093 98791804 53908739 32714205 17622398 14790105 
166297182 147424893 121948781 101907381 49924453 33064647 18662246 14976837 
169233109 148789106 118562246 103592354 49283455 33906963 18684393 14285509 
167985934 149060993 119048324 100852829 50630217 33021704 19028966 14393736 
168306557 147392906 122651239 96998224 53609063 33473857 17265439 14043721 
169923769 147594316 123207310 99334506 52980096 31912974 17076818 14091771 
170918045 149008559 124376865 96991998 53800956 32500729 18050083 14123511 

Mean 169012701 148078069 122050638 99435846 52262503 32750155 18031427 14460701 
STD 1344562 687104.4 1969484 2394894 1849731 725961.6 688029.9 348674 
RSD/% 0.80 0.46 1.61 2.41 3.54 2.22 3.82 2.41 
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Table C3: Calibration data for the determination of MBC. 

 

[Conc] 
/mol dm-3 1.40 x10-4 9.29 x10-5 4.65 x10-5 2.32 x10-5 1.16 x10-5 5.81 x10-6 2.9 x10-6 1.45 x10-6 

Pe
ak

 a
re

as
 

68130064 46483759 22852244 11106897 5294105 2430865 1393811 592490 
68540416 46672916 22853588 11209670 5325874 2445444 1426896 598458 
68620871 46803573 23036567 11303352 5351199 2457331 1448033 586921 
70145680 48403417 23489057 12636065 4984481 2455364 1377633 569318 
71978515 48659269 24541365 11376590 4911917 2373575 1295947 578716 
71661098 48019529 24625486 11617616 5009413 2411580 1338086 579005 
68411437 46637354 22986214 11291506 5379123 2480614 1482923 595991 
70664743 47100643 23433326 11146488 5240043 2508917 1470984 597088 
68267735 46862594 23999112 12086764 5301489 2515061 1436632 589997 

                  
Mean 69602284 47293673 23535218 11530550 5199738 2453195 1407883 587553.8 
STD 1531608.29 833561.1 699093.9 512534.4 179343.5 45188.24 62176.29 9971.57 
RSD % 2.20 1.76 2.97 4.45 3.45 1.84 4.42 1.69 

 

 

Table C4: Calibration data for the determination of Benz-3. 

 

[Conc]/ 
mol dm-3 4.39 x10-4 2.92 x10-4 2.19 x10-4 1.09 x10-4 5.49 x10-5 2.74 x10-5 1.37 x10-5 6.86 x10-6 

Pe
ak

 a
re

as
 

50421773 35010010 24907677 12362996 5832621 2496507 1300511 550226 
51300640 37010700 25285281 13853477 5951657 2524290 1324525 556338 
50890107 35230561 25970007 14134253 5691422 2294522 1281043 577055 
51676065 35633988 23290079 12295705 5645944 2596641 1327377 547126 
52661098 35771747 24748330 12503044 5692586 2646592 1413424 566132 
50597859 35142574 25955368 12449699 5766108 2532884 1300181 567581 
50680145 35328846 24198811 12400505 5600762 2467735 1314539 560287 
50984772 35446316 23761208 12526036 5616647 2595831 1325288 563735 
51226027 34032114 25653746 12496656 5731192 2514133 1319734 567324 

                  
Mean 51159832 35400762 24863390 12780263 5725438 2518793 1322958 561756 
STD 683606.9 783636.2 959599.5 695466.5 111962.9 101229.5 37202.67 9357.811 
RSD/% 1.33 2.21 3.86 5.44 1.96 4.01 2.81 1.67 
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Table C5: Calibration data for the determination of PBSA. 

 

[Conc.] 
/mol dm-3 9.85 x10-4 4.93 x10-4 2.46 x10-4 1.23 x10-4 6.16 x10-5 3.08 x10-5 1.54 x10-5 7.7 0x10-5 

Pe
ak

 a
re

as
 

12273253 6344534 2971230 1394014 641425 304604 149474 66149 
12184532 6285659 2968132 1415929 659899 311170 154135 67617 
12260321 6287857 3061498 1420595 663882 305255 153282 67042 
12358346 6213031 3403219 1406437 665985 320527 151311 69196 
12514093 6288029 3332583 1449238 675891 326489 166839 63972 
12512082 6191719 3176108 1443969 650146 333520 159111 64098 
12298323 6264681 3168972 1411383 632155 321409 149349 66066 
12420093 6466109 3198954 1436437 644512 336337 156375 67109 
12277508 6492133 3285785 1467705 676549 320093 154168 68756 

Mean 12344283 6314861 3174053 1427301 656716 319933.8 154893.8 66667.22 
STD 115717 103401.6 152885.7 23574.38 15562.72 11327.22 5469.489 1819.703 
RSD % 0.94 1.64 4.82 1.65 2.37 3.54 3.53 2.73 
 

 

Table C6: Calibration data for the determination of OCT. 

 

[Conc] 
/mol dm-3  3.04 x10-4 2.28 x10-4 1.52 x10-4 7.62 x10-5 3.81 x10-5 1.9 x10-5 9.5 x10-6 

Pe
ak

 a
re

as
 

4793018 3409277 2295760 1176663 569708 287612 137890 
4711138 3428393 2234091 1121669 564167 280321 136044 
4719307 3452643 2272852 1139416 569982 285701 136966 
4932138 3474096 2240654 1204997 568976 290577 138976 
4912082 3500116 2341560 1192839 570695 289437 139840 
5088116 3465496 2300885 1199693 569026 299572 139027 
4941207 3479287 2289076 1195707 576638 292196 140526 
4965496 3464372 2264937 1185838 569437 290307 138093 
4918013 3421113 2292133 1190321 565633 298075 141171 

                
Mean 4886724 3454977 2281328 1178571 569362.4 290422 138725.9 
STD 123012.4 29875.52 32828.43 28738.38 3470.99 5901.902 1658.404 
RSD % 2.52 0.86 1.44 2.44 0.61 2.03 1.19 
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Table C7: Calibration data for the determination of OT. 

 

[Conc] 
/mol dm-3 1.35 x 10-4 1.01 x 10-4 6.76 x10-5 3.38 x10-5 1.69 x 10-5 8.45 x 10-6 4.23 x 10-6 2.11 x10-6 

Pe
ak

 a
re

as
 

18966188 14266027 9508809 4735641 2374406 1188601 592655 296798 
18887709 14305364 9543937 4799697 2419881 1198450 594682 304621 
18907459 14293816 9604027 4810529 2369120 1204892 589762 300544 
18900876 14330467 9608972 4781111 2395416 1156456 589885 299753 
19061208 14406740 9637629 4743969 2346290 1169373 592893 289969 
18985496 14364536 9705109 4804337 2446997 1199577 596366 299193 
18987670 14488633 9593379 4796432 2392506 1169205 597653 298920 
18928883 14593969 9569210 4800762 2421402 1171131 606437 312950 
18918776 14496443 9583938 4893835 2398976 1178006 602383 290067 

                  
Mean 18949363 14393999 9595001 4796257 2396110 1181743 595857.3 299201.7 
STD 55709.68 111116.3 55951.28 45360.14 30613.46 16794.02 5604.042 7027.028 
RSD % 0.29 0.77 0.58 0.95 1.28 1.42 0.94 2.35 
 

 

 

Table C8: Calibration data for the determination of HS. 

 
[Conc] 
/mol dm-3 2.02 x10-4 1.52 x 10-4 1.01 x 10-4 5.06 x 10-5 2.53 x10-5 1.26 x 10-5 6.3 x 10-6 3.2 x10-6 

Pe
ak

 a
re

as
 

2043099 1519936 986742 509514 259698 124235 65266 32715 
2124210 1544860 995960 516372 250434 120480 66717 33408 
2132838 1547203 989343 519609 258136 123732 66433 33593 
2299571 1646640 1109564 498021 262085 119247 66910 34680 
2193020 1591997 1099770 509473 267574 116694 66049 35009 
2280805 1599546 1108332 506690 259790 120811 66864 35115 
2159650 1597732 1097812 510490 262125 129997 68048 34405 
2093730 1585897 1128411 519004 260541 128932 67914 34761 
2112459 1592505 1091733 588027 267224 129020 68179 34086 

                  
Mean 2159931 1580702 1067519 519688.9 260845.2 123683.1 66931.11 34196.89 
STD 84779.65 37726.24 58568.9 26487.16 5091.607 4785.931 975.9842 813.3802 
RSD% 3.93 2.39 5.49 5.10 1.95 3.87 1.46 2.38 
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Table C9: Calibration data for the determination of ODM-PABA. 

 

[Conc] 
/mol dm-3 8.64 x 10-5 7.2 x10-5 5.76 x 10-5 4.32 x10-5 2.16 x10-5 1.08 x10-5 5.4 X 10-6 2.7 x10-6 

Pe
ak

 a
re

as
 

94534386 76866996 62870840 46418932 25982384 16468766 9568766 5056911 
95576345 78107834 62562842 46250984 27156932 16551639 9596149 5019980 
96995668 79385204 62967204 46061385 27895337 16597304 9375430 5100291 
93104061 78035015 62808821 48212860 27115860 16293156 9653337 5130462 
94849473 80859526 61655757 47731132 27087445 16373071 9604843 5030440 
97054301 81056552 62922141 48057564 26980732 16295526 9756684 5192081 
96296755 79420139 62828865 46139159 27360551 16892994 9803342 5129459 
96760617 78107365 62606250 46278555 27956267 16973626 9596061 5096774 
98598513 79956224 62930214 46503171 27363828 17091329 9662797 5089908 

                  
Mean 95974458 79088317 62683659 46850416 27211037 16615268 9624157 5094034 
STD 1641401 1411115 410338.16 881098.6 576543.9 300555.9 121909.5 53811.17 
RSD/% 1.71 1.78 0.65 1.88 2.12 1.81 1.27 1.056357 
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APPENDIX D 

 

Calibration curves and residual plots 
 
The following are the respective calibration curves and the residual plots for the various active 

ingredients analysed in this study. The data used to construct these graphs is given in 

Appendix C 
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Figure D1 HPLC calibration curve for the determination of AVO.  The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% (v/v) MeOH/H2O, flow rate 1 
mL min-1, injection volume – 10 µL. Detection wavelength at 360 nm. 
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Figure D2 Residual plot for the calibration curve of AVO.  
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Figure D3 HPLC Calibration curve for the determination of 2-EHMC. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% (v/v) MeOH/H2O, flow rate 1 
mL min-1, injection volume – 10 µL. Detection wavelength at 310 nm. 
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Figure D4 Residual plot for the calibration curve of 2-EHMC. 
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Figure D5 HPLC Calibration curve for the determination of MBC. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/H2O, flow rate of 1 
mL min-1, and injection volume – 10 µL. Detection wavelength at 310 nm. 
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Figure D6 Residual plot for the calibration curve of MBC. 
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Figure D7 HPLC calibration curve for the determination of Benz-3. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/ flow rate of 1 mL 
min-1, and injection volume – 10 µL. Detection wavelength at 310 m. 
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Figure D8 Residual plot for the calibration curve of Benz-3. 
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Figure D9 HPLC Calibration curve for the determination of PBSA. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/H2O flow rate of 1 
mL min-1, and injection volume – 10 µL. Detection wavelength at 310 nm. 
 



 229 

 

 

-3 

-2 

-1 

0 

1 

2 

3 

4 

0 2 4 6 8 10 12 

[PBSA]/10-4M 

R
es

id
ua

ls
/1

05  

5  

 

Figure D10 Residual plot for the calibration curve of PBSA. 
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Figure D11 HPLC calibration curve for the determination of OCT. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/H2O flow rate of 1 
mL min-1, and injection volume – 10 µL. Detection wavelength at 310 nm. 
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Figure D12 Residual plot for the calibration curve of OCT. 
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Figure D13 HPLC calibration curve for the determination of HS. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/H2O flow rate of 1 
mL min-1, and injection volume – 10 µL. Detection wavelength at 310 nm. 
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Figure D14 Residual plot for the calibration curve of HS. 
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Figure D15 HPLC calibration curve for the determination of ODM-PABA. The 
chromatographic conditions used were: Nucleosil C100 C18 column, eluent 85% v/v 
MeOH/H20, flow rate of 1 mL min-1, and injection volume – 10 µL. Detection wavelength at 
310 nm. 
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Figure D16 Residual plot for the calibration curve of OD-PABA. 
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Figure D17 HPLC calibration curve for the determination of OT. The chromatographic 
conditions used were: Nucleosil C100 C18 column, eluent 85% v/v MeOH/H20 flow rate of 1 
mL min-1, and injection volume – 10 µL. Detection wavelength at 310 nm. 
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Figure D18 Residual plot for the calibration curve of OT. 
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APPENDIX E 

 

UV transmission spectra 

 
This appendix shows the UV transmission spectra (in duplicate) of the 25 

Australian sunscreen products investigated. They are grouped according to the 

filter combination that they contain. 

 

 Filter combination: 2-EHMC and AVO 

Samples: AU11 and AU25 

 

 

Figure E1 The UV transmission spectra of sample AU11 with increasing doses of UV 
radiation. 
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Figure E2 The UV transmission spectra of AU25 with increasing doses of UV 

radiation. 
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Filter combination: 2-EHMC and Benz-3 

Samples: AU23 

 

 
 

 

Figure E3 The UV transmission spectra of sample AU23 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, MBC and AVO 

Samples: AU1, AU10 and AU18 

 

 
 

 
Figure E4 The UV transmission spectra of AU1 with increasing doses of UV 

radiation. 
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Figure E5 The UV transmission spectra of AU10 with increasing doses of UV radiation. 
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Figure E6 The UV transmission spectra of sample AU18 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, Benz-3 and AVO 

Samples: AU2 

 

 
 

 

Figure E7 The UV transmission spectra of sample AU2 with increasing doses of UV radiation. 
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Filter combination: 2-EHMC, MBC, ZnO 

Samples: AU5, 6,8,12,14,16,17 and 19 

 

 
 

 
Figure E8 The UV transmission spectra of AU5 with increasing doses of UV radiation. 
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Figure E9 The UV transmission spectra of AU6 with increasing doses of UV radiation.  
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Figure E10 The UV transmission spectra of sample AU8 with increasing doses of UV 
radiation. 
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Figure E11 The UV transmission spectra of sample AU12 with increasing doses of UV 
radiation. 
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Figure E12 The UV transmission spectra of sample AU14 with increasing doses of UV 
radiation. 
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Figure E13 The UV transmission spectra of sample AU16 with increasing doses of UV 
radiation. 
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Figure E14 The UV transmission spectra of sample AU17 with increasing doses of UV 
radiation. 
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Figure E15 The UV transmission spectra of sample AU19 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, PBSA, TiO2 

Samples: AU3 

 

 
 

 

Figure E16 The UV transmission spectra of sample AU3 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, OCT, ZnO 

Samples: AU4, AU21, AU22 

 

 

 
 

 

Figure E17 The UV transmission spectra of sample AU4 with increasing doses of UV 
radiation. 
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Figure E18 The UV transmission spectra of sample AU21 with increasing doses of UV 
radiation. 
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Figure E19 The UV transmission spectra of AU22 with increasing doses of UV radiation. 
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Filter combination: 2-EHMC, Benz-3, TiO2 

Samples: AU9 and AU13 

 

 
 

 

Figure E20 The UV transmission spectra of sample AU9 with increasing doses of UV 
radiation. 
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Figure E21 The UV transmission spectra of sample AU 13 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, AVO and OT 

Samples: AU15 

 

 

 
 

 

Figure E22 The UV transmission spectra of sample AU15 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, AVO, Benz-3 and TiO2 

Samples: AU24 

 

 
 

 
 

Figure E23 The UV transmission spectra of sample AU24 with increasing doses of UV 
radiation. 
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Filter combination: 2-EHMC, AVO, MBC and OT 

Samples: AU7 

 

 
 

 

Figure E24 The UV transmission spectra of sample AU7 with increasing doses of UV  

radiation. 
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Filter combination: 2-EHMC, Benz-3, HS and ODM-PABA 

Samples: AU20 

 

 

 
 

 

Figure E25 The UV transmission spectra of AU20 with increasing doses of UV radiation. 

100 
% 

T 
90 

,. 80 

" 70 
n 

" 
60 

m 50 

40 

30 

" 20 
n , 10 

, 0 

260 

100 
% 

T 
90 

,. 80 

" 70 
n 

" 
60 

m 50 

40 

30 

" 20 
n , 10 

, 0 

260 

280 300 320 340 

Wavelength/IUll 

-
280 300 320 340 

Wavelength/IUll 

360 380 

360 380 

400 

400 

--OMED 

-- 2MED 

-- 5MED 

10 MED 

-- 20MED 

--OMED 

-- 2MED 

-- 5MED 

10 MED 

-- 20MED 



 259 

APPENDIX F 

 

HPLC chromatograms for suncare products 

 

 

  

Figure F1 HPLC chromatogram of irradiated AU 1 separated on a Nucleosil C100 C18 column, 
eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and detection 
wavelength: 310 nm. The order of elution is MBC, and trans-2-EHMC. 
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Figure F2 The HPLC chromatogram of unirradiated AU1 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 360 nm. The order of elution is MBC, trans-2-EHMC and AVO. 

 

  

Figure F3 HPLC chromatogram of irradiated AU 3 separated on a Nucleosil C100 C18 column, 
eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and detection 
wavelength: 310 nm. The order of elution is PBSA and trans-2-EHMC. 
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Figure F4 HPLC chromatogram of irradiated AU 4 separated on a Nucleosil C100 C18 column, 
eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and detection 
wavelength: 310 nm. The order of elution is OCT, and trans-2-EHMC. 
 

 

Figure F5 The HPLC chromatogram of unirradiated AU5 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC and trans-2-EHMC  
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Figure F6 The HPLC chromatogram of unirradiated AU6 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC and trans-2-EHMC. 
  

 

Figure F7 HPLC chromatogram of unirradiated AU 8 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC, and trans-2-EHMC  
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Figure F8 HPLC chromatogram of unirradiated AU9 separated on Nucleosil C100 C18 column, 
eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and detection 
wavelength: 310 nm. The order of elution is Benz-3 and trans-2-EHMC. 

 

 
 

Figure F9 HPLC chromatogram of unirradiated AU10 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is trans-MBC, trans-2-EHMC and AVO. 
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Figure F10 HPLC chromatogram of unirradiated AU10 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 360 nm. The order of elution is trans-2-EHMC and AVO 

 

 

 

 

Figure F11 HPLC chromatogram of unirradiated AU12 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC and trans-2-EHMC. 
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Figure F12 HPLC chromatogram of unirradiated AU13 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is Benz-3 and trans-2-EHMC.  

 

 

Figure 13 HPLC chromatogram of unirradiated AU14 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC and trans-2-EHMC.  
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Figure F14 HPLC chromatogram of unirradiated sample AU16 separated on Nucleosil C100 
C18 column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC and trans-2-EHMC.  

 

 

 

 

Figure F15 HPLC chromatogram of unirradiated sample AU15 separated on Nucleosil C100 
C18 column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is OT, trans-2-EHMC and AVO. 
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Figure F16 HPLC chromatogram of the unirradiate AU19 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is MBC, and trans-2-EHMC. 
 

 

  

Figure F17 HPLC chromatogram of unirradiated AU20 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is Benz-3, ODM-PABA, HS and trans-2-
EHMC.  
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Figure F18 HPLC chromatogram of irradiated AU20 separated on Nucleosil C100 C18 
column, eluent: 75% (v/v) MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is Benz-3, HS, ODM-PABA and trans-2-
EHMC. 
 

 

 

 

Figure F19 HPLC chromatogram of unirradiated AU24 balm separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is Benz-3, trans-2-EHMC and AVO. 
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Figure F20 HPLC chromatogram of irradiated sample AU25 separated on Nucleosil C100 C18 
column, eluent: 85% MeOH/H2O, flow rate: 1 mL min-1, injection volume: 10 µL and 
detection wavelength: 310 nm. The order of elution is Benz-3, cis-EHMC and trans-2-EHMC  
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APPENDIX G 

 

HPLC-MS spectra for some irradiated suncare products 
 

 

 

 

Figure G1 HPLC chromatogram of irradiated AU5 analysed on the Agilent Zorbax 
Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was trans-MBC, cis-MBC, cis-2-EHMC and trans-2-
EHMC. 
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Figure G2 Mass spectra of the peaks labeled M1, M2, E1 and E2 in Figure G1. 

 

 

 

Figure G3 HPLC chromatogram of irradiated AU24 analysed on the Agilent 
Zorbax Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was Benz-3, AVO, cis-2-EHMC and trans-2-EHMC. 
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Figure G4 The mass spectra of the peaks labeled for the irradiated sample AU24 in Figure 
3. 
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Figure G5 HPLC chromatogram of irradiated AU1 analysed on the Agilent Zorbax 
Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was MBC, AVO, cis-2-EHMC and trans-2-EHMC. 
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Figure G6 The mass spectra of the peaks labeled for the irradiated sample AU1 in Figure 5 
 

 

 

 

 

Figure G7 HPLC chromatogram of irradiated AU19 analysed on the Agilent 
Zorbax Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was trans-MBC, cis-MBC, cis-2-EHMC and trans-2-
EHMC. 
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Figure G8 The mass spectra of the peaks labeled M1, M2, E1 and E2 for the irradiated 
sample AU19 in Figure G7. 
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Figure G9 HPLC chromatogram of irradiated AU10 analysed on the Agilent 
Zorbax Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was, AVO, trans-MBC, cis-MBC, cis-2-EHMC and 
trans-2-EHMC. 
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Figure G10 The mass spectra of the peaks labeled AVO, M1, M2, E1 and E2 for the 
irradiated sample AU10 in Figure G9. 

 

 

 

 

Figure G11 HPLC chromatogram of irradiated AU12 analysed on the Agilent 
Zorbax Eclipse XDB-C18 column by isocratic elution at a flow rate of 1 mL min-1, 
injection volume 5 µL with the Agilent 1100 Series HPLC with UV detection at 
310 nm. The order of elution was MBC, cis-2-EHMC and trans-2-EHMC. 
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Figure G12 The mass spectra of the peaks labeled M, E1 and E2for the irradiated sample 
AU12 in Figure G11. 
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APPENDIX H 

 

Raw data for suncare products 
The following tables list the peak areas for the active chemical ingredients in the different sunscreens analyzed by HPLC 

Chromatographic conditions: eluent 85%v/v MeOH/H2O, flow rate: 1 mL min-1, column: Nucleosil C100 C18, injection volume: 10 

µl, mass extracted: 0.5 g. 

Raw data for quantification of the active chemical ingredients in the commercial sunscreen products 
AU 1    AU2      
EHMC AVO MBC  EHMC AVO  Benz-3    
36567191 10791597 26423365  38657671 6035158 5876326    
36685135 11915022 25714567  36534135 5982389 5960516    
37271425 10246742 25431991  35125765 6048853 5693422    
35068464 11097527 23245864  39687323 5836286 5640954    
34906783 10504434 22473775  38875418 5664640 5692586    
35902174 11575905 22400580  37167541 5645863 5466178    
36473849 12096506 25442114  32647569 5590286 6672682    
37195973 11042020 25698617  30871129 5471985 6569067    
36251129 12002565 25908061  31259437 5594386 6573192    
          
AU 3   AU 4   AU 5    
EHMC PBSA  EHMC OCT  EHMC MBC   
30653455 460704  29757566 417082  35531569 26200335   
29150975 477252  28915653 428067  38569167 26411577   
30232372 473525  30453232 418578  36045223 26501312   
33968723 431530  31549728 409577  37954728 22734654   
32854878 455149  32385878 429463  36432374 21589755   
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31675491 453582  31766751 420572  37087667 22540012   
34275569 442164  30675227 389574  35000667 24600421   
34087929 423637  31907429 409067  34190754 23759862   
32509437 422093  31096437 398175  35196427 21809584   
          
AU 6   AU 7       
EHMC MBC  EHMC AVO MBC OT    
30055358 27625645  32730858 6208235 35679905 2037406    
29851767 26754207  33068312 6067289 36492907 2142371    
31452283 26895782  33908143 6098323 36002242 2036120    
32575658 23778874  30255665 6938646 33164354 2256416    
36032304 22157655  31464343 6668620 32379550 2056219    
36208707 23878712  30320871 6643765 32304743 2346787    
31506677 21442021  33366566 6568286 34157421 2092506    
32190654 22379871  32988544 6458165 33981045 2021482    
33510896 23881884  30951807 6583496 35480014 2178396    
 
 
          
AU 8   AU 9  AU 10     
EHMC MBC  EHMC Benz-3 EHMC AVO MBC MBC  
32308958 9385811  42789307 5956009 32789433 10532657 34230985 34230985  
30658322 9806496  43305412 6076541 34354302 11005422 32438944 32438944  
29143683 9714356  43990081 5906754 33430011 10468458 32745371 32745371  
33257865 9767333  40287180 6186087 32472178 11156165 31045643 31045643  
34603403 9442958  43478973 6252172 34340973 10545803 30973676 30973676  
33620717 9398236  44035471 6230964 33340315 10250590 30456980 30456980  
30366436 9794823  39367436 5702980 39368726 12572184 30144324 30144324  
32189654 9814984  36298874 5798634 36629334 12164520 28972717 28972717  
30510887 9385412  37092547 5952432 36609877 12386625 31015461 31015461  
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AU 11   AU 12   AU 13    
EHMC AVO  EHMC MBC  EHMC Benz-3   
37686673 12934270  34896914 9335641  37869453 6565465   
36556422 12522982  33564252 9509896  35643542 6976431   
37534351 12376423  35033403 9429044  35340301 6815676   
30247937 10436955  29224708 9886553  29247187 6585560   
32049823 10654983  30856923 9976430  30434323 6682152   
31476547 11652505  31358042 9954386  33534803 6848354   
35096546 11549284  30962326 9564827  30937626 6502451   
33668351 10543870  32446514 9680684  32663344 6334590   
33006011 11300455  31305790 9476682  33060975 6305042   
          
AU 14   AU 15       
EHMC MBC  EHMC AVO OT     
39974364 25121545  44986084 11604550 4735901     
40655247 24900976  41965222 10992189 4879067     
42257683 26607652  42533563 11204653 4710552     
34009412 25033468  39402934 10996432 3647865     
33906205 24269895  36204346 9965085 3743239     
32807947 23912428  38047897 9908906 3833237     
29013346 22364901  40346536 12438280 4296092     
30857571 22637543  43858371 10158038 3980907     
29812538 23098644  41581681 10059674 4248945     
          
AU 16   AU 17  AU 18     
EHMC MBC  EHMC MBC EHMC AVO MBC   
30093644 9543671  34477744 9678956 30512333 12368970 26635605   
33406477 9820268  34040377 9729872 31347054 11285489 26564989   
30428363 9815046  33423633 9886536 30536383 11537668 25762842   
33441212 9280918  30444324 9598518 38992353 10675430 24233327   
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35596235 9259028  35596235 9228056 37056359 10395970 23739956   
32384797 9481256  33876327 9482536 37670081 10476354 24939073   
32901633 10048023  32436214 9948023 35243344 11906434 24655123   
29851171 9934084  29008553 9809871 33091553 10457453 24989845   
29188388 10127882  31185337 9825462 34138338 11557436 25754014   
 
          
AU 19   AU 20       
EHMC MBC  EHMC Benz-3 HS ODM-PABA    
29054566 9590546  28706646 10995605 495094 89453566    
30754784 9897322  28754484 10886731 485163 92504345    
30253883 9856430  27099324 10681576 509209 93990663    
35832993 9750098  27899516 10158510 498821 93190401    
35056573 9522230  28004565 10201225 509473 94847873    
33347672 9876536  27334562 10038582 506690 97854391    
29524454 9494843  27098478 10250542 501490 96296755    
33109343 9378071  26310993 10435345 489194 94768917    
32413438 9482452  26954878 10296518 488627 95598576    
          
AU 21   AU 22   AU 23    
EHMC OCT  EHMC OCT  EHMC Benz-3   
46549071 769701  45774333 786971  35587758 8936405   
45641843 764107  43434407 764196  34496781 9083731   
44092674 786989  41369783 787689  34929454 9118681   
46337651 800975  39900423 788675  30569277 8715010   
43676468 825465  38559355 792556  30679915 8601533   
43343218 816534  37676381 806594  29334574 8738582   
39083447 847676  38242343 857021  30392743 8546342   
39094320 856984  39110355 835645  29403890 8509845   
40190678 865624  38133738 837005  30405918 8459188   
          



 283 

 
AU 24    AU 25      
EHMC AVO Benz-3  EHMC AVO     
36555871 8236973 7043160  35873258 10455160     
34184967 8189989 6934131  36928771 10925289     
34092544 8338862 7115526  36293244 10465413     
33056951 8617560 6656050  39992817 9955546     
36675418 8307955 6468892  40565615 10039835     
33300354 8465454 6384544  41562334 9965098     
30028476 8691635 6850215  39298748 10034280     
30947990 8457456 6995590  40340310 10183058     
31905918 8505036 7056312  40859518 10067495     
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