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ABSTRACT 
 

This dissertation presents two main contributions towards the Patch-based Multi-View 

Stereo (PMVS) algorithm.  Firstly, we present an adaptive segmentation method for pre-

processing input data to the PMVS algorithm.  This method applies a specially developed 

grayscale transformation to the input to redefine the intensity histogram.  The Nelder-

Mead (NM) simplex method is used to adaptively locate an optimized segmentation 

threshold point in the modified histogram.  The transformed input image is then 

segmented using the acquired threshold value into foreground and background data. This 

segmentation information is thus applied to the patch-based method to exclude the 

background artefacts.  The results acquired indicated a reduction in cumulative error 

whilst achieving relatively similar results with a beneficial factor of reduced time and 

space complexity. 

Secondly, two improvements are made to the patch optimisation stage. Both the 

optimisation method and the photometric discrepancy function are changed.  A classical 

quasi-newton BFGS method with stochastic objectives is used to incorporate curvature 

information into stochastic optimisation method.  The BFGS method is modified to 

introduce stochastic gradient differences, whilst regularising the Hessian approximation 

matrix to ensure a well-conditioned matrix.  The proposed method is employed to solve 

the optimisation of newly generated patches, to refine the 3D geometric orientation and 

depth information with respect to its visible set of images.  We redefine the photometric 

discrepancy function to incorporate a specially developed feature space in order to 

address the problem of specular highlights in image datasets.  Due to this modification, 

we are able to incorporate curvature information of those patches which were deemed 

to be depleted in the refinement process due to their low correlation scores.  With those 

patches contributing towards the refinement algorithm, we are able to accurately 

represent the surface of the reconstructed object or scene.  This new feature space is also 

used in the image feature detection to realise more features.  From the results, we 

noticed reduction in the cumulative error and obtained results that are denser and more 

complete than the baseline reconstruction.  



   

vi 
 

 

TABLE OF CONTENTS 
 

1.3.1      Voxel-based Methods ...................................................................................... 4 

1.3.2      Polygonal Meshing Methods ........................................................................... 5 

1.3.3      Multiple Depth Map Fusion Methods .............................................................. 5 

1.3.4      Sparse Dense Patch-based Methods ............................................................... 6 

1.5.1      PAPER 1 ............................................................................................................ 8 

1.5.2      PAPER 2 ............................................................................................................ 8 

2.1.3.1 Overview of the PMVS algorithm ................................................................... 17 

2.1.3.2 Key Elements of the PMVS algorithm ............................................................. 18 

DECLARATION OF PLAGIARISM ................................................................................... ii 

DECLARATION OF PUBLICATIONS ............................................................................... iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

ABSTRACT .................................................................................................................. v 

LIST OF FIGURES ....................................................................................................... viii 

LIST OF TABLES ........................................................................................................... x 

LIST OF ALGORITHMS ................................................................................................ xi 

LIST OF ACRONYMS ...................................................................................................xii 

CHAPTER 1 - LITERATURE REVIEW ............................................................................... 1 

1.1      Introduction ..................................................................................................... 2 

1.2      Multiple-View Stereopsis (MVS) Requirements .............................................. 3 

1.3      Multiple-View Stereopsis (MVS) Reconstruction Algorithms .......................... 3 

1.4      Motivation and Research Objectives ............................................................... 6 

1.5      Contributions of Included Papers .................................................................... 7 

1.6      Future Work ..................................................................................................... 9 

CHAPTER 2 - INCLUDED PAPERS ................................................................................ 11 

PAPER 1 – ADAPTIVE SEGMENTATION FOR MULTI-VIEW STEREO .............................. 12 

2.1.1      Introduction ................................................................................................... 13 

2.1.2      Histogram Dependent Threshold ................................................................... 16 

2.1.3      Patch-based Multi-View Stereo (PMVS) Algorithm ....................................... 17 



   

vii 
 

2.1.3.2.1 Patch Model .................................................................................................... 18 

2.1.3.2.2 Feature Detection ........................................................................................... 18 

2.1.3.2.3 Feature Matching ........................................................................................... 18 

2.1.3.2.4 Patch Optimisation ......................................................................................... 20 

2.1.5.1 Discussion of Results ...................................................................................... 32 

 

  

2.1.4      Proposed Method .......................................................................................... 23 

2.1.5      Experimental Results ...................................................................................... 30 

2.1.6      Middlebury Evaluation Results ...................................................................... 33 

2.1.7      Conclusion ...................................................................................................... 41 

PAPER 2 – STOCHASTIC QUASI-NEWTON PATCH OPTIMISATION FOR MULTI-VIEW 
STEREO MODEL ........................................................................................................ 43 

2.2.1      Introduction ................................................................................................... 44 

2.2.2      Patch-based Multi-View Stereo (PMVS) Algorithm ....................................... 46 

2.2.3      Stochastic Quasi-Newton (SQN) Method ...................................................... 48 

2.2.4      Proposed Method .......................................................................................... 52 

2.2.5      Experimental Results ...................................................................................... 55 

2.2.6      Discussion of Results ...................................................................................... 55 

2.2.7      Conclusion ...................................................................................................... 62 

CHAPTER 3 - CONCLUSION ........................................................................................ 63 

REFERENCES ............................................................................................................. 65 

APPENDICES ............................................................................................................. 69 

Appendix A – Digital Copy of the Results .......................................................................... 70 

Appendix B – Texture Mapped Mesh Models .................................................................. 71 



   

viii 
 

LIST OF FIGURES 
 

Figure 1: (a) The reference patch p along with its corresponding initial parameters, c(p) 
and n(p), is optimized using the parameters of the other views to refine the orientation 
and depth information in 3D space and (b) Patch filtering stage enforces the visibility 
consistency to remove outliers (red patches). ................................................................. 23 

Figure 2: Template Matching is accomplished by using Normalized Cross-Correlation 
(NCC). (Top-row) By selecting a patch on the left image, we can search for the best 
possible match in the other views by moving our template window across the epipolar 
line.  (Bottom-row) With the silhouette information obtained using the adaptive method 
proposed, we can reduce our search radius to the foreground only. This means that any 
search that is done within the orange boxes in the NCC score graph is ignored. The initial 
seeding and newly expanded patches that fall in the background are removed as outliers.
........................................................................................................................................... 29 

Figure 3: The images on the left were captured under nominally black background 
whereas on the right, were captured under nominally white background. The top-row 
shows a grayscale image and corresponding histogram of the Temple Ring and Skull 
Dataset. The middle-row is the RGB flooring and the bottom-row is the RGB ceiling 
grayscale transformation. ................................................................................................. 31 

Figure 4: The images on the left and right are the Fountain and Herz-Jesu images under 
different grayscale transformations respectively. The top-row shows a grayscale image 
and corresponding histogram of the Fountain-P11 and Herz-Jesu-P8 Dataset.  The middle-
row is the RGB floor and the bottom-row is the RGB ceiling grayscale transformation. . 32 

Figure 5: The images on the left show the image features that are detected by the PMVS 
along with the original and masked image, below. The images on the right show three 
different grayscale histograms with the original image and The red dot on the histogram 
represents the threshold value, T = 173. .......................................................................... 38 

Figure 6: (a) Full-, (b) Half- and (c) Quarter-Size Image Resolution Reconstruction, the 
higher image resolution, the less prone to erroneous patches. The top row represented 
the baseline and the bottom row is the proposed method of reconstruction. ............... 38 

Figure 7: Our mesh models of the dinosaur and temple ring dataset, (a) and (c) were 
submitted for online evaluation to Middlebury website [2], against the laser scanned 
ground truth, (b) and (d). .................................................................................................. 39 



   

ix 
 

Figure 8: The final texture mapped models of Dinosaur, Temple, Skull, Fountain-P11 and 
Herz-Jesu-P8 datasets were acquired by using  PSR meshing algorithm  and texture 
mapping was sampled from their respective patch models. ........................................... 40 

Figure 9: The core points are defined by the reference point cloud (i.e. vertices of the 
patch model), the green distribution and compared point cloud (i.e. vertices of the ground 
truth model), the gray distribution. The ground truth distribution fits better for our patch 
model results when compared to the baseline results. With a smaller mean and standard 
deviation of the ground truth distribution, we obtain better patch model results which 
are less prone errors and noise. These results are generated by our benchmark software, 
Cloud Compare Ver. 2 [43]. .............................................................................................. 59 

Figure 10: The core points are now defined by the vertices of the ground truth model, the 
green distribution and compared point cloud (i.e. vertices of the patch model), the gray 
distribution. The patch model distribution shows a better fit over the baseline results 
when compared. With a smaller mean and standard deviation of the patch distribution, 
we validate our patch model results to prove that they are less prone errors and noise. 
These results are generated by our benchmark software, Cloud Compare Ver. 2 [43]... 60 

Figure 11: Our results of the Fountain reconstruction compared to Furukawa’s models. 
The models are meshed and texture mapped from the respective patch models. The 
number of vertices of the patch models is indicated in the bottom of the image. It can be 
seen that with our method, we generate more patches than the baseline method. When 
we look at the Furukawa’s results, we can notice some missing vertices which imply that 
our mesh models are more complete. ............................................................................. 61 

Figure 12: Our results of the Herz-Jesu reconstruction compared to Furukawa’s models. 
Both models are meshed and texture mapped from the respective patch models. The 
number of vertices of the patch models is indicated in the bottom of the image. It can be 
seen that with our method, we generate more patches than the baseline method. We can 
also notice some missing vertices from Furukawa’s results which imply that our mesh 
models are more complete. .............................................................................................. 61 

 



   

x 
 

LIST OF TABLES 
 

Table 1: Parameter Settings for PMVS algorithm [44] ..................................................... 35 

Table 2: The image data-set and results captured here are from the Middlebury evaluation 
website [2] and the comparing results are the proposed method against the popular 
patch-based method [22]. ................................................................................................ 36 

Table 3: Patch Evaluation for Temple and Dinosaur Patch Models ................................. 36 

Table 4: Reconstruction Efficiency refers to the number of reconstructed patches after 
expansion and filtration stage at each iteration. There is significant improvement in the 
total execution times of different scaled patch models due to the fact that the background 
is not reconstructed, it is eliminated from the process.................................................... 37 

Table 5: The results captured here are the patch models compared against the provided 
3D laser scanner ground truth models. Both the image data-sets and laser ground truth 
mesh models were provided by [3]. The Multi-scale Model to Model Cloud Comparison 
(M3C2) method that was used for evaluation is explained in detail in [43]. There is more 
patch variantion in the Furukawa’s patch models compared to the proposed method. 37 

Table 6: Parameter Settings for PMVS algorithm [44] ..................................................... 58 

Table 7: Patch Evaluation for Fountain and Herz-Jesu Patch Models .............................. 58 

  



   

xi 
 

LIST OF ALGORITHMS 
 

Algorithm 1: Patch-based Multi-View Stereo (PMVS) Algorithm ..................................... 21 

Algorithm 2: Virtual Visual Hull Carving using Image Segmentation ................................ 27 

Algorithm 3: Stochastic Quasi-Newton BFGS Patch Optimisation Algorithm .................. 53 

 

  



   

xii 
 

LIST OF ACRONYMS 
 

2D Two Dimensional 

3D Three Dimensional 

BFGS Broyden-Fletcher-Goldfarb-Shanno [Minimisation Method] 

CIELAB CIE Luminance channel, a-channel, b-channel [Colour Space] 

CPU Central Processing Unit [Hardware]  

DAISY Efficient Dense Descriptor  

DoG Difference of Gaussian [Feature Operator] 

EMT Edge Maximisation Threshold [Segmentation Method] 

GPU Graphics Processing Unit [Hardware]  

HDT Histogram Dependent Threshold [Segmentation Method]  

HSV/HSI Hue, Saturation, Value or Intensity [Colour Space]  

IS Iterative Snapping [Visual Hull Meshing Method]  

M3C2 Multi-scale Model to Model Cloud Comparison [Model Evaluation 

Method]  

MVS Multiple View Stereopsis [Image-based 3D reconstruction method] 

NCC Normalized Cross Correlation [Template Matching Method]  

NM Nelder-Mead [Simplex Minimisation Method]  

PCM Phase Correlation Matching [Template Matching Method] 

PMVS Patch-based Multi-View Stereopsis [Image-based 3D reconstruction 

method] 

PSR Poisson Surface Reconstruction [Meshing Method] 

RGB Red, Green, Blue [Colour Space]  

ROI Region Of Interest  



   

xiii 
 

SBFGS Stochastic – BFGS [Minimisation Method] 

SGD Stochastic Gradient Descent [Minimisation Method] Scale Invariant 

Feature Transform 

SIFT Scale Invariant Feature Transform  

SQN Stochastic Quasi-Newton [Minimisation Method]  

SSD Sum of Squared Differences [Template Matching Method]  

SURF Speeded-Up Robust Features   

ZNCC Zero Normalized Cross Correlation [Template Matching Method] 

 

 

 

 

 



 

1 
 

 

 

 

 

 

 

CHAPTER 1 - LITERATURE REVIEW 
 

  



   

2 
 

1.1 Introduction 

 

More and more, modern digital cameras are becoming widely accessible and generally, 

they are inexpensive to procure.  We now have easy access to advanced digital cameras 

that enable us to capture high resolution images for a range of applications.  The process 

of acquiring three-dimensional structure from photographs is known as Image-based 

modelling or Multiple-View Stereopsis (MVS) reconstruction.  With Multiple-View 

Stereopsis, we are able to easily generate three-dimensional (3D) structures from two-

dimensional (2D) images; and these may be used for the purpose of viewing, preservation 

or value-added image-based applications.  The geometric acquisition that is possible from 

these images allows us to obtain good enough accuracy to approximate the performance 

of the latest 3D laser scan technologies.  The potential industrial applications of image-

based reconstruction may be found, inter alia, in media, entertainment, scientific and 

engineering works.  This research domain is a deeply researched area such that there exist 

several variations of the MVS algorithms.  The Multiple-View Stereopsis (MVS) is known 

as a state-of-the-art multi-view image-based reconstruction method that uses a set of 

calibrated images to perform geometric acquisition.  The collection of calibrated views is 

used for the purpose of recovering 3D information from 2D views.  Each method is best 

suited to a particular class of problems, and each is bound to have limitations.  However, 

most of these methods achieve results that could in fact rival 3D laser scanners.  The laser 

scanners are active and intrusive 3D geometric acquisition systems, whereas MVS 

methods are passive 3D acquisition systems which are based on 3D image modelling.  

While laser scanners achieve relatively better geometric results when compared to MVS 

methods, they are rather expensive to procure.  The pure laser technologies are also 

unable to capture object texture, and can only be used on objects that are rigid 

throughout the protracted scanning process. With MVS, deformable objects may be 

modelled by a synchronised set of cameras, and all models produced will be naturally 

textured and rendered in full colour by default.  
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1.2 Multiple-View Stereopsis (MVS) Requirements 

 

During the initialisation process of the MVS reconstruction algorithms, an input is 

required, such as a set of calibrated images and some form of geometric information of 

the object or scene being reconstructed.  The geometric information is known as the 

camera pose relative to the real world which can be calibrated within a controlled 

environment [1], [2], or auto-calibrated to estimate the actual camera parameters [3].  

Some MVS algorithms may require a rough volumetric box that will serve as an initial 

estimate of the reconstruction [4], [5], whereas the others require a visual hull 

reconstructed from silhouette images which will serve as the initial outer estimate of the 

object’s geometry [6], [7].  In most cases, some of the geometric constraints are 

established for the scene geometry. 

 

1.3 Multiple-View Stereopsis (MVS) Reconstruction Algorithms 

 

The major goal of these multiple-view stereopsis methods is to reconstruct a complete 

three dimensional model from a sequence of images taken from known camera 

viewpoints.  With an increased number of highly developed algorithms, the state-of-the-

art is improved rapidly.  However, it becomes difficult to quantitatively compare the 

performance of these MVS methods when there is a lack of benchmark datasets.  Seitz et 

al. [1], [2], offers a way to compare and evaluate the quantity of the different MVS 

reconstruction methods for a given benchmark, i.e. object datasets [2].  There are six 

different image datasets provided by Seitz et al. [1], [2] that goes along with their 

corresponding camera parameters, i.e. internal and external parameters.  Middlebury 

Evaluation Survey [2], provides a quantitative comparison and the evaluation results of 

all the MVS methods that were submitted, this is also available online [2].  In order for 

MVS method to be evaluated, one of the mesh model of the benchmark datasets is 

submitted for evaluation against the ground truth mesh model, and the evaluation is 

based on the accuracy and completeness.  Strech et al. [3], briefly provided an MVS 

evaluation survey for dense benchmark datasets, i.e. scene datasets.  Therefore, they 
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provided the laser scanned ground truth mesh models along with their benchmark 

datasets.  According to Seitz et al. [1], [2], the MVS algorithms can be classified into four 

categories, i.e. the Voxel-based methods, Polygonal Meshing methods, Multiple Depth 

Map Fusion methods and Sparse Dense Patch-based methods.  A brief description of each 

category of the reconstruction method is given hereunder. 

 

1.3.1 Voxel-based Methods 

 

These voxel methods consists of a Volumetric Graph-Cuts [8], Level-Sets [9] and Space-

Carving [10] based techniques.  These methods use a volumetric voxel as a surface 

representation to perform a single pass through a 3D volume, whilst computing the 

minimum cost function.  Voxel cubes with a cost function value below a certain threshold 

are selected for reconstruction [8], [11].  The major downfall of these algorithms is that, 

they lack regularisation (smoothing), therefore are more prone to noisy reconstruction 

[8], [9], [10], [11].  Level-Sets method represents the surface as a time-varying volumetric 

density function and it is iteratively refined by maximisation of the photometric 

consistencies [10], [12], [13], [14].  Thereafter, a surface extraction method such as 

Matching Cubes [15] is needed to obtain the surface.  However, the Level-Set method 

requires a large amount of computational memory to handle the high resolution images. 

The Graph-Cut method expresses image discrepancies as weighted links of adjacent 

voxels in a volumetric model [7], [9], [16], [17], [18], [19], and the surface is reconstructed 

based on a minimum cut of the graph (volumetric min-cut).  These methods are able to 

handle both the object and the scene datasets, but they still require a volumetric box to 

initialise them. 
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1.3.2 Polygonal Meshing Methods 

 

This method represents the surface of the reconstructed model as a set of polygonal 

surface meshes [4], [5], [20].  These algorithms extract silhouettes from the input images 

to construct a visual hull model, which is used to initialise the surface mesh.  The surface 

mesh model is then refined to optimise each vertex position, using photometric and 

geometric consistencies.  These methods produce remarkable results, however, any large 

error in the visual hull model cannot be recovered, hence these methods are highly reliant 

to an accurate visual hull [4], [5].  Therefore these methods are best suited for object 

datasets wherefrom the silhouettes can be accurately extracted.  In a case of Poisson 

Surface Reconstruction (PSR) method [21], this method is used when it is difficult to 

extract silhouettes from the object or scene datasets.  This usually occurs when there is 

not enough views to create an estimated bounding volume.  This method takes a set of 

oriented points to construct a tight (closed) surface mesh model, and the mesh triangles 

is determined by the density of the reconstructed points. If the silhouettes are available, 

the Iterative Snapping (IS) [22] method can be used to compute a visual hull model to 

initialise the mesh model and to iteratively refine the initial mesh model to the 

reconstructed points by enforcing consistency.  The method uses gradient descent 

method to optimise the position of all the vertices in the mesh model by minimizing the 

sum of two energy functions [22]. The Iterative Snapping method is best suited and 

constrained to the object datasets only. 

 

1.3.3 Multiple Depth Map Fusion Methods 

 

Multiple Depth Map Fusion method computes individual depth map for every single input 

image and then at the latter stage, all the individual depth maps are fused together to 

produce a single model.  The common approach that is used in [23] is an independent 

estimation of the discrete depth range value for each pixel, whereas in [24], Markov 

Random Field is used to model all the individual depth maps, and the Expectation 

Maximisation algorithm [25] is used to fuse them into a single 3D reconstruction.  The 
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reconstruction may be prone to noise if the individual depth maps are inconsistent to 

each other [26] [27].  These methods are suited for both the object and the scene datasets. 

 

1.3.4 Sparse Dense Patch-based Methods 

 

These methods use a sparse set of unconnected surface patches to represent the surface 

of the reconstructed model [22], [27], [28], [29], [30].  The flexibility of the surface 

representation allows for the algorithm to handle both object and scene dataset with 

ease. These methods begin with image feature extraction and matching, and produce a 

set of feature points across all input views, thus resulting in a sparse set of patches, and 

thereafter, those patches are expanded out to produce a dense set of patches.  Usually a 

post-processing stage is required to produce a polygonal mesh model with connected 

vertices [22]. These methods do not require a volumetric mesh initialisation nor a 

bounding volumetric box [31], [32].  The sparse point based method proposed by M. 

Lhuillier [29] is related to patch-based methods such as Patch-based Multi-View 

Stereopsis (PMVS) [22], [31].  Furthermore, a quantitative comparison and the 

evaluations provided by the Middlebury survey [2], show that the Patch-based MVS 

algorithm still produces, by far, the best overall performance for all six of its datasets in 

both accuracy and completeness.  The work presented in this dissertation is based on this 

reconstruction method. 

 

1.4 Motivation and Research Objectives 

 

The work presented in this dissertation is aimed at building on the foundation that was 

proposed by Y. Furukawa and J. Ponce [22], [31].  A Patch-based MVS (PMVS) algorithm 

is the foundation of this dissertation.  This patch-based method can handle all types of 

image datasets, robust to occlusions and handles the change in illumination by simply 

ignoring views that have bad photometric discrepancy score against the reference view.  

Despite the general good performance of the PMVS, the method is still subject to 

limitations with regard to accuracy and completeness of any reconstruction.  The 
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objective of Paper 1 was the improvement of space and time complexity while 

maintaining the reconstruction accuracy and completeness, and for Paper 2; we improved 

accuracy and completeness at the cost of the computation time. 

 

In the first paper, we addressed the issue of spurious background features which are 

always unnecessarily included in the final PMVS reconstruction.  Therefore, we suggested 

an object segmentation to pre-process the input data for the PMVS algorithm.   We 

realised that by eliminating these spurious features at the initial seeding stage, this 

reduces erroneous patches that enter into iterative expansion and filtration stages.  As a 

result, we achieved lower space and time complexity, and a more accurate and complete 

reconstruction became possible. 

 

The second paper addresses the issues of the patch optimisation and specular highlights, 

using a specially-developed feature space to improve the patch reconstruction.  The patch 

optimisation stage of PMVS algorithm minimises the global photometric discrepancy 

function, such that the 3D geometric orientation and depth information of the 

reconstructed patch is optimised with respect to its visible set of images.  This had a 

significant impact on a subsequent surface reconstruction.  The data is transformed to 

the new feature space that is designed to deal with specular highlights, and an 

appropriately transformed photometric discrepancy function is then minimised.  

 

1.5 Contributions of Included Papers 

  

All the research that has been covered in this dissertation is incorporated into the 

following two papers that are presented in Chapter 2.  The details of the included papers 

are described below: 
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1.5.1 PAPER 1  

 

R. Khuboni and B. Naidoo,” Adaptive Segmentation for Multi-View Stereo,” IET 

Computer Vision Journal, submitted in 2015. 

Paper 1 presents an adaptive segmentation method for pre-processing of input image 

data to the patch-based method (PMVS).  This segmentation method is applied to a 

specially developed grayscale transformation to the input data to redefine the intensity 

histogram.  A heuristic simplex method is used to adaptively locate an optimized 

segmentation threshold point in the modified intensity histogram.  The transformed input 

image is then segmented using the acquired threshold value into foreground and 

background data. This segmentation information is thus applied to the patch-based 

method to exclude any background artefacts that may be included in the final 

reconstruction.  The results acquired indicated a reduction in cumulative error, whilst 

achieving relatively similar results with a benefit of reduced time and space complexity. 

 

1.5.2 PAPER 2 

 

R. Khuboni and B. Naidoo,” Stochastic Quasi Newton Patch Optimization for Multi-View 

Stereo Model,” IET Computer Vision Journal, submitted in 2015. 

Paper 2 presents two main improvements towards the patch optimisation stage.  Both 

the optimisation method and the photometric discrepancy function are changed.  A 

classical quasi-newton BFGS method is modified to introduce stochastic objectives, whilst 

regularising the Hessian approximation matrix to ensure a well-conditioned matrix.  The 

proposed method is employed to solve the optimisation of the newly generated patches, 

to refine the 3D geometric orientation and depth information with respect to its visible 

set of images.  We redefine the photometric discrepancy function to incorporate a 

specially developed feature space in order to address the problem of specular highlights 

in the image datasets.  Due to this modification, we are able to incorporate curvature 

information of those patches which were deemed to be depleted in the refinement 

process as a result of the low correlation scores.  With the contribution of those patches, 
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towards the refinement algorithm, we are able to accurately represent the surface of the 

reconstructed object or scene.    This new feature space is also used in the image feature 

detection to promote more features.    From the results, we noticed the reduction in the 

cumulative error and obtained the outcome that is denser and more complete than the 

baseline reconstruction. 

 

1.6 Future Work 

 

Seitz et al. [1] define four different classes of MVS algorithms, all of which are available 

for image-based reconstruction, and all of which exhibit limitations and drawbacks of 

some form.  With a significant room for improvement, the new automated geometric 

acquisition methods are constantly in development.  The reconstruction algorithms may 

be characterised by:  

 Memory Usage,  

 Accuracy,  

 Completeness, and,  

 Speed. 

  

Any means of optimising one or more of these four characteristics could be considered, 

for example: 

 To minimise memory usage: By using image segmentation to focus on the region of 

interest or using clustering method to handle the memory usage. 

 To maximise accuracy: More advanced template matching (i.e. NCC, PCM, SSD, ZNCC) 

or feature descriptors, i.e. SIFT, SURF, DAISY, may be considered. 

 To maximise completeness: Dense reconstruction techniques could be considered, 

i.e. to generate a 3D patch for every single pixel. 

 To maximise speed: Parallelisation, including Cluster Processing, Many-Core or Multi-

Core processors, could be introduced.  Dynamic programming may be used to 

accomplish a higher throughout, i.e. avoid memory bottlenecks. 
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A major improvement to the methods such as PMVS, could be realised by parallelisation 

and deployment to Graphical Processing Units (GPUs); such as NVIDIA Pascal which offers 

a dynamic programming.  With the compatibilities of the dynamic programming 

introduced by NVIDIA, we could implement the entire PMVS algorithm on a Pascal GPU.  

The dynamic programming offers a lot of flexibility when it comes to memory allocation 

on the GPU device, we could define, redefine or delete memory allocations made by the 

GPU without the interaction of the HOST, i.e. CPU.  Another improvement that could be 

made is when you use a DAISY feature descriptor along the epipolar line to find the best 

or closest possible matches among the image features.  This will allow for better matches 

and accurately match image features in the initial seeding stage of the PMVS algorithm.  

This should reduce erroneous patches that enter into iterative stages.  In Paper 2, we 

proposed a method to improve the accuracy and completeness of scene reconstruction 

at the cost of the execution time.  The proposed method showed very promising results 

but a more generalised 3D reconstruction method can be developed and tested to handle 

crowded scene dataset.  
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PAPER 1 – ADAPTIVE SEGMENTATION FOR MULTI-VIEW STEREO 
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Ray Khuboni & Bashan Naidoo 

 

________________________________________________________________________ 

 
Abstract  

 
This paper presents an adaptive segmentation method for pre-processing input data to 

the Patch-based Multi-View Stereo (PMVS) algorithm.  A specially developed grayscale 

transformation is applied to the input image data thus redefining the intensity histogram. 

The Nelder-Mead (NM) simplex method is used to adaptively locate an optimised 

segmentation threshold point in the modified histogram.  The transformed input image 

is then segmented using the acquired threshold value, into foreground and background 

data. This segmentation information is thus applied to the patch-based method to 

exclude the background artefacts.  The method is targeted at segmenting out potentially 

disruptive data and is able to realise a reduction in cumulative error of the reconstruction 

process and thus improve the final reconstruction.  The performance evaluation shows 

simultaneous reduction in computational times and improvements to specific object 

reconstruction challenges.  With this method, we obtain results that are relatively similar 

to the original patch-based method, but with reduced time and space complexity. 
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2.1.1 Introduction 

 

Multi-view stereopsis uses matching across views for automated geometry acquisition in 

scenes and for objects.  The potential applications of reconstructed models range from 

the use of the media and entertainment industry, to quantitative recovery of information 

in scientific and engineering data analyses.  In accordance with the survey conducted by 

Seitz et al. [1], [2], state-of-the-art Multi-View Stereo (MVS) algorithms are able to achieve 

relative accuracy better than 1/200 (1mm for a 20cm wide object) from a collection of 

low-resolution (640x480) images.  These MVS algorithms can be classified into four 

categories:  

a) Voxel-based methods that require a known bounding box [4], [5],  

b) Polygonal mesh-based methods that require visual hulls to initialize [6],  

c) Multiple depth-map methods that are flexible but require fusing individual depth 

maps into a single model [20], [33], and lastly,  

d) Patch-based methods that neither require a bounding volume nor a visual hull for 

initialisation [22], [31].   

 

The later method is similar to point-based method by M. Lhuillier [29], but the patch-

based method replaces the greedy expansion procedure by several iterations between 

expansion and filtering stages.  The Middlebury benchmark [2] provides an objective 

quantitative comparison and evaluation.  It shows that the patch-based MVS algorithm 

[22] still outperforms all the other methods submitted up to this day, on overall 

performance in both accuracy and completeness for all six datasets. 

 

Our study of the PMVS algorithm showed that for all object reconstruction, the 

background is always unnecessarily included in the final reconstruction.  Therefore, we 

suggest an object segmentation as the first step in the reconstruction algorithm.  The 

spurious background features are sometimes consistently detected across the images, 

and are incorrectly incorporated into the object model.  The object segmentation 

excludes most of these from consideration by leaving only the region of interest, i.e. the 
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object.  The elimination of spurious features at this initial stage, reduces erroneous 

patches entering into the cyclic expansion stages of the PMVS algorithm; and that reduces 

computational time in all subsequent cycles.  Given that erroneous patches are no longer 

repeatedly expanded and filtered, the space and time complexity are reduced, and a more 

accurate and complete reconstruction becomes possible in a shorter time.  The 

segmentation of the region of interest assists the algorithm by restricting the set of initial 

seed patches to a more plausible domain.  Reduction in space complexity allows any given 

computing resource to solve larger scale problems that would previously have been 

deemed impossible, given its hardware limitations.  When referring to larger scale 

problems, we intentionally refer to object datasets of higher image resolutions which are 

lab-captured object datasets under nominally black or white backgrounds.  The proposed 

method of masking the region of interest in every input image constrains the PMVS 

method.  While not explicitly reconstructed, a virtual visual hull is used to condition the 

matching of features across the views.  This constrained PMVS approach is applicable to 

the object reconstruction only, where the background is controlled.  Also, it modifies the 

classification of the original unconstrained algorithm under the analysis of Seitz et al. [1]. 

 

Although the application of the proposed technique to the scene reconstruction has not 

been fully investigated, the results obtained using datasets from Strech et al. [3] are very 

promising.  A crowded scene dataset such as Colosseum, Rome, Venice and Dubrovnik 

[33], [34], [35], [36], can be used to develop and test generalized 3D reconstruction 

methods with unconstrained background and wide baseline reconstruction; other related 

methods included [32], [36], [37].   The PMVS may be used to reconstruct 3D scenes from 

such datasets.  However, a great deal of time and memory is consumed, and sometimes 

wasted in the background reconstruction, which may ultimately be filtered out from 

PMVS [22].  The proposed method applies more specifically to a restricted subset of 3D 

reconstruction where background is controlled [1], but it also works for scene image data-

set with certain distinctive colour tone, such as Strech et al. [3].  The intention of the 

object-segmentation is to exploit the potential benefits that a controlled and nominally 

black or white background it introduces.  The PMVS does not explicitly exclude the 
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background in its processing; this study proposes a constrained PMVS that attempts to 

exclude the controlled background in a pre-processing step.  The proposed method looks 

at the most and least-dominant channels in the RGB colour space by deploying ceiling and 

flooring operators over the three colour channels of each pixel.  The ceiling operator 

effectively reduces the colour image to a single channel that represents the highest 

intensity colour component (R, G or B) of each pixel.  This causes a shift upwards in the 

intensity histogram and is the same as the V channel of the HSV colour space.  For the 

least-dominant channel the floor operator similarly reduces the image to a single channel, 

but causes a shift downwards in the intensity histogram. These intensity transforms 

typically produce bi-modal histograms with one mode representing the foreground and 

the other representing black or white background.  The ceiling operation produces good 

separation for images with black backgrounds while the floor operator does the same for 

white.  The method also works for scene datasets that have distinctive background 

colours. 

 

In order to improve the performance and quality of the reconstruction of the 3D patch 

model, we consider region of interest (ROI) segmentation using the threshold techniques.  

The segmentation algorithms generally exploit the basic properties of intensity value 

discontinuity and similarity.  In the first case, the image is partitioned based on abrupt 

changes in intensity, such as edges in an image, whereas in the second case, it is 

partitioned based on predefined criteria to separate an image into foreground and 

background regions.  In this paper, we focus on the use of the second case which is an 

adaptive segmentation method, and we used it as a pre-processing stage for the PMVS 

algorithm. The image is segmented based on its global information [38].  The PMVS 

algorithm [22], [31], defines foreground as being dark, and background as being white.  In 

this approach we propose an adaptive segmentation method that will eliminate much of 

the background artefacts.  
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This paper is structured into six sections:  

1. First, an introductory section is presented as an introduction of the scope of the work. 

2. Second, an overview of the image segmentation techniques that are available, and 

the method that was used in this paper, is explained in this section. 

3. Third, an overview of the patch-based method that was used as the foundation of the 

work. 

4. Fourth, a detailed description of the proposed work. 

5. Fifth, the experimental results are shown and explained in detail, from Middlebury 

Evaluation, Patch Evaluation, Reconstruction Efficiency and M3C2 Evaluation. 

6. Sixth, the section concludes the final thoughts on the paper and the proposed work. 

2.1.2 Histogram Dependent Threshold 

 

In the initial findings of the patch-based method, it was noted that the algorithm was not 

efficient when it came to memory usage, and that it was impossible to process large image 

data-sets or higher resolution images.  That is why the image segmentation techniques 

were considered as a memory reduction method for the patch-based method.  To address 

any unwanted background data, since the main concern of the reconstruction algorithm, 

was to reconstruct the object of interest.  Currently, there are many variations of image 

segmentation techniques available for use, such as the mean-value method, p-tile 

method, histogram dependent technique (HDT), edge maximization technique (EMT) and 

visual technique, refer to [38] for further details.  This paper focuses on the histogram-

based technique which is reliant on the estimation of an appropriate threshold value to 

separate the region of interest, i.e. the object from the background in an image.  The 

technique may be applied to specific classes of data such as object datasets; where for 

example, the background is chromatically constrained to some degree.  The 1D histogram 

of 2D gray-scale image is analysed in order to determine optimum threshold for 

segmentation.  The histogram is acquired by sorting each pixel in the gray-scale image 

into ordered gray-scale bins, which range from 0 (black) to 255 (white).  Once computed, 

the threshold may be used to binarise the image.  The binary image should contain all of 

the essential information about the position and shape of the object of interest 
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(foreground) [38].  The selection of an appropriate threshold can be achieved through an 

analysis of the histogram.  This is further explained in section 4.  In real applications, 

however, histograms may be complex, thus making threshold selection difficult.  The 

technique is regarded as a good candidate for achieving segmentation for gray-scale 

images with a low computational complexity. 

 

2.1.3 Patch-based Multi-View Stereo (PMVS) Algorithm 

2.1.3.1 Overview of the PMVS algorithm 

 

The PMVS algorithm can be decomposed into four steps: feature detection, matching of 

features across multiple views (stereopsis), iterative patch expansion and filtering. The 

last two steps are intended to improve the patch density and accuracy of the 3D model, 

see Algorithm 1.  

 

a) Feature Detection: Features are extracted using Harris and Difference of Gaussian 

(DoG) feature operators.  

b) Feature Matching: The detected features are matched across the multiple views to 

yield an initial set of 3D patches associated with their salient image regions.  

c) Patch Expansion: Those initially matched set of patches are expanded to the nearby 

pixels to obtain a denser set of patches with fewer gaps or spaces in between.  

d) Patch Filtering: The denser set of patches that were expanded in the previous step 

may contain incorrect patches. To eliminate these patches, visibility constraints are 

used to remove outliers that lie either in front or behind the observed surface.  

 

This algorithm reconstructs a set of oriented and textured patches that represent the 

surface of an object or scene of interest. A post-processing step can be added to convert 

patch models into polygonal-mesh models. 
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2.1.3.2 Key Elements of the PMVS algorithm 

2.1.3.2.1 Patch Model 

 

The patch model is a set of 3D oriented patches which represent the reconstructed 

surface of an object or a scene.  Each patch � is a local tangential plane on the surface.  

Its geometry is fully determined by its center	�(�), unit normal vector �(�) which is 

oriented towards the cameras observing it in 3D space, and a reference image �(�) in 

which � is visible. 

 

2.1.3.2.2 Feature Detection 

 

This is a process of identifying points of interest, including blobs, edges and corners [16], 

in an image.  It is regarded as a key ingredient for automated geometric acquisition in 

several computer vision algorithms [6]. The PMVS algorithm uses two image feature 

detectors which are the Difference of Gaussian (DoG) and Harris operators to detect 

image features in each image [7]. 

 

2.1.3.2.3 Feature Matching 

 

For each image	�� , there is a set of neighbouring images that is considered for stereo 

computation.  The camera parameters of this calibrated set must be known in order to 

verify the geometric constraints that are satisfied.  An image �� is considered along with 

optical center �(��)  of the corresponding camera. For each feature �  detected in 	�� , 

potential matches �� are collected from the other images as a set � if they lie within two 

pixels of the corresponding epipolar line.  The potential patch �  associated with �  is 

reconstructed by triangulating the pair (� ��) in order to obtain its center	�(�), normal 

vector �(�) and set the reference image �(�) to be	��.  The camera orientations are used 

in order to verify that patch � being matched with patches across the other views satisfies 

the geometric and visibility constraints.  The image sets are initialized as follows: 
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�(�) 	= �	����(�) ∗

�(�)�(��)�������������������⃑

��(�)�(	��)��������������������⃑ �
> cos(�)� (1) 

 

Where τ is the visibility angle between the patch normal, 	�(�)  and the optical center, 

	�(	��) of the camera, (τ = 
�

�
  in our experiment), and �(�)	is the set of images in which 

patch, �	is visible.  This is a simple assumption that a patch � is visible within a certain 

angle in an image �� and those patches are collected into a set of visible patches �(�) for 

image	��.  Since there are specular highlights or even obstacles in a scene or object data-

sets, the patches with a bad photo-metric discrepancy scores are ignored or filtered out, 

thus we get a new set of visible patches	�∗(�). 

 

 �∗(�) 	= {	��|	��	Є	�(�), ℎ��, ��, �(�)� 	≤ 	�} (2) 

 

Where, �∗(�)	is the set of images in which the patch,	� is accurately visible and which 

satisfy the minimum photo-metric discrepancy score. � is a threshold used for the photo-

metric discrepancy score (� = 0.6, before and = 0.3, after optimization). 

 

Given an initial patch �  that is visible in the set of images �(�)  and a reference 

image	�(�), its position �(�) and normal �(�)	can be estimated by minimizing Photo-

metric Discrepancy Function (PDF)	�∗(�): 

 

 �∗(�) = 	
1

|�∗(�)\�(�)|
	 � ℎ��, ��, �(�)�

	��	Є	[�∗(�)\�(�)]

 (3) 

 

The photo-metric discrepancy score, 	ℎ(�, ��, ��)  is computed as one minus the 

Normalized Cross-Correlation (NCC) score between �� = �(�, ��)  and 	�� = �(�, ��) . 

��	and	�� are sampled pixel colours of a patch � for images, �� and ��. The photo-metric 

discrepancy score is defined as follows: 
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ℎ��, ��, �(�)� = 1 −	

∑ ∑ ��(�)��(�)
�∗�
���

�∗�
���

�∑ ��(�)
�∗�
��� �

�
�� ∗ �∑ ��(�)

�∗�
��� �

�
��
 (4) 

 

Where ℎ��, ��, �(�)�	 is a pairwise photo-metric discrepancy score of the patch, 

�	projection in images 	��	and	�(�). 

 

2.1.3.2.4 Patch Optimisation 

 

In the reconstruction of a single patch	�, there are two steps that should be followed.  The 

initialization of the corresponding parameters of each patch 	� , its center 	�(�) , 

normal	�(�), set of visible images	�∗(�), and the reference image	�(�); these initial 

parameters are obtained from 3D triangulation from a pair of stereo views [39].  The 

second step, is the patch optimisation, where the initial parameters of patch �  are 

optimised to improve their geometric components, �(�) and	�(�), by minimising the 

photometric discrepancy score.  To simplify computations, �(�) of patch � is constrained 

to lie on the ray that projects from the optical center through its corresponding image 

point in the reference image, to the 3D space, [39], see Figure 1.  This reduces the number 

of degrees of freedom to three by solving for depth information and orientation.  The 

normal 	�(�)  is parameterized by Euler angles (yaw and pitch) and thus yielding an 

optimisation problem with three parameters which are solved using conjugate gradient 

methods [40].  The Patch-based Multi-View Stereo (PMVS) reconstruction algorithm uses 

the Nelder-Mead Simplex method [41] to solve the depth information and refine the 

geometric components of patch p [22], [31], [32]. 

 

After the optimisation step, the visibility image sets are updated (i.e. �(�) and �∗(�)	to 

correspond to the new parameters. If	�|�∗(�)|� ≥ �, where � is a minimum number of 

visible images with low photometric discrepancy score, then patch generation (i.e. a patch 

being generated from 3D triangulation) is deemed a success and saved as a possible patch 
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� (�	 = 	3 in our experiment).  After the initial feature matching, the patch expansion 

stage takes the existing set of initial patches, i.e. initial seeding patches), to expand to the 

neighbouring spaces or gaps to create a denser patch model.  These newly expanded 

patches are also initialized and optimised to represent the 3D surface of an object or 

scene being reconstructed.  Due to the large number of patches being expanded, there 

might be a large number of erroneous patches that do not belong to or are incorrectly 

placed in 3D space.  The filtering stage removes or eliminates these patches based on 

their visibility constraints, which lie either in front or behind the observed surface.  These 

erroneous patches (outliers) are illustrated in Figure 1.   The patch expansion and filtering 

stages are iterated � times (�	 = 	3 in our experiment). The parameter �	was chosen to 

be 3 in order to replicate the patch model results obtained in [22] using the Patch-based 

MVS algorithm. It was noted that when �	was chosen to be less than 3, the patch model 

became less dense and when �	was greater than 3, the patch model was prone to more 

erroneous patches. 

 

 

Algorithm 1: Patch-based Multi-View Stereo (PMVS) Algorithm 

Input: Image sequence and camera parameters 

Output: Sparse set of oriented rectangular patches of the reconstructed model, P 

Initialize: Image sequence scale transformation 

Step – 1: Feature Detection 

The image features are detected using HARRIS and Difference of Gaussian (DoG) feature operators 

which are explained in Feature Detection section. Refer to [22] and [42] for a better explanation. 

Step – 2: Feature Matching – Stereo pair matching 

For each image feature � being detected in the reference image	�(�), a feature �� is collected along the 

epipolar line into a set of features 	�	 that satisfy the epipolar consistency, from the stereo view	��. 

For each feature 	��  along the epipolar line of the stereo view 	�� 	 , the feature �  of the reference 

image	�(�) is matched to find the best correlation. This creates a potential patch 	�	 that is associated 

with the feature	�. For further explanation refer to Feature Matching section. 

2.1. ����������	�(�), �(�), �(�)	and �∗(�) 

Initialisation of these parameters are obtained through 3D triangulation of stereo pairs/views. Refer to 

Patch Optimisation section. 
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2.2.	��������	�(�)	���	�(�) 

This stage is known as the Patch Optimisation, where the patch center and normal are geometrically 

optimised/ refined to ensure the projection of patch across the set of visible images is correctly aligned 

to estimated geometric orientation of the patch. For further understanding refer to [22] and also refer 

to Patch Optimisation section. 

2.3. ������	�(�) and �∗(�) 

The set of visible images, �(�)	of patch �	 is updated that meet the visibility angle and the set of 

accurately visible images, �∗(�)	of patch �	is updated that meet the minimum photo-metric discrepancy 

score. Refer to Feature Matching section. 

2.4. If (‖	�∗(�)	‖ ≥ �	) then, Save		��, Add � to the set of newly generated patches		�. Else move on to 

the next feature. This stage is explained in Patch Optimisation section. 

Step – 3: Patch Expansion 

In order to create a denser patch model, this stage creates at least one patch for every image cell. The 

expansion procedure uses the existing patches to expand them to the neighbouring cells. This stage is 

explained better in [22]. 

Expanding newly generated patches into neighbouring patches. 

Step – 4: Patch Filtering 

After the patch expansion stage, the number of patches has increased significantly and some of these 

patches may be erroneous and therefore should be removed. This stage is subdivided into four filters.  

1. First filter enforces a weak visibility consistency 

2. Second filter enforces a more strictly visibility consistency 

3. Third filter enforces a weak form of regularisation on a single patch 

4. Fourth filter enforces a weak form of regularisation on a group of patches 

This stage is also explained best in [22]. 

Removing the incorrect/erroneous patches as outliers 

Step – 3 and – 4 are repeated n times to ensure a denser patch model, n = 3 in our experiment 
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Figure 1: (a) The reference patch p along with its corresponding initial parameters, c(p) and n(p), is 
optimized using the parameters of the other views to refine the orientation and depth information in 3D 
space and (b) Patch filtering stage enforces the visibility consistency to remove outliers (red patches). 

 

2.1.4 Proposed Method 

 

The image segmentation is used to partition a digital image into something that is more 

meaningful and easier to analyse.  The labels are assigned to every region or pixel, such 

that similar regions or pixels share the same label.  The proposed method is an automated 

image segmentation method that is deployed as a pre-processing stage to the patch-

based method.  It applies to RGB encoded colour images and uses processed RGB values 

along with the histogram threshold.  The proposed method is used to segment and 

remove background artefacts which often result in the reconstruction of outlier patches 

in 3D space.  The detection of artefacts as possible image features is prevented and focus 

shifts itself to the object, i.e. region of interest.  By removing the background features, we 

also reduce time and space complexity.  

 

The patches that lie on the edge of an object in the PMVS reference image are likely to 

contain background artefacts.  These are removed, however, they may be more 

accurately recovered from other views where they are not edge-aligned and contain only 

foreground pixels.  Subsequent patch expansion to neighbouring patch spaces becomes 



   

24 
 

faster and more effective because background artefacts are filtered out in the pre-

processing stage.  The checking for visibility of a newly expanded patch also becomes 

simpler because the algorithm is bounded to the region of interest, and there are fewer 

incorrect patches to be removed in the filtration stage.  This may result in a more accurate 

3D patch model.  

 

This method assumes that all the images have been taken under a nominally black or 

white background conditions [2] for object datasets; and for scene-data under conditions 

where the background and foreground are derived from separable intensity distributions.  

This method is a histogram dependent threshold that analyses the intensity histogram of 

the original RGB image.  The background and region of interest should come from 

reasonably separable distributions. This is why for object datasets, controlled 

backgrounds are nominally black or white, and whichever contrasts optimally with the 

foreground.  The method masks out the background by using an adaptively selected 

intensity threshold value T.  Before the image masking is performed, an initial threshold 

value ��	is selected using the mean brightness or sum of all grayscale values	�(�, �) divided 

by the image resolution, i.e.	����ℎ	 ∗ 	ℎ���ℎ�.  This initial threshold value along with the 

dynamic range of the intensity histogram, is used to determine whether the image was 

taken under nominally black or white background.  If the absolute difference of the initial 

threshold value, ��  and the minimum dynamic range, ����  is greater than the absolute 

difference of the initial threshold value, ��  and the maximum dynamic range	����, the 

image is assumed to be taken under nominally white background, i.e. the majority of the 

pixels in the image are bright and for the opposite case, the majority of the pixels are dark.  

Either the RGB ceiling or floor histogram is computed and used to segment the image into 

foreground and background.  The intensity histogram is represented in a more meaningful 

form to compute the local minima of the objective function.  The objective function in 

this case, is a normalised discrete logarithmic function of the intensity histogram, i.e. 

either RGB ceiling or floor histogram.  The optimum threshold value is finally obtained by 

minimising an objective function using the Nelder-Mead Simplex Method [41].  
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Normally, when segmenting an RGB image, the grayscale intensity image is used along 

with a selected threshold value to segment the pixels into foreground and background. 

Since the images are taken under natural conditions, some of the nominally black or white 

background pixels may vary significantly and might not be masked out.  Similarly, some 

parts of the foreground will be masked out if intensities overlap with the background 

intensity mode.  To rectify the problem, we use the RGB ceiling and floor transformations 

over the RGB colour-space to cause an intensity histogram shift that clearly masks out the 

black or white background respectively.  The RGB ceiling and floor transformations are 

the pixel-wise selection of the most and least-dominant channels in the RGB triplet.  RGB 

ceiling transform causes an upwards shift in the histogram by selecting the highest 

intensity between three colours, and RGB floor causes a downwards shift in the histogram 

by selecting the lowest intensity between the three colours.  From these transformations, 

we can obtain a much clearer bi-modal histogram for nominally black and white 

background respectively.  

 

After distinguishing if the image was taken under dark or bright background conditions, 

we proceeded with the selection of a suitable grayscale transformation (RGB ceiling or 

floor).   Thereafter, the objective function is minimised to locate the local minima across 

the dynamic range of the transformed intensity histogram.  Since the numerical 

minimisation method used is a heuristic search method, we constrain the search 

boundaries for the local minima, to the lower and upper bounds.  The lower boundary is 

set to be half way between the minimum dynamic range, and the initial threshold value 

	��	whereas for the upper bound, it is between the maximum dynamic range and the initial 

threshold value		�� .  The optimum threshold value	�	is given by the corresponding bin 

value of the intensity histogram for the local minimum value of the objective function.  

With the selected threshold value	�, we compute the binarised information of the input 

image data to obtain the boundary segmentation information.  For the image binarisation, 

a suitable grayscale transformation is selected based on the background conditions for 

segmentation.  For a nominally white background conditions, the RGB floor transform is 

used, whereas the opposite case, RGB ceiling transform is used.   A pixel-wise binarisation 
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is performed using the selected threshold along with transformed intensity histogram.  A 

morphological image filling is used as a final step to remove any noisy binarised 

information, i.e. salt and pepper noise, within the foreground of interest.  The boundary 

segmentation information is applied to the patch-based method.  The details of the 

segmentation method are illustrated in Algorithm 2, also see Figure 3 to Figure 5.  By 

setting the background pixels to null, we are able to eliminate the image features that lie 

on edges of the object, whilst avoiding any generation of edge-aligned patches which are 

associated with the eliminated image features. 

 

Throughout the algorithm, we use the 2D boundary segmentation information to confine 

detection and matching of image features within the foreground, similar methods include, 

voxel-based method using the function costs to remove voxel-cubes which are above a 

certain threshold [4], [5], extracting silhouettes and fusing stereo depth maps [6] and 

space carving from silhouettes to create a visual hull [18].  The initial seeding patches are 

constrained to the 3D patch boundary so whenever there is an expansion done to the 

initial seeding patches, it is within the 2D boundary.  For each feature f detected in the 

reference image 	�(�, �) , left image, potential matches �’  are collected along the 

corresponding epipolar line of the right image.  Those features with a high NCC score are 

considered to be a potential match 	�’ , as illustrated in Figure 2.  We eliminate the 

background artefacts from the reconstruction, and thus the algorithm focuses on the 

foreground, see Figure 2.  This improves the quality of the reconstructed object and scene 

model and also reduces the computational times for the reconstructed models, similar 

methods that exhibit similar characteristics and results include [6], [7], [15], [36], [37].  

This can be seen from the results presented in Figure 6, Table 3 and Table 4.  
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Algorithm 2: Virtual Visual Hull Carving using Image Segmentation 

Input: A set of original images and their respective camera parameters. 

Output: 2D boundary segmentation information. 

Step – 1: Compute the RGB flooring and ceiling grayscale transforms 

a) Reading an image �(�, �) = {�(�, �), �(�, �), �(�, �)	|	1 ≤ � ≤ �, 1 ≤ � ≤ �}  

and the image size: 	[�, �, 3] 

b) Compute the image into Grayscale image �(�, �) 

c) Compute the Histogram, �(�), of the Grayscale image �(�, �) 

d) Compute the mean value	�� = 	 �

�
∑ �(�)�

���  ,  

e) Compute the dynamic range, ���� = min(���)	and 	���� = max(���)	 

f) If	(‖�� −	����‖ 	≥ 	 ‖���� −	��‖)	, Assumes a nominally white background.  

Find the lowest intensities in the RGB colour space of the image 	�(�, �)	,  

RGB floor histogram: 

���� = �����(�(�, �)) = {���(�(�, �), �(�, �), �(�. �))|1 ≤ � ≤ �, 1 ≤ � ≤ �}	 

and the image size: 	[�, �] 

g) If	(‖�� −	����‖ < 	 ‖���� −	��‖)	, Assumes a nominally black background.  

Find the highest intensities in the RGB colour space of the image 	�(�, �)	,  

RGB ceiling histogram: 

���� = ����(�(�, �)) = {���(�(�, �), �(�, �), �(�. �))|1 ≤ � ≤ �, 1 ≤ � ≤ �}	  

and the image size: 	[�, �] 

 

Step – 2: Compute the appropriate threshold value using Nelder-Mead (NM) simplex method 

The function minimisation is constricted to the lower and upper bound of the histogram	�(�).  

Any minimisation outside the bounding limits is not useful 

�(�) = �([�	. . �]) 

Where �(�)	is a selected portion of the histogram,	�(�), 

 � = 	 �
���	����

�
� is the lower bound and �	 = 	 �

���	����

�
� is the upper bound of the histogram, 

�(�). 

The objective function represents the selected portion of the histogram, �(�) in more 

meaningful way to compute the local minima of 	�(�), 

Objective function:	�(�) = 	−�(�)log	(�(�)) 

The simplex method is used to search for the local minima and the local minima is the 

appropriate threshold. 

Threshold, �	 = 	�������_���(�(�)) 
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Step – 3: Compute the binarised information using the RGB grayscale transforms 

Instead of using the grayscale image,	�(�, �) to produce the binarised information. The RGB 

grayscale transforms, ����  and ����  are used to clearly classify the foreground data from the 

background. 

For nominally white: If (����(�, �) 	> 	�)	and ���������(�(�, �)) 

For nominally black: If (����(�, �) < 	�)	and ���������(�(�, �)) 

Where �(�, �)	is a binary image, �		and	� are the pixel coordinate points, 

�����������(�, �)�	is a morphological filling of the binary image, �(�, �) (i.e. salt and pepper 

remover). 

 

Step – 4: The binarised information is used as 2D boundary information for the Patch-based MVS 

method. 

The 2D boundary information is used throughout the stages of PMVS algorithm:  

1. Feature Detection – limiting feature detection within the region of interest. 

2. Feature Matching – matching is done within and matches on the edge of the foreground 

are discarded. Those patches that discarded from the edges can be recover within other 

camera views. 

3. Patch Expansion – allowing the expansion to occur more within. 

4. Patch Filtration – removing erroneous patches on the edges of the respective view. 
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Figure 2: Template Matching is accomplished by using Normalized Cross-Correlation (NCC). (Top-row) By 
selecting a patch on the left image, we can search for the best possible match in the other views by moving 
our template window across the epipolar line.  (Bottom-row) With the silhouette information obtained 
using the adaptive method proposed, we can reduce our search radius to the foreground only. This means 
that any search that is done within the orange boxes in the NCC score graph is ignored. The initial seeding 
and newly expanded patches that fall in the background are removed as outliers. 
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2.1.5 Experimental Results 

 

The performance evaluation of our proposed methods was carried out using the Skull [22], 

Temple Ring, Dinosaur Ring [2], Fountain-P11 and Herz-Jesu-P8 [3] image datasets.  All 

the experiments were conducted on an Intel® Core™ 2 Duo workstation, E7500 (2.93GHz).  

The post-processing is needed to turn the patch models into a surface polygonal mesh 

models for the image-based modelling applications.  There are two mesh algorithms that 

are considered in this paper, namely, Poisson Surface Reconstruction (PSR) [21] and 

Iterative Snapping (IS) [31].  PSR is a closed form meshing algorithm that directly converts 

sets of oriented patches into triangulated mesh models.  It produces high quality mesh 

models for the object and scene datasets.  However, it cannot take an advantage of 

segmentation information associated with each input image of the object dataset.  IS 

iteratively deforms a visual hull model towards a set of reconstructed patches.  It is only 

applicable to the object datasets and it produces moderate mesh models [22], [31].  We 

aim to produce the mesh models for the object and scene datasets using a PSR.  In our 

reconstruction pipeline, the segmentation information is acquired in the pre-processing 

stage to isolate the foreground from the background, thus producing a higher quality 

mesh model.  The quality of the mesh model is directly related to the density of patch 

model.  The denser the patch model, the finer the mesh model becomes.  This can be 

seen from our mesh and texture mapped models, as shown in Figure 7 and Figure 8. 
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Figure 3: The images on the left were captured under nominally black background whereas on the right, 
were captured under nominally white background. The top-row shows a grayscale image and corresponding 
histogram of the Temple Ring and Skull Dataset. The middle-row is the RGB flooring and the bottom-row is 
the RGB ceiling grayscale transformation. 
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Figure 4: The images on the left and right are the Fountain and Herz-Jesu images under different grayscale 
transformations respectively. The top-row shows a grayscale image and corresponding histogram of the 
Fountain-P11 and Herz-Jesu-P8 Dataset.  The middle-row is the RGB floor and the bottom-row is the RGB 
ceiling grayscale transformation. 

 

2.1.5.1 Discussion of Results 

 

Our main focus is on the initial two steps of the PMVS algorithm described in Algorithm 

1.  These steps are important in the initial processing stages of this reconstruction 

algorithm since the initial image features being detected and matched across the views 

are key ingredients to automated acquisition of geometry.  Those image features which 

are correctly matched in the initial feature detection and matching stages, are used to 

seed the expansion and filtering stages.  With a higher number of correctly matched 

patches, the following processing stages will expand and filter more accurately.  Most of 

the background artefacts are removed and mainly foreground (object) data is retained to 

seed the expansion stage, which expands the initial set of matched patches to fill any 

neighbouring patch spaces (gaps).  Expansion is bound to generate some incorrect 
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patches.  The subsequent filtering stage removes erroneous patches based on geometric 

and visibility constraints [22] of each patch.  Table 4, shows the initial features that are 

detected and matched in six different cases.  The measurement show a higher number of 

correctly matched patches in the pre-processed (masked) data and also sheds light on 

reconstruction efficiency in the three iterated stages of expansion and filtering. Most 

importantly, Table 4 reveals the total execution speedup for all the cases.  The 3D 

reconstruction of the object models show that they are more complete for the pre-

processed set of images, see Figure 6. 

 

When using 2D boundary information, we noted an increase in the percentage of the 

correctly matched patches during the initial matching, i.e. step 2 of the algorithm, thus 

decreasing the chances of outliers being detected as image features in the initial stages, 

this is illustrated in Table 3.  We therefore obtained fewer patches to check and verify, 

thus decreasing the processing time required for reconstruction.  The initial image 

features are important to the entire reconstruction pipeline, so the more correct patches 

in the initial stages, the less incorrect patches are generated in the expansion stage, thus 

we obtain a smaller cumulative error.  

 

2.1.6 Middlebury Evaluation Results 

 

A quantitative evaluation was done on two object data-sets.  We used Temple Ring and 

Dino Ring datasets containing 47 and 48 images respectively, taken as a ring of images 

around the object.  Two sets of mesh models were submitted for evaluation, denoted as 

Khuboni-1 and Khuboni-2.  These results were captured and compared against 

Furukawa’s results in Table 2.  Both of these mesh models of Khuboni-1 and Khuboni-2 

were obtained using the same point-cloud model, thus leading to a conclusion that the 

results were directly influenced by the meshing algorithm that was used, as an example, 

Khuboni-1 results were obtained using Poisson Surface Reconstruction (PSR) algorithm on 

the Linux platform and whereas Khuboni-2 results were obtained using PSR algorithm on 

a windows platform, and on MeshLab, using the same parameter settings.  The results 
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obtained from Khuboni-1 and Khuboni-2 differ slightly from Furukawa-2, but our main 

intention was to show the speedup, i.e. lower time and space complexity that can be 

achieved with similar quality to original Furukawa-2.  This has been achieved.  Table 2 

shows that relative to the Furukawa benchmark, we have achieved speedup ratios of 

about 11:1 and greater, and approximately 60% memory usage (40% reduction).  There 

are noticeable improvements in the density of the patch model at the surface of the 

object and also at the eye sockets and nose, see Figure 6.  The results are tabulated in 

terms of accuracy (distance d such that a percentage of the reconstructed model is within 

a distanced error from the ground truth model) and completeness (a percentage of the 

ground truth model that is within a specified error from the reconstructed model) [1]. 

 

A further evaluation was needed in order to understand how speedup was achieved.  

This was done by considering the patches being detected initially, correctly matched and 

finally reconstructed, see Table 3.  For both datasets, Temple and Dino, we are able to 

restrict our image feature detection to foreground, and any features that might be 

detected outside or on the edge of the foreground are regarded as background artefacts.  

When there is no segmentation information used in the feature detection stage, we say 

that we attained 100 % of those image features, see Furukawa for Temple and Dino 

results in Table 3, but when that segmentation information is used to block out the 

background artefacts, we obtain 66 % of those image features that are detected by 

Furukawa, see Khuboni for Temple and Dino results in Table 3.  We can deduce that 34% 

of 100% detected by Furukawa, will be eliminated or segmented out from the detection 

stage.  The benefit of using segmentation information throughout the reconstruction 

pipeline is that we obtain a higher percentage of correctly matched patches among the 

initially detected features which lead to a denser patch reconstruction at the end of the 

pipeline, see Table 3.  The final reconstructed patches are almost the same number of 

patches.  This may be misleading, but the reconstructed patches by Furukawa, include 

the background reconstruction, whereas for Khuboni, the background reconstruction is 

excluded, see Figure 6.  These background artefacts contribute to the number of 

erroneous patches and towards a larger cumulative error in the iterative expansion and 
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filtering stages.  By detecting foreground features, we were able to improve the patch 

matching algorithm that seeds to the iterative stages.  This reduces the cumulative error, 

improves the accuracy and completeness of the final patch model.  This can be seen in 

Table 3 and Table 4.  

 

The evaluation of the scene reconstruction was done using the Multi-scale Model to 

Model Cloud Comparison (M3C2) algorithm [43] to measure the “goodness of fit” of the 

patch model with respect to the laser scanned ground truth mesh model; the results can 

be seen in Table 5.  The M3C2 algorithm is part of a software package (Cloud Compare 

Ver. 2) [43] that was used for benchmarking the results which are shown in Table 5.  A 

good fit of the reference cloud with respect to the relatively compared cloud should 

produce a smaller mean and a standard deviation.  This means that the distances 

between the two clouds are smaller.  The compared cloud is less prone to errors i.e. 

smaller mean and less noisy (smaller standard deviation).  The reference cloud is the 

laser scanned ground truth mesh model, and we achieve results which are better than 

the baseline method, see Table 5.  The parameter settings that were used during our 

experiment for the Temple and Dino Ring, Table 1: 

Table 1: Parameter Settings for PMVS algorithm [44] 

Parameter Setting Denoted As Initialized Value 

Cell Size  csize 1 

Window Template Size for 

NCC Matching 

wsize 9 

Pyramid Level (i.e. Image 

Scaling to Quarter, Half or 

Full Size Resolution) 

level 0 (Full) By default  

1 (Half) 

2 (Quarter) 

Minimum Number of 

Images used for Patch 

Generation 

minImageNum 7 

 Template Matching 

Threshold 

Threshold 0.85 

Number of CPUs CPU 2 



   

36 
 

  

Table 2: The image data-set and results captured here are from the Middlebury evaluation website [2] 
and the proposed method is compared against the benchmark patch-based method (PMVS) [22]. 

Temple Ring 

 

Accuracy and 

Completeness 

Total 

Execution 

Times in 

(H:M:S) 

Speed-up 

Ratio 
Memory Usage 

Furukawa - 2 0.55 mm / 99.1 % 6:02:40 1 100% 

Khuboni – 1 0.59 mm / 98.6 % 0:25:52 14.02 ~65% 

Khuboni – 2 0.67 mm / 98.3 % 0:28:59 12.51 ~65% 

Dino Ring 

 

Accuracy and 

Completeness 

Total 

Execution 

Times in 

(H:M:S) 

Speed-up 

Ratio 
 

Furukawa - 2 0.33 mm / 99.1 % 9:04:00 1 100% 

Khuboni – 1 0.40 mm / 99.3 % 0:40:05 13.57 ~60% 

Khuboni – 2 0.38 mm / 99.5 % 0:47:28 11.46 ~60% 

 

Table 3: Patch Evaluation for Temple and Dinosaur Patch Models 

Temple Ring 

 

2D boundary 

information 

Detected Features 

# of Patches | % 

Correctly 

Matched 

Patches 

Final Patches 

Furukawa  No 108163 / 100 % 
2466 / 

2.280 % 

239690 / 

98.90 % 

Khuboni  
Yes – foreground 

only 
71874 / 66.45 % 

3079 / 

4.284 % 

198864 / 

99.85 % 

Dino Ring 

 
 

Detected Features 

# of Patches | % 

Correctly 

Matched 

Patches 

Final Patches 

Furukawa  No 137473 / 100 % 
4463 / 

3.246 % 

280148 / 

99.56 % 

Khuboni  
Yes – foreground 

only 
91781 / 66.76 % 

5635 / 

6.140 % 

255627 / 

99.80 % 
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Table 4: Reconstruction Efficiency refers to the number of reconstructed patches after expansion and 
filtration stage at each iteration. There is significant improvement in the total execution times of different 

scaled patch models due to the fact that the background is not reconstructed, it is eliminated from the 
process. 

 
Full-Size 

Unmasked 

Full-Size 

Masked 

Half-Size 

Unmasked 

Half-Size 

Masked 

Quarter-Size 

Unmasked 

Quarter-Size 

Masked 

Detected Features 975367 565932 239126 149665 57916 40108 

Correctly Matched 

Features 
19448 16953 5278 4706 2041 1015 

Iteration 1 182818 114734 17472 16719 11139 7080 

Iteration 2 87478 46934  9315 8544  6042 3898  

Iteration 3 93250 44382  8693 8163  5843 3725 

Execution-Time 3961 2770 762 642 244 182 

 

Table 5: The results captured here are the patch models compared against the provided 3D laser scanner 
ground truth models. Both the image data-sets and laser ground truth mesh models were provided by [3]. 

The Multi-scale Model to Model Cloud Comparison (M3C2) method that was used for evaluation is 
explained in detail in [43]. There is more patch variantion in the Furukawa’s patch models compared to 

the proposed method. 

 
Furukawa Herz-

Jesu 

Our Method 

Herz-Jesu 
Furukawa Fountain 

Our Method 

Fountain 

Gaussian Mean 0.018675 0.005758 0.009472 0.001574 

Standard 

Deviation (Std. 

Dev.) 

0.137654 0.164715 0.051030 0.040936 

Average 

Distance from 

Laser Scan 

-0.40 mm -0.33 mm -0.25 mm -0.15 mm 
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Figure 5: The images on the left show the image features that are detected by the PMVS along with the 
original and masked image, below. The images on the right show three different grayscale histograms with 
the original image and The red dot on the histogram represents the threshold value, T = 173.  

 

 

Figure 6: (a) Full-, (b) Half- and (c) Quarter-Size Image Resolution Reconstruction, the higher image 
resolution, the less prone to erroneous patches. The top row represented the baseline and the bottom row 
is the proposed method of reconstruction. 
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Figure 7: Our mesh models of the dinosaur and temple ring dataset, (a) and (c) were submitted for online 
evaluation to Middlebury website [2], against the laser scanned ground truth, (b) and (d). 
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Figure 8: The final texture mapped models of Dinosaur, Temple, Skull, Fountain-P11 and Herz-Jesu-P8 
datasets were acquired by using  PSR meshing algorithm  and texture mapping was sampled from their 
respective patch models.  
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2.1.7 Conclusion 

 

The proposed image segmentation is a special case of segmentation that deals with the 

background removal, which is either nominally black or white, as in the Middlebury object 

data-sets [1].  This enforces the removal of most background artefacts from the final 3D 

reconstruction.  The proposed method is time efficient and not complex to implement.  It 

can be extended to real time segmentation for object detection or in robotics.  The results 

show that most of the image details are retained with minimum information loss.  This 

reduces the cumulative error of reconstructed patches, thus improving the performance 

of the 3D reconstruction in a shorter time interval.  

 

The baseline reconstruction pipeline requires a visual hull which is reconstructed from the 

segmentation information and uses an iterative snapping algorithm to deform the visual 

hull model towards the set of reconstructed patches.  Whereas in our proposed 

reconstruction pipeline, we used an adaptive threshold technique to create a 2D 

boundary to remove the background artefacts from the final patch model so that Poisson 

Surface Reconstruction (PSR) algorithm can be used to produce high quality mesh models.  

From our 2D boundary, we are able to constraint the patch model to a 3D patch boundary 

which is similar to visual hull methods.  The 3D patch boundary restricts the patch model 

from expanding outside the bounds of the foreground.  The patches that reside in 2D on 

edges are perfectly reconstructed from a different camera view or angle.  Normally, when 

we use the normal reconstruction pipeline, the background artefacts of the object are 

unnecessarily included in the final patch model and further processing is needed to obtain 

the visual hull and iteratively deform the visual hull towards the set of patches.  This 

normal process is time consuming that requires three processing stages, i.e. PMVS, Visual 

Hull and Iterative Snapping (IS) algorithm.  Our proposed reconstruction pipeline is a two-

stage process which requires the modified PMVS and PSR algorithm.  This reduces time 

and space complexity of the reconstruction pipeline, and enabled us to replace the 

iterative snapping algorithm which constrained the technique for use on object datasets 

only.  This improved pipeline that uses the PSR algorithm can be used for both object and 
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scene image datasets to produce high-quality mesh models with similar quality to the 

original Furukawa-2.  
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PAPER 2 – STOCHASTIC QUASI-NEWTON PATCH OPTIMISATION 

FOR MULTI-VIEW STEREO MODEL 

Submitted to Journal of IET Computer Vision (Under review) 

Ray Khuboni & Bashan Naidoo 

________________________________________________________________________ 

Abstract  

This paper presents a classical quasi-Newton BFGS method with stochastic objectives that 

incorporate curvature information into the optimisation method.  The BFGS method is 

modified to introduce stochastic gradient differences, whilst regularising the Hessian 

approximation matrix to ensure a well-conditioned matrix.  The proposed method is 

employed to minimise a deterministic objective function that is founded upon a 

photometric discrepancy function.  The discrepancy function is commonly used during 

patch optimisation to refine the 3D geometric orientation and depth information of newly 

generated patches with respect to its visibility set of views.  We redefine the photometric 

discrepancy function to incorporate a specially developed feature space that addresses 

the problem of specular highlights in an object or a scene dataset.  Due to this 

modification, we are able to incorporate curvature information of those patches which 

were deemed to be depleted in the refinement process due to their low correlation scores.  

With those patches now contributing towards the refinement algorithm, we are able to 

more accurately represent the surface of the reconstructed object or scene.  The new 

feature space is also used to promote feature detections.  With this method, we notice 

reductions in the cumulative error and obtain results that are denser and more complete 

than the baseline reconstruction. 
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2.2.1 Introduction 

 

The recent advancements in a photographic technology have enabled us to capture the 

high resolution images from ordinary digital cameras for a range of applications.  With the 

Multi-View Stereopsis (MVS), we may easily generate three-dimensional structures from 

the images for viewing, preservation or value-added image-based applications.  According 

to a survey by Seitz et al. [2], the MVS algorithms are able to attain good accuracy from 

the low resolution images.  With MVS, the acquisition of geometry is possible from 

multiple-views in both scene and object datasets.  The industrial application of image-

based 3D reconstruction may be found, inter alia, in media, entertainment, scientific and 

engineering works. According to Seitz et al. [2], there are four categories of MVS 

algorithms:  

a) Voxel Methods which require the use of a known bounding box [4],  

b) Polygonal Meshing Methods that use a visual hull to initiate reconstruction [6],  

c) Multiple Depth Map Fusion Methods that fuse individual depth maps into a single 

model [20], [33], and,  

d) Sparse Dense Patch Methods which do not require volume initialisation or a bounding 

box [31], [32].   

 

The sparse point based method proposed by M. Lhuillier [29] and the related patch based 

methods such as Patch-Based Multi-view Stereopsis (PMVS) [22], [31], fall into the latter 

category.  The quantitative comparison and evaluations provided by the Middlebury 

survey [2], show that the sparse dense patch methods still produce the best overall 

performance up to this date, for all six datasets, in both accuracy and completeness. 

 

Despite the generally good performance of PMVS, our study shows that its patch models 

are still subject to limitations with regard to the accuracy and completeness of the 

reconstructions.  This paper proposes improvements to the patch optimisation algorithm 

and its photometric discrepancy function.  The patch optimisation stage of the PMVS 

algorithm seeks to optimise the orientation and depth of reconstructed patches in 3D 
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space.  This has a significant impact on subsequent surface reconstruction.  The patch 

optimisation was modified to incorporate stochastic objectives within a classical quasi-

Newton approach.  The photometric discrepancy function is also applied to data that is 

transformed to a specially developed feature space designed to address the problem of 

specular highlights in an object or a scene dataset.  

 

Due to these modifications, we are able to incorporate curvature information of those 

patches that are deemed to be depleted in the refinement process of PMVS due to their 

low correlation scores.  With those patches now contributing towards the refinement 

algorithm, we are able to represent the surface of the reconstructed object or scene more 

accurately.  The current optimisation method excludes the use of curvature information 

from the estimation of patch orientation and depth.  With the proposed method, we can 

reduce the number of erroneous patches that enter into the iterative stages of the PMVS 

algorithm by better estimating orientation and depth.  Given that fewer erroneous 

patches are cycled through the iterative stages of PMVS, a more accurate and complete 

reconstruction becomes possible.  

 

Although the application of the proposed method to crowded scene reconstruction has 

not been fully investigated, the results obtained using scene datasets from Strech et al. 

[3] are very promising.  The modified PMVS approach is applicable to both object and 

scene reconstruction.  The crowded scene datasets, such as Venice, Dubrovnik, 

Colosseum and Rome image sets [33], [34], [35], [36], can be used to further develop and 

test-generalised versions of 3D reconstruction methods with specular highlights, wide 

baselines, and a strongly convex nature.  

 

We also propose a specially developed feature space to be used in the deterministic 

objective function of the optimisation process.  This feature space facilitates the detection 

of image features where it is normally deemed too difficult given specular highlights for 

example.  The feature space comprises of three channels that include the luminance L-

channel from the CIELAB colour space, and the RGB ceiling and floor values of each pixel 
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[45].  The feature space therefore transforms the RGB information to three grayscale 

channels, i.e. Luminance, RGB ceiling and RGB floor.  The RGB ceiling and floor operators 

are defined in [45].  

 

This paper is organised into six sections:  

1. An introductory section that is presented to introduce the scope of this paper. 

2. An overview of the patch-based method that is used as the foundation of this paper 

is presented. 

3. An overview of the stochastic quasi-newton method is presented, which is used in the 

patch optimisation of the patch-based method. 

4. The proposed methodology is presented and describes its novelty towards the patch-

based method.  

5. The experimental results are presented and explained in detail to support the 

proposed work. 

6. The final section concludes the findings and thoughts on the paper and the proposed 

work.  

2.2.2 Patch-based Multi-View Stereo (PMVS) Algorithm 

 

The Patch-based Method is decomposed into four stages:  

a) Image feature extraction through the use of Harris and Difference of Gaussian (DoG) 

operators,  

b) Matching of features across images (stereopsis) to yield initial seed patches,  

c) Iterative expansion of the patch set into adjacent spaces to obtain a denser patch 

reconstruction, and,  

d) Iterative filtration of erroneous patches generated in the previous step through the 

use of visibility constraints.  

 

The Patch-based Method reconstructs a set of oriented and textured rectangular patches 

that represent the surface of an object or a scene in 3D space.  A post-processing stage 
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may be added to convert the reconstruction into a polygonal-mesh model for image-

based applications [22], [31], [32].  

 

The Patch-based Method employs a two-stage process to reconstruct a new patch	� in 3D 

space.  Firstly, the initialisation of parameters for each patch	�, including the central point, 

the unit normal vector, visibility set (set of images in which this patch is visible), and a 

reference image from the visibility set are obtained during 3D triangulation using a 

multiple views of the patch.  The second stage optimises parameters of patch	� using a 

numerical conjugate gradient method, i.e. Nelder-Mead Simplex Method [40], [41], to 

minimise an objective function.  This improves geometric orientation and depth 

information of the initial patch.  The objective function is the photometric discrepancy 

function, which is computed as an average of pair-wise photometric discrepancy scores 

over the visibility set of patch �.  The photometric discrepancy score is defined as one 

minus the Normalized Cross-Correlation (NCC) score between two sampled textures,  

 

 	�� 	= 	���, ����(�, �), �(�, �), �(�, �)�|	�� ≤ � ≤ ��, �� ≤ � ≤ ��� (5) 

 �� 	= 	���, ����(�, �), �(�, �), �(�, �)�|	�� ≤ � ≤ ��, �� ≤ � ≤ ��� (6) 

 

Where �� and �� are sampled RGB pixel values of patch � from image 1 and 2 with patch 

resolution of	� ∗ �. The Photometric Discrepancy Function (PDF) is defined as:  

 

�(�) = 	
1

|�∗(�)\�(�)|
	 � �1 −	

∑ ∑ ��(�)��(�)
�∗�
���

�∗�
���

[∑ ��(�)
�∗�
��� ]

�
�� ∗ �∑ ��(�)

�∗�
��� �

�
��
�

��	Є[	�∗(�)\�(�)]

 (7) 

 

Where: �∗(�)	is the visibility set of patches which correspond to the reference patch, 

�(�) is a patch from the reference image and 	|�∗(�)\�(�)|	is the number of accurately 

visible patches that correspond to the reference patch. 
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After the optimisation stage, the visibility set of images for the optimised patch �	 is 

updated to correspond with the new coordinate parameters.  If the updated visibility set 

is greater than the minimum number of images required with low photometric 

discrepancy score, the patch is deemed a success.  Otherwise it is discarded.  After the 

initial feature matching, iterative expansion deploys new patches in the pixel spaces 

around seed patches to create a denser patch model.  The patch refinement stage is also 

used to optimise the newly expanded patches.  Thereafter, iterative filtration is used to 

remove any erroneous patches that might have been included in the iterative expansion 

stage.  The expansion and filtration stages are iterated 3 times in all experiments [22], 

[31], [32].  The parameter n was chosen to be 3 in order to replicate the patch model 

results obtained using the Patch-based MVS algorithm. For n less than 3, the patch model 

became less dense whereas for n greater than 3, the patch model was prone to more 

erroneous patches. In the following sections, the term “objective function” may be used 

numerously, and in this paper it refers to the photometric discrepancy function. 

 

2.2.3 Stochastic Quasi-Newton (SQN) Method 

 

The benefit of quasi-Newton methods for deterministic optimisation lies in the fact that 

the gradient of the deterministic function or curvature information is supplied at each 

iteration of the optimisation process.  By measuring the changes in gradients, a model of 

the deterministic function can be constructed at a super-linear rate of convergence [46].   

 

The Stochastic Gradient Descent (SGD) methods are used to solve the optimisation 

problems of a deterministic function over a defined range of values where the 

expectation of deterministic function is defined by a set of random functions [46], [47].  

In the classical quasi-Newton BFGS method for minimising a deterministic function, the 

BFGS method attempts to find the optimal point of convergence �, i.e. expected value of 

the deterministic function, where the first derivative of the objective function is close or 

equal to zero.  At each iteration, the curvature information is incorporated in the gradient 

descend direction by using the Hessian approximation matrix which is determined by its 



   

49 
 

previous approximated matrix.  The Hessian approximation matrix is an approximation of 

a Hessian matrix which is a second-order partial derivative of the objective function.  The 

Hessian matrix describes the local tangential curvature of a deterministic function with 

multiple variables [40].  We incorporate the curvature information of the BFGS updates 

within the stochastic optimisation method in order to obtain a stochastic quasi-Newton 

BFGS method.  

 

The objective function �(�) that is used in the optimisation algorithm is the same as the 

one defined in Section 2.  We assume that the random function �(�, �)  of any 

optimisation problem is strongly convex thus making the photometric discrepancy to 

function strongly convex.  The random samples of � are taken from a set of convex values 

around the point � of the objective function [46], [47].  We then use gradient descent 

algorithms for the purpose of finding an optimal argument	�∗ = ��������(�)�, (i.e. 

refined 3D coordinates of patch		�). We begin by computing the gradients of the random 

function �(�, �) which is given by	�(�), 

 

 �(�) = 	∇��(�) = 	��[∇��(�, �)] (8) 

 

Where, ��[∇��(�, �)] is the average of the random gradients and ∇��(�) is the gradient 

of the deterministic function.  Normally, when one is dealing with a large number of 

functions	�(�, �), the exact solution of the gradients �(�) is impractical.  This problem is 

avoided through the use of stochastic gradients over 	�	 random variables.  These random 

variables from the distribution	� are drawn independently.  We define the gradient of the 

stochastic method at the point � given  �� = [��, … , ��] as 

 

 
�̂��, ��� = 	

1

�
�(∇��(�, ��))

�

���

 (9) 

 



   

50 
 

In order to compute the gradient of stochastic method		�̂��, ���, we find the gradient of 

the random function �(�, �)	for each ��  component of �� and compute their average at 

manageable computational cost, i.e. small number of samples, L samples, L = 5 in our 

experiment.  The stochastic gradient 		�̂��, ���	 is regarded as an unbiased estimate of the 

average gradient		�(�) [46], [47].  Now that we have defined the stochastic gradient, we 

can compute the iterative update for	�, as   

 ���� = 	��	 − 	���̂(��, ���) (10) 

 

Where		�	is a time index, �� is the initial iterate and 	��	is a step size sequence.  Empirical 

results show that iteration of		���� descends along a negative gradient direction.  As we 

gradually iterate through the time index, the stochastic gradient should converge at the 

optimal argument		�∗.  We can choose a customary step size to gradually decrease as we 

reach our point of convergence	�� = 	 ��� (� + �)⁄ , for the given parameters 		��	 and 		�	 

that controls the initial step size and its speed of decrease, respectively (in our experiment 

		��	 = 0.01 and		� = 1000). 

 

If the stochastic iterative update for ���� is used, the number of iteration that would be 

required to reach the point of convergence is large.  We therefore address this problem 

by using quasi-Newton BFGS methods; whereby the gradient descent direction can be 

pre-multiplied by an inverse Hessian approximation matrix		���
��.  From BFGS method, the 

gradient descent direction ��	is defined by solving 				��	�� = 	−�(��) and the iterative 

updates are given by [40]. 

 ���� = 	��	 + 	��	�� (11) 

 ���� = 	��	 − 	�����
���(��) (12) 

 

We also add a regularisation term	��  for gradient descent to guarantee convergence 

through positive definiteness of the pre-multiplier of the stochastic gradient.  The 

optimisation trajectory descends along the direction (���
�� + 	��	)�̂(��, ���)  which is 

moderated by step size 	��	(in our experiments, � = 0.0001 and �	 is an identity matrix), 
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 ���� = 	��	 −	��(���
�� + 	��	)�̂(��, ���). (13) 

 

The main idea of selecting the matrices 		��	  is to closely approximate the Hessian 

�(��) = 	∇��(��)	of our deterministic function.  There are many different methods 

which are used to determine the matrices 		��	 and they work well, such as the BFGS 

method [40], [48], [49]. 

 

In BFGS method, the curvature information of the deterministic function is approximated 

by a finite difference.  We seek to define our variable (search parameter) along with its 

gradient at time		�.  We know that by selecting the matrix 		����	 to be used in the next 

iteration, we need to satisfy the stochastic secant condition		������ = 	 ��, where �� and 

�� are search parameter variation and stochastic gradient variation respectively; and that 

the next BFGS curvature estimate 		����	  can be obtained as a function of previous 

approximated matrix 		��	 . For each iteration of ��	  and 		����	 , their corresponding 

gradients 		�(��	)	 and 		�(����)	  could be replaced by the gradients of the stochastic 

method 		�̂���, ����	 in the approximation matrices and iterative descend updates.  The 

substitution gives rise to a stochastic BFGS algorithm [46], [47], [50].  We can define the 

search parameter variation at time 	�	as 

 �� = 	���� −	�� (14) 

 

And the stochastic gradient variation along with another regularisation term as  

 

 ��� = 			 �̂�����, ���� 	− 			 �̂���, ���� 	− 	��� (15) 

 

The approximated Hessian matrix		�����	for the next iteration can be defined as (� =

0.0001 and �	 is an identity matrix). 

 
����� = 		��� +	

������
�

��
����

−	
�������

����

��
������

− �� (16) 
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2.2.4 Proposed Method 

 

In many computer vision applications that require the determination of curvature 

information, some sort of a numerical optimisation is required to minimise a deterministic 

objective function.  In this paper, a classical quasi-Newton BFGS method with stochastic 

objectives is proposed, see Algorithm 3, where the curvature information is incorporated 

into the stochastic optimisation.  We modify the classical BFGS method to introduce 

stochastic gradient differences whilst regularising the Hessian approximation matrix.  The 

proposed method is employed to solve our deterministic objective function which is 

described by a photometric discrepancy function.  The photometric discrepancy function 

is simply the average of photometric discrepancy scores over the visibility set of images 

for that particular patch.  The photometric discrepancy score is defined as one minus the 

Normalized Cross-Correlation score of two sampled patches, as described in Section 2 of 

this paper.  The photometric discrepancy function is used to optimise the 3D geometric 

orientation and depth information of each reconstructed patch with respect to its visible 

set of images, in the initial seeding and iterative expansion stage.  We redefine the 

photometric discrepancy function to incorporate a specially-developed feature space in 

order to address the problem of illumination changes in an object or a scene dataset.  Due 

to this modification, we are able to incorporate curvature information of those patches 

which were deemed to be depleted in the refinement process due to their low correlation 

scores.  With those patches contributing towards the refinement algorithm, we are able 

to accurately represent the surface of the reconstructed object or scene, see Section 5.  

The specially developed feature space is also used in the feature detection stage to 

promote the detection of more image features which can be noticed in Table 7. 

 

 

 

 

 



   

53 
 

Algorithm 3: Stochastic Quasi-Newton BFGS Patch Optimisation Algorithm 

Input: A sparse set of 3D triangulated patches 

Output: An optimised sparse set of 3D patches 

Redefining the objective function to use a new feature space vector: 

The deterministic objective function is defined by a Photometric Discrepancy Function (PDF), sect. 2. 

Read an image �(�, �) = {�(�, �), �(�, �), �(�, �)	|	1 ≤ � ≤ �, 1 ≤ � ≤ �}  

and the image size: 	[�, �, 3] 

Luminance Channel: 

�(�, �) = ������(�(�, �)) 

The following grayscale image transforms are clearly defined in [45] 

RGB floor transform: 

����(�, �) = �����(�(�, �)) 

RGB ceiling transform: 

����(�, �) = ����(�(�, �)) 

The specially developed feature space is defined as a vector of three grayscale channels that are 

mentioned above. Instead of using the standard RGB feature space vector, the feature space vector is 

now redefine as a combination of luminance channel, RGB floor transform and RGB ceiling transform:    

�∗(�, �) = {�(�, �), ����(�, �), ����(�, �)		|	1 ≤ � ≤ �, 1 ≤ � ≤ �} and the image size: 	[�, �, 3] 

Now, the sampled pixel data is: (from equation 5 and 6) 

��
∗ 	= 	���, ����(�, �), ����(�, �), ����(�, �)�|	�� ≤ � ≤ ��, �� ≤ � ≤ ��� 

��
∗ 	= 	���, ����(�, �), ����(�, �), ����(�, �)�|	�� ≤ � ≤ ��, �� ≤ � ≤ ��� 

The Photometric Discrepancy Function (PDF) is now defined as: (from equation 7) 

�(�) = 	
1

|�∗(�)\�(�)|
	 � 1 −	

∑ ∑ ��
∗(�)��

∗(�)�∗�
���

�∗�
���

[∑ ��
∗(�)�∗�

��� ]
�

�� ∗ �∑ ��
∗(�)�∗�

��� �
�

��
�	Є[	�∗(�)\�(�)]

 

 

Pre-Processing: Collecting all images which are within an angle between 5 and 60 degrees.  Selecting a 

reference image �(�) and sorting the rest of the images based on their Normalized Cross Correlation 

(NCC) discrepancy score. 

 

Stochastic BFGS Patch Optimisation:    

For each patch	� = [�(1), �(2), �(3)], Hessian approximation matrix,	�(�) is computed to determine 

the new 3D geometric orientation of the patch	� w.r.t. the visible set of images.  The do … while loop will 

continue minimising the photometric discrepancy function until convergence is reached or when the 

number of maximum iteration is reached. The number of iteration is set to 100. 
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Do…  

Acquiring � independent gradient samples around the point,	��	for the stochastic gradient computation  

�(�, ��	) = [���, ��,�	�, ���, ��,�	�, … , ���, ��,�	�] 

Compute the first stochastic gradient at time 		� 

�̂(��, ��	) = 	
1

�
�(����, ��,�	�)

�

���

 

The gradient function, 	�̂(��, ��	)	is computed as an average of the stochastic gradients, to account for 

even small gradient variations.  The stochastic gradient thus descends along the direction of		(��
�� +

	��	)�̂(��, ��), with a pre-multiplied step size of		��.  The newly minimised or optimised 3D coordinate 

point of the patch		�∗	is given by the next iteration		���� = 	 [�∗(1), �∗(2), �∗(3)]. Descending from the 

initial point of the patch	� = 	�� = [�(1), �(2), �(3)]. 

���� = 	�� −	��(���
�� + 	��	)�̂(��, ���)	 

Compute the second stochastic gradient at time 		� + 1 

�̂(����, ��	) = 	
1

�
�(������, ��,�	�)

�

���

 

The second stochastic gradient is computed to monitor the stochastic gradient variation.  The variable 

variation is computed to be used in the pre-multiplier approximation matrix. 

�� = 	���� −	��  

The modified stochastic gradient variation is computed to determine the next pre-multiplier 

approximation matrix for the next gradient descend direction. The stochastic gradient variation is used 

to determine the point of convergence for the minimised or optimised patch coordinates. 

��� = 			 �̂(����, ��) 	−			 �̂(��, ��) 	− 	���  

The approximation matrix of Hessian is updated 

		����� = 		��� +	
������

�

��
����

−	
�������

����

��
������

− �� 

The while loop will terminate once convergence is reached or the number of iterations reaches its 

predefined limit. 

While (convergence == success || iteration < times) 

 

Post-Processing: Collecting all new images for newly optimised patch		�. The newly optimised patch 		� 

is verified to meet the three constraining requirements which are the angle, photo-metric discrepancy 

score and number of images a patch is visible in. 
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2.2.5 Experimental Results 

 

The performance evaluation of our proposed method was conducted on the Fountain-

P11 and Herz-Jesu-P8 [3] datasets.  All our experiments were conducted on an Intel® 

Core™ 2 Duo workstation with a running processor of 2.93GHz.  As a post-processing step, 

a meshing algorithm was used to turn our patch models into surface polygonal mesh 

models for image-based modelling applications.  The meshing algorithm that was 

considered for the post-processing is the Poisson Surface Reconstruction (PSR) [21].  PSR 

is known to produce high quality mesh models for both the object and scene datasets.  

The algorithm directly converts a set of vertices, i.e. our oriented patches, into a 

triangulated mesh model.  The quality of the mesh model is directly related to the density 

of patch model.  The denser the patch model, the finer the mesh model becomes.  This 

can be seen from our texture mapped mesh models as shown in Figure 11 and Figure 12. 

 

2.2.6 Discussion of Results 

 

Our main focus is on the patch optimisation step of the Patch-based Method where we 

can improve the geometric orientation and depth information of every newly-generated 

patch.  The optimisation step is utilised in the initial seeding and iterative stages, i.e. patch 

expansion and filtration stages, of the Patch-based Method.  These steps are important 

to the reconstruction algorithm since the optimisation of every patch defines the three-

dimensional (3D) surface of reconstructed object or scene, and it is the key ingredient to 

automated geometry acquisition.  The image features that are correctly matched in the 

initial feature detection and matching stages are used to seed the expansion and filtering 

stages.  From the results of Table 7, we note a higher number of detected image features 

along with a higher number of correctly matched patches.  Both are due to the 

modifications of the feature detection and patch optimisation stages.  The use of the 

specially developed feature space in the feature detection stage, allowed for more image 

features to be detected across all views.  The results shown in Table 7, show that with 

almost double the number of image features detected, we can obtain five times more 
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correctly matched patches for Fountain dataset and six times more for the Herz-Jesu 

dataset.  We also obtain more than double the patch density at a varying cost to execution 

time.  The Fountain reconstruction slowed significantly (244%) while the Herz-Jesu 

reconstruction slowed only marginally (20% slower), with both yielding a significant 

increase in reconstruction density, see Table 7.  This variation has not been fully 

investigated.  With the use of stochastic gradients incorporated in the optimisation 

method, we are able to address convex problems that might arise in the patch 

reconstruction.  During the iterative expansion stage, the initial seed patches are used to 

expand to any neighbouring patch spaces (gaps) in order to fill up the sparse patch model, 

and are optimised using the proposed approach.  The expansion is known to generate 

some incorrect patches.  The subsequent filtering stage removes erroneous patches 

based on geometric and visibility constraints [22] of each patch.  The proposed method 

ensures that the seed patches are optimised to guarantee fewer incorrect patches in the 

iterative stages.  Thus we get more correctly optimised patches to be expanded, and 

fewer to be filtered out.  This results in smaller cumulative error and denser patch models; 

see Table 7. 

 

The evaluation of the scene reconstruction was done using the Multi-scale Model to 

Model Cloud Comparison (M3C2) algorithm [43] to measure the “goodness of fit” of the 

patch model with respect to the laser scanned ground truth mesh model.  The M3C2 

algorithm is part of a software package (Cloud Compare Ver. 2) [43] that we used as our 

benchmarking software to produce the results which are shown in Figure 9 and Figure 10.  

The M3C2 distance algorithm refers to vertices of the reference point cloud as core points, 

i.e. the green distribution; and the second (estimated) point cloud is considered to be the 

compared cloud [43].  The compared cloud produces a Gaussian distribution, i.e. the gray 

distribution.  A good fit for the reference cloud, measured relatively to the compared 

cloud will produce a small mean and standard deviation for the gray distribution.  

Furthermore, with a good fit, we expect the gray distribution to closely approximate the 

peak of the green distribution.  The unit normal vectors of the laser scan ground truth 

vertices are used in the computations of M3C2 distance which is the computation of the 
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distance between the two-point clouds.  In Figure 9, we noticed that our results are closer 

to zero distance as compared to the frame of reference, whereas in Figure 10, we get an 

indication of how far our patch distributions from the laser scan vertices distributions. In 

both results, our patch distributions are closer than the relative baseline patch 

distributions.   

 

In Figure 9, the estimated patch model is used as the frame of reference, and the 

goodness of fit of the laser scan is evaluated.  In Figure 10, we evaluate the opposite case 

by using the laser scan as the frame of reference and the goodness of fit of the patch 

model is measured.  Given that the laser scan and patch model have a completely 

different point distributions and different numbers of vertices, the two measures will not 

be identical and reversible, and therefore both must be computed.  With clear 

visualisation of the gray distributions, we can see that our results show a better 

distribution fit with smaller standard deviations and means.  In Figure 10, we perform the 

opposite evaluation, where the frame of reference is now a laser scanned model and we 

still get smaller standard deviations and means.  This means that the distance from the 

reference model are smaller, i.e. less prone to errors, that is indicated by the smaller 

means and less noisy which is indicated by the smaller standard deviation.  Despite the 

main fact that we have generated more patches than the baseline method, the additional 

patches did not contribute to error or noise of the reconstructed model.  Thus we can say 

for the image datasets [3] that were used in this paper, the results show a better patch 

distribution than the baseline method, see Table 7, Figure 9 and Figure 10.  Further tests 

may be needed to be done on a bigger or more representative dataset such as in [32], 

[33], to validate the results. 

 

Since the quality of the mesh model is directly proportional to the density of patch model 

[21], we can clearly see that our patch models are more complete, see Figure 11 and 

Figure 12, and accurate than the baseline method, see Figure 9 and Figure 10.  The 

parameter settings that were used during our experiment for the Fountain-P11 and Herz-

Jesu-P8 reconstructions are shown in Table 6. 
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Table 6: Parameter Settings for PMVS algorithm [44] 

Parameter Setting Denoted As Initialized Value 

Cell Size  csize 2 

Window Template Size for 

NCC Matching 

wsize 7 

Pyramid Level (i.e. Image 

Scaling to Quarter, Half or 

Full Size Resolution) 

level 0 (Full) By default  

1 (Half) 

2 (Quarter) 

Minimum Number of 

Images used for Patch 

Generation 

minImageNum 3 

 Template Matching 

Threshold 

Threshold 0.7 

Number of CPUs CPU 2 

 

Table 7: Patch Evaluation for Fountain and Herz-Jesu Patch Models 

Fountain P11 

 

Detected Features 

# of Patches 

Correctly 

Matched 

Patches 

Final Patches  
Total Execution 

Times [s] 

Furukawa  656,932 27,821 1,409,416  4,395 

Khuboni  1,517,816 162,849 3,264,535 15,097 

Khuboni : Furukawa 2.31:1 5.85:1 2.32:1 3.44:1 

     

Herz-Jesu P8     

Furukawa 504,100 18,637  1,113,559  9,671 

Khuboni 1,873,245  126,448 2,426,879  11,721 

Khuboni : Furukawa 3.72:1 6.78:1 2.18:1 1.21:1 
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Figure 9: The core points are defined by the reference point cloud (i.e. vertices of the patch model), the 
green distribution and compared point cloud (i.e. vertices of the ground truth model), the gray distribution. 
The ground truth distribution fits better for our patch model results when compared to the baseline results. 
With a smaller mean and standard deviation of the ground truth distribution, we obtain better patch model 
results which are less prone errors and noise. These results are generated by our benchmark software, 
Cloud Compare Ver. 2 [43]. 
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Figure 10: The core points are now defined by the vertices of the ground truth model, the green distribution 
and compared point cloud (i.e. vertices of the patch model), the gray distribution. The patch model 
distribution shows a better fit over the baseline results when compared. With a smaller mean and standard 
deviation of the patch distribution, we validate our patch model results to prove that they are less prone 
errors and noise. These results are generated by our benchmark software, Cloud Compare Ver. 2 [43]. 
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Figure 11: Our results of the Fountain reconstruction compared to Furukawa’s models. The models are 
meshed and texture mapped from the respective patch models. The number of vertices of the patch models 
is indicated in the bottom of the image. It can be seen that with our method, we generate more patches 
than the baseline method. When we look at the Furukawa’s results, we can notice some missing vertices 
which imply that our mesh models are more complete.  

 

 

Figure 12: Our results of the Herz-Jesu reconstruction compared to Furukawa’s models. Both models are 
meshed and texture mapped from the respective patch models. The number of vertices of the patch models 
is indicated in the bottom of the image. It can be seen that with our method, we generate more patches 
than the baseline method. We can also notice some missing vertices from Furukawa’s results which imply 
that our mesh models are more complete.  
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2.2.7 Conclusion 

 

A stochastic version of the quasi-Newton BFGS method was implemented to optimise the 

geometric orientation and depth information of all newly generated patches, provided 

that the camera coordinates are accurately obtained.  The results of the proposed method 

show a better distribution fit with a smaller standard deviation and means for both 

evaluated patch models.  The results indicate that for smaller means and standard 

deviations, the distribution is less prone to errors and noise respectively.  Despite the fact 

that we have a denser set of patches than the baseline method, the additional patches 

did not contribute to the error or noise of the patch distributions. This leads to a 

conclusion that the quality of the generated patches is better than the baseline patch 

distributions.  Since the quality of the mesh model is directly related to the density of 

patch model [22], we can say that our patch models are more complete and accurate than 

the baseline method.  
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CHAPTER 3 - CONCLUSION 
 

The two main contributions that are described in this dissertation are presented in both 

Paper 1 and Paper 2.  They deal with specific reconstruction challenges that relate to final 

model quality, time and space complexity.  The performance evaluation of the modified 

PMVS algorithm shows the improvement to accuracy, completeness, and space and time 

complexity.  

 

In Paper 1, a segmentation technique is proposed to identify and eliminate spurious 

background artefacts; and to reconstruct only the zone of interest.  From 2D boundary 

information that is acquired using our adaptive segmentation technique, we are able to 

constrain the patch model to a 3D patch boundary which is similar to visual hull methods.  

The 3D patch boundary precludes the patch model expansion beyond the bounds of the 

foreground.  The patches that reside on the edges of any view are not reconstructed using 

that view.  However, they are perfectly reconstructed from other views in which they are 

not edge-aligned.  In the baseline PMVS reconstruction pipeline, background artefacts are 

unnecessarily included in the final patch model.  Furthermore, post-processing is needed 

to obtain the visual hull and iteratively deform the visual hull towards the set of 

reconstructed patches so that the surface can be approximated via Iterative Snapping.  

Our proposed time-efficient process requires the modified PMVS and PSR algorithm.  This 

reduces time and space complexity of the reconstruction pipeline, and enabled us to 

replace the iterative snapping algorithm which constrained the technique for use on an 

object datasets only.  The improvement to this pipeline allows for high quality mesh 

models to be produced using the PSR algorithm.  The mesh results are of similar quality 

to the baseline method.  Although the application of our proposed method to scene 

reconstruction has not been fully investigated, the results obtained using datasets from 

Strech et al. [3] are very promising.  A more generalised 3D reconstruction method can be 

developed and tested to handle crowded scene datasets. 
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In Paper 2, a modification is made to the patch optimisation method that refines the 

geometric orientation and depth information of all newly-generated patches.  The results 

obtained using the modified optimisation method show a good distribution fit to the laser 

scan.  The improvements to the M3C2 means and standard deviation are noted for both 

of the datasets that we evaluated.  The smaller means and standard deviations indicate 

that the optimised distribution is less prone to errors and noise respectively.  Despite the 

fact that we generated a denser set of patches than the baseline method, the additional 

patches do not contribute to the error or noise of the patch distributions.  This leads to a 

conclusion that the quality of the generated patches is better than the baseline patch 

distributions.  The quality of the mesh model is directly related to the density of the 

reference patch model.  We can say that our patch models are complete and more 

accurate than the baseline method.  

 

In conclusion, the modification of the baseline method that is presented in both papers, 

show specific improvements to the final patch reconstructions.  In Paper 1, we were able 

to reduce time and space complexity by using an adaptive segmentation technique.  In 

Paper 2, we addressed the issue of specular highlights by using a specially developed 

feature-space and we improved the optimisation method used to refine geometric 

orientation and depth information for all reconstructed patches.  
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Appendix A – Digital Copy of the Results 

 

The mesh results that have been captured in this dissertation are saved in a digital format 

for viewing later on.  The following items can be found in the digital copy (i.e. DVD): 

 The digital copy of the Turn-it-in report with the author’s response digital report. 

 The digital copy of the final dissertation. 

 The mesh model results of the research work presented in this dissertation. 

 The source of the modified PMVS algorithm is also included. 

 

The attached DVD 
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Appendix B – Texture Mapped Mesh Models 

 

The texture mapped mesh models of that were used in this dissertation, are shown in this 

session as images. Dino-Ring, Temple-Ring, Skull, Fountain and Herz-Jesu reconstructions 

are shown below in their respective order. 
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