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ABSTRACT

Co promoted and unpromoted vanadium-phosphorous-oxide (VPO) catalysts were synthesized via an

organic route. The catalyst precursor was calcined and then conditioned in a reactor, forming the

active vanadyl pyrophosphate, (VO)zPZ0 7, phase. Different promoter loaded catalysts were

synthesized and their effect on the yield of maleic anhydride (MA) from n-butane oxidation was

examined at different temperatures and gas hourly space velocities (GHSV). The catalysts were tested

as a powder. The catalysts were examined in the oxidation of n-butane gas, over air as an oxidant, in a

specially designed and constructed continuous flow, fixed-bed catalytic micro-reactor equipped with

an on-line gas chromatography (GC) monitoring system. A thermal conductivity detector (TCD) was

employed for carbon oxide monitoring and a flame ionization detector (FID) for all other products.

The catalysts were characterised by X-ray diffraction (XRD) to determine the phases present in the

precursor, calcined and used catalysts. The Brunauer-Emmet-Teller (BET) surface area was calculated

for the different promoter loaded catalysts. Fourier transform infrared (FT-IR) spectra, via the KBr

pellet method, and attenuated total reflectance (ATR) spectra were recorded to determine the anions
\

present in the bulk and surface of the catalyst respectively. Energy dispersive X-ray (EDX) and

inductively couple plasma-atomic emission spectroscopic (ICP-AES) techniques were employed to

determine the elemental composition on the surface and in the bulk of the catalyst respectively.

Scanning electron microscopic (SEM) images of the catalysts during different stages of their

investigation were recorded. The average vanadium oxidation state (AV) in the bulk of the catalyst

was determined via a titrimetric method. The catalysts were optimized to a high yield and selectivity

of MA. The operating temperature, GHSV and promoter loading on the catalyst were the parameters

that were changed during the testing of the catalyst. Different stages of the catalyst's life were

characterised via the techniques mentioned above. The catalysts were monitored over a 200-hour

period on average, usually taking approximately 24 hours to· equilibrate. One such Co promoted

catalyst yielded 45 % MA at 275°C and GHSV of 2878 hf t on equilibration, with an n-butane

conversion of 73 %, whilst all previously rep0l1ed VPO catalysts produce far lower MA yields at this

temperature.
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DEFINITIONS AND CALCULATIONS

Itotal surface area of catalyst
Specific yield

Gas hourly space velocity (GHSY) =
volume of catalyst bed/mI

I

molar yield of species
2.

1.

3.
rate of reactionSpecific rate = __~,,-=--o=...:..===__

total surface area of catalyst

4. Average vanadium oxidation state (AY) =' 5 T (volume KMn04 solution)
(volume Fe(NH4MS04)2 solution)

I
This is a titrimetric method employed that is explained in Section 3.5.3.7.

5. Carbon mass balance calculation

I
n-Butane feed + O2~ MA + CO + CO2+ unreacted n-butane

Le. 4 carbons + 0 carbons ~ 4 carbons +11 carbon + 1 carbon + 4 carbons

carbon mass balance = n(products) X 100

n(feed)

I
(n = number of moles)

6.

[4 X nMA + 1 X nCO + 1 X nC02 + 4 X n(unreacted n-butane)] X 100
I

4 X n(n-butane feed)
I

. n(n-butane reacted) X 100
Percentage conversIOn of n-butane =

n(n-butane feed)

7. Percentage selectivity MA = 4 XnMAX 100

1 X nCO + 1 X nC02+ 4 X nMA

The percent selectivity towards CO and CO2were calculated in the similar way, with either

CO or CO2replacing MA in the numerator.

P t . Id MA <=-p=er,-=c-=.en=t=a=g=--e-=.se=lc.=.e=ct=iv,-,ic=.ty,-MA=~X~pe=r-=-c=en=t=aCLge=--=co=n~v:...=e=rs=i=on~oco..f-,-,n--,-b=u~t"",an"-,,,e8. ercen age Yle =
100

C t"l t f:C t' ",-d"",if""-,fu""s,-,-,io=n~pl<'a"",t"-,-h~o,-"f-,-r""ea"",c,-",ta""n-,-,t-,-m~o=l~ec~u,,,,,I~e/~n~m9. a a ys e lec Iveness =
catalyst particledimension/nm

10. Upper explosive .limit (uel): ratio below which gaseous mixtur~ will explode on ignition.

11. Lower explosive limit (lel): ratio above which gaseous mixture will explode on ignition.
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CHAPTER 1

INTRODUCTION

1.1. General: historical background

Maleic anhydride (MA), C4H20 3, has the IUPAC name 2,5-furandione. It crystallizes as

orthorhombic crystalline needles and is available from producers either as molten liquid or as

briquettes. The m.p of MA is 53°C. MA is a strong eye irritant and can cause conjunctivitis and

temporary double vision. A material safety data sheet for MA is included in Appendix 1.

MA is important in a large number of chemical processes; unsaturated polyester resins

being a major use amongst others such as lube additives, paper reinforcement, agriculture and

specialty chemicals (Hodnett, B.K.; (1985)). The polyester resin is formed from the reaction

between MA, ethylene glycol and a vinyl monomer. Polyester resins are in turn used in the

production of fibreglass composites for boats, cars and other consumable products. Polyester

resins are also involved in the construction and electrical industries. MA and maleic acid find

use in fragrances. Smaller amounts of MA are used in pesticides and growth inhibitors.

Specialty chemical products from MA include 1,4 butanediol, y-butyrolactone,

tetrahydrofuran, polybutyleneterethalates (PBT), polyurethanes, copolyester elastomers

(COPE), pyrrolidones, polytetramethylene ether glycol (PTMEG) and tetrahydrothiophene.

These products are used in various engineering plastics, automotive products, solvents for the

manufacture of pharmaceuticals, videotapes and specialty fibers. Within Dupont, the principal

end use of MA is in the production of PTMEG.for which tetrahydrofuran (THF) is a precursor.

The main outlet for PTMEG is in the manufacture of Spandex fibres and COPE for products

such as Lycra®, Hytrel® and other consumable products (Stadig, W.E. (1992)). The worldwide

demand for MA has escalated thro\.lgh the years. An estimated 171 000 tons of MA were

produced in 1978. In 1995, the global production of MA had grown to an estimated 900 000

tons, with a value of $700 million. Over the last few years, consumption throughout the world



has increased at an average annual rate of 5.8 %. The forecast has the consumption of MA rising

at an annual rate of 3 % in the U.S. and 7-8 % in Asia (Centi, G. et al. (2001». The fastest

growth is occurring in Asia, where MA is used as an intermediate for production of 1,4­

butanedioI. MA derivatives of growing importance are those obtained by hydrogenation such as

butanediol and y-butyrolactone. The main end uses of MA are highlighted in Table 1.1. The

percentage indicates what propOltion of the MA produced in the region is used in the respective

end products.

End uses Europe, % North America, % Japan, %

Unsaturated polyester resins (UPR) 55 51 38

Fumaric and maleic acids 6 7 11

Agricultural chemicals 6 6 -

Additives for oils 5 12 3

Alkydic resins 6 - -

y-Butyrolactone - - 4

Detergents 6 - -

Copolymers - 8 7

Others 16 16 37

Table 1.1. End uses ofMA (Centi, G. et al. (2001))

Since 1933, production of MA has been mostly via the selective oxidation of benzene

over V20s-Mo03 catalysts (Fig. 1.1) (Malow, M; (1980».

As early as 1962 a plant was constructed in the United States for the conversion of n­

butenes to MA. At that time, however, the process was found not to be economically viable by

comparison with the contemporary benzene oxidation process (Malow, M.; (1980».

2



Benzene MA

Fig. 1.1. Oxidation a/benzene to MA (Hadnett, B.K. (1985))

In the 1970s two developments occurred which tilted the balance of economic advantage

in favour of the C4 process: (i) A substantial price differential developed between benzene and

C4 feedstocks. The differential continued to grow due to scarcity of benzene, caused by its

increasing use in unleaded automobile fuels, coupled with generally increasing oil prices. (ii)

The introduction of strict controls, particularly in the United States, on benzene emission from

MA plants; for new plants these prohibit any detectable benzene emission (De Maio, D.A;

(1980)). Benzene has the ability to cause leukemia, a fatal cancer of the white cell producing

tissue (Centi, G. et al. (2001)). It was as a direct result ofthese factors that interest intensified in

the C4 partial oxidation route during the 1970s. Vanadium-phosphorous-oxide catalysts (VPO)

were found to be best suited for the task, and interest was successively focussed on butadiene, n-

butenes, and n-butane as feedstocks. It was initially generally thought that oxidation of alkane

hydrocarbons was difficult, however, now n-butane seems to be the most favoured feed stock

(Fig. 1.2) (Malow, M.; (1980)). n-Butene oxidation produces undesirable by-products including

organic salts, which can cause corrosion and problems in separation. n-Butane is a more

attractive feed than benzene because there is theoretically no carbon loss during its oxidation. In

terms of product quality, n-butane oxidation is a very clean reaction with minimal formation of

by-products (apart from the carbon o.xides, only minimal amounts of acetic acid are produced)

(Sookraj, S.H. et al. (1999)). The catalysts involved in the n-butane route were also found to

have a longer lifespan than catalysts used in the production of MA using butene. Butene

reactivity is higher and there are fewer reaction steps involved in the process, yet, the increased

3



selectivity and cleaner reaction lead commercial producers to choose n-butane as the preferred

feed. The flammability limit for n-butane is lower than that for benzene, resulting in safer

operating conditions.

n-Butane selective oxidation on the VPO catalyst is a much studied reaction in

heterogenous catalysis. Monsanto operated the first commercial process starting with n-butane

in 1974 and

n-Butane

Vpo. n +4H
2
0

Ar.OA~
° °

MA

Fig. 1.2. Oxidation ofn-butane to MA

the use of n-butane in MA synthesis remains the only large-scale commercial partial oxidation

process that uses an inexpensive alkane as a direct feedstock (E6ner, J.R. et al. (1988)). The

reactor technology that has been developed thus far shall be discussed in detail in Chapter 2.

1.2. Background into reaction chemistry

Most of the MA produced worldwide is now obtained by direct catalytic oxidation of n-

butane on the VPO catalyst surface. The VPO system is highly selective and active and

therefore th~ most effective catalyst. The required catalyst structure for the use of n-butane is

considerably more complex than the catalyst involved in the benzene process. There are two

main synthetic routes for VPO catalysts: the aqueous and the organic route. The catalysts are

generally prepared by mixing the vanadium pentoxide with a nearly anhydrous phosphoric acid

and an organic solvent for an organic. preparation. Concentrated hydrochloric acid and water are

used in the aqueous preparation. HCI accomplishes reduction of the V5
+ starting compound, for

aqueous preparation and isobutyl, benzyl, and allyl alcohols for the organic preparations (Busca,
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G. et al. (1986a)). In both preparations, almost pure vanadyl hydrogen phosphate is obtained,

but with different microstructures (Busca, G. et a1. (1986b)). The vanadyl hydrogen phosphate

product is dried and calcined. Once the calcined product is loaded into the reactor, it is

conditioned to form the active catalyst by heat treatment over an n-butane feed stream. The

temperature used in the conditioning varies in different publications and patents. The study of
\

this system has been the subject of extended research, for industrial reasons, due to the

economic importance of MA as a chemical intermediate, and for fundamental reasons, as this

reaction is very complex, involving a 14 electron oxid1:ition, with 8 H-abstractions, three 0-

insertions, and subsequent electron transfers (Fig. 1.2). There are numerous publications on the

physicochemical aspects of the VPO system (Centi, G et al. (2001)), however, few studies have

been devoted to kinetics and the mechanism of this reaction. Centi et al. (1984) and Pepera et a1.

(1985) have published data on the kinetics and mechanism of this reaction in separate papers.

The main reason for little focus being placed on the kinetic and mechanistic aspects of this

reaction is that there are many possible reaction pathways and the absence of well-identified

intermediates in steady state conditions. It has been suggested that the oxidation of n-butane

may proceed without intermediate desorption from the active site (Aguero, A. et al. (1988)), but

through a preliminary dehydrogenation step to butene and subsequent oxidation to MA (Centi,

G. et a1. (1988)). The density of oxidising sites has been considered as a tool for modifying the

selectivity in reactions of mild oxidation (McKay, J.; URL; (1999)) and this can be controlled

by the catal~tic conditions such as n-butane/air ratio, temperature of reaction and contact time.

There are many discrepancies in the open literature concerning the nature of the active phase.

Most of the kinetic studies have been drawn toward the vanadyl pyrophosphate phase,

(VO)2P207, which is considered to be the active phase for n-butane to MA oxidation (Centi, G.

et al. (1984a), Pepera, M.A. et a1. (1985)). In the former study (Centi, G. et a1. (1984a)), it was

concluded that (VO)2P207 catalyses the oxidation of n-butane to MA via redox reaction of its

surface layer according to a Mars and van Krevelen mechanism as illustrated in Fig. 1.3.
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Fig. 1.3. Mars and van Krevelen mechanism (adaptedfrom Mars, P. et al. (1954))

There are three essential properties the catalyst should possess in order to obey a Mars

and van Krevelen mechanism: (i) the catalyst should contain a feasible redox couple at the

operating temperature, which is possible with transition metal ions; (ii) it should exhibit high

electrical conductivity to favour electron transfer and (iii) it should have a high lattice oxygen

anion mobility within the material to ensure the reoxidation of the reduced catalyst.

According to this mechanism, the substrate is oxidized by the solid and not directly by

molecular oxygen of the gaseous phase. The role of dioxygen is to regenerate or maintain the

oxidized state of the catalyst. The oxygen species intro~uced in the substrate stems from the

lattice and is at an oxidation state of-2. The mechanism involves the presence of two distinctive

active sites: an active cationic site that oxidizes the substrate and another active site for

dioxygen re~uction.

y4+ at the surface of pyrophosphate is proposed to activate molecular oxygen, while the

surface layer can be oxidised to a certain extent to y5+, which provides the capacity to oxidise

adsorbed hydrocarbons.

In a former study (Pepera, M.A. et al. (1985)), the reactivity of the various oxygen

species was examined by thermogravimetric techniques and transient reaction studies. It was

shown that intermediates such as butene, butadiene and furan desorb when the (YOhP20 7
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catalyst works in more reducing conditions with high hydrocarbon/air ratios, i.e. above the

upper explosive limit of 8.5 % (Appendix 1). Furan is readily converted to MA on a partially

oxidised surface. These results suggest that there are several active oxygen species involved:

activated oxygen, which was suggested to be formed by the irreversible dissociative

chemisorption of dioxygen via oxidation of y4+ to surface y5+, was considered to be responsible

for the oxidation of the C-H bonds of n-butane and furan, while a surface lattice oxygen anion

should be responsible for allyl oxidation and ring insertion (Pepera, M.A. et al. (1985)).

Although, in all industrial processes, a vanadyl pyrophosphate-base catalyst is used in the

conversion of n-butane to MA, its specific characteristics in terms of nature and quantity of the

promoters, method of preparation and textural/mechanical properties, shape and characteristics

of the pellets (and additives to obtain the required properties) and procedures of catalyst

activation and regeneration are different for the various processes. As a consequence of all these

variables, the various processes perform quite differently in terms of selectivity and

productivity, even though all of them use the same type of catalytic active phase.

Compared to other industrially practiced hydrocarbon selective oxidation reactions, MA

production is the most complex (Centi, G. et al. (l984b)). It is the only example of an

industrially practiced selective oxidation reaction involving alkane activation (Birkeland, K.E.

et al. (1997)).

Dehydrogenation reactions are reversible due to the hydrogen evolved, and the alkane

conversion is limited by thermodynamic equilibrium. In order to shift it towards the formation

of dehydrogenation products, the reactions are carried out at relatively high temperatures (400-

500aC). At these temperatures, however, cracking of hydrocarbons to coke occur, reducing the

selectivity of the reaction. The coke deposition causes a decrease in catalyst activity and the

need for frequent regeneration. One of the more difficult technological problems to be solved is. .

the necessity to provide high temperatures, which usually makes the process energy and capital

intensive. Many of the obstacles can be overcome by ;Jroviding the heat necessary for the

reaction via in situ oxidation of hydrogen evolved as a product of pure dehydrogenation. The
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reaction, therefore, becomes exothermic and able to proceed at much lower temperatures, at

which formation of carbon and cracking products is insignificant (Mamedov, E.A. et al. (1995)).

A further advantage is that the conversion is no longer limited by thermodynamic factors.

Molecular oxygen is the most attractive reactant for industrial purposes because of its low cost

and less severe environmental impacts. Dioxygen can react directly with the hydrocarbon

molecule on the catalyst surface yielding the products of oxidative dehydrogenation. The aim is

to develop a catalyst capable of activating only the C-H bonds of the alkane molecule in a flow

of oxygen. This problem becomes one of global importance in the light of expectation that the

petrochemical industry will in the future be based on the direct use of alkanes as raw materials

instead of alkenes (Sookraj, S.H., Engelbrecht, D.; (1999)). A number of investigations relating

catalyst structure to catalytic activity and selectivity, and comparing one system with another,

have appeared in the literature. The literature also shows the catalyst phase composition or/and

structure being controlled, to a large degree, by the preparation method. For supported catalysts,

the nature of the support becomes one more variable in determining the final catalytic

properties.

1.3. Catalyst models

Heterogeneous catalysis is a science at the interface of different areas of chemistry and

engineering. Each new development stems from applications of concepts from these different

areas. A het~rogeneous catalytic system should be, in fact, correctly regarded as a three phase

system: a gas phase, a solid phase and a two-dimensional surface region at the gas-solid

interface composed of the surface solid phases and interacting adsorbed molecules (Centi, G. et

al. (1985)). The structure and properties of this surface region may be modified either by

changing the composition of the gas phase or by altering the properties of the solid catalyst.

The YPO system is characterised by the facile formation of a number of crystalline

phases, in the y 4
+ and y 5

+ oxidation states. In hydrated YOP04, the layer lattice is built up of

neutral YOP04 layers and interlayer water molecules. The Y atom lies on a fourfold axis and is
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surrounded by six oxygen atoms to give a distorted octahedron. The four equitorial oxygens are

provided by four different phosphate tetrahedra. One of the axial vanadium-oxygen bond

distances is very short, corresponding to a vanadium-oxygen double bond (V=O). The structure

of (t-VOP04 is composed of chains of highly distorted V06 octahedra sharing four oxygen

atoms with four different P04 groups (Centi, G. et al. (1988)). These groups are arranged to

form layers. This is discussed further in the next section. A description of the catalyst phases

present in the VPO catalyst appear in Appendix 1.

The two main effects observed in the preparation of the VOHP04·
1
/ 2H20 catalyst

precursor may be, in fact, strictly connected to intercalation properties. Firstly, non­

stoichiometry is easily accommodated as evidenced by the preparation of compounds with 0.9­

1.2 P: V atomic ratios without any apparent modification of structural and morphological

properties (Centi, G. et al. (1985)). Secondly, the preparation conditions have a pronounced

effect on the microstructure (Centi, G. et al. (1985), Cavani, F. et at. .(1985a)), i.e. on the

morphology, solid-state reactivity, and the presence of disorder in the stacking fold of

crystalline planes of its layered structure. The layers of vanadyl hydrogen phosphate «0 I0)

planes) are interconnected in a three dimensional structure by weak H bonding of phosphates

and water molecules. The organic alcohol, which was added as a solvent and reducing agent

only in the organic synthetic route, competes with this effect, reducing the bonding between the

planes and allowing the formation of crystals in which these (010) planes are predominantly

exposed, revealing a platelike morphology (Wenig, R.W. et al. (1986), Johnson, J.W. et at.

(1984)). This effect, in addition to the increase in surface area (Cavani, F. et al. (1984)),

modifies the surface properties due to a change in the relative ratio of crystalline planes at the

surface. The alcohol can also remain intercalated between layers (Busca, G. et al. (1986a)). This

effect induces some local modification of the vanadyl hydrogen phosphate structure, which can

strongly modify its solid-state reactivity (Busca, G. et at. (l986a)).

Because the VPO system is characterised by the facile formation of a number of

crystalline phases, the structure of the active phase must be discussed in terms of factors such as
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the method of preparation of the precursor (type of reagents, reducing agents and aliphatic or

aromatic solvents (Horowitz, H.S. et at. (1988), Cornaglia, L. et at. (1993)), temperature, use of

dry or wet milling), oxidation state, P:Y ratio (Horowitz, H.S. et at. (1988)), the use of

additives, removal of excess P by washing, activation and conditioning procedure for the

precursor at high temperature and crystal phase transformations under reactant atmosphere such

as reduction time, temperature and amount of water. The various crystal phases can interconvert

as a function of the reducing or oxidising properties of the reactants, the time on stream and the

reaction temperature (Bordes, E. et at. (1985), Bordes, E. et al. (1979)). Fig. lA indicates the

structural changes and interconversion of YPO phases during the activation of

(YO)HP04·l!2H20 (Cavani, F. et al. (1996)).

YOHP04·1/2H20 Precursor

1
amorphous phase Calcination

1
(YOhP20 7

1
Conditioning and

subsequent reaction in

~-YOP04 the reactor

other y 5
+ phases (an, y, 8)

Fig. 1. 4. Interconversion ofthe VPO phases from precursor stage through to activated stage in

the reactor
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The orthophosphate (YOP04) phases are transformed to (YO)2P207 by reaction with the

hydrocarbon mixture. This transformation involves two water-loss steps, the first associated

with water of crystallization and the second with the transformation of hydrogen phosphate to

pyrophosphate. The two transformations can occur simultaneously or consecutively, depending

on the nature of the precursor phase and the heat treatment (Cavani, F. et al. (1985b)). When

oxygen is present in the atmosphere, there is also oxidation, leading to various possible y 5
+

phases (a" all, 13, y, 0), again depending on both the nature of the precursor phase and the

conditions of the heat treatment. Thus there is a broad range of possibilities in terms of catalyst

composition after the heat treatment or the calcination step, with identification of some of the

phases, being amorphous or well dispersed on the vanadyl pyrophosphate phase, being difficult.

Many of the studies on the structure-activity and selectivity relationships on YPO catalysts have

focused on identification of the different phases present in the catalyst after this heat treatment,

with the aim of correlating the types and amounts of phases present to the catalytic behaviour

and thus identifying the active phase/so There are different YPO phases, with Y in the +5, +4

and +3 oxidation state for which structures have been resolved (Bordes, E.; (1987)). The y 5
+

phases are hydrated {YOP04,1/2H20, YOP04,2H20} or dehydrated phosphates {aI-, aw, 13-, y-,

o-YOP04} (Bordes, E.; (1987)). The y 4
+ phases are hydrogen phosphates {YOHP04,'/2H20

(Torardi, C.c. et al. (1984)), YOHP04-4H20 (Johnson, J.W. et al. (1984)) and YO(H2P04h

(Bordes, E.; (1987))), pyrophosphate {(YO)2P207} and metaphosphate {YO(P03)2} (Bordes,

E.; (1987)). The y 3
+ phases are YP04 (Bordes, E.; (1987)) and Y(P03h (Tofield, B.C. et al.

(1975)). A description of the phases appears in Appendix 1.

The transformation of y 4
+ and y 5

+ phases into vanadyl pyrophosphate is an important

step in. forming active catalysts. By thermal treatment at ca. 400°C, the YOHP04·I/2H20

dehydrates to (YO)2P207.

Wenig and Schrader (Wenig, R.W. et al. (1986)) claim that only (YO)2P207 is the active

and selective phase in n-butane oxidation to MA. YPO cat':1.lysts are composed of binary oxides.
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When P is present in excess of the stoichiometric ratio, the catalysts become resistant to

oxidation (Hodnett, B.K. (1985)). They can operate during catalytic work with most of the V in

the +4 oxidation state, even in oxygen rich feeds.

1.4. An idealized model for the orthorhombic structure ofvanadyl pyrophosphate

VPO systems have a complex, yet fascinating structural chemistry. (VO)2P207 exhibits

exceptional selectivity in the 14-electron oxidation ofn-butane to maleic anhydride (Centi, G. et

al. (1988)). The catalytic performance of this phase was shown to be correlated with crystal

morphology and size, and is strongly influenced by the presence of non-stoichiometric P and

variations in the bulk oxidation state of V (Cornaglia, L.M. et al. (1991)). In order to fully

understand the structure/performance dependance of this system and the mechanistics of site

isolation at the active/selective surfaces parallel to the basal (100) plane (Fig. 1.5), a thorough

investigation of the crystallography and variation in the structure of vanadyl pyrophosphate has

been necessary.

A molecular description of the surface structure and surface chemistry of vanadyl

pyrophosphate requires an acceptable crystallographic model of the bulk. Unfortunately, a great

deal of confusion has surrounded attempts to determine the structure of this material. For

example, crystals and crystallites ofvanadyl pyrophosphate have been observed to have defects.

The nature of these defects can cause severe problems with the refinement of the

crystallographic models in single crystal X-ray diffraction studies and this has resulted in lack of

confidence in previous structural assignments. Other points of confusion revolve around the fact

that vanadyl pyrophosphate catalysts are known to exhibit a structure sensitivity related to the

method of preparation (Cavani, F. et al. (1985a)) and that differences in catalytic performance

are likely due both to the modification of crystal morphology as well as structure.

The solid-state dehydration reaction, which transforms the vanadyl hydrogen phosphate

hemisolvate precursor into the vanadyl pyrophosphate product, has been reported to be

topotactic (Bordes, E. et al. (1979)), with an amorphous intermediate phase required to
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complete the transformation. Based on symmetry arguments alone, it is clear that this reaction

cannot proceed as simple topotaxy of the published crystal structures of VOHP04·'/2H20 and

(VO)2P20 7. VOHP04·1
/ 2H20 and (VO)2P207 are representative of the precursor and product,

respectively. The point group symmetry around the face-shared vanadyl dimeric unit in the

precursor is C2Y, while that of the edge-shared dimer in the vanadyl pyrophosphate product is

Cl. It is apparent that there is a considerable reorganization of structure as the catalyst

precursors pass through an amorphous intermediate phase during calcination and, after

conditioning in the presence of the feedstream in the reactor, yield the catalytically active

(VOhP20 7 phase (Thompson, M.R. et al.(1994)).

Large single crystals of vanadyl pyrophosphate vary in colour (either emerald-green or

red-brown) and possess subtle structural differences due to variation in the symmetry of the V

atom sites within the asymmetric unit (Thompson, M.R. et al. (1994)). No variation in P atom

positions are indicated in the single crystals, however, there is evidence of P disorder in catalyst

powders.

.......
----

"-

Close packed oxide basal plane

....... .. , , ..', .... ,. " ..

Close packed oxide basal plane

(a) (b)

Fig. 1.5. (a) The close-packed oxygen basal planes/or the unit cell o/vanadyl pyrophosphate.

(b) The relationship between the coordination spheres o/vanadium (octahedra) and

phosphorous (tetrahedra)
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The crystal structure of vanadyl pyrophosphate contains two close-packed layers of

oxygen atoms that lie parallel to the bc plane at approximately J!4 and % along the a-axis as

illustrated in Fig. 1.5.

These layering planes are made up entirely of the basal oxygens of V octahedra and

pyrophosphate tetrahedra (Fig. 1.5. (b)). The close-packed pattern for the basal-plane and the

relative positions of the V and P sites in the octahedral and tetrahedral interstices are illustrated

in Fig. 1.6. The refinement of the crystallographic model indicates a degree of non-planarity and

distortion of the oxygen basal plane. These distortions are minor.

Oxide close packing pattern

(a)

O.33A.1.. •

Octahedral and lelrahedral sites

(b)

. .1.. 0.38A

Fig. 1.6. (a) Basal oxygen close-packing pattern. (b) Location ofthe octahedral and tetrahedral

interstices (Thompson, MR. et al. (1994))

The V octahedra are square-pyramidally distorted. The V atoms lie approximately 0.33 A

out of the basal plane oriented toward the vanadyl oxygen, i.e. V=O. The P atoms lie

approximately 0.38 A out of the basal plane. Fig. 1.7 (a) illustrates the coordination geometry

about the V atoms, and Fig. 1.7 (b) the geometry for the P atoms, each idealized from

experimental models.
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Fig. 1.7. (a) The vanadium coordination sphere and (b) the phosphorous atoms in the idealized

model ofvanadyl pyrophosphate. Subscripted qxygen atoms represent double-bridged positions

(OciJ and triple-bridgedpositions (OJ

Four classes of oxygen atoms exist within the structure: double bridging oxygen, triple

bridging oxygen, vanadyl oxygen (V=O) and pyrophosphate oxygen (P-O-P). The double- and

triple-bridging oxygens lie in the basal plane. The other vanadyl oxygens lie within the unit cell.

It is important to note that the posltions of the vanadyl oxygens are invariant to the direction of

the vanadyl bond. The directional sense of the vanadyl column relative to the a-axis is

determined by the position of the V ions in that column (Fig. 1.5 (b)). Two positions are

possible for each V atom: above or below the basal plane. If the V atoms lie above the basal

planes at 114, the direction of the vanadyl column will be aligned with the direction of the a-axis,

and ifthey lie below these planes at %, then the direction ofthe column will be anti-parallel to a.

Within every vanadyl column, one V atom will be positioned between any two basal planes of

the structure. Similar to the situation for the V atoms, the P atoms can lie above or below the

planes at 114 and % on the a-axis. However, both P atoms of an individual pyrophosphate group

must lie between two adjacent basal layers. Therefore a column vacancy will occur in every

other layer. There are eight pyrophosphate columns within the unit cell, each of which possess

two possible orientations. In summary there are 104 atoms contained within the unit cell of
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vanadyl pyrophosphate: 48 basal oxygen atoms, 16 vanadyl oxygen atoms, 16 V atoms (8 pairs)

and 8 pyrophosphates (24 atoms).

The XRD patterns of vanadyl pyrophosphate catalysts exhibit significant differences

when compared with the diffracted intensities from the single crystals. The most probable

explanation is that there is a significant amount of variation in the structure of the vanadyl

pyrophos'phate in the microcrystalline catalysts (Thompson, M.R. et al. (1994)). The structures

of the single crystals are only two of a great number of possible polytypes for vanadyl

pyrophosphate. For the observed cell volume, there are 8 columns of vanadyl groups each

possessing two possible orientations and 8 columns of pyrophosphates each with two possible

orientations, yielding i 6 (65 536) variations.

The idealized model of vanadyl pyrophosphate has been presented here primarily to illustrate

the point that there are many conceivable variations in the structure of this material. There does

not seem to be a simple symmetry preserving mechanistic path between vanadyl hydrogen

phosphate and the structures of the emerald-green and red-brown crystal, and therefore, we

should not be surprised that an amorphous intermediate phase results during the preparation of

the catalyst. Theoretical results point to the fact that the experimental structures may be

representative of the most thermodynamically favorable structures for this material (i.e. lowest

crystal energy). There is a common misconception that the bulk structure of the vanadyl

pyrophosphate is characterized as a compact solid oxide. Consideration of the symmetry of the

vanadyl and pyrophosphate building blocks more appropriately leads to a description ofthe bulk

as a material with a series of interlayer vacancies or pores. One hypothesis is that the surface

topology parallel to the (100) plane in vanadyl pyrophosphate must possess three-dimensional

character (Centi, G., Trifiro, F.; (1988)). This stems from the fact that these surfaces cut across

bulk vacancies. If vanadyl pyrophosphate can exhibit variations in its bulk structure, then the

sizes and the symmetries of these vacancies at the surface termination would likewise be

expected to be variable.
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1.5. Influence of reducing agent and solvent

Hydrochloric acid and water are the two most widely used reducing agents and solvents

for preparations of VPO catalysts via the aqueous method. Alcohol solvents such as ethanol,

benzyl alcohol, iso-butanol and allyl alcohol are used as reducing agents and solvents for the

organic preparations of the catalyst. Conversion, yield or selectivity, always expressed in molar

terms, observed at a given temperature or at the temperature required to obtain a given

conversion are the parameters usually compared between catalysts. An important characteristic

of VPO is the oxidation state of the V ions. Usually a mixture of +5, +4 and +3 oxidation states

is present. Values for the average V oxidation state (AV) between +4 and +5 are common. The

redox level of these catalysts is conveniently expressed in terms of the AV, which is usually
\

slightly greater than +4.

A study revealed that catalysts prepared using HCl as a reducing agent are typically

activated in air at 100°C higher than catalysts where iso-butanol or allyl alcohol acted as a

combined solvent and reducing agent (U.S. Patent (1982), U.S. Patent (1981 )). Since most VPO

in this particular study operated at similar AV values, this finding implies that the former

catalysts were more highly reduced before activation. The strength of the reducing agent

determines the initial AV of the precursor and plays a role in determining the temperature at

which the catalyst must be activated. The use of organic solvents can lead to increased surface

areas but improved catalytic performance does not always follow. The nature of the solvent and

the temperature at which the precursor is isolated by filtration can influence the final phase

composition of the catalyst. The preparation chemistry of this phase is thus very complex.

Indeed, with iso-butanol, non-agglomerated platelets (rosette morphology) form with

preferential exposure of the basal (001) plane (Horowitz, H.S. et al. (1988)), whereas using

secondary or tertiary butyl alcohol, well-formed non-agglomerated platelets form. With benzyl

alcohol, platelets with stacking faults form with the alcohol trapped between the layers (Cavani,

F. et al. (l985a)). Miyake and Doi (Miyake, T. et al. (1997)) showed that the morphology of the

catalyst precursor changes with the use of different alcohols in a comparative study. They also
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showed that selective synthesis of MA is related to exposed face of the catalyst and that catalyst

activity is related to surface area.

1.6. Influence ofP:V ratio

The P:V ratio is a crucial factor in determining the final characteristics ofVPO catalysts.

Influences of this can be conveniently classified as follows:

1. Influence on redox properties, i.e. the reducibility of the catalyst by hydrogen or

hydrocarbons and oxidizabi1ity by oxygen.

2. Influence on the phase composition of crystalline catalysts.

3. Influence on the distribution of V oxidation states in amorphous or poorly crystalline

catalysts.

Each ofthese classifications is considered below.

Determination of the P:V ratio must be taken into consideration, whether the precursor IS

isolated by evaporation of the solvent or the precursor is precipitated.

A slight excess of P in the catalyst, i.e. a molar P:V ratio greater than 1 is necessary to stabilise

the active phase. It is generally accepted that P above the stoichiometric amount stabilises the

V4
+ valence state and limits its oxidation (Hodnett, B.K.; (1985), Haber, J.; (1984)). The P:V

ratio is a key parameter in determining catalysts selectivity and activity according to Wenig et

af. (1986). Selectivity towards MA increases with catalyst P loading, whereas specific activity

of both selective and non-selective oxidation decreases on increase of P content in the 0.9 - 1.2

P:V range. Buchanan and Sunderasen (Buchanan, J.S. et af. (1986)), in an extensive kinetics

study, found that a catalyst with a P:V ratio of 1.0 was approximately twice as active as a

catalyst with a P:V ratio of 1.1, while selectivities to MA were similar. It can thus generally be

stated that a good VPO catalyst has a P:V ratio of about 1 (Trifiro, F.; (1993)). Bither (1984)

showed that the MA decomposition rate increases at P:V ratios less than 1, which results in

reduced selectivity. Bither (1984) also showed that a slight excess of P (P:V ratio = 1 to 1.2)

with one or some of promoters such as In, U, Zn, Sb, Ta and Si, etc. is advantageous. Despite
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the extensive use of promoters in patent literature, fundamental studies on the effect of

promoters have been very limited.

Ai (1970) showed from earlier work in this field that adding P to vanadium-oxide

catalysts lowers the overall activity but increases the selectivity towards MA formation from C4
\

feedstocks. Study of this effect indicated that when P was present at a P:Y ratio close to or in

excess of unity, the +4 oxidation state of Y was stabilised even during high temperature

calcination in air, i.e. temperatures exceeding 400°C (Nakamura, K. et al. (1974), Poli, G. et al.

(1981)). It was also reported that when calcination is carried out below 380°C, excess P remains

on the surface as pal; above this temperature P enters the solid to stabilise the +4 oxidation

state by solid-state reaction (Poli, G. et al. (1981 )). Centi et al. (1988) showed that this high P:Y

ratio hinders the oxidation of y 4
+ in vanadyl pyrophosphate. The reactivity of near surface

regions to reduction by hydrogen or re-oxidation by oxygen of catalysts calcined at 500°C was

essentially independent of the P:Y ratio but depended strongly upon the surface area. However,

the reactivity of the bulk of these catalysts was found to be strongly dependent on the P:Y ratio,

and a slight excess of P strongly inhibited the mobility of lattice oxygen through the bulk. The

fact that oxidation can proceed rapidly in near surface regions may result in an uneven

distribution of oxidation states between the surface and the bulk.

Reducibility of y 5
+ to y 4

+ (or the inverse reaction) is not the only important parameter of

catalyst behaviour; the y 4
+ to y 3

+ reducibility is significant as well, although this aspect has

often not been properly considered. The formation of V 3
+ was observed during the catalytic

reaction and the amount of y 3
+ depended on the feed composition and thus changed along the

axial direction of the fixed-bed reactor (Centi, G. et al. (1988)). A change in redox properties

not only changes the surface structure and P:Y surface ratio, but also the intrinsic nature of the

catalyst surface during the catalytic reaction as well as the possibilities of its dynamic in

operandi restructuring.

Several studies have shown that the P:Y parameter can have an overriding influence on

the AY, hence on the phase composition of ypa catalysts. In general, well-crystallised
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materials can be obtained from this system after thermal treatment at or above 450°C in simple

oxidising or inert atmospheres. Some phases which have been detected for VPO catalysts are u­

VOP04, P-VOP04, (VO)2P207, VPOs,2H20, VO(P03)2 and VO(H2P04)2. Amorphous

precursors were obtained for P:V ratios between 0.95-1.07:1 and employing an organic

synthetic route, whilst crystalline precursors were obtained for HCl reduction, via an aqueous

method of catalyst synthesis (Hodnett, B.K.; (1985».

When calcination of the organic prepared catalysts were carried out at 500°C, crystalline

P-VOP04 developed very quickly for P:V ratios of less than unity. When the molar P:V ratio

was greater than unity, a V4
+-containing phase labelled P* developed initially and then

transformed slowly into P-VOP04 As the molar P: V ratio was increased from 1.03: 1 to 1.1 0: 1,

the p*-phase became more stable against oxidation to p-VOP04 (Hodnett, B.K. (1985». A

description of the phases appears in Appendix I.

A suitable choice of molar P:V ratio can play a pivotal role in the final redox state

attained by VPO catalysts during steady-state working conditions. P in excess of the P:V = 1.1

ratio reduces the reactivity of the bulk of the materials. This ratio is primordial in determining

the phase composition of relatively well-crystallised catalysts. However, for poorly crystalline

or amorphous catalysts activated or calcined at low temperatures, viz. below 400°C, the P:V

ratio, in combination with the reducing agent used, determines the distribution of V and Pions

within the bulk of these catalysts.

1.7. Activation of the VPO catalyst

As outlined earlier (Section 1.5.), the reducing agent plays an important role in

establishing the initial AV of the VPO catalyst at the stage of isolation of the solid precursor.

Suitable choice of P:V ratio can sta~ilize this parameter during thermal treatments. However,

the efficacy of this stabilization depends upon the conditions, notably the temperature and

atmosphere during activation or catalytic testing. The activation procedure leads to a decrease in
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the rate of n-butane over-oxidation and a significant increase in selectivity. Deactivation of the

catalyst, on the other hand, results in over-oxidation products, viz. CO and CO2,

Low temperature activation procedures result in poorly crystalline or amorphous YPO

catalysts. The catalyst is usually calcined in an oxygen-free atmosphere at temperatures higher

than 400°C, followed by introduction of the n-butane in air reactant mixture. In this procedure,

pure crystalline vanadyl pyrophosphate is formed after the calcination step, and then, after

addition of the reaction mixture, partial oxidation may occur (Horowitz, H.S. et at. (1988)).

1.7.1. Activation in air

Catalysts prepared by HCI reduction with a P:Y ratio close to unity and calcined by

slowly heating in air to 380°C consisted of an amorphous pyrophosphate and a y 5+-containing

phosphate, which was described as a form of u-YOP04 modified by the presence of y 4+ ions

between its layer structure; subsequent calcination at 500°C led to the formation of ~-YOP04.

For catalysts with P:Y > 1.1 and calcined slowly, the precursor, hydrated pyrophosphate

{(YO)2P207·2H20}, decomposed below 380°C to form an amorphous pyrophosphate; at 380°C

a mixture of non-crystalline u-YOP04 and ~-YOP04 formed, and these two constituents were

again observed after further calcination to 500°C. By contrast, rapid approach to a calcination

temperature of 500°C produced ~-YOP04 and a crystalline y 4+ phosphate. It was reported that

rapid approach to the final calcination temperature prevented a reaction between amorphous

pyrophosphate and excess P (to form the ~-phase), but favoured the formation of the new y 4+

phosphate (Poli, G. et al. (1981)). On calcination, the surface area of the calcined catalyst is

greater than that of the precursor.

1.7.2. Activation in hydrocarbon-air mixtures

During testing of catalysts in n-butane-air flow at 500°C, the pre-reduced catalysts

attained steady state activities much faster and these were also more active and selective. It was
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established that the pre-reduced catalysts oxidised considerably under the test conditions,

whereas the calcined analogs were found to become slightly reduced (Hodnett, B.K. (1985».

It is clear from this that VPO catalysts, even with excess P, can respond to some extent to

the redox potential oftheir environment. However, in the normal operating temperature range of

these catalysts (350-450°C), AV values always stabilise in the range +4 to +4.5 for n-butane/air

mixtures below the explosive limit. It is also clear that the slow approach to the ultimate

temperature at which calcination in air or activation in hydrocarbon-air mixtures is carried out

can lead to catalysts with different phase compositions compared to catalysts calcined with a

rapid approach to the ultimate temperature. The AV values obtained by pre-reducing the catalyst

precursor in a hydrocarbon/air mixture are similar to those obtained by catalysts calcined with a

rapid approach to the ultimate temperature. Non-equilibrated solids cannot be used to interpret

the behaviour of equilibrated catalysts as temperature and time on stream play a vital role in the

activation and subsequent selectivity as well as yields (Cornaglia, L.M. et al. (1999».

1.8. Promoted vanadium-phosphorous-oxide catalysts

According to Hutchings (1991), dopants for VPO catalysts can be classified into two

mam groups:

(i)

(ii)

those that promote the formation of the required VPO phase or avoid

the formation of spurious phases.

those that form solid solutions with the active phase and regulate the

catalytic activity.

Addition of these ions can interact with free phosphoric acid as a means of fine-tuning the

optimum surface P:V ratio and acidity. Examples are basic ions such as Zn2+ that also act to

prevent the migration and loss of P. Certain ions can substitute for P in the precursor, such as

Si
4
+ and S6+. The partial or total elimination of these ions by calcination from the vanadyl

pyrophosphate structure influences the morphology and leads to defects in the (VO)2P20 7
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structure. Addition of elements that substitute for V can act as modifiers of the reactivity,

forming stable solid solutions. Ti, Zr, Ce and Mo fall into this last category.

Numerous attempts have been made to synthesise improved VPO catalysts by adding

various amounts of other metallic elements. Although reports of some of these attempts have

appeared in the open literature, the vast majorities are found in the form of patents (Hodnett,

B.K.; (1985».

Promoters are introduced by one of the following three methods: by (i) dissolution with

the V component before or during reduction or co-precipitation with the final catalyst; (ii)

mixing into a solution containing both the V and P components and co-precipitation to form the

final catalyst and (iii) impregnation into the solid precursor before calcination and subsequent

activation (Hodnett, B.K.; (1985».

An interesting development relates to Mo03 promoted catalysts with n-butane/oxygen

feed gases featuring hydrocarbon compositions above the explosive limit (Higgins, R. et af.

(1982). In this case Mo03 was added as a promoter. Higher selectivities resulted as compared to

the unpromoted catalyst. The feed gas composition influenced the promoter effect. The

promoter shifts the hydrocarbon/air composition from which optimal AV values result. The AV

value governs the MA selectivity as discussed in Section 1.2. The P:V ratio is another factor that

can be expected to have similar effects as the Mo03 promoter, with P acting as a promoter.

However, it is not fully understood how promotional effects influence or are influenced by the

P:V ratio. The question remains open as to whether promoters are effective in catalysts that

comprise largely V4
+ or whether promotional effects would also be observed for VPO catalysts

with V in its +5 oxidation state.

Promotional effects in VPO catalysts are many and varied but little understood. In a

general way they may be classified into two groups: (i) where the promoter is added to the bulk

of the catalyst and (ii) cases where the promoter is added in such a way as to favour its location

at the surface. Several studies have concluded that the way in which the promoters are added is

of crucial importance. It appears that an optimal promoter:V ratio can be identified for several
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series of catalysts; this ratio in turn seems to depend upon the P:V ratio of the catalysts. Little is

known about the solubility of promoters in VPO catalysts, but it has been hypothesised that

optimum promoter:V ratios represent compositions beyond which further addition would lead to

surface segregation of some promoters, which in their oxidised forms, are highly active in total

oxidation. By contrast, certain promoters such as Mn, Co, Sn, Fe, Cu, Li, Zn, Ce and Ni seem to

act exclusively upon the surface properties of these catalysts (Hodnett, B.K.; (1985».

1.8.1. Cobalt as a promoter for n-butane oxidation over a VPO catalyst

Metal dopants can greatly affect the performance of a catalyst. The addition of promoters

can readily induce both structural as well as electronic changes to the bulk of the catalysts.

Catalysts with modifying elements whose ions possess an incomplete outer electron shell

exhibit higher selectivity and yields of MA than those in which the introduced ions possess a

complete outer electron shell (Brutovsky, M. et al. (1982)). Co contains an incomplete outer

electron shell. Even authors who used the same method of catalyst preparation, expressed

conflicting views on the influence of the same dopant element in n-butane oxidation, e.g.

different results were published as to the role of Co: it worsens the properties of the basic

composition (Young, L.B. Fr. Patent (1974)), exerts a positive influence (Katsumoto, K. et al.

(1980)), or does not affect properties of the VPO catalyst (McDermott, J. GB Patent (1979)).

The form in which the dopant is present in the VPO catalyst, determines its influence on

catalytic propel1ies. Metal additions can be present in the VPO catalyst in four types of phases:

(i) metallic, (ii) metal oxide, (iii) metal phosphate and (iv) bi-metal phosphate. It is well known,

in the case of alkaline-earth metal additions, that there is bi-metal phosphate formation.

Transition metal addition, such as Co, may form bi-metal phosphates as well, such as

COVOP20 7 and CoVOP04 (Lozano-Calero, D. (1993)). Several studies have concluded that the

way in which promoters are added is of crucial importallce. It must be noted that the "pure"

VPO system is already promoted since the P:V ratio employed in all industrial catalysts exceeds

unity and cannot be claimed to be a simple single-phase system. According to these data, metal
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Ions are distributed in empty channels of pyrophosphate or orthophosphate networks. The

binding energy of Co 2p3/2 electrons is 2-3 eV higher than expected for Co in oxide systems

(Wagner, C.D. et af. (1979)). Such a large shift can be related to a state of high dispersion

and/or to strong interactions between Co and other atoms in the VPO matrix. The low

concentration and high dispersion of these bi-metal phosphate units in the basic framework of

the (VO)2P207 does not allow detection by X-ray phase analysis (Zazhigalov, V.A. et al.

(1996)). A temperature programmed reduction (TPR) experiment can be done to determine the

types of Co interactions and/or phases in the catalyst. Characteristic peaks of Co oxides are

exhibited with the Co doped catalyst. The TPR profile of the equilibrated catalysts is different

from non-equilibrated catalysts in that there are peaks at much higher temperatures in the

equilibrated catalysts (ca. 1000 K), symptomatic of the presence ofless reducible Co-containing

species. The non-equilibrated catalyst refers to the catalyst precursor that has been calcined and

the equilibrated catalyst refers to the calcined catalyst that has been conditioned in the reactor.

There is higher scattering of Co in the bulk of the equilibrated catalyst as compared with

the non-equilibrated catalyst. Co addition leads to P enrichment on the surface of the catalyst

precursor, which is less significant in the equilibrated and non-equilibrated catalyst (Cornaglia,

L.M. et al. (1999)). The catalyst tested above was prepared via a benzyl alcohol and iso-butanol

mixture reduction ofV20 s. The molar surface P:V ratios of these catalyst precursors were in the

region of3.

VPO catalysts usually contain a slight excess of P with respect to the stoichiometric

amount as a means of fine tuning the optimal surface P:V ratio and acidity. The basic ions such

as Co that are added can act in preventing the migration and loss of P. 20 mol % Co:V

introduced into the VPO catalyst, increased the surface P:V ratio and favoured the stabilisation

of the catalyst's properties compared with the unpromoted catalyst. Comparison of catalysts. \

with the same % Co:V shows that when the P:V ratio is decreased, the promotional effect of Co

decreases. The optimum Co:V ratio is thus P:V ratio dependant. A % Co:V ratio in excess of20

causes segregation of Co on the surface and gives rise to lower selectivities by catalysing total
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oxidation reactions. Below a value of 2 mol % Co:V, Co enters into solid solution, reduces the

surface area and diminishes the reactivity of VPO with hydrogen (Zazhigalov, V.A. et at.

(1993)).

A high BET surface area of the VPO catalyst is generally associated with a high

development of the basal (100) (VO)2P207 face. A Co doped catalyst shows that the addition of

the metal leads to a slight variation in the ratio of the relative intensities of the (001) and (220)

reflections, from 3.4 to 2.7. This alludes to the fact that the addition of dopants leads to slightly

different morphologies for the VOHP04
1

/ 2H20 precursor, in agreement with different surface

areas. The catalyst precursor is always composed of VOHP04·'/2H20, irrespective of the

method of preparation and of Co content, as discovered by phase analysis. It is also noteworthy

that the promoted catalysts do not require the detailed heat pretreatment required for the

unpromoted catalysts (Lemal, R.; V.S. Patent. (1976)). XRD spectra showed the presence of

(VO)2P207 and three diffraction lines (d = 7.12, 3.55 and 3.04 A) for both doped and undoped

catalysts that have been attributed to a hydrated phase possessing an AV close to +5, with

stoichiometry VOHOl6P04·1.9H20 (Albonetti (1996)). The reflection at the highest d value

could also possibly be attributed to the VOP04·2H20 phase.

At these concentrations, it is proposed that Co serves to stabilize the loss of oxygen

anions during reduction, hence rendering the catalyst less active but more selective (Hodnett,

B.K. (1985)). A study of a Co promotion of P-VOP04showed that addition of Co stabilized the

oxygen anions present in the structure. The incorporation of elements, which can easily donate

electrons to the structure ofvanadyI phosphate, leads to an increase in effective negative charge

on the oxygen atom as compared to the unpromoted catalyst. This electron donation is

confirmed by X-ray photoelectron spectroscopy (XPS). An increase of negative charge on

oxygen should cause an increase of its basic properties. This increase in basicity is also shown

by the increased adsorption of CO2on the surface of the catalyst (Zazhigalov, V.A. (1996)).

The cations present in the solid solution can therefore (i) stabilize the AV that would

enable improved initial dehydrogenation of n-butane and (ii) control the oxygen diffusion and
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adsorption thereby minimizing the non-selective oxidation route. Evidence to confirm that

promoters aid the control of the optimum oxidation state is found in studies made above the

upper explosion limit of 7.1 % on n-butane/air mixtures (Higgins, R. et al. (1982)) (Refer to p

vii). It is proposed that the formula for the solid solution is «VO)I-xMx)2P207, where M =

promoter element. Co hardly changes the structure of the catalyst precursor, VOHP04
1 hH20.

Co does, -however, promote the n-butane oxidation reaction by the formation of defect sites

because of the inclusion of the cation into the (VO)2P207 lattice (Brutovsky, M. et al. (1982)).

FT-IR shows that there is a shift in the absorption bands in the 900 - 1300 cm-1 wavenumber

region for the catalysts containing promoters. This suggests that the promoter ion is located in

the crystal lattice of (VO)2P207 (Takita, Y. et al. (1993)). According to the literature,

impregnation of the final catalyst with Co also gives enhanced activity with a significant loss in

selectivity and, additionally, the rate of MA oxidation is increased. This optimum promoter

loading depends on the method of preparation of catalyst. Hence, Co must be added at the

precursor stage for the promotional effect to be observed and this indicates that this plays a role

in the formation of the final active surface (Hutchings, G.J. et al. (1996)).

The optimum promoter loading, i.e the loading th~t gives the greatest yield of MA, is

correlated to a maximum surface area of the catalyst (Sajip, S. et al. (200 I)). Addition of dopant

beyond this optimum loading results in a decrease in surface area of the catalyst.

There was a decrease in selectivity towards MA after operating the catalyst for 2000 hrs.

The above increase in activity and subsequent decrease in selectivity holds true in the 0.20 to

0.50 mol ratio Co:V promoter loading region. This decrease in selectivity was attributed to the

loss of P from the surface zone of the catalyst. Introduction of alkali and alkali-earth metals to

the VPO catalyst causes an increase of surface P:V ratio. This rise of P concentration on the

surface is accompanied by simultaneous enrichment of the surface in oxygen and increase of

oxygen basicity. These changes lead to changes'in acidic properties of the catalyst (Zazhigalov,

V.A. et al. (1996)). At low acidity of the surface, desorption of adsorbed acid-like products of

the reaction is hindered and further oxidation occurs with COx formation. On the other hand,
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high acidity of the surface does not favour the adsorption of intermediates with acidic

properties. Promoter ions may also substitute for phosphorus in the precursor. This causes

defects in the structure of the catalyst, which aids in selectivity (Cavani, F. et al (1997)). Benzyl

alcohol has the same effect in that it remains trapped inside the structure of the catalyst

precursor during the preparation in an alcoholic medium. Addition of transition elements can

possibly substitute for V and act as modifiers ofthe reactivity by forming a stable solid solution.

Zazhigalov et al. (1993) have shown the formation of C02P20 7 when Co was co-precipitated

with V and P. This Co phosphate formation prevents the formation of inactive or deleterious

VPO compounds, e.g. VO(H2P04)2. It can be expected that the highly dispersed C02P20 7 phase,

which is uniformly distributed in the bulk of the catalyst, may fill the voids and macrodefects in

the structure, hindering the P transport from the bulk towards the surface. The presence of Co,

in effect, reduces the losses of P and thus prolongs the catalyst lifetime. Increasing amounts of

Co beyond the optimum promoter loading, which depends on method of preparation, leads to a

decrease in the catalytic activity, with a corresponding increase in the selectivity towards MA.

This was attributed to an increase in surface acidity. The ideal Co:V molar ratio is between an

unpromoted catalyst and 0.20 % loading. A~jdity of a catalyst is measured via NHrTPD

(ammonia-thermoprogrammed desorption) (Zazhigalov, V.A. et al. (1987)). It was

experimentally shown in this study that adsorption of ammonia increases with increasing Co

content, within the above-mentioned promoter loading range, which indicates increased acidity.

Introduction of small amounts of Co into the VPO catalyst mainly causes the appearance of

weak acid sites, whereas the number of strong acid sites rises to a lesser extent (Zazhigalov,

V.A. et al. (1993)). There are different acid sites on the surface of the catalyst.

Patents claim that a Co dopant increases both activity and selectivity (Zemal, R.Z. et al.

(1977), Hutchings, G.J. et al.(1981)): This discrepancy in activity to the above studies is due

mainly to preparation conditions, Co loading and reagents. It is generally considered that the Co

dopant is capable of increased selectivity towards MA. Ben Abdelouahab et al. (1995) have
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found that Co remarkably improved the selectivity to MA. The observed effects were attributed

to a different dispersion ofYOP04phases on the (YO)2P207 matrix.

A Co promoted catalyst prepared by the reduction of YOP04·2H20 by iso-butanol is

known to give a particular morphology of YOHP04·1
/ 2H20 by developing crystallites in the

[110] direction as revealed by XRD studies (Sananes-Schulz, M.T. et al. (1996)). From a

physical perspective, a platelike morphology was revealed by scanning electron microscopy

(SEM) images of the catalyst surface. The Co doped catalyst, however, showed larger plate-like

crystals as compared to the undoped one. For the Co-doped YPO precursor (Co:Y = 5 mol %),

UI- and Un-YOP04 first appear, and then (VO)2P207 on conditioning the catalyst. It has been

shown that the YOP04/(YO)2P207 dispersion can be modified by using dopants (Ben

Abdelouahab, F. et al. (1995)). Y switches between y S
+ (YOP04) and y 4

+ ((YO)2P207) during

the oxidation of n-butane to MA.

The temperature at which MA is first detected is 234°C and detection is noted up to

430°C, when the Co doped catalyst is prepared by adding Co acetylacetonate salt to the iso­

butanol solvent and Y20 S, and refluxed. The presence of Un-YOP04 is shown by Raman

spectroscopy. This phase plays a role in the formation of a disorganized YPO matrix (Sananes­

Schulz, M.T. et al. (1996)). XRD spectra of both undoped and Co doped catalysts show the

presence of (VOhP20 7and U,-YOP04 phases. Both U,- and Un-YOP04 have the same properties

in the lattice of the catalyst. XRD spectra of these two catalysts are similar. Discrepancy with

XRD patterns can be explained by taking into account that all anhydrous oxidized YOP04

phases (with the exception of p-YOP04) are in a hydration/dehydration equilibrium with

YOP04·2H20 (Ben Abdelouahab, F. et al.(l994)). The relative intensities of the (YO)2P207

reflections are the same for unpromoted and promoted catalysts and show that the

corresponding crystallites present the same morphology after doping with Co. The slight

difference in XRD patterns is only seen above a 15 mol % Co:Y promoter loading, There are

few extra lines present for the Co doped catalyst (Zazhigalov, Y.A. et al. (1993)) and the peak
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intensity of the modified catalyst is lower than the unmodified catalyst. The lowered reflection

intensities indicate that the dimension of particles and degree of arrangement of the catalyst

structure are lowered. This is characteristic of solid solutions, where the presence of additional

Of substituent atoms or holes in the solvent lattice of (YO)2P207 results in changed intensity of

reflections. There is a decrease in lattice energy related to the substitution of low valent cations

into the crystal lattice. Modified YPO catalysts have Fourier-transform-infrared spectra (FT-IR)

that are less complex than unmodified catalysts. The former lack the individual intensive

maxima and breaks of the basic bands, which is characteristic of unmodified catalysts. This can

be explained by the decreased degree of structural order. Individual bands in spectra of modified

catalysts are shifted by 5-20 cm'), which can be explained by the change in dimension of

particles and effect of admixtures on bond relations. The intensities of bands in the region I 300

- 900 cm'] reveal an increase in absorption in the spectra of most modified catalysts as

compared with the unmodified ones. The observed changes can be explained by a change of

dipole moment of p-o bonds in the modified catalysts. The incorporation of the dopant and

distribution of electron density in the anions causes polarity changes in the corresponding

bonds, which results in intensity changes of absorption and in the observed shift of maxima of

the individual bands (Brutovsky, M. et al. (1982)).

Co doped catalysts appear to be more crystalline compared to the undoped YPO catalyst.

This is consistent with 31p NMR spectra by spin echo mapping which show an increase of the

contribution of the signal at 2400 ppm attributed to crystalline (YO)2P207 (Sananes-Schulz,

MT. et al. (1997)).

Doping with Co results in a decrease of the y 5
+ contribution (from 47 to 37 %) (Sananes­

Schulz, M.T. et al. (1996)). The redox ability of the Co-dopants have a favourable effect on the

YOP04 (y5+) and (YO)2P207 (y4+) c~)Uple. MA formation is directly correlated to the surface

y 4
+/ y 5+ ratio. The y 4+N5+ ratio in used catalysts is generally higher than in freshly calcined

catalysts. It can be thus confirmed that during conditioning, the reaction environment reduces

the y
5
+. Characterisations of used catalysts indicate y 5

+ phases, besides the crystalline
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(YO)2P20 7. The effect of doping depends not only on the nature of the dopant, but also the

morphology of the precursor. Doping permits the control of YOP04/(YO)2P207 dispersion

during the activation process and this factor is important for industrial catalysts and should be

monitored for "equilibrated catalysts" after long time-on-stream (Sananes-Schulz, M.T. et al.

(1996». The relative amounts of the phases present, as well as the nature of the oxidized

YOP04 phases are affected by the presence of the dopant (Cavill1i, F. et al. (1997)).

Co generates a significantly crystalline (YO)2P207 together with poorly crystalline

(YO)2P207 structures, a combination that gives enhanced catalytic performance. This structure

can be correlated with the presence of y 4
+ cations and y 4

+-y 5
+ diniers (Sananes-Schulz, M.T. et

al. (1997)).

XPS measurements show that binding energies of 0 Is, Y 2p and P 2p photoelectrons

remain unchanged in the precursors and in the catalysts after use. This concludes that the

valence states of Co and Y do not change in the course of the transformation of the precursors

into YPO catalysts (Zazhigalov, Y.A. et al. (1993».

1.8.2. Case studies

The method of preparation of the promoted catalysts leads to the formation of a higher

surface area catalyst and thus an enhanced catalyst activity (Hutchings, G.J. (1993». A Co

doped catalyst showed a promotional effect by increasing the yield per unit surface area

(Cornaglia, ~.M. et at. (1999». A precursor catalyst prepared via the organic route utilizing

only iso-butanol as solvent showed a decrease in surface area with the doped catalyst compared

to the undoped catalyst (Cavani, F. et al. (1997». In contrast there was a 20 % increase in

surface area of the equilibrated Co doped catalyst, with a 20 molar % Co:Y loading, compared

to the lIndoped catalyst (HlItchings, G.J, et al. (1996». This catalyst had a 17 m2/g surface area

and was synthesized using an HCI/iso-butanol reduction mixture. There is thus some
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discrepancy with regard to surface area and Co doping, however, the results are dependant on

the method of preparation.

In another study, it was experimentally found that a Co doped VPO catalyst gave higher

specificity to the formation for phthalic anhydride from n-pentane oxidation, which occured at

tl'\e expense of MA (Cavani, F. et al. (1997)).

An' optimum selectivity of 76 % was obtained for a 0.25 mol ratio Co:V loaded catalyst

prepared via the organic route. The catalyst was prepared with iso-butanol as solvent. The salt

utilized in the synthesis was CoCI2·6H20. There was an optimum P:V ratio linked to this

optimum selectivity which was around a molar P:V ratio of 1.7 (Zazhigalov, V.A. et al. (1993)).

Above this P:V ratio it is thought that some other factors begin to dominate, whilst the

concentration of strong acid sites remain constant, to cause the decrease in selectivity. This

molar P:V ratio is higher than most published P:V ratios which lie between 1.0 and 1.2.

A patent claims a 95 % conversion of n-butane with a 60 % yield of MA (U.S Patent

(1980)). HCI was used in the reduction stage of the synthesis. CoCh was used as the promoter

and the impregnation method of addition was utilised. The promoter loading was 6.5 mol %

Co:V. 1.5 % n-butane in air was fed into the reactor and the testing was carried out at 420°C.

The Union Carbide (UCB) system utilized a catalyst capable of a 55 % yield of MA. The

catalyst has a molar P:V ratio of 1.14:1 and a·Co:V ratio of 0.19:1. The feedgas is 1.5 % n­

butane in air. The operating temperature is 450°C, with a GHSV of 1893 h(1. The aqueous HCI

method is used in this synthesis (Lemal, R.; US Patent (1976)). The non-aqueous catalyst

synthesis method, utilizing iso-butanol as solvent produced a MA yield of 59 %. This catalyst

operated at 380°C.

Chevron produced an ullpromoted catalyst capable of a 57 % yield of MA. The catalyst

was synthesized using iso-butanol solvent. The feed gas consisted of 1.5 % n-butane in air. The

operating temperature was 380°C. The conversion of n-butane was 90 mol % and the selectivity

towards MA was 69 mol % (Schneider, R.A.; U.S. Patent. (1977).
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1.8.3. Conclusion

The essential role of promoters in VPO catalysts for n-butane to MA oxidation is to

modify the structural nature of the catalyst. The promoter is incorporated into a solid solution.

An optimum promoter loading into these solid solutions is obtained. This optimum promoter

loading correlates with the largest catalyst surface area. The promoter controls the catalyst

oxidation' state and surface segregation of phases. Promotion effects have been mainly examined

on the (VO)2P207 phase. The combination of the promoters and excess P results in a VPO

catalyst with appropriate oxidizability and morphology to give high yields of MA, i.e. greater

than 50 %. The addition of additives can increase the rate of n-butane oxidation to maleic

anhydride.

1.9. Surface acidity of the VPO catalyst

Catalysts prepared by both the organic and aqueous route show the presence of strong

Br~nsted acid sites, attributed to surface P-OH groups, and medium strong Lewis sites,

attributed to V4
+ coordinatively unsaturated ions exposed on the surface (Busca, G. et al.

(l986c)). The presence of these centers is related to the (VO)2P207 structure itself and is fairly

independent of the (VO)2P207 preparation method. (VO)2P207 prepared in an organic medium

and to a lesser extent in the (VO)2P207 prepared in an aqueous medium show very strong Lewis

sites. The enhancement of the rate of n-butane activation in the (VO)2P207 prepared in an

organic medi~m is attributed to the presence of these sites.

It was found in a previous study (Centi, G. et al. (l984c)), that the rate-limiting step of the

reaction,

n-butane ~ maleic anhydride

over a VPO catalyst, is the activation of the hydrocarbon to form an intermediate, which can

desorb as butenes in conditions avoiding their successive oxidation.
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The adsorption of ammonia, pyridine and acetonitrile indicates that strong Br~nsted sites

as well as medium strong Lewis sites are present on the vanadyl pyrophosphate surface. The

Br~nsted acidity is attributed to the presence of surface P-OH groups, whose Din-plane deformation

is perturbed by the adsorption of ammonia and water (Busca, G. et al. (l986c)). The medium

strong Lewis acidity is attributed to coordinatively unsaturated y 4
+ ions exposed on the surface

in y=o double bonds.

Adsorption of acetonitrile, which is a weak base, indicates the presence of medium strong Lewis

sites in greater quantities in the (YO)2P207 prepared in an organic medium as compared with

that prepared in an aqueous medium. The medium strong Lewis acidity is due to an inductive

effect considering the higher electronegativity of P in the Y-(O-P) bond. Less CO and CO2

adsorption agrees with this interpretation (Busca, G. et al. (l986c)). Since the specific rate ofn-

butane activation on (YO)2P207 prepared in an organic medium is higher, the enhancementof

catalytic properties in n-butane oxidation by the vanadyl pyrophosphate prepared in an organic

medium is attributed to the presence of the very strong Lewis sites bonded to the Y=O moiety.

These are the active sites for n-butane selective oxidation. The specific rate is the rate of

reaction per unit surface area.

The formation of the very strong Lewis sites can be attributed to the topotactic

mechanism of formation of vanadyl pyrophosphate from YOHP04· J/2H20. In the organic

\

preparation of YOHP04 · J/2H20, the organic alcohol utilized as a reducing agent remains

trapped between the layers of the YOHP04·'/2H20 structure during the transformation to

(YOhP20 7 and induces deformations in the vanadyl pyrophosphate structure creating a partial

lack of coordination sites on the y 4
+ ions and enhances the Lewis acid strength (Busca, G. et al.

(l986c)).
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1.10. Relationship between catalyst preparation, phase composition and selectivity

Improved understanding of the factors that determine the structure of YPO catalysts has

made renewed attempts at elucidating the detailed mechanism of C4 transformation to MA

possible.

Several reports have appeared which link catalytic activity and selectivity of YPO

catalysts with an optimal AY value. It was reported that with catalysts operating below 400°C in

1 % n-butane in air feed, deactivation only occurred after 200-300 hours on stream and was

attributed to the loss of P by sublimation. Organic P compounds may be added (continuously or

during batch regeneration) to maintain catalyst performances.

It is important to maintain an optimal oxidation state for the catalyst to maintain a certain

selectivity of MA production. For the supported catalysts prepared by Nakamura (Nakamura, K.

et al. (1974)), the optimum AY value for all catalysts was close to +4. When this parameter fell

below +4, selectivity diminished dramatically. This indicated that the presence of some y 5
+ ions

was necessary for MA formation and that a redox cycle between y 4
+ and y 5

+ was involved. It

was remarked that only catalysts with metal-oxygen double bonds were active in MA formation

and y=o bonds were postulated as active sites. It was concluded that facile movement of

electrons through the aggregated reduced structures facilitated dissociation of 02(g) and

formation of the necessary surface Y=O active sites with Y in the +5 oxidation state.

It is postulated that the [3- and a-YOP04 phases are in dynamic equilibrium with the

position shifting depending upon the composition ofthe gas phase (more oxidising favouring a­

YOP04) and the reaction temperature. [3-YOP04 tended to form when catalysts were calcined at

500°C in air. It was reported that this phase was somewhat more difficult to reduce than a­

YOP04,_ so that dynamic equilibrium between it and the p-phase could not occur as readily.

Few detailed studies of the relationship between the phase composition of YPO catalysts

and their catalytic activities for n-butane selective oxidation have been carried out. Catalysts

were generally tested at a reaction temperature of 400°C for n-butane oxidation where changes
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in bulk composition of catalysts were minimal (Hodnett, B.K. et al. (1984)). Greater activities

were observed after. pre-reduction in hydrogen; this treatment also increased the selectivity of

catalysts with low P:Y ratios, Le. P:Y ratios below I, but no changes in selectivity were

observed after reduction of catalysts with high ratios. This effectively meant that higher yields

were observed as a result of the higher conversions.

Extremely high initial selectivities in MA, of the order of 80 %, were observed when n­

butane was contacted with the calcined catalyst in the absence of gas-phase oxygen (Hodnett,

B.K. et al. (1984)). However, for all P:Y ratios studied, selectivity and yield decreased as n­

butane reacted with the catalysts under these conditions and fell to zero for decrease in AY of

approximately I. These results suggested that catalysts with maximum activity and high

selectivity are constituted of oxidised surface layers built upon a reduced core. The reduced core

could be produced either by pretreatment in hydrogen or through structural stabilisation of the

y 4
+ ions by excess P (Hodnett, B.K. et al. (1984)). The non-reactive core is postulated asa

means whereby the availability of surface oxygen was controlled. Oxygen incorporated into the

MA product is envisaged as originating from near surface layers (Hodnett, B.K. et al. (1985)).

This model is similar to that proposed by Centi, G. et al. (1984c), who found that selectivity in

MA is increased when the n-butane concentration was increased. However, conversion is lower

under these circumstances and very little y 5
+ remains in the catalyst. Centi, G. et al. (1984c) and

Ziolkowski, J. (1983) concluded in separate studies, that selectivity in MA was determined by

the amount o,f surface oxygen available in the vicinity of the adsorption site.

1.11. Proposed mechanism for n-butane oxidation to MA over a VPO catalyst

The rate-determining step of this reaction is the activation ofn-butane through abstraction

of a proton (Zazhigalov, Y.A. et al. (1993)). This step is accelerated via the increased basicity of

the surface oxygen atoms. This has been found experimentally by the linear dependance of the

rate of n-butane oxidation on the binding energy of 0 Is-electrons (Zazhigalov, Y.A. et al.

(1996)).
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Fig. 1.8. Possible states ofthe active sites (Agaskar, P.A. et af. (1994))

The proposed mechanism for the selective oxidative transformation of n-butane to

maleic anhydride on the (lOO) face of the (VO)2P207 crystallites, suggests that each of the four

dimeric active catalytic groups per geometrically isolated surface cluster (as illustrated m

Section 1.4) can assume the four distinct states a, b, c and d as illustrated in Fig. 1.8.
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• State a: "ground" state of the active site, it has only one oxygen associated with it.

• State c: molecule of dioxygen is adsorbed on the Lewis acid site of state a, this

chemisorbed dioxygen could either be a superoxo or peroxo species.

• State band d: two additional possible states that the active sites can assume.

The first step of the mechanism involves the initial activation of n-butane. This is

accomplished by the abstraction of a methylene hydrogen by a superoxo species to give a

surface bound hydroperoxy group, and simultaneously the capture of the alkyl radical by the

adjacent vanadyl group to give a surface bound alkoxy group as illustrated in Fig. 1.9. The

hydroperoxy group can then rapidly abstract another hydrogen, from either the same methylene

group or from one of the adjacent -CHx groups, to generate a molecule of water and a metal

bound ketaloxy or glycoloxy group respectively. The surface species formed as a result of this

step can also be considered to be 2-butanone and 1- or 2-but.ene, strongly adsorbed on the active

site in state a or b respectively (Agaskar, P.A. et af. (1994)).

u- H abstraction p- H abstraction

Fig. 1.9. n-Butane activation
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The next step in the mechanism involves the acid catalysed conversion of partially bound

surface intermediates to 1,3-butadiene. The active site is first converted to state a which is

capable of adsorbing a molecule of dioxygen and is therefore converted to state c as illustrated

in Fig. 1.1 O.

The vanadyl oxygen is used in reaction with 1,3 butadiene producing 2,5-dihydrofuran

(Fig. 1.1 0).

An interaction between one of the oxygens in the adsorbed molecular oxygen species and

the C-H bond in the 2-position of the 2,5-dihydrofuran \;>ecomes possible; the interaction thus

leads to a transfer of a hydrogen atom from 2,5-dihydrofuran to the peroxo species giving a

surface bound hydroperoxide group (Fig. 1.11). With this orientation of the two adsorbed

species a considerable c-o interaction (bond length = 1.60 A) is present. The OH group can

therefore transfer to the neighbouring 2,5-dihydrofuran derivative giving the corresponding 2­

hydroxy derivative (Fig. 1.11).

The asymmetric lactone can be obtained by first transferring a hydrogen atom from the 2­

lactone hydroxy derivative giving a surface hydroxy group. The second hydrogen atom can be

transferred to give the desired asymmetric lactone and one molecule of water (Fig. 1.11)

(Wenig, RW. et al. (1987). This process can repeat itself until maleic anhydride is formed

(Agaskar, P.A. et al. (1994».

The transformation of n-butane to maleic anhydride is a multi-step polyfunctional reaction

mechanism occurring entirely on the surface and is the only industrially practiced selective

oxidation involving an alkane. Knowledge gained through study and understanding of this

system may contribute to advances in alkane oxyfunctionalisation in general.
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1.12. Directions for future research

Understanding this catalyst system is restricted to model systems in the laboratory which

often possess well-defined crystal structures, have been activated under fairly severe conditions,

and give much lower yields and selectivities of MA than their industrial analogues. These two

streams must be united if better catalysts are to be developed.

Two approaches from which advances can be expected are:

1. Developments in the engineering of a given process, such as the use of fluidised-bed

reactors, or, for fixed-bed reactors, working with n-butane in air mixtures above the

explosive limit.

2. By a more systematic and detailed study of all the factors which influence the

preparation of the industrial VPO catalysts.

For the latter a great deal of fundamental work is required for catalysts that are capable of yields

and selectivities of the order of 50 % at close to· 100 % conversion. The systematic approach,

which must be adopted, is similar to that required for all bulk oxide catalysts. The first step

would involve monitoring the solution chemistry and fully characterising the precursor which is

obtained vis-a.-vis it's AV value, P:V ratio, distribution of this ratio within the catalyst, and the

phases which form. XPS (see Appendix 3) is of considerable help in that it could indicate the

P:V ratio at the surface for various locations in the bed. These factors also need to be

investigated for used catalysts, but an additional factor needs to be investigated here, viz. the

manner in which lattice oxygen is involved in the reaction. Studies have shown that the

availability of lattice oxygen at the catalyst surface determines it's final selectivity (Centi, G. et

al. (l984c)). The prerequisite for this type of study is the determination of the catalyst structure

followed by an investigation of the mechanism of mobility of lattice oxygen within the bulk of

the catalysts. The final challenge will be the identification, on the molecular scale, of the nature

of the surface sites responsible for the individual steps of the transformation.

Examining a catalyst as it functions in situ meal~s evaluating or characterising it at

elevated temperatures and pressures and as the reactant gases flow over it, ideally under the
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temperature and flow conditions that would be typical of industrial applications. Researchers at

Dupont's Ames laboratory observed that cycling the catalyst between reducing and oxidizing

environments improved activity, selectivity and yield. But this new operation also brought with

it new questions that only could be answered through fundamental research. If conditions

fluctuated completely, new characterisation techniques had to be developed. The fundamental

questions for this system are "Why does it operate better? Is it changing its structure or

oxidation state? Are the rates for partial oxidation higher? Is the mechanism different? Finding

the answers has opened up a whole new area in catalysis research involving forced oscillation

kinetics, or unsteady states" (Schrader, G.; URL; (1996)).
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CHAPTER 2

INDUSTRIAL AND LABORATORY PROCESSES

2.1. Introduction

This chapter focuses on heterogeneous gas-phase oxidation processes from a reactor

technology viewpoint. Existing and emerging catalytic reactors are described and both

advantages and disadvantages are discussed. The theory behind the testing of catalysts shall be

briefly explored, focusing on factors that affect the catalyst and product analysis.

Because oxidation reactions often involve breaking of saturated or unsaturated carbon­

carbon or carbon-hydrogen bonds, the reactions are highly exothermic. The degree of

exothermicity can be quite significant when non-selective combustion reactions occur in series

or parallel with the selective reactions. This is the primary reason why reactor selection and

design are of critical importance for industrial oxidation processes. The reactor system must be

capable of controlling the temperature within certain safety-designed limits by proper

management of the high heat load. This places some specific requirements on their design

(Pratt, K.c.; (1987)).

Depending on the composition of the hydrocarbon/air feed to the reactor, the mixture can

spontaneously ignite; therefore safe operation of oxidation reactors requires avoiding the

. flammability region. Newer emerging processes based upon re-circulating solids reactors are

operated with hydrocarbon-rich feed gas whose composition is above the upper limit of the

flammability region so that safe operation is ensured (Emig, G. et al. (1994)).

The smallest possible size for a micro-reactor is advisable for plug flow conditions. A preheater

is necessary to maintain isothermal conditions in the catalyst bed. It is easier to achieve

isothermal or near isothermal conditions with ~ small catalyst charge than a large one. The

smallest possible particle size is also recommended, at most 40 or 60 mesh.
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2.2. Fixed-bed micro-reactors

Fig. 2.1 lists some of the key issues that must be considered when modeling fixed-bed

reactors for vapour phase catalytic systems (Froment, G.F. et al. (1990)). A wide range oflength

scales must be traversed in a realistic model of the fixed-bed reactor. The individual catalyst

sites represent the micro-scale where the catalyst reactions occur. Reaction kinetic

measurements using state-of-the-art laboratory reactors and information derived from catalyst

characterization instrumentation provide the basis for development of kinetic models and

identification of kinetic parameters based upon a sequence of elementary steps.

Catalyst site

Microscale

Catalyst particle

Macroscale Reactor

Reaction kinetics

Interfacial Intraparticle

~T? ~T?

"
Type of convective mass and heat

transfer

- Plug flow?

- Axial or radial dispersion?

- Non-uniform velocity?

Fig. 2.1. Parameters to consider when designing afixed-bed reactor (Froment, G.F. (1990))

The bed of catalyst pal1icles corresponds to the macro-scale level. Here, transport

processes that occur on characteristic dimensions ofthe reactor, such as the reactor diameter and

overall length of the fixed-bed are the focus. This includes a description of deviations of the gas
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flow pattern from ideal plug-flow and deviations of the temperature within the catalyst particles

and in the gas bulk from an ideal isothermal condition.

Fixed bed reactors are among the most widely used reactors in the hydrocarbon

processing and petrochemical industry. An analysis is made up of factors that pose a limit to

representative downscaling of catalyst testing in a continuous fixed-bed operated with either gas

or gas-liquid flow. By taking advantage of radial diffusion to cancel the effect of uneven

velocity distributions and by resorting to c~talyst bed dilution with fine inert particles,

representative experiments are possible on a very small scale, with amounts of catalyst down to

a few grams or even less. Results obtained on such a small scale are in good agreement with

those obtained in industrial reactors under comparable conditions. A need, however, remains for

laboratory catalytic tests which simulate the commercial operations close enough to give results

on catalytic process performance that are directly meaningful for industrial practice, preferably

without requiring translations of which the validity is uncertain (Sie, T.; (1996)).

Reducing the scale of experiments in the laboratory has a number of important

advantages, such as (i) lower cost of construction and installation of equipment; (ii) less

consumption of materials and less waste products to be disposed of; (iii) reduced demands on

laboratory infrastructure because of lower space requirements, less facilities for storage and

transport of feeds and products; (iv) increased intrinsic safety: reduced hazards of fire,

explosions and emission of toxic materials and (v) generally reduced manpower needs.

In principle, the safest way to represent an industrial reactor on a laboratory scale is to

reduce the diameter while keeping the bed length the same. In a well-designed industrial fixed­

bed reactor, where proper care is taken to ensure uniform distribution of feed over the cross

section of the bed, there are theoretically no cross sectional differences. Hence, a more slender

but equally tall test reactor would be a good representation of the commercial reactor, provided

that the diameter of the test reactor is not so small that wall effects, such as axial dispersion,

become appreciable (Zimmerman, S.P. et al. (1986)).
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Axial dispersion in the reactor is caused by the more or less random variations of fluid

velocity at the scale of the particle diameter and is an intrinsic property of a random packing of

particles. Aside from these microscopic fluctuations of velocity, there can be more systematic

differences of fluid velocities in the bed. A transverse velocity profile extending from wall to

wall may be present as a consequence of uneven packing, i.e. unequal compaction of the

packing ih different parts of the bed or, in the case of a catalyst having a size distribution,

unequal average particle size caused by segregation during filling of the reactor. Whereas such

non-conformity in the packing need not exist if the reactor is filled with sufficient care, the

perturbation of the random packing by the reactor wall is a cause of velocity differences, which

cannot be avoided (Zimmerman, S.P. et al. (1986)).

Fixed bed reactors are generally chosen for processes with relatively low intrinsic

reaction rates. Riser reactor technology becomes preferable for very fast reactions. Here, the

catalyst is regenerated with air in a separate reactor. Therefore, most fixed bed processes operate

under conditions where, within the above window, the catalyst effectiveness (defined in the list

of definitions on p. (vii)) is 1 or not very much below 1, implying that the diffusion paths of

reactant molecules inside the catalyst particles are not much shorter than the particle

dimensions. Transformations of reactant to product in m.ost practical fixed-bed processes are

mainly governed by chemical reaction rates and intra-particle diffusion. A well-designed fixed­

bed micro-reactor is a close approximation of an ideal integral reactor that fulfills the following

criteria: (i) all volume elements of the feed contribute to the overall conversion, which implies

that they have to spend the same time in the reactor. This criterion applies to conversions with a

reaction order greater than zero, i.e. conversions for which the fixed-bed reactor is an

appropriate choice and (ii) all parts of the catalyst bed must contribute maximally to the overall

conversion, which means that all catalyst particles must be adequately contacted by the reactant.

Aside from the requirement of a sharp residence time distribution, the ideal fixed-bed reactor

shou Id also allow all parts of the catalyst bed to fully participate in the overall conversion. With

a single fluid phase, this condition is generally met when the plug flow criterion is obeyed, since
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in this case there is uniform flow through the bed. However, in two phase flow, such as co­

current trickle flow, the ratio of the liquid to gas flow may be different in different parts of the

bed: a situation may prevail where liquid flows preferentially through a certain part of the bed,

while gas flows predominantly through the other parts. This mal-distribution is commonly

referred to as incomplete wetting of the catalyst. Therefore the requirement for an ideal reactor

is better stated as "even irrigation" of all parts of the catalyst bed (Sie, T. (1996)).

Molecular diffusion can be an important cause of a spread in residence time, particularly

at low velocities (Iow space velocities and short bed lengths), therefore it is important in micro­

reactors with gas flow. Axial molecular diffusion is not a function of particle size or velocity of

fluid but rather based on molecular diffusion.

2.2.1. Catalyst bed packing and dilution with fine particles

In testing catalysts, only relatively small particles can be used in a bench-scale or micro­

flow reactor to comply with the criteria for axial convective dispersion in the packing, the wall

effect, and even irrigation. Particles of such small size (diameter below 0.5 mm) give rise to

unacceptably high pressure drops in industrial fixed-bed reactors and practical catalysts for

these reactors generally have particle diameters 111 the range of 1 to 3 mm. When the

effectiveness factor of such practical catalysts is 1, I.e. there is no intra-particle diffusion

limitation at all; crushing or grinding the catalyst to obtain smaller particles can be a way to

assess catalyst performance in small-scale laboratory reactors. However, even if the main

reaction is not limited by diffusion, other reactions (side reactions or consecutive reactions

involving larger molecular species) can still be diffusion limited. In this case, testing of catalysts

in crushed form may give misleading results on selectivity or stability of the catalyst even when

activity data are correct. In many processes of interest to the hydrocarbon processing industry,

the size and shape of the catalyst has been chosen as a compromise between catalyst

effectiveness and pressure drop. Hence, with effectivness factors for the main reaction

somewhat below 1, intra-particle diffusion is generally a factor to be reckoned with. Its effect is
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not easily quantified since the processing of a practical feed stock involves the conversion of a

large variety of molecules with widely different reaction rates and therefore the translation of

catalyst performance data obtained with crushed particles to that of the actual catalyst may be

difficult and of questionable validity. A way out of the dilemma is to use a bed of small particles

in small laboratory reactors and yet determine the performance of a practical catalyst of much

larger particle size by embedding the latter particles in much finer inert particles. Thus, by

diluting the catalyst bed with 1-3 times its volume of fine inert material, the hydrodynamics will

largely be dictated by the packing of the fine inert particles, whereas the performance measured

is that of the catalyst in the actual form. It can be seen that bed dilution with fine inert particles

results in a considerable improvement in the plug-flow character of the reactor, which supports

the idea that the dispersion is largely determined by the packing of fine particles (Carruthers,

J.0. et al. (1988)).

Fixed-bed reactors can in principle be operated in two different ways, viz.

isothermally, i.e. the temperature is the same in every part ofthe bed, or

adiabatically, i.e. the reaction heat is taken up or supplied by the reactant stream

without heat being released or supplied to the environment.

Small laboratory reactors are most easily operated as isothermal reactors.

2.2.2. Isothermally operated reactors

In an isothermal reactor, the temperature of the reactant stream is constant in the axial

direction. Hence, this stream does not take up reaction heat (in the case of an exothermic

reaction) and all heat generated within the bed must be transported radially to the reactor wall. If

the bed radius is too large and the effective heat conductivity of the bed too low, a radial

temperature profile will develop with appreciable differences between the centre of the bed and

near the wall. The temperature profile will be more pronounced as the radial distances are

longer and as fluid velocities are lower, hence, wide and short reactors are likely to suffer from

radial temperature inhomogeneity.

53



An effective way to improve the isothermicity of reactors is to dilute the catalyst with

inert particles, preferably of a material with high heat conductivity, such as silicon carbide

which has a heat conductivity in the solid state about 40 times that of porous alumina. In the

diluted bed, the heat generated per unit volume of bed will be lowered, and together with

increased effective heat conductivity this will result in a more even radial temperature

distribution.

2.2.3. Adiabatically operated reactors

In a true adiabatic reactor there is no flow of reaction heat to or from the surroundings,

and the reaction heat (in the case of an exothermic reaction) heats up the reactant stream so that

the temperature difference between the outlet and inlet stream is equal to the theoretical

adiabatic temperature rise, L1Tact. In a laboratory, one attempts to obtain this situation by

surrounding the reactor with heating zones to compensate for natural heat losses. However, even

when the heating power is adjusted in such a way that the net heat loss from the reactor is zero

and consequently the temperature difference between the outgoing and incoming stream equals

the theoretical adiabatic temperature rise, the temperature distribution in the bed may still

deviate from that in a true adiabatic reactor when the number of heating zones is limited and

their temperature setting is non-optimal (Satlerfield, C.)

Temperature deviations of the fluid and reactor wall from a true adiabatic profile for a

specific case are quite appreciable, notwithstanding the fact that the reactor system is

"adiabatic" in the sense that the temperature difference between the outgoing and incoming

stream equals the adiabatic temperature rise and the net overall heat loss is zero. The deviations

are caused by significant axial heat conduction through the metal wall of the reactor, which

tends to flatten the temperature profi le, and by rad ial conduction of heat from the interior of the

bed to the wall. Furthermore, end effects play a role as well, and the actual temperature of the

fluid when it enters the reaction zone does not necessarily l;ave to be equal to the temperature of
\
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the reactor wall or the fluid temperature in the reactor. It is clear that deviations from true

adiabaticity may seriously affect the results of catalyst testing, particularly with regard to

selectivity and deactivation behavior (Anderson, D.H. et al. (1989)).

For improperly designed laboratory reactors the axial and radial heat flows can be quite

appreciable even when the net heat loss is zero. It thus follows that the radial heat flow is

reduced as the bed diameter is increased, whereas the axial heat flow diminishes as the reactor

length is increased. Hence, long pilot plant reactors of wide diameter will perform best as

adiabatic reactors even with sub-optimal design of compensation heaters. To prevent heat losses

at the reactor ends, the catalyst containing adiabatic part of the reactor is preceded and followed

by an isothermal part filled with inert material (Anderson, D.H. et at. (1989)).

2.2.4. Fixed-bed reactors in relation to fluidized-bed and transport-bed reactors

Process, licensor Type of reactor Product recovery

ALMA (Lonzagroup,Lummus) Fluidised bed Anhydrous

Lonzagroup Fixed bed Anhydrous or aqueous

BP (Sohio)-UCB Fluidised bed Aqueous

Denka Scientific Design Fixed bed Aqueous
\

DuPont Transport bed Aqueous

Mitsubishi Kasei Fluidised bed Aqueous

Monsanto Fixed bed Anhydrous

Table 2.1 Industrial technologies for MA synthesis (Mills, P.L.)

The main features of the industrial technologies currently used for MA production are

summarized in the Table 2.1 below. The various processes differ in terms of: (i) type of reactor

(fixed-bed, fluidized-bed or transport-bed reactors); (ii) composition offeed (i.e. usually

referring to the concentration of n-butane in air); (iii) product recovery (referring to the method
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of recovery of MA where an aqueous or organic solvent may be used and the product is purified

via distillation). Some well-established industrial processes shall be briefly discussed. Table 2.1

highlights some of the industrial technologies employed in MA synthesis.

The Mitsubishi Process: The hydrocarbon source in the Mitsubishi plant is the crude C4

fraction from naphtha crackers, so it represents a departure from the older benzene-based

processes' and a move towards more recent processes based upon n-butane. The crude C4

fraction and air are fed into the reactor where the hydrocarbon concentration is high enough that

it exists in the explosive range (i.e. between 1.8 and 1.9 mol %). Because of the rapid gas-solids

mixing and associated hydrodynamics, an ignition cannot occur, so that safe operation is
\

possible. The hot reactor off-gas, which contains the crude MA, is quenched in a spray tower so

that an aqueous solution of crude maleic acid is produced. Dehydration and purification of the

crude maleic acid stream obtained from the quenched tower bottoms is performed by

evaporation and distillation. The purified MA vapours are taken overhead and condensed for

subsequent pelletisation and packaging (Contractor, KM.; (1987».

The AlusuisselAlma process: Unlike the Mitsubishi Chemicals process, n-butane is used

as the hydrocarbon source. The n-butane and air are fed separately to maintain a certain mol %

of hydrocarbon in the mixed stream. A distinguishing feature of this process is that it uses a

proprietary anhydrous MA recovery system with an organic solvent where the boiling point of

the latter exceeds that of MA (ca. 202°C at 1atm). This is claimed to minimize the formation of

unwanted by-products that are otherwise formed in aqueous recovery processes involving the

evaporation of aqueous maleic acid (Contractor, R.M.; (1987».

The Dupont process: Dupont's Ames laboratory developed a system of cycling the

catalyst between a reducing and oxidizing environment, thereby improving activity, selectivity

and yield. Normally these processes are steady··state processes; the catalyst is brought up to a

certaill tel11peratul'e and pressure, and the reactant gases continually flow over it (Schrader, G.;

URL; (1996»).
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The choice ofreactor determines the conversion-yield relationship, the control of the heat

of reaction (and thus the feed composition), and the feasibility of catalyst regeneration.

Fluidised-bed reactors have a number of advantages over fixed-bed reactors including: (i)

excellent heat transfer and no hot spots; (ii) high tolerance for feed impurities; (iii) safe

operation with inlet gas compositions within the flammability limits; (iv) higher productivity;

(v) improved turndown, turnoff, and flexibility; (vi) reduced limitations for heat and mass

intragranular transfer; (vii) shorter downtime for catalyst replacement; (viii) constant catalyst

performance (continuous catalyst makeup is possible); (ix) production of higher value steam; (x)

single train operation up to 50,000 tons/year (about twice that for fixed-bed) and (xi) investment

cost advantage for production of higher than about 10,000 tons/year. On the other hand,

fluidized-bed reactors suffer from: (i) lower selectivity because of back-mixing; (ii) the

necessity of making hard catalyst palticles (must be mechanically resistant to high attrition

conditions) using additives that often lower catalyst performance and (iii) problems in scale-up.

Transport-bed reactors, e.g. continuous flow fluidized bed reactors (CFIBRS), operate in the

hydrodynamic regime of transport of the catalyst with the feed (n-butane virtually without

oxygen, although a small quantity of oxygen is added to improve productivity) in the riser

reactor with regeneration of the catalyst (with air) in a serm"ate reactor (usually a fluidized-b,ed

reactor) (Centi, G. (2001)).

The advantages of CFIBR technology using a dense-bed transport reactor with respect to

fluidized-bed and fixed-bed reactors are: (i) higher throughput, because of the higher gas

velocity and the ability to independently optimize the kinetic conditions for the two stages of the

redox mechanism as reduction and re-oxidation occur in physically separated reactors; (ii)

higher selectivity; (iii) excellent intragrain and interphase heat and mass transfer; (iv) high

turndown (solid and gas retention times can be adjusted independently); (v) higher product

concentration (improved recovery) and (vi) greater intrinsic safety. However, there are

disadvantages: (i) the need for a catalyst with an exceptionally high attrition resistance; (ii)

significant uncertainty in scale-up; (iii) the need for temperature control in the riser; (iv) the
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very high energy costs associated with catalyst re-circulation; (v) high catalyst makeup; (vi)

possible side reactions, which include condensation and polymerization, that occur in the

absence of oxygen; (vii) low productivity per mass of circulating solid and (viii) production of

significant quantities of carbon oxides in the regeneration unit (Centi, G. (2001)).

2.3. Catalyst testing

Coke is sometimes the final product of a series of consecutive reaction steps. Coke can

block active catalytic sites on the catalyst surface and tllllS lead to deactivation of the catalyst.

The feed conversion drops as a result of a smaller active catalytic surface area. Deactivation

rates, therefore, might also depend on the conversion level (Csicsery, S.M. (1992)). The catalyst

is only tested after reaching an equilibrium state, referred to as conditioning a catalyst, i.e. when

the percent conversion of feed and selectivity towards the required product stabilizes under set

reactor conditions.

2.3.1. The feed delivery system

The feed system should deliver a homogenous feed at an even flowrate at the required

temperature and pressure to the reactor. It is difficult to determine whether or not mixing has

been complete. One possible method to check is to connect the bypass line to the TCD of the

GC, whilst maintaining the same pressure as that through the catalyst bed. A straight horizontal

line obtained from the integrator shows complete mixing. A wavy line shows poor mixing

(Csicsery, S.M. (1992)).

Significan~ space velocity fluctuations could occur unless the pump and most of the feed

delivery system are kept at constant temperature. It is, however, difficult to keep a constant

temperature as gauges, valves and joints have large dead volumes. Opening windows or doors

can change ambient temperature of the feed delivery system that can affect actual flowrates.

Laboratory reactors need not be miniature copies of commercial reactors as the purpose of the

reactor is to generate information and not to manufacture and sell a product.
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Glass wool should be packed after the catalyst bed to ensure that fines do not get into the

sampling or control valves.

2.3.2. Mass transport phenomena in a catalyst

Catalytic reactions proceed through several distinct steps. There are gas diffusions of the

reactants, adsorption, surface reaction/s, desorption, and gas diffusions of the products. Surface

diffusion may also take place. Anyone of these steps could be rate limiting. Fig. 2.2 shows

some of the mass transport steps during the oxidation of n-butane to MA. Mass transport

becomes rate limiting when the surface reaction is faster than the supply of reactants and/or the

removal of the products by any of several diffusion steps. Most catalyst screening studies rank

catalysts in order of intrinsic catalytic activities. Therefore, it is imperative to test catalysts

under conditions where mass transfer is not rate limiting.

INTRAI'lEACTOR TRANSPORT Butane ...

Butane

INTERPHASE TRANSPORT

INTRAPAATIClE TRANSPORT

Maleic
Anhydride

Maleic

Butane -....,..,.. / Anhydride

SURFACE Re"CTIOrl

Fig. 2.2. Mass transport phenomena in a reactor (Csicsery, S.M (1992))
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2.3.3. Product analysis

Greaseless, no-dead volume sampling valve systems are essential in the analysis of

products in a micro-reactor. The no-grease feature is particularly important here because greases

could selectively absorb some components from the product. This, of course, would change

sample compositions before analysis. Gas chromatographs are the most important analytical

instruments used in catalytic reaction studies. The analytical and sampling instruments should

be kept in top shape for best results. Recalibration of the gas chromatograph retention times and

response factors at regular intervals, preferably daily, are necessary. Heated transfer lines

between the sampling valve and the gas chromatograph prevent condensation of the products

from the reactor. Recording and comparing total GC areas of the on-line sample analyses is one

of the most powerful and simplest methods to detect errors. As long as the total GC areas are

within 5 % of each other, probably everything is working as it should. The following can affect

the total GC area: (i) improper feed rates; (ii) leaks in the joints connecting the reactor; (iii)

leaks in the sampling, sample transfer, and GC carrier gas lines; (iv) splitter problems and (v)

faulty detectors and improper GC carrier gas rates. Resu Its that show GC areas more than 5-10

% higher or lower than their proper value should be ignored and the experiment repeated.

2.3.4. Catalyst life cycle

The life of most heterogeneous catalysts may be divided into three periods as illustrated

in Fig. 2.3. The first period is called "line-up" or "activation" or "induction". Some catalysts

rapidly deactivate in this time period and others become more active. This period can be

anything from a few seconds to several days or even weeks. "Line-up" is usually followed by a

long "steady state" period. Deactivation is usually slow and steady during this stage. In the "end

of run" period the catalyst deactivates rapidly. The catalyst activities, selectivities and other

kinetic parameters are determined during the steady state period.
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Fig. 2.3. Life cycle ofa catalyst (Csicsery, S.M (1992))

Activity may be expressed as conversions reached at constant pressure, temperature, and

space velocity.

Selectivities may depend on temperature, pressure, space velocity, diffusion, catalyst

particle size and shape, reactor geometry and other factors. Selectivities should alway's be

compared at constant temperature, pressure and conversion.

2.3.5. Heat transfer effects

High axial and/or radial temperature gradients are the most frequent sources of incorrect

data in continuous tubular flow reactors. The problem increases with increasing reactor diameter

and increasing catalyst bed volume, Temperatures between the hottest and coldest points could

differ more than 30-40°C even in small (10 mL) catalyst beds and even with moderately

exothermic or endothermic reactions. However, even larger temperature differences might

remain undetected because few micro-reactors provide enough space for more than two
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thermocouples. It is thus recommended to determine the axial temperature profile of the catalyst

bed. The temperature should be within 2°C. The temperature gradient increases with increasing

conversion. Ways of minimizing the temperature gradient would be: (i) to dilute the catalyst

with inert material; (ii) using the smallest possible diameter reactor and the highest practical

linear flow rate and (iii) encouraging turbulent flow rate by using small particles. The particle

diameter should be less than one tenth of the reactor diameter and about one-hundredth the

length of the catalyst bed. The catalysts should be tested at low conversions. Most of these

measures will increase the pressure drop along the catalyst bed, however, pressure changes

usually affect reaction rates much less than temperature changes.

2.4. Conclusion

As can be inferred from Table 2.1, it is not possible to indicate a clear reactor-type

preference for the synthesis of MA from n-butane, but different options may exist depending on

factors such as the up- and downstream integration of the process and the cost of n-butane. It

may be noted, however, that the choice of reactor determines reaction conditions, which in turn

affect the characteristics of the "optimal" catalyst, and thus catalyst optimization is not an

independent variable with respect to the choice of the final process reactor technology.

Oxidation processes that are economically viable require the development of catalyst and

reactor technology where the yield of the desired product is maximized. Optimal yields of the

desired product can only be obtained if the product does not undergo thermal decomposition in

the given reaction environment and in any downstream unit operations associated with product

recovery.

Compared to other types of vapour-phase catalytic reactors, fixed-bed reactors have

received the most attention from the perspective of application and reaction engineering

analysis. For this reason, the level of understanding for this configuration is perhaps the greatest

when compared to other reactor types.

62



Due to the beneficial effect of radial diffusion in gas-phase processes in counteracting

transverse velocity profiles caused, for instance, by the perturbation of packing homogeneity

near the reactor wall, and by taking advantage of the improvements in axial dispersion and

catalyst irrigation resulting from dilution of the catalyst bed with fine inert material, it is

possible to obtain reproducible and meaningful results from tests in micro-reactors.

From the analysis of limiting factors as discussed thus far, it follows that even smaller

reactors than micro-reactors may be used, since the bed diameter of the latter can be further

reduced without adverse consequences, as long as the reactor tube can still accommodate the

catalyst particles. Thus, catalyst testing may be done in reactors having diameters in the

millimeter range containing less than one gram of catalyst.

Due to the exothermic nature of the reaction it is important to ensure that the reactor is

isothermal. If the temperature in the catalyst bed is not properly controlled the reaction could

easily become unstable and temperature runaway would occur in both an industrial and

laboratory reactor setup.
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CHAPTER 3

EXPERIMENTAL

3.1. Reactor setup

A fixed-bed continuous flow micro-reactor and on-line gas chromatograph (GC)

monitoring system was designed and constructed for the purpose of this project. The fixed-bed

reactor was chosen for its low cost of construction and installation of equipment as opposed to

the other types of reactors mentioned in Chapter 2. The n-butane to MA reaction has a low

intrinsic reaction rate, thus the fixed-bed reactor was appropriate. High intrinsic reaction rates

require the use of fluidized-bed technology. The fixed-bed reactor occupies less lab space

compared to other types of reactors and a small amount of catalyst is used in a catalytic run.

An overall picture of the reactor and analytical system is illustrated in Appendix 1 (Fig.

1). A 1 % n-butane in air premix was fed into the reactor. The reason for using a 1 % n-butane
\

in air premix, as opposed to any other amount, was due to a supplier restriction. The feed lines

to the reactor were 1/8
th inch copper tubing. The lines from the reactor outlet to the gas-sampling

box were 1/8
1h inch stainless steel tubing. The lines from the gas-sampling valve to the GC were

1/161h inch stainless steel tubing. The n-butane feed was monitored and controlled by a pressure

gauge, needle valve (NVI) and rotameter (RI) that were mounted on a control panel. The

arrangement of valves and guages are shown in Fig. 3.1. The supply pressure was kept at 100

kPa, as this was the supply pressure under which the rotameters had been calibrated. The needle

valve served to stop the flow of feed gas from the supply cylinder. Calibration gas was fed via a

separate line. The calibration gas cylinders contained premixes of CO, CO2, n-butane and the

balance being air: The calibration gas was monitored and controlled by a pressure gauge, needle

valve (NV2) and rotameter (R2). An on/offva1ve (NV3) was employed at the T-junction where

the feed gas met the calibration gas to avoid a bleed of calibration gas during catalytic runs.

Mixing coils served to mix the n-butime in air before entering the reactor. A pressure gauge

before the reactor served to monitor the supply pressure to the reactor. After the pressure gauge,

the supply gas met a three-way valve that either diverted the gas to a bypass line or to the
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reactor. The bypass line was used for calibration purposes and checking the mass balance. The

Iine was fitted with an onloff valve (NV4) to prevent bleed of gas when not in use. A pressure

release valve (PRV) ensured a safe operating pressure for the reactor tube, which was quartz.

The PRV was set at 120 kPa. The supply line to the reactor was fitted with a rubber o-ring

connector to connect the copper tube to the 10 ~m outer diameter and 7 mm inner diameter

quartz reactor tube.

A rubber o-ring sealed the connection at both the· inlet and outlet points of the reactor

(Fig. 2, Appendix 1). A 300 mm long split block furnace was employed to supply heat for the

reaction of n-butane with air under catalytic conditions. The products from the reactor were

corrosive at high temperature and thus stainless steel tubing was employed after the reactor. I g

neat catalyst was packed towards the middle of the 500 mm quartz reactor tube as illustrated in

Appendix 1. The reactor tube had a 7 mm inner diameter and a 10 mm outer diameter.

Carborundum was packed on either side of the catalyst. The carborundum packing before the

catalyst further mixed the feed stream gases. It" was also necessary to preheat the gases before

they reached the catalyst bed to ensure a constant temperature in the catalytic zone. The

carborundum packing served this purpose as well. Glass wool was packed at the ends of the

reactor tube. The carborundum and glass wool after the catalyst bed served to prevent any

particulate matter from entering the product stream and entering the valves downstream from

the reactor. A thermocouple was placed on the outside wall of the reactor tube to monitor the

temperature of the catalyst. The thermocouple was connected to a temperature controller that

was mounted on a control panel. The stainless steel product stream line leaving the reactor was

heated to 160°C "to prevent condensation of any solid product in the lines. A three-way valve

after the reactor controlled flow from either the bypass or the reactor to the gas sampling box

which was the initial step in the analytical process.
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3.2.The analytical system

3.2.1 The gas sampling box

Two GCs were employed in the analysis of the products from the reactor. An isothermal

Varian 3700 GC separated and monitored air, CO and CO2. A Perkin Elmer XL autosystem GC

separated and monitored all other products, which included unreacted n-butane, MA and acetic

acid. The gas-sampling box contained two Valco rotary valves connected to electronic switches

that controlled them (Fig. 3, Appendix 1). The lines entering the gas-sampling box were the

reactor product stream line and the return line from the pre-column of the Varian 3700 Gc. The

lines exiting the gas-sampling box were the sample feed to the pre-column of the Varian 3700

GC, feed line to analytical column of the Varian 3700 GC and the feed line to the Perkin Elmer

Gc. There was a 10 port rotary valve as well as a 6 port rotary valve in the gas sampling box.

Both valves contained a 500 ilL sampling loop. These rotary valves were attached to a heater

plate that kept them at a temperature of 160°C to prevent condensation of the products from the

reactor in the valves. The 10 port rotary valve sampled to the Varian 3700 GC, whilst the 6 port

rotary valve sampled to the Perkin Elmer Gc. The Varian 3700 GC was equipped with a pre­

column that trapped components that are solid at room temperature and only allowed the gases,

i.e. air, CO and CO2 to go through to the analytical column and be detected by the thermal

conductivity detector (TCD). The pre-column in the Varian GC was maintained at room

temperature, thus making it possible to trap all products except gaseous products at room

temperature. This column was flushed after every week of operation by increasing the

temperature of the column to 180°C and applying a flow of helium gas through the column and

out to waste.

3.2.2. Operation of the sampling valves

The operation of the 10 port valco rotary valve is illustrated in Fig. 3.2. The valves were

electronically controlled by the Perkin Elmer Gc. Pressurised air was used to turn the valves.

The pressure was built and released automatically in the control of the valves. Helium gas,
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which was the carrier gas, flowed into port 7 and out through port 6 and then through the

analytical column and the detector in the standby position of the valve. The mobile phase

flowed in through port 4 and then out port 5, through the injector and through the pre-column,

into port 9 and out through port 8, through a restrictor and then vented. Sample from the reactor

flowed in through port 1, through the sample loop and then vented. The restrictor regulated the

pressure in the system. In the sampling mode, that was when the valve was automatically turned

clockwise, carrier gas flowed through port 7 and out through 8 to waste.

Carrier gas also flowed into port 4 through the sample loop, containing sample from the

reactor and then followed a sequence through the pre-column, the analytical column and the

detector. When the valve turned back to the standby mode, flow through the pre-column was in

the opposite direction towards the waste line, which prevented any solid material traveling in

the direction of the TCD. The pre-column thus enabled only the carbon oxides and air to pass

through to the analytical column and subsequently to the TCD because when the valve turned,

the sample containing essentially carbon oxides entered the analytical column in the Varian

3700 GC whilst the other products in the sample were flushed out.

The 6 port rotary valve that sampled to the Perk~n Elmer GC, operated in the same

manner. There was no pre-column attached to the 6 port valve. When the 6 port valve turned

from standby to sampling mode, the sample in the sample loop was flushed directly into the

. analytical column in the Perkin Elmer GC. The only difference between the 6 port and 10 port

valve setup was the inclusion of a pre-column with the 10 port valve.

3.3. Materials

The CO, CO2 and n-butane standards for GC calibration were taken from a premix gas

cylinder containing these components in a balance of air.
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Material Usage
Molar-mass

Supplier % Purity
/g.mor l

n-butane in air
,

Feedgas 58.12 Fedgas
1 % n-butane, balance
air special mixture

Phthalic anhydride (PA) Calibration 148.12 Saarchem
99%

Calibration 98.06 Saarchem
99%

MA

1.0%CO, 1.1 % CO2,

1.0 % n-butane in air

CO: 28.01
0.58 % CO, 0.62 CO2,

CO, CO2, n-butane in air Calibration
CO2: 44.01

Fedgas 0.58 % n-butane in air

0.19 % CO, 0.18 %
CO2, 0.19 % n-butane
in air

Acetic acid Calibration 60.05 Acros
99.8 %

I-Butene Calibration 56.11 SASOL
99%

Table 3.1. Feed andproduct materials

3.4. Product analysis

A CP-Sil 24CB column, which was installed in the PE GC, was capable of separating

unreacted n-butane, MA, acetic acid and phthalic anhydride. A typical gas chromatogram is

included in Appendix 1. The retention times were as follows: unreacted n-butane (0.76 s), acetic

acid (0.844), MA (2.85) and phthalic anhydride (11.29). The Carboxen™ 1000 column, which

was installed in the Varian 3700 GC, was capable of separating CO and CO2. The retention

times were as follows: CO (5.54) and CO2 (56.98) (Appendix 1). A chromosorb WHPSP pre-

column was i!1stalled in the Varian 3700 GC and was used to separate gaseous products from

other products at room temperature. The specifications of these columns appear in Appendix 1.
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3.5. Catalyst

3.5.1. Catalyst preparation

Reagent Molar-mass/ g.mor' Supplier % purity
V20 5 181.88 Aldrich 98+%
ortho-H3P04 98.00 Fluka 98+%
Benzyl alcohol 104.14 Aldrich 99%
Iso-butan91 74.12 Rochelle chemicals 98.5 %
Co(acac)3 356.26 Acros 99%

Table 3.2. Reagentsf~r catalyst preparation

An organic synthetic route was followed in the synthesis of the VPO catalyst. V205 (1 0 g,

0.055 mol) was added to a 3:2 volumetric ratio of iso-butanol:benzyl alcohol solvent mixture

(100 ml) which reduced the V20 5. Powdered Co(acac)3 was added to the mixture before

refluxing. The Co(acac)3 amounts, added during the reduction stage of the synthesis, were

varied for different promoter loaded catalysts: VPO-l (0 g); VPO-2 (0.49 g, 0.0014 mol); VPO-

3 (0.97 g 0.0027 mol) and VPO-4 (1.94 g, 0.0055 mol). The mixture was refluxed for seven

hours. The reflux mixture was cooled overnight. ortho-H3P04 (11 g, 0.11 mol) was added to the

cooled mixture and refluxed for a further 3 hours. The mixture was cooled and filtered through

hardened (541) ashless filter paper to yield a precipitate, which was the catalyst precursor. The

precipitate was washed with 20 ml iso-butanol solvent. The precipitate was initially dried

overnight in an oven set at 100°C under an air atmosphere and then calcined under a nitrogen

atmosphere at 450°C for 5 hours to yield a black catalyst regarded as the calcined catalyst

(Sookraj, S.H. et al. (1999). The unpromoted catalyst (VPO-l) was similarly synthesized with'

the exception of adding Co(acach during the reduction step.

3.5.2. Labeling the catalysts

The catalysts with different promoter loading and P:V ratios shall be labeled as indicated

in Table 3.3. The BET surface areas of the calcined catalysts and the average V oxidation states

(AV) of the precursor, calcined and used catalysts are presented as well.
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ICP-AES RESULTS EDX RESULTS AV BET

Label !catalyst % Co:V(molar) P:V(molar) % Co:V(molar) P:V(molar) Area(m2/g)

r-tPO-1p Iprecursor 0.00 (±O.OO) 1.09 (±0.02) p.OO (±O.OO) 10.80 (±0.04) 14.30 (±0.02)

WPO-1c calcined 0.00 (±O.OO) 1.11 (±0.01) 0.00 (±O.OO) 0.85 (±0.01) 3.98 (±0.051 14.83

WPO-1u used 10.00 (±O.OO) 1.11 (±0.01) b.oO (±O.OO) 1081 (±0.10) 14.39 (±0.02)

WPO-2p precursor 1.31 (±0.04) 1.04 (±0.02) 1.22 (±0.18) 0.73 (±0.D4) 14.17 (±0.01)

rvPO-2c alcined 1.24 (±0.04) 1.06 (±0.02) 1.18 (±0.06) 10.88 (±0.05) 14.21 (±0.02) 16.87

rvPO-2u used 1.23 (±0.03) 1.04 (±0.02) 1.06 (±0.02) 10.79 (±0.08) 14.32 (±0.03)

VPO-3p precursor ~.33 (±0.03) 1.06 (±0.03) r2.76 (±0.07) 10.74 (±0.06) 14.22 (±0.01)

VPO-3c k;alcined ~.27 (±0.04) 1.05 (±0.02) r2.44 (±0.04) 10.79 (±0.10) 14.14 (±0.02) 122.93

Ivpo-3u !used 12.24 (±0.01) 1.06 (±0.01) r2.41(±0.06) p.80 (±0.03) 14.36 (±0.02)

Ivpo-4p precursor 14.21 (±0.05) 1.04 (±0.03) 14.13 (±0.16) p.75 (±0.03) 14.24 (±0.01)

Ivpo-4c k;alcined 14.32 (±0.02) 1.02 (±0.01) 14.19 (±0.26) p.85 (±0.03) 14.24 (±0.01) 13.22

Ivpo-4u used 14.07 (±0.02) 1.04 (±0.02) 14.12 (±0.11) KJ.74 (±0.05) 14.33 (±0.01)

Table 3.3. Catalysts labeled according to their molar P: V ratios and Co: V molar percentages

3.5.3. Catalyst characterization

The catalyst under study was a Co promoted VPO catalyst. Fourier transform-infrared

(FT-IR), attenuated total reflectance (ATR), X-ray diffraction (XRD), Brunauer-Emmet-Teller

(BET) surface area, Energy dispersive X-ray spectroscopy (EDX), Scanning electron

microscopy (SEM), Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and

average V oxidation state (AV) analyses were used to characterize the catalyst. The theoretical
\

aspects of each of these techniques are discussed in more detail in Appendix 3.

3.5.3.1. X-ray diffraction measurements

The XRD spectra were recorded on a Philips PWl130 instrument. Details of the

instrument appear in Appendix 2.

3.5.3.2. Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analyses

The catalyst samples were analysed and viewed on a Hitachi S520 scanning electron

microscope fitted with a Link ISIS energy dispersive X-ray analytical system. A spatula tip of

catalyst sample was used in the SEM and EDX analyses. The sample was stuck onto a disk that
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had an adhesive face. The disk was placed on a stage in the instrument before examination and

analysis. The catalyst was coated in Au to obtain a stable SEM image of the catalyst by

preventing movement of the catalyst during examination under a 10000 X magnification whilst

being bombarded with X-rays.

3.5.3.3. Fourier-transform-infrared (FT-IR) spectroscopy measurements

Fourier transform-infrared (FT-IR) spectra were recorded on a Nicolet 4000 infrared

spectrometer. The IR spectra were recorded via the KBr pellet sample preparation technique. A

\

spatula tip amount of catalyst sample was placed in a mortar with a spatula full amount of dried

KBr powder. All the equipment that made contact with the sample in the preparation of the KBr

pellet was ensured to be hot during preparation to prevent moisture being absorbed by the

sample. The sample and KBr powder was intimately ground, mixed and eventually compressed

into the pellet. The absorption background was the same, as was the concentration of the

catalysts in the KBr discs and the procedure of their preparation for all catalysts under

investigation. The background for analysis was obtained from the spectrum of a KBr pellet not

containing sample.

3.5.3.4. Attenuated total reflectance (ATR)

A Spectra-tech zinc selenite crystal was used to record the IR spectra of the catalyst

samples via the attenuated total reflectance technique. The crystal had a refractive index of 2.4 .

.The neat powdered sample was placed on the zinc selenite crystal so as to completely cover the

crystal. Pressure was applied to the powdered catalyst sample, by tightening a pressure plate that

forms pmt of the ATR apparatus, to ensure intimate contact between the sample and the crystal.

The crystal was placed in the ATR cell. The ATR cell was placed on the stage of the infrared

instrument so as to allow the IR beam to pass through the prism of the cell. The IR beam entered

the cell on one end, impinged off the interface between the zinc selenite crystal and sample, and
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left on the other end. The exit beam met the detector of the instrument. The infrared spectrum

was thus recorded.

3.5.3.5. Brunauer-Emmet-Teller (BET) surface area measurements

The catalyst sample was out-gassed at 200°C overnight under a nitrogen flow. The sample

was placed into position in a Tristar where it was evacuated prior to being immersed in liquid

nitrogen for the analysis. A measured portion of nitrogen was placed in the evacuated sample

cell. The sample absorbed a certain amount related to its own intrinsic capacity. This measured

volume of gas was then used in calculations to determine volume adsorbed at monolayer

coverage for BET, i.e. in the range 0.05 to 0.3 PIP0, which was the ratio of the pressure in the

sample cell to the atmospheric pressure. The pressure in the sample cell was thus compared to

atmospheric pressure. The BET total surface area was calculated via the standard calculation

. developed by Brunauer, Emmet and Teller. The analysis was performed at the Sastech Research

and Development Laboratory in Sasolburg.

3.5.3.6. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) measurements

The P:V molar ratio and Co:V molar percentage was determined using inductively

coupled plasma-atomic emission spectroscopy (ICP-AES). The instrument used was a Jobin-

Yvon (JY 24). Multi-element standards were prepared containing P, V and Co over the

concentration range illustrated in Table 3.2. Microwave digestion was employed to digest the

catalysts for ICP-AES analysis. Approximately 0.1 g of catalyst sample was digested in aqua

regia (3.5 ml HCl and 1.5 ml HN03), following the digestion temperature program set on the

microwave. Details of the temperature program are included in Appendix 4. The precursor,

"

calcined and used catalysts were analysed in the same manner. A residue was obtained from the

digest of the calcined and spent catalysts. The residue was analysed via EDX to determine the

presence of any undigested P, V or Co compounds. The supernatant was separated and made up

in 100 ml volumetric flasks with deionised water. The sample solution was diluted 20 times to
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yield a concentration within the calibration range. The sample solution was then analysed via

ICP-AES. A blank consisting of aqua regia in the same concentration as in the sample solution

was made up. A blank correction was employed by subtracting the signal obtained from the

blank solution from the sample solution. Multi-element standard solutions consisting of P, V

and Co were prepared. The concentrations of elements in the calibration standards appear in

Table 3.4.

Standard 1/ Standard 2/ Standard 3/ Standard 4/ Standard 5/
Element Wavelength

ppm ppm ppm ppm ppm

P 213.581 10 20 30 40 50

V 309.483 10 20 30 40 50

Co 236.536 2 4 6 8 10

Table 3.4. Selected wavelengths and concentration ofcalibration standards usedfor ICP-AES
analyses

The procedure of analysis via ICP-AES follows: The extractor fans and gases to the ICP

torch were turned on. The extractor fans extract the waste gases from the chamber containing

the ICP torch. The ICP flame was ignited. The computer was turned on. A zero order search was

performed, which is a method of obtaining a baseline for analysis every time the instrument is

turned on. The nebuliser is turned on, ensuring the tube that feeds sample into the ICP flame is

immersed in deionised water. The nebuliser controls the flow of sample into the ICP flame. The

flame is allowed to stabilise for half an hour. In this time, the method for analysis on the

instrument is set. .

The wavelength used for analysis of each element, as indicated in Table 3.4, is

determined by the detection limit required. These wavelengths are thus selected accordingly.

The instrument is set to automatically search for the wavelength specific to the emitting element

that is being pumped into the flame. Corrections are employed for any slight variation in
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wavelength. The voltage for analysis is set while pumping the highest concentrated standard

into the ICP flame.

Calibration graphs for all three elements in the five multi-element standards were

obtained from the computer. The zero emission point on the calibration curve was set using

water. The computer used the calibration graphs to give concentrations of elements in the

samples in the ppm scale. The P:Y molar ratios and Co:Y molar percentages were calculated

using these results.

3.5.3.7. Average vanadium oxidation state (AV)

The average Y oxidation state (AY) was determined by a redox titration procedure,

largely the same as that employed by Nakamura et al. (1974). About 0.1 g of catalyst was

dissolved in 17 ml of 12 M ortho-H3P04 (98+ %) and boiled till a clear solution was obtained.

This solution was added to a mixture of 10 ml concentrated H2S04 in 250 ml water. Graphite

was removed by filtration. All Y ions were oxidized to y 5
+ by titration with 0.05 N KMn04

solution. The pentavalent ions were reduced to y 4
+ using a 0.05 N Fe(NH4)iS04h solution,

with 1 % diphenylamine in concentrated H2S04as an indicator. The average Y oxidation state

was calculated as:

AV = 5 _ (volume KMIl04solutioll)

(volume Fe(NH4)2(S04)2SolutiQIl)

3.5.3.8 Gas chromatography-mass spectrometry (GC-MS) analysis

The product from the reactor was bubbled into water. The product was dried on a hotplate

and analysed via GC-MS. Cyclohexane solvent was used in the analysis. The mass spectrum

indicated the presence of MA when compared to library data.
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3.5.4. Experimental procedure for catalyst testing

I g (approximately 2 cm3
) of neat calcined catalyst was packed tightly in the middle of

the 7 mm inner diameter (l0 mm outer diameter) quartz reactor tube. The catalyst packing

length was approximately 50 mm, which varied according to the particle size of the catalyst.

Carborundum, which is inert SiC, was packed on the feed stream end of the reactor tube. The

carborundum served to preheat the feed gas before entering the catalyst bed. A plug of glass

wool was placed immediately after the catalyst bed to prevent particulate matter from entering

the on-line sampling valves and, subsequently, the gas chromatographs.

The gas hourly space velocities (GHSV) and temperatures were varied in the examination

of the Co promoted catalyst's ability in selectively converting n-butane to MA. The optimum

conditions were thus obtained. Optimum conditions were the parameters (temperature, GHSV,

Co loading) that gave the highest yield of MA.

Each catalytic run was approximately 200 hrs. The catalyst was maintained at a constant

temperature and GHSV for approximately 200 hrs. The first 24 hrs were allowed for

conditioning the catalyst at the operating temperature. Conditioning of the catalysts yielded

equilibrated catalysts, i.e. catalysts that gave stabilized yields of MA with time on stream.

3.5.5. Gas chromatography for product monitoring

The products were monitored via gas chromatography. A description of the columns

employed in the analysis of products from the reactor is given in Appendix I. The control

parameters for both GC's are also provided. The sampling was done automatically via on-line

sampling as described in Section 3.2.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Catalyst synthesis

1) V20 S+ iso-butanol:benzyl alcohol (3:2) + Co(acac)3

17-Hour reflux

2) Cooled to room temperature and ortho-H3P04 was added

13-Hour reflux

1Calcination under inert
atmosphere at 450°C

4) Amorphous phase1Conditioned in the reactor for 24 hours

5) (VO)2P207
Vanadyl pyrophosphate

(proposed active catalytic [)hase)

Fig. 4.1. Flow diagram ofthe synthetic route towards the active VPO catalyst

A flow diagram indicating the major steps towards the synthesis of the active VPO

catalyst is presented as Fig. 4.1. Details of the synthesis appear in section 3.5.1. In step 1, shown

in Fig. 4.1, the V20S, an alcohol bi-mixture and the Co promoter in the form of a salt is mixed

and refluxed for 7 hours.

Co was selected as a promoter in this study due to its known ability to stabilize the loss of

oxygen anions during reduction, hence rendering the catalyst less active but more selective

(Hodnett, B.K. (1985)). Co is also known to be a structural promoter by creating disorganization

in the catalytically active (VO)2P207 phase, which results in improved selectivity (Cornaglia,
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L.M. et al. (1999). This disorder creates local modifications, inducing the formation of new

active centers for the activation of n-butane (BlJsca, G. et at. (1986». Co(acac») was used as the

source of the Co promoter as it was available and easily reduced. A 2.5 molar % Co:Y promoted

catalyst was initially tested. A % Co:Y in excess of 20 causes segregation of Co on the surface

and gives rise to lower selectivities by catalysing total oxidation reactions and below a value of

2 mol % Co:Y, Co enters into solid solution, reduces the surface area and diminishes the

reactivity of YPO with hydrogen (Zazhigalov, Y.A. et at. (1993», thus 2.5 % was selected.

Yalues around this value was later chosen to determine the optimum promoter loading for the

catalyst.

For the unpromoted catalyst, the Co salt addition is excluded in step I. After a 7-hour reflux, the

alcohol solvents are expected to have reduced the Y in the mixture from y 5
+ to y 4

+. Isobutanol

solvent was selected as one of the solvents as it is known to reduce Y205 Benzyl alcohol was

the other alcohol used due to its ability to become trapped in the interstices of the catalyst and

result in defects in the catalyst structure, which are known to improve selectivity towards MA.

The Co phases were not seen in the XRD spectra (Appendix 2). This was probably due to the

amorphous nature of the phases or their low concentrations in the catalyst. The reflux mixture

from step I was cooled to room temperature before the addition of ortho-H3P04. The addition of

ortho-H3P04 and further 3-hour reflux completed the reduction of any unreduced y 5
+ to y 4

+

from step I. A cake was obtained on filtration of the reflux mixture through ashless filter paper.

The cake was dried in an oven to give a powder. This powder was known as the catalyst

precursor. The yield of the catalyst precursors could not be calculated due to the simultaneous

production of two vanadium phases, YOHP04 ,'hH20 and (YOhH4P20 9, as revealed by X-ray

diffraction (XRD) analysis (Appendix 2). The ratio of these two phases is unknown. The

powders of the different promoter loaded catalysts had different colours: YPO-I p (light blue),

YPO-2p (light green), YPO-3p (green) and YPO-4p (dark blue). The precursor catalysts were

calcined under nitrogen at 450°C to yield an amorphous ph",se. All calcined catalysts were black

in colour. The calcined catalyst was packed into the reactor and conditioned for 24 hours and
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tested for approximately 200 hours at different operating temperatures. The catalyst removed

from the reactor after testing was referred to as the used catalyst. XRD studies of this catalyst

showed the presence of (VO)2P207, which is the active catalytic phase for the oxidation of n­

butane to maleic anhydride.

4.2. Catalyst characterization

4.2.1. X-ray diffraction (XRD)

The XRD spectra of the catalyst precursors (VPO-1p, VPO-2p, VPO-3p and VPO-4p)

(Appendix 2) were recorded. The calcined catalyst was amorphous in nature and could not be

recorded because the X-ray diffraction spectrum is obtained from diffraction of X-rays off the

crystalline surface of the sample. The theoretical aspects of this analysis appear in Appendix 3.

The XRD pattern of VPO-3u, which was the 2.3 % Co loaded used catalyst, was recorded. It

was possible to record the XRD pattern of VPO-3u due to the crystalline nature of the catalyst

after reaction on stream in the reactor. There was thus a transition of the catalyst from an

amorphous state (calcined catalyst) to a crystalline state (used catalyst). The XRD spectrum of

the used VPO catalyst indicated an orthorhombic structure of the catalyst, which was

characteristic of the (VO)2P207 phase (Appendix 2).

The XRD pattern of the precursor catalysts VPO-1 p through to VPO-4p (Appendix 2)

indicated the presence of two species, viz. (VO)2H4P209 and VO(HP04)·1/2H20. (VO)2H4P209

and VO(HP04)·1/2H20 also gave IR signals in the 900-1300 cm-I region of the IR spectra of

VPO-l p through to VPO-4p (Appendix 5 (FT-IR results) and Appendix 6 (ATR results)). The

(VO)2H4P209 phase decomposes above 375°C according to Horowitz, H.S. et al. (1988).

Only the (VO)2P207 phase was present in the used catalyst of this study, as at this stage,

.the catalyst had been exposed to a temperature greater than 400°C during calcination and

testing. COlllston, G.W. et al. (1997) state that the only detectable phase in aged industrial

catalysts is vanadyl pyrophosphate, (VO)2P207, which contains V4
+ cations. Nevertheless,

Hutchings, G.]. et al. (1994) state that VOP04 (V5+) phases have been observed in working
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catalysts through in situ laser Raman studies. The VOP04 phase is probably only seen in situ,

during a catalytic run, but has not been seen in the XRD spectra of the ex situ catalysts

(Appendix 2). This VOP04 phase may be elucidated via on-line 4PS or Raman spectroscopic

phase characterization techniques. The XRD pattern of the used catalyst in this study (VPO-3u)

(Appendix 2) indicated the presence of (VO)2P20 7, which is known to be the active catalyst for

n-butane oxidation to maleic anhydride (Appendix 2). This indicates the presence of the +4

oxidation state of V. Hutchings et al. (1991) have shown that the catalyst is more selective

towards MA production with most of the V in the +4 oxidation state as opposed to a +5

oxidation state. The average V oxidation (AV) for the used catalyst, however, is just above +4

(Table 4.5). This is indicative of V5
+ phases also. present in the used catalyst. These phases may

be in the amorphous state and could not be detected via XRD spectroscopy. One such phase

could be the VOP04 mentioned above. Horowitz (1988) describes the (VO)2P20 7 phase as the

active catalytic phase and Centi et al. (1990) describes the XRD pattern of the used catalyst as

being pure (VO)2P20 7. However, amorphous phases are not seen along with the crystalline

(VO)2P20 7 phase. The XRD pattern obtained for VPO-3u, which was the used catalyst, agreed

with the literature (Centi, G. et al. (1990».

It was evident from the XRD spectra of VPO-I p through to VPO-4p that the (200) plane

reflection intensity decreased with increasing Co loading from VPO-1 p through to VPO-4p

(Appendix 2). A decrease in intensity was indicative of an amorphous character.

A high BET surface area is indicative of the development of the (100) basal plane of

(VO)2P207 (Sananes-Schulz, M.T. et al. (1997». This plane could not be seen in the XRD

spectra because it was not exposed. A picture of the basal plane, however, appears in Fig. 1.5.

The catalyst with the highest BET surface area from all four catalysts tested was VPO-3c (Table

4.7). This was the most effective catalyst tested for oxidation of n-butane to maleic anhydride as

shall be shown later.
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The specific reaction rate is known to increase linearly with increasing exposure of the

(020) reflection plane. The (020) plane of (VO)2P207 is characterized by the presence of paired

V pseudo-octahedra oriented trans to one another, and is claimed to be the catalytically

20 obtained ~ssignment

VPO-1p VPO-2p VPO-3p VPO-3u VPO-4p
14.450 (110)1

17.858 17.527 18.038 17.571 (020)1

21.412 21.433 21.456 21.542 (111)1

22.763 22.746 22.681 22.676 (200)2

26.723 (121)1

28.150 28.113 28.119 28.093 (201)1

31.499 31.560 31.438 31.369 (031)1

33.325 33.365 33.424 33.138 33.132 (102)1

34.167 (131)1

35.497 35.424 35.414 34.826 35.526 (112)1

37.354 37.224 37.271 37.164 (040)1

39.923 39.316 39.935 (202)1

43.724 43.725 43.746 43.647 43.714 (400)3

47.216 47.494 (241)1

. 50.576 (113)1

Table 4.1. 2(} Values obtainedfrom diffractograms (Appendix 2) and respective assignments

I Johnson, J.W.; Johnston, D.e.; Jacobson, AJ.; Brody, J.F.;1. Am. Chem. Soc.; 1068125 (1984)
2 Sananes-Schulz, M.T.; Tuel, A; Hutchings, 0.1.; Volta, J.c.; 1. Catal.; 166390 (1997)

J Brutovsky, M.; Oerej, S.; Vasilco, F.; Oerejova, 1.; Collection Czech. Chem. Commun.; 471294 (1982)

selective plane (Horowitz, H.S. et al. (1988)). The (020) plane reflection was present in all

catalysts from VPO-I p through to VPO-4p. Promoters are said to induce the preferential

exposure of the (020) plane leading to high activity and selectivity. The (020) plane reflection

intensity appeared lower and the peaks broader for promoted catalysts (VPO-2p through to

VPO-4p) compared to unpromoted catalyst (VPO-lp) (Appendix 2). Addition of the Co

promoter had thus changed the morphology of the catalyst. A decrease in intensity of the (020)

plane reflection is known to be attributed to disorder in the plane caused by trans to cis

arrangement of the v=o units about the (020) plane of the idealized (VO)2P207 structure

(Busca, G. et al. (1986)). The idealized trans conformation of the (VO)2P207 structure is

illustrated in Fig. 4.1.
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Fig. 4.2. The (020) plane on the surface ofthe VPO catalyst showing the trans conformation of

the (V0hP20 7 structure (Busca, G. et al. (1986))

When transformed to the cis isomer, both oxygens on V=Q lie above the plane. Busca, G.

et at. (1986) said that th is arrangement leads to the formation of a high Iy reactive pair of V ions,

able to activate the paraffin with a coordinative attack. The (020) plane, which is responsible for

enhanced selectivity towards MA, has been less exposed by the addition of the Co promoter,

which was evident from the decreased peak intensities in the XRD spectra of the promoted

catalysts compared to the unpromoted catalyst. The selectivity towards MA was greatest for

catalyst VPO-3 compared to the other catalysts with respect to different conversions of n-butane

as shown in Fig. 4.18. The addition of the Co promoter did not give spectra which entirely agree

with the literature in that there was no increase in (020) plane exposure, however, there was an

increase in selectivity towards MA at the optimum promoter loading, which is further discussed

in section 4.3.3.

The XRD spectra, nonetheless, showed the presence of the (020) plane. The oxidation of

n-butane to MA is a 14-electron oxidation involving the abstraction of eight hydrogen atoms

and insertion of three oxygen atoms. The (020) plane has been shown to possess Bmnsted acid

sites and active lattice oxygen (V=O species), which are the two strong functions necessary for

the selective oxidation of n-butane to MA (Busca, G. et al. (1986». The (020) plane was not
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seen In the used catalyst (VPO-3u). An amorphous state of this phase may have been

responsible for this.

The intensity of reflections in the XRD spectrum of VPO-4p appeared to be lower than

the other catalysts. Brutovsky, M. et al. (1982) showed that there is a trend towards modified

catalysts generally having lower intensity reflections than the unmodified catalysts. This

indicates that the dimension of particles and degree of arrangement of the catalyst structure are

lowered with the addition of dopants. In this study there was a low concentration of dopants in

the catalysts and there were few discernable changes in the XRD spectra going from VPO-l

(unpromoted catalyst) through to progressively increasing Co loaded catalysts. It was only with

an addition of 4.3 molar % Co:V in VPO-4p that this decreased intensity of reflections became

apparent (Appendix 2). Looking at the intensity of the (200) plane reflection, which

corresponded to a small angle of reflection, it was seen that VPO-4p had the smallest intensity

compared to the other catalysts. There was an increase in the line width of the (200) plane
\

reflection in VPO-2p through to VPO-4p compared to unpromoted catalyst VPO-l p. This was

indicative of the decreasing size of the crystaHites (Guliants, V. et al. (1996». The degree of

disorder increased the line width.

VPO-4p appeared to be more amorphous in nature, which was indicated by the lowered

reflection intensities in the XRD spectrum compared to' 'the spectra of lower dopant loaded

catalysts, viz. VPO-Ip, VP02p and VPO-3p.

4.2.2. Fourier transform-infrared spectroscopy (FT-IR)

FT-IR spectra of the catalyst precursors,calcined catalysts and used catalysts were

recorded. A data sheet with assignment of peaks to vibrating species responsible appears in

Table 4.2. The catalyst appeared largely amorphous after calcination as indicated by the distinct

IR features in the FT-IR spectra shown by the catalyst precursors (VPO-l p through to VPO-4p)

in the 900-1300 cm'l region being replaced by a broad absorption band in the calcined catalysts

(VPO- Iu through to VPO-4u), alluding to a variety of degrees of phosphate condensation
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(Appendix 3). The spectra of the calcined catalysts were somewhat simpler than the catalyst

precursor spectra. The used catalyst showed distinctive IR features again. The catalyst thus

reverted to fewer phosphate phases here, the essential phosphate phase being (VO)2P207, which

was the active catalyst phase (Zazhigalov, V.A et al. (1993». The presence of this phase was

confirmed by an XRJ;) spectrum ofVPO-3u (Appendix 2).

The FT-IR spectra of the used catalysts, VPO-lu and VPO-4u (Appendix 3), showed a

lesser degree of crystallinity compared to VPO-2u and VPO-3u. This was noted by the less

distinctive IR features in the spectra ofVPO-lu and VPO-4u compared to VPO-2u and VPO-3u

in the 900-1300 cm'l region. The used unpromoted cata.!yst (VPO-lu) revealed a similar IR

spectrum as the used 4.2 mol % loaded catalyst (VPO-4u). The optimally functioning used

catalyst VPO-2u and VPO-3u, which had intermediate Co loadings, showed similar IR spectra.

These catalysts indicated a more crystalline state. The peak intensities of the modified and

unmodified catalysts appeared to be the same.

Spectra of the catalyst precursor showed the following adsorption bands in the region

1200-420 cm'l: 1196, 1131, 1102, 1051,975,928,685,640,547,475,422 cm'l (Table 4.2).

The bands with wavenumbers greater than 700 cm') were attributed to valence vibrations ofP-O

bonds in various anions of P with 0, and the bands in the region below a wavenumber of 700

cm'l were assigned to deformation yibrations of these groupings (Brutovsky, M. et al. (1982).

The intense absorption bands occurred in the wavenumber region of 970-1200 cm'l, which are

indicated by (s) for strotlg in the Table 4.2. Weak and medium intensities are indicated by (w)

and (m) respectively in the table. The molecules and their respective anion responsible for the

stretching frequencies are given in Table 4.2.

The FT-IR spectra of the unmodified catalysts have been studied (BOI'des, E. et al.

(1979); Nakamura, M. et al. (1974)) and the results published agreed with those obtained in this

study.

87



QC
QC

VPO-1p Signal
VPO-1c Signal

VPO-1u Signal
VPO-2p

Signal
VPO-2c

Signal
VPO-2u

Signal
Vibration AnionStrennth Strenath Strenath Strenath Strennth Strennth

422 m
435 m

475 m 482 w
547 m 580 m 558 m 533 w 512 w

589 w 559 s
640 s 631 m 639 m 632 s

685 697
Cye!.

m w
.' P40 ,/'

Cye!.

735 w 743 m 731 w 743 w p40'Z4.

pzO!'

785 787 798
' Cye!.

w w W P40 ,4-

928 m 937 s 926 m 937 s 947 s PzO:-

975 s 974 s 988 s 1013 m pzO/-

1051
..

pzO/m 1061 s 1049 m 1061 s
, ' Cye!.

1102 s 1108 s 1102 s 1105 s 1128 m .. " P40 ,Z
4-\.'i

~' . Cye!.
1131 m 1125 s 1129 m 1154 s ;:

. P ° ,4-..
1196

Cye!.
s 1157 s 1198 s 1248 s

p 40,/'

1361 w PO,-

1381 w 1382 w PO,'
1453 w 1454 m
1495 w 1501 w 1634 m 1636 w
1642 w 1619 w 1631 m 1638 m

1713 w

2341 m 2341 w 2331 w 2334 w 2322 m CO
2359 m 2359 w 2357 w 2365 w 2364 m CO
2852 w 2846 w
2919 w 2929 w

3032 w
3068 w

3360 s 3345 w 3426 s 3388 s 3345 m 3431 m
3668 w

Table 4.2. FT-IR .\pectroscopy datafi-om bulk analysis ofcatalyst sample



00
\0

VPO-3p
Signal

VPO-3c
Signal

VPO-3u
Signal

VPO-4p
Signal

VPO-4c
Signal

VPO-4u
Signal Vibration Anion

Strenoth Strenoth Strength Strength Strenath Strenoth
411 s 412 w

440 w
479 m 486 w 465 w
528 m 527 w 520 w 519 w 512 w

568 w 585 m 552 w 559 m
640 s 639 w 640 m 641 m 646 w 634 m

665 w 668 m 665 w

684
Cye!.

m 696 m P40 124-
Cye!.

749 w 746 w 742 w [>4°12
4

-

P?074-

781 W 808 792
' Cye!.

w w P4 0 P 4·

920 m 924 m 931 s 938 s P20 7
4

-

973 S 970 s 968 s 975 s 978 s P20 74-

1049 m 1090 m 1047 m 1104 s 1063 s P20 7
4

1102 1108 1132
" !ii Cye!.

s s 1103 s s ~"* '. P4 0 12
4-

1139 1153 ,,~
Cycl.

m 1147 m s
P4O I:-''ill

1200 1216
Cye!.

s 1250 m 1202 s 1195 s s
P40 12

4
-

1328 W PO,'

1404 w PO,-

1459 w 1450 w

1646 m 1625 w 1642 w 1639 w 1632 w 1631 w
1730 w

1980 w
2236 w
2335 m 2327 w 2333 w 2342 s 2336 m 2340 w CO
2361 m 2360 w 2367 w 2359 s 2361 m 2357 w CO

2851 w 2855 w 2847 w 2844 w
2920 w 2925 w 2924 w 2913 w

3323 s 3356 m 3439 m 3341 m 3440 m
3613 w 3589 w

Table 4.2_ (continued) FT-lR spectmscopy data/rom bulk analysis olcatalyst sample



Bordes, E. et al. (1979) considered the bands in the region 1050-1200 cm,l (Table 4.2) to belong

to the corresponding vibrations of ortho-, pyro-, tri- and higher linear phosphate ions. This

region produced the strong stretching frequencies. The used catalyst, which XRD studies

indicated as (VO)2P207 (Appendix 2), showed stretching frequencies in the FT-IR spectra of

VPO-1p through to VPO-4p at wavenumbers: 743, 937 and 1061, which were assigned to

vibrations· vs(POP), v.s(POP) and vs(P03) respectively. Bordes, E. et al. (1979) assigned the

wavenumbers of the anions vs(O-PO') and v.s(O-PO} These peaks are often very close and

therefore it was difficult to assign the observed bands unambiguously. These assignments

. appear in Fig. 4.3. It is also noteworthy that Bordes, E. et al. (1979) are of the opinion that an

absorption at about 1000 cm- I is due to the valence vibration of the v=o bond in the catalysts.

Nakamura, M. et al. (1974) has shown that in the spectra of Co doped catalysts, the absorption

band of the V=O bond is shifted towards lower wavenumbers and is overlapped by the more

intensive band v.s(POP) at about 980 cm,l.

The Co doped catalyst precursors exhibited an absorption band in the region of 680 cm,l.

This was assigned to the P40 12
4, ion with C2h symmetry (chair conformation). The intensity of

this band was lower for the optimalIy performing VPO-3p catalyst compared to the other

catalysts.

The intense bands present around wavenumbers 970, 1100 and 1200 cm", which were

assigned to v.s(POP) [P20/ anion], vs(O-PO') [cyclic P40 12
4, anion] and v.sC0-PO') [cyclic

P40124- anion] respectively, appeared in the doped and undoped precursor and used catalysts.

The fact that the XRD spectra of the modified catalysts contained practically only the

reflections due to (VO)2P207, whereas the FT-IR spectra exhibited bands that could be assigned

to vibrations of two anions (P20/ and cyclic P40 12
4,), can be explained by these latter anions

being present in the X-ray amorphous state. The band at around 3400 cm,l, which appeared in

spectra of the precursor, calcined and used catalysts, did not match a standard water peak when

compared. It was most likely due to the alcohol mixture (benzyl alcohol and iso-butanol) used in

the synthesis of these catalysts, which became trapped in the lattice of the catalyst.

90



4.2.3. Attenuated total reflectance (ATR)

The zinc selenite crystal had a transmission range from 20 000 cm-I to 650 cm- J
; thus

deformation vibrations could not be seen in the attenuated total reflectance (ATR) spectra.

The peak around 3400 cm-I, which appeared in the precursor, calcined and used catalysts

FT-IR spectra (Appendix 5), did not appear in the calcined and used catalyst ATR spectra

(Appendix 6). This peak was attributed to the presence of the alcohol mixture (benzyl alcohol

and iso-butanol) used in the synthesis. ATR was a surface study of the catalyst. This indicated

that the alcohol was absent on the surface of the calcined catalyst but rather trapped in the lattice

(Appendix 5). Thus the alcohol from the surface of the catalyst appeared to have evaporated

during calcination of the catalyst precursor, as would be expected.

Comparison of the peak assignments in Table 4.3 with Table 4.2 showed that the same

types of bands were present in both the FT-IR and ATR spectra. This showed that the anions

present on the surface of the catalysts, revealed by the ATR study results (Table 4.3), were also

present in the bulk of the catalyst shown by the FT-IR study results (Table 4.2). The used

catalysts showed a single strong sharp band in the region of 940 cm-1 in the ATR spectra

compared to the broad band seen in FT-IR spectra of these used catalysts. The surface of the

catalyst contained the crystalline (VO)2P207 phase as revealed by the XRD spectrum of the used

catalyst VPO-3u (Appendix 2). This presence of a single distinct crystalline phase is thus

believed to be responsible for this sharp band in the ATR study.
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4.2.4. Scanning electron microscopy (SEM)

SEM images of the catalyst precursors, calcined catalysts and used catalysts were

recorded. The SEM images of the catalyst precursors and calcined catalysts revealed a plate-like

morphology (Appendix 8). There was deviation from the ideal rosette shape platelets of typical

VPO catalysts. VPO-3p showed a more agglomerated platelet arrangement compared to VPo-

lp. The Co doped catalyst (VPO-3p) thus underwent a change in morphology compared to the

undoped catalyst (VPO-I p). The platelets on the surface of VPO-l p are larger than those on

VPO-3p. An increase in P:V ratio is known to increase the platelet size (Cheng, W.; (1996».

The P:V ratio of VPO-lp was slightly greater than the other catalysts as seen from ICP-AES

results (Table 4.4). Larger platelets formed as a result of calcining VPO-3p to yield VPO-3c.

The used catalysts show signs of disintegration on the surface as can be seen from the SEM

images of VPO-l u through to VPO-4u. The SEM images of VPO-I u through to VPO-3 u were

similar, however, the SEM image of VPO-4u was different in that pitting occurred on a

smoother surface. The platelike morphology on the surface of all used catalysts was lost.

4.2.5. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES)

Theoretical Experimental
Label Catalyst %CoN(molar) P:V(molar) %CoN(molar) P:V(molar)

VPO-1p precursor 0.00 1.00 0.00 (±O.OO) 1.09 (±0.02)
VPO-1c calcined 0.00 (±O.OO) 1.11 (±0.01)
VPO-1u used 0.00 (±O.OO) 1.11 (±0.01)
VPO-2p precursor 1.26 1.00 1.31 (±0.04) 1.04 (±0.02)
VPO-2c calcined 1.24 (±0.04) 1.06 (±O.02)
VPO-2u used 1.23 (±0.03) 1.04 (±0.02)
VPO-3p precursor 2.48 1.00 2.33 (±0.O3) 1.06 (±0.03)
VPO-3c calcined 2.27 (±0.04) 1.05 (±0.02)
VPO-3u . used 2.24 (±0.01) 1.06 (±0.01)
VPO-4p precursor 4.95 1.00 4.21 (±0.05) 1.04 (±0.03)
VPO-4c calcined 4.32 (±0.02) 1.02 (±0.01)
VPO-4u used 4.07 (±0.02) 1.04 (±0.02)

Table 4.4. Co: V molar percentages and P: V molar ratios determined by the ICP-AES technique
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ICP-AES was a technique used for the analysis of the P:V molar ratio and Co:V molar %

in the bulk of the catalyst as opposed to the energy dispersive X-ray (EDX) spectroscopic

technique, which was a surface study (Table 4.4).

The samples were prepared for ICP-AES via microwave digestion. The catalyst sample

was digested in aqua regia. The digestion temperature program and reagents used are included

in Appendix 4. A brittle, orange residue was obtained on complt(tion of the digestion of the

calcined and used catalysts. Analysis of the residue via EDX indicated the absence of P, Co or

V (Appendix 4). The digested samples separated from the residue were thus representative of

the catalyst in terms ofP, V and Co content. The EDX stuoy did, however, show the presence of

C, 0 and Cl (Appendix 4). The Cl and 0 were from the aqua regia, whilst the C was from the

alcohol solvents used in the synthesis of the catalyst. An SEM image of the residue indicated the

presence of bubbles on the surface (Appendix 4). The FT-IR spectra of the digestion residues of

both promoted and unpromoted calcined and used catalysts lacked the presence of the typical

phosphate condensation stretches in the region 900-1300 cm'l (Appendix 4). The FT-IR spectra

of both promoted and unpromoted calcined catalyst residues appeared similar. This residue

formed only in the digests of calcined and used catalysts and not in the digest of precursor

catalysts. The residue precursor is thus believed to have formed at the high temperatures

(~450°C) to which the catalysts were subjected during calcination.

From Table 4.4 it can be seen that the largest deviation from the theoretical value for the

P: V molar ratio was 9 % for VPO-1 p. The other catalysts were within 6 % deviation from the

theoretical molar P:V ratio. This was probably due to Co fitting into the catalyst lattice more

readily than P, therefore reducing the P:V molar ratio. The unpromoted catalyst, VPO-1, thus

had a higher P:V ratio. The P:V ratios obtained experimentally were generally higher than the

theoretical values. Catalysts VPO-2p through to VPO-4p showed experimental P:V molar ratios

within experimental error of each other. The Co:V molar % obtained experimentally deviated by

+4 % for VPO-2p, -6 % for VPO-3p and -18 % for VPO-4p from the theoretical values. As can

be seen the molar % Co:V values obtained via ICP-AES were generally lower than the

95



theoretical values (Table 4.4). This indicated that there was less Co incorporated into the lattice

of the YPO catalyst with increasing the Co dopant added during synthesis. The excess Co

appeared to have been eliminated after synthesis via washing.

4.2.6. Average vanadium oxidation state (AV)

Label Catalyst
VPO-1p precursor 4.30 (±0.02)
VPO-1c calcined 3.98 (±O.OS)
VPO-1u used 4.39 (±0.02)
VPO-2p precursor 4.17 (±0.01)
VPO-2c calcined 4.21 (±0.02)
VPO-2u used 4.32 (±0.03)
VPO-3p precursor 4.22 (±0.01)
VPO-3c calcined 4.14 (±0.02)
VPO-3u used 4.36 (±0.02)
VPO-4p precursor 4.24 (±0.01)
VPO-4c calcined 4.24 (±0.01)
VPO-4u used 4.33 (±0.01)

Table 4.5. Average vanadium oxidation states with respective standard deviations

Brutovsky, M. et al. (1982) found that the· optimum AY for a YPO catalyst is just above 4

for oxidation of n-butane to maleic anhydride. The AY obtained for all catalysts in this study

were between 4 and 4.4 (Table 4.5). The used catalysts had a stabilized AY of between 4.3 and

4.4. The AY of the precursor and calcined catalysts were lower than the used catalysts.

Considering that Y switches between oxidation states +4 and +5 during the oxidation of

n-butane to MA (Section 1.2), it was expected that the catalyst maintained an AY between +4

and +5. Excess P is known to stabilize the +4 oxidation state (Section 1.6) and therefore the

stabilized AY was closer to +4 than to +5. y 5
+ is known to activate molecular oxygen (Section

1.2). y 4
+ is known to oxidize n-butane. By maintaining most of the Y in the +4 oxidation state,

the chances of over-oxidation products forming are lower.
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4.2.7. Energy dispersive X-ray (EDX) study

Bulk theoretical values Experimental
Label Catalyst %CoN(molar) P:V(molar) %CoN(molar P:V(molar)

VP0-1p precursor 0.00 1.00 0.00 (±O.OO) 0.80 (±0.04)
VP0-1c calcined 0.00 (±O.OO) 0.85 (±0.01)
VP0-1u used 0.00 (±O.OO) 0.81 (±0.10)
VP0-2p precursor 1.26 1.00 1.22 (±0.18) 0.73 (±0.04)
VP0-2c calcined 1.18 (±O.06) 0.88 (±0.05)
VP0-2u used 1.06 (±0.02) 0.77 (±O.OO)
VP0-3p precursor 2.48 1.00 2.76 (±0.07) 0.74 (±O.06)
VP0-3c calcined 2.44 (±O.04) 0.79 (±0.10)
VP0-3u used 2.41 (±O.06) 0.80 (±0.03)
VP04p precursor 4.95 1.00 4.13 (±0.16) 0.75 (±0.03)
VP04c calcined 4.19 (±0.26) 0.85 (±0.03)
VP04u used 4.12 (±0.11) 0.74 (±0.05)

Table 4.6. P: V molar ratios and Co: V molar percentages determined by the EDX technique

Energy dispersive X-ray (EDX) spectrometry was a non-destructive surface study of the

catalyst and is a technique that analyses a specific area on the catalyst surface. A distribution

map of the elements on the surface of the catalyst is shown in Appendix 8. The first frame (top

left) shows an SEM image of the catalyst surface for VPO-lp (Appendix 8). Going in a

clockwise direction from the first frame shows 0 distribution and then V and P distribution.

Likewise, the first frame for catalyst VPO-3p shows the SEM image of the catalyst surface and

going in a clockwise direction, 0, P, Co and V. The elements occupied the catalyst surface

evenly, as shown by EDX spectroscopy measurements. The promoted catalysts were tested in

the same manner, indicating an even distribution of Co on the surface. Typical output data from

the EDX instrument for sample composition is included in Appendix 3, for an unpromoted

(VPO-I) and promoted catalyst (VPO-3).

The molar % Co:V, obtained from the EDX study (Table 4.6), on the surface ofVPO-2p

compared well within experimental error with the experimental mqlar % of Co:V in the bulk,

obtained from the ICP-AES study (Table 4.4).

The Co:V molar % on the surface of the VPO-3 catalyst was greater than the value

obtained for the bulk, when comparing the results obtained from ICP-AES (Table 4.4.) and
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EDX (Table 4.6) analyses. For the other catalysts investigated, the bulk values were higher than

the surface values. Co is known to stabilize the AV (discussed in Section 1.8.1) so as to improve

initial dehydrogenation of n-butane and controls the oxygen diffusion and adsorption, thereby

minimizing the non-selective oxidation route. This greater Co:V molar % on the surface could

thus have improved the activity and selectivity of VPO-3. This was the optimally performing

catalyst t1iat shall be discussed later.

The molar P:V ratio on the surface of the catalyst was lower than that in the bulk. The

molar P:V ratio on the surface was 0.80 on average for all catalysts. The experimental values

obtained via ICP-AES (Table 4.4) for the bulk were around 1.00 for all catalysts. There thus

appears to be a greater amount of P below the surface (molar P:V ratio of greater than 1.00) of

the catalyst. It must be noted that this is an ex-situ study of the catalyst.

4.2.8. Brunauer-Emmet-Teller (BET) surface area measurements

Catalyst
Surface Area Bulk

(m2/g) Molar % Co:V
\

rvPO-1c 14.83 0.00 (± 0.00)

rvPO-2c 16.87 1.18 (± 0.06)
-

jvPO-3c 22.93 2.44 (± 0.04)

jvPO-4c 13.22 4.19 (± 0.26)

Table 4.7. Surface area measurements

The surface areas of the calcined catalysts were determined. There was an increase in

surface area with increasing promoter loading as indicated by the surface area values from

VPO-lc through to VPO-3c as shown in Table 4.7. VPO-4c, however, showed a drop in surface

-.
area, yielding a value lower than the unpromoted catalyst, VPO-l c. This suggested that there

was an optimum Co:V molar % loading of around 2.3 for VPO-3c for a maximum catalyst

surface area. Hodnett (1985) and Sartoni et al. (2001) discovered that optimum promoter:V

ratios exist for a maximum catalyst surface area, beyond which further addition leads to surface
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segregation. This, in turn, leads to a decrease in surface area of the catalyst. The catalysts under

study agreed with the literature.

4.2.9. Reactor Variables

4.2.9.1. Residence times

Reaction conditions
Residence

Catalyst
TempfC Flowrate/ml.min,l Time/s

Ivpo-1 ~aryina 120 1.00

tvPO-2 :VaryinQ 120 1.31

Ivpo-3 Ivaryina 120 1.21

Ivpo-3 ~OO ~O 12.16

1400 160 12.69

1400 140 3.75

00 80 12.16

300 60 2.69

300 40 3.75

IvPO-4 Varying 120 0.97

Table 4.8. Residence times ofn-butanefeedgas over different catalysts

The residence time was calculated as the time the feed-gas spent in the catalyst bed and

was calculated as follows:

R .J • volume ofcatalyst bed/(ml)eSluence tIme =
volumetric jlowratelmLs-1

All catalysts (1 g) were packed tightly into the reactor. There was a difference in the

residence time for VPO-l through to VPO-4 although a constant flowrate was employed

through the catalyst bed. The reason was due to a difference in the volume of the catalyst bed.

The different catalysts had different surface areas and thus different particle sizes (Table 4.7).

For VPO-l c and VPO-4c, the catalyst particles with smaller surface areas, occupied a smaller

volume in the reactor by packing more tightly together. VPO-lc and VPO-4c thus yielded

shorter residence times compared to VPO-2c and VPO-3c, which had higher surface areas.
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The VPO-3 catalyst tested under varying flowrates'of feedgas, as anticipated, had varying

residence times in the reactor. Larger feedgas flowrates resulted in lower residence times (Table

4.8).

4.2.9.2. Gas hourly space velocity (GHSV)

Reaction conditions

Catalyst
TempfC Flowrate/ml.min-1

GHSVlh(l

~PO-1 ~arying 120 G598
~PO-2 lvarvinQ 120 12751
r..tPO-3 ~arying 120 12878
r..tPO-3 1400 80 1663

1400 ~O 1336
1400 140 S59
300 80 1663
1300 ~O 1336
~OO 140 1959

~PO-4 Ivarying 120 13981

Table 4.9. GHSV calculated values

The gas hourly space velocity is the ratio of feed gas flowrate over the volume of the

catalyst bed in the reactor:

GHSV = _....J{l<..:.o"-'w~r:..:;a::.:;te::;..J...:,(m.:.:;l::.:;.Ii:.::.:lr~-I.L)_

volume ofcatalyst bed/ml

Catalysts VPO-l through to VPO-4 were tested at a constant flowrate of 120 ml.min-1,

however the GHSV values differed. The reason was the same as that for the varying residence

times (Table A.8). Those catalysts that occupied smaller volumes in the reactor had larger

GHSV values. n~e catalyst loading in the reactor was kept constant at 1 g for all catalytic runs.
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4.3. Catalyst testing

4.3.1. Setting constant parameters from preliminary results
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Fig. 4.3. % Conversion ofn-butane over VPO-3 with varying temperature andflowrate

Error bars are included on all graphical data. All catalytic runs lasted approximately 200

hours at a constant temperature and GHSV.

The 2.3 % Co promoted catalyst (VPO-3) was initially tested at different temperatures

and feed-gas flowrates as shown in Fig. 4.3. The molar carbon mass balance was between 95

and 105 % for all catalytic runs on this catalyst. The P:V molar ratio was 1.06 and the Co:V

molar % was 2.33, which were both determined by ICP-AES (Table 4.4). The BET surface area

of the catalyst was 22.9 m
2
jg (Table 4.7). Conversions of 100 % occurred at a temperature of

400°C. The same high conversions were evident at different flowrates, viz. 80, 60 and 40

ml.min-
I
. The corresponding GHSV values were 1663, 1336 and 959 hr-I. The same flowrates

and GHSV values were employed at a lower temperature of 300°C. The % conversion of n-

butane increased with increasing the GHSV from 959 hr-I to 1663 hr l , whilst maintaining a
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constant temperature of 300°C. Although the % converSIOn n-butane is high at higher

temperatures, the yields and selectivities towards MA are low as seen in Figs. 4.4 and 4.5.
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Fig. 4.4. % Yield (%Y) products over VPO-3 with varying temperature andflowrate

Since a Co promoter gives increased selectivity compared to undoped catalysts, a Co

promoter was selected and used in this study. A discussion on the motivation for the use of Co

as a promoter is given in Section 1.8.1. There appeared to be a greater % yield of MA at 300°C

compared to 400°C (Fig. 4.4). The yield of carbon oxides at 400°C dropped significantly with a

change in GHSV from 959 hr'! (40 ml.min'!) to 1663 hr'! (80 ml.min'!) (Fig. 4.4). Higher

flowrates at high temperatures appeared to be favourable for MA production. This was seen

from the improved yield (Fig. 4.4) and selectivity (Fig. 4.5) towards MA. The low flowrates

meant a higher residence time for feed in the catalyst bed. This led to over-oxidation of the MA

product and thus higher carbon oxide production at a temperature of 400°C (Fig. 4.4). Over-

oxidation occurred readily at higher temperatures, viz. 400°C, hence this trend of lower carbon

oxide production at higher GHSV values was not observed at a lower temperature of 300°C. The
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optimum flowrate for MA production at 300°C was 60 ml.min-I (GHSV=1336 hr-I). This was

marked by the highest yield of MA (Fig. 4.4) and selectivity towards MA (Fig. 4.5). Higher

selectivities towards MA were obtained at lower temperatures (Fig. 4.5), however, it must be

noted that the % conversions of n-butane were 30 % lower at an operating temperature of 300°C

compared to 400°C for a 80 ml.min-I flowrate (Fig. 4.6). A higher conversion of n-butane was

obtained at a flowrate of 120 ml.min- I (Fig. 4.12).
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Fig. 4.5. % Selectivity (%S) products over VPO-3 with varying temperature andflowrate

The ann was to develop a catalyst that gave high converSIOn of n-butane whilst

maintaining a high selectivity towards MA at a low operating temperature, i.e. below 400°C,

which is generally employed by industry. Higher conversions resulted at higher temperatures

(400°C), however, there was the problem of over-oxidation products. Reducing the residence

time of the feed by increasing the flowrate of the feed-gas resulted in less carbon oxide

production relative to MA as shown in Fig. 4.5.
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A constant flowrate of 120 ml.min-1 was maintained for all successive studies on this

catalyst and the other modified catalysts whilst varying the temperature. This flowrate was

selected because it gave the highest conversion of n-butane at a temperature of 300°C (Fig.

4.12). This was also the highest obtainable flowrate in the reactor. The plug of powdered

catalyst in the reactor prevented any higher flowrate through. Modified catalysts referred to the

varying concentrations of Co dopant in the catalysts. Each catalyst shall be discussed separately.

4.3.2. Systematic testing of catalysts

4.3.2.1. VPO-l
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Fig. 4.6. % Conversion ofn-butane for VPO-l at a constant GHSVof3598 hr- l

This catalyst precursor had a molar P:V ratio of 1.09 (Table 4.4) and was unpromoted.

The surface area was 14.8 m2/g (Table 4.7). The molar carbon mass balance was between 95

and 105 % for all tests carried out on this catalyst. A GHSV of 3598 hr-1 was calculated.
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A 100 % conversion of n-butane was obtained for the 500°C run and this significantly

decreased with decreasing temperature (Fig. 4.6). The conversion of n-butane at 500°C was

mainly due to carbon oxides and only negligible amounts of MA were obtained.

The highest molar % selectivity of 87 % MA was obtained at a temperature of 225°C with a low

% conversion of n-butane of 7 %. The catalyst had low activity at low temperatures, and

therefore the conversion was low at these temperatures. The yield of over-oxidation products at

low conversions ofn-butane dropped to below 2 % (Fig. 4.8).
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Fig. 4.7. % Selectivity (%S) products for VPO-l at a constant GHSVof3598 hr-l

There was a resulting increase in selectivity towards MA, which reached 87 % at a

temperature of 225°C, at these low conversions (Fig. 4.7). The selectivity may have been good,

however, these were not ideal conditions, considering that the feedgas needs to be recycled due

to the low conversion. A more favourable result would have both high % conversion of n-butane
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and % selectivity towards MA. The optimum parameters for catalyst testing were thus assessed

by the highest yield obtained.

% Yield = % conversion X % selectivity /100

A maximum molar yield of 14 % MA was obtained at a temperature of 350°C (Fig. 4.8).

The % selectivity towards MA at this temperature was 84 %. A low yield of 3 % CO was

obtained with negligible amounts of CO2 (Fig. 4.8). The conversion of n-butane at this

temperature was only 18 % (Fig. 4.6).

There was an increase of selectivity towards MA from 300°C down to 225°C (Fig. 4.7).

The yields of MA, however, were very low in this range (Fig. 4.8).

In summary, VPO-l proved to be less active at temperatures below 500°C as seen from

the % conversion ofn-butane shown in Fig. 4.6.
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4.3.2.2. VPO-2

This catalyst precursor had a P:V molar ratio of 1.04 and Co:V molar % of 1.31 as shown

by ICP-AES results (Table 4.4). The surface area ofthe catalyst was 16.9 m2/g (Table 4.7).

The molar carbon mass balance was between 95 and 105 % for all tests carried out on this

catalyst. A 90 % conversion of n-butane was obtained at a temperature of 425°C and this

decreased with a decrease in temperature (Fig. 4.9). From 350°C and lower temperatures, the %

conversion ofn-butane was below 10 %.
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Fig. 4.9. % Conversion ofn-butane over VPO-2 with a constant GHSVof2751 hr-1

Above an operating temperature of 350°C, VPO-2 had greater activity compared to VPO­

1. This was seen by from the increase in n-butane conversion. The Co dopant appeared to be

playing a positive role in increasing the conversion of n-butane.
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An optimum selectivity of 72 % MA was obtained at 400°C (Fig. 4.10) with a 52 %

conversion of n-butane (Fig. 4.9). A yield of 38 % MA was obtained at this temperature (Fig.

4.11) and the carbon oxide yields at this temperature were below 10 %. There was a trend of

increasing % selectivity towards MA with decreasing temperature in the temperature range

350°C to 250°C, as seen for VPO-I. The % conversion of n-butane in this range was below 10

%.

Negligible amounts of MA formed at a temperature of 225°C. Further analysis below

225°C was thus not carried out.
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4.3.2.3. VPO-3

This catalyst precursor had a molar P:V ratio of 1.06 and Co:V molar % of 2.33 (Table

4.4). The surface area was 22.9 m2/g (Table 4.7). The catalyst was operated at a GHSV of2878

The carbon mass balance was between 95 and 105 % for all tests carried out on this

catalyst. A trend of decreasing conversion of n-butane with decreasing temperatures was

observed. A 100 % conversion of n-butane was obtained at an operating temperature of 325°C

and a GHSV of 2878 hr-I (Fig. 4.12) whilst a conversion of n-butane around 61 % was obtained

for VPO-3 at an operating temperature of 275°C.
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A maximum yield of 45 % MA was obtained at this temperature (Fig. 4.14) and at this

temperature the selectivity towards MA was 74 % (Fig. 4.13).
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4.3.2.4. VPO-4

This catalyst precursor had a P:V molar ratio of 1.04 and a molar % Co:V loading of 4.2

% (Table 4.4). The molar carbon mass balance was between 95 and 105 % for all tests carried

out on this catalyst. The BET surface area was 13.2 m2/g (Table 4.7). An n-butane conversion of

42 % was obtained at 450°C and this decreased with decreasing temperature (Fig. 4.15).

A maximum yield of 21 % MA was obtained at 400°C (Fig. 4.17). The % selectivity towards

MA at this temperature was 84 % (Fig. 4.16) with a conversion ofn-butane of25% (Fig. 4.15).
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This catalyst had the lowest activity from all the catalysts examined as seen from the

lowest % conversions obtained over the temperature range investigated.
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4.3.3. % Selectivity towards MA and its relationship to % conversion of n-butane

Different promoter loaded catalysts gave different conversions of n-butane and

selectivities towards MA when compared at the same operating temperature. The relationship

between conversion of n-butane and selectivity towards MA for all catalysts tested is examined

in this section. A graph of % selectivity towards MA vs % conversion of n-butane for the four

different promoter loaded catalysts generally showed a trend of increasing % selectivity towards

MA with a decreasing conversion of n-butane (Fig. 4.18). The operating temperature decreases

on moving from left to right on the y-axis of the graph in Fig. 4.18. The operating temperature

range was between 200°C and 450°C. VPO-3 showed a gradual decrease in % selectivity

towards MA with an increase in % n-butane conversion. It was only on approaching 100 %

conversion of n-butane that the selectivity plummeted. VPO-2 followed a similar trend to VPO-
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3 however the % selectivities towards MA were lower. VPO-4 showed a steep drop in,

selectivity towards MA between a conversion of n-butane of 30 and 40 %. The 2.3 % Co loaded

catalyst (VPO-3) maintained a high selectivity throughout the n-butane conversion range, which

only dropped rapidly at n-butane conversion greater than 95 %.
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Fig. 4.18. % Selectivity towards MA vs % conversion ofn-butane for four different promoted

catalysts, VPO-1 through to VPO-4

Examining the relationship between the selectivity towards MA and temperature for all

four catalysts tested, viz. VPO-l (Fig. 4.7), VPO-2 (Fig. 4.10), VPO-3 (Fig. 4.13) and VPO-4

(Fig. 4.16), it could be seen that the selectivities towards MA peaked for VPO-l (Fig. 4.7) and

VPO-2 (Fig. 4.10) at 350°C and 400°C respectively, which corresponded to the maximum yields

of MA obtained for these catalysts. After peaking, the selectivities decreased and then

progressively increased again with decreasing operating temperature. VPO-3 (Fig. 4.13) gave

progressively increasing selectivities towards MA without peaking with decreasing operating

temperature. VPO-4 (Fig. 4.16) showed no distinct peaking. The selectivity towards MA is
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defined as the ratio of yield of MA to the conversion of n-butane. The conversion of n-butane

decreased with decreasing operating temperature.

The relationship between yield and conversion is shown in Fig. 4.19. The MA yields peak

at different conversions of n-butane for the different catalysts. Catalyst VPO-3 had the highest

yield of 45 % at the highest conversion of 61 % of all the catalysts tested.
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Fig. 4.19. % Yield MA vs % conversion ofn-butane for four different promoted catalysts, VPO-

1 through to VPO-4

Fig. 4.20 is a graphical representation of all the optimally performing catalysts. Each

calcined catalyst was tested for approximately 200 hrs at each operating temperature over a

constant feedgas flowrate of 120 ml.min-'. Four catalysts with different Co promoter loadings

were tested in this fashion. Optimally performing catalysts were identified as those catalysts that

gave the highest yield MA at a particular temperature and GHSV.
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It is usual for % conversion of n-butane to increase with increasing temperature. Catalyst

VPO-I performed optimally at 350°C to yield 14 % MA with a 17 % conversion of n-butane.

Catalyst VPO-2 performed optimally at 400°C to yield 37 % MA with a 53 % conversion of n-

butane. A low conversion of n-butane was expected at a low temperature, however, VPO-3

revealed a MA yield of 45 % with a 61 % conversion of n-butane at 275°C. Catalyst VPO-4

gave a MA yield of21 % with a 24 % conversion ofn-butane at 400°C. There appeared to be an

optimum Co promoter loading, which was a Co:V molar % of 2.3. CO yields were below 10 %

for all optimally performing catalysts and the CO2 yields were below 11 %. Higher selectivities

than 73 % were obtained, under different conditions; however, these selectivities were obtained

for lower conversions ofn-butane.
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4.3.4. Effect of surface area on % yield maleic anhydride
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Fig. 4.21. Graph oJspecific % yield MAjor optimum catalytic conditionsJor catalysts VPO-1

through to VPO-4 at respective temperatures and gas hourly space velocities

The effect of surface area was examined under the optimum operating conditions shown

in Fig. 4.20 for each catalyst. Fig. 4.21 indicates that the specific yield of MA (i.e. the yield

MAltotal surface area of catalyst in the reactor) was different for the different catalysts at

varying optimum operating temperatures. It was thus concluded that the varying surface areas of

the catalyst could not exclusively explain the differences in yield under optimum conditions.
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CHAPTERS

CONCLUSION

Co is known to stabilize P in the lattice of the catalyst and reduce or prevent the

sublimation of P under the high operating temperatures around 400°C. The excess P above the

stoichiometric value in the catalyst is required for the selective oxidation of n-butane. A

discussion of this appears in Section 1.6. This was evident from the data obtained in this study.

The molar P: V ratios of the catalysts from the precursor, through to the calcined and used

catalysts, remained constant at around 1.1 in the bulk of the catalyst (Table 4.4) and 0.80 on the

surface of the catalyst (Table 4.6).

Co stabilized the P:V molar ratio in this study. A discussion of this appears in Section 1.8.

XRD spectra in.dicated the presence of the active catalytic phase, (VO)2P207, in the used catalyst

which was formed from the VOHP04'/2H20 precursor. XRD spectra also showed the

modification of the catalyst structure with the addition of dopants.

The composition of the surface and bulk of the catalyst appeared similar as indicated by

the stretching bands in the IR spectra. It must be noted that these are ex-situ observations. The

phases present in the active online catalyst may differ.

SEM images indicated the presence of larger platelet sizes with a slight increase in P: V

molar ratio. The platelet size also increased for the Co promoted catalyst on calcination.

Alcohol solvent was trapped in the lattice of the catalyst. Microwave digestion of the

calcined catalyst 'sample in aqua regia and subsequent EDX analysis revealed the presence of

carbon. The only Source of carbon was the alcohol solvent used in the synthesis of the catalyst.

ATR analysis of the catalyst surface showed the absence of the alcohol on calcination of the

catalyst precursor, however, the FTIR spectrum of the calcined and used catalysts, using the

KBr pellet method of analysis, which was a bulk catalyst study, still showed the presence of the

alcohol. This indicated that the alcohol was trapped in the lattice of the catalyst.
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The AV was around 4.3 on average for all catalysts after conditioning and testing the

catalysts in the reactor. This indicated an oxidation state switched between +4 and +5 in the

oxidation of n-butane to MA.

The surface areas of the catalysts did not exclusively play a role in the performance of the

catalyst at optimum operating conditions.

The Co promoter appeared to increase the surface area of the catalyst, up to an optimum

value, and then excess Co caused a decrease in surface area.

There was a general increase in % selectivity towards MA with a decrease in %

conversion of n-butane. The selectivity towards MA showed a peak for VPO-I (Fig. 4.7) and

VPO-2 (Fig. 4.10) over the different operating temperatures, however, no peak was evident for

VPO-3 (Fig. 4.13) and VPO-4 (Fig. 4.16).

The maximum yields of MA obtained over the temperature range tested, viz. 250°C to

400°C, for the different promoter loaded catalysts were different at different conversions of n­

butane.

Most industrial catalysts are capable of a conversion of n-butane in the region of 70-90

mol %. Their yields of MA are in the region of 55-65 mol %. Selectivities approach 90 mol %

with lower conversions than those mentioned above. The selectivities are, however, generally

around 60-70 mol % on average. A Co promoted catalyst was capable of a 59 mol % yield as

shown industrially by Union Carbide. The selectivity towards MA obtained for this catalyst was

66 mol % and conversion of n-butane was 90 mol %. The operating temperature was 387°C and

the GHSV was 1028 hf t
. Iso-butanol solvent was used in the synthesis of the catalyst with a

P:V ratio of 1.2 and molar Co:V ratio of 0.19 (Lemal, R. et al. U.S. Patent (1976)). The feedgas

concentration was 1.5 % n-butane in air. The surface area of the catalyst was 20 m2/g.

Table 5.1 highlights the different Co promoted catalysts developed by different

institutions and their operating conditions and test results compared to the optimally performing

catalyst in this study.
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Reducing Synthetic
n-Butane

Operating
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BET 5urfac % %

Solventls route Temp./oC
space surbee P:V concentr:.t

I introductio
% Yield Roference

comnositio _1 ratio area (m 2/g ) on Co:V
n Conversion Selectivity

lsohut~trloll Co(acachl
Academic benzyl Organic 1.00 % in air 275 2876 1.1 23 2.3 61 45

Masters Itlcsis, N. Govclfldcr, A Cornp<'ll'flliv(~ Sludy 01 VPO CU!C:llysls in tile
co· 73

alcohol I r.reci ljtalion
Oxidatiofl of Buti:lrle to Malei<.; Allhydrid(~

CIlCVl'Oll lsobllt.anol Oruanic 1.50 % in lilr 360 57
Schnei(l~r, R.A.: U. S. Patent 4043943 (1977), assigned to ChP.VfOf)

Rosuarcll Co.

US Palenl
Aqueous

Aqueous 1.50 % in air 420 6480
CoCI,!

HCI 6.5
impregnation

95 59 62 US PatenI4.209,423: (1980)

lnslitulo d(.) lsobulanol! Co acotatel
Invesligaciones benzyt Organic 1.50 % in air 392 2500 2.6 7 co· 74 29 39

C01nalllia. L.M.: Cam'H, C.R; PefuJlchi, J.n: Lomtwrdo, E.A: Appl. Catal. A:

en Catalisis alcohol nrecintation
General: 163177·187 (1999)

Inslituto de tsobulanolf Co acetate!
Invesligacionos benzyl Organic 1.50 % in (ilf 392 2500 3.6 13 co· 50 28 56

COIllaglia. L.M.; C;UTilr, C.R., Petullchi, J,G., Lornlwrdo, E.A : Appf. Ca/a/. A:

en Calalisis alcohol nrecintHlion
General: 183177·167 (1999)

!nsliluto de Isobutanot/
IIlwsligi1<:iones b()rlLyt Orf.lrHlic 1.50%;11 all 392 2500 3.7 42 13

Co acct;llel
85 30

Cornaglia, L.M.: Carrar, CH.: Petullchi, J.G.: Lombardo, E.A: Appf. Calal, A:

~)n Catalisis alcohol
irnf..lreorlHlioll

35
General: 183177·187 (1999)

Instituto de Isobutanoll
lnvestigaciones benzyl Organic 1.50 % in air 392 2500 3,8 42 19

Co I.lccltllel
80 30 37

Cmn::lflliH, L.M.: CUnClf', C.R.; P{)[Ullctli, J.G , l.olllo;udo, E.A.: Appf. CalaJ, A:

en CaIClIi~l.s alcohol
irnprc~Jnalion Generar: 183 177·187 (1999)

Sal<lfik
Aqueous

Ulliversily,
HCr

Aqueous 1.00 % in air 407 2520 1.2 20 32 16 50
Brulovsky, M : Gerej. S : Collection Czechoslovak Chem. Commun : 47 406

Kosice
(1983)

Unioll Carhlcjcl Aq(J(lOlIS
(UCB) HCI

Aqueous 1.5 % III air 450 1893 1.14 19 55 Lemal, R : Vekemans, J.: US Palent 3987063 (1976). assi9ned to UCB

Union Calbide Aqueous
(UCB) HCt

Aqueous 1.5% in Hir 480 1893 1.14 10 45 Lemal, R.: Vckernflfls, J.: US Patent 3 987 063 (1976), assigned 10 UC8

Union Ca rbide Aqueous
(UCB) HCI

Aqueous 1.5 % in air 453 1893 1.1 25 43 Lema\, R.: Vckcrnans, J.: US Patent 3987063 (1976). assinncd 10 UCB

Union Carbide Aqueous
(UCB) HCt

Aqueous 1.5% in air 431 1439 1.14 19 46 LemA!. R., Vck(lfTIaflS, J.: US Patent 3987063 (1976), <-lssiOlled to UC8

Union CMbid()
lsobuloflnol Organic

(UCB)
1,5 ''10 in air 367 1026 1.14 20 20 90 59 66 Lema!. R . Vekelllans. J.: US Palent 3 987063 (1976), assi9ned 10 UCB

Un;cHl Cmbi<J<!
Melhanol

(UCB)
Organic 15% in air 405 1028 1.14 20 60 Lemal. R.: Vekcmfms. J.: US Patenf 3 987063 (1976), assignc<1 to UCB

Standard 011 HcxachlofO" Lernflrlski. M.F.; Bl'Otnef, N.J.: Milber{lCf, E.C,; US PCllenI4.293.498 (1081);

Co.. Ohio butadiolle
Organic 1.10% in air 437 1890 1.2 20 89 50 56 assigned 10 Standard Oil Co., Ollio

Inslitut de
C,H"JO,/H"

Co(acac),t
Recherched IsobutanoJ Organic 430 1000

_.
9.1 1 co· 80 48 80

Sananos~Schlllz. M.T.: Tue!. A.: Hulchings, G.J.: Voila. J.C.: J. Catal.: 16&

sur ICl Calalvse .151185180 388·392 (1997)
I nreci >i!Hlion

Inslilul de Co(acac),1
Rectlerched Isobulanol Ornanic 1,5 % in air 430 2000 2,1 12.6 51 12 23

Ben Adelouahah, F. OliN, R.: Ziyad, M.: Volla, J.C: J. Calal.: 157687-697
co-

sur la Calal se I nrecinilation
(1995)

Academic Isobulanol Organic
C,H.;JCJ,/He

Co(acacLl Sajip, S,: Bartley, J.K.: Burrows, A.: SaIlBnes-Sllull. M.T.: Tuel, A.; Voila. J.C ..

=1 6118180.4
400 1000 1.1 16 1 co- 25 18 71

DrDeI lilalion
Kicly. C.J, HlIlChilll)s. G.J: NewJ. Calal.: 25125·130 (2001)

ACil(jernlc lsohulanol Ornanic
C,H,:/O,/Hc

Co(acac),t Sajip, S.; Bartley, J.K.: Burrows. A., S(ln<lIles-SIHJlz, MT.: Tuel, A.. VoUa. J.C .

=1.6/16/80.5
400 1000 1.1 10 5 co· 25 16 62

I orecioitalion
Kiely. C.J .. HlIlchlllgS, G.J.: NewJ. Calal.. 25125·130 (2001)

Table 5.1, Description ofcobalt promoted catalysts from the literature



The optimum catalyst obtained in this study gave a yield of 45 mol %. The conversion of

n-butane was 62 % with a corresponding % selectivity towards MA of 73 %. The optimally

promoter loaded catalyst, VPO-3, gave the highest yield MA at the highest conversion of n­

butane from all the catalysts tested in this study. The surface area of the catalyst was 23 m2/g.

The % yield MA was lower than that obtained from the UCB process, however, the operating

temperature for the catalyst here was 275°C, more than a 100°C cooler than the UCB process.

In conclusion therefore, a catalyst was synthesized with a significantly lower Co loading

compared to the UCB catalyst. This catalyst was tested under similar conditions to the industrial

conditions mentioned above and operated at a significantly lower temperature.

5.1. Recommendations

Future recommendations for this research could include:

The use of a recycle loop for the optimum catalyst VPO-3 extending from the product stream

and meeting the feed line to the reactor. The % selectivity was high, thus by-products entering

the recycle line would be low. The by-products could be trapped before unreacted n-butane

enters the feed stream of the reactor. The trap could be a water bubbler maintained at room

temperature, where MA would condense and form maleic acid. The by-products, viz. carbon

monoxide and carbon dioxide are soluble in water; however, n-butane is not and would exit the

bubbler and meet the feed stream into the reactor. The maleic acid can be later purified via

distillation and dehydrated to form pure MA. The composite feed to the reactor would be diluted

with the excess air entering the feedstream from the by-pass line. Enriching the feedstream with

n-butane will compensate for this.

The use of a diluent, such as silica, to reduce the chances of hot spots developing in the

reactor, which could decrease the amounts of over-oxidation products at operating temperatures

around 400°C. This would further increase selectivity towards MA at elevated temperatures.

X-ray photoelectron spectrometry (XPS) and Raman spectroscopy would be invaluable

instrumental techniques to determine the Co and V oxidation states, and hence the possible
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phases present with these oxidation states. On-line characterization of the catalyst via XPS

would elucidate the phases present during oxidation of n-butane to MA.
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Fig. a Shows the feed gas cylinder, split block furnace and reactor control panel.

Fig. b A photo of the reactor control panel, showing the pressure gauges, rotameters, control valves and temperature controllers. Feed gas enters on the left hand side.

Fig. c Varian 3700 isothermal GC equipped with a thennal conductivity detector (TCD) for CO and CO, and air analyses. A pre-column in this gas chromatograph (GC)

traps the products that condense at room temperature and allows the gaseous products to pass through to the TCD.

Fig. d Shows the gas sampling valve box in between the two gas chromatographs that samples to both gas chromatographs.

Fig. e Shows the Perkin Elmer XL autosystem GC on the left, followed by an integrator which is linked to the Varian 3700 GC, and a computer to analyse data from th e

Perkin Elmer XL autosystem GC. The Perkin Elmer GC is equipped with a flame ionization detector (Fill) for n-butane and MA amongst other analyses.

Fig. J. LaboratOlY setup ofreactor. control panel. GC's and automatic sampling system
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COLUMNS USED IN VARIAN 3700 ISOTHERMAL GC
Precolumn

Stainless steel

Support Chromosorb WHPSP

Dimensions , Length : lm

OD: 118"

ID: 2.2mm

Mesh range 80/1 00

Liquid phases OV-225 weight % 10

Temperature range 20-275°C

Analytical Column

Stainless steel

Support Carboxen™ 1000

Dimensions Length: 2.5m

OD: 118"

ID: 2.2mm

Mesh range 60/80

Maximum temperature 225°C

COLUMNS USED IN PERKIN ELMER XL AUTOSYSTEM

Chrompak capillary column

Coating CP-SiI24CB

.Dimensions Length: 30m

ID: 0.32mm

OD: 0.45mm

Maximum allowable Temperature 225°C
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GC PARAMETERS SET FOR CATALYST TESTING

GC 1: Isothermal Varian 3700

Detector temperature 130°C

Column temperature 22°C

Injector temperature 150°C

TCD filament temperature 150°C

Output Negative

Range 0.5mY

Carrier gas: He (instrument grade), Supplier: Afrox

GC 2: Perkin Elmer XL Autosystem

Detector temperature 130°C

Injector A 220°C

Carrier A 9.0 psig

Split flow 50.2

Column temperature program for Perkin Elmer XL Autosystem

Initial 70°C Held : I minute

Setpoint 200°C Held : 2 minutes

Rate 7°C/m inute

Carrier gas: Nitrogen (instrument grade), supplier: Afrox

Flame gases for FlD: Hydrogen and air (instrument grade), supplier: Afrox
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Fig. 4. Typical gas chromatogram from Perkin Elmer XL Autosystem GC affixed with an FID
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MALEIC ANHYDRIDE MATERIAL SAFETY DATA SHEET1
•
2

1. Product identification

Synonyms: cis-Butenedioic anhydride; 2,5-furandione; toxilic anhydride

Molecular weight: 98.06 g.mor l

Chemical formula: C4H20 3

2. Hazards identification

Emergency overview

Corrosive substance. Causes burns to skin and eyes. May cause irritation and/or allergic reaction

in the respiratory tract. Melted material causes thermal burns. May be harmful if swallowed.

Potential health effects

Inhalation:

Inhalation of the dust or vapor may cause irritation of the nose and throat. Coughing, sneezing

and burning of the throat may be experienced. Can cause allergic respiratory reactions.

Ingestion:

Corrosive. Toxic. Swallowing can cause sore throat, abdominal pain and vomiting. May cause

burns to the digestive tract.

Skin contact:'

Corrosive. May not cause immediate burning of the skin, but prolonged contact with moist skin

cause reddening and blistering or burns.

Eye contact:

Corrosive. Dust or vapor cause burns or irritation of the eyes with swelling. Sensitivity to light

and double vision may occur.
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Chronic exposure:

Repeated inhalation may cause chronic bronchitis ofthe asthmatic type. Repeated skin contact

may lead to dermatitis or sensitization.

3. First aid measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give

oxygen. Call a physician.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth

to an unconscious person.

Skin contact

In case of contact, immediately flush skin with plenty of soap and water for at least 15 minutes

while removing contaminated clothing and shoes. Wash clothing before reuse. Call a physician

immediately.

Eye contact

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper

eyelids occasionally. Get medical attention immediately.

4. Fire fighting measures

Fire:

Flash point 102°C

Auto-ignition temperature: 47rC
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Flammilble limits in air % by volume: lower explosive limit = 1.4; upper explosive limit = 7.1

Explosion:

Above flash point, vapor mixtures are explosive within flammable limits noted above.

Fire extinguishing media:

Alcohol fbam or carbon dioxide may be used to extinguisb fires. DO NOT USE dry chemical,

multipurpose dry chemical or loaded stream media because of explosion potential due to

reactivity of basic compounds in these extinguishing media.

5. Physical and chemical properties

Appearance: White crystals

Odour: Sharp irritating acrid odour.

Solubility: 16.3 g/l OOml water @25°C; slowly hydrolyses.

Specific gravity: 1.48

Boiling point: 202°C

Melting point: 53°e

Vapor density (Air=l): 3.38

Vapour pressure (mmHg): 0.16 @ 200 e

'ChemdatR, The Merck Chemical Database, 2000
·http://www.jlbaker.com/msds/m0364.htm
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Description of vanadium-phosphorous-oxide catalyst phases

Phase Structural characteristics

Isostructural with ~-VOS04; V in the +5

~-VOP04 oxidation state. Features corner sharing

distorted V06 octahedra.3

Isostructural with u-VOS04; V in +5 oxidation

u,-VOP04 state. Features corner sharing distorted V06

octahedra.3

Similar structure to u-VOP04 with elongation
Un-VOP04

along the a-axis due to trapped water.3

V in the +4 oxidation state. Features edge-
(VO)zPZ0 7

sharing V06 octahedra.3

Features V in the +4 oxidation state.

p*-phase Transforms into B' phase at -450°C and into

~-VOP04 at 500°C and above. 3

Reported to be oxidized equivalent to the p-

B'-phase phase. Also postulated to feature V in the +4

oxidation state.3

Polymorphic. Pairs of edge sharing octahedral

y-VOP04,8-VOP04 with trans vanadyl oxygens are alternatively

unshared or shared with phosphate tetrahedra.4

Table 1. Structural characteristics afphases present in the vanadium-phosphorous oxide
catalyst

3 Hodnetl, B.K.; Calal. Rev. Sei. Eng.; 27(3) 390 (1985)
4Cenli, G.; Trifir6, F.; Chem. Rev.; 88 57 (1988)
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XRD DATA FROM CHARACTERISATION OF CATALYSTS

Instrument: Phi lips PWl130

Experimental conditions

X-Ray souJce
Voltage
Amperage
Divergence slit
Receiver slit
Scan from
Scan to
Step size
Count between steps

Cobalt
40 kV
25 mA
1°
0.15 °
5 °28
100 or 105 °28
0.05 °28
2 seconds

Peak positions

VPO-Ip VPO-2p VPO-3p VPO-3u VPO-4p
28 28 28 28 28

17.858 17.526 18.038 14.450 12.598
21.412 21.433 22.681 16.358 17.571
22.763 22.746 28.119 21.456 21.542
28.150 28.113 31.438 26.723 22.676
31.499 31.560 33.424 33.138 28.093
33.325 33.365 35.414 34.167 31.369
35.497 35.424 37.271 34.826 33.132
37.354 37.224 39.923 39.316 35.526
43.724 43.725 43.746 43.647 37.164
56.112 56.063 47.216 50.576 39.935
57.619 57.587 51.726 55.134 43.714
75.010 74.918 54.378 58.172 47.494

55.970 69.010 51.651
57.694 54.294
60.744 56.312
66.050 57.572
71.089 66.264
72.283 74.957
75.068
77.986
83.159
86.209

'.

Fig. 1. XRD experimental conditions and 2fJ values obtained
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Fig. 4. X-ray diffraction spectrum ofVPO-3p
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INSTRUMENTATION

1. Inductively coupled plasma - atomic emission spectroscopy (ICP-AES)l

EXCITATION
OPTICS ..lllIIII SOURCE........

PLASMA

~
,

~~

SOFTWARE

~
,

--.....
ELECTRONICS

"...
COMPUTER

........
~

Fig. 1. Flow diagram ofthe standard configuration ofan ICP-AES instrument

The inductively coupled plasma-atomic emission (lCP-AES) spectroscopic method of

analysis is an essential tool in the assaying of elements as traces and in very high

concentrations. ICP-AES analysis involves introducing the elements to be analysed into argon

plasma induced by a high radio frequency (indicated by the "excitation source plasma" box in

Fig. 1), where the temperature is in the order of 8000 K. The sample, in the form of an aerosol,

is introd~ced into the plasma via a "torch", where it is excited. Each excited element produces a

characteristic spectrum whose light intensity is directly proportional to the quantity of that

element present in the sample.
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When the atoms of an element are excited, their electrons change orbitals by absorbing

energy and emit light with a wavelength characteristic of each element when they return to their

initial orbital. Each element can thus be characterized by its emission wavelength.

A plasma generator supplies the energy required to make the electrons change their

atomic orbital. High frequency radiation is used to heat a stream of argon and to form plasma

via an induction coil. The temperature varies between 5000 K and 10000 K (depending on the

zone of the plasma). The sample added to the plasma is reduced to the state of the individual

atoms. When the plasma excites these atoms, they re-emit the energy acquired in the form of

electromagnetic radiation (light). This energy is composed of wavelengths characteristic of the

elements present. The discrimination of these wavelengths is performed by an optical system

called a monochromator represented by the optics box in Fig. 1. The beam of light is focused by

a convergent lens onto the primary slit of the monochromator and then reaches a holographic

diffraction grating. The grating separates the beam into the component lines of its different

wavelengths corresponding to the elements in the analysed sample. In this system, the only

moving component is the grating. Rotation about its axis sends all the wavelengths present onto

the plane of the exit slit. A photomultiplier behind the exit slit receives this radiation and

transforms it into electrical signals that are captured by the data processing system. Each

angular position of the grating corresponds to a well-defined wavelength. Thus, each beam of

light passing through the exit slit of the monochromator is characteristic of the element

analysed.

The intensity of the light beam captured by the photomultiplier, represented by the

electronics box in Fig. 1, is measured. It is proportional to the concentration of each element

analysed. A calibration curve for each element is entered in the data processing system

represented by the computer and software boxes in Fig. 1. For a specific intensity, the computer

system gives the concentration of the element analysed: this is the basis of quantitative analysis.
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The torch and ICP plasma generator

High frequency magnetic field

Exc~ed and ionised states (plasma) ------..

Injector ------H-M

Sheatiling device

Peristallic PUInP

(2) -

(
Aerosol carrier gas (1)

High frequency power,.

Cooling gas (4)

Auxiliary gas (3)

Spray chamber

Aerosol cloud

Sample
(1). (2). (3), (4) : argon intake

Fig. 2. Schematic view ofthe lep source

An automatic water-cooling circuit built into the spectrometer regulates the temperature

released by the plasma in the induction coil. The sample is drawn into a capillary tube with a

peristaltic pump as shown in Fig. 2 and is sent to the nebuliser, where a fog of fine droplets is

formed. The fog is carried to the spray chamber before being transferred to the torch, where it is

ionized. The demountable ICP torch is formed from three concentric tubes, connected to the

argon source of which two surrounds the central injector connected to the nebuliser via a
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sheathing system. There are two argon inlets to the torch itself: one (4) for both cooling and

supplying the plasma, the other (3) for the auxiliary gas in the case of organic samples. The

other inlets Cl) nebuliser and (2) coating gas are used for the formation, transport and injection

of the aerosol into the plasma core, at the same time contributing to plasma generation.

'Skoog, D.A; West, D.M.; Holler, F.J.; Fundamentals ofAnalytical Chemistry; 7'1. edition; Saunders College Publishing; p 632

Chapter 26 (1996)

2. Gas chromatography2

The word "chromatography," formed from the Grl;ek word "chroma" meaning "color,"

and "graphein" meaning "to write," was coined by Tswett around 1900 to describe his process

of separating mixtures of plant pigments. He washed the pigments down a column of adsorbent

powder. Such a separation of the components of a mixture for qualitative or quantitative

analysis, or for isolation and recovery of the components is the desired end of any type of

chromatography.

A gas chromatograph consists of a flowing mobile phase or carrier gas, an injection port,

a separation column containing the stationary phase and a detector as indicated in Fig. 3. The

organic compounds are separated due to differences in their pattitioning behaviour between the

mobile phase and the stationary phase in the column. In gas chromatography, the mixture or

solute to be separated is vaporized and swept ,over a relatively large absorbent or adsorbent

surface inside a long narrow tube or column. A steady stream of inelt carrier gas moves the

solute vapours along the column. The different components are moved along the column at

different rates and, under proper circumstances, become separated.
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RECORDER

Fig. 3. Gas cl,romatograph

The gas chromatograph usually consists of a regulated supply of carrier gas which serves

as a means of sample introduction, an injecton port, a column for separating the components of

the sample, a detector for detecting and signaling the components as they emerge in sequence

from the column, and a recorder for measuring and recording the signal from the detector. The

arrangement of these components is shown in Fig. 3. The injection port consists of a rubber

septum through which a syringe is inserted to inject the sample. Sampling loops were directly

connected to the injection ports of both gas chromatographs in the setup used in this project.

The sample from these loops was automatically' flushed into the GC. The injection port is

maintained at a higher temperature than the boiling point of the least volatile component in the

sample mixture. Since the partitioning behaviour is dependant on temperature, the separation

column is us'ually contained in a thermostatically controlled oven. Starting at a low oven

temperature and· increasing the temperature over time to elute the high-boiling components

accomplish separating components with a wide range of boiling points.

Each component has a characteristic retention time in the column for a given set of

instrumental conditions. These retention times serve as a means of qualitative analysis. The

sensitivity of detection for a given detector varies according to peak height.
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There are two types of GC columns, viz. packed and capillary columns. Packed columns

are typically a glass or stainless steel coil that is filled with the stationary phase. Capillary

columns on the other hand, are thin fused silica (purified silicate glass) capillaries (typically 10-

100 m in length and 250 /lm inner diameter that have the stationary phase coated on the inner

surface. Capillary columns provide much higher separation efficiency than packed columns but

are more easily overloaded by too much sample. The stationary phase can be polar, intermediate

or non-polar in nature. The ideal stationary phase is judged by the types of components to be

separated.

.http://www.chem..yt.edu/chem.-ed/sep/gc/gc.html

3. Fourier transform infrared spectroscopl

3.1 Introduction to FT- IR

The vibrational and rotational energies of molecules can be studied by infrared

spectroscopy. A common application of FT-IR spectroscopy is for "group frequency" analyses.

In molecules certain functional groups show certain vibrations in which only the atoms in the

group move. Since the rest of the molecule is mechanically uninvolved in the vibration, a group

vibration will have a characteristic frequency that remains constant no matter what molecule the

group is in. This group frequency can be used to reveal the presence or absence of the group in

the molecule and this is frequently of tremendous help in characterizing the molecular structure.
\

In IR spectroscopy the micron (I! = 10-4 cm) is more often used as the dimension for wavelength.

Using this unit, the visible region is about 0.4-0.7 Il, the near infrared is about 0.7-2.5 I!, the

fundamental infrared region is about 2.5-50 I! and the far infrared is about 50 I! to a fraction of a

mm. The reasori for a division at about 2.5 I! is that absorption caused by fundamental

vibrational transitions fall on the long wavelength side of 2.5 I!. The reason for a division at

about 561! is largely instrumental.

The properties that electromagnetic radiation and molecules have in common are energy

and frequency. However, the frequency, v, in hertz (Hz) in this part of the spectrum is an

inconveniently large number so a number that is proportional to frequency is commonly used.

149



This is called the wavenumber, co (cm-I), which denotes the number of waves in a I-em-long

wave train. This unit is related to the other units by:

ro = vie = lI/"'cm = 10
4
1/"'"

where Acm and AfL are the wavelengths expressed in cm and f.l respectively. Grating instruments

deliver spectra where the horizontal coordinate is linear with wavenumber. Results are reported

in wavemimbers since these are proportional to molecular properties, frequency and energy. The

vertical coordinate in an IR spectrum is usually presented linearly with sample transmittance.

Transmittance is defined as the radiant power ofthe radiation which is incident on the sample,

divided into the radiant power transmitted by the sample.

In a typical infrared spectrometer, a source simultaneously emits all the infrared

frequencies of interest. These radiation frequencies are about the same order of magnitude as the

molecular vibrational frequencies. The molecule that matches the vibrational frequency of the

molecule shall absorb some of the radiation. Most of the other frequencies are transmitted. The

absorption of radiation has occurred because this particular molecule has increased its

vibrational energy. This occurs at the expense of the energy of the IR radiation that has been

absorbed.

In order for any infrared absorption to occur, the molecular vibration must cause a change

in molecular dipole moment.

3htlp:l/www.uksaf.org/tech/list.html

3.2 Attenuated total reflection (ATR)4

The attenuated total reflection method is a true reflection spectrum from the interface of a

high refractive index transmitting prism and the substance under investigation. It is observed

that if certain conditions were met, infrared radiation entering a prism made of a high refractive

index infrared transmitting material such as an ATR crystal would be totally internally reflected

as shown in Fig. 4. This internal reflectance creates an evanescent wave that extends beyond the

surface of the crystal. In regions of the infrared spectrum where the sample absorbs energy, the

envanescent wave will be attenuated.
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Sample

Fig. 4. Reflection ofan IR beam offthe interface between a sample and the ATR crystal and the

resulting evanescent wave that is created.

Total internal reflection occurs when the angle of the incident radiation 8, exceeds the

critical angle, 8c o The critical angle is a function of the refractive indices of the sample and ATR

crystal and is defined as:

where nl is the refractive index of the ATR crystal and n2 is the refractive index of the sample

(Chittur, K.; webpage). High refractive index materials are chosen for the ATR crystal to

minimize the critical angle. The intensity of the evanescent wave decays exponentially with

distance from the surface of the ATR crystal. A factor that affects the quality of an ATR

spectrum is the efficient contact of sample with the crystal. Because the evanescent wave decays

very rapidly with distance from the surface, it is impor~ant to have the sample in intimate
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contact with the crystal. This is easily achieved by applying pressure on the powder sample

against the crystal.

In the technique of attenuated total reflectance, the spectrum of the reflected radiation

closely resembles the absorption curve (Miller, R.G.J. p137). When radiation passing through a

medium of high refractive index strikes the interface between that medium and one of lower

refractive' index, it is reflected with little attenuation when the angle of incidence is greater than

a certain critical angle. The attenuation is in fact dependant on the refractive index change. By

placing a sample in optical contact with a material of high and constant refractive index, any

change in its refractive index will give rise to a change in reflection at the interface. Since the

refractive index of a material changes rapidly at those wavelengths where it absorbs, the plot of

attenuated total reflectance will resemble the absorption spectrum.

Successful operation depends to a great extent upon intimate contact between the sample

and the crystal, but this is usually readily achieved and direct measurements can be made. The

reflectance curve is quite independent of thickness, but the angle of incidence is important and

must be carefully chosen. This angle determines the apparent depthof beam penetration into the

sample, a steep angle, i.e. small and of incidence, produces a deeper penetration than a shallow

angle. Optimum results are generally obtained between two and five degrees above the critical

angle. This angle depends on the relative values of refractive index of sample and crystal. The

water bands in ATR do not blank out the rest of the spectrum to such an extent as in the KBr

pellet method FT-IR.

A crystal material must have a high index of refraction to allow internal reflectance.

Materials with a refractive index greater than 2.2 are normally chosen as ATR crystals. Zinc

selenite has a refractive index of 2.4 and a transmission range from 20,000 to 650 cm-I.

The spectrum shows much more detail than a reflection spectrum from air because the

refractive index of the interface is below unity. The great advantage of an ATR spectrum is that

it is recognizably similar to a transmission spectrum (FT-IR). However certain characteristic

differences are usually observed compared with a transmission spectrum:
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(i) The bands are shifted to longer wavelengths ..

(ii) The bands at short wavelengths appear to be weaker.

(iii) The weaker bands appear more prominent and conversely very intense bands are

less inclined to dominate the spectrum as much.

(iv) The character of the spectrum changes markedly with angle of incidence. It may be

necessary to change the angle of incidence to achieve optimum results.

(v) The spectrum is that of the surface layer and, therefore, greases, dirt, grit, silicone,

etc, will contaminate the spectrum more readily.

For these reasons the best identifications are performed by comparison of the unknown against

an ATR spectrum produced under exactly identical conditions. The prime requirement for a

good ATR spectrum is that the material under analysis should be brought into good physical

contact with the face of the prism, therefore rubbery or soft materials produce the best ATR

spectra (Miller, R.G.J; p 137).

·http://www.eb.uah.edll/-kchittllr/bmreview/node3.html

4. X-ray spectrometry

Since the discovery of X-rays by Roentgen in 1896, the electromagnetic spectrum

between 0.1 and 200 A has been a source of significant contributions to our fundamental

knowledge of atomic structure. Bombarding matter with high-energy particles such as electrons

or protons generates X-rays. When an atom is bombarded in this manner, an electron is ejected

from one of the inner shells of the atom. This vacancy is immediately filled by an electron from

, , \

a higher-energy shell, creating a vacancy in that shell that is, in turn, filled by an electron from

yet a higher shell. Thus, by a series of transitions, L ~K, M~L, N~M, each new vacancy is

filled until the excited atom returns to its ground state. This electronic transition results in the

emission of a characteristic X-ray spectral line whose energy, hv, is equal to the difference

between the binding energies of the two electrons involved in the transition. Only certain

electronic transitions are permitted by quantum-mechani.~al selection rules. The energies or

wavelengths of the X-ray spectral lines are the basis for qualitative analysis.
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4.1 Energy dispersive X-ray spectrometry (EDX)5

As the electron beam of the scanning electron microscope (SEM) is scanned across the

sample surface, it generates X-ray fluorescence from the atoms in its path. The energy of each

X-ray photon is characteristic of the element that produced it.

A solid-state detector composed of Si and Li, is responsive to the energies of the

characteristic X-ray radiation. Instruments utilizing these detectors are called energy-dispersive

X-ray spectrometers. The energy of a characteristic X-ray produces an electronic pulse­

amplitude distribution in the detector. The EDX microanalysis system collects the X-rays, sorts

and plots them by energy and automatically identifies and labels the elements responsible for

the peaks in this energy distribution.

Hence, an entire X-ray spectrum from several elements in a specimen can be stored at one

time.

The EDX data are typically compared to either known or computer-generated standards

to produce a full quantitative analysis showing the sample composition. The EDX instrument is

also capable of giving maps of distributions of elements over areas of interest.

The detector must operate at liquid-nitrogen temperatures, and a reservoir attached to the

detector must be filled periodically with liquid nitrogen. The preamplifier, pulse processor and

pileup-rejection circuitry constitute a sophisticated electronic package to maintain the

quantitative properties of the signals produced in the detector. These are necessary to ensure

high performance with respect to energy resolution, data-acquisition times and signal-to-noise

ratio (i.e. detection limit).

5http://www2.arnes.si/-sgszmeral/eds/eds.html
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4.2 Scanning electron microscopy (SEM)6

In the scanning electron microscope (SEM), a very fine "probe" of electrons with energies up to

40 keV is focused at the surface of the specimen in the microscope and scanned across it in a

pattern of parallel lines. A number of phenomena occur at the surface under electron impact:

most important for scanning microscopy is the emission of secondary electrons with energies of

a few tens eV and re-emission or reflection of the high-energy backscattered electrons from the

primary beam. The intensity of emission of both secondary and backscattered electrons is very

sensitive to the angle at which the electron beam strikes the surface, i.e. to topological features

on the specimen. The emitted electron current is collected and amplified; variations in the

resulting signal strength as the electron probe scans across the specimen are used to vary the

brightness of the trace of a cathode ray tube being scanned in synchronism with the probe.

There is thus a direct positional correspondence between the electron beam scanning across the

specimen and the fluorescent image on the cathode ray tube.

The magnification produced by the scanning microscope is the ratio between the dimensions of

the final image display and the field scanned on the specimen. Usually, the magnification range

of SEM is between 10 and 200 000 X and the resolution is between 4 and 10 nm (40 - 100

angstroms).

6http://www2.arnes.sil-sgszmeral/sem/sem/html

4.3 X-ray diffraction (XRD)

In wavelength-dispersive spectrometers, a schematic of which appears in Fig. 5,

wavelengths are separated by Bragg diffraction from a single crystal. The X-ray tube is usually

of high intensity (approx. 3 kW) with a stabilized high-voltage supply. This is necessary

because large losses of characteristic radiation occur due to the relatively low reflectivity of the

dispersive crystals. The detector is mounted on a goniometer, which allows the detector to

accept one wavelength at a time at the 28 diffraction angle, and covers a broad range from a few

degrees to 150 degrees. Either a proportional or scintillation counter detector is used, or both in
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tandem arrangement. The associated electronics include a DC power supply, linear amplifier

and recorder.

Detector------ --. .......

"' "-

~
/~
~ Secondary

\ Collimator
\

\

\ Goniometel

I
I

--­/'
./

~ Primary Collimator

X-ray tube

Sample

Fig. 5. A schematic representation ofan XRD spectrometer

Bombarding a suitable target with electrons produces the X-rays. When the electrons hit

the target, they "move" electrons around the orbitals, which results in a series of emission

wavelengths as the atom returns to an unexcited state. The resulting electron excitation in the

source produces a broad band of energies that are high energy X-rays. The sample is irradiated

with the high energy X-rays to produce a secondary beam of fluorescent X-rays. These X-rays

are passed through a collimator and thus directed to a single analyzer crystal that separates the

wavelengths. The wavelengths of the X-rays produced by the powdered sample and diffracted

by the analyzer crystal obey the Bragg equation:

nJ. = 2dsinO

where A = wavelength of X-rays, d = spacings of atoms in powdered sample and n = integer.

The Bragg equation links the d-spacings on the powdered sample to the angle of turn of

the analyzer crystal. The data obtained shows a series of lines of varying intensities at different

28 values, obtained as the analyser crystal turns. A qualitative analysis of the sample is thus

carried out (Brady, J.E. et al. (1993)).
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added to the samples in the A.nton Paar microwave digestion vessels containing the catalyst samples.
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Fig. 1, SEMimage q!'VPO-lp
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Fig. 2. SEAfi1Jlage ofVPO-Ic
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Fig 3, SHAfimage ofVPO-iu
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Fig 4. SRH image ofVPO-2p
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Fig 5SEM image ofVPO-2c
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Fig 6, f'IEA1 image ofVPO-2u

196



Fig 7. SEA11mage ofv'PO-3p
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Pig 8, SEAl image ojVP0-3c
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Fig 9. SEAt image cIVPO-3u
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Fig 10. SE]'v! imag<' ofVPO-4p
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Fig. 11. SE1\1 ill/age 01 VP0-4c
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Fig 11. SEMimage ofVP0-4u
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SEM i.mage of VPO-lp Oxygen distribution

Elemental distribution map olVPO-lp
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cps

5

4

p

v

System resolution = 114 eV

Quantitative method: ZAF ( 4 iterations).
Analysed all elements and normalised results.

1 peak possibly omitted: 0.02 keV

3

Standards
o K
P K
V K

Quartz 01/12/93
GaP 29/11/93
V 01/12/93

N
o
Vl

o

v

Elrnt Spect. Element Atomic
Type % %

0 K EO 47.39 70.18
P K EO 17.81 13.63
V K EO 34.80 16.19
Total 100.00 100.00

2 4 6 8 10
Energy (keV)

EDXspectmm ofTPO-lp



SEM unage of VPO-le Oxygen distribution

Elemental distribution map affrO-le
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cps

p

v

System resolution = 114 eV

Quantitative method: ZAF ( 3 iterations).
Analysed all elements and normalised results.

1 peak possibly omitted: 0.02 keV

Standards
o K
P K
V K

Quartz 01/12/93
GaP 29/11/93
V 01112/93

N
o
-...l

4

v

2 4

Elmt Spect. Element AtorrUc
Type % %

0 K ED 43.73 67.00
p K ED 19.11 15.12
V K ED 37.16 17.88
Total 100.00 100.00

EDX spectrum o/VPO-lc

Energy (keV)



SEM linage ofVPO-lu OA)'gen distlibution
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Elemental distriblltion map ojVPO-11I
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Counts

1 peak possibly omitted: 0.00 keV

Quantitative method: Zl\E" ( q iterations).
Analysed all elements and normalised results.
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SEM image ofVPO-3p Oxygen di::.tributioil
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Phosphorous distribution



2 peaks possibly omitted: 0.02, 1.50 XcV

I
i

eV114

Quartz 01/12/93
GaP 29/11/93
V 01/12/93
Co 01/12/93

Quantitative method: ZAF ( 4 iterations).
Analysed all elements and normalised results.
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Elmt Speet. Element Atomic
Type % %

0 K ED 47.89 70.09
p K ED 16.5E 12.66
V K ED 34.Q2 16.00
Co l< ED 1.12 0.45
Total 100.00 100.00
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Spect.
Type

ED
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ED
EO

1 peak possibly omitted: 0.02 keY

Elmt

o K
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Total

Quantitative method: ZAF ( q iterations).
Analysed all elements and normalised results.
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cps

p

System resolution = 114 eV

2 peaks possibly omitted: 0.02, 1.48 keV

Quantitative method: ZAF ( 3 iterations).
Analysed all elements and normalised results.

100-

60-

V

J~

1
1

Standards
o K
P K
V K
Co K

Quartz 01/12/93
GaP 29/11/93
V 01/12/93
Co 01/12/93

N-VI

4

2

0 ---.1-\""'-= (.'-"-'-"1--.°,.- i j I I I

2

~~-~
4 6

Elmt Spect. Element Atomic
Type % %

0 K ED 42.43 66.02
p K ED 18.77 15.09
V K ED 37.73 18.44
Co K ED 1. 07 0.45
Total 100.00 100.00
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