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Abstract 
 

The mammalian cell cycle and its points-of-entry are well characterized pathways. 

These points-of-entry are normally regulated via mitogens and include, amongst others, 

the ERK, JNK and p38 mitogen-activated protein kinase (MAPK) pathways. However, 

while the restriction point(R-point), the temporal switch-point at which a cell becomes 

irrevocably committed to division irrespective of mitogenic stimulus, is known among other 

cell types, its position within the murine myoblast line C2C12 is currently unknown. 

Similarly, while MAPK pathways, such as JNK and ERK, have been modeled 

computationally, no model yet exists of p38 MAPK as stimulated by mitogens. The aims of 

this dissertation, then, were to determine the R-point within the C2C12 cell cycle and 

construct a computational mitogen-stimulated p38 MAPK model. 

 

It was found that a synchronous C2C12 population, when stimulated to divide, took 7 to 

9 hours to reach S-phase from G0, consistent with data from the literature. The R-point 

was determined to lie between 6 and 7 hours post G1-re-entry stimulation,which was 

consistent with studies in other cell types.  Core modeling of the p38 MAPK pathway 

revealed that ultrasensitivitywas inherent within the pathway structure. Further, a 

branching/re-converging structure within the pathway imparted greater responsiveness to 

signal upon the pathway. A realistic p38 MAPK model demonstrated good responsiveness 

to signal, its output matched that of several other MAPK models, and it was capable of 

replicating previous in vitro data. This model can be used as a tool for further investigation 

of the mammalian cell cycle by linking it to other cell cycle models. The predictions by an 

expanded model may be better suited for understanding the effects of mitogen stimulus on 

the cell cycle in situ. 
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Chapter One – Literature review 

 

1.1 Introduction 

 

Stem cell biology has proved itself in the past century as a potential ‗holy grail‘ for the 

treatment of the pathologies of aging and disease. The idea of a stem cell, a cell capable 

of producing daughter cells of numerous lineages, was proposed early in the 20th century 

to describe the progenitor of the haematopoetic lineage but eventually came to be 

associated with all cells capable of producing cells of differing lineages (Petersen and 

Terada, 2001). While stem cells were seen as a potential font of information about 

biological processes, it would be another eighty years after their discovery before the 

establishment of a murine in vitro embryonic stem cell population was successfully 

accomplished (Petersen and Terada, 2001). These cells were derived from the inner cell 

mass of a developing embryo (Evans and Kaufman, 1981) and were capable of indefinite 

proliferation in an undifferentiated state while maintaining pluripotent characteristics 

(Martin, 1981).  

 

The development of an expansive pluripotent cell line was seen as a method of 

treatment for many diseases, most especially after the development of human embryonic 

cell lines (Thomson et al., 1998). This discovery brought with it, however, the moral 

problem of utilizing tissue derived from the destruction of human embryos. The increasing 

prevalence and utility of adult-derived stem cells provided a solution (Goodell et al., 1996; 

Siminovitch et al., 1963). These stem cells were derived from post-natal organs and, as no 

embryos are destroyed in their isolation, the stigma associated with embryonic stem cells 

was absent in these lines. Moreover, as these cells were donor derived, they were also 

donor autologous and provided a more viable alternative to embryonic stem cells for 

therapy due to the lack of a requirement of immunosuppressive drugs after transplantation 

(Preston et al., 2003; Petersen and Terada, 2001) 

 

With an aging world population, the pool of organs available for transplantation are on 

a steady decline (Hipp and Atala, 2004) and the benefits of donor-derived autologous adult 
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stem cells become manifold and impressive. Many advances have been achieved in the 

field of regenerative medicine, such as the development of ex vivo derived bladders 

(Oottamasathien et al., 2007) and trachea (Beyene et al., 2009). However, a major 

obstacle remains within the field of regenerative medicine as most adult-derived stem cells 

have a tendency either to differentiate in vitro or fail to establish themselves into viable 

expansive cell lines (Petersen and Terada, 2001).  

 

There are many signals and mechanisms controlling cell fate and survival that remain 

to be elucidated. Investigations into the workings of these mechanisms, such as signal 

transduction pathways and the cell cycle, are therefore necessary for the further 

development of the fields of stem cell research and regenerative medicine. This project 

was undertaken to examine, both experimentally and computationally, the nature of 

signalling cascades and their relation to the cell cycle of murine adult muscle stem cells. 

1.2 The Cell Cycle 

 

The cell cycle is a critical process that occurs in all prokaryotic and eukaryotic 

organisms and is the mechanism through which a cell divides. It is constructed around four 

main phases, each with its own associated function, markers and checkpoints, and 

consists of:  gap-1 (G1), synthesis (S), gap-2 (G2) and mitosis/meiosis (M) phases (Fig. 

1.1). In the G1 phase, the cell prepares for S-phase through replication of cytosolic 

machinery and synthesis of DNA replication proteins (Snustad et al., 1997). While having a 

sufficient supply of deoxyribonucleotides is important for entry into S-phase, their de novo 

synthesis is maintained independently of the cell cycle through the activity of 

ribonucleotide reductase (Herrick and Sclavi, 2007). Once S-phase preparation has been 

concluded, the cell moves through the G1/S checkpoint and into S-phase. In S-phase, all 

nuclear DNA is replicated before moving through the S/G2 checkpoint. Once in G2, the 

DNA is checked to ensure that it has been replicated properly. If errors are detected, the 

cell will either attempt to correct the errors or, if these errors are irrevocable, apoptose. 

Once error checking is complete, and the cell has sufficient cellular mass for division into 

two daughter cells, the G2/M checkpoint is crossed. M-phase sees the chromosomal and 

cytosolic content halved and upon mitotic exit, the cell will either re-commit to further 

division and re-enter G1, or will be directed into a state of reversible or irreversible growth 



3 
 

arrest known as G0 (van den Heuvel, 2005; Nurse, 1990). G0 is divided into several 

different and distinct states, namely quiescence (reversible growth arrest), senescence 

(irreversible growth arrest), terminal differentiation (irreversible growth arrest), and 

apoptosis (programmed cell death) (Snustad et al., 1997). 

 

On a molecular level, each phase of the cell cycle is co-ordinated primarily through the 

activities and associations of kinases, cyclins, and inhibitors. Principal amongst these 

kinases are the cyclin-dependent kinases (CDKs) which are constitutively expressed and 

are regulated through direct association with their counterparts: cyclins A, B, D and E 

(Koepp et al., 1999). The cyclins are rapidly synthesized and degraded at various points in 

the cell cycle in order to regulate progression through it. While the CDKs are the catalytic 

agents, the cyclins, due to their ubiquitous nature and timing within the cell cycle, largely 

direct progression by binding the CDKs (van den Heuvel, 2005). While the cell cycle is 

remarkably well-conserved amongst the eukaryotes (Nurse, 1990), certain differences, 

Figure 1.1: The 4 phases of the cell cycle. In G1 the cell is receiving stimuli and is preparing 
for DNA synthesis. During S-phase the cell replicates its DNA. In G2 the cell checks the 
DNA for errors and prepares for the division in M-phase. After division, the cell will either 
recommit to division and enter G1, or enter into a growth-arrested G0 state. Each arrow 
represents the time of activity of the various cyclins. (van den Heuvel, 2005) 

G0 
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such as the number and function of cyclins and their associated cyclin-dependent kinases, 

are present between the multicellular and unicellular eukaryotic cell cycles (van den 

Heuvel, 2005). 

1.2.1 Entry into the cell cycle 

 

A number of signalling pathways from the cell surface converge upon the cell cycle 

and, in most mammalian cells, the dominant family regulating entry into the cell cycle are 

the mitogen-activated protein kinases (MAPK) (Roux and Blenis, 2004). The basic MAPK 

signalling pathway is a modular cascade that starts with a surface receptor complex and 

leads to a target kinase that begins effector signalling. Upon stimulation by mitogens, the 

receptors activate their intrinsic tyrosine kinase activity via phosphorylation of their 

cytoplasmic tails, leading to the release of key sequestered regulators, such as the 

guanidine-nucleotide exchange factor (GEF) SOS, and the concomitant activation of the 

small GTPases Ras or Raf (Fig. 1.2) (Denhardt, 1996). Ras and/or Raf activates the initial 

signal transduction proteins of the MAPKs, the small GTPases Rac and Ral (Cano and 

Mahadevan, 1995). Rac and Ral may be viewed as pseudo-MAP4Ks as they activate their 

downstream targets, the MAP3Ks, through indirect phosphorylation (Teramoto et al., 

1996). These MAP3Ks in turn activate the MAP2Ks, which finally activate the principle 

MAPK of the pathway (Pimienta and Pascual, 2007; Mor and Philips, 2006). This structural 

organization of the MAPK cascades (Fig 1.2) is conserved amongst the eukaryotes. 

Differences may arise due to different effector molecules having differing targets and/or 

effectors (Ferrell, 1996). 

 

The three major MAPK pathways are the extracellular-signal regulated kinase (ERK), 

c-Jun N-terminal kinase (JNK) and p38 kinase pathways (Roux and Blenis, 2004). Each of 

the MAPKs comprises several splicoforms, which are active in different tissue types. All 

the MAPKs are fully activated only upon dual phosphorylation of both conserved residues 

of a T-x-Y motif, with the variable amino acid being defining of the family of origin: T-E-Y 

for ERKs, T-P-Y for JNKs and T-G-Y for p38 (Pimienta and Pascual, 2007).  
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1.2.1.1 The ERK cascade 

 

The ERKs were the first of the MAPKs to be discovered, and transduce a large variety 

of signals. Like the JNK and p38 pathways, the ERK pathway is activated through Ras 

Figure 1.2: The hierarchical structure of the MAP kinase pathways. Once Ras/Raf (gold) and 
Rac/Ral (orange) have been activated by GEFs, each subsequent level of the cascade is 
activated though sequential phosphorylation events. The MAP3Ks (pink) activate the MAP2Ks 
(blue) through dual phosphorylation, which in turn activate the MAPKs (green) through dual 
phosphorylation. The active MAPKs then phosphorylate transcription factors in the nucleus, 
thereby promoting various outcomes such as differentiation or division. At each level of the 
pathway there is a noteworthy amount of crosstalk between the pathways. (Pimienta and 
Pascual, 2007; Zhang and Liu, 2002) 

MAP3K 

MAP2K 

MAPK 
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signalling. However, following Ras activation, and in contrast to the JNK and p38 

pathways, the ERK pathway activity is promoted by the GTPase Raf. Raf is the indirect 

upstream activator of MEKK1 and, subsequently, MKK1/2/5. (Galabova-Kovacs et al., 

2006). The ERK1 and ERK2 splicoforms are highly similar and share functionality in signal 

transduction (Lloyd, 2006). However, while ERK1-/- murine embryos develop normally, 

ERK2-/- embryos are aborted (Hatano et al., 2003), suggesting that ERK2 is more crucial 

during development. The other ERK splicoforms are still in the process of being 

characterised, but are activated in a similar manner to the original members of the ERK 

family (Nishimoto and Nishida, 2006; Kant et al., 2006). 

 

The ERK pathway displays two activation patterns: transient and sustained, both of 

which may yield differing responses. Transiently activated ERK induces COS cells to 

migrate (Klemke et al., 1997), while prolonged activation is required for stimulation of the 

cell cycle in hamster fibroblasts (Cook and McCormick, 1996; Meloche et al., 1992a; 

Meloche et al., 1992b). In other cell types, like the 3T3 fibroblasts and MCF7 epithelial 

cells, excessive activation of the ERK pathway causes apoptosis (Calcabrini et al., 2006; 

Tang et al., 2002).  

 

The ERK pathway is widely implicated in the regulation of cellular proliferation. The 

ERK pathway promotes the cell cycle through activation of transcription factors, such as c-

Myc and Elk-1, (Murphy et al., 2002; Yang et al., 1998a; Yang et al., 1998b) and the 

subsequent down regulation of a plethora of anti-proliferative genes (Yamamoto et al., 

2006). The ERK pathway has also been implicated in the regulation of pro-survival/anti-

apoptotic pathways as it is activated via pro-survival sphingolipid signalling (Monick et al., 

2004) and in turn activates via phosphorylation the anti-apoptotic protein BCL-2, favouring 

cell survival even during times of stress (Subramanian and Shaha, 2007). Their repression 

therefore attenuates proliferation (Squires et al., 2002; Dudley et al., 1995) due to the 

inhibition of several important cell cycle events such as pyrimidine synthesis (Graves et al., 

2000), ribosome synthesis (Stefanovsky et al., 2006), protein translation (Waskiewicz et 

al., 1999) and cyclin D transcription (Lavoie et al., 1996).  
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1.2.1.2 The JNK cascade 

 

The JNK pathway is activated via the Ras, Rac, Mekk1, MKK4/7 cascade (Davis, 

2000) and regulates several pathways in the cell, including apoptotic and proliferative 

pathways (Kyriakis and Avruch, 1990). The two most commonly expressed JNK genes are 

JNK1 and JNK2, which can both undergo alternate splicing to produce several splicoforms 

of the kinase in a tissue-dependent manner (Gupta et al., 1996). The JNK2 splice variant 

binds more strongly to the c-Jun transcription factor than the JNK1 splice variant, and 

inhibits proliferation. JNK1, however, phosphorylates c-Jun more efficiently than JNK2 and 

actively promotes proliferation (Sabapathy et al., 2004; Sabapathy and Wagner, 2004; 

Gupta et al., 1996; Kallunki et al., 1994). Despite this antagonistic effect, it has also been 

shown that both genes are required for effective proliferation. JNK1-/- and JNK2-/- cells fail 

to proliferate upon mitogenic stimulation (Sabapathy et al., 2004; Sabapathy and Wagner, 

2004; Tournier et al., 2000; Schreiber et al., 1999; Wisdom et al., 1999). This inhibition of 

the cell cycle occurs at the G1/S transition as certain key regulatory elements, such as the 

transcription factor E2F and the CDKs, are not properly activated to allow for continuation 

to S-phase (Schreiber et al., 1999). JNK1 and JNK2 have also been shown to be 

necessary for differentiation in certain cell lines, such as T-cells, which cannot undergo 

maturation if these JNKs have been downregulated (Constant et al., 2000; Dong et al., 

2000). 

 

Similar to the ERK pathway, the JNK pathway also exhibits transient and prolonged 

activation patterns. Transient activation of the JNK pathway promotes mRNA stability of 

several targets, such as c-Jun itself and IL-2 of the immune response, while prolonged 

activation triggers the apoptotic pathways via p53 (Chen and Tan, 2000; Yang et al., 

1997). However, unphosphorylated JNKs also play a regulatory role in the cell cycle by 

inhibiting transcription factors, such as STAT3, by destabilizing their mRNAs (Fuchs et al., 

1998; Musti et al., 1997; Bray, 1995). The cell survival ERK pathways mitigate this anti-

proliferative, pro-apoptotic behaviour almost completely (Xia et al., 1995). 
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1.2.1.3 The p38 cascade 

 

The p38 cascade is a complex signalling system that can result in many outcomes for 

the cell depending on the source of activation. This cascade is activated by a variety of 

stimuli such as UV radiation, heat and mitogens. With many different functions, p38 has a 

large number of mitogen-independent upstream activators, such as the stress transduction 

kinases TAO and TAB, to transduce the various input stimuli (Sundaramurthy et al., 2009; 

Raman et al., 2007; Ichijo et al., 1997; Takekawa et al., 1997; Moriguchi et al., 1996). The 

specifics of p38 MAPK activation are dependent not only on signal input, but also on cell 

type, with different lineages responding distinctly to p38 stimulation (Shalom-Barak et al., 

1998; Shapiro et al., 1998; Raingeaud et al., 1995; Freshney et al., 1994; Rouse et al., 

1994). In terms of mitogenic stimulation, MAP3Ks, such as MLK3 and MEKK1, will activate 

p38‘s primary MAP2Ks (MKK3 and MKK6) as well as non-canonical MAP2Ks such as 

MKK4. While highly homologous in structure, the MAP2Ks activate the p38 isoforms 

differently and do not share all upstream activators (Hansen et al., 2008; Jiang et al., 

1997a; Jiang et al., 1997b).  

 

There are four main splice variants of p38: α, β, γ and δ. While the α/β splicoforms are 

found ubiquitously throughout various tissues, γ is found almost exclusively in muscle 

tissue and δ is predominantly expressed in endodermal tissues (Jiang et al., 1997a; Jiang 

et al., 1996; Lechner et al., 1996; Li et al., 1996). Of importance to the cell cycle are the 

α/β splice variants which are upregulated upon mitogenic stimuli and regulate proliferation 

and differentiation (Jones et al., 2005; Weston et al., 2003). Once their activity is no longer 

required, the splice variants of p38 are dephosphorylated and inactivated by 

phosphatases, with the α/β splice variants being more susceptible to dephosphorylation 

than the γ/δ splice variants (Camps et al., 1998; Muda et al., 1996a; Muda et al., 1996b; 

Sun et al., 1993). The γ splicoform, although not well understood, has also been implicated 

in both the proliferation and differentiation of satellite cells (Gillespie et al., 2009), while the 

δ splicoform is important in the transduction of external stress signals (Knebel et al., 2001).  

 

Depending on the source of activation, p38 may potentially activate many targets both 

directly and indirectly. These include the transcription factors ATF2 and c-Myc, when 
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mitogenically stimulated (Zhao et al., 1999; Tan et al., 1996) and heat-shock and mRNA 

interacting proteins when activated via stressors (Mahtani et al., 2001; Stokoe et al., 

1992). During mitogenic stimulation, the p38 cascade acts as an antagonist to the JNK 

cascade. This arises due to the inhibition of Ras via p38‘s downstream targets, p38 

regulated/activated protein kinase (PRAK) and MAPK-activated protein kinase 2 (MK2) 

(Chen et al., 2000; Nemoto et al., 1998). Once activated, p38 is capable of inducing 

several physiological responses; promoting inflammation through induction of pro-

inflammatory cytokines (Guan et al., 1998), apoptosis upstream and downstream of 

caspases (Cardone et al., 1997; Huang et al., 1997), proliferation through cyclin D 

induction, and myogenesis through MEF2, causing G1 withdrawal (Wu et al., 2000a; Zetser 

et al., 1999).  

 

The pyrinidile imidazole SB203580 is a highly specific inhibitor of the p38α/β splice 

variants, which neither inhibits the other MAPK pathways, nor the γ/δ splice variants of p38 

(Cuenda et al., 1995). SB203580 is a structural analogue of ATP (Fig 1.3 A and B) and 

binds within the ATP-binding pocket of p38α/β (Fig 1.3 C) (Gum et al., 1998; Tong et al., 

1997; Fry et al., 1994). SB203580 is capable of binding both the active and inactive forms 

of p38α/β (Tong et al., 1997; Wilson et al., 1996), and when bound to the inactive form of 

p38 it has been suggested that the p38/SB203580 complex is activated less efficaciously 

(Frantz et al., 1998). When p38 has been activated, the inhibition of SB203580 becomes 

competitive with respect to ATP (Tong et al., 1997; Fry et al., 1994). In either state, 

SB203580 does not affect the binding efficiency of the downstream targets of p38, but 

rather inhibits its ability to phosphorylate them (Lisnock et al., 1998).  

 

 It has been elucidated through p38 point mutagenesis that threonine 106 (isoleucine 

and methionine for ERK (Her et al., 1991) and JNK (Derijard et al., 1994) respectively) is 

particularly important for the high specificity of SB203580 (Lisnock et al., 1998). When 

threonine is substituted for glutamine, the p-fluorophenyl ring of SB203580 is sterically 

hindered from docking with the p38 molecule and hence the molecule is subsequently 

made SB203580-insensitive (Lisnock et al., 1998; Tong et al., 1997). Against wild-type 

p38, SB203580 is capable of partial inhibition at remarkably low concentrations in the 

nano-molar range, while at 10 μM in vitro p38 activity is nearly completely inhibited (Davies 

et al., 2000) as its IC50 ranges from 0.1 μM to 1 μM (Badger et al., 1998). When inhibition 
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is induced at concentrations several hundred fold higher, SB203580 begins to aggregate 

and non-specifically disrupt other molecules (McGovern et al., 2002; Davies et al., 2000).  

 

With a high specificity for p38 α/β and a low effective inhibitory concentration, 

SB203580 is therefore a useful tool for studying the effect of the p38 cascade on cell cycle 

entry and exit. The experimental inhibition of p38 has been implicated as the cause of 

several types of G0 arrest. Kang et al.(2005) demonstrated that the addition of SB203580 

to primary cultures of rabbit articular chondrocytes extended their life spans in vitro, 

inhibited the onset of senescence, and promoted proliferation. Jones et al. (2005), 

however, found that SB203580 addition to primary culture mouse satellite cells promoted a 

reversible quiescent state and New et al. (2001) found that SB203580 promoted 

differentiation in mouse neuronal PC12 cells.  

Figure 1.3: The structures of SB203580 (A), ATP (B) and p38 complexed with SB203580 (C, red 
arrow). Of importance in the SB203580 molecule is the ρ-flurophenyl ring on the lower left (blue 
arrow) which interacts directly with the p38 molecule and is the cause of SB203580‘s high specificity 
towards the enzyme. In C, SB203580 is shown docked within the ATP binding pocket near threonine 
106 (red arrow). Structure of p38 with SB203580 from the Protein Database (Accession code 1A9U) 

C A 

B 
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1.2.2 Progression through the cell cycle 

 

The MAPKs are an important point of entry into the cell cycle, transducing a number of 

extracellular mitogenic signals to the effectors of the cell cycle (Roux and Blenis, 2004). 

Activated p38 is specifically capable of phosphorylating ATF2 (Waas et al., 2001), which in 

turn is capable of transcriptionally activating the initial cyclin of G1 (cyclin D), thereby 

promoting progression of the cell cycle (Beier et al., 1999). 

1.2.2.1 G1 to the Restriction-point 

 

At the onset of G1 cyclin D has yet to be expressed and is absent, whereas the A- and 

E-cyclins are present in very low concentrations due to constant turnover (Fig. 1.1). Prior 

to the transcription of the D-type cyclins, the repressor phosphoprotein retinoblastoma 

(Rb) exists in a hypo-phosphorylated state and is bound to the transcription factor E2F, 

thereby inhibiting E2F‘s activity (Neganova and Lako, 2008; van den Heuvel, 2005) (Fig. 

1.4). When stimulated by mitogens, signal transduction pathways, such as the MAPK 

pathways, activate and induce the transcription of cyclin D (Recio and Merlino, 2002; 

Sherr, 1995a; Sherr, 1995b). As cyclin D levels elevate it promotes Rb phosphorylation, 

causing Rb to dissociate from the Rb-E2F complex (Sherr and Roberts, 1999). Free E2F is 

then able to promote the transcription of cyclins A and E (its downstream targets) allowing 

cyclin A and E concentrations and activity to elevate (Sherr, 1995b). Cyclin E is itself 

capable of phosphorylating Rb, releasing more sequestered E2F (hence facilitating further 

cyclin synthesis), and catalysing the degradation of the CDKI p27KIP1(Planas-Silva and 

Weinberg, 1997; Vlach et al., 1997).  

 

Cyclin E is required for the progression into S-phase (Stacey, 2003; Sherr and 

Roberts, 1999) and its activity is regulated through sequestration by p27KIP1, inhibiting its 

ability to promote phosphorylation (Sherr, 1995b). Once cyclin D levels begin elevating the 

cyclin D/CDK complex is able to sequester p27KIP1, forming a trimer of cyclin/CDK/CDKI. 

This complex is still catalytically active and facilitates cyclin D‘s translocation to the 

nucleus, promoting the hyper-phosphorylation of nuclear Rb (Stacey, 2003; Sherr and 

Roberts, 1999; Blain et al., 1997). In conjunction with the rise of free E2F, this results in a 

sudden and significant change from a highly repressed state to a highly catalytic state 
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promoting S-phase entry. Once this change has occurred, the cell is now irrevocably 

committed to completing the cell cycle (Zetterberg and Larsson, 1985). 

1.2.2.2 The Restriction Point 

 

The build-up of cyclins A and E allows the cell to progress from G1 to S-phase. The 

critical juncture between these two states has been under scrutiny for some time and the 

term ―restriction point‖ (or R-point) was coined to describe it (Pardee, 1974). The discovery 

of the R-point was necessary to clarify the distinction between the G0 and G1 states, which 

was poorly defined at the time. Although the specific mechanisms of the R-point were 

described later, Pardee‘s work did manage to pinpoint a single critical point between 

proliferation and growth arrest in late G1. Zetterberg and Larsson (1985) further clarified 

the R-point by demonstrating that there is a distinction between a pre-R cell and a post-R 

cell describing these two phases as G1-post mitosis (G1pm) for cells pre-R and G1-pre 

synthesis (G1ps) for cells post-R. While the length of the phases of the cell cycle, from S-

phase through mitosis to the start of G1ps, is relatively invariant irrespective of cell type, 

the variation in lengths of cell cycle division times arises almost exclusively from the G1ps 

phase. Cells may spend a proportionately longer time within this phase than other 

neighbouring cells, or may skip G1ps entirely and enter S-phase immediately (Zetterberg et 

al., 1995; Zetterberg and Larsson, 1985). 

 

The R-point marks the point of irreversible commitment to cell division and lies directly 

between G1pm and G1ps. If division stimuli are inhibited after the R-point, such as through 

the removal of growth factors or the addition of cycloheximide (CHX) to inhibit protein 

synthesis, then the cell will continue through its current round of replication unabated. 

However, if these stimuli are removed prior to this point, then the cell can still enter a 

reversible growth-arrested state (Novák and Tyson, 2004; Zetterberg et al., 1995; 

Zetterberg and Larsson, 1985; Pardee, 1974). Once the mitogenic stimuli are reapplied, 

the cell will then re-enter G1. (Novák et al., 2007). 

 

In the G1ps state several events occur that lead up to the S-phase. The rise of active 

cyclin E causes a subsequent rise in cyclin A levels and activation of the histone 

transcription promoter p220 through phosphorylation (Neganova and Lako, 2008). This 
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increases histone production, a prerequisite for the further synthesis of DNA nucleosomes. 

Unlike the other cyclins, at this stage cyclin D is exported out of the nucleus and into the 

cytoplasm, preventing its degradation. This reservoir of cyclin D assists in the shortening 

of subsequent cell cycle G1/S transitions under the influence of constant mitogenic 

Figure 1.4: Cyclin autocatalysis and the entry into S-phase. During G0, the cell exists in a state 
wherein cyclins A and E are being inhibited through sequestration by p27

KIP1
 and are not being 

effectively transcribed by E2F, E2F itself being inhibited through sequestration by Rb. Upon 
mitogenic stimulation, the signal transduction pathways (such as the p38 MAPK cascade) 
activate and stimulate transcription factors, such as ATF2, to transcribe cyclin D, increasing its 
concentration. After binding CDK2, cyclin D is capable of sequestrating free p27

KIP1
 while 

maintaining its ability to phosphorylate its targets. Rb is subsequently phosphorylated by the 
cyclin D complex releasing E2F. Cyclin E levels begin to elevate, due to transcription by E2F, 
and also begins to phosphorylate Rb as well as targeting p27

KIP1
 for degradation though 

phosphorylation. These combined actions ultimately allow for an exponential rise of free cyclins, 
culminating in the synthesis of cyclin A and movement from G1 to S (Brown arrow). Black arrows 
– binding / release. : Phosphorylation.  Transcription.  Binding/releasing.  Promotion of 
DNA synthesis. Blue – cyclins. Green – MAPKs. Pink – Transcription factors. Purple – inhibitors.   
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stimulation (Alt et al., 2000). With increasing levels of cyclin A, maximal activity of cyclin E, 

and nuclear export of cyclin D, the cell transits the G1/S boundary. 

1.2.2.3 S/G2/M 

 

Once critical levels of cyclin E have been reached in G1ps, the cell undergoes an 

irrevocable commitment to division (Zetterberg and Larsson, 1985; Campisi et al., 1982a) 

where even if the mitogenic stimulation that promoted division ceases, the cell will 

continue the process of division (Zetterberg et al., 1995). In late G1, CDK2 is bound to 

cyclin E and promotes cyclin A transcription (Ekholm and Reed, 2000). However, once in 

S-phase, cyclin A replaces cyclin E as the CDK2 regulator (Fung and Poon, 2005), which 

then subsequently promotes S-phase progression and degradation of cyclin E (Ekholm 

and Reed, 2000).  

 

Cyclin B synthesis begins during the S-phase, promoted indirectly by E2F (Zhu et al., 

2004) and continues through G2, but it is localized in the cytoplasm, preventing its activity 

(Pines and Hunter, 1991). The nuclear import of cyclin B occurs constitutively, but it is 

actively exported from the nucleus when its activity is not required (Molinari, 2000; Hagting 

et al., 1998). The phosphorylation of cytoplasmic cyclin B by MAPKs (Walsh et al., 2003) 

promotes its translocation into the nucleus while simultaneously inhibiting its export 

(Molinari, 2000; Hagting et al., 1998). As nuclear cyclin B levels begin elevating, the cell 

continues through M and divides to produce two daughter cells (Geley et al., 2001; Sigrist 

et al., 1995).  

1.2.2.4 Mitotic exit 

 

Upon completion of M-phase, the cell must commit itself to one of several states: 

resumption of G1 and the continuation of the cell cycle, temporary withdrawal from the cell 

cycle and entry into quiescence, permanent withdrawal due to replicative senescence or 

apoptosis, or permanent withdrawal to begin differentiation. Terminal differentiation, 

quiescence and senescence are similar as they are all growth arrested states with higher 

CDKI activities and elevated levels of hypo-phosphorylated Rb (Pajalunga et al., 2007; 
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Lowe and Sherr, 2003). In addition, several levels of redundancy exist in the mechanisms 

that promote M-phase exit (Buttitta and Edgar, 2007). 

 

Several reversible events keep the cell in a state of quiescence if it is required. The 

presence of a functioning APC with the cdh1 adaptor is capable of binding 

hypophosphorylated Rb, inhibiting its ability to be phosphorylated, and promoting the 

destruction of p21- and p27-specific ubiquitin transferases (Binne et al., 2007). With p21 

and p27 levels elevated, the cell will be unable to enter G1. Rb is also capable of inducing 

chromosomal rearrangements through histone transferases that repress targets of the E2F 

transcription factor (Frolov and Dyson, 2004). It has also been mooted that in mammalian 

cells there are certain repressor complexes that actively promote the quiescent phenotype 

(Litovchick et al., 2007; Korenjak et al., 2004). While similar events take place in 

senescent cells, the DNA damage pathways are also activated, which promotes the 

formation of heterochromatic foci and senescent gene expression, such as the DNA 

damage protein p53 binding protein 1 (53BP1) (Pazolli and Stewart, 2008; Bartkova et al., 

2006; Campisi, 2005a; Campisi, 2005b; Narita and Lowe, 2005). 

1.3 The satellite cell cycle 

 

In vivo, skeletal muscle myoblast cells fuse together to form long fibers of 

multinucleated myotubes; aggregating into the structures known as myofibrils. The cells 

that maintain the myoblast levels for growth and repair of the muscle tissue are known as 

satellite cells, due to their physiological location between the basal lamina and the 

sarcolemma of the myofibril (Collins, 2006; Mauro, 1961), i.e. they are ‗satellites‘ to the 

main muscle fiber. In comparison to myoblasts, satellite cells are myogenic-lineage 

negative, displaying few myogenic markers, and are comprised mainly of a nucleus with 

very little cytoplasm (Dhawan and Rando, 2005; Charge and Rudnicki, 2004).  

 

In vivo, satellite cells exist in a quiescent growth-arrested state awaiting proliferative 

signals to resume the cell cycle, or inductive signals to begin differentiation. Once 

proliferative mitogens are detected by the cell, it resumes proliferation. Withdrawal of such 

agents will cause the cell to cease proliferating, so long as the cell has not reached the 
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restriction point which, as mentioned earlier, is located at some point before the entry of 

the cell into S-phase (Zetterberg and Larsson, 1985).  

 

When a myoblast has committed itself to myogenic differentiation, a different paradigm 

of exit is employed. The inhibitor of differentiation (Id) negatively regulates the muscle-

specific transcription factors MyoD and myogenin through sequestration (Benezra et al., 

1990a; Benezra et al., 1990b). Its levels are promoted by mitogenic stimulation, but are 

also inhibited by their withdrawal (Walsh and Perlman, 1997). Thus, the presence of Id 

maintains a division-ready phenotype and its downregulation is required for differentiation 

as it is well known that differentiation and proliferation are mutually exclusive cell states 

(Müller et al., 1999; Olsen, 1992). This promotes elevation of the levels of MyoD, followed 

by myogenin (Walsh and Perlman, 1997). An increase in MyoD activity in part promotes 

the elevation of p21 and p27 activity (Liu et al., 2004; Walsh and Perlman, 1997). These 

levels are kept elevated even in mitogen-plenty environs as both p21 and p27 exhibit 

positive feedback as they stabilize their own transcription factors (Walsh and Perlman, 

1997). With the cell cycle machinery highly repressed and muscle-specific transcription 

factors highly active, the cell will then commit itself to myogenic differentiation. 

 

The C2C12 mouse satellite cell line has regularly been used in the experimentation of 

the muscle stem cell cycle, including its entry and exit (Jones et al., 2005; Dhawan and 

Rando, 2005; Koh et al., 1993). C2C12 cells are therefore commonly used as an in 

vitrosatellite cell model although they were initially derived for the study of muscular 

dystrophy. The line ultimately, however, became a model for many other studies of muscle 

and satellite cell behaviour (Yaffe and Saxel, 1977), as well as stem cell behaviour. The 

C2C12 line is an immortalized satellite cell line where cells are continuously proliferative, 

given the correct mitogenic stimulus (Blau et al., 1985) and upon subjection to mitogen 

withdrawal or contact inhibition, myoblasts terminally differentiate and fuse into contractile 

myotubes. (Buttitta and Edgar, 2007) 

1.4 Systems Biology 

 

The cell cycle is an exceedingly complex and intricate system, consisting of hundreds 

of effectors working in concert to drive the cell cycle forward (Kaizu et al., 2010; Kohn, 
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1999). Due to this intense level of interactivity, the system is intrinsically complex and can 

produce situations or outputs that may seem counter-intuitive when looking at superficial 

structure. Top-down systemic analyses, such as large-scale network analysis or whole-

genome expression profiles for this system, have been unattainable until relatively recently 

due to the lack of appropriate technology (Gilbert et al., 2006).  

 

Large-scale networks are, however, generally considered to approximate a ―sum-of-

parts‖ system where simple interactions are successively modelled mathematically and 

combined to obtain a final, complex system (Tyson et al., 2003; Kohn, 1999). When 

derived in this way, these models may be analysed both singly and in concert. Models are 

thus constructed using equations and ―viewed‖ using mathematical modelling software. 

The equations most often used for modelling of biological systems are ordinary differential 

equations (ODEs) with each equation representing the rate of change of a particular 

species. Parameters, constants, variables and kinetics, derived both empirically and from 

the literature, may be utilized to construct ODEs. Such ODEs are derived in the form: 

indicating that the change in substrate (or x) over time is a function dependent on the initial 

values of substrate, the parameters (p) of the reaction kinetics, and the point in time (t) the 

measurement was made (Klipp et al., 2009). The parameters of a given reaction, for 

example, may include the kcat and the KM values of the given reaction. Creating a set of 

ODEs for a network of reactions provides a means for solving the system numerically 

using computational solvers.  

 

Following model construction, the calculation of the responsiveness of a cascade to 

input signal is a useful measure in the elucidation of the cascade‘s behaviour in response 

to a stimulus. Kholodenko et al. (1997) provided a means of mathematically modeling the 

effects of signal upon a target to investigate pathway response. This ―response co-

efficient‖ was defined as the change in target concentration due to a 1% change in signal 

concentration: 
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Thus, the change in the concentration of S will result in amplification (or dampening) in 

the concentration of T by a factor of R. This particular value describes the total 

responsiveness of an entire pathway. However, this global responsiveness arises as a nett 

response of all the local responses at each level of the pathway (Kholodenko et al., 1997). 

The local responsiveness for any level i, if the concentrations of effectors of prior levels 

remain constant, is given by: 

 

As the global response co-efficient, the overall response from the original signal to final 

target over a linear pathway, arises as a result of its constituent local response co-

efficients (Kholodenko et al., 1997), equation 2 may then be rewritten as the combined 

products of the local responses at each cascade level and may be calculated as follows: 

 

The response co-efficient of a branched pathway is simply the sum of the response co-

efficients of all the independent linear branches of that pathway (Kholodenko et al., 1997). 

i.e: 

 

where si and ti are the signal and target respectively for the independent branches. 

 

A response co-efficient greater than one implies that the target is being amplified at a 

rate greater than signal increase. A response co-efficient equal to one implies that the 

target is being amplified at an equivalent rate to signal, and a response co-efficient less 

than one, but greater than zero, implies that the target is being amplified at a slower rate 

than signal. When the response co-efficient is 0, the target is unaffected by any change in 
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signal and any response co-efficient less than 0 implies that the target is being dampened 

by an increase in signal (Kholodenko et al., 1997). The response co-efficient of a pathway 

may then be used as a tool to investigate further mechanisms within the pathway. For 

instance, highly responsive pathways are more likely to be ultrasensitive and display 

switch-like behaviour (Kholodenko, 2000). 

1.4.1 Models 

 

Computational models may be very generally divided into two categories: core models, 

and realistic models. Core models represent a system with simplified kinetics, rate 

equations, and parameters (Klipp et al., 2009). The usefulness of such models lies in their 

ability to elucidate underlying patterns of behaviour that are present within the structure of 

a system. For example, initial in silico core modelling predicted the presence of 

ultrasensitivity within the MAPK cascade (Huang and Ferrell, 1996). This observation was 

then verified in situ through experimentation on Xenopus laevis oocyte extracts. In these 

experiments, the activity of p42 MAPK in vitro was shown to be ultrasensitive to its 

upstream activator Mos (Huang and Ferrell, 1996).  

 

The models generated for the cell cycle and MAPK pathways have ranged from the 

quite simple (Goldbeter, 1991) to the very intricate (Novák and Tyson, 2004) and may use 

equations for changes in metabolite concentrations that are generic across species 

(Csikász-Nagy et al., 2006) (Table 1.1). However, as more metabolites or effectors are 

added to a pathway, the more complex such models become. Greater pathway complexity 

tends to lead to increasingly difficult interpretations and predictions. As networks become 

increasingly larger, there is also a correspondingly larger amount of cross-talk between the 

components of the network; where the output of one pathway is the input of another, or 

where one pathway regulates the activity of another (Bray, 1995). Although models may 

be constructed modularly through component pathways models (Novák et al., 2007), due 

to cross-talk the output of such models may demonstrate emergent, rather than linear 

hierarchical, behaviour. This indicates that a network may be more than merely the sum of 

its parts (Bhalla and Iyengar, 1999). 
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1.4.1.1 Cell cycle models  

 

The cell cycle is frequently studied, both in vitro and in silico, as a number of 

physiological disorders, such as cancer, arise from its dysfunction (Schubbert et al., 2007). 

Initially it was thought that cellular growth and division (i.e: DNA replication) were 

coordinated via a common mechanism (Harvey, 1940). However, cells were shown to 

attempt division even when their nuclei were removed (Hara et al., 1980). With this 

observation, studies into the cell cycle focused on how anuclear components, such as 

cyclins and CDKs, were able to co-ordinate division.  

 

Tyson (1991) modelled cyclin synthesis, CDK pairing and CDK phosphorylation in an 

attempt to develop a mathematical model to describe the aforementioned observed 

behaviours. The model was highly simplified given what was known at the time. 

Parameters for the major metabolites, the catalytic rate constants and Michaelis-Menten 

constants, were unknown. Values for these unknowns were, however, tailored to produce 

outputs that matched in vitro data. For instance, the cycling of M-phase promoting factor 

(MPF, the factor believed to have the most significant impact on the cell cycle at the time), 

between active and inactive forms was assigned a period of 35 minutes. Although the 

model mainly focused on MPF autocatalysis and degradation, it revealed that the rate of 

Table 1.1: Mathematical models of the cell cycle and MAPK cascades in chronological order 

Reference Year Purpose Type 
Number of 
Reactions 

Goldbeter 1991 Cyclin activity Core 6 
Tyson 1991 Cyclin activity Realistic 9 

Huang and Ferrell 1996 ERK ultrasensitivity Core / Realistic 11 
Aguda and Tang 1999 Restriction point Core 28 

Kholodenko 2000 ERK cascade Realistic 10 
Tyson and Novák 2001 Cell cycle Realistic 8 

Heinrich et al. 2002 Signal transduction Core 8 
Novák and Tyson 2004 Cell cycle Realistic 18 

Hornberg et al. 2005 MAPK cascade Core 8 

Srividhya and Gopinathan 2006 Cell cycle Core 8 

Csikász-Nagy et al. 2006 Cell cycle Core 13 
Sundaramurthy et al. 2009 MAPK network Realistic 20 

Lim et al. 2009 ERK feedback Realistic 20 
Kaizu et al. 2010 Cell cycle Realistic 732 
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cyclin synthesis, rather than the activity of MPF, had a greater impact on the period of the 

cell cycle.  

 

Numerous models of the cell cycle describing various particulars of cell growth and 

division, such as the link between cell size and division (Yang et al., 2006) or the 

restriction point (Aguda and Tang, 1999), have subsequently been developed (Table 1.1). 

Common to many of these models, however, is that they do not include MAPK entry into 

the cell cycle. Similarly, many models of MAPK pathways do not extend into the cell cycle 

(Sundaramurthy et al., 2009; Hornberg et al., 2005; Heinrich et al., 2002) In order to 

develop a more detailed understanding of how extracellular signalling is able to control the 

cell cycle, expanded models that link growth factors through signalling cascades to the cell 

cycle itself need to be developed. 

 

1.4.1.2 MAPK models 

 

MAPK cascades have been extensively modeled to more fully understand the 

mechanisms through which extracellular signal may be transduced to downstream targets. 

A common theme among the MAPK cascades is the capacity to promote switch-like (or 

ultrasensitive) behaviour from a graded signal (Huang and Ferrell, 1996). Michaelis-

Menten enzymes require an 81-fold increase in stimulus to go from 10% to 90% Vmax, 

while an ultrasensitive enzyme requires less, and a subsensitive enzyme more (Goldbeter 

and Koshland, 1981). Enzyme co-operativity normally imparts an ultrasensitive response, 

but the effect may also arise due to inter-converting enzyme cycles operating at near 

saturation. Ultrasensitivity generated under such conditions is denoted as being ―zero-

order‖ (Goldbeter and Koshland, 1982). Huang et al. (1996) investigated such zero-order 

ultrasensitivity within the ERK MAPK cascade; both in silico and in vitro. The in silico 

model was comprised of a cascade in which each level is modeled as a two-step dual-

phosphorylation of the MAP kinases (Fig. 1.5). 

 

The model was very robust and produced similar ultrasensitive responses over a large 

range of assumed kinetic values. Of importance, the entire cascade behaved like a single 

co-operative enzyme. As with the initial subunit of a co-operative enzyme, the initial kinase 
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(MAPKKK) displayed a hyperbolic activation profile under the influence of input. Each 

subsequent kinase, however, like subsequent subunits of a co-operative enzyme, 

displayed the sigmoidal activation profiles indicative of an ultrasensitive mechanism. This 

ultrasensitive behaviour was found to be extremely sensitive to the total concentrations of 

the effectors, indicating that zero-order conditions were vital to overall pathway 

responsiveness (Huang and Ferrell, 1996).  

 

The model similarly demonstrated that a two-step, rather than a single-step, dual-

phosphorylation was important. To elicit a zero-order ultrasensitive response from a single-

step phosphorylation cascade required biologically implausible kinase concentrations. A 

comparison of kinase substrate concentrations and kinase KM values found that the 

substrate concentrations, of necessity, must be relatively higher than the KM values, as 

would be expected of zero-order systems. All the predictions of the model were validated 

in vitro through observation of the equivalent of the ERK cascade, p42 MAPK, in Xenopus 

laevis egg extracts (Huang and Ferrell, 1996). 

 

Figure 1.5: The Huang et al.(1996) model of ERK ultrasensitivity. Mitogens, through E1, activate 
MAPKKK, which in turn phosphorylates MAPKK sequentially to MAPKK-P and MAPKK-PP. 
Similarly, MAPK-PP then sequentially phosphorylates MAPK to MAPK-P and MAPK-PP. MAPK-
PP, as the final MAPK cascade kinase then elicits an output. All the kinases are dephosphorylated 
at each step by specific phosphatases. 
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Kholodenko (2000) found several problems with the Huang and Ferrell(1996) model. 

During the in vitro validation of the model, Huang and Ferrell (1996) showed that 

amplification diminished down the cascade chain with p42 MAPK being amplified by signal 

input far less than the amplification of its effector kinase MEK (Fig. 1.5, MAPKK) over the 

same stimulus range, contrary to the known responsiveness of MAPK cascades to signal. 

Kholodenko (2000) intimated that embedded feedback within this pathway was capable of 

increasing pathway responsiveness by approximately seven-fold. Notably, feedback is 

present only in whole Xenopus egg cells, not egg extracts (Ferrell and Machleder, 1998), 

and therefore no feedback was present in the original Huang and Ferrell (1996) model. 

Kholodenko (2000) then constructed a model that was similar to the Huang and Ferrell 

(1996) model, which included feedback from the output of the model to the input (Fig. 1.6). 

 

When the Kholodenko (2000) pathway was modeled without feedback, it quickly 

resulted in an effectively inactive state after removal of stimuli. However, with positive 

feedback, transient signal reduction over the switch-point between the active and inactive 

stable steady states did not immediately affect the pathway. Negative feedback, however, 

promoted oscillatory behaviour in the model under constant signaling conditions. With 

either the presence or absence of positive or negative feedback, the model maintained its 

ultrasensitive characteristic. However, with both feedback and ultrasensitivity, a small 

change in feedback strength was capable of destabilizing a static activated or inactivated 

steady state. While Kholodenko (2000) did not validate the model in vitro, subsequent 

experimentation has provided evidence for the presence of embedded feedback loops in 

the MAPK cascade (Vera et al., 2010). 

 

Hornberg et al. (2005) constructed a core model of the MAPK pathway to investigate 

interplay between the kinases and phosphatases within the pathway. The model was 

based on the ERK MAPK cascade of a slowly-cycling receptor and three single-step dual-

phosphorylation cycles. This model (Fig. 1.7) was used to generate predictions about 

signaling behaviour, which were then verified in vitro. The Hornberg et al. (2005) model 

demonstrated several important characteristics. Firstly, although the kinases were 

modeled as starting with low levels of active kinases, once the model reached a steady 

state under minimal mitogenic stimulation, the levels of active kinases were higher than 

their initial values. Secondly, while these steady-state levels were very low, their basal 
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activation suggested that, even under negligible signaling conditions, there was a low but 

constant presence of active effector kinases capable of responding faster to stimuli than a 

completely inactive cascade (Hornberg et al., 2005). 

 

It was originally predicted that phosphatases and kinases operate with equivalent 

efficacy, but with an opposite sign (Kahn and Westerhoff, 1991). Indeed, the Hornberg et 

al. (2005) model demonstrated through metabolic control analysis that, as expected, the 

kinases impart positive control on enzyme activation, while the phosphatases impart 

negative control. However, the absolute overall control on activation was not equivalent. 

To investigate this control, the model was modulated through the use of inhibitors. 

Phosphatase and kinase activity was modulated by lowering the Vmax of the kinases and 

increasing concentrations of a simulated competitive inhibitor of the phosphatases. Under 

Figure 1.6: The Kholodenko (2000) model of negative feedback. Akin to the Huang et al. 
model (1996) model, each cascade is phosphorylated by the preceding active kinase and 
dephosphorylated by specific phosphatases. However, the activation of MAPK-PP in turn 
leads to the downregulation of the first reaction, causing MKKK to be phosphorylated with less 
efficacy. 
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these conditions, the model demonstrated that the kinases controlled downstream signal 

amplitude, as inhibition thereof only lowered X3P levels, while the phosphatases controlled 

both signal amplitude and duration, as their inhibition affected both the level of X3P and 

the length of its activation (Hornberg et al., 2005). A long-standing assumption was that 

kinases were the most important effectors of a cascade and the primary finding of the 

Hornberg et al. (2005) model and experimentation was that the sum of the signal 

amplitude control coefficients tended towards 1, while the sum of the duration control 

coefficients tended towards -1. This finding demonstrated that while phosphatases control 

signal duration more than the kinases the kinases and phosphatases were of equal import 

in a signaling cascade. The predictions of the model were then verified in vitro through the 

investigation and inhibition of the ERK pathway in mouse renal fibroblasts, which showed 

similar effects (Hornberg et al., 2005).  

 

Figure 1.7: The Hornberg et al.(2005) model of signal transduction. A receptor complex slowly 
cycles between inactive (Ri) and active (R) forms under the influence of mitogens. The active 
complex then triggers the activation of a MAP4K (X1  X1P). Each level of the cascade triggers 
the activation of the subsequent downstream kinase, culminating in the formation of X3P. Each 
active kinase is also inactivated by specific phosphatases (X1P  X1). 
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Originally, p38 MAPK was isolated and characterized as a stress-activated protein 

kinase (Zarubin and Han, 2005). Modeling of the p38 MAPK pathway has recently been 

performed, but with emphasis on p38‘s activation via stressors, utilizing stress-transducing 

molecules, such as TAB, as activators of p38 (Sundaramurthy et al., 2009). The 

Sundaramurthy et al. (2009) model was constructed to mimic the MAPK network and the 

cross-talk present between the MAPK families (Fig. 1.8). While the ERK pathway was 

modeled as being activated solely by mitogen signal transducers, the p38 and JNK 

pathways were modeled as being activated primarily by stress signal transducers. The 

primary findings of the model were that transient activation of ERK5, JNK1 and p38β 

became sustained due to the two-way cross-talk between the pathways while the 

sustained activation of JNK2/3 and p38δ were unaffected by the presence of cross-talk 

within the network. Similarly, ERK5 activation was unaffected by the activation or 

inactivation of the other cascades due to their being no cross-talk to ERK from their 

activators. The main hypothesis of Sundaramurthy et al. (2009) was that systems were 

better represented if adjacent pathways and their potential cross-talk interactions are 

present within a network. While p38‘s activation via stressors and its interaction with other 

pathways has been investigated, a gap currently remains in the computational modeling 

literature on the mechanism through which p38 is activated via growth factor stimulation. 

Figure 1.8: The Sundaramurthy et al. (2009) model of MAPK cross-talk. The ERK5, p38 and JNK 
pathways are represented as a network with crosstalk (C) between the pathways. In this model ERK5 is 
activated solely by mitogenic stimuli while the p38 and JNK cascades are activated primarily by stress 
signal transducers.  
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1.5 Aims 

 

This project was initially undertaken with two distinct yet interconnected goals. The first 

was to elucidate events within the mouse C2C12 cell cycle in a traditional ‗wet-lab‘ 

approach, and the second was to model computationally these findings in a ‗dry-lab‘ 

approach. The wet-lab experimentation included  

 

1.) Clarification of the C2C12 cell cycle 

 

This element of the thesis involved the clarification of the lengths of the G0 and G1 

phases in the C2C12 cell cycle. After induction of growth-arrest through serum 

deprivation treatment the following was determined:  

 

a.) The length of time for a cell to re-enter the cell cycle from a growth-arrested state 

 

b.) The location of the R-point through addition of cycloheximide to C2C12 cells at 

different time points in G1, followed by FACS analysis several hours later, to 

determine if the cells re-entered G0 

 

2.) Assaying the effect of the inhibition of p38 on the C2C12 cell cycle  

 

This part of the thesis entailed the use of SB203580 as a potential agent to induce 

growth arrest. To clarify if the growth arrest induced was one of quiescence a panel of 

quiescence-specific markers were tested upon the arrested populations. 

 

The dry-lab experimentation included: 

 

3.) Modelling the p38 MAPK pathway via mitogenic stimulation 

 

Many models have been developed for the inner-workings of the cell cycle but none 

have fully realised the method through which this mechanism becomes activated. 

Therefore, the third aim of this thesis was to construct a model of the p38 MAPK 
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pathway that could, in future, be used as a front-end regulatory mechanism for the cell 

cycle. The p38 MAPK pathway had not yet been specifically modelled mathematically 

under the effects of mitogenic stimulation. Therefore, a de novo formulation of a model 

of the p38 MAPK pathway was necessary and included: 

 

a.) The effect of SB203580 on the activity of p38 

 

b.) Exploration of the model to describe pathway behaviour due to the structure of the 

pathway 

 

c.) Attempts to validate the model with in vitro data 
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Chapter Two – Investigation of the C2C12 cell cycle 
 

2.1 Introduction 

 

Previous studies have shown that asynchronous C2C12 populations require 

approximately 12 hours to undergo one population doubling (Rossi et al., 1997) and a 

growth-arrested population requires approximately 8 hours to enter the S-phase (Tintignac 

et al., 2000). However, no information on the position of the R-point within the C2C12 cell 

cycle has yet been published. In the 3T3 primary culture murine embryonic fibroblast line, 

it was determined that the restriction point lies most likely 2 to 3 hours prior to the inception 

of DNA synthesis in S-phase (Campisi et al., 1982b).  

 

In order to elucidate the R-point position, a synchronous population of C2C12 cells is 

required and there are many methods, both in vivo and in vitro, capable of promoting cell 

cycle exit (Collins et al., 2009; Gillespie et al., 2009; Donati et al., 2005; Gredinger et al., 

1998; Lassar et al., 1994). A relatively inexpensive method involves culturing the cells for 

several hours in serum-depleted media, thereby limiting mitogenic stimuli (Fujita et al., 

2010), while another method exposes cells for 30 – 36 hours to a 1% (v/v) foetal calf 

serum growth medium that has been methionine-depleted to limit protein synthesis 

(Kitzmann et al., 1998). Serum deprivation allows cells to both exit G1 and return to G0 as 

well as allowing cells past the R-point to complete division and reversibly enter G0(Hlaing 

et al., 2002). However, if exposed to serum-free media for too long, this method is capable 

of inducing two other irreversible states of G0, namely differentiation through 

autocrine/paracrine signaling (Mercer et al., 2005; Wu et al., 2000b) and apoptosis 

(Kummer et al., 1997). While the relative low cost of this method will allow a good 

approximation of the location of the R-point to be determined, a more effective method of 

growth-arrest should ideally be employed to ensure the cells exit into G0 quiescence and 

not apoptosis or differentiation.  

 

Cycloheximide (CHX) is a bacterially derived protein that inhibits protein synthesis by 

binding directly to the ribosome and preventing polypeptide elongation (Stöcklein and 
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Piepersberg, 1980; Trakatellis et al., 1965; Siegel and Sisler, 1964). It has been shown to 

arrest proliferating cellular populations if applied to the cells before the R-point has been 

reached (Zetterberg and Larsson, 1985). Those cells beyond the R-point will continue 

through the cell cycle. The molecule SB203580 is also capable of inducing growth arrest 

through the specific inhibition of p38 as it is known to regulate both the proliferative (Jones 

et al., 2005) and differentiation (Gredinger et al., 1998) pathways. Using the MM14 satellite 

cell analogue line Jones et al. (2005) demonstrated that the inhibition of p38 α/β by 

SB203580 was sufficient to cause cells under mitogenic stimulus to cease proliferation and 

differentiation. Additionally, the presence of an SB203580-resistant mutant of p38 caused 

cells to proliferate during mitogenic stimulation even in the presence of SB203580. An 

important aspect of the action of SB203580 was that cells treated by it are capable of re-

entering the cell cycle upon its removal (Jones et al., 2005; Kang et al., 2005). 

 

As cells adopt the different states of the cell cycle, a number of molecules are 

expressed that may be used as markers to identify these states. In order to determine 

whether a cellular population has entered into a quiescence-specific growth-arrested state, 

a several markers were employed to determine the specific cell cycle state. Pertinent to 

the C2C12 cell line, MyoD, sphingomyelin, and the monoclonal antibody SM/C-2.6 were 

used to determine if a population exists in a quiescent state. 

 

MyoD is a very well characterized myogenesis-commitment transcription factor that 

controls the expression of many muscle-specific genes and its induction is sufficient to 

cause other cells, such as fibroblasts, to transdifferentiate into the myogenic lineage 

(Tapscott, 2005). Myoblast progenitors are induced to commit to myogenesis through the 

activities of various signals such as the wingless and sonic hedgehog proteins 

(Münsterberg et al., 1995) which upregulate the activities of several myogenic proteins 

including, amongst others, the MyoD family of transcription factors (Lassar and 

Münsterberg, 1996). Upon exposure to differentiation stimuli MyoD is specifically directed 

into the nucleus (Vandromme et al., 1994) where it coordinates the expression of muscle-

specific transcripts such as myogenin and MRF-4 (Tapscott, 2005). When there are no 

explicit differentiation signals, MyoD is then actively exported out of the nucleus (Sun et 

al., 2008). The nuclear activity of MyoD is coordinated, in part, through phosphorylation by 

p38. This phosphorylation both promotes the nuclear import of MyoD (Vandromme et al., 
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1994) and the capacity of MyoD to bind to its DNA promoter region (Gillespie et al., 2009). 

Therefore, a quiescent cell will display cytoplasmic MyoD, while an activated cell will 

display nuclear MyoD. 

 

Lipids have been implicated as being important molecules for signaling in various 

cellular pathways, such as myoblast fusion and cytokinesis (Donati et al., 2005) and it has 

been demonstrated that sphingomyelinis an integral molecule for signaling during 

quiescence (Nagata et al., 2005). In C2C12 cells, sphingomyelin forms compact micro-

domains, known as rafts,on the cell surface of quiescent cells to assist in molecular signal 

aggregation. These rafts are themselves bioactive as sphingomyelin metabolic products, 

such as ceramide, are involved in proliferation, apoptosis, and differentiation signaling 

processes (Donati et al., 2005; Nagata et al., 2005). Sphingomyelin is metabolized by 

phospholipase A2, which is itself activated by p38. Hence, upon p38 activation, the levels 

of sphingomyelin will drop (Jones et al., 2005). It is normally difficult to detect lipids directly 

in situ and they are normally detected through homogenization of cellular material (Yamaji 

et al., 1998). However, lysenin, a lipid binding protein from the earthworm Eisenia 

foetida,is capable of specifically binding sphingomyelin, allowing its presence to be 

determined through immunocytochemical methods (Yamaji et al., 1998). 

 

The monoclonal antibody, SM/C-2.6, recognizes an epitope present solely on 

quiescent satellite cells. The antibody does not non-specifically bind other common 

myoblast quiescence protein markers, such as CD34 and M-cadherin (Fukada et al., 

2004). Cells isolated through fluorescence-activated cell sorting (FACS) using SM/C-2.6 

from homogenized tissue samples ex vivo were capable of division and formation of new 

myofibrils both in vivo and in vitro. Furthermore, cells expressing SM/C-2.6 concurrently 

express the truncated CD34 isoform, itself a marker of quiescence(Cossu and Molinaro, 

1987; Campion, 1984). 

 

A proper understanding of the cell cycle is necessary for the development of a model that 

accurately reflects the behaviour of the dividing cell. The fine details of the C2C12 cell cycle, 

such as the position of the R-point, remain undetermined. To facilitate further 

understanding of the cell cycle, experiments were undertaken to determine the position of 
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the R-point, and the efficacy of using the p38 inhibitor SB203580 to modulate the entry into 

the cell cycle.  
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2.2 Materials and Methods 

 

2.2.1 Cells and culture 

 

C2C12 cells were donated by the CapeHeartCenter of the University of Cape Town. The 

C2C12 cell line (Blau et al., 1985) is a post-replicative crisis diploid sub-clone of the C2 line 

originally developed by Yaffe and Saxel (1977) from isolated myogenic satellite cells 

(Mauro, 1961). All cells were cultured under sterile conditions from passages 10 to 25 and 

were kept at 37.5oC under 5% CO2 in a humidified incubator during experimentation or, for 

long-term storage, were kept under liquid nitrogen at -196oC.     

 

2.2.2 General Reagents 

 

2.2.2.1 Dulbecco‘s Modified Eagle‘s Medium (DMEM): (pH 7.3) 

The contents of 1 vial of DMEM (Sigma-Aldrich, D5648) was added to deionized water 

(dH2O) (900 ml) and stirred until dissolved. Sodium hydrogen carbonate (3.7 g) was then 

added and stirred until dissolved. The pH was then lowered to 7.3 with dilute hydrochloric 

acid and the solution brought to a final volume of 1 L with dH2O.  

 

2.2.2.2 Dulbecco‘s Phosphate-Buffered Saline (PBS): (8 mM Na2HPO4, 2 mM KH2PO4, 

140 mM NaCl, 2.7 mM KCl, 0.5 mM MgCl2, 0.9 mM CaCl2, pH 7.2)  

Sodium chloride (16 g), potassium chloride (0.4 g), disodium hydrogen orthophosphate 

(2.3 g) and potassium hydrogen phosphate (0.4 g) were dissolved in dH2O (1600 ml). 

Calcium chloride dihydrate (0.264 g) was dissolved in dH2O (200 ml) and magnesium 

chloride hexahydrate (0.2 g) was dissolved in dH2O (200 ml). All three solutions were 

autoclaved separately and then combined when cooled under sterile conditions. 
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2.2.2.3 Growth media: (10% [v/v] Foetal calf serum (FCS), 2% [v/v] penstrep, pH 7.4) 

FCS (100ml) and a penicillin (10000 U.ml-1)/streptomycin (10 mg.ml-1) mixture (20 ml) were 

thoroughly mixed with 1 L DMEM before sterilization via UV light for 30 minutes and ultra-

filtration through a 0.22 μm filter. 

 

2.2.2.4 Serum-free media: (2% [v/v] penstrep, 4 mM L-glutamine, pH 7.4) 

A penicillin (10‘000 U.ml-1)/streptomycin (10 mg.ml-1) mixture (1 ml) was thoroughly mixed 

with filter-sterilized DMEM (48 ml). 

 

2.2.2.5 Cycloheximide (CHX): (196.8 mg.ml-1 primary stock, 10 mg.ml-1 secondary stock) 

CHX (49.2 mg) was diluted in DMSO (250 μl) and vortexed vigorously to prepare the 

196.8 mg.ml-1 primary stock. The 10 mg.ml-1 secondary stock was made by diluting the 

primary stock (2.5 μl) in dH2O (50 μl). A working concentration of 10 μg.ml-1 was used for 

all experiments. 

 

2.2.2.6 Vindeløv Nuclei Extraction Buffer Solution: (250 mM sucrose, 40 mM trisodium 

citrate, 5% [v/v] DMSO) 

Sucrose (1.71 g), trisodium citrate (0.235 g) and DMSO (1 ml) were dissolved in dH2O 

(16 ml) and the solution titrated to pH 7.6 before being made up to a final volume of 20 ml. 

 

2.2.2.7 Spermine Tetrahydrochloride (STHC) solution: (10 mg.ml-1 spermine 

tetrahydrochloride) 

Spermine tetrahydrochloride (0.5 g) was dissolved in dH2O (50 ml). 

 

2.2.2.8 Diluent: (3.4 mM trisodium citrate, 0.1% [v/v] Triton X-100, 1.5 mM spermine 

tetrahydrochloride, 0.5 mM Tris, pH 7.6) 

Trisodium citrate (0.2 g), Triton X-100 (200 μl), Tris (0.012 g) and STHC (10.44 ml) 

solution were dissolved in dH2O (175 ml). The solution was titrated to pH 7.6 and then 

made up to a final volume of 200 ml. 

 

2.2.2.9 Trypsin extraction solution: 

A 0.25% trypsin solution (500 μl) was diluted with Diluent (42 ml) and titrated to pH 7.6. 
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2.2.2.10 Inhibitor solution: 

FCS (500 μl) and 1 mg.ml-1 RNase A solution (500 μl) was diluted with Diluent (4 ml) and 

titrated to pH 7.6. 

 

2.2.2.11 Propidium Iodide (PI) solution: (pH 7.6) 

A 1 mg.ml-1 propidium iodide solution (1040 μl) and STHC solution (290 μl) were mixed 

with Diluent (1170 μl) before being titrated to pH 7.6. 

 

2.2.2.12 Hoechst solution: 

10 mg.ml-1 Hoechst 33342 (Invitrogen) nuclear counterstain (2 μl) was diluted in PBS 

(400 μl).  

2.2.2.13 Antibody/detector preparation 

 

All antibodies and secondary detectors were supplied in solution and were diluted with 

PBS to the values given parentheses. Lysenin (1/1000) was purchased from Sigma-Aldrich. 

Rabbit anti-lysenin (1/200) was purchased from the Peptide Institute. FITC-conjugated 

donkey anti-rabbit-IgG (1/4000), FITC-conjugated donkey anti-mouse-IgG (1/4000) and FITC-

conjugated streptavidin (1/2000) were purchased from Jackson ImmunoResearch. Mouse 

anti-MyoD (1/50) was purchased from BD Biosciences. Biotinylated SM/C-2.6 was a gift 

from Dr. Hiroshi Yamamoto of the University of Osaka. 

 

2.2.3 Flow cytometry 

 

A Beckman-Coulter Epics XL-MCL flow cytometer with a 488 nm argon ion excitation 

laser was employed for the generation of all flow cytometry data. The specific protocols 

employed in the generation of data from prepared samples are detailed in Appendix A. 

Two methods were employed to determine the chromosomal content of the C2C12 cells viz. 

whole cell (Crissman and Steinkamp, 1982) and nuclear extract (Vindeløv et al., 1983b; 

Vindeløv et al., 1983a) cytometry. In both cases, a final concentration of propidium iodide 

of 2.5 µg.ml-1 were used for the analyses (Schutte et al., 1985). 
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2.2.3.1 Whole-cell and nuclear extraction flow cytometry 

 

Whole-cell flow cytometry 

 

Cells were prepared according to a modified version of the method of Crissman and 

Steinkamp (1982). Following harvesting via trypsinization, the cells were pelleted in a 

15 ml falcon tube in a desktop centrifuge for 5 minutes and excess supernatant discarded. 

The cells were then resuspended PBS (1 ml) and the solution centrifuged. The supernatant 

was discarded and the cells resuspended in PBS (1 ml) whereupon ice-cold absolute 

ethanol (2.5 ml) was gently added down the side of the tube while vortexing and the tube 

incubated for 10 minutes on ice. The cells were then centrifuged for 5 minutes and the 

supernatant discarded. The cells were then resuspended in PBS (1 ml) and centrifuged 

again and the supernatant discarded to remove traces of ethanol. The cells were 

resuspended in PI solution (1 ml), incubated at 4oC for 15 minutes and were then run 

through the flow cytometer on the whole-cell settings outlined in Appendix A. 

 

Nuclear extraction flow cytometry 

 

Cellular nuclei were isolated and prepared for cytometric analysis according to the 

method of Vindeløv et al.(1983b). Following harvesting via trypsinization, cells were 

pelleted in a desktop centrifuge for 5 minutes and the supernatant discarded. The pellet 

was then resuspended in Vindeløv nuclei extraction buffer (200 μl) and Trypsin extraction 

solution (450 μl) was added before incubating at room temperature for 10 minutes. 

Inhibitor solution (375 μl) was then added and the mixture incubated at room temperature 

for 10 minutes. PI solution (375 μl) and STHC solution (40 μl) were then added and the 

solution incubated at 4oC for 15 minutes in the dark. Following staining, the nuclei were 

sheared from their cytoplasmic coats through filtration through a cell strainer. The 

prepared nuclei were then run through a flow cytometer according to the settings for 

extracted nuclei detailed in Appendix A. 
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2.2.3.2 Induction of growth arrest 

 

Cells were subjected to three different treatments known to induce growth-arrest: 

serum deprivation, CHX treatment, and SB203580 treatment. Cells for serum-deprivation 

were plated with serum-free media for 16 hours before being harvested for flow cytometric 

analysis. The cells for CHX treatment were treated with 10 μg.ml-1CHX in growth media for 

20 hours before being harvested for flow cytometry (Zetterberg and Larsson, 1985). The 

cells for SB203580 treatment were initially exposed to 40 μM SB203580 in growth media, 

followed by a second dose 16 hours later. Four hours after the second dose, the cells were 

harvested for flow cytometry. The 40 μM double dose of SB203580 was chosen as a 

method of growth arrest as prior work had shown that this was required to inhibit an 

asynchronous population from undergoing DNA synthesis (Van den Heever, 2006).  

 

2.2.3.3 Length of G0/G1 to S 

 

The length of G0/G1 to S-phase was determined using both whole C2C12 cells and 

isolated nuclei of C2C12 cells as mentioned in 2.2.3.1. While whole-cell preparation for flow 

cytometry is cheap, fast and relatively easy, isolation of cellular nuclei removes extraneous 

cytoplasm and may lower non-specific binding of fluorophores (Vindeløv et al., 1983a). 

Cells were plated in growth media and allowed to reach a confluency of 70%. The media 

was then discarded and the cells washed with PBS before being treated with serum-free 

media for 16 hours to induce growth arrest. A control group was harvested at hour 0 that 

represented a population synchronized in a growth-arrested state. All other flasks then had 

growth media reapplied to stimulate proliferation. Cells were harvested every hour from 

hour 5 to hour 14. This procedure was performed for both whole-cell and nuclear-

extraction experiments. 

 

2.2.3.4 R-point position determination 

 

C2C12 cells were synchronized by serum starvation for 16 hours before serum-

containing media was re-applied. This point was called hour 0. Each flask was then treated 
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with a single dose of CHX to a final concentration of 10 µg.ml-1 at hours 6 through 10 and 

all populations were harvested at hour 14 for analysis for flow cytometry as described in 

2.2.3.1 as this was a sufficient length of time for synchronized C2C12 cells to reach S-

phase (Tintignac et al., 2000). Each hour had one replicate, and the experiment was 

performed in triplicate. The experimental scheme is outlined in Table 2.1. 

 

2.2.4 Immunocytochemistry 

 

C2C12 cells were allowed to proliferate to approximately 70% confluency in either 12-

well or 24-well plates before being treated twice with 40 μM SB203580 as a final 

concentration. Control plates that did not receive SB203580 treatment were also prepared. 

Cells were prepared for confocal microscopy as mentioned below 20 hours after final 

SB203580 addition and were analysed on a Zeiss LSM 710 ConfoCor 3 confocal 

microscope. All steps after culturing were conducted at 4oC, including each 5 minute PBS 

wash. Cells were rinsed of excess media with PBS, followed by a 15 minute fixation with a 

4% paraformaldehyde solution (50 µl). Post fixation, cells were washed three times before 

being blocked with 2% donkey serum for 20 minutes. Following blocking, the cells were 

washed three times. 

 

For lysenin staining, the coverslips were incubated for 30 minutes in lysenin solution 

(1:1000, Sigma-Aldrich) before being washed three times. Rabbit anti-lysenin solution 

(1:200, Peptide Institute) was added as primary antibody and incubated for 90 minutes, 

Table 2.1: Experimental scheme for the R-point determination 
 

Hour 

Flask 

A B C D E F 

-16 Add serum-free media 

0 Harvest Change to growth media 

6   Add CHX   

7   Add CHX   

8   Add CHX   

9   Add CHX   

10   Add CHX 

14  Harvest 5 remaining flasks 
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followed by washing four times. Coverslips were then incubated with FITC-conjugated 

donkey anti-rabbit-IgG solution (1:4000, Jackson ImmunoResearch) as a secondary 

detector before being washed five times. In the last wash, Hoechst solution (100 µl) was 

added and incubated with the solution for 5 minutes. After Hoechst staining, a further five 

washes were performed before the coverslips were mounted on slides with fluorescent 

mounting media.  

 

For MyoD staining, mouse anti-MyoD solution (1:50, BD Biosciences) was added as 

primary antibody and incubated for 90 minutes, followed by washing four times. Coverslips 

were then incubated with FITC-conjugated donkey anti-mouse-IgG solution (1:4000, 

Jackson ImmunoResearch) as a secondary detector before being washed five times. In 

the last wash, Hoechst solution (100 µl) was added and incubated with the solution for 5 

minutes. After Hoechst staining, a further five washes were performed before the 

coverslips were mounted on slides with fluorescent mounting media.   

 

For SM/C-2.6 staining, biotinylated SM/C-2.6 solution (1:500, a gift from Dr. Hiroshi 

Yamamoto of the University of Osaka) was added as primary antibody and incubated for 

90 minutes, followed by washing four times. Coverslips were then incubated with FITC-

conjugated streptavidin solution (1:2000, Jackson ImmunoResearch) as a secondary 

detector before being washed five times. In the last wash, Hoechst solution (100 µl) was 

added and incubated with the solution. After Hoechst staining, a further five washes were 

performed before the coverslips were mounted on slides with fluorescent mounting media. 

 

2.2.5 Statistical Analysis 

 

Sample distributions were tested for normality using the Shapiro-Wilk test. Those 

samples that were normally distributed were tested for significance using the parametric 

one-tailed unpaired Student‘s T-test. The samples that were not normally distributed were 

tested for significance using the nonparametric Mann-Whitney U test. All data represented 

graphically will be of the sample mean ± the standard error of the mean (SEM). 
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2.3 Results 

 

2.3.1 Serum deprivation and SB203580 induced C2C12 cells into growth arrest 

 

To synchronize cells, several methods of growth arrest induction were analyzed, 

namely serum deprivation, CHX treatment and SB203580 treatment (Fig. 2.1). Flow 

cytometric analysis revealed that control cells from a normal, untreated population (Fig. 

2.1A) showed 67 ± 1% of the population in G0/G1, the lowest of all the samples, and 

approximately 33 ± 1% of the population in S/G2/M, the highest of all the samples. The 

serum-deprived cells exhibited 78 ± 8% of the cells in G0/G1 and 20 ± 9% of the 

populations in S/G2/M. The CHX-treated cells showed the least tendency towards growth 

arrest with 71 ± 3% of the populations in G0/G1 and 29 ± 3% in S/G2/M.. The SB203580-

treated populations showed the greatest tendency towards growth arrest with 81 ± 0.5% of 

the populations in G0/G1 and 18 ± 0.1% in S/G2/M. As SB203580 treatment is considerably 

more expensive and time consuming to implement, serum-deprivation treatment was 

initially used as the method of growth arrest induction. 

 

2.3.2 C2C12 cells take 7 to 9 hours to enter S-phase 

 

As the R-point marks the junction between G1 and irreversible commitment to S, it was 

necessary to first determine how long it takes a synchronized population to reach S. The 

length of time of re-entry into S-phase from a growth-arrested state was therefore 

investigated using whole-cell flow cytometry as per 2.2.3.1. 

 

Once cells were subjected to serum-containing media, levels of G0/G1 and S chromatin 

content of the population remained roughly unchanged for 7 hours post serum re-addition 

at 68 ± 2% and 24 ± 1% respectively (Fig. 2.2). After hour 7, however, a significant 

increase in S-phase was noticeable, and by hour 10 there was 47 ± 1% of the population 

was in G0/G1 and 46 ± 1% in S. These results suggest that the population had undergone 

a significant switch from a G0/G1 state and had entered into S-phase 7 hours after the re-

addition of serum.  
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Figure 2.1:C2C12 growth arrest induction. Several treatments were used to induce growth arrest and 
their efficacies compared. Control cells (A) were allowed to proliferate until 70% confluency before 
harvesting. Serum-deprived cells (B) were subjected to mitogen withdrawal for 16 hours before 
being harvested. SB203580-treated cells (C) were SB203580-treated twice in growth media prior to 
harvesting. 10 μg.ml

-1
 cycloheximide was added to growth media and cells were harvested 20 hours 

later (D).E: graph of harvest data. Data presented as mean ± SEM. n=2.  
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Following serum deprivation, cells were induced into a growth-arrested state and a 

substantial proportion of the population were seen to be in S-phase (Fig. 2.2). By hour 5, 

S-phase percentage was lowest at 20%, indicating that most of the population was in 

G0/G1.  

 

The S-phase values found were more elevated than was to be expected of a growth-

arrested population. However, it is also known that ploidy analysis of whole cells imparts a 

high level of background fluorescence (Vindeløv et al., 1983a; Vindeløv et al., 1983b). This 

caused difficulty in the accurate determination of the point of S-phase commitment as 

there appeared to be more cells in S-phase than would be expected of a growth-arrested 

population. To mitigate such background fluorescence the nuclei of the C2C12 cells were 

extracted and their chromatin content re-confirmed as per 2.2.3.1. Cells were growth-

arrested via serum deprivation and re-entry to S-phase upon mitogen stimulation analyzed 

every hour for 10 hours (Fig. 2.3). When compared to an unsynchronized, rapidly 

proliferating population (RPN), synchronized cells (hour 0) were found to have a 

significantly higher G0/G1 content of 88.5 ± 1% and a concomitant significantly lower 

S/G2/M content of 12 ± 1%. These populations were therefore considered growth-arrested. 

* 

* 
* 

* 

* 
* 

# 

# 

Figure 2.2: Length of S-phase re-entry of growth-arrested whole-cells. Cells were serum 
starved for 16 hours. Growth media was then added and the cells were allowed to proliferate. 
The percentage in G0/G1 and S/G2/M was monitored over the next 10 hours. Control cells were 
of an untreated normally proliferative population. Data presented as mean ± SEM. n=3.             
#
: p < 0.05 as compared to Control. *: p < 0.05 as compared to hour 0. 
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Hours 5 through 14 were then compared against hour 0 to see when the first significant 

difference was found in G0/G1 and S/G2/M. The first significant difference was seen at hour 

8 with 84.7 ± 1% of the populations in G0/G1 and 15.6 ± 1% in S/G2/M. Hour 14 culminated 

with G0/G1 levels of 56.2 ± 1% and S/G2/M levels of 44.8 ± 1%.  These results confirmed 

that most C2C12 cells had entered S-phase between hours 7 and 8 post serum re-addition. 

 

2.3.3 The Restriction-point in C2C12 cells lies between hours 6 and 7 

 

To determine the position of the R-point C2C12 cells were growth-arrested via serum 

deprivation for 16 hours. After 16 hours, a control flask was harvested (hour 0) and CHX 

was added once to each flask consecutively over a 10-hour period (Table 2.1). Four hours 

after the last addition of CHX, the remaining flasks were harvested for flow cytometric 

analysis (at hour 14).  If the R-point were yet to be crossed, the addition of CHX would 

cause the cells to exit once again into G0, while those cells beyond the R-point would 

continue through S-phase. When hour 0 (G0/G1: 88.1 ± 1%, S/G2/M: 9 ± 1%) was 
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Figure 2.3: Length of S-phase re-entry of growth-arrested nuclei. Cells were serum-starved for 16 
hours before being changed to growth media. Every hour for 14 hours the cells were harvested 
and their nuclei extracted as described previously to monitor theirG0/G1 and S/G2/M chromatin 
content. RPN: Rapidly proliferating nuclei (Control). Data presented as means ± SEM. n = 3. 
#
: p < 0.05 compared to RPN. *: p < 0.05 compared to hour 0. 
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compared with the unsynchronized rapidly proliferating nuclei (RPN) population (G0/G1: 67 

± 1%, S/G2.M: 33.2 ± 1%), significance was obtained, indicating that the nuclei of hour 0 

were growth-arrested (Fig 2.4).   

 

 

As expected from the data of Figure 2.2, there was no significant difference between 

hours 0 and 6 (G0/G1: 91.7 ± 2%, S/G2/M: 7.54 ± 3%), indicating that the addition of CHX 

was sufficient to induce the proliferating population back into the G0 state. While this may 

seem to contradict Figure 2.1, the CHX in this experiment was used to maintain a state of 

growth-arrest, rather than induce growth-arrest, as was the case in Figure 2.1. At hours 7 

(G0/G1: 83.4 ± 1%, S/G2/M: 17.1 ± 1%) through 10 (G0/G1: 82 ± 4%, S/G2/M: 18.3 ± 4%) 

Figure 2.4: Determination of the position of the Restriction point. Cells were synchronized via serum 
starvation for 16 hours. The cells were then exposed to growth media and CHX added to each 
consecutive flask at the hours indicated, while the RPN population remained in growth media. All 
flasks were then harvested at hour 14 and their nuclei analyzed by flow cytometry. Data presented 
as mean ± SEM. n = 3. Control population representative of a synchronous population 14 hours 
post-synchrony.

#
: p < 0.05 compared to RPN. *: p < 0.05 compared to hour 0. **: p < 0.005 

compared to hour 0. RPN: rapidly proliferating nuclei. Double bars represent discontinuity in the 
data. 

# 
# 

# # 

* 

* 

** ** ** 

** ** ** 
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there was a significant difference when compared to hour 0 (Fig. 2.4), indicating that these 

populations were no longer in a growth-arrested state.  

 

2.3.4 SB203580 inducts cells into a quiescent state 

 

Although SB203580 was shown to induce growth-arrest (Fig. 2.1), it was not clear from 

the data generated if SB203580 induced the cells specifically into a state of quiescence. 

MyoD localization, and the presence of sphingomyelin rafts and the SM/C-2.6 epitope 

were assessed to confirm quiescence.  

 

Control cells were seen to express MyoD in both the cytoplasm (Fig. 2.5A) and the 

nucleus (Fig. 2.5B). However, following treatment with SB203580, MyoD was localized to 

the cytoplasm (Fig. 2.5C, D). Sphingomyelin was absent in rapidly proliferating cells (Fig. 

2.6A). Clearly, the sphingomyelin raft micro-domains had not formed on the outer cellular 

membrane. The SB203580-treated cells, however, do display the capacity to retain lysenin 

(Fig. 2.6B). As the cells were not permeabilized, the cells were retaining lysenin on the 

outer cellular membrane. Finally, C2C12 cells did not display the SM/C-2.6 epitope while 

undergoing proliferation (Fig. 2.7A). When treated with SB203580, the cells cease division 

and begin displaying the SM/C-2.6 epitope (Fig. 2.7B). These results, therefore, indicate 

that SB203580 has inducted the population into a quiescent growth-arrested G0 state. 
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Figure 2.5: Change in localization of MyoD under the effects of SB203580. Proliferating cells 
(A, B)were cultured in growth media and harvested after 3 days.  SB203580-treated cells (C, 
D) were cultured in growth media and treated with 40 μM SB203580 on days 1 and 2 before 
being harvested on day 3. A, B: SB203580-untreated cells. C, D: SB203580-treated cells. 
Green: MyoD. Blue: Hoechst. White arrows: MyoD nuclear localization. Yellow arrows: MyoD 
cytoplasmic localization. Scale bar = 20μm. 
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Figure 2.6: Phase-contrast of sphingomyelin on the surface of quiescent C2C12 cells. 
Proliferating cells (A) were cultured in growth media and harvested after 3 days. SB203580-
treated cells (B) were cultured in growth media and treated with 40 μM SB203580 on days 1 
and 2 before being harvested on day 3.Blue: Hoechst.Green (Arrows):Sphingomyelin rafts. 
Scale bar = 20μm. 

A B 

Figure 2.7: SB203580-treated C2C12 cells display the SM/C-2.6 epitope. Proliferating cells (A) 
were cultured in growth media and harvested after 3 days. SB203580-treated cells (B) were 
cultured in growth media and treated with 40 μM SB203580 on days 1 and 2 before being 
harvested on day 3. Blue: Hoechst nuclear stain. Green:SM/C-2.6. Scale bar = 20μm.  

 

A B 
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2.4 Discussion 

 

The main aim of the wet-lab experimentation was to describe the C2C12 cell cycle more 

fully. While the doubling time of an asynchronous population is known to be approximately 

12 hours (Rossi et al., 1997), the length of re-entry time of a synchronous population into 

S-phase as reported earlier (Tintignac et al., 2000) needed to be clarified with more 

accuracy and the position of the R-point determined. These events were therefore 

investigated using both whole-cell and nuclear-isolation flow cytometry on serum-deprived 

growth-arrested synchronized populations.  

 

A normal proliferative population of C2C12 cells will be asynchronous, with the 

population as a whole being present in all stages of the cell cycle (Evangelisti et al., 2007). 

In order to reproducibly study many events surrounding the cell cycle, a synchronous 

population was required wherein all the cells were at the same point within the cell cycle. 

The activities of SB203580 and CHX, as mentioned earlier, provided a means through 

which this synchronization was achieved. The synchronized cell line provided a platform 

from which further experimentation into the workings of the cell cycle were attempted. 

 

While the methionine-depletion growth arrest method of Kitzmann et al. (1998) was 

sufficient to induce growth-arrest of myoblast cells, it required a much longer time frame 

and a more complex medium than the serum-free medium utilized in the experiments of 

this chapter. The generated data demonstrated that complete serum deprivation, when 

used over a short (16 hour) period, was sufficient to induce cells into a growth-arrested 

state. Although serum deprivation removed mitogens that were present in serum, cells 

themselves are capable of secreting their own mitogens and may have stimulated each 

other in an autocrine and/or paracrine manner to proliferate. In spite of this drawback, and 

given the sufficiently short experimental period, serum deprivation proved to be a capable 

inducer of growth-arrest, if not with the same efficiency that SB203580 has proven to do so 

(Jones et al., 2005; Kang et al., 2005; Gum et al., 1998). 

 

Monitoring of G0/G1 levels in whole cells was hampered by consistently elevated levels 

of cells in S/G2/M even in growth-arrested populations. Intact cells contain mitochondrial 
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DNA and double-stranded RNAs, which will allow PI to intercalate with them. This may 

yield erroneously higher levels of chromatin content being detected in whole cells 

(Vindeløv et al., 1983a; Vindeløv et al., 1983b). The specific cell cycle phase, however, 

may also be determined solely by nuclear chromatin content. With no cytoplasm, potential 

false-positives are discarded, and the nuclear DNA content may be more accurately 

determined. Each nucleus is also less likely to adhere to its neighbours, therefore 

significantly lowering the ability of nuclei to form large clumps that may be detected as 

being an erroneously larger, more complex, single cell (Vindeløv et al., 1983a). 

 

In spite of the S-phase background levels of whole cells (Fig. 2.2), both the whole cell 

data and the extracted nuclei data were in agreement that the onset of S-phase was 

between the 7th and 9th hour post activation in a synchronous C2C12 population.  This data 

is in agreement with previously generated data on S-phase entry of C2C12 cells (Tintignac 

et al., 2000) and the growth-arrest induced was one of reversible growth arrest, as the 

cells resumed their division when mitogenic stimuli were reapplied to them.  

 

In knowing more accurately the length of S-phase re-entry of synchronized nuclei, it is 

possible to estimate the position of the restriction point. It has been shown that 

synchronized cells in other cell lines take several hours to reach the R-point (Zetterberg 

and Larsson, 1985; Campisi et al., 1982c) and that cells may bypass G1ps and enter S-

phase immediately after passing the R-point. Prior work demonstrated that the R-point in 

most lines is likely approximately 2 to 3 hours prior to the initiation of DNA replication 

(Campisi et al., 1982c). As DNA replication does not start immediately upon entry into S-

phase (Takeda and Dutta, 2005), the data generated in this chapter (Figs. 2.2, 2.3) is 

indicative of an R-point lying between hours 6 and 7 in a synchronous C2C12 population. 

 

While the data of Figures 2.2, 2.3 and 2.4 look similar, it need be noted that the 

experiments were conducted differently and that the hours mentioned in the graphs 

represent either the hour harvested (for Figures 2.2 and 2.3) or the hour at which CHX was 

added (Figure 2.4). It was assumed that if the populations used in the generation of Figure 

2.4 were beyond the restriction point, then the population phase composition should be 

similar to hour 14 of Figure 2.3, while if they were not beyond the restriction point then they 

would be of a similar phase composition to hour 0 of Figure 2.3. While this was not the 
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case, a significant difference is nonetheless seen after hour 6 of Figure 2.4. This indicates 

jointly that the populations were beyond the restriction point and that the addition of CHX 

was capable of slowing down the cell cycle, even if it was unable to stop it. 

 

As expected, cells synchronized by serum free media (hour 0) were significantly 

different from their proliferating controls (Fig. 2.4). After hour 0, regardless of time of CHX 

treatment, the cells were kept in culture until hour 14. Therefore, without any treatments, 

by the 14th hour, levels of S/G2/M should be similar to hour 14 from Figure 2.3. While this 

was not explicitly seen in Figure 2.4, the populations before hour 6 were similar to hour 0 

and were therefore deduced to be growth-arrested. The populations after hour 7, however, 

were all similar to one another, but statistically significantly different from hour 0, 

suggesting that they have committed to S-phase. This data therefore indicates that the R-

point in a synchronous C2C12 population must lie at some point after hour 6 but before hour 

7.  

 

The 6 – 7 hour position of the R-point determined in this chapter is in accordance with 

other papers published on the position of the R-point in other lines. Murine fibroblast 3T3 

cells, renal BHK21/C13 cells, renal J1 PyBHK and Nil8 fibroblast cells take approximately 

8 hours to reach S-phase from synchronous growth-arrest (Zetterberg and Larsson, 1985; 

Pardee, 1974) and data from asynchronous populations places the R-point at 2 -3 hours 

prior to S-phase induction (Campisi et al., 1982a). This yields an approximate position of 

the R-point of 6 hours post synchronicity, 2 hours longer than asynchronous post-mitotic 

3T3 cells (Ekholm et al., 2001) and human diploid fibroblasts (Martinsson et al., 2005). The 

R-protein, the hypothetical protein whose increasing concentration or activity throughout 

G1pm is hypothesized to be responsible for the procession past the R-point (Zetterberg et 

al., 1995), is presumed to be labile (Ekholm et al., 2001; Aguda and Tang, 1999; 

Zetterberg et al., 1995). Thus, the increased time required for a synchronous population to 

reach the R-point may be due to the fact that this R-protein has been completely degraded 

during the growth-arrest period and requires this extra time to become concentrated to, or 

as active as, the levels of R-protein in asynchronous cells (Blagosklonny and Pardee, 

2002). 
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The results obtained in Figure 2.4 for the position of the R-point were both expected 

and surprising. Given that all the populations were allowed to proliferate for a total of 14 

hours, if the populations were untreated it would be expected that they would all be similar 

to the percentage of cells in G0/G1 and S/G2/M of hour 14 of Figure 2.3. However, hour 6 of 

Figure 2.2 had similar G0/G1 and S/G2/M percentages to that of hour 0, as would be 

expected of a population that had not yet crossed the R-point and had returned to a G0 

growth-arrested state. Although hours 7 through 10 were not growth-arrested, neither were 

they of a composition similar to an untreated population at hour 14. This data indicates that 

CHX addition at these hours was insufficient to induce growth-arrest, though it was 

sufficient to prolong the cell cycle phases post-R. 

 

Cycloheximide is a powerful protein synthesis inhibitor that blocks synthesis at the 

ribosome itself (Siegel and Sisler, 1964). This means, however, that potentially 

allpathways within the cell will be inhibited to some extent, likely yielding artefactual results 

through unforeseen consequences. A more viable alternative to synchronize cells would 

therefore be a method that is capable of inhibiting as few pathways as possible, without 

promoting differentiation or apoptosis. Since the p38 MAPK pathway has been shown to 

be pivotal in the proliferation of satellite cells and other myoblast progenitor lines (Jones et 

al., 2005), it was necessary to investigate whether the inhibition of p38 in the C2C12 line 

was capable of inducing growth-arrest. SB203580 presented itself as a tool for this 

induction to growth-arrest as it is known to be highly specific to the p38α/β isoforms 

(Davies et al., 2000; Eyers et al., 1999). With SB203580 being highly specific towards its 

target there should be minimal alteration of activity of other pathways within the cell. 

Nonetheless, the high concentration of SB203580 utilized in the experiments of this 

chapter may cause the non-specific inhibition of other targets, such as the TGF-β receptor 

and JNK (Eyers et al., 1999). The IC50 for these are, however, orders of magnitude higher 

than that of p38 at 40 μM each (Eyers et al., 1999). While the high concentration of 

SB203580 may have caused unforeseen effects, the high specificity towards p38 and the 

relatively higher IC50 of its non-canonical targets implies that the data generated is likely 

due to the inhibition of p38 alone. 

 

G0 is a group of several related states, and entry into G0 does not imply which specific 

state is induced. The data generated demonstrated that SB203580 treatment inhibits 



52 
 

proliferation and that the cells were not committed to begin differentiation as nuclear 

localization of MyoD, a requirement of C2C12 cells to begin differentiation (Lassar et al., 

1994; Vandromme et al., 1994), was not observed. The induced state is unlikely to be one 

of senescence as the C2C12 cell line is immortalized and, as such, is more robust to 

senescence (Blau et al., 1985). In addition, no apoptotic nuclei were observed in any 

confocal image frames. This data, in conjunction with the presence of the known 

quiescence markers sphingomyelin and the SM/C-2.6 epitope (Fukada et al., 2004; Yamaji 

et al., 1998) on the surface of SB203580-treated cells, indicated that SB203580 induced 

C2C12 cells specifically into a reversible quiescent state. As a method of quiescence 

induction, SB203580 presents itself as a more efficacious method for long-term induction 

of quiescence than does serum-deprivation. While in the short-term serum-free media 

promotes quiescence, in the medium- and long-term it is known to induce differentiation 

(Fujita et al., 2010).  

 

Future experimentation could be attempted to narrow further down the position of the 

R-point further. Using 40 μM of SB203580 as opposed to CHX may yield more easily 

interpretable data as only a very specific enzyme would be inhibited. In order to overcome 

the problems of non-specificity at these high concentrations, utilizing much lower 

SB203580 concentrations of around 10 μM (Eyers et al., 1999) in primary myoblast culture 

should be able to confirm the observations seen in the C2C12 cell line. In knowing that the 

R-point lies somewhere between hours 6 and 7, ten minute intervals could be investigated 

to more precisely determine its locality.  

 

The efficacy of SB203580 in the induction of synchronicity and the more-detailed 

position of the R-point could then allow for a more-complete understanding of the 

mechanics of the C2C12 cell cycle. The data thus generated could therefore be used in the 

creation of computational models to accurately model behaviour under various conditions. 

This tool would then provide a means of preliminary testing of hypotheses before 

experimental work is conducted.  
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Chapter Three – In silico modeling of the p38 MAPK 
pathway 

 

3.1 Introduction 

 

Traditional biochemistry is the study of biomolecules, usually in isolation from the 

milieu of normal cellular activities. Systems biology differs in this approach as it 

emphasizes the interactions between biomolecules and seeks to construct complete 

systems using kinetic models (Snoep et al., 2006). While the field of kinetic modeling is not 

new (Chance et al., 1960; Turing, 1952), the implementation and manipulation of 

mathematical models in the 50‘s was tedious and difficult. The advent of personal 

computing and cellular simulation software has greatly expedited exploration of such 

models, both simple and complex.  

 

Biological systems tend to be both large, and organizationally complex (Table 1.1), but 

there is a tendency within biological systems to have a hierarchical structure as well as 

modularity amongst its components (Voit et al., 2006). This modularity allows smaller 

systems, such as independent MAPK pathways and limited cell cycle models, to be linked 

together, yielding larger systems, from mitogen stimulus to cytokinesis, that are more 

complete (Snoep et al., 2006; Voit et al., 2006). The utility of such larger models lies in 

their ability to be mathematically perturbed by modulating specific reactants at any point in 

time. Thus key components within a larger network may be identified that have the 

greatest effect on the network and significantly reduces the number of in vitro or in vivo 

experiments required to understand a biological system (Kolch et al., 2005). 

 

As small modules are prone to errors within themselves, networks as modular 

constructs are likely to be more error-prone due to the fact that inconsistencies within and 

between the various constituent modules may become amplified upon their 

interconnection. It thus becomes crucial that all models are validated against in vitro data 

sets to ensure that their outputs are not spurious (Snoep et al., 2006; Gilbert et al., 2006). 

While such differences between in silico generated data and in vitro derived data may be 
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due to incorrect parameterization of the model, care must be taken to not overly optimize 

parameters to fit the in vitro data. Discrepancies between in silico data and in vitro data 

may be due to unknown effectors or unseen connections not present within the model 

which need to be described and included therein (Snoep, 2005). When validating against 

biological data it is imperative that the model does not dramatically contradict known in 

vitro/in vivo observations. A model may, however, be incomplete in that it does not 

describe all known observations, or that it makes predictions that have not yet been 

verified (Gilbert et al., 2006). 

 

Models of the MAPK cascade have traditionally been of the ERK pathway, and tended 

to be strictly linear (Table 1.1). This method of modeling largely overlooks the 

interconnections between the various pathways (Kolch et al., 2005). Taking this into 

account, a p38 MAPK model was constructed in an attempt to replicate in silico the data 

generated in vitro, both in Chapter 2 and derived data and behaviours of the literature.  
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3.2 Methods 

 

Data mining: Model parameters, where available, were obtained from the online 

BRENDA comprehensive enzyme database (www.brenda-enzymes.org). If the required 

data was unavailable from BRENDA, further searches were conducted using Information 

Hyperlinked Over Proteins database (www.ihop-net.org), or the HarvardUniversity‘s 

Bionumbers database (http://bionumbers.hms.harvard.edu). Those parameters that could 

not be found though BRENDA, IHOP or Bionumbers were co-opted from already published 

models that used either similar or identical molecules to the p38 MAPK pathway. Such 

models were found either through searching the PubMed database of the 

AmericanNationalCenter for Biotechnology Information (www.ncbi.nlm.nih.gov/pubmed) or 

downloading deposited models from systems biology databases JWS Online 

(http://jjj.biochem.sun.ac.za) and the European Bioinformatics Institute‘s Biomodels 

repository (http://www.ebi.ac.uk/biomodels-main). Care was taken during the data mining 

procedures to ensure that all obtained models and parameters were properly curated or 

accurately reflected the data presented in the original papers. 

 

Software: All graphical data presented in this chapter was generated using the 

programming language Python 2.6 (http://www.python.org) with PySCeS (Python 

Simulator for Cellular Systems) 0.7.4 (http://pysces.sourceforge.net) (Olivier et al., 2005), 

matplotlib 0.99.3 (http://matplotlib.sourceforge.net), numpy 1.5.0b (http://numpy.scipy.org), 

and scipy 0.8.0 (http://www.scipy.org) as installed modules. Models obtained from internet 

sources were converted from SBML to the PySCeS format using the PySCeS Core2 

module. 

 

Model construction: The computational model was constructed according to the input 

format required of PySCeS (Olivier et al., 2005). Reaction kinetics were modelled using 

Michaelis-Menten kinetics. Dual phosphorylation reactions were modelled as a two-step 

mechanism where an unphosphorylated molecule is first mono-phosphorylated, whereby it 

may be dephosphorylated or be phosphorylated again to the active dual-phosphorylated 

form. The dual-phosphorylated molecule may then in turn be dephosphorylated to a mono-

phosphorylated form (Kholodenko, 2000; Huang and Ferrell, 1996). None of the reactants 
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were fixed or made static in the models generated. Concentrations of miscellaneous 

reactants (such as H2O and Pi) were assumed to be constant at all times and were 

therefore included in the rate constants (Huang and Ferrell, 1996). The constants and 

concentrations used in the experimental model are referenced in Table 3.1 while the 

models and Python scripts used in the generation of data are included both on the 

accompanying disk and in Appendix B and are based on the cascade structure presented 

in Figure 3.3A. 
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1 – This parameter was used in the study of pathway behaviour and as such was varied considerably. 
2 – The effectors, as well as ATP and water, were assumed to be at constant levels and were therefore included in the kcat constants. 
3 – The values used for the kcat and KM differ from their reported literature values in an attempt to match the experimental pathway behaviour 

with expected behaviour from the literature. The experiments to determine these values are included in Appendix B. 
4 – Due to a lack of published evidence of the kcat and KM values for the effector on their specific targets, it was assumed that the effector 

interacts with and catalyses all its targets with equal efficacy. 
5 – To model the competitive inhibition pattern of SB203580, the concentration of ATP was not included in the rate constant. A Ki of 0.021 

μM and an ATP concentration of 3 μM were used in the modelling of this reaction (Young et al., 1997). 

Reaction Effector Concentration (µM) Target Activity k cat (s
-1

) k M (µM) References Note

1 Mitogens Varied Ras + 0.038 1.9 1

2 Ras GAP Constant Ras - 0.1 0.11 2

3 Ras 0.1 Rac1 + 0.151 1.98 Hatakeyama et al., 2003; Sasagawa et al., 2005

5 Mekk1 + 2.025 10

7 MLK3 + 2.025 29.7

4 Rac1 GAP Constant Rac1 - 0.39 18.7 Zhang et al., 1998 2

10, 13 Mekk1 2.01 MKK4 + 0.025 15

Brightman & Fell, 2000; Kholodenko 2000;     

Hatakeyama et al., 2003;                                              

Sundaramurthy et al., 2009

3

9, 12 MKK4 +

19, 21 MKK6 +

23, 27 MKK4 0.3 p38β + 0.0883 0.4
Kholodenko, 2000; Lisnock et al., 2000; 

Sundaramurthy et al., 2009

25, 29 MKK6 0.3 p38β + 0.0022 0.6 Kholodenko, 2000; Sundaramurthy et al., 2009

31 p38β 0.27 ATF2 + 0.18 1.6
Stein et al., 1997; Kholodenko, 2000; 

Sundaramurthy et al., 2009
5

6 Mekk1 -

8 MLK3 -

32 ATF2 -

11, 14 MKK4 -

20, 22 MKK6 -

26, 30 MKP-1 0.0032 p38β - 0.0238 0.067 Denu & Dixon, 1995; Hatakeyama et al., 2003

0.31

Das et al., 2009

Rac1 0.5 Tan et al., 2002; Hatakeyama et al., 2003

Kholodenko, 2000; Jia et al., 2005;     

Sundaramurthy et al., 2009          
3, 4

PP2A 0.168 6 7.82
Denu & Dixon, 1995; Hatakeyama et al., 2003;    

Caunt et al., 2008
4

MLK3 1.01 0.005

Denu & Dixon, 1995; Fjeld & Denu, 1999;           

Legewie et al., 2005; Caunt et al., 2008
4PP2C 0.01 0.23 15

Table 3.1: Parameters used in the construction of the p38 MAPK model. Concentration of reactants, the kcat and KM values were all 

standardized to μM, s
-1

 and μM respectively. + implies activation (phosphorylation), - implies inactivation (dephosphorylation). 
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3.3 Results 

 

3.3.1 Core Modelling 

 

Core modelling serves several functions in the process of building realistic models. 

Errors in the construction of a pathway are more readily apparent in a core model, and 

core models provide a means to understand the dynamics of the structure of a system. 

To investigate whether ultrasensitivity is intrinsic within the basic structure of a tiered 

cascade, two core models were constructed and their outputs examined. These models 

consisted of a single-step dual-phosphorylation (―monocore‖, Fig. 3.1A) model and a 

two-step dual-phosphorylation model (―dualcore‖, Fig. 3.2A). All core models included 

simplified parameters with all kcat values being set to 1.0, all KM values being set to 0.01, 

and the total concentration of each reactant being set to 1.0. These values were similar 

to other core models (Klipp et al., 2009; Novák and Tyson, 2004; Huang and Ferrell, 

1996). 

 

Due to their similar constructions, the ―monocore‖ model was compared to the 

Hornberg et al.(2005) model (Fig. 3.1A, Table 1.1). The ―monocore‖ model differed 

slightly from the Hornberg model in terms of input and output, though the basic structure 

was similar. The ―monocore‖ model was activated by a single input I, representing 

mitogenic stimulus, and terminated at the monophosphorylated target Op. The Hornberg 

model began with a receptor cycling slowly between active and inactive forms (R and Ri 

respectively) and terminated at the final MAPK effector x3p. To examine output due to 

stimulus, the ―monocore‖ model was scanned with varying mitogen concentrations (I) 

and the Hornberg model was scanned by varying the Vmax of the receptor activation 

reaction (Ri  R, v2_Vm2). Data was generated as the ratio of phosphorylated to 

unphosphorylated enzyme at each level. 
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A 

Figure 3.1: Comparison between a single-step dual phosphorylation model and the Hornberg (2004) 
model. Both models share similar medial structure for the MAPKs, but differ in input signals and 
output responses. A: Basic structures of the p38 MAPK model (―Monocore‖) and the Hornberg et al., 
2004 model (Hornberg). B: Change in relative activated steady states (Δ Relative [Steady State]) of 
the members of the ―Monocore‖ model as a function of input signal strength (I). C: Change in relative 
activated steady states of the members of the Hornberg model as a function of the reaction efficacy 
of the activation of receptor (Ri  R). Both B and C are displayed as ratios of phosphorylated to 
unphosphorylated molecules at each level ([phosphorylated molecules] / [unphosphorylated 
molecules]). 
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When comparing the first two moiety conserved cycles of both the ―monocore‖ and 

Hornberg model (A and R respectively), the change in relative steady states matched 

one another, while each subsequent level of the ―monocore‖ model was activated to 

lower levels over the same stimulation range than that of the preceding level. This was in 

contrast to the Hornberg model which predicted that each subsequent level of the 

cascade would be activated to higher levels over a smaller stimulation range. In both 

models, however, the ultrasensitive response becomes less apparent at each 

subsequent level.  

 

The decrease in activation efficiency displayed by the ―monocore‖ model may be 

expected if each prior level of the pathway was not activated fully. Each subsequent 

level will then have a maximum level of activation being lower than the preceding level 

and the capacity for zero-order switch-like behaviour will become increasingly 

attenuated. The differences between the two models are likely due to the differences in 

parameter values. There was a ten-fold increase in parameter values from the 

―monocore‖ model to the Hornberg model and the total concentration of receptor in the 

Hornberg model was half of all other concentrations of that model. The smaller initial 

pool and higher catalytic values were then likely able to promote zero-order conditions in 

the initial level of the cascade that would propagate through the model (Goldbeter and 

Koshland, 1984; Goldbeter and Koshland, 1982). 

 

As has been noted before (Kholodenko, 2000; Huang and Ferrell, 1996), there was a 

significant increase in ultrasensitivity when the MAPK cascade was modelled as a two-

step dual-phosphorylation. The ―monocore‖ model was altered into the ―dualcore‖ model 

wherein the MAPK analogues B and C were modelled as being activated via two-step 

dual-phosphorylation (Fig 3.2A) without changing the overall parameter sets. The 

scanning range of input signal was kept equivalent to the range of the ―monocore‖ input 

signal (Fig 3.1B) for comparative purposes.  

 

An interesting observation of the ―dualcore‖ model was that, while the second level 

MAP2K (B) reached a maximum level of activation lower than that of MAP3K (A), the 

downstream target of the MAP2K, MAPK (C) eventually reached an equivalent level of 

relative phosphorylation to MAP3K (A) over the same scanning range. The increased 

relative concentrations of phosphorylated MAPK also fostered an increase in the ratio of 
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phosphorylated to unphosphorylated response (O) in that the ―dualcore‖ output levelled-

off at 1.42, while the ―monocore‖ output levelled-off at 1.27 (Fig. 3.1B). The ―dualcore‖ 

model was thus able to promote higher maximal levels of activation at all levels of the 

cascade including the response (O). 

 

With ultrasensitivity presenting itself as an inherent structural property of a multi-

tiered two-step dual-activation, a core model was constructed of the p38 MAPK pathway 

as it is encountered in situ. The p38 MAPK core model (―realcore‖) differs significantly 

from the original core models in its construction (Fig. 3.3). Two single-step activation 

cycles representing Ras and Rac1 are the uppermost steps in the model. Rac1 is a joint 

activator of the MAP3Ks, which in turn activate the MAP2Ks in a two-step dual-

phosphorylation. Both then activate p38 MAPK in a similar. Finally the activated p38 

MAPK mono-phosphorylates the output molecule ATF2, a canonical p38 target that is 

capable of promoting the synthesis of cyclin D (Recio and Merlino, 2002). Each 

A B 

Figure 3.2: Two-step dual phosphorylation model. A – ―Dualcore‖ model structure. B – ―Dualcore‖ 
model output as a function of the change in relative active steady state concentration 
([phosphorylated molecules] / [unphosphorylated molecules]) and input signal ([I]). The change in 
steady state values were calculated as a ratio of phosphorylated to unphosphorylated molecules. 

[p
h

o
s

p
h

o
ry

la
te

d
 m

o
le

c
u

le
s
] 

 

[u
n

p
h

o
s

p
h

o
ry

la
te

d
 m

o
le

c
u

le
s
] 



62 
 

phosphorylation step is mirrored by a dephosphorylation step (Table 3.1) 

A 

Figure 3.3: p38 MAPK in situ analogue core model (―realcore‖) layout and output. A: ―Realcore‖ 
structure. Red: active molecules. B – D: ―Realcore‖ model output as a function of relative active steady 
state concentration ([phosphorylated molecules] / [unphosphorylated molecules]) and growth factor 
input ([GF]). Steady state values were calculated as a ratio of phosphorylated to unphosphorylated 
molecules. 
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(Sundaramurthy et al., 2009; Caunt et al., 2008; Jia et al., 2005; Tan et al., 2002; 

Brightman and Fell, 2000; Lisnock et al., 2000; Camps et al., 2000; Fjeld and Denu, 

1999; Zhang et al., 1998; Stein et al., 1997). 

 

The ―realcore‖ model, with its two-step dual-phosphorylation as well as branching 

within the pathway produces a striking ultrasensitive response over the same input 

stimulus range as the ―monocore‖, ―dualcore‖ and Hornberg models. Although input was 

scanned over the same range as the other core models, all kinases undergo a rapid 

conversion from an inactive state to a maximally activated state in a much narrower 

range than the prior models (Fig. 3.3B – D). While this sharp reaction to stimulus is 

expected of a MAPK cascade (Kholodenko, 2000; Huang et al., 1996), although the ratio 

of phosphorylated to unphosphorylated molecules dropped considerably down the 

cascade. Maximum Ras ratios reached 103 (Fig. 3.3B), while p38 ratios reached below 

10-7. ATF2 fails to activate properly and most of the data remains mathematically 

undefined (Fig. 3.3C). This may be due to the fact that the activation levels reached by 

ATF2 were sufficiently close to the numerical lower limit of most computers whereby the 

computer is unable to distinguish the number from 0. This behaviour was expected to be 

resolved with the implementation of in situ parameterization of the experimental model.  

 

While all the core models share similar properties with one another and the Hornberg 

model, the efficacy of information transfer through the various pathways is difficult to 

estimate or compare graphically. However, the responsiveness (represented by the 

response co-efficients mentioned in chapter 1.4) of each pathway provides a measure 

with which to compare pathways even across widely differing inputs and concentration 

ranges (Kholodenko, 2000; Kholodenko et al., 1997). The methods through which the 

response coefficients were calculated are described in section 1.4 andthe response 

coefficients for each of the core models are summarized in Table 3.2. While the 

responsiveness of each model (and level therein) varies according to the level of input, 

the response coefficients described below were calculated according to the initial level of 

input specified by the model files. These levels are described in the corresponding 

model file included in Appendix C. 
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The responsiveness of the Hornberg model stays relatively constant down the MAPK 

cascade with a response co-efficient of just over 1 (Table 3.2) The ―monocore‖ and 

―dualcore‖ models decrease in responsiveness down the cascade, culminating at 0.235 

and 0.283 respectively at the MAPK level. The ―dualcore‖ model, however, displays a 

higher responsiveness than the ―monocore‖ at most levels and this is most likely due to 

the two-step dual-phosphorylation mechanism used. While the ―realcore‖ model initially 

displays a lower responsiveness, it also displays an increasing response down the 

cascade in contrast to the ―monocore‖ and ―dualcore‖ models with the terminal MAPK 

having a response co-efficient of 0.246. The elevating response is most likely due to the 

branched structure evident within the ―realcore‖ pathway (Fig. 3.3A). On a biochemical 

level, having several upstream activators provides multiple paths for a signal to 

transduce through, and is capable of potentially sustaining a signal since multiple 

effectors must be simultaneously deactivated for the target itself to become deactivated. 

This is in agreement with equation 5, which demonstrates that the more convergent the 

branches within a pathway, the greater the overall responsiveness of that pathway is 

likely to be.  

4.3.2 Realistic modelling 

 

A core model can provide information about patterns of behaviour of a pathway 

based solely on its structure. Any other information generated by such models is, 

however, at best, qualitative. In order to computationally generate quantitative data from 

a model, the model must be populated with parameters which mimic in vitro and in vivo 

kinetics and rate equations. The more accurate these kinetics and rate equations are, 

the more realistic the model. This approach is known as the silicon cell approach (Snoep 

et al., 2006). The main feature of this approach is that parameters and independent data 

Table 3.2: The response coefficients of the various core models. Input represents the non-
MAPK cycle that is directly stimulated by mitogens. This is R and Ras for the Hornberg and 
―realcore‖ models respectively. Note that the response coefficients are unitless. 

Substrate Hornberg Monocore Dualcore Realcore 

Input 1.008   1.22x10-3 
MAP4K  0.525 0.525 0.032 
MAP3K 1.01 0.335 0.39 0.062 
MAP2K 1.018 0.263 0.323 0.123 
MAPK 1.04 0.235 0.283 0.246 
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sets are used to both construct and validate models. To this end, the ―realcore‖ model 

was populated with the parameters presented in Table 3.1.  

 

Due to the stiffness of the model and the resultant solver limitations, simulation of the 

model resulted in undefined regions where PySCeS was unable to generate applicable 

data. They were generated by PySCeS arriving at 0 for the solution at that particular 

point (data not shown). Thus, when the logarithm for these points are taken, an 

undefined number results and the graphing software simply ignores them. The resulting 

undefined regions are, however, biologically implausible and it was therefore assumed 

that the data points that would have been generated would have been done so in a 

similar manner to the overall trend. Several methods of remodelling were attempted to 

resolve these undefined regions. However, while the undefined regions were eliminated, 

the ultrasensitive behaviour of the model was eliminated as well. Similarly, parameter 

values and concentrations that facilitated their removal were biologically implausible. 

The data sets used in the attempt to resolve the undefined regions are presented within 

Appendix B. Another alternative, however, may be that these ―undefined‖ regions are 

actually areas where the model may exist in more than one steady state for the given 

input signal. The gap therefore represents a region where the system switches between 

steady-states. While solvers are available in PySCeS to explore these areas as potential 

multiple steady state switches, there was insufficient time to explore the possibility. 

 

When populated with viable in vitro parameters, the realistic model still displayed an 

ultrasensitive, switch-like behaviour over a biologically plausible low mitogen 

concentration range (Fig. 3.4A – C). Over the range of mitogen concentration used, the 

sigmoidal activation pattern was absent in the growth-factor proximal cycles and only 

very mildly present in the medial cycles, the distal p38 and ATF2 cycles (Fig. 3.3A) 

responded with a clear sigmoidal pattern with p38 becoming completely active over a 

very small increase in mitogenic stimulation. This in silico ultrasensitive behaviour was 

comparable to in vitro responses of the p38 MAPK pathway (Waas et al., 2001). 

 

Although ultrasensitivity remained within the model, other predictions of the model 

needed to be validated with biological data. To verify model output, the results of a time-

course study of the activation of p38 MAPK under signaling conditions was compared to 

an in vitro data set of the activation of p38 MAPK (Fig. 3.5A) (Jeng and Watson, 2009). 
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The in silico model assumed that a small percentage of effectors are always active, even 

during periods of limited mitogenic stimuli. Under these conditions the model predicted 

that it would take approximately 400 – 600seconds or 10 minutes for p38 to become 

active. This prediction was validated by the in vitro biological data of Jeng and Watson 

(2009) who conducted a time-course study on the activation of p38 MAPK in murine 

pituitary cancer cells. This was accomplished using phosphorylation-state-specific 

antibodies against p38 where Western blot analysis was performed using an alkaline 

phosphatase conjugated secondary antibody. Upon stimulation by tetradecanoylphorbol 

acetate, a positive activator of p38 MAPK, it took approximately 15 minutes for levels of 

p38 to reach maximum activation. Further verification of the model could be 

accomplished through comparing the predicted ratios of phosphorylated to 

unphosphorylated molecules with those that have been experimentally determined. 

However, no information on the phosphorylation ratios of p38 MAPK was found. 

Therefore the model will require further in vitro experimentation before it is validated 

fully. 

Figure 3.4: Experimental model displaying ultrasensitive behaviour. All plots are of respective 
phosphorylated molecules divided by unphosphorylated molecules. A: Growth factor proximal cycles. 

B: Medial cycles. C: Distal cycles. 
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4.3.3 Limitations of the p38 MAPK model 

 

There were three major limitations of the p38 model. Firstly, while p38 is capable of 

reaching near total phosphorylation, nearly all of its upstream effectors displayed very 

low levels of phosphorylation and the MAP2Ks and did not display a robust ultrasensitive 

response to stimulus as would be expected of a MAPK pathway (Huang and Ferrell, 

1996). The graphs demonstrating a lack of an ultrasensitive response are given in 

Appendix B. Secondly, there was an inability of ATF2 to become active to appreciable 

levels (even given the near total activation of its immediate effector) as would be 

expected from available in vitro data (Huang et al., 2008). Although active ATF2 levels 

do rise over the 16 minute time frame, it would be difficult to assess the inhibition of p38 

using ATF2 as a marker. Lastly, the computational model was stiff at the lower levels of 

the cascade, resulting in a number of undefined regions in both p38 MAPK and ATF2 

when scanning their activation versus input. 

 

Given the lack of ATF2 activation, the computational model was modified to lower 

the efficacy of the dephosphorylation of ATF2 by including a nuclear concentration of its 

phosphatase PP2A (Hatakeyama et al., 2003; Camps et al., 2000), that is several orders 

of magnitude less abundant than its cytosolic component, as ATF2 is a transcription 

factor that is active in the nucleus (Liu et al., 2006). Although the quantity of PP2A 

effective against ATF2p was substantially reduced the same catalytic efficacies outlined 

for PP2A in Table 3.1 were used.  
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4.3.4 The effect of SB203580 on the p38 MAPK model 

 

The inclusion of SB203580 into the model did not affect the activation of p38. This is 

expected both computationally, as SB203580 does not affect any of its upstream 

activators, as well as biologically, since SB203580 is known to not significantly affect the 

capacity of p38 to become active (Gum et al., 1998; Lisnock et al., 1998; Cuenda et al., 

1995). The levels of ATF2 are however affected by SB203580. At a concentration of 

0.1 μM SB203580 (Fig. 3.5B), ATF2 activity is substantially reduced. When the 

SB203580 concentration is increased to 1 μM and 40 μM (Fig. 3.5C, D respectively), 

activation of ATF2 has effectively ceased. These predictions are validated both by the 

Figure 3.5: Experimental model of p38β inhibition via SB203580 and its effect on ATF2. The model 
was modified to include the concentrations of SB203580 as indicated by the following panels: A: 0 
μM SB203580. B: 0.1 μM SB203580. C: 1 μM SB203580. D: 40 μM SB203580. Relative 
concentrations are represented as the ratio of phosphorylated molecules to the pool of 
phosphorylated and unphosphorylated molecules. 
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wet-lab results of Section 2.3.4 and published literature (Jones et al., 2005; Kang et al., 

2005; Gum et al., 1998; Cuenda et al., 1995). 

4.3.5 Comparison of the p38 MAPK model to other published models 

 

As the p38 model was capable of generating biologically plausible data, it was 

compared with two other validated ERK models from the literature: the Huang (1996) 

and Kholodenko (2000) models. Both models have demonstrated ultrasensitive 

behaviour as well as the capacity to mimic in vitro behaviour. A comparative analysis of 

the responsiveness of the various models was undertaken to determine if the p38 MAPK 

model displayed similar attributes to models within the literature (Fig. 3.6). Each model 

was scanned against its respective first activator or the first activation reaction 

parameter. This was growth factor (GF) and the phosphorylation efficiency of MAP3K 

(r1b_k2 and J0_V1) for the p38 model (Fig. 3.3A), Huang (1996) model (Fig. 1.5), and 

Kholodenko (2000) model (Fig. 1.6) respectively. 

 

While the Kholodenko (2000) and p38 model were ultrasensitive over the same small 

range of input (Fig. 3.6C, A respectively), the Huang (1996) model (Fig. 3.6B) was 

ultrasensitive over a range greater than both the other models. The p38 MAPK and 

Kholodenko models showed an increasing capacity for input signal to propagate through 

the cascade, while the Huang model displayed a sharply decreasing sensitivity to 

upstream signalling (Fig. 3.6D), eventually culminating a response of only 0.005 

indicative of a signal that was almost ineffective at the lower tiers of the cascade. The 

Kholodenko model, however, showed an increase in signal responsiveness for lower 

tiers of the signalling cascade. Although the primary effector was only tentatively 

propagated, the lowest tier had a responsiveness of over 1; indicative of an overall 

amplification of signal effect. 

 

The p38 model, however, showed the most substantial increase in amplification 

when compared to the Huang and Kholodenko models (Fig. 3.6D). The first three tiers 

had a response coefficient of almost 1, indicating that signal strength is, at least, being 

maintained. The MAP2Ks started to demonstrate amplification in signal with response 

coefficients slightly under 2, while p38 MAPK and its target ATF2 showed the most 
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substantive response coefficients of very nearly 4, indicative of a change in signal 

strength resulting in a relative quadrupling of output down the signalling cascade. 

 

D 

Substrate p38 Model Huang Kholodenko 

Input 0.998356   

MAP4K 0.993749   

MAP3K 0.993842 0.454842 0.030936 

MAP2K 1.889075 0.151739 0.139954 

MAPK 3.997191 0.00518 1.081234 

MAPK Target 3.990573   

 
Figure 3.6: Ultrasensitivity* and response analysis** of the experimental model and published models. 
A: p38 model. B: Huang (1996) model. C: Kholodenko (2000) model. D: Table of response coefficients.  
* - The relative concentrations are given as the ratio of phosphorylated to unphosphorylated molecules. 
** - As the Huang and Kholodenko models do not have effectors analogous to Input, MAP4K or MAPK 
Target, no response coefficients of these effectors were determined. 
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4.4 Discussion 

 

An important property of many signal transduction pathways is the capacity to switch 

between states in response to changes in input. This is accomplished in a number of 

ways, such as having enzyme cooperativity or an ultrasensitive response (Kholodenko, 

2000). An important aspect of any signal transduction model, therefore, is the capacity to 

mimic such behaviours. To this end, core structural models were necessary to evaluate 

whether these responses are intrinsic to pathway structure, or whether such activity 

arises out of specific enzymatic interactions. 

 

Two core models were constructed and evaluated against a core model from the 

literature (Hornberg et al., 2005). The ―monocore‖ model assumed that each dual-

phosphorylation event occurred sufficiently fast so as to be simultaneous, and the 

―dualcore‖ model assumed that each phosphorylation event occurred sequentially. While 

both the ―monocore‖ and the Hornberg (2005) models displayed ultrasensitive 

behaviours due to their structure, the ―dualcore‖ model displayed a more apparent 

capacity to generate switch-like behaviour over similar variances in input (Fig. 3.2). This 

behaviour was even more pronounced in the branched ―realcore‖ model, with very steep 

sigmoidal activation curves being present, as would be expected from a branching-

converging pathway structure (Kholodenko et al., 1997). 

 

An interesting note is that all the core models displayed better responsiveness to 

signal than the Hornberg (2005) model. While the ―monocore‖ and ―dualcore‖ models 

dropped in signal responsiveness down the cascade, the ―realcore‖ model displayed an 

increasing efficacy for signal propagation (Table 3.2). This particular behaviour suggests 

that a branching/re-converging pathway structure, as seen in many signalling cascades, 

imparts better sensitivity to upstream signals than might a simple linear cascade. This 

also suggests that other MAPK modelling approaches may have underestimated the 

signal response generated in models that do not have these branches.  

 

The p38 model generated an ultrasensitive response at the p38 MAPK level, even 

over small changes in input signal. The characteristic sigmoidal curve was not apparent 

in the earlier tiers of the cascade but became apparent at the p38 and ATF2 tiers of the 

cascade. This lack of uppermost ultrasensitivity did not, however, affect the capacity of 
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p38 to activate under constant signalling conditions. This stands in contrast to the data 

of Whitehurst et al. (2004) who indicated that in human cervical cancer HeLa cells the 

MAPK ERK was not activated via ultrasensitivity, instead displaying a graded response 

to input. However, this graded response may indicate that the uppermost levels of a 

MAPK pathway need not be ultrasensitive while leaving the lower levels of the pathway 

to be activated in an ultrasensitive manner. Since ultrasensitivity is present within other 

higher animals (Kholodenko, 2000; Huang and Ferrell, 1996), the lack of ultrasensitivity 

in humans may not necessarily also be present in the murine p38 MAPK cascade (which 

has been modeled in this chapter). Similarly, it may be an ERK-specific lack of 

ultrasensitivity in mammals, leaving the potential ultrasensitivity of p38 MAPK 

untouched. A prudent validation of the model, therefore, would be to study murine p38 

MAPK in vitro and to check for an ultrasensitive response (or the lack thereof). 

 

The model predicted that it would take approximately sixteen minutes to activate 

from a relatively inactive state, which is in agreement with the work of Jeng and Watson 

(2009), wherein it also took murine p38 approximately 16 minutes to activate in vitro. 

The p38 model also displayed an ability to inhibit the activation of ATF2 though 

SB203580 in a manner that was borne out both by the results of Section 2.3.3 and 

previously published data (Jones et al., 2005; Kang et al., 2005; Gum et al., 1998; 

Cuenda et al., 1995).  

 

The final validation of the p38 model in this chapter was the comparison between it 

and two other peer-reviewed models known for generating biologically relevant data: the 

Huang (1996) model, and the Kholodenko (2000) model. All three models produced 

ultrasensitive profiles for the final MAPK, although the branched p38 model and 

feedback-inclusive Kholodenko models displayed both more prominent ultrasensitive 

profiles, and a greater responsiveness to signal input. With the p38 model significantly 

amplifying downstream targets. This data suggests that a more responsive model would 

be one that included both the branched nature of the MAPK pathway as well as 

feedback between the various effectors. 

 

The main aim of this chapter was to produce a model that accurately reflects the p38 

MAPK cascade. This was mostly accomplished with the resulting final model 

demonstrating several key characteristics: a.) a structure similar to the p38 MAPK 
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pathway governed by mitogens (Zarubin and Han, 2005), b.) an ultrasensitive switch-like 

behaviour present due to mitogenic stimulus (Huang and Ferrell, 1996), and c.) an 

overall responsiveness of the pathway amplifying target responses from signal induction 

(Kholodenko et al., 1997).  

 

Three major limitations were still evident within the p38 model presented; these were 

irresolvable given the limited timeframe and scope of this dissertation. Firstly, the 

uppermost tiers of the cascade failed to activate correctly and did not display 

ultrasensitive profiles expected (Huang and Ferrell, 1996). Whilst this was unexpected, 

there is no readily available in vitro data on the levels of activation of these tiers. 

Secondly, in spite of the very high response to signal input and the high levels of p38 

activation, ATF2 failed to activate to expected levels (Huang et al., 2008). Thirdly, the 

model itself was stiff, resulting in a number of undefined areas where the model was 

unable to supply data. These problems are most likely due to the oversimplification of 

parameters as each effector interacted with its targets in an identical manner. This 

simplification was necessary for the construction of the model as several parameters 

were not known. A detailed investigation and utilization of the kinetics of the effectors in 

relation to the different activation states of their targets should result in a more complete 

model that is capable of predicting activation levels correctly. Additionally, the model still 

requires further validation. Data is currently unavailable on most of the predictions the 

model makes, such as the ratios of phosphorylated to unphosphorylated molecules. 

 

In summary, a model of p38 MAPK activation in relation to mitogenic stimulus was 

constructed. This model demonstrated ultrasensitive behaviour, was significantly 

responsive to its inputs, and was capable of generating data that may be biologically 

viable and relevant. This model may thus be used as a tool for further exploration of 

biological phenomena and may be included as an input to other models on the 

behaviour of the cell cycle in response to p38.  
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Chapter Four – Discussion 
 

4.1 Summary of results 

 
There were two aims to this dissertation, both of which are interrelated. The in vitro 

experimentation sought to analyse more thoroughly the cell cycle of the murine myoblast 

C2C12 cell line by identifying the length of S-phase re-entry from G0 quiescence and 

determining the position of the restriction point within G1. It was determined that the cell 

takes 7 to 9 hours to re-enter S-phase, consistent with literature data (Tintignac et al., 

2000). The restriction point was determined to be 6 to 7 hours post synchronous G0. 

Although the determination of the position of the R-point is novel in the C2C12 cell line, it 

is consistent with literature data from other lines, and what is currently known about the 

R-point in general (Zetterberg and Larsson, 1985; Campisi et al., 1982a; Pardee, 1974). 

 

 The in silico work sought to create a de novo model of the p38 MAPK cascade 

stimulated by mitogens. Through a number of core models of tiered cascades and the 

p38 model itself, it was determined that ultrasensitivity is inherent within the structure of 

the cascade. Moreover, the ultrasensitivity and responsiveness of the pathway to 

stimulus increased when dual phosphorylation of effectors occurred as a two-step, rather 

than a one-step, mechanism which was also reinforced by a branching/converging 

structure. The realistic model still managed to show evidence of ultrasensitivity, while 

also showing a far superior response to stimulus than the core models. The output of the 

realistic p38 model was in line with other published MAPK models (Kholodenko, 2000; 

Huang and Ferrell, 1996), as well as the data generated in vitro of section 2.3.4.   

 

4.2 Future prospects 

 
While the model showed some capacity for the prediction and replication of data, there 

were a number of instances whereupon it could be improved. It is unsuitable at present 

to act as a standalone model, but may either be improved to the point where it may do 

so, or be combined with other models to provide a more complete model than either 

alone.  
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4.2.1 Model improvements 

 
The most significant improvement that could be made to the model would be the 

inclusion of better rate constants for all effectors. Due to the lack of available information 

at the time of construction of the model, a number of assumptions were made to fill in 

the missing information. It was assumed that effectors interact with and catalyse all their 

substrates with the same efficacy at the same rate, which is, of course, a biological 

implausibility (Klipp et al., 2009; Voet and Voet, 2004). Thus any change to a more 

accurate kcat and/or KM for any of the effectors will result in a more biologically feasible 

model. 

 

As there is evidence that feedback is present within MAPK cascades (Vera et al., 

2010; Kholodenko, 2000; Ferrell and Machleder, 1998), another method to produce a 

more biologically accurate and plausible model of the p38 pathway would be to include 

feedback within the model. Even within the p38 MAPK cascade itself, there is negative 

feedback present at a number of different levels, from mRNA inhibition, to Ras inhibition 

(Ambrosino et al., 2003; Chen et al., 2000; Ben-Levy et al., 1998). While it would 

therefore be prudent to model such interactions, care must also be taken as very little 

kinetic data is currently available for these specific interactions.  

 

4.2.2 In vitro experiments 

 
A model can only truly be considered valid when verified against in vitro data, and 

when its predictions are accurate. While some of the predictions of the model are borne 

out by the literature, more experimental in vitro work would be able to validate the p38 

MAPK model. One significant experiment would be to determine if mammalian p38 

MAPK is ultrasensitive in situ. The model predicts that this should occur, even if only at 

the p38 level itself, while other in vitro evidence suggests that the ERK MAPK cascade 

in mammalian cells is not ultrasensitive (Whitehurst et al., 2004). Should p38 in situ not 

be ultrasensitive, this will require the model being changed appropriately. However, if 

p38 is ultrasensitive in situ, then this will provide an interesting counterpoint to the lack of 

ultrasensitivity found in the ERK cascade. 
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Further validation of the p38 model could be accomplished through the in vitro 

measurement of the phosphorylated concentrations of the various effectors in the 

cascade. The model predicts certain phosphorylation ratios based on mitogenic input, 

but little work, even in the literature, has been done in vitro to determine them. Most 

assays found in the literature usually focus only on specific phosphorylation states in 

very context-dependent circumstances, such as under the effects of specific chemicals. 

Assays, then, on the concentrations of the unphosphorylated, monophosphorylated and 

biphosphorylated fractions of the effectors at various mitogen concentrations will provide 

good evidence, either for or against, for the validity of the p38 model. 

 

The data generated by the core and realistic models of the complete p38 pathway 

suggest that a branching / re-converging structure may impart more sensitivity upon a 

pathway. This novel finding may be investigated in silico by computational models, or 

through in vitro inhibition of various branches of a pathway.It would thus be possible not 

only to elucidate how the flux through such a pathway redistributes itself, but also if such 

a structure truly does impart better sensitivity. 

 

4.2.3 Model expansion 

 
Two models immediately present themselves as having the potential for being 

merged with the p38 model: the Sundaramurthy (2009) model, which already has p38 

within it, and the Novák (2004) model, which contains an easy point-of-entry for the p38 

model and its effects on the cell cycle. 

 

The Sundaramurthy (2009) model (Fig. 1.8) is a network that models the interactions 

between the main MAPK families, including p38. However, in this network, p38 is 

explicitly modelled as being a stress-activated MAPK with TAB and TAK being its 

upstream activators. While p38 is activated by stressors, it is also activated by mitogens 

and so a more complete model would be one where both occur. By merging the p38 and 

Sundaramurthy models it would be possible to make predictions to the MAPK network 

when stimulated by both mitogens and stressors. 

 

The Novák (2004) model describes the cell cycle, with a relatively high number of 

effectors being present, both in an attempt to provide a model of the system and to 
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provide a computational model of the restriction point. In a simplification step, the entire 

entry into the cell cycle, from growth factor to the transcription factor of cyclin D, was 

black-boxed into early- and delayed-response genes (Fig. 4.1). Due to the nature of 

investigation of the paper, little attention was paid to cell cycle entry. This, coupled with 

the autocatalytic nature of the delayed-response genes, caused these effectors to be 

almost invariant in response to changes in growth factor concentration (data not shown). 

While the model is capable of replicating the Zetterberg and Larsson (1985) 

cyclohexamide experiments, it is currently poorly suited to investigating the effects of 

mitogenic stimulation on the cell cycle. By replacing the early- and delayed-response 

genes with the p38 model, a more complete model of the cell cycle would be constructed 

that should be capable of understanding the origin of the restriction point from multiple 

sources. 

4.3 Conclusion 

 

Both of the main aims of the dissertation, clarification of the C2C12 cell cycle and the 

modelling of the p38 MAPK pathway, were achieved. Several limitations are, however, 

present within the model of the p38 MAPK cascade and the predictions of the model 

have not been entirely validated. Further in vitro work and corrections within the model 

will to validate its output. In conclusion, the C2C12 restriction point was found to be 

between hours 6 and 7 in synchronous dividing cells, and a de novo model of the p38 

MAPK pathway was constructed that replicates some in vitro data and may be suitable 

for inclusion in other MAPK and cell cycle models. 
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Figure 4.1: The Novák (2004) model of the cell cycle. The area that would be replaced, the early- 
and delayed-response genes (ERG and DRG respectively), is indicated by the red arrow. 
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Appendix A 
 
In order to generate the flow cytometry data, a Beckman Coulter Epics flow 

cytometer was employed. The generation of the cell cycle phase peaks was done with 

two different settings for the whole-cell (Table A1) and isolated nuclei (Table A2). This 

was necessary as the nuclei are much smaller than whole cells and so require more 

amplification in order to detect them. 

 

Before running samples through the flow cytometer, the prepared solutions were 

pipetted thoroughly to prevent doublet formation. Doublets will be detected by the 

cytometer as a single particle event with their fluorescence intensities combined. This 

potentially means that a G0/G1 doublet will be detected as a single G2/M cell. This 

erroneous data, as well as cellular debris, were gated out (Figure A1A) of the analytical 

sample (Figure A1C). 

 

 

 

Table A1: Whole cell flow cytometry settings 
 

Detector Voltage Gain 

FS 388 2 
SS 0 1 
FL3 574 1 
Aux 0 1 

 
FS – Forward scatter; SS – Side scatter; FL3 – PI 
excitation lazer; Aux – Auxillary (Peak height 
divided by peak width)  

Table A2: Isolated Nuclei flow cytometry settings 
 

Detector Voltage Gain 

FS 412 2 
SS 83 20 
FL3 710-825 1 
Aux 115 1 

 
FS – Forward scatter; SS – Side scatter; FL3 – PI 
excitation lazer; Aux – Auxillary (Peak height 
divided by peak width)  
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Figure A1: Flow cytometric data generation. Much data is automatically generated and graphed 
by the flow cytometer upon data acquisition. This data must be sorted to produce appropriate 
output. As the propidium iodide emission is detected, a scattergram is generated relating to 
fluorescence peak height and width/area (A). The population of interest emerges (the enclosed 
region of A) showing the G0/G1, S and G2/M populations. Events outside this region are either 
doublets or debris. Comparing particle complexity (forward scatter) versus size (side scatter) 
gives a good indication of the presence of doublets (B). By only analysing the data present in 
the gated region B, a histogram of the population‘s current division of the cell cycle can be 
generated without potentially confounding doublets erroneously elevating the S/G2/M 
percentage of the population. 
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Appendix B 
 

During the graph generation of the earlier constructions of the realistic p38 model, 

there were regions present where no information was generated, and where at certain 

points the predicted concentration would suddenly spike (Fig. B1). In an attempt to 

remove these regions, the concentrations of the main upstream effectors of p38, Mekk1 

and MLK3, were modulated (Fig. B2). It was found that by changing the concentrations 

of Mekk1 and MLK3 to 2 μM and 1 μM respectively that all of the spikes in p38 were 

removed, although the data deficient regions remained. The concentrations and catalytic 

constants of p38‘s first upstream effectors (Ras and Rac1) were then modulated in an 

attempt to remove the data deficient regions (Fig. B3). While this was successful, the 

concentrations used in this modulation were ultimately biologically implausible, and the 

ultrasensitivity of p38 was abolished (Fig. B4). As such, these modifications were not 

used. 

 

The models used in the generation of data are both in Appendix C and on the 

accompanying disk marked Appendix D. All of the scripts, software and modules used in 

the construction of the model, and for the generation of in silico data are available on the 

accompanying disk marked Appendix D. 

Figure B1: Spikes and gaps in generated data. An attempt to resolve these issues was done by 
modulating upstream effectors. 
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Figure B2: Modulation of Mekk1 and MLK3 concentrations in an attempt to remove 
spurious spikes and data deficient regions. The data presented is of the ratio of 
phosphorylated to unphosphorylated p38. 
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Figure B3: An attempt to resolve both spikes and data deficient regions present within the 
model by modulating Ras and Rac1 concentrations. While the 1 μM Ras and Rac1 
concentration were sufficient to remove both the spikes and data deficient regions, this 
concentration is very high and not plausible on a cellular level. The data presented is of the 
ratios of phosphorylated to unphosphorylated molecules 
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Figure B4: Lack of ultrasensitivity of p38 and ATF2. When all the changes, biologically 
plausible or not, were implemented in the model, all of the data deficient regions and 
spikes were abolished. However, the ultrasensitive response of p38 was abolished as 
well. Data is presented as a ratio of phosphorylated to unphosphorylated molecules. 
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Appendix C 
 

The following presented below are the PySCeS model scripts used in the generation of 

in silico data. This text may be copied and pasted into a separate document and saved 

with the file extension ―.psc‖ and be used without modification with PySCeS. The model 

scripts of the Hornberg, Huang, and Kholodenko models are included on the 

accompanying disk marked Appendix D.  

 

##Monocore model 

##Core model for demonstrating the principle of ultrasensitivity with one-step 
biphosphorylation 

 

R1: 

 A = Ap 

 (K1 * I * A) / (Km1 + A) 

 

R2: 

 Ap = A 

 K2 * Ap 

 

R3: 

 B = Bpp 

 (K3 * Ap * B) / (Km3 + B) 

 

R4: 

 Bpp = B 

 K4 * Bpp 
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R5: 

 C = Cpp 

 (K5 * Bpp * C) / (Km5 + C) 

 

R6: 

 Cpp = C 

 K6 * Cpp 

 

R7: 

 O = Op 

 (K7 * Cpp * O) / (Km7 + O) 

 

R8: 

 Op = O 

 K8 * Op 

 

#Km 

 

Km1 = 0.01 

Km3 = 0.01 

Km5 = 0.01 

Km7 = 0.01 

 

#Kcat 

 

K1 = 1.0 

K2 = 1.0 

K3 = 1.0 

K4 = 1.0 
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K5 = 1.0 

K6 = 1.0 

K7 = 1.0 

K8 = 1.0 

 

#Concentrations 

 

I = 1.0 

A = 0.9 

Ap = 0.1 

B = 0.9 

Bpp = 0.05 

C = 0.9 

Cpp = 0.05 

O = 0.9 

Op = 0.1 

 

##Dualcore model 

##Core model for demonstrating the principle of ultrasensitivity with two-step 
biphosphorylation 

 

R1: 

 A = Ap 

 (K1 * I * A) / (Km1 + A) 

 

R2: 

 Ap = A 

 K2 * Ap 
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R3: 

 B = Bp 

 (K3 * Ap * B) / (Km3 + B) 

 

 

R4: 

 Bp = Bpp 

 (K4 * Ap * Bp) / (Km4 + Bp) 

 

R5: 

 Bp = B 

 K5 * Bp 

 

R6: 

 Bpp = Bp 

 K6 * Bpp 

 

R7: 

 C = Cp 

 (K7 * Bpp * C) / (Km7 + C) 

 

R8: 

 Cp = Cpp 

 (K8 * Bpp * Cp) / (Km8 + Cp) 

 

R9: 

 Cp = C 

 K9 * Cp 
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R10: 

 Cpp = Cp 

 K10 * Cpp 

 

R11: 

 O = Op 

 (K11 * Cpp * O) / (Km11 + O) 

 

R12: 

 Op = O 

 K12 * Op 

 

#Km 

 

Km1 = 0.01 

Km3 = 0.01 

Km4 = 0.01 

Km7 = 0.01 

Km8 = 0.01 

Km11 = 0.01 

 

#Kcat 

 

K1 = 1.0 

K2 = 1.0 

K3 = 1.0 

K4 = 1.0 

K5 = 1.0 
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K6 = 1.0 

K7 = 1.0 

K8 = 1.0 

K9 = 1.0 

K10 = 1.0 

K11 = 1.0 

K12 = 1.0 

 

#Concentrations 

 

I = 1.0 

A = 0.9 

Ap = 0.1 

B = 0.9 

Bp = 0.05 

Bpp = 0.05 

C = 0.9 

Cp = 0.05 

Cpp = 0.05 

O = 0.9 

Op = 0.1 

 

## Realcore Model 

## All Kcat set to 1 

## All Km set to 0.01 

## All concentrations range between 0 and 1 
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R1: 

 RasGDP = RasGTP 

 (K1 * GF * RasGDP) / (Km1 + RasGDP) 

 

R2: 

 RasGTP = RasGDP 

 (K2 * RasGTP) / (Km2 + RasGTP) 

 

R3: 

 Rac1GDP = Rac1GTP 

 (K3 * Rac1GDP * RasGTP) / (Km3 + Rac1GDP) 

 

R4: 

 Rac1GTP = Rac1GDP 

 (K4 * Rac1GTP) / (Km4 + Rac1GTP) 

 

R5: 

 Mekk1 = Mekk1p 

 (K5 * Mekk1 * Rac1GTP) / (Km5 + Mekk1) 

 

R6: 

 Mekk1p = Mekk1 

 (KA * Mekk1p * PP2A) / (KmA + Mekk1p) 

 

R7: 

 MLK3 = MLK3p 

 (K7 * MLK3 * Rac1GTP) / (Km7 + MLK3) 
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R8: 

 MLK3p = MLK3 

 (KA * MLK3p * PP2A) / (KmA + MLK3p) 

 

R9: 

 MKK4 = MKK4p 

 (K9 * MKK4 * MLK3p) / (Km9 + MKK4) 

 

R10: 

 MKK4 = MKK4p 

 (K10 * MKK4 * Mekk1p) / (Km10 + MKK4) 

 

R11: 

 MKK4p = MKK4 

 (KC * MKK4p * PP2C) / (KmC + MKK4p) 

 

R12: 

 MKK4p = MKK4pp 

 (K12 * MKK4p * MLK3p) / (Km12 + MKK4p) 

 

R13: 

 MKK4p = MKK4pp 

 (K13 * MKK4p * Mekk1p) / (Km13 + MKK4p) 

 

R14: 

 MKK4pp = MKK4p 

 (KC * MKK4pp * PP2C) / (KmC + MKK4pp) 

 

 



93 
 

R19: 

 MKK6 = MKK6p 

 (K19 * MKK6 * MLK3p) / (Km19 + MKK6) 

 

 

R20: 

 MKK6p = MKK6 

 (KC * MKK6p * PP2C) / (KmC + MKK6p) 

 

R21: 

 MKK6p = MKK6pp 

 (K21 * MKK6p * MLK3p) / (Km21 + MKK6p) 

 

R22: 

 MKK6pp = MKK6p 

 (KC * MKK6pp * PP2C) / (KmC + MKK6pp) 

 

R23: 

 p38b = p38bp 

 (K23 * p38b * MKK4pp) / (Km23 + p38b) 

 

R25: 

 p38b = p38bp 

 (K25 * p38b * MKK6pp) / (Km25 + p38b) 

 

R26: 

 p38bp = p38b 

 (KM * p38bp * MKP1) / (KmM + p38bp) 
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R27: 

 p38bp = p38bpp 

 (K27 * p38bp * MKK4pp) / (Km27 + p38bp) 

 

R29: 

 p38bp = p38bpp 

 (K29 * p38bp * MKK6pp) / (Km29 + p38bp) 

 

R30: 

 p38bpp = p38bp 

 (KM * p38bpp * MKP1) / (KmM + p38bpp) 

 

R31: 

 ATF2 = ATF2p 

 (K31 * ATF2 * p38bpp) / ((Km31 + ATF2) * (KmATP * (1 + (SB / Ki)) + ATP)) 

 

R32: 

 ATF2p = ATF2 

 (KA * ATF2p * PP2A) / (KmA + ATF2p) 

 

#Constants 

 

Ki = 1.0 

 

#Kcat constants 

 

K1 = 1.0 

K2 = 1.0 

K3 = 1.0 
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K4 = 1.0 

K5 = 1.0 

KA = 1.0 

K7 = 1.0 

K9 = 1.0 

K10 = 1.0 

KC = 1.0 

K12 = 1.0 

K13 = 1.0 

K19 = 1.0 

K21 = 1.0 

K23 = 1.0 

K25 = 1.0 

KM = 1.0 

K27 = 1.0 

K29 = 1.0 

K31 = 1.0 

 

#Km constants 

 

Km1 = 0.01 

Km2 = 0.01 

Km3 = 0.01 

Km4 = 0.01 

Km5 = 0.01 

KmA = 0.01 

Km7 = 0.01 

Km9 = 0.01 

Km10 = 0.01 
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KmC = 0.01 

Km12 = 0.01 

Km13 = 0.01 

Km19 = 0.01 

Km21 = 0.01 

Km23 = 0.01 

Km25 = 0.01 

KmM = 0.01 

Km27 = 0.01 

Km29 = 0.01 

Km31 = 0.01 

KmATP = 0.01 

 

#Static species 

 

GF = 1.0 

SB = 0.0 

ATP = 1.0 

MKP1 = 1.0 

PP2A = 1.0 

PP2C = 1.0 

 

#Variable species 

 

RasGDP = 0.9 

RasGTP = 0.1 

Rac1GDP = 0.9 

Rac1GTP = 0.1 

Mekk1 = 0.9 
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Mekk1p = 0.1 

MLK3 = 0.9 

MLK3p = 0.1 

MKK4 = 0.9 

MKK4p = 0.05 

MKK4pp = 0.05 

MKK6 = 0.9 

MKK6p = 0.05 

MKK6pp = 0.05 

p38b = 0.9 

p38bp = 0.05 

p38bpp = 0.05 

ATF2 = 0.9 

ATF2p = 0.1 

 

## Realistic p38 model 

## Parameter Standardization: 

## K per second 

## Km micromolar 

## Concentrations in micromolar 

 

R1: 

 RasGDP = RasGTP 

 (K1 *  RasGDP) / (Km1 + RasGDP) 

 

R2: 

 RasGTP = RasGDP 

 (K2 * RasGTP) / (Km2 + RasGTP) 
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R3: 

 Rac1GDP = Rac1GTP 

 (K3 * Rac1GDP * RasGTP) / (Km3 + Rac1GDP) 

 

R4: 

 Rac1GTP = Rac1GDP 

 (K4 * Rac1GTP) / (Km4 + Rac1GTP) 

 

R5: 

 Mekk1 = Mekk1p 

 (K5 * Mekk1 * Rac1GTP) / (Km5 + Mekk1) 

 

R6: 

 Mekk1p = Mekk1 

 (KA * Mekk1p * PP2A) / (KmA + Mekk1p) 

 

R7: 

 MLK3 = MLK3p 

 (K7 * MLK3 * Rac1GTP) / (Km7 + MLK3) 

 

R8: 

 MLK3p = MLK3 

 (KA * MLK3p * PP2A) / (KmA + MLK3p) 

 

R9: 

 MKK4 = MKK4p 

 (K9 * MKK4 * MLK3p) / (Km9 + MKK4) 
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R10: 

 MKK4 = MKK4p 

 (K10 * MKK4 * Mekk1p) / (Km10 + MKK4) 

 

R11: 

 MKK4p = MKK4 

 (KC * MKK4p * PP2C) / (KmC + MKK4p) 

 

R12: 

 MKK4p = MKK4pp 

 (K12 * MKK4p * MLK3p) / (Km12 + MKK4p) 

 

R13: 

 MKK4p = MKK4pp 

 (K13 * MKK4p * Mekk1p) / (Km13 + MKK4p) 

 

R14: 

 MKK4pp = MKK4p 

 (KC * MKK4pp * PP2C) / (KmC + MKK4pp) 

 

R19: 

 MKK6 = MKK6p 

 (K19 * MKK6 * MLK3p) / (Km19 + MKK6) 

 

R20: 

 MKK6p = MKK6 

 (KC * MKK6p * PP2C) / (KmC + MKK6p) 
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R21: 

 MKK6p = MKK6pp 

 (K21 * MKK6p * MLK3p) / (Km21 + MKK6p) 

 

R22: 

 MKK6pp = MKK6p 

 (KC * MKK6pp * PP2C) / (KmC + MKK6pp) 

 

R23: 

 p38b = p38bp 

 (K23 * p38b * MKK4pp) / (Km23 + p38b) 

 

R25: 

 p38b = p38bp 

 (K25 * p38b * MKK6pp) / (Km25 + p38b) 

 

R26: 

 p38bp = p38b 

 (KM * p38bp * MKP1) / (KmM + p38bp) 

 

R27: 

 p38bp = p38bpp 

 (K27 * p38bp * MKK4pp) / (Km27 + p38bp) 

 

R29: 

 p38bp = p38bpp 

 (K29 * p38bp * MKK6pp) / (Km29 + p38bp) 
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R30: 

 p38bpp = p38bp 

 (KM * p38bpp * MKP1) / (KmM + p38bpp) 

 

R31: 

 ATF2 = ATF2p 

 (K31 * ATF2 * p38bpp) / ((Km31 + ATF2) * (KmATP * (1 + (SB / Ki)) + ATP)) 

 

R32: 

 ATF2p = ATF2 

 (KA2 * ATF2p * PP2An) / (KmA2 + ATF2p) 

 

#Constants 

 

Ki = 0.021 

 

#Kcat constants 

 

K1 = 0.38 

K2 = 0.1 

K3 = 0.151 

K4 = 0.39 

K5 = 2.025 

KA = 6.0 

KA2 = 0.1 

K7 = 0.0055 

K9 = 0.005 

K10 = 0.025 

KC = 0.23 
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K12 = 0.005 

K13 = 0.025 

K19 = 0.005 

K21 = 0.005 

K23 = 0.0883 

K25 = 0.0022 

KM = 0.0238 

K27 = 0.0883 

K29 = 0.0022 

K31 = 0.18 

 

#Km constants 

 

Km1 = 1.9 

Km2 = 0.11 

Km3 = 1.98 

Km4 = 18.7 

Km5 = 10 

KmA = 7.82 

KmA2 = 7.82 

Km7 = 29.7 

Km9 = 0.31 

Km10 = 15 

KmC = 15 

Km12 = 0.31 

Km13 = 15 

Km19 = 0.31 

Km21 = 0.31 

Km23 = 0.4 
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Km25 = 0.6 

KmM = 0.067 

Km27 = 0.4 

Km29 = 0.6 

Km31 = 1.6 

KmATP = 23 

 

#Static species 

 

SB = 0.0 

ATP = 3.0 

MKP1 = 0.0032 

PP2A = 0.16 

PP2An = 0.016 

PP2C = 0.01 

 

#Variable species 

 

RasGDP = 0.09 

RasGTP = 0.01 

Rac1GDP = 0.49 

Rac1GTP = 0.01 

Mekk1 = 0.67 

Mekk1p = 0.01 

MLK3 = 0.67 

MLK3p = 0.01 

MKK4 = 0.2 

MKK4p = 0.05 

MKK4pp = 0.05 
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MKK6 = 0.2 

MKK6p = 0.05 

MKK6pp = 0.05 

p38b = 0.26 

p38bp = 0.05 

p38bpp = 0.05 

ATF2 = 0.59 

ATF2p = 0.01 
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