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Abstract

College of Agriculture, Engineering and Science, University of KwaZulu-Natal
Master of Science in Computer Engineering

Flat Fingerprint Classification Using a Rule-Based Technique, Based on Directional
Patterns and Singular Points

by Kribashnee Dorasamy

The demand to keep up with current technology trends has lead to the development of compact
scanner devices. Owing to these hardware constraints, fingerprints are often not fully captured
and crucial fingerprint landmarks, known as Singular Points (SPs) are excluded. The regions
around these points hold key characteristics to determine a fingerprint class. The loss of SPs
make it difficult to identify class patterns which directly impacts the fingerprint classification
stage of the recognition system. Fingerprint classification is important since it reduces the search
time by only comparing an input fingerprint to fingerprints in the database (D B) of the same
class pattern, to find a possible fingerprint match. When misclassification occurs, it takes longer

to find a match as additional classes must be searched.

Using the correct features to identify the class pattern may provide the capabilities to handle lack
of information and prevent misclassification. From the analysis conducted in this dissertation,
Directional Patterns (DPs) were found to be a promising feature to overcome missing SPs due to
their global representation of the fingerprint. Furthermore, investigations showed that detecting
and aligning the remaining SPs in a specific way, allowed unique and consistent class patterns to
appear. The alignment highlighted unique structural characteristics of each flat fingerprint case.

Due to this more robust and simpler classification rules could be developed.

In this dissertation, classification rules for flat fingerprint cases including Whorl ( W) with two
loops/deltas; Right Loop (RL), Left Loop (LL), Tented Arch (T'A) and W with single top loop
and single delta; RL, LL and W with single loop; RL and LL with a single delta; and lastly
Plain Arch (PA) and Partial Fingerprint (PF') cases were implemented. An overall accuracy
of 92.48% was obtained on the Fingerprint Verification Competition (F'VC) 2002 DB1 and
2004 DB1, illustrating that DPs combined with the available SPs are capable of classifying flat

fingerprint successfully.
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Chapter 1

Introduction

1.1 The history of fingerprint authentication

After years of analysis and development within the biometric sector, fingerprint have become
commonly used for authentication in electronic commercial devices. The Touch ID is a well
known example that was introduced by Apple in 2015 [11]. Their success brought about an
approximately 6 million downloads of the biometric application just within that year [12, 13].
The commercial demand to incorporate biometric authentication into smart phones, tablets and
wearable devices has even predicted to drive over 4.8 billion users in 2020 [12, 13]. This de-
mand is rapidly replacing the hassle of using PINS and passwords [13-17]. Unlike PINS and
passwords, biometrics was found to be more appealing due to its reliability in ditferentiating
between an authorised person and an imposter who tries to illegally gain access to a system
[14, 18]. Consequently it increases the level of security. Even banks and leading companies
like Apple and Samsung have now incorporated fingerprint authentication as a means of higher
security for payment transactions [13]. Fingerprints are by far the most preferred biometric trait
that is commonly incorporated into devices [13] since it is more accurate and convenient (easy to
acquire), unlike other biometrics, such as face and voice [14-16, 18-21]. In addition, fingerprint
biometrics does not require expensive equipment to establish a controlled environment for data
capture like iris biometrics {16]. This makes it simpler and cheaper to integrate into devices
that are used on a daily basis. Moreover, commercial companies and engineers found fingerprint

biometrics to be more accepted by the public than using iris biometrics [16, 22].
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Of course none of these innovative authentication devices would have been possible if Galton
did not discover the level of individuality of fingerprint biometrics in the 1890s [17, 23-25].
It was discovered that the probability of two different fingers having the same fingerprint was
as small as 1 : 10720 [26, 27]. Even though fingerprints were assumed to be unique to each
individual at the time [23-25, 27], it had not been proven conclusively until this breakthrough.
Fingerprint biometrics could only be used in criminal identification after this was statistically
proven and it was discovered to be an optimal means of identification even when compared
between twins. The criminal identification divisions previously used a cumbersome bertillonage
technique which recorded the height of an individual as well as other physical measurements
to verify identities of criminals [23, 27, 28]. It was only when the William West case occurred
in Kansas [23, 28], that Scotland Yard began to rely on fingerprints for identification since it
was the only human characteristic at the time that could differentiate between individuals who
have similar physical features [23, 29]. Based on the amount of success brought about through
fingerprints in terms of convicting criminals, the US congress decided to create a new unit within
the Federal Bureau of Investigation (FBI) department, which now holds the central repository

of all fingerprint records in the US [1].

1.2 Fingerprint classification

In 1924, the original number of fingerprints contained in the 'BI’s database (D B) was approxi-
mately 810 188 [1]. These were created using ink fingerprints on paper cards. Owing to the size
of the D B, fingerprint records had to be filed systematically in order for employees to easily and
quickly search through them on a daily basis. To reduce the number of manual searches, finger-
prints which have the same global structure, known as a class, were grouped together [23, 25].
Incoming records were only compared to fingerprints of the same class. This search strategy is
referred to as exclusive fingerprint classification, which stems from the Henry system of classi-
fication [1, 23]. The Henry system defines fingerprints into eight distinct classes [23, 25]; these
consisting of a Whorl (W), Twin Loop Whorl (TLW), Plain Arch (PA), Tented Arch (TA),
Left Loop (LL), Right Loop (RL), Central Pocket Whorl (CP W) and Accidental Whorl (AW)
[23, 30].
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The distribution of these fingerprint classes in nature is not uniform [18]. CPWs, TLWs and
AW s are very sparse so they are frequently disregarded for classification purposes [18]. The like-
lihood of the other classes occurring are approximately 3.7%, 33.8%, 31.7%, 2.9% and 27.9%
fora PA, LL, RL, TA and W respectively [18, 31]. Therefore, these five classes are commonly
used today [19, 32-34]. The patterns of each of the five common classes are depicted in Figure
L1

Figure 1.1: The five most common classes: (a) RL, (b) LL, (c) TA, (d) PA, and (e) W

1.3 Moving towards fingerprint automated systems

As aresult of military documentation that was captured during World War II and the Korean con-
flict, the FBI's criminal and civilian fingerprint DB grew to approximately 78 million records
[1]. Even though the number of comparisons was reduced using exclusive fingerprint classi-
fication, the process became labour-intensive and time consuming. Therefore, in 1963 special
agent Cart Voelker of the F'BI identification division and the National Institute of Standards and
Technology (IVIST') engineers attempted to solve this problem [1]. The contribution from their
work and the projects developed by the head office in the United Kingdom, the Police depart-
ment in Paris and the Japanese National Police, brought about the first Automated Fingerprint
Identification System (AFIS) [1, 25]. Since the process was now automated and the DB con-
tained scanned ink fingerprints on papers, the system had to automatically identify the classes
to perform exclusive fingerprint classification. To do this, global features found on the finger-
print were used to detect a class type [18, 25]. The six commonly used features to achieve this
are, Ridge-Structure features, Frequency-Domain features, Orientation features, Singular Points

(S5Ps), FingerCode features and Structural features [18].
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1.3.1 Brief description of fingerprint global features

A short definition of each of the six features are provided below:

Ridge-Structure
This feature involves using the ridge information directly or by representing all the ridges as
a flow pattern to classify the fingerprint. Ridge structures are categorised into Fiducial Lines,

Geometric Framework, Ridge Recurrence and Hierarchical Kernel Fitting [18, 35, 36].

Frequency-Domain
Fingerprints are composed of parallel and periodic lines which provide sufficient information to

be applied to transforms for classification purposes [37-39].

Orientation
Fingerprints can be represented by the global orientation flow patterns [5, 38, 40—42]. The flow
pattern is composed of individual orientation fields that represent a w x w block of pixels in the

image [43]. Each class has a unique orientation flow [10, 44].

Singular Points

Exclusive classification techniques using this feature is commonly based on the number and type
of each Singular Point (5P) found on the fingerprint [22, 33, 44-51]. There are two types of
SPs, namely loops and deltas. Loops are the highest ridge curvature point, whereas deltas are the
point where ridges triangulate, as illustrated in Figure 1.2. Fingerprint experts use these features
to manually classify fingerprints, since this feature is one of the simplest and easiest to recognise.

Furthermore, SPs forms the basis for many other features [22, 34, 37].

| ’_

/ N o ST ==

(a) (b)

Figure 1.2: Singular Points (.S Ps) namely:(a) loop and (b) delta [44]



Chapter 1 Introduction 5

FingerCode
FingerCode is a unique feature vector that represents a single fingerprint image as four circular
disks that result from using different Gabor filter parameters [22, 51]. These disks can be used

to identify a class, since each class produces unique disks.

Structural

The orientation fields are partitioned into homogeneous regions [4, 52, 53]. An example of
a structural feature, is directional patterns (D) Ps) which are partitioned into orientation fields
falling within the same range. Each orientation partition is referred to as a region. The arrange-
ment of these regions represent the structural feature of a particular fingerprint. These arrange-
ments differ for each class and classification can be easily performed. One of the common ways

to perform the classification is by using Graph-base techniques.

1.4 Emergence of live fingerprint scanners

Studies conducted during 1986 to 1988 showed that by using the AFIS the conviction rate into
state prisons for burglary cases was three times higher than burglary cases which did not use
AFIS [1], as depicted in Figure 1.3. It was only when the A FIS became successful in producing
high conviction rates into state prisons, that a great deal of attention was directed towards the
development and improvement of the fingerprint technology [1]. Owing to it’s success during

this era, fingerprint technology was rapidly advancing.

By 1999, the AFIS was widely used by 500 AFIS sites worldwide [1] and was further exposed
to commercial companies through exhibits at International Association for Identification JAI's
conferences [1]. It was through these conferences that the government become aware of the
digital technology which was being produced by commercial companies [1]. The government
began investing towards new developments related to the combination of digital image enhance-
ment and forensic science [1]. Therefore, not long after the first digital imaging system was
introduced, the San Francisco Police Identification Bureau was equipped with the first live scan
fingerprint device [1].

Commercial companies found great potential in these devices and were willing to contribute to

further development [18]. Shortly after, fingerprint live scan devices were commonly integrated
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Depatments that used AFIS San Francisco {did not use AFIS) California (did not use AFIS)

8% 6%

8%

)
e

[ Lew Enforcoment Il ComplaintsDenied [ Dismissed [__] Probation | [State Prison|

Figure 1.3: The success of tracking fingerprints using AF'[S during 1986 to 1988 [1]

into door alarms, laptops, computer keyboards, and even USB devices. However, for these uses,
devices had to be made more compact, meaning that less area was captured compared to the

original ink-rolled fingerprint on paper method [54, 55].

1.5 Motivation

Owing to the size of flat fingerprint live scanners, fingers are easily incorrectly placed on these
devices resulting in incomplete fingerprints which often exclude key features such as SPs. A
fingerprint with a certain number of loops and deltas are referred to in this dissertation as a case.
Figure 1.4 shows an example of flat fingerprint cases containing only a loop for class (a) RL, (b)
LL, and (c) TA where the entire region below the loop is not captured. RL, LL and TA look
highly similar. Therefore, these incomplete fingerprints that are missing a delta generates small

inter-class variability that leads to misclassification [10, 19, 44].

N _.

A\

Figure 1.4: Small inter-class variability issues between class (a) RL (b) LL and (c) TA

N

(b)
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The small inter-class variability challenges are worsened by rotation. When rotation of a fin-
gerprint occurs even as little as approximately 10 °, a partial/incomplete LL such as Figure 1.4
(b), can then resemble a RL shown in (a) or TA in (c). This may result in the entire DB be-
ing searched to find a possible fingerprint match. D Bs are considerably large often containing
millions of fingerprint images. On that account, when the entire D B is searched, the response
time of the fingerprint recognition system increases. Many practitioners handling these cases
generally discard these fingerprints from the testing sets [19, 56]. However missing SPs is a
common challenge that results from flat fingerprint scanner devices and discarding the images
when testing algorithms does not benefit the system. Discarding the images in real DBs can-
not be easily accomplished and since D Bs contain millions of records which are captured over
decades, it makes it difficult to recapture the fingerprints regardless of the type of scanner used.
Even by using a different scanner that is less likely to capture incomplete fingerprints with miss-
ing SPs (e.g., an electronic rolled fingerprint scanner), does not guarantee that the end user who
is enrolling the fingerprint correctly places the finger on the device. Therefore, solving this from
the software side is more logical since using bigger scanners may not necessarily solve the prob-
lem. To overcome these factors and prevent misclassification, a classification technique that is
capable of handling the challenges of missing S Ps can be created instead. Previous fingerprint
classification techniques that have proposed to solve the challenges of missing SPs, have used
local orientation and the remaining SPs [10, 19, 44]. However, not all cases were accounted for

and some rules did not preserve rotation [10, 19, 44].

1.6 Problem statement

The problem with compact scanners is that the fingerprint is not fully captured and this results
in missing SPs [10, 55]. These flat fingerprints are difficult to classify due to the amount of
information captured [10]. Researchers often use local orientation features since the maximum
amount of information of the fingerprint can be extracted [10, 19, 44]. Many classification meth-
ods track the local orientation fields around the remaining SPs [10, 19, 44, 55]. Despite their
success of achieving a good classification accuracy when classifying fingerprints with missing

S Ps, methods that track local orientation fields experience difficulties in differentiating between
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classes that have hardly any information available especially under noise. With these problems

not all flat fingerprint cases can be solved using one research technique [10, 19].

Previous classification techniques have shown that each fingerprint feature has different benefits
when classifying complete fingerprints [7]. Since flat fingerprints are a recent research topic and
classification techniques thus far have only used local orientation features to classify these cases
[10, 19, 44], finding an optimal feature has not been covered. Therefore, to classify the more
difficult cases and prevent further small inter-class variability issues, the capabilities of each
feature have to be re-evaluated using previous literature. The literature study will evaluate the
advantages and disadvantages of each fingerprint feature used in exclusive classification to es-
tablish the optimal features that can be used to solve the challenges of missing SPs in fingerprint
classification. This research will investigate whether using the selected feature can successfully
classify flat fingerprint cases. The investigation can be assessed by developing a flat fingerprint

classification algorithm that is resistant to missing S Ps.

1.7 Research question

This research attempts to produce new knowledge to answer the following question:

1. Can flat fingerprints with missing S Ps be successfully classified by using the most appro-

priate fingerprint features?

1.8 Research goal

The aim of the research is to classify flat fingerprints with missing SPs by using the most appro-

priate fingerprint features.

1.9 Research objectives

The objectives of the research are as follows:

1. In the literature study, determine which are the optimal features that can classify flat fin-
gerprints with missing SPs.
- Establish the advantages and disadvantages of each fingerprint feature (Ridge-Structure

feature, Frequency-based feature, Structural feature, S Ps and Orientation features).
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2. Achieve unique and consistent representations of the selected feature for each flat finger-
print case.
- Evaluate the changes in the selected fingerprint feature under rotation and other influen-

tial factors.

3. Design an exclusive fingerprint classification that is based on a rule-based technique which
classifies flat fingerprints with S Ps using the selected features.
- Develop classification rules based on the unique and consistent representations of the

selected feature for each flat fingerprint case.

1.10 Delineation

The bounds of this research are as follows:

1. The Fingerprint Verification Competition (F'VC) DB is used to test the fingerprint clas-
sification algorithm. This DB contains images captured from flat fingerprint live scanner
devices. Since the main focus of the research is to solve flat fingerprint challenges with
issues of missing SPs, this is the most suitable DB.

2. Only exclusive fingerprint classification using a rule-based approach is considered.

3. Existing pre-processing methods will be used where required.

1.11 Contributions

This research makes four main contributions to the field of biometrics in exclusive fingerprint

classification:

1. It presents a summary of the advantages and disadvantages of each fingerprint feature
(Ridge-Structure feature, Frequency-based feature, Structural feature, SPs and Orienta-

tion features) when used in exclusive fingerprint classification.

2. Directional Patterns (D Ps) is one of the selected features that is chosen based on the
literature study. Therefore, an evaluation of the DP of each flat fingerprint case under
the variation of the number of regions and rotation is conducted. This establishes the
ideal number of regions to form a D P and method of rotation used to produce unique and

consistent D Ps for each flat fingerprint case.
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3. The research presents a novel rule set for exclusive fingerprint classification using D Ps

and the remaining .S Ps that classifies flat fingerprint cases.

4. An attempt is made to solve the challenge of classifying a PA and a Partial Fingerprint
(PF) by creating a more robust rotational invariant rule that does not rely on the finger-

print’s size but rather on the actual class pattern.

1.12 Brief chapter overview

Chapter 2 covers the literature review that identifies the most appropriate feature to classify
fingerprints with missing Singular Points (SP). Chapter 3 presents the unique and consistent
representations of the selected feature (i.e., D Ps) for each flat fingerprint case. The rule-sets
are developed on the unique and consistent representations of each flat fingerprint cases. The
classification rule set is covered in Chapter 4. Results of the proposed classification algorithm

will be presented in Chapter 5. Chapter 6 provides the conclusion.



Chapter 2

Literature Review

This chapter discusses the works in literature which cover the fingerprint features used to imple-

ment exclusive fingerprint classification algorithms.

2.1 Introduction

During the last century, practitioners have largely contributed towards the development of in-
expensive and compact flat fingerprint scanners to meet public demand [55, 57, 58]. These
hardware constraints limit the amount of information captured from the finger [57, 58]. These
fingerprints are generally placed flat on the scanner and are not rolled. The SPs found on the
fingerprints are therefore frequently excluded [19, 44]. In this dissertation a case is referred to a
fingerprint of a certain number of loops and deltas. Often, there are cases were classes look very
similar because they have the same number of SPs and the ridge information is not enough to
differentiate between the classes [10, 44].

Initial fingerprint classification techniques were not capable of handling cases of missing SPs
[4,7,9,10,22,33,53, 56, 59], since they were designed for complete fingerprints that experience
at most minor ridge loss [22, 37, 53]. The inter-class variability issues across classes, caused by
missing SPs were difficult to overcome and as a result, misclassification often occurred [10].
This can lead to a match not being found in the sub-set. The consequences of not finding a
fingerprint match within a sub-set of the D B that holds the detected class types leads to the entire
D B being re-searched for a possible match. This increases the response time of the recognition
system. To prevent any occurrence of misclassification, practitioners refocused their attention on
the development of classification algorithms specifically designed to cater for the downfalls of

flat fingerprints [7, 10, 19, 44, 55].

11
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In 1999, the FVC released the first large DB consisting of digitally scanned fingerprints [57].
The testing data that was made available was sufficient to identify the key problems of flat finger-
prints [57]. Researchers were then able to begin developing classification algorithms for current
technology [57]. Not only were there concerns regarding lack of information captured from op-
tical scanners, but rotation, translation and noise were additional factors that contributed heavily
to interclass variability across fingerprint classes [10, 44].

Each feature has different capabilities and selecting the most appropriate features can help over-
come the challenges faced by flat fingerprints [7, 44, 55, 60]. Therefore, to develop the finger-
print classification algorithm for this dissertation, the feature will be selected based on its ability
to handle minimal information under noise, rotation and translation. A full literature study of
previous classification techniques using different features, namely: SPs, FingerCode, Structural
feature, Ridge-Structure feature, Frequency-based feature and Orientation features was carried
out based on each feature’s ability to handle noise, computation, rotation, translation, and inter-
class variability issues, but mainly missing .5 Ps. The study analysed all classification techniques
regardless of the type of approach from all periods in order to produce a sound analysis of the
capabilities of the features.

The ideal way to analyse the features would be to implement all classification techniques and test
them on images with minimal information. However this requires a larger scope encompassing
different enhancement and machine learning techniques covered over the past century. There-
fore, when determining the optimal features that can be used to solve missing SP challenges,
obtaining a generalised critical analysis of the past literature is sufficient.

A detailed literature study of classification techniques including both rule-based and machine
learning approaches of the selected features will be covered. This will allow the most optimal
feature to be selected and underline the benefits and downfalls of the feature chosen, in order
to determine the most appropriate additional features to improve the techniques classification
accuracy.

Classification techniques that have attempted to classify fingerprints with missing SPs will also
be discussed to establish the current gaps. This literature will cover the period from 1999 to
2015, since the F'VC DB was only released in 1999 and therefore research on flat fingerprints
gained momentum during this period [7, 10, 19, 55, 57]. The literature review highlights the
shortcomings of these works and then highlights possible solution directions.

The following sections present the literature study that identifies the most appropriate feature
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to classify fingerprints with missing SPs caused by compact electronic scanners. Section 2.2
introduces the summary of the advantages and disadvantages of all features used for fingerprint
classification and highlights which features show potential for solving cases of missing informa-
tion. The details of the selected features are also presented in this section. Section 2.3 provides
literature covering fingerprint classification methods during the period from 1999 to 20135, that
attempt to solve classification challenges of flat fingerprint cases. The major gaps will be ad-
dressed in Section 2.4 and based on previous literature a possible solution is presented. Section
2.5 discusses a fingerprint classification technique introduced in 2008, that first use this sug-
gested features and highlights the gaps to be addressed by this work. Conclusions are drawn in

Section 2.7.

2.2 Selecting the optimal features to overcome missing SPs

In this section, the possible optimal features that could be used to reduce the challenges faced by

flat fingerprints are determined by examining existing literature.

2.2.1 Advantages and disadvantages of fingerprint features

Previous fingerprint classification techniques have used features such as: SPs, FingerCode,
Structural features, Ridge-Structure features, Frequency-based features and Orientation features.
These techniques are analysed to establish the advantages and disadvantages of each fingerprint
feature. Table 2.1 shows a summary of the advantages and disadvantages of the various features.
The ability to handle missing information, rotation, translation, inter-class variability issues and
computational cost are observed based on the accuracy of the algorithm; the way in which the
features are used; types of images excluded from the testing process; requirements and types of

enhancement techniques used; dependency on rotation; and consistency of patterns.
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2.2.2 Orientation feature

Based on the information formulated in Table 2.1, orientation features have many advantages and
are one of the features that best represent a class [7, 25, 68], since maximum information about
the fingerprint class can be extracted without the excess computational cost required for other
features, such as ridge-structure features [30, 55]. Even as early as the 1970s, Kaas et al. stated
that orientation field patterns have the ability to describe the most complex images, regardless of
shape and colour, as long as the magnitude and direction is known [69]. Owing to these factors,
orientation features are generally the most appealing feature to develop a successful classifica-

tion technique [7, 68].

] e =
S e AT A —t =

Figure 2.1: W fingerprint represented by block-wise orientation fields [2]

Additionally, orientation features are not as sensitive to noise as ridge-structure features [30, 55,
68). This is due to the fact that orientation is often averaged over a block of ridges [55], as shown
in Figure 2.1. The blocks of orientation field reduce the effects of corrupted images [55, 70].
This invariancy to noise makes orientation more appealing to classification of flat fingerprints
{30, 55, 68]. Furthermore, the orientation fields are small enough to track ridges when minimum
information is captured [10, 44, 68]. The actual fields are also more reliable than ridge-structure
features [30, 60].

The reliability and potential capabilities of orientation fields, is clearly demonstrated in one

of the most popular classification techniques to date, known as the Pattern-level Classification
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Automation System (PCASYS) method which was developed in 1995 [3-5, 34, 35, 71]. It was
the first open source fingerprint classification method [9, 18, 72].

However, a downfall of using of orientation feature vectors is that they can lead to unneces-
sary dimensionality and computational cost [18]. The Karhunen-Loeve transform was applied
to the PCASYS model to reduce the high dimensionality from 1680 elements to 64 clements
[9, 18]. However, even though dimensionality was improved further by using alternate machine
learning techniques namely: Self-Organizing Map (SOM) techniques [18, 73, 74], two stage
classification techniques [71], or Support Vector Machine techniques [70], the effect of the di-
mensionality reduction increased the computation cost [18]. These factors made it difficult to

integrate the method into fast performing scanner devices [30].

2.2.3 Benefits of combining SPs with orientation features

Unlike using orientation fields alone, combining SPs with orientation fields can reduce dimen-
sionality and computation cost [46, 47, 56, 75]. Rather than using the orientation fields of the
entire image, only the flow of orientation fields between the loop and delta region was used to
classify complete RLs, LLs and TAs [10, 19, 46, 56, 75].

The work of Karu and Jain produced one of the simplest solutions using orientation fields and
S Ps [56]. The classification of RLs, LLs, TAs, and W's is based on the threshold orientation
value which is computed using the fields along the line that is constructed between the loop and
the delta [56]. Speed tests showed that this work was quicker than PCASY S, taking approx-
imately 3 seconds to perform overall classification on a Sparc-20 workstation [56] as shown in
Table 2.2. The computation of the orientation fields took most of the time (2.8 seconds), and
the actual classification was then completed in just 0.2 seconds [56]. Conversely, the orientation
feature vector based PCASYS algorithm had a minimum running time of 5 seconds on the HP
and 16.7 seconds on the Sun SPARC-station (10), as shown in Table 2.2 [9]. This illustrates that
SPs have considerably lower computational cost with no problems related to dimensionality,
making it much easier for integration with modern scanner devices. The PCASYS was tested
on 2699 images from the NI.ST Special DB 14 and the method by Karu and Jain was tested on
the entire NIST 4 DB which consisted of 4000 images [9, 56].

Additionally, the key information about a class lies around the SPs [10, 33, 44]. Of course, SPs
cannot be used alone in classification [10, 19, 44, 56], since the amount of information would

not be enough to over interclass variability issues, especially for flat fingerprints [10, 44, 46].
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Table 2.2: Speed results for PCASYS model and a fingerprint classification model based on

SPs [9]
Author Computer Model Seconds |
Dec Alpha 7
Hp 9000/735 5
IBM 7012/370 6.7
PCASY S [9] SGI Challenge (IP19)-One processor 7.5
Sun SPARC station 2w/Weitek 80 MHz CPU 17:7
Sun SPARC station 10 16.7
Sun SPARC server 4/470 329
Method by Karu and Jain [56] SPARC station 20 3

Nonetheless, based on the advantages of using the remaining SPs, they are the most suited
feature to be integrated with other features to overcome the challenges of flat fingerprints.

The combination of these features also aids with issues related to translation and rotation [10,
44, 56]. Since orientation fields are calculated using a set coordinate axis [43], large variation
of fingerprint patterns occur under rotation and translation. SPs [33, 76] are easily recognisable
fingerprint landmarks and therefore are commonly selected as registry points [33, 76]. Methods
that use orientation fields directly for classification [70], like PCASYS [9] and SOMs [77]; or
indirectly like frequency [22], ridge-structure [5] and structural based models [4] have all used
SPs as an alignment tool or to locate specific areas on a fingerprint [18]. Since they are such
a good landmarks, even for fingerprints with missing S Ps the remaining SPs can also be used
to align the fingerprints to obtain unique and consistent orientation patterns for each class [7].
The remaining SPs found on the flat fingerprint cases can also be used as registry points to
easily locate the regions of interest that will provide the most information about the class type
[10, 44, 56].

These factors serve as a justification on how the combination of orientation feature and SPs
compliment each other’s strengths and weakness, resulting in them being the preferred features

to overcome the challenges of flat fingerprints.
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2.3 Fingerprint classification method designed to overcome the chal-

lenges of missing SPs

When FVC released the first publicly available DB of electronically captured fingerprints in
1999 [57], it allowed researchers to bridge the gap between industry and academia [57]. Prac-
titioners could make improvements on fingerprint classification techniques specifically designed
to overcome the challenges of flat fingerprints, which is the type of fingerprint captured in most
modern applications [10, 44, 55, 57].

Tests conducted on the F'VC DB allowed practitioners to easily identify which aspects needed
attention [10, 44, 55, 57]. Most older methods that were tested on the NIST DB were not de-
signed to cater for electronically captured fingerprints [S6]. An example was the method by Karu
and Jain which was originally tested on the NI57T-4 D B which contained 4000 scanned images
of ink fingerprints that were rolled on paper. It produced a classification accuracy of 85.4%
[56]. In spite of that, when this work was re-implemented and tested on the FVC 2002 DB and
FVC 2004 DB, the accuracy dropped to 47.3% and 55.0%, respectively [10]. The technique
used simple rules that combined the orientation feature with S Ps [56], however the method was
too dependent on both the loop and the delta to determine a class. The FVC DBs contain fin-
gerprint images with missing SPs and therefore the drop in accuracy depicted that the original
rule-based strategy was not capable of handling flat fingerprints with missing SPs obtained from
electronically fingerprint scanners [10]. Researchers therefore began to develop techniques to
accommodate all cases of missing SPs, otherwise fingerprint classification algorithms fall short
when flat fingerprints are not completely captured [10].

Table 2.3 covers all possible cases of captured SPs, including missing SPs, that can occur and
the possible class types. It also covers all techniques designed to classify each case. The table
illustrates which cases have been addressed in the literature and which have not been resolved
yet.

Since a fingerprint image with a single loop captured [10, 19] and a W with only two loops or
two deltas captured [19, 78, 79] were the most frequently occurring cases of missing S Ps, many
techniques have attempted to address these [10, 19, 78, 79]. The most simplest of all methods,
was a rule-based classification technique developed by Msiza ef al. [19]. This technique used

coordinate geometry of SPs [19]. The rules caters for classifying a single loop image that can
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Table 2.3: All possible flat fingerprint cases including missing SPs and the corresponding
literature that attempts to solve each case [10]

: g Examples in literature that
No. Loop | No. Delta | Fingerprint Class SEBHHETaRAHER Sae
2 2 W [10, 19, 44, 56, 78, 79]
2 1 w [10, 19, 44, 78, 79]
2 0 w [10, 19, 44, 78, 79]
1 2 w [10, 19, 44, 56,78, 79]
0 2 W [10, 19, 44, 56, 78, 79]
W X
1 1 TA [19, 56,78, 79]
RL [19, 44, 56, 78, 79]
LL [19, 44, 56, 78, 79]
w [10, 44]
TA X
! 0 RL [10, 19, 44]
LL [10, 19, 44]
W X
TA X
o ! RL [44]
LL [44]
0 0 PA [10, 19, 56, 78, 79]
PF [10]

be considered as a LL or RL. The method uses the location and the angle between the loop and
the pedestrian plane to identify a LL from a RL. A rule for the detection of a W with missing
delta points was also created.

The additional rules by Msiza et al. that were created to cater for missing SP cases, produced
a higher classification accuracy than the one achieved by the work of Karu and Jain, which
only addressed complete fingerprint cases [10, 56]. The accuracy increased by 19.6 % and
18.0% when re-implemented and applied on same batch of images from the FVC 2002 DB1
and F'VC 2004 DB1, respectively [10, 19]. However, the classification accuracy was still low
[10] which drew attention on the fact that improvements with regards to classifying fingerprints
with missing SPs still had to be made. The misclassification of fingerprints were owing to the
method’s inability to handle rotated fingerprints and rules were not extended to address all cases
of missing SP [10].

In 2014, the works of Webb et al. [10] and Guo et al. [44], used local orientation features to
produce a more robust set of rules for classification of a single loop fingerprint. The rules were

invariant to rotation, since they were not dependent on the location of the S P or an angle that was
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calculated using a fixed x-y axis [10, 44]. The orientation fields were observed to differentiate
not only LL and RL, but also for W classes [10, 44]. Although the rules for each work were
fairly different, both were based on the information provided by flow of orientation fields around
the loop, which moved towards the left, right and converged for a LL, RL and W, respectively
[10, 44].

Webb and Mathekga even introduced a new rule that detected a Partial Fingerprint (PF) from
a PA [10]. PF's are the most difficult fingerprints to classify, since they have no information
that can be used to determine the class type. These fingerprints are cut-off before the class
pattern resulting RLs, LLs, T'As or even W's being captured with no SPs. Considering that
both PAs and PF's have no SPs, PF's are commonly classified as P.As. The work of Webb and
Mathekga observed the size of the fingerprint to identify a PF from a PA [10]. The downfall
with using size of the fingerprint captured, is that the size of complete fingerprints vary for
different individuals. Guo et al. also presented a new rule for single delta fingerprints. This was
established by tracking the deltas locations relative to the centre of the print, to classify a LL or
a RL. However, this rule did not preserve rotation [19]. In summary, these rules attempt to solve
the challenges faced in fingerprint classification, which have not been addressed until now, but

there is room for improvement.

2.4 Limitation of local orientation fields

Guo et al. mentioned that the major contribution for classification accuracy not reaching 100%,
was the effect of noise on local orientation features [44]. To overcome this downfall, local orien-
tation classification methods including the work by Guo et al. , perform fingerprint enhancement
[2, 44, 60, 78]. This helps to reduce excess amounts of noise that results in the restructuring of
ridges [58].

Nonetheless, errors still occurred in both complete and partial PA and T'A classes, due to the
sensitivity of local orientation flow. The PA and T'A fingerprints were often classified as a RL
or LL. The averaging of orientation fields reduces the risk of the impact of noise to an extent,
however small inter-class variability issues between classes with a similar number of SPs or

patterns cannot be avoided under the influence of noise [44].
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2.5 Representation of classes using global orientation fields

Observing smaller decomposed segments of an image, can make it difficult to differentiate cor-
rupted data from true data. Rather than focusing on enhancement techniques to prevent corrupted
data, globally analysing any image can provide a perspective of its layout that is not affected by

local noise. Thereafter, small areas of noise become less of a concern [53, 55].

@ (b

Figure 2.2: An illustration of a (a) RL and it’s (b) global pattern (structural representation)
with four homogeneous regions [3]

The fingerprint must be represented as a structural identity to observe the orientation fields glob-
ally. The Structural Approach introduced in 1996, demonstrated its ability to overcome misclas-
sification due to the effect of corrupted fingerprints [53]. Therefore, this may be a solution to
further increase classification accuracy on flat fingerprint cases. The approach grouped orienta-
tion fields into homogeneous regions to form a global pattern for each class. An example of a
RL global pattern with four homogeneous regions is shown in Figure 2.2 (b).

To overcome misclassification using structural features, the type of region segmentation method
that groups the orientation fields plays a significant role [4]. It affects the patterns of classes
[4, 52, 53, 80] or consistency of the number of regions produced [4, 52, 53, 80]. For images
with missing SPs, patterns have to be consistent and unique for each class, so that the inter-class
variability issues can be dealt with [7]. Therefore, determining the region segmentation method
1s crucial.

Maio and Maltoni’s structural approach was designed specifically to minimize the variance of
the orientation fields, so that it can establish regularity of the homogeneous regions [53]. The
regions are segmented using a greedy dynamic clustering algorithm [53]. However, the problem

with the greedy dynamic clustering algorithm is that it produces inconsistent patterns [4].
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Moreover, the technique’s final stage is based on graph matching to detect the closet resemblance
of the graph model to the model associated to a particular class [53]. However, using the model
node graphs requires complete class information which is not possible for flat fingerprints [53].
Images from live-scan devices have often shifted, cutting off large portions of regions which will
result in minimum information and translational issues [55]. In addition, Cappelli et al. claimed
that the method was too dependent on ridge-line orientation changes on achieving homogeneous
regions and the dynamic concept of clustering had inconsistency of the number of regions [4].
It gave rise to the hidden similarities across classes and the huge differences between the same
class. Figure 2.3 shows a LL that produces different number of regions using the greedy method
[4]. Such a case was seen in the work of Yao et al. , where a total of twelve models had to be

created for just a five class classification [52].

Figure 2.3: Structural representation of LL fingerprints using the greedy method which pro-
duces (a) three regions and (b) six regions [4]

One way to decrease the degree of freedom of the number of regions is to apply a guided seg-
mentation, were the number of regions and their structural representation are fixed [4]. Each
class is represented by a dynamic mask [4]. The problem with this technique, is that incomplete
fingerprints do not have enough information to apply a guided segmentation on the orientation
map. Hence, overall graph matching approaches using either homogeneous regions or dynamic
masks would not be able to perform successfully on flat fingerprints.

Another possible region segmentation method which requires less computational cost than the
presented techniques, creates regions by combining the orientation fields that lie within a specific
orientation range [5, 6, 80-82] to form what is known as a directional pattern (D P), as shown

in Figure 2.4. The key aspects that set this technique apart from others, is that the variation of
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patterns for an upright fingerprint is limited, since the number of region is consistent [5, 6, 80—
82]. In addition, to perform classification it does not depend on complete fingerprints to associate
it to a graph model [5]. The information from the pattern is sufficient to classify a fingerprint

directly using a rule-based approach [5, 80].

7\
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(a) (b)

Figure 2.4: Example of a (a) TA and it’s (b) DP (5]

2.6 Directional pattern approach

In 2008, the first rule-based classification technique using D Ps was introduced [5]. The direc-
tional approach is implemented using sets of pattern descriptors which are divided into 18 pattern
zones to classify fingerprints [5], as shown in Figure 2.5. Figure 2.5 (c) shows the associated
single loop and single delta descriptor, each with two zones that represent a specific pixel direc-
tion [5]. The descriptor is designed for DPs that are formed from fingerprints in which the SPs
have been horizontally aligned [5]. The use of pattern descriptors, implies that the DP for each
class produces consistent unique patterns irrespective of the angle of rotation of the fingerprint

captured [5].
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Figure 2.5: Eighteen pattern zones with deltas and loops [5]
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Even though the approach was designed for fully rolled fingerprint, Lui et al. extended the rules
to cater for the most frequent case of missing SPs (a fingerprint with a single loop) [5]. The
value of the pixel direction under the loop of a fingerprint with single loop is used to classify
a LL and a RL. This highlights that DPs can globally represent the key information of a class
regardless of the amount of information captured, if rotated correctly [5]. This is beneficial for
fingerprints with missing S Ps.

Conversely, if the pattern descriptors are extended for all missing SP cases, it will become
complex and the approach will have an exceedingly large number of descriptors [7]. To prevent
this from occurring while still utilising the concept of DPs for classification of most cases of
missing SPs, the technique should not use pattern descriptors [7].

For this study a more simplified rule-based approach using D Ps that are combined with SPs will
be implemented to enable a successful flat fingerprint classification. This will use the advantages
of orientation features and SPs for classifying flat fingerprints, but reduce the issue of noise
experienced by local orientation fields. A rule-based approach has the advantage of not requiring
a training data set. To produce consistent unique global patterns for each class, the DPs are
observed under variation of rotation and number of region. The new rules will be created, based

on the patterns obtained.

2.7 Conclusion

Compact electronic scanner devices that are widely used produce flat fingerprint images that
are often not fully captured [55]. This leads to frequent exclusion of SP [10, 19, 44]. SPs
combined with orientation fields did show potential but using local orientation fields suffered
from noise. To counteract the lack of information and prevent small inter-class variability issues,
SPs combined with DPs were selected to address the aim of the dissertation.

A previous directional approach which used pattern descriptors to successfully perform a rota-
tional invariant classification drew attention to the benefits of combining DPs and SPs [5]. DPs
were found to best represent a class, since the key information of a class is easily recognisable
[5, 7]. The SPs also played an important role. The number and type of the SPs give an indica-
tion of what type of information is available and where on the fingerprint the ’region of interest’

is located [5, 7].
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The previous directional approach technique was not specifically aimed at addressing the chal-
lenges of flat fingerprints [5, 7]. Nevertheless, it did attempt to classify some cases with min-
imum information [5, 7], and therefore emphasised the potential it may have in solving flat
fingerprint challenges. The purpose of this dissertation is to develop a fingerprint classification
algorithm that is capable of classifying flat fingerprints with missing SPs. The following chap-
ters will first investigate how to create the D Ps such that it produces unique patterns for each

flat fingerprint case, and then discuss the development of the classification rules.



Chapter 3

Evaluating the Change of Fingerprint
Directional Patterns Under Rotation

and Number of Regions

In this chapter, the evaluation of the changes in DPs are observed by varying the rotation of
different fingerprints and changing the number of regions, to establish a way to consistently

produce unique DPs for each flat fingerprint case.

3.1 Introduction

Fingerprint classes suffer from a great deal of small inter-class variability. This is worsened
when there is missing information. To deal with the inter-class variability issues regardless of
the type of features used, consistent and unique patterns that best represent each class type must
be established. This work aims to use DPs for classification. Thus, the condition must be
met for the DPs (i.e., unique and consistent). In this chapter the ideal conditions of DPs are
evaluated to determine which conditions produce unique patterns. In order to do this, the factors
that influence the D P class patterns first have to be established.

The most obvious factor that affects the patterns produced for each class is the number of regions
that are used to form a D P. This is a controlled condition that is set by the developer. An example
of a four region DP is shown in Figure 3.1 (a) and a nine region DP is shown in (b). These D Ps
are obtained from the same individual’s fingerprint.

As shown in Figure 3.1, the size of the regions differ for different number of partitions. In ad-

dition, the changes in the number of regions affect the amount of visible noise present. As a
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" (b)

Figure 3.1: Example of (a) a four region RL DP and, (b} a nine region RL DP [6]

result of these observations, D Ps with different number of regions should be analysed to estab-
lish which will generate the least amount of visible noise. Furthermore, the findings gathered
from [6], stated that the intersection of fault lines (boundary lines of each region) of these D Ps
influenced the detection accuracy of SPs. Regarding Figure 3.1, when there are four regions, as
in (a), the fault lines converge at one point, indicating a .S P; however for nine regions it appears
to converge at multiple points. Since the proposed classification will rely on the use of SPs, it is
important to determine which number of regions produces the highest SP detection accuracy.

Generally DPs are segmented into three [5, 7] and four [3, 53, 82] regions. Wang et al. claimed
that a four region partition provides adequate information to locate points of intersection of all
regions and the size of each region is large enough to easily determine a true SP [7, 82]. The
authors also stated that DPs that have more than eight region partitions are more vulnerable to

noise [82]. However, no supporting experiments were undertaken to validate these statements.

(d)

Figure 3.2: Examples showing, (a) an upright RL, (b) a rotated RL, (¢) DP of an upright RL
and (d) DP of arotated RL [5]

Another factor that alters the patterns, is rotation. Considering that DPs are formed by grouping
orientation fields that are calculated using a fixed x-y coordinate axis, the ridge directions of an

individual fingerprint change as it is rotated. Hence, different patterns can be produced under
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rotation, as illustrated using the work of Liu ef al. [5]. Figures 3.2 (c) and (d) show two different
DPs produced from the same class, that have been rotated at different angles.

On that account, a constant method of rotating the fingerprint needs to be found that will produce
consistent and unique patterns of each class. Even though the classification techniques by Liu ez
al. [5] and Dorasamy et al. [7] used a specific method of rotation to obtain DPs, no supporting
experiments were undertaken to justify why a specific method of rotation for fingerprints was
selected.

Overall, the literature that used these specific types of DPs have not conducted any explicit
research to investigate the best possible conditions of D Ps, both in terms of rotation and number
of regions [5, 6, 82].

This chapter examines the effect of changing the number of region partitions and rotation of
the fingerprint image to establish whether there is an ideal number of regions and a method of
rotation that can produce the most unique and consistent patterns. The number of regions affects
the visual noise present on a DP and the detection accuracy of SP [7, 82]. In this research,
the optimal number of regions is established by evaluating the impact it has on the amount of
visual noise present on the DP and the SP detection accuracy produced. Evaluating the DP
under rotation is also conducted, since it affects the consistency and uniqueness of the DP of
each class. Having unique patterns for each class and ensuring they are consistently achieved
aids reducing inter-class variability issues.

The ideal way to analyse these factors would be to implement various classification techniques
for DPs with different number of regions at various rotations [8]. However, most automated
classification methods are designed for D Ps that are created using a specific number of regions,
and therefore cannot be implemented for multiple number of regions [7]. Alternatively, visual
comparisons are made of variations in patterns, and these are analysed alongside the SP detec-
tion accuracy. Since the dissertation is focused on classifying flat fingerprints with missing S Ps,
the change in patterns for both complete fingerprint classes and fingerprints with missing SPs
are observed.

The following sections establish the most appropriate number of regions to construct a D P and
the optimal method of rotation that produces unique DPs for each flat fingerprint case. The
first step is to form the D P of the flat fingerprints that are used for this investigation. This is
covered in Section 3.2. The description of the experiments undertaken is discussed in Section

3.3. Section 3.4 provides the discussion of the findings obtained from experiments. Section 3.5
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presents the ideal number of regions to construct a D P and the various methods of rotation that
produces unique D) Ps for each flat fingerprint case. The conclusions are summarised in Section

3:6.

3.2 Construction of a DP with n regions

As part of the investigation, the construction of a DP for n regions is presented. The number of
regions n varies, based on the requirements of the experiment conducted. To formulate a DP
with n regions, the steps are as follows:-

1. Fingerprint pre-processing

2. Orientation field estimation

3. Region segmentation

These steps are further discussed in the sections below.

3.2.1 Pre-processing fingerprints

Before obtaining the orientation fields to formulate the DP, the background image needs to
be discarded in order to extract only the ridges and valleys of the fingerprint. The unwanted
background may be affected by noise and distortion, regarding orientation fields around the
edges of the fingerprint. This leads to false SPs appearing around the edges of the DP. To
eliminate possible false SPs or irregular DPs, background segmentation is performed using the

method in [83].

3.2.2 Orientation Field Algorithm

The orientation fields of the segmented fingerprint are used to form the DPs. These fields are
calculated using the least mean square orientation estimation algorithm, described in [43]. This
gradient-based method is selected since it has been successfully used [60]. The steps of the

algorithm are the following [43]:-

1. Normalisation

2. Ridge Orientation Estimation
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3.2.2.1 Normalisation

Normalisation is applied to minimise the changes of gray level values along ridges and valleys
[43], while ensuring the integrity of the data. The method used by Hong er al. is employed
to perform normalisation [43]. The pixel at row r and column ¢ on the fingerprint matrix, is

normalised using Equation 3.1 to produce the normalised pixel Ny (r, ¢) at location (r, c).

Ny(r,c) = My ++/(Varg(I(r,c) — M)2)/(Var) ifI(r,c) > M a5
o Mo —+/(Varo(I(r,c) — M)?)/(Var)  otherwise '

The estimated mean and variance is denoted by M and Var, respectively. I(r, ¢) denotes the
gray-level value at location (r, ¢). The mean and variance represented by My and Varg are
assigned zero and one, respectively. The normalised pixel is stored in the normalised matrix G

at location (7, ¢).

3.2.2.2 Ridge orientation estimation

The normalised matrix G is used to construct the orientation field matrix Orient(r, c). The

summarised steps to construct the matrix are as follows:-

1. Partition G into blocks of w x w, where w is 16 in this work.
2. Calculate the gradients 8,(r, ¢) and 8, (r, c) at pixel location (r, c).
3. Using Equations 3.2 to 3.4 compute the appropriate local orientation value for each block

in G, with centre (r, ¢).

'r+2 c-!-2

o(re)= Y. D 20:(u,v)dy(u,v) (3.2)

u=r—g u=c—%

w w
T‘+? c+ 5

vy(rie)= > > 83(u,v)82(u,v) (3.3)

=r—% y=p-u%
Uu=r zuc 5

vy(r,c)
Vo (r,c)
4. Apply low pass filtering to reduce noise found in #(r, c). @, and ®,, in Equations 3.5 and

f(r,c) = la,rc:t n(——= 34

3.6 are continuous vector fields for components = and y, respectively.
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&, (r,¢) = cos(20(r, c)) (3.5)
®,(r,c) = sin(28(r, c)) (3.6)

5. Compute in & (r, c) and @;(r, c) as:-

O (re)= 3 > W(wv)8(r — uw,c— vw) 3.7
u=—222 y=—"10%
2 2

@;(r, &) = Z Z W (u, v)®y(r — uw, c — vw) (3.8)

=D . Y
U=——m-U=—

6. Compute the local ridge orientation value O(r, ¢) at pixel (7, c).

@y (r,c)
D, (r,c)

O(r,¢) = = arctan( (3.9)

2

Figure 3.3 shows the axis used to calculate the orientation fields, were 0° lies on the right lower
quadrant moving clockwise to 180° in the left lower quadrant. Once the orientation fields are cal-

culated, smoothing is applied using a Gaussian filter. This reduces local orientation uncertainty.

270°
4

1B —>0°

Figure 3.3: The axis used to calculate the orientation fields
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3.2.3 Region segmentation for n regions

A DP is composed of different regions of orientation fields. To partition the orientation matrix
O(r, c) into n regions, a region segmentation method is applied. For this dissertation, a simple
region segmentation method is used. The methods combines all orientation fields falling within
a particular range into a single region. An example of a three region segmented DP, is shown in
Figure 3.4. In order for three regions to form on the DP, there must be three different orientation

field ranges falling between 0° and 180°.

Figure 3.4: A DP created using three orientation ranges [7, 8]

Equations 3.10 to 3.12 are formulae used to construct a n region DP [7, 8]. Each range of
orientation fields has a constant interval A¢ calculated using Equation 3.10, were n represents
desired amount of regions. For experiment 1, the number of regions n is varied. For experiment
2, the number of regions n is a constant value that is selected based on the observations made in

experiment 1.

A ¢ =180°/n (3.10)

The range for each orientation grouping can be computed using Equation 3.11, where i = 1...n.

range; = [(i — 1) * Ag@] : [i x Ag] (3.11)

The region number that is used to identify a specific range as shown in Figure 3.4 at a particular
block w with a centre (7, c), can be derived from Equation 3.12, were O(r, c) is the orientation

value at location (r, ¢).

TegioNpum (Ta C) = [O(T’, C)/ A Qﬂ (3.12)
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3.3 Experimental set-up

In order to determine the optimal number of regions and optimal angle of rotation for each
flat fingerprint case, two experiments were conducted. The first experiment varies the number of
regions to establish which one is the most optimal number to construct a D P. This is determined
by assessing the impact it has on the detection accuracy of SPs and the amount of visual noise
present on the DPs. The second experiment varies the angle of rotation to establish which angle
produces the most consistent patterns for each flat fingerprint case. Section 3.3.1 and Section

3.3.2 cover details of experiment 1 and experiment 2, respectively [8].

3.3.1 Experiment 1: Evaluating the impact of varying the number of regions

Apply region Analyse the
Pre-process Obtain orientation segt:!ema“‘“? o Detect singular DP and
fingerprint finlds obtain n reglon points (SPs) accuracy of

directional
pattern {OP)

SP detection

Fingerprint

Repaat for n=3:1:14

Figure 3.5: Flow diagram of the experimental set-up used to evaluate the impact of varying the
number of regions, on the SP detection accuracy and the amount of visible noise produced [8]
Figure 3.5 depicts the overview of experiment 1 which analyses the amount of visible noise
present on a DP and the result of the SP detection accuracy for each number of region. Each
individual fingerprint undergoes pre-processing to remove the background image as described
in Section 3.2.1. The segmented fingerprint is then represented as an orientation matrix O as
described in Section 3.2.2. The region segmentation is then performed on the orientation matrix
to obtain the n region DP of the segmented fingerprint as described in Section 3.2.3. The region

number n is varied from three to 14.
The accuracy of SP detection and amount of visible noise for each n region pattern is observed.
The method for the detection of SPs and the observation made on the amount of visible noise

present in the D Ps are covered in Section 3.3.1.1 and Section 3.3.1.2 respectively.
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3.3.1.1 Singular point detection

The point where all regions converge on a DP, is a SP [7]. However, all regions may not inter-
sect at a single point. On that account, a neighbourhood (ND) of 24 or 48 pixels is searched for
a possible SP. In this dissertation a 24 and 48 pixel search is referred to as 24 ND and 48 ND,
respectively [8]. Figure 3.6 (a) depicts an example were a 24 ND (five x five matrix) is used to

detect a SP at location (r, ¢), on a three region DP.

r-2

r+2

¢2 ¢ c+

Figure 3.6: An example illustrating a SP where all three region intersect using a 24 ND [7]

There are two types of SPs, namely: loops, and deltas. The direction in which regions flow from
region number 1 to n, indicates the type of SP [7]. Regions which flow in an anti-clockwise di-
rection from region number 1 to n, indicate a loop. Conversely, regions that flow in a clockwise

direction from region number one to n, indicate a delta.

(b)

Figure 3.7: Type of SPs (a) loop and (b) delta [7]

Figure 3.7 (a) and Figure 3.6 (b) depict a loop and delta, respectively. For this experiment, the
coordinates of the detected loops and deltas on a D P are compared to its ground truth results to
determine the detection accuracy of SPs. The ground truth results contain the manually detected

coordinates of all loops and deltas found on each fingerprint used for this experiment.
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3.3.1.2 Observation made on the DP

The following observations are made for experiment 1:-

1. The detection accuracy of SPs versus n number of regions,

2. The amount of visible noise present for each n region DP.

3.3.2 Experiment 2: Evaluating the effect of rotation on DPs

Rotate Apply region

Analyse

% Pre-process A g v
% fi v int fingerprint by Obtaln oriemation fields segmentation to uniquenass of
: ingerprin angle B obtain directional oP

patiem (DP)

Fingerprint

4 { Repeat for B=0:10:360 I'—

Figure 3.8: Flow diagram of the experimental set-up that evaluates the effect of varying the
angle of rotation
Figure 3.8 depicts the overview of experiment 2 which analyses DPs produced by fingerprints
that are rotated at different angles [8]. To conduct the experiment, the fingerprint is pre-processed
and rotated by an angle B, from 0° to 360° at increments of 10°. Once each image is rotated,
the orientation fields are obtained as described in Section 3.2.2. Region segmentation is applied
on the orientation matrix O as described in Section 3.2.3. The number of regions n is set based

on the outcome in Section 3.3.1. The uniqueness and consistency of the DP is then observed.

3.3.2.1 Increments for rotation

In this experiment, each fingerprint contained in the testing DB are rotated by an angle B. The
angle is incremented by 10°, from 0° to 360°. A 10° increment allows for the observation of

subtle changes of the DP.

3.3.2.2 Observation made on the DP

As the angle of rotation is varied, the following observations are made:-

1. Uniqueness of DP for each class containing a certain number of loops and deltas.
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2. Number of layouts for a specific DP of each class containing a certain number of loops
and deltas.

3. Consistency of the layouts.

3.3.3 Testing Samples

Fingerprints from the Fingerprint Verification Competition (FVC) 2002 DB 1a [57] were cho-
sen for testing experiment 1. Since visual comparisons are made on the pattern variations in
experiment 2, a smaller testing sample is used. For testing experiment 2, 104 upright fingerprints
from the FVC 2002 DB lais used [8]. Due to a shortage of single delta images, 100 test images
for single delta cases were created by cropping RLs and LLs from the FVC 2002 DB 1.

3.4 Discussion

3.4.1 Observations made on the DPs with different the number of regions

The SP detection accuracy and amount of visible noise present on DPs are observed, to deter-

mine the optimal number of regions.

3.4.1.1 Impact of the varying the number of regions on the SP detection accuracy

Singular Point Detection Accuracy Versus Number of Regions
T T T 1

14 PT
24ND 24 ND 48 ND

4 5 6 ¥

Singular Point Accuracy (%)

Number of Regions

Figure 3.9: SPs detection versus number of regions (n) by varying the value of the neighbour-
hood (N D) and the pixel tolerance (PT") [8]
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Figure 3.9 depicts the overall S P detection accuracy achieved for n region DP. Four experimen-
tal tests were conducted using different pixel tolerance (PT') and ND values. In this dissertation,
the PT value is defined as the total amount of pixels that the detected loop and delta coordinates
can be from its ground truth value, in order for the detection to be considered correct.

The conditions that need to be satisfied in order for the detection to be correct are as follows:

1. The type of SP has to be correct.

2. The number of pixels from the automatically detected loops and deltas to the ground truth
locations, must be less than the PT value.

3. No false SPs must appear in the particular image.

4. All true SPs have to be detected.

When selecting the N Ds for the experiment, the matrix needs to have the same number of pixels
on each side (either horizontally or vertically) from a central point. To achieve this condition,
p % pmatrix is used (as opposed to p X m ) and p has to be set to an odd number. An§ NDisa3
x 3 matrix that is the smallest possible N D that has the same number of pixels horizontally and
vertically from the central pixel point. Since it consist of a total of 8 pixels around a single pixel,
it is less than 14 (the maximum number of regions under observation) and hence not suitable for
this experiment. The next possible NI is 24 which is a 5 x 5 matrix. It has a total of 24 pixels
around a central pixel point. This is greater than 14 and therefore suitable for testing purposes.
To truly observe the effect of DPs with large number of regions on SPs, a larger ND value
needs to be chosen as well for this experiment. Since specks of noise (isolated regions) can
appear on the D P and the SP detection identifies the different n pixel values around a central
point, there is a possibility that the isolated region can be detected as one of the regions that is
attached to the true SP. This can compromise the results since false SPs can be detected. To
prevent this from occurring, the value of the NV D needs to be slightly bigger than a 24 ND. To
satisfy the condition when selecting a N D (i.e., it must be a p x p matrix where p is an odd
number), the next choice from a 5x5 matrix is a 7 x 7 matrix which is a ND of 48. This ND
is double the size of a 24 N D and has enough pixels around a central pixel point to observe the
effect of multiple intersecting points.

Table 3.1 depicts the PT and ND values selected to conduct the four tests shown in Figure 3.9.

It also contains the reasoning, for selecting a particular value.
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Table 3.1: PT and ND values selected for testing purposes [8]

PT Value | Reason for selecting PT value | ND value | Reason for selecting ND Value |

14 Accommodates average amount 24 Smallest ND that can realistically
of error, in automated detection. detect all 14 regions.
Used to observe the
’ . . Used to observe the effect of
20 difference if a more lenient 48 e . .
T multiple intersecting points.
criterion is used.

From the graph illustrated in Figure 3.9, the results show that as the number of regions increased
the SP detection accuracy for each test dropped. Analysing the area around the converging
point of DPs with larger number of regions will most likely provide the reasoning for the low

SP detection accuracy achieved for larger number of regions.

Figure 3.10: A W class represented by a (a) 15 region DP, and (b) zoomed in at its converging
region, which is not a SP [8]

A W fingerprint DP with a large number regions of 15, is shown in Figure 3.10. The converging
region is zoomed in for observation. From the observation, all regions did not intersect at a single
point. For a SP to be located, all 15 regions need to be detected. However, there are multiple
points of intersection of three and four regions. The number of multiple intersecting points
of three and four regions seems to increase, as the number of regions on a DP increases [8].
Therefore, a gradual drop in accuracy for all tests occur, even when searching a VD rather than
a single point of intersection.

However, some tests or conditions experience a larger drop in accuracy than others. This is
owing to the fact that certain conditions can alleviate the problem of multiple intersecting points
of three and four regions, that contribute towards the drop in accuracy. These conditions are as

follows:-

1. An increase in the ND value from 24 to 48.

2. Anincrease in the PT value from 14 to 20.
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The tests conducted using a 48 ND, produce better results than a 24 ND for 6 to 14 regions,
which have the same PT value. This is observed from the graph in Figure 3.9. The higher ND
value is large enough to detect all n regions for larger number region. Additionally, the tests
conducted using a 20 PT, produced slightly higher results than a 14 PT for six to 14 regions,
when compared against tests that have the same ND value.

However, the number of regions which produced the highest accuracy for all tests conducted,
regardless of the VD and PT value used, was a three region DP. From the graph, three regions
produced a high accuracy of 92.1%, using a 20 PT value and a 24 N D value. Based on these

findings, three is the optimal number of regions that a D P should have.
3.4.1.2 Impact of varying the number of regions on the amount of visible noise present on

DPs

To conduct this test, the smoothing on orientation fields that would of been applied in the pre-
processing stage will not be performed. This will allow visible noise on the DP to appear, as the

number of regions on the fingerprint DP is varied. Visible noise appears as isolated regions on

LLtt
(© L(d) ;e) L;f) L(s)

Figure 3.11: (a) Noisy fingerprint image with D Ps formed using different numbers of regions
namely: (b) 3, (c) 4, (d) 5, (e)7, (f) 12 and (g) 15 [8]

the DP.

Examples shown in Figure 3.11 (b) to Figure 3.11 (g) illustrates the effect of increasing the
number of regions (n), on the amount of visible noise present on the DP. These fingerprint DPs
represent a LL with smudges and missing ridges shown in Figure 3.11 (a). Table 3.2 provides
the observations made on the n region 2D Ps which are depicted in Figure 3.11.

Smaller number of regions like three or four, have less visible noise appearing on the DP. Since
the size of the regions are much larger, noise appears as isolated regions. This makes it easier to

identify and remove the noise.
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Table 3.2: Summary of the observations made on the D P with n regions [8]

Smaller number of regions (3 to 6) | Larger number of regions (> 6)

Less visible noise More visible noise

Difficult to identify noise,

where the region size is smaller.
Appears as one of the D P regions.
DP is distinct DP is distorted

Easier to identify and remove. Noise represented
as isolated regions since region size is large.

3.4.2 Variation of rotation

In this section, the pattern changes were observed as the flat fingerprints were rotated. Each
flat fingerprint class containing the same number of captured loops and deltas was observed
simultaneously. Classes with the same number of loops and deltas suffer from small inter-class
variability. Hence, observing these classes simultaneously makes it easier to identify unique
patterns on which the classification rules will be based on. In this dissertation the layout of any
class is identified by the number of common regions (CHs). These C'Rs are regions that are

common between all the loops and deltas found on the DP.

3.4.2.1 Observation of the W DP with two loops and two deltas, under rotation

Amongst all classes, W's are the only class that has two loops and two deltas. As aresult,a W
can be classified immediately by detecting two loops and/or two deltas at any rotation [8]. For
completeness, W's were observed under rotation. Figure 3.12 shows the DPs of a W fingerprint
that is rotated at angles, (b) 0°, (c) 10°, (d) 30°, (e) 50° and (f) 90°. For a W class with two
loops and two deltas, the structure between the top and bottom loops is symmetrical as depicted
in Figure 3.12. All the orientation fields that represent the ridges between the loops and deltas,
fall within the same range and therefore have the same region number. Hence, a single CR forms
between all SPs as seen in Figure 3.12 (b). As a result, the layout is also unique. Furthermore, it
was observed that the region number of the largest C'R only changes to the next region number
after the fingerprint has been rotated approximately 50°. For example, from Figure 3.12 (b) to

(c) the region number of C'R is 2 and thereafter it changes to 3.
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@ (b

Figure 3.12: The DPs of an upright W that is rotated at angle, (b) 0°, (¢) 10°, (d) 50° and (e)
90° [8]

3.4.2.2 Observation of the W, RL, LL and TA DPs with one loop and one delta, under

rotation

The possible classes for a flat fingerprint with a single loop and single delta captured, are W's,
RLs, LLs and T'As. Owing to the structural layout of a W, there are two types of loops: a top
loop and a bottom loop as shown in Figure 3.13. An incomplete 1¥ may have a bottom loop and
a delta, or a top loop and a delta. Since a bottom loop lies between a top loop and delta, it is
very unlikely to have a case of a W with a top loop an delta. Therefore, these cases will not be
investigated. However, a bottom loop and a delta is more likely to occur. Identifying a bottom
loop immediately suggest that the class is a W, therefore the difference between a bottom loop

and top loop is analysed.

Figure 3.13: Indication of a top loop and a bottom for W fingerprint image

The difference between the bottom loop and top loop is the flow of orientation fields towards the
loops and the position of loops on the fingerprint. The arrows in Figure 3.13 indicate the flow of
the orientation fields. For a top loop, orientation fields flow away from the loop. For a bottom

loop the orientation fields flow towards the loop. Furthermore, the orientation fields move in the
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same direction between the top loop and bottom loop and therefore are represented by a single

region as seen in Figure 3.14 (c).

@ ) ©

Figure 3.14: Indication of a top loop for (a) RL DP, (c) LL DP, and both a top loop and
bottom loop on (d) a W DP

Based on the findings in Section 3.4.2.1 the C' R which is represented by region 2 lies above the
bottom loop and changes to the next region number after 50°. For RLs, LLs and T' As it was
found that region 2 lies below the top loop as depicted in Figure 3.14. Therefore by detecting
region 2 relative to the loop, the bottom loop can be differentiated from a top loop. These cases
will not be observed under rotation since the maximum rotation of a fingerprint in the FVC DB
(DB used for testing) does not exceed 35° and region 2 changes only after 50° [57].

Unlike W, classes like RLs, LLs and TAs have to be observed under rotation to identify its
uniqueness. Owing to the number of loops and deltas, RLs, LLs and TAs were observed simul-
taneously. It was found that more than one layout can be produced at the same angle owing to
the amount of ridges flowing in the same direction of the loop for an RL, LL and TA. A layout
is identified by the number of C Rs between the SPs.

RL, LL and T'A fingerprints form D Ps that have three different types of layouts. Figures
3.15 and 3.16 depict these three different layouts, namely: 3-CR, 2-CR and 1-CR DP layout
produced by RLs and LLs, respectively. Conversely, for a TA only two layouts are produced,
namely: 3-CRs and 2- CRs. Figure 3.17 shows the different layouts of a TA.

Figures 3.18 to 3.24 depicts a great variation of layouts under rotation, regardless if the finger-
print formed a specific type of layout at it’s upright position. Therefore, the inconsistency of
patterns is seen at each angle of rotation.

An example of this, is illustrated in Figure 3.18 (g) and 3.18 (h), where a RL fingerprint rotated
by 160° produces a 2-CR DP that changes to 3-CR when the fingerprint is rotated by 180°.
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(a)

Figure 3.15: Three different types of DP layouts produced from (a) an RL fingerprint that
forms a 3- CR layout, (b) a 3-CR layout, (c) an RL fingerprint that forms a 2-CR layout, (d) a
2-CR layout, (e) an RL fingerprint that forms a 1-CR layout and (f) a 1- CR layout [8]

(b)

Figure 3.16: Three different types of DP layouts produced from (a) an LL fingerprint that
forms a 3-CR layout, (b) a 3-CR layout, (c) an LL fingerprint that forms a 2-CR layout, (d) a
2-CR layout, (e) an LL fingerprint that forms a 1-CR layout and (f) a 1-CR layout [8]

Figure 3.17: Two different types of DP layouts produced from (a) a TA fingerprint that forms
a 3-CR layout, (b) a 3-CR layout, (c) a TA fingerprint that forms a 2- CR layout and (d) a 2-CR
layout [8]

@ © ) ®

Figure 3.18: The DPs formed when an RL fingerprint that produces a 3-CR layout at it’s
upright position is rotated at angles, (b) 0°, (c) 30°, (d) 80°, (e) 120°, () 140°, (g) 160° and (h)
180° [8]

Figure 3.19: The DPs formed when an RL fingerprint that produces a 2-CR layout at it’s
upright position is rotated at angles, (b) 0°, (c) 20°, (d) 50°, (e) 60°, (f) 80° and (g) 120° [8]
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(d) i (h)

Figure 3.20: The DPs formed when an RL fingerprint that produces a 1-CR layout at it’s
upright position is rotated at angles, (b) 0°, (c) 10°, (d) 20°, (e) 30°, (f) 60°, (g) 90° and (h)

150° [8]
=5

0 I

Figure 3.21: The DPs formed when an LL fingerprint that produces a 3-CR layout at it’s
upright position is rotated at angles, (b) 0°, (c) 10°, (d) 60°, (e) 110°, (f) 160°, (g) 210°, and
(h) 280° [8]

{b) {c) (d) (e) (f) (8)

Figure 3.22: The DPs formed when an LL fingerprint that produces a 2-CR layout at it’s
upright position is rotated at angles, (b) 0°, (c) 90°, (d) 130°, (e) 220°, (f) 260°, (g) 300° and
(h) 340° [8]

Figure 3.23: The DPs formed when an LL fingerprint that produces a 1-CR layout at it’s
upright position is rotated at angles, (b) 10°, (c) 60°, (d) 90°, (e) 130°, (f) 260°, and (g) 300°
(8]

(@) (b) (©) (d) te) 0 &

Figure 3.24: The DPs formed when a T'A fingerprint that produces a 3-CR layout at it's
upright position is rotated at angles, (b) 10°, (c) 50°, (d) 90°, (e) 190°, (f) 250° and (g) 350° [8]

(h)
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These pattern inconsistencies are also seen for LLs, in Figures 3.21 to 3.23; and for TAs, in
Figure 3.24.

It is therefore clear that RL, LL and TA classes produce inconsistent patterns under rotation. In
addition, even at the same rotation the patterns are not unique for each class.

From the example shown in Figure 3.25 to 3.27, the D Ps of the same layout which are formed
from the different classes are highly similar. These similarities make it challenging to overcome
small inter-class variabilities between the fingerprint classes. The only major visual difference
between classes that produce the same D P layout, is the position of the loop relative to the delta.
Basing a classification only on the position of SPs, will imply that the fingerprints have to be
upright. However, this is never the case as captured fingerprints experience rotation.

Since the patterns vary under rotation, a consistent method of rotating a fingerprint, regardless of
its initial rotation angle, needs to be established. In addition, the rotation must produce unique
patterns for each class, which is not the case at most standard rotations as shown above.

After analysing the DP under rotation, a method of rotation was established. Aligning the
SPs either vertically or horizontally satisfied the key requirements that meets the objective of
consistency and uniqueness. The DPs then became unique for each class. Furthermore, using
fingerprint landmarks instead of a global angle ensure the rotation is consistent. This is depicted
by Figure 3.28, in which SPs are vertically aligned.

Figures 3.28 (a) to 3.28 (c) depicts unique 2-CR DP layouts formed from an LI, RL and TA
fingerprint. The C'R region numbers for each of these classes differ. An LL, RL and TA have
CR region numbers of: 1 and 2; 3 and 2; and 2 and 3, respectively. Figures 3.28 (d) to 3.28
(f) shows unique 3-CR DP layouts formed from an LL, RL and TA. The smallest C'R region
number for each of these classes differ. The smallest C'R region number for an LL, RL and TA
is: 1; 3; and 2, respectively. If this method of rotation is applied in fingerprint classification, it
will not be dependent on the location of the loop and delta to classify a fingerprint but rather on
the unique patterns produced. On that account, a proposed technique to obtain consistency and
unique class patterns, is to align the SPs.

The reason that the region numbers of the CRs are unique to an R, LL and TA, is that the
loop flow varies for the each class. The location of the delta relative to the loop also differ for
each class [10]. The delta lies on the left and right for an RL and LL, respectively. Therefore,
aligning the loop and delta, rotates an upright RL and LL to the right and left, respectively.

Conversely, for an upright TA the loop lies below the delta, therefore it is rotated only slightly.
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Figure 3.25: 3-CR layouts at an angle of 0° that was formed by classes (a) RL, (b) LL, and (c)
TA [8]

Figure 3.26: 2-CR layouts at an angle of 10° that was formed by classes (a) RL, (b) LL, and
(c) TA (8]

Figure 3.27: 1-CR layouts at an angle of 0° that was formed by classes (a) RL, (b) LL, and (c)
W [8]

(A

Figure 3.28: Fingerprints which are rotated such that the SPs are vertically aligned produces
a 2-CR layout of class, (a) LL, (b) RL, and (c) TA; and a 3-CR layout of class (d) LL, (e) RL,
and (f) TA [8]
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These differences in these rotation create unique D Ps.

3.4.2.3 Observation of RL, LL, TA and W DPs with one loop under rotation

The possible classes for a flat fingerprint with a single loop captured are Ws, RLs, LLs and
T As. W' can have either a single bottom loop or a single top loop. The observation of a bottom
loop versus a top loop was covered in Section 3.4.2.2. Hence it will not be addressed again
herein.

An RL, LL, TA and W flat fingerprint with only one top loop captured will be observed simul-
taneously. Figure 3.29 to Figure 3.32 illustrate the D Ps that are formed when the fingerprints

were rotated from 0° to 360°.

\. N \ 6 ‘. e
(b) ()
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(f) (8) (h)

Figure 3.29: The DPs formed from an RL with a single loop that is rotated at angles of, (b)
0°, (c) 50°, (d) 100°, (e) 170°, (f) 220°, (g) 310° and (h) 340° [8]

() (h)

Figure 3.30: The DPs formed from an LL with a single loop that is rotated at angles of, (b) 0°,
(c) 10°, (d) 100°, (e) 170°, (f) 220°, (g) 310° and (h) 340° [8]

The DPs forthe RL, LL, T A and W class with only one loop captured are inconsistent for each

angle. Conversely, it was found that when the images are rotated so that the loop direction for
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(a) (b) (<) (d) (e) 0

Figure 3.31: The DPs formed from a T4 with a single loop that is rotated at angles of (b) (°,
(c) 90°, (d) 130°, () 260°, and (f) 340°

(8)

Figure 3.32: The DPs formed from a W with a single loop that is rotated at angles of, (b) 0°,
(c) 10°, (d) 20°, (e) 40°, (f) 90°, (g) 190° and (h) 230° [8]

(b)

Figure 3.33: Region 2 that links to the loop L found on (a) a TA does not extend to the side of
the D P, whereas for (b) an RL it extends to the sides of the fingerprint

all three classes was pointing downwards, unique patterns appeared. T'A is the only class where
region 2 (that is connected to the loop) does not extend to the sides of the fingerprint. However,
for LLs, RLs and Ws, region 2 (that is connected to the loop) touches the sides of the fingerprint

as depicted in Figure 3.33. Region 2 is also found to be the largest region connected to the loop.

1 :
(a) {b) (c)

Figure 3.34: The DPs which are produced by classes that have a single loop, namely: (a) RL,
(b) LL and (c) W [8]

In addition, it was discovered that the regions below region number 2 are unique for an RL, LL
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and W, as seen in Figure 3.34. The region numbers represent the flow of the ridges as it enters
or exits the fingerprint. The flow of the ridges of an RL and LL advances to the right and left,
respectively resulting in region numbers below region 2 to differ. Conversely, fora W the flow
of ridges converge as it approaches an intersecting point which would of formed the bottom loop
that has not been captured. This results in region numbers below region 2 to be 3 and 1. The

flow of ridges for an RL, LL and W is indicated by arrows in Figure 3.35.

Figure 3.35: The flow of the orientation fields at the bottom of the fingerprint differ for class
(a) RL, (b) LL and (c) W when the loop direction of each of these classes points downwards

3.4.2.4 Observation of the RL and LL DPs with one delta, under rotation

The main information about a class lies below the loop and above the delta. When a majority of
this area is excluded, it is often difficult to identify the class. Therefore, a single delta fingerprint
under rotation has to be closely analysed to establish a unique pattern.

The possible classes for a flat fingerprint with a single delta are RLs, LLs, Ws and T'As. No
uniqueness was found for a W or a T'A with a single delta and therefore these have not been
investigated under rotation. The observations are made only on RLs and LLs with a single
delta.

Figure 3.36 and Figure 3.37 show the DP produced by a single delta fingerprint under rotation
foran RL and LL.

It was found that unique patterns for each class appeared in some cases, for example at a rotation
of 0°, 80°, 120°, 200°, and 350°. The largest region of each class has a unique region number.
However, this is dependent on the location of the delta and the amount of information captured
on either side of the delta.

In an attempt to find an alternate unique pattern, a fingerprint that has the same length on either
side of the delta was observed under rotation. The DP results for this fingerprint are shown
in Figure 3.38. It was found that the sizes of regions are fairly similar. On that account, it is

unreliable to base the classification on the side in which the largest region lies.
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Figure 3.36: The different patterns formed from an RL with a single delta that is rotated at
angles of, (b) 0°, (c) 30°, (d) 40°, (e) 80°, (f) 120°, (g) 200°, (h) 260°, (i) 330°, and (j) 350°

(g)

Figure 3.37: The different patterns formed from an L with a single delta that is rotated at
angles of, (b) 0°, (c) 30°, (d) 40°, (e) 80°, (f) 120°, (g) 200°, (h) 260°, (i) 330°, and (j) 350°

Figure 3.38: The different patterns formed from a rotated RL with a single delta that has the
same length on either side of the delta. It is rotated at angles of, (b) 0°, (c) 30°, (d) 40°, (e) 80°,
(f) 120°, (g) 200°, (h) 260°, (i) 330°, and (j) 350°
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A method of consistent rotation similar to previous cases is an alternative. A unique pattern was
found when the image was rotated such that the orientation fields below the delta were horizontal,

as shown in Figure 3.39.

{a) (b) () (d)

Figure 3.39: Class (a) LL fingerprint with a single delta, that produces (b) a unique LL DP,
and class (c) AL fingerprint with a single delta, that produces (d) a unique RL DP

Region 2 is positioned on different sides of the delta, for RL and LL classes. This region repre-
sents the ridges found just above the delta that lie on the opposite side of the flow of the loop.
Since the flow of the loop relative to the delta differs for RL and LL, the position of region 2 is

unique.

3.4.2.5 Observation of the PA and PF DP with no SPs under rotation

The PA class has a unique ridge structure. It is the only complete class that has no SPs. However,
some fingerprints are cut off so much that the fingerprint class pattern is not captured. This results
in partial fingerprints (P F's) that also contain no SPs. Since these classes both have no SPs,
most classification techniques ignore P F cases and immediately classify them as PAs. However,
a PF couldbea W, RL, LL, TA or even a PA. Therefore, a classification rule needs to be
created for a PA and a PF. To achieve this the classes need to be observed under rotation to
determine their unique characteristics.

Individuals often place the tips of their fingers on the scanner. As a result of this, the most com-
mon PF’ case occurs when the fingerprint is cut off just above the loop (point were the highest
ridge curvature occurs). In this dissertation, only the most common PF case is addressed. Since
these cases have lost most of the class ridge information, not even a human can not identify the
type of class. Hence, it can not be further categorised as an RL, LL, TA, W ora PA.

The PA and PF classes are observed under rotation. Figure 3.40 and 3.41 shows the DP results
for a PA and a PF fingerprint under rotation, respectively.

From the observation made (for both PA and PF), the regions never intersect at any rotation
since there are no SPs. However, the highest ridge curvature point can be located. The area

around this point will have the most information about a PA and a PF. The highest curvature
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Figure 3.40: The different patterns formed from a rotated PA at angles of, (b) 0°, (c) 20°, (d)
30°, (e} 40°, (f) 60°, (g) 90°, (h) 120°, (i) 150°, (j) 210°, (k) 270°, (1) 300°, and (m) 320°

D)

Figure 3.41: The different patterns formed from a rotated PF at angles of, (b) 0°, (c) 20°, (d)
30°, (e) 40°, (f) 60°, (g) 90°, (h) 120°, (i) 150°, () 210°, (k) 270°, (1) 300°, and (m) 320°

lies at different points for a PA and a PF, as shown in Figure 3.43. At any rotation, the highest
curvature for a PA lie in the middle area of the class pattern. Whereas for a PF it lies at the
edge of the fingerprint, since it is cut-off just before the intersecting point. The highest curvature

on a fingerprint is represented on the D P by the area where all regions converge.

Figure 3.42: Unique DP for (a) a PA and (b) a PF

Figure 3.42 shows that this characteristic is more clearly seen when an upright fingerprint is

rotated such that the orientation fields lying at the left side of the fingerprint points downwards.
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It makes the point where all regions converge more pronounced. An example is shown in Figure

3.40 (d) to (e). Whereas, in Figure 3.41 (b) the area were region converge is not as pronounced.

(a) (b)

Figure 3.43: Highest curvature point within the circle for (a) PA and (b) PF

If the area were all regions converge is more pronounced, it will be easier to locate the highest
curvature point and extract all necessary information to differentiate between a PA and a PF.
With regards to these necessary information, it was found that the smallest width w, of a region
lies on the row were all regions converge, as seen in Figure 3.44. This region is referred to as
the innermost region. The maximum width w, taken below the converging area of the innermost
region, also differ for a PA and a PF. This is based on the amount of orientation fields flowing
in the same direction at the edge of the fingerprint. For a P A, width w, is more than half of the
width of the D P. Conversely, for a PF', width w, fairly similar in length to width w,. Therefore,

the differences in these widths are unique for a PA and a PF.

Innermost Region

(a) (b)

Figure 3.44: Width w, is the smallest width on the innermost region and width w, is the
maximum width below the converging area on (a) a PA and (b) a PF
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3.5 Recommendation

Based on the observations made in this chapter, the optimal number of regions is 3, since it
produces the least amount of visible noise present on the DP and it outputs the highest SP
detection accuracy irrespective of the value of PT and ND [8]. Table 3.3 shows a summary
of the rotation recommendations for each flat fingerprint case, to produce consistent and unique

patterns.

3.6 Conclusion

Small inter-class variability across classes is a major concern especially when flat fingerprints
are not completely captured, which results in missing SPs. Achieving consistent unique DPs
can reduce the inter-class variability issues across flat fingerprint classes. It was found that the
number of regions and method of rotation, directly impacts the DP produced, in terms of its
uniqueness and consistency.

To obtain a unique DP which best represents the classes, an investigation was undertaken to
determine the optimal number of regions and optimal method of rotation for each flat fingerprint
case. Based on this investigation, it was established that a 3-region DP for all classes produced
the highest SP accuracy of 92.1%. Furthermore a 3-region DP has large regions, which allows
easy detection and removal of visible noise.

From the investigation it was also found that each class produced inconsistent patterns under
rotation. After conducting further analysis on the DPs under rotation, unique patterns appeared
when the classes with the same number of SPs were rotated in a consistent manner. Classes with
a single loop and single delta can be rotated such that a loop and delta are vertically aligned to
make the DPs for each class unique. For single loop classes, unique patterns appear whgn the
image is aligned such that the loop direction points downwards. It was found that unique patterns
for single delta classes appeared when the images were rotated such that the orientation fields are
horizontal below the delta. For fingerprints with no SPs, the orientation fields on the left should
point downwards to highlight the highest curvature point on the fingerprint. The information

around highest curvature point can be used to differentiate a PA from a PF'.
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Chapter 4

A Missing Singular Point Resistant

Fingerprint Classification Technique

This chapter covers the implementation of the proposed exclusive fingerprint classification that
is specifically designed to classify fingerprints with missing SPs. The remaining SPs found on the
fingerprints are used to rotate the fingerprint to establish unique DPs. The algorithm is based

on the rule-sets derived from these unique DPs for each class.

4.1 Introduction

Based on the literature study conducted in this dissertation, the most appropriate feature to clas-
sify fingerprints faced with issues of missing SPs is DPs. Since a DP is created by grouping
orientation fields into regions that can be globally analysed, it provides more details with re-
gards to the structural attributes of the classes. On that account, it has the potential to classify
fingerprints with missing SPs. The remaining SPs found on these fingerprints can also be used
to rotate the image appropriately, to produce unique patterns for each class. Even though these
features show potential in solving the issues of compact scanners, previous exclusive fingerprint
classification methods that are designed to solve flat fingerprint cases, have not undertaken any
explicit study to determine whether these features can classify fingerprints with missing S Ps.
Hence, the purpose of this study is to determine if DPs combined with the remaining SPs are
capable of overcoming this challenge in exclusive fingerprint classification. This is achieved
by proposing a fingerprint classification algorithm that uses both DPs and the remaining SPs
found on the fingerprint to counteract the issues of missing SPs. In this chapter, the details of

the implementation of the proposed fingerprint classification algorithm is discussed.

56
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The classification algorithm presents a rule for each flat fingerprint case. There are various flat
fingerprints cases with different numbers of loops and deltas. Table 4.1 indicates which flat fin-
gerprint cases were addressed by previous techniques and which are addressed by the proposed
classification method. Although some cases have been addressed by previous techniques, not
all were successful in terms of preserving rotation and overcoming inter-class variability issues

[7, 10, 19, 44]. Therefore, new rules using DPs and SPs are created.

Table 4.1: A list of all the possible flat fingerprint cases addressed by previous literature and

the proposed method
Attempted Attempted by
s proposed
No. of loops | No. of delta | Class | by previous . ;
Blaisaktice classnﬁ(-:atmn
technique
2 2 W Yes Yes
2 1 W Yes Yes
2 0 W Yes Yes
1 2 W Yes Yes
0 2 w Yes Yes
A No Yes (top and bottom loop)
1 1 TA Yes Yes
RL Yes Yes
LL Yes Yes
w No Yes (top loop)
1 0 TA No Yes
RL Yes Yes
LL Yes Yes
W No No
0 1 TA No No
RL Yes Yes
L Yes Yes
0 0 PA Yes Yes
PF Yes Yes

The investigation in Chapter 3 established a consistent number of regions and a consistent
method of rotation using SPs to rotate the fingerprint image in a specific way that can be re-
peated. The method of rotation also produces unique D Ps for each flat fingerprint case. The
rules are based on these unique patterns.

The following sections present the classification rules and their implementation. Section 4.2
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introduces the set-up used for the fingerprint classification scheme. The details of the DP for-
mation and SP detection, which are specifically used to implement this technique, are also pre-
sented in this section. The implementation of the classification rules, is covered in Section 4.3.
Section 4.4 discusses the details of the testing design, the software used for the experimental
testing, as well as the quantitative assessment. The conclusions are drawn in Section 4.5. The
methodology aims to illustrate the classification technique, which will be used to prove that DPs
and SPs are capable of classifying fingerprints that have missing SPs as a result of not being

fully captured by electronic scanners.

4.2 Classification Set-up

Fingerprint

Pre-process
fingerprint

Obtain orientation
fields

Apply region segmentation to obtain
3- region Directional Pattern (DP)

A

[Detem and Identify the type of Singular]

Points (SPs)

Implement rules

Figure 4.1: Brief overview of the complete classification process of the proposed algorithm

Figure 4.1 shows the flow diagram of the different stages of the proposed classification technique.

There are five major stages, namely:
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1. Pre-processing
. Orientation field estimation
. Region segmentation

. Detection and identification of the type of SP

wv Rk WM

. Implementation of classification rules

For this implementation, a rule-based approach is employed. A rule-based approach is com-
posed of numerous sets of conditions that satisfy the characteristics of a fingerprint class. Unlike

machine learning techniques, a rule-based approach does not require a training D B.

4.2.1 Pre-processing and orientation field estimation

For the pre-processing of images and orientation field estimation, the same segmentation tech-

nique and orientation estimation algorithm covered in Chapter 3 is used.

4.2.2 Region segmentation

The evaluation in Chapter 3 proves that the optimal number of regions is 3. A 3-region DP
produces the most distinct patterns. In addition, the DP with 3 regions was also found to have the
highest SP detection accuracy, since it did not experience multiple intersecting points of 3 and
4 regions. Having a high SP accuracy is very important, considering that the number and type
of SPs is used determine which classification rule has to be performed on the input fingerprint.
On that account, for this classification technique, the DP is partitioned into 3 regions.

To formulate a 3-region DP, the specific number of ranges (n), interval (A¢), range values
(range;) and the region number (region,,.,,) for each range has to be calculated using Equations
3.10 to 3.12. Table 4.2 shows the final values that are used to develop the DP, by using the
orientation matrix (O).

Table 4.2: Calculated values that produce a three region segmentation

| n I YY) | i | range; [ TegioNnyum I

1 0:60 1
3160 |2 61:90 2
31 91:180 3

An example of a 3-region DP, using the conditions listed in Table 4.2, is shown in Figure 4.2,

Since the D P is partitioned into 3 regions, the size of each region is larger and there is a higher
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possibility of having less visible noise present on the DP. When noise is found on the D P, it will
appear as isolated regions that lie within a larger region. These isolated regions are not attached
to the intersecting point like other regions in the DP. Removing the isolated regions decreases
the risk of detecting false SPs. The isolated regions can be easily identified and removed. To

remove them, they are simply assigned to the region number of the surrounding region.

Figure 4.2: An example of a DP with three different regions each with its own orientation
range [7]

4.2.3 SP detection

Based on the experiment conducted in Chapter 3, the ND value which produces a high SP
detection accuracy for 3 regions is 24. This N D value will be used to detect the S Ps. Figure 4.3
depicts an example of a 5 x 5 matrix (24 ND) with intersecting point at regionum (r,c). The
intersecting point of all 3 regions is the SP. By searching for 3 different pixel values within the
ND, the SP can be detected.

Once the SP is located, the type of SP is then identified. By detecting the direction of the region
number from 1 to 3, within the 5 x 5 matrix around the SPs, the type of SP can be determined.
When regions move from 1 to 3 in an anti-clockwise direction, it is a loop. Whereas, when
regions move from 1 to 3 in a clockwise direction, it is a delta. The number of loops and deltas
found on the fingerprint is associated with a specific rule. Each rule classifies fingerprints into

possible classes that can occur for a given number of loops and deltas.

4.3 Implementation of classification rules

Table 4.3 contains the details of the unique patterns for each flat fingerprint case with its asso-

ciated rule used for the classification scheme. Amongst the flat fingerprint cases listed in Table
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r-2

+2

c2 € cF
Figure 4.3: Intersection of 3 regions that represents a SP using a 24 ND [7]

4.3, W fingerprints with two loops or two deltas, is the only class that has a unique number of
SPs. Therefore, when two loops or two deltas are detected, the fingerprint can be immediately
classified as a IW. However other flat fingerprint cases require additional rules when a specific
number of loops and deltas are identified. These classification rules are derived from the unique
DPs obtained by rotating a fingerprint of a given number of loops and deltas in a specific way.

Figure 4.4 shows the overview of the entire classification algorithm and sub-algorithms repre-
sented by 1, 2, 3 and 4. Each sub-algorithm represents the rules for the flat fingerprint cases of
a given number of loops and deltas. The rules are developed to classify an RL, LL, TA, PA,
PF, W and an unclassifiable class (I/). A fingerprint containing / loops and d deltas is class U

if it does not meet the conditions within a rule set that is designed for d deltas and [ loops.

4.3.1 Flat fingerprint case containing a loop and a delta

A detailed decision tree depicting the overview of the rules for flat fingerprint cases with a single
loop and single delta is shown in Figure 4.5. The rule can identify a W, RL, LL and T'A with
a single loop and delta. There are two types of loops, namely: top and bottom. Amongst these
classes, W's are the only class that have a bottom loop. The difference between a bottom loop
and a top loop, is the direction of the orientation fields about the loop. The direction of the
orientation fields move downwards as it approaches the bottom loop, as shown in Figure 4.7 (a).
Since it is a unique characteristic of a W, when a bottom loop is detected the fingerprint can be
immediately classified as a W. A W with a single top loop and delta is unlikely to occur. The
structural layout of a W makes it difficult to not capture the bottom loop, since it lies between
the top loop and either one of the deltas, as shown in Figure 4.6. In addition to this, the DB did
not contain such cases were a W had a top loop and a delta. Therefore, only a rule for a W with

a bottom loop and a single delta was developed.
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Implement rules

Number of Loops
(L) & Deftas (D)

L=1& D=1

0

L=0 & D=0

L=1& D=0 L=0 & D=1

Figure 4.4: Decision tree of the overview of the proposed fingerprint classification algorithm,
with output W and sub-algorithms indicated by 7, 2, & and 4

4.3.1.1 Detecting a bottom loop

To detect the bottom loop, the rule observes if a specific region lies above the loop. Each region
represents orientation fields falling within a specific range. Since the direction of the orientation
fields move downwards as it approaches the bottom loop, orientation fields fall within a range
of approximately 61° to 90° above the bottom loop. This range represents region 2. Therefore,
region 2 lies above the loop for a bottom loop. Whereas for a top loop, region 2 lies below the
loop. It was also found that region 2 is largest region on a W and would require the fingerprint
to be rotated almost 50° from it upright position to change the region number to 1 or 3. Such a
rotation is unlikely to occur, since the fingerprints in the testing D Bs are limited to a maximum
rotation of 35°. Hence, there is no alignment of SPs applied on the fingerprint. The rule to
identify a bottom loop from a top loop, simply detects if region 2 lies above the loop.

The width of region 2 is also taken into account when detecting a bottom loop. This is because

for both complete and incomplete W's, region 2 covers almost the entire width of the fingerprint
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Is tha loop a bottom loop?

Vertically align SPs

Re-calculate the orlentation matrix of the rotated
fingerprint

Create the new DP

Check the no. of CR on the new DP

Region number of

182 the smallest CR

Repions below L

.“&3—;

Check width w of
['| Reglon 1 below D

T
(e < [wwe/ 2018w < 5/64ved)
—2

{ves (we/2) & > 56 vedd) 3

B B0 B

Figure 4.5: Decision tree of fingerprint classification specific to a one loop one delta rule with
class outputs, RL, LL, TA and W
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Figure 4.6: A complete W with two loops and two deltas, indicating a top loop and a bottom
loop on (a) a segmented fingerprint and (b) a DP

Figure 4.7: A DP illustrating a single bottom loop L in class (a) W and a single top loop L in
class (b) RL

due to the symmetrical structure between the loops and deltas, as seen in Figure 4.7. Therefore,
for a bottom loop to be exist, the width of region 2 must be considered in addition to region 2
lying above the loop. To accommodate noise near the boundary of the fingerprint, the width of

region 2 has to be greater than 3/4 of the fingerprint width.

iz [

Figure 4.8: Symbols depicted on a single loop and single delta W, that are used to perform the
detection of the type of loop

Algorithm 1 is used to determine a W with a bottom loop and a delta. Variables wyp, wr2, 7'm,

Region, Ymin, 7, and c are used in algorithm | and are shown as symbols in Figure 4.8, The
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region number at the midpoint between the top edge of the fingerprint and loop L(r,¢). The

width of region 2 is used to identify a top loop from a bottom loop.

Algorithm 1 Classify a W with a bottom loop and a delta

Input: Wep, Wr2, Tm, Region, Ymin, T, ¢
QOutput: class
1: class ="'
LT = (T == ymin)/z
o if (Region(c, mm) == 2)&(3/4 * wyp < wrz) then
class=" W’
end if

wE e

When the class output is a null, the general rule that classifies an RL, LL and TA with a single
loop and a single delta is performed. For these classes the fingerprint S Ps are vertically aligned

before classification can occur.,

4.3.1.2 Vertically aligning SPs for a fingerprint with a single loop and single delta

The SPs are vertically aligned to achieve unique patterns in fingerprints containing a single loop
and single delta. The first step is to obtain the angle 3 between the loop and delta. The segmented
fingerprint image is then rotated by 8 - 180°. This vertically aligns SPs as shown in the Figure
4.9. The new 3 value is 180°.

Figure 4.9: DP produced from a LL fingerprint were the loop (L) and delta (D) are vertically
aligned [7]

After the SPs are vertically aligned, a new DP is formed using the rotated fingerprint. The
alignment produces unique patterns for an LL, RL or TA. Two layouts are produced for each

class. These are two CR and three CR layouts. Rules for each type of layout were developed.
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4.3.1.3 Rule for DPs with two CRs

In this case, two CRs exist between the SPs. Figure 4.10 consist of the different D Ps produced
from an LL, RL and TA fingerprint with a loop L that is vertically aligned with the delta D.
To differentiate between these classes, the region numbers are analysed [7]. When the CRs are
region number 1 and 2, the fingerprint is immediately classified as a LL and no additional rules
are needed. For an RL, the most common arrangement of the C Rs is that region 2 lies on the
right of the D P and region 3 lies on the left of the DP. Whereas for a TA, the most common
arrangement of the C Rs is that region 2 lies on the left of the D P and region 3 lies on the right.
However in some cases, for an RL region 2 lies on the left of the D P and region 3 lies on the
right of the D P. This is the same C'R arrangement of a T'A. Therefore a rule has been included
for this case. There is a possibility that a 7'A may appear to be very similar to an L L but the rule
for this case has not been included because cases like this have not been found in the DB. As a

result, a rule is only created for a T'A and RL with a 2-C R layout.

Figure 4.10: Two CR layouts formed from classes (a) LL, (b) RL and (c) TA [7]

To differentiate an RL from a T A, the region numbers below the delta is observed since it is
unique for each of these classes. These region numbers found below the delta, represent the
direction of the ridges as they enter and exit the aligned fingerprint. Since the orientation fields
move left to right below the delta for a rotated R, the region number is 1. However for a TA
the region numbers are 1 and 3, since the orientation fields below the delta move in opposite
directions. The DP is then realigned to the fingerprints original rotation, so that the width can
be obtained along side the x axis. Thereafter, the maximum width of region 1 and 3 that lies
below the midpoint (M) are obtained. Variable M is the midpoint between D and the bottom
edge of the DP. The symbols for the maximum widths that lie below M are, ws, w; and wg

which represent the width of the fingerprint, region 1 and region 3, respectively [7]. Variable w,
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is the width that is taken from the first occurrence of region 1 to the last occurrence of region 1,

regardless whether region 1 is not connected. These symbols are depicted in Figure 4.11.

Figure 4.11: The maximum width wy, w; and ws for a TA [7]

Algorithm 2 provides the procedure used to classify a DP that produces a two CRs layout.

Variables wy, w1, ws and CR are adopted to perform algorithm 2.

Algorithm 2 Classify a 2-CR layout [7]

Input: CR,wy,w;, ws
Output: class
1: if (CR=1) then
2: class="LL’
: else if (CR=3) then
/f Check the area below the delta is mostly composed of region 1
if (w; > (1/2 * wf)&(wl > T.Ug)) then
class="RL’

3

4

5

6

7 else
8: class="TA’
9 end if

0: end if

1

4.3.1.4 Rules for DPs with three CRs

Figure 4.12: 3-CR layout produced by classes, (a) TA, (b) RL and (c) LL [7]

For a layout with a 3-CR, the region number of the smallest CR (CRg,) is unique for an LL,
RL and TA [7]. Figure 4.12 shows an LL, RL or TA, with a CR,, of 1, 2 and 3, respectively.
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On that account, if a three CRs is detected, the region number of CR,; is used for classification.

Algorithm 3 is used to classify an LL, RL or TA that has three CRs.

Algorithm 3 Classify a 3-CR layout [7]

Input: CR,,
Output: class
: // Check the region number of C'R to determine the class
if (CR4-=1) then
class="LIL’
else if (CR,-=2) then
class="TA’
: else(CR,.=3)
class="RL’
end if

kol o Rl o

4.3.2 Flat fingerprint case with a single loop

The overview of the rule for a fingerprint with a single loop is shown in Figure 4.13. A fingerprint
captured with a single loop could be an RL, LL, T'A without a delta, or a W without a loop and
both deltas. The D P is initially analysed to determine if the loop is a top loop or bottom loop.
The rule for detecting a bottom loop was covered in Section 4.3.1.1. If a bottom loop occurs, it
is a W. If not then the fingerprint is rotated. A new DP is formed from the rotated fingerprint.

The classification is applied to this new DP.

4.3.2.1 Rotation of fingerprints with a single loop

The loop direction for a segmented fingerprint with a single loop must point downwards to obtain
a unique DP.

To calculate the loop direction, the balance arm flow method of Guo et al. is employed [7, 44].
Using the average orientation fields around the loop area the method tracks the points that lie
along the balance arm line. These point can be used has an indication of the direction of the
loop. Guo et al. [44] stated that the innermost ridge line of a loop is referred to as the balance
arm line. The direction of the balance arm line of the segmented fingerprint is illustrated by the
arrow in Figure 4.14 (a). Using eleven points to calculate loop direction is sufficient. This value
was established during the experimental stage. After calculating the loop direction, it is rotated

to be 90°. Figure 4.14 (b) shows the loop direction aligned to 90°.
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Is the loog a bottom loap?

Does region 2 extend to
the sides of fingerprint?

No
Reotate the fingerprint

[Re-calculate the orientation malrix]

of the rotated fingerprint
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Create the new DP

Does a region exist
below ragion 2
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lCIassffy DP that has only region 2 below L
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Region that exists
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Figure 4.13: Decision tree of fingerprint classification algorithm for a single loop with class
outputs, W, RL, LL, and TA
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Figure 4.14: Loop direction pointing (a) 135° and (b) 90° [7]
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4.3.2.2 Rules to classify a DP with a single loop

For a rotated RL, LL and W fingerprint, the flow of the orientation fields below the loop all
move downwards. These ridges represent region 2. Region 2 forms the largest region which
extends to either side of the DP. However, T A is the only class were it’s region 2 does not
extend to the outer limit of fingerprint as shown in Figure 4.15. Therefore, a rule is created to
detect whether region 2 touches to side limits of the fingerprint. If region 2 does not touch the
edge of the fingerprint, it is immediately classified as a T'A without the need for additional rules.
For RL, LL, and W, the DP produces unique region numbers below region 2 as shown in Figure
4.15. This is owing to the fact that the ridge flow of each class is unique. To classify a DP with
a single loop, the rule identifies region numbers below region 2 of an RL, LL or a W with a top
loop.

To observe the region numbers below region 2, the pixels along lines CL; and CLy are observed.

These lines are used to determine the fingerprint class as shown in Figure 4.15.

(b) (c)

Figure 4.15: D P containing a single loop (a) LL, (b) RL and (c) W [7]

The lines CL; and CLy extend from the loop column ¢ and row 7, to the left and right edge of
the DP. The lines follow the curvature of the region boundary, depicted in Figure 4.15 as w;
and w pixels. The row r, lies one pixel below the division of region 2.

When the pixels that represent region 1 are detected on line CL; at Region(r;,c — ;) for
iy = 0...wy, the DP is classified as a LL [7]. Whereas, when the pixels that represent region
3 are detected on line CLy at Region(rg, ¢ + i) for 1 = 0...w, the class is a RL. Unlike RLs
and LLs, W's are the only class that has two regions (1 and 3) forming below region 2 as a slight
appearance of its bottom loop. It is important to note that region 3 will only lie on the left of
column ¢ and on the right of column ¢ lies region 1 [7]. Algorithm 4 classifies a LL, RL and W

with a single loop, using variables r;, r2, ¢, w; and w.
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Algorithm 4 Classify a D P with a single loop fingerprint [7]

Input: r;,re, c,wy,w

Output: class
1: if forall i; = 0...w;, Region(ry, ¢ — i;)=1 then
2 class="LL’
3: elseif forall i = 0...w, Region(rz, ¢ + 1)=3 then
4: class="RL’
5: elseif (forall ¢; = 0...w;, Region(r;, ¢ — i;)=3) or
6: (forall i = 0...w, Region(rg, c +i)=1) then
7: if (for all i; = 0...wy, Region(r;,c—i;) #1) &
8: (forall i = 0...w, Region(re, c + i) #3) then
9: class="W"

0 end if

1

10:
11: end if

Figure 4.16: A single loop D P that has no regions below region 2 [7]

For cases were there is not enough information below the loop, the regions below region 2 may
not appear. This requires an additional rule. It is found that the length of region 2 on either
side of the loop differ for each class. Therefore, region 2 is divided at loop L into subregions
R1 and R2 as shown in Figure 4.16. The length mazR1 and mazR2 lie within R and R2,
respectively. These lengths are used to determine the class type. The length mazR1 and maxR2
is taken from the upper boundary of region 2 to the midpoint () [7]. Variable M lies between

the loop L and the bottom edge of the fingerprint image [7].

Figure 4.17: DP of class (a) RL with maz R2 longer in length and (b) LL with mazR1 longer
in length
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Owing to the symmetrical structure of W's, maxzR1 and maz R2 are similar in length. However,
the value for mazR1 and mazR2 differ for a RL and a LL. For RLs, maxR2 is longer than
mazR1 as seen in Figure 4.17 (a). Whereas for a LL, mazR1 is longer than maz R2 as depicted
in Figure 4.17 (b). The reason for this is that more ridges flow in the direction of the loop.

Algorithm 5 is used to classify a single loop D P with no region below region 2.

Algorithm 5 Classify a single loop with only region 2 below L [7]

Input: RI, R2
Output: class
: // Obtain the line with the largest length of line
: // found in R1 and R2 and store
/I lengths into mazR1 and mazR2, respectively.
if abs(mazR1 — mazR2 < 10) then
class=" W’
: else if mazR1 > mazR2 then
class="LL’
: else if maxR2 > maxR1 then
class="RL’
end if

o A AN S

—

4.3.3 Rule for flat fingerprint cases with a single delta

This rule classifies an RL or an LL with a single delta. An overview of the single delta rule is

depicted in the decision tree shown in Figure 4.18.

4.3.3.1 Rotation of fingerprints with a single delta

In order for the patterns of an LL and RL containing one delta to be unique, the flow of orien-
tation fields below the delta of the segmented fingerprint should be horizontal. An example of a
flat fingerprint with a single delta D that has been rotated such that the average orientation fields
below D are horizontal is shown in Figure 4.19 (b). The flow of orientation fields are indicated
by the arrow within the circle.

To perform rotation, the average orientation fields below delta D(r, ¢) must be calculated. Re-
gions in which to calculate orientation fields are identified using points of interest, namely: the
location of the delta D(r, c), points Ay, at point (r, ¢1), Ag at point (r, cz) and Ap at point (r1, ¢)
that lie on the boundary of the fingerprint, and the midpoints A, at point (7, c1mia), Arm at
point (7, camig) and Apgp, at point (71,4, ¢) as shown in Figure 4.20.

The midpoint Ay, lies between Ay, and delta D(r, ¢). The midpoint A g, lies between Az and

delta D(r, c). Lastly, the midpoint A g, lies between Ap and delta D(r, ¢). Equations 4.1 to 4.4
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Rotate fingerprint

Re-calculate the orientation matrix of
the rotated fingerprint

Create the new DP

Get centroid of Region 2 and midpoints at Point
Aand B

Point A at ir.Cm1)=2 In which point does Region 2 lie?

Point B at (rCm2)=2

RL LL

Figure 4.18: Decision tree of fingerprint classification algorithm for a single delta with class
outputs RL and LL

Figure 4.19: Fingerprint with single delta D where the orientation fields below D flows (a)
appropriately 35° and (b) horizontal

Figure 4.20: Points of interest on a fingerprint with single delta D
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are used to calculate the average orientation fields on the right and left of the delta.

Simemidt0 1o (i, 1)

Avg’right = Ll 10 4.1
i=C1mia+10 [y (p §
Avgrest = Lizani 1([) s 1 (4.2)

Since matrix O consists of orientation fields in radians, the final angle is converted to degrees.
pr and py, are the converted versions of Avg,igrs and Avge s and are calculated using Equation
4.3 and Equation 4.4. These are used to determine how much the image needs to be rotated in
order to make the orientation flow below the delta horizontal. This is achieved using Algorithm
6.

PR = Avgright * (180/m) 4.3)

pL = Avgiest » (180/m) (4.4)

4.3.3.2 Rule for DPs with a single delta

Figure 4.21: A single delta DP illustrating the position of region 2 for, (a) a LL and (b) a RL

After the fingerprint is rotated, the orientation matrix is re-calculated and used to form the new
DP. The most obvious pattern seen in Figure 4.21, is that the region number of the largest
region is unique to a RL or LL. However, using the largest region for classification may result
in the rule being too dependent on the amount of information captured. Therefore, a more robust
rule that is independent on the size of region had to be developed. To determine whether the
fingerprint with a single delta is a RL and LL, the rule identifies the side of the fingerprint
in which the centroid of region 2 lies. When the centroid of region 2 lies on the right of the
fingerprint, it is a LL. Whereas, if the centroid of region 2 lies on the left of the fingerprint it is

a RL. This is illustrated in Figure 4.21.
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Algorithm 6 Rotation of a fingerprint with a single delta

Input: pg,pL
Output: Protate
I: p'mtate=0

2: // Ensure that the quadrant of the average orientation
3; // field lies between 0 and 90.

4: if (pr < 90)&(pr > 90) then

5¢ Shift to the correct quadrant

6: pr =180 —pg

7: if pr < pr then

8: Protate = (PL = PR)/?-

9: else if p;, < pg then

10: Protate = _[(PR = PL)/Q]
1l end if

12: elseif (pr < 90)&(pr < 90) then

13: /f Since both pr and pg lie in the correct quadrant,
14: // use the lower average field value as the angle of rotation g, ¢aze.
15: if pr < pr then
16: PR =PL
17: end if

18: Protate = PR
19: elseif (or > 90)&(pL > 90) then
20: if pr > pr then

21: // Shift to the correct quadrant
irk pr =180 - pgr

23: end if

24; if pr < pr then

25: /I Shift to the correct quadrant
26: prL = 180 — PrL

27: Protate = PR — PL

28: end if

29: Protate = ﬁ[(pR + PL)/z]

30: end if

This procedure is described in Algorithm 7, where the variables Wy, Cc, Cmi1, Cmz, Region and
Tmin and 7 are used and are depicted in Figure 4.22 as symbols. The initial step of the rule is
to locate the centroid (r, c.) of the region 2. Points A and B represents the left and right side of
the fingerprint. Points A and B are the midpoints from column ¢, to the left and right edge of
the fingerprint, located at Region(r, ¢;p1) and Region(r, cma), respectively. The width of the

whole fingerprint is given by wy, and minimum column value of the fingerprint mask is Zmin.

4.3.4 Classifying DPs with no SPs

This rule is designed to classify a PA from a PF. An overview of the rule is shown in the flow

diagram in Figure 4.23. The rule is more robust than the previous techniques since it doesn’t
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Figure 4.22: D P containing the symbols used to perform the classification rule of a single delta
fingerprint

Algorithm 7 Classify a D P with a single delta

Input: Wfp, Cey Cmi, Crm2, Region) Lrngn, T
Output: class

1 em1 = (ee/2 + Timin)

2t ema = (Wrp — €)/2 + (Tmin)

3: if (Region(cmz,r) == 2) then

4: class="RL’

5: else if (Region(cpz2, r) == 2) then
6: class="LL’

7: end if

depend on the size of the fingerprint but rather on the unique properties extracted from the actual

patterns produced.

4.3.4.1 Alignment of fingerprints containing no SPs

Based on the findings in Chapter 3, the DP of a PA and a PF can be set apart by analysing the
width of the innermost region at the point of convergence and the width of this region at the edge
of the fingerprint. Therefore, the point where all region converge must be made clear as possible.
This is achieved by rotating the fingerprint as shown in Figure 4.24. Since there are no SPs for
a PF and a PA, a reference point for rotation needs to be selected. The centroid and the size of
the fingerprint are used to determine the reference point.

The centroid of the fingerprint is located at column z,; and row y; as shown in Figure 4.25. The
height hy, and width wy, of the fingerprint are used to assist in obtaining the orientation fields
around the regions of interest, A and B. Point A lies at position (y3, z.t + ) and B lies at

position (y2, z.t — z). Equations 4.5 to 4.7 are formulae used to obtain the location of A and B:-

T = wpp/d (4.5)
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O,

l

(Rotate fingerprint by BJ

|

Re-calculate orientatien matrix of the rotated
fingerprint

Create the new DP

[Rotate new DP by {-B]lj

[Oblain width (Wmreg) of Rm2 at row Pm]

[Ob!ain width (Wmaxl} at bottom edge of Rma

Is (Wmreg-Wmaxi)<(1/4*wfp)? Yes

PA , PF

Figure 4.23: Overview of the rule used to classify a PA and a PF

“ Orientation
flow (9¢°)

Figure 4.24: Rotated PF where the orientation flow near point A is 90°
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Figure 4.25: Points of interest on a PF' fingerprint

y=hgp/4 (4.6)
Y2 = Yet + Y (4.7)

The average orientation field is taken around the reference points, A and B. The equations are

as follows:- e [
sy, Ol 7 — )]
Avgright = bz 7 4.8)
Tic 0 [0(, v + )]

Since the values in the orientation matrix O are in radians, Avgrgn: and Avgs are converted to

degrees and stored in g and o, using Equation 4.10 and Equation 4.11, respectively.

ORr = Avgrigh * (180/m) (4.10)

o1 = Avges = (180/) 4.11)

Figure 4.24 shows a rotated PF where the orientation fields near point A moves downwards
(approximately 90°). To achieve this, a smaller angle between og and o, is first selected to
calculate the angle of rotation. The angle of rotation is represented by . Algorithm 8 is used
to obtain the angle of rotation « that will ensure that the orientation fields around point A is

approximately 90°.
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Algorithm 8 Rotation for a fingerprint with no SPs

Input: og,0r
QOutput: o
I: a=0
/1 90° points downwards on the orientation axis used.
// Shifting the image such that the fields around the delta
// are approx. 90°, diagonally aligns the fingerprint.
ifocr < 90° oror < 90° then
/I Use the smallest average value to achieve a larger angle of rotation.
ifop < 90° then
a=90°-0g
9: end if
10: if o7, < 90° then
11: a=90°-0,
12: end if
13 // Account for cases where the average orientation fields lie just above 90°.
14: elseifop > 90° & o < 100° or o, > 90° &o, < 100° then
15: if op > 90° & og < 100° then

16: a=100°-cp

17: end if

18: if o, > 90° &op < 100° then
19: a=100°-0,

20: end if

21: end if

4.3.4.2 Rule for a DP with no SPs

After rotation is applied to the fingerprint, the orientation matrix and the DP is re-calculated
from the rotated fingerprint. The number of regions used to create the D P is increased for this
rule. This ensures that the area where all regions converge is made as clear as possible. Using
3 to 7 regions will not be sufficient as it is still too few. Conversely, using a larger number of
regions like 12 to 15 may experience visible noise. Therefore, the number of regions n used to
create the DP is set to 10. An example of a 10-region D P that represents the rotated fingerprint
fora PA and PF is shown in Figure 4.26. The width of the innermost region at the converging
point compared to its width at the edge of the fingerprint differ for a PA and a PF class. For
PAs, the regions narrows as it reaches the highest point of curvature and expands as it approaches
to the edge of the fingerprint. This indicates that ridge flow from one side of the fingerprint to the
other is continuous. Conversely, for a PF the regions generally get smaller in width as it reaches
the edge of the fingerprint, since each region is approaching the point of intersection (loop), but
the fingerprint has been cut-off before this point. These properties are used to classify the PA

and PF class. The region R, with the smallest width is shown in Figure 4.27, The rule detects
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region R, and then this region is used to identify if the fingerprint DP possesses characteristics

of either a PA or a PF.

b)

Figure 4.26: A 10-region D P that represents the rotated fingerprint for (2) a PA and (b) a PF

Figure 4.27 depicts a PF with minimum row y,, and minimum column z,,;,, height hg and
width wp, of the limits of the fingerprint. H and W are the height and width of the entire
fingerprint image that includes the segmented fingerprint and the black background.

(Kn‘u\.‘,_vfue_n)-
I i

Figure 4.27: A PF' DP containing the symbols used for the algorithm

To detect Rm, the area where all regions converge has to be located. To have a rough estimate of
the row for the possible point of convergence, the outermost left region R, is used as a guideline.
Since all regions are moving closer to the point of maximum curvature, region R, appears to be
larger at a specific row. This row is denoted by Pi., as shown in Figure 4.28. The outermost
region K,, with a minimum row rp;, and minimum col ¢y, height h,,, and width w,,, is used
to obtain the row of the converging point Pt.. This is achieved by simply detecting the longest
row Pt. in region R,,.

On row Pi., the region with the smallest width wy,., is searched for. The region with the
smallest width will be referred to as R,,. The pixel values in region R, is set to 255 and the other
pixel values is set to 0. Region R, is cropped from row Py to the edge of the fingerprint. The

cropped image is stored in R,,2. The maximum width of R, is denoted by w,,q;. Figure 4.29
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(rr-':ir,rf—-r’,-fr;}

Figure 4.28: A PF' DP containing row of Pt used for the algorithm

shows the width wnyey and wpeq; that is obtained from region Ry, and Rz, respectively. The
width ey is compared to width Wy, for classification. Algorithm 9 illustrates the procedure

that needs to be followed to determine if the fingerprint is a PA or PF.

(a) (b)

Figure 4.29: The widths used to classify a PA and a PF where (a) denotes the smallest width
Wmreg in Tegion Ry, and (b) denotes the maximum width wy,q,; in region R,,2 (cropped R,,,)

Algorithm 9 Classify a D P with no SPs

Input: P, wpp
Output: class
1: Find the region R, by detecting the region smallest width wy,eq 0n row Py,

Set pixels in K,,, to 255 and other pixels to 0.
heighto= H-r,
: // Crop R, starting from row P, and
: // column 0 of width W' and height heights
. R0 =Crop R,
: Determine the maximum width wnegi 0f Bomo
if (Wmreg — Wmazi) < 1/4 * wy, then

9: class="PF’
10: else
11: class="PA’

12: end if

R
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4.4 Testing

4.4.1 Experimental context

To answer the research question, experimental tests are conducted using the implemented clas-
sification scheme which uses DPs and SPs that are specifically designed to classify fingerprints
with missing SPs. These experimental tests are conducted to evaluate the classification accu-
racy of the technique. This set-up exhibits the characteristics of a quantitative study that uses a
scientific method.

The major limitation of a scientific method, is that it may not provide an accurate representation
of whether the technique can perform in the real world due to external factors. In our context, the
only external factor that directly affects the implemented algorithm, is the type of fingerprint out-
put from the scanner which is used for the experiments. There are different types of fingerprint
images namely: ink rolled fingerprints which have been scanned from paper; ink-rolled finger-
prints on paper; ink flat fingerprints which have been scanned from paper; fingerprints which
have been electronically rolled; and electronic flat fingerprints. To achieve a realistic set-up that
meets the requirements of real world applications, the testing database must have the same type
of images that experience the problem being solved (i.e. missing SPs). This is addressed in the

next section.

4.4.2 Testdata

Earlier classification techniques are often tested on the National Institute of Standard Technology
(NIST) DB. This DB consists of ink rolled fingerprints on paper which have been scanned.
The data contains complete fingerprints, some of which are rotated and have abundant noise, in-
cluding text on images, smudges and background. Therefore, the central focus when performing
classification on this D B is to create rotational and noise invariant techniques.

However, capturing techniques have evolved and fingerprints are often now captured electroni-
cally on small scanners. This results in fingerprint images being very different to those in the
NIST DB. Therefore, the NIST DB does not meet the standards required to test algorithms
specifically designed to solve challenges faced by current scanner images. These are complete,
which makes it difficult to test the capabilities of the implemented algorithm that is specifically

designed to handle fingerprints with missing SPs.
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In 2000, the F'VC introduced the largest publicly available DB that was specifically created
to allow practitioners to test algorithms aimed at classifying scanner images. This allowed re-
searchers to develop new software that satisfies the requirements of current technology. These
databases are more appropriate for testing flat fingerprint classification. Therefore, the imple-
mented algorithm will be tested on the FVC 2002 DB1 and FVC 2004 DB1. Each FVC DB

contains a total of 880 fingerprint samples [7].

4.4.3 Measurements

The main measure of classification is accuracy. The ideal way to represent the output, is by using
a confusion matrix. The overall accuracy will be benchmarked using other rule-based techniques

also focusing on missing SPs.

4.4.4 Software used for experimental testing

Matlab was used to implement the algorithm. This was chosen because the language has a tool-
box for scientific image processing and analysis. This toolbox has good prototyping capabilities,
making it much easier to detect bugs than a C++ and C. Furthermore, built in functions in Matlab
require less scripting than other languages. In terms of speed, Matlab is much slower. However,
the main measure of the algorithm’s efficiency is accuracy rather than speed, particularly during
this research phase. The algorithm could be transferred to another language if desired. Test

results are shown in the next Chapter.

4.5 Conclusion

This chapter has described implementation prior to the classification algorithm, each fingerprint
was rotated accordingly to produce unique patterns. A 3-region DP and a 24 ND search strategy
was then used to detect the SPs. The rotation of the fingerprint based on the SPs, ensured it was
invariant to rotation and unique patterns are obtained. The implementation for these stages was
discussed fully in this chapter. The rules were derived from the unique properties of the DP with
a specific a number of loops and deltas, namely: W with two loops/deltas; RL, LL, TA and W
with single loop and single delta; RL, LL and W with single loop; RL and LL with single delta;
and PA and PF cases.
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Being able to develop rotational invariant classification rules, based on the uniqueness of DPs for
flat fingerprint cases, highlights the potential of this algorithm in solving missing SPs challenges.
To determine if DPs combined with SPs is truly successful in classifying flat fingerprints with
missing SPs, the accuracy of the classification technique must be analysed. This will be covered

in the next section.



Chapter 5

Experimental Results

In this chapter the classification accuracy of multiple re-implemented algorithms which ac-
counted for flat fingerprint cases is compared to the proposed algorithm. The results are shown

and discussed.

5.1 Introduction

This dissertation investigates whether flat fingerprints with missing SPs can be successfully
classified by using D Ps and the remaining SPs. A fingerprint classification algorithm using
these features was presented to specifically address the issues with missing S Ps. The algorithm
was tested on electronically scanned images contained in FVC 2002 DB1 and FVC 2004 DB1,
To ensure a true interpretation of the level of accuracy, factors that contribute to the classifica-
tion accuracy not achieving a 100% before even reaching the classification stage were removed.
Therefore, 9 images from FVC 2002 DB1 and 35 images from the FVC 2004 DB1 were ex-
cluded. A total of 871 and 845 images were used from the FVC 2002 DB1 and FVC 2004
DBI, respectively. The excluded images experienced problems related to the SP detection
where there is loss of SPs on the DPs. Since these problems are related to SP detection and
not classification, they should be excluded to test the classification alone. This was a small per-
centage of 0.03% of the entire set of images. An example of the excluded images are shown in
Figure 5.1.

The ground truth of the class labels for each fingerprint in the FVC DB were manually created
based on the definitions in [25]. The experimental results and a discussion based on the results

are presented in this chapter.

86
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(a) (b) (© (@

Figure 5.1: Excluded fingerprints images due to loss of SPs on the D Ps

5.2 Results

The images in the DB were grouped into seven classes namely: RL, LL, TA, PA, PF, and
Unclassifiable classes U/. An unclassifiable class U is a class of a specific type of flat fingerprint

case where a no rule has been developed for it (i.e., a single delta T A and W).

Table 5.1: Confusion matrix of the classification using the proposed algorithm on 871 images
from 880 images from the FVC 2002 DB1

Assigned
Actus] W | RL|LL|TA|PA|PF|U

w 185 | 7 2 0 0 0 0
RL 7 310 | 4 2 0 0 2
LL 10 | 4 288 | 0 0 0 2
TA 1 10 |2 6 0 0 0
PA 0 1 1 0 8 6 0
PF 0 0 0 0 0 9 0

U 0 0 1 0 0 1 1

Accuracy 93%

Tables 5.1 and 5.2 show the confusion matrices for the FVC 2002 and 2004 DB1 that have
excluded a total of 44 images. An example of the excluded images are shown in Figure 5.1. This
provides a fair interpretation of the level of accuracy. The classification accuracy of 93% and
91.95% was achieved for FVC 2002 DB1 and FVC 2004 DB, respectively. Observing just
these results alone, illustrates that using DPs and the remaining SPs found on the fingerprint can
successfully classify fingerprints with missing SPs. The method produces a high classification

accuracy since it addresses more cases of fingerprints with missing S Ps and each flat fingerprint
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Table 5.2: Confusion matrix of the classification using the proposed algorithm on 845 images
from the 880 images from the FVC 2004 DB1

Assigned

Actiual W | RL|LL|TA|PA|PF | U
W 183 | 18 |9 0 0 0 0
RL 3 246 | 4 0 0 0 0
LL 13 |2 283 | 0 0 0
TA 1 7 2 0 1 0 0
PA 0 0 1 0 52 |0 0
PF 0 1 0 0 6 11 (0
U 0 0 0 0 0 2 2

Accuracy 91.95%

case are based on unique patterns. Furthermore the fingerprints were represented by a global
pattern. These global patterns (DD Ps) eradicated the effect of noise on local orientation fields
when minimal information is provided. The more successful classification cases occurred for

classes W's, RLs, LLs, and P As.

Region 1 lies on
the right of D

(b)

Figure 5.2: TA class that produces a DP that resembles the characteristics of an RL [1]

Since the proposed rules have shown potential in classifying both complete and incomplete fin-
gerprints, improving further on the proposed method would be most beneficial. In order to
accomplish this, the downfalls of the method must be acknowledged. Therefore, by observing
Table 5.1 and Table 5.2, it was found that errors occurred for complete TA classes which was
misclassified has an EL. This error is common even in other classification algorithms techniques.
An example of a TA DP classified as an RL is illustrated in Figure 5.2. In the segmentation pro-

cess the orientation fields around the edges of the fingerprint experience distortion indicated in
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Region 1 does
not lie on the
right of D

Figure 5.3: RL class that produces a DP that resembles the characteristics of a TA

Figure 5.2 by region 1 that lies on the right of the delta. Since the rule that classifies a T A and
an RL is based on the width taken from the first occurrence of region 1 to the last occurrence
of region 1 regardless if the region is not connected below the delta, it may be misclassified in
such a case. A similar example which classified an RL DP as a TA is shown Figure 5.3. This
error occurred due to the high similarities found in the structural layout of both fingerprints. The
occurrence of these cases were still a small percentage since 7" As rarely occur compared to RLs,
Wsand LLs.

Table 5.3: Confusion matrix of the classification using the proposed algorithm on 880 images
from the FVC 2002 DB1

Assigned
Actual W I RL|LL|TA|PA|PF|U
w 185 | 7 2 0 0 0 0
RL 9 311 | 4 2 0 0 2
LL 17 | 4 288 | O 0 0 2
TA 1 10 |2 6 1 0 0
PA 0 1 1 0 8 6 0
PF 0 0 0 0 0 9 0
u 0 0 1 0 0 1 1
Accuracy 91.93%

Even when the test results included images shown in Figure 5.1 where the fingerprints’ DP
experienced SP loss, high accuracies of 91.93% and 87.50% are still obtained on the FVC 2002
DB1 and FVC 2004 DB1, respectively. The results tested on the entire D B showing the actual

classes against the output of the classification algorithm are shown in Figure 5.3 and Figure 5.4,
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Table 5.4: Confusion matrix of the classification using the proposed algorithm on 880 images

from the FVC 2004 DB1
Assigned | v | pr | Lo | Ta | Pa| PR | U
Actual
W 185 |21 |7 0 2 0 0
RL 3 252 | 4 0 2 0 0
LL 35 |2 277 | 0 0 0 0
TA 1 7 2 0 5 0 0
PA 0 3 5 0 46 | 0 0
PF 0 1 4 0 5 9 0
U 0 0 1 0 0 1 1
Accuracy 87.50%

The overall classification accuracy of 92.48% was benchmarked against previous algorithms
which were designed to also classify cases of missing $Ps using local orientation fields (but not
D Ps) and the remaining S Ps. To directly compare the accuracy level of the proposed algorithm,
methods by Karu and Jain, Msiza et al. and Webb and Mathekga have been re-implemented and
tested on the same set of fingerprints. Table 5.5 show that the proposed algorithm outperforms

several re-implemented methods presented in literature. The proposed method was also bench-

Table 5.5: Accuracy results of the proposed algorithm compared to algorithms in literature that
were re-implemented

Author DB Average Accuracy | No. of classes
[56] FV(C 2002 DB1, 2004 DB1 | 50.53 % (867/1716) 5
[19] FV( 2002 DB1,2004 DB1 | 68.88 % (1182/1716) 5
[10] FV (2002 DB1,2004 DB1 | 85.83% (1473/1716) 7
[71 FVC 2002 DB1,2004 DB1 | 90.67% (1556/1716) 7
Proposed Method | FVC 2002 DB1, 2004 DB1 | 92.48% (1587/1716) 7

marked against the work by Guo er al. and work by Jung and Lee. These works were not
re-implemented since they were tested on similar D Bs and have also excluded images. Jung
and Lee tested on 650 out of 812 images and Guo et al. tested on 7345 out of 7920 images. The

proposed method outperforms the Jung and Lee method by 12.38%. The improvement in accu-

Table 5.6: Accuracy results of the proposed algorithm compared to algorithms by Jung and
Lee, and Guo et al.

| Author ] DB Average Accuracy | No. of classes
[B4] FV(C 2002 DB1, 2004 DB1 80.1 % (650/812) 4
[44] FVC 2002 DB1, 2004 DB1 & DB2 | 92.7% (7345/7920) 4
Proposed Method FVC 2002 DB1, 2004 DB1 92.48% (1587/1716) 74
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racy is mainly due the formation of unique distinct global patterns formed for each fingerprint
case and the fact that the algorithm could solve more cases than previous techniques. The pro-
posed method is fairly close to the accuracy achieved by Guo et al. , with a difference of 0.22%.
However, Guo ef al. groups the DB into four classes by eliminating U and PF, and combined
PAs and T'As into a single class. By doing this the accuracy of the algorithm will automatically

increase as opposed to using a larger number of classes.

Incomplete Fingerprint Accuracy Tested on
the FVC 2002 DB1
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Figure 5.4: Accuracy achieve from imperfect fingerprint classes with missing SPs from the
FVC 2002 DB1

Since the focus is on classification of fingerprints with missing SPs, it is more appropriate to
observe how well the proposed method classifies only cases of fingerprints with missing S Ps.
Therefore, complete fingerprint classes were removed from the testing DB. In the FVC 2004
DBI] there was a total of 134 RLs, 108 LLs, 0 T'As, 16 P As and 168 W's incomplete flat finger-
print cases. A larger number of incomplete flat fingerprint cases where found in the FV C 2002
D B1 which consisted of a total of 167 RLs, 156 LLs, 6 T As, 1 PA, and 186 Ws. Figure 5.4 and
Figure 5.5 show the results of each incomplete fingerprint class (i.e., with missing SPs) of the

proposed algorithm benchmarked against previous literature which have been re-implemented
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Incomplete Fingerprint Accuracy Tested on

the FVC 2004 DB1
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Figure 5.5: Accuracy achieve from imperfect fingerprint classes with missing SPs from the
FVC 2004 DB1

and also attempts to classify missing §Ps. The proposed method produced the highest accu-
racy on the F'V'C 2002 DB for incomplete fingerprints when compared to the result produced
by Webb and Mathekga [10], Msiza et al. [19], and Karu and Jain [56]. Even its lowest class
accuracy result is a high 89.79 % (accuracy of incomplete Ws). The reason for the increased
accuracy is owing to the robust set of rules that is based on global patterns. The algorithm also
produced the highest accuracy for incomplete fingerprints of class RL, LL, and W on the FV
2004 DB]. For the testing conducted on the F'V'C 2004 DB1, P A classes produced the lowest
accuracy of 75%. The remaining 25% was identified to be a PF’, which is ambiguous since an
incomplete P A can be considered as a PF' if the information below the highest curvature point
is removed. Figure 5.6 and Figure 5.7 shows a complete PA and incomplete PA which have
been successfully classified as a PA and a PF, respectively. This used the rules covered in
Chapter 4.

The work of Msiza et al. and Karu and Jain have not developed a rule for PF' cases. These

methods classify a complete or incomplete fingerprint with no SPs as a PA. Owing to this their



Chapter 5 Experimental Results 93

(c) (d) (e)

Figure 5.6: Successful classification of a PA where (a) is the segmented fingerprint, (b) 3-
region DP, (c) 10-region DP (d) outer region and (e) mid region

T (d)

Figure 5.7: Successful classification of a PF where (a) is the segmented fingerprint, (b) 3-
region DP, (c) 10-region DP and (d) outer region

accuracies are above 90%.

Table 5.7: Accuracy achieved for each fingerprint case using F'V'C 2002 DB1

Fingerprint case Total | Number of correct cases | Accuracy |
Two loops & two deltas 202 184 91.1
One loop (Top loop) & one delta | 323 305 94.43
One delta 2 1 50
One loop (Top loop) 319 301 94.36
No SPs 21 16 76.19
One loop (Bottom loop) 4 3 75

Lastly, the accuracy for each individual fingerprint case which was tested on the FVC 2002 DB1
and F'VC 2004 DB1 are shown in Table 5.7 and 5.8, respectively. Most flat fingerprint cases
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Table 5.8: Accuracy achieved for each fingerprint case using the F'VC 2004 DB1

| Fingerprint case | Total | Number of correct cases | Accuracy (%) |
Two loops & two deltas 208 189 90.87
One loop (top loop) & one delta | 332 308 92.77
One delta 1 1 100
One loop (top loop) 246 227 92.28
No SPs 58 52 89.66
One loop (bottom loop) 0 - -

produced a high average accuracy over 89%. However, there were too few fingerprints with a
single delta, and 1W's with a bottom loop to provide a fair interpretation of level of classification

accuracy produced for these cases.

5.3 Conclusion

Experimental results of the proposed method produce a high classification accuracy when tested
on fingerprints with missing SPs. Since each rule for each flat fingerprint case is based on
unique and consistent D Ps, it is less likely to result in misclassification. In addition, globally
representing the fingerprints overcome the issues related to the uncertainty of local orientation

especially in instances where there is minimum information captured.
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Conclusion

This chapter produces an overview of the conclusion of this research is based on the experimental

results. Thereafter, suggestions for future work are discussed.

6.1 Summary

Can flat fingerprints with missing SPs be successfully classified by using the most appropriate
fingerprint features? Indeed, this research showed that using the appropriate features is more
capable of classifying fingerprints with missing SPs. Based on the advantages and disadvantages
of each feature, DPs combined with SPs were concluded to be the more appropriate features.
As a result of DPs being a global representation of a fingerprint, more information about the
structural attributes of a class is provided [8]. This is beneficial for fingerprints with missing
S Ps since key structural properties are highlighted regardless of the amount of ridge information
captured. Furthermore, the DPs of each flat fingerprint case were unique and consistent when
the images were rotated based on SPs. This made it easier to develop simple classification rules
which were invariant to rotation. The uniqueness and consistency of class patterns irrespective of
the number of SPs detected, contributed to the classification’s high average accuracy of 92.48%
that was tested on the F'V'C 2002 DB1 and FVC 2004 DB1.

Like any novel rule-sets there will always be short comings and limitations. The most obvious
one being higher misclassification received from an RL and T'A with single loop and delta. This
is caused by the distortion of orientation fields at the edge of the image after the segmentation
process was applied.

Additionally, even though the bottom loop detection rule that classifies W's did not contribute

to misclassification, it was still limited to an extent. The reason behind why the rule could be

95
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correctly classified is because the testing D B contained images that were rotated to maximum of
35° and the bottom loop detection rule catered for fingerprints rotated up till 50°. Furthermore,
there were a small percentage of such cases occurring in the FVC D Bs. However, this is the
only rule that was not fully invariant to rotation. Further investigations can be conducted on a
larger set of fingerprints with only bottom loops to establish a more robust rule.

Overall this study successfully showed that it can successful classify fingerprints with missing

SPs using features like DPs and the remaining SPs regardless of the limitation.

6.2 Future work

The ultimate goal of any work is to apply it to a real life application. This work shows potential.

The following aspects are currently being improved to accomplish this:-

1. Further improvements can be made on the rule that classifies a TA and an RL with a
single delta and single a loop.

2. Improvements can also be made by establishing a fully rotational invariant rule for a W
with a bottom loop.

3. Real DBs often contain millions of fingerprints and therefore creating more classes is an
option to decrease the search time. Based on the findings in this research, subclasses for
complete RLs, T'As and L Ls can be established using the D Ps. For example an RL can
form two sub-classes that are categorised as a 2-C R layout and a 3-C'R layout. Investiga-
tions are being conducted to determine more subclasses for all complete fingerprints.

4. For many decades classification techniques have found it difficult to differentiate between
a PA and a PF. The research finally introduces a rule that is more robust and depen-
dent on the actual fingerprint pattern. Investigations can be undertaken to establish more
properties that will indicate a PF' from a PA. Using this knowledge improvements can
be made on the rule and it can also aid in overcoming the limitations experienced by the
fingerprint matching algorithms when a PF' occurs.

5. Improvements can be made on the rule which classifies a single loop D Ps with no regions
below region 2.

6. Even though the rule for a single delta fingerprint is robust and invariant to rotation. It

only classifies an LL and an RL, since no unique patterns were found for W's and T As.
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However, further investigations can be conducted to develop rules for Ws and T'As with a
single delta.

7. Further investigation can be made to identify subclasses for fingerprints with missing .S Ps.
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