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ABSTRACT 

Cellular beams were developed in 1987 and are an adaptation of castellated beams 

having many of the same advantages and disadvantages. There are no published results 

of tests on cellular beams and there is only one recognised method of analysis and 

design. 

Full scale destructive tests were carried out for this investigation on eight cellular 

beams. Beams loaded at midspan and at the third points were tested. Failure load, 

failure mode and deflections were obtained for each beam. 

The existing analysis method as well as three new methods for both ultimate load 

behaviour and deflections were checked against the experimental results. The existing 

method of analysis was found to be over-conservative in predicting failure loads and 

inaccurate in predicting deflections. The analysis method which best predicted the 

failure loads and modes was the design chart which was developed for this 

investigation. The theoretical method which best predicted the deflection was the 

Vierendeel method which was also developed for this investigation. 
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CHAPTER! 
INTRODUCTION 

1.1 Use of cellular beams in practice 

1.1.1 Development 

Cellular beams were introduced in 1987; and were initially developed for architectural 
purposes where circular openings in exposed steelwork were considered to be 
aesthetically pleasing .. Westok Structural Service Ltd. are the inventors and patent 
holders of the cellular beam 9. Circular web openings were previously achieved by 
burning a circle in the web of a Universal section. A double cut profiling process was 
developed to fabricate cellular beams working on the same principles as castellated 
beams 10. 

Castellated beams may be regarded as the forerunner of cellular beams, and were 
developed primarily to improve the structural efficiency of rolled I beams. Castellated 
beams were first used in 1910 by HE Horton of the Chicago Bridge and Iron Works. 
A British patent for castellated beams was granted to GM Boyd in 1939 and the beams 
were marketed in the United Kingdom in 1940 11. 

1.1.2 Comparison with solid-webbed beams 

Castellated and cellular beams have similar advantages over solid-webbed beams. The 
increase in height from the expansion process causes a corresponding increase in 
vertical bending stiffness. There is thus a saving in weight compared to a solid-webbed 
beam subjected to the same loading with the same span. The web openings can also be 
used as passages for services thereby reducing the floor-to-floor height. This 
significantly reduces the height of multistory buildings. 

1.1.3 Comparison with castellated beams 

The circular openings in cellular beams are more aesthetically pleasing than the 
hexagonal openings of castellated beams. 

The double cut fabrication process for cellular beams wastes a small amount of material 
whereas the single cut process for castellated beams does not waste any material. 

Cellular beams have a far more flexible geometry than castellated beams. Finished 
depth, opening diameter and opening spacing are all flexible dimensions in cellular 
beams, whereas in castellated beams the opening height fixes the finished depth and 
opening spacing. In consequence, cellular beams are frequently lighter than the most 
efficient castellated beam9

• Cellular beam geometry can be arranged to eliminate the 
need for infill plates which greatly increase the cost offabrication. Infill plates are used 
in castellated beams in areas of high shear at the ends of the beam or at positions of 
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concentrated loads. A cellular beam can be made to have a high resistance to shear by 
spacing the openings to give wide web posts. Conversely, where a member is lightly 
loaded, i.e. bending moments are dominant; a cellular beam will be chosen with the 
maximum depth and closely spaced openings to create a beam with the highest possible 
moment of inertia. Opening geometry can be adjusted to allow any incoming secondary 
members to connect onto a web post. (Figure 1.1) 

00100010·> 
Cellular Beam 

Castellated Beam 

Figure 1.1 : Incoming secondary members 

Openings can be stiffened with a ring stiffener instead of the infill plates used for 
castellated beams. This has the advantage that the openings are still available for the 
passage of services. 

1.1.4 Applications 

Cellular beams can be used as floor beams or roof beams. They are most economical 
when used in long spans or when inclusion of services is a consideration. The Westok 
brochure14 advises that cellular beams are most economical when used as long span 
secondary members. (Figure 1.2) The layout of Figure 1.2(b) costs no more than 
traditional short spans using solid-webbed beams (Figure 1.2(a)). Additional benefits 
are column free floor space, fewer foundations and faster erection. 
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CB 

CB 

CB 

(a) Short span solid webbed beams (b) Clear span cellular beams (CB) 

Figure 1.2 : Beam layouts 

1.2 Problem statement 

At present there is only one proposed method of analysing cellular beams, viz. the 
British Steel Construction Institute (SCT) method. This method was reported to have 
been verified by experimental tests, 10 but neither the test results nor the verification of 
the analysis method have been published. 

This project had the objects of compiling a set of results for experimental tests on 
cellular beams and finding an accurate, yet straightforward, method of analysis for 
calculating the failure loads, failure modes and service deflections. 

Eight full scale cellular beams were tested to destruction and failure loads, failure 
modes and deflections were recorded. Four theoretical approaches were used to analyse 
the cellular beams for failure load and failure mode, viz. 
(i) SCI design method 
(ii) computer program and spreadsheet 
(iii) design charts 
(iv) Finite element analysis 

Four theoretical approaches were used to analyse the cellular beams for deflections, viz. 
(i) SCI design method 
(ii) simplified SCI method 
(iii) Vierendeel deflection method 
(iv) Finite element analysis 

The test beams were analysed using the SCI design method as given by Ward in the SCI 
publication 10. The SCI method gives the failure load, failure mode and deflections. 
Two new methods were developed to model ultimate load behaviour, viz a computer 
program (and spreadsheet) and design charts. The spreadsheet was a refinement of the 
computer program which was based on plastic Vierendeel analysis. Failure load and 
failure mode were given by the spreadsheet for each test beam. 

The computer program creates design charts which were used to obtain failure loads and 



4 

failure modes for the test beams. 

A fInite element analysis was carried out for each beam. The output from this analysis 
was failure load and deflections. 

A new deflection method combining the effects of primary bending and Vierendeel 
bending was developed. Deflections for the eight test beams were calculated using this 
method. 

The theoretical results were compared to the experimental results. 

1.3 Previous research 

Two series offull scale destructive tests were carried out previously on cellular beams, 
viz. at Bradford University in 1988, and at Leeds University in 1995, both supervised 
by the British Steel Construction Institute 14 . The results of these tests have not been 
published. The design guide 10 mentions that web post flexural buckling was observed 
during the tests. 

Previous tests had been confined to beams with isolated or pairs of circular openings. 
Redwood and McCutcheon 4 carried out a series of destructi ve tests on wide-flange steel 
beams under varying shear-to-moment ratios, where the openings were machine cut 
with a fly cutter. Deflections along the beams at each load increment were plotted 
against the moment at the opening to fmd the plastic failure moment. 

Nine beams with circular openings were tested, four with single openings and fIve with 
pairs of openings. Of the five beams with pairs of openings, three had closely spaced 
openings (1,5 times the diameter centre to centre) and two had widely spaced openings 
(twice the diameter centre to centre). 

A Vierendeel type failure was observed in the beams with single openings subjected to 
shear. A general yielding of the web surrounding the opening was seen rather than 
definite plastic hinges. The web yielding was displaced slightly to the load side of the 
opening. 

The beams with pairs of openings subjected to low shear failed in the opening nearer 
the load in the same manner as those with single openings. A higher shear caused the 
web post to buckle and the pair of openings failed as a single unit. 

The conclusions drawn were that the presence of shear reduced the moment capacity of 
the beam and that the beams with pairs of openings did not have a lower strength than 
those with single openings. It was found that the presence of circular web openings 
reduced the moment capacity of the beam by 64% to 72% depending on the shear-to­
moment ratio. 

Ravinger and LaScekova 15 carried out a series of tests on thin walled plate girders with 
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circular holes. Non-reinforced and reinforced openings were considered. The non­
reinforced openings failed by buckling of the web around the opening because of the 
very thin webs. Cellular beams are unlikely to fail in this mode because the webs of 
universal sections are substantially thicker. It was recommended therefore that the 
openings be reinforced. This is expensive, however, and should be avoided wherever 
possible in cellular beams. 
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CHAPTER 2 
LABORATORY TESTS 

2.1 Introduction 

Two series of experimental tests on cellular beams have previously been carried out 
under the supervision of the British Steel Construction Institute (SCI); one set at 
Bradford University in 1988 and the other at Leeds University in 1995. Both series 
comprised full scale destructive tests as described in the Westok information brochure9 

but the results obtained have not been published. 

A study of tests carried out on castellated beams was undertaken to determine the best 
test rig set up. Configuration oflateral supports was a concern and reports on three sets 
of previous experimental tests were consulted. Hosain and Spiers carried out a series 
of tests to investigate the effect of hole geometry on mode of failure? Four lateral 
supports were used for each beam loaded at the third points, one at each load or 
reaction. Beams loaded at the midpoints had lateral supports at the load and reaction 
points and at the quarter points. Only the top flange was supported and teflon blocks 
were provided to allow free vertical deflections. (Figure 2.1) 

~o · TON I.D&D ClLL 

"'nT'iI_"_TOIt_AULIC ItAIII 

STEEL 
HOLOE" .a&c:KET 

Z IIOS STANDA"D 
C;HAIINlLS 

TEFLON BLOCK 

1It--t+-- STAINLESS STUl 
PLATE 

...-----11+--11-- TEST SPECIMEN 

,.L---.J~Itt--H- SUPPOltT "OU-EIt 

TIE lA" 

Figure 2.1 : Experimental setup used by Hosain and Spiers 
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Okubo and Nethercot8 performed a series of tests to determine the web post strength of 
castellated beams. The longest span tested was 3,2m and only the ends were laterally 
supported. Figure 2.2 shows the lateral support setup whereby the top flange was 
restrained by the support. 

Amsler type 2000876 head 

• o 

Tesl bed 

~J;;;~~~Amsler piston 

Figure 2.2: Experimental setup used by Okubo and Nethercot 

Nethercot and Kerdal5 carried out a series of tests to investigate lateral-torsional 
buckling of castellated beams. Lateral supports were placed at the loads and reaction 
points. The supports were in the form of yokes attached to the beam constrained to 
move in frames. (Figure 2.3) 

© 
Load spreader Reoction Lateral 

~am supports 

loading 
yok's 

Roller 
I 

~.J 
bearing 

I 0 0 I 

I SpheriCal , I 

bearing Tes t specimen r.:1 
Screw 
jack 

® ® ® ® 

Figure 2.3 : Experimental setup used by Nethercot and Kerdal 

It was concluded from the above that many lateral supports are needed along the length 
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of the beam. The design of the lateral supports was simplified but based on the three 
types given here. The lateral supports used are discussed in more detail in section 2.3.2. 

The load incrementation method, viz. large increments initially then small increments to 
failure, was adopted on the basis of previous tests on beams with single, isolated 
openings carried out by Dougherty J 

3
• The method of painting the beams so as to reveal 

yield patterns was based on tests performed by Redwood and McCutcheon on beams 
with unreinforced web openings4. They noted that the paint flaked at lower values of 
compression than tension and this is shown to be so in the photographs in section 2.5. 

The aim of the new tests was to investigate plastic behaviour of cellular beams. As is 
discussed later in section 2.2, the beams were chosen so as to avoid the possibility of 
web buckling failure. 

2.2 Test beam details 

Two different sizes of beam were chosen for testing, namely 203x133x25 and 
305 xl 02x25 I beams. These sizes were chosen as they are conveniently small sections, 
and ensured that the capacity of the testing equipment in the laboratory would not be 
exceeded. For each size two ratios of opening spacing to opening diameter were used, 
bringing the number of different beam geometries to four. The ratio of the opening 
spacing to the opening diameter determines the width of the web post and thus the 
tendency of the beam to fail in web buckling or shearing. The two sizes of beam chosen 
had different slenderness ratios (ratio of depth of beam to width of flange) and when 
combined with the variation in opening spacing gave a spread in beam geometry that 
covers the range likely to be encountered in practice. 

Two loading conditions were chosen viz. midpoint and third point loading. 

Spans were chosen so as to provide a wide variation in shear-to-moment ratio at the 
centre of the beam while avoiding web buckling or web post shearing. The beams were 
analysed using both the SCI method and the plastic method (which are discussed fully 
in Chapter 3) to eliminate the possibility of web post failure. 

The different beam geometries are given in Table 2.1. 
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Table 2.1 : Test beam dimensions (in mm) 

Beam 1 Beam 2 Beam 3 Beam 4 

Parent section 203x133x25 203x133x25 305xl02x25 305xl02x25 

Height (H) 289,8 309,3 435 463,2 

Cell Diameter (Do) 200 225 300 325 

Opening spacing (S) 300 300 450 400 

Flange width (wr) 133,4 133,4 101,6 101,6 

Flange thickness (tr) 7,8 7,8 6,8 6,8 

Web thickness (tw) 5,8 5,8 5,8 5,8 

As can be seen from the above table, Beams 1 and 3 had an SID ratio of 1,5 and Beams 
2 and 4 a ratio of 1,33 giving them more slender web posts than Beams 1 and 3. Web 
post slenderness is the ratio of the diameter of the opening to the web post width. 

The beams were further distinguished from each other by labeling all the beams to be 
loaded at the midpoint "A" and all those to be loaded at the third points "B". Thus 
Beam lA is a beam having the dimensions given in the first column of Table 2.1 and 
loaded at the midpoint. 

The spans of the test beams are given in Table 2.2. 

Table 2.2: Test beam spans 

Beam span (m) 

lA 3,1 

IB 5,5 

2A 3,8 

2B 5,6 

3A 3,8 

3B 4,2 

4A 8,2 

4B 7,4 

Appendix A I contains detailed drawings of the test beams. 
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2.3 Fabrication of beams and test rig 

2.3.1 Beams 

Cellular beams are fabricated in similar fashion to castellated beams. Castellated beams 
are fabricated by cutting the web of a rolled I beam in a zig-zag pattern, turning the 
halves end to end and welding them together. (Figure 2.4) By comparison, cellular 
beams employ a double cut process (Figure 2.5) which, unlike the castellated beam, 
entails a small wastage of material. 

(a) Cutting profile (b) Expanded castellated beam 

Figure 2.4 : Fabrication of a castellated beam 

(a) Cutting profile (b) Expanded cellular beam 

Figure 2.5 : Fabrication of a cellular beam 

The beams used for the testing were fabricated by Impact Engineering. Full length web 
stiffeners were welded in at the positions of the end supports and the ioads to prevent 
compression buckling of the web posts. 

2.3.2 Test rig 

The beams were tested in the heavy structures laboratory of the Civil Engineering 
Department of the University of Natal. The laboratory has a structural concrete floor 
with cast-in bolt sleeves that accommodated the tension rods used for beam loading and 
the bolts for securing the lateral support structures (Figures 2.6 and 2.7). 
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(a) Midpoint loading test rig 
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(b) Third point loading test rig 

Figure 2.6 : Test rig for experimental work 

/Test beam 
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Figure 2.7 : Typical test beam setup 

Lateral supports 

The original lateral supports were made from channel sections welded together with an 
angle section joining the uprights at the top. (Figure 2.8) Beams that used the spreader 
beam, i.e. beams loaded at the third points, required a lateral support that fitted under 
the spreader beam. These lateral supports were modified by shortening the uprights and 
replacing the angle section with a flat plate. The lateral supports were also bolted to the 
structural floor. 
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Figure 2.8 : Lateral support 
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The test beam was simply supported on each side by a half roller standing on a steel box 
made from two channels welded toe-to-toe. The half rollers were placed under the end 
stiffeners and covered the width of the flange. The steel boxes rested on the structural 
floor. 
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Loading 

Loading was applied by a hydraulic jack acting against a box beam which was bolted to 
the floor, as shown in Figure 2.6. For beams loaded at the midpoint the jack was placed 
directly on the beam above the centre stiffener. A spreader beam was used to achieve 
third point loading. The spreader beam rested on two half rollers which were placed, flat 
side up, over the stiffeners at the third points. These half rollers also covered the width 
of the flange. The spreader beam was checked for moment resistance. Five pairs of web 
stiffeners were welded along the length of the beam to prevent twisting. The spreader 
beam had a mass of 122 kg, equivalent to 1,22 kN, which was added onto the applied 
load. 

2.4 Test procedure 

2.4.1 Beam preparation and instrumentation 

The dimensions of each beam were measured and recorded. 

Strain gauges were attached to the beams at the points where the highest stresses were 
expected to occur. These points were typically around the edge of the critical opening, 
along the flange under the centre of the critical opening and on the web post closest to 
the end support. Appendix A 1 contains diagrams of the positions of the strain gauges 
for each beam. The strain gauges on the flange were single gauges running in the 
direction of the length of the beam; the gauges around the opening and on the web post 
were 45 0 rosettes. The strain gauges were attached to a Huggenberger strain bridge 
indicator which converts the voltage readings into millistrains. 

The beam was painted with PV A on one side. When the metal yielded the paint cracked, 
and the yield pattern was revealed when the cracked paint was brushed off the beam. 

Three vertical dial gauges were evenly spaced along half of the beam. Horizontal dial 
gauges were placed at the positions where horizontal movement was most likely; 
typically at the web post closest to the end support and in the centres of the laterally 
unrestrained sections. These gauges gave early warning of any horizontal movement at 
these points. 

2.4.2 Test procedure 

Two preliminary tests were carried out on each beam to 30% of the load predicted by 
the design charts. The preliminary tests were to 'settle' the loading rig, and to check the 
instrumentation. Strain gauge and dial gauge readings were taken at each increment 
during loading and after unloading. The strain gauges experience some hysteresis which 
improves with successive loading and unloading. Two cycles were sufficient to eliminate 
the hysteresis. 



14 

The test to failure was carried out in a similar way. The load increments were typically 
10% of the predicted failure load up to 60% then 5% to failure. Strain gauge and dial 
gauge readings were recorded for each load increment. No readings were taken after 
unloading. 

The gauge on the hydraulic jack measured the pressure exerted by the jack in Mega 
Pascals. The jack was calibrated to find the conversion factor between pressure and 
force. The load increments chosen were in values ofMega Pascals that could be easily 
read from the gauge. 

The yield stresses of the flange and web of each beam were needed as input into the 
theoretical models. Yield test coupons were taken from areas of the beams distant from 
yielded areas, i.e. near the ends. Two coupons were taken from each the flange and the 
web. The yield stress was determined from a tensile test with the tension running in the 
same direction as the longitudinal axis of the beam. 

2.5 Test results 

Appendix Al contains diagrams of the positions of lateral supports for each beam. 

Beam lA 

Loading was in increments of 11,4 kN up to 80,1 kN then in increments of 5,7 kN to 
failure. Buckling of the flange above the centre opening was observed at a load of 114 
kN, and at a load of 119,5 kN the beam continued to deflect under a constant load. This 
load was taken as the failure load. The failure was fully plastic Vierendeel failure in one 
of the openings adjacent to the load. (Figures 2.9 and 2.10) 

The beam moved horizontally between the lateral supports by 2,15 mm. A horizontal 
movement of2,62 mm at the unsupported end was observed after which the horizontal 
movement stopped. This indicated that settlement was taking place rather than buckling. 



15 

Figure 2.9 : Failure of Beam lA 

Figure 2.10 : Yield pattern for Beam lA 
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Beam IB 

A horizontal displacement of 3mm was recorded during the second preliminary test at 
a total load of 45 kN. The rate oflateral displacement was constant indicating that 
the beam was still settling so loading began for the final test. After an initial settling 
period the rate of lateral displacement increased and the test was halted at a total load 
of70 kN and a lateral displacement of3,3mm. Distortion ofthe spreader beam was 
identified as a factor contributing to the lateral displacements. Web stiffeners were 
welded into the spreader beam to prevent further distortion. The beam showed no 
further tendency to move laterally, after initial settlement, and the test was carried out 
to failure. 

The beam was loaded in increments of 11,4 kN total load up to 80,9 kN then in 
increments of 5,7 kN to failure. An increase in the rate of vertical deflection was 
observed at a load of98 kN. At 108 kN the beam continued to deflect under a 
constant load, and this load was taken as the failure load. 

Vierendeel failure was observed in the opening on the support side of each load. The 
failure was plastic with a slight lateral distortion. (Figures 2.11 and 2.12) 

Figure 2.11 : Failure of Beam IB 
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Figure 2.12 : Yield pattern for Beam IB 

Beam2A 

This beam showed no tendency to buckle. 

Loading was in increments of 11,3 kN up to 79 kN then in increments of 5,6 kN to 
failure. At a load of 107 kN the flange at the centre of the beam began to buckle. 
The load was incremented further until the beam continued to deflect at a constant 
load of 112 kN. This load was considered the failure load. The failure was a fully 
plastic VierendeeI failure in one of the openings adjacent to the load. (Figure 2.13 
and 2.14) 
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Figure 2.13 : Failure of Beam 2A 

Figure 2.14: Yield pattern for Beam 2A 
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Beam2B 

Loading was in increments of 11 ,4 kN total load up to 80,9 kN then in increments of 
5,7 kN to failure. An increase in the rate of vertical deflection was observed at a load 
of 108 kN. The load was incremented further and the beam continued to deflect 
under a constant load of 117 kN, this load was taken as the failure load. 

A lateral displacement of 4,77 mm was measured in the long laterally unsupported 
span in the centre of the beam at the end of the test. The lateral displacement did not 
cause buckling to occur before plastic failure was fully developed. 

Vierendeel failure took place in the openings on the support side of both loads. 
(Figures 2.15 and 2.16) Some pure bending plastic deformation was observed in one 
of the openings in the central section of the beam. 

Figure 2.15 : Failure of Beam 2B 
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Figure 2.16 : Yield pattern for Beam 2B 

Beam3A 

Loading was in increments of 11,4 kN up to 91 kN then in increments of5,7 kN to 
failure. At a load of 142 kN the rate of deflection increased indicating that yielding 
was taking place. At a load of 151 kN the beam continued to deflect under constant 
load and this load was taken as the failure load. The beam failed in a fully plastic 
Vierendeel manner at both the openings adjacent to the load. (Figures 2.17 and 2.18) 

A horizontal deflection of only 1,7 mm was recorded at the end of the test. 
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Figure 2.17 : Failure of Beam 3A 

Figure 2.18 : Yield pattern for Beam 3A 
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Beam3B 

During the two preliminary tests no excessive lateral displacements were measured. 
The beam was loaded in increments of 11 ,4 kN. The rate of lateral displacement 
increased in the centre and at the ends of the beam, and at a load of 151 kN the test 
was halted. The beam recovered when the load was removed. 

An extra lateral support was added to each end of the beam and the test procedure 
repeated. The beam deflected laterally throughout the test and at a load of 174 kN a 
large lateral displacement was noted and the test was halted. The beam made only a 
partial recovery with unloading and a 5 mm lateral distortion remained. 

Two additional lateral supports were used in the final test. The beam was inverted so 
that the buckled compression flange became the tension flange. The lateral supports 
in the middle section of the beam were to one side of the centre so the beam was 
rotated horizontally to give lateral support to the buckled section. No gap was left 
between the lateral support uprights and the flange of the beam at the beginning of 
the test. At a load of 140 kN the beam began to be buckle in an S shape between the 
supports. It was decided to continue the test and at a load of 193 kN the beam 
continued to buckle laterally at a constant load. Failure was deemed to have taken 
place. 

Some vertical bending failure had occurred as could be seen from the distortion of the 
openings, yield patterns and the increased rate of vertical deflections. It was not fully 
plastic failure however as with unloading half the vertical displacement was 
recovered. The applied load of 193 kN was taken as the failure load but it is likely 
that if the lateral buckling had not taken place, a higher load would have been 
obtained. Vierendeel distortion was observed at the opening adjacent to the load on 
the support side, on one side only. (Figures 2.19 and 2.20) 
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Figure 2.19 : Failure of Beam 3B 

Figure 2.20 : Yield pattern for Beam 3B 
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Beam4A 

The beam showed no tendency to buckle laterally until plastic failure was well 
developed. 

The beam was loaded in increments of 5,4 kN up to a load of 40 kN then in 
increments of 2,2 kN to failure. At a load of 65 kN the rate of vertical deflection 
increased and at a load of 90 kN the beam continued to deflect under constant load. 
This load was taken as the failure load. 

This beam failed in a plastic primary bending mode. Little distortion can be seen in 
the openings of Beam 4A after failure because the failure was more of a pure bending 
failure than a Vierendeel failure. (Figures 2.21 and 2.22) 

Figure 2.21 : Failure of Beam 4A 

Figure 2.22 : Close up failure of Beam 4A 
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Beam 4B 

Loading was in increments of 11,4 kN. At a load of 80 kN, the beam began to buckle 
in an S shape in the pure moment zone. The beam was unloaded and a further two 
supports were placed at the positions where buckling had occurred. The positions of the 
supports did not correspond with the positions of the bolts in the structural floor and 
weights were used to hold the supports in place. Insufficient weights were used and at 
a load of 102 kN the supports were pushed aside by the buckling of the beam. More 
weights were added with the result that buckling in the centre span of the beam was 
restrained and buckling occurred in the side span. 

Once all the supports were in place and held firmly, the beam was loaded in increments 
of23 kN up to 69 kN then in increments of 5,5 kN to failure at 114 kN. The rate of 
vertical deflection increased at 108 kN indicating that plastic failure was approaching. 
A slight distortion of the opening can be seen in Figure 2.21 indicating that Vierendeel 
failure was imminent. The beam buckled before fully developed plastic failure could 
occur. (Figures 2.23 and 2.24) 

Figure 2.23 : Close up of opening failure, Beam 4B 
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Figure 2.24 : Buckling of Beam 4B 

2.6 Summary 

T bl 23 E a e : t I It xpenmen a resu s 

Beam Failure Failure Mode Yield stress Yield stress 
load (flange) (web) 

kN MPa MPa 

lA 119,5 plastic, 310 328 
Vierendeel 

IB 108 plastic, 323 354 
Vierendeel 

2A 112 plastic, 320 347 
Vierendeel 

2B 117 plastic, 343 394 
Vierendeel 

3A 151 plastic, 350 370 
Vierendeel, 

both openings 

3B 193 plastic, 337 343 
Vierendeell 

buckling 

4A 90 plastic, pure 437 430 
bending 

4B 108 buckling! slight 360 390 
evidence of 

plastic failure 
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CHAPTER 3 
ULTIMATE LOAD ANALYSIS 

3.1 Introduction 

The cellular beams were analysed using four theoretical methods to predict failure loads 
and failure modes. All the possible modes of failure are given in section 3.2. 

The first method used was the British Steel Construction Institute (SCI) design method 
from the SCI publication by Ward 10. The failure modes considered by the SCI method 
are pure bending, horizontal shear and buckling of a web post, vertical shear and 
Vierendeel bending. The analysis using the SCI method is discussed further in section 
3.3. 

A plastic analysis method was considered and developed into a computer program 
(section 3.4.1.1). The program makes simplifying assumptions, some of which were 
eliminated by producing a spreadsheet to carry out the analysis (section 3.4.1.2). The 
spreadsheet was used to analyse the beams. 

The computer program is based on a very limiting load case. Design charts were 
developed which are created by the computer program. These design charts are able to 
handle any load case and would be a practical analysis tool for use in a design office. 
The design charts are discussed fully in section 3.4.1.3. 

The plastic analysis methods check for Vierendeel bending, primary bending, horizontal 
shear of the web post and vertical shear failure. 

A non-linear finite element analysis (FEA) was carried out for each beam using a 
commercial structural finite element analysis program, LUSAS. The models for each 
beam were developed involving the beam geometry, material properties, supports and 
loading. The output from the FEA was failure load and yield pattern. The FEA is 
discussed fully in section 3.4.2. 

The failure loads and modes obtained from the four theoretical methods have been 
compared to the experimental results in the "Results" part of each section. 

A summary and discussion ofthe comparisons between the theoretical and experimental 
results is given in section 3.5. 
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3.2 Potential modes of failure 

3.2.1 Pure Bending L--

This occurs when the beam is subjected to significant bending and minimal vertical 
shear. The beam can be analysed elastically or plastically using the properties of the 
perforated section. 

For plastic analysis the top tee is regarded as fully stressed to the yield point in 
compression and the bottom tee fully stressed to the yield point in tension, thus forming 
a plastic hinge. 

The plastic bending resistance of the beam is given by: 

Mu ~ Mp = Atee x Iy x h 

The elastic bending resistance of a cellular beam is given by: 

Me = Zxiy 

where Zx = 21 is the elastic section modulus of the beam, using the properties of the 
H 

perforated section. 

3.2.2 Vierendeel mechanism ~ 

This failure mechanism occurs when the beam is subjected to a significant vertical shear 
force. The tee sections above and below the openings are subjected to primary bending 
and shear. In addition to this, they are also subjected to a secondary Vierendeel moment 
caused by the shear force acting over a lever arm the length of the tee. The opening 
deforms as a parallelogram, causing crushing or tearing at the weakest points. Figure 
3.1 illustrates such a failure for a castellated beam; cellular beams will evidently behave 
in similar fashion, though the positions of the plastic hinges are not so clearly defined. 

v v 

Tearing 7 

Figure 3.1 : Vierendeel mechanism in a castellated beam. 
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For a rectangular web opening, plastic hinges will form at the corners of the opening 11. 

Similarly in castellated beams the plastic hinges form at the top and bottom corners of 
the opening and the opening can be considered as a rectangle with the same depth ~ as 
the hexagonal opening and a width c equal to the length ofthe tee section (Figure 3.2). 

o 
Cl 
0-
00 

6 

Figure 3.2 : Equivalent rectangular openings for castellated and cellular beams 

Research into circular openings 12 suggested that the circular opening could be equated 
to a rectangular opening of width 0,45 times the diameter which gives a depth of 0,89 
times the diameter. (Figure 3.2) It was found that a more accurate approximation to 
the width of the opening is 0,3 times the diameter, giving a depth of 0,95 times the 
diameter. This is discussed more fully in section 3.4.1.2. 

The Vierendeel mechanism can be analysed using elastic or plastic methods. The two 
methods are discussed here briefly. 

Elastic 

The primary moment stresses are calculated at sections 1-1 and 2-2 in Figure 3.3, using 
the properties of the perforated section. 

Two assumptions are made to render the structure statically determinate. 
(i) The vertical shear force divides equally between the top and bottom tees 
(ii) Points of contraflecture are at the centre of the tees. 

The stresses caused by the Vierendeel moments are calculated using the section 
properties of the tees. The final design stress is the sum of the primary bending stress 
and the Vierendeel bending stress. 

The elastic method was found to be inaccurate 11. The linear stress distributions inherent 
in this method were not confirmed by experimental work. The effect of the shear stress 
was ignored and it was found that this could effect the bending capacity of the tees. 
When plasticity develops, the point of contraflecture does not lie in the centre of the tee. 
The biggest criticism was that an elastic method should not be applied to an 
indeterminate structure. The allowable load is then dictated by peak stresses at critical 
sections leading to an inefficient utilisation ofthe section's stress capacity. Experimental 
tests confirmed this, giving large factors of safety when compared to the theoretical 
failure loads 11. 
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Figure 3.3 : Elastic Vierendeel analysis 
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The plastic method treats the hexagonal opening as an equivalent rectangle, with a width 
c, which forms plastic hinges at the corners. The critical sections are fully stressed when 
a plastic hinge forms. 

Two assumptions are made viz. 
(i) The shear and bending stresses interact according to Von Mises yield criterion. 

(Refer page 40) This has the effect of reducing the stress available for bending 
in the web of the tee section. fw in Figure 3.4 is the effective yield stress in the 
web after the shear has been taken into account. 

(ii) The section is sufficiently ductile to allow the stresses to distribute in such a way 
as to maximise the section's resistance to bending. 

The analysis is carried out in a similar way to the elastic analysis. The effective bending 
yield stress for the web is calculated by taking the shear into account. The primary 
bending stresses at the critical sections are calculated using the properties of the 
perforated section. The stress blocks are rectangular for plastic analysis. (Figure 3.4) 
The primary bending stresses effectively "prestress" the section to maximise its 
resistance to Vierendeel stresses. The stresses due to Vierendeel bending are calculated, 
if they act in the opposite direction to the primary bending stresses they can approach 
twice the yield stress because they partly cancel out when added together as can be seen 
from Figure 3.4. The final values ofthe Vierendeel stresses are dictated by horizontal 
equilibrium, tension equals compression. 

There are no "peaked" stresses dictating artificially low strengths in the plastic method. 
This method is dealt with in detail in section 3.4.1. 
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ty ~ 2ty fy d y fy + compressive fy fy fy 
HI It t t t - tensile ft ft ft 

+ + - + + + + 

~t -- -tf~ +:b2 --
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(a) + (b) = (c) (d) (e) + (f) = (g) 

Section 1-1 (as Fig S) Section 2-2 (as Fig S) 

Figure 3.4 : Plastic Vierendeel analysis 

3.2.3 Horizontal shear L~ 

The applied vertical shear induces a horizontal shear force Vh in the web post which can 
cause the web to fail at the weld. This horizontal shear Vh can be calculated by 
considering the free body of Figure 3.5 where TI and T2 are the compressive forces due 
to the primary bending moment, and W is the applied vertical load. VI and V2 are the 
shear forces at the centres of the adjacent tees. The shear force and the applied load are 
assumed to be equally distributed between the top and bottom tees. Taking moments 

S(2Vj -W) 
about the point A gives: Vh = --'-----"-

2H-4tf 

In the special case when W is zero VI = V2 = Vand Vh = SV . This is the case in 
H-2tf 

the computer program (section 3.4.1) because of the load case considered. 

W/2 

~------------~~ f 
A I 

l v,n ~ j 
1< >1 
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Figure 3.5 : Free body diagram for horizontal web shear failure 

3.2.4 Shear buckling of a web post 

The horizontal shear forces induced in the web post can cause it to fail in lateral­
torsional buckling and this mechanism can be analysed elastically or plasticallyll. The 
method of analysis used here for this failure mechanism is an elastic method taken from 
the British Steel Construction Institute design method and is based on the resistance of 
section A-A shown in Figure 3.6. The horizontal shear force causes a moment at section 
A-A which is compared to the section's elastic moment of resistance. This failure 
mechanism is dealt with further in section 3.3 

The shaded area is considered rigid 
Vl2 Vl2 

T>~~+=========+=~~<T 

A 

J 0.45 RJ 
r r 

A 

Figure 3.6 : Section considered for web buckling calculations 

3.2.5 Compression buckling of a web post 

This may occur when a concentrated applied load or reaction is applied directly above 
or below a web post. The web post buckles laterally (without twisting), as for web 
crippling in a solid webbed beam. The web posts can be treated as columns having a 
width equal to the narrowest section of the web post, a length equal to the depth of the 
opening, a thickness equal to the thickness of the web and an effective length factor of 
0,5. Column curves can then be used to determine the compressive buckling strength 
of the web post.8 

3.2.6 Compression buckling of a tee section 

The tee section above the opening is not supported along the bottom edge and is 
subjected to compression from the primary moment, thus buckling of the tee section may 
occur. This type of buckling failure has not been observed in practice. I I 

3.2.7 Lateral-torsional buckling 

The behaviour of cellular beams does not differ significantly from castellated beams in 
lateral torsional buckling 14. Nethercot and Kerdal carried out a series of tests 
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investigating lateral-torsional buckling of castellated beams5
• It was observed that even 

with considerable lateral distortion of the beams, no additional distortion of the web 
posts occurred. It was found that the presence of the web openings had no noticeable 
effects on the lateral-torsional buckling behaviour of the beams. It was therefore 
recommended that castellated beams be analysed as for solid webbed beams, but that the 
section properties be those at the centre of an opening. 

3.3 Existing method of analysis 

British Steel Construction Institute Method 10 

Theory 

The Steel Construction Institute (SCJ) design method is based on experimental work and 
the results of fmite element analysis. Plastic analysis was used for the ultimate load 
analysis. 

The method is only valid for beams that satisfy the following conditions: 
(i) simply supported 

(ii) 1,08 < ~ < 1,5 
Do 

(iii) 1,25 < H < 1,75 
Do 

Five different failure mechanisms are checked in the ultimate load analysis: 

(a) Overall Beam Flexure 

This failure mechanism is the Pure Bending mechanism discussed in section 3.2.1 where 
a plastic hinge is formed in the centre of the opening due to both the tee sections having 
reached their full stress capacity in bending. Plastic methods are being used here so the 
check for this failure mechanism is given by: 
Mu :::; Mp = Atee x f y x h 

where Mu is the ultimate bending moment in the beam 
Mp is the plastic moment that can be resisted 
A1ee is the area of one tee section 
1; is the yield stress 
h is the lever arm between the centroids of the top and bottom tee sections. 

(b) Shear 

Two sections of the beam are checked for shear resistance, viz. the centre of the opening 
for vertical shear, and the narrowest part of the web post for horizontal shear. 
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The vertical shear capacity is checked by: 
V < Fvy = O,6fyC0,9L Tee web areas) 

The horizontal shear capacity of the web post is checked by: 
Vh < Fvh = O,6fy (O,9 x minimum area of web post) 

where Vand Vh are the vertical and horizontal shears in the beam respectively 
F vy and Fvh are the vertical and horizontal shear resistances of the sections 
respectively 

(c) Lateral Torsional Buckling 

The usual method of determining lateral torsional buckling strength can be employed 
using the beam properties through the centre of the opening as discussed in section 
3.2.7. 

(d) Web Post Flexure and Buckling 

These design equations were based on a detailt!u linear and non-linear finite element 
analysis and a parametric study based on the ratios: 

S Do. M 

Do ' tw Me 

where M = O,9RVh is the applied moment in the web post, at the section A-A, due to 
the horizontal force in the web. (Figure 3.7) 

The shaded area is considered rigid 
V/2 Vl2 

T>~~+=========+=~~<T 

A A 

J 0.45 RJ 
r r 

Figure 3.7 : Section considered for web buckling calculations 

Me = Zefy is the elastic moment which can be resisted by section A-A, 

where Ze is the section modulus of the section A-A. 

The ratios ~ and Do were found to govern the web post buckling, and the design 
Do tw 

equation takes the form of a polynomial: 
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The coefficients AJ to A9 are given in Table 3.l. 

T bl 3 1 C ffi' t ~ th a e . : oe IClen s or ewe uc mg equa IOn b b kr f 

AJ A2 A3 A4 As A6 A7 Ag ~ 

5,097 0, 1464 - 0,00174 1,441 0,0625 - 0,000683 3,645 0,0853 - 0,00108 

(e) Vierendeel Bending 

Sahmel ' s method for curved beams was used to analyse the openings for Vierendeel 
bending. The critical section was assumed to be at an angle of <l> = 25 0 from the vertical. 
(Figure 3.8) 

critical (inclined) 
section 

M 

Figure 3.8 : Sahmel's curved beam approach 

The section dimensions are transformed to the dimensions ofthe inclined section so that: 
t H/ - t D 

T = jl . h '= / 2 jl __ 0 

cos25° ' w cos25° 2 

The axial force and bending moment acting on the inclined section, as well as the 
section's resistances, are calculated. The interaction between the Vierendeel moment 
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and the axial force is determined from the equation: 

(Eq.3-1) 

Application of the Theory 

The SCI design method assumes that the flange and web have equal yield stresses. This 
was not the case for the beams that were used in the present experimental tests, and in 
applying the method the equations were adjusted to suit. This entailed using the axial 
force that a section could resist instead of the area of the section. 

(a) Overall Beam Flexure 

The plastic moment resistance of the section is found by taking moments of the forces 
that can be resisted by the section about the centroid ofthe section. (Figure 3.9) 

M u ~ Mp = Aweb x fy, web x hweb + A flange x fY,flange x h flange 

Figure 3.9 : Forces and lever arms 

Aweb and Ajlange are the areas of the web and flange of one tee section respectively. 

The formulae for shear and web post flexure and buckling remained unchanged, since 
only the web yield stress was involved. 

(e) Vierendeel bending 

The moment resistance of the tee section alone was required in calculating the 
Vierendeel resistance. This involved finding the centroid of the area of the tee section. 
Where the original equation used areas, the adjusted equation is based on forces, as 
follows: 

F =wf xtf xf fl +t xh xf tee y, ange w w y, web 

Centroids for equal areas (Figure 3.10): 
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+ 
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Figure 3.10: Centroids for equal areas 

F 
Flange: XI = lee 

2 X W f X f y ,jlange 

Part flange and web: 

+ W f X (t f - X I ) 
2 

X f y,jlange + t w X hw X (+ hw + t f - X I) X f y , web 
X2 = 

F;ee / 2 

. + W f X t f 
2 

X f y Jlange + t w X hw X (+ hw + t f ) X f y , web 
Whole tee section: X c = -=-----=-----=----....:....:..:' -----'''---------'''---=-----"--'--

F;ee 

M = F;ee X (X +~) 
p 2 2 2 

The forces acting on a section are calculated using the equations: 

Po = Tcos25- V sin25 
2 

V 
M= T(xc '-xJ+-(H-xJtan25 

2 
and substituted into Eq. 3-1. 

The entire analysis was done on a spreadsheet. This permitted the imposed load to be 
altered manually until one of the checks failed. 

Limitations 

Although this method is only valid for simply supported beams, there are no limitations 
on the type of loading. The only requirements are the values of the shear forces and 
bending moments at the centres of the openings. 

Results 

The output from the SC! analysis was failure load and mode. Vierendeel failure was 
predicted in all the beams at the opening with the highest combined shear and moment, 
i.e. at the central opening for beams loaded at the midpoint, and at the openings adjacent 
to the loads on the support sides for beams loaded at the third points. 

The failure loads calculated using the SC! method are compared to the experimental 
values in Figure 3.11 : 
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Figure 3.11 : Theoretical and experimental failure loads, SCI method 

The seI method is seen to be very conservative. The exception is Beam 4B, but it is 
likely that this beam did not reach its full plastic load before it failed in buckling. 

The ratios of the theoretical failure load and the experimental values are given in Table 
3.2: 

Table 3.2 : Failure load ratios, SCI method 

Beam Failure load ratio 

lA 0,74 

IB 0,76 

2A 0,66 

28 0,73 

3A 0,78 

3B 0,72 

4A 0,76 

4B 0,90 

Mean 0,76 



39 

3.4 Proposed new methods of analysis 

3.4.1 Plastic analysis 

The plastic analysis models were developed on the assumption that the shear and primary 
moment combine with the Vierendeel moment to produce plastic hinges at four points 
around the opening. Whereas the plastic hinges in castellated beams will evidently occur 
at the corners of the opening, the positions of the hinges in cellular beams are not so 
easily predicted. 

Two alternative approaches to the problem were developed, viz. 
a computer program 
a spreadsheet 

3.4.1.1 The Computer Program 

The computer program is based on the Vierendeel failure mechanism. 

The load case assumed for the computer program is a simply supported beam loaded so 
as to induce a reaction V at the support. (Figure 3.12) This reaction produces the 
moments and shear forces used in the analysis; only openings between the load and the 
support are considered. 

lLoad 
I 

000000· 
I' I I I 

dist 

Figure 3.12 : Load case considered for computer program 

Theory 

The Vierendeel mechanism involves the interaction of three stresses (Figure 3.4): 

(a) Primary Shear 

The assumption was that the shear stress (y) and bending stress (Ix) interact according 
to von Mises' yield criterion 11 which states: 

f/ = f/ + 3y2 

where.t; is the yield stress. 
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(b) Primary Bending 

It is further assumed that the tees are sufficiently ductile to ensure that the primary 
bending and Vierendeel bending stresses are distributed so as to maximise the section's 
bending resistance. (Figure 3.4) Referring to the load case of Figure 3.12, the left hand 
side of an opening will have a lower primary bending moment than the right hand side. 
The left hand side is thus the low moment side (section 1-1 of Figure 3.4) and the right 
hand side the high moment side (section 2-2 of Figure 3.4). On the low moment side of 
the tee section the primary bending stress block is located at the outer fibres of the tee; 
on the high moment side the primary bending stress block is located at the inner fibres 
of the tee. The primary moment stresses effectively prestress the beam so as to 
maximise its resistance to the Vierendeel bending stresses. 

(c) Vierendeel Bending 

Only the top tee section will be considered, since the bottom tee section differs only in 
that the compression and tensile stresses are reversed. 

On the low moment side of the tee the Vierendeel bending induces tension at the top of 
the tee and compression at the bottom. Conversely on the high moment side the 
Vierendeel bending induces compression at the top of the tee and tension at the bottom. 
Since these sections are effectively prestressed by the primary moment, the Vierendeel 
stress can reach twice the yield stress. 

Application of the Theory 

Vierendeel mechanism 

Each of the three components of the Vierendeel mechanism is discussed separately. 

(a) Primary Shear 

Because the shear is resisted by the web which has area = hI tw and hence a shear stress: 

V 

and f: =!: + 3y2 

the allowable residual bending stress in the web is: 

J;y = /f},web - 3y2 

The stress fw is thus the effective yield stress in the web. 

(b) Primary Bending 

The primary bending stresses are calculated at the hinge points. 
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Low moment side of the opening 

The moment to be resisted is: M = V x ( dist - ~) 

The stress diagram for the primary bending moment was as shown in Figure 3.4. The 
distance x from the top of the tee section to the bottom of the stress block (Figure 3.13) 
was calculated as follows: 

A preliminary value for x was calculated assuming that x < tf , where tf is the thickness 
of the flange. 

M = Fy 
F = c.t;,f )(wj )(x) 

1 
y = -(H - x) 

2 

1 
:. M = if Wj x) - (H - x) 

Yf 2 

.. 2M = f Wj H x - f Wj x 2 
Yf Yf 

:. 0 = f Wj x 2 
- f Wj H x + 2M 

Yf Yf 

F 

xi 
~ ~--------f 

y 

Figure 3.13 : Primary bending, 
low moment side 

-b ± Jb 2 
- 4ac x was calculated using the formula: x = ---'-----

2a 

where 

The smallest positive root was taken as x. 

It was necessary to check that the stress block fell within the flange; if it did not, the 
depth x I of the web involved in resisting the primary moment had to be determined. 
(Figure 3.14) 



M :::: F, Y, + F2 Y2 

F, :::: .t;,j wf If 

1 
Y, :::: 2(H - t) 

F2 :::: i;v Iw x I 

Y2 :::: l.(H - Xl) 
2 

- I 
f 
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YI 

Figure 3.14: Primary bending, x 
> tf 

which is in the form ax 2 + bx + c :::: 0 and is solved as such to find x I ,whence 

x :::: I +Xl 
f 

High moment side of the opening 

The moment to be resisted is: M = V x ( dist + ;) 

The stress diagram for the primary bending moment was as shown in Figure 3.4. The 
distance x from the bottom of the tee section to the top of the stress block (Figure 3.15) 
was calculated as follows: 



M = F y 
F = f' I x J lV lV 

1 
Y = - (h + x) 

2 s 
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F 
X l 

: . f' t x 2 + f' t h x - 2M = 0 J w w J w HI S 

y 

Figure 3.15 : Primary 
bending, high moment 
side 

Having calculated x, it was necessary to check that the stress block fell withing the web; 
if it did not, the depth x' of the flange involved in resisting the primary moment had to 
be determined. (Figure 3.16) 

, t-----.....".~----i 

x' 
J 

Figure 3.16 : Primary bending, x 
>hw 

This quadratic was solved for x ' whence x = h + X I . 
w 



44 

(c) Vierendeel Bending 

The Vierendeel moment to be resisted is : 

M == V c in total, but for the top tee only, 

1 
M == - V c 

2 

The general way in which the force, V, is derived from the Vierendeel bending resistance 
of the tee section given by: 

Vc 
M == 2 == F( y( + F2 Y2 + .. ... . + Fn Yn 

2 
.. V == - (F( Y( + F2 Y2 + ... . .. + Fn Yn) 

c 

Decision-making chart 

Figure 3.17 sets out the decision-making process required to deal with the various stress 
distributions that can develop in the tees. (Figures 3.13 to 3.16) 

Case 1 

Low moment 
side 

Case 2 

The Opening 

CaseI 

High 
moment side 

Case 2 

Figure 3.17 : Decision-making chart for Vierendeel stress adjustments 
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Low moment side of opening 

Case 1 : Only Flange stressed by the primary moment (Figure 3.18) 

c c c 

fy 2fy fy fy fy 
t 1"- • " .. , 

+ D 
T 

Yl Y2 
I I 

J 
1 + 

Y3 t 
~ -

3 

fw fw 
Primary + Vierendeel Total 

Figure 3.18 : Low moment side, Case 1 

(t) Fl = 2f x Wf 
X 

Yl = 
2 Yj 

(c) F2 = 1;,j (tf - x) wf Y2 = 
X + tf 

2 
h 

(c) F = f h t 3 W W III Y3 t + ~ 
f 2 

It is necessary to adjust the forces, F[, F2, F3 so that horizontal equilibrium is maintained, 
i.e. tension equals compression. 

1.1 Tension < Compression (ie: F[ < F2 + F3) 

In this case, the available compression is in excess of requirements, and F2 (and where 
necessary, F3) becomes partly or wholly tensile. There are two possibilities, viz. 

1.1.1 F2 is large enough to offset the excess compression. 
i.e. F2 ~ (F2 + F3 - F[)/2 
:. F2 ~ F3 - F, 
In this case F2 becomes partly or wholly tensile. (Figure 3.19) 



46 

c c c 

fy ~fy 
~ 

fy fy fy 
" 

+ 
- ~f: 0 

-1--- - 2 - 4 -

i + Y3 
, '-- -

1 fy 
I 3 
I 

L 

fw fw 
Primary + Vierendeel Total 

Figure 3.19 : Low moment side, Case 1.1.1 

1.1.2 F2 < F3 - F" in which case F2 becomes wholly tensile, and F3 partly tensile. 
(Figure 3.20) 

\.. 
I 

y, Y2 
1 I 

J i 
\ 
I 

Y31 
Y4 ; ~ 

c t c 

+ 
-+ 
+ 

I......-

~---?O-. 

fw fw 
Primary + Vierendeel 

Figure 3.20 : Low moment side, Case 1.1.2 

1.2 Tension> Compression (ie: F, > F2 + F3) 

In this case, there is insufficient compression available to develop F, fully, and this force 
reduces accordingly. This is effected by reducing the depth of the stress block from the 
underside of the flange, thus maximising the lever arm. (Figure 3.21) 

c t c t c 

+ _ I ~ '-' ~~_'CfY , _ ------t .. _

y
_-+-

fy

...., 

___ . r------ 3 

I ± 

Y3 f + 
__ J __ 

'"-- -----

fw fw 
Primary + Yierendeel Total 

Figure 3.21 : Low moment side, Case 1.1.2 
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Case 2 : Flange and web stressed by primary moment (Figure 3.22) 

c c 

fy 
r ' 

bl--~ 12 -
I 

+ 
,~ ~ 

Y2 + 
l !~J '- _ 

3 

-L - - -
1E--7-' r<----"'+E- ~ 

fw 2fw fw 
Primary + Vterendeel 

Figure 3.22 : Low moment side, Case 2 

t 
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It is necessary to adjust the forces, Ft, F2, F3 so that horizontal equilibrium is maintained, 
i.e. tension equals compression. 

2.1 Compression> Tension (ie F3 > Ft + F2) 

In this case, the available compression is in excess of the requirements, and the force F3 
becomes partly tensile. (Figure 3.23) 

c t c t c 

rE--:>; ~~~~ 

fw 2fw fw 
Primary + Vierendeel 

Figure 3.23 : Low moment side, Case 2.1 
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2.2 Compression < Tension (ie F3 < F
J 
+ F2) 

In this case, the available tension is in excess of requirements and the value of F2 (and 
where necessary, F

J
) is reduced accordingly. There are two possibilities, viz. 

2.2.1 F2 is large enough to offset the excess tension. 
i.e. F2 :? FJ + F2 - F3 
:. F3 :? F

J 

In this case F2 is reduced accordingly. (Figure 3.24) 

c t 

fy 2& 
r 

+ Q IT 2 
Yt 

Y2 + , 
Y3 

'--

, ." 
fw 2fw fw 

Primary + Vterendeel 

Figure 3.24 : Low moment side, Case 2.2.1 

2.2.2 F3 < F
J

, in which caseF2 falls away andF
J 
is reduced accordingly. (Figure 3.25) 

c c 

+ 
Yt l -

+ 3 

Y~~ - --- -

~ ~ IE-~ ""- -';aoi 

fw fw fw 
Primary + Vierendeel Total 

Figure 3.25 : Low moment side, Case 2.2.2 
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High moment side of the opening: 

Case 1 : Only web stressed by primary moment. (Figure 3.26) 

Y2 

+ 

~ 
+ 

-j 

t c t c 

fy 
r 

fw fw fw 

Figure 3.26 : High moment side, Case 1 

Primary + VJerendeel Total 

'( Y - -1 - 2 
h - x 

IV Y2 = tf + ---
2 

It is necessary to adjust the forces F1, F2, F) to maintain horizontal equilibrium, i.e. 
tension equals compression. 

1.1 Tension> Compression (F3 > FI + F2) 

In this case the available tension is in excess of requirements and the value of F3 is 
reduced accordingly. (Figure 3.27) 

c t c t c 

fw 2fw fy 
~ "" ~ - " 
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I 

fw fw 

Primary + V1erendeel Total 

Figure 3.27 : High moment side, Case 1.1 
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1.2 Tension < Compression (F3 < Ft + F2) 

In this case, the available compression is in excess of requirements and F2 (and where 
necessary Ft) becomes partly or wholly tensile. There are two possibilities, viz. 

1.2.1 F2 is large enough to offset the excess compression. 
i.e. F2 ~ (Ft +F2 - F3)/2 
:. F2 ~ F

J 
- F3 

In this case F2 becomes partly or wholly tensile. (Figure 3.28) 
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Figure 3.28 : High moment side, Case 1.2.1 

1.2.2 F2 < Ft - F3, in this case F2 becomes wholly tensile and Ft becomes partly 
tensile. (Figure 3.29) 
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Figure 3.29 : High moment side, Case 1.2.2 
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Case 2 Web and flange stressed by primary moment. (Figure 3.30) 
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Figure 3.30 : High moment side, Case 2 
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It is necessary to adjust the forces Ft, F2, F3 to maintain horizontal equilibrium, i.e. 
tension equals compression. 

2.1 Compression < Tension (Ft < F2 + F3) 

The available tension is in excess of the requirements and the value of F2 (and where 
necessary F3) is reduced accordingly. There are two possibilities, viz. 

2.1.1 F2 large enough to offset the excess tension. 
i.e. F2 ~ (F2 + F3 - Ft) 
:. Ft ~ F3 
In this case F2 falls away and, F3 is reduced accordingly. (Figure 3.31) 
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Figure 3.31 : High moment side, Case 2.1.1 

2.1.2 F, < F3, in which case F2 is partly reduced. (Figure 3.32) 
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Figure 3.32 : High moment side, Case 2.1.2 

2.2 Compression> Tension (F, > F2 + F3) 

In this case the available compression is in cxcess of requirements and F, becomes partly 
tensile. (Figure 3.33) 
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Figure 3.33 : High moment side, Case 2.2 
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How the Computer Program Works 

A section of the program was written for each of the three Vierendeel components, 
primary shear, primary bending and Vierendeel bending, which were then combined. 

The analytical part of the program works in an iterative manner with a root-finding 
exercise at the end. An initial input force is used to calculate the shear and primary 
bending stresses in the beam. The residual stress capacity available to resist the 
Vierendeel bending is then calculated, from which the force required to produce these 
Vierendeel stresses can be derived. This force is the output force for the current 
iteration. The input and output forces are then compared. If the output force is smaller 
than the input force then the input force is incremented and a further iteration is 
performed. If the output force is larger than the input force then the iterations are halted 
and the program moves on to the root-finding procedure. 

A force equal to the ultimate shear capacity of the tees divided by 100 is used as the 
initial input force and is incremented by the same value. The upper limit for the input 
force was taken as the smallest of the following three values: 

(i) Ultimate shear capacity of the beam i.e.: the force the beam can resist assuming 
the entire stress capacity of the perforated section is used in shear. 

(ii) Ultimate bending capacity of the beam i.e.: the force the beam can resist 
assuming the entire capacity ofthe perforated section is used in primary bending. 

(iii) Horizontal web shear capacity. 

Iterations are performed until the output force is greater than the input force or until the 
upper limit has been reached. 

The root-finding technique employed was a simple straight line approximation, the 
abscissa being the input force and the ordinate being the output force. It can be seen 
from Figure 3.34 that any curve can be closely approximated by assuming a straight-line 
variation between adjacent points. The intersection ofthe approximated curve with the 
line Output = Input gave the ultimate force, V. 
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Test Beam 3A 
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Figure 3.34 : Root-finding for the program analysis 

The beam considered for this demonstration was Test Beam 3A. A graph of the output 
force versus the input force for each iteration was plotted. The four numbered curves 
in the graph correspond to four openings in the beam. Curve one represents the opening 
closest to the end ofthe beam with the successive openings being progressively further 
away from the end ofthe beam. The line labelled Output = Input is the line along which 
the output force is equal to the input force. The position where the Output = Input line 
intersects with a curve is a possible solution for the load at which a Vierendeel 
mechanism could form in the corresponding opening. The actual solution occurs at the 
intersection point closest to the origin, as this is the smallest force and hence the force 
at which the beam will fail. 

The computer program was used to develop the design charts referred to in section 
3.4.1 .3. The theoretical failure loads for the test beams are given in that section. 

3.4.1.2 The Spreadsheet 

Theory 

The spreadsheet uses the same theory as the program, with one adjustment. In the 
computer program the circular opening is approximated as an equivalent rectangle with 
a width of 0,3 times the diameter. The corners of the rectangle are assumed to be the 
critical positions where plastic hinges form and failure takes place. In the spreadsheet, 
no assumptions were made about the equivalent rectangle width. The resistances of the 
tees to Vierendeel bending at various positions across the opening (Figure 3.35) were 
calculated and the critical position was that giving the minimum ultimate load V. 
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Figure 3.35 : Positions considered for failure with spreadsheet. 

Application of the Theory 

The general method used in the spreadsheet is the same as that for the program. The 
reaction force, V, produces a primary moment and shear in the tee section. Stresses in 
the tee caused by these primary forces are calculated. The remaining stress capacity of 
the tee is determined and from this the Vierendeel moment which can be resisted is 
calculated. The reaction needed to produce this Vierendeel moment is calculated and 
compared with the initial reaction. 

Calculations of the moments and stresses are carried out using stress blocks, forces, and 
lever arms in the same way as the program, except that the calculations are carried out 
for all positions shown in Figure 3.35. 

An advantage of using a spreadsheet is that the applicable case, force and lever arm 
values can be seen and checked. An applied load is entered, from which the reaction is 
determined. The Vierendeel moment which can be resisted by the section is calculated 
and the applied load which would cause this moment is found for each position across 
the opening. The built-in "solver" function was used to determine the force at which 
the applied load was equal to the Vierendeelload. The "solver" alters the applied load 
until it equals the minimum Vierendeelload. This load is taken as the failure load for 
Vierendeel bending, as represented graphically in Figure 3.36. 



...-
z 
~ --> 

-
Q) 
u 
L-

a u. 

56 

Vierendeel resistance 
Test Beam 1A 

1000 

800 

600 

400 

200 

\ 
\\ 
~ ~ / 

------ r- './ ~ ~ -
0 
-100 -50 o 50 

Distance along opening 
-e- Vierendeel resistance -e-- Average resistance 

- Applied Load 

Figure 3.36 : Cellular beam spreadsheet graph 
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The straight line in the figure is the applied load, which is constant across the opening; 
the curves represent the Vierendeelload that can be resisted by each side of the opening 
(where the left hand and right hand curve represent respectively the low moment and the 
high moment side of the opening). 

The curves labeled "Vierendeel resistance" represent the individual resistances of each 
side of the opening, while the curves labeled "Average resistance" give the average 
resistance of both sides of the opening. (The difference between the results from the 
separate curves and those from the average curves are discussed further under 
"Results" . ) 

When the Vierendeel force curve touches the applied load straight line, the section is at 
its maximum stress capacity and failure will occur. The position across the opening at 
which the curves touch is the position at which the plastic hinge will occur. This can be 
seen clearly from Figure 3.37, which was plotted for a castellated beam. 
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Figure 3.37 : Castellated beam spreadsheet graph 

100 

The point in the Vierendeel curve where the graph changes direction corresponds to the 
position of the corner of the hexagonal opening. 

Figures 3.36 and 3.37 underline the relative difficulty in determining the position of the 
plastic hinge in cellular beams. 

The spreadsheet can be modified to model any opening shape as long as the relationship 
between the distance along the opening and the height of the opening is known. 

As with the computer program, checks are carried out for horizontal shear failure of the 
web posts, primary bending and vertical shear failure. Beams loaded at the third points 
are checked for failure in pure bending in the constant moment, zero shear zone in the 
middle of the beam. 

Limitations 

The spreadsheet design is restricted to the two loading systems applied to the test beams, 
VIZ. 

(i) a beam carrying a concentrated load at midspan 
(ii) a beam carrying two equal concentrated loads placed symmetrically about the 

midspan. 
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Results 

The output from the spreadsheet is the failure load and mode. The spreadsheet has two 
options for finding the failure load, viz. solving for the minimum load or the average 
load. 

The minimum load is the load at which the Vierendeel resistance for one side of the 
opening equals the applied load, i.e. when the curve"Vierendeel resistance" curve 
touches the applied load straight line. (Figure 3.36) This typically happens on the high 
moment side of the opening, indicating that yielding first occurs on that side. 

The average load solution simply takes the average Vierendeel resistances from the high 
and the low moment sides and determines when this equals the applied load. This 
assumes some redistribution of stress which is likely to occur in practice. The average 
value was taken as the failure load for the plastic vierendeel spreadsheet method. 

The percentage difference between the minimum value and the average value for all the 
beams was small and varied between 0,6% and 2,2 %. (These comments do not apply 
to the beams loaded at the third points, since they were predicted to fail in pure bending 
in the central third of the span.) 

For all beams loaded at the midspan, Vierendeel failure was predicted at the openings 
either side of the load, viz. the openings subject to maximum combined shear and 
moment. The failure loads from the spreadsheet are compared with the experimental 
values in Figure 3.38: 
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Figure 3.38 : Calculated and experimental failure loads, spreadsbeet 

The spreadsheet values are all slightly higher than the experimental values. The ratios 
of theoretical values to experimental values are given in Table 3.3: 

Table 3.3 : Failure load ratios, Spreadsbeet 

Beam Failure load ratio 

lA 1,21 

1B 1,13 

2A 1,15 

2B 1,14 

3A 1,13 

3B 1,04 

4A 1,13 

4B 1,18 

Mean 1,14 

It is evident that the spreadsheet approach gives results that, though unconservative are 
sufficiently accurate for practical design. 
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3.4.1.3 Design charts 

Introduction 

The computer program analysis is confined to the load case illustrated in Figure 3.12. 
This is a rather limited scenario and will not cover the many load cases that can occur 
in practice. 

If design charts could be developed that related the shear force and bending moment 
causing plastic failure along a beam, they would cater for a far wider range ofload cases 
than does the program analysis. Thus the ability to create design charts was built into 
the program. It must be noted that the design charts are a plastic bending analysis tool 
only, and do not identify problems associated with localised effects of concentrated 
loads. 

Development of Design Charts 

The design chart assumes an equivalent rectangular opening width of 0,3 timcs the 
opening diameter and a depth equal to the diameter of the opening. (Figure 3.39) 

O.3Do 
-.J >J 

" " 

\ 
o 

, 0 

Figure 3.39 : Equivalent rectangular opening for design charts. 

The beam properties of any point along the beam are assumed to be those of the 
minimum section. These are both conservative assumptions. 

The design chart checks only for pure bending, Vierendeel mechanism and horizontal 
shear of the web post. The other possible failure mechanisms are buckling of the web 
post and lateral-torsional buckling of the entire beam, but these must be considered 
separately. 

A typical design chart is shown in Figure 3.42. The vertical axis relates the actual 
bending m at a section to the ultimate bending moment that the section can develop M. 
The horizontal axis relates the actual shear force q in a section to the ultimate shear force 
that the section can develop Q. The ultimate shear force is that which can be resisted 
ifthe entire stress capacity of the perforated section is used to resist shear. Similarly the 
ultimate bending moment is that which can be resisted if the entire stress capacity of the 
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perforated section is used to resist bending. 

The calculation of the values for the data points used in plotting the chart works in an 
iterative manner similar to that used in the program analysis. Each design chart has 
eighty data points. The shear force q was used as the fixed value for each data point and 
from this the bending moment m that could be resisted was determined. The shear force 
was incremented by the ultimate shear force divided by eighty for each successive data 
point. Figure 3.40 is a flow chart showing how the calculations were done. 

Figure 3.40 : Calculations for design charts 

The shear force q was used to calculate the reduction in yield stress. An iterative 
procedure determined the bending moment that can be resisted. The initial input 
moment m for the iterations was the ultimate bending moment M. From this the depth 
of beam, x, resisting the primary bending moment was calculated. The shear force that 
could be resisted in Vierendeel bending was determined, qv. If qv was less than q then 
the input moment was reduced by a small fixed amount, n, and another iteration carried 
out. Otherwise the iterations were halted and the program moved on to the root-finding 
procedure. (Figure 3.41) This cycle was repeated for each of the eighty data points. 
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Root-finding technique 
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Figure 3.41 : Root-finding for the design charts 

The root-finding technique employed here is the same straight line approximation used 
in the analysis part of the program. The root-finding procedure is carried out for each 
data point. Figure 3.41 shows a graph which was plotted for the twelfth data point for 
the design chart for Test Beam 3A .. The shear force for this data point is 26,lkN. The 
values of the input moment for the iterations, m, are plotted on the abscissa and the 
values of qv are the ordinates of the graph. The markers identify the points where qv was 
compared to q. It can be clearly seen from the graph that assuming a straight line 
between the markers is a reasonable approximation to the curve. The values of the 
abscissa and the ordinate of each of the two points either side of the shear force are 
known, as well as the value of the shear force, q, and a simple straight line interpolation 
is carried out to find the moment, m, which corresponds to the shear force, q. 



63 

Interpretation of Design Charts (Figure 3.42) 
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Figure 3.42 : Features of the design chart 

The only part of the design chart where the stresses in the beam can safely fall is that 
enclosed by the line from mlM = 1 to the horizontal shear cutoff, and by the horizontal 
shear failure line. 

The dominant force in the beam in the first stage of the design chart, from mIM = 1 to 
the horizontal shear cutoff, is the bending moment. Small changes in the ratio of the 
shear forces have very little effect on the bending capacity of the beam; however, small 
changes in the bending moment have large effects on the shear capacity of the beam. 

At the horizontal shear cutoff the web post adjacent to the weld will fail due to the 
horizontal shear induced by the vertical shear force. This failure of the web post causes 
the two openings on either side of the weld to act as one and fail in Vierendeel bending. 
Until this double Vierendeel failure has occurred the beam is not considered to have 
failed, thus the ratio of shear forces in the beam may be greater than indicated by the 
horizontal shear cutoff. But for design purposes it is undesirable that any part of the 
beam should fail , thus the horizontal shear cutoff is appropriate. 

Use of design charts 

The shear forces and bending moments along the beam due to self weight and imposed 
load were calculated and divided by the ultimate shear force and bending moment. The 
curve of the ratios of shear forces against the ratios of bending moment was plotted on 
the design chart. This curve will be referred to as the beam curve. The imposed load 
was adjusted until the beam curve touched the design curve. The corresponding load 
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was taken as the failure load. 

The failure mode can be determined from the design chart by the point at which the 
beam curve touches the design curve. If the beam curve touches the design curve in the 
first stage of the design curve from mlM = 1 to the horizontal cut off then the failure will 
be a Vierendeel type offailure with both shear and moment involved. The beam will fail 
by horizontal shearing of the web post if the beam curve touches the horizontal shear 
failure line. A pure bending failure will occur if the beam curve touches the design curve 
at the point where mlM = 1. (Figure 3.43) 
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Figure 3.43 : Pure bending failure design chart 

The chart thus illustrates the case of a beam failing in pure bending at mid-span. This 
will generally only occur with a uniformly distributed load. 

Results 

The design charts for all the test beams are given in Figures 3.44 to 3.51. 
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Beam 1A 
M = 104.61 kNm, Q = 203.52 kN 
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Figure 3.44: Design chart for Beam lA, midpoint loading 
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Figure 3.45 : Design chart for Beam tB, third point loading 
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Beam 2A 
M = 118.01 kNm, Q = 224.53 kN 
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Figure 3.46 : Design chart for Beam 2A, midpoint loading 
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Figure 3.47: Design chart for Beam 2B, third point loading 
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Beam 3A 
M = 150.53 kNm, Q = 356.14 kN 
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Figure 3.48 : Design chart for Beam 3A, midpoint loading 
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Figure 3.49 : Design chart for Beam 3B, third point loading 
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Beam 4A 
M = 136.58 kNm, Q = 305.88 kN 
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Figure 3.50 : Design chart for Beam 4A, midpoint loading 
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Figure 3.51 : Design chart for Beam 4B. third point loading 
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Vierendeel failure was predicted for all the beams at the openings with the maximum 
combined shear and moment. These are the central openings for beams loaded at the 
midpoint, and the opening on the support side of the load for beams loaded at the third 
points. 

This is in contrast to the spreadsheet results for beams loaded at the third points, where 
pure bending failure was predicted in the middle third of the beam. The depth of the 
rectangular approximation to the circular opening for the chart (the diameter of the 
opening) is greater than that for the spreadsheet, thus the tee sections considered for the 
chart will be shallower, and have a lower strength, than those considered for the 
spreadsheet. The method of plotting the beam line on the chart, i.e. assuming that each 
position on the beam is the centre of an opening, is a conservative method. Vierendeel 
failure is predicted at a lower load than pure bending failure because of this. 

The theoretical failure load values are compared to the experimental values in Figure 
3.52. 
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Figure 3.52 : Calculated and experimental failure loads, chart 

The ratios between these theoretical values and experimental values are given in Table 
3.4. 
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Table 3.4 : Failure load ratios, chart 

Beam Failure load ratio 

lA 1,05 

1B 0,99 

2A 1,04 

2B 1,01 

3A 0,98 

3B 0,96 

4A 1,05 

4B 1,12 

Mean 1,03 

It is evident that the design chart approach provides a very accurate estimate of failure 
loads. 

3.4.2 Finite Element Analysis 

The LUSAS program was used for the finite element analysis (FEA). LUSAS is a 
general purpose finite element analysis program which is capable of handling non-linear 
static analysis and elasto-plastic materials. A pre-processing and post-processing 
graphical program, MYSTRO, was used for setting up the models and compiling the 
results after the analysis. 

Modelling 

The symmetry of the beams was exploited and only one half of the beam was modelled. 
To simulate the other half of the beam, the line of symmetry down the center of the beam 
was restrained against translation in the x direction and against rotation about the y and 
z axes. (Figure 3.53) 
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Figure 3.53 : Finite Element Analysis model, Beam 3B 

An initial analysis was carried out without the stiffeners and high local stresses 
developed in the web at the loads and supports. The stiffeners were therefore included 
as part of the model. 

The beam was modelled as a number of surfaces representing the flange, web and 
stiffeners. These surfaces were given thicknesses corresponding to the thickness of the 
element they represented. Material types were assigned to each surface. Three material 
attributes were defined representing the three phases of the material behaviour obtained 
from a tensile stress test. Figure 3.54 shows a typical stress strain curve for grade 300W 
steel. The first phase (the elastic phase) has properties: Poisson' s ratio (0,3), Young's 
modulus (200 GPa) and density (7850 kg/m3). The second phase (yielding) was 
modelled using the Von Mises yield criterion and only the yield stress was specified. 
Yield stresses used were those derived from the experimental tensile tests on samples 
taken from each beam, and different values were obtained for flange and web. (The 
values obtained for the yield stresses are given in section 2.6.) The final phase of the 
material behaviour, the strain hardening phase, was defined by the strain hardening part 
of the stress versus total strain curve for grade 300W steel I. Yield stresses for the steel 
from the beams tested differed from those in the 300W stress strain curve so the slope 
of the 300W curve was used together with the yield stresses from the experimental 
tensile tests. Yielding was assumed to have occurred at the same value of total strain 
but with the actual yield stress. The stress strain curves used to determine the strain 
hardening properties are included in Appendix A2. 
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Figure 3.54 : Typical stress strain curve 
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The element type used was a thick shell element. The attributes of this element type 
which made it suitable for this analysis are that it is capable of simulating linear and non­
linear material behaviour and takes into account flexural and shear deformations. 

The support was modelled as a line of restraint in the z direction preventing y­
displacements at the end stiffener. Support in the experimental work was provided by 
a half roller under the end stiffener (Chapter 2, Figure 2.3) which only restrains 
movement in the y direction. Loading was modelled as a vertical line load along the top 
of the inner stiffener. In the case of the beams loaded at the third points in the 
experimental work, the load was applied by a half roller which is modelled very precisely 
by a line load. Beams loaded at the midpoint were loaded by placing the jack over the 
central stiffener. This is more like a patch load. but a line load would provide a 
reasonable approximation. 

Analysis 

Each beam was analysed linearly and then non-linearly. The initial linear elastic analysis 
gave a good indication of the load at which the beam was likely to yield. This 
information was needed in formulating the load increments for the non-linear plastic 
analysis. 

The load incrementation for the plastic analysis was carried out using load factors. The 
load at which first yield was likely to occur, as determined from the elastic analysis, was 
allocated a load factor of one. The analysis actually commenced at a load factor less 
than one so as to provide sufficient data for comparison with the strain gauges and dial 
gauges. The load factor was incremented typically by 0,15 for each load step. 
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The program works in an iterative manner using incremental loads. When yielding 
spreads through the beam, the iterations fail to converge and the program then decreases 
the load to accurately find the peak load-carrying capacity of the beam. This final load 
is taken as the failure load for the finite element analysis. 

The optimum number of elements for the analysis was investigated using test beam 2A. 
A number of analyses were carried out using different numbers of elements until the 
output failure load converged on the solution as shown in Figure 3.55. 
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Figure 3.55 : Convergence of FEA solution 

This graph was based on nominal yield stresses of 310 MPa and 330 MPa for the flange 
and web respectively. 

The final analysis for this beam was carried out using approximately 5000 elements. The 
number of elements used for subsequent beams was determined by keeping the same 
element size as that used for Beam 2A. A triangular mesh of elements was used for the 
web to fit around the openings and a rectangular mesh was used for the flange and the 
stiffeners. The mesh was coarser, i.e. bigger elements, towards the end of the beam and 
more refined nearer the centre where the stresses are higher and where failure ultimately 
takes place. Time was a consideration because the larger beams took over a week to 
analyse on a 466 MHz Pentium with 128 MB of RAM, and this time could be reduced 
by using a coarser mesh in the areas where the stresses were lower and had little effect 
on the solution. (Figure 3.56, Appendix A2 contains diagrams of the mesh for each 
beam.) 
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Figure 3.56: Beam 3A, Finite Element Analysis mesh 

Results 

The output from the finite element analysis consists of graphical representations of 
spread of yield, stress contours, principle stress directions and deformed shape of the 
beam. Numerical results are given for stress and displacement values at each node for 
each load increment. 

The graphical output was used to obtain a feel for the way the stresses were distributed 
in the beam, and to identify yielded areas which defined the critical positions in the beam. 
The yield patterns and deformed shapes were compared to the photographs of the 
yielding and deformation which took place during the experimental tests. 

The values ofthe stresses given at each node point were the major principle stresses. 
These were compared to the principle stresses obtained from the strain gauge readings. 
The degree of correlation between the two was used to validate the finite element 
analysis model and the accuracy of the strain gauges. 

The magnitude and direction of the principle strains are given by: 

CI,C2 = ~ [ca + Cc ± ~2(ca - CbY + 2(Cb - cJ2] 
2(} 

2cb - Ca - Cc tan = -"------"'-----=--

where Ca' Cb and Cc are the strain readings from the strain gauges. 
c) and c2 are the maximum (major) and minimum (minor) principle stresses 
respectively. 
e is the angle between Ca and the major principle strain. (Figure 3.57) 
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Figure 3.57 : Principle stress directions from strain gauges 

Strains were converted into stresses by multiplying by Young' s modulus, E, which was 
taken as 200 GPa for grade 300W steel: 

E = ~ :. (Y = c' x E 
& 

Two examples of comparisons of strain gauge readings with the FEA nodal stress output 
are given in Figures 3.58 and 3.59. Appendix A2 contains the full set of graphs. 
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Figure 3.58: Comparison between FEA and strain gauges, Beam IB, opening 

The increased rate of change of experimental stress at about 280 MPa is due to the 
occurrence of plastic strain in the vicinity of the strain gauge. As stated previously, the 
relationship between stress and strain is assumed to be linear and dependant on Young' s 
modulus. When the strains become plastic this no longer holds and an increase in the 
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rate of change of stress is indicated which has not actually occurred. 
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Figure 3.59 : Comparison between FEA and strain gauges, Beam 4A, flange 

Figures 3.58 and 3.59 show that the FEA nodal stresses agree closely with the principle 
stresses obtained from the strain gauge readings. These two graphs are typical of the 48 
graphs which were plotted for the comparison between the FEA and strain gauges 
results. 

A comparison offailure loads given by the Finite Element method with the experimental 
values is given in Figure 3.60. 
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Calculated Failure loads 
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Figure 3.60 : Calculated and experimental failure loads, chart 

The failure loads predicted by the FEA method are all significantly greater than the 
experimental values. It was noted in the FEA models that large plastic deflections 
occurred before the beam failed, whereas only small plastic deformations were observed 
in the experimental beams at failure . 

The ratios between the FEA failure loads and the experimental values are given in Table 
3.5. 
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Table 3.5 : Failure load ratios, FEA 

Beam Failure load ratio 

lA 1,14 

IB 1,23 

2A 1,21 

2B 1,16 

3A 1,15 

3B 1,07 

4A 1,24 

4B 1,31 

Mean 1,19 
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3.5 Summary 

The failure load ratios (theoretical/experimental) and modes of failure for all the methods 
considered are given in Table 3.6: 

T bl 36 S f a e . : ummary 0 resu ts 

Beam SCI Spreadsbeet Cbart FEA Experimental 

Failure load Failure load Failure load Failure Failure load 
ratio and ratio and ratio and load (kN) and 

failure mode failure mode failure mode ratio failure mode 

lA 0,74 1,21 1,05 1,14 120 

Vierendeel Vierendeel V ierendee I Vierendeel 

1B 0,76 1,13 0,99 1,23 108 

Vierendeel Pure Vierendeel Vierendeel 
Bending 

2A 0,66 1,15 1,04 1,21 112 

Vierendeel Vierendeel Vierendeel Vierendeel 

2B 0,73 1,14 1,01 1,16 117 

Vierendeel Pure Vierendeel Vierendeel 
Bending 

3A 0,78 1,13 0,98 1,15 151 

Vierendeel Vierendeel Vierendeel Vierendeel, 
both openings 

3B 0,72 1,04 0,96 1,07 193 

Vierendeel Pure Vierendeel Vierendeel / 
Bending buckling 

4A 0,76 1,13 1,05 1,24 90 

Vierendeel Vierendeel Vierendeel Pure Bending 

4B 0,9 1,18 1,12 1,31 108 

Vierendeel Pure Vierendeel Buckling / 
Bending slight 

Vierendeel 
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The mean and standard deviation of the failure load ratios were calculated for each 
method. The failure load ratio for Beam 4B was noticeably higher for all the methods 
used. This may be explained by the fact that Beam 4B failed in buckling before plastic 
failure was fully developed. Two sets of means and standard deviations were calculated, 
one including Beam 4B and the other excluding it. (Table 3.7) 

Table 3.7 : Failure load ratios mean and standard deviation 

SCI Spreadsheet Chart FEA 

Including Beam 4B 

Mean 0,76 1,14 1,02 1,19 

Standard deviation 0,065 0,045 0,049 0,071 

Excluding Beam 4B 

Mean 0,74 1,13 1,01 1,17 

Standard deviation 0,037 0,046 0,033 0,057 

These values can be represented graphically by drawing normal distribution curves. 
(Figure 3.61) Ideally the curves would be centered on unity with a small spread. The 
more "peaked" the curve, the smaller the standard deviation i.e. all the individual ratios 
are close to unity. If the curve is flatter then it indicates a greater spread of values, and 
even if it is centered on unity, each individual ratio may not be close to unity. If the 
curve is centered to the left of unity, i.e. mean ofless than unity, then the method is 
conservative, conversely if the curve is centered to the right of unity, i.e. mean greater 
than unity, then the method is unconservative. 
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Figure 3.61 : Normal distributions of failure ratios, including Beam 4B 

The distributions in Figure 3.61 show that the SCI method is very conservative whereas 
the plastic vierendeel spreadsheet method and the FEA method are both unconservative. 
The curve for the design charts is centered very close to unity. These distributions 
include the ratios from Beam 4B. A similar diagram, excluding the results of Beam 4B, 
is given in Figure 3.62. 
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Figure 3.62 : Normal distributions of failure ratios, excluding Beam 4B 

The distributions for the SCI, spreadsheet and chart method are more "peaked" when 
the ratios for Beam 4B are excluded. It can be clearly seen from Figure 3.62 that the 
plastic vierendeel design chart method is the most accurate. The distribution for the 
chart is the most "peaked" and it is centered the closest to unity. By applying a factor 

of _1 - to all the results from the chart, the mean could be brought to unity. The chart 
mean 

also has the advantage that it is simple to use and would be a viable option for the plastic 
analysis of cellular beams in practice. 
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CHAPTER 4 
DEFLECTIONS OF CELLULAR BEAMS 

4.1 Introduction 

Only elastic deflections were investigated, since deflections are a serviceability 
consideration and service loads fall into the elastic range of deflections. 

Shear has a greater effect in cellular beams than in solid-webbed beams because of the 
effect of Vier end eel deflections across the openings. 

The effect of self weight was excluded in the deflection calculations because the zero 
reading in the experimental tests was taken with the beam in position, already deflected 
under its self weight. 

To simplify comparison between theoretical and experimental deflections, the gradient 
of the load versus deflection graph was calculated. If the beam is in the elastic region 
(as is the case here) then the load versus deflection graph is a straight line and the ratio 
of gradients will be equal to the ratio of deflections. 

In addition to the gradient ratios, comparisons were made by plotting the experimental 
and theoretical deflections. Examples of these plots are given for each deflection method 
used in this chapter; a full set of plots has been included in Appendix A3. 

4.2 Existing Methods of Analysis 

4.2.1 British Steel Construction Institute Method lO (the SeI method) 

Theory 

The circular opening from the cellular beam is converted into a hexagonal opening as 
shown in Figure 4.1. 
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The shaded areas are considered rigid 
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Figure 4.1 : Free body diagrams for SeI deflection calculations 

Virtual work forms the basis for the SeI deflection method_ The deflection at a point 
in the beam is found by applying a unit load at that point. The unit load induces the 
internal forces shown in Figure 4_2: 

_ v;l2~==================! V;l2 _ 
~~ ~~ 

Figure 4.2 : Internal forces due to unit load 

This method takes into account five components of deflection: 

(i) Bending in the tee (Vertical shear) 

4 1,4SRVX Vx 
I I dx y, =-- ----

Eltee 2 2 

= O,091R
3 (VV) 

3El
tee 

I I 
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(ii) Bending in the web post (Horizontal shear) 

2 ro ,9R -
Y2 = -- .la Vh zVh zdz 

Elz 

= 13,145 [IOge(S -O,9R) + 2(S - 2,OR) _ ~( S -2,OR) 2 - ~lVh Vh 
Etw S - 2,OR S - O,9R 2 S-O,9R) 2 

(iii) Axial force in the tee 

(iv) Shear in the tee (Vertical shear) 

Y4 = _4_ Alee (,45R ~ ~ dx 

GAlee Atee, web 4 

= O,45R VV 
GA I I 

lee , web 

(v) Shear in the web post (Horizontal shear) 

2 ~,9R Vh Vh 
Y5 = GA X ob 22dz 

z 

1,636 (S-O,9R ) -
= Gt

w 
X loge S _ 2,OR Vh Vh 

The total deflection due to one opening is the sum of four times the deflection due to 
one half of the tee and twice the deflection due to one half of the web post. This has 
been accounted for in the above equations, and the total deflection is found by summing 
the individual deflections for all openings: 

i.e. Y; = L Yn 

The original SeI method of summing the deflections assumed that the forces acting on 
the free body and causing the deflections were those to the left of the free body (Figure 
4. 1 (a)). (Figure 4.3(a) indicates how the deflections were summed.) The results 
obtained from this method were considerably smaller than experimental values. 

A new method of summing the deflections was therefore developed whereby the forces 
causing deflections were assumed to be those in the middle of the section (Figure 
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4.1 (b)). (Figure 4.3(b) indicates how the deflections were summed) Deflections 
calculated in this way were in better agreement with experimental deflections. On 
average the deflections calculated by the original method were 90% of those calculated 
using the adjusted method. 

If the beam in Figure 4.3 is considered, the original method of summing the deflections 
gIves: 

5st opening s: 55 56 s: s: s: s: 
~ = 2 X 5end section + 2 X + 5, + 52 + 53 + U 4 + - + - + u7 + Ug + u9 + ul 0 

222 
(Figure 4.3(a)) where!1 is the total deflection and 0 is the deflection due to each 
opening as labeled in Figure 4.3. 

The adjusted method of summing the deflections gives: 

A 2 s: 2 5S! openmg 51 s: s: s: s: s: s: s: s: 5\0 
u = X Uendsection + x +-+u2 +u3 +u4 +u5 +u6 +u7 +Ug +u9 +-

2 2 2 
(Figure 4.3(b)) 

end. it half of first opening end 
sectIon .. section 
I half of first opening . half of openIng deflectIon counted \ 

(a) Original Se! method 

end hal f of first opening half of first opening 
section'! . . 

/ half of operung deflectIon counted half of opening deflection counted 

(b) Adjusted method 

Figure 4.3 : Summing methods for SeI deflection calculations 

Results 

\ 

end 
section 

Deflections were calculated for each load at which dial gauge readings were taken during 
the experimental work. The results for Test Beams 2A and 3B are shown in Figures 4.4 
and 4.5 respectively. The three vertical dial gauges used for each beam were labelled 
VI, V2 and V3. Diagrams with the positions of each dial gauges are given in Appendix 
AI. 
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Comparison with SCI 
Beam 2A - vertical deflections 
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Figure 4.4 : SCI deflections, Beam 2A 
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Comparison with SCI 
Beam 3B - vertical deflections 
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Figure 4.5 : SCI deflections, Beam 3B 
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There is close agreement between the theoretical and experimental deflection for Beam 
3B in Figure 4.5. The results do not agree as well for Beam 2A in Figure 4.4. 

As described earlier, the ratios of the gradients of the deflection lines were used as an 
indication of how well the results from the theoretical method agreed with the 
experimental results. These ratios were calculated for each of the three positions at 
which deflections were measured. The mean ofthe three ratios for each beam was found 
and these are given in the graph below. The full set of individual ratios are given in 
Appendix A3. 
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sel deflection ratios 

1.28 
r---

1.00 1.00 1.01 ~ 
U.~I 0.88 r---

077 r--

r---

1A 1B 2A 2B 3A 3B 4A 4B 
Beam 

Figure 4.6 : Deflection ratios for SCI method 

With the exception of Beams 1 A and 1 B, the ratios are close to unity indicating that this 
method is accurate. 

4.2.2 Simplified British Steel Construction Institute method 

As a simpler alternative, the SeI proposes an approximate method that ignores all shear 
deflections, but adds 25% to the bending deflections to account for the shear. The 
moment of inertia is calculated using the perforated section. A criticism ofthis method 
is that it applies a blanket factor without considering the shear-to-moment ratio. 
Deflections in beams with a high shear-to-moment ratio will be underestimated, those 
in and beams with a Iow shear-to-moment ratio will be overestimated. This is seen to 
be the case in the comparisons with the experimental data. 

Results 

Deflections were calculated at each load where readings were taken in the experimental 
work. The deflection results for Test Beams 2A and 3B are shown in Figures 4.7 and 
4.8 respectively, and the deflection ratios for all test beams are shown in Figure 4.9. 
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Comparison with simplified SCI 
Beam 2A - vertical deflections 

25 
E20 
E 
~ 15 
o 
U 10 
Q) 

'm 5 
o 0 

le:::::=: :::--

./ 
...-: ;;;.... .-

./ I ll' 
./" ,...... 
~ 

.-"" --- ~ 

---' ~ - I-

o 20 40 60 80 100 120 
Load (kN) 

--- V1 Exp --+- V2 Exp -- V3 Exp 

-a-- V1 sel 5 -9- V2 sel 5 -e- V3 sel 5 

Figure 4.7 : Simplified SCI deflections, Beam 2A 

Comparison with simplified SCI 
Beam 3B - vertical deflections 
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Figure 4.8 : Simplified SCI deflections, Beam 3B 
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As with the SeI method, there is closer agreement between the theoretical and 
experimental deflections in Beam 3 B than Beam 2A. 
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Figure 4.9 : Deflection ratios for simplified SeI method 

Beam 3B is the only case where the deflection ratio is close to unity. The remainder of 
the ratios are either much greater than unity or much smaller than unity. 

4.3 Proposed new methods 

4.3.1 Vierendeel Method 

This method calculates deflections as the sum of two components, viz 
(i) the deflections due to the primary bending 
(ii) the deflections due to the secondary bending effect of the Vierendeel moment. 

This secondary bending effect is caused by the shear in the tees. 

(i) Primary bending 

The primary bending deflections were calculated using the Euler equations. This method 
ignores any shear deformations and is valid only when the slopes of the deflection curve 
are small. It also requires the beam to be prismatic, which cellular beams are not. This 
difficulty was overcome by conservatively taking the moment of inertia as that at the 
centre of an opening. 

The deflection for beams loaded at the midpoint is given by : 

6 = ~(3L2 -4x2) 
48£1 

where x is the position along the beam where the deflection is being calculated. 

The deflection for beams loaded at the third points are given by: 



6 = Px (2L2 _X2] 
6E1 3 

L Osxs-
3 

90 

PL ( L
2

J 6 = 18£1 3Lx - 3x
2

- 9 
L L - sxs-
3 2 

(ii) Secondary Bending 

One quarter of an opening is considered in calculating the Vierendeel deflection. This 
comprises the tee section spanning halfthe opening, and one quarter ofthe adjacent web 
post, which form a cantilevered section that can be approximated as a stepped tee 
(Figure 4.10). 

\ 

, 

< Dc/8., Dc/8ol Dc/8.l Dc/8~ (S-Do)/2 .~ 

, , , , 
- - ,- -- - -1 - - --, -

I 
4 -
, 

, 
, 

Figure 4.10: Cantilever section for Vierendeel deflections 

The moment-area method was a convenient means of calculating the deflection of each 
cantilever. 

Results 

Each cantilever comprises one quarter of an opening. The total Vierendeel deflection 
was the sum of the Vierendeel deflections at all openings between the support and the 
position at which the deflection was calculated. The total deflection was the sum of the 
primary bending deflection and the Vierendeel deflection. 
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Deflections were calculated for each load at which readings were taken in the 
experimental tests. The results for Test Beams 2A and 3B are shown in Figures 4.11 
and 4.12 respectively; and the deflection ratios for all test beams are shown in figure 
4.13 . 

Comparison with Vierendeel method 
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Figure 4.11 : Vierendeel deflections, Beam 2A 
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Comparison with Vierendeel method 
Beam 3B - vertical deflections 
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Figure 4.12 : Vierendeel deflections, Beam 3B 
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The theoretical and experimental deflections agree closely for both beams using this 
method. This is shown to be true for all the beams, with the exception of Beam lA, in 
Figure 4.13 . 
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Figure 4.13 : Deflection ratios for Vierendeel method 

4.3.2 Finite Element Analysis 

One of the outputs from the finite element analysis program is the displacements at each 
node point. The values are given in the format of a "Comma Separated Values" file 
which can be read by a spreadsheet. Vertical displacements were read at the node points 
corresponding to the dial gauge positions. 

Elasto-plastic deflections as well as elastic deflections were obtained from the finite 
element analysis output, but only the elastic deflections were required for comparison 
with the experimental deflections. 

Results 

Graphical output from the FEA method incl uded deformed shapes of beams. These can 
be compared to the photographs of the failed beams. 
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Figure 4.14 : Deformation of Beam 2A 
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Figure 4.14 compares a photograph of Beam 2A after failure with the deformed shape 
obtained from the finite element analysis. The deformation of the central opening has 
the same shape in both diagrams. This is a demonstration of the accuracy with which 
the FEA method modelled the beam behaviour. 

The results for Test Beam 2A and 3B are shown in Figure 4.15 and 4.16 respectively; 
and the deflection ratios for all test beams are shown in Figure 4.17. 
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Figure 4.15 : Finite Element deflections, Beam 2A 



___ 30 
E 
E 
:::- 20 c 
Q) 

E 
~ 10 
ro 
Ci. 
(/) 

is 0 

94 

Comparison with FEA 
Beam 3B - vertical deflections 
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Figure 4.16 : Finite Element deflections, Beam 3B 

Considering on the linear parts of the curves, there is a close agreement between the 
theoretical and experimental deflections for both Beams 2A and 3B. This is seen to be 
the case for all the beams except Beam lA and 3A in Figure 4.17. 
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Figure 4.17 : Deflection ratios for Finite Element method 
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4.4 Summary 

A factor which influences the accuracy of the calculated deflections is the shear-to­
moment ratio. 

The shear-to-moment ratio is the ratio between the average shear stress in the web, 't, 
to the outside fibre stress in the flange, (Jrnax' calculated elastically using the properties 
of the unperforated section.4 

T V 21 
--=---
a max Aw MH 

where Aw = area of the web 
I = second moment of inertia of the solid section 
H = height of the beam 
V = shear at the position being considered 
M = moment at the position being considered 

In order to visualise the effect that the shear-to-moment has on the accuracy of the 
theoretical deflection calculations, scatter charts (Figures 4.18 to 4.21) were plotted of 
shear-to-moment ratio against the deflection ratios for each method: 

The effect of shear to moment ratio 
on deflection ratios, SCI 
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Figure 4.18 : Shear-to-moment and deflection ratios, SeI 

Deflections calculated using the seI method are accurate for zero shear zones in beams. 
The results are clustered around unity until the shear-to-moment ratio becomes large, 
when the calculated deflections are considerably less than the experimental values. 
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The effect of shear to moment ratio 
on deflection ratios, simplified SCI 
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Figure 4.19 : Shear-to-moment and deflection ratios, simplified SeI 

The problem with the simplified seI method is that it applies a blanket factor to allow 
for shear deformations. Deflections calculated using this method in beams with a small 
shear-to-moment ratio are greater than the experimental and in beams with a large shear­
to-moment ratio are smaller than the experimental, although the average of the deflection 
ratios is close to unity. This can be seen from the scatter chart by the lack of clustering 
of deflection ratios around unity. This method does not predict individual deflections 
accurately. 

The effect of shear to moment ratio 
on deflection ratios, Vierendeel 
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Figure 4.20 : Shear-to-moment and deflection ratios, Vierendeel 

The deflection ratios from the Vierendeel method are clustered around unity for the 
lower shear-to-moment ratios. As with the other methods, the deflection ratios decrease 
with increasing shear-to-moment ratios, but the agreement between the theoretical and 
experimental values is good. 
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The effect of shear to moment ratio 
on deflection ratios, FEA 
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Figure 4.21 : Shear-to-moment and deflection ratios, FEA 

Clustering of deflection ratios around unity is seen in this scatter chart, as is a decrease 
in deflection ratios with an increase in shear-to-moment ratios. As with the Vierendeel 
method, there is a good agreement between the theoretical and experimental values. 

All these observations can be summed up by plotting normal distributions for the 
deflection ratios. The mean and standard deviation of the deflection ratios was 
calculated for each theoretical method: 

Table 4.1 : Means and standard deviations of deflection ratios 

Mean Standard deviation 

SCI 0,987 0,138 

Simplified SCI 0,973 0,163 

Vierendeel 0,922 0,099 

FEA 0,932 0,087 

Ideally the curve would be pointed and centred at unity, which would indicate a small 
standard deviation and a mean of unity. A flatter curve indicates a large standard 
deviation. 
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Figure 4.22 : Deflection ratios normal distributions. 

1.6 

As can be seen from Figure 4.22, the seI and simplified seI methods have flatter curves 
centred close to unity, whereas the FEA and Vierendeel methods have more pointed 
curves which have a mean less than unity. 

A large standard deviation indicates that deflections are either being overestimated or 
underestimated, and that very few are actually correctly calculated, as with the simplified 
SeT method. 

A mean less than unity is an easier problem to correct than a large standard deviation. 

A factor of _1 - could be applied to all the deflections which would bring the mean 
mean 

up to unity. 

All the deflection ratios were multiplied by the reciprocal of their mean and the normal 
distributions replotted, as in Figure 4.23. 
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Factored deflection ratios 
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Figure 4.23 : Factored deflection ratios, normal distributions 
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It can be seen from Figure 4.23 that the finite element method is the most accurate, 
followed by the Vierendeel method, the SCI method and the simplified SCI method. The 
finite element method is time conswning and would therefore not be the best method to 
use in practise. The Vierendeel method is not complicated and it would be a viable 
option for calculating deflections of cellular beams in practice. 
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CHAPTERS 
CONCLUSIONS 

5.1 Introduction 

This investigation set out to find an accurate, practical method of predicting failure 
loads, failure modes and deflections of cellular beams. Eight full-sized cellular beams 
were tested to destruction and the results compared with the theory. 

Two criteria were used in assessing the suitability of the theoretical method to· use in 
practice: 
(i) Accuracy 
(ii) Practicality for use in a design office. 

5.2 Experimental Work 

Vierendeel failure occurred in the opening with the highest combined shear and moment 
for test beams 1, 2 and 3 for both the mid span and third point load cases. Beam 4A 
(mid span load) failed in pure bending and Beam 4B (third point loads) failed in lateral 
torsional buckling at a load close to the plastic failure load. 

Beams subjected to pure bending are most susceptible to lateral torsional buckling 5. 

This explains why buckling tended to be a problem in beams loaded at the third points. 
It was found that lateral restraints were needed at frequent intervals along the length of 
the beam. 

The failure loads are given in section 2.6. 

5.3 Ultimate Load Behaviour 

Both the failure loads and failure modes were considered for ultimate load behaviour. 

The SC! method is very conservative. It predicted Vierendeel failure for all beams at 
loads averaging only 76% of the experimental failure loads. This was considered to be 
over-conservative and as such the SCI method does not meet the accuracy criterion. 

The plastic vierendeel spreadsheet method (which was derived from the computer 
program) was unconservative and as such does not meet the accuracy criterion for the 
failure loads. Vierendeel failure was predicted for all beams subject to mid span loading 
and pure bending failure for all beams subjected to third point loading. These 
predictions were only correct for three beams, viz. beams lA, 2A and 3A. 
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The plastic Vierendeel design chart method predicted individual failure loads most 
accurately. The design charts predicted Vierendeel failure for all test beams, which was 
correct for beams 1, 2 and 3 for both mid span and third point load cases. Beam 4A 
failed in a pure bending fashion and from the design charts in section 3.4.1.3, it can be 
seen that the beam line lies closer to the moment axis than the beam lines for the other 
test beams. The design charts are quick and simple to use and can be used with any load 
case, unlike the spreadsheet. The design charts would be a viable option for use in a 
design office. 

The finite element method was also unconservative. Failure modes are not predicted by 
the finite element method. This method would be impractical for use in the design office 
as it is very time consuming. 

The computer program and the spreadsheet were designed to handle simply supported 
beams with point loads at mid span or at the third points. The design charts which are 
also based on the plastic Vierendeel method can be used for any combination of internal 
shear and bending moment. This enables them to be used for beams with different end 
conditions, continuous beams or beams with loading other than mid span or third point 
loads. The finite element analysis can be used for any end conditions and loading. 

5.4 Deflections 

The SeI method does not predict individual results accurately, although the mean of the 
deflection ratios (theoretical value to experimental value) is close to unity, it has a large 
standard deviation. 

The simplified method proposed by the SeI has an even greater standard deviation 
though the mean of the deflection ratios lies close to one. These two methods fail on the 
accuracy criterion. 

The finite element method was the most accurate method but it is not practical to use in 
a design office due to the length of time taken for an analysis. This method fails on lhe 
practicality criterion. 

The Vierendeel method of calculating deflections developed for this investigation was 
the second most accurate method. The Vierendeel method sums the deflections due to 
the primary bending and the secondary Vierendeel bending. This method is simpler and 
not as time consuming as either the SeI or finite element methods and therefore is the 
best method judged by both the accuracy and practicality criteria. 

5.5 Summary 

A series of experimental tests was carried out and failure loads, failure modes and 
deflections were obtained for eight test beams. 
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The plastic Vierendeel design chart method was found to be the most accurate and 
practical method of calculating failure loads and predicting failure modes. 

The Vierendeel deflection method was found to the most accurate and practical method 
of calculating deflections. 

5.6 Future work 

This investigation dealt with plastic failure of straight, non-composite, symmetrical 
cellular beams. There is scope for further work investigating the behaviour of cellular 
beams which are curved, composite or asymmetric. 
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CHAPTER 7 
APPENDICES 

Detailed drawings of the test beams. 
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Appendix A2 - Ultimate load behaviour 

Stress strain curves used for FEA material properties I 

steel stress vs strain curves are plotted for SF and SP 

in Figs.A.3 & A.4. 
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Graphical comparisons between theoretical and exper imental stresses 
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Comparison with FEA 
Beam 1 A - opening side stresses 
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Comparison with FEA 
Beam 1 B - web post stresses 
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Comparison with FEA 
Beam 1 B - centre opening stresses 
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Beam 2A 

Comparisons with FEA 
Beam 2A - Web post stress 
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Comparison with FEA 
Beam 2B - web post stresses 
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Comparison with FEA 
Beam 2B - centre opening stresses 
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Comparison with FEA 
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Comparison with FEA 
Beam 3A - opening side stresses 
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Comparison with FEA 
Beam 3B - web post stresses 
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Comparison with FEA 
Beam 3B - opening side stresses 
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Comparison with FEA 
Beam 4A - web post stresses 
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Comparison with FEA 
Beam 4A - opening side stresses 
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Comparison with FEA 
Beam 4B - web post stresses 
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Comparison with FEA 
Beam 4B - centre opening stresses 
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Appendix A3 - Deflections 

Graphical comparisons between theoretical and experimental results 

Steel Construction Institute method 
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Comparison with SCI 
Beam 2A - vertical deflections 
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Comparison with SCI 
Beam 3A - vertical deflections 

• 
/ 

~ Z 
.... ~ v ~ -...-~ ~ ~ f...-- f-" ~ 

:! - ~ ~ ..... ::::::::: 

o 20 40 60 80 100 120 140 160 
Load (kN) 

--- V1 Exp ....... V2 Exp ........ V3 Exp 

-i3- V1 SCI -9- V2 SCI -&- V3 SCI 

Comparison with SCI 
Beam 3B - vertical deflections 

........: 

.....-~ 
~ ~..--:: ~ 

~ ~ ~ 
~ ~ 

~ ~ 
~ 

.... 

o 50 100 150 200 
Load (kN) 

--- V1 Exp ....... V2 Exp ........ V3 Exp 

-i3- V1 SCI -9- V2 SCI -&- V3 SCI 



50 
...-
E 40 
E 
'-"'30 c: 
o 
U 20 
ID 

'$ 10 
o 

o 

50 

E40 
E 
'-"'30 c 
o 
U 20 
ID 

'$ 10 o 
o 

143 

Comparison with SCI 
Beam 4A - vertical deflections 
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Simplified SeI method 

Comparison with simplified SCI 
Beam 1 A - vertical deflections 
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Comparison with simplified SCI 
Beam 2A - vertical deflections 
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Comparison with simplified SCI 
Beam 3A - vertical deflections 
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Beam 3B - vertical deflections 
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Comparison with simplified SCI 
Beam 4A - vertical deflections 
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Beam 4B - vertical deflections 
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Vierendeel method 

Comparison with Vierendeel method 
Beam 1 A - vertical deflections 
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Comparison with Vierendeel method 
Beam 2A - vertical deflections 
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Comparison with vierendeel method 
Beam 3A - vertical deflections 
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Comparison with Vierendeel method 
Beam 4A - vertical deflections 
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Finite Element Analysis method 
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Comparison with FEA 
Beam 2A - vertical deflections 
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Comparison with FEA 
Beam 3A - vertical deflections 
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Comparison with FEA 
Beam 4A - vertical deflections 
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Comparison with FEA 
Beam 4B - vertical deflections 
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Deflection ratios for all dial gauges 

Beam Gauge SCI Simplified SCI Vierendeel FEA 

lA VI 0,64 0,60 0,59 0,69 

V2 0,78 0,73 0,75 0,78 

V3 0,72 0,69 0,77 0,81 

IB VI 1,55 1,05 0,92 0,91 

V2 1,20 1,07 0,95 0,94 

V3 1,09 1,08 0,96 0,94 

2A VI 0,78 0,80 0,80 0,85 

V2 0,84 0,82 0,86 0,87 

V3 0,85 0,80 0,90 0,91 

2B VI 1,01 1,09 1,00 1,01 

V2 0,99 1,08 1,01 1,01 

V3 0,99 1,10 1,02 1,02 

3A VI 0,91 0,89 0,89 0,87 

V2 0,89 0,87 0,89 0,87 

V3 0,83 0,82 0,88 0,86 

3B VI 0,93 0,93 0,88 0,99 

V2 0,96 0,98 0,99 0,94 

V3 1,01 1,06 1,05 1,02 

4A VI 1,06 1,19 1,01 1,02 

V2 1,02 1,14 0,99 0,98 

V3 0,97 1,10 0,97 0,98 

4B VI 1,05 1,15 1,01 1,02 

V2 1,04 1,15 1,03 1,05 

V3 1,03 1,15 1,02 1,03 
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