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ABSTRACT 

This thesis describes the development of a methodology that targets the synthesis and the 

operational design for crystallisation processes.  The main objective of this work is to develop a 

solvent selection tool for crystallisation operations specifically targeting the ability to perform 

feasibility studies during the conceptual design stage of active pharmaceutical ingredient (API) 

production. In addition, this tool can be used for the optimisation and retrofit of existing API 

production processes.  Rigorous optimization studies require reliable initial estimates to determine 

the optimum operating conditions. Therefore, there is a need for a simple and fast way to provide 

feasible and near optimum solutions. These solutions could then be used for screening design and 

operational alternatives, and eventually be used for further rigorous optimisation studies or pilot 

plant studies. 

 

To achieve this, a comprehensive solvent selection modelling framework is developed. This 

framework is successfully interfaced into a commercial simulation software creating a 

master/slave architecture. This successful interfacing greatly increases the computational 

potential of the framework. It allows the integrated modules to access the vast database of 

compounds; an up-to-date selection of predictive thermodynamic models to determine pure and 

mixture properties, and robust Temperature-Pressure (T-P) and Enthalpy-Pressure (H-P) flash 

algorithms which are used as a basis for phase change determination.  This interfacing has also 

extended the computational capabilities of the simulator by allowing the automated resetting of 

input parameters; creating a results database from multiple simulations, and managing the 

operations of the process simulator. The use of the robust and current predictive thermodynamic 

models within the simulator also has the potential to greatly improve the crystallisation models 

predictive ability and reduces the need for extensive experimental data.  

 

The computational capabilities of the solvent selection tool developed include: predicting the 

various eutectic temperatures and compositions that may exist in the system, developing various 

types of phase diagrams and solubility curves, and identify separation barriers. Various operations 

such as heating, cooling, solvent addition, solvent removal, anti-solvent addition, and 

combinations can be studied to systematically evaluate process alternatives. Financial and 

environmental performance models have also been included into the computational tool to 

evaluate the process, economic and environmental performance of a selected process. A flexible 

user defined solvent ranking system the Normalised Cumulative Weighted Score (NCWS) is 

proposed in this work. It calculates the weighted cumulative score that accounts for: process 

performance, economic performance, environmental performance and energy performance by a 

selected solvent. The weighting of each of the performance criteria is defined by the user.   The 
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algorithms are developed with the intention of providing a feasible and near optimum 

crystallisation processes. The computational framework developed is demonstrated in a series of 

applications to predict crystallisation behaviour and the determination of optimal operating 

conditions for cooling, evaporative and anti-solvent crystallisation.  

 

Some experimental solubility measurements were undertaken to verify the co-solvent / anti-

solvent behaviour predicted by the solvent selection tool in some systems. A strong variation of 

solubility, for the selected APIs Acetylsalicylic acid, 4-Acetaminophenol, and 2-(4-

Isobutylphenyl)-propanoic acid, was observed in the ethanol and ethyl acetate binary systems. 

The experimental results show that the solvent selection tool gives a good qualitative 

representation of the solubility behaviour of co-solvency and anti-solvency over the binary 

solvent concentration range. The experimental measurements confirmed that both the UNIFAC 

and Modified UNIFAC (Do) models generally predict conservative values and are capable of 

predicting the general behaviour of complex systems. 

The reliability and robustness of solvent selection tool was further evaluated against an industrial 

crystallisation processes. The application is the recovery of the natural flavourant 2,3-

Butanedione (Diacetyl) from a process stream containing: acetone, acetaldehyde, ethanol, 2,3 

pentanedione, 2,3 butanedione (Diacetyl) and water. The recovery of Diacetyl through distillation 

is not an option because of the several complex azeotropes that exist in the feed stream. Fractional 

crystallisation is the process used to recover the Diacetyl. The solvent selection tool was used to 

evaluate the crystallisation of the Diacetyl in the complex feed. The three thermodynamic models 

were used in the tool: UNIFAC, Modified UNIFAC (Dortmund), and the Scatchard-Hildebrand 

model. At the average conditions of feed composition of 63 % Diacetyl and a final cooling 

temperature of -19.4 oC, a predicted yield of 45.3, 0 and 78 % are predicted by the Mod. UNIFAC 

(Do), UNIFAC, and Scatchard-Hildebrand models, respectively, compared to the plant average 

yield of 50.6 % at these conditions. The solvent selection tool was further used to investigate 

existing plant deviations. The co-solvency effects of acetone and water and anti-solvency effects 

of acetaldehyde and ethanol were identified. It was confirmed with plant data (1200 batches) that 

the variations of concentrations of these components in the feed stream contributed significantly 

to the various plant deviations recorded. 

 

The capability of the solvent selection tool is further illustrated as a conceptual design tool for 

crystallisation processes in the pharmaceutical industry. Using a solvent ranking system 

developed in this work, the Normalised Cumulative Weighted Score (NCWS) is used to identify 

and rank potential solvents that can be use in the API manufacturing process. In addition, the tool 

is used to evaluate which mode of crystallisation (cooling, evaporative, anti-solvent or 
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combinations) is the best process option to fulfil a particular production objectives. Lastly the tool 

is used to determine the best fractional crystallisation processing route for multicomponent API 

feed streams where some components are considered to be impurities or by-products of the 

process. 

It is extensively demonstrated that the computational tool developed in this work, can be used as 

a conceptual design tool. It provides a simple and fast way to identify feasible, near optimum 

solutions that could be used for screening design and process alternatives based on a combination 

of performance criteria. In addition, it can be used for further rigorous optimisation studies, 

trouble-shooting existing crystallisation processes, and give direction to experimental and pilot 

plant studies. 

 

 

 

…………………………   …………………………………… 

S Ramsuroop     Prof D Ramjugernath 

 

 

 

      ……………………………………. 

      Prof J Rarey 
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NRTL-SAC Non-random two liquid – segment activity coefficient model 
NTAC Normalised total annualised cost 
SLE Solid liquid equilibria 
SLVE Solid liquid vapour equilibria 
TAC Total annualised cost 
UNIFAC UNIQUAC functional group method 
UNIQUAC Universal quasi-chemical model 
UNISAC Universal segment activity coefficient model 
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CHAPTER 1: INTRODUCTION 

A key criterion for success in the manufacture of active pharmaceutical ingredients (APIs) is their 

recovery with the desired crystal morphology, at high purities and yields. To meet these criteria, 

the preferred unit operation in the pharmaceutical industry is a crystallisation process. Hence, this 

endeavour seeks to devise a conceptual process that incorporates decision making tools for the 

development, design and operation of an API crystallisation process.  

 

In this chapter, the context and motivation for the research is presented, and its main contributions 

are highlighted. The thesis is structured in the order of progression of the key elements used to 

meet the research objectives, as outlined at the end of the chapter. 

 

1.1 Introduction 
During the development phase of a new process, one of the key issues to be established is whether 

the desired production rates and product specifications will be achieved during the scale up from 

lab trials to commercial scale. In addition, at a commercial scale it is necessary to ensure the 

optimal conditions for operational benefit savings, and minimum environmental impact. For these 

purposes, and in order to ensure design viability, a reliable and precise computational tool is 

required to simulate the necessary processes.  

Particularly during the development phase, an effective computational model facilitates 

technology transfer and process fitting. It evaluates process alternatives, facilitates process 

adjustments, and determines the range of optimum processing conditions from the data that is 

available. It can also be used to identify what additional laboratory and pilot plant trials are 

required to obtain sufficient data, and to confirm the accuracy of operational conditions and 

constraints. 

In the pharmaceutical industry, the process of developing a new drug compound is lengthy, 

costly, risky, and extraordinarily complex. This process, which begins with synthesizing the raw 

drug substance on a laboratory scale, followed by animal testing, human testing, obtaining 

regulatory approval for clinical use, to full production, could span a decade. Any further changes 

to the process chemistry or operations, after regulatory approval, may lead to further lengthy trails, 

resulting in additional financial costs (Crafts, 2007). In this highly competitive, investment 

intensive, and tightly regulated industry, the primary concerns are reducing the product 

development time and associated costs, obtaining the production throughput, and optimum use of 

limited facilities and resources. The application of computational tools can meet these concerns 

and yield profound economic benefits.  
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Once reliable computational tools are constructed, key pharmaceutical processes and unit 

operations can be investigated without the need for extensive experimentation, or disruption to 

existing operations. These tools can be used at all stages of process development, from conceptual 

design, through process operation and optimization. Simply going through the process of 

developing a model can deliver deeper understanding, and critical insights into an issue or 

problem, and can help to improve decision making. In addition, potential constraints can be 

challenged, significantly improving the likelihood of an innovative solution, or providing 

confirmation that a tested solution is correct. An accurate model could not be devised without a 

thorough understanding of the manufacture of APIs. An overview of the important production 

considerations will, therefore, be provided. The objective of any pharmaceutical procedure is to 

ensure a technically efficient and cost effective process. Typically, pharmaceutical production - 

as shown in Figure 1.1 - is a batch process, consisting of successive reaction/synthesis stages to 

create the desired API from a range of raw materials and reaction enhancers, followed by a series 

of separation and purification stages, intended to separate and recover the API at its desired purity. 

As a result, the performance of the different stages (reaction, separation, and waste disposal) 

should all be optimized and coordinated to minimize costs and operational time, thereby, 

maximizing profit (am Ende, 2011).  

 

Figure 1.1.  Flow diagram of typical pharmaceutical manufacturing process. 

The production of pharmaceuticals is generally characterized by a high raw material consumption 

to API production ratio. The amount of non-product streams can range from 25 kg, to over 100 

kg, per kg of desired product (Constable et al., 2007; Sheldon, 2005). Solvents constitute the bulk 
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of raw materials consumed. Solvents are used in many applications, with their primary functions 

being: a) as reaction media to facilitate process such as selectivity, solubility and restriction of 

heat dissipation; b) as reactants; c) as transportation agents, to facilitate the movement of reactants 

and products around the process, in solid or dissolved state; and d) as separating agents, to 

facilitate the extraction, separation and recovery of the desired components.  

While solvents have a wide range of applications, many solvents raise varying degrees of 

environmental, health and safety concerns. Hence, the type and amount of the solvents used can 

contribute significantly to the initial capital investment, the production costs, and the waste 

treatment disposal costs. Therefore, there is an emphasis on developing cleaner technologies, with 

lower environmental impact, at competitive manufacturing costs. 

A key unit operation, in the production of APIs, is their recovery from the process stream. 

Crystallisation is the principal technique used to selectively separate out the API as a solid of high 

purity   (Tung , 2009). The three main advantages of using crystallisation for separation are: the 

production of a high purity product in one process step; with a comparatively low level of energy 

consumption; and with relatively mild process conditions. The typical operations associated the 

crystallisation process are shown in Figure 1.2. 

Figure 1.2. Typical downstream operations associated with crystallisation process. 
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A complexity to be considered in the crystallisation process of pharmaceutical products is the 

potential presence of stereoisomers, other by-products and impurities, which may also crystallize 

out with the required product (Tung, 2009; Wibowo and Ng, 2000; Wibowo and Ng, 2002). 

Hence, a crystallisation process (inclusive of solvent/co-solvent /anti-solvent selection, and 

resolving agents), for systems with multiple saturation points, may require a series of 

crystallisation operations, and the manipulation of several variables, to achieve the desired yield 

and purity of the product. The crystallisation process is also governed by many competing kinetic 

effects like primary and secondary nucleation, crystal growth, agglomeration, etc. which warrant 

sophisticated control strategies and long processing times  to ensure that the desired, yield, quality 

and crystal morphology of the API is obtained. Systems with polymorphs may require 

recrystallisation stages with high levels of control to obtain the desired crystal structure.  

Notwithstanding these complexities, crystallisation is still the desired process option and forms 

one of the key operations in API manufacture. It directly impacts the amount and types of solvents 

that will be used in the manufacture of pharmaceuticals. 

 

Solvent selection is of special importance in process design, since different solvent systems 

induce different yields, processing volumes, and different downstream processing requirements, 

for solvent recovery and waste stream treatment (Buxton et al., 1999; Constable, 2007; 

Karunanithi et al., 2007; Papadopoulos and Linke, 2005; Pistikopoulos and Stefanis, 1998). The 

ideal goal is to select solvents that result in minimal operational and capital costs, while offering 

optimal performance in terms of yield of the API, recovery and reuse of solvents, and conformity 

with regulatory constraints. Hence, an optimal solvent should simultaneously satisfy the 

objectives of selectivity and solubility, safety constraints and economic and environmental 

criteria. An added benefit would be to have a minimum inventory of solvents used in the process. 

 

Variankaval et al., (2008) listed the following criteria, in order of priority, to be applied in the 

development of a process to crystallize API’s: 

1. A sufficient product purity to meet established quality standards.  

2. An isolation of the chosen crystal form, which is typically (with very few exceptions) the 

most thermodynamically stable form.  

3. A specific target particle size distribution (PSD) and crystal shape, as these may affect 

both bioavailability and processability 

4. A high-yield. 

5. A good volume productivity, with final slurry concentrations typically targeted for  

10 ± 5 wt. %. 
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6. A reasonable cycle time (generally, 24 h) for the crystallisation, as well as for the 

associated filtration and drying processes. 

Criteria (1) is critical to ensure patient safety, while (2) and (3) are frequently required, depending 

on their impact on chemical stability and bioavailability. Criteria (2) and (3) can be easily 

achieved through recrystallization processes, if the initial crystallisation process meets the product 

requirements. Criteria (4) to (6) have an impact on the plant size, operational costs and efficiency, 

especially for high-volume drugs. 

 

For the development of a computational tool that models crystallisation, several key issues must 

be fully reviewed. These include the current process of crystallisation, its thermodynamic 

limitations, and recent developments in API crystallisation. 

 

1.2 Background 
1.2.1. Overview of Crystallisation 
The driving force for crystallisation is the difference in chemical potential in the liquid and solid 

phases. Since chemical potential is hard to measure for systems with solutes, its formulation in 

terms of species concentrations is successfully used (Mullin, 1993). Supersaturation, which 

occurs when the solute concentration in solution exceeds the equilibrium concentration, may give 

rise to crystal formation and gives rise to crystal growth. There are two approaches that can be 

used to generate the supersaturation required for crystal formation: temperature swing and 

concentration swing (Wibowo and Ng, 2000). The temperature swing, generally referred to as 

cooling crystallisation is dependent on there being a significant temperature dependence of the 

solid-liquid phase equilibrium, and is the preferred mode for API crystallisation. Several studies 

have evaluated the effects of cooling on yield, purity and morphology. They all, generally, 

concluded that the rate of cooling greatly influences the quality and quantity of API crystals 

obtained. It was found that the rate of cooling should be such that the degree of supersaturation is 

maintained within a narrow zone above the equilibrium solubility, which is referred to as the Meta 

Stable Zone Width (MSZW). (Jones, 2002; Mullin, 1993; Mersmann, 2001; Tung, 2009). 

 

While the temperature swing approach is the preferred mode for API crystallisation, if the API is 

temperature sensitive, or if the API’s equilibrium solubility does not change significantly with 

temperature, then a concentration swing technique is required. The two concentration swing 

techniques that can create the required conditions for supersaturation are, either partial 

evaporation of the solvent, or the addition of a solvent that decreases the solubility of the API in 

the solvent. Solvents that decrease solubility are referred to as anti-solvents, and the crystallisation 

process is called anti-solvent crystallisation. Seeding can also be used to initiate the crystallisation 

process. By providing a seed of the appropriate type, shape or size, a template for crystallisation 
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is provide. The primary role of seeding is to promote secondary nucleation and crystal growth, 

and is generally used to control crystallinity, particle size distribution, purity and a specific 

polymorph. 

 

Evaporation crystallisation, whilst extensively used in the commodity chemicals industry, has had 

limited application in the crystallisation of APIs. This has been mainly due to the lack of control 

of crystal morphology during evaporation processes. However, evaporation coupled with cooling 

crystallisation, or anti-solvent crystallisation, or a combination of all three modes, can be used to 

significantly increase the yield of API crystals (Tung et al., 2009).   

 

1.2.2. Solubility Modeling 
To calculate the degree of supersaturation, which is linked to the driving force for 

crystallisation operations, the solubility at different conditions is needed. If the solubility 

data already e x i s t  then a solubility model can be d e r i v e d . This can either be done 

empirically or the data can be used to fit the binary interaction parameters of correlative 

thermodynamic models such as Wilsons, NRTL, UNIQUAC, etc. (Walas, 1986).  However, if 

the solubility data is not known, then the solubility will need to be e i t h e r  measured or 

estimated. For solvent selection processes, experimental measurements with various solvents, co-

solvents and anti-solvent combinations at various conditions can be impractical in terms of cost 

and experimental time required. The experimental effort for determination of a full phase diagram 

rapidly increases upon increasing the number of components. Hence, reliable predictive tools are 

a necessity in the initial screening and selection process. Some of main predictive methods include 

UNIFAC (Grensemann, 2005.), NRTL-SAC (Chen and Song, 2004), COSMO-RS (Klamt, 2005), 

COSMO-SAC (Lin and Sandler, 2002); PC-SAFT (Kliener et al., 2009), (F-SAC) (Soares and 

Gerber, 2013)   and UNISAC (Moodley et al. 2015).  Several studies have compared solubility 

results from these predictive techniques to experimental measurements with varying degrees  

of  accuracy when predicting the equilibrium solubility of APIs (Ruether and Sadowski, 2009; 

Widenski et al., 2010; Sheikholeslamzadeh and Rohani, 2011; Moodley et al. 2015).  

 

1.2.3. Synthesis, Modeling and Optimization of Crystallisation Processes 
Literature on crystallisation shows that “synthesis”, “modelling” and “optimization” have three 

distinct objectives.  Synthesis means finding the optimal scheme to be used for the crystallisation 

in multi-solute systems that require fractional crystallisation. Modelling primarily deals with the 

simultaneous solution of the population balance models, mass balance and energy balance 

equations to determine the effect of the process conditions on the particle size distribution (PSD). 

Optimization primarily focuses on determining the cooling profile / anti-solvent addition profile 

/ seeding profile, to promote crystal growth to maximize yield. 
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There are two major approaches for the synthesis of crystallisation-based separation.  In one 

approach, phase equilibrium diagrams are used for the identification of separation schemes. With 

the aid of equilibrium phase diagrams, the effect of some basic operations in crystallisation results 

in specific movements within the compositional space. These movement vectors are used to 

determine operations that can be effectively used to achieve the desired targets. While these 

procedures are easy to understand, and relatively simple to implement, the graphical 

representation become increasingly complex with the number of solutes present.  Several 

researchers (Fitch, 1970; Berry et al., 1997; Wibowo and Ng, 2000; 2002; Cisternas, 2006) have 

developed rules and guidelines for synthesising operational protocols, for crystallisation-based 

separation processes, using this approach. The second strategy is based on the construction of a 

network flow model to represent the set of potential separation flowsheet structures.  The basic 

idea in this approach is to derive a network superstructure that has embedded all feasible 

configurations of separation sequences. The overall network is formulated as a nonlinear 

programming problem, and the optimal separation sequence is obtained by simultaneous 

optimization using non-linear mathematical programming algorithms (Cisternas et al. 1999, 1998 

and 2004). 

Chemical engineering modelling processes are designed to ascertain the variation of the key 

variables, to better understand the behaviour of processes. But, for several reasons, crystallisation 

modelling is more complicated than that of many other chemical engineering unit operations. 

First, crystallisation often operates at an unsteady state due to its batch nature. Second, many 

different types of phenomena, such as primary and secondary nucleation, homogenous and 

heterogeneous nucleation, crystal growth (which may be through diffusional or surface 

mechanisms), agglomeration, and attrition, occur simultaneously ,and many of these processes 

are affected by the degree of supersaturation present (Tung, 2009, Jones, 2002; Mullin, 1993).     

 

The primary objective of most modeling studies is to determine the particle size distributions 

(PSD) obtainable for a given set of operating conditions. The PSD is established by solving the 

population balance equations that are used to model particulate systems. Establishing the rate 

constants required to quantify the various phenomena involves making several simplifying 

assumptions. This then limits the use of these models when scaling-up for commercialization. 

Despite this limitation, modeling does provide valuable insights into variables that can be 

manipulated, to achieve desired targets, during the initial investigations.   

 

Optimization studies are a natural extension of modeling studies. Their primary objective is to 

determine a profile in order to minimize undesirable phenomena (such as primary nucleation), 

and to maximize desired phenomena, that of crystal growth. It could be a cooling profile, or a 
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seeding profile, or an anti-solvent addition profile, or a combination of profiles. Some of the 

typical objective functions used include: maximization of volume mean size, minimization 

of total nucleation, and specified final volume mean size.  

 

Optimization studies in crystallisation provide operational and control strategies for 

crystallisation processes. Several optimization studies have shown that the optimal operating 

strategy is to ensure that the degree of supersaturation is maintained within a narrow zone above 

equilibrium solubility, which is referred to as the Meta Stable Zone Width (MSZW), (Tung et al., 

1999; Sarker et al., 2006; Nowee et al., 2007, Nagy et al., 2008 and Widenski et al.2010). 

 

1.2.4. Solvent-Selection Methods for Crystallisation 
Rajgopal et al., (1992) developed systematic procedure for the conceptual design of vapor-liquid-

solid processes. It is based on the hierarchical procedures for conceptual design proposed by 

Douglas (1988). In an evolutionary manner, it leads the user to select process units, to identify 

the equipment configurations and to determine the important design variables and the associated 

economic trade-offs. Design variables unique to the generated configuration calculated include: 

dilution ratio, wash ratio and crystallizer temperature and their effect on overall plant economics. 

Whilst this procedure was not designed to identify and rank solvents for crystallisation processes, 

it has the essential components to evaluate the impact of a selected solvent will have on the 

processing requirements and the subsequent economic impact. It can handle only low-molecular-

weight solid particles.  

 

Nass (1994) describes a strategy for choosing crystallization solvents based on equilibrium limits. 

The solvent selection strategy for choosing crystallization solvents is based upon the 

determination of equilibrium limits for a given temperature range. The approach utilizes a group-

contribution method (UNIFAC) to predict a value for the activity coefficient of the solute in a 

selected solvent system at the saturation point. This value is then used to calculate the solubility 

of the solute at a "high" temperature and a "low" temperature. The resulting solubility values 

determine the maximum theoretical yield for the process which is used to rank order solvents. 

The solvent selection was limited to single solvent systems and cooling crystallisation 

applications. 

 

Frank et al.(1999), reviewed strategies for solvent selection for various types of crystallization 

processes such as cooling crystallization and anti-solvent crystallization. The methods reviewed 

include the use of Robbin Charts to identify general classes of solvents; Radius of interaction 

analysis using Hansen solubility parameters to identify potential solvents, and UNIFAC to 

estimate activity coefficients and solubility.  Potential recoveries based on solubility calculations 
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formed the bases of ranking the solvents. In both of the publications (Nass K. , 1994) (Frank, 

1999), the solvent selection task is carried out from a known database of good solvents with 

solubility being the only criterion for selection.  

 

Karunanithi (2006; 2008) presented a computer-aided molecular design (CAMD) framework for 

the design and selection of solvents and anti-solvents for crystallization processes. The CAMD 

technique provides a systematic methodology for identifying/designing a functional chemical to 

fulfill required/desired properties or performance. Ng et al. (2006) defined the CAMD 

methodology as: “Given the specifications of a desired product, determine the molecular 

structures of the chemicals that satisfy the desired product specifications, or, determine the 

mixtures that satisfy the desired product specifications.” The solvent-selection problem is defined 

as a CAMD problem, and is formulated as a mixed-integer nonlinear programming model 

(MINLP). In the CAMD approach for solvent design and selection for crystallization processes 

other factors can be considered simultaneously in addition to solubility. Many other desired 

solvent properties such flash point, toxicity, viscosity, normal boiling point, and normal melting 

point, etc. can also be considered because these properties can be posed as constraints in the 

MINLP formulation. In the CAMD formulation all the required properties have been estimated 

using group-contribution-based methods. Solvent design and selection for cooling crystallization 

and anti-solvent crystallization were presented for the crystallisation of the API ibuprofen. For 

both case studies the performance of the designed solvents are verified qualitatively through SLE 

diagrams. The only limitations to the general application to this approach is the challenges faced 

in solving the complex MINLP problems. Most applications of solvent design use proprietary 

code developed at Technical University of Denmark (DTU).  

 

Sheikholeslamzadeh et al. (2012) proposed several algorithms for predicting the phase behavior, 

miscibility testing, and screening of solvents for the crystallization of pharmaceutical 

components. The SLE behaviour of different APIs was predicted in many common solvents and 

combination of solvents, using the NRTL−SAC model.   The feasible operating temperature range 

for each crystallization case was calculated.  The maximum operating temperature is based on the 

bubble-point temperature of the solvent mixture and the lower operating temperature is based on 

the melting point of the model molecule.     The batch cooling and anti-solvent crystallization 

processes was simulated for seven model molecules from the initial temperature to the final 

temperature and for the different compositions of each solvent. In addition, The NRTL−SAC 

model was also used to test the miscibility of solvents during the crystallization process. The 

solvent ranking is based solely on the yield obtained. The hybrid model used requires 

experimental solubility data for the parameterization of the models prior to its predictive 
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capability. This limits the methodology as a fast screening conceptual design tool in the absence 

of any experimental data. 

 

 

1.3. Thesis Motivation 
This project sets out to develop a robust and comprehensive Solvent Selection computational 

framework to be applied to API crystallisation production processes. To be effective, it must be 

able to screen solvents, to synthesize operating protocols for fractional crystallisation, and to 

determine near optimal operating conditions for different types of crystallisation processes.  

 

A review of developments in this research field suggests that this project is well-placed to fill an 

existing gap. There is evidence of a lack of a framework that can comparatively evaluate the 

process performance, the economic performance, energy requirement performance, and the 

environmental performance, of solvent selection for API crystallisation processes, as can this 

computational framework.  

 

As described earlier, crystallisation is an extremely important unit operation in the pharmaceutical 

industry. The performance of this separation technique is judged by certain criteria: yield, purity 

of product and whether the product is of the desired crystal structure and size. These measures 

are dependent on a multitude of variables, and the selection of the conditions for the optimization 

of crystallisation is dependent, in turn, on reliable process models. The parameters in these 

crystallisation models traditionally require extensive experimental data that are complex to obtain 

and analyse, if they are not already published in the literature. A way to reduce this experimental 

burden is via first-principles thermodynamic modelling.  

 

First-principles thermodynamic modelling begins by developing predictive thermodynamic 

solubility models, since the principle phenomena in crystallisation are solubility and degree of 

supersaturation.  Robust predictive solubility models must enable the prediction of the solubility 

of a solute in pure or mixed solvents, and of the degree of supersaturation at varying temperature 

and concentration conditions.  

 

1.4. Aims and Contributions of this Thesis 
In order to increase expertise in model-based, optimal strategies for crystallisation operations, 

specifically targeting the pharmaceutical industry, a robust and reliable, model-based Solvent 

Selection Tool for crystallisation is developed that can predict and optimize the production of 

crystalline API materials, with the desired yield and purity. This is addressed through the 

following key outputs: 
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1. The development and implementation of a comprehensive and coherent framework for 

modeling crystallisation systems. The modeling framework creates opportunities, not only 

for finding optimal operating strategies, but also to investigate and develop a comprehensive 

understanding of the crystallisation process. Specifically, the modeling framework has the 

following computational capabilities: 

• The optimum operability conditions for the crystallizer can be identified with minimal 

thermodynamic information on the system, by using multiphase flash calculations. 

Starting with just the chemical structure, melting point and enthalpy of fusion of the API, 

and using the predictive thermodynamic property models like UNIFAC, the Solid-

Liquid-Vapour Equilibrium (SLVE) phase behaviour can be calculated.  

• The various eutectic temperatures and compositions that exist in the system can be 

predicted, and data can be generated for developing various types of phase diagrams and 

solubility curves. These allow a study of the overall composition space, visualize 

crystallisation regions, and identify the separation barriers to be examined. In particular, 

the analysis of systems with multiple saturation points is possible. 

• The study of operations such as heating, cooling, solvent addition, and solvent removal, 

to systematically evaluate process alternatives. This tool enables the user to filter and 

screen solvents, and evaluate the effects of co-solvents, anti-solvents, other components, 

and impurities on the solute’s solubility, in a specified temperature and composition 

range.  

• The identification of the operating conditions that give maximum recovery of a desired 

compound, with a certain solvent or solvent mixture, and the calculation of the percent 

recoveries, and the total energy requirements (heating/cooling), under various operating 

conditions. The tool can be used to establish operating strategies, which may involve a 

combination of “cooling/heating”, “co-solvent/anti-solvent addition”, and “evaporation” 

steps to meet the process objectives. 

• The investigation of the process engineering implications of the various solvents. Once 

the desired production rate is established, the effect each solvent will have on the size of 

plant required, can be determined, along with the capital expenditure, operational 

expenses, and environmental impact.   

• The successful interfacing of the developed crystallisation computational tool with a 

commercial simulation software to improve its robustness and extend its computational 

capabilities. The computations within the Crystallisation module have access to a full 

range of thermodynamics models and correlations, a comprehensive database of 
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compounds - their pure and mixture properties - and rigorous computational algorithms 

for process calculations and equipment design of the commercial simulator.  

2. Experimental work is conducted to validate the simulated optimization results. In particular 

the behavior of co-solvent and anti-solvent systems.  

3. The developed computational tool is also tested and applied to an industrial application that 

recovers a natural flavourant compound from a complex multicomponent feed-stream. 

 

These computational capabilities allow the modelling framework to be used as a quick screening 

tool to select the most appropriate solvent(s) and type of crystallisation process/processes for a 

given application. The modelling framework explores the synergistic combination of multiphase, 

phase equilibria phenomena, and process systems engineering methods, to develop a decision tool 

for faster process design and process understanding, during the conceptual phase of an API 

development, or the retrofit of an existing API manufacturing process. Furthermore, it will greatly 

reduce the need for experimental solubility data, as compared to the empirical approaches 

currently used in crystallisation modelling.  

 

 

1.5. Structure of the Thesis 
The thesis is structured as follows:  

 

The first chapter puts into context the motivation for undertaking this research, and highlights the 

contribution it makes to understanding the impact that solvent selection has, on the economic and 

processing requirements, in the manufacture of APIs. It also outlines the structure of the thesis.  

 

The second chapter presents the key crystallisation phenomena, including solubility and 

crystallisation mechanisms. The different types of crystallisation processes are discussed, and the 

key principles used in the analysis and synthesis of crystallisation processes are presented.  

 

The third chapter presents the key thermodynamic principles, and the development of a 

thermodynamic framework for multiphase solubility equilibria, which is required for the analysis 

and synthesis of crystallisation processes. Various predictive phase equilibria models, which can 

be used for solubility prediction for APIs, are reviewed. 

 

The fourth chapter presents the key features and outlines the development of the crystallisation 

computational tool, developed during this research work. 
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The fifth chapter outlines the various methods that can be used for measurement of solubility, and 

the experimental procedures adopted by this work are presented  

 

The sixth chapter introduces several case studies that reveal the use of the computational 

framework described in chapters 2, 3 and 4, to determine the optimal operating conditions for 

evaporative, cooling, and anti-solvent crystallisation. 

 

The seventh chapter presents the conclusions of the dissertation, 

 

The eight chapter recommends possible future work.  
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CHAPTER 2: CONCEPTUAL DESIGN OF CRYSTALLISATION 
PROCESSES 

The goal of conceptual design is to identify process flowsheets, equipment sizes and 

configurations, together with operating conditions that will best meet the desired objectives. To 

this end, Doherty and Malone (2001) identified two major tasks in conceptual design, namely, 

(1) to identify feasible flowsheets and ranges of operating conditions capable of meeting process 

goals and, (2) to rank the alternatives according to economic measures to select candidates for 

more detailed study. These principles have been adopted in this study. 

 

Before this can be done, in the development of any process, its various physical and chemical 

events need to be understood and accounted for. Crystallisation is a phase equilibria process, and 

hence the extent of the solid phase formation is mainly based on thermodynamic behaviour. The 

key concepts that play important role in the kinetics, throughput and yield of crystallisation 

processes include: solubility, degree of supersaturation and metastable zones,  

 

In this chapter, an overview of pharmaceutical crystallisation process design will be provided, 

with a focus on three fundamental aspects, namely, the mechanisms of solubility and 

crystallisation; the main approaches to its operation and control; and a review of the available 

tools for analysis and synthesis. 

 

2.1 Solubility and Crystallisation 
It is essential, for the design of crystallisation processes, to first understand solubility behaviour. 

Analysis of crystallisation processes typically require that the solubility of the solute in the solvent 

be known as a function of temperature or solvent composition (Tavare, 1995). Solubility is 

defined as the maximum amount of a solid that can be dissolved in a particular solvent (or solvent 

mixture) at a given temperature and pressure, also known as the equilibrium or saturation 

concentration. The solubility data can be either obtained through experimental measurements or 

predicted from solubility models.  

 

The equilibria between the solid and liquid phases (solid–liquid equilibria (SLE)) of a compound, 

are the thermodynamic foundation of all crystallisation processes. Solubility is typically 

expressed as a solubility curve whereby the temperature dependency can be demonstrated.  

Examples of typical solubility curves for diverse APIs in various solvents are shown in Figure 2.1. 

Data, measured by Hahnenkamp et al. (2010), illustrate that solubility can show a high 

temperature dependency (aspirin-ethanol), or a negligible temperature dependency (paracetamol-

water). They further illustrate that an API (paracetamol) may reveal different solubility curves in 
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various solvents; and that distinct APIs may have different solubility curves in the same solvent 

(paracetamol and aspirin in acetone). 

 

 

Figure 2.1. Examples of variation in API solubility curves. 

 

A yield of crystals arises, primarily, from the difference in equilibrium solubility of a solute, in a 

solvent, at the initial and final operating conditions. The two key variables that affect solubility 

and control crystallisation processes are temperature and solvent composition (Mullin, 2001; 

Myerson, 2002). Solubility is also a function of pressure as shown in Equation 2.4, but the 

effect is generally negligible in the systems normally encountered in crystallization from 

solution (Mullin , 2001; Mersmann , 2001). The mechanism for crystallisation is illustrated in 

a typical solubility diagram, as shown in Figure 2.2. In this Figure, the temperature – composition 

space is divided into two regions by the solubility curve. The regions below and above the curve 

are termed under-saturated and supersaturated, respectively, and indicate the relative amount of 

dissolved solid, as compared to the saturated solution. In the supersaturated region, where the 

solute concentration exceeds the saturation concentration, the solution is unstable because the 

dissolved solid and solvent are not in equilibrium.  

 

Like all non-equilibrium systems, the supersaturated solution inclines toward equilibrium by 

removing the solute from the solution in the form of nuclei, which then grow into crystals. 

Supersaturation is therefore a prerequisite step in crystallisation. This region above the solubility 

curve is further divided into two: a metastable region and a labile region. A labile, or unstable, 

area promotes the spontaneous and intense onset of nuclei. But, the uncontrolled nuclei formation 
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in this region leads to a decrease in solute available, and does not enhance crystal growth. On the 

other hand, the solution is supersaturated in the metastable zone, but the supersaturation is not 

sufficient for the crystals to appear spontaneously. Because a crystal can grow in this zone, the 

growth of seed crystals, of the same nature as the solute, can be promoted, limiting the appearance 

of additional nuclei. Hence the metastable zone is the desired operational zone in crystallisation 

processes. 

 

  

Figure 2.2. The various regions of interest in crystallisation (www.solvias.com). 
 

Below the solubility curve, the stable area is a sub-area where the solution has a concentration 

less than the solubility limit. So there is no crystallisation, and the addition of crystals will lead 

to their dissolution. 

 

The thermodynamic driving force for crystallisation is the difference in the chemical potential 

between the solute and the solution, and may be expressed as: 

∆𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜇𝜇𝑖𝑖∗                                                                                        2.1 

∆𝜇𝜇𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝜇𝜇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜇𝜇𝑖𝑖∗)                                                               2.2 

𝑒𝑒𝑒𝑒𝑒𝑒 �∆𝜇𝜇𝑖𝑖
𝑅𝑅𝑅𝑅
� = 𝑓𝑓𝑙𝑙

𝑓𝑓𝑠𝑠
= 𝛾𝛾𝑖𝑖𝑐𝑐

𝛾𝛾∗𝑐𝑐∗
= 𝑆𝑆                                                                                         2.3 

Where 𝑆𝑆 is defined as the relative supersaturation; ∆𝜇𝜇𝑖𝑖 is the difference in chemical potential; 𝑓𝑓𝑙𝑙 

and 𝑓𝑓𝑠𝑠 are the fugacity of the liquid and solid phase respectively; 𝑐𝑐∗ and 𝛾𝛾∗ are the concentration 

and activity coefficient at equilibrium; and 𝑐𝑐 and 𝛾𝛾 are the actual concentration and activity 

coefficient of the solution. 

 



36 
 

Common expressions of supersaturation are shown by the equations presented below, where 

solubility and concentration units are adjusted for consistency: 

Supersaturation:  ∆𝑐𝑐 = 𝑐𝑐 − 𝑐𝑐∗ 

Supersaturation ratio:  𝑆𝑆 = 𝑐𝑐
𝑐𝑐∗

 

Relative supersaturation: 𝜎𝜎 =  𝑐𝑐−𝑐𝑐
∗

𝑐𝑐∗
= 𝑆𝑆 − 1 

 

2.2 Solubility Models 
Solubility data, as shown in Figure 2.1, can either be obtained through experimental 

measurements or through prediction by means of solubility models. Solubility models should 

accurately predict how the equilibrium solute concentration changes over the course of the 

crystallisation process. This understanding of the process of solubility is required for the 

development of a crystallisation model to, in turn, precisely predict crystal product properties, 

such as size, quality and yield. Solubility models can be based on either empirical or 

thermodynamic foundations. Empirical solubility models such as the  Jouyban-Acree   model 

(Jouyban and Acree, 2006) and Yalkowsky-Roseman model (Yalkowsky and Roseman, 1981) 

are  equations fitted to experimental solubility data, and generally have no underlying theoretical 

foundation, while on the other hand, a thermodynamic solubility model both fits the data and is 

derived from thermodynamic principles.  

 

The equation derived from the fundamental principles of thermodynamics which is  used to 

determine the solubility of a solid solute (s) in a liquid solvent (derived in chapter 3 (Section 3.3)), 

is given by the following expression, where it is assumed that the solid phase is pure and that the 

triple point temperature can be replaced by the melting temperature: 

−𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙 = 𝑙𝑙𝑙𝑙 �𝑓𝑓
𝑙𝑙

𝑓𝑓𝑠𝑠
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

 =   ∆ℎ𝑚𝑚,𝑖𝑖
𝑅𝑅𝑅𝑅

�1− 𝑇𝑇
𝑇𝑇𝑚𝑚,𝑖𝑖

�  −  ∆𝑐𝑐𝑝𝑝,𝑖𝑖�𝑇𝑇𝑚𝑚,𝑖𝑖−𝑇𝑇�
𝑅𝑅𝑅𝑅

 + ∆𝑐𝑐𝑝𝑝,𝑖𝑖

𝑅𝑅
𝑙𝑙𝑛𝑛 �𝑇𝑇𝑚𝑚,𝑖𝑖

𝑇𝑇
�+

∆𝑉𝑉𝑖𝑖(𝑃𝑃−𝑃𝑃𝑡𝑡)
𝑅𝑅𝑅𝑅

                   

 2.4Generally for systems where the pressure difference and change in heat capacities are 

small, the second, third and fourth terms on the right-hand-side are negligible in comparison to 

the first term, and the above expression is generally simplified to: 

 

−𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙 =   ∆ℎ𝑚𝑚,𝑖𝑖
𝑅𝑅𝑅𝑅

�1− 𝑇𝑇
𝑇𝑇𝑚𝑚,𝑖𝑖

�     or          𝑥𝑥𝑖𝑖𝑙𝑙 =  1
𝛾𝛾𝑖𝑖
𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒 �−∆ℎ𝑚𝑚,𝑖𝑖

𝑅𝑅𝑅𝑅
�1− 𝑇𝑇

𝑇𝑇𝑚𝑚,𝑖𝑖
��                     2.5 

 

Where 𝑥𝑥𝑖𝑖𝑙𝑙 is the solubility; 𝛾𝛾𝑖𝑖𝑙𝑙 is the activity coefficient; ∆ℎ𝑚𝑚,𝑖𝑖 is the heat of fusion; and 

𝑇𝑇𝑚𝑚,𝑖𝑖 is the melting point of component 𝑖𝑖.  
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In the above model, the values for the activity coefficient, heat of fusion and melting 

point can either be obtained experimentally or through predictive methods. It should be 

noted that the estimation of heat of fusion and melting point is generally not 

recommended.  

 

Common types of thermodynamic models used to calculate the activity coefficient include those 

based on excess Gibbs energy, such as, Wilson, NRTL, or UNIQUAC (Walas, 1985). However, 

these correlative models require identification of binary interaction parameters from phase 

equilibrium data for each of the solvent–solvent, solvent–solute, and solute–solute binary 

mixtures. Unfortunately, the lack of experimental solubility data, on new APIs, limits the use of 

these thermodynamic models for process design and analysis in the pharmaceutical industry. 

(Chen, 2011).  

 

There has been an increase in the use of predictive thermodynamic models for solubility 

calculations (as distinct from correlative models). The advantage of these predictive models is 

that no new experimental data is needed to calculate activity coefficients.  The determination of 

the activity coefficient is essential, as it accounts for any non-ideal behaviour of the solution by 

accounting for the interactions that exist between the various molecules. 

 

The various predictive methods that can be used to calculate the activity coefficient can be 

classified into 4 main groupings:  

• Models based on group contribution methods, such as the UNIQUAC Functional Group 

Activity Coefficient (UNIFAC) and its many derivatives, such as modified UNIFAC 

(Grensemann and Gmehling, 2005), Pharma Mod-UNIFAC (Diedrichs and Gmehling, 2010) 

and UNISAC (Moodley et al. 2015)  

• Models based on quantum theory: Conductor‐like Screening Model, abbreviated as COSMO, 

and its derivatives the COSMO-RS (Klamt, 2005) and COSMO-SAC (Lin and Sandler, 

2002);  

• Models based on equation of state PC-SAFT (Kliener et al., 2009) and; 

• Hybrid-data estimation methods, such as the Non-Random Two-Liquid - Segment Activity 

Coefficient (NRTL-SAC) (Chen and Song, 2004).  

These predictive models and their ability to predict the solubility of APIs are be fully described 

in chapter 3. 
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2.3 Physical processes during crystallisation 
 

 Whilst the particle size distribution (PSD) is not modelled or determined in this work, it is 

important to understand the variables that impact on the PSD, to ensure that any proposed 

operational strategy take these into account. Below, is an overview of the most important physical 

processes occurring during crystallisation. These concepts aid in an understanding of the 

recommended strategies for optimization studies in crystallisation. For a more in-depth 

description of these phenomena, the reader is referred to several of the texts available: Beckmann 

(2013), Tung et al. (2009), Jones (2002), Mersmann (2001), Myerson (2001) and Tarave (1995). 

 

2.3.1 Nucleation 
Nucleation is the starting point of crystal formation. This may occur through one of the following 

mechanisms  

• Primary nucleation is the formation of a new solid phase from a clear liquid. This type of 

nucleation can be further subdivided into homogeneous and heterogeneous nucleation. In 

heterogeneous nucleation, nucleation starts on foreign substrates of mostly microscopic 

particles, dust or dirt particles. If such substrates are absent, new phase formation takes place 

by statistical fluctuations of solute entities clustering together, a mechanism referred to as 

homogeneous primary nucleation. It requires very high supersaturation conditions, as in the 

labile zone shown in Figure 2.2. (Jones, 2002 and Beckmann, 2013).  

• Secondary nucleation is induced only when previously crystallized material is available. This 

nucleation mechanism generally occurs at much lower supersaturations than in primary 

nucleation. There are various types of secondary nucleation, but the most important source of 

secondary nuclei in crystallisation is contact nucleation, and occurs as a result of crystal 

collisions (Mullin, 2001). 

 

2.3.2. Crystal growth and dissolution 
Crystal growth is a desired phenomenon in crystallisation and it results from the addition of more 

solute molecules to the nucleation site or crystal lattice.  Besides increasing crystal size, crystal 

growth also largely determines the key qualities of the crystal: crystal morphology, surface 

structure and purity of the crystal. Crystal growth is a three-step process, consisting of mass 

transfer, surface integration and heat transfer. Mass transfer and surface integration occur 

sequentially and in parallel with heat transfer. Mass transfer involves the diffusion of growth units 

(molecules, atoms or ions) to the crystal surface. Surface integration consists of surface diffusion, 

orientation and the actual incorporation into the lattice. The latent heat of crystallisation is 

released and transported to the crystal and solution. 
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2.3.3. Agglomeration and Breakage 
An agglomerate is defined as the mass formed by the cementation of individual particles, probably 

by inter-particle forces during the collision of particles. Agglomerates are usually undesirable 

because they contain mother liquor between the primary crystals that form the agglomerate. This 

liquor is hard to remove during drying, and promotes caking of the product during storage. 

Breakage, as the fracture of a particle into one slightly smaller particle and many much smaller 

fragments, is defined as attrition. Breakage involves the fracture of a particle into two or more 

pieces.  
 

Control strategies for crystallisation are primarily used to determine whether nucleation or growth 

should be the dominant process, depending on which of these process objectives is most critical 

for the desired overall outcome. The demand for increasing control of physical attributes, for final 

bulk pharmaceuticals, has necessitated a shift in emphasis from control of nucleation to control 

of growth (Tung , 2009). Both nucleation and growth are dependent on the degree of 

supersaturation, and hence, maintaining the degree of supersaturation within the metastable zone 

is crucial. This desired zone of operation is shown in Figure 2.3, which shows how the primary, 

secondary and growth rates vary with supersaturation. In the next section we will examine the 

various ways of generating and maintaining the required supersaturation. 

 

 

  Figure 2.3. The influence of supersaturation on growth and  

nucleation rates (adapted from Moyers and Rousseau, 1987). 
 

2.4. Modes of Crystallisation 
The technique employed to generate supersaturation in a solution, for crystal formation, is referred 

to as the mode of operation. The mode chosen is dependent on the phase-equilibrium 

characteristics of the system. The usual techniques for generating supersaturation include: 

cooling, solvent evaporation, chemical reaction, anti-solvent addition, and common ion addition. 
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The choice of the mode of crystallisation is normally dependent on the system properties (e.g. 

solubility, heat of solvent vaporisation, feed stream composition, etc.); and sometimes, a 

combination of processes is employed to maximize the yield.  

 

In this section, a qualitative discussion is presented on the processes that are used to create and 

maintain supersaturation conditions that promote crystallisation. These procedures are classified 

by the manner in which supersaturation is generated. They are briefly described in Table 2.1, and 

some are illustrated on a solubility curve, as shown in Figure 2.4. 

Table 2.1. Methods of Supersaturation Generation. 

Mode of 

Crystallisation 

Description 

Cooling Crystallisation is achieved by cooling solvent from a high temperature to a low 
temperature at constant solvent composition. This mode is applicable to systems 
where the solubility has a strong temperature dependence. Since the solubility 
decreases with temperature, the solution becomes supersaturated. 
 

Anti-solvent Crystallisation is achieved by adding an anti-solvent to a solvent in which the 
solute is soluble. The anti-solvent is used to reduce solubility of the solute in the 
mixed solvent, and hence the mixed solvent becomes supersaturated. 
 

Reactive Crystallisation is achieved by changing the compound ionically or structurally 
through reaction. The reactants are often soluble with the product being insoluble. 
Reaction is used to change the concentration of the product above the solubility 
limit 
 

Evaporative Crystallisation is achieved by the evaporation of solvent that increases the solute 
concentration above the solubility limit, resulting in supersaturation. The 
evaporation of the solvent can be through flashing or heating. 
 

 

 

                         Figure 2.4. Solubility Diagram showing how the different modes of 

crystallisation influence supersaturation (adapted from Jones, 2002). 
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The processing implications of the various modes of supersaturation generation are briefly 

described below.  

 

2.4.1. Cooling crystallisation 
Cooling of a solution can be performed in a variety of ways, depending on the system and the 

desired result (yield, quality, crystal size, etc.). Natural cooling is the simplest method, but results 

in varying supersaturation as the cooling proceeds. A rapid decrease in the temperature has the 

potential of passing through the metastable region and reaching the uncontrolled nucleation 

region.  Uncontrolled cooling can also lead to an accumulation of crystal scale on the cooling 

surface, caused by low temperatures at the wall. This crystal layer is triggered by spontaneous 

nucleation on the cold surface, followed by growth of the crystal layer. This encrustation acts as 

a fouling layer to heat transfer and can severely limit the cooling rate, leading to non-uniformity 

in the product. 

When uncontrolled nucleation is not acceptable, cooling strategies can be utilized to match the 

cooling rate to the growing crystal surface area. Suggested cooling rates by Mullin and Nyvlt 

(1971) and Mullin (1993), can be used in the control of supersaturation. The suggested cooling 

rates are lower than natural cooling in order to maintain supersaturation in the growth region. The 

cooling rate can be increased with crystal growth. The suggested cooling rates also reduce scale 

layer formation by limiting temperature differences across the jacket. It has been suggested by 

Mersmann (2001) the formation of the scale layer can be avoided if the temperature difference 

between the crystallizing mixture and cooling fluid is less than the width of the metastable zone. 

Recommended cooling rates for organic compounds are in the order of 0.1–0.2 K/min 

(Beckmann, 2013). 

 

2.4.2. Evaporation Crystallisation 
The use of evaporation is widely applied to increase concentration by removing solvent. But, it 

gives rise to several nucleation and growth control problems. For drug substances (APIs) that 

require tight control of mean particle size and PSD, uncontrolled growth problems can be make 

this method unsuitable. 

 

The effect of the rate of evaporation rate is similar to the effect of the rate of cooling in creating 

supersaturation. Therefore similar methods of control are used to match the evaporation rate with 

the surface area available for growth. Seeding can also be useful if the saturation point can be 

accurately determined. The seed slurry can be added as the concentration reaches saturation point. 

 

At the heating surface, local high temperatures and a high vaporization rate result in 

uncontrollable local supersaturation environments in which uncontrolled nucleation can be 
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excessive, particularly in those regions of poor bulk mixing (Tung , 2009). Crust formation above 

the heated surface can also lead to significant product quality issues. At the boiling surface, vapour 

disengagement can lead to very high local supersaturation. In addition, the vapour bubbles can 

cause local nucleation. 

 

2.4.3. Anti-solvent Crystallisation 
This procedure is widely used when cooling has limited effects on solubility. It is reported to have  

many inherent advantages over both batch cooling and concentration, in terms of crystallisation 

control. The control of supersaturation and crystal growth, is readily achievable by the rate anti-

solvent addition. The obvious disadvantage of anti-solvent addition is the production of larger 

volumes of solvent mixtures which will also require a separation process for solvent recovery. 

 

2.4.4. Reactive Crystallisation 
Reactive crystallisation is defined as a process where the supersaturation of a crystallizing 

compound is the result of a chemical reaction. The reaction may occur between two complex 

organic compounds or can occur by means of acid or base neutralization, to form a salt of a 

complex compound. Reactions can be fast, compared to both the mass transfer rate and growth 

rate of crystals, thereby leading to high local supersaturation and nucleation (Tung , 2009). Unless 

the rate of the reaction that generates the supersaturation can be controlled, it is difficult to control 

crystal growth and particle size in reactive crystallisation. Reactive crystallisation operations are 

also commonly known as precipitation. 
 
 

2.5. Synthesis and Analysis of Crystallisation Processes 
As previously mentioned, the goal of conceptual design is to find the process flowsheets, 

equipment sizes and configurations, together with operating conditions that will be optimally 

viable in meeting the product specification after crystallisation. There are typically many 

alternatives, so some analysis for the ranking of alternatives is necessary. When the differences 

among alternatives are small, high accuracy is required to identify the true optimum. Conversely, 

larger differences among the alternatives mean that less accurate models will not lead to bad 

decisions. In this section, we review various approaches to conceptual design of crystallisation 

processes in order to develop a robust computational tool for solvent selection. 

 

Douglas (1988) suggested that at the early stages of process development, only basic structures 

be considered with details being added at later stages. Thereby, minimizing experimental effort 

and use of models. But, as the conceptual design moves forward, accurate measurements and 

rigorous modelling are often necessary to support the decision to favour one alternative over 

another.  
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For process development, Ng and Wibowo (2003) proposed that, while a hierarchy of models of 

increasing complexity and accuracy is recommended, certain choices will require the 

determination of many experimental parameters, and the development and optimization of a 

detailed mathematical model. This is in contradiction to the fact that, typically, in the conceptual 

design phase of API development, important decisions have to be made at early stages, when 

information is still limited.  

 

To address this need for detailed information at an early stage of crystallisation process design, 

short-cut methods (models), requiring limited information, are necessary. These shortcut models 

may not be accurate. However, by capturing the principal physical phenomena, they point to the 

correct trend under ‘what if’ scenarios, thus suggesting the right direction for problem solving. 

The hierarchy and complexity of models required over the development phase is illustrated in 

Figure 2.5. 

 

 

Figure 2.5. A hierarchy of models for process development (adapted from Ng and Wibowo, 

2003).  

 

In recent years, graphical methods have proven useful for the systematic generation of process 

flowsheets (Rajagopal et al., 1991; Wibowo et al., 2004).  Graphical methods based on 

thermodynamic phase equilibria readily establish the thermodynamic limitations of a process. In 

distillation processes, such an analysis usually involves residue curves and distillation boundaries; 

while for extraction, the shape of the miscibility gap and the location of tie-lines are taken into 

account.   
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For crystallisation processes, the crystallisation path map is a useful tool for finding feasible 

flowsheets. These paths are trajectories of the liquid composition in a crystallizer as the solid is 

formed and removed from solution (Slaughter and Doherty, 1995). These trajectories are 

conveniently represented in the form of phase diagrams. Such phase diagrams can be predicted 

using a thermodynamic model, or can be obtained from experimental data (if available). For 

crystallisation, solid-liquid equilibrium (SLE) phase diagrams are used.  

 

In order to evaluate the process design options for crystallisation processes, Moyers and Rousseau 

(1987) highlighted the need, in the earliest stages, for accurate solid-liquid equilibrium data.  To 

this end, with the use of SLE phase diagrams the following can be established prior to any detailed 

investigations:  

• The feasibility of the planned process; that is, determining if pure solute can in fact be 

crystallized from the feed solution. 

• The feasibility of operating regions, process operations and pathways to generate the desired 

product.  

• The thermodynamic limitations on crystallisation of a component. The feed composition and 

position of the eutectic fix the maximum attainable solute recovery.  

• The identity of the maximum theoretical yield under any given condition.  

• The effect of solvent / anti-solvent / co-solvent selection on the process. 

•  The temperature and/or pressure ranges of the crystallizer operation and the composition of 

the residue liquor exiting the crystallizer. 

 

An example of a ternary solid-liquid equilibrium phase diagram of a system consisting of a solvent 

(S), product (P) and anti-solvent (A) is shown in Figure 2.6. This three-dimensional diagram is 

formed by putting together the T-x diagrams of three binary systems (P-A, P-S, and A-S).  The 

surfaces bounded by the points �𝑇𝑇𝑚𝑚,𝑃𝑃 − 𝐵𝐵𝐵𝐵𝑆𝑆,𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃 − 𝐵𝐵𝐵𝐵𝐴𝐴,𝑃𝑃�; �𝑇𝑇𝑚𝑚,𝑆𝑆 − 𝐵𝐵𝐵𝐵𝑆𝑆,𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃 −

𝐵𝐵𝐵𝐵𝑆𝑆,𝐴𝐴�  and �𝑇𝑇𝑚𝑚,𝐴𝐴 − 𝐵𝐵𝐵𝐵𝑆𝑆,𝐴𝐴 − 𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃 − 𝐵𝐵𝐵𝐵𝐴𝐴,𝑃𝑃� are the saturation surfaces (or solubility surfaces) 

for each of the three components P, S and A respectively. Two surfaces intersect at the eutectic 

trough, which represents the area where multiple components are saturated. Lines �𝐵𝐵𝐵𝐵𝑆𝑆,𝑃𝑃 −

𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃�,  �𝐵𝐵𝐵𝐵𝐴𝐴,𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃�, and �𝐵𝐵𝐵𝐵𝑆𝑆,𝐴𝐴 − 𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃� are the binary troughs for components (P and 

S), (A and P) and (A and S), respectively; and all three surfaces meet at the ternary eutectic 

point�𝑇𝑇𝑇𝑇𝑆𝑆,𝐴𝐴,𝑃𝑃�,  at which all three components are saturated at the same time.  Because working 

with three-dimensional figures can be challenging, it is often desirable to reduce the 

dimensionality. Two key diagrams obtained from the phase diagram are the poly-thermal 

projection and isothermal cuts.  
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The poly-thermal projection is the top view one would get looking straight down, through the 

prism, from above.  This projection can be seen at the base of Figure 2.6. The presence of eutectics 

establishes the boundaries that divide the projection into distinct crystallisation regions, which 

are non-overlapping and mutually exclusive. The aim is to divide the composition space into 

operating regions that are subspaces in which only a certain component can be crystallized. In 

each bounded region of the phase diagram only a single component can be crystallized in pure 

form.  

Crystallisation of more than one component is possible for components sharing a eutectic 

manifold. The operating regions are bounded by various manifolds. The number of these 

manifolds is dependent on the number of components. Several components are crystallized at a 

eutectic manifold. The number of different types of eutectic manifolds depends on the number of 

components (n) involved. A system can have (n - binary eutectic manifolds in which 2 

components are crystallized simultaneously, (n-2) ternary eutectic manifolds in which 3 

components are crystallized simultaneously, etc.  

 

Figure 2.6. Solid-Liquid Equilibrium (SLE) phase diagram with the poly-thermal projection 

of a system consisting 3 components. 

Note that every point on this projection has a different temperature, corresponding to the 

saturation surfaces in the original 3D diagram, thus the name, poly-thermal projection. Also, since 

only the saturation surfaces are displayed, this projection does not provide any information on the 

solid mixture regions that exist below the eutectic points. 
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On the other hand, an isothermal cut diagram represents a series of cuts taken at different temperatures.  

It is useful for evaluating systems at constant temperature, such as, evaporative or anti-solvent 

crystallisation. Whereas, a poly-thermal projection is more useful to identify the feed 

compositions from which a pure product can be obtained without being restricted to a certain 

temperature, and where the regions in which pure components can be crystallized out are clearly 

identified. 

Equilibrium phase diagrams can be used to determine the effect of some basic operations in 

crystallisation and to visualise the resulting movements within the composition space. Using this 

technique, several researchers, (Dye and Ng, 1995; Wibowo and Ng, 2000, 2002; Schroer et al., 

2001; Cisternas et al., 2006), have developed rules and guidelines for synthesising operational 

protocols for crystallisation-based separation processes, and some of the key elements are 

presented here. 

The composition of the feed stream determines the location at which it should be introduced into 

the compositional space. The pure component, i, is represented by the melting point of 

component, i, resulting in an apex (end point) in the ternary poly-thermal projection. Our mixture 

shows three binary eutectic points, 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗, and one ternary eutectic point, 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘. The resulting 

eutectic curve between these points defines the operating region.   

First, the attainable operating regions in the phase diagram need to be analyzed. The method to 

generate supersaturation in each region is closely related to the order in which the regions in the 

phase diagram will be visited. Within each operating region there are several tasks possible to 

induce crystallisation: temperature change; composition change by solvent removal; and 

composition change by anti-solvent addition or removal. The eutectic manifolds need to be 

crossed to move to a different operating region, which can be affected by the following tasks for 

composition manipulation: solvent addition or removal; anti-solvent addition or removal; and 

stream combination.  

Some operations, and their resulting movements in the compositional space, are summarized in 

Table 2.2 and shown in Figure 2.6.  Starting with a feed composition (1) one can cool down until 

the SLE surface is reached (2). For simplicity, we assume equilibrium operation without the need 

to sub-cool. Further cooling results in crystallisation of the product and movement along the SLE 

surface on a straight line away from the product apex (3). The addition of a solvent to a binary 

mixture containing product and anti-solvent (4) results in (2). Adding an anti-solvent to a binary 

mixture of the product dissolved in a solvent (5) also leads to a new composition (2). The 

evaporation of the solvent from (6) along the distillation curve results in the new composition (7). 

In order to change into a different operating region one can combine two different streams (8) and 

(9), resulting in (10). 
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Table 2.2. Impact of key basic operations in the crystallisation compositional space.  

Operation Resulting movement in compositional space 
cooling Create supersaturation within operating region only. Movement away from solids apex that is being 

crystallized.  Isothermal cut lines can be used to quantify the changes. 
 

evaporation Create supersaturation within operating region or used to cross into different operating regions. 
Straight line movement from away from solvent apex through” feed” point towards desired 
solid/region to be crystallised. Lever arm rule can be used to quantify changes. 
 

Solvent addition  Movement towards solvent apex. Used to cross into different operating region. Straight line 
movement away from last condition towards solvent apex. Lever arm rule can be used to quantify 
changes. 
 

Anti-solvent 
addition 

Create supersaturation within operating region or used to cross into different operating regions. 
Movement away from solids apex that is being crystallized. Anti-solvent composition cut lines can be 
used to quantify changes. 
 

Stream combination Changes composition of stream – used to cross operating regions. Movement towards component 
apex that is being enriched. 

 

It is illustrated, in Figure 2.7, how the movements in the poly-thermal diagram were translated 

into a process flowsheet, using the rules of Table 2.2. The system consisted of two solutes, A and 

B, in solvent S. The feed composition was as indicated by point 1. The tie-line from point S to 

the feed point extended into compartment A, indicating that solute A should have been crystallised 

first. A bypass of the binary eutectic line, to reach compartment A, could be achieved by one of 

the following: evaporation, or anti-solvent addition, or stream combination.  

Evaporation was chosen to bypass the binary eutectic line, until a tie-line radiating from point A 

was reached, which resulted in the maximum amount of A crystallising, as shown by the blue tie-

line passing through point 2. Cooling crystallisation and solid recovery was then conducted until 

reaching a position close to the eutectic boundary, as indicated by point 3. Compartment B was 

entered by means of further evaporation of the remaining mother liquor. In order to maximize the 

amount of B crystals, evaporation was undertaken until the radiating tie-line from point B was 

reached (that results in maximum B), which was the line close to the axis AB.  

Cooling was then undertaken, with solid recovery, until close to the AB eutectic line.  A stream 

combination was implemented by adding solvent (recovered from the evaporation process) to the 

mother liquor, to cross over into compartment A. Solvent was added until a radiating tie-line was 

reached that resulted in maximum A. Once again, cooling with solid recovery was possible up to 

a point close to a eutectic line.  

As can be seen, a number of strategies could be employed to recover more of both crystal A and 

crystal B. However, this may mean requiring more evaporators / cooling crystallisers and solid 

recovery units, and more utilities for heating and chilling. To determine the ratio of solvent to be 
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evaporated or the amount of crystals recovered in each operation, the “lever-arm” rule can be 

applied to the respective tie-lines. With these ratios, together with the initial feed rate and 

conditions, the material balance and energy balance can be completed. 

 

Figure 2.7. Examples of phase diagrams for ternary systems, the movements in the 
compositional space and the resulting operating protocol: 1-2 evaporation; 2-3 cooling and 
crystal recovery; 3-4 evaporation; 4-5 cooling and crystal recovery; 5-6 stream 
combination; 6-7 cooling and crystal recovery. 

   
The example in Figure 2.7 reveals the usefulness of crystallisation maps in evaluating potential 

crystallisation schemes for the recovery of stipulated products. However, as the number of 

components increases, so does the complexity of the phase diagrams. To overcome this challenge, 

a computational tool can be developed to replicate the visual analysis.  

This highlights the need for a computational framework: firstly, to generate the phase equilibria 

required for the analysis; secondly, to evaluate the various crystallisation modes of evaporation, 

cooling, and anti-solvent and; thirdly, to develop a process and economic evaluation of the 

suggested schemes in order to shortlist the flowsheets for further investigation. To this end, in the 

chapter 4, the details of a computational framework that has been developed in this research work, 

will be presented. 
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CHAPTER 3: THERMODYNAMIC FRAMEWORK FOR 
MULTICOMPONENT, MULTIPHASE EQUILIBRIA 

The essential requirement in the development of any predictive process computational tool 

include: the understanding of the theoretical foundation of the key phenomena, and the capability, 

range of applicability, and accuracy of the various thermodynamic and process models that are 

used in the development of the process computational tool.  In this work, solid-liquid phase 

equilibria are used as the theoretical foundation to understand crystallisation processes, and 

multicomponent multiphase flash calculations are used to establish the presence of solid-liquid 

equilibria and the subsequent changes to the phase equilibria under varying conditions of 

temperature and concentration. 

In this chapter, the thermodynamic phenomena and models required to address the various aspects 

of multicomponent multi-phase equilibria are presented. But first, a brief outline is provided on 

the importance of phase equilibrium processes in solvent selection for crystallisation.  The 

treatment of thermodynamics is then provided in three sections. The first section covers the 

preliminary thermodynamic concepts and the derivation of solid-liquid phase equilibrium (SLE) 

equations. In the second section an overview of correlative and predictive models currently 

available for phase equilibria calculations is presented, and finally, calculation procedures are 

presented for the determination the multicomponent multi-phase equilibria. 

 

3.1 Use of Phase Diagrams to analyse crystallisation  
Phase data is an essential component in the design, operation and optimization of mass transfer 

operations. Experimental measurements of phase data are generally limited to a few data points 

at specific conditions. These data points are then utilized to determine interaction parameters and 

model coefficients of appropriate thermodynamic models, to extend the use of the data measured 

beyond the experimental conditions. However, in solvent selection processes, making 

experimental measurements with various solvents, co-solvents and anti-solvent combinations at 

various conditions can be impractical in terms of cost and experimental time required.  

The experimental effort required to rapidly determine a full phase diagram in mass transfer 

operations increases with the addition of components. Hence, reliable, predictive tools are 

necessary for the initial screening and selection processes. The predictions can guide the 

experimental work to confirm critical regions of interest.  

Graphical representation of the phase data, in the form of phase diagrams, provide the 

thermodynamic information required for the design and synthesis of separation processes. Since 

the availability of accurate phase diagrams is important for successful application of analysis and 
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synthesis procedures, computational tools are essential methods developed to generate SLE phase 

diagrams. 

The prediction of the solid-liquid-vapour equilibrium (SLVE) data for multicomponent systems, 

and the ability to generate phase diagrams and solubility curves, are requirements in the design 

and analysis of crystallisation processes. The operations that are associated with crystallisation, 

such as, cooling, heating, evaporation, and solvent addition, can be represented as specific types 

of movements on the phase diagrams, thus allowing the user to quickly evaluate process 

alternatives and develop feasible process schemes (Wibowo and Ng, 2000, 2002), (Wibowo et 

al., 2004). 

 Traditionally, SLE data, generated using the Schroder equation, is primarily used in the analysis 

of crystallisation processes. However, applications, with the combination of evaporation with co-

solvent/anti-solvent systems, vacuum application and the sizing of downstream processes, require 

a more rigorous multiphase equilibria procedure. It requires a procedure that can calculate the 

amount and compositions of all three phases (liquid, solid and vapour) present during the process 

of crystallisation. In this work, multiphase equilibria are generated by means of algorithms based 

on multiphase flash calculations.   

The phase equilibrium calculation is used to accurately predict the correct number of phases and 

their compositions, at equilibrium, in the system. Two kinds of approach are typically used to 

model multiphase flash calculations: the equation-solving approach (K-value method); and the 

minimization of the Gibbs free energy approach. Isofugacity conditions and mass balances form 

the set of equations in the equation-solving approach, and the stability test or the common tangent 

test forms the basis of Minimization of the global Gibbs free energy approach (Lucia, 2000), 

(Parekh and Mathias, 1998). 

A robust solvent selection process must be capable of identifying and excluding solvent systems 

that exhibit immiscibility or azeotropic behaviour. Hence the phase behaviour of relevant systems 

(excluding azeotropic and immiscible systems) can be modelled as solid-liquid-vapour systems. 

3.2. Development of thermodynamic framework 
When selecting thermodynamic methods for a phase calculation, the first consideration is whether 

it is a pure component or a mixture of components system, and secondly, what type of behaviour 

is exhibited by the component or mixture. In thermodynamics, fluid behaviour is typically 

classified as ideal, regular, or non-ideal systems, and the behaviour is attributable to either 

physical or chemical intermolecular forces.  

In fluid behaviour, physical forces would be due to collisions between molecules, affected 

primarily by the size and shape of the molecules. Chemical forces would be electromagnetic-type 
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forces at the molecular level, which tend to cause the molecules to group or associate in a non-

random fashion.  

Ideal fluid behaviour is experienced in systems where all the molecules are of virtually the same 

size, and no intermolecular forces of attraction or repulsion exist. An ideal / perfect gas consists 

of freely moving particles of negligible volume and intermolecular forces. Regular behaviour is 

experienced in systems where the non-idealities stem from moderate physical interactions, i.e., 

from differences in the size and shape of the molecules. Intermolecular associations are assumed 

to be minimal.  The strict definition of a regular solution is one where the excess entropy of mixing 

is zero. This generally occurs in systems where the components are non-polar and do not differ 

appreciably in size, shape, and chemical behaviour. Non-ideal (polar) behaviour is experienced 

in systems where there are strong influences, predominantly from chemical or intermolecular 

forces of attraction or repulsion. The impact of the differences in the component or mixture 

behaviour will become explicit in the following sections. 

3.2.1. Thermodynamic Preliminaries 
The state of a thermodynamic system is defined by a set of variables associated with 

thermodynamic state, which include: pressure, temperature, volume, internal energy, enthalpy, 

and entropy. For a heterogeneous, closed system, containing m components, in π phases, the 

whole system reaches the equilibrium state if the intensive quantities (including chemical 

potential, μ) are identical for all π phases.  

𝑇𝑇(1) = 𝑇𝑇(2) = ⋯ = 𝑇𝑇(𝜋𝜋)                                                               (3.1) 

𝑃𝑃(1) = 𝑃𝑃(2) = ⋯ = 𝑃𝑃(𝜋𝜋)                                                               (3.2) 

Walas (1985) proposed that, an equilibrium state is characterized as having a maximum entropy 

or a minimum energy function, at specified values of the two other properties of the particular 

fundamental equation. These possible extrema at equilibrium for different known combination of 

independent variables are identified in Table 3.1 below.  

 

Table 3.1. Equilibrium Extrema for specified conditions (Walas, 1985). 

Variable Extrema Property and Energy function 

Independent variable Maximum Minimum 

U, V S - 

S, V - U,     where 𝑈𝑈 = 𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃 + ∑𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖 
P, H S - 
P, S - H,     where 𝐻𝐻 = 𝑇𝑇𝑇𝑇 + ∑𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖 
T, V - A,      where 𝐴𝐴 = −𝑃𝑃𝑃𝑃 + ∑𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖 
P, T - G,      where 𝐺𝐺 = ∑𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖 
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Where the chemical potential, 𝜇𝜇𝑖𝑖, is defined as the change in internal energy of the system per 

mole of substance i, and may be expressed in terms of any of the four fundamental groups of 

properties: 

𝜇𝜇𝑖𝑖 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
�
𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
�
𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
�
𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
�
𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗

                                   (3.3) 

Because of the importance of temperature T and pressure P as independent properties, the 

chemical potential is generally taken to be the derivative of Gibbs energy with respect to the 

number of moles, referred to as partial molal Gibbs energy. 

 For the transfer of 𝑑𝑑𝑑𝑑𝑖𝑖 moles of a substance between two phases, at the same temperature T and 

pressure P, the change in Gibbs energy is  

𝑑𝑑𝑑𝑑 = �𝜇𝜇𝑖𝑖
(2) − 𝜇𝜇𝑖𝑖

(1)� 𝑑𝑑𝑑𝑑𝑖𝑖                                                                   (3.4) 

Since G is a minimum at equilibrium, its derivative is zero: 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
�
𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗

= 0,   𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   𝜇𝜇𝑖𝑖
(1) = 𝜇𝜇𝑖𝑖

(2)                                         (3.5) 

When the transfer of more than one species between more than two phases occurs, equality of 

chemical potential extends to all phases and all species and can be expressed as: 

𝜇𝜇1
(1) = 𝜇𝜇1

(2) = ⋯ = 𝜇𝜇1
(𝜋𝜋) 

𝜇𝜇2
(1) = 𝜇𝜇2

(2) = ⋯ = 𝜇𝜇2
(𝜋𝜋) 

     ….. 

𝜇𝜇𝑚𝑚
(1) = 𝜇𝜇𝑚𝑚

(2) = ⋯ = 𝜇𝜇𝑚𝑚
(𝜋𝜋)                                                     (3.6) 

In order to relate the abstract chemical potential of a substance to physically measurable 

quantities, such as, temperature, pressure, and composition, we consider the isothermal change in 

the Gibbs energy of n moles of a perfect gas: 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑛𝑛

= 𝑉𝑉 = 𝑛𝑛𝑛𝑛𝑛𝑛
𝑃𝑃

                           (3.7)                                                    

Integrating the above equation, we obtain: 

𝐺𝐺(𝑇𝑇,𝑃𝑃,𝑛𝑛)− 𝐺𝐺(𝑇𝑇,𝑃𝑃0,𝑛𝑛) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃
𝑃𝑃0

                                               (3.8) 
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Which is the difference of the Gibbs energy of a perfect gas at an arbitrary pressure P and a fixed 

reference pressure P0.   

Since G for a pure component is proportional to n, equation (3.8), for one mole of pure component 

the equation can be rewritten as: 

𝜇𝜇(𝑇𝑇,𝑃𝑃,𝑛𝑛)− 𝜇𝜇(𝑇𝑇,𝑃𝑃0,𝑛𝑛) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃
𝑃𝑃0

                                                 (3.9) 

Since the above equation (3.9) is limited to an ideal gas, Lewis and Randall (1923) introduced an 

auxiliary function concept of fugacity, which allows the above equation to be extended to real 

fluids. Lewis and Randall (1923) described fugacity as a measure of the tendency of a molecule 

to escape from the phase in which it is. Fugacity is considered the true (observable) system 

pressure, compensated for by molecular interactions. Therefore, for real fluids, pressure is 

replaced by fugacity in the above equation, and the change in chemical potential of a substance i, 

between a reference state, P0, T0, and the actual state, P, T, is given as: 

𝜇𝜇(𝑇𝑇,𝑃𝑃,𝑛𝑛)− 𝜇𝜇(𝑇𝑇,𝑃𝑃0,𝑛𝑛) = 𝜇𝜇2 − 𝜇𝜇10 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 � 𝑓𝑓
𝑓𝑓0
�                                                                 (3.10) 

This represents an isothermal change in chemical potential when going from 𝑓𝑓0𝑡𝑡𝑡𝑡 𝑓𝑓𝑖𝑖.  Therefore 

the standard states for all components in all phases must be at the same temperature; the pressure 

and composition of the standard states, however, do not necessarily have to be the same. The 

phase equilibrium criterion given in terms of chemical potential can therefore be rewritten in 

terms of fugacity as: 

𝑓𝑓1
(1) = 𝑓𝑓1

(2) = ⋯ = 𝑓𝑓1
(𝜋𝜋) 

𝑓𝑓2
(1) = 𝑓𝑓2

(2) = ⋯ = 𝑓𝑓2
(𝜋𝜋) 

     𝑓𝑓𝑚𝑚
(1) = 𝑓𝑓𝑚𝑚

(2) = ⋯ = 𝑓𝑓𝑚𝑚
(𝜋𝜋)                                           (3.11) 

For a pure, ideal gas, the fugacity is equal to the pressure, and for component i, in a mixture of an 

ideal gas, it is equal to its partial pressure, 𝑦𝑦𝑖𝑖𝑃𝑃. Because all systems, either pure or mixed, 

approach ideal gas behaviour at very low pressures, the definition of fugacity is completed by the 

limit: 

𝑓𝑓𝑖𝑖
𝑦𝑦𝑖𝑖𝑃𝑃

→ 1  𝑎𝑎𝑎𝑎 𝑃𝑃 → 0                                                                (3.13) 

We further define the above dimensionless ratio as the fugacity coefficient, 𝜑𝜑𝑖𝑖, and for a mixture 

of ideal gases, 𝜑𝜑𝑖𝑖 = 1. 
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It is clear that, if we want to take advantage of the fugacity criteria to perform equilibrium 

calculations, we need to have a means of calculation. With the definition of fugacity, in terms of 

chemical potential for a pure component and Maxwell’s relationship being: 

𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    𝑎𝑎𝑎𝑎𝑎𝑎    �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= 𝑣𝑣�                                                       (3.14) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑣𝑣�𝑑𝑑𝑑𝑑                                                                     (3.15) 

The definition of the fugacity coefficient of 𝜑𝜑 = 𝑓𝑓
𝑃𝑃
 can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙                                                                   (3.16) 

Therefore the equation can be written as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑣𝑣�𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑃𝑃  𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑣𝑣�𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑅𝑅 𝑑𝑑𝑑𝑑 
𝑃𝑃

                (3.17) 

Integrating: 

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = � �
𝑣𝑣�
𝑅𝑅𝑅𝑅

−
1
𝑃𝑃�
𝑑𝑑𝑑𝑑

𝑃𝑃

𝑃𝑃0

𝑙𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙𝑙0

 

It is convenient to define the lower limit of integration as the ideal state, for which the values of 

fugacity coefficient, volume, and compressibility factor are known. At the ideal state, at the lower 

limit𝑃𝑃 → 0, 𝜑𝜑 → 1, 𝑙𝑙𝑙𝑙𝜑𝜑 → 0. Substituting this into the above equation, we have: 

𝑙𝑙𝑙𝑙𝑙𝑙 = ∫ � 𝑣𝑣�
𝑅𝑅𝑅𝑅
− 1

𝑃𝑃
�𝑑𝑑𝑑𝑑𝑃𝑃

0                                                                       (3.18) 

Expressed in terms of compressibility factor𝑍𝑍 = 𝑃𝑃𝑣𝑣�
𝑅𝑅𝑅𝑅

, we have: 

𝑙𝑙𝑙𝑙𝑙𝑙 = ∫ �
𝑃𝑃𝑣𝑣�
𝑅𝑅𝑅𝑅−1

𝑃𝑃
�𝑑𝑑𝑑𝑑      =   ∫ (𝑍𝑍 − 1)𝑃𝑃

0
𝑃𝑃
0

𝑑𝑑𝑑𝑑
𝑃𝑃

                                                   (3.19) 

Or expressed in terms of fugacity: 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙 +  ∫ (𝑍𝑍 − 1)𝑃𝑃
0

𝑑𝑑𝑑𝑑
𝑃𝑃

                                                            (3.20) 

Similarly, we can derive the expression for the fugacity coefficient of a component in a 

multicomponent mixture. Following a pattern similar to that which we have presented, beginning 

with the definition of fugacity for a component in terms of chemical potential, we can derive: 

𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 =  ∫ (𝑍𝑍𝚤𝚤� − 1)𝑃𝑃
0

𝑑𝑑𝑑𝑑
𝑃𝑃

   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝑍̅𝑍𝑖𝑖 = 𝑃𝑃𝑉𝑉�𝑖𝑖
𝑅𝑅𝑇𝑇

                                                 (3.21) 
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The above equations show that fugacity, or the fugacity coefficient, is a function of pressure, 

temperature and volume. To compute the fugacity coefficient with equations of state that are 

explicitly expressed in pressure, we can replace 𝑉𝑉𝑉𝑉𝑉𝑉 with its equivalent: 

∫ 𝑉𝑉𝑉𝑉𝑉𝑉 =𝑃𝑃
𝑃𝑃0

∫ 𝑑𝑑(𝑃𝑃𝑃𝑃) − ∫ 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃 − 𝑃𝑃0𝑉𝑉0 − ∫ 𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉
𝑉𝑉0

𝑉𝑉
𝑉𝑉0

𝑃𝑃
𝑃𝑃0

                                   (3.22) 

Accordingly, the fugacity coefficient for a pure component may be evaluated as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑍𝑍 − 1 − 𝑙𝑙𝑙𝑙𝑙𝑙 − 1
𝑅𝑅𝑅𝑅 ∫ �𝑃𝑃 − 𝑅𝑅𝑅𝑅

𝑉𝑉
� 𝑑𝑑𝑑𝑑𝑉𝑉

∞                                              (3.23) 

And for mixtures, the partial fugacity is evaluated as follows: 

𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 = 1
𝑅𝑅𝑅𝑅 ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
− 𝑅𝑅𝑅𝑅

𝑉𝑉
� 𝑑𝑑𝑑𝑑 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑉𝑉

∞                                                  (3.24) 

Table 3-2 provides a list of partial fugacity coefficient expressions that result from the integrations 

of commonly used equations of state. A more comprehensive review of the various equations of 

state are provided in the texts by  Walas (1984), Gmehling et al. (2012), and Kontogeorgis and 

Folas (2010). 

To evaluate the fugacity of a liquid, at a pressure above the saturation pressure, a two-step 

approach is applied. First, at saturation the liquid fugacity equals the vapour fugacity: 

Since                          𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 ,                  therefore                𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 

In the second step, the change in fugacity from saturation pressure to system pressure (at constant 

T) is determined. This effect is generally small but is significant at high pressures. The fugacity 

is related to pressure at constant temperature by the equation: 

𝑑𝑑𝐺𝐺𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑖𝑖                                                         (3.33) 

At constant T, we have 

𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓𝑖𝑖 = 𝑉𝑉𝑖𝑖
𝑙𝑙

𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑                                                                       (3.34) 

Integrating from  𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 to 𝑃𝑃, we have 

𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 �
1
𝑅𝑅𝑅𝑅 ∫ 𝑉𝑉𝑖𝑖𝑙𝑙𝑑𝑑𝑑𝑑

𝑃𝑃
𝑃𝑃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 �                                                          (3.35) 

The exponential term is referred to as the Poynting correction factor, which, to evaluate, requires 

liquid molar volume as a function of pressure.  
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Table 3.2. Partial Fugacity Coefficient Expressions for some Equations of State (Walas, 
1985). 

EoS Name Equations 
Viral  Equation 

𝑧𝑧 = 1 + 𝐵𝐵𝐵𝐵
𝑅𝑅𝑅𝑅

                                                                                                                           
Fugacity Expression 
𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 = 𝑃𝑃

𝑅𝑅𝑅𝑅
�𝐵𝐵𝑖𝑖𝑖𝑖 + 0.5�∑ ∑ 𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘�2𝛿𝛿𝑗𝑗𝑗𝑗 − 𝛿𝛿𝑗𝑗𝑗𝑗�𝑘𝑘𝑖𝑖 ��                                                       

Where 

𝐵𝐵 = ��𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐵𝐵𝑖𝑖𝑖𝑖         𝛿𝛿𝑗𝑗𝑗𝑗 = 2𝐵𝐵𝑗𝑗𝑗𝑗 − 𝐵𝐵𝑗𝑗𝑗𝑗 − 𝐵𝐵𝑖𝑖𝑖𝑖                   𝛿𝛿𝑗𝑗𝑗𝑗 = 2𝐵𝐵𝑗𝑗𝑗𝑗 − 𝐵𝐵𝑗𝑗𝑗𝑗 − 𝐵𝐵𝑘𝑘𝑘𝑘 

Van der Waals Equation 
𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝑉𝑉−𝑏𝑏
− 𝑎𝑎

𝑉𝑉2
                                                                                                                      

Fugacity Expression 

𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 = 𝑏𝑏𝑖𝑖
𝑉𝑉−𝑏𝑏

− 𝑙𝑙𝑙𝑙 �𝑉𝑉−𝑏𝑏
𝑉𝑉
� − 2�𝑎𝑎𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅
∑ 𝑦𝑦𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖�1 − 𝑘𝑘𝑖𝑖𝑖𝑖�𝑛𝑛
𝑗𝑗=1 − 𝑙𝑙𝑙𝑙𝑙𝑙                                     

Where 

𝑎𝑎 = �∑ 𝑦𝑦𝑖𝑖�𝑎𝑎𝑖𝑖�
2
 and    𝑏𝑏 = ∑𝑦𝑦𝑖𝑖𝑏𝑏𝑖𝑖 

Redlich -Kwong Equation 
𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝑉𝑉−𝑏𝑏
− 𝑎𝑎

√𝑇𝑇𝑉𝑉(𝑉𝑉+𝑏𝑏)
                                                                                                         

Fugacity Expression 

𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 = 𝑏𝑏𝑖𝑖
𝑏𝑏

(𝑧𝑧 − 1) − 𝑙𝑙𝑙𝑙 �𝑍𝑍 �1 − 𝑏𝑏
𝑉𝑉
�� + 1

𝑏𝑏𝑏𝑏𝑇𝑇1.5 �
𝑎𝑎𝑏𝑏𝑖𝑖
𝑏𝑏
− 2�𝑎𝑎𝑎𝑎𝑖𝑖� 𝑙𝑙𝑙𝑙 �1 + 𝑏𝑏

𝑉𝑉
�                  

Where 

𝑎𝑎 = �∑ 𝑦𝑦𝑖𝑖�𝑎𝑎𝑖𝑖�
2
 and    𝑏𝑏 = ∑𝑦𝑦𝑖𝑖𝑏𝑏𝑖𝑖 

Peng-Robinson Equation 
𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝑉𝑉−𝑏𝑏
− 𝑎𝑎𝑎𝑎

𝑉𝑉(𝑉𝑉+𝑏𝑏)+𝑏𝑏(𝑉𝑉−𝑏𝑏)
                                                                                                  

Fugacity Expression 

𝑙𝑙𝑙𝑙𝜑𝜑𝑖𝑖 = 𝑏𝑏𝑖𝑖
𝑏𝑏

(𝑧𝑧 − 1) − 𝑙𝑙𝑙𝑙 �𝑍𝑍 − 𝑏𝑏𝑏𝑏
𝑅𝑅𝑅𝑅
� + 𝑎𝑎𝑎𝑎

4.828 𝑏𝑏𝑏𝑏𝑏𝑏
�𝑏𝑏𝑖𝑖
𝑏𝑏
− 2

𝑎𝑎𝑎𝑎
∑ 𝑦𝑦𝑗𝑗(𝑎𝑎𝑎𝑎)𝑖𝑖𝑖𝑖𝑗𝑗 � 𝑙𝑙𝑙𝑙 �𝑍𝑍+2.414𝑏𝑏

𝑍𝑍−0.41𝑏𝑏
�   

 

When 𝑉𝑉𝑖𝑖𝑙𝑙 is assumed independent of pressure (i.e incompressible fluid), the above equation 

becomes 

𝑓𝑓𝑖𝑖𝑙𝑙 = 𝜑𝜑𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑉𝑉𝑖𝑖
𝑙𝑙�𝑃𝑃−𝑃𝑃𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠�
𝑅𝑅𝑅𝑅

�                                                     (3.36) 

  Note: 

The above approach for computing fugacity is effective only if the EoS is adequate for the 

computation of the fugacity coefficients. This may not be true for two reasons: either the equation 

may not adequately represent the compound itself, or the mixing rules may not adequately 

represent, or quantify, what is happening to the molecules in a solution, i.e., fail to adequately 

model intermolecular forces between different molecules in a mixture.   

For systems where the non-idealities derive from chemical or intermolecular forces of attraction 

or repulsion, the predictive methods described above are generally inadequate. For these 



57 
 

situations, it is necessary to use methods based upon the excess Gibbs free energy, that is, to use 

activity coefficient methods.To account for non-ideality of a substance, the quantity activity 

coefficient 𝛾𝛾𝑖𝑖 is introduced. The activity coefficient of a non-ideal solution is defined as the ratio 

of the activity ai, and the mole fraction xi, where Lewis defined the fugacity ratio as the activity 

ai: 

𝛾𝛾𝑖𝑖 = 𝑎𝑎𝑖𝑖
𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖

0                                                                           (3.37) 

The relationship between the activity coefficient and Gibbs free energy can be obtained using the 

concept of excess properties. Excess functions are thermodynamic properties of solutions that are 

in excess of those of an ideal solution at the same conditions of temperature, pressure and 

composition. In general for property M: 

𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑀𝑀 = (𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑀𝑀)(𝑎𝑎𝑎𝑎 𝑇𝑇,𝑃𝑃,𝑥𝑥) − (𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑀𝑀)(𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇,𝑃𝑃,𝑥𝑥)  

𝑀𝑀𝐸𝐸 = 𝑀𝑀𝑇𝑇,𝑃𝑃,𝑥𝑥 − 𝑀𝑀𝑖𝑖𝑖𝑖
𝑇𝑇,𝑃𝑃,𝑥𝑥                                                                    (3.38) 

The excess Gibbs energy is defined by 

𝐺𝐺𝑒𝑒𝑒𝑒 = 𝐺𝐺 − 𝐺𝐺𝑖𝑖𝑖𝑖                                                                      (3.39) 

And for mixtures   𝐺𝐺𝑖𝑖𝑒𝑒𝑒𝑒 = 𝐺𝐺𝑖𝑖 − 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖                                                                      (3.40) 

𝐺𝐺𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖
� − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑖𝑖0                                                      (3.41) 

𝐺𝐺𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 � 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖

0� = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛾𝛾𝑖𝑖                                                     (3.42) 

𝐺𝐺𝑒𝑒𝑒𝑒 = ∑𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑅𝑅∑𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖                                                      (3.43) 

Several analytical expressions for the concentration dependence of the excess Gibbs Energy have 

been developed, and hence, it is a fairly simple process to find an analytical expression for the 

activity coefficient. These expressions/models account for the various interactions between the 

various components in the various interacting phases, with binary interaction parameters.  

3.2. Solid-liquid Equilibria 
The process of crystal formation is a solid-liquid equilibria phenomena, and the essential 

thermodynamic equations and relationships for Solid-Liquid-Vapour Equilibrium (SLVE) 

calculations presented here are analogous to those described by Lira-Galeana et al. (1996) for wax 

deposition in hydrocarbon streams. At a fixed temperature and pressure, a liquid phase (l) may 

coexist in equilibrium with a vapour phase (v) and a solid phase (s). At equilibrium, for every 

component i the following thermodynamic relationship applies: 
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𝑓𝑓𝑖𝑖𝑣𝑣 = 𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑓𝑓𝑖𝑖𝑠𝑠                 𝑖𝑖 = 1,2, … .𝑁𝑁          (3.44) 

Where f is the fugacity and N is the number of components.  

The vapour phase can be described by an equation of state (EOS),  t he liquid phase by an 

activity-coefficient model or by an EOS, and the solid phase is generally described by an 

activity-coefficient model:   

𝑓𝑓𝑖𝑖𝑣𝑣 = 𝜑𝜑𝑖𝑖𝑣𝑣𝑦𝑦𝑖𝑖𝑃𝑃 ;         𝑓𝑓𝑖𝑖𝑙𝑙 = 𝜑𝜑𝑖𝑖𝑙𝑙𝑥𝑥𝑖𝑖𝑙𝑙𝑃𝑃  𝑜𝑜𝑜𝑜   𝑓𝑓𝑖𝑖𝑙𝑙 = 𝛾𝛾𝑖𝑖𝑙𝑙𝑥𝑥𝑖𝑖𝑙𝑙𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑙𝑙  ,     𝑎𝑎𝑎𝑎𝑎𝑎  𝑓𝑓𝑖𝑖𝑠𝑠 = 𝛾𝛾𝑖𝑖𝑠𝑠𝑥𝑥𝑖𝑖𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

𝑠𝑠        ( 3 . 4 5 )  

Where 𝜑𝜑𝑖𝑖𝑣𝑣 and 𝜑𝜑𝑖𝑖𝑙𝑙 are fugacity coefficients of component i in the vapour and liquid phases, 

respectively, and are computed from an EOS; and 𝛾𝛾𝑖𝑖𝑙𝑙and 𝛾𝛾𝑖𝑖𝑠𝑠 are activity coefficients of 

component I in the liquid and the solid phases; respectively; and are computed from activity 

coefficient models.  

Further, the use of equilibrium coefficients, K, generally used in VLE and LLE 

computations, are extended to describe the equilibrium relationships between the 

phases in a VLSE system. For the vapour-liquid phase, the commonly-used expression 

is: 

𝐾𝐾𝑖𝑖𝑣𝑣𝑣𝑣 = 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
𝑙𝑙 = 𝜑𝜑𝑖𝑖

𝑙𝑙

𝜑𝜑𝑖𝑖
𝑣𝑣                                                               (3.46) 

 

For the liquid-solid phase, fugacity can be described with the help of activity 

coefficients and the standard fugacities for the liquid and solid phases: 

𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑙𝑙 = 𝑥𝑥𝑖𝑖𝑠𝑠𝛾𝛾𝑖𝑖𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

𝑠𝑠              𝑜𝑜𝑜𝑜         𝑥𝑥𝑖𝑖
𝑙𝑙𝛾𝛾𝑖𝑖
𝑙𝑙

𝑥𝑥𝑖𝑖
𝑠𝑠𝛾𝛾𝑖𝑖

𝑠𝑠 = �𝑓𝑓
𝑠𝑠

𝑓𝑓𝑙𝑙
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

                        (3.47) 

Where Lira-Galeana et al. (1996) proposed an analogous equilibrium constant: 

  𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑖𝑖
𝑙𝑙

𝛾𝛾𝑖𝑖
𝑠𝑠 �

𝑓𝑓𝑙𝑙

𝑓𝑓𝑠𝑠
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

  𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑥𝑥𝑖𝑖
𝑠𝑠

𝑥𝑥𝑖𝑖
𝑙𝑙         (3.48) 

The required ratio of the standard fugacities can be obtained by examining the 

thermodynamic cycle of the sublimation process of a solid. Because enthalpy, entropy and 

Gibbs energy are unique state functions, calculation of a difference in such a quantity is 

independent of the thermodynamic route of calculation. The described phase transition from 

liquid to solid evaluated at constant temperature T can be evaluated via an alternate path as shown 

in Figure 3.1. Since data for the triple point is not abundant, we can reasonably assume that the 

triple point temperature is well approximated by the melting temperature Tm, i.e.  𝑇𝑇𝑟𝑟 ≈ 𝑇𝑇𝑚𝑚. 
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Solid at system 
temperature T

Solid at melting point 
temperature Tm

Liquid at melting point 
temperature Tm

Liquid at system 
temperature T

Step 1:
Heating of the solid 

from T to Tm

Step 2
Phase change from solid 

to liquid at Tm

Step 3
Cooling of the liquid 

from Tm to T

Overall Process 
from solid to liquid

Figure 3.1. Thermodynamic cycle for the sublimation process of a solid. 

 

First, the solid at state is heated from the system temperature T up to triple point temperature 𝑇𝑇𝑟𝑟 ≈

𝑇𝑇𝑚𝑚 – step 1. Then, at the temperature𝑇𝑇𝑟𝑟 ≈ 𝑇𝑇𝑚𝑚, the solid undergoes a phase change from solid to 

liquid – step 2. Finally, the liquid is cooled from the triple point temperature 𝑇𝑇𝑟𝑟 ≈ 𝑇𝑇𝑚𝑚 to the 

systems temperature T – step 3. The changes in the enthalpy and entropy, via the alternate 

hypothetical route, is shown in Figure 3.2.  

 

        

Figure 3.2. Enthalpy and Entropy changes during the sublimation process of a solid. 

 

The Gibbs energy change for a transition from solid to liquid at system temperature is calculated 

as follows: 
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∆𝐺𝐺𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑖𝑖
𝑙𝑙

𝑓𝑓𝑖𝑖
𝑠𝑠                                                                       (3.49) 

The change in Gibbs energy can also be calculated with the fundamental equation for Gibbs 

energy. The Gibbs Sate function and the differential of the Gibbs energy, in terms of temperature 

and pressure, are: 

𝐺𝐺(𝑇𝑇,𝑃𝑃) = 𝐻𝐻(𝑇𝑇,𝑃𝑃) − 𝑇𝑇𝑇𝑇(𝑇𝑇,𝑃𝑃)                                                   (3.50) 

𝑑𝑑𝑑𝑑(𝑇𝑇,𝑃𝑃) = 𝑑𝑑𝑑𝑑(𝑇𝑇,𝑃𝑃) − 𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇,𝑃𝑃)                                              (3.51) 

The differential of the entropy can be evaluated by considering the heat capacity and the Maxwell 

equation, which relate the derivative of the entropy to the pressure, and the derivative of the 

volume to temperature: 

𝑑𝑑𝑑𝑑(𝑇𝑇,𝑃𝑃) = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃
𝑑𝑑𝑑𝑑 + �𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃
�
𝑇𝑇
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶

𝑇𝑇
𝑑𝑑𝑑𝑑 − �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑃𝑃
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶

𝑇𝑇
𝑑𝑑𝑑𝑑 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉           (3.52) 

Where, β is the volumetric thermal expansion coefficient, and 𝛽𝛽 = 1
𝑉𝑉
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃

; and the differential 

of the enthalpy is: 

𝑑𝑑𝑑𝑑(𝑇𝑇,𝑃𝑃) = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇,𝑃𝑃) + 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑉𝑉(1 − 𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑                             (3.53) 

 

With reference to Figure 3.2, we have: 

∆𝐺𝐺𝑖𝑖 = ∆𝐻𝐻𝑖𝑖 − 𝑇𝑇∆𝑆𝑆𝑖𝑖                                                            (3.54) 

Combining the two equations yields the ratio of the standard fugacity: 

𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖
𝑙𝑙

𝑓𝑓𝑖𝑖
𝑠𝑠 = ∆𝐺𝐺𝑖𝑖

𝑅𝑅𝑅𝑅
= ∆𝐻𝐻𝑖𝑖

𝑅𝑅𝑅𝑅
− ∆𝑆𝑆𝑖𝑖

𝑅𝑅
                                                          (3.55) 

The change in enthalpy and entropy can be determined from the thermodynamic cycle shown in 

Figure 3.2 and portrayed below. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1                                         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 2                                            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 3 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 𝑡𝑡𝑡𝑡 𝑇𝑇𝑚𝑚                𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑇𝑇𝑚𝑚      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇𝑚𝑚 𝑡𝑡𝑡𝑡 𝑇𝑇               

∆𝐻𝐻𝑖𝑖 =    � 𝑐𝑐𝑝𝑝,𝑖𝑖
𝑠𝑠

𝑇𝑇𝑚𝑚

𝑇𝑇
𝑑𝑑𝑑𝑑 + � 𝑉𝑉𝑠𝑠(1 − 𝑇𝑇𝛽𝛽𝑠𝑠)𝑑𝑑𝑑𝑑

𝑃𝑃𝑡𝑡

𝑃𝑃

 + ∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   +      � 𝑐𝑐𝑝𝑝,𝑖𝑖

𝑙𝑙
𝑇𝑇

𝑇𝑇𝑚𝑚
𝑑𝑑𝑑𝑑 + �𝑉𝑉𝑙𝑙�1− 𝑇𝑇𝛽𝛽𝑙𝑙�𝑑𝑑𝑑𝑑

𝑃𝑃

𝑃𝑃𝑡𝑡

  

∆𝑆𝑆𝑖𝑖 =    �
𝑐𝑐𝑝𝑝,𝑖𝑖
𝑠𝑠

𝑇𝑇

𝑇𝑇𝑚𝑚

𝑇𝑇
𝑑𝑑𝑑𝑑 −  � 𝑉𝑉𝑠𝑠𝛽𝛽𝑠𝑠𝑑𝑑𝑑𝑑

𝑃𝑃𝑡𝑡

𝑃𝑃

     +         
∆𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇𝑚𝑚
        +     �

𝑐𝑐𝑝𝑝,𝑖𝑖
𝑙𝑙

𝑇𝑇

𝑇𝑇

𝑇𝑇𝑚𝑚
𝑑𝑑𝑑𝑑 − �𝑉𝑉𝑙𝑙𝛽𝛽𝑙𝑙𝑑𝑑𝑑𝑑

𝑃𝑃

𝑃𝑃𝑡𝑡
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Assuming that the difference in heat capacities and the volumes of the solid and liquid phases is 

constant for the temperature range:  

                             ∆𝑐𝑐𝑝𝑝,𝑖𝑖 = 𝑐𝑐𝑝𝑝,𝑖𝑖
𝑙𝑙 − 𝑐𝑐𝑝𝑝,𝑖𝑖

𝑠𝑠  ,          and that                      𝑉𝑉𝑖𝑖𝑙𝑙 − 𝑉𝑉𝑖𝑖𝑠𝑠 = ∆𝑉𝑉𝑖𝑖 

Then: 

∆𝐻𝐻𝑖𝑖 = ∫ ∆𝐶𝐶𝑝𝑝,𝑖𝑖
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑 + ∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + ∫ ∆𝑉𝑉𝑖𝑖𝑑𝑑𝑑𝑑

𝑃𝑃
𝑃𝑃𝑡𝑡

− ∫ 𝑇𝑇�𝑉𝑉𝑙𝑙𝛽𝛽𝑙𝑙 − 𝑉𝑉𝑠𝑠𝛽𝛽𝑠𝑠�𝑑𝑑𝑑𝑑𝑃𝑃
𝑃𝑃𝑃𝑃              (3.56) 

∆𝑆𝑆𝑖𝑖 = ∫
∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑇𝑇
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑 + ∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇𝑚𝑚
− ∫ �𝑉𝑉𝑙𝑙𝛽𝛽𝑙𝑙 − 𝑉𝑉𝑠𝑠𝛽𝛽𝑠𝑠�𝑑𝑑𝑑𝑑𝑃𝑃

𝑃𝑃𝑃𝑃                                             (3.57) 

Therefore: 

∆𝐺𝐺𝑖𝑖 = ∫ ∆𝐶𝐶𝑝𝑝,𝑖𝑖
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑 + ∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + ∫ ∆𝑉𝑉𝑖𝑖𝑑𝑑𝑑𝑑

𝑃𝑃
𝑃𝑃𝑡𝑡

− ∫ 𝑇𝑇�𝑉𝑉𝑙𝑙𝛽𝛽𝑙𝑙 − 𝑉𝑉𝑠𝑠𝛽𝛽𝑠𝑠�𝑑𝑑𝑑𝑑𝑃𝑃
𝑃𝑃𝑃𝑃 − 𝑇𝑇 ∫

∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑇𝑇
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑 −

𝑇𝑇∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇𝑚𝑚
+ 𝑇𝑇 ∫ �𝑉𝑉𝑙𝑙𝛽𝛽𝑙𝑙 − 𝑉𝑉𝑠𝑠𝛽𝛽𝑠𝑠�𝑑𝑑𝑑𝑑𝑃𝑃

𝑃𝑃𝑃𝑃                                                                                                                   

(3.58) 

∆𝐺𝐺𝑖𝑖 = ∫ ∆𝐶𝐶𝑝𝑝,𝑖𝑖
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑 + ∆𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �1 − 𝑇𝑇

𝑇𝑇𝑚𝑚
� + ∫ ∆𝑉𝑉𝑖𝑖𝑑𝑑𝑑𝑑

𝑃𝑃
𝑃𝑃𝑡𝑡

− 𝑇𝑇 ∫
∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑇𝑇
𝑇𝑇
𝑇𝑇𝑚𝑚

𝑑𝑑𝑑𝑑                 (3.59) 

 

𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖
𝑙𝑙

𝑓𝑓𝑖𝑖
𝑠𝑠 = ∆𝐺𝐺𝑖𝑖

𝑅𝑅𝑅𝑅
= ∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑅𝑅𝑅𝑅
(𝑇𝑇 − 𝑇𝑇𝑚𝑚) + ∆𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑅𝑅𝑅𝑅
�1 − 𝑇𝑇

𝑇𝑇𝑚𝑚
�    − ∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑅𝑅
𝑙𝑙𝑙𝑙 𝑇𝑇

𝑇𝑇𝑚𝑚
+ ∆𝑉𝑉𝑖𝑖(𝑃𝑃−𝑃𝑃𝑡𝑡)

𝑅𝑅𝑅𝑅
           (3.60) 

Which can be written as: 

𝑙𝑙𝑙𝑙 𝑓𝑓𝑖𝑖
𝑙𝑙

𝑓𝑓𝑖𝑖
𝑠𝑠 = ∆𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑅𝑅𝑅𝑅
�1 − 𝑇𝑇

𝑇𝑇𝑚𝑚
�    − ∆𝐶𝐶𝑝𝑝,𝑖𝑖

𝑅𝑅
�𝑇𝑇𝑚𝑚
𝑇𝑇
− 1 − 𝑙𝑙𝑙𝑙 � 𝑇𝑇

𝑇𝑇𝑚𝑚
�� + ∆𝑉𝑉𝑖𝑖(𝑃𝑃−𝑃𝑃𝑡𝑡)

𝑅𝑅𝑅𝑅
                      (3.61) 

In the case of simple eutectic systems, the solid will crystallise out in pure form, hence 

equation (3.61) reduces to: 

        −𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙 = 𝑙𝑙𝑙𝑙 �𝑓𝑓
𝑙𝑙

𝑓𝑓𝑠𝑠
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

          

=   ∆ℎ𝑚𝑚,𝑖𝑖
𝑅𝑅𝑅𝑅

�1− 𝑇𝑇
𝑇𝑇𝑚𝑚,𝑖𝑖

�  −  ∆𝑐𝑐𝑝𝑝,𝑖𝑖�𝑇𝑇𝑚𝑚,𝑖𝑖−𝑇𝑇�
𝑅𝑅𝑅𝑅

 +  ∆𝑐𝑐𝑝𝑝,𝑖𝑖

𝑅𝑅
𝑙𝑙𝑙𝑙 �𝑇𝑇𝑚𝑚,𝑖𝑖

𝑇𝑇
�+ ∆𝑉𝑉𝑖𝑖(𝑃𝑃−𝑃𝑃𝑡𝑡)

𝑅𝑅𝑅𝑅
 (3.62) 

From equation (3.62), it can be seen that to calculate the ratio of the standard fugacity at a given 

temperature and pressure, only the melting temperature, the latent heat fusion and specific heat 

capacity of pure liquid (I) and pure solid (I) are required. 
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3.3. Activity Coefficient Models 
The determination of the activity coefficient is essential, as it accounts for any non-ideal 

behaviour of the solution by accounting for the interactions that exist between the various 

molecules. Several analytical expressions for the concentration dependence of the excess Gibbs 

Energy have been developed, and hence, it is a fairly simple process to find an analytical 

expression for the activity coefficient. These expressions/models account for the various 

interactions between the various components in the various interacting phases, with binary 

interaction parameters. These models are generally classified into two broad techniques: 

correlative methods and predictive methods.  

The correlative models require experimental data to regress and obtain model parameters. The 

binary interaction parameters for each of the solvent–solvent, solvent–solute, and solute–solute 

interactions are obtained from the regression binary phase equilibrium data. Two basic categories 

of models exist:  

a) Random mixing models, such as, Van Laar and Margules equations, and advanced, 

theoretically based models. 

b) Local composition models such as Wilsons, NRTL and UNIQUAC. 

Unfortunately, the lack of experimental solubility data, on new APIs, limits the use of these 

thermodynamic models for conceptual process design and analysis in the pharmaceutical industry. 

(Chen, 2011).  

 

There has been an increase in the use of predictive thermodynamic models for solubility 

calculations (as distinct from correlative models). The advantage of these predictive models is 

that no new experimental data is needed to calculate activity coefficients.  The various predictive 

methods can be classified into four main groups:  

a) Models based on group contribution methods such as the Analytical-Solution-of-

Groups (ASOG) (Kojima and Tochigi, 1979), the UNIQUAC Functional Group 

Activity Coefficient (UNIFAC) (Fredenslund et al., 1975),  and  its many derivatives, 

such as, modified UNIFAC (Grensemann and Gmehling, 2005) and Pharma Mod-

UNIFAC (Diedrichs and Gmehling, 2010).  

b) Models based on quantum theory, such as, the Conductor‐like Screening Model, 

abbreviated as COSMO, and its derivatives the COSMO-RS (Klamt, 2005), 

COSMO-SAC (Lin and Sandler, 2002) , and COSMO-RS(OL) (Grensemann and 

Gmehling, 2005). 

c) Models based on equation of state, such as, PC-SAFT (Kliener et al., 2009),  

Predictive Soave–Redlich–Kwong (PSRK) (Holderbaum and Gmehling, 1991), and 

the  Volume-Translated Peng–Robinson (VTRP) (Ahlers and Gmehling, 2001) 
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d) Segment Activity Coefficient Methods: Hansen Solubility Parameters, Modified 

Separation of Cohesive Energy Density (MOSCED) (Lazzaroni et al., 2005), Non-

Random Two-Liquid - Segment Activity Coefficient (NRTL-SAC) (Chen and Song, 

2004), Functional-segment activity coefficient (F-SAC) (Soares and Gerber, 2013); 

and UNIversal Segment Activity Coefficient model (UNISAC) (Moodley et al., 

2015). 

The accuracy of any model depends upon how closely the system of interest adheres to the model 

assumptions, and how accurately the required parameters are measured or predicted.  

3.3.1. Correlative Models 

If solubility data is available, it can be used to determine the parameters of correlative 

thermodynamic models. These predictive models can, in turn, calculate the activity coefficients 

required for phase equilibria calculations. Examples of the standard, local-composition correlative 

models applied for the estimation of pharmaceutical solubility data, are summarised here. 

3.3.1.1. Wilson Model 

Wilson (1964) developed a model for correlating phase data based on a “local-composition” 

concept. This theory implies that there is a distinct difference between the local and overall 

mixture composition, due to intermolecular forces and differences in molecular size, which result 

in a short-range order and non-random molecular orientation (Van Ness and Abbott, 1997). The 

Wilson model can be defined by means of the following excess Gibbs energy expression for a 

multicomponent system: 

𝐺𝐺𝐸𝐸

𝑅𝑅𝑅𝑅
= ∑ 𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑚𝑚

𝑖𝑖=1 �∑ 𝑥𝑥𝑗𝑗Λ𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 �                                                        (3.63) 

Where the Wilson parameters are given by:   Λ𝑖𝑖𝑖𝑖 =
𝑉𝑉𝑗𝑗
𝑙𝑙

𝑉𝑉𝑖𝑖
𝑙𝑙 exp �−∆𝜆𝜆𝑖𝑖𝑖𝑖

𝑇𝑇
� and 𝑣𝑣𝑖𝑖𝑙𝑙  and 𝑣𝑣𝑗𝑗𝑙𝑙  are molar 

volumes of pure liquids at temperature T. 

The activity coefficients for the Wilson model are given by: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 = 1 − 𝑙𝑙𝑙𝑙�∑ 𝑥𝑥𝑗𝑗Λ𝑖𝑖𝑖𝑖𝑗𝑗 � − ∑ � 𝑥𝑥𝑘𝑘Λ𝑘𝑘𝑘𝑘
∑ 𝑥𝑥𝑗𝑗Λ𝑘𝑘𝑘𝑘𝑗𝑗

�𝑘𝑘                                           (3.64) 

 

3.2.1.2. Non-Random Two Liquid (NRTL) Model 

Renon and Prausnitz (1968) proposed the NRTL model as an improvement on the Wilson model. 

The model is premised on the “local-composition” concept of Wilson (1964) and the two-liquid 

theory of Hildebrand and Scott (1964), and is based exclusively on molecular interactions. Three 
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adjustable parameters constitute the NRTL model, i.e., 𝜏𝜏𝑖𝑖𝑖𝑖 ,𝜏𝜏𝑗𝑗𝑗𝑗 and 𝛼𝛼𝑖𝑖𝑖𝑖 (symmetrical parameters). 

The NRTL model can be defined by the following excess Gibbs energy expression for a 

multicomponent system: 

𝐺𝐺𝐸𝐸

𝑅𝑅𝑅𝑅
= ∑ 𝑥𝑥𝑖𝑖

∑ 𝜏𝜏𝑗𝑗𝑗𝑗𝐺𝐺𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1
∑ 𝐺𝐺𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚
𝑙𝑙=1

𝑚𝑚
𝑖𝑖=1                                                            (3.65) 

Where: 

𝐺𝐺𝑖𝑖𝑖𝑖 =  𝑒𝑒𝑒𝑒𝑒𝑒�−𝛼𝛼𝑖𝑖𝑖𝑖𝜏𝜏𝑖𝑖𝑖𝑖�             𝜏𝜏𝑖𝑖𝑖𝑖 = Δ𝑔𝑔𝑖𝑖𝑖𝑖
𝑇𝑇

               𝜏𝜏𝑖𝑖𝑖𝑖 = 0    𝑎𝑎𝑎𝑎𝑎𝑎    𝐺𝐺𝑖𝑖𝑖𝑖 = 1 

Δ𝑔𝑔𝑖𝑖𝑖𝑖 is the interaction parameter between components i and j,  and αij is characterised as the non-

randomness parameter, with values ranging from 0 to 1.  

The activity coefficients for the NRTL model are given by: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 =
∑ 𝑥𝑥𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗𝐺𝐺𝑗𝑗𝑗𝑗𝑗𝑗
∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘

+∑ 𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖
∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘

�𝜏𝜏𝑖𝑖𝑖𝑖 −
∑ 𝑥𝑥𝑚𝑚𝜏𝜏𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘
�𝑗𝑗                                 (3.66) 

3.2.1.3. Universal Quasi-Chemical (UNIQUAC) Model  

The Universal Quasi-Chemical (UNIQUAC) excess Gibbs energy model was developed by 

Abrams and Prausnitz (1975). It combines characteristics of the Wilson model and the NRTL 

model, and can be viewed as an extension of the quasi-chemical lattice theory of Guggenheim 

(1952). This model is based on both an entropic contribution (attributed to the distinct 

composition, size and shape of molecules), and intermolecular interactions. Abrams and Prausnitz 

(1975) recommend the UNIQUAC model for the correlation of VLE and LLE data for both binary 

and multi-component systems. There are two components that constitute its defining equation, 

namely, the combinatorial and the residual components, which account for the entropic and 

enthalpic contributions respectively.  

𝐺𝐺𝐸𝐸

𝑅𝑅𝑅𝑅
=  �𝐺𝐺

𝐸𝐸

𝑅𝑅𝑅𝑅
�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+  �𝐺𝐺
𝐸𝐸

𝑅𝑅𝑅𝑅
�
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                        (3.67) 

Where     �𝐺𝐺
𝐸𝐸

𝑅𝑅𝑅𝑅
�
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

= �∑ 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1 𝑙𝑙𝑙𝑙 𝜙𝜙𝑖𝑖

𝑥𝑥𝑖𝑖
+ 𝜁𝜁

2
∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙

𝜃𝜃𝑖𝑖
𝜙𝜙𝑖𝑖

𝑚𝑚
𝑖𝑖=1 �                       (3.68) 

�𝐺𝐺
𝐸𝐸

𝑅𝑅𝑅𝑅
�
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

= − �∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙�∑ 𝜃𝜃𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗𝑚𝑚
𝑗𝑗=1 �𝑚𝑚

𝑖𝑖=1 �                                      (3.69) 

Therefore, the UNIQUAC model can be written as: 

𝐺𝐺𝐸𝐸

𝑅𝑅𝑅𝑅
= �∑ 𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 𝑙𝑙𝑙𝑙 𝜙𝜙𝑖𝑖
𝑥𝑥𝑖𝑖

+ 𝜁𝜁
2
∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙

𝜃𝜃𝑖𝑖
𝜙𝜙𝑖𝑖

𝑚𝑚
𝑖𝑖=1 � −   �∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙�∑ 𝜃𝜃𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗𝑚𝑚

𝑗𝑗=1 �𝑚𝑚
𝑖𝑖=1 �                   (3.70) 

Where the activity coefficient for the system can be expressed as: 
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ln 𝛾𝛾𝑖𝑖 =  (ln 𝛾𝛾𝑖𝑖)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + (ln 𝛾𝛾𝑖𝑖)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                                  (3.71) 

(𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑙𝑙𝑙𝑙 �𝜙𝜙𝑖𝑖
𝑥𝑥𝑖𝑖
� + �1 − 𝜙𝜙𝑖𝑖

𝑥𝑥𝑖𝑖
� − 5𝑞𝑞𝑖𝑖 �𝑙𝑙𝑙𝑙

𝜙𝜙𝑖𝑖
𝜃𝜃𝑖𝑖

+ �1 − 𝜙𝜙𝑖𝑖
𝜃𝜃𝑖𝑖
��                          (3.72) 

(𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑖𝑖 �1− 𝑙𝑙𝑙𝑙∑ 𝜃𝜃𝑖𝑖𝜏𝜏𝑘𝑘𝑘𝑘𝑘𝑘 − ∑ � 𝜃𝜃𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗
∑ 𝜃𝜃𝑘𝑘𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘

�𝑗𝑗 �                                 (3.73) 

Where         𝜃𝜃𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑞𝑞𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

                   𝜙𝜙𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑟𝑟𝑥𝑥𝑗𝑗𝑗𝑗

                                     𝜏𝜏𝑖𝑖𝑖𝑖 =  �− �𝑢𝑢𝑖𝑖𝑖𝑖−𝑢𝑢𝑗𝑗𝑗𝑗�
𝑅𝑅𝑅𝑅

�  

Where Φ𝑖𝑖 is the average segment fraction of component i; 𝜃𝜃𝑖𝑖 is the average surface area fraction 

of molecule i; 𝜏𝜏𝑖𝑖𝑖𝑖 is an adjustable parameter containing interaction terms, uij and uji; r is a 

molecular size parameter; q is an external surface area parameter; z is the coordination number 

and is equal to 10; and uij and uii are adjustable energy parameters. 

3.3.2. Predictive Methods: 

The use of predictive thermodynamic models form an integral part in the development of a 

conceptual design computational tool, as calculations  are generally required on systems for which 

no experimental measured data may be available. In this section, a brief description is presented 

on a selection of predictive activity coefficient models that have been applied to predict solubility 

and multiphase equilibria. Currently, the most successful predictive models for the generation of 

activity coefficients are the group contribution methods, such as, UNIFAC and modified UNIFAC 

(Grensemann and Gmehling, 2005).  

UNIFAC models have proven to be reliable predictive models, computationally efficient, easy to 

program, and they have a wide application range whenever experimental data are not available. 

They are embedded in most commercial, chemical engineering simulators, such as, ASPEN, 

CHEMCAD, PROII, and ProSim (Xue et al., 2012).  

Other predictive methods that are gaining popularity because they overcome some of the 

limitations of the UNIFAC models in certain fields of applications, are NRTL-SAC, COSMO-RS 

and its variations, and PC-SAFT. Some recently developed models, like the F-SAC and UNISAC 

have also shown some success. 

   

3.3.2.1. Group Contribution Methods 
UNIFAC, which is an acronym for UNIQUAC Functional Group Activity Coefficient, is classed 

as a group contribution (GC) method. The basic assumption behind this method is that a molecule 

is a construct of functional groups, and that a mixture does not consist of molecules but of 

functional groups. It is further assumed that each of the several functional groups that make up a 
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molecular entity, make a separate and additive contribution to a property of the mixture being 

considered. 

The basic structure of the UNIFAC model is founded on four rules laid out by Wilson and Deal 

(1962), when they developed the first solution of the group method to determine activity 

coefficients, known as the Analytical Solution of Groups (ASOG).  Wilson and Deal (1962) 

suggested four rules to describe a solution of groups approach. These are: 

1. The partial molal excess free energy or, simply, the logarithm of the activity coefficient 

of a component, is assumed to be the sum of two contributions: one associated with 

differences in molecular size; and the other with interactions of structural groups. For 

molecular solute, j, in any solution: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑆𝑆 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐺𝐺                                                           (3.74) 

2. The contribution associated with molecular size differences is assumed to be given by a 

Flory-Huggins relation, expressed in terms of the number of constituent atoms other than 

hydrogen. For solute, j, in solution of component i: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑆𝑆 = 𝑙𝑙𝑙𝑙 𝑛𝑛𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖

+ 1 − 𝑛𝑛𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖

                                            (3.75) 

Where 

𝑛𝑛𝑖𝑖 = number of atoms (other than hydrogen) in molecular component i 

𝑥𝑥𝑖𝑖 = molecular mole fraction of component i 

And the summation is made over all components in solution. 

3. The contribution from interactions of molecular “groups” is assumed to be the sum of the 

individual contributions of each solute “group” in the solution, less the sum of the 

individual contributions in the conventional standard state environment. For molecular 

solute, j, containing groups k: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐺𝐺 = ∑ 𝜈𝜈𝑘𝑘𝑘𝑘(𝑙𝑙𝑙𝑙Γ𝑘𝑘 − 𝑙𝑙𝑙𝑙Γ𝑘𝑘∗)𝑘𝑘                                            (3.76) 

Where 

𝜈𝜈𝑘𝑘𝑘𝑘 = number of groups of type k in solute component j 

Γ𝑘𝑘= activity coefficient of group k in the solution environment  

Γ𝑘𝑘∗= the activity coefficient of group k in pure liquid j 

4. Finally, the individual group contributions, Γ𝑘𝑘, in any environment, containing groups of 

given kinds, are assumed to be only a function of group concentrations. 
Γ𝑘𝑘 = 𝑓𝑓(𝑋𝑋1 … … … .𝑋𝑋𝑘𝑘)                                                 (3.78) 

Where 
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𝑋𝑋𝑘𝑘 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑘𝑘 =
∑ 𝜐𝜐𝑘𝑘𝑘𝑘𝑥𝑥𝑗𝑗𝑗𝑗
∑ ∑ 𝜐𝜐𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝑖𝑖

                        (3.79) 

Using these principles, Derr and Deal (1969) developed their Analytical Solution of Groups 

(ASOG) method for correlating and predicting activity coefficients. Later, Kojima and Tochigi 

(1979) increased the range of application of the ASOG approach for a wider range of compounds, 

by adding more group parameters. The original UNIFAC (UNIQUAC Functional-group Activity 

Coefficients) group contribution method, developed by Fredenslund et al. (1977), combines the 

ASOG approach with a model for activity coefficients based on an extension of the quasi chemical 

theory of liquid mixtures (UNIQUAC).  

Several modifications of the original UNIFAC model, such as modified UNIFAC (Lyngby) 

(Larsen et al., 1987), modified UNIFAC (Dortmund) (Weidlich and Gmehling, 1987), KT-

UNIFAC (Kang et al., 2002), and Pharma-modified UNIFAC (Diedrichs and Gmehling, 2010), 

have been proposed to improve the performance of the model. 

In essence, an activity coefficient group contribution method consists of the following key 

components:  

• The definition of the functional groups used to “build” the molecules. These groups are 

generally any convenient structural unit that have been decided by the developers. 

• Each functional group has area and volume structural parameters, and each functional 

group pair has two unique binary interaction parameters associated with that pair. The 

group interaction parameter-matrix database is developed from the regression of large 

sets of thermodynamic-consistent experimental data. Knowing the parameters of groups 

constituting the mixture is necessary for implementation. 

• An equation to calculate the combinatorial contribution. 

• An equation to calculate the residual contribution. 

These components can then be used to predict the activity coefficients for other systems for which 

no experimentally obtained data is available, but which contain the same functional groups.  

A brief description of some of the activity coefficient group contribution method equations are 

presented, and the main differences of the various versions are also described. Some of the 

essential differences in the various formulations of the UNIFAC Group Contribution Method are: 

a) The adoption of either a Flory-Huggins or the Staverman-Guggenheim type formulation 

for the combinatorial contribution term. The Staverman-Guggenheim potential consists 

of the original Flory-Huggins combinatorial along with a Staverman-Guggenheim 
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correction term to compensate for molecular ring formation as well as bending of flexible 

and branched molecules and crosslinks (Muzenda, 2013).   

b) The computation of the various contributing terms in the Flory-Huggins or the 

Staverman-Guggenheim type formulation may differ. 

c) Whilst the formulation of the residual contribution term is similar in all formulations, the 

computation of the temperature dependency of the group interaction parameters may 

differ.  

In addition to the above differences, the definition of the type of groups may vary, and hence the 

values for the various parameters (obtained from the regression of experimental data) associated 

with the groups will differ. 

3.3.2.1.1. Analytical Solution of Groups (ASOG): 
The combinatorial term is estimated by using the athermal Flory- Huggins equation, which is 

expressed in terms of the number of constituent atoms in molecule i, other than hydrogen. This 

results in the combinatorial contribution with the summation being made over all the components 

j, in the solution: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑖𝑖𝐹𝐹𝐹𝐹 − 𝑙𝑙𝑙𝑙 ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑗𝑗𝐹𝐹𝐹𝐹𝑁𝑁
𝑗𝑗=1 + 1−𝑣𝑣𝑖𝑖

𝐹𝐹𝐹𝐹

∑ 𝑥𝑥𝑗𝑗𝑣𝑣𝑗𝑗
𝐹𝐹𝐹𝐹𝑁𝑁

𝑗𝑗=1
                                        (3.80) 

Where 𝑣𝑣𝑖𝑖𝐹𝐹𝐹𝐹 is the measure of the size of molecule i 

The group interactions contribution is: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐺𝐺 = ∑ 𝜈𝜈𝑘𝑘𝑘𝑘(𝑙𝑙𝑙𝑙Γ𝑘𝑘 − 𝑙𝑙𝑙𝑙Γ𝑘𝑘∗)𝑘𝑘                                                     (3.81) 

Where  Γ𝑘𝑘 (activity coefficient of group k) is given by Wilson’s equation: 

𝑙𝑙𝑙𝑙Γ𝑘𝑘 = 1 − 𝑙𝑙𝑙𝑙�∑ 𝑋𝑋𝑛𝑛𝑎𝑎𝑘𝑘𝑘𝑘𝑁𝑁𝑁𝑁
𝑛𝑛=1 � − ∑ � 𝑋𝑋𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛

∑ 𝑋𝑋𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁
𝑚𝑚

�𝑁𝑁𝑁𝑁
𝑛𝑛=1                                   (3.82) 

Where the group interaction parameter,𝑎𝑎𝑘𝑘𝑘𝑘, characteristic of groups k and n, is defined as: 

𝑎𝑎𝑘𝑘𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑚𝑚𝑘𝑘𝑘𝑘+𝑛𝑛𝑘𝑘𝑘𝑘
𝑇𝑇

�                                                              (3.83) 

And 𝑚𝑚𝑘𝑘𝑘𝑘 and 𝑛𝑛𝑘𝑘𝑘𝑘 are the group pair parameters, characteristic of groups k and n, which are 

independent of temperature, and:  

𝑋𝑋𝑘𝑘 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑘𝑘 = ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁
𝑖𝑖=1

∑ 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖=1 ∑ 𝑣𝑣𝑘𝑘𝑘𝑘𝑁𝑁𝑁𝑁

𝑘𝑘=1
                                 (3.84) 
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3.3.2.1.2. Original UNIFAC 
As with the ASOG, the UNIFAC model consists of a combinatorial contribution, which describes 

the excess Gibbs energy arising due to differences in molecular size and shape, and a residual 

term, which describes the excess Gibbs energy differences due to molecular interactions.  In the 

UNIFAC method, the combinatorial contribution is estimated by using the UNIQUAC equation 

that contains differences in size and shape of the molecules in the mixture. In addition, functional 

group sizes and interaction surface areas are introduced from molecular structure data for pure 

compounds.  

The UNIFAC equations for computing liquid phase activity coefficient is defined as: 

ln 𝛾𝛾𝑖𝑖 = ln 𝛾𝛾𝑖𝑖𝐶𝐶 + ln 𝛾𝛾𝑖𝑖𝑅𝑅,                                                         (3.85) 

The combinatorial term is expressed as: 

ln 𝛾𝛾𝑖𝑖𝐶𝐶 = ln Φ𝑖𝑖,
𝑥𝑥𝑖𝑖

+ 𝑧𝑧
2
𝑞𝑞𝑖𝑖 ln 𝜃𝜃𝑖𝑖

Φ𝑖𝑖
+ 𝑙𝑙𝑖𝑖 −

Φ𝑖𝑖,
𝑥𝑥𝑖𝑖
∑ 𝑥𝑥𝑗𝑗𝑗𝑗 𝑙𝑙𝑗𝑗                                        (3.86) 

Where:             𝜃𝜃𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑞𝑞𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

                  Φ𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑟𝑟𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

                𝑙𝑙𝑖𝑖 = 𝑧𝑧
2

(𝑟𝑟𝑖𝑖 − 𝑞𝑞𝑖𝑖) − (𝑟𝑟𝑖𝑖 − 1) 

Where 𝜃𝜃𝑖𝑖 is the molecular surface area fraction, and Φ𝑖𝑖 the molecular volume fraction of 

component i. The component area parameter, 𝑞𝑞𝑖𝑖, is calculated as the sum of the group area 

parameters, 𝑄𝑄𝑘𝑘, and the component volume parameter, 𝑟𝑟𝑖𝑖, is calculated as the sum of the group 

volume parameters, 𝑅𝑅𝑘𝑘. The area parameters and volume parameters are obtained from published 

tables, or calculated from van der Waals group surface areas, 𝐴𝐴𝑤𝑤𝑤𝑤, and van der Waals group 

volume, 𝑉𝑉𝑤𝑤𝑘𝑘, respectively, as defined by Bondi in 1968. 

𝑞𝑞𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘
(𝑖𝑖)𝑄𝑄𝑘𝑘𝑘𝑘        𝑟𝑟𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘

(𝑖𝑖)𝑅𝑅𝑘𝑘𝑘𝑘  

Where 𝑣𝑣𝑘𝑘𝑖𝑖  is the number of groups of kind k, in a molecule of component i, and:  

𝑄𝑄𝑘𝑘 = 𝐴𝐴𝑤𝑤𝑤𝑤
2.5 ×109

  , and 𝑅𝑅𝑘𝑘 = 𝑉𝑉𝑤𝑤𝑤𝑤
15.17

 

The group residual activity coefficients are computed similarly to the residual part of the 

UNIQUAC equation but are adapted to conform to the solution-of-groups concept, and are 

expressed as:  

  ln 𝛾𝛾𝑖𝑖𝑅𝑅 = ∑ 𝑣𝑣𝑘𝑘𝑖𝑖 �lnΓ𝑘𝑘 − ln Γ𝑘𝑘
(𝑖𝑖)�𝑘𝑘                                                 (3.87) 

The parameterΓ𝑘𝑘, is the residual activity coefficient of the group k, whereas parameter, Γ𝑘𝑘
(𝑖𝑖), 

represents the residual activity coefficient of group k, in a reference pure solution, which contains 

only molecules of type i. The group residual activity coefficients are calculated using: 
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lnΓ𝑘𝑘 = lnΓ𝑘𝑘
(𝑖𝑖) = 𝑄𝑄𝑘𝑘 �1− ln(∑ Θ𝑚𝑚Ψ𝑚𝑚𝑚𝑚𝑚𝑚 )− ∑ Θ𝑚𝑚Ψ𝑘𝑘𝑘𝑘

∑ Θ𝑛𝑛Ψ𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚 �                         (3.88) 

Where Θ𝑚𝑚 group area fraction and Ψ𝑚𝑚𝑚𝑚  are defined as the group interaction parameters which are 

expressed as: 

                    Θ𝑚𝑚 = 𝑄𝑄𝑚𝑚𝑋𝑋𝑚𝑚
∑ 𝑄𝑄𝑛𝑛𝑋𝑋𝑛𝑛𝑛𝑛

                       and                  Ψ𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑒𝑒𝑒𝑒 − �𝑈𝑈𝑚𝑚𝑚𝑚−𝑈𝑈𝑛𝑛𝑛𝑛
𝑇𝑇

� = 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑎𝑎𝑚𝑚𝑚𝑚
𝑇𝑇

 

Where X𝑚𝑚 is the mole fraction of group m, in the mixture, and a𝑚𝑚𝑚𝑚 is the interaction parameter 

between groups m and n:   

𝑋𝑋𝑚𝑚 =
∑ 𝑣𝑣𝑚𝑚

𝑗𝑗 𝑋𝑋𝑗𝑗𝑗𝑗

∑ ∑ 𝑣𝑣𝑛𝑛
𝑗𝑗𝑋𝑋𝑗𝑗𝑛𝑛𝑗𝑗

 

Limitations of the original UNIFAC have been highlighted by Fredenslund and Rasmussen 

(1985), Kontogeorgis and Folas (2010) and Gmehling et al. (2012): 

• It cannot differentiate between isomers; because the assumptions of the solution-of-

functional-groups concept uses only first order description of molecules. 

• It cannot satisfactorily predict liquid-liquid equilibrium (LLE); mainly because the 

interaction parameters are characterized only by vapor liquid equilibrium (VLE) data.  

• It poorly represents dilute systems and the prediction of complex systems, containing 

water and multifunctional chemicals; because of proximity effects (occurring when polar 

groups are close to each other).  

• It is limited in application range to low pressures of between 10-15 atm, and to 

temperatures of 275-425 K, depending on the range of phase equilibria data temperatures 

used to regress the interaction parameters.  

• It poorly predicts properties, such as, heat of mixing and infinite dilution activity 

coefficients; because of the weak temperature dependency of the interaction parameters. 

• It is not applicable for non-condensable gases, electrolytes and polymers. 

In order to improve on the accuracy and robustness of the original UNIFAC model, and to 

overcome the weaknesses listed above, different modifications to UNIFAC have been proposed 

by various developers. Changes to both combinatorial and residual terms, as well as the 

introduction of temperature-dependent group interaction parameters, are some of the 

modifications introduced. Some of these modifications are listed in the following sections. 

 

3.3.2.1.3. Modified UNIFAC (Lyngby) 
The Modified UNIFAC (Lyngby) Model by Larsen, Rasmussen and Fredenslund, published in 

1987, incorporated the several changes into the combinatorial and residual terms.  
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In the combinatorial term, the Staverman-Guggenheim (S-G) correction to the Flory-Huggins 

combinatorial was dropped. The developers reported that the effects of the S-G corrections were 

often negligible and some excessively large S-G corrections resulted in negative excess entropy 

values, which were considered unrealistic by the developers. In addition, a modified group 

volume fraction parameter is introduced. The resulting combinatorial term is: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙 Φ𝑖𝑖
𝑥𝑥𝑖𝑖

+ 1 − Φ𝑖𝑖
𝑥𝑥𝑖𝑖

                                                            (3.89) 

Where the modified group volume fraction parameter Φi, is expressed as:                

                                             Φ𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
2/3

∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗
2/3

𝑗𝑗
                                                                   (3.90) 

The residual term was left unchanged from the Original UNIFAC version. However a logarithmic 

temperature dependence was introduced to the interaction parameter: 

𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑚𝑚𝑚𝑚,0 + 𝑎𝑎𝑚𝑚𝑚𝑚,1(𝑇𝑇 − 𝑇𝑇0) + 𝑎𝑎𝑚𝑚𝑚𝑚,2 �𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇0
𝑇𝑇

+ 𝑇𝑇 − 𝑇𝑇0�                      (3.91) 

The developers reported an improved prediction of VLE and excess enthalpies. It is also capable 

of presenting liquid-liquid equilibria using the modified UNIFAC-VLE parameters. 

 

 3.3.2.1.4. Modified UNIFAC (Dortmund) 
The Modified UNIFAC (Do) model, published by Gmehling and co-workers in 1987 (the same 

year as the Modified UNIFAC (Lyngby)), and incorporated the following changes to the Original 

UNIFAC: 

a) The Staverman- Guggenheim correction term as in the original UNIFAC was retained 

but the group volume parameter was modified. 

b) As was the case for Modified UNIFAC (Lyngby), temperature-dependent group 

interaction parameters were introduced  

c) Van der Waals volume and surface area parameters were introduced for cyclic alkanes, 

and alcohols were reclassified as primary, secondary and tertiary alcohols with their own 

van der Waals volume and surface area parameters.  

d) The fitting of Modified UNIFAC group interaction parameters was extended to include 

activity coefficients at infinite dilution, VLE and excess enthalpies in order to improve 

the accuracy of these parameters.  

The resulting Modified UNIFAC (Do) model incorporated the following changes into the 

combinatorial and residual terms 
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𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙 𝜑𝜑𝑖𝑖
′

𝑥𝑥𝑖𝑖
+ 1 − 𝜑𝜑𝑖𝑖

′

𝑥𝑥𝑖𝑖
− 𝑧𝑧

2
𝑞𝑞𝑖𝑖 �𝑙𝑙𝑙𝑙

Φ𝑖𝑖
𝜃𝜃𝑖𝑖

+ 1 − Φ𝑖𝑖
𝜃𝜃𝑖𝑖
�                               (3.92) 

Where  𝜑𝜑𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
3/4

∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗
3/4

𝑗𝑗
 

In addition, the van der Waals volume and surface parameters 𝑅𝑅𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑘𝑘 of the structural 

UNIFAC groups were not calculated using the Bondi rules, but were optimized together with the 

group interaction parameters, using experimental data. 

The residual term was left unchanged from the Original UNIFAC version. However a temperature 

dependence was introduced to the interaction parameter: 

𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑚𝑚𝑚𝑚,0 + 𝑎𝑎𝑚𝑚𝑚𝑚,1𝑇𝑇 + 𝑎𝑎𝑚𝑚𝑚𝑚,2𝑇𝑇2                                            (3.93) 

Comparative studies by Voutsas and Tassios (1996) and Lohmann et al. (2001) on the 

performance of the various formulations of UNIFAC reported the Modified UNIFAC (Do) 

showed a greater range of applicability and reliability in most cases studied.  

 

 

3.3.2.1.5. The Pharma-modified UNIFAC model  
This model is a derivative of modified UNIFAC (Dortmund). It was established recently to 

overcome some limitations observed when the model is applied to API solutions. The equations 

of this new version of modified UNIFAC are the same as in the original model, excepting in the 

set of available functional groups, their volume and surface area parameters, and their interaction 

parameters. The Pharma-Mod model more accurately predicts complex compounds solubility 

data compared to the other UNIFAC models in most cases. However the parameter matrix 

requires further development to broaden its application. 

3.3.2.1.6. KT UNIFAC Model 
To overcome the limitation of distinguishing between isomers, and to handle systems with 

proximity effects, Kang et al., (2002) have proposed a model called the KT-UNIFAC model. In 

this formulation, the molecular structure of a compound is considered as a set of first-order and 

second-order groups. Estimation is performed at two levels: the basic level uses contributions 

from first-order simple groups, while the second level uses a small set of second-order groups, 

having the first-order groups as building blocks.  The second-order groups provide more structural 

information on molecular fragments and take into account proximity effects, distinguishing 

among isomers.  
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The activity coefficient, in the KT-UNIFAC model, is calculated by addition of three 

contributions: a combinatorial term, a residual term, and a second-order residual term. The first 

one takes into account the molecular size and shape, the second, the molecular interactions, and 

the third, the second-order effects on molecular interactions: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅 + 𝑤𝑤𝑅𝑅2𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅2                                                    (3.94) 

Where the term 𝑤𝑤𝑅𝑅2 = 0  for the first order model, and 𝑤𝑤𝑅𝑅2 = 1 for the second order model. The 

combinatorial and residual terms are the same as in the Modified UNIFAC (Lyngby), and group 

volume and group surface parameters are based on the methods of Bondi. The second order 

residual term calculates the activity coefficients due to the second order interactions.  In the 

residual parts, the interaction parameters are expressed as linearly dependent on temperature: 

𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑚𝑚𝑚𝑚,1 + 𝑎𝑎𝑚𝑚𝑚𝑚,2(𝑇𝑇 − 𝑇𝑇0)                                                      (3.95) 

The KT UNIFAC Model has its own set of first-order and second-order structural groups. A list 

of first-order and second-order groups, along with sample assignments, group occurrences, 

volume parameters, surface area parameters and main-group interaction parameters (first-order 

and second-order), can be found in Kang et al. (2002). Compared with some of the currently-used 

versions of UNIFAC, the KT-UNIFAC model makes significant improvements in accuracy, while 

providing a much wider range of applicability. 

Other versions of the UNIFAC model have been developed to extend the application range of the 

original model. For various reasons, UNIFAC has been the preferred choice of foundation model, 

to be extended, either by adding new terms or by regressing new parameters, showing its 

usefulness and versatility.  

Today, the Dortmund-modified UNIFAC has, probably, the most extensive parameters. It is 

widely used, and is continuously revised and extended in industrial/academic joint ventures. In 

recent years, numerous researchers have added new groups and subgroups, and have published 

new group parameters for this model (Abildskov et al., 2004). 

3.3.2.2. NRTL-SAC 

The NRTL-SAC model, first published by Chen and Song (2004), is derived from the polymer 

NRTL model of Chen (1993), which in turn is developed from the original NRTL model of Renon 

and Prausznitz (1968).  

While the UNIFAC methods define a molecule by means of a set of predefined functional groups, 

the NRTL-SAC method defines the molecule in terms of a set of four predefined conceptual 

segments. As with Group contribution methods of UNIFAC and ASOG, the NRTL-SAC model 

also assumes that the activity coefficient consists of a combinatorial and residual part. The 
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combinatorial expression used is analogous to the Flory-Huggins expression, used in ASOG, 

whilst the residual part sums up the local interaction contributions of the predefined segments in 

a mixture.  

The NRTL–SAC is considered a ‘hybrid’ model, because it initially requires selected 

experimental solubility data for the solute in a minimum of four reference solvents in order to 

determine its surface interaction parameters. Once the solute is characterised and its surface 

interaction parameters are known, the model can then be used as a predictive model. 

The NRTL-SAC model describes a molecule by means of their potential, effective surface 

interactions, in terms of four types of segments: hydrophobic segment, electrostatic solvation 

segment, electrostatic polar segment, and hydrophilic segment. The four segment numbers, 

calculated for each molecule, are measures of the effective surface areas of the molecule that 

exhibit surface interaction characteristics of hydrophobicity (X), solvation (Y-), polarity (Y+), and 

hydrophilicity (Z).  These four segments are used to describe the following types of inter-

molecular interactions: the hydrophilic segment simulates polar molecular surfaces that are 

“hydrogen bond donor or acceptor”. The hydrophobic segment simulates molecular surfaces that 

show aversion to forming hydrogen bonds. The electrostatic segments (Y- and Y+) simulate 

molecular surfaces that are electron pair donor or acceptor. The electrostatic solvation segment is 

attractive to the hydrophilic segment, while the electrostatic polar segment is repulsive to the 

hydrophilic segment. 

To determine the segment numbers of a solute molecule, solubility data in at least four 

reference solvents is needed. Experimental solubility data for the solute is measured in four 

to eight solvents with distinctive surface interaction characteristics, at or near room 

temperature. These solvents should include hydrophobic solvents, such as, hexane or 

heptane, hydrophilic solvents, such as, water and methanol, and polar solvents, such as, 

acetone, acetonitrile, DMSO, DMF, etc.  The data obtained is regressed to determine the 

molecular parameters. The segment numbers obtained for a molecule defines the surface area 

that is accountable for that segment’s prescribed mode of interaction. The individual segments 

are assumed to interact with each other through binary interactions only, and they are calculated 

with binary interaction parameters that are constants of the model. Once the segment numbers 

of the solute molecule are determined from the data, the NRTL-SAC model can then be used 

to predict the solute solubility in other solvents or solvent mixtures. 

A databank of molecular segment parameters for the common pure solvents and some 

compounds has been established, and is continually being developed by the authors. It is 

available with the commercial simulator ASPEN as an add-on module. The parameter tables are 
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likely to change as new equilibrium data and solvents are added to improve its accuracy and 

functionality.  

An overview of the NRTL-SAC model will be given here with sufficient detail to understand its 

application. Full details of the model and its mathematical formulation are given in Chen and 

Song, (2004). The NRTL-SAC model computes the activity coefficient for component i from the 

expression: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅                                                                       (3.96) 

Where the combinatorial part is calculated from: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙 ∅𝑖𝑖
𝑥𝑥𝑖𝑖

+ 1 − 𝑟𝑟𝑖𝑖 ∑
∅𝑖𝑖
𝑥𝑥𝑖𝑖𝑗𝑗                                                                (3.97) 

With the definitions: 

∅𝑖𝑖 =
𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝑟𝑟𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

             𝑎𝑎𝑎𝑎𝑎𝑎           𝑟𝑟𝑖𝑖 = �𝑟𝑟𝑗𝑗,𝑖𝑖
𝑗𝑗

 

Where 𝑥𝑥𝑖𝑖 is the mole fraction of component I; 𝑟𝑟𝑖𝑖 is the total segment number of component I; and 

∅𝑖𝑖 is the segment mole fraction in the mixture.  The residual term is defined as: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅 = ∑ 𝑟𝑟𝑚𝑚,𝑖𝑖�𝑙𝑙𝑙𝑙Γ𝑚𝑚𝑙𝑙𝑙𝑙 − Γ𝑚𝑚
𝑙𝑙𝑙𝑙,𝑖𝑖�𝑚𝑚                                                        (3.98) 

Where the terms Γ𝑚𝑚𝑙𝑙𝑐𝑐 and Γ𝑚𝑚
𝑙𝑙𝑙𝑙,𝑖𝑖 are the activity coefficients of segment m in solution, and in pure 

component i, respectively; and 𝑟𝑟𝑚𝑚,𝑖𝑖 is the number of segment m in component i. These terms can 

be evaluated by: 

𝑙𝑙𝑙𝑙Γ𝑚𝑚𝑙𝑙𝑙𝑙 =
∑ 𝑥𝑥𝑗𝑗𝐺𝐺𝑗𝑗𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗𝑗𝑗

∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘
+ ∑ 𝑥𝑥𝑚𝑚′𝐺𝐺𝑚𝑚𝑚𝑚′

∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘′𝑘𝑘
�𝜏𝜏𝑚𝑚𝑚𝑚′ −

∑ 𝑥𝑥𝑗𝑗𝐺𝐺𝑗𝑗𝑗𝑗′𝜏𝜏𝑗𝑗𝑗𝑗′𝑗𝑗

∑ 𝑥𝑥𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘′𝑘𝑘
�𝑚𝑚′                       (3.99) 

𝑙𝑙𝑙𝑙Γ𝑚𝑚
𝑙𝑙𝑙𝑙,𝑖𝑖 =

∑ 𝑥𝑥𝑗𝑗,𝑖𝑖𝐺𝐺𝑗𝑗𝑗𝑗𝜏𝜏𝑗𝑗𝑗𝑗𝑗𝑗

∑ 𝑥𝑥𝑘𝑘,𝑖𝑖𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘
+ ∑

𝑥𝑥𝑚𝑚′,𝑖𝑖𝐺𝐺𝑚𝑚𝑚𝑚′

∑ 𝑥𝑥𝑘𝑘,𝑖𝑖𝐺𝐺𝑘𝑘𝑘𝑘′𝑘𝑘
�𝜏𝜏𝑚𝑚𝑚𝑚′ −

∑ 𝑥𝑥𝑗𝑗,𝑖𝑖𝐺𝐺𝑗𝑗𝑗𝑗′𝜏𝜏𝑗𝑗𝑗𝑗′𝑗𝑗

∑ 𝑥𝑥𝑘𝑘,𝑖𝑖𝐺𝐺𝑘𝑘𝑘𝑘′𝑘𝑘
�𝑚𝑚′                    (3.100) 

Where: 𝑥𝑥𝑗𝑗 =
∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑗𝑗,𝑖𝑖𝑖𝑖

∑ ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖,𝑛𝑛𝑛𝑛𝑖𝑖
        and     𝑥𝑥𝑗𝑗,𝑖𝑖 = 𝑟𝑟𝑗𝑗,𝑖𝑖

∑ 𝑟𝑟𝑛𝑛,𝑖𝑖𝑛𝑛
 

 And 𝑛𝑛, 𝑗𝑗, 𝑘𝑘,𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚′ are the segment species index; 𝑥𝑥𝑖𝑖 is the mole fraction of component I; and 

𝑥𝑥𝑗𝑗 is the mole fraction of segment species j. 𝐺𝐺 and 𝜏𝜏 are local binary quantities related to each 

other by the NRTL non-random factor parameter 𝛼𝛼: 𝐺𝐺 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼𝛼𝛼). 

Limitations of the model have identified by Kontogeorgis and Folas (2010) as follows: Firstly, 

the regression models are based on a simplified SLE equation, where the ∆𝐶𝐶𝑝𝑝 term is ignored. 

Whereas, recent investigations have shown that this term may be important in pharmaceutical 
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calculations. Secondly, all the interaction parameters are temperature independent, and their 

degree of accuracy varies, depending on the complexity of the molecule. 

3.3.2.3. COSMO-RS and COSMO-SAC 

Recent developments in computational chemistry yielded models based on the so-called 

continuum solvation family of models called COSMO (COnductor-like Screening MOdel). They 

use quantum mechanics calculations (for surface interaction energies), combined with statistical 

thermodynamics calculations, in order to predict the needed macroscopic thermodynamic 

properties. The key concepts have been extended to increase the applications of the model. 

COSMO-RS were pioneered by Klamt (1995), with further variations, like COSMO-SAC, 

proposed by Lin and Sandler (2002), and COSMO-RS(OL), proposed by Grensemann and 

Gmehling (2005). 

These models are based on a three-step process: a molecule is deconstructed into a collection of 

very small surface elements, the charge density on each surface element is computed using a 

quantum electrostatic calculation. Along with a statistical mechanics analysis, this polarization 

charge density is used for quantification of the interaction energy of pairwise interacting surface 

segments.  The unique characteristic of each molecule is its sigma (𝜎𝜎) profile that is a 

representation of charge density. The sigma profile for a pure component is calculated as: 

𝑝𝑝𝑖𝑖(𝜎𝜎) = 𝐴𝐴𝑖𝑖(𝜎𝜎)
𝐴𝐴𝑖𝑖

                                                                         (3.101) 

In the COSMO-RS(OL) model, a further averaging is applied to obtain the final 𝜎𝜎-profile. This 

additional averaging greatly increases the robustness of the method in the case of hydrogen 

bonding molecules (Constantinescu, 2009). The final 𝜎𝜎-profile in COSMO-RS(OL) model is 

calculated as: 

𝑝𝑝𝑖𝑖(𝜎𝜎𝑛𝑛)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑅𝑅𝑅𝑅(𝑂𝑂𝑂𝑂) = 1
3
∑ 𝑝𝑝𝑖𝑖(𝜎𝜎𝑛𝑛)𝑛𝑛+1
𝑛𝑛−1                                                   (3.102) 

Where 𝐴𝐴𝑖𝑖(𝜎𝜎) is the surface area of species I, with a screening charge density of 𝜎𝜎; and 𝐴𝐴𝑖𝑖 =

 ∑ 𝐴𝐴𝑖𝑖(𝜎𝜎)𝜎𝜎  is the total surface area of species i. For a mixture, S, the 𝜎𝜎-profile is determined as a 

mole fraction weighted average of the pure component contributions as: 

𝑝𝑝𝑠𝑠(𝜎𝜎) = ∑ 𝑥𝑥𝑖𝑖𝐴𝐴𝑖𝑖(𝜎𝜎)𝑐𝑐
𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖𝐴𝐴𝑖𝑖𝑐𝑐
𝑖𝑖=1

= ∑ 𝑥𝑥𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖(𝜎𝜎)𝑐𝑐
𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖𝐴𝐴𝑖𝑖𝑐𝑐
𝑖𝑖=1

                                                          (3.103) 

In COSMO-based models, in a very similar way to the UNIFAC models, the activity coefficient 

is computed as the result of two contributions: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄ = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎                                                       (3.104) 
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The following expressions are used by the COSMO-RS and COSMO-SAC models: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑅𝑅𝑅𝑅 = 𝑛𝑛𝑖𝑖 ∑ 𝑝𝑝𝑖𝑖(𝜎𝜎𝑚𝑚)𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇𝑠𝑠(𝜎𝜎𝑚𝑚)−𝜇𝜇𝑖𝑖(𝜎𝜎𝑚𝑚)

𝑅𝑅𝑅𝑅
� − 𝜆𝜆𝜆𝜆𝜆𝜆 �𝐴𝐴𝑠𝑠

𝐴𝐴𝑖𝑖
� + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄

𝑆𝑆𝑆𝑆
𝜎𝜎𝑚𝑚                  (3.105) 

Where 𝜇𝜇𝑠𝑠(𝜎𝜎𝑚𝑚) is the chemical potential of segment 𝜎𝜎𝑚𝑚 in the mixture; 𝜇𝜇𝑖𝑖(𝜎𝜎𝑚𝑚) is the chemical 

potential of segment 𝜎𝜎𝑚𝑚 in pure component I; 𝐴𝐴𝑠𝑠 is the mole fraction weighted surface area of all 

the species in the mixture. Similarly, 𝐴𝐴𝑖𝑖 is for pure component i and λ is a solvent specific 

adjustable parameter. 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑖𝑖 ∑ 𝑝𝑝𝑖𝑖(𝜎𝜎𝑚𝑚)[𝑙𝑙𝑙𝑙Γ𝑆𝑆(𝜎𝜎𝑚𝑚) − 𝑙𝑙𝑙𝑙Γ𝑖𝑖(𝜎𝜎𝑚𝑚)] + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄

𝑆𝑆𝑆𝑆
𝜎𝜎𝑚𝑚                            (3.106) 

Where 𝑙𝑙𝑙𝑙Γ𝑆𝑆(𝜎𝜎𝑚𝑚) is the segment activity coefficient of segment  𝜎𝜎𝑚𝑚 in the mixture; and 𝑙𝑙𝑙𝑙Γ𝑖𝑖(𝜎𝜎𝑚𝑚) 

is the segment activity coefficient of segment 𝜎𝜎𝑚𝑚 in pure component I; and 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄
𝑆𝑆𝑆𝑆  is the 

Staverman-Guggenheim (SG) combinatorial model, which accounts for the non-ideality that 

results from the size and shape difference between the species in a mixture. The volume and 

surface area parameters in the SG-combinatorial term are obtained from first principle COSMO 

calculations. 

 

3.3.2.4. Functional-Segment Activity Coefficient Model (F-SAC) 

This new model, developed by Soares and Gerber (2013), is based on a combination of concepts 

from two, well-developed methods: the group contribution models, such as UNIFAC, and the 

COSMO-SAC formulation, from which is drawn the interaction parameters between groups. The 

model assumes that each pure substance consists of several predefined functional groups (like the 

UNIFAC models), and that each functional group has its own apparent surface charges. Instead 

of using COSMO calculations to obtain the σ-profiles for the molecule, it is proposed that each 

predefined functional group has its own, empirically calibrated σ-profile, 𝑝𝑝𝑘𝑘(𝜎𝜎), and that the σ-

profile of a molecule i is given by the sum of the σ-profiles of the functional groups that make up 

the molecule. 

In this model, each functional group is represented by three sets of empirical parameters: the 

functional group segment areas and the charge density of the positive, neutral and negative 

segments i.e. 

𝑝𝑝𝑘𝑘(𝜎𝜎)𝑄𝑄𝑘𝑘 = �(𝜎𝜎𝑘𝑘+,𝑄𝑄𝑘𝑘+) ; �0,𝑄𝑄𝑘𝑘0� ;  (𝜎𝜎𝑘𝑘−,𝑄𝑄𝑘𝑘−)�                                            (3.107) 

And that the 𝜎𝜎-profile for the molecule i is the sum of 𝜎𝜎-profiles of the functional groups that 

make-up molecule i: 

𝑝𝑝𝑖𝑖(𝜎𝜎)𝑞𝑞𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘𝑖𝑖 𝑝𝑝𝑘𝑘(𝜎𝜎)𝑄𝑄𝑘𝑘𝑘𝑘                                                                          (3.108) 
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Where 𝑣𝑣𝑘𝑘𝑖𝑖  is the number of functional groups of type k in molecule i. 

F-SAC uses the Gibbs excess energy (GE) model, as the sum of two parts: a combinatorial 

contribution that accounts for differences in size and shape; and a residual contribution, which 

should include the differences in intermolecular forces between components. 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄ = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 𝑆𝑆⁄

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                                                 (3.109) 

Where the F-SAC combinatorial contribution is similar to that of the modified UNIFAC (Do), as 

follows: 

𝑙𝑙𝑛𝑛𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙 𝜑𝜑𝑖𝑖
′

𝑥𝑥𝑖𝑖
+ 1 − 𝜑𝜑𝑖𝑖

′

𝑥𝑥𝑖𝑖
− 𝑧𝑧

2
𝑞𝑞𝑖𝑖 �𝑙𝑙𝑙𝑙

Φ𝑖𝑖
𝜃𝜃𝑖𝑖

+ 1 − Φ𝑖𝑖
𝜃𝜃𝑖𝑖
�                                                 (3.110)          

Where  𝜑𝜑𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
3/4

∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗
3/4

𝑗𝑗
     𝜃𝜃𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑞𝑞𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
            Φ𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑟𝑟𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
            𝑞𝑞𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘

(𝑖𝑖)𝑄𝑄𝑘𝑘𝑘𝑘           𝑟𝑟𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘
(𝑖𝑖)𝑅𝑅𝑘𝑘𝑘𝑘  

The residual contribution is similar to that of the COSMO-SAC formulation, and is given by: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅 = 𝑛𝑛𝑖𝑖 ∑ 𝑝𝑝𝑖𝑖(𝜎𝜎𝑚𝑚)[𝑙𝑙𝑙𝑙Γ𝑆𝑆(𝜎𝜎𝑚𝑚)− 𝑙𝑙𝑙𝑙Γ𝑖𝑖(𝜎𝜎𝑚𝑚)]𝜎𝜎𝑚𝑚                                               (3.111) 

Where,𝑛𝑛𝑖𝑖 is the total number of segments in a molecule; 𝑙𝑙𝑙𝑙Γ𝑆𝑆(𝜎𝜎𝑚𝑚) is the segment activity 

coefficient of segment  𝜎𝜎𝑚𝑚 in the mixture; and 𝑙𝑙𝑙𝑙Γ𝑖𝑖(𝜎𝜎𝑚𝑚)  is the segment activity coefficient of 

segment 𝜎𝜎𝑚𝑚 in pure component I, given by: 

𝑙𝑙𝑙𝑙Γ𝑠𝑠(𝜎𝜎𝑚𝑚) = −𝑙𝑙𝑙𝑙 �∑ 𝑝𝑝𝑠𝑠(𝜎𝜎𝑛𝑛)Γ𝑠𝑠(𝜎𝜎𝑛𝑛)𝑒𝑒𝑒𝑒𝑒𝑒 �−∆𝑊𝑊(𝜎𝜎𝑚𝑚,𝜎𝜎𝑛𝑛)
𝑅𝑅𝑅𝑅

�𝜎𝜎𝑛𝑛 �                                      (3.112) 

And                   Δ𝑊𝑊(𝜎𝜎𝑚𝑚,𝜎𝜎𝑛𝑛) = �𝛼𝛼
′

2
� (𝜎𝜎𝑚𝑚 + 𝜎𝜎𝑛𝑛)2 + 𝐸𝐸𝐻𝐻𝐻𝐻(𝜎𝜎𝑚𝑚,𝜎𝜎𝑛𝑛)

2
                                          (3.113) 

𝐸𝐸𝐻𝐻𝐻𝐻(𝜎𝜎𝑚𝑚,𝜎𝜎𝑛𝑛) = 𝑐𝑐ℎ𝑏𝑏𝑚𝑚𝑎𝑎𝑎𝑎[0,𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜎𝜎ℎ𝑏𝑏]𝑚𝑚𝑚𝑚𝑚𝑚[0,𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜎𝜎ℎ𝑏𝑏]                                  (3.114) 

Where 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 denote the larger and smaller values of 𝜎𝜎𝑚𝑚 and 𝜎𝜎𝑛𝑛, respectively; 𝜎𝜎ℎ𝑏𝑏 is the 

HB surface density cut-off; 𝑐𝑐ℎ𝑏𝑏 is a universal constant; and α′ as the constant for the misfit energy 

is assigned a value of 8544.6 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝐴̇𝐴4/(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑒𝑒2). 

 

3.3.2.5. Universal Segment Activity Coefficient Model (UNISAC) 

This new model, developed by Moodley et al. (2015), is based on a combination of concepts from 

two well developed methods: the original UNIFAC model and the NRTL-SAC model. It assumes 

that each pure substance consists of several predefined functional groups (as in the UNIFAC 

models); and then the “conceptual segment concept” of the NRTL-SAC model is applied to the 

functional groups. This results in each functional group being defined as a combination of four 
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basic segments that contribute to the different molecular interactions.  In its formulation, the 

following groups were selected as the base groups to represent the four types of binary interaction 

base segments: Hydrophobic(𝐶𝐶 − 𝐶𝐶𝐶𝐶3), Hydrophilic (𝐻𝐻2𝑂𝑂), Polar positive (𝐶𝐶 − 𝐶𝐶𝐶𝐶) and Polar 

negative (𝐶𝐶 − 𝐶𝐶𝐶𝐶). 

The UNISAC model also applies the Gibbs excess energy (GE) formulation, as the sum of two 

parts: a combinatorial contribution that accounts for differences in size and shape; and a residual 

contribution, which accounts for intermolecular forces between components: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                                              (3.115) 

Where the UNISAC combinatorial contribution is similar to that of the modified UNIFAC (Do), 

as follows: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝐶𝐶 = 𝑙𝑙𝑙𝑙 𝜑𝜑𝑖𝑖
′

𝑥𝑥𝑖𝑖
+ 1 − 𝜑𝜑𝑖𝑖

′

𝑥𝑥𝑖𝑖
− 𝑧𝑧

2
𝑞𝑞𝑖𝑖 �𝑙𝑙𝑙𝑙

Φ𝑖𝑖
𝜃𝜃𝑖𝑖

+ 1 − Φ𝑖𝑖
𝜃𝜃𝑖𝑖
�                                        (3.116) 

Where: 

  𝜑𝜑𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖
3/4

∑ 𝑥𝑥𝑗𝑗𝑟𝑟𝑗𝑗
3/4

𝑗𝑗
         𝜃𝜃𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑞𝑞𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
             Φ𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑟𝑟𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
              𝑞𝑞𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘

(𝑖𝑖)𝑄𝑄𝑘𝑘𝑘𝑘             𝑟𝑟𝑖𝑖 = ∑ 𝑣𝑣𝑘𝑘
(𝑖𝑖)𝑅𝑅𝑘𝑘𝑘𝑘  

The residual contribution is similar to that of the COSMO-SAC formulation, and is given by: 

𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑅𝑅 = ∑ Ω𝑘𝑘,𝑖𝑖
𝑁𝑁
𝑘𝑘 �𝑙𝑙𝑛𝑛Γ𝑘𝑘 − 𝑙𝑙𝑙𝑙Γ𝑘𝑘,𝑖𝑖�                                                                   (3.117) 

Where the terms, 𝑙𝑙𝑙𝑙Γ𝑘𝑘 and 𝑙𝑙𝑙𝑙Γ𝑘𝑘,𝑖𝑖, are the activity coefficients of segment k in solution and in pure 

component i, respectively; and Ω𝑘𝑘,𝑖𝑖 is the total number of segment k in component i. These terms 

can be evaluated by: 

𝑙𝑙𝑙𝑙𝛤𝛤𝑘𝑘,𝑖𝑖 = (1 − 𝑙𝑙𝑙𝑙�∑ 𝛩𝛩𝑚𝑚,𝑖𝑖
𝑁𝑁
𝑚𝑚=1 𝜓𝜓𝑚𝑚,𝑘𝑘� − ∑ 𝛩𝛩𝑚𝑚,𝑖𝑖 𝜓𝜓𝑘𝑘,𝑚𝑚

∑ 𝛩𝛩𝑛𝑛,𝑖𝑖 𝜓𝜓𝑛𝑛,𝑚𝑚
𝑁𝑁
𝑛𝑛=1

𝑁𝑁
𝑚𝑚=1                           (3.118) 

𝑙𝑙𝑙𝑙𝛤𝛤𝑘𝑘 = (1 − 𝑙𝑙𝑙𝑙�∑ 𝛩𝛩𝑚𝑚𝑁𝑁
𝑚𝑚=1 𝜓𝜓𝑚𝑚,𝑘𝑘� − ∑ 𝛩𝛩𝑚𝑚 𝜓𝜓𝑘𝑘,𝑚𝑚

∑ 𝛩𝛩𝑛𝑛 𝜓𝜓𝑛𝑛,𝑚𝑚
𝑁𝑁
𝑛𝑛=1

𝑁𝑁
𝑚𝑚=1                              (3.119) 

Where: 

Ω𝑘𝑘,𝑖𝑖 = ∑ 𝑣𝑣𝑙𝑙,𝑖𝑖𝜁𝜁𝑘𝑘,𝑙𝑙
𝑁𝑁
𝑖𝑖=1                          𝛩𝛩𝑚𝑚,𝑖𝑖 = Ω𝑚𝑚,𝑖𝑖

∑ Ω𝑚𝑚,𝑖𝑖
𝑁𝑁
𝑚𝑚=1

                            𝛩𝛩𝑚𝑚 = ∑ Ω𝑚𝑚,𝑖𝑖
𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖

∑ ∑ Ω𝑚𝑚,𝑖𝑖
𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑁𝑁

𝑚𝑚=1
 

Where 𝑣𝑣𝑙𝑙,𝑖𝑖 is the number of groups of type l in a component I; and 𝜁𝜁𝑘𝑘,𝑙𝑙 is the segment area of 

segment, k, in group l;  𝛩𝛩𝑚𝑚,𝑖𝑖 is the segment area fraction of segment m in the pure component i; 

m and n are the segment based indices, N and I, are the total number of segments and components, 

respectively. While 𝑥𝑥𝑖𝑖 is the mole fraction of component I, 𝜓𝜓𝑢𝑢,𝑣𝑣 are the segment specific 

interactions, equivalent to the dimensionless group interactions between the base segments.    
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3.3.3 Performance of Predictive and hybrid models 
In the foregoing sections, key thermodynamic aspects of describing real and non-ideal systems 

have been presented. In particular, the various key thermodynamics models to determine the 

activity coefficients have been described. The determination of the activity coefficient is essential, 

as it accounts for any non-ideal behaviour of the solution by accounting for the interactions that 

exist between the various molecules. The molecules of interest in this study are generally complex 

with multiple functional groups and hence models that can accurately account for the various 

molecular interactions is essential. The correlative models require identification of binary 

interaction parameters from phase equilibrium data for each of the solvent–solvent, solvent–

solute, and solute–solute binary mixtures. Unfortunately, the lack of experimental solubility data, 

on new APIs, limits the use of these thermodynamic models for process design and analysis in 

the pharmaceutical industry. (Chen, 2011). Hence the increase in the need and use of predictive 

thermodynamic models in pharmaceutical studies. From the various models described, only the 

following models may be considered to be purely predictive: The UNIFAC models and its 

variations, COSMO and its variations, F-SAC and UNISAC. The advantage of these predictive 

models is that no new experimental data is needed to calculate activity coefficients.   The other 

models like NRTL-SAC and PC-SAFT are considered to be hybrid models. They require some 

initial experimental data for the parametrisation of the models prior to its predictive capability.   

 

Several studies have been performed on the measurement and prediction of the solubility of APIs, 

where the predictive performance of various models are compared to experimental measurements. 

Some of these comparative performance studies are summarised in Table 3.3. A general 

observation, reported in the various studies, is that the accuracy of the solubility obtained from 

any of the models, depends upon how much the system of interest deviates from the model 

assumptions, and how well the required parameters are known or can be predicted.  

 

The hybrid models like the  NRTL-SAC and PC-SAFT models tend to provide the best results of 

all activity coefficient models because these models uses experimental solubility data of the 

considered API for the initial parameterization of the model prior to their predictive capabilities. 

Hence, these models cannot be used in any process development and conceptual design work for 

systems of newly developed API’s where no initial solubility data is available.  For various 

applications, UNIFAC has been a preferred choice of model, extended either by adding new terms 

or by regressing new parameters, revealing the usefulness and versatility of the model. Today the 

Dortmund modified UNIFAC is probably the most extensive. It is widely used and is being 

revised and extended as part of an industrial/academic joint venture. In recent years, numerous 

researchers have added new groups and subgroups and have published new group parameters 
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(Abildskov et al., 2004). Kontogeorgis and Folas (2010) provide an extensive review of the 

various correlative and predictive activity coefficient models. 

 

In the next section, the equations that are used to calculate solid-liquid phase equilibria is 

presented. 
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Table 3.3.  Examples of Comparative Studies of Predictive Models for APIs Solubility. 

 

 

APIs studied Models 

Compared 

Observations Reference 

Six different 

functionalized aromatic 

APIs 

UNIFAC (Do) and  

COSMO-RS 

The COSMO-RS method was capable of predicting the solubility of all 221 

systems investigated.  UNIFAC (Do) was capable of only predicting 80 % of 

the systems due to missing binary interaction parameters. Researchers 

reported comparable predictions against experimental data in literature. 

Kolár et al. 

(2002) 

Lovastatin, Simvastatin, 

Rofecoxib, and 

Etoricoxib 

NRTL-SAC and 

COSMO-SAC 

The semi-empirical NRTL-SAC model offered superior performance over the 

ab initio COSMO-SAC model. However limited solubility data in at least four 

solvents are needed for parameterization of the NRTL-SAC model prior to 

predictive capability. 

Tung et. Al. 

(2007) 

Paracetamol, Allopurinol, 

Furosemide And 

Budesonide 

NRTL-SAC The solubility data in pure organic solvents were used to regress the solute 

model parameters. The predicted solubility value varied in different solvent 

systems, ranging from an absolute deviation of 18% to 69%. 

Mota et al. 

(2009) 

Paracetamol, Ibuprofen, 

Sulfadiazine, P-

Hydroxyphenylacetic 

Acid, 

And p-

Aminophenylacetic Acid 

PC-SAFT The results obtained from PC-SAFT model were compared to the results from 

NRTL-SAC model and to experimental data. Both models give similar 

qualitative predictions and the performance. Although not in quantitative 

agreement, these results are accurate enough for solvent-screening purposes 

in the process development. The both models require some experimental data 

to regress and identify the model parameters prior to its predictive capability.  

Ruether and 

Sadowski (2009) 

Aspirin , Paracetamol  

and  Ibuprofen 

UNIFAC; Mod 

UNIFAC (Do), and 

COSMO-RS (Ol) 

The UNIFAC (Do) provides the lowest root mean square deviations for the 

temperature and the solubilities. The second best is achieved by the UNIFAC 

model, followed by COSMO-RS (Ol). The UNIFAC (Do) is able to predict 

the solvent which shows the highest solubility for the two active 

pharmaceutical ingredients (aspirin, ibuprofen) investigated. 

Hahnenkamp et 

al. (2010) 

Paracetamol, Naproxen, 

Ibuprofen, Flurbiprofen, 

Ketoprofen, And 

Lovastatin 

PC-SAFT PC-SAFT predictions compare favourably with the experimental data of the 

various systems evaluated. Its predictive ability of the scheme was based on 

the appropriate parameterization of the pharmaceutical molecules. The 

regression of parameters was performed against the solubility of 

pharmaceuticals in three solvents, i.e., a hydrophilic solvent (water), a polar 

solvent, and a hydrophobic solvent. 

Spyriouni et 

al.(2010) 

Ibuprofen, 

Acetaminophen, Benzoic 

Acid, Salicylic Acid And 

4-Aminobenzoic 

Acid, and Anthracene 

UNIFAC;  Mod 

UNIFAC (Do); 

COSMO-SAC and 

NRTL-SAC 

It was found that UNIFAC models give the best order of magnitude results 

and could be useful method for rapid solubility estimations of an API in 

various solvents. COSMO-SAC needs more developments to increase its 

accuracy especially when hydrogen bonding is involved. NRTL-SAC  model 

are also in good agreement with the experiments, but in that case the relevance 

of the results is strongly dependent on the required model parameters to be  

regressed from solubility data in single and mixed solvents prior to predictive 

application   

Bouillot et al. 

(2011) 

33 different APIs COSMO-SAC  The COSMO-SAC model provides semi-quantitative accuracy for the 

activity coefficient of drug in solution. The predictions of solubility in 

mixture solvent is improved with the inclusion of an empirical Margules-type 

activity coefficient correction term to the result from the COSMO-SAC 

model.  However this requires the determination the drug-solvent interaction 

parameters which are obtained using the experimental solubility data of the 

drug in pure solvent. This reduces the predictive nature of the model. 

Shu and Lin 

(2011) 
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Table 3.3.  Examples of Comparative Studies ……. (Continued). 

APIs studied Models 

Compared 

Observations Reference 

Between 12 and 70 

different APIs with 

various models 

Pharma Mod. 

UNIFAC; Hansen 

Solubility Model; 

UNIFAC; Mod. 

UNIFAC (Do); and 

NRTL-SAC 

The correlative model NRTL-SAC provides the best results of all activity 

coefficient models because this model uses experimental solubility data of the 

considered API for parameterization of the model. The Pharma-Mod model 

more accurately predicted complex compounds solubility data compared to the 

other UNIFAC models in most cases. However the parameter matrix requires 

further development to broaden its application. 

Diedrichs and 

Gmehling (2011) 

3-Pentadecylphenol, 

Lovastatin, And 

Valsartan 

NRTL-SAC and 

UNIFAC 

The NRTL-SAC model showed relative advantage over the UNIFAC model in 

almost all cases, except for the systems containing light alcohols with water. 

However NRTL-SAC required some data for regression of parameters prior to 

use. 

Sheikholeslamza

deh and  Rohani 

(2012) 

18 APIs including 

Aspirin, Ibuprofen And 

Testosterone 

UNISAC, UNIFAC 

and NRTL-SAC 

The UNISAC model provides a superior prediction than the NRTL-SAC and 

UNIFAC models in over two-thirds of the systems investigated. The FIC and 

AIC scores recommended the UNISAC model in over 75% of the cases when 

compared to NRTL-SAC and UNIFAC for most systems tested.  The UNISAC 

model is found to be competitive with Pharma-UNIFAC and modified 

UNIFAC (Do) models in the three solvent systems tested: alkanes, alcohols 

and water.  The UNISAC model provides a means of performing qualitative 

predictions of solubility for complex pharmaceutical components.  

Moodley et al. 

2015 

Acetylsalicylic Acid, 

Acetaminophen, 

Cimetidine and 

Famotidine 

Pharma Mod. 

UNIFAC and Mod 

UNIFAC (Do) 

The prediction results show that the Pharma Modified UNIFAC model gives a 

qualitative representation of the experimental solubilities, and give better 

predictions than the modified UNIFAC (Dortmund) model for the systems 

studied. 

Matsuda et al. 

(2015) 

Picric acid, Salicylic 

acid , 3-Nitrobenzoic 

acid, Biphenyl 

Pharma-Mod 

UNIFAC and KT-

UNIFAC 

The Pharma-Mod model more accurately predicted complex compounds 

solubility data compared to the other UNIFAC models. The model parameter 

matrix needs further completion and extension. 

Nouar et al. 

(2016) 

 

 

 
3.4. Development of multiphase flash calculation equations 
The generalised formulation of multiphase flash calculations that are used to calculate the various 

phase diagrams, associated with crystallisation, is presented. The equation-solving approach 

entails performing a stability test to know the number of phases, and in solving a set of non-linear 

algebraic equations deduced from mass balances and equilibrium relations. This method involves 

two sequential loops: first the determination of the number and type of coexisting phases, using a 

stability test like the tangent plane criterion; and second, the calculation of composition and ratio 

of the phases by solving the correct set of governing equations (Michelsen, 1982a, 1982b), 

(Michelsen and Mollerup, 2007). 

If a system of n components is split into p phases, then the material balance for component I is 

given by: 
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𝑧𝑧𝑖𝑖 = ∑ 𝜃𝜃𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘
𝑘𝑘=𝑝𝑝
𝑘𝑘=1                                                                        (3.120) 

where 𝑧𝑧𝑖𝑖 is the mole fraction of component 𝑖𝑖 in the feed; 𝜃𝜃𝑘𝑘 is the phase fraction of phase 𝑘𝑘; 

and 𝑥𝑥𝑖𝑖𝑘𝑘 is the mole fraction of component 𝑖𝑖 in phase 𝑘𝑘. If we choose one of the phases as the 

reference phase (such as the liquid phase), then the equilibrium constants can be defined as: 

𝐾𝐾𝑖𝑖𝑘𝑘 = 𝑥𝑥𝑖𝑖
𝑘𝑘

𝑥𝑥𝑖𝑖
𝑙𝑙      𝑜𝑜𝑜𝑜  𝑥𝑥𝑖𝑖𝑘𝑘 = 𝐾𝐾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑙𝑙                                                             (3.121) 

 And, therefore:  

𝑧𝑧𝑖𝑖 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑙𝑙
𝑘𝑘=𝑝𝑝
𝑘𝑘=1                                                                        (3.122) 

𝑥𝑥𝑖𝑖𝑙𝑙 = 𝑧𝑧𝑖𝑖
∑ 𝜃𝜃𝑘𝑘𝐾𝐾𝑖𝑖

𝑘𝑘𝑘𝑘=𝑝𝑝
𝑘𝑘=1

     =  𝑧𝑧𝑖𝑖
𝜃𝜃𝑙𝑙𝐾𝐾𝑖𝑖

𝑙𝑙+∑ 𝜃𝜃𝑘𝑘𝐾𝐾𝑖𝑖
𝑘𝑘𝑘𝑘=𝑝𝑝

𝑘𝑘=2
   =     𝑧𝑧𝑖𝑖

𝜃𝜃𝑙𝑙+∑ 𝜃𝜃𝑘𝑘𝐾𝐾𝑖𝑖
𝑘𝑘𝑘𝑘=𝑝𝑝

𝑘𝑘=2
                                      (3.123) 

Since the sum of all mole fractions of each phase must be equal to 1, for each phase we have: 

�𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=𝑛𝑛

𝑖𝑖=1

= 1      therefore we can define (𝑝𝑝 − 1) functions  𝑓𝑓𝑘𝑘 =  �𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=𝑁𝑁

𝑖𝑖=1

−  �𝑥𝑥𝑖𝑖𝑙𝑙
𝑖𝑖=𝑁𝑁

𝑖𝑖=1

 = 0 

Therefore we have: 

∑ 𝐾𝐾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑙𝑙𝑖𝑖=𝑁𝑁
𝑖𝑖=1 −  ∑ 𝑥𝑥𝑖𝑖𝑙𝑙         =   𝑥𝑥𝑖𝑖𝑙𝑙�∑ 𝐾𝐾𝑖𝑖𝑘𝑘𝑖𝑖=𝑁𝑁

𝑖𝑖=1 − 1�    = 0 𝑖𝑖=𝑁𝑁
𝑖𝑖=1                                       (3.124) 

Therefore, from equation (3.124) we have: 

∑ �𝐾𝐾𝑖𝑖
𝑘𝑘−1�𝑧𝑧𝑖𝑖𝑖𝑖=𝑁𝑁

𝑖𝑖=1

𝜃𝜃𝑙𝑙+ ∑ 𝐾𝐾𝑖𝑖
𝑘𝑘𝜃𝜃𝑘𝑘

𝑘𝑘=𝑝𝑝
𝑘𝑘=2

     =    0                                                                  (3.125) 

And the overall material balance corresponds to:  

�𝜃𝜃𝑘𝑘  =   1   which can be written as  𝜃𝜃1 +
𝑘𝑘=𝑝𝑝

𝑘𝑘=1

 �𝜃𝜃𝑘𝑘 = 1
𝑘𝑘=𝑝𝑝

𝑘𝑘=2

 

Therefore equation (3.124) can be written as (p-1) equations: 

∑ �𝐾𝐾𝑖𝑖
𝑘𝑘−1�𝑧𝑧𝑖𝑖𝑖𝑖=𝑁𝑁

𝑖𝑖=1

1+ ∑ �𝐾𝐾𝑖𝑖
𝑘𝑘−1�𝜃𝜃𝑘𝑘

𝑘𝑘=𝑝𝑝
𝑘𝑘=2

     =    0                                                                (3.126) 

To satisfy positive phase concentrations for all phases, mass conservation constrains that the 

denominator term be greater than zero): 

1 + ∑ �𝐾𝐾𝑖𝑖𝑘𝑘 − 1�𝜃𝜃𝑘𝑘 > 0              𝑖𝑖 = 1, 2, … .𝑛𝑛𝑘𝑘=𝑝𝑝
𝑘𝑘=2                                     (3.127) 

The incorporation of the following azeotropy and miscibility test, into the solvent selection tool, 

ensures correct prediction of the phases that exist during the multiphase flash calculations: 
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An azeotrope exist if:  

𝛾𝛾1∞𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃2
𝑠𝑠𝑠𝑠𝑠𝑠 > 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝛾𝛾2∞𝑃𝑃2
𝑠𝑠𝑠𝑠𝑠𝑠 < 1    𝑂𝑂𝑂𝑂      𝑖𝑖𝑖𝑖  𝛾𝛾1

∞𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃2
𝑠𝑠𝑠𝑠𝑠𝑠 < 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝛾𝛾2∞𝑃𝑃2
𝑠𝑠𝑠𝑠𝑠𝑠 > 1                 (3.128) 

Then at some composition  𝑥𝑥,   𝛼𝛼12 = 1 

Where 𝛾𝛾1∞ represent the activity coefficient of component 1 at infinite dilution in component 2, 

and 𝛾𝛾1∞ represent the activity coefficient of component 2 at infinite dilution in component 1. 

The system exhibits complete miscibility if the following inequality is satisfied across the entire 

composition range: 

� 𝑑𝑑
2∆𝐺𝐺

𝑑𝑑�𝑋𝑋𝑖𝑖
𝑙𝑙�
2�
𝑇𝑇,𝑃𝑃

> 0     OR     �𝑑𝑑𝑑𝑑𝑑𝑑𝛾𝛾𝑖𝑖
𝑑𝑑𝑋𝑋𝑖𝑖

𝑙𝑙 �
𝑇𝑇,𝑃𝑃

> − 1
𝑋𝑋𝑖𝑖
𝑙𝑙                                      (3.129) 

 Since the Solvent Selection Tool eliminates the possibilities of immiscible systems, we will have 

at least three phases (vapour, liquid, and solid) with the possibility of multiple solid phases. From 

the stability criterion presented by Michelsen (1998b), component i may exist as a pure solid if: 

𝑓𝑓𝑖𝑖(𝑃𝑃,𝑇𝑇, 𝑧𝑧)  −   𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑠𝑠 (𝑃𝑃,𝑇𝑇)   ≥ 0                                                        (3.130) 

Where  𝑓𝑓𝑖𝑖(𝑃𝑃,𝑇𝑇, 𝑧𝑧) is the fugacity of component i with feed composition z. This stability analysis 

gives the number and identities of the crystallizing components. 

For a vapour-liquid, multi-solid systems with Ns number of solid phases determined by the above 

stability criterion, we have the following unknowns: (n-1) vapour phase compositions; (n-1) 

liquid phase compositions; vapour phase fraction; and Ns solid phase fractions. With the set of 

(p - 1) equations obtained from equation (3,125), and with the phase equilibria equations listed 

below, we are able to determine the phase fractions and compositions for equilibrium flash at a 

specific temperature and pressure: 

N vapour-liquid isofugacity equations: 

𝑓𝑓𝑖𝑖𝑣𝑣(𝑃𝑃,𝑇𝑇, 𝑥𝑥1𝑣𝑣 ,𝑥𝑥2𝑣𝑣 , … … … , 𝑥𝑥𝑛𝑛−1𝑣𝑣 )−  𝑓𝑓𝑖𝑖𝑙𝑙�𝑃𝑃,𝑇𝑇, 𝑥𝑥1𝑙𝑙 ,𝑥𝑥2𝑙𝑙 , … … … , 𝑥𝑥𝑛𝑛−1𝑙𝑙 � = 0   ( 𝑖𝑖 =  1, … … ,𝑁𝑁)      (3.131)   

And Ns liquid-solid isofugacity equations: 

𝑓𝑓𝑖𝑖𝑙𝑙�𝑃𝑃,𝑇𝑇, 𝑥𝑥1𝑙𝑙 ,𝑥𝑥2𝑙𝑙 , … , 𝑥𝑥𝑛𝑛−1𝑙𝑙 � −  𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑠𝑠 (𝑃𝑃,𝑇𝑇) = 0    

( 𝑖𝑖 = (𝑁𝑁 −𝑁𝑁𝑁𝑁) + 1, (𝑁𝑁 −𝑁𝑁𝑁𝑁) + 2, … … ,𝑁𝑁)                                   (3.132) 

As there are no analytical techniques for solving such sets of nonlinear coupled equations, 

iterative methods are used. There are several successful and proven iterative methods in phase 

calculation. The most established is the Successive Substitution Method (SSM) (Michelsen, 
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1982a, 1982b). SSM requires an initial guess for the K-factors, to calculate the molar phase 

fractions. At the outset, composition-independent correlations can be used to calculate the K-

factors (Michelsen and Mollerup, 2007). This is followed by a calculation of phase compositions, 

fugacity coefficients, component fugacities, and activity coefficients in each fluid phase. Pure 

solid-phase fugacities can be calculated outside the iteration, as the solid phases are assumed to 

be pure and their fugacities, therefore, only depend on temperature and pressure. The phase 

equilibrium conditions are checked. If equilibrium conditions are not satisfied, the K-factors 

(using composition dependent correlations) are updated, after which the iteration procedure is 

repeated. The procedure known as the Boston-Britt algorithm, which is used by most commercial 

process simulators, solves the flash equations in an inner loop using simple models, and the simple 

model parameters are updated in an outer loop by calculating properties from rigorous models 

(Parekh and Mathias, 1998). The typical iteration scheme of the SSM method is shown in Figure 

3.3. 

Concluding remarks 
In this work, solid-liquid phase equilibria is used as the theoretical foundation for the 

understanding crystallisation processes, and in this chapter, a brief outline has been provided on 

the importance of solid-liquid phase equilibrium processes in the selection of solvents for 

crystallisation.  The thermodynamic foundations relating to the phenomena of phase equilibria, 

and the classical formulation of solid-liquid equilibria is presented. An overview of the 

thermodynamic models, including the equations of state, and the correlative and predictive 

activity coefficient models that account for the non-ideal behaviour in the computation of phase 

equilibria is presented. In addition, the calculation procedures for determining the 

multicomponent multi-phase equilibria using flash calculations is presented as these are used to 

establish the presence of solid-liquid equilibria and the subsequent changes to the phase equilibria 

under varying conditions of temperature and concentration. 
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Figure 3.3: Typical iteration scheme of the Successive Substitution Method (SSM). 
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 CHAPTER 4: COMPUTATIONAL METHODS  

4.1. Introduction 
The pharmaceutical industry is a highly competitive, regulated industry. The process of 

developing a new drug compound is not only lengthy and costly, it is also risky and complex.  

The average cost of developing a new drug is currently estimated to be in the region of $800 

million when capitalized, and the average development time, from patent (typically valid for 

twenty-two years) application to market entry, is seven to twelve years, leaving just ten to fifteen 

years remaining for sales, and good profitability (Crafts, 2007).  

Considering the industry constraints, in designing a process for API production it is significant 

that there are several, necessary yet competing criteria to fulfil: 

• The process must be able to consistently produce the required yield, purity and quality; 

• The process should be uncomplicated, robust, and to be able to perform consistently; 

• The required capital expenditure and operating costs should be minimal, and; 

• The process should have minimal environmental impact. 

As early as possible during the conceptual design phase it is critical to establish the optimal 

processing route and operating conditions that will result in maximum financial benefit with 

minimum environmental impact.  

 

A key process parameter, in terms of impact, is the choice of solvent. Different solvent systems 

induce varying yields, which invariably impact directly on processing volumes, equipment size, 

and downstream processing requirements for solvent recovery and waste stream treatment 

(Buxton et al., 1999; Constable et al., 2007, Ruether and Sadowski, 2009). Ideally, solvents should 

be selected for their minimal operational and capital costs, while providing good yield of the API, 

good recovery and reuse, and staying within regulatory constraints.  

 

Hence, in this chapter the development of a computational means to select the best solvent will 

be explored, within the overall process, in terms of operational, economic, and environmental 

performance requirements.  

 

4.2 Development of a Computational Framework 
4.2.1. Software selection 
This section briefly describes the type of knowledge and some of the tools needed to develop a 

reliable simulation module. Some of the key requirements for the development of a computational 

tool to assess the overall performance of a solvent include: 

1. A database of chemicals associated with the pharmaceutical industry including the various 

solvents, products, by-products, and impurities for the system under investigation. 
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2. Thermodynamic models that can predict the physical and chemical properties of all the 

components required in the various computations, including multiphase equilibria 

calculations. 

3. Process models and algorithms that can perform the required solvent evaluations and process 

synthesis calculations for crystallisation. 

4. An automated means to perform multiple calculations. 

5. A means to record the results from multiple calculations as structured data sets for analysis. 

 

The first two criteria already exist in many commercial software simulators, such as CHEMCAD, 

Aspen Plus, Hysys, Pro II, etc. These allow for user defined compounds as well as values of 

experimentally measured properties, such as binary interaction parameters, to be added into the 

component database. Chemical process simulators have become reliable tools that are widely used 

in process engineering. Process simulators contain strict models for most chemical process units, 

robust numerical algorithms for particular units, and large databases of physicochemical 

thermodynamic and transport properties. The capability of process simulators can make 

modelling and optimization of the process easier, while complex calculations can be carried out 

quickly by a process simulator. Nevertheless, resetting the input parameters to evaluate a range 

of scenarios can be time consuming, and storage of the multiple simulation results for comparative 

studies can be challenging.   

 

The developers of commercial process simulation software have created various interfacing 

options to extend the capabilities and applications of the software. An interface serves as a 

technical and semantic bridge that allows reading from, and writing to the objects of another 

software package. But, depending on the purpose of the system, objects can be found on either 

side of the interface and the objects of a process simulator will differ in meaning to those of 

adjacent programs. Hence, an important requirement for the design of an interface lies in the 

standardization of meaning.  

 

A technical bridge from the interface can be implemented by means of a file or data transfer, 

function calls or shared objects. The key benefit of interfacing is that it allows for the objects in 

the process simulator to be used beyond its boundaries. For example, CHEMCAD developers 

have created various interfacing options: between Microsoft Excel and CHEMCAD; between The 

Design Institute for Physical Properties (DIPPR) databank and CHEMCAD; and between the 

Dortmund Data Bank (DDBST) and CHEMCAD (Fricke and Schöneberger, 2015).  In addition, 

CHEMCAD also allows a user to develop their own process models that can integrated into any 

simulation.  
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The CHEMCAD user-defined process models are developed with VBA (Visual Basic for 

Application) programming language and are hence named VBA Unit Operations. These 

interfacing facilities now extend computational capabilities by allowing the resetting of input 

parameters, thus managing the operations of the process simulator. And, as the storage capacity 

of MS Excel is practically unlimited, it is an ideal, interfacing, complementary tool for the process 

simulator.  

 

As a result, it was decided to exploit the interfacing capability of CHEMCAD, and to use it to 

construct a solvent selection tool. This was accomplished by developing an internal, interfacing 

VBA module embedded within the process simulator. The details of the VBA module is described 

in the following sections. 

 

4.2.2. Computational Framework 
A novel, modular, integrated computational framework is developed to simulate crystallisation 

process synthesis and optimization. The modular integrated framework integrates CHEMCAD, a 

VBA Module (with various crystallisation sub-routines) and Excel. The key criterion for the 

modular integrated framework is the accurate exchange of data between the VBA module 

algorithms, the CHEMCAD simulation algorithms and Excel. The specified and calculated 

variables extracted from the CHEMCAD simulation platform are dictated by, and used in the 

VBA platform, in this study.  In the framework, the various calculations for the crystallisation 

processes are based on the CHEMCAD multiphase flash calculation simulation model. The 

extraction and processing of necessary data is then implemented by the VBA module.  The overall 

framework, and the interactions of the VBA module with the various components of CHEMCAD 

and Excel, is shown in Figure 4.1.  

This approach, of developing and integrating this VBA module within the commercial simulation 

programme CHEMCAD, has several advantages. The computations within the VBA modules 

have access to a full range of thermodynamic models and correlations, a comprehensive database 

of compounds and their pure and mixture properties, and rigorous, computational algorithms for 

process calculations and equipment design. In addition, software vendors regularly deliver 

updates for their programs to fix bugs and to deliver new functionality, including the updating 

and inclusion of new properties, thermodynamic models and methods. CHEMCAD also provides 

for user defined components to be added into its database. The VBA modules are integrated into 

CHEMCAD via a VBA unit operation; and an intuitive and user-friendly dialogue screen, built 

into a visual basic platform, allows users to send information into the VBA unit operation. 
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Figure 4.1. Components of the integrated computational framework. 

 

The mutual connection between CHEMCAD and MS Excel is created by a VBA unit operation. 

A master/slave architecture is adopted, where a series of calculations, as dictated by the VBA 

module, are carried out systematically with the help of this software connection. The input, feed-

stream parameters for every simulation are always set in MS Excel and transferred into 

CHEMCAD via the VBA Module. When the required computation is completed by the process 

simulator, the internal variables are further processed and updated within the VBA module sub-

routines for the next calculation loop.  The next calculation loop may be a change in the operation 

conditions, or a new component to be evaluated. The desired set of results, either for each 

calculation loop or at the end of a complete simulation, are transferred back to MS Excel. At the 

end of the calculations, the initial parameters and the calculation results are displayed in a 

structured form in the MS Excel file. Thus, the operational database of the crystallisation process 

is created. The resulting database enables us to define/analyse the optimum and highlight the 

unfavourable operating range of the system. This typical structure of the various sub-routines is 

illustrated in Figure 4.2. 
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Figure 4.2. An Example of a Typical Sub-Routine and Its Communication Pathways. 

 

To illustrate this interface and the two way communication between Excel – VBA Module and 

CHEMCAD, some examples of code statements and their functions in the various sub-routines 

of the VBA module) are presented in Table E.1. In addition, an example of the many sub-

routines that make up the computational framework is presented in Appendix E.  
 

4.4.3. The VBA Module 
The heart of the computational solvent selection tool is the VBA module, which not only provides 

the necessary instructions to CHEMCAD, but has over 30 sub-routines that compute various 

calculations to fulfil its purpose as a complete conceptual design tool. The VBA module meets 

the following desired software development requirements: its models are appropriate for purpose, 

in terms of rigor, level of detail, accuracy, validity and generality; the algorithms are robust, 

generalizable, and efficient in terms of execution and storage; the software is easy to understand, 

maintain and modify, and it is transportable; and the user interface readily accepts input, and 

presents results in a useable form.  
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The Solvent Selection Tool, developed in this work, is capable of computing various outputs 

associated with crystallisation. Outputs include the prediction of the eutectic temperatures and 

compositions in the system. It can create various types of phase diagrams and solubility curves 

that allow the user to examine the overall composition space, to visualize crystallisation regions, 

to identify separation barriers, and to evaluate the various operations. The operations, such as 

heating, cooling, solvent addition, solvent removal, anti-solvent addition, and their combinations, 

can thereby be studied in order to systematically evaluate process alternatives.  

The pivotal calculation tool is the multicomponent, multiphase, flash-calculation algorithm, 

which is presented in chapter 3. The operational protocols of the crystallisation process, to achieve 

the desired targets, are determined by conditions that lead to the formation of a solid phase, the 

extent to which a solid phase will continue, under varying temperatures and liquid phase 

compositions, to crystallise prior to the next solid phase forming. The methodology that is used 

to establish these protocols is presented in Figure 4. 3.                                           

 

Figure 4. 3. Algorithm for the analysis of crystallisation to determine 
operating protocols. 

 

The full computational capabilities of the VBA module are summarised in Figure 4.4. The VBA 

module consists of 32 sub-routines (150 pages of VBA code).   Each of the calculations listed in 

Figure 4.4 may involve multiple sub-routines with multiple iterative CHEMCAD calculations. 
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Whilst some of the computational outputs present as a single answer after completing several 

iterations, e.g., run cool down will determine the yield at a specified temperature, others will 

output a matrix of results for a range of input variables for further analysis.  A detailed description 

of the various menus and calculation capabilities of the developed computational tool is presented 

in Appendix B. 
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Figure 4.4. Computational Capabilities of the VBA Module developed.
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4.3. Models and their Assumptions  
4.3.1. Practices in the pharmaceutical industry 
To develop a realistic computational tool for the pharmaceutical industry, it is essential to understand 

its manufacturing principles and procedures. General processing practices in the pharmaceutical 

industry, noted by Crafts (2007), Wieckhusen, (2006, 2011), and am Ende, (2011) include: 

• Pharmaceutical manufacturers of non-generics almost exclusively use batch technologies. This 

minimizes the impact of off-specification products to discrete quantities that can be easily 

isolated for rework or disposal.  

• Material recycling is generally avoided because it can introduce problems of quality control, 

particularly in respect to impurity of concentrations. Impurities, for the purposes of 

crystallisation, could be unreacted starting materials or byproducts. With recycling, the 

concentration of these impurities may increase to solubility, within the operating temperature 

ranges, and may crystallize simultaneously with the desired API, hence leading to 

contamination.  

• Processes are designed to fit generic arrangements where feasible. Because of the small 

production volumes of many APIs it is typical for production to done in multi-product batch 

plants that are furnished with generic equipment.  

• The process of crystallisation is generally used to selectively separate out the API as a solid of 

very high purities. The key unit operation is the recovery of the desired API from the process 

stream exiting the reactor. The three main advantages of using crystallisation as a separation 

technique are: a high purity product in one process step; a comparatively low level of energy 

consumption; and relatively mild process conditions. 

With these factors in mind, there are several competing measures of performance that can be used for 

ranking process schemes during the conceptual design phase. The general methodology selected to 

develop the selection tool is structured as follows: 

1. Identify solvents that are acceptable for use in the pharmaceutical industry. Several Solvent 

selection guides have been developed by AstraZeneca, Pfizer, GlaxoSmithKline (GSK), and 

Sanofi to facilitate solvent selection (Prat, 2014), (Byrne et al., 2016). In this work, the 

GlaxoSmithKline (GSK) guide (Henderson, 2011) is used. 

2. Evaluate the list of solvents to determine a list of candidate solvents/solvent blends that meet 

the process specific performance criteria: Crystal yields, physical property requirements 

(boiling point, flashpoint, miscibility etc.) 

3. From (2), determine the optimal solvents/solvent blends/anti-solvents that meet economic 

performance expectations by considering the following: 
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a.  Operational costs (solvent usage and solvent recovery and reuse potential, energy 

usage, waste treatment, etc.). The methodology proposed by Ulrich and Vasudevan 

(2006) 

b. Capital costs, which accounts for the processing equipment size and downstream 

processing complexity. The methodology presented in Turton (2008) is used. 

4. Evaluation of the environmental performance of the selected solvent candidates using 

performance indices. Methodologies outlined in the field of Green Chemistry have been 

adopted   (Sheldon, 2007) (Dunn, 2010) (Pistikopoulos & Stefams , 1998) 

This stepwise procedure reduces the combinatorial complexity and avoids unnecessary computations.  

In addition, to reduce the computational complexity, the following assumptions are proposed: 

a) Crystallisation is the preferred unit operation for the recovery of the desired API. It will be 

assumed that the desired API with the desired properties (morphology and size distribution) are 

achieved in a well-controlled crystallisation process over a period of 20 hours. In addition, the 

discharge, cleaning and recharge cycle is 4 hours. Hence, the total batch time is 24 hours or 1 

day. The batch size is limited to 1.25 cubic meter per crystallizer. The total volume of each 

crystallizer is 1.5 cubic meters (1.25 cubic meter working volume and 0.25 cubic meter of 

headspace.)  

b) The amount of solvent/s required for the process is only dependent on the equilibrium solubility 

relationship  

c) The size of storage (feed and waste streams) and processing vessels is dependent on the solvent 

requirements per batch or production output. It is assumed that the required solvent storage 

capacity is twice the daily solvent requirement plus a headspace (safety factor) of 25%. 

d) The plant operations that are considered to be directly affected by the choice of solvent are 

limited to: the reactor; the crystallizers and their required heat exchangers; solvent feed and 

waste storage tanks; and the solvent recovery system. Hence the capital costs are determined 

for: reactor; crystallizer; heat exchangers; solvent recovery evaporator; and solvent feed and 

waste storage tanks. The operational costs are determined for: crystallizer cooling / evaporation; 

solvent recovery heating; solvent cost and waste treatment.  The operations not included in the 

financial models include: the centrifuge; washing station; any recrystallisation operations and 

drying. 

e) The waste treatment is only dependent on the volume of the unrecoverable solvent and is 

independent of the type of solvent and API. It will be assumed that there will be 80% recovery 

of solvent, hence 20 % of the daily solvent requirement plus the unrecovered API will require 

tertiary waste treatment or hazardous waste treatment methods 

f) The amount of desired API (kg) crystals will form the basis for all simulations. A production 

rate of 1000 kg of API per day will be the basis for all calculations. 
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g) Evaporation is the preferred unit operation for solvent recovery of single solvent systems, and 

distillation may be required with co-solvent and anti-solvent applications. 

h) Steam generation in the pharmaceutical industry is typically a two stage process: steam that is 

generated in a standard boiler is used as a heat source to convert ultra-pure water (generated in 

a multi-effect evaporator) into steam which is then used for process heating. This duel loop 

system effectively increases the cost of heating. 

4.3.2 Solvent Database 
Solvents typically make up more than 80% of the material usage for active pharmaceutical ingredient 

(API) manufacture (Constable et al., 2007).  Solvent use also consumes about 60% of the overall energy 

and accounts for 50% of the post-treatment greenhouse gas emissions (Jimenze-Gonzalez et al., 2005). 

Hence, solvent selection is a major consideration in the design of chemical and pharmaceutical 

processes.  

 

Several initiatives within the pharmaceutical industry, to improve process efficiency and product quality 

through green chemistry and engineering, have resulted in the development of a valuable set of tools, 

including a solvent selection guide, Process Mass Intensity/LCA calculator, and a powerful reagent 

guide.   

 

With the use of these solvent selection guides, appropriate solvents can be identified prior to screening 

experiments and less desirable solvents can be replaced in new and established processes. These solvent 

selection guides take into consideration the chemical functionality, physical properties, regulatory 

concerns, and safety/health/environment (SHE) impact. In this work, the GSK Solvent Guide is used to 

develop the database of solvents for this framework. The resulting solvent database used in this 

computational tool is presented in Appendix C.  

 

4.3.3. Performance criteria and the Relevant Equations 
4.3.3.1. Process Specific Performance Criteria:  Yield, purity and quality 

Yield, in the API crystallisation process, is an important target because it largely determines the 

profitability of the process. Both solvent and process should be chosen so that a high yield with the 

desired purity can be obtained. But, conditions leading to high yields may also favour crystallisation of 

by-products and undesirable polymorphs, which may result in contamination of the desired pure API 

crystals. Delivering the right polymorphic form or solvate is crucial because these forms usually differ 

in their solubility and dissolution rate and may even differ in physiological effects. 

Particle size distribution (PSD) of the API is a key quality attribute. It affects the manufacturing process 

in terms of flow characteristics, the filtration process, isolation, and drying kinetics; interactions with 

excipients, and the proper delivery profiles of the drug (bioavailability). Ensuring consistent PSD with 
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each batch requires proper control of primary nucleation and crystal growth. The equation that is used 

to calculate the yield is derived from a material balance around a crystallizer (Jones, 2002; Mersmann, 

2001; Myerson, 2001), and the resulting equation that is used to calculate the yield is: 

𝑓𝑓1(𝑥𝑥) = 𝑌𝑌 = 𝑊𝑊𝑊𝑊�𝐶𝐶𝑖𝑖 −𝐶𝐶𝑓𝑓(1−𝑉𝑉)�
1−𝐶𝐶𝑓𝑓(𝑅𝑅−1)                                                                        4.1 

Where: 

𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑓𝑓 are the initial and final equilibrium solute content in the crystalliser (kg solute kg solvent⁄ ); 

𝑊𝑊 is the initial mass of solvent (kg); 

𝑉𝑉 is the solvent loss through evaporation (kg vapour kg original mass of solvent)⁄ ; 

𝑅𝑅 is the ratio of the molar mass of the hydrate and anhydrate solute; 

𝑌𝑌 is the yield of crystals (kg).  

Note: 

𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑓𝑓 are  determined by the solubility equation:  𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 −
∆𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑚𝑚

�1 −
𝑇𝑇𝑚𝑚
𝑇𝑇
� + 𝑙𝑙𝑙𝑙𝛾𝛾𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 0 

 

It should be noted that the basis for all calculations is the desired production rate of API. Hence, from 

the feed composition and the initial and final operating conditions, we are able to calculate the required 

feed rate of all the feed components to meet the desired API production rate. From the completed 

material balance we are able to determine the sizes of the various equipment and utilities required.  

 

4.3.3.2. Economic performance 

In all stages of the design process, economic evaluation is crucial in the selection of process alternatives.  

Various methods are available in chemical engineering literature (Turton, 2008),  (Peters, 1991) , 

(Green, 2007), etc. for the economic evaluation of chemical processes. Some incorporate the concept 

of the ‘time value of money“, such as the net present value (NPV), and discounted cash flow methods. 

While these are measures of profitability over an extended time period, they require certain assumptions 

relating to interest rates and inflation. Alternatively, the total annualized cost (TAC) can also be used 

as an economic indicator/objective function for the evaluation of design alternatives and economic 

optimization. The economic method used in this work, which is developed in a VBA module, carries 

out standard cost calculations for fixed capital investment and operational cost, and computes total 

annualized cost.  
 

The plant operations considered to be directly affected by the choice of solvent are limited to: the 

reactors; the crystallizers and their required heat exchangers; solvent feed and waste storage tanks; and 

the solvent recovery system. Hence, the capital costs are determined for: reactors; crystallizers; heat 

exchangers; solvent recovery evaporators; and solvent feed and waste storage tanks. The operational 
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costs are determined for: crystallizer cooling/heating requirements; solvent recovery heating 

requirements; solvent cost; and waste treatment.  The operations not included in the financial models 

include: centrifuge; washing station; any recrystallization operations; and dryer.  

 

The financial impact of a selected solvent to other available solvents is determined by comparing the 

TAC associated with each solvent, where the TAC is calculated by the expression: 

 

Total Annualised Cost (TAC) = 𝐷𝐷 × Fixed Capital Costs + Annual Operational Costs      4.2 

 

Where D is the depreciation or capital recovery factor and is normally taken to be a value between 0.15 

and 0.25, but can also be computed using depreciation calculation methods.  

 

We can further rank the solvents using the concept of normalised total annualised cost (NTAC) which 

we define as: 

 

Noramlised Total Annualised Cost (NTAC) = (𝑇𝑇𝑇𝑇𝑇𝑇)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
(𝑇𝑇𝑇𝑇𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

                                    4.3 

 

The fixed capital costs include direct costs (equipment, installation, electrical, piping, instrumentation, 

etc), and indirect costs (contractor fees, construction expenses, contingencies, etc). It is estimated by 

multiplying the equipment cost by estimation factors. Peters and Timmerhaus (2003) present an 

estimation factor of 4.28 for solid-liquid processing plants. Hence the fixed capital cost can be estimated 

by: 

Fixed Capital Costs = 4.28∑𝐶𝐶𝑒𝑒𝑒𝑒                                                     4.4 

 

4.3.3.2.1. Equipment Costs 

The equations and figures presented by Turton et al. (2009) are used to determine the capital equipment 

costs. These are based on a module factor approach to costing that was originally introduced by Guthrie 

(1974) and modified by Ulrich (1984). The general form of the equipment cost equation for equipment 

operation at ambient pressure using carbon steel construction is presented here: 

 

𝑙𝑙𝑙𝑙𝑙𝑙10𝐶𝐶𝑝𝑝0 = 𝐾𝐾1 + 𝐾𝐾2𝑙𝑙𝑙𝑙𝑙𝑙10(𝐴𝐴) + 𝐾𝐾3�𝑙𝑙𝑙𝑙𝑙𝑙10(𝐴𝐴)�2                                             4.5 

 

Where 𝐴𝐴 is the capacity or size parameter; and 𝐾𝐾1,𝐾𝐾2,𝐾𝐾3 are correlation parameters given in Table 4.1.  
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These cost equations are normalised to 2001 equipment costs. Further adjustments were made to 

account for different materials of construction and the current CEPCI index. The resulting expression 

used is: 

 

𝐶𝐶𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑝𝑝0 × 𝐹𝐹𝐵𝐵𝐵𝐵 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2016
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

                                                                  4.6 

 

Where 𝐹𝐹𝐵𝐵𝐵𝐵 is the adjustment factor for the material of construction for different equipment, and can be 

found in various tables presented in Turton et al. (2009), CECPI is the Chemical Engineering Plant Cost 

Index which is an inflation parameter for projects and is published monthly in “Chemical Engineering”. 

 

The standard mass and energy balances, unit operation process models and heat transfer equations are 

used to determine the size of various storage vessels and process equipment in the process. 

 

 
Table 4.1. Equipment Costing Parameters (Extracted from Turton et al., 2009). 

 
  
 
 4.3.3.2.2. Operating Cost 

The operating costs are based on the key utilities that are significantly influenced by the volume of 

selected solvent required to meet the desired production rate of API. These cost will include: the cost 

of solvent; cost of cooling (cooling crystallisation), cost of heating (evaporative crystallisation), cost of 

solvent recovery, and cost of tertiary waste treatment of unrecovered solvent, API and other 

 
Equipment 

 
Cost Parameters 

Size 
parameter 

 Material of 
Construction 

Factor 

  𝑲𝑲𝟏𝟏   𝑲𝑲𝟐𝟐   𝑲𝑲𝟑𝟑  𝑨𝑨  𝑭𝑭𝑩𝑩𝑩𝑩 

Crystalliser (batch)  4.5097  -0.8269  0.1344  Volume 

(𝑚𝑚3) 

 4.8 

Shell and Tube heat 

exchanger (fixed tube) 

 4.3247  -0.3030  0.1634  Area (𝑚𝑚2)  5.95 

Storage Tanks (shop 

fabricated) 

 3.4974  0.4485  0.1074  Volume 

(𝑚𝑚3) 

 8.07 

Reactor (Jacketed- 

agitated) 

 4.1052  -0.4680  -0.0005  Volume 

(𝑚𝑚3) 

 4 

Falling Film Evaporator 

(solvent recovery)  

 3.9119  0.8627  -0.0088  Area (𝑚𝑚2)  4 
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components. The various flowrates and heating and cooling are determined by material and energy 

balances setup in the VBA module. The utility costs is determined using the method proposed by Ulrich 

and Vasudevan (2006). The two factor utility cost equation is expressed as: 

 

𝐶𝐶𝑆𝑆𝑆𝑆 = 𝑎𝑎 × (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + 𝑏𝑏 × 𝐶𝐶𝑆𝑆𝑆𝑆                                                           4.7 

 

Where 𝐶𝐶𝑆𝑆𝑆𝑆 is the price of the utility; 𝑎𝑎 and 𝑏𝑏 are utility cost coefficients; CECPI is an inflation parameter 

for projects, and 𝐶𝐶𝑆𝑆𝑆𝑆 is the price of fuel in $/GJ. The CECPI index used in this work is 556.8 (as at 

March 2016). The utility cost coefficients used in this work is presented in Table 4.2. The operating 

cost associated with a selected solvent is: 

 

Where: 

𝑈𝑈𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the unit cost of solvent/raw material 𝑖𝑖; 

𝑅𝑅𝑅𝑅𝑖𝑖 is the amount of solvent/raw material 𝑖𝑖 required;  

𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒  is the unit cost of cooling or heating; 

𝐸𝐸𝑗𝑗  is the amount of cooling and heating required; 

𝑈𝑈𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤 is the unit cost of tertiary wastewater treatment; 

𝑞𝑞 is the amount of unrecoverable solvent and API. 

𝑈𝑈𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 is the unit cost of unrecovered api; 

𝑅𝑅𝑅𝑅𝑎𝑎𝑝𝑝𝑝𝑝 is the amount of unrecovered api.  

 

Table 4.2. Utility Costing Parameters (Extracted from Ulrich and Vasudevan, 2006). 

Utility Cost unit Cost equation coefficients 

  𝒂𝒂 𝒃𝒃 
Electricity (purchased)  ($/𝑘𝑘𝑘𝑘ℎ) 1.3 × 10−4 0.010 

Steam  ($/𝑘𝑘𝑘𝑘) 2.7 × 10−5 × 𝑚𝑚𝑠𝑠
−0.9 0.0034 × 𝑝𝑝0.05 

Cooling Water ($/𝑚𝑚3) 0.0001 + 3 × 10−5 × 𝑞𝑞−1 0.003 

Refrigeration  ($/𝑘𝑘𝑘𝑘) 0.6 × 𝑄𝑄𝑐𝑐−0.9 × 𝑇𝑇−3 1.1 × 106 × 𝑇𝑇−5 

Tertiary Wastewater 

Treatment 

($/𝑚𝑚3) 0.001 + 2 × 10−4𝑞𝑞−0.6 0.1 

Solid/liquid disposal 

(Hazardous)  

($/𝑘𝑘𝑘𝑘) 2.5 × 10−3 - 

 

Where: 

 𝑚𝑚𝑠𝑠 = boiler steam capacity �𝑘𝑘𝑘𝑘
𝑠𝑠
�;  𝑝𝑝 = delivered pressure (bara);  

𝑞𝑞 = total water capacity (𝑚𝑚3/𝑠𝑠) for cooling ;    𝑄𝑄𝑐𝑐 = total cooling capacity �𝑘𝑘𝑘𝑘
𝑠𝑠
� ;        
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 𝑇𝑇 = min cooling temperature 𝐾𝐾 ;   and   𝑞𝑞 = plant capacity (𝑚𝑚3/𝑠𝑠) for water treatment 

 

4.3.3.2. Environmental Performance Indicators 

Pollution prevention as a sustainable process solution is receiving growing interest in process industries, 

due to its considerable environmental and economic benefits. The two main process-related areas where 

this may be achieved are via reducing energy and mass usage in the process systems, and in toxic release 

into the environment. The incorporation of environmental ranking tools is particularly important, in 

preliminary process design, when a number of design alternatives need to be evaluated quickly at each 

level of process synthesis. The following index approaches are very simple and capable of giving a 

quick estimation of a design alternative. 

 

4.3.3.2.1. The Environmental Factor  

The field of Green Chemistry (Dunn et al., 2010) has proposed a practical, simple and flexible metric 

that can applied to access environmental performance. The Environmental (E) Factor which was 

proposed by Sheldon in1992, shows how effective the overall production process is by comparing the 

amount of waste generated by the process against the amount of desirable product that gets created. 

𝐸𝐸 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘𝑘𝑘)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘𝑘𝑘)

                                                   4.9 

In this work, the yield of product and the amount of waste produced is directly dependent on the solvent 

selected and, hence, usage of the E-factor is a good environmental performance indicator. A lower E-

Factor means better, environmentally, performing solvents. 

4.3.3.2.2. The Energy Consumption Factor  
An energy consumption (𝐸𝐸𝑐𝑐) factor is also a metric that can be used to compare the energy efficiency 

of the selected solvent. The energy consumption factor refers to the total energy consumption per unit 

of product and is calculated as follows: 

𝐸𝐸𝑐𝑐 =  ∑ 𝐻̇𝐻
𝑀̇𝑀𝑝𝑝

 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄ )                          4.10 

Where 𝐻̇𝐻 is the combination of heating, cooling and electrical energy required per kg of product.  

 

In this work, since only the heating and cooling energy requirements are considered for each of the 

solvents evaluated during this conceptual design stage, the energy consumption factor is calculated 

using the heating/cooling load only.  
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4.4. Operating Conditions: 
The operating conditions in any process are generally selected to promote the controlling phenomena 

in the desired direction to obtain the maximum yield. In addition, adverse conditions that may to lead 

safety issues or degradation of feed components or product are avoided. Typically, safety margins are 

incorporated into the operating conditions to ensure that adverse conditions seldom or never occur.   In 

determining the operating temperatures for crystallisation with pure solvent, co-solvent or anti-solvent 

systems the following must be taken into account: 

Operating temperature ranges: 

The initial temperature (𝑇𝑇𝑖𝑖) should be: 

a) Below the boiling point 𝑇𝑇𝑏𝑏  of the solvent, to prevent uncontrolled loss of solvent. 

b) Below the flash point 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ  of the solvent, to prevent auto-ignition of air vapour mixture in the 

crystallizer. 

c) Below the degradation temperature 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 of the API, to prevent loss of API. 

d) Below the vapourization temperature 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 of the API, to prevent loss of API. 

Applying a 10 degree safety margin below the lowest of the temperatures listed from a to d, then: 

𝑇𝑇𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑏𝑏 ,   𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ , 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣� − 10𝐾𝐾                                          4.11 

Also note that at 𝑇𝑇𝑖𝑖 the feed solution should not be too close to the solubility point of the desired API, 

to prevent uncontrolled crystal formation. This may promote primary nucleation and limit crystal 

growth.  

The final temperature (𝑇𝑇𝑓𝑓) should be: 

a) Above melting point 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  of solvent, to prevent freezing of solvent (unless Freeze 

crystallisation is the desired operation). 

b) Above melting point 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚of impurities, to prevent contamination of pure API, where the 

impurities could be unreacted starting materials or reaction byproducts (unless a fractional 

crystallisation operation is being implemented where an impurity is first removed). 

c) High enough to have low viscosity for the solvent, to facilitate movement of fluids. 

d) Above the approach temperature of 10℃ of the cooling circuit. It is assumed that if cooling 

water is used as a coolant in the crystallizer, then 𝑇𝑇𝑐𝑐𝑐𝑐 is 20℃ (site dependent). OR if a chilling 

circuit is used as a coolant, then 𝑇𝑇𝑐𝑐𝑐𝑐 could be as low as −20℃. 

 

Applying a 10 degree safety margin above the lowest of the temperatures listed from a to c and 

considering the available coolant temperature, then: 



105 | P a g e   

𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑇𝑇𝑐𝑐𝑐𝑐  𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑇𝑇𝑓𝑓 =  �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�+ 10℃      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑐𝑐𝑐𝑐 + 10𝑜𝑜C        

4.12 

 

Other considerations: 

• Solubility at the maximum feasible operating temperature should be sufficiently high to 

achieve the desired volume, and the yield of crystallisation must meet acceptable productivity 

targets. 

• If the yield of crystallisation is too high (> ~90%) then co-crystallisation of impurities is more 

likely. 

• The solvent should be easy to remove through drying and/or washing with a cleaning solvent. 

• In evaporation applications, the evaporation temperature must be below the degradation 

temperature of the API. 

• For systems where the solubility is not temperature sensitive, then anti-solvent or evaporation 

crystallisation should be considered.  

• If the degradation temperature of the API is below the boiling point of the solvent in 

evaporation crystallisation, then the application of vacuum evaporation must be considered. 

 

To assist in determining the type of crystallisation operation that is applicable for a particular 

application, a Decision Tree has been developed and is presented in Figure 4.5.  
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Figure 4.5. Decision Tree for the selection of crystallisation process. 

 
Concluding Remarks 
In this chapter, the various assumptions made during the development of the Solvent Selection Tool 

that can be applied to API crystallisation has been presented and justification provided. The various 

models and assumptions made for the computation of process, economic and environmental 
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performance are presented.  The novel, modular, integrated computational framework based on a 

“master-slave” architecture with a commercial process simulator developed in this work to simulate 

crystallisation process synthesis and optimization is fully described.  

 

In the next chapter, the Solvent Selection Tool is validated against plant and experimental data the 

computational capabilities is illustrated and discussed by means of a range of case studies.  
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CHAPTER 5: EXPERIMENTAL METHODS 
Whilst verification and testing was performed consistently throughout the development process of the 

various subroutines and algorithms, against existing data in literature, some experimental work was 

undertaken to validate some of the simulation results with regards to co-solvent and anti-solvent 

behaviour. The solubility of APIs in binary solvent systems vary with the variation in composition of 

the binary solvent system. This variation in solubility forms the basis for the co-solvent and anti-solvent 

crystallisation. Co-solvent systems may show higher solubility in the binary solvent than in either of 

the pure solvents, whilst in anti-solvent systems the solubility in the binary solvent may be lower than 

in either of the pure solvents.  In this work, we want to validate the co-solvent and anti-solvent effect 

by measurement of the solubility of selected APIs in selected binary systems and comparing the measured 

data to that predicted by the solvent selection tool.   

In this section the experimental measurement of the solubility of above mentioned APIs in binary 

solvent systems is described. 

5.1. Background 
The equilibrium solubility or thermodynamic solubility of a compound is defined as the maximum 

quantity of that substance which can be completely dissolved at a given temperature and pressure in a 

given amount of solvent, and is thermodynamically valid as long as a solid phase exists which is in 

equilibrium with the solution phase. 

 

The experimental methods used for the determination of solubility of solids can be classified as 

direct and indirect methods. In t h e  direct methods, the solubility is measured by chemical 

analysis of the liquid and solid phases in equilibrium (analytical methods) or through the 

variation of a property of a saturated solution of known bulk composition (synthetic methods).  

In indirect methods, the solubility product (electrolytes only) is determined by the experimental 

measurements and the solubility is deduced from these measurements. (Cohen–Adad, 2003). The 

most suitable method for a given system depends on various factors such as available amount of 

substance (which is often a limiting factor during early development stages of pharmaceutical products), 

solvent properties like viscosity, boiling points, etc., required analytical techniques, and if additional 

solid-phase characterization is required (Beckmann, 2013). Some of these techniques have been 

comprehensively summarized in a special volume by IUPAC dedicated to the experimental 

measurement of solubility (Hefter, 2003).  

 

Whatever the method finally adopted for a solubility determination, it must satisfy certain general 

requirements: the foremost of these is purity of the materials investigated; the second important 

consideration is the precise regulation and measurement of temperatures in the case of strong 
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temperature dependence of solubility and the third requirement to be met is the establishment of 

solubility equilibrium (Zimmerman, 1952). After the requirements described above have been fulfilled, 

a method of analysis or detection is chosen which is compatible with all other conditions in the system 

 

In the direct methods, the procedure for measurement of solubility consists of two parts; firstly, the 

attainment of thermodynamic equilibrium and secondly, determination of the composition or solute 

concentration in the equilibrated solution. There are several methods mentioned in the literature for 

attainment of equilibrium (Jones, 2002), (Mullin , 1993).Generally the equilibrium solubility can be 

established in two ways: isothermal method and polythermal method. In the isothermal method, 

equilibrium solubility is achieved by either successively adding known amounts of solid to the solvent 

until saturation is achieved (addition method) or by equilibrating and analysing a solution containing 

an excess of solid (excess method).  In the polythermal method, equilibrium solubility is achieved by 

controlled heating a solution of known composition with an initial excess of solid until last particles are 

dissolved. For detection, visual observation (e.g., under a microscope), turbidity measurements, 

particle-detecting inline probes or calorimetry may be used (Lorenz, 2013). These two techniques of 

establishing equilibrium i.e. isothermal (1) and polythermal (2) are shown in Figure 5.1 

 

 

Figure 5.1. Determination of the saturation concentration by isothermal (1) and polythermal (2) 

methods. (Lorenz, 2013). 

 

The principal device used for equilibrium solubility measurements by most researchers generally 

consists of: an equilibrium cell with a double-walled jacket that is maintained at constant 

temperature by circulation of thermostated fluid; an agitation device to ensure intimate mixing to 

eliminate temperature and composition gradients within the sample (magnetic, rotating, or vibrating 

stirrers are usually used); and the sampling pipet (also thermostated) equipped with a filter. 

Depending upon the specific conditions to be satisfied, and analysis or sampling technique numerous 
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modifications may be introduced into this basic design. Some typical examples of devices used for 

solubility measurements are shown in Figure 5.2 and Figure 5.3. 

 

 
Figure 5.2. Apparatus used for analytical measurements of solid-liquid equilibria (Lohmann J, 

Joh R, and Gmehling J, 1997). 

 

 

Figure 5.3.  Experimental setup used for determining the solubility data by the polythermal solid-

disappearance method. (Kwok et al., 2005). 

 



111 | P a g e   

Analytical and Synthetic Methods 
In the analytical method, the solubility is measured under isothermal-isobaric conditions. A known 

amount of solvent together with solute that is in excess relative to its estimated solubility is charged 

into a closed vessel which is controlled to its desired temperature. The mixture is then thoroughly 

agitated through means of shaking or direct stirring for a sufficiently long time to ensure equilibrium. 

This may require several hours or days depending on the nature of the chemical system. After complete 

settling of the undissolved solute, samples of the saturated solution are taken and composition is 

obtained by chemical analysis or by comparison with a standard solution. Some techniques used 

to analyse the equilibrated solution include: liquid chromatography, spectroscopy (UV, IR, NMR and 

mass), differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, 

refractometry, polarimetry, etc. (Cohen–Adad, 2003).  Examples of using this method for solubility 

determination include the works by Chiavone-Filho and Rasmussen (1993), Lohmann J et al., (1997), 

Kuramochi et al. (1996), Nordstrom and Rasmuson, 2006, Baka et al., 2008, Shalmashi and Eliassi  

2008, Hsieng et al., 2009 

The synthetic method adopted in solubility measurements exploits the principle that when a solute 

completely dissolves, there is an accommpanying discontinous change in physical properties. By 

detecting this discontinuity in the physical property (P) of a mixture of known composition, a point on 

the saturation boundary can be located. In principle any property ( P) of the system can be used 

for the determination of solubility but the choice of a method will depend on the nature of the 

components, the range of temperature and of pressure, etc. Synthetic methods allow very precise 

measurements and they are time saving. Their application to binary systems is very easy but it 

requires a specific methodology for more complex systems. Some examples of the property (P) used 

in synthetic determination of solubility include: electrical conductivity or resistivity, refractive index, 

UV, visible or IR absorption, dielectric constant, temperature, composition, vapour pressure, pH, 

osmotic pressure, etc.[ref]. Examples of using this method for solubility determination include the 

works by Domanska et al., 1993, Chen and Ma, 2004, Domanska and Lachwa, 2005, Yongjin et al., 

2005, Hahnenkamp et al., 2010 and Benziane et al., 2013. 

5.2. Experimental procedure 
To identify possible systems for validation, the solubility of three selected APIs in all possible 

combinations, of the 30 commonly used solvents in the pharmaceutical industry, were predicted with 

the solvent selection tool developed in this research. These predictions were based on the UNIFAC 

activity coefficient model. A strong variation of solubility, for the selected APIs, was observed in the 

ethanol and ethyl acetate binary systems. The selected APIs were Acetylicsalicylic acid (aspirin), 4-

Acetaminophenol (paracetamol), and 2-(4-Isobutylphenyl)-propanoic acid (ibuprofen). 

The Thermogravimetric Analysis (TGA) method is used to measure the solubility of the APIs in the 

binary solvent mixture.  Thermogravimetric analysis is an experimental method whereby changes in 
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mass are used to detect and measure the chemical or physical processes that occur upon heating a 

sample. The TGA instrument consists of a highly precise analytical balance to which the sample pan is 

attached. The sample pan is typically suspended within a controlled atmosphere that can be heated. With 

the use of isothermal or dynamic heating and cooling cycles, the TGA is programmed to hold a specific 

temperature once a change in mass is detected, then that temperature will be maintained until no further 

change is observed.  

The accuracy of solubility measurements is dependent on many factors, including sample and 

instrument preparation, the accuracy of the balances used, as well as precise control of heating/cooling 

rates, and atmospheric conditions.  In this study, the Differential Thermal Analysis (DTG 60AH) 

Shimadzu is used. This is connected to a Shimadzu Thermal Analyser (TA 60WS) and a Shimadzu Flow 

Controller (FC 60A).  These are photographed in Figure 5.4. The APIs and solvents used in the 

experimental work, as shown in Table 5.1., were all obtained from Sigma-Aldrich. 

 

 

Figure 5.4.  The differential thermal analysis equipment used for solubility measurements. 
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  Table 5.1.  Chemicals used for ternary systems solubility measurements.  

Compound CAS No. RMM Purity 

% 

Acetylsalicylic acid 50-78-2 180.16 99.0 

Acetaminophen 103-90-2 151.16 99.0 

Ibuprofen 15687-271 206.28 98.0 

Ethanol 64-17-5 46.07 99.8 

Ethyl Acetate 141-78-6 88.11 99.7 

 

5.2.1. Samples Preparation 
Sample preparation is undertaken as follows: 

1 Firstly, the vials and pans were washed using soap and rinsed with distilled water. The vials 

were filled with acetone and were placed in the ultrasonic bath for 20 minutes at 303.15 K.  

2 The pans and vials were emptied and dried in an oven at the temperature of 333.15 K for the 

period of 15 minutes. This was done to ensure that there was no acetone residual in the vials 

and they were ready for sample preparation. 

3 The gravimetric method was used to prepare the solutions. The samples were prepared using 

an analytical balance, which has a manufacturer-stated-uncertainty of ± 0.0001 g in mass. 

Every measurement was repeated three times and the average of the three measurements was 

calculated.  

4 The calculated/literature value amount was first added, plus 20% of API (to ensure saturated 

solution), to the vials. 

5 The binary solvent systems of ethanol and ethyl acetate are varied from 1.0 to 0.0 mole fraction 

ethyl acetate. In addition to the pure solvent measurements, 8 intermediate concentrations were 

made. The calculated amount of the solvents were added and the weights noted, these 

later give the composition of the binary solvent system. 

6 The samples were kept in the ultrasonic bath for 4 hours at the desired temperature for 

solubility measurements. Finally, the samples were kept at a single point in the water bath for 

20 to 24 hours at the desired temperature for solubility measurements. 

5.2.2. Solubility Measurement 
Solubility measurements were undertaken: 

1 Prior to solubility measurements, it is important to keep the room temperature, syringe and 

sampling pan at the desired temperature for solubility measurements. This was done to 
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minimize error. A small amount was drawn from the vial using a syringe.  

2 The weight of the empty pan was measured and a few drops (3-5 drops) were added to the 

pan (it should be half full). The solvents will also start to evaporate immediately, so the first 

weight measurement was taken for the total amount.  

3 The pans were placed at the TGA and the auto sampler was programmed. The temperature for 

the TGA has to be 10 degrees below the lower boiling point of the solvents. The residence time 

in the TGA is dependent on the volatility of the solvents. 

4 The temperature of the chamber was set at 10 K below the boiling point of solvent.  Then, the 

TA program was started, and the solvent was evaporated slowly until the mass was constant. 

The pan with the API was weighed using a mass balance, and the final value was recorded.    

5 With the 3 weight values ( the empty pan, the pan with the saturated solution and the final 

pan with the solid) the solubility of solute in the binary solvent system at a specific temperature 

can be calculated. 

6 The solubility of the API in the solvent mixture is calculated by: 

𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒 = 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴+𝑀𝑀𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑀𝑀𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
                                              5.1 

where  

 𝑀𝑀𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 / 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑖𝑖  

The procedure to determine the uncertainties associated with the solubility measurements by the method 

employed in this study is detailed by Moodley et al. (2017). The standard relative composition 

uncertainty of the measurements is due to the uncertainty in the experimental mass measurements. 

𝑢𝑢𝑟𝑟 =
𝑓𝑓(𝑢𝑢𝑀𝑀𝑀𝑀)
𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑢𝑢𝑐𝑐
𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 

Where 𝒖𝒖𝒓𝒓is the standard relative uncertainty in composition, 𝒖𝒖𝑴𝑴𝑴𝑴 is the uncertainty in the measurement 

of mass, 𝒖𝒖𝒄𝒄 is the standard uncertainty in composition, and 𝒙𝒙𝒊𝒊
𝒆𝒆𝒆𝒆𝒆𝒆 is the measured composition. It is 

assumed that all the experimental uncertainties result from the uncertainty in the solute mass 

measurements and is justified with the small change of solubility within the standard experimental 

uncertainty of 0.1K. The standard uncertainty in composition also includes the uncertainty of 

repeatability of mass between each repeatability measurement. 
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CHAPTER 6: RESULTS AND DISCUSSION 

The primary objective of this work is the development of a computational tool that can be used to select 

solvent systems and crystallisation methods for the production of pharmaceutical and natural products 

and their intermediates. Integral to the development of such computational tools are the means to verify 

their capability, range of applicability and degree of accuracy. These components are assessed and 

demonstrated in this chapter, presented in two distinct sections: in the first section the focus is on the 

validation of the process and the thermodynamic models and algorithms; and in the second section, the 

computational capability of the Solvent Selection Tool developed are demonstrated by means of a broad 

selection of applications.  

 

6.1 Model Validation 
The Solvent Selection Tool that is developed is based on a strong theoretical foundation, with a 

combination of predictive thermodynamic property models and process models.  Whilst these models   

and algorithms may have inherent limitations in terms of range of applicability, the predictive tool is 

only as good as the accuracy of its predictions in relation to a working process. Hence, the reconciliation 

of available measurement data and the validation of process models are mutually connected.  

Not only is process knowledge required to define a process model, but the process model itself is often 

required to reconcile measured variables with available measurements drawn from the fundamental 

material and energy balances of the industrial process. The process of determining the degree to which 

the Solvent Selection Tool and its associated systems are an accurate representation of the real world, 

from the perspective of the intended uses of the model, is presented in this section.  

Whilst verification and testing was performed consistently throughout the development process of the 

various subroutines and algorithms, the validation process presented here sets out to verify the following 

three assumptions made in the development of the Solvent Selection Tool: firstly, that predictive 

activity coefficient models based on group contributions methods adequately predict the solubility and 

solid-liquid phase equilibria of complex molecules such as APIs; secondly, that multiphase equilibria 

flash calculations can be used to predict the crystallisation phenomena; and thirdly, that the various 

modes of crystallisation processes, such as cooling, evaporative and anti-solvent crystallisation, can be 

modelled by using multi-component, multiphase flash calculations.  

This validation process was achieved by means of the following processes: A confirmation of the 

performance of the predictive activity coefficient models to reasonably predict the phase behaviour of 

complex molecule systems is achieved by comparing the outputs of the Solvent Selection Tool to 

measured experimental data obtained from the DDBST database, and also against some experimental 

measurements made in this work; and their ability to simulate real industrial crystallisation processes is 



116 | P a g e   

confirmed through a comparative analysis, using  production plant data, for the crystallisation of a 

natural flavourant from a complex feed-stream.  

6.1.1. Reliability of Predictive Activity Coefficient models: 
Several studies have been undertaken to assess the implementation of API solubility prediction, where 

the predictive performance of various models is compared to experimental measurements. Some of 

these comparative performance studies are summarised in Table 3.3., and a few of these models are 

fully described in chapter 3.  

A general observation, reported in the various studies, is that the accuracy of solubility prediction 

depends upon how much the system of interest conforms to, or deviates from, the model assumptions, 

and how accurately the required parameters are known or can be predicted.  UNIFAC has been a 

preferred choice of model for various applications. It can be extended, either by adding new terms or 

by regressing new parameters, revealing its usefulness and versatility.  

Today, the Dortmund modified UNIFAC is probably the most, well-developed model. It is widely used 

and is being revised and extended as part of various industrial/academic joint ventures. In recent years, 

numerous researchers have added new groups and subgroups and have published new group parameters 

(Abildskov et al., 2004).  

Since the Solvent Selection Tool uses CHEMCAD as its computational engine, any predicative phase 

equilibria calculations performed are limited to the predictive models that are available in CHEMCAD. 

CHEMCAD’s two predictive activity coefficient models, to which this work is limited, are the UNIFAC 

and Modified UNIFAC (Dortmund) models.  The subgroup listing available on CHEMCAD and its 

UNIFAC Consortium supplement are presented in Appendix D.  

Since the crystallisation process is predominantly dependent on solubility, the performance of 

significant models used to predict the solubility behaviour of APIs in complex solvent systems are 

presented here; and are compared to some of the experimental work undertaken. The measured data 

have standard uncertainties of  𝑢𝑢(𝑇𝑇) = 0.1𝐾𝐾 𝑎𝑎𝑎𝑎𝑎𝑎  𝑢𝑢(𝑃𝑃) = 0.002𝑀𝑀𝑀𝑀𝑀𝑀and a relative uncertainty 

of 𝑢𝑢𝑟𝑟�𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒� =  0.0003. As outlined in section 5.1, the three selected APIs are Acetylsalicylic acid 

(Aspirin), 4-Acetaminophenol (Paracetamol) and 2-(4-Isobutylphenyl) propionic acid (Ibuprofen). The 

solubility is measured for a binary solvent system that showed both an increase and a decrease in API 

solubility over the solvent concentration range. 

Whilst the accuracy of the predictions varied for the various APIs, the binary solvent systems, there was 

an evident ability of the solvent selection tool to predict the general solubility behaviour of co-solvency 

and anti-solvency over the binary solvent concentration range.  The UNIFAC and Modified UNIFAC 

(Do) models’ predictions for Acetylsalicylic acid are shown in Figure 6.1. As shown in Figure 6.2, the 

predictions for 2-(4-Isobutylphenyl) propionic acid generally revealed a reasonable and conservative 
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estimate of solubility, while the UNIFAC model revealed an over-prediction for 4-acetaminophenol, as 

shown in Figure 6.3.  The UNIFAC model’s over estimation of 4-acetaminophenol solubility, in a 

binary ethanol-ethyl acetate solvent, is predominantly due to the poor UNIFAC model prediction of the 

solubility of 4-acetaminophenol in ethyl acetate, as shown in Figure 6.4. However, the UNIFAC model 

shows a better prediction of the solubility of 4-acetaminophenol in ethanol, as shown in Figure 6.5.  The 

predictive models solubility in pure solvents predictions are compared to data measured by Granberg 

and Rasmuson (1999). 

 

Figure 6.1.   Comparison of Predicted and Measured Solubility of Acetylsalicylic  

Acid in a Binary Solvent at 25 ℃. 

 

 

Figure 6.2.   Comparison of Predicted and Measured Solubility of 2-(4-Isobutylphenyl) 

Propionic Acid in a Binary Solvent at 25 ℃. 
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Figure 6.3.   Comparison of Predicted and Measured Solubility of 4-Acetaminophenol  

in a Binary Solvent at 25 ℃. 

 

 

Figure 6.4.   Comparison of Predicted and Measured Solubility of 4-Acetaminophenol  

in Ethanol Data of Granberg and Rasmuson (1999).  
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Figure 6.5.   Comparison of Predicted and Measured Solubility of 4-Acetaminophenol in

  Ethyl Acetate Data of Granberg and Rasmuson (1999). 

 

Both the UNIFAC and Modified UNIFAC (Do) models generally predict conservative values and are 

capable of predicting the general behaviour of complex systems. Improvement in capability and 

accuracy are the primary objectives of the ongoing development and refinement of the predictive and 

semi-predictive activity coefficient models. The current variance in the accuracy of the predictive and 

semi-predictive methods for complex multi-functional molecules, like APIs, warrants experimental 

work to confirm the results of predictive methods. Hence, as a conceptual design tool, predictive 

methods are invaluable in identifying the necessary experimental measurements required.   

6.1.2. Reliability to Predict the Performance of Industrial Crystallisation Processes: 
Production of Natural Flavourant 2,3 Butanedione (Diacetyl). 
6.1.2.1. Description of Production Process 
Diacetyl is a naturally derived food flavourant that can be obtained as a by-product from several 

processes such as fermentation and biomass hydrolysis. A production facility downstream of a sugar 

mill process uses one of the waste streams of the sugar mill to produce a range of high value products, 

including the extraction of Diacetyl.  After several separation and conversion processes, all the streams 

containing Diacetyl are combined for further processing. The key objective being the recovery of the 

Diacetyl.  

The process consists of two sequential batch crystallisers designed to produce high purity Diacetyl 

crystals from a complex mixed-feed of several components. The feed stream to the primary crystalliser 

combines several process streams and the mother liquor from the secondary crystallizer. It contains the 
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following major components: acetone, acetaldehyde, ethanol, 2,3 pentanedione, 2,3 butanedione 

(Diacetyl) and water.   

The recovery of Diacetyl through distillation is not an option because of the several complex azeotropes 

that exist in the feed stream. Fractional crystallisation is a viable process to recover the Diacetyl. The 

Diacetyl crystals obtained from the primary crystalliser are re-melted and combined with another water-

Diacetyl process stream, and fed into the secondary crystalliser.  The crystals obtained from the 

secondary crystalliser are purified to obtain a final purity of 98 % natural flavourant product. The 

crystallisers are cooled with an ethanol cooling circuit available at -35 ℃. 

The Solvent Selection Tool is used to simulate a cooling crystallisation process, and to compare the 

yields obtained to actual plant performance. The design feed specifications to the primary and secondary 

crystallisers are presented in Table 6.1, and the relevant physical properties of the feed components are 

presented in Table 6.2. 

         

Table 6.1.   Design Feed Composition to the Primary and Secondary Crystallisers. 

Crystalliser Feed 
Components 

 Primary Crystalliser 
Design Feed Composition 

(%) 

 Secondary Crystalliser 
Design Feed Composition (%) 

Acetone  6  2 
Acetaldehyde  6  2 

Ethanol  10  3.25 
2,3 Pentanedione  6  2 
2,3 Butanedione  63  84.25 

Water  9  5.5 
 

6.1.2.1. Performance of Primary Crystalliser 
The primary crystalliser has been designed for a target production rate of 500 kg per batch, which 

represents a 50 % yield of Diacetyl as crystals per batch. Plant data for 1200 batches (which represent 

1200 production days) have been sourced and analysed. The actual plant data show a broad spectrum 

of feed and operating conditions as compared to the design specification feed. This broad spectrum of 

feed and operating conditions is attributed to several causes which include: feed variation with seasonal 

biomass feedstock (sugar cane), the age of the feedstock, variation performance of upstream processes 

leading to variation in batch sizes, recycling of off-spec batches and plant operational problems. 
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      Table 6.2. Major Feed Component Properties. 

 Crystalliser Feed 
Components   RMM 

(g/mol)  
Boiling 
Point 
(oC) 

 
Melting 

Point 
(oC) 

 
Heat of 
Fusion 

(kJ/mol) 
 Specific 

Gravity 

Acetone   58.08  56  -94  5.7  0.79 
Acetaldehyde   44.05  20.8  -125  2.31  0.78 

Ethanol   46.07  78.35  -114.15  4.64  0.78 
2,3 Pentanedione   100.11  110  -52  7.84  0.99 
2,3 Butanedione   86.09  87.5  -2.4  38.5  0.99 

Water   18.01  100  0  6  1 
 

In addition, the control of the crystallisation process is largely subjected to human decision, where the 

termination of crystallisation process is based purely on the physical appearance of the crystalliser 

content, and hence dependent on the experience of process operator. This broad spectrum of feed 

conditions, operating conditions and crystal yield is shown in Figure 6.6.     

 

Figure 6.6. Production Plant Data for Primary Crystalliser for 1200 Production Days. 

 

From 1200 data recordings, only 160 batches reflect the design feed composition of 63 % Diacetyl in 

the feed. The batch feed volume and proportion of the other major components are unknown. This 

sample of 160 data points was analysed and the results of a statistical analysis performed on the sample 

of data is presented in Table 6.3. 
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Table 6.3. Analysis of Primary Crystalliser Plant Performance Meeting the Design Feed 
Composition.  

Statistical Value Feed Composition 
(% Diacetyl) 

Final Cooling 
Temperature (oC) 

Diacetyl Crystal 
Yield (%) 

Average Value 63 -19.4 50.6 
Maximum Value 64 -11 85.2 
Minimum Value 62 -31 1 

Standard 
Deviation 0.6 3.7 19.6 

 

This sample of data (which meets the feed composition of 63 % Diacetyl) is shown in Figure 6.7. The 

region enclosed with horizontal and vertical lines reflects those operations that were within the average 

operating conditions (mean value ± standard deviation). The Solvent Selection Tool’s crystal yield 

prediction for the complex feed, using three different predictive thermodynamic models for activity 

coefficient, is also shown in Figure 6.7. The three thermodynamic models used are: UNIFAC, Modified 

UNIFAC (Dortmund), and the Scatchard-Hildebrand model. At the average conditions of feed 

composition of 63 % Diacetyl and a final cooling temperature of -19.4 oC, a predicted yield of 45.3, 0 

and 78 % are predicted by the Mod. UNIFAC (Do), UNIFAC, and Scatchard-Hildebrand models, 

respectively, compared to the plant average of 50.6 % at these conditions. It should be noted that the 

Scatchard-Hildebrand model was developed for non-polar solvents with positive deviations from 

ideality, and therefore may have limited application to this system. 

From Figure 6.7, it can be seen that the Solvent Selection Tool, using the Modified UNIFAC 

(Dortmund) model for activity calculations, presents an acceptable prediction for the complex industrial 

system. The model under-predicts the average plant yield by approximately 10 %. As a conceptual 

design tool, this level of accuracy is considered acceptable. 

 

Figure 6.7. Comparison of Predicted and Actual Plant Performance of the Primary 
Crystalliser. 
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6.1.2.1. Sensitivity Analysis to Identify Key Variables Affecting Performance of Primary Crystalliser 
A further preliminary evaluation was conducted to establish the factors that may contribute to the large 

variance of performance, as observed in the 1200 plant data. The presence of several “solvent” type 

components in the feed, like ethanol, water, acetone and acetaldehyde, warranted the evaluation of the 

impact of the feed composition on the performance of the system. The variation in composition of the 

various components in feed is largely attributed to the composition and age of the biomass (sugarcane) 

feed. Whilst the amount of Diacetyl in the feed stream will have an obvious direct impact on yield, 

where a higher initial concentration generally results in higher yields, the influence of the other 

components needs to be assessed.  

The sensitivity on feed composition was evaluated using the Solvent Selection Tool, and it was observed 

that four of the main components: water, ethanol, acetone and acetaldehyde have varying effects on the 

yield. The influence of these four components on the Diacetyl crystal yield is shown in Figure 6.8.  

It is observed that water and acetone have a co-solvency effect which result in the yield decreasing with 

increases in concentration in any of these two components in the feed-stream.  A 50 % variation of 

water in design feed composition (9 % ± 4.5 %) could result in the yield varying from 55 % to 40 % at 

-20 oC.  Similarly, a 50 % variation of acetone in design feed composition (6 % ± 3 %) could result in 

the yield varying from 52 % to 44 % at -20 oC.  An increase in concentration of both components in the 

feed stream could result in even lower performance. A decrease in concentration of any of these 

components in the feed stream, from designed feed conditions, would lead to an increased yield. 

The other two components in the feed-stream, ethanol and acetaldehyde, have an anti-solvent effect 

associated with increases in yield.  A 50 % variation of ethanol in design feed composition (10 % ± 5 %) 

could result in the yield varying from 41 % to 55 % at -20 oC.  Similarly, a 50 % variation of 

acetaldehyde in design feed composition (6% ± 3%) could result in the yield varying from 45 % to 52 % 

at -20 oC. An increase in concentration of both components in the feed stream could result in even 

higher yield in the primary crystalliser. A decrease in concentration in any of these components in the 

feed stream, resulting from the design feed conditions, would lead to lower yields. 
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Figure 6.8.   Effect of Feed Component Composition on the Primary Crystalliser Performance. 

A sensitivity analysis confirms that variation in the feed composition of the four “solvent” components 

associated with the biomass feedstock and the various process streams may account for the large 

variance in yields, even when the Diacetyl concentration is within the design feed specification.  

6.1.2.3. Performance of the Secondary Crystalliser 

The feed to the secondary crystalliser consists of the Diacetyl crystals obtained from the primary 

crystalliser which are re-melted and combined with another water-Diacetyl process stream. The 

operation plant data is presented in Figure 6.9. From 1200 data recordings, approximately 50 % of the 

batches reflect compliance with the design feed composition of 85 % Diacetyl in the feed. The reasons 

for the large spectrum of feed specifications are the same as presented for the variation in feed to the 

primary crystalliser. The batch feed volume and the proportion of the other major components are 

unknown. This generated sample of 616 data points was analysed, and the results of the statistical 

analysis performed is presented in Table 6.4. 
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Figure 6.9. Production Plant Data for Primary Crystalliser for 1200 Production Days. 

Table 6.4.  Analysis of Secondary Crystalliser Plant Performance Meeting the Design Feed 
Composition.  

Statistical Value Feed Composition 
(% Diacetyl) 

Final Cooling 
Temperature (oC) 

Diacetyl Crystal 
Yield (%) 

Average Value 84.1 -16.5 58.07 
Maximum Value 90.0 -11.0 96.44 
Minimum Value 80.1 -23.0 40.10 

Standard 
Deviation 2.5 2.5 11.98 

A sample of data that meets the feed composition of 85 % Diacetyl is shown in Figure 6.10. The region 

enclosed within the horizontal and vertical lines reflects those operations that were within the average 

operating conditions (mean value ± standard deviation). The Solvent Selection Tool is used to predict 

the crystal yield of the complex feed into the secondary crystalliser using the Modified UNIFAC 

(Dortmund) model.  

At the average conditions of feed composition of 84.1 % Diacetyl and cooling to -16.5 oC, a predicted 

yield of 73 % is obtained, compared to the plant average of 58.07 % at these conditions. From 

Figure 6.10, the theoretical model over-predicts the plant average yield by approximately 25 %.  The 

observations on the sensitivity analysis performed for the primary crystalliser also apply to the 

secondary crystalliser.  The variation in the feed composition to the second crystalliser may also 

contribute to the plant yields being lower than predicted yield values.  
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Figure 6.10. Comparison of Predicted and Actual Plant Performance of the Primary 
Crystalliser. 

The fact that the process model closely describes the physical measurements from the real process is an 

adequate validation of the Solvent Selection Tool. The major differences between the calculated and 

reported results have been suitably explained with the sensitivity analysis performed, and the other 

reasons largely attributed to seasonal biomass feedstock and that the termination of the crystallisation 

process is dependent on operator observations. 

In this section, we have provided adequate evidence that the thermodynamic and process models and 

the algorithms used in the Solvent Selection Tool are capable of being used as a conceptual design tool 

for decision making relating to crystalliser performance.  The predictive activity coefficient models 

based on group contributions methods adequately predict the solubility and solid-liquid phase equilibria 

of complex molecules such as APIs and natural compounds. The multi-component, multiphase, flash 

calculations approach can be used to predict the crystallisation phenomena and the various modes of 

crystallisation processes such as cooling, evaporative and anti-solvent crystallisation. 

6.2. Case Studies 
The application and capacity of the developed solvent selection procedure will be illustrated through 

several case studies. The method explores the synergistic combination of multiphase, phase equilibria 

phenomena and process systems engineering methods to develop a decision tool for faster process 

design and process understanding during the conceptual phase of API development or the retrofit of an 

existing process.  
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The solvents considered will be restricted to a GSK list of solvents recommended for use in the 

pharmaceutical industry. The criteria used to compare the various solvents will include a process-related 

criterion such as yield, an economic criterion such as operating and fixed annualized costs, and 

environmental criteria such as waste generation and energy usage.  

The case studies selected highlight the comprehensive computational capabilities of the Solvent 

Selection Tool and its invaluable role in decision making during conceptual and retrofit design of 

crystallisation processes. The key feature of the computational tool is that the only information required 

to perform all its calculations is the chemical structure of the components involved.  The case studies 

considered are: 

• Application One: Identification of Potential Solvents for API crystallisation.

For a newly developed API, identify a pool of suitable solvents that can be used for cooling

crystallisation (desired operation in the pharmaceutical industry) that will give the required

yield, quality and production rate. This case study illustrates the usefulness of the computational

tool during the research and development phase of pharmaceutical products. It provides a

decision making tool which is not limited to just the yield but also illustrates the estimated size

of equipment required as well as the economic and environmental impact that is associated with

all of the selected solvents. With the application of user-defined, decision making criteria the

output of the computational tool will be a shortlist of solvents that fulfil the user-defined

criteria.

• Application Two: Identification of Modes of Crystallisation to fulfil production objectives.

Whilst cooling crystallisation is the desired mode of crystallisation in the pharmaceutical

industry, suitable alternative crystallisation processes need to be considered if the desired yield,

quality and production rate cannot be achieved via cooling crystallisation. This will apply to

systems that show little or no solubility variation in relation to temperature or production

facilities with limited cooling capacity (eg. The Lowest achievable temperature in the plant may

be limited to -5oC).

To overcome this production limitation, evaporative and anti-solvent crystallisation processes

will be evaluated as alternatives to cooling crystallisation. In addition, a combination of systems

(evaporation and cooling; evaporative and anti-solvent and cooling and anti-solvent systems)

will be evaluated for an existing API and solvent system to identify the operating options that

will give the required yield and production rate.  Potential operating conditions will be

shortlisted for scenarios with and without process and plant constraints. This case study

illustrates the computational range and flexibility of the tool in process development as well in

the re-evaluation and optimization of existing production systems.
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Application Three: Fractional crystallisation of multi-component API feed.For a given API and 

solvent system in the presence of impurities (unreacted starting materials and byproducts), the 

operating options and conditions that will give the required yield and production rate will be 

identified. This case study illustrates the impact of the presence of impurities in a crystallisation 

feed-stream. It illustrates how the tool can be used for systems analysis to identify the phase 

equilibria limitations and then to synthesise an alternate processing route to obtain the 

maximum yield of pure product. 

6.2.1. General Observations 

A generally accepted phenomenon in chemical conversion processes is that for a given target production 

rate, the size of the processing facility, the amounts of raw materials required, as well as the utility 

requirements, are directly dependent on the yield/conversion of key operations.  In API production, one 

such yield-dependent key operation is the crystallisation process.  

For the target production rate of an API crystal, the attainable yield by crystallisation will impact on the 

upstream and downstream processing requirements. Low attainable yields invariably imply that larger 

volumes of materials must be processed to obtain the target production rate. This larger processing 

volume of materials will require larger equipment or greater numbers of modular units, and greater 

process utility requirements such as cooling, heating and waste treatment. Hence, the resulting primary 

objective during the selection or design of processes will be to select process options that render high 

yields.  

The first step in the application of crystallisation as a unit operation is to examine equilibrium solubility 

data, as this is indicative of the options available to create the desired state of supersaturation, which is 

the driving force in crystallisation.  The state of supersaturation may be created either by increasing the 

solute concentration or by decreasing the solute solubility. The solute concentration approach is 

generally achieved by evaporating the solvent, and the solute solubility approach is generally achieved 

by cooling, or anti-solvent addition. To assist with the screening of the type of crystallisation process 

to be selected, a decision making tool has been developed in this work and is shown in Figure 4.5. 

From the decision-making flowsheet, the preferred choice for an API crystallisation process can be 

ranked as follows: the first choice is cooling crystallisation, followed by evaporative crystallisation, and 

last of all, anti-solvent crystallisation. This hierarchy of choice is because temperature and cooling rate 

are relatively easy to control. If the desired substance exhibits a strong temperature dependence for 

solubility, then the state of supersaturation can be achieved by cooling the mixture.  If, on the other 

hand, the equilibrium line is relatively flat and shows little temperature dependence, then an evaporative 

process might become necessary.  
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If the yield from either of the processes is low, or there are process limitations such as thermal 

degradation of API at evaporation temperatures that prevents evaporation from being used, then a 

second solvent (anti-solvent) can be added to reduce the solubility. For a sparingly soluble solute, the 

addition of a second solvent to increase solubility could be selected. The addition of a co-solvent is an 

effective way of increasing productivity. The disadvantage of the use of additional solvents is the 

increased complexity of the process if solvent recovery and reuse is a priority. The addition of co-

solvents and anti-solvents will also lead to an increase in processing volumes which will impact on 

equipment size and utility requirements.   

In the applications that follow, reference will be made to various calculation procedures and algorithms 

of the Solvent Selection Tool. The full menu and calculations of the tool is shown in Figure 4.4, and a 

detailed description of computational capabilities is presented in Appendix B. 

6.2.2 Applications 

6.2.2.1 Application 1: Identification of a Pool of Potential Solvents for Cooling Crystallisation for a 
new API. 
During the development phase of an API, or the retro-fit of an existing API manufacturing process, the 

use of computational process engineering tools to identify potential process options is essential, as it is 

unrestrictive in the range of options it can evaluate. In this application, the Solvent Selection Tool 

developed in this work will be employed to identify suitable solvents that can be used to ensure the 

desired yield and quality during the production of pure API crystals via crystallisation.  

A generic and multi-tiered methodology is applied to identify the “best’ solvent. Firstly, we evaluate 

the performance of all the solvents in the database for the specific task. Secondly, from this evaluation, 

we can select a pool of high-performing solvents based on a specific criterion, which in most cases will 

be the yield. Thirdly, we evaluate the operational implications of each of the solvents in the pool of 

selected solvents, and finally, we select the solvents for detailed evaluation, which may also include lab 

trials.    

During this multi-tiered approach, the key questions that be will be used to evaluate the solvents are: 

a. Is the API fully soluble at the initial temperature 𝑇𝑇𝑖𝑖?  It is desired that at 𝑇𝑇𝑖𝑖 the feed solution

should be unsaturated to prevent uncontrolled crystal formation.  This initial temperature is

dependent on either:

i. The physical properties of the solvent or API (e.g., boiling point or

degradation temperatures, etc.) as outlined in Section 4.4 i.e.

𝑇𝑇𝑖𝑖 = �𝑇𝑇𝑏𝑏 𝑜𝑜𝑜𝑜  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ  𝑜𝑜𝑜𝑜  𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣� − 10 ℃ 

ii. The upstream processing conditions (e.g., exit reaction temperatures, etc.)

b. Is the required yield of pure API crystals achievable within the operating temperature range,

where the final operating temperature as outlined in Section 4.4, is also dependent on either:
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𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑇𝑇𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑇𝑇𝑓𝑓 =  �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� + 10 ℃    or    𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑐𝑐𝑐𝑐 + 10 𝑜𝑜C? 

c. How much of the identified solvents will be required to ensure that the targeted production of

API is achieved? Sufficient solvent is required to ensure that the API is completely dissolved

at the start of the crystallisation process and to prevent uncontrolled/unfavourable

crystallisation.

d. What is the operating cost associated with a selected solvent to achieve the required production

rate? The following operating cost will be determined for each of the solvents identified:

i. The cost of solvent required;

ii. The cost of cooling / or evaporation required;

iii. The cost of solvent recovery;

iv. The cost of treating the waste generated with the identified solvent; and

v. The loss associated with the unrecovered API.

e. What is the estimated capital expenditure required for a selected solvent to achieve the required

production rate? The following capital expenditure is considered:

i. the number of 1.5 m3 batch crystallisers are required to meet the production rate and

the cost associated for the number of crystallisers required;

ii. the total heat transfer area required to achieve the cooling duty required to meet the

production rate;

iii. The cost of the solvent storage vessel, and the cost of the waste solvent storage vessel;

and

iv. The cost of solvent recovery process.

f. What is the environmental impact of the selected solvent? The Green chemistry E-factor metric

is used because of its flexibility and simplicity. In addition, the Energy Consumption Factor is

also used as it is a good indicator of the carbon footprint associated with the selected solvent.

In summary, the computational algorithm must output the following information for decision making: 

the yield of pure API crystals; the operating costs; the capital costs; and the environmental impact 

associated with the resultant pool of solvents. A ranking methodology that takes into account the various 

performance criteria is applied to rank the potential solutions.  

6.2.2.1.1: Application Description 
For a given unsaturated/dilute feed, with a specified mole ratio of solvent to API and a targeted 

production rate, we want to identify a selection of solvents that can be used in the manufacture of pure 

API crystals using cooling crystallisation. The selected solvents must ensure that the feed is highly 

unsaturated at its entering conditions to prevent unfavourable crystallisation (as outlined in chapter 3) 

and then must use a controlled rate of cooling to achieve a specified, desired production rate.   
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The API considered is 2-(4-Isobutylphenyl) propanoic acid (Ibuprofen).  It is an optically active 

compound with both S and R-isomers, of which the S (dextrorotatory) isomer is the more biologically 

active. Whilst Ibuprofen has two isomers, in this application it will be recovered as a racemate. Its 

structure and key physical properties are presented in Table 6.5. 

Table 6.5. Structure and Properties of 2-(4-Isobutylphenyl) Propanoic Acid (Ibuprofen). 

Property Structure 

Name of API 2-(4-Isobutylphenyl)propionic 

acid 

Common Name Ibuprofen 

Formula C13H18O2 

Molar Mass 206.29 g/mol 

Density 1.03 g/ml 

Melting Point 75 to 78 oC 

Boiling Point 157 oC 

Heat of Fusion 128.9 ± 5.8 kJ/mol 

6.2.2.1.2: Process simulation 
To determine the solvents that can be used in the recovery of the API, we determine the initial operating 

temperature, 𝑇𝑇𝑖𝑖, as discussed in section 4.4. The maximum operating temperature should be the lower 

of the following temperature limits: 10 degree safety margin below the boiling point of the solvent 

selected or 20 degree safety margin below the boiling point/degradation temperature of the API. It 

should be noted that the initial temperature of the crystallisation process may be dictated by the 

operating conditions of the upstream process. For example, let us say that water is the preferred solvent, 

since the boiling point of the solvent is much lower than the boiling point of the API, the maximum 

operating temperature will be 90 oC. However, if the exit temperature of the upstream operation is 60 
oC, then the maximum initial temperature will be 60 oC, unless preheating is desired for other reasons 

(eg., lowering viscosity, etc.).   

The final operating temperature, 𝑇𝑇𝑓𝑓, is dependent on the degree of cooling that can be achieved, and 

this is dependent on the utilities that are available in the plant. If cooling is to be achieved with a 

refrigerated cooling circuit, then subzero cooling temperatures can be achieved. The lower the cooling 

temperatures used, the higher will be the cooling costs per batch of API produced, however this may be 

offset by the higher yields and lower waste streams generated. 

To illustrate the capacity of the developed computational tool, let’s consider a feed-stream with a mole 

ratio of solvent to API of 5:2, and a constrained cooling capacity with the minimum attainable cooling 

temperature of 10 oC.  The desired target production rate is 1000 kg of pure API crystals per day.  

https://en.wikipedia.org/wiki/Racemate


132 | P a g e

Using the solubility calculation facility on the anti-solvent menu, we can calculate the performance of 

all the solvents in the database. The algorithm will automatically exclude those solvents that have a 

melting point above the specified attainable cooling temperature, and will assume that the initial 

temperature of the solvent is 𝑇𝑇𝑖𝑖 = �𝑇𝑇𝑏𝑏 𝑜𝑜𝑜𝑜  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑜𝑜𝑜𝑜  𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣� − 10 ℃. The performance of the 

various solvents in the database at these conditions is shown in Figure 6.11.  The list of solvents shown 

in Figure 6.11 excludes those solvents with a melting point of 10 oC or higher. The performance of the 

solvents in the database varies from 0 % to 100 % yield.  

Figure 6.11.  Solvent Performance When Cooled Down from NBP of Solvent to 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

We now further investigate the process engineering implications of the various solvents. Once the 

desired production rate is established, we can determine the effect each solvent will have on the size of 

plant required, the capital expenditure and the operational expenses associated with the selected solvent. 

As detailed in chapter 4, the plant operations that are considered to be directly affected by the choice of 

solvent are limited to the following: the crystallisers and their required heat exchangers; the solvent 

feed and waste storage tanks; and the solvent recovery system. Hence, the calculated capital costs are 

determined for these operations.  

The operational costs are determined for: crystalliser cooling; solvent recovery heating; solvent cost; 

loss of unrecovered API; and waste treatment of unrecovered streams.  The financial models exclude 

the following operations: the centrifuge; the washing station; any recrystallisation operations and the 

dryer. The results of the inclusion of the economic assessment for the various solvents in the database 

is shown in Figure 6.12.  
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Figure 6.12. Operational and Economic Performance of the Solvents cooled to 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

The general trend observed is that the fixed capital costs, as well as the operating costs, are dependent 

on the yield achieved in the process. Low yields require higher processing volumes to achieve the 

required production target, leading to higher capital and operating costs. The decreasing trend of fixed 

capital costs with increasing percentage yield indicates the decrease in size of the processing equipment 

required. Similarly, the decrease in operating costs with increasing percentage yield indicates the 

decrease in usage of solvent, waste-treatment, solvent recovery costs etc.  

From the initial assessment, we can further expand the search to solvents that achieve a minimum 

specified yield. For a minimum desired yield of 85 %, the computational tool identifies at least 14 

solvents that will fulfil this criterion when the feed is cooled from 𝑇𝑇𝑖𝑖 to a final temperature of 10 oC. 

The resulting pool of potential solvents that can achieve a yield of 85 % pure API crystals for the initial 

feed ratio of 5:2 and cooling temperature of 10 oC is shown in Figure 6.13.   
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Figure 6.13.  List of Solvents That Will Achieve at Least 85 % Yield of Pure API 
Crystals at 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃ . 

This pool of solvents can be further increased if the degree of cooling is increased. For example, if the 

cooling capacity of the plant is such that a final cooling temperature of -10 oC is achievable, then the 

pool of solvents meeting the minimum desired yield of 85 % increases to 28 solvents. This automatically 

excludes those solvents which also solidify (crystallise) at temperatures greater than - 10 oC, for 

example water will crystalize at 0 oC and so will be automatically excluded for this new operating 

condition.   

If the mixture is cooled to 0 oC, then the pool of potential solvents will be 17 solvents. Likewise, a 

change in feed composition will also impact on the number of potential solvents. For example, if the 

feed-stream has a solvent to API mole ratio of 10:2 (compared to 5:2 in the initial evaluation) and a 

final cooling temperature of 10 oC, then the resulting pool of potential solvents is 6 solvents (compared 

to 14 for the 5:2 feed ratio).  

The third variable that will affect the number and type of solvent in the selected pool will be the initial 

operating temperature. If 𝑇𝑇𝑖𝑖 is dependent on upstream processing conditions, the resulting pool of 

solvents will exclude those solvents that experience supersaturation at temperatures of 𝑇𝑇𝑖𝑖 and above. 

For example, if 𝑇𝑇𝑖𝑖 is limited by the up-stream processing conditions to 40 oC, then the resulting pool of 

potential solvents is 2 solvents compared to 14 for the 5:2 feed ratio and the final cooling temperature 

of 10 oC.  

These effects, of feed composition, feed temperature and degree of cooling available in the plant, on 

solvent selection is illustrated in Table 6.6. It demonstrates the computational capability of the Solvent 

Selection Tool, which will identify solvents for varying feed and process conditions that meet the 

specified criteria, for example, a minimum yield criteria of 85 %. This pool of solvents also excludes 
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those solvents which have been identified for legislative exclusion, or based on EHS criteria, as 

discussed in chapter 4.  

Table 6.6. Number of Solvents that will Achieve 85 % API Crystal Yield Based on Feed 

Conditions and Available Cooling Capacity. 

Feed Conditions No of Solvents achieving 85 % 

Yield For Plant Cooling Capacity 
Feed Temperature 

Feed Composition 

Solute/Solvent Ratio −𝟏𝟏𝟏𝟏 ℃ 𝟎𝟎 ℃ 𝟏𝟏𝟏𝟏 ℃ 

Solvent or API property limitation. 

For example if the temperature is 

based on solvent boiling point. 

𝑇𝑇𝑖𝑖 = �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � − 10 ℃ 

2
5� 28 17 14 

1
5� 15 11 6 

Upstream Process limitation. For 

example ,   𝑇𝑇𝑖𝑖 = 40 ℃ 
2

5� 21 5 2 

1
5� 8 5 1 

From the analysis provided in Table 6.6, it was found that the pool of potential solvents is dependent 

on three main variables: the feed temperature, 𝑇𝑇𝑖𝑖, the feed composition, and the final cooling 

temperature, 𝑇𝑇𝑓𝑓.  The pool of potential solvents is reduced by a lower starting temperature, 𝑇𝑇𝑖𝑖. Only 2, 

or 5, or 21 solvents met the 85 % yield criteria when cooled from the initial feed temperature,           

𝑇𝑇𝑖𝑖 = 40 ℃, to final crystallisation temperatures of 𝑇𝑇𝑓𝑓 = 10 ℃  𝑜𝑜𝑜𝑜  0 ℃ 𝑜𝑜𝑜𝑜 − 10 ℃, respectively.  

Whilst the yield may be the main criterion for solvent selection, the influence of other key performance 

criteria, such as environmental impact, operating cost and capital cost of the shortlisted pool of solvents, 

must also be considered. These values are obtained for the following feed and operating conditions:  

• Target production rate of 1000 kg per day of API crystals;

• Feed composition solute to solvent mole ratio of 2:5;

• Feed temperature is 𝑇𝑇𝑖𝑖 = �𝑇𝑇𝑏𝑏 𝑜𝑜𝑜𝑜  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑜𝑜𝑜𝑜  𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣� − 10 ℃;

• Final cooling temperature is 10 oC;

• It is assumed that 80 % of the solvent is recovered and recycled and the cost of the replacement

/ make-up solvent is averaged at $1000 per ton; and

• The unrecovered API is costed at $20 per kg (average price of ibuprofen).

As has been observed earlier, with yield-dependent processes the plant size and utility requirements 

vary with yield. Using the additional, relevant performance criteria, such as operating costs, fixed 

annualised costs, environmental factors and energy consumption factors, the overall performance of a 
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selected solvent can be evaluated.  The results obtained from the Solvent Selection Tool on the 

economic and environmental criteria for this pool of solvents are shown in Figure 6.14 to Figure 6.18. 

The fixed annualised cost (FAC), which is a combination of the operating costs and a fraction of the 

fixed capital costs, is shown in Figure 6.14 for the 14 potential solvents, assuming 200 production days. 

The operating cost is limited to: the cost of cooling from temperature 𝑇𝑇𝑖𝑖 to temperature 𝑇𝑇𝑓𝑓; the cost of 

recovering 80 % of the solvent for reuse; the cost of replacing unrecovered solvent that is sent to waste; 

the cost of tertiary treatment of the waste stream; and the cost of unrecovered product.  

The fixed capital cost is limited to the equipment directly related to the solvent use; the size or number 

of crystallisers and their associated heat transfer area; solvent storage tanks; waste storage tanks, and 

the solvent recovery system. Figure 6.15 presents the operational cost per 1000kg of product for the 

potential solvents, and Figure 6.16 presents the fixed capital cost associated with each of the potential 

solvents. 

The Environmental (E) Factor for the potential solvents, which is a measure of the amount of waste 

generated per kilogram of API crystallised is shown on Figure 6.17. It should be noted that the E Factor 

calculated here is based only the crystallisation process and excludes waste streams generated in the 

other associated operations such as the reactors, dryers etc. In addition, the calculations used in this 

work do not distinguish between organic and inorganic waste and the hazardous nature of the substance. 

Hence, if the hazardous nature of the solvents is included in the computation, then this may result in 

higher E-Factors for all the solvents in the database except for water.   

The energy consumption (Ec) factor, which is a measure of the total energy required per kilogram of 

product crystallised for the potential solvents, is presented in Figure 6.18. In the application of cooling 

crystallisation, the Ec Factor accounts for the following: the heat load of the crystalliser to cool the 

content from the initial temperature to the final temperature of 10 oC, and the heat load required to 

recover 80 % of the solvent in the solvent recovery process. This “total energy” consumed per kilogram 

of API produced can be directly correlated to carbon footprint contribution of the selected solvent.  
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Figure 6.14. Fixed Annualised Cost of a 1000kg API/Day Production 

Plant With 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

Figure 6.15. The Operational Cost of 1000kg API/Day Production 

Using Suggested Solvent for 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 
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Figure 6.16. The Environmental (E) Factor of Suggested Pool of 

Solvents for 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

Figure 6.17. The Energy Consumption (Ec) Factor of Suggested Pool 

of Solvents for 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

Figure 6.18. The Fixed Capital Cost of 200 Ton/Yr Production Facility 

 Associated with Selected Solvent for 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 
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By applying user-defined weighting factors to various criteria, a stacked histogram can be developed to 

evaluate the cumulative effect of the selected criteria for each of the shortlisted solvents. For example, 

by applying equal weighting to the yield; FAC; E-Factor, and Ec-Factor, the potential solvents can be 

ranked as shown in Figure 6.19.  The solvent with the lowest cumulative value will represent the best 

solvent. In this application, water is calculated to be the best solvent. It is important to note the feed 

temperature is assumed to be 90 oC (i.e. 10 oC below the boiling point of the selected solvent). This 

temperature is above the melting point of the API (78 oC), hence the API is completely soluble at the 

initial temperature, hence making water a high-ranking solvent.  

Figure 6.19. Ranking of Solvents based on equal weightings of yield, FAC, E-Factor 

and Ec-Factor for 𝑻𝑻𝒇𝒇 = 𝟏𝟏𝟏𝟏 ℃. 

A more detailed assessment of the selected solvent is required. In chapter 2, the various desired 

operating conditions for crystallisation were outlined. The key aspects include: controlled cooling and 

operating within the “meta stable zone width” so as to promote crystal growth and avoid conditions that 

promote primary nucleation.  Further evaluation of water as a solvent is conducted by calculating the 

yield profile from 𝑇𝑇𝑖𝑖 to 𝑇𝑇𝑓𝑓. The prediction indicates that there is a 99.5 % yield achieved within a one 

degree drop in temperature at 63.5 ± 1 ℃.  

Such rapid crystallisation is undesirable in API production as this results in a lack of control to achieve 

the required crystal morphology and crystal size distribution, and will lead to the inclusion of the solvent 

in the crystal matrix, giving rise to poor quality and purity.  Recommended cooling rates for organic 

compounds are in the order of 0.1 – 0.2 K/min (Beckmann, 2013).  
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This second level assessment rules out water as a potential solvent. It shows that the solubility profile 

(or yield profile) over the possible operational range is very important in the selection or ranking of 

solvents.  Whilst large variation of solubility with temperature is desirable in cooling crystallisation, 

systems that show large solubility variation with small temperature differences are undesirable, as it 

will result in a rapid increase in supersaturation with cooling, and will promote primary nucleation at 

the expense of crystal growth. A rapid increase in supersaturation may also result in the inclusion of 

mother liquor within the crystal structure, and hence contamination of the API crystals.   Some typical 

profiles of variation in yield with cooling temperature are illustrated for the 14 short-listed solvents in 

Figure 6.20.  

      Figure 6.20. Yield – Cooling Temperature Profiles of the Shortlisted Solvents. 

This information allows the user to quickly identify the potential operating temperature range that will 

fulfil production requirements, or, whether a particular user-selected solvent will result in the desired 

production and quality for a specified operating condition. This type of approach will eventually 

identify the most promising solvents that can be confirmed by means of experimental trials.  

Since the operating temperatures affect not only the yield but also the operational and capital costs, the 

effect of the degree of cooling on a production plant should be evaluated. As an illustrative example, 

with the selection of n-heptane from the shortlist of solvents, the impact of varying degrees of cooling 

on the process, economic and environmental criteria is shown in Figure 6.21 to Figure 6.28.  The data 

presented is obtained from the Solvent Selection Tool, where the major contributors to the operational 

costs are identified. Each graph also has a yield curve included to show how the various cost 

contributors vary with yield and cooling temperature. 
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Figure 6.21. Effect of Cooling Capacity on the 

Fixed Annualised Cost and Yield. 
 Figure 6.22. Effect of Yield on Waste Treatment 

Cost. 

Figure 6.23. Effect of Yield on Solvent 

Replacement Cost. 

Figure 6.24. Effect of Yield on Unrecovered API. 

Figure 6.25. Effect of Yield on Solvent Recovery 

Steam Cost. 
Figure 6.26. Effect of Yield on Cooling Cost. 

 The general observation is that lower final cooling temperatures promote higher yields which lead to 

lower capital and operation costs as well as lower environmental impacts. Whereas, lower yields lead 

to rapid increases in capital and operation costs as well as in a much higher impact on the environment. 

The yield obtained is dependent on the plant cooling capacity available and the final temperature to be 

achieved in the crystallisation process. The two major contributors to the operational costs are the 

solvent replacement cost and the cost associated with unrecovered API lost as waste.   
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The exponential increase in all the cost contributors with decreasing yield is primarily due to the larger 

processing volumes required to meet the production target of 1000 kg of API crystals per batch. It is 

evident that the size of a production facility for a required production rate will be dependent on the 

yields of the critical operations in the process. Low yields will require larger volumes of materials to be 

processed to ensure that the desired production rate is obtained. These larger processing volumes of 

materials will require larger equipment or a greater number of modular units, and greater process utility 

requirements such as cooling, heating and waste treatment. 

Figure 6.27. Effect of Yield on Ec Factor. Figure 6.28. Effect of Yield on E Factor. 

The objective of this case study was to identify and select potential solvents that can be used for the 

crystallisation of a newly developed API. With various computational options integrated into the 

Solvent Selection Tool, the potential solvents and operating conditions that meet the process objectives 

of high crystallisation yields can be easily identified. In addition, the operational costs, capital cost and 

the environmental impact is computed for each solvent in the pool of potential solvents, which facilitates 

decision making during the conceptual design stage. 

6.2.2.2 Application 2: Evaluation of Cooling, Evaporative and Anti-solvent Crystallisation for a given 
application. 
From the previous case study it is evident that the major contributors to the operational costs and the 

fixed annualized costs are the cost contributions associated with the loss of solvent and API in the waste 

stream. Lower crystallisation yields require larger feed flowrates (processing volumes) to achieve a 

required API production target. This leads to larger processing equipment (or increase in number of 

modular units), greater utility requirements and greater waste disposal, which lead to higher operational 

and fixed annualized costs. Hence, strategies to increase the recovery of API during the crystallisation 

operation are critical.   
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In this second case study we explore both how to obtain process-attainable maximum yield and the 

subsequent impacts on economic and environmental criteria. 

Problem statement: For a given API and solvent system, identify the operational mode (cooling, 

evaporation, anti-solvent or combinations), and operating conditions that will give the required yield 

and production rate. The feed-stream, consisting of a molar ratio of 2 kmols API (2-(4-Isobutylphenyl)-

propionic acid (Ibuprofen)) to 5 kmols solvent (ethanol) at 𝑇𝑇𝑖𝑖 = 50 ℃.  The production target is 1000kg 

per day with a minimum desired yield of 98 % of pure API crystals.  

A generic and multi-tiered methodology is used to identify the best operating conditions. During this 

multi-tiered approach, the key questions that be will be used to evaluate the solvents are: 

a. Is cooling crystallisation adequate to achieve the required yield and production rate?

b. Is evaporation crystallisation adequate to achieve the required yield and production rate

c. Is anti-solvent addition adequate to achieve the required yield and production rate

d. Is a combination of operations required?

e. What is the operating cost associated with selected operations? The following operating cost will

be determined for each of the operation option:

i. The cost of solvents (including anti-solvents) required for crystallisation;

ii. The cost of cooling / or evaporation required;

iii. The cost of treating the waste generated with the identified solvent/s;

iv. The cost of solvent recovery and;

v. The cost associated with unrecovered API.

f. What is the estimated capital expenditure required for a selected operation to achieve the required

production rate? The following capital expenditure is considered:

vi. the number of 1.25 m3 batch crystallisers required to meet the production rate, and their

cost;

vii. the total heat transfer area required to achieve the cooling or evaporation duty to meet the

production rate;

viii. The cost of the solvent storage vessel, and the cost of the waste solvent storage vessel and;

ix. The cost of the solvent recovery process.

Note: since the same equipment will be used to evaluate the various modes of crystallisation, the 

only changes to the capital cost will be associated with anti-solvent crystallisation because of the 

increased volumes of liquid and added sophistication required for solvent recovery. 
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Option 1: Cooling Crystallisation 

To obtain a quick overview of potential options, the following sets of data were generated using two 

algorithms from the Solvent Selection Tool: the algorithm for cooling – evaporation studies and the 

algorithm for cooling – evaporation – anti-solvent studies.  From the data generated by means of the 

computational tool, various graphs were generated to obtain a visualisation of the effects of cooling; 

evaporation and anti-solvent addition. The following graphs were generated to evaluate the full 

spectrum of options: effect of cooling on yield, shown in Figure 6.29; effect of evaporation and cooling 

on yield, shown in Figure 6.30, and effect of anti-solvent and cooling and yield, shown in Figure 6.31.  

Figure 6.29. Effect of Cooling on Crystallisation Yield. 

From Figure 6.29, it can be seen that the required yield of 98 % can be achieved using cooling 

crystallisation, if the final cooling temperature of -40 oC is achievable in the production facility. 

However, we may also achieve the required yield with a combination of evaporation and cooling. In 

Figure 6.30 it can be seen that with an evaporation stage preceding the cooling crystallisation stage, the 

degree of cooling required is reduced. For example, with 50 % evaporation, a cooling temperature of -

14 oC is required to achieve the required 98 % yield.  However, we need to be mindful that higher 

evaporations may lead to higher degrees of supersaturation and more rapid de-supersaturation upon 

cooling, which will promote rapid primary nucleation, leading to poor crystal growth. 
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Figure 6.30.  Effect of Evaporation and Cooling on Crystal Yield with no Anti-solvent. 

Figure 6.31.  Effect of Anti-solvent Addition and Cooling on Crystal Yield with no 
Evaporation. 

To explore the use of anti-solvents, it is first necessary to identify potential anti-solvents that can be 

used with the ethanol system.  The “anti-solvent menus” as shown in Figure 4.4, can perform several 

calculations to identify potential anti-solvents. Whilst the detailed description of each menu is presented 

in Appendix B, in Table 6.7. we present aspects of the menu options that are used here to identify a 

suitable anti-solvent. 
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Table 6.7.  Relevant Calculation Selection in the Anti-solvent Menu for Anti-Solvent Selection. 

Menu Option Computational Capability 

Solubility Calculates the attainable yield of API crystals with each solvent in the 

database at ambient conditions. It ranks the performance of each 

solvent classifies the solvents from good solvents to good anti-

solvents. 

VLE It will perform the calculations to check whether any azeotropes exist 

in the solvent and selected anti-solvent. 

LLE It will perform the calculations to check whether any regions of 

immiscibility exist in the mixture of the solvent and selected anti-

solvent. 

Addition Curve Calculates the changes in crystal yield with incremental increases in 

amount of anti-solvent. 

Using the “solubility” subroutine, the Solvent Selection Tool can also be used to identify and rank the 

solvents from good solvents to poor solvents (good anti-solvents). In Figure 6.32, we illustrate the 

ranking of solvents from good solvents to good anti-solvents for the feed condition of 50 oC. All solvents 

with zero yield could be considered as good solvents because in these solvents the solute-solvent 

mixture at 𝑇𝑇𝑖𝑖will be under-saturated.  

All solvents with high yields at temperature,𝑇𝑇𝑖𝑖, could be considered as good anti-solvents because these 

solute-solvent mixtures result in highly super-saturated solutions. From Figure 6.32, the following 

solvents could be considered to be good anti-solvents: glycerol, ethylene glycol, water and 3-pentanone.  

Additional assessments are undertaken to evaluate the compatibility and performance of the shortlisted 

anti-solvents. These include: a miscibility test, an azeotrope test and a yield test. Using the subroutines 

called “VLE” and “LLE” we check whether these anti-solvents form azeotropes mixtures or miscibility 

gaps, respectively, with ethanol. The “Addition Curve” calculation is used to determine whether the 

required yield can be achieved by the anti-solvent, and the minimum amount of anti-solvent required to 

achieve the desired yield. Using the various subroutines outlined in Table 6.7, the following summary 

of results is presented in Table 6.8. and Figure 6.33: 
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Figure 6.32. Identification of Good Solvents and Anti-Solvents at 𝑻𝑻𝒊𝒊 = 𝟓𝟓𝟓𝟓 ℃. 

Table 6.8.   Summary of Results on the Compatibility and Performance of Shortlisted Anti-

Solvents at Ambient Conditions. 

Anti-solvent Forms 

Azeotrope 

with the 

solvent? 

Forms 

Immiscible 

Regions with 

the solvent? 

Maximum 

Attainable 

Yield? (%) 

Minimum  Anti-

solvent required 

to achieve  98 % 

yield (kmol) 

Ethylene Glycol No no 88.40 N/A 
Glycerol No no 91.50 N/A 

3-Pentanone No no 48.30 N/A 
Water Yes no 99.50 12 

Figure 6.33.  Addition Curves for Selected Anti-solvents at Ambient Conditions. 

From the list of anti-solvent candidates, water is the only anti-solvent the meets the required yield 

criterion. Whilst fulfilling the miscibility criteria, water fails the azeotrope test.  This implies that a 
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solvent - anti-solvent system will form a homogenous azeotrope, which will require a more complex 

solvent recovery system.  

We can further explore the option of using water as an anti-solvent.  The following ranges of operating 

conditions listed in Table 6.9 are used to investigate the process, economic and environmental 

implications of the various combinations of evaporation, cooling and anti-solvent crystallisation, to 

achieve a minimum yield of 98 % and a production target of 1000 kg pure API crystals per day.  

Table 6.9. Range of Cooling, Evaporation and Anti-Solvent Addition Conditions Simulated. 

Mode of Crystallisation 
Lower 

limit 

Upper 

limit 

Required Yield and 

Production Rate 

Cooling Temperature (oC) -50 50 Minimum 98 % yield and 

1000 kg API crystals per 

day 

Evaporation (%) 0 50 

Anti-solvent Addition (kmol) 0 15 

Figure 6.34 illustrates the effect of anti-solvent addition and cooling on the yield of API crystals. It 

shows that various combinations of anti—solvent addition and degrees of cooling can readily achieve 

the required minimum yield of 98 %. The band of operating conditions can be further extended with 

the inclusion of evaporation as a potential mode. 

Figure 6.34. The Effect of Anti-Solvent Addition and Cooling on Yield. 

Figure 6.35 shows the bands of potential operating conditions that fulfil the criteria of 98 % yield. The 

number of bands is merely dependent on the number of increments in the evaporation range. If a surface 

is constructed joining all the lowest points of each band and another surface is drawn joining all the top 

points of the bands, then the volume enclosed by these two surfaces represent all the possible 
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combinations of operating conditions that will fulfil the minimum required yield of 98 %. Hence these 

bands represent “slices” of the whole continuum of the possible operating conditions.  

It is important to note that any operating condition outside the enclosed surface will not meet the desired 

yield or purity. Any point above the upper surface will result in lower yields, whilst any point below 

the lower surface will lead to contaminated crystals, where the anti-solvent water will also crystallise. 

This lower surface represents the eutectic surface. 

The interpretation of this operational continuum is discussed with the aid of Figure 6.36 This diagram 

shows the range of operating conditions of cooling temperature and anti-solvent addition, when 

combined with 10 % evaporation, that will achieve a minimum yield of 98 %.  For a given anti-solvent 

addition amount a vertical band of points exist. The top point in a vertical band indicates the temperature 

at which a minimum of 98 % yield of pure API crystals will be achieved, whilst the lowest point in the 

vertical band indicates the minimum cooling temperature allowable prior to contamination by solvent 

or anti-solvent crystallisation. This temperature is close to the eutectic point and, hence, this lower point 

represents the maximum yield attainable at this anti-solvent addition rate.   

For example, if the conditions of 10 % evaporation and the addition of 8 kmols of anti-solvent are 

applied, then the operating cooling temperature of the crystallizer, to achieve 98 % yield of pure API 

crystals, is 15 oC, and the lowest permissible temperature is -15 oC, at which the yield obtained will be  

99.6 %. Any further cooling will result in the crystal formation of the anti-solvent (water) resulting in 

a binary mixture of crystals and hence contamination of the API crystals.  

Figure 6.35. Potential Operating Conditions to Achieve a Minimum Yield of 98 % Pure API 

Crystals. 
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This ability of the Solvent Selection Tool to identify and exclude conditions that lead to eutectic 

mixtures is very useful when dealing with multi-component systems. The addition of co-solvents, or 

anti-solvents, or other by-products leads to an increase in the number of eutectic compositions and 

separation boundaries. As illustrated in this application, the addition of water, as an anti-solvent, limits 

the operational conditions when compared to a pure binary system. Conditions that lead to the 

crystallisation of the solvent, or anti-solvent, must be avoided to ensure the productions of pure API 

crystals. 

Figure 6.36.   Band of Operating Conditions for the Combination of Cooling and Anti-
solvent Addition to Achieve a Minimum Yield of 98 % Pure API Crystals with 10 % 
Evaporation. 

An interesting phenomenon, illustrated by this eutectic point, is the depression of melting point of the 

anti-solvent. Whilst the melting point of water (anti-solvent) is 0,oC, in the given mixture of solvent 

(ethanol) and API, the temperature at which water will crystallise is lowered to -15 oC..  

There is no limitation to the range of evaporation or cooling or anti-solvent addition conditions to be 

evaluated because the tool is designed to identify the operational conditions that will produce pure API 

crystals. Within this large pool of possible combinations of operating conditions that fulfil the yield and 

quality criteria, further criteria are required to screen and identify the best combination of crystallisation 

operating modes and conditions.  

The two additional screening criteria are the economic criterion and the environmental criterion.  For 

the economic criterion, use can be made of either the operating cost per batch of API produced, or use 

can be made of the fixed annualised cost, which is a combination of the annual operating cost and a 

ratio of the capital costs. For the environmental criterion, use can be made of the calculated 

environmental factor, or the energy consumption factor, or a combination of the two.  
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In addition to the criteria that can be used to rank the operating conditions, the final selection of will 

also be dependent on process and plant limitations.  Such limitations could include: lowest attainable 

cooling temperature due to limitations of the refrigeration units, thermal degradation of the API at 

evaporation temperatures excluding evaporation as a potential mode, unless evaporation under vacuum 

is possible, etc.  

In Table 6.10 some of the results that highlight the potential operating conditions, with or without 

process and plant constraints, are provided. These conditions are limited to the range of the four main 

variables used for this simulation: the required yield is specified at a minimum of 98 % pure crystals; 

the daily production target is 1000 kg of pure API crystals; the temperature range is -50 oC to 50 oC 

with anti-solvent addition of between 0 to 15 kmol; and the evaporation range is from 0 % to 50 %. In 

addition, the ranking of the operating conditions is based on an equal weighting of the performance 

criteria of yield, operating cost per batch, the waste generated per kg of API and the energy consumption 

per kg of API crystallised. The various performance criteria of operational cost, E-Factor and Ec-Factor 

are normalized by dividing the actual value obtained at specified conditions, divided by the lowest value 

obtained in the entire range evaluated. The normalised yield criteria is obtained by dividing the actual 

value obtained at specified conditions, divided by the minimum required yield. Since the proposed 

ranking method is based on the lowest cumulative value, the inverse of normalized yield value is used: 

NCWS = ∑ 𝑤𝑤𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛
𝑖𝑖 =  𝑤𝑤𝑦𝑦 × (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌)−1   +  𝑤𝑤𝑜𝑜𝑜𝑜 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +

 𝑤𝑤𝑒𝑒 × 𝐸𝐸 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  𝑤𝑤𝐸𝐸𝐸𝐸 ×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹   

Where 

 𝑤𝑤𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎     𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 =  
𝑃𝑃𝑃𝑃𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 

For the conditions described, and with no process and plant constraints, the best options for 

crystallisation is evaporation followed by cooling. From the samples of operating conditions shown in 

Table 6.10, this combination of evaporation and cooling is even more cost effective than just cooling 

crystallisation.  The primary reason for this is that with evaporation, the processing volumes are 

reduced, which result in reduced downstream equipment sizes, reduced crystallisation cooling heat load, 

reduced solvent recovery heat load, and reduced waste treatment streams. Also evident from the sample 

of results presented in Table 6.10 and Figure 6.37, is the higher operating costs associated with anti-

solvent addition. However, a combination of evaporation with anti-solvent addition will reduce the 

operating costs as shown in the last set of results in the table. 
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Figure 6.37. Effect of Cooling and Anti-Solvent Addition on the Fixed Annualised Cost. 
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Table 6.10.  Examples of Operating Conditions for Operations With and Without Constraints. 

Operating Conditions (OC) Performance Criteria (PC) Ranking 

(R) 

Evaporation Anti-
solvent 

Addition 

Cooling 
Temperature 

Yield 
obtained 

Operating 
Cost per 

Batch 

E Factor Ec 
Factor 

Normalised 
cumulative 
weighted 

Score 
(NCWS) 

% (kmol) (oC) (%) ($) 𝑘𝑘𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴

𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴

Without process or plant limitations: 
50.00 0.00 -50.00 99.72 379.59 0.11 5.05 0.996 
45.00 0.00 -50.00 99.65 388.66 0.12 5.14 1.008 
50.00 0.00 -45.00 99.62 399.60 0.12 5.05 1.012 
40.00 0.00 -50.00 99.59 397.06 0.12 5.23 1.019 
45.00 0.00 -45.00 99.53 413.68 0.12 5.14 1.028 
35.00 0.00 -50.00 99.52 406.23 0.12 5.32 1.032 
50.00 0.00 -40.00 99.50 425.37 0.12 5.05 1.032 

With Cooling Only : no evaporation and  no anti-solvent addition 
0.00 0.00 -50.00 99.05 472.80 0.12 5.95 1.119 

With process and plant limitations eg. No evaporation due to API thermal degradation and lowest cooling 
temperature attainable in the plant is 0 oC 

0.00 8.00 0.00 98.39 1194.93 0.20 12.34 1.810 
0.00 8.00 5.00 98.01 1276.43 0.21 12.38 1.865 
0.00 9.00 0.00 98.71 1180.75 0.21 12.96 1.837 
0.00 9.00 5.00 98.41 1245.00 0.21 12.98 1.880 
0.00 9.00 10.00 98.05 1323.09 0.21 13.02 1.933 
0.00 10.00 0.00 98.95 1183.69 0.21 13.57 1.876 
0.00 10.00 5.00 98.71 1235.42 0.21 13.60 1.911 
0.00 10.00 10.00 98.42 1297.91 0.22 13.62 1.953 
0.00 11.00 0.00 99.13 1198.74 0.22 14.20 1.923 
0.00 11.00 5.00 98.93 1241.15 0.22 14.21 1.952 

With plant limitation: for example lowest attainable cooling temperature =  0 oC 
50.00 2.00 0.00 99.37 792.59 0.14 8.23 1.473 
50.00 2.00 5.00 99.22 824.00 0.14 8.24 1.498 
50.00 3.00 0.00 99.71 777.32 0.14 8.85 1.503 
50.00 3.00 5.00 99.64 791.37 0.14 8.85 1.514 
50.00 3.00 10.00 99.56 808.28 0.14 8.85 1.528 
50.00 2.00 10.00 99.04 862.74 0.14 8.25 1.529 
45.00 3.00 0.00 99.44 819.84 0.14 8.89 1.540 
50.00 3.00 15.00 99.46 828.62 0.14 8.86 1.544 

NB. The environmental factor only considers the waste due to the crystallisation process and does not 

account for waste generated in other processes, e.g., in the reaction process etc. 
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6.2.2.3 Application 3: Fractional Crystallisation 

Multi-component API systems pose additional challenges when the application is further extended to 

determine modes of evaporation. We have seen that with an increase in the number of components 

present in the system, there is an increase in the number of eutectic compositions and hence separation 

boundaries. The ability to analyse multi-component systems and to identify separation limitations are 

essential requirements for a robust, crystallisation computational tool.  

In this third application, we identify the operating options and conditions that will give the required 

yield and production rate for a system containing by-products/impurities. The system consists of two 

APIs in solution in a solvent, which need to be recovered as pure API crystals. The binary API systems 

consist of an unsaturated mixture of 2-(4-Isobutylphenyl) propanoic acid and acetaminophen in ethanol. 

The properties of the two APIs are presented in Table 6.11. 

Table 6.11. Structure and Properties of APIs (NIST). 

Property Component 1 Component 2 

Name of API 
2-(4-Isobutylphenyl)propionic 

acid 
4-Acetaminophenol

Common Name Ibuprofen paracetamol

Formula C13H18O2 C8H9NO2 

Molar Mass 206.29 g/mol 151.163 g/mol 

Density 1.03 g/cm3 1.293 g/cm3 

Melting Point 75 to 78 oC 168-172 oC

Boiling Point 157 oC 420 oC

Heat of Fusion 25.96 kJ/mol 27.51 kJ/mol 

Structure 

Since there are two APIs that need to be recovered, a minimum of two sequential crystallisation 

processes are required. Either of the two APIs may be crystallised first, followed by the crystallisation 

of the other API.   The cooling profile shown in Figure 6.38 is obtained for the multi-component system 

consisting of a ratio of 5 kmol of ethanol: 2 kmol 2-(4-Isobutylphenyl) propionic acid: 0.5 kmol of 4-

Acetaminophenol. 
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From the yield profile it is evident that cooling crystallisation alone will not fulfill the requirements for 

the crystallisation of pure API crystals. In the cooling temperature range of 50  oC to -50 oC, both APIs 

will crystallise as the system is cooled. The same phenomena will apply if evaporation, followed by 

cooling, is implemented. Hence, to effectively recover both APIs in their pure state, alternative options 

need to be considered.  

Using the anti-solvent identification process outlined in application 2, the following solvents, water and  

n-hexene were identified as potential anti-solvents for 2-(4-Isobutylphenyl) propionic acid and 4-

Acetaminophenol, respectively. 

Figure 6.38. Effect of Cooling on the Crystallisation of a Binary API Mixture. 

Following from application 2, where water is used as an anti-solvent for the recovery of 2-(4-

Isobutylphenyl) propionic acid from ethanol, the presence of an additional component in the feed 

mixture will result in a different set of operating conditions, compared to the application where only 

one component is in solution. In Figure 6.39, conditions that will result in a 98 % recovery of pure 2-

(4-Isobutylphenyl) propionic acid is presented. The difference in operating conditions is illustrated by 

comparing the operating conditions for the single API feed shown in Figure 6.34 and Figure 6.35 and 

the operating conditions obtained for the binary API feed shown in Figure 6.39 and Figure 6.40. 
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Figure 6.39. Potential Operating Conditions to Achieve a Minimum Yield of 98 % Pure API 

Crystals. 

Figure 6.40.   Band of Operating Conditions for the Combination of Cooling and Anti-
solvent Addition to Achieve a Minimum Yield of 98 % Pure API Crystals With 10 % 
Evaporation. 

Operating conditions based on the lowest operating cost for operations, with and without process and 

plant limitations, are presented in Table 6.12.  In comparison to Table 6.10, it can be seen that the 

various performance criteria (operating cost, environmental factor and energy consumption factor) are 

higher than those for the same production rate of pure 2-(4-Isobutylphenyl) propionic acid in a binary 

feed. 
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Table 6.12. Operating Conditions for the Recovery of First API From the Binary Mixture 

Ranked on Lowest Operating Cost. 

Operating Conditions (OC) Performance Criteria (PC) 

Evaporation Anti-
solvent 

Addition 

Cooling 
Temperature 

Yield 
obtained 

Operating 
Cost per 

Batch 

E Factor Ec Factor 

% (kmol) (oC) (%) ($) 𝑘𝑘𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴

𝑀𝑀𝑀𝑀
𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴

Without process or plant limitations: 
0.00 3.00 -50.00 99.61 723.98 0.88 9.45 
5.00 3.00 -50.00 99.64 730.98 0.88 9.46 
0.00 2.00 -45.00 99.32 731.60 0.87 8.82 

10.00 3.00 -50.00 99.67 738.22 0.88 9.47 
15.00 3.00 -50.00 99.70 745.69 0.88 9.48 

With process and plant limitations eg. no evaporation due to API thermal degradation and 

lowest cooling temperature attainable in the plant is 0 oC 

0.00 10.00 0.00 98.45 1346.84 0.96 14.04 
0.00 9.00 0.00 98.18 1352.08 0.96 13.43 
0.00 11.00 0.00 98.67 1352.79 0.97 14.66 
0.00 12.00 0.00 98.86 1367.45 0.97 15.29 
0.00 13.00 0.00 99.01 1388.98 0.98 15.91 

Assuming 100 % crystal recovery of the pure 2-(4-Isobutylphenyl) propionic acid from the first 

crystallisation process, the remaining mother liquor is then subjected to a second crystallisation process. 

A combination of 80 % evaporation followed by cooling to -50 oC will result in a 91 % recovery of the 

second API. However, the purity obtained is 99.95 %, implying that there are traces of 2-(4-

Isobutylphenyl) propionic acid (0.05 %) in the crystals obtained. 

6.2. Concluding remarks 
It is well established that the physical and chemical properties of chemicals in a system greatly influence 

the choice of operations, the size of the heat, mass and momentum transfer equipment, and the type and 

amount of utilities required.  During the conceptual evaluation phase, the various factors that will impact 

on the selection of the final industrial-scale processing route must be evaluated.  

In this chapter, the computational tool developed for the selection of solvents and anti-solvents for 

crystallisation processes has been demonstrated. The computational capability, range of applicability, 

and accuracy have been demonstrated by means of comparative studies using experimental and real 

plant data, and have been further demonstrated using several case studies. It has also been demonstrated 

that unlike the ternary diagram approach, which limits the analysis of systems to a maximum of 3 
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components (inclusive of solvent and anti-solvent), this computational tool can analyze multi-

component systems containing more than three components.  

It has been shown that using the multi-layer approach, potential solvents, mode of crystallisation and 

operating conditions can be identified, based on process performance, economic assessment and 

environmental assessment. It can be concluded that this computational tool can be used for decision 

making during the conceptual design phase of API development, as well as during retro-fit design or 

optimization studies of existing crystallisation processes. 
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Chapter 7: Conclusions and Recommendations 

The main achievement of this work has been the development of a methodology that takes advantage 

of existing thermodynamic and process insights to provide feasible and near optimum solutions for the 

selection of solvents and anti-solvents for the synthesis and operational design of crystallisation 

processes. A robust and reliable, generic model-based crystallisation computational framework 

specifically targeting the pharmaceutical industry was developed that can predict and optimize the 

production of crystalline API materials, with the desired yield and purity based on solvent selection and 

selection of mode of crystallisation.  

The computational framework explores the synergistic combination of multi-component multiphase 

flash calculations, phase equilibria phenomena, and process systems engineering methods, to establish 

the presence of solid-liquid equilibria of the components in a given feed, and the identification of the 

sequence of the precipitating solids under varying temperature and concentration changes. These 

computational capabilities allow the developed framework to provide the insight to exploit the change 

in the solubility boundaries and regions with temperature variation and concentration changes and to be 

used as a screening mechanism to quickly determine the most appropriate solvent(s) and type of 

crystallisation process/processes for a given application. It has been developed for faster process design 

and process understanding, that can be used in industry as a decision making tool during the conceptual 

design phase, and as a design or optimisation tool for retrofitting an existing process to maximize the 

overall process performance. 

The successful embedding of the developed crystallisation computational framework within the 

commercial process simulation software CHEMCAD improves its robustness and extend its 

computational capabilities. The computations within the Solvent Selection module has access to a full 

range of thermodynamics models and correlations, a comprehensive database of compounds and their 

pure and mixture properties, and rigorous computational algorithms for process calculations and 

equipment design of the commercial simulator.  In addition, the software vendors regularly deliver 

updates for their programs to fix bugs and to deliver new functionality including the updating and 

inclusion of new property and thermodynamic models and methods that enhance the accuracy of the 

predictive methods. Through several graphical user interfacing platforms, the user is able perform 

numerous calculations to comprehensively evaluate the process, economic and environmental impact 

of solvent selection. 

The computational framework creates opportunities, not only for finding near optimal operating 

strategies, but also to investigate and develop a comprehensive understanding of the process, economic 
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and environmental impact of solvent and anti-solvent selection in crystallisation process. Specifically, 

the developed framework consists of several algorithms and subroutines that enables the following 

spectrum of computational capabilities: 

• The optimum operability conditions for the crystallizer can be identified with minimal

thermodynamic information on the system, by using multiphase flash calculations. Starting

with just the chemical structure, and using the predictive thermodynamics property models like

UNIFAC and other group contribution methods, the Solid-Liquid-Vapour equilibria (SLVE)

phase behaviour can be calculated. The conditions at which there is a phase change from liquid

to solid of a component of interest represents the onset of the crystallisation process for that

component. By determining that change in the amount of solid formation by flash calculations

due to temperature or composition change or both, the extend of crystal formation can be

determined.

• The various eutectic temperatures and compositions that exist in the system can be predicted,

and data can be generated for developing various types of phase diagrams and solubility curves.

These allow for the overall composition space to be visualised and the separation barriers to be

examined. In particular, the analysis of systems with multi-components and multiple saturation

points is enabled.

• The operations such as heating, cooling, solvent addition, and solvent removal, can be

simulated to systematically evaluate process alternatives. This enables the user to filter and

screen solvents, and evaluate the effects of co-solvents, anti-solvents, other components, and

impurities on the solute’s solubility, in a specified temperature and composition range.

• The identification of the operating conditions that give maximum recovery of a desired

compound, with a certain solvent or solvent mixture, and the calculation of the percent

recoveries, and the total energy requirements (heating/cooling), under various operating

conditions is enabled. The tool can be used to establish operating strategies, which may involve

a combination of “cooling/heating”, “co-solvent/anti-solvent addition”, and “Evaporation”

steps to meet the process objectives. All the important process alternatives can also be identified 

by this procedure, and can be systematically evaluated for quick screening purposes. The results

obtained from this procedure will be mainly helpful in obtaining a quick, preliminary estimate

of the best alternative.

• The framework can also be used to perform sensitivity analyses on the various input parameters

to the process, and therefore identify important design variables in the process that will have

the greatest impact on the overall performance.

• The inclusion of financial and environmental impact algorithms enhances and extend the

applicability for significant and realistic comparative studies. The comparative investigation of

the process engineering implications of the various solvents and modes of crystallisation can
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be undertaken. Once the desired production rate is established, the effect each solvent will have 

on the size of various key equipment required, can be determined, along with the associated 

capital expenditure. In addition, the operational expenses and environmental impact associated 

with a selected solvent / anti-solvent and selected mode of crystallisation can be evaluated.   

A series of validation processes and applications have shown that the thermodynamic and process 

insights embedded in this computation framework can be exploited to provide solutions for the synthesis 

and operational design of crystallisation processes, and in particular the impact a selected solvent, anti-

solvent and mode of crystallisation may have on the overall performance of the process, as the goal of 

this thesis was originally set to be.  

A key limitation of this methodology is that the accuracy of the predictions for complex molecules is 

dependent on the accuracy of predictive pure and mixture property models and predictive phase 

equilibria models that exist within the commercial simulator. Since the simulator allows for the 

inclusion of experimentally measured properties and user defined property models, this may for a 

specific purpose improve the accuracy for a particular application. 

In summary, the innovative computational framework developed in this work and embedded into a 

commercial process simulator, provides a simple and fast way of conducting comparative studies to 

provide feasible, near optimum solutions that could be used for screening design and operational 

alternatives, and eventually be used for further rigorous optimisation studies. It presents a robust 

conceptual design tool for the rapid screening solvents and operational modes for crystallisation. 
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Chapter 8: Recommendations for Future work 

Whilst the framework developed is intended to be used as a conceptual design tool to assist with 

decision making, several opportunities exist to enhance the capability, range of applicability and 

accuracy of the predictive design tool. These opportunities include: 

1. Inclusion of a robust multi-objective optimisation algorithm into the Solvent Selection

Framework may provide a more concise identification of the optimum operating conditions

taking into account the process, economic and environmental requirements.

2. The inclusion of raw material and product cost, personnel costs and other operational cost not

included into the existing framework may provide a relevant economic assessment of the

process alternatives or be used as a production management tool to determine daily operational

profitability requirements.

3. The models that have been used to calculate the equipment sizes and costs are generally simple

and they can be improved to be more exact by including more details

4. The computation framework may be extended to include the other relevant API manufacture

operations such as crystal washing, drying, etc. to fulfil the role as a process simulator for API

manufacture.

5. The extension of the environmental performance index that accounts for plant and personnel

safety, resource depletion, energy conservation and fugitive emission associated with the choice

of solvent will improve the framework to present a holistic environmental assessment.

6. Whilst the existing framework uses the UNIFAC and Modified UNIFAC (Dortmund)

predictive models for the phase equilibria computations, other emerging predictive models can

be included to improve the accuracy of the computations with complex molecules.

7. The developed algorithms would also benefit from further validation from other case studies,

experimental work and literature examples.
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APPENDIX A: Alternate SLE Derivation 

Solid – Liquid Equilibria Equation from Classical Thermodynamic 
Relation 

The classical approach used for relating the solid and liquid fugacities in a pure compound system can 

be obtained from classical thermodynamic relations. In the framework, the solid and liquid fugacities 

at melting are evaluated starting from the Fundamental Property Relation (FPR) of a pure compound 

system. It consists in obtaining the liquid and solid fugacities starting from the triple point conditions, 

and the pressure and temperature variations are evaluated in terms of fugacity. 

The FPR of a pure component in a generic phase α in terms of volume and enthalpy can be expressed 

as 
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This equation can be applied independently to the solid and liquid fugacities from the triple point 

temperature and pressure 𝑇𝑇𝑡𝑡,𝑃𝑃𝑡𝑡 up to the melting temperature and pressure𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃, resulting in the 

following equations for the liquid and solid phases respectively: 
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Applying the isofugacity condition between the solid and liquid phases at the triple point i.e 

𝑓𝑓𝑠𝑠,0(𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑡𝑡) = 𝑓𝑓𝑙𝑙,0(𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡), the above equations can be combined to yield: 

𝑙𝑙𝑙𝑙
𝑓𝑓𝑙𝑙,0(𝑃𝑃,𝑇𝑇)
𝑓𝑓𝑠𝑠,0(𝑃𝑃,𝑇𝑇) =

�𝑉𝑉𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑙𝑙 − 𝑉𝑉𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡

𝑠𝑠 �
𝑅𝑅𝑅𝑅

(𝑃𝑃 − 𝑃𝑃𝑡𝑡) +
�𝐻𝐻𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡

𝑙𝑙 − 𝐻𝐻𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑠𝑠 �

𝑅𝑅𝑇𝑇𝑡𝑡
�
𝑇𝑇𝑡𝑡
𝑇𝑇
− 1�

−
�𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡

𝑙𝑙 − 𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑠𝑠 �

𝑅𝑅 �
𝑇𝑇𝑡𝑡
𝑇𝑇
− 1 − 𝑙𝑙𝑙𝑙 �

𝑇𝑇𝑡𝑡
𝑇𝑇
�� 

𝑙𝑙𝑙𝑙
𝑓𝑓𝑙𝑙,0(𝑃𝑃,𝑇𝑇)
𝑓𝑓𝑠𝑠,0(𝑃𝑃,𝑇𝑇) =

∆𝑉𝑉𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅
(𝑃𝑃 − 𝑃𝑃𝑡𝑡) +

∆𝐻𝐻𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑇𝑇𝑡𝑡
�
𝑇𝑇𝑡𝑡
𝑇𝑇
− 1� −

∆𝐶𝐶𝐶𝐶𝑃𝑃𝑡𝑡,𝑇𝑇𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅 �
𝑇𝑇𝑡𝑡
𝑇𝑇
− 1 − 𝑙𝑙𝑙𝑙 �

𝑇𝑇𝑡𝑡
𝑇𝑇
�� 



175 | P a g e

APPENDIX B: Operating Manual 

The Solvent Selection Tool 
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B.1. Introduction

This tool is helpful to optimize a crystallisation process with the simulation software CHEMCAD.

To use it, you need CHEMCAD Version 6.4 or updated and a CHEMCAD-File called

"Crystallisationexpert.cc6". This file includes the VBA Tool and allows you to optimize your

crystallisation process fast and efficiently.

Whilst the VBA unit operation is embedded within CHEMCAD, the VBA unit operation controls 

CHEMCAD and has many functions to help you to synthes ize  and  optimize your 

crystallisation process. The tool requires some set-up arrangements that will be described step by 

step later. The different menus with all their functions are explained in later sections.  

All calculations are based on the Multiphase-Flash algorithm. This allows a simultaneous 

calculation of the vapor, liquid and solid phase behavior. This is important for a calculation close to 

the reality. Furthermore, the Multiphase- Flash algorithm controlled by the VBA Tool works very 

fast and allows a quick overview of your crystallisation process. 

In general, the Solvent Selection Tool enables calculations in cooling crystallisation, evaporative 

crystallisation, anti-solvent or co-solvent and the combination of these crystallisation methods. 

Furthermore, it is possible to optimize the selection of an efficient solvent for the crystallisation 

process. The tool is directly connected to Microsoft Excel and exported all results directly to different 

sheets. This Excel interface allows for the results to be further analysed using the full spectrum tools and 

applications available in Excel. 

In the tool are already 30 common solvents that are used in the pharmaceutical industry as possible 

solvent, anti-solvent or co-solvent preloaded, further solvents, by-products and impurities can be 

added to the crystallisation task. The tool deals in every function with problems for crystallizing 

impurities like by-products or solvents. 
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B.2. Simulation Preparation

In this section, we will explain step by step all arrangements that must be done prior to the use the Tool

for the optimization of a crystallisation process. First, copy the original file "Crystallisationexpert.cc6"

and rename it. Work with the copy! Open the file and you will see the flow sheet with just one VBA-Unit.

This Unit controls is the whole Solvent Selection Tool and includes all VBA-Codes in one module. The first

view of this file in CHEMCAD is shown in Figure B.1.

Before you can start with the optimization of the crystallisation you need to establish the component list 

for your simulation. Since in the crystallisation process, any component (including the solvents) in the 

feed-stream may crystallise depending on the conditions, we must ensure that for each component in 

the simulation component list, each component’s solid clone must be created and included in the 

component list. Currently CHEMCAD allows for maximum of 50 liquid-solid pairs to be evaluated in a 

simulation and hence the maximum number of feed components for the crystallisation simulation is limited 

to 50. Whilst the programme has a preloaded solvent database of 30 solvents. These can be changed. It 

is important to note that developed algorithms make certain decisions/assumptions based on the position 

of the compound in the component list eg. It will automatically assume that the last two components in 

the database are the solute and crystal (solid) form of the desired product.  

Figure B.1. View of CHEMCAD File with list of sub-routines. 
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Hence it important to ensure that that various components are arranged in the order reflected in Table 

B1. An illustrated example of a simulation component list is shown in Figure B.2. The procedure to 

create a component list for your simulation is as follows: 

1. First add  solvents out of the CHEMCAD component database (all liquid) – must be 30

2. Then clone these solvents and create the solid phase. They have to be cloned in the same order

you have added the liquid solvents.

3. Then you add additional solvents  (if any) to the simulation and clone them to define the solids

(also in the order you have added the liquids)

4. Then you add by-products (in any) to the simulation and clone them to define the solids (also

in the order you have added the liquids)

5. Then you add the product and clone this one to define that as a solid.

User defined components can be added into the CHEMCAD database. The procedure is outlined in the 

CHEMCAD “Help” menu. Large complex molecules may be fragmented into the various UNIFAC 

subgroups using “Artist” from the DDBST suite of programmes or equivalent tools. The fragmentation data 

is required by CHEMCAD to determine the various properties required in the simulation. Available 

experimentally measured data can also be uploaded into CHEMCAD   

The calculations are based on the selected thermodynamic models. If you have good experimental data, 

you can regress binary interaction parameters (BIP's) and use NRTL (non-random two liquids) as the 

thermodynamic model. If you have no experimental data, you have to use a group contribution method 

like UNIFAC.  From previous calculations, we recommend Modified UNIFAC (Dortmund), because it 

is closer to the real behavior. In Appendix D, is the list of subgroups available for the UNIFAC and 

Modified UNIFAC (Dortmund) models in CHEMCAD. 
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Table B.1: Scheme to Create Component List for Simulation. 

Component number in 
simulation Class Notation in VBA Code 

1 
: 
: 

30  (ncomp/2) 

Preloaded Solvent – liquid 
phase 

1 
to 

ncomp/2 

31 
: 
: 

60 (ncomp) 

Preloaded Solvent – solid 
phase (crystals) 

(ncomp/2 +1) 
to 

ncomp 

61 
: 
: 

60+  (NofaS) 

Further added Solvents – 
liquid phase 

(ncomp +1) 
to 

(ncomp + numAddsol) 

60 + 1 + NofaS 
: 
: 

60 + 2*NofaS 

Further added Solvents – 
solid phase (crystals) 

(ncomp + 1 + numAddsol) 
to 

( ncomp + 2*NumAddsol) 

60 + 2*(NofaS+1) 
: 
: 

60 + 2*NofaS + NoB 

By-products – liquid phase 
ncomp + 2*(numAddsol +1) 

to 
(ncomp + 2*numAddsol + numAddothers) 

60 + 2*NofaS + NoB +1 
: 
: 

60 + 2*NofaS + 2*NoB 

By-products – solid phase 
(crystals) 

(ncomp + 2*numAddsol+ numAddothers +1 ) 
to 

(ncomp + 2*numAddsol + 2*numaddothers) 

60 + 2*NofaS + 2*NoB 
+1

Product – liquid phase 
(solute) 

nges 

60 + 2*NofaS + 2*NoB 
+2

Product –solid phase 
(crystals) 

Nges + 1 



180 | P a g e   

 

FIGURE B.2. Example of Simulation Component List (Output from CHEMCAD into Excel). 
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B.3. Running the Programme
Now that all component setups are done and you can start the tool by running the simulation. 

The programme is driven by easy to use Graphical User Interfaces (GUIs) and several 

Excel worksheets that will automatically open for loading of input data and storage of 

simulation results. 

B.3.1. Menu 1

On running the CHEMCAD flowsheet, the start-menu will pop up and an excel workbook will open.

Figure B.3. Start-menu. 

Figure B.4. Number of components. 

Figure B.5. Feed composition 
InputRequirements. 

In this Excel Worksheet, we enter all the information 
regarding the feed-stream. 

1. Fill in number of additional solvents in excel
workbook – sheet1 – Figure B.4

2. Fill in the additional number of components in
the systems eg by-products and unreacted starting
materials.- Figure B.4

3. Activate Read number of components  Figure B.3 
4. You will be required to Enter feed-stream

composition and the target production rate per
day into sheet 1- Figure B5. Nb the number of
entries required is determined by the information
entered in steps 1 and 2.

5. Activate Read Composition  Figure B.3 

B.3.2. Menu 2
A GUI will pop up containing two buttons for the two menus. 
Here we select the type of crystallisation process, we would like 
to evaluate: 

A. Temperature Menu evaluates Crystallisation by cooling 
and/or evaporation only 

B. Anti-solvent Menu evaluates Crystallisation in the 
presence of an anti-solvent 
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B.3.3. Menu 3: Temperature Menu
The Temperature Menu is programed for a selected solvent and feed composition (as defined

in menu 1). T h i s  m e n u  h a s  many functions to optimize the crystallisation process via 

cooling and evaporative crystallisation and a combination of both crystallisation methods. After 

a calculation is finished all results will be exported to Excel and a “Calculation Finished” message-

box will appear. All functions will be started via the related button on the right side of the 

menu shown in Figure B.6, and will be calculated at 1 atmosphere. Higher pressure can be 

done and will require the change to be made in the code. The computational capability of each 

function is briefly described below and typical results obtained are presented in Figure B.7, 

Figure B.8, and Figure B.9. 

Figure B.6. Temperature Menu. 

Note: 
Number of steps for cooling: 
The lower and upper bond describe the range in which you want to have 
a look for the crystallisation behaviour. The number of steps define how 
many points you want to calculate in this range. For example upper bond 
25 degrees, lower bond -50 degrees, number of steps 15 means you will 
calculate at -50,-45,-40,……,15, 20, 25 Degrees Celsius.  

Number of steps for evaporation: 
For the solvent evaporation it is the same! Upper bond means how much 
solvent you want to evaporate in maximum for example 40 %, lower 
bond defines the minimum solvent evaporation for example 0 % . 
Number of steps defines how many points you want to calculate in this 
range for example 5, then you would calculate for a solvent evaporation 
of 0, 10, 20, 30, and 40 %.  

Temperature Menu 

Run cool down 
Evaluates the effect of cooling on 
crystallisation. Insert final cooling 
temperature to determine effect on 
crystallisation process. 

Run solvent evaporation  
Evaluates the effect of evaporation on 
crystallisation. Insert desired % of solvent to 
be removed to determine effect on 
crystallisation process. 

Run crystalize product 
Evaluates the temperature required to obtain 
a specified yield of product. Note: At this 
temperature, other components in the feed 
may also crystalize, which will also be 
identified in the result sheet. 

Run maximum cooling 
This determines the minimum temperature 
allowable to obtain pure product crystals. 
This can also be used to determine the 
approximate eutectic temperature. 

Run maximum combination Evaluates the 
combined effects of cooling and evaporation 
on the crystallisation process. It will also 
calculate the financial and environmental 
impacts associated with all combinations. 
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Results in Excel worksheet Function 
Run cool down  
Results of the function cool down to -
10 °C. 

Run solvent evaporation  
Results of the function for 
evaporation of 25 %. 

Run crystalize product 
Results of the function for 
crystallisation an amount of 90 % 
product. 

Run maximum cooling 
The results show that for the given 
feed, the eutectic temperature is -
108.99 oC. A maximum yield of 
pure component is 99.64% when the 
feed is cooled to -107.99 oC. 

Figure B.7: Typical results obtained from various functions of the Temperature Menu. 
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Figure B.8. Matrix of Yield results for “Run Maximum Combination” function. 

Figure B.9. Matrix of Total Operating Cost ($) results for “Run Maximum Combination” 

function. 

Figure B.8 and Figure B.9 are examples of data that is obtainable from the Solvent Selection Tool. 

Here is shown a matrix of results for a combination of evaporation and cooling crystallisation 

processes. This is the result obtained for a system consisting of 2 kmols of ibuprofen in 5 kmols of 

ethanol. The effect of cooling from 40 oC to -10 oC, and also evaporating from 0% evaporation to 50% 

evaporation. In Figure B.8, we see that a 54% yield of pure ibuprofen crystals is obtainable if we 

evaporate 50% of ethanol without any further cooling. However, a yield of 97.39% is obtainable if 

the evaporated mixture is further cooled to -10 oC. From Figure B.9, we see that this is a very cost 
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effective as this represents the lowest operating cost from all possible combinations. The individual 

cost contributors such as cooling costs, waste treatment costs, etc are also simultaneously outputted 

into Excel. A graphical package such as GNUPLOT can be used to transform the matrix of results 

into a 3D graph. 

B.3.4. Menu 4: The Solvent/Anti-solvent Menu

The second and more complicated menu is the Solvent/Anti-solvent Menu. In this menu, just the feed

composition is fixed and used. The menu contains two pages: The first called “Choose Anti-solvent”

offers functions for the solvent and anti-solvent/co-solvent selection. The drop down menus allow the

user to select: the desired product, the solvent to use, and the anti-solvent to use. The list of

components in these dropdown menus are the same entered into CHEMCAD as the feed components.

B.3.4.1. Menu 4.1: Choose Anti-Solvent

The first page of the Solvent/Anti-solvent Menu contains computational tools for the selection of an

efficient solvent / co-solvent / anti-solvent for the crystallisation process. Furthermore, it contains

functions to select a potential anti-solvent or co-solvent. It can be used to classify the preloaded 30

solvents and further added solvents.

Note: 
1. For the ternary diagram sub menu

The accuracy is an option for the algorithm to reach the eutectic point. For
example: The algorithm starts with the feed composition, cools until the component
starts to crystallize and then cools further down and is looking for a second
component starting to crystallize. For this we programmed a temperature interval of
1°C . When the second component crystallizes for the first time the algorithm will 
increase the temperature by 3 °C and cool down again to find the exact eutectic
point. The temperature interval for this is the accuracy!!! I would recommend to 
test first a higher accuracy like 0.01°C. If you couldn't get good exact eutectic
points with this accuracy you must decrease the value. 

Solvent Menu: Choose anti-
solvent 

Calculate ϒ∞ for solute; 
Determines gamma infinity of 
the solute in various solvents. It 
will calculate the activity 
coefficients for the selected 
solute in all solvents at infinite 
dilution. 

Solubility in different solvents: 
Calculates the solubility of the 
solute in various solvents at 25 
oC, to indentify potential solvents 
and anti-solvents. 

VLE: 
Determines whether an 
azeotropes exist between solvent 
and chosen anti-solvent. 

LLE: 
Determines whether any 
immiscilbities gaps exists 
between solvent and chosen anti-
solvent  
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Calculate ternary diagram: 
This function determines the 
ternary diagrams with the 
various eutectic points and 
displays the compositional space 
for the system. 

Calculate addition curve: 
This determines the effect of the 
addition of anti-solvent on the 
crystallisation process.  

Calculate composition curve: 
Determines the effects of 
solvent-anti-solvent composition 
on yield. The solvent-anti-
solvent composition is varied 
from 0 to 1 mole fraction 

Figure B.10.  Results for the calculation of the solubility in different solvents function 
as an example. 
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Figure B.11. Results showing Process, Economic and Environmental Performance for 

shortlisted solvents also obtained from the solubility in different solvents function. 

In Figures B.10 and B.11, we the see full capability of the Solvent selection Tool. Besides calculating 

the solubility of a solute in a solvent, underlying algorithms also rank the solvents from good solvents 

to good anti-solvents. This is useful to identify potential solvents that can be used for a particular 

application. In addition, a full economic and environmental assessment can be done as shown in 

Figure B.11. Here is shown a shortlist of solvents that can achieve a minimum yield of 85 % for a 

particular application, and the capital cost, operating cost and environmental indicators are calculated 

for each solvent. Hence, sufficient data is presented to assist with decision making in the conceptual 

design or retro-fit process. 

After you selected a solvent and an anti-solvent from the drop down menus you have first to check for 

miscibility via the LLE-Button. Behind the LLE-Button is a code based on a thermodynamic Gibbs 

energy model. We calculate for 100 points the Gibbs energy via the activity coefficients and look if 

there exist just one minimum (no miscibility gap) or there exist a second minimum in the Gibbs 

energy (miscibility gap). The function just returns via a message if the is a miscibility gap or not. 

Solvent systems that experience miscibility gaps must be avoided. 

For a downstream solvent recovery processing, it could be interesting to check if an azeotrope exists 

between the selected solvent and anti-solvent, as this will determine the complexity of the recovery 

process. Because of this, an algorithm is implemented to check if an azeotrope exists between the 

selected solvent and anti-solvent. A simple calculation is performed by calculating saturated vapor 

pressures via the Antoine equation and the activity coefficient at infinitive dilution. The following 

conditions are check: 



188 | P a g e

𝛾𝛾1∞𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃2𝑠𝑠𝑠𝑠𝑠𝑠
> 1 𝑎𝑎𝑎𝑎𝑎𝑎 

𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝛾𝛾2∞𝑃𝑃2𝑠𝑠𝑠𝑠𝑠𝑠
< 1  𝑂𝑂𝑂𝑂 𝑖𝑖𝑖𝑖  

𝛾𝛾1∞𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃2𝑠𝑠𝑠𝑠𝑠𝑠
< 1 𝑎𝑎𝑎𝑎𝑎𝑎 

𝑃𝑃1𝑠𝑠𝑠𝑠𝑠𝑠

𝛾𝛾2∞𝑃𝑃2𝑠𝑠𝑠𝑠𝑠𝑠
> 1

𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥, 𝛼𝛼12 = 1 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾1∞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 

𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾2∞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 

 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 

One of the most important things to develop all different process alternatives is to know the SLE 

behavior. Out of this reason, an  a lgor i thm was developed to  predic t  a ternary SLE. This 

is very important in cases of impurities or the employment of an anti-solvent or co-solvent. 

The function "calculate ternary diagram" requires the selection of the three components via the 

drop down menus "choose solute", "choose solvent" and "choose anti-solvent". After the 

selection of 3 components, click on the button "calculate ternary diagram". This will open a new 

GUI as shown in Figure B.12. 

Figure B.12. – GUI to calculate ternary diagram. 

In Figure B.13 we show the resulting already plotted ternary diagram for the components 

Benzene, Cyclohexane and 2-Butanone as an example with 3 binary eutectic points and one 

ternary eutectic point. The eutectic lines are plotted in black. 
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Figure B.13.  Resulting diagram in Excel for Benzene, Cyclohexane and 2-Butanone as 
an example. 

The function "Calculate addition curve" was implemented to calculate the effect of anti-solvent 

addition. It shows how the crystallisation is affected as the anti-solvent is gradually added into the 

process. From this computation, the dosage of anti-solvent can be determined to achieve a specified 

yield. The function will calculate for the inserted dosage and number of steps the crystallized 

amount of product via a TPFlash at 25 °C. The results are exported to Excel and can be plotted. 

The typical results for this function is shown in Figure  B.14. The results are exported to Excel 

and can be plotted directly in Excel or with any other program like Origin or GNUPLOT. 
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Figure B.14. Results of an example calculation for the Addition Curve function. 

The next function "Calculate composition curve" is to check the efficiency of the selected 

solvent/anti-solvent system. This function calculates the solubility of the product over a 

composition range from pure solvent to pure anti-solvent. The number of calculated 

points must be inserted over the GUI. The function calculates for the different composition the 

crystallized amount of product via a TPFlash at any specified temperature. The typical results 

for this function is shown in Figure  B.15. The results are exported to Excel and can be plotted 

directly in Excel or with any other program like Origin or GNUPLOT. 

Figure B.15.– Results of an example calculation for the Composition Curve 
function. 
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B.3.3.2. Menu 4.2: Anti-Solvent Functions

The second page of the Solvent/Anti-solvent Menu contains various functions to have a closer

look at the crystallisation behavior with the new selected solvent and anti-solvent from the

first page. T h i s  m e n u  h a s  many functions to optimize the crystallisation process via

cooling and evaporative crystallisation in the presence of an anti-solvent.  All functions will be

started by the related button on the right side of the menu shown and described below, and

will be calculated at 1 atmosphere. Different pressure can be done and will require the change

to be made in the code. The computational capability of each function is briefly described below 

and typical results obtained are presented in Figure B.16.

The first function "run maximum cooling is implemented to check the crystallisation potential 

with the new solvent just via cooling down. This function works in the same way as the function 

"run maximum cooling" from the Temperature Menu only with the new solvent. 

The next three functions "run cool down", "run solvent evaporation" and "run maximum cooling" 

are implemented for the calculation of a specific binary solvent crystallisation behavior. All 

these functions change the amount of solvent from the feed stream to an inserted new 

composition. In these next example calculation, we will have a closer look at the binary solvent 

system containing i bu pro fe n  i n  a  50 % of solvent (ethanol) and 50 % of the selected 

anti-solvent (water). 
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Note: 
Number of steps for cooling: 
The lower and upper bond describe the range in which you want to have a look for 
the crystallisation behaviour. The number of steps define how many points you want 
to calculate in this range. For example upper bond 25 degrees, lower bond -50 
degrees, number of steps 15 means you will calculate at -50,-45,-40,……,15, 20, 25 
Degrees Celsius. 
Number of steps for evaporation: 
The upper bond means how much solvent you want to evaporate in maximum for 
example 40 %, lower bond defines the minimum solvent evaporation for example 0 
%. Number of steps defines how many points you want to calculate in this range for 
example 5, then you would calculate for a solvent evaporation of 0, 10, 20, 30, and 
40 %. 
Number of steps for anti-solvent addition: 
The same with the Anti-solvent addition: the lower bond defines the minimum of 
added Anti-solvent for example 0 kmol/h, the upper bond describes the maximum 
for the Anti-solvent addition for example 25 kmol/h, number of steps define how 
many points you want to calculate in this range for example 6 this means you will 
calculate for an Anti-solvent addition of 0, 5, 10, 15, 20 and 25 kmol/h. 

Anti-solvent Functions 
menu 

Run maximum cooling: 
This determines the 
minimum temperature 
allowable to obtain pure 
product crystals in the 
presence of an anti-solvent. 

Run cool down  
Evaluates the effect of 
cooling on crystallisation in 
presence of anti-solvent, for 
a given solvent – anti-
solvent mixture. 

Run solvent evaporation 
Evaluates the effect of 
solvent evaporation on 
crystallisation, for a given 
solvent – anti-solvent 
mixture. Insert desired % of 
solvent to be removed to 
determine yield. 

Calculate saturated solution: 
Determines the amount of 
solvent to be evaporated to 
reach saturation point prior 
to anti-solvent addition. 

Run maximum combination 
evaluates the combined 
effects of cooling, 
evaporation and anti-solvent 
addition on pure product 
yield. 
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Results for an example 
calculation of the maximum 
cooling function for a binary 
solvent system. 

Results for an example 
calculation of the run cool 
down function for a given 
solvent – anti-solvent 
mixture. 

Results for an example 
calculation of the Run 
solvent evaporation 
function for a given 
solvent – anti-solvent 
mixture. 

Figure B.16. Examples of typical results for Anti-solvent Functions menu. 

The last function is implemented to enable a quick overview about possible combinations from 

solvent evaporation, adding an anti-solvent and cooling down to a specific temperature. In addition, 

the economic and environmental performance is evaluated. For all three crystallisation methods, 

one has to define the upper and lower bond and also the number of steps, which should be calculated 

within this range. First the lowest amount of solvent will be evaporated, then the first amount of anti-

solvent will be added and after that cooled to the lowest temperature. Then the amount of evaporated 

solvent and the added anti-solvent will be hold constant and the temperature will be changed in the 

selected range. After this the temperature change is repeated for the next value of added anti-solvent. 

This procedure will be continued, until all possible combinations of added amount of anti-solvent in 

the whole temperature range are finished for the first fixed amount of previous evaporated solvent. 

Then this whole procedure is repeated for all selected amounts of evaporation. The evaporation 

function and the temperature function work in the same way like the evaporation function and the 

cool down function of the Temperature Menu. The addition of an anti-solvent changes the resulting 

composition after the solvent evaporation leading to a new composition, which is selected for the 

temperature behavior with a TPFlash. We recommend to do first a calculation with just 10 steps for 

each crystallisation method to get an overview and then have a closer look to interesting regions. 

Otherwise the calculation of, for example 100 points of each crystallisation will lead to 1000000 
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combinations and this will take a long time to calculate. 

This function produces 3 set of results: the results of the calculation of all possible combinations 

as shown in Figure B.17; the economic and environmental results as shown in Figure B.18, and then 

the function also filters and reports on all combinations leading to the user defined yield inserted 

on the GUI and where no impurities or solvent crystallize as shown in Figure B.19. The results are 

exported to Excel and can be plotted directly in Excel or with any other program like Origin or 

GNUPLOT. 

Figure B.17. Extract of the results of the calculation of all possible combinations. 

Figure B.18. Extract of the results of the Economic and Environmental Performance 
calculations of all possible combinations. 
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Figure B.19. Extract of the filtered results for a minimum yield of 98% of pure API crystals. 

The End 
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APPENDIX C: Solvent Database 

GlaxoSmithKline List of Solvents in the Pharmaceutical Industry 

Classification Solvent Cas Number DDBST ID Melting Point Boiling Point 
Water Water  7732-18-5 174 0 100 

Alcohol 2-Ethyl hexanol 104-76-7  379 -76 185 
Glycerol 56-81-5 230 18 290 
Cyclohexanol             108-93-0 252 25 161 
Ethylene glycol          107-21-1   8 -13 197 
1,4-butanediol            110-63-4 614 20 235 
Isoamyl alcohol              123-51-3  266 -117 131 
1,2-propanediol            57-55-6 282 -60 188 
1,3-propanediol            504-63-2 730 -27 214 
Benzyl alcohol           100-51-6 24 -15 205 
2-Pentanol 6032-29-7  766 -50 119 
1-Butanol 71-36-3 39 -89 118 
2-Butanol 78-92-2 22 -115 100 
Ethanol IMS       64-17-5 11 -114 78 
t-Butanol 75-65-0    153 25 82 

Methanol          67-56-1 110 -98 65 
2-Propanol 67-63-0 95 -88 82 
1-Propanol 71-23-8 140 -127 97 
2-Methoxyethanol 109-86-4 113 -85 124 

Ester t-Butyl acetate 540-88-5 1099 -78 95 
n-octyl acetate 112-14-1 612 -39 210 
Butyl acetate             123-86-4 80 -77 126 
Ethylene carbonate        96-49-1 1713 36 248 
Propylene carbonate            108-32-7 728 -55 242 
Isopropyl acetate             108-21-4 380 -73 89 
Ethyl lactate      97-64-3 2291 -23 154 
Propyl acetate           109-60-4 238 -92 102 
Dimethyl carbonate              616-38-6 451 -1 91 
methyl lactate               547-64-8 2290 -66 144 
Ethyl acetate         141-78-6 21 -84 77 
Ethyl propionate        105-37-3  205 -74 99 
Methyl acetate                79-20-9 82 -98 57 
Ethyl formate           109-94-4 16 -80 54 

Ketone Cyclohexanone              108-94-1 250 -32 155 
Cyclopentanone           120-92-3 241 -51 131 
2-Pentanone 107-87-9 137 -78 102 
3-Pentanone 96-22-0 285 -42 102 
Methylisobutyl ketone             108-10-1 117 -84 117 
Acetone    67-64-1 4 -95 56 
Methylethyl ketone             78-93-3 40 -87 80 

Acid Propionic acid         1979-09-04 141 -21 141 
acetic anhydride          108-24-7 233 -73 140 
Acetic acid 64-19-7 84 17 118 
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Classification Solvent Cas Number DDBST ID Melting Point Boiling Point 
Aromatic Mesitylene               108-67-8 487 -45 165 

Cumene            98-82-8 351 -96 152 
p-Xylene 106-42-3 176 -13 138 
Toluene 108-88-3 161 -95 111 
Benzene 71-43-2 31 6 80 

Hydrocarbon cis-Decalin            493-01-6 315 -43 196 
ISOPAR G 64742-48-9 ??? -60 163 
Isooctane              540-84-1 97 -107 99 
Methyl cyclohexane               108-87-2 1540 -127 101 
Cyclohexane               110-82-7 50 7 81 
Heptane        142-82-5 91 -91 98 
Pentane            109-66-0 134 -130 36 
Methylcyclopentane             96-37-7 55 -142 72 
2-Methylpentane 107-83-5 111 -153 60 
Hexane             110-54-3 89 -95 69 
Petroleum spirit              8032-32-4 ??? -73 55 

Ether Di(ethylene glycol)               111-46-6 463 -10 246 
Ethoxybenzene        103-73-1 609 -29 170 
Tri(ethylene glycol) 112-27-6 443 -7 285 
Sulfolane          126-33-0 542 28 282 
DEG monobutyl ether            112-34-5 404 -68 231 
Anisole 100-66-3 18 -38 154 
Diphenyl ether             101-84-8 505 27 258 
Dibutyl ether           142-96-1 57 -95 140 
t-Amyl methyl ether 994-05-8 876 -80 86 

t-Butylmethyl ether 1634-04-4 822 -109 55 
Cyclopentyl methyl ether                  5614-37-9 8047 -140 106 
t-Butyl ethyl ether 637-92-3 1409 -74 70 
2-Methyltetrahydrofuran 96-47-9 294 -137 78 
Diethyl ether               60-29-7 12 -116 35 
Bis(2-methoxyethyl) ether                111-96-6 835 -68 162 
Dimethyl ether            115-10-6 580 -141 -25
1,4-Dioxane 123-91-1 75 12 102 
Tetrahydrofuran          109-99-9 159 -108 65 
1,2-Dimethoxyethane         110-71-4 213 -58 85 
Diisopropyl ether               108-20-3 96 -86 68 

Dipolar Aprotic Dimethylpropylene urea                   7226-23-5 2191 -23 247 
Dimethyl sulphoxide  67-68-5 151 19 189 
Formamide              1975-12-02 701 3 220 
Dimethyl formamide             1968-12-02 72 -61 153 
N-Methylformamide 123-39-7 226 -4 200 

N-Methyl pyrrolidone 872-50-4 284 -24 202 
Propanenitrile             107-12-0 326 -93 97 
Dimethyl acetamide              127-19-5 227 -20 165 
Acetonitrile 1975-05-08 3 -45 82 
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Classification Solvent Cas Number DDBST ID Melting Point Boiling Point 
Halogenated 1,2-Dichlorobenzene        95-50-1 802 -17 180 

1,2,4-Trichlorobenzene            120-82-1 467 17 214 
Chlorobenzene               108-90-7 27 -45 132 
 trichloroacetonitrile 545-06-2 3146 -42 83 
Chloroacetic acid 1979-11-08 295 61 189 
 trichloroacetic acid               76-03-9 775 58 197 
 Perfluorocyclohexane            355-68-0 715 51 53 
Carbon tetrachloride             56-23-5 157 -23 77 
Dichloromethane            1975-09-02 70 -95 40 
Perfluorohexane 355-42-0 466 -86 57 
 Fluorobenzene             462-06-6 183 -42 85 
Perfluorotoluene  434-64-0 4681 -66 104 
Chloroform 67-66-3 47 -64 61 
Perfluorocyclic ether 335-36-4 -88 103 
Trifluoracetic acid               27881 -15 72 
Trifluorotoluene             36015 169 -29 102 
1,2-Dichloroethane             107-06-2  68 -36 84 
2,2,2-Trifluoroethanol              75-89-8 1086 -43 74 

Base N,N-Dimethylaniline 121-69-7 63 3 194 
Triethylamine             121-44-8 162 -115 89 
Pyridine          110-86-1 144 -42 115 

Other Nitromethane              75-52-5 125 -29 101 
carbon disulfide              75-15-0 149 -111 46 
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APPENDIX D: CHEMCAD Unifac Groups 

UNIFAC Group Specifications 
Subgroup Listing for CHEMCAD UNIFAC Models

The VLE, LLE, and Do columns represent UNIFAC VLE, UNIFAC LLE, and Modified (Dortmund) UNIFAC, 
respectively. 
The Subgroup number is the number to assign to a component for the given subgroup. 

Main 
Group Subgroup Subgroup    

number VLE LLE Do Example component Groups for Example 
Component 

CH2 CH3 1 X X X butane 2 CH3, 2 CH2 

CH2 2 X X X butane 2 CH3, 2 CH2 

CH 3 X X X i-butane 3 CH3, 1 CH 

C 4 X X X 2,2-dimethylpropane 4 CH3, 1 C 

c-CH2 3095 * - X cyclohexane 6 c-CH2 

c-CH 3100 * - X methylcyclohexane 1 CH3, 5 c-CH2, 1 c-CH 

c-C 3105 * - X 1,1-dimethylcyclohexane 2 CH3, 5 c-CH2, 1 c-C 

C=C CH2=CH 5 X X X 1-hexene 1 CH3, 3 CH2, 1 CH2=CH 

CH=CH 6 X X X 2-hexene 2 CH3, 2 CH2, 1 CH=CH 

CH2=C 7 X X X 2-methyl-1- butene 2 CH3, 1 CH2, 1 CH2=C 

CH=C 8 X X X 2-methyl-2- butene 3 CH3, 1 CH=C 

C=C 9 X * X 2,3-dimethylbutene 4 CH3, 1 C=C 

C=C=C 3295 - - $ 

=CHCH= 3300 - - $ 

=CCH= 3305 - - $ 

ACH ACH 10 X X X benzene 6 ACH 

AC 11 X X X styrene 1 CH2=CH, 5 ACH, 1 AC 

ACCH2 ACCH3 12 X X X toluene 5 ACH, 1 ACCH3 

ACCH2 13 X X X ethylbenzene 1 CH3, 5 ACH, 1 ACCH2 

ACCH 14 X X X cumene 2 CH3, 5 ACH, 1 ACCH 

OH OH 15 X X X 1-propanol 1 CH3, 2 CH2, 1 OH(p) 

OH(s) 3000 * * X 2-propanol 2 CH3, 1 CH, 1 OH(s) 

OH(t) 3005 * * X tert-butanol 3 CH3, 1 C , 1 OH (t) 

CH3OH CH3OH 16 X * X methanol 1 CH3OH 

H2O H2O 17 X X X water H2O 

ACOH ACOH 18 X X X phenol 5 ACH, 1 ACOH 

Ketone 

CH2CO CH3CO 19 X X X 2-butanone 1 CH3, 1 CH2, 1 CH3CO 

CH2CO 20 X X X 3-pentanone 2 CH3, 1 CH2, 1 CH2CO 

Aldehyde 
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Esters 

CCOO CH3COO 22 X X X butyl acetate 1 CH3, 3 CH2, 1 CH3COO 

CH2COO 23 X X X butyl propanoate 2 CH3, 3 CH2, 1 CH2COO 

HCOO HCOO 24 X * X ethyl formate 1 CH3, 1 CH2, 1 HCOO 

CHCOO 144 $ * $ 

CCOO 145 $ * $ 

Ether 

CH2O CH3O 25 X X X dimethyl ether 1 CH3, 1 CH3O 

CH2O 26 X X X diethyl ether 2 CH3, 1 CH2, 1 CH2O 

CH-O 27 X X X diisopropyl ether 4 CH3, 1 CH, 1 CH-O 

fCH2O 28 X X - tetrahydrofuran 3 CH2, 1 fCH2O 

Amine 

CNH2 CH3NH2 29 X * X methylamine 1 CH3NH2 

CH2NH2 30 X * X n-propylamine 1CH3, 1 CH2, 1 CH2NH2 

CHNH2 31 X * X isopropylamine 2 CH3, 1 CHNH2 

CNH2 3090 - - X tert-butylamine 3 CH3, 1 CNH2 

CNH CH3NH 32 X * X dimethylamine 1 CH3, 1CH3NH 

CH2NH 33 X * X diethylamine 2 CH3, 1 CH2, 1 CH2NH 

CHNH 34 X * X diisopropylamine 4 CH3, 1 CH, 1CHNH 

(C3)N CH3N  35 X * X trimethylamine 2 CH3, 1 CH3N 

CH2N  36 X * X triethylamine 3 CH3, 2 CH2, 1 CH2N 

Tert-N TERT-N 85 X * - triethylamine 3 CH3, 3 CH2, 1 >N- 

ACNH2 ACNH2 37 X X X aniline 5 ACH, 1 ACNH2 

(Pyridines) C5H5N 38 X X - pyridine 1 C5H5N 

C5HnN C5H4N 39 X X - 2-methylpyridine 1 CH3, 1 C5H4N 

C5H3N 40 X X - 2,3-dimethylpyridine 2 CH3, 1 C5H3N 

Pyridine AC2H2N 3010 - - X pyridine 1 AC2H2N, 3 ACH 

AC2HN 3015 - - X 2-methylpyridine 1 AC2HN, 3 ACH, 1 CH3 

AC2N 3020 - - X 2,5-dimethylpyridine 1 AC2N, 3 ACH, 2 CH3 

CCN CH3CN 41 X X X acetonitrile 1 CH3CN 

CH2CN 42 X X X propionitrile 1 CH3, 1 CH2CN 

COOH COOH 43 X X X acetic acid 1 CH3, 1 COOH 

HCOOH 44 X X X formic acid 1 HCOOH 

CCl CH2Cl 45 X X X 1-chlorobutane 1 CH3, 2CH2, 1CH2Cl 

CHCl 46 X X X 2-chloro-propane 2 CH3, 1 CHCl 

CCl 47 X X X 2-choro-2-methyl
propane 2 CH3, 1 CCl 

CCl2 CH2Cl2 48 X X X dichloromethane 1 CH2Cl2 

CHCl2 49 X X X 1,1-dichloroethane 1 CH3, 1 CCl2 

CCl2 50 X X X 2,2-dichloropropane 2 CH3, 1 CCl2 

CCl3 CHCL3 51 X X X chloroform 1 CHCl3 

CCl3 52 X X X 1,1,1-trichloroethane 1 CH3, 1 CCl3 

CCl4 CCl4 53 X X X carbon tetrachloride 1 CCl4 

CHO CHO 21 X X X acetaldehyde 1 CH3, 1 CHO 
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ACCl ACCl 54 X X X chlorobenzene 5 ACH, 1 ACCl 

Cl(C=C) Cl(C=C) 70 X * X trichloroethene 1 CH=C, 3 Cl-(C=C) 

CNO2 CH3NO2 55 X X X nitromethane 1 CH3NO2 
 CH2NO2 56 X X X 1-nitropropane 1 CH3, 1 CH2, 1 CH2NO2 
 CHNO2 57 X X X 2-nitropropane 2 CH3, 1 CHNO2 

ACNO2 ACNO2 58 X X X nitro-benzene 5 ACH, 1 ACNO2 

CS2 CS2 59 X * X carbon disulfide 1 CS2 

CH3SH CH3SH 60 X * X methanethiol 1 CH3SH 
 CH2SH 61 X * X ethanethiol 1 CH3, 1 CH2SH 

furfural furfural 62 X X X furfural 1 furfural 

DOH (CH2OH)2 63 X X X 1,2-ethanediol 1 (CH2OH)2 

I I 64 X * X iodoethane 1 CH3, 1 CH2, 1 I 

Br Br 65 X * X bromomethane 1 CH3, 1 Br 

C<->C CH<->C 66 X * X 1-hexyne 1 CH3, 3 CH2, 1 CH<->C 
 C<->C 67 X * X 2-hexyne 2 CH3, 2 CH2, 1 C<->C 

DMSO (CH3)2SO 68 X X X Dimethyl sulfoxide 1 (CH3)2SO 

Acrylonitrile acrylonitrile 69 X * X acrylonitrile 1 acrylonitrile 

ACF ACF 71 X * X hexafluorobenzene 6 ACF 

DMF DMF 72 X X X N,N-dimethylformamide 1 DMF 
 HCON(CH2)2 73 X * X N,N-diethylformamide 2 CH3, 1 HCON(CH2)2 

CF2 CF3 74 X * X perfluorohexane 2 CF3, 4 CF2 
 CF2 75 X * X perfluorohexane 2 CF3, 4 CF2 

 CF 76 X * X perfluoromethylcyclohex
ane 1 CF3, 5 CF2, 1 CF 

COO COO 77 X * X methyl acrylate 1 CH3, 1CH2=CH, 1 COO 

c-CH2O c-
CH2O[CH2]½ 3075 - - X 1,3-dioxane 1 c-CH2, 2 c-CH2O[CH2](1/2) 

 
c-
[CH2]½O[CH2
]½ 

3080 - - X 1,3,5-trioxane 3 c-[CH2]1/2O[CH2]1/2 

 c-CH2OCH2 3085 - - X tetrahydrofuran 2 c-CH2, 1 c-CH2OCH2 

SiH2 SiH3 78 X * - methylsilane 1 CH3, 1 SiH3 
 SiH2 79 X * - diethylsilane 2 CH3, 2 CH2, 1 SiH2 
 SiH 80 X * - heptamethyltrisiloxane 7 CH3, 2 SiO, 1 SiH 
 Si 81 X * - hexamethyldisiloxane 6 CH3, 1 SiO, 1 Si 

SiO SiH2O 82 X * - 1,3-dimethyldisiloxane 2 CH3, 1 SiH2O, 1 SiH2 

 SiHO 83 X * - 1,1,3,3-
tetramethyldisiloxane 4 CH3, 1 SiHO, 1 SiH 

 SiO 84 X * - octamethylcyclotetrasilox
ane 8 CH3, 4 SiO 

Chlorofluor
ocarbons 
 CCl3F 86 X * $ trichlorofluoromethane 1 CCl3F 

 CCl2F 87 X * $ tetrachloro-1,2-
difluoroethane 2 CCl2F 

 HCCl2F 88 X * $ dichlorofluoromethane 1 HCCl2F 

 HCClF 89 X * $ 1-chloro-1,2,2,2-
tetrafluoroethane 1 CF3, 1 HCClF 
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 CClF2 90 X * $ 
1,2-
dichlorotetrafluoroethan
e 

2 CClF2 

 HCClF2 91 X * $ chlorodifluoromethane 1 HCClF2 
 CClF3 92 X * $ chlorotrifluoromethane 1 CClF3 
 CCl2F2 93 X * $ dichlorodifluoromethane 1 CCl2F2 

Amide CONH2 94 X * $ acetamide 1 CH3, 1 CONH2 

CONMeCH2 CONHCH3 95 X * X N-methylacetamide 1 CH3, 1 CONHCH3 
 CONHCH2 96 X * X N-ethylacetamide 2 CH3, 1 CONHCH2 
 CONHC 3183 - - $ N-tert-Butyl-Acetamide 4 CH3, 1 CONHC      

CONR2 CON(CH3)2 97 X * X N,N-dimethylacetamide 1 CH3, 1 CON(CH3)2 

 CONCH3CH2 98 X * X N,N-
methylethylacetamide 2 CH3, 1 CONCH3CH2 

 CON(CH2)2 99 X * X N,N-diethylacetamide 3 CH3, 1 CON(CH2)2 

NMP NMP 109 X * - N-methylpyrrolidone 1 NMP 

Pyrrolidone cy-CON-CH3 3055 - - X N-methylpyrrolidone 1 cy-CON-CH3, 3 cy-CH2 

cy-CONC cy-CON-CH2 3060 - - X N-ethylpyrrolidone 1 cy-CON-CH2, 3 cy-CH2,1 CH3 
 cy-CON-CH 3065 - - X N-isopropylpyrrolidone 1 cy-CON-CH, 3 cy-CH2, 2 CH3 
 cy-CON-C 3070 - - X N-tert-butylpyrrolidone 1 cy-CON-C, 3 cy-CH2, 3 CH3 

Ethoxy C2H5O2 100 X * $ 2-ethoxyethanol 1 CH3, 1 CH2, 1 C2H5O2 

OCCOH C2H4O2 101 X * $ 2-ethoxy-1-propanol 2 CH3, 1 CH2, 1 C2H4O2 

CH2S CH3S 102 X * $ dimethylsulfide 1 CH3, 1 CH3S 
 CH2S 103 X * $ diethylsulfide 2 CH3, 1 CH2, 1 CH2S 
 CHS 104 X * $ diisopropylsulfide 4 CH3, 1 CH, 1 CHS 

Morpholine MORPH 105 X * - morpholine 1 Morph 

Thiophene C4H4S 106 X * - thiophene 1 C4H4S 

(CS) C4H3S 107 X * - 2-methylthiophene 1 CH3, 1 C4H3S 
 C4H2S 108 X * - 2,3-dimethylthiophene 2 CH3, 1 C4H2S  

NCO NCO 1109 $ - $ Butylisocyanate 1 CH3, 2 CH2, 1 NCO 

Epoxide H2COCH 110 X * X propylene oxide 1 H2COCH, 1 CH3 
 H2COC 131 X - - 2-methyl propylene oxide 1 H2COC, 2 CH3 
 HCOCH 111 X * X 2,3-epoxybutane 1 HCOCH, 2 CH3 

 HCOC 112 X * $ 2-methyl, 2,3-butylene 
oxide 1 HCOC, 3 CH3 

 H2COCH2 113 X * $ ethylene oxide 1 H2COCH2  

Thiophene AC2H2S 3040 - - X thiophene 2 ACH, 1 AC2H2S 

(ACS) AC2HS 3045 - - X 2-methylthiophene 1 CH3, 2 ACH, 1 AC2HS 
 AC2S 3050 - - X 2,5-dimethylthiophene 2 CH3, 2 ACH, 1 AC2S 

Anhydrides OCOCO 114 $ - $ acetic anhydride 1 OCOCO, 2 CH3 

Carbonates (CH3O2)2CO 3025 $ - X dimethylcarbonate (CH3O)2CO 
 (CH2O2)2CO 3030 $ - X diethylcarbonate 1 (CH2O)2CO, 2 CH3 
 CH2OCH3OCO 3035 $ - X methyl-ethyl-carbonate 1 CH2OCH3OCO, 1 CH3 

 CHOCH2OCO 120 $ - $ Ethyl-Isopropyl-
Carbonate 1 CHOCH2OCO,3 CH3 

Sulfones (CH2)2Su 118 $ - $ sulfolane 1 (CH2)2SU, 2 CH2 
 CH2SuCH 119 $ - $ 2,4-dimethylsulfolane 1 CH2SuCH, 2 CH3,  
       1 CH2, 1 CH 
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HCONR HCONHCH3 121 $ - $ N-Methyl-formamide 1 HCONHCH3 
 HCONHCH2 122 $ - $ N-Ethyl-formamide 1 CH3,1 HCONHCH2 

ACCN ACCN 123 $ - $ Benzonitrile 5 ACH, 1 ACCN 

cy-CONH cy-CONH 124 $ - $ e-Caprolactam 4 CH2, 1 cy-CONH  

Lactone cy-COO-C 125 $ - $ g-Butyrolactone 2 CH2, 1 cy-COO-C 

peroxide -O-O- 126 $ - $ Di-Tert-Butylperoxide 6 CH2, 2 C, 1 -O-O- 
 -O-OH 127 $ - $ Tert-Butylhydroperoxide 3 CH2, 1 C, 1 -O-OH 

Acetals O-CH2-O 128 $ - $ Dimethoxymethane 2 CH3, 1 O-CH2-O 
 O-CH-O 129 $ - $ 1,1-Dimethoxyethane 3 CH3, 1 O-CH-O 
 O-C-O 130 $ - $ 2,2-Dimethoxypropane 4 CH3, 1 O-C-O 

Aniline ACN(CH3)2 132 $ - $ N,N-Dimethylaniline 5 ACH, 1 ACN(CH3)2 
 ACN(CH2)2 133 $ - $ N,N-Diethylaniline 2 CH3, 5 ACH, 
       1 ACN(CH2)2 
 ACNCH3CH2 134 $ - $ N-Ethyl-N-methylaniline 1 CH3, 5 ACH, 
       1 ACNCH3CH2  
 ACNHCH3          135 $ - $ N-Methylanilin 5 ACH, 1 ACNHCH3 
 ACNHCH2          136 $ - $ N-Ethylanilin 1 CH3, 5 ACH,  
       1 ACNHCH2 

ACBr ACBr 137 $ - - Brombenzene 5 ACH, 1 ACBr 

Oxime HCNOH 138 $ - $ Propionaldehydoxime 1 HCNOH, 1 CH3, 1 CH2 
 CNOH 139 $  - $ Acetoneoxime 1 CNOH, 2 CH3  

ACCHO ACCHO 3200 - - $ Benzaldehyde 1 ACCHO,  5 ACH 

ACCOOH ACCOOH 3205 - - $ Benzoic Acid 1 ACCOOH, 5 ACH 

ACCOO ACCOO 3210 - - $ Benzylbenzoate 1 ACCOO, 1 ACCH2, 10 ACH 

ACCO ACCOCH3 3285 - - $   
 ACCOCH2 3290 - - $   

CFH CFH3 3215 - - $ R 41 1 CFH3 
 CFH2 3220 - - $ R 161 1 CH3, 1 CFH2 
 CFH 3225 - - $ R225BB 1 CFCl, 1 CF2H, 1 CF2Cl 
 CFClH2 3230 - - $ R 31 1 CFClH2 
 CFCl 3235 - - $ R225BB 1 CFCl, 1 CF2H, 1 CF2Cl 
 CF2H2 3240 - - $ R 32 1 CF2H2 
 CF2H 3245 - - $ R 134 2 CF2H 

CF3H CF3H 3250 - - $ R 23 1 CF3H 
 (CH3)-CF3 3260 - - $ R143A 1 CH3, 1 (CH3)-CF3 

CF4 CF4 3255 - - $ R 14 CF4 

CF3Cl CF2ClBr 3265 - - $ R13B1 1 CF3Br 
 CF2ClBr 3270 - - $ R12B1 1 CF2ClBr 

Furane  AC2H2O 140 $ - $ Furan 2 ACH, 1 AC2H2O 
 AC2HO 141 $ - $ 2-Methylfuran 1 CH3, 2 ACH, 1 AC2HO 
 AC2O 142 $ - $ 2,5-Dimethylfuran 2 CH3, 2 ACH, 1 AC2O 

c- Amine c-CH2NH 162 - - $ Pyrrolidine 1 c-CH2NH,  3 c-CH2 
 c-CHNH 163 - - $ 2-Methylpiperidine 1 c-CHNH, 1 CH3, 4 c-CH2 
 c-CNH 164 - - $ 2,2-Dimethylpiperidine 1 c-CNH, 2 CH3, 4 c-CH2 
 c-CNCH3 165 - - $ N-Methylpyrrolidine 1 c-CNCH3, 3 c-CH2 
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 c-CNCH2 166 - - $ N-Ethylpiperidine c-CNCH2, 1 CH3, 5 c-CH2 
 c-CNCH 167 - - $ N-Isopropylpiperidine 1 c-CNCH, 2 CH3, 5 c-CH2 
 c-CNC 168 - - $ N-tert-Butylpyrrolidine 1 c-CNC, 3 CH3, 5 c-CH2 

 
 
 
 

Additional Subgroups for UNIFAC LLE Model 
Main Group Subgroup  VLE LLE Do Example component  

P1 P1 (1-propanol) 501 - X - 1-propanol 1 P1 

P2 P2 (2-propanol) 502 - X - 2-propanol 2 P2 

DEOH (HOCH2CH2)2O 503 - X - diethylene glycol 1 (HOCH2CH2)2O 

TCE CCl2=CHCl 504 - X - trichloroethylene 1 CCl2=CHCl 

MFA HCONHCH3 505 - X - methylformamide 1 HCONHCH3 

TMS 1 (CH2)2SO 506 - X - tetramethylenesulfone 1 (CH2)2SO 

 
 

Additional Subgroups for PSRK Model 

Main Group Subgroup Subgroup 
number VLE LLE Do Example component Groups for Example 

Component 

CO2 CO2 1001 X - - carbon dioxide 1 CO2 

CH4 CH4 1002 X - - methane 1 CH4 

N2 N2 1003 X - - nitrogen 1 N2 

H2S H2S 1004 X - - hydrogen sulfide 1 H2S 

H2 H2 1005 X - - hydrogen 1 H2 

CO CO 1006 X - - carbon monoxide 1 CO 

H2C=CH2 H2C=CH2 1007 X - - ethene 1 CH=CH 

CHºCH CHºCH 1008 X - - ethyne 1 CH<->CH 

NH3 NH3 1009 X - - ammonia 1 NH3 

Ar Ar 1010 X - - argon 1 Ar 

O2 O2 1011 X - - oxygen 1 O2 

SO2 SO2 1012 X - - suflur dioxide 1 SO2 

NO NO 1013 X - - nitric oxide 1 NO 

N2O N2O 1014 X - - dinitrogen monoxide 1 N2O 

SF6 SF6 1015 X - - sulfur hexafluoride 1 SF6 

He He 1016 X - - helium 1 He 

Ne Ne 1017 X - - neon 1 Ne 

Kr Kr 1018 X - - krypton 1 Kr 

Xe Xe 1019 X - - xenon 1 Xe 

HCl HCl 1020 X - - hydrogen chloride 1 HCl 

HBr HBr 1021 X - - hydrogen bromide 1 HBr 

CHSH CHSH 1022 X - - iso-propyl mercaptan 1 CHSH, 2 CH3 

CSH CSH 1023 X - - tert-butyl mercaptan 1 CSH, 3 CH3 

COC COC 1025 X - - 2,3-dimethyl 2,3 butylene oxide 1 COC, 4 CH3 
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HF HF 1026 X - - hydrogen fluoride 1 HF 

HI HI 1027 X - - hydrogen iodide 1 HI 

COS COS 1028 X - - carbonyl sulfide 1 COS 
 

 

Notes 
 

• UNIFAC / UNIFAC LLE subgroups 3000 3005 are identical to OH. 

• 3095, 3100, and 3105 are identical to 2, 3, and 4, respectively CH2, CH, C 
 

Legend 
 
 

X CHEMCAD has data for this subgroup. 

$ The subgroup is available to UNIFAC Consortium members in a supplement to CHEMCAD. 

* The optimized subgroup is not specified for this model. UNIFAC subgroup will be used as a default. 

- The subgroup does not exist in the model. 

cy Denotes a cyclic hydrocarbon. 

<-> Denotes a triple bond. 

A Indicates an aromatic ring. 

R Indicates a hydrocarbon branch. 

Me Indicates a methyl group (-CH3). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



206 | P a g e   

APPENDIX E: Sample Code 

Example of Sub-Routine Code of the Solvent Selection Tool 
The Solvent Selection Tool is developed as a VBA module and embedded into the commercial process 

simulation software CHEMCAD. The Solvent selection Tool consist of 36 subroutines made up of 150 

pages of VBA code. 

To illustrate the interface and the two way communication between Excel – VBA Module and 

CHEMCAD, some examples of code statements and their functions in the various sub-routines of the 

VBA module) are presented in Table E.1. These sample coding statements (note that this is not a full 

subroutine.)   

Table E.1. VBA code showing a technical and semantic bridge between Excel, the VBA module 

and CHEMCAD. 

Function Typical Statements in the VBA 

module 
Activating CHEMCAD from VBA Module:  

Requesting access to functions from CHEMCAD, for example: Stream 

information, pure component data, flash calculations, and 

thermodynamic models for phase calculations respectively. 

Set strinfo = ccentry.GetStreamInfo 

Set objpp = ccentry.GetCompPPData 

Set fl = ccentry.GetFlash 

Set kval = ccentry.GetkValues 

Activating MS Excel from VBA Module:  

Activates an Excel workbook and label a sheet. Also used for creating 

input data menus in Excel 

Set wb = xls.workbooks.add 

Set ws = wb.Sheets(“Sheet1”) 

Xls.Visible = true 

Input of relevant data from  Excel into VBA module:  

Read the feed conditions from the Excel sheet. For eg.  the flowrate and 

Temperature  from cell (2,9) and cell (4,9) respectively  

xCC(sol) = ws.cells (2,9) 

tempcel = ws.cells(4,9) 

 

Accessing CHEMCAD Algorithms: 

Handover Input file: Define the feed stream for CHEMCAD from the 

values obtained from Excel sheet1. 

Execute Calculation: Request CHEMCAD to perform a TP flash 

calculation on the feed-stream. 

Handover output file: Request the following results on the liquid stream 

out from the flash calculation performed: the temperature, the enthalpy 

and the total mole flowrate. 

Calcfl = fl.defineFeedStream(Temprank, pressin, 

0, xCC) 

Calcfl = fl.calculateTPFlash(temprank, pressin) 

Istream = fl.getliquidStream(tempoutLiq, 

enthoutLiq, totmolrateoutliq) 

Output of VBA Module results into Excel: Write results obtained from 

CHEMCAD flash calculations and VBA module calculations into the 

Excel worksheet. The data obtained from the simulation is further ranked 

to consider only those solutions which meet the following criteria: 

The yield is ≥ the minimum yield specified by the user, and conditions 

where no by-products or solvent have also crystallised. 

For i = 1 To maxrow 

If (wb.ActiveSheet.Cells(6 + i, 6) >= yield And 

wb.ActiveSheet.Cells(6 + i, 7) = 0 And 

wb.ActiveSheet.Cells(6 + i, 8) = 0) Then 

ws.Cells(n + 6, 10) = wb.ActiveSheet.Cells(6 + i, 

1) 

ws.Cells(n + 6, 11) = wb.ActiveSheet.Cells(6 + i, 

2) 
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 An example of the sub-routine called: Sub CoolEvapAddAntisol() 

'This subroutine is activated by the "Run Maximum Combination" button in the anti-solvent functions menu, 
and it evaluates the effects of anti-solvent addition, evaporation of solvent and cooling combinations. The 
architecture of this sub-routine is presented in the diagram below. 

 

    

Note: That 3 other subroutines that first activates CHEMCAD, creates an excel spreadsheet for input of feed 
conditions, and inputs data into CHEMCAD are not shown here.  
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Sub CoolEvapAddAntisol() 

Dim calcfl As Integer 

    Dim lstream As Integer 

    Dim xCCOutAnti() As Single 

    Dim xCCOutEvap() As Single 

    Dim xCCAntisolCombi() As Single 

    Dim pressIn As Single 

    Dim tempOutLiq As Single 

    Dim tempOutvap As Single 

    Dim tempRoom As Single 

    Dim pressOutLiq As Single 

    Dim pressOutVap As Single 

    Dim enthoutliq As Single 

    Dim enthoutvap As Single 

    Dim totMolRateOutLiq As Single 

    Dim totMolRateOutVap As Single 

    Dim flowrateOutLiq() As Single 

    Dim flowrateOutVap() As Single 

    Dim incrementEvap As Single 

    Dim incrementCool As Single 

    Dim incrementAddAntisol As Single 

    Dim amountEvap As Single 

    Dim tempCool As Single 

    Dim bestResult As Single 

    Dim bestI As Integer 

    Dim bestK As Integer 

    Dim tempDiffCool As Single 

    Dim enthIn As Single 

    Dim enthStart As Single 

    Dim sumFlowrateLiq As Single 

    Dim sumFlowrateVap As Single 

    Dim flowrateRatio As Single 

    Dim amountAntiSol As Single 
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    Dim i As Integer 

    Dim p As Integer 

    Dim k As Integer 

    Dim j As Integer 

    Dim h As Integer 

    Dim l As Integer 

    Dim m As Integer 

    Dim n As Integer 

    Dim checkSolvent As Single 

    Dim checkByProducts As Single 

    Dim there As Boolean 

    there = False 

        

    'Open a worksheet in excel to record results of simulation 

    For Each ws In Worksheets 

        If ws.Name = "CoolEvapAnti-solvent" Then 

            there = True 

        End If 

    Next ws 

    If there = True Then 

        Worksheets("CoolEvapAnti-solvent").Activate 

    Else 

        ActiveWorkbook.Worksheets.Add.Name = "CoolEvapAnti-solvent" 

        Worksheets("CoolEvapAnti-solvent").Activate 

    End If 

    Set ws = ActiveSheet 

        

    'Define inserted properties: Range and intervals for all calculations 

    Dim upperLimitEvap As Single 

    upperLimitEvap = 1 - (Anti-solventForm.TBUpperEvap.Value / 100) 

    Dim lowerLimitEvap As Single 

    lowerLimitEvap = 1 - (Anti-solventForm.TBLowerEvap.Value / 100) 

     

    Dim upperLimitTempCool As Single 
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    upperLimitTempCool = (Anti-solventForm.TBUpperCool.Value * 1.8) + 491.67 

    Dim lowerLimitTempCool As Single 

    lowerLimitTempCool = (Anti-solventForm.TBLowerCool.Value * 1.8) + 491.67 

    Dim upperLimitAddAntisol As Single 

    upperLimitAddAntisol = Anti-solventForm.TBUpperAntisol.Value 

    Dim lowerLimitAddAntisol As Single 

    lowerLimitAddAntisol = Anti-solventForm.TBLowerAntisol.Value 

    Dim numPointsCool As Integer 

    numPointsCool = Anti-solventForm.TBNStepCool.Value - 1 

    Dim numPointsEvap As Integer 

    numPointsEvap = Anti-solventForm.TBNStepEvap.Value - 1 

    Dim numPointsAntisol As Integer 

    numPointsAntisol = Anti-solventForm.TBNStepsAntisol.Value - 1 

    incrementEvap = (upperLimitEvap - lowerLimitEvap) / numPointsEvap 

    incrementCool = (upperLimitTempCool - lowerLimitTempCool) / numPointsCool 

    incrementAddAntisol = (upperLimitAddAntisol - lowerLimitAddAntisol) / numPointsAntisol 

     

 Call Subroutine to select: Solute, Solvent and Anti-solvent from drop down menus 

    Call chooseSolvent 

    ReDim xCCOutEvap(nges) 

    ReDim xCCOutAnti(nges) 

    ReDim xCCAntisolCombi(nges) 

    ReDim flowrateOutLiq(nges) 

    ReDim flowrateOutVap(nges} 

 

    Defining Normal pressure (1 bar) in psia and temperature in Rankine 

    pressIn = 14.5047 

    tempRoom = 536.67 

  Defining initial temperature, amount of solvent evaporated and amount of anti-solvent added   

    tempCool = lowerLimitTempCool 

    amountEvap = lowerLimitEvap 

    amountAntiSol = lowerLimitAddAntisol 

    m = 1 
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    'read composition of product and byproducts 

    For p = ncomp + 1 To nges 

        xCCAntisolCombi(p) = xCC(p) 

    Next p     

    'define solvent and anti-solvent 

    xCCAntisolCombi(possol) = wb.Sheets("sheet1").Cells(4, 9)      

‘label excel results 

    ws.Cells(1, 1) = "Results for combination of previous solvent evaporation, adding aount of anti-
solvent and cooling down" 

    ws.Cells(3, 1) = "choosen solvent" 

    ws.Cells(3, 4) = compname(possol) 

    ws.Cells(4, 1) = "choosen anti-solvent" 

    ws.Cells(4, 4) = compname(posAntisol) 

    ws.Cells(6, 1) = "Amount of evaporation (%)" 

    ws.Cells(6, 2) = "Amount of added anti-solvent(kmol/hr)" 

    ws.Cells(6, 3) = "temperature (C)" 

    ws.Cells(6, 4) = "liquid product (kmol/hr)" 

    ws.Cells(6, 5) = "solid product (kmol/hr)" 

    ws.Cells(6, 6) = "amount of cristallization (%)" 

    ws.Cells(6, 7) = "solvent crystallized (kmol/hr)" 

    ws.Cells(6, 8) = "by-product crystallized (kmol/hr)" 

    'Set start enthalpy for solvent evaporation calculations 

 ‘Instruction to CHEMCAD to perform flash calculations on defined streams 

    calcfl = fl.DefineFeedStream(tempRank, pressIn, 0, xCCAntisolCombi) 

    calcfl = fl.CalculateTPFlash(tempRank, pressIn) 

‘Requesting the following calculated values from CHEMCAD calculation 

    lstream = fl.GetLiquidStream(tempOutLiq, pressOutLiq, enthoutliq, totMolRateOutLiq, 
flowrateOutLiq) 

    lstream = fl.GetVaporStream(tempOutvap, pressOutVap, enthoutvap, totMolRateOutVap, 
flowrateOutVap 

    enthStart = enthoutliq + enthoutvap 

    enthIn = enthStart 

    flowrateRatio = 1 

     

    'Calculate datapoints and start evaporation calculations 

    For k = 0 To numPointsEvap 
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        ReDim xCCOutEvap(nges) 

        ReDim xCCAntisolCombi(nges) 

        ReDim xCCOutAnti(nges) 

         ' read composition of product and byproducts 

        For p = ncomp + 1 To nges 

            xCCAntisolCombi(p) = xCC(p) 

        Next p 

        'define solvent and anti-solvent 

        xCCAntisolCombi(possol) = wb.Sheets("sheet1").Cells(4, 9) 

        amountEvap = lowerLimitEvap + k * incrementEvap 

        enthIn = enthStart 

        xCCAntisolCombi(posAntisol) = 0 

        While amountEvap <= flowrateRatio 

            ' Increase of added enthalpy nearly 1 MJ/h 

            sumFlowrateLiq = 0 

            sumFlowrateVap = 0 

            enthIn = enthIn + 947.8171 ' nearly 1 MJ/h 

            calcfl = fl.DefineFeedStream(tempRoom, pressIn, 0, xCCAntisolCombi) 

            calcfl = fl.CalculateHPFlash(enthIn, pressIn) 

            'Check if Flash has not converged 

            If calcfl = 1 Then 

                MsgBox "not converged" 

            End If 

            lstream = fl.GetLiquidStream(tempOutLiq, pressOutLiq, enthoutliq, totMolRateOutLiq, 
flowrateOutLiq) 

            lstream = fl.GetVaporStream(tempOutvap, pressOutVap, enthoutvap, totMolRateOutVap, 
flowrateOutVap)             

 'Insert second loop for any additional solvents 

            For h = 1 To ncomp / 2 

                sumFlowrateLiq = sumFlowrateLiq + flowrateOutLiq(h) 

                sumFlowrateVap = sumFlowrateVap + flowrateOutVap(h) 

            Next h 

             

            For h = ncomp + 1 To ncomp + numAddSol 

                sumFlowrateLiq = sumFlowrateLiq + flowrateOutLiq(h) 



213 | P a g e   

                sumFlowrateVap = sumFlowrateVap + flowrateOutVap(h) 

            Next h 

            If Not (sumFlowrateLiq = 0 And sumFlowrateVap = 0) Then 

                flowrateRatio = sumFlowrateLiq / (sumFlowrateLiq + sumFlowrateVap) 

            End If 

        Wend 

  'Anti-Solvent Addition 

        For j = 1 To nges 

            xCCOutEvap(j) = flowrateOutLiq(j) 

        Next i     

        For l = 0 To numPointsAntisol 

            amountAntiSol = lowerLimitAddAntisol + l * incrementAddAntisol 

            xCCOutEvap(posAntisol) = amountAntiSol     

            For j = 1 To nges 

                xCCOutAnti(j) = flowrateOutLiq(j) 

            Next j 

  'Cooling Calculations loop 

            tempCool = lowerLimitTempCool 

            For i = 0 To numPointsCool 

                calcfl = fl.DefineFeedStream(tempCool, pressIn, 0, xCCOutAnti) 

                calcfl = fl.CalculateTPFlash(tempCool, pressIn) 

             

                'Check if Flash has not converged 

                If calcfl = 1 Then 

                    MsgBox "not converged" 

                End If 

         

                lstream = fl.GetLiquidStream(tempOutLiq, pressOutLiq, enthoutliq, totMolRateOutLiq, flowrateOutLiq) 

 lstream = fl.GetVaporStream(tempOutvap, pressOutVap, enthoutvap, totMolRateOutVap,                 
flowrateOutVap) 

                ws.Cells(6 + m, 1) = (1 - amountEvap) * 100 

                ws.Cells(6 + m, 2) = amountAntiSol 

                ws.Cells(6 + m, 3) = (tempCool - 491.67) / 1.8 

                ws.Cells(6 + m, 4) = flowrateOutLiq(nges - 1) 

                ws.Cells(6 + m, 5) = flowrateOutLiq(nges) 
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                ws.Cells(6 + m, 6) = (flowrateOutLiq(nges) / (flowrateOutLiq(nges) + flowrateOutLiq(nges - 1))) * 100 

                 

            “Mass balance check and recording of final results     

                checkSolvent = 0 

                If numAddSol <> 0 Then 

                    If flowrateOutLiq(possol + ncomp / 2) <> 0 Then 

                        checkSolvent = checkSolvent + flowrateOutLiq(possol + ncomp / 2) 

                    End If 

                Else 

                    checkSolvent = checkSolvent + flowrateOutLiq(possol + numAddSol) 

                End If 

             

                If numAddSol <> 0 Then 

                    If flowrateOutLiq(posAntisol + ncomp / 2) <> 0 Then 

                        checkSolvent = checkSolvent + flowrateOutLiq(posAntisol + ncomp / 2) 

                    End If 

                Else 

                    checkSolvent = checkSolvent + flowrateOutLiq(posAntisol + numAddSol) 

                End If 

                 

                If checkSolvent = 0 Then 

                    ws.Cells(6 + m, 7) = 0 

                Else 

                    ws.Cells(6 + m, 7) = checkSolvent 

                End If 

                 

                checkByProducts = 0 

                For h = ncomp + 2 * numAddSol + numAddOthers + 1 To ncomp + 2 * numAddSol + 2 * numAddOthers 

                    If flowrateOutLiq(h) <> 0 Then 

                        checkByProducts = checkByProducts + flowrateOutLiq(h) 

                        ws.Cells(6 + m, 8) = checkByProducts 

                    Else 

                        ws.Cells(6 + m, 8) = 0 

                    End If 
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                Next h     

                m = m + 1 

                tempCool = tempCool + incrementCool 

            Next i 

        Next l 

    Next k 

     

    Dim maxrow As Integer 

    maxrow = m 

    'fit colums 

    Columns("A:A").ColumnWidth = 25 

    Columns("B:B").EntireColumn.AutoFit 

    Columns("C:C").EntireColumn.AutoFit 

    Columns("D:D").EntireColumn.AutoFit 

    Columns("E:E").EntireColumn.AutoFit 

    Columns("F:F").EntireColumn.AutoFit 

    Columns("G:G").EntireColumn.AutoFit 

    Columns("H:H").EntireColumn.AutoFit 

     

    'search for results that meet user defined criterion 

    Dim yield As Single 

    yield = Anti-solventForm.TBYield.Value 

    n = 1 

    ws.Cells(4, 10) = "results with required yield and without impurities" 

    ws.Cells(6, 10) = "Amount of evaporation (%)" 

    ws.Cells(6, 11) = "Amount of added anti-solvent (kmol/hr)" 

    ws.Cells(6, 12) = "temperature (C)" 

    ws.Cells(6, 13) = "liquid product (kmol/hr)" 

    ws.Cells(6, 14) = "solid product (kmol/hr)" 

    ws.Cells(6, 15) = "amount of cristallization (%)" 

    ws.Cells(6, 16) = "solvent crystallized (kmol/hr)" 

    ws.Cells(6, 17) = "by-product crystallized (kmol/hr)" 

     

    i = 1 
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    For i = 1 To maxrow 

 If (wb.ActiveSheet.Cells(6 + i, 6) >= yield     And   wb.ActiveSheet.Cells(6 + i, 7) = 0   And 
wb.ActiveSheet.Cells(6 + i, 8) = 0) Then 

            ws.Cells(n + 6, 10) = wb.ActiveSheet.Cells(6 + i, 1) 

            ws.Cells(n + 6, 11) = wb.ActiveSheet.Cells(6 + i, 2) 

            ws.Cells(n + 6, 12) = wb.ActiveSheet.Cells(6 + i, 3) 

            ws.Cells(n + 6, 13) = wb.ActiveSheet.Cells(6 + i, 4) 

            ws.Cells(n + 6, 14) = wb.ActiveSheet.Cells(6 + i, 5) 

            ws.Cells(n + 6, 15) = wb.ActiveSheet.Cells(6 + i, 6) 

            ws.Cells(n + 6, 16) = wb.ActiveSheet.Cells(6 + i, 7) 

            ws.Cells(n + 6, 17) = wb.ActiveSheet.Cells(6 + i, 8) 

            n = n + 1 

        End If 

    Next i 

     

    'fit colums 

    Columns("J:J").ColumnWidth = 21.86 

    Columns("K:K").EntireColumn.AutoFit 

    Columns("L:L").EntireColumn.AutoFit 

    Columns("M:M").EntireColumn.AutoFit 

    Columns("N:N").EntireColumn.AutoFit 

    Columns("O:O").EntireColumn.AutoFit 

    Columns("P:P").EntireColumn.AutoFit 

    Columns("Q:Q").EntireColumn.AutoFit 

    MsgBox ("Calculation finished") 

End Sub 
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Abstract 
A computational tool integrated into a commercial simulation software (CHEMCAD) is developed for 
the analysis and synthesis of crystallization processes. The tool utilizes the comprehensive 
thermodynamic models and the rigorous computational algorithms available. The crystallization 
calculations are formulated as multicomponent multiphase equilibrium phase calculations and support 
the analysis of various modes of crystallization such as cooling, evaporative and the use of mass 
separating agents such as anti-solvents and cosolvents. The tool is demonstrated with applications 
related to the crystallization of API’s and LCD crystals.  
 
Introduction 
With the general availability of computational software for the design and simulation of chemical 
processes, rapid evaluation of process alternatives and the influence of different parameters on 
performance and feasibility is readily available, especially for distillation, gas stripping and scrubbing, 
extraction, etc. in large continuous processes.  These calculations heavily rely on the availability of 
reliable thermodynamic models and their parameters for the description of the pure component and 
mixture behaviours of the components involved. Parameters are usually regressed to experimental 
data found in large electronic databases (e.g. DDB [1], NIST [2]). Due to the large number of possible 
binary combinations of compounds, the required binary interaction parameters (BIP) are especially 
difficult to obtain. In order to apply these methods to varying or new processes, therefore predictive 
methods like UNIFAC [3], mod. UNIFAC [4], PSRK [5] , VTPR [6] and COSMO-RS [7] or COSMO-SAC [8] 
[9] have been developed and are mostly available in process simulation software. Following the 
success of these methods, new variations were recently developed with a special view on 
pharmaceuticals and pharmaceutical intermediates (NRTL-SAC [10], Pharma mod. UNIFAC [11], etc.) 
 
In contrast to the rigorous simulation of a different unit operation or a complete chemical plant, 
conceptual design relies heavily on simplified concepts (shortcut methods, infinite-infinite analysis), 
which employ a variety of graphical representations (e.g. residual curve plots) []. While these methods 
and tools are nowadays state-of-the-art for design and optimization of continuous processes, they are 
increasingly applied to smaller scale batch processes. 
Compared to distillation and extraction, which both involve fluid phases and are characterized by very 
high scale-up factors, crystallization design is both more governed by kinetic effects and involves 
numerous important factors like nucleation, different crystal morphologies, etc. . 
Simulation results for organic crystallization processes can therefore most often not be directly 
applied to the final process. Nevertheless, a number of researchers [12] [13] [14]have developed 
computerized strategies to generate and evaluate crystallization strategies.  
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These methods are of special importance for the purification of products from reaction mixtures in 
pharmaceutical synthesis due to the fact that the final product approval after expensive clinical tests 
not only covers the molecular structure but also each individual step in synthesis and purification of 
intermediates and the final product.  
In process simulation, crystallization of organic non-electrolyte components is usually restricted to 
eutectic systems, in which the components crystallize as pure separate solid phases. While the 
thermodynamic models describe phase equilibrium, their results can also be used to judge the degree 
of supersaturation as a driving force for nucleation and crystal growth.  In addition to the required 
parameters for pure component and liquid mixture behaviour, the melting points and heats of fusion 
of the solids are required and usually nowadays easily accessible by differential scanning calorimetry. 
The thermodynamic formalism is derived in detail below.  
For the description of the real liquid phase behaviour, interaction parameters (BIP) are required 
between the complex product, by-products and remaining starting materials (solutes) in the mixture 
and a limited number of common used solvents [15].  At not too high concentrations of the solutes, 
solute-solute interaction can be ignored. The solvent-solute BIPs can be estimated by group 
contribution (UNIFAC, mod. UNIFAC, PSRK, VTPR, etc.), simplified quantum chemical methods 
(COSMO-RS, COSMO-SAC) or from the solution behaviour in a limited number of mixtures (NRTL-SAC).  
 
This work is aimed at developing and implementing shortcut procedures and calculation code to assist 
the chemist and engineer in the interactive development of product recovery and purification 
strategies via crystallization including evaluation of different solvents and anti-solvents (drowning-
out).  
Whenever possible, functionalities available in a commercial process simulator (CHEMCAD®) were 
used as this guarantees the regular future update and extension with respect to models and 
parameters. In addition, the simulator provides interfaces and load-procedures for third party 
products like NIST REFPROP and the UNIFAC Consortium parameters [16]. CHEMCAD was chosen as it 
provides consistent vapour-liquid-solid equilibrium calculations in all streams and unit operations.   
 

Thermodynamic framework for solid-liquid-vapor equilibria 
The objective of the phase equilibrium calculation is to predict the correct number of phases at 
equilibrium present in the system and their respective compositions. Two kinds of approaches are 
usually used to model multiphase flash calculations: the equation-solving approach (K-value method) 
and minimization of the Gibbs free energy [17]. Isofugacity conditions and mass balances form the set 
of equations in the equation-solving approach, and the stability test or the common tangent test forms 
the basis of minimization of the global Gibbs free energy approach [18] [19] [20]. 

Since the developed solvent selection process eliminates solvent systems that exhibit immiscibility as 
potential solvents, the mixtures are modeled as solid – liquid – vapour (SLV) systems.  

The essential thermodynamic equations and relationships for SLV equilibrium calculations presented 
here are analogous to those described by Lira-Galeana et al. [21] for wax deposition in hydrocarbon 
streams. At a fixed temperature and pressure, a liquid phase (l) may coexist in equilibrium with a 
vapour phase (v) and a solid phase (s). At equilibrium, for every component i the following 
thermodynamic relationship applies:  

𝑓𝑓𝑖𝑖𝑣𝑣 = 𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑓𝑓𝑖𝑖𝑠𝑠                 𝑖𝑖 = 1,2, … .𝑁𝑁       (1) 

Where f is the fugacity and N is the number of components. The vapour phase can be described by an 
equation of state (EOS),  t he liquid phase by an activity-coefficient model or by an EOS, and the 
solid phase is generally described by an activity-coefficient model,  i . e .  
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𝑓𝑓𝑖𝑖𝑣𝑣 = 𝑦𝑦𝑖𝑖𝜑𝜑𝑖𝑖𝑣𝑣𝑃𝑃 ;         𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑥𝑥𝑖𝑖𝑙𝑙𝜑𝜑𝑖𝑖𝑙𝑙𝑃𝑃  𝑜𝑜𝑜𝑜   𝑓𝑓𝑖𝑖𝑙𝑙 = 𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑙𝑙  ,     𝑎𝑎𝑎𝑎𝑎𝑎  𝑓𝑓𝑖𝑖𝑠𝑠 = 𝑥𝑥𝑖𝑖𝑠𝑠𝛾𝛾𝑖𝑖𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

𝑠𝑠         (2) 

Where 𝜑𝜑𝑖𝑖𝑣𝑣 and 𝜑𝜑𝑖𝑖𝑙𝑙  are fugacity coefficients of component i in the vapour and liquid phases respectively 
and are computed from an EOS, and 𝛾𝛾𝑖𝑖𝑙𝑙and 𝛾𝛾𝑖𝑖𝑠𝑠 are activity coefficients of component i in the liquid and 
the solid phases respectively and are computed from activity coefficient models.  

Further, the use of distribution coefficients K which are generally used in VLE and LLE 
computations are extended to describe the equilibrium relationships between the phases in 
a SLV system. For the vapour – liquid phase, the commonly used expression is 

             𝐾𝐾𝑖𝑖𝑣𝑣𝑣𝑣 = 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
𝑙𝑙 = 𝜑𝜑𝑖𝑖

𝑙𝑙

𝜑𝜑𝑖𝑖
𝑣𝑣                    (3) 

 

For the liquid-solid phase, the fugacity can be described with the help of activity coefficients 
and the standard fugacities for the liquid and solid phases, i.e 

 

𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
𝑙𝑙 = 𝑥𝑥𝑖𝑖𝑠𝑠𝛾𝛾𝑖𝑖𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

𝑠𝑠              𝑜𝑜𝑜𝑜         𝑥𝑥𝑖𝑖
𝑙𝑙𝛾𝛾𝑖𝑖
𝑙𝑙

𝑥𝑥𝑖𝑖
𝑠𝑠𝛾𝛾𝑖𝑖

𝑠𝑠 = �𝑓𝑓
𝑠𝑠

𝑓𝑓𝑙𝑙
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

               (4) 

 

Where Lira-Galeana et al. [21] proposed an analogous equilibrium constant 

 

  𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑖𝑖
𝑙𝑙

𝛾𝛾𝑖𝑖
𝑠𝑠 �

𝑓𝑓𝑙𝑙

𝑓𝑓𝑠𝑠
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

  𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑥𝑥𝑖𝑖
𝑠𝑠

𝑥𝑥𝑖𝑖
𝑙𝑙           (5) 

 

The required ratio of the standard fugacities of the pure components can be obtained by 
examining the thermodynamic cycle of the sublimation process of a solid. From the cycle 
shown in Figure 2, it can be deduced that the ratio of the standard fugacities can be expressed 
by the change in Gibbs energy [17].  
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With the simplifications that the melting temperature is nearly identical to the triple point 
temperature, that heat of fusion is approximately identical to the change in enthalpy of the 
solid-liquid phase transition at triple point, and that heat capacity difference is negligible, 
Gmehling et al. [17] have shown that: 
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𝑅𝑅𝑅𝑅

�1− 𝑇𝑇
𝑇𝑇𝑚𝑚,𝑖𝑖

�          (6) 

 

In the case of simple eutectic systems, the solid will crystallize in pure form, hence equation 
6 reduces to 

 

−𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝑙𝑙 = 𝑙𝑙𝑙𝑙 �𝑓𝑓
𝑙𝑙

𝑓𝑓𝑠𝑠
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

 =   ∆ℎ𝑚𝑚,𝑖𝑖
𝑅𝑅𝑅𝑅

�1− 𝑇𝑇
𝑇𝑇𝑚𝑚,𝑖𝑖

�        (7) 

 

From equation 7, it can be seen that to calculate the ratio of the standard fugacity at a given 
temperature and pressure, only the melting temperature, the latent heat of fusion and specific heat 
capacity of pure liquid i and pure solid i are required. 

 

 

Conceptual Design of crystallization processes  
 
“The goal of a conceptual design is to find the best process flowsheet and estimate the optimum 
design conditions. The problem is difficult because very many process alternatives could be 
considered.” [22] Conceptual design means the handling of chemical processes from first principles 

Figure 2: Thermodynamic Cycle for the derivation of an expression for the ratio of standard 
fugacities. ( [17], page 409). 
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(like thermodynamic model etc.). The aim of conceptual design is to find the “best” flowsheet 
alternative via optimization of variables like costs, efficiency, etc.. Systematic procedures for synthesis 
of separation flowsheets via distillation and extraction etc. were already developed by different 
researchers (Dogerthy, etc.). A hierarchically procedure for the development of a separation process 
via crystallization is given by Douglas et al. [22]. The procedure is based on an input-output structure 
containing a separation train with a recycle structure. During the last decades this procedure was 
improved, i. e. by Ng [23] [24] [25]. Separation of non-electrolytes via crystallization is generally based 
on two possible approaches; temperature change and composition change. When lowering the 
temperature, crystallization of a component simultaneously leads to a composition change along the 
solid – liquid equilibrium curve. Composition change other than that obtained from crystallization of 
one or several components may also be achieved by: evaporating a solvent or solvent mixture from 
the solution, or by adding a further solvent as in anti-solvent (drowning out) crystallization. In case of 
adiabatic evaporation, both temperature and the amount of solvent are changed. In order to achieve 
a sufficient rate of crystallization, the system needs to be supersaturated by a certain degree that can 
be judged from the knowledge of the solid-liquid equilibrium. Therefore, visualization of the solid-
liquid equilibrium in form of various different diagrams is of great importance for the conceptual 
design of crystallization processes. Examples will be presented for the use of graphical representations 
in binary, ternary and higher systems. Approaches for the development of flowsheet alternatives 
based on ternary SLE diagrams are given by Ng [23] [24] [25] in detail.  

 
Basic operation steps 

In general, crystallization via temperature or composition change can for example be achieved using 
basic operations like e. g. cooling, evaporating, adding of an anti-solvent or co-solvent, stream splitting 
(with concentration change) or combination, extraction, pH-shift, salting-out and reactive 
crystallization. The resulting movements in a ternary diagram caused by some basic operation steps 
are shown in Figure 3. The pure component i represented by the melting point of component i, results 
in an apex (end point) in the ternary polythermal projection. Our mixture shows three binary eutectic 
points (BEi,j) and one ternary eutectic point (TEi,j,k). The resulting eutectic curves between these points 
define the operating regions.  Various manifolds bound the operating regions. The number of these 
manifolds is equal to the number of components in the feed. In each bounded region, only a single 
component can be crystallized in pure form. Simultaneous crystallization of more than one component 
is possible for components sharing a eutectic manifold.  Movement across a manifold into another 
operation region is achieved by either evaporation, addition of a solvent or anti-solvent, and 
combination or splitting streams.  
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Figure 3: Isobaric SLE phase diagram for a system containing a solvent (S), an anti-solvent (A) and a product (P) with a 
ternary polythermal projection.  

Starting with a feed composition (1) one can cool down until the SLE surface is reached (2). For 
simplicity we assume equilibrium operation without the need to subcool. Further cooling results in 
crystallization of the product and movement along the SLE surface on a straight line away from the 
product apex (3). The addition of a solvent to a binary mixture containing the product and anti-solvent 
(4) results in (2). Adding an anti-solvent to a binary mixture of the product dissolved in a solvent (5) 
also leads to a new composition (2). The evaporation of the solvent from (6) along the distillation curve 
results in the new composition (7). In order to change into a different operating region one can 
combine two different streams (8) and (9) resulting in (10). 

Whilst cooling crystallization is the preferred mode of crystallization, recovery of the product is limited 
by its solubility at the lowest feasible temperature for the available equipment or the temperature, at 
which another component in the mixture would crystallize. The slope of the SLE curve should be flat 
enough for an efficient crystallization (sufficient change of solubility with temperature). In addition to 
the costs involved in low temperature cooling, crystallization at very low temperatures may be very 
slow. Some discussion of the effect of the real liquid mixture behaviour on solvent selection is given 
below. 
If an efficient crystallization via cooling is not feasible, one should consider other crystallization 
methods like solvent evaporation or adding a co-solvent or anti-solvent. An example of a decision tree 
that can assist in determining the crystallization trajectory in temperature and composition space is 
shown in Figure 4.   
The possible temperature range is in any case between the achievable lowest temperature in the 
equipment (lower limit) and the decomposition temperature of the components in the mixture or the 
maximum vapour pressure of the mixture that can be handled by the equipment. 
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Reaction Scheme
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Figure 4: Example of Decision Tree to determine operating protocol for crystallization.  

 

The scheme shown in Figure 5 shows one possible sequencing of these individual steps. The stream 
from the reactor R contains the target product (P), the by-products (BP) and the starting materials 
(SM). The first option is to recover the product via cooling down or evaporate the solvent. In this case 
one gets an amount of the pure product and in case of evaporation the amount of solvent is reduced 
too and the evaporated pure solvent can be recycled. After this step, adding an anti-solvent is 
preferred. This will lead to a binary solvent system where the solubility of the product should decrease 
and the solubility for the impurities (SM, BP) should increase. Again an amount of product can be 
recovered. After adding the anti-solvent, one can evaporate from the binary solvent/anti-solvent the 
solvent or an azeotrop, which should lead preferably to a higher amount of anti-solvent and a change 
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of the solubility so one can recover further product. The anti-solvent should therefore have a lower 
volatility than the solvent. The stream should now contain by-product and starting materials and a 
only small amounts of the product.  

 

Reactor Cooling 
crystallization

Ant-solvent 
crystallization

Solvent 
evaporation

 P – Product ;   BP - By-products ;   SM - Un-reacted Starting materials  ;   AS – anti-solvent

Evaporative 
Crystallization

P
BP
SM

P

P
BP
SM

P
BP
SM

Anti-solvent

P
BP
SM
AS

P P P

BP
SM
AS

Solvent Solvent

 

Figure 5: Example of sequencing possibilities for maximum recovery of product. 

 

Criteria for solvent and anti-solvent/co-solvent selection for crystallization processes 

During the development phase of an API, it is prudent to determine the best solvent or solvents to be 
used in the manufacturing process, because once the clinical trial phase has been conducted, the 
legislative and regulatory process prevents changes to the production without further clinical trials. 
To determine possible process alternatives, the knowledge of ternary SLEs including the solvent, the 
product and probably an appropriate anti-solvent or an existing by-product is unavoidable. From these 
SLEs one can also define the performance of a possible solvent. The measurement of the required 
phase equilibrium data points is often difficult and lengthy. These data are often available in 
commercial data banks like DDB [1] and NIST [2]. If the required data points are not available, 
prediction is recommended. The presented computational software tool is able to predict and plot 
ternary SLE diagrams using all predictive models available in the simulator. The multiphase equilibria 
are generated by algorithms that are based on multiphase flash calculations.   

Equilibrium phase diagrams can be effectively used to visualize the movements in composition space 
associated with the different basic operations. Several researchers [24] [13] [14] [26] have developed 
rules and guidelines for synthesising operational protocols for crystallization based separation 
processes, and some of the key elements are presented here for a eutectic mixture without adduct 
formation (mixed crystals with defined stoichiometry). 

The selection of the “best” solvents is based on some variables like the required yield, temperature 
range (e.g. cooling below 0 °C requires a refrigerant, decomposition temperatures of involved 
components), costs and feasibility. Figure 6 shows the predicted binary SLEs for Ibuprofen in various 
solvents (UNIFAC). Ibuprofen is best soluble in THF, good soluble in Toluene and poorly soluble in n-
Hexane. As can be seen from Figure 6, n-Hexane would be the preferable solvent in case of 
crystallization at higher temperatures, because much less product is lost in the mother liquor than in 
case of the “better” solvents. If a crystallization is to be performed at lower temperatures, THF 
provides both a higher solubility and a much higher concentration change with temperature.   

http://www.dict.cc/englisch-deutsch/feasibility.html
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Figure 6:  SLEs of Ibuprofen in three different solvents calculated via UNIFAC. 

For a crystallization, the addition of an anti-solvent can be very efficient. Starting the crystallization 
with a stream with a high product content in a good solvent and adding a miscible good anti-solvent 
leads to a high crystallization yield via low cooling requirement. An equivalent yield without anti-
solvent addition would require a very drastic cooling. 

 

Development of a computational tool 
In order to assist the engineer in evaluating different crystallization strategies, a VBA Tool in CHEMCAD 
was developed. All calculations are based on the Multiphase-Flash Algorithm. This allows a 
simultaneous calculation of the vapour, liquid and solid phase behaviour. It allows to model cooling 
and evaporative crystallization, adding an anti-solvent or cosolvent and the combination of these 
methods. Furthermore, it is possible to identify an optimal solvent.  

With yield-dependent processes, the plant size and utility requirements vary with yield. Low yields 
require higher processing volumes to achieve the required production target, leading to higher capital 
and operating costs. To facilitate decision making during the conceptual design stage, further criteria 
are required to screen and identify the best solvent and combination of crystallisation operating 
modes and conditions. In addition to the crystal yield criterion, the two additional screening criteria 
are included into the Solvent Selection Tool: the economic criterion and the environmental criterion.  
For the economic criterion, use is made of either the operating cost per batch of API produced or  the 
Fixed Annualised Cost which is a combination of the annual operating cost and a ratio of the capital 
costs. For the environmental criterion, indices commonly used in green chemistry [27] – the 
Environmental Factor and the Energy Consumption Factor is used.  
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Once the desired production rate is established, the effect each solvent will have on: the size of plant 
required, the capital expenditure and the operational expenses can be determined.  The plant 
operations that are considered to be directly affected by the choice of solvent is limited to the 
following: the crystalliser size or number of modular units and its required heat exchanger area; the 
solvent feed and waste storage tanks; refrigeration unit and the solvent recovery system. The capital 
cost calculations is based on a module factor approach presented by Turton et al. [28].  The operating 
costs is based on the key utilities that are significantly influenced by the selected solvent required to 
meet the desired production rate of API. These costs include the cost of solvent; cost of cooling 
(cooling crystallization), cost of heating (evaporative crystallization), cost of solvent recovery, and cost 
of tertiary waste treatment of unrecovered solvent, API and other components. The various flowrates 
and heating and cooling are determined by material and energy balances setup in the VBA module. 
The utility costs is determined using the method proposed by Ulrich and Vasudevan [29] . 
 
The Environmental (E) Factor for the potential solvents is a measure of the amount of waste generated 
per kilogram of API crystallised, and the Energy Consumption (Ec) Factor is a measure of the total 
energy required per kilogram of product crystallised. This energy factor accounts for the following: 
the heat load of the crystalliser for cool or evaporation, and the heat load required to recover 80 % of 
the solvent in the solvent recovery process. This “total energy” consumed per kilogram of API 
produced can be directly correlated to carbon footprint contribution of the selected solvent.  

 The ranking of the operating conditions can be based on a user defined weighting of the performance 
criteria of yield, operating cost or fixed annualised cost per batch, the waste generated per kg of API 
crystallised and the energy consumption per kg of API crystallised. A cumulative effect of the selected 
criteria for each of the solvent or operating condition is determined, and the solvent and operating 
condition with the lowest Net Cumulative Weighted Score (NCWS) will represent the best solvent and 
operating condition. 
 
The various performance criteria of operational cost, E-Factor and Ec-Factor are normalized by dividing 
the actual value obtained at specified conditions divided by the lowest value obtained in the entire 
range evaluated. The normalized yield criteria is obtained by dividing the actual value obtained at 
specified conditions divided by the minimum required yield. Since the proposed ranking method is 
based on the lowest cumulative value, the inverse of normalized yield value is used. The Net 
Cumulative Weighted Score (NCWS) is calculated by: 
 
NCWS = ∑ 𝑤𝑤𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑛𝑛

𝑖𝑖 =  𝑤𝑤𝑦𝑦 × (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌)−1   +  𝑤𝑤𝑜𝑜𝑜𝑜 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +
                                             𝑤𝑤𝑒𝑒 ×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  𝑤𝑤𝐸𝐸𝐸𝐸 ×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑 𝐸𝐸𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹             (8) 
where 

 𝑤𝑤𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    𝑎𝑎𝑎𝑎𝑎𝑎   

   𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖) =  
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 
 

 

The tool is directly connected to Microsoft Excel® and all results are exported directly to different 
sheets. Besides product, solvent and anti-solvent also the solubility of by-products and remaining 
starting materials is taken into account.  
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Workflow description 
The typical input requirements, calculation and display options and result format choices are shown 
in Figure 7.   

 

 
 

Figure 7:  Outline of the computer-assisted workflow. 

 

Crystallization dialog 
The functions of the program are available from two different main menus (Temperature Menu and 
Solvent/Anti-solvent Menu). 

In the Temperature Menu of the VBA tool is able to deal with a crystallization via cooling down or 
evaporation of the solvent. If this leads to required yield, adding an anti-solvent is not necessary. 
Furthermore, the Temperature Menu offers several computational options: determination of the 
eutectic temperatures and compositions; determination of maximum evaporation or maximum 
cooling that can be done to achieve a pure solid i.e.  prior to a second solute crystallizing out.  In the 
Temperature Menu were the selected Solvent and feed composition is specified, there are many 
functions to optimize the crystallization process via cooling and evaporative crystallization and a 
combination of both crystallization methods. 

The Solvent/Anti-solvent Menu is a tool to find the best solvent and if necessary the best anti-solvent 
for crystallization. By creating a database of solvents that are used in pharmaceutical processes, the 
computational algorithm can determine best combination of the solvent and anti-solvent by 
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calculating the solubility of all compounds in all of the solvents and arrays them to good solvents and 
good anti-solvents. The database of solvents built into the selection tool is based on the GSK Solvent 
Selection Guide [15]. Ideally, the anti-solvent should decrease the solubility of the product and should 
increase the solubility of the impurities. Furthermore, it has to be miscible with the solvent and in case 
a recovery of the solvents is considered it should not form an azeotrope or adduct with the solvent. 
Also for the possibility of further solvent evaporation the boiling point of the solvent should be below 
the boiling point of the anti-solvent. Because of the increasing volume during the addition of an anti-
solvent, it is recommended to add the anti-solvent to a saturated solution. This will also lead to a 
higher amount of the anti-solvent in the binary solvent system, leading to higher crystallization yields.  

 

Applications examples 
The application of the tool is illustrated by three examples, i. e. the selection of solvents and anti-
solvents in the absence of any by-products or impurities, solvent selection in the presence of 
impurities, and application to a product used in liquid crystal displays. 

Ibuprofen 
Ibuprofen has to be recovered from a solution containing 1 kmol Ibuprofen in 2.5 kmol 
Tetrahydrofuran. Cooling to -50 °C leads to 0.92 recovery, that can be increased to 0.96 kmol upon 
evaporation of 1.25 kmol of solvent. 

Through the solvent selection tool, Ethanol was proposed as a better solvent. With this solvent it can 
be shown, that with the same composition (2 kmol Ibuprofen dissolved in 5 kmol Ethanol) one can 
achieve 99 % pure Ibuprofen via cooling down to -50 °C. For a combination of a previous solvent 
evaporation of 50 % and then cooling down to -50 °C the amount of pure Ibuprofen can be increased 
to 99.5 %. It must be highlighted that these conditions are impractical because of the extremely low 
temperature required to achieve the desired yields, which will lead to high energy consumption. 
Instead of this drastic cooling, an anti-solvent could be used. In this case, 3 % of the Ethanol are first 
removed by evaporation to yield a saturated solution. From the solvents considered here , water may 
act as a good anti-solvent. The effect of the addition of water to the saturated Ibuprofen solution in 
Ethanol with and without further cooling is shown in Error! Reference source not found.. The left and 
right faces of the graph show the yield obtained for pure cooling crystallisation and pure anti-solvent 
crystallisation respectively. Whilst high yields may be obtained at low temperatures for cooling 
crystallisation only or high anti-solvent addition for anti-solvent crystallisation only, high yields can 
also be obtained at milder conditions for the combination of cooling and anti-solvent crystallisation. 
The process implications of the various possible combinations of anti-solvent solvent addition and 
cooling is determined by calculating it associated the capital and operating cost.  Assuming an equal 
weighting of the four performance criteria of yield, fixed annualised costs, waste generated (E factor) 
and energy used (Ec Factor), Figure 8 illustrates how the Net Cumulative Weighted Score (NCWS) can 
be used to determine the best operating protocols that will result in a minimum yield of 98%. The 
addition of anti-solvents leads to higher processing volumes which impact on the capital costs (larger 
equipment size) and operating costs (cooling/heating, solvent recovery, etc) hence leading to higher 
NCWS values.  Similarly, very low operating temperatures require larger refrigeration and utility 
requirements also leading to higher NCWS values. It should be noted that a different weighting of the 
four performance criteria (as guided by the company policy and objectives) will results in a different 
profile to that shown in figure 8 i.e the user may have a lower weighting to the environmental criteria 
and higher weightings for the yield and economic criteria. Using this method, further alternatives may 
also be evaluated and verified by experiments. 
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Figure 7 Effect of cooling and anti-solvent addition on Ibuprofen crystal yield  

 

 

 

Figure 8 Cumulative performance taking into account yield, fixed annualised cost, waste generated 
and energy consumption. 

  

Ibuprofen/Paracetamol 
In this example, a mixture containing Ibuprofen as the product and Paracetamol as a by-product in 
Acetonitrile is considered. The reaction mixture contains 2 kmol Ibuprofen and 0.5 kmol Paracetamol 
dissolved in 10 kmol Acetonitrile. Due to the low solubility of Paracetamol it is not possible to 
crystallize pure Ibuprofen from the reaction mixture via cooling or solvent evaporation. It is therefore 
considered to add an anti-solvent to the reaction mixture in order to either crystallize and thereby 
remove the impurity (Paracetamol) and then crystallize the pure Ibuprofen or crystallize Ibuprofen 
while keeping Paracetamol in solution by an anti-solvent selective for Ibuprofen. The first option can 
be realized by using n-Hexane as an anti-solvent. The removal of Paracetamol from the mixture by 
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anti-solvent crystallization is shown in 9 for various temperatures. From this figure the minimum 
temperature can also be obtained below which n-Hexane addition would also lead to Ibuprofen 
precipitation. 

 

Figure 9:  Recovery of Paracetamol from Paracetamol/Ibuprofen in Acetonitrile via anti-solvent 
addition (n-Hexane) at different temperatures. 

91.8 % of the paracetamol can be removed via adding 10 kmol of n-Hexane and cooling down to -
10 °C. Further addition of the anti-solvent has only a minor effect on the Paracetamol yield. After 
removal of most of the Paracetamol it is possible to crystallize 88 % of the Ibuprofen via evaporating 
95 % of the solvent mixture at 15 °C.  

An alternate option is to use an anti-solvent to yield Ibuprofen while keeping Paracetamol in solution. 
Using the crystallization tool we identified water as a possible anti-solvent combined with Ethanol as 
solvent. In this case, it is possible to crystallize 92.72 % of Ibuprofen via adding 20 kmol of water at 
25 °C. Figure  10 shows the amount of crystallized Ibuprofen as function of the amount of anti-solvent 
(water) at 25 °C  
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Figure 10: Recovery of Ibuprofen from an ethanolic solution of Ibuprofen and Paracetamol by anti-
solvent (water) addition at 25 °C. 

 

Liquid crystal component 
The last example deals with an unknown component where only UNIFAC-groups and compositions 
are available from a real crystallization process. The high value product is a propriety LCD crystal and 
the composition and properties of the process stream is shown in Table 2 below. 

Table 2. Composition and properties of LCD crystal process stream 
 Product By-product 1 By-product 2 Solvent THF 
Composition [mol%] 12.73 0.0095 0.5315 86.729 

Melting point [°C] 51.00 171.71 -44.58 -108.39 
Heat of Fusion [J/g] 78.77 157.96 74.01 86.73 

 

The only known properties of the products and by-products are the heat of fusion and the melting 
point as well as the UNIFAC-groups of the molecules. The primary objective is to crystallize the 
maximum amount of pure LCD crystals. Because of the higher melting temperature and the higher 
heat of fusion, the difficulty is the separation of by-product 1 from and the product. 

The available data are sufficient to simulate the crystallization behaviour. We found that the maximum 
cooling to -13 °C without any by-product crystallization leads to 36 % crystallized product. However, 
with solvent evaporation of 95 % Tetrahydrofuran and then cooling down to 18.5 °C it is possible to 
crystallize 76 % of the product without precipitating impurities. Evaluation of different solvents 
pointed to Acetonitrile as a promising alternative. Using this solvent, it is possible to crystallize 86 % 
of the product just via cooling to 1 °C. If 74.25 % of the Acetonitrile are evaporated before cooling to 
13.2 °C, 91.5 % of the product can be recovered. When using water as an anti-solvent and Acetonitrile 
as the solvent, adding 10 kmol of water to the solution and then cooling to 5 °C will yield to 97.8 % of 
the product. It should be noted that maintaining a higher temperature during crystallization will quite 
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definitely also reduce the required crystallization time and thus shorten the use of the crystallizer. A 
summary of the results for the various process options are presented in Table 3. It should be noted 
that the option with the maximum yield is not necessarily the optimised solution since the operation 
and capital cost associated with each option has to be evaluated.  

Table 3. Summary of results for some processing options for the LCD crystal stream 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
Solvent Tetrahydrofuran Tetrahydrofuran Using Acetonitrile 

as solvent 
Using Acetonitrile as 
solvent 

Using Acetonitrile 
as solvent 

Crystallization 
protocol 

Cooling to -13 oC 95% Solvent 
evaporation then 
cooling to 18.5 oC 

Cooling to 1 oC 74.25% Solvent 
evaporation then 
cooling to 13.2  oC 

Anti-solvent 
addition then 
cooling to 5 oC 

Yield of pure 
crystals 

36% 76% 86% 91.5% 97.8% 

 

Conclusion 
It has been shown that using the computational tool developed in this work it is easy to evaluate 
process alternatives for crystallization during the development stage of any project. We focus on the 
solvent selection for a specific crystallization problem. Furthermore, we implemented three 
crystallization methods: Cooling crystallization, evaporative crystallization, adding an anti-solvent or 
cosolvent and combination of all these methods. The results obtained can be effectively used for 
decision making prior to incurring of substantial product development costs, and can also be used to 
decide on the direction for further research and experimental work. The ability to develop a platform 
which can integrate existing commercial simulation software into company specific operations allows 
the users to have access to a full range of thermodynamics models and correlations, the 
comprehensive database of compounds and their pure and mixture properties, and the rigorous 
computational algorithms for process calculations and equipment design. The software code is freely 
available from the authors upon request. 
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Appendix G: Experimental Solubility Data 

Experimental and Predicted Solubility of 4-Acetaminophenol 
 in Ethanol and Ethyl Acetate at  𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 ± 𝟎𝟎.𝟏𝟏 𝑲𝑲 

Experimental  Solubility Data  Predicted Solubility Values 

𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 

 
𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
UNIFAC 

𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
Mod 

UNIFAC 
1.0000 
0.8982 
0.8007 
0.6983 
0.6015 
0.4986 
0.3947 
0.3008 
0.2040 
0.1135 
0.0000 

 

0.0000 
0.1018 
0.1993 
0.3017 
0.3985 
0.5014 
0.6053 
0.6992 
0.7960 
0.8865 
1.0000 

 

0.0647 
0.0710 
0.0741 
0.0718 
0.0667 
0.0612 
0.0516 
0.0433 
0.0314 
0.0218 
0.0067 

 

± 
± 
± 
± 
± 
± 
± 
± 
± 
± 
± 
 

0.0007 
0.0017 
0.0024 
0.0090 
0.0040 
0.0044 
0.0131 
0.0048 
0.0071 
0.0069 
0.0029 

 

 1.0000 
0.9091 
0.8182 
0.7273 
0.6364 
0.5455 
0.4545 
0.3636 
0.2727 
0.1818 
0.0909 
0.0000 

 

0.0000 
0.0909 
0.1818 
0.2727 
0.3636 
0.4545 
0.5455 
0.6364 
0.7273 
0.8182 
0.9091 
1.0000 

 

0.0459 
0.0686 
0.0867 
0.1003 
0.1102 
0.1168 
0.1206 
0.1217 
0.1201 
0.1156 
0.1079 
0.0962 

 

0.0198 
0.0211 
0.0218 
0.0219 
0.0215 
0.0206 
0.0192 
0.0174 
0.0154 
0.0133 
0.0111 
0.0090 

 

Standard uncertainties 𝑢𝑢 are 𝑢𝑢(𝑇𝑇) = 0.1𝐾𝐾,𝑢𝑢(𝑃𝑃) = 0.002𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑟𝑟�𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒� =  0.0003  

 

Experimental and Predicted Solubility of 2-(4-Isobutylphenyl) Propionic Acid 

 in Ethanol and Ethyl Acetate at  𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 ± 𝟎𝟎.𝟏𝟏 𝑲𝑲 

Experimental  Solubility Data Predicted Solubility Values 

𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
UNIFAC 

𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
Mod 

UNIFAC 
1.0000 0.0000 0.1489 ± 0.0106 1.0000 0.0000 0.1713 0.1047 
0.9034 0.0966 0.1497 ± 0.0118 0.9091 0.0909 0.2062 0.1361 
0.7981 0.2019 0.3042 ± 0.0224 0.8182 0.1818 0.2310 0.1631 
0.7040 0.2960 0.2858 ± 0.0050 0.7273 0.2727 0.2488 0.1849 
0.5995 0.4005 0.2854 ± 0.0671 0.6364 0.3636 0.2617 0.2021 
0.5025 0.4975 0.3339 ± 0.0112 0.5455 0.4545 0.2705 0.2151 
0.4039 0.5961 0.3316 ± 0.0210 0.4545 0.5455 0.2761 0.2243 
0.3026 0.6974 0.3202 ± 0.0512 0.3636 0.6364 0.2787 0.2302 
0.1871 0.8129 0.3096 ± 0.0400 0.2727 0.7273 0.2784 0.2327 
0.0918 0.9082 0.3553 ± 0.0257 0.1818 0.8182 0.2752 0.2319 
0.0000 1.0000 0.3385 ± 0.0612 0.0909 0.9091 0.2689 0.2276 

     0.0000 1.0000 0.2589 0.2192 
Standard uncertainties 𝑢𝑢 are 𝑢𝑢(𝑇𝑇) = 0.1𝐾𝐾,𝑢𝑢(𝑃𝑃) = 0.002𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑟𝑟�𝑥𝑥𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒� =  0.0003 
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Experimental and Predicted Solubility of Acetylsalicylic Acid 

in Ethanol and Ethyl Acetate at  𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 ± 𝟎𝟎.𝟏𝟏 𝑲𝑲 

Experimental  Solubility Data Predicted Solubility Values 

𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
UNIFAC 

𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
Mod 

UNIFAC 
1.000 0.000 0.068 ± 0.007 1.0000 0.0000 0.0324 0.0193 
0.899 0.101 0.085 ± 0.004 0.9091 0.0909 0.0503 0.0276 
0.800 0.200 0.093 ± 0.008 0.8182 0.1818 0.0679 0.0366 
0.700 0.300 0.107 ± 0.014 0.7273 0.2727 0.0826 0.0454 
0.600 0.400 0.108 ± 0.017 0.6364 0.3636 0.0938 0.0533 
0.501 0.499 0.109 ± 0.003 0.5455 0.4545 0.1013 0.0598 
0.413 0.587 0.104 ± 0.008 0.4545 0.5455 0.1053 0.0644 
0.296 0.704 0.098 ± 0.004 0.3636 0.6364 0.1058 0.0671 
0.202 0.798 0.083 ± 0.005 0.2727 0.7273 0.1027 0.0678 
0.101 0.899 0.071 ± 0.005 0.1818 0.8182 0.0958 0.0663 
0.000 1.000 0.054 ± 0.000 0.0909 0.9091 0.0843 0.0628 

     0.0000 1.0000 0.0675 0.0572 
Standard uncertainties 𝑢𝑢 are 𝑢𝑢(𝑇𝑇) = 0.1𝐾𝐾,𝑢𝑢(𝑃𝑃) = 0.002𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑟𝑟�𝑥𝑥𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒� =  0.0003 
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