
MEASUREMENT AND COMPUTATIONAL MODELLING
OF INTERMOLECULAR INTERACTIONS IN FLUIDS

by

RICHARD V NHLEBELA
B Se Hons (Natal)

A thesis submitted in partial fulfilment
ofthe requirements for the degree of

Master ofScience
in the Discipline ofPhysics

School ofChemical and Physical Sciences
University ofNatal

PIETERMARITZBURG
JANUARY 2000



Acknowledgements

I wish to express my sincere thanks and appreciation to all the people who contributed to

this project in various ways. I would especially like to extend my gratitude to the following

persons:

Dr. V. W. Couling, my supervisor, for his constant interest, guidance and encouragement

during his supervision of this thesis;

Prof. R. E. Raab and Prof. C. Graham for their efforts to make my dream of obtaining a

university higher degree come true by ensuring that financial matters were taken care of;

Dr. Diane Grayson and all the other staff members of the Science Foundation Program for

discovering my academic potential at university: surely without them I wouldn't be where

I am today; and

Zanele Nhlebela, my wife, for her unconditional support, interest and encouragement.

Finally I wish to make known my deep appreciation and gratitude to De Beers Diamond

Research Laboratories for their generous financial assistance, and for the career which has

been set aside for me at DRL as the new millennium begins.



DECLARATION

This thesis describes research undertaken at the University ofNatal, Pietermaritzburg, under

the supervision ofDr V. W. Couling.

I hereby certify that this thesis is the result of my own original work, unless specifically

indicated to the contrary in the text, and that this work has not already been accepted for any

other degree and is not being submitted in candidature for any other degree.

R. V. Nhlebela

I hereby certify that this statement is correct.

....j~t.~ ~..: .
V. W. Couling

(SUPERVISOR)

School of Chemical and Physical Sciences

Discipline of Physics

University ofNatal

Pietermaritzburg

January 2000



Abstract

The molecular theory ofthe second light-scatteringvirial coefficientBp describing the effects

of interacting pairs ofmolecules on the depolarization ratio p ofRayleigh-scattered light is

reviewed, both for interacting linear and nonlinear molecules. The molecular tensor theory

ofB for nonlinear molecules is extended for the first time to include in the scattered intensity
p

those contributions arising from field gradient effects and induced quadrupole moments in

the molecular interactions. The expressions for contributions to Bp are evaluated numerically

for the nonlinear polar molecule dimethyl ether.

We have used an existing light-scattering apparatus to investigate the pressure-dependence

of the depolarization ratio p for dimethyl ether, allowing Bp to be extracted. The measured

value is compared with the calculated value, theory and experiment being found to agree to

within 9%.

This success in modelling Bp for dimethyl ether spurred us on to extend our investigation to

the second Kerr-effect virial coefficient BK • The molecular-tensor theory ofBK for nonlinear

molecules is reviewed, and is applied in this work to dimethyl ether. The calculatedBK values

generally lie within the uncertainty limits ofthe available measured data over their full range

of temperatures. We have used a recently-commissioned Kerr cell to undertake our own

measurement ofBK for dimethyl ether at room temperature. This value is in good agreement

with the findings of our molecular model, and is in reasonable agreement with the other

measured data.

This thesis serves to reaffirm recent claims that comprehensive dipole-induced-dipole

theories of molecular interaction effects explain the observed phenomena adequately

provided one works to higher orders in the molecular tensors so that the series ofcontributing

terms has converged to a meaningful numerical result, and provided the full symmetry ofthe

molecules is allowed for.
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Chapter 1

Introduction and Aims

1.1 Introduction and The Aim of This Work

Theoretical studies ofthe effects ofmolecular interactions on the optical properties of gases

have, until recently, been limited to the very restricted classes of spherical and linear

molecules. There are two principal reasons for this. Firstly, to derive complete molecular­

tensor theories to describe the contributions even of pair interactions to the various

molecular-optic phenomena such as electric-field-induced birefringence, molar refraction and

depolarized light-scattering requires an almost prohibitively large volume of algebraic

manipulation. Secondly, the dipole-induced-dipole (DID) model ofSilberstein [1], where the

dipoles induced in molecules by an incident light wavet'o(t) interact with one another leading

to DID coupling, appears to break down in calculations of the various second virial

coefficients of large quasi-spherical molecules [2,3]. This has led to a degree of scepticism

in the application of DID theory to molecules oflower symmetry.

Recent theoretical studies of molecular interactions have been extended to molecules with

symmetry lower than linear [4-7], the advent of modern symbolic manipulation packages

such as Macsyma having brought the extensive algebraic and tensor manipulation into the

realm of the feasible. It has now been established that, provided full account is taken of

molecular symmetry, the DID model accounts reliably for the contribution made by

interacting pairs of molecules to both the depolarization ratio of Rayleigh-scattered light
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[4,5,7], and to the molecular Kerr constant in electro-optic birefringence [4,6].

A useful investigation is to establish whether a unique set of molecular parameters, used in

the molecular-tensor theories of the various optical phenomena, will yield agreement .

between experiment and theory for the full range ofvirial coefficients ofthe different effects.

It is in this vein that we present in this thesis a theoretical investigation of the second

pressure, second light-scattering and second Kerr-effect virial coefficients of the low­

symmetry dimethyl ether molecule, and an extensive comparison with the available measured

data. Where possible, new measurements have been undertaken in this work itself, allowing

for a critical comparison of theory and experiment.

1.2 References

[1] Silberstein, L., 1917, Phi!. Mag., 33, 92, 521.

[2] Watson, R. C., and Rowell, R. L., 1974, J chem. Phys., 52, 132.

[3] Dunmur, D. A., Hunt, D. C., and Jessup, N. E., 1979, Molec. Phys., 37, 713.

[4] Couling, V. W., 1995, Ph D thesis, University of Natal (Pietermaritzburg).

[5] Couling, V. W., and Graham, C., 1996, Molec. Phys., 87, 779.

[6] Couling, V. W., and Graham, C., 1998, Molec. Phys., 93, 31.

[7] Couling, V. W., Graham, C., and McKenzie, 1. M., 1999, Molec. Phys., 96, 921.



Chapter 2

Calculation of the Second Light-scattering Virial

Coefficient of Dimethyl Ether

2.1 A General Theory of Light Scattering

The scattering oflight by a single molecule can be considered to arise when the incident light

wave induces oscillating multipole moments in the molecule, which then give rise to retarded

scalar and vector potentials and therefore to electric and magnetic fields at all points. Landau

and Lifshitz [1] and Buckingham and Raab [2] have related these fields to the electric and

magnetic multipole moments of the system. At a point a distance R from an origin 0 fixed

within molecule's system of oscillating charges, where R is very much larger than both the

dimensions of the system of charges and the wavelength of the retarded light, the scattered

electric field E;s) can be considered to be a plane wave, and is then given by [2]

(2.1)

where na is a unit vector in the direction in which the light wave is scattered, /la and mu are

the induced electric and magnetic dipole moments respectively and ea~ is the induced

traceless electric quadrupole moment. Explicit forms of these moments are presented in

AppendixA.
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The experiments ofR. J. Strutt, the fourth Baron Rayleigh, [13] revealed that if a linearly

polarized light beam is allowed to traverse a gas sample, the light scattered at right angles

to the incident beam by the gas molecules is, in general, not completely linearly polarized.

Scattering occurs since the oscillating electric and magnetic fields ofthe incident light waves

set the bound electric charges of the molecules into motion, leading to the emission of

secondary light waves in all directions. The extent of scattering and depolarization depends

on the nature of the scattering medium: the light scattered by different gas molecules was

found by Rayleigh to be depolarized to different extents.

Consider the arrangement in figure 2.1 where the origin of a space-fixed system of axes

O(x,y,z) is placed within a macroscopic gas sample containing a large number N ofidentical

gas molecules. Let this system be under the influence ofa uniform, parallel beam ofincident

light which is linearly polarized in the vertical xz plane and travelling in the z direction. The

wavelength ofthe incident light is assumed to be very large relative to the dimensions ofthe

gas molecules, and its frequency is supposed to be well below that of any electronic

absorption transition. The Rayleigh-scattered light is observed at a point on the y-axis, with

the depolarization ratio being defined as

(2.2)

where Iz and Ix are the scattered light intensities with the electric vector parallel to the z and

x axes respectively.

For observations of the light beam scattered along the y-axis of the space-fixes axes (x,y,z)

where the z is the direction ofpropagation ofthe light wave, the unit vector nu appearing in

equation (2.1) becomes (nx,ny,nz) = (0,1,0). The terms in the quadrupole and magnetic
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moments in equation (2.1) can safely be dropped [9] since their contributions are much

smaller than that of the electric dipole moment. Equation (2.1) becomes

1 N

E~s) = 2 I ~ ~p)(t')
(47t£ 0 )Rc p=l

(2.3)

where ~~) is the dipole acceleration of the plh molecule in the assembly of N molecules

which are contributing to the electric dipole radiation. Since the electric dipole Ila is a

function of the electric field Ep, the first order partial time derivative of the electric dipole

moment is

. _aJl a _ aJl a aEp

Jl a - at - aE at'
p

so that the second order partial derivative is

(2.4)

(2.5)

The first term of equation (2.5) is non-linear in the field, and even with the use of a very

intense laser beam this term can be safely neglected. Hence equation (2.5) becomes

(2.6)

(2.7)

Since Ea = E~O) exp(-iro (t - R», we have
c

a2Ep 28f2 = -0) Ep•

If A IS the wavelength of the incident beam, then use of the well known result
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ACO . Idc=Af=-yle s
21t

( 2).TIrc' =ID ' ,

so that equation (2.7) becomes

Now equations (2.9), (2.6) and (2.3) give

1 N a (p)
E(s) - " /.1 a E(p)

a - ( )R 2 i..J aE(p) cS
47tE o C P=\ cS

(2.8)

(2.9)

(2.1 0)

where Et/p) signifies the value of the electric field at the pth molecule. In light of equation

(2.10), it is useful to introduce the differential polarizability n<jp) which is defined as

all (p)
(p) _ r a

7t a~ - aE(p) .
~

In general, the intensity of a light wave with electric field vector E is given by

1 •
I=--E.E

2/.1 oC - -

where the asterisk denotes the complex conjugate. Equation (2.2) then yields

(2.11)

(2.12)

(2.13)
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where Xpq is the phase difference in the light scattered by molecules p and q as seen at the

observation point, and where the angular brackets indicate an average over all configurations

of the specimen. This equation, first obtained by Buckingham and Stephen, has been used

as a basis for the calculation ofthe depolarization ratio oflinear, quasi-linear, and non-linear

molecules [14,21,6].

2.2 Non-interacting Molecules

For non-interacting molecules, the intermolecular fields arising at any molecule due to the

permanent and induced multipole moments of the other molecules in the assembly are

negligible. It is the applied light wave's electric field [;0 which is sole cause of the induced

electric dipole moment llu(Pl of the pth molecule, and so the differential polarizability 7t aP

becomes simply the molecular polarizability u ap . Moreover, the average phase relationship

between the fields from anyone pair of the interacting molecules vanishes to zero, self­

correlations alone contributing to the summation in equation (2.13). Furthermore, since the

molecules are assumed to be identical, the summations in equation (2.13) can be replaced by

N times the contribution of a single representative molecule 1. We have

p = (2.14)

where the angular brackets represent an average over all unbiased orientations ofa molecule.

The molecular tensors appearing in equation (2.14) are referred to the space-fixed axes
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(x,y,z), and they must be projected into the molecule-fixed axes (1,2,3). The projection ofthe

tensors from one set of axes into another is a standard procedure, which yields

(2.15)

and

(2.16)

Here, GiG is the direction cosine between thea space-fixed and i molecule-fixed axes, and

the average is over isotropic orientations of molecule 1 in the space-fixed axes.

The results of standard isotropic averages are [4,32]:

(2.17)

and

(2.18)

Using these results in equations (2.15) and (2.16) yields

which is applicable to both linear and non-linear molecules, and

IU(I)U(I)) = -L(2u(1)u(l) +u(l)u(I))
\ xx xx 15 IJ IJ 1I kk

_ I (3 2 2 2 )- T5 ulI + 3u22 + 3u33 + 2ullu22 + 2ulIU33 + 2u22u33 .

For linear molecules a (I) is diagonal with
IJ

(2.19)

(2.20)



a I I = a 22 = 0..1 and a 33 = a 11"

The mean polarizability a is

a =to. ii =t(20..1 +all)'

while the anisotropy in the polarizability is defined as

9

(2.21)

(2.22)

~a = all- a.1' (2.23)

For non-linear molecules with D2h and C2v symmetry, aap is diagonal with three independent

components, which are 0. 11 ,0.22 and 0.33 , The mean polarizability 0. is

while the anisotropy in the polarizability tensor is often defined as [5,33]

Using equations (2.24) and (2.25) in equation (2.20) we obtain

(a~)a<;;)= a2 + 4~(Lla)2.

The use of equations (2.23) and (2.21) in equation (2.19) gives

(a(l)a(I)) = --.L(4i5(I)i5(1) -i5 Q)i5(I))a ..a
zx zx 30 1J 1J 11 1J 1J kl

_ 2 (2 2 2
- 30 all + a22 + a33 - allan - alla33 - ana 33)

= /5 (L1a)2,

(2.24)

(2.25)

(2.26)

and this result, together with equation (2.26), when substituted in equation (2.14), gives

(2.27)
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The anisotropy In the molecular polarizability tensor was originally defined as the

dimensionless quantity K [6] where

(2.28)

This applies to both linear and non-linear molecules, and a relationship between K and Po can

now be deduced using equations (2.27) and (2.28):

3K 2

Po = 5+ 4K 2 •

(2.29)

This expression was first derived by Bridge and Buckingham [6], and can be used to obtain

values for K from measured values of Po for various different gaseous species.

2.3 Interacting Molecules

Studies of the molecular-optic phenomena of gases have confirmed that certain bulk

properties, such as molar refraction and total polarization, are in fact density dependent even

for gases ofatomic species [6]. These findings are an indication ofthe presence ofmolecular

interactions. The effects of these interactions can be accounted for by the virial expansion

ofthe relevant macroscopic variables. Suppose that Qis a measurable bulk property ofa reaI

gas. Then the observed value ofQ can be expanded into terms in inverse powers ofthe molar

volume Vm [7] to give

(2.30)

whereBQ(T) , CQ(T),'" are functions of temperature alone, and are called the second,
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third, ... , Q- virial coefficients respectively. The physical interpretation ofBQ, CQ, etc. is that

they represent the contributions to Qarising from the interactions between pairs, triplets, ... ,

of molecules respectively. From equation (2.30) it is seen that in the limit of an infinite

dilution (i.e. v,,, -t 00 ) Q tends to A Q, which is the value of Q corresponding to a perfect gas

of independent molecules.

2.3.1 The virial expansion ofthe depolarization ratio

The insight that has been gained from the preceding discussion can now be used in the

specific case of the depolarization ratio p of Raleigh-scattered light. The virial expansion

becomes [17]

(2.30)

where Bp and Cp are the second and third light-scattering virial coefficients respectively.

The virial coefficients depend on the temperature of the gas as well as on the frequency of

the incident light. Bp and Cpdescribe the contributions to p arising from interactions between

pairs and triplets of molecules respectively. The series can be extended to account for the

contributions due to even higher order interactions, although these become successively

smaller as the series is rapidly converging. In this work, we have limited our investigation

to pair interactions. Experimentally, Bp may be deduced from measured data by plotting a

graph ofp versus V';; I • The plot will have a linear relationship between p and V';; 1 where pair

interactions are predominant, the graph deviating from linearity only when triplet and higher

order interactions become significant. For our purposes we truncate equation (2.30) to



Bp(T)
p(T)=po+ V

m

where Po is the limit of p at zero density.

12

(2.31 )

A complete molecular tensor theory of Bp for interacting non-linear molecules is now

presented. In a gas, these molecules are moving randomly relative to one another and so the

scattered light waves emitted by each of these molecules arrive at the distant observation

point with different and randomly fluctuating phases. This allows the summation in equation

(2.8) to be considerably simplified. Apart from the self-correlation, there is a significant

correlation of phase only when pairs of molecules are in the process of a closer encounter.

Since the interaction mechanism for all terms (with one exception) is significant only at short

ranges of about 0.5 nm to 2 nm, which are a small fraction of typical wavelengths of about

500nm, the phase differences X12 between beams from interacting molecules p and q are

effectively zero. The exception is the term (1t:;1t ~)COSX 12) , as established by Benolt and

Stockmayer [26]. This means that there is no need for the general retention ofXpq, exp(i Xpq)

being set to unity in all but the abovementioned term. Thus, allowing only for self-correlation

and pairwise contributions to the coherent fields, the summations in equation (2.13) are

replaced by N times the contribution of a representative molecule 1, averaged over all pair

encounters, giving

(2.32)
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where the angular brackets now indicate an average over pair interactions, and 7t~) is the

differential polarizability of molecule p in the space-fixed axes (x,y,z) located within a gas

sample. The probability that molecule 1 has neighbour in the range dT at Tis related to the

intermolecular potential energy U\2 Cc) by [10]

(2.33)

where Q = "~' Jdr. is the integral over the orientational co-ordinates of the neighbouring

molecule 2, NA is Avogadro's number and T is the absolute temperature.

To obtain expressions for the differential polarizabilities in equation (2.32), as defined in

equation (2.12), the treatment of Graham [11] is followed. The dipole moment /la and

quadrupole moment eup induced in a molecule by an electric field Ea and electric field

gradient Eap are (Buckingham [12])

(2.34)

and

(2.35)

It has been argued [12] that the total oscillating dipole moment ofmolecule 1, /l ~I) , arises in

part from the direct polarizing action of the incident light wavet'o, and in part from the field

Fa and field gradient Fap at molecule 1 due to the oscillating moments of a neighbouring

molecule 2, equation (2.34) becoming

11 (I)(~) = a (I)(cCr +F(I)) + 4- A(I) (cCr + R(I))+ ...r u 0 up op P .J upy Opy py . (2.36)
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Here, top and t opy are the field and field gradient of the incident light wave at molecule 1,

while Fp(l) and Fp~) are the oscillating field and field gradient arising at molecule 1 due to

the oscillating multipole moments ofmolecule 2. The field gradient t opy ofthe incident light

wave makes no significant contribution to the electric dipole moment ~ ~I) of molecule 1

since the dimensions ofeach molecule in the gas sample are usually very much smaller than

the wavelength ofthe incident light wave, and therefore this contribution is neglected. Thus

equation (2.36) becomes

11 (I)(~) =a (I)(~ + R(I») ++A(I) F(I) +...
I"" a 0 ap op p .) apy py (2.37)

Ifthe oscillating octopoles and higher order multipoles on molecule 2 are neglected then the

field F~I) and field gradient Fy~) at molecule 1 due to the oscillating dipole and quadrupole

moments of molecule 2 are given by [12]

R(I) = T,(I)II (2) - +T,(I)8(2)
P py I"" Y .) py8 y8

and

where the T-tensors are defined as [12]

(I) 1 I 1 1 ( 7)T - --V V - - --- -
ap - 41tE a p R- 41tE R5 3RaRp -R baP'

o 0

and

(2.38)

(2.39)

(2.40)

(2.41)
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3 1
Y(I) - __I_V V V V = ---[5 R 1< 1< RapyS - 4nE" a p y S 4TC£ R 9 "'cx ~'V'1' S

o

where

-5R2 (RaRpb yS + l\.~bps + ~baP

+RaRSb py + Rp~bas + RpRsb ay

+~RsbaP)+ R4(bapbys + bayb pS + baSb py )],

(2.42)

(2.43)

(2.44)

for the nth rank T-tensor, and Ra is the vector from the origin of molecule 1 to the origin of

molecule 2.

In equations (2.40) and (2.41), ~ ~2) and e~~) are the oscillating dipole and quadrupole

moments induced on molecule 2 by the field and the field gradient arising due to the presence

of both the incident light wave and the oscillating electric dipole and quadrupole moments

of molecule 1. With the use of equations analogous to (2.34) and (2.35), we can obtain the

explicit forms of expressions of ~ ~2) and 8 ~~) .

Now substituting the expressions of/l ~I), /l ~2), e~~) and 8 ~~) into equations (2.37) and

(2.39) yields

F,(1) = 1:,(1) [a (2)(r:. + F;(2»)+.J. 4(2)F;(2)]_ .J.T,,<')[A(2)(r:. + F(2»)+ C(2) F(2)] (2.45)
p py yo Do 0 .) .. -'-rOE OE .) pyo qo DE E yOE~ E~ •
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Here FS(2) and F8~2) refer to the field and the field gradient at molecule 2 due to the oscillating

dipole and quadrupole moments of molecule1, and their expressions are analogous to those

ofF
8
(1) and FS~) .

Substituting the expressions ofFP) and FS~2) into (2.45) yields

(2.46)

Replacing the expressions of ~ ~l) and e~I~ from equations (2.34) and (2.35) into (2.46) yields

FY) = 1:,(1)a (2)et: + 1:,( I)a (2) [y;(2) {a (I) (et: + F,(I»)
~ ~y yo 00 ~y yo OE E~ O~ ~

+ -1- A(]) F,(I)} - .1 y;(2) {A(I) (t!., + R(]») + C(I) R(I)}]
.> E~A ~A 3 OE~ YE~ 01.. A E~AT] I, T]

+ .1 1:,(1) A(2)y;(2) [a (I) (et: + R(I») + .1 A(I) R(I)]
3 ~y yOE OE~ ~A 01.. A 3 ~AT] All

.1 T(])A(2) t'7 .1 T(')A(2)[T(2) { (1)( t'7 R(I»)
- 3 .l~yo EyO .:/OE - 3 .l~yo EYO .1 E~ a ~A .:/01.. + A

+.1 A(I) R(I)} - -1- 1'-(2) {A(I) (et: + F(I») + C(I) F(I)}]
3 ~All All .> E~A 11~A OT] T] ~AT]U T]u

_.1 1:,(I)C(2) T:(2)[a (I)(£:, + F(I») + .1 A(l) F(I)]
3 ~yli yliE~ E~/, AT] OT] 11 3 AT]U T]u •

(2.47)

When successive substitutions of Fp(I), ~~I), and of Fp(2) and~~2) are made, a lengthy series

ofterms is produced. It is difficult to know a priori after how many terms the series is to be

truncated since little is known about the rate of convergence of the contributing terms.
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However, Couling and Graham undertook a number ofnumerical calculations ofthese terms

for gases of linear and quasi-linear molecules [9] and for non-linear molecules [14]. They

established that the series Fp(l) could be truncated once the terms in the scattered intensities

were of the order of a5,a2A, a3A and a3C since higher-order terms make negligible

contributions, the series having converged adequately. Equation (2.47) becomes

F,(I) = T,,(l)a (2)t: + T,,(I)a (2)y;(2)a (I) t:
~ ~y yo 00 ~y yo OE E~ 00

+T,,(I) a (2) 1;(2)a (I) 1',( I)a (2) t: - 1. T,,(I) A(2) t:
~y yo OE E~ ~A 1.11 011 3 ~yo EYO OE

- 1. T,,(I) a (2) y;(2) A(I) t: ++T,,(I) A (2) y;(2)a (I)t:
3 ~y yo OE AE~ 01. .J ~y yOE OE$ $1. 01.

1 7"'(1) A(2) 7"'(2) (I) ~ 1 7"'(I)C(2) 1:(2) (I)t:
- 3" l~yo EYO lE~ a ~A c/O A - 3" l~yo YOE~ E$A a All 011 +....

To understand the physical meaning ofthe terms in equation (2.48), consider as an example

the term - t 1fJ\lic~i:~ I;.Wa~ll~Eoll which can be interpreted as follows: the incident light wave

field 0J11 induces on molecule 1 an oscillating dipole moment a~~0Jll' which in turn gives

rise to an oscillating field gradient at molecule 2 through the third rank T-tensor I;.W . This

field gradient results in an oscillating quadrupole on molecule 2 as described by c;i1$ ,this

quadrupole moment now making an additional oscillating field contribution at molecule 1.

Now that we have found the expression of the field FP(I) at molecule1, the expression ofthe

corresponding field gradient FP~I) must be. found. Using the approximation ofCouling and

Graham [9], where they concluded that by neglecting oscillating quadrupole moments and

the higher multipole moments, and substituting the expression of f.l~2) into equation (2.39)

yields only two terms of FP~1l whose contribution to Bp was found to be significant enough



for retention. Thus, we have

Fe(I) - 1:,(I)a (2)~ + 1:,(l)a (2)T(I)a (I)~ +...
~y - ~yo OE OE ~yo liE E~ ~A Of- •

Substituting equations (2.48) and (2.49) into equation (2.38) yields
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(2.49)

(2.50)

which is the expression of the induced electric dipole moment on molecule 1 in terms of

molecular property tensors. In order to obtain an expression ofthe differential polarizability

1t ~I~ which is defined in equation (2.12), we need to differentiate equation (2.50) with respect

to 0>11.

1t (p) = a (p) + a (p) 1:, a (q) + a (p) 1:, a (q) 1: a (p)
all all a~ ~y Yll a~ PY yli OE Ell

+a (p) T, a (q) 1: a (p) T. a (q) - .1 a (p) T,( p) A (q )
ap py yli liE E~ ~A All 3 ap Pro llyli

+ .1 a (p) T, a (q) 1:(p) A (p) - .1 a (p) T, A (q) To( p)a (p)
3 ap ~y yo liE~ 11E~ 3 a~ py yoE liE~ ~Il

- -l a (p) 1:,( p) A (q) T a (p) + .1 a (p) T,(P) C(q) T(p) a (p)
3 ap pyli yliE E~ ~Il 3 ap pyli yliE~ E~A All

+ -l A (p) 1:,( p)a (q) + .1 A (p) 1'.,( p)a (q) T a (p) +...
3 apy pyli li11 3 apy pyli liE E~ ~ll

(2.51 )

where p and q imply molecules p and q respectively. Now using equation (2.51) above in

equation (2.32) yields



where

p = 02 + a3 + a4 + as + alA] + a3 A ] + 03C]+···

b2 +b3

21 (I) (1)7' (2») 21 (I) (2)7' (I»)a3 = \UIXUIp1pyUyX + \U=xUzp1pyUyX'

- 1 (1)7' (2) (2)7' (I)) 1 (I)T, (2) (1)1: (2))
a 4 - \U zp 1pyUpxUzo 1 0E U r:x + \U zp pyU yx U zo OEUEX

+2 / u(I)U(2)T, U(I)1: u(2»)+2/ u(I)U(I)T, U(2)1: U(l))
\ zx zp py yo DE EX \ zx zp py yo DE EX ,

- 21 (I) (I)T, (2)7' (1)7' (2»)as - \UIXU IP pyU yo 10EUE$1$icaAx

+2/a (I)a (2)T, a (1)1: a (2)T, a (I))
\ IX zp py yo DE E$ $ic Ax

+2/a(I)T, a (2)a(l)y; a(2)T, a(l))
\ IP py yx .:0 DE E~ ~ic Ax

+2/a(l)T, a(2)a(2)y; a(l)T, a(2))
\ IP py yx ID DE E~ $ic Ax ,
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(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)



20

and

b =/a(l)a(I))+/a(l)a(2)cosX )
2 \ xx xx \ xx xx 12 ,

b / (I) (1)7' (2») / (I) (2)7:, ()))
3 = \ a xx a xl} 1 py a yx + \a xx a xp pya yx •

(2.58)

(2.59)

(2.60)

(2.61 )

The tensors in the above terms are expressed in the spaced-fixed axes (x,y,z). They must be

projected into the molecule fixed axes (1,2,3) of molecule 1. To proceed, explicit forms of

the tensors ~P' ~py , a up , AUpy and CUPYb are required.
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2.3.2 The molecular tensor theory ofBp for linear molecules

The figure below indicates the parameters required to describe the relative configuration of

two linear molecules. These are the four parameters R, SI' S2 and <po R is the separation

between centres ofthe two molecules (R is sometimes referred to as the line ofcentres) with

Abeing a unit vector along vector R. Here 3 and 3' have been chosen as the principal axes

of molecules 1 and 2 respectively, and SI and S2 as the angles between 3-axis and the line of

centres and the 3'-axis and the line of centres, respectively.

2

y

x 3

z

3' 2'
/f

/
-. - <I> /

" /" /

\/ '(

Figure 2.2. The coordinates R,B}> B2 and rp used to describe the relative configuration T of

two aXially-symmetric molecules.

To exploit the symmetry of a molecule, its physical property tensors must be referred to a

system of molecule-fixed axes. However, the experimental measurement of the

depolarization ratio p is performed in the space-fixed system ofaxes which is oriented with
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respect to the direction of propagation of the incident light beam. As a molecule in the gas

sample tumbles in space, its set ofmolecule-fixed axes is continually changing with respect

to the space-fixed axes. The average projection of the molecule's tensor properties in the

space-fixed axes is obtained by (i) referring the molecular property tensors to molecule-fixed

axes, (ii) projecting these tensors into the space-fixed axes, and (iii) averaging the projection

over the orientational motion of the molecule.

The truncated virial expansion of the depolarization ratio p,

(2.63)

which describes the contribution ofintermolecular pair interactions to p, requires us to obtain

the explicit form of Bp. Initially we will consider only linear and quasi-linear molecules.

Thereafter, the molecular tensor theory is extended to accommodate calculations ofBp for

non-linear molecules.

The molecular property tensors such as a ap are referred to the space-fixed axes (x,y,z), and

must now be projected into molecule I IS molecule-fixed axes (1,2,3). The procedure to be

adopted has already been illustrated earlier in section 2.2: see equations (2.15) to (2.29). For

example, the first term in the expression ofa2 that appears in equation (2.53) has its projected

form given in equation (2.15), this result being obtained using the normal tensor projection

procedure. In equation (2.15), af is the direction cosine between the Cl space-fixed axis and

the i molecule-fixed axis.

For a molecule with a three-fold or higher rotation axis, let this axis coincide with the 3-axis
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of the molecule-fixed system (1,2,3). The tensor a jl) is then diagonal, with components as

given in equation (2.21):

Now recall equation (2.15):

[

al.
a(l) = 0

IJ

o

o 0]o .

a"
(2.64)

Here, (afa lea ja I) is the average over all isotropic orientations of molecule I in the

space-fixed axes, and this expression can be further simplified [18] to yield the results in

equation (2.17) where 8 ij is the Kronecker delta.

Recall that mean polarizability for linear molecules is

(2.65)

Our goal is to obtain the explicit forms of all the averages appearing in equation (2.52) in

terms of these diagonal elements and the interaction parameters R, el' e2and ~ . These

terms are all projected from the space-fixed system of axes (x,y,z) into molecule l's

molecule-fixed axes (1,2,3). This has already been achieved for the terms a2 and b2 in

equations (2.19) and (2.26), respectively.

We use the first term ofas as an example in illustrating the tensor-projection procedure for

the higher-order terms.
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(2.66)

The remaining terms are treated in a similar way. The term in the first pair of angular

brackets in equation (2.66) is a constant as the interaction configuration is assumed fixed.

Therefore, when allowing an isotropic rotation of the pair ofmolecules as a rigid whole, the

projection into (x,y,z) of this pair property (referred to (1,2,3) can be averaged over all

orientations. Averaging over the interaction parameters may subsequently be carried out. We

have

/ (I) (I)'r (2)'r (I)'r (2»)
\ a zx a z~ i~ya yD iDEa E~ l~Aa Ax

= -L(48 8 - 8 8 - 8 8 )/ (I) (I)y (2)y (I)y (2»)
30 ik jh ij kh ih jk \ a ij a km mna nr rsa sv vwa wh

= -L/a (I)a (I)T (2)T (I)y (2) - (I) (I)T (2)T (I)y (2»)
30 \ If IIn mn a nr rsa sv vwa W) a li a km mn a nr rsa sv vwa wk

(2.67)

where the angular brackets indicate an average over the pair interaction coordinates R, el' e2
and <p according to the general relationship

(x) = LxP(T)dT . (2.68)

Here the probability P( 'T) at 'T is related to the intermolecular potential energy U
l2

( 1') by

(2.69)

where .Q = I~II fd1' is the integral over the orientational coordinates of the neighbouring
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molecule 2. Substituting equation (2.69) into equation (2.68) yields

(2.70)

In order to further simplify equation (2.67), the explicit forms ofaijl), aij2) , r;?) and 7/;2)

are required. These are found to contain redundant interaction parameters 1~1) , li 2
) , AI and

A2 . However, there are well established relationships between this set ofparameters and the

direction cosines such that their elimination can be systematically achieved [11]:

a 3' = 1(2),
I I

1 (2)1(2) 1(2) e e e . e . e
I 2 = 3 = COS 12 = - cos I COS 2 + SIn I SIn 2 COS~,

1(I)A. = A, = COse
I 1.J "

a (2) = a 8 .. + (a - a )1(2)1(2)
Ij .11j 11.11 J

= a (1- K )8 .. + 3K a Z(2)1(2)
Ij 1 J •

(2.71 )

(2.72)

(2.73)

(2.74)

(2.75)

We mention again that the tensors aij!) and a~,~~ are diagonal in their own orthogonal axes

(1,2,3) and (1',2',3') respectively, with elements, a I I = a 22 = a 1. and a 33 =a 11 for linear

and quasi-linear molecules.
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The second and the third rank T-tensors are [12]

(2.76)

and

Hence, Benoit and Stockrnayer [26] were able to show that

(
(I) (2))_ I ( )2(3 2e 1)a::x a::x - 30 all - a 1. cos 12-

and

(2.77)

(2.78)

where B is the normal second pressure virial coefficient. It should be noted that equations

(2.78) and (2.79) are the second terms of a2 and b2, respectively. We now have the explicit

forms of the a2 and bz terms of equation (2.52):

(2.80)

(2.81)

and

2 4( )2 2( )2 ( 2 ) 2( -2B)b2 = a + 45 a 11 - a 1. + 45 a 11 - a 1. 3cos e12 - 1 + a --.
v"l

To obtain the averages of all the terms in equations (2.53) to (2.61) according to equation
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(2.69), we must eliminate l?) , ll(2) ,A I and A2 from the expanded forms ofthese expressions.

This was achieved by using the Macsyma symbolic manipulation package, which performs

piecemeal substitution of powers and multiples of the parameters [20]:

and

_( (2))2 (2))2 _( 2)e - l, + l2 - 1- cos 8 12 ,

(2.82)

(2.83)

(2.84)

Once the expressIOns for a2 , a3 , a4 , as, a2 AI' a3Al and a3C1 have been obtained (see

Appendix B for examples of the explicit forms), they are gathered into equation (2.52) for

p, which takes the form

,
Here Q3 represents that part of Q3 which is contained within the angular brackets see

equation (B.l), with similar definitions for Q~, •.. , Q 3C; .Equation (2.85) must now be

expressed in the virial form of equation (2.31). For linear molecules, ~a =all - a..L, so



that from equations (2.22) and (2.27) we have

Po = 45u 2+ 4(i1U)2 .

Equation (2.85) can now be further rearranged to yield

This reduces to

It follows from equations (2.87) and (2.31) that

where

28

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)



29

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

and

(2.96)

From equation (2.88) it can be seen that experimental measurement ofP allows a value of Bp

to be extracted from a plot of p versus v,;; I . Knowledge of Po, which is the y-intercept

of the plot, allows the value of

(2.97)
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to be deduced. The presence of 2B in this expression for B~ can mask the more interesting

contributions from the remaining terms, which are summed to allow comparison with 2B,

gIvmg

(2.98)

where the sum S arises purely from angular correlation and dipole-dipole, field-gradient, and
p

induced quadrupole moment effects in the molecular interaction.

All known calculated and experimentally deduced values of Bp and Sp for linear and quasi­

linear molecules are summarized in table 2.1.

2.3.3 The molecular tensor theory ofBp for nonlinear molecules

As for linear molecules, the physical property tensors of nonlinear molecules are referred to

molecule-fixed axes in order to exploit molecular symmetry. There are seven parameters

which are used to fully describe the relative configuration of a pair of interacting nonlinear

molecules. These are R, ai' PI' 'YI' a2, P2 and 'Y2' and they are now discussed in turn. R is the

displacement between the two molecular centres, and is initially chosen to lie along the z-axis

of the space-fixed axes for convenience. The parameters an, Pn and "tn' (where n is 1 and 2

for molecules 1 and 2, respectively) are the three Euler angles which are used to specify the

relative orientation ofthe molecule-fixed axes ofmolecule n relative to the space-fixed axes.

To rotate molecule l's molecule-fixed axes (1,2,3) into the space-fixed axes (x,y,z), for

example, three successive rotations are required [14]:

(a) rotation about the 3-axis through an angle a l (0 ~ a I ~ 27t ),
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(b) rotation about the new 2'-axis through an angle ~I (0::; ~ I ::; 1t ),

(c) rotation about the new 3"-axis (co-inciding with the z-axis) through an

angleYl (0::; YJ ::; 2n).

x

3'
I' ~

2 ~ /
;T'I"".... /...~ ".... /, ,.".... ,. .... /.... ,. .... /.... ,. .... /

........ ,.,." .... /
.... ,." ........ /....~ -¥'~ ---.z

y

\
\

\
\

\
\

\
\

\
\
....

3

I
I
I
I
I
I
I
t

2'

Figure 2.3. The molecule-fixed axes (1,2,3) and (1',2',3') of interacting molecules 1 and 2

respectively. The space-fixed axes are (x,y,z). The molecule-fixed axes generally change

constantly in orientation with respect to the space-fixed axes as the molecules randomly

tumble in space.

Hence, the nine direction cosmes a~ which are required to fully describe the relative

orientation ofthe molecule-fixed system ofaxes with respect to (x,y,z) can now be expressed

as functions of the three Euler angles a I' ~ I and YI. We have [22,35]
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cosy I Sill Y1 0 COS~I 0 - sin~ 1 cosu 1 SillU I 0

a
Q = - Sill YI cosy I 0 0 1 0 - SillU I COSU I 0
I

0 0 1 sin~ I 0 COS~I 0 0 1

lcosa 1 cosp 1 cosy 1 - sina I siny 1

= - cosa 1 cosp 1 siny I - sina I cosy I

cosa I sinp I

sina I cosp I cosy I + cosa 1 siny I

- sina J cosp 1 siny I + cosa I cosy I

sina J sinp J

- sinp I cosy 11
sin p J sin y I . (2.99)

COSPI

The nine direction cosines a~ required to describe the relative orientations of the molecule-

fixed axes of molecule 2, (1',2',3'), and the space-fixed system of axes (x,y,z) are written in

an analogous manner, with subscript 1 replaced with subscript 2:

r
COSU2 cosP2 cosy 2 - sin u2 sin Y2

a~ = - COSU2 cosP2 sin Y2 - sin u2 cosy 2

COSU2 sinP2

sinu2 cosP2 cosy 2+ cosu2 sin Y2

- sin u2 cosP2 sin Y2+ cosu2 cosy 2

sinu2 sinP2

In their calculations ofBp for the nonlinear molecule SOz, Couling and Graham- omitted the

A - and C- tensor components [23]. This was because there were no available literature values

for these tensor components. The contribution arising from Q
3
Cl term towards Bp was found

to be less than 1% for all linear molecules studied thus far [20], and so it appears that this term

can be safely omitted for nonlinear molecules as well. However, the a zAl term, which exists

only for polar molecules, was found to sometimes make significant contributions to Bp for

linear molecules of as much as 9% [20], and ought to be included in a full treatment. The

higher order Q 3 AI term contributes less than 1% to Bp for all the linear molecules investigated
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[20], the A-tensor series having rapidly converged. In this work, we were fortunate to have

obtained from Professor Mark Spackman [40] ab initio calculated estimates of the A-tensor

components ofthe non-linear polar molecule under investigation, namely dimethyl ether. The

inclusion ofthis additional contribution to Bp will ensure a better theoretical estimation ofthis

second virial coefficient. The a 3C1 and a3 A) terms have been omitted since, as already

discussed above, their contributions to Bp are negligible compared to those ofthe other terms.

The analysis is quite similar to the treatment of the linear and quasi-linear molecules. The

averages of a2 ' a3 ' a4 , as ' a2 AI ' b2 and b3 must be expressed both in terms ofthe components

of the diagonal tensors (I) _ (2)
a if - a i'j' and the seven interaction parameters

As with linear-molecules, all tensors are initially referred to the molecule-fixed axes (1,2,3)

of molecule 1. This ensures that for a given relative configuration of the pair of molecules,

the tensor product in (1,2,3) is fixed. Then, when the pair of molecules is allowed to rotate

isotropically as a rigid whole in the space-fixed axes (x,y,z), the average projection into

(x,y,z) of this pair property (referred to (1,2,3» can be averaged over all orientations, the

average (X) of the pair property X over the interaction coordinates following from the

probability per) as defined in equation (2.69):

The term (a ~)a~)) from equation (2.53) is now referred to molecule-fixed axes:



(a (lla (2 l ) = la (Ila (2l)1a~axa~ax) = -}-13a (I)a (2) _ 9a 2)
IT IT \ IJ kf \ I J k f -,0 \ IJ IJ
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(2.102)

where a ~2) is the polarizability tensor ofmolecule 2 expressed in the molecule-fixed axes of

molecule 1. In order to obtain the explicit form of what is contained within the angular

brackets in equation (2.102), use must be made ofthe definitions ofaf and a~, the notation

of which is abbreviated by writing

rAI
A2 A3l a~ =r;:

B2

B
3

]ai
u = A4 As A6 and Bs B6 ' (2.103)

A7 As A9 B7 Bs B9

where

AI = cosa I COS~I cosy 1- sina I siny I'

B I = cosa 2cos~ 2cosy 2 - sina 2sin y 2'

A4 = - cosa I cos~ I sin y I - sina I cosy l'

(2.104)

(2.1 05)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)



B = - cosa, cos R ,) siny 2 - sina 2 cosy 2'
4 - ~ -

As = - sina I COS~1 siny I + cosa I cosy I'

Bs = - sina 2 COS~2 siny 2 + cosa 2 cosy 2'

Ag = sin a I sin ~ I ,

A9 = cos~ I'

35

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

It follows from the above that the dynamic polarizability tensor ofmolecule 2 in molecule 1's
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I
(7).

molecule fixed axes (1,2,3), name y a ij~ , IS

211 212 213
(2) i j a P (2) 212 222 223a .. = a apa" a "a" .,lJ a l} l}

213 223 233

(2.122)

where a~ may be viewed as the transpose of equation (2.103), but this is taken care ofby the

summation indices. Now since

all 0 0
a (~~ = a (1) = 0 a 22 0

I J If

0 0 a".J.J

the

(2.123)

2 11 = a ll [At
2B\2 + A~B~ + A;B; + 2AtA4B1B4 + 2A7B7 (A4B4 + AtBI )]

+a22[AI2B~+ A~B; + A;Bi + 2A1A4B2Bs + 2A7Bs(A4Bs + A1B2)] (2.124)

+a33[A~Bi + A~B; + A;B~ + 2AtA4 B3B6 + 2A7 B9 (A4 B6 + AtB3)],

2 22 =a II[A~BI
2

+ A;B~ + AiB; + 2A2AsB1B4 + 2 AsB7 (AsB4 + A2BI
)]

+a22[A~B~+ A;B; + AiBi + 2A2AsB2Bs + 2AsBs(AsBs + A2B2)] (2.125)

+a 33[AiBi + A;B; + AiBg + 2A2AsB3B6 + 2AsB9 (AsB6
+ A2B3)],



Z33 = u I1 [A;BI
2 + AiBi + A~Bi + 2A3A6B1B4+2~B7(A6B4 + A3B1)]

+U 22 [A;Bg + AiB; + A~B~ + 2A3A6B2 Bs + 2 AgBg(A6Bs + A3B2 )]

+U 33 [A;B; + AiBi + A~B~ + 2A3A6B3B6+2~Bg(A6B6 + A3B3)],

ZI2 = U II[A1A2 BI
2 + A4 AsBi + A7AgBi + B1B4 (A1As + A2 A4 )

+B7(B4 (A4 Ag + AsA7)+ B1(A1Ag + A2 A7»] +u n [A1A2 Bg

+A4 AsB; + A7AgBi + B2 Bs(A1As + A2 A4 )+ Bg(Bs(A4 Ag + AsA7)

+B2 (A j Ag + A2 A7»] + u 33[A1A2 B; + A4 AsBi + A7AgBg

+B3B6(A1As + A2 A4 )+ B9 (B6(A4 Ag + AsA7)

+B3 (AlAg + A2 A7 ))],

2 2 2 ( )Z13 =u]][A]A3B] + A4A6B4 + A7 A9B7 + B\B4 A\~ + A3A4
2+B7(B4(A4A9 + A6A7 ) + B] (A]A9 + A3A7»] + u22[A]A3B2

+A4A6Bff + A7A9Bl + B2Bs(A\A6 + A3A4)+ Bg(BS(A4A9 + A6A7 )

222+B2(A\A9 + A3A7»] + U33[A\A3B3 + A4A6B6 + A7A9B9
+B3B6(A]A6 + A3A4)+ B9(B6(A4A9 + A6A7 )

+B3(A\A9 + A3A7 »],

Z23 = u]][A2A3Bf + As~Bl + Ag~B? + B\B4(A2~ + A3As)

+B7 (B4(ASA9 + ~Ag) + B\(A2~ + A3Ag»] + U22[A2A3Bi
+As~Bl + AgA9Bl + B2Bs(A2~ + A3As) + Bg(BS(A5~ + ~Ag)

+B2(A2~ + A3AS»] + U33[A2A3B} + A5~Bl + As~B~

+B3B6(A2~ + A3As) + B9(B6(AS~ + ~AS) + B3(A2~ + A3AS»].
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(2.126)

(2.127)

(2.128)

(2.129)
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Now the term (3a ~.I)a ~2) - 9a 2) that appears in equation (2.102) is expressed in terms of

those tensor components of equation (2.122) and (2.123) to yield

(2.130)

Therefore equation (2.102) becomes

(2.131)

which is the second term ofa2 in equation (2.53). The second term, (a ;~)a ~) cos X12) , of b2

in equation (2.60) was treated by Couling and Graham [25] in an analogous manner to that of

Bonoit and Stockmayer [26], yielding

la (I)a (2) cosX ) = ..L(a (l)a (2) _9a 2)+ a 2(_ 2B)
\ xx xx 12 45 IJ IJ V

m

where B is the normal pressure virial coefficient.

(2.132)

Since the explicit forms of a b1
) and a ~2) are available in equation (2.123) and (2.122)

respectively, we can invoke the Macsyma symbolic manipulation package to simplify equation

(2.132). The higher-order terms can also be referred to (1,2,3) in a similar manner, as is now

illustrated with a particular example, namely the first term of equation (2.56):

(2.133)
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where the angular brackets indicate an average over the pair interaction coordinates

R a A y a A and y .The T-tensor L A is given in equation (2.40), where it is referred
, l,tJj' I' 2,tJ2 2 'hI-'

to the space-fixed axes (x,y,z). Projecting this T-tensor into molecule-fixed axes yields

where

~ j = 2Ai - Ai - A1
2

,

7;2 =2 Ai - A; - Ai '

1;3 = 2 Ag - Ai - Ai '

~2 = 2A7 Ag - A4 As - A,A2 ,

~3 =2A7 A9 - A4 A6 - A l A3 ,

7;3 =2Ag A9 - AsA6 - A2 A3 ·

1]3]
123
133

(2.134)

(2.135)

Using these results, the Macsyma tensor manipulation facilities are able to evaluate the

averages of b2, b3, a3, a4 , as and a2 Al . The simplified expressions of these terms are not

quoted in this work because some of them are extremely lengthy, taking several pages each.

Nevertheless, once they are substituted into equation (2.52), the following general expression

is obtained:

(2.136)
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Now, recalling that

equation (2.136) can be written as

{

-I -', (4 )-3, (4 )~I .?B (1 J}1+ ~l_g'+ (41t£o) a~ + (41t£ol,- a + 1t£o, a- + 1t£o? a'JA +~ + 0 _
Po 2(1'.0)2 2(1'.0)2 J . 2(t.0 t 4 2(t.0 t ) 2(t.0 t ~ I V V2

P = m m, (2.137)

1+.1. {~l_0'+ 3(41t£o)-1 b~ + 2B}
3 Po 2(t.a)20 2(t.a)2 J V

m

which reduces to

this being in the form of virial expansion. Extraction of the second light-scattering virial

coefficient Bp is a simple"matter:

where B is the normal pressure virial coefficient, and where

g =_I_Vg'
2( 1'.0)2 m ,

_{I 2}( )-1 'G3 - --2 + --2 41tEo Vma3,
2(L\a) 48a

(2.138)

(2.139)

(2.140)
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(2.141)

(2.142)

(2.143)

and

(2.144)

As with the normal second pressure virial coefficient B, the coefficients in equations (2.139)

to (2.144) are independent ofthe molar volume but dependent on temperature. g' in equation

(2.139) is the expression given by equation (2.130), while b~ is that part of b3 that is contained

within the angular brackets (see Appendix C), with similar definitions for a~, a ~, a~, a~ and a 2A;.

Plotting a graph of p versus V,1~ I from experimentally measured values of P and Vm for a

particular molecular species will enable us to extract the value of Po, and hence deduce from

equation (2.138) a value for

(2.145)

It is the sum of terms arising purely from angular correlation and collision-induced
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polarizability anisotropy, namely

(2.146)

which is ofinterest; and to extract a precise value ofthis sum from the value ofB~ requires the

ratio (~~) to be of the order of unity or greater.

2.4 Evaluation of Bp by Numerical Integration

Evaluation ofthe average (X) ofa quantity Xover the pair interaction co-ordinates according

to equations (2.70) and (2.10 1) has been achieved in this work by using the numerical

integration method of Gaussian Quadrature. (For a detailed discussion of integration by

Gaussian Quadrature, see [43D. The averaging requires the classical intermolecular potential

energy U 12 ('t). General tensor expressions for U l2 ('t) have been derived by Buckingham [12],

who evaluated them for the special case ofinteracting linear molecules in the configuration of

figure 2.2. Couling and Graham [14] have subsequently evaluated them for the case of

interacting nonlinear molecules as shown in figure 2.3. These interaction energies are now

reviewed in full.

Buckingham and Utting [10] showed that for intermolecular separations R which are large

relative to molecular dimensions, the pair interaction energy U I2 ('t) has three components:

the electrostatic, induction and London dispersion energies. The electrostatic energy arises

from the interactions of the zero-field electric moments (charge, dipole, quadrupole, etc.) of



43

the two molecules. The induction energy arises from the distortion of the electronic structure

of a molecule due to the permanent electric moments on the neighbouring molecule. The

London dispersion energy arises from interactions ofthe electric moments due to fluctuations

in the charge distributions of the two molecules.

These interaction energies are the result of long-range forces which are well understood

[10,12,17], and which are evaluated on the assumption that the overlap ofthe molecular wave

functions is small. Now, at small ranges of interaction where the electron clouds of the

molecules do overlap significantly, the ab initio quantum-mechanical calculations [36] which

would be required to take into account the intermediate-range exchange forces are

prohibitively complicated (especially for many-electron atoms); and so it has been customary

[4,16] to assume that the three interaction components mentioned above are applicable also to

short-range interactions provided that an additional overlap energy term is added to account

. for the repulsive short-range interactions.

The general form of U l2 ('t) used in our calculations is [11,12,14]

(2.147)

Here, U u is the familiar Lennard-Jones 6: 12 potential

(2.148)

which is used to represent the dispersion and overlap energies. R is the intermolecular

separation, Ra and E are the well-known Lennard-Jones parameters, the term (~rdescribes
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the attractive part of the potential, while (~ f2 describes the short-range repulsive part.

U~,~ ,U~.s and Us,s are the electrostatic dipole-dipole, dipole-quadrupole and quadrupole-

quadrupole interaction energies of the two molecules, respectively, while U~L.ifld~ and UO.illd~

are the dipole-induced-dipole and quadrupole-induced-dipole interaction energies,

respectively. Finally, Ushape is the shape energy which accounts for the angular dependence

of short-range repulsive forces for non-spherical molecules. We have from Buckingham [12]

and

U· = _.la(T(I)1I (2)T(1) I I (2) + T(I)II (I)T(I)"(I))
~,md~ 2 ap rp ay ry ap rp ay ry ,

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)
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Below are given the explicit forms of these potential energies for two specific cases, namely

interacting linear molecules, and interacting nonlinear molecules of either C2v or D2h

symmetry.

2.4.1 The potential energy expressions for interacting linear molecules in the coordinate

system shown infigure 2.2

Ull,e = 4;£0 {fI-t8R-4[cos8)(3cos282 -1)+cos82(3cos28) -1)

+2sin8 1sin82cos82cos~ + 2sin8 1 sin8 2eos8) cos~]},

US,S = 4;EO {t 82R-5[1- 5cos2 8] - 5cos2 82 + 17 eos2 81 cos2 82

+2sin2 8] sin2 82 cos2 $ + 16sin8] cos8] sin82 eos82 cos$]},

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)
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(2.160)

and

(2.161)

where D is a dimensionless parameter called the shape factor, and which lies in the range ­

0.25 to 0.5 to ensure that the R I2 term is always repulsive at short range [14].

2.4.2 The potential energy expressions for interacting nonlinear molecules in the coordinate

system shown in figure 2.3

Since we will be considering the dimethyl ether molecule, which is ofC2v symmetry, we only

present expressions for this particular symmetry point group. The 3-axis is taken to be the

principal molecular axis, and so the dipole moment has only one independent component

(2.162)

while the traceless quadrupole moment has two independent components [12]

(2.163)

The transformation from space-fixed axes (x,y,z) into molecule-fixed axes (1,2,3) or (1',2',3')

is carried out as follows:



(1) _ a 11 (I) (2) a (2)
/.la - a i ri , . /.la = ai' /.li' ,
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(2.164)

Invoking the tensor facilities ofthe Macsyma algebraic manipulation package, we obtain the

following expressions:

U~l,6 = 4;EO {/.l3 R -
4
[8,(A9(-B]2 +Bi -B; +Bi +2B; - 2Bn

+2B3(A]A7 - A3A9)+2B6(A4A7 - A6A9)

-2B7(A3B] - A6B4) + B9(A\2 - Ai + A; - Ai - 2A; + 2Ag

+2A3B3+ 2A6B6)) + 82 (A9(-B; + Bi - B; + Bi + 2Bi

-Bg)+2B3(A2Ag - A3A9)+2B6(ASAg - A6A9)-2Bg(A3B2

+A6Bs) + B9(A; - Ai + As
2 - Ai - 2Ai + 2Ag + 2A3B3

+2A6B6))]} ,

TT -(4 )-2{ I R-S[8 2 ( 4 22 4 2( 2 2) 4u8,ind~l - 1tEo - i U I AI - 2A] A3 + A3 + 2A4 AI - A3 + A4

2A 2 ( 2 2 2 2 2( 2 2) 4+ 6 -AI +A3 -A4 )+A6 +4A7 A3 +A6 +4A7 -8A7 A9 (AIA3

+A4A6)+4A~(Af + AI-2Aj)+4A~)+8~[Ai -2AiAi + At

2A2(A 2 A2) A4 2 2( 2 2 2 4 2( 2 2)+ S 2 - 3 + S + A6 - A2 + A3 - As ) + A6 + 4 As A3 + A6

+4Ai -8AsA9 (A2A3 + As~)+4A~(Ai + Aff -2Ai)+4A~)

28 8 (A 2A2 A2(A2 A2) 4 2 2 2 4 2 2
I 2 I 2 - 3 I + 2 + A3 + A4 (A2 - A3 ) + As (AI - A3

A 2) .d~(A2 2 2 2 2 4 2 2 2+ 4 -.L'U I + A2 -2A3 + A4 + As )+ A6 +2A7 (-A2 + A3

-Aff + Al) + 4A7 As(A]A2 + A4 As ) + 2Ai(-Af + Ai - Al + Al

+2Aj) - 4A9 [A7 (A]A3 + A4A6 ) + As (A2A3 + AsA6 )] + 2A~(Af

A 2 A2 2 2 2 2+ 2 + 4 + As -2A7 -2As )+4A9 )]},

(2.165)

(2.166)

(2.167)
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(2.168)

(2.169)



and

-g 2 4 2 2 2(A2 A 2) A4 2A2( A 2
U . =1 ) aR {S) [AI - 2A) A3 + 2A4 ) - 3 + 4 + 6 - )

tnd~l,tnd~ 2 (4m:o)2

A~ - A;) + At + 4Aj(A~ + Ag) + 4Aj - 8A7 A9(AIA3 - A4A6 )

+4A~(A? + A;- 2A? + 4A~]

2 4 2 2 4 A2(A 2 A2)S2[A2 -2A2 A3 +A3 +2 S 2- 3

4 2 2 2 2 4 4A 2(A 2 A 2) 4A4
+AS + 2 A6 ( - A2 + A3 - As ) + A6 + g 3 + 6 + g

-8AgA9(A2A3 + AS~)+4A~(Ai + Al-2Ai)+4A~]

22 2 2 2 4 2( 2 A 2) A 2 (A 2 A2
+2S182 [A1 A2 -A3 (A1 +A2 )+A3 +A4 A2 - 3 + S 1 - 3

2 2 2 2 2 2) A2 2A2( 2A2 A2
+A4 ) - A6 (A2 - 2A3 + A4 + AS + 6 + 7 - 2 + 3

-Al + Ag) + 4A7Ag(A1A2 + A4As)+ 2Ai(-A? + A~ - A; + Ag

+2Aj)-4A9 [A7 (A1A3 + A4~)+ Ag(A2A3 + AsA6 )]

+2A~(Al + Ai + if + Al- 2Aj - 2Ai) + 4AJD,
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(2.170)

where D 1 and D 2 are dimensionless parameters called the shape factors: for axially':"symmetric

molecules, we set D2 = 0 and recover Buckingham's shape potential. The above expressions

are substituted into U I2 (T) in equation (2.147) for use in the averaging process, this being

achieved using Macsyma: the An and Bn (where n is 1 to 9) were replaced by the explicit

expressions as they appear in equations (2.104) to (2.121). Upon obtaining the final explicit

form of U 12 (T), the resulting expression was translated directly into Fortran code using

Macsyma itself. The programs for performing the numerical integration were written in

Fortran. The integration limits for the orientation angles are given by the ranges of

aI' a 2 , PI' P2 'Yl and Y2 as in equation (2.101). These ranges were divided into sixteen

intervals each, while R was given a range of0.1 nm to 3.0 nm divided into sixty four intervals.
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The Fortran programs, an example of which is given in Appendix D, were run in double

precision either on a Pentium II 450 MHz PC with 256 Mb ofRAM using the fast University

of Salford FTN95 compiler, or our Silicon Graphics Origin 200 workstation with twin MIPS

RIO 000 processors and 256 Mb ofRAM. Program run times were typically ofthe order of30

minutes each.

Through this process it was possible to determine all of the required numerical averages for

the series of contributing terms to Bp.

2.5 Results of Calculations of Bp for Dimethyl Ether

2.5.1 Molecular properties ofdimethyl ether

The molecular data used in the calculations ofBp ofdimethyl ether are listed in table 2.2. This

molecule belongs to the Czv symmetry point group, and is taken to lie in the 1-3 plane ofthe

molecule-fixed axes 0(1,2,3), with 3 along the principal molecular axis.

In previous work on the non-linear molecule CZH4 [14], and forvarious non-linear molecules

ofCzv symmetry [25], optimized values for the Lennard-Jones force constants Ra and Elk, and

the shape factors DJ and Dz, were obtained by fitting values of the second pressure virial

coefficient B(T) calculated according to

N
B(T) = ----..-!L f[1- exp(-VI2 ('r) I kT)]dr, (2.172)

2 1

to experimental data over a range oftemperature. We have adopted the same procedure in this

work for dimethyl ether, using the measured B(T) data ofTripp and Dunlap [37] as a basis for

the fitting procedure. The optimized force constants and shape factors are reported in table 2.2,

while values ofB(T) calculated using these parameters are compared with the experimental

data in table 2.3.



Table 2.2. Molecular properties used in the calculation ofBp

for (CH
3

)2 O. Dynamic polarizability tensor components

are all at the wavelength of 514.5 nm.

Property Value

Ro(nm) 0.47a

E / k(K) 290.0a

DJ -0.04926a

D2
0.29666a

1030113 (Cm) -4.37 ± 0.03 [30]

1040ell(Cm2) 11.0 ± 2.0 [38]

104o e 22 (Cm2) -4.3 ± 2.0 [38]

1040 e 33 (Cm2) -6.7 ± 1.7 [38]

1040 CX11 (C2m2r l
) 6.72b

104°cx 22 (C2m2r') 5.51 b

1040 cx (C2m2r l) 5.32b
33

1040all(C2m2rl) 7.278c

104o a22 (C2m2J -1) 5.744C

1040 a33(C2m2rl) 5.968C

104°a(C2m2rl) 6.33C

1050 A (C 2 m 3r l
) -0.6939834d

113

1050 Am (C 2 m3r l
) -3.5661792d

1050 A (C2m3r 1
) 2.7869264d

311

-0.7622253d

aObtained by fitting pressure virial coefficients (see text)
bab initio MP2 calculated values at A= 514.5 nm [40]. We note the
excellent agreement (within 3%) between the calculated [39,40] and
measured [39,41] polarizability values at A= 632.8 nm, and so use the
calculated values at A= 514.5 nm with confidence.
Cab initio MP2 calculated values [40] scaled according to the
experimentally deduced mean static polarizability [42].
dab initio SCF calculated values [40].
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Table 2.3. A comparison of experimental values ofB(T) for dimethyl
. ether, together with our calculated values. See table 2.2 for the force
constants and shape factors.

T/K

283.25

303.15

323.15

Tripp and Dunlap [38] Calculated in this work

-542 ± 4 -542.29

-466 ± 11 -468.4

-411 ± 9 -409.69

2.5.2 Results ofcalculations for dimethyl ether

Table 2.4 gives the relative magnitudes of the various contributions to Bp calculated for

dimethyl ether at T = 299.68 K and A= 514.5 nm, this being the mean temperature and

wavelength at which our experimental determination of Bp was undertaken, as reported in

chapter 3. Also included in chapter 3 is a comparison ofthe measured and calculated Bp values

for this molecule.

We note that, as found for previously studied molecules [14], the a4 term makes the dominant

contribution to Sp, while the as term makes a much smaller, although still significant

contribution. This series of terms is now rapidly converging, so that the a6 and higher-order

terms in the dipole-dipole interaction should contribute negligibly. Notice also how the a01

term, which has, in this project, been evaluated for the first time for a non-linear molecule,

makes a small but significant contribution of some 3.6% to Bp.

Table 2.5 lists the temperature dependence of the calculated Sp and Bp values for dimethyl

ether, while table 2.6 summarizes the calculated and experimentally deduced values ofSp and

Bp for the other two non-linear molecules already investigated, namely ethene and sulphur

dioxide [14].



Table 2.4. The relative magnitudes of the various contributions to Bp of

dimethyl ether calculated at T= 299.68K and A= 514.5 nm. Bp is

obtained using the experimental Po = 0.00377, as reported in chapter 3.
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Contributing term

g

106 x value
% contribution

m 3mol- 1 to Bp

17.593 -3.97

2.987 -0.67

-240.558 54.32

691.356 -156.12

47.967 -10.83

-15.99 3.61

2B

503.355

-946.194

-113.66

213.66

2B + Sp = -442.839 x 1O-6 m 3mol- 1

Bp =-1.661 x 1O-6 m3mol-
1G

Table 2.5. Temperature dependence of the calculated Sp and Bp values of dimethyl ether at

A= 514.5 nm.

106 S 106 B Sp 106 Bp p
TIK m 3mol- J m 3mol- J 2B m 3mor1

283.25 531.49 -542 -0.49 -2.072

299.68 503.355 -473.097 -0.53 -1.661

303.15 498.185 -466 -0.53 -1.627

323.15 471.925 -411 -0.57 -1.313



Table 2.6. A summary of all measured Bp and Sp values for nonlinear molecules. Comparison is made with the theoretical values

obtained using the molecular-tensor light-scattering theory of Bp described in section 2.3.3.

106 B (exp) 106 B (theory) B (exp) 106 S (exp) 106 S (theory) S (exp)
p p p p p p

m3mol- 1 m3mol- 1 B (theory) m3mol- 1 ' I S (theory)
Molecule Reference A/nm T/K m.Jmol-p p

CZH4 Couling et al. [25] 514.5 294.92 -2.384 ± 0.027 -2.357 1.011 92.2 ± 4.8 94.36 0.977

Berme et al. [8] 514.5 328.0 -1.78 ± 0.07 -1.671 1.065 85.0 ± 8.0 91.87 0.925

SOz Couling et al. [21] 514.5 338.35 -5.74 ± 0.37 -5.951 0.965 270 ± 47 257.70 1.048

(CH3)zO this work 514.5 299.68 -1.78±0.13 -1.661 1.072 480 ± 44 503.36 0.955

VI
..f::>.
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Chapter 3

Experimental Measurement of the Second Light­

scattering Virial Coefficient of Dimethyl Ether

3.1 The Light-scattering Apparatus

Determining experimental values ofthe second light-scattering virial coefficient Bp ofa gas

requires apparatus which can measure the depolarization ratio p ofthe light scattered at right

angles to the direction ofpropagation ofthe incident beam in the gas sample for a wide range

ofpressures. The initial development ofthe light-scattering apparatus used in this work was

carried out in the period 1991-1995, and has been extensively discussed in [1]. Hence we

only give a brief review here.

The optical system used for our experiment is shown schematically in figure 3.1. The output

beam of the argon-ion laser is nominally polarized vertical to the optical bench, and pure

polarized light is obtained by a polarizing prism. The polarized beam then passes through the

scattering cell, finally striking a light transducer which allows for continuous monitoring of

the incident beam intensity. The 900 scattered beam passes through an analyzing prism which

allows for selection of the horizontally and vertically polarized components. The neutral

density filter is used to attenuate the more intense vertically polarized component, so

overcoming the problems associated with the slight nonlinearity in the photomultiplier



58

response at higher count rates. The output signal from the photomultiplier is amplified and

fed into an· electronic photon counting system housed in an IBM compatible personal

computer. Supporting software allows the computer to count discrete photons reaching the

photomultiplier photocathode. p is then calculated from measured count rates of the

horizontally and vertically polarized components of the scattered beam.

scattering cell

polarizer

Iargon-ion laser I rl ~=:::: ::==1 ,-)-----1 dc
. -- ~-- I- --- power

[SJ
I

=
I

analyzer

neutral density
filter

.........................

photomultiplier tube

PMT housing

C660

!computer

:. :

C604-A

amplifier/
discriminator

dc power
supply

Figure 3.1. The optical system usedfor measurement ofthe depolarization ratio p of the

light scattered by dimethyl ether.

We now discuss each of the various components in a little more detail.
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3.1.1 The optical bench

The various optical components have to be aligned as precisely as possible to reduce the

presence of geometrical errors in p. Bridge and Buckingham [2] have shown that the error

in p will be negligible (i.e. less than 1/500) provided that the vertical ofthe main optical rail

supporting the polarizer and scattering cell, and that of the 90° optical rail supporting the

analyzer and photomultiplier, coincide to within 1°. This requires a stable, vibration free

optical bench to support the optical rails, which themselves need to be easily adjustable for

obtaining the vertical position.

Use was made of an optical bench (a heavy L-shaped steel C-bar 2.3 m long, 25 cm wide

and 9 cm high, with a 0.5 m L-piece) having three adjustable feet with anti-vibration pads,

resting on a granite slab supported by brick pillars. The two steel optical rails were each

mounted onto this optical bench by resting upon the tips of three bolts screwed into the

bench, hence providing a tripod support. Using an engineering spirit level and aT-square,

these rails were set to be exactly perpendicular to each other, and exactly level. A plumb-bob

enabled the rails to be set vertical to less than 10, hence keeping geometrical errors negligible.

3.1.2 The laser

The argon-ion (Ar+) laser is preferable to the helium-neon (He-Ne) laser as a light source for

light-scattering experiments for three reasons. Firstly, the output intensity of the 514.5 nm

green line of the Ar+ laser is generally ten times that ofthe He-Ne 632.8 nm line. Secondly,

the intensity ofRayleigh scattered light is inversely proportional to the fourth power of the

wavelength ofthe incident beam. Finally, most photomultipliers operate more efficiently in

the blue-green spectral range than in the red.
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The Spectra Physics model 165 Ar+ laser was used in this work. It was operated on the

514.5 nm line, which has an adjustable output power up to a maximum of 0.8 W. The beam

diameter is 1.5 mm at its l/e2 points, with a divergence of 0.5 milliradians. For a slightly

divergent linearly polarized incident beam, the observed depolarization ratio p deviates from

the true p by an amount [2]

- + l.B2
Pobserved - Ptrue 4

(3.1 )

where B is the maximum angle ofdivergence ofthe beam in radians. For the Ar+ laser beam

used in these experiment the beam divergence of0.5 milliradians leads to a I!4B2 ofthe order

of 10-7, which is a completely negligible error for a p value ofdown to about 10-4
• Therefore

we can confidently state that the geometrical error of our experimental setup cannot affect

our measured depolarization ratios, since they are of the order 10-2 for dimethyl ether.

Since the laser output beam may fluctuate in intensity from time to time, thereby causing

instability in the measurement ofp, the intensity had to be monitored continuously. This was

achieved by using a Photoamp model A-1805 light transducer. The incident light emerging

from the scattering cell fell onto this device, its output voltage, as measured by a digital

multimeter, being continuously monitored. Any drift in voltage could be countered by

adjusting the plasma current, the beam intensity thus being held constant. The output was

typically kept constant to one part in a thousand throughout anyone experimental

determination of p.

3.1.3 The scattering cell

Figure 3.2 gives a cross-sectional view of the scattering cell. The cell must contain the gas

samples introduced into it in a pure and dust-free state. Our scattering cell was made up of
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two stainless-steel cylinders: the one parallel to the incident beam and the other one parallel

to the direction of observation. Tt was designed to withstand a pressure of several MPa, and

to keep stray background light to a bare minimum, this being achieved by having a highly

polished aluminium Rayleigh horn positioned at the far end ofthe scattered light tube as seen

by the detector. The use of stainless steel and aluminium, and teflon O-rings as seals,

ensured that the cell would be inert to many of the corrosive chemical gases which may be

used in the measurement of p.

entrance window

light stop
scattered light
exit window

bronze Rayleigh
horn

incident beam
exit window

Figure 3.2. A Cross-sectional view ofthe scattering cell.
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The measurement of p requires that the entrance window and 90° exit window ofthe cell do

not introduce significant spurious depolarization ofthe incident and scattered beams~ Pockels

glass windows were chosen because of their inherent low strain,· and their low stress

coefficient.

3.1. 4 The gas line

Figure 3.3 shows a schematic representation of the gas line which was assembled to allow

dust-free gas samples to be introduced into the scattering cell. The line was constructed out

of standard Hake high-pressure stainless steel tubing and valves, enabling it to withstand

pressures in excess of 15MPa. Both the gas line and the cell itself had to be leak free to

prevent dust particles entering the system through leaks. The presence of a single dust

particle can lead to light scattered out ofthe incident beam which is far more intense than the

light scattered by the gas sample itself. This results in the light detector producing a large and

strongly fluctuating signal.

pressure
transducer

sintered
steel
filter

millipore
filter

scattering cell

to the
vacuum
pump

Figure 3.3. A schematic representation ofthe gas line
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Before introducing gas samples to the cell, they were passed through a millipore plastic

membrane with an average pore size ofO.2Ilm. A visual test to ascertain that the gas sample

is dust free was to increase the power of the incident beam to its full 0.8 W, and to observe

the 90° scattered beam with a travelling microscope. Any dust particles are readily detected

as bright specks of light drifting about randomly.

The scattering cell was initially dedusted by flushing with a constant stream ofdry air which

had been sucked through the millipore filter by the rotary oil pump. After a few minutes of

flushing, no dust particles could be detected with use ofthe travelling microscope. The cell

was then evacuated by closing the Hoke Micromite fine-metering valve while leaving the

vacuum pump running. The entire line was then tested for leaks with the Edwards Spectron

model300E leak detection system, both when under vacuum and when filled with a helium­

oxygen mixture to about 5 MPa.

Since the dimethyl ether used in our experiments is flammable, and can produce anaesthesia

if inhaled, it had to be handled and disposed ofwith caution. The light-scattering laboratory

was well ventilated, with a spark-proof extractor fan. After measurements had been taken,

the excess dimethyl ether was burnt off in a controlled way.

3.1.5 The analyzer

The 90° scattered light emerging from the cell was passed through the analyser prism to

allow selection of either the vertically or the horizontally polarized component of the

scattered light. Precise measurements of these scattered signals are crucial for the

measurement of the depolarization ratio p, which is typically ofthe order of 10-2. A Melles-
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Griot Glan-Thompson prism was used in our work, having a square cross-section and

dimensions 11 mm by 11 mm by 31 mm. It was mounted in a divided circle with the

transmission axis perpendicular to the axis of rotation. The vernier scale permitted angular

settings with a precision of 2' of arc.The analyzer prism was linked to the 90° exit window

of the scattering cell via a light-tight tube to prevent stray light from interfering with the

scattered light signal.

3.1.6 The photomultiplier

The intensity ofthe 90° scattered light is very small: this is particularly true for the horizontal

component, which is typically a hundred times smaller than the vertical component. Clearly,

successful measurement of the depolarization ratio p relies on precise measurement of the

intensity components of the 90° scattered light beam. The need for a highly sensitive light

detector can readily be appreciated.

A photomultiplier tube provides the necessary detection capabilities, and can in fact be used

to count individual photons if the incident intensity is not too high. A Thorn EMI 9128B

photomultiplier was used in this work, operating in the single-photon-counting mode. It has

a diameter of 29 mm, and eleven linearly focussed dynodes, resulting in a high gain,

excellent single-electron response and good pulse height resolution; all of these properties

being essential to the photon counting technique.

The photomultiplier housing was mounted on the 90° optical rail so that the cone of 90°

scattered light travelled perpendicularly to the photomultiplier window. The 9128B tube's

window is pIano-concave, hence focussing photons onto the photocathode. The detector has

a maximum angle of acceptance of 4.5° in this configuration, and light stops were used to
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reduce the angle ofdivergence ofthe cone ofscattered light reaching the detector to less than

30. This should not lead to significant geometrical errors, as shown by Bridge and

Buckingham [2].

3.1.7 The neutral density filter

The 9128B photomultiplier was found to have a slightly nonlinear response for count rates

in excess of around 100 kHz. Since the vertical component ofthe scattered light is typically

a hundred times that of the horizontal component, its count rate generally falls into the

nonlinear region. This problem was overcome by attenuating the vertically polarized

scattered light signal by a precisely known factor ofabout ten. This was achieved by placing

a neutral density filter behind the analyzer (so as not to spuriously depolarize the scattered

light). A light-tight holder held the filter in place. The attenuation factor of the filter was

precisely measured to be 10.27 ± 0.05, this value being used in the measurements of p

undertaken in this work.

3.1. 8 The data acquisition system

An IBM compatible personal computer was used to house the Thorn EMI model C660

counter/timer board, effectively converting the computer into a high performance pulse

counting instrument for recording the output of the 9128B photomultiplier when operating

in the photon counting mode. Collection and storage of data, as well as the analysis of the

depolarization ratio p, could be efficiently achieved.

The board is connected to the EMI C604-A amplifier/discriminator module, allowing the

pulses coming from the C604-A to be transferred to the board for counting. A wide range of
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counting periods can be selected, from a very fast 52 IlS up to a maximum of20 seconds; and

the counting period is accurate to within a microsecond. The C660 board is controlled

entirely by a set of computer programs written in Microsoft QuickBasic, supplied by Thorn

EMI. These programs are menu-driven, readily allowing selection ofa range of features. For

example, measured count rates can be collectively viewed on the computer screen, and can

be printed out or stored in a data file which can be later accessed by other computer programs

written for specific requirements. For example, a computer program written by us in BASIC

accesses data files of measured count rates ofthe 90° scattered light, and directly calculates

the depolarization ratio p and its statistical uncertainty. Other features are the inclusion ofa

subroutine to statistically correct measured count rates for the dead-time in the photon­

counting system's electronic circuitry.

When recording the data in our experiment, a technique of allowing the counter to cycle

through a set ofcounts several times was adopted. The count period was set to 1 second, and

sets of 20 counts were measured and stored as elements in an array. Each count in every

additional set was added to its corresponding array element, and this was continued until the

desired number of cycles had been completed. A total of 100 cycles, for example, would

require that each ofthe 20 elements in the final set ofaccumulated counts be divided by 100

to yield a set of 20 count rates representing the intensity ofthe observed light signal. These

20 values could be averaged to yield a mean value x , and a measure ofthe uncertainty is the

standard deviation Sx given by

s =x

N

I (xi-xl
1=1

N-I

(3.2)

where N is the total number of values (N = 20 here), with Xi being the i1h value.
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The counts were stored in data files which were later accessed and analysed using the BASIC

program written specifically to calculate the depolarization ratio P and its estimated

uncertainty.

3.2 Experimental Measurements and Results

The density dependence of the depolarization ratio P IS best described by the virial

expansion, as given by equation (2.30) of chapter 2:

Bp Cp
P= Po +-+-)+...

V,II V,I~

(3.3)

where Po is the ideal-gas depolarization ratio, Vm is the molar volume ofthe gas, and Bp and

C describe the deviation of p from Po due to interacting pairs of molecules and interacting. p

triplets, respectively.

Previous workers, including Couling and Graham [1] of our Physics Department, have

measured values of p and Vm for a range of gases comprising molecules of linear, and more

recently nonlinear, symmetry. These results have been summarized in tables 2.1 and 2.6 of

chapter 2. Despite the fact that data were often taken at moderately high pressures of a few

MPa, the plots of p versus 1/ Vm generally yielded linear graphs. This indicates that pair

interactions predominate, and that the Cp and higher-order terms in equation (3.3) are

negligible. Deviations from linearity in the plots only occur at higher pressures where the

higher order interactions begin to make relatively large contributions to p.

Ultimately, the second light-scattering virial coefficient Bp is measured as the slope of a p
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versus l/V
m

graph, while Po is extracted from the intercept. The experimental procedure

adopted in this work for measuring p at a particular pressure and temperature required the

measurement of four quantities, namely (i) the intensity Iv ofthe 90° scattered light reaching

the photomultiplier when the transmission axis of the analyzer was set vertical, (ii) the

scattered intensity lh with the analyzer rotated through 90° to set its transmission axis

horizontal, (iii) the background intensity lib) after the cell had been evacuated, and finally

(iv) the background intensity lh(b). The depolarization ration p was then given by

Plrue =
117 - 117 (b)

Iv - lv(b)
(3.4)

It should be mentioned that for the dimethyl ether investigated in this study, Po is sufficiently

large to be adversely affected by the contribution to the polarized light arising from

vibrational Raman scattering, so that an isolating filter was not used.

3.2.1 Results for dimethyl ether

Our measurement ofthe pressure dependence ofthe depolarization ratio p ofdimethyl ether

was carried out at room temperature with no direct temperature control on the celL However,

our laboratory has no windows to ensure a well insulated environment: bear in mind the

significant temperature dependence of Bp. Variations in the ambient temperature were less

than 1°C over the entire two months during which measurements were undertaken, the mean

being (299.7 ± 0.8) K.

A cylinder ofdimethyl ether of99.99% minimum purity was purchased from Afrox, and was

admitted to the scattering cell without further purification, although being passed through the

0.2 J.lm Millipore filter to remove dust. p was measured over the range 90 kPa to 550 kPa in
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steps of50 kPa, the saturation vapour pressure at this temperature being 630 kPa. The molar

volume V
m

for each vapour pressure P and temperature T was determined first by finding

v,~dea! = RT I P as an initial approximation, and then by substituting this value into the virial

equation of state

v = RT(l + B(n].
m P V

m

(3.5)

The 'corrected' value for Vm thus obtained was further refined by substituting it for Vm in the

right hand side of equation (3.5) keeping all other variables fixed, the procedure being

reiterated until consecutive values differed by less than one part in a million. The second

pressure virial coefficient B(n in equation (3.5) was estimated by interpolating the measured

data of Tripp and Dunlap [3] to the experimental temperatures. The results follow:

Table 3.1. The measured depolarization ratio p for dimethyl ether over a range of
pressures at A= 514.5 nm.

reading P/kPa T/oC V,;;I I mol m-3 103
x (p ±sx)

1 92 27.0 37.50 3.79 ± 0.13

2 102 26.0 41.80 3.77 ± 0.11

3 126 26.5 51.78 3.65 ± 0.14

4 155 26.0 64.19 3.62 ± 0.10

5 157 26.0 65.04 3.69 ± 0.10

6 197 26.5 82.11 3.63 ± 0.10

7 251 26.8 105.67 3.62 ± 0.10

8 251 27.0 105.59 3.63 ± 0.10

9 270 26.8 114.12 3.57 ± 0.09
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Table 3.1 (continued)

reading P/kPa TIDe V,;l I mol m-3 103 x(p±sx)

10 296 27.0 125.71 3.52 ± 0.08

11 326 26.9 139.41 3.55 ± 0.09

12 353 26.0 152.45 3.47 ± 0.08

13 356 26.5 153.52 3.49 ± 0.09

14 398 26.7 173.14 3.50 ± 0.08

15 404 26.5 176.15 3.46 ± 0.08

16 410 26.5 179.02 3.41 ± 0.09

17 448 27.0 196.93 3.46 ± 0.07

18 451 26.6 198.76 3.42 ± 0.08

19 487 25.7 217.46 3.38 ± 0.07

20 494 27.2 219.40 3.36 ± 0.08

21 514 26.1 230.65 3.31 ± 0.07

22 549 26.4 249.04 3.26 ± 0.07

23 552 27.0 248.23 3.25 ± 0.07

A plot of p versus INm is given in figure 3.4. From equation (3.3) it can be seen that Bp is

obtained as the slope ofthe linear region ofthe plot, while the intercept yields a value for Po.

The last three data points (i.e. 21 to 23 in table 3.1) show a deviation from linearity, which

is not surprising since at these pressures, the dimethyl ether is close to its point of

liquefaction, where triplet and higher-order interactions come into play. These points have

been omitted from the least squares fit. Data points 10 and 20 have also been omitted from

the analysis, since at these low pressures the incident laser beam intensity has to be relatively

high in order to obtain a measurable scattered light signal: unfortunately, the resulting stray
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reflections from the cell walls lead to an erroneously high depolarized signal, and hence a

relatively large P value.

Deduced values of Po, Bp and Sp together with their estimated uncertainties are presented in

table 3.2, which also contains the theoretical Bp and Sp values calculated in chapter 2. Notice

how well our 103 x Po of 3.77 ± 0.02 agrees with that of 3.71 ± 0.02 measured at

A = 514.5 nm by Bogaard et al. [4]. The experimentally deduced Sp has quite a large

uncertainty of some 9.2%, which is due to the uncertainty of the B(T) value as well as the

experimental Po and Bp values, as seen by equations (2.138) and (2.146).
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Figure 3.4. Experimental depolarization ratio as afunction ofgas densityfor dimethyl ether.



Table 3.2. Our measured Bp value for dimethyl ether, together with the deduced Sp value. Comparison is made with the theoretical values

calculated in chapter 2.

106 B (exp) 106 B (theory) B (exp) 106 S (exp) 106 S (theory) S (exp)
p p p p p p

T/K 103 x Po m3mol- 1 m3mol- ' B (theory) m3mol- 1 m3mol- 1 S (theory)
p p

299.68 3.77 ± 0.02 -1.78±0.13 -1.661 1.072 480 ± 44 503.36 0.955

-..l
N
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In conclusion, we see that by taking the full molecular symmetry of dimethyl ether into

account in our molecular-tensor theory of Sp, the calculated value is found to agree with the

measured value to within 8.5%. This finding lends credence to earlier claims that

comprehensive DID theories ofmolecular interaction effects, working to higher orders in the

molecular tensors, and allowing for the full symmetry ofthe molecules, explain the observed

phenomena adequately [1,5-7].

We now turn to the electro-optic Kerr effect to see whether calculations ofthe second Kerr­

effect virial coefficient BK ofdimethyl ether, using the same molecular parameters as in our

theory of Bp, are in good agreement with the available measured data.
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Chapter 4

The Kerr Effect

4.1 Introduction

Recently, a new molecular-tensor theory of the second Kerr-effect virial coefficient BK ,

which describes contributions to the molar Kerr constant Km arising from molecular pair

interactions, was used to calculate BK for the nonlinear polar molecules sulphur dioxide,

difluoromethane, dimethyl ether, and hydrogen sulphide [1-3].

We now wish to re-examine the Kerr effect of dimethy1ether in light of our theoretical and

experimental investigations reported in chapters 2 and 3 of this thesis. We begin by

presenting a brief review of the molecular-tensor theory ofBK•

4.2 Theory

Consider the arrangement in figure 4.1, where the space fixed system ofaxes (x,y,z) is fixed

in a Kerr cell such that z is in the direction ofpropagation ofthe light beam, x is the direction

of the applied electric field, and y is perpendicular to the field. Once the Kerr cell is filled

with a gas, a uniform electric field is applied by means of a pair ofparallel-plate electrodes,

and a light beam propagating in the z-direction and vibrating in the xz plane will experience

a refractive index nx, which differs from the refractive index nyexperienced by a light beam

propagating in the z-direction and vibrating in the yz plane.
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Figure 4.1. The Kerr cell, with space-fixed axes (x,y,z) where z is the direction of

propagation of the light beam, x is the direction of the applied electric field, and y is

perpendicular to the field.

The observable quantity (nx - ny) is the birefringence ofthe medium, and can be related to

the molecular property tensors of the individual molecules in a given gas by a molecular

tensor theory, this having been achieved for gases at low pressures by Buckingham and Pople

[4]. The molecular Kerr constant Km is defined as [5]

(4.1)

where Ex is the applied electrostatic field, Vm is the molar volume ofthe gas under study, and

nand Cr are respectively the refractive index and the relative permittivity of the medium in

the absence of the field.
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In the virial expansion of Km as a power series in the inverse molar volume [6]

(4.2)

the second, third, ... , Kerr effect virial coefficients BK , CK, ••• , describe deviations from the

zero-density molecular Kerr constantAK due to pair interactions, triplet interactions, .... The

expression for AK in terms of molecular property tensors is [7]

21tNA { -I[ n. (0) 3( 3)] 3(kT)-2[ (0) (0) (O))2]}AK = 2YiijJ + (kT) 4l-'iij~J + aijaij - aa + aij~i ~J -a ~ (4.3)
405(41tE o)

where N A is Avogadro's number, aij and aij are respectively the dynamic and static

polarizability tensors, and a and a are the corresponding mean dynamic and static

polarizabilities. Piij and Yiijj are the first and the second hyperpolarizability tensors

respectively, while I..l~O) is the permanent dipole moment of the molecule being studied.

Couling and Graham [1,2] have presented a molecular-tensor theory of BK in detail.

Expressions for the full series of dipole-induced-dipole (DID) contributions to BK for

interacting nonlinear molecules have been given in the appendix of[2], where it was shown

that BK may be written as

Here Q = V,;; 1 idt is the integral over the orientational coordinates of the neighbouring

molecule. The series ofDID interaction terms is seen to include the collision-induced series
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in powers of the dynamic and static polarizability tensors (labelled a 2' a 3' a 4" .. ) which

results from the partial orientation of anisotropic pairs; and a series (labelled

permanent dipoles ~i of two interacting molecules, while these dipoles are also coupled by

the dipole-dipole interaction.

The explicit forms of these terms are [1,2]

a =(kT)-1 {a(l)a(l)T a(2)T. a(2) + a(l)a(2)T a(l)T. a(2)
4 af pq qr rs ts tu af pq qr rs ts tu

+a(l)y; a(2)a(l)T a(2) + a(l)y; a(2)a(2)y (I)
ab be ef pq qr ru ab be ef pq qraru

+a(l)y; a(2)T a(l)a(I)+a(l)y; a(2)T a(l) (2)}
ab be cd de ef pu ab be cd de ef a pu

x(a:aja;a: - a;aja;a: ),

(4.5)

(4.6)

(4.7)



and

11 U = (kn-2 {2u(I)II(I)a(l)r 11(2) +2U(l)I.q)a(2)r .. (1)
r-2 2 adr-O/ pq qrr-or adr-ol pq qrr-or

+2U(l) .. (I)a(2)r .. (I) +2U(l) .. (2)a(l)r .. (2)
adr-O/ pq qrr-or adr-ol pq qrr-or

+U(l)y; U(2)..(I),.(I) +U(l)y; U(2)..q) .. (2)
ab be cd r-Ol r-op ab be cd r-O/ r-op

2 (1)7' (2) (1) (2)}! x x x x y y x x)
+ Uab1beUed /-loi /-lop \aaadai a p +aaadaj a p ,
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(4.8)

(4.9)

(4.10)

(4.11 )

(4.12)
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(4.13)

The isotropic averages in equations (4.5) to (4.13) are carried out using the standard

results [4,8]

and

The procedure is illustrated by treating the term fora 2 in equation (4.5) above:

(4.14)

where a~~ is the dynamic polarizability tensor ofmolecule 1expressed in the molecule-fixed

axes ofmolecule 1, (1,2,3), while a is the mean dynamic polarizability. Similarly, a~~) is the

static polarizability tensor of molecule 2 expressed in (1,2,3), while a is the mean static

polarizability.

The exact forms ofa ~~ and a for molecules with D2h and C2v symmetries have already been

quoted in chapter 2, but are repeated here for convenience:

[

all

a (I) = a ~.z.! = 0
IJ I }

o

o

o
and
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Similarly,

[

all

a(.J) = a<?? = 0
IJ IJ

o

o
and

The procedure for expressing ai('~? in the molecule-fixed axes of molecule 1, (1,2,3), is

identical to that given in equation (2.122) in chapter 2 such that

(4.15)

where the coefficients W l l' W 12 , "', w33 are exactly analogous to the Zij coefficients for

a~,~~ given between equation (2.124) and (2.129), the dynamic components all' a 2l , a 33

being replaced by the static components all' a22 , a33 respectively.

Now it is matter of replacing all the polarizability components in equation (4.14) with their

explicit forms as given above. We obtain

(4.16)

Macsyma's tensor manipulation facilities prove invaluable in handling the higher-order

terms, which can lead to sometimes very lengthy expressions.

The evaluation ofBK according to equation (4.4) requires an intermolecularpotential U
12

( 1').
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As in chapter 2, we use the classical potential of general form

(4.17)

where U u is the Lennard-Jones 6: 12 potential, U ).1,).1 , U ).1,S' and Us,s are the electrostatic

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction energies ofthe two

interacting molecules, and U ).1,ind).1 and US ,ind).1 are the dipole-induced dipole and quadrupole-

induced dipole interacting energies. Ushape accounts for the angular dependence ofthe short

range repulsive forces for non-spherical molecules. Explicit expressions for each of these

contributions to U 12 ('t) for nonlinear molecules are presented in detail in chapter 2.

Thus the integrals in equation (4.4) were calculated, as previously, by numerical integration

using Gaussian quadrature. They were performed for dimethyl ether gas using the molecular

data given in table 4.1, yielding a calculated estimate ofBK for this molecule.

4.3 Results of Calculations ofB K for Dimethyl Ether

Table 4.2 gives the relative magnitudes of the various contributions to BK calculated for

dimethyl ether at T = 292.12 K. Here, as found in previous work on sulphur dioxide and

difluoromethane [2], we see that the dominant contributor to BK is the ~2a2 term. This

predominance ofa collision-induced contribution to BK for polar molecules is in keeping with

the findings of Buckingham et al. [9]. Although the ~2a3 term contributes some 34% to BK ,

the ~2a4 contribution has dropped to around 7%, which is a clear indication that the series of

terms in ~a has converged. The contributions to BK from the hyperpolarizability tensors ~ijk

and Yijkl, as given by equations (4.13) and (4.9) respectively, could not be evaluated for
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dimethyl ether since the hyperpolarizability tensor components are not yet known. However,

previous calculations for sulphur dioxide [2] indicated a not unexpectedly negligible

contribution Of/11 ~1 to BK of 0.31 %, and we feel confident in omitting these terms here.

Table 4.1. Molecular properties used in the calculation of BK

for (CH 3)2 O. Dynamic polarizability tensor components

are all at the wavelength of 632.8 nm.

Property Value

Ro(nm) 0.47a

E / k(K) 290.0a

Dj -0.04926a

D 2
0.29666a

1030113 (Cm) -4.37 ± 0.03 [10]

104°8 11 (Cm2) 11.0 ± 2.0 [11]

104°8 22 (Cm2) -4.3 ± 2.0 [11]

104°833(Cm2) -6.7 ± 1.7 [11]

1040uIJ(C2m2rl) 6.69b

104° u22 (C2m2r l
) 5.46b

104°u33(C2m2rl) 5.28b

104°aJI(C2m2rJ) 7.278c

1040a22(C2m2rl) 5.744c

104o
a 33 (C2m 2J-I) 5.968c

aObtained by fitting pressure virial coefficients (see chapter 2)

bexperimental derivation from the Kerr effect, A= 632.8 nm [12].

Cab initio MP2 calculated values [13] scaled according to the

experimentally deduced mean static polarizability [14].
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Table 4.2. The relative magnitudes of the various contributions to

B K of dimethyl ether calculated at T = 292.12 K and A= 632.8 nm.

1030 x value % contribution
, I

toBKContributing term mJmol-

U2 0.0075 0.06
;

U3 -0.1736 -1.50

U4 0.6728 5.82

Us 0.0531 0.46

1l2Ul -3.4294 -29.65

1l2U2 9.6910 83.79

1l2U3 3.9087 33.79

1l2U4 0.8364 7.23

11.5665

The temperature dependence of our calculated BK values for dimethyl ether is compared

graphically with the experimental data ofBogaard et al. [12] in figure 4.2. The experimental

uncertainties of the measured data were quoted to be in the range ±10% to ±20%, and the

calculated curve is seen to lie within the error bars ofthe experimental points over almost the

entire temperature range.

During the course of 1999, Dr Couling and Honours student Miss Jean McKenzie have

developed an apparatus to measure the density dependence of the molar Kerr constant, as

reported in [15]. We have used this Kerr cell to obtain a relatively precise estimate ofBK at
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room temperature, and now report briefly on this additional piece of work.

260 270 280 290 300

TIK

310 320 330

Figure 4.2. The temperature dependence of the measured and calculated BK values of

dimethyl ether. The solid line is our calculated curve, the circles represent the measured

values ofBogaard et al. [12], while the triangle is our lone measured value, as described in

section 4.4.

4.4 Measurement ofB K for Dimethyl Ether at Room Temperature

The Kerr effect apparatus has been described in detail elsewhere [15], and so will only
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briefly be discussed here. A block diagram ofthe apparatus is given in figure 4.3. The optical

cascade comprises various components which are as follows. A 30 mW plane polarized

Melles-Griot He-Ne laser, producing a beam of wavelength 632.8 nm. A Glan-Thompson

polarizer set at 45° to the vertical. The Kerr cell, which comprises 316-stainless-steel

electrodes 1.46809 m in length (at room temperature) and 3.2 cm in width, the electrodes

having been machined and then hand polished to be flat and extremely smooth. The.

electrodes were held in place by fixing 15 polyacetyl rings spaced at regular intervals. The

spacing between the electrodes was made as uniform as possible by sandwiching polished

Macor blocks between the electrodes, and squeezing the electrodes onto the blocks by

placing nickel shim between the polyacetyl rings and the electrodes. The spacing between

the electrodes was measured with a travelling microscope at 44 evenly spaced intervals, and

found to be 3.148 ± 0.033 mm. The electrodes were placed in a 316-stainless-steel cylinder

with a bulkhead for attaching the high voltage lead. One electrode was grounded to the cell

. wall, the other being connected to hastelloy wire passing to the outside ofthe cell via a teflon

cylinder in the bulkhead. The quarter wave (A/4) plate used in the experiment was made of

mica sandwiched between Pockels glass, with a retardance of91.2° ± 0.3° at 632.8 nm. The

Faraday cell consisted of a 100 turn coil ofheavy-gauge copper wire and a 10 000 turn coil

ofthinner copper wire, both surrounding a glass tube containing toluene. The tube is 400 mm

long and 12 mm in diameter, and is thermally insulated from the coils by a 2 cm layer of

polystyrene. Pockels glass windows are situated at either end ofthe glass tube to contain the

liquid and allow unhindered passage of the incident beam. The analyzer is a Glan-Taylor

prism housed in a mechanism to allow for very small rotations with the aid of a micometer.

The electronic components are also shown in figure 4.3. Here, a Philips PM 5190 LF

synthesizerwas used to generate a 363 Hz signal with a peak-to-peak voltage of 1.41 V. This

signal was attenuated to 50 mV rms before being fed into the high voltage power supply,
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which consisted of a step up transformer immersed in oil, forming a high-voltage amplifier.

The output of the secondary coil was linked to the high tension input of the Kerr cell. The

cell wall, and hence the second electrode, were grounded to the mains earth. The high voltage

output was accurately calibrated. During measurements, the Faraday nulling cell was driven

by the same waveform synthesizer as the high voltage circuit. The signal was fed directly

into a frequency doubler at 500 mV rms, the 50 mV rms output passing into the current

supply combined with a phase shifter so as to provide an ac signal to the 100 turn coil of the

Faraday cell which is set to be exactly in antiphase with the Kerr signal. To obtain results

from the optical cascade the signal from a photo-diode placed at the end of the cascade was

fed into a Princeton Applied Research EG&G model 5210 Lock-In Amplifier (LIA). The

reference signal was taken from the waveform synthesizer, and the LIA was used to extract

from the photodiode signal that component at twice the reference signal. The LIA output

voltage is then proportional to the intensity of the light which is modulated at the desired

frequency, and read by a precise HP 3478A digital multimeter connected to an HP 86

microcomputer which recorded and averaged the readings.

4.4.1 Theory

For an electric field Ex applied to a gas sample ofpath length l, the Kerr effect is exhibited

as the gas becomes birefringent, having refractive indices nx and ny for light linearly

polarized parallel and perpendicular to the electric field respectively. In our experiment, a

light beam of wavelength A, linearly polarized at 45° to the applied electric field, is passed

through the gas sample. The emergent light is elliptically polarized due to the phase

difference induced by the birefringent gas, and this phase difference 8 is given by

(4.18)
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It is useful to introduce the parameter mKO' defined as [12]

(4.19)

where v,1/ is the molar volume ofthe gas, and Eo is the amplitude ofthe applied electric field.

Combining equations (4.18) and (4.19) yields

K _ 8A.Vm

m 0 - 271tIE~
(4.20)

where A., I, v,1/ and E~ are known or can easily be measured. This leaves 8, the phase

difference, which is the quntity we wish to measure experimentally so that n,Ko can be

determined. The first and second Kerr virial coefficients AK and BK can be deduced from mKo

using the relation [12]

where A E is the low density molar dielectric polarization

A = N A {a +J::L}
E 3E o 0 3kT

and A R is the molar refraction

(4.21 )

(4.22)

(4.23)

both ofwhich can be calculated from tabulated data ofthe permanent dipole moment J.!o, and

the mean static and optical-frequency polarizabilities aoand Uo respectively.



88

Hence, a plot of n,Ko versus 1/Vmallows AK and BK to be extracted from the slope and the

intercept.

4.4.2 Method ofmeasurement

As already mentioned, the quantity we wish to measure is the induced phase difference 8,

which will allow for calculation ofnXo. The beam ofmonochromatic light from the He-Ne laser

is passed through the polarizer with its transmission axis set at 45° to the electric field. The incident

light thus has the components ofits oscillating electric field vector parallel and perpendicular

to the applied electric field initially equal in magnitude. Once the light beam has passed

through the birefringent gas sample, a phase difference 8 will have been induced. A precision

compensator is required to measure the magnitude of8, and we have used the toluene-filled

Faraday cell in conjunction with the AJ4-plate for this purpose. Because ofthe induced phase

difference, the light that emerges from the Kerr cell is elliptically polarized, but once it is

passed through the AJ4-plate it emerges linearly polarized but with its axis of polarization

rotated from the initial 45° position. The Faraday cell serves to rotate the plane ofpolarization

by an amount 8nuII back to the 45° position, and since the Faraday cell can be accurately

calibrated, we have a precise measure ofthis rotation, and hence of 8, since 8nuII = -8/2.

A full Mueller analysis ofthe optical cascade has been performed [15], and reveals that ifthe

A.I4-plate is offset by a small value £1 and the LIA output is plotted as a function of current

in the Faraday coil a straight line is obtained. Offsetting the AJ4-plate by a small amount -£2

will yield a second line. These lines will intersect at a value 8nuII where 8nuII = -8/2, hence

yielding a precise value for 8. This method is much more sensitive than obtaining a single

null value with the Faraday cell [18].
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4.4.3 Experimental results ofBK for dimethyl ether

Our measured results of ,,/(o for dimethyl ether over a range of pressure at a mean

T= 292.12 K are presented in table 4.2, while a plot of",Ko versus I/V,n is given in figure 4.3.

Using equation (4.21), we obtain AK = -(12.81 ± 0.03) x 10-27 C2msl 2mol- 1 and

B
K

= (11.0 ± 0.4) x 10-30 C2m8l 2mol- l . The BK value interpolated from the experimental

results ofBogaard et al. (12] at T= 292.12 K is BK = (12.6 ± 2.5) x 10-30 C2m8l 2mol- 1
, which

is some 14.5% higher than our experimental value. The calculated BK value at this

temperature and wavelength is (see table 4.2) BK = 11.57 x 10-30 C2m8l 2mol· J
, which lies in

between the two experimental values. We plan to make our Kerr cell temperature dependent

during the course of the year 2000, and hope to measure the temperature dependence of BK

for as wide a range of temperature as possible.

Table 4.3. Measured ",Ko values for dimethyl ether over a range ofpressures at
A= 632.8 nm.

reading P/kPa TIDC V,;1 I mol m-3 1027
m Ko / C2

m
5r 2

mo,,1

1 177.9 19.1 75.99 -12.04 ± 0.12

2 119.5 19.1 50.40 -12.33 ± 0.02

3. 248.7 18.6 108.18 -11.79 ± 0.02

4 302.6 19.2 132.96 -11.53 ± 0.08

5 351.8 18.5 156.96 -11.28 ± 0.04

6 394.0 19.3 177.05 -11.06 ± 0.03

7 450.0 19.0 205.90 -10.83 ± 0.08
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Figure 4.3. A plot 01',,](0 versus Jlv"Jor dimethyl ether at T = 292.12 K and A = 632.8 nm.

4.5 Conclusion

This thesis has shown that a unique set ofmolecular parameters for dimethyl ether, coupled

with complete molecular-tensor theories of the pressure, light-scattering and Kerr virial

coefficients, generally yields good agreement between experiment and theory for the full

range of coefficients. Although beyond the scope of this thesis, we have used the new

molecular tensor theory ofGraham and Hohls [17] for the second dielectric virial coefficient
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B£ to calculate the temperature dependence of this virial coefficient for dimethyl ether, and

agreement with the published measured data (see [17] for a comprehensive list) is within the

margins of experimental error.

We can conclude that provided full account is taken of molecular symmetry, the dipole­

induced-dipole model accounts reliably for the contribution made by interacting pairs of

molecules for a wide range of molecular-optic phenomena.

4.6 References

[1] Couling, V. W., 1995, Ph D thesis, University ofNatal (Pietermaritzburg).

[2] Couling, V. W., and Graham, C., 1998, Molec. Phys., 93, 31.

[3] Couling, V. W., and Graham, C., 2000, Molec. Phys., 98, 135.

[4] Buckingham, A. D., and Pople, J. A., 1955, Proc. Phys. Soc. A, 68, 905 .

. [5] Otterbein, G., 1934, Phys. Z., 35, 249.

[6] Buckingham, A. D., 1955, Proc. Phys. Soc. A, 68, 910.

[7] Buckingham, A. D., 1967, Adv. Chem. Phys., 12, 107.

[8] Andrews, A. L., and Buckingham, A. D., 1960, Molec. Phys., 3, 183.

[9] Buckingham, A. D., Galwas, P. A., and Liu Fan-Chen, 1983,1. molec. Struct., 100,3.

[10] Blukis, U., Kasai, P. H., and Myers, R. 1., 1963, J. chem. Phys., 38, 2753.

[11] Benson, R. C., and Flygare, W. H., 1970, J. chem. Phys., 52, 5291.

[12] Bogaard, M. P., Buckingham, A. D., and Ritchie, G. L. D., 1981, J. chem. Soc. Faraday

Trans. 11, 77, 1547.

[13] Spackman, M. A., 1999, Private Communication.

[14] Barnes, A. N. M., Turner, D. J., and Sutton, L. E., 1971, Trans. Faraday Soc., 67, 2902.

[15] McKenzie, J. M., 1999, Honours Project Report, University ofNatal (Pietermaritzburg).

[16] Williams, J. H., 1993, Adv. Chem. Phys., 85,361.

[17] Hohls, J., 1997, Ph D thesis, University ofNatal (Pietermaritzburg).

[18] Graham, C., Pierrus, J., and Raab, R. E., 1989, Molec. Phys., 67, 939-955.



92

Appendix A

Electric Multipole Moments

A static distribution of electric charges qj at positions ~i relative to an arbitrarily chosen

origin 0, positioned within the arrangement ofcharges, gives rise to an electric potential <I> at

all points in space. For any given point P, with a vector displacement R from°with R >> 't ,

the electric potential is given by the multipole expansion (Buckingahm[l])

(A. I)

Here, Greek subscripts denote Cartesian tensor components x, y, or z; with a repeated

subscript implying summation over these components. The second-rank tensor Dap is the

Kronecker delta.

The summations in equation (A.!) are the electric multipole moments of the charge

distribution:

(A.2)

is the electric monopole, or the total charge of the distribution;
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(A.3)

is the electric dipole moment; and

(AA)

is the primitive electric quadrupole moment; etc.

Different definitions have been adopted for electric multipole moments ofhigher order than

the dipole. For instance, an alternative form of the electric quadrupole moment is the

traceless moment

(A.5)

This form of the quadrupole moment is often used by molecular physicists because it

vanishes for a spherically-symmetric electric charge distribution, and so is intuitively

appealing. Raab [2] has, however, cautioned against the indiscriminate use of the traceless

multipole moments, pointing out the existence of electrodynamic situations where it is

necessary to retain the primitive definitions of multipole moments.
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Appendix B

Examples of Bp Terms for Linear Molecules

We present here some examples of the explicit expressions for terms contributing to Bp for

linear molecules:

a
3

\ "G3 = R--'(-27K(K -1)(2K + 3)cos281
30(41tEo)

-324K 2(K + 1)cos8'2 cos82 cos81+ 27K(K -1)(2K -1)cos2 82

-108K 2(K + 1)cos2812 + 36K(K -1)),

and

a
3

\ "b3 = R--'(-36K(K -1)(2K + 7)cos28 130(41tEo)

-108K 2(2K + 7)cos812 cos82 cos8 1- 36K 2(2K + 7)cos2 8 12

+36K(K -1)(2K - 5)cos282 + 144K(K -1))).

(8.1)

(8.2)

The expressions for the higher order terms are too large to reproduce here, but have been

quoted explicitly in [1].
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Appendix C

Examples of Bp Terms for Nonlinear Molecules

Here is an example of an explicit expression for one of the terms contributing to Bp for

nonlinear molecules:

The expressions for the higher order terms are too large to reproduce here, but may be found

in [1].
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Appendix D

An Example of a Fortran Program to Calculate

Contributions to Bp

PROGRAM S02 BS
C
C 14 AUGUST 1998
C PROGRAM TO CALCULATE THE BENOIT-STOCKMAYER TERM OF (CH3)20 USING GAUSSIAN
C INTEGRATION WITH 64 INTERVALS FOR THE RANGE, AND 16 INTERVALS FOR ALL
C ANGULAR VARIABLES (I.E. ALPHA1, BETA1, GAMMA1, ALPHA2, BETA2 AND
CGAMMA2).
C DOUBLE PRECISION IS USED THROUGHOUT.
C

C ----------------------
C SYSTEM INITIALIZATION:

C ----------------------

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON COEF1,DCTC
DIMENSION COEF2(64,2),COEF1 (16,2),SEP(64),AL 1(16),BE 1(16),GA 1(16)

+ ,AL2( 16),BE2(16),GA2(16),DCTC(9, 16, 16, 16),FI(16, 16,16,16, 16),D1 (6
+ 4),E 1(16, 16, 16, 16, 16),F1 (16, 16, 16, 16, 16),SE3(64),SE4(64),SE5(64),
+ SE6(64),SE8(64),SE12(64),G 1(16, 16, 16),DDP(16, 16, 16,16, 16),DQP(16,
+ 16,16, 16,16),DIDP(16, 16, 16, 16, 16)

INTEGER XI ,X2,X3,X4,X5,X6,X7

C MOLECULAR DATA FOR(CH3)20: 14 DEC 1999: LATEST DATA (STATIC ALPHA = 6.33)

SSI=O.O
SS2=O.O
SS3=O.O
SS4=O.O
SS5=O.O
SS6=O.O
SS7=O.O
DIP=-4.37
ALSTAT=6.33
A11=6.37
A22=5.22
A33=5.04



Q1=11.0
Q2=-4.3
AMIN1=0.1
AMAX1=3.0
ALPHA=(A1l+A22+A33)/3
DELTA2=(A 11 **2+A22**2+A33**2-A 11 *A22-A11 *A33-A22*A33)

C
C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS64.DAT:
C

OPEN(UNIT=l 0,FILE='GAUSS64.DAT')
DO 10 ICTR1=1,64

DO 20 ICTR2=1,2
READ(1O,1010,END=11)COEF2(ICTRl,ICTR2)

1010 FORMAT(FI8.15)
20 CONTINUE
10 CONTINUE
11 CLOSE(UNIT=IO)

C

C CALCULATE THE INTEGRATION POINTS FOR THE RANGE:
C

SEP I=(AMAX I-AMIN 1)/2
SEP2=(AMAX1+AMINI)/2
DO 30 INDX=I,64

SEP(INDX)=SEP1 *COEF2(INDX, 1)+SEP2
. 30 CONTINUE

C

C READ THE GAUSSIAN COEFFICIENTS FROM THE DATAFILE GAUSS16.DAT:
C

OPEN(UNIT= 11 ,FILE='GAUSS 16.DAT')
DO 100 ICTR1=1,16

DO 110 ICTR2=1,2
READ(l1,6000,END=12)COEF1(ICTR1,ICTR2)

6000 FORMAT(FI8.15)
I 10 CONTINUE
100 CONTINUE
12 CLOSE(UNIT=lI)

C

C CALCULATE THE INTEGRATION POINTS FOR ALPHA 1:
C

AMIN=O.O
AMAX=2. *3.14159265358979323846

ALl 1=(AMAX-AMIN)/2.
AL I2=(AMAX+AMIN)/2.
DO 120 INDX=I,I6

AL1(INDX)=ALl I*COEFI (INDX, I)+ALl 2
120 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR BETA I:

97



C
AMIN=O.O
AMAX=3.14159265358979323846

BEll=(AMAX-AMIN)/2.
BE 12=(AMAX+AMIN)/2.
DO 121 INDX=I,16

BEl(lNDX)=BEll *COEF1(lNDX,I)+BEI2
121 CONTINUE

C
C CALCULATE THE INTEGRATION POINTS FOR GAMMA I:
C

AMIN=O.O
AMAX=2. *3.14159265358979323846

GAII=(AMAX-AMIN)/2.
GA 12=(AMAX+AMIN)/2.
DO 122 INDX=I,16

GA 1(INDX)=GA 11 *COEFl(INDX, 1)+GAI2
122 CONTINUE

C
C CALCULATE THE INTEGRATION POINTS FOR ALPHA2:
C

AMIN=O.O
AMAX=2.*3.14159265358979323846

AL21 =(AMAX-AMIN)/2.
AL22=(AMAX+AMIN)/2.
DO 123 INDX=I,16

AL2(INDX)=AL21 *COEFl (INDX, 1)+AL22
123 CONTINUE

C
C CALCULATE THE INTEGRATION POINTS FOR BETA2:
C

AMIN=O.O
AMAX=3.14159265358979323846

BE21 =(AMAX-AMIN)/2.
BE22=(AMAX+AMIN)/2.
DO 124 INDX=I,16

BE2(INDX)=BE21 *COEF I(INDX, I)+BE22
124 CONTINUE

C

C CALCULATE THE INTEGRATION POINTS FOR GAMMA2:
C

AMIN=O.O
AMAX=2.*3.14159265358979323846

GA21 =(AMAX-AMIN)/2.
GA22=(AMAX+AMIN)/2.
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DO 125 INDX=I,16
GA2(INDX)=GA21 *COEFl (INDX, 1)+GA22

125 CONTINUE

C -------------
C MAIN PROGRAM:
C -------------

OPEN(UNIT=4,FILE='bs_r31 ')

C
C INPUT MOLECULAR PARAMETERS FROM THE KEYBOARD:

C

c WRITE(6,470)
c470 FORMAT(lX,'INPUT THE TEMPERATURE (IN KELVIN)')
c READ(5,471)TEMP
c471 FORMAT(F I0.5)

temp=303.15
TEMPK=TEMP* 1.380622E-23

c WRITE(6,472)
c472 FORMAT(IX,'INPUT R(O) (IN nm)')
c READ(5,473)R
c473 FORMAT(FI0.5)

r=0.47

c WRITE(6,474)
c474 FORMAT(I X,'E/K (IN K)')
c READ(5,475)PARAM2
c475 FORMAT(FIO.5)

param2=290.0

c WRITE(6,476)
c476 FORMAT(lX,'SHAPEI ')
c READ(5,477)SHAPEl
c477 FORMAT(FIO.5)

shape 1=-0.04926

c WRITE(6,478)
c478 FORMAT(lX,'SHAPE2 ')
c READ(5,479)SHAPE2
c479 FORMAT(FlO.5)

shape2=0.29666

C
C CALCULATION OF THE LENNARD-JONES 6: 12 POTENTIAL & STORAGE OF THE
C VALUES IN AN ARRAY:
C

DO 61 XI=I,64

Dl(Xl)=4.*PARAM2* 1.380622E-23*«RlSEP(XI))** 12-(R/SEP(XI))**6)
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SEI2(XI)=SEP(XI)** 12
SE5(X 1)=SEP(XI )**5
SE8(X 1)=SEP(XI )**8
SE3(X I)=SEP(X I)**3
SE4(X 1)=SEP(XI)**4
SE6(X I)=SEP(X 1)**6

61 CONTINUE

C
C THE DIRECTION COSINE TENSOR COMPONENTS ARE STORED IN AN ARRAY:

C

DO 66 X4=1,16
DO 77 X3=1,16

DO 88 X2=I,I6

C
C DIRECTION COSINE TENSOR COMPONENTS:
C

A I=COS(AL I(X2))*COS(BE 1(X3))*COS(GA I(X4))-I. *SIN(AL1(X2))*SIN(GA 1
+ (X4))

A2=SIN(AL 1(X2))*COS(BE 1(X3))*COS(GA I(X4))+COS(AL I(X2))*SIN(GA 1(X4
+ ))

A3=- I .*SIN(BEI(X3))*COS(GAl (X4))
A4=-I. *COS(AL I(X2))*COS(BEI(X3))*SIN(GA I(X4))-I.*SIN(ALI(X2))*COS

+ (GAI(X4))
A5=-I. *SIN(AL1(X2))*COS(BE I(X3))*SIN(GA 1(X4))+COS(AL 1(X2))*COS(GA

+ I(X4))
A6=SIN(BE 1(X3))*SIN(GA I(X4))
A7=COS(AL I(X2))*SIN(BE 1(X3))
A8=SIN(AL 1(X2))*SIN(BE 1(X3))
A9=COS(BE 1(X3))

DCTC( I,X2,X3,X4)=A 1
DCTC(2,X2,X3,X4)=A2
DCTC(3,X2,X3,X4)=A3
DCTC(4,X2,X3 ,X4)=A4
DCTC(5,X2,X3,X4)=A5
DCTC(6,X2,X3,X4)=A6
DCTC(7,X2,X3,X4)=A7
DCTC(8,X2,X3,X4)=A8
DCTC(9,X2,X3,X4)=A9

88 CONTINUE
77 CONTINUE
66 CONTINUE

C

C THE MULTIPOLE INTERACTION ENERGIES ARE CALCULATED AND STORED
C IN ARRAYS:
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C

DO 939 X7=1,16
WRITE(4, I000)X7

1000 FORMAT (IX, 'INDEX (IN RANGE I TO 16) IS CURRENTLY ',12)

DO 40 X6=1,16
c WRITE(6,1111)X6
c 11 I I FORMAT (IX, 'sub-index (in range I to 16) is currently ',12 )

DO 50 X5=1,16

C
C MOLECULE 2'S DIRECTION COSINE TENSOR COMPONENTS:

C

B I=DCTC( 1,X5,X6,X7)
B2=DCTC(2,X5,X6,X7)
B3=DCTC(3,X5,X6,X7)
B4=DCTC(4,X5,X6,X7)
B5=DCTC(5,X5,X6,X7)
B6=DCTC(6,X5,X6,X7)
B7=DCTC(7,X5,X6,X7)
B8=DCTC(8,X5,X6,X7)
B9=DCTC(9,X5,X6,X7)

DO 60 X4=1,16
DO 70 X3=1,16

DO 80 X2=1,16

C
C MOLECULE I'S DIRECTION COSINE TENSOR COMPONENTS:

C

A I=DCTC(1 ,X2,X3,X4)
A2=DCTC(2,X2,X3 ,X4)
A3=DCTC(3,X2,X3,X4)
A4=DCTC(4,X2,X3,X4)
A5=DCTC(5,X2,X3,X4)
A6=DCTC(6,X2,X3,X4)
A7=DCTC(7,X2,X3,X4)
A8=DCTC(8,X2,X3 ,X4)
A9=DCTC(9,X2,X3,X4)

C
C CALCULATION OF THE DIPOLE-DIPOLE POTENTIAL:
C

DDP(X2,X3,X4,X5,X6)=8.98758E-24*DIP**2*(-2*A9*B9+A6*B6+A3*B3)

C
C CALCULATION OF THE DIPOLE-QUADRUPOLE POTENTIAL:
C

DQP(X2,X3,X4,X5,X6)=8.98758E-25*DIP*(Q2*(-2*A9*B9**2+(2*A6*B6+2*A
+ 3*B3+2* A9**2-2* A8**2-A6**2+A5**2-A3**2+A2**2)*B9+2*A9*B8**2+(-2*A
+ 6*B5-2* A3*B2)*B8+A9*B6**2+(2* A5*A8-2* A6* A9)*B6-A9*B5**2+A9*B3**2+
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+ (2* A2* A8-2* A3* A9)*B3-A9*B2**2)+QI *(-2* A9*B9**2+(2* A6*B6+2*A3*B3+2
+ *A9* *2-2*A7* *2-A6* *2+A4**2-A3 **2+A 1**2)* B9+2* A9* B7**2+(-2*A6*B4-2
+ *A3*B 1)*B7+A9*B6**2+(2* A4*A7-2*A6*A9)*B6-A9*B4**2+A9*B3**2+(2* Al *

+ A7-2*A3*A9)*B3-A9*BI **2))

C
C CALCULATION OF THE DIPOLE-INDUCED DIPOLE POTENTIAL:

C
DIDP(X2,X3,X4,X5,X6)=-O.50* ALSTAT*8.07765E-27*DlP**2*(3*B9**2

+ +3*A9**2-2)

C
C CALCULATION OF THE QUADRUPOLE-QUADRUPOLE POTENTIAL:

C
quad 1=-16. *(a6*a9-a5*a8)*(b6*b9-b5*b8)-16.*(a3*a9-a2*a8)*(b3*b9-b

+ 2*b8)+4. *(2. *a9**2-2. *a8**2-a6**2+a5**2-a3**2+a2**2)*(b9-b8)*(b9+
+ b8)+(-4. *a9* *2+4.*a8**2+3.*a6* *2-3. *a5**2+a3 **2-a2**2)*(b6**2-b5*
+ *2)+4.*(a3*a6-a2*a5)*(b3 *b6-b2*b5)+(-4.*a9**2+4.*a8**2+a6**2-a5**
+ 2+3. *a3**2-3.*a2**2)*(b3**2-b2**2)

quad2=-16. *(a6*a9-a4*a7)*(b6*b9-b4*b7)-16.*(a3*a9-al *a7)*(b3*b9-b
+ I*b7)+4.*(2.*a9**2-2.*a7**2-a6**2+a4**2-a3**2+a I**2)*(b9-b7)*(b9+
+ b7)+(-4.*a9* *2+4. *a7**2+3.*a6**2-3.*a4**2+a3 **2-al **2)*(b6**2-b4*
+ *2)+4.*(a3*a6-a1*a4)*(b3*b6-b 1*b4)+(-4. *a9* *2+4.*a7**2+a6**2-a4**
+ 2+3.*a3**2-3.*al **2)*(b3**2-bl **2)

quad3=4. *(4. *A9* *2-2.*(A8* *2+A7**2+A6**2+A3**2)+A5* *2+A4**2+A2**2
+ +A 1**2)*B9**2-16.*(2.*A6* A9-A5* A8-A4* A7)*B6*B9-16*(2.*A3* A9-A2*A8
+ -A 1*A7)*B3*B9-4. *(2.*A9**2-2. *A7**2-A6**2+A4**2-A3**2+AI **2)*B8**
+ 2+ 16.*(A6*A9-A4* A7)*B5*B8+ 16.*(A3*A9-A 1*A7)*B2*B8-4.*(2.*A9**2-2.
+ *A8**2-A6**2+A5**2-A3**2+A2**2)*B7**2+ 16.*(A6*A9-A5* A8)*B4*B7+ 16.
+ *(A3* A9-A2* A8)*B 1*B7+(-8.* A9**2+4. *(A8**2+A7**2)+6. *A6**2-3. *(A5*
+ *2+A4**2)+2* A3**2-A2**2-A I**2)*B6**2+4.*(2.*A3*A6-A2* A5-A 1*A4)*B3
+ *B6+(4.*A9**2-4. *A7**2-3.*A6**2+3. *A4**2-A3**2+A 1**2)*B5**2-4.*(A
+ 3* A6-A 1*A4)*B2*B5+(4.*A9**2-4. *A8**2-3. *A6**2+3. *A5**2-A3**2+A2**
+ 2)*B4**2-4. *(A3* A6-A2* A5)*B I*B4+(-8. *A9**2+4.*(A8**2+A7**2)+2.*A6
+ **2-A5**2-A4**2+6. *A3**2-3. *(A2**2+A 1**2))*B3**2+(4.*A9**2-4. *A7*
+ *2-A6**2+A4**2-3. *A3**2+3. *A I**2)*B2**2+(4.* A9**2-4.* A8**2-A6**2+
+ A5**2-3. *A3**2+3. *A2**2)*B 1**2

El (X2,X3,X4,X5,X6)=8.98758E-26*( 1.l3.)*(Q2* *2*QUADl +Q 1**2*QUAD
+ 2+QI *Q2*QUAD3)

C

C CALCULATION OF THE QUADRUPOLE-INDUCED DIPOLE POTENTIAL:
C

QID 1=Q2**2*(4. *A9**4+(-8.*A8**2+4. *A5**2+4. *A2**2)* A9**2+(-8.*A5*
+ A6-8.* A2*A3)*A8* A9+4.* A8**4+(4.*A6**2+4.*A3**2)* A8**2+A6**4+(-2. *
+ A5**2+2. *A3 **2-2. *A2**2)* A6**2+A5**4+(2. *A2**2-2. *A3**2)* A5**2+A3
+ **4-2. *A2**2* A3**2+A2**4)+Q 1**2*(4. *A9**4+(-8.*A7**2+4.*A4**2+4.*
+ Al **2)*A9**2+(-8.*A4* A6-8.*Al *A3)* A7*A9+4.*A7**4+(4.*A6**2+4.*A3*
+ *2)*A7**2+A6**4+(-2.*A4**2+2. *A3**2-2.*Al **2)*A6**2+A4**4+(2.* Al *
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+ *2-2.*A3**2)* A4**2+A3**4-2.* AI **2* A3**2+A I **4)+Q I *Q2*(8.*A9**4+(­
+ 8*A8**2-8. *A7**2+4.*A5**2+4. *A4**2+4.* A2**2+4.* A 1**2)*A9**2+«-8
+ .*A5* A6-8. *A2* A3)* A8+(-8. *A4* A6-8.* A I*A3)* A7)*A9+(8. *A7**2+4.* A6*
+ *2-4* A4**2+4. *A3**2-4. *Al **2)*A8**2+(8.* A4* A5+8.*Al *A2)* A7*A8+(4
+ .*A6**2-4.* A5**2+4. *A3**2-4. *A2**2)* A7**2+2.* A6**4+(-2.*A5**2-2.*
+ A4**2+4.* A3**2-2.* A2**2-2. *Al **2)* A6**2+(2.*A4**2-2.* A3**2+2. *Al *
+ *2)* A5**2+(2.* A2**2-2. *A3**2)* A4**2+2. *A3**4+(-2.*A2**2-2. *A I**2)

+ *A3**2+2.*AI**2*A2**2)

QI 02=Q2**2*(4.*B9* *4+(-8. *B8* *2+4.*B5 **2+4.*B2**2)* B9* *2+(-8.*B5*
+ B6-8.*B2*B3)*B8* B9+4.*B8**4+(4. *B6* *2+4.*B3**2)*B8**2+B6**4+(-2. *
+ B5 **2+2.*B3 **2-2.*B2* *2)*B6**2+B5* *4+(2.*B2* *2-2.*B3 **2)* B5 **2+B3
+ **4-2. *B2**2*B3 **2+B2* *4)+Q 1**2*(4.*B9**4+(-8.*B7**2+4.*B4**2+4.*
+ B1**2)*B9**2+(-8. *B4*B6-8.*B I *B3)*B7*B9+4.*B7**4+(4. *B6**2+4.*B3*
+ *2)*B7**2+B6**4+(-2.*B4**2+2.*B3**2-2.*B I **2)*B6**2+B4**4+(2.*B I *
+ *2-2.*B3**2)*B4**2+B3**4-2.*B I**2*B3**2+BI **4)+QI *Q2*(8.*B9**4+(­
+ 8. *B8**2-8. *B7**2+4.*B5**2+4.*B4**2+4.*B2**2+4. *B I **2)*B9**2+«-8
+ .*B5*B6-8. *B2*B3)*B8+(-8. *B4*B6-8.*B I *B3)*B7)*B9+(8.*B7**2+4.*B6*
+ *2-4.*B4**2+4.*B3**2-4.*B I **2)*B8**2+(8.*B4*B5+8.*B I *B2)*B7*B8+(4
+ .*B6**2-4.*B5**2+4.*B3**2-4.*B2**2)*B7**2+2.*B6**4+(-2.*B5**2-2.*

. + B4**2+4. *B3**2-2.*B2**2-2.*B I **2)*B6**2+(2.*B4**2-2.*B3**2+2.*B I*
+ *2)*B5* *2+(2.*B2* *2-2. *B3* *2)*B4* *2+2.*B3**4+(-2. *B2* *2-2.*B 1**2)

+ *B3**2+2.*B 1**2*B2**2)

F I(X2,X3,X4,X5,X6)=-O.5*8.07765E-29*ALSTAT*(QIO I+QI02)

.C
C CALCULAnON OF THE INTEGRAnON ARGUMENT:

C

BS = 3*(A33**2* A9**2*B9**2+A22*A33* A8**2*B9**2+A 11 *A33* A7**2*B9**
I 2+2*A33**2*A6*A9*B6*B9+2*A22*A33* A5*A8*B6*B9+2*All *A33*A4*A7*B6
2 *B9+2* A3* A33**2* A9*B3*B9+2*A2* A22* A33* A8*B3*B9+2* A I *All *A33* A7*
3 B3*B9+A22*A33* A9**2*B8**2+A22**2* A8**2*B8**2+A II *A22* A7**2*B8**
4 2+2*A22* A33* A6* A9*B5*B8+2* A22**2* A5* A8*B5*B8+2* All *A22* A4* A7*B5
5 *B8+2* A22*A3* A33* A9*B2*B8+2* A2*A22**2*A8*B2*B8+2* Al *AII *A22*A7*
6 B2*B8+A II *A33* A9**2*B7**2+A II *A22* A8**2*B7**2+A 11 **2* A7**2*B7**
7 2+2* All *A33* A6* A9*B4*B7+2*All *A22* A5* A8*B4*B7+2*All **2*A4*A7*B4
8 *B7+2*All *A3* A33* A9*B 1*B7+2*All *A2* A22* A8*BI *B7+2*Al *All **2*A7*
9 B I *B7+A33**2* A6**2*B6**2+A22* A33* A5**2*B6**2+A 11 *A33* A4**2*B6**

2+2*A3* A33**2* A6*B3*B6+2*A2*A22*A33*A5*B3*B6+2*Al *All *A33*A4*B3
*B6+A22*A33* A6**2*B5**2+A22**2*A5**2*B5**2+AII *A22* A4**2*B5**2+

< 2*A22* A3* A33* A6*B2*B5+2* A2* A22**2*A5*B2*B5+2*A I *All *A22* A4*B2*B
5+A II *A33* A6**2*B4**2+A 11 *A22* A5**2*B4**2+A II **2*A4**2*B4**2+2*

> All *A3* A33* A6*B I *B4+2*All *A2* A22*A5*B I *B4+2*Al *All **2*A4*B I*B4+
? A3**2* A33**2*B3**2+A2**2*A22* A33*B3**2+A I**2*All *A33*B3**2+A22*
@ A3**2* A33*B2**2+A2**2* A22**2*B2**2+A I**2*All *A22*B2**2+AII *A3**
1 2* A33*B I **2+A II *A2**2* A22*B I **2+A I**2*All **2*B I **2)-9.* ALPHA**2

FI(X2,X3,X4,X5,X6)=(SIN(BE I(X3))* SIN(BE2(X6)))*BS

C
C CALCULAnON OF THE SHAPE POTENTIAL:
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C

GI(X3,X4,X6)=4.*PARAM2* 1.380622E-23*R** I2*(SHAPEl *(3'*COS(BE1(X3)
+ )**2+3.*COS(BE2(X6))* *2-2.)+SHAPE2*(3.*COS(GA I(X4))**2*SIN(BE 1(X3
+ ))**2+3. *COS(GA2(X7))* *2*SIN(BE2(X6))**2-2.))

80 CONTINUE
70 CONTINUE
60 CONTINUE
50 CONTINUE
40 CONTINUE

C
C THE INTEGRAL IS CALCULATED:

C

SS6=0.00
DO 940 X6=I, 16

C WRITE(6,I91l)X6
C1911 FORMAT (IX, 'sub-index (in range 1 to 16) is currently ',12)

SS5=0.00
DO 950 X5=I,16

SS4=0.00
DO 960 X4=1,l6

SS3=0.00
DO 970 X3=1,16

SS2=0.00
DO 980 X2=1,16

SSI=O.OO
DO 990 XI=I,64

C
C SUMMATION OF THE ENERGY TERMS WITH SUBSEQUENT DIVISION BY (-kT):
C

G3=-I.*(0 1(X I)+E I(X2,X3,X4,X5,X6)/SE5(X 1)+FI(X2,X3,X4,X5,X6)/SE8(
+ X I)+G 1(X3,X4,X6)/SE 12(X I)+00P(X2,X3,X4,X5,X6)/SE3(X 1)+DIOP(X2,X3,
+ X4,X5,X6)/SE6(X 1)+OQP(X2,X3,X4,X5,X6)/SE4(X 1))/TEMPK

IF(G3.LT.-85) GO TO 5000
G4=2.71828**G3
GO TO 5010

5000 G4=0
5010 SS I=SS I+FI(X2,X3,X4,X5,X6)*SEP(X 1)**2*G4*COEF2(XI,2)
990 CONTINUE

SS2=SS2+SS 1*COEFI (X2,2)
C
C
980 CONTINUE

SS3=SS3+SS2*COEF 1(X3,2)
C
C
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970 CONTINUE
SS4=SS4+SS3 *COEF1(X4,2)

C
C
960 CONTINUE

SS5=SS5+SS4*COEF I(X5,2)

C
C
950 CONTINUE

SS6=SS6+SS5*COEFI (X6,2)
C
C
940 CONTINUE

SS7=SS7+SS6*COEFI (X7,2)

C
C
939 CONTINUE

ANS=SS7*SEPI *AL II *BE II *GA II *AL21 *BE21 *GA21 * I.E-4*6.022 169
+ /(2. *DELTA2*3.14159265358979323846**3* 16.)

C
C THE INTEGRAL IS PRlNTED TOGETHER WITH MOLECULAR DATA USED
C

WRITE(4,2266)
2266 FORMAT( IX,'THE BENOIT-STOCKMAYER CONTRIBUTION TO B(Rho) ether:')

WRITE(4,2267)
2267 FORMAT(I X,' ')

WRITE(4,2269)
2269 FORMAT( 1X,' ')

WRITE(4,1140)ANS
1140 FORMAT(lX,'THE INTEGRAL IS',EI5.7)

WRITE(4,2150)
2150 FORMAT(lX,'INPUT DATA:')

WRITE(4,2155)TEMP
2155 FORMAT(lX,'TEMPERATURE: ',FIO.5)

WRITE(4,9259)D1P
9259 FORMAT(IX,'D1POLE MOMENT: ',FI0.5)

WRITE(4,9260)ALPHA
9260 FORMAT(IX,'MEAN DYNAMIC ALPHA: ',FIO.5)

WRITE(4,926I)AII
9261 FORMAT(lX,'DYNAMIC ALPHAII: ',FIO.5)

WRITE(4,9262)A22
9262 FORMAT(IX,'DYNAMIC ALPHA22: ',FIO.5)

WRlTE(4,9263)A33
9263 FORMAT(lX,'DYNAMIC ALPHA33: ',FIO.5)

WRITE(4,9265)DELTA2
9265 FORMAT(lX,'(DELTA DYNAMIC ALPHA)**2:',FIO.5)

WRITE(4,9264)ALSTAT

9264 FORMAT(lX,'MEAN STATIC ALPHA: ',FI0.5)
WRITE(4,2190)QI

2190 FORMAT(lX,'THETAII: ',FIO.5)
WRITE(4,2241 )Q2
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2241 FORMAT(lX,'THETA22: ',FIO.5)
WRlTE(4,221 O)R

2210 FORMAT(l X,'R(O): ',F6.5)
WRITE(4,2220)SHAPE I

2220 FORMAT(lX,'SHAPE FACTOR I: ',FIO.5)
WRITE(4,2221 )SHAPE2

2221 FORMAT(lX,'SHAPE FACTOR 2: ',FIO.5)
WRITE(4,2230)PARAM2

2230 FORMAT(IX,'E/K: ',F9.5)
WRITE(4,2235)AMIN I,AMAX 1

2235 FORMAT(IX,'MIN AND MAX POINTS OF RANGE (64 INTERVALS):',2(FI0.5,3
+ X))

WRITE(4,2240)
2240 FORMAT(l X,'END B(Rho)')

WRITE(4,2261)
2261 FORMAT(l X,' ')

WRITE(4,2262)
2262 FORMAT(l X,' ')

WRITE(4,2263)
2263 FORMAT(l X,' ')

WRITE(4,2264)
2264 FORMAT(l X,' ')

WRlTE(4,2265)
2265 FORMAT(l X,' ')

close(unit=4)
END
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