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Abstract 

This thesis describes the development of a model that simulates the human recognition of 

a face by a machine in real time. The need for such research is a result of the increasing 

fraudulent behaviour in society with the result that there is a renewed interest in the 

collection of biometric measures to strengthen identity checks. Various attempts have 

been made to solve the problem of face recognition using neural networks, algebraic 

moments, elastic template matching, Karhunen-Loeve Transforms, eigenfaces and 

Hidden Markov Models. Varying degrees of success have been reported. The method 

proposed in this thesis is simple, and inexpensive to implement. 

The system is based upon capturing an image of a subject. Psychophysical observations 

are used in the image capture process by using ¾ views of the subjects. A general 

symmetry transform was initially used for the normalisation process whereby only the 

face of the subject is evaluated. Although this was found to be very accurate it is 

computationally intensive and manual normalisation was used. 

Compression of the facial images is affected using a 2-D discrete cosine transform. 

Since the variance of each element of the transformed image represents the information 

content, transfonn coefficients with larger variances are selected. 

Two different neural networks are used. The standard back-propagation neural network 

is used in a "network per person" implementation, while the counter-propagation and 

radial basis function network are used in a database implementation. The database was 

split and tests were performed with the two new databases to determine the 

generalisation ability of the neural networks. The results of the classification process are 

discussed and proposals are made for incorporating this model into a face recognition 

unit for the prevention of fraud. 
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The bird with you, the wings with Me; 

The foot with you, the way with Me; 

The eye with you, the form with Me; 

The thing with you, the dream with Me; 

So are we free, so are we bound; 

So we begin and so we end; 

You in Me and I in you. 

-BABA

This thesis is dedicated to Bhagawan Sri Sathya Sai Baba, who 

is Aartha Traana Parayanaaya (He who comes gladly to the 

rescue of those in agony), the Prime Mover of the phenomenal 

Universe and who manifests as Jnaana Swaroopini Saraswathie 

Ma. 
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Chapter 1 INTRODUCTION 

Chapter 1 

INTRODUCTION 

It is indeed a great boon to see the myriad animate and inanimate objects of this 

universe. The ability to see, process what is seen and arrive at relevant decisions has 

determined to a large extent the social behaviour of humans and animals. Human vision 

develops over several years of childhood and together with related abilities has played an 

important role in the course of evolution[3]. 

1.1 Human Vision 

One of the most remarkable abilities of human vision is face identification/recognition. 

According to Reisfeld[7], face recognition can be defined as the classification of a face 

image as belonging to a specific individual or a class ( e.g. gender). Classification can be 

defined as either the positive or negative verification of an individual. Facial processing 

also consists of understanding of expressions in the context of emotion or 

communication; social attention - evaluating gaze and face direction; recognising facial 

qualities such as beauty, age, sex and character; lip reading and other facial movements. 

Without the skill responsible for the identification of a familiar face in a group of 

strangers or the ability to discriminate between animate and inanimate objects, humans 

would be at a functional loss[l]. 
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Chapter 1 

1.2 The need for biometric measures 

INTRODUCTION 

The increase of fraudulent behaviour in society has caused many professional institutions 

to turn to biometric1 measures for positive identification of their clients. There is thus a 

renewed interest in the collection of biometric measures of people to strengthen identity 

checks[8]. The collection of biometric measures are used in biometric systems which are 

(usually) automated devices used for verifying or recognising the identity of a living 

person on the basis of a physiological characteristic like fingerprinting, iris images or 

some aspects of behaviour like handwriting or key-stroke patterns[29]. 

Many institutions, including the FBI have carried out research into the field of fingerprint 

recognition. The basis for this research is that fingerprints are unique to each human 

being. The iris of the eye, much like fingerprints exhibits unique characteristics with 

respect to texture and patterns. Research has shown that these characteristics remain 

stable for decades. The use of speech is another biometric measure that has been used to 

identify the speaker. However, all these measures are in some way obtrusive[8]. 

Perhaps the most passive method of identifying an individual is by face recognition. An 

automatic face recognition system would allow a subject to be identified by taking an 

image of that subject without the subject's knowledge of the event. Thus, the need to 

unobtrusively identify clients via biometric measures warrants further investigation into 

the problem of automatic face recognition. 

Automatic face recognition is defined as the machine recognition of human faces. It was 

considered in the early stages of computer vision[2]. Another reason for its revival, after 

nearly two decades, could be attributed to the increase in computational power, which 

enables effective implementation of algorithrns[4]. Automatic face recognition has 

several applications which range from access control, credit card verification, user 

authentication, surveillance of video images and monitoring of patients for post 

operative swelling[S]. 

1 Biometric measures are based on physiological or behavioural characteristics.
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Chapter 1 

1.3 Difficulties Associated with Automatic Face 
Recognition 

INTRODUCTION 

The robustness of human vision is demonstrated in their ability to identify subjects in 

quite adverse conditions. They are able to account for changes in lighting, pose, 

expression, occluded detail (a beard or glasses) and even hairstyles. 

Though the process of face identification has become quite a natural task for humans, it 

is one of the most difficult things we do. The difficulty can be attributed to the fact that 

all faces contain roughly the same geometric arrangement ( extreme homogeneity of the 

faces). Non-rigidity of faces (seen in facial expressions) in addition to imaging 

conditions such as lighting or pose compounds the problem[6]. 

Various attempts have been made to solve the problem of automatic face recognition. 

Techniques as varied as the implementation of neural networks, elastic template 

matching, Karhunen-Loeve transforms, algebraic moments and isodensity line maps have 

been proposed[5]. None of the above-mentioned techniques have been totally 

successful. In just a glance, humans can determine a person's identity, race, sex, age and 

physical expressions. Unfortunately most computer models of face recognition are not 

capable of this. 

1.4 Objectives and Limitations to this Thesis 

Most face recognition systems employ either geometric features or template matching. 

This study focuses on a technique based on a global or holistic approach. A new 

database of faces containing ¾ view information is built whereby the whole face is used 

in the recognition process as opposed to a collection of features ( e.g. nose, eyes, 

distance from nose to eyes etc.). Captured images of individuals contained full frontal 

views, in-between full frontal views and ¾ views, and ¾ views. After capturing the 

individual's image, it is normalised. 
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Chapter 1 INTRODUCTION 

The 2-D discrete cosine transform (DCT) is then applied to the normalised image. This 

results in a transformed image in which most of the energy of the coefficients is 

concentrated in the upper left-hand comer of the transformed matrix. The coefficients 

with the greatest variance were selected in two phases: 

a) Visual inspection - this was undertaken to determine the area of search for

coefficients with high variance. 

b) Neural networks - tests were performed with neural networks to determine which

area gave the optimum performance with respect to the 

classification rate. 

Neural networks have been used with success in fields as diverse as prediction and 

classification. The ability of the neural network to generalise 1 
prompted many 

researchers to use them in image recognition applications with varying degrees of 

success[6]. They were thus chosen for the classification/verification of the faces. The 

neural networks are deployed in two specific fashions. A standard back-propagation 

network with momentum is used to train a network per person while a counter­

propagation and a radial basis function network are used in a database approach. The 

two approaches were used independently of each other, and no hybrid training/network 

was used. 

1 A neural network is said to be able to generalise when it can correctly classify data that it has not seen 
during its training phase[lO]. 

1 - 4 



Chapter 1 INTRODUCTION 

As this study forms an initial investigation for future work, certain assumptions were 

made: 

The thesis assumes that the face presented to the discrete cosine transform is already 

normalised. Automatic face location was attempted via the general symmetry transform, 

however it was found that due to the computational intensity required by the transform, 

it was not a viable solution. Hence manual normalisation was performed on the images. 

It must be emphasised that this study concentrates on the investigation into whether 2-D 

discrete cosine transforms and neural networks are a suitable solution for the problem of 

automatic face recognition. 

The definition of what constitutes acceptable performance in a face recognition system is 

dependent on the context of the application. However, it should be agreed upon that 

speed of recognition/rejection as well as recognition rate should be high. The term 

"high" is relative. For the purposes of this study, high speed of recognition is defined to 

be within 8s (i.e. the image capture, face location and recognition should take place in 

8s). Current technology prevents the achievement of a 100% recognition rate. A true 

positive recognition rate of above 90% and true negative recognition rate of above 95% 

is defined as acceptable. (The definitions of true positive and true negative recognition 

rates are dealt with in Chapter 6). 

1.5 Structure of this thesis 

Chapter 2 surveys related work in the field of automatic face recognition. 

Important psychophysical findings that impact on the current study are described first, 

followed by reports on automatic face location, automatic face recognition and the 

application of neural networks to automatic face recognition. The basis of this study, as 

well as the limitations of the previous work are also described. 
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Chapter 1 INTRODUCTION 

Chapter 3 describes the system components that make up the face 

recognition algorithm. An overview of the algorithm is given, and the details of the 

experimental set-up used to capture the images are described. 

Chapter 4 presents the general symmetry transform that was investigated for 

use in automatic face location. The 2-D discrete cosine transform is defined and the 

motivation for using it is then described. The variance of the coefficients of the 2-D 

discrete cosine transform is also reported on. 

Chapter 5 is a summary of neural networks. The back-propagation network 

is mentioned while the counter-propagation and radial basis function network is 

explained in detail. 

Chapter 6 describes experimental results using different sized, as well as 

different shape regions that were presented to the neural network. This was done to 

determine the optimum region size and shape to be presented to a neural network. The 

insights gained from these results were used in further experiments. 

Chapter 7 concludes the thesis by summansmg the results obtained and 

suggesting further avenues of research for the study, as well as possible implementation 

scenarios. 

Appendix A 

Appendix B 

Appendix C 

contains a description of the code used for the frame grabber 

card. 

describes the face database that was built. 

describes the code that was written for the general symmetry 

transform. 
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Appendix D 

AppendixE -

Appendix F 

Appendix G -

INTRODUCTION 

details the results of extensive tests performed with the radial 

basis function network (with the dynamic decay algorithm). 

reports the results obtained from tests performed with the 

back-propagation network with momentum. 

reports the results obtained from tests performed with the 

counter-propagation network. 

contains recommendations for further work, as well as plans for a 

prototype AFR system. 
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Chapter 2 REVIEW OF FACE RECOGNITTON 

Chapter 2 

REVIEW OF FACE RECOGNITION 

2.1 Introduction 

Automatic face recognition has over the years drawn the interest of researchers in the 

fields of psychophysics, neural sciences, engineering, image processing and analysis and 

computer vision[30]. This chapter reviews some of the most current research in

automatic face recognition. It must be emphasised that this review is by no means a 

complete review of the field. 

2.2 Psychology of face recognition 

The human face recognition faculty receives stimuli that are gathered from the senses 

and which are used for both the storage and retrieval of face images for face recognition. 

The view held by Chellapa et a/[30] is that it is impossible (with present technology) to 

design an automatic face recognition system that would be able to fully mimic the human 

face recognition faculty. However, the latter[30] maintains that the advantage of an 

automatic face recognition system is that it would be able to handle large amounts of 

faces, as opposed to the human brain that can identify a finite number of faces. 

Psychologists are interested in the cognitive mechanisms of face recognition. A detailed 

review of the relevant studies in psychophysics and neuroscience is beyond the scope of 

this study. Studies done in the fields of psychophysics and neurophysiology show that 
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Chapter 2 REVIEW OF FACE RECOGNITION 

both holistic and feature information are crucial for the perception and recognition of 

faces. The hair, face outline and mouth have been determined as being important in the 

face recognition process. It has also been determined that the nose plays an insignificant 

role in the face recognition process. This could be due to the fact that only frontal views 

were used in the study[30]. 

Other issues that psychophysicists and neuroscientists have been concerned with are 

• Uniqueness of faces;

• Whether face recognition is done holistically or by local feature analysis;

• Analysis and use of facial expressions for recognition;

• How infants perceive faces; organisation of memory for faces;

• Inability to accurately recognise inverted faces;

• The role of the right hemisphere of the brain in face perception and inability to

recognise faces due to conditions such as prosopagnosia1[30].

Some of the theories that have been put forward by psychophysicists and neuroscientists 

to explain observed experimental results are contradictory[30]. However, some of their 

findings have important consequences for engineers who design algorithms and systems 

for the machine recognition of human faces. One such finding is the importance of the¾ 

face view in its relation to face recognition. 

2.2.1 The ¾ Face View 

Perret et al [25] suggested the presence of individual cells of the macaque superior 

temporal sulcus of monkey's brains appeared to be exclusively tuned to respond to 

specific views of a head. Most of the cells were viewer centred and responded to one 

view (either the frontal, the two profiles or the back views). Few cells were tuned to 

1 
Prosopagnosia is a variety of visual agnosia characterised by inability to recognise the faces of other 

people, or even one's own face in a mirror, associated usually with agnosia for colour, objects and 

places. Agnosia is defined as the loss of the power to recognise the import of sensory stimuli; the 
varieties correspond with the several senses. 

2-2



Chapter 2 REVIEW OF FACE RECOGNITION 

other views in the 3 60° range. This work provided some neurophysical basis for effects 

of pose change and a¾ view2 advantage[24]. 

Bruce et a/[20] performed experiments to test the postulate: three-quarter views 

promote better recognition memory for previously unfamiliar faces than do full-face 

views. Tests were performed using ¾ views and full face views. The psychophysical 

observations showed 

• no evidence of the advantage of the ¾ view over the full face view when the faces

used were highly familiar to the subjects (psychology students who were asked to

identify the faces)

• ¾ views led to increased speeds of recognition of the same faces when shown to

subjects to whom the faces were unfamiliar.

According to Bruce et a/[20], the ¾ view advantage appeared when the faces were 

unfamiliar and the task had to be performed at the level of visual matching. It was 

reiterated that the ¾ view does not function as a "canonical view'' in the representation 

of familiar faces. 

Schyns and Bulthofff.24] also investigated the condition of viewpoint dependence of face 

recognition in humans. Five views were used in the experiment (frontal view, between 

frontal and¾ view). In all the tests performed, the highest classifications were obtained 

for the ¾ views. The data revealed a strong interaction between the learned view of a 

face and the generalisation to other views of the same face. The experiments show that 

no single view was canonical. Results did however show that face recognition could be 

performed from a non-singular view, and that the ¾ view should be preferred over a full­

face view because it allows better encoding and recognition. It was reported that among 

all views, the ¾ view is identified fastest and with greatest accuracy. 

Although some of the research done in the field of psychophysics and neuroscience 

serves as a useful guide, one must be prudent in using only those theories that are 

applicable or relevant from a practical /implementation point ofview[30]. 

2 ¾ view - the viewpoint between full face and profile views 
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Survey of relevant literature 

Chellapa et a/[3 O] did an extensive survey on the applications, advantages and 

disadvantages of face recognition. They categorised the different recognition systems as 

follows: 

• Matching

• Similarity and detection -

defined as matching one face image to another 

face image. (see applications 1-3 of Table 2.1) 

defined as finding or creating a face image, which 

is similar to a human recollection of a face. (see 

applications 4-6 of Table 2.1) 

• Transformation defined as generation of an image of a face from 

input data that is useful in other applications. The 

information is used to perform modifications on a 

face image to arrive at the relevant image. The 

reconstruction of a face of a mummy from its 

remains is such an example. (see applications 7-9 

of Table 2.1) 

Table 2. 1 : Applications of face recognition technology (reproduced from Chellapa (30)) 

Application Advantages Disadvantages 

la. Credit card, drivers Controlled image No existing database 

license, passport and Controlled segmentation Large potential database 

personal identification. Good quality Rare search type 

lb. Mugshot matching 

2. Bank/Store security High value Uncontrolled segmentation 

Geographic search limits Low image quality 

3. Crowd surveillance High value Uncontrolled segmentation 

Small file size Low image quality 

Real time 

4. Expert Identification High value Low image quality 

Enhancement possible Legal certainty required 
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Chapter 2 REVIEW OF FACE RECOGNITION 

5. Witness Face Genetic optimisation Unknown similarity 

Reconstruction 

6. Electronic Mugshot Descriptor search limits Unknown similarity 

Book Genetic optimisation 

7. Electronic Lineup Descriptor search limits Unknown similarity 

8. Reconstruction of face High value Requires physiological 

from remains input 

9. Computerised Ageing Missing children Requires example input 

For the purposes of this study, only "matching" is considered. 
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Chapter 2 REVIEW OF FACE RECOGNmON 

2.3.1 Face location 

Face location is a difficult, yet important first step in any fully automatic face recognition 

system. The location of faces is a non-trivial task and deserves a complete study devoted 

to it. In this study emphasis is placed on the recognition aspect of the automatic 

face recognition system, however, face location is attempted by use of the general 

symmetry transform. 

Sung and Poggio[33] define face detection as: given an arbitrary input image that could 

be digitised or scanned in, determine whether or not there are any human faces in the 

image, and if there are return an encoding of the location and spatial extent of each 

human face in the image. An example encoding is defined as probably fitting each face in 

the image with some bounding box. If the description of such an action is so simple, 

then one is justified in asking why face detection is so difficult. Sung and Poggio[33] 

give the following reasons for the difficulties experienced in face detection: 

• Although most faces are similar in structure and appearance (i.e. the same facial

features arranged in roughly the same spatial configuration), it is possible that there

can be a large component of non-rigidity and textural differences among faces. The

size of a person's nose, colour of a person's skin, and distance between the two eyes

are some factors that contribute to the variability of faces. Thus, traditional fixed

template matching techniques and geometric model-based object recognition

approaches that work well for rigid objects do not perform as well for the detection

of faces.

• Glasses or moustaches can be either present or absent from a face, thus increasing

the variability that a comprehensive face detection system must handle.

• Unpredictable imaging conditions in an unconstrained environment can enhance the

variability among faces, e.g. a change in light source can remove significant shadows

from a particular face.
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Chapter 2 REVIEW OF FACE RECOGNITION 

Some automatic face recognition systems employ constraints on the location of the head 

within the image for easier face location. In the Wilder[9] face recognition system, 

subjects were asked to place their chin on a chin rest and look into a window in a booth 

containing a camera, light source, mirror and monitor. During training the subjects 

observed their image in the monitor and aligned their faces roughly within a box 

appearing on the monitor. The camera and mirror produced a full-face image of the 

subject. The light source was placed off-axis to create shadows that de-lineated facial 

features. 

A much more sophisticated model based approach is presented by Govindaraju et a/[35] 

for the location of human faces in newspaper photographs. The shape of the face was 

modelled via a series of templates. The templates were composed of three segments that 

are obtained from the curvature discontinuities of the head outline. These are abstract 

descriptions of simple geometric features such as lines, arcs and edges. The relationships 

between templates are represented by springs that are pulled and pushed to align the 

template with the original image. The constraints placed by Govindaraju et a/[3 5] are 

that the faces must be front view, upright, not occluded, with contrast against the 

background and their sizes should be greater than an absolute minimum and less than an 

absolute maximum. Their system was able to find the only face in the image 83% of the 

time. 
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Curvature discontinuities 

., .. ,., .. -· 

/········, ..... 

A A 

.....____,,,, 

i 
Hair curve 

'••······ 

Face side curves 

Figure 2. 1 : Model of the shape of a human face used by Govindaraju et a/[35]. 
[Reproduced from (371] 

Craw et a/[34] used a multi-resolution approach that employed templates of 

8x8, 16xl6,32x32,64x64 and 128xl28 (full size image). Their initial processing starts at 

the lowest resolution and averages the full size image to 8x8 pixels. A model head was 

used at different resolutions iteratively to handle scaling. Their algorithm calculated the 

edge and magnitude direction after applying a Sobel mask to the original grey-scale 

image. The head outline was obtained from the lowest resolution image by joining the 

locations of the maximum gradients. They used the results obtained at lower resolutions 

as guidelines for the next higher resolution. After the head outline was located, a search 

for features ( eyes, ears, nose, and lips) was done. Their algorithm was tested on 20 

faces, and the features that were identified are reflected in Table 2.2 . 

Table 2. 2 : Table of features detected 

feature Number of times detected 

Outlines 12 

Lips 19 

Eyebrows 27 

Eyes 10 
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Neural networks have also been employed in the task of face location. Baluja et a/[3 6] 

presented a neural network based algorithm to detect frontal views of faces in grey-scale 

images. They used a neural network based filter that received as input a small square 

region and generated an output that ranged from 1 to -1, signifying the presence or 

absence of a face respectively. For the filter to detect faces anywhere in the input, it 

must be applied at every location in the image. If the faces are larger than the window 

size, the input image is reduced in size and the filter is applied at each size. Before the 

window is passed to the neural network, pre-processing is performed on it. The pre­

processing stage consists of histogram equalisation, which non-linearly maps the 

intensity values to expand the range of intensities in the window. The pre-processed 

window is passed through a neural network whose single valued output indicates 

whether the window contains a face or not. The network itself has "retinal connections" 

to its input layer. Baluja et a/[36] used two and three sets of hidden units. The detector 

is enhanced by merging overlapping detections from a single network and arbitrating 

among multiple networks. The algorithm detected up to 92. 9% of the faces in a set of 

test images. Their results are impressive, however the algorithm has problems in 

detecting faces with glasses. This could possibly be due to the fact that the glare from 

the lens of the glasses occludes the details of the eyes (i.e. the eye region is not dark 

enough) [36]. 

Faces can also be located by first locating important features such as the eyes, nose or 

mouth. One can then exploit the geometric information of the face to locate the face. 

According to Kokuer[37], two types of features are commonly used: 

1. Features that are derived from the profile of the image, e.g. the notch between the

brow and the nose, the nose and the upper lip, and the tip of the nose and the tip of

the chin.

2. Features that are derived from intensity images, such as the size of the eyes, inter­

ocular distance and the distance between the eyes and lips, hair or cheek intensity.
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Kokuer[31] applied a valley edge detector to full face images of 360x288 pixels. The 

valley edge detector was used as opposed to others since it yields edges that tend to 

match with those that humans find important. A series of horizontal slits were applied to 

the images and vertical profiles from these slits were obtained. Kokuer[37] was able to 

locate the eyes from the vertical projections of the horizontal slits. It was not clear 

which horizontal slits should be chosen over others, where these slits should be placed, 

as well as the methodology used for the detection of the peaks from the vertical profiles. 

2.3.2 Face recognition 

Faces represent complex, multidimensional, meaningful visual stimuli and developing a 

computational model for face recognition is difficult [ 41]. 

Brunelli and Poggio[2] identified two general strategies that have evolved over the years 

as possible solutions to the problem of face recognition: 

1. Geometric Feature Based Matching: In this approach a face can be recognised

even when the details of individual features are no longer resolved. Relative

positions as well as parameters such as the distinctiveness of the eyes, mouth, nose

and chin are extracted from the remaining data, which is essentially geometrical in

nature. They also state that the very fact that face recognition is possible at coarse

recognition implies that the overall geometrical configuration of the face is sufficient

for face recognition[2].

2. Template Matching: In a simple version of template matching, an image is stored

as a two dimensional array of numbers and is compared using some metric (e.g. the

Euclidean distance) with a single template[2].

Brunelli and Poggio[2] performed a series of experiments to determine the superior of 

the two approaches (i.e. geometric feature based approach and template based 

approach). They used a database of 188 images, four for each of the 47 subjects. Two 
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of the four pictures were taken in the same session while the other two were taken over 

an interval of two weeks. 

Geometric Feature Based Matching: 

The work of Brunelli and Poggio[2] 1s loosely based on that of Kanade[38]. 

Kanade[38] developed a face recognition system that used a database of 20 people (2 

views per person) and achieved a 75% recognition rate. His approach was also based on 

geometrical feature based approach. Brunelli and Poggio[2] first normalised their 

images by means of a normalised cross-correlation coefficient defined by 

where 
h is the patch of image I that must be matched to T. 

<> is the average operator. 

h.T is the pixel by pixel product

cr is the standard deviation over the area being matched 

2-1

This was done so that the images were independent of position, scale and rotation of the 

face in the image plane. They employed techniques of hierarchical correlation to 

overcome the computational intensity demanded by standard correlation[2]. 

Feature extraction was then performed on the normalised image usmg integral 

projections. These projections are simply defined as: if I(x,y) is an image, then the 

vertical projection in the (x1,x2) (y1,Y2) rectangle is defined as[2] 

Y2 

V(x) = Ll(x,y) 2- 2

y�y, 

and the horizontal direction is defined as 

2-3

Brunelli and Poggio[2] claim that integral projections can be extremely effective in 

determining the position of the features, provided that the window on which they act is 
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suitably located. Before any of the features are located, the vertical and horizontal edge 

maps are calculated. The window used to locate the mouth and nose is guessed using 

anthropometric standards. As a first estimate, peaks are searched for in the horizontal 

projection of the vertical gradient map. The peaks are rated with respect to the distance 

from the expected location, as well as the prominence of the peaks. The highest rating 

peaks are the vertical position of the mouth. Once the vertical position is found, the 

search is refined. The eyebrows are found using a similar method on the vertical 

gradient map. Their eyebrow detector searches for pairs of peaks of gradient intensity 

with opposite direction. No hairline information was considered. Dynamic 

programming was used to determine the face outline. This was done by exploiting the 

fact that the face outline is essentially elliptical. Hence dynamic programming was used 

to follow the outline on a gradient intensity map of an elliptical projection of a face 

image[2]. 

A 35-D vector that contained geometric feature information was composed as follows: 

• eyebrow thickness and vertical position at eye centre position

• a coarse description (11 data elements) of the left eyebrow arches

• nose vertical position and width

• mouth vertical position, width(upper and lower lips) and height

• 11 radii describing the chin shape

• bigonial breadth (face width at nose position)

• zygomatic breadth ( face width halfway between nose tip and eyes)

A Bayes classifier was used for the recognition. 

Template Based Matching : 

Correlation lies at the core of the template approach. The image is normalised as 

described in equation 2-1. Each person is represented in the database by 4 masks 

representing the eyes, nose, mouth and full face template of that person. The 

unclassified image is compared to the rest of the database using normalised cross 

correlation. A score is returned for each correlation. The unclassified image is then 
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placed in the same class as the vector with the highest cumulative score. Brunelli and 

Poggio[2] point out that correlation is sensitive to illumination gradients and hence 

different normalisations were used 

• no preprocessing, a plain intensity image was used.

• intensity normalisation using the ratio of the local value over the average brightness

in a suitable neighbourhood.

• gradient magnitude: the intensity of the gradient computed with an L1 norm on a

Gaussian regularised image

• the Laplacian of the intensity image was computed

It was reported that the best recognition rates were obtained when gradient information 

was used. Brunelli and Poggio[2] reported that the experimental analysis showed that 

features could be rated as follows (in accordance of decreasing performance): 

1. eyes

2. nose

3. mouth

4. whole face template

The difficulty associated with perfectly normalising each full face template is attributed 

to the low performance of the whole face template by the authors. They also suggest 

that since the whole face is the template, it is sensitive to slight deformation due to 

deviations from frontal views. Brunelli and Poggio[2] reported that their template based 

strategy was superior in recognition performance even though the feature based strategy 

allowed for high recognition speeds and smaller memory requirements. They admit that 

their template based approach contains some elements of the feature based approach, but 

argue that successful object recognition architectures need to combine aspects of feature 

based approaches with template matching techniques. 

Samaria[8] proposed a new approach to the problem of face recognition that used 

hidden markov models. The faces are treated as 2-D objects and the model is able to 

extract statistical facial features. Samaria[8] states that this model is also able to use 
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structural information, thus yielding a hybrid model. Although hidden markov models 

are conventionally used in speech recognition (because of the 1-D nature of the speech 

signals), the 2-D images can be converted to 1-D spatial sequences. Samaria[8] 

achieved this by sampling an image using a 2-D sliding window. 

The following results were obtained 

Table 2. 3: Error rates obtained at various model resolutions by Samaria[8] 

Full image resolution Error Rate 

92xl 12 5.5% 

46x56 6.5% 

23x28 6% 

12x14 12% 

The low error rate is at the expense of high computational cost. A single classification 

takes 4 minutes on a Spare II for the system to sustain an error rate of 5. 5%. It was also 

noted by Samaria[8] that although an increased recognition rate was achieved, the 

segmentation obtained with the pseudo 2-D hidden markov models was quite erratic. 

Samaria[8] used the ORL3 database. 

lntrator et al[I6] use a GST (General Symmetry Transform - described in Chapter 4) 

for the detection of certain facial features (the transform can detect the eye and mouth 

regions quite accurately). The GST output is projected onto the horizon, edge linked 

and local maxima are used for the detection of certain anchor points. After locating the 

eyes and mouth, affine transformations were applied to the image. Feed-forward neural 

networks were implemented for classification due to their ability to cope with very high 

dimensional data. Intrator et al[ 16] state that they are thus excellent candidates to 

perform recognition from pixel values. A hybrid training method was also employed, 

that used unsupervised methods for extracting features and supervised methods for 

minimising the classification error. The hybrid training in the feed-forward network was 

3 
ORL - Olivetti Research Laboratory 
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achieved by modifying the learning rule of the hidden units to reflect additional 

constraints. 

An MIT media lab database, which consisted of 37 instances of 16 distinct people, was 

used. Intrator et al[ 14] don't report on the number of faces used in the test and training 

sets. The results obtained are as follows: 

Table 2. 4 : Classification errors obtained by lntrator et a/[14]. 

Method % Error 

Back Propagation 3.28±0.31 

Hybrid BCM/BP 3.96±0.96 

Averaged Back-Propagation 1.25 

Averaged Hybrid BCM/BP 0.62 

Konen and Schulze-Kruger[39] presented a novel technique that was an extension of the 

elastic graph matching algorithm. This system is able to simultaneously perform 

localisation, separation, standardisation and recognition. The core principle of this 

approach lies in the fact that faces are stored as flexible graphs with characteristic visual 

features attached to the node of the graphs. The features are extracted by a convolution 

with Gabor wavelets and are computed at the location of the graph node[39]. 

The author states the following computational advantages in using labelled graphs for 

data representation: 

1. Robustness -

2. Data Compression -

3. Scaling�

Gabor features are more tolerant to head posture, size and 

facial expression than raw gray level images. 

They achieve data compression of about a factor of 10. 

Changes in geometry can be accounted for in sparse 

graphs. 
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If information at a single node is missing, recognition is 

still possible as the graph contains sufficient information 

distribution. 

Variations like facial expression and wearing glasses are handled very well by the 

algorithm. The system achieved a recognition rate of 96% and a false rejection rate 

(FRR) of 4% on a database of 87 persons (I image per person). The actual approach is 

not clearly described by the authors, rather a high level explanation is provided. 

Zhang et al[ 40] performed a comparative study of three recently proposed algorithms 

for face recognition: 

• eigenfaces

• auto-association and classification neural networks

• elastic graph matching

These techniques were analysed under a statistical decision framework and evaluated 

experimentally on four different databases of moderate subject size. The following 

databases were used: 

Table 2. 5: Databases used by Zhang et a/[40]. 
---

Database Subject Variation Total 

MlT 16 3 48 

Olivetti 40 2 80 

Weizmann 28 3 84 

Bern 30 2 60 

Combined 114 2,3 272 
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The following results were obtained: 

Table 2. 6: Results obtained by Zhang et a/[40]. 

Database Eigenface 

MIT 97% 

Olivetti 80% 

Weizmann 84% 

Bern 87% 

Elastic Matching 

97% 

80% 

100% 

93% 

Auto-Association 

and Classification 

Networks 

72% 

20% 

41% 

43% 

Zhang et al[ 40] reported that the eigenface algorithm worked well only when the 

lighting variations were small. This is due to the fact that the eigenface algorithm is 

essentially a minimum distance classifier, and hence it's performance decreases as 

lighting variations increase. Zhang et al[ 40] state that lighting variations introduce biases 

in distance calculations. Hence, when the biases are large, the image distance is no 

longer a reliable measure of face difference. 

As stated in Konen[39], the elastic matching algorithm is insensitive to lighting variation, 

face position and expression variations and therefore more versatile. Zhang et al[40] 

state that this can be attributed to Gabor features and the fact that features at key points 

in the image, rather than the entire image are used. The only disadvantage presented by 

the elastic template matching is that it requires more computational effort than the 

eigenface approach. However, the authors feel that the superior performance seems to 

justify the computational intensity. Due to implementation difficulties, the eigenface 

algorithm is preferred over the classification networks. 
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2.3.3 Neural Network approaches 

Lawrence et al[ 41] used a hybrid neural network approach in developing a 

computational model for face recognition. Their system combined local image sampling, 

a self-organising map (SOM) neural network, and a convolutional neural network. The 

image sampling was implemented in two ways: 

• A local window was stepped over the image, and a vector was created from simple

grey level intensity values at each point in the window.

• The second method created the vector by taking the grey level intensity of the centre

pixel of the window, and the difference of this pixel to the rest of the pixels within

the square window. This representation is partially invariant to variations in intensity

of the complete sample.

Original Image 

Image Sample Vectors 

Figure 2. 2 : Depiction of local sampling process. Reproduced from Lawrence[41] 
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Lawrence et al[ 41] describe their system as follows 

Dimensionality Reduction 

Image 
Sampling 

Self­
Organising 

Map 

Karhunen­
Loeve 

Transform 

Convolutional Neural Network 

Feature 
Extraction 

Layers 

Multi-Layer 
Perceptron 

Style 
Classifier 

I Classification 

Nearest 
Neighbour 
Classifier 

Multi-Layer 
Perceptron 

Figure 2. 3 : System used for face recognition by Lawrence et a/[41] showing the alternative 
methods that were considered and reported on. 

Lawrence et al[41] used the ORL database (40 subjects with 10 distinct images each). 

They varied the number of faces in the testing and training sets and found that best 

results were obtained with 5 faces of a subject in a training set and 5 in the testing set, 

with no overlap between testing and training sets. Results are presented using the 

Karhunen-Loeve transform (KL T) in place of the self-organising map and a multi-layer 

perceptron in place of the convolutional network. It is reported that the KL T performs 

almost as well as the SOM and the multi-layer perceptron performs very badly. 

Lawrence et al[ 41] report the following results 
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Table 2. 7: Table of results obtained by Lawrence et a/[41). 

System Error rate Classification time 

Top-Down HMM 13% n/a 

Eigenfaces 10.5% n/a 

Pseudo 2-D HMM 5% 240s 

SOM+CN 3.8% <0.Ss 

Table 2. 8: Table showing different dimensionality reduction techniques and respective 
error rates. 

Error rate 5.33% 3.83% 

Table 2. 9: Table of results for different combinations used by Lawrence et a/[41] 

KLT SOM 

MLP 41.2% 39.6% 

CN 5.33% 3.83 

Fleming and Cottrell[}] used a dataset comprising 204 face and 27 non-face images. All 

images were digitised from a live video signal of 504x488 8-bit pixels. The lighting, 

position of the camera, location and orientation was kept constant. The training set 

comprised 64 face images (29 male and 37 female faces). Two testing sets were used by 

the authors : a 'familiar' set (28 male and 34 female) that consisted of 'unchosen' 

images from the individuals that were used in the training set and a 'novel' set (8 male 

and 70 female) that consisted of the images of the individuals that the network had not 

been trained upon. This was done to allow for the testing of the model's robustness. 

Two neural networks were used: a 63x61 image is presented to a three layer back­

propagation network to facilitate image compression. Upon successful training of this 

network, the network's weights are fixed and the hidden unit encoding of each face is 

passed as a feature to the second network. The compressed hidden unit representations 
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are used by the second network for training. It is interesting to note that the second 

network doesn't contain any hidden layers (see Figure 2.4). 

OUTPUT 
Layer 

INPUT 
Layer 

I ..... 
/l\ 

OUTPUT 
Layer 

, . .. . • INPUT 

Layer 

Figure 2. 4: Model of networks used by Fleming and Cottre/�1]. The network on the left is 

the image compression network (implemented via a back-propagation 

network). 

receives as 

training set. 

The network on the right is used for classification purposes and 

input the compressed hidden unit activations for each image in the 

Fleming and Cottrell[l] report that the model was highly accurate over a wide range of 

stimuli and produced a 70% identity recognition rate. The reported work doesn't 

accurately describe the system. The methodology and criterion for building the testing 

and training sets is also not concisely explained. 

Samaria[8] reported that the comparison and description of the various studies in the 

field of face recognition is indeed a difficult task since the results reported by the various 

authors are obtained using 

• different image sets

• different databases

• no common terminology to describe the methods
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The author concurs with this point of view. 

2.3.4 Basis of this study 

Most of the recognition systems that have been described are complex ( see e.g. [ 40], 

[41] and [8]) and require large processing power. Some of the others (see e.g. [8], [39]

and [16]) take quite a long time (e.g. Samaria[8] takes approximately 4 minutes) for 

recognition to take place. The approach adopted in this study is to extend the work of 

Bouwer and Broadhurst[6], whose one-dimensional discrete cosine transform approach 

was based upon the method described by Wilder[9]. The reason for choosing such a 

technique is that it is easily implemented on current computer hardware. Face 

recognition on this system is also quite rapid, and a high true positive recognition rate 

was reported (see Bouwer[6J). Bouwer's investigation was based on a small database. 

This section investigates the approach adopted by Bouwer and the possible reasons for 

the limitations reported by him. A new recognition model based upon a two-dimensional 

discrete cosine transform is proposed in Chapter 3 and described in Debipersad and 

Broadhurst[ 43]. 

Bouwer's implementation of a face recognition system used a small database of 22 

subjects which was captured with 12 images per subject over a two day period. No 

attempt was made to control the lighting, and the subject was captured against a black 

background. A manual technique was used to segment the face from the black 

background. The grey scale values of the images were sununed along vertical as well as 

horizontal directions, thus creating two one-dimensional signatures from the two­

dimensional image data. Five different windows of interest (i.e. full face, eye region, eye 

and nose region, nose and mouth region, and mouth and chin region) corresponding to 

various combinations of facial features were used on the normalised image, resulting in 

ten one-dimensional signatures[6]. The 1-D DCT was performed on these signatures 

and the first 25 components of each 1-D DCT were retained. 
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2.3.4.1 Grey-scale Projection Model 

Unfortunately no detailed results were published by Bouwer and Broadhurst[6] of his 

model and its limitations. These are best illustrated using the grey-scale images of three 

different subjects and used to develop the model that was improved upon in this study. 

Bouwer used normalised images of dimension 132x232 pixels. For the purposes of 

illustrating the model implemented by Bouwer, images that are 8lx89 pixels (digitised to 

8-bit accuracy) are used.

The average grey-scale values for pixels summed in the vertical direction is: 

where n is the column number ranging from O to 80. The average grey-scale values for 

pixels summed in the horizontal direction is: 

................... +X
m

so) 2- 5

where rn is the row number ranging from O to 88. 

Figures 2.5 to 2.10 show Xn and y n for the three different images. 
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Figure 2. 10: Average grey-scale values for pixels summed in the horizontal direction for 
image 3. 
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Figures 2.5 to 2.10 serve to illustrate the initial data reduction technique that was used 

by Bouwer. The discrete cosine transform (DCT) was used to further reduce the 

dimensionality of the data presented to the classifier. The DCT is given by 

- 80 - (-N._n(
'--

2k_+
---'-

1))
xk =Cn·L Xn.COS 

k=O 162 

for the average grey-scale values summed in the vertical direction. 

2-6

The following 

equation defines the DCT for the average grey-scale values summed in the horizontal 

direction. 

Yk _ � - (N. n(2k + 1))
-Cn·L...J Y

m
·cos

k=O } 76 
2- 7

Bouwer set the de term (i.e. Xo and Yo) to zero. It was judged by Bouwer that the 

next 23 components of each DCT transformed signature be used as the feature extracted 

input to a neural network[6]. 

Figures 2.11 to 2.16 give the DCT values for Xk and Y k for all three images shown in 

Figures 2.5 to 2.10. 

Wilder[9] performed an additional data reduction step in which the ID signatures are 

integrated over bands narrow enough to resolve the main features of the face, but yet 

wide enough to neglect the fine features of the face that may vary over time. Bouwer 

did not consider this beneficial and was thus not implemented. 
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Figures 2.11 to 2.16 show a higher variance in the lower frequencies. Bouwer's findings 

showed that the DCT data obtained from the grey-levels summed in the vertical direction 

produced better classification results, than those summed in the horizontal direction. 

Thus the vertical direction DCT data ( Xk ) was used as inputs to a neural network. 

A Mahalanobis distance metric (MDM) was used to obtain an indication of how the test 

pattern ranked relative to the overall location of other known patterns in the pattern 

class. The Mahalanobis distance between the test vector and the prototype centroid 

vector is defined as 

2- 8

This was used to measure the distance from an input face to a statistical prototype of 

each person in the database. Eight of the twelve images captured were used for training, 

while the other four were used for testing. The eight images were formed into statistical 

prototypes by calculating the mean and variance of each of the components of the 25-D 

vectors. The Mahalabonis distance between the eight 25-D vectors of every subject and 

the prototype were calculated. If one of the 25-D vectors were of the same subject as 

the prototype, this was classified as a positive example, otherwise it was a negative 

example. 

A neural network was used for classification and the fundamental aim of Bouwer was to 

construct a classifier that did not need to be retrained every time a person was added or 

deleted from the database. 
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2.3.4.2 Appraisal of Bouwer's[6] technique 

Bouwer used a small database of 22 subjects. A vector was presented to the one 

dimensional discrete cosine transform. The first term of the transform is responsible for 

overall skin tone[9], and in general can be ignored to nullify the effects of lighting. If 

subjects were captured at different times during the day, i.e. all of Subject A's images in 

the morning, all of Subject B's images at mid-day and all of Subject C's images in the 

evening, each image should be slightly different from the next as far as the light levels are 

concerned. The average value of the pixels obtained from the "averaging process" is 

dependent on the light falling on the subject. Hence, this could interfere with recognition 

rates since it introduces variance in the data. The model was to a degree dependent on 

the amount of light illuminating the subject. Bouwer did not analyse the variance of the 

inputs to the neural network. It is possible that features with not enough variance, or 

features with redundant aspects were used as inputs to the network. 

The process of averaging the vertical face data could possibly lead to loss of important 

feature information that could form important pattern boundaries. Bouwer used 8 

images of the 12 that were captured for each subject for training and 4 for testing. He 

claimed results of 99.6%. This recognition technique would work well in a controlled 

environment, as evidenced by Wilder[9]. 

Bouwer reported that an increase in database size led to an overall decrease of the 

classifier performance. This was reported by Wilder as well. Bouwer has to date not yet 

published the masters research. 
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Chapter3 

OVERVIEW OF 

COMPONENTS 

3.1 Introduction 

THE 

SYSTEM COMPONENTS 

SYSTEM AND ITS 

System components make up the face recognition algorithm. A new recognition model 

based upon a two-dimensional discrete cosine transform is proposed. Details of the 

image capture process as well as the criterion that was used to build up the database are 

discussed. 

3.2 A Two-dimensional Approach 

This section provides an overview of the model that was implemented in this study. A 

detailed account is given of image capture, while brief introductions are provided for 

feature extraction and classification. The general approach (i.e. image capture, feature 

extraction and classification) adopted in this study is similar to that adopted by Lawrence

et a/[41] in their research on hybrid neural networks for face recognition. Figure 3.1 is 

a graphical representation of the system implemented. 
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FEATURE EXTRACTION 

Video 

Camera 

Frame 

Grabber 

� IMAGE CAPTURE� 

.Face 

L 
Frame 
<crA%i1

er 

CLASSIFICATION 
PROCESS 

Figure 3.1: Graphical model of approach adopted 

3.2.1 Video Camera 

Select low 
frequency 

components 

Classify face 
using Neural 

Networks 

A Sony™ Handycam Video 8 (Model Number CCD TR380E PAL) was used. The 

camera is equipped with a digital zoom and can work down to 0.1 lux. Program AE 

provides a facility to specify the type of environment in which the camera is operated. 

The Outdoors mode was chosen to compensate for the two light sources that were used. 

(See § 3 .3 .1) The digital zoom on the camera was fixed. 

3.2.2 Frame Grabber 

The image was digitised to 8-bit accuracy (256 levels of grey) using a DT-2867 Frame 

Grabber card. The DT-2867 is a dedicated image processing board with numerous 

image processing capabilities (real time AID window, erosion, dilation and histogram 

processing). The board has two memory buffers that allow for high speed image 

processing. The image is digitised and stored in memory buffer 1 which allows it to be 

easily written to disk in a raw file format. 
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3.2.3 Face Location 

Face location is performed to select the face from the background. Th.is is done to 

reduce the redundancy of the data that is presented to the classifier. A generalised 

symmetry transform[l6] was implemented to locate the face and is described in more 

detail in Chapter 4, §4.1. Although the transform is accurate, the inherent problem with 

the generalised symmetry transform is that it is computationally intensive and therefore 

not practical. Instead, manual normalisation was used. A detailed description of face 

location is given in Chapter 4, §4.1. 

3.2.4 2-D Discrete Cosine Transform

To overcome the problems encountered by Bouwer[6] with large databases, it was 

decided to increase the inputs to the neural network. However, one must be careful to 

use data that is de-correlated (to reduce the redundancy presented to the network). A 

two-dimensional discrete cosine transform was used to de-correlate the data. After the 

image is captured and normalised a 2-D DCT is applied to the image. This step 

facilitates data reduction as well as feature extraction. Certain coefficients are chosen in 

accordance with a variance distribution of the transformed image, while others are 

discarded. These coefficients form the features that are used as inputs to the neural 

networks. The 2-D DCT, as well as the features that were selected as inputs to the 

neural network is discussed extensively in Chapter 4, §4.2. 

3.2.5 Classification Process 

The training of the classifier can be performed in two ways: 

• A database approach, in which all (or a fixed number) of the subjects exist and are

assigned a unique pattern number.

• A network per person approach, in which a separate network is trained for each valid

subject.
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Both approaches were investigated. A back-propagation neural network with 

momentum was used for determining identity. In this case a network is trained for every 

person i.e. if there are N individuals, then there are N separate neural networks. This 

approach was not investigated in detail and was performed to compare the results 

against the database approach. The counter-propagation network and the radial basis 

function network were investigated in the database approach. 

3.3 Image Capture 

Samaria[8] did intensive research on face recognition systems proposed by other 

researchers. It was found that descriptions of the face database that was used by the 

researchers was incomplete, and left certain question unanswered with respect to the 

spread of subjects in the database. Samaria[8] posed the following questions regarding 

face databases: 

• Are expression, head orientation and lighting conditions controlled?

• Are subjects allowed to wear glasses and have beards or other facial marks?

• Is the subject sample balanced? Is gender, age and ethnic origin spanned evenly?

• How many subjects are there in the database? How many images will be used for

testing and how many for training?

• Will scaling be controlled?

These important considerations were taken into account when building the database for 

they allow the robustness of the recognition model to be tested. Before describing the 

image capture process, it is necessary to understand the experimental set-up. 

3.3.1 Experimental Set-up 

Images of students were captured during the registration week of February 1997 in the 

Postgraduate Laboratory of the Department of Electronic Engineering. The laboratory 

has blinds on the windows, as well as fluorescent light sources. Two incandescent light 

3-4



Chapter 3 SYSTEM COMPONENTS 

sources were used to illuminate the subject. No attempt was made to control the light 

that entered through the blinds. The fluorescent lights did not affect the captured 

images. The laboratory was set up as follows: 

Wltrlc boarJ 

□ 
Chair for subject to sit on 

�·4 VIEW 

Light source 

\1/ 
S.:1e1:11 cn11111111111g numh�r� 1-•l 
for subji::1.u to h.11, ,u Junng tl1e 1rn,111c CJ1p1111c 

Figure 3. 2 : Top View of Image Capturing Set-up used in the Postgraduate Laboratory 

Images that made up the database were captured in accordance with psychophysical 

observations of viewpoint dependence of face recognition in humans[20]. Schyns arui 

Bulthoft[24] defines the ¾ view to be ± 36° from the frontal view. (See Chapter 2,§ 

2.1). 

Frontal views as well as ¾ views were taken of each subject. Subjects were captured 

against a white background (to facilitate easier face location). The subjects were asked 
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to sit on the chair provided, and look at a board containing numbers. The lights were 

then switched on to illuminate their face. The camera was attached to a tripod, whose 

height was adjusted so that the subject's head and shoulders were always captured. The 

distance from the camera to the subject was fixed, as well as the zoom on the camera. 

The person capturing the images called out a view number ranging from 1 to 10. 

Positions 1 to 9 are indicated in Figure 3.3. The subject then moved his/her head to look 

at that number. Position IO required the subject to look straight ahead at the camera. 

The image was then captured. The grey values ranged from Oto 255, with 255 being 

white and O black. The window size used was 215x255 pixels. 

Ninety-three distinct subjects were captured, with 10 views per subject. Thus the 

database consists of 930 facial images. 

Column 1 Column 2 Column3 

l l l 

e 0 

0 

0 

Figure 3. 3 : Screen containing the number for subjects to look at. (referred to as View 

Number) 
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1.68m 

2.00m 

\1/ 

Figure J .. 4 : Dimensions or experimenlal set�up used ln the laboratory 

1.70m 
............ ------------------- ······O

Subject's chair 1.23m 

F,�:- -
�

r··-----� 

Figure 3. 5 : View of Figure 3.4 from the arrow. <-•►> (Left hand side of Figure 3.4) 
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Figure 3. 6 : Variations in head movement in the vertical plane 

SYSTEM COMPONENTS 

Table 3.1 : Table of inclination and depression angles for vertical plane movement 

Column 1 Column 2 Column 3 

(m) (m) (m) 

Y1 0.47 0.4/ 0.47 

Y2 0.48 0.48 0.48 

X 1.68 1.57 1.62 

Inclination angle0 15.6 16.6 16.1 

Depression angle0 15.9 17.0 16.5 
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Column 1 

Figure 3. 7 : Top view of experimental set•UP showing head variations in the horizontal plane 

Table 3.2 : Table of angles for horizontal plane head movement 

I Column 1 
I 

Column 2 I Column 3 

Y1 (m) 1.45 NIA NiA 

Y2 (m) N/A 0.96 N/A 

Ya (m) N/A N/A 0.50 

Angle 0 � = 63.5 p = 37.6 a= 17.3 

The angles represented in Tables 3 .1 and 3 .2 respectively are approximations of the 

position of the subject's head for the particular view being captured. These angles 

would be an exact representation of the head position if and only if the subjects were 

looking at the exact centre of the numbers on the board (see Figure 3.7). Hence, actual 

capturing results could vary by about 3° to 5° . 
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Table 3.3 : Typical views(normalised) captured per subject, with corresponding vertical 

and horizontal plane angles. 

View Number 1 

Inclination angle None 
Depression angle None 
Horizontal plane �=63.5° 

View Number 2 

Inclination angle None 
Depression angle None 
Horizontal plane p=37.6° ¾view 

View Number 3 
Inclination angle None 
Depression angle None 
Horizontal plane a.= 17.3° 

View Number 4 

Inclination angle 15.6° 

Depression angle None 
Horizontal plane �=63.5° 

View Number 5 
Inclination angle 16.6° 

Depression angle None 
Horizontal plane P=37.6° ¾view 

View Number 6 
Inclination angle 16.1 ° 

Depression angle None 
Horizontal plane a.=17.3° 

View Number 7 
Inclination angle None 
Depression angle 15.9° 

Horizontal plane �=63.5° 

• View Number 8 
'ti Inclination angle None 

·,I'-;

;:., 
Depression angle 17.0° 

�-� Horizontal plane p=37.6° ¾view 
' :-.. 
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3.3.2 

View Number 
Inclination angle 

Depression angle 

Horizontal plane 

1 View Number 
Inclination angle 
Depression angle 
Horizontal plane 

9 
None 

16.5° 

a=17.3° 

10 
None 
None 
None 

Examples of images captured 

SYSTEM COMPONENTS 

The following images illustrate some of the aspects that were taken into account when 

building the database: 

• No restraint was placed upon the subject's expression and they were allowed to tilt

their heads as if that was their natural position.

Figure 3. 8: Views 1-10 of subject showing various degrees of head tilt 

• Subjects who wore glasses were captured with and without the glasses on. Also,

some of the subjects wore hats or caps, and were captured with and without the hats

or caps on.
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Figure 3. 9 : Views 1,2,3 and 1 O showing subject captured with and without glasses 

Figure 3. 10 : Views 1,2,3 and 10 showing subject captured with and without hat on 
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• Subjects with long hair were allowed to have part of their face occluded.

Figure 3. 11 : Views 1,2,3 and 1 o showing non-occluded and occluded views of subject 

• Subjects were allowed to have beards

Figure 3. 12 : Views 1,2,3 and 10 showing subject with beard 

• In order to balance the database, the subjects spanned gender and ethnic origin as

evenly as possible. Subject availability played an important factor in this as well as

obtaining subjects of varying ages.

• The database contained the same number of images for each person.

A further description of the database can be found in Appendix B. 
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Chapter 4 

FACE PREPROCESSING 

4.1 Introduction 

Feature extraction facilitates efficient classification by a neural network, whilst face 

location ensures that insignificant data (i.e. part of the image that doesn't contain face 

information) is not used in the classification process. This is discussed in detail below. 

The face location technique, its advantages and disadvantages, as well as results are 

presented. A treatment of the DCT, its relevance to this project with respect to its 

decorrelation properties, and results using the DCT for feature extraction are discussed. 

4.2 Face Location 

Whilst one can recognise faces despite orientation, lighting or partial occlusion, one 

experiences great difficulty in reproducing this process on computers[26]. One possible 

reason could be that humans compensate for changes in backgrounds in their face 

location process. The recognition of faces by a computer is inherently a pattern 

recognition exercise in high dimensional feature space. It is thus important that only 

relevant facial data be presented to the pattern recognition algorithm in a face 

recognition application. Separating the face from the background ensures that 

insignificant information (i.e. the background} is discarded. A simple method of locating 

faces captured against homogenous backgrounds, is described as follows: 
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Present a 256 (8 bit) level grey-scale image of a face to an edge detector (e.g. Canny 

edge detector[23]) to produce a binary image which is the edge detected output. 

Figure 4. 1 : 256 grey-level image and its Canny[23] edge detected counterpart. 

Translate a horizontal line from the top of the binary image until the first non-zero pixel 

is detected, say (x,y). Draw a horizontal line that passes through (x,y). (AB in Figure 

4.2) 
(x,y) 

A B 

Figure 4. 2 Line AB passes through the first non-zero pixel encountered. 
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Translate a vertical line whose length is approximately 0.75 the height of the image, from 

the left hand side of the image until the first non-zero pixel is found, say (x',y'). Draw a 

vertical line that passes through (x' ,y'). (line CD in Figure 4.3) A vertical line is 

translated from the right hand side of the image until the first non-zero pixel is found, say 

(x" ,y"). Draw a vertical line that passes through (x" ,y"), (line EF in Figure 4.3). 

Calculate W 

L 

D 

(x' ,y') 

C 

�--4.. \ 
\ -

(·�-��·��
.·, � .. q.�, < .. ·,,
�,-

r \ . � 

. . - ,:._:.....,-," 

.� 
--;,-· : 

d ·.\
I 

I 

I 

I 

I 

I 

1( w 

E 

► 

Figure 4. 3 Lines CD and EF isolate the sides of the image 

(x" ,y") 

It is clear that the difficulty associated with the simplistic technique described above is 

the location of the chin. A possible solution would be to use a table of values of W and 

corresponding measured values of L. By calculating W, one could look up a 

corresponding value for L and calculate the vertical position of the chin using this 

information. Although the proposed table lookup technique could account for scale 

variations to some extent, the face location technique works well only if the face is 

captured against a homogenous background. The orientation of the captured image is 

also an important factor to be considered and it can be inferred that the above algorithm 

would not be effective for images that are skew (i.e. rotations in the plane of the image). 
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Thus, a technique is required that is invariant to the scale of the image, its background 

and the image's orientation. 

Many of the images that are presented to biological and machine vision systems are 

complex. Thus, these systems have to be able to cope with enormous amounts of 

information. However, the natural mechanisms of fixation and attention enable primates 

to reduce the amount of information and processing[16]. 

Most of the photo-receptors of the retina are located at the fovea (the part of the eye 

with the highest resolution) and the eyes rapidly move from one fixation point to the 

next. Moreover, resources are not allocated uniformly over the field of view; when a 

primate focuses his attention on a location, events occurring at that location are 

responded to more rapidly, giving rise to enhanced electrical activity and can be reported 

at a lower threshold[l 5]. 

These observations have inspired researchers in fields of active vision system heads and 

general active vision concepts and algorithms. Inspired by the intuitive notion of 

symmetry, researchers have introduced an interest operator as a computer vision 

analogue to fixation and attention[l 6]. 

4.2.1 The Generalised Symmetry Transform - Reisfeld et

a,{15] 

A symmetry transform is presented by Reiefeld et a/[15] which assigns a symmetry 

magnitude and orientation to every pixel at a low level vision stage which follows edge­

detection. A symmetry map which, according to Reisfeld et a/[15], is a new kind of

edge map is computed where the magnitude and orientation of the edge depends on the 

symmetry associated with each pixel. Strong symmetry edges are natural interest points, 

while linked lines are symmetry axes. It is claimed that since the symmetry transform 

can be applied straight after the stage of edge detection, it can be used to detect higher 

level processes such as location and recognition, and can serve as a guide for locating 

objects[ 16]. 
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The main idea behind the General Symmetry Transform is described below[15]: 

The algorithm begins with an edge map and assigns a magnitude M that estimates the 

probability that there is a symmetric spatial configuration of edges around it. An 

orientation a, that points in the direction of the main axis of symmetry around the pixel 

is also assigned. These two steps are applied to every pixel in the image. Thus, for 

example, the pixel ( or pixels) in the centre of a circular, elliptic or rectangular area 

surrounded by edges, will be assigned a high value ofM. This results in a symmetry map, 

where every pixel has a value and the highest peaks of symmetry could be detected[16]. 

Reisfeld et a/[15] used the GST successfully for the location of the eyes and nose in a 

face recognition application. 

The Generalised Symmetry Transform is context free in the sense that it operates on 

pixels and not on known objects. The following steps are suggested by Reisfeld et 

a/[15] for the detection of the eyes and nose of a face: 

• Computation of the symmetry magnitude and orientation.

• Computation of Radial Symmetry(RS). While the regular symmetry definition does

not depend on the specific spatial organisation that contribute to the symmetry

measure, this measure assigns high values to pixels that are surrounded by circular

isotherms.

• Detection of the highest peaks of regular and radial symmetry in the image.

• Detection of the mid-line of the face by finding the peak in the auto-correlation

function of the edge image.

• Detection of the eyes and mouth by including geometric considerations. This is

carried out by finding the location of the highest peaks of the symmetry values, with

the assumption that the eyes should be on either side of the mid-line[16].

4-5
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4.2.2 Definition of the General Symmetry Transform 

Reisfeld et a,{15]. 

Mathematically, an object is regarded symmetric if it is invariant to the application of 

certain transformations, called symmetry transformations. The symmetry transform 

developed by Reisfeld et al[15] does not require knowledge of the object's shape. The 

transform applies a continuous measure to each point in the image, rather than a binary 

symmetry label. 

Reisfeld et al[I5] defines the transform as follows : Firstly, a symmetry measure for 

each point is defined. Let Pk = (xk,Yk) be any point (k=l...N) and denote by 

d d 
VA = (dx A, 

dy 
A) the gradient of the intensity at point Pk• A vector vk=(rk,0k) is 

associated with each Pk such that 

4- 1

and 

0k = arctan 4-2

For each two points Pi and pj, l is defined as the line passing through them, and Clij the 

angle counter clockwise between land the horizon (see Figure 4.4). 
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Figure 4. 4 : The contribution to symmetry of the gradients at Pi and Pi 

A set r(p ), a distance weight function Da(ij) and a phase weight function P(i,j) is 

defined as follows[15] 
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The contribution of the points Pi and pj is defined as follows: 

C(i ,}) =Du (i,j)P(i,J)r;r
1 

4-6

This measure can be easily normalised, and reflects the fact that each of its components 

modulates the other ones[ 16]. 

The symmetry magnitude or isotropic symmetry Ma(p) of each point p is 

M,)p) = L C(i,j) 4-7
(i,j)Ef(p) 

which averages the symmetry value over all orientations. The direction of the 

contribution of Pi and pj is 

0.+0. 
rp(i,j) = I 2 J 4- 8

The symmetry direction is defined as rjJ(p) = rp(i,j) such that C(ij) is maximal for

(i, j) E r (p) . Therefore, the symmetry of point p is defined as

4-9

The demand that the symmetry transform be local is reflected by the Gaussian weight 

distance Da(i,j). Different values of cr imply different scales. The Gaussian has circular 

isotherms, i.e. it has no preferred orientation[l6]. 
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The phase weight function P(i,j) is composed of two terms. The first term 

1- cos( B; + 8i· - 2a
if
) allows maxunum symmetry to be achieved when

(0; - a;,)+ (0
J - a,.;.)= TC i.e. when the gradients at Pi and pj are oriented in the same 

direction towards each other. This is consistent with the intuitive notion of symmetry. 

This expression decreases continuously as the situation deviates from the ideal one. The 

same measure is achieved when the gradients are oriented towards each other or against 

each other. The first situation corresponds to symmetry within a dark object on a light 

background and the second corresponds to symmetry of a light object on a dark 

background. For the purposes of this study, only the case of gradients facing each other 

are considered, which correspond mainly to dark objects on a brighter background[15]. 

The second term, 1- cos(0; -0,) is introduced since the first term attains its maximum 

whenever (0; - a;,)+ (0 
J 

- a
v
.)= 1r. This includes 0; - a

il 
= 0

1 
- aif = 1r, which occurs 

on a straight edge. The current expression compensates for this situation[ 16]. 

The term rirj is high when there is a strong correlation between two large gradients. 

Gradients rather than intensities are valid since the focal interest are edges that relate to 

object borders. For instance, a uniform intensity wall is highly symmetric. In natural 

scenes, the logarithm of the magnitude instead of the magnitude itself is used since it 

reduces the differences between high gradients and therefore the correlation measure is 

less sensitive to very strong edges[16]. The above defined transform detects reflectional 

symmetry. It is invariant under 2-D rotation and translation transformation. It is quite 

effective in detecting skewed symmetry as well. 
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4.2.3 Performance of the General Symmetry Transform 

The transform was coded in C (see Appendix C for the algorithm and code listing}, and 

compiled for Linux running on a Pentium™ 133 MHz computer. An image of size 

215x215 pixels took approximately 113 minutes to be transformed using isotropic 

symmetry. Additional radial symmetry would take longer. The amount of time required 

by the transform to effectively find points of symmetry in the facial images was not 

practical. Hence, a speed enhancement study was performed on the GST, and as a first 

step, images were re-sized to l00xlO0 and 50x50 pixels. The following results were 

obtained using images digitised to 8 bit accuracy of dimensions 1 00x I 00. 

Table 4. 1: Performance of GST for image of size 1OOx100. 

Original image of dimension 1OOx100 pixels. 

GST output of original image. The transform took approximately 

70.34 minutes. Note that the eye-brow and eye region has been 

assigned a higher value of symmetry. 

This output of the GST is obtained by thresholding (values below 

60 were set to 0). The amount of time required by the transform 

to produce this image was approximately 30 minutes. 

Another technique of speed enhancement was implemented via thresholding. 

Thresholding was implemented by setting all pixel values below a certain value to 0, and 

leaving remaining pixel values unchanged. This allows homogenous areas to form in the 

image, thus speeding up the transform (homogenous areas have zero gradient). This had 

a noted improvement on the speed of the transform, however it was still not fast enough 

(see Table 4.1). 
4 -10 
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Though there is a degradation of image quality when images are sampled to smaller 

dimensions, it was implemented to find the highest points of symmetry. These points of 

symmetry become areas of symmetry when the image is sampled to its original 

dimensions. Instead of presenting an entire 215x215 image to the GST, areas of the 

image would have been presented, thus reducing the time taken for the GST to operate 

on the original large image. This is explained graphically in the following figure: 

Original image 

Sampled image 

0 

(a) 

(b) 

GST producing 
point of symmetry 

Re-sampling the point of 
symmetry produces an area of

search within the small ellipse, 
instead of searching the entire 
ellipse (original image). 

(c) 

Figure 4. 5 : a) Graphical descrip!ion ot sub-sampling image to obtain a smaller 
image, presentation to the GST, re-sampling points of symmetry to 
obtain "area of search" in original image. 

b) 256 level grey scale image used as input to the General Symmetry
Transform.

c) Output obtained from the General Symmetry Transform.
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However, the time taken for the GST to operate on the sampled image (i.e. the smaller 

image) has to be taken into consideration as well. Images of size 50x50 pixels took 

approximately 5 minutes to complete. Although this is a vast improvement over images 

of size 1OOx100 pixels, it is still not practical. 

Figure 4.5b and 4.5c are examples of what the output would look like after an area of 

search is obtained. Figure 4.5b represents an area of search that was obtained from 

points of symmetry. Figure 4.5c may not look like an image containing much 

information. However, the black dots that appear on the top half of the image, actually 

correspond to the exact location of the eyes (Figure 4.5a). The dots that are slightly 

lighter in colour, found in the middle of the image, correspond to the location of the 

nostrils, while the last few dots that occur right at the bottom of Figure Sb, are the 

location of the lips. However, this technique was not pursued, due to the amount of 

time required to process even small images (e.g. 50x50 images took approximately 5 

minutes). 

This transform is advantageous since it is independent of light levels, scales, orientation 

and is context free. Since no a priori information of the face is used, the algorithm is 

computationally intensive as is demonstrated in Table 4.1. Although the GST is highly 

accurate, it is slow. This is the principal reason that it was not used for the normalisation 

procedure. This stage of the automatic face recognition procedure has to be performed 

accurately and without delay. Hence, the face images were normalised manually. 

4 -12 
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4.2.4 Manual Normalisation 

Examination of the face database (see Appendix B) reveal that shapes of subjects' faces 

vary i.e. faces are "angular", "round", "square" and "oval shaped". It is imperative that 

the manual normalisation technique take this factor into account. It was also observed 

that the majority of faces fit into a 150xl65 pixel rectangle. A rectangle of these 

dimensions was manually shifted over the image until the rectangle fitted over the face. 

This is best shown by way of an example: 

150 

165 

Image sampling 

81 

89 

Figure 4. 6: Graphical description of manual normalisation procedure. 

Once the face was located under the rectangle, it was "cut out" of the original image and 

saved separately. As a result of hardware space constraints, the image was resized to 

8 lx89 pixels by image sampling. The aspect ratio of the image is kept constant. The 

manual procedure is disadvantageous since it is subjective and liable to human error in 
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the normalisation process. The manual normalisation procedure was stiU faster than the 

general symmetry transform. 
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4.3 The Discrete Cosine Transform (DCT) 

The dimensionality reduction technique employed in this project, reasons for choosing 

the DCT, fast algorithms of the DCT, as well as the performance of the DCT are 

discussed. 

Suppose a signal in the form of a pure sinusoid is to be transmitted. One obvious way to 

do this would be to sample the waveform at more than twice the frequency of the signal 

and then transmit each sampled point in a sequential manner. However, to construct a 

deterministic sinusoid, all one needs is 5 pieces of information, viz., magnitude, phase, 

frequency, starting time and the fact that it is a sinusoid. From an information theoretic 

point of view, the sampled values of the deterministic waveform are highly correlated 

and the information content of the transmitted signal is low. On the other hand, the five 

pieces of information (as mentioned above) are completely uncorrelated and have 

exactly the same amount of information content as the total number of sampled values 

being transmitted. [ 18] 

A natural question to pose is whether it is possible to take the N sampled points in the 

transmission and transform them to the five uncorrelated pieces of information. 

The Karhunen-Loeve Transform (KL T) is the optimal method for reducing redundancy 

in a data-set [19]. This transform is said to be optimal because it has the following 

properties[l 7] 

1. It completely de-correlates the signal in the transform domain.

2. It minimises the mean square error (MSE) in bandwidth reduction or data

compression.

3. It contains the most variance (energy) in the fewest number of transform coefficients.

4. It minimises the total representation entropy of the sequence.

4-15
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Practical implementation of the KLT involves the estimation of the auto-covariance 

matrix of the data sequence, its diagonalisation and the construction of the basis vectors. 

The inability to pre-determine the basis vectors in the transform domain has made the 

KL T an ideal but impractical tool [ 17]. 

One may ask whether there are pre-detennined basis functions that are good 

approximations to the KL T. Studies were undertaken to examine the diagonalisation of 

matrices that are asymptotically equivalent to the auto-covariance matrix of the 

KL T[ 17]. Such studies have led to the construction of other discrete transfonns. 

Although the KL T provides no easy solutions to the problem of actual decorrelation, it 

does provide a benchmark against which other discrete transforms may be judged[18]. 

4.3.1 Motivation for use of the Discrete Cosine Transform 

Wilder[9] implemented a face recognition system that used one-dimensional transforms. 

Values of pixels that were added along the horizontal and vertical directions of the image 

were used as input to the transforms. This gave rise to two one-dimensional signatures. 

Three orthonormal transforms: the KLT, DCT and the Hadamard transform were 

applied to raw input feature data. 

1 "There is a practical implication of the decorrelation property of these transforms in 

the face recognition application. Since every transform component is a linear 

combination of all input features, pattern distortion due to alteration of a group of 

neighbouring features is distributed over all the output features. Hence, addition of 

glasses or changing from a smile to a frown will not have a catastrophic effect on the 

transformed pattern vector. For classification purposes, the low spatial frequency and 

selected high frequency components are retained to differentiate these patterns that are 

similar except for some small details. The remaining components generally the highest 

1 
Wilder, "Face Recognition Using Transform Coding of Gray Scale Projections and the Neural Tree 

Network", Artificial Neural Networks for speech and Vision - Edited by R.J. Mammone, pgs 523-525. 
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frequency terms contain very little energy, and can be discarded without sacrificing 

information that is significant for classification. " 

It was reported that all three transforms produced similar results in terms of class 

separability and recognition rate. However, the DCT and KL T performed slightly better 

than the Hadamard. The DCT became the transform of choice since unlike the KLT it 

has a fast algorithm that can be implemented[9]. 

The behaviour of the DCT in relation to the optimal KLT has been extensively 

documented by Rao and Yip[ 17). They have shown that the DCT is asymptotically 

equivalent to the KL T. 

4.3.2 The 2-D Discrete Cosine Transform 

Probably the most common use of the two-dimensional transforms 1s image 

compression. Many transforms have been tried in compression and their performance 

can be compared by the fidelity of the recovered image to the original. The general flow 

of the image data in transform compression is as follows: 

Original 
Image----+ 

Forward Coefficient 
Transform ----+ Selection ----. Quantise

Figure 4. 7 : Transform Compression 

----+ 
Transform 
Coded 
Image 

The sampled image is transformed and several of the resulting coefficients are selected, 

according to the variance distribution of each coefficient (§ 4.3.5). The remaining 

coefficients are quantised with fewer bits. For the recovery of the image, the opposite 

process is performed: coefficients are re-quantised to the original number of bits, missing 

coefficients are replaced by fixed values (for instance 0) and the inverse transform is 

performed. The fidelity of the process can be measured using the difference in intensity 

level between the original and recovered images at each point in the array. Since the 
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DCT gives a MSE result near the theoretical limit of the KLT, the DCT is very popular 

for image compression. 

4.3.3 2-D DCT Implementation by reduction to a 1-D
DCT (17]

Rao and Yip[l 7] present many algorithms for the implementation of the a 2-D DCT. 

One such algorithm involves the computation of the 2-D DCT via a series of 1-D 

calculations. The algorithm is explained as follows: 

Let [g] be an [MxN] matrix representing the two dimensional data and [ G] be the 2-D 

DCT of [g]. Then, the uv element of [ G] is given by: 

_ 2c(u)c(v) �1 � 
{(2m+ l)un-

] [
(2n+ l)vn-

] G uv - r.;:;:; "'-1 "'-1 gmn CO 
2M 

COS 
2N 

4-10
-.;MN m=On=O 

The separability property of the 2-D DCT can be illustrated as follows 

Guv = {2c(u)i
1

{ /2c(v)�gmncos[(2n+l)vn-]}co{(2m+l)un-
] 4-11

VM' m=O �N' n=O 2N 2M 

The inner summation is an N-point 1-D DCT of the rows of [g], whereas the outer 

summation represents M point 1-D DCT of the semi-transformed matrix. 

This means that the 2-D [MxN] DCT can be implemented by MN point DCTs along 

the rows of [g], followed by NM point DCTs along the columns of the matrix after the 

row-transformation. 
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The following 1-D DCT algorithm is presented in [17]: 

Let {x(n)}, n=O,l, ... ,N-1 be a given sequence. Then an extended sequence 

{ } 
(2N -1) y(n) symmetric about the 2 point can be constructed so that

y(n)=x(n) n=O,l, ... ,N-1 
=x(2N-n-I) n=N,N+l, ... ,2N-I 

-/2,r 

Let WzN be used to denote e 2N Thus it can be seen that the DFT of {y(n)} is given 

by 

and is easily reduced to 

2N-1 

Y(m) = LY(n)W,,'; 
n=O 

N-1 2N-1 

Y(m) = I:x(n)W;;; + LY(n)W;;'; 
n-0 n=N 

N-1 2N-1 

= L x(n)JVi'; + L x(2N - n- l)Wi';
n=N 

N-1 N-1 

= LX(n)w;; + LX(n)��N-n-l)m
n=O n=O 

N-1 

= LX(n)[�'; + Wi�n+l)m] m-0,I, ... ,2N -1 
n=O 

4-13 

4-14

If both sides equation of equation 4-13 are multiplied by a factor of � w;_";;2
• this yields 

1 N-l 
[ mtr] 

-W,,";;2Y(m) = Z:x(n)cos (2n+l) N 2 =O 2 
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The one-dimensional OCT of a sequence { u(n), 0 ::,; n ::; N -1 } is defined as:

N-i [n-(2n + l)km]v(km) = a(k)�u(n)cos -----'---"---

n=O 2N 

where

a(O)=fF: a(k)=& forl::;;k::s:N-1

4-16

Comparing equation ( 4-16) and ( 4-15), it is easily seen that except for the required

scaling factors in (4-16), (4-15) is the OCT of the N point sequence {x(n)}. Hence,

according to Rao and Yip[I 7], the one dimensional OCT can be implemented via the

DFT. The dct2 function of Matlab's Image Processing toolbox uses the algorithm

described above and was thus used.

4.3.4 Results of the 2-D Discrete Cosine Transform 

The images of the subjects that were are used to illustrate the 2-0 OCT are depicted in

Figure 4.8. The OCT was applied to each of these images (view number 3).

Figure 4. 8: Subjects A,B and C respectively 
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Figure 4. 9: 2-D DCT of Subject A 
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Figure 4. 10: Zoomed view of Figure 4.9 
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Figure 4. 11: View of Figure 4.10 looking from the North. 
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Figure 4. 12: 2-D OCT of Subject B (zoomed view) 
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Figure 4. 13: View of Figure 4.12 looking from the North (see Figure 4.10 for direction 
definition) 
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Figure 4. 14 ; 2-D OCT of Subject C 
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1.5 

·········· -2

2.5 

Figure 4. 15 : View of Figure 4.14 looking from the North (see Figure 4.1 O for direction 
definition) 

4.3.5 Choosing the DCT coefficients 

The reason image data can be compressed by large factors and successfully recovered 

with small errors is the large amount of redundancy in typical images. If an array of 

numbers has redundancy, it is theoretically possible to give the same information with 

less numbers. The purpose of performing the transform is to develop a set of numbers 

whose values are uncorrelated (i.e. each number in the array gives new information not 

given by the other numbers). Since the same information content is to be represented in 

the original and transformed arrays, some numbers in the transformed array give little or 

no information about the image and can be discarded. 

The true measure of usefulness of a given coefficient is its variance over a set of images. 

Say coefficient k which resides at row m and column n does not change over a set of 

images, then it does not convey much information, and thus be discarded. Conversely, if 

a coefficient has high variance over the set, then it should not be discarded. With the 
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cosine transform, variances over the typical picture sets tend to have constant variance 

contours as shown in the following figure[19]. 

Coefficient index 0,0 
Increasing Spatial Frequency 

Highest Coefficient 
------.-------------------- Variance 

Lowest Coefficient 
Variance 

Figure 4. 16: Lines of constant variance in typical transformed image (reproduced from [19]). 

The high-variance coefficients tend to be near the origin and the u and v axes. 

In image compression most unitary transforms have a tendency to pack a large fraction 

of the average energy of the images into a relatively few components of the transform 

coefficients (i.e. the energy compaction property)[26]. Since the total energy is 

preserved, this means many of the transform coefficients will contain very little energy. 

Rao and Yip[ 17] states that since the trace of the auto-covariance matrix m the 

transform domain for any unitary transform is invariant, one can judge the performance 

of a discrete transform by its variance distribution. They elaborate that since the 

variances represent the energy or information content of the corresponding transform 
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coefficients, the transform coefficients with larger variances are candidates containing 

significant features in a pattern recognition application. 

For a two-dimensional random field U(m,n) whose mean is A (m,n) and the covariance 

is r(m,n;m',n'], its transform coefficients v(k,l) satisfy[29] 

u;(k,l) = E[fv(k,l)- µ,,(k,1)1
2

] 4-17

Thus, the variances of the coefficients of the DCT are defined as above. Ten images of 

the same person were used to draw up a "variance map''. The variance map is a 

graphical representation of the variances of the coefficients, and shows where 

coefficients with the greatest variance lie. 

Figure 4. 17 : Views 1-9 were used in the calculation of the "variance map" for the subject. 

Equation ( 4.17) was used to calculate the variance of the coefficient (x,y) over 9 

images. Figures 4.18 - 4.22 are a variance maps of subject A (see Figure 4.8), where 

the (x,y) position gives the position of the coefficients in the 9 images, while the Z axis 

reflects the variance of that coefficient. 
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Figure 4. 18 "Variance map" of Subject A, using views 1-10. 
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Figure 4. 19 Zoomed view of Figure 4.18. 
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Figure 4. 20 View of Figure 4.19, looking from the North. 
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Figure 4. 21 : Top view of Figure 4.20. 

10 15 

4 -28 

FACE PREPROCESSING 

x10 

x10 

20 



Chapter 4 

20 

18 

16 

I t1 

12 

> 'IQ

.., 

5 10 

X 

Figure 4. 22 : Interpolated top view of Figure 4.20 
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Figure 4. 23 : Top view of variance map for Subject C. 
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Flgure 4. 24 : Top view of variance map for subject B. 
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Figure 4. 25 : Top view of "vartance map" for the entlre database. 
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The examination of Figures 4.22-4.24 reveal that the coefficients with the highest 

variance lie in the region near (0,0). Closer study of the figures shows that coefficients 

that lie (approximately) in a square of lOxlO pixels contain the greatest amount of 

variance. This information is helpful for intra-class variances. In any pattern recognition 

exercise, information regarding inter-class variances, or inter-class pattern boundaries is 

far more useful. A further variance map was calculated, based on the entire database. 

Figure 4.25 reveals that coefficients that lie (approximately) in an 8x8 triangle contain 

significant inter-class variance information. 
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Chapter 5 

CLASSIFICATION TECHNIQUE 

5.1 Introduction 

A general understanding of artificial neural networks is assumed but a short description 

of the back-propagation network is presented in this chapter to define the terminology 

used. The radial basis function network with dynamic decay adjustment and the counter­

propagation networks are not as popular and are described in more detail. A full 

treatment of neural networks may be found in [28]. This chapter thus discusses the 

back-propagation network and its importance to the project as well as presenting a 

detailed description of the counter-propagation and radial basis function networks. 

Artificial Neural Networks are biologically inspired and contain a large number of simple 

processing elements that perform in a manner that is similar to the most elementary 

functions of neurons[27]. 

The point of view held by Krase and Van Der Smagt[28] is that there is still so little 

known ( even at the lowest cell level) about biological systems, that the models that are 

being used for artificial neural systems seem to introduce an oversimplification of the 

'biological models' 
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5.2 What is a Neural Network? Hecht-Nielse,(10] 

A neural network is a parallel, distributed information structure consisting of processing 

elements. These processing elements can possess a local memory and can carry out 

localised information processing operations. The processing elements are interconnected 

via unidirectional signal channels called connections that branch ("fan out") into as 

many collateral connections as desired; each carrying the same processing element 

output signal. This signal can be of any mathematical type desired. The information 

processing that goes on within each processing element can be defined arbitrarily with 

the restriction that it must be completely local. This implies it must depend only on the 

current values of the input signals arriving at the processing element via impinging 

connections and on values stored in the processing element local memory[28]. 

According to Krase and Van Der Smagt[28], a neural network can be described by the 

following mathematical descriptors 

1. A state of activation, Yk, associated with each node (processing element) k ( output of

a unit).

2. A real-valued weight wk1 , associated with each connection (i,k) between two nodes i

and k. This value determines the effect of signal k on unit i.

3. A real-valued bias °" , associated with each node k.

4. A transfer function, Fk [y; , wk, , °" , k;i±i}, defined for each node. Fk 1s a

mathematical formula that determines the state of the node as a function of:

• the output states of the nodes feeding it and connected to it by

incoming connections.

• the weights associated with these connections and

• the bias associated with each node
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NODEk 

w 

NODEi 

w 

lk = WEIGHTED INPUT 

Figure 5. 1: Basic components of an artificial neural network. Reproduced from [28]. 

5.2.1 Processing Elements [28] 

The task of each unit (processing element) is to receive input from neighbours or 

external sources and use this to compute an output signal. This signal is then propagated 

to other units. Apart from this processing, a second task is adjusting of the weights. 

There are 3 types of units 

1. Input Units

2. Output Units

3. Hidden Units

receive data from outside the neural network 

send data out of the neural network 

whose input and outputs remain inside the 

network, and function within the system. 

Units can be updated either synchronously or asynchronously. Synchronous updating 

occurs when all units update their activation simultaneously. With asynchronous 

updating, each unit usually has a fixed probability of updating its activation at a time t

and usually only one unit will do this at a time t.
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It is assumed that each unit provides an additive contribution to the input of the unit with 

which it is connected. The total input to unit k is simply the weighted sum of the 

separate outputs from each of the connected units plus a bias or offset term 0,,,: 

sk (t)= Lw
kJ
.(t)y/t)+Bk (t) 

i 
5- 1

Positive wkJ is considered as an excitation and negative w�i as an inhibition. The function 

Fk, which takes the total input sk(t) and the current activation yk(t) and produces a new 

value of the activation of the unit k, is normally a non-decreasing function of the total 

input of the unit: 

There are many different types of activation functions. Some of them are[28]: 

• hard limiting threshold functions (sgn function)

• linear or a semi-linear function,

5-2

• smoothly limiting function. The smoothly limiting function or sigmoid will be widely

used in this study. The other functions are included for completeness.

F(liJ 

1 ....--------

0 

------------ -1 

Figure 5. 2: a) Threshold function 
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F(liJ 

Figure 5. 3: b) Hard limiter 

The sigmoid can be defined by 

5- 3

F(lk) 

0 

-1

Figure 5. 4: c) Sigmoidal function 

F(liJ 

-1

Figure 5. 5: d) Hyperbolic tangent function[28) 
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+BIAS
F(IJ 

0 

-1

DESIRED 

Figure 5. 6: Effect of Bias on an input unit 

CLASSIFICATION TECHNIQUE 

The bias is specified as a processing element with a constant output that is input to a 

node that it is influencing. This constant value when added or subtracted shifts the input 

so that the transfer function is in an appropriate range. 

5.2.2 Network Topologies 

The main distinctions in the pattern of connections of the processing elements, as well as 

the flow of information is defined by Krase and Van Der Smagt[28] as follows: 

• Feed-forward networks: The data flow from input to output units is strictly in a

feed-forward manner. No feedback connections are present (connections extending

from outputs of units to inputs of units in the same layer or previous layers) even

though the data processing can extend over layers of units.

• Recurrent networks: These networks do contain feedback connections.

Only feed-forward artificial neural networks will be considered due to their ability to 

cope with very high dimensional data, thus making them excellent candidates to perform 

face recognition from high dimensional space[l6]. 
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5.2.3 Weights 

The weights of the neural network are largely responsible for its ability to predict or 

classify, and this is perhaps one of the most enigmatic aspects of a neural network. The 

initial values chosen for these weights are not critical. The main difference between 

various types of neural networks is the configuration procedure of the weights (training). 

Only networks that adjust their weights, rather than their connectivity were investigated. 

The mean squared error F(w) is a function of the weight vector w of the neural 

network being evaluated. Hecht-Nielsen[lO] defines this as the error surface of the 

neural network. A different mean squared error arises for each w. F(w) can be thought 

of as a surface sitting "above" the weight space of the network, where F is the height of 

the surface at weight value w[IO]. 

Because F is a non-negative function, the error-surface always lies at a non-negative 

altitude above the weight space. 

Figure 5. 7 illustrates a typical cross-section of an error surface: 

F(w) 

Fmin 

w* w 

Figure 5. 7: Error surface showing a global rninirnurn[1 O]. 
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The idea is to find those weights that minimise F. As the neural network is unable to 

exactly implement the desired mapping, the minimum value of F will not be zero, i.e. 

typically Fnun > 0. The aim of all training algorithms is to find a weight vector w· for 

which F(w"}=Frrun • If this is found, the neural network would do the best possible job of 

approximating the mapping (as measured using the mean squared error)[lO]. 

5.3 Training of Artificial Neural Networks 

The training of neural networks can largely be described as the configuration of the 

weights of the network such that the application of a set of inputs produces the desired 

set of outputs. Feeding the network teaching patterns and letting it change it's weights 

according to some learning rule is one of the most common forms of training. Learning 

can be of two different types[28]: 

• Supervised learning or Associative learning in which the network is trained by

providing it with input and matching output patterns.

• Unsupervised or Self-organisation in which an (output) unit is trained to respond to

clusters of patterns within the input. The system is supposed to discover statistically

the salient features of the input population and there are no a priori categories into

which the patterns are to be classified.

5.4 The Back-propagation Network 

The BPNN is a powerful mapping network that has been used in fields as diverse as 

credit application scoring to image compression[! OJ. 

The network consists of 3 basic layers (input, hidden and output). Each layer consists of 

processing elements. The fanout processing elements (N;) of the input layer simply 

accept individual components of the input vector and distribute them without 

modification to all the processing elements in the 2nd layer or hidden layer. The 

activation of a hidden unit is a function Fi of the weighted inputs plus some fixed bias. 
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The output of the hidden units is then distributed to the next layer (Nh,2) of hidden units, 

until the last layer of hidden units, of which the outputs are fed into a layer of N0 output 

units. 

During the first phase the input x is presented and propagated forward through the 

network to compute the output values y:for each output unit. This output is compared 

with its desired value d
0

, resulting in an error signal 8: for each output unit. The 

second phase involves a backward pass through the network during which the error 

signal is passed to each unit in the network and appropriate weight changes are 

calculated. 

Continuous, non-linear functions Fare used in back-propagation networks. Tradition 

has led the sigmoid function to be the favourite choice but any monotonic, bounded, 

differentiable function is acceptable. The popular back-propagation training algorithm 

can be found in several literatures [10],[28], and is thus not given. 

Three basic facts are known about back-propagation error surfaces[IO]: 

• These functions typically have large numbers of global minima (which may lie at

infinity for some problems) as a result of combinatoric permutations of the weights

that leave the network input-output function unchanged. As a result, the error

surfaces become highly degenerate and have numerous "troughs". Extensive flat

areas and troughs that have very little slope are thus characteristics of the error

surface.

• The error surfaces have areas with shallow slopes in multiple dimensions

simultaneously. When the combination of certain weights causes the processing

elements of one or more hidden layers to be large in magnitude, the output of the

processing elements become insensitive to weight changes. The effect is that the

weighted sum value moves back and forth along one of the shallow tails of the

sigmoid function.

• Local minima exist.
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Hence, a momentum factor is introduced which tends to keep the weight changes 

moving in the same direction. This allows the algorithm to skip over small local minima. 

It can also improve the speed of learning. But as in the case of learning rate, a large 

momentum factor may cause the side effect of skipping too much. In past research, 

momentum factors typically have been set between O and 1[12]. 

5.5 The Counter-propagation Network 

The counter-propagation network was invented by Hecht-Nielsen[lO] m 1986 while 

investigating a technique to use self-organising maps to learn explicit functions. The 

architecture is modelled by combining the self-organising map of Kohonen[13] and the 

outstar structure of Grossberg[! I]. 

Y
1

1 
x' 

/I 

X,,_2 ---►► ®

·•

x�® Y'm x' 
n 

®◄ Ym 

x vector y' vector y vector 

Layers: 1 2 3 4 5 

Figure 5. 8: Topology of the counter-propagation network[10] 

During learning, pairs of examples x, y are presented to the network at layers 1 and 5 

respectively. These vectors propagate in a counterflow manner to yield x' and y' 
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(approximations ofx and y), hence the name counter-propagation. However, during this 

study only the feed-forward variant of the typical counter-propagation network was 

considered. The following figure is the model of the forward only counter-propagation 

network. 

y'= y', y', 

·O
t t t 

x= x, x, x. 

t 
Y, 

layer 3 
Grossberg layer 

layer 2 
Kohonen layer 

• • •

t 
Y, 

layer 1 
input units 

t 
Ym =y 

Figure 5. 9: Topology of forward-only counter-propagation network [10] 

Notice that the architecture of the feed-forward variant has 3 layers, as compared to 

Figure 5. 8, which has 5 layers. The 3 layers consist of 

• layer I 

• layer 2 

• layer 3

input layer for distributing signals x1, x2, ... ,XN 

Kohonen layer with N processing elements that have output 

signals z1, z2, . .. ZN 

Grossberg outstar layer with m processing element output signals 

The primed outputs represent approximations to the function y = <p(x). During training 

the network is exposed to examples from the mapping function rp, i.e. both x and y. 
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These networks are trained via supervised training as opposed to graded or self­

organisation[ 11]. 

The following explanation as well as interpretation of the workings of the network 

are from [10] and [11]. 

During training, the transfer function equations for the Kohonen layer are 

z. =
J 

{ 
1 if i is the smallest integer for which 

0 otherwise 
llw�1a 

- xii s l[wt - x[[ for all) 5-4

Equation 5-4 shows that each element of the input vector is transmitted to each 

processing element of the Kohonen layer[l I]. Each Kohonen unit then calculates its 

input intensity ft, where 

where 

w-= (w1 I I, W,2, W,3, 

X = (X1, X2, X3, XN) T 

and D( u, v) is treated as the Euclidean distance 

D(u,v) = I u-v I 

5- 5

5-6

After the intensity of each Kohonen unit is calculated, a competition is held based on 

which unit has the smallest input intensity. There are various techniques that exist to 

hold the competition[lO] 

1. A scheduling unit of the Kohonen layer can collect all inputs from the Kohonen units.

After sorting these, it can broadcast the number of the winning unit.

2. Use lateral inhibition (on centre/off surround type connections); thus only the

Kohonen unit which wins is activated.
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3. Make the scheduling unit transmit a threshold valuer, which starts at 0. The first

unit to have a distance < r wins the competition.

The unit that wins the competition has its output (z;) set to 1 while the output of all 

other units is set to zero. After the competition, the weights are modified according to 

the Kohonen learning law as follows [ 11] 

new old ( old ) 
W; = W; + a X - W; Z; 5- 7

As is evident from Equation 5-7, only the winning element's weights are updated, while 

all others remain the same. Hence, this learning law can be rewritten as: 

5-8 

for the winning processing element, and as 

5- 9

for the losing elements. Hence the losing elements do not adjust their weights. 

Thus, the Kohonen learning law causes the weight vector to move a fraction a. along the 

length of the straight line to the vector x. As new x vectors are input to the network, the 

weight vectors are drawn to them and form a "cloud" where the x vectors actually 

appear[ 11]. 

It has been suggested by [10] and [11] that a. should be set to a high value (e.g. 0.8) and 

as the w; vectors move into the area of the data, a. is lowered to 0 .1 or less for final 

equilibrium. The aim of the training is that the weights vectors distribute themselves in 
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an equiprobable configuration and after training has ended the weight vectors are frozen 

and only Equation 5-4 is used. 

Once the Kohonen layer has stabilised (i.e. the W; vectors are frozen), learning talces 

place in layer 3. 

Layer 3 of the network receives its input signals (z vector, of which a single element is 1 

while the rest are all zero) from the outputs of layer 2. Since this architecture is fully 

connected, each processing element of layer 3 receives z. The learning that talces place 

in this layer is governed by the following equations[l0]: 

5-10

where 

uJ ,;= (up, uJ2, ... , u1N) is the weight vector associated with the }th processing element of

layer 3 and a is the learning rate (0 <a< I) of the Grossberg learning law. It is quite 

clear from Equation 5-10 that the output of the }th processing element of the Grossberg 

layer is equal to the sum of each Kohonen unit's output signal z; times its input weight. 

The Grossberg equation modifies only the weight associated with input from the winning 

processing element of layer 2. Over time this weight is modified to learn the average of 

the correct y1 values associated with the x vector values that cause processing element i

of layer 2 to win the final competition. As layer 2 begins to stabilise, the layer 3 weights 

begin to learn the averages of the y1 associated with the x vector within the equiprobable

win regions of the processing elements of layer 2[10]. 

When the network is sufficiently trained, it outputs a vector V; = (vJJ, Vp, . . .  , vmJ 

whenever processing element i wins the final layer 2 competition. This vector is very 

close to the vector average of the correct y vectors associated with x input vectors that 

cause processing element i oflayer 2 to win[l 1]. 
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If the constant a is small enough, the v; vectors also equilibrate. This is the point at 

which training is generally stopped and the weights of the network are frozen. The 

behaviour of the network after training is like that of a lookup table. 

Input vector 

X 

W2 

W1 

WN 

W1 

V2 

V1 

VN 

V1 

Output vector 

V 

Figure 5. 10: Model of counter-propagation network functioning as an adaptive lookup 
table[1 OJ. 

With reference to Figure 5 .10, the input vectors x is compared to the layer 2 weight 

vectors w using the distance metric D(u, v). The vector v1 associated with the w1 is 

output by the network. 

According to Hecht-Nielsen[lO], the counter-propagation network is optimal in two 

ways 

• the W; vectors are equiprobable

• the V; output vectors are statistical averages of the y vectors associated with the x

vectors that activate the associated layer 2 processing elements - thus taking on

values that are, on average best representative of the function's value in each case.
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5.6 The Radial Basis Function Network 

Radial Basis Function Networks (RBFN) are an extremely powerful type of feed­

forward network that is becoming popular because of their quick training, conceptual 

clarity and elegance. The principle of radial basis functions (RBFs) is derived from the 

theory of functional approximation. The main difference between the MLP and the 

RBFN are the activation functions and propagation rules that are used in the hidden 

layer. RBFs use localised radial Gaussians as an activation function instead of the 

common sigmoids that are used in MLPs [12]. 

The RBFN network can best be understood as follows: The feature space is covered 

with M overlapping circular hyperball regions. For each region, there are continuous 

radial basis functions that assumes its maximum value at the centre of the region. Values 

near zero are outside the region. Each of the M regions has a centre vector v<m> that

represents a neuron. Such a region is represented in 2-D space as follows[21]: 

1 

0.8 

0.6 

0.4 

0.2 

0 

100 

100 
X2 

0 0 

Figure 5. 11: A cluster centre and it's RBF[21]. 
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The function shown in Figure 5. 11 is a radial basis function, and one of the 

characteristics is that the x vectors are equidistant to the centre v<m) and have equal 

functional values. 

The RBF has the form[21]: 

A slice through Figure� 11 for which the horizontal axis is jlx - v <mJ II, reveals[21]:

Figure 5. 12: An RBF Slice [2·1]. 

Receptive Field 
Region 

0 

Distance to centre 

5- 11

The rec�ptive field regiorl is the regton in feature space where f m (x, v <mJ ) is high. It is

clear from Figures 5.11 and 5.12 that each RBF is influential only in its receptive field 

and this is a small region of feature space. The RBF is activated when an input vector x 
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is near v<m> . There is no response when xis far from v<m>_ Thus the RBF responds to

the small convex region (receptive field) of the feature space. The following figure 

shows a portion of a two-dimensional feature space covered by RBFs[21 J. 

Figure 5. 13: RBF contour curves in the plane[21]. 

The radial basis function network (see Figure 5.14) contains the following 

• An input layer of neurons, much like an MLP.

• A hidden layer of neurons where each neuron has a special type of activation

function centred on the centre vector or sub-cluster in the feature space.

• An output layer.

5 -18 



Chapter 5 

Inputs RBF Functions 

Figure 5. 14: General RBF Network [21]. 
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Outputs 

0 

0 

0 

A bias at each output neuron assures non-zero values of the sums 

5-12

The neurons represented by the M centres make up the hidden layer of the N-M-J feed­

forward network. A sigmoid function could be used at the output, however, it is more 

efficient to use an averaging squashing function[21]: 

5-13

or 

5-14
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A brief summary of the operation of the RBFN /21]: 

When an input feature vector x is applied to a trained network, it is processed at each 

hidden neuron to produce an output y m = fm (x, uCm) ). If the input vector is close to 

one of the centres vcm•), the output y: of the corresponding hidden neuron is greater than 

any other y m , m;t:m •. 

The algorithm that was used for training the RBFN was the dynamic decay adjustment 

for radial basis functions (RBF-DDA). The RBF-DDA is an algorithm that offers easy 

training and construction of the RBFN. It has been reported that RBFNs trained with 

the ODA algorithm attain high classification accuracy and training is significantly 

faster[ 42]. 

Figure 5.14 is an example of a full RBF-DDA. No shortcut connections exist between 

input and output units. The RBF-DDA network consists of the following: 

• An input layer which represents the dimensionality of the input space

• A hidden layer which contains RBF units. During training, RBF units are added to

this layer. Thus, when training begins, only input and output layers of the network

exist.

• An output layer where each unit represents one possible class, resulting in a 1-of-n

encoding. The processing element with the highest output is the winner and each

hidden unit is connected to one output unit.
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5.6.1 The Dynamic Decay Adjustment Algorithm 

The dynamic decay adjustment (DDA) algorithm introduces the concept of matching and 

conflicting neighbours in an area of conflict. 

: : 

R(x) 

� 

/ Area of Conflict 

Thresholds 

X 

Figure 5. 15: Radial basis function used by the dynamic decay adjustment algorithm[21]. 

Two thresholds, e
+ 

and f
f 

are introduced, withe
+ 

generally being greater than 0", which 

defines an area of conflict. No prototype of a conflicting class is allowed to exist in this 

area. That is, neither matching nor conflicting patterns are allowed to lie here. The 

network uses these thresholds to dynamically construct the network, and adjust the radii 

individually [12]. 

The DDA algorithm that was implemented in SNNS 1 has the following properties [12]: 

• Constructive training: The network develops from an input layer and an output

layer, and the hidden units are added whenever necessary during training.

1 
Stuttgart Neural Network Simulator 

S -21 



Chapter 5 CLASSIFICATION TECHNIQUE 

• Fast Training: Few epochs are required for training to reach completion. The

authors of SNNS suggest 5 epochs, however, results (see Chapter 6) indicate that 4

epochs are sufficient. The end of training is clearly indicated by either no change in

the network topology, or no change in the sum squared error of the network.

Whenever a pattern is misclassified, either a new RBF unit with an initial weight 1 is 

introduced or the weight of an existing RBF (which covers the new pattern) is 

incremented. This process is called commit. The radii of the conflicting RBFs (those 

RBFs that belong to the incorrect class) are reduced, a process known as shrinking. The 

advantage of this is that each pattern of the training class has an RBF that covers it 

which prevents conflicting classes from being classified correctly. The following figures 

are graphical examples of how the DDA algorithm functions. 

+1

e-

+1

A 

pattern class A 

A 

(a) 

B 

A pattern class A is encountered and a 
new RBF is created. 

A new prototype is· created for pattern 
class B and this causes the radius of 
class As RBF to shrink. 

pattern class B 

(b) 
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+2

+1

pattern class B 

+2

+1

e-

pattern class A 

B 

(c) 

(d) 
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Another example of class B is classified 
correctly and shrinks again the radii of the 
RBF of class A. 

Another pattern of class A introduces 
another prototype of that class. 

Figure 5. 16: (a) - (d) - Graphical demonstration of ODA algorithm (reproduced from Zell et 
al[12].) 

The results obtained from the investigations pertaining to the neural networks discussed 

is contained in Chapter 6. 
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5.7 About SNNS 

SNNS is the Stuttgart Neural Network Simulator that was developed at the Institute for 

Parallel and Distributed High Performance Systems at the University of Stuttgart. The 

goal of the project which began in 1989, is (this is an ongoing project) to create an 

efficient and flexible simulator environment for research on and application of neural 

networks. 

The software is distributed by the University of Stuttgart as freeware (not public 

domain) and is available via anonymous ftp from: 

ftp.informatik.uni.stuttgart.de (129.69.211.2) 

in the directory 

/pub/SNNS 

as file 

SNNSV4.1.tar.gz 

In 1991 the SNNS software was awarded "Deutscher Hochschul - Software Preis 1991" 

(German Federal Research Software Prize) by the German Federal Minister of Science 

and Education. 

All neural network simulations presented in this study was carried on SNNSv4.1 which 

was run on a Pentium 100MHz on the Linux (2.0.0) operating system. 
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Chapter 6 

RESULTS & DISCUSSION 

6.1 Introduction 

This chapter discusses the results obtained from the back-propagation network that was 

used in a network per person implementation. Results from the counter-propagation 

network and the radial basis function network (with the DDA algorithm) which were 

used in a database approach are also presented. The generation of the training and 

testing sets, as well as the choice of views in the training set is discussed. 

6.2 Some Definitions 

For the purposes of this study, a valid subject is defined as the subject that is to be 

classified correctly. The valid subject is one 

• for which a network has been specially trained for correct classification, or

• who belongs to a database of other valid subjects for whom one network has been

trained.

An impostor is defined as one who doesn't belong to the class of valid subjects. 
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6.2.1 Biometric system performance 

Two measures are usually used in characterising biometric system performance [29]: 

• FAR (False Acceptance Rate) the frequency of fraudulent accesses due to 

imposters claiming a false identity. 

• FRR (False Rejection Rate) the frequency of rejections relative to 

people that should be correctly verified. 

The FAR and FRR is dependent on some cut-off threshold t which is used to set the 

desired security level. If a "tight" threshold setting is used to make it harder for 

imposters to gain access, some authorised people may find it harder to gain access[29]. 

These measures can also be defined in terms of negatives and positives: 

• True positives Valid subjects that are supposed to be classified as valid 

subjects. 

• False positives 

• True negatives 

• False negatives 

Imposters that were classified as valid subjects. 

Imposters that are supposed to be classified as imposters. 

Valid subjects that were classified as imposters. 

6.3 Database approach (DA) 

Two different approaches were adopted during this project 

• Database approach (DA): All the subjects are contained in one database, and are

assigned a distinct pattern number to facilitate correct identification during the

testing phase.

• Network per person approach (NPPA): This approach is unique in that a specific

network is trained for each candidate in the database. A portion of the database is

used as true negatives during the training process.

The NPP A was implemented as a means of achieving high true positive and high true 

negative rates. These results will be compared against the database approach. 
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6.3.1 Training and Testing Sets for the Database 
Approach 

The strength of a classifier depends heavily on the data that it receives during training. 

Ideally, a large number of training examples would map the input space quite well(6]. 

These examples should span the entire input space. However, at the same time, in a 

study such as this, one has to be careful not to include all of ones data in the training set. 

By doing this, it is difficult to determine whether the neural network can actually 

generalise after learning. It is with this in mind that various types of training data were 

used as input to the neural network. The performance of the network was monitored 

and where possible conclusions were drawn about the input data. 

It is evident from Chapter 4 that the coefficients with the greatest variance were found in 

the l0xl0 region, thus the input vectors to the neural network were extracted from this 

region. Data that was normalised in the interval of [-1 1 ], as well as unnormalised data 

was used in the training and testing sets. The normalisation was performed as follows 

6-1

where v is the vector to be normalised, and w is the normalised vector. 

82 subjects (10 views per subject) were used to generate the training and testing set. 

Five of the ten views (view numbers 2, 5, 8, 9 and 10) of each subject was used in the 

training set, while the other five (view numbers 1, 3, 4, 6 and 7) were used in the testing 

set. The views in the training set coITespond to the¾ views mentioned in §2.1. There is 

no overlap between the training and testing set as far as the views presented to the 

network is concerned. Different configurations of training and testing set data were 

used. This is detailed in Tables 6.1 and 6.2. It is necessary to define the way in which 

the testing and training sets were named. The name consists of 7 fields and each field 

contains specific information about the file: 
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Field number 

--► 1234567 
7 fields of set name 

xxxxxxx ◄ 

Table 6. 1: Description of characters used in testing/training set names. 

Field Number .: Description 

2 

3 

4 

5 

6 

7 

. . . 

The database number that the training/testing set belongs to. Th.ts 

number is 1 or 2. Omission of this number means that the complete 

database was used (i.e. 82 distinct subjects). 

This field describes whether the training/testing set 1s using 

normalised (the field uses a n to show this) or unnormalised (the 

field uses an u to denote this) data. 

The region from which the data was extracted is denoted in this 

field. It contains either 8 or 10, thus denoting an 8x8 or 1Ox10 

square region. An x in this field means that the region is not square. 

This field describes whether the region that the data was extracted 

from was square or triangular. A t is used to denote triangular, 

while a s is used to denote square. 

A n in this field denotes that no mixed views were used in the 

training/testing sets, while a m reflects that mixed views were used. 

This field denotes whether the de term of the dct was used or not in 

the training/testing set. If it was used then a t (true) is used in this 

field, ifit wasn't then a f (false) is used. 

This character defines whether the set is a training or a testing set. 

An e is used to denote a testing set while a r is used to denote a 

training set. 

(Table 6.2 contains full descriptions of the file names. See p. 12 for some examples) 

From Table 6.1, it is further necessary to define what square and triangular regions are. 

This is best explained by viewing Figures 6. 1 and 6.2. 
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Figure 6. 1: Interpolated top view of Figure 4.20. The thick black square denotes the 
region which constitutes a 1 0x10 square. 
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Figure 6. 2: Interpolated top view of Figure 4.20. The thick black triangle denotes the 
region from which the data was extracted. (referred to later as triangular data) 

In a set with no mixed views, all subjects in the set contain the same view numbers. 

Hence, in a set with no mixed views, all subjects are trained on views 2, 5, 8, 9 and 10 
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(these are known as the ¾ views) and tested on views 1, 3, 4, 6 and 7 (later called 

"remaining views"). In a set with mixed views however, subjects in the set contain 

different view numbers. In a training set with mixed views, half the subjects are trained 

on views 2, 5, 8, 9 and 10, while the other half are trained on views 1, 3, 4, 6 and 7. In 

the testing set with mixed views, those subjects that were trained on views 2, 5, 8, 9 and 

10, are tested on views 1, 3, 4, 6 and 7, and subjects that were trained on views 1, 3, 4, 6 

and 7 are tested on views 2, 5, 8, 9 and 10. This type of training/testing set was 

generated to determine whether the network would be able to generalise better, if 

presented with an input space that attempted to span the entire feature space. Table 6.2

is a description of the training/testing sets that were generated to investigate the 

performance of different input data to the network. 

In addition to obtaining results from one database with 82 subjects, results were also 

obtained by splitting this large database of 820 faces to two smaller databases with 41 

unique subjects in each smaller database (an empty intersection exists between the two 

databases). Hence, as reflected in Table 6.2, there are some training/testing sets that 

belong to database 1, and some that belong to database 2. Networks were trained for 

each of these databases and tested. Networks that were trained for subjects that were in 

database 1, were tested with the testing set of database 1 and 2, as well as the training 

set of database 2. This afforded an opportunity to investigate the robustness of the 

networks, as well as their generalisation ability. 

Chapter 4 showed the general location of coefficients with high variance that could be 

used in pattern recognition applications. However, this was a visual analysis and 

susceptible to human error. Hence, investigations were performed with different sizes of 

data sets, extracted from different regions to determine the optimum size and region 

from which the data would be extracted to be used in further investigations. 

Figures 6.3 and 6.4 reflect results obtained from usmg data extracted from square 

regions of the transfonned images. The x-axis is calibrated from 0 to 16e. These are 

indicative of the size of the square that was extracted (e.g. 4e 4x4 square� 16e 16xl6 
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square). The e suffix denotes that the network was trained on "remaining views" and 

tested on¾ views. The r suffix (see Figure 6.4) denotes that the network was trained on 

¾ and tested on remaining views. None of the data sets contained mixed views. Each of 

the legends of Figures 6.3-6.6 denote an RBF-DDA network that was initialised, and 

trained for 5 epochs. Each test (i.e. each legend) was performed three times, and the 

best of three results is reported. 
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Figure 6. 3: True positive recognition rates for various square region data sets (trained on 

remaining views and tested on ¾ views). 
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Figure 6. 4: True positive recognition rates for various square region data sets (trained on 

¾ views and tested on remaining views). 
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Figures 6.5 and 6.6 contain results for data that was extracted from a triangular region. 

Like Figures 6.3 and 6.4> the x-axis denotes the size of the two arms of the isosceles

triangle (in terms of number of coefficients). No mixed views were used in these data 

sets. 
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Figure 6. 5: True positive recognition rates for various triangular region data sets . 
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Figure 6. 6: True positive recognition rates for various triangular region data sets 

Figure 6.3 shows that high recognition rates are obtained when the length of one side of 

the square region from which the data is extracted is between 8 to 12 (the recognition 

rates were 87.4%> 88.0% and 87.4% respectively) coefficients "long". For data that is
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trained on ¾ vtews, the optimum length of the square is also between 8 to 12 

coefficients long (the recognition rates were 87.07%, 87.2% and 85.4% respectively). 

Figure 6.5 reveals that for triangular region data, the optimum length for the equal sides 

of the isosceles triangle is between 10 to 14 (the recognition rates were 87.9%, 87.6% 

and 87.8% respectively) coefficients long for networks trained on remaining views and 

tested on¾ views. The opposite results of this train/test operation are shown in Figure 

6.6, and it is suggested that the optimum side of the triangle is between 8 to 12 

coefficients (the recognition rates were 87.0%, 86.7% and 86.1 %). The choice of the 

size of the data sets, as well as the region from which they were extracted was based on 

the true positive recognition rates of Figures 6.3-6.6. For square region data, data of 

size lOxlO, and 8x8 was extracted. The 8x8 was chosen over the 12x12 because of its 

performance in Figure 6.4, as well as the fact that fewer number of coefficients were 

required to obtain the same recognition rate. For triangular region data, data from the 

"lOxlO" region was used. The data sets used, as well as the views chosen for each data 

set is given in Table 6.2. 

The headings of Table 6.2 represent the following: 

Training/Testing set 

Database Number 

Norm. 

Unnorm. 

Square 

Triang. 

Mixed Views 

No. of distinct patterns 

These are files that were used in the train/test 

procedure. 

As explained on pg. 6-6. 

This indicates that the data was normalised 

This indicates that the data was un-normalised. 

Indication of the shape of area from which the data 

was taken. (see Figure 6.1) 

Indication of the shape of area from which the 

data was taken. (see Figure 6.2) 

Indicates whether mixed views were used. 

These are the unique number of subjects in the 

database being used for training/testing. 
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Table 6. 2: Description of files used in the training and testing process. 

Training/ Database · Norm. Unnorm. Square Triang. Mixed No. of 

Testing sot number Views distinct 

. patterns 

UlOsnfe/r .,, .,, 82 

UlOsmfe/r V '+I '+I 82 

U8snfe/r '+I '+I 82 

U8smfe/r V '+I '+I 82 

Uxtnfe/r V '+I 82 

Uxtmfe/r '+I '+I '+I 82 

NIOsnfe/r '+I '+I 82 

NlOsmfe/r '+I '+I '+I 82 

N8snfe/r '+I '+I 82 

N8smfe/r '+I '+I '+I 82 

Nxtnfe/r v '+I 82 

Nxtmfe/r v '+I '+I 82 

lnlOsmfe/r 1 v V '+I 41 

lnlOsnfe/r 1 V '+I 41 

lulOsmfe/r 1 '+I V '+I 41 

lulOsnfe/r 1 '+I '+I 41 

ln8smfe/r I v '+I '+I 41 

ln8snfe/r 1 v '+I 41 

lu8smfe/r I '+I '+I '+I 41 

1 u8snfe/r 1 '+I '+I 41 

lnxtmfe/r 1 v V '+I 41 

lnxtnfe/r 1 v V 41 

luxtmfe/r 1 '+I V '+I 41 
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---

Training/ Datab:.ise ,;· Norm. Unnorm. Square Triang. Mixed No. of 
i'�···-

Testing sel -"!' 
Views distinct number :...-:,, 

2--,. . patterns 

luxtnfe/r 1 � � 41 

2nl0smfe/r 2 v � � 41 

2n10snfe/r 2 � � 41 

2ul0smfe/r 2 � � � 41 

2ul0snfe/r 2 v v 41 

2n8smfe/r 2 v v � 41 

2n8snfe/r 2 v v 41 

2u8smfe/r 2 v � v 41 

2u8snfe/r 2 � � 41 

2nxtmfe/r 2 v � v 41 

2nxtnfe/r 2 v � 41 

2uxtmfe/r 2 � v � 41 

2uxtnfe/r 2 � v 41 

Some examples of what the filenames mean are as follows: 

• UIOsnfe is a file that has un-normalised data taken from a square region with no DC

term and no mixed views and is used as a testing set.

• 2uxtnfr is a file that is derived from database 2 and contains un-normalised data

extracted from a triangular region. The file has no mixed views or DC term and is

used as a training set.

The de term is dependent on the light in the image, and can be used with great effect in 

recognition problems, as demonstrated by Wilder[9]. However, the face recognition 

model would then be partially dependent on light, hence this term was excluded in all the 

pattern files. 
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6.4 The Radial Basis Function Network 

It is evident from Chapter 5 that for the radial basis network that was implemented with 

a dynamic decay algorithm, just two parameters need to be optimised: 0+ and e-. A

preliminary study was performed to determine these parameters. These results are 

tabulated in Appendix D from Table D. l to Table D.7. For the purposes ofthis chapter, 

all results will be presented graphically. 

Unnormalised data that was extracted from a lOx.10 square region, with no "mixed 

views" and no de term was used in the preliminary study. The learning function was set 

to RBF-DDA in SNNS. No initialisation or update functions are required when using 

RBF-DDA. Zell et al[I2] suggest that e
+ be set to 0.4 and e- be set to 0.2. They 

mention that in theory these parameters should be dependent on the dimensionality of the 

feature space, but in practice the values are not critical. Each investigation was 

performed three times, and the best of the three results are presented. It was noted that 

even though there were minor differences in the sum squared errors (SSE) and mean 

squared errors (MSE) of the three tests, the classification rate was always the same. 

Table 6.3 details the investigations that were undertaken. 

Table 6.3: Table of parameters that were changed during investigations to determine 

optimum values for 8 .. and e-

Investigation -. Description of parameters changed -
-

Number. 
-·

1 { Figure o.7 & e- is kept constant at 0.2, while e+ is varied in increments of 0.1 from 0.4

Table D. l} to 0.9. 

2 ( Figure 6.7 & e- is kept constant at 0.02, while e+ is varied in increments of 0. 1 from 

Table D.2) 0.4 to 0.9 . 

3 ( Figure 6.7 & e· is kept constant at 0.002, while e+ is varied in increments of 0.1 from 

Table D.3) 0.4 to 0.9 . 

4 ( Figure 6.7 & e- is kept constant at 0.0002, while 8+ is varied in increments of 0. 1 from 

Table D.4) 0.4 to 0.9 . 
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5 ( Figure 6.8 & 8
+ 

is set equal to 8". Both values are initially set to 0.1 and increment in

Table D.5) steps of 0.1 to 0.9 . 

6 ( Figure 6.8 & 8
+ 

is set equal to 0·. Both values are initially set to 0.01 and increment in

Table D.6) steps of0.01 to 0.09. 

7 (Table D.7) e- is kept constant at 0.001, while 9
+ 

is varied in increments of 0.1 from

0.4 to 0.9 
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-.\--theta(-)=0.002 
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74 
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Figure 6. 7: Graph of classification (true positive) rates for investigations 1 to 4. (see 

Tables D.1 to D.4) The architecture of the network that was used to carry out these 

investigations consisted of 99 inputs and 82 outputs (there are 82 distinct subjects in the 

training and testing sets). The ODA algorithm automatically inserts hidden units (see §5.10 on 

RBF with DOA in Chapter 5). 

From Figure 6.7, it is evident that the true positive rate is greater between tests 3 and 6 

when e- = 0.2. Further tests were carried out to investigate the effect of increasing the 

ratio of 8
+
:e-. e· was kept constant at 0.02 and 0

+ 
was varied from 0.4 to 0.9 in

increments of 0.1. An improvement in the classification rate is clearly noted. The best 

classification rate of investigation 1 is 80.4%, while the best classification rate of 
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investigation 2 is 86.5%. The ratio of e
+
:e- was once again increased by lowering f

f 
to

0.002 and increasing e
+ 

from 0.4 to 0. 9 in steps of 0.1. 

The results obtained for investigation 3 are an improvement over those of investigation 

2. The best classification rate for investigation 2 was 86.5%, while that of investigation

3 is 86.9%. The ratio e
+
:e- was increased further by keeping f

f 
constant at 0.0002 and

incrementing e
+ 

from 0.4 to 0.9.

In investigation 4, increase in the ratio of e
+
:e- had no significant increase in the 

classification rate. For completeness, investigations 5 and 6 were carried out by setting 

e
+ 

equal to f
f
. In investigation 5, both parameters are set to 0.1 and incremented in 

steps of 0.1 to 0.9. The same procedure is used in investigation 6, but the step size is 

0.01, and the initial values of 0
+ 

and f
f 

are 0.01 and 0.01 respectively. The results of 

investigation 5 and 6 are denoted in Figure 6.8 (theta refers to 9
+ 

and f
f
). 

90 ...... _._,, __________________ .,,. _____________________ , ___ _

80 
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Figure 6. 8: Graph of classification rate for investigations 5 and 6. Theta in the figure refers 

to e• and e-. The architecture of the network that was used to carry out these investigations 

consisted of 99 inputs and 82 outputs (there are 82 distinct subjects in the training and testing 

sets). The DOA algorithm automatically inserts hidden units (see §5.1 O on RBF with DOA in 

Chapter 5). 
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There is a clear decrease in the performance of the network when trained with values 

ranging from 0.1 to 0.9. The performance of the network when trained with values 

ranging from 0.01 to 0.09 is not as convincing as the results of investigations 3 and 4. 

From the preliminary results, it was decided to confine the values of 8
+ 

and 0" to those 

shown in Table 6.4. 

Table 6. 4: Values of 8
+ 

and e· that were used in the investigations of the various 
training/test sets. 

,<=- o
+ 

-
'--

0.4 

0.4 

0.4 

0.8 

0.8 

6.4.1 Tests with unnormalised data 

8 

0.01 

0.002 

0.0002 

0.002 

0.0002 

The first set of results that are presented, are performed with full databases (as opposed 

to "split databases"), as well as unnormalised data. The size of the data in the 

training/testing set is also varied, (i.e. lOxl 0 square, 8x8 square and triangular region 

data) to determine which data set size yields the best performance. All results of this 

section are presented in a graphical format, and are essentially a summary of the results 

contained in the Tables D8-D19. Each test (depicted by a single legend on the graph) 

was performed three times, and the best of the three results are reported. It is necessary 

to define the legend that is provided on the right hand side of each figure. This presents 

information with regard to which files were used for testing, and which were used for 

training. 

6 -15 



Chapter 6 

-+- u1 Osnfr- train ; 
u 1 Osnfe - test

-G ..... u10snfe - train; 
u 1 Osnfr - test

--.-u1 Osmfr- train ; 
u 1 Osmfe - test

..... E .... u1 Osmfe - train ; 
u 1 Osmfr - test

RESULTS & DISCUSSION 

Figure 6. 9: Example of legend that is used in figures containing results. 

Where possible, results are given in a comparative format. The legends in Figure 6.9 

indicate that four separate tests were done with different configurations of data. The 

first legend indicates that ul0snfr (data with no mixed views) was used to train the 

network, while ul0snfe (the testing file counterpart) was used to test the data. An 

entirely new network was then trained on ul0snfe data, and tested on ul0snfr data 

(denoted by the second legend). This exercise was carried out to determine whether¾ 

views were better suited to the training set, or the testing set.. An entirely new network 

was once trained on ul0smfr (the mixed views) data and tested on ul0smfe data. Once 

again, the role of the original training and testing sets were swapped, and a new network 

was trained on ulOsrnfe data, and tested on ul0smfr data. This exercise was carried out 

to determine whether the network would be able to generalise better if it was presented 

with an input space that attempted to map the entire feature space. Each legend in the 

following figures depict a specific network that was reset, initialised, trained and tested 

by the data that is specified by that legend. 
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Figure 6. 10: Comparative results of tests performed with u1 0snfr/e and u1 0smfr/e data (see 

Tables D.S-D.11). 

The architecture of the network that was used to carry out the investigations in Figure 

6.1 O consisted of 99 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5.10 on 

RBF with DDA in Chapter 5). 
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Figure 6. 11: Comparative results of tests performed with u8snfr/e and u8smfr/e data (see 

Tables D.12-O.15). 
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The architecture of the network that was used to carry out the investigations in Figure 

6.11 consisted of 63 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5. 10 on 

RBF with DDA in Chapter 5). 

89 ................ , .. , ....... , ..... , .......................................................... .. 
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-+-- uxtnfr - train ; uxtnfe -
test 

............ uxtnfe - train ; uxtnfr -
test 

-1r- uxtmfr - train ; uxtmfe
-test

-·♦····· uxtmfe - train ; uxtmfr
- test

Figure 6. 12: Results of tests performed with uxtnfr/e and uxtmfr/e data (see Tables D.16-
D.19).

The architecture of the network that was used to carry out the investigations in Figure 

6.12 consisted of 54 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5. 10 on 

RBF with DDA in Chapter 5). 

With respect to Figure 6.10, the highest classification rate (true positive rate) obtained 

was 88.3% when the network was trained on ul0snfe data and tested on ul0snfr data. 

The results of Figure 6. 10 suggests that tests performed with the mixed views data is not 

as good as those obtained from non-mixed views data. The highest true positive rate 

obtained in Figure 6.11 was 87.6% when the network was trained on u8snfe data and 

tested on u8snfr data. Once again, results obtained from tests performed with the non­

mixed views data were better in comparison to mixed views data. In Figure 6.12, the 

highest classification rate obtained was 87.8% when the network was trained on uxtnfe 
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data and tested on uxtnfr data. In this test as well, results from tests using non-mixed 

views data were better than mixed views data. 

Some general conclusions that can be drawn for unnormalised data and full 

databases can be listed as follows: 

• It can be clearly observed that networks that were trained on files that contained

"remaining" view information (pattern files that have an "e" suffix, and no mixed

views) and tested on the¾ views (pattern files that have an "r" suffix, and no mixed

views) performed significantly better than other networks. The highest true positive

recognition rates, in Figures 6.10 - 6.12 were obtained when the networks were

trained/tested on pattern files described above. Hence, for full databases, and

unnormalised data, it can be generally concluded that it is better to train the network

on pattern files that contain remaining views, and test on the ¾ views.

• In all of the tests, non-mixed views data generally performed better than mixed views

data. Mixed views didn't enhance the generalisation ability of the network, instead,

general classification rate decreased when mixed views data was used in the pattern

files (see Figures 6.10 - 6.12).

The "triangular" data (highest true positive recognition rate was 87.8%) performed 

marginally better than the 8x8 square data (highest true positive recognition rate was 

87.8%). The reason for this is attributed to the fact that the triangular region contained 

data with higher variance. This leads to clearer pattern boundaries and facilitates easier 

classification. The best performance however, was obtained from the l0xl0 square 

region data (highest true positive recognition rate was 88.3%). Although this figure may 

seem high, it is unacceptable in a practical system. Hence, it was decided to split the 

pattern sets that were used into 2 "databases" with 41 subjects each. There was no 

intersection between database 1 and 2 with respect to the distinct subjects. Tests with 

normalised data and full databases was not performed due to the poor results obtained in 

some preliminary tests. 
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6.4.2 Tests with unnormalised data and "split databases" 

The results that are presented, are performed with split databases and unnormalised data. 

The size of the data set is varied to determine the optimum configuration presented to 

the neural network. Each test ( depicted by a single legend on the graph) was performed 

three times, and the best of the three results are reported. The legend that is contained 

on the side of the graphs is shown in the following figure. 

-+- 1 u 1 Osnfr - train ; 
1 u 1 Osnfe - test 

-e-2u10snfr- test 

-.- 2u 1 Osnfe - test 

Figure 6. 13: Example of legends that is used in figures containing results. 

It is possible that Figure 6.13 can be interpreted as 1 u 1 Osnfr was used for training, which 

is correct. However, the assumption that the network was trained on lulOsnfr and 

tested on 1 u 1 Osnfr is incorrect. The legend next to 1 u 1 Osnfr actually relates to 

lu lOsnfe. It must be emphasised that the network was trained on lulOsnfr and tested 

on 1 u 1 Osnfe, and it is these results (i.e. from 1 u I Osnfe) that are plotted on the figures. 

It is important to note that the training file 1 u IOsnfr contains only 41 distinct subjects, 

while the other 41 distinct subjects are contained in database 2. Hence, the network was 

trained only on the 41 subjects of database 1, and was not presented with the other 41 of 

database 2 during the training phase. Thus, the subjects of database 2 constitute "unseen 

data". Since the network was only trained for the distinct subjects of database 1, it 

should only classify subjects that belong to that database and should not be able to 

classify (within some acceptable error) subjects of database 2. 
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NB: This section has a long list of results (graphs), which is necessary to illustrate 

the performance of different pattern files. A summary of these results, and general 

conclusions is given at the end of this section. 
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Figure 6. 14: Results of tests performed with 1u10snfr/e and 2u10snfr/e data (see Table 
D.20)

The architecture of the RBF network that was used to carry out tests reflected in Figures 

6.14 - 6.21 (see Table D.20-D.27) consisted of 99 inputs and 41 outputs (there were 41 

distinct subjects in the training and testing sets). The highest true positive rate obtained 

in Figure 6.14 was 92.2% when the network was trained on lulOsnfr data and tested on 

lulOsnfe data. The highest false positive rate was 14.9%. 
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--+-1u10snfe-train; 
1 u1 0snfr - test 

-.-2u10snfr - test 

-&-2u1 0snfe - test 

Figure 6. 15: Results of tests performed with 1 u1 Osnfr/e and 2u1 0snfr/e data (see Table 
D.21) 

The highest true positive rate in Figure 6.15 was 93.9% when the network was trained 

on lulOsnfe and tested on lulOsnfr. The highest false positive rate was 3.7%. 
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-+-1 u1 0smfr - train ; 
1 u1 0smfe - test 

-®-2u1 0smfr- test 

......,_ zu1 Osmfe - test 

Figure 6. 16: Results of tests performed with 1 u1 Osmfr/e and 2u1 0smfr/e data (see Table 
D.22)

The highest true positive rate in Figure 6.16 was 92. 7% when the network was trained 

on 1 u 1 Osmfr and tested on 1 u 1 Osmfe. The highest false positive rate was 4 .2%. 
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Figure 6. 19: Results of tests performed with 2u1 0snfr/e and 1 u1 0snfr/e data (see Table 
O.2S)

The highest true positive rate in Figure 6.19 was 86.5% when the network was trained 

on 2ul0snfe and tested on 2ul0snfr. The highest false positive rate was 2.9%. 
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Figure 6. 20: Results of tests performed with 2u1 Osmfr/e and 1 u1 0smfr/e data (see Table 
D.26)

The highest true positive rate in Figure 6.20 was 87.0% when the network was trained 

on 2ul0smfr and tested on 2ul0smfe. The highest false positive rate was 2.9%. 
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Figure 6. 21: Results of tests performed with 2u1 0smfr/e and 1 u1 0smfr/e data (see Table 
D.27)

The highest true positive rate in Figure 6.21 was 83.3% when the network was trained 

on 2ul0smfe and tested on 2u10smfr. The highest false positive rate was 2.0%. 

The architecture of the RBF network that was used to cany out tests reflected in Figures 

6.22- 6.29 (see Table D.28-D.35) consisted of63 inputs and 41 outputs (there were 41 

distinct subjects in the training and testing sets). 
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Figure 6. 22: Results of tests performed with 1 u8snfr/e and 2u8snfr/e data (see Table D.28) 

The highest true positive rate in Figure 6.22 was 93.0% when the network was trained 

on lu8snfr and tested on lu8snfe. The highest false positive rate was 3.7%. 
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Figure 6. 23 : Results of tests performed with 1 u8snfr/e and 2u8snfr/e data (see Table D.29) 

The highest true positive rate in Figure 6.23 was 93. 9% when the network was trained 

on lu8snfr and tested on lu8snfe. The highest false positive rate was 4.2%. 
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The highest true positive rate in Figure 6.25 was 88.6% when the network was trained 

on lu8smfe and tested on lu8smfr. The highest false positive rate was 5.1 %. 
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Figure 6. 26: Results of tests performed with 2u8snfr/e and 1 u8snfr/e data (see Table D.32) 

The highest classification rate in Figure 6.26 was 83.7% when the network was trained 

on 2u8snfr and tested on 2u8snfe. The highest false positive rate was 2. 9%. 
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Figure 6. 27: Results of tests performed with 2u8snfr/e and 1 u8snfr/e data (see Table D.33) 
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The highest classification rate in Figure 6.27 was 86.5% when the network was trained 

on 2u8snfe and tested on 2u8snfr. The highest false positive rate was 2.9%. 
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Figure 6. 28: Results of tests performed with 2u8smfr/e and 1 u8smfr/e data (see Table
D.34)

The highest classification rate in Figure 6.28 was 87.4% when the network was trained 

on 2u8smfr and tested on 2u8smfe. The highest false positive rate was 4.1 %. 
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Figure 6. 29: Results of tests performed with 2u8smfr/e and 1 u8smfr/e data (see Table
D.35) 

6 -29 



Chapter 6 RESULTS & DISCUSSION 

The highest classification rate in Figure 6.29 was 84.7% when the network was trained 

on 2u8srnfe and tested on 2u8smfr. The highest false positive rate was 2.0%. 
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Figure 6. 30: Results of tests performed with 1 uxtnfr/e and 2uxtnfr/e data (see Table D.36) 

The architecture of the RBF network that was used to carry out tests reflected in Figures 

6.30- 6.33 (see Table D.36-D.39) consisted of 54 inputs and 41 outputs (there were 41 

distinct subjects in the training and testing sets). The highest classification rate in Figure 

6.30 was 93.5% when the network was trained on luxtnfr and tested on luxtnfe. The 

highest false positive rate was 4.2%. 
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Figure 6. 31: Results of tests performed with 1 uxtnfr/e and 2uxtnfr/e data (see Table D.37) 

The highest classification in Figure 6.31 was 94.7% when the network was trained on 

luxtnfe and tested on luxtnfr. The highest false positive rate was 3.3%. 
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Figure 6. 32: Results of tests performed with 2uxtnfr/e and 1 uxtnfr/e data (see Table D.39) 

The highest classification rate in Figure 6.32 was 87.0% when the network was trained 

on lu8smfr and tested on lu8smfe. The highest false positive rate was 3.3%. 
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Figure 6. 33: Results of tests performed with 2uxtnfr/e and 1 uxtnfr/e data (see Table D.38) 

The highest classification rate in Figure 6.33 was 83.7% when the network was trained 

on 2nxtnfr and tested on 2nxtnfe. The highest false positive rate was 2.4%. 

Table 6. 5: Summary of results for tests done with split databases and unnormalised data. 

Pattern file Pattern file network was Highest Highest Figure 

network was '.tested on true pos. false pos. Number. 
� . 

trained on . 
rate(%) rate(%) 

lulOsnfr I ulUsnie, 2ulUsnfr, 2u lUsnte 'J'l,,'l. 14.� t>.14 

2ul0snfr 2ul0sn:fr, lul0snfr, lulOsnfe 83.3 2.9 6.18 

lulOsnfe l ulOsnfr, 2ul0snfe, 2u lOsnfr 93.9 3.7 6.15 

2ul0snfe 2ul0snfr, lulOsnfe, lulOsnfr 86.5 2.9 6.19 

lulOsmfr lulOsmfe, 2ul0smfr, 2ul0srnfe 92,7 4.2 6.16 

2ul0smfr 2ul0srnfe, lulOsmfe, lulOsmfr 87.0 2.9 6.20 

lulOsmfe lul0smfr, 2ul0smfr, 2ul0smfe 90.0 5.1 6.17 

2ul0smfe 2ul0smfr, lulOsmfr, lulOsmfe 83.3 2.0 6.21 

lu8smfr lu8smfe, 2u8smfr, 2u8smfe 92.7 3.3 6.24 

2u8smfr 2u8smfe, lu8smfe, lu8smfr 87.4 4.1 6.28 

lu8smfe lu8smfr, 2u8s1nfr, 2u8smfr 88.6 5.1 6.25 

2u8smfe 2u8smfr, lu8smfr, 2u8smfe 84.7 2.0 6.29 
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lu8snfr 1 u8snfe, 2u8snfr, 2u8snfe 93.0 3.7 6.22 

2u8snfr 2u8snfe, lu8snfe, lu8snfr 83.7 2.9 6.26 

lu8snfe l u8snfr, 2u8snfr, 2u8snfe 93.9 4.2 6.23 

2u8snfe 2u8snfr, lu8snfe, lu8snfr 86.5 2.9 6.27 

luxtnfr l uxtnfe, 2uxtnfr, 2uxtnfe 93.5 4.2 6.30 

2uxtnfr 2ux1nfe, lu>..1nfr, luxtnfe 83.7 2.4 6.33 

luxtnfe 1 uxinfr, 2uxinfr, 2uxtnfe 94.7 3.3 6.31 

2uxtnfe 2ux1nfr, luxtnfr, luxtnfe 87.0 3.3 6.32 

From Table 6.5, and the relevant figures, the following conclusions can be made : 

• An interesting observation of Table 6.5 is that networks that were trained on files

that contained remaining view information (pattern files that have an "e" suffix, and

no mixed views) and tested on the¾ views (pattern files that have an "r" suffix, and

no mixed views) performed better than if the network was trained the other way

around. One of the highest true positive recognition rates in Table 6.5 (see Figures

6.31 and 6.30 ) was obtained when the network was trained/tested on pattern files

described above. Hence for a split database and unnormalised data, it can be

generally concluded that it is better to train the network on pattern files that contain

remaining views, and test on the ¾ views.

• In all of the tests, non-mixed views data generally performed better than mixed views

data. Mixed views didn't enhance the generalisation ability of the network.

Perhaps one of the most important observations of the results reported in Table 6.5 is 

the low false positive recognition rate that was obtained on all the networks. This is an 

encouraging point, since it clearly demonstrates the networks ability to generalise, and 

reject impostors. This result can be attributed to the manner in which the RBF-DDA 

operates. A radial basis function is placed over the feature that is to be classified. After 

training, features that don't fall in the boundary of the radial basis function, are 
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automatically rejected (i.e. classified as a negative). This powerful characteristic of the 

RBF neural network allows the low false positive recognition rates to be obtained. 

The previous section saw the data that was contained in the 1 OxlO region performing the 

best (i.e. 88.3%, as compared to the 87.8% of the data from the triangular region). In 

these set of results however, it is data from the triangular region (i.e. 1 uxtnfe, 1 uxtnfr, 

2uxtnfe and 2uxtnfr) that perfonns the best. In the previous section, there were 82 

outputs (i.e. the network had to discriminate between 82 different classes) and in this 

section, the maximum number of outputs is limited to 41. It can be argued that fewer 

features are required to perform efficient classification when there are fewer outputs. 

The network would need more information to perform classification when there are a 

larger number of classes, hence the discrepancies in data set performance between the 

previous section and the current one. For a fewer number of classes, data from the 

triangular region forms better pattern boundaries. 

6.4.3 Tests with normalised data 

The tests performed in this section, are exactly like those performed in §6.4.1 (Tests 

with unnormalised data), however, the data used in the pattern files is now normalised 

(see equation 6-1). The legends have the same function as described in §6.4.1. Each 

legend depicts a specific network that was reset, initialised, trained and tested by the data 

that is specified by the legend. 
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Figure 6. 34: Results of tests performed with n1 0snfr/e and n1 0srnfr/e data (see Tables
D.43-0.46) 

The architecture of the network that was used to carry out the investigations in Figure 

6.34 consisted of 99 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5.10 on 

RBF with DDA in Chapter 5). 
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Figure 6. 35: Results of tests performed with n8snfr/e and n8smfr/e data (see Tables 0.47-
D.50)
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The architecture of the network that was used to carry out the investigations in Figure 

6.35 consisted of 63 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5.10 on 

RBF with DDA in Chapter 5). 
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Figure 6. 36: Results of tests performed with nxtnfr/e and nxtmfr/e data (see Table D.51-

D.54)

The architecture of the network that was used to carry out the investigations in Figure 

6.36 consisted of 54 inputs and 82 outputs (there are 82 distinct subjects in the training 

and testing sets). The DDA algorithm automatically inserts hidden units (see §5.10 on 

RBF with DDA in Chapter 5). 

In Figure 6.34, the highest classification rate (true positive rate) obtained was 85.7% 

when the network was trained on nlOsmfr data and tested on nlOsmfe data. The highest 

true positive rate obtained in Figure 6.35 was 85.4% when the network was trained on 

n8smfr data and tested on n8smfe data. The highest classification rate obtained was 

86.1 % when the network was trained on nxtnfe data and tested on nxtnfr data (i.e. 

trained on pattern files containing remaining views and tested on¾ views). 

There is a decrease in performance with all the normalised pattern files ( compared to 

their unnormalised counterparts). The decrease in performance in the networks that 
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used non-mixed views data is far more significant than those that used mixed views data. 

Normalisation of a vector changes its magnitude, however preserves its direction. The 

results suggest that the magnitude of the unnormalised data in the non-mixed views 

pattern files was a feature that the neural network used in its discrimination of various 

patterns. The performance of the normalised pattern files that contained mixed-views 

data is not much better than their unnormalised counterparts (see §6.4.1). From Figures 

6.34-6.36 it can be seen that networks that were trained on non-mixed views data 

(containing remaining views) and tested on the ¾ views performed better than if they 

were trained with the latter pattern file and tested with the former. 

6.4.4 Tests with split databases and normalised data 
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Figure 6. 37: Results of tests performed with 1 n1 0snfr/e and 2n1 0snfr/e data (see Table 

D.55)

The highest classification rate in Figure 6.37 was 90.6% when the network was trained 

on lnlOsnfr and tested on lnlOsnfe. The highest false positive rate was 3.3%. 
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Figure 6. 38: Results of tests performed with 1 n1 Osnfr/e and 2n1 Osnfr/e data (see Table 
D.56)

The highest classification rate in Figure 6.38 was 88.6% when the network was trained 

on lnlOsnfe and tested on lnlOsnfr. The highest false positive rate was 3.7%. 
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Figure 6. 39: Results of tests performed with 1 n1 Osnfr/e and 2n1 Osnfr/e data (see Table 
D.57)

The highest classification rate in Figure 6.39 was 82.8% when the network was trained 

on 2nl0snfr and tested on 2n10snfe. The highest false positive rate was 2.4%. 
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Figure 6. 40: Results of tests performed with 1n10snfr/e and 2n10snfr/e data (see Table 
D.58)

The highest classification rate in Figure 6.40 was 86.0% when the network was trained 

on 2n10snfe and tested on 2n10snfr. The highest false positive rate was 3.3%. 
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Figure 6. 41: Results of tests performed with 1 n8snfr/e and 2n8snfr/e data (see Table D.59) 

The highest classification rate in Figure 6.41 was 89.8% when the network was trained 

on ln8snfr and tested on ln8snfe. The highest false positive rate was 3.3%. 
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Figure 6. 42: Results of tests performed with 1 nBsnfr/e and 2nBsnfr/e data (see Table D.60) 

The highest classification rate in Figure 6.42 was 89.4% when the network was trained

on ln8snfe and tested on ln8snfr. The highest false positive rate was 4.2%. 
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Figure 6. 43: Results of tests performed with 2n8snfr/e and 1n8snfr/e data (see Table D.61) 

The highest classification rate in Figure 6.43 was 83.7% when the network was trained 

on 2n8snfR and tested on 2n8snfe. The highest false positive rate was 2.5%. 
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Figure 6. 44: Results of tests performed with 2n8snfr/e and 1 n8snfr/e data (see Table D.62) 

The highest classification rate in Figure 6.44 was 85 .1 % when the network was trained 

on 2n8snfR and tested on 2n8snfe. The highest false positive rate was 2.4%. 
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Figure 6. 45 : Results of tests performed with 1 nxtnfr/e and 2nxtnfr/e data (see Table D.63) 

The highest classification rate in Figure 6.45 was 90.2% when the network was trained 

on lnxtnfr and tested on lnxtnfe. The highest false positive rate was 3.3%. 
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Figure 6. 46: Results of tests performed with 1 nxtnfr/e and 2nxtnfr/e data (see Table D.64) 

The highest classification rate in Figure 6.46 was 90.2% when the network was trained 

on lnxtnfe and tested on lnxtnfr. The highest false positive rate was 4.2%. 
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Figure 6. 47: Results of tests performed with 2nxtnfr/e and 1 nxtnfr/e data (see Table D.65) 

The highest classification rate in Figure 6.47 was 83.3% when the network was trained 

on 2nxtnfr and tested on 2nxtnfe. The highest false positive rate was 2.4%. 
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Figure 6. 48: Results of tests performed with 2nxtnfr/e and 1 nxtnfr/e data (see Table D.66) 

The highest classification rate in Figure 6.48 was 86.5% when the network was trained 

on 2nxtnfr and tested on 2nxtnfe. The highest false positive rate was 6.0%. 

Table 6. 6: Summary of results for tests performed with "split databases" and normalised 
data. 

Pattern file Pattern file network was Highest Highest Figure 

network was 
I(. ' 

false pos. Number -tested on true pos. 

trained on �-t rate(%) rate(%) 
�� 

lniusnfr 1nrnsnfe, 2n1Usnfr, 2niusnfe 'JU ,o 3.3 o.37 

2nl0snfr 2nl0snfr, lnlOsnfr, lnlOsnfe 82.8 2.4 6.39 

lnlOsnfe lnlOsnfr, 2n10snfe, 2nl0snfr 88.6 3.7 6.38 

2nl0snfe 2nl0snfr, lnlOsnfe, lnl0snfr 86.0 3.3 6.40 

ln8snfr ln8snfe, 2n8snfr, 2n8snfe 89.8 3.3 6.41 

2n8snfr 2n8snfe, ln8snfr, ln8snfe 86.7 2.5 6.43 

ln8snfe ln8snfr, 2n8snfr, 2n8snfe 89.4 4.2 6.42 

2n8snfe 2n8snfr, ln8snfr, ln8snfe 85.l 2.4 6.44 

lnxtnfr lnxtnfe, 2nxtfr, 2nxtnfe 90.2 3.3 6.45 

2nxtnfr 2ntxtnfe, lnxtnfr, lnxtnfe 83.3 2.4 6.47 

lnxtnfe lnxtnfr, 2nxt.nfr, 2nxtnfe 90.2 4.2 6.46 

2nxtnfe 2ro..1nfr, lnxtnfr, lnxtnfe 86.5 6.0 6.48 
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The highest recognition rate obtained was 90.6% when the network was trained with 

lnlOsnfr and tested with lnlOsnfe. The corresponding database 2's performance was 

82.8% and 2.4%. When considering results from split databases, it is important to 

consider the results of both databases (i.e. when considering the results of lul0snfr, the 

the results of 2u 1 0snfr should be examined as well). Closer examination of the results 

show that the networks that were trained on lnxtnfe and 2nxtnfe yielded true positive 

recognition rates of 90.2% and 86.5% respectively and true negative recognition rates of 

4.2% and 6.0% respectively. These figures suggest a better performance compared to 

networks trained with just lnlOsnfr and 2n10snfr. The normalised data did not perform 

as well as the unnormalised data with split databases. As in §6.4.2, data from the 

triangular region performed the best. 

It is clear that the results obtained with split databases are better than those obtained 

from full databases. There are fewer pattern classes with split databases and 

subsequently clearer pattern boundaries. Hence, the network should be able to 

discriminate between the different patterns more efficiently. However, this theory 

applies only to database 1, as reflected in the results. Database 2's results were 

consistently lower than those of database 1. Although the number of patterns decreased, 

it is possible that the pattern boundaries for the data-set lay to close to each other, thus 

making it difficult for the network to discriminate between the different patterns. 

It was also found that results (see Figures 6.10-6.12 and Table 6.5) obtained with mixed 

views data (characterised by a letter "m" in the file name) showed that mixed views 

didn't enhance the generalisation ability of the network. Tests performed with mixed 

views cannot be used to ascertain whether ¾ views are better suited to the training set or 

testing set. From Figures 6.10-6.12 and Table 6.5, it is clear that these views are better 

suited to the testing set, rather than the training set. 

Observation of Table 6.5 and 6.6 led to only certain data-sets being used in the tests with 

the counter-propagation network These datasets are reflected in Tables 6. 7 and 6.8. 
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6.5 Counter-propagation Network 

The counter-propagation network of Hecht-Nielsen[l I] was also investigated in an 

attempt to improve the classification rates obtained from the RBF-DDA networks. 

Unlike the RBF-DDA algorithm, the counter-propagation network requires a definite 

number of processing elements in the hidden layer to begin learning. This was the first 

aspect of the network that was investigated. The results of the tests are documented in 

Appendix F. 
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Figure 6. 49: Results from investigation into optimum number of processing elements of the 
hidden layer of the counter-propagation network. 

The u I 0snfe/r file was used for training and testing the network. Each legend represents 

a new network that was initialised and trained for 100 cycles with parameters of a.=0.1

and �=0.1 (Preliminary tests showed that these parameters yielded optimum results.). 

Each test was perfonned three times and the best of three results is depicted in the 

graph. It is clear from Figure 6.49 that the true positive recognition rate is 

"proportional" to the number of elements in the hidden layer. This result confirms 

Kulkarni 's(27] observation that it is necessary for the number of elements in the hidden 

layer be the same as the number of patterns presented to it, for the counter-propagation 
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network to perform efficiently. Further investigations were undertaken with datasets that 

yielded favourable results in the previous section .. 

Table 6. 7: Results of tests performed on normalised and unnormalised data for 
counter-propagation network. 

Training Testing Number ct Ii Rec. rate Min. 0/P Training 
'ft .. 

set set -of cycles Time 
. �

ulusnfe UJUSn:ir 200 0.1 0.1 55 - 88.u43 u.94743 o4 mms. 

u8snfe u8snfr 200 0.1 0.1 55 - 88.043 0.95333 40 mins. 

ux1nfe uxtnfr 200 0.1 0.1 53 - 88.478 0.95333 58 mins. 

nlOsnfe nlOsnfr 200 0.1 0.1 55 · 88.043 0.95407 62 mins. 

n8snfe n8snfr 200 0.1 0.1 55 - 88.043 0.95407 41 mins. 

nxtnfe Nxtnfr 200 0,1 0.1 53 - 88.478 0.95407 54 mins. 

For tests performed on normalised and unnormalised data with the full dataset, best 

results were obtained when the remaining views were used for training and the ¾ views 

were used for testing. Similar results were obtained for normalised and unnormalised 

data. 

Table 6. 8: 

iuxtnfe 

luxtnfr 

Results of tests performed on normalised and unnormalised data using split 
databases for counter-propagation network. 

1uxtnfr 2uu U.l U.l 14-Y4.3 U.Y loilS 17 mms. 

2uxtnfe 206-4.2 0.91678 

21Th.1n:fr 207- 3.7 0.91678 

luxtnfe 200 0.1 0.1 14 - 94.3 0.91678 18 mins. 

2uxtn:fe 208-3,3 0.91678 

2uxt.nfr 210-2.3 0.91678 

2uxt.nfe 2uxtnfr 200 0.1 0.1 26-87.9 0.91902 15 mins. 

luxtnfe 235 - 4.1 0.91902 

llL'rulfr 235 - 4.1 0.91902 
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2uxtnfr 2mctnfe 200 0.1 0.1 21 - 90.2 0.91902 16 mins. 

luxtnfe 238- 2.857 0.91902 

luxtnfr 240- 2.041 0.91902 

Training sets of luxtnfr and 2uxtnfr yielded recognition results of 94.3% and 90.2%. 

The results yielded by the radial basis function network were 94.7% and 83.7% 

respectively (see Table 6.5). 

The minimum output that was classified as a true positive, is higher for networks trained 

with the counter-propagation algorithm. The results of the counter-propagation and 

radial basis function network will be compared in the following chapter. 

It is noticed that results obtained from networks that were trained on remaining views 

and tested on three-quarter views performed consistently better than those trained on 

three-quarter views and tested on remaining views. The reason for this, from a 

psychophysical perspective, is discussed Chapter 2. From a neural network point of 

view, the remaining views allow for greater generalisation during the training phase. 

This allows the three-quarter view (the view that allows better encoding and 

recognition[24]) to be recognised faster and with greater accuracy. 
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6.6 Network per person approach (NPPA) 

A three-layer back-propagation network of SNNS [13] was used in the network per 

person approach. These tests were performed to examine the viability of this approach 

compared to the database approach. Experiments were performed using single and 

double hidden layers in the network. It was found that although the network with single 

layers was able to train faster, better performance was obtained with a network that 

contained two hidden layers. Hence a network with two hidden layers was chosen. The 

network consists of 99 inputs, two hidden layers that contain l0xlO processing elements 

each and a single output unit. 

A learning rate of cx=0. l and a momentum of µ=0.5 was used (these values are 

suggested by the authors of SNNS). The flat spot elimination was set to 0.1, while the 

maximum tolerable error was set to zero. 81 networks were trained separately using this 

algorithm. Each network was trained for 50 cycles. Earlier experimental work showed 

that this number of training cycles prevents over-training (for these particular data sets), 

as well as allows for optimum performance of the network. All the networks were 

trained on a Pentium™ 133MHz with 32MB of RAM, on SNNS, which used a Linux 

platform. Training time was typically 20 minutes per network. 

The training and testing files were generated as follows: 

The training file consisted of 22 subjects (of 83 - although only 81 networks were 

trained for 81 distinct subjects, the testing file contained 83 distinct subjects), of which 1 

of the 22 was a true positive, and the rest were true negatives. In the training file, for 

each of the 22 subjects, 5 views of the ten captured were used. Lawrence[ 41] used the 

same number of faces (5) in his training and testing sets. The testing file contained all 

83 subjects with the other 5 views that were not contained in the training set. Hence, 

there was no overlap between the training set and the testing set. Also, there was unseen 

data (61 distinct subjects) which was used to determine the robustness of the network. 
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Some subjects wore glasses, while others wore caps (see Appendices Band E). Images 

of the relevant valid subjects with and without spectacles and/or caps were used in the 

training set. 

The choice of the 21 true negative subjects was not based on the variance distribution of 

the 2-D DCT images of the subjects. They were chosen at random from the database. 

These 21 subjects were included as true negatives in every one of the 81 training files 

that were generated, unless they were a true positive (i.e. the network was being trained 

for them). It was also arbitrarily decided that approximately 25% of the database would 

be used in the training sets. To correctly determine the optimum number of true 

negatives in the training set would require the number of true negative to be varied from 

1 to, say 80. In effect, 812 networks would have to be trained. In addition to this, there 

are other variables to consider: The training parameters that work well under a particular 

topology and training set may not yield optimum performance when trained using 

another training set. It was decided not to perform such an analysis, due to its time 

consuming nature. It is felt that the choice of 25% of the database is not too 

conservative, neither is it over-zealous with respect to the distinct number of subjects 

being presented to the neural network during the training phase. 

The output of the neural network ranged from Oto 1. Analysis of the data was done by 

setting various thresholds ofO. l, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.93 and 0.95 to the 

output neuron. Appendix E contains tables detailing the results for thresholds of 0.8 to 

0.95 for 81 networks. 

Appendix E also discusses the fonnula that was used to calculate the true positive and 

true negative recognition rates. 
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Figure 6. 51: (a) Mean true positive rate for different thresholds, excluding extra views. 
(See Appendix E) 

(b) Mean true negative rate for different thresholds, including extra views.
(See Appendix E) 

Figure 6.50 reports on two different mean true negative recognition rates (MTNRR): 

"person" and "face" It is important to define each of these. For "person", analysis is 
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performed on the output of the neural network, for all the subjects ( other than the valid 

subject i.e. the one for whom the network was trained) presented to the input of the 

neural network during the testing phase. If the output for any one of the presented 

subject's views lies above a particular threshold, it is regarded as if all five of the 

subject's views were incorrectly classified as a true positive. This could be considered 

harsh, however it is felt that it is a better reflection of a real world scenario, and at the 

same time gives the correct number of distinct subjects incorrectly classified. 

For "faces" (i.e. Figure 6.50 (b )), the calculation is based on the total number of faces 

( 465 - in the testing set) in the database, and not on distinct subjects. The threshold 

technique described above was applied here as well. It is expected that the MTNRR for 

faces is higher than for persons, as shown in Figure 6.50. 

From Figure 6.50 (a), it can be seen that high true negative recognition rates are 

obtained for low thresholds. The high values associated with the graph of Figure 6.50 

(a) suggests that the neural networks were able to generalise well (61 distinct subjects

i.e. 305 views were unseen and contained in the testing set). It also suggests that an

appropriate number of true negatives were included in the training set. 

Figure 6.51 (a) and (b) also report on two types of mean true positive recognition rates 

(MTPRR). The first is based on a calculation that excludes "extra views" i.e. views of 

subjects with glasses etc, and Figure 6.51 (b) is based on a calculation that includes these 

views. The second approach could be interpreted as using a "skew" test set analysis 

(since not all the subjects wear glasses etc). The author does not share this view and 

both figures are included for completeness. The MTPRR is clearly inversely 

proportional to the MTNRR and the two figures can be used to choose an appropriate 

threshold value. 

The view held by Bouwer[6] is that in security applications, it is preferred to produce a 

greater ratio of false negatives to false positives, than vice versa. False negatives, 
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although annoying to valid subjects, are safer than false positives, where an invalid 

subject may be admitted. Most face recognition research reports on only the true 

positive recognition rate that is obtained[!], [8], [11]. Equally important however is the 

true negative recognition rate (i.e. how well a network can reject an imposter). 

The mean1 of the output neuron was 0.84 (std1
=0.30) for true positives that excluded 

extra views and 0.80 (std2 = 0.34) for true positives that included extra views. 

Table 6. 9: Table showing possible choices for thresholds. 

Threshold a: True - Positive True Positive True Negative True Negative 

Excluding 

Extra'Views 

U.5 (mean1 - std1) 8u.3 

0.95 (mean1 +std1) 65.5 

0 .4 (mean2 - std2) 81.6 

0. 95 (mean2+std2) 65.5 

Including Extra - Persons

Views 

83.7 93.4 

68.0 97.0 

85.1 92.6 

68.0 97.0 

A plausible solution would be to use the first option in Table 6.9. 

- Faces

97.2 

98.8 

96.9 

98.8 

The networks are able to generalise quite well, as is evident from the high true negative 

recognition rates. 

The disadvantages of the NPP A however, are that 

• A network has to be trained for every person.

• Changes in subject's data (scars on face etc) implies that networks will have to be

retrained.

The advantages of the NPP A are that 

• High true negative recognition rates are obtained

• Relatively high tlue positive rates are obtained
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Chapter 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

This thesis examined the implementation of a two-dimensional discrete cosme 

transform and various different neural networks in an automatic face recognition 

system. The two-dimensional transform was implemented using the fast Fourier 

transform. It was used because of its ability to de-correlate the data from the images 

and easily facilitate feature extraction. The neural networks were used for the 

classification of the faces. Although neural networks have been used in a classification 

mode, they are not restricted to this scope. They have been used in problems as 

diverse as credit scoring to prediction[lO]. 

Chapter 2 shows that it is indeed difficult to compare various research efforts since 

different researchers use different face databases. Consequently, an algorithm that 

performed well on a particular database is not guaranteed to have the same effect on 

another database. This unfortunate result was re-iterated by the work of Zhang[ 40]. 

Psychophysical research into the mechanisms of human face recognition has influenced 

much work in the field of machine recognition of faces [8], [30]. A finding that directly 

influenced this study was the discovery of the¾ view advantage by Pellet[32], which 

was confirmed, using psychophysical methods by Bruce[20] and Schyns[24]. They 

reported that the ¾ view holds an advantage in face recognition to previously unseen 

views. It was with this in mind that a face capturing utility (a system component of the 
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face recognition algorithm) was developed, for the building of a database that 

exploited the ¾ view advantage. Ten views per subject were captured at different 

head orientations. The entire database consists of 820 facial images (i.e. 82 distinct 

subjects). 

A general symmetry transform (GST) was implemented as a means to automatic face 

location in images containing a face with a homogenous background. The transform, 

as described by Reisfeld[15] (and used with great effect in his PhD thesis) is able to 

locate areas of high symmetry in an image (isotropic, as well as radial symmetry). This 

is done by assigning to each pixel a symmetry magnitude (see equation 4-7). Images of 

size 215x215 were presented to the transform. The transform was found to be 

accurate in assigning high symmetry to the eye and eyebrow regions. (See Figure 4.5 

and Table 4.1). However, the inherent problem with the GST is the computational 

intensity demanded due the nature of its operation (i.e. assigning a magnitude of 

symmetry to each pixel). Images of size 215x215 took approximately 113 minutes to 

complete on a Pentium 131MHz computer running the Linux operating system. A 

speed enhancement study was performed on the GST by first sub-sampling the images 

to sizes of lO0xlO0 and 50x50 pixels respectively. The transform took approximately 

70 and 5 minutes respectively. Although the transform performed faster, degradation 

of the transformed images was clearly noted. Observation of the GST showed (see 

equation 4. 6) that the transform can be speeded up by thresholding the input. An 

image of size 1OOx100 pixels took 3 0 minutes to be transformed. In view of the 

complexity of the GST, manual normalisation was used and was implemented much 

faster than the GST. 

The two- dimensional discrete cosine transform that was used employed a fast 

algorithm by first transforming the rows of the image, (thus forming a semi­

transformed matrix), and then the columns of the semi-transformed matrix. It was 

shown in Figures 4.9 - 4.15 that data with high energy in the transformed matrix was 

concentrated in the upper left hand side of the transformed matrix near the de or mean 

grey level of the image. A variance analysis of each coefficient of the transformed 

image was performed for each of the subjects. This investigation revealed intra-class 

variance clusters (see Figures 4.22 - 4.24). It was shown that these clusters were 
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grouped approximately in a lOxlO square region. However, since in a study such as 

this one, inter-class variances are more important, a variance analysis was performed 

on each coefficient of every transformed image in the database. Visual inspection 

revealed that the data with the most variance was situated in a lOxlO region (see 

Figure 4.25). This was used as a starting point for data extraction. A performance 

analysis of different data sets (i.e. different sizes of data as well as different regions 

(square and triangular - see Figures 6-1 and 6.2 from which the data was extracted) 

was performed using the radial basis function network with dynamic decay adjustment. 

The results of the investigation revealed that the data that was extracted from a 1Ox10 

square region of the transformed images yielded the best performance (88% ), while the 

8x8 and 12x12 regions followed with recognition rates of 87.4% and 87.4% 

respectively. For data that was extracted from a triangular region, the highest 

recognition rate was obtained when the length of one side of the isosceles triangle was 

1 O coefficients long. These results were used to choose data (i.e. size of data and 

region) for further investigations. The 8x8 and IOxlO square region data was used, as 

well as 1Ox10 triangular region data. 

For the radial basis function network, particular values of e
+ 

and S- were used during

training that yielded best performance. These values can be found in Table 6.4. Full 

databases as well as split databases were investigated. In both types of investigation, 

networks that were trained on remaining views and tested on ¾ views yielded high 

recognition rates. Networks generally didn't perform better when "mixed views" were 

used in the data set. Hence, the generalisation ability of the network was not 

improved. For full databases, it was found that triangular region data performed 

almost as well as the square region data, however, lOxlO, square region data produced 

a recognition rate of 88.3% (trained on ulOsnfe and tested on ulOsnfr). Perhaps one 

of the most interesting aspects of the results obtained with split databases is the low 

false positive rate obtained. This demonstrates the networks ability to reject 

impostors. 

The results from tests performed with normalised full databases were not as good as 

those performed with unnormalised data. The highest classification rate obtained was 
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86. 7% when the network was trained on normalised data extracted from a triangular

region containing remaining views and tested on ¾ views. Tests done on split 

databases and normalised data revealed that data extracted from the triangular region 

performed the best (i.e. trained on files lnxtnfe and 2nxtnfe yielded true positive 

recognition rates of 90.2% and 86.5% respectively). 

Datasets that produced high recognition rates were used in investigations with the 

counter-propagation network. Comparative results for the radial basis function 

network and counter-propagation network (for tests done with full databases i.e. 82 

subjects) can be tabulated as follows: 

Table 7. 1: Comparative results of Counter-propagation network and RBFN with DDA. 

Train Test 

ul0snfe ui0snfr 

u8snfe u8snfr 

uxtnfe uxtnfr 

nlOsnfe nl0snfr 

n8snfe n8snfr 

nxtnfe nxtnfr 

Counter­

propagation 

Classification rate 

(%) 

88.0 

88.0 

88.5 

88.0 

88.5 

88.5 

RBFN-DDA 

Classification rate 

(%) 

.. ,., � 
lH'i.J 

87.6 

87.8 

85.0 

85.0 

86.7 

Counter-propagation networks take longer to learn compared to radial basis function 

networks trained with the dynamic decay adjustment algorithm. Radial basis function 

networks take typically< 5 epochs to train (i.e. < 3 minutes) as opposed to counter­

propagation networks that could take as long as 64 minutes to train. Unnormalised 

data produced better results than normalised data in investigations with the counter­

propagation network as well. 

Table 7. 2: Comparative results of Counter-propagation Network and Radial Basis 
Function Network trained with DOA, for split databases (i.e. 41 subjects). 
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Train Test 

lnxtnfe luxtnfr 

2uxtnfr 

2nxtnfe 

lnxtnfr lnxtnfe 

2nxtnfr 

2nxtnfe 

2nxtnfe 2nxtnfr 

lnxtnfe 

lnxtnfr 

2nxtnfr 2nxtnfe 

lnxtnfe 

lnxtnfr 

CONCLUSION AND RECOMMENDATIONS 

Counter­

propagation 

Classification rate 

(¾) 

94.3 

3.7 

4.2 

94.3 

3.3 

2.3 

88.0 

4.1 

4.1 

90.2 

2.9 

2.0 

RBFN 

Classification rate 

(%) 

93.5 

3.7 

4.2 

94.7 

3.7 

2.8 

87.0 

2.4 

2.9 

83.7 

1.2 

2.4 

It is clear from Table 7.1 and 7.2 that the smaller databases yield higher true positive 

and true negative recognition rates. The optimum size for the "small" database was 

not determined, as this constitutes a complete study on its own. This could be a 

source for further work. For split databases the overall better performance was 

obtained from the counter-propagation network (see bold values of Table 7.2). The 

number of processing elements required by the RBFN is similar to the amount used by 

the counter-propagation network. 

The back-propagation network that was used in a network per person approach 

(NPP A) produced high true negative and true positive recognition rates, for different 

thresholds. The results of the NPP A cannot be directly compared to those of the 

database approach (DA) (i.e. results of the counter-propagation and radial basis 

function networks) due to the diverse approaches used. Qualitatively, however, the 

NPPA compared to the DA requires more work. However, batch training can be used 

to overcome this. With the DA, if a subject changes, then the whole database has to be 

re-trained, as opposed to the NPP A where only 1 network has to be trained. The 
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to overcome this. With the DA, if a subject changes, then the whole database has to be 

re-trained, as opposed to the NPP A where only I network has to be trained. The 

NPP A would work well in high security environment with a set number of distinct 

subjects. This recommendation is made on the basis of the high true negative and true 

positive recognition rates. The DA would work well with a vast number of valid 

subjects. 
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7 .2 Recommendations 

The face recognition algorithm (FRA) described in the main body of this thesis would 

work well in an environment where a subject's identity needs to be verified. Assume 

that the algorithm will be implemented in a security system where the first level of 

access would be the subject's PIN (e.g. ATM application). Hence, in such a system,

the subject's PIN would be used in addition to the FRA for subject verification. The 

enhanced security system could be described in flow diagram form as depicted in 

Figure 7.1. 

Before describing how the FRA would be implemented into the ATM security system, 

it is necessary to define the type of card that the subject would use, as well as its

implications. The FRA uses neural networks as the core verification principle, and 

hence it is necessary to store the artificial neural network (ANN) weights of the valid 

subjects somewhere. 

One option is to store the weights on a smart card/ATM card. Thus, the weights could 

be read, passed to a neural network (preferably processing takes place at the ATM),

and verification can take place. This type of implementation would utilise the "neural 

network per person" approach. The neural network is trained to verify the valid 

subject (i.e. the owner of the ATM card) and reject all impostors. Although the high 

true negative and high true positive recognition rates associated with this approach are 

quite appealing, the disadvantage is that a separate network has to be trained for each 

subject. This may not be viable if the number of valid subjects is large. However, it 

could be accomplished if "batch training" (a facility offered by SNNS) was performed. 

The flow diagram, which describes this approach, is depicted in Figure 7.2. 
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Figure 7. 1: High-level flow diagram of FRA integrated with level-one PIN access security 

system. 
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The second option is to store the subject's weights in a database of weights, on some 

remote server. The valid subject's ANN weights can be accessed from the database via 

the subject's PIN. The flow diagram that describes this approach is much like that of 

Figure 7.2. 

The large number of valid subjects to be trained can be exploited to the advantage of the 

security system. It was observed for split databases in Chapter 6 (i.e. training on part of 

database 1 and testing on the remainder of database I and all of database 2), that the 

"unseen" database produced high true negative recognition rates. 

The large training database could be split into smaller databases as follows: 

DB:A DB:B DB:C DB:D DB:E DB:F DB:G DB:H 

Figure 7. 3: Depiction of small databases within one large database. 

The valid subjects from each database can only be recognised in their database i.e. if 

subject n belongs to database A, then subject n would be verified correctly in database A 

7 -11 



Chapter 7 CONCLUSION AND RECOMMENDATIONS 

and not (within some acceptable error) in any of the other databases. However, the 

optimum number of subjects in each database requires some investigation, and was not 

completely studied in this research due to subject availability. This method of training 

can be likened to the scope of variables in a function. The variables can be seen within 

the function, but not outside the function. 

The general symmetry transform was proposed as a possible solution for automatic face 

location, but it was found that it was computationally intensive. This provides a source 

for further work to be done in this particular field. Face location deserves a study 

dedicated to it alone. It is easy for humans to be able to take into account varying light 

levels, rotation, various backgrounds etc, and still perform effective face recognition. 

However it is difficult to reproduce this process on a computer. 

This thesis marks an initial study into automatic face recognition. It was shown the two 

dimensional discrete cosine transforms and neural networks do form a viable solution to 

the problem of automatic face recognition. However, it is not the optimal solution. 

With the advent of faster and more powerful processors techniques such as elastic graph 

matching and hidden markov models a more realistic automatic face recognition 

algorithm could be implemented. 
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APPENDIX A 

/* 

SANJEEV C DEBIPERSAD 

FACE CAPTURING UTILITY FOR IMAGES OF SIZE 215X255 
VER. 2 

*/ 

/* System include files -/ 
#include <Stdio.h> 
#include <Stdlib.h> 
#include <fcntl.h> 
#include <Sys\types.h> 
#include <sys\stat.h> 
#include <io.h> 

/* DT2867 related include files */ 
#include "c:\dti\include\ioctl.h" 
#include "c:\dti\include\dt2867\lib67.h" 
#include "c:\dti\dt2867\examples\exlib.h" 
#include "c:\dti\include\ioctlext.h" 
#include "c:\dti\include\dtityp.h" 

/********************* Type definitions *********************/ 

/* This structure contains information that varies depending/* 
/* upon the field rate of the incoming video signal [NTSC /* 
/* (60Hz) vs. PAL (50Hz)] . /* 

typedef struct buffer_size_struct 

int width; 
int height; 

} Buf_size; 

/* displayable image width*/ 
/* displayable image height*/ 

/******************** Macro Definitions****************************/ 

/* define the image width and height for 50/60Hz images*/ 
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#define NTSC_WID 640 
#define NTSC_HGT 480 
#define PAL WID 768 
#define PAL HGT 512 

#define LUT SIZE 256 
#define FILL VAL 128 
#define WIN COLOR 15 

#define ENTER (s) printf ( "Hit <Enter> %-s: II ( s) ) gets(answer} 

/********************* Static variables *********************/ 

static char *usage = "USAGE: exlc <device_name>\n\n" 
11 \twhere <device_name> is the name of the device to 

be opened\n" 
11 \t(eg. dt2867$0) .\n\n"; 

static char answer [133]; /* buffer used to read */ 
/* user responses */ 

static int status = E_NORMAL; /* status variable used */ 
/* by error handler */ 

static u_long lut (256] = { 0} ; /* used for lookup */ 
/* */ 

static Buf size ntsc_data = { NTSC_WID, NTSC HGT } ;-

static Buf size pal_data = { PAL_WID, PAL HGT } ;

/******************** LIB67 Error Handler *******************/ 

static void my_handler(const int err, char canst * canst func, char 
canst * canst msg) 

/* Save the error in the static status variable */ 
status = err; 

/* Now, simply print the error and return */ 
printf("\aError %d: %s\n\tin function ts\n\n", err, msg, func); 

return; 

/********************** Memory Cleanup Function *************/ 

/* Define a simple static function to perform memory cleanup */ 
static void cleanup(u_long *pl, u_long *p2) 

if (pl) 
if (p2) 

return; 

free (pl) ; 
free (p2) ; 

/************************ Main Program **********************/ 
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int main (int argc, char **argv) 

register int i O; 
int fd = -1; 

DT67_input input_buf; 

Config_struct config; 

Buf_size *buf size = &ntsc_data; 

u_long red = 0, green = 0, blue • 0; 

u_long r 0, g 0, b = O; 

/* fast index 
/* device file 
/* descriptor 
/* LIB67 input 
/* structure 
/* used to get DT2867 
/* base configuration 
/* pointer to signal 
/* dependent data 

/* saved rgb 
/* values for 
/* output and 
/* overlay LUTs 

/* rgb values for 
/* output and overlay 
/* LUTs 

u_long *lut_save = calloc(LUT_SIZE, sizeof(u_long)); 
/* pointer to saved input lookup table values 

u_long *lut_array = calloc(LUT_SIZE, sizeof(u_long)); 
/* pointer to input lookup table values for fill 
/* function */ 

XY_rgn window = {O}; 
XY_rgn_buf rgn; 
long count; 
unsigned int len; 
unsigned char far *fptr; 
FILE *in; 

/* verify that the buffers were successfully allocated '/ 
if (!lut_save I I !lut_array) 

{ 
cleanup (lut_save, lut_array); 
return E_NOMEM; 

/* Check for correct number of command line arguments */ 
if (argc != 2) 

{ 
printf(usage); 
cleanup (lut_save, lut_array); 
return 1; 

/* Open channel to the device specified by the user */ 
if ( (fd = open ("dt2867$0", O_RDWR)) == -1 ) 

{ 
printf("\aunable to open device: %-s\n", argv[ll); 
cleanup (lut_save, lut_array); 
return l; 
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APPENDIX A 

/* Figure out 
if ( status 

{ 

if we are running a 50Hz or 60Hz device */ 
ioctl(fd, DRV_CONFIG, &config) ) 

printf("\aUnable 
status); 

to get device configuration\n\tstatus d\n\n" 

} 

cleanup (lut_save, lut_array); 
return status; 

if ( config.hz == 50) 
buf_size = &pal_data; 

/* Tell LIB67 to use our error handler */ 
(void) dt67_set_handler(my_handler); 

/* Reset the DT2867 to the default values. 
/* shows a method 

/* for retrieving, and testing, the status 

/* LIB67functions. 

if ( ( status = dt67 reset ( fd)) ! = E NORMAL 

{ 
cleanup (lut_save, lut_array); 
return status; 

This call 

from 

�; 

/* Load input LUT 0 (8-bit), processing LOT 0 (16-bit), and */ 
/* the output LUT with the identity function {this shows */ 
/* another legal calling format}. */ 

for (i = 0; i < 256 ; i++) 
lut[i] = i; 

*/ 

*/ 
*/ 

if {status = dt67_inp_lut(fd, DT67_WRITE, DT67_ILUT, DT67 LUT0 
0, 256, lut)) 

{ 

} 

cleanup (lut_save, lut_array); 
return status; 

if (status = dt67_inp_lut(fd, DT67_WRITE, DT67_PLUT. DT67_LUT0, 
0, 256, lut) ) 

{ 

} 

cleanup (lut_save, lut_array); 
return status; 

i f  (status = dt67_disp_lut{fd, DT67_WRITE, DT67_OLUT. 0 ,  256, 
lut, lut, lut) ) 

{ 
cleanup (lut save, lut_array); 
return status; 

/*========================== Window A/D ================*/ 
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/* Now turn on the display for buffer O. */ 
if ( dt67_disp_sel(fd, DT67_A2D_OUTPUT) ) 

{ 
cleanup (lut_save, lut_array); 
return status; 

if ( dt67_disp(fd, DT67_ON) ) 
{ 

} 

cleanup (lut save, lut_array); 
return status; 

/* set overlay lookup table to blue for index specified by 
WIN_COLOR * / 

APPENDIX A 

/* read the contents of the overlay lookup table at index 
WIN_COLOR */ 

if (dt67_disp_lut(fd, DT67_READ, DT67_OVLUT, WIN_COLOR, 1, &red, 
&green, &blue)) 

{ 
cleanup (lut_save, lut_array); 
return status; 

/* write the contents of the overlay lookup table at index 
WIN_COLOR to BLUE */ 

b = 255L; 
r = g = OL; 
if (dt67_disp_lut(fd, DT67_WRITE, DT67_OVLUT, WIN_COLOR, 1, &r, 

&g, &b)) 
{ 
cleanup (lut save, lut_array); 
return status; 

/* perform window A/D (note: EXLIB has no error handling so */ 
/* we need to get the status via the return value). */ 

/* Define the window */ 
window.y = 150; 
window.x = 250; 
window.height = 215; 
window.width = 255; 
/* Perform the window A/D */ 
if (status = exlc_window_a2d(fd, DT67_BUF1, WIN_COLOR, &window) 

printf ( "\aWindow A/D failed\n\tstatus = %d\n\t%s\n\n". 
status, exlc_error_str(status)); 

cleanup {lut save, lut_array); 
return status; 

/* Wait for the user to tell us to exit */ 
ENTER("to exit"); 

A-5 



/* dt67_reset(fd);*/ 

/* Wait for the user to tell us to clear the frame */ 
ENTER("to clear frame buffer 0"); 

APPENDIX A 

/* clear buffer 0 (note: EXLIB has no error handling so we need */ 
/* to get the status via the return value). */ 

if dt67_disp(fd, DT67_BUF0) 

cleanup (lut_save, lut_array); 
return status; 

if ( status = exlc frame clear(fd, DT67 ACQ0) ) 
{ 

- - -

printf("\aFrame clear failed\n\tstatus = %d\n\t%s\n\n" 
status, exlc_error_str(status)); 

cleanup (lut_save, lut_array); 
return status; 

} 
if ( dt67_disp(fd, DT67_BUF0) ) 

{ 
cleanup (lut_save, lut_array); 
return status; 

if ( dt67_report_input(fd, &input_buf) ) 
return status; 

/* First, set up to acquire a frame to buffer 0 �; 
input_buf.timing = DT67_EXTERNAL; 
input_buf.acqenb = DT67_ACQ0; 
if ( dt67_setup_input(fd, &input_buf) 

{ 
cleanup (lut_save, lut_array); 
return status; 

/* Acquire the frame */ 
if ( dt67_input(fd) ) 

{ 

} 

cleanup (lut_save, lut_array); 
return status; 

/* Now turn on the display for buffer 0. �; 
if ( dt67_disp_sel(fd, DT67_BUF0) ) 

{ 
cleanup (lut save, lut_array); 
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return status; 

} 
if ( dt67_disp(fd, DT67_ON) ) 

{ 
cleanup (lut_save, lut_array); 
return status; 

dt67 io_sel(fd,DT67_BUF0); 

rgn.region.x=250; 
rgn.region.y=150; 
rgn.region.width=215; 
rgn.region.height=255; 

rgn.size=l; 

APPENDIX A 

if((rgn.buf=calloc(rgn.region.width*rgn.region.height,l))==NULL) 

{ 
printf("l. Could not allocate memory, exiting"); 
exit(0); 

) 

if ( (status=ioctl(fd,GET_XY_RGN,&rgn)) '= E_NORMAL) { 
exit(0); 

} 

in = fopen(argv[l] ,"wb"); 
fptr=(char far *)rgn.buf; 
count = (long)rgn.region.width*rgn.region.height; 

while(count!=0) { 
len = fwrite(fptr,l,count>32768?32768:count,in); 
count-=len; 
fptr+=len; 

} 
farfree(rgn.buf) � 
fclose ( in} ; 

/* All done, close the device and return normal status */ 
close(fd}; 
cleanup (lut_save, lut_array}; 
return O; 
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APPENDIX C 

This appendix contains the code that was implemented for the GST. 

#include <Stdio.h> 
#include <Stdlib.h> 
#include <math.h> 

#define DIM 100 
#define pi 3.14159265359 
#define sigma 10 

void main(void) 

{ 
FILE *fname,*out; 
unsigned char *fbuf,*h; 
int argc,px,py,count; 
int a,b,c,d,nabx,naby,maxa,maxb,len,max=O; 
float *r,*theta,*M; 
float dij,aij,pij,cij,t,y; 
char ch; 

dij 0; 
aij O, 
pij 0; 
cij O; 

argc=2; 
if ( argc ! =2) { 

printf ( "\n\n\n\n Incorrect Usage\n"); 
printf("correl FILENAME TEMPLATENAME"); 
exit (0); 

if ((£name = fopen("face.raw","rb"))==NULL){ 
printf("Error, could not open input file"); 
exit(0); 

if ((out = fopen("out","wb"))==NtJLL){ 
printf("Error, could not open output file"); 
exit(0); 

} 

fbuf = (unsigned char *) calloc ( (long) (DIM*DIM), 1); 
if (fbuf==NULL) { 
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printf("l. Error allocating memory, exiting"); 
exit(O); 

} 

r = (float *) malloc(((DIM)*(DIM))*sizeof(float)); 
if (r==NULL) { 

printf("3. Error allocating memory, exiting"); 
exit ( O) : 

theta = (float *) malloc(((DIM)*(DIM))*sizeof(float)); 
if (theta==NULL){ 

printf("3. Error allocating memory, exiting"); 
exit(O); 

M = (float *} malloc(((DIM)*(DIM))*sizeof(float)); 
if (M==NULL) { 

printf("3. Error allocating memory, exiting"); 
exit(O); 

APPENDIX C 

h = (unsigned char *) malloc(((DIM)*(DIM))*sizeof(unsigned 
char)); 
if (h==NULL){ 

printf("3. Error allocating memory, exiting"); 
exit(O); 

} 

for(a=O;a<=(DIM-1) ;a++){ 
for(b=O;b<=(DIM-1) ;b++){ 

*(M+(a*(DIM))+b)=O; 
*(r+(a*(DIM))+b)=O; 
*(theta+(a*(DIM})+b)=O; 
*(h+(a*(DIM))+b)=O; 

} 

count = DIM*DIM; 
fread(fbuf,sizeof(char) ,count,fname); 

for(a=l;a<=(DIM-2) ;a++) { 
for(b=l;b<=(DIM-2) ;b++){ 

nabx = (int) (* (fbuf+ (a* (DIM)) +b)) - (int}(* (fbuf+ ( (a-1) *(DIM)) +b)); 
naby = (int) (* (fbuf+ (a* (DIM)} +b)) -(int)(* (fbuf+ (a* (DIM))+ (b+l))); 
*(r+(a*DIM)+b) log(l+sqrt(pow(nabx,2)+pow(naby,2))); 
if (naby == 0) *(theta+(a*DIM)+b) = O; 
if (nabx == 0) * (theta+ (a*DIM) +b) = pi/2; 
if ((nabx !=0) && (naby !=0)) *(theta+(a*DIM)+b) 

atan((float)naby/nabx); 

} 
} 

for(a=l;a<=(DIM-2) ;a++){ 
for(b=l;b<=(DIM-2);b++) { 

if 1(*(r+(a*DIM)+b) ==0 )) continue; 
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for(c=l;C<=(DIM-2};c++) { 
for(d=l;d<={DIM-2) ;d++) { 
if ( (* (r+ (a*DIM) +b) ==0 I J {* (r+ (c*DIM) +d) ==0))) continue; 
px = ceil({a+c}/2); 

PY = ceil((b+d)/2)+1; 
if (d-b==0} aij=0; 
if (c-a==0) aij=pi/2; 

APPENDIX C 

if ll(d-b) !=0) && ((c-a) !ao0}) aij = atan((float) (d-b)/(c-a)); 

dij = 1/(sqrt{2*pi}*sigma)*exp(-l*(sqrt(pow(a-c,2)+pow(b-
d,2))/(2*sigma))); 

pij (1-cos(*(theta+(a*DIM)+b)+ *(theta+(c*DIM}+d)-2*aij))• (1-
cos((*(theta+(a*DIM})+b)- *(theta+(c*DIM)+d))); 

cij (dij*pij*(*(r+{a*DIM)+b)}*(*(r+(c*DIM)+d))); 

*(M+(px*DIM)+py} =(*(M+(px*DIM)+py))+cij; 

} 

} 
} 

cij=0; 
pij=0; 
dij=0; 
px=O; 
py=O; 

printf ("%d %d %d %d %.3f\n",a,b,c,d,•(M+(a*DIM)+b))1 

for (a=0;a<=(DIM-1) ;a++) { 
for (b=0;b<=(DIM-1) ;b++) { 

} 

count = (unsigned int) (ceil (* (M+ (a*DIM) +b})); 
*(h+(a*DIM)+b)= (unsigned char)count; 

if (((int)*(fbuf+(a*DIM)+b) != 0)){ 
*(h+(a*DIM)+b)=(unsigned char)0; 

} 
} 

count = DIM*DIM; 
fwrite(h,sizeof(unsigned char),count,out); 

for (a=0;a<=(DIM-l);a++) { 
for (b=0;b<=(DIM-1) ;b++){ 

if ( (int) ( * (h+ (a*DIM) +b) ) >max) 

{ 
max = (int)*(h+(a*DIM}+b); 
maxa a; 
maxb = b; 
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printf ("\nMax occurs at %'d %'d which is %d\n",maxb,maxa,max); 

fclose(fname); 

fclose(out); 

free(fbuf); 

free(r); 

free (theta); 

free (M); 

free(h); 
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APPENDIXD 

This appendix describes the results of the tests performed with the RBF network. The 

results are presented in the following tabular format: 

• TestNo. 

• 0" 

• Min. O/P 

• Training cycles 

• Hidden Units 

• Class. Rate 

This is the number given to the particular test that was 

performed with the parameters and pattern set specified in 

the table. 

RBF parameter. (See chapter 5) 

RBF parameter. (See chapter 5) 

This is the minimum output value that was classified 

correctly as a true positive. 

Number of cycles during which training of the network 

was performed. 

The number of hidden units that were inserted by the 

DDA for each test. 

This is the classification rate. The column consists of two 

numbers : the first number is the number of faces that were classified incorrectly, 

while the second is a percentage expression of the faces that were classified 

correctly. The true positive percentage is calculated as follows: 

100-100•(; J D-1

where x is the number of faces that were classified incorrectly and y is the total 

number of faces in the pattern set. The results are reported differently where tests 

were performed with "split databases" (characterised by a suffix of "r","e","a" or 

"b" in the test number - e.g. Table D.20). The second number in the classification 
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Appendix D 
rate is percentage of faces that were classified incorrectly (false positives), while the

first number is the true negatives (impostors that were classified as impostors). 

• SSE

• MSE

This is the sum of the squared errors of the network. 

This is the mean squared error of the network. 

The SSE is computed with the following formula[13] 

SSE= L D-2
p e patterns j e output 

where tpi is the desired output of output neuron j on pattern p and oPi is the actual output. 

The MSE is de.fined as the SSE divided by the number of patterns. 

Test numbers rpl to rp49 were preliminary tests that were implemented to observe the 

effect of varying different network parameters. 

Table D. 1 : Results from preliminary tests performed using u 1 0snfr for training and u 1 0snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0• is varied from 0.4 to 0.9, whiles· is kept constant at 0.2. 

Tt�I It () .\ li11. rrai11. 

f'tio. Oil' C"�dl', 

Rpl " ' 
V,'+ 0.2 0.12254 

, 
_., 

Rp2 0.5 0.2 0.12254 3 

Rp3 0.6 0.2 0.12254 3 

Rp4 0.7 0.2 0.12254 3 

Rp5 0.8 0.2 0.20207 3 

Rp6 0.9 0.2 0.20207 3 

Uiclcfon 

I "nit, 

319 

361 

383 

420 

439 

456 

D-2

( 'I;"'· l(;lfl' 

100- 78.261

96- 79.130

92- 80.00

90- 80.435

90- 80.435

91- 80.217

SSE .\!St-: 

1657.1408 3.60248 

1513.1396 3.28943 

1500.8227 3.26266 

1500.4271 3.26180 

1484.6414 3.22748 

1475.7034 3.20805 
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Table D. 2 : Results from preliminary tests performed using u10snfr for training and u10snfe
for testing. The neural network architecture consists of 99 input elements and 82 output
elements. 0

+ 

is varied from 0.4 to 0.9, while e· is kept constant at 0.02. 
--

--

., (U.,t (J
° 

() 'liu. Train. flidckn C ·1,1\�. Hall' ssi.. MSI-: 

'.'\ll. 0/1' C -� dl'\ l'nih 

Rp7 0. .'t 0.02 O.OOil 7 3 418 62-80.522 155.39569 0.337!S2 

Rp8 0.5 0.02 0.00508 3 432 65- 85.870 145.47714 0.31625 

Rp9 0.6 0.02 0.00508 3 441 66-85.652 138.63564 0.30138 

RplO 0.7 0.02 0.00508 3 451 66-85.652 133.5090 0.29024 

Rpll 0.8 0.02 0.00417 3 450 66-85.652 131.82143 0.28657 

Rp12 0.9 0.02 0.00417 3 460 66-85.652 130.45839 0.28361 

Rpl3 0.3 0.02 0.00117 3 396 65-85.870 184.35263 0.40077 

Table D. 3 : Results from preliminary tests performed using u10snfr for training and u10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. e

+ 

is varied from 0.4 to 0.9, while e· is kept constant at 0.002. 

Tl"SI u 

;\"o, 

Kp 4 U.4

Rp15 0.5 

Rp16 0.6 

Rpl7 0.7 

Rp18 0.8 

Rp19 0.9 

u· :\Jiu. 

0/1' 

u.uu· v. 2 "00010 

0.002 0.00010 

0.002 0.00009 

0.002 0.00009 

0.002 0.00009 

0.002 0.00009 

Trai11. 

C -� dt•� 

3 

3 

3 

3 

3 

3 

Uidclcn ( ·ta". Hate SSE .\ISE 

I :nir.. 

39 (> o" - ao.:,"..: 2 o<+ . .;a� 4 V. L:> '7 

444 61-86.739 57.00109 0.12393 

453 61-86.739 50.01250 0.10872 

456 61-86.739 48.88790 0.10628 

460 60-86.957 47.46719 0.10319 

460 60-86.957 47.46719 0.10319 

Table D. 4 : Results from preliminary tests performed using u1 0snfr for training and u1 0snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. e

+ 

is varied from 0.4 to 0.9, while e· is kept constant at 0.0002. 

'J i.'SI o· 0 :Hin. Train. 

:'-1:u. wr <'�dtw, 

Rp2u 0 .4 .UUU' " O"" 1 <v. vv j 

Rp21 0.5 0.0002 < 0.0001 3 

Rp22 0.6 0.0002 <0.0001 3 

Rp23 0.7 0.0002 <0.0001 3 

Rp24 0.8 0.0002 < 0.0001 3 

Rp25 0.9 0.0002 < 0.0001 3 

llichll'n ( ·1;,�,. Ruic

l'11ih 

'6 4q �- 0 .j4'.L 

453 62- 86.522

456 62-86.522

460 61-86.739

460 61 -86.739 

460 61-86.739

D-3
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SSE 

.:, .... L. I l L.'°t 

26.5960 

25.09672 

23.49164 

23.49164 

23.49164 

MSE 

0 0u. /4:) 

0.05782 

0.05456 

0.05107 

0.05107 

0.05107 
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Table D. 5 : Results from preliminary tests performed using u10snfr for training and u10snfe
for testing. The neural network architecture consists of 99 input elements and 82 output
elements. I

t 

and 0" are both set to the same values that range from 0.1 to 0.9. 
- - - --

Tc�I 11· II :\lin. Trai11. lliddl'll < I;,.,,. Rall' SSE MSE 

:\n. 011• l'� tit"\ I 1nil, 

R p26 0 .I 0.1 0.05254 3 226 92-80.u00 900.47249 1.95745 

Rp27 0.2 0.2 0.17147 3 226 108-76.522 1817.6272 3.9536 

Rp28 0.3 0.3 0.37043 3 226 128 - 72.174 4363.3065 9.55067 

Rp29 0.4 0.4 0.68661 3 226 159-65.435 10570.382 22.9790 

Rp30 0.5 0.5 1.17583 3 226 269- 54.565 24282.417 52.7878 

Rp31 0.6 0.6 1.79402 3 226 276-40.000 53.607.853 116.538 

Rp32 0.7 0.7 2.84040 3 226 342-25.652 115740.20 251.609 

Rp33 0.8 0.8 4.22605 3 226 377-18.043 249495.34 542.381 

Rp34 0.9 0.9 6.71538 3 226 432-6.087 551334.62 1198.55 

Table D. 6:: Results from preliminary tests performed using u10snfr for training and u10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0

+ 

and E
r 

are both set to the same values that range from 0.01 to 0.09. 

I
1\•st 11' 0 :\li11. Tr:il11. Hit.him ( la,,. l(;lte SSE \1SE 

I :",Jo. 
0/1' C"�rk, t·ulh 

Rp35 0.01 0.01 O.u 1.H .) .£.£0 01 - 0.£ . .)�1 '10 • .£,4.) 1 1.:,oi:,1 

Rp36 0,02 0.02 0.00395 3 226 83 -81.957 716.44800 1.55750 

Rp37 0.03 0.03 0.00754 3 226 83 -81.957 721.55493 1.56860 

Rp38 0.04 0.04 0.01195 3 226 83 -81.957 731.85840 1.59100 

Rp39 0.05 0.05 0.01708 3 226 83-81.957 746.95850 1.62382 

Rp40 0.06 0,06 0.02990 3 226 84-81.739 766.8673 1.66710 

Rp41 0.07 0.07 0.02937 3 226 85-81.522 791.79700 1.72130 

Rp42 0.08 0.08 0.03648 3 226 89-80.652 822.0708 1.78713 

Rp43 0.09 0.09 0.04420 3 226 92-80.000 858.12762 1.86549 
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Table D. 7 : Results from preliminary tests performed using u10snfr for training and u10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0

+ 

is varied from 0.4 to 0.9, while 0· is kept constant at 0.001. 

h•sl o· r,
· \lin. 'I min. llidtll.'11 ( 'l:t!<,, H.tll'. SSE :\ISi'.: 

:'lio. 0/1' ('�·dL·, I 1uir, 

Rp44 (j,4 0.001 0.0002 3 444 54-88.26i 45.9228 0.09883 

Rp45 0.5 0.001 0.0002 3 454 54-88.261 36.96737 0.08036 

Rp46 0.6 0.001 0.0002 3 457 54-88.261 33.24289 0.07227 

Rp47 0.7 0.001 0.0002 3 457 54-88.261 33.24289 0.07227 

Rp48 0.8 0.001 0.0002 3 454 54-88.261 31.6600 0.06883 

Rp49 0.9 0.001 0.0002 3 454 54-88.261 31.6600 0.06883 

Table D. 8 : Results from tests performed using u10snfr for training and u10snfe for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

TL•�• (J' Ii , !in. I min. lliddl'II ('l:ass. Rull' SM•: i\lS� 

:'lio. 0/P <·�·ell.•, I 'nih 

1 0.4 0.001 0.00003 3 441 62-86.522 50.11327 0.10894 

2 0.4 0.002 0.0001 3 436 62-86.522 64.38924 0.13998 

3 0.4 0.0002 0.00001 3 446 62-86.522 34.27124 0.07450 

4 0.8 0.002 0.00009 3 460 60- 86.957 47.6719 0.10319 

5 0.8 0.0002 0.00009 3 460 60-86.957 23.49164 0.05107 

Table D. 9 : Results from tests performed using u10snfe for training and u10snfr for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

Te,1 ()' II i\ I in. J'rai11. Hith.h:11 ('hiss. Hall' SSE :m,F. 

�o. 0/P C\l'lr\ l nih

6 04 000 i .vvu L, j 444 :, - !S!S.L. l 'D . .l.lj!S 0 9 .U Y!Sj 

7 0.4 0.002 0.00007 3 441 54-88.261 55.94427 0.12162 

8 0.4 0.0002 0.00001 3 450 57-87.609 30.04824 0.06532 

9 0.8 0.002 0.00007 3 459 54- 88.261 41.08091 0.08931 

10 0.8 0.0002 0.00001 3 460 57 -87.609 19.39404 0.04216 
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Table D. 10 : Results from tests performed using u1 Osmfr for training and u1 Osmfe for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

l'l·\I u· II \Jin. I min. 11 idtlt•11 C 'l:i,,. Rate SSl·. ,\ISE 

"10. 0/1' ( \ell', l nil�

1. 1 0.4 0.001 0.00003 3 441 61-86.739 45.98875 o.O'J998 

12 0.4 0.002 0.0001 3 435 60-86.957 58.46727 0.12710 

13 0.4 0.0002 0.00001 3 446 60-86.957 31.79949 0.06913 

14 0.8 0.002 0.00008 3 4660 61-86.739 43.40290 0.09435 

15 0.8 0.0002 0.00001 3 460 60-86.957 21.79029 0.04737 

Table D. 11 ; Results from tests performed using u10smfe for training and u10smfr for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

'I 4.!�t ti. () :\li11. 

;\o. OIP 

Io 0.4 0.001 0.00007 

17 0.4 0.002 0.000017 

18 0.4 0.0002 0.00002 

19 0.8 0.002 0.00007 

20 0.8 0.0002 0.00002 

l'rnin. 

C\cl{'i, 

3 

3 

3 

3 

3 

llidrlc-11 

I nit, 

447 

445 

449 

459 

460 

( ·1:1,,. l{afl'

70- 84.783

70-84.783

72-84.348

70-84.783

72-84.348

SSE :\ISi!'. 

47.2927i U.102!S l

59.30832 0.12893 

32.94275 0.07161 

45.08393 0.09801 

21.03061 0.04572 

Table D. 12 : Results from tests performed using u8snfr for training and u8snfe for testing. The 
neural network architecture consists of 63 input elements and 82 output elements. 

Tc,1 11· (I .:\Jin. Train. H itltll'II < ·1:1�� lt.itc SSE l\lSE 

-..:o. 0/1' (\l'll'� l'nih 

21 0.4 0.001 0.00002. ... 
., 437 

,,,., n, n--i-
ov- �o.,::>, 6i.i2296 O.i34i8

22 0.4 0.002 0.00007 3 437 60-86.957 72.06032 0.15665 

23 0.4 0.0002 0.00003 3 443 61-86.739 41.26799 0.08971 

24 0.8 0.002 0.00005 3 460 59-87.174 57.65048 0.12533 

25 0.8 0.0002 0.00003 3 460 60-86.957 29.35118 0.06381 

D-6 



I 

Appendix D 

Table D. 13 : Results from tests performed using u8snfe for training and u8snfr for testing. The 
neural network architecture consists of 63 input elements and 82 output elements. 

-

t ,.�, IP 11 "lin. I rain. Hidden C"l:w,. lt.11c SSE :\ISF. 

\lo. 011' < ")de, 1 lnit,, 

26 0.4 0.001 0.00002 3 443 57-87.609 53.28607 0.11584 

27 0.4 0.002 0.00005 3 440 57-87.609 64.55523 0.14034 

28 0.4 0.0002 0.00001 3 449 58 -87.391 35.42840 0.07702 

29 0.8 0.002 0.00005 3 459 57 -87.609 49.87717 0.10843 

30 0.8 0.0002 0.00001 3 460 58 -87.391 24.7876 0.05389 

Table D. 14 : Results from tests performed using u8smfr for training and u8smfe for testing. 
The neural network architecture consists of 63 input elements and 82 output elements. 

·1l'q t)' 
0 :\Jin. Train. HidcJcn Cl:"'· lbtc SSE �J�r 

l\u. 0/1' (-�ell', l nih

31 0.4 0.UOl 0.00003 3 399 62-86.522 54.85690 0.11924 

32 0.4 0.002 0.00008 3 399 63 -86.304 64.87965 0.14104 

33 0.4 0.0002 0.00001 3 443 62-86.522 37.52636 0.08158 

34 0.8 0.002 0.0008 3 459 62- 86.522 51.73994 0.11248 

35 0.8 0.0002 0.00001 3 460 61- 86.739 26.97575 0.05864 

Table D. 15 : Results from tests performed using u8smfe for training and u8smfr for testing. 
The neural network architecture consists of 63 input elements and 82 output elements. 

'I C\I 11· ti :\lin. I rain. llid1hm ( "lass. l�all• SSE :\1SE 

:'\io. 0/1' C'�d1·s l•nih 

� 
J G 0.4 0.001 n '""'" • 

V.vvvv, 3 444 T3 /U - 15-+. l5 0 00 L, 0 ,JU .1 b (I 3U 5 

37 0.4 0.002 0.00002 3 441 69-85.000 71.75588 0.15599 

38 0.4 0.0002 0.00001 3 449 73 - 84.130 39.08024 0.08496 

39 0.8 0.002 0.00002 3 459 69-85.000 56.49219 0.12281 

40 0.8 0.0002 0.00001 3 460 73- 84.130 27.67075 0.06015 
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Table D. 16 : Results from tests performed using uxtnfr for training and uxtnfe for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

- -- --

'I l'�I 0 ti \lin. l'r:iiu. llilhJL•II C'l:1,,. Rall' SSE \ISE 

;'1,u. OJI' < )d<·, l 11i1,

41 0.4 0.001 0.00002 3 436 61-86.522 66.4283i 0.14441 

42 0.4 0.002 0.00005 3 433 61-86.739 79.3662 0.17254 

43 0.4 0.0002 0.00003 3 443 63-86.304 43.78766 0.09519 

44 0.8 0.002 0.00005 3 460 60-86.957 62.46791 0.13580 

45 0.8 0.0002 0.00003 3 460 62-86.522 32.25453 0.07012 

Table D. 17 : Results from tests performed using uxtnfe for training and uxtnfr for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

Te,1 o· II :\till, Trai11. llilhk11 ( la.,,. Rate SSE .\JSE 

l\o. 011• ( ·,·ck, l"uih 

46 0.4 0.001 0.00001 3 443 57 - 87.609 53.48675 0.11628 

47 0.4 0.002 0.00004 3 439 56- 87.826 66.6961 0.14385 

48 0.4 0.0002 0.00001 3 448 57 - 87.609 38.27567 0.08321 

49 0.8 0.002 0.00004 3 459 56- 87.826 52.99506 0.11521 

50 0.8 0.0002 0.00001 3 459 57- 87.609 27.63902 0.06008 

Table D. 18 : Results from tests performed using uxtmfr for training and uxtmfe for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

Tl•,1 11' () :\li11. 

No. Oil' 

5 1 U.4 0 0l .u u.uuuuz

52 0.4 0.002 0.00007 

53 0.4 0.0002 0.00001 

54 0.8 0.002 0.00005 

55 0.8 0.0002 0.00001 

I r;1i11. 

('�ell.._ 

,; 

3 

3 

3 

3 

lliddcn 

l nit,

4 j(> 

434 

444 

459 

460 

D-8 

Cla,,. Rate 

0 - !SO. 1,;� 

62- 86.522

61 - 86.739 

62-86.522

61 - 86.739 

SSE MSE 

9 4 :, I .0 0 j U.1.l 54 j 

68.47857 0.14887 

38.26178 0.08318 

54.61316 0.11872 

28.44660 0.06184 
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Table D. 19 : Results from tests performed using uxtmfe for training and uxtmfr for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

- ---- -- -

T1:sl ,1
·

ll \fin. I nllll. mu,.ten < ·111,,. lhll- SSE i\lSE 

:"io. o,r C) l'lc� l'ui1' 

5t> 0.4 0.001 0.00001 3 443 69-85.000 65.51014 0.14241 

57 0.4 0.002 0.00003 3 439 66-85.652 76.49706 0.16630 

58 0.4 0.0002 0.00001 3 448 71-84.565 43.54995 0.09467 

59 0.8 0.002 0.00003 3 459 67-85.435 61.75870 0.13426 

60 0.8 0.0002 0.00001 3 459 71- 84.565 32.03211 0.06964 

Table D. 20 : Results from tests performed using 1u10snfr for training and 1u10snfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2u10snfr and 2u10snfe. 

·1 c,1 (J' () ,\lin. ·1 rain. llilldcn ( 'l:1,�. l{:ilc SSE \ISE 

No. 0/P C)dc� l nit,

61 0.4 0.001 0.00016 3 235 19-92.245 25.8C.086 0.10555 

62 0.4 0.002 0.00042 3 235 19-92.245 32.13540 0.13116 

63 0.4 0.0002 0.00002 3 238 19-92.245 17.02889 0.06951 

64 0.8 0.002 0.00042 3 245 19-92.245 25.21136 0.10290 

65 0.8 0.0002 0.00002 3 245 19 -92.245 11.64131 0.04752 

662R 0.00016 185 -13.953 

672E 0.00016 184 -14.88 

682R 0.00042 207-3.721

692E 0.00042 207-3.721

702R 0.00002 207-3.721

712E 0.00002 207-3.721

722R 0.00042 207-3.721

732E 0.00042 208-3.256

742R 0.00002 207-3.721

752E 0.00002 207-3.721

D-9



I 

Appendix D 

Table D. 21 : Results from tests performed using 1u10snfe for training and 1u10snfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2u1 Osnfr and 2u1 Osnfe. 

T!!,I t)
' 

IJ \lin. Tr:1i11. llillu1!11 ( ·1:1,�. Hall' SSE .\ISi•: 

\:o. 0/P C') dl!s l nih

76 0.4 0.001 0.00001 3 234 16-93.469 27.9i176 0.113173 

77 0.4 0.002 0.00002 3 233 15 -93.878 33.19090 0.13547 

78 0.4 0.0002 0.00001 3 239 18 -92.653 17.28478 0.07055 

79 0.8 0.002 0.00002 3 245 16-93.469 24.86629 0.10150 

80 0.8 0.0002 0.00001 3 245 17 - 93.061 11.8466 0.04851 

812R 0.00001 210-2.326

822E 0.00001 207-3.721

832R 0.00002 210-2.326

842E 0.00002 207-3.721

852R 0.00001 212 -1.395 

862E 0.00001 207-3.721

872R 0.00002 210-2.326

882E 0.00002 207 -3.721 

88A 0.00001 212-1.395

88B 0.00001 207-3.721

Table D. 22 : Results from tests performed using 1u10smfr for training and 1u10smfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2u10smfr and 2u10smfe. 

T�·�I 11· 1, :\ Jiu. fr:1i11. llidtlt·n ( ·ia,-.. l{all' SSF. :\ISi:: 

�o. 0/P C�rk" I l11i1, 

89 0.4 
I 

0.001 0.00001 3 238 IIS-92.<>53 14.38531 0.u5872

90 0.4 0.002 0.00034 3 231 18-92.653 30.69027 0.12527 

91 0.4 0.0002 0.00002 3 237 18-92.653 16.49629 0.06733 

92 0.8 0.002 0.00034 3 237 18-92.653 23.33883 0.09526 

93 0.8 0.0002 0.00002 3 245 18-92.653 11.37552 0.04643 

94r 0.00001 210-2.326

95e 0.00001 207-3.721

96r 0.00034 210-2.326

97e 0.00034 206-4.186

98r 0.00002 211-1.860

99e 0.00002 207 -3.721 
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lOOr 0.00034 209-2.791

l0le 0.00034 206-4.186

102r 0.00002 211- 1.860

102e 0.00002 207-3.721

Table D. 23 : Results from tests performed using 1u10smfe for training and 1u10smfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2u10smfr and 2u10smfe. 

Tt,t II' tr :\lin. Train. HiddL·n ( ·1""· R;1lc SSE :\ISE 

�o. o,p C)cll.>, I luil, 

04 U.4 0.UUl 0 00 .0 i3 3 239 26-89.388 26.i5061 0.10674 

105 0.4 0.002 0.00033 3 236 26-89.388 34.39678 0.14040 

106 0.4 0.0002 0.00002 3 240 27-88.980 17.41475 0.07108 

107 0.8 0.002 0.00033 3 245 26-89.388 26.21369 0.10699 

108 0.8 0.0002 0.00002 3 245 27 - 88.980 11.80035 0.04816 

109r 0.00013 209-2.791

ll0e 0.00013 205-4.651

lllr 0.00033 209-2.791

112e 0.00033 204-5.116 

113r 0.00002 208-3.256

114e 0.00002 208-3.256

115r 0.00033 209-2.791

116e 0.00033 204-5.116

116a 0.00002 208-3.256

116b 0.00002 206-4.186

Table D. 24 : Results from tests performed using 2u10snfr for training and 2u10snfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1u10snfr and 1u10snfe. 

Te,1 o· It :\lin. l'raln. llit.hh-11 ( 'la,,. l�;ale SSE MSE 

:\o. 0/P <\ck� l'uih 

iii 0.4 0.001 n l'Hl·l\-1 
U.UVV1 3 200 36-83.256 40.57-496 0.18872 

118 0.4 0.002 0.00025 3 200 37- 82.791 46.72325 0.21732 

119 0.4 0.0002 0.00001 3 204 36-83.256 28.70868 0.13353 

120 0.8 0.002 0.00028 3 215 37-82.791 38.56425 0.17937 

121 0.8 0.0002 0.00001 3 215 36-83.256 20.61650 0.09589 

122r 0.0001 241 -1.633 

123e 0.0001 238 - 2.857 
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124r 0.00025 241-1.633 

l25e 0.00025 238-2.857

l26r 0.00001 241 -1.633 

127e 0.00001 238-2.857

128r 0.00028 241-1.633

129e 0.00028 238-2.857

l30r 0.00001 241-1.633

131e 0.00001 238-2.857

Table D. 25 : Results from tests performed using 2u10snfe for training and 2u10snfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1u10snfr and 1u10snfe. 

'I i'\t 11· IJ :\lin. I rai11. Jli<hkn U,,,.,, l{:Ut• S.SI!: .\ISi:: 

·'"· Oil' ("� rh·s t ·nil, 

132 0.4 0.001 0.0001 3 20..; 30-86.047 29.85820 0.13885 

133 0.4 0.002 0.00025 3 202 30-86.047 36.61826 0.17032 

134 0.4 0.0002 0.00001 3 209 29-86.512 18.75943 0.08725 

135 0.8 0.002 0.00028 3 214 30-86.047 26.92869 0.12525 

136 0.8 0.0002 0.00001 3 215 29-86.512 12.51114 0.05819 

137r 0.0001 241-1.633

138e 0.0001 239-2.449

139r 0.00025 242- 1.224

140e 0.00025 240-2.041

141r 0.00001 240-2.041

142e 0.00001 238-2.857

143r 0.00028 240-2.041

144e 0.00028 238-2.857

145r 0.00001 240-2.041

146e 0.00001 238-2.857
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Table D. 26 : Results from tests performed using 2u10smfr for training and 2u10smfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1u10smfr and 1u10smfe. 

Tl',t 11· 11 'li11. I rain. 

:\o. 0/1' (
°
)ell"• 

147 0.4 0.001 0.00006 3 

148 0.4 0.002 0.00018 3 

149 0.4 0.0002 0.00001 3 

150 0.8 0.002 0.00018 3 

151 0.8 0.0002 0.00001 3 

152 0,00006 

153 0.00006 

154 0.00018 

155 0.00018 

156 0.00001 

157 0.00001 

158 0.00018 

159 0.00018 

160 0.00001 

161 0.00001 

lJ idtlt•n 

I 'nib 

215 

215 

215 

215 

215 

( 'his-.. Rall' 

28-86.977

28- 86.977

28-86.977

28-86.977

28-86.977

239-2.449

238-2.857

239-2.449

239-2.449

239-2.449

215 - 0 

215-0

215-0

215 -0 

215 -0 

S�E i\lSF. 

31.24568 0.14533 

39.68174 0.18457 

20.88604 0.09714 

29.54831 0.13743 

15.00530 0.06979 

Table D. 27 : Results from tests performed using 2u10smfe for training and 2u10smfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1u10smfr and 1u10smfe. 

·1 l'St (l' tl ;\ I in. Train. II itllll'll Cl:,1�-.. l(a k SSE ;\ISE 

Nu. 0/l' (
°

}l'll's l'11ih 

162
" .
V."t 0.001 0.001 3 201 37 -82..79i 39.30i92 0.18280 

163 0.4 0.002 0.002 3 202 37-82.791 43.53885 0.20251 

164 0.4 0.0002 0.0002 3 206 36-83.256 27.55734 0.12815 

165 0.8 0.002 0.002 3 211 37-82.791 35.15211 0.16350 

166 0.8 0.0002 0.002 3 211 36 - 83.256 17.73732 0.08250 

167 0.001 240-2.041

168 0.001 241-1.633

169 0.002 240-2.041

170 0.002 241 -1.633 

171 0.0002 240-2.041

172 0.0002 241 -1.633 

173 0.002 240-2.041
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174 0.002 241 -1.633 

175 0.002 240-2.041

176 0.002 241-1.633

Table D. 28 : Results from tests performed using 1 uBsnfr for training and 1 u8snfe for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2u8snfr and 2u8snfe. 

l't·,1 11
° 

11· :\lln. 

i\o. 0/l'

177 0.4 0.001 0.00041 

178 0.4 0.002 0.00094 

179 0.4 0.0002 0.00006 

180 0.8 0.002 0.00094 

181 0.8 0.0002 0.00006 

182r 0.00041 

183e 0.00041 

184r 0.00094 

185e 0.00094 

186r 0.00006 

187e 0.00006 

188r 0.00094 

189e 0.00094 

190r 0.00006 

191e 0.00006 

lnilu. 

<·,c1� .... 

3 

3 

3 

3 

3 

llh.hlcu 

I. nil,

234 

232 

245 

245 

245 

( ·ta,\. H.:Hc

li-93.061

17-93.061

18 - 92.653 

17 -93.061 

18-92.653

210-2.326

208-3.256

210-2.326

208-3.256

208-3.256

208-3.256

207 -3.721 

208-3.256

208-3.256

208-3.256

SSE :\lSE 

29.89997 0.12204 

38.87866 0.15869 

20.28575 0.08290 

31.45033 0.12837 

14.89676 0.06080 

Table D. 29 : Results from tests performed using 1 u8snfe for training and 1 uBsnfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2u8snfr and 2u8snfe. 

Tt..,1 u· 0 :\Jiu. I rain. 11 id1ll'II C"la,�. R,ak SSE ;\JSE 

\lo. Oil' ()de, l 'ni1,

' 

193 0.4 0.002 0.00001 3 234 15 -93.878 37.88025 0.1461 

194 0.4 0.0002 0.00001 3 236 16-93.469 21.51316 0.08781 

195 0.8 0.002 0.00001 3 245 15 -93.878 29.42778 0.12011 

196 0.8 0.0002 0.00001 3 245 17 -93.061 14.54067 0.05935 

197r 0.00003 207 -2.791 

198e 0.00003 208-2.256

199r 0.00001 209-2.791
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200e 0.00001 208 -3.256 

20lr 0.00001 210-2.326

202e 0.00001 206-4.186 

203r 0.00001 210-2.326

204e 0.00001 208-3.256

205r 0.00001 210-2.326

206e 0.00001 206-4.186

Table D. 30 : Results from tests performed using 1 u8smfr for training and 1 u8smfe for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2u8smfr and 2u8smfe. 

I T�I ti" () ;\lin. I niin. lliddcn C-liw;. Hale S�t-: ;\ISE 

,\u. 0/1' ('� r!e, t:nih 

207 0.4 0.001 0.00036 3 215 18 -92.653 29.35i35 0.11980 

208 0.4 0.002 0.00092 3 231 18-92.653 35.24495 0.14386 

209 0.4 0.0002 0.00004 3 234 18-92.653 20.85044 0.08510 

210 0.8 0.002 0.00083 3 244 18-92.653 28.94075 0.11831 

211 0.8 0.0002 0.00004 3 245 18-92.653 14.55873 0.05942 

212r 212 -1.395 

213e 208-3.256

214r 212-1.395

215e 208-3.256

216r 212-1.395

217e 208-3.256

218r 212- 1.395

219e 208-3.256

220r 212-1.395

22le 208-3.256

Table D. 31 : Results from tests performed using 1 u8smfe for training and 1 u8smfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2u8smfr and 2u8smfe. 

-

Trsl o· H .\Jiu. 'I rllill. 11 idtlt•n { ·1:is ... Rah� SS[ MSE 

Nu. U/1' ()l'lt''> l'nih 

222 0.4 0.00i O.OOOi i 3 �� ... 
.i.�O 28 -88.571 3V.780G6 0.12564 

223 0.4 0.002 0.00028 3 236 28 -88.571 39.60283 0.16164 

224 0.4 0.0002 0.00001 3 239 28 - 88.571 20.47309 0.08356 

225 0.8 0.002 0.00028 3 245 28 - 88.571 31.70593 0.12941 
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226 0.8 0.0002 0.00001 3 245 28 -88.571 14.62940 0.05971 

227r 0.00011 208-3.256

228e 0.00011 204- 5.116

229r 0.00028 208-3.256

230e 0.00028 204-5.116

23lr 0.00001 207 -3.721 

232e 0.00001 204-5.116

233r 0.00028 208-3.256

234e 0.00028 203 -5.581 

235r 0.00001 207-3.721

236e 0.00001 204-5.116

Table D. 32 : Results from tests performed using 2u8snfr for training and 2u8snfe for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 u8snfr and 1 u8snfe. 

J"c,I o· () :\1111. 'J mill. lli,hll-11 < 'lu\\. lbtc SSE .\ISE 

:,..:.,_ 0/1' ('�de, l"nit\ 

237 0.4 0 \}, 01 0 03u.u u 3 200 _,:, - �-'- I L.1 . I :, 

238 0.4 0.002 0.00009 3 200 35- 83.721 53,59703 0.24929 

239 0.4 0.0002 0.00001 3 201 35 -83.721 33.60172 0.15629 

240 0.8 0.002 0.00009 3 215 35 -83.721 43.89586 0.20417 

241 0.8 0.0002 0.00001 3 215 35 -83.721 23.93338 0.11132 

242r 0.00003 242-1.224

243e 0.00003 238-2.857

244r 0.00009 242-1.224

245e 0.00009 240-2.041

246r 0.00001 238-2.857

247e 0.00001 238-2.857

248r 0.00009 242-1.224

249e 0.00009 240-2.041

250r 0.00001 242-1.224

25le 0.00001 239-2.449
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Table D. 33 : Results from tests performed using 2u8snfe for training and 2u8snfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 u8snfr and 1 u8snfe. 

Tcsl o' IJ :\Jin. Tr:1i11. llidtl�u Cl:1�,. Rate SSl i\lSE 

'lo, 0/1' ("� ell's l nih

252 0.4 0.001 O.OOOii 3 205 30-86.047 32.93299 0.15318 

253 0.4 0.002 0.00019 3 202 29-86.512 42.71445 0.19867 

254 0.4 0.0002 0.00001 3 202 30-86.047 23.01251 0.10703 

255 0.8 0.002 0.00028 3 214 30-86.047 32.91035 0.15307 

256 0.8 0.0002 0.00001 3 215 30-86.047 16.08066 0.07479 

257r 0.00011 240-2.041

258e 0.00011 239-2.449

259r 0.00019 242-1.224

260e 0.00019 240-2.041

261r 0.00001 240-2.041

262e 0.00001 239-2.449

263r 0.00028 240-2.041

264e 0.00028 238-2.857

265r 0.00028 238-2.857

266e 0.00028 240-2.041

Table D. 34 : Results from tests performed using 2u8smfr for training and 2u8smfe for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 u8smfr and 1 u8smfe. 

Tl'�I o· ff \Jin. Tr.tin. llllhkn Cl:t,s. Ratl.' SSE \1SF. 

�o. 0/P C'�rll-� l llih 

267 u.4 O.OOi O.OOOi
.. 

;) 201 29-86.512 37.37313 0.173�3 

268 0.4 0.002 0.00029 3 29- 86.512 43.98419 0.20458 

269 0.4 0.0002 0.00001 3 206 27- 87.422 23.67409 0.11011 

270 0.8 0.002 0.00023 3 205 29-86.512 33.39094 0.15531 

271 0.8 0.0002 0.00001 3 215 27 - 87.422 33.39094 0.15531 

272r 0.0001 239-2.449

273e 0.0001 238-2.857

274r 0.00029 239-2.449

275e 0.00029 238-2.857

276r 0.00001 238-2.857

277e 0.00001 239-2.449

278r 0.00023 215-0
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279e 0.00023 215-0

280r 0.00001 235-4.082

281e 0.00001 238-2.857

Table D. 35 : Results from tests performed using 2u8smfe for training and 2u8smfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 u8smfr and 1 u8smfe. 

TC'\I (J' ff ,\li11. Tr:1i11. Hitldl'll < la,,. l(.ile SSE :\ISE 

l\'11. 0/P C� rlc, l nil,

282 0.4 0.001 0.00004 3 202 33 -84.651 44.36644 0.20636 

283 0.4 0.002 0.00011 3 200 35 -83.721 52.77213 0.24545 

284 0.4 0.0002 0.00004 3 205 36-83.256 32.91333 0.15309 

285 0.8 0.002 0.00014 3 215 33 - 84.651 42.80224 0.19908 

286 0.8 0.0002 0.00004 3 215 36- 83.256 23.61687 0.10985 

287r 0.00004 240-2.041

288e 0.00004 241 -1.633 

289r 0.00011 240-2.041

290e 0.00011 241-1.633

291r 0.00004 240-2.041

292e 0.00004 241-1.633

293r 0.00014 240-2.041

294e 0.00014 241-1.633

295r 0.00004 240-2.041

296e 0.00004 241-1.633

Table D. 36 : Results from tests performed using 1 uxtnfr for training and 1 uxtnfe for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2uxtnfr and 2uxtnfe. 

'f'(H,t o· ff" \Jin. ·1 r:iin. llirttlrn na ..... R�ll(' SSI-: i\lSt 

,,.,_ 0/P C-�rle,; t·nih 

297 0.4 O.OOi 0.00040 3 234 17 -93.061 31.()9427 O.i3059

298 0.4 0.002 0.00088 3 233 18-92.653 40.16058 0.16392 

299 0.4 0.0002 0.00006 3 239 16- 93.469 20.82939 0.08502 

300 0.8 0.002 0.00087 3 245 18-92.653 32.68277 0.13340 

301 0.8 0.0002 0.0006 3 245 16-93.469 15.47232 0.06315 

302r 0.00040 206-4.186

303e 0.00040 207- 3.721

304r 0.00088 206-4.186
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305e 0.00088 206-4.186

306r 0.00006 207 -3.721

307e 0.00006 206-4.186

308r 0.00087 206-4.186

309e 0.00087 206 -4.186

310r 0.00006 207-3.721

3lle 0.00006 207-3.721

Table D. 37 : Results from tests performed using 1 uxtnfe for training and 1 uxtnfr for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2uxtnfr and 2uxtnfe. 

I 
Tl ... , II () \ li11. I r:1i11. Uiddc11 C la". H.ilc SSE ,1sE 

'.'\11. 0/P c·�ctt·., l'nih 

312 0.4 0.001 0.00003 3 234 13 - 94.o94 30.96836 0.12640 

313 0.4 0.002 0.00002 3 230 13 -94.694 39.2966 0.16038 

314 0.4 0.0002 0.00001 3 236 15 -93.878 21.55905 0.08800 

315 0.8 0.002 0.00002 3 245 13 -94.694 29.77066 0.12151 

316 0.8 0.0002 0.00001 3 245 16-93.469 14.67016 0.05988 

317r 0.00003 209-2.791

318e 0.00003 207 -3.721

319r 0.00002 209-2.791

320e 0.00002 208-3.256

321r 0.00001 209-2.791

322e 0.00001 207 -3.721

323r 0.00002 210-2.326

324e 0.00002 208-3.256

325r 0.00001 209-2.791

326e 0.00001 207-3.721

Table D. 38 : Results from tests performed using 2uxtnfr for training and 2uxtnfe for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 uxtnfr and 1 uxtnfe. 

Tc-.1 If' " :\li11. ·1 rain. Hidden l'I;"'· H.1ll' SSE ,\ISi:: 

;\ (t, 0/1' f'} !'IL•\ l'nih 

357 0.4 0.001 0.00002 3 195 35 - 33.721 49.i32i2 0.2293() 

358 0.4 0.002 0.00005 3 195 35 -83.721 62.55439 0.28630 

359 0.4 0.0002 0.00001 3 203 37-82.791 30.42624 0.14152
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360 0.8 0.002 0.00005 3 215 35-82.721 48.98271 0.22783 

361 0.8 0.0002 0.00002 3 215 37-82.791 26.79572 0.12463 

362r 0.00002 242-1.224

363e 0.00002 239-2.449

364r 0.00005 242-1.224

365e 0.00005 239-2.449

366r 0.00001 242-1.224

367e 0.00001 239-2.449

368r 0.00005 242-1.224

369e 0.00005 239-2.449

370r 0.00002 242-1.224

371e 0.00002 239-2.449

Table D. 39 : Results from tests performed using 2uxtnfe for training and 2uxtnfr for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 uxtnfr and 1 uxtnfe. 

Te,1 11' 0 . \lin. ·t min . llh.hh:·n < ·1n". l<atr SSE ;\ISE 

No. Oil' C -� dr\ l"ni1, 

372 0.4 0.001 O.OOOOi 3 203 2S-8o.9ii 36.34881 i.6900

373 0.4 0.002 0.00012 3 201 30-86.047 46.85496 0.21793 

374 0.4 0.0002 0.00002 3 209 31-85.581 21.46894 0.09986 

375 0.8 0.002 0.00021 3 204 29-86.512 36.38642 0.16924 

376 0.8 0.0002 0.00001 3 204 28-86.977 19.13155 0.08898 

377r 0.00001 239-2.449

378e 0.00001 238 - 2.857 

379r 0.00012 242-1.224

380e 0.00012 239-2.449

381r 0.00002 245-0

382e 0.00002 239-2.449

383r 0.00021 240-2.041

384e 0.00021 237-3.265

385r 0.00001 239-2.449

386e 0.00001 237-3.265
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Table D. 40: Results from preliminary tests performed using n10snfr for training and n10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0

+ 

is varied from 0.4 to 0.9, while 0· is kept constant at 0.2. 

·1 ('�f fl. ll ;\Jin. Tr.iin. 

'.\"n. 0/11 
< °ydC"'i 

Rnl 0.4 02 .. 1 �u 0 8""9 3 

Rn2 0.5 0.2 0.150510 3 

Rn3 0.6 0.2 0.15793 3 

Rn4 0.7 0.2 0.221380 3 

Rn5 0.8 0.2 0.221380 3 

Rn6 0.9 0.2 0.221380 3 

II idUl!II U:1\,. R.ih: 

t 111its 

32' :, Ii - , ... ., .. i

369 109-76.304

399 106- 76.937

425 104- 77.391

442 105-77.174

456 105 -77.174 

SSJ:: l\lSE 

14�1.o . 4 6 
" '060 3 2 2 2 

1364.4552 2.96621 

1321.0161 2.87177 

1301.9577 2.83025 

1296.3126 2.81807 

1291.1429 2.80683 

Table D. 41 : Results from preliminary tests performed using n10snfr for training and n10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0

+ 

is varied from 0.4 to 0.9, while 0" is kept constant at 0.02. 

l'l'�I lf 0 ,\lin. l'rnlu. llidul•11 ( ·1.1". l{all' SSI-� '.\ISE 

�o. Oil' ("� cf,,, ll11i1, 

Rn7 0.4 u.02 0.002 3 421 79-82.826 132.18530 0.2873() 

Rn8 0.5 0.02 0.00249 3 435 79-82.826 122.24379 0.2657S 

Rn9 0.6 0.02 0.00587 3 444 79-82.826 116.01974 0.25222 

Rnl0 0.7 0.02 0.00587 3 450 80-82.609 113.06348 0.24579 

Rnll 0.8 0.02 0.00587 3 457 80 - 82.609 107.90546 0.23458 

Rnl2 0.9 0.02 0.00587 3 460 79-82.826 106.98688 0.23258 

Table D. 42: Results from preliminary tests performed using n10snfr for training and n10snfe 
for testing. The neural network architecture consists of 99 input elements and 82 output 
elements. 0" is varied from 0.4 to 0.9, while 0· is kept constant at 0.002. 

TL•'-1 11· t) :\Jin. Train. llhhkn < ·1:1��- ffoll' SSE I\ISf. 

',o. 01P <") l'll'-. l"nih 

Rn13 
0 • 0.002 0.00021 

.. 

447 
�· ., I\'., 50.34787 0.10945 V,'"+ :, I'+ - :,_71:, 

Rnl4 0.5 0.002 0.00021 3 448 74-83.913 44.91980 0.09765 

Rn15 0.6 0.002 0.00021 3 454 74-83.913 40.91613 0.08895 

Rn16 0.7 0.002 0.00021 3 454 74 -83.913 38.86154 0.08448 
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Table D. 43 : Results from tests performed using n10snfr for training and n10snfe for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

"fr�I fJ
° 

fJ \1i11. Trniu. lli1hk11 Chis,. Rute SSE MSE 

;\o, 0/1' () dl .... l'nih 

417 0.4 0.02 0.002 3 422 7rJ-82.826 l32.i8530 0.28736 

418 0.4 0.002 0.00021 3 441 74-83.913 50.34787 0.10945 

419 0.8 0.02 0.000587 3 457 80-82.609 107.90546 0.23458 

420 0.8 0.002 0.00021 3 460 74 -83.913 37.86361 0.08231 

Table D. 44 : Results from tests performed using n10snfe for training and n10snfr for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

Tl'sl o· (I ,1111. I rain. II id1h:11 ( 1:.1". R:lll' SSE :\ISE 

;'loo, 0/1' Cyd� l lnit,

42i 0.4 0.02 0.00402 3 424 69-85.000 138.34605 0.30075 

422 0.4 0.002 0.00014 3 444 70-84.783 50.14229 0.10901 

423 0.8 0.02 0.00402 3 457 69-85.000 102.22397 0.22223 

424 0.8 0.002 0.00014 3 460 69- 85.000 35.54495 0.07727 

Table D. 45: Results from tests performed using n10smfr for training and n10smfe for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

Tc1,I o· tr \Jin. Train. I litltll'II < ·1:w,. Rate SSE :\ISi·'. 

:'\ II, Q/[' Cydes 1·11ih 

425 0.4 0.02 
Ann•, .. 

U.UV'tl� 
., 
:, 422 70- 84.783 l 19.32616 0.25940 

426 0.4 0.002 0.00007 3 442 66- 85.652 45.98283 0.9996 

427 0.8 0.02 0.00348 3 457 70-84.783 102.21089 0.2220 

428 0.8 0.002 0.00001 3 460 67 - 85.435 35.64630 0.07149 

Table D. 46: Results from tests performed using n10smfe for training and n10smfr for testing. 
The neural network architecture consists of 99 input elements and 82 output elements. 

Tl'�I 1)
" 

II :\ fi II. l'rnin. llidtJen l ·1.1-.1o. Rate SSE MS£ 

No. OIP l'�dr� 11nih 

429 0.4 0.02 0.00530 
., 
" 425 83 - 81.957 147.9970i 0.32173 

430 0.4 0.002 0.00020 3 446 83 - 81.957 51.73392 0.11247 

431 0.8 0.02 0.00530 3 458 81 - 82.391 108.77761 0.23643 

432 0.8 0.002 0.00020 3 459 83 - 81.957 38.90541 0.08458 
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Table D. 47 : Results from tests performed using nBsnfr for training and nBsnfe for testing. The 
neural network architecture consists of 63 input elements and 82 output elements. 

Tc'\I 0- ll" :\,lin. 

i\o. 0/P 

433 0.4 0.02 0.0010 

434 0.4 0.002 0.00009 

435 0.8 0.02 0.00360 

436 0.8 0.002 0.00009 

Train. 

()dl'\ 

3 

3 

3 

3 

llidd.-11 

I 'nits 

415 

438 

456 

460 

( l:rn,. R;Jtt' 

78-83.043

72- 84.348

78-83.043

72-84.348

SSE MSE 

152.11498 0.330i6 

57.15257 0.12424 

123.75614 0.26904 

45.66237 0.09927 

Table D. 48 : Results from tests performed using nBsnfe for training and n8snfr for testing. The 
neural network architecture consists of 63 input elements and 82 output elements. 

Tt>,I 11· 0 .\lh1. I rain. llillllc11 ( ·1a,,. R;1lt' SSE '.\TSE 

'Jo. 0/1' C -�·ell-.; I luil, 

437 0.4 0.02 O.Ou268 3 412 74-83.913 i /.;.60875 0.37741 

438 0.4 0.002 0.00006 3 442 69-85.000 58.59186 0.12737 

439 0.8 0.02 0.00281 3 457 70-84.783 116.21783 0.25265 

440 0.8 0.002 0.00006 3 459 69-85.000 44.01051 0.09568 

Table D. 49 : Results from tests performed using n8smfr for training and n8smfe for testing. 
The neural network architecture consists of 63 input elements and 82 output elements. 

Tl·\I 11· 0 \Jin. ·1 rai11. llit.ltku c ·1,1\�. 1{;1tc SSE l\lSE 

'lo. Oil' c·,c1r� I luils 

441 U.4 0.02 G.00218 3 4i9 68 - 85.217 LD.29573 0.289ii 

442 0.4 0.002 0.00005 3 439 67 -85.435 53.06662 0.11536 

443 0.8 0.02 0.00218 3 455 67- 85.435 116.50249 0.25327 

444 0.8 0.002 0.00005 3 459 67 -85.435 43.26603 0.09406 

Table D. 50 : Results from tests performed using n8smfe for training and n8smfr for testing. 
The neural network architecture consists of 63 input elements and 82 output elements. 

Tc'>I II. 0 \lin. !'ruin. lfo.h.ku l"l:t'>�- H.ik SSE :\ISE 

'.',;11. 011' ('� de-, t·uih 

445 OA u.02 0.00423 3 4i3 76-83.478 171.40312 0.37262 

446 0.4 0.002 0.000145 3 446 77-83.261 59.55173 0.12946 

447 0.8 0.02 0.00423 3 458 77-83.261 125.27199 0.27233 

448 0.8 0.002 0.00015 3 459 78-83.043 47.27989 0.10278 
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Table D. 51 : Results from tests performed using nxtnfr for training and nxtnfe for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

Tc,1 0. (I . \Jiu. rr:iin Hiddl'II < ·1:1,,. Rati.' SSE MSE 

;\lo. Oil' C'� de, l·nil\

449 0.4 0.02 0.00123 3 414 75 - 83.696 155.76i4 0.33864 

450 0.4 0.002 0.00068 3 434 71-84.565 59.16640 0.12862 

451 0.8 0.02 0.00331 3 447 74-83.913 128.65012 0.27967 

452 0.8 0.002 0.00008 3 451 70-84.783 47.98024 0.10430 

Table D. 52 : Results from tests performed using nxtnfe for training and nxtnfr for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

Tcsl II. f
f 

.\lin. 

Nu. 0/1' 

453 0.4 0.02 0.0027 

454 0.4 0.002 0.0006 

455 0.8 0.02 0.00283 

456 0.8 0.002 0.0007 

Train. 

C'�dc, 

3 

3 

3 

3 

lli1.h.lc11 

l ·nit,

415

430 

457 

458 

C l:1,!1. [blc 

68-85.21,

64-86.087

66-85.652

64- 86.087

SSE :\ISF. 

175.62756 0.38180 

65.06663 0.14145 

121.26225 0.26361 

48.06721 0.10449 

Table D. 53 : Results from tests performed using nxtmfr for training and nxtmfe for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

TL•,t I)
' 0 :\lln. l'n.1i11. Jlhhh·u C'la�,. Ible SSE \ISE 

'\;o, 0/1' (') de, I luils 

4 ':JI U.4 U.UL
,.., "0,.," 
v.v i /0 j 410 

,o a5 .._,.,. 
uo- 0 .�., J.'"1'.&..0 u, U,_jUl)'+:l 

458 0.4 0.002 0.00003 3 440 69-85.000 55.18320 0.1996 

459 0.8 0.02 0.00150 3 455 66-85.652 122.20951 0.26567 

460 0.8 0.002 0.0003 3 459 68-85.217 45.52563 0.09897 

Table D. 54: Results from tests performed using nxtmfe for training and nxtmfr for testing. The 
neural network architecture consists of 54 input elements and 82 output elements. 

Te�l II' o· .\lin. I rni11 • tli!.11.kn C 'la,�. Rah• SSE '.\ISE 

l\o. Oil' C'�d<'� l'nih 

4 1 ,.; v. v.vv447 3 4 - • l /'+ OU.U'+ U.3� u6 0 "02 " "" 08 82 82 -� · 
1"" '� •57 16 

462 0.4 0.002 0.00017 3 444 82-82.174 64.34874 0.13989 

463 0.8 0.02 0.00447 3 458 79-82.826 130.39729 0.28347 

464 0.8 0.002 0.00017 3 458 82-82.174 51.34821 0.11163 
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Table D. 55 : Results from tests performed using 1n10snfr for training and 1n10snfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2n10snfr and 2n10snfe. 

["1.'sl It. ti �lin. I r:1i11. Hidden ( ·1:1,,. Hate :-.SE i\lSE 

:\o. 0/f' ()ch•, t 'nils 

465 0.4 0.02 0.01348 3 227 26- 89.388 76.76943 0.31334 

466 0.4 0.002 0.00048 3 237 23-90.612 26.86808 0.10967 

467 0.8 0.02 0.01318 3 242 26-89.388 65.86154 0.26882 

468 0.8 0.002 0.00048 3 245 23-90.612 21.88599 0.08933 

469r 0.01348 212-1.395

470e 0.01348 209-2.791

471r 0.00048 211 -1.860 

472e 0.00048 208-3.256

473r 0.01318 212-1.395

474e 0.01318 209-2.791

475r 0.00048 211-1.860

476e 0.00048 208-3.256

Table D. 56 : Results from tests performed using 1n10snfe for training and 1n10snfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 2n1 0snfr and 2n 1 0snfe. 

'I l'�I o· tr i\lin. rr:1in. Uiddcn < ·1:""· R:,tc SSE \lSE 

�o. 0/P ( -� "'"' I nih 

4i7 0.4 0.02 0.00i55 3 223 3i-87.34i ,i.98940 
,. " .... �
U.:>l'+I 

478 0.4 0.002 0.00003 3 235 29-88.163 31.6893 0.12934 

479 0.8 0.02 0.00155 3 243 31- 87.347 67.47902 0.27542 

480 0.8 0.002 0.00003 3 244 28- 88.571 24.54739 0.10019 

48lr 0.00155 212- 1.395

482e 0.00155 207-3.721

483r 0.00003 212- 1.395

484e 0.00003 208-3.256

485r 0.00155 212-1.395

486e 0.00155 208-3.256

487r 0.00003 212- 1.395

488e 0.00003 208-3.256
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Table D. 57 : Results from tests performed using 2n1 Osnfr for training and 2n1 Osnfe for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1 n1 Osnfr and 1 n1 Osnfe. 

i'L",t u· (f :\Jin. ·1 r:1i11. Hidden ( 'b-.,. Rall• SSE :\ISE 

-..:o. 0/P ( ·�dl'\ I 11i1, 

489 0.4 0.02 0.00493 3 190 37-82.791 $8.2693 0.41082 

490 0.4 0.002 0.00021 3 190 37-82.791 38.66991 0.17986 

491 0.8 0.02 0.00566 3 215 39-81.860 71.42371 0.33220 

492 0.8 0.002 0.00021 3 215 38-82.326 28.22557 0.13128 

493r 0.00493 242-1.224

494e 0.00493 239-2.449

495r 0.00021 242-1.224

496e 0.00021 239-2.449

497r 0.00566 242-1.224

498e 0.00566 239-2.449

499r 0.00021 242-1.224

500e 0.00021 239-2.449

Table D. 58 : Results from tests performed using 2n10snfe for training and 2n10snfr for 
testing. The neural network architecture consists of 99 input elements and 41 output elements. 
The network is also tested on unseen data i.e. 1 n1 Osnfr and 1 n1 Osnfe. 

Te,t 11
° 

fl '.\lln. l'raln. llh.11k11 ( ·ta,,. lbt� SSE MSE 

'.'in. 0/P (-�cl�, l'11ib 

50i 0.4 0.02 
n rv\�., r: 
V,VVJ�l 3 2i5 �2-85.116 75.80133 0.35256 

502 0.4 0.002 0.00014 3 203 31-85.581 33.67884 0.15665 

503 0.8 0.02 0.00427 3 214 33-84.651 60.97275 0.28359 

504 0.8 0.002 0.00010 3 215 30-86.047 21.89684 0.10185 

505r 0.00321 241-1.633 

506e 0.00321 237-3.265

507r 0.00014 241-1.633

508e 0.00014 238-2.857

509r 0.00427 241-1.633

510e 0.00427 237 - 3.265 

51 lr 0.00010 241-1.633

512e 0.00010 237-3.265
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Table D. 59 : Results from tests performed using 1 n8snfr for training and 1 n8snfe for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2n8snfr and 2n8snfe. 

---- --

Test o· (I .\li11. ·1 rllill. lfidill'II Cl:i-.,. R:1lc SSE :\ISi-: 

'.'in. OIP ( �dt'� ( 11i1, 

513 0.4 0.02 0.01598 3 218 26- 89.388 9i.01023 0.37147 

514 0.4 0.002 0.00060 3 235 25 -89.796 32.49483 0.13263 

515 0.8 0.02 0.01546 3 242 26- 89.388 75.56332 0.30842 

516 0.8 0.002 0.00060 3 245 25 -89.796 26.76291 0.10924 

517r 0.01598 211-1.860

518e 0.01598 208-3.256

519r 0.00060 211 -1.860 

520e 0.00060 208-3.256

521r 0.01546 211-1.860

522e 0.01546 208-3.256

523r 0.00060 211-1.860

524e 0.00060 208-3.256

Table D. 60 : Results from tests performed using 1 n8snfe for training and 1 n8snfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2n8snfr and 2n8snfe. 

Tl•,1 ll
° 

0 :\1i11. 

1'11. 0/1' 

)L.) U.4 2u.u u.uu 14 0 

526 0.4 0.002 0.00003 

527 0.8 0.02 0.00146 

528 0.8 0.002 0.00003 

529r 0.00146 

530e 0.00146 

531r 0.00003 

532e 0.00003 

533r 0.00146 

534e 0.00146 

535r 0.00003 

536e 0.00003 

I r:1i11. 

("ydcs 

_; 

3 

3 

3 

Hiddl'II 

I 11ih 

L.1 I 

220 

243 

243 
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< ·1;i,s. R:11c SSE .\lSE 

2 3 ':J-1S1S.10 1 49 L, !SJ. :, u . .;.;';Jq l 

27-88.980 30.02367 0.12255 

29-88.163 74.48922 0.30404 

26-89.388 26.87027 0.10907 

213 -0.930 

207 -3.721 

213 -0.930 

213 -0.930 

213 -0.930 

207 -3.721 

213-0.930

206-4.186
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Table D. 61 : Results from tests performed using 2n8snfr for training and 2n8snfe for testing. 
The neural network architecture consists of63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 nBsnfr and 1 nBsnfe. 

"I 4.',I ti' !I :\lin. I min. 

�o. 0/P ('� rll"> 

537 0.4 0.02 0.00215 3 

538 0.4 0.002 0.00018 3 

539 0.8 0.02 0.00535 3 

540 0.8 0.002 0.00018 3 

541r 0.00215 

542e 0.00215 

543r 0.00018 

544e 0.00018 

545r 0.00535 

546e 0.00535 

547r 0.00018 

548e 0.00018 

llithlC'II 

I nil\ 

187 

199 

214 

215 

--
-

( "Im,,. Rall! SSE 

35-83.721 i00.34458 

37-82.791 45.46615 

37-82.791 79.41990 

37 -82.791 33.02560 

242-1.224

239-2.449

242-1.224

241-1.633

242-1.224

239-2.449

242-1.224

239-2.449

i\lSE 

0.46672 

0.21147 

0.36939 

0.153.61 

Table D. 62 : Results from tests performed using 2n8snfe for training and 2n8snfr for testing. 
The neural network architecture consists of 63 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 n8snfr and 1 n8snfe. 

'1'4.'�I tl" 

:"tin. 

4 :, 'J 04 

550 0.4 

551 0.8 

552 0.8 

553r 

554e 

555r 

556e 

557r 

558e 

559r 

560e 

n 

00 . L

0.002 

0.02 

0.002 

Min. 

0/1' 

0 ls2 .UU_j 

0.00006 

0.00339 

0.00007 

0.00382 

0.00382 

0.00006 

0.00006 

0.00339 

0.00339 

0.00007 

0.00007 

Truiu. 

<) d(•, 

_j 

3 

3 

3 

lli1l1k11 

I 'nif., 

9 l "+ 

202 

214 

214 
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( "la,,. I� :lie 

33 8 - "+.O:, l 

32-85.116

32- 85.116

32-85.116

241-1.633

238-2.857

240 2.041 

239-2.449

241 -1.633 

238-2.857

241-1.633

239-2.449

SSE :\ISE 

0 0 43 ';I ."+ 0 U."+L. OS u 

31.30560 0.14561 

71.40965 0.33214 

27.84142 0.12949 
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Table D. 63 : Results from tests performed using 1nxtnfr for training and 1nxtnfe for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2nxtnfr and 2nxtnfe. 

I CSI 11
1 

(1 :\!in. ·1 r.1i11. II id1h.•11 C 'k1\,. Rate S."iE :\.ISE 

�o. on• < ·yd(', I 'nil'-

561 0.4 il02 0.01478 3 194 25 -89.796 99.27113 0.40519 

562 0.4 0.002 0.00064 3 202 24-90.204 31.90216 0.13021 

563 0.8 0.02 0.01478 3 214 26-89.388 78.32628 0.31970 

564 0.8 0.002 0.00064 3 214 24-90.204 27.34801 0.11162 

565r 0.01478 210-2.326

566e 0.01478 208-3.256

567r 0.00064 210-2.326

568e 0.00064 209-2.791

569r 0.01478 211-1.860

570e 0.01478 209-2.791

571r 0.00064 210-2.326

572e 0.00064 209-2.791

Table D. 64 : Results from tests performed using 1 nxtnfe for training and 1 nxtnfr for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 2nxtnfr and 2nxtnfe. 

Tc�I o· 0 \li11. 

l\o. 0/1'

;, I :J 0 . .'t 00 . L. :J 

574 0.4 0.002 0.00002 

575 0.8 0.02 0.00138 

576 0.8 0.002 0.00002 

577r 0.00139 

578e 0.00139 

579r 0.00002 

580e 0.00002 

581r 0.00138 

582e 0.00138 

583r 0.00002 

584e 0.00002 

I rain. l-tid1fr11 

C�rlc, 1 ·1111, 

:J :J L. 

3 328 

3 338 

3 339 
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( ·1a�,. lfall'

"7 nn 98 L. -oo. V 

24-90.204

26-89.388

25 -89.796 

211-1.860

208 -3.256 

211-1.860

206-4.186

210-2.326

211 -1.860 

211 -1.860 

204-4.186

SSE �JSE 

1 "" •7� ""' 0 42234 V.), .. .)"7 / 

35.84742 0.14632 

75.09632 0.30652 

28.09947 0.11469 
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Table D. 65 : Results from tests performed using 2nxtnfr for training and 2nxtnfe for testing. 
The neural network architecture consists of 54 input elements and 41 output elements. The 
network is also tested on unseen data i.e. 1 nxtnfr and 1 nxtnfe. 

291 36-83.256
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APPENDIXE 

This appendix details the results of the tests performed with the back-propagation 

neural network. The results are presented in a tabular format. A brief explanation of 

the headings associated with each table of results is first given: 

• Cut off

• Person rec. (%)

• Face rec.(%)

This figure represents the threshold that was used 

in the output neuron. If the result of the output 

neuron was below the cut off, it was classified as a 

0 (negative), else it was classified as a 1 

(positive). 

This raw figure defines the person recognition, as 

opposed to face recognition. If at least one of the 

views of a subject is incorrectly classified, then 

the person recognition is incremented. It describes 

the number of persons/people that were 

incorrectly classified (i.e. classified as the valid 

subject for which the network was trained ). It is 

reported as a raw value ( as a false positive) as 

well as a percentage (as a true negative). 

This figure describes face recognition. It 

describes the number of faces that were 

incorrectly classified, in relation to the whole 

database. It is reported as a raw value ( as a false 

positive) and as a percentage (as a true negative) 

E-1



• Subject's output(A)

• Subject's output(B)

Appendix E 

These figures are the outputs for the views of the
valid subject for which the network was trained.
These figures represent outputs for views where

the valid subject was wearing hats, caps or 

glasses. 

Cells of the following tables that contain information for the Subject's output(A) 

and Subject's output(B) are thickened. This is done to show that the last two 

columns should be treated as separate tables, and have no relationship to the 

threshold information of column 1. They are the outputs for the 5 different views 

in the testing set. 

The person recognition percentage is calculated as follows:
100 _ 1 00 * ( person 

;;
ogniton)

The face recognition percentage is calculated as follows:
100 _ 100 * ( face recognition)

465 

E-1

E-2

Notice that the results for face recognition are calculated with a variable of 465 

representing the whole database. However 83*5 is 415. The extra 50 are the 

50/5=10 extra sets of images (See Appendix B for an analysis of the 10 extra sets of 

images) for valid subjects that wore glasses, hats and/or caps, head bands and that 

had occluded views. 
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Table E. 1 Results from neural network that was trained to classify Subject #1 

( ·111-olf l'c-r�u II n•l'. h.1n·n'l". rl'l"\011 f'Cl". F.1c� n•r. Suhje<"I',, 

I%) (%) lllllpUl(.-\J 

0.8 l l 98.795 99.i85 0.99495 

0.85 1 1 98.795 99.785 0.99631 

0.9 0 0 100 100 0.99631 

0.93 0 0 100 100 0.96367 

0.95 0 0 100 100 0.99291 

Table E. 2 : Results from neural network that was trained to classify Subject #2. 

C'ul-ofl' l'cf\UJI ri.'C, 1-'a,·e rtr. Pl'rson rt'l', ,,.ace n·c. Sul.Jjccr·-. 

( %) (%) uutpul(:\) 

0.8 7 19 91.566 95.914 0.88489 

0.85 7 19 91.566 95.914 0.86103 

0.9 6 13 92.771 97.204 0.95482 

0.93 5 7 93.976 98.495 0.00031 

0.95 5 7 93.976 98.495 0.42697 

Table E. 3 : Results from neural network that was trained to classify Subject #3. 

Cut-off Person n•1.·. Fat'(' rec. rrrwn n'c. Face rec. Subjc,·1·� 

( ''1/o) (%t output(,\) 

U.8 4 6 �5.181 98.710 0.92711 

0.85 2 3 97.590 99.355 0.92335 

0.9 1 1 98.795 99.785 0.89891 

0.93 0 0 100 100 0.85824 

0.95 0 0 100 100 0.9462 

E-3
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Subjt-ct•., 

outpul(ll)'" 

N/A 

Suhjecf, 

ouqml(ll)"' 

0.02024 

0.37862 

0.91624 

0.03972 

0.07588 

Subject":. 

output(B)* 

1),35226 

0.8276 

0.85644 

0.89417 

0.8949 
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Table E. 4 : Results from neural network that was trained to classify Subject #4. 

c ·111-111 r Pt·r,on n·r. Fal"1' n:r. l'l'r�1111 rrr. 1-"arc rrr. Suhjl·cf, Suhjt-cl'� 

( •�-�) ( '1/..,) lllllfllll(A) oulput(B) .. 

0.8 0 u 100 100 0.83883 

0.85 0 0 100 100 0.89088 

0.9 0 0 100 100 0.91099 

0.93 0 0 100 100 0.91018 

0.95 0 0 100 100 0.91018 

Table E. 5 : Results from neural network that was trained to classify Subject #5. 

( ·111-uf
f 

l'l.'r�nn rl'c. Fal"l• rrl'. Pt·r.,nn rrr. F:u:r rel". Suhjcct"-. Suhjl'cl'., 

( %,) ("I.,) output(A) uutpul(Ur• 

0.8 0 u 100 lOu 0.94i88 

0.85 0 0 100 100 0.96897 

0.9 0 0 100 100 0.9244 

0.93 0 0 100 100 0.10822 

0.95 0 0 100 100 0.71816 , 
; 

Table E. 6 : Results from neural network that was trained to classify Subject #6. 

("ut-off l'l'r.1111 l'l'l'. Fun• rl'c. 1'1!1'',0ll l'l'l", F:icc rl"c. Subject•., Subject'\ 

( '¼,) ('%) output(,\) outpu({R)* 

U.lS 3 7 96.386 %.495 0.9012 

0.85 3 7 96.386 98.495 0.9943 

0.9 3 5 96.386 98.925 0.9976 

0.93 3 4 96.386 99.140 0.7372 

0.95 0 0 100 100 0.9135 
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Table E. 7: Results from neural network that was trained to classify Subject #7. 

C"ut-uff l'c1 �uu rl'r. F:1l·1• n•r. l'l•r\Oll l"l'C'. f .ll"C rl'l", Subjrct", 

( %) ( '1/.11) u11lp11l(A) 

0.8 0 0 100 100 0.98128 

0.85 0 0 100 · 100 0.99705 

0.9 0 0 100 100 0.95257 

0.93 0 0 100 100 0.13845 

0.95 0 0 100 100 0.94679 

Table E. 8 : Results from neural network that was trained to classify Subject #8. 

{ 'ut-ul"I' l'l•r,011 rec. l•an· n·r. Prr;1111 rl!c. 1-·an· l'l'l'. SuhjL·ct", 

( '1/,,) ('1/.,) output(A) 

0.8 4 5 95.llSl %.925 0.65578 

0.85 2 3 97.590 99.355 0.99596 

0.9 1 2 98.795 99.570 0.98339 

0.93 1 1 98.795 99.785 0.31658 

0.95 1 1 98.795 99.785 0.9907 

Table E. 9 : Results from neural network that was trained to classify Subject #9. 

('ut-olf l'rr,1111 n:c. I.' ;1 n• l"l'l'. 

u.8 7 i9 

0.85 6 17 

0.9 6 15 

0.93 5 14 

0.95 5 13 

PL•r,011 rrr. 

( "lo) 

..... _,,, 
�l.JOO 

92.771 

92.771 

93.976 

93.976 

E-5 

!-"ace rl.'c. SuhjL'ct\, 

(%) uutput(,\) 

95.914 0.37867 

96.344 0.98969 

96.774 0.99881 

96.989 0.9081 

97.204 0.99421 

AppendixE 

Suhj,·rf, 

UllljlUC( B)* 

SuhjrcC, 

uutput(Il)• 

0.00127 

0.001715 

0.04292 

0.00769 I 

0.00708 

Suhj�f!i 

outpul(U)• 

0.00318 

0.83455 

0.96208 

0.20148 

0.2683 
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Table E. 10 : Results from neural network that was trained to classify Subject #10. 

Cul-uff l'cr,on n·t·. F.tCl' 1'1.'l'. 1',•nnn rN·. F�ltl' r-cr. Suhject• ... Suhjl'ct·-. 

( <>r�) ( '¼,) uu111u1(A) oulput(B)* 

0.8 7 20 9 l.566 95.699 0.9930, 0.120,8 

0.85 6 18 92.771 96.129 0.99307 0.17775 

0.9 4 14 95.181 96.989 0.99519 0.81037 

0.93 4 14 95.181 96.989 0.91586 0.12937 

0.95 4 12 95.181 97.419 0.97214 0.12937 

0.99645 0.99610.996140.99519 0.99307 

Table E. 11 : Results from neural network that was trained to classify Subject #11. 

( ut-uff Pt•r�u11 rc,·. h1n·n·r. Pcr.un rec. Face n•c. S11hjcc1•-. Suh_jt•c1·, 

( '1/,,) ( m;;,) nutrut(AJ oulpul(Il)" 

0.8 1 5 98.79S 98.�25 0.69349 

0.85 1 5 98.795 98.925 0.95753 

0.9 1 5 98.795 98.925 0.98723 

0.93 1 5 98.795 98.925 0.93339 

0.95 1 4 98.795 99.140 0.8408 

Table E. 12: Results from neural network that was trained to classify Subject #12. 

t ·ut-of
f P 1•r,n II rec. FaCl' rec. Pcr,1111 rct·. 1::.11:c n·t'. Sub,il•Ct'll �ubjcct·, 

( '1/,,) (%) uulput(A) outr,ut(B)* 

0.8 3 5 96.380 98.925 0.95798 

0.85 1 3 98.795 99.355 0.9769 

0.9 0 0 100 100 0.97282 

0.93 0 0 100 100 0.95899 

0.95 0 0 100 100 0.97948 
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Table E. 13 : Results from neural network that was trained to classify Subject #13. 

( ·111-off Pc.>r-.1111 n•,·. h1n· n:�:. l'._,r,on r._,r, Fan• fl'l". Suhjl'l't·� Suhjl•t>I ', 

( %) ("I.,) IIUIJ>III( ·\) output(R)* 

0.8 8 14 90.361 96.989 0.62348 

0.85 8 14 90.361 96.989 0.S3019

0.9 7 13 91.566 97.204 0.99929 

0.93 7 11 91.566 97.204 0.85068 

0.95 6 9 92.771 98.065 0.99181 

Table E. 14: Results from neural network that was trained to classify Subject #14. 

( ·ut-olf P,•non n•c. h1n· n•l". l'c.>r�1111 rl't'. h1''r rec. Suhjcrt''> Subjecrs 

( %) ("/., ) uulput(A) outpuC(Bl* 

U.8 u 0 lOu iOO 0.9324 

0.85 0 0 100 100 0.93139 

0.9 0 0 100 100 0.93123 

0.93 0 0 100 100 0.24352 

0.95 0 0 100 100 0.840153 

Table E. 15 : Results from neural network that was trained to classify Subject #15. 

C ·ut-off Pcnu11 rte. bll"(.' n·c. l'cno11 rec. Fan· rec. Subjccc·s S11hjN."t0s

( '1/,.) ( '¼,) output(A) oulp111(U)* 

0.8 is i9 
.. ,. ,,, 

,v . .,01 95.914 0.99542 
.. 

0.8S 8 17 90.361 96.344 0.99466 

0.9 8 13 90.361 97.204 0.99542 

0.93 8 12 90.361 97.419 0.99409 

0.95 s 8 93.976 98.280 0.99466 
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Table E. 19 : Results from neural network that was trained to classify Subject #19. 

('uHiff l'1.•n1111 rN·. h11.·t· l't'l". l'l•r,011 rec. F;1n· H·1.·. Suhjt·l·t', Suhj1.•<·t'-. 

( %) ('1/,,) UIIIJllll(.-\) nutpm( IL)* 

U.8 l l 98.795 9&.7!S5 0.836i9 

0.85 0 0 100 100 0.98602 

0.9 0 0 100 100 0.99614 

0.93 0 0 100 100 0.0705 

0.95 0 0 100 100 0.94247 

Table E. 20 : Results from neural network that was trained to classify Subject #20. 

Cul-ulf l'1.•r,011 n•c. l-'.1cl' n·c. l'cr,on rec. Fun· rec:. Subjl•c:1', Subj,•c:f� 

( '%,) ('¾,) ou11111I(,\) 011tpnt( n,•

0.8 (> 15 92.771 96.774 0.86722 

0.85 5 12 93.976 97.419 0.98241 

0.9 5 10 93.976 97.849 0.98261 

0.93 4 6 95.181 98.710 0.11736 

0.95 3 4 96.386 99.140 0.87175 

Table E. 21 : Results from neural network that was trained to classify Subject #21. 

('ur-nn l'�r,1111 rec-. Fun· rC'-c:. rer,011 rec, F:in· rc:r. Sub_jc-cc"._ Sub_jc:ct·� 

( %) (%) oul&ml(A) output( B)* 

0.8 1 5 98.795 98.925 U.9blo2 

0.85 1 5 98.795 98.925 0.94887 

0.9 1 5 98.795 98.925 0.99287 

0.93 1 5 98.795 98.925 0.00142 

0.95 1 5 98.795 98.925 0.02777 
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Table E. 22 : Results from neural network that was trained to classify Subject #22. 

( Ul-uff Pl'r�uu rcr. Farl' l"l'C. Pl'f\oll I'{'!:. Fan• rec. Suhjl·ct', SuhjC"ct', 

( •�,;.) ('1/.,) IIIHJlll I(_.\) OlllflUl(B)* 

0.8 7 17 91.5()() %.344 0.97676 

0.85 6 16 92.771 96.559 0.99206 

0.9 5 14 93.976 96.989 0.99272 

0.93 5 11 93.976 97.634 0.89788 

0.95 5 9 93.976 98.065 0.90133 

Table E. 23: Results from neural network that was trained to classify Subject #23. 

{ Lll-olf Penon rcr. F:1re rec i'l'non n·t. Fan' rrr. Suhjcc1·, Suhjl·rt", 

( '%,) (%,) OUl()U1(.\) flll(flUl(B)* 

0.8 7 21 91.566 95.484 u.99675

0.85 7 21 91.566 95.484 0.99741 

0.9 6 20 92.771 95.699 0.99748 

0.93 2 18 92.771 96.129 0.13449 

0.95 5 17 93.976 96.344 0.039991 

Table E. 24 : Results from neural network that was trained to classify Subject #24. 

C 'u1-t:1ff l'cr�on n•r. F.irc re,·. l'er,011 rr,•, Fare rec. Suh.lrl·t·, Suhj,•cl'\ 

( '1/,,) ('¼,) uut1)III(,\) oulpul(B)* 

U.8 2 3 97.590 9�U55 0.99584 

0.85 2 3 97.590 99.355 0.99911 

0.9 1 2 98.795 99.570 0.97971 

0.93 1 1 98.795 99.785 0.99858 

0.95 1 1 98.795 99.785 0.99891 I 
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Table E. 25 : Results from neural network that was trained to classify Subject #25. 

('ur-r,ff l'L·nuu r1:,·. F:1n• l'i'C. l'cr",11 n·c. J,':in· n'i:. Suhj1:el', Subjl'cl", 

( ''I,,) ( '¼,) outpul(.-\1 011tpul(B)* 

0.8 8 29 9U.3bl 93.7b3 0.08674 

0.85 8 26 90.361 94.409 0.97209 

0.9 7 24 91.566 94.839 0.97407 

0.93 7 24 91.566 94.839 0.42602 

0.95 7 19 91.566 95.914 0.92569 

Table E. 26 : Results from neural network that was trained to classify Subject #26. 

( ·11t-ul'f l'L•r,1111 H'C. F:1n• rec. Pcr1,011 rel'. F:ll'C l"l'('. Subjc:-ct'\ Suhjcct·-. 

( '1/,,) (%) output(.-\) output(B)• 

0.8 u 0 IuO luO 0.98B2 

0.85 0 0 100 100 0.98943 

0.9 0 0 100 100 0.98937 

0.93 0 0 100 100 0.00398 

0.95 0 0 100 100 0.00581 

Table E. 27 : Results from neural network that was trained to classify Subject #27. 

! Cu1-nff Pcnon rl.'c. h1n· n•t·. l'L•r,un rec:. 1-'acl' rec. Suhjcc:l'!>o SubjC'cl's 

I ( %) (%) outpul(AI out1mt(H)* 

0.8 2 2 97.590 9�.570 
0 ""_.,,.

,"-V"t/0 

0.85 2 2 97.590 99.570 0.99469 

0.9 2 2 97.590 99.570 0.99513 

0.93 2 2 97.590 99.570 0.44105 

0.95 1 1 98.795 99.785 0.90288 
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Table E. 28 : Results from neural network that was trained to classify Subject #28. 

c ·u1-urt' PL•rson rct·. Farl' Tl'i:. l'l'l"\1111 l'l'C. hll'.l' l'l'l'. Suh,jl·ct'-. Suh.it·ct"., 

( %) ( ·��-) oulplll(A) nutpnl(ll)"' 

0.!S 9 29 IS9.157 93.763 0.9864 

0.85 9 25 89.157 94.624 0,99197 

0.9 9 22 89.157 95.269 0.97746 

0,93 9 16 89.157 96.559 0,9701 

0.95 6 11 92.771 97.634 0.99507 

Table E. 29 : Results from neural network that was trained to classify Subject #29. 

C-111-111'1' Pen.on rec. Face Tl'l'. l'l'l'\1111 r·c-r. Face re<·. SuhjeL·t'-. Subject\ 

( %) ('¼,) UUl(>Ul(A) oulpuf(R)"' 

0.8 5 5 93.976 98.925 0.12702 

0.85 4 4 95.181 99.140 0.98013 

0.9 3 3 96.386 99.355 0,99065 

0.93 3 3 96.386 99.355 0.29952 

0.95 3 3 96,386 99.355 0,85968 

Table E. 30 : Results from neural network that was trained to classify Subject #30. 

( 'ut-olT Pcr�un n•r. F:ll"l' rec. 1'1.:r,011 rec. F�1cc rec. Suhjcct', Suhjcrl", 

( "t,,) ('%) output(.-\) 11utp11t(ll)"' 

0.8 5 9 93.976 91S,0{>5 o.;so32 

0.85 5 9 93.976 98,065 0.99752 

0.9 4 7 95.181 98.495 0.99616 

0,93 4 5 95.181 98,925 0.99803 

0,95 4 5 95.181 98.925 0.99858 
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Table E. 31 : Results from neural network that was trained to classify Subject #31. 

('uH11T P,•r�nn rcr. F,H'l' rt•t·. PL•nuu rec. F.tt'.l' n•c. Suhjt•cr·,. 

( %) (%) 1111tp11t(-\I 

0.8 7 12 91.566 97.419 0.086ii 

0.85 5 9 93.976 98.065 0.99844 

0.9 4 8 95.181 98.280 0.99901 

0.93 4 8 95.181 98.280 0.97903 

0.95 3 7 96.386 98.495 0.99859 

Table E. 32 : Results from neural network that was trained to classify Subject #32. 

C '111-nll' l't•r-,on rec. Facl' n•r. l'c-r,011 n-c. F,H'l' fl'C. Suhjt·cl'-. 

( %) ("/.-.) output(A) 

0.8 3 11 96.386 �7.o34 0.99877 

0.85 3 10 96.386 97.849 0.99823 

0.9 3 10 96.386 97.849 0.99668 

0.93 3 10 96.386 97.849 0.98122 

0.95 3 9 96.386 98.065 0.99522 

Table E. 33 : Results from neural network that was trained to classify Subject #33. 

< 'ul•off l'rr�1111 n·r. Fucc n·c. 

O.!S 4 l I

0.85 3 9 

0.9 3 9 

0.93 3 9 

0.95 2 5 

l'l'non n•c. 

( %) 

9:,.i8i 

96.386 

96.386 

96.386 

97.590 
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f"!,,""" .,, • 

YI .0-''J 

98.065 

98.065 

98.065 
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oulput( ,\) 

o.�sn1

0.94712 

0.9945 

0.50394 

0.25731 
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Table E. 34 : Results from neural network that was trained to classify Subject #34. 

( 'u!•ulf l'l'r,1111 1-l'('. 1:an• n•e. t'l'P>Oll l"\.'C, F:1ct· ,.,., .• S11h,jc:c:r', Suhjcc1•, 

I%) ("/,,) u111p11I( ,\) OIIIJ1Ul(R)• 

0.8 5 9 93.976 98.065 0.0078 0.9800 

0.85 3 7 96.386 98.495 0.9606 0.9936 

0.9 2 5 97.590 98.925 0.9733 0.9942 

0.93 2 4 97.590 99.140 0.8723 0.9911 

0.95 2 3 97.590 99.355 0.9266 0.9942 

Table E. 35 : Results from neural network that was trained to classify Subject #35. 

( ·u1-off Pcr,on rec. Face n:c. Pc r,1111 n·,·. F.icl' rec. Suhjcc1·, Subjccl', 

( %) (%) uulpul(A) ou1put(R)6 

0.8 2 6 97.590 98.710 0.96128 

0.85 2 6 97.590 98.710 0.98483 

0.9 2 6 97.590 98.710 0.98837 
! 

0.93 1 5 98.795 98.925 0.98407 

0.95 1 5 98.795 98.925 0.97923 I 

Table E. 36 : Results from neural network that was trained to classify Subject #36. 

( ul-off l'\.'rsu II n•,·. F;1r1� rec. l'l•rwn rr,·. Fare rec. Suhjccf',. Subjcrt·, 

I%) ('¼.) uut1111t(Al UUll'Ul(IJ)" 

0.8 u 0 iOO IOU 
" .. 0 v.,., i i

0.85 0 0 100 100 0.99137 

0.9 0 0 100 100 0.99465 

0.93 0 0 100 100 0.94933 

0.95 0 0 100 100 0.99411 
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Table E. 37 : Results from neural network that was trained to classify Subject #37. 

('11Htff P11r�1111 rl'r. F;irc n·t:'. l'l!r,1111 ,·er. Fact' rt"c. SulJjL·,·t·, SuhjL'l'f<, 

I "I,, l ( '1/., I 1111tp11l(A) oulpur(R)* 

0.8 6 1I 92.771 97.634 0.992i6 

0.85 6 11 92.771 97.634 0.99341 

0.9 5 10 93.976 97.849 0.99007 

0.93 5 10 93.976 97.849 0.99341 

0.95 5 10 93.976 97.849 0.99107 

Table E. 38 : Results from neural network that was trained to classify Subject #38. 

C'ul-uIT l'l'r�u11 rt>c:. r:.u:c rec. Pcr,1111 rec. F:u:r rec. Suhjl'ct·s Suh,icc:t''i 

( "/,,) ( '1/0) output(.-\) OIIIJ)UI( I\)* 

0.8 5 15 93.976 96.774 0.1i386 

0.85 5 14 93.976 96.989 0.98715 

0.9 5 14 93.976 96.989 0.99872 

0.93 5 13 93.976 97.204 0.04114 

0.95 5 13 93.976 97.204 0.99092 

Table E. 39 : Results from neural network that was trained to classify Subject #39. 

CuH1fl l'L·n1111 r11e. F:1n· n·l·. l'cnu11 rl.'C, h11:" n·r. Suhjccl')t Subjl•ct"., 

( %,) (%) output(,\) output(B)* 

0.8 2 2 ':J?.590 99.570 0.94308 

0.85 2 2 97.590 99.570 0.991 
i 

0.9 2 2 97.590 99.570 0.99977 

0.93 2 2 97.590 99.570 0.03307 

0.95 2 2 97.590 99.570 0.44845 
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Table E. 40 : Results from neural network that was trained to classify Subject #40. 

( ·u1-urr l'l'ntl)II rrr. Fal't rce. l'L•nu11 rl'r. t•an· n·,·. S11hjcc1', Suhjcct', 

( "I., ) (%) output(-\) output{H)* 

0.8 2 6 97.590 98.710 0.98995 

0.85 2 6 97.590 98.710 0.98729 

0.9 2 2 97.590 99.570 0.99454 

0.93 1 1 98.795 99.785 0.92001 

0.95 1 1 98.795 99.785 0.73116 

Table E. 41 : Results from neural network that was trained to classify Subject #41. 

('ul-ofl' Per-.un n·c. Fun.- n'l". l'L·r,011 rec. Fan· rec. Suhjccl'� Subject's 

( ''.111) t '1/.,) OllfJlll I( . .\) ou1pu1(B)* 

U.8 l l 98.795 99.785 0.02507 

0.85 1 1 98.795 99.785 0.9596 

0.9 1 1 98.795 99.785 0.99587 

0.93 1 1 98.795 99.785 0.81282 

0.95 1 1 98.795 99.785 0.57351 

Table E. 42 : Results from neural network that was trained to classify Subject #42. 

( 'ut-uff l'ersn II n·t·. F.il·c rel·. l'cr,m1 rec. Fart• n·c. Suhjccl', Subject', 

' '1/�) (%,) 11u111u1(A) output( B)* 

O.lS 4 8 95.181 98.280 0.99059 

0.85 4 7 95.181 98.495 0.99375 

0.9 4 5 95.181 98.925 0.94734 

0.93 4 5 95.181 98.925 0.99059 

0.95 3 3 96.386 99.355 0.98068 
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Table E. 43 : Results from neural network that was trained to classify Subject #43. 

C"ul-off Prr,on H't, Fat:r rc•c. Prnon I'('(:, Face n�c. S11hjl•c1·, S11hjec1·, 

( %) ('¼, I mnput(A) outpnt(R)* 

0.8 5 8 93.97() 98.280 0.03853 

0.85 4 5 95.181 98.925 0.91475 

0.9 3 4 96.386 99.140 0.97125 

0.93 3 4 96.386 99.140 0.00178 

0.95 2 2 97.590 99.570 0.97759 

Table E. 44 : Results from neural network that was trained to classify Subject #44. 

( ·ur-ull l't•l"MII\ rl'l", Fal'l' n-t·. Pcr,1111 l"l'l'. hrl'l' rel', Suhjcct"-. Subjcc1·-. 

( '1/m) ( '};,) output( . .\) 1m1pu1(lW' 

O.lS 7 20 91.5<>6 95.699 0.87579 

0.85 7 20 91.566 95.699 0.99863 

0.9 7 18 91.566 96.129 0.92784 

0.93 6 14 92.771 96.989 0.00186 

0.95 4 12 95.181 97.419 0.99794 

Table E. 45 : Results from neural network that was trained to classify Subject #45. 

( ·u1-11ff Pcr\011 rec. h1n·n·r. l'l•r,1111 rec. t• :an� rct. S11hj1'l'l 0

\ Suhj,,,,r._ 

t '%) (':.-:., nutput(A) 11u1put(ll)"' 

0.8 2 5 97.590 98.925 
"'.n-nnrrt 

v.,,,o,., 

0.85 2 5 97.590 98.925 0.99959 

0.9 1 3 98.795 99.355 0.99864 

0.93 1 2 98.795 99.570 0.00015 

0.95 1 1 98.795 99.785 0.01089 
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Table E. 46 : Results from neural network that was trained to classify Subject #46. 
--

--- --

( ·u1-o!T l'cr,on n•L·. J:un· rec. l'cnuu l"l'l". F;.1c" rec. Sub_jcct·, Subject"-. 

( %) (%) outpul(A) outpul(ll)'• 

0.8 5 to 93.97() 97.849 0.88563 

0.85 5 10 93.976 97.849 0.99594 

0.9 4 8 95.181 98.280 0.99247 

0.93 4 7 95.181 98.495 0.88963 

0.95 2 3 97.590 99.355 0.99427 

Table E. 47 : Results from neural network that was trained to classify Subject #47 

C"ut-uff l'er,011 n·t. Fan• n·c. l'cr\011 rel'. Fill"l' rec. Suhject·., Subject", 

( '1/,,,) ( '1/.,, 11111p11t(A) llUlllUl(ll)• 

0.8 4 7 95.181 98.495 0.97873 

0.85 3 6 96.386 98.710 0.99222 

0.9 2 5 97.590 98.925 0.99222 

0.93 2 3 97.590 99.355 0.9845 

0.95 1 1 98.795 99.785 0.98818 

Table E. 48: Results from neural network that was trained to classify Subject #48. 

C11t-ol r Pcnon rn·. h1t·c n�L"- l',•r�o11 rec. F:u:c rec. Subject's Sulljc<'fs 

I ",1.,) ("/., I output(.-\) outpu((B)* 

0.8 5 19 93.976 95.�14 0.i8207 i 

0.85 5 19 93.976 95.914 0.92783 

0.9 5 18 93.976 96.129 0.9931 

0.93 5 15 93.976 96.774 0.95409 

0.95 5 14 93.976 96.989 0.99309 

-
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Table E. 49: Results from neural network that was trained to classify Subject #49. 
----------- - -

( ul-uff J'l.'HIHI n<:, 1-'al'l' rn·. 

0.8 0 0 

0.85 0 0 

0.9 0 0 

0.93 0 0 

0.95 0 0 

l'{·r,on rcL". Face rec. Subjl'cr·, 

( ".�.) (%) uulput(A) 

100 100 0.99059 

100 100 0.99617 

100 100 0.99582 

100 100 0.8934 

100 100 0.98882 

Table E. 50 : Results from neural network that was trained to classify Subject #50. 

( ·u1-uff l'l.'n.1111 n'l', l.-.1L'l' rl'c. Pcnuu rcr. 1-°:lC(' rtl", Suhject·-. 

( '¼,) ( '1/o) nulpul(A) 

0.8 1 5 91S.79S 98.925 o.�4712

0.85 1 5 98.795 98.925 0.99456 

0.9 1 4 98.795 99.140 0.99473 

0.93 1 4 98.795 99.140 0.00275 

0.95 1 4 98.795 99.140 0.84574 

Table E. 51 : Results from neural network that was trained to classify Subject #51. 

Cut-olT Pc.-..on n·c. l;al'l' ,·re. f'1·r,nn fl'l". Fan: rec. Suhjccr� 

( '1/.,) ("I,,) 011111111(,\) 

0.8 3 8 96.386 98.280 0.9%19 

0.85 3 8 96.386 98.280 0.99849 

0.9 2 7 97.590 98.495 0.97295 

0.93 2 7 97.590 98.495 0.41808 

0.95 2 6 97.590 98.710 0.9219 
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Table E. 52 : Results from neural network that was trained to classify Subject #52. 

f"ul-o!T Per-,on n•c, Fa�·l' n"i'.. rcr,011 rec. Face rec. Subjel'f
°

\ Suhjcc1·, 

( "I.,) ('½,) oulpul(A) oulput(H)* 

0.8 2 2 97.590 99.570 0.83576 0.9999 

0.85 2 2 97.590 99.570 0.99917 0.9999 

0.9 2 2 97.590 99.570 0.9973 0.9999 

0.93 1 1 98.795 99.785 0.859 0.9999 

0.95 1 1 98.795 99.785 0.99816 0.9999 

Table E. 53 : Results from neural network that was trained to classify Subject #53. 

( ·111-orr l'rr,uu n•t·. Fan• n·<'. Pef\UII ftl'. t-·:,n• rec. Suhjl•c:1•,. Sub,jcc1·, 

( '1/,,) (%) UIIIJJUI(,\) uu1pul(lll"' 

0.8 3 11 96.386 97.634 0.8938 

0.85 3 11 96.386 97.634 0.96428 

0.9 2 10 97.590 97.849 0.9973 

0.93 2 10 97.590 97.849 0.99195 

0.95 2 7 97.590 98.495 0.99507 

Table E. 54 : Results from neural network that was trained to classify Subject #54. 

("ut-uff Pcr�un rl!'l', Fan· rt'l', PL•r-on rec. Fan• re,·. SuhJL•cf ·, Sul.Jjl•l•f, 

( '1/,,) ('¾.) Olllftul(,\) oulpul(B)"' 

0.8 2 5 97.590 91S.925 0.99623 

0.85 2 5 97.590 98.925 0.99806 

0.9 2 5 97.590 98.925 0.99893 

0.93 1 3 98.795 99.355 0.92988 

0.95 1 3 98.795 99.355 0.96805 
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Table E. 55 : Results from neural network that was trained to classify Subject #55. 
-----

Cu1-11ff PL•nrm 1·cr. l�an· rrc, Pl.'r,;011 n•r. F:.icc n•c. Subjl·rt', Suhjrct·s 

( '1/w) ('¼,) oulpul(,\ I output(R)* 

O.is 2 2 9i.590 99.57u 0.99749 

0.85 2 2 97.590 99.570 0.99345 

0.9 2 2 97.590 99.570 0.99456 

0.93 2 2 97.590 99.570 0.99637 

0.95 2 2 97.590 99.570 0.98713 

Table E. 56 : Results from neural network that was trained to classify Subject #56. 

C'ul-url' l'L·r,1111 rte. 1-'are n·c. l'crson rrr. f:irc ree. Suhjl'cl"s Suhjccf., 

( %) ('¼,) oulplll(,\) 0111p111(8)* 

u.is 1 1 98.795 99.785 0.92338 

0.85 0 0 100 100 0.9804 

0.9 0 0 100 100 0.99304 

0.93 0 0 100 100 0.98209 

0.95 0 0 100 100 0.9784 

Table E. 57 : Results from neural network that was trained to classify Subject #57 

( ·ut-off Pcr,011 1'1.'C, 1-':irc n·c. PL•r,uu r<.'L". Face- rc-c. Subjecrs Suhject·'> 

( '¼,) (%) uulpUl(A) oulpul(Il)* 

0.8 3 4 9b.38o 99.140 0.0807 

0.85 2 2 97.590 99.570 0.3164 

0.9 1 1 98.795 99.785 0.9795 

0.93 1 1 98.795 99.785 0.0018 

0.95 1 1 98.795 99.785 0.5886 
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Table E. 58 : Results from neural network that was trained to classify Subject #58. 

( ·u1-ofl l'e,,-1111 n�r. ,.-ace re&:. l'l'l°'on n·r. 1-'arc n:t·. Suh_jl"C:I", Snhjccl"\ 

( '¼,) ("Ir,) output(.-\) Olllfllll(R)* 

0.8 u 0 100 lOO 0.98589 

0.85 0 0 100 100 0.99268 

0.9 0 0 100 100 0.99327 
i 

0.93 0 0 100 100 0.99609 

0.95 0 0 100 100 0.97681 

Table E. 59 : Results from neural network that was trained to classify Subject #59. 

Cut-off l'en..1111 n-r. h11:t• n·r. l'<>P,011 n:r. Fa&:c rrr. Suhjccl', Suhjl•rfs 

( %) ("I,,) uutpul(,\) OUIJ1Ut(B)" 

0.8 4 7 95.!81 �8.495 0.6402 

G.85 4 6 95.181 98.710 0.98956 

0.9 3 5 96.386 98.925 0.98439 

0.93 2 3 97.590 99.355 0.96314 

0.95 2 3 97.590 99.355 0.9911 

Table E. 60 : Results from neural network that was trained to classify Subject #60. 

( ·m-ol'
f 

Penon r\'l". h1n· n·r. Pcr,ou rrr. Fan• rec. SulJjccr·, Suh,jecl'� 

( %) ( '1/,.) ou1pul(A) uutpul(B)" 

0.8 0 0 WO lUU 0.964662 

0.85 0 0 100 100 0.99613 

0.9 0 0 100 100 0.99659 

0.93 0 0 100 100 0.98849 

0.95 0 0 100 100 0.99701 

E-22



Appendix E 

Table E. 61 : Results from neural network that was trained to classify Subject #61. 

( ·ut-olf 1•,·r,1111 n·('. Fan• n·c. l'i:r,on rec. F:in· rel·. Suhji:ct·, Suhji:cl', 

I "I.,) ('¼,) nutpul(..\) outpul(B)* 

U.!S 3 7 %.380 98.495 0.98814 

0.85 3 6 96.386 98.710 0.99642 

0.9 2 5 97.590 98.925 0.99761 

0.93 2 5 97.590 98.925 0.46866 

0.95 2 5 97.590 98.925 0.95629 

Table E. 62 : Results from neural network that was trained to classify Subject #62. 

( LIi-off l'l'r"1II l'l'C. Fnl·t• rec. f'<'l'\UII l"<'l'. I· ace· n·r. Suhjcct·, Subjcr1•-. 

( %) ('¼,) output(A) uutput(ll)" 

u.8 2 t, 9i.59u 98.710 0.99741 

0.85 2 6 97.590 98.710 0.99877 

0.9 2 6 97.590 98.710 0.99769 

0.93 2 6 97.590 98.710 0.99535 

0.95 2 6 97.590 98.710 0.1849 

Table E. 63 : Results from neural network that was trained to classify Subject #63. 

C'ul-oll' l't'r,1111 rec. lo':tCl' n•l'. Pl'f'iDll rel·. Fan• n•l". Suhjcct·� Subjccl'� 

( %) ('¼,) nutpul(A) oucp11t(EI)" 

u.8 2 iO 97.590 9i.849 0.97661 0.33o3i 

0.85 2 9 97.590 98.065 0.99732 0.96179 

0.9 2 9 97.590 98.065 0.99715 0.99058 

0.93 2 9 97.590 98.065 0.86041 0.00016 

0.95 2 6 97.590 98.710 0.99542 0.00033 
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Table E. 64 : Results from neural network that was trained to classify Subject #64. 

( '11H1ff l'cr,£111 n•c. Fuct· n•r. P1:nu11 rl'c. F:icl' rl'r. Su!Jjl•ct ·., Snh,11.'rl·, 

( '1/., l (��.) 011tp11I( ,\) lllllf>lll(R)* 

0.8 2 3 97.590 99.355 0.9i373 

0.85 2 3 97.590 99.355 0.99547 

0.9 2 2 97.590 99.570 0.99761 

0.93 2 2 97.590 99.570 0.00674 

0.95 1 1 98.795 99.785 0.30109 

Table E. 65 : Results from neural network that was trained to classify Subject #65. 

C 'ut-nl r l'cr,1111 rec. Fan• rl'i'.. l'l•1-..011 rec. Fan• n--c. Subject', Suhjl·ct'\ 

( %) ( ",�,) uulput(A) crntpul(B)• 

0.8 :3 8 %.38() 98.280 0.97046 

0.85 3 8 96.386 98.280 0,97046 

0.9 3 8 96.386 98.280 0.95313 

0.93 3 8 96.386 98.280 0.97272 

0.95 3 8 96.386 98.280 0.98207 : 

Table E. 66 : Results from neural network that was trained to classify Subject #66. 

( ·111-olT Peno11 rct. I· a Ci.' n•t'. Pcr.,011 n't'. Fare rel·. Sub_jcrf', Subject•, 

( '1/., I (';,�. l OIIIJllll( ,\) outpul(B)• 

0.8 1 l 98.795 99.785 0.0008 

0.85 1 1 98.795 99.785 0 

0.9 1 1 98.795 99.785 0 

0.93 1 1 98.795 99.785 0 

0.95 1 1 98.795 99.785 0.0001 
·--
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Table E. 67 : Results from neural network that was trained to classify Subject #67 
- - - -

C-111-urr 1•t•ro;on rl.!c. F:1cc rl.!t. l'l•1·,011 rec. F:1cc n•c. Suhjl'Cl's subject'-; 

( '1/,,) ( �/0 ) output(,\) output( B)• 

0.8 3 3 96.386 99.355 0.34073 

0.85 3 3 96.386 99.355 0.80963 

0.9 3 3 96.386 99.355 0.9997 

0.93 3 3 96.386 99.355 0.97357 

0.95 3 3 96.386 99.355 0.99981 

Table E. 68: Results from neural network that was trained to classify Subject #68. 

C'u1-11ff l'i•r,nn rec. FJt:t' rec. Pl•r�on rec. F:icc rec. Suhjcc1·, Subject•., 

( '¼,) ('%) 0111pul{A) 0111p11t(8)* 

u.8 2 8 97.590 98.280 0.95238 

0.85 2 8 97.590 98.280 0.98554 

0.9 2 8 97.590 98.280 0.98554 

0.93 2 8 97.590 98.280 0.95646 

0.95 2 7 97.590 98.495 0.97654 

Table E. 69 : Results from neural network that was trained to classify Subject #69. 

nu-ort' Pcn,011 rec. Fu�·c n·r. l'rrson ri"c. 1-·acc: rcC'. Subject", Suh_ject•� 

( %,) (%) IIIIIJ>Ul(A) oulput(B)• 

0.8 J 9 96.386 98.065 0.98743 

0.85 3 4 96.386 99.140 0.99563 

0.9 1 1 98.795 99.785 0.99559 

0.93 1 1 98.795 99.785 0.98725 

0.95 1 1 98.795 99.785 0.99356 



Table E. 70 : Results from neural network that was trained to classify Subject #70. 
- ------

C-ut-off l'l'rson rl'c. l�arl' rrc. l'l•r,011 n·c. F:.icl' n·t". Suh,il'd • .., 

( %) (%) oulpul(A) 

0.8 IO 24 l:S7.95Z 94.839 0.13Iis3 

0.85 9 21 89.157 95.484 0.98152 

0.9 9 20 89.157 95.699 0.99924 

0.93 8 17 90.361 96.344 0.99727 

0.95 8 17 90.361 96.344 0.99547 

Table E. 71 : Results from neural network that was trained to classify Subject #71. 

Cut-olf l'l'r,nn n•c. fan• n•l·. Per,on rrc. Facl' rer. Sub,icc:-f'i 

( '1/,,) ('%,) outpul(,\) 

0.8 11 24 86.747 94.839 0.990i4 

0.85 8 18 90.361 96.129 0.99219 

0.9 7 15 91.566 96.774 0.99319 

0.93 4 12 95.181 97.419 0.9161 

0.95 4 9 95.181 98.065 0.98903 

Table E. 72 : Results from neural network that was trained to classify Subject #72. 

l '111-olT Pcri;n11 rN. hll"C rrc. l'l·r�on rec. Face rel'. Subjcl·t· ... 

I '1/,,) ('¼,) oulpul(A) 

U.8 3 s 96.386 98.925 V.99610

0.85 2 3 97.590 99.355 0.99655 

0.9 1 1 98.795 99.785 0.99919 

0.93 1 1 98.795 99.785 0.996 

0.95 1 1 98.795 99.785 0.99767 
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Table E. 73 : Results from neural network that was trained to classify Subject #73. 
- - -

( 'ul-ull 

0.8 

0.85 

0.9 

0.93 

0.95 

l't'rw11 rl.'r. Jo:1ct• rec. 

2 5 

1 4 

1 1 

1 1 

0 0 

--

Pcnon rel'. FU('{' Y{'(', Suhjt>rt·._ 

( "/4,) ('1/,,) cmlpnl(A) 

97.5-YU 98.925 0.23573 

98.795 99.140 0.97484 

98.795 99.785 0.60022 

98.795 99.785 0.97396 

100 100 0.83456 

Table E. 74: Results from neural network that was trained to classify Subject #74. 

{'ul-olf r•c-rso II l"l'l', h1n·n·r. J'cr,011 rec. Fan· rec. Suhjl·rl's 

( %) (%) Ollll)Ul(A) 

0.8 5 16 93.976 96.559 0.9985, 

0.85 4 13 95.181 97.204 0.97231 

0.9 4 12 95.181 97.419 0.99467 

0.93 4 11 95.181 97.634 0.99527 

0.95 4 11 95.181 97.634 0.99714 

Table E. 75 : Results from neural network that was trained to classify Subject #75. 

('111-nfl Pcr,1111 n•r. Fan• rcr. l'rr�on rec. h1cc n•l'. Subjc\'f's 

( %) ('1/,,) output(,\) 

0.8 3 3 %.380 98.i95
A '"""" ... 

V. l.i.11 / 

0.85 3 3 96.386 98.795 0.99873 

0.9 3 3 96.386 98.795 0.91212 

0.93 3 3 96.386 98.795 0.00477 

0.95 1 1 98.795 99.785 0.9776 
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Table E. 76 : Results from neural network that was trained to classify Subject #76. 
---

f'ut-ofl' l'l.'r,011 rl'r. Fal'l" rrc. l'cr,011 n•l'. l-:1ri' rer. Subjl.'rt ·, Subjl.'cl'!i 

( %,) (%) 11u1pul(A) oulpul(ll)" 

0.8 11'.J 27 67.952 94.i94 o.gs417

0.85 8 25 90.361 94.624 0.99102 

0.9 7 22 91.566 95.269 0.99149 

0.93 6 19 92.771 95.914 0.97977 

0.95 5 17 93.976 96.344 0.94922 

Table E. 77 : Results from neural network that was trained to classify Subject #77 

Cut-off Per,rm rec. Fal'I.' rrc. l'l'r,nn rl.'c. F:1cl.' n'r. Suh_jl'<"f
°
, SuhjN:I'� 

( '¼,) (%) 0111p111(,\) uu1put(B) ... 

·o.s 6 15 92.771 96.774 0.96172 

0.85 5 13 93.976 97.204 0.99342 

0.9 5 12 93.976 97.419 0.9949 

0.93 4 10 95.181 97.849 0.20578 

0,95 4 10 95.181 97.849 0.99305 

Table E. 78 : Results from neural network that was trained to classify Subject #78. 

C'u1-otr l'l'r,011 rrr. Facl.' 1"1.'l'. Pt·r-.011 rrc. F:1n' rec. Suhjcrl'� Subject', 

( '¼,) (%) ourpul(A) outpul(B)* 

U.lS 7 li 91.5<><> 96.344 0.9937 

0.85 7 17 91.566 96.344 0.99909 

0.9 6 15 92.771 96.774 0.99946 

0.93 4 13 95.181 97.204 0.99946 

0.95 4 13 95.181 97.204 0.9989 
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Table E. 79 : Results from neural network that was trained to classify Subject #79. 
---

----

C:-11t-otr l'l'no11 fl'L". Fan· rt'l'. I 'l' r, n II n•L". J:ucc n•c:. S11hjcc1·� S11b,j1:cs', 

( '%) ( "1/., ) u11lp11I(..\) nulpnl(H)* 

0.6 3 5 96.380 9is.925 0.9904 

0.85 1 3 98.795 99.355 0.999 

0.9 l 2 98.795 99.570 0.9994 

0.93 1 2 98.795 99.570 0.10097 

0.95 1 2 98.795 99.570 0.99872 

Table E. 80 : Results from neural network that was trained to classify Subject #80. 

l'ut-olf l'cn,m n•c. 1-':in• n·c:. l'l'non rct·. 1: an· n·c. Suhjt•rr, Suhjec1·, 

( �,..,) ('½,) outpul(A) output( B)"' 

0.8 3 10 96.386 97.849 0.9282 

0.85 3 10 96.386 97.849 0.99971 

0.9 3 7 96.386 98.495 0.99979 

0.93 2 6 97.590 98.710 0.99771 

0.95 1 5 98.795 98.925 0.94779 

Table E. 81 : Results from neural network that was trained to classify Subject #81. 

l'ut-un Pcno11 rec. hu·t· rec. Pl·r,011 rct'. F:1cc n�c. Subject'� Subject'!, 

( %) ( '1/o) outpul( .. \) output( HJ* 

0.8 8 17 90.3ol 9o.344 0.9917i 

0.85 5 14 93.976 96.989 0.99009 

0.9 4 11 95.181 97.634 0.99177 

0.93 4 9 95.181 98.065 0.98524 

0.95 4 7 95.181 98.495 0.98192 
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Table E. 82: Table showing analysis of data for Person recognition. (True Negative 

Recognition Rates). 

'I hrc,lrnltl :\ lc;111 l'l•1·rn11 n'l', Sid l'cr,011 rec. \ll':.111 l'l'r�1111 re�·. Srd l'C>r,on rec-. 

,., 
Ill 

U/ 
"' 

0.1 10.146 6.616 87.803 7.9o3 

0.2 7.988 5.562 90.406 6.685 

0.3 6.84 4.771 91.789 5.728 

0.4 6.148 4.328 92.622 5.187 

0.5 5.506 3.86 93.396 4.632 

0.6 4.938 3.483 94.08 4.17 

0.7 4.321 3.016 94.824 3.607 

0.8 3.654 2.703 95.627 3.23 

0.9 3.198 2.462 96.162 2.952 

0.93 2.765 2.331 96.683 2.803 

0.95 2.506 2.186 96.995 2.627 

Table E. 83: Table showing analysis of data for Person recognition. (True Negative 

Recognition Rates) 

Thrl'shulll ,, k:rn l'crsnn rec. Std l't•rsu11 rt'l". \ll';111 l'cnu11 n·c. Std Pcno11 rec. 

'¼, '1/n

0.1 24.90i i9.0S2 94.671 4.(JlS3 

0.2 19.469 15.593 95.829 3.343 

0.3 16.358 12.812 96.498 2.742 

0.4 14.519 11.282 96.894 2.408 

0.5 13.111 10.494 97.196 2.24 

0.6 11.667 9.526 97.507 2.029 

0.7 10.198 8.446 97.823 1.796 

0.8 8.716 7.444 98.142 1.583 

0.9 7.765 6.847 98.343 1.457 

0.93 6.58 6.275 98.598 1.339 

0.95 5.679 5.556 98.792 1.181 
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Table E. 84: Table of values for Mean True Positive Recognition Rate - Excluding extra 

views. 

I hrc,hohl :\ll·:111 l'rul• l'o,ilh l' J<ee. fl;ill' 

- F.·u·I. e,tr:1 ,ie1n 

0.1 87.078 

0.2 84.115 

0.3 82.634 

0.4 81.646 

0.5 80.288 

0.6 79.3 

0.7 78.313 

0.8 77.572 

0.9 75.226 

0.93 71.029 

0.95 65.514 

Table E. 85: Table of values for Mean True Positive Recognition Rate - Including extra 

views. 

'lhn·-.l111hl :\le:m Trul' l'n,ilhc Ike. ft.th.· 

- lnrl. e,trn ,il·11, 

0.1 91.4l!l 

0.2 88.189 

0.3 86.461 

0.4 85.103 

0.5 83.745 

0.6 82.757 

0.7 81.77 

0.8 80.905 

0.9 78.23 

0.93 73.663 

0.95 68.025 

Table E. 86: Table of Mean and Std. of output neuron 

Mean u,8.,82 U. t'Jb2 
�l@il:MQ.il.,IPTttWlii., 
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APPENDIXF 

This appendix describes the results of the tests performed with the counter-propagation 

network. The results are presented in a tabular format. A brief explanation of the 

headings of the tables are first given: 

• ct

• '3

• Training cycles

• Hidden Units

• Min. O/P

• No. of Subject

• Class. Rate

Counter-propagation network training parameter (See 

Chapter 5.) 

Counter-propagation network training parameter (See 

Chapter 5.) 

Number of cycles during which training of the network 

was done. 

The number of hidden units that were inserted by the 

DDA for each test. 

This is the minimum value that was classified correctly as 

a true positive. 

This is the number of subjects that were classified 

incorrectly (false positives). 

This is the classification rate. as a percentage expression 

of the faces that were classified correctly. The true 

positive percentage is calculated as follows : 

100- 100• (; J F- 1

where x is the number of faces that were classified incorrectly and y is the total 

number of faces in the pattern set. 
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Table F. 1 : Results from counterpropagation network 

I{ fl Trai11. Nu. or :\tin. No. ol' Class. SSf.. MSE. 

c,rtcs HitltJcn Ou111ut �uhjcc1 Rate 

Unih %, 

u.1 0.1 100 50 U.1%55 270 4u 312.5059 0.67936 

0.1 0.l 100 50 0.13037 284 38.26087 313.2054 0.68088 

0.1 0.1 100 50 0.20108 283 38.47826 317.9983 0.6913 

0.1 0.1 100 100 0.2511 201 56.30435 252.06 0.54796 

0.1 0.1 100 100 0.21123 210 54.34783 257.597 0.55999 

0.1 0.1 100 100 0.251089 196 57.3913 247.4556 0.53795 

0.1 0.1 100 150 0.333029 166 63.91304 249.7977 0.54304 

0.1 0.1 100 150 0.25134 149 67.6087 230.5138 0,50112 

0.1 0.1 100 150 0.25075 162 64.78261 230.9796 0.50213 

0,1 0.1 100 200 0.25059 124 73.04348 228.7678 0.49732 

0.1 0,1 100 200 0.25123 124 73.04348 243.9461 0.53032 

0,1 0.1 100 200 0,33236 128 72.17391 225.047 0.48923 

0.1 0.1 100 250 0.33387 120 73.91304 272.0616 0,59145 

0.1 0.1 100 250 0.33431 106 76.95652 259.4758 0.56408 

0.1 0.1 100 250 0.20138 109 76.30435 266.1243 0.57853 

0.1 0.1 100 300 0.33494 97 78.91304 318.1378 0.6916 

0.1 0.1 100 300 0.33459 95 79.34783 320.7321 0.69724 

0.1 0.1 100 300 0.33445 89 80.65217 319.8936 0.69542 

0.1 0.1 100 350 0.33541 79 82.82609 381.7019 0.82979 

0.1 0.1 100 350 0,33659 78 83.04348 375.3324 0.81594 

0.1 0.1 100 350 0.33659 78 83.04348 375.3324 0.81594 

0.1 0.1 100 400 0.50225 64 86.08696 440.0111 0.95655 

0.1 0.1 100 400 0.50176 65 85.86957 444.6306 0.96659 

0.1 0.1 100 400 0,33541 72 84.34783 448.2296 0.97441 

0.l 0.1 100 450 0.50228 57 87.6087 520.703 1.13196 

0.1 0.1 100 450 0.5018 58 87.3913 520.6974 1.31974 

0.1 0.1 100 450 0.50337 55 88.04348 520.91 l.13198

0.1 0.1 100 500 0.89708 55 88.04348 392.5742 0.85342 

0.1 0.1 100 500 0.85743 55 88,04348 118.9694 0.2585 

0.1 0.1 100 500 0.8441 55 88.04348 65.12747 0.14158 
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APPENDIXG 

The face recognition algorithm (FRA) described in the main body of this thesis would 

work well in an environment where a subject's identity needs to be verified. Assume 

that the algorithm will be implemented in a security system where the first level of 

access would be the subject's PIN (e.g. ATM application). Hence, in such a system, the 

subject's PIN would be used in addition to the FRA for subject verification. The 

enhanced security system could be described in flow diagram form as depicted in 

Figure G.1. 

Before describing how the FRA would be implemented into the ATM security system, 

it is necessary to define the type of card that the subject would use, as well as its 

implications. The FRA uses neural networks as the core verification principle, and 

hence it is necessary to store the artificial neural network (ANN) weights of the valid 

subjects somewhere. 

One option is to store the weights on a smart card/ATM card. Thus, the weights could 

be read, passed to a neural network (preferably processing takes place at the ATM), and 

verification can take place. This type of implementation would utilise the "neural 

network per person" approach. The neural network is trained to verify the valid subject 
(i.e. the owner of the ATM card) and reject all impostors. Although the high true 

negative and high true positive recognition rates associated with this approach are quite 

appealing, the disadvantage is that a separate network has to be trained for each subject. 

This may not be viable if the number of valid subjects is large. However, it could be 

accomplished if "batch training" (a facility offered by SNNS) was performed. The flow 

diagram which describes this approach is depicted in Figure G.2. 
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Figure G. 1 : High-level flow diagram of FRA integrated with level-one PIN access security 

system. 
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Figure G. 2: High-level flow diagram of security system using smart card to store weights of the ANN. 
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The second option is to store the subject's weights in a database of weights, on some 

remote server. The valid subject's ANN weights can be accessed from the database via 

the subject's PIN. The flow diagram that describes this approach is much like that of 

Figure G.2. 

The large number of valid subjects to be trained can be exploited to the advantage of the 

security system. It was observed for split databases in Chapter 6 (i.e. training on part of 

database 1 and testing on the remainder of database 1 and all of database 2), that the 

"unseen" database produced high true negative recognition rates. 

The large training database could be split into smaller databases as follows: 

DB:A DB:B DB:C DB:D DB:E DB:F DB:G DB:H 

Figure G. 3 : Depiction of small databases within one large database. 

The valid subjects from each database can only be recognised in their database i.e. if 

subject n belongs to database A, then subject n would be verified correctly in database 

A and not (within some acceptable error) in any of the other databases. However, the 
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optimum number of subjects in each database requires some investigation, and was not 

completely studied in this research due to subject availability. This method of training 

can be likened to the scope of variables in a function. The variables can be seen within 

the function, but not outside the function. 

The general symmetry transform was proposed as a possible solution for automatic face 

location, but it was found that it was computationally intensive. This provides a source 

for further work to be done in this particular field. Face location deserves a study 

dedicated to it alone. It is easy for humans to be able to take into account varying light 

levels, rotation, various backgrounds etc, and still perform effective face recognition. 

However it is difficult to reproduce this process on a computer. 

This thesis marks an initial study into automatic face recognition. It was shown the two 

dimensional discrete cosine transforms and neural networks do form a viable solution to 

the problem of automatic face recognition. However, it is not the optimal solution. 

With the advent of faster and more powerful processors techniques such as elastic graph 

matching and hidden markov models a more realistic automatic face recognition 

algorithm could be implemented. 

G-5




