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ABSTRACT 
 

Acquired Immunodeficiency Syndrome (AIDS), currently regarded as one of the 

deadliest diseases, is a disease of the human immune system caused by the Human 

Immunodeficiency Virus (HIV). This dissertation addresses two classes of HIV-1 

inhibitors: (i) integrase and (ii) protease inhibitors. With the first class, a 2D-QSAR study 

was carried out on compounds from a variety of structural classes; 40 diketo acid and 

carboxamide derivatives; possessing integrase inhibitory activity. This study investigated 

the relationship between molecular properties and HIV-1 integrase inhibitor activities and 

established accurate QSAR predictive model using the Genetic Function Algorithm 

(GFA) statistical model. The logarithmic inverse values of IC50 (μM) and 

physicochemical parameters represent the dependent variable and independent variable, 

respectively. Results demonstrated that the radius of gyration, Zagreb index, Wiener 

index and minimized energy are statistically significant with the correlation coefficient 

value of 0.820 and play an important role in HIV-1 integrase inhibition.  

 

With the second class, the binding affinities of some FDA-approved HIV-1 protease 

inhibitors, which were reported to possess anticancer activities, were estimated. The 

findings proposed here may alter perceptions about how NFV binds to the human Hsp90; 

the protein responsible for the overexpression of HER2+ breast cancer; since it has only 

been reported to inhibit NSCLC and a collection of yeast strains. A human Hsp90 

homologue was built due to the lack of a full X-ray crystal structure of the human Hsp90 

on protein data bank. The Ramachandran plot showed the validity of the human Hsp90 

homologue where 98% of all residues, including the active site residues, were in the 

favoured region and 99.8% were in the allowed region. The NTD active acid residues 

were found to be Leu43, Asn46, Lys53, Ile91, Asp97, Met93, Asn101, Ser108, Gly109, 

Phe133 and Thr179. The obtained active site residues for the human Hsp90 homologue 

CTD were Gln523, Val534, Ser535, Lys538, Thr595, Tyr596, Gly597, Trp598 and 

Met602. 

The system stability and overall convergence of simulations were evaluated. The RMSD 

of all nine PIs did not exceed 2Å and the system stabilised after 1000 ps and 1800 ps MD 
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simulation at the NTD and CTD, respectively. The fluctuations of potential energies at 

the NTD were <2000 kcal/mol for 5 ns of MD simulation and CTD show that the 

fluctuations of the potential energy to be ≤8000 kcal/mol. The free binding energy of 

NFV was -83.03 kcal/mol at the NTD and -39.3 kcal/mol at the CTD. This value shows a 

significant difference (~43.73 kcal/mol) between the interaction energy at the NTD and 

CTD. Energy decomposition analysis at the NTD and CTD show that these two active 

sites have major energy contributions from their respective active site residues.  

This study is of great importance to medicine as it predicts the biological activity of some 

potent HIV-1 IN and investigates the potential use of the current HIV-1 PR drugs as 

anticancer agents. 
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CHAPTER 1 
 

1.1. Background to and rationale for this study 
 

This chapter discusses the background and novelty of research projects related to HIV-1 

infection and HER2+ breast cancer. In Africa, the AIDS epidemic has achieved high 

figures. Of the 42 million individuals infected with HIV worldwide, 30 million are in 

Africa (1) and currently, approximately 5.7 million are in South Africa (2). An important 

reason that might contribute to this high figure is that HIV-1 subtypes prevalent in sub-

Saharan Africa have not attracted sufficient attention from researchers compared to the 

subtypes in North America and Western Europe (3). Out of the ten subtypes of HIV-1, 

subtype C has a 95% occurrence rate of HIV infections in South Africa (4). The social 

and economic pressure exerted by HIV pandemic in South Africa has evoked an 

international response towards aiding HIV research in prevention and treatments (5).  

 

Acquired immunodeficiency syndrome (AIDS) is a disease caused by the Human 

Immunodeficiency Virus (HIV). The ability of the HIV-1 to evade the immune system 

coupled with its replication and increase drug resistance makes the treatment of the 

disease difficult. There are two strains of HIV; HIV-1 and HIV-2 (6, 7). Various enzymes 

plays key role in the replication of HIV-1 virus such as; integrase, protease, reverse 

transcriptase and thus they are the main targets for the current HIV drugs (8). The HIV-1 

virus progresses by first invading the host DNA. In the first step of the integration 

process, two nucleotides are removed from the 3’-end of the viral DNA by a reaction 

termed 3’-end processing. Cleavage occurs at the 3’-side of the CA dinucleotide that is 

conserved among retroviruses, retro-transposons, and several DNA transposons, both in 

prokaryotes and eukaryotes (9). The integration of HIV-1 viral DNA into the host DNA, 

involves a series of reactions which are vital in the replication cycle of HIV-1 (10) and 

other retroviruses (11, 12).  

Available data reveal that there are numerous compounds undergoing screening, which 

are yet to be approved as HIV-1 integrase inhibitor by the Food and Drug Agency (FDA) 



CHAPTER 1: BACKGROUND TO AND RATIONALE FOR THIS STUDY 

2 
 

(13-15). An important fact is that screening of a large library of ligands requires a short 

period of time in evaluating a single compound. This obvious problem brought forth the 

use of computers in drug design to help speed up the screening of lead compounds by 

using the quantitative structural activity relationship (QSAR) approach. This method 

attempts to correlate the molecular properties to the physicochemical properties of a set 

of structures to predict the biological activities of other compounds, thereby reducing the 

time spent on synthesizing a large library of compounds. This study investigated 

compounds observed to inhibit HIV-1 integrase enzymes to obtain more insight into their 

inhibitory profile. The strand transfer data of 40 diketo acid and carboxamide derivatives 

were retrieved from the literature (16-18) and analyzed using the QSAR approach (19).  

 

Furthermore, the HIV-1 protease enzyme, Which slices the gag and pol nonfunctional 

polypeptide into functional proteins essential for the development of mature infectious 

HIV particles (20), is considered a crucial target for designing of HIV-1 inhibitors (21). 

Protease inhibitors are one of the numerous success stories of medicinal chemistry and 

recently some protease inhibitors have been reported as potential anticancer agents 

through the process called ‘repositioning” (22-24). 

 

Cancer is an abnormal proliferation of cells that can lead to death and these cells have the 

potential to metastasize (25). Breast cancer is a malignant tumor, which starts in the cells 

of the breast and it is commonly diagnosed among women, although not limited to 

women. Invasive breast cancers are typically initially categorized into three subtypes 

based on the cellular expression of certain receptors. These are the estrogen receptor 

(ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 

(HER2). Survival rates are based on the phenotype expression for each patient, though, 

ER+ and PR+ patients tend to have a better prognosis compared to triple negative 

patients (ER- PR- HER2-) who have the poorest prognosis (26). 

 

About twenty-eight years ago, HER2, one of a family of four membrane tyrosine kinases 

was reported to be “amplified” in 20-25% of human breast cancer cells (27). Two years 

later, this amplification was found to be important in the pathogenesis and the 
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advancement of human breast cancer (28). Since that time, the detection of HER2 has 

become a routine prognostic and predictive factor in breast cancer. The HER2+ breast 

cancer has been reported to overexpress heat shock proteins (HSPs) in the proliferating 

cell (29). Cancer cells have been reported to be dependent on a particular protein (30), 

Hsp90, one of a group of molecular chaperones responsible for the function of other 

client proteins (31); thus, this represents a molecular target in the treatment of HER+ 

breast cancer.  

For the work described herein, we anticipate and investigate the anticancer property of 

the recent FDA-approved HIV-1 protease inhibitors (24) by performing eighteen 5 ns 

molecular dynamics simulation and post-dynamic analysis, such as RMSD, RMSF, free 

binding energy calculations and per-residue energy decomposition analysis to help us 

gain more insight into their binding mode and potential use as HER2+ breast cancer 

inhibitors. 

 

1.2. Aims and objectives of this study 
The major aims of this study were to investigate the drugs that are known to inhibit HIV-

1 integrase and HER2+ breast cancer. These aims are outlined below: 

1. To investigate the inhibitory profile of a number of diketo acid and carboxamide 

derivatives as HIV-1 integrase inhibitor using the QSAR approach. To accomplish 

this, the following specific objectives were outlined: 

1.1. To identify and acquire sets of structures and their experimental biological 

activities (IC50) from literature. 

1.2. To divide the sets of structures into training and test sets and predict the 

biological activities of the test set. 

1.3.  To develop QSAR equations for the predicted biological activities using 

the GFA statistical model. 

1.4. To compare the experimental biological activities against the QSAR 

predicted biological activities and indicate the physicochemical properties 

that contribute to the highest correlation coefficient R2. 
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2. To provide a molecular understanding on the effectiveness of the clinically reported 

FDA-approved PIs against HER2+ breast cancer. To accomplish this, the following 

specific objectives were outlined: 

2.1. To build a homology model due to the absence of the human Hsp90 

complete crystal structure in the protein data bank. 

2.2. To validate the human homologue by plotting a Ramachandran plot to 

determine the outliers. 

2.3. To carry out docking on the human Hsp90 homologue NTD and CTD to 

nine protease inhibitors and use the docked 18 complexes for subsequent 

simulation protocols. 

2.4. To perform MD simulations, post-dynamic calculations and binding free 

energy calculations on the homologue-drug complexes. 

2.5. To estimate the contribution of each amino acids towards the overall 

binding to each drug by calculating the ligand-enzyme interaction and per-

residue energy decomposition analysis. 

2.6. To perform a comparative study on which of the Hsp90 terminals binds 

better to each drug since it was reported that the CTD also have bioactive 

residues. 

 

1.3. Novelty and significance of this study 
Almost every QSAR study consists of several QSAR models, with several QSAR studies, 

including 2D-, 3D- and even 4D-QSAR analyses, have been reported over the past 15 

years (32-38) on a variety of integrase inhibitors (IN) to clarify the quantitative 

correlations between the chemical structures of IN and their biological activities (39). 

The GFA method, among other statistical methods, is used for identifying optimal 

solutions to a problem where the possible solution space is too large to be exhaustively 

enumerated (40-42). In spite of the GFA method been reported in some published data to 

be an effective tool for performing both QSAR and QSPR (43-45), the QSAR study on 

HIV-1 integrase inhibitors, such as carboxamide and diketo acids using this GFA method 

has few reviews. The predictive ability of a QSAR model is usually measured by a cross-
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validated Q2 value and a correlation coefficient R2. Using these values as ranking criteria, 

result show the best QSAR models (see chapter 4) from QSAR studies of IN inhibitors 

with experimental biological activities (16-18).   

 

Furthermore, it was reported that Hsp90 contains a highly conserved ATP binding 

domain near its N-terminus (46). This Hsp90 ATP binding site has been under intense 

pharmaceutical investigation, as the majority of known Hsp90 inhibitors binds to this site 

in competition with ATP (47). It has also been found that the C-terminus show some 

promising activities at its binding pocket (47), but this theory is yet to be experimentally 

proven or thoroughly validated through computational methods.  

The study done by Gills et al. 2007 found that nelfinavir, which is one of the clinically 

approved HIV protease inhibitors, inhibited growth of a wide variety of cancer cell types 

at concentrations that have been achieved in patients infected with HIV through the 

inhibition of Akt signaling pathway (23). Studies also hypothesize that nelfinavir binds 

Hsp90 at the C-terminal domain and induces conformational changes in the protein; this 

is a different mechanism compared to other Hsp90 inhibitors (24). However, both of 

these studies did not show the precise mode of interaction between nelfinavir and Hsp90 

and there is no understanding on how HIV-protease inhibitors play roles in HER2+ breast 

cancer inhibition. Both studies reported NSCLC and numerous yeast strains against HIV-

1 PIs, however, there is no information regarding the effect of HIV-1 PIs on human 

HER2+ breast cancer. This gap of information forms the basis of this study wherein a 

comprehensive study of the inhibitory activity of the current FDA approved HIV-1 

protease inhibitors against HER2+ breast cancer is presented. In this work, the binding 

site of the human Hsp90 homologue to these protease inhibitors is identified and 

validated. This identification and validation encompasses a robust, integrated in-silico 

approach using computational tools like molecular dynamic simulations, binding free 

energy calculations and post-dynamic analyses. 
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1.4. Overview of this thesis 
This thesis is divided into six chapters, this one included: 

 

Chapter 2: It provides a general overview on the HIV/AIDS epidemic and therapy. The 

chapter starts with a historical background on HIV/AIDS epidemic then some updated 

statistics on the number of HIV-infected people worldwide and in Africa. The chapter 

also highlights many aspects such as HIV virus structure; life cycle and the essential 

enzymes required for virus maturations and HIV drug targets. The HIV integrase and 

protease enzymes, as crucial drug targets and the main focus of this work, are then 

addressed in details, including its structure, inhibitor design strategies and the current 

FDA-approved protease inhibitors. A brief overview on drug repositioning and the 

potential use of protease inhibitors as potential HER2+ breast cancer inhibitor ends the 

chapter. 

 

Chapter 3: This chapter details a general introduction to computational chemistry and 

different molecular modeling and simulation techniques as well as their common 

applications. Some theoretical descriptions of the computational methods have been 

included, followed by various computational tools used in HIV research with main focus 

on molecular dynamics simulations, quantum mechanics, molecular mechanics, 

molecular docking, binding free energy calculations and QSAR. Some significant 

previously reported computational studies on HIV-1 IN and potential use of PIs as 

HER2+ breast cancer inhibitors were also included at the end of the chapter. 

 

Chapter 4: (Published work – this chapter is presented in the required format of the 

journal and is the final revised accepted version) 

 

This is a research paper titled “QSAR study on diketo acid and carboxamide derivatives 

as potent HIV-1 integrase inhibitor” and it was published in the Journal of Letters in drug 

design and discovery (48). It addresses the objectives 1.1, 1.2, 1.3 and 1.4. 

 

 



CHAPTER 1: BACKGROUND TO AND RATIONALE FOR THIS STUDY 

7 
 

Chapter 5: (Submitted work – this chapter is presented in the required format of 

the journal and is the final revised submitted version) 

 

This is a research paper from this study. The paper titled “Could the FDA-approved anti-

HIV drugs be promising anticancer agents?” It addresses the objectives 2.1, 2.2, 2.3, 2.4, 

2.5 and 2.6. 

 

Chapter 6: This expounds the concluding remarks of the entire thesis and future work 

plans.  
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CHAPTER 2 
 

Background on HIV/AIDS and HER2+ breast cancer 

2.1. Introduction 
This chapter briefly describes the background, life cycle and treatment of Human 

Immunodeficiency Virus (HIV), the causative agent of Acquired Immunodeficiency 

Syndrome (AIDS). This chapter focus on the inhibitors targeting HIV-1 integrase (IN), one of 

the key enzyme that is necessary for the completion of the HIV-1 life cycle and thereby a 

brief explanation about the repositioning of HIV-1 PIs for the treatment of HER2+ breast 

cancer inhibitors. 

 

2.2. A brief history of HIV/AIDS 
The earliest known case of a severe immune deficiency disease was reported among male 

homosexuals in 1981 and was characterized by infection related to suppressed immunity, 

unknown origin of fever and weight loss (1). These symptoms were reported by the Centre 

for Disease Control (CDC) in 1981 and christened as Acquired Immunodeficiency Syndrome 

(AIDS) (2). Few months later, the disease was reported to be transmissible through sexual 

contact (3), though the etiological agent remained a mystery. However, three years later, a 

group of researchers from France and the United States reported the causative agent of AIDS 

to be a lentivirus belonging to the retrovirus family (4, 5), which is the HIV virus (6, 7). 

There are two subtypes of HIV, HIV type 1 (HIV-1) and HIV type 2 (HIV-2) (8, 9). 

Numerous studies have been done on this retrovirus towards understanding its invasiveness, 

replication and pathogenicity (10-14). 

 

The economic and social significance of HIV/AIDS is enormous and to date more than 60 

million cases of HIV infections and approximately 30 million HIV-related deaths have been 

reported (15). Recent report shows that more than 40 million people are living with HIV (16), 

and of these 25% are on antiretroviral therapy (ART) (17). Sub-Saharan Africa is the most 

affected region, with nearly 1 in 20 adults living with HIV (18). In 2013, approximately 5.7 

million people were living with HIV in South Africa (19). 
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2.3.  The HIV-1 virus 
The Human Immunodeficiency Virus type 1 (HIV-1 virus) belongs to the lentivirus (7), a 

subfamily of retroviruses (20). The HIV-1 virus, as shown in Figure 2.1, is composed of two 

identical single-stranded RNA, 2000 copies of viral proteins, three basic structural genes; 

group specific antigen (gag), polymerase (pol) and envelope (env) (21-23); and a few 

proteins from the host cell it infects, all surrounded by a lipid bilayer membrane. 

Additionally, two regulatory genes, trans-activator (tat) and regulator of expression of virion 

protein (rev), and four accessory genes, viral protein R (vpr), viral infectivity factor (vif), 

negative regulation factor (nef) and viral protein U (vpu) (viral protein X (vpx)  in HIV-2) 

(24-30) help to regulate the life cycle of HIV-1 including translation, transcription, budding 

and assembly (31).  

 

 

 

 
Figure 2.1. A model structure of the HIV-1 virus adapted from (32-34). 
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2.4.  The HIV-1 life cycle 
HIV-1 virus compromises the human immune system by targeting and destroying the CD4+ 

cells, which are a component of the T-lymphocytes. The life cycle of HIV-1 involves the 

train of events that can be grouped into six stages, namely: binding and fusion of the virus to 

the CD4 receptor on the host cell surface, reverse transcription, integration, transcription and 

translation, assembly and budding (35) [Figure 2.2].  

 

 

 
 

Figure 2.2. The replication cycle and targets for therapeutic intervention in the HIV 

life cycle (36). 
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The HIV-1 virus life cycle involves the following processes: 

 

a. Binding and Fusion:  

HIV begins its life cycle when the viral particle gains entry into vulnerable cells, which 

involves the interaction of CD4 molecules on the host cell surface with the HIV envelope 

glycoproteins gp120 and gp41 (37). Recently, the interaction of the virus with co-receptors 

on the cell surface, a crucial step in the entry stage, was found to be predominantly mediated 

by  the chemokine receptors CCR5 and CXCR4 (38). The virus then fuses and releases its 

genetic material, RNA, into the host cell. The three major steps in viral entry have been 

targeted for drug development include inhibition of the CD4 binding, inhibition of co-

receptor binding as well as the blocking of the gp41 conformational changes that permit viral 

fusion (39-42). 

 
 
b. Reverse Transcription:  

The viral enzyme, reverse transcriptase (RT) transcribes the single stranded RNA genome of 

the HIV virus to a double stranded DNA genome for integration into the host genome (43-

45).  

 

c. Integration:  

The viral enzyme, integrase, mediates the integration of the double stranded HIV DNA into 

the host DNA by a process that involves 3’-processing and strand transfer reaction. The 

integrase splits the last two nucleotides from each 3’-end of the HIV DNA and then attaches 

them to the host DNA through a strand transfer reaction. The provirus (integrated HIV DNA) 

may remain idle for years, creating limited copies of the HIV-1 virus in this latent stage (46, 

47). 

 

d. Transcription and translation:  

When the provirus is triggered to become active, the provirus recruits the host RNA 

polymerase to generate copies of the HIV genetic material, as well as the messenger RNA 

(mRNA). The mRNA is then translated to a long chain of polypeptide which is then cleaved 

to smaller viral proteins by the HIV protease (48). These cleaved proteins further undergo 
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posttranslational modification involving phosphorylation, methylation and glycosylation in 

order to become fully functional (49).  

 

e. Assembly:  

The viral proteins are then assembled together with copies of HIV's RNA genetic material to 

form new viral particles that is accumulated in the form of a bud (50). 
 

f. Budding:  

The newly accumulated virus pushes out ‘buds’ from the host cell. These buds steal part of 

the cell’s outer envelope, which is covered with protein-sugar combinations called HIV 

glycoproteins. The glycoproteins are essential for the binding of the virus to CD4 and co-

receptors. The new copies of HIV can then go on to infect other cells (49).  
 

Consequently, each viral step in the HIV life cycle is a target for different inhibitors such as, 

the integrase strand transfer inhibitor (INSTI), non-nucleoside reverse transcriptase inhibitor 

(NNRTI), nucleoside reverse transcriptase inhibitor (NRTI) and protease inhibitor (PI). There 

are two basic classes of preventive measures against HIV-1 infection: One is targeting the 

post-entry stage, which is mostly used for treatment in antiretroviral therapy, and the other is 

targeting the entry stage, which can be used for both cure and preventive measures. In the 

next sub-section, the current post-entry stage treatment shall be discussed. 

 

2.5.  Current antiretroviral treatments for HIV-1 virus infection 
The HIV-1 virus renders the body vulnerable to a variety of opportunistic infections, cancers, 

and other diseases (51-53). Currently, only drugs that lower the viral load exists and finding a 

cure for the disease has been a challenge (54). HIV-infected patients today, however, have a 

possible treatment option through the design of anti-HIV drugs. Current FDA approved HIV 

drugs interfere with the virus life cycle and they include protease inhibitors (PIs), reverse 

transcriptase (RT) inhibitors, integrase (IN) inhibitors and entry inhibitors (55). In 1987, 

zidovudine, a nucleoside reverse transcriptase inhibitor (NRTI) was approved by the FDA as 

the first antiretroviral drug for AIDS (56) and three years later, zalcitibine was approved for 

clinical use (57). In 1995, saquinavir was approved by FDA as the first protease inhibitor (58) 

and to date, there is a total of nine protease inhibitiors. In 2003, the first fusion inhibitor, 
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enfuvirtide, was approved for clinical use (59). Some integrase inhibitors were also approved 

by the FDA; raltegravir (60), elvitegravir (61) and dolutegravir (62). 

 

The next section discusses the inhibitors of the first three stages of the HIV-1 life cycle, more 

emphasis will be on the inhibitors on which this dissertation is based: integrase inhibitors and 

potential HER2+ breast cancer inhibitors. 

 

2.5.1.  Reverse transcriptase inhibitors 
As HIV-1 is a retrovirus that replicates within a host cell, the RT enzyme is an essential 

component of HIV replication (43) and it is thus a major target for drug development (63). 

Presently, approved HIV-1 RT inhibitors used in antiretroviral therapy are grouped into two 

classes: (a) nucleoside analog RT inhibitors (NRTIs), which compete with naturally occurring 

nucleoside substrates for binding to the RT polymerase active site and after their 

incorporation into the primer site, they act as terminators of proviral DNA synthesis (64, 65), 

and (b) non-nucleoside RT inhibitors (NNRTIs), which bind to a hydrophobic pocket close to 

the RT active site where the allosteric inhibit RT enzymatic activity (64, 66). In 1987, 

zidovudine was the first NRTIs drug approved for HIV treatment and it is used alongside 

with other anti-HIV drugs such as lamuvidine and Abacavir as a combinant therapy. 

However, the increased resistance and side effects in zidovudine, such as nausea, myopathy, 

muscle tenderness, weakness to name a few, (67) lead to the approval of other drugs.  

Approved NNRTIs include that have been approved include nevirapine in 1996, efavirenz in 

1998 and rilpivirine in 2011 (68). 

 

2.5.2. Fusion inhibitors 
This class of drug inhibits the binding, fusion and entry of the HIV-1 virus to the host cell. 

Enfuvirtide was approved in 2003 as a fusion inhibitor. Maraviroc, an entry inhibitor that 

inhibits the CCR5 co-receptor antagonist, was approved in 2007 (68). 

 

2.5.3. Integrase inhibitors 
HIV-1 integrase is a rational target for anti-HIV therapy. Drugs that inhibit integrase have 

been developed that include a set of compounds known as strand-transfer inhibitors (DKA 

and DKA-like inhibitors). These have been observed to be the most promising integrase 
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inhibitors. They can block strand transfer without affecting 3′-processing by chelating 

divalent co-factors in the integrase active site and by interfering with host DNA binding. 

Strand-transfer inhibitors, as candidate interfacial inhibitors, represent a new mechanism of 

action in drug discovery (69). These compounds share mechanistic and structural features 

(70-72), which will be reviewed in chapter 4. The first FDA-approved integrase inhibitor, 

raltegravir, was approved in 2007 (60), elvitegravir (61) approved in 2012 and dolutegravir 

(62) was recently approved in 2013 [Figure 2.3]. 

 

 
 

Figure 2.3. HIV-1 Integrase inhibitors (69). 

 

2.5.4. Protease inhibitors 
As was stated earlier in section 2.4, HIV-1 protease performs an important step in the life 

cycle of the HIV-1 virus where it cleaves the polypeptide into smaller viral proteins. Thus, it 

is an ideal target for HIV drug development. Protease inhibitor binds to the protease dimer 

interface, prevent the virus from maturing into its infectious stage, thus, blocking 

proliferation of the virus (73). Drugs, which target HIV-1 protease, remain one of the most 

remarkable achievements of medicine. The introduction of HIV protease inhibitors (PIs) in 

1995 (58) and the application of highly active antiretroviral therapy (HAART), i.e., 

combination of PI with the HIV reverse transcriptase inhibitors, resulted in decreased 

mortality and a prolonged life expectancy of HIV-positive patients. Although the success of 

HIV-1 PIs has been remarkable and nine of these compounds are currently approved by the 

FDA as protease inhibitors [Figure 2.4], there is a need for the continued effort to develop 

more potent compounds (74, 75). 
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Figure 2.4. FDA-approved HIV-1 protease inhibitors (76). 

 

The clinical practice of HIV-1 protease inhibitors (PIs) was brought into use in 1995 (77), 

when saquinavir (PDB code 1HXB) was approved for clinical trials as the first PR drug (58). 

The advantages of HIV-1 protease inhibitors include; prolonged viral control, better viral 

suppression, reduction of the indication of HIV-1 infection and reduction of death rates (77). 

HIV-1 PR treatment is therefore beneficial to HIV-1-infected patients as the mechanism of 
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action of the drug is to inhibit the catalytic activity of the protease, thus, preventing new 

virions from maturing into infectious forms (78). 

 

2.6.    HIV-1 viral enzymes 

2.6.1.    HIV-1 integrase enzyme 
HIV-1 integrase is a 31 kDa protein, Y-shaped dimer that comprises of α and β chains [Figure 

2.5]. The HIV-1 integrase comprises of three domains based on the vulnerability of the linker 

regions to proteolysis (79), functional studies (44, 79, 80), and the structures of the domains, 

which have been separately determined by x-ray crystallography or NMR. These includes an 

N-terminal domain which is the zinc binding site, a middle domain responsible for catalysis 

and a C-terminal DNA binding domain (80) [Figure 2.6].  

   
 

Figure 2.5. The structure of the HIV-1 integrase enzyme (PDB code1EX4) (32). 
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Figure 2.6. Structures of the three domains of HIV-1 integrase shown as ribbon diagrams 

(81). A, the catalytic core domain; B, the N-terminal domain; C, the C-terminal domain. PDB 

codes 1BIS, 1WJC, and 1IHV, respectively. 

 

HIV-1, like other retroviruses, rely on the integration of its viral DNA into the host cell 

chromosomes so as to undergo the dormant stage without detection by the host immune 

system. In this way, HIV can remain latent in the cells for decades, thus, it can evade the 

immune system making its elimination from the body a challenge. This integration process is 

catalysed by HIV-1 integrase that performs a series of DNA cleaving and ligation reactions 

(82).  

 

In the first step of integration is the 3’-end processing whereby two nucleotides are detached 

from each 3’-end processing. Cleavage occurs in the 3’-side of a CA dinucleotide; which is 

usually conserved among retroviruses, retro transposons and DNA transposons; thereby 

exposing the terminal 3’-hydroxyl group that would be joined to the host DNA. In the second 

step, the viral DNA end is inserted into the host DNA (83, 84) [Figure 2.7]. The sites of 

integration on the two host DNA strands are separated by 5 base pairs close to the integrated 

viral DNA; thus, two unpaired nucleotides at the 5’-ends of the viral DNA are removed and 

followed by ligation. The integrase is responsible for 3’-end processing and DNA strand 

transfer and other cellular enzymes carry out ligation (85, 86). As there is minimum 

specificity for the sites of integration in host DNA, insertion can take place at any location. 

Thus, HIV-1 IN has become a promising target for antiretroviral drug design (87-90) and new 

anti-HIV therapeutics (91, 92). 
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Figure 2.7. DNA cutting and joining steps in HIV integration taken from article (93). 

 

2.6.2. HIV-1 protease enzyme 
HIV-1 protease enzyme, an 11-kDa protein, 99 amino acids long, is classified as a C2 

symmetric active homodimeric aspartyl protease (77, 94). It is responsible for the cleavage of 

the newly synthesized viral gag and gag-pol poly-proteins to create mature and proper 

functionally active HIV virion (49). There are three domains in the enzyme shown in Figure 

2.8 which includes the active site cavity (N-terminal domain), the middle domain and 

dimerization domain (C-terminal domain) (95). The enzyme contains a flexible flap region 

that closes down on the active site upon substrate binding (49). Active site cavity (N-terminal 

domain) plays an important role in the stabilization of the dimer and the catalytic site (49, 78, 

94). Although the HIV-1 protease has been crystallized as a single monomer, it functions in 

the dimeric form. The dimer is observed in complexes of the HIV-1 protease with inhibitors 

(96, 97).  
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Figure 2.8. (A) Structure of HIV-1 protease in complex with an inhibitor (PDB code 7HVP) 

(98) taken from (99). (B) Structure of HIV-1 protease in complex with nelfinavir showing its 

active site (PDB code 1OHR) (100). 

 

2.7. Brief Introduction to Drug Repositioning  
During the past several years, there has been a surge of interest in drug repositioning. 

Biopharmaceutical industries have invested remarkable amounts in novel discovery 

technologies, such as structure-based drug design, combinatorial chemistry, high-throughput 

screening (HTS) and genomics, which were sold on the promise of improving productivity. 

However, there is still a gap in productivity, which has yielded few products. This 

productivity problem, alongside with global pressure on prices, challenges from ever-

increasing regulatory hurdles, has obligated many drug developers to become more inventive 

in finding new uses for, and improved versions of, existing drugs. The process of finding new 

medical indications for existing drugs is known as repositioning. There are published 

reviews, which focused on repositioning and describe its general advantages over de novo 

drug discovery and development (101). A repositioned drug does not need the initial six to 

nine years typically required for the development of new drugs, but instead goes directly to 

preclinical testing and clinical trials, thus reducing risk and costs. Repositioning success 

stories are increasing in number. Example is sildenafil citrate (brand name: Viagra), which 

was repositioned from a common hypertension drug to a therapy for erectile dysfunction 

(102). Establishing accurate and efficient drug repositioning pipelines for specific studies 

requires the prioritization of existing computational methods based on the available 

knowledge or the development of new computational methods. Still, many challenges remain 
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for cost-effective drug repositioning studies. The complexities and richness of information 

available to drug repositioning studies largely determine their success rates (103). 

2.8. The use of HIV-1 protease inhibitors as potential anticancer agents 
It has also been hypothesized that “repositioning” of some HIV-1 protease inhibitors can 

inhibit HER2+ breast cancer. HER2+ breast cancer is considered to be caused by excessive 

production of HER2 gene (104). HER2 gene is important in the healthy growth and division 

of the breast cells, however, in 25-30% of breast cancers, the HER2 gene is overexpressed 

(105) as displayed in Figure 2.9.  

 

 

   
Figure 2.9.  The model structure of a normal breast cell and cancer-infected breast cell 

retrieved from (106). 

 

The Hsp90 has been reported to play a concise role in the overexpression of the HER2 gene 

(107). Therefore, to block HER2 overexpression, the necessary step would be to inhibit the 
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enzyme responsible for producing this estrogen, which is the Hsp90 (105, 108). The Hsp90 

enzyme is responsible for protein folding (109-112), the proper functioning of about 200 

client proteins (113, 114), to name a few. Hsp90 function as a homodimer and it has two 

important isoforms: the Hsp90α and Hsp90β (115-118). Each monomer of the Hsp90 dimer is 

comprised of four domains: a highly conserved N- and C-terminal domain, a middle domain 

and a charged linker that connects the N-terminal and middle domains (119-122) as shown in 

Figure 2.10. Chapter 5 holds detailed discussion about the Hsp90. 

 

  
 

Figure 2.10. The crystal structure of Hsp90 Alpha (blue) and Beta chain (gold) (PDB code: 

2CG9) showing its different domains (123). 

 

Above all, the clinical evaluation of Hsp90 inhibitors has been met with some 

microbiological and biochemical challenges. Therapies that specifically target HER2 (124-

127) are very effective and some has been shown to reduce breast cancer recurrence by as 

much as 40% (128). Despite this discovery, some HER2+ breast cancers do not respond to 

this treatment or they have become resistant to therapies (129). 

 

Remarkably, it has recently been hypothesized that some anti-HIV drugs, specifically PIs, are 

dual inhibitors. This implies that not only can they inhibit HIV-1; they can also be used as 

anticancer agents through the process called “repositioning”. However, only few studies have 

been done in this regard (101, 130-132). The identification and characterization of these PIs 
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to be repositioned, form the basis of this study to gain an insight into the binding affinity of 

all recently approved FDA PIs against Hsp90, the enzyme responsible for initiating HER2+ 

breast cancer. This study explored the possibility of the Hsp90 (N- and C-terminal domain) 

binding affinity against nine protease inhibitors since it was also found that the CTD have 

some promising active site residues (133) (details in chapter 5). Described in this thesis are 

the structure, design, and mechanistic features of novel HIV-1 PIs repositioned as potential 

human Hsp90 inhibitors that avoid the above-mentioned therapeutic liabilities of currently 

known Hsp90 inhibitors.  
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CHAPTER 3 
 

Introduction to computational chemistry and molecular modeling 
 

This chapter provides a general introduction to computational chemistry, different molecular 

modeling, simulation techniques and their applications. Some theoretical descriptions of the 

computational methods have been explained where it is appropriate. This is accompanied by 

brief explanations about the various computational tools employed in HIV research with 

primary focus on molecular dynamics simulations, quantum mechanics, molecular mechanics, 

molecular docking, binding free energy calculations and QSAR statistical model.  

 

3.1.  Introduction to Computational Chemistry 
Computational chemistry is a subdivision of chemistry that uses principles of computer skills 

to aid working out chemical or biochemical problems to reduce the expense and time expended 

on the discovery, designing and development of new drugs (1). Nevertheless, computer aided 

drug design (CADD) and computer-aided molecular design (CAMD) can help increase the 

effectiveness of the drug design process by using the available experimental data (2, 3), thereby 

detecting lead compounds and predicting their side-effects.  

In the research for this thesis, molecular dynamics (MD), one of the two basic methods of 

computational chemistry was used for the conformations of macromolecules when smaller 

molecules bind to it. Therefore, this chapter begins with the description of the computational 

chemistry theories found in both molecular mechanics (MM) and MD: Potential energy surface 

(PES); Born and Oppenheimer; the Schrödinger’s equation, followed by the application of 

MM, MD and QSAR methods used in our surveys.  

 

3.2.  Schrödinger’s equation 
Quantum mechanics originated from the basic rule employed in daily life when applied to the 

transfer of very small energies to objects with very low masses. However, in quantum 

mechanics, all properties of a system are expressed in terms of a wave function that is obtained 

by solving the Schrödinger’s equation. In mathematical physics, the Schrödinger’s equation 

playing the same role as the Hamilton’s laws of motion is one of the basic equations in non-

relativistic quantum mechanics and non-relativistic classical mechanics respectively. There are 
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two types of Schrödinger’s equation: the time-dependent Schrödinger’s equation and the time-

independent Schrödinger’s equation (4, 5). The widely used Schrödinger’s equation in 

computational chemistry is the time-dependent equation, which defines the Hamiltonian 

operator as the sum of the kinetic energy and the potential energy. 

The general form of the Schrödinger equation is as follows: 

 

H = T + V                                 Eq. 1 

Where H is the Hamiltonian operator, the sum of the kinetic energy 

T is the potential energy 

V is the operator 

H can also be defined as the following:   

H = [−
𝒉𝟐

𝟖𝝅𝟐
∑𝒊 

𝟏

𝒎𝒋
(

𝝏𝟐

𝝏𝒙𝟐
+ 

𝝏𝟐

𝝏𝒚𝟐
+

𝝏𝟐

𝝏𝒛𝟐
)] + ∑𝒊∑<𝑗 (

𝒆𝒊𝒆𝒊

𝒓𝒊𝒋
) Eq. 2 

 

3.3.  Born-Oppenheimer approximation 
Born and Oppenheimer showed in 1927, after the publication of the Schrödinger equation, how 

the nuclear motion in a molecule can be determined as a function of its electronic motion. This 

definition simplifies the Schrödinger’s equation for a molecule, that it may be divided into an 

electron and a nucleic equation where the total internal energy of a molecule can be calculated 

by solving the electronic Schrödinger’s equation. Furthermore, this approximation 

demonstrated that a molecule has a shape, thus, the nuclei see the electrons as a cloud of 

negative charge that cover the surface of the molecule. The energy of a molecule is a function 

of the electron coordinates, but depends on the parameters of the nuclear coordinates which 

define the molecular geometry i.e. for each geometry, there is a particular energy (6). 

 

𝑻𝒆𝒍𝒆𝒄 = [− 
𝒉𝟐

𝟖𝝅𝟐 𝒎
∑𝒊

𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒔 (
𝝏𝟐

𝝏𝒙𝟐 +
𝝏𝟐

𝝏𝒚𝟐 +
𝝏𝟐

𝝏𝒛𝟐)]  Eq. 3 

Here, the Schrödinger’s equation for fixed nuclei electrons is written as: 

𝑯𝒆𝒍𝒆𝒄𝝋𝒆𝒍𝒆𝒄(𝒓, 𝑹) =  𝑬𝒆𝒇𝒇(𝑹)𝝋𝒆𝒍𝒆𝒄(𝒓, 𝑹)   Eq. 4 
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Solving this equation for other fixed positions of concern will produce a Potential Energy Surface 

(PES). 

 

3.4.  Potential Energy Surface 
A PES is an effective mathematical or graphical representation between the molecular 

vibrational motion of a molecule and its geometry (7). The concept of a potential energy 

surface is basic to the quantum mechanical description of molecular energy states and 

dynamical processes. A PES is basically a plot of the molecular energy versus molecular 

geometry which enables the understanding of structural characterization (5) as shown in Figure 

3.1.  

 

 
Figure 3.1. A model of a two-dimensional potential energy surface (8). 

 

3.5.  Molecular Mechanics 
Molecular mechanics (MM) are based on the laws of classical physics to predict the energy of 

a molecule as a function of its conformation. The conformational analysis, which is probably 

the most important features of molecular mechanics, enables prediction of the molecule’s 

geometrical and transitional state equilibrium as well as its relative energies between 

conformers (9). While many of the details of mechanical and biochemical interactions in 

cellular enzymes are presently uncertain, MM can rely on force-fields with fixed parameters to 

provide better understanding of the mechanical deformation of DNA, RNA and proteins; 

changes in cellular structure, response and function (10). This understanding can offer new 

prognoses of diseases as MM calculations are used to provide qualitative descriptions of 
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molecular interactions. In spite of the noticeable advantages of molecular mechanics models, it 

has some setbacks. Firstly, it lacks the ability to provide information about bond formation or 

bond breaking. Secondly, it is limited to the description of equilibrium geometries and 

equilibrium conformations. Thirdly, the force fields mostly used nowadays are specific to 

experimental data being used as parameters; thus, it cannot describe the structures and 

conformations of new unfamiliar chemical entities that are out of the range of its parameters. 

Lastly, its inability to predict chemical reactions (11).  

The MM total energy of a molecule is defined as the sum of many interactions; bonded 

interactions such as bond length, bond angles, torsions and non-bonded interactions such as 

van der Waals and electrostatic (12); as described in the following equation:  

 

𝑬𝒕𝒐𝒕 =  𝑬𝒔𝒕𝒓 + 𝑬𝒃𝒆𝒏𝒅 + 𝑬𝒕𝒐𝒓𝒔 + 𝑬𝒗𝒅𝒘 + 𝑬𝒆𝒍𝒆𝒄 ….  Eq. 5 

 

Where Etot is the total energy, Estr is the bond-stretching energy, Ebend is the angle-bending 

energy, Etors is the torsional energy, Evdw is the van der Waals energy and Eelec is the 

electrostatic energy. 

This equation together with the parameters required to describe the characteristics of various 

molecules is termed the force field. 

 

3.5.1. Force fields 
A force field is a mathematical function that predicts the energy associated with the 

conformation of a molecule. It serves as the basic model for molecular mechanics and 

molecular dynamics calculations. Several molecular mechanics force fields have been 

developed and are being used today. Force fields such as AMBER, CHARMM, OPLS and 

GROMOS are the most popular and commonly used set of parameters applied to the simulation 

of biomolecules. All force fields have different parameters, thus, they must be adjusted to give 

results of the forces acting within a molecule (12). In our study, AMBER Force Field (GAFF) 

was used to parameterize the ligands while the standard AMBER force field was used for the 

human Hsp90 homologue (13). Detailed discussion about the AMBER force field is provided 

in chapter 5.  
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3.6.   Molecular Dynamics simulations 
In a comprehensible way, molecular dynamics is concerned with molecular motion i.e. the 

characteristic of all chemical processes. Chemical reactions, hormone-receptor binding, and 

other complex processes are associated with many kinds of intra- and inter-molecular motions. 

Simulation can be used as a valuable predictive tool for molecular systems and the most widely 

used simulation methods are Monte Carlo, Brownian dynamics and molecular dynamics. The 

Monte Carlo method depends on probabilities by generating large numbers of configurations 

and moving from one state to the other in a specific statistical manner (14). Brownian 

dynamics is also an effective approach for simulations of large macromolecules (14). However, 

Molecular dynamics (MD) is the most detailed molecular simulation, in computational 

chemistry, which is used to calculate the motions of individual molecules (15). It efficiently 

evaluates different dynamic quantities that cannot be generally obtained by Monte Carlo and it 

also provide powerful tools for the investigation of the conformational energy of these 

molecules (13). MD provides a way to test whether the theoretical models predict experimental 

observations of molecules such as proteins.  MD calculations are based on MM principles, and 

the conformations are created by incorporating newton’s laws of motion (16). The result is 

represented as a trajectory that specifies how the particle position and velocity varies with time 

(17). Thus, this is achieved by the determination of force (𝐹𝑖) for each particle as a function of 

time, which is equal to the negative gradient of the potential energy.  

 

𝑭𝒊 = −
𝑼

𝒓𝒊
     Eq. 6 

Where U represents the potential function and r is the position of the particle. According to 

Newton’s Laws of Motion, acceleration (a) of a particle is calculated by dividing the force by 

the mass of a particle: 

𝒂𝒊 = −
𝑭𝒊

𝒎𝒊
     Eq. 7 

 

The velocity change is equal to the integral of acceleration over time and the change in position 

is equal to the integral of velocity over time: 

𝒅𝒗 = ∫ 𝒂𝒅𝒕,     Eq. 8 

𝒅𝒓 = ∫ 𝒗𝒅𝒕,     Eq. 9 
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Finally, the kinetic energy can be defined in terms of the velocities and momenta of the given 

particles: 

𝑲(𝒗) =
𝟏

𝟐
∑𝒊=𝟏 

𝑵 𝒎𝒊𝒗𝒊     Eq. 10 

𝑲(𝒑) =
𝟏

𝟐
∑𝒊=𝟏

𝑵 𝒑𝒊
𝟐

𝒎𝒊
     Eq. 11 

 

Therefore, the total energy of a given system, which is the sum of kinetic and potential 

energies, is called Hamiltonian (H): 

𝑯(𝒒, 𝒑) = 𝑲(𝒑) + 𝑼(𝒒)    Eq. 12 

 

Where q is defined as a set of Cartesian coordinates, p is the momenta of the particles and U(q) 

represents the potential energy function. The velocities, vi(t), are the first derivatives of the 

positions with respect to time: 

𝒗𝒊(𝒕) =  
𝒅

𝒅𝒕
𝒒𝒊(𝒕)     Eq. 13 

 

Here 𝑞𝑖(𝑡) is the atomic positions at a specific time, t. Based on the initial atom coordinates of 

a particular system, new positions and velocities of the atoms at a given time t and the atoms 

will migrate to these new positions. Therefore, the new conformations are generated and the 

temperature of the system is directly proportional to the average kinetic energy (16, 17).  

 

3.7.  Approaches for estimating binding affinities 
The computer-assisted molecular design (CAMD) approach was employed in this study to 

optimize new lead compounds for intensive research effort for safe and effective HER2+ breast 

cancer inhibitors. The advantages of CAMD include: determination of the structure of the host, 

docking and building a model of the binding site, searching databases for new hosts and the 

prediction of binding constants or biological activity. The approaches used in this study are 

explained in the following sub-sections. 

 

3.7.1. Molecular docking 
Molecular docking is regularly used in structure-based drug design to identify accurate 

conformations of ligands to their protein targets and to estimate the strength of the protein-

ligand interaction. Molecules such as inhibitors or other drug candidates are identified in the 
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active site of macromolecules. Macromolecules are proteins such as a receptor, enzyme or 

nucleic acid with known conformations (18). The ligand-receptor binding energy is calculated 

as follows: 

 

𝑬𝒃𝒊𝒏𝒅𝒊𝒏𝒈 = 𝑬𝒕𝒂𝒓𝒈𝒆𝒕 + 𝑬𝒍𝒊𝒈𝒂𝒏𝒅 + 𝑬𝒕𝒂𝒓𝒈𝒆𝒕−𝒍𝒊𝒈𝒂𝒏𝒅   Eq. 14 

 

There are numerous molecular docking programs that are used for academic and commercial 

purposes (19) such as Dock (20), AutoDock (21), GOLD (22), FlexX (23), GLIDE (24, 25), 

ICM (19), PhDOCK (26), Surflex (26) and others.  These programs can be grouped into four 

categories: fragment-based, evolutionary-based, stochastic Monte Carlo and the shape 

complementary methods (27). Although these classes of methods require different information 

in addition to protein structures, they all share four common computational steps: simplified 

and rigid body search; selecting the section(s) of interest; modification of docked structures 

and selecting the best models, respectively (19). Each method is ideal for precise docking 

problems, however, combining different computational methods can improve the reliability and 

accuracy of results (28). There are two types of docking: rigid and flexible docking. In rigid 

docking, the macromolecule and ligand are kept rigid while in flexible docking, flexibility is 

allowed either for the macromolecule or ligand or both macromolecule and ligand.  

 

The docking method used in this research study is the advanced version of AutoDock, 

AutoDock Vina (29). This method enables prediction of flexible ligands’ binding affinity to 

rigid human Hsp90 NTD and CTD active sites (29) (detailed discussion in chapter 5). 

Molecular docking can be applied in different areas including: virtual screening (hit 

identification), drug discovery (lead optimization), prediction of biological activity, binding-

site identification (blind docking), de-orphaning of a receptor, protein-protein interaction, 

structure-function studies, enzymatic reaction mechanisms and protein engineering. Also, the 

most typical case which is protein-ligand docking is used to predict the biological activity of a 

ligand. However, some problems have been reported in Autodock docking (30, 31) which 

could be due to the following:  

 Posing: The process of determining whether a given conformation and orientation of a 

ligand fits the active site. 

 Scoring: The pose score is a measure of the fit of a ligand into the active site. Scoring 

during the posing phase usually involves simple energy calculations (electrostatic, van 
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der Waals, ligand strain). Further re-scoring might attempt to estimate more accurately 

the free binding energy and perhaps include properties like entropy and solvation. 

 

Implementation of hybrid methods has been reported to create improved algorithms (31). In 

Chapter 5, we implement the hybrid method by the introduction of MD simulations for 

determination of ligand stability on the enzyme active site and binding free energy calculations 

for the validation of docking results. 

 

3.7.2. Binding free energy calculations 
The binding free energy calculations enable a comprehensive analysis of the amount of 

energies that are responsible for molecular stability or binding affinity. The Molecular 

Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) method which is used to estimate 

binding energies was introduced by Srinivasan et al. (32). The MM/PBSA approach is an 

effective method for the calculation of free energies of molecular systems at reduced 

computational expenses (33-36). Other studies also documented that MM/GBSA predicts free 

binding energy better than MM/PBSA (37-39). In the current study, the free binding energy of 

protease inhibitors (PIs) to the human Hsp90 homologue active site was analyzed using the 

Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method (40-43) to validate 

the docking studies. A brief explanation about free binding energy calculation is provided in 

chapter 5. 

 

3.7.3. Entropy calculations 
Entropy can be defined as the specific information necessary to measure the degree of 

uncertainty of a thermodynamic system. The setback of all simulation methods is obtaining an 

accurate entropy value (44). The free energy shows entropic and enthalpy contributions, thus, 

the values of the entropy and enthalpy show their contribution to the overall free energy of the 

enzyme-ligand complex (45, 46). The discovery that entropy has an effect on enzyme catalysis 

has shed more light on the origin of enzyme catalysis (47). A recent study has found an 

important significant that the activation entropy in enzyme and water are alike and that the 

overall catalysis is due to enthalpy effects (48).  

The simplest way of describing the entropic contribution is that it is the degree of the 

unpredictability of the overall system (15). According to the Gibb’s equation, entropy may be 
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calculated from ΔG and ΔH. It has been proposed that at a given time, the entropy of a ligand-

protein interaction can be expressed as the sum of several contributing factors. Usually, a 

positive entropy change is an indication that water molecules have been released from the 

complex. The equation below elaborates the definition of entropy: 

∆𝐆 = ∆𝐇 − 𝐓∆𝐒    Eq. 15 

Therefore, 

𝚫𝚂 =
𝚫𝐆

𝚫𝐇−𝐓
               Eq.16 

Where ∆𝐺 is free binding energy, and ∆𝐻 is enthalpy ∆𝑆 is entropy and T is the temperature. 

 

3.8.   Molecular modeling tools used in this study 

3.8.1. Homology modeling 
Techniques such as X-ray crystallography, NMR spectroscopy and electron microscopy are 

used to determine the structure of macromolecules. Among the three major approaches used to 

predict the 3D structures, homology modeling seems to be the easiest one (49). Homology 

modeling builds the structure of a protein by using the sequence of a protein whose X-ray 

crystal structure is known as a building template. A good homology modeling depends on the 

existence, detection and quality of a known homologue with a known structure. Even though 

high-resolution structures are best obtained through X-ray crystallography, this approach has 

encountered some drawbacks over the years. A protein crystal structure requires a lot of 

experimental time and trial run. Furthermore, some biologically important macromolecules 

lack X-ray crystal structures or high resolution 3D- structural properties with reference to their 

protein sequence, thus, to resolve this, homology modeling has been implemented (50).  

Structures with high-resolution values of 1Å show every atom in highly ordered manner while 

those with lower resolution value of 3Å or >3Å show only the basic contours of the protein 

chain. It is therefore advisable to choose a crystal structure whose resolution falls between 1 

and 3Å when building a homologue. The research study involving homology modeling can be 

found in chapter 5 section 3.1. The steps outlined below were followed during the construction 

of the human Hsp90 homologue [Figure 3.2]. 
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Figure 3.2. Schematic representation of the protocol followed during construction of the 

human Hsp90 homologue 

 

3.8.2. Per-residue energy decomposition analysis 
Per-residue energy decomposition determines the specific energy contributed by each protein 

residue towards ligand binding. It has also been used to determine bond formation in a 

molecule-molecule interaction (51-53). It was used to evaluate the residue contributions of the 

side chain and backbone towards the total binding free energy of a wild type system (54). 
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3.8.3. Quantitative structural activity relationship (QSAR) 
Nowadays, scientists are facing a problem of screening a huge number of molecules in order to 

predict if they are toxic to human and if they have a significant effect on the target bacteria or 

virus. In order to avoid the trial-and-error experiments on a huge library of compounds, 

researchers came up with a process called QSAR to relate molecular characteristics with 

biological activities whereby a limited number of compounds are synthesized and from their 

data, derive rules to predict the biological activity of the other compounds. QSAR is a 

mathematical representation that attempts to correlate the biological activities (IC50 or ED50) 

and the physicochemical properties of a set of molecules. The QSAR first application was 

accredited to Hansch et al. 1969 (55). The QSAR equation derived by Hansch is given as 

follows: 

 

log (1/C) = k1log P - k2(log P)2 + k3s + k4     Eq. 17 

 

Where C is the minimum effective dose, logP is the octanol - water partition coefficient, s 

represents the Hammett substituent constant, k1-3 are the constants derived from regression 

analysis and k4  is the constant. 

 

The importance of QSAR include: building a relationship between structure and activity to 

understand the effect of structure on activity; predictions of biological activities leading to the 

development of novel compounds; assessment of new chemical entities; determination of 

stability of a new drug; determination of the distribution of a new chemical entity and lead 

structure optimization.  

A QSAR equation normally takes the general form of a linear equation: 

 

Biological Activity = Const + (C1×P1) + (C2×P2) + (C3×P3) +...  Eq. 18 

 

   Where the parameters P1 through Pn are computed for each molecule in the series and the 

coefficients C1 through Cn are calculated by fitting variations in the parameters and the 

biological activity. 

A = k1D1 + k2D2 + k3D3 + knDn + Const    Eq. 19 
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  Where A is the biological activity, D represents structural properties (descriptors) and K is 

Regression coefficient. 

 

Some of the descriptors used in building a QSAR model include: Topological (atom counts, 

ring counts, molecular weights etc.), Geometrical (Molecular volume, surface area etc.), 

Electronic (Dipole moment, HUMO, LUMO, partial atomic charges etc.) and calculated 

physical properties (logP, Polarizability, reactive index etc.). The statistical models that are 

used to derive a QSAR equation include Partial Least Square (PLS), Multiple Linear 

Regression (MLR), Principal Component Analysis (PCA), Principal Component Regression 

(PCR) and Genetic Function Algorithm (GFA). The statistical model used in this research 

study is the GFA method (56) (discussed better in chapter 4). For further reading, some 

computational studies have recently been reported on HIV-1 integrase inhibitors (57-60) and 

HER2+ breast cancer inhibitors (61). 
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Abstract: 
 

Herein, we present a validated predictive QSAR model to provide more insight into the 

relationship between the molecular properties of diketo acid and carboxamide derivatives 

as well as HIV-I integrase inhibition. A set of 40 diketo acid and carboxamide derivatives 

possessing integrase inhibitory activity was subjected to 2D-QSAR using Discovery studio 

V3.5. The QSAR results presented here were based on a genetic function algorithm (GFA) 

approach. Logarithmic inverse values of IC50 (μM) were taken as the dependent variables, 

and physicochemical parameters were taken as the independent variable. A suitable set of 

molecular descriptors was calculated using GFA approach (max 500 generations). Results 

showed that radius of gyration, Zagreb index, Wiener index and minimized energy are 

statistically significant with the correlation coefficient value of 0.820 and play an 

important role in HIV-1 integrase inhibition.  

Key Words:  Diketo acid, carboxamide, 2D-QSAR, GFA, Integrase inhibitor 
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Introduction 
 

Acquired immunodeficiency syndrome (AIDS), currently regarded as one of the most 

devastating diseases of the human immune system is caused by the human 

immunodeficiency virus (HIV) (1-3). AIDS was first reported in 1981(4, 5), and now has 

become a global pandemic. The integration of HIV-1 DNA into the host chromosome 

contains a series of DNA cutting and joining reactions. The first step in the integration 

process is 3”end processing. In the second step, termed DNA strand transfer, the 

previously processed viral DNA end is inserted into the target DNA (6, 7). Thus, the 

integrase enzyme is crucial for viral replication and represents a potential target for 

antiretroviral drug design (8-11).   

It has been almost forty years since the quantitative structure-activity relationship (QSAR) 

paradigm first found its way into the practice of pharmaceutical chemistry, toxicology 

(QSTR) (12), property (QSPR) (13), and eventually most aspects of chemistry. The first 

application of QSAR is attributed to Hansch et al. (14), who developed an equation that 

related biological activity to certain physicochemical properties of a set of structures (15) 

and this has become one of the most useful approach to speed up drug design process (16, 

17). 

QSAR yield power may be attributed to the strength of its initial postulate that activity was 

a function of structure as described by electronic attributes and steric properties. QSAR 

attempts to find consistent relationships between the variations in the values of molecular 

properties and the biological activity for a series of compounds so that it can be used to 

evaluate new chemical entities (14). The formulation of thousands of equations using the 

QSAR methodology attempts a validation of its concepts and its utility in the elucidation 

of the mechanism of action of drugs at the molecular level and a more complete 

understanding of physicochemical properties. It is now possible to develop a model for a 

system as well as compare models from a biological database (18).  

There is a series of statistical model analyses that are used to develop a QSAR model, 

which includes multiple linear regression (MLR), principle component analysis (PCA), 

partial least square (PLS) and genetic function algorithm (GFA). 
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In this study, we describe the application of QSAR models based on GFA approach. GFA 

is a heuristic search method used for identifying optimal solutions to a problem where the 

possible solution space is too large to be exhaustively enumerated. GFA has been widely 

used for feature optimization in QSAR models for variable selection (19-21). The purpose 

of variable selection is to select the variables significantly contributing to prediction and to 

discard other variables by a fitness function. The GFA approach has a number of 

important advantages, which include: ability to build multiple models rather than a single 

model; automatic selection of features to be used in its basic functions and to determine 

the appropriate number of basic functions to be used by testing full-size models rather than 

incrementally building them; reliable discovery of combinations of basic functions that 

take advantage of correlations between features; ability to incorporate the lack of fit (LOF) 

error measure developed by Friedman (22) that resists over fitting and allows user control 

over the smoothness of fit; use of larger variety of basic functions in construction of its 

models, preferred model length and useful partitions of the data set, automatic removal of 

outliers and finally, provision of  additional information not available from other statistical 

standard regression analysis. The GFA has been applied to three published data sets to 

demonstrate it is an effective tool for doing both QSAR and QSPR (23-25).  

Although several QSAR studies on HIV integrase inhibitors have been reported (26-32) 

using MLR, PLS and PCA, the QSAR study on HIV-1 integrase using the GFA method 

has been lacking in literature. Such an understanding about the GFA method might 

provide a new starting point for the design of novel inhibitors against HIV-1. The main 

purpose of this work is to find out how accurate the QSAR analysis predicted the activities 

of compounds that were already synthesized in comparison to their experimental 

biological activities. Therefore, a 2-dimensional QSAR model was used to analyze some 

potential diketo acid and carboxamide-based HIV 1 integrase inhibitors. 

The list of the structures of 40 inhibitors employed in this study and their experimental 

inhibitory concentration (IC50) effective against HIV-1 integrase enzyme was taken from 

literature (33-35) (Table 4.1).  
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Table 4.1. Structures and biological activity of training and test set studied in this report  

 

Cpd Core R1 R2 R3 IC50(μM) *pIC50

(μM) 

1 A Pyrrole 4'-F - 0.17 0.770 

2 A O-xylene - - 5.67 -0.754 

3 A 1,2-(CH3)-1H-pyrrole - - 0.22 0.658 

4a A 2,3-(CH3) thiopene - - 0.18 0.745 

5 A 2,4-(CH3) thiopene - - 0.16 0.796 

6 A 1,3-(CH3)-1H- pyrrole - - 0.5 0.301 

7 A 2,5-(CH3) thiopene - - 0.5 0.301 

8a B 4'-Cl - - 1.0 0.000 

9 B 3'-F - - 0.25 0.602 

10 B - 4'-OCH3 - 0.15 0.824 

11 B - 3'-OCH3 - 0.14 0.854 

12a C 4'-F - - 0.10 1.000 

13 C H - - 0.23 0.638 

14 C 2'-Cl - - 0.37 0.432 

15 C 3'-Cl - - 0.04 1.398 

16a C 4'-Cl - - 0.38 0.420 

17 C 4'-F, 3'-Cl - - 0.04 1.398 
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18 C 4'-F CN - 0.02 1.699 

19 C 4'-F Br - 0.03 1.523 

20a C 4'-F I - 0.02 1.699 

21 D N(CH3)3 tetrahydro-

2H-pyran 

4-

fluorotoluene 

0.002 2.699 

22 D NHCOCH3 CH3 4-

fluorotoluene 

0.007 2.155 

23 D NH-SO2-CH3 CH3 4-

fluorotoluene 

0.008 2.097 

24a D NHCO-N(CH3)2 CH3 4-

fluorotoluene 

0.018 1.745 

25 D NHSO2-N(CH3)2 CH3 4-

fluorotoluene 

0.012 1.921 

26 D NHCOCO-N(CH3)2 CH3 4-

fluorotoluene 

0.01 2.000 

27 D NHCOCO-OCH3 CH3 4-

fluorotoluene 

0.015 1.824 

28a D NHCOCO-OH CH3 4-

fluorotoluene 

0.004 2.398 

29 D N(CH3)COCO-N(CH3)2 CH3 4-

fluorotoluene 

0.015 1.824 

30 D NHCOCO-1,4-( CH3) 

morpholine 

CH3 4-

fluorotoluene 

0.02 1.699 

31 D NHCOCO-1,4-( CH3) 

piperazine 

CH3 4-

fluorotoluene 

0.026 1.585 

32a D NHCOCO-N(CH3)2 CH3 1'-ethyl-2',3'-

(OCH3)  

0.021 1.678 

33 D NHCOCO-N(CH3)2 CH3 1'-ethyl-3'-Cl-

4'-F benzene 

0.009 2.046 

34 D NHCO-pyridine CH3 4-

fluorotoluene 

0.02 1.699 

35 D NHCO-pyridazine CH3 4-

fluorotoluene 

0.015 1.824 

36a D NHCO-pyrimidine CH3 4-

fluorotoluene 

0.007 2.155 

37 D NHCO-oxazole CH3 4-

fluorotoluene 

0.007 2.155 

38 D NHCO-thiazole CH3 4-

fluorotoluene 

0.008 2.097 

39 D NHCO-1H Imidazole CH3 4- 0.006 2.222 
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fluorotoluene 

40a D NHCO-1,3,4- oxadiazole CH3 4-

fluorotoluene 

0.015 1.824 

IC50 = Biological activity (μM)     *pIC50 [Experimental pIC50 value] = -log IC50 

                                  *a = Compounds were used in test set  

Methods 
 

The QSAR study that we conducted was performed on 40 molecules of the diketo acid and 

carboxamide derivatives (Table 4.1) which had strand transfer data (IC50 - molar 

concentration of the drug leading to 50% inhibition of enzyme Integrase) that was 

collected from literature (33-35).  Out of 40 molecules, 30 were used as a training set and 

10 molecules as a test set to evaluate the internal degree of predicitivity of the QSAR 

equation. With the help of CHEM 3D, which has been used in a previous study (32), 

different 2D structures were drawn (see Table 4.1), followed by the conversion to 3D 

structures of reasonable conformations using Discovery studio v3.5 software, which has 

been previously used in a publication (36). A large number of descriptors were also 

calculated (e.g. ALogP, molecular weight, molar refractivity, dipole moment, heat of 

formation, Radius of gyration, Wiener index, Zagreb index etc.) (The full list of 

descriptors is provided in the supplementary material file). Total charge and total formal 

charge, which are atomistic descriptors, were found to be irrelevant, due to the 

insignificant values of zero, and were therefore discarded from this study. 2D QSAR 

analysis was carried out using the genetic function algorithm (GFA) analysis (with 500 

maximum generations) (32). 

 

Calculation of pIC50 
Reported IC50 (μM) for strand transfer values were manually converted into -log IC50 

(pIC50) using the formula given below. The term ‘pIC50’ is a scale for expressing IC50 

value exponentially, which normalizes the actual activity using negative logarithmic 

function. 

pIC50 = -log IC50 
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Calculation of molecular descriptors 
The molecular descriptors were calculated for the data set using QSAR properties and 

utility of Discovery studio v3.5. Topological (surface area) and constitutional descriptors 

(AlogP, Dipole, Molecular weight, Energy, Radius of gyration, Wiener index and Zagreb 

index etc.) were computed (Table 4.2). 

Table 4.2. List of descriptors used in this study 

Abbreviations Definition 

M Minimized energy. Gives the energy after a fast 

minimization procedure using clean force field 

W Wiener index. It is the sum of the chemical bonds 

existing between all pairs of heavy atoms in the 

molecule)(37) 

Z Zagreb index. It is the sum of the squares of vertex 

valences 

R Radius of gyration. It is the measures of the size of 

an object, a surface, or an ensemble of points. It is 

the root mean square distance of the object’s parts 

from either its center of gravity or a given axis 

Ms Molecular_3D_SASA. It calculates the total solvent 

accessible surface area for each molecule using a 

3D method.(37). 

 

Conclusion 
In this study, we screened 26 preselected descriptors for 40 compounds using GFA 

method. GFA was then used to generate three different 2D-QSAR models to determine the 

degree of predicitivity of these diketo acid and carboxamide derivatives as HIV-1 

integrase inhibitors. A QSAR model was generated for integrase activity. As all the 

descriptors were not important for specific model generation, in order to select the optimal 

set of descriptors, we used systematic variable selection leave one out (LOO) method in a 
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stepwise forward manner for the selection of descriptors. Three best QSAR equations 

models generated for this study using the GFA approach and LOO method are shown in 

Table 4.3.  

 

Table 4.3.  The 3 different equations derived from the QSAR model  

 Equation R2 Q2 LOF P-value 
1 

 

 

Y=   -11.65 − 0.0024929W + 0.088809Z +      

0.01936M + 1.1879R 

 

0.820 0.558 0.193 5.174e-09 

2 

 

 

 

Y=   -12.896 − 0.0028585W + 0.077907Z  

+ 0.020068M + 0.015681Ms 

 

0.812 0.470 0.202 9.270e-09 

3 

 

Y=  -9.6736 − 0.0020098W + 0.078883Z  

+ 0.89779R 

0.790 0.620 0.190 5.641e-09 

Y: pIC50, set of descriptors (W, Z, M, R, Ms,) have been explained in table 2, R2: correlation coefficient, Q2: 

cross-validated R squared, LOF: Lack of fit, P-value: significance level (32). 

 

The statistical quality of the generated models was determined by the parameters like 

correlation co-efficient (R2), cross-validated squared correlation co-efficient (Q2), LOF, 

which is the relative measure of quality of fit, p-value which represents the variance of 

calculated and observed activity, and chance statistics assuring that the results are not 

merely based on chance correlations. Best models were selected on the basis of their 

statistical significance. 

 

Equation 1: The QSAR result for integrase inhibition produced highly predictive model 

that has excellent R2 = 0.820 (see Figure 4.1). Furthermore, the developed model showed 

Q2 = 0.558 and LOF value 0.193 indicating the model is well validated and explained.  The 

four best descriptors selected on the basis of importance in biological activity were Zagreb 

index (Z), Wiener index (W), Radius of gyration (R) and minimized energy (M). 

From the QSAR study, the statistically significant equation derived was, 

pIC50 =    -11.65 − 0.0024W + 0.089Z + 0.019M + 1.187R 
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N= number of training compounds =30, R2 = 0.820; Q2 = 0.558; LOF = 0.193. 

From the equation it was observed that, the radius of gyration and minimized energy and 

Zagreb index are positively correlated with the biological activity, however radius of 

gyration had the most contribution towards the biological activity. The radius of gyration 

of a molecule describes its dimensions and is calculated as the root mean square distance 

between its centre of gravity and its ends. The value of R in compounds 30, 34, 35 and 36 

having amide residue attached to a cyclic aromatic ring is high. These compounds showed 

good activity. On the contrary the value of R in the compounds 13, 17 and 19 having a 

halogenated group is low and resulted into lower biological activity. The second parameter 

Z contributed relatively lower in the above QSAR study but positively correlated with 

biological activity. The Z is a topological descriptor based on the vertex degree of heavy 

atoms. It also interprets the activity of compounds 18 and 20 having heavy atoms 

compared to compounds 9 and 13.  The W is the sum of the chemical bonds existing 

between all pairs of heavy atoms in the molecule. The value of W in the compounds 1, 3, 

and 5 having a heavy atom attached to one of the aromatic rings is less. This resulted in 

lower biological activity. On the other hand, the high value of W in the compounds 30, 34 

and 36 is due to the fact that these compounds have one or more amide group attached to 

one or more cyclic aromatic ring, which gives room for an addition or substitution reaction 

and thus an increased biological activity. 

 

Equation 2: The QSAR result for integrase inhibition produced a good predictive model 

that also has R2 = 0.812 (see Figure 4.2). Furthermore the developed model showed Q2 = 

0.470 and LOF value 0.202 indicating the model is also well validated and explained.  The 

four best descriptors selected on the basis of importance in biological activity were Wiener 

index (W), Zagreb index (Z), minimized energy (M) and total solvent accessible surface 

area (Ms). From the QSAR study, the statistically significant equation derived was: 

pIC50 = -12.896 − 0.0028585W + 0.077907Z + 0.020068M+ 0.015681Ms 

N= number of training compounds =30, R2 = 0.812; Q2 = 0.470; LOF = 0.202. 

From the equation it was observed that, the total solvent accessible surface area and 

minimized energy and Zagreb index positively correlated negatively with biological 

activity, however Zagreb index contributed mostly towards the biological activity. The 
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Zagreb index of a molecule describes the sum of squares of vertex valences. The value of Z 

in compounds 21, 30, 31 and 40 having amide residue attached to a cyclic aromatic ring is 

high. These compounds showed good activity. On the contrary, the value of Z in the 

compounds 4, 5 and 7 having a sulfide group attached to an aromatic cyclic ring is less and 

resulted into lower biological activity. The second parameter M contributed relatively low 

in the above QSAR but positively correlated with biological activity. The M is a 

topological descriptor that best describe the energy of a system after a fast minimization 

procedure and it interprets the high activity of compounds 26 and 29 respectively.  

 

Equation 3: The QSAR result for integrase inhibition produced a good predictive model 

that also has good R2 = 0.790 (see Figure 4.3). Furthermore the developed model showed 

Q2 = 0.620 and LOF value 0.190 indicating the model is also well validated and explained.  

The three best descriptors selected on the basis of importance in biological activity were 

Wiener index (W), Zagreb index (Z), Radius of gyration (R). From the QSAR study, the 

statistically significant equation derived was: 

pIC50 = -9.6736 − 0.0020098W + 0.078883Z + 0.89779R 

N= number of training compounds =30, R2 = 0.790; Q2 = 0.620; LOF = 0.190. 

From the equation it was observed that the Zagreb index (Z) and Radius of gyration (R) 

positively correlated with biological activity, however R contributed mostly towards the 

biological activity. The value of R in compounds 30, 34, 35 and 36 having at least an 

amide residue attached to a cyclic aromatic ring is high. These compounds showed good 

activity. On the contrary, the value of R in compounds 13, 17 and 19 having halogenated 

group is lower and this resulted in decreased biological activity. The second descriptor Z 

gave the least contribution in the above equation but positively correlated with the 

biological activity. Z also interprets the activity of compounds 18 and 20 having heavy 

atoms compared to compounds 9 and 13, which shows lower biological activity.   
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Figure 4.1.  Predicted pIC50 against experimental pIC50 for equation 1 

 

 

  

  

 
Figure 4.2.  Predicted pIC50 against experimental pIC50 for equation 2 
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Figure 4.3.  Predicted pIC50 against experimental pIC50 for equation 3 

 

Table 4.4.  Experimental pIC50 and GFA predicted pIC50 for training set 

Cmpds    pIC50    Predicted1    Residual1 Predicted2    Residual2 Predicted3   Residual3 

1   0.77 0.409 0.361 0.393 0.377 0.274 0.496 

2 -0.754 0.105 -0.859 0.407 -1.161 0.335 -1.089 

3 0.658 0.377 0.281 0.397 0.261 0.261 0.397 

5 0.796 0.498 0.298 0.618 0.178 0.228 0.568 

6 0.301 0.616 -0.315 0.536 -0.235 0.422 -0.121 

7 0.301 0.608 -0.307 0.398 -0.097 0.512 -0.211 

9 0.602 0.463 0.139 0.330 0.272 0.602 0.000 

10 0.824 0.505 0.319 0.563 0.261 0.692 0.132 

11 0.854 0.591 0.263 0.900 -0.046 0.725 0.129 

13 0.638 0.971 -0.333 0.676 -0.038 1.017 -0.379 

14 0.432 1.280 -0.848 1.316 -0.884 1.276 -0.844 

15 1.398 1.239 0.159 1.166 0.232 1.260 0.138 

17 1.398 1.267 0.131 1.401 -0.003 1.340 0.058 

18 1.699 1.580 0.119 1.311 0.388 1.559 0.139 
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19 1.523 1.276 0.247 1.464 0.059 1.362 0.160 

21 2.699 2.495 0.204 2.796 -0.097 2.334 0.365 

22 2.155 1.681 0.474 1.672 0.483 1.713 0.442 

23 2.097 1.973 0.124 2.034 0.063 1.989 0.108 

25 1.921 1.957 -0.036 1.998 -0.077 1.975 -0.054 

26 2.000 1.704 0.296 1.724 0.276 1.777 0.223 

27 1.824 1.797 0.027 1.707 0.117 1.867 -0.043 

29 1.824 1.943 -0.119 1.851 -0.027 1.883 -0.059 

30 1.699 1.970 -0.271 1.926 -0.227 1.929 -0.230 

31 1.585 1.391 0.194 1.499 0.086 1.594 -0.009 

33 2.046 1.739 0.307 1.845 0.201 1.860 0.186 

34 1.699 2.020 -0.321 1.809 -0.110 2.154 -0.455 

35 1.824 1.931 -0.107 1.787 0.037 2.017 -0.193 

37 2.155 2.325 -0.170 2.302 -0.147 2.090 0.065 

38 2.097 2.221 -0.124 2.243 -0.146 2.109 -0.012 

39 2.222 2.357 -0.135 2.219 0.002 2.133 0.089 

 

Table 4.4 shows the experimental pIC50 and the predicted pIC50 using the GFA approach for 

the training set. This shows how the GFA method predicted the pIC50.  

 

Table 4.5.  Experimental pIC50 and GFA predicted pIC50 for test set 

Cmpds           pIC50 Predicted1 Residual1 Predicted2 Residual2 Predicted3 Residual3 

4 0.745 0.326 0.419 0.287 0.458 0.282 0.463 

8 0.000 0.485 -0.485 0.761 -0.761 0.587 -0.587 

12 1.000 1.178 -0.178 0.836 0.164 1.215 -0.215 

16 0.420 1.212 -0.792 1.259 -0.839 1.233 -0.813 

20 1.699 1.482 0.217 1.784 -0.085 1.473 0.226 

24 1.745 1.580 0.165 1.471 0.274 1.634 0.111 

28 2.398 1.594 0.804 1.500 0.898 1.706 0.692 

32 1.678 1.937 -0.260 1.877 -0.199 1.961 -0.283 

36 2.155 1.936 0.219 1.765 0.390 2.096 0.059 

40 1.824 2.656 -0.832 2.360 -0.536 2.371 -0.547 

Predicted1: predicted value for equation 1, Residual1: residual value for equation 1 

Predicted2: predicted value for equation 2, Residual2: residual value for equation 2 

Predicted3: predicted value for equation 3, Residual3: residual value for equation 3 
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Table 4.5 also shows how well the pIC50 was predicted using the GFA approach for the 

test set. From the residual values (Figures 4.4, 4.5 and 4.6), it can be clearly seen that the 

lower residual values show that there is a minimal difference between the experimental 

value and the predicted value of the biological activity of this test set.  

 

The histograms of the three different QSAR models are represented below.  

 

 

 

 
Figure 4.4.  Histogram of residual values obtained from QSAR model for equation 1 
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Figure 4.5.  Histogram of residual values obtained from QSAR model for equation 2 

 

 

   

 
 

Figure 4.6.   Histogram plot of residual values obtained from QSAR model for equation 3 
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In Figure 4.6, the Y-axis represents the different molecular descriptors used in this study 

as shown on the right side of the graph. On the other hand, the X-axis represents the 

number of generations we could generate for each of these molecular descriptors. 

 

 
Figure 4.7.   The graph of the variable usage against generation number 

 

According to Figure 4.7, at each step, the GFA uses the current population to create the 

children that make up the next generation. The algorithm selects a group of individuals in 

the current population, called parents, who contribute their genes—the entries of their 

vectors—to their children. The algorithm usually selects individuals that have better 

fitness values as parents. User can specify the function that the algorithm uses to select the 

parents. The GFA creates three types of children for the next generation: Elite children, 

Crossover children, and Mutation children. In our QSAR study, the algorithm stops when 

the number of generations reaches the value of 500 Generations. 

In this present study, QSAR models have been developed based on molecular, structural, 

physicochemical, 2D and 3D properties that were obtained from various softwares. The 
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Discovery studio result suggests that the Radius of gyration, Zagreb index, Wiener index 

and minimized energy are statistically significant with a correlation coefficient value of 

0.8209, which is highly significant. These descriptors have played an important role in 

identifying some promising compounds that possess HIV-1 inhibitory properties such as 

compound 18, 20, 30, 34, 35 and 36. The synthesis of the compounds considered in this 

study was done in literature (33-35) but it was validated using 2D-QSAR model. This 

model holds good predictive performance with Q2 values ranging from 0.47 to 0.62 that 

was calculated using LOO method. In conclusion, this model can be used to predict more 

potent drugs that possess HIV-1 integrase inhibitory property. 
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Abstract 
Based on experimental data, the anticancer activity of FDA-approved HIV-1 protease 

inhibitors (PIs) were previously reported. Heat Shock Protein 90 has been identified as a 

known anticancer therapeutic target. The experimental data, which shows that nelfinavir has 

an anticancer inhibitory effect on yeast Hsp90, since it exhibited the highest IC50 value, raised 

the possibility that NFV might have the same effect on a mammalian Hsp90. The lack of the 

X-ray crystal structure of human Hsp90 makes the mechanism of binding of these drugs to 

the enzyme more ambiguous - especially with the existence of more than one possible 

binding domain in the Hsp90 enzyme. To this end, in this work, we embarked on various 

computational approaches to investigate the binding mode of the current FDA-approved 

HIV-1 PIs against Hsp90.  Since the X-ray crystal structure of the human Hsp90 protein is 

not yet resolved, homology modeling was performed to create its 3D structure for subsequent 

simulations. The two possible binding sites, C-terminal and N-terminal domains, were 

considered in this study. Eighteen 5 ns molecular dynamic simulations and free binding 

energy calculations were carried out. Based on the thermodynamics calculations, it was found 

that these inhibitors are most likely to bind at the N-terminal domain – with a significant 

binding affinity difference (~ 54.7-83.03 kcal/mol) when compared to C-terminal domain. To 

our knowledge, this is the first account of detailed computational investigations aimed to 

understand the binding mechanism of HIV PIs binding to Hsp90. Information gained from 

this study should also provide a route map towards the design and optimisation of potential 

derivatives of PIs to treat HER2+ breast cancer. 

Keywords: Binding free energy, molecular dynamics, HIV-1 protease inhibitors, anticancer  
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1. Introduction 
Cancer, a heterogeneous disease, is one of the major cause of death worldwide (1) . In 2008, 

GLOBOCAN estimated about 12.7 million cancer cases and 7.6 million cancer deaths (about 

21,000 cancer deaths a day) occurrence; of these, 56% (2.8 million) of the cases and 64% (4.8 

million) of the deaths occurred in the economically developing countries (1). An estimated 

14.1 million cancer cases occurred in 2012 (2). In 2014, an estimated 585,720 cancer deaths 

is expected in the United States (3). According to the American Cancer Society, it has been 

reported that there remains an expected increase in the cancer incidences in the next twenty 

years, more especially in African regions (4, 5).  

Cancer is an abnormal proliferation of cells that can lead to malignancy and death. These 

cells have the potential to elude other normal cells through the process called metastasis (5). 

Causal factors like tobacco, chemicals, radiation, infectious organisms, inherited mutations 

and hormones may act together to initiate or accelerate carcinogenesis. Among the numerous 

types of cancer, breast cancer is the most common cancer diagnosed in women worldwide 

(6). Approximately two-thirds of breast cancer tumors are hormone dependent, requiring 

estrogens to grow and estrogens are formed in the human body via a multistep route starting 

from cholesterol (7).  

Estrogen receptor (ER) and human epidermal growth factor 2 (HER2) are familial hormone 

sensitive receptors of the human epidermal growth factor (EGFR). HER2 consists of four 

subtypes (HER1–4) (8); which are regulated at the level of expression by hormones; thus, 

HER2 is of greatest significance as it is a pivotal receptor target for breast cancer treatment. 

Compared to other types of breast cancer, HER2+ breast cancer tends to be more aggressive 

and less receptive to hormone treatments. According to published data, it was documented 

that approximately 25–30% of human breast cancers overexpress HER2 (9, 10), in which 

heat shock protein (HSP) has been reported to play a role in the overexpression of HER2 (11, 
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12). Therefore, to block HER2 overexpression, the subsequent step would be to inhibit the 

enzyme responsible for producing this estrogen, Hsp90. Hsp90 functions as a molecular 

chaperone, regulating the proper functionality of other proteins in the body (13).  

Hsp90 is a homodimer consisting of  and  chains. Each monomer of Hsp90 dimer contains 

four domains: 1) a highly conserved N-terminal (NTD), 2) C-terminal domain (CTD), 3) a 

middle domain (MD), and 4) a charged linker that connects the N-terminal and middle 

domain (14) as shown in Figure 5.1.  

 

 

Figure 5.1. The crystal structure of Hsp90 Alpha (blue) and Beta chain (gold) (PDB code: 

2CG9) showing its different domains (15). 

 

Hsp90 contains a highly conserved ATP binding site near its NTD, as Hsp90 functions are 

energetically expensive (16). This Hsp90-ATP binding site has been under intense 

pharmaceutical investigation, as many designed drugs offer competitive inhibition against 

ATP for this site (14). The design, development and discovery of new cancer 

chemotherapeutics cannot meet the demand and rate at which the disease is manifesting. The 

devastating effects are evident from the high mortality rate of inflicted patients, due to 
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progression of the disease or inherited infection contracted from having a compromised 

immunity. Recent studies projects that a more efficient procedure for drug development that 

reduces costs is to find new indications for already approved drugs; this process is referred to 

as ‘‘repositioning’’ (17-19). “Repositioning” takes advantage of available data on existing 

drugs, limits risks and costs to pharmaceutical companies, and could advance the evaluation 

and movement of new cancer therapies to the clinic.  

 

The study conducted by Shim et al., analyzed the proteolytic profile of yeast Hsp90α full 

length for both N- and C- terminal domains. This study identified five drugs that exhibited 

significant inhibitory potential on cell proliferation with the HER2+ breast cancer lines. 

These include: mercaptopurine, nelfinavir mesylate, geftinib, triciribine, and 6-α-

methylprednisolone. It was reported that four of the drugs, excluding NFV, offered negligible 

to relatively good inhibitory activity, and were thus discarded as viable therapeutics. Shim et 

al. reported the action of NFV in several breast cancer cell lines on a collection of yeast strain 

and identified Hsp90 as its target. The possibility that NFV had an anticancer effect on yeast 

raised the possibility that Hsp90 is the target of nelfinavir in mammalian cells. Shim et al. 

further projected that since NFV has no effect on trypsin digestion of N- and middle domain 

of the Hsp90, it is likely that NFV binds to the Hsp90 C-terminal domain and induces 

conformational changes in the protein; which is a different mechanism from other Hsp90 

inhibitors (20). A study performed by Peterson further affirm this assumption that the CTD, 

which is responsible for maintaining Hsp90 functional homodimeric state and coordinating 

interactions with several Hsp90 co-chaperones, show some promising binding mechanism 

(14).  
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A study presented by Srirangam et al. reported that another protease inhibitor, ritonavir, 

partially inhibit the functions of Hsp90 (21). Based on the findings from the studies 

performed by Shim et al. and Bernstein et al., the FDA-approved HIV-1 protease inhibitors 

(PIs) showed to be promising in the inhibition of cancer, which is distinct from their ability to 

inhibit HIV protease (20, 22).  

The study performed by Shim et al., however, have some limitations. Foremost, the precise 

mode of interaction between NFV and Hsp90 remains a mystery. Secondly, the objectivity 

and interpretation of experimental outcome on mammalian cells was not stated. The 

probability that other PIs will be as potent as NFV is uncertain. The lack of a full X-ray 

crystal structure of the human Hsp90 might have been an important factor that significantly 

contributed to ambiguity of the binding mechanism of these drugs. From the lack of 

information with regards to binding modes, specific binding mechanism and conformation, 

prompted our extensive computational investigation in order to explore the exact binding 

modes of HIV PR inhibitors against the human Hsp90.  

In this work, a homology model for the human Hsp90 was built. Comparative MD 

simulations and binding free energy calculations for nine FDA-approved HIV PR inhibitors 

(Figure 5.2) at the two different binding domains of Hsp90, C-terminal domain (CTD) and N-

terminal domain (NTD), were performed. A total of 18 MD simulations protocol (5 ns each) 

were performed (section 2.4 holds more details on the MD simulation protocol) and post-

dynamic analyses were also performed. The compilation of the computational and molecular 

modeling tools presented in this study could serve as powerful tools to understand protein 

structures and dynamics which could be incorporated in drug discovery, design, development, 

repositioning and optimization of potential Hsp90 inhibitors as anticancer agents.  
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Figure 5.2. A schematic representation of 2D structures of the nine FDA-approved HIV-1 

protease inhibitors. 
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2.     Computational Methodology 

2.1. Homology modeling of human Hsp90 protein structure 

 
Due to the absence of a full human crystal structure of Hsp90 that comprises of both the NTD 

and CTD, the crystal structure of the human Hsp90 was modeled using the protein sequence 

obtained from Uniprot (Uniprot ID: P08238). The full human Hsp90 homologue was 

modeled by using three crystal structures of Hsp90 as templates: Hsp90 from saccharomyces 

cerevisiae (PDB Code: 2CG9), which contained the ATP bound in its active site; Hsp90 MD 

from homo sapiens (PDB Code: 3PRY) and Hsp90 CTD from Leishmania major (PDB Code: 

3HJC). Homology modeling was performed using the Modeler Software version 9.1 (23) 

add-on in Chimera (24). Multiple sequence alignment was performed on CLUSTAW (25). 

The active site residues were determined using Chimera Multi-align Viewer and validated 

using the Site-Hound web program (26). The homology model of the human Hsp90 was 

energy minimized and equilibrated via molecular dynamics simulations (see section 2.4) and 

then used for subsequent simulations. 

The sequence of the target protein was uploaded unto PSIPRED V3.3 (27, 28) in order to 

obtain a predicted 3D secondary structure of the enzyme. Comparing the homologue to the 

predicted 3D structure and assessment of the bond angles and torsional strain shows the 

validation of the homology model. A Ramachandran plot for the analyses of bond angles and 

torsional strain was generated using Maestro (29). MolProbity (30) result shows that 98% of 

all residues are in the favoured regions and >99.8% of all residues are in the allowed regions 

which leaves a list of 20 outliers. The list shows that none of the active site residues are part 

of these outliers (See Supplementary Material-S2).  

2.2. Defining the active site residues in the Hsp90 homology model 
 

Two binding sites (NTD and CTD) are known to exist in the Hsp90 based on previous reports 

(14, 31). The binding site of the N-terminal domain includes: Leu43, Asn46, Lys53, Ile91, 

Asp97, Met93, Asn101, Ser108, Gly109, Phe133 and Thr179 (50). On the other hand, the C-

terminal active site residues were identified as Gln523, Val534, Ser535, Lys538, Thr595, 

Tyr596, Gly597, Trp598 and Met602 in reference to 2CG9 crystal structure (14). The 

positions of these active site residues were mapped in the corresponding human Hsp90β 
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homologue to identify the NTD and CTD active site pockets for further docking and 

molecular dynamic simulations. 

 

2.2.1.    N-terminal Domain (NTD)  
The Swiss-PDB Viewer (30) was used to align the human Hsp90 homologue within the 

crystal structure of the human Hsp90 NTD (PDB Code: 3PRY) that contain geldanamycin 

inhibitor where the active site residues were known (32, 33). Chimera software (34) was used 

to define the corresponding active site residues in the homology model. Figure 3 shows the 

human Hsp90-nelfinavir interaction at the NTD. The NTD active site residues were found to 

be Leu43, Asn46, Lys53, Ile91, Asp97, Met93, Asn101, Ser108, Gly109, Phe133 and 

Thr179. 

 

2.2.2.   C-terminal domain (CTD) 
Due to the lack of information on the active site residues for the CTD, the active site residues 

were obtained from the Site-Hound web software (26). Closest active residue to the binding 

pocket, as shown in Figure 3, was selected and used for further modeling studies. The 

obtained active site residues for the human Hsp90 homologue CTD were Gln523, Val534, 

Ser535, Lys538, Thr595, Tyr596, Gly597, Trp598 and Met602. 
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Figure 5.3. (A) Nelfinavir-human Hsp90 homologue interaction at the NTD (B) Nelfinavir-

human Hsp90 homologue interaction at the CTD. Major contributions are from the residues 

that exhibit hydrophobic interactions (in green bubbles) and hydrogen bond interactions in 

purple arrows. Each illustration for other ligands at both terminals is provided in the 

supplementary material-S3. 
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2.3. Building Hsp90-HIV protease inhibitor complexes 
In this study, AutoDock 4.0 suite was used as molecular docking tool in order to carry out the 

docking simulations. AutoDock has been found to be able to locate docking modes that are 

consistent with X-ray crystal structures (35, 36). AutoDock helps to simulate interactions 

between substrates or drug candidates as ligands and their macromolecular receptors of 

known three dimensional structures, allowing ligand flexibility described to a full extent 

elsewhere (37). In our docking simulations, the human Hsp90 homologue was used for 

performing docking. We opted to run virtual screening to assign the binding modes of HIV-1 

protease inhibitors against Hsp90. To this end, 9 HIV-1 protease inhibitors were retrieved 

from ZINC database (38) and docked into the NTD and CTD active sites of Hsp90 

homologue using Autodock Vina software (39). The grid box was defined with the grid 

parameters being X= 22, Y= 22 and Z= 20 for the dimensions and X= -126, Y= -33 and Z= 

110 for the center grid box at the N-terminal domain; and grid parameters being X= 16, Y= 

22 and Z= 28 for the dimensions and X= -81, Y= -54 and Z= 56 for the center grid box in the 

C-terminal domain. The human Hsp90-HIV-1 protease inhibitor complexes were obtained 

and used for all subsequent methods performed in this study.  

 

2.4. Molecular Dynamics Simulations 
Hsp90-HIV-1 protease inhibitor complexes were simulated using the GPU version of the 

PMEMD engine provided with the AMBER 12 package (40, 41). GAFF force field 

parameters for Hsp90-HIV-1 protease inhibitor complexes were calculated by antechamber 

module of AMBER 12 package. Hydrogen atoms of the proteins were added using the Leap 

module in AMBER 12 (41). The human Hsp90-HIV-1 protease complexes were obtained 

using Chimera and were solvated in an octahedron box of TIP3PBOX water with buffering 

distance of 8 Å between the protein surface and the box boundary (42); assuming normal 

charge states of ionizable groups corresponding to pH 7, sodium (Na+) counter-ions were 

added to achieve charge neutrality and to mimic biological environment more closely. Cubic 

periodic boundary conditions were imposed and the long-range electrostatic interactions were 

treated with the particle-mesh Ewald method implemented in AMBER 12 with a non-bonding 

cut-off distance of 10 Å.  The partial atomic charges for the ligand were obtained using 

“antechamber” (43) module of AMBER 12. Initial energy minimization, with a restraint 

potential of 500 kcal/mol Å2 applied to the solute, was carried out with the aid of the 
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SANDER module of the AMBER 12 program using the steepest descent method in AMBER 

12 for 1000 steps followed by conjugate gradient protocol for 2000 steps.   

Due to the lack of parameters needed for the ligand in the Cornell et al. force field (44), the 

missing parameters were created. Optimization of the ligands are first performed at the HF/6-

31G* level with the Gaussian 03 package(45). The standard AMBER force field for 

bioorganic systems (ff03) (46) was used to define the topology and parameter files for the 

enzyme and protease inhibitors using “gaff” (47) based on the atom types of the force field 

model developed by Cornell et al. (40). The entire system was freely minimized for 1000 

iterations. Heating was performed for 50ps from 0 to 300 K with harmonic restraints of 5 

kcal/mol Å2 using a Langevin thermostat with a coupling coefficient of 1/ps. The entire 

system was then equilibrated at 300 K with a 2fs time step in the NPT ensemble for 500 ps 

and Berendsen temperature coupling (48) was used to maintain a constant pressure at 1 bar. 

The SHAKE algorithm (49) was employed on all atoms so as to constrain the bonds of all 

hydrogen atoms. With no restraints imposed, a production run was performed for 5 ns in an 

isothermal isobaric (NPT) ensemble using a Berendsen barostat with a target pressure of 1 

bar and a pressure-coupling constant of 2ps for analysis of the energy stabilization and 

RMSD values of the complex.  The coordinate file was saved every 1ps and the trajectory 

was analyzed every 1ps using the Ptraj module implemented in AMBER 12.  

 

2.5. Thermodynamic Calculation 
The free binding energy of protease inhibitors (PIs) to the human Hsp90 homologue active 

site was analyzed by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) 

method (50-53). A single trajectory approach was used with 5000 snapshots at 50 ps interval 

of each simulation. From each snapshot, free binding energy (ΔGbind) was computed from the 

following: 

ΔGbind = Gcomplex – Greceptor – Gligand                                      (1) 

ΔGbind = Egas + Gsol – TΔS                                                 (2) 

Egas = Eint + Evdw +Eele                 (3) 

Gsol = GGB + GSA              (4) 

GSA = γSASA             (5) 
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Where Egas is the gas-phase energy; Eint is the internal energy; Eele and EvdW are the Coulomb 

and van der Waals energies, respectively. Egas was calculated using the ff03 force field. Gsol is 

the solvation free energy and can be decomposed into polar and nonpolar contributions. GGB 

is the polar solvation contribution calculated by solving the GB equation. GSA is the nonpolar 

solvation contribution estimated by the solvent accessible surface area (SASA) and was 

determined using a water probe radius of 1.4 Å. The surface tension constant γ was set to 

0.0072 kcal/(mol·Å
2
) (54). The T and S are the temperature and the total solute entropy, 

respectively. S was calculated by classical statistical thermodynamics, using normal mode 

analysis (55).
 

Normal mode analysis was carried out in the AMBER 12 normal mode 

(NMODE) module. Due to the high computational cost in the entropy calculation, 100 

snapshots were extracted from the last equilibrated 5 ns trajectory of the simulation with 50 

ps time intervals.  

To theoretically evaluate the reliability of the calculated ΔG values, the standard error (SE) of 

the calculated free binding energy was estimated by using equation 6, which is related to the 

number (N) of snapshots chosen for the calculations (37).  

 

SE = RMSF /N            (6) 

 

3.     Results and Discussion 

3.1. The Human Hsp90 homology model 
 

In an effort to work with a human Hsp90 that comprised of the middle domain (MD), C-

terminal domain (CTD) and N-terminal domain (NTD), a homology model of the human 

Hsp90β was generated. Using the Hsp90 from Saccharomyces cerevisiae (PDB Code: 

2CG9), crystal structure of Hsp90 MD from Homo sapiens (PDB Code: 3PRY) and a crystal 

structure of Hsp90 CTD from Leishmania major (PDB Code: 3HJC) as structural templates, 

an human Hsp90 homologue was constructed using software “Modeller”9.1 (23). Structural 

similarity between the three proteins showed good identity in and around the active site, 

NTD, MD and CTD, with the majority of active site residues having nearly identical 

positions (Figure 5.4a). The sequences shared a 64.11% (2CG9), 97.39% (3PRY) and 60.14% 

(3HJC) similarity according to the Multi-align Viewer tool in Chimera, and the model had a 

zDOPE score of 0.25 after modeling (Figure 5.4b). 



CHAPTER 5: REPOSITIONING HIV PROTEASE INHIBITORS AS POTENTIAL ANTICANCER AGENTS 

84 
 

 

 
Figure 5.4. (A) Superimposed structures of the 2CG9 (gold), 3PRY (purple) and 3HGC 

(blue) and the generated human homologue sequence (green), (B) Generated homology 

model of the human Hsp90β. 

 

As docking is the most appropriate tool to provide better description of the binding theme of 

inhibitors (56, 57), molecular docking was performed to elucidate the binding mode of the 

human Hsp90 homologue and its inhibitors. To this end, docking of HIV-1 protease 

inhibitors was successfully undertaken giving an idea on how these inhibitors are positioned 

on the binding pocket on the NTD and CTD. Figure 5.5 shows docked structure of the human 

Hsp90 homologue in complex with NFV. Nine FDA-approved HIV-1 inhibitors were docked 

to the human Hsp90 allowing for the construction of enzyme-ligand complexes. Interestingly, 

all the HIV-1 PIs showed better binding to the active site residues of the human Hsp90 

homologue and were perfectly situated on the binding pocket of the human Hsp90 

homologue NTD and CTD as how the known inhibitors of Hsp90 bind (33). 
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Figure 5.5. The human Hsp90 homologue docked with NFV at (a) N-terminal domain and 

(b) C-terminal domain. 

 

3.2. Molecular Dynamics (MD) simulations 
The structural dynamics of all HIV-1 PIs, which are bound to the human Hsp90 homologue 

were analysed by performing 5 ns molecular dynamics simulation (58-60) and free binding 

energy calculations (61, 62), which have proved to be very useful and successful in 

understanding the molecular basis of drug inhibition to different biological targets. It 

provides useful structural and energetic information about the interaction between the 

inhibitors and the targets. The system stability and overall convergence of simulations were 

monitored in terms of Root Mean-Square Deviation (RMSD), and potential energy of the 

protein backbone atoms. The RMSD and potential energy enabled us to verify that 

equilibration was achieved.  

 

3.2.1. Post-dynamic analyses:  
Stability of Molecular Dynamics simulation 

As shown in Figure 5.6, the system was well equilibrated where the RMSD value of all nine 

complexes at the NTD and CTD did not exceed 2Å. Stabilisation of the RMSD was achieved 

after 1000 ps and 1800 ps, for NTD and CTD respectively. The fluctuations of potential 
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energies at the NTD were <2000 kcal/mol for the duration of 5 ns whereas the CTD had 

fluctuations in the potential energy of ≤ 8000 kcal/mol. Overall, it was observed that 

equilibration at NTD and CTD was achieved although they occurred at different time frames. 

The potential energy observed for the inhibitors at the CTD indicate that there is an initial 

energy increase that is due to the heating up of the system. A decrease in potential energy was 

observed followed by stabilization, implying that the system folded up to a state more stable 

than the starting linear structure. This trend was observed for all complexes at the CTD. 

 

 
Figure 5.6. Comparative RMSD and potential energy plot of all ligands binding at the N-

terminal domain and C-terminal domain respectively. (Individual plot for each ligand is 

provided in the supplementary material). 
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RMSF calculations 

The root mean square fluctuations (RMSF) of the average structure from the trajectory report 

the residue and atomic fluctuations to check if the simulation results are in accordance with 

the crystal structure. Figure 5.7 shows the residue based RMSF of the NTD and CTD 

simulations. The amino acid residues in the region of 216-287 show higher fluctuation in 

both the NTD and CTD in comparison to the other amino acid residues which all exhibit 

lower fluctuations. It was observed that the amino acids in the region of 216-287 

demonstrated no significant effect on how the human Hsp90 homologue interacted with the 

HIV-PIs at both terminals.  
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Figure 5.7. (A) Comparative RMSF plot of all ligands binding at the N-terminal domain and 

(B) Comparative RMSF plot of all ligands binding at the C-terminal domain. (Individual plot 

for each ligand is provided under the supplementary material- Appendix 1). 
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3.2.2. MM/GBSA free binding energy calculations 

In the present study, we applied MM/GBSA as it has been demonstrated to be more efficient 

for protein-drug systems (63-65), carbohydrates (66) and nucleic acids (67). It utilizes a fully 

pairwise potential that is useful for decomposing the total binding free energy into atomic or 

group contributions (68). In addition, the MM/GBSA was successfully applied for ligand 

binding interactions with HIV PR with multidrug resistance (69-71). All components of 

molecular mechanics, solvation energy and free binding energies for the binding of the PIs (

ΔGbind in kcal/mol) were calculated from the MD trajectories using the MM/GBSA method 

(50-53) implemented in AMBER 12 (41). This method explores the type of established 

interactions, calculating separately the components of the internal energy, the interaction 

energy and the free energy of Gibbs of solvation (72). 100 snapshots were extracted at a time 

interval of 10 ps from the 5 ns of MD trajectories for the analysis of the binding free energy. 

MD simulations were used to examine the solvation of the binding pockets of the human 

Hsp90 homologue (NTD and CTD) in complex with the nine PIs. The values of the free 

binding energy presented in Table 5.1 show that for all the PIs, there is a higher binding in 

the NTD as compared to the CTD. The free binding energy of NFV being -83.03 kcal/mol at 

the NTD and -39.3 kcal/mol at the CTD. This value shows a significant difference (~43.73 

kcal/mol) between the interaction energy at the NTD and CTD. Indinavir (IDV) on the other 

hand, gives the high value of the free binding energy of -67.3 kcal/mol, with an internal Van 

der Waal (Gvdw) energy of -81.3 kcal/mol at the NTD whereas there is a huge drop of the 

free binding energy (-9.7 kcal/mol) and van der Waals energy (-41.8 kcal/mol) at the CTD. 

Such a great reduction in binding affinity (~57.6 kcal/mol) indicates relatively weaker ligand 

binding at the CTD. 

The major favourable contributions observed for the human Hsp90 homologue-PIs 

complexes free binding energies occur at the NTD which are significantly higher compared 

to the CTD. This trend is observed for all complexes except RTV which has a reasonably 

good free binding energy (-64.8 kcal/mol) at the NTD and (-63.9 kcal/mol) at the CTD with a 

difference of (~0.9 kcal/mol). There appears to be a probability that RTV has a good efficacy 

at both terminals and should therefore be considered for experimental evaluation. 
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Table 5.1. Binding free energies of the FDA-approved protease inhibitors against the human 

Hsp90 homologue. 

HIV-1 PIs 

Inhibitors 

Contributions
a 

ΔEele ΔEvdW ΔGSA ΔGGB ΔGgasb ΔGsol c ΔGbindd 

NFV -83.231.3 
-103.00.9 

-57.70.1 
-51.90.9 

-7.720.1 
-7.30.1 

100.841.4 
128.91.2 

-25.521.3 
-160.91.7 

108.561.4 
121.71.1 

-83.030.5 
-39.30.6 

RTV -14.90.3 
-17.10.4 

-80.10.3 
-76.20.4 

-10.70.02 
-9.20.04 

40.80.3 
38.60.4 

-94.90.5 
-93.30.9 

30.10.3 
29.40.4 

-64.80.3 
-63.90.4 

SQV -273.31.0 
-97.71.9 

-89.50.3 
-38.41.0 

-10.70.01 
-6.20.1 

308.40.9 
119.32.1 

-362.81.1 
-136.12.8 

297.70.9 
113.11.9 

-64.80.4 
-22.90.9 

IDV -652.21.6 
-266.01.6 

-81.30.4 
-41.80.2 

-10.10.02 
-5.40.05 

676.21.5 
303.61.6 

-733.41.6 
-307.81.7 

666.11.5 
298.11.6 

-67.30.7 
-9.70.4 

APV -4.90.6 
-7.90.3 

-67.51.7 
-48.90.5 

-7.50.2 
-6.40.04 

25.20.8 
22.20.3 

-72.41.9 
-56.90.6 

17.70.7 
15.80.3 

-54.71.4 
-41.10.5 

LPV -8.00.7 
-12.20.3 

-83.30.4 
-56.50.4 

-9.70.04 
-7.20.05 

30.70.6 
32.30.3 

-91.40.8 
-68.80.5 

21.10.6 
25.10.3 

-70.30.5 
-43.70.4 

ATV -7.40.4 
-13.90.3 

-89.80.4 
-54.80.4 

-11.10.03 
-7.00.04 

36.80.4 
36.30.3 

-97.20.6 
-68.70.5 

22.80.4 
29.30.3 

-74.40.4 
-39.40.4 

DRV -16.90.5 
-12.90.3 

-75.10.3 
-47.10.3 

-9.20.03 
-6.20.4 

36.80.5 
29.00.3 

-92.10.7 
-60.00.4 

27.60.5 
22.90.3 

-64.50.5 
-37.10.2 

TPV -11.00.3 
-16.10.3 

-77.60.3 
-51.50.32 

-9.70.03 
-6.70.03 

36.40.3 
35.50.3 

-88.60.41 
-67.70.5 

26.70.3 
28.80.3 

-61.90.3 
-38.90.3 

aAll energies of the NTD and CTD, with corresponding standard errors, are in kcal/mol. 

b ∆Egas =∆Eint+∆EvdW + ∆Gele 

c ∆Gsol = ∆GSA + ∆GGB 

d∆G bind =∆G gas +∆Gsol - T∆S 

 

Shim et al. (2012) analyzed the activities of some drugs, which include mercaptopurine, 

nelfinavir mesylate, gefitinib, triciribine and 6-α-methylprednisolone, which showed least to 

relatively good selectivity for HER2+ breast cancer lines. The action of nelfinavir in HER2+ 

breast cancer cells was tested by screening a collection of yeast strains and acknowledged the 

Hsp90 protein as a potential target. In the study conducted by Shim, nelfinavir strongly 

inhibited certain HER2 signaling events and also had the highest potency (IC50 10μM), which 

suggests that it may be effective in HER2+ breast cancer patients with the same dosage 

regimen administered to HIV-1-infected patients (20). Based on Shim et al. study, it is clear 

that PIs inhibit a wide variety of malignant cell lines with nelfinavir having the best inhibition 

profile. Despite extensive experimental studies performed on the anticancer activity of NFV, 
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the precise molecular and binding mechanism responsible for its inhibitory effect on either 

yeast or human Hsp90 remains anonymous. 

 

From Table 5.1, it is evident that nelfinavir binds readily to the human Hsp90 homologue 

NTD (ΔGbind -83.23 kcal/mol) which is in accordance with the experimental findings from 

the study conducted by Shim et al. (20). This finding implies that the simulation protocol of 

this work is appropriate and reliable. 

In comparison to the CTD, the human Hsp90 NTD binding pocket was found more promising 

than the CTD binding pocket. According to the results of the ΔEvdW calculation, the NTD 

domain also showed higher van der Waals interaction energies (ranging from -57.7 to -89.8 

kcal/mol), whereas the CTD showed lower interaction energies (ranging from -38.4 to -76.2 

kcal/mol) as compared to the NTD. It was observed that other PIs showed better interaction 

to the NTD implying that the NTD might be the preferred domain for binding of PIs to the 

human Hsp90. The study performed by Shim et al., showed that nelfinavir inhibit Hsp90 at 

the site distinct from that of the known inhibitor (20). At this point, more studies is required 

to further verify the binding mode of the human Hsp90 CTD to HIV-1 PIs. 

 

3.2.3. Per-residue interaction energy decomposition analysis 

The binding free energy was further decomposed into contributions from each human 

Hsp90β amino acid residue. It can be observed from the energy decomposition analysis at the 

NTD that the amino acid residues with major contributions were: Leu43, Asn46, Lys53, 

Ile91, Asn101, Ser108, Gly109, Met93, Phe133, Thr179 and those with minor contributions 

towards the interaction energy were residues Asp97, Val131, Val145, Val181 and Tyr134. At 

the CTD, the amino acid residues with major contributions were Gln523, Val534, Lys538, 

Ser535, Thr595, Tyr596, Trp598 and Met602 and those with minor contributions were 

Tyr485, Glu519, Val522, Gln524, Lys526, Leu533, Val534, Thr599 and Tyr619. These 

contributions can be due to their hydrophobicity nature as shown in Figure 5.8. These trends 

were maintained in all complexes at both terminals.  
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Figure 5.8. (A) Residues that contributed to the human Hsp90-nelfinavir binding at the NTD 

and (B) Residues contributing to the human Hsp90-nelfinavir binding at the CTD. 

(Illustrations for other ligands are provided in the supplementary material-S4). 
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4. Conclusion 
In this study, the potential mechanism of binding of nine PIs to the human Hsp90β 

homologue at the NTD and CTD was investigated. Some active site residues have been 

identified in both terminals in previous studies and this brought about the investigation and 

validation of these theories by computational methods. These methods include: Virtual 

screening, Molecular dynamics (MD) simulation, binding free energy calculation using 

MM/GBSA method implemented in AMBER 12, potential energy, per-residue energy 

decomposition, RMSF and RMSD calculations. 

From the above investigation of the CTD and NTD of the human Hsp90 homologue binding 

to HIV-1 protease inhibitors, it can be concluded that these HIV-1 PIs interact better at the 

NTD than at the CTD. However, ritonavir has promising binding affinities at both terminals 

and should therefore be considered for experimental evaluation. Additionally, apart from 

ritonavir, saquinavir and nelfinavir; further investigation needs to be carried out on the CTD 

to look for more promising drugs that could bind to its active site residues. As at the time of 

this study, there was limited experimental information available regarding this domain. It was 

reported in previous studies that nelfinavir was found to be more potent than other PIs tested 

against breast line cell cancer, however, computationally, result shows that nelfinavir as well 

as other PIs may also have good binding affinity, thus, excellent candidates for further 

evaluation as anticancer agents. 

Supplementary Materials 
RMSF vs. time, RMSD vs. time and Potential Energy (kcal/mol) vs. time data for the human 

Hsp90 homologue in complex with HIV-1 PIs at both NTD and CTD, Per-residue 

decomposition at NTD and CTD; ligand-complex interaction at NTD and CTD; Molprobity 

result including all validation data are provided in the supplementary material. 
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Chapter 6 
 

Conclusion and future recommendations 
This chapter outlines the general conclusion of the study as well as recommendations for 

future research based on its findings.  

 

6.1. General Conclusion 
The research studies reported in this thesis are based on two classes of HIV-1 inhibitors, 

which include (i) integrase inhibitors and (ii) protease inhibitors: their potential as anticancer 

agents. To accomplish our objectives, there are two specific aims in this study, which are: (a) 

To investigate the inhibitory profile of a set of compounds as HIV-1 strand transfer inhibitors 

and employ a 2D-QSAR approach to predict the biological activities of the ‘test set’ (b) To 

provide a molecular insight into the binding affinities of HIV-1 protease inhibitors that are 

found to inhibit Hsp90, the enzyme that initiates the HER2+ breast cancer. To a great extent, 

this work has accomplished the aims of the studies and results from this work produced the 

following conclusions: 

 

1) In this present study, 40 diketo acid and carboxamide derivatives were analyzed using 

a QSAR statistical approach. A 2D-QSAR model was developed based on molecular, 

structural, physicochemical, 2D and 3D properties that were obtained from Chemdraw 

10.0 (1) and Discovery studio v3.5. The result suggests that the Radius of gyration, 

Zagreb index, Wiener index and minimized energy are statistically significant with a 

correlation coefficient value of 0.820. These descriptors have played an important role 

in identifying some promising compounds that possess HIV-1 inhibitory properties. 

The synthesis of the compounds considered in this study was reported in literature (2-

4) and were validated using a 2D-QSAR approach in this study. This QSAR model 

holds good predictive performance with Q2 values ranging from 0.47 to 0.62 and R2 of 

0.82 that was calculated using the leave one out (LOO) method. 

2) Some potential HER2+ breast cancer inhibitors have been identified through the 

process called “repositioning” of existing drugs. This study established the relevance 

of relative affinities between enzymes and their ligands, as part of the step-by-step 

process of drug design. The selection of the reference protein (PDB codes 2CG9, 
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3PRY and 3HJC) crystal structures were used as templates for the construction of a 

human Hsp90β homologue. The Ramachandran plot showed the validity of the human 

Hsp90 homologue where 98% of all residues, including the active site residues, were 

in the favored region and 99.8% were in the allowed region. This plot showed a total 

of 20 outliers. The binding pocket of the homologue in complex with HIV-1 protease 

inhibitors at both the NTD and CTD was investigated. Some active residues have 

been identified in both terminals in previous studies (5) and this form the basis of 

investigating and validating these theories by computational methods. 

3) The convergence of post-dynamic simulation was validated by RMSD, RMSF and 

potential energy plots. The residue based RMSF shows that the amino acid residues in 

the region of 216-287 show higher fluctuation in both the NTD and CTD compared to 

the other amino acid residues which all exhibit lower fluctuations. It was also 

observed that the amino acids in the mentioned region demonstrated no significant 

effect on how the human Hsp90 homologue interacted with the HIV-PIs at both 

terminals.  

4) The result also shows that the system was well equilibrated wherein the RMSDs of all 

the nine complexes at the NTD did not exceed 2Å and the system stabilized after 

1000 ps MD simulation.  On the other hand, the CTD domain shows that all the nine 

complexes did not exceed 2Å and the system stabilized after 1800 ps MD simulation. 

In addition, the fluctuations of potential energies at the NTD were <2000 kcal/mol for 

5 ns of MD simulation and CTD show that the fluctuations of the potential energy to 

be ≤8000 kcal/mol. Overall, it is observed that equilibration at NTD and CTD was 

achieved, although they happen at different time frame. 

5) From the above investigation of the human Hsp90 homologue CTD and NTD binding 

to HIV-1 protease inhibitors, respectively, it can be concluded that these HIV-1 PIs 

bind more at the NTD than the CTD. The active site residues responsible for binding 

at the NTD include; Leu43, Asn46, Lys53, Ile91, Asp97, Met93, Asn101, Ser108, 

Gly109, Phe133 and Thr179. Enough computational evidence has shown that the 

NTD active residues show better binding to these nine PIs, thereby inhibiting cancer 

growth. However, the active site residues responsible for binding at the CTD include 

Gln523, Val534, Ser535, Lys538, Thr595, Tyr596, Gly597, Trp598 and Met602. It is 

therefore evident from these results that only few PIs such as RTV, LPV, APV, ATV 

and NFV bind successfully to the CTD at reasonable RMSD range value. Thus, this 

study suggests further investigation to be carried out on the CTD to identify more 
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promising drugs that could bind to its active site residues and exhibit excellent 

pharmacokinetic and pharmacodynamics properties. 

It is clear that inhibition of the HIV-1 virus at different developmental stages will have great 

clinical advantages to HIV-related cases. Although the repositioning of the HIV-1 PIs as 

anticancer agents have revealed valuable information which could reduce the mortality rate of 

HER2+ breast cancer patients, the current lack of understanding of the biochemical, 

microbiological reactions and side effects of these drugs on the patients is a challenge 

especially in establishing their mechanism of action. However, the results presented herein 

are valuable indicators of how promising these approaches and methods are for the 

development of drugs. These research studies will ultimately contribute to better prognosis 

and increase the survival rates of HIV-1-infected patients as well as HER2+ breast cancer 

through the discovery, design and repositioning of existing drugs.  

 

6.2. Recommendations and Future Studies 
The computational chemistry methods employed in this study provide an efficient and cost 

effective tool for drug discovery and design. These methods include: Virtual screening, 

Molecular dynamics (MD) simulation, binding free energy calculation using MM/GBSA 

method implemented in AMBER 12 and post-dynamic analyses. These methods were 

employed for the determination of the drug binding modes, inhibitor stability in the enzyme-

binding site, determination of energy interactions between the active site residues and ligands 

and the verification of docking results.  

 

Future studies may include the following: 

1. Further validation of these computational results from the implementation of QM (6, 

7). This could help explain the molecular interactions with respect to the distribution 

of motion, determine the type of bond formation between enzymes and their 

inhibitors, thus providing an insight into their binding mode. 

2. Further analysis and synthesis of the HIV-1 inhibitors will allow for more inhibitor 

selectivity. Study of preclinical pharmacokinetics ADME (Absorption, distribution, 

metabolism and excretion) for analysis of the newly discovered anticancer agents 

would have considerable benefits for research in this field (8).  
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3. Deeper insight into these interactions can be obtained from the implementation of 

emerging computational methods such as Principal Component Analysis (PCA) (9), 

Residue Interaction Network (RIN) (10), Substrate Envelope Analysis (SEA) (11) and 

coarse-grained molecular dynamics (12). Application of these methods could 

elaborate the enzyme dynamics, drug-enzyme interactions and conformational 

changes.  
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Appendix 1. Supplementary material for Chapter 5 
 

Could the FDA-approved anti-HIV PR inhibitors be promising 

anticancer agents? An answer from molecular dynamics analyses 
Olayide A. Arodolaa, Mbatha H. Sbongilea and Mahmoud E. S. Solimana* 

 

 

Figure 6. Comparative RMSF plot for PIs at the human Hsp90 homologue NTD and 

CTD 
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Figure 7a. Comparative RMSD plot for PIs at the human Hsp90 homologue NTD and 

CTD 
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Figure 7b. Comparative potential energy plot for PIs at the human Hsp90 homologue 

NTD and CTD 
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Supplementary Figure-S 1. The multiple sequence alignment result from CLUSTAW 
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 The Figure above shows the 2D sequence multi-alignment of Hsp90 from saccharomyces 

cerevisiae (PDB Code: 2CG9), which contained the ATP bound in its active site; Hsp90 

middle domain from homo sapiens (PDB Code: 3PRY), Hsp90 C- terminal domain from 

Leishmania major (PDB Code: 3HJC) and the human Hsp90 obtained from Uniprot (fasta 

code P08238). 
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Supplementary Figure-S 2. Ramachandran plot for the human Hsp90 homologue 
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Supplementary Figure-S 3. Ligand-enzyme interaction at the human Hsp90 homologue 

NTD and CTD 
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 The legend for the ligand-enzyme interaction generated from Ligplot 
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Supplementary Figure-S 4. Comparative per-residue decomposition energy at the 

human Hsp90 NTD and CTD 
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Appendix 2.  Input files for docking the human Hsp90 homologue 

complexes at NTD 
 

receptor = rec.pdbqt 

exhaustiveness = 8 

center_x = -126.0 

center_y = -33.0 

center_z = 110.0 

size_x = 22 

size_y = 22 

size_z = 20 

 

 

Appendix 3. Input files for docking the human Hsp90 homologue 

complexes at CTD 
 

receptor = rec.pdbqt 

exhaustiveness = 8 

center_x = -81.0 

center_y = -54.0 

center_z = 56.0 

size_x = 16.0 

size_y = 22.0 

size_z = 28.0 
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Appendix 4.  PDF version of the published paper 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


