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Abstract

In this thesis we study Locally Rotationally Symmetric (LRS) spacetimes in which

there exists a unique preferred spatial direction at each point. The conventional 1+3

decomposition of spacetime is extended to a 1+1+2 decomposition which is a natural

setting in LRS models. We establish the existence and find the necessary and suffi-

cient conditions for a new class of solutions of LRS spacetimes that have non-vanishing

rotation and spatial twist simultaneously. In this study there are three key questions.

By relaxing the condition of a perfect fluid, that is by introducing pressure anisotropy

and heat flux, is it possible to have dynamical solutions with non-zero rotation and

non-zero twist? If yes, can these solutions be physical? What are the local geometrical

properties of such solutions? We investigate these questions in detail by using the

semi-tetrad 1+1+2 covariant formalism. It is transparently shown that the existence

of such solutions demand non-vanishing and bounded heat flux and these solutions are

self-similar. We provide a brief algorithm indicating how to solve the system of field

equations with the given Cauchy data on an initial spacelike Cauchy surface. We indi-

cate that these solutions can be used as a first approximation from spherical symmetry

to study rotating, inhomogeneous, dynamic and radiating astrophysical stars.
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Chapter 1

Introduction

In the study of the dynamics and geometry of relativistic cosmological models, there

are two main streams. The first focusses on the spacetime (Killing) symmetries of these

models as in Kramer et al (1980), Krasiński (1993). The second focusses on their co-

variant properties which arise from a 1+3 “threading” decomposition of the spacetime

manifold with respect to an invariantly defined normalised timelike congruence (Ehlers

(1961) and Ellis (1971)). It is a natural tendency to determine the covariant properties

of models when the main aim of analysis is imposed spacetime symmetries. However,

the converse case has not been systematically addressed.

The spacetimes that are Locally Rotationally Symmetric (LRS) have been studied in

detail and discussed many times in the literature in the cosmological context, i.e. with

a fluid matter source (see for example Ellis (1967), Stewart and Ellis (1968), Elst and

Ellis (1996), and the references therein). For spacetimes of this kind, there exist a con-

tinuous isotropy group at each point and hence, there is a multiply-transitive isometry

group acting on the spacetime manifold. The isotropies around a point in a space-

time with a fluid can occur as a one-dimensional or three-dimensional subgroup of the

full group of isometries, leaving the normalised 4-velocity of the matter flow invariant.

A three-dimensional group of isotropies at each point implies that the spacetime is

isotropic at every point and gives rise to the homogeneous and isotropic Friedmann-
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Lemâıtre-Robertson-Walker (FLRW) models. A one-dimensional group of isotropies at

each point corresponds to anisotropic, and in general, spatially inhomogeneous models

(generically with one or two centres where the isotropy group is three-dimensional).

However, it includes also some spatially homogeneous (Bianchi and Kantowski-Sachs)

models (see Ellis and MacCallum (1969), King and Ellis (1973)).

When the spacetime is LRS, there exists a unique preferred spatial direction at each

point. This preferred direction is covariantly defined by, for example, either a vorticity

vector field, an eigendirection of a rate of shear tensor field, or a non-vanishing non-

gravitational acceleration of the matter fluid elements. LRS spacetimes with a perfect

fluid matter source have been analysed and classified by Stewart and Ellis (1968) using

tetrad methods, and by Elst and Ellis (1996) using a 1+3 covariant approach. Using

a semi-tetrad covariant formalism, it was shown that the Einstein field equations can

be written as a set of first order equations of geometrical scalars as shown by Elst and

Ellis (1996) and Clarkson (2007). By analysing the consistency conditions of the field

equations, it was proven that a perfect fluid LRS spacetime cannot have simultane-

ous fluid rotation and spatial twist of the preferred spatial direction. Based on this,

the perfect fluid LRS spacetimes can be divided into three distinct classes. Class I

spacetimes are those where the rotation is non-zero but the twist vanishes. This class

was shown to be non-expanding, non-distorting and stationary and the solutions gen-

eralise the well known Gödel solution. For Class II spacetimes, both the rotation and

the twist vanish. These consist of the spherical, hyper-spherical, and plane symmetric

(cylindrical) solutions. The Class III spacetimes have no rotation or acceleration but

have non-zero twist of the preferred spatial direction. These spacetimes are spatially

homogeneous.

Though all these classes are of interest, and LRS-II solutions have been used exten-

sively to study spherically symmetric astrophysical objects, none of them are suitable

2



for modelling a dynamical rotating star (gravitational collapse of a rotating star, for

example). For LRS-I, the rotation is non-zero but the spacetime is stationary, yet the

other two LRS classes allow dynamical solutions with vanishing rotation. In this study

the three key questions are: By relaxing the condition of a perfect fluid, that is by intro-

ducing pressure anisotropy and heat flux, is it possible to have dynamical solutions with

non-zero rotation and non-zero twist? If yes, can these solutions be physical? What

are the local geometrical properties of such solutions?

In this dissertation we investigate in detail the above questions by using the semi-

tetrad 1+1+2 covariant formalism (Clarkson and Barrett (2003), Betschart and Clark-

son (2004), Clarkson (2007)). First, we establish the existence of such solutions and

then find the constraints on the thermodynamic quantities of matter that generate such

solutions. We then demonstrate that there exists physically realistic solutions where

the matter satisfies physically reasonable energy conditions.

The dissertation is organised as follows: In the next two chapters we describe briefly

the basic concepts of the local semi-tetrad 1+3 and 1+1+2 covariant formalisms. In the

subsequent chapters we discuss the various properties of LRS spacetimes and the field

equations written in terms of the 1+1+2 geometrical variables. In chapter 5, we then

proceed to show the existence of dynamic solutions for imperfect fluids (with pressure

anisotropy and heat flux) with non-zero rotation and spatial twist. We also transpar-

ently investigate the constraints that the thermodynamic quantities of the matter must

satisfy for such solutions to exist. A brief algorithm is provided indicating how to solve

the system of field equations with the given initial data. Finally, we briefly discuss how

these solutions can be used as a first approximation to spherical symmetry in order to

study rotating, inhomogeneous and dynamic astrophysical objects.

Unless otherwise specified, we use natural units (c = 8πG = 1) and (−,+,+,+) signa-

3



ture throughout this study. The symbol ∇ represents the usual covariant derivative.

The Riemann tensor is defined by

Ra
bcd = Γabd,c − Γabc,d + ΓebdΓ

a
ce − ΓebcΓ

a
de , (1.0.1)

and the Ricci tensor is obtained by contracting the first and third indices

Rab = gcdRcadb . (1.0.2)

The Hilbert–Einstein action in the presence of matter is given by

S =
1

2

∫
d4x
√
−g [R− 2Λ− 2Lm] , (1.0.3)

where Lm is the matter contribution and Λ is the cosmological contant. Then variation

of S gives the Einstein field equations as

Gab + Λgab = Tab , (1.0.4)

where

Gab = Rab −
1

2
Rgab , (1.0.5)

is the Einstein tensor and

R = Ra
a , (1.0.6)

is the Ricci scalar.
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Chapter 2

1+3 decomposition of spacetime

2.1 Introduction

The 1+3 approach is helpful for understanding various physical and geometrical aspects

of relativistic fluid flows, either in the gauge invariant, covariant perturbation formalism

or in non-linear GR studies as shown by Ellis et al (2007). It provides a covariant

description of the spacetime in terms of 3-vectors, scalars and the projected symmetric

trace-free (PSTF) 3-tensors.

2.2 Kinematics

With respect to a timelike congruence, the spacetime can be locally decomposed into

time and space parts. One natural way to define such a timelike congruence would be

along the matter flow, with the four-velocity defined as

ua =
dxa

dτ
, with uaua = −1, (2.2.1)

where τ is the proper time. Then the timelike unit vector ua is split in the form R⊗V ,

where V is the 3-space which is perpendicular to ua and R represents the timeline along

the unit vector ua. This vector field ua provides a timelike threading for the spacetime.
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Given the four-velocity ua, we have the unique projection tensors

Ua
b = −uaub, (2.2.2)

hab = gab + uaub, (2.2.3)

where hab is the projection tensor that projects any 4D vector or tensor onto the local

3-space orthogonal to ua. It follows that

Ua
cU

c
b = −Ua

b, Ua
bu
b = ua, Ua

a = 1,

habu
b = 0, hach

c
b = hab, haa = 3.

With the choice of this timelike vector, we have two well defined directional derivatives.

We have the vector ua which is used to define the covariant time derivative (denoted

by a dot) for any tensor Sa..bc..d, given by

Ṡa..bc..d = ue∇eS
a..b

c..d, (2.2.4)

and we have the tensor hab which is used to define the fully orthogonally projected

covariant derivative D for any tensor Sa..bc..d:

DeS
a..b

c..d = hafh
p
c...h

b
gh

q
dh

r
e∇rS

f..g
p..q , (2.2.5)

with total projection on all the free indices. The splitting of the spacetime gives a

3-volume element

εabc = ηabcdu
d, where εabc = ε[abc] and εabcu

c = 0. (2.2.6)

Since ηabcd is the four-dimensional volume element, i.e., ηabcd =
√
|det g|δ0

[a δ
1
b δ

2
cδ

3
d], we

have

ηabcd = 2u[a ε bcd]. (2.2.7)
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Since ηabcd is skew-symmetric, the following contractions hold

εabcε
def = 3!hd[ah

e
bh
f
c], (2.2.8)

εabcε
dec = 2hd[ah

e
b], (2.2.9)

εabcε
dbc = 2hda, (2.2.10)

εabcε
abc = 3. (2.2.11)

The covariant derivative of ua can be decomposed as

∇aub = −uaAb +Daub, (2.2.12)

where Da totally projects derivatives onto the 3-space. Daub can be decomposed into

the trace part, the trace-free symmetric part and the trace-free anti-symmetric part,

i.e.,

∇aub = −uaAb +
1

3
Θhab + σab + εabcω

c, (2.2.13)

where Ab = u̇b is the acceleration, Θ = Dau
a represents the expansion of ua, σab =(

hc(ah
d
b) − 1

3
habh

cd
)
Dcud is the shear tensor that denotes the distortion and ωc is the

vorticity vector denoting the rotation. The Weyl curvature tensor Cabcd, which gives

the locally free gravitational field, is defined by the equation

Cab
cd = Rab

cd − 2g[a
[cR

b]
d] + 1

3
Rg[a

[c g
b]
d]. (2.2.14)

Since the Weyl tensor is trace-free on all its indices (Cc
acb = 0), the Ricci tensor Rab

is the trace of Rabcd, and Cabcd is the trace-free part. The Weyl tensor can be split

relative to ua into the electric and magnetic Weyl curvature parts as

Eab = Cabcdu
bud (2.2.15)

⇒ Ea
a = 0, Eab = E〈ab〉, Eabu

b = 0, (2.2.16)
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and

Hab = 1
2
εadeC

de
bcu

c (2.2.17)

⇒ Ha
a = 0, Hab = H〈ab〉, Habu

b = 0. (2.2.18)

The energy momentum tensor of matter can be decomposed similarly as

Tab = µuaub + qaub + qbua + phab + πab , (2.2.19)

where p = (1/3)habTab is the isotropic pressure, µ = Tabu
aub is the energy density,

qa = q〈a〉 = −hcaTcdud is the 3-vector that defines the heat flux, and πab = π〈ab〉 is the

anisotropic stress.

We can now write all the Ricci identities and doubly contracted Bianchi identities

for these geometrical variables (see Elst and Ellis (1973)).

2.3 Ricci identities

2.3.1 Time derivative equations

Θ̇−Dau̇
a = −1

3
Θ2 + (u̇au̇

a)−
(
ΣabΣ

ab
)

+ 2 (ΩaΩ
a)

−1
2

(µ+ 3p) + Λ, (2.3.1)

Σ̇〈ab〉 −D〈au̇b〉 = −2
3
ΘΣab + u̇〈au̇b〉 − Σ〈acΣ

b〉c − Ω〈aΩb〉

−
(
Eab − 1

2
πab
)
, (2.3.2)

Ω̇〈a〉 − 1
2
εabcDbu̇c = −2

3
ΘΩa + Σa

bΩ
b. (2.3.3)
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2.3.2 Constraint equations

0 = (C1)a = DbΣ
ab − 2

3
DaΘ + εabc [DbΩc + 2u̇bΩc] + qa, (2.3.4)

0 = (C2) = DaΩ
a − (u̇aΩ

a) , (2.3.5)

0 = (C3)ab = Hab + 2u̇〈aΩb〉 +D〈aΩb〉 − εcd〈aDcΣ
b〉
d . (2.3.6)

2.4 (Doubly) contracted Bianchi identities

2.4.1 Time derivative equations

(
Ė 〈ab〉 + 1

2
π̇〈ab〉

)
− εcd〈aDcHb〉

d + 1
2
D〈aqb〉 = −1

2
(µ+ p)Σab −Θ

(
Eab + 1

6
πab
)

+3Σ〈ac
(
Eb〈c − 1

6
πb〉c
)
− u̇〈aqb〉

εcd〈a
[
2u̇cHb〉

d + Ωc

(
Eb〉d

+ 1
2
π
b〉
d

)]
, (2.4.1)

Ḣ〈ab〉 + εcd〈aDc

(
Eb〉d − 1

2
π
b〉
d

)
= −ΘHab + 3Σ〈acHb〉c + 3

2
Ω〈aqb〉

−εcd〈a
[
2u̇cEb〉d − 1

2
Σb〉

cqd

− ΩcHb〉
d

]
, (2.4.2)

q̇〈a〉 +Dap+Dbπ
ab = 4

3
Θqa − Σa

bq
b − (µ+ p)u̇a

−u̇bπab − εabcΩbqc, (2.4.3)

µ̇+Daq
a = −Θ(µ+ p)− 2(u̇aq

a)

−(Σabπ
ab). (2.4.4)
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2.4.2 Constraint equations

0 = (C4)a = Db

(
Eab + 1

2
πab
)
− 1

3
Daµ+ 1

3
Θqa − 1

2
Σa

b − 3ΩbHab

−εabc
[
ΣbdH d

c − 3
2
Ωbqc

]
, (2.4.5)

0 = (C5)a = DbHab + (µ+ p)Ωa + εabc
[

1
2
Dbqc + Σbd

(
E d
c + 1

2
π d
c

)]
+3Ωb

(
Eab − 1

6
πab
)
. (2.4.6)
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Chapter 3

1+1+2 decomposition of spacetime

3.1 Introduction

The recently developed 1+1+2 decomposition by Clarkson and Barrett (2003) is a

natural extension of the 1+3 decomposition. This approach is optimised for spacetimes

having a preferred spatial direction. In this approach, the 3-space is further decomposed

with respect to this given spatial direction, i.e., we now have another split along a

preferred spatial direction.

3.2 Kinematics

In the 1+3 approach, the timelike unit vector ua is split in the form R⊗V . In this split,

V is the 3-space which is perpendicular to ua and R represents the timeline along the

unit vector ua. In the 1+1+2 approach, the 3-space V is split furthur by introducing

a unit vector ea that is orthogonal to ua. We choose this spacelike vector field ea such

that

uaea = 0 and eaea = 1. (3.2.1)

11



By combining ea with the 1+3 projection tensor h b
a ≡ g b

a + uau
b, we get the new

projection tensor N b
a which is given by

N b
a ≡ h b

a − eaeb = g b
a + uau

b − eaeb . (3.2.2)

This tensor projects vectors orthogonal to ea and ua onto local 2-spaces, defined as

sheets (note that these are not subspaces of the 3-space if the twist of ea is non-zero).

Thus

eaNab = 0 = uaNab, Na
a = 2. (3.2.3)

The volume element of this sheet is then the Levi-Civita 2-tensor

εab ≡ εabce
c = udηdabce

c . (3.2.4)

Using the definitions of εab and Nab, we have the following conditions

εabe
b = 0 = ε(ab), (3.2.5)

εabc = eaεbc − ebεac + ecεab, (3.2.6)

εabε
cd = Na

cNb
d −Na

dNb
c, (3.2.7)

εa
cεbc = Nab, (3.2.8)

εabεab = 2. (3.2.9)

Any 3-vector ψa can now be irreducibly split into a scalar, Ψ, which is the vector

component parallel to ea, and a vector, Ψa that lies in the sheet by

ψa = Ψea + Ψa, where Ψ ≡ ψae
a ,

and Ψa ≡ Nabψb ≡ ψā, (3.2.10)

12



where the bar over the index denotes projection with Nab. Similarly, the same decom-

position can be done for any 3-tensor, ψab as follows,

ψab = ψ〈ab〉 = Ψ
(
eaeb − 1

2
Nab

)
+ 2Ψ(aeb) + Ψab , (3.2.11)

where

Ψ ≡ eaebψab = −Nabψab ,

Ψa ≡ N b
a e

cψbc = Ψā ,

Ψab ≡
(
N c

(a N
d

b) − 1
2
NabN

cd
)
ψcd ≡ Ψ{ab} . (3.2.12)

In the above, the curly brackets denote the PSTF tensors on the 2-sheet, i.e. the part

of the tensor which is PSTF with respect to ea. Apart from the ‘time’ (dot) derivative

of an object (such as a scalar, vector or tensor), we introduce two new derivatives,

which for any tensor ψa...b
c...d:

ψ̂a..b
c..d ≡ efDfψa..b

c..d , (3.2.13)

δfψa..b
c..d ≡ Na

f ...Nb
gNh

c..Ni
dNf

jDjψf..g
i..j . (3.2.14)

The derivative along the ea vector-field in the surfaces orthogonal to ua is called the

hat-derivative, while the derivative projected onto the sheet is called the δ -derivative.

This projection is on every free index. We also have

hab = 0 = Nab, N〈ab〉 = −e〈aeb〉 = Nab − 2
3
hab. (3.2.15)

By taking ea to be arbitrary and using (3.2.10) and (3.2.11), the usual 1+3 kinematical

and Weyl quantities can now be split into the irreducible set

D1 = {Θ,A,Ω,Σ, E ,H,Aa,Σa, Ea,Ha,Σab, Eab,Hab}.
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The 4-acceleration, vorticity and shear split as

u̇a = Aea +Aa, (3.2.16)

ωa = Ωea + Ωa, (3.2.17)

σab = Σ
(
eaeb − 1

2
Nab

)
+ 2Σ(aeb) + Σab. (3.2.18)

For the electric and magnetic Weyl tensors we get

Eab = E
(
eaeb − 1

2
Nab

)
+ 2E(aeb) + Eab, (3.2.19)

Hab = H
(
eaeb − 1

2
Nab

)
+ 2H(aeb) +Hab. (3.2.20)

Similarly the fluid variables, qa and πab, may be split as follows

qa = Qea +Qa, (3.2.21)

πab = Π
(
eaeb − 1

2
Nab

)
+ 2Π(aeb) + Πab. (3.2.22)

By decomposing the covariant derivative of ea in the direction orthogonal to ua into

it’s irreducible parts, i.e., the spatial derivative of ea, we get

Daeb = eaab +
1

2
φNab + ξεab + ζab , (3.2.23)

where

aa ≡ ecDcea = êa , (3.2.24)

φ ≡ δae
a , (3.2.25)

ξ ≡ 1

2
εabδaeb , (3.2.26)

ζab ≡ δ{aeb} . (3.2.27)
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Here, φ represents the expansion of the sheet, ζab is the shear, i.e., the distortion of the

sheet, aa its acceleration and ξ is its (spatial) vorticity, i.e. the “twisting” or rotation

of the sheet.
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Chapter 4

LRS spacetimes

4.1 Introduction

For a spacetime manifold (M, g), if every point p ∈ (M, g) has a continuous non-trivial

isotropy group then the manifold is called locally isotropic. When this isotropy group

consists of spatial rotations, the spacetime is called locally rotationally symmetric or

LRS (Elst and Ellis (1996)). In LRS spacetimes, there exists a unique, preferred spatial

direction at each point and this preferred direction is covariantly defined. This direc-

tion creates a local axis of symmetry, i.e., all observations are identical under rotations

about it. In particular, they are the same in all spatial directions that are perpen-

dicular to that direction. Hence the 1+1+2 decomposition described in the previous

section is ideally suited for the study of LRS spacetimes.

We can immediately see that if we choose the spacelike unit vector ea along the pre-

ferred spatial direction of the spacetime, then by symmetry all the sheet vectors and

tensors vanish identically. Thus, all the non-zero 1+1+2 variables are covariantly de-

fined scalars. The geometrical scalar variables that fully describe LRS spacetimes are

D2 = {A,Θ, φ, ξ,Σ,Ω, E ,H, µ, p,Π, Q} .
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Decomposing the Ricci identities for ua and ea and the doubly contracted Bianchi

identities, we now get the following field equations for LRS spacetimes:

Evolution:

φ̇ =
(

2
3
Θ− Σ

) (
A− 1

2
φ
)

+ 2ξΩ +Q , (4.1.1)

ξ̇ =
(

1
2
Σ− 1

3
Θ
)
ξ +

(
A− 1

2
φ
)

Ω

+1
2
H, (4.1.2)

Ω̇ = Aξ + Ω
(
Σ− 2

3
Θ
)
, (4.1.3)

Ḣ = −3ξE +
(

3
2
Σ−Θ

)
H + ΩQ

+3
2
ξΠ. (4.1.4)

Propagation:

φ̂ = −1
2
φ2 +

(
1
3
Θ + Σ

) (
2
3
Θ− Σ

)
+2ξ2 − 2

3
(µ+ Λ)− E − 1

2
Π, (4.1.5)

ξ̂ = −φξ +
(

1
3
Θ + Σ

)
Ω, (4.1.6)

Σ̂− 2
3
Θ̂ = −3

2
φΣ− 2ξΩ−Q , (4.1.7)

Ω̂ = (A− φ) Ω, (4.1.8)

Ê − 1
3
µ̂+ 1

2
Π̂ = −3

2
φ
(
E + 1

2
Π
)

+ 3ΩH

+
(

1
2
Σ− 1

3
Θ
)
Q, (4.1.9)

Ĥ = −
(
3E + µ+ p− 1

2
Π
)

Ω

−3
2
φH−Qξ. (4.1.10)
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Propagation/evolution:

Â − Θ̇ = − (A+ φ)A+ 1
3
Θ2 + 3

2
Σ2

−2Ω2 + 1
2

(µ+ 3p− 2Λ) , (4.1.11)

µ̇+ Q̂ = −Θ (µ+ p)− (φ+ 2A)Q

−3
2
ΣΠ, (4.1.12)

Q̇+ p̂+ Π̂ = −
(

3
2
φ+A

)
Π−

(
4
3
Θ + Σ

)
Q

− (µ+ p)A , (4.1.13)

Σ̇− 2
3
Â = 1

3
(2A− φ)A−

(
2
3
Θ + 1

2
Σ
)

Σ

−2
3
Ω2 − E + 1

2
Π , (4.1.14)

Ė + 1
2
Π̇ + 1

3
Q̂ = +

(
3
2
Σ−Θ

)
E − 1

2
(µ+ p) Σ

−1
2

(
1
3
Θ + 1

2
Σ
)

Π + 3ξH

+1
3

(
1
2
φ− 2A

)
Q. (4.1.15)

Constraint:

H = 3ξΣ− (2A− φ) Ω. (4.1.16)

Also we give the commutation relation for the dot and hat derivatives, for LRS space-

times:

ˆ̇Ψ− ˙̂
Ψ = −AΨ̇ +

(
1
3
Θ + Σ

)
Ψ̂, (4.1.17)

which holds true for any scalar Ψ.
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4.2 Perfect fluids

Considering a perfect fluid with Q = Π = 0, we can write the full covariant derivatives

of the vectors ua and ea in terms of the LRS scalars in the following way:

∇aub = −Auaeb +
(

1
3
Θ + Σ

)
eaeb +

(
1
3
Θ− 1

2
Σ
)
Nab + Ωεab, (4.2.1)

∇aeb = −Auaub +
(

1
3
Θ + Σ

)
eaub + 1

2
φNab + ξεab. (4.2.2)

Here, the alternating Levi-Cevita 2-tensor εab is defined in the following way from ηdabc

as εab ≡ ηdabcud. By antisymmetry

εabcua = 0, εabcεabc = 6,

⇒ εabua = εabea = 0, εabεab = 2. (4.2.3)

From equations (4.2.1), (4.2.2) and (4.2.3), we get an important result:

Ω = 1
2
εab∇aub, ξ = 1

2
εab∇aeb. (4.2.4)

Now for any scalar f we have

∇bf = −ḟub + f̂ eb. (4.2.5)

Differentiating again, we get

∇a∇bf = −
(
∇aḟ

)
ub − ḟ (∇aub) +

(
∇af̂

)
eb + f̂ (∇aeb) . (4.2.6)

By contracting with εab, the LHS becomes zero. Using (4.2.3) and (4.2.4), the RHS

becomes

ḟΩ = f̂ ξ. (4.2.7)
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Now, letting f = Ω we have

Ω̇Ω = Ω̂ξ,

and using (4.1.3) and (4.1.8) we get

Ω
[

2
3
ΘΩ− ΣΩ− φξ

]
= 0. (4.2.8)

Now letting f = ξ and using (4.1.2), (4.1.6) and (4.1.16) we arrive at

ξ
[

2
3
ΘΩ− ΣΩ− φξ

]
= 0. (4.2.9)

For the LRS equation to be consistent, we can see from (4.2.8) and (4.2.9) that we can

have either

Ω = ξ = 0, (4.2.10)

or

2
3
ΘΩ− ΣΩ− φξ = 0. (4.2.11)

We note here that (4.2.10) ⇒ (4.2.11) but the converse is not true. Now letting f = p

we get ṗΩ = p̂ξ. From (4.1.13) we have

p̂ = − (µ+ p)A, (4.2.12)

and if p = p (µ), then ṗ = ∂p
∂µ
µ̇. We also have, from (4.1.12),

µ̇ = −Θ (µ+ p) . (4.2.13)

Putting equations (4.2.12) and (4.2.13) together results in

∂p
∂µ

ΘΩ = Aξ. (4.2.14)
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Now from (4.1.9), the constraint equation for the Weyl scalar E is given by

Ê − 1
3
µ̂ = −3

2
φE + 3ΩH. (4.2.15)

Since this is true for all epochs, we can take the time derivative

˙̂E − 1
3

˙̂µ = −3
2
E φ̇− 3

2
φĖ + 3Ω̇H + 3ΩḢ. (4.2.16)

Now using our commutation relation ˆ̇Ψ− ˙̂
Ψ given by (4.1.17) we get

˙̂E = ˆ̇E +AĖ −
(

1
3
Θ + Σ

)
Ê ,

˙̂µ = ˆ̇µ+Aµ̇−
(

1
3
Θ + Σ

)
µ̂.

Hence

˙̂E − 1
3

˙̂µ = ˆ̇E − 1
3
ˆ̇µ+A

(
Ė − 1

3
µ̇
)
−
(

1
3
Θ + Σ

) (
−3

2
φE + 3ΩH

)
. (4.2.17)

Now from (4.1.15) and (4.2.13) we have

Ė =
(

3
2
Σ−Θ

)
E + 3ξH− 1

2
(µ+ p) Σ, (4.2.18)

µ̇ = −Θ (µ+ p) . (4.2.19)

Therefore we get

Ė − 1
3
µ̇ =

(
Σ− 2

3
Θ
) [

3
2

(
E − 1

3
µ
)
− p

2

]
+ 3ξH. (4.2.20)

From (4.1.7) and (4.1.10) we have

Σ̂− 2
3
Θ̂ = −3

2
φΣ− 2ξΩ, (4.2.21)

Ĥ = −3
2
φH− (3E + µ+ p) Ω. (4.2.22)
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Now using (4.2.12), (4.2.15), (4.2.21) and (4.2.22) we get

ˆ̇E − 1
3
ˆ̇µ =

(
−3

2
φΣ− 2ξΩ

) [
3
2

(
E − 1

3
µ
)
− p

2

]
+ 3ΩH

(
1
3
Θ + Σ

)
+
(
Σ− 2

3
Θ
) [

3
2

(
−3

2
φE + 3ΩH

)
+ 1

2
(µ+ p)A

]
−15

2
φHξ − 3ξΩ (3E + µ+ p) . (4.2.23)

Using (4.2.15), (4.2.20) and (4.2.23) we obtain

˙̂E − 1
3

˙̂µ =
(
−3

2
φΣ− 2ξΩ

) [
3
2
E − 1

2
(µ+ p)

]
− 15

2
φHξ − 3ξΩ (3E + µ+ p)

+
(
Σ− 2

3
Θ
) [
−9

4
φE + 9

2
ΩH + 1

2
(µ+ p)A

]
+ 3ΩH

(
1
3
Θ + Σ

)
A
[(

Σ− 2
3
Θ
) (

3
2
E − 1

2
(µ+ p) + 3ξH

)
−
(

1
3
Θ + Σ

) (
−3

2
φE
)

+3ΩH] . (4.2.24)

Similarly, by taking the dot derivative of the RHS of (4.2.15) and using (4.1.3) and

(4.2.18) along with

φ̇ =
(

2
3
Θ− Σ

) (
A− 1

2
φ
)
− 2ξΩ,

Ḣ = −3ξE
(

3
2
Σ−Θ

)
H,

we finally arrive at

˙̂E − 1
3

˙̂µ = −3
2
E
[(

2
3
Θ− Σ

) (
A− 1

2
φ
)

+ 2ξΩ
]

−3
2
φ
[(

3
2
Σ−Θ

)
E + 3ξH− 1

2
(µ+ p) Σ

]
+3H

[
Aξ + Ω

(
Σ− 2

3
Θ
)]

+3Ω
[
−3ξE +

(
3
2
Σ−Θ

)
H
]
. (4.2.25)

Equating (4.2.24) to (4.2.25) and simplifying we get

3H
(

2
3
ΩΘ = ΣΩ− φξ

)
− 2Ωξ (µ+ p) = 0. (4.2.26)
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Using (4.2.8), we see that the first term of (4.2.26) vanishes, hence we have

Ωξ (µ+ p) = 0. (4.2.27)

For a perfect fluid obeying the Weak Energy Condition (WEC), we have µ+ p > 0

⇒ Ωξ = 0. (4.2.28)

Therefore, for a perfect fluid LRS spacetime, either ua or ea must be hypersurface

orthogonal. Due to this condition, the spacetime is divided into 3 distinct subclasses,

i.e., LRS class I (Ω 6= 0), LRS class II (ξ = 0 = Ω) and LRS class III (ξ 6= 0).

4.3 LRS class I: Ω 6= 0

In this class ea is hypersurface orthogonal and ua is twisting. When Ω 6= 0, we see

that ⇒ ξ = 0 = Θ = Σ, ḟ = 0. Therefore models with LRS class I solutions can

neither expand nor distort. These models are stationary as the dot of all the scalar

quantities vanish, i.e., ∂t is a timelike Killing vector field and all spacetimes within

this LRS class will be stationary. Thus, there exists a G4 multiply-transitive group on

timelike 3-surfaces. The non-zero quantities in general are µ, p, A, φ, E and H. The

set of equations needed to be solved in this LRS class is given by

Â = −φA−A2 − 2Ω2 + 1
2

(µ+ 3p) , (4.3.1)

Ω̂ = −φΩ +AΩ, (4.3.2)

A = − ∂p
∂µ
µ̂/ (µ+ p) , (4.3.3)

φ̂ = −φ2

2
+ φA+ 2Ω2 − (µ+ p) . (4.3.4)
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The magnitudes of the “electric” and “magnetic” parts of the Weyl curvature tensor

in these models are given by

E = −
√

3
2
φA−

√
3Ω2 + 1

2
√

3
(µ+ 3p) , (4.3.5)

H = −
√

3AΩ +
√

3
2
φΩ. (4.3.6)

When the acceleration is non-zero, a coupled second order ordinary differential equation

for the spatial distribution of the energy density, can be derived by combining equations

(4.3.1) and (4.3.3), which is

∂p
∂µ

ˆ̂µ+ ∂2p
∂µ2

µ̂2 + φ ∂p
∂µ
µ̂−

(
2 ∂p
∂µ

+ 1
)
∂p
∂µ
µ̂2/ (µ+ p)

−2 (µ+ p) Ω2 + 1
2

(µ+ p) (µ+ 3p) = 0. (4.3.7)

4.3.1 Solutions with φ = 0

This subclass of solutions does exist, but for consistency, these solutions demand an

equation of state of the form p (µ) = −1
3
µ + const. This is usually dismissed as

unphysical for conventional matter distributions. Thus one equation remains to be

solved. This is an ordinary differential equation describing the spatial distribution of

the total energy density µ. It follows from equation (4.3.1) and is given by

ˆ̂µ− 1
3
µ̂/ (µ+ p) + 3

2

(
µ2 − p2

)
= 0. (4.3.8)

For the remaining non-zero quantities, we have the following expressions:

A = 1
3
µ̂/ (µ+ p) ,

Ω =
(

1
2

)1
2 (µ+ p)

1
2 ,

E = − 1√
3
µ,

H = −
(

1
6

)1
2 µ̂/ (µ+ p)

1
2 . (4.3.9)
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Models of this kind are considered as non-physical generalisations of the Gödel LRS

case.

4.3.2 Solutions with p = 0

In this subclass of dust models, we have p = 0 ⇔ A = 0. Again, one ordinary

differential equation for µ remains to be solved. Following from equation (4.3.4), it is

given by

ˆ̂µ− 5
4
µ̂2 − µ2 = 0. (4.3.10)

It follows that

φ = −1
2
µ̂/µ,

Ω =
(

1
4

)1
2 µ

1
2 ,

E = − 1
4
√

3
µ,

H = −
√

3
4

(
1
4

)1
2 µ̂/µ

1
2 . (4.3.11)

Models of this kind are also considered as generalisations of the Gödel LRS case. Now

if we were to impose the dynamical restriction A = 0 instead of p = 0, then equation

(4.3.3) would be solved by either ∂p
∂µ

= 0 ⇒ p = const, or µ̂ = 0. These lead to either

a slight generalisation of (4.3.10) or f̂ = 0 (Gödel’s LRS case).

4.3.3 Solutions with H = 0

From (4.3.6), if we apply the dynamical restriction H = 0 then ⇒ φ = 2A . Then it

follows from equations (4.3.1) and (4.3.4) that

Ω2 = −A2 + 1
3

(µ+ 2p) . (4.3.12)

We see that, on using (4.3.3), consistency of (4.3.2) demands that ∂p
∂µ

= 1

⇒ p (µ) = µ + const.
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4.3.4 Solutions with E = 0

From equation (4.3.5), if we apply the dynamical restriction E = 0, then

Ω2 = −φ
2
A+ 1

6
(µ+ 3p) . (4.3.13)

In order to obtain a purely “magnetic” solution, consistency of equation (4.3.2) requires

that

A2 −
[
φ
2

+ 2
3φ
p+ 1

3φ

[
1
3

(
∂p
∂µ

)−1

+ 1

]
(µ+ p)

]
A+ 1

6
(µ+ 3p) = 0. (4.3.14)

4.3.5 Gödel’s rotating model of the Universe: f̂ = 0

By imposing the condition f̂ = 0, the symmetry group becomes aG5 multiply-transitive

group on the full spacetime manifold which, consequently, is now homogeneous. Since

the spatial derivatives of all non-zero scalar quantities f vanishes, we have following

from equation (4.3.3), that the matter moves geodesically: A = 0. On the other hand,

since no spacelike 3-surfaces of constant f exist (group orbits of a simply-transitive G3),

models of this LRS subclass are not spatially homogeneous. Equation (4.3.2) shows

that φ = 0. From equation (4.3.6), we find that the magnitude of the “magnetic” part

of the Weyl tensor is zero, i.e. H = 0. All the scalar quantities f are constant on the

spacetime manifold. Therefore, the remaining equations are purely algebraic. From

equations (4.3.1), (4.3.4) and (4.3.5) we find

2Ω2 = 1
2

(µ+ 3p) = (µ+ p) , (4.3.15)

E = −
√

3Ω2 + 1
2
√

3
(µ+ 3p) . (4.3.16)

From the above, it can be seen that this system of algebraic equations is consistent,

as long as the equation of state is p (µ) = µ, that is for stiff matter. An equivalent

formation would be a combination of dust matter (p = 0) with a negative cosmological
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constant (Λ = 0) as shown by Stephani (1991). This equivalent configuration gives

Gödel’s model of the Universe (Gödel (1949)).

It is observed that LRS class I of perfect fluid spacetime geometries, with the equation

of state p = p (µ), comprises of a variety of stationary solutions. We note that, apart

from the Gödel model, these solutions are differentially rotating. However, most of

them are of little interest for astrophysical and cosmological purposes. This is due to

the fact that it is difficult to see how, given non-zero vorticity, the geometry of a star

model could correspond to exact rotational symmetry about every point.

4.4 LRS class II: ξ = 0 = Ω

Here, both ea and ua are hypersurface orthogonal. When ξ = 0 = Ω, there exist 3-

surfaces orthogonal to the fluid flow in which there acts a G3 multiply-transitive groups

on spacelike 2-surfaces orthogonal to ea. All models in this dynamic and spatially

inhomogeneous LRS class have vanishing “magnetic part” of the Weyl curvature tensor.

It follows from constraint equation (4.1.16) that

H = 0. (4.4.1)

The non-zero quantities in this case are µ, p, Θ, Σ, A, φ and E .

From the Gauss equation for ea and the 3-Ricci identities (see Stephani (1991)), the

3-Ricci curvature tensor of the spacelike 3-surfaces orthogonal to ua is determined to

be

3Rab = −1
3

[
φ̂+ 2K

]
eab − 1

3

[
2φ̂+ 3

2
φ2 − 2K

]
hab, (4.4.2)
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where K denotes the constant Gaussian curvature 2R := 2K of the 2D spacelike group.

Another constraint is the generalised Friedmann equation given by

3R = −
[
2φ̂+ 3

2
φ2 − 2K

]
= 2µ− 2

3
Θ2 + 2Σ2. (4.4.3)

From the above, we obtain an expression for φ̂ as

φ̂ = −3
4
φ2 +K − µ+ 1

3
Θ2 − Σ2. (4.4.4)

The purely algebraic expression for E is

E = 1
2
√

3
µ+

√
3

8
φ2 −

√
3

2
K − 1

6
√

3

[
Θ−
√

3Σ
]2

. (4.4.5)

From this, the set of equations defining this LRS class is

Θ̇ = −1
3
Θ2 + Â+ φA+A2 − 2Σ2 − 1

2
(µ+ 3p) , (4.4.6)

Σ̇ = 1√
3
Â − φ

2
√

3
A+ 1√

3
A2 + 1

6
√

3
Θ2 −ΘΣ− 1

2
√

3
Σ2

− 1
2
√

3
µ−

√
3

8
φ2 +

√
3

2
K, (4.4.7)

µ̇ = − (µ+ p) Θ, (4.4.8)

φ̇ = −φ
3
Θ + φ√

3
Σ + 2

3
ΘA− 2√

3
ΣA, (4.4.9)

K̇ = −2
3
KΘ + 2√

3
KΣ, (4.4.10)

Σ̂ = 1√
3
Θ̂− 3

2
φΣ, (4.4.11)

A = − ∂p
∂µ
µ̂/ (µ+ p) , (4.4.12)

φ̂ = −3
4
φ2 +K − µ+ 1

3
Θ2Σ2, (4.4.13)

K̂ = −φK. (4.4.14)

The evolution equation (4.4.10) arises from demanding conservation of the time along

the matter flow lines of the constraint equation (4.4.4). However, equation (4.4.14) is
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a result of constraint (4.2.15). The evolution equation for the 3-Ricci scalar equation

(4.4.3) is

3R = −1
3

[
2Θ +

√
3Σ
] [

3R + 2φA
]

+ 2
√

3
[
K − φ2

4

]
Σ

= −4
3

[
Θ−
√

3Σ
] [
Â+A2

]
. (4.4.15)

Alternatively, if we use the set S4 = {µ,Θ,Σ, E} as the four generalised coordinates for

the study of functional dependencies in models that have a non-zero expansion rate,

then one can solve for K obtaining

K = 1
3
µ+ φ2

4
− 2√

3
E − 1

9

[
Θ−
√

3Σ
]2

. (4.4.16)

The relevant dynamical equations are

Θ̇ = −1
3
Θ2 + Â+ φA+A2 − 2Σ2 − 1

2
(µ+ 3p) , (4.4.17)

Σ̇ = 1√
3
Â − φ

2
√

3
A+ 1√

3
A2 − 2

3
ΘΣ− 1√

3
Σ2 − E , (4.4.18)

Ė = −1
2

(µ+ p) Σ +
√

3EΣ−ΘE , (4.4.19)

µ̇ = − (µ+ p) Θ, (4.4.20)

φ̇ = −φ
3
Θ + φ√

3
Σ + 2

3
ΘA− 2√

3
ΣA, (4.4.21)

Σ̂ = 1√
3
Θ̂− 3

2
φΣ, (4.4.22)

Ê = −3
2
φE + 1

2
√

3
µ̂, (4.4.23)

A = − ∂p
∂µ
µ̂/ (µ+ p) , (4.4.24)

φ̂ = 2
9
Θ2 + 2

3
√

3
ΘΣ− 4

3
Σ2 − 2√

3
E − φ2

2
− 2

3
µ. (4.4.25)

If local comoving coordinates are chosen, then the line element has the following form

(cf. equation (2.8) of Stewart and Ellis (1968), and equation (13.2) of Kramer et al

(1980))

ds2 = X2(x, t)dx2 + Y 2(x, t)
[
dy2 + Σ2(y)dz2

]
− F−2(x, t)dt2. (4.4.26)
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Then, for scalars φ, Θ, Σ and A, one obtains the following relations:

φ = 2
X
Ŷ
Y
, (4.4.27)

Θ = F
(
Ẋ
X

+ 2 Ẏ
Y

)
, (4.4.28)

Σ = F√
3

(
Ẋ
X
− Ẏ

Y

)
, (4.4.29)

A = − 1
X
F̂
F
. (4.4.30)

Integrating equations (4.4.10) and (4.4.14) gives

K = C1

Y 2 , (4.4.31)

where C1 is an integration constant. Then, from equation (4.4.3) we obtain the differ-

ential equation

3R = − 2
X2

[
2

ˆ̂
Y
Y
− 2 X̂

X
Ŷ
Y

+
(
Ŷ
Y

)2
]

+ 2C1

Y 2 . (4.4.32)

Exact solutions to the dynamical equations within the LRS class, for the spherically

symmetric case K > 0, have been discussed by Kramer et al (1980).

Using our relation

˙̂
f = ˆ̇f +Aḟ − 2√

3
Σf̂ − 1

3
Θf̂ , (4.4.33)

from the set of equations (4.4.17)-(4.4.25), the following relations showing the non-

linear growth of spatial inhomogeneities within the LRS class can be derived (cf. Ellis

and Bruni (1989), Bruni et al (1992))

˙̂µ = −2
3

[
2Θ +

√
3Σ
]
µ̂− (µ+ p) Θ̂, (4.4.34)

˙̂
Θ = −

[
Θ + 2

√
3Σ
]

Θ̂ +
ˆ̂A+ φÂ+ 3AÂ+ 6φΣ2 −A

[
1
9
Θ2

− 2
3
√

3
ΘΣ + 10

3
Σ2 + 2√

3
E + φ2

2
− 1

3
µ− 1

2
(µ+ p)

(
∂p
∂µ

)−1

− φA−A2
]
, (4.4.35)
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˙̂
Σ = − 1√

3

[
Θ + 2

√
3Σ
]

Θ̂ + 1√
3

ˆ̂A− φ

2
√

3
Â+

√
3AÂ+ 2

√
3φΣ2

+3
2
φΘΣ + 3

2
φE − 1√

3
A
[

1
9
Θ2 + 7

3
√

3
ΘΣ + 1

3
Σ2 + 2√

3
E − φ2

4

− 1
3
µ− 1

2
(µ+ p)

(
∂p
∂µ

)−1

+ φ
2
A−A2

]
, (4.4.36)

˙̂E = − 1
3
√

3

[
2Θ +

√
3Σ
]
µ̂− 1

2
√

3
(µ+ p) Θ̂ + 3

4
φΣ (µ+ p)

[2φ−A]
[
Θ−
√

3Σ
]
E , (4.4.37)

˙̂
φ = 2

3

[
Θ−
√

3Σ
]
Â − 4

27
Θ3 − 2

3
√

3
Θ2Σ + 2

3
ΘΣ2 + 4

3
√

3
Σ3

+φ2

3

[
Θ−
√

3Σ
]

+ 2
3
√

3

[
2Θ +

√
3Σ
] [
E + 1√

3
µ
]

−A
[

1
3
φΘ− 4√

3
φΣ− 2

3
ΘA+ 2√

3
ΣA
]
, (4.4.38)

˙3R̂ = −2
[
Θ +
√

3
(

1 + ∂p
∂µ

)
Σ
]
µ̂+ 2φΣ

[
ΘΣ + 5

√
3Σ2 + 6E

]
+
[

16
9

Θ2 + 4
3
√

3
ΘΣ− 20

3
Σ2 − 2φA− 4√

3
E − 4

3
µ
]

Θ̂

−4
3

[
Θ−
√

3Σ
]

ˆ̂A− 4
3
φ
[
Θ + 2

√
3Σ
]
Â − 4

[
Θ−
√

3Σ
]
AÂ

−A
[
− 4

27
Θ3 + 4

3
√

3
Θ2Σ− 4

3
ΘΣ2 + 4

3
√

3
Σ3 − 8

3
√

3

[
Θ−
√

3Σ
]
E

4
3

[
Θ + 2

√
3Σ
]
φA+ 2

3
√

3
(7µ+ 9p) Σ + 4

9
µΘ− 2

3
φ2
[
Θ + 2

√
3Σ
]

+ 4
3

[
Θ−
√

3Σ
]
A2

]
. (4.4.39)

The set of equations (4.4.34)-(4.4.39), in their FLRW-linearised form simplify consider-

ably. This could be used (as an example) to investigate covariant and gauge-invariant

spherically symmetric perturbations of an FLRW spacetime (see Ellis and Bruni (1989),

Bruni et al (1992)). The description of the scalar, or total energy density, perturbations

would be completely covered by only two equations from this set and the equations

underlying the evolution of the FLRW background spacetime geometry. The scalar

perturbations are the only ones contributing at linear order.

4.4.1 Spatially inhomogeneous LRS dust models

When imposing the condition p = 0 ⇔ A = 0, the cosmological models within this

LRS class are the Lemâıtre-Tolman-Bondi spherically symmetric solutions as shown
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by Lemâıtre (1933), Tolman (1934) and Bondi (1947). These spatially inhomogeneous

dust models have been discussed by Bruni et al (1995) and are known as the “silent”

class. The relevant set of equations are

Θ̇ = −1
3
Θ2 − 2Σ2 − 1

2
µ, (4.4.40)

Σ̇ = − 1√
3
Σ2 − 2

3
ΘΣ− E , (4.4.41)

Ė = −1
2
µΣ +

√
3EΣ−ΘE , (4.4.42)

µ̇ = −µΘ, (4.4.43)

φ̇ = −φ
3
Θ + φ√

3
Σ, (4.4.44)

Σ̂ = 1√
3
Θ̂− 3

2
φΣ, (4.4.45)

Ê = −3
2
φE + 1

2
√

3
µ̂. (4.4.46)

φ̂ = 2
9
Θ2 + 2

3
√

3
ΘΣ− 4

3
Σ2 − 2√

3
E − φ2

2
− 2

3
µ. (4.4.47)

For the spherically symmetric cas K > 0, exact solutions to the dynamical equations

within this LRS class have been discussed by Lemâıtre (1933), Tolman (1934), Bondi

(1947) and Kramer et al (1980). The more general case has been discussed by Ellis

(1967). In local comoving coordinates of equation (4.4.26), we have from equation

(4.4.30) that F = 1, for dust. The set of equations (4.4.34)-(4.4.39) simplify to become

˙̂A = −2
3

[
2Θ +

√
3Σ
]
µ̂− µΘ̂, (4.4.48)

˙̂
Θ = −1

2
µ̂−

[
Θ + 2

√
3Σ
]

Θ̂ + 6φΣ2, (4.4.49)

˙̂
Σ = − 1

2
√

3
µ̂− 1√

3

[
Θ + 2

√
3Σ
]

Θ̂ + 2
√

3φΣ2 + 3
2
φΘΣ + 3

2
φE , (4.4.50)

˙̂E = − 1
3
√

3

[
2Θ +

√
3Σ
]
µ− 1

2
√

3
µΘ̂ + 3

4
µφΣ + 2φE

[
Θ−
√

3Σ
]
, (4.4.51)

˙̂
φ = − 4

27
Θ3 − 2

3
√

3
Θ2Σ + 2

3
ΘΣ2 + 4

3
√

3
Σ3 + φ2

3

[
Θ−
√

3Σ
]

+ 2
3
√

3

[
2Θ−

√
3Σ
] [
E + 1√

3
µ
]
, (4.4.52)

˙3R̂ = −2
[
Θ +
√

3Σ
]
µ̂+

[
16
9

Θ2 + 4
3
√

3
ΘΣ− 20

3
Σ2 − 4√

3
E − 4

3
µ
]

Θ̂

+2φΣ
[
ΘΣ + 5

√
3Σ2 + 6E

]
. (4.4.53)
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The linearised set of equations that corresponds to Ellis and Bruni (1989) follows easily.

4.4.2 The shear-free subcase: Σ = 0

If we demand Σ = 0, then an interesting subcase arises. From equation (4.4.18) we

obtain the magnitude of the “electric” part of the Weyl conformal curvature tensor as

E = 1√
3
Â − φ

2
√

3
A+ 1√

3
A2. (4.4.54)

Hence, to obtain a solution with E 6= 0, we must have the fluid acceleration to be

non-zero. Also, we assume a rate of expansion of the matter fluid. From (4.4.22) it

follows that Θ̂ = 0, i.e. the spatial distribution of the expansion rate is homogeneous.

Therefore, it is constant on the spacelike 3-surfaces orthogonal to ua. Using equations

(4.4.12) and (4.4.54), the conditions arising from equations (4.4.35) and (4.4.36) for

Σ = 0 are equivalent and they provide the expression

ˆ̂A = 1
2
µ̂− φÂ − 7

3
AÂ+A

[
1
9
Θ2 + φ2

2
− 1

3
µ− 4

3
φA− 1

3
A2
]
. (4.4.55)

This ensures that (4.4.23) is solved. If we use equation (4.4.12) then equation (4.4.55)

is a constraint equation for the spatial distribution of the total energy density µ of third

order. Coupling this with constraint equation (4.4.25) gives the spatial distribution of

the spatial divergence φ. In local comoving coordinates of equation (4.4.26), we have

Σ = 0⇒ F Ẋ
X

= F Ẏ
Y
⇒ Θ = 3F Ẋ

X
. (4.4.56)

Upon integration of (4.4.34) we find

µ̂ = C2

X4 , (4.4.57)

where C2 is a constant of integration. An expression for ∂p
∂µ

can be found using this

result along with equations (4.4.12) and (4.4.30). Exact solutions to the dynamical
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equations for this LRS subclass for K > 0 and p = p(µ) are discussed by Kramer et al

(1980).

4.4.3 The non-diverging subcase: φ = 0

When φ = 0, the normals to the spacelike 2-surfaces that are spanned by the isometry

group are non-diverging. For this dynamical restriction to be consistent, equation

(4.4.21) demands that [
Θ−
√

3Σ
]
A = 0, (4.4.58)

whereas equation (4.4.47) gives E algebraically. If, on one hand, we have Θ =
√

3Σ,

then inserting E into the constraint equation (4.4.46) requires µ̂ = 0 and equations

(4.4.18) and (4.4.19) yield (µ + p) = 0 and (µ + p)Θ = 0 respectively. Therefore, this

case can be discarded. If, on the other hand, we have A = 0, for f̂ 6= 0 we must have

p = 0. The equation (4.4.46) gives the condition

Θ̂ = 3
2

[
Θ−
√

3Σ
]−1

µ̂. (4.4.59)

The covariant time derivatives along the matter fluid flow lines of the constraint equa-

tions (4.4.45), (4.4.46) and (4.4.47) vanish. In other words, an appropriate matter

source for spatially inhomogeneous models of LRS class II (with non-diverging isotropy

generator) is provided by dust only. These models are a further specialisation of the

“silent” class (see Bruni et al (1995)).

The spatially inhomogeneous LRS class II comprises the greatest class of solutions

of perfect fluid spacetime geometries with the equation of state p = p(µ). In general,

the models are time-dependent. Previously, they have been helpful for the numerical

and theoretical description of star and galaxy processes as well as supernova explo-

sions. One can refer to Misner et al (1973), Shapiro and Teukolsky (1983), Longair

(1994) and Stephani (1991) for further information. The relevant dynamical equations
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become simple and easily tractable as they have highly idealised spacetime symmetry

properties. However, an isentropic matter fluid flow, which resulted from a barotropic

equation of state, will be too restrictive to realistically model (as an example) the

explosion of stars during the late stages of their evolution.

4.5 LRS class III: ξ 6= 0

In this case, ea is twisting and ua is hypersurface orthogonal. When ξ 6= 0 ⇒ Ω =

φ = A = 0, all spatial derivatives vanish. Since ua is normal and geodesic, all scalars

f are spatially homogeneous and there exists a G4 of isometries multipy-transitive on

spacelike 3-surfaces orthogonal to ua. This means that the spacetimes themselves are

orthogonally spatially homogeneous or OSH (Ellis and MacCallum (1969)). The non-

zero quantities in this case are µ, p, Θ, Σ, E and H. From the 3-Ricci identities and

the Gauss equation for ea as shown by Stephani (1991), the 3-Ricci curvature tensor

of the spacelike 3-surfaces orthogonal to ua is determined to be

3Rab = 2√
3

[
E − 1

3
ΘΣ + 1√

3
Σ2
]
eab + 1

3

[
6ξ2 − 2

√
3E + 2√

3
ΘΣ− 2Σ2

]
hab. (4.5.1)

The trace of (4.5.1) yields the generalised Friedmann equation

3R = 6ξ2 − 2
√

3E + 2√
3
ΘΣ− 2Σ2

= 2µ− 2
3
Θ2 + 2Σ2. (4.5.2)

The magnitudes of the “electric” and “magnetic” parts of the Weyl conformal curvature

tensor are

E = 1
3
√

3
Θ2 + 1

3
ΘΣ− 2√

3
Σ2 +

√
3ξ2 − 1√

3
µ, (4.5.3)

H = 3ξΣ. (4.5.4)
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The set of dynamical equations are

Θ̇ = −1
3
Θ2 − 2Σ2 − 1

2
(µ+ 3p) , (4.5.5)

Σ̇ = − 1
3
√

3
Θ2 −ΘΣ + 1√

3
Σ2 −

√
3ξ2 + 1√

3
µ, (4.5.6)

µ̇ = − (µ+ p) Θ, (4.5.7)

ξ̇ = −2
3
ξΘ + 8√

3
ξΣ. (4.5.8)

An evolution equation for the 3-Ricci scalar (4.5.2) can be derived as

˙3R = −2
3
Θ3R + 2√

3

3
R− 4

√
3ξ2Σ. (4.5.9)

On the other hand, if we use the set S4 = {µ,Θ,Σ, E} as the four generalised coordi-

nates for the study of functional dependencies in models that have a non-zero expansion

rate, then one can solve for ξ2 obtaining

ξ2 = −1
9
Θ2 − 1

3
√

3
ΘΣ + 2

3
Σ2 + 1√

3
E + 1

3
µ. (4.5.10)

Since ξ2 > 0 is demanded, this results in an algebraic restriction on the set S4. Thus

the set of dynamical equations is

Θ̇ = −1
3
Θ2 − 2Σ2 − 1

2
(µ+ 3p) , (4.5.11)

Σ̇ = − 1√
3
Σ2 − 2

3
ΘΣ− E , (4.5.12)

µ̇ = − (µ+ p) Θ, (4.5.13)

Ė = 1
2

(5µ− p) Σ + 4
√

3E −ΘE −Θ2Σ−
√

3ΘΣ2 + 6Σ3. (4.5.14)

Consistency of this set of equations with the evolution equation (4.5.8) has been tested.
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4.5.1 Dust solutions

Equivalent forms of equations (4.5.2), (4.5.6) and (4.5.7) are given by

2 Ÿ
Y

+
(
Ẏ
Y

)2

+ C2

Y 2 − 3C1
2

4
X2

Y 4 = −p, (4.5.15)

2 Ẋ
X
Ẏ
Y

+
(
Ẏ
Y

)2

+ C2

Y 2 − C1
2

4
X2

Y 4 = µ, (4.5.16)

Ẍ
X

+ Ẋ
X
Ẏ
Y

+ Ÿ
Y

+ C1
2

4
X2

Y 4 = −p. (4.5.17)

This set of equations is provided by Ellis (1967) for p = 0.

Because the fluid flow is geodesic, the dust subcases are simply prominent by sim-

pler evolution equations, i.e. p = 0 in equations (4.5.7), (4.5.15) and (4.5.17).

4.5.2 Solutions with E = 0 (Pure magnetic)

Imposing the dynamical restriction E = 0 on equation (4.5.14) results in, for Σ 6= 0,

the algebraic condition

Θ2 = 1
2

(5µ− p)−
√

3ΘΣ + 6Σ2, (4.5.18)

which, in order to satisfy equation (4.5.11), restricts the equation of state through the

algebraic condition for ∂p
∂µ

. Using equation (4.5.10, the value of ξ2 is determined to be

ξ2 = 1
18

(µ+ p) , (4.5.19)

which, clearly, is consistent with the condition ξ2 > 0. Thus, from equation (4.5.4),

with Σ 6= 0, we haveH 6= 0. Solutions of this nature are of purely “magnetic” character.

An example if given in the self-similar Bianchi Type-II OSH LRS solutions of Collins

and Stewart (1971). These have a linear barotropic equation of state of the form

p (µ) = (γ − 1)µ and one obtains E = 0 for γ = 6/5 as shown by Hsu and Wainwright

(1986).
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4.5.3 The FLRW subcase

If, for Σ 6= 0, we demand that the spacelike 3-surfaces orthogonal to ua be of constant

curvature (from equation (4.5.1))

E = 1
3

[
Θ−
√

3Σ
]

Σ, (4.5.20)

then one obtains, from (4.5.14), an algebraic expression for Θ2. Substituting this alge-

braic expression in equation (4.5.10) gives the result ξ2 = 0, thus violating the definition

of this specific LRS class. Therefore, there does not exist any shearing solutions in this

LRS class with isotropic 3Rab. Following from equation (4.5.2), the 3R > 0 - FLRW

models with are the only LRS models with ξ 6= 0 and have 3-spaces of constant cur-

vature. These are invariant under a G6 of isometries multiply-transitive on spacelike

3-surfaces and there exists a 3D family of rotational symmetries rather than one. In

this special case, the spacelike unit vector field ea is not uniquely defined. Also, there

is no covariant trait that picks out a preferred spatial direction. Despite this, local

coordinate or orthogonal frame bases can still be found as before. When Θ = 0, we

have the special FLRW case known as the Einstein static model. Having Θ = 0 leads

to ξ2 = 1
3
µ > 0 from equation (4.5.10). Then the spacetime manifold becomes invari-

ant under a multiply-transitive G7 of isometries and, therefore, is homogeneous. From

equation (4.5.11), we must have an equation of state of the form p (µ) = −1/3µ =

const in order to have consistency. This can be interpreted as a dust model (p = 0)

with a positive cosmological constant, i.e., Λ > 0.

The general OSH LRS class III perfect fluid spacetimes with equation of state p = p (µ)

are characterised by the existence of a G4 isometry group multiply-transitive on space-

like 3-surfaces. As well as a simply-transitive subgroup G3 belonging to one of the

numerous Bianchi types. The 3R > 0 - FLRW models are the special cases. The pos-

sibilty of constructing simple cosmological models with purely “magnetic” Weyl con-
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formal curvature tensor helps in studying the underlying physical mechanisms. This

could produce solutions of this eccentric kind.
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Chapter 5

A new class of LRS with Ω, ξ 6= 0

5.1 Introduction

By analysing the consistency conditions of the field equations, it was rigorously proved

that a perfect fluid LRS spacetime cannot have simultaneous fluid rotation and spatial

twist of the preferred spatial direction. Though all these classes are of interest, none of

them are suitable for modelling a dynamical rotating star (gravitational collapse of a

rotating star, for example). In this study the three key questions are: By relaxing the

condition of a perfect fluid, that is by introducing pressure anisotropy and heat flux,

is it possible to have dynamical solutions with non-zero rotation and non-zero twist?

If yes, can these solutions be physical? What are the local geometrical properties of

such solutions?

5.2 Extra symmetry of these spacetimes

We would like to relax the perfect fluid condition, that is we introduce pressure

anisotropy and heat flux in the matter, and search for the existence of solutions that

have both rotation and twist of the preferred direction. To do this, let us first derive

an important result for LRS spacetimes. We can write the full covariant derivatives of
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the vectors ua and ea in terms of the LRS scalars in the following way:

∇aub = −Auaeb +
(

1
3
Θ + Σ

)
eaeb

+
(

1
3
Θ− 1

2
Σ
)
Nab + Ωεab, (5.2.1)

∇aeb = −Auaub +
(

1
3
Θ + Σ

)
eaub

+1
2
φNab + ξεab. (5.2.2)

Contracting the above with εab and using

εabua = εabea = 0, εabεab = 2, (5.2.3)

we get

Ω = 1
2
εab∇aub, ξ = 1

2
εab∇aeb. (5.2.4)

Now, for any scalar function ‘Ψ’, we have

∇bΨ = −Ψ̇ub + Ψ̂eb. (5.2.5)

Differentiating again we have

∇a∇bΨ = −
(
∇aΨ̇

)
ub − Ψ̇ (∇aub)

+
(
∇aΨ̂

)
eb + Ψ̂ (∇aeb) . (5.2.6)

Contracting with εab, and noting that ∇a∇bΨ is symmetric in a and b, we see that

the LHS of (5.2.6) vanishes. Using equations (5.2.3) and (5.2.4) we get an important

result:

∀Ψ, Ψ̇Ω = Ψ̂ξ. (5.2.7)

This equation implies self-similarity, for it applies to all scalars. It is also unchanged

under the transformation t → at, r → ar, where t and r are the curve parameters of
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the integral curves of u and e.

From the above equation it is clear that if Ω 6= 0, ξ = 0, the dot derivatives of all

the scalars vanish, making the spacetime stationary. On the other hand if Ω = 0,

ξ 6= 0, then the hat derivatives of all scalars vanish, making the spacetime spatially

homogeneous. Thus we arrive at an important result:

Theorem 1. For LRS spacetimes with non-zero rotation and spatial twist, there always

exists a conformal Killing vector in the [u, e] plane. When one of these quantities

vanish then the conformal Killing vector becomes a Killing vector. This Killing vector

is timelike for vanishing spatial twist and it is spacelike for vanishing rotation. However

when both the rotation and spatial twist vanish no such symmetry is guaranteed.

Another important point to be noted here is that Ω and ξ do not evolve indepen-

dently. Supposing that both are not equal to zero, first considering Ψ = Ω in equation

(5.2.7) and then Ψ = ξ and using the field equations (4.1.2), (4.1.3), (4.1.6), (4.1.8)

and (4.1.16) we get the constraint

Ω

ξ
= − φ

Σ− 2
3
Θ
. (5.2.8)

Now to establish the existence of solutions with non-zero rotation and spatial twist, we

state and prove the following theorem:

Theorem 2. Evolution of all the independent geometrical scalars of LRS spacetimes

that have non-zero rotation and spatial twist, obey a common second order linear hyper-

bolic partial differential equation and the existence of a initial spacelike Cauchy surface

is guaranteed. Subject to the initial Cauchy data on this surface these geometrical

scalars can be uniquely determined, and hence unique solutions of the field equations

exist.

Proof. Taking the dot derivative and then the hat derivative of the equation (5.2.7),

subtracting them and then using the commutation relation (4.1.17) and the field equa-
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tions (4.1.2), (4.1.3), (4.1.6), (4.1.8) and (4.1.16), we obtain the following equation

∀Ψ,

−Ω2Ψ̈ + ξ2 ˆ̂
Ψ − Ψ̇Ω

[
ξ(A− φ) + Ω(Σ− 2

3
Θ)
]

+ Ψ̂ξ
[
2ΩΣ− 1

3
ΩΘ− φξ

]
= 0. (5.2.9)

It is evident that the above equation is a hyperbolic (wave-like) second order linear

partial differential equation for Ω, ξ 6= 0, that governs the evolution of all independent

geometrical scalars that describe a LRS spacetime. By the properties of hyperbolic

partial differential equations, there exists a unique solution subject to Cauchy initial

data on a spacelike Cauchy surface. In order to check whether such a three-dimensional

spacelike surface exists, we consider the Lie derivative of the tensor Nab with respect

to the spacelike vector ea. We know that

(LeN)ab = ec∇cN
ab −N cb∇ce

a −Nac∇ce
b . (5.2.10)

Using (3.2.2), (3.2.3), (5.2.1), (5.2.2) and (5.2.3) we see that

(LeN)ab = φNab , (5.2.11)

which implies

(LeN)abua = (LeN)abub = 0 , (5.2.12)

that is neither the vector ea and the tensor Nab, nor the Lie derivative of Nab with

respect to ea has any component along the timelike vector ua. It is clear that the

tensor product of ea and Nab indeed spans a spacelike 3-surface where we can specify

the Cauchy initial data to obtain a unique solution of (5.2.9) for all the independent

geometrical and thermodynamic scalars of the LRS spacetime.

Furthermore, the hyperbolic nature of the above equation dictates the existence of

two families of characteristics. In analogy with incoming and outgoing waves, these
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characteristics describe the expanding/collapsing branches of the solutions.

5.3 Constraints on thermodynamic variables

We will now describe the constraints on the thermodynamic variables for the energy

momentum tensor of the matter field. These generate LRS solutions with non-zero

rotation and spatial twist. First we observe that the common wave-like equation (5.2.9)

was obtained by the Ricci identities of the timelike vector ua and spacelike vector ea.

In order to obtain the constraints on the matter variables, we need to observe the

consistencies of doubly contracted Bianchi identities carefully. We state and prove the

following theorem here:

Theorem 3. The necessary condition for a LRS spacetime to have non-zero rotation

and spatial twist simultaneously is non-zero heat flux which is bounded from both sides.

Proof. Taking the time-like derivative for the equation (4.1.9) and using (4.1.17) and

the field equations, we get

Ωξ (µ+ p+ Π) +Q
(
Ω2 + ξ2

)
= 0.

Simplifying the above equation we get

Ω
ξ

1+

(
Ω
ξ

)2 =
−Q

µ+ p+ Π
. (5.3.1)

It is apparent from the above equation that if we demand both Ω and ξ are well defined

and non-zero, and all the energy conditions to be satisfied we must have Q 6= 0. Also

it is interesting to note the the ratio of the rotation and spatial twist can be described

in terms of the thermodynamic quantities only. Now using (5.3.1) to solve for Ω
ξ

gives

Ω

ξ
=
− (µ+ p+ Π)∓

√
(µ+ p+ Π)2 − 4Q2

2Q
. (5.3.2)
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From the above equation it is clear that for the rotation and spatial twist to be well

defined, real and non-zero, we must have (µ+p+Π)2 > 4Q2. Thus, the thermodynamic

quantities must satisfy the following constraint

−1

2
(µ+ p+ Π) < Q <

1

2
(µ+ p+ Π) ; Q 6= 0. (5.3.3)

From Kolassis et al (1988) and Chan (2003) we can see that the above constraints are

consistent with the Dominant Energy Conditions (DEC) for the matter field. Hence we

do have matter that obeys the physically reasonable energy conditions that can generate

a LRS spacetime with non-zero rotation and spatial twist. Furthermore, the rest of

the propagation equations evolve identically in time and yield no new constraints.

5.4 Other constraints and solution finding algorithm

Let us now try to reduce the number of independent geometrical scalars of an LRS

spacetime by using equation (5.2.7). Inserting the scalar variables φ,
(
Σ− 2

3
Θ
)

and H,

and using the field equations, we get the following set of equations:

ΩQ− 2ξ3 + 2Ω2ξ − 1
3
ξΘΣ + ξΣ2 + 2

3
ξµ

−2
9
ξΘ2 + ξE + 1

2
ξΠ + Aφξ = 0, (5.4.1)

−ΩAφ− 1
3
ΩΘΣ + 2

9
ΩΘ2 − 2Ω3 − ΩE

+1
2
ΩΠ + 1

3
Ωµ+ Ωp+ ξφΣ + 2Ωξ2 +Qξ = 0, (5.4.2)

9
2
ΩξΣ2 − 3ΩξΘΣ + Ω2Q+ ΩξΠ + 9

2
ξ2φΣ

+ξΩµ+ ξΩp+Qξ2 = 0. (5.4.3)
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Solving the above system of equations for E , p and φ, we get

p = −Ω2Q+ ξΩµ+ ΩξΠ +Qξ2

Ωξ
, (5.4.4)

φ = −(3Σ− 2Θ) Ω

3ξ
, (5.4.5)

which are same as (5.3.1) and (5.2.8). Also, we get a new algebraic relation for E

E =
Ω

ξ
A(Σ− 2

3
Θ)− Σ2 +

1

3
ΘΣ +

2

9
Θ2

+2(ξ2 − Ω2)− Ω

ξ
Q− 1

2
Π− 2

3
µ . (5.4.6)

The above equation, along with equation (4.1.16), completely describes the Weyl tensor

in LRS spacetimes.

Now taking into account the results for perfect fluid LRS spacetimes from Elst and

Ellis (1996), we see that the above phenomenon is true for any LRS spacetime and we

can state this interesting theorem:

Theorem 4. The symmetry of LRS spacetimes makes the Weyl tensor obey an alge-

braic constraint with other 1+1+2 geometrical variables. Hence the doubly contracted

Bianchi identities that describe the propagation and evolution of the Weyl tensor become

redundant.

Now we can see that the number of independent geometrical 1+1+2 scalars that

describe a LRS spacetime is reduced considerably. For example, specifying

D3 = {A,Θ, ξ,Σ, µ, p(µ,Π, Q),Π, Q} ,

will automatically specify

D4 = {Ω, φ, E ,H} ,

via the constraint equations (5.2.8), (5.3.2), (5.4.6) and (4.1.16). Hence, we can give

the initial Cauchy data on any spacelike Cauchy surface for the independent variables
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using any suitable chosen equation of state p(µ,Π, Q),. Then we can determine their

evolution via equation (5.2.9), which applies equally to all the variables in D3. This will

then provide us with a unique self-similar dynamical solution for the LRS spacetimes

with non-zero rotation and spatial twist. The nature of the matter required for such

solutions to exist follows from Theorem 2, where there is a non-trivial condition on

the presence of heat flux. There are no other conditions on the density, pressure or

pressure anisotropy. Nonetheless, for physically realistic solutions these must obey the

Dominant Energy Conditions (DEC).

As described in detail in Ellis (1968), if a spacetime exhibits local rotational sym-

metry in an open neighbourhood of a point P , then the coordinate freedom can be

used to describe the local metric in the neighbourhood in (t, r, x, y) coordinates in the

following way:

ds2 = −F 2(t, r)dt2 +X2(t, r)dr2

+Y 2(t, r)[dx2 +D(x)dy2]

+g(x)F 2(t, r)[2dt− g(x)dy]dy

−h(x)X2(t, r)[2dr − h(x)dy]dy. (5.4.7)

We can immediately see that g(x) = h(x) = 0 and D(x) = sin2 x gives a general spher-

ically symmetric metric which is of LRS class II. However, we have already determined

that LRS spacetimes with non-vanishing rotation and spatial twist must be self-similar.

As a result thereof, the functions F , X and Y can be written in terms of a single vari-

able z ≡ t/r. Hence only self-similar spherically symmetric solutions can be obtained

in the limit g(x)→ 0, h(x)→ 0 or equivalently Ω→ 0, ξ → 0. Therefore to study the

interior of a rotating, radiating and inhomogeneous star as a first approximation from

spherical symmetry, we can start with a self-similar spherically symmetric spacetime

and add sufficiently small g(x) and h(x), with respect to some covariant scale in the
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problem (the Misner Sharp mass of the spherical star for example). Then we can solve

the field equations with the matter source that obeys all the restrictions as imposed

by Theorem 2 and the energy conditions.
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Chapter 6

Discussion

We showed that it is possible to have a Locally Rotationally Symmetric spacetime

with non-zero rotation and spatial twist simultaneously if we allow for non-zero and

bounded heat flux. We investigated in detail all the covariant geometrical properties

of such spacetimes and proved an interesting result: the evolution of all the covariant

scalars obeys a single common hyperbolic linear second order partial differential equa-

tion. The existence of a spacelike Cauchy surface, where initial Cauchy data can be

provided, is guaranteed. It was also shown that these solutions are self-similar as they

possess a conformal Killing vector in the [u, e] plane. For an example of spacetimes

with conformal Killing vectors, refer to the analysis of Moopanar and Maharaj (2013).

In general, these solutions are neither stationary nor spatially homogeneous. Therefore

with suitable equations of state, such as the temperature T as an internal variable in

the equations of state for P , Π, and Q, they have the potential to give exact gen-

eral relativistic models for rotating, dynamic and radiating stellar structures as they

definitely have non-zero heat flux in the interior. The radiative heat flux can be promi-

nently seen for neutron stars: in a newly formed neutron star the core temperature

is of the order of 1011K − 1012K, that rapidly drops to 106K within a few years (see

Shapiro and Teukolsky (1983) and Miller (2016) for more information). This huge

amount of heat transfer from the core to the surface of the neutron stars is a direct
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result of several processes such as neutrino transmission, electron sound waves coupled

with electromagnetic radiation in the superfluid stellar core (Svidzinsky (2003)). Even

for the main sequence stars (like the sun), the radiative heat transfer from the core

to the convection zone is always present, albeit with an extremely high opacity as in-

dicated by Mitalas and Sills (1992). Therefore while studying the interior of realistic

astrophysical stars, we can see that heat flux does play a very important role and as-

suming a perfect fluid form of matter in these cases may lead to over-simplification.

Hence any solution to the Einstein field equations incorporating rotation, spatial twist

and heat flux simultaneously is definitely a better candidate to provide a relativistic

description of a rotating stellar interior with quadrupole and other higher multipole

moments. These may account for physical features of stars that cannot be explained

by Newtonian dynamics.

Also, since these spacetimes are shown to be necessarily self-similar, all the field equa-

tions can be recasted as ordinary differential equations with the variable z = t/r. In

that case, the field equations become much simpler. Thus we can perform a dynamical

system analysis to find out different properties of these spacetimes. This is an area of

ongoing research which is likely to produce new results.
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