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Abstract

The HIV-1-envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a 

conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded 

state, through receptor-bound intermediates, to a postfusion state. As the sole viral antigen on the 

HIV-1-virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine 

efforts. Here we report the structure at 3.5-Å resolution for an HIV-1-Env trimer captured in a 

mature closed state by antibodies PGT122 and 35O22. This structure reveals the prefusion 

conformation of gp41, indicates rearrangements needed for fusion activation, and defines 

parameters of immune evasion and immune recognition. Prefusion gp41 encircles N- and C-

terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by 

insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike 

rearrangements required for entry likely involve opening the clasp and expelling the termini. N-

linked glycosylation and sequence-variable regions cover the prefusion closed spike: we used 

chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, 

which were distinguished by their recognition of N-linked glycan and tolerance for epitope-

sequence variation.

Over the last 50 years, more than 70 million people have been infected or killed by the 

human immunodeficiency virus type 1 (HIV-1)1. A dominant contributing factor has been 

the biochemical complexity and conformational dynamics of the HIV-1-envelope (Env) 

spike, a type I fusion machine that facilitates virus entry into cells by interacting with host 

cellular receptors and fusing membranes of virus and host cell (reviewed in 2). Despite its 

exposed position on the viral membrane and the generation of narrow-breadth neutralizing 

antibody responses throughout the course of HIV-1 infection, the evolving HIV-1-Env spike 

successfully evades most antibody-mediated neutralization3. This evasion is, to a large 

degree, responsible for the difficulty in developing an effective HIV-1 vaccine.

Initially synthesized as a gp160 precursor, which is cleaved into gp120 and gp41 subunits, 

the trimeric HIV-1-Env spike displays unusual posttranslational processing including the 

addition of 25-30 N-linked glycans per gp120-gp41 protomer4, tyrosine sulfation5, and slow 

signal peptide cleavage6. Env rearranges from a prefusion mature closed state that evades 

antibody recognition through intermediate open states that bind to receptors, CD4 and co-

receptor (either CCR5 or CXCR4), to a postfusion state (reviewed in 2). Over the last 20 

years, substantial atomic-level detail has been obtained on these states, including structures 

of receptor-bound gp1207, postfusion gp418,9, and most recently the trimeric arrangement of 

prefusion gp120 along with two gp41 helices, one of which was aligned in sequence10,11. 

The prefusion structure of gp41 has, however, resisted atomic-level analysis. Because the 

primary structural rearrangement driving membrane fusion is the gp41 transition from 

prefusion to postfusion conformations, the lack of a prefusion gp41 structure has stymied 

attempts to provide a coherent picture of the conformational rearrangements the spike 

undergoes to facilitate entry.

Here we use neutralizing antibodies PGT12212 and 35O2213 to capture the HIV-1 spike in a 

prefusion mature closed state. We obtained crystals of the antigen-binding fragments (Fabs) 

of these two antibodies in complex with a soluble, cleaved, Env trimer construct (BG505 
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SOSIP.664)14-16 and determined its atomic-level structure. Examination of this structure in 

the context of previously determined gp120 and gp41 structures affords a mechanistic 

understanding of the conformational transitions the spike undergoes to facilitate virus entry. 

We delineated aggregate parameters of glycan shielding and genetic variation and used 

infected donor serum to determine where the immune system succeeds in recognizing the 

HIV-1 spike. Analysis of the prefusion HIV-1-Env structure and its conformational 

rearrangements, combined with an understanding of its evasion from and vulnerabilities to 

the immune system, reveal similarities to other type I viral fusion machines as well as 

features of recognition by the human immune system unique to this critical vaccine target.

Structure determination and overall structure

Atomic-level information for virtually all of the HIV-1-Env ectodomain in its prefusion 

conformation has been obtained from antibody-bound complexes (Extended Data Fig. 1a). 

The recently determined crystal structure10 of a soluble cleaved HIV-1 Env based on the 

BG505 SOSIP.664 construct was no exception; in particular – while an artificial disulfide 

and other modifications of the SOSIP.664 construct were critical to production of a 

homogeneous, soluble, cleaved trimer17 – antibody PGT122 appeared to facilitate 

crystallization10. Diffraction from crystals of the PGT122 complex, however, extended to 

only 4.7-Å resolution, hampering the trace of non-helical regions of gp41 as well as the 

placement and registry of side chains10. To obtain improved crystals, we explored the 

addition of antibody 35O22, which recognizes a gp120-gp41 epitope13. Addition of 35O22 

to PGT122-bound viral spike in the membrane-bound virion context showed single-

molecule fluorescent resonance energy transfer (smFRET) responses that closely resembled 

those of the mature native unliganded spike (Extended Data Fig. 1b)18. In the context of 

crystallization, addition of 35O22 to the PGT122-BG505 SOSIP.664 complex led to ternary 

complex crystals in space group P63. While diffraction was anisotropic, we succeeded in 

collectin ~3.5 Å data from a single crystal (Extended Data Table 1). Structure solution by 

molecular replacement with free structures of Fab PGT12219, Fab 35O2213 and gp12020 

revealed a double antibody-bound gp120-gp41 protomer to occupy the asymmetric unit and 

led to an Rwork/Rfree of 21.35%/24.80%.

Overall, the HIV-1 spike forms a 3-blade propeller, capped at its membrane-distal apex by 

antibody PGT122 and at the membrane-proximal end by antibody 35O22 (Fig. 1, Extended 

Data Fig. 2a,b). Protomer interactions occur through assembled variable regions, V1, V2 and 

V3, which comprise the trimer association domain21 at the membrane-distal portion of the 

spike, and also through gp41, primarily between helical interactions around the trimer 

axis10,11. No trimeric interactions are contributed by the gp120 core; indeed, a cleft or 

opening is found under the trimer association domains along the 3-fold axis where such 

associations might occur. Trimeric prefusion gp41 forms a platform through which the 

gp120 termini extend towards the viral membrane. Unusually slow signal peptide cleavage6, 

which keeps the N terminus of gp120 proximal to the membrane, may facilitate folding of 

prefusion HIV-1 Env.
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Prefusion structure of gp41

Prefusion gp41 wraps its hydrophobic core around extended N- and C-termini-strands of 

gp120 (Fig. 2a). It forms a 4-helix collar comprising helices α6 (Met530gp41-Asn543gp41), 

α7 (Gly572gp41-Ile595gp41), α8 (Leu619gp41-Trp623gp41), and α9 (Trp628gp41-Asp664gp41) 

(the numbering of prefusion gp41 helices and strands continues the nomenclature 

established for the gp120 subunit, which ends with helix α5 and strand β26; for clarity, the 

molecule is named after each residue number). The first residue of gp41 visible in electron 

density corresponds to Val518gp41, in the fusion peptide. An extended stretch connects to 

Leu523gp41, which interacts hydrophobically with Trp45gp120 and Ile84gp120, both of which 

are part of the 7-stranded β-sandwich around which the gp120-inner domain is 

organized22,23. The main chain of gp41 follows gp120-strand β0 away from the trimer axis 

towards the viral membrane, until residue Met530gp41, where the fold reverses itself and 

extends through α6 towards the trimer axis and away from the viral membrane. Density 

between residues 547gp41 and 569gp41 is sparse (Extended Data Fig. 3a,b), and ultimately 

connects to helix α7, which forms a parallel coiled-coil about the trimer axis. At the end of 

α7 is the gp41-cysteine loop (spanned by the Cys598gp41-Cys604gp41 disulfide), whose C-

terminal residues initiate strand β27 (Leu602gp41-Thr606gp41), which hydrogen bonds in an 

anti-parallel fashion with strand  from the N terminus of gp120. The intersubunit 

disulfide (‘SOS’)14 between residues 501gp120 and 605gp41 welds the C terminus of gp120 

to the membrane-proximal end of strand  (Fig. 2a). Upon passing the gp120 termini, 

gp41 reaches α8, whose C terminus aligns spatially with the N terminus of α6. After α8, the 

α9 helix reverses direction, again wrapping past the N and C termini of gp120, before 

extending horizontally along the edge of the spike to reach the gp120 termini from a 

neighboring protomer.

Topologically, the gp41 subunit completes a single circle around the gp120 termini with the 

insertion of a hydrophobic prong comprising the side chain of Met530gp41 (which is located 

at the N terminus of α6, proximal to the fusion peptide), into a triple tryptophan-clasp 

formed by Trp623gp41 (from the C terminus of α8), Trp628gp41 (from the N terminus of α9) 

and Trp631gp41 (one turn into α9) (Fig. 2a insert). The alignment of dipoles from helices α6 

and α8 likely provides electrostatic complementarity that helps to stabilize the neighboring 

methionine-tryptophan clasp.

Within a single protomer, the buried surface area between gp41 and gp120 totals 5,270 Å2, 

including 216 Å2 from glycan-protein interactions (Supplementary Table 1). A substantial 

portion of this is hydrophobic: gp41 essentially wraps its hydrophobic core around the N and 

C termini of gp120 (Fig. 2b). Trimer interfaces also bury a large surface area (3,140 Å2 

contributed by each protomer, comprising 1,920 Å2 from the gp41-gp41 interface, 861 Å2 

from the gp120-gp120 interface and 360 Å2 from the gp120-gp41 interface) (Extended Data 

Fig. 2c-f). Close to the trimer axis, these involve helix α7, as well as the N-terminal portion 

of the gp41-cysteine loop. Further from the trimer axis, interactions involve α9. Other than 

interactions of α7, most interprotomer interactions are hydrophilic (Fig. 2c).
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Prefusion to postfusion gp41 transition

To understand the conformational transition from prefusion to postfusion gp41, we 

compared the gp41-prefusion structure in our antibody-bound HIV-1 Env trimer with 

previously determined postfusion structures8,9,24,25 (Fig. 3). Postfusion gp41 comprises two 

helices, HR1 and HR2 (Fig. 3a); these form a trimeric six-helical bundle, with HR1 helices 

arranged as an interior parallel coiled-coil, and exterior HR2 helices packing anti-parallel to 

bring N-terminal fusion peptides and C-terminal transmembrane regions into proximity. 

Distance difference analysis26 (Fig. 3b) of prefusion and postfusion structures indicated two 

regions of structural similarity, corresponding to (i) the prefusion α7 helix aligned with the 

C-terminal half of the postfusion HR1 helix and (ii) the prefusion α9 helix aligned with 

much of the postfusion HR2 helix.

Superposition of prefusion α7 and postfusion HR1 placed residues 569gp41-593gp41 within 5 

Å, with a root-mean-square deviation (rmsd) of 1.35 Å. For this superposition to occur, Cα-

movements of over 80 Å are required for the gp41-fusion peptide and α6 helix as well as for 

the C-terminal portion of the α9 helix. Notably, this superposition preserves the coiled-coil 

trimeric interactions of both prefusion and postfusion molecules and thus likely mimics the 

natural conformational transition that occurs during membrane fusion. Meanwhile, 

superposition of prefusion α9 and postfusion HR2 placed residues 634gp41-664gp41 within 5 

Å, with an rmsd of 3.58 Å; this substantial alignment of the α9 and HR2 helices indicates 

that the HR2 helix is mostly preformed in the prefusion structure.

Entry rearrangements of HIV-1 Env

Biosynthesis of HIV-1 Env starts with an uncleaved gp160 trimer. After cleavage, the spike 

condenses into the prefusion mature closed structure described here. In the gp120-inner 

domain, helix  is formed, and a parallel strand exists between strands β3 and β21; in 

gp41, we observe helix α7 to begin around residue 571gp41. A partially open EM structure27 

has been reported at 6 Å, in which the trimer association domains appear to be displaced 

from the trimeric axis, and helical density suggests helix α7 to start several turns earlier; we 

modeled these rearrangements with a rigid body motion of 6 degrees for gp120 and the 

conversion of ~15 residues of helix α6 and connecting stretch into helix α7, which extends 

~20 Å towards the target cell membrane (Fig. 3d, middle panel; Extended Data Table 2).

The CD4-bound state has been visualized by a number of EM reconstructions28,29 and 

atomic-level structures7,22. In this state, V1V2 separates from V3: V3 points towards the 

target cell30, and the bridging sheet7 assembles with strand β2 forming antiparallel hydrogen 

bonds with β21 (as opposed to the parallel β3-β21 interaction of the near-native mature state; 

notably, the only parallel β-strand in the RSV F glycoprotein prefusion structure also 

changes conformation in RSV F pre- to postfusion transition31). With layer 1 of the inner 

domain23, helix α0 forms, and Gln428gp120 and strand β21 invert; in layer 2, inner domain 

rearrangements include the swapping of distinct perpendicular interactions of Trp112gp120 

and Trp427gp120 (Extended Data Fig. 4). CD4 binding allows HR2-peptide analogues (such 

as C34) to bind32, and we can model helix α7 starting as early as 554gp41 with Met530gp41 

still in its membrane-proximal tryptophan clasp, as expected because 35O22 binds the CD4-
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bound SOSIP.664 (Extended Data Fig. 3d-e, 5c-e). We envision that Env-CCR5 

interactions33 bring the CD4-bound state close to the target cell membrane, where 

“disassembling α6/assembling α7 helices” coupled to release of the Met530gp41 prong from 

its tryptophan clasp ultimately amasses the gp41-fusion peptide(s) (Fig. 3d, 2nd panel from 

right, Extended Data Fig. 3f).

At this receptor-bound stage, it is easy to imagine the fusion peptide penetrating the target 

cell membrane, while strand β27 of the gp41-cysteine loop remains hydrogen bonded to the 

gp120 termini (and the C terminus of the gp41 ectodomain remains in the viral membrane). 

Rearrangement of gp41 to its postfusion conformation may be triggered by gp120 

shedding34, with expulsion of the gp120 termini tugging on the gp41-cysteine loop and 

destabilizing prefusion gp41.

HIV-1 rearrangements and other type I fusion machines

To determine whether the distinct elements we observed in prefusion gp41 were preserved 

elsewhere, we examined prefusion and postfusion states of other type I fusion machines 

from influenza virus35,36 (a member of the Orthomyxoviridae family of viruses), respiratory 

syncytial virus31,37 (RSV; Paramyxoviridae), and Ebola virus38,39 (Filoviridae) (Fig. 4a). In 

all cases, a helix was observed in the gp41-prefusion equivalents, which corresponds in 

sequence to the C-terminal portion of the helix that in the postfusion conformation 

comprises the interior coiled-coil characteristic of type I fusion machines8,9 (Fig. 4b). With 

prefusion machines from HIV-1, influenza, and Ebola, the nascent prefusion helix adopts a 

coiled-coil; with RSV, a coiled-coil assembles immediately N-terminal to the nascent 

postfusion helix. Despite dramatic differences in gp120-equivalents, similarity is observed 

in the overall topology of subunit interactions. Notably, all of the gp41-equivalents wrap 

hydrophobic residues around extended termini (or N terminus) of their gp120-equivalents 

(Fig. 4c). Overall, the similarities in prefusion folding topology and in prefusion interior 

helices observed here, along with the previously observed similarity in postfusion coiled-

coils (reviewed in 40), provide a more general and integrated view of the structural and 

conformational requirements of type I-mediated membrane fusion.

Glycan shield and genetic variation of mature unliganded Env

The prefusion mature closed conformation of HIV-1 Env is the target of most neutralizing 

antibodies. The newly revealed structure of a near-complete gp120-gp41 Env trimer 

provides an opportunity to understand aggregate properties of glycosylation and variation. 

Glycan shielding and genetic variation have long been recognized as mechanisms to avoid 

antibody recognition41. The BG505 SOSIP.664 sequence contains 28 sequons specifying N-

linked glycosylation (including a T332N mutation). We modeled high mannose glycans 

(either Man5 or Man9) on each sequon and calculated accessible surface for radii ranging 

from 1.4 Å (the radius of a water molecule) to 10 Å (the approximate radius of a single 

immunoglobulin domain) (Extended Data Fig. 6). In the Man9-glycosylated model, 29% of 

the protein surface was solvent accessible, whereas only 3% of the surface was 

immunoglobulin-domain accessible. By contrast, with the fusion glycoproteins from 
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influenza and RSV, 14% and 48%, respectively, of these surfaces were immunoglobulin-

domain accessible (Fig. 5a).

In terms of genetic variation, we calculated the per-residue Shannon entropy of 3,943 

sequences of HIV-1 (Fig. 5b). Approximately 50% of the surface was shown to have a 

variability of greater than 10%, a degree of surface variation shared by influenza, but not by 

RSV. When we combined glycan shielding and genetic variation, only ~2% of the surface 

was immunoglobulin accessible with a variability of less than 10% (Extended Data Fig. 7, 

upper panels); much of this conserved surface occurred at the membrane-proximal “base” of 

the spike, which is expected to be sterically occluded by the viral membrane. To determine 

how this fully assembled shield compared to other conformations, we also assessed the 

immunoglobulin accessibility of the CD4-bound conformation (Extended Data Fig. 7, lower 

panels). Notably, the CD4-bound conformation showed substantially higher levels of 

glycan-free, conserved surface, consistent with the greater ease by which antibodies reactive 

with the CD4-bound conformation are elicited – and by contrast, the difficulty in eliciting 

broadly neutralizing antibodies against the glycan-covered, sequence-variable prefusion 

closed state.

Serologic recognition of mature Env

Despite multiple mechanisms of immune evasion that shield mature HIV-1 Env, potent 

broadly neutralizing antibodies do develop42. The structure of HIV-1 Env in the prefusion 

mature closed state allows us to map known epitopes on their most likely functional target 

(Fig. 6a) and to compare the recognition of broadly neutralizing HIV-1 antibodies, with 

those capable of neutralizing influenza virus and RSV (Fig. 6b).

To determine the location and prevalence of effective humoral responses, we used a 

serologic analysis based on serum neutralization of a panel of diverse HIV-1 isolates20. Sera 

from a cohort that had been infected for 2-3 years and from another that had been infected 

for more than 5 years were assessed on a panel of 21 diverse HIV-1 isolates, and the 

neutralization phenotypes assigned to 12 prototypic antibody-neutralization fingerprints 

(Fig. 6c, Extended Data Fig. 8a,b). We then mapped the responses to the surface of the 

mature closed HIV-1-Env spike (Extended Data Fig. 8c,d). The most prevalent response 

corresponded to the glycan-V3 epitope epitomized by antibody PGT128. CD4-binding site-

directed responses, 8ANC195 responses, and V1V2-directed responses were prevalent. 

Overall, responses in both cohorts were highly correlated indicating little evolution in the 

location or prevalence of effective neutralizing responses between 2-3 and 5+ years. 

Notably, when mapping Env sites of vulnerability, the majority of prevalent sites 

corresponded to Env surfaces covered by N-linked glycosylation and/or of high sequence 

variability. Indeed, both PGT122 and 35O22 co-crystallized here recognize N-linked glycan, 

and they both utilize framework 3 insertions, in the light chain for PGT122 and in the heavy 

chain for 35O22 (Extended Data Fig. 9).

Viral evasion and immune recognition

In addition to merging virus and host-cell membranes, viral fusion machines must contend 

with antibody-mediated neutralization. With RSV, peak infection occurs at 5-10 months of 
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life, as maternal antibodies wane; with influenza virus, natural infection elicits strain-

specific antibodies, and evasion occurs seasonally on a global scale. HIV-1, however, 

confronts the immune system in each individual directly, often presenting high titer of Env 

antigens over years of chronic infection. These differences in evasion are reflected by 

structural difference in the fusion machines. The structure of the HIV-1-Env spike revealed 

here allows the molecular trickery behind single spike entry43, glycan shielding3, and 

conformational masking44 to be visualized at the atomic level (Extended Data Fig. 10). 

Thus, avoidance of antibody avidity45 through the ability of a single HIV-1 spike to fuse 

viral and target cell membranes43 is likely assisted by membrane-proximity of the co-

receptor and membrane-association of the MPER (Fig. 3); despite these differences, the 

HIV-1-Env spike appears to share mechanism and topology with other type I fusion 

machines (Fig. 4). In terms of glycan shielding3, we have modeled the structure of a fully 

assembled glycan shield for BG505, a tier II-transmitted founder virus46 (Fig. 5). While 

glycan masking appears complete at the HIV-1-spike apex, closer to the viral membrane 

“holes” in the glycan shield are observed. And with conformational masking44, evasion is 

optimal for the prefusion mature closed state, with CD4-binding unmasking conserved 

glycan-free surfaces (Extended Data Fig. 7). Despite extraordinary glycosylation and 

sequence variation, the human immune system appears up to the challenge of generating 

HIV-1-neutralizing antibodies (Fig. 6). We note that recognition of glycosylation appears to 

be a trait common only to HIV-1-neutralizing antibodies and that both broadly neutralizing 

HIV-1 and influenza virus antibodies tolerate epitope-sequence variation (Fig. 6b). The 

structure of the HIV-1-Env spike described here thus reveals not only commonalities in 

entry and evasion with other type I fusion machines, but also commonalities in recognition 

by the human immune system. It remains to be seen whether an effective vaccine against 

HIV-1 can be developed by using the atomic-level detail provided here, which should allow 

for immunogen-design strategies such as conformational stabilization47 and nanoparticle 

delivery48; additionally, antibody-type and ontogeny-specific strategies may be required, 

and template ontogenies are becoming available for some of the more commonly elicited 

HIV-1-neutralizing antibodies (Extended Data Fig. 8d), such as those against the CD4-

binding site49 and V1V2 sites50.

Methods

BG505 SOSIP.664 expression and purification

The crystallized HIV-1-Env construct from strain BG505 was generated following published 

reports10,15,16, using BG505 genbank accession numbers ABA61516 and DQ20845846; 

including the “SOS” mutations (A501C, T605C), the isoleucine to proline mutation at 

residue 559 (I559P), and the glycan site at residue 332 (T332N); mutating the cleavage site 

to 6R (REKR to RRRRRR); and truncating the C terminus to residue 664 (all HIV-1 Env 

numbering according to the HX nomenclature). This construct is referred to as BG505 

SOSIP.664 throughout this entire manuscript.

The BG505 SOSIP.664 construct was co-transfected with furin in HEK 293 GnTI−/− cells 

using 600 μg of BG505 SOSIP.664 and 150 μg of furin plasmid DNAs as described 

previously16. Transfection supernatants were harvested after 7 days, and passed over either a 
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2G12 antibody- or VRC01 antibody-affinity column. After washing with phosphate-

buffered saline (PBS), bound proteins were eluted with 3M MgCl2, 10 mM Tris pH 8.0. The 

eluate was concentrated to less than 5 ml with Centricon-70 and applied to a Superdex 200 

column, equilibrated in 5 mM HEPES, pH 7.5, 150 mM NaCl, 0.02% azide. The peak 

corresponding to trimeric HIV-1 Env was identified, pooled, concentrated and used 

immediately or flash-frozen in liquid nitrogen and stored at −80° C.

Fab expression and purification

PGT122 and 35O22 IgGs were expressed as previously described51. Heavy chain plasmids 

containing an HRV3C cleavage site in the hinge region were co-transfected with light chain 

plasmids in 293F (35O22) or GnTI−/− (PGT122, which is glycosylated) using TrueFect-

Max transfection reagent (United Biosystems) according to manufacturer's protocol. 

Cultures were fed with fresh 293FreeStyle media (Life Technologies) 4 h post-transfection 

and with HyClone SFM4HEK293 enriched medium (HyClone) containing valproic acid (4 

mM final concentration) 24 h after transfection. Cultures were then incubated at 33° C for 6 

days, and supernatants harvested and passed over a protein A affinity column. After PBS 

wash and low pH elution, pH of eluate was neutralized with 1M Tris pH 8.5. Fabs were 

obtained using HRV3C digestion and collecting flow-thru from protein A column to remove 

Fc fraction. Fabs were further purified over Superdex 200 in 5 mM HEPES, pH 7.5, 150 

mM NaCl, 0.02% azide.

Ternary complex preparation

PGT122 and 35O22 Fabs were added to a solution of purified trimeric BG505 SOSIP.664 in 

5-fold molar excess for 30 min at room temperature (RT). The complex was then partially 

deglycosylated by adding Endo H (50 μl) for 1 hour at RT in the gel filtration buffer. The 

complex was then purified over gel filtration equilibrated in 5mM HEPES, pH 7.5, 150 mM 

NaCl, 0.02% azide. Fractions were pooled, concentrated down to 5-10 OD280/mL and used 

immediately for crystal screening or flash frozen in liquid nitrogen and kept at −80° C until 

further use.

Crystallization screening

The ternary complex was screened for crystallization using 572 conditions from Hampton, 

Wizard and Precipitant Synergy52 screens using a Cartesian Honeybee crystallization robot 

as described previously51 and a mosquito robot using 0.1 μl of reservoir solution and 0.1 μl 

of protein solution. Crystals suitable for structural determination were identified robotically 

in 0.2M Li2SO4, 6.65% PEG 1500, 20% isopropanol and 0.1M sodium acetate pH 5.5. 

Crystals were reproduced in hanging droplets containing 0.5 μl of reservoir solution and 0.5 

μl of protein solution. Optimal crystallization conditions were obtained in 16% isopropanol, 

5.32% PEG 1500, 0.2M Li2SO4, 0.1M Na acetate pH 5.5. Crystals were cryoprotected in a 

solution of 15% 2R3R-butanediol, 5% isopropanol, 0.2M Li2SO4, 6.65% PEG 1500, 0.1M 

sodium acetate pH 5.5, and flash-frozen after covering with paratone N53. Data were 

collected at a wavelength of 1.00 Å at the SER-CAT beamline ID-22 (Advanced Photon 

Source, Argonne National Laboratory).
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X-ray data collection, structure solution and model building

Diffraction data were processed with the HKL2000 suite54. The data were corrected for 

anisotropy using the anisotropy server http://services.mbi.ucla.edu/anisoscale/ with 

truncations to 3.5 Å, 3.5 Å, 3.1 Å along a, b, and c axes, respectively. Structure solution was 

obtained with Phaser using gp120 (PDB ID: 4J6R20), PGT122 (PDB ID: 4JY519) and 

35O22 Fv (PDB ID: 4TOY13) as search models. Refinement was carried out with Phenix55 

imposing PGT122, 35O22 and gp120 model-based refinement restraint during initial round 

of refinement. Model building was carried out with Coot56. The Ramachandran plot as 

determined by MOLPROBITY57 showed 92.66% of all residues in favored regions and 

99.03% of all residues in allowed regions. Data collection and refinement statistics are 

shown in Extended Data Table 1.

Preparation of fluorescently labeled virus

For site-specific incorporation of fluorophores the Q3 (GQQQLG) and A1 

(GDSLDMLEWSLM) peptides were inserted into the V1 and V4 loops of HIV-1 JR-FL 

gp160 at positions 136 and 404 (HXB2 numbering), respectively. Virus for smFRET 

imaging was generated by cotransfecting HEK293 cells with a 40:1 ratio of wild-type HIV-1 

JR-FL gp160 plasmid pCAGGS to HIV-1 JR-FL gp160 plasmid containing the Q3 and A1 

labelling peptides, in addition to pNL4-3 Δenv ΔRT. The virus was harvested 24 h post-

transfection, concentrated by centrifugation, and fluorescently labelled with donor and 

acceptor fluorophores through incubation with 0.5 μM Cy3B-cadaverine, 0.5 μM 

Cy5(4S)COT-CoA, 0.65 μM transglutaminase58 (Sigma), and 5 μM AcpS (REF to PMID 

17465518) overnight at room temperature. The AcpS enzyme and the CoA-conjugated 

fluorophore were prepared as described59. DSPE-PEG2,000-biotin (Avanti) was then added 

to the reaction at a final concentration of 6 μM (0.02 mg/ml), and the labelled virus was 

purified by ultracentrifugation for 1 h at 150,000 × g over a 6-18% Optiprep (Sigma) 

gradient.

smFRET data acquisition and analysis

Fluorescently labeled virions were immobilized on streptavidin-coated quartz microscope 

slides and imaged on a prism-based total internal reflection fluorescence microscope. The 

donor fluorophore was excited by a 532-nm laser (Laser Quantum). The donor and acceptor 

fluorescence emissions were collected through a 60-X water objective (Nikon), split by a 

650DCXR dichroic filter (Chroma), and focused on parallel EMCCD cameras 

(Photometrics). Movies were recorded at 25 frames/s for 40 s. smFRET imaging was 

performed in buffer containing 50 mM Tris pH7.5, 100 mM NaCl, a cocktail of triplet-state 

quenchers60, and 2 mM protocatechuic acid and 8 nM protocatechuate 3,4-deoxygenase to 

remove molecular oxygen61. Where indicated, surface-bound viruses were incubated with 

0.1 mg/ml PGT122 and/or 0.1 mg/ml 35O22 antibody.

All data analysis was performed using custom written Matlab software. Fluorescence 

trajectories were extracted from the movies, and used to calculate FRET efficiency 

according to FRET = IA/(ID+IA). smFRET trajectories were identified for analysis on basis 

of their displaying sufficient signal-to-noise and fluorophore lifetime. FRET trajectories 

were compiled into histograms, which were fit to the sum of three Gaussian distributions in 
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Matlab. smFRET revealed that the HIV-1 Env is conformationally dynamic, transitioning 

between three distinct conformational states. Response to various ligands identified the low-

FRET state as the closed unliganded conformation of HIV-1 Env and the intermediate- and 

high-FRET states as the activated conformations stabilized by coreceptor and CD4 binding, 

respectively.

Binding studies using biolayer interferometry

A fortéBio Octet Red384 instrument was used to measure binding of BG505 SOSIP. 664 

and BG505 gp120 molecules to a panel of antibodies (VRC01, VRC03, b6, b12, F105, 

PGT122, PGT128, PGT135, 2G12, 8ANC195, 17b, 2.2C, 412d, 48D, 447-52D, PG9, PG16, 

PGT145, VRC26.09, 35O22, PGT151) and CD4 Ig. All the assays were performed with 

agitation set to 1,000 rpm in PBS buffer supplemented with 1% bovine serum albumin 

(BSA) in order to minimize nonspecific interactions. The final volume for all the solutions 

was 40-50 μl/well. Assays were performed at 30°C in solid black tilted-bottom 384-well 

plates (Geiger Bio-One). Human antibodies (40-50 μg/ml) in PBS buffer was used to load 

anti-human IgG Fc capture (AHC) probes for 600 s. Typical capture levels were between 1 

and 1.5 nm, and variability within a row of eight tips did not exceed 0.1 nm. Biosensor tips 

were then equilibrated for 180 s in PBS/1% BSA buffer prior to binding assessment of the 

BG505 SOSIP.664 and BG505 gp120 molecules in solution for 300 s; binding was then 

allowed to dissociate for 300s. Parallel correction to subtract systematic baseline drift was 

carried out by subtracting the measurements recorded for a sensor without monoclonal 

antibody incubated in PBS/1% BSA. Data analyses were carried out using Octet software, 

version 8.0.

Difference distance analysis

Difference distance matrices26 were produced by distance sorting atom positions and 

plotting with the program DDMP62.

Surface plasmon resonance analysis

Affinities and kinetics of binding of antibodies 35O22 and PGT151 to BG505 SOSIP.664 

soluble trimer were assessed by surface plasmon resonance on a Biacore T-200 (GE 

Healthcare) at 20° C with buffer HBS-EP+ (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM 

EDTA, and 0.05% surfactant P-20). In general, mouse anti-human Fc antibody was first 

immobilized onto two flow cells on a CM5 chip at ~10,000 response units (RU) with 

standard amine coupling protocol (GE Healthcare). Either CD4-Ig, 2G12 IgG or 17b IgG 

was then captured on both flow cells by flowing over a 200 nM solution at 5 μl/min flow 

rate for two minutes. This was followed by a 1-minute injection of 1 μM human Fc on both 

flow cells to block unliganded mouse anti-human Fc antibody. The captured 2G12, CD4 or 

17b were used to immobilize BG505 SOSIP.664 trimer on only one flow cell, with no trimer 

captured on the other flow cell (reference cell). For capturing with 2G12 or CD4-Ig, 500 nM 

of unliganded trimer was used, whereas, a complex of 500 nM trimer + 1500 nM sCD4 was 

used for capturing with 17b. Antibody Fab fragments at 2-fold dilutions starting from 885 

nM, 600 nM and 460 nM for 35O22, PGT151 and PGT145, respectively, were injected over 

the captured trimer channel and the reference channel at a flow rate of 50 μl/min for 2 

minutes and allowed to dissociate for 3-30 minutes depending on the rate of dissociation of 
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each interaction. The cells were regenerated with two 10 μl injections of 3.0 M MgCl2 at a 

flow rate of 100 μl/min. Blank sensorgrams were obtained by injection of same volume of 

HBS-EP+ buffer in place of antibody Fab fragments. Sensorgrams of the concentration 

series were corrected with corresponding blank curves and fitted globally with Biacore T200 

evaluation software using a 1:1 Langmuir model of binding. The stoichiometry of binding of 

antibodies to the trimer were estimated by normalizing the Rmax values to the amount of 

trimer captured and performing linear regression analysis using the Rmax values for the 

antibodies with known stoichiometries.

Modeling of missing loops, side chains, and the N-linked glycan shield

Missing loops not defined in the HIV-1-Env trimer crystal structure were modeled using 

Loopy63. Missing side chains were modeled with Scap64.

To model the N-linked glycan shield, we first determined all possible N-linked sequons in 

the HIV-1 Env trimer structure. A single asparagine residue in each sequon was targeted for 

computational N-linked glycan addition using a series of oligomannose 9 rotamer libraries at 

different resolutions. In constructing the rotamer libraries, the asparagine side chain 

rotamers were also considered. To avoid a combinatorial explosion in the search space, 

select torsion angles in the oligomannose 9 rotamer libraries were allowed to vary in 

increments between 30-60 degrees. We used an overlap factor (ofac) to screen for clashes 

between the sugar moieties and the trimer structure. The ofac between two nonbonded atoms 

is defined as the distance between two atoms divided by the sum of their van der Waal's 

radii. For the modeling carried out here, we set the ofac to a value of 0.60. For sterically 

occluded positions, the ofac was set to 0.55. To remove steric bumps between sugar 

moieties, all models were subjected to 100 cycles of conjugate gradient energy minimization 

using the GLYCAM65 force field in Amber1266 with a distance-dependent dielectric.

Mapping sequence variability onto trimer structure

For each of HIV-1 Env, influenza HA, and RSV F, residue sequence variability was 

computed as the Shannon entropy for each residue position, based on representative sets of 

3943 HIV-1 strains, 4467 influenza strains, and 212 RSV strains, respectively. Residues 

were colored based on the computed entropy values, on a scale of white (conserved) to 

purple (variable).

Chronically infected cohort information

In the CHAVI 001 cohort, high-risk subjects were screened for HIV-1 infection by ELISA, 

Western blotting, and plasma RNA to recruit individuals with acute HIV infection, who 

were then followed for ~2 years until plasma neutralization breadth developed67. In 

addition, a group of individuals were enrolled in the CHAVI 001 or CHAVI 008 cohorts 

who were chronically infected with HIV-1 strains clade A, B or C, and were screened for 

plasma neutralization breadth. The trial participants were enrolled at sites in Tanzania, South 

Africa, Malawi, the United States, and the United Kingdom68. Both CHAVI001 and 

CHAVI008 protocols were approved by the institutional review boards of each of the 

participating institutions where blood samples were received or processed for analysis, and 

informed consent was obtained from all subjects.
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Serum neutralization fingerprinting analysis

The prevalence of effective neutralizing responses against HIV-1 Env in cohorts from 2-3 

and 5+ years post-infection was estimated using a neutralization fingerprinting approach, as 

described previously20. Briefly, serum neutralization over a set of 21 diverse viral strains 

was compared to neutralization of the same viruses by a set of broadly neutralizing 

antibodies grouped into 12 epitope-specific antibody clusters. For each serum, the relative 

prevalence of each of the 12 antibody specificities was estimated by representing serum 

neutralization as a linear combination of the monoclonal specificities, with prevalence 

values of 0.2 deemed as positive. Sera with less than 30% breadth on the 21-virus panel as 

well as sera with high residual values from the computation (data not shown) were not 

included in the analysis. For mapping prevalence values onto the BG505 SOSIP.664 

structure, residues part of multiple antibody epitopes were colored according to the 

respective antibody specificity with the highest prevalence in the 5+ years cohort. Antibody 

neutralization was measured using single-round-of-infection HIV-1 Env-pseudoviruses and 

TZM-bl target cells, as described previously69. Neutralization curves were fit by nonlinear 

regression using a 5-parameter hill slope equation as previously described69.

Epitope analysis for HIV-1 Env, influenza HA, and RSV F antibodies

Glycan usage and average residue entropy were calculated for seven representative HIV-1 

Env (VRC01, b12, CD4, 8ANC195, PG9, PGT122, 2G12, and 35O22)7,51,70-73, four 

representative influenza HA (2D1, C05, F10, and CR8043)74-77, and three representative 

RSV F (D25, Motavizumab, and 101F)31,78,79 epitopes based on their respective crystal 

structures. The selection of the flu antibodies was done as follows: F10 (stem targeting) and 

C05 (head targeting) were selected based on their cross-neutralizing ability for group 1 and 

group 2 of influenza A. CR8043 (group 2 specific) and 2D1 (H1 specific), which target 

distinct regions from F10 and C05 at the stem and head of the HA respectively, were also 

selected for epitope analysis. An antigen residue was defined as an epitope residue if it had a 

non-zero BSA in the crystal structure. The fraction of glycan surface area in an epitope was 

calculated as the buried surface area of epitope glycans divided by the buried surface area of 

the full epitope. Unpaired nonparametric Mann-Whitney test80 was used to quantify the 

statistical difference between glycan fraction or average residue entropy for HIV-1 versus 

influenza or RSV antibody epitopes.
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Extended Data

Extended Data Figure 1. Antibody-mediated crystallization and antibody-induced conformation
a, Atomic-level structures for HIV-1-Env regions determined in complex with HIV-1-

neutralizing antibodies. Neutralizing antibodies generally recognize the prefusion 

conformation of HIV-1 Env. Structures highlighted here display a cumulative sum total of 

prefusion HIV-1-Env structural information. Env residues are numbered according to 

standard HX numbering (from PDBs). One structure, for antibody D5 (blue), is in the 

postfusion gp41 conformation, and is not included in the sum total. Regions of other 

structures (purple), did not define sequence register, and were also not included in the sum 

total. Reference listed here are cited elsewhere in the manuscript, except for Rini et al., 

199387, Stanfield et al., 199988,89, Ofek et al., 200490, Cardoso et al., 200591, Luftig et al., 

200692, Cardoso et al., 200793. b, Antibody-induced conformation of HIV-1 Env in the 

context of infectious JR-FL virions as assessed by smFRET. HIV-1JR-FL gp160 was labelled 

with fluorescent dyes in variable regions, V1 and V4, at positions that did not interfere with 

Env function (see methods), and virus was surface immobilized for imaging via total 

internal reflection fluorescence microscopy18. smFRET trajectories were compiled into 

histograms for the HIV-1JR-FL Env trimer, either unliganded or after pre-incubation for 30 

min with 0.1 mg/ml PGT122, 35O22, or both PGT122 and 35O22 prior to imaging. 

Resultant Env conformational landscapes could be deconvoluted into three gaussian 

distributions: a low-FRET population that predominated for the prefusion mature unliganded 

state, and intermediate- and high-FRET populations, which predominated in the presence of 
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CD4 receptor and CD4-induced antibody18. smFRET trajectories are shown for the 

unliganded HIV-1JR-FL Env trimer as well as in the presence of PGT122, 35O22, and both 

PGT122 and 35O22. The concordance between conformational ensembles indicates 

unliganded and PGT122+35O22-bound conformation to be similar (Spearman correlation 

coefficient of 0.988). Interestingly, the presence of just one of the antibodies (PGT122) 

appeared to reduce the high FRET population, an effect not observed in the presence of both 

antibodies; this suggests that the antibody-induced stability of a particular state is not solely 

additive, and that antibodies can both induce a particular conformational state as well as 

alter the transition dynamics from that state.

Extended Data Figure 2. HIV-1 subunit interactions: principle component analysis and interface 
contacts
a, Minimum-bounding box, generated by principle component analysis, encasing 90% of the 

HIV-1-Env gp120-gp41 protomer. Each gp120-gp41 blade forms a rectangle of height of 

~100 Å, width of ~65 Å, and thickness of ~35 Å. Subunits are displayed in ribbon 

representation with gp41 colored rainbow and gp120 colored and labeled red. As previously 

visualized10,11, the membrane-distal portion of the rectangle is made up of the gp120-outer 

and -inner domains, with the central 7-stranded β-sandwich of the inner domain occupying 

the trimer-distal, membrane-proximal portion of gp120. We have now resolved the rest of 

the spike: the membrane-proximal portion of the rectangle is made up of gp41, with the 

membrane-distal portion of gp41 closest to the molecular 3-fold axis occupied by helix α7 

(which corresponds in register to the C-terminal portion of the postfusion HR1 helix of 

gp41), and the rest of gp41 folding around N- and C-termini-strands of gp120, which extend 
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over 20 Å toward the viral membrane. b, Different views of trimeric protomer association. 

The protomer association at the membrane-distal trimer apex occurs through the corners of 

the minimum-bounding box, whereas the association at the membrane-proximal region 

occurs with substantial interpenetration of the minimum-bounding box; these interaction 

differences and the protruding nature of the gp120 outer domain result in the overall 

mushroom shape of the trimer. c, gp120-gp41 interface. Ribbon representation of gp120 

(red) and gp41 (rainbow from blue N terminus to orange C terminus), with gp120 residues 

that interact with gp41 shown in surface representation and gp41 residues that interact with 

gp120 shown in semitransparent surface. A complete list of subunits interactions is provided 

in Supplementary Table 1. Membrane-proximal interactions are further stabilized by 

hydrophobic interactions, which gp41 makes with the N and C termini of gp120 –such as 

between Trp35gp120 and Pro609gp41 and between Trp610gp41 and Pro498gp120. d, Wheel 

diagram representation of α7 coiled-coil in the prefusion mature closed conformation of 

gp41 as generated by DrawCoil 1.0: http://www.grigoryanlab.org/drawcoil/94. e, gp41-

trimer interfaces as viewed from the viral membrane in ribbon and surface representation 

(90° rotation from Fig. 2c). f, BG505 SOSIP.664 sequence with residues identified by 

mutagenesis95-101 to be important for gp120/gp41 association underlined. Residues that 

were found to interact between gp120 and gp41 by examination of the crystal structure are 

indicated in red (intra-protomer interactions) and in brown (inter-protomer interactions). 

Sites of N-linked glycosylation are shown in green; glycan N88 is shown in red because it is 

part of the gp120/gp41 interactions; no density was observed for potential N-linked glycans 

at residues 185, 398, 406, 411, 462 and 625. Residues that were disordered in the crystal 

structure are gray. SOS (A501C/T605C) and IP (I559P) mutations are labeled in bold and 

italics. Dots indicate residues not present in the BG505 sequence.
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Extended Data Figure 3. Modeling of gp41: prefusion α6-to-α7 density, HIV-1/SIV postfusion 
chimera, and liganded interactions
a, Modeling of gp41 residues 548-568. At low contour, suggestive density is observed that 

might correspond to the connection between α6 and α7 helices. To investigate the degree to 

which a model for this region might be defined, we built and refined two different models 

for this region: electron density (blue) shown for 2F0-Fc density at 1σ contour; gp41 

(rainbow color from blue to orange) shown in ribbon representation with side chains; gp120 

(red) shown in ribbon representation. The location of the I559P mutation is indicated. b, The 

two models from panel a are superimposed and shown in perpendicular orientations. c, 

HIV-1-SIV postfusion chimera. Sequences of HIV-1 gp41 from prefusion structure (BG505 

strain, PDB ID: 4TVP), postfusion structure (HIVpost, PDB ID: 2X7R24) and SIV gp41 

postfusion structure (SIVpost, PDB ID: 2EZO25) are aligned with secondary structure 

indicated. Residues that were used to make the postfusion HIV-1/SIV chimera used in 

Figure 3 are highlighted in red. d, Binding residues of representative fusion-intermediate 

entry inhibitors or antibodies mapped onto the structure of prefusion HIV-1-Env 

spike102-104. (top) Ribbon representation of prefusion envelope protomer A (gp120 in red 

and gp41 in blue) at two orientations, with the binding residues of the fusion-intermediate 

inhibitors 5-helix,T20, and of monoclonal antibody D592 shown in orange, green, and 

yellow, respectively. (bottom) Surface representation of the prefusion envelope trimer, with 

inhibitor and antibody binding residues mapped onto the surfaces of all protomers. gp120 is 

colored gray and gp41 is colored in shades of blue, depending on protomer. Binding 

residues of fusion-intermediate inhibitors 5-helix, T20, and monoclonal antibody D5 are 

shown in same color shades as in the top panels. e. 5-helix, T20 and D5 Fab (all colored 

magenta and gray) docked onto a model of fusion-intermediate gp41 (colored as in d). f, A 

previously defined binding pocket on postfusion gp41 is the target of prefusion gp41 

tryptophan-clasp residues Trp628 and Trp631. Shown is a surface representation of gp41 5-

helix protein104 (left, with N-heptad repeat (NHR) helices colored in shades of green and C-

heptad repeat (CHR) helices colored in shades of orange). The footprint of gp41 tryptophan-

clasp residues Trp628 and Trp631 is shown in magenta (middle) and that of a representative 

NHR-specific neutralizing antibody, D5, in yellow 92,105,106 (right).
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Extended Data Figure 4. Conformational changes between prefusion mature closed state and 
CD4-bound state of gp120
a, Overall structure and sequence comparison. gp120 is shown in ribbon representation in 

prefusion mature closed (red) and CD4-bound (yellow, PDB ID: 3JWD22) conformation. 

V1V2 (PDB ID: 3U2S51) has been modeled onto the CD4-bound conformation. Secondary 

structure is defined for prefusion and CD4-bound conformation on the BG505 sequence, 

with cylinders representing α-helix and arrows β-strands. Disordered residues are indicated 

by “X”. Residues that move more than 3 Å between the mature closed and the CD4-bound 

gp120 conformations are shown with grey shadows. Sites of N-linked glycosylation are 

shown in green. b. Details of conformational changes between the mature closed (red) and 

the CD4-bound conformations (yellow) of gp120 (shown in ribbon): regions highlighted 

cover layer 1 with changes at α0 (we note that density in this region is not well defined), 

layer 2 with changes at α1 and β20-21 rearrangements. All atoms rmsd are: residues 

54-74gp120, rmsd = 4.759 Å; residues 98-117 gp120, rmsd = 0.497 Å; 424-436 gp120, rmsd = 

3.196 Å.
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Extended Data Figure 5. Antigenic profiles of HIV-1 envelope conformational states
a, Qualitative recognition of HIV-1 envelope by diverse antibodies is shown for five 

conformational states. Green bars indicate reported recognition, red bars no recognition, and 

absence of a bar indicates that recognition is undefined. The compiled data is from both 

cited references and experiments described in this figure. b, Octet Biosensorgrams of 

BG505 SOSIP.664 (left) and BG505 gp120 (right) binding to human monoclonal IgGs. The 

dotted line indicates the beginning of the dissociation phase and the maximal specific 

binding after 300 s reported in the table (− <0.05 RU, + 0.05 RU to 0.25 RU, ++ 0.25 RU to 

0.5 RU, and +++ >0.5 RU). BG505gp120 did not contain the T332N mutation (no glycan at 

that position). Both proteins were made in GnTi−/−. We note that antigenicity of the BG505 

SOSIP.664 and BG505gp120 protein varied depending on the assay done. Thus, using 

surface plasmon resonance, no CD4i antibodies binding was detected while some binding 

could be observed using biolayer interferometry. Although PG9 bound BG505gp120 in 

ELISA16, it did not bind in biolayer interferometry format. We observed 447-52D binding 

while it was not observed in ELISA16. c, SPR binding affinities of 35O22, PGT151 and 

PGT145 to BG505 SOSIP.664 and influence of sCD4. d, Estimation of binding 

stoichiometry for 35O22, PGT151, and PGT145 to trimeric BG505 SOSIP.664 by SPR and 

comparison to published data13,107,108. e, Effect of sCD4 and sCD4/17b on binding of 

antibodies 35O22 and PGT151 to BG505 SOSIP.664 by SPR. The structure of a prefusion 

mature closed state of HIV-1 provides a critical addition to the pantheon of HIV-1 Env 

structures with atomic-level detail. Moreover, antibodies 35O22 and PGT151, which bind 

specifically to the trimeric prefusion conformation of gp41, provide new tools by which to 

assess the conformational state of gp4113,107,109. The binding of antibodies 35O22 and 

PGT151 to BG505 SOSIP.664 trimer was tested in the presence of the CD4 receptor and the 
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17b antibody110 (a co-receptor surrogate which recognizes a bridging sheet epitope that 

overlaps the site of co-receptor recognition). In the case of antibody 35O22, CD4 binding to 

the BG505 SOSIP.664 trimer impacted the kinetics, affinity and stoichiometry of binding. 

35O22 bound to BG505 SOSIP.664 with an 8.4-fold reduced affinity, primarily contributed 

by an increased rate of dissociation. The overall binding level (Rmax) normalized to the 

average level of trimer captured (see also panel d) was lower suggesting substoichiometric 

binding. Capturing the trimer on a CD4-Ig surface reduced normalized Rmax for PGT151 

compared to the 2G12 capture format, suggesting reduced stoichiometry for PGT151 

binding to trimer pre-bound with CD4, although kinetics and affinity of interaction were 

similar. A BG505 SOSIP.664 trimer + sCD4 complex captured onto a 17b surface bound 

35O22 but showed no detectable binding to PGT151.

Extended Data Figure 6. N-Linked glycan occlusion of type I fusion machines
The prefusion mature closed conformation of HIV-1 Env evades the humoral immune 

response with a fully assembled glycan shield. Here we calculate and display the solvent-

accessible surface of glycan and protein for HIV-1 Env, influenza virus hemagglutinin and 

RSV fusion glycoprotein. Calculations of the percentage coverage of the protein surface 

were determined for trimeric type I fusion machines based on two probe sizes of 1.4 Å 

(solvent radius) and 10.0 Å (the estimated steric footprint of an antibody combining region). 

Surface area calculations were carried out according to Kong et. al79, and images were 

generated using Grasp v1.380. All models were refined using Amber with the GLYCAM 

force field (see Methods for details). The PDB IDs associated with the glycosylated models 

are: 4TVP (HIV-1), 2YP785 (Flu) and 4JHW31 (RSV). The strains associated with the PDB 

IDs are: BG505.SOSIP.664 (HIV-1), H3N2 A/Hong Kong/4443/2005 (Flu) and A/A2/61 
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(RSV). The solvent-accessible protein surface is shown in red, and N-linked glycans are 

shown in green. a, Estimated Man9 glycan coverage. b, Estimated Man5 glycan coverage. c, 

Visualization of Man9 N-linked glycan coverage for two probe radii. d, Visualization of 

Man5 N-linked glycan coverage for two probe radii.

Extended Data Figure 7. Glycan shield and sequence variability for HIV-1 prefusion mature 
closed and CD4-bound conformations
Many conformations of HIV-1 Env divert the immune response. Thus for example, shed 

gp120 and post-fusion gp41 represent dominant viral antigens; however these forms of Env 

are not functional, and antibodies that only target them are not neutralizing. Functional 

conformations, however, may be significantly shielded from the neutralizing antibody. The 

CD4-bound conformation of HIV-1 Env, for example, is only functionally present when the 

viral and target-cell membranes are in close proximity, and the exposed co-receptor binding 

site (including V3- and CD4-induced epitopes) is spatially occluded from neutralizing 

antibody. Here we provide models for the prefusion closed state versus the CD4-bound 

conformation, which display the fully assembled glycan shield and surface Env variability. 

Env N-linked glycans are depicted in light green (conserved; greater than 90% conservation) 

or dark green (variable; less than 90% conservation) on the mature closed Env structure and 

modeled CD4-bound conformation. Env sequence variability is shown from white to purple 

(conserved to variable). A conserved glycan at residue 241gp120 not present in the BG505 

sequence is shown in yellow-green. As can be seen, the prefusion closed state has few 

glycan-free surfaces, whereas the CD4-bound state exposes substantial glycan-free 

conserved surface.
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Extended Data Figure 8. Prevalence of neutralizing responses identified serologically from 
cohorts from 2-3 years and 5+ years post infection
a, Serum neutralization on 21-strain virus panel. ID50s are shown for serum (rows) titrated 

against HIV-1 viral strains (columns). b, For each serum, the predicted neutralization 

prevalence for each of 12 antibody specificities is shown based on neutralization of 21 

diverse HIV-1 strains. c, Prevalence of antibody specificities onto the HIV-1-Env colored as 

indicated in the bar graph. d, The antibody specificities for high serum prevalence in the 5+ 

years cohort are depicted by Fabs of representative antibodies (surface transparency 

proportional to prevalence) binding the BG505 SOSIP.664 Env trimer, shown in grey ribbon 

representation, with glycans as green sticks. Note that while prevalence is highly correlated, 

there were notable differences, for example between PGT151 at 2-3 years and 5+ years in 

this study, as well as between the cohorts analyzed here and in ref. 13.
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Extended Data Figure 9. Antibodies 35O22 and PGT122: interface with HIV-1 Env and 
comparison of bound and unbound Fab conformations
Despite the substantial immune evasion protecting the mature unliganded state from 

humoral recognition, after several years of infection, the human immune system does 

generate broadly neutralizing antibodies. 35O22 and PGT122 are two of these antibodies, 

which neutralize 62% and 65% of HIV-1 isolates at a median IC50 of 0.033 and 0.05 μg/ml, 

respectively13, 12. Here we provide additional details on 35O22 and PGT122 recognition. a, 

35O22 Fab is shown in ribbon representation (purple (heavy chain) and white (light chain)). 

The gp120 subunit is shown in red, the gp41 subunit in rainbow (from blue N terminus to 

orange C terminus), and glycans in green sticks. Complementary determining regions 

(CDRs) are labeled, and interactive HIV-1-Env residues highlighted in semi-transparent 

surface representation. At the membrane-distal surface of 35O22, an extended framework 3 

region (FW3) of the heavy chain (resulting from an insertion of 8 residues) interacts with 

strand β1 of the 7-stranded inner domain sandwich of gp120. The heavy chain-CDRs form 

extensive contacts with the N-linked glycan extending from residue 88gp120. In addition to 

glycan contacts, the CDR H3 of 35O22 interacts with the α9 helix of gp41. Helix α9 

interactions are also made by the FW3 of the light chain (a complete list of contacts is 

provided in Supplementary Table 3). Overall, 35O22 buries 1,105 Å2 solvent surface on 

gp120 (including 793 Å2 with the Asn88gp120 glycan) and 594 Å2 solvent surface on gp41 

(including 127 Å2 with the Asn618gp41 glycan). Despite residue 625gp41 being part of the 

glycan sequon “NMT”, no glycan is observed; indeed, the side-chain amide of residue 

625gp41 hydrogen bonds with the side-chain oxygen of Tyr32 in the 35O22 heavy chain, and 

the presence of an N-linked glycan at residue 625gp41 is difficult to reconcile with 35O22 

Pancera et al. Page 23

Nature. Author manuscript; available in PMC 2015 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recognition. b, Same colors as a, with 35O22 Fab shown in surface representation. c, Same 

colors as a, with 2Fo-Fc at 1σ contour (blue density) shown around glycan 88 of gp120. 

Antibody 35O22 employs a novel mechanism of glycan-protein recognition, combining a 

protruding FW3 with CDR H1, H2 and H3 to form a “bowl” that holds glycan. FW3 and 

CDR H3 provide the top edges of the bowl and interact with the protein surface of gp120, 

whereas CDR H1 and H2 are recessed and hold/recognize glycan. This structural 

mechanism of recognition contrasts with the extended CDR H3-draping glycan observed 

with other antibodies that penetrate the glycan shield such as PG951 and PGT12878. d, 

PGT122 interface details. Ribbon representation of PGT122 Fab in blue (heavy chain) and 

light blue (light chain) interacting with one gp120 subunit shown in red with glycans in 

green sticks. Complementary determining regions (CDRs) are labeled, and interactive 

HIV-1-Env residues highlighted in surface representation. Primary contacts between 

antibody PGT122 and N-linked glycan involve N137 and N332, with minor contact with 

N156. Although portions of glycan N301 can be observed in the electron density, no direct 

contacts with PGT122 are observed; a complete list of contacts between PGT122 and 

BG505 SOSIP.664 is provided in Supplementary Table 4. e, Same colors as d, with PGT122 

Fab shown in surface representation, f, Same colors as d, with 2Fo-Fc at 1σ contour (grey 

density) shown around glycan 332 of gp120. g,Comparison of bound and unbound Fab 

conformations. Unbound and HIV-1-Env bound Fabs were superimposed, and ribbon 

representations and rmsds are displayed. (Left) Unbound 35O22 Fab is colored cyan (heavy 

chain) and green (light chain) and bound 35O22 Fab deep purple (heavy chain) and white 

(light chain). (Right) Unbound PGT122 Fab is colored cyan, and bound PGT122 Fab blue 

(heavy chain) and light blue (light chain). Regions which showed conformational changes 

are highlighted with black dotted lines. We note that in the 35O22 bound conformation, 

density is poor and/or sparse for the Fc portion of the Fab.

Extended Data Figure 10. Structural implementation of HIV-1 molecular trickery
The prefusion HIV-1-Env trimer (left) is displayed with evasion mechanisms and their 

structural implementation (right). The gp120 subunit is shown in red, the gp41 subunit in 

rainbow (from blue N terminus to orange C terminus), and crystallographically defined 

glycans in green. One protomer is shown with Cα trace and glycans in stick representation, a 
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second protomer is shown in ribbon representation with secondary structure elements 

labeled, and the third protomer is shown in light grey surface. The MPER region for each 

protomer is shown as a stylized helix associated with the viral membrane. The location of 

secondary structural elements, termini, and residues called in the text has been labeled (red 

font for gp120 and black font for gp41).
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Figure 1. Structure of a prefusion HIV-1-Env trimer bound by PGT122 and 35O22 antibodies
One protomer and associated Fabs is shown in ribbon and stick representation, a second 

protomer in surface representation, and the third protomer in gray. Residues comprising the 

refined HIV-1-Env model are displayed on the bar, with beginning and final ordered residue 

of each segment labeled; vertical lines demark termini of the mature ectodomain subunits; 

unmodeled regions, residues not present in the BG505 SOSIP.664 construct, and disordered 

glycans are shown in gray. 35O22 and PGT122 interactions with the HIV-1-Env trimer are 

shown in Extended Data Fig. 9a-f, and bound versus unbound Fabs are shown in Extended 

Data Fig. 9g.
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Figure 2. Prefusion structure of gp41
a, gp41 forms a 4-helix collar, which wraps around extended N and C termini of gp120. 

Both gp120 (red) and gp41 (rainbow from blue to orange) are depicted in ribbon 

representation, with select residues and secondary structure labeled (additional labels are 

shown in Extended Data Fig.10). The location of the trimer axis is indicated with triangle-

surround “3”. The orientation shown here is similar to that of Fig. 1, with perpendicular 

orientations provided in b and c. (zoom insert) The gp41 collar is clasped by the insertion of 

Met530gp41 into a tryptophan sandwich and by the complementary dipoles of helices α6 and 

α8. 2Fo-Fc electron density for clasp residues is depicted at 1σ. b, gp41 holds the N and C 

termini of gp120 in its hydrophobic core. Coloring and representation are the same as in a, 

excepted that hydrophobic side chains are shown in stick representation and the orientation 

is rotated 90°, to depict the view from the viral membrane. c, gp41-trimer interfaces as 

viewed from side in ribbon and surface representation. Overall, the prefusion structure of 

gp41 and its trimeric arrangement appear to have no close structural relatives in the PDB 

(Supplementary Table 2).
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Figure 3. Entry rearrangements of HIV-1 Env
a, BG505 sequence46 of gp41, with prefusion and postfusion secondary structure. Fusion 

peptide (FP) is underlined and labeled green. Several postfusion gp41 structures have been 

determined ranging from a minimal, protease-treated, crystal structure (residues 

556gp41-581gp41; 628gp41-661gp41; PDB ID: 1AIK8) with 80% sequence identity to 

BG50546 to a more complete gp41 structure (residues 531gp41-581gp41; 624-681gp41; PDB 

ID: 2X7R24) and an NMR structure that includes the cysteine loop (residues 

539gp41-665gp41; PDB ID: 2EZO25) of the simian immunodeficiency virus (SIV), which 

shares 48% sequence identity with BG50546 and is substantially similar to the HIV-1 

structures (less than 1-Å Cα rmsd between overlapping residues of 1AIK and 2EZO). The 

postfusion structure utilized here for comparisons was constructed from a chimera of 
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HIV-1/SIV structures (Extended Data Fig. 3c). b, Difference distance analysis26 of 

prefusion BG505 and postfusion HIV-1/SIV chimeric gp41. Secondary structure is 

indicated, along with missing residues of BG505 (548-568) and of SIV (611-614). c, 

Superposition of postfusion gp41 (grey) onto prefusion gp41 (rainbow) for α7 (left) and α9 

(right) prefusion helices. d, HIV-1-Env entry rearrangements. EM reconstructions (top row) 

with gp120 (middle) and gp41 (bottom) rearrangements between each conformational state 

highlighted with orange lines depicting movement of each Cα between conformations. 

Subunit models are shown in gray with modeling parameters and references provided in 

Extended Data Table 2. Antigenic recognition of each of these states is shown in Extended 

Data Fig. 5.
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Figure 4. Prefusion HIV-1 gp120-gp41 structure shares conserved structural and topological 
features with other type I fusion machines
a, Prefusion (left) and postfusion (right) structures. The prefusion structures are shown for a 

single protomer in ribbon-representation with gp120-equivalent subunits in red, and gp41-

equivalent subunits in rainbow (blue to orange). The trimeric postfusion structures are 

shown with one subunit in rainbow (blue to orange), and the other in light and dark gray. b, 

The C-terminal portion of the preformed interior helix of postfusion coiled-coil from a is 

shown, with fusion peptides (FP) and N and C terminal residues of postfusion coiled-coils 

labeled, and the distance the inner coiled-coil extends between prefusion and postfusion 

conformations indicated. c, The gp41-equivalents encircle extended β-strands of their 

gp120-equivalent partners. Ribbon representations are shown looking towards the viral 

membrane. With influenza, it is only the N terminus of the gp120-equivalent (HA1) that is 

wrapped by the gp41-equivalent (HA2), with the N terminus of HA2 completing about 20% 

more than a single encirclement. With RSV, it is also only the N terminus of the gp120 

equivalent (F2) that is wrapped by the gp41-equivalent (F1), and the termini do not have to 

be expelled to transition to the postfusion form. With Ebola, the gp41-equivalent (gp2) 

wraps both N and C termini-strands of the gp120-equivalent (gp1), completing about 70% of 

a single encirclement. Such encirclement likely helps capture the energy of prefusion 

folding, which is released during the postfusion transition to power membrane fusion.
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Figure 5. Fully assembled shield revealed by prefusion HIV-1 gp120-gp41 trimer
a, Glycan shield. Env N-linked glycans are depicted in light green (conserved; greater than 

90% conservation) or dark green (variable; less than 90% conservation) on the prefusion 

mature closed Env structures for BG505 strain of HIV-1 (left), influenza virus H3 

hemagglutinin (PDB ID: 2YP7) (middle), and RSV fusion glycoprotein subtype A (PDB ID: 

4JHW) (right). A conserved glycan at residue 241gp120 not present in the BG505 sequence is 

shown in yellow-green. b, Sequence variability.
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Figure 6. Location and prevalence on the HIV-1-Env spike of neutralizing responses identified 
serologically from cohorts, 2-3 and 5+ years post-infection
a, The location of the neutralization epitopes for broadly neutralizing antibodies is depicted 

on the prefusion mature closed Env spike with red for CD4-binding-site-directed antibody 

specificities (VRC01-, b12-, CD4-, and HJ16-like), purple for 8ANC195-like, green for 

V1V2-directed (PG9-like), blue for glycan-V3 specificities (PGT128- and 2G12-like), 

orange for 35O22-like specificities, and green-yellow for PGT151-like specificities. b, (top) 

Broadly neutralizing epitopes on influenza virus hemagglutinin (left, PDB ID: 2YP7) and 

RSV fusion glycoprotein (right, PDB ID: 4JHW). (bottom) Glycan-surface area and residue 

entropy of antibody epitopes for HIV-1, influenza, and RSV with bars colored according to 

epitopes shown in a and b (except for epitopes not present in SOSIP.664 or where there is 

no atomic level definition). c, Neutralization fingerprint. For each serum, the predicted 

neutralization prevalence for each of the 12 antibody specificities is shown based on 

neutralization of 21 diverse HIV-1 strains (Extended Data Fig. 8).
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