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Abstract 

The main focus of the study was to understand the behaviour of seven timber 

genotypes based on seven chemical properties observed during the chemical pulping 

process with the prime objective of developing methods of grouping different timber 

genotypes into compatible groups of timber that can be optimally processed together. 

Four related statistical methods were used in analysing the data and each had a 

specific objective. The random coefficients model was used to investigate how the 

genotypes evolve over the processing stages and it was discovered that the rates of 

change of the chemical properties studied depended on their initial readings at the 

beginning of processing. This trend applied for all seven genotypes of pulping trees 

studied.   

 

The important results that came out of fitting the random coefficient model to the data 

is that the higher the raw stage readings (initial values) the higher the rates of change 

in the chemical properties over the processing stages. The changes were either 

increases or decreases in the chemical property studied. The random coefficient 

model was also used to suggest a rudimental mixing index for the different genotypes 

based on the average ranking of their slope parameters (rates of change) for the seven 

variables studied. It was found, for example, that the genotypes GUA and GUW are 

the least mixable ones. 

 

Piecewise linear regression models were used to identify important variables when 

classifying genotypes and it was generally found that viscosity is not a very useful 

variable in the classification of genotypes. Using piecewise linear regression models 

together with kernel density estimation a mixing index (scale) was developed that can 

be used to determine which genotypes are the most mixable for chemical processing. 

A coparison of the random coefficient and the piecewise linear regression models 

shows that the two models yielded very similar conclusions on what genotypes are 

most mixable during processing. 

 

Joint modelling was used to analysis the correlations between evolutions of different 

chemical properties studied. The various levels of correlations between these 
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variables were discussed. The main limitation of the joint modelling method was its 

computational challenges because of the many parameters that need to be estimated 

at the same time.  



 

 

vi 

 

Table of Contents 

ABSTRACT…...…………………………………………………………………………………….. IV 

LIST OF TABLES…………………………………………………………………………………… XI 

LIST OF FIGURES………………………………………………………………………………...XIV 

PUBLISHED PAPERS…………………………………………………………………………... XVII 

Paper under Review ........................................................................................................... xvii 

Conference presentations ................................................................................................... xvii 

Papers in preparation.......................................................................................................... xvii 

CHAPTER 1………………………………………………………………………………………….. 1 

INTRODUCTION…………………………………………………………………………………….. 1 

1.1. Significance of the study ............................................................................................. 2 

1.2. Objectives of the study ................................................................................................ 3 

1.3. Organisation of the study ............................................................................................ 3 

CHAPTER 2………………………………………………………………………………………….. 5 

DESCRIPTION OF THE DATA AND EXPLORATORY DATA ANALYSIS……………………. 5 

2.1. The Pulping Process .................................................................................................... 5 

2.2. The Bleaching Process ................................................................................................ 6 

2.3. The Data Collected from the Chemical Process.......................................................... 6 

2.3.1. Delignification: Acid bi-sulphite pulping ......................................................................... 8 

2.3.2. Laboratory bleaching and finishing ................................................................................. 8 

2.3.3. Wet Chemistry analysis – Chemical properties (Variables) ............................................ 8 

2.4. Exploratory Data Analysis ........................................................................................ 12 

2.4.1. Theoretical aspects of Profile Plots and associated smoothing methods .................... 12 

2.4.2. Profile Plots for the seven chemical properties ............................................................ 17 

2.4.3. Scatter Plots and Correlation Analysis .......................................................................... 28 

2.4.4. The assumption of normality and normality tests ........................................................ 31 

2.4.5. Relevance of the exploratory data analysis .................................................................. 32 

CHAPTER 3….……………………………………………………………………………………...38 

FITTING RANDOM COEFFICIENT MODELS TO TIMBER PULP CHEMICAL PROPERTIES
 38 

3.1. Introduction ............................................................................................................... 38 



 

 

vii 

 

3.2. The Linear Mixed Model for Repeated Measures and the Random Coefficient 

Model 38 

3.2.1. Generalised Linear Models (GLM) ................................................................................ 39 

3.2.2. Parameter Estimation in Generalised Linear Models - The Fisher scoring procedure . 40 

3.2.3. Estimation of LMM parameters by Restricted Maximum Likelihood Estimation (REML)

 42 

3.2.4. Estimation of random effects by Best Linear Unbiased Predictors (BLUP)................... 43 

3.2.5. Use of LMM for the longitudinal pulp data .................................................................. 45 

3.2.6. Fitting the Random Coefficient Model to the Pulp Data .............................................. 46 

3.3. Model fitting and results discussion .......................................................................... 47 

3.3.1. Choice of covariance structures .................................................................................... 48 

3.3.2. Random coefficient models for viscosity ...................................................................... 48 

3.3.3. Random coefficient models for Lignin .......................................................................... 52 

3.3.4. Random coefficient models for γ-cellulose ................................................................... 54 

3.3.5. Random coefficient models for α-cellulose .................................................................. 56 

3.3.6. Random coefficient models for Copper number .......................................................... 58 

3.3.7. Random coefficient models for Glucose ....................................................................... 60 

3.3.8. Random coefficient models for Xylose ......................................................................... 62 

3.4. Conclusion ................................................................................................................. 64 

CHAPTER 4………………………………………………………………………………………… 66 

PIECEWISE LINEAR REGRESSION MODELS WITH DUMMY TIME VARIABLES……….. 66 

4.1. Introduction ............................................................................................................... 66 

4.2. Graphical presentation of chemical properties over processing stages ..................... 67 

4.3. The Piecewise Linear Regression Model .................................................................. 71 

4.4. Fitting the Piecewise Linear Regression Model to the chemical pulp properties data

 75 

4.4.1. Viscosity data ................................................................................................................ 76 

4.4.2. Lignin data ..................................................................................................................... 78 

4.4.3. γ-cellulose data ............................................................................................................. 80 

4.4.4. α-cellulose data ............................................................................................................. 81 

4.4.5. Copper Numbers data ................................................................................................... 82 

4.4.6. Glucose Data ................................................................................................................. 84 

4.4.7. Xylose data .................................................................................................................... 85 

4.5. Conclusion ................................................................................................................. 87 

CHAPTER 5………………………………………………………………………………………….89 



 

 

viii 

 

COMPARISON OF RANDOM COEFFICIENT AND PIECEWISE LINEAR REGRESSION 
MODELS USING BEST LINEAR UNBIASED PREDICTORS (BLUP)………………. 89 

5.1. Introduction ............................................................................................................... 89 

5.2. Comparisons of the Random Coefficient and Piecewise Linear Regression Models

 89 

5.2.1. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for viscosity ...................................................................................................................... 90 

5.2.2. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for viscosity ...................................................................................................................... 91 

5.2.3. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for γ-Cellulose .................................................................................................................. 92 

5.2.4. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for α-Cellulose ................................................................................................................. 92 

5.2.5. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for Copper Number ......................................................................................................... 93 

5.2.6. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for Glucose ...................................................................................................................... 94 

5.2.7. Comparison of the Random Coefficient (RC) and the Piecewise Linear Regression (PLR) 

models  for Xylose ......................................................................................................................... 94 

5.3. Genotype comparisons and clustering based on average slopes ............................... 95 

5.3.1. Genotype comparisons and clusterig based on average RC slopes .............................. 96 

5.3.2. Genotype comparisons and clusterig based on PLR slopes .......................................... 99 

5.4. Conlusion ................................................................................................................ 102 

CHAPTER 6……………………………………………………………………………………….. 103 

CLASSIFICATION OF TIMBER GENOTYPES USING PIECEWISE LINEAR REGRESSION 
AND KERNEL DENSITY BASED CLUSTERING…………………………………….. 103 

6.1. Introduction ............................................................................................................. 103 

6.2. Kernel Density Estimation and Clustering .............................................................. 105 

6.2.1. The kernel density estimator ...................................................................................... 106 

6.2.2. Kernel Functions ......................................................................................................... 107 

6.2.3. Multivariate bandwidth selection ............................................................................... 108 

6.3. Kernel density estimation as a clustering tool ......................................................... 109 

6.4. Data simulation and kernel density estimation ....................................................... 111 

6.4.1. Simulating the bivariate normal distribution .............................................................. 111 

6.4.2. Density estimation from simulated data .................................................................... 112 

6.5. Results and discussions ........................................................................................... 113 

6.5.1. Kernel density estimation and genotype classification using lignin ........................... 113 



 

 

ix 

 

6.5.2. Kernel Density estimation and genotype classification using α-Cellulose .................. 118 

6.5.3. Kernel density estimation and genotype classification using viscosity ...................... 121 

6.5.4. Density estimation and genotype classification based on γ-Cellulose results............ 123 

6.5.5. Density estimation and genotype classification for Copper Numbers ....................... 126 

6.5.6. Density estimation and genotype classification for Glucose ...................................... 128 

6.5.7. Density estimation and genotype classification for Xylose ........................................ 130 

6.6. Summary of kernel density estimation and clustering results ................................. 132 

6.7. Conclusion ............................................................................................................... 133 

CHAPTER 7……………………………………………………………………………………….. 137 

JOINT MODELLING OF THE EVOLUTION OF PULP CHEMICAL PROPERTIES DURING 
CHEMICAL 
PROCESSING……………………………………………………………………………137 

7.1. Introduction ............................................................................................................. 137 

7.2. The Univariate Model ............................................................................................. 139 

7.3. Joint Multivariate Models ....................................................................................... 140 

7.3.1. Fitting the bivariate model .......................................................................................... 142 

7.3.2. The number of parameter estimates in a multivariate mixed model......................... 143 

7.3.3. Fitting the bivariate model using conditioning ........................................................... 144 

7.3.4. Fitting the bivariate model using shared-parameter models ..................................... 145 

7.3.5. Fitting the full joint multivariate model using pairwise fitting ................................... 146 

7.4. Fitting the Joint Multivariate Model to the Pulp data ............................................. 147 

7.4.1. Intercept corrected data ............................................................................................. 148 

7.4.2. Pairwise fitting of the 21 possible pairs of variables .................................................. 149 

7.4.3. Estimation of model parameters using the pairwise method .................................... 151 

7.4.4. Pairwise slope parameter estimates ........................................................................... 151 

7.4.5. Slope Covariances ....................................................................................................... 156 

7.5. Discussion of results and conclusions ..................................................................... 157 

CHAPTER 8……………………………………………………………………………………….. 159 

DISCUSSIONS AND CONCLUSION ………………………………………………………….159 

REFERENCES………………………………………………………………………………..….. 164 

APPENDICES……………………………………………………………………………………. 175 

A.1. Model Diagnostics – Residual Analysis .................................................................... 175 

A1.1. Residuals for Random Coefficient Models - Chapter 3 ............................................... 175 

A1.2. Residuals for Piecewise Linear Regression Models - Chapter 4 .................................. 178 



 

 

x 

 

A.2. SAS codes used .......................................................................................................... 182 

A2.1. SAS Codes for exploratory data analysis ..................................................................... 182 

A2.2. SAS Codes for Random Coefficient Models ................................................................ 190 

A2.3. SAS Codes for Piecewise Regression Models .............................................................. 192 

A2.4. SAS Codes for Kernel Density Estimation .................................................................... 193 

A2.5. SAS Codes for Joint Modelling .................................................................................... 210 

A3. Published articles from the study ................................................................................ 249 

 

  



 

 

xi 

 

List of Tables 

Table 2.1. Numerical codes for processing stages ..................................................... 6 

Table 2.2. Ideal pulp characteristics for the 96α pulp ............................................... 12 

Table 2.3. Correlations between chemical property variables .................................. 29 

Table 2.4. Serial correlations for the seven genotypes............................................. 30 

Table 2.5. Kolmogorov–Smirnov tests of normality for the seven chemical variables 
at the six stages. ...................................................................................................... 31 

Table 3.1. Fit Statistics for Covariance Structures for random coefficient regression 
models for the seven chemical pulping variables. .................................................... 48 

Table 3.2 Parameter estimates for the random coefficient regression model for 
viscosity. ................................................................................................................... 49 

Table 3.3: Intercept and slope parameter estimated differences for the random 
coefficient regression model for viscosity. ................................................................ 51 

Table 3.4 Parameter estimates for the random coefficient regression model for Lignin
 ................................................................................................................................. 52 

Table 3.5: Intercept, slope and curvature parameter estimated differences for the 
random coefficient regression model for Lignin. ....................................................... 53 

Table 3.6 Parameter estimates for the random coefficient regression model for γ-

cellulose ................................................................................................................... 54 

Table 3.7: Intercept, slope and curvature parameter estimated differences for the 
random coefficient regression model for γ-cellulose. ................................................ 55 

Table 3.8 Parameter estimates for the random coefficient regression model for α-

cellulose ................................................................................................................... 56 

Table 3.9: Intercept and slope parameter estimated differences for the random 
coefficient regression model for α-cellulose. ............................................................ 57 

Table 3.10 Parameter estimates for the random coefficient regression model for α-

cellulose ................................................................................................................... 58 

Table 3.11: Intercept and slope parameter estimated differences for the random 
coefficient regression model for copper number. ..................................................... 59 

Table 3.12 Parameter estimates for the random coefficient regression model for 
glucose. .................................................................................................................... 60 

Table 3.13: Intercept and slope parameter estimated differences for the random 
coefficient regression model for glucose. ................................................................. 61 



 

 

xii 

 

Table 3.14 Parameter estimates for the random coefficient regression model for 
Xylose. ..................................................................................................................... 62 

Table 3.15: Intercept and slope parameter estimated differences for the random 
coefficient regression model for xylose. ................................................................... 63 

Table 4.1. Values of t for the three main chemical sub-processes in dissolving pulp74 

Table 4.2.  AIC values for different covariance structures for the piecewise 
regression models .................................................................................................... 76 

Table 4.3.   Tests for the effects of delignification, bleaching and finishing on 
genotype. ................................................................................................................. 77 

Table 4.4. Piecewise linear regression model parameter estimates and t-tests for 
viscosity .................................................................................................................... 78 

Table 4.5: Piecewise linear regression model parameter estimates and t-tests for 
Lignin ........................................................................................................................ 79 

Table 4.6. Piecewise linear regression model parameter estimates and t-tests for γ-
cellulose. .................................................................................................................. 80 

Table 4.7. Piecewise linear regression model parameter estimates and t-tests for α-
cellulose ................................................................................................................... 82 

Table 4.8. Piecewise linear regression model parameter estimates and t-tests for 
Copper Number. ....................................................................................................... 83 

Table 4.9. Piecewise linear regression model parameter estimates and t-tests for 
Glucose .................................................................................................................... 84 

Table 4.10. Piecewise linear regression model parameter estimates and t-tests for 
Xylose. ..................................................................................................................... 86 

Table 5.1. Comparison of the Random coefficient and the Piecewise linear 
regression model for Viscosity. ................................................................................ 90 

Table 5.2. Comparison of the Random coefficient and the Piecewise linear 
regression model for Lignin ...................................................................................... 91 

Table 5.3. Comparison of the Random coefficient and the Piecewise linear 
regression model for Lignin ...................................................................................... 92 

Table 5.4. Comparison of the Random coefficient and the Piecewise linear 
regression model for α-Cellulose. ............................................................................. 93 

Table 5.5. Comparison of the Random coefficient and the Piecewise linear 
regression model for Copper Number. ..................................................................... 93 

Table 5.6. Comparison of the Random coefficient and the Piecewise linear 
regression model for Glucose. ................................................................................. 94 



 

 

xiii 

 

Table 5.7. Comparison of the Random coefficient and the Piecewise linear 
regression model for Xylose. .................................................................................... 95 

Table 5.8. Summary of random coefficient slope ranks ........................................... 97 

Table 5.9. Post-hoc tests based on the Friedman’s test for the RC slopes. ............. 97 

Table 5.10. E ............................................................................................................ 98 

ucledean distances based on genotype RC slope ranks .......................................... 98 

Table 5.11. Summary of piecewise linear regression slope ranks .......................... 100 

Table 5.12. Post-hoc tests based on the Friedman’s test for the PLR slopes. ....... 100 

Table 5.13. Eucledean distances based on genotype PLR slope ranks ................. 101 

Table 6.1. Some common kernel functions ............................................................ 108 

Table 6.2 Slope parameters for Lignin ................................................................... 114 

Table 6.3. Slope parameters for α-cellulose ........................................................... 118 

Table 6.4. Slope parameters for viscosity .............................................................. 121 

Table 6.5. Slope parameters for viscosity .............................................................. 123 

Table 6.6. Slope parameters for copper numbers .................................................. 126 

Table 6.7. Slope parameters for glucose ................................................................ 128 

Table 6.8. Slope parameters for xylose .................................................................. 130 

Table 6.9. Summary of clusters generated  by chemical properties under KDE .... 133 

Table 6.10. Number of times any two genotypes belonged to the same cluster .... 133 

Table 6.11. Percentiles for the KDE estimates for the seven chemical properties. 136 

Table 7.1. Univariate intercept estimates ............................................................... 148 

Table 7.2. Variable codes ....................................................................................... 150 

Table 7.3(a). Pairwise parameter estimates ........................................................... 152 

Table 7.3(b). Pairwise parameter estimates (Continued) ....................................... 153 

Table 7.3(c). Pairwise parameter estimates (Continued) ....................................... 154 

Table 7.4. Mean slope parameters for the seven genotypes .................................. 155 

Table 8.1. Average slope genotype ranks based on random coefficient models. ... 160  



 

 

xiv 

 

List of Figures 

Figure 2.1. Processing stages and the pulp samples ................................................. 7 

Figure 2.2. Profile plots of Viscosity for all seven genotypes .................................... 21 

Figure 2.3. Profile plots of Lignin for all seven genotypes ........................................ 22 

Figure 2.4. Profile plots of γ-cellulose for all seven genotypes ................................. 23 

Figure 2.5. Profile plots of α-cellulose for all seven genotypes ................................. 24 

Figure 2.6. Profile plots of Copper numbers for all seven genotypes ....................... 25 

Figure 2.7. Profile plots of Glucose for all seven genotypes ..................................... 26 

Figure 2.8. Profile plots of Xylose for all seven genotypes ....................................... 27 

Figure 2.9. Scatter plots of chemical properties to depict their correlations. ............ 33 

Figure 2.10 (a). Scatter plots for stages of processing for Viscosity and Lignin ....... 34 

Figure 2.1 (b). Scatter plots for stages of processing for γ-cellulose and α-cellulose 35 

Figure 2.10 (c) Scatter plots for stages of processing for Copper number and 
Glucose .................................................................................................................... 36 

Figure 2.10 (d) Scatter plots for stages of processing for Xylose ............................. 37 

Figure 3.1 Random coefficients regression models for the seven genotypes .......... 50 

Figure 4.1. Mean α-cellulose content (in %) by stage for different Genotypes ......... 67 

Figure 4.2.  Mean γ-cellulose content (in %) by stage for different Genotypes ........ 68 

Figure 4.3.  Mean viscosities by stage for different genotypes ................................. 69 

Figure 4.4. Mean Lignin content by stage for different Genotypes. .......................... 69 

Figure 4.5. Mean Copper numbers by stage for different genotypes ....................... 70 

Figure 4.6. Mean Glucose by stage for different Genotypes .................................... 70 

Figure 4.7. Mean Xylose by stage for different genotypes ....................................... 71 

Figure 4.8. Piecewise regression lines for the chemical pulping process ................. 75 

Figure 5.1. Nearest neigbhour dendogram based on the RC slope ranks. ............... 99 

Figure 5.2. Nearest neigbhour dendogram based on the PLR slope ranks. ........... 101 



 

 

xv 

 

Figure 6.1(a). Scatter/contour plot for lignin (Optimal bandwidths: Delignification 
(h1)= 0.19 Bleaching  (h2) = 0.07 ). ....................................................................... 115 

Figure 6.1(b). Scatter/contour plot for lignin (Optimal bandwiths×2) ...................... 116 

Figure 6.1(c). Surface plot for lignin (Optimal bandwidths: Delignification (h1)= 0.19 
Bleaching  (h2) = 0.07 ). ......................................................................................... 116 

Figure 6.1(d). Surface plot for lignin (Optimal bandwidths×2). ............................... 117 

Figure 6.1(e).  Genotype classification based on identified peaks for lignin data ... 118 

Figure 6.2(a) Contour plot of α-Cellulose  (Optimal bandwidths: Delignification (h1)= 
0.37 Bleaching  (h2) = 0.12) ................................................................................... 119 

Figure 6.2(b). Surface plot of α-Cellulose (Optimal bandwidths: Delignification (h1)= 
0.37 Bleaching  (h2) = 0.12) ................................................................................... 120 

Figure 6.2(c).  Genotype classification based on identified peaks for α-Cellulose data
 ............................................................................................................................... 120 

Figure 6.3(a).  Contour plot of viscosity (Optimal Bandwidths: Delignification (h1)= 
4.44, Bleaching  (h2) = 2.29) .................................................................................. 122 

Figure 6.3(b). Surface plot of viscosity (optimal bandwidth). .................................. 122 

Figure 6.3(c). Genotype classification based on identified peaks for viscosity ....... 123 

Figure 6.4(a). Contour plot of γ-Cellulose (Optimal Bandwidths: Delignification (h1)= 
4.44, Bleaching  (h2) = 2.29) .................................................................................. 124 

Figure 6.4(b). Surface plot of γ-Cellulose (optimal bandwidth). .............................. 125 

Figure 5.4(c). Genotype classification based on identified peaks for γ-Cellulose ... 125 

Figure 6.5(a). Contour plot of copper numbers (Optimal Bandwidths: Delignification 
(h1)= 0.13, Bleaching  (h2) = 0.035)....................................................................... 127 

Figure 6.5(b). Surface plot of copper numbers (optimal bandwidth). ...................... 127 

Figure 6.5(c). Genotype classification based on identified peaks for copper numbers
 ............................................................................................................................... 128 

Figure 6.6(a). Contour plot of Glucose (Optimal Bandwidths: Delignification (h1)= 
0.13, Bleaching  (h2) = 0.035). ............................................................................... 129 

Figure 6.6(b). Surface plot of glucose (optimal bandwidths). ................................. 129 

Figure 6.6(c). Genotype classification based on identified peaks for glucose ........ 130 

Figure 6.7(a). Contour plot of Xylose (Optimal Bandwidths: Delignification (h1)= 0.13, 
Bleaching  (h2) = 0.035). ........................................................................................ 131 



 

 

xvi 

 

Figure 6.7(b). Surface plot of Xylose  (optimal bandwidths). .................................. 131 

Figure 6.7(c). Genotype classification based on identified peaks for glucose ........ 132 

Figure A1.1. Residual plots for the random coefficient model for viscosity. ............ 175 

Figure A1.2. Residual plots for the random coefficient model for lignin. ................. 175 

Figure A1.3. Residual plots for the random coefficient model for γ-cellulose. ........ 176 

Figure A1.4. Residual plots for the random coefficient model for α-cellulose. ........ 176 

Figure A1.5. Residual plots for the random coefficient model for copper number. . 177 

Figure A1.6. Residual plots for the random coefficient model for glucose. ............. 177 

Figure A1.7. Residual plots for the random coefficient model for xylose. ............... 178 

Figure A1.8. Residual plots for the piecewise linear regression mode for viscosity.
 ............................................................................................................................... 178 

Figure A1.9. Residual plots for the piecewise linear regression mode for lignin. .... 179 

Figure A1.10. Residual plots for the piecewise linear regression mode for γ-cellulose.
 ............................................................................................................................... 179 

Figure A1.11. Residual plots for the piecewise linear regression mode for α-cellulose.
 ............................................................................................................................... 180 

Figure A1.12. Residual plots for the piecewise linear regression mode for copper 
number. .................................................................................................................. 180 

Figure A1.13. Residual plots for the piecewise linear regression mode for glucose.
 ............................................................................................................................... 181 

Figure A1.14. Residual plots for the piecewise linear regression mode for xylose. 181 

 
 
  



 

 

xvii 

 

Published Papers 

1. Bodhlyera, O., Zewotir, T. and Ramroop (2014). Random coefficient model for 

changes in viscosity in dissolving pulp. Wood research 59(4):2014-571. 

 

2. Bodhlyera, O., Zewotir, T., Ramroop, S. and Chunilall, V. (2015). Analysis of 

the changes in chemical properties of dissolving pulp during the bleaching 

process using piecewise linear regression models. Cellulose Chemistry and 

Technology 49(3):3-4. 

 

Paper under Review 
 

1. Bodhlyera, O., Zewotir, T. and Ramroop (2014). Classification of Timber 

Genotypes using Their Behaviour under Chemical Pulping Using Piecewise 

Regression and Kernel Density based clustering. Submitted to: Wood Fibre 

Science on 31 March 2017. 

Conference presentations 
 

1. Bodhlyera, O., Zewotir, T. and Bush, T. (2011). Fitting a Mixed Effects Model 

to Data from a Pulping Process. Annual Conference of the South African 

Statistical Association, December 2011, Potchefstroom. 

2. Bodhlyera, O., Zewotir, T. and Ramroop (2014). Classification of Timber 

Genotypes using Their Behaviour under Chemical Pulping Using Piecewise 

Regression and Kernel Density based clustering. Annual Conference of the 

South African Statistical Association, November/December 2015, Pretoria. 

 

Papers in preparation 
 

1. Joint Modelling the Chemical Evolution of the Properties of Dissolving Pulp 

Under Chemical Processing. 

 

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwjk4IC1_ZvTAhWoDcAKHXRJDDAQFggjMAE&url=http%3A%2F%2Fwww.nwu.ac.za%2Fcontent%2Fnwu-potchefstroom-campus&usg=AFQjCNG3er0WyVHZPaKoj67cOeSRvcT0ig&bvm=bv.152180690,d.d24


1 

 

 

 

Chapter 1 

Introduction 

This study is based on data recorded in laboratory experiments at The Forestry and 

Forest Products Research Centre of The Council for Scientific and Industrial Research 

(CSIR) in collaboration with Sappi Saiccor of South Africa.  The laboratory experiments 

were carried out under similar conditions that the actual production process is carried 

out.  

 

Wood pulp is commonly associated with the production of paper, which is considered 

an essential commodity. Paper has provided a means for people to keep written 

records, communicate ideas and information and create works of art. Paper has also 

been used for hygiene purposes. Apart from paper, wood pulp is also used to produce 

fabrics and other derivative chemicals with many industrial uses. This study looks at 

chemically processed wood pulp (dissolving wood pulp) which is used in the 

production of viscose fibre. 

 

Dissolving wood pulp is bleached pulp which has more than 90% pure cellulose fibre 

with a high level of brightness and uniform molecular weight distribution (Patrick, 

2011). It is used to make products such as rayon and acetate textile fibres, cellophane 

and other chemical products. Cellulose acetate, being important in textile and cigarette 

industries, is prepared from high quality celluloses such as wood pulps with α-cellulose 

content of more than 95% (He, Cui ad Wang, 2007). 

. 

The quality of dissolving wood pulp depends on the quality of the raw wood material 

and the pulp processing itself (Jahan et al, 2008) and several variables can be used 

to measure this dissolving pulp quality, of which some are lignin, viscosity, α-cellulose, 

γ-cellulose, copper numbers, xylose and glucose. The seven chemical properties 

listed above were analysed in this study with the main aim of better understanding 

how they change over the processing stages. 
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Chemical pulping and bleaching removes lignin, hemicellulose and other impurities 

through dissolution followed by washing. This process results in high purity α-cellulose 

pulp fibre which can be used in the manufacture of the products mentioned above. 

Cellulose can also be made into cellulose powder which has many industrial uses. 

During the process of extracting lignin through bleaching, other chemical properties 

are also altered, namely pulp viscosity, glucose level, degraded celluloses or 

hemicelluloses, sugars and other chemical properties. The process of chemical 

pulping has a very low solid matter yield of between 40% and 50% since lignin 

constitutes a large part of the raw wood pulp and in general most of the lignin and 

hemicelluloses are removed (Biermann, 1993). 

The chemicals used in chemical pulp processing are costly, hence effort must not be 

spared in trying to optimize the usage of such chemicals. Depending on the type of 

raw material (tree species or genotype) used in the chemical pulp processing, different 

environmental and occupational exposures also result. Different wood species or 

genotypes used in chemical pulping require different types and quantities of 

chemicals, different in-plant processes, and result in different by-products with 

different product properties (Soskolne and Sieswerda, 2010). It is therefore imperative 

that if any different wood species are to be mixed during processing then the mixing 

should be done after careful consideration of their processing requirements. It would 

not be optimal to mix two genotypes which require completely different amounts and 

concentrations of chemicals for processing. This study suggests methods that can be 

used to optimally mix various tree genotypes during chemical processing according to 

their observed laboratory behaviour. 

1.1. Significance of the study 

Numerous studies have been made relative to wood properties, the causes of wood 

variation, and how best to develop wood for desired products (Zobel and Van 

Buijtenen, 2012). It was noted that, generally, hardwoods contain a larger proportion 

of cellulose and hemicellulose and less lignin as compared to softwoods, but 

hardwoods have a greater percentage of extractives (Soskolne and Sieswerda). Even 

within these two classes of wood, various genotypes still differ in their chemical 

requirements during processing. There is therefore, a need for an in depth study of the 

behaviours of different wood genotypes during chemical processing in order to 
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determine how to optimally mix them if the need arises, particularly when economic 

quantities are required. This study suggests some methods of determining wood 

genotypes that can be mixed for chemical processing according to their similarities in 

chemical behaviour. The methods suggested in this study are from a statistical point 

of view and further developments on such methods are to be expected, particularly to 

take into account biochemical considerations.  

This study develops methods of optimally mixing different timber genotypes in 

chemical pulping. The study suggests that, to better understand chemical changes in 

pulping processes that involve several sub-processes, piecewise linear regression is 

useful and that coupling   piecewise linear regression with kernel density estimation 

can help sort out genotypes, or in general, raw materials that behave the same under 

processing. The researcher is not aware of similar work having done elsewhere. Joint 

modelling was also used to better understand the evolution of various response 

variables over processing stages using pairwise fitting to circumvent computational 

limitation in fitting models with many parameters to be estimated.  

1.2. Objectives of the study 

The study will first look at statistical tests of the effects of different processing methods 

carried out during the experiments that produced the data. The prime objective is to 

develop methods of grouping different timber genotypes into compatible groups of 

timber that can be optimally processed together. To achieve this objective, a statistical 

analysis of seven timber genotypes is carried out. The study involves profiling the 

evolution of some important chemical properties (variables) of the genotypes under 

chemical pulping. Possible grouping criteria are suggested and such criteria are 

subject to scrutiny and further development.  

1.3. Organisation of the study 

This study comprises of four main statistical concepts used to analyse the data, 

arranged into four methodology chapters. Chapter 1 is the introduction and Chapter 2 

looks at the general description of the data including how it was obtained from 

chemical laboratory experiments.  Chapter 3 fits random coefficients models to the 

data in order to evaluate the effects of three pulping methods on the chemical 
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properties (variables) studied. In Chapter 4, piecewise linear regression models with 

dummy time variables are fit to the data in order to assess the effects of each of the 

three main phases of chemical pulp processing (dissolving pulp). Chapter 5 is a 

comparison of results from Chapters 3 and 4 with a view of assessing whether 

modelling using piecewise linear regression has any value addition over the random 

coefficient model. In Chapter 6, kernel density based clustering is used to develop a 

similarity matrix that can be used to decide which genotypes can be mixed optimally, 

that is, regarding their processing requirements and conditions. In Chapter 7 a joint 

modelling approach is used to better understand the evolution of six chemical 

properties (variables) together over the six processing stages. The correlations of the 

evolutions for the seven genotypes on six chemical properties were calculated. The 

seventh chemical property (xylose) could not be estimated jointly with the other 

variables as the estimating procedures failed to converge. Joint modelling helps in the 

understanding of the joint evolutionary behaviour of the chemical properties when 

considered together. Chapter 8 summarises the various findings of the study into a 

consolidated study outcome with possible extensions suggested. 
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Chapter 2 

Description of the Data and Exploratory Data 
Analysis 

2.1. The Pulping Process  

In order to understand the nature of the data, it is necessary to understand the 

chemical pulping process in detail. In a pulping process, wood is converted into fibres 

either mechanically, thermally, chemically or through a combination of these 

techniques (Karlsson, 2006). Chemical delignification, an important process during 

pulping, includes all processes resulting in partial or total removal of lignin from wood 

by the action of suitable chemicals (Gierer, 1985). The lignin macromolecule is 

depolymerised through the cleavage of the ether linkages to become dissolved in the 

pulping liquor. The α-hydroxyl and α-ether groups are readily cleaved under 

simultaneous formation of benzilium ions (Funaoka et al, 1991). The cleavage of the 

open α-aryl ether linkages represents the fragmentation of lignin during acid sulphite 

pulping. The benzilium ions are sulphonated by attack of hydrated sulphur dioxide or 

bi-sulphite ions, resulting in the increased hydrophylic nature of the lignin molecule. 

The extent of delignification depends on the degree of sulphonation as well as the 

depolymerisation (Funaoka et al, 1991). The aim of chemical pulping is to break down 

the lignin bonds between the fibres using chemicals and heat, enabling easy removal 

by washing, whilst not destroying the cellulose and hemicellulose components. The 

removed lignin is a by-product that can be used in water treatment, dye manufacture, 

agricultural chemicals and in road construction (Sundstrom et al, 1983). Different wood 

species/genotypes have different levels of lignin content and those species/genotypes 

that contain more lignin would require more reagents to extract the lignin from the 

cellulose (Casey, 1983). This means that different wood species/genotypes have 

different lignin extraction behaviour as they go through the chemical processing stages 

and it is of interest to investigate this behaviour. The wood species/genotypes with 

similar physical and chemical characteristics would naturally be put into the same 

class and may be mixed during processing if larger processing quantities are needed 

and one genotype falls short of required quantitities. 
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2.2. The Bleaching Process 

The laboratory bleaching sequence was a scaled down version of the commercial 

process. The results obtained for the viscosity and lignin content (K-number) at the 

oxygen delignification (O) stage were used to adjust the bleaching conditions. The 

chemical pulping and bleaching process considered here consists of six stages as 

indicated in Table 2.1 below. The first stage of the process will be called stage-1, i.e., 

the stage where wood is acid bi-sulphite pulped into the raw pulp for the bleaching 

stages. 

 

Table 2.1. Numerical codes for processing stages 

Stage Process Description 

1 Wood to Raw Pulp Delignification 

2 O Delignification 

3 D1  Brightness 

4 E0  Extract hemicelluloses and solubilise lignin degradation 

products  

5 D2 Brightness  

6 P Brightness and residual hemicellulose removal 

 

The aim of adjusting the bleaching conditions was to produce dissolving pulp that 

conformed to the quality control parameters for α-cellulose, viscosity, copper number, 

glucose (%) and xylose (%) prescribed commercially for the 96α dissolving pulp grade. 

While it would be reasonable to consider the correlated chemical properties using 

multivariate techniques, this study looked at a single chemical property individually 

with the aim of modelling and comparing the behaviour of wood species/genotypes on 

the same chemical property. 

 

2.3. The Data Collected from the Chemical Process 
 

The wood species/genotypes analysed in this study are EDunnii, EGrandis, ENitens, 

ESmithii and the Eucalyptus clones GCG, GUA and GUW. The variable 

species/genotype is a fixed effect with seven levels, namely the seven genotypes 

which are known beforehand. The observation units are the pulp samples taken from 

pulped wood species/genotypes.  
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Trees were randomly selected from each of the seven species/genotypes, chipped 

and the raw pulp produced through acid bi-sulphite pulping. Independent samples 

were then taken from the raw pulp and processed. From each sample, measurements 

of various chemical properties were recorded at the six processing stages described 

in Table 2.1 above, and are shown in Figure 2.1 below. The samples were processed 

using three different bleaching conditions coded as A, B and C. Bleaching condition A 

is a set of the original bleaching conditions, whereas bleaching conditions B and C are 

revised sets of bleaching conditions specially set to ‘fine tune’ non-conforming final 

pulps. If the chemical properties of the final product do not fall within prescribed limits 

then the product will not be put on the market. This, in a way, produced a controlled 

response variable especially at the final stage of production. The bleaching conditions 

were found not to be significantly different hence they are not a prominent part of this 

study. The pulp samples are random effects as trees are chosen at random from a 

large number of possible trees. 

 

 

Figure 2.1. Processing stages and the pulp samples 
 

The six stages in the chemical process fall under three sub-processes, namely, 

delignification, bleaching and finishing and these were carried out under laboratory 

conditions as described below 

 

 



8 

 

 

 

2.3.1. Delignification: Acid bi-sulphite pulping 
 

The cooking liquor was prepared from acid bisulphite by bubbling SO2 MgO slurry and 

circulated in the digester with wood chips. Temperature was ramped to 140°C and 

maintained for a period of time. The pressure in the digester was kept at 8.5 bars 

during the cooking process. At the end of the cooking period, the reaction mixture was 

allowed to cool down to room temperature. After pulping, an oxygen delignification 

step was included in a rotating digester. Pulp charge was 800 g (oven dry); consistency 

11%; temperature 100°C; time at 100°C = 80 min (96α pulp). 

 

2.3.2. Laboratory bleaching and finishing 
 

The oxygen delignified pulp samples were bleached to target 96α pulp grade using 

the following four stage bleaching process: D1 stage (ClO2 treatment), E stage (NaOH 

treatment), D2 stage (ClO2 treatment), and a peroxide stage. From these processes, 

wet chemistry analysis variables were obtained as described in Section 2.3.3.    

 

2.3.3. Wet Chemistry analysis – Chemical properties (Variables) 
 

In this study, the following quality control parameters were measured during each step 

of chemical processing processing:  

2.3.3.1. Cellulose content 

Low molecular weight carbohydrates (hemicellulose and degraded cellulose) can be 

extracted from pulp samples using sodium hydroxide. Solubility of a pulp in alkali thus 

provides information on the degradation of cellulose and loss or retention of 

hemicellulose during the pulping and bleaching processes. Thus, it gives an indication 

of the amount of degraded cellulose/short chain glucan and hemicellulose present in 

the pulp. S10 (%) and S18 (%) indicate the proportions of low molecular weight 

carbohydrates that are soluble in 10% and 18% sodium hydroxide, respectively. The 

former alkali solubility gives an indication of the total extractable material, that is, 

degraded cellulose/short chain glucan and hemicellulose content in a pulp sample 

while the latter alkali solubility gives an indication of the total hemicellulose content of 

the pulp sample and is also known as the percentage gamma (γ %) cellulose content 

of pulp samples.  
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The quantity of degraded cellulose/short chain glucan, also known as percentage Beta 

(β %) cellulose, was determined by the difference in S10 (%) and S18 (%) alkali 

solubilities, that is, 

Degraded cellulose/short chain glucan = S10 (%) – S18 (%). 

The α-cellulose content is given by the following equation 

α-cellulose = 












 


2

%%
100

1810 SS
 

S10 (%) and S18 (%) alkali solubilities were determined according to TAPPI method 

T235 OM-60 (Tappi T235 OM-60). The principle of the method is based on the 

extraction of carbohydrates with sodium hydroxide followed by oxidation with 

potassium dichromate. The procedure for S10 (%) alkali solubilities determination is as 

follows: 1.6g of the pulp sample is placed in 100 mL of 10 % sodium hydroxide (18 % 

sodium hydroxide for S18 (%) determination). The pulp and solution are stirred for a 

period of 3 minutes and thereafter left at 20ºC for a period of an hour. The pulp sample 

is filtered under vacuum using a sintered glass crucible (G3). Ten millilitres of 0.4N 

potassium dichromate and 30 mL of concentrated sulphuric acid are added to 10 mL 

of the filtrate. Thereafter 500 mL of deionised water is added and the solution is cooled. 

Approximately 20 mL of 10% potassium iodide is added to the cool solution and 5 

minutes thereafter the solution is titrated with 0.1N sodium thiosulphate. A blank, 

without the pulp sample, is also titrated to give the blank titre. The alkali solubility is 

given by the following equation: 

Alkali solubility =  
samplepulpofWeight

0.685%titre)Sampletitre(Blank 
 

2.3.3.2. Viscosity 

The viscosity of a pulp sample provides an estimate of the degree of polymerisation 

(DP) of the cellulose chain. Viscosity determination of pulp is one of the most 

informative procedures that is carried out to characterise a polymer, i.e., this test gives 

an indication of the degree of degradation (decrease in molecular weight of the 

polymer, i.e. cellulose) resulting from the pulping and bleaching processes. The 

viscosity measure involves dispersing 1g of dissolving pulp sample (cellulose I) in a 

mixture of (15 mL) sodium hydroxide and (80 mL) cuprammonium solution 

(concentration of ammonia 166 g/L and concentration of copper sulphate 94 g/L) for a 

period of 1 hour. The dispersed cellulose I is allowed to equilibrate at 20ºC for one 
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hour and is then siphoned into an Ostwald viscometer. The time taken for it to flow 

between two measured points is recorded and the viscosity is calculated using the 

specific viscometer coefficient at the corresponding temperature according to a TAPPI 

method (Tappi T230, Accessed 15 January 2013). 

2.3.3.3. Lignin content (k-number) 

The permanganate number (k-number method) was used to assess the lignin content 

after each stage of processing. The principle of the method is based on the direct 

oxidation of lignin in pulp by standard potassium permanganate and back-titrating the 

excess permanganate with ferrous ammonium sulphate (Mohr’s salt) standard 

solution (Tappi UM251, Accessed 15 January 2013; Tasman and Berzins, 1957). The 

procedure for permanganate number determination is as follows: Approximately 20 

mL of 10% sulphuric acid and 180 mL of water is added to 1 g of pulp sample in a 

conical flask. The mixture is then stirred using a magnetic stirrer. Twenty five millilitres 

of 0.1N potassium permanganate is added and after 3 minutes 25 mL of 0.1N ferrous 

ammonium sulphate is added followed by 10 drops of N-phenyl anthranilic acid 

indicator. The excess is back titrated with 0.1N potassium permanganate. A blank is 

also carried out with the exception of the pulp sample. The following calculation is used 

for permanganate number determination: 

Permanganate number = (Sample titre – Blank titre) x 0.355. 

2.3.3.4. Copper number (Cu number) 

Pulping and bleaching is known to affect cellulose structure by the generation of 

oxidised positions and subsequent chain cleavage in pulp samples (Röhrling et al, 

2002). The copper number gives an indication of the reducing end groups in a pulp 

sample. The copper number is a measure of the reducing properties of the pulp and 

is defined as the number of grams of metallic copper reduced from the cupric (Cu++) 

to cuprous (Cu+) state in alkaline solution by 100g cellulose under standard conditions. 

The copper number is inversely proportional to the viscosity of the pulp samples, that 

is, with a decrease in viscosity there is increased chain cleavage and hence more 

reducing end groups. The copper number also serves as an index of reducing 

impurities in pulp, such as oxycellulose, hydrocellulose, lignin and monosaccharides 

which possess reducing power. The procedure for determining copper number is as 

follows: 2.5 g of disintegrated pulp is mixed with a carbonate/bicarbonate (2.6/1, w/w) 
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and 0.4N copper sulphate solution (95/5, v/v) for exactly 3 hours. Thereafter the pulp 

is filtered and washed with 5% sodium carbonate followed by hot deionised water. 

Cuprous acid is dissolved by treating the cellulose on the filter with 45 mL of 0.2N ferric 

ammonium sulphate. This is left for 10 minutes then filtered off. The pulp is then 

washed with 250 mL of 2N sulphuric acid. The filtrate is then titrated with 0.04N 

KMnO4. The blank is subtracted from the titre value to yield the number of grams of 

reduced copper in the pulp sample (Tappi T430 OM 94, Accessed 15 January 2013).  

2.3.3.5. Glucose and xylose 

The polysaccharides were measured after their conversion to monosaccharides 

(glucose and xylose) via a two-step hydrolysis procedure with 72% sulphuric acid. The 

first step in the hydrolysis process is the addition of 3 mL of sulphuric acid to 0.2g of 

oven dried pulp in a test tube with stirring. The contents of the test tube are then 

quantitatively transferred into a Schott bottle with 84 mL of water. The second step in 

the hydrolysis process involves placing the Schott bottle in an autoclave set at a 

temperature of 121ºC and pressure of 103 kPa for 1 hour. The contents are then 

allowed to cool and then filtered using a 0.45μm filter. The filtrate is then transferred 

to a 200mL volumetric flask and diluted to the mark. 50μl of the sample is placed in a 

vial and diluted with 500μl of water. Twenty microlitres of 1mg/ml fucose (internal 

standard) is added using the autosampler. The monosaccharide constituents 

(glucose, mannose, xylose, arabinose etc.) were analysed using high performance 

liquid chromatography coupled with pulsed amperometric detection (Davis, 1998). 

Reference standards of glucose and xylose was prepared. The standards were treated 

in the same way as the sample and analysed using high performance liquid 

chromatography coupled with pulsed amperometric detection. The concentrations of 

the monosaccharide constituents were obtained from the calibration curves of the 

standards. 

 

The ideal levels of the measurements used to calculate the variables discussed in this 

study are shown in Table 2.2 below. Anything outside the ranges outlined would not 

meet the final product requirements.  
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Table 2.2. Ideal pulp characteristics for the 96α pulp 

Final Pulp 

Characteristic 

Ideal levels 

  

Viscosity (cP) 28 - 35 

Copper Number 0.43 - 0.54 

S10 6.4 - 7.0 

S18 2.7 - 3.3 

S10-S18 3.7 

α-cellulose >95.3 

K-number 0.25 

 

2.4. Exploratory Data Analysis 
 

Exploratory data analysis methods are useful tools that can be used on observed data 

to obtain an insight on what would be obtained when fitting an implicit or explicit 

statistical model (Gelman, 2004).  In this section the basic properties and layout of the 

data are explored with a view on obtaining a pointer into the appropriate statistical 

tools to use for further analysis. Issues of correlation patterns, means and other data 

descriptors are explored in order to check which statistical models will be applicable 

to the data.  

2.4.1. Theoretical aspects of Profile Plots and associated smoothing 

methods 

To visualise the overall evolution of the pulp chemical properties (variables) over the 

processing stages (time), profile plots are used. It would have been easy to just plot 

the values of the chemical properties over time and join the points with straight lines 

but smoothed plots are much more appealing and outline the general movement of 

the response variables with the predictor(s) which is time or processing stage in this 

case. The profile plots are smoothed time plots of the chemical properties over time. 

The smoothing is done through the use of spline functions as discussed by several 

authors that include Craven and Wahba (1979) and Brumback and Rice (1998). 

Smoothed profile plots have also been referred to as LOESS curves (also called 

LOWESS curves).  
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2.4.1.1. Smoothing Spline based Profile Plots  

Hastie and Tibshirani (1986) discussed in detail the use of splines to smooth data in 

the context of generalised additive models. In basic principles the smoothing function 

for the profile plots is a scatterplot smoother (Hastie and Tribshirani, 1986) such as 

the local average estimate defined as:  

 ŝ(xi) = Averagej∈Ni{yj}. (2.1) 

where 𝑁i is a neighbourhood of 𝑥i (i.e. a set of observations whose x values are in the 

neighbourhood of 𝑥i where in our context 𝑥i is time or processing stage. Another way 

to estimate s(xi) is to use a polynomial basis which is a space of functions from which 

s(xi) is derived. The smoothing function is then presented as weighted sums of the 

basis functions so that  

 𝑠(𝑥) = ∑𝛽𝑘 [𝑏𝑘(𝑋)]

𝑞

𝑘=1

 (2.2) 

where q is the maximum number of basis functions available and 𝑏𝑘(𝑥) is the kth such 

function. Suppose that, as is the case with our smoothing problem, there is only one 

covariate 𝑥, then the smoothed value can be expressed as  

 𝑠(𝑥𝑖) = 𝐸(𝑌𝑖|𝑥𝑖) = 𝜇𝑖 (2.3) 

Or equivalently 

 𝑦𝑖 = 𝑠(𝑥𝑖) + 𝑒𝑖 (2.4) 

where 𝑒𝑖~i. i. d. 𝑁(0, 𝜎
2)  and 𝑦𝑖 is the observed response variable.  Wood (2006) 

discussed in detail, possible forms of the smoothing function that include a polynomial 

basis and a cubic spline basis. Suppose that the smoothing function s(x) is a 

polynomial of order q so that the space of polynomials of order q or below contains 

s(x), the basis for this function space is 𝑏0(𝑥) = 1, 𝑏1(𝑥) = 𝑥, 𝑏2(𝑥) = 𝑥
2, … , 𝑏𝑞(𝑥) = 𝑥

𝑞. 

A linear combination of these basis functions can then be used to get the smooth 

function  

 𝑠(𝑥) = 𝛽0 +∑𝛽𝑘 𝑥
𝑘−1

𝑞

𝑘=1

= 𝛽0 + 𝛽1 𝑥 + 𝛽2 𝑥
2 +⋯+ 𝛽𝑞 𝑥

𝑞 . (2.5) 

If the terms x, x2, …, xq , are considered as covariates then model (2.5) is a normal 

regression model whose parameters can be estimated using the usual methods in 

generalised linear models. The profile plot will basically be the plot of s(𝑥i) on 𝑥i. 

 



14 

 

 

 

2.4.1.2. The cubic spline and penalised regression  

A cubic spline consists of piecewise third degree polynomials joined at some n-2 knot 

points, where n is the number of data points. The polynomials must be continuous at 

the knot points up to the second derivative. A cubic spline representation of model 

(2.5) is generally of the form  

 𝑦𝑖 = 𝛽0 + 𝛽1 𝑥 + 𝛽2 𝑥
2 + 𝛽3 𝑥

3 +∑𝛽𝑖+3

𝑟

𝑖=1

(𝑥 − 𝑘𝑖)+
3  (2.6) 

where (𝑥)+ = 𝑥 if x>0, 0 otherwise, ki is the ith knot and (r=n-2) is the total number of 

knots. Equation (2.6) can be written as a linear combination of r+4 basis functions to 

obtain a cubic polynomial with r+4 parameters which can be presented in matrix form 

as 𝒚 = 𝑿𝜷 + 𝜺. This allows the parameters to be estimated as the usual regression 

parameters. 

The utilisation of cubic splines, or any other polynomial basis, is not truly 

nonparametric as the choices of the knots are basically parametric choices and the 

way they are chosen affects the fit of the model to the data.  

The knot selection problem can be avoided by finding the smoothing function that 

minimises  

 ∑{𝑦𝑖 − 𝑠(𝑥𝑖)}
2 + 𝜆∫{𝑠′′(𝑥)}2 𝑑𝑥

𝑛

𝑖=1

 (2.7) 

which can also be written as  

 ‖𝒚 − 𝑿𝜷‖2 + 𝜆∫{𝑠′′(𝑥)}2𝑑𝑥 (2.8) 

The term ‖𝒚 − 𝑿𝜷‖2 captures the fit of the data to the smoothing function while the 

term 𝜆 ∫{𝑠′′(𝑥)}2𝑑𝑥 penalises the smooth function. The integral is over all values of x 

covered in the data points. The penalty function strikes a balance between 

smoothness and overfitting or ‘wiggliness’ (Wood, 2006). If the smoothing function is 

a straight line then 𝑠′′(𝑥) = 0 for all x. The parameter λ is the smoothing parameter 

which controls the trade-off between ‘wiggliness’ and smoothness. When λ=0 there 

will be no penalty on s(x) resulting in an non penalised model since the second part of 

(2.8) disappears. Such an unpenalised model is very wiggly or it will be a mere 

interpolation of the data. When 𝜆 ⟶ ∞ the model will be heavily penalised rendering 

curvature impossible and this results in the fitting of a linear regression model.  
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Equation (2.7) or (2.8) has a unique minimizer which is a natural cubic spline with 

knots at unique values of the covariate (Hastie and Tibshirani, 1990). 

 

If the observed values of the covariate are 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 then the natural cubic 

spline is the smoothest function that minimizes ∫ ∫{𝑠′′(𝑥)}2
𝑥𝑛

𝑥1
𝑑𝑥 amongst all functions 

that are continuous on all data points and are twice differentiable (Wood, 2006). 

Natural cubic spline smoothing has the following properties: 

 

(i) 𝑠(𝑥) exists and 𝑠(𝑥𝑘 −) = 𝑠(𝑥𝑘 +) for k=2,3,…,n-1, 

(ii) 𝑠′(𝑥) exists and 𝑠′(𝑥𝑘 −) = 𝑠
′(𝑥𝑘 +) for k=2,3,…,n-1, 

(iii) 𝑠′′(𝑥) exists and 𝑠′′(𝑥𝑘 −) = 𝑠
′′(𝑥𝑘 +) for k=2,3,…,n-1, 

(iv) 𝑠′′(𝑥1) = 𝑠
′′(𝑥𝑛) = 0, that is, the function s(x) is linear at the end points and 

in regions outside the observed data.   

 

The derivation of the natural cubic spline is well documented in literature, for example 

see Mathews and Fink (2004) and Rorres and Howard (1984).  

 

Having decided on the spline basis to use, it is now left to estimate the parameter 

vector β in equation (2.8). Let  {𝑏𝑗(𝑥)}𝑗=1
𝑞

 be the set of the natural cubic spline basis 

functions and 𝑿𝑞×𝑞 denote the design matrix consisting of the basis functions 

evaluated at the observed values of the covariate: 

 

(i) 𝑋𝑖𝑗 = 𝑏𝑗(𝑥𝑖),  (i.e. the (i,j)th element of X ) 

(ii) 𝑠(𝑥) = ∑ 𝛽𝑗 [𝑏𝑗(𝑥)]
𝑞
𝑗=1  

(iii) 𝑠(𝑥) = 𝑿𝜷 

Using (i)-(iii) above, equation (2.8) can now be expressed as  

 (𝒚 − 𝑿𝜷)T(𝑦 − 𝑿𝜷) + 𝜆𝜷T𝑺𝜷 (2.9) 

Where the (k,j)th element of S is 𝑆𝑗𝑘 = ∫𝑏𝑗
′′(𝑥)𝑏𝑘

′′(𝑥)𝑑𝑥. The solution for minimizing 

(2.9), by differentiating with respect to β and equating the differential to zero, can be 

found to be  

  𝜷̂ = (𝑿T𝑿 + 𝜆𝑺)−1𝑿T𝒀. (2.10) 

The fitted values of the response vector y are then presented as  
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𝒚̂ = 𝑿(𝑿T𝑿 + 𝝀𝑺)−1𝑿T𝒚 

= 𝑯𝝀𝒚 
(2.11) 

where 𝑯𝝀 = 𝑿(𝑿
T𝑿 + 𝝀𝑺)−1𝑿T.  

 

2.4.1.3. Choice of the smoothing parameter  

The smoothing parameter (λ) needs to be specified before the model parameters are 

estimated in (2.10). If λ is too large the data will be oversmoothed and if λ is too low 

then the data will be under smoothed. The best choice of λ is the one that minimises 

the difference between the true smoother s(x) and the estimated smoother 𝒔̂(𝒙), that 

is, the choice of λ must minimises   

 𝑀 =
1

𝑛
∑[𝑠̂(𝑥𝑖) − 𝑠(𝑥𝑖)]

2

𝑛

𝑖=1

. (2.12) 

The true smoother in (2.12), that is 𝑠(𝑥𝑖), is not known but Wahba (1975) showed that 

the same result can be achieved by ordinary cross validation (OCV). Let 𝑠̂𝜆
(−𝑖)(𝑥) be 

the smoothing function (with a particular choice of λ) fitted to the data when the ith 

observation is left out. The ordinary cross-validation (OCV) estimate of the prediction 

error is  

𝑂𝐶𝑉(𝜆) =
1

𝑛
∑(𝑦𝑖 − 𝑠̂𝜆

(−𝑖)(𝑥𝑖))
2

.

𝑛

𝑖=1

 

The computation of OCV(λ) is quite tedious as for every choice of λ the parameters of 

the smoother 𝑠̂𝜆
(−𝑖)(𝑥𝑖) have to be computed n-times. It can be shown that OCV(λ) can 

be approximated by  

𝑂𝐶𝑉(𝜆) =
1

𝑛
∑(

𝑦𝑖 − 𝑠̂𝜆 (𝑥𝑖)

1 − ℎ𝑖𝑖
)

2

.

𝑛

𝑖=1

 

where hii is a diagonal element of the hat matrix H. To further reduce computational 

time, a common value is used for all the hii’s, for i=1, 2,…n. Craven and Wahba (1979) 

suggested the use of the average of the all the diagonal elements of the hat (or 

influence) matrix H  instead of the n hii values. Craven and Wahba’s substitution results 

in the generalised cross validation (GCV) score which is given by  

𝐺𝐶𝑉(𝜆) =
1

𝑛
∑(

𝑦𝑖 − 𝑠̂𝜆 (𝑥𝑖)

1 −
tr(𝑯)
𝑛

)

2
𝑛

𝑖=1

=
𝑛∑ (𝑦𝑖 − 𝑠̂𝜆 (𝑥𝑖))

2𝑛
𝑖=1

[tr(𝑰 − 𝑯)]2
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It can also be shown that, apart from computational efficiency, the generalised cross 

validation score minimises E(M), where M is as defined in equation 2.12. The value of 

λ that has the minimum GCV score is the one that is chosen as the optimal smoothing 

parameter. There are many other methods that can be used to select the optimal 

smoothing parameter like the AIC or REML (Shao, 1997), but the GVC is well suited 

for complex models (Xiang and Wahba,1996; Zhang et al, 2002). In writing the 

programs to carry out exploratory data analysis in this study, insights and hints were 

obtained from the UCLA Statistical Consulting Group website (UCLA, accessed June 

13, 2016).  

2.4.2. Profile Plots for the seven chemical properties  

A discussion of the profile plots of the seven chemical properties covered in this study 

is presented in this section. The profile plots are presented in Figures 2.2 to 2.8 and 

are discussed in the sections that follow. 

2.4.2.1. Viscosity Plots 

The profile plots for viscosity are presented in Figure 2.2. The plots indicate that the 

seven genotypes have varying numbers of subjects (pulp samples), exhibit different 

levels of variability across the processing stages and have less defined downward 

trends. The steepest decline in viscosity seem to occur for GCG and GUA genotypes. 

GUW seems to have more variation in viscosity readings at the earlier stages of 

processing than in the final stages. The opposite applies for EDunnii which has higher 

variability in the last three stages of processing than in the earlier stages. It is noted, 

for example, that viscosity for EGrandis has less variability across the six processing 

stages than EDunnii and ESmithii.  

The general profiles of the seven genotypes would suggest that linear trends best 

describe the evolution of viscosity over the six processing stages.  

2.4.2.2. Lignin Plots 

In Figure 2.3 are the profile plots of lignin readings for the seven genotypes under 

study. The Lignin measurements exhibit more uniform variability per genotypes across 

the six processing stages.  
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The lignin trend seems to be similar for the seven genotypes. The trend could best be 

described as an exponential decline hence a negative exponential, or piecewise linear 

trend with negative slopes, could best be used to describe the change in lignin over 

the processing stages.  

2.4.2.3. γ-cellulose Plots 

Figure 2.4 shows that the variability of γ-cellulose values seems constant across the 

processing stages for most genotypes except for EDunnii (Figure 2.4(a)) which had 

one sample having noticeably higher value at stage 1 than the other samples. The 

genotype ESmithii, which had six samples, exhibits higher variability at each stage 

with the variability being constant across all stages.   

 

Generally the γ-cellulose trend could best be described as three-part piecewise linear, 

although a linear trend could still be attempted if estimation problems are encountered 

and a more parsimonious model is required.  

2.4.2.4. α-cellulose 

The most important variable in the whole chemical processing scheme is α-cellulose. 

The profile plots of α-cellulose in Figure 2.5 show that the variability of α-cellulose 

values seem to be constant across the six processing stages for most genotypes 

except for ESmithii (Figure 2.5(c)) which had one sample having the stage 1 value 

looking more like an outlier. Special care should be taken when dealing with this 

sample as it starts off having the highest α-cellulose value but ends up with the least 

value from stage to the finishing stage. It might be necessary to treat this value as an 

unusual value and use imputation for the stage 1 value for this particular sample.  

 

Generally the α-cellulose trends could best be described as three-part piecewise 

linear, with slopes that are reversals of those of γ-cellulose. In fact, the two variables 

(α-cellulose and γ-cellulose) evolve in inversely to each other. A rudimental linear trend 

could still be attempted if estimation problems are encountered and a more 

parsimonious model is required.  
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2.4.2.5. Copper Numbers Plots 

Figure 2.6 shows that the sample values for copper numbers of each of the seven 

genotypes evolve very closely together. Within sample variability is constant across 

all time points or processing stages. However, there is slightly lower variation at stage 

1 than all other stages for all genotypes.  

 

Copper numbers trends also look like they are three-part piecewise linear, with 

negative slopes. A higher polynomial model could also be attempted although the 

possibility of non-convergence could be high. A simple linear trend could also be 

attempted if convergence is not attained with more complex models.  

2.4.2.6. Glucose Plots 

Glucose and α-cellulose have similar trends (compare Figures 2.5 and 2.7). Although 

between sample variation cannot be said to be exactly constant, there is no worrying 

deviation from an assumption of constant variance across all six processing stages or 

time points. While the evolution of glucose for some of the genotypes could be 

modelled with three-part piecewise linear models (EDunnii, EGrandis, ESmithiii, 

ENitens and GCG), two-part piecewise linear models could suffice for others (GUA 

and GUW). In all cases a parsimonious simple linear trend could still be attempted if 

convergence problems.  

2.4.2.7. Xylose Plots 

The profile plots for Xylose are presented in Figure 2.8. The plots show that variability 

is non-constant for some genotypes, for example, there is bigger variation in stage 5 

for ENitens than in the other stages although not to worrying proportions. The 

genotype ESmithii, which happened to have the most number of samples, shows wider 

variation but there are no worrying indications that the variation is non-constant across 

the processing stages. Some of the profile lines criss-cross each other indicating that 

the samples react differently to the various stages of processing.  

In general, all seven genotypes can be modelled by some form of linear trends 

(piecewise or otherwise). Nonlinear trends can also be seen especially with EGrandis, 

ENitens, GCG and to some extent GUW. With all the seven variables, whatever 

models are proposed in subsequent chapters, reference will be made to the profile 
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plots that have been described in this section. The profile plots will guide the selection 

of appropriate models in the different methodologies that are presented in the chapters 

that follow. To investigate the interdependence of the seven variables covered in this 

study, a correlation analysis is presented in Section 2.4.2 below. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

 

 

 

(g) 

Figure 2.2. Profile plots of Viscosity for all seven genotypes 
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(g) 

Figure 2.3. Profile plots of Lignin for all seven genotypes 
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(g) 

Figure 2.4. Profile plots of γ-cellulose for all seven genotypes  
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(g) 

Figure 2.5. Profile plots of α-cellulose for all seven genotypes 
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(g) 

Figure 2.6. Profile plots of Copper numbers for all seven genotypes 
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(g) 

Figure 2.7. Profile plots of Glucose for all seven genotypes 
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(g) 

Figure 2.8. Profile plots of Xylose for all seven genotypes 

 

3 
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2.4.3. Scatter Plots and Correlation Analysis 

Exploration of complex relationships between variables not only requires examination 

of correlation tables but also visual inspection of scatter plots which provide 

meaningful insights into associations under investigation (Kulesz et al, accessed 17 

June, 2016). Matange and Heath (2011) provide detailed SAS programming 

procedures to obtain various kinds of exploratory graphs. Most of the results discussed 

in this section were obtained using adaptations of such procedures. The SGSCATTER 

procedure in SAS was used to produce scatter plots with confidence ellipses and 

histograms with normal density curves for the  variables covered in the study. An 

inspection of the histograms indicated that the data did not severely deviate from 

normality hence procedures that are based on the normal distribution can be applied.  

 

Multi-panel scatter plots were used as they are useful data visualizations which allow 

for a graphical display of relations between multiple variables in a condensed manner. 

In multivariate repeated measures the correlations can be realised in two fronts, that 

is, serial correlation within each variable and pairwise correlations between the 

variables measured. Serial correlation will measure how values taken on the same 

individual affect each other sequentially. There have been discussions on the issue of 

correlation amongst repeated measurements for univariate responses (Hearne et al, 

1983; Hamlett et al, 2003) and multivariate cases (Roy, 2006). Hearne et al state that, 

the robustness of univariate procedures for repeated measures depends on careful 

consideration of the serial correlation between values observed on the same subject 

over time. Roy on the other hand estimated the correlation coefficient between two 

variables with repeated observations on each variable using a linear mixed effects 

model. In all these discussions, the role of both forms of correlation play a pivotal role 

in the determination of a valid model for the data.  

2.4.3.1. Correlations between chemical property variables 

The graphical displays of the between variable correlations are presented in Figure 

2.9 below which shows that viscosity has the least correlation to the other six variables 

as indicated by the scatter plots together with the confidence ellipsoids which are more 

circular than elongated. The other variables are correlated to varying degrees and 

directions with some positively and others negatively correlated. The exact degrees of 
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correlation and significance tests are presented in Table 2.3 below. The results in 

Table 2.3 show that the viscosity column has the lowest correlation values (maximum 

of 0.5079) which means that viscosity has the weakest relationship with the other 

variables. On the other hand, the other variables are highly correlated with each other 

hence are expected to affect each other’s  evolutions.    

Table 2.3. Correlations between chemical property variables  

  Viscosity Lignin a_cellulose Y_cellulose Copper No Glucose Xylose 

Viscosity 1       

Lignin 0.5079 1      

a_cellulose -0.3734 -0.581 1     

Y_cellulose 0.4510 0.724 -0.908 1    

Copper_No 0.4027 0.862 -0.816 0.8951 1   

Glucose -0.4378 -0.797 0.855 -0.8837 -0.890 1  

Xylose 0.2864 0.610 -0.757 0.7957 0.735 -0.903 1 

 

2.4.3.2. Correlations between processing stages 

In data involving repeated measurements on the same subject, it is assumed that 

serial correlations will exist among sequential observations. Significant correlations 

among values taken on the same subject at different time points (stages) are an 

indication that the observations are not independent hence a model that assumes 

independence will not be appropriate for the data.  

 

Results in Table 2.4 show that viscosity is the least serially correlated variable than 

the other six, particularly at longer stage lags. With the exception of stages 1 and 2 

(correlation=0.735), 1 and 3 (correlation = 0.748), stages 2 and 3 (correlation = 0.844), 

4 and 5 (correlation=0.746), 4 and 6 (correlation=0.645) and stages 5 and 6 

(correlation=0.883), the rest of stages have very small correlations. 

 

With the other six variables, it can be seen that stage 1 is the least correlated to the 

other 5 stages of chemical processing. Serial correlations are more vividly illustrated 

by the panel plots in Figures 2.10 (a), (b), (c) and (d) below. As a general assessment 

of the nature of correlation, the more elongated the confidence ellipsoid of the plot, the 

more correlated the stages involved. If on the other hand, the confidence ellipsoid is 

more circular than elongated, then the correlation between the two stages involved is 

closer to zero. As far as lignin, γ-cellulose, α-cellulose, copper number, glucose and 
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xylose are concerned, the stages that follow after stage 1 show strong serial 

correlations (elongated ellipsoids) which attest to the fact that there is indeed 

correlation between values measured on the same subject for these variables. These 

correlations have a bearing on the mixed model that will best fit the data, particularly 

the choice of the covariance structure. 

 

Table 2.4. Serial correlations for the seven genotypes 

  Viscosity   Lignin 

  Stage1 Stage2 Stage3 Stage4 Stage5 Stage6   Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 

Stage1 1           Stage1 1           

Stage2 0.735 1     Stage2 0.747 1     

Stage3 0.748 0.844 1    Stage3 0.582 0.882 1    

Stage4 0.300 0.016 0.023 1   Stage4 0.430 0.648 0.851 1   

Stage5 0.174 -0.041 -0.140 0.746 1  Stage5 0.277 0.504 0.709 0.903 1  

Stage6 0.199 0.020 -0.17 0.645 0.883 1 Stage6 0.270 0.542 0.7456 0.908 0.963 1 

  γ-cellulose   α-cellulose 
  Stage1 Stage2 Stage3 Stage4 Stage5 Stage6   Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 

Stage1 1           Stage1 1           

Stage2 0.381 1     Stage2 0.558 1     

Stage3 0.386 0.969 1    Stage3 0.586 0.958 1    

Stage4 0.374 0.845 0.902 1   Stage4 0.725 0.776 0.825 1   

Stage5 0.472 0.808 0.894 0.953 1  Stage5 0.738 0.709 0.783 0.957 1  

Stage6 0.392 0.856 0.912 0.961 0.971 1 Stage6 0.656 0.783 0.8311 0.926 0.954 1 

  Copper Number   Glucose 
  Stage1 Stage2 Stage3 Stage4 Stage5 Stage6   Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 

Stage1 1           Stage1 1           

Stage2 0.221 1     Stage2 0.309 1     

Stage3 0.235 0.959 1    Stage3 0.368 0.956 1    

Stage4 0.334 0.900 0.841 1   Stage4 0.038 0.829 0.785 1   

Stage5 0.184 0.731 0.725 0.801 1  Stage5 0.326 0.771 0.773 0.819 1  

Stage6 0.140 0.820 0.805 0.852 0.937 1 Stage6 0.138 0.698 0.6558 0.838 0.770 1 

        Xylose         

        Stage1 Stage2 Stage3 Stage4 Stage5 Stage6         

      Stage1 1                   

   Stage2 0.512 1     
    

   Stage3 0.518 0.953 1    
    

   Stage4 0.221 0.854 0.775 1   
    

   Stage5 0.333 0.828 0.779 0.872 1  
    

      Stage6 0.307 0.793 0.715 0.875 0.856 1         
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2.4.4. The assumption of normality and normality tests 

The assumption of normality is important for the application of general linear and allied 

models. Since the seven chemical variables are expected to have different means at 

each stage of processing, normality tests are conducted at everey stage.  The 

histograms presented in Figures 2.10 (a) to 2.10(d) show that, generally, the chemical 

variables exhibit normality and there is no serious departure from normality. 

Considering the limited number of subjects for which repeated measurements were 

taken under each genotype, hence stage, it is not possible to have very smooth 

histograms with a perfect normal outline. The histograms produced under these 

circumstances suggest that it is safe to assume normality even in the absence of 

formal normality tests. However, to ascertain the presence of normality in the data, the 

Kolmogorov–Smirnov test (K-S-t) was conducted. It is a general feature of the data 

that the means differ by stage hence the  Kolmogorov–Smirnov test was conducted to 

test for normality at each of the six stages as stated earlier, with the results presented 

in Table 2.5 below.  

Table 2.5. Kolmogorov–Smirnov tests of normality for the seven chemical variables at the six stages.   

  Chemical Property (Variable) 

Stage  Viscosity  Lignin  Y_cellulose  a_cellulose  Copper_No  Glucose  Xylose 

Stage 1 

(K-S-t) value 0.213 0.212 0.108 0.160 0.244 0.209 0.155 
p-value <0.010 <0.010 >0.150 0.113 <0.010 <0.010 0.137 

comment - -  Normal Normal - - Normal 

Stage 2 

(K-S-t) value 0.135 0.128 0.106 0.128 0.100 0.127 0.133 
p-value >0.150 >0.150 >0.150 >0.150 >0.150 >0.150 >0.150 

comment Normal Normal Normal Normal Normal Normal Normal 

Stage 3 

(K-S-t) value 0.147 0.126 0.156 0.128 0.101 0.172 0.138 
p-value >0.150 >0.150 0.131 >0.150 >0.150 0.051 >0.150 

comment Normal Normal Normal Normal Normal Normal Normal 

Stage 4 

(K-S-t) value 0.106 0.235 0.136 0.539 0.216 0.170 0.145 
p-value >0.150 <0.010 >0.150 <0.010 <0.010 0.071 >0.150 

comment Normal - Normal - - Normal Normal 

Stage 5 

(K-S-t) value 0.144 0.177 0.156 0.539 0.102 0.102 0.121 
p-value >0.150 0.051 0.132  <0.010  >0.150 >0.150 >0.150 

comment Normal Normal Normal - Normal Normal Normal 

Stage 6 

(K-S-t) value 0.147 0.232 0.163 0.539 0.065 0.169 0.169 

p-value >0.150 <0.010 0.085 <0.010 >0.150 0.082 0.076 

comment Normal - Normal - Normal Normal Normal 
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In most of the cases, the data was found to be normally distributed (p-values>0.05), 

and of the few cases in which normality was not conclusive it is mainly due to the low 

number of subjects, otherwise the data is generally normally distributed, hence 

standard general linear models can be applied to the data.   

2.4.5. Relevance of the exploratory data analysis 

The results discussed in this chapter are of great significance on the techniques that 

need to be employed to model the data in order to achieve the objectives outlined in 

Chapter 1. Chapter 3 is based on techniques that cannot assume complete 

independence amongst all observations. This follows from the fact that results in 

Section 2.4.2 suggest that there is serial correlation amongst observations taken on 

the same subject.  

 

The profile plots suggest that the evolutions, over the processing stages (time), of the 

seven chemical property variables might best be modelled by nonlinear models such 

as piecewise linear regression models presented in Chapter 4. 

 

The profile plots also showed that the seven genotypes had different trajectories on 

the seven chemical property variables analysed. Some seem to evolve closer to each 

other than others. Trying to identify which genotypes evolve with similar patterns is 

very important as this will lead to genotype classification or clustering. Genotypes that 

fall within the same clusters are deemed similar hence can be processed together as 

their processing requirements in terms of chemicals and processing conditions will 

also be similar. 

  

The strong correlations among the seven chemical property variables also suggest the 

need for multivariate analysis of the data and this is done using the joint modelling 

approach in Chapter 6. 
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Figure 2.9. Scatter plots of chemical properties to depict their correlations. 
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(b) 

 

Figure 2.10 (a). Scatter plots for stages of processing for Viscosity and Lignin 
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(c) 

 

 

Figure 2.1 (b). Scatter plots for stages of processing for γ-cellulose and α-cellulose 
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Figure 2.10 (c) Scatter plots for stages of processing for Copper number and Glucose
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Figure 2.10 (d) Scatter plots for stages of processing for Xylose 
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Chapter 3  

Fitting Random Coefficient Models to Timber Pulp 
Chemical Properties 

3.1. Introduction  

Results from the profile plots and the correlation analysis of Chapter 2, have indicated 

that different genotypes have different trajectories on the seven chemical property 

variables. This suggests that the chemical property variables can be modelled using 

mixed models in the context of random coefficient models. The random effects in this 

case are the different model coefficients which vary by genotype and individual 

samples on which repeated measurements were taken. Random coefficient models 

will allow us to distinguish which genotype have similar evolutional profiles through the 

processing stages and this allows for the determination of which genotypes are similar. 

Coull (2011) carried out an analysis of a model incorportating random intercepts and 

functional slopes (splines) in the assessment of susceptibility in longitudinal designs. 

While coull estimated precise intercepts in his model, the slope parameter estimates 

were not single values but rather spline functions. In this study the slope parameters, 

which are random, will be estimated (or predicted) as single entinties, just like the 

intercepts, rather than spline functions. 

3.2. The Linear Mixed Model for Repeated Measures and the 

Random Coefficient Model 

In order to understand the use of linear mixed models (LMM) to model random 

coefficients, it is necessary to outline the basic features of the LMM and its extension 

to more complex forms. The data used in this study have correlated variables as well 

repeated measurements of the same variables that are correlated in time. Verbeke 

and Molenbrghs (2000) and Molenbrghs and Verbeke (2005) make reference to 

correlated data as data falling under various data structures that include, clustered 

data, repeated measurements, longitudinal data and spatially correlated data. The 

serial correlations discussed in Chapter 2 above indicate that our data fall in this broad 

family of data structures and in particular, the repeated measurements category. 

Rizopoulos (2012) gives an outline of LMM’s and how they can be used to model such 

data with illustrations in the R-software. The linear mixed model falls under a family of 



39 

 

 

 

models called the generalised linear mixed models (GLMM) which is an extension of 

generalised linear models (GLM). To understand all these models, it would be 

convenient to start with a discussion of GLMs.  

 

In this study LMMs were used to analysis the chemical properties of dissolving timber 

pulp with a view to see how different genotypes behave. It is expected that, genotypes 

with similar behaviour under chemical processing will have similar random coefficient 

models for the various responses variables discussed in Chapter 2. Random 

coefficient models were thus explored and their usefulness in determining genotypes 

with similar evolutions over the processing stages investigated.  

 

3.2.1. Generalised Linear Models (GLM) 
 

Consider a univariate response variable Y, and p-predictor variables (or covariates) 

𝑋1, … , 𝑋𝑝. A likelihood function is assumed for Y and the mean of Y (that is 𝐸[𝑌] = 𝜇) or 

a function of μ, say g(μ ), is modelled as a linear function of the covariates, that is  

 𝑔(𝜇) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑝
𝑗=1 . (3.1) 

The function 𝑔(𝜇) is a link function that makes it possible to obtain a linear combination 

of the covariates that is related to μ.   

 

Suppose that the response variable Y has a density function that is a member of the 

exponential family of distributions. The density function of Y can then be written as  

  𝑓(𝑦, 𝜃, 𝜙) = exp(
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)) (3.2) 

where θ is the natural parameter, which is the main focus of the estimation process 

(usually 𝜃 = 𝐸[𝑌] = 𝜇), ϕ is a scale parameter which is usually assumed to be known, 

a  is a function of ϕ, b is a function of θ, and c is a joint function of y and ϕ (Hastie and 

Tibshirani, 1986, 1990). The mean is related to the natural parameter by 𝜇 = 𝑏′(𝜃) and 

if 𝑔(𝜇) = 𝜃 the link function is said to be in canonical form, that is, 𝑔(𝜇) has an identity 

link function and is expressed as 

𝑔(𝜇) = 𝜇 = 𝐸(𝑌) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑝
𝑗=1 . 

For some given data, the maximum likelihood estimates of 𝛽0, 𝛽1, … , 𝛽𝑝 are obtained 

using the Fisher scoring procedure as outlined by Rustagi’s (1994), Smyth (2002) and 

Wang (2007 ). 
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3.2.2. Parameter Estimation in Generalised Linear Models - The Fisher 
scoring procedure 

 

This section describes the Fisher scoring procedure as outlined by Rustagi (1994) and 

Wang (2007). Let Y1,…, Yn be a random sample of independent random variables 

each with density function 𝑓(𝑦; 𝜽), which is twice differentiable, and 𝛉 ∈ 𝚯 ⊆ ℝ𝑝, where 

𝚯 is a parameter space. The parameter vector 𝜽 is p-dimensional and can be written 

as 𝜽T = [𝜃1, … , 𝜃𝑝]. The objective is to obtain the maximum likelihood estimate 𝜽̂, of 

the parameter vector θ. Under the assumption of independence, the likelihood function 

of the random sample 𝒀 = [𝑌1, … , 𝑌𝑛], is given by 𝐿 = ∏ 𝑓(𝑦i; 𝜽)
𝑛
𝑖=1  and the log-

likelihood function is given by  

 ℓ(𝜽) = ln(𝐿) =∑log{𝑓(𝑦i; 𝜽)}

𝒏

𝒊=𝟏

. (3.3) 

The maximum likelihood estimate of θ can be obtained by solving the simultaneous 

equations derived from  

 
𝜕ℓ(𝜽)

𝜕𝜃1
=
𝜕ℓ(𝜽)

𝜕𝜃2
= ⋯ =

𝜕ℓ(𝜽)

𝜕𝜃𝑝
= 0. (3.4) 

These simultaneous equations do not always have direct solutions and numerical 

methods such as the Newton Raphson procedure are often used to find the estimate 

of the parameter vector θ. The Newton Raphson procedure starts with a carefully 

chosen initial estimate θ0, which is then iteratively updated according to the recursive 

formula  

 𝜽𝑚+1 = 𝜽m − [∇
2ℓ(𝜽m)]

−1∇ℓ(𝜽m) (3.5) 

where  

 ∇ℓ(𝜽m) =

(

  
 

∂ℓ(𝜽)

∂𝜃1
⋮

∂ℓ(𝜽)

∂𝜃p )

  
 

 (3.6) 

and  

 𝛁2ℓ(𝜽𝑚) =

(

  
 

∂2ℓ(𝜽)

∂𝜃1
2 …

∂2ℓ(𝜽)

∂𝜃1 ∂𝜃p
⋮ ⋱ ⋮

∂2ℓ(𝜽)

∂𝜃p ∂𝜃1
…

∂2ℓ(𝜽)

∂𝜃p2 )

  
 
. (3.7) 
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The estimate of the parameter vector, that is 𝜽̂, is obtained when a convergence 

criteria is met. The Newton Raphson procedure requires the computation of the matrix 

𝛁𝟐ℓ(𝛉𝑚), at each iteration. The Fisher scoring procedure, on the other hand, makes 

use of 𝑰(𝜽) = −𝐸[𝛁2ℓ(𝛉)] in place of 𝛁2ℓ(𝛉m). The matrix 𝑰(𝛉) = −E[𝛁2ℓ(𝛉)] is the 

Fisher information matrix. The Fisher information may not depend on the current value 

of θ hence the same information matrix can be used for all iterations. This is a major 

improvement on the Newton Raphson procedure as far as computation time is 

concerned. The Fisher scoring recursive formula is given by  

 

 𝛉𝑚+1 = 𝛉𝑚 − 𝑰(𝛉𝑚)
−1𝛁ℓ(𝛉𝑚). (3.8) 

 

The performance of the procedure depends on the careful selection of the initial value 

and the stopping criteria should also be specified. Most statistical software consider 

the procedure to have converged if there is no significant change in the mean square 

error.    

 

3.1.3. Estimation of LMM parameters by Maximum Likelihood Estimation 

(MLE) 

The linear mixed model is a special case of the GLMMs where the assumption of 

normality is made on the response variable. The model can be expressed as  

 

 {

𝒚 = 𝑿𝜷 + 𝒁𝒃 + 𝜺
𝒃~𝑁(𝟎, 𝑮)
𝜺~𝑁(𝟎, 𝑹)

 (3.9) 

 

Where X is a design matrix corresponding to the fixed effects and Z is the design 

matrix corresponding to the random effects. The marginal distribution of y is  

 

𝒚~𝑁(𝑿𝜷, 𝑽)   where 𝑽 = 𝑹 + 𝒁𝑮𝒁𝐓. 

 

Let φ be the vector of the q-variance components in V, the log-likelihood function for 

model (3.9) is then given by  
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 𝑙{𝒚; 𝜷,𝝋} = 𝑘 −
1

2
log(|𝑽|) −

1

2
(𝒚 − 𝑿𝜷)T𝑽−1(𝒚 − 𝑿𝜷) (3.10) 

   

where k is a constant.  If the matrix V is of full rank then the parameter vectors β and 

φ can be estimated by solving the following system of partial differential equations: 

 

  
𝜕𝑙

𝜕𝛽
=  𝑿T𝑽−1𝒚 − 𝑿T𝑽−1𝑿𝜷 = 0      (3.11) 

and  

  
𝜕𝑙

𝜕𝜑𝑖
=
1

2
{(𝒚 − 𝑿𝜷)T𝑽−1

𝜕𝑽

𝜕𝜑𝑖
𝑽−1(𝒚 − 𝑿𝜷)} − 𝑡𝑟 (𝑽−1

𝜕𝑽

𝜕𝜑𝑖
) = 0,    (3.12) 

where φi is the ith component of the p-dimensional vector φ. Solving (3.11) and (3.12) 

gives  

  𝜷̂ =  (𝑿T𝑽−1𝑿)−𝟏𝑿T𝑽−1𝒚    (3.13) 

Equation (3.13) still requires the estimation of the matrix V whose components are 

found by solving  

 𝒚T
𝜕𝑽

𝜕𝜑𝑖
𝑷𝒚 = 𝑡𝑟 (𝑽−1

𝜕𝑽

𝜕𝜑𝑖
)  (3.14) 

where the matrix P is given by 

  𝑷 = 𝑽−1 − 𝑿(𝑿T𝑽−1𝑿)−𝟏𝑿T𝑽−1    (3.15) 

The estimate of V, that is 𝑽̂, is then substituted into (3.13) to obtain the MLEs of β. 

 

 

3.2.3. Estimation of LMM parameters by Restricted Maximum Likelihood 
Estimation (REML) 

 

Estimates of variance components obtained using MLE are biased and this calls for 

the use of REML which works by transforming the data to eliminate the fixed effects 

then work with the transformed data to estimate the variance components. Let matrix 

A be an n×(n-p) matrix such that rank(A)=n-p and ATX=0. The matrix A (the restriction 

matrix) is the transformation matrix that is applied on the original response data vector 

y to obtain 𝒖 = 𝑨𝐓𝒚 and this implies that 𝒖~𝑵(𝟎, 𝑨𝐓𝑽𝑨). Based on the new restricted 

response variable u the restricted log-likelihood is given by  

 

  𝑙𝑅{𝒖:𝝋} = 𝑘 − 
1

2
log(|𝑨T𝑽𝑨|) −

1

2
𝒖T(𝑨T𝑽𝑨)−1𝒖.  (3.16) 
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Estimates of the variance components are obtained by partially differentiating 𝒍𝑹{𝒖:𝝋} 

with respect to the variance components to obtain a system of partial differential 

equations of the form  

 

  
𝜕𝑙𝑅
𝜕𝜑𝑖

=
1

2
{𝒚T𝑷

𝜕𝑽

𝜕𝜑𝑖
𝑷𝒚 − 𝑡𝑟 (𝑷

𝜕𝑽

𝜕𝜑𝑖
)} = 0, for 𝑖 = 1,… 𝑞,   (3.17) 

 

where 𝑷 = 𝑨(𝑨𝐓𝑽𝑨)−𝟏𝑨𝐓. The REML estimates are obtained through the 

transformation matrix A but they do not depend on the same matrix. This means that 

the matrix A is not unique to any set of estimates. Once the variance components 

vector 𝝋̂ is estimated the fixed effects parameter vector 𝜷̂ can then be estimated using 

MLE. Both MLE and REML are based on the assumption of normality which is not 

always the case. Other methods that deal with situations where normality is violated 

have been put forward and these include quasi-likelihood methods as described by 

Wedderburn (1974) and quasi-likelihood methods for count data by Wooldridge 

(1997). 

 

3.2.4. Estimation of random effects by Best Linear Unbiased Predictors 
(BLUP) 

In this study, the random components of the random coefficients model are closely 

analysed as they outline the differences in evolution between genotypes. Random 

effects are predicted rather than estimated hence they are termed best linear unbiased 

predictors rather than best linear unbiased estimators. The theory of Best Linear 

Unbiased Predictors (BLUPs) as compared to Best Linear Unbiased Estimators 

(BLUEs) is well known and appears in many statistical publications, for example, 

Henderson (1953), Searle (1995), Robinson (1991), Coull (2011) and many others. A 

brief discussion of such predictors and how they apply to random effects of mixed 

models, with particular regards to random coefficients and piecewise linear regression 

models, is hereby presented. 

 

The linear mixed effects model (equation 3.9) can be stated as  

 𝒚 = 𝑿𝜷 + 𝒁𝒃 + 𝒆 (3.18) 

where 
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 [
𝒃
𝒆
]~𝑁 ([

𝟎
𝟎
] , [
𝑮 𝟎
𝟎 𝑹

]). (3.19) 

Given a vector of observed values y, we wish to find the best guess or prediction of 

the vector b. It is important to note that, while we treat the vector of fixed effects, that 

is 𝜷, as parameters to be estimated by 𝜷̂, we cannot treat b in the same way. The 

vector b is a random variable rather than a fixed parameter vector hence we can talk 

of predicting b rather than estimating it. We thus talk of a Best Linear Unbiased 

Predictor (BLUP) for b, rather than a Best Linear Unbiased Estimator (BLUE). The 

BLUP for b , which is denoted by 𝒃̂  has the following properties: 

(i) 𝒃̂ must be a linear function of y; 

(ii) 𝒃̂ must be an unbiased predictor for b , that is, 𝐸(𝒃̂ − 𝒃) = 𝟎 and  

(iii) Var(𝒃̂ − 𝒃) ≤ Var(𝒃̃ − 𝒃), where 𝒃̃  is any other linear unbiased predictor for 

𝒃. 

The BLUP for b is a conditional expectation which is the BLUE for 𝐸(𝒃|𝒚). Consider 

any two multivariate normal vectors 𝑿1 and 𝑿2 with the multivariate normal distribution  

 [
𝑿1
𝑿2
]~𝑁 ([

𝝁1
𝝁2
] , [
𝚺11 𝚺12
𝚺21 𝚺22

]) (3.20) 

The conditional distribution of any two such multivariate vectors is given by  

 𝑿2|𝑿1~𝑁(𝝁2 + 𝚺21𝚺11
−1(𝑿1 − 𝝁1), 𝚺22 − 𝚺21𝚺11

−1𝚺12). (3.21) 

Now consider equations 3.18 and 3.19 above. It can be shown that  

 [
𝒚
𝒃
] = [

𝑿𝜷
𝟎
] + [

𝒁 𝑰
𝐈 𝟎

] [
𝒃
𝒆
] (3.22) 

with  

 [
𝒚
𝒃
]~𝑁 ([

𝑿𝜷
𝟎
] , [𝒁𝑮𝒁

T + 𝑹 𝒁𝑮
𝑮𝒁T 𝑮

]) (3.23) 

and assuming that the covariance matrix of 𝒚, that is 𝑽 = 𝒁𝑮𝒁T + 𝑹, is positive definite 

then  

 𝒃|𝒚~𝑁(𝑮𝒁T(𝒁𝑮𝒁T + 𝑹)−1(𝒚 − 𝑿𝜷), 𝑮 −  𝑮𝒁T(𝒁𝑮𝒁T + 𝑹)−1𝒁𝑮) (3.24) 

The BLUP for u is thus given by  

 𝐸(𝒃|𝒚) =  𝑮𝒁T(𝒁𝑮𝒁T + 𝑹)−1(𝒚 − 𝑿𝜷) (3.25) 

or 

 𝐸(𝒃|𝒚) = 𝑮𝒁T𝑽−1(𝒚 − 𝑿𝜷) (3.26) 
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Since the matrices 𝑮 and 𝑽 are estimated from observed data by 𝑮̂ and 𝑽̂ respectively, 

the BLUP for 𝒃 is approximated by 

 𝒃̂ = 𝐸(𝒃|𝒚) = 𝑮̂𝒁T𝑽̂−1(𝒚 − 𝑿𝜷̂). (3.27) 

 

3.2.5. Use of LMM for the longitudinal pulp data  
 

The data at hand is longitudinal in nature as measurements are taken sequentially in 

time. The linear mixed model for repeated measures (longitudinal data) for the pulp 

data has genotype and processing stage as fixed effects and the pulp samples as 

random effects on which repeated measurements are taken. The model can be 

expressed as     

  𝑌𝑖𝑗𝑡 = 𝑓𝑖𝑗 + 𝜏𝑡 + 𝐼𝑖𝑗𝑡 + 𝑒𝑖𝑗𝑡 (3.28) 

where 𝑓𝑖𝑗 is the part of the model that is due to the fixed effects and this can be 

expressed as  

𝑓𝑖𝑗 = 𝜇 + 𝛼𝑖 , 

where µ is the overall mean and 𝛼𝑖 is the genotype effect. The effect of stage (or time) 

t is denoted by 𝜏𝑡. The term 𝐼𝑖𝑗𝑡 of model (3.28) is the interaction between processing 

stage and genotype and 𝑒𝑖𝑗𝑡 is the random effect part of the model which is the random 

error associated with subject i, under the jth treatment at stage t. Model (3.28) can also 

be written as  

 𝑌𝑖𝑗𝑡 = 𝜇 + 𝛼𝑖 + 𝜏𝑡 + 𝐼𝑖𝑗𝑡 + 𝑒𝑖𝑗𝑡 (3.29) 

The subjects (pulp samples) are assumed to be independent while the observations 

of each pulp sample over the processing stages are correlated according to some 

suitable covariance structure. If the complete set of observations is put into a single 

vector Y, noting that there are L subjects in total and T processing stages, the 

covariance matrix of Y can be written as  

  𝑉𝑎𝑟(𝒀) = 𝑰𝐿⊗𝜮𝑻 (3.30) 

where the covariance matrix 𝜮𝑻 shows how the values of a single subject at different 

stages are related to each other. The matrix 𝑰𝐿 is an L×L identity matrix while 𝚺𝑇 has 

one of the many possible covariance structures. The best fitting covariance structure 
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is determined by considering known covariance structures and choosing one with the 

best fit according to the Akaike information criteria or AIC (Burnhan and Anderson, 

2004). A correct choice of a covariance structure for 𝚺𝑇 will greatly affect the quality 

of the model parameters obtained (Littell et al, 2006). The covariance matrix of the 

observations on each subject over all the time periods can also be decomposed into 

 𝜮𝑻 = 𝜎𝑇
2𝑱 + 𝑹 (3.31) 

where 𝜎𝑇
2𝑱 is the part of variation due to the subject, R is the covariance matrix of 

observations within the same subject due to the different stages. Having identified a  

suitable covariance structure, the model parameters can be estimated by, either using 

Maximum Likelihood (ML), or Restricted Maximum Likelihood (REML) methods.  

 

3.2.6. Fitting the Random Coefficient Model to the Pulp Data 
 

According to Swamy (1970), the random coefficient regression model is similar to the 

linear mixed model for repeated measures. Such a model has also been described by 

Bollen and Curran (2006) as a latent curve model. Under this model, each genotype 

(or treatment) has its parameters estimated separately to form a family of parameters 

which have overall mean parameters for all treatments and parameters specific to 

each treatment. The parameters for all treatments can then be used to compare the 

performances of the different genotypes.  

 

The effect of time on the response variables can be linear or may take any form 

suggested by the profile plot of the response variable on time. As an example, a 

quadratic random coefficient regression model would of the form: 

 𝑌𝑔𝑡 = 𝛼0𝑔 + 𝛼1𝑔𝑡 + 𝛼2𝑔𝑡
2 + 𝜀𝑔𝑡 (3.32) 

Where 𝑌𝑔𝑡 is a response variable observed for genotype g at time t, 𝛼0𝑔 is the overall 

slope parameter for all subjects under genotype g, that is, the initial value of the 

response variable Y at time t=0 (or raw pulp stage) for genotype g, 𝛼1𝑔 is the overall 

linear slope of samples under genotype g, gb2 is the overall curvature (quadratic term) 

of samples under genotype g and 𝜀𝑔𝑡 is the random error term  associated with 

genotype g at time t.  



47 

 

 

 

The parameters are treated as variables which vary by genotype and can be further 

factorized into 𝛼0g = (𝛽0 + 𝑏0g), 𝛼1g = (𝛽1 + 𝑏1g) and 𝛼2g = (𝛽2 + 𝑏2g) where the 

quantities β0, β1 and β2 are the overall intercept, slope and curvature parameters 

respectively and 𝑏0g~N(0, 𝜎0
2), 𝑏1g~N(0, 𝜎1

2) and 𝑏2g~𝑁(0, 𝜎2
2) are genotype specific 

variables. Substituting the factorized forms of 𝛼0g, 𝛼1g and 𝛼2g in (3.32) gives 

 𝑌𝑔𝑡 = (𝛽0 + 𝑏0𝑔) + (𝛽1 + 𝑏1𝑔)𝑡 + (𝛽2 + 𝑏2𝑔)𝑡
2 + 𝜀𝑔𝑡 (3.33) 

where 2

210)( ttYE bgi   is the population growth model for all genotypes 

combined. The quantities 𝑏𝑜g,  𝑏1g  and 𝑏2g are the variable parts (random effects) of 

the model parameters that depend on genotype and have zero means with a 

covariance structure which can be written as:  

 

 𝐶𝑜𝑣(𝑏0g, 𝑏1𝑔, 𝑏2g) = [

𝜎0
2 𝜎01 𝜎02
𝜎10 𝜎1

2 𝜎12
𝜎20 𝜎21 𝜎2

2

] (3.34) 

where 𝜎𝑖
2 = variance(𝑏𝑖g), 𝜎𝑖𝑗 = 𝜎𝑗𝑖 = covariance(𝑏𝑖g, 𝑏𝑗g) for i, j = 0, 1, 2. If 𝜎0

2 =

0  then all the genotypes have identical intercepts (or stage 0 values) equal to β0. 

Likewise, if 02

1   then the linear slopes of all genotype/bleaching condition 

combinations are identical. The covariance 𝜎01 
shows the association between the 

raw stage value (intercept) and the linear slope, 𝜎02 shows the association between 

the intercept and the quadratic term of the model and 𝜎12 shows the association 

between the slope parameter and the quadratic term of the model. Higher or lower 

order random coefficient regression models can also be considered depending on the 

relationship between the response variable and time t (or processing stage in this 

case) as determined using the profile plots of the variables.  

 

3.3. Model fitting and results discussion  

The SAS procedure Proc MIXED was used to fit the random coefficients model to the 

data using restricted maximum likelihood estimates (REML) (Liu et al, 2007). The SAS 

code is presented in Appendix A1.2. The results of the data analysis are presented 

below.  
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3.3.1. Choice of covariance structures  

Table 3.1 below shows the covariance structures that fitted the data best out of many 

covariance structures attempted. The results, as presented in Table 3.1, show that, 

the covariance structure that fits the viscosity, lignin and α-cellulose data best is the 

unstructured one (AIC=957.7, 306.2 and 438.5 respectively), for copper number the 

compound symmetry covariance structure is of best fit (AIC=187.4), for γ-cellulose the 

Toeplitz covariance structure is of best fit (AIC=368.3) and for xylose the AR(1) 

covariance structure is of best fit. The covariance structure that was found to be of 

best fit to any variable, will be used in the fitting of a random coefficient model that 

best describes the trajectory (linear or quadratic) of the concerned variable.  

 

Table 3.1. Fit Statistics for Covariance Structures for random coefficient regression models for the 

seven chemical pulping variables. 

    AIC by Variable 

Covariance 
Structure 

Number of 
parameters 

Viscosity Lignin γ-cellulose α-cellulose 
Copper 
Number 

Glucose Xylose 

Unstructured 4 957.7 306.2 368.9 438.5 188.8 419.0 259.0 

ANTE(1) 4 972.6 315.7 369.5 441.0 197.1 417.6 259.1 

AR(1) 3 976.1 311.7 369.6 441.0 197.1 417.9 257.1 

ARMA(1,1) 4 978.1 317.7 371.6 443.0 199.1 419.9 259.1 

CS 3 976.1 306.7 369.6 440.3 187.4 419.0 257.3 

Toeplitz 4 975.7 308.8 368.3 440.3 188.8 419.0 259.0 

 

 

3.3.2. Random coefficient models for viscosity 

Profile plots for viscosity (Figure 2.2) suggest that viscosity is mainly linearly related 

to processing stage (time) although a slight curvature might also need to be 

investigated. After fitting a quadratic random coefficients model (3.33), the quadratic 

terms for all genotypes turned up not to be significant hence a linear regression model 

was fitted to the data.  Slope parameters for some of the genotypes were found to be 

significant with each genotype having its own set of intercept and slope parameters. 

Such coefficients are considered random (Swamy, 1970). In this section the 

parameters of model (3.33), without the quadratic term, are estimated for each 

genotype.  
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The results for the random coefficient regression models for the various genotypes are 

presented in Table 3.2 below. The slope parameters of the models for the seven 

genotypes indicated that Egrandis and Enitens had the lowest and non-significant 

rates of change of viscosity over the six processing stages (Slope=-1.995 with p-

value=0.2253 and Slope=-2.1222 with p-value=0.3159 respectively).  In general, the 

genotypes with the lowest viscosities before processing also had the lowest rate of 

change of viscosity over the processing stages (Intercept for Egrandis=38.34463 and 

Intercept for Enitens=43.9554).  

 

Table 3.2 Parameter estimates for the random coefficient regression model for viscosity. 

Model parameter estimates, Standard deviations and p-values for t-tests 

Genotype 

Intercept Slope 

Parameter 
(Std 
Dev) 

p-value Parameter 
(Std 
Dev) 

p-value 

E.dunnii 63.5289 2.9355 <0.0001* -5.8961 0.9630 <0.0001* 

E.grandis 38.4463 4.9086 <0.0001* -1.9950 1.6115 0.2253 

E.smithii 48.6429 4.4809 <0.0001* -3.5687 1.4711 0.0215* 

E.nitens 43.9554 6.3370 <0.0001* -2.1222 2.0804 0.3159 

GCG 58.1603 6.3370 <0.0001* -5.6770 2.0804 0.0105* 

GUA 70.8950 6.3370 <0.0001* -7.9262 2.0804 0.0006* 

GUW 58.1603 6.3370 <0.0001* -5.1765 2.0804 0.0186* 
*significant parameter at 5% significance level 

A diagrammatic presentation of the random coefficients regression models for the 

viscosity data is shown in Figure 3.1 below. The genotypes with the steepest slopes 

also had the highest raw stage viscosities. In order of highest intercepts and hence in 

terms of the steepest slopes, the genotypes, as indicated in Figure 3.1, can be ordered 

as:  

1.GUA, 2. Edunnii, 3. GCG, 4. GUW, 5. Esmithii, 6. E nitens and 7. Egrandis.  

The covariance matrix for the slope and intercept parameters for all genotypes is given 

as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
84.829 −23.833
−23.833 9.096

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1.000 −0.858
−0.858 1.000

]. 

The correlation between the intercept and the slope parameters is 𝑟 = −0.858 which 

is a strong negative. This shows the dependence of the rate of change of viscosity to 
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initial viscosity levels. This implies that genotypes which start off with high viscosity 

levels have higher rates of change of viscosity. 

 

 

Figure 3.1 Random coefficients regression models for the seven genotypes 
 
Results in Table 3.3 below shows that the low slope parameter of Egrandis is 

significantly different to the slope parameters of Edunnii (Difference in slope= -3.9011, 

p-value=0.0464) and GUA (Difference in slope= -5.312, p-value=0.0317). The other 

genotypes do not have significantly different slope parameters but this is mainly 

because the parameter estimates have high standard deviations as shown in Table 

3.2 (they range from 0.9630 to 2.0804).   
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Table 3.3: Intercept and slope parameter estimated differences for the random coefficient regression model for viscosity. 

Genotype 

 
 Differences in intercepts and slopes viscosities (p-values in brackets) 

 
 E.grandis E.nitens Esmithii GUW GCG Edunnii 

E.grandis 
Intercept 38.4463 -   

        

Slope -1.9950 -  
     

E.nitens 
Intercept 43.9554 5.5091  (0.4972) -  

    

Slope -2.1222 0.1272  (0.9618) 
-      

Esmithii 
Intercept 48.6429 10.1966  (0.1355) 4.6875 (0.5504) - 

    

Slope -3.5687 1.5737  (0.4763) -1.4465  (0.5745) - 
    

GUW 
Intercept 58.1603 19.7140  (0.0199)* 14.2049  (0.1234) 9.5174  (0.2296) -   

Slope -5.1765 3.1816  (0.2361) 3.0544  (0.3075) 1.6079  (0.5328) -   

GCG 
Intercept 58.1764 19.7301  (0.0198)* 14.2209  (0.1230) 9.5334  (0.2289) 0.01606 (0.9986) - 

  

Slope -5.6770 3.6821  (0.1720) 3.5548  (0.2364) 2.1083  (0.4145) -0.5005  (0.8661) - 
  

Edunnii 
Intercept 63.5289 25.0826  (0.0001)* 19.5734  (0.0088)* 14.886  (0.0093)* 5.3686  (0.4480) 5.3525  (0.4494) - 

Slope -5.8961 -3.9011  (0.0464) + -3.7739  (0.1102) -2.3274  (0.1956) -0.7195  (0.7558) -0.2191  (0.9245) - 

GUA 
Intercept 70.8950 32.4487  (0.0003)* 26.9396  (0.0053)* 22.2521  (0.0075)* 12.7347  (0.1656) 12.7186   (0.1661) 7.3661  (0.2999) 

Slope -7.9262 5.9312  (0.0317)+ 5.8040  (0.0578) 4.3575  (0.0976) -2.7496  (0.3575) 2.2492  (0.4506) 2.0301  (0.3829) 

*Genotypes with significantly different intercept parameters 
+ Genotypes with significantly different slope parameters 
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3.3.3. Random coefficient models for Lignin 

Profile plots for lignin (Figure 2.3) suggest that lignin could be quadratically related to 

processing stage (time) since lignin plots appear to have distinct curvatures over time. 

A quadratic random coefficients model (3.33) was fitted to the lignin data with the 

results presented in Table 3.4 below. 

Table 3.4 Parameter estimates for the random coefficient regression model for Lignin 

Lignin model parameter estimates, Standard deviations and p-values for t-tests 

Genotype 
Intercept Slope Curvature 

Parameter 
Std 
Dev 

p-value Parameter 
Std 
Dev 

p-value Parameter 
Std 
Dev 

p-value 

E.dunnii 5.662 0.618 <0.0001* -1.857 0.267 <0.0001* 0.174 0.034 <0.0001* 

E.grandis 4.704 0.618 <0.0001* -1.869 0.267 <0.0001* 0.193 0.034 <0.0001* 

E.smithii 6.654 0.536 <0.0001* -2.572 0.189 <0.0001* 0.258 0.024 <0.0001* 

E.nitens 3.499 0.618 <0.0001* -1.407 0.267 <0.0001* 0.148 0.034 <0.0001* 

GCG 6.855 0.618 <0.0001* -2.515 0.267 <0.0001* 0.240 0.034 <0.0001* 

GUA 5.771 0.618 <0.0001* -2.352 0.267 <0.0001* 0.243 0.034 <0.0001* 

GUW 4.180 0.437 <0.0001* -1.568 0.267 <0.0001* 0.154 0.034 <0.0001* 

*significant parameter at 5% significance level    
 

The covariances and correlations between the intercept, slope and quadratic 

(curvature) parameters for lignin for all genotypes are given as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔, 𝑏2𝑔) = [
0.164 −0.071 0.006
−0.071 0.038 −0.003
0.006 −0.003 < 0.0001

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔, 𝑏2𝑔) = [
1.000 −0.895 −
−0.895 1.000 −
− − 1.000

]. 

The correlation between the intercept and the slope parameters is 𝑟 = −0.895, which 

is strong and negative. This shows the dependence of the rate of change of lignin to 

initial lignin levels. The relationship of the quadratic term to the intercept and slope 

parameters could not me computed as the variance of the quadratic term could not be 

computed due to non-convergence. 
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Table 3.5: Intercept, slope and curvature parameter estimated differences for the random coefficient regression model for Lignin. 

Genotype Parameter Estimates 
Differences in intercepts, slopes and curvatures for lignin (p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

      Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 

Intercept 4.704 -            

Slope -1.869 -            

Curvature 0.193 -            

E.nitens 

Intercept 3.499 1.205 0.055 -          

Slope -1.407 -0.462 0.225 -          

Curvature 0.148 -0.462 0.225 -          

Esmithii 

Intercept 6.654 -1.951 0.001* 3.155 <0.001* -        

Slope -2.572 0.703 0.035* -1.165 <0.001* -        

Curvature 0.258 0.703 0.035* -1.165 0.001* -        

GUW 

Intercept 4.180 0.524 0.400 -0.681 0.275 2.474 <0.001* -      

Slope -1.568 -0.301 0.428 0.161 0.670 -1.004 0.003* -      

Curvature 0.154 -0.301 0.428 0.161 0.670 -1.004 0.003* -      

GCG 

Intercept 6.855 -2.151 0.001* -3.356 <0.001* -0.201 0.709 2.675 <.0001* -    

Slope -2.515 0.646 0.091 1.108 0.004* -0.057 0.861 -0.947 0.014* -    

Curvature 0.240 0.646 0.091 1.108 0.004* -0.057 0.861 -0.947 0.014* -    

Edunnii 

Intercept 5.662 0.958 0.126 2.163 0.001* -0.993 0.068 1.482 0.019* -1.193 0.058 -  

Slope -1.857 0.012 0.975 -0.450 0.237 0.715 0.032* -0.289 0.447 0.658 0.085 -  

Curvature 0.174 0.012 0.975 -0.450 0.237 0.715 0.032* -0.289 0.447 0.658 0.085 -  

GUA 

Intercept 5.771 -1.067 0.089 -2.272 0.001* 0.883 0.103 1.591 0.012* 1.084 0.084 -0.110 0.860 

Slope -2.352 0.483 0.205 0.945 0.015* -0.221 0.502 -0.784 0.041* -0.163 0.666 0.495 0.194 

Curvature 0.243 0.483 0.205 0.945 0.015* -0.221 0.502 -0.784 0.041* -0.163 0.666 0.495 0.194 

 



54 

 

 

 

3.3.4. Random coefficient models for γ-cellulose 

Profile plots in (Figure 2.4) do not suggest a distinct trajectory for the evolution of γ-

cellulose over the processing stages. An attempt at fitting a cubic polynomial to model 

the evolution of γ-cellulose showed that only the linear trend component of the model 

was significant. A linear trend random coefficient model was fitted to the data with the 

results presented in Table 3.6 below.  

 

Table 3.6 Parameter estimates for the random coefficient regression model for γ-cellulose  

Y-Cellulose Model parameter estimates, Standard deviations and p-values for t-tests 

Genotype 
Intercept Slope 

Parameter Std Dev p-value Parameter Std Dev p-value 

E.dunnii 8.131 0.605 <0.0001* -0.803 0.113 <0.0001* 

E.grandis 7.274 0.605 <0.0001* -0.845 0.113 <0.0001* 

E.smithii 8.150 0.524 <0.0001* -0.832 0.080 <0.0001* 

E.nitens 8.046 0.605 <0.0001* -0.940 0.113 <0.0001* 

GCG 7.480 0.605 <0.0001* -0.817 0.113 <0.0001* 

GUA 8.367 0.605 <0.0001* -0.943 0.113 <0.0001* 

GUW 6.754 0.428 <0.0001* -0.720 0.113 <0.0001* 

*significant parameter at 5% significance level 

 

The covariance matrix for the slope and intercept parameters for all genotypes is given 

as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
0.2750 −0.0247
−0.0247 0.0032

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1 −0.8326

−0.8326 1
]. 

The correlation between the intercept and the slope parameters is 𝑟 = − 0.8326 which 

is strong and negative. This shows the dependence of the rate of change of viscosity 

to initial viscosity levels. This implies that genotypes which start off with high viscosity 

levels have higher rates of change of viscosity. Results in Table 3.7 show that no 

genotypes differ in their rates of change of γ-cellulose (p-values>0.05). Gamma 

cellulose cannot be used to distinguish any difference in evolutional behavior between 

genotypes as they do not have significantly different slopes.  
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Table 3.7: Intercept, slope and curvature parameter estimated differences for the random coefficient regression model for γ-cellulose. 

Genotype 
Parameter 

Estimates 

Differences in intercepts and slopes for γ-cellulose (t-tests p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 
Intercept 7.274 -                       

Slope -0.845 -                       

E.nitens 
Intercept 8.046 -0.772 0.205 -    

     
 

Slope -0.940 0.095 0.555 -                   

Esmithii 
Intercept 8.150 -0.876 0.098 0.104 0.843 -  

     
 

Slope -0.832 -0.012 0.929 0.107 0.441 -               

GUW 
Intercept 6.754 0.521 0.391 1.293 0.035 1.397 0.009 -     

 

Slope -0.720 -0.125 0.438 -0.220 0.173 -0.112 0.420 -           

GCG 
Intercept 7.480 -0.205 0.735 0.567 0.351 0.671 0.203 0.726 0.233 -   

 

Slope -0.817 -0.028 0.861 -0.123 0.444 -0.016 0.910 0.126 0.434 -       

Edunnii 
Intercept 8.131 0.857 0.160 0.085 0.889 -0.019 0.971 1.377 0.025 0.652 0.284 -  

Slope -0.803 0.042 0.793 0.137 0.394 0.030 0.831 -0.083 0.607 0.014 0.931 -   

GUA 
Intercept 8.367 -1.093 0.074 -0.321 0.597 -0.217 0.680 1.613 0.009 -0.887 0.146 -0.236 0.697 

Slope -0.943 0.098 0.544 0.003 0.986 0.110 0.429 -0.223 0.168 -0.097 0.548 0.140 0.385 
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3.3.5. Random coefficient models for α-cellulose 

The polynomial of the trajectory that best models the evolution of α-cellulose as 

suggested by the profile plots in Figure 2.5 could be linear but an attempt was also 

made on the quadratic polynomial which turned out not significant. The linear random 

coefficient model was thus fitted to the data with the results presented in Table 3.8. 

below.  

 

Table 3.8 Parameter estimates for the random coefficient regression model for α-cellulose  

α-Cellulose Model parameter estimates, Standard deviations and p-values for t-

tests 

Genotype 
Intercept Slope 

Parameter Std Dev p-value Parameter Std Dev p-value 

E.dunnii 89.865 1.086 <0.0001* 0.887 0.205 <0.0001* 

E.grandis 91.128 1.086 <0.0001* 0.904 0.205 <0.0001* 

E.smithii 91.136 0.941 <0.0001* 0.689 0.145 <0.0001* 

E.nitens 90.368 1.086 <0.0001* 1.006 0.205 <0.0001* 

GCG 91.153 1.086 <0.0001* 0.811 0.205 <0.0001* 

GUA 90.344 1.086 <0.0001* 0.933 0.205 <0.0001* 

GUW 91.317 0.768 <0.0001* 0.804 0.205 0.0002* 

*significant parameter at 5% significance level 

 

The covariance matrix for the slope and intercept parameters for all genotypes is given 

as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
0.8685 −0.2476
−0.2476 0.0767

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1.0000 −0.9593
−0.9593 1.0000

]. 

Pairwise comparisons of intercept and slope parameters for the seven genotypes are 

presented in Table 3.9 below. None of the variables have significantly different 

intercept or slope parameters (all p-values>0.05).  
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Table 3.9: Intercept and slope parameter estimated differences for the random coefficient regression model for α-cellulose. 

Genotype 
Parameter 

Estimates 

Differences in intercepts and slopes for a-cellulose (t-tests p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 
Intercept 91.128 -                       

Slope 0.904 -                       

E.nitens 
Intercept 90.368 0.759 0.486 -    

     
 

Slope 1.006 -0.101 0.728 -                   

Esmithii 
Intercept 91.136 -0.009 0.993 0.768 0.416 -  

     
 

Slope 0.689 0.216 0.392 -0.317 0.210 -               

GUW 
Intercept 91.317 -0.189 0.862 -0.948 0.385 -0.181 0.848 -     

 

Slope 0.804 0.101 0.730 0.202 0.489 -0.115 0.647 -           

GCG 
Intercept 91.153 -0.026 0.981 -0.785 0.472 -0.017 0.986 -0.164 0.881 -   

 

Slope 0.811 0.093 0.748 0.195 0.504 -0.122 0.627 0.007 0.981 -       

Edunnii 
Intercept 89.865 -1.263 0.248 -0.503 0.644 -1.271 0.180 -1.452 0.185 -1.288 0.239 -  

Slope 0.887 -0.018 0.951 -0.119 0.683 0.198 0.432 0.083 0.776 0.076 0.795 -   

GUA 
Intercept 90.344 0.784 0.472 0.025 0.982 0.793 0.402 -0.973 0.372 0.810 0.458 -0.479 0.660 

Slope 0.933 -0.028 0.923 0.073 0.802 -0.244 0.334 0.129 0.659 -0.122 0.676 -0.046 0.875 
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3.3.6. Random coefficient models for Copper number 

The polynomial of the trajectory that best models the evolution of copper number as 

suggested by the profile plots in Figure 2.6 could be linear. The linear random 

coefficient model was thus fitted to the data with the results presented in Table 3.10 

below. All the parameters are significantly different from zero (p-values<0.0001) hence 

there are significant changes in copper number for all genotypes over the processing 

stages. 

 

 Table 3.10 Parameter estimates for the random coefficient regression model for α-cellulose  

Copper number Model parameter estimates, Standard deviations 
and p-values for t-tests 

Genotype 
Intercept Slope 

Parameter 
Std 
Dev 

p-value Parameter 
Std 
Dev 

p-value 

E.dunnii 3.231 0.336 <0.0001* -0.504 0.061 <0.0001* 

E.grandis 2.847 0.336 <0.0001* -0.466 0.061 <0.0001* 

E.smithii 2.954 0.291 <0.0001* -0.467 0.043 <0.0001* 

E.nitens 2.621 0.336 <0.0001* -0.402 0.061 <0.0001* 

GCG 3.050 0.336 <0.0001* -0.507 0.061 <0.0001* 

GUA 2.910 0.336 <0.0001* -0.478 0.061 <0.0001* 

GUW 2.549 0.237 <0.0001* -0.401 0.061 <0.0001* 

*significant parameter at 5% significance level 

 

The covariance matrix for the slope and intercept parameters for all genotypes is given 

as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
0.00367 −0.00317
−0.00317 0.00460

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1.0000 −0.7715
−0.7715 1.0000

]. 

There is a strong negative correlation between the slope and the intercept parameters 

for the genotypes which, as with the other variables, suggests that the initial readings 

of copper numbers affect the evolution of the variable over the processing stages. 

Pairwise comparisons of intercept and slope parameters for the seven genotypes are 

presented in Table 3.11 below. Only EDunnii and GUW have significantly different 

intercepts (p-value=0.045) and none of the variables have significantly different slope 

parameters (all p-values>0.05). 
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Table 3.11: Intercept and slope parameter estimated differences for the random coefficient regression model for copper number. 

Genotype Parameter Estimates 

Differences in intercepts and slopes for copper number (t-tests p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 
Intercept 2.847 -                       

Slope -0.466 -                       

E.nitens 
Intercept 2.621 0.226 0.503 -    

     
 

Slope -0.402 -0.064 0.456 -                   

Esmithii 
Intercept 2.954 -0.108 0.712 0.333 0.255 -  

     
 

Slope -0.467 0.000 0.995 -0.065 0.386 -               

GUW 
Intercept 2.549 0.298 0.377 0.072 0.830 0.406 0.166 -     

 

Slope -0.401 -0.065 0.455 0.000 0.998 -0.065 0.385 -           

GCG 
Intercept 3.050 -0.204 0.546 -0.429 0.204 -0.096 0.742 0.502 0.138 -   

 

Slope -0.507 0.041 0.634 0.106 0.223 0.041 0.587 -0.106 0.222 -       

Edunnii 
Intercept 3.231 0.384 0.256 0.610 0.073 0.276 0.344 0.682 0.045 0.180 0.593 -  

Slope -0.504 -0.038 0.661 -0.102 0.238 -0.037 0.617 -0.103 0.237 0.003 0.970 -   

GUA 
Intercept 2.910 -0.063 0.851 -0.289 0.391 0.044 0.880 0.362 0.284 0.140 0.677 0.320 0.342 

Slope -0.478 0.012 0.888 0.077 0.376 0.012 0.876 -0.077 0.375 -0.029 0.737 -0.026 0.765 
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3.3.7. Random coefficient models for Glucose 

The model to describe the trajectory that describes the evolution of glucose can be 

decided based on the profile plots in Figure 2.7. As the plots do not exhibit any serous 

departure from linearity the linear random coefficient model was fitted to the data with 

the results presented in Table 3.12 below. All the slope parameters are positive and 

significantly different from zero indicating that there are significant changes in glucose 

over the processing stages. 

 

Table 3.12 Parameter estimates for the random coefficient regression model for glucose.  

Glucose model parameter estimates, Standard deviations and p-values for t-tests 

Genotype 
Intercept Slope 

Parameter Std Dev p-value Parameter Std Dev p-value 

E.dunnii 89.629 0.733 <0.0001* 1.146 0.133 <0.0001* 

E.grandis 92.197 0.733 <0.0001* 0.851 0.133 <0.0001* 

E.smithii 90.317 0.645 <0.0001* 0.970 0.097 <0.0001* 

E.nitens 89.989 0.733 <0.0001* 1.161 0.133 <0.0001* 

GCG 90.113 0.733 <0.0001* 1.028 0.133 <0.0001* 

GUA 90.020 0.733 <0.0001* 1.111 0.133 <0.0001* 

GUW 92.834 0.518 <0.0001* 0.742 0.133 <0.0001* 

*significant parameter at 5% significance level 

 

The covariance matrix for the slope and intercept parameters for all genotypes is given 

as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
0.01769 −0.00916
−0.00916

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1.0000 −0.9433
−0.9433 1.0000

]. 

There is a strong negative correlation between the slope and the intercept parameters 

for the genotypes (r=-0.9433) which suggests that the higher initial readings of glucose 

the slower the rate of change over the processing stages. This could be because 

glucose cannot be expected to increase forever hence if it is high already then there 

is less room for more increase. Results in Table 3.13 show that there is significant 

difference in rate of change of glues between GUW and ENitens (d=0.419, p-

value=0.028) and GUW and EDunnii (d=0.404, p-value=0.034). It would be wise not 

to mix these differing genotypes during processing if this difference is due to different 

chemical requirements.  
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Table 3.13: Intercept and slope parameter estimated differences for the random coefficient regression model for glucose. 

Genotype Parameter Estimates 

Differences in intercepts and slopes for glucose (t-tests p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 
Intercept 92.197 -                       

Slope 0.851 -                       

E.nitens 
Intercept 89.989 2.208 0.003 -    

     
 

Slope 1.161 -0.311 0.102 -                   

Esmithii 
Intercept 90.317 1.880 0.004 0.328 0.612 -  

     
 

Slope 0.970 -0.120 0.470 -0.191 0.249 -               

GUW 
Intercept 92.834 -0.637 0.387 -2.845 0.000 -2.517 0.000 -     

 

Slope 0.742 0.109 0.565 0.419 0.028 0.228 0.169 -           

GCG 
Intercept 90.113 2.083 0.006 -0.124 0.866 0.203 0.753 -2.721 0.000 -   

 

Slope 1.028 -0.177 0.348 0.133 0.481 -0.058 0.726 0.286 0.132 -       

Edunnii 
Intercept 89.629 -2.567 0.001 -0.360 0.625 -0.687 0.289 -3.205 <.0001 -0.484 0.511 -  

Slope 1.146 0.295 0.120 -0.015 0.936 0.176 0.289 0.404 0.034 0.118 0.533 -   

GUA 
Intercept 90.020 2.176 0.004 -0.031 0.966 0.296 0.647 -2.814 0.000 0.093 0.899 -0.391 0.595 

Slope 1.111 -0.261 0.170 0.050 0.791 -0.141 0.395 0.369 0.053 -0.083 0.660 0.035 0.854 
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3.3.8. Random coefficient models for Xylose 

The model to describe the trajectory that best describes the evolution of xylose can be 

decided based on the profile plots in Figure 2.8. The plots do not exhibit any serous 

departure from linearity hence the linear random coefficient model was fitted to the 

data with the results presented in Table 3.14 below. All the slope parameters are 

negative and significantly different from zero indicating that there are significant 

changes in xylose over the processing stages. 

Table 3.14 Parameter estimates for the random coefficient regression model for Xylose.  

Xylose model parameter estimates, Standard deviations and p-
values for t-tests 

Genotype 
Intercept Slope 

Parameter Std Dev p-value Parameter Std Dev p-value 

E.dunnii 5.005 0.361 <0.0001* -0.531 0.064 <0.0001* 

E.grandis 3.560 0.361 <0.0001* -0.353 0.064 <0.0001* 

E.smithii 5.085 0.317 <0.0001* -0.517 0.047 <0.0001* 

E.nitens 5.657 0.361 <0.0001* -0.669 0.064 <0.0001* 

GCG 3.873 0.361 <0.0001* -0.294 0.064 <0.0001* 

GUA 4.662 0.361 <0.0001* -0.464 0.064 <0.0001* 

GUW 3.189 0.255 <0.0001* -0.328 0.064 <0.0001* 

*significant parameter at 5% significance level 

 

The covariance matrix for the slope and intercept parameters for all genotypes is given 
as  

𝐶𝑜𝑣(𝑏0𝑔, 𝑏1𝑔) = [
0.0084 0.0140
0.0140 0.0256

], 

 with the correlation matrix,  

𝐶𝑜𝑟𝑟(𝑏0𝑔, 𝑏1𝑔) = [
1.0000 0.9547
0.9547 1.0000

]. 

There is a strong positive correlation between the slope and the intercept parameters 

for the genotypes (r=0.9547) which suggests that the higher the initial readings the 

higher the rate of change over the processing stages. Results in Table 3.15 show that 

there is significant difference in rate of change of xylose between EGrandis and 

ESmithii, (d=0.164, p-value=0.042), EGrandis and  ENitens (d=0.315, p-

value=<0.001), ENitens and GUW (d=-0.340, p-value=<0.0001), ESmithii and GUW 

(d=-0.189, p-value=0.019), GUW and EDunii (d=-0.203, p-value=0.028), WSmithii and 

GCG (d=-0.224, p-value=0.006), ENitens and GUA (d=-0.204, p-value=0.027) and 

lastly GCG and EDunnii (d=-0.238, p-value=0.010). It would be advisable not to mix 

these differing genotypes during processing. 
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Table 3.15: Intercept and slope parameter estimated differences for the random coefficient regression model for xylose. 

Genotype Parameter Estimates 

Differences in intercepts and slopes for xylose (t-tests p-values in brackets) 

E.grandis E.nitens Esmithii GUW GCG Edunnii 

Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value Difference  p-value 

E.grandis 
Intercept 3.560 -                       

Slope -0.353 -                       

E.nitens 
Intercept 5.657 -2.097 <.0001 -    

     
 

Slope -0.669 0.315 <.0001 -                   

Esmithii 
Intercept 5.085 -1.526 <.0001 -0.572 0.075 -        

Slope -0.517 0.164 0.042 0.151 0.059 -               

GUW 
Intercept 3.189 0.371 0.307 2.468 <.0001 1.896 <.0001 -      

Slope -0.328 -0.025 0.783 -0.340 <.0001 -0.189 0.019 -           

GCG 
Intercept 3.873 -0.314 0.387 1.784 <.0001 1.212 0.000 0.684 0.061 -    

Slope -0.294 -0.060 0.512 -0.375 <.0001 -0.224 0.006 0.035 0.704 -       

Edunnii 
Intercept 5.005 1.446 0.000 -0.652 0.074 -0.080 0.802 1.816 <.0001 1.132 0.002 -  

Slope -0.531 -0.178 0.053 0.137 0.133 -0.014 0.860 -0.203 0.028 -0.238 0.010 -   

GUA 
Intercept 4.662 -1.102 0.003 0.995 0.007 0.423 0.185 1.473 <.0001 -0.789 0.031 0.343 0.344 

Slope -0.464 0.111 0.224 -0.204 0.027 -0.053 0.508 -0.136 0.136 0.171 0.063 -0.067 0.463 
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3.4. Conclusion 

The random coefficient model sought to look at the family of parameters of the models 

that were fitted to the seven genotypes to describe the behaviour of seven chemical 

properties of dissolving pulp going through six processing stages. The random 

coefficient model explored the variations in the parameter estimates across the seven 

genotypes and compared them as well as comparing how model parameters of the 

same genotype relate to each other.  

 

An important result coming from fitting this model to data for the seven chemical 

properties of dissolving pulp is that the higher the raw stage readings the higher the 

rate of change in the chemical properties over the processing stages. This result 

means that the system makes more efficient use of the bleaching chemicals in dealing 

with samples that start off with high readings at the raw stage. This implies that 

genotypes which start off with similar readings respond in a similar manner to the 

chemical pulping process. Such genotypes can be mixed during processing. 

 

The high correlations between the intercepts and the rates of change of all variables 

over the processing stages (slopes) indicate strong relationships between raw pulp 

readings and rates of change over the processing stages. This means that the system 

is more efficient when processing genotypes that start off with high readings of the 

chemical properties, which might be pointing to the fact that genotypes with low values 

at the raw pulp stage require lesser chemical concentrations as excess chemicals are 

not utilised to the extent they are utilised by genotypes with higher raw stage readings.  

 

Since slope parameters measure the rates of changes of the chemical properties over 

the processing stages, it would be of interest to order the genotypes according to their 

slope parameters so as to have an overall idea the rate at which they evolve over the 

processing stages. A suggested method would be to rank all the genotypes according 

to the magnitude of their rates of change for each variable and then find the average 

ranks across all seven chemical property variables. Table 3.16 presents these 

rankings, of which the average rank would be used as a crude similarity index. 
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Table 3.16: Chemical properties’ slope rankings for all genotypes. 

Genotype 
Viscosity Lignin a-cellulose y-cellulose copper no Glucose Xylose Average 

Rank Slope Rank Slope Rank Slope Rank Slope Rank Slope Rank Slope Rank Slope Rank 

E.dunnii -5.896 6 -1.857 3 0.887 4 -0.803 2 -0.504 6 1.146 6 -0.531 6 4.71 

E.grandis -1.995 1 -1.869 4 0.904 5 -0.845 5 -0.466 3 0.851 2 -0.353 3 3.29 

E.smithii -3.569 3 -2.572 7 0.689 1 -0.832 4 -0.467 4 0.970 3 -0.517 5 3.86 

E.nitens -2.122 2 -1.407 1 1.006 7 -0.940 6 -0.402 2 1.161 7 -0.669 7 4.57 

GCG -5.677 5 -2.515 6 0.811 3 -0.817 3 -0.507 7 1.028 4 -0.294 1 4.14 

GUA -7.926 7 -2.352 5 0.933 6 -0.943 7 -0.478 5 1.111 5 -0.464 4 5.57 

GUW -5.177 4 -1.568 2 0.804 2 -0.720 1 -0.401 1 0.742 1 -0.328 2 1.86 

The rankings are based on the absolute values of the slope parameters which 

measure the rate of change in the direction the variables are expected to change. The 

results show that GUW (mean rank=1.86) is the least mixable genotype as it tends to 

have the lowest rate of change which is not comparable to any of the other genotypes. 

The genotype GUA (mean rank=5.57), on the other hand, stands at the extreme of 

being the most process responsive genotype. Its closest mixable partner is E.dunii 

(mean rank=4.71). Using this simple logic, decisions could be made on how mixable 

the different genotypes are. This can be very helpful with more complex systems that 

involve higher numbers of varieties in raw materials that feed into their processes. 

This chapter attempted to fit an overall linear model across all stages without regards 

to what each stage is meant to achieve in the chemical processing scheme. This might 

be the reason why some subtle differences in the behaviours of the chemicals 

properties might not have been captured. Chapter 4 that follows, attempts to attribute 

each stage to the three distinct sub-processes inherent in the chemical processing 

scheme. The benefits of Chapter 4 would be to identify differences in behaviour of the 

genotypes within the process rather than offer an outside view of the overall process. 

Piecewise linear regression would model each sub-process as a linear component of 

a much bigger nonlinear process.  

The limitations of the study were mainly the consideration of processing stages as time 

points as there was no controlled time lapse between stages. The stages are therefore 

points of measurements which are not necessarily on an interval scale. 

The residual plots for the models fitted in sections 3.3.2 to 3.3.8 show that the residuals 

exhibit normality hence the assumption of normality an holds. The models can also be 

deemed adequate based on the residual plots (See Figures A1.1 to A1.7).   
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Chapter 4  

Piecewise Linear Regression Models with Dummy 
Time Variables  

4.1. Introduction 

Chemicals used in pulp processing are costly, it is necessary to optimise the usage of 

such chemicals by identifying and combining wood species/genotypes with similar 

chemical properties under the chemical pulping process for maximum utilization of 

processing resources and uniformity of the final product. This chapter identifies tree 

genotypes that exhibit similar processing behavior by modeling the chemical 

properties of dissolving pulp at all the processing stages using piecewise linear 

regression models. Piecewise linear regression models are deemed appropriate for 

this data since there are three known sub-processes, in series, in the chemical 

processing of dissolving pulp, namely, delignification, bleaching and finishing. 

Species/genotypes with similar rates of change (or slopes) in the chemical properties 

under consideration during the three sub-processes will be mixed together during 

processing in the future if economic quantities cannot be achieved with just one 

species/genotype. Species/genotype which differ significantly in the way they respond 

to the processing stages would better be processed separately. It is expected that 

each of the three sub-processes will have a different effect on the response variables 

hence the resultant models are three segment, piecewise linear regression models. In 

this study the response variables are seven important chemical properties of 

dissolving pulp and the independent variable is the stage of processing. 

 

The main objective in the processing of dissolving pulp is to remove lignin, retaining 

α-cellulose while at the same time maintaining other properties like viscosity within 

certain product specified limits. The modeling of the evolutions of lignin, viscosity, γ-

cellulose, α-cellulose copper number, glucose and xylose over the processing stages, 

for each of the seven genotypes, will highlight the differences in species/genotype 

responses to chemical processing. 
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4.2. Graphical presentation of chemical properties over 

processing stages 

Graphs of genotype means by stage of processing, for each chemical property are 

presented to show genotypes that are close together or behave in a similar manner 

during processing. Figure 4.1 below shows the percentage content of α-cellulose as 

the processing stages unfold. It is apparently clear from Figure 4.1 that α-cellulose 

percentages increase from the first to the last stage for all genotypes. Generally stage 

D1 has the effect of slightly reducing the α-cellulose level for all species/genotypes.  

 

The relationship between α-cellulose content and processing stage is not easy to 

generalize for all species/genotypes hence the piecewise linear regression method 

discussed in this chapter seeks to better describe the patterns in the data. Different 

species/genotypes are expected to have varying model parameters for the piecewise 

linear regression model. Species/Genotypes with parameters that do not differ 

significantly can be classified as having similar evolutions across the  processing 

stages of the chemical pulping process and such species/genotypes will require similar 

amounts of chemicals in each of the six processing stages. 

 

 

Figure 4.1. Mean α-cellulose content (in %) by stage for different Genotypes 
 

Figure 4.2 shows how γ-cellulose levels for different species/genotypes evolve over 

the processing stages. The graph for γ-cellulose (Figure 4.2) is more of an inverted 
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version of the graph of α-cellulose (Figure 4.1). This is due to the fact that α-cellulose 

is closely associated with γ-cellulose and degraded cellulose. 

  

The viscosity profiles for the various species/genotypes as shown in Figure 4.3 

indicate a general declining trend over the processing stages. The process is designed 

to reduce the viscosity of the product until ideal pulp characteristics are achieved. A 

final product with pulp characteristics outside the product specific margins is 

discarded. 

 

   

Figure 4.2.  Mean γ-cellulose content (in %) by stage for different Genotypes 

 

Lignin content for all species/genotypes under study decreases over the processing 

stages as shown in Figure 4.4.  
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Figure 4.3.  Mean viscosities by stage for different genotypes 
 

The decrease in lignin is not linear over the six stages but can be piecewise linear if 

the stages are grouped into sub-processes, namely delignification, bleaching and 

finishing.  

 

                 

Figure 4.4. Mean Lignin content by stage for different Genotypes. 
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Figure 4.5 shows that copper numbers decrease with each processing stage with the 

O2 and Eo stages accounting, to a larger extent, for the decrease in copper numbers. 

It is also clear from this graph that the species/genotypes do not vary much in their 

copper numbers as the lines are very close together.    

 

Figure 4.5. Mean Copper numbers by stage for different genotypes 
 

Mean glucose levels, as indicated in Figure 4.6, increase as the processing stages 

unfold with E.grandis and GuW having higher glucose levels across the stages than 

the other five species/genotypes.  

 

Figure 4.6. Mean Glucose by stage for different Genotypes 
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Figure 4.7 shows the changes in xylose over the processing stages. It was observed 

that mean xylose levels decrease as the processing stages unfold with E.grandis and 

GuW having closer and lower means by stage. These two species/genotypes also had 

very similar α-cellulose, γ-cellulose, lignin and copper numbers levels. Based on this 

similarity the two genotypes can be deemed mixable during processing.  

 

 
Figure 4.7. Mean Xylose by stage for different genotypes 
 

Figures 4.1 to 4.7 suggest that in general, the trajectories of the seven chemical 

properties profiled in these graphs can best be modelled using nonlinear models of 

some kind as all graphs exhibit nonlinear relationships with stage (time). This, together 

with the knowledge of the inherent three processing stages in chemical pulping leads 

to the suggestion that a three part piecewise linear regression model be attempted for 

the seven response variable with stage as the independent variable.    

 

4.3. The Piecewise Linear Regression Model  

The piecewise linear model is part of the mixed modelling framework (Bryk and 

Raudenbush, 1992; Snijders and Bosker, 1999). The basic principle of fitting a 

piecewise linear model is to identify transition points in the data and fit linear functions 

between such points. The transition points maybe determined by the theoretical 

background of the problem (Bollen, 2006) and in this study the stages at which a 
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transition is made from one sub-process to the next in the chemical pulping process 

are such transition points.   

 

The piecewise linear regression model is an additive function of an intercept, a linear 

component leading to the next transition point, following by more linear components 

separated by the transition points that have been decided upon. Bollen (2006) used 

the manipulation of the independent variable to come up with a piecewise linear model 

without having to mention the transition points at all times. The idea is to say that if we 

have three linear parts in the model, that is, if we have two transition points, then the 

piecewise linear model can be specified as 

 𝑌𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑡1 + 𝛽2𝑖𝑡2 + 𝛽3𝑖𝑡3 + 𝜀𝑖. (4.1) 

The model parameters in 4.1 vary from subject to subject or from genotype to genotype 

hence they are considered as random effects which can be treated in a similar manner 

as in the random coefficient model, that is,  

 

𝛽0𝑖 = 𝛽0 + 𝑏0𝑖  

𝛽1𝑖 = 𝛽1 + 𝑏1𝑖 

𝛽2𝑖 = 𝛽2 + 𝑏2𝑖 

𝛽3𝑖 = 𝛽3 + 𝑏3𝑖 

with 𝑏𝑘𝑖~𝑁(0, 𝜎𝑏𝑘
2 ) 

(4.2) 

The data representations in Figures 4.1 to 4.7 show that there is a degree of non-

linearity in the data thus the piecewise linear regression approach is a useful method 

to model such data using two or more piecewise linear splines (Bollen and Curran, 

2006). It is more appropriate to use this method for the pulp processing data since 

there are three known basic sub-processes in the whole chemical pulping process and 

there will be a spline for each of these sub-processes in the model. The transition 

points or knots are points where the parameters of the model change from one spline 

to the other giving the model a broken stick appearance (Fitzmaurice et al., 2004). The 

three sub-processes are:  

(i) delignification,  

(ii) bleaching and  

(iii) finishing (peroxide stage)  
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The delignification sub-process is activated at the O stage followed by the bleaching 

sub-process spanning stages D1, Eo and D2, and the finishing sub-process which is 

activated at the last stage (where peroxide is used). The variable t1 is used to represent 

the delignification sub-process, t2 for the bleaching and t3 for the finishing sub-

processes. The values of t1, t2 and t3 for each sub-process are as defined in Table 4.1 

below. The whole process can be described in terms of t1, t2 and t3 by equation 4.3 

below:  

 
𝑌𝑖 = {

𝛽0𝑖 + 𝛽1𝑖𝑡1 + 𝜀𝑖                                   Delignification
(𝛽0𝑖 + 𝛽1𝑖) + 𝛽2𝑖𝑡2 + 𝜀𝑖              Bleaching 
(𝛽0𝑖 + 𝛽1𝑖 + 3𝛽2𝑖) + 𝛽3𝑖𝑡3 + 𝜀𝑖 Finishing,

 
(4.3) 

 

where the term (3𝛽2𝑖) in the expression for “finishing ” accounts for the fact that there 

are three bleaching stages. The response variable Yi is the pulp characteristic of 

interest of which seven are modelled independently in this study, viz., viscosity, lignin, 

γ-cellulose, α-cellulose, copper numbers, glucose and xylose. It is assumed that the 

error terms (𝜀𝑖’s) within each pulp sample are correlated at different processing stages 

according to a suitable covariance structure which will be determined by choosing one 

with the lowest AIC value (Bozdogan, 1987).   

 

Chemical pulp processing is a continuous process and measurements, on the seven 

chemical properties under study, were taken at six time points or stages. The knots of 

the piecewise regression model are set as the stages at which a different sub-process 

starts. This is so because each sub-process has a different effect on the chemical 

properties. There are two knots that separate the three sub-process and these are 

stages 2 and 5 as indicated in Table 4.1. Instead of fitting the piecewise linear 

regression model with one covariate (stage as indicated in Table 4.1) together with 

two indicator variables for the two knots, time or stage is recoded into three time 

variates. Each of the new time variates is set to zero for the starting point of each 

process and increases by a unit for each progression of the process.  
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Table 4.1. Values of t for the three main chemical sub-processes in dissolving pulp 

Stage t1 

(Delignification) 

t2 

(Bleaching) 

t3 

(Finishing) 

Raw 0 0 0 

O 1 0 0 

D1 1 1 0 

E0 1 2 0 

D2 1 3 0 

Finishing(P) 1 3 1 

 

In model (4.3) above 𝛽1𝑖, 𝛽2𝑖 and 𝛽3𝑖 are rates of change of the response variable due 

to delignification, bleaching and the finishing stage respectively. Since delignification 

occurs during the two initial stages, that is, at the raw pulp and the O stages, to be 

followed by bleaching thereafter, we let 𝑡1 = 0 for the raw stage and 𝑡1 = 1 from the O 

stage up to the finishing stage as the delignification sub-process ends at the O stage, 

with 𝑡1 = 1. The bleaching sub-process begins at stage D1 (𝑡2 = 1) and continues in 

stages E0 (𝑡2 = 2) and D2 (𝑡2 = 3). At the finishing stage there is no bleaching occurring 

so 𝑡2 remains unchanged at 𝑡2 = 3 and on the last stage of the process. A value of 

𝑡𝑖 = 0 for i=1, 2 or 3, indicates that chemical sub-process 𝑡𝑖 has not been activated 

and if 𝑡𝑖 remains constant for subsequent stages then the chemical sub-process 

ascribed to 𝑡𝑖 has stopped. For example 𝑡1 remains at 𝑡1 = 1 for stages O, D1, Eo, D2 

and the finishing stage because it is activated only at stage O, ends at stage D1 and 

does not occur in subsequent stages.  

 

The intercept of the delignification sub-process is β0i with slope parameter β1 and the 

intercept of the bleaching sub-process is (𝛽0𝑖 + 𝛽1𝑖) since these are the predicted 

values of the response variable when delignification and bleaching start respectively. 

In the same way, the intercept of the finishing sub-process is 𝛽0𝑖 + 𝛽1𝑖 + 3𝛽2𝑖. Model 

(4.3) together with the values of 𝑡1, 𝑡2 and 𝑡3, as outlined in Table 4.1, can be 

generalised as  

 𝐸[𝑌𝑖] = 𝛽0𝑖 + 𝛽1𝑖𝑡1 + 𝛽2𝑖𝑡2 + 𝛽3𝑖𝑡3. (4.4) 

where 𝛽0𝑖  (the delignification intercept) is the initial value of the response variable at 

the raw stage. The parameters 𝛽1𝑖, 𝛽2𝑖 and 𝛽3𝑖 can be compared for different 
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species/genotypes to see which species/genotypes have the same response rates to 

the three sub-processes in chemical pulp processing.  

 

Figure 4.8 below, illustrates how the time points have been defined to indicate the 

three sub-processes in the chemical pulping process. The knots (1 and 2) indicate 

when one sub process ends and the next one starts.  

 

 
Figure 4.8. Piecewise regression lines for the chemical pulping process 
 

4.4. Fitting the Piecewise Linear Regression Model to the chemical 

pulp properties data 

The SAS procedure Proc Mixed was used to analyse the data and the results are 

presented in the sections that follow. The procedure Proc Mixed in SAS has the 

versatility to be used for the computation of parameter estimates for various models 

that include repeated measures models such as random coefficient models and 

piecewise regression models (Dechateau et al., 1998). 

 

Piecewise regression models were fitted to the data for viscosity, lignin, α-cellulose, γ-

cellulose, copper number, glucose and xylose in order to compare the response 

patterns of the seven species/genotypes. The purpose of fitting these models is to 

analyse the effects of each of the three main sub-processes namely delignification, 
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bleaching and finishing (peroxide stage) on the dissolving pulp chemical properties 

mentioned above. The choice of the covariance structure for the six processing stages 

was done after considering a few commonly used covariance structures, the results of 

which are presented in Table 4.2. Table 4.3 is a summary of Analysis of Variance 

(ANOVA) tests carried out to evaluate if the various species/genotypes have 

significantly different initial values and response characteristics to delignification, 

bleaching and finishing.  

 

The rate of change in a chemical property due to any stage of a sub-process is 

represented by the slope parameter estimate of the sub-process. In this study β0 is the 

intercept or raw stage value, β1 is the rate of change of a chemical property due to 

delignification, β2 is the rate of change due to bleaching and β3 is the rate of change 

due to the finishing sub-process. Rates of change of the seven chemical properties 

discussed in this study are presented in Tables 4.2 to 4.10.  

 

4.4.1. Viscosity data 

For viscosity, the unstructured covariance structure had the lowest AIC value (Table 

4.2: AIC=863.7). In fact the unstructured covariance structure was fitted for all the 

chemical properties studied as it had the lowest AIC values for all chemical properties.   

Table 4.2.  AIC values for different covariance structures for the piecewise regression models 

Covariance 

Structure 

Number of 

parameters 

Wet chemistry property (AIC values) 

Viscosity Lignin α-cellulose γ-cellulose 
Copper 

number 
Glucose Xylose 

Unstructured 7 863.7* 67.3* 372.4* 284.9* 65.2* 276.5* 173.5* 

ANTE(1) 6 869.6 - 398.0 314.8 99.3 281.5 179.5 

AR(1) 3 885.2 107.7 394.2 313.5 97.3 283.3 190.3 

ARMA(1,1) 4 887.2 109.7 396.2 313.5 99.3 283.0 189.1 

CS 3 886.0 107.7 394.2 313.5 93.8 283.3 190.3 

Toeplitz 4 887.2 108.8 394.9 314.4 96.5 282.1 186.4 

SP(Pow) 3 888.7 107.7 394.2 313.5 97.3 283.3 190.3 

SP(Gau) 3 888.7 107.7 394.2 316.4 97.3 287.1 196.7 

 

The seven species/genotypes had significantly different raw pulp viscosities (Table 

4.3: F=205.55, df1=7, df2=65, p-value<0.000) but had no significantly different 

delignification slopes for viscosity (Table 4.3: F=0.22, df1=7, df2=17, p-value=0.976). 

The seven species/genotypes did not have significantly different bleaching slopes for 
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viscosity (Table 4.3: F=1.53, df1=7, df2=17, p-value<0.224) and they also did not have 

significantly different finishing stage viscosity slopes (Table 4.3: F=0.80, df1=7, 

df2=17, p-value=0.595). This means that viscosity cannot be used as a classifying 

variable for the species/genotypes. The mean viscosity values are shown in Figure 4.3 

above.  

 

Table 4.3.   Tests for the effects of delignification, bleaching and finishing on genotype. 

Effect  Viscosity Lignin 
γ-

cellulose 
α-cellulose 

Copper 

number 
Glucose Xylose 

Intercept by 

Genotype  

F 205.55 808.21 329.67 23411.40 279.41 72851.0 480.62 

p-value 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

Delignification by 

Genotype 

F 0.22 70.14 6.78 2.52 28.04 38.01 14.01 

p-value 0.976 0.000* 0.001* 0.056 0.000* 0.000* 0.000* 

Bleaching by 

Genotype 

F 1.53 15.32 29.05 15.29 31.350 41.01 26.57 

p-value 0.224 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

Finishing by 

Genotype  

F 0.80 0.190 0.21 0.21 0.160 0.57 0.13 

p-value 0.595 0.983 0.980 0.980 0.990 0.768 0.995 

Degrees of freedom for numerator=7 for all cases 
Degrees of freedom for denominator=65 for intercept and 17 for delignification, bleaching and finishing 

 

The parameter estimates for the piecewise linear regression models for the viscosity 

data for the seven species/genotypes are obtained from Table 4.4 as:  

 

E.dunnii:   Ŷ=61.083-10.681t1-2.427t2-6.647t3 

E.grandis:  Ŷ=30.183+4.501t1-0.019t2-5.028t3 

E.smithii:  Ŷ=45.883-2.473t1-5.471t2-0.100t3 

E.nitens:  Ŷ=40.882+3.062t1-2.696t2-4.440t3 

E.gc:   Ŷ=56.713-2.143t1-7.016t2-2.516t3 

E.guA:  Ŷ=66.517+0.592t1-9.878t2-6.687t3 

E.guW:  Ŷ=54.413+2.986t1-7.718t2-0.630t3 

 

From these model estimates the viscosity levels can be estimated at each processing 

stage by substituting the values of t1, t2 and t3 as defined in Table 4.1. The t-tests, as 

indicated by the p-values which are all greater than 5% for delignification, bleaching 

and finishing, are not significant (Table 4.4: p-values>0.050) which indicates that no 

specific sub-process reduces viscosity significantly for all seven species/genotypes. 
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This means that viscosity is reduced steadily across the three sub-processes without 

any particular sub-process reducing viscosity significantly.  

 

Table 4.4. Piecewise linear regression model parameter estimates and t-tests for viscosity 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 61.083 

(3.832) 

15.94 

0.000* 

-10.681 

(10.516) 

-1.02 

0.320 

-2.427 

(5.114) 

-0.47 

0.641 

-6.647 

(4.996) 

-1.33 

0.201 

Egrandis 30.183 

(3.832) 

7.88 

0.000* 

4.501 

(10.516) 

0.43 

0.674 

0.019 

(5.114) 

0.00 

0.997 

-5.028 

(4.996) 

-1.01 

0.328 

Esmithii 45.883 

(2.710) 

16.93 

0.000* 

2.473 

(7.436) 

0.33 

0.744 

-5.471 

(3.616) 

-1.51 

0.149 

-0.100 

(3.533) 

-0.03 

0.978 

Enitens 40.882 

(3.832) 

10.67 

0.000* 

3.062 

(10.516) 

0.29 

0.774 

-2.696 

(5.114) 

-0.53 

0.605 

-4.440 

(4.996) 

-0.89 

0.387 

E gc 56.713 

(3.832) 

14.80 

0.000* 

-2.143 

(10.516) 

-0.20 

0.841 

-7.016 

(5.114) 

-1.37 

0.188 

-2.516 

(4.996) 

-0.50 

0.621 

EguA 66.517 

(3.832) 

17.36 

0.000* 

0.592 

(10.516) 

0.06 

0.956 

-9.878 

(5.114) 

-1.93 

0.070 

-6.687 

(4.996) 

-1.34 

0.198 

EguW 54.413 

(3.832) 

14.20 

0.000* 

2.986 

(10.516) 

0.28 

0.780 

-7.718 

(5.114) 

-1.51 

0.150 

-0.630 

(4.996) 

-0.13 

0.901 

*significant parameters at the 5% significant level 

 

4.4.2. Lignin data  

For the lignin data, the unstructured covariance structure had the lowest AIC value 

(Table 4.2: AIC=67.3) hence it was fitted to the data. The rate of lignin decrease by 

species/genotype over the sub-processes can be used to highlight the differences in 

the response patterns of the seven species/genotypes to the three sub-processes. 

Ideally most of the lignin must be removed in the delignification stage but this does not 

remove all the lignin to product specified levels. The species/genotypes have 

significantly different raw stage lignin levels (Table 4.3: F=808.21, df1=7, df2=17, p-

value=0.000). The results in Table 4 also show that the seven genotypes have 

significantly different slopes for lignin at delignification (Table 4.3: F=70.14. df1=7, 

df2=17, p-value=0.000) and bleaching (Table 4.3: F=15.32, df1=7, df2=17, p-

value=0.000). There are no significant differences among species/genotypes in lignin 

content due to the finishing sub-process (Table 4.3: F=0.190. df1=7, df2=17, p-

value=0.983). The results above mean that lignin levels at the raw, delignification and 

bleaching stages can be used to classify species/genotypes according to their slope 

parameters.  
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The piecewise linear regression parameters estimates of lignin are summarized in 

Table 4.5 which shows the estimates, their standard deviations and the corresponding 

t-tests.  

 

Table 4.5: Piecewise linear regression model parameter estimates and t-tests for Lignin 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 4.230 

(0.148) 

28.62 

0.000* 

-2.073 

(0.286) 

-7.26 

0.000* 

-0.449 

(0.128) 

-3.50 

0.003* 

-0.141 

(0.193) 

-0.73 

0.473 

Egrandis 3.319 

(0.148) 

22.46 

0.000* 

-2.157 

(0.286) 

-7.55 

0.000* 

-0.284 

(0.128) 

-2.21 

0.041* 

-0.062 

(0.193) 

-0.32 

0.751 

Esmithii 4.609 

(0.105) 

44.10 

0.000* 

-2.673 

(0.202) 

-13.24 

0.000* 

-0.556 

(0.091) 

-6.12 

0.000* 

0.074 

(0.136) 

0.54 

0.593 

Enitens 2.414 

(0.148) 

16.33 

0.000* 

-1.520 

(0.286) 

-5.32 

0.000* 

-0.227 

(0.128) 

-1.77 

0.095 

0.036 

(0.193) 

0.19 

0.854 

E gc 4.763 

(0.148) 

32.22 

0.000* 

-2.453 

(0.286) 

-8.59 

0.000* 

-0.690 

(0.128) 

-5.37 

0.000* 

0.062 

(0.193) 

0.32 

0.753 

EguA 3.917 

(0.148) 

26.50 

0.000* 

-2.467 

(0.286) 

-8.64 

0.000* 

-0.428 

(0.128) 

-3.34 

0.004* 

0.066 

(0.192) 

0.34 

0.737 

EguW 2.887 

(0.148) 

19.54 

0.000* 

-1.538 

(0.286) 

-5.39 

0.000* 

-0.396 

(0.128) 

-3.09 

0.007* 

0.077 

(0.193) 

0.40 

0.695 

*significant parameters at the 5% significant level 

 

The piecewise linear regression models built from Table 7 are given as follows: 

E.dunnii:  Ŷ=4.230-2.073t1-0.449t2-0.141t3 

E.grandis:  Ŷ=3.319-2.157t1-0.284t2-0.062t3  

E.smithii:  Ŷ=4.609-2.673t1-0.556t2+0.074t3 

E.nitens:  Ŷ=2.414-1.520t1-0.227t2+0.036t3  

E.gc:   Ŷ=4.763-2.453t1-0.6909t2+0.062t3  

E.guA:  Ŷ=3.917-2.467t1-0.428t2+0.066t3  

E.guW:  Ŷ=2.887-1.538t1-0.396t2+0.077t3  

 

Lignin levels can thus be estimated by substituting the appropriate values of t1, t2 and 

t3 for any stage of the process for each species/genotype, where t1, t2 and t3 are as 

defined in Table 4.1. The small but positive slopes for all genotypes at the finishing 

stage indicate that the finishing sub-processes slightly increases lignin levels. 

However this lignin increase at the finishing stage is not significant as shown by the p-

values of β3 which are not significant for all species/genotypes (Table 4.5).  
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4.4.3. γ-cellulose data  

For the γ-cellulose data, the unstructured covariance structure had the lowest AIC 

value (Table 4.2: AIC=284.9) hence it was used in the analysis. As with viscosity and 

lignin the finishing stage had no significant effect on γ-cellulose (Table 4.3: F=0.21, 

df1=7, df2=17, p-value=0.980). However there were significant differences in the 

changes in γ-cellulose levels among the seven species/genotypes due to 

delignification (Table 4.3: F=6.78, df1=7, df2=17, p-value=0.001) and bleaching (Table 

4.3: F=29.05, df1=7, df2=17, p-value=0.000) sub-processes. This means that γ-

cellulose is an important classifying variable for the seven species/genotypes. 

The piecewise linear regression model parameters estimates for γ-cellulose are 

summarized in Table 4.6. Results in Table 4.6 show that E.dunnii does not have a 

significant reduction of γ-cellulose due to delignification (Table 4.6: β1=0.283, t=0.51, 

df=17, p-value=0.619). It is the only genotype that has this behaviour out of the seven 

genotypes studied. The other species/genotypes had significant reductions in γ-

cellulose levels during both delignification and bleaching.  

 

 

Table 4.6. Piecewise linear regression model parameter estimates and t-tests for γ-cellulose. 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 6.896 

(0.430) 

16.05 

0.000* 

0.283 

(0.560) 

0.51 

0.619 

-1.240 

(0.197) 

-6.28 

0.000* 

0.296 

(0.560) 

0.53 

0.604 

Egrandis 7.244 

(0.430) 

16.86 

0.000* 

-2.117 

(0.560) 

-3.78 

0.002* 

-0.795 

(0.197) 

-4.03 

0.001* 

0.179 

(0.560) 

0.32 

0.754 

Esmithii 7.635 

(0.304) 

25.13 

0.000* 

-1.170 

(0.396) 

-2.95 

0.009* 

-0.970 

(0.140) 

-6.96 

0.000* 

0.195 

(0.396) 

0.49 

0.628 

Enitens 7.553 

(0.430) 

17.58 

0.000* 

-1.446 

(0.560) 

-2.58 

0.019* 

-1.103 

(0.197) 

-5.59 

0.000* 

0.382 

(0.560) 

0.68 

0.504 

E gc 7.256 

(0.433) 

16.89 

0.000* 

-1.707 

(0.560) 

-3.05 

0.007* 

-0.816 

(0.197) 

-4.14 

0.001* 

0.072 

(0.560) 

0.13 

0.899 

EguA 7.826 

(0.430) 

18.22 

0.000* 

-1.401 

(0.560) 

-2.50 

0.023* 

-1.086 

(0.197) 

-5.51 

0.000* 

0.235 

(0.560) 

0.42 

0.680 

EguW 6.198 

(0.430) 

14.43 

0.000* 

-0.794 

(0.560) 

-1.42 

0.175 

-0.894 

(0.197) 

-4.53 

0.000* 

0.222 

(0.560) 

0.40 

0.697 

*significant parameters at the 5% significant level 
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The corresponding piecewise linear regression models derived from Table 8 for the 

seven species/genotypes are as follows:  

E.dunnii:  Ŷ=6.896+0.283t1-1.240t2+0.296t3  

E.grandis:  Ŷ=7.244-2.117t1-0.795t2+0.179t3  

E.smithii:  Ŷ=7.635-1.170t1-0.970t2+0.195t3  

E.nitens:  Ŷ=7.553-1.466t1-1.103t2+0.382t3  

E.gc:   Ŷ=7.256-1.707t1-0.816t2+0.072t3  

E.guA:  Ŷ=7.826-1.401t1-1.086t2+0.235t3  

E.guW:  Ŷ=6.198-0.794t1-0.894t2+0.222t3  

The levels of γ-cellulose can be estimated in a similar way described above for 

viscosity and lignin. 

 

4.4.4. α-cellulose data  

The covariance structure with the smallest AIC value for the α-cellulose data is the 

unstructured one (Table 4.2: AIC=372.4) and this was fitted to the data. The seven 

species/genotypes start with significantly different α-cellulose levels at the raw stage 

(Table 4.3: F=23411.40, df1=7, df2=65, p-value=0.000) and the sub-process of 

delignification does not produce significantly different rates of change in α-cellulose 

across the seven species/genotypes (Table 4.3: F=2.52, df1=7, df2=17, p-

value=0.056). The sub-process of bleaching affects the rates of change of α-cellulose 

levels of the different species/genotypes in a significantly different manner (Table 4.3: 

F=15.29, df1=7, df2=17, p-value=0.000). As with the other chemical properties 

discussed above, the effects of the finishing sub-process do not differ significantly 

across the seven species/genotypes (Table 4.3: F=0.21, df1=7, df2=17, p-

value=0.980). Since the rates of change in α-cellulose levels differ among the seven 

species/genotypes during the bleaching sub-process, α-cellulose can be used as a 

classifying variable. The piecewise linear regression model parameter estimates are 

presented in Table 4.7 below.  
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Table 4.7. Piecewise linear regression model parameter estimates and t-tests for α-cellulose 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 90.846 

(0.639) 

142.28 

0.000* 

0.361 

(0.833) 

0.43 

0.670 

1.271 

(0.286) 

4.45 

0.000* 

-0.508 

(0.833) 

-0.61 

0.550 

Egrandis 91.256 

(0.639) 

142.92 

0.000* 

2.074 

(0.833) 

2.49 

0.023* 

0.899 

(0.286) 

3.15 

0.006* 

-0.238 

(0.833) 

-0.29 

0.778 

Esmithii 91.965 

(0.452) 

203.69 

0.000* 

0.202 

(0.589) 

0.34 

0.735 

0.964 

(0.202) 

4.77 

0.000* 

-0.202 

(0.589) 

-0.34 

0.735 

Enitens 90.976 

(0.639) 

142.48 

0.000* 

1.393 

(0.833) 

1.67 

0.113 

1.216 

(0.286) 

4.26 

0.001* 

-0.432 

(0.833) 

-0.52 

0.611 

E gc 91.375 

(0.639) 

143.11 

0.000* 

1.663 

(0.833) 

2.00 

0.062 

0.843 

(0.286) 

2.95 

0.009* 

-0.200 

(0.833) 

-0.24 

0.813 

EguA 90.808 

(0.639) 

142.22 

0.000* 

1.474 

(0.833) 

1.77 

0.095 

1.094 

(0.286) 

3.83 

0.001* 

-0.416 

(0.833) 

-0.50 

0.624 

EguW 91.890 

(0.639) 

143.91 

0.000* 

0.923 

(0.833) 

1.11 

0.283 

1.031 

(0.286) 

3.61 

0.002* 

-0.451 

(0.833) 

-0.54 

0.595 

*significant parameters at the 5% significant level 

 

The piecewise linear regression models which can be used to predict the α-cellulose 

levels of each genotype at each processing stage are derived from Table 9 and 

presented below: 

 

E.dunnii:  Ŷ=90.846+0.361t1+1.271t2-0.508t3  

E.grandis:  Ŷ=91.256+2.074t1+0.899t2-0.238t3  

E.smithii:  Ŷ=91.965+0.202t1+0.964t2-0.202t3  

E.nitens:  Ŷ=90.976+1.393t1+1.216t2-0.432t3  

E.gc:   Ŷ=91.375+1.663t1+0.843t2-0.200t3  

E.guA:  Ŷ=90.808+1.474t1+1.094t2-0.416t3  

E.guW:  Ŷ=91.890+0.923t1+1.031t2-0.451t3  

4.4.5. Copper Numbers data 

The unstructured covariance structure had the best fit to the copper numbers data 

(Table 4.2: AIC=65.2). The delignification and bleaching rates of change in copper 

numbers were found to be significantly different among the seven species/genotypes 

(Table 4.3: F=28.04, df1=7, df2=17, p-value=0.000) and (Table 4.3: F=31.35, df1=7, 

df2=17, p-value=0.000) respectively. The finishing sub-process as with the other 

chemical properties did not produce significantly different rates of change in copper 
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numbers (Table 4.3: F=0.16, df1=7, df2=17, p-value=0.980).  In addition the seven 

species/genotypes start off with significantly different copper numbers (Table 4.3: 

F=279.41, df1=7, df2=65, p-value=0.000).  This means that copper numbers is an 

important chemical property that can be used in classifying the seven 

species/genotypes. 

 

The copper numbers’ piecewise linear regression model parameter estimates for the 

seven species/genotypes are presented in Table 4.8 below.  

Table 4.8. Piecewise linear regression model parameter estimates and t-tests for Copper 

Number. 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 3.107 

(0.185) 

16.83 

0.000* 

-1.064 

(0.241) 

-4.42 

0.000* 

-0.514 

(0.083) 

-6.22 

0.000* 

0.104 

(0.241) 

0.43 

0.669 

Egrandis 2.886 

(0.185) 

15.63 

0.000* 

-1.277 

(0.241) 

-5.30 

0.000* 

-0.414 

(0.083) 

-5.01 

0.001* 

0.083 

(0.241) 

0.34 

0.736 

Esmithii 2.974 

(0.131) 

22.78 

0.000* 

-1.245 

(0.170) 

-7.32 

0.000* 

-0.417 

(0.058) 

-7.14 

0.000* 

0.063 

(0.170) 

0.37 

0.714 

Enitens 2.423 

(0.185) 

13.12 

0.000* 

 -0.657 

(0.241) 

-2.73 

0.014* 

-0.452 

(0.083) 

-5.47 

0.000* 

0.105 

(0.241) 

0.44 

0.669 

E gc 3.168 

(0.185) 

17.16 

0.000* 

-1.534 

(0.241) 

-6.37 

0.000* 

-0.418 

(0.083) 

-5.07 

0.001* 

0.075 

(0.241) 

0.31 

0.759 

EguA 2.999 

(0.185) 

16.24 

0.000* 

-1.397 

(0.241) 

-5.80 

0.000* 

-0.410 

(0.083) 

-4.97 

0.000* 

0.102 

(0.241) 

0.42 

0.678 

EguW 2.472 

(0.430) 

13.39 

0.000* 

-0.881 

(0.241) 

-3.66 

0.002* 

-0.408 

(0.083) 

-4.94 

0.000* 

0.112 

(0.241) 

0.47 

0.647 

*significant parameters at the 5% significant level 

 

All rates of change of copper numbers due to delignification and bleaching are 

significant for all species/genotypes (Table 4.8: all p-values for t-test<0.05). From 

Table 4.8 the piecewise linear regression models for copper numbers can be 

constructed as: 

E.dunnii:   Ŷ=3.107-1.064t1-0.514t2+0.104t3  

E.grandis:   Ŷ=2.886-1.277t1-0.414t2+0.083t3  

E.smithii:   Ŷ=2.974-1.245t1-0.417t2+0.063t3  

E.nitens:   Ŷ=2.423-0.657t1-0.452t2+0.105t3  

E.gc:    Ŷ=3.168-1.534t1-0.418t2+0.075t3  

E.guA:   Ŷ=2.999-1.397t1-0.410t2+0.102t3  

E.guW:   Ŷ=2.472-0.881t1-0.408t2+0.112t3  
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The piecewise regression models can be used to estimate copper numbers for the 

seven species/genotypes at each stage by substituting the values of t1, t2 and t3 that 

were described in Table 4.1. 

  

The correlation between the percentage of γ-cellulose at the beginning (raw pulp 

stage) and at the end of processing was found to be r=0.766. This means that there is 

a strong relationship between the initial and final percentage levels of γ-cellulose.  

 

4.4.6. Glucose Data 

Having the lowest AIC value, the unstructured covariance structure was fitted to the 

glucose data (Table 4.2: AIC=276.5). The effects of delignification and bleaching were 

significantly different on the rates of change of glucose for the seven 

species/genotypes (Table 4.3: F=38.01, df1=7, df2=17, p-value=0.000) and (Table 

4.3: F=41.01, df1=7, df2=17, p-value=0.000) respectively. In general glucose had 

significant rates of change during delignification and bleaching for all genotypes (Table 

4.9: β1’s>0 and β2’s>0 with p-values for t-tests<0.05 for all genotypes). The changes 

in glucose due to the finishing stage were not significant for all species/genotypes. 

Table 4.9: Piecewise linear regression model parameter estimates and t-tests for 

Glucose (96α)  

 Table 4.9. Piecewise linear regression model parameter estimates and t-tests for Glucose 
 

β0i β1i β2i β3i 

Genotype Parameter 
(Std Dev) 

t-test 
(df=65)  
p-value 

Parameter 
(Std Dev) 

t-test 
(df=17)  
p-value 

Parameter 
(Std Dev) 

t-test 
(df=17)  
p-value 

Parameter 
(Std Dev) 

t-test 
(df=17)  
p-value 

Edunnii 90.146 
(0.352) 

256.46 
0.000* 

2.010 
(0.461) 

4.36 
0.000* 

1.226 
(0.157) 

7.80 
0.000* 

-0.116 
(0.458) 

-0.25 
0.803 

Egrandis 92.009 
(0.352) 

261.76 
0.000* 

2.467 
(0.461) 

5.35 
0.000* 

0.792 
(0.157) 

5.04 
0.001* 

-0.474 
(0.458) 

-1.03 
0.315 

Esmithii 90.595 
(0.272) 

332.74 
0.000* 

1.884 
(0.345) 

5.47 
0.000* 

1.035 
(0.111) 

9.31 
0.000* 

-0.152 
(0.324) 

-0.47 
0.645 

Enitens 89.712 
(0.352) 

255.23 
0.000* 

 3.493 
(0.461) 

7.57 
0.014* 

0.987 
(0.157) 

6.28 
0.000* 

-0.298 
(0.458) 

-0.65 
0.524 

E gc 89.619 
(0.352) 

254.96 
0.000* 

3.640 
(0.461) 

7.89 
0.000* 

0.701 
(0.157) 

4.46 
0.001* 

0.054 
(0.458) 

0.12 
0.908 

EguA 90.042 
(0.352) 

256.17 
0.000* 

2.908 
(0.461) 

6.30 
0.000* 

0.949 
(0.157) 

6.04 
0.000* 

0.124 
(0.458) 

0.27 
0.791 

EguW 92.454 
(0.352) 

263.03 
0.000* 

2.493 
(0.461) 

5.41 
0.000* 

0.675 
(0.157) 

4.29 
0.001* 

-0.672 
(0.458) 

-1.47 
0.161 

*significant parameters at the 5% significant level 
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The piecewise linear regression model parameter estimates derived from Table 11 are 

shown below and these models can be used to estimate glucose levels at each stage 

of chemical processing using the values of t1, t2 and t3 defined in Table 2 above.  

 

E.dunnii:  Ŷ=90.146+2.010t1+1.226t2-0.116t3  

E.grandis:  Ŷ=92.009+2.467t1+0.792t2-0.474t3  

E.smithii:  Ŷ=90.595+1.884t1+1.035t2-0.153t3  

E.nitens:  Ŷ=89.712+3.493t1+0.987t2-0.298t3  

E.gc:   Ŷ=89.619+3.640t1+0.701t2-0.054t3  

E.guA:  Ŷ=90.042+2.908t1+0.949t2-0.124t3  

E.guW:  Ŷ=92.454+2.493t1+0.675t2-0.672t3  

 

4.4.7. Xylose data  

With the lowest AIC, the unstructured covariance structure was of best fit to the xylose 

data (Table 4.2: AIC=173.5). The rates of change in xylose due to delignification and 

bleaching differed significantly across the seven species/genotype (Table 4.3: 

F=14.01, df1=7, df2=17, p-value=0.000) and (Table 4.3: F=26.57, df1=7, df2=17, p-

value=0.000). This renders xylose an important classification variable for the seven 

species/genotypes. The finishing sub-process as with the other chemical properties 

did not have a significant effect on the final xylose readings. 

 

There were significant rates of decrease in xylose during the delignification and 

bleaching processes for most species/genotypes (Table 4.10 β1’s<0, β2’s<0 with p-

values<0.05 for t-tests) except for EguA which did not have a significant decrease in 

xylose during delignification (Table 4.10: β1=-0.626, t=-1.95, df=17, p-value=0.068). 

The finishing stage did not have a significant effect on the xylose values  just like with 

the other chemical properties.  
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Table 4.10. Piecewise linear regression model parameter estimates and t-tests for Xylose. 
 

β0i β1i β2i β3i 

Genotype Parameter 

(Std Dev) 

t-test 

(df=65)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Parameter 

(Std Dev) 

t-test 

(df=17)  

p-value 

Edunnii 4.714 

(0.214) 

22.04 

0.000* 

-0.857 

(0.322) 

-2.66 

0.016* 

-0.565 

(0.096) 

-5.91 

0.000* 

-0.037 

(0.279) 

-0.13 

0.895 

Egrandis 3.367 

(0.214) 

15.75 

0.000* 

-0.545 

(0.322) 

-1.69 

0.109* 

-0.402 

(0.096) 

-4.21 

0.001* 

0.084 

(0.279) 

0.30 

0.766 

Esmithii 4.912 

(0.166) 

29.66 

0.000* 

-1.032 

(0.237) 

-4.35 

0.000* 

-0.528 

(0.068) 

-7.80 

0.000* 

0.069 

(0.197) 

0.35 

0.729 

Enitens 5.939 

(0.214) 

27.77 

0.000* 

 -2.279 

(0.322) 

-7.09 

0.000* 

-0.484 

(0.096) 

-5.06 

0.000* 

0.017 

(0.279) 

0.06 

0.952 

E gc 3.927 

(0.214) 

18.37 

0.000* 

-0.817 

(0.322) 

-2.54 

0.021* 

-0.291 

(0.096) 

-3.04 

0.007* 

0.218 

(0.279) 

0.78 

0.445 

EguA 4.340 

(0.214) 

20.29 

0.000* 

-0.626 

(0.322) 

-1.95 

0.068 

-0.516 

(0.096) 

-5.39 

0.000* 

-0.046 

(0.279) 

-0.16 

0.871 

EguW 3.244 

(0.214) 

15.17 

0.000* 

-0.951 

(0.322) 

-2.96 

0.009* 

-0.280 

(0.096) 

-2.93 

0.009* 

0.055 

(0.279) 

0.20 

0.846 

*significant parameters at the 5% significant level 

 

The parameter estimates for the piecewise linear regression models for xylose 

derived from Table 4.10 are presented below:  

E.dunnii:  Ŷ=4.714-0.857t1-0.565t2-0.037t3  

E.grandis:  Ŷ=3.367-0.545t1-0.402t2+0.084t3  

E.smithii:  Ŷ=4.912-1.032t1-0.528t2+0.069t3  

E.nitens:  Ŷ=5.939-2.279t1-0.484t2+0.017t3  

E.gc:   Ŷ=3.927-0.817t1-0.291t2+0.218t3  

E.guA:  Ŷ=4.340-0.626t1-0.516t2-0.046t3  

E.guW:  Ŷ=3.244-0.951t1-0.280t2+0.055t3  

Although some parameter estimates for the finishing sub-process are negative most 

of them are generally positive. It was observed that for all chemical properties, the 

finishing stage has the general effect of reversing the trend in bleaching but such 

reversal is not significant. Glucose is also an important classifying variable for the 

seven species/genotypes.  
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4.5. Conclusion 

The piecewise linear regression models had the capability of outlining the effect of 

each sub-process of chemical pulping on the seven reactivity variables studied. The 

ability of the model to state, by the model parameters, the effect of each sub-process 

on the chemical properties is a value addition to the study of chemical pulping 

processes. This can be extended to other types of pulp processing with known sub-

processes i.e. kraft pulping, neutral sulphite pulping.  

 

Based on the results from the piecewise linear regression models it was established 

that the six chemical properties lignin, γ-cellulose, α-cellulose, copper numbers, 

glucose and xylose were important classification variables for species/genotypes while 

viscosity, based on the results obtained, was not. This means that when one wants to 

compare or group wood species/genotypes using their chemical properties for the 

purpose of deciding which ones are mixable during processing, they do not need to 

consider viscosity.   

 

Using the coding of the stages as shown in Table 4.1, the levels of the chemical 

properties studied can be estimated at each stage using the piecewise linear 

regression models developed in this study. This is could be useful to businesses 

involved in the manufacture of dissolving pulp as the model can be used as a predictive 

tool to assess species/genotype properties without having to carry out the actual 

bleaching especially if such models have already been developed for the concerned 

timber species/genotype. This will reduce the use of costly chemicals as well as limit 

the generation of harmful waste. Another advantage of the developed models is that 

the parameter estimates for the various species/genotypes can be grouped according 

to their sizes in order to classify the species/genotypes into groups of mixable species 

or genotypes during chemical processing. This reduces the trial and error involved in 

selecting specific clones and species for specific grades of dissolving pulp. The 

methodology can thus be used for other pulps earmarked for other products in the 

timber industry.  

 

For further studies, it would of interest to develop a classifying method based on 

multivariate statistical techniques such as cluster analysis. Chapter 5 compares results 
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in Chapters 3 and 4 and comes up with comparative clustering results while Chapter 

6 makes use of results in Chapter 4 to come up with an alternative grouping mechanist 

to identify genotypes that can be optimally mixed during processing. 

The residual plots for the models fitted in sections 4.4.1 to 4.4.7 show that the residuals 

exhibit normality hence the assumption of normality on the data holds. The models 

can also be deemed adequate based on the residual plots (See Figures A1.8 to 

A1.14). 
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Chapter 5  

Comparison of Random Coefficient and Piecewise 
Linear Regression Models using Best Linear 
Unbiased Predictors (BLUP) 

5.1. Introduction 

This brief chapter presents a side by side comparison of results in Chapters 3 and 4. 

Chapters 3 and 4 sought to describe the evolution of the chemical process by means 

of two types of longitudinal models, namely, random coefficient models and piecewise 

linear regression models. The random coefficient model was used to describe the 

overall evolution of the seven chemical properties without due regard to the sub-

processes in the system while the piecewise linear regression model paid particular 

attention to well the known sub-processes in the system. Although the two models 

have different number of parameters, hence not directly comparable, it is still of 

interest to try to present them side by side. The model parameters were calculated as 

random effects using Best Linear Unbiased Predictors (BLUP). The theory around the 

estiamation (prediction) of random effects as BLUPS, which are basically conditional 

expectations, is described in Chapter 3 Section 3.2.4.  

5.2. Comparisons of the Random Coefficient and Piecewise Linear 
Regression Models  

The main focus of this section is to look at the results obtained for random coefficient 

models and present them side by side with the piecewise linear regression results. 

The random coefficient model has only one overall slope value while the piecewise 

linear regression model has three slope values, each corresponding to a particular 

sub-process in the system. In order to obtain an overall slope value for the piecewise 

linear regression model, which will then be comparable to the random coefficient 

model slope, it is necessary to obtain a weighted mean slope for the piecewise linear 

regression model. The overall slope value for the piecewise linear regression model 

is calculated as  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑙𝑜𝑝𝑒 =
1

6
(2𝛽1𝑖 + 3𝛽2𝑖 + 𝛽3𝑖) (5.1) 
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Since the process of delignification, with slope 𝛽1𝑖, spans two of the six stages, it has 

a weighting of 2/6. The bleaching process, with slope 𝛽2𝑖 spans three stages hence it 

gets a weighting of 3/6 and the finishing stage (𝛽3𝑖) has a weighting of 1/6. The 

averages slopes for the piecewise linear regression models are calculated and 

presented in the tables that will follow. 

5.2.1. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for viscosity 

AS far as viscosity is concerned, the results in Table 5.1 indicate that for viscosity the 

genotype with the lowest rate of change is Egrandis (RC slope=-1.995 and PLR 

slope=0.672). For all other genotypes the rankings are almost the same for both the 

RC and PLR slopes although they differ in magnitude. Only the last two genotypes, 

that is Edunnii and GUA, have their ranks swapped around but if we were to decide 

which genotypes are mixable based on their ranks, the two would still be deemed close 

together and mixable. The rankings according to the two models are: 

 RC:  1. Egrandis, 2. ENitens, 3. Esmithii, 4. GUW, 5. GCG, 6. Edunnii, 7. GUA 

 PLR: 1. Egrandis, 2. ENitens, 3. Esmithii, 4. GUW, 5. GCG, 6. GUA, 7. Edunnii 

Althogh the two models have different values for slopes, they yield similar reults with 

regard to the determining of which genotypes are mixable during processing. 

Table 5.1. Comparison of the Random coefficient and the Piecewise linear regression model 
for Viscosity. 

Random Effects Predictions for Viscosity Models 

Genotype 
Random Coefficients Piecewise linear regression  

β0i β1i 
|Slope| 

Rank 
β0i β1i β2i β3i 

Average 

Slope 

|Slope| 

Rank 

E.dunnii 63.529 -5.896 6 61.083 -10.681 -2.427 -6.647 -5.882 7 

E.grandis 38.446 -1.995 1 30.183 4.501 0.019 -5.028 0.672 1 

E.smithii 48.643 -3.569 3 45.883 2.473 -5.471 -0.100 -1.928 3 

E.nitens 43.955 -2.122 2 40.882 3.062 -2.696 -4.440 -1.067 2 

GCG 58.160 -5.677 5 56.713 -2.143 -7.016 -2.516 -4.642 5 

GUA 70.895 -7.926 7 66.517 0.592 -9.878 -6.687 -5.856 6 

GUW 58.160 -5.177 4 54.413 2.986 -7.718 -0.630 -2.969 4 
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5.2.2. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for viscosity 

The RC model statistics for lignin, presented in Table 5.2 below, contain quadradic 

terms which make the RC slope values not easily comparable with the PLR average 

slopes. In the RC model all slope values are negative indicating that lignin decreases 

with each stage. The RC quadratic terms are positive which means that the negative 

slopes are progressively reduced with each stage. Fow example, the slope value for 

Edunnii is -1.857 and the quadratic term is 0.174. This means that, with every stage, 

the negative slope keeps becoming less steep at the rate of 0.174 times the square of 

the stage level or value. The genotype Esmithii starts off with the highest negative 

slope (β1i=-2.572) but it also has the most rapid decline in the absolute value of the 

negative slope (β2i=0.258). Under the RC model, the average slope between the 

beginning of the process and the last stage can be calculated as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑙𝑜𝑝𝑒 =
𝑦̂𝑠𝑡𝑎𝑔𝑒 6 − 𝑦̂0

6
 

where ŷstage 6 is the estimated lignin value at stage 6 and 𝑦̂0 is the intercept of the 

RC model. 

Table 5.2. Comparison of the Random coefficient and the Piecewise linear regression model 
for Lignin. 

Random Effects Predictions for Lignin Models 

Genotype 

Random Coefficients Piecewise linear regression  

β0i β1i β2i 
Average 

slope 

|Slope| 

Rank 
β0i β1i β2i β3i 

Average 

Slope 

|Slope| 

Rank 

E.dunnii 5.662 -1.857 0.174 -0.976 4 4.23 -2.073 -0.449 -0.141 -0.939 4 

E.grandis 4.704 -1.869 0.193 -0.853 3 3.319 -2.157 -0.284 -0.062 -0.871 3 

E.smithii 6.654 -2.572 0.258 -1.229 6 4.609 -2.673 -0.556 0.074 -1.157 7 

E.nitens 3.499 -1.407 0.148 -0.623 1 2.414 -1.52 -0.227 0.036 -0.614 1 

GCG 6.855 -2.515 0.240 -1.290 7 4.763 -2.453 -0.69 0.062 -1.152 6 

GUA 5.771 -2.352 0.243 -1.073 5 3.917 -2.467 -0.428 0.066 -1.025 5 

GUW 4.18 -1.568 0.154 -0.773 2 2.887 -1.538 -0.396 0.077 -0.698 2 

 

  RC:  1. ENitens, 2. GUW, 3. Egrandis, 4. Edunnii, 5. GUA, 6. Esmithii, 7. GCG 

  PLR:  1. ENitens, 2. GUW, 3. Egrandis, 4. Edunnii, 5. GUA, 6. GCG, 7. Esmithii.  
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Again, the two methods are producing consistent ranking results with the slight 

difference that the last two genotypes are swapped around but still having adjacent 

ranks.  

5.2.3. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for γ-Cellulose 

The γ-cellulose results in Table 5.3 indicate that the seven genotypes can be ranked 

as follows:  

 RC:  1. GUW, 2. Edunnii, 3. GCG, 4. Esmithii, 5. Egrandis, 6. ENitens, 7. GUA 

 PLR: 1. GUW, 2. Edunnii, 3. Esmithii, 4. GCG, 5. Egrandis, 6. ENitens, 7. GUA 

Althogh the two models yield almost the same results with only Esmithii and GCG 

swapped around on ranks 3 and 4.  

 

Table 5.3. Comparison of the Random coefficient and the Piecewise linear regression model 
for Lignin. 

Random Effects Predictions for γ-Cellulose Models 

Genotype 

Random Coefficients Piecewise linear regression  

β0i β1i 
|Slope| 

Rank β0i β1i β2i β3i 
Average 

Slope 

|Slope| 

Rank 

E.dunnii 8.131 -0.803 2 6.896 0.283 -1.24 0.296 -0.730 2 

E.grandis 7.274 -0.845 5 7.244 -2.117 -0.795 0.179 -0.853 5 

E.smithii 8.150 -0.832 4 7.635 -1.17 -0.97 0.195 -0.809 3 

E.nitens 8.046 -0.940 6 7.553 -1.446 -1.103 0.382 -0.913 6 

GCG 7.480 -0.817 3 7.256 -1.707 -0.816 0.072 -0.817 4 

GUA 8.367 -0.943 7 7.826 -1.401 -1.086 0.235 -0.918 7 

GUW 6.754 -0.720 1 6.198 -0.794 -0.894 0.222 -0.691 1 

 

5.2.4. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for α-Cellulose 

As far as α-cellulose is concerned, the two model produced exactly the same genotype 

rankings. Results in Table 5.4 indicate that the seven genotypes can be ranked as 

follows:  

 RC:  1. Esmithii, 2. GUW, 3. GCG, 4. Edunnii, 5. Egrandis, 6. GUA, 7. ENitens 

 PLR: 1. Esmithii, 2. GUW, 3. GCG, 4. Edunnii, 5. Egrandis, 6. GUA, 7. ENitens 
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Table 5.4. Comparison of the Random coefficient and the Piecewise linear regression model 
for α-Cellulose. 

Random Effects Predictions for α-Cellulose Models 

Genotype 

Random Coefficients Piecewise linear regression  

β0i β1i 
|Slope| 

Rank β0i β1i β2i β3i 
Average 

Slope 

|Slope| 

Rank 

E.dunnii 89.865 0.887 4 90.846 0.361 1.271 -0.508 0.823 4 

E.grandis 91.128 0.904 5 91.256 2.074 0.899 -0.238 0.905 5 

E.smithii 91.136 0.689 1 91.965 0.202 0.964 -0.202 0.643 1 

E.nitens 90.368 1.006 7 90.976 1.393 1.216 -0.432 0.971 7 

GCG 91.153 0.811 3 91.375 1.663 0.843 -0.2 0.806 3 

GUA 90.344 0.933 6 90.808 1.474 1.094 -0.416 0.906 6 

GUW 91.317 0.804 2 91.89 0.923 1.031 -0.451 0.766 2 

5.2.5. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for Copper Number 

The comparative results for copper number are presented in Table 5.5 below. The 

results show consistency in the slope rankings for the two models with very slight 

variations. In general, it can be said that the two models achieve similar genotype 

rankings in terms of rates of changes in copper number readings. Rates of changes in 

copper number readings can be ranked as follows:  

 RC:  1. GUW, 2. ENitens, 3. Egrandis, 4. Esmithii, 5. GUA, 6. Edunnii, 7. GCG. 
 PLR: 1. ENitens, 2. GUW, 3.5 Egrandis, 3.5. Esmithii, 5. GUA, 6. Edunnii, 7. GCG. 

Apart from the swap of GUW and Enitens in ranks 1 and 2 the two models achieve the 

similar ranking bearing in mind that genotype with adjacent ranks have a high 

possibility of being mixable. 

Table 5.5. Comparison of the Random coefficient and the Piecewise linear regression model 
for Copper Number. 

Random Effects Predictions for Copper Number Models 

Genotype 
Random Coefficients Piecewise linear regression  

β0i β1i 
|Slope| 

Rank 
β0i β1i β2i β3i 

Average 
Slope 

|Slope| 

Rank 

E.dunnii 3.231 -0.504 6 3.107 -1.064 -0.514 0.104 -0.503 6 

E.grandis 2.847 -0.466 3 2.886 -1.277 -0.414 0.083 -0.475 3.5 

E.smithii 2.954 -0.467 4 2.974 -1.245 -0.417 0.063 -0.475 3.5 

E.nitens 2.621 -0.402 2 2.423 -0.657 -0.452 0.105 -0.393 1 

GCG 3.050 -0.507 7 3.168 -1.534 -0.418 0.075 -0.522 7 

GUA 2.910 -0.478 5 2.999 -1.397 -0.41 0.102 -0.489 5 

GUW 2.549 -0.401 1 2.472 -0.881 -0.408 0.112 -0.400 2 
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5.2.6. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for Glucose 

The comparative results for glucose are presented in Table 5.6 below. The results 

show the same consistency in the slope rankings for the two models with very slight 

variations. In general, it can be said that the two models achieve similar genotype 

rankings in terms of rates of changes in glucose readings. Rates of changes in glucose 

readings can be ranked as follows:  

 RC:  1. GUW, 2. Egrandis, 3. Esmithii, 4. GCG, 5. GUA, 6. Edunnii, 7. ENitens. 

 PLR: 1. GUW, 2. Egrandis, 3. Esmithii, 4. GCG, 5. Edunnii, 6. GUA, 7. ENitens. 

The two models produced the similar ranking results with the slight variation in the 

swap of ranks 5 and 6 between genotypes GUA and Edunnii.  

Table 5.6. Comparison of the Random coefficient and the Piecewise linear regression model 
for Glucose. 

Random Effects Predictions for Glucose Models 

Genotype 

Random Coefficients Piecewise linear regression  

β0i β1i 
|Slope| 

Rank β0i β1i β2i β3i 
Average 

Slope 

|Slope| 

Rank 

E.dunnii 89.629 1.146 6 90.146 2.01 1.226 -0.116 1.133 5 

E.grandis 92.197 0.851 2 92.009 2.467 0.792 -0.474 0.860 2 

E.smithii 90.317 0.970 3 90.595 1.884 1.035 -0.152 0.979 3 

E.nitens 89.989 1.161 7 89.712 3.493 0.987 -0.298 1.191 7 

GCG 90.113 1.028 4 89.619 3.64 0.701 0.054 1.083 4 

GUA 90.020 1.111 5 90.042 2.908 0.949 0.124 1.138 6 

GUW 92.834 0.742 1 92.454 2.493 0.675 -0.672 0.754 1 

 

5.2.7. Comparison of the Random Coefficient (RC) and the Piecewise 
Linear Regression (PLR) models  for Xylose 

The comparative results for xylose are presented in Table 5.7 below. The results show 

that the two methods yielded the same ranking order on the seven genotypes with 

rates of changes ranked as follows:  

 RC:  1. GCG, 2. GUW, 3. Egrandis, 4. GUA, 5. Esmithii, 6. Edunnii, 7. ENitens. 

 PLR: 1. GCG, 2. GUW, 3. Egrandis, 4. GUA, 5. Esmithii, 6. Edunnii, 7. ENitens. 
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Table 5.7. Comparison of the Random coefficient and the Piecewise linear regression model 
for Xylose. 

Random Effects Predictions for Xylose Models 

Genotype 

Random Coefficients Piecewise linear regression 

β0i β1i 
|Slope| 

Rank β0i β1i β2i β3i 
Average 

Slope 

|Slope| 

Rank 

E.dunnii 5.005 -0.531 6 4.714 -0.857 -0.565 -0.037 -0.526 6 

E.grandis 3.560 -0.353 3 3.367 -0.545 -0.402 0.084 -0.345 3 

E.smithii 5.085 -0.517 5 4.912 -1.032 -0.528 0.069 -0.513 5 

E.nitens 5.657 -0.669 7 5.939 -2.279 -0.484 0.017 -0.700 7 

GCG 3.873 -0.294 1 3.927 -0.817 -0.291 0.218 -0.294 1 

GUA 4.662 -0.464 4 4.34 -0.626 -0.516 -0.046 -0.456 4 

GUW 3.189 -0.328 2 3.244 -0.951 -0.28 0.055 -0.336 2 

 

5.3. Genotype comparisons and clustering based on average 

slopes 

Comparisons of the seven genotypes, based on their average slope predictions, 

provide us with a measurement that can be used to formally decide on how mixable 

any pair of genotypes are. Such comparisons can be done through non-parametric 

tests such as the Friedman’s test, followed by appropriate non-parametric post-hoc 

tests like Nemenyi’s post-hoc tests (Pohlert, 2016). The genotypes can also be 

clustered using any standard clustering prodecdure such as the nearest neighbour 

hierarchical clustering method (Johnson and Wichern, 1998). Friedman’s tests and 

nearest neighbour hierarchical clustering based on the slope estimates from the two 

models, that is the RC and the PLR, are presented in this section. 

According to Garcia et al (2010), the most well-known nonparametric procedure for 

testing for the differences between more than two related samples is the Friedman 

test. In this case each sample (subject) has seven variables (chemical properties) 

measured at each of the six stages. Therefore, the seven chemical property readings 

are related by source, that is, the sampling unit which is regarded as a blocking 

variable in this study.  

The Friedman’s test is used to test for the randomised block design model given by: 

 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗 (5.2) 
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with 𝛽𝑗 being the jth block (chemical property j) and 𝛼𝑖 being the ith treatment or 

genotype and 𝑒𝑖𝑗 is the error component of the model. The null hypothesis is that all 

genotypes have similar average slope distributions within all chemical properties 

against the alternative that some genotypes do not have identical slope distributions. 

The Friedman’s test statistic, which has the χ2 distribution with k-1 degrees of freedom, 

where k is the number of genotypes, is calculated as: 

 𝜒̂2 = [
12

𝑛𝑘(𝑘 + 1)
∑𝑅𝑖

2

𝑘

𝑖=1

] − 3𝑛(𝑘 + 1) (5.3) 

where 𝑅𝑖 is the rank sum of the ith genotype across all blocks (chemical properties), n 

is the number of slope estimates in each block, that is 7 in this case as seven 

genotypes are consided in each block and k is the number of genotypes compared. In 

the event that the Friedman’s test turns out significant, the significance of the 

difference between any two genotypes, i and j, is determined using the test statistic:  

 𝑧 = (𝑅̅𝑖 − 𝑅̅𝑗) √
𝑘(𝑘 + 1)

6𝑛
⁄  (5.4) 

where 𝑅̅𝑖 and 𝑅̅𝑗 are mean ranks of the two genotypes concerned and 𝑧~𝑁(0,1).  

 

5.3.1. Genotype comparisons and clusterig based on average RC slopes  

The summary of all the random coefficient model based mean slope ranks is 

presented in Table 5.8.  Comarisons of the slopes based on their within block 

(chemical property) ranks were carried out using Friedman’s test and Nemenyi’s post-

hoc tests.   

 

The Friedman’s test results presented at the bottom of Table 5.8 show that there are 

significant differences among the slope rank sums of  the seven genotypes 

(Fr=13.531, df = 6, p-value=0.035). Nemenyi’s post-hoc tests were used to determine 

which genotypes have significantly different mean ranks using the test statistic 

described in equation (5.4).  
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Table 5.8. Summary of random coefficient slope ranks 

RC Slope Ranks 

Genotyp
e 

Viscosity Lignin 
γ-

cellulose 
α-cellulose 

Copper 
number 

Glucose Xylose 
Rank  
sum 

Mean 
Rank 

E.dunnii 6 4 2 4 6 6 6 34 4.857 

E.grandis 1 3 5 5 3 2 3 22 3.143 

E.smithii 3 6 4 1 4 3 5 26 3.714 

E.nitens 2 1 6 7 2 7 7 32 4.571 

GCG 5 7 3 3 7 4 1 30 4.286 

GUA 7 5 7 6 5 5 4 39 5.571 

GUW 4 2 1 2 1 1 2 13 1.857 

Friedman's Test Statistic (Fr) = 13.531,      
degrees of freedom = 6,    

p-value = 0.035 

 

 

 

Table 5.9. Post-hoc tests based on the Friedman’s test for the RC slopes.  

Genotype 
Genotype E.dunnii E.grandis E.smithii E.nitens GCG GUA GUW 

Means Ranks 4.857 3.143 3.714 4.571 4.286 5.571 1.857 

E.grandis 

𝑅̅𝑖 − 𝑅̅𝑗  1.714       
z 1.485       

p-value 0.138       

E.smithii 

𝑅̅𝑖 − 𝑅̅𝑗  1.143 -0.571      
z 0.990 -0.495      

p-value 0.322 0.621      

E.nitens 

𝑅̅𝑖 − 𝑅̅𝑗  0.286 -1.429 -0.857     
z 0.247 -1.237 -0.742     

p-value 0.805 0.216 0.458     

GCG 

𝑅̅𝑖 − 𝑅̅𝑗  0.571 -1.143 -0.571 0.286    
z 0.495 -0.990 -0.495 0.247    

p-value 0.621 0.322 0.621 0.805    

GUA 

𝑅̅𝑖 − 𝑅̅𝑗  -0.714 -2.429 -1.857 -1.000 -1.286   
z -0.619 -2.103 -1.608 -0.866 -1.113   

p-value 0.536 0.035 0.108 0.386 0.266   

GUW 

𝑅̅𝑖 − 𝑅̅𝑗  3.000 1.286 1.857 2.714 2.429 3.714  
z 2.598 1.113 1.608 2.351 2.103 3.217  

p-value 0.009 0.266 0.108 0.019 0.035 0.001  
 

The results in Table 5.9 show that the genotype GUW has significantly different mean 

ranks to E.dunii ([𝑅̅𝑖 − 𝑅̅𝑗]=3.000, 𝑧 = 2.598, p-value=0.009), E.nitens ([𝑅̅𝑖 −

𝑅̅𝑗]=2.714, 𝑧 = 2.351, p-value=0.019), GCG ([𝑅̅𝑖 − 𝑅̅𝑗]=2.429, 𝑧 = 2.103, p-
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value=0.035) and GUA ([𝑅̅𝑖 − 𝑅̅𝑗]=3.714, 𝑧 = 3.217, p-value=0.001). This means that 

it might be wise not to mix GUW with these other genotypes during processing. The 

other significant difference in mean rank is between GUA and E.grandis ([𝑅̅𝑖 − 𝑅̅𝑗]=-

2.429, 𝑧 = −2.103, p-value=0.035), which means that it is best not to mix these two 

genotypes during processing.   

  

The Eucledean distances between the seven genotypes that is constructed from the 

ranks in Table 5.8, is presented in Table 5.10 with a hierarchical nearest neighbour 

dendogram based on the Eucledean distance matrix presented in Figure 5.1. It is clear 

from Figure 5.1 that the most mixable genotypes are Esmithii, GCG and Egrandis as 

these have the smallest distances between them. The next most mixable genotypes 

are Edunnii and GUA. The nearest neigbour clustering method yields almost similar 

results to the Friedman’s test post-hoc analysis as far as the isolation of the genotype 

GUW from the other genotypes is concerned except that Eucledian distances place 

E.nitens furthest from the other genotypes (see Figure 5.1). How large the Eucledian 

distances should be to ascertain non-mixability might need further investigated.  

 

Table 5.10. Eucledean distances based on genotype RC slope ranks 

Genotype 

RC Euclidean Distances based on ranks 

E.dunnii E.grandi E.smithi E.nitens GCG GUA GUW 

E.dunnii -       

E.grandi 8.367 -      

E.smithi 6.325 6.000 -     

E.nitens 8.246 7.211 9.487 -    

GCG 6.481 8.000 6.000 11.832 -   

GUA 6.083 7.681 7.550 8.062 6.856 -  

GUW 8.888 6.403 7.000 10.817 8.775 10.296 - 
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Figure 5.1. Nearest neigbhour dendogram based on the RC slope ranks.  

 

5.3.2. Genotype comparisons and clusterig based on PLR slopes 

The summary of all the piecewise linear regression slope ranks is presented in Table 

5.11.  The Friedman’s test results presented at the bottom of Table 5.11 show that 

there are no significant differences in the slope rank sums of the seven genotypes at 

the 5% level of significance (Fr=12.321, df = 6, p-value=0.055). This result is very 

marginal as the p-value is very close to 0.05. At the 10% level of significance we may 

conclude that some of the genotypes have significantly different slope rank sums. 

Considering  the marginal nature of the results, post-hoc tests were carried out to 

assess if any pair of genotyes have significantly different slope ranks with the results 

as presented in Table 5.12. 
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Table 5.11. Summary of piecewise linear regression slope ranks 

PLR Slope Ranks 

Genotype Viscosity Lignin γ-cellulose α-cellulose 
Copper 
number 

Glucose Xylose 
Rank 
Sum 

Mean 
Rank 

E.dunnii 7 4 2 4 6 5 6 34 1156 
E.grandis 1 3 5 5 3.5 2 3 22.5 506.25 
E.smithii 3 7 3 1 3.5 3 5 25.5 650.25 
E.nitens 2 1 6 7 1 7 7 31 961 

GCG 5 6 4 3 7 4 1 30 900 
GUA 6 5 7 6 5 6 4 39 1521 
GUW 4 2 1 2 2 1 2 14 196 

Friedman's Test Statistic (Fr) = 12.321,    
degrees of freedom = 6,    

p-value = 0.055 

 
The results in Table 5.12 show similar outcomes as with Table 5.9 in that the genotype 

GUW has significantly different mean rank to E.dunii ([R̅i − R̅j]=3.333, 𝑧 = 2.887, p-

value=0.004), E.nitens ([𝑅̅𝑖 − 𝑅̅𝑗]=2.833, 𝑧 = 2.454, p-value=0.014), GCG ([𝑅̅𝑖 −

𝑅̅𝑗] = 2.667, 𝑧 = 2.309, p-value=0.000) and GUA ([𝑅̅𝑖 − 𝑅̅𝑗]=4.167, 𝑧 = 3.608, p-

value=0.000). This leaves GUW as different from most of the other genotypes.  The 

genotypes GUA and E.grandis are also significantly different ([R̅i − R̅j]=-2.429, z =

−2.103, p-value=0.035). 

Table 5.12. Post-hoc tests based on the Friedman’s test for the PLR slopes. 

Genotype 
Genotype E.dunnii E.grandis E.smithii E.nitens GCG GUA GUW 

Means Ranks 5.667 3.750 4.250 5.167 5.000 6.500 2.333 

E.grandis 

𝑅̅𝑖 − 𝑅̅𝑗 1.917       
z 1.660       

p-value 0.097             

E.smithii 

𝑅̅𝑖 − 𝑅̅𝑗 1.417 -0.500           

z 1.227 -0.433      
p-value 0.220 0.665           

E.nitens 

𝑅̅𝑖 − 𝑅̅𝑗 0.500 -1.417 -0.917     
z 0.433 -1.227 -0.794     

p-value 0.665 0.220 0.427     

GCG 

𝑅̅𝑖 − 𝑅̅𝑗 0.667 -1.250 -0.750 0.167       

z 0.577 -1.083 -0.650 0.144    
p-value 0.564 0.279 0.516 0.885       

GUA 

𝑅̅𝑖 − 𝑅̅𝑗 -0.833 -2.750 -2.250 -1.333 -1.500   
z -0.722 -2.382 -1.949 -1.155 -1.299   

p-value 0.470 0.017 0.051 0.248 0.194   

GUW 

𝑅̅𝑖 − 𝑅̅𝑗 3.333 1.417 1.917 2.833 2.667 4.167   

z 2.887 1.227 1.660 2.454 2.309 3.608  
p-value 0.004 0.220 0.097 0.014 0.021 0.000   
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The Eucledean distance matrix associated with the ranks in Table 5.11 is presented 

in Table 5.13 below and a corresponding nearest neighbour hierarchical dendogram 

is presented in Figure 5.2 which shows that the most mixable genotypes are GCG, 

GUA and Edunnii with Esmithii closely linked with these three. Egrandis and GUW are 

the next closely related genotypes with Enitens being isolated from the other 

genotypes. This means that it might not be a good idea to mix GUW or E.grandis with 

any of GCG, GUA, E.dunnii or E.smithii. These results are very similar to those of the 

Friedman’s test with the exceptation that the clustering method placed E.smithii as the 

most different genotype in terms of overall distance from the other genotypes.  

Table 5.13. Eucledean distances based on genotype PLR slope ranks 

Genotype 
PLR Euclidean Distances 

Edunnii Egrandi E.smithi E.nitens GCG GUA GUW 

Edunnii        

Egrandis 8.441       

Esmithi 6.801 6.708      

Enitens 9.434 7.566 10.404     

GCG 6.325 7.089 6.265 11.619    

GUA 6.083 7.297 8.139 7.746 6.083   

GUW 8.124 6.265 6.801 10.817 7.874 10.149  

 

 
 

Figure 5.2. Nearest neigbhour dendogram based on the PLR slope ranks.   
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5.4. Conlusion 

The results in this chapter have indicated that E.nitens and GUW are generally far 

removed from the other genotypes. When considering which genotypes to mix during 

processing Enitens and GUW should be processed on their own as much as possible 

as they have shown to be different from the other genotypes in both the random 

coefficient and the piecewise linear regression models. Slightly different clusters are 

obtained for the two models and the results for the piecewise linear regression model 

should take precedence as they take into consideration the three sub-processes of 

chemical pulping.  

It was also noted that the two models generally identify genetypes with similar 

evolutions over the processing stages when the overall rates of changes are 

considered. It must be pointed out that the purpose of the study is not to identify which 

genotype is superior, but rather to identify genotypes with similar chemical evolutions 

over the processing stages.   
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Chapter 6 

Classification of Timber Genotypes Using Piecewise 
Linear Regression and Kernel Density Based 
Clustering 

6.1. Introduction 
 

The classification or sorting of raw materials that feed into a manufacturing process is 

an important exercise if the process is to be optimised. Berget and Næs (2002a) 

looked at methods of optimally classifying or sorting raw materials that feed into a 

manufacturing process with particular focus on the quality of the end-product. If a 

manufacturing process depends on several sources and varieties of raw materials, it 

is important to sort such raw materials into homogenous groups in order to improve 

the stability and quality of the end–product. Fuzzy clustering is one of the methods 

suggested by Berget and Næs (2002b) who also mentioned other methods that 

minimise the distance between predicted and targeted end-product in a manufacturing 

system. These methods aim at minimising variability in the final product hence 

improving and ascertaining its quality. This study looks at a situation where various 

timber genotypes are used as raw materials in chemical pulping with a view of finding 

an optimal way to group such genotypes. Chapter 5 has shown how to come up with 

clusters, based on overall rates of change in chemical properties, using the random 

coefficient and the piecewise linear regression models. This chapter suggests an 

alternative method that makes full use of the rates of change in chemical properties at 

the sub-process level. 

 

This study suggests a statistical method that can be used to classify different wood 

genotypes into classes of genotypes that exhibit similar response behaviour to 

chemical processing. Chemically bleached wood pulp (dissolving pulp) has a cellulose 

content of more than 90% and the changes in its chemical properties, over the 

processing stages, depend on the genotype of the tree being pulped. Raw pulp, which 

comes after acid bi-sulphite pulping, goes through a number of bleaching processing 

stages, each with a specific role, to produce dissolving pulp. These processing stages 

have different effects on the pulp depending on the type of wood genotype that is being 
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processed. The bleaching processing stages can be considered as time points for 

repeated measurements of the following chemical properties viz., viscosity, lignin, γ-

cellulose, α-cellulose, copper number, glucose and xylose. Piecewise regression 

models were used to compare the changes of the chemical properties of seven pulping 

tree genotypes throughout the bleaching stages (see Chapter 4). In order to cut costs 

on the chemicals used for processing, it is important to identify species/genotypes that 

have similar chemical properties under the chemical pulping process in order to mix 

them together for optimised processing in case one genotype does not have enough 

volumes for processing. The piecewise regression model that was described in 

Chapter 4 was used with kernel density estimation to develop a “mixing matrix” for the 

seven genotypes. The method could be adopted for any situation were an industrial 

process depends on several types of raw materials. Using the methods developed in 

this study, it can be determined which genotypes or types of raw materials are 

optimally mixable for processing.  

 

The classification of raw materials that feed into a manufacturing process is an 

important exercise if the process is to be optimised. Large variations in wood physical 

and anatomical characteristics among different Eucalyptus genotypes are well 

documented (Zbonak, Bush and Grzeskowiak, 2007). These variations justify the need 

to group genotypes considering that they behave differently during chemical 

processing. Non-statistical methods of materials classification have been discussed in 

literature, such as the work of Gu and Liu (2012), who proposed the use of coded 

illumination to directly measure discriminative features of raw materials for material 

classification. Their method can be used for a variety of materials that include iron, 

plastic and wood. From a statistical point of view, classification of such raw materials 

can be based on clustering methods. Lodi et al (2006) presented a novel algorithm for 

clustering streams of multidimensional points based on kernel density estimates and 

their work inspired this study. This study uses kernel density estimation as a tool for 

clustering. 

 

In this study, a statistical method of classifying wood genotypes is proposed. The 

method is based on three statistical procedures, namely, piecewise regression, 

statistical simulation and kernel density estimation. If any two genotypes are found to 

be very similar in their behaviour then they will belong to the same class of genotypes 
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that can be mixed during processing. A method for developing a similarity or 

“mixability” matrix is also proposed. 

6.2. Kernel Density Estimation and Clustering 

The histogram and scatter plots have been traditionally used to get some insight into 

underlying distributions of observed data (Everitt et al, 2011). These tools give rough 

descriptions of the underlying distributions of observed data without assuming some 

specific parametric forms like the normal distribution. Parametric density estimators 

assume that the underlying density function, 𝑓(𝒙, 𝜽), has a set of parameters 𝜽 ∈ 𝚯 

where 𝚯 ⊂ ℝ𝑑 and d is finite, that is, it is assumed that the parameter space is finite. 

An example of such fixed form parametric densities is the normal density which has 

only two parameters, the mean (μ) and standard deviation (σ). The kernel density 

estimator is a nonparametric estimator which does not assume any parametric form 

hence it has no limitation on the number of parameters the target density function can 

have. Kernel density estimators can be univariate or multivariate with the multivariate 

case being a density function of a random vector. The density function is estimated in 

a way that is similar in principle to the construction of a histogram. Density estimators 

of this nature were first introduced by Rosenblatt (1956) followed by Parzen (1962). 

Kernel density estimators have since been discussed extensively in the literature and  

include books by Silverman (1986), Simonoff (1996) and many others. Nonparametric 

methods of density estimation have the advantage of not depending on the sometimes 

incorrectly specified parametric models whose bias cannot be removed, even by the 

use of large sample sizes. This class of density estimation techniques can easily deal 

with data that are multimodal and hence difficult to fit any classical parametric form 

density function (Wang et al., 2004). 

  

Kernel density smoothing techniques have also been used in classification problems 

in the social sciences (Shu et al., 2003). Earlier, Cheng established the connection 

between mean shift clustering and kernel density estimation (Cheng, 1995). This 

places kernel density estimation as a viable tool for classifying timber genotypes 

according to their behaviour under processing. Graphical presentations of kernel 

densities generated from chemical pulping data can highlight clusters in the data 

hence making it possible to identify genotypes that behave similarly during chemical 

processing.  
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Clusters in density based clustering have been defined as regions in the data space, 

where objects are concentrated and such regions are separated from each other by 

regions of low density (Mushdholifah et al, 2013). Density based clustering methods 

have advantages over hierarchical and partition clustering methods, especially for data 

with several clusters of different densities as they do not just get the clusters but also 

the concentrations or density levels of each cluster (Tran, Wehrens and Buydens, 

2006). Kernel density estimation results can be analysed visually to allow for 

relationships or clusters to be determined and optimal graphical representations must 

be achieved through appropriate bandwidth selection and adjustment (Schwarz, 

2005). 

 

This study aims to exploit the clustering capabilities of kernel density estimators to 

optimally group different timber genotypes into clusters of genotypes with similar 

behaviours under chemical pulp processing. A novel, simple genotype “mixability” 

matrix was developed and can be used to decide if it is optimal to mix any two timber 

genotypes for chemical processing.  

6.2.1. The kernel density estimator 

Suppose a random sample of size N is taken on a p-dimensional random variable, 

𝐗T = [𝑋1, 𝑋2, … , 𝑋𝑝], for which the multivariate distribution is not known beforehand. 

The distribution of the random variable X will be estimated empirically using the 

observed vectors 𝐱𝒊
T = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝] for 𝑖 = 1, 2, … ,𝑁. The probability density of the 

random variable X can be estimated by  

 𝑓𝑯(𝐱) =
1

𝑁
∑

1

ℎ1ℎ2…ℎ𝑝
𝐾 (
𝑥1 − 𝑥𝑖1
ℎ1

,
𝑥2 − 𝑥𝑖2
ℎ2

, … ,
𝑥𝑝 − 𝑥𝑖𝑝

ℎ𝑝
)

𝑁

𝑖=1

 (6.1) 

where K is a multivariate kernel operating on p arguments and ℎ𝑖 , for i=1,2,…,p, is the 

optimum bandwidth corresponding to variable 𝑋𝑖. The bandwidths in equation (6.1) are 

multiplicative in this case but they can take any other form. For multiplicative kernels, 

equation (6.1) can also be written as  

 𝑓𝑯(𝐱) =
1

𝑁
∑{∏ℎ𝑗

−1

𝑝

𝑗=1

𝐾 (
𝑥𝑗 − 𝑥𝑖𝑗

ℎ𝑗
)}

𝑁

𝑖=1

   (6.2) 
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Let 𝐗T = [𝑋1,𝑋2, … , 𝑋𝑝] be the multivariate variable for which a joint probability density 

is to be estimated and 𝐇 = diag(ℎ1, ℎ2, … , ℎ𝑝) be the diagonal matrix of bandwidths, 

then equation (6.2) can be written in a more compact form as   

 𝑓𝑯(𝒙) =
1

𝑁
∑

1

det(𝐇)
𝐾[𝐇−1(𝒙 − 𝐗𝑖)]

𝑁

𝑖=1

   (6.3) 

 

As a rule of thumb the bandwidth matrix H is generally made proportional to 𝚺−𝟏/𝟐 

where Σ is the covariance matrix of the observed data (Härdle et al, 2004).  If we let  

𝐾𝐻(•) =
1

det(𝐇)
𝐾[𝐇−𝟏(•)] then  

 𝑓𝑯(𝒙) =
1

𝑁
∑𝐾𝐻(𝒙 − 𝒙𝑖)

𝑁

𝑖=1

   (6.4) 

 
The underlying assumption of kernel estimation is that  

 ∫𝐾(𝒖) 𝑑𝒖 = 1 (5.5) 

this makes 𝑓𝑯(𝒙) a density function since  

∫𝑓𝑯(𝒙) = ∫
1

𝑁
∑𝐾𝑯(𝒙 − 𝒙𝑖)

𝑁

𝑖=1

 =
1

𝑁
∑∫𝐾(𝒖)𝑑𝒖

𝑁

𝑖=1

=
1

𝑁
∑1 = 1

𝑁

𝑖=1

 

According to Härdle et al 𝑓𝑯(𝒙)  is also a consistent estimator of 𝑓(𝒙) that is  

𝑓𝑯(𝒙)
      𝑝      
→    𝑓(𝒙) or lim

𝑛→∞
𝑓𝑯(𝒙) = 𝑓(𝒙) 

 
 

6.2.2. Kernel Functions 

The kernel function determines how sample observations (𝒙𝒊) in the vicinity of a point 

x are going to contribute to the frequency or probability of that point. Some kernels 

assign equal weights to all values in the vicinity of x while others give higher weights 

to those sample observation that are closer to x than those that are further away. The 

uniform kernel gives a weight of 1/2 to every observed value that is in the vicinity of 

the point x while the other kernels give less weight to observed values further away 

from x. The choice of a particular bandwidth determines the boundary of the vicinity of 

the point x. 
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The multivariate kernel 𝐾(𝒖), where 𝒖 = 𝐇−𝟏(𝐱 − 𝐱𝒊), can have any of the many well 

used functional forms. Some of the commonly used univariate kernels are listed in 

Table 6.1 below (Härdle et al). The simplest way to use such univariate kernels for 

multivariate cases is to use a multiplicative kernel function which is a product of the 

same kernel function operating on the p-random variables with different bandwidths.  

A particular multivariate kernel, the multivariate Epanechnikov kernel is such that  

 𝐾(𝒖) ∝ (1 − 𝒖T𝒖)I(𝒖T𝒖 ≤ 1). (6.6) 

In general multivariate kernels can be obtained from univariate kernels by taking  

𝐾(𝒖) ∝ 𝐾(‖𝒖‖) 

Where ‖𝒖‖ = √𝒖T𝒖 is the Eucledian norm of the vector u. In Table 6.1 the indicator 

function I(•) operating on u, where 𝑢 =
(𝑥−𝑥𝑖)

ℎ
, is such that  

    I(𝑢) = {
1         if  |𝑢| < 1  (or − ℎ𝑖 < 𝑥 − 𝑥𝑖 < ℎ)
0                                                   otherwise 

. (6.7) 

The sum of the I(u)’s will give the frequency of those observed values of X that are in 

the vicinity of x and this will give an estimate of 𝑓(𝒙). For the multivariate case values 

of 𝑢𝑖 for 𝑖 = 1, 2, … , 𝑝, are put together to form the vector 𝒖 in equation 6.6 above.   

Table 6.1. Some common kernel functions  

Kernel K(u) 

Uniform 
1

2
I(|𝑢| ≤ 1) 

Triangle (1 − |𝑢|)I(|𝑢| ≤ 1) 

Epanechnikov 
3

4
(1 − 𝑢2)I(|𝑢| ≤ 1) 

Quartic (biweight) 
15

16
(1 − 𝑢2)2I(|𝑢| ≤ 1) 

Triweight 
35

32
(1 − 𝑢2)3I(|𝑢| ≤ 1) 

Gaussian 
1

√2𝜋
exp (−

1

2
𝑢2) 

Cosine 
𝜋

4
cos (

𝜋

2
𝑢)
2

I(|𝑢| ≤ 1) 

 

6.2.3. Multivariate bandwidth selection 

Bandwidth selection has a pivotal role in determining the accuracy of the kernel density 

function 𝑓𝑯(𝐱) as a predictor of the density function 𝑓(𝐱) for the random vector X. As 
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indicated by Simonoff (1996), bandwidth selection has a more important role in 

determining the performance of a kernel density estimator than the choice of a kernel 

function. It also controls the smoothness of the resulting density estimate (Chiu, 1991). 

The bandwidth matrix H can be determined by a general rule of thumb which depends 

on the kernel function chosen, or cross-validation methods (Marron, 1987). When the 

bandwidth matrix is restricted to a class of positive definite diagonal matrices, the 

corresponding kernel function is known as a product kernel. Bandwidth matrices can 

also be determined from observed data using Markov Chain Monte Carlo (MCMC) 

algorithms (Zhang et al, 2004).  

 

In this study product kernels based on diagonal bandwidth matrices will be used for 

their relative simplicity as compared to the MCMC derived ones. If the kernel function 

is based on a multivariate Gaussian distribution and a diagonal H matrix is assumed 

then the optimal bandwidths, that is, the elements of the diagonal bandwidth matrix, 

can be estimated by  

 
  ℎ𝑖 = 𝜎𝑖 [

4

(𝑝 + 2)𝑛
]
1/(𝑝+4)

 

  

(6.8) 

for 𝑖 = 1,2, … , 𝑝, where 𝜎𝑖 is the standard deviation of the ith variable, p is the dimension 

of the multivariate random vector.  According to Zhang (2004), this method of 

bandwidth selection can be used if more complex methods are to be avoided even 

though the data observed might not be Gaussian. In the SAS statistical software’s 

KDE procedure, different bandwidths can be tried and the one which the best 

smoothing effect is chosen (SAS/STAT, 2008).   

 

6.3. Kernel density estimation as a clustering tool 

Erdoǧmus, Carreira-Perpñán and Özertem (2006) outlined the usefulness of kernel 

density estimation as a clustering tool. Their work was built on the cut clustering 

algorithm of Blatt et al (1997). They start by the classical kernel density estimation 

formula and show how it links to the cut clustering algorithm.  

 

Suppose we have a set of observations S = (𝐱𝟏, … , 𝐱𝐍) where 𝐱𝒊 ∈ ℝ
𝒑. The kernel 

density estimate for 𝑓(𝐱) is given in equation (6.4). Suppose that the set of observation 
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can be divided into clusters (𝑠𝑖’s) such that S = (𝑠1, … , 𝑠q). The kernel density estimate 

for cluster 𝑠𝑗 can be written as 

 
  𝑓𝑗(𝐱) =

1

𝑁𝑗
∑𝐾𝐇(𝐱 − 𝐱𝑖)𝛿𝑖𝑗

𝑁

𝑖=1

 

  

(6.9) 

where Nj is the number of observations in cluster 𝑠𝑗, 𝛿𝑖𝑗 = 1 if  𝐱𝑖 ∈ 𝑠j otherwise 𝛿𝑖𝑗 =

0, j=1,…,q (j is the cluster index). The kernel density estimate for the whole set of 

observations is a combination of these partial estimates which can be written as  

𝑓𝐻(𝐱) =
1

𝑁
∑

1

𝑁𝑗
∑𝐾𝐇(𝐱 − 𝐱𝑖)𝛿𝑖𝑗

𝑁

𝑖=1

𝑞

𝑗=1

 

          = ∑
𝑁𝑗

𝑁

𝑞

𝑗=1

𝑓𝑗(𝐱) =∑𝜋𝑗

𝑞

𝑗=1

𝑓𝑗(𝐱)  

where 𝜋𝑗 is the proportion of the set of all observations that fall in cluster 𝑠𝑗. If two 

clusters overlap (typical of observations at boundaries) then the density overlap 

between the two clusters, 𝑠𝑟  and 𝑠𝑡  say, as outlined by Jensen et al. (2004), is given 

by  

𝐶𝑟𝑡(𝑠) = ∫𝑓𝑟(𝐱) 𝑓𝑡(𝐱)𝑑𝐱 

and using equation (6.9) this becomes  

𝐶𝑟𝑡(𝑠) = ∫(
1

𝑁𝑟
∑𝐾𝐇(𝐱 − 𝐱𝑖)𝛿𝑖𝑟

𝑁

𝑖=1

) (
1

𝑁𝑡
∑𝐾𝐇(𝐱 − 𝐱𝑖)𝛿𝑖𝑡

𝑁

𝑖=1

)𝑑𝐱 

According to Erdoǧmus et al. (2006), the collective density overlap for all clusters can 

be shown to be  

 𝐶(𝑠) = 𝑁2∑𝜋𝑟𝜋𝑡𝐶𝑟𝑡(𝑠)

𝑞

𝑟≠𝑡

 (6.10) 

 
According to Erdoǧmus et al., minimising equation (6.10), which is the mincut objective 

function in affinity based clustering, will lead to optimal clustering of the N 

observations. This attests to the role played by kernel density estimation in clustering 

procedures. 

 

A visual inspection of contours of the estimated kernel density will be used for the 

determination of clusters in the data in this study. Li, Ray and Lindsay (2006) had a 
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more detailed study of such mode based clustering methods. The modes can be 

identified easily as regions of high density in the scatter and contour diagrams.  

 

6.4. Data simulation and kernel density estimation 

 

The data for this study comprises of the piecewise regression slope parameters that 

were obtained in Chapter 4 and their standard errors for the seven genotypes. It was 

found out, in Chapter 4, that the delignification and bleaching processes had significant 

effects on all response variables with the finishing stage not having a significant effect 

(see Table 4.3). Based on this general finding, the slope parameters for the 

delignification and bleaching processes were used to classify the seven genotypes. 

 

Kernel density estimation, being an estimation method for a probability distribution, 

requires a sizeable sample size but the piecewise slope parameters estimated in 

Chapter 4, were not replicated hence there was need to use these slope parameters, 

with the assumption of normality, to generate more data. According to Silverman 

(1986), if a fairly small (<0.1) relative mean square error (MSE), given by 𝑀𝑆𝐸 =

𝐸{𝑓(𝑥) − 𝑓(𝑥)}
2
/𝑓(𝑥)2, is to be achieved, then for bivariate data a minimum sample 

size of 19 is required. Here 𝑓(𝑥) is the estimated density while 𝑓(𝑥) is the true density 

of the variable of interest. Our variables of interest are the delignification and bleaching 

slopes hence a bivariate kernel density is to be estimated. Fifty sets of delignification 

and bleaching values will be generated for each genotype in a manner that is 

described in Section 6.4.1 that follows. The availability of the slope parameter 

estimates for each genotype and their standard errors makes it much easier to 

generate more variates around them. The general view is that if we know parameter 

estimates of a distribution then we can simulate the envisaged distribution hence we 

can produce its visualization by means of graphs. Since we have two slope 

parameters, which are individually normal and are also correlated, we can simulate a 

bivariate normal distribution for such slope parameters. 

 

6.4.1. Simulating the bivariate normal distribution 
 

The objective is to generate correlated variates, Y1 and Y2 say, where 
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(
𝑌1
 𝑌2
)~𝑁 ([

𝛽1
 𝛽2
] , [

𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ]). 

The parameters 𝛽1 and 𝛽2 are the delignification and bleaching slopes respectively, 𝜌 

is the correlation between the two slopes, 𝜎1 and 𝜎2 are the standard errors for the 

slope parameters. The variates Y1 and Y2, in this regard, are the variable slope 

parameters for the delignification and bleaching slopes respectively. To generate such 

data, it is necessary to obtain the Cholesky decomposition (Gentle, 1998; Wicklin, 

2013) of the covariance matrix 𝚺 = [
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ] which can be shown to be   

𝚺 = [
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ] = 𝚺𝟏/𝟐(𝚺𝟏/𝟐)𝐓 = [

𝜎1 0

𝜌𝜎2 √𝜎2
2(1 − 𝜌2)

] [

𝜎1 𝜌𝜎2

0 √𝜎2
2(1 − 𝜌2)

]. 

 

The correlated variates Y1 and Y2 are then generated as  

𝑌1 = 𝛽1 + σ1 × Z1 

𝑌2 = 𝛽2 + ρσ2Z1 +√𝜎2
2(1 − 𝜌2) × 𝑍2 

where Z1 and Z2 are standard normal variates that can be generated easily in most 

statistical packages like SAS. Wicklin (2013) provides a comprehensive description of 

how to simulate various kinds of data and simulation codes used in this study borrow 

heavily from his documentation of simulation methods. Estimates of 𝜌, 𝜎1 and 𝜎2 for 

the seven genotypes were obtained from sample data collected in laboratory 

experiments and were discussed in Chapter 4.  

 

6.4.2. Density estimation from simulated data  
 

The SAS procedure Proc KDE (SAS/STAT, 2008) was used to obtain the kernel 

density estimates. The procedure produces contour and three dimensional graphs 

which aid in the identification of peaks in the estimated density functions. The 

simulated delignification and bleaching slopes data for the seven genotypes were 

mixed together into a single data set with genotype identifiers. Scatter plots with 

genotype markers were then produced to help in the identification of the genotypes in 

the scatter plots. Genotype markers were then used to identify genotype that were 

closer together. This helps in grouping genotypes that can be mixed together during 
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processing. The three-dimensional plots help to identify peaks in the distributions and 

the number of peaks would indicate the number of genotype groups or clusters.  

 

6.5. Results and discussions 
 

The results are organised as follows: first the summary table of parameters used in 

the simulation is presented and then the kernel density estimation results are 

presented in tables and figures with discussions and descriptions. The parameters 

used for the simulation were obtained from piecewise linear regression models which 

were fitted to the chemical pulp processing data in Chapter 4. The pulping process 

was divided into three stages, namely, delignification, bleaching and finishing. 

Piecewise linear regression models were then fitted to the data for each chemical 

property analysed. The models had nodes at the changeover points from 

delignification to bleaching thus the parameters of the two line segments representing 

delignification and bleaching were obtained and used to characterise the genotypes. 

These parameters were then used to simulate the data that was needed for kernel 

density estimation. Densities estimated in this way are more accurate when the 

sample size is large (Seaman et al., 1999).    

 

6.5.1. Kernel density estimation and genotype classification using lignin 

The piecewise linear regression parameter estimates for lignin are presented in Table 

6.2 below. These parameters, which differ across the different genotypes, can be used 

to group timber genotypes into clusters of those genotypes that respond to the pulping 

process in a similar way. 

 

The negative delignification and bleaching parameter estimates indicate that lignin 

levels decline during the two sub-processes (Delignification and Bleaching) of 

chemical pulping, and the correlation of -0.7776 indicates that bleaching tends to 

reduce lignin levels at a higher rate if delignification leaves higher levels of lignin. This 

conforms to the fact that lignin has to be reduced down to some product specific levels. 
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Table 6.2 Slope parameters for Lignin 

 Chemical property: Lignin   

Genotype 

β1 β2   

(Delignification) (Bleaching) 
Correlation(β1, β2) 

  
Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 

Edunnii -2.073 0.286 -0.449 0.128 -0.7776 
Egrandis -2.157 0.286 -0.284 0.128 -0.7776 

Esmithii -2.673 0.202 -0.556 0.091 -0.7776 

Enitens -1.52 0.286 -0.227 0.128 -0.7776 

E gc -2.453 0.286 -0.69 0.128 -0.7776 

EguA -2.467 0.286 -0.428 0.128 -0.7776 

EguW -1.538 0.286 -0.396 0.128 -0.7776 

 

The kernel density estimation for lignin is shown Figures 6.1(a), which is a two- 

dimensional representation with contour lines indicating that there are three modes of 

different densities in the data. This is indicative of the existence of three possible 

groupings of the genotypes. Figure 6.1(c), which is a three-dimensional representation 

of the same estimated density, also shows that there are three distinct peaks in the 

data. It must be mentioned that optimum bandwidth selection makes it possible to 

bring out the peaks in the data.  

 

The optimal bandwidths as calculated using equation (6.8) are h1=0.19 for the 

delignification and h2=0.017 for the bleaching slopes. Figures 6.1(b) an 6.1(d) show 

that when the bandwidths were doubled (h1=0.38, h2=0.14) it was not possible to 

discern the three peaks in the estimated density evident when the original optimal 

bandwidths were used (h1=0.19, h2=0.07). it must be borne in mind that all density 

estimates will be based on the optimal bandwidth. A reduced bandwidth would 

produce a more rugged (less smooth) density estimate with many peaks of no 

apparent importance while an oversmoothed density will not distinguish any clusters 

in the simulated data.  
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Figure 6.1(a). Scatter/contour plot for lignin (Optimal bandwidths: Delignification (h1)= 0.19 
Bleaching  (h2) = 0.07 ). 
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Figure 6.1(b). Scatter/contour plot for lignin (Optimal bandwiths×2) 
 

 

Figure 6.1(c). Surface plot for lignin (Optimal bandwidths: Delignification (h1)= 0.19 
Bleaching  (h2) = 0.07 ). 
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Figure 6.1(d). Surface plot for lignin (Optimal bandwidths×2). 

 

Figure 6.1(e), which has all genotypes clearly marked, can be used to identify which 

genotypes are closer together and hence form a cluster of genotypes that can be 

mixed during processing. Genotypes GCG (Egc) and Esmithii form a region with the 

highest density (highest peak) hence forming a cluster which means that the two 

genotypes can be  mixed together during processing based on the behaviour of lignin 

during delignification and bleaching.  

 

Egrandis, GUA (EguA) and Edunnii form the second cluster with the second highest 

density and lastly Enitens and GUW (EguW) form a cluster of their own although they 

seem to have minimal mixing across the line segment AB. The two genotypes can 

only be mixed if it is necessary but line (AB) seems to suggest that they may be 

processed separately.  
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Figure 6.1(e).  Genotype classification based on identified peaks for lignin data 
 

 

6.5.2. Kernel Density estimation and genotype classification using α-
Cellulose 

 

The piecewise linear regression parameter estimates for α-Cellulose, which were used 

for the simulations in kernel density estimation, are presented in Table 6.3 below.  

 

Table 6.3. Slope parameters for α-cellulose 

Chemical Property: α-cellulose 

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error   

Edunnii 0.361 0.833 1.271 0.286 0.001 

Egrandis 2.074 0.833 0.899 0.286 0.001 

Esmithii 0.202 0.589 0.964 0.202 0.001 

Enitens 1.393 0.833 1.216 0.286 0.001 

E gc 1.663 0.833 0.843 0.286 0.001 

EguA 1.474 0.833 1.094 0.286 0.001 

EguW 0.923 0.833 1.031 0.286 0.001 

 

The α-Cellulose results in Figure 6.2 (a) and (b) show that the kernel density estimate 

has only one peak which suggests that all the seven genotypes form one cluster. This 
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means that they do not behave differently as far as changes in α-Cellulose is 

concerned. Since the slope parameters of α-Cellulose under delignification and 

bleaching do not have more than one genotype clusters it then follows that α-Cellulose 

cannot be used a clustering variable under this procedure. Only those variables that 

produce distinct clusters become important clustering variables while those that do not 

can be considered non-essential clustering variables.  

 

 

 

 

Figure 6.2(a) Contour plot of α-Cellulose  (Optimal bandwidths: Delignification (h1)= 0.37 
Bleaching  (h2) = 0.12) 
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Figure 6.2(b). Surface plot of α-Cellulose (Optimal bandwidths: Delignification (h1)= 0.37 
Bleaching  (h2) = 0.12) 

 

 

Figure 6.2(c).  Genotype classification based on identified peaks for α-Cellulose data 
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6.5.3. Kernel density estimation and genotype classification using 
viscosity 

 

Viscosity is a traditional measure of the length of the cellulose molecule chains. It is 

an important property of dissolving pulp. Delignification and bleaching slopes for the 

viscosity of the seven genotypes are presented in Table 6.4 below and the 

corresponding kernel density estimate in presented in Figures 6.3(a), (b) and (c) 

below.  

 

Table 6.4. Slope parameters for viscosity 

Chemical Property: Viscosity 

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 
  

Edunnii -10.681 10.516 -2.427 5.114 0.000 

Egrandis 4.501 10.516 0.019 5.114 0.000 

Esmithii 2.473 7.436 -5.471 3.616 0.000 

Enitens 3.062 10.516 -2.696 5.114 0.000 

E gc -2.143 10.516 -7.016 5.114 0.000 

EguA 0.592 10.516 -9.878 5.114 0.000 

EguW 2.986 10.516 -7.718 5.114 0.000 

 

The contours in the density function estimate in Figure 6.3(a) and the surface plot in 

Figure 6.3.(b) show that there is one dominant region of high density in the data which 

means than the data forms one cluster. However in Figure 6.3(c) the genotypes 

E.grandis and E.nitens  seem a bit detached from the other genotypes but do not in 

themselves from a region of high density. In general viscosity is not an important 

genotype clustering variable for the chemical pulping process. It is noted however, that 

Figure 6.3c seem to suggest some linear form of clustering. This is an indication of the 

weakness of this clustering method. It doesn’t seem to pick out irregular clusters other 

that circular ones.  
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Figure 6.3(a).  Contour plot of viscosity (Optimal Bandwidths: Delignification (h1)= 4.44, 
Bleaching  (h2) = 2.29) 

  

 

Figure 6.3(b). Surface plot of viscosity (optimal bandwidth). 
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Figure 6.3(c). Genotype classification based on identified peaks for viscosity 

6.5.4. Density estimation and genotype classification based on γ-

Cellulose results 

For the γ-Cellulose results delignification and bleaching slopes for the seven 

genotypes are presented in Table 6.5 below and kernel density estimation in Figures 

6.4(a), (b) and (c).  

 

Table 6.5. Slope parameters for viscosity 

Chemical Property: γ-cellulose  

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 
  

Edunnii 0.283 0.56 -1.24 0.197 0.000 

Egrandis -2.117 0.56 -0.795 0.197 0.000 

Esmithii -1.17 0.396 -0.97 0.14 0.000 

Enitens -1.446 0.56 -1.103 0.197 0.000 

E gc -1.707 0.56 -0.816 0.197 0.000 

EguA -1.401 0.56 -1.086 0.197 0.000 

EguW -0.794 0.56 -0.894 0.197 0.000 
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Figures 6.4 (a) and (b) show that the kernel density estimate for γ-cellulose has two 

regions of high density. One region of high density has a much lower peak and 

comprises of the genotype E.dunnii on its own. As far as γ-cellulose is concerned 

E.dunnii behaves in a way that does not conform to the general behaviour of the other 

genotypes. The other region of high density is made up of the remaining six genotypes 

which form one cluster. This means that changes in γ-cellulose during delignification 

and bleaching tend to be similar for all genotypes except E.dunnii.   

 

 

 

Figure 6.4(a). Contour plot of γ-Cellulose (Optimal Bandwidths: Delignification (h1)= 4.44, 
Bleaching  (h2) = 2.29)  
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Figure 6.4(b). Surface plot of γ-Cellulose (optimal bandwidth). 
 

 

Figure 5.4(c). Genotype classification based on identified peaks for γ-Cellulose 
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6.5.5. Density estimation and genotype classification for Copper 
Numbers 

As indicated in the slope parameter estimates in Table 6.6, copper numbers decline 

during the two sub-processes of delignification and bleaching. The correlation between 

the two slope parameters was found to be very low (<0.0001) and set to zero in the 

statistical simulations.  

 

 

Table 6.6. Slope parameters for copper numbers 

Chemical Property: Copper Numbers 

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 
  

Edunnii -1.064 0.241 -0.514 0.083 0.000 

Egrandis -1.277 0.241 -0.414 0.083 0.000 

Esmithii -1.245 0.17 -0.417 0.053 0.000 

Enitens -0.657 0.241 -0.452 0.083 0.000 

E gc -1.534 0.241 -0.418 0.083 0.000 

EguA -1.397 0.241 -0.41 0.083 0.000 

EguW -0.881 0.241 -0.408 0.083 0.000 

 

 

Results in Figures 6.5 (a), (b) and (c) show that the kernel density estimate for copper 

numbers, as shown in the contour scatter diagram and the surface plot, have only one 

region of high density and the colour coded scatter scatter diagram indicate that there is 

a fair mix of the genotypes. This suggests that all the seven genotypes fall into one cluster 

hence copper numbers can not be used as a grouping variable when determining which 

genotypes can be mixed together during chemical pulping.  
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Figure 6.5(a). Contour plot of copper numbers (Optimal Bandwidths: Delignification (h1)= 
0.13, Bleaching  (h2) = 0.035). 
  

 

 
Figure 6.5(b). Surface plot of copper numbers (optimal bandwidth). 
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Figure 6.5(c). Genotype classification based on identified peaks for copper numbers 
 

6.5.6. Density estimation and genotype classification for Glucose 

Glucose, like α-cellulose, has positive slopes both during delignification and bleaching. 

The slope parameter estimates and their standard errors are listed in Table 6.7. The 

correlation between the delignification and bleaching parameters was not signficant 

(<0.0001) and it was set to zero during the data simulations. 

 

Table 6.7. Slope parameters for glucose 

Chemical Property: Glucose 

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 
  

Edunnii 2.010 0.461 1.226 0.157 0.000 

Egrandis 2.467 0.461 0.792 0.157 0.000 

Esmithii 1.884 0.345 1.035 0.111 0.000 

Enitens 3.493 0.461 0.987 0.157 0.000 

E gc 3.640 0.461 0.701 0.157 0.000 

EguA 2.908 0.461 0.949 0.157 0.000 

EguW 2.493 0.461 0.675 0.157 0.000 

 

The Results in Figures 6.6(a), (b) and (c) show that the kernel density estimate for 

glucose had two regions of high density which split the genotypes into two clusters. 
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The cluster comprising of the genotypes GUW, Egrandis, GCG, GUA and Enitens has 

the higher density of the two while the cluster comprising of Edunnii and Esmithii has 

a lower density.  

 

Figure 6.6(a). Contour plot of Glucose (Optimal Bandwidths: Delignification (h1)= 0.13, 
Bleaching  (h2) = 0.035). 
  

 

Figure 6.6(b). Surface plot of glucose (optimal bandwidths). 
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Figure 6.6(c). Genotype classification based on identified peaks for glucose 
 

6.5.7. Density estimation and genotype classification for Xylose 

The sub-processes of delignification and bleaching, progressively lower the levels of 

xylose in the dissolving pulp as indicated by the negative slope parameter estimates 

in Table 6.8. The delignification and bleaching slopes are not correlated which 

suggests that the two sub-processes reduce xylose independently.  

 

Table 6.8. Slope parameters for xylose 

Chemical Property: Xylose 

Genotype 

β1 β2   

(Delignification) (Bleaching) Correlation(β1, β2) 

Slope 

Estimate 

Standard 

error 

Slope 

Estimate 

Standard 

error 
  

Edunnii -0.857 0.322 -0.565 0.096 0.000 

Egrandis -0.545 0.322 -0.402 0.096 0.000 

Esmithii -1.032 0.237 -0.528 0.068 0.000 

Enitens  -2.279 0.322 -0.484 0.096 0.000 

E gc -0.817 0.322 -0.291 0.096 0.000 

EguA -0.626 0.322 -0.516 0.096 0.000 

EguW -0.951 0.322 -0.280 0.096 0.000 
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Figures 6.7(a), (b) and (c) show that the kernel density estimate for xylose  has one 

cluster of high density compring of the genotypes genotypes GUW, Egrandis, GCG, 

GUA, Edunnii and Esmithii while Enitens forms a second cluster of low density.  

 

 

 

Figure 6.7(a). Contour plot of Xylose (Optimal Bandwidths: Delignification (h1)= 0.13, 
Bleaching  (h2) = 0.035). 

 

 

Figure 6.7(b). Surface plot of Xylose  (optimal bandwidths). 
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Figure 6.7(c). Genotype classification based on identified peaks for glucose 
 

 

 

6.6. Summary of kernel density estimation and clustering results 

Kernel density estimation for the seven genotypes produced different clusters as the 

chemical properties tended to respond to the processing stages differently. There is 

need to use these different clusters to come up with one overall clustering scheme. 

The number of times any two genotypes have been found to be in the same cluster, 

according to the seven chemical properties, can be used as a measure of similarity. 

The summary of the clustering results generated from the seven chemical properties 

using kernel density estimation as a clustering tool is presented Table 5.9 below.   

Based on this matching principle a similarity matrix for the seven genotypes was 

compiled and is presented in Table 6.10.  

 

A score of 7 between any two genotypes indicates that, out of the seven chemical 

properties, the two genotypes always fell into the same cluster hence they are highly 

mixable. A score of 0, on the other hand, indicates that the pair of genotypes fell in 
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different clusters on all seven chemical properties hence not suitable for mixing 

together during processing. 

Table 6.9. Summary of clusters generated  by chemical properties under KDE 

Chemical 

Property 
Cluster 1 Cluster 2 Cluster 3 

Lignin Esmithii, E.gc 
E.guA, Edunnii, 

Egrandis 

Enitens, 

E.guW 

α-Cellulose 
E.smithii, E.gc, E.guA, E.dunnii, 

E.grandis, E.nitens, E.guW 
  

Viscosity 
E.smithii, E.gc, E.guA, E.dunnii, 

E.grandis, E.nitens, E.guW 
  

γ-Cellulose  
E.smithii, E.gc, E.guA, 

E.grandis, E.nitens, E.guW 
E.dunnii,  

copper 

numbers  

E.smithii, E.gc, E.guA, E.dunnii, 

E.grandis, E.nitens, E.guW 
  

Glucose 
E.gc, E.guA, E.grandis, E.nitens, 

E.guW 

E.dunnii, 

E.smithii 
 

Xylose 
E.smithii, E.gc, E.guA, E.dunnii, 

E.grandis, E.guW 
 E.nitens   

 

Table 6.10. Number of times any two genotypes belonged to the same cluster 

  E.smithii E.gc E.guA E.dunnii E.grandis, E.nitens E.guW 

Esmithii -       

Egc (GCG) 6 -      

EguA (GUA) 5 6 -     

Edunnii 5 4 5 -    

Egrandis, 5 6 7 5 -   

Enitens 4 5 5 3 5 -  

EguW (GUW) 5 6 6 4 6 6 - 

The scores in Table 6.10 can therefore be used as some form of a mixability indicators 

for the seven genotypes. The higher the index between any two genotypes the more 

appropriate it is to mix them if necessary. A score of 7 would mean the two genotypes 

concerned are absolutely mixable. The two most mixable genotypes are Edunnii and 

Enitens with GUA and Egrandis with a score of 7. 

 

6.7. Conclusion 
 

The study managed to develop a form of scale that can be used to determine if any 

two genotypes can be mixed during processing based on their response to the two 

key sup-processes of delignification and bleaching. The behaviour of the genotypes, 

as measured by the rates of change in the chemical properties of lignin, α-cellulose, 
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γ-cellulose, viscosity, copper numbers, glucose and xylose, were used to develop a 

mixability matrix.  

 

The underlying assumption in this study is that all the chemical properties are of equal 

importance and no single chemical property can override the values in the other 

properties. The chemical pulping process targets higher levels of α-cellulose but this 

chemical property did not produce different genotype clusters indicating that all 

genotypes had similar response profiles to the sub-processes of bleaching and 

delignification as far as α-cellulose is concerned. This means that, for the purpose of 

determining mixable genotypes, α-cellulose is not an important variable. Viscosity and 

copper numbers also came up as not important when determining which genotypes 

can be mixed during processing. This is in contract to results of Chapters 3 and 4 

which made full use of all chemical properties. It can thus be said that the method 

discussed in this chapter uses information less efficiently than the methods of 

Chapters 3 and 4. 

 

The behaviour of lignin, γ-Cellulose, glucose and xylose were deemed important 

determinants of how mixable the timber genotypes could be. The seven chemical 

properties studied are not the only ones involved in chemical pulping. A more 

comprehensive study incorporating as many chemical properties as possible is a 

possible area of further studies hence this study suggests an area of study that can 

be adopted for the optimisation of chemical pulping processes especially when there 

is a huge variety of timber genotypes available for processing. Mixing of timber 

varieties during processing will always occur especially when one genotype alone 

does not have economic quantities for processing. It is reasonable to mix genotypes 

for processing after considering how individual genotypes behave during chemical 

processing so that only those genotypes that have many properties in common are 

optimally mixed during processing.  

 

There is still scope for further studies in this subject. More chemical properties can be 

added to make a more comprehensive study. The importance of each chemical 

property can also be considered in future studies so that some weights can be 

attached to them in the analysis. This study assumed equal importance on the 

chemical properties.  
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This chapter successfully developed a grouping mechanism for different genotypes 

for the purpose of chemical pulping, however, the variables where not considered 

together, especially as far as their inter-correlation are concerned.  It is worthwhile to 

attempt to understand how the chemical properties behave together by looking at the 

correlations between their evolutions through the chemical pulping process. Chapter 

7 looks at how the variables evolve through the processing stages together and how 

they interact with each other though a correlation analysis of their evolutions using 

joint modelling. 
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Table 6.11. Percentiles for the KDE estimates for the seven chemical properties. 

 

 
 

Percentiles generated by kernel density estimation (the  β parameters as variables) 

 Lignin α-Cellulose Viscosity γ–cellulose 
Copper 

Numbers 
Glucose Xylose 

Percentile β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

0.5 -3.230 -0.950 -0.960 0.240 -30.010 -22.190 -3.160 -1.520 -1.950 -0.690 1.150 0.330 -3.000 -0.770 

1.0 -3.050 -0.830 -0.640 0.300 -24.280 -20.860 -3.010 -1.460 -1.860 -0.650 1.220 0.420 -2.670 -0.740 

2.5 -2.950 -0.790 -0.560 0.400 -21.800 -17.540 -2.810 -1.420 -1.780 -0.620 1.320 0.480 -2.450 -0.680 

5.0 -2.840 -0.750 -0.400 0.490 -19.330 -15.130 -2.590 -1.310 -1.680 -0.590 1.480 0.540 -2.350 -0.650 

10.0 -2.750 -0.680 -0.170 0.610 -15.680 -12.430 -2.250 -1.250 -1.580 -0.550 1.670 0.580 -2.150 -0.620 

25.0 -2.550 -0.560 0.410 0.830 -8.580 -8.920 -1.800 -1.090 -1.400 -0.490 2.050 0.750 -1.210 -0.550 

50.0 -2.220 -0.430 1.080 1.050 -0.340 -4.530 -1.310 -0.920 -1.180 -0.430 2.710 0.920 -0.870 -0.460 

75.0 -1.760 -0.300 1.920 1.260 6.690 -0.480 -0.680 -0.700 -0.910 -0.370 3.330 1.080 -0.610 -0.350 

90.0 -1.440 -0.200 2.420 1.470 16.300 2.700 0.000 1.190 -0.660 -0.310 3.700 1.180 -0.340 -0.230 

95.0 -1.300 -0.120 2.770 1.580 20.340 4.560 0.490 1.350 -0.490 -0.280 3.940 1.260 -0.180 -0.180 

97.5 -1.200 -0.077 3.070 1.670 22.720 6.520 0.830 1.460 -0.310 -0.260 4.100 1.340 -0.082 -0.140 

99.0 -1.100 -0.019 3.190 1.820 27.510 7.990 1.030 1.610 -0.260 -0.200 4.240 1.440 -0.009 -0.100 

99.5 -1.050 0.050 3.360 1.970 33.200 9.810 1.180 1.730 -0.210 -0.180 4.240 1.540 0.036 -0.091 

Mean -2.15 -0.43 1.15 1.04 -0.30 -4.84 -1.22 -0.64 -1.15 -0.43 2.69 0.91 -1.00 -0.44 

Standard 
Dev 

0.49 0.19 0.98 0.11 11.77 6.09 0.88 0.82 0.36 0.09 0.77 0.23 0.62 0.14 

Correlation 0.170 -0.057 -0.770 0.670 -0.056 -0.300 0.053 

Bandwidth 
used 

0.190 0.017 0.370 0.120 4.440 2.290 0.330 0.310 0.130 0.035 0.250 0.074 0.200 0.046 
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Chapter 7 

Joint Modelling of the Evolution of Pulp Chemical 
Properties During Chemical Processing 

7.1. Introduction 

There has been a wide usage of mixed models for the analysis of single outcome 

variables measured repeatedly over time but there are many practical situations that 

require extensions of such univariate mixed models to deal with multivariate 

longitudinal data that arise when a set of different responses on the same unit are 

measured repeatedly over time. Guo and Karlin (2004) noted that many well-

established methods exist for analyzing such data separately, including linear mixed 

effects models for longitudinal data, and Weibull or semiparametric (Cox) proportional 

hazards models for survival data. However, the separate use of such methods may be 

inappropriate when the longitudinal variables are highly correlated. The association 

between different variables, as they evolve over time, can reveal the mechanism that 

drives such an evolution. Liu, Daniels and Marcus (2009) studied models of a 

longitudinal binary variable (smoking cessation) and a longitudinal continuous variable 

(weight change) and modelled the evolutionary association between the two variables. 

Joint modelling of such multivariate data is necessary to quantify, firstly, the 

relationship between evolutions of different responses and, secondly, the evolution of 

the relationships between different response variables over time. With joint modelling 

comes the problem that, as the number of response variables goes up, issues of 

convergence become more troublesome (Rizopoulos, 2012). To help resolve 

convergence complexity problems, a pairwise fitting approach has been proposed in 

the literature (Fieuws and Verbeke, 2006, 2007). In this study, the pairwise fitting 

approach is used to analyse the chemical pulping process and how it affects the 

evolution of six chemical variables (properties) of different timber genotypes in order 

to compare their behaviour under chemical pulping and to evaluate how the variables 

affect each other throughout the process. The choice of the six variables studied was 

made because inclusion of the seventh variable led to the non-convergence of the 

modelling procedure. A particularly interesting feature of multivariate data is the 
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possibility to make prediction and/or inference on one variable conditional on the 

others. 

 

Joint modelling of multivariate outcomes, particularly bivariate ones, has been used 

extensively in recent years owing to researchers’ desire for more insight into 

multivariate data using a single statistical model. Studies have been done on joint 

models of one continuous and one binary response (Faes, Geys and Catalano, 2008; 

Agresti, 1997; Iddi and Molenberghs, 2012). Joint modeling espouses the broad 

objective of formalising a framework within which relationships between outcomes of 

a multivariate nature and the factors affecting them can be scientifically probed 

(Verbeke and Davidian, 2008). The analysis of such multivariate phenomenon under 

the framework of joint modelling allows for more accurate calculations of Type I errors 

when the multivariate response variates are considered together in multiple tests 

(Gueorguieva, 2001).  Gueorguieva (2001) outlined the analysis of multivariate 

repeated measurements for variables in the exponential family of distributions. Fieuws 

and Verbeke (2007) pointed out that, when fitting multivariate linear mixed models, 

there are computational challenges that can be overcome by analysing multivariate 

outcomes using a pairwise modelling approach. The pairwise modelling approach 

proceeds by first fitting all possible bivariate mixed models to the response variables 

of interest, then combining the bivariate mixed models to form an overall multivariate 

analysis using pseudo-likelihood arguments.  

 

There has been a lot of discussion on the joint modelling of continuous and longitudinal 

outcomes and time to event variables that are dependent on some fixed and random 

effects, see for example discussions by Tsiatis and Davidian (2004) and Diggle et al 

(2008). Tsiatis and Davidian noted that, precise statements of underlying assumptions 

typically made for these models, has been rare. Their review focussed on the 

development of joint models and how they offer insight into the structure of the 

likelihoods for model parameters that clarifies the nature of common assumptions. 

Sousa (2011) gave a comprehensive and insightful review of developments in the work 

done on the joint modelling of longitudinal outcomes and time to events variables.  

 

Joint modelling of multivariate responses takes into account the interrelationships 

between the variables comprising the response vector in order to produce more 
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accurate inferences. Wu and Carroll (1988) pointed out that in many longitudinal 

studies, the analysis of the main outcome must be linked to the dropout mechanism 

as ignoring dropout may cause bias since it is expected that the dropout mechanism 

carries some information about the main outcome. The same can be said about 

multiple responses that are measured simultaneously on the same subjects, as is the 

case with pulp chemical properties considered in this study. This calls for the use of at 

least bivariate joint modelling. However, in the absence of any association between 

the measurement variables, the model developed using joint modelling reduces to 

separate models for the measurements (Henderson et al., 2000).     

 

The data discussed in this study comprises of several chemical properties which are 

interrelated. Chemical properties of wood genotypes observed when dissolving pulp 

goes through the six stages of chemical processing are multivariate in nature as 

several of them are measured at each stage of the process. They are multivariate 

repeated measurements with two types of correlations, that is, correlations between 

observations made on the same subject at different stages of chemical pulp 

processing and correlations between different chemical properties that are jointly 

measured on the same subject at each stage. The associations between these 

chemical properties are of interest as they can reveal the overall chemical evolution of 

dissolving pulp across the processing stages.  

 

7.2. The Univariate Model 
 

To better understand the build up to the joint model, it is essential to start by outlining 

the model for the single longitudinal continuous response. Assume that there are N 

subjects indicated by i =1, 2,…, N. In this study there are six time points indicative of 

the number of stages in the chemical pulping process, thus each subjects has 6 

sequential measurements indicated by j=1, 2, …, 6. All the seven chemical property 

variables studied are continuous and the linear mixed model for each of the response 

variates is specified as  

𝑌𝑖 = 𝑿𝑖
𝑇𝜷 + 𝒁𝑖

𝑇𝒃 + 𝜺𝑖 (7.1) 

where Xi is vector of p-fixed effects covariates and Zi is a vector of q-random effects 

covariates. Both Xi and Zi are observed at time or stage j for the ith subject. The vector 

β comprises of p-parameters for the fixed effects while the random effects vector is 
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b~N(0,G). Conditional on the random effects, the residual terms, εi~N(0,R), are 

assumed to be independent of each other at all time points. The expectation of Yi is 

such that  

E(𝑌𝑖) = E[E(𝑌𝑖|𝒃)] = 𝑿
𝑇𝜷 (7.2) 

which means that the marginal and conditional fixed effects parameters are equal. The 

marginal model can be expressed as    

𝑌𝑖 = 𝑿𝑖
𝑇𝜷 + 𝜺𝑖

∗ (7.3) 

where the correlated residuals have the distribution εi
*~N(0,Vi). The covariance matrix 

Vi takes into account the correlations between the redefined residuals contained in 

vector εi
*. The linear mixed model implies a marginal model with εi

*~N(0,V) where  

𝑽 = 𝒁𝑖𝑮𝒁𝑖
T + 𝑹 (7.4) 

The marginal model affords greater flexibility on the restrictions on G and R. Maximum 

likelihood and restricted maximum likelihood estimation methods can be used for the 

estimation of the linear mixed-model parameters (Laird and Ware, 1982). 

 

7.3. Joint Multivariate Models  
 
Suppose a study comprises of p-continuous response variables that make up the 

response vector 𝒀T = (𝒀1, 𝒀2, ⋯ , 𝒀𝑝), where 𝒀𝑟 = (𝑌𝑟1, 𝑌𝑟2, … , 𝑌𝑟𝑛𝑟) for r=1,…, p and nr 

is the number of observations for individual r. Fitting a multivariate mixed model to 

such a multivariate response will generate a vector of parameters which we shall 

denote by 𝜱∗. Fieuws and Verbeke (2007) state that all parameters in the full 

multivariate model can be identified from all pairwise models, that is, all bivariate 

models for each pair of outcomes. This means that, the fitting of the full model is 

replaced by maximum likelihood estimation of each bivariate model separately with 

full model parameters estimates calculated as means of those obtained in the bivariate 

models.  

 

If the pairwise modelling approach discussed by Fieuws and Verbeke is used, then 

the number of bivariate distributions that can be developed from the this response 

vector is (
𝑝
2
) = 𝑝(𝑝 − 1)/2, that is, the bivariate distributions for  

(𝒀1, 𝒀2), (𝒀1, 𝒀3, ),⋯ , (𝒀1, 𝒀𝑝), (𝒀2, 𝒀3),⋯ , (𝒀2, 𝒀𝑝),⋯ , (𝒀𝑝−1, 𝒀𝑝). (7.5) 
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Consider any two continuous longitudinal outcomes taken on the response vectors 𝒀𝑟 

and 𝒀𝑠 and take their observations on the ith subject at the jth period to get  𝑌𝑟𝑖𝑗 and 

𝑌𝑠𝑖𝑗, where the two continuous outcomes are assumed to be Gaussian, 𝑖 = 1, 2, 3, … ,𝑁 

indicates the subjects in the N-sample and 𝑗 = 1, 2, … ,6 indicates the time of the 

repeated. The vector observations (𝒀𝑟) for subject i over the various time points of the 

repeated measurements are given as 𝒀𝑟𝑖 = [𝑌𝑟𝑖1, 𝑌𝑟𝑖2 , 𝑌𝑟𝑖3, 𝑌𝑟𝑖4, 𝑌𝑟𝑖5, 𝑌𝑟𝑖6] and 𝒀𝑠 is 

defined in a similar way. It is desired to develop an appropriate model for the joint 

distribution of the two continuous, longitudinal variates 𝒀𝑟 and 𝒀𝑠, that is 𝑓(𝒀𝑟 , 𝒀𝑠). The 

likelihood function corresponding to 𝒀𝑟 and 𝒀𝑠 is given by   

ℓ(𝒀𝑟 , 𝒀𝑠|𝜱𝑠𝑟) (7.6) 

where 𝜱𝑠𝑟 is the vector of all parameters of the bivariate mixed model involving 𝒀𝑟 and 

𝒀𝑠. Molenberghs and Verbeke (2005) used the so called shared parameter model to 

estimate the parameter vector (𝜱𝑠𝑟) of such bivariate joint distributions.  

 

When all the 𝑝(𝑝 − 1)/2 models are fitted, the parameters that result from the 

models can be presented in a stacked vector of parameters given by  

𝜱T = [𝜱12
T , 𝜱13

T , ⋯ ,𝜱1𝑝
T , 𝜱23

T , ⋯ ,𝜱2𝑝
T , ⋯ ,𝜱(𝑝−1)𝑝

T ] (6.7) 

where 𝜱 is obtained by separately maximizing the likelihood functions  ℓ(𝒀𝑟 , 𝒀𝑠|𝜱𝑠𝑟), 

for all 𝑟, 𝑠 ∈ {1,2,⋯ , 𝑝}, 𝑟 < 𝑠. While the purpose of the vector of parameters 𝜱 is to 

estimate 𝜱∗, it must be pointed out that 𝜱 has some parameters of each variable 

repeated several times. It is obvious that some fixed effects parameters from the single 

outcome will be repeated p-1 times. The covariances of random effects between 

different outcomes only appear once in 𝜱∗ so they are not affected by this multiplicity. 

This means that the parameter vectors, 𝜱 and 𝜱∗, are not equivalent. For those 

parameters that are estimated several times, their representatives in 𝜱∗ are found by 

averaging all the pair specific estimates in 𝜱. Standard errors of 𝜱̂, the estimate of 𝜱 

which translate into estimates of 𝛷∗, can be obtained from pseudo-likelihood methods.   
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7.3.1. Fitting the bivariate model  

When two responses are fitted pairwise, say 𝑌𝑟 and 𝑌𝑠, each with the mixed effects 

model described in equation (7.1), we get the bivariate version of equation (1) given 

as  

𝒀𝑖 = [
𝑌𝑟𝑖
𝑌𝑠𝑖
] = [

𝑿𝑟𝑖
𝑇 𝜷𝒓 + 𝒁𝑟𝑖

𝑇 𝒃𝒓 + 𝜺𝑟𝑖
𝑿𝑠𝑖
𝑇 𝜷𝒔 + 𝒁𝑠𝑖

𝑇 𝒃𝒔 + 𝜺𝑠𝑖
] (7.8) 

The fixed effects covariate matrices for the two responses are 𝑿𝑟𝑖and 𝑿𝑠𝑖 with the 

vectors of fixed effects for the two responses being 𝜷𝑟 and 𝜷𝑠. The random effects 

covariate matrices are 𝒁𝑟𝑖and 𝒁𝑠𝑖 with the corresponding random effects vectors being 

𝒃𝒓 and 𝒃𝒔. In most cases 𝑿𝑟𝑖 = 𝑿𝑠𝑖 and 𝒁𝑟𝑖 = 𝒁𝑠𝑖since the two response variables 

depend on the same factors. The vectors that make up equation (7.8) and their 

distributional assumptions follow from the description of equation (7.1). The task at 

hand is to develop a likelihood function for the bivariate vector Yi which will then be 

used to obtain maximum likelihood estimates for the parameters of model (7.8). The 

two responses, 𝑌𝑟 and 𝑌𝑠, can also be presented as:  

𝒀𝑟𝑖 = [𝑿𝑟𝑖
T 𝒁𝑟𝑖

T ] [
𝜷𝑟
𝒃𝑟
] + 𝜺𝑟𝑖 and 𝒀𝑠𝑖 = [𝑿𝑠𝑖

T 𝒁𝑠𝑖
T ] [
𝜷𝑠
𝒃𝑠
] + 𝜺𝑠𝑖. 

(7.9) 

Without loss of generality we can also write 𝑿𝑟
T = [𝑿𝑟𝑖

T 𝒁𝑟𝑖
T ] and 𝑿𝑠

T = [𝑿𝑠𝑖
T 𝒁𝑠𝑖

T ] thus 

the fixed and random effects parameter matrices for the two responses can be 

presented as  

𝜱𝑟 = [
𝜷𝑟
𝒃𝑟
] and 𝜱𝑠 = [

𝜷𝑠
𝒃𝑠
], with 𝜱𝑟𝑠 = [

𝜱𝑟 𝟎
𝟎 𝜱𝑠

]. 

Using this notation, the formulation of the two outcomes presented in (7.9) can be 

written as  

𝒀𝑟𝑖 = 𝑿𝑟
T𝜱𝑟 + 𝜺𝑟𝑖 and 𝒀𝑠𝑖 = 𝑿𝑠

T𝜱𝑠 + 𝜺𝑠𝑖 

and equation (7.9) can now be written as  

𝒀𝑖 = [
𝑌𝑟𝑖
𝑌𝑠𝑖
] = [

𝑿𝑟
T 𝟎

𝟎 𝑿𝑠
T] [
𝜱𝑟 𝟎
𝟎 𝜱𝑠

] + [
𝜺𝑟𝑖
𝜺𝑠𝑖
] 

(7.10) 

and if we let 𝑿 = [
𝑿𝑟
T 𝟎

𝟎 𝑿𝑠
T], we can then express equation (7.10) in a more compact 

form as 

𝒀𝑖 = 𝑿𝜱𝑟𝑠 + 𝜺(𝑟𝑠)𝑖 . (7.11) 

where 𝜺(𝑟𝑠)𝑖 = [
𝜺𝑟𝑖
𝜺𝑠𝑖
]. 
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7.3.2. The number of parameter estimates in a multivariate mixed model 
 

The number of parameters to be estimated in the multivariate model grows 

exponentially with the increase of the number of response variables. To illustrate this 

estimation problem consider the bivariate case. This study mainly seeks to profile the 

chemical evolution of some chemical properties of dissolving pulp over six processing 

stages. The problem in its simplest form takes the fixed effects part of the model as a 

mean function with the random effects part constituting the slope parameters (because 

of computational problems the intercept was not estimated in the multivariate problem, 

instead, the data was intercept corrected).  

 

The linear mixed model for bivariate random variables (p=2) at each time point can be 

stated as: 

𝑌1𝑖𝑡 = 𝜇1𝑡 + 𝑎1𝑖 + 𝑏1𝑖𝑡 + 𝜀1𝑖𝑡 

𝑌2𝑖𝑡 = 𝜇2𝑡 + 𝑎2𝑖 + 𝑏2𝑖𝑡 + 𝜀2𝑖𝑡 
(7.12) 

where 𝜇1𝑡 and 𝜇2𝑡 are the fixed effects and the random effects are jointly distributed 

as 𝒃𝑖~𝑀𝑉𝑁(𝟎, 𝑮), or more specifically 

[

𝑎1𝑖
𝑎2𝑖
𝑏1𝑖
𝑏2𝑖

]~𝑀𝑉𝑁

(

 
 
[

0
0
0
0

] ,

[
 
 
 
 
𝜎𝑎1
2 𝜎𝑎1𝑎2 𝜎𝑎1𝑏1 𝜎𝑎1𝑏2

𝜎𝑎2
2 𝜎𝑎2𝑏1 𝜎𝑎2𝑏2

𝜎𝑏1
2 𝜎𝑏1𝑏2

𝜎𝑏2
2
]
 
 
 
 

)

 
 

, (7.13) 

and the error components which are independent from the random effects are 

distributed as 𝜺𝑖~𝑀𝑉𝑁(𝟎, 𝑹) or  

[
𝜀1𝑖
𝜀1𝑖
] ~𝑀𝑉𝑁([

0
0
] , [
𝜎𝜀1
2 𝜎𝜀1𝜀2

𝜎𝜀2
2 ]). (7.14) 

The two error components are not necessarily independent as observations for the 

two response variables on the same subject can be correlated at any time point, thus 

𝜎𝜀1𝜀2 is not necessarily equal to zero. The correlations between the two intercept and 

two slope parameters for the two variables are given respectively as  

𝑟𝑎1𝑎2 = 𝐶𝑜𝑟𝑟(𝑎1𝑖, 𝑎2𝑖) =
𝜎𝑎1𝑎2

√𝜎𝑎1
2 × 𝜎𝑎2

2

 

and  

𝑟𝑏1𝑏2 = 𝐶𝑜𝑟𝑟(𝑏1𝑖, 𝑏2𝑖) =
𝜎𝑏1𝑏2

√𝜎𝑏1
2 × 𝜎𝑏2

2

. 
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The marginal correlation between the two response variables Y1 and Y2 is given as  

 

𝑟𝑌1𝑌2 = 𝐶𝑜𝑟𝑟(𝑌1, 𝑌2) =
𝐶𝑜𝑣𝑎(𝜇1𝑡 + 𝑎1𝑖 + 𝑏1𝑖𝑡 + 𝜀1𝑖𝑡, 𝜇2𝑡 + 𝑎2𝑖 + 𝑏2𝑖𝑡 + 𝜀2𝑖𝑡)

√𝑣𝑎𝑟(𝜇1𝑡 + 𝑎1𝑖 + 𝑏1𝑖𝑡 + 𝜀1𝑖𝑡) × 𝑣𝑎𝑟(𝜇2𝑡 + 𝑎2𝑖 + 𝑏2𝑖𝑡 + 𝜀2𝑖𝑡)
 

 

=
𝜎𝑎1𝑎2 + 𝑡𝜎𝑎1𝑏2 + 𝑡𝜎𝑎2𝑏1 + 𝑡

2𝜎𝑏1𝑏2 + 𝜎𝜀1𝜀2

√(𝜎𝑎1
2 + 𝑡2𝜎𝑏1

2 + 2𝑡𝜎𝑎1𝑏1 + 𝜎𝜀1
2 ) × (𝜎𝑎2

2 + 𝑡2𝜎𝑏2
2 + 2𝑡𝜎𝑎2𝑏2 + 𝜎𝜀2

2 )

  

 

For a problem with p-response variables there will be 2p slope and intercept 

parameters to be estimated. The matrix G will consist of (
2𝑝
2
) + 2𝑝 covariance 

parameters and R will consist of (
𝑝
2
) + 𝑝 covariance parameters to be estimated. The 

chemical pulping problem has p=7, thus there will be (
2𝑝
2
) + 2𝑝 + (

𝑝
2
) + 𝑝 = (

14
2
) +

14 + (
7
2
) + 7=133 parameters to be estimated. Compounded with the fact that there is 

need to estimate slope and intercept parameters for each of the seven genotypes 

under study, there will be 931 parameters to be estimated. The need to reduce the 

number of parameters to be estimated requires that we we fit models with only the 

slope and the intercept set at zero. This can be achieved by correcting the data for the 

intercept so that only the slope parameter, which is a measure of the changes in the 

chemical properties over time is estimated. An attempt to fit a model with an intercept 

and a slope parameter could not converge hence the need to intercept correct the 

data.  

7.3.3. Fitting the bivariate model using conditioning 

The joint distribution for (Yr, Ys) can be specified by factorising its joint density as a 

product of a marginal and a conditional density as shown in equations (7.15) and (7.16) 

below;  

𝑓(𝑦𝑟 , 𝑦𝑠) = 𝑓(𝑦𝑟|𝑦𝑠)𝑓(𝑦𝑠) 

                 = 𝑓(𝑦𝑠|𝑦𝑟)𝑓(𝑦𝑟) 

(7.15) 

(7.16) 

In the determination of 𝑓(𝑦𝑟 , 𝑦𝑠), the density function 𝑓(𝑦𝑠) can be obtained directly if 

we assume the Gaussian distribution. It is the conditional density, 𝑓(𝑦𝑟|𝑦𝑠), that 
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requires a careful consideration of the association between Yr and Ys where Ys would 

be playing the role of a time varying covariate with different values of Ys giving different 

results and conclusions (Verbeke and Davidian, 2008). In (7.15) marginal inferences 

about Ys are direct but inferences about Yr would require additional calculations. 

Marginal expectations of Yr , for example, would require the computation of  

𝐸(𝒀𝑟) = 𝐸[𝐸(𝑌𝑟|𝑌𝑠)] = ∫ {∫𝒚𝑟𝑓(𝒚𝑟|𝒚𝑠) 𝑑𝒚𝑟} 𝑓(𝒚𝑠) 𝑑𝒚𝑠. 

One might avoid having to calculate this not so straightforward integral by fitting both 

models (7.15) and (7.16) and obtaining the marginal distribution of one variate at a 

time. Verbeke and Davidson (2008) argue that when Yr and Ys are highly correlated, 

as with the variables in this study, and are thought to be affected by a common 

treatment effect, then conditioning on one of the two variables will diminish the effect 

of the treatment factor on the other response variable.  

7.3.4. Fitting the bivariate model using shared-parameter models 
 
Suppose the two variates Yr and Ys have a common random effects vector b and are 

independent, conditionally on b. The joint density of (Yr, Ys) can then be found by  

𝑓(𝑦𝑟 , 𝑦𝑠) = ∫𝑓(𝑦𝑟 , 𝑦𝑠|𝒃)𝑓(𝒃)𝑑𝒃  =  ∫𝑓(𝑦𝑟|𝒃)𝑓(𝑦𝑠|𝒃)𝑓(𝒃)𝑑𝒃. (7.17) 

where 𝑓(𝒃) denotes the density function of the random effects which is usually 

assumed to be the normal density function. Equation (7.17) is what is called the 

shared-parameter model as the response variables depend on a common random 

effects vector. The joint dependency of Yr and Ys on b induces some correlation 

between the two variables but, conditional on b, the two variates are considered 

independent. In this study the variables Yr and Ys are both assumed to have normal 

densities and it follows that their conditional densities, that is 𝑓(𝑦𝑟|𝒃) and 𝑓(𝑦𝑠|𝒃) are 

also normal. It must be noted that the variables Yr and Ys, under the framework of 

repeated measurements, are actually multivariate as each of the two vectors 

comprises of the repeated measurements for each subject (six repeated 

measurements in this study). The likelihood function for the two random variables will 

be based on their joint density function outlined in (7.17) above. Other approaches 

that have been suggested for the bivariate model include the random-effects models 

formulation described by Verbeke and Davidson (2008). 
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7.3.5. Fitting the full joint multivariate model using pairwise fitting 

For a dataset with p-response variables, fitting the (
𝑝
2
) = 𝑝(𝑝 − 1)/2 bivariate joint 

models is equivalent to maximizing the pseudo-likelihood function which is the product 

of all pairwise pseudo-likelihood functions given by  

𝑝𝑙(𝜱) = 𝑙(𝑌1, 𝑌2|𝜱12) × 𝑙(𝑌1, 𝑌3|𝜱13) × …× 𝑙(𝑌(𝑝−1), 𝑌𝑝|𝜱(𝑝−1)𝑝)  

= ∏ 𝑙(𝑦𝑟 , 𝑦𝑠|𝜱𝑟𝑠)

𝑝

𝑟=1,𝑠=𝑟+1

   
(7.18) 

where 𝑝𝑙(. ) denotes a pseudo-likelihood function, 𝑙(. ) denotes a likelihood function, 

𝜱 is the parameter vector of all p-response variables and 𝜱𝒓𝒔 is the parameter vector 

for randoms variables 𝑌𝑟 and 𝑌𝑠. The maximization of 𝑝𝑙(𝜱) is done through its log to 

obtain the pseudo-log-likelihood  

𝑝ℓ(𝜱) = log [𝑝𝑙(𝜱)] 

𝑝ℓ(𝜱) = 𝑝ℓ(𝑦1, 𝑦2, ⋯ , 𝑦𝑝|𝜱) = ∑ 𝑝𝑙(𝑦𝑟 , 𝑦𝑠|𝜱𝑟𝑠)

𝑝

𝑟=1,𝑠=𝑟+1

 (7.19) 

The pseudo-likelihood function (7.18) makes the assumption that all pairwise 

parameter vectors 𝜱𝑟𝑠 are distinct from each other which is actually not the case as 

parameter estimates for Y1 made jointly with Y2 might differ slightly with those of Y1 

made jointly with Y3 and so on. The way around this lack of uniqueness of the pairwise-

estimated parameters is to find some form of average of all parameter estimates for a 

particular variable. The parameter estimates based on this pseudo-likelihood function 

are called pseudo-likelihood estimates with certain asymptotic statistical properties 

(Fieuws and Verbeke, 2007). According to Fieuws and Verbeke, the parameter 

estimate 𝜱̂ asymptotically satisfies  

√𝑁(𝜱̂ − 𝜱)~𝑁(0, 𝑱−1𝑲𝑱−1) (7.20) 

where 𝑱−1𝑲𝑱−1 is a “sandwich type” robust variance estimator derived from the 

components of 𝜱. A detailed discussion of 𝑱−1𝑲𝑱−1 is given by Liang and Zeger (1986). 

The matrices J and K are based on the partial derivatives of the parameter vector 𝜱 

as follows: 

𝑱 = [

𝐽1 ⋯ 𝟎
⋮ ⋱ ⋱
𝟎 ⋯ 𝐽𝑝

] ,       𝑲 = [

𝐾11 ⋯ 𝐾1𝑝
⋮ ⋱ ⋱
𝐾𝑝1 ⋯ 𝐾𝑝𝑝

] 

where  
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𝑱𝑟 = −
1

𝑁
∑𝐸 [

𝜕2ℓ(𝑦𝑟𝑖|𝜱𝑟)

𝜕𝜱𝑟𝜕𝜱𝑟T
]

𝑁

𝑖=1

,        𝐾𝑟𝑠 =
1

𝑁
∑𝐸 [

𝜕ℓ(𝑌𝑟𝑖|𝜱𝑟)

𝜕𝜱𝑟
 
𝜕ℓ(𝑌𝑠𝑖|𝜱𝑠)

𝜕𝜱𝑠T
]

𝑁

𝑖=1

. 

Since 𝜱∗ is estimated from 𝜱 by some form of averaging of the parameters in 𝜱, of 

which some appear more than once, there is need to obtain some weight matrix A 

such that 𝜱̂∗ = 𝑨𝜱̂. Using the fact that 𝜱̂∗ = 𝑨𝜱̂ and following from equation (7.20), 

we have  

√𝑁(𝜱̂∗ −𝜱∗) = √𝑁𝑨(𝜱̂ − 𝜱)~𝑁(0, 𝑨  𝑱−1𝑲𝑱−1𝑨T). (7.21) 

According to Arnold and Strauss (1991), the principal idea in the use of pseudo-

likelihood estimators is to replace a computationally challenging joint density by a 

simpler function. 

The matrices J and K can be estimated as shown in the steps that follow. Consider 

equation (7.4) above and let the estimate of 𝑽 for the ith subject and rth variable be 𝑽̂𝑖,𝑟 

where  

𝑽̂𝑖𝑟 = 𝒁𝑖,𝑟𝑮̂𝑟𝒁𝑖,𝑟
T + 𝑹̂𝑖,𝑟. (7.22) 

To estimate the matrices J and K we need first to define the following matrices:  

𝑱̂𝑟 =
1

𝑁
∑ 𝑿𝑖,𝑟

T 𝑽̂𝑖,𝑟
−1𝑿𝑖,𝑟

𝑁

𝑖=1
 and 𝑲̂𝑟𝑠 =

1

𝑁
∑ 𝑿𝑖,𝑟

T 𝑽̂𝑖,𝑟
−1𝒆𝑖,𝑟(𝑿𝑖,𝑠

T 𝑽̂𝑖,𝑟
−1𝒆𝑖,𝑠)

T
𝑁

𝑖=1
  

The vectors 𝑿𝑖,𝑟 and 𝒁𝑖,𝑟 are, respectively, the fixed and random effects for the ith 

subject on the rth response variable, 𝒆𝑖,𝑠 is the corresponding error component and N 

is the number of subjects. The matrix 𝑱̂ and 𝑲̂ can then be estimated as  

𝑱̂ =

[
 
 
 
𝑱̂1 𝑶 ⋯ 𝟎

𝟎 𝑱̂2 ⋱ ⋮
⋮ ⋱ ⋱ 𝟎
𝟎 ⋯ 𝟎 𝑱̂𝑝]

 
 
 

 and 𝑲̂ =

[
 
 
 
 
𝑲̂11 𝑲̂12 ⋯ 𝑲̂1𝑝

𝑲̂21 𝑲̂22 ⋯ 𝑲̂2𝑝
⋮ ⋱ ⋱ ⋮
𝑲̂𝑝1 ⋯ 𝑲̂𝑝(𝑝−1) 𝑲̂𝑝𝑝]

 
 
 
 

 

 

7.4. Fitting the Joint Multivariate Model to the Pulp data 

Changes, over time, in any of the seven chemical properties studied, is indicative of 

how the chemical processes affect the raw pulp. If such changes can be quantified 

then they will form a basis on which to compare the behavior of pulps from different 

genotypes. These changes, over time, are represented by the slope parameters 

obtained by fitting a joint multivariate random coefficient model to the seven chemical 

properties (for the seven genotypes) under study. Because of computational 
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complexities the joint multivariate model will be fitted using the pairwise fitting 

approach described above. It is also important to note that it was not possible to fit a 

more complex model that the simple linear regression model with the data corrected 

so that the intercept is set at zero. 

7.4.1. Intercept corrected data 

Initial fitting of the pairwise bivariate models showed that it was not possible to fit both 

the intercept and the slope parameters for the various genotypes because of the 

number of parameters involved in the model. The SAS PROC MIXED procedure would 

estimate the intercept and set the slope parameter estimates to zero and when forced 

to fit the slope parameters, it would set the intercept parameter estimates to zero. A 

way to get around this problem was to first fit univariate regression models to the 

chemical properties in order to estimate their intercepts. The intercept estimates were 

then subtracted from the original data thereby obtaining some form of intercept 

corrected data (𝑥 − 𝛽̂0) in a way that is similar to that of obtaining mean corrected data 

(𝑥 − 𝑥̅). This allowed for the setting of the fixed effects part of the intercept values to 

zero and hence allow for the computation of only the fixed effects part of the slope 

parameters in the random coefficients model. The random effects components of the 

random coefficients model can still be estimated for the intercept and the slope 

parameters with fixed effects part of the intercept set to zero. To illustrate how the 

intercept corrected model works, consider the case of viscosity data for the seven 

genotypes. Figure 7.1 below, shows the random coefficients models for Viscosity for 

the seven chemical properties before the intercepts were set to zero (using intercept 

corrected data). The fixed parts of the intercept estimates obtained using the univariate 

random coefficient models are presented in Table 7.1 below. As an example, the 

estimated intercept for the genotype GUA is 70.895 and to effect intercept correction, 

all viscosity values of GUA will have 70.895 subtracted thereby making the expected 

value of the intercept zero. This will justify the setting to zero of the intercept value for 

GUA in the fitting of bivariate joint models which are required in the pairwise fitting 

approach.  

The same process of setting the fixed parts for the intercept to zero is followed for the 

other six chemical properties that are considered in the pairwise fitting process. 

Table 7.1. Univariate intercept estimates 
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  Intercept Estimates by Chemical Property   

Genotype Viscosity Lignin α-cellulose γ-cellulose 
Copper 
number 

Glucose Xylose 

E.dunnii 62.165 4.036 89.865 8.131 3.231 89.629 5.005 
E.grandis 33.340 2.905 91.128 7.274 2.847 92.197 3.560 
E.smithii 52.212 4.249 91.136 8.150 2.954 90.317 5.085 
E.nitens 46.078 2.123 90.368 8.046 2.621 89.989 5.657 
GCG 63.853 4.615 91.153 7.480 3.050 90.113 3.873 
GUA 78.821 3.501 90.344 8.367 2.910 90.020 4.662 
GUW 63.337 2.745 91.317 6.754 2.549 92.834 3.189 

 

 

Figure 7.1. Random coefficients regression models for viscosity of the seven genotypes. 

7.4.2. Pairwise fitting of the 21 possible pairs of variables 
 

In trying to fit the multivariate model for the seven chemical properties Xylose could 

not be included since the pairwise fitting procedure could not converge for some pairs 

of variables that involved Xylose. Working with the other remaining six variables, the 

pairwise fitting of the 15 possible pairs of the 6 chemical property variables is 

presented in this section. 

 

The pairwise parameter estimates have subscripts as listed in Table 7.2 below, from 

which, for example, the pairwise slope parameter estimates for Viscosity and Lignin 

would  be 𝛉̂12.  
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Table 7.2. Variable codes 

Variable 
Variable 
number 

Variable Variable number 

Viscosity 1 γ-cellulose 4 

Lignin 2 
Copper 
number 

5 

α-cellulose 3 Glucose 6 

 

The vectors for the pairwise slope parameter estimates are presented as  

𝛉̂𝑖𝑗 = [Variable 𝑖 slope parameter, Variable 𝑗 slope parameter] 

and these pairs of parameters are estimated for all possible pairs derived from the 

seven genotypes. No intercepts are estimated as these are set to zero by making use 

of intercept corrected data as discussed in Section 7.4.1. In total 14 parameters are 

estimated for each pair of variables in seven pairs as shown   

𝛉̂𝑖𝑗 =  

𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝒊 𝐬𝐥𝐨𝐩𝐞 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝒋 𝐬𝐥𝐨𝐩𝐞 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫
[EDunnii EDunnii]
[EGrandis EGrandis]
[ESmithii ESmithii]
[Enitens Enitens]
[GCG GCG]
[GUA GUA]
[GUW GUW]

 

The matrix  𝛉̂𝑖𝑗 is made up of the fixed parts of the slope parameters of the two 

variables (i and j) whose parameters are being estimated pairwise. For computational 

convenience the seven genotypes are assumed to have identical covariance matrices 

for the random effects. It was not possible to compute individual covariance matrices 

for each genotype.    

 𝐆̂𝑖𝑗 = 𝑪𝒐𝒗 [
𝑹𝒔 𝒐𝒇 𝒀𝑖  
𝑹𝒔 𝒐𝒇 𝒀𝑗

] = [
𝜎𝑆𝑙𝑜𝑝𝑒 𝑖
2 σ𝑆𝑙𝑜𝑝𝑒 𝑖,𝑠𝑙𝑜𝑝𝑒 𝑗

𝜎𝑆𝑙𝑜𝑝𝑒 𝑗
2 ] 

The matrix  𝐆̂𝑖𝑗 is the covariance matrix of the random effects part of the slope 

parameters of the two random variables concerned. The term “Rs of Yi “ refers to the 

random effect part of the slope parameter of variable Yi. The random error component 

of the bivariate model has the covariance matrix estimate 𝐑̂𝑖𝑗 given by ; 

𝑹̂𝑖𝑗 = [
𝜎𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖
2 σ𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖,𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗

𝜎𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗
2 ] 

 

were 𝜎𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖
2  is the variance of variable i and σ𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖,𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗 is the covariance of 

variables i and j. 
 



151 

 

 

 

7.4.3. Estimation of model parameters using the pairwise method 

The parameter estimation in this section was mainly done using an adaptation of the 

SAS code developed by Kundu (2011). For the six variables that were modelled using 

pairwise fitting, fifteen pairwise datasets were created (6C2). Suppose we wish to fit a 

bivariate model to two variables Yi and Yj. We would combine these two variables into 

one variable appropriately named Yij. It is important to keep track of which values in Yij 

belong to variable Yi and variable Yj and this is done by creating index variables using 

the time (stage) variable in the data.  

The combination of variables Yi and Yj into variable Yij proceeds by creating two 

dummy variables for time as follows: 

Set Yij= Yi, variable numbe r= i; 

Timei = 1; 

Timej = 0;  

Output;  

Set Yij= Yj, variable numbe r= j; 

Timei = 0; 

Timej = 1;  

Output;  

Keep all variables; 

The data set that that results from the above procedure would have all the variables 

in the original dataset and the new dummy variables Timei and Timej  which would 

indicate to which original variable a row in the combined data belongs to. If Timei =1 

then the concerned row belongs to variable i and the same applies to Timei, otherwise 

if Timei=0 then the row belongs to the other variable in the pairwise fitting. Once the 

dataset for the pair is created, the parameter estimates can obtained using Proc Mixed 

in SAS.   

7.4.4. Pairwise slope parameter estimates 
The slope parameters estimates of the six variables (except xylose) for the seven 

genotypes obtained using the pairwise fitting method are presented in Tables 7.3(a), 

7.3(b) and 7.3(c) below. There are fifteen pairs of estimates for which averages will be 

calculated a the final model estimates.  
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 Table 7.3(a). Pairwise parameter estimates 

Variables 

Slope parameter estimates by 
genotype 

Random Effects Parameter 
estimates 

Genotype 𝛉̂𝑖𝑗
𝑇   𝑮̂𝑖𝑗 𝑹̂𝑖𝑗 

Viscosity 
(i=1)   
and  

Lignin 
(j=2) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−14.7300 −2.2304] 
[−0.2163 −1.8193] 
[−12.4908 −2.6885] 
[−7.4280 −1.3104] 
[−19.8691 −2.9209] 
[−27.7414 −2.2713] 
[−18.1180 −1.7214] 

[
0.6283 0.0001

0.6264
] [

131.06 9.0200
1.9178

] 

Viscosity 
(i=1)   
and  
γ-

cellulose 
(j=3) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−14.7300 −2.8093] 
[−0.2163 −2.9566] 
[−12.4908 −2.9132] 
[−7.4280 −3.2886] 
[−19.8691 −2.8587] 
[−27.7414 −3.2988] 
[−18.1180 −2.5204] 

[
0.6271  0.0001

 0.6264
] [

131.07 10.8395
3.0621

] 

Viscosity 
(i=1)   
and  
α-

cellulose 
 (j=4) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−14.7300 3.1036] 
[−0.2163 3.1652] 
[−12.4908 2.4100] 
[−7.4280 3.5200] 
[−19.8691 2.8387] 
[−27.7414 3.2634] 
[−18.1180 2.8136] 

[
0.6274−0.0001

0.6264
] [

131.06 −10.3872
3.6538

] 

Viscosity 
(i=1)   
and  

Copper 
Number 

(j=5) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−14.7300 −1.7644] 
[−0.2163 −1.6313] 
[−12.4908 −1.6325] 
[−7.4280 −1.4055] 
[−19.8691 −1.7749] 
[−27.7414 −1.6734] 
[−18.1180 −1.4051] 

[
0.6273  0.00003

0.6264
] [

131.07 5.7503
0.9340

] 

Viscosity 
(i=1)   
and  

Glucose 
(j=6) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−14.7300 4.0108] 
[−0.2163 2.9768] 
[−12.4908 3.4879] 
[−7.4280 4.0638] 
[−19.8691 3.5983] 
[−27.7414 3.8891] 
[−18.1180 2.5968] 

[
0.6272  0.0083

2.5053
] [

131.02 −12.6581
4.4274

] 
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Table 7.3(b). Pairwise parameter estimates (Continued) 

Variables 

Fixed Effects Parameter 
estimates 

Random Effects Parameter 
estimates 

Genotype 𝛉̂𝑖𝑗
T   𝑮̂𝑖𝑗 𝑹̂𝑖𝑗 

Lignin 
(i=2)   
and  
γ-

cellulose 
(j=3) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.2304 −2.8093] 
[−1.8193 −2.9566] 
[−2.6885 −2.9132] 
[−1.3104 −3.2886] 
[−2.9209 −2.8587] 
[−2.2713 −3.2988] 
[−1.7214 −2.5204] 

[
0.6263 0.0000

0.6263
] [

1.9180 1.9676
3.0622

] 

Lignin 
(i=2)   
and  
α-

cellulose 
 (j=4) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.2304 3.1036] 
[−1.8193 3.1652] 
[−2.6885 2.4100] 
[−1.3104 3.5200] 
[−2.9209 2.8387] 
[−2.2713 3.2634] 
[−1.7214 2.8136] 

[
0.6263 0.0000

0.6263
] [

1.9180 −1.8854
3.6540

] 

Lignin 
(i=2)   
and  

Copper 
Number 

 (j=5) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.2304 −1.7644] 
[−1.8193 −1.6313] 
[−2.6885 −1.6325] 
[−1.3104 −1.4055] 
[−2.9209 −1.7749] 
[−2.2713 −1.6734] 
[−1.7214 −1.4051] 

[
0.6263 0.0000

0.6263
] [

1.9180 1.2172
0.9340

] 

Lignin 
(i=2)   
and  

Glucose 
 (j=6) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.2304 4.0108] 
[−1.8193 2.9768] 
[−2.6885 3.3248] 
[−1.3104 4.0638] 
[−2.9209 3.5983] 
[−2.2713 3.8891] 
[−1.7214 2.5968] 

[
0.6263 0.0028

2.4933
] [

1.9180 −2.6945
4.5336

] 

γ-
cellulose 

(i=3)   
and  
α-

cellulose 
(j=4) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.8093 3.1036] 
[−2.9566 3.1652] 
[−2.9132 2.4100] 
[−3.2886 3.5200] 
[−2.8587 2.8387] 
[−3.2988 3.2634] 
[−2.5204 2.8136] 

[
0.6264 0.0000

0.6264
] [

3.0620 −3.1214
3.6538

] 
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Table 7.3(c). Pairwise parameter estimates (Continued) 

Variables 

Fixed Effects Parameter 
estimates 

Random Effects Parameter 
estimates 

Genotype 𝛉̂𝑖𝑗
T   𝑮̂𝑖𝑗 𝑹̂𝑖𝑗 

γ-
cellulose 

(i=3)   
and  

Copper 
Number 

(j=5) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.8093 −1.7644] 
[−2.9566 −1.6313] 
[−2.9132 −1.6325] 
[−3.2886 −1.4055] 
[−2.8587 −1.7749] 
[−3.2988 −1.6734] 
[−2.5204 −1.4051] 

[
0.6263 0.0000

0.6263
] [

3.0622 1.6174
0.9340

] 

γ-
cellulose 

(i=3)   
and  

Glucose 
(j=6) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−2.8093 4.0108] 
[−2.9566 2.9768] 
[−2.9132 3.4055] 
[−3.2886 4.0638] 
[−2.8587 3.5983] 
[−3.2988 3.8891] 
[−2.5204 2.5968] 

[
0.6264 −0.0053

2.5117
] [

3.0622 −3.3881
4.4173

] 

α-
cellulose 

 (i=4)   
and  

Copper 
Number 

(j=5) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[3.1036 −1.7644] 
[3.1652 −1.6313] 
[2.4100 −1.6325] 
[3.5200 −1.4055] 
[2.8387 −1.7749] 
[3.2634 −1.6734] 
[2.8136 −1.4051] 

[
0.6263 0.0000

0.6263
] [

3.6540 −1.6043
0.9340

] 

α-
cellulose 

 (i=4)   
and  

Glucose 
(j=6) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[3.1036 4.0108] 
[3.1652 2.9768] 
[2.4100 3.6128] 
[3.5200 4.0638] 
[2.8387 3.5983] 
[3.2634 3.8891] 
[2.8136 2.5968] 

[
0.6265 −0.0081

2.4965
] [

3.6540 3.8341
4.6570

] 

Copper 
number 
 (i=5)   
and  

Glucose 
(j=6) 

EDunnii 
EGrandis 
ESmithii 
ENitens 

GCG 
GUA 
GUW 

[−1.7644 4.0108] 
[−1.6313 2.9768] 
[−1.6325 3.6128] 
[−1.4055 4.0638] 
[−1.7749 3.5983] 
[−1.6734 3.8891] 
[−1.4051 2.5968] 

[
0.6263 0.0053

2.5054
] [

0.9340 −1.9626
4.5241

] 

 
The slope parameter of each variable for each of the seven genotypes is estimated 5 

times hence a final estimate would be an average of the five pairwise estimates. The 

average slope parameter estimates are presented in Table 7.4 below. The results in 

Table 7.4 show mean slope parameters (rates of change of the of the six chemical 

properties) and how they compare to each other (rank). The values are ranked in order 
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of magnitude or rate of change.  The steepest rate of change is given the rank of 1 

while the least steep rate of change is  given the rank of 7. After considering all the 

rankings, the average rank of each genotype over the six variables is calculated and 

this can be used to see which genotype, on average, has the slowest or highest rate 

of change (or reactivity) due to the various chemical pulping processes. Genotypes 

with closer ranks are more likely to be mixed during processing than those with ranks 

that are furthest apart.  

 

If all the genotypes behaved exactly the same during processing then they would have 

similar average ranks. If some of the genotypes are less reactive to chemical 

processing than others then there would be marked differences in their mean ranks. 

The rank total for each variable is 
𝑛(𝑛+1)

2
=
7(7+1)

2
= 28, which means that each 

genotype should have an average rank of 4 if the genotypes had equal rates of 

changes during chemical processing. The average ranks can be crudely used to group 

the seven genotypes according to their reactivity to chemical pulping.   

 

Table 7.4. Mean slope parameters for the seven genotypes 

Genotype Viscosity (Y1) Lignin (Y2) γ-Celluose (Y3) α-Cellulose (Y4) 
Copper Number 

(Y5) 
Glucose (Y6) Average 

Rank 
 Slope Rank Slope Rank Slope Rank Slope Rank Slope Rank Slope Rank 

EDunnii -14.7300 4 -2.2304 4 -2.8093 6 3.1036 4 -1.7644 2 4.0108 2 3.667 

EGrandis -0.2163 7 -1.8193 5 -2.9566 3 3.1652 3 -1.6313 5 2.9768 6 4.833 

ESmithii -12.4908 5 -2.6885 2 -2.9132 4 2.4100 7 -1.6325 4 3.4888 5 4.500 

ENitens -7.4280 6 -1.3104 7 -3.2886 2 3.5200 1 -1.4055 6 4.0638 1 3.833 

GCG -19.8691 2 -2.9209 1 -2.8587 5 2.8387 5 -1.7749 1 3.5983 4 3.000 

GUA -27.7414 1 -2.2713 3 -3.2988 1 3.2634 2 -1.6734 3 3.8891 3 2.167 

GUW -18.1180 3 -1.7214 6 -2.5204 7 2.8136 6 -1.4051 7 2.5968 7 6.000 

Average -14.3705  -2.1375  -2.9494  3.0164  -1.6124  3.5178   

Friedman’s test χ2 = 9.000, df=6, p-value=0.1736 

 
It is clear that GUA (average rank=2.167) is the least reactive genotype followed by 

GCG. In order of reactivity from the most reactive to the least reactive the genotypes 

can be arranged as 1.GUW, 2.EGrandis, 3.ESmitthii, 4.ENitens, 5.EDunnii, 6.GCG 

and 7.GUA. When mixing these genotypes for processing it is proposed that 

consideration be made to genotypes which are not too far apart in order of reactivity 

to chemical processing. It would be appropriate for example to mix GUW with 

EGrandis than GUW and GUA. It is important, however, to note that the slope 
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parameters obtained using the random coefficient models differ a great deal from the 

ones obtained using joint modelling. This might be because the joint model, which 

could not converge when the intercept was also fitted, is less accurate in its parameter 

estimates but all the same useful in the understanding of the intercorrelations between 

evolutions of the response variables.    

 

In order to test is there are significant differences in the ranking of the genotypes 

across the six chemical properties listed in Table 7.4 a Friedman’s test for a non-

parametric randomized block design was carried out. In this case the chemical 

properties were considered as blocking factor levels.  The Friedman’s test results 

indicate that there is significant genotype effect on slope parameters (Friedman’s χ2 = 

9.000, df=6, p-value=0.1736), meaning that the Friedman’s test is not able to separate 

the different genotypes in terms of their response to the chemical process. However, 

the differences in average ranks of the slopes can still be used as some indicators 

how mixable certain genotypes are are.    

7.4.5. Slope Covariances 

The covariance matrix of the slope parameters (G matrix) is estimated from the 

asymptotic distribution of the parameter estimates which was specified as;  

√𝑁(𝜱̂∗ −𝜱∗)~𝑁(𝟎, 𝑨  𝑱−1𝑲𝑱−1𝑨T). 

In order to obtain the covariance matrix estimate 𝑮̂ = 𝑨  𝑱−1𝑲𝑱−1𝑨T, there is need to 

first find the J, K and A matrices. Using the SAS code presented in Appendix A1.5, 

the 𝑮̂ matrix was obtained as  

𝑮̂ =

[
 
 
 
 
 
0.7257 0.0171 0.0476 −0.0334 −0.0053 −0.0234
0.0171 0.0010 0.0013 −0.0006 −0.0002 −0.0012
0.0476 0.0013 0.0056 −0.0030 −0.0008 −0.0016
−0.0334 −0.0006 −0.0030 0.0037 0.0002 0.0001
−0.0053 −0.0002 −0.0008 0.0002 0.0003 0.0002
−0.0234 −0.0012 −0.0016 0.0001 0.0002 0.0032 ]

 
 
 
 
 

 

 

It is assumed, for computational convenience, that all seven genotypes have the same 

covariance matrix for the six slope parameter estimates. This assumption could be 

relaxed for larger data sets which allow for the computation of such individual genotype 

covariance matrices. From the covariance matrix, we obtain the correlation matrix for 

the slope parameters calculated as  
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𝑪𝒐𝒓𝒓(𝜱̂∗) =  [𝒅𝒊𝒂𝒈(𝑮̂)]
−𝟏/𝟐

 𝑮̂ [𝒅𝒊𝒂𝒈(𝑮̂)]
−𝟏/𝟐

 

to give  

𝑪𝒐𝒓𝒓(𝜱̂∗) =

[
 
 
 
 
 

1 0.6513 0.7434 −0.6402 −0.3788 −0.4847
0.6513 1 0.5793 −0.2928 −0.4451 −0.6990
0.7434 0.5793 1 −0.6548 −0.6749 −0.3741
−0.6402 −0.2928 −0.6548 1 0.1836 0.0212
−0.3788 −0.4451 −0.6749 0.1836 1 0.2152
−0.4847 −0.6990 −0.3741 0.0212 0.2152 1 ]

 
 
 
 
 

 . 

The covariance matrix for the residual terms R, is obtained from the results in Tables 

7.3(a), (b) and (c) above by averaging values in the 𝐑̂𝑖𝑗 matrices that correspond to 

particular variables since every value is estimated five times in the pairwise fitting 

process. After averaging out the R values for each variable the covariance matrix for 

the residual terms for the six variables is given as  

𝑹̂ =

[
 
 
 
 
 
131.06 9.0200 10.8995 −10.3872 5.7503 −12.6581
9.0200 1.9180 1.9676 −1.8854 1.2172 −2.6945
10.8995 1.9676 3.0621 −3.1214 1.6174 −3.3881
−10.3872 −1.8854 −3.1214 3.6539 −1.6043 3.8341
5.7503 1.2172 1.6174 −1.6043 0.934 −1.9626
−12.6581 −2.6945 −3.3881 3.8341 −1.9626 4.5119 ]

 
 
 
 
 

. 

7.5. Discussion of results and conclusions 

It is essential to outline the value addition of the joint modelling procedure to the study 

at hand and to thet understanding of the chemical evolution of dissolving pulp. A key 

result in the joint modelling procedure is the understanding of the interrelations or 

correlations of the evolutions of the chemical properties. This is a useful insight into 

the understanding of the interdependence of the chemical properties as they evolve 

through the processing stages. It is noted from the matrix 𝑪𝒐𝒓𝒓(𝜱̂∗), that the evolution 

of viscosity is positively correlated to that of lignin (r=0.6513) and γ-cellulose 

(r=0.7434) and negatively correlated to that of α-cellulose (r=-0.6401) and to a lesser 

extent negatively correlated to the evolution of copper number (r=-0.3788) and glucose 

(r=-0.4847). This means that when targeting viscosity in the chemical process it is 

inevitable that lignin and γ-cellulose will also be targeted while α-cellulose copper 

number and glucose will be moving in the opposite direction. 

 

The other notable correlations in variable evolutions are the positive correlations 

between lignin and γ-cellulose (r=0.5793) and the negative correlation between lignin 
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and glucose (-0.6990). The variables γ-cellulose and α-cellulose (r=-0.6548), γ-

cellulose and copper number (r=-0.6749) are also negatively correlated. The 

correlations between the other variable evolutions were not so large, for example, α-

cellulose and glucose only had a correlation of r=0.0212 which means that the two 

variables cannot be targeted simultaneously in the chemical process.  

 

Because the joint model attempts to estimate so many parameters at the same time, 

it has an unfortunate trade-off of compromising on accuracy as evident in the disparity 

between its slope parameter estimates and those obtained using the random 

coefficient models. One would need a fairly large amount of data to have more useful 

joint modelling results. In short joint modelling requires larger data sets than the other 

procudures discussed in this study. It presents more exciting further analysis provided 

more data can be collected. The main addition of joint modelling in this case in the  

analysis of the correlations of evolutions of different chemical properties.   
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Chapter 8  

Discussions and Conclusion  

This chapter presents a summary of all the work that was conducted in this study, 

highlighting significant findings and value of the work covered. Limitations of the study 

and possible improvements and extensions are also suggested.  

 

The main focus of the study was to understand the behaviour of seven timber 

genotypes when going through the chemical pulping process with the prime objective 

of developing methods of grouping different timber genotypes into compatible groups 

of genotypes that can be optimally processed together. The main features of the data 

that presented a genotype mixing criteria are the evolution profiles of the chemical 

properties (variables) going chemical processing.  

 

In order to understand the behaviour of the seven genotypes studied, four related 

statistical methods were used, namely, random coefficients models, under the mixed 

models framework, piecewise linear regression models, which made use of the three 

inherent sub-processes in chemical pulping, a combination of piecewise linear 

regression models and kernel density estimation as a clustering (grouping) tool and 

joint modelling which sought to understand the joint evolution of the chemical 

properties over the processing stages.  

 

While the methods studied were specifically for timber chemical pulp data, they can 

also be extended to other materials under completely different industrial processes. It 

is a well-known fact that manufacturing systems can use raw materials from different 

sources with different characteristics that might affect the properties and quality of the 

final product. Such materials would need to be carefully scrutinised before they can 

me fed into the production system especially if there is need to mix them. There might 

be a need to identify source regions or varieties of the raw materials that can be 

optimally mixed during production.  
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The important results that came out of fitting random coefficient models to the data is 

that the higher the raw stage readings the higher the rates of change in the chemical 

properties over the processing stages where changes might be increases or 

decreases in the chemical properties studied. In a way, this meant that genotypes that 

started with similar readings at the raw stages tended to behave in a similar way during 

the processing stages hence such genotypes are highly mixable. 

 

The random coefficient models also yielded a mixing criteriafor the different genotypes 

based on the average ranking of the slope parameters (rates of change) for the seven 

variables studied. The random coefficient results summarised in Table 7.1 indicate 

that the genotypes GUA and GUW are the least mixable if we are to compare their 

average rankings which are poles apart. 

Table 8.1. Average slope genotype ranks based on random coefficient models. 

Genotype E.dunnii E.grandis E.smithii E.nitens GCG GUA GUW 

Average Rank 4.71 3.29 3.86 4.57 4.14 5.57 1.86 

 

 For a much broader problem with more genotypes or categories of any raw materials 

that feed into a manufacturing process, the ranking criteria can be very useful in 

deciding which materials to mix optimally. In this problem, processing stage was 

considered as a time variable which might be problematic since the intervals between 

stages might not be uniform. The methods developed here might be more realistic in 

problems with an interval scaled time variable.   

 

Chapter 4, which is a further development to Chapter 3, identified the three sub-

processes that make up the whole process of chemical processing. This led to a time 

coding method to account for these sub-processes. This meant that the performance 

of each sub-process could now be evaluated individually. Differences in genotype 

behaviours per sub-process provided a deeper understanding of the different 

genotypes throughout the chemical pulping process hence a more accurate grouping 

mechanism. Piecewise linear regression modelling was used to model each sub-

process as a linear component of a much bigger nonlinear process. The models had 

the capability to outline the effect of each sub-process of chemical pulping on the 

seven reactivity variables studied. The ability of the model to state, by the model 



161 

 

 

 

parameters, the effect of each sub-process on the chemical properties is a value 

addition to the study of chemical pulping processes. This can be extended to other 

types of pulp processing with known sub-processes, for example, kraft pulping and  

neutral sulphite pulping.  

 

Based on the results from the piecewise linear regression models it was established 

that the six chemical properties lignin, γ-cellulose, α-cellulose, copper numbers, 

glucose and xylose were important classification variables for species/genotypes while 

viscosity was not. This means that when one wants to compare or group wood 

species/genotypes using their chemical properties for the purpose of deciding which 

ones are mixable during processing, they do not need to consider viscosity.  

 

Using kernel density estimation, a mixing scale that can be used to determine if any 

two genotypes can be optimally mixed for processing was developed. The scale was 

based on the rates of response of the genotypes to the two key sup-processes of 

delignification and bleaching. The behaviour of the genotypes, as measured by the 

rates of change in the chemical properties of lignin, α-cellulose, γ-cellulose, viscosity, 

copper numbers, glucose and xylose, were used to develop a mixing matrix for the 

genotypes. This scale can be adopted for similar raw material mixing problems.  

   

The underlying assumption in this study is that all the chemical properties are of equal 

importance and no single chemical property can override the values in the other 

properties. The chemical pulping process targets the production of higher levels of α-

cellulose but this chemical property did not produce different genotype clusters 

indicating that all genotypes had similar response profiles to the sub-processes of 

bleaching and delignification as far as α-cellulose is concerned. This means that, for 

the purpose of determining mixable genotypes, α-cellulose is not an important 

variable. Viscosity and copper numbers also came up as not important when 

determining which genotypes can be mixed during processing.   

 

The chemical properties of lignin, γ-Cellulose, glucose and xylose were deemed 

important determinants of how mixable timber genotypes could be. These are not the 

only chemical properties involved in chemical pulping hence there is need to 
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incorporate as many properties as possible in order to get a more accurate 

classification method. A study incorporating as many chemical properties as possible 

is a possible area of further studies.  

 

Mixing of timber varieties during processing will always occur especially when one 

genotype alone does not have economic quantities for processing. The problem can 

also be compounded by the current drive for materials recycling. It is reasonable to 

mix genotypes or materials for processing after considering how they individually 

behave during chemical processing so that only those materials that have many 

properties in common are optimally mixed during processing. The random coefficient 

model and the piecewise linear regression model coupled with kernel density 

estimation provided a matrix that can be used for optimally mixing different genotypes 

for chemical processing. However, the variables where not considered together, 

especially as far as their inter-correlations are concerned. Joint modelling put an 

additional dimension to the study by considering all the variables together and how 

they interact with each other during processing. The coorelations of the evolutions of 

different chemical properties, as analysed using joint modelling, indicated which 

chemical properties can be targeted together, that is those with high correlations in 

their evolutions over the stages of chemical processing. The key result of Joint 

modelling was that it brought out a very insightful understanding of the 

interdependence of the variables as they evolve over the processing stages. Using 

joint modelling it was discovered that the evolution of viscosity is positively correlated 

with that of lignin (r=0.6513) and γ-cellulose (r=0.7434) and negatively correlated to 

that of α-cellulose (r=-0.6401). There was also notable positive correlations in variable 

evolutions between lignin and γ-cellulose (r=0.5793) and negative correlation between 

lignin and glucose (-0.6990). The variables γ-cellulose and α-cellulose (r=-0.6548), γ-

cellulose and copper number (r=-0.6749) are also negatively correlated. The 

correlations between the other variable evolutions were not so large, for example, α-

cellulose and glucose only had a correlation of r=0.0212. An understanding of this 

relationships in chemical changes helps the manufacturer to what would happen to 

other chemical properties when one particular property is being targeted.  

The main limitation of the joint modelling method was its computational challenges. 

Because in joint modelling many parameters are estimated at the same time, there will 
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always be convergence problems. In fitting the joint model in this study, it was not 

possible to estimate both the intercept and slope parameters, hence the use of 

intercept corrected data. The results obtained using this approach, while providing a 

useful insight into the inter-correlations between response variables, may not be as 

accurate as those obtained using the other methods discussed. This is an unfortunate 

trade-off that compromises accuracy for more understanding of correlations between 

response variables. This is evident in the disparity between slope parameter estimates 

obtained using joint modelling and those obtained using the random coefficient and 

piecewise linear regression models. The main addition of joint modelling in this case 

is the analysis of the correlations of evolutions between different variables.  

When all methods are considered it would seem tah the genotype Enitens is far 

removed from the other genotypes. When considering which genotypes to mix during 

processing Enitens should be processed on its own at all costs as it shown to be very 

different from the other genotypes in both the random coefficient and thye piecewise 

linear regression models.  

A more comprehensive dataset with more experimental units would greatly improve 

the acturacy of these findings. The data expansion should also include a greater 

number of chemical properties and genotypes and even include recycling materials. 

The methods discussed in this study can also be adopted for other non-timber 

processes.  

This study suggested a novel method of mixing raw materials optimally, for production 

systems that get their raw materials from various sources. Such sources  might be 

producing raw materials of different quality and with different chemical properties. The 

use of Kernel density estimation as a clustering tool and the use of piecewise linear 

regression as a modelling tool for manufacturing processes with different sub-

processes is novel to the best of my knowledge. The study also made use of various 

known data analysis techniques that have been applied in other fields, particularly in 

disease modelling, to model manufacturing processes. Methos such joint modelling, 

have been used extensively to model medical data and this study sought to make use 

of such methods for the modelling of manufacturing proceses. 
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 Appendices 

A.1. Model Diagnostics – Residual Analysis 
 

A1.1. Residuals for Random Coefficient Models - Chapter 3 
 

 
 

Figure A1.1. Residual plots for the random coefficient model for viscosity. 
 

 
 

Figure A1.2. Residual plots for the random coefficient model for lignin. 
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Figure A1.3. Residual plots for the random coefficient model for γ-cellulose. 
 

 

 

 

 
 

Figure A1.4. Residual plots for the random coefficient model for α-cellulose. 
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Figure A1.5. Residual plots for the random coefficient model for copper number. 
 

 

 
 

Figure A1.6. Residual plots for the random coefficient model for glucose. 
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Figure A1.7. Residual plots for the random coefficient model for xylose. 
 

 

A1.2. Residuals for Piecewise Linear Regression Models - Chapter 4 
 

 

 
 

Figure A1.8. Residual plots for the piecewise linear regression mode for viscosity. 
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Figure A1.9. Residual plots for the piecewise linear regression mode for lignin. 
 

 

 
 

Figure A1.10. Residual plots for the piecewise linear regression mode for γ-cellulose. 
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Figure A1.11. Residual plots for the piecewise linear regression mode for α-cellulose. 
 

 

 
 

Figure A1.12. Residual plots for the piecewise linear regression mode for copper number. 
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Figure A1.13. Residual plots for the piecewise linear regression mode for glucose. 
 

 

 
 

Figure A1.14. Residual plots for the piecewise linear regression mode for xylose. 
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A.2. SAS codes used 
 

A2.1. SAS Codes for exploratory data analysis 
 
/***********************************************************************/ 

/*************                                            **************/ 

/*************    EXPLORATORY DATA ANALYSIS PLOTS         **************/ 

/*************                                            **************/ 

/***********************************************************************/ 

 

Proc Sort data=new.alpha96joint; 

by Genotype Stage1; 

run;  

 

ods html close; 

ods html; 

goptions reset=all HBY=2.3; 

axis1  label=(a=90 h=1.9 'Viscosity'); 

axis2  label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=1 i=spline r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Viscosity*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'Lignin'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Lignin*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'Y_cellulose'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Y_cellulose*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'a_cellulose'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot a_cellulose*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  
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quit; 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'Copper_No'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Copper_No*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'Glucose'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Glucose*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

 

goptions reset=all HBY=2.3; 

axis1 label=(a=90 h=1.9 'Xylose'); 

axis2 label=(a=0 h=1.9 'Processing Stage'); 

symbol1 c=black v=star h=0.8 i=j r=10; 

Proc Gplot data=new.alpha96joint; 

by Genotype; 

plot Xylose*Stage1=Sample / vaxis=axis1 haxis=axis2 nolegend; 

symbol i=spline; 

run;  

quit; 

ods html close; 

 

 

/************************************************************************/ 

/*************                                             **************/ 

/*************               SCORRELATIONS                 **************/ 

/*************                                             **************/ 

/************************************************************************/ 

 

ods html; 

ods graphics on; 

title 'Correlations of Chemical properties'; 

Proc corr data=new.alpha96jointcorr plots=matrix(histogram); /* Variable 

correlations*/   

var Viscosity  Lignin a_cellulose Y_cellulose Copper_No Glucose Xylose; 

run; 

ods graphics off; 

ods html close; 

 

/* For stage correlations*/ 

 

Data new.Visco; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

60.20370192 55.98911859 51.58001603 58.58270833 34.04086539 34.07328526 

67.49817308 67.47512821 69.39730769 43.08333333 29.66121795 27.73903846 

71.84974359 67.57455128 59.88583333 52.92621795 37.31679487 30.55602564 
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54.1411859 53.97908654 55.1786218 48.95400641 39.22804487 33.13310897 

57.99915064 52.62794872 47.19282051 34.69865385 31.45083333 32.11365385 

57.99915064 54.64955128 46.23173077 33.43929487 30.92057692 27.77217949 

36.01847756 42.14583333 36.4399359 44.73942308 35.82395833 33.58698718 

61.735 77.95 58.375 39.01 35.925 35.58 

65.48666667 58.445 43.91 43.74 33.355 31.675 

58.64754808 46.43057692 46.56314103 36.15685897 30.72173077 27.2750641 

59.95211539 57.26769231 36.42198718 50.73891026 38.97384615 36.3225641 

64.64990385 52.37807692 45.14524039 66.74091346 53.61211539 45.83081731 

30.18290064 34.52716346 30.08564103 40.42758013 32.67923077 29.82628205 

30.18290064 34.69865385 33.43929487 42.55307692 29.66121795 28.73326923 

30.18290064 36.42198718 28.48572115 40.58615385 32.97625 30.57673077 

41.52985577 48.17592949 36.24541667 40.36274039 30.96097756 32.80891026 

40.55725962 41.98967949 40.10064103 46.86141026 32.41192308 29.39608974 

40.55725962 42.85134615 35.9248718 47.8225 35.09634615 32.0473718 

34.04086539 39.58466346 37.12075321 35.46733974 31.47969551 32.4198718 

34.04086539 31.12519231 34.313125 38.94076923 41.30600962 35.95850962 

34.04086539 37.05543269 31.33086539 36.23274039 33.31903846 27.45735577 

60.94778846 59.81658654 40.65471154 46.10504808 42.47149039 45.83081731 

60.94778846 42.54004808 46.17360577 35.03298077 24.33798077 26.32615385 

51.28115385 84.46307692 63.93004808 26.94317308 23.85807692 23.06966346 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Viscosity by Stage of processing'; 

Proc corr data=new.Visco; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of Viscosity by Stage of processing'; 

Proc sgscatter data=new.Visco; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

Data new.Lignin; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

3.55 1.0295 0.44375 0.26625 0.2485 0.19525 

3.49675 1.93475 1.065 0.55025 0.355 0.30175 

4.70375 1.89925 0.97625 0.58575 0.33725 0.19525 

4.98775 2.53825 1.15375 0.639 0.23075 0.213 

4.98775 2.53825 1.42 0.94075 0.3905 0.30175 

4.31325 2.3785 1.57975 1.04725 0.44375 0.3905 

2.556 1.04725 0.781 0.4615 0.19525 0.213 

3.053 1.8105 1.08275 0.568 0.33725 0.30175 

3.053 1.47325 0.6745 0.426 0.19525 0.19525 

4.7215 2.28975 1.136 1.08275 0.69225 0.62125 

4.7215 2.11225 1.75725 1.54425 0.76325 0.65675 

3.24825 2.272 1.72175 1.562 0.86975 0.72775 

3.31925 1.2425 0.65675 0.62125 0.2485 0.213 

3.31925 1.278 0.83425 0.65675 0.33725 0.23075 

3.31925 1.22475 0.69225 0.639 0.40825 0.30175 

2.1655 0.923 0.37275 0.355 0.2485 0.26625 

2.53825 1.136 0.7455 0.58575 0.3195 0.26625 

2.53825 0.94075 0.40825 0.37275 0.23075 0.213 
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4.56175 1.3845 0.568 0.44375 0.2485 0.23075 

4.56175 1.68625 1.11825 0.86975 0.47925 0.40825 

4.56175 1.5265 0.71 0.6745 0.19525 0.1775 

4.473 2.64475 1.75725 1.33125 0.51475 0.55025 

4.473 2.7335 1.349 0.7455 0.3905 0.33725 

5.02325 2.50275 1.5975 0.6745 0.3195 0.355 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Lignin by Stage of processing'; 

Proc corr data=new.Lignin; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of Lignin by Stage of processing'; 

Proc sgscatter data=new.Lignin; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

 

Data new.Y_cellulose; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

7.444246831 5.832626738 5.955764175 3.119661228 3.245773603 3.179965046 

8.19255692 6.163319193 6.236572932 3.60873796 3.755838173 3.631465662 

7.840911097 6.360080456 6.496855791 3.439669308 3.331154331 3.392082058 

7.256298842 5.513821446 5.717047469 3.419030386 3.388697222 3.394597275 

7.256298842 5.066362764 5.657436184 3.354482888 3.443507079 3.157075237 

7.256298842 5.104294408 5.231438749 3.050955852 2.949838553 2.965278319 

6.198448733 4.845267459 4.995266058 2.688864453 2.604643978 2.68863947 

6.198448733 5.297829196 5.527803678 3.051283103 3.137998898 3.17810419 

6.198448733 5.135322261 5.420963646 3.101300235 2.966009445 2.970555013 

5.961152449 6.772441461 6.902590532 3.641435856 3.695177112 3.629082523 

5.961152449 6.677611252 6.64055757 3.734667931 3.509637918 3.666294972 

8.764591381 7.142079054 7.006361482 4.095157735 4.017181758 3.972624096 

6.767787701 4.928199661 5.037396899 2.795258861 2.837204912 2.842491634 

6.767787701 4.907339336 5.056747784 2.966669137 3.156446776 3.097500345 

8.197444484 4.869369997 4.92452171 2.840620361 2.898422446 2.82183378 

7.552976211 6.024302387 6.024302387 3.2235283 3.245141853 3.286146372 

7.552976211 5.605301451 5.794238223 2.836387198 3.097253112 3.204134759 

7.552976211 5.869847147 5.721715085 3.051370222 2.938606916 3.051796299 

6.907996267 5.669087103 5.62962223 3.473588945 3.242199676 3.181670746 

6.907996267 5.377767849 5.488206692 3.100693844 3.340529291 3.269020478 

6.907996267 5.715927417 5.616701614 3.290932744 3.028993844 3.223461322 

8.655234657 6.61856377 6.668895801 3.562375436 3.865833126 3.74305252 

8.655234657 6.347720629 6.898545319 4.081749138 4.285530386 3.944236646 

7.774692368 7.282940236 7.664950213 4.966289177 5.003707684 5.131144073 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Y-cellulose by Stage of processing'; 

Proc corr data=new.Y_cellulose; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 
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run; 

 

title 'Panel plots of Y_cellulose by Stage of processing'; 

Proc sgscatter data=new.Y_cellulose; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

Data new.a_cellulose; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of a-cellulose by Stage of processing'; 

Proc corr data=new.a_cellulose; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of a-cellulose by Stage of processing'; 

Proc sgscatter data=new.a_cellulose; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

 

 

Data new.a_cellulose; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

91.2641823 92.79320488 92.66654215 95.82321219 95.41928861 95.31161168 

90.43064346 92.71787511 92.56481755 95.27049343 94.92861695 94.95092844 

90.72798054 92.16247062 92.16764054 95.28221354 95.27225808 95.1793523 

91.3750945 92.86095517 92.73018731 95.3472533 95.09495488 95.04487271 

91.3750945 93.51852914 93.15309989 95.51090967 95.15452438 95.47034567 

91.3750945 93.52914099 93.31122396 95.82419004 95.59090526 95.58342429 

91.89004605 93.12709256 93.05639772 95.90761123 95.73789338 95.52495078 

91.89004605 93.08516485 92.79579597 95.69719286 95.49159433 95.15808949 

91.89004605 93.22580558 92.97699217 95.42707898 95.78526221 95.68307781 

91.64867082 92.10928996 91.95318284 94.93963263 94.8987425 94.80643907 

91.64867082 91.55930208 91.40442943 95.0649821 95.08404954 94.6942019 

89.2415862 91.00209894 91.06115555 94.12515455 94.15952493 94.03410724 

91.69350867 93.44390974 93.00054441 95.7267094 95.67296495 95.61852301 

91.69350867 93.76022529 93.54282156 95.96696361 95.64417 95.71901051 

90.38069919 93.74327062 93.49397958 96.11705089 96.02973519 96.02916482 

90.97547132 92.38342571 92.38342571 95.51565164 95.43856949 95.41233476 

90.97547132 92.84822761 92.78332007 96.0037347 95.67298966 95.44342359 

90.97547132 92.78341287 92.8184224 95.69141848 95.98355622 95.89515492 

91.19360943 92.04570445 92.4941548 94.83605039 94.9077527 94.76984661 

91.19360943 93.31393969 93.07854863 95.69825476 95.5812128 95.52675514 

91.19360943 92.95134188 93.29850705 95.73282945 95.80475604 95.73745544 

89.83018796 92.04589021 92.00510643 95.17754546 95.01780564 95.09080336 
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89.83018796 92.36795202 91.9648191 94.39389215 94.31448276 94.91841831 

88.55022914 91.73376142 91.48265345 93.30608587 93.17038325 93.0984262 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of a-cellulose by Stage of processing'; 

Proc corr data=new.a_cellulose; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of a-cellulose by Stage of processing'; 

Proc sgscatter data=new.a_cellulose; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

 

 

 

Data new.CopperNo; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

2.983941911 1.439746162 1.602044899 0.385404032 0.471631117 0.465488988 

2.918496301 1.415934273 1.500919547 0.385375263 0.440994771 0.410842556 

3.094960704 1.517613466 1.69410782 0.436319898 0.552831599 0.54236378 

3.23949014 1.409714064 1.633605022 0.369659175 0.466380699 0.430492125 

3.23949014 1.425652766 1.619612431 0.45619008 0.51745626 0.445978997 

3.025387516 1.555870339 1.73206398 0.430840892 0.466464579 0.486641273 

2.589785893 1.479763665 1.67605045 0.420886048 0.395587361 0.400471409 

2.412331478 1.375879884 1.527531262 0.375065715 0.446041596 0.496938659 

2.412331478 1.41683946 1.627195164 0.456798036 0.542240169 0.53769944 

3.051515713 1.90790007 2.038284048 0.729982906 0.684449655 0.674263708 

3.051515713 1.752823865 1.90615615 0.547206586 0.451415902 0.555620402 

3.216982869 1.911039489 1.956659415 0.802046689 0.573397998 0.588209487 

2.886419312 1.517794143 1.695777037 0.41114236 0.441608383 0.421270736 

2.886419312 1.562234923 1.668327374 0.604229768 0.618696296 0.608090593 

2.886419312 1.288362597 1.416387819 0.324730456 0.319507712 0.324762842 

2.423291866 1.648328671 1.790369608 0.461550248 0.593264072 0.558302742 

2.423291866 1.649051606 1.816061316 0.476270221 0.516463216 0.487096858 

2.423291866 1.539060941 1.644306426 0.420445532 0.50713806 0.5020881 

3.06170101 1.729027392 1.89036876 0.694447907 0.725300481 0.704690907 

3.06170101 1.744547717 1.896427522 0.685087713 0.64956904 0.613401958 

3.06170101 1.67943229 1.749946227 0.617644673 0.639491791 0.593520574 

2.871251851 1.637032345 1.71521764 0.648822393 0.522701938 0.53241955 

2.871251851 1.455776037 1.612394929 0.416014205 0.481756943 0.456338439 

2.91504259 1.164998947 1.454816464 0.288739178 0.380257653 0.349393659 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Copper Number by Stage of processing'; 

Proc corr data=new.CopperNo; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 
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title 'Panel plots of Copper Number by Stage of processing'; 

Proc sgscatter data=new.CopperNo; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 

 

 

 

 

 

 

Data new.Glucose; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

91.41643025 93.49966788 93.9551139 95.83705704 96.18244143 96.24978945 

90.51375655 92.72447405 92.96597755 95.27653184 94.81662328 95.91248391 

88.19480858 92.8189642 93.40436608 95.5821175 95.41330985 95.59941718 

89.6185200 93.60185059 93.27640545 95.42465017 95.50085434 95.63013473 

89.618520 93.10553488 93.74053164 94.95250166 95.43837379 95.85668841 

89.618520 93.4337923 93.60201527 95.01383588 94.61653607 94.75363788 

93.69456541 95.21858953 95.93219928 97.06508746 97.18057746 96.22338605 

91.83305118 94.60825693 94.98945815 96.48753039 96.59605814 96.27729676 

91.83305118 94.66022753 95.93094021 96.41019407 96.42064804 96.39347197 

90.17495995 92.03027965 92.40861469 95.54583806 95.4781843 95.80440866 

90.17495995 92.33695647 92.5364037 95.01566174 95.38170551 95.42409311 

90.08840244 92.775374 93.05792794 95.51676687 95.84630355 95.92018849 

92.00859522 94.39896214 94.97272673 96.83877177 97.08850659 96.44690536 

92.00859522 94.28884928 94.67431797 96.43121498 96.24706049 96.41175935 

92.00859522 94.84849889 95.21881947 96.45590655 96.50347865 96.27617906 

89.71206918 93.53102431 93.88900786 95.8808335 96.36433044 95.87611291 

89.71206918 92.9215883 93.67574033 95.52413029 95.98776156 95.6658206 

89.71206918 93.45143932 93.91396306 95.44730487 95.62775483 96.05787398 

89.81251007 92.78364608 92.98963031 95.6796165 95.85869633 95.6793134 

89.81251007 92.77554431 93.24778197 95.79514604 96.0960548 95.71141228 

89.81251007 93.63946777 93.85067063 95.74400599 95.8158388 95.72971431 

91.76843871 92.19385166 93.15202803 94.40185582 94.66289334 94.6600776 

91.76843871 93.03737717 93.11693196 95.60825309 95.43535323 96.24078161 

93.8543 91.46790392 91.93004408 92.58554837 94.89432911 94.57608046 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Glucose by Stage of processing'; 

Proc corr data=new.Glucose; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of Glucose by Stage of processing'; 

Proc sgscatter data=new.Glucose; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 
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Data new.Xylose; 

Input Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

cards; 

3.787674857 3.469972593 3.314063025 1.915584802 1.985317456 1.936538636 

3.987495931 3.741126028 3.93367005 2.397594607 2.637797671 2.161451074 

5.243348146 3.612751317 3.538670323 2.296422976 2.436025241 2.26324019 

3.927035649 2.958743126 3.252347076 2.160562144 2.194415695 2.367839695 

3.927035649 3.168177811 3.219334523 2.11715572 2.31207402 2.159905035 

3.927035649 2.969320532 2.816539761 2.34063289 2.568071651 2.835219881 

2.694322695 1.868190422 1.988545243 1.244346161 1.322481164 1.398130234 

3.519228035 2.478753412 2.480860384 1.644209325 1.721155275 1.541378278 

3.519228035 2.477071399 1.988912883 1.633094781 1.623709039 1.58279016 

5.037537188 4.183264488 4.230234542 2.644178022 2.701796186 2.48338552 

5.037537188 4.131835811 4.009873379 2.616049391 2.748658266 2.417618062 

4.065873329 2.883776011 2.889005564 1.530774903 1.547074616 1.474842376 

3.366807067 2.766836372 2.742864388 1.519347789 1.472191178 1.643881725 

3.366807067 2.872402103 2.901187492 1.895191466 1.962895408 1.721683903 

3.366807067 2.551617921 2.498394116 1.69326226 1.742862973 1.730657525 

5.938887225 3.553621841 3.482621261 2.361681535 1.836481137 2.295950401 

5.938887225 3.547106501 3.308687653 2.497848787 2.377123803 2.1882355 

5.938887225 3.592749153 3.532841811 2.484703954 2.63784431 2.194821398 

5.254289384 3.647750217 3.573849348 1.888180591 1.848699778 2.198961541 

5.254289384 3.449216158 3.706059775 2.023018001 1.986503856 2.196629434 

5.254289384 3.562388171 3.557082193 2.21172611 2.324747963 2.259633114 

4.398619425 3.937768829 3.555235642 2.885982991 2.871018379 2.786300295 

4.398619425 3.074284025 3.402150453 2.001729038 2.016323724 1.519058856 

3.117236 4.715413319 4.446638148 4.365089648 3.073931629 3.237424665 

; 

run; 

 

ods html; 

ods graphics on; 

title 'Correlations of Xylose by Stage of processing'; 

Proc corr data=new.Xylose; 

var Stage1 Stage2 Stage3 Stage4 Stage5 Stage6; 

run; 

 

title 'Panel plots of Xylose by Stage of processing'; 

Proc sgscatter data=new.Xylose; 

matrix Stage1 Stage2 Stage3 Stage4 Stage5 Stage6/ 

diagonal=(histogram normal) ellipse; 

run; quit; 

ods graphics off; 

ods html close; 
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A2.2. SAS Codes for Random Coefficient Models 
 

libname new 'C:\PulpData\SAS FILES\'; 

data new.Intercepts;  

set new.alpha96; 

Stage2=Stage1*Stage1; 

Stage3=Stage1*Stage1*Stage1; 

run;  

 

ods html; /* opens new output content*/ 

proc mixed data = new.Intercepts covtest;/* to fit the RANDOM COEFFICIENT 

model Lignin*/ 

class Genotype Sample; 

model  Lignin = Genotype Genotype*Stage1 Genotype*Stage2/solution; 

random intercept Stage1 Stage2 / type=un subject=sample G Gcorr; 

ods output solutionf=fixed solutionr=random; 

ESTIMATE "Intercept: EDunnii vs Egrandis" Genotype  1 -1  0  0  0  0  0; 

ESTIMATE "Intercept: EDunnii vs ESmithii" Genotype  1  0 -1  0  0  0  0; 

ESTIMATE "Intercept: EDunnii vs ENitens"  Genotype  1  0  0 -1  0  0  0; 

ESTIMATE "Intercept: EDunnii vs GCG"      Genotype  1  0  0  0 -1  0  0; 

ESTIMATE "Intercept: EDunnii vs GUA"      Genotype  1  0  0  0  0 -1  0; 

ESTIMATE "Intercept: EDunnii vs GUW"      Genotype  1  0  0  0  0  0 -1; 

 

ESTIMATE "Intercept: EGrandis vs ESmithii" Genotype 0  1 -1  0  0  0  0; 

ESTIMATE "Intercept: EGrandis vs ENitens"  Genotype 0  1  0 -1  0  0  0; 

ESTIMATE "Intercept: EGrandis vs GCG"      Genotype 0  1  0  0 -1  0  0; 

ESTIMATE "Intercept: EGrandis vs GUA"      Genotype 0  1  0  0  0 -1  0; 

ESTIMATE "Intercept: EGrandis vs GUW"      Genotype 0  1  0  0  0  0 -1; 

 

ESTIMATE "Intercept: Smithii vs ENitens"  Genotype  0  0  1 -1  0  0  0; 

ESTIMATE "Intercept: Smithii vs GCG"      Genotype  0  0  1  0 -1  0  0; 

ESTIMATE "Intercept: Smithii vs GUA"      Genotype  0  0  1  0  0 -1  0; 

ESTIMATE "Intercept: Smithii vs GUW"      Genotype  0  0  1  0  0  0 -1; 

 

ESTIMATE "Intercept: Enitens vs GCG"      Genotype  0  0  0  1 -1  0  0; 

ESTIMATE "Intercept: Enitens vs GUA"      Genotype  0  0  0  1  0 -1  0; 

ESTIMATE "Intercept: Enitens vs GUW"      Genotype  0  0  0  1  0  0 -1; 

 

ESTIMATE "Intercept: GCG vs GUA"      Genotype      0  0  0  0  1 -1  0; 

ESTIMATE "Intercept: GCG vs GUW"      Genotype      0  0  0  0  1  0 -1; 

 

ESTIMATE "Intercept: GUA vs GUW"      Genotype     0  0  0  0  0  1 -1; 

/*-------------------------------------------------------------------------

-----*/ 

ESTIMATE "Slope: EDunnii vs Egrandis" Genotype*Stage1  1 -1  0  0  0  0  0; 

ESTIMATE "Slope: EDunnii vs ESmithii" Genotype*Stage1  1  0 -1  0  0  0  0; 

ESTIMATE "Slope: EDunnii vs ENitens"  Genotype*Stage1  1  0  0 -1  0  0  0; 

ESTIMATE "Slope: EDunnii vs GCG"      Genotype*Stage1  1  0  0  0 -1  0  0; 

ESTIMATE "Slope: EDunnii vs GUA"      Genotype*Stage1  1  0  0  0  0 -1  0; 

ESTIMATE "Slope: EDunnii vs GUW"      Genotype*Stage1  1  0  0  0  0  0 -1; 

 

ESTIMATE "Slope: EGrandis vs ESmithii" Genotype*Stage1 0  1 -1  0  0  0  0; 

ESTIMATE "Slope: EGrandis vs ENitens"  Genotype*Stage1 0  1  0 -1  0  0  0; 

ESTIMATE "Slope: EGrandis vs GCG"      Genotype*Stage1 0  1  0  0 -1  0  0; 

ESTIMATE "Slope: EGrandis vs GUA"      Genotype*Stage1 0  1  0  0  0 -1  0; 

ESTIMATE "Slope: EGrandis vs GUW"      Genotype*Stage1 0  1  0  0  0  0 -1; 

 

ESTIMATE "Slope: Smithii vs ENitens"  Genotype*Stage1  0  0  1 -1  0  0  0; 

ESTIMATE "Slope: Smithii vs GCG"      Genotype*Stage1  0  0  1  0 -1  0  0; 

ESTIMATE "Slope: Smithii vs GUA"      Genotype*Stage1  0  0  1  0  0 -1  0; 

ESTIMATE "Slope: Smithii vs GUW"      Genotype*Stage1  0  0  1  0  0  0 -1; 
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ESTIMATE "Slope: Enitens vs GCG"      Genotype*Stage1  0  0  0  1 -1  0  0; 

ESTIMATE "Slope: Enitens vs GUA"      Genotype*Stage1  0  0  0  1  0 -1  0; 

ESTIMATE "Slope: Enitens vs GUW"      Genotype*Stage1  0  0  0  1  0  0 -1; 

 

ESTIMATE "Slope: GCG vs GUA"      Genotype*Stage1      0  0  0  0  1 -1  0; 

ESTIMATE "Slope: GCG vs GUW"      Genotype*Stage1      0  0  0  0  1  0 -1; 

 

ESTIMATE "Slope: GUA vs GUW"      Genotype*Stage1      0  0  0  0  0  1 -1; 

/*-------------------------------------------------------------------------

*/ 

ESTIMATE "Curvature: EDunnii vs Egrandis" Genotype*Stage1 1 -1 0 0 0 0 0; 

ESTIMATE "Curvature: EDunnii vs ESmithii" Genotype*Stage1 1 0 -1 0 0 0 0; 

ESTIMATE "Curvature: EDunnii vs ENitens"  Genotype*Stage1 1 0 0 -1 0 0 0; 

ESTIMATE "Curvature: EDunnii vs GCG"      Genotype*Stage1 1 0 0 0 -1 0 0; 

ESTIMATE "Curvature: EDunnii vs GUA"      Genotype*Stage1 1 0 0 0 0 -1 0; 

ESTIMATE "Curvature: EDunnii vs GUW"      Genotype*Stage1 1 0 0 0 0 0 -1; 

 

ESTIMATE "Curvature: EGrandis vs ESmithii" Genotype*Stage1 0 1 -1 0 0 0 0; 

ESTIMATE "Curvature: EGrandis vs ENitens"  Genotype*Stage1 0 1 0 -1 0 0 0; 

ESTIMATE "Curvature: EGrandis vs GCG"      Genotype*Stage1 0 1 0 0 -1 0 0; 

ESTIMATE "Curvature: EGrandis vs GUA"      Genotype*Stage1 0 1 0 0 0 -1 0; 

ESTIMATE "Curvature: EGrandis vs GUW"      Genotype*Stage1 0 1 0 0 0 0 -1; 

 

ESTIMATE "Curvature: Smithii vs ENitens"  Genotype*Stage1 0 0 1 -1 0 0 0; 

ESTIMATE "Curvature: Smithii vs GCG"      Genotype*Stage1 0 0 1 0 -1 0 0; 

ESTIMATE "Curvature: Smithii vs GUA"      Genotype*Stage1 0 0 1 0 0 -1 0; 

ESTIMATE "Curvature: Smithii vs GUW"      Genotype*Stage1 0 0 1 0 0 0 -1; 

 

ESTIMATE "Curvature: Enitens vs GCG"      Genotype*Stage1 0 0 0 1 -1 0 0; 

ESTIMATE "Curvature: Enitens vs GUA"      Genotype*Stage1 0 0 0 1 0 -1 0; 

ESTIMATE "Curvature: Enitens vs GUW"      Genotype*Stage1 0 0 0 1 0 0 -1; 

 

ESTIMATE "Curvature: GCG vs GUA"      Genotype*Stage1     0 0 0 0 1 -1 0; 

ESTIMATE "Curvature: GCG vs GUW"      Genotype*Stage1     0 0 0 0 1 0 -1; 

 

ESTIMATE "Curvature: GUA vs GUW"      Genotype*Stage1     0 0 0 0 0 1 -1; 

run; 

ods html close; 
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A2.3. SAS Codes for Piecewise Regression Models 
libname new 'C:\PulpData\SAS FILES\'; 
data alpha96;  

set new.alpha96; 

     if Stage=1 then t1=0; 

else if Stage=2 then t1=1; 

else if Stage=3 then t1=1; 

else if Stage=4 then t1=1; 

else if Stage=5 then t1=1; 

else if Stage=6 then t1=1; 

     if Stage=1 then t2=0; 

else if Stage=2 then t2=0; 

else if Stage=3 then t2=1; 

else if Stage=4 then t2=2; 

else if Stage=5 then t2=3; 

else if Stage=6 then t2=3; 

     if Stage=1 then t3=0; 

else if Stage=2 then t3=0; 

else if Stage=3 then t3=0; 

else if Stage=4 then t3=0; 

else if Stage=5 then t3=0; 

else if Stage=6 then t3=1; 

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model viscosity = Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model Lignin = Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

Repeated/ subject=Sample;  

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model a_cellulose= Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

Repeated/ subject=Sample;  

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model Y_cellulose = Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

Repeated/ subject=Sample;  

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model Copper_No = Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

Repeated/ subject=Sample;  

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model Glucose= Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 

RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr Repeated/ subject=Sample;  

run; 

 

proc mixed data=alpha96 covtest ;/*To fit the PIECEWISE LINEAR REGRESSION MODEL*/ 

class Genotype BleachCond Sample; 

model Xylose= Genotype Genotype*t1 Genotype*t2 Genotype*t3/solution noint; 
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RANDOM t1 t2 t3/ subject=Sample(Genotype) type=un gcorr; 

Repeated/ subject=Sample;  

Run;  

 

A2.4. SAS Codes for Kernel Density Estimation 
libname new 'C:\PulpData\SAS FILES\'; 
/* To generate bivariate normal Lignin data for the seven genotypes*/  

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  To generate bivariate normal Lignin data for the seven genotypes ******/ 

/******                                                                   ******/ 

/*******************************************************************************/ 

data LigDunnii;  

mean1=-2.073; /*mean delignification slope*/  

mean2=-0.449; /*mean bleaching slope*/ 

sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 

  z1 = rannor(32794); 

  z2 = rannor(55647); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigGrandis;  

mean1=-2.157; /*mean delignification slope*/  

mean2=-0.284; /*mean bleaching slope*/ 

sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(4774); 

  z2 = rannor(687902); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigSmithii;  

mean1=-2.673; /*mean delignification slope*/  

mean2=-0.556; /*mean bleaching slope*/ 

sig1=0.202;   /*Standard deviation for delignification slope*/  

sig2=0.091;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(67231984); 

  z2 = rannor(8967451); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigNitens;  

mean1=-1.520; /*mean delignification slope*/  

mean2=-0.227; /*mean bleaching slope*/ 
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sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(78012); 

  z2 = rannor(90847); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigGc;  

mean1=-2.453; /*mean delignification slope*/  

mean2=-0.690; /*mean bleaching slope*/ 

sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(661128); 

  z2 = rannor(975564); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigGua;  

mean1=-2.467; /*mean delignification slope*/  

mean2=-0.428; /*mean bleaching slope*/ 

sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(569948); 

  z2 = rannor(377628); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data LigGuw;  

mean1=-1.538; /*mean delignification slope*/  

mean2=-0.396; /*mean bleaching slope*/ 

sig1=0.286;   /*Standard deviation for delignification slope*/  

sig2=0.128;   /*Standard deviation for bleaching slope*/ 

rho=-0.7776;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(786545); 

  z2 = rannor(190354); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation of liginin                             ******/ 
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/******                                                                   ******/ 

/*******************************************************************************/ 

 

Data KernelLig;  

set LigDunnii LigGrandis LigSmithii LigNitens LigGc LigGua LigGuw; 

run; 

 

ods graphics on; 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(-3.5 to -0.7 by 

0.5); 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(-1.0 to 0.2 by 

0.1); 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yeloow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(bottom right inside) mode=protect 

  label=(f='arial/bo' h=1.4 "Genotype") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

ods graphics on; 

proc gplot data=KernelLig; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

proc kde data=KernelLig; 

bivar (Delignification Bleaching) (Delignification (bwm=2) Bleaching (bwm=2))  

/bivstats levels percentiles unistats plots=all; 

run; 

ods graphics off; 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/**** To generate bivariate normal a-cellulose data for the seven genotypes ***/ 

/****                                                                       ***/ 

/******************************************************************************/ 

data CelluDunnii;  

mean1=0.361; /*mean delignification slope*/  

mean2=1.271; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 

  z1 = rannor(994645); 

  z2 = rannor(245635); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CelluGrandis;  

mean1=2.074; /*mean delignification slope*/  

mean2=0.899; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(4587878); 

  z2 = rannor(987089898); 

  Delignification = mean1+sig1*z1; 
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  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CelluSmithii;  

mean1=0.202; /*mean delignification slope*/  

mean2=0.964; /*mean bleaching slope*/ 

sig1=0.589;   /*Standard deviation for delignification slope*/  

sig2=0.202;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(6723688); 

  z2 = rannor(98876); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CelluNitens;  

mean1=1.393; /*mean delignification slope*/  

mean2=1.216; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(98564); 

  z2 = rannor(9986764); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CelluGc;  

mean1=1.663; /*mean delignification slope*/  

mean2=0.843; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(76998); 

  z2 = rannor(20972); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CelluGua;  

mean1=1.474; /*mean delignification slope*/  

mean2=1.094; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(4535356); 

  z2 = rannor(904368); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 
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run; 

data CelluGuw;  

mean1=0.923; /*mean delignification slope*/  

mean2=1.031; /*mean bleaching slope*/ 

sig1=0.833;   /*Standard deviation for delignification slope*/  

sig2=0.286;   /*Standard deviation for bleaching slope*/ 

rho=0.001;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(98787); 

  z2 = rannor(1890354); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation of a-cellulose                         ******/ 

/******                                                                   ******/ 

/*******************************************************************************/ 

Data KernelCellu; 

set CelluDunnii CelluGrandis CelluSmithii CelluNitens CelluGc CelluGua CelluGuw; 

run; 

 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(0 to 4 by 1.0); 

 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(0 to 2 by 0.5); 

 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(bottom right inside) mode=protect 

  label=(f='arial/bo' h=1.4 "Genotype") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

 

ods graphics on; 

proc gplot data=KernelCellu; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

proc kde data=KernelCellu; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=all; 

run; 

ods graphics off; 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/****  To generate bivariate normal viscosity data for the seven genotypes  ***/ 

/****                                                                       ***/ 

/******************************************************************************/ 

data ViscDunnii;  

mean1=-10.681; /*mean delignification slope*/  

mean2=-2.472; /*mean bleaching slope*/ 

sig1=10.516;   /*Standard deviation for delignification slope*/  

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 
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  genotype='D'; 

  z1 = rannor(99461245); 

  z2 = rannor(24545635); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscGrandis;  

mean1=4.501; /*mean delignification slope*/  

mean2=0.019; /*mean bleaching slope*/ 

sig1=10.516;   /*Standard deviation for delignification slope*/  

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(89078); 

  z2 = rannor(3089898); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscSmithii;  

mean1=2.4730; /*mean delignification slope*/  

sig1=7.436;   /*Standard deviation for delignification slope*/  

mean2=-5.471; /*mean bleaching slope*/ 

sig2=3.616;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(72368); 

  z2 = rannor(98876); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscNitens;  

mean1=3.062; /*mean delignification slope*/  

sig1=10.516;   /*Standard deviation for delignification slope*/  

mean2=-2.696; /*mean bleaching slope*/ 

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(3464); 

  z2 = rannor(75764); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscGc;  

mean1=-2.143; /*mean delignification slope*/  

sig1=10.516;   /*Standard deviation for delignification slope*/  

mean2=-7.016; /*mean bleaching slope*/ 

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(5676998); 

  z2 = rannor(26790972); 

  Delignification = mean1+sig1*z1; 
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  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscGua;  

mean1=0.592; /*mean delignification slope*/  

sig1=10.516;   /*Standard deviation for delignification slope*/  

mean2=-9.878; /*mean bleaching slope*/ 

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(678956); 

  z2 = rannor(453968); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data ViscGuw;  

mean1=2.986; /*mean delignification slope*/  

sig1=10.516;   /*Standard deviation for delignification slope*/  

mean2=-7.718; /*mean bleaching slope*/ 

sig2=5.114;   /*Standard deviation for bleaching slope*/ 

rho=-0.9813;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(129087); 

  z2 = rannor(998894); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

 

/******************************************************************************/ 

/******                                                                   *****/ 

/******  Kernel density estimation of Viscosity                           *****/ 

/******                                                                   *****/ 

/******************************************************************************/ 

Data KernelVisc; 

set ViscDunnii ViscGrandis ViscSmithii ViscNitens ViscGc ViscGua ViscGuw; 

run; 

 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(-33 to 36 by 

6); 

 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(-26 to 13 by 5); 

 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(bottom left inside) mode=protect 

  label=(f='arial/bo' h=1.4 "Genotype") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

 

ods graphics on; 
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proc gplot data=KernelVisc; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

proc kde data=KernelVisc; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=all; 

run; 

ods graphics off; 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/**** To generate bivariate normal Y-vellulose data for the seven genotypes ***/ 

/****                                                                       ***/ 

/******************************************************************************/ 

 

data GammaDunnii;  

mean1=0.283; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=1.240; /*mean bleaching slope*/ 

sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 

  z1 = rannor(96235); 

  z2 = rannor(21223); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaGrandis;  

mean1=-2.117; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=-0.975; /*mean bleaching slope*/ 

sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(7889078); 

  z2 = rannor(3909898); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaSmithii;  

mean1=-1.170; /*mean delignification slope*/  

sig1=0.396;   /*Standard deviation for delignification slope*/  

mean2=-0.970; /*mean bleaching slope*/ 

sig2=0.140;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(21768); 

  z2 = rannor(65476); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaNitens;  

mean1=-1.446; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=-1.103; /*mean bleaching slope*/ 
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sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(3464); 

  z2 = rannor(75764); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaGc;  

mean1=-1.707; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=-0.816; /*mean bleaching slope*/ 

sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(786998); 

  z2 = rannor(90972); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaGua;  

mean1=-1.401; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=-1.086; /*mean bleaching slope*/ 

sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(56433); 

  z2 = rannor(97396); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GammaGuw;  

mean1=-0.794; /*mean delignification slope*/  

sig1=0.560;   /*Standard deviation for delignification slope*/  

mean2=-0.894; /*mean bleaching slope*/ 

sig2=0.197;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(129087); 

  z2 = rannor(998894); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation for Y-cellulose                        ******/ 

/******                                                                   ******/ 

/*******************************************************************************/ 

Data KernelGamma; 
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set GammaDunnii GammaGrandis GammaSmithii GammaNitens GammaGc GammaGua GammaGuw; 

run; 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(-3.5 to 1.5 by 

0.5); 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(-2.0 to 2.0 by 

0.5); 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(top left inside) mode=protect 

  label=(f='arial/bo' h=1.4 "") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

ods graphics on; 

proc gplot data=KernelGamma; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

proc kde data=KernelGamma; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=all; 

run; 

ods graphics off; 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/**** To generate bivariate normal Copper Number data for the seven genotypes**/ 

/****                                                                       ***/ 

/******************************************************************************/ 

data CopperDunnii;  

mean1=-1.064; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.514; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 

  z1 = rannor(239035); 

  z2 = rannor(56721223); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperGrandis;  

mean1=-1.277; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.414; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(934078); 

  z2 = rannor(450781); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperSmithii;  
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mean1=-1.245; /*mean delignification slope*/  

sig1=0.170;   /*Standard deviation for delignification slope*/  

mean2=-0.417; /*mean bleaching slope*/ 

sig2=0.058;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(78848); 

  z2 = rannor(76236); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperNitens;  

mean1=-0.657; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.452; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(175658871); 

  z2 = rannor(2005612); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperGc;  

mean1=-1.534; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.418; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(231675); 

  z2 = rannor(2312267); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperGua;  

mean1=-1.397; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.410; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(12564); 

  z2 = rannor(349731); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data CopperGuw;  

mean1=-0.881; /*mean delignification slope*/  

sig1=0.241;   /*Standard deviation for delignification slope*/  

mean2=-0.408; /*mean bleaching slope*/ 

sig2=0.083;   /*Standard deviation for bleaching slope*/ 
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rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(34786); 

  z2 = rannor(76588987); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation for Copper number                      ******/ 

/******                                                                   ******/ 

/*******************************************************************************/ 

Data KernelCopper; 

set CopperDunnii CopperGrandis CopperSmithii CopperNitens CopperGc CopperGua 

CopperGuw; 

run; 

 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(-2.0 to -0.14 

by 0.2); 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(-0.7 to -0.15 by 

0.1); 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(bottom left inside) mode=protect 

  label=(f='arial/bo' h=1.4 "") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

 

ods graphics on; 

proc gplot data=KernelCopper; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

proc kde data=KernelCopper; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=all; 

run; 

ods graphics off; 

 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/**** To generate bivariate normal Glucose data for the seven genotypes     ***/ 

/****                                                                       ***/ 

/******************************************************************************/ 

ods html close;/* closes previous output content*/ 

ods html; /* opens new output content*/ 

 

data GlucDunnii;  

mean1=2.010; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=1.226; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 
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  z1 = rannor(6710001); 

  z2 = rannor(6474646); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucGrandis;  

mean1=2.467; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=0.792; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(67673); 

  z2 = rannor(8907765); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucSmithii;  

mean1=1.884; /*mean delignification slope*/  

sig1=0.345;   /*Standard deviation for delignification slope*/  

mean2=1.035; /*mean bleaching slope*/ 

sig2=0.111;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(312676); 

  z2 = rannor(18734); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucNitens;  

mean1=3.493; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=0.987; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(4387653); 

  z2 = rannor(56435367); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucGc;  

mean1=3.640; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=0.701; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(785665); 

  z2 = rannor(8876564); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 
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  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucGua;  

mean1=2.980; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=0.949; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(675643); 

  z2 = rannor(877652); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data GlucGuw;  

mean1=2.493; /*mean delignification slope*/  

sig1=0.461;   /*Standard deviation for delignification slope*/  

mean2=0.675; /*mean bleaching slope*/ 

sig2=0.157;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(18875); 

  z2 = rannor(5443548); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation for Glucose                            ******/ 

/******                                                                   ******/ 

/*******************************************************************************/ 

Data KernelGluc; 

set GlucDunnii GlucGrandis GlucSmithii GlucNitens GlucGc GlucGua GlucGuw; 

run; 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(1.13 to 4.3 by 

0.5); 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(0.3 to 1.71 by 

0.1); 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(top right inside) mode=protect 

  label=(f='arial/bo' h=1.4 "Genotype") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

 

ods graphics on; 

proc gplot data=KernelGluc; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 
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ods html close;/* closes previous output content*/ 

ods html; /* opens new output content*/ 

ods graphics on; 

proc kde data=KernelGluc out=Gluc; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=surface (rotate=-30); 

run; 

ods graphics off; 

 

 

/******************************************************************************/ 

/****                                                                       ***/ 

/**** To generate bivariate normal Xylose data for the seven genotypes      ***/ 

/****                                                                       ***/ 

/******************************************************************************/ 

ods html close;/* closes previous output content*/ 

ods html; /* opens new output content*/ 

 

data XyloDunnii;  

mean1=-0.857; /*mean delignification slope*/  

sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.565; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='D'; 

  z1 = rannor(986753); 

  z2 = rannor(62368); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data XyloGrandis;  

mean1=-0.545; /*mean delignification slope*/  

sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.402; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='G'; 

  z1 = rannor(543487); 

  z2 = rannor(2123117); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data XyloSmithii;  

mean1=-1.032; /*mean delignification slope*/  

sig1=0.237;   /*Standard deviation for delignification slope*/  

mean2=-0.528; /*mean bleaching slope*/ 

sig2=0.068;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='S'; 

  z1 = rannor(342980908); 

  z2 = rannor(45986721); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data XyloNitens;  

mean1=-2.279; /*mean delignification slope*/  
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sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.484; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='N'; 

  z1 = rannor(16009876); 

  z2 = rannor(897867); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data XyloGc;  

mean1=-0.817; /*mean delignification slope*/  

sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.291; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='C'; 

  z1 = rannor(4568787); 

  z2 = rannor(723987); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

data XyloGua;  

mean1=-0.626; /*mean delignification slope*/  

sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.516; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='A'; 

  z1 = rannor(543388); 

  z2 = rannor(8243456); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

data XyloGuw;  

mean1=-0.951; /*mean delignification slope*/  

sig1=0.322;   /*Standard deviation for delignification slope*/  

mean2=-0.280; /*mean bleaching slope*/ 

sig2=0.096;   /*Standard deviation for bleaching slope*/ 

rho=0.000;  /*correlation between delignification and bleaching*/ 

do i=1 to 50; 

  genotype='W'; 

  z1 = rannor(64522341); 

  z2 = rannor(8772237); 

  Delignification = mean1+sig1*z1; 

  Bleaching = mean2+rho*sig2*z1+sqrt(sig2**2-sig2**2*rho**2)*z2; 

  output; 

end; 

keep genotype Delignification Bleaching; 

run; 

 

/*************************************************************************** ***/ 

/******                                                                   ******/ 

/******  Kernel density estimation for Glucose                            ******/ 

/******                                                                   ******/ 
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/*******************************************************************************/ 

Data KernelXylo; 

set XyloDunnii XyloGrandis XyloSmithii XyloNitens XyloGc XyloGua XyloGuw; 

run; 

goptions reset=global; 

axis1 label=(f='arial/bo' h=1.5 "Delignification" justify=c) order=(-3.1 to 0.1 by 

0.5); 

axis2 label=(a=90 f='arial/bo' h=1.5 "Bleaching" justify=c)order=(-0.82 to -0.08 by 

0.1); 

symbol1 value='A' colour=black interpol=none h=1.2; 

symbol2 value='C' colour=red interpol=none h=1.2; 

symbol3 value='D' colour=blue interpol=none h=1.2; 

symbol4 value='G' colour=Green interpol=none h=1.2; 

symbol5 value='N' colour=yellow interpol=none h=1.2; 

symbol6 value='S' colour=orange interpol=none h=1.2; 

symbol7 value='W' colour=green interpol=none h=1.2; 

legend1 across=1 down=2 noframe 

        position=(bottom right inside) mode=protect 

  label=(f='arial/bo' h=1.4 "Genotype") 

  value=(f='arial/bo' h=1.4 "EguA" "Egc" "Edunnii" "Egrandis" "Enitens" 

"Esmithii" "EguW"); 

 

ods graphics on; 

proc gplot data=KernelXylo; 

plot Bleaching*Delignification=genotype/haxis=axis1 vaxis=axis2 legend=legend1;  

run; 

ods html close;/* closes previous output content*/ 

ods html; /* opens new output content*/ 

ods graphics on; 

proc kde data=KernelXylo; 

bivar (Delignification Bleaching) (Delignification (bwm=0.85) Bleaching (bwm=0.85))  

/ bivstats levels percentiles unistats plots=surface (rotate=-30); 

run; 

ods graphics off; 
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A2.5. SAS Codes for Joint Modelling  
 
libname new 'C:\PulpData\SAS FILES\'; 
/*********************************************************************/ 

/*********************************************************************/ 

/*STEP 1: To Create all Possible Bivariate Normal pairs for Pairwise */  

/* fitting and to calculate the parameter estimates using Proc MIXED.*/ 

/*         Since there are 7 variables there will be 21 pairs        */  

/*********************************************************************/ 

/*********************************************************************/ 

 

data new.alpha96jointcorr; /* To create Intercept Corrected Data*/ 

set new.alpha96joint; 

if Genotype="EDunnii" then      Viscosity=Viscosity-62.165; 

if Genotype="EDunnii" then             Lignin=Lignin-4.036; 

if Genotype="EDunnii" then  a_cellulose=a_cellulose-89.865; 

if Genotype="EDunnii" then   Y_cellulose=Y_cellulose-8.131; 

if Genotype="EDunnii" then       Copper_No=Copper_No-3.231; 

if Genotype="EDunnii" then          Glucose=Glucose-89.629; 

if Genotype="EDunnii" then             Xylose=Xylose-5.005; 

 

if Genotype="EGrandis" then     Viscosity=Viscosity-33.340; 

if Genotype="EGrandis" then            Lignin=Lignin-2.905; 

if Genotype="EGrandis" then a_cellulose=a_cellulose-91.128; 

if Genotype="EGrandis" then  Y_cellulose=Y_cellulose-7.274; 

if Genotype="EGrandis" then      Copper_No=Copper_No-2.847; 

if Genotype="EGrandis" then         Glucose=Glucose-92.197;  

if Genotype="EGrandis" then            Xylose=Xylose-3.560; 

 

if Genotype="ESmithii" then      Viscosity=Viscosity-52.212; 

if Genotype="ESmithii" then             Lignin=Lignin-4.249; 

if Genotype="ESmithii" then  a_cellulose=a_cellulose-91.136; 

if Genotype="ESmithii" then   Y_cellulose=Y_cellulose-8.150; 

if Genotype="ESmithii" then       Copper_No=Copper_No-2.954; 

if Genotype="ESmithii" then          Glucose=Glucose-90.317;  

if Genotype="ESmithii" then             Xylose=Xylose-5.085; 

 

if Genotype="Enitens" then      Viscosity=Viscosity-46.078; 

if Genotype="Enitens" then             Lignin=Lignin-2.123; 

if Genotype="Enitens" then  a_cellulose=a_cellulose-90.368; 

if Genotype="Enitens" then   Y_cellulose=Y_cellulose-8.046; 

if Genotype="Enitens" then       Copper_No=Copper_No-2.621; 

if Genotype="Enitens" then          Glucose=Glucose-89.989;  

if Genotype="Enitens" then             Xylose=Xylose-5.657; 

 

if Genotype="GCG438" then      Viscosity=Viscosity-63.853; 

if Genotype="GCG438" then             Lignin=Lignin-4.615; 

if Genotype="GCG438" then  a_cellulose=a_cellulose-91.153; 

if Genotype="GCG438" then   Y_cellulose=Y_cellulose-7.480; 

if Genotype="GCG438" then       Copper_No=Copper_No-3.050; 

if Genotype="GCG438" then          Glucose=Glucose-90.113; 

if Genotype="GCG438" then             Xylose=Xylose-3.873; 

 

if Genotype="GUA380" then      Viscosity=Viscosity-78.821; 

if Genotype="GUA380" then             Lignin=Lignin-3.501; 

if Genotype="GUA380" then  a_cellulose=a_cellulose-90.344; 

if Genotype="GUA380" then   Y_cellulose=Y_cellulose-8.367; 

if Genotype="GUA380" then       Copper_No=Copper_No-2.910; 

if Genotype="GUA380" then          Glucose=Glucose-90.020; 

if Genotype="GUA380" then             Xylose=Xylose-4.662; 

 

if Genotype="GUW962" then      Viscosity=Viscosity-63.337; 

if Genotype="GUW962" then             Lignin=Lignin-2.745; 

if Genotype="GUW962" then  a_cellulose=a_cellulose-91.317; 

if Genotype="GUW962" then   Y_cellulose=Y_cellulose-6.754; 

if Genotype="GUW962" then       Copper_No=Copper_No-2.549; 

if Genotype="GUW962" then          Glucose=Glucose-92.834; 



211 

 

 

 

if Genotype="GUW962" then             Xylose=Xylose-3.189; 

keep Genotype BleachCond Tree Sample Stage Stage1 t1 t2 t3 Viscosity Lignin 

Y_cellulose a_cellulose Copper_No Glucose Xylose; 

output; 

run; 

ods html close;/* closes previous output content*/ 

ods html; /* opens new output content*/ 

/***********************************************************************/ 

data new.PairVisLig;   /*To create Joint model Data 1 for Viscosity and   

  Lignin Pair */ 

set  new.alpha96jointcorr; 

Y12=Viscosity; 

outcomenum=1; /* Outcomenum=1 is Viscosity, 2 is Lignin*/ 

timeVis=1; 

timeLig=0; 

timeVis2=1; 

timeLig2=0; 

interceptVis=1; 

interceptLig=0; 

interceptVis2=1; 

interceptLig2=0; 

XVis=Genotyp;   /* XVis is Indicator for each Genotype's Viscosity slope*/ 

XLig=0;         /* XLig is Indicator for each Genotype's Lignin slope*/ 

output; 

Y12=Lignin; 

outcomenum=2; 

timeVis=0; 

timeLig=1; 

interceptVis=0; 

interceptLig=1; 

XVis=0; 

XLig=Genotyp;  

keep Genotype BleachCond Sample Tree Stage1 t1 t2 Outcomenum timeVis timeLig 

interceptVis interceptLig XVis XLig Y12; 

output; 

run; 

 

Proc Mixed Data= new.PairVisLig covtest noclprint; /*To fit the joint     model for 

the new variable Y12*/ 

Class Sample Genotype Stage1 outcomenum; 

model Y12= timeVis*Genotype timeLig*Genotype/noint solution outpm=resid_1; 

random interceptVis interceptLig timeVis timeLig/ subject=Sample type=un; 

repeated outcomenum/subject=Sample*Stage1 type=un; 

ods output covparms=cov_1 solutionF=Fixed_1; 

run; 

/***********************************************************************/ 

data new.PairVisGam; /* To create Joint model Data 2 for Viscosity and Y_cellulose 

Pair */ 

set  new.alpha96jointcorr; 

Y13=Viscosity; 

outcomenum=1; /* Outcomenum=1 is Viscosity, 3 is Y_cellulose*/ 

timeVis=1; 

timeGam=0; 

interceptVis=1; 

interceptGam=0; 

output; 

Y13=Y_cellulose; 

outcomenum=3; 

timeVis=0; 

timeGam=1; 

interceptVis=0; 

interceptGam=1; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeVis timeGam 

interceptVis interceptGam XVis XGam Y13; 

output; 

run; 

 

Proc Mixed Data= new.PairVisGam  covtest METHOD=REML; 



212 

 

 

 

Class Sample Genotype Stage1 outcomenum; 

model Y13= timeVis*Genotype timeGam*Genotype/noint solution outpm=resid_2; 

random interceptVis interceptGam timeVis timeGam/ subject=Sample type=un; 

repeated outcomenum/subject=Sample*Stage1 type=un; 

ods output covparms=cov_2 solutionF=Fixed_2; 

run; 

/**********************************************************************/ 

data new.PairVisAlpha; /* To create Joint model Data 3 for Viscosity and 

a_cellulose Pair */ 

set  new.alpha96jointcorr; 

Y14=Viscosity; 

outcomenum=1; /* Outcomenum=1 is Viscosity, 4 is a_cellulose*/ 

timeVis=1; 

timeAlpha=0; 

interceptVis=1; 

interceptAlpha=0; 

output; 

Y14=a_cellulose; 

outcomenum=4; 

timeVis=0; 

timeAlpha=1; 

interceptVis=0; 

interceptAlpha=1; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeVis timeAlpha 

interceptVis interceptAlpha XVis XAlpha Y14; 

output; 

run; 

 

Proc Mixed Data= new.PairVisAlpha; /* covtest METHOD=REML;*/ 

Class Sample Genotype Stage1 outcomenum; 

model Y14= timeVis*Genotype timeAlpha*Genotype/ noint solution outpm=resid_3; 

random interceptVis interceptAlpha timeVis timeAlpha/ subject=Sample type=un; 

repeated outcomenum/subject=Sample*Stage1 type=un; 

ods output covparms=cov_3 solutionF=Fixed_3; 

run; 

/**********************************************************************/ 

data new.PairVisCopp; /*To create Joint model Data 4 for Viscosity and Copper 

Number Pair */ 

set  new.alpha96jointcorr; 

Y15=Viscosity; 

outcomenum=1; /* Outcomenum=1 is Viscosity, 5 is Copper Number*/ 

timeVis=1; 

timeCopp=0; 

interceptVis=1; 

interceptCopp=0; 

output; 

Y15=Copper_No; 

outcomenum=5; 

timeVis=0; 

timeCopp=1; 

interceptVis=0; 

interceptCopp=1; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeVis timeCopp 

interceptVis interceptCopp XVis XCopp Y15; 

output; 

run; 

 

Proc Mixed Data= new.PairVisCopp;  METHOD=REML; 

Class Sample Genotype Stage1 outcomenum; 

model Y15= timeVis*Genotype timeCopp*Genotype/ noint solution outpm=resid_4; 

random interceptVis interceptCopp timeVis timeCopp/ subject=Sample type=un; 

repeated outcomenum/subject=Sample*Stage1 type=un; 

ods output covparms=cov_4 solutionF=Fixed_4; 

run; 

/**********************************************************************/ 

data new.PairVisGluc; /*To create Joint model Data 5 for Viscosity and Glucose Pair 

*/ 

set  new.alpha96jointcorr; 
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Y16=Viscosity; 

outcomenum=1; /* Outcomenum=1 is Viscosity, 6 Glucose*/ 

timeVis=1; 

timeGluc=0; 

interceptVis=1; 

interceptGluc=0; 

output; 

Y16=Glucose; 

outcomenum=6; 

timeVis=0; 

timeGluc=1; 

interceptVis=0; 

interceptGluc=1; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeVis timeGluc 

interceptVis interceptGluc XVis XGluc Y16; 

output; 

run; 

 

Proc Mixed Data= new.PairVisGluc;  /*METHOD=REML8*/; 

     Class Sample Genotype Stage1 outcomenum; 

  model Y16= timeVis*Genotype timeGluc*Genotype/ noint solution 

outpm=resid_5; 

  random interceptVis interceptGluc timeVis timeGluc/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_5 solutionF=Fixed_5; 

run; 

/******************************************************************/ 

data new.PairVisXylo; /* Data 6 for Viscosity and Xylose Pair */ 

set  new.alpha96jointcorr; 

  Y17=Viscosity; 

  outcomenum=1; /* Outcomenum=1 is Viscosity, 7 Xylose*/ 

  timeVis=1; 

  timeXylo=0; 

  interceptVis=1; 

  interceptXylo=0; 

  output; 

  Y17=Xylose; 

  outcomenum=7; 

  timeVis=0; 

  timeXylo=1; 

  interceptVis=0; 

  interceptXylo=1; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeVis timeXylo 

interceptVis interceptXylo XVis XXylo Y17; 

output; 

run; 

 

Proc Mixed Data= new.PairVisXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y17= timeVis*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_6; 

  random interceptVis interceptXylo timeVis timeXylo/ 

subject=Sample(Genotype) type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_6 solutionF=Fixed_6; 

run; 

/**********************************************************************/ 

data new.PairLigGam; /* Data 7 for Lignin and Y-Cellilose Pair */ 

set  new.alpha96jointcorr; 

  Y23=Lignin; 

  outcomenum=2; /* Outcomenum=2 is Lignin, 3 Y-Cellilose*/ 

  timeLig=1; 

  timeGam=0; 

  interceptLig=1; 

  interceptGam=0; 

  output; 

  Y23=Y_cellulose; 

  outcomenum=3; 
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  timeLig=0; 

  timeGam=1; 

  interceptLig=0; 

  interceptGam=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeLig timeGam 

interceptLig interceptGam XLig XGam Y23; 

output; 

run; 

 

Proc Mixed Data= new.PairLigGam; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y23= timeLig*Genotype timeGam*Genotype/ noint solution outpm=resid_7; 

  random interceptLig interceptGam timeLig timeGam/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_7 solutionF=Fixed_7; 

run; 

/*******************************************************************************/ 

data new.PairLigAlpha; /* Data 8 for Lignin and a-Cellilose Pair */ 

set  new.alpha96jointcorr; 

  Y24=Lignin; 

  outcomenum=2; /* Outcomenum=2 is Lignin, 4 a-Cellilose*/ 

  timeLig=1; 

  timeAlpha=0; 

  interceptLig=1; 

  interceptAlpha=0; 

  output; 

  Y24=a_cellulose; 

  outcomenum=4; 

  timeLig=0; 

  timeAlpha=1; 

  interceptLig=0; 

  interceptAlpha=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeLig timeAlpha 

interceptLig interceptAlpha XLig XAlpha Y24; 

output; 

run; 

 

Proc Mixed Data= new.PairLigAlpha; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y24=timeLig*Genotype timeAlpha*Genotype/ noint solution 

outpm=resid_8; 

  random interceptLig interceptAlpha timeLig timeAlpha/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_8 solutionF=Fixed_8; 

run; 

/***********************************************************************/ 

data new.PairLigCopp; /* Data 9 for Lignin and copper number pair*/ 

set  new.alpha96jointcorr; 

  Y25=Lignin; 

  outcomenum=2; /* Outcomenum=2 is Lignin, 5 copper number*/ 

  timeLig=1; 

  timeCopp=0; 

  interceptLig=1; 

  interceptCopp=0; 

  output; 

  Y25=Copper_No; 

  outcomenum=5; 

  timeLig=0; 

  timeCopp=1; 

  interceptLig=0; 

  interceptCopp=1; 

 keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeLig timeCopp 

interceptLig interceptCopp XLig XCopp Y25; 

output; 

run; 

Proc Mixed Data= new.PairLigCopp; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 
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  model Y25= timeLig*Genotype timeCopp*Genotype/ noint solution 

outpm=resid_9; 

  random interceptLig interceptCopp timeLig timeCopp/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_9 solutionF=Fixed_9; 

run; 

/********************************************************************************/ 

data new.PairLigGluc; /* Data 10 for Lignin and Glucose pair*/ 

set  new.alpha96jointcorr; 

  Y26=Lignin; 

  outcomenum=2; /* Outcomenum=2 is Lignin, 6 Glucose*/ 

  timeLig=1; 

  timeGluc=0; 

  interceptLig=1; 

  interceptGluc=0; 

  output; 

  Y26=Glucose; 

  outcomenum=6; 

  timeLig=0; 

  timeGluc=1; 

  interceptLig=0; 

  interceptGluc=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeLig timeGluc 

interceptLig interceptGluc XLig XGluc Y26; 

output; 

run; 

 

Proc Mixed Data= new.PairLigGluc; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y26= timeLig*Genotype timeGluc*Genotype/ noint solution 

outpm=resid_10; 

  random interceptLig interceptGluc timeLig timeGluc/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_10 solutionF=Fixed_10; 

run; 

/*********************************************************************************/ 

data new.PairLigXylo; /* Data 11 for Lignin and Xylose pair*/ 

set  new.alpha96jointcorr; 

  Y27=Lignin; 

  outcomenum=2; /* Outcomenum=2 is Lignin, 7 Xylose*/ 

  timeLig=1; 

  timeXylo=0; 

  interceptLig=1; 

  interceptXylo=0; 

  output; 

  Y27=Xylose; 

  outcomenum=7; 

  timeLig=0; 

  timeXylo=1; 

  interceptLig=0; 

  interceptXylo=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeLig timeXylo 

interceptLig interceptXylo XLig XXylo Y27; 

output; 

run; 

Proc Mixed Data= new.PairLigXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y27=timeLig*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_11; 

  random interceptLig interceptXylo timeLig timeXylo/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_11 solutionF=Fixed_11; 

run; 

/*********************************************************************/ 

data new.PairGamAlpha; /* Data 12 for Y-Cellulose and a-Cellulose pair*/ 

set  new.alpha96jointcorr; 

  Y34=Y_cellulose; 

  outcomenum=3; /* Outcomenum=3 is Y-Cellulose, 4 a-Cellulose*/ 
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  timeGam=1; 

  timeAlpha=0; 

  interceptGam=1; 

  interceptAlpha=0; 

  output; 

  Y34=a_cellulose; 

  outcomenum=4; 

  timeGam=0; 

  timeAlpha=1; 

  interceptGam=0; 

  interceptAlpha=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeGam timeAlpha 

interceptGam interceptAlpha XGam XAlpha Y34; 

output; 

run; 

 

 

Proc Mixed Data= new.PairGamAlpha; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y34=timeGam*Genotype timeAlpha*Genotype/ noint solution 

outpm=resid_12; 

  random interceptGam interceptAlpha timeGam timeAlpha/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_12 solutionF=Fixed_12; 

run; 

/**********************************************************************/ 

data new.PairGamCopp; /* Data 13 for Y-Cellulose and Copper Number pair*/ 

set  new.alpha96jointcorr; 

  Y35=Y_cellulose; 

  outcomenum=3; /* Outcomenum=3 is Y-Cellulose, 5 Copper Number*/ 

  timeGam=1; 

  timeCopp=0; 

  interceptGam=1; 

  interceptCopp=0; 

  output; 

  Y35=Copper_No; 

  outcomenum=5; 

  timeGam=0; 

  timeCopp=1; 

  interceptGam=0; 

  interceptCopp=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeGam timeCopp 

interceptGam interceptCopp XGam XCopp Y35; 

output; 

run; 

 

Proc Mixed Data= new.PairGamCopp; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y35= timeGam*Genotype timeCopp*Genotype/ noint solution 

outpm=resid_13; 

  random interceptGam interceptCopp timeGam timeCopp/ subject=Sample type=UN; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_13 solutionF=Fixed_13; 

run; 

/********************************************************************/ 

data new.PairGamGluc; /* Data 14 for Y-Cellulose and Glucose pair*/ 

set  new.alpha96jointcorr; 

  Y36=Y_cellulose; 

  outcomenum=3; /* Outcomenum=3 is Y-Cellulose, 6 Glucose*/ 

  timeGam=1; 

  timeGluc=0; 

  interceptGam=1; 

  interceptGluc=0; 

  output; 

  Y36=Glucose; 

  outcomenum=6; 

  timeGam=0; 
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  timeGluc=1; 

  interceptGam=0; 

  interceptGluc=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeGam timeGluc 

interceptGam interceptGluc XGam XGluc Y36; 

output; 

run; 

 

Proc Mixed Data= new.PairGamGluc; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y36=timeGam*Genotype timeGluc*Genotype/ noint solution 

outpm=resid_14; 

  random interceptGam interceptGluc timeGam timeGluc/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_14 solutionF=Fixed_14; 

run; 

/*************************************************************************/ 

data new.PairGamXylo; /* Data 15 for Y-Cellulose and Xylose pair*/ 

set  new.alpha96jointcorr; 

  Y37=Y_cellulose; 

  outcomenum=3; /* Outcomenum=3 is Y-Cellulose, 7 Xylose*/ 

  timeGam=1; 

  timeXylo=0; 

  interceptGam=1; 

  interceptXylo=0; 

  output; 

  Y37=Xylose; 

  outcomenum=7; 

  timeGam=0; 

  timeXylo=1; 

  interceptGam=0; 

  interceptXylo=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeGam timeXylo 

interceptGam interceptXylo XGam XXylo Y37; 

output; 

run; 

 

Proc Mixed Data= new.PairGamXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y37= timeGam*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_15; 

  random interceptGam interceptXylo timeGam timeXylo/ subject=Sample type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_15 solutionF=Fixed_15; 

run; 

/*****************************************************************************/ 

data new.PairAlphaCopp; /* Data 16 for a-Cellulose and Copper Number*/ 

set  new.alpha96jointcorr; 

  Y45=a_cellulose; 

  outcomenum=4; /* Outcomenum=4 is a-Cellulose, 5 Copper Number*/ 

  timeAlpha=1; 

  timeCopp=0; 

  interceptAlpha=1; 

  interceptCopp=0; 

  XAlpha=Genotyp; 

  XCopp=0; 

output; 

  Y45=Copper_No; 

  outcomenum=5; 

  timeAlpha=0; 

  timeCopp=1; 

  interceptAlpha=0; 

  interceptCopp=1; 

  XAlpha=0; 

  XCopp=Genotyp; 

keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeAlpha timeCopp 

interceptAlpha interceptCopp XAlpha XCopp Y45; 

output; 
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run; 

 

 Proc Mixed Data= new.PairAlphaCopp; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y45= timeAlpha*Genotype timeCopp*Genotype/ noint solution 

outpm=resid_16; 

  random interceptAlpha interceptCopp timeAlpha timeCopp/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_16 solutionF=Fixed_16; 

run; 

/**********************************************************************/ 

data new.PairAlphaGluc; /* Data 17 for a-Cellulose and Glucose*/ 

set  new.alpha96jointcorr; 

  Y46=a_cellulose; 

  outcomenum=4; /* Outcomenum=4 is a-Cellulose, 6 Glucose*/ 

  timeAlpha=1; 

  timeGluc=0; 

  interceptAlpha=1; 

  interceptGluc=0; 

  output; 

  Y46=Glucose; 

  outcomenum=6; 

  timeAlpha=0; 

  timeGluc=1; 

  interceptAlpha=0; 

  interceptGluc=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeAlpha timeGluc 

interceptAlpha interceptGluc XAlpha XGluc Y46; 

output; 

run; 

Proc Mixed Data= new.PairAlphaGluc; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y46= timeAlpha*Genotype timeGluc*Genotype/ noint solution 

outpm=resid_17; 

  random interceptAlpha interceptGluc timeAlpha timeGluc/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_17 solutionF=Fixed_17; 

run; 

/*******************************************************************************/ 

data new.PairAlphaXylo; /* Data 18 for a-Cellulose and Xylose*/ 

set  new.alpha96jointcorr; 

  Y47=a_cellulose; 

  outcomenum=4; /* Outcomenum=4 is a-Cellulose, 7 Xylose*/ 

  timeAlpha=1; 

  timeXylo=0; 

  interceptAlpha=1; 

  interceptXylo=0; 

  output; 

  Y47=Xylose; 

  outcomenum=7; 

  timeAlpha=0; 

  timeXylo=1; 

  interceptAlpha=0; 

  interceptXylo=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeAlpha timeXylo 

interceptAlpha interceptXylo XAlpha XXylo Y47; 

output; 

run; 

Proc Mixed Data= new.PairAlphaXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y47= timeAlpha*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_18; 

  random interceptAlpha interceptXylo timeAlpha timeXylo/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_18 solutionF=Fixed_18; 
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run; 

/*********************************************************************************/ 

data new.PairCoppGluc; /* Data 19 for Copper Number and Glucose Pair*/ 

set  new.alpha96jointcorr; 

  Y56=Copper_No; 

  outcomenum=5; /* Outcomenum=5 is Copper Number, 6 Glucose*/ 

  timeCopp=1; 

  timeGluc=0; 

  interceptCopp=1; 

  interceptGluc=0; 

  Y56=Glucose; 

  outcomenum=6; 

  timeCopp=0; 

  timeGluc=1; 

  interceptCopp=0; 

  interceptGluc=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeCopp timeGluc 

interceptCopp interceptGluc XCopp XGluc Y56; 

output; 

run; 

  

 Proc Mixed Data= new.PairCoppGluc; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y56= timeCopp*Genotype timeGluc*Genotype/ noint solution 

outpm=resid_19; 

  random interceptCopp interceptGluc timeCopp timeGluc/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_19 solutionF=Fixed_19; 

run; 

/*******************************************************************/ 

data new.PairCoppXylo; /* Data 20 for Copper Number and Xylose Pair*/ 

set  new.alpha96jointcorr; 

  Y57=Copper_No; 

  outcomenum=5; /* Outcomenum=5 is Copper Number, 7 Xylose*/ 

  timeCopp=1; 

  timeXylo=0; 

  interceptCopp=1; 

  interceptXylo=0; 

  output; 

  Y57=Xylose; 

  outcomenum=7; 

  timeCopp=0; 

  timeXylo=1; 

  interceptCopp=0; 

  interceptXylo=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeCopp timeXylo 

interceptCopp interceptXylo XCopp XXylo Y57; 

output; 

run; 

Proc Mixed Data= new.PairCoppXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y57=timeCopp*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_20; 

  random interceptCopp interceptXylo timeCopp timeXylo/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_20 solutionF=Fixed_20; 

run; 

/********************************************************************************/ 

data new.PairGlucXylo; /* Data 21 for Glucose and Xylose Pair*/ 

set  new.alpha96jointcorr; 

  Y67=Glucose; 

  outcomenum=6; /* Outcomenum=6 is Glucose, 7 Xylose*/ 

  timeGluc=1; 

  timeXylo=0; 

  interceptGluc=1; 

  interceptXylo=0; 
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  output; 

  Y67=Xylose; 

  outcomenum=7; 

  timeGluc=0; 

  timeXylo=1; 

  interceptGluc=0; 

  interceptXylo=1; 

  keep Genotype BleachCond Sample Stage1 t1 t2 Outcomenum timeGluc timeXylo 

interceptGluc interceptXylo XGluc XXylo Y67; 

output; 

run; 

 

Proc Mixed Data= new.PairGlucXylo; /* covtest METHOD=REML;*/ 

     Class Sample Genotype Stage1 outcomenum; 

  model Y67= timeGluc*Genotype timeXylo*Genotype/ noint solution 

outpm=resid_21; 

  random interceptGluc interceptXylo timeGluc timeXylo/ subject=Sample 

type=un; 

  repeated outcomenum/subject=Sample*Stage1 type=un; 

  ods output covparms=cov_21 solutionF=Fixed_21; 

run; 

/*********************************************************************/ 

/*                   ***/ 

/*    STEP 2: Culculating the H and G matrix for each pair         ***/ 

/*          ***/ 

/*********************************************************************/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 1, VARIABLES 1 AND 2*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

 G={3.371  -0.9227 -0.6225  0.0001, 

     -0.9227  0.3390  0.0001 -0.6263, 

     -0.6225  0.0001  0.6283  0.0001, 

      0.0001 -0.6263  0.0001  0.6264}; 

/*Within subject covariance matrix*/ 

 R={131.0600 9.0200, 

      9.0200 1.9178}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_1; 

read all var{Sample} into id; 

read all var{Y12} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeLig} into X; 

read all var{interceptVis interceptLig timeVis timeLig} into Z; 

close resid_1; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 
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 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_1 from H; append from H; 

 create B_1 from B; append from B; 

quit; 

/*==================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 2, VARIABLES 1 AND 3*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 G={3.3693 -0.1941 -0.6248 0.0001, 

-0.1941 0.3074 0.0001 -0.6263, 

-0.6248 0.0001 0.6271 0.0001, 

0.0001 -0.6263 0.0001 0.6264}; 

/*Within subject covariance matrix*/ 

 R={131.07  10.8395, 

10.8395  3.0621}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_2; 

read all var{Sample} into id; 

read all var{Y13} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeGam} into X; 

read all var{interceptVis interceptGam timeVis timeGAm} into Z; 

close resid_2; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 
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 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_2 from H; append from H; 

 create B_2 from B; append from B; 

quit; 

/*===================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 3, VARIABLES 1 AND 4*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 G={3.3696 0.6013 -0.6243 -0.0001, 

0.6013 0.6013 -0.0001 -0.6263, 

-0.6243 -0.0001 0.6274 -0.0001, 

-0.0001 -0.6263 -0.0001 0.6264}; 

 

/*Within subject covariance matrix*/ 

 R={131.06   -10.3872, 

-10.3872  3.6538}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_3; 

read all var{Sample} into id; 

read all var{Y14} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeAlpha} into X; 

read all var{interceptVis interceptAlpha timeVis timeAlpha} into Z; 

close resid_3; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 
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     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_3 from H; append from H; 

 create B_3 from B; append from B; 

quit; 

 

/*=====================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 4, VARIABLES 1 AND 5*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 G={3.3695 -1.1391 -0.6245 0.00003, 

-1.1391 0.4799 0.00003 -0.6263, 

-0.6245 0.00003 0.6273 0.00003, 

0.00003 -0.6263 0.00003 0.6264}; 

/*Within subject covariance matrix*/ 

 R={131.07  5.7503, 

    5.7503  0.9340}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_4; 

read all var{Sample} into id; 

read all var{Y15} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeCopp} into X; 

read all var{interceptVis interceptCopp timeVis timeCopp} into Z; 
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close resid_4; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_4 from H; append from H; 

 create B_4 from B; append from B; 

quit; 

/*=================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 5, VARIABLES 1 AND 6*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 G={5.2497 1.3382 -2.5012 0.0083, 

1.3382 1.8714 0.0083 -2.5057, 

-2.5012 0.0083 2.5075 0.0083, 

0.0083 -2.5057 0.0083 2.5053}; 

/*Within subject covariance matrix*/ 

 R={131.02   -12.6581, 
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-12.6581   4.4274}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_5; 

read all var{Sample} into id; 

read all var{Y16} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeGluc} into X; 

read all var{interceptVis interceptGluc timeVis timeGluc} into Z; 

close resid_5; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_5 from H; append from H; 

 create B_5 from B; append from B; 

quit; 

 

/*====================================================================*/ 
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proc iml symsize=10000 worksize=10000;   /*PAIR 6, VARIABLES 1 AND 7*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

 G={3.3689   -0.7560   -0.6256   0.0039, 

-0.7560   0.5709   0.0039   -0.6251, 

-0.6256   0.0039   0.6267   0.0039, 

0.0039   -0.6251   0.0039   0.6270}; 

 

/*Within subject covariance matrix*/ 

 R={131.08  5.5440, 

5.5440   0.9878}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_6; 

read all var{Sample} into id; 

read all var{Y17} into Y; 

read all var{resid} into resid; 

read all var{timeVis timeXylo} into X; 

read all var{interceptVis interceptXylo timeVis timeXylo} into Z; 

close resid_6; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 
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 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_6 from H; append from H; 

 create B_6 from B; append from B; 

quit; 

/*==================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 7, VARIABLES 2 AND 3*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

 G={0.3390  -0.2824  -0.6263  0.0000, 

-0.2824  0.3074  0.0000  -0.6263, 

-0.6263  0.0000  0.6263  0.0000, 

0.0000  -0.6263  0.0000  0.6263}; 

 

/*Within subject covariance matrix*/ 

 

R={1.9180  1.9676, 

1.9676  3.0622}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_7; 

read all var{Sample} into id; 

read all var{Y23} into Y; 

read all var{resid} into resid; 

read all var{timeLig timeGam} into X; 

read all var{interceptLig interceptGam timeLig timeGam} into Z; 

close resid_7; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 
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 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_7 from H; append from H; 

 create B_7 from B; append from B; 

quit; 

 

/*=================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 8, VARIABLES 2 AND 4*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

G={0.3390  0.2955  -0.6263  0.0000, 

0.2955  0.1441  0.0000  -0.6263, 

-0.6263  0.0000  0.6263  0.0000, 

0.0000  -0.6263  0.0000  0.6263}; 

/*Within subject covariance matrix*/ 

R={1.9180  -1.8854, 

-1.8854  3.6540}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_8; 

read all var{Sample} into id; 

read all var{Y24} into Y; 

read all var{resid} into resid; 

read all var{timeLig timeAlpha} into X; 

read all var{interceptLig interceptAlpha timeLig timeAlpha} into Z; 

close resid_8; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 
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 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_8 from H; append from H; 

 create B_8 from B; append from B; 

quit; 

/*===========================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 9, VARIABLES 2 AND 5*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

G={0.3390  -0.2106  -0.6263  0.0000, 

-0.2106  0.4799  0.0000  -0.6263, 

-0.6263  0.0000  0.6263  0.0000, 

0.0000  -0.6263  0.0000  0.6263}; 

/*Within subject covariance matrix*/ 

R={1.9180  1.2172, 

1.2172  0.9340}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_9; 

read all var{Sample} into id; 

read all var{Y25} into Y; 

read all var{resid} into resid; 

read all var{timeLig timeCopp} into X; 

read all var{interceptLig interceptCopp timeLig timeCopp} into Z; 

close resid_9; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 
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 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_9 from H; append from H; 

 create B_9 from B; append from B; 

quit; 

/*===================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 10, VARIABLES 2 AND 6*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

G={0.3390  0.3902  -0.6263  0.0028, 

0.3902  0.0057  0.0028  -0.5999, 

-0.6263  0.0028  0.6263  0.0028, 

0.0028  -0.5999  0.0028  0.6396}; 

/*Within subject covariance matrix*/ 

 

R={1.9180  -2.6945, 

-2.6945  4.5336}; 

/*Extracting Y, X, Z and residuals*/ 

use resid_10; 

read all var{Sample} into id; 

read all var{Y26} into Y; 

read all var{resid} into resid; 

read all var{timeLig timeGluc} into X; 

read all var{interceptLig interceptGluc timeLig timeGluc} into Z; 

close resid_10; 

numobs=nrow(X); 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 
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end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_10 from H; append from H; 

 create B_10 from B; append from B; 

quit; 

 

/*===================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 11, VARIABLES 2 AND 7*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.3390  -0.1570  -0.6263  -0.0016, 

-0.1570  0.5769  -0.0016  -0.6130,  

-0.6263  -0.0016  0.6263  -0.0016, 

-0.0016  -0.6130  -0.0016  0.6330}; 

 

 

/*Within subject covariance matrix*/ 

 

R={1.9180  1.1659, 

1.1659  1.0102}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_11; 

read all var{Sample} into id; 

read all var{Y27} into Y; 

read all var{resid} into resid; 
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read all var{timeLig timeXylo} into X; 

read all var{interceptLig interceptXylo timeLig timeXylo} into Z; 

close resid_11; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_11 from H; append from H; 

 create B_11 from B; append from B; 

quit; 

 

 

/*===============================================================*/ 
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proc iml symsize=10000 worksize=10000;   /*PAIR 12, VARIABLES 3 AND 4*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.3074  0.4183  -0.6263  0.0000,  

0.4183  0.1441  0.0000  -0.6263, 

-0.6263  0.0000  0.6264  0.0000, 

0.0000  -0.6263  0.0000  0.6264}; 

 

/*Within subject covariance matrix*/ 

 

R={3.0620  -3.1214, 

-3.1214  3.6538}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_12; 

read all var{Sample} into id; 

read all var{Y34} into Y; 

read all var{resid} into resid; 

read all var{timeGam timeAlpha} into X; 

read all var{interceptGam interceptAlpha timeGam timeAlpha} into Z; 

close resid_12; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 
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 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_12 from H; append from H; 

 create B_12 from B; append from B; 

quit; 

 

 

/*=========================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 13, VARIABLES 3 AND 5*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.3074  -0.2980  -0.6263  0.0000, 

-0.2980  0.4799  0.0000  -0.6263,  

-0.6263  0.0000  0.6263  0.0000,  

0.0000  -0.6263  0.0000  0.6263}; 

 

/*Within subject covariance matrix*/ 

 

R={3.0622  1.6174, 

1.6174  0.9340}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_13; 

read all var{Sample} into id; 

read all var{Y35} into Y; 

read all var{resid} into resid; 

read all var{timeGam timeCopp} into X; 

read all var{interceptGam interceptCopp timeGam timeCopp} into Z; 

close resid_13; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 
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 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_13 from H; append from H; 

 create B_13 from B; append from B; 

quit; 

 

 

/*================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 14, VARIABLES 3 AND 6*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={2.1864  0.5039  -2.5054  -0.0053, 

0.5039  1.8778 -0.0053  -2.4928,  

-2.5054  -0.0053 2.5054  -0.0053,  

-0.0053  -2.4928  -0.0053  2.5117};  

 

/*Within subject covariance matrix*/ 

 

R={3.0622  -3.3881, 

-3.3881  4.4173}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_14; 

read all var{Sample} into id; 

read all var{Y36} into Y; 

read all var{resid} into resid; 

read all var{timeGam timeGluc} into X; 

read all var{interceptGam interceptGluc timeGam timeGluc} into Z; 

close resid_14; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 
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     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_14 from H; append from H; 

 create B_14 from B; append from B; 

quit; 

 

/*==================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 15, VARIABLES 3 AND 7*/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.3074  -0.2412  -0.6263  0.0035, 

-0.2412  0.5739  0.0035  -0.6191, 

-0.6263  0.0035  0.6263  0.0035, 

0.0035  -0.6191  0.0035  0.6300}; 

 

/*Within subject covariance matrix*/ 

 

R={3.0622  1.5778, 

1.5778  0.9857}; 

 

/*Extracting Y, X, Z and residuals*/ 
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use resid_15; 

read all var{Sample} into id; 

read all var{Y37} into Y; 

read all var{resid} into resid; 

read all var{timeGam timeXylo} into X; 

read all var{interceptGam interceptXylo timeGam timeXylo} into Z; 

close resid_15; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_15 from H; append from H; 

 create B_15 from B; append from B; 

quit; 



238 

 

 

 

 

 

/*===================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 16, VARIABLES 4 AND 5/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.1441  0.2737  -0.6263  0.0000, 

0.2737  0.4799  0.0000  -0.6263, 

-0.6263  0.0000  0.6263  0.0000, 

0.0000  -0.6263  0.0000  0.6263}; 

 

/*Within subject covariance matrix*/ 

 

R={3.6540  -1.6043, 

-1.6043  0.9340}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_16; 

read all var{Sample} into id; 

read all var{Y45} into Y; 

read all var{resid} into resid; 

read all var{timeAlpha timeCopp} into X; 

read all var{interceptAlpha interceptCopp timeAlpha timeCopp} into Z; 

close resid_16; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 
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 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_16 from H; append from H; 

 create B_16 from B; append from B; 

quit; 

 

 

/*=============================================================*/ 

 

proc iml symsize=10000 worksize=10000;   /*PAIR 17, VARIABLES 4 AND 6/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={2.0231  -0.6118  -2.5054  -0.0081, 

-0.6118  1.8626  -0.0081  -2.5232, 

-2.5054  -0.0081  2.5054  -0.0081, 

-0.0081  -2.5232  -0.0081  2.4965}; 

 

/*Within subject covariance matrix*/ 

 

R={3.6540  3.8341, 

3.8341  4.6570}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_17; 

read all var{Sample} into id; 

read all var{Y46} into Y; 

read all var{resid} into resid; 

read all var{timeAlpha timeGluc} into X; 

read all var{interceptAlpha interceptGluc timeAlpha timeGluc} into Z; 

close resid_17; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 
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 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_17 from H; append from H; 

 create B_17 from B; append from B; 

quit; 

 

 

/*=================================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 18, VARIABLES 4 AND 7/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.1441  0.3409  -0.6263  0.0034, 

0.3409  0.5652  0.0034  -0.6366, 

-0.6263  0.0034  0.6263  0.0034, 

0.0034  -0.6366  0.0034  0.6212}; 

 

/*Within subject covariance matrix*/ 

 

R={3.6540  -1.8035, 

-1.8035  1.0482}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_18; 

read all var{Sample} into id; 

read all var{Y47} into Y; 

read all var{resid} into resid; 

read all var{timeAlpha timeXylo} into X; 

read all var{interceptAlpha interceptXylo timeAlpha timeXylo} into Z; 

close resid_18; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 
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     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_18 from H; append from H; 

 create B_18 from B; append from B; 

quit; 

 

 

/*===============================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 19, VARIABLES 5 AND 6/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.4799  0.3293  -0.6263  0.0053, 

0.3293  0.0054  0.0053  -0.6005, 

-0.6263  0.0053  0.6263  0.0053, 

0.0053  -0.6005  0.0053  0.6393}; 

 

/*Within subject covariance matrix*/ 
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R={0.9340  -1.9626, 

-1.9626  4.5241}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_19; 

read all var{Sample} into id; 

read all var{Y56} into Y; 

read all var{resid} into resid; 

read all var{timeCopp timeGluc} into X; 

read all var{interceptCopp interceptGluc timeCopp timeGluc} into Z; 

close resid_19; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 
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 pnt=pnt+vsize[i]; 

 end; 

 create J_19 from H; append from H; 

 create B_19 from B; append from B; 

quit; 

 

 

/*=============================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 20, VARIABLES 5 AND 7/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.4799  -0.1538  -0.6263  -0.0029, 

-0.1538  0.5768  -0.0029  -0.6134, 

-0.6263  -0.0029  0.6263  -0.0029, 

-0.0029  -0.6134  -0.0029  0.6328}; 

 

/*Within subject covariance matrix*/ 

 

R={0.9340  0.8843, 

0.8843  1.0072}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_20; 

read all var{Sample} into id; 

read all var{Y57} into Y; 

read all var{resid} into resid; 

read all var{timeCopp timeXylo} into X; 

read all var{interceptCopp interceptXylo timeCopp timeXylo} into Z; 

close resid_20; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 

 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 
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 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_20 from H; append from H; 

 create B_20 from B; append from B; 

quit; 

 

/*==============================================================*/ 

proc iml symsize=10000 worksize=10000;   /*PAIR 21, VARIABLES 6 AND 7/ 

 free H; free B; 

/*Between subject covariance matrix*/ 

 

G={0.0002  0.2538  -0.6315  0.0014, 

0.2538  0.5700  0.0014  -0.6270, 

-0.6315  0.0014  0.6238  0.0014, 

0.0014  -0.6270  0.0014  0.6260}; 

 

/*Within subject covariance matrix*/ 

 

R={4.4381  -2.0202, 

-2.0202  0.9906}; 

 

/*Extracting Y, X, Z and residuals*/ 

use resid_21; 

read all var{Sample} into id; 

read all var{Y67} into Y; 

read all var{resid} into resid; 

read all var{timeGluc timeXylo} into X; 

read all var{interceptGluc interceptXylo timeGluc timeXylo} into Z; 

close resid_21; 

numobs=nrow(X); 

 

/*Generate Matrix vsize that contains number of observations for each subject*/ 

count=1; 

free vsize; 

do i=1 to (numobs-1); 

     if id[i]=id[i+1] then 

        do; count=count+1; end; 

     else if id[i]^=id[i+1] then 

        do; vsize=vsize//count; count=1; end; 

     if i=numobs-1 then vsize=vsize//count; 

end; 

nsubjects=nrow(vsize); 

p=ncol(x); 

 

H=J(p,p,0); 

do i=1 to nsubjects; 

 if i=1 then pnt=1; 

 

 /*Z, X, Y and resid matrix for i-th subject*/ 

 Zi=Z[pnt:pnt+vsize[i]-1,]; 
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 Xi=X[pnt:pnt+vsize[i]-1,]; 

 yi=y[pnt:pnt+vsize[i]-1]; 

 residi=resid[pnt:pnt+vsize[i]-1]; 

 

 /*Generates Ri */ 

 ni=nrow(yi); 

 I_ni=diag(J(ni/2,1,1)); 

 Ri=I_ni@R; 

 

 /*Check for missing observation in Y and X 

 Vector pr_Y: contains the list of non-missing observations in Y 

 Vector pr_X: contains the list of non-missing observations in X. 

 (If any of the covariate value is missing - it will be considered as missing 

 in general)*/ 

 pr_Y=loc(residi^=.); 

 tloc=ncol(Xi); 

 fnd=(Xi^=.); 

 fnd2=fnd[,+]; 

 pr_X=loc(fnd2=tloc); 

 if (ncol(pr_Y)>0 & ncol(pr_X)>0) then 

 do; 

 Present=xsect(pr_Y, pr_X); 

 Zi=Zi[Present,]; 

 Xi=Xi[Present,]; 

 yi=yi[Present,]; 

 Residi=Residi[Present,]; 

 Ri=Ri[Present,Present]; 

 Vi=Zi*G*t(Zi)+Ri; /*Vi*/ 

 Wi=ginv(Vi);      /*Wi*/ 

 H_i=t(Xi)*Wi*Xi;  /*Contribution to H from i-th subject*/ 

 H=H+H_i;          /*Accumulated Hessian matrix till i-th individual*/ 

 B_ik=t(Xi)*Wi*Residi; /*Contribution to G from i-th subject*/ 

 B=B||B_ik;        /*Accumulated G matrix till i-th individual*/ 

 end; 

 else B=B||J(p,1,0); 

 pnt=pnt+vsize[i]; 

 end; 

 create J_21 from H; append from H; 

 create B_21 from B; append from B; 

quit; 

 

/**********************************************************************/ 

/**********                                                  **********/ 

/**********  STEP 3: Combining all Matrices into H and G     **********/     

/**********                                                  **********/  

/*********************************************************************/ 

proc iml; 

use H_1; read all into H_1; close H_1; 

use H_2; read all into H_2; close H_2; 

use H_3; read all into H_3; close H_3; 

H_comb=block(H_1, H_2, H_3, H_4, H_5, H_6, H_7, H_8, H_9, H_10, H_11, H_12, H_13, 

H_14, H_15, H_16, H_17, H_4, H_4, H_4, H_4, ); 

create H from H_comb; 

append from H_comb; 

use G_1; read all into G_1; close G_1; 

use G_2; read all into G_2; close G_2; 

use G_3; read all into G_3; close G_3; 

G_comb=G_1//G_2//G_3; 

create G from G_comb; append from G_comb; 

quit; 

 

/**********************************************************************/ 

/**********                                                 ***********/ 

/**********   STEP 4: Combining all Matrices into H and G   ***********/ 

/**********                                                 ***********/  

/**********************************************************************/ 

proc iml; 

use H_1; read all into H_1; close H_1; 
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use H_2; read all into H_2; close H_2; 

use H_3; read all into H_3; close H_3; 

use H_4; read all into H_4; close H_4; 

use H_5; read all into H_5; close H_5; 

use H_7; read all into H_7; close H_7; 

use H_8; read all into H_8; close H_8; 

use H_9; read all into H_9; close H_9; 

use H_10; read all into H_10; close H_10; 

use H_12; read all into H_12; close H_12; 

use H_13; read all into H_13; close H_13; 

use H_14; read all into H_14; close H_14; 

use H_16; read all into H_16; close H_16; 

use H_17; read all into H_17; close H_17; 

use H_19; read all into H_19; close H_19; 

 

H_comb=block(H_1, H_2, H_3, H_4, H_5, H_7, H_8, H_9, H_10, H_12, H_13, H_14, H_16, 

H_17, H_19); 

create H from H_comb; 

append from H_comb; 

 

use B_1; read all into B_1; close B_1; 

use B_2; read all into B_2; close B_2; 

use B_3; read all into B_3; close B_3; 

use B_4; read all into B_4; close B_4; 

use B_5; read all into B_5; close B_5; 

use B_7; read all into B_7; close B_7; 

use B_8; read all into B_8; close B_8; 

use B_9; read all into B_9; close B_9; 

use B_10; read all into B_10; close B_10; 

use B_12; read all into B_12; close B_12; 

use B_13; read all into B_13; close B_13; 

use B_14; read all into B_14; close B_14; 

use B_16; read all into B_16; close B_16; 

use B_17; read all into B_17; close B_17; 

use B_19; read all into B_19; close B_19; 

 

B_comb=B_1//B_2//B_3//B_4//B_5//B_7//B_8//B_9//B_10//B_12//B_13//B_14//B_16//B_17//

B_19; 

create B from B_comb; append from B_comb; 

quit; 

 

/**********************************************************************/ 

/*****                                                        *********/ 

/*****  STEP 5: Creating the Matrices J-hat and K-hat         *********/ 

/**********                                                   *********/  

/**********************************************************************/ 

proc iml; 

     use B; read all into B; close B; 

     nsubjects=ncol(B); 

     K_1=B*t(B); 

     K=K_1#1/nsubjects; 

     create K from K; append from K; 

     use H; read all into H; close H; 

     J=H#1/nsubjects; 

     create J from J; append from J; 

  print J K; 

quit; 

/*********************************************************************/ 

/***                                                            ******/ 

/***  STEP 6: Estimating the Covariance matrix: SIGMA_zero      ******/ 

/***                                                            ******/  

/*********************************************************************/ 

proc iml; 

     use J; read all into J; close J; 

     use K; read all into K; close K; 

     nsubjects=24; 

     Sigma=inv(J)*K*inv(J); 

     Sigma0=Sigma#1/nsubjects; 
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     create Sigma0 from Sigma0; append from Sigma0; 

  print Sigma0; 

  print J K; 

quit; 

/*******************************************************************/ 

/****                                                            ***/ 

/**** STEP 7: Estimating the Fixed parameter Matrix of estimates ***/ 

/****                                                            ***/  

/*******************************************************************/ 

proc iml; /*Edunnii Slope parameters */ 

     ThetaED12={-14.7300, -2.2304}; 

     ThetaED13={-14.7300, -2.8093}; 

     ThetaED14={-14.7300, 3.1036}; 

  ThetaED15={-14.7300, -1.7644}; 

  ThetaED16={-14.7300, 4.0108}; 

  ThetaED23={-2.2304, -2.8093}; 

  ThetaED24={-2.2304, 3.1036}; 

  ThetaED25={-2.2304, -1.7644}; 

  ThetaED26={-2.2304, 4.0108}; 

  ThetaED34={-2.8093, 3.1036}; 

  ThetaED35={-2.8093, -1.7644}; 

  ThetaED36={-2.8093, 4.0108}; 

  ThetaED45={3.1036, -1.7644}; 

  ThetaED46={3.1036, 4.0108}; 

  ThetaED56={-1.7644, 4.0108}; 

     

ThetaED_est=ThetaED12//ThetaED13//ThetaED14//ThetaED15//ThetaED16//ThetaED23//Theta

ED24//ThetaED25//ThetaED26//ThetaED34//ThetaED35//ThetaED36//ThetaED45//ThetaED46//

ThetaED56; 

     create ThetaED_est from ThetaED_est; 

     append from ThetaED_est; 

  print ThetaED_est; 

quit; 

/********************************************************************/ 

/****                                                             ***/ 

/**** STEP 8: Culculation of the overall parameter estimates      ***/ 

/****   and their standard errors                                 ***/ 

/****                                                             ***/  

/********************************************************************/ 

Proc iml; 

A={0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 

   0 0.2 0 0 0 0 0 0 0 0 0.2 0 0.2 0 0.2 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0, 

   0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0.2 0 0.2 0 0.2 0 0 0 0 0 0 0, 

   0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0 0.2 0 0.2 0 0 0, 

   0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0.2 0 0 0.2 0, 

   0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0.2 0 0.2}; 

use Sigma0; read all into Sigma0; close Sigma0; 

use ThetaED_est; read all into ThetaED_est; close ThetaED_est; 

ThetaED_est_star=A*ThetaED_est; 

G_hat=A*Sigma0*t(A); 

temp=diag(A*Sigma0*t(A)); 

stderr=J(6,1,0); 

do i=1 to 6; 

stderr[i,1]=sqrt(temp[i,i]); 

end; 

create ThetaED_est_star from ThetaED_est_star; append from ThetaED_est_star; 

create Stderr from Stderr; append from Stderr; 

G_diag=diag(G_hat); 

G_diagSQRT=sqrt(G_diag); 

G_diagSRTInv=inv(G_diagSQRT); 

G_corr=G_diagSRTInv*G_hat*G_diagSRTInv; 

print ThetaED_est_star Stderr A G_hat G_corr; 

/* ThetaED_est_star and Stderr contain parameter estimates and their Standard erros 

*/ 

quit; 

/*******************************************************************/ 

/****                                                            ***/ 

/****   STEP 9: Culculation of the G and R matrices              ***/ 
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/****     and their standard errors                              ***/ 

/****    And Correlations between Slopes                        ***/  

/******************************************************************/ 

proc iml;  

G = {0.62746 0.0001 0.0001 -0.0001 0.00003 0.0083, 

     0.0001 0.62632 0.0000 0.0000  0.00000 0.0028, 

     0.0001 0.0000 0.62636 0.0000  0.00000 -0.0053, 

     -0.0001 0.0000 0.0000 0.62638 0.00000 -0.0081, 

     0.00003 0.0000 0.0000 0.0000 .62632 0.0053, 

     0.0083 0.0028  -0.0053 -0.0081 0.0053 2.5051486}; /* this is the G matrix*/ 

 

R={131.06   9.0200 10.8395 -10.3872 5.7503 -12.6581, 

     9.0200 1.91796 1.9676 -1.8854  1.2172  -2.6945, 

    10.8395 1.9676 3.06214  -3.1214 1.6174 -3.3881, 

   -10.8395 -1.8854 -3.1214 3.65393 -1.6043 3.8341, 

     5.7503 1.2172  1.6174  -1.6043  0.9340 -1.9626, 

   -12.6581 -2.6945 -3.3881 3.8341  -1.9626 4.51188}; /* this is the R matrix*/ 

/*Association/Correlations between slopes*/ 

corr_bet_slopes=j(nrow(G), nrow(G), 0); 

      do i=1 to nrow(G); 

         do j=1 to ncol(G); 

            corr_bet_slopes[i,j]=G[i,j]/sqrt(G[i,i]*G[j,j]); 

         end; 

      end; 

print corr_bet_slopes R; 

/*Marginal correlation at time 2*/ 

/* Marg_corr=j(nrow(D_marg), nrow(D_marg), 0); 

do i=1 to nrow(D_marg); 

do j=1 to ncol(D_marg); 

Marg_corr[i,j]=D_marg[i,j]/sqrt(D_marg[i,i]*D_marg[j,j]); 

end; 

end; 

print Marg_corr; */ 

run; 

quit; 

 
 

 

  



249 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

A3. Published articles from the study 
 

 


